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Preface

Point set topology was my first love in mathematics. I took the course as an
undergraduate at Loyola University in New Orleans and my professor, Harry
Fledderman, told me to go to the library and solve all the problems in the
book while he tutored the other student who had signed up for the course.
(Yes, I know it sounds strange today, but there were only two students in the
course.) I kept a notebook with my solutions, and once a week I reported
for his inspection of my work. I felt like a real mathematician learning real
mathematics. It had a great influence on me and made me realize how much
I wanted to be a mathematician. Even now I can’t tell you whether the love I
have for point set topology was the cause of this feeling or whether that love
was a consequence of this learning style. I was disappointed to later discover
that research in this area had mostly petered out. I found equally attractive
research areas in which to sow my oats, but I always retained this youthful
love affair.

You can probably guess that I have long wanted to write a book on
this topic, but other things took precedence. I am glad that was the case
because now I think I have a better approach. I had an epiphany about
halfway through my career when I realized I didn’t have to teach my students
everything I had learned about the subject at hand. I learned mathematics in
school that I never used again, and not just because those things were in areas
in which I never did research. At least part of this, I suspect, was because
some of my teachers hadn’t had this insight. Another reason is that many
authors write textbooks as though they are writing a monograph directed
at other faculty rather than thinking of the students as the audience. Also,
mathematics refines and refreshes itself with time. Certain topics that were
important at the inception of an area fade in significance, and some that are
useful in various areas today must be added. Other topics are important,
but only if you are one of that small percentage who specialize in a specific
part of research; such things should not be taught to everyone who takes an
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viii Preface

introductory course. In addition, when a subject is developing, there is an
emphasis on finding the intellectual boundaries of the concepts. Unless that
viewpoint is abandoned when the subject is taught, it results in a greater
prominence of pathology. An examination of early texts in any subject will
reveal such an emphasis. With time, however, it is crucial to decide what
should be taught in an introductory course such as the kind this book is
written for. I see the purpose of a course in point set topology as giving
the student a set of tools. The material is used in almost every part of
mathematics.

In addition, I have come to believe that in teaching, it is best to go
from the particular to the more general, an approach that has dominated my
presentations in the last several texts I have written. To begin with, that is
the way mathematics evolves. In addition, my experience is that all but the
very best students find such an approach more digestible. The present book
reflects my belief in this approach.

I see this text as aimed at an undergraduate audience that has had cal-
culus and been exposed to the ideas of basic set theory like subsets, unions,
intersections, functions, and little else. Nevertheless, I think it advisable that
they have had at least a semester of analysis and been properly exposed to
convergence and other topological notions in the real line. (I have included
some appendices to help bridge the gap, but I am sure this will not suffice
for all.) I also think point set topology is an excellent place to begin learning
how to digest and write proofs. Thus, I tend to go slowly at the start of the
book, including more detail than is needed for a seasoned student and even
more than I include later in the text.

Following my philosophy of beginning with the particular, I start with
metric spaces. I believe that these are far easier to connect with students’
experience. They also seem to me to be the more prevalent topological spaces
used in other areas and are therefore worth extra emphasis. Chapter 2 defines
and develops abstract topological spaces, with metric spaces as the source
of inspiration. I narrow the discussion by quickly restricting the focus to
Hausdorff spaces. Needless to say, some of the more elementary arguments
in topological spaces are the same as those in metric spaces. There is no
problem here; I just refer students to the metric space proof and invite them
to carry out the analogous argument, which in most cases is almost identical.

Chapter 3 concentrates on continuous real-valued functions. My belief
is that the continuous functions on a space are more important than the
underlying space. Maybe that’s because I’m an analyst. I know that much
of modern topology concentrates on the underlying geometry of a space, but
surely that must be saved until after the student has encountered the need.

Biographies. In this book I continue the practice, started in a previous
work, of including short biographical notes when a mathematician’s result is
mentioned. There is no scholarship on my part in this as all the material
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is from secondary sources, principally what I could find on the Web. In
particular, I made heavy use of the site at the University of St Andrews
http://www-history.mcs.st-andrews.ac.uk/history/BiogIndex.html

and Wikipedia. I continue my practice of emphasizing personal aspects of
these lives over their mathematical achievements, especially if there is some-
thing there that interests me.

Style. The longer I am a mathematician and the more I write, the more
I ask myself questions about style. There is a difference between what you
write and how you speak. That’s true in mathematics just as it is outside
of mathematics. I think I write more informally than many mathematicians,
but there are some rules I try to follow even though they are not universal.
One such rule is that with essentially no exceptions I use symbols like ∈,⊆, >,
and so on as verbs and only as verbs. (For example, ∈ translates as “is an
element of” and not as “in.”) I think this consistency expedites reading. I
experimented a long time ago with using such symbols only as prepositions
but quickly decided this was awkward. When I am having a discussion in my
office, I will frequently use them both ways, but when I write I try to stick
with using them as verbs. So don’t forget to read them that way.

Long ago I realized that every result is not a theorem. The label “The-
orem” is reserved for the truly important results. It’s not that those labeled
“Proposition” are unimportant, but they may be more routine or, perhaps,
they just don’t have the impact on the development of the subject at hand.
A corollary is a direct consequence of a proposition or a theorem. A lemma
is a result whose usefulness is usually limited to the proof of the next result.

A Word to Students. If you want to learn mathematics, you cannot
approach it as a spectator sport; sitting on the edge of the pool and dipping
your toe in will not get you into the subject. You must jump into it with both
feet, commit yourself, and do a lot of dirty work and splashing around before
you can enter the profession at any level. In the course of this book there
are many places where I leave proofs to readers as exercises; do them. When
I give such an exercise, I think it is well within the scope of your ability
provided you understood the concepts. Doing those exercises will confirm
that you understand what has come before; if you cannot do them, it may
mean you overlooked something and should go back.

Throughout the text you will see words like Verify! and Why? I am
trying to put a speed bump in your reading. I want you to be sure you
understand what was just said.

Sometimes my exercises ask a question. A basic part of mathematics is
deciding whether something is true and then proving it. Mathematicians are
constantly trying to discover whether something is true and are seldom, if
ever, presented with a known truth and asked to prove it. So when you see
such an exercise and you think something is true, you must prove it; if you
think it false, you must find a counterexample. (The ability to manufacture
examples is a precious talent that you should cultivate.)

http://www-history.mcs.st-andrews.ac.uk/history/BiogIndex.html
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For most of you this is the class where you will perfect your ability
to execute a proof. A proof is a written explanation of why a particular
statement is true. If you’re a veteran at writing proofs, ignore the rest of this
paragraph. For the less experienced, here is some advice about discovering
and writing down a proof. (a) Write down the hypothesis under the label
GIVEN. (b) Write down the conclusion under the label TO SHOW. (c) Be
sure you understand all the terms used in (a) and (b). (d) If you have
difficulty, try drawing a picture. Look at an example. Try rephrasing the
hypothesis and conclusion. Try to construct a counterexample. (Sometimes
this makes you see why you cannot get a counterexample and, hence, why
the proposition is true.) (e) If all this fails, be extremely clever.

Have fun, live long, and prosper.

Washington, DC John B. Conway
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Chapter 1

Metric Spaces

We want to abstract the idea of distance because this notion often arises
in mathematics. The concept must be general enough to encompass the
circumstances under which it arises, but it should conform to the intuitive
notion we all have of what is meant by the distance between two points.
Because this is being done at the start of the first section, before proceeding
it would be profitable for readers to reflect on what properties they think
should be included in an abstract concept of distance; then they can compare
these thoughts with the definition given below.

1.1. Definitions and Examples

Here is the accepted mathematical definition of an abstract distance.

Definition 1.1.1. A metric space is a pair (X, d) where X is a set and d is
a function d : X × X → [0,∞), called a metric, that satisfies the following
properties for all x, y, z in X :

(a) d(x, y) = d(y, x);

(b) d(x, y) = 0 if and only if x = y;

(c) (the triangle inequality) d(x, y) ≤ d(x, z) + d(z, y).

These three properties are usually part of what we intuitively would
associate with the idea of distance. Condition (a) is sometimes called the
reflexive property and says that the distance from x to y is the same as the
distance from y to x. The second property says the obvious: the distance
from a point to itself is 0 and the only point at a distance zero from x is
x itself. The third, the triangle property, says that the shortest distance
between two points is the direct one—not a distance involving a third point.
One might be tempted to phrase this by saying that the shortest distance
between two points is a straight line, but in this abstract setting we have no
concept of a line, let alone a straight one.

J.B. Conway, A Course in Point Set Topology, Undergraduate Texts
in Mathematics, DOI 10.1007/978-3-319-02368-7 1,
© Springer International Publishing Switzerland 2014
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2 1. Metric Spaces

It is certainly possible that some readers might have additional proper-
ties they would want a distance function to have, but the aforementioned
properties are the minimal ones. Indeed, in mathematics there are several
particular situations where additional axioms for a distance are assumed;
those are more specialized theories, and what we are now going to explore is
this basic one. Here are some examples of metric spaces.

Example 1.1.2. (a) Let X = R, the set of real numbers, and define d(x, y)
= |x− y|. See Exercise 1.

(b) Let X = R
2, the plane, and define d((x1, y1), (x2, y2)) = [(x1 − x2)

2 +

(y1 − y2)
2]

1
2 . Readers know from the Pythagorean Theorem that this is

the straight-line distance, and they can use geometry to verify that this
standard notion of the distance between two points satisfies the axioms
in the preceding definition. More generally, we can define a metric on
q-dimensional Euclidian space R

q by

d(x, y) =

[
q∑

n=1

(xn − yn)
2

] 1
2

for x = (x1, . . . , xq) and y = (y1, . . . , yq) in R
q. However, proving that

this satisfies the needed axioms, specifically the triangle inequality, re-
quires some effort, and the proof will be given later (Corollary 1.1.5).

(c) Let X = R
q, q-dimensional Euclidean space, for x, y in R

q define

d(x, y) =

q∑
n=1

|xn − yn|.

This is easier to verify as a metric (Exercise 2).

(d) Again let X = R
q, and now define

d(x, y) = max{|xn − yn| : 1 ≤ n ≤ q}.

Once again, (Rq, d) is a metric space (Exercise 3). It is worth observing
that in each of the last three examples, when q = 1, all these metrics are
the standard absolute value on R.

(e) Let X be any set, and define

d(x, y) =

{
0 if x = y,

1 if x �= y.

It is a simple exercise to verify that (X, d) is a metric space. This is called
the discrete metric on X .
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(f) An important class of examples arises as follows. Suppose (X, d) is given.
If Y is a nonempty subset ofX , then (Y, d) is a metric space and is referred
to as a subspace. As a specific instance of this we can take X = R and
Y = [0, 1].

Now let us show that the function d given in part (b) of the preceding
example is indeed a metric. To do this we need a famous inequality. Before
presenting this inequality, we introduce the helpful notation that for vectors
x = (x1, . . . , xq) and y = (y1, . . . , yq) in R

q, 〈x, y〉 =
∑q

n=1 xnyn. Actually,
this is more than just “helpful” notation as it denotes the inner or “dot”
product in the vector space R

q. This connection will not be explored here,
however, and we will only regard this as notation. It is useful to observe the
following properties for all vectors x, y, z in R

q and all real numbers t.

1.1.3

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈x, x〉 ≥ 0,

〈x, y〉 = 〈y, x〉,
〈tx+ z, y〉 = t〈x, y〉+ 〈z, y〉,
〈x, y + tz〉 = 〈x, y〉+ t〈x, z〉.

Theorem 1.1.4 (Cauchy1–Schwarz2 inequality). If x = (x1, . . . , xq) and
y = (y1, . . . , yq) are vectors in R

q, then[
q∑

n=1

xnyn

]2

≤
[

q∑
n=1

x2
n

] [
q∑

n=1

y2
n

]
.

Proof. First note that if we use the inner product notation introduced pre-
viously, then the sought-after inequality becomes

〈x, y〉2 ≤ 〈x, x〉〈y, y〉.

1Augustin Louis Cauchy was born in Paris in August 1789, a month after the storming
of the Bastille. He was educated in engineering, and his first job was in 1810 working on the
port facilities at Cherbourg in preparation for Napoleon’s contemplated invasion of England. In
1812 he returned to Paris, and his energies shifted toward mathematics. His contributions were
monumental, with a plethora of results bearing his name. His collected works fill 27 published
volumes. As a human being he left much to be desired. He was highly religious with a totally
dogmatic personality, often treating others with dismissive rudeness. Two famous examples were
his treatment of Abel and Galois: he refused to consider their highly significant works, which
they had submitted to him. Both Abel and Galois died young. Perhaps better treatment by
Cauchy would have given them some recognition that would have resulted in a longer life and
a productive career to the betterment of mathematics; we’ll never know. He had two doctoral
students, one of whom was Bunyakowsky. Cauchy died in 1857 in Sceaux near Paris.

2Hermann Amandus Schwarz was a German mathematician born in 1843 in Hermsdorf,
Silesia, now part of Poland. He began his studies at Berlin in chemistry but switched to mathe-
matics and received his doctorate in 1864 under the direction of Weierstrass. He held positions
at Halle, Zurich, Göttingen, and Berlin. His work centered on various geometry problems that
were deeply connected to analysis. This included work on surfaces and conformal mappings in
analytic function theory, any student of which will see his name in prominence. He died in Berlin
in 1921.



4 1. Metric Spaces

Using (1.1.3) we have

0 ≤ 〈x− ty, x− ty〉
= 〈x, x〉 − t〈y, x〉 − t〈x, y〉+ t2〈y, y〉
= 〈x, x〉 − 2t〈x, y〉+ t2〈y, y〉
= γ − 2βt+ αt2 ≡ q(t),

where γ = 〈x, x〉, β = 〈x, y〉, α = 〈y, y〉. Thus q(t) is a quadratic polynomial
in the variable t. Since q(t) ≥ 0 for all t, the graph of q(t) stays above the x-
axis, except that it might be tangent at a single point; that is, q(t) = 0 has at
most one real root. From the quadratic formula we get that 0 ≥ 4β2−4αγ =
4(β2 − αγ). Therefore,

0 ≥ β2 − αγ = 〈x, y〉2 − 〈x, x〉〈y, y〉,

proving the inequality. �

Corollary 1.1.5. If d : Rq ×R
q → [0,∞) is defined as in Example 1.1.2(b),

then d is a metric.

Proof. We begin by noting that d(x, y) =
√
〈x− y, x− y〉. Using the Cauchy–

Schwarz inequality (1.1.3) and the vector space properties of Rq we get

d(x, y)2 = 〈x− y, x− y〉
= 〈(x− z) + (z − y), (x− z) + (z − y)〉
= 〈x− z, x− z〉+ 2〈x− z, z − y〉+ 〈z − y, z − y〉

≤ d(x, z)2 + 2
√
〈x− z, x− z〉

√
〈z − y, z − y〉+ d(z, y)2

= d(x, z)2 + 2d(x, z)d(z, y) + d(z, y)2

= [d(x, z) + d(z, y)]2 .

Taking square roots shows that the triangle inequality holds. The remainder
of the proof that d defines a metric is straightforward. (Verify!) �

When x ∈ X and r > 0, we introduce the notation

B(x; r) = {y ∈ X : d(x, y) < r}, B(x; r) = {y ∈ X : d(x, y) ≤ r}.

The set B(x; r) is called the open ball about x, or centered at x, of radius r;
B(x; r) is called the closed ball about x of radius r. If X = R, then B(x; r) is
the open interval (x− r, x+ r) and B(x; r) is the closed interval [x− r, x+ r].
If X = R

2, then B(x; r) is the so-called “open” ball or disk centered at
x of radius r that does not include the bounding circle, and B(x; r) is the
corresponding “closed” disk that does include the bounding circle. The use
of the words and here will be made clear momentarily. Meanwhile, notice
that when s < r, B(x; s) ⊆ B(x; r). This trivial observation will come in
handy.
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Definition 1.1.6. If (X, d) is a metric space, then a subset G of X is open
if for each x in G there is an r > 0 such that B(x; r) ⊆ G. A subset F of X
is closed if its complement, X\F , is open.
Example 1.1.7. (a) We observe that X and ∅ are both open and closed

sets. In fact, it is clear that X is open and ∅ is open since the condition
is vacuously satisfied. That is, since there are no points in ∅, every point
in ∅ satisfies the condition needed for ∅ to be an open set. Since both
these sets are open, their complements are closed.

(b) For any r > 0, B(x; r) is open. If y ∈ B(x; r) and 0 < s < r − d(x, y),
then B(y; s) ⊆ B(x; r). In fact, if d(y, z) < s, then d(x, z) ≤ d(x, y) +
d(y, z) < d(x, y) + s < r. Thus B(y; s) ⊆ B(x; r).

(c) For any r > 0, B(x; r) is closed. To see this, set G = X\B(x; r) and let
y ∈ G; thus, d(y, x) > r. Let 0 < s < d(x, y) − r. If d(z, y) < s, then
r < d(x, y)− s < d(x, y)−d(y, z) ≤ [d(x, z)+d(z, y)]−d(y, z) = d(x, z);
that is, B(y; s) ⊆ G. Since this shows that G is open, it follows that
B(x; r) is closed.

(d) Any finite subset of X is closed. In fact, if F = {x1, . . . , xn} and x ∈
X\F , then we can find a positive radius r < min{d(x, x1), . . . , d(x, xn)}
and B(x; r) ⊆ X\F .
It is important when discussing open and closed sets to be conscious

of the universe. When (X, d) is a metric space and Y ⊆ X , we have that
(Y, d) is also a metric space [Example 1.1.2(f)]. To say that we have an open
set A in (Y, d) does not mean that A is open in X . Note that in such a
circumstance when y ∈ Y and r > 0, the open ball about y of radius r is
BY (y; r) = {z ∈ Y : d(z, y) < r} = B(y; r)∩Y . This may not be an open set
in X . For example, if X = R and Y = [0, 1], then [0, 1

2 ) is open as a subset of

Y but not as a subset of X . Another example: BY (
1
4 ;

1
3 ) = [0, 7/12). When

we want to emphasize the open and closed sets in the subspace metric (Y, d),
we will use the terms open relative to Y or relatively open in Y and closed
relative to Y or relatively closed in Y . The proof of the next proposition is
Exercise 5.

Proposition 1.1.8. Let (X, d) be a metric space, and let Y be a subset of X.

(a) A subset G of Y is relatively open in Y if and only if there is an open
subset U in X with G = U ∩ Y .

(b) A subset F of Y is relatively closed in Y if and only if there is a closed
subset D in X such that F = D ∩ Y .

Before getting into the properties of open and closed sets, let us remark
that in establishing part (c) of Example 1.1.7 we essentially derived a use-
ful inequality that we now complete. It is often called the reverse triangle
inequality.

Proposition 1.1.9. If (X, d) is a metric space and x, y, z ∈ X, then

|d(x, y)− d(y, z)| ≤ d(x, z).
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Proof. In part (c) of Example 1.1.7 we showed that as a consequence of the
triangle inequality, d(x, y)− d(y, z) ≤ d(x, z). Now reverse the roles of x and
z in this inequality and we get that d(z, y)−d(y, x) ≤ d(z, x), from which we
also have that d(y, z)− d(x, y) ≤ d(x, z). �

Now we return to an examination of open and closed sets. For the re-
mainder of the chapter (X, d) will be a metric space that is always on our
radar screen, even though it may not be explicitly mentioned.

Proposition 1.1.10. (a) If G1, . . . , Gn are open sets, then
⋂n

k=1 Gk is open.

(b) If {Gi : i ∈ I} is a collection of open sets, then
⋃

i∈I Gi is open.

Proof. (a) Let x ∈
⋂n

k=1 Gk. So for 1 ≤ k ≤ n there is an rk > 0 with
B(x, rk) ⊆ Gk. If r = min{r1, . . . , rn}, then r > 0 and B(x; r) ⊆

⋂n
k=1 Gk.

(b) The proof of this is even easier than the proof of part (a). If x ∈
⋃

i∈I Gi,
then for some j in I, x ∈ Gj ; so there is an open ball B(x; r) contained in
Gj . But then B(x; r) ⊆

⋃
i∈I Gi. �

By taking complements and using De Morgan’s laws (Proposition A.1.5),
we get the following proposition for closed sets.

Proposition 1.1.11. (a) If F1, . . . , Fn are closed sets, then
⋃n

k=1 Fk is
closed.

(b) If {Fi : i ∈ I} is a collection of closed sets, then
⋂

i∈I Fi is closed.

We will see that the open and closed sets in a metric space play a central
role. The next result is a prelude to this.

Definition 1.1.12. Let A be a subset of X . The interior of A, denoted by
intA, is the set defined by

intA =
⋃

{G : G is open and G ⊆ A}.

The closure of A, denoted by clA, is the set defined by

clA =
⋂

{F : F is a closed and A ⊆ F}.

The boundary of A, denoted by ∂A, is the set defined by

∂A = clA ∩ cl (X\A).

Let us note that there is always an open set contained in any set A—
namely, the empty set, ∅. It may be, however, that ∅ is the only open set
contained in A, in which case intA = ∅. Similarly, X is a closed set containing
any set A; but it may be the only such set, in which case clA = X . (We will
have more to say about this latter case subsequently.) It follows from the
preceding two propositions that intA is open (though possibly empty) and
clA is closed (though possibly equal to X). We have that int ∅ = ∅ = cl ∅ and
intX = X = clX . Before looking at more meaningful examples, it would be
profitable to first prove some properties of the closure and interior of a set.
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Proposition 1.1.13. Let A ⊆ X.

(a) x ∈ intA if and only if there is an r > 0 such that B(x; r) ⊆ A.

(b) x ∈ clA if and only if for every r > 0, B(x; r) ∩ A �= ∅.

Proof. (a) If B(x; r) ⊆ A, then since B(x; r) is open, we have that B(x; r)
⊆ intA; hence x ∈ intA. Now assume that x ∈ intA. So there is an
open set G such that x ∈ G ⊆ A. But since G is open, there is a radius
r > 0 with B(x; r) ⊆ G, and we have established the converse.

(b) Suppose x ∈ clA. If r > 0, then B(x; r) is open and X\B(x; r) is
closed. It cannot be that A ⊆ X\B(x; r) since, by definition, this
implies clA ⊆ X\B(x; r), contradicting the fact that x ∈ clA. Thus
B(x; r)∩A �= ∅. Now assume that x /∈ clA; that is, x ∈ X\clA, an open
set. By definition there is a radius r > 0 such that B(x; r) ⊆ X\clA.
So for this radius, B(x; r) ∩ A = ∅.

�
The preceding proposition is very useful as it provides a concrete, one-

point-at-a-time method to determine the closure and the interior of a set.
We will see this in the following example.

Example 1.1.14. (a) Sometimes things can become weird with interiors
and closures. Consider the metric space R and the subset Q of all
rational numbers. We are assuming the reader is familiar with the fact
that if a and b are two real numbers with a < b, then there is a rational
number x with a < x < b (Axiom A.3.2). Note that this says that
clQ = R. In fact, if x ∈ R, then B(x; r) = (x − r, x + r), and this
interval must contain a rational number. By the preceding proposition,
x ∈ clQ. We also have that intQ = ∅. To see this again use the
preceding proposition and the fact that between any two real numbers
there is an irrational number(Axiom A.3.2). This means that when
x ∈ Q, no open ball B(x; r) can be contained in Q so that intQ = ∅.
Using the same reasoning we see that cl [R\Q] = R and int [R\Q] = ∅.
(Verify!) It follows that ∂Q = R.

(b) Here is a cautionary tale. SinceB(x; r) is closed, we have that clB(x; r) ⊆
B(x; r). It may not be, however, that clB(x; r) = B(x; r). In fact,
suppose that X = {(0, 0)} ∪ {(a, b) : a2 + b2 = 1} ⊆ R

2. So X con-
sists of the origin in the plane together with the unit circle centered
at the origin. Give X the metric it inherits as a subset of R2. In this
case, {(0, 0)} = clB((0, 0); 1) �= B((0, 0); 1) = X . It is also true that
when X is a discrete metric space as defined in Example 1.1.2(e), then
B(x; 1) = clB(x; 1), whereas B(x; 1) = X .

The next proposition contains some useful information about closures
and interiors of sets. Its proof is left as Exercise 7.
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Proposition 1.1.15. Let A be a subset of X.

(a) A is closed if and only if A = clA.

(b) A is open if and only if A = intA.

(c) clA = X\[int (X\A)], intA = X\cl (X\A), and ∂A = clA\intA.
(d) If A1, . . . , An are subsets of X, then cl [

⋃n
k=1 Ak] =

⋃n
k=1 clAk.

Part (d) of the preceding proposition does not hold for the interior. For
example, if X = R, a < b < c, A = (a, b], and B = [b, c), then int (A ∪ B) =
(a, c), while intA ∪ intB = (a, b) ∪ (b, c). Also see Exercises 8 and 9.

Finally, we want to examine how we put together metric spaces to obtain
new metric spaces. We will see later (Theorem 2.6.6) how to combine a
sequence of metric spaces to obtain a new one, but now let us concentrate on
putting together a finite number. We will focus on showing how to combine
just two spaces because the process for a finite number of spaces is exactly the
same but with more complicated notation. Recall that the cartesian product
of two sets X1 and X2 is defined as X1 ×X2 = {(x1, x2) : x1 ∈ X1, x2 ∈ X2}.

Definition 1.1.16. If (X1, d1) and (X2, d2) are two metric spaces, then
define the new metric space (X1 ×X2, d) by letting

d((x1, x2), (y1, y2)) = d1(x1, y1) + d2(x2, y2)

for all x1, y1 in X1 and x2, y2 in X2.

Verifying that this does define a metric is Exercise 10. We could define
the metric in other ways, for example,

d((x1, x2), (y1, y2) = max{d1(x1, y1), d2(x2, y2)}.

We will see later that these and other appropriate definitions yield “equivalent
metrics.” But that must be postponed until we have a bit more background.
Right now we will always use the metric given previously in Definition 1.1.16.

Proposition 1.1.17. Adopt the previously given notation.

(a) If G1, G2 are open sets in X1, X2, then G1 ×G2 is open in X1 ×X2.
(b) If F1, F2 are closed sets in X1, X2, then F1 × F2 is closed in X1 ×X2.

(c) If G is open in X1 ×X2 and (x1, x2) ∈ G, then there is an r > 0 such
that B(x1; r)×B(x2; r) ⊆ G.

Proof. (a) If (x1, x2) ∈ G1 × G2, then for k = 1, 2 let rk > 0 such that
B(xk; rk) ⊆ Gk. It follows that if r = min{r1, r2}, then B((x1, x2); r) ⊆
G1 ×G2.

(b) (X1 ×X2)\(F1 ×F2) = [(X1\F1)×X2]∪ [X1 × (X2\F2)], and by (a) this
is the union of two open sets.

(c) Let ε > 0 such that B((x1, x2); ε) ⊆ G. If 0 < r < ε/2, then this works.

�
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We close this section with a topic we will encounter in several places as
we proceed through the book.

Definition 1.1.18. A subset E of a metric space (X, d) is dense if clE = X .
A metric space (X, d) is separable if it has a countable dense subset.

We made reference to this concept just after defining the closure of a
set. So a set E is dense if and only if X is the only closed subset of X that
contains E.

Example 1.1.19. (a) Every metric space is dense in itself.
(b) The rational numbers form a dense subset of R, as do the irrational

numbers. This is a rephrasing of Example 1.1.14(a). This might also
explain the name given to Axiom A.3.2. We note that this implies that
R is separable since Q is countable (Corollary A.5.5).

(c) The set of all points in R
q with rational coordinates is dense in R

q. This
follows from the preceding example, and it also says that Rq is separable
by Proposition A.5.4. Also see Exercise 13.

(d) If X is any set and d is a discrete metric on X [Example 1.1.2(e)], then
the only dense subset of X is X itself. In fact, if E is a dense subset of
(X, d) and x ∈ X , then it must be that B(x; 1/2)∩E �= ∅; but from the
definition of the discrete metric it follows that B(x; 1/2) = {x}.

In part (d) of the preceding example we used the next result, and we
record it here for future reference.

Proposition 1.1.20. A set E is dense in (X, d) if and only if for every x in
X and every r > 0, B(x; r) ∩ E �= ∅.

The proof is an easy application of Proposition 1.1.13.

Exercises

(1) Verify the statement in Example 1.1.2(a).
(2) Verify the statement in Example 1.1.2(c).
(3) Verify the statement in Example 1.1.2(d).
(4) In the Cauchy–Schwarz inequality, show that equality holds if and only

if the vectors x and y are linearly dependent.
(5) Prove Proposition 1.1.8. [Hint: if G is a relatively open subset of Y ,

then for each y in G let ry > 0 such that BY (y; ry) ⊆ G. Now consider⋃
{B(y; ry) : y ∈ G}.]

(6) If Y is a subset of X , then consider the metric space (Y, d) and suppose
Z ⊆ Y . (a) Show that H is a relatively open subset of Z if and only
if there is a relatively open subset H1 of Y such that H = H1 ∩ Z. (b)
Show that D is a relatively closed subset of Z if and only if there is a
relatively closed subset D1 of Y such that D = D1 ∩ Z. (Hint: use
Proposition 1.1.8.)

(7) Prove Proposition 1.1.15.
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(8) Show that if A1, . . . , An are subsets of X , then int [
⋂n

k=1 Ak] =
⋂n

k=1

intAk.

(9) Show that Proposition 1.1.15(d) does not hold for infinite unions and
the preceding exercise does not hold for infinite intersections.

(10) Verify that the function d given in Definition 1.1.16 is a metric.

(11) Define ρ : X1 ×X2 → [0,∞) by

ρ((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}.

(a) Show that ρ is a metric on X1 ×X2. (b) Show that a set is open
in (X1 ×X2, d) if and only if it is open in (X1 ×X2, ρ).

(12) Let �∞ denote the set of all bounded sequences of real numbers; that
is, �∞ consists of all sequences {xn} such that xn ∈ R for all n ≥ 1
and supn |xn| < ∞. If x = {xn}, y = {yn} ∈ �∞, then define d(x, y) =
supn |xn−yn|. (a) Show that d defines a metric on �∞. (b) If en denotes
a sequence with a 1 in the nth place and zeroes elsewhere, show that
B(en;

1
2 )∩B(em; 1

2 ) = ∅ when n �= m. (c) Is the set {en : n ≥ 1} closed?

(13) If for k = 1, 2, Ak is a dense subset of the metric space (Xk, dk), then
show that A1 ×A2 is a dense subset of X1 ×X2. Hence the product of
a finite number of separable spaces is separable.

1.2. Sequences and Completeness

Recall that throughout the chapter (X, d) is a given metric space that is
under consideration. Here we will discuss sequences as an extension of the
same concept encountered in calculus. Recall that a sequence is just a way
of enumerating some points in the space X : x1, x2, . . . ; this is denoted by
{xn}. Precisely or technically this is a function from the natural numbers
N into X : n �→ xn. By the way, we will sometimes change the domain of
this function to N ∪ {0} so that we get a sequence {x0, x1, . . . }; or maybe
it might be changed to get {x2, x3, . . . }. There is no essential difference; we
have a specific beginning and a countably infinite following. So the set of all
integers, Z, is not permitted as an indexing set.

Definition 1.2.1. A sequence {xn} in X converges to x if for every ε > 0
there is an integer N such that d(x, xn) < ε when n ≥ N . The notation for
this is xn → x or x = limn xn.

We note that when X = R, this is exactly the definition of a convergent
sequence learned in calculus. We also emphasize that the integer N in the
definition depends on ε. Generally, the smaller the value of ε, the larger
we must make N (Exercise 1). We might also mention that the inequality
d(x, xn) < ε can easily be replaced by d(xn, x) ≤ ε. Why?

Example 1.2.2. (a) If (X, d) is a discrete metric space, then a sequence
{xn} in X converges to x if and only if there is an integer N such that
xn = x whenever n ≥ N .
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(b) If (X, d) is the cartesian product of the two metric spaces (X1, d1) and
(X2, d2), then a sequence {(x1

n, x
2
n)} in X converges to (x1, x2) if and

only if x1
n → x1 and x2

n → x2.

The value of sequences and the concept of convergence begins to surface
in the next proposition.

Proposition 1.2.3. A subset F of X is closed if and only if whenever {xn}
is a sequence in F and xn → x, it follows that x ∈ F .

Proof. First assume that F is closed, {xn} is a sequence of elements in F ,
and xn → x. If it were the case that x /∈ F , then the fact X\F is open
would mean there is an r > 0 such that B(x; r) ⊆ X\F . But then there
would be an N such that for n ≥ N , d(xn, x) < r, that is, xn ∈ B(x; r) ⊆
X\F , a contradiction. Hence it must be that x ∈ F . Now assume the
sequential condition is satisfied. If x ∈ clF , then Proposition 1.1.13 implies
that B(x; r)∩F �= ∅ for every r > 0. In particular, for every natural number
n there is a point xn in B(x;n−1) ∩ F . Hence {xn} is a sequence in F and
d(xn, x) < n−1; thus xn → x, and so x ∈ F . That is, clF ⊆ F , and so F is
closed. �
Definition 1.2.4. If A ⊆ X , then a point x in X is called a limit point of A
if for every ε > 0 there is a point a in B(x; ε) ∩ A with a �= x.

The emphasis here is that no matter how small we take ε, we can find
such a point a different from x that belongs to B(x; ε)∩A. It is not required
that x must belong to A for it to be a limit point (more on that later). If x
is not a limit point of A and, in addition, belongs to A, then it is called an
isolated point of A.

Example 1.2.5. (a) Let X = R and A = (0, 1)∪ {2}. Every point in [0, 1]
is a limit point of A, but 2 is not. In fact, 2 is an example of an isolated
point of A, the only isolated point of A.

(b) If X = R and A = Q, then every point of X is a limit point of A and A
has no isolated points.

(c) If X = R and A = {n−1 : n ∈ N}, then 0 is a limit point of A, while the
points n−1 are all isolated points.

We will also need the idea of a subsequence as in calculus. So if {xn}
is a sequence in X , then a subsequence is another sequence {xn1 , xn2 , . . . },
denoted by {xnk

}, where n1 < n2 < · · · . Technically, this is the function
k �→ xnk

. We leave the proof of the following proposition as Exercise 6.

Proposition 1.2.6. If xn → x in X and {xnk
} is a subsequence, then

xnk
→x.

Proposition 1.2.7. Let A be a subset of the metric space X.

(a) A point x is a limit point of A if and only if there is a sequence of distinct
points in A that converges to x.
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(b) A is a closed set if and only if it contains all its limit points.

(c) clA = A ∪ {x : x is a limit point of A}.
Proof. (a) Suppose {an} is a sequence of distinct points in A such that
an → x. If ε > 0, then there is an N such that an ∈ B(x; ε) for n ≥ N .
Since the points in {an} are distinct, there is at least one point different
from x. Thus x is a limit point. Now assume that x is a limit point. Let
a1 ∈ A ∩B(x; 1) such that a1 �= x. Let ε2 = min{2−1, d(x, a1)}; so there is a
point a2 ∈ A ∩B(x; ε2) with a2 �= x. Note that a2 �= a1.

Claim. There is a sequence of positive numbers {εn} and a sequence of
distinct points {an} in A such that: (i) εn ≤ n−1; (ii) an �= x for all n ≥ 1;
(iii) d(x, an) < εn.

We establish this claim by induction. By taking ε1 = 1, we have that
the claim holds when n = 1. We also showed that the claim holds when
n = 2, and that indicates how to carry out the induction step. Here are the
details. Assume the claim holds for some integer n, and let εn+1 = min{(n+
1)−1, d(x, a1), . . . , d(x, an)}. So there is a point an+1 in A ∩B(x; εn+1) with
an+1 �= x. Note that parts (i), (ii), and (iii) are satisfied with n+ 1 in place
of n. Also, an+1 �= ak for 1 ≤ k ≤ n since d(x, an+1) < εn+1 ≤ d(x, ak) for
1 ≤ k ≤ n. By induction we have that the claim is valid; by the claim we
have a sequence of distinct points in A that converges to x.

(b) and (c). Clearly (b) will follow once we prove (c). Let B denote
the set on the right-hand side of the equation in (c). By Proposition 1.2.3
and part (a) we have that B ⊆ clA. On the other hand, if x ∈ clA, then
Proposition 1.2.3 implies there is a sequence {an} in A such that an → x.
Either {an} has an infinite number of distinct terms or a finite number. In
the first case there is a subsequence {ank

} of distinct terms; by (a), x is a
limit point. Thus x ∈ A. In the second case there is a subsequence {ank

}
that is constant; thus ank

= x for all k ≥ 1, and so x ∈ A. �
Definition 1.2.8. If A ⊆ X and x ∈ X , then the distance from x to A is

dist (x,A) = inf{d(x, a) : a ∈ A}.
Clearly, when x ∈ A, dist (x,A) = 0. But it is possible for the distance

from a point to a set to be 0 when the point is not in the set, as we now see.

Proposition 1.2.9. If A ⊆ X, then clA = {x ∈ X : dist (x,A) = 0}.
Proof. If x ∈ clA, then there is a sequence {an} in A such that an →
x; so dist (x, an) → 0, and it follows that dist (x,A) = 0. Conversely, if
dist (x,A) = 0, then there is a sequence {an} in A such that d(x, an) → 0.
Thus, an → x, and so x ∈ clA. �

Also see Exercise 4.

Definition 1.2.10. A sequence {xn} in X is a Cauchy sequence if for every
ε > 0 there is an integer N such that d(xn, xm) < ε whenever m,n ≥ N . The
metric space X is said to be complete if every Cauchy sequence converges.
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It is rather easy to see that in any metric space, every convergent sequence
is a Cauchy sequence. In fact, if xn → x and ε > 0, then choose N such that
d(x, xn) < ε/2. Hence, when m,n ≥ N , d(xn, xm) ≤ d(xn, x) + d(x, xm) < ε.
Therefore, complete metric spaces are those for which convergent and Cauchy
sequences are the same. The virtue of the concept of being Cauchy, when
the space is complete, is that you know the limit exists without having to
produce the point x that is the limit.

Before we see some examples, let us establish some facts about Cauchy
sequences.

Proposition 1.2.11. If {xn} is a Cauchy sequence and some subsequence
of {xn} converges to x, then xn → x.

Proof. Suppose xnk
→ x, and let ε > 0. Choose an integer N1 such that

d(xnk
, x) < ε/2 for nk ≥ N1, and choose an integer N2 such that d(xn, xm) <

ε/2 when m,n ≥ N2. Set N = max{N1, N2}, and let n ≥ N . Fix any
nk ≥ N . Since we have that nk ≥ N1 and both n and nk are larger than N2,
we get that d(x, xn) ≤ d(x, xnk

) + d(xnk
, xn) < ε/2 + ε/2 = ε. �

For any set E define its diameter as

diamE = sup{d(x, y) : x, y ∈ E}
It is easy to see that diamE = diam [clE].

Theorem 1.2.12 (Cantor’s3 Theorem). A metric space (X, d) is complete
if and only if whenever {Fn} is a sequence of nonempty subsets satisfying (i)
each Fn is closed; (ii) F1 ⊇ F2 ⊇ · · · ; (iii) diamFn → 0, then

⋂∞
n=1 Fn is a

single point.

Proof. Assume (X, d) is complete and {Fn} is as in the statement of the
theorem. For each n let xn ∈ Fn. If ε > 0, then let N be such that diamFn <
ε for n ≥ N . Thus, if m,n ≥ N , then (ii) implies xn, xm ∈ FN and so
d(xn, xm) ≤ diamFN < ε. Thus {xn} is a Cauchy sequence; since (X, d) is
complete, there is an x in X such that xn → x. Since each Fn is closed,
x ∈

⋂∞
n=1 Fn. If there is another point y in

⋂∞
n=1 Fn, then d(x, y) ≤ diamFn

for each n ≥ 1. By (iii), y = x.
Now assume that (X, d) satisfies the stated conditions and {xn} is a

Cauchy sequence. Set Fn = cl {xn, xn+1, . . . }. Clearly, (i) and (ii) are satis-
fied. If ε > 0, then let N be such that d(xn, xm) < ε for m,n ≥ N . But for
k ≥ N , diamFk = sup{d(xn, xm) : m,n ≥ k} ≤ ε. Thus {Fn} satisfies the

3Georg Cantor was the child of an international family. His father was born in Denmark
and his mother was Russian; he himself was born in 1845 in St. Petersburg, where his father was
a successful merchant and stockbroker. Cantor is recognized as the father of set theory, having
invented cardinal and ordinal numbers and proved that the irrational numbers are uncountable.
He received his doctorate from the University of Berlin in 1867 and spent most of his career at
the University of Halle. His work was a watershed event in mathematics, but it was condemned
by many prominent contemporary mathematicians. The work was simply too radical, with
counterintuitive results such as R and R

q having the same number of points. He began to suffer
from depression around 1884. This progressed and plagued him the rest of his life. He died in
a sanatorium in Halle in 1918.
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three conditions, so that
⋂∞

n=1 Fn = {x} for some point x. But for any n ≥ 1,
d(x, xn) ≤ diamFn → 0. Therefore, xn → x, and (X, d) is complete. �

Example 1.2.13. (a) The first example of a complete metric space is R.
This is a consequence of various properties of the real number system
seen in §A.3 as follows. Let {Fn} be a sequence of nonempty sub-
sets of R satisfying the three conditions in Cantor’s Theorem. Since
each has finite diameter, they must be bounded. By the Complete-
ness Property (Axiom A.3.3) of R, an = inf Fn and bn = supFn ex-
ist. Since Fn is closed, Corollary A.3.5 implies that an, bn ∈ Fn and
so 0 ≤ bn − an ≤ diamFn → 0. Since Fn+1 ⊆ Fn, it follows that
an ≤ an+1 ≤ bn+1 ≤ bn. By Proposition A.3.6 there are points a and b
such that an → a and bn → b. But it must be that a, b ∈ Fn for each
n and so |b − a| ≤ diamFn → 0; so a = b. That is,

⋂∞
n=1 Fn is the

singleton {a}. By Cantor’s Theorem, R is complete.
(b) For any d ≥ 1, Rq is complete. In fact if xn = (x1

n, . . . , x
q
n) and {xn} is a

Cauchy sequence in R
q, then |xkn−xkm| ≤ d(xn, xm) for 1 ≤ k ≤ q and so

it follows that each {xkn} is a Cauchy sequence in R. By (a), xkn → xk for
some real number xk. It follows that xn → x = (x1, . . . , xq). (Verify!)

The proof of the next proposition is Exercise 8.

Proposition 1.2.14. If (X, d) is a complete metric space and Y ⊆ X, then
(Y, d) is complete if and only if Y is closed in X.

It is not hard to find examples of metric spaces that are not complete.
For example using the preceding proposition we can look at any subset of
R that is not closed. Q is one such and a dramatic one at that.

We close this section by dwelling a bit on the concept of the diameter of
a set, introduced just prior to the statement of Cantor’s Theorem.

Definition 1.2.15. Say that a subset A of (X, d) is bounded if diamA <∞.

Proposition 1.2.16. (a) A subset A of (X, d) is bounded if and only if for
any x in X there is an r > 0 such that A ⊆ B(x; r).

(b) The union of a finite number of bounded sets is bounded.

(c) A Cauchy sequence in (X, d) is a bounded set.

Proof. (a) If A ⊆ B(x; r), then diamA ≤ 2r, so that A is bounded.
Conversely, assume that A is bounded with δ as its finite diameter.
Fix a point x in X and some point a0 in A. For any point a in A,
d(x, a) ≤ d(x, a0) + d(a0, a) ≤ d(x, a0) + δ. If we let r = 2[d(a0, x) + δ],
then A ⊆ B(x; r).

(b) If Ak is bounded for 1 ≤ k ≤ n and x ∈ X , then let rk > 0 such that
Ak ⊆ B(x; rk). If we set r = r1 + · · ·+ rn, then A1 ∪ · · · ∪An ⊆ B(x; r).
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(c) If {xn} is a Cauchy sequence, then there is an N ≥ 1 such that d(xn, xm)
< 1 for m,n ≥ N . If B = {xn : n ≥ N}, this says that diamB ≤ 1, so
that B is bounded. On the other hand, A = {x1, . . . , xN} is bounded
since finite sets are bounded. By part (b), {xn} = A ∪B is bounded.

�

Exercises

(1) For each of the following sequences {xn} find the value of the limit, and
for each stipulated value of ε find a value of N such that d(x, xn) < ε
when n ≥ N . (a) X = R, xn = n−1, ε = 0.0001. (b) X = R, xn =
e−n, ε = 0.0001. (c) X = R

q+1, xn = (n−1, n−2, . . . , n−q, e−n), ε =
0.0001. (Are the values for N you found the smallest possible? This
has no bearing on the convergence, but it is a bit more challenging to
find the smallest possible N .)

(2) Verify the statements made in Example 1.2.2.

(3) Suppose {xn} is a sequence in X that converges to x and z1, . . . , zm is
a finite collection of points in X . Define a new sequence {yn} in X by
letting yk = zk for 1 ≤ k ≤ m and yk = xk−m when k ≥ m+ 1. Show
that yn → x.

(4) If A ⊆ X , show that intA = {x : dist (x,X\A) > 0}. Can you give an
analogous characterization of ∂A?

(5) (a) If A ⊆ X , show that x ∈ clA if and only if x is either a limit point
of A or an isolated point of A. (b) Show that if a set has no limit points,
it is closed. (c) Give an example of an infinite subset of R that has no
limit points.

(6) Prove Proposition 1.2.6.

(7) For the real line, consider the three restrictions (i), (ii), and (iii) placed
on the sets {Fn} in Cantor’s Theorem. (a) Find a sequence of sets {Fn}
that satisfies (i) and (ii), but

⋂∞
n=1 Fn = ∅. (b) Find a sequence of sets

{Fn} that satisfies (i) and (iii), but
⋂∞

n=1 Fn = ∅. (c) Find a sequence
of sets {Fn} that satisfies (ii) and (iii), but

⋂∞
n=1 Fn = ∅. (d) Show

that if {Fn} is a sequence of bounded sets satisfying (i) and (ii), then⋂∞
n=1 Fn �= ∅, and give an example where it is not a singleton.

(8) Prove Proposition 1.2.14.

(9) Show that a sequence {(xn1 , xn2 )} in R
q × R

m converges to (x1, x2) if
and only if the same thing happens when we consider the sequence as
belonging to R

q+m.

(10) Let (X, d) be the cartesian product of the two metric spaces (X1, d1)
and (X2, d2). (a) Show that a sequence {(x1

n, x
2
n)} in X is a Cauchy

sequence in X if and only if {x1
n} is a Cauchy sequence in X1 and {x2

n}
is a Cauchy sequence in X2. (b) Show that X is complete if and only
if both X1 and X2 are complete.

(11) Show that the metric space �∞ defined in Exercise 1.1.12 is complete.



16 1. Metric Spaces

1.3. Continuity

Here we will extend the concept of a continuous function seen in calculus to
a mapping between two metric spaces.

Definition 1.3.1. If (X, d) and (Z, ρ) are two metric spaces, a function
f : X → Z is continuous at a point a in X if for every ε > 0 there is a δ > 0
such that when d(a, x) < δ, it follows that ρ(f(a), f(x)) < ε. f is said to be
a continuous function if it is continuous at each point of X .

Note that if X = Z = R, then this becomes the statement that for
every ε > 0 there is a δ > 0 such that when |x − a| < δ, we have that
|f(a)−f(x)| < ε, the precise definition from calculus. The next result should
have a familiar ring if we put it in this calculus setting.

Proposition 1.3.2. If (X, d) and (Z, ρ) are metric spaces and f : X → Z,
then f is continuous at a if and only if whenever {xn} is a sequence in X
and xn → a, then f(xn) → f(a) in Z.

Proof. Suppose f is continuous at a and xn → a in X . If ε > 0, then let
δ > 0 such that when d(a, x) < δ, it follows that ρ(f(a), f(x)) < ε. Let N ≥ 1
such that d(xn, a) < δ when n ≥ N . Thus, ρ(f(xn), f(a)) < ε when n ≥ N .
Since ε was arbitrary, this says that f(xn) → f(a). To prove the converse,
assume that f is not continuous at a. So there exists an ε > 0 such that for
every δ > 0 there is at least one x with d(x, a) < δ, but ρ(f(x), f(a)) ≥ ε.
In particular, taking δ = n−1 we have that for every n ≥ 1 there is an xn
with d(xn, a) < n−1 and ρ(f(xn), f(a)) ≥ ε. But this says that xn → a, and
{f(xn)} does not converge to f(a). �

We will not spend much time investigating functions continuous at a
single point, but we will have much to say about functions continuous on the
entire metric space.

Theorem 1.3.3. If (X, d) and (Z, ρ) are metric spaces and f : X → Z, then
the following statements are equivalent.

(a) f is a continuous function on X.

(b) If U is an open subset of Z, then f−1(U) is an open subset of X.

(c) If D is a closed subset of Z, then f−1(D) is a closed subset of X.

Proof. (b) is equivalent to (c). Note that

f−1(Z\U) = X\f−1(U) and f−1(Z\D) = X\f−1(D).

From these equalities the equivalence of the two statements is straightforward.
(a) implies (b). Let a ∈ f−1(U) so that α = f(a) ∈ U . Since U is

open, there is an ε > 0 such that B(α; ε) ⊆ U . Since f is continuous there
is a δ > 0 such that d(a, x) < δ implies ρ(f(a), f(x)) < ε. In other words,
B(a; δ) ⊆ f−1(B(α; ε)) ⊆ f−1(U). Since a was an arbitrary point in f−1(U),
this says that f−1(U) is open.
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(b) implies (a). If a ∈ X and ε > 0, then B(f(a); ε) is open; so by (b) we
have that f−1(B(f(a); ε)) is an open set in X that contains a. Thus there
is a δ > 0 such that B(a; δ) ⊆ f−1(B(f(a); ε). That is, d(a, x) < δ implies
ρ(f(a), f(x)) < ε, and so f is continuous at a. �

Now to generate some examples of continuous functions. We will assume
that the reader is already familiar with the continuity of the various functions
encountered in calculus, such as the trigonometric functions, the exponen-
tial, and the logarithm, as well as various functions defined on subsets of
R

q. The first result is in this general area of functions defined on R
q. (See

Exercise 1.2.9.)

Example 1.3.4. (a) The function from R
q ×R

q → R
q defined by (x, y) �→

x + y (vector addition) is continuous. Verifying this is easy if we use
Proposition 1.3.2 and Exercise 1.2.10.

(b) The function from R× R
q → R

q defined by (t, x) �→ tx (scalar multipli-
cation) is continuous.

(c) If (X, d) is any metric space, then x0 ∈ X , and we define f : X → R

by f(x) = d(x, x0), then f is continuous. In fact, the reverse triangle
inequality (Proposition 1.1.9) says that |f(x) − f(y)| ≤ d(x, y), from
which continuity follows from either the definition or Proposition 1.3.2.

(d) If (X, d) is a discrete metric space, then the only continuous functions
from [0, 1]into (X, d) are the constant functions.

Recall the definition of the distance from a point to a set A, dist (x,A),
given in the last section.

Proposition 1.3.5. If (X, d) is a metric space and A ⊆ X, then

|dist (x,A) − dist (y,A)| ≤ d(x, y)

for all x, y in X.

Proof. If a ∈ A, then d(x, a) ≤ d(x, y) + d(y, a); thus, taking the infimum
over all a in A we get dist (x,A) ≤ inf{d(x, y) + d(y, a) : a ∈ A} = d(x, y) +
dist (y,A). Reversing the roles of x and y we have dist (y,A) ≤ d(x, y) +
dist (x,A), whence we get the inequality. �

Corollary 1.3.6. If A is a nonempty subset of X, then f : X :→ R defined
by f(x) = dist (x,A) is a continuous function.

We also have the following result, possibly expected by the reader, whose
proof follows easily by using Proposition 1.3.2.

Proposition 1.3.7. If (X, d) is a metric space and f and g are continuous
functions from X into R, then f+g : X → R and fg : X → R are continuous,
where (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for all x in X. If
f(x) �= 0 for all x in X, then f−1 = 1/f : X → R defined by f−1(x) =
1/f(x) = [f(x)]−1 is a continuous function.
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The last proposition is a way to combine continuous functions to obtain
another continuous function. Here is another. Recall that if f : X → Z and
g : Z → W are functions, then the composition of f and g is the function
g ◦ f : X →W defined by g ◦ f(x) = g(f(x)).

Proposition 1.3.8. The composition of two continuous functions is also
continuous.

Proof. If f : X → Z and g : Z → W , then for any subset G of W , then we
have that (g ◦ f)−1(G) = f−1[g−1(G)]. Thus, if G is an open subset of W , it
follows that (g ◦ f)−1(G) is open in X . Hence g ◦ f is continuous. �

Later in the book we will present several results on manufacturing con-
tinuous functions from a metric space into the real numbers. We have seen
examples of such continuous functions on specific metric spaces, but we want
to show the existence of continuous functions with specific properties on ar-
bitrary ones. Here we use Corollary 1.3.6 to prove a famous result that we
will prove later in a more general context.

Theorem 1.3.9 (Urysohn’s4 Lemma). If A and B are two disjoint closed
subsets of X, then there is a continuous function f : X → R having the
following properties:

(a) 0 ≤ f(x) ≤ 1 for all x in X:

(b) f(x) = 0 for all x in A:

(c) f(x) = 1 for all x in B.

Proof. Define f : X → R by

f(x) =
dist (x,A)

dist (x,A) + dist (x,B)
,

which is well defined since the denominator never vanishes. (Why?) It is
easy to check that f has the desired properties. �
Corollary 1.3.10. If F is a closed subset of X and G is an open set contain-
ing F , then there is a continuous function f : X → R such that 0 ≤ f(x) ≤ 1
for all x in X, f(x) = 1 when x ∈ F , and f(x) = 0 when x /∈ G.

Proof. In Urysohn’s Lemma, take A to be the complement of G and
B=F . �

4Pavel Samuilovich Urysohn was born in 1898 in Odessa, Ukraine. He was awarded his
habilitation in June 1921 from the University of Moscow, where he remained as an instructor.
He began his work in analysis but switched to topology, in which he made several important
contributions, especially in developing a theory of dimension. His work attracted attention from
the mathematicians of the day, and in 1924 he set out for a tour of the major universities in
Germany, Holland, and France, meeting with Hausdorff, Hilbert, and others. That same year,
while swimming off the coast of Brittany, France, he drowned. He is buried in Batz-sur-Mer in
Brittany. In just 3 years he left his mark on mathematics.



1.3. Continuity 19

Recall that a map f : X → Z is injective if it is one-to-one; that is, if
f(x) = f(y), then x = y. The function is surjective if it is onto; that is, for
any z in Z there is a point x in X with f(x) = z. If f is both injective and
surjective, then it is said to be bijective. When f is bijective, we can define
the function f−1 : Z → X by letting f−1(z) equal the unique point x in X
such that f(x) = z. The reader may have noticed the possibility of confusing
notation with this definition of f−1 and that in Proposition 1.3.7. I am afraid
this is something we will have to live with. Usually, the context will make
it clear which definition we are talking about. We are coming into contact
with mathematical tradition or custom, and we will not fight it. If there is
ever the possibility of confusion, we can always stick with the notation 1/f
to denote the reciprocal of a function.

Definition 1.3.11. If (X, d) and (Z, ρ) are metric spaces, then a map f :
X → Z is called a homeomorphism if f is bijective and both f and f−1 are
continuous. Two metric spaces are said to be homeomorphic if there is a
homeomorphism from one onto the other.

Note that a bijection f : X → Z is a homeomorphism precisely when a
sequence {xn} in X converges to x if and only if f(xn) → f(x). A homeo-
morphism identifies the two spaces. That is, via f they have the same con-
vergent sequences, open sets, closed sets, and continuous functions. In fact,
homeomorphisms define an equivalence relation (Definition 2.8.1) between
metric spaces. To be sure, it is not the only possible equivalence relation,
and perhaps the idea of an isometry, a map f : (X, d) → (Z, ρ) satisfying
ρ(f(x), f(y)) = d(x, y) for all x, y in X , seems more natural. Indeed, isome-
tries identify the two structures, and it readily follows that an isometry is a
homeomorphism. Nevertheless, we will emphasize homeomorphisms rather
than isometries. While an isometry identifies the metric structures of two
metric spaces, a homeomorphism identifies the two topological structures.
That is, it identifies the open sets, closed sets, etc. This is more in keeping
with the subject of this book.

Definition 1.3.12. If X is a set, then the two metrics d and ρ are said to be
equivalent if they define the same convergent sequences. Equivalently, d and
ρ are equivalent if the identity map i : (X, d) → (X, ρ) is a homeomorphism.

Exercise 1.1.11 shows that the metric ρ defined there is equivalent to the
usual metric.

Proposition 1.3.13. For any metric space (X, d)

ρ(x, y) =
d(x, y)

1 + d(x, y)

defines an equivalent metric.

Proof. The first step is to show that ρ is a metric, and the only point of
contention is whether it satisfies the triangle inequality. This we do by an
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examination of the function f(t) = t/(1 + t) defined on (−1,∞). Note that
for t > −1, f ′(t) = (1 + t)−2 > 0 and f ′′(t) = −2(1 + t)−3 < 0. Thus, for
s, t > 0 and g(t) = f(s) + f(t) − f(s + t), g′(t) = f ′(t) − f ′(s + t) > 0. So
g(t) > g(0) = 0. This says that f(s + t) ≤ f(s) + f(t) for all s, t in [0,∞).
Since f is increasing, for all x, y, z in X ,

ρ(x, y) =
d(x, y)

1 + d(x, y)

≤ d(x, z) + d(z, y)

1 + d(x, z) + d(z, y)

= f [d(x, z) + d(z, y)]

≤ d(x, z)

1 + d(x, z)
+

d(z, y)

1 + d(z, y)

= ρ(x, z) + ρ(z, y),

so that ρ satisfies the triangle inequality.
Now to show that the two metrics are equivalent. Clearly, if d(xn, x) → 0,

then ρ(xn, x) = d(xn, x)[1 + d(xn, x)]
−1 → 0. Conversely, if ρ(xn, x) →

0, then, since we always have that ρ(x, y) < 1, d(xn, x) = ρ(xn, x)[1 −
ρ(xn, x)]

−1 → 0. �

An important feature of the preceding metric is that it is bounded by 1.
This is a warning for us not to put too much stock in the concept of a bounded
set.

Example 1.3.14. Two equivalent metrics do not necessarily have the same
Cauchy sequences; in fact, with one metric it can be complete and with
respect to the other it is not. We will show this by defining an equivalent
metric ρ on R such that with this metric (R, ρ) is not complete. Consider
the circle X = {(x, y) ∈ R

2 : x2 + (y − 1)2 = 1}, that is, the circle of radius
one in the plane centered at (0, 1). Give X the metric d it has as a subset
of the plane. We want to describe a function f : R → X geometrically. It
is possible to do this with a formula, but the geometry makes all we are
going to say transparent. For any t in R consider the straight line in R

2

determined by (t, 0) and (0, 2), and let f(t) equal the point on the circle X
where this line intersects it. Note several things. If −1 < t < 1, then f(t)
lies on the lower half of the circle, whereas when |t| > 1, f(t) is on the upper
half; also, f(1) = (1, 0), f(−1) = (−1, 0). In addition, note that f is injective
and f(R) = X\{(0, 2)} ≡ Y . We use f to put a new metric on R by letting
ρ(t, s) = d(f(t), f(s)). It is not hard to see that the metric ρ is equivalent to
the standard metric on the real line defined by the absolute value and that
f : (R, ρ) → (Y, d) is a bijective isometry. By referring to the geometry it
is easy to see that the sequence {n} is a Cauchy sequence in (R, ρ), but of
course it is not in the usual metric for R. Thus, (R, ρ) is not complete.
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Definition 1.3.15. A function f : (X, d) → (Z, ρ) between two metric spaces
is uniformly continuous if for every ε > 0 there is a δ such that ρ(f(x), f(y)) <
ε when d(x, y) < δ.

The reader may have seen this concept in calculus. The difference be-
tween a continuous and a uniformly continuous function, as you might have
observed, is the following. When given an ε, for uniform continuity we need
to find one δ that will work for all pairs of points x, y; for continuity we need
to find a δ for only one point x at a time. That is, in the definition of continu-
ity the δ depends on the point x as well as ε, while for uniform continuity the
δ depends only on ε. So every uniformly continuous function is continuous,
but there are continuous functions that are not uniformly continuous, as we
will see in the next example.

Example 1.3.16. (a) A function f : (X, d) → (Z, ρ) is a Lipschitz func-
tion if there is a constant M > 0 such that ρ(f(x), f(y)) ≤ Md(x, y)
for all x, y in X . A ready collection of examples occurs by letting I
be an interval in R and letting f : I → R be a continuously differen-
tiable function with |f ′(x))| ≤ M for all x in I. Thus, |f(x) − f(y)| =∣∣∣∫ x

y
f ′(t)dt

∣∣∣ ≤ ∫ x

y
|f ′(t)|dt ≤ M |x− y|. Every Lipschitz function is uni-

formly continuous since for any ε > 0 we can take δ = ε/M .

(b) We note that when A ⊆ X , the function x �→ dist (x,A) is a Lipschitz
function by Proposition 1.3.5. Thus the distance function gives rise to a
plentiful source of uniformly continuous functions on any metric space.

(c) The function f : R → R defined by f(x) = x2 is not uniformly contin-
uous. In fact, for any δ > 0, consider x = n, a natural number, and
y = n+ δ. So |f(x)− f(y)| = (n+ δ)2 −n2 > 2nδ, and this can be made
as large as desired no matter how small we make δ.

(d) The function f : (0, 1] → R defined by f(t) = sin(t−1) is continuous but
not uniformly continuous. That it is continuous follows from calculus
and writing f as the composition of the two functions t �→ t−1 and the
sine function. The fact that it is not uniformly continuous can be seen as
follows. If δ > 0, then there are points s and t in the interval (0, δ) with
f(s) = 1 and f(t) = −1, so that f(s)− f(t) = 2, even though |s− t| < δ.

The proof of part (b) in the next proposition is a good one to truly
concentrate on as it has techniques that will surface many times in your
future.

Proposition 1.3.17. (a) If f : (X, d) → (Z, ρ) is a uniformly continuous
function and {xn} is a Cauchy sequence in X, then {f(xn)} is a Cauchy
sequence in Z.

(b) If A ⊆ X, (Z, ρ) is a complete metric space, and f : A→ Z is uniformly
continuous, then f can be extended to a uniformly continuous function f :
clA→ Z.
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Proof. (a) Let ε > 0; thus, there is a δ > 0 such that ρ(f(x), f(y)) <
ε whenever d(x, y) < δ. If {xn} is a Cauchy sequence in X , then
let N be chosen such that d(xn, xm) < δ when m,n ≥ N . Thus,
ρ(f(xn), f(xm)) < ε when m,n ≥ N , and therefore {f(xn)} is a Cauchy
sequence.

(b) If x ∈ clA, then there is a sequence {an} in A such that an → x.
By part (a) this implies that {f(an)} is a Cauchy sequence in (Z, ρ);
since (Z, ρ) is complete, there is a z in Z such that f(an) → z. We
want to define f(x) = z; to do this, we need to show that the point
z is independent of which sequence {an} we choose to converge to x—
otherwise, setting f(x) = z is an ambiguous definition. So assume that
{bn} is also a sequence in A that converges to x and let ζ ∈ Z such
that f(bn) → ζ; we want to show that ζ = z. Observe that if we define
c2n = an and c2n+1 = bn, then cn → x; let y = limn f(cn). Since {f(cn)}
has a subsequence that converges to z and another that converges to ζ,
it must be that z = y = ζ. Thus f : clA → Z is well defined if we set
f(x) = limn f(an) whenever {an} is any sequence in A such that an → x.
Now we will show that this extended function is uniformly continuous.

Let ε > 0, and choose δ > 0 such that ρ(f(a), f(b)) < 1
3ε whenever

a, b ∈ A and d(a, b) < δ. Assume x, y ∈ clA and d(x, y) < 1
3δ. So there

are sequences {an} and {bn} of points in A such that an → x and bn → y.
Let N1 ≥ 1 such that ρ(f(an), f(x)) <

1
3ε and ρ(f(bn), f(y)) <

1
3ε when

n ≥ N1. Thus for n ≥ N1

ρ(f(x), f(y)) ≤ ρ(f(x), f(an)) + ρ(f(an), f(bn)) + ρ(f(bn), f(y))

<
2ε

3
+ ρ(f(an), f(bn)).

Now we can choose N2 ≥ 1 such that when n ≥ N2, we have d(an, x) <
1
3δ and d(bn, y) <

1
3δ. (Why?) Thus, d(an, bn) ≤ d(an, x) + d(x, y) +

d(y, bn) < δ. But since an, bn ∈ A, this implies ρ(f(an), f(bn)) <
1
3ε

whenever n ≥ N2. From the preceding inequality with n ≥ N =
max{N1, N2} we have that ρ(f(x), f(y)) < ε whenever x, y ∈ clA and
d(x, y) < 1

3δ. Therefore, f : clA→ Z is uniformly continuous.

�

The preceding proposition underlines an important distinction between
continuous and uniformly continuous functions. We saw in Example 1.3.14
that two equivalent metrics do not necessarily have the same Cauchy se-
quences, so this shows in dramatic fashion that Proposition 1.3.17(a) fails for
continuous functions. If we consider the metric space X = (0, 1] and the con-
tinuous function f : (0, 1] → R defined by f(x) = sin(x−1), then we see that
part (b) of the preceding proposition fails if we only assume that the function
is continuous (Exercise 1). This also shows that sin(x−1) is not uniformly
continuous, though we gave a more direct proof of this in Example 1.3.16.
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We might also mention that the converse of Proposition 1.3.17(a) does not
hold as the function f(x) = x2 maps Cauchy sequences to Cauchy sequences,
but, as we have seen, it is not uniformly continuous (Exercise 10).

Exercises

(1) Show that for any number a the function f : [0, 1] → R defined by
f(x) = sin(x−1) when x �= 0 and f(0) = a is not continuous at 0.

(2) If (X, d) is a metric space, f : B(a; r) → R is continuous at a with
f(a) = 0, and g : B(a; r) → R is a bounded function (but not necessarily
continuous), then fg is continuous at a.

(3) If f : (X, d) → (Z, ρ) is continuous, A is a dense subset of X , and z ∈ Z
such that f(a) = z for every a in A, show that f(x) = z for every x in
X .

(4) If f : (X, d) → (Z, ρ) is both continuous and surjective and A is a dense
subset of X , show that f(A) is a dense subset of Z.

(5) In Theorem 1.3.3, give an independent proof that shows that conditions
(a) and (c) are equivalent. (Here, “independent” means that the proof
should not use the equivalence of (a) and (b) or of (b) and (c).)

(6) Prove the statement made in Example 1.3.4(d). What about a contin-
uous function from [0, 1] ∪ [2, 3] into X?

(7) Let q and p be natural numbers, and show that the metric on R
q+p is

equivalent to the metric it has if we identify R
q+p with R

q × R
p.

(8) If (X1, d1) and (X2, d2) are two metric spaces, show that the map π1 :
X1 ×X2 → X1 defined by π1(x1, x2) = x1 is continuous.

(9) If (X, d), (Z1, ρ1), (Z2, ρ2) are metric spaces and for k = 1, 2, πk : Z1 ×
Z2 → Zk is the projection πk(z1, z2) = zk, show that a map f : X →
Z1 × Z2 is continuous if and only if πk ◦ f is continuous for k = 1, 2.

(10) Show that x2 maps Cauchy sequences in R into Cauchy sequences.
(Hint: use Proposition 1.2.16(c).)

(11) (a) Give an example of two equivalent metrics on a set X that have
different sets of uniformly continuous functions. (b) Do the equivalent
metrics in Exercise 1.1.11 have the same uniformly continuous func-
tions?

(12) Is the composition of two uniformly continuous functions a uniformly
continuous function?

(13) Note that Proposition 1.3.7 says that if (X, d) is a metric space and
C(X) is the set of all continuous functions f : X → R, then C(X) is
a vector space over R. Show that C(X) is a finite-dimensional vector
space if and only if X is a finite set. (Hint: use Urysohn’s Lemma.)

(14) Let (X, d) be a metric space, and let U denote the set of all uniformly
continuous functions from X into R. (a) If f, g ∈ U and we define
(f + g) : X → R by (f + g)(x) = f(x) + g(x) for all x in X , show
that f + g ∈ U . In words, U is a vector space over R. (b) If f, g ∈ U
and we define (fg) : X → R by (fg)(x) = f(x)g(x) for all x in X ,
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show by an example that it does not necessarily follow that fg ∈ U .
If, however, the functions are also bounded, then fg ∈ U . [A function
f : X → (Z, ρ) is bounded if f(X) is a bounded subset of Z.] (c) Can
you give some conditions under which the quotient of two uniformly
continuous functions is uniformly continuous?

(15) Is the function π1 defined in Exercise 8 uniformly continuous?

1.4. Compactness

If G is a collection of subsets of X and E ⊆ X , then G is a cover of E if
E ⊆

⋃
{G : G ∈ G}. A subcover of E is a subset G1 of G that is also a cover

of E. Finally, we say that G is an open cover of E if G is a cover and every
set in the collection G is open.

Definition 1.4.1. A subsetK of the metric space (X, d) is said to be compact
if every open cover of K has a finite subcover.

We mention that the term “open cover” in this definition can be replaced
by “cover by subsets of K that are relatively open” (Exercise 2).

It is easy to find examples of sets that are not compact. Specifically,
the open interval (0, 1) is not compact since if we set Gn = (n−1, 1), then
G = {Gn : n ∈ N} is an open cover of the interval that has no finite subcover.
Similarly, R is not compact since {(−n, n) : n ∈ N} is an open cover of
R that has no finite subcover. We can easily see that every finite subset of
X is compact, but finding nontrivial examples of compact sets requires us to
first prove some results.

Proposition 1.4.2. Let (X, d) be a metric space.

(a) If K is a compact subset of X, then K is closed and bounded.

(b) If K is compact and F is a closed set contained in K, then F is compact.

(c) The continuous image of a compact subset is a compact subset.

Proof. (a) If x /∈ K, then for each z in K let rz , sz > 0 such that
B(z; rz) ∩ B(x; sz) = ∅. Now {B(z; rz) : z ∈ K} is an open cover
of K. Since K is compact, there are points z1, . . . , zn in K such that
K ⊆

⋃n
k=1B(zk; rzk). Let s = min{szk : 1 ≤ k ≤ n}. Note that

B(x; s) ∩K = ∅; in fact, if there is a y in B(x; s) ∩K, then there is a k
such that y ∈ B(x; s)∩B(zk; rzk) ⊆ B(x; szk)∩B(zk; rzk), which contra-
dicts the choice of the numbers szk and rzk . Therefore, B(x; s) ⊆ X\K.
Since x was arbitrary, this says that X\K is open. Also, for any point
x0 in X , {B(x0;n) : n ∈ N} is an open cover of K; hence there is a
finite subcover. But the sets in this cover are increasing, so there is an
integer n such that K ⊆ B(x0;n) and K is bounded.

(b) Let G be an open cover of F , and observe that since F is closed, {X\F}∪
G is an open cover of K. The existence of a finite subcover of K implies
there is a finite subcollection of G that covers F .
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(c) Let f : X → (Z, ρ) be a continuous function , and assume K is a compact
subset of X ; we want to show that f(K) is a compact subset of Z. Let
U be an open cover of f(K) in (Z, ρ). Since f is continuous, it follows
that G = {f−1(U) : U ∈ U} is an open cover of K. Therefore, there
are sets U1, . . . , Un in U such that K ⊆

⋃n
k=1 f

−1(Uk). It follows that
f(K) ⊆

⋃n
k=1 Uk.

�
Now for a result from calculus that is an easy consequence of what we

have done. This is sometimes called the extreme value property or theorem.

Corollary 1.4.3. If (X, d) is a compact metric space and f : X → R is a
continuous function, then there are points a and b in X such that f(a) ≤
f(x) ≤ f(b) for all x in X.

Proof. We have from Proposition 1.4.2 that f(X) is a closed and bounded
subset of R. Put α = inf{f(x) : x ∈ X}, β = sup{f(x) : x ∈ X}. Since f(X)
is closed, α, β ∈ f(X) by the Completeness Property (Axiom A.3.3) of R;
this proves the corollary. �

We need two more definitions.

Definition 1.4.4. Say that a subset K of the metric space (X, d) is totally
bounded if for any radius r > 0 there are points x1, . . . , xn in K such that
K ⊆

⋃n
k=1 B(xk; r). A collection F of subsets of K has the finite intersection

property (FIP) if whenever F1, . . . , Fn ∈ F ,
⋂n

k=1 Fk �= ∅.
The following theorem is the main result on compactness in metric spaces.

Theorem 1.4.5. The following statements are equivalent for a closed subset
K of a metric space (X, d).

(a) K is compact.

(b) If F is a collection of closed subsets of K having the FIP, then it holds
that

⋂
F∈F F �= ∅.

(c) Every sequence in K has a convergent subsequence.

(d) Every infinite subset of K has a limit point.

(e) (K, d) is a complete metric space that is totally bounded.

Proof. (a) implies (b). Let F be a collection of closed subsets of K having
the FIP. Suppose

⋂
{F : F ∈ F} = ∅. If G = {X\F : F ∈ F}, then it

follows that G is an open cover of X and, therefore, of K. By (a), there

are F1, . . . , Fn in F such that K ⊆
⋃n

j=1(X\Fj) = X\
[⋂n

j=1 Fj

]
. But since

each Fj is a subset of K, this implies
⋂n

j=1 Fj = ∅, contradicting the fact
that F has the FIP.

(b) implies (a). Let G be an open cover of K, and put F = {K\G :
G ∈ G}. Since G covers K,

⋂
{K\G : G ∈ G} = ∅. Thus F cannot have

the FIP and there must be a finite number of sets G1, . . . , Gn in G with
∅ =

⋂n
j=1(K\Gj). But this implies that {G1, . . . , Gn} is a finite cover of K.

Hence K is compact.
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(d) implies (c). Assume {xn} is a sequence of distinct points in K.
By (d), {xn} has a limit point; since K is closed, that limit point must be
in K. We are tempted here to invoke Proposition 1.2.7(a), but we must
manufacture an actual subsequence of the original sequence. This takes a
little bit of care and effort, which we leave to the interested reader.

(c) implies (d). If S is an infinite subset, then S has a sequence of
distinct points {xn}; by (c), there is a subsequence {xnk

} that converges to
some point x. It follows that x is a limit point of S. (Details?)

(a) implies (d). Assume that (d) is false. So there is an infinite subset S
of K with no limit point; it follows that there is an infinite sequence {xn} in
S with no limit point. Thus, for each n ≥ 1, Fn = {xk : k ≥ n} contains all
its limit points and is therefore closed. Also,

⋂∞
n=1 Fn = ∅. But each finite

subcollection of {F1, F2, . . . } has nonempty intersection, contradicting (b),
which is equivalent to (a).

(a) implies (e). First, let {xn} be a Cauchy sequence in K. Since (a)
implies (d), which is equivalent to (c), there is an x in K and a subsequence
{xnk

} such that xnk
→ x. But this implies xn → x by Proposition 1.2.11.

Hence, (K, d) is complete. To show that K is totally bounded, just note that
{B(x; r) : x ∈ K} is an open cover of K for any r > 0.

(e) implies (c). Fix an infinite sequence {xn} in K, and let {εn} be a
decreasing sequence of positive numbers such that εn → 0. By (e), there
is a covering of K by a finite number of balls of radius ε1. Thus there is
a ball B(y1; ε1) that contains an infinite number of points from {xn}; let
N1 = {n ∈ N : d(xn, y1) < ε1}. Now consider the sequence {xn : n ∈ N1}
and balls of radius ε2. As we just did, there is a point y2 in K such that
N2 = {n ∈ N1 : d(y2, xn) < ε2} is an infinite set. Using induction we can
show that for each k ≥ 1 we get a point yk in K and an infinite set of
positive integers Nk such that Nk+1 ⊆ Nk and {xn : n ∈ Nk} ⊆ B(yk; εk).
If Fk = cl {xn : n ∈ Nk}, then Fk+1 ⊆ Fk and diamFk ≤ 2εk. Since K is
complete, Cantor’s Theorem implies that

⋂∞
k=1 Fk = {x} for some point x in

X . Now, using a small induction argument, pick integers nk in Nk such that
nk < nk+1. It follows that {xnk

} is a subsequence of the original sequence
and xnk

→ x.
(e) implies (a). We first prove the following claim.

Claim 1.4.6. If K satisfies (c) and G is an open cover of K, then there is
an r > 0 such that for each x in K there is a G in G such that B(x; r) ⊆ G.

Let G be an open cover of K, and suppose the claim is false; thus, for
every n ≥ 1 there is an xn in K such that B(xn;n

−1) is not contained in any
set G in G. By (c), there is an x in K and a subsequence {xnk

} such that
xnk

→ x. Since G is a cover, there is a G in G such that x ∈ G; choose a
positive ε such that B(x; ε) ⊆ G. Let nk > 2ε−1 such that xnk

∈ B(x; ε/2).
If y ∈ B(xnk

;n−1
k ), then d(x, y) ≤ d(x, xnk

) + d(xnk
, y) < ε/2 + n−1

k < ε, so

that y ∈ B(x; ε) ⊆ G. Thus B(xnk
;n−1

k ) ⊆ G, contradicting the restriction
imposed on xnk

. This establishes the claim.
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From here it is easy to complete the proof. We know that (e) implies
(c), so for an open cover G of K let r > 0 be the number guaranteed by
Claim 1.4.6. Now let x1, . . . , xn ∈ K such that K ⊆

⋃n
k=1 B(xk; r), and

for 1 ≤ k ≤ n let Gk ∈ G such that B(xk; r) ⊆ Gk. {G1, . . . , Gn} is the
sought-after finite subcover.

(c) implies (e). If {xn} is a Cauchy sequence in K, then (c) implies it
has a convergent subsequence; by Proposition 1.2.11, the original sequence
converges. Thus (K, d) is complete. Now fix an r > 0. Let x1 ∈ K; if
K ⊆ B(x1; r), then we are done. If not, then there is a point x2 inK\B(x1; r).
Once again, if K ⊆ B(x1; r) ∪ B(x2; r), we are done; otherwise, pick an x3

in K\[B(x1; r) ∪ B(x2; r)]. Continue. If this process does not stop after a
finite number of steps, then we produce an infinite sequence {xn} in K with
d(xn, xm) ≥ r whenever n �= m. But this implies that this sequence can have
no convergent subsequence, contradicting (c). �

Compactness is one of the most important properties; many good things
follow from it, as we shall see in this book, and readers will continue to see as
they continue their careers. The point is that compact sets are almost finite
in a very technical sense, and this approximation of finiteness often suffices
to allow us to carry out an argument for a compact set that we can easily
make for a finite set. We already saw this in Corollary 1.4.3.

The next result gives the converse of Proposition 1.4.2(a) for Rq, but first
we need a lemma.

Lemma 1.4.7. If −∞ < a < b <∞ in R, then [a, b] is compact.

Proof. Clearly a closed interval, being a closed subset of a complete metric
space, is complete. To show [a, b] is compact, it therefore suffices to show it
is totally bounded [Theorem 1.4.5(e)]. But if r > 0, then we can easily find
a = x1 < x2 < · · · < xn = b such that xk−1 − xk < r, and from here it is
routine to show that [a, b] ⊆

⋃n
k=1 B(xk; r). �

Theorem 1.4.8 (Heine5–Borel6 Theorem). A subset of Rq is compact if and
only if it is closed and bounded.

5Heinrich Eduard Heine was born in 1821 in Berlin, the eighth of nine children. He received
his doctorate in 1842 from Berlin; in 1844 he received the habilitation at Bonn, where he was
appointed a privatdozent. In 1856 he was made professor at the University of Halle, where he
remained for the rest of his career. In 1850 he married Sophie Wolff from Berlin, and over the
years they had five children. He worked on partial differential equations and then on special
functions—Legendre polynomials, Lamé functions, and Bessel functions. He made significant
contributions to spherical harmonics and introduced the concept of uniform continuity. It was
in 1872 that he gave a proof of the present theorem, and it requires scholarship to discover the
difference in contribution to this result between him and Borel, who published it in 1895. He
died in 1881 in Halle.

6Emile Borel was born in Saint Affrique in the south of France in 1871. He published his first
two papers in 1890, 2 years before receiving his doctorate in Paris and joining the faculty at Lille.
He returned to Paris in 1897. In 1909 a special Chair in the Theory of Functions was created for
him at the Sorbonne. During World War I he was very supportive of his country and was put
in charge of a central department of research. He also spent time at the front, and in 1918 he
was awarded the Croix de Guerre. In 1928 he set up the Institute Henri Poincaré. He was one
of the founders of the modern theory of functions, along with Baire and Lebesgue, and he also
worked on divergent series, complex variables, probability, and game theory. He continued to be
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Proof. If K is compact, then K is closed and bounded by Proposition 1.4.2.
Now assume that K is closed and bounded. It follows that there are bounded
intervals [a1, b1], . . . , [aq, bq] in R such thatK ⊆ [a1, b1]×· · ·×[aq, bq]. Suppose
{xn} is a sequence in K with xn = (x1

n, . . . , x
q
n). Thus, {x1

n} is a sequence
in [a1, b1], so the preceding lemma implies it has a convergent subsequence.
The notation in this proof could become grotesque if we do the standard
things, so we depart from the standard. Denote the convergent subsequence
by {x1

n : n ∈ N1}, where N1 ⊆ N and N1 has its natural ordering. We have
that the limit exists, so put x1 = limn∈N1 x

1
n. Now consider the sequence

{x2
n : n ∈ N1} in [a2, b2]. It has a convergent subsequence {x2

n : n ∈ N2}
with x2 = limn∈N2 x

2
n. Continue, and we get Nq ⊆ · · · ⊆ N1 ⊆ N and

xk = limn∈Nk
xkn for 1 ≤ k ≤ q. It follows that {xn : n ∈ Nq} is a subsequence

of the original sequence and it converges to x = (x1, . . . , xq); it must be that
x ∈ K since K is closed. By Theorem 1.4.5, K is compact. �
Example 1.4.9. For the metric space Q, if a, b ∈ Q, a < b, then the set
F = {x ∈ Q : a ≤ x ≤ b} = Q∩ [a, b] is closed and bounded but not compact.
In fact, there is a sequence {xn} in F that converges to an irrational number,
and so this sequence has no subsequence that converges to a point of F .
Thus, in an arbitrary metric space, a closed and bounded set need not be
compact, and the Heine–Borel Theorem is particular to Euclidean space.

Note that the metric used for R
q in the Heine–Borel Theorem must be

the standard one, or the result may fail even for an equivalent metric. For
example, if we use the metric d(x, y) = |x− y|(1+ |x− y|)−1 on R, then all of
R is closed and bounded but not compact. This furnishes another example
of a closed and bounded set that is not compact.

Theorem 1.4.10. If (X, d) is a compact metric space and f : X → (Z, ρ) is
a continuous function, then f is uniformly continuous.

Proof. Suppose f is not uniformly continuous. So there is an ε > 0 such
that for every δ > 0 there are points x and y in X with d(x, y) < δ, but
ρ(f(x), f(y)) ≥ ε. In particular, for each natural number n there are points
xn, yn in X such that d(xn, yn) < n−1, but ρ(f(xn), f(yn)) ≥ ε. Since X is
compact, there is a point x in X and a subsequence {xnj} such that xnj → x.

Since d(ynj , x) ≤ n−1
j + d(xnj , x), we have that ynj → x. Therefore, since f

is a continuous function,

ε ≤ ρ(f(xnj ), f(ynj )) ≤ ρ(f(xnj ), f(x)) + ρ(f(x), f(ynj )) → 0.

This contradiction proves the theorem. �
Proposition 1.4.11. A compact metric space is separable.

very active in the French government, serving in the French Chamber of Deputies (1924–1936)
and as Minister of the Navy (1925–1940). He died in 1956 in Paris.



1.5. Connectedness 29

Proof. For each natural number n we can find a finite set Fn such that
X =

⋃
{B(x;n−1) : x ∈ Fn}. Put F =

⋃∞
n=1 Fn; we will show that this

countable set F is dense in X . In fact, if x0 is an arbitrary point in X and
ε > 0, then choose n such that n−1 < ε. Thus, there is a point x in Fn ⊆ F
with d(x0, x) < n−1 < ε, proving that x0 ∈ clF . �

Exercises

(1) Show that the union of a finite number of compact sets is compact.
(2) If K is a subset of (X, d), show that K is compact if and only if every

cover of K by relatively open subsets of K has a finite subcover.
(3) Show that the closure of a totally bounded set is totally bounded.
(4) Show that a totally bounded set is bounded. Is the converse true?
(5) If {En} is a sequence of totally bounded sets such that diamEn → 0,

show that
⋃∞

n=1En is totally bounded.
(6) If (X, d) is a complete metric space and E ⊆ X , show that E is totally

bounded if and only if clE is compact.
(7) (a) If G is an open set and K is a compact set with K ⊆ G, show

that there is a δ > 0 such that {x : dist (x,K) < δ} ⊆ G. (b) Find an
example of an open set G in a metric space X and a closed, noncompact
subset F of G such that there is no δ > 0 with {x : dist (x, F ) < δ} ⊆ G.

(8) If (X1, d1), (X2, d2) are metric spaces, show that X1 ×X2 is compact if
and only if both X1 and X2 are compact.

(9) Give an example of a noncompact metric space (X, d) and a continuous
function f : (X, d) → (Z, ρ) such that f(X) is compact.

(10) For two subsets A and B of X , define the distance from A to B by
dist (A,B) = inf{d(a, b) : a ∈ A, b ∈ B}. (a) Show that dist (A,B) =
dist (B,A) = dist (clA, clB). (b) If A and B are two disjoint closed
subsets of X such that B is compact, then dist (A,B) > 0. (c) Give an
example of two disjoint closed subsets A and B of the plane R

2 such
that dist (A,B) = 0. (d) Is this exercise related to Exercise 7?

(11) Consider the metric space �∞ (see Exercise 1.1.12) and show that{
x = {xn} ∈ �∞ : sup

n
|xn| ≤ 1

}
is not totally bounded and, therefore, not compact.

(12) Say that a metric space is σ-compact if it can be written as the union
of a countable number of compact sets. (a) Give three examples of
σ-compact metric spaces that are not compact. (b) Show that a
σ-compact metric space is separable.

1.5. Connectedness

In this section, we introduce and explore another important concept for met-
ric spaces.

Consider the following two examples of subsets of R. The first is the set
X = [0, 1] ∪ (2, 3), and the second is Y = [0, 1] ∪ (1, 2). In X there are two
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distinct “parts,” [0, 1] and (2, 3). In the second we have written Y as the union
of two sets, but these two sets are not really separate “parts.” (The term
“parts” will be made technically precise soon, though we will not use that
term.) In a sense, writing Y as the union of those two sets is just accidental.
We could just as well have written Y = [0, 1)∪ [1, 2) or Y = [0, 1

2 ] ∪ (1
2 , 2) or

even Y = [0, 2). What is the true difference between the two sets X and Y ?
Note that in the metric space (X, d) of the last paragraph, the set [0, 1]

is simultaneously both an open and a closed set. For example, BX(1; 1
2 ) =

{x ∈ X : |x − 1| < 1
2} = (1

2 , 1] ⊆ [0, 1]. It follows that [0, 1] is open in X as
well as closed; similarly, (2, 3) is open in X as well as closed. The set X is
an example of what we now define as a set that is not connected or, more
succinctly, a disconnected set.

Definition 1.5.1. A metric space (X, d) is connected if there are no subsets
of X that are simultaneously open and closed other than X and ∅. If E ⊆ X ,
we say that E is connected if (E, d) is connected. If E is not connected, then
we will say that it is disconnected or a nonconnected set.

An equivalent formulation of connectedness is to say that (X, d) is con-
nected provided that when X = A ∪B, where A ∩B = ∅ and both A and B
or open (or closed), then either A = ∅ or B = ∅. This is the sense of our use
of the term “parts” in the introduction of this section; for the set X there,
A = [0, 1] and B = (2, 3) are two disjoint, nontrivial sets that are both open
and closed in X .

The first result can be considered an example, but it is much more
than that.

Proposition 1.5.2. A subset of R is connected if and only if it is an interval.

Proof. Assume that X = [a, b], and let us show that X is connected. (The
proof that other types of intervals are connected is Exercise 1.) Assume
that [a, b] = A ∪ B, where both A and B are open and A ∩ B = ∅. One
of these sets contains the point a; suppose a ∈ A. Note that A is also
closed. We want to show that A = X . Since A is open, there is an ε > 0
such that [a, a + ε) ⊆ A. Put r = sup{ε : [a, a + ε) ⊆ A}. We claim that
[a, a+ r) ⊆ A. In fact, if a ≤ x < a+ r, then the definition of the supremum
implies there is an ε > 0 such that ε < r, [a, a + ε) ⊆ A, and a ≤ x < a+ ε;
thus x ∈ A. Now A is also closed and [a, a + r) ⊆ A, so it must also be
that a + r ∈ A. If a + r �= b, then the fact that A is open implies that
there is a δ > 0 such that (a + r − δ, a + r + δ) ⊆ A. But this means that
[a, a+r+δ) = [a, a+r)∪(a+r−δ, a+r+δ) ⊆ A, contradicting the definition
of r. Therefore, a+ r = b, and we have that A = [a, b] = X . (So B = ∅.)

Let us begin the converse by deciding how we recognize an interval: a
subset E of R is an interval if and only if when a, b ∈ E and a < b, then c ∈ E
whenever a < c < b; equivalently, [a, b] ⊆ E when a, b ∈ E (Exercise 2). So
assume that X is a nonempty connected subset of R and a, b ∈ X with a < b;
suppose a < c < b. If c /∈ X , then let A = X ∩ (−∞, c), B = X ∩ (c,∞).
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Clearly A and B are open subsets relative to X ; since c /∈ X , we also have
that A = X ∩ (−∞, c], B = X ∩ [c,∞), and they are also closed relative to
X (Exercise 1.1.6). Since a ∈ A and b ∈ B, neither is empty, contradicting
the assumption that X is connected. �

Theorem 1.5.3. The continuous image of a connected set is connected.

Proof. Let f : (X, d) → (Z, ρ) be a continuous function and E a connected
subset of X ; we want to show that f(E) is a connected subset of Z. By
replacing X with E, we may assume X = E is connected; by replacing Z
with f(E), we may assume that f is surjective. We must now show that Z
is connected. If D is a subset of Z that is both open and closed, then the
continuity of f implies f−1(D) is both open and closed in X . Since X is
connected, f−1(D) is either ∅ or X . But since f is surjective, this implies D
is either ∅ or Z. Thus Z is connected. �

The preceding theorem allows us to deduce a standard result from cal-
culus, which here is placed in a more general setting.

Corollary 1.5.4 (Intermediate Value Theorem). If f : (X, d) → R is con-
tinuous, X is connected, a, b ∈ f(X) with a < b, then for any number c in
the interval [a, b] there is a point x in X with f(x) = c.

Proof. We know that f(X) is a connected subset of R so that it must be
an interval (Proposition 1.5.2). Since a, b ∈ f(X), it must be that [a, b] ⊆
f(X). �

Example 1.5.5. (a) If x, y ∈ R
q, then the straight line segment [x, y] ≡

{ty + (1 − t)x : 0 ≤ t ≤ 1} is connected. In fact, t �→ ty + (1 − t)x
is a continuous function from the unit interval into R

q. Since the unit
interval is connected, so is its image under this continuous mapping.

(b) In R
q, the balls B(x; r) are connected. In fact, let A be a nonempty

subset of B(x; r) that is both relatively open and closed, and fix a point
y in A. If z ∈ B(x; r), then the line segment [y, z] ⊆ B(x; r) and [y, z] is
connected by part (a). But it follows that A∩ [y, z] is a nonempty subset
of this line segment that is both relatively open and relatively closed.
Thus [y, z] ⊆ A; in particular, the arbitrary point z from B(x; r) belongs
to A, so that A = B(x; r).

(c) If (X, d) is a discrete metric space, then X is not connected if X has
more than one point. In fact, each singleton set {x} is a nonempty set
that is both open and closed.

Proposition 1.5.6. Let (X, d) be a metric space.

(a) If {Ei : i ∈ I} is a collection of connected subsets of X such that
Ei ∩ Ej �= ∅ for all i, j in I, then E =

⋃
i∈I Ei is connected.

(b) If {En : n ≥ 1} is a sequence of connected subsets of X such that
En ∩ En+1 �= ∅ for each n, then E =

⋃∞
n=1En is connected.
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Proof. (a) Let A be a nonempty subset of E that is relatively open and
closed. If i ∈ I, then A ∩ Ei is a relatively closed and open subset of
Ei; if A ∩ Ei �= ∅, then the fact that Ei is connected implies Ei ⊆ A.
Now since A is nonempty, there is at least one i such that Ei ⊆ A.
But then for every j in I, the hypothesis implies there is a point in Ej

that belongs to A; thus Ej ⊆ A. Therefore, A = E and E must be
connected.

(b) Let A be a nonempty relatively open and closed subset of E. Since
A �= ∅, there is some integer N with A ∩ EN �= ∅. But A ∩ EN is both
relatively open and closed in EN , so EN ⊆ A by the connectedness of
EN . By hypothesis, EN−1 ∩ EN �= ∅, so EN−1 ∩ A �= ∅, and it follows
that EN−1 ⊆ A. Continuing, we get that En ⊆ A for 1 ≤ n ≤ N . Since
EN ∩ EN+1 �= ∅, similar arguments show that EN+1 ⊆ A. Continuing,
we get that En ⊆ A for all n ≥ 1. That is, E = A, and so E is connected.

�
Corollary 1.5.7. The union of two intersecting connected subsets of a metric
space is connected.

Definition 1.5.8. If (X, d) is a metric space, then a component of X is a
maximal connected subset of X .

The word maximal in the definition means that there is no connected
set that properly contains it. Thus, if C is a component of X and D is a
connected subset of X with C ⊆ D, then D = C.

A component is the correct interpretation of the word part used in the
introduction of this section. The set X there has two components. Notice
that a connected metric space has only one component. In a discrete metric
space, each singleton set is a component.

Proposition 1.5.9. For any metric space, every connected set is contained
in a component, distinct components are disjoint, and the union of all the
components is the entire space.

Proof. Fix a connected subset D of X , and let CD denote the collection of all
connected subsets of X that contain D. According to Proposition 1.5.6(a),
C =

⋃
{A : A ∈ CD} is connected. Clearly, C is a component and contains D.

By taking D = {x} in what was just established, we have that every point of
X is contained in a component so that the union of all the components is X .
Finally, note that if C and D are two components and C∩D �= ∅, then C∪D
is connected by Corollary 1.5.7; so it must be that C = C ∪ D = D by the
maximality of C and D. That is, distinct components are disjoint sets. �

One consequence of the preceding proposition is that the components
form a partition of X—they divide the space X into a collection of pair-
wise disjoint connected sets. The next result says that the components are
all closed, the proof of which emphasizes once again that, when discussing
relatively open and closed sets, you must be aware of what the universe is.
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Proposition 1.5.10. If C is a connected subset of the metric space X and
C ⊆ Y ⊆ clC, then Y is connected.

Proof. Let A be a nonempty subset of Y that is both relatively open and
closed, and fix a point x0 in A. By Exercise 1.1.6, there is an open subset
G of X such that A = Y ∩ G. Since x0 ∈ clC and x0 ∈ G, there must
be a point x in G ∩ C = A ∩ C; that is, A ∩ C is a nonempty relatively
open subset of C. Since A is relatively closed in Y , Exercise 1.1.6 and an
analogous argument imply that A ∩ C is also relatively closed in C. Since
C is connected, C = C ∩ A ⊆ A. That is, C ⊆ A ⊆ Y ⊆ clC, so that A
is both closed in Y and dense in Y ; hence A = Y , and it must be that Y is
connected. �

Corollary 1.5.11. The closure of a connected set is connected and each
component is closed.

In light of the preceding proposition and Example 1.5.5(b), if x ∈ R
q and

B(x; r) ⊆ E ⊆ B(x; r), then E is connected. Here is an example that will
illustrate additional properties as we proceed. In fact this example is used so
often it has a name, the topologist’s sine curve.

Example 1.5.12. X = {(x, sinx−1) ∈ R
2 : 0 < x ≤ 1} ∪ {(0, 0)} is con-

nected. In fact, f : (0, 1] → X defined by f(x) = (x, sinx−1), is a continuous
function, so C = f((0, 1]) is connected. Since C ⊆ X ⊆ clC, X is con-
nected by Proposition 1.5.10. The space X consists of the graph of the
function sinx−1 for 0 < x ≤ 1 together with the origin. Note that instead
of the origin, we could have added to the graph any point or any subset of
{(0, y) : −1 ≤ y ≤ 1}, and the resulting set would still be connected.

Definition 1.5.13. If E is a subset of X , x, y ∈ E, and ε > 0, say that
there is an ε-chain from x to y in E when there is a finite number of points
x1, . . . , xn in E such that: (i) for 1 ≤ k ≤ n, B(xk; ε) ⊆ E; (ii) for 2 ≤ k ≤ n,
xk−1 ∈ B(xk; ε); (iii) x1 = x and xn = y.

The concept of an ε-chain has limited value in an arbitrary metric space.
For one thing, note that conditions (i) and (ii) of the definition imply that
only points in the interior of E can be linked by an ε-chain.

Example 1.5.14. If r > 0 and z ∈ R
q, then for any pair of points x and y

in B(z; r) and all sufficiently small ε there is an ε-chain in B(z; r) from x to
y. In fact, observe that the straight line segment from x to y is contained in
B(z; r), and using this it is easy to construct the ε-chain.

Proposition 1.5.15. Consider the metric space R
q.

(a) If G is an open subset of Rq, then every component of G is open and
there are countably many components.

(b) An open subset G of Rq is connected if and only if for any x, y in G there
is an ε > 0 such that there is an ε-chain in G from x to y.
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Proof. (a) If H is a component of G and x ∈ H , choose r > 0 such that
B(x; r) ⊆ G. Since B(x; r) is also connected (Example 1.5.5), Corollary
1.5.7 implies H ∪ B(x; r) is connected. Since this is also a subset of
G, it follows that H = H ∪ B(x; r), so B(x; r) ⊆ H , and H is open.
Because Rq is separable, there is a countable dense subset D. Now since
each component is open, each component contains an element of D and
different components contain different points. If there are uncountably
many components, this would show that there is an uncountable subset
of D (Why?), which is nonsense.

(b) Assume that G satisfies the stated condition, and let us prove that G
is connected. Fix x and let H be the component of G that contains
x; we want to show that H = G. By part (a), we know that H is
open. If y ∈ G, then there is an ε > 0 such that there is an ε-chain
x1, . . . , xn in G from x to y. Since xk−1 ∈ B(xk−1; ε) ∩ B(xk; ε) for
2 ≤ k ≤ n, Proposition 1.5.6(b) says B =

⋃n
k=1 B(xk; ε) is connected.

Condition (i) of the definition of an ε-chain implies B ⊆ G, and so
B ⊆ H . In particular, y ∈ H . Since y was arbitrary, H = G and G is
connected.

Now assume that G is connected. Fix a point x in G, and let

D = {y ∈ G : there is an ε > 0 and an ε-chain in G from x to y}
The strategy of the proof will be to show that D is both relatively open
and closed in G; since it is not empty (x ∈ D), it will then follow that
D = G, and so G will have been shown to satisfy the condition. If
y ∈ D, then let ε > 0 and let x1, . . . , xn be an ε-chain from x to y. It
follows from the definition of an ε-chain that B(y; ε) ⊆ D. Thus, D is
open. Now suppose z ∈ G ∩ clD—this is the relative closure of D in G.
(Why?) Choose r > 0 such that B(z; r) ⊆ G, so B(z; r) ∪D ⊆ G. Since
z ∈ clD, there is a point y in B(z; r) ∩D. Let x0 = x, x1, . . . , xn be an
ε-chain from x to y. By Exercise 8, there is an ε′-chain from x to y in
G whenever 0 < ε′ < ε. Applying this with 0 < ε′ < min{ε, r}, we may
assume ε < r. Using Example 1.5.14 we see that this implies there is an
ε-chain in G from x to z. Thus z ∈ D, and so D is relatively closed in G.

�

We note that (i) of the definition of an ε-chain was used to establish that
the condition in part (b) was sufficient for connectedness. Without this, the
result is false, as we see in the following example.

Example 1.5.16. Let X = {(x, y) ∈ R
2 : y > x−1} ∪ {(x, y) ∈ R

2 : y < 0}.
Clearly, X is not connected; in fact, it has two components. It is also easy
to see that if x̄ = (x, y) with y < 0 and ȳ = (w, z) with z > w−1, then for all
sufficiently small ε there are points x̄1, . . . , x̄n in X such that for 2 ≤ k ≤ n,
x̄k−1 ∈ B(x̄k; ε), and x̄1 = x̄ and x̄n = ȳ.

Here is another example.
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Example 1.5.17. If X = Q, the set of rational numbers, then Q is not
connected. For example, A = Q ∩ (π,∞) is a subset of Q that is both open
and closed. On the other hand, Q satisfies the condition stated in Proposition
1.5.15(b). Thus, the assumption there that G is open is essential.

We close this section with a circumspective remark. We did not use
sequences in this section. Connectedness is one of the only properties of a
metric space I know whose examination never uses the concept of a convergent
sequence.

Exercises

(1) Prove that open and half-open intervals are connected, completing the
proof of half of Proposition 1.5.2.

(2) Is a proof required of the fact, used in the proof of Proposition 1.5.2,
that a subset E of R is an interval if and only if when a, b ∈ E and a < b,
then c ∈ E whenever a < c < b?

(3) If (X, d) is connected and f : X → R is a continuous function such that
|f(x)| = 1 for all x in X , show that f must be constant.

(4) If A is a subset of X , define the characteristic function of A as the
function χA : X → R such that χA(x) = 1 when x ∈ A and χA(x) = 0
when x /∈ A. Show that A is simultaneously open and closed if and only
if χA is continuous.

(5) Look at the preceding exercise for the definition of the characteristic
function on a set X . (a) If A and B are subsets of X , which function is
χAχB? (b) Which function is χA + χB? (c) What is the characteristic
function of the empty set?

(6) Let I be any nonempty set and for each i in I let Xi be a copy of R with
the metric di(x, y) = |x− y|. Let X be the disjoint union of the sets Xi.
(That is a verbal description that can be used in any circumstance, but if
you want precision, you can say X = R× I, the cartesian product where
I has the discrete metric.) Define a metric d on X by letting d agree
with di on Xi; and when x ∈ Xi, y ∈ Xj , and i �= j, then d(x, y) = 1. (Is
this the product metric on R× I?) (a) Show that d is indeed a metric on
X . (b) Show that {Xi : i ∈ I} is the collection of components of X and
each of these components is an open subset of X . (c) Show that (X, d)
is separable if and only if I is a countable set.

(7) Can you think of any way to generalize Proposition 1.5.6(a) and obtain
a theorem whose conclusion is that E =

⋃
{Ei : i ∈ I} is connected.

(8) If E is a subset of Rq, x, y ∈ E, and ε > 0 such that there is an ε-chain
from x to y, show that for any ε′ with 0 < ε′ < ε there is an ε′-chain
from x to y.

(9) A polygon [x, x1, . . . , xn−1, y] in Euclidean space is the union of straight
line segments

[x, x1], [x1, x2], . . . , [xn−1, y].



36 1. Metric Spaces

(a) Show that a polygon is a connected subset of Rq. (b) Show that an
open subset G of Rq is connected if and only if for any two points
x and y in G there is a polygon [x, x1, . . . , xn−1, y] contained in G.

1.6. The Baire Category Theorem

The Baire Category Theorem is a useful result that can prove the existence,
in fact profusion, of certain objects. That is an abstract statement that has
little meaning unless you see some specific instances. One such instance is
that it can be used to show that there is a continuous nowhere differentiable
function on an interval in R. In fact, it actually shows that the set of such
functions is dense in the metric space C[0, 1]. See [5, Theorem 17.8].

It is also used to go from statements that involve one point at a time
in a metric space to statements that give a uniform condition. Again, that
is rather bare of meaning without a specific instance, but supplying one is
beyond the scope of this book. Trust me. If you stick with mathematics a
little longer, you will see such things as the Principle of Uniform Boundedness
in functional analysis whose proof is a standard application of the Baire
Category Theorem. (For example, see [2].) We will encounter a use of the
Baire Category Theorem below in Exercise 2.2.6, however, when we explore
abstract topological spaces in the next chapter.

Theorem 1.6.1 (Baire7 Category Theorem). If (X, d) is a complete metric
space and {Un} is a sequence of open subsets of X each of which is dense,
then

⋂∞
n=1 Un is dense.

Proof. To show that
⋂∞

n=1 Un is dense, it suffices to show that if G is a
nonempty open subset of X , then G ∩

⋂∞
n=1 Un �= ∅. (Why?) Since U1

is dense and open, there is an open ball B(x1; r1) with r1 < 1 such that
clB(x1; r1) ⊆ G ∩ U1. This is the first step in an induction argument that
establishes that for each n ≥ 2 there is an open ball B(xn; rn) with rn < n−1

such that
clB(xn; rn) ⊆ B(xn−1; rn−1) ∩ Un ⊆ G.

7René-Louis Baire was born in Paris in 1874. His father was a tailor and his family was
poor. He won a scholarship, however, that enabled him to receive an excellent education, and

he distinguished himself from the start. Soon he gained admission to the prestigious École
Normale Supérieure. After this education and further study in mathematics, he obtained a
position as a professor at a lycée and began the research that led him to the introduction of his
classification of functions of a real variable. He was awarded another scholarship that enabled
him to study in Italy, where he met Volterra. His dissertation on discontinuous functions earned
him a doctorate in 1899, and in 1901 he secured a position on the faculty at the University
of Montpelier. Throughout his life he suffered from poor health, though this did not keep him
from his research. In 1907 he was promoted to a professorship at Dijon, but his health interfered
with his teaching duties. In 1914 he requested a leave and traveled to Lausanne, Switzerland.
While he was there, World War I began, and he was unable to return to France. His health
deteriorated further, depression ensued, and he spent the rest of his life on the shores of Lac
Léman in Switzerland. It was there that he received the Chevalier de la Legion d’Honneur, and
in 1922 he was elected to the Académie des Sciences. He published significant works on number
theory and functions. He died in 1932 at Chambéry near Geneva.
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The details of this induction argument are left as Exercise 1. Observe that
this implies that when n > N ,

1.6.2 clB(xn; rn) ⊆ B(xN ; rN ) ∩ UN ⊆ G ∩ UN .

Let N be an arbitrary positive integer. It follows from (1.6.2) that for
n,m ≥ N , d(xn, xm) < 2N−1, and so {xn} is a Cauchy sequence. Since X is
complete, there is an x in X such that xn → x. The same observation (1.6.2)
reveals that when n > m > N , x ∈ clB(xn; rn) ⊆ B(xm; rm) ⊆ G ∩ UN .
Since N was arbitrary, x ∈ G ∩

⋂∞
N=1 UN . Thus, this last set is nonempty,

and so we have established density. �

The next result is the form of the theorem that is used very often and is
also referred to as the Baire Category Theorem.

Corollary 1.6.3. If (X, d) is a complete metric space and {Fn} is a sequence
of closed subsets such that X =

⋃∞
n=1 Fn, then there is an n such that we

have int Fn �= ∅.

Proof. Suppose intFn = ∅ for each n ≥ 1, and put Un = X\Fn. It follows
that each Un is open and dense, so the theorem implies that

⋂∞
n=1 Un is

dense. But the hypothesis of this corollary implies that this intersection is
empty, a dramatic contradiction. �

Why is the word category used in the name of this theorem? Please
excuse the author while he takes a little time to rant. Mathematics loves
tradition; largely this is good and has my support. However, occasionally
it adopts a word, makes it a definition, and promulgates it far beyond its
usefulness. Such is the case here. There is a concept in topology called a
set of the first category. Sets that are not of the first category are said to
be of the second category. What are the definitions? I won’t tell you. If
you are curious, you can look them up, but it will not be helpful. I will say,
however, that using this terminology the Baire Category Theorem says that
a complete metric space is of the second category. My objection stems from
the fact that this “category” terminology does not convey any sense of what
the concept is. There is another pair of terms that is used: meager or thin
and comeager or thick. These at least convey some sense of what the terms
mean. But I see no reason to learn additional terminology. The theorem as
stated previously says what it says, end of story—and end of rant.

Exercises

(1) Supply the details of the induction argument used in the proof of
Theorem 1.6.1.

(2) Say that a set E in a metric space is nowhere dense if int [clE] = ∅.
(Why is the term nowhere used?) If (X, d) is a complete metric space
and A =

⋃∞
n=1En, where each En is nowhere dense, show that X\A is

dense in X .
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(3) If (X, d) is a complete metric space and A1, A2, . . . are subsets of X such
that int [

⋃∞
n=1An] �= ∅, then there is an integer n such that intAn �= ∅.

(4) Show that a closed interval in R cannot be written as a countable union
of closed subsets that are pairwise disjoint.



Chapter 2

Topological Spaces

In this chapter we will abstract certain properties of a metric space and
thus create a new structure that occurs frequently in mathematics. Then
we will extend to this new structure the notions of a continuous function,
compactness, and connectedness. As we progress through this chapter we
will frequently use metric spaces to illustrate the new concepts, and readers
are encouraged to pursue such issues on their own.

Some good references for this material, as well as for what is in the next
chapter, are [4] and [6]. A source of examples and counterexamples besides
what is in these references is [11].

2.1. Definitions and Examples

Definition 2.1.1. A topological space is a pair of objects (X, T ), where X is
a set and T is a collection of subsets of X satisfying the following conditions:

(a) ∅, X ∈ T ;

(b) if {Gi : i ∈ I} ⊆ T , then
⋃

i∈I Gi ∈ T ;

(c) if G1, . . . , Gn ∈ T , then
⋂n

k=1 Gk ∈ T .

The collection T is called the topology on X and sets in T are called open
sets.

Example 2.1.2. (a) If (X, d) is a metric space and T denotes the open
sets defined by d as in § 1.1, then (X, T ) is a topological space.

(b) If X is any set and T = 2X , the collection of all subsets of X , then
(X, T ) is a topological space. This topology is called the discrete topol-
ogy on X . In fact, this example is a special case of the preceding one if
we let d be the discrete metric on X .

(c) If X is any set and T = {∅, X}, then T is a topology on X called the
trivial topology. This topology does not arise from a metric if X has at
least two points. (Why?)

J.B. Conway, A Course in Point Set Topology, Undergraduate Texts
in Mathematics, DOI 10.1007/978-3-319-02368-7 2,
© Springer International Publishing Switzerland 2014
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(d) Let {(Xi, Ti) : i ∈ I} be a collection of topological spaces, where the
sets {Xi : i ∈ I} are pairwise disjoint subsets of some larger set that we
can take to be X =

⋃
i∈I Xi. (This idea may strike the reader as a bit

strange, but we will see more specific examples of this phenomenon as
we progress.) Let T = {G ⊆ X : G ∩Xi ∈ Ti for each i ∈ I}. (X, T ) is
a topological space.

(e) Let X be any set, and let T be the collection of all subsets G such that
X\G is finite. It follows that T is a topology on X called the cofinal
topology. We won’t see much of this topology.

(f) If (X, T ) is a topological space, Y ⊆ X , and TY ≡ {Y ∩ G : G ∈ T },
then (Y, TY ) is a topological space. TY is called the subspace topology
or relative topology defined by T on Y . We note that this is consistent
with what we did when discussing subspaces of a metric space. That is,
if (X, d) is a metric space, T denotes the open sets in X , and Y ⊆ X ,
then TY is precisely the set of open subsets of Y obtained by restricting
the metric d to Y . See Proposition 1.1.8.

Definition 2.1.3. (X, T ) is called a Hausdorff 1 space provided for any pair
of distinct points x, y in X where there are disjoint open sets U, V such that
x ∈ U and y ∈ V .

It is easy to see that the trivial topological space is not a Hausdorff
space, nor is the cofinal topology on any infinite set, but every metric space
is Hausdorff. In fact, if (X, d) is a metric space, x �= y, and 0 < r < 1

2d(x, y),
then B(x; r) ∩ B(y; r) = ∅. Topological spaces that are not Hausdorff arise
naturally in certain parts of mathematics. Most mathematicians, however,
will not encounter them very often; analysts never will. When a space fails to
be Hausdorff, pathologies prevail. So we are going to avoid them and settle
on the following agreement.

1Felix Hausdorff was born in 1868 in Breslau, Germany, which became Wroc�law, Poland
after World War II. When Hausdorff was young, his family moved to Leipzig, where he grew
up and was educated. His original interests were in literature and music, but bowing to family
pressure he studied astronomy and obtained a doctorate in 1891. He published four papers in the
subject and obtained a habilitation in 1895. Nevertheless, he continued to pursue his interests in
literature and music. He published his first literary work in 1897 under the name Paul Mongré.
Books followed in philosophy in 1898 and poetry in 1900. Clearly he also worked in mathematics
because in 1902 he was appointed to an extraordinary professorship of mathematics at Leipzig
and turned down the offer of a similar appointment at Göttingen. He continued with literature
and published a farce in 1904 that was produced and was an apparent success. After 1904,
however, his efforts shifted to topology, introducing the concept of a partially ordered set (§A.4).
In 1910 he went to Bonn, and in 1913 he accepted an ordinary professorship at Greifswalf.
(Hausdorff came from a rich family and had no financial worries, hence the willingness to accept
a lower position.) In 1914 he published his book Grundzüge der Mengenlehre, in which he set
out the theory of topological spaces, building on the work of Fréchet. In a sense, this is the start
of point set topology, and the reader can find here the introduction of what we are calling the
Hausdorff property. The book was reprinted several times and is a good place to practice your
mathematical German. He continued to be active until 1935 when, as a Jew, he was forced by
the Nazis to retire. He continued to do research but could not find an outlet for his work in
Germany. He tried to emigrate in 1939 but was unsuccessful. In 1941 he was scheduled to be
sent to a concentration camp, but he managed to avoid this. Bonn University requested that he
and his wife be allowed to remain in their home, and this was granted. He committed suicide
together with his wife and her sister in 1942.
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Agreement. All topological spaces encountered in this book will be
assumed to be Hausdorff.

Incidentally, another term for Hausdorff is a T2-space. The reason for
this term is part of what are called separation axioms or properties. Yes, there
is a T1-space and even a T0-space as well as T3 and T4. It is a long story.
We are going to avoid this terminology; it just strikes me as not conveying
anything except, possibly, a hierarchical code. Nevertheless, the underlying
concepts will be seen subsequently in Sects. 3.2 and 3.3. If you are interested
in a more thorough inspection of these properties, an examination of [4] or
[6] will satisfy.

The reader may have expected this definition: a subset F of (X, T ) is
closed if X\F ∈ T . Again, we have taken the definition straight from metric
spaces.

Proposition 2.1.4. Let (X, T ) be a topological space, and let F denote the
collection of closed subsets of X.

(a) ∅, X ∈ F .

(b) If {Fi : i ∈ I} ⊆ F , then
⋂

i∈I Fi ∈ F .

(c) If F1, . . . , Fn ∈ F , then
⋃n

k=1 Fk ∈ F .

(d) {x} ∈ F for every x in X.

The proof of this is rather straightforward and left to the reader, though
we will mention that the proof of (d) uses the Hausdorff property, whereas
the proofs of the first three do not.

We continue to use the metric space development from the preceding
chapter as a guide for developing the theory of topological spaces. This
will be our pattern for the near future. When a proof of something for a
topological space is similar to the proof of the corresponding result in metric
spaces, we will not present it but refer to its metric space counterpart. Here
we begin with a verbatim definition.

Definition 2.1.5. Let (X, T ) be a topological space, and let A be a subset
of X . The interior of A, denoted by intA, is the set defined by intA =

⋃
{G :

G is open and G ⊆ A}. The closure of A, denoted by clA, is the set defined
by clA =

⋂
{F : F is a closed set and A ⊆ F}. The boundary of A, denoted

by ∂A, is the set defined by ∂A = clA ∩ cl (X\A).

Proposition 2.1.6. Let (X, T ) be a topological space, and assume that
A ⊆ X.

(a) x ∈ intA if and only if there is an open set G with x ∈ G ⊆ A.
(b) x ∈ clA if and only if for every open set G that contains x we have that

G ∩ A �= ∅.
(c) intA is the largest open set contained in A.
(d) clA is the smallest closed set that contains A.
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For the proof of (a) and (b) look at the proof of Proposition 1.1.13. The
proof of (c) and (d) is Exercise 5.

Proposition 2.1.7. Let (X, T ) be a topological space, and let A be a subset
of X.

(a) A is closed if and only if A = clA.

(b) A is open if and only if A = intA.

(c) If A1, . . . , An are subsets of X, then cl [
⋃n

k=1Ak] =
⋃n

k=1 clAk.

Consult Proposition 1.1.15 and Exercise 1.1.7.

Definition 2.1.8. A subset E of a topological space (X, T ) is dense
if cl E = X . A topological space is separable if it has a countable dense
subset.

Using Proposition 2.1.6 we easily get the following extension of Proposi-
tion 1.1.20.

Proposition 2.1.9. A set A is dense in (X, T ) if and only if for every x in
X and every open set G that contains x we have that G ∩ E �= ∅.

We also have the corresponding definition of a limit point.

Definition 2.1.10. If A ⊆ X , a point x in X is called a limit point of A if
for every open set G that contains x there is a point a in G∩A different from
x. In other words, [G\{x}] ∩ A �= ∅.

We can define the concept of a convergent sequence in a topological space
as follows: xn → x in (X, T ) if and only if for each open set G containing
x there is an N such that xn ∈ G for all n ≥ N . This, however, has only
marginal value. For example, the sequential characterization of limit points
given in Proposition 1.2.7 is not true in this more general setting. Later
we will generalize the idea of a sequence, and this will turn out to have the
utility in a topological space that sequences have in a metric space. Right
now we want to extend Proposition 1.2.7 to a topological space, but we need
to supply a proof because the one given for this result in the metric space
setting relies on sequences. A convenient term in a topological space is a
neighborhood of a point x, which is an open set G that contains x. (By a
neighborhood of x some authors mean a set E that contains x in its interior.
This has value and convenience, but we will stick with the definition given
before this comment.)

Proposition 2.1.11. Let A be a subset of X.

(a) The set A is closed if and only if it contains all its limit points.

(b) clA = A ∪ {x : x is a limit point of A}.
Proof. Part (a) will follow from (b) if we first show that a limit point of the
set of limit points of A is a limit point of A (Exercise 8). So we only prove
(b). Let B = A ∪ {x : x is a limit point of A}. Assume x is a limit point of
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A. If G is a neighborhood of x, then G ∩ A �= ∅, so by definition x ∈ clA.
Thus B ⊆ clA. On the other hand, if x ∈ clA, then for every neighborhood
G of x, G ∩ A �= ∅. If x is not a limit point, then for some neighborhood G
we have that G ∩ A = {x}, implying x ∈ A. Thus, clA ⊆ B. �

Proposition 2.1.12. Let (X, T ) be a topological space, let Y be a subset of
X, and give Y its subspace topology TY .
(a) A subset A of Y is closed in Y if and only if there is a closed subset F
of X such that A = F ∩ Y .

(b) If A ⊆ Y , cl Y A denotes the closure of A in Y , and clXA denotes the
closure of A in X, then cl Y A = Y ∩ clXA.

(c) If A ⊆ Y , int YA denotes the interior of A in Y , and intXA denotes the
interior of A in X, then Y ∩ intXA ⊆ int YA.

Proof. Exercise 9, which also has a comment about part (c). �

We close this section with a brief definition to be discussed more fully
later.

Definition 2.1.13. A topological space (X, T ) is metrizable if there is a
metric defined on X such that the open sets defined by this metric are pre-
cisely the sets T .

Needless to say, every metric space is metrizable, but inherent conditions
that are necessary and sufficient for a topological space to be metrizable are
a challenge to discover. This will be discussed at the end of § 3.7. There are
Hausdorff topological spaces that are not metrizable, but we will have to wait
for that as well. In Exercise 2.2.6, an example of a space is given that has
both a metric ρ and a topology T , and, with considerable effort, it is shown
that the topology T is not defined by the metric ρ. In fact, that topology T is
not metrizable, but, as far as I know, showing this requires techniques beyond
the scope of this book. In fact, mathematics is filled with topological spaces
that are not metrizable, but showing this lack of metrizability is involved.

Exercises

(1) Prove that for any topological space X and any point x in X , {x} is a
closed set.

(2) Verify the statement in Example 2.1.2(d).
(3) Verify the statements made in Example 2.1.2(f).
(4) Prove Proposition 2.1.4(d).
(5) Prove Proposition 2.1.6.
(6) Prove Proposition 2.1.7.
(7) For the moment disregard the agreement at the start of this section

that all topological spaces are Hausdorff. Show that a topological space
(X, T ) is Hausdorff if and only if for any two distinct points x and y
there is an open set G such that y ∈ G and x /∈ clG.
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(8) If A is a subset of X and L is the set of limit points of A, prove that
any limit point of L is a limit point of A. Is L a closed set?

(9) (a) Prove Proposition 2.1.12. (b) Find an example of a topological
space (X, T ), a subset Y of X , and a nonempty set U in TY such that
intXU = ∅. [Thus, we have a dramatic example showing that equality
in part (c) of Proposition 2.1.12 does not always occur.]

(10) Let X denote the set of all sequences of real numbers {xn : n ∈ N}, and
let T consist of all subsets G of X satisfying the following condition: for
each x = {xn} in G there are integers n1 < · · · < nN and an ε > 0 such
that {y = {yn} ∈ X : |xnk

− ynk
| < ε for 1 ≤ k ≤ N} ⊆ G. (a) Show

that (X, T ) is a topological space. (b) Is there a metric on X such that
T is the collection of open sets for this metric?

2.2. Base and Subbase for a Topology

We want to invent ways to generate a topology on a set. This is the purpose
of the present section, and here is the first of two ways we will do this.

Definition 2.2.1. If X is a set, a collection B of subsets of X is a base
for a topology T if every set G in T is the union of some collection of sets
belonging to B.

This is a start, but it is not quite what we are aiming for. We will see
the virtues of this concept and a few of its drawbacks and then encounter
another way to generate topologies.

Example 2.2.2. (a) If (X, T ) is a topological space, then T is a base for
itself.

(b) If (X, d) is a metric space, then B = {B(x; r) : x ∈ X, r > 0} is a base
for the topology on X . So we certainly have that the concept of a base
covers our important collection of examples.

(c) If (X, d) is a metric space, then B = {B(x; r) : x ∈ X, r > 0 and r ∈ Q}
is a base for the topology on X . Thus we see that a base is not unique.
Rather than use the positive numbers in Q we could have only chosen
the radii n−1 with n ∈ N; or we could have restricted the possibilities
for x so that they come from some prechosen dense set. Thus we have
even more varieties of a base. We revisit this in Corollary 2.2.4 below.

The next result presents a base in a form we can use to generate a
topology.

Proposition 2.2.3. If B is a base for a topology on X, then B satisfies the
following:

(a)
⋃
{B : B ∈ B} = X;

(b) if B1, B2 ∈ B and x ∈ B1 ∩B2, then there is a B in B such that x ∈ B ⊆
B1 ∩B2;

(c) if x and y are distinct points in X, then there are sets A,B in B such
that x ∈ A, y ∈ B, and A ∩B = ∅.
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Conversely, if B is a collection of subsets of X satisfying these three condi-
tions, then B is a base for a unique Hausdorff topology on X.

Proof. Assume B is a base for the topology T . Clearly (a) holds since
X ∈ T . Also B ⊆ T , so when B1, B2 ∈ B, B1 ∩ B2 ∈ T (though possibly
not in B) and is thus the union of sets in B; hence (b) holds. If x and y are
distinct points in X , then the fact that (X, T ) is Hausdorff implies there are
neighborhoods G and H of x and y, respectively, such that G∩H = ∅. From
the definition of a base there are A,B in B such that x ∈ A ⊆ G, y ∈ B ⊆ H .
Thus (c) holds.

Now for the converse. Assume B is a collection of subsets of X satisfying
the three properties, and let T be the collection of all subsets of X that are
the union of some subcollection of sets from B. Clearly, X ∈ T , and by taking
the union of the sets belonging to the empty subcollection of B we have that
∅ ∈ T . (Do you understand this last statement?) By using condition (b) and
doing an induction argument we see that T is closed under finite intersections.
If {Gi : i ∈ I} ⊆ T , then each Gi is the union of sets in B so that the same
holds for

⋃
i∈I Gi. Finally, (c) implies that the Hausdorff property holds.

Therefore, T is a topology. An examination of how T is defined shows that
it is the only topology for which B is a base. (Or we could use Exercise 1.) �

When B satisfies the three conditions of the preceding proposition we call
T the topology generated by B. Recall the definition of a separable metric
space (Definition 1.1.18).

Corollary 2.2.4. If (X, d) is separable, {a1, a2, . . . } is a dense subset of X,
and {r1, r2, . . . } is an enumeration of the rational numbers in the open unit
interval, then B = {B(an; rm) : n,m ≥ 1} is a base for the topology on X.

Proof. We show that the three conditions of the preceding proposition are
satisfied. Clearly (a) holds. If x ∈ B(aj ; rp) ∩ B(ak; rq), choose an rm with
0 < rm < 1

2dist [x,X\(B(aj ; rp) ∩ B(ak; rq)). Because {a1, a2, . . . } is dense,
there is an an in B(x; rm). It follows that B(an; rm) ⊆ B(aj ; rp) ∩B(ak; rq).
Thus, (b) holds. The proof that (c) is true follows in a similar way and is left
as an exercise. This shows that B is a base and, therefore, generates some
topology. The fact that it generates the topology defined by the metric is left
for the reader to verify. �

The proof of the next corollary is immediate.

Corollary 2.2.5. Let S be any collection of subsets of an arbitrary set X
such that:

(a) X =
⋃
{S : S ∈ S};

(b) for any pair of distinct points x, y in X there are disjoint sets S, T in
S such that x ∈ S and y ∈ T .
If B consists of all finite intersections of sets from S, then B is a base for a
topology.
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This leads to the following definition, which is our second way of gener-
ating a topology.

Definition 2.2.6. If S is any collection of subsets of an arbitrary set X
having properties (a) and (b) in the preceding corollary, then S is called a
subbase. The collection B of all finite intersections of sets from S is called
the base generated by S (see the preceding corollary). The topology defined
by this base is called the topology generated by S.

Once again, the topology generated by a subbase is unique (Exercise 2).
The virtue of a subbase is that it is so easy to find a collection of sets that
satisfies the definition. This facilitates inventing examples, though it might
make it more difficult to verify that a topology generated by a subbase has
some specific property. Therefore, when we introduce concepts for a topo-
logical space, we should try to give an equivalent formulation of the concept
in terms of a subbase as well as a base.

Example 2.2.7. (a) Every base for a topology is a subbase.

(b) If X = R and S consists of all the intervals of the form (−∞, a) and
(a,∞), then S is a subbase for the usual topology on R. Of course, we
can restrict the numbers a in these intervals to be rational or irrational,
and we still have a subbase that generates the usual topology. Observe
that S is not a base for the topology of R.

Exercises

(1) Show that the topology generated by a base B is the intersection of all
topologies that contain B.

(2) Prove that the topology generated by a subbase is the intersection of
all topologies that contain it.

(3) For a topological space (X, T ) give a necessary and sufficient condition
on a collection of subsets C of X that B = {X\C : C ∈ C} is a base for
the topology of X . Can we say that such a collection C is a base for the
closed subsets of (X, T )?

(4) Consider the plane R
2, and define an open half-plane to be a set of the

form {(x, y) ∈ R
2 : ax+ by < c} for some choice of constants a, b, c. (a)

If a, b, c ∈ R, show that {(x, y) ∈ R
2 : ax+by > c} is an open half-plane.

(b) Show that the collection of all open half-planes is a subbase for the
usual topology on R

2.
(5) A partially ordered set is a pair (X,≤), where X is a set and ≤ is a

relation on X such that: (i) x ≤ x for all X ; (ii) if x ≤ y and y ≤ z, then
x ≤ z; (iii) if x ≤ y and y ≤ x, then x = y. (Also see Definition A.4.1.)
Say that a partially ordered set is linearly ordered if whenever x and y
are in X , either x ≤ y or y ≤ x. (For example, X = R or any of its
subsets is linearly ordered.) (a) If X is a partially ordered set and S is
the collection of all sets having the form of either {y : y ≤ x and y �= x}
or {y : x ≤ y and y �= x}, show that S is a subbase for a topology
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on X , though it may not satisfy the Hausdorff property. This is called
the order topology on X . (b) Show that if (X,≤) is linearly ordered,
then the order topology satisfies the Hausdorff property. Can you find
another condition on the ordering such that the order topology has
the Hausdorff property? (c) When a and b are elements of a partially
ordered space, let (a, b) = {x ∈ X : a < x < b}. If (X,≤) is linearly
ordered, show that {(a, b) : a, b ∈ X and a < b} is a base of the order
topology.

(6) This exercise is taken from [1]. Define the space �1 of absolutely sum-
mable sequences: �1 = {{an} : an ∈ R and

∑∞
n=1 |an| < ∞}. (a)

Show that ρ(a, b) =
∑∞

n=1 |an − bn| defines a metric on �1. (b) Show
that if a = {an} ∈ �1 and x = {xn} ∈ �∞ (Exercise 1.1.12), then∑∞

n=1 |anxn| < ∞. We use the notation 〈a, x〉 =
∑∞

n=1 anxn. When
a ∈ �1, x ∈ �∞, and ε > 0, let

Ux,ε(a) = {b ∈ �1 : |〈a− b, x〉| < ε}.

(c) Show that S = {Ux,ε(a) : a ∈ �1, x ∈ �∞, ε > 0} is a subbase for
a topology on �1. Let T be the topology on �1 defined by the subbase
S. We will show that the topology T differs from that defined by the
metric ρ on �1. (d) If S = {a ∈ �1 :

∑∞
n=1 |an| = 1}, show that the

closure of S in the T topology includes the sequence 0 = {0, 0, . . .}.
That is, for x1, . . . , xm ∈ �∞ and positive ε1, . . . , εm, there is an a in S
with a ∈

⋂m
k=1 Uxk,εk(0). Note that this says that 0 is a limit point of S.

(In fact, the closure of S in the topology T can be shown to be {a ∈ �1 :∑∞
n=1 |an| ≤ 1}.) (e) Consider X = {x ∈ �∞ : d(x, 0) = supn |xn| ≤ 1};

since �∞ with its metric d is a complete metric space (Exercise 1.2.11)
and X is a closed subset of �∞, we note that (X, d) is a complete metric
space. (f) For each x in X , δ > 0, and positive integer N , define

G(x; δ,N) = {y ∈ X : |xn − yn| < δ for 1 ≤ n ≤ N}.

Show that B = {G(x; δ, J) : x ∈ X, δ > 0, N ≥ 1} is a base for the
topology on (X, d). (g) If a ∈ �1, show that x �→ 〈a, x〉 is a continuous
function on (X, d). (h) Now assume that {ak} is a sequence in �1 with
ak = {ak1 , ak2 , . . . }. Show that if ak → 0 in (�1, T ) (recall the definition of
a convergent sequence in a topological space given just after Definition
2.1.10), then for every m ≥ 1 and any ε > 0

Fm = {x ∈ X : |〈ak, x〉| ≤ ε/3 for k ≥ m}

is a closed subset of (X, d). Maintain this notation for the rest of the
exercise. (i) Use the Baire Category Theorem to show that there is an
integer m, a point x in X , a δ > 0, and a positive integer N such that
G(x; δ,N) ⊆ Fm. (j) Conclude that ρ(ak, 0) → 0. (k) Use part (d)
to conclude that the topology T on �1 is different from the topology
defined by the metric ρ.
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2.3. Continuous Functions

Here we extend to the setting of topological spaces the definition of a con-
tinuous function given in § 1.3 for metric spaces. The original definition in
the metric space environment (Definition 1.3.1) involves the metric, so that
will not extend. We could define convergent sequences in a topological space
and use that, but it is inadequate for reasons we cannot go into here. Never-
theless, we can use Theorem 1.3.3, which gives an equivalent formulation of
continuity in terms of open sets.

Definition 2.3.1. If (X, T ) and (W,U) are topological spaces and f : X →
W , say that f is continuous at a point x if for every neighborhood U of f(x)
in W , there is a neighborhood G of x in X such that f(G) ⊆ U (equivalently,
G ⊆ f−1(U)). Say that f is continuous on X if it is continuous at each point.

As we said in discussing continuous functions on a metric space, we will
not focus on functions continuous at a point, but we will put all our energy
into understanding functions that are continuous on the entire topological
space.

Proposition 2.3.2. If f : (X, T ) → (W,U), then the following statements
are equivalent:

(a) f is continuous.

(b) For every open set U in W , f−1(U) is open in X.

(c) For every closed set C in W , f−1(C) is closed in X.

(d) If B is a base for the topology of W , then f−1(B) ∈ T for every A in B.
(e) If S is a subbase for the topology of W , then f−1(S) ∈ T for every
S in S.
Proof. It is left to the reader to show that (a), (b), and (c) are equiva-
lent. (See the proof of Theorem 1.3.3, which can essentially be lifted to this
setting.) Since a base is contained in the topology, (b) implies (d); since a
subbase is contained in a base, (d) implies (e). If (e) holds, observe that
{U ∈ U : f−1(U) ∈ T } is closed under finite intersections and arbitrary
unions and contains S; hence it equals U . This implies that (b) holds and
completes the proof of the proposition. �

Since the open balls in a metric space form a basis for the topology,
the equivalence of (a) and (c) can be considered the extension of the ε− δ
definition of continuity given for a function from one metric space into
another.

Proposition 2.3.3. Let (X, T ), (W,U), and (Y,V) be topological spaces. If
f : (X, T ) → (Y,V) and g : (Y,V) → (W,U) are continuous functions, then
so is the composition g ◦ f : (X, T ) → (W,U).
Proof. If U ∈ U , then (g ◦ f)−1(U) = f−1

[
g−1(U)

]
. But g−1(U) ∈ V , so

that (g ◦ f)−1(U) ∈ T , whence the continuity of g ◦ f . �
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Even though the next result is almost longer to state than it is to prove,
it is a useful way to put together continuous functions to form another.

Proposition 2.3.4. Let (X, T ) and (W,U) be topological spaces with subsets
A and B such that X = A ∪ B, suppose g : A → W and h : B → W are
continuous functions such that g(x) = h(x) when x ∈ A ∩ B, and define
f : X → W by letting f(x) = g(x) when x ∈ A and f(x) = h(x) when
x ∈ B. If both A and B are open or if both are closed, then the function f is
continuous.

Proof. Assume both A and B are open. If U is an open subset of W , then it
is easily verified that f−1(U) = g−1(U) ∪ h−1(U). Now g−1(U) and h−1(U)
are open subsets of A and B, respectively, and, since A and B are open in
X , f−1(U) is open. Therefore, f is continuous. The proof where the sets A
and B are closed is similar. �

In conjunction with the last proposition, see Exercises 2 and 3.
Now we want to define the cartesian product of a finite number of topo-

logical spaces, similar to our definition (§ 1.1) of the product of a finite number
of metric spaces. Here, however, there is a more “canonical” approach to the
topology than there was in the metric space setting. Recall that when we
defined the product of metric spaces, we chose one metric on the product
space. Later we saw some equivalent metrics. Of course, when metrics are
equivalent, they generate the same topology. That is the key to this more
general setting, though here there is no middleman.

Proposition 2.3.5. If (Xk, Tk) is a topological space for 1 ≤ k ≤ n and
X = X1 × · · · ×Xn, then B = {G1 × · · · ×Gn : Gk ∈ Tk for 1 ≤ k ≤ n} is a
base for a topology on X. If T is the topology defined by B, then T is the
smallest of all the topologies U on X such that for 1 ≤ k ≤ n the projections
(X,U) → (Xk, Tk) defined by (x1, . . . , xn) �→ xk are continuous.

Proof. Clearly, B covers X . Suppose (x1, . . . , xn) = x �= y = (y1, . . . , yn).
So for some integer k, xk �= yk, and there must be disjoint sets Gk, Hk

belonging to Tk with xk in Gk and yk in Hk. For notational convenience,
assume k = 1. If G′

1 = G1 ×X × · · · ×X and H ′
1 = H1 ×X × · · · ×X , then

x ∈ G′
1, y ∈ H ′

1, and G
′
1 ∩ H ′

1 = ∅. So B has the Hausdorff property. Now
let x = (x1, . . . , xn) ∈ G∩H , where G = G1 × · · · ×Gn, H = H1 × · · · ×Hn,
and each Gk, Hk belongs to Tk. If U = (G1 ∩ H1) × · · · × (Gn ∩ Hn), then
U ∈ B and x ∈ U ⊆ G ∩H . Therefore B is a base.

Let π1 : X → X1 be the map defined by π1(x1, . . . , xn) = x1. Note that
if U1 ∈ T1, then π−1

1 (U1) = U1 × X2 × · · · × Xn. Thus, π1 is continuous;
similarly, each πk is continuous. Let U be another topology on X such that
πk : (X,U) → Xk is continuous for 1 ≤ k ≤ n. If Gk ∈ Tk for 1 ≤ k ≤ n,
then we have that G1 × · · · ×Gn = (G1 ×X2 × · · · ×Xn) ∩ · · · ∩ (X1 ×X2 ×
· · · ×Xn−1 ×Gn) = π−1

1 (G1)∩ · · ·π−1
n (Gn) ∈ U . Thus, B ⊆ U , and it follows

that T ⊆ U . �



50 2. Topological Spaces

Definition 2.3.6. With the notation as in the preceding proposition, the
topology T is called the product topology on X and the maps (x1, . . . , xn) �→
xk are called the coordinate projections, or simply projections. Usually each
projection map will be denoted by πk, as in the preceding proof.

It is left to the reader to verify that the product topology that was just
defined agrees with the product topology defined previously on the product of
metric spaces (Exercise 5). Later (§ 2.6) we will define the product topology
on an infinite product of topological spaces, but first we will explore finite
products. We want to establish an important property of the projection
maps, but this requires another definition. To facilitate this discussion and
later ones, we are going to start an economy of expression by not necessarily
specifying the name of the topology on a topological space. So instead of
saying, “Let (X, T ) be a topological space,” we will just say, “Let X be a
topological space.” There will seldom be a problem, but we can always return
to the old phrasing if there is some ambiguity or a need for specificity.

Definition 2.3.7. If X and Z are topological spaces and f : X → Z, then
f is an open map provided f(G) is open in Z whenever G is open in X .

Proposition 2.3.8. If X1, . . . , Xn are topological spaces and X = X1×· · ·×
Xn has the product topology, then each projection map is an open map.

Proof. Let G be an open subset of X , let 1 ≤ k ≤ n, and suppose xk ∈
πk(G); to show that πk(G) is open, we need to show that there is an open
subset Gk of Xk such that xk ∈ Gk ⊆ πk(G). Now there is an x in G with
πk(x) = xk; that is, x = (x1, . . . , xn), and the kth coordinate is precisely the
same xk we started with. By Proposition 2.3.5, there are open sets Gj in
Xj , 1 ≤ j ≤ n, with x = (x1, . . . , xn) ∈ G1 × · · · × Gn ⊆ G. It follows that
xk ∈ Gk = πk(G1 × · · · ×Gn) ⊆ πk(G). �
Proposition 2.3.9. If X1, . . . , Xn are topological spaces, X = X1×· · ·×Xn

has the product topology, Y is another topological space, and f : Y → X, then
f is continuous if and only if πk ◦ f : Y → Xk is continuous for 1 ≤ k ≤ n.

Proof. If f is continuous, then πk ◦ f is the composition of two continuous
functions, and this is continuous by Proposition 2.3.4. Now assume that
πk ◦ f is continuous for 1 ≤ k ≤ n. If Gk is open in Xk for each k, then
f−1(G1 × · · · ×Gn) = {y ∈ Y : f(y) ∈ G1 × · · · ×Gn} = {y ∈ Y : πk(f(y)) ∈
Gk for 1 ≤ k ≤ n} =

⋂n
k=1(πk ◦ f)−1(Gk). Since each πk ◦ f is continuous,

each (πk◦f)−1(Gk) is open, and so f−1(G1×· · ·×Gn) is open. By Proposition
2.3.2, f is continuous. �

The next proposition could have been presented earlier, but it would have
required a different, less efficient proof.

Proposition 2.3.10. If f, g : X → R are continuous functions, then so are
f + g : X → R and fg : X → R.
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Proof. First consider the function s : R×R → R defined by s(a, b) = a+ b.
We leave the reader to use sequences to show that s is continuous. Now note
that (f + g) : X → R is the composition of s and the function φ : X →
R × R defined by φ(x) = (f(x), g(x)). An easy application of the preceding
proposition shows that φ is continuous. Thus f + g is continuous. The proof
that fg is continuous is similar (Exercise 6). �

Here are other ways to manufacture continuous functions from old ones,
provided the range of the functions is the real numbers. If f, g : X → R,
define

(f ∨ g)(x) = max{f(x), g(x)},
(f ∧ g)(x) = min{f(x), g(x)},

|f |(x) = |f(x)|
for all x in X . It is useful to note that f ∧ g = −[(−f) ∨ (−g)] and f ∨ g =
−[(−f) ∧ (−g)], which can be verified by evaluating at a point x in X and
using the corresponding equalities for real numbers. Hence many arguments
involving one operation can be obtained immediately from the other. We do
this in the next proof.

Proposition 2.3.11. If f, g : X → R are continuous functions, then so are
f ∨ g, f ∧ g, and |f |.
Proof. That the map x �→ (f(x), g(x)) is continuous from X into R

2 is
immediate from Proposition 2.3.9. We will show that the map (s, t) �→ s∨t ≡
max{s, t} is a continuous map from R

2 into R. Once this is done, we see that
f ∨ g is the composition of two continuous functions and is thus continuous.
We use a sequential argument. Suppose sn → s and tn → t. If t > s, then
there is an integer N such that tn − sn > 0 for all n ≥ N . Thus, for n ≥ N ,
sn ∨ tn = tn → t = s ∨ t. Similarly, when s > t, sn ∨ tn → s ∨ t. Assume
s = t, so s ∨ t = t and lim(tn − t) = 0 = limn(sn − t). If ε > 0, then
there is an N ≥ 1 such that for n ≥ N , t − ε < tn, sn < t + ε, and thus
s ∨ t− ε = t− ε < sn ∨ tn < t+ ε = s ∨ t+ ε. Hence this map is continuous.

As we observed prior to the statement of this proposition, f ∧ g =
−[(−f) ∨ (−g)], so it too is continuous. Finally, |f | is the composition of
the continuous functions f and t �→ |t| defined on R. �
Definition 2.3.12. If X and Z are topological spaces, then a homeomor-
phism between X and Z is a bijection f : X → Z that is continuous and has
a continuous inverse f−1 : Z → X .

We note that this extends the definition of a homeomorphism between
two metric spaces given in § 1.3. Also, a bijection f is a homeomorphism if
and only if f is both continuous and open. (Why?) As in the situation of
metric spaces, it is easy to see that topological spaces being homeomorphic
is an equivalence relation (Definition 2.8.1), the basic notion of equivalence
among topological spaces.
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Exercises

(1) Given the fact that the collection of all open infinite intervals (−∞, a),
(a,∞) forms a subbase for the topology of R, does the equivalence of
continuity and condition (d) in Proposition 2.3.2 remind you of anything
for functions f : R → R?

(2) In Proposition 2.3.4, construct a counterexample to the conclusion if
you do not assume that A and B are both open or both closed.

(3) Suppose (X, T ) and (W,U) are topological spaces, X =
⋃

iAi, for each
i there is a continuous function gi : Ai → W such that gi(x) = gj(x)
when x ∈ Ai ∩ Aj , and f : X → W is defined by f(x) = gi(x) when
x ∈ Ai. Can Proposition 2.3.4 be extended to this situation?

(4) If (Xk, Tk) is a topological space for 1 ≤ k ≤ n and X = X1 × · · · ×Xn,
show that {π−1

k (Gk) : 1 ≤ k ≤ n and Gk ∈ Tk} is a subbase for the
product topology on X .

(5) Let (Xk, dk) be a metric space for 1 ≤ k ≤ n, and let Tk be the resulting
topology. Show that the topology defined on the cartesian product
X = X1 × · · · × Xn by the product metric as in Definition 1.1.16 is
the same as the product topology defined on X after Proposition 2.3.5.
(Readers may assume that n = 2 if they so desire.)

(6) Give the details showing that fg in Proposition 2.3.10 is continuous.
(7) If Xk, Zk are topological spaces for 1 ≤ k ≤ n, X = X1 × · · · ×Xn, and

Z = Z1 × · · · × Zn, show that X and Z are homeomorphic if and only
if , after some renumbering of the spaces, Xk and Zk are homeomorphic
for 1 ≤ k ≤ n.

(8) Is an open map also a closed map, that is, a function that maps closed
sets into closed sets?

(9) Let F denote all the functions from a set X into R, and consider the
binary operations on F defined by ∨ : F × F → F and ∧ : F × F →
F . (a) Are these operations associative? (b) Are they distributive:
f ∨ (g ∧ h) = (f ∨ g) ∧ (f ∨ h) or f ∧ (g ∨ h) = (f ∧ g) ∨ (f ∧ h)?

2.4. Compactness and Connectedness

In this section we will revisit two concepts we saw for metric spaces, com-
pactness and connectedness, and we will also introduce an additional form
of connectedness. In the following section, we will see a stronger form of
connectedness. We start with compactness, whose definition in a topological
space is the same as for a metric space.

Definition 2.4.1. A subset K of a topological space X is compact if every
open cover of K has a finite subcover.

In this section, when we prove Theorem 2.4.6 on compactness below,
we will use Zorn’s Lemma (Theorem A.4.6). If you are not familiar with
this result, you must study §A.4, and I advise doing so before you start the
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present section. This material will be used in the future as we progress, and
no notice such as this will be given again.

We start with some basic properties of compactness. It is clear that a
subset is compact if and only if it is compact as a topological space when it
is given its relative topology, that is, if and only if every cover by relatively
open sets has a finite subcover. The proof of the first proposition (Exercise 1)
is an imitation of the proof of Proposition 1.4.2 as is its corollary, but where
open sets replace open balls. Note that there is no concept of a bounded set
in an abstract topological space.

Proposition 2.4.2. Let X be a topological space, and let K ⊆ X.

(a) If K is a compact subset of X, then K is closed.

(b) If K is compact and F is a closed set contained in K, then F is compact.

(c) The continuous image of a compact set is compact.

Corollary 2.4.3. If X is a compact space and f : X → R is a continuous
function, then there are points a and b in X such that f(a) ≤ f(x) ≤ f(b)
for all x in X.

We will use the concept of a collection of subsets of a topological space
having the finite intersection property (FIP). Because the definition is the
same for a topological space as for a metric space, we will not repeat it.

Proposition 2.4.4. If K is a closed subset of a topological space X, then
K is compact if and only if every collection of closed subsets of K having the
FIP has a nonempty intersection.

The proof is exactly the same as the proof of the equivalence of (a) and
(b) in Theorem 1.4.5. The other parts of Theorem 1.4.5 are not true in a
nonmetric space; indeed, some, such as the condition involving total bound-
edness, do not even make sense. Also, in an abstract topological space, the
idea of completeness is nonsensical since we cannot define a Cauchy sequence.
Later, when we define the extension of the concept of a sequence, we will see
the natural extension of the equivalence with compactness of the parts of
Theorem 1.4.5 that involve sequences.

Proposition 2.4.5. If B is a base for the topology for X and K ⊆ X, then
K is compact if and only if every cover of K by sets from B has a finite
subcover.

Proof. Since B is contained in the collection of open sets, the stated condi-
tion is easily seen to follow from the assumption that K is compact. Now
assume that every cover of K by sets from the base has a finite subcover, and
let C be an open cover of K. If G ∈ C, then there is a subset BG of the base
B such that G =

⋃
{B : B ∈ BG}. Thus, {B : B ∈ BG and G ∈ C} is a cover

of K by sets from the base. By assumption, there is a finite subcover; that
is, there are G1, . . . , Gn in C and sets B1, . . . , Bn in B such that Bk ⊆ Gk for
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1 ≤ k ≤ n and K ⊆
⋃n

k=1 Bk. Since Bk ⊆ Gk, {G1, . . . , Gn} constitutes the
sought-after finite subcover of C. �

Here is where we make use of Zorn’s Lemma. The proof of the next
theorem will deal with collections of collections of subsets of a topological

space X . That is, it will treat sets Γ that are contained in 22X

, so stay on
your toes. To help out, we will reserve capital Greek letters like Γ for subsets

of 22X

, capital script letters like W for subsets of 2X or elements of Γ, and
capital roman letters like W for subsets of X . So W ∈ W ∈ Γ.

Theorem 2.4.6 (Alexander’s2 Theorem). If X is a topological space and
S is a subbase for the topology of X, then X is compact if and only if every
cover by sets from S has a finite subcover.

Proof. Again, as in the preceding proof, it is clear that if X is compact,
then every subbasic cover of X has a finite subcover. To prove the converse,
assume it is false: that is, assume that every cover by sets from S has a
finite subcover, but X is not compact. Let Γ denote the collection of all
open covers of X that do not have a finite subcover; since X is not compact,
Γ �= ∅. Order Γ by inclusion (§A.4). It is easy to see that if Λ is a chain in
Γ, then V =

⋃
{W : W ∈ Λ} is an open cover of X . If V has a finite subcover

G1, . . . , Gn, then for 1 ≤ k ≤ n there is a Wk in Γ such that Gk ∈ Wk. But
since Λ is a chain, one of the covers Wk contains all the others. That is, all
the sets G1, . . . , Gn belong to one of the covers Wk; thus, this Wk has a finite
subcover, contradicting the fact that it belongs to Γ. Thus, V ∈ Γ, so that it is
an upper bound of the arbitrary chain Λ. By Zorn’s Lemma (Theorem A.4.6),
Γ has a maximal element C—an open cover of X without a finite subcover.
Note that if G is any nonempty open subset of X and G /∈ C, then C ∪{G} is
an open cover of X that is strictly larger than C. Thus C ∪ {G} has a finite
subcover by the maximality of C in Γ; that is, C ∪ {G} /∈ Γ. (Observe that
the finite subcover of C ∪G must include the set G.)

Let W = C ∩ S; that is, W consists of all the subbasic sets belonging to
the cover C. (Yes, W is possibly empty.) W cannot cover X since then, by

2James Waddell Alexander was born in 1888 in Sea Bright, New Jersey. His father was
the American painter John White Alexander. In 1915 he received his doctorate from Princeton
University, having previously spent time studying mathematics in Bologna and Paris. He married
in 1917. During World War I he entered the army as a lieutenant and at the end of the war
left as a captain. He returned to Princeton as an Assistant Professor in 1920 and was promoted
in 1928 to Professor. From 1933 on he was a member of the Institute for Advanced Study.
During World War II he was a civilian working with the U.S. Army Air Force at their Office of
Scientific Research and Development. Because of his leftist political views he came under the
scrutiny of the McCarthy Committee; this had the effect of turning him into a recluse after his
retirement in 1951. His research focused on topology, particularly algebraic topology, in which
he was a pioneer of cohomology theory. His named contributions include the Alexander Duality
Theorem, the Alexander horned sphere, the present result, and the Alexander polynomial used
in knot theory. There is also Alexander–Spanier cohomology theory, which he introduced in
1935 and that was generalized to its present form by Spanier in 1948. In addition, he impressed
those who knew him as a charming man with a fondness for limericks and mountain climbing.
His climbing was centered in the Swiss Alps and Colorado Rockies. Alexander’s Chimney, in the
Rocky Mountain National Park, is named after him. He died in 1971 in Princeton, New Jersey.
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hypothesis, W would have a finite subcover, and thus so would C. Let
2.4.7 x ∈ X\

⋃
W∈W

W,

and let C ∈ C such that x ∈ C. Since S is a subbase, there are S1, . . . , Sn

in S such that x ∈
⋂n

k=1 Sk ⊆ C. Note that by (2.4.7), none of the subbasic
sets Sk can belong to the cover C. Hence for each k, 1 ≤ k ≤ n, C ∪ {Sk} is a
cover of X with a finite subcover. Let Hk

1 , . . . , H
k
mk

∈ C be such that

X = Sk ∪
mk⋃
j=1

Hk
j .

Therefore,

X =

n⋂
r=1

⎛
⎝Sr ∪

⎡
⎣ n⋃
k=1

mk⋃
j=1

Hk
j

⎤
⎦
⎞
⎠

⊆
(

n⋂
r=1

Sr

)
∪

⎡
⎣ n⋃
k=1

mk⋃
j=1

Hk
j

⎤
⎦

⊆ C ∪
n⋃

k=1

mk⋃
j=1

Hk
j .

But this says that {C} ∪ {Hk
j : 1 ≤ j ≤ mk, 1 ≤ k ≤ n} is a finite subcover

of C, furnishing the sought-after contradiction. �
We will use Alexander’s Theorem when we investigate the infinite prod-

uct of topological spaces in § 2.6. Readers might look at Exercise 4, where
they are asked to use Alexander’s Theorem to show that the product of a
finite number of compact spaces is compact. Now we turn our attention to
connectedness.

Definition 2.4.8. A topological space X is connected if there are no subsets
of X that are both open and closed other than X and the empty set. A
subset of X is connected if it is a connected topological space when it has its
relative topology.

This extends the definition of connectedness from metric spaces to topo-
logical spaces, and so all the examples we saw in § 1.5 remain valid.
In particular, we still have that X is connected if and only if whenever
X = A ∪ B with A ∩ B = ∅ and both A and B open (or closed), then
either A or B is the empty set.

Theorem 2.4.9. The continuous image of a connected set is connected.

The proof of Theorem 1.5.3 applies almost verbatim in a proof of the
preceding result. Similarly, an inspection of the proof of Proposition 1.5.6
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reveals that only the properties of open and closed sets were used with no
reference to a metric, so the same proof works in the present setting. We
will state this result for topological spaces, and neither its proof nor those of
other extensions will be given.

Proposition 2.4.10. Let X be a topological space.

(a) If {Ei : i ∈ I} is a collection of connected subsets of X such that Ei∩Ej �=
∅ for all i, j in I, then E =

⋃
i∈I Ei is connected.

(b) If {En : n ≥ 1} is a sequence of connected subsets of X such that En ∩
En+1 �= ∅ for each n, then E =

⋃∞
n=1En is connected.

Corollary 2.4.11. The union of two intersecting connected subsets of a
topological space is connected.

As before, we define a component of X as a maximal connected subset
of X .

Proposition 2.4.12. For any topological space every connected set is con-
tained in a component, distinct components are disjoint, and the union of all
the components is the entire space.

Proposition 2.4.13. If C is a connected subset of the topological space X
and C ⊆ Y ⊆ clC, then Y is connected.

Corollary 2.4.14. The closure of a connected set is connected, and each
component is closed.

We end this section with a variation on the idea of connectedness.

Definition 2.4.15. A topological space X is locally connected if for each x
in X and every neighborhood G of x there is a neighborhood U of x such
that U ⊆ G and U is connected.

This is the first example we have encountered of a “local” property, that
is, a property that may not be possessed by the entire topological space but
holds in arbitrarily small neighborhoods. (This phrase, “in arbitrarily small
neighborhoods,” is justified by the part of the definition that says there is
a connected neighborhood of x inside any given neighborhood G.) We will
encounter this again in the next section as well as in § 3.5 below when we
study the idea of local compactness.

Example 2.4.16. (a) A connected space is not necessarily locally con-
nected. For example, the topologist sine curve (Example 1.5.12) is
connected but not locally connected. (Why?)

(b) A locally connected space is not necessarily connected. For example, a
discrete topological space that has more than a single point is locally
connected, as is the union of two disjoint closed intervals in R. The
reader should have no trouble discovering many more such examples.

(c) Any open subset of Rq is locally connected.
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Proposition 2.4.17. A topological space X is locally connected if and only
if it has a base for its topology consisting of connected sets.

Proof. If X is locally connected and B is the collection of all open connected
subsets of X , then the definition of local connectedness shows that B is a base
for the topology of X . The proof of the converse is left to the reader. �

Proposition 2.4.18. If X is locally connected, then every component is both
open and closed.

Proof. In general, components are closed. Now assume X is locally con-
nected and C is a component. If x ∈ C, then there is a neighborhood G of
x that is connected. But C ∩ G �= ∅, so C ∪ G is connected. Since C is a
component, this implies G ⊆ C. Since x was an arbitrary point in C, this
shows that C is open. �

Proposition 2.4.19. If X and Z are topological spaces with X locally con-
nected and f : X → Z is continuous, open, and surjective, then Z is locally
connected.

Proof. Let z ∈ Z, and let G be any neighborhood of z; pick any point
x in X with f(x) = z. By hypothesis, f−1(G) is a neighborhood of x.
Since X is locally connected, there is a connected neighborhood V of x such
that V ⊆ f−1(G). Since f is continuous and open, f(V ) is a connected
neighborhood of z, and it is contained in G. By definition, Z is locally
connected. �

Exercises

(1) Give the details of the proof of Proposition 2.4.2.
(2) Show that the union of a finite number of compact sets is compact.
(3) If X and Z are compact topological spaces and f : X → Z is a contin-

uous bijection, show that f is a homeomorphism.
(4) Use Alexander’s Theorem (2.4.6) to prove that the finite product of

compact spaces is compact.
(5) Give the set {0, 1} the discrete topology. Show that X is connected

if and only if every continuous function from X into the set {0, 1} is a
constant function.

(6) Give an example of two connected subsets of a topological space whose
intersection is not connected.

(7) Show that the product of a finite number of topological spacesX1, . . . , Xn

is locally connected if and only if each Xk is locally connected.

2.5. Pathwise Connectedness

In this section, we study a further refinement of connectedness, but first we
need an additional concept.
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Definition 2.5.1. If X is a topological space and p, q ∈ X , a path in X
from p to q is a continuous function f : [0, 1] → X such that f(0) = p and
f(1) = q. The point p is called the initial point, and q is the final point. If
p = q, then f is called a closed path or loop.

It should be noted that what we call a path is called an arc by some
authors.

The reader has already seen many examples of paths in calculus, and
some of the examples below are undoubtedly familiar. But first let us note
that the use of the unit interval [0, 1]is just a convenience; any interval would
work. In fact, if a, b ∈ R, a < b, and τ : [0, 1] → [a, b] is defined by τ(t) =
tb+(1− t)a, then τ is an order-preserving homeomorphism. So if f : [a, b] →
X is continuous, then f ◦ τ is a path as defined previously. Conversely, if
g : [0, 1] → X is a path, then f = g ◦ τ−1 : [a, b] → X is continuous and
defines a path in this extended sense. We also note that no matter which
interval in R we use to define a path, the initial and final points are the same.
Hence we can define a path in X by giving a continuous function from some
other interval than [0, 1]. This will frequently be done for convenience. Note
that the direction of the path is important, and this is reflected in the use of
the order-preserving map τ when we discussed changing the interval used to
define a path.

Example 2.5.2. (a) If x, y ∈ R
q, then f(t) = ty + (1 − t)x is a path in

R
q from x to y. In fact, it traces out the straight line segment from x

to y. We abbreviate this by [x, y]; note that [x, y] �= [y, x] since, unless
x = y, they have different initial and final points.

(b) If f : [0, 2π] → R
2 is given by f(t) = (cos t, sin t), then this defines the

path that traces out the circle in the plane starting and ending at (1, 0)
and traveling in the counterclockwise direction.

(c) If g : [0, 1] → X is any continuous function, then f : [0, 1] → R × X
defined by f(t) = (t, g(t)) is a path. In fact, this path traces out the
graph of the function g.

Proposition 2.5.3. If a, b, c are points in a topological space X, f is a path
in X from a to b, and g is a path in X from b to c, then

h(t) =

{
f(2t) when 0 ≤ t ≤ 1

2

g(2t− 1) when 1
2 ≤ t ≤ 1

is a path in X from a to c.

Proof. An application of Proposition 2.3.4 shows that h is continuous, and
you can check that h(0) = a, h(1) = c. �

The path h defined in the preceding proposition is sometimes called the
product of f , and g and is denoted by

2.5.4 h = g · f
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(first follow f and then follow g). Note that the order of these factors is
important. Also note that in keeping with the observation that any closed
and bounded interval in R can be used to define a path, we could define

g · f(t) =
{

f(t) when 0 ≤ t ≤ 1,

g(t− 1) when 1 ≤ t ≤ 2.

Definition 2.5.5. A topological space X is pathwise connected if for any two
points p and q in X there is an arc in X from p to q. Another term used for
pathwise connected is arcwise connected.

Needless to say, if E is a subset of a topological space X , then E is said
to be pathwise connected if, with its relative topology, it is a pathwise con-
nected topological space. The reader should have no trouble manufacturing
examples of pathwise connected proper subsets of Rq.

The reader will see a resemblance between the next proposition and The-
orem 2.4.9 and Proposition 2.4.10.

Proposition 2.5.6. Let X be a topological space.

(a) Every pathwise connected space is connected.

(b) If X is pathwise connected and Z is another topological space such that
there is a continuous surjection φ : X → Z, then Z is pathwise connected.

(c) If {Ei : i ∈ I} is a collection of pathwise connected subsets of X such
that Ei ∩ Ej �= ∅ for all i, j in I, then E =

⋃
i∈I Ei is pathwise connected.

(d) If {En : n ∈ Z} is a sequence of pathwise connected subsets of X such
that En ∩ En+1 �= ∅ for each n, then E =

⋃∞
n=1En is pathwise connected.

Proof. (a) Suppose X is not connected, so there are nonempty disjoint
open sets A and B withX = A∪B. Pick a in A and b in B. If f is a path
in X from a to b, then f−1(A) and f−1(B) are nonempty disjoint open
subsets of [0, 1]whose union is all of the interval. This contradicts the
connectedness of the interval, so that X cannot be pathwise connected.

(b) If p and q are two points in Z, let a, b ∈ X such that φ(a) = p, φ(b) = q.
If f is a path in X from a to b, then φ ◦ f is a path in Z from p to q.

(c) If p, q ∈ E, let p ∈ Ei and q ∈ Ej . Fix any point z in Ei ∩ Ej , let
f : [0, 1] → Ei be a path from p to z, and let g : [0, 1] → Ej be a path
from z to q. If h = g · f , the product of these paths, then it is a path in
E from p to q.

(d) If p, q ∈ E, then there are integers m,n such that p ∈ Em and q ∈ En;
assume that m < n. By part (c), Em ∪ Em+1 is pathwise connected.
Again, (c) implies that Em ∪ Em+1 ∪ Em+2 is pathwise connected.
Continue and we get that Em ∪ · · · ∪ En is pathwise connected. Thus,
there is a path in Em ∪ · · · ∪ En ⊆ E from p to q. Since p and q were
arbitrary, this proves that E is pathwise connected.

�
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Example 2.5.7. Let X be the topologist’s sine curve (Example 1.5.12).
From (Example 1.5.12) we know that X is connected; however, it is not
pathwise connected. See Exercise 4 below as well as Exercise 3.

In light of the preceding example and Proposition 2.5.6(a), pathwise con-
nectedness is a properly stronger property than connectedness. Justified by
the preceding proposition, we define a pathwise connected component of a
topological space as a maximal pathwise connected subset. The next result
is the analog of Proposition 2.4.12. The proof is Exercise 5.

Proposition 2.5.8. For any topological space every pathwise connected set
is contained in a pathwise connected component, distinct pathwise connected
components are disjoint, and the union of all the pathwise connected compo-
nents is the entire space.

It is worth pointing out that Proposition 2.4.13 does not carry over to
pathwise connected spaces, as a consideration of the topologist’s sine curve
with the origin deleted demonstrates.

Now for the local version of pathwise connectivity.

Definition 2.5.9. A topological space X is locally pathwise connected if for
each x in X and each neighborhood G of x there is another neighborhood U
of x that is pathwise connected and such that U ⊆ G.

Example 2.5.10. (a) R
q is locally pathwise connected, as is every discrete

space.
(b) Every open subset of a locally pathwise connected space with its relative

topology is also locally pathwise connected. In particular, every open
subset of Rq is locally pathwise connected.

(c) If X is a metric space, then X is locally pathwise connected if for every
x in X and every ε > 0 there is a δ > 0 such that δ < ε and B(x; δ) is
pathwise connected.

It follows that the definition of a locally pathwise connected space can
be rephrased as the requirement that the space has a base for its topology
consisting of pathwise connected sets.

Proposition 2.5.11. If X is locally pathwise connected, then an open subset
is connected if and only if it is pathwise connected.

Proof. Let G be an open connected subset of X , and fix a point p in G. If
U denotes the pathwise connected component of G that contains p, then the
fact that X is locally pathwise connected implies U is an open subset of G.
Now let x ∈ G such that x is in the relative closure of U . If W is a pathwise
connected neighborhood of x contained in G, then W ∩U �= ∅. Thus, U ∪W
is pathwise connected and contained in G. By the definition of a pathwise
connected component, x ∈ W ⊆ U . Thus, U is simultaneously open and
relatively closed in G. Since G is connected and U �= ∅, U = G, and so G is
pathwise connected. �
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Corollary 2.5.12. An open subset of R
q is connected if and only if it is

pathwise connected.

The proof of the next result is Exercise 8. Also, compare this proposition
with Proposition 2.4.19.

Proposition 2.5.13. If X is locally pathwise connected and φ : X → Z is
surjective, continuous, and open, then Z is locally pathwise connected.

Exercises

(1) Giving an example, show that the requirement in Proposition 2.5.6(b)
for f to be surjective is necessary.

(2) The following subset of R2 is often called the comb:

C = ({0} × [0, 1]) ∪ {(n−1, y) : n ∈ N, y ∈ [0, 1]} ∪ ([0, 1]× {0}).

(Why is it called the comb?) Show that the comb is connected. Is it
pathwise connected?

(3) If C is the comb (the preceding exercise), then the set X = C\({0} ×
(0, 1)) is called the deleted comb. Show that X is connected but not
pathwise connected.

(4) Show that the topologist’s sine curve (Example 2.5.7) is not pathwise
connected. (Hint: Example 1.3.16(d).)

(5) Prove Proposition 2.5.8.

(6) Verify the statements made in Example 2.5.10.

(7) Give an example of a pathwise connected space that is not locally path-
wise connected.

(8) Prove Proposition 2.5.13.

(9) Give an example of a topological space that is not locally pathwise
connected but has the property that every point has a neighborhood
that is pathwise connected.

2.6. Infinite Products

When we defined the product of two sets X1, X2 as the set of all pairs (x1, x2)
such that xj ∈ Xj , we could just as easily have defined X1 ×X2 as the set of
functions

{x : {1, 2} → X1 ∪X2 : x(j) ∈ Xj for j = 1, 2} .
Similarly, we could redefine a sequence of points in a set X as a function
x : N → X . This may strike you as contrived, but that is because subsets
of integers have their natural ordering and we have more experience dealing
with n-tuples and sequences than with functions. Now, however, we want
to define the product of a set of topological spaces that are indexed by an
arbitrary set, not just a subset of the integers. To do this we must adopt the
approach using functions. (The reader can also consult §A.2.)
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Definition 2.6.1. If I is a nonempty set and for each i in I we have a
nonempty set Xi, then the product of these sets is defined by

∏
i∈I

Xi =

{
x : I →

⋃
i∈I

Xi : x(i) ∈ Xi for all i in I

}
.

We will use the notation x, {xi}, or {x(i)} for elements of X , depending on
the situation and which notation we find convenient. You can do the same.

Do you have trouble making sense of
⋃

i∈I Xi? The first time I saw this as
a student, it gave me pause since we are not assuming that the sets Xi are all
subsets of a common set. If so, think about it for a while, and strictly apply
the definition of the union of sets, and I think the trouble will fade. If it does
not, use the definition of the disjoint union of sets given in Exercise 1.5.6.

Let us also mention that the Axiom of Choice (§A.4) is precisely the
statement that if Xi �= ∅ for all i, then

∏
i∈I Xi �= ∅.

When each Xi is a topological space, we want to put a topology on the
infinite product. To do this, we prove a proposition in a somewhat more
general setting. The reader might observe the similarity of the next result
with Proposition 2.3.5 for finite products.

Proposition 2.6.2. Let X be a set, and let {Xi : i ∈ I} be a collection
of topological spaces. If, for each i in I, fi : X → Xi is a function such
that for distinct points x and y in X there is at least one function fi with
fi(x) �= fi(y), then S = {f−1

i (G) : i ∈ I and G is open in Xi} is a subbase
for a topology T on X. T is the smallest of all the topologies U on X such
that fi : (X,U) → Xi is continuous for each i in I.

Proof. The proof of the first part of this proposition, that S is a subbase, is
straightforward since for any i, f−1

i (Xi) = X , and the Hausdorff condition
easily follows from the stated assumption about the functions fi and the fact
that each space Xi satisfies the Hausdorff condition. If T is the topology
defined by this subbase S and U is another topology such that each fi :
(X,U) → (Xi, Ti) is continuous, then f−1

i (H) ∈ U for each H in Ti and each
i ∈ I. But this means that S ⊆ U , so we have that T ⊆ U . �

The topology T defined by the collection of functions F = {fi : i ∈ I} is
called the weak topology defined by F . The reader will note the similarity of
the next corollary with Proposition 2.3.9.

Corollary 2.6.3. Adopt the notation of the preceding proposition. If Z is a
topological space and g : Z → X is a function, then g is continuous if and
only if fi ◦ g : Z → Xi is continuous for every i in I.

Proof. If g is continuous, then fi ◦ g is the composition of two continuous
functions and is therefore continuous. Assume each fi ◦ g is continuous,
and let W be the topology of Z. To show that g is continuous, we need
only show that g−1(S) ∈ W for every S in S. But if i ∈ I and G ∈ Ti,
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then g−1(f−1
i (G)) = (fi ◦ g)−1(G), and this belongs to W since fi ◦ g is

continuous. �
If X =

∏
i∈I Xi, then for each i we can define the projection map πi :

X → Xi by πi(x) = x(i).

Definition 2.6.4. If {Xi : i ∈ I} is a collection of topological spaces, then
the weak topology defined on their product X by the projection maps {πi :
i ∈ I} is called the product topology on X . The subbase S that appears in
Proposition 2.6.2 is called the standard subbase for the product topology.

Since the subbase only restricts one coordinate, neighborhoods of a point
in the product topology only restrict a finite number of coordinates. It might
seem strange that a topology is placed on the product space X by only re-
stricting a finite number of coordinates. Indeed, this was the reaction of some
famous topologists at the time this idea was introduced and explored by An-
drei Tikhonov in 1926. (See the biographical footnote for Theorem 2.6.7
below.) Nevertheless, this is the most advantageous definition of the product
topology, the one universally used. The topology where there are no restric-
tions on the number of coordinate spaces is called the box topology, and some
examples are explored in Exercise 3.

We are looking at product spaces, so why did we state and prove Propo-
sition 2.6.2 in a more general setting? Why not proceed with the product
and projection maps? The answer is that defining a topology in terms of a
collection of functions happens repeatedly in mathematics. In this connec-
tion, we call attention to Exercise 2. Also, we will see this subsequently in
§ 3.4.

The proof of part (a) of the next proposition is like that of Proposition
2.3.8, and part (b) is immediate from Corollary 2.6.3.

Proposition 2.6.5. Let {Xi : i ∈ I} be a collection of topological spaces and
give their product X the product topology.

(a) The projection πi onto Xi is an open map.

(b) If Z is a topological space and g : Z → X, then g is continuous if and
only if each πi ◦ g : Z → Xi is continuous for each i in I.

Now we do an about-face from this level of generality and return to metric
spaces and use only a countable number of coordinate spaces.

Theorem 2.6.6. If (Xn, dn) is a metric space for each n ≥ 1 and X =∏∞
n=1Xn, then the product topology on X is metrizable and defined by the

metric

d(x, y) =

∞∑
n=1

1

2n
dn(xn, yn)

1 + dn(xn, yn)
.

Proof. Using Proposition 1.3.13 we see that the formula for d(x, y) does
indeed define a metric onX . Let D denote the topology defined by the metric
d, and let T be the product topology on X ; we must show that T = D.
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If G ∈ T , then the definition of the product topology implies that for
any x = {xn} in G there are n1 < · · · < nN and ε1, . . . , εN > 0 with

N⋂
k=1

π−1
nk

(B(xnk
; εk) ⊆ G.

Choose 0 < ε < 1 such that when 0 ≤ s < 2Nε, then s(1 − s)−1 < εn for
1 ≤ n ≤ N . Thus, when d(x, y) < ε, dn(xn, yn)[1 + dn(xn, yn)]

−1 < 2N ε for
1 ≤ n ≤ N ; by the choice of ε we have that dn(xn, yn) < εn for 1 ≤ n ≤ N .

This implies y ∈
⋂N

k=1 π
−1
nk

(B(xnk
; εk) ⊆ G. That is, B(x; ε) ⊆ G, and hence

we have that G ∈ D.
Now assumeD ∈ D and x = {xn} ∈ D; pick ε > 0 such that B(x; ε) ⊆ D;

choose N ≥ 1 such that
∑∞

n=N+1 2
−n < ε/2. Let δ > 0 such that when

0 ≤ t < δ, t(1 + t)−1 < ε/2. Thus, if y = {yn} ∈ X and dn(xn, yn) < δ for
1 ≤ n ≤ N , then

N∑
n=1

1

2n
dn(xn, yn)

1 + dn(xn, yn)
<

N∑
n=1

1

2n
ε

2
<
ε

2
,

so that d(x, y) < ε. That is,
⋂N

n=1 π
−1
n (B(xn; δ)) ⊆ B(x; ε), and we have that

D ∈ T . �
The preceding theorem has something to say about Exercise 2.1.10.
Now for one of the deeper results on infinite products. It is one that you

will use often if your study of mathematics persists.

Theorem 2.6.7 (Tikhonov’s3 Theorem). If {Xi : i ∈ I} is a collection of
topological spaces and their product X is given the product topology, then X
is compact if and only if each Xi is compact.

Proof. Since each projection map is continuous, it follows that when X is
compact, so are all the coordinate spaces. Now assume each Xi is compact
and that C is an open cover of X by elements of the standard subbase S. By
Alexander’s Theorem, to show that X is compact, it suffices to show that
each such cover has a finite subcover.

Let Ti be the topology on Xi, and for each i let Ci = {G ∈ Ti : π−1
i (G)

∈ C}. It is important for later in the proof that we observe that since each

3Andrei Nikolaevich Tikhonov was born in 1908 in Smolensk, Russia. (His name is often
written Tychonoff.) He entered Moscow State University in 1922 and published his first paper
in 1925 while still an undergraduate. He received his doctorate in 1927 and was appointed to
the faculty of the university in 1933. He first proved the present theorem for the product of an
arbitrary infinity of copies of the unit interval and in 1935 stated the full result with the comment
that the proof was the same as in the special case. In 1936 he received his habilitation for work on
Volterra functional equations and then was made Professor at Moscow State University. Three
years later he became a Corresponding Member of the USSR Academy of Sciences. His work
now concentrated on differential equations and mathematical physics. In 1966 he was awarded
the Lenin Prize and was elected to full membership in the Soviet Academy of Sciences. He
had a long and distinguished career including administrative positions as Dean of the Faculty
of Computing and Cybernetics at Moscow State University and later as Deputy Director of the
Institute of Applied Mathematics of the USSR Academy of Sciences. He died in 1993.
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element of the cover C belongs to the standard subbase S,
2.6.8 C =

⋃
i

{π−1
i (G) : G ∈ Ci}.

Claim. There is at least one i in I such that Ci is a cover of Xi.

In fact, suppose this is not the case. It follows that for every i there is
a point xi that belongs to Xi\

⋃
{G : G ∈ Ci}; let x be the element of X

defined by x(i) = xi for all i. Hence for every i, x /∈ π−1
i (G) for every G in

Ci. But from (2.6.8) it then follows that x /∈
⋃
{C : C ∈ C}. That is, C is not

a cover, a contradiction. Therefore, the claim is established.
Fix an i such that Ci is a cover of Xi. Since Xi is compact, there are

finitely many sets G1, . . . , Gn in Ci such that Xi =
⋃n

k=1 Gk. It follows

that X =
⋃n

k=1 π
−1
i (Gk), and so {π−1

i (G1), . . . , π
−1
i (Gn)} is a finite subcover

of C. �
Now we want to prove that the product of connected spaces is connected.

First we need a lemma.

Lemma 2.6.9. If X is the product of the topological spaces {Xi : i ∈ I} and
a ∈ X, then D = {x ∈ X : x(i) = a(i) for all but a finite number of i} is
dense in X.

Proof. If y ∈ X and G is a neighborhood of y, then the definition of the
product topology says that there are i1, . . . , in in I and open sets Gik in Xik

such that y ∈
⋂n

k=1 π
−1
ik

(Gik ) ⊆ G. If we define x in X by setting x(i) = a(i)
for i �= i1, . . . , in and x(ik) equal to any point in Gik for 1 ≤ k ≤ n, then
x ∈ G ∩D. Therefore, D is dense (Proposition 2.1.9). �
Theorem 2.6.10. If {Xi : i ∈ I} is a collection of topological spaces and
their product X is given the product topology, then X is connected if and only
if each Xi is connected.

Proof. If X is connected, then each Xi is connected since it is the image of
X under the projection map. Now assume that each Xi is connected. Let
f : X → {0, 1} be a continuous function. According to Exercise 2.4.5, it
suffices to show that such a continuous function is constant. So fix a point
a in X and let us show that f(x) = f(a) for all x in X . If k ∈ I, define
gk : Xk → X by letting

gk(y)(i) =

{
y if i = k,

a(i) if i �= k.

We will show that gk is continuous by showing that g−1
k (S) is open in Xk for

every element S of the standard subbasis for the topology on X ; that is, we
will show that for any i in I g−1

k (π−1
i (Ui)) is open in Xk whenever Ui is open

in Xi. (This will call for some mental dexterity, so pay attention.)
To begin, we show that if Uk is open in Xk, then g

−1
k (π−1

k (Uk)) is open

in Xk. Note that x ∈ π−1
k (Uk) if and only if x(k) ∈ Uk. Thus, for y in Xk,
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gk(y) ∈ π−1
k (Uk) if and only if y = gk(y)(k) ∈ Uk. That is, g−1

k (π−1
k (Uk)) =

Uk, which is open. Now assume i �= k and Ui is open in Xi. Here x ∈ π−1
i (Ui)

if and only if x(i) ∈ Ui. For y ∈ Xk, gk(y) ∈ π−1
i (Ui) if and only if a(i) =

gk(y)(i) ∈ Ui. Hence we have that when a(i) ∈ Ui, g
−1
k (π−1

i (Ui)) = Xk; and

when a(i) /∈ Ui, g
−1
k (π−1

i (Ui)) = ∅. Therefore, gk is continuous.
This implies that f◦gk : Xk → {0, 1} is continuous; sinceXk is connected,

this function must be constant. But since gk(a(k)) = a, this means that
f(gk(y)) = f(a) for all y in Xk. Equivalently, for any choice of k in I

2.6.11 f(x) = f(a) whenever x(i) = a(i) for i �= k.

It follows that f is constantly equal to f(a) on D = {x ∈ X : x(i) =
a(i) for all but a finite number of i}. In fact if i1, . . . , in ∈ I, x ∈ X , and
x(i) = a(i) for i �= i1, . . . , in, then by taking k = i1 in (2.6.11) we have that
f(x) = f(a). Since the preceding lemma says D is dense, and since f was
assumed continuous, it must be that f is constant on X . Therefore, X is
connected. �

The statement for pathwise connected spaces analogous to the preceding
proposition is also valid.

Proposition 2.6.12. If {Xi : i ∈ I} is a collection of topological spaces and
their product X is given the product topology, then X is pathwise connected
if and only if each Xi is pathwise connected.

Proof. Assume each Xi is pathwise connected. Let x = {xi} and y = {yi}
be two points in X , and for each i let fi : [0, 1] → Xi be a path from xi to yi.
Define f : [0, 1] → X by f(t) = {fi(t)}. Note that if πi is the projection of X
onto Xi, then pi ◦ f = fi. By Proposition 2.6.5, f is continuous, and clearly
it is a path from x to y. The converse follows by Proposition 2.5.6(b). �

Exercises

(1) Show that if X =
∏

iXi and y = {yi} ∈ X , then for each index j the
map φ : Xj → X defined by

φ(x)i =

{
x when i = j

yi when i �= j

is a homeomorphism of Xj onto φ(Xi).
(2) Let (X, d) be a metric space, and let C(X) be the set of all continuous

functions from X into R. Show that the weak topology defined on X by
the functions in C(X) is the given topology on X defined by the metric.

(3) Let {(Xi, Ti) : i ∈ I} be a collection of topological spaces, and let B be
the topology on X =

∏
iXi with a subbase {

∏
iGi : Gi ∈ Ti}. (This

is called the box topology on X .) (a) Let I = N, and for each n in
N let Xn = R. Give the resulting product space the box topology and
define the function f : R → X by f(x) = (x, x, . . . ). Show that f is not
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continuous, even though πn ◦ f : R → R is continuous for each n. [Hint:
examine f−1

(∏∞
n=1(− 1

n ,
1
n )
)
.] (b) Again let I = N, and for each n in

N let Xn = {0, 1}. Show that the box topology on X is the discrete
topology. Hence X is not compact, even though each coordinate space
is compact.

(4) Find an example of a collection of connected topological spaces such
that the product space with the box topology is not connected.

(5) Let {(Xi, Ti) : i ∈ I} be a collection of topological spaces, and let
X =

∏
iXi have the product topology. Show that X is separable if and

only if I is countable and each Xi is separable.
(6) Let {(Xi, Ti) : i ∈ I} be a collection of topological spaces, and let

X =
∏

iXi have the product topology. If, for each i in I, Ci is a
component of Xi, is C =

∏
i∈I Ci a component of X?

(7) Let {(Xi, Ti) : i ∈ I} be a collection of topological spaces, and let
X =

∏
iXi have the product topology. (a) Show that if X is locally

connected, then each Xi is locally connected. (Hint: Proposition 2.4.19
may be useful.) (b) Show that the converse is false by giving a coun-
terexample. (See Exercise 2.4.7.) (c) If you assume that each Xi is
locally connected, can you give an additional hypothesis that implies
that X is locally connected?

(8) Explore the questions raised in the preceding exercise for local pathwise
connectedness.

2.7. Nets

Now we generalize the notion of a sequence with a concept that works almost
as well for an arbitrary topological space as sequences work for metric spaces.
Two references where the reader will find all this material and more are [6]
and [4]. Recall the definition of a partially ordered set given in §A.4.
Definition 2.7.1. A directed set is a partially ordered set I with the property
that if i, j ∈ I, then there is a k in I with i, j ≤ k.

Example 2.7.2. (a) N is a directed set.
(b) The set Z of all integers is a directed set.
(c) Let E be any set and order 2E by inclusion. That is, if A,B ∈ 2E, then

A ≤ B means A ⊆ B. It follows that 2E is a directed set.
(d) Again, if E is any set, F is the collection of all finite subsets of E, and

F is ordered by inclusion, then F is a directed set.
(e) Let X be a topological space, and for some x0 in X let U denote the

collection of all neighborhoods of x0. It is easy to see that U is a directed
set under reverse inclusion; that is, if U, V ∈ U , declare U ≥ V to mean
that U ⊆ V .

Let us mention something that is immediate from the definition of a
directed set and that will be used often: if I is directed and i1, . . . , in ∈ I,
then there is an i in I with i ≥ i1, . . . , in. (Verify!)
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Definition 2.7.3. A net in a set X is a pair (x, I), where I is a directed set
and x is a function from I into X .

We will often (usually) write the net as {xi : i ∈ I} or {xi} if the directed
set I is understood; the function notation {x(i) : i ∈ I} will seldom be used
to denote a net. Note that every sequence is a net.

Example 2.7.4. (a) Let 2E be the directed set from Example 2.7.2(c), and
for each A ∈ 2E pick a point xA in A. Then {xA} is a net.

(b) Again let E be a set, and let F be the collection of all nonempty finite
subsets of E as in Example 2.7.2(d). If xF ∈ F for each F in F , then
{xF } is a net.

(c) If E is any set, F is as in Example 2.7.2(d), and f : E → R is a function,
then {

∑
e∈F f(e) : F ∈ F} is a net. Technically we define x : F → F by

x(F ) =
∑

e∈F f(e), and (x,F) is a net.
(d) If we consider Example 2.7.2(e) and for each U in U pick a point xU in

U , then {xU : U ∈ U} is a net.

Definition 2.7.5. If {xi} is a net in a topological space X , say that the net
converges to x, in symbols xi → x or x = limi xi, if for every open set G
containing x there is an i0 in I such that xi ∈ G for all i ≥ i0. Say that {xi}
clusters at x, in symbols xi →cl x, if for every open set G containing x and
for every j in I there is an i ≥ j with xi in G.

It is easy to see that if we have a sequence, then this definition of con-
vergence is the same as the concept of a convergent sequence (Exercise 1).
Similarly, a sequence clusters at a point x in this sense if and only if it clusters
in the sense of sequences (Exercise 1).

Example 2.7.6. The net {xU} defined in Example 2.7.4(d) converges to x0.

The proof of the next proposition is straightforward (Exercise 2) and a
good opportunity to fix the ideas in your mind.

Proposition 2.7.7. (a) If a net in a topological spaces converges to x, then
it clusters at x.

(b) A net can converge to only one point.

Here is one way to define a subnet that extends the idea of a subsequence.
If I is a directed set, say that a subset J is cofinal if for every i in I there
is a j in J with j ≥ i. It is easily shown that when J is a cofinal subset,
then it too is a directed set. So if we have a net x : I → X , then we could
define a subnet to be the restriction of x to some cofinal subset. However,
this is NOT the definition of a subnet. The more complicated notion of a
subnet is formulated in such a way that various results about sequences and
subsequences in a metric space can be extended to nets and subnets in a
topological space. For example: if a net clusters at x, then it has a subnet
that converges to x; a topological space X is compact if and only if every net
in X has a convergent subnet.
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The interested reader can consult [4] and [6] for the accepted definition
of a subnet. We will not use subnets in this book. I have found that I can
usually avoid them and have decided to live my life that way. I am not saying
that all the readers should follow my example, but for this introduction we
will follow the path of least resistance.

Proposition 2.7.8. Let X and Z be topological spaces.

(a) If f : X → Z and x ∈ X, then f is continuous at x if and only if whenever
xi → x in X, f(xi) → f(x) in Z.

(b) If f : X → Z is continuous at x and xi →cl x, then f(xi) →cl f(x).

(c) A subset F of X is closed if and only if whenever we have a net {xi} of
points in F that converges to a point x, we have that x ∈ F .

Proof. (a) Suppose f is continuous at x and xi → x. If W is a neigh-
borhood of f(x) in Z, then there is a neighborhood G of x with G ⊆
f−1(W ). Thus, there is an i0 such that xi ∈ G for all i ≥ i0; this says
that f(xi) ∈ f(G) ⊆ W for all i ≥ i0. Since W was arbitrary, this
implies f(xi) → f(x).

Now assume the stated condition is satisfied, and let us show f is
continuous at x. We must show that for every neighborhood W of f(x)
there is a neighborhood G of x with G ⊆ f−1(W ). Suppose this is not
the case. Then there is a neighborhood W of f(x) such that if Tx is the
set of neighborhoods of x in X , then G\f−1(W ) �= ∅ for every G in Tx;
for each G in Tx let xG ∈ G\f−1(W ). Now Tx is a directed set under
inclusion (Verify!), and we have that xG → x, as in Example 2.7.6.
However, {f(xG) : G ∈ Tx} does not converge to f(x) (Why?), giving
the desired contradiction.

(b) The proof of this is similar to the first part of the proof of (a) and is
Exercise 3.

(c) Assume F is closed, {xi} is a net in F , and xi → x. If G is a neigh-
borhood of x, then there is an i0 such that xi ∈ G for i ≥ i0. This says
that G ∩ F �= ∅ for every neighborhood G of x, hence x ∈ clF = F .
Now assume the stated condition holds and x ∈ clF . Let Tx be the set
of all neighborhoods of x and order it by inclusion. Since x ∈ clF , for
every G in Tx there is a point xG in G ∩ F . But {xG : G ∈ Tx} is a net
that converges to x, so x ∈ F by assumption. Thus clF ⊆ F , and F is
closed.

�
Also see Exercise 4 for an extension of part (c) of the preceding proposi-

tion. The plot thickens.

Theorem 2.7.9. A topological space X is compact if and only if every net
in X has a cluster point.

Proof. Suppose X is compact and {xi} is a net in X . For every j in I let
Fj be the closure of {xi : i ≥ j}. If j1, . . . , jn ∈ I, then there is an i ≥ jk
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for 1 ≤ k ≤ n; hence xi ∈
⋂n

k=1 Fjk . So {Fi : i ∈ I} has the FIP; since X is
compact, there is an x in

⋂
i Fi. If G is an open set containing x and i0 ∈ I,

then x ∈ Fi0 , so that G ∩ {xi : i ≥ i0} �= ∅. That is, there is an i ≥ i0 with
xi ∈ G. By definition, this says that xi →cl x.

Now assume X is not compact, and let G be an open cover of X without
a finite subcover. Let I be the set of all finite subsets of G and order I by
inclusion as in Example 2.7.2(d). By assumption, for every i = {G1, . . . , Gn}
in I there is a point xi in X such that xi /∈

⋃n
k=1 Gk; {xi} is a net in X .

This net does not have a cluster point. In fact, if there is a cluster point
x, then there is a G in G that contains x. But {G} ∈ I, and so there is an
i = {G,G1, . . . , Gn} ≥ {G} with xi ∈ G. But by definition, xi /∈ G∪

⋃n
k=1Gk,

a contradiction. �

The next theorem is very useful.

Theorem 2.7.10. If X is a compact space and {xi : i ∈ I} is a net in X
with a unique cluster point x, then {xi} converges to x.

Proof. Fix a proper open set G containing x. If it were the case that the
net did not converge to x, then for every i0 in I, there would be an i in I
with i ≥ i0 and xi in X\G. This says that J = {j ∈ I : xj ∈ X\G} �= ∅. In
fact, this also says that J is directed. Indeed, if j1, j2 ∈ J , let i0 ∈ I such
that i0 ≥ j1, j2. By what we have said, there is a j in J with j ≥ i0 ≥ j1, j2.
Thus, {xj : j ∈ J} is a net in X\G. Since X\G is compact, there is a y in
X\G such that {xj : j ∈ J} →cl y. The reader can check that this implies
that y is also a cluster point of the original net. Since y �= x, we have a
contradiction. �

Exercises

(1) Show that if {xn} is a sequence in a topological space, then xn → x as
a sequence if and only if xn → x as a net. Show that xn →cl x if and
only if x is a limit point of {x1, x2, . . . }.

(2) Prove Proposition 2.7.7.
(3) Prove Proposition 2.7.8(b). Is the converse true?
(4) Show that a subset F of X is closed if and only if whenever {xi} is a

net in F and x is a cluster point of this net, it follows that x ∈ F .
(5) If (X, d) is a metric space, {xi} is a net in X , and x is a cluster point of

this net, show that there are {in : n ≥ 1} such that i1 ≤ i2 ≤ · · · and
x = limn xin .

(6) Let S be a subbase for the topology on X . (a) Show that a net {xi}
in X converges to x if and only if for every S in S that contains x,
there is an i0 such that xi ∈ S for all i ≥ i0. (b) Find an example of a
topological space X , a subbase S for the topology of X , a net {xi} in
X , and a point x such that for each S in S that contains x and each i
there is a j ≥ i such that xj ∈ S, but the net {xi} does not cluster at x.
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(7) Let {Xα : α ∈ A} be a family of topological spaces, let X =
∏

αX
α, let

{xi : i ∈ I} be a net in X with each xi = {xαi }, and let x = {xα} ∈ X .
(a) Show that xi → x if and only if xαi → xα for each α in A. (b) Find
an example of a sequence {xn} in R

2 with xn = (x1
n, x

2
n) and a point

x = (x1, x2) such that x1
n →cl x

1 and x2
n →cl x

2 but {xn} does not
cluster at x.

(8) Find an example of a net in a topological space X that has a unique
cluster point but that does not converge. See Theorem 2.7.10.

2.8. Quotient Spaces

We begin this section by examining the concept of an equivalence relation on a
set, which is the starting point for discussing quotient spaces. I suspect some
readers, perhaps many, have already encountered quotient spaces, though
maybe not in their abstract formulation. Quotient spaces are frequently
covered in a first course in linear algebra, for example. Nevertheless, this
concept often causes students difficulty, so let us take the time to present it
carefully.

Definition 2.8.1. An equivalence relation on a set X is a relation ∼ between
elements of X that satisfies the following properties: (reflexivity) x ∼ x for
all x in X ; (symmetry) if x ∼ y, then y ∼ x; (transitivity) if x ∼ y and y ∼ z,
then x ∼ z.

By the way, if you want a formal definition of a relation, it is just a subset
E of the cartesian product X×X , and we write x ∼ y when (x, y) ∈ E. When
we have an equivalence relation, this imposes additional restrictions on the
set E. As we progress through examples, you and a classmate, perhaps over
a cup of coffee or a nice glass of Merlot, might ask what is a necessary and
sufficient condition on a subset E of the product space for the corresponding
relation to be an equivalence relation. In this book, we will use the definition
of an equivalence relation given previously and avoid discussing the subset E
of X ×X .

Example 2.8.2. (a) Equality is an equivalence relation.
(b) If X is a vector space over R, M is a vector subspace, and we define

x ∼ y to mean that x− y ∈ M, then ∼ is an equivalence relation.
(c) (Assuming you know the definition of a group) If G is a group, H is a

subgroup, and we define x ∼ y to mean that xy−1 ∈ H , then this is an
equivalence relation.

(d) If X and Z are two sets, f : X → Z, and we define x ∼ y to mean that
f(x) = f(y), then this is an equivalence relation.

(e) Let X be a set, and let A ⊆ X . Define ∼ as follows: (i) if x, y ∈ A,
x ∼ y; (ii) if x /∈ A, then the only point y such that y ∼ x is y = x.

A partition of a set X is a collection P of nonempty subsets of X such
that P ∩R = ∅ for distinct elements P and R of P and

⋃
{P : P ∈ P} = X .

The proof of the next proposition is Exercise 3.
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Proposition 2.8.3. If X is a set with an equivalence relation and for each
x in X we let Px = {y ∈ X : x ∼ y}, then the collection {Px : x ∈ X} is
a partition of X. Conversely, if P is a partition of X and we define x ∼ y
to mean that there is a P in P such that x, y ∈ P , then ∼ is an equivalence
relation on X.

So this gives us another method of defining an equivalence relation—
just specify a partition. We will often talk of an equivalence relation and its
associated or corresponding partition, or we will talk about a partition and
its corresponding equivalence relation. For an equivalence relation on a set,
the sets in the corresponding partition are called the equivalence classes of
the relation.

Definition 2.8.4. When ∼ is an equivalence relation on X , we define the
quotient space X/∼ to be the collection of equivalence classes. If the equiva-
lence relation is defined by a partition P , we might denote the quotient space
by X/P . The map q : X → X/∼ defined by letting q(x) be the equivalence
class that contains x is called the quotient map or the natural map.

Note that if ξ ∈ X/∼, then q−1(ξ) is the set {x ∈ X : x ∈ ξ}. Actually,
this is just the set ξ, but viewed as a subset of X rather that an element
of the quotient space. So if we consider the equivalence relation defined in
Example 2.8.2(b), when x ∈ X , we have that q(x) = x+M.

Now let us look at what happens when we have an equivalence relation
on a topological space. Unfortunately, it is not a pretty picture. We will
define a topology on the quotient space, except that it will not always satisfy
the Hausdorff property. There are some abstract conditions under which this
topology is Hausdorff, though I have never had to resort to them to prove a
quotient space Hausdorff—the quotient spaces I have encountered are usually
clearly Hausdorff or clearly they are not. There are two points worth making
about this. First, many quotient spaces are Hausdorff, and it is not so difficult
to verify this. (See Example 3.1.7 in the next chapter. Also, Exercise 3.1.7
gives an example of a quotient space that is not Hausdorff.) Second, even
when the quotient space is Hausdorff, it may not inherit other topological
properties possessed by X .

The proof of the following basic result is straightforward (Exercise 5).

Proposition 2.8.5. Let X be a topological space with an equivalence rela-
tion ∼. If q : X → X/∼ is the quotient map, then U = {U ⊆ X/∼ :
q−1(U) is open in X} is a possibly non-Hausdorff topology on X/∼ and q
becomes a continuous mapping.

The topology U defined in the preceding proposition is called the quo-
tient topology on X/∼. Whenever X is a topological space and we have an
equivalence relation on X , it will always be assumed that when we discuss
topological ideas on the quotient space we are discussing the quotient topol-
ogy. Note that because the quotient map is continuous, it follows that when
X is either compact or connected, so is X/∼.
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Example 2.8.6. (a) Let X be the closed unit square in the plane: X =
[0, 1] × [0, 1]. Define an equivalence relation ∼ on X by identifying
the two vertical sides. Precisely, (0, y) ∼ (1, y) for 0 ≤ y ≤ 1, while
the remaining points are identified only with themselves. The quotient
space X/∼ is homeomorphic to a closed hollow cylinder in R

3.
(b) Let X be as in part (a), but define the equivalence relation ∼ by identi-

fying the two vertical sides and by identifying the two horizontal sides.
Precisely, (i) define (0, y) ∼ (1, y) for 0 ≤ y ≤ 1; (ii) define (x, 0) ∼ (x, 1)
for 0 ≤ x ≤ 1; (iii) apply the transitive law to these relations to get
(x, y) ∼ (w, z) when x, y, w, z ∈ {0, 1}; (iv) the remaining points are
identified only with themselves. Show that the quotient space X/∼ is
homeomorphic to the hollow torus (or doughnut) in R

3.

Proposition 2.8.7. If X and Z are topological spaces, ∼ is an equivalence
relation on X with quotient map q : X → X/∼, and f : X/∼ → Z, then f
is continuous if and only if f ◦ q : X → Z is continuous.

Proof. If f is continuous, then f ◦ q is the composition of two continuous
maps and so must be continuous. If f ◦ q is continuous and V is an open
subset of Z, then q−1[f−1(V )] = (f ◦ q)−1(V ) and is therefore open in X . By
definition, this implies f−1(V ) is open in X/∼. Therefore, f is continuous.

�

As we proceed through the rest of the book and encounter new properties
of a topological space, we will address the issue of whether these properties
are preserved by taking quotients.

Exercises

(1) Verify that each of the relations in Example 2.8.2 is an equivalence
relation.

(2) For each of the equivalence relations in Example 2.8.2 describe the cor-
responding partition of the underlying set X as in Proposition 2.8.3.

(3) Prove Proposition 2.8.3.
(4) For each equivalence relation in Example 2.8.2, describe the correspond-

ing partition, the quotient space, and the natural map.
(5) Prove Proposition 2.8.5.
(6) Let X be a topological space with an equivalence relation ∼ such that

X/∼ is a Hausdorff space. If X is locally connected, show that X/∼ is
locally connected.

(7) Define a semimetric on a set X to be a function ρ : X × X → [0,∞)
satisfying the following conditions for all x, y, z in X : (i) ρ(x, x) = 0;
(ii) ρ(x, y) = ρ(y, x); (iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y). If ρ is a given
semimetric on X , define an equivalence relation on X by x ∼ y when
ρ(x, y) = 0. (a) Verify that this is an equivalence relation, and describe
the equivalence classes. (b) If q : X → X/∼ is the natural map, show
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that d(q(x), q(y)) = ρ(x, y) is a well-defined metric on X/∼. (c) Show
that the metric defined in (b) defines the quotient topology on X/∼.

(8) If X is a pathwise connected space and ∼ is an equivalence relation on
X such that X/∼ is Hausdorff, show that X/∼ is pathwise connected.

(9) (a) Prove the statement in Example 2.8.6(a). (b) Prove the statement in
Example 2.8.6(b). (c) What happens in Example 2.8.6 if all the points
on the boundary of X are identified to a single point?



Chapter 3

Continuous Real-Valued
Functions

In this chapter we will focus on continuous functions from a topological space
into the space of real numbers, R. We have already seen some such results in
§ 2.3, but in this chapter we will extend the exposure and deepen the probing.

3.1. Convergence of Functions

We want to start thinking of functions as points in a topological space. For
any topological space X let C(X) denote the vector space of all continuous
functions from X into R. [Recall Proposition 2.3.3, where it is shown that
C(X) is closed under sums and products. So C(X) is not only a vector space
but also an algebra. We also refer the reader to Exercise 1.3.13.] A function
f : X → R is said to be bounded if there is a constantM with |f(x)| ≤M for
all x in X . Let Cb(X) denote the space of all bounded continuous functions
from X into R. It is easy to check that Cb(X) is also closed under forming
sums and products so that it too is an algebra. Of course, whenX is compact,
C(X) = Cb(X).

The constant functions belong to C(X), but are there any nonconstant
functions? That is a problem, and in subsequent sections we will address this
question and obtain satisfactory answers. For now suffice it to say that when
X is a metric space, we know from Urysohn’s Lemma (Theorem 1.3.9) that
Cb(X) has a rich supply of continuous functions.

If f, g ∈ Cb(X), define

3.1.1 ρ(f, g) = sup{|f(x)− g(x)| : x ∈ X}.

J.B. Conway, A Course in Point Set Topology, Undergraduate Texts
in Mathematics, DOI 10.1007/978-3-319-02368-7 3,
© Springer International Publishing Switzerland 2014
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Proposition 3.1.2. The function defined on Cb(X)×Cb(X) in (3.1.1) is a
metric on Cb(X).

Proof. If f, g, h ∈ Cb(X) and x ∈ X , then |f(x) − g(x)| ≤ |f(x) − h(x)| +
|h(x) − g(x)|. Hence ρ(f, g) ≤ sup{|f(x) − h(x)| + |h(x) − g(x)| : x ∈ X} ≤
sup{|f(x) − h(x)|;x ∈ X} + sup{|h(x) − g(x)| : x ∈ X} = ρ(f, h) + ρ(h, g).
This establishes the triangle inequality. The proof that the other properties
of a metric hold is routine. �

Whenever we discuss the topological properties of Cb(X), it is assumed we
are discussing the topology defined by this metric. The preceding proposition
is the reason we made the statement earlier that the reader should start
thinking of functions in Cb(X) as points; they are indeed points in a metric
space. Also, see Exercise 8, where a topology is defined on C(X) when X is
not assumed to be compact.

Definition 3.1.3. If {fn} and f are bounded functions from a set X into
R, then say that {fn} converges uniformly to f if for every ε > 0 there is an
N such that |fn(x) − f(x)| < ε for all x in X and all n ≥ N . Say that {fn}
is a uniformly Cauchy sequence if for every ε > 0 there is an integer N such
that |fn(x)− fm(x)| < ε for all x in X and all m,n ≥ N .

This notion is possibly introduced in basic courses on calculus when the
functions are defined on a subset of the real line. In any case, we have the
following proposition.

Proposition 3.1.4. Let X be a topological space, and let {fn} be a sequence
in Cb(X). If f ∈ Cb(X), then {fn} converges to f in the metric of Cb(X) if
and only if the sequence converges uniformly to f . The sequence {fn} is a
Cauchy sequence in the metric space Cb(X) if and only if it is a uniformly
Cauchy sequence.

Proof. The proof is straightforward. If ρ(fn, f) → 0 and ε > 0, then there
is an N with ρ(fn, f) < ε for n ≥ N . By the definition of the metric, this
implies |fn(x)−f(x)| < ε for n ≥ N for all x in X ; that is, fn → f uniformly
on X . Now assume we have uniform convergence, ε > 0 is given, and N is
as in the definition. Formula 3.1.1 implies ρ(fn, f) ≤ ε for n ≥ N , and so
fn → f in Cb(X).

The proof regarding Cauchy sequences is similar to the last paragraph
and is left to the reader. �
Theorem 3.1.5. For any topological space X, Cb(X) is a complete metric
space.

Proof. Let {fn} be a Cauchy sequence in Cb(X). The definition of the
metric implies that for each x in X , |fn(x)− fm(x)| ≤ ρ(fn, fm). Therefore,
for each x in X , {fn(x)} is a Cauchy sequence in R; define f(x) = limn fn(x).
The task now is to show that f ∈ Cb(X) and ρ(fn, f) → 0. Pay heed to the
argument used here because similar arguments occur frequently.
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The fact that f : X → R is a bounded function is the easiest part. Let
n ≥ 1 such that ρ(fn, fm) < 1 for m,n ≥ N . Since each of the functions
f1, . . . , fN is bounded , there is one constant M such that |fk(x)| ≤ M for
1 ≤ k ≤ N and all x in X . If n > N and x ∈ X , then |fn(x)| ≤ ρ(fn, fN ) +
|fN(x)| < 1+M . Hence for each x the sequence {fn(x)} ⊆ [−(M+1),M+1],
and so |f(x)| ≤M + 1; that is, f is a bounded function.

Once again, fix an ε > 0, and now let N be such that ρ(fn, fm) < ε/3 for
allm,n ≥ N . If x is an arbitrary point in X and n ≥ N , then |f(x)−fn(x)| ≤
|f(x) − fm(x)| + ρ(fm, fn) < |f(x) − fm(x)| + ε/3 for all m ≥ N . Letting
m → ∞, we get that |f(x) − fn(x)| ≤ ε/3 for all n ≥ N and an arbitrary x.
Thus, sup{|f(x) − fn(x)| : x ∈ X} ≤ ε/3 for all n ≥ N . Note that once we
establish that f is continuous, this shows that ρ(fn, f) → 0.

To show that f is a continuous function, we continue the notation from
the preceding paragraph. Fix x and fix n ≥ N . Since fn is continuous, there
is a neighborhood G of x such that |fn(y)−fn(x)| < ε/3 for all y in G. Hence,
when y ∈ G, |f(y)−f(x)| ≤ |f(y)−fn(y)|+|fn(y)−fn(x)|+|fn(x)−f(x)| < ε.
Therefore, f ∈ Cb(X); as we mentioned before, this shows that fn → f in
the metric space Cb(X), and Cb(X) is complete. �

Recall the ordering of the functions in Cb(X). I have always found the
next result intriguing; on the other hand, I have never used it. See Exercise 6.

Proposition 3.1.6 (Dini’s1 Theorem). If X is compact, {fn} is an increas-
ing sequence in C(X), and f ∈ C(X) such that fn(x) → f(x) for all x in X,
then fn → f uniformly on X.

Proof. Let ε > 0, and for each n ≥ 1 let Un = {x ∈ X : f(x) < fn(x) + ε}.
Because the functions fn are increasing with n, it follows that Un ⊆ Un+1

for all n ≥ 1. Since fn(x) → f(x) for every x in X , we have that X =⋃∞
n=1 Un. Finally, since both f and fn are continuous, each Un is open.

Because X is compact, the open cover {Un} has a finite subcover; by the
increasing property of these sets, this means there is a single integer N such

1Ulisse Dini was born in 1845 in Pisa, Italy, where he attended the Scuola Normale Superiore,
a teaching preparatory college. In 1865 he won a scholarship for study abroad, which he used
to go to Paris for a year. During this time he was very active in research, eventually publishing
seven papers based on the work he had done. He returned to Pisa and an academic position
at the university. Dini’s life span was a period of myriad political developments in Italy as
the country worked its way toward unification. This is not a period for the casual historian.
In 1859 there was a war with Austria, and in 1861 the Kingdom of Italy was formed, though
it did not include Venice and Rome. It was not until 1866 that Venice became part of the
kingdom, and Rome had to wait until 1870. The turmoil affected Dini, and he progressed in
both his academic and political careers. In 1871 he took over Betti’s chair of analysis, and
that same year he was elected to the Pisa city council. In 1877 he was appointed to a second
chair in mathematics, and in 1880 he was elected as a representative of Pisa to the national
assembly. In 1883 he was appointed Rector of the university, holding the position for 2 years.
In 1892 he was elected Senator in the Italian parliament, and in 1908 he became Director of
the Scuola Normale Superiore, a position he held for the rest of his life. This was a period
of development in mathematical analysis when the turmoil seemed to be trying to parody the
events in Italy; mathematicians sought rigorous proofs of results that had only casually been
established, and they sought the boundaries of validity for these results. Dini seemed to flourish
in this undertaking; in addition to the present result, there is one in Fourier series that bears
his name. He also wrote several influential texts. He died in 1918 in Pisa.
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that UN =X . Thus, for n ≥ N , Un ⊆ UN , and we have fn(x) ≤ f(x) <
fn(x) + ε. By definition, fn → f uniformly. �

Let us look at an example that illustrates an instance where we have a
Hausdorff quotient space.

Example 3.1.7. Let X be a topological space, and assume F is a closed
subset. Consider Cb(X), and let M = {f ∈ Cb(X) : f(x) = 0 for all x ∈ F}.
Note that M is a linear subspace of the vector space Cb(X) and that it is a
closed subset of the metric space Cb(X). (Verify!) We define an equivalence
relation on Cb(X) by f ∼ g when f−g ∈ M and denote the quotient space by
Cb(X)/M. Because of the vector space structure, this is precisely the vector
space quotient from linear algebra. So Cb(X)/M = {f + M : f ∈ Cb(X)}
and f + M = g + M if and only if f − g ∈ M; equivalently, if and only
if f(x) = g(x) for all x in F . We want to show that Cb(X)/M is Hausdorff.
To do this, we first show that q : Cb(X) → Cb(X)/M is an open mapping.

If Ω is any subset in Cb(X), then we claim that

q−1[q(Ω)] = Ω +M = {h+ f : h ∈ Ω and f ∈ M}.
In fact, if g ∈ q−1[q(Ω)], then q(g) ∈ q(Ω), which means that there is an h
in Ω such that g − h ∈ M; that is, g ∈ h + M ⊆ Ω + M. Conversely, if
g = h+ f with h in Ω and f in M, then q(g) = q(h), so that g ∈ q−1[q(Ω)],
and we have that q−1[q(Ω)] = Ω +M.

Therefore, if Ω is an open subset of Cb(X), then q−1[q(Ω)] =
⋃
{Ω + f :

f ∈ M}; since this is the union of open sets, q(Ω) is open.
Now suppose f +M �= g +M. Thus, there is a point x in F such that

f(x) �= g(x); without loss of generality we may assume that f(x) < g(x).
Pick any real number a satisfying f(x) < a < g(x) and define Ω = {u ∈
Cb(X) : u(x) < a},Λ = {v ∈ Cb(X) : v(x) > a}. It is left to the reader to
show that Ω and Λ are open subsets of Cb(X) with f in Ω and g in Λ. So
q(Ω) and q(Λ) are open subsets of Cb(X)/M. If h+M ∈ q(Ω) ∩ q(Λ), then
there must be functions u in Ω and v in Λ such that h−u, h− v ∈ M. Thus,
h(x) = u(x) < a and h(x) = v(x) > a, a contradiction. Hence q(Ω) and
q(Λ) are disjoint open sets that separate f +M and g +M. Therefore, the
quotient space is Hausdorff.

Exercises

(1) Show that Cb(N) can be identified with the space �∞, which was examined
in Exercises 1.1.12, 1.2.11, and 1.4.11.

(2) Say that a series
∑∞

n=1 fn of functions fn in Cb(X) converges to f if the
sequence of finite sums {

∑n
k=1 fk}n converges in the metric of Cb(X) to

f . Prove the Weierstrass M -test: if {fn} is a sequence in Cb(X) such
that there are constants {Mn} with |fn(x)| ≤ Mn for all n ≥ 1 and∑∞

n=1Mn <∞, then there is a function f in Cb(X) such that the infinite
series

∑∞
n=1 fn converges to f .
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(3) If (X, d) is a noncompact metric space, show that there is an unbounded
continuous function from X into R.

(4) If (X, d) is a metric space and Cu(X) denotes the set of all bounded
uniformly continuous functions from X into R, show that Cu(X) is a
closed subset of Cb(X).

(5) Consider Cb(X) and define the usual order on it: f ≤ g means f(x) ≤
g(x) for all x in X . Give (Cb(X),≤) the order topology (Exercise 2.2.5).
(a) Show that the order topology on Cb(X) is a Hausdorff topology. (b)
How does the order topology compare to the topology defined by the
metric?

(6) Give an example of a sequence {fn} in C([0, 1]) such that fn(x) → 0 for
every x in [0, 1], but where {fn} does not converge uniformly on [0, 1].
Note that this does not contradict Dini’s Theorem.

(7) Here is an abstraction of part of Example 3.1.7. Let X be a vector space
over R that has a topology such that: (i) the map (x, y) �→ x + y is
continuous from X × X → X ; (ii) the map (a, x) �→ ax is continuous
from R× X → X . (Such a space X is called a topological vector space.)
(a) If y ∈ X , show that the map of X into itself defined by x �→ x + y
is a homeomorphism. Let M be a vector subspace of X , and consider
the quotient subspace X/M with quotient map q : X → X/M. (b)
Show that the quotient map is an open mapping. (c) Show that X/M is
Hausdorff if and only if, when x /∈ M, there are disjoint open sets U and
V in X/M such that M = q(0) ∈ U and x +M = q(x) ∈ V . (d) Show
that if M is not a closed subset of X , then X/M cannot be Hausdorff.
(e) If we take X = Cb(N) andM = {f ∈ Cb(N) : there is an integer N ≥
2 with f(n) = 0 for n ≤ N}, show that M is a linear subspace of X . Is
X/M Hausdorff?

(8) Let X and Z be topological spaces, and denote by C(X,Z) the set of all
continuous functions from X into Z. When K is a compact subset of X
and G is an open subset of Z, let

Ω(K,G) = {h ∈ C(X,Z) : h(K) ⊆ G}.
(a) Show that the collection of all such sets Ω(K,G) is a subbase for a
topology on C(X,Z). This topology is called the compact-open topology,
denoted by (co). (b) If the space X consists of a single point x0, show
that there is a homeomorphism between Z and the space C({x0}, Z)
with (co). (c) Show that C([0, 1], [0, 1]) with (co) is not a compact space.
(Hint: examine the sequence {tn} in C([0, 1], [0, 1]).) (d) Let Y = R so
that C(X,Y ) = C(X). For each f in C(X), each compact subset K of
X , and each ε > 0, let

SK,ε(f) = {g ∈ C(X) : sup{(f(x)− g(x)| : x ∈ K} < ε} .
Show that the collection of all the sets SK,ε(f) is a subbase for the (co) on
C(X). (e) If X is a compact space, show that the (co) topology C(X) is
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the same as the topology defined by the metric ρ given at the start of this
section. (f) Show that a net {fi} in C(X) converges in (co) to f if and
only if for every compact subset K of X , fi(x) → f(x) uniformly on K.

3.2. Separation Properties

Here we begin to explore various ways of separating disjoint closed subsets of
a topological space by disjoint open sets as well as by functions in C(X). In a
sense, we incorporated one such separation into the definition of a topological
space when we assumed all spaces had the Hausdorff property, which says
that singleton sets can be separated. In this section, we introduce two levels
of separation, and in the next section we will take separation to a further
level.

Definition 3.2.1. A topological space X is regular if for every closed set F
and any point x not belonging to F there are disjoint open sets U and V
such that x ∈ U and F ⊆ V .

We are not that interested in regular spaces, though we will prove some
results about them below. Suffice it to say that there are topological spaces
that are not regular (Exercise 1), but they tend to be pathological.

Proposition 3.2.2. If X is a topological space, then the following statements
are equivalent.

(a) X is regular.
(b) If G is an open set and x ∈ G, then there is an open set U such that

x ∈ U ⊆ clU ⊆ G.
(c) If F is a closed set and x /∈ F , then there is an open set V such that

F ⊆ V and x /∈ clV .

Proof. Assume (a). If G and x are as in the statement of (b), then F = X\G
is closed and x /∈ F . If U and V are disjoint open sets such that x ∈ U and
F ⊆ V , then clU ⊆ X\V ⊆ X\F = G. Now assume (b) holds and x and F
are as in (c). Apply (b) with G = X\F to obtain an open set U such that
x ∈ U ⊆ clU ⊆ X\F . Put V = X\clU . It follows that V ⊆ X\U , so that
clV ⊆ X\U ; in particular, x /∈ clV . Now assume (c). If F is closed and
x /∈ F , then (c) implies the existence of an open set V as stated there. Thus,
U = X\clV is open, x ∈ U , and U ∩ V = ∅. Thus, X is regular. �

Proposition 3.2.3. (a) If X is regular and E ⊆ X, then E with its relative
topology is regular.

(b) If X =
∏

iXi, then X is regular if and only if and each Xi is regular.

Proof. (a) The proof of this part is Exercise 2.
(b) Assume each Xi is regular. If G is an open set in X and x ∈ G, then

the definition of the topology on X there are indices i1, . . . , in and open
sets Vik in Xik such that x ∈

⋂n
k=1 p

−1
ik

(Vik ) ⊆ G. Since each Xik is
regular, Proposition 3.2.2 implies there is an open subset Uik inXik with
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pik(x) ∈ Uik ⊆ clUik ⊆ Vik . Thus, x ∈ U =
⋂n

k=1 p
−1
ik

(Uik) ⊆ clU ⊆⋂n
k=1 p

−1
ik

(clUik) ⊆
⋂n

k=1 p
−1
ik

(Vik) ⊆ G. By the preceding proposition
X is regular.
The proof of the converse is Exercise 7. �

Proposition 3.2.4. Every compact space and every metric space is regular.

Proof. Assume X is compact, F is a closed subset of X , and x ∈ X\F . For
each y in F let Uy and Vy be disjoint open sets in X such that x ∈ Uy and
y ∈ Vy. It follows that {Vy : y ∈ F} is an open cover of F . Since F is compact,
there are y1, . . . , yn in Y such that F ⊆

⋃n
k=1 Vyk

. Put V =
⋃n

k=1 Vyk
and

U =
⋂n

k=1 Uyk
. It follows that U and V are disjoint open sets with x in U

and F contained in V .
Now assume we have a metric space (X, d). If F is closed and x /∈ F , then

F and {x} are disjoint closed sets. By Urysohn’s Lemma (Theorem 1.3.9)
there is a continuous function f : X → [0, 1] with f(x) = 1 and f(y) = 0 for
every y in F . Hence U = {y : f(y) > 1

2} and V = {y : f(y) < 1
2} are disjoint

open sets that separate x from F . �

The proof just given, that metric spaces are regular, anticipates the next
level of separation.

Definition 3.2.5. A topological space X is completely regular if for any
closed subset F and any point x in X\F there is a continuous function f :
X → R such that f(x) = 1 and f(y) = 0 for all points y in F .

Clearly, every completely regular space is regular, as shown by the argu-
ment used to prove that a metric space is regular. Constructing an example
of a regular space that is not completely regular takes some work. We will
not do this because such spaces are atypical of the kind most mathematicians
will encounter, but the interested reader can see [9] or Example 3 on page 154
of [4].

Many define a space to be completely regular if there is a continuous
functionh : X → [0, 1] such that h(x) = 1 and h(y) = 0 for all y in F . This
is equivalent to the definition. In fact, suppose that f : X → R is as in the
preceding definition. If we put g = f ∨ 0 and then h = g ∧ 1, we see that
h : X → [0, 1] is a continuous function (Proposition 2.3.11) with the required
properties. Let us record this.

Proposition 3.2.6. A topological space X is completely regular if and only
if for any closed subset F and any point x in X\F there is a continuous
function f : X → [0, 1] such that f(x) = 1 and f(y) = 0 for all y in F .

Example 3.2.7. (a) If X is a topological space such that for every closed
set F and every point x in X\F there is a function g : X → R such
that g(y) = 0 for all y in F and g(x) �= 0, then X is completely regular.
In fact, if such a function exists, then f(y) = g(x)−1g(y) shows that X
satisfies the definition of completely regular.
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(b) Every metric space (X, d) is completely regular. This follows from (a)
since g(y) = dist (y, F ) is continuous. Also, Urysohn’s Lemma readily
proves this, as we saw in Proposition 3.2.4.

Proposition 3.2.8. If X is completely regular and Y is a subset of X and
has its relative topology from X, then Y is completely regular.

Proof. Let D be a relatively closed subset of Y , and let y ∈ Y \D. There
is a closed subset F of X such that F ∩ Y = D; so y /∈ F . Thus, there is a
continuous function f : X → R with f(y) = 1 and f(z) = 0 for all z in F . If
g = f |Y , then g ∈ C(Y ), g(y) = 1, and g(z) = 0 for all z in D. Therefore, Y
is completely regular. �

Completely regular spaces guarantee the existence of many nonconstant
continuous functions. This is underlined by the next theorem. Recall the
definition of the weak topology on a set defined by a collection of func-
tions (Proposition 2.6.2). We will need the following lemma.

Lemma 3.2.9. If T is the weak topology defined on X by the collection of
functions {fi : X → Xi : i ∈ I}, then a net {xα} in X converges to x in
(X, T ) if and only if fi(xα) → fi(x) for all i in I.

Proof. Since each function fi : (X, T ) → Xi is continuous, the proof of
half the corollary is immediate. For the other half assume that fi(xα) →
fi(x) for all i in I. If G ∈ T and x ∈ G, then the definition of a subbase
implies there are i1, . . . , in in I and open sets Uik in Xik for 1 ≤ k ≤ n
such that x ∈

⋂n
k=1 f

−1
ik

(Uik) ⊆ G. Since fik(xα) → fik(x), there is an αk

with fik(xα) ∈ Uik for all α ≥ αk. If we let α0 ≥ αk for 1 ≤ k ≤ n, then
when α ≥ α0, we have that xα ∈

⋂n
k=1 f

−1
ik

(Uik) ⊆ G. Hence xα → x in
(X, T ). �

Theorem 3.2.10. If X is a topological space, then the following statements
are equivalent.

(a) X is completely regular.
(b) The topology on X is the weak topology defined by the functions in C(X).
(c) The topology on X is the weak topology defined by the functions in

Cb(X).
(d) A net {xi} in X converges to x if and only if f(xi) → f(x) for each

continuous function f : X → [0, 1].

Proof. Let T denote the topology on X , Tc the weak topology on X defined
by C(X), and Tb the weak topology on X defined by Cb(X).

(a) and (d) are equivalent. If xi → x, then f(xi) → f(x) for every
continuous function, even without the assumption of complete regularity.
Now assume X is completely regular and f(xi) → f(x) for each continuous
function f : X → [0, 1]. If G is a neighborhood of x, then Proposition 3.2.6
implies there is a continuous function f : X → [0, 1] with f(x) = 1 and



3.2. Separation Properties 83

f(y) = 0 for all y in X\G. Thus, there is an i0 such that for i ≥ i0 we have
that f(xi) >

1
2 , which says that xi ∈ G.

(a) implies (b). We want to show that when X is completely regular,
T = Tc; this means we want to show that if τ : (X, T ) → (X, Tc) is the
identity map, then τ is a homeomorphism. If {xi} is a net in X and xi → x
(T ), then f(xi) → f(x) for every f in C(X). By Lemma 3.2.9, this implies
xi → x (Tc), so τ is continuous. Conversely, if xi → x (Tc), then f(xi) → f(x)
for every f in C(X). Since (a) and (d) are equivalent, this implies that xi → x
(T ). Thus, τ is a homeomorphism.

(b) implies (c). As in the preceding paragraph, we want to show that
the identity map τ : (X, T ) → (X, Tb) is a homeomorphism. Clearly, τ is
continuous. Now assume xi → x in (X, Tb). Since (b) holds, we want to
show that f(xi) → f(x) for every f in C(X). Let (a, b) be an arbitrary
bounded open interval in R such that a < f(x) < b. For each y in X ,
define g(y) = min{f(y), b} and h(y) = max{g(y), a}. Since h ∈ Cb(X) and
h(x) = f(x), there is an i0 such that a < h(xi) < b when i ≥ i0. Fix i ≥ i0.
From the definition of h we get that a < h(xi) = g(xi) < b. Again from the
definition of g we have that a < g(xi) = f(xi) < b. Since (a, b) was arbitrary,
we have that f(xi) → f(x), completing the proof of this part.

(c) implies (d). Since each continuous function from X into the closed
unit interval belongs to Cb(X), this is immediate by the lemma. �

So the preceding theorem says, in vivid terms, that the topology of a
completely regular space is determined by its real-valued continuous func-
tions.

Theorem 3.2.11. If {Xi : i ∈ I} is a collection of topological spaces and
X =

∏
iXi, then X is completely regular if and only if each Xi is completely

regular.

Proof. First assume that X is completely regular, fix a j in I, let Fj be
a closed subset of Xj , and let xj ∈ Xj\Fj . If x is any point in X whose

jth coordinate is xj , then x /∈ π−1
j (Fj), and this latter set is closed. Let

f : X → R be a continuous functionwith f(x) = 1 and f(y) = 0 for all y
in π−1

j (F ). Now define the map from Xj → X by z �→ {zi}, where zj = z
and zi = xi for all i �= j. Using nets it follows that this map is continuous.
(Verify!) Thus fj : Xj → R defined by fj(z) = f({zi}) is the composition of
two continuous functions and is therefore continuous. Also, fj(xj) = 1 and
fj(yj) = 0 for all yj in Fj . Therefore, Xj is completely regular.

Now assume each Xi is completely regular, let F be a closed subset of X ,
and let x ∈ X\F . From the definition of the product topology this implies
there are indices i1, . . . , in in I and, for 1 ≤ k ≤ n, there is a neighborhood
Gik of the point xik such that x ∈

⋂n
k=1 π

−1
ik

(Gik) ⊆ X\F . For 1 ≤ k ≤ n,
let fik : Xik → R such that fik(xik) = 1 and fik(yik) = 0 for all yik in
Xik\Gik . Define f : X → R by f({yi}) = fi1(yi1) · · · fin(yin). This function
f is continuous (Exercise 12), f(x) = 1, and f(y) = 0 for y in F . �
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Exercises

(1) If X is the real line with the topology generated by the subbase con-
sisting of all the open intervals and the set Q, show that X is Hausdorff
but not regular.

(2) Prove that if X is a regular topological space and E ⊆ X , then E with
its relative topology is regular.

(3) Suppose X = F1 ∪ F2, where F1 and F2 are closed, and F1 ∩ F2 = ∅.
Show that if both F1 and F2 with their relative topologies are regular,
then X is regular.

(4) If X is a topological space and for each point x in X there is an open
set G such that x ∈ G and clG with its relative topology is a regular
space, then X is regular.

(5) Show that X is regular if and only if for any two distinct points x and y
there are open sets U and V such that x ∈ U, y ∈ V , and clU ∩clV = ∅.

(6) If X is regular and A is a closed subset of X , show that

A =
⋂

{U : U is open and A ⊆ U}.

Is the converse true?

(7) Complete the proof of Proposition 3.2.3(b). (Hint: use Exercise 2.6.1.)

(8) As in Example 2.8.2(e), for a topological space X and a subset F define
the equivalence relation on X by x ∼ y when x = y or when x, y ∈ F .
Denote the resulting quotient space by X/F . (a) Show that if F is a
closed set and X is regular, then X/F is Hausdorff. (b) Show that if
X/F is Hausdorff for every closed subset F of X , then X is regular.

(9) Let X be a topological space, and define a relation ∼ on X by declaring
that x ∼ y if f(x) = f(y) for every continuous function f : X → [0, 1].
(a) Show that ∼ is an equivalence relation on X . (b) Show that X/∼
is completely regular.

(10) If X is a connected completely regular space that is not a singleton,
show that X has uncountably many points.

(11) Say that a topological space Z has Property P if for any two distinct
points z, w in Z there is a continuous function f : Z → R such that
f(z) �= f(w). Show that X is completely regular if and only if for every
closed subset F of X the quotient space X/F (Exercise 8) has Property
P.

(12) Show that the function f : X → R defined in the second half of the
proof of Theorem 3.2.11 is continuous.

3.3. Normal Spaces

This section continues the last one with the final separation property. The
reader should be alert because this section contains a disproportionately large
number of significant results.
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Definition 3.3.1. A topological space X is normal if for any pair of disjoint
closed subsets A and B there are disjoint open sets U and V such that A ⊆ U
and B ⊆ V .

Unlike normal subgroups in algebra, normal topological spaces are the
usual occurrence in most parts of mathematics. Exceptions can be found,
but perhaps the title “normal” is deserved for these topological spaces. It
is immediate that a normal space is regular because every singleton set is a
closed set. It is far from clear that a normal space is completely regular, but
this follows from one of the deeper results on normal spaces, an extension of
Urysohn’s Lemma to this setting. (See Theorem 3.3.4 below.)

Proposition 3.3.2. If X is a topological space, then the following statements
are equivalent.

(a) X is normal.
(b) If A is a closed set and G is an open set with A ⊆ G, then there is an

open set U with A ⊆ U ⊆ clU ⊆ G.
(c) If A and B are disjoint closed sets, then there is an open set V such

that B ⊆ V and A ∩ clV = ∅.

Proof. Assume (a) and let A and G be as in (b). Let B = X\G, and
apply the definition of normality to find disjoint open sets U and V with
A ⊆ U,B ⊆ V . Thus, clU ⊆ X\V ⊆ X\B = G. Now assume (b) and let A
and B be as in (c). If G = X\B, then G is open and A ⊆ G. Thus, there
is an open set U with A ⊆ U ⊆ clU ⊆ X\B. Put V = X\clU ; clearly,
B ⊆ V . Since V ⊆ X\U , we have that clV ⊆ X\U , and so A ∩ clV = ∅.
Now assume that (c) holds and A and B are disjoint closed sets. If V is as
in (c) and U = X\clV , then U and V are disjoint open sets, A ⊆ U , and
B ⊆ V . Therefore, X is normal. �

Proposition 3.3.3. (a) Every metric space is normal.
(b) Every compact space is normal.
(c) If X is normal and F is a closed subset of X, then F with its relative

topology is normal.

Proof. (a) This is an easy application of Theorem 1.3.9.

(b) By Proposition 3.2.4, X is regular. Thus, if A and B are disjoint closed
sets, then for every point a in A there are disjoint open sets Ua and Va
such that a ∈ Ua and B ⊆ Va. Now {Ua : a ∈ A} is an open cover of
A, which, being a closed subset of a compact space, is compact. Thus,
there are points a1, . . . , an with A ⊆

⋃n
k=1 Uak

≡ U ; put V =
⋂n

k=1 Vak
.

It follows that U and V are disjoint open sets, A ⊆ U , and B ⊆ V .
(c) Exercise 2.

�

It is not true that every subspace of a normal space is normal, nor is it the
case that the product of even two normal spaces is normal. The reader can
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consult Example 3 on page 144 of [4] for two normal spaces whose product is
not normal. (This reference also contains an example of a regular space that
is not normal.) Finding an example of a subspace of a normal space that
is not normal requires additional effort. See Example 4 on page 145 of [4],
where an open subset of a compact space is shown not to be normal. (This
uses spaces of ordinal numbers, which is discussed subsequently in § 3.6.) We
might mention that every subspace of a normal space is, however, completely
regular. (See Exercise 7.)

Recall Urysohn’s Lemma proved for metric spaces (Theorem 1.3.9). Here
we get the same conclusion for normal spaces, though the proof is more
difficult. Before stating and proving this result we need some facts about
dyadic rational numbers. Let D0 = {0, 1}, and for n ≥ 1 let Dn = { a

2n : a ∈
N, a is odd, and 0 < a < 2n}. Put D =

⋃∞
n=0Dn; this is the set of dyadic

rational numbers in the closed unit interval. This set has many interesting
properties, including the fact that it is dense in the unit interval (Exercise 5).
There is more on dyadic rational numbers in §A.5.
Theorem 3.3.4 (Urysohn’s Lemma). If X is normal and A and B are
disjoint closed subsets, then there is a continuous function f : X → [0, 1]
such that f(a) = 1 for all a in A and f(b) = 0 for all b in B.

Proof. We let G = X\B; so A ⊆ G. The strategy of the proof is as follows:
if D is the set of dyadic rational numbers in [0, 1], then for every t in D we
will construct a subset Ut of X satisfying the following:{

(i) Ut is open when t < 1

(ii) clUt ⊆ Us for s < t.
3.3.5

We will then use this family to construct the continuous function, but first
let us get the sets. For this we use induction where of each n ≥ 0 we will
construct the sets {Ut} when t belongs to the set Dn defined before the proof.

We start with n = 0 and the set D0. Let U1 = A and U0 = G = X\B.
[Given that U1 is closed, we note that (3.3.5)(i) is not violated.] When n = 1,
we have D1 = { 1

2}. Since X is normal, we can find an open set U 1
2
with

clU1 = A ⊆ U 1
2
⊆ clU 1

2
⊆ U0. Let n ≥ 2, and assume we have constructed

the sets Ut for t in
⋃n−1

k=0 Dk and that they satisfy (3.3.5). Let t = a
2n ∈ Dn,

with a odd. Since a is an odd integer, α = a−1
2n , β = a+1

2n ∈
⋃n−1

k=0 Dk, and
so Uα and Uβ are already defined with clUβ ⊆ Uα. Since X is normal, there
is an open set Ut with clUβ ⊆ Ut ⊆ clUt ⊆ Uα. In this way, we define Ut

satisfying (3.3.5) for all t in
⋃n

k=0 Dk. By mathematical induction we have
the sets Ut for all dyadic rational numbers.

Now to define f . When x ∈ X\U0 = B, let f(x) = 0; when x ∈ U0 =
G = X\B, define f(x) = sup{t ∈ D : x ∈ Ut}. It is clear that f(x) = 1 for x
in A = U1 and 0 ≤ f(x) ≤ 1 for all x in X . What must be proven is that f
is continuous. For this let 0 ≤ α < β ≤ 1. Note that α < f(x) if and only
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if x ∈ Ut for some t > α; thus,

f−1 ((α, 1]) =
⋃

{Ut : α < t},

an open set. Also, f(x) ≥ β if and only if x ∈ Ut for every t < β; thus,

f−1([β, 1]) =
⋂

{Ut : t < β} =
⋂

{clUs : s < β},

a closed set. Hence, f−1([0, β)) is open, so that f−1((α, β)) = f−1 ((α, 1]) ∩
f−1([0, β)) is open. Therefore, f is continuous. (Why?) �
Corollary 3.3.6. If X is normal, A and B are disjoint closed subsets, and
α and β are real numbers with α < β, then there is a continuous function f :
X → [α, β] such that f(a) = α for all a in A and f(b) = β for all b in B.

Proof. Note that τ(t) = tβ + (1 − t)α is a homeomorphism of [0, 1] onto
[α, β], with τ(0) = α, τ(1) = β. According to Urysohn’s Lemma there is a
continuous function g : X → [0, 1] with g(a) = 0 for all a in A and g(b) = 1
for all b in B. The function f = τ ◦ g is the desired function. �
Corollary 3.3.7. Every normal space is completely regular.

Next we show that normal spaces enjoy a special property—continuous
functions defined on a closed subset can be extended to the entire space. It is
a deep property, and its establishment starts with a lemma.

Lemma 3.3.8. If X is a normal space, C is a closed subset of X, and
f : C → R is a continuous functionwith |f(c)| ≤ γ for all c in C, then there
is a continuous function g : X → R satisfying the following for all x in X
and all c in C:

(i) |g(x)| ≤ γ/3

(ii) |f(c)− g(c)| ≤ 2γ/3.

Proof. Let A = {c ∈ C : f(c) ≤ −γ/3}, B = {c ∈ C : f(c) ≥ γ/3}. Since
f is continuous on the closed set C, A and B are disjoint closed subsets of
X . By Corollary 3.3.6, there is a continuous function g : X → [−γ/3, γ/3]
with g(a) = −γ/3 for all a in A and g(b) = γ/3 for all b in B. So g satisfies
(i). We show that it also satisfies (ii) on a case-by-case basis. Let c ∈ C.
First note that if c ∈ A, then −γ ≤ f(c) ≤ −γ/3 and g(c) = −γ/3, so (ii)
holds. Similarly, (ii) holds for c in B. If c /∈ (A∪B), then |f(c)| < γ/3; since
|g(c)| ≤ γ/3, (ii) is also valid in this case. �
Theorem 3.3.9 (Tietze’s2 Extension Theorem). If X is a normal topological
space, C is a closed subset of X, and f : C → [α, β] is a continuous function,

2Heinrich Franz Friedrich Tietze was born in 1880 in Schleinz, Austria. In 1898 he entered
the Technische Hochschule in Vienna. He continued his studies in Vienna and received his
doctorate in 1904 and his habilitation in 1908 with a thesis in topology. His academic career
was interrupted by service in the Austrian army in World War I; just before this he had obtained
the present theorem. After the war he held a position first at Erlangen and then at Munich,
where he remained until his retirement. In addition to this theorem, he made other contributions
to topology and did significant work in combinatorial group theory, a field in which he was one
of the pioneers. He had 12 Ph.D. students, all at Munich, where he died in 1964.
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then there is a continuous function F : X → [α, β] such that F (c) = f(c) for
every c in C.

Proof. Using the map τ in the proof of Corollary 3.3.6, it suffices to assume
that f : C → [0, 1]. Applying the preceding lemma we can find a continuous
function g0 : X → [−3−1, 3−1] such that |f(c) − g0(c)| ≤ 2/3 for all c in
C. Now apply the lemma again to the function (f − g0) : C → [−2/3, 2/3]
to obtain a continuous function g1 : X → [−3−1(2/3), 3−1(2/3)] such that
|(f − g0)(c)− g1(c)| ≤ (2/3)2. Continuing this line of reasoning and applying
induction, we can establish the following claim.

Claim. For each integer n ≥ 1 there is a continuous function gn : X →
R satisfying the following: (i) |gn(x)| ≤ 3−1(2/3)n for all x in X ; (ii)
|f(c)−

∑n
k=0 gk(c)| ≤ (2/3)n+1 for all c in C.

The details of the induction argument required to establish this claim are left
to the reader (Exercise 8).

Because of (i) in the claim, the Weierstrass M -test (Exercise 3.1.2) im-
plies g =

∑∞
n=0 gn converges in Cb(X); so g ∈ Cb(X) and, summing the

appropriate geometric series, for every x in X we have |g(x)| ≤ 1. Also (ii)
in the claim implies that g is an extension of f . The only thing lacking is
that g may take on negative values. If, however, we put F = g ∨ 0; then F
is continuous (Proposition 2.3.11), F (x) ∈ [0, 1] for all x, and, because f is
nonnegative, F is an extension of f . �

A fact worth emphasizing in the Tietze Extension Theorem is that the
image of the extension F is contained in the same interval that contains the
image of f . This is not to say, however, that the functions f and F have
the same image. (Can you furnish an example where the ranges differ? You
might find one with X = R.)

The next result is an important application of Urysohn’s Lemma.

Theorem 3.3.10 (Partition of Unity). If X is normal and {G1, . . . , Gn} is
an open cover of X, then there are continuous functions φ1, . . . , φn from X
into R with the following properties:

(a) 0 ≤ φk(x) ≤ 1 for 1 ≤ k ≤ n;
(b) φk(x) = 0 when x /∈ Gk and 1 ≤ k ≤ n;
(c)

∑n
k=1 φk(x) = 1 for all x in X.

Proof. We prove this by induction. First assume n = 2: X = G1 ∪ G2.
X\G2 is a closed set that is contained in G1 and so Urysohn’s Lemma implies
there is a continuous functionφ1 : X → [0, 1] with φ1(x) = 1 on X\G2

and 0 on X\G1. Put φ2 = 1 − φ1. It is routine to check that the three
conditions are satisfied. Now assume the theorem is true for some n ≥ 2, and
let {G1, . . . , Gn, Gn+1} be an open cover of X . The induction hypothesis
applied to the open cover {G1, . . . , Gn−1, Gn∪Gn+1} implies the existence of
continuous functions ψk : X → [0, 1] for 1 ≤ k ≤ n such that

∑n
k=1 ψk = 1,
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ψk(x) = 0 for x /∈ Gk and 1 ≤ k ≤ n−1, and ψn(x) = 0 when x /∈ Gn∪Gn+1.
Now consider the open cover of X consisting of the two sets G1 ∪ · · · ∪ Gn

and Gn+1, and find continuous functions θ1, θ2 with θ1 + θ2 = 1, θ1(x) = 0
when x /∈ G1 ∪ · · ·Gn, and θ2(x) = 0 when x /∈ Gn+1. Put φk = θ1ψk

when 1 ≤ k ≤ n and φn+1 = θ2ψn. Clearly, each of these functions has

its range in the closed unit interval, so (a) is satisfied. Also
∑n+1

k=1 φk =
θ1

∑n
k=1 ψk + θ2ψn = 1, so (c) holds. If 1 ≤ k ≤ n− 1 and φk(x) > 0, then

ψk(x) > 0; so it must be that x ∈ Gk. If φn(x) > 0, then θ1(x) > 0 and
ψn(x) > 0. Hence x ∈ G1 ∪ · · · ∪ Gn and x ∈ Gn ∪ Gn+1; thus, x ∈ Gn. If
φn+1(x) > 0, then θ2(x) > 0, and so x ∈ Gn+1. By induction, this completes
the proof. �

For the open cover {G1, . . . , Gn} and the functions φ1, . . . , φn as in the
preceding theorem, we say that these functions are a partition of unity sub-
ordinate to the cover. The reason this result is called a partition of unity is
that it divides the constantly 1-function into parts that reside inside the open
sets Gk. Later (Theorem 3.7.17) we will see a more sophisticated partition
of unity theorem.

Corollary 3.3.11. If K is a closed subset of the normal space X and {G1, . . . ,
Gn} are open sets in X that cover K, then there are continuous functions
φ1, . . . , φn on X with the following properties:

(a) for 1 ≤ k ≤ n and all x in X, 0 ≤ φk(x) ≤ 1;
(b) for 1 ≤ k ≤ n, φk(x) = 0 when x /∈ Gk;
(c)

∑n
k=1 φk(x) = 1 for all x in K;

(d)
∑n

k=1 φk(x) ≤ 1 for all x in X.

Proof. Note that if we put Gn+1 = X\K, then {G1, . . . , Gn+1} is an open
cover of X . Let {φ1, . . . , φn+1} be a partition of unity subordinate to this
cover. The reader can check that the functions φ1, . . . , φn satisfy (a), (b),
and (c) since φn+1(x) = 0 for x in K. For any x in X ,

∑n
k=1 φk(x) =

1− φn+1(x) ≤ 1, giving (d). �

Exercises

(1) Supply the missing details in the proof of Proposition 3.3.2.
(2) Prove Proposition 3.3.3(c).
(3) Show that if X is normal and f : X → Y is a continuous surjection

that is also a closed map, then Y is normal. (A mapping is closed if the
image of every closed set is closed.)

(4) For disjoint subsets A and B of X and x, y in X , define x ∼ y to mean
that one of the following holds: x = y, x, y ∈ A, x, y ∈ B. (See Exer-
cise 3.2.8 for a related exercise.) (a) Verify that this is an equivalence
relation on X . Denote the resulting quotient space by X/{A,B}. (b)
If X is normal and A and B are disjoint closed subsets, show that the
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quotient topology on X/{A,B} is Hausdorff. (c) If X is a topological
space such that X/{A,B} is Hausdorff for every pair of disjoint closed
subsets A,B, then X is normal.

(5) Show that the dyadic rational numbers are dense in the unit interval.

(6) If X is normal, use Urysohn’s Lemma to show that if F is a closed set
and G is an open set with F ⊆ G, then there is a continuous function f :
X → [0, 1] such that f(x) = 1 when x ∈ F and {x ∈ X : f(x) > 0} ⊆ G.
(Also see Exercise 11, parts (d) and (e).)

(7) Use Urysohn’s Lemma to show that every subspace of a normal space is
completely regular.

(8) Use induction to establish the claim in the proof of Tietze’s Extension
Theorem.

(9) (a) Show that φ(x) = arctanx defines a homeomorphism between R and
(−π/2, π/2). (b) Prove the following extension of Tietze’s Extension
Theorem. If X is normal, A is a closed subset of X , and f : A → R is
a continuous function, then there is a continuous functionF : X → R

with F (a) = f(a) for all a in A.

(10) Prove the following extension of Tietze’s Extension Theorem. If X is
normal, A is a closed subset of X , and f : A → R

q is a continuous
function, then there is a continuous functionF : X → R

q with F (a) =
f(a) for all a in A. (Hint: use Exercise 9.)

(11) A subset A of a topological space X is called a Gδ-set if it is the inter-
section of a sequence of open sets. A is called an Fσ-set if it is the union
of a sequence of closed sets. (a) Show that A is a Gδ-set if and only
if X\A is an Fσ-set. (b) Show that the set of irrational numbers is a
Gδ set. (c) In a metric space show that every closed set is a Gδ-set and
every open set is an Fσ-set. (d) In Exercise 6 show that the function
f can be chosen with F = {x ∈ X : f(x) = 1} if and only if F is a
Gδ-set. (e) In Exercise 6 show that the function f can be chosen with
G = {x ∈ X : f(x) > 0} if and only if G is an Fσ-set. (f) Is Q a Gδ-set
in R?

3.4. The Stone–C̆ech Compactification*

The main result of this section asserts that each completely regular space X
is densely contained in a compact space βX in such a way that each bounded
continuous function f : X → R has a continuous extension fβ : βX → R.
The use of the word contained in this last statement is, strictly speaking, not
accurate. The actual statement is that there is a homeomorphism τ from X
onto a dense subset of βX such that when f ∈ Cb(X), f◦τ−1 has a continuous
extension to βX . We are justified in saying that X is contained in βX by
the fact that this compact space is unique up to a homeomorphism having
special properties as listed in the theorem. Another phrasing of this idea of
containment that is used is to say that X is densely embedded in βX .
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Theorem 3.4.1 (The Stone3–C̆ech4 Compactification). If X is completely
regular, then there is a compact space βX and a homeomorphism τ from X
onto a dense subset of βX such that for every bounded continuous function f :
X → R there is a continuous function fβ : βX → R with fβ ◦ τ = f .
Moreover, βX is unique in the sense that if Z is a compact space with a
homeomorphism σ of X onto a dense subset of Z such that for each bounded
continuous function f : X → R there is a continuous fZ : Z → R with
fZ ◦ σ = f , then Z is homeomorphic to βX.

The proof of this theorem is involved. Before starting the proof, let us
ruminate on it. If we identifyX with its homeomorphic image in βX , then the
result asserts that each completely regular space X is densely contained in a
compact space βX in such a way that each bounded continuous function f :
X → R has a continuous extension fβ : βX → R. The use of the word
contained in this last statement is amply justified by the fact that the compact

3Marshall H. Stone was born in 1902 in New York. His father was Harlan Stone who, after
time as the dean of the Columbia Law School, became a member of the US Supreme Court,
including a term as its Chief Justice. Marshall Stone entered Harvard in 1919 intending to study
law. He soon switched to mathematics and received his doctorate in 1926 under the direction
of David Birkhoff. Though he had brief appointments at Columbia and Yale, most of his early
career was spent at Harvard. His initial work continued the direction it took under Birkhoff, but
in 1929 he started working on hermitian operators. His American Mathematical Society book
Linear Transformations in Hilbert space and Their Applications to Analysis became a classic.
Indeed, a read of that book today shows how the arguments and clarity would easily lead to the
conclusion that it is a contemporary monograph. During World War II he worked for the Navy
and the War Department, and in 1946 he left Harvard to become the chair of the mathematics
department at the University of Chicago. He said that this decision was arrived at because of “my
conviction that the time was also ripe for a fundamental revision of graduate and undergraduate
mathematical education.” Indeed he transformed the department at Chicago. The number of
theorems that bear his name is impressive. Besides the present theorem there is the Stone–
Weierstrass Theorem, the Stone–von Neumann Theorem, the Stone Representation Theorem in
Boolean algebras, and Stone’s Theorem on one-parameter semigroups. He stepped down as chair
at Chicago in 1952 and retired in 1968, but then went to the University of Massachusetts, where
he taught in various capacities until 1980. He loved to travel, and on a trip to India in 1989, he
died in Madras. He had 14 doctoral students, including Richard Kadison and George Mackey.

4Eduard C̆ech was born in 1893 in Stracov, Bohemia, which is now part of the Czech Re-
public. His father was a policeman and he was his parents’ fourth child. He quickly displayed
mathematical talent and decided he wanted to be a school teacher. With that aim he entered
Charles University in Prague in 1912. In 1915 he was drafted into the Austro-Hungarian army;
after the war he returned to the university, obtained his degree, began teaching at a secondary
school in Prague, and continued his research. This led to a doctorate in 1920. He worked on
projective differential geometry with a paper that appeared in 1921, and this secured for him
a scholarship to study with Fubini in Turin. They collaborated on a two-volume monograph
on the subject. He received his habilitation in 1922 after leaving Italy. In 1922 he was made
chair of mathematics at a new university in Brno; the next year he was appointed Extraordinary
Professor. Around this time he began to work on topology, the source of his most famous work

that includes C̆ech cohomology; as part of the process he started a topology seminar at Brno. It
was in 1937 that he obtained the present result, with Stone proving it in the same year. After
the takeover of Czechoslovakia by the Nazis, the universities were closed. However, the seminar
continued to meet at the home of one of his students, Pospisl, until he was arrested by the
Gestapo in 1941. (Pospisl was released in 1944 but died shortly thereafter.) At the end of the

war C̆ech moved to Charles University in Prague and became involved in administration. He was
the Director of the Mathematical Research Institute of the Czech Academy of Sciences in 1947,
Director of the Central Mathematical Institute in 1950, and Director of the Czech Academy in
1952. After a rather long hiatus in his publishing, extending through the war, he resumed it in
the 1950s with an interest in differential geometry. In 1956 he was appointed First Director of
the Mathematical Institute of the Charles University of Prague. His health, however, began to
fade, and he died in 1960 in Prague.
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space βX is unique up to a homeomorphism having special properties as listed
in the theorem. Another phrasing of this idea of containment that can be
and is used is to say that X is densely embedded in βX .

The space βX is called the Stone–C̆ech compactification of X . This
compactification can be very complicated. We will see some exercises below
that show this, but consider one example: X = (0, 1]. You might be tempted

to think that the Stone–C̆ech compactification of this set is the closed unit
interval since X is densely contained in it. This is not the case. For example,
if we let f : (0, 1] → R be the bounded continuous function f(t) = sin t−1,
then f must have a continuous extension to β(0, 1], but there is no such
extension to the closed interval (Exercise 3). So if we take a compact space
Z and let X be a dense subset of Z, then X is completely regular (Proposition
3.2.8), but Z may fail miserably to be βX . Giving a specific representation
of βX for the most innocent noncompact spaces X is usually impossible.

Proof. Existence. Let F denote all the continuous functions from X into
[0, 1], and for each f in F let Xf = [0, 1], a copy of the closed unit interval.
Let Ω =

∏
{Xf : f ∈ F}, and define τ : X → Ω by τ(x) = {f(x) : f ∈ F};

that is, the coordinate of τ(x) corresponding to each f in F is given by
τ(x)f = f(x). Let βX = cl [τ(X)].

Claim. τ : X → τ(X) is a homeomorphism.

In fact, τ is injective since, if x and y are two distinct points in X , then
Proposition 3.2.6 implies there is an f in F with f(x) = 1 and f(y) = 0;
so τ(x) �= τ(y). τ is surjective by definition. If {xi} is a net in X and
x ∈ X , then an application of Theorem 3.2.10 shows that xi → x if and only
if τ(xi)f → τ(x)f for every f in F . By Exercise 2.7.7, this says that xi → x if
and only if τ(xi) → τ(x) in the product space Ω. Hence we have established
the claim.

Claim. If f ∈ Cb(X), then there is an fβ in C(βX) such that fβ ◦ τ .

First note that if f ∈ F and we define fβ to be the restriction of the
projection map πf to βX , then fβ has the desired property. Now if f ∈ Cb(X)
and a < f(x) < b for all x in X , then g = (b − a)−1(f − a) ∈ F . Therefore,
gβ exists, and it is a simple matter to verify that defining fβ = (b− a)gβ + a
has all the properties we desire. (Verify!)

Uniqueness. Let Z and σ be as in the statement of the theorem, and
let Ω be the product space in the proof of existence. Define ω : Z → Ω by
ω(z) = {fZ(z) : f ∈ F}. Note that for x in X and f in F , ω(σ(x))f =
f(x) = τ(x)f . Hence, f

Z [ω(σ(x))] = f(x) for every x in X , ω(Z) ⊆ βX , and
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τ = ω ◦ σ. This results in the following commutative mapping diagram.

3.4.2 X
f

��

σ

��
τ

���
��

��
��

� R

Z
ω �� βX

fZ

��

The meaning of the term commutative here is that if we begin with a point
x in the space X , no matter which path of maps in this diagram we follow
to reach βX or R, we obtain the same result. The fact that the diagram is
commutative was established by the equations given prior to the diagram.
Commutative diagrams are frequently used in topology. The purpose of pre-
senting this one is to help the reader keep track of the mappings and spaces.

Claim. ω : Z → ω(Z) is a homeomorphism.

First we note that ω is continuous since for every f in F , πf ◦ω = fZ , and
we can invoke Proposition 2.6.5. Let z and w be distinct points in Z; because
compact spaces are normal, there is a continuous function h : Z → [0, 1] such
that h(z) = 0 and h(w) = 1. If f = h◦σ, then f ∈ F . Since σ(X) is dense in
Z, it must be that h = fZ . Thus, ω(z)f = fZ(z) = 0 �= 1 = fZ(w) = ω(w)f .
Thus, ω(z) �= ω(w), and ω is injective. So ω is an injective continuous
mapping onto its image with a compact domain; by Exercise 2.4.3, the claim
is established.

Since ω ◦ σ = τ on X , τ(X) ⊆ ω(Z). Therefore, βX ⊆ ω(Z) because
ω(Z) is compact. On the other hand, the image of σ is dense in Z, and this
implies that ω(Z) ⊆ βX , so that these two compact spaces are equal. This
completes the proof. �

The notation used in the statement of the theorem is standard. From
now on, including in the exercises, we will assume that X ⊆ βX and that for
each f in Cb(X), fβ is the extension of f to βX .

It is not just real-valued continuous functions that can be extended to
the Stone–C̆ech compactification.

Theorem 3.4.3. If X is completely regular and Z is a compact space, then
every continuous mapping η : X → Z has a continuous extension ηβ :
βX→Z.

Proof. If ξ ∈ βX , then let {xi} be a net in X such that xi → ξ. Since Z
is compact, the net {η(xi)} has a cluster point z in Z. If h ∈ C(Z), then
h(η(xi)) →cl h(z). But h ◦ η ∈ Cb(X), so it must be that h ◦ η(xi) →
(h ◦ η)β(ξ). Thus, h(z) = (h ◦ η)β(ξ) for every h in C(Z). Since compact
spaces are normal, this implies that z is the unique cluster point of the net
{η(xi)}. By Theorem 2.7.10, this net converges to z. So any net in X that
converges in βX is mapped by η to a net that converges in Z. We want to
define



94 3. Continuous Real-Valued Functions

3.4.4 ηβ(ξ) = lim
i
η(xi).

We must be sure, however, that ηβ is well defined and does not depend on
the choice of net in X that converges to ξ. But if {yj} is a second net in X
that converges to ξ and η(yj) → w in Z, then for every h in C(Z) we have
that h(w) = limj h(η(yj)) = (h ◦ η)β(ξ) = limi h(η(xi)) = h(z). Once again,
Urysohn’s Lemma implies w = z. Therefore, ηβ is well defined.

Clearly, ηβ is an extension of η, so it remains to show that this extension
is continuous. Let us start by recouping from the last paragraph the fact
that for each h in C(Z),

(h ◦ η)β = h ◦ ηβ .
In fact. this follows from (3.4.4): if {xi} is a net in X that converges to ξ,
then, by definition, η(xi) → ηβ(ξ); since h is continuous and h ◦ η ∈ Cb(X),
h(ηβ(ξ)) = limi h(η(xi)) = limi(h ◦ η)(xi) = (h ◦ η)β(ξ). Hence. if {ξi} is a
net in βX such that ξi → ξ and h ∈ C(Z),

h(ηβ(ξi)) = (h ◦ η)β(ξi) → (h ◦ η)β(ξ) = h(ηβ(ξ)).

But, by Theorem 3.2.10 and the fact that Z is completely regular, this implies
that ηβ(ξi) → ηβ(ξ). Therefore, ηβ is continuous, and the proof is complete.

�

Exercises

(1) For a topological space X show that the weak topology defined on X by
Cb(X) is the same as the weak topology defined by F = {f ∈ Cb(X) :
0 ≤ f ≤ 1}.

(2) If X is a normal space and there is a point ξ in βX such that ξ = limn xn
for some sequence {xn} in X , show that ξ ∈ X . Hence the Stone–

C̆ech compactification is metrizable only if X is already a compact metric
space.

(3) Show that if X is completely regular and βX is metrizable, then X is a
compact metric space so that βX = X .

(4) Here we consider the completely regular space N and its Stone–C̆ech
compactification βN. Note that if E ⊆ N, then the characteristic function
of E, χE (Exercise 1.5.4), is in Cb(N). (a) Show that every component of
βN reduces to a single point. (b) Show that βN is uncountable. (Actually,
the cardinality of βN is 2c, where c is the cardinality of R. This is more
difficult to prove.)

3.5. Locally Compact Spaces

Here we explore another of the “local” properties that plays a central role in
many areas of mathematics.
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Definition 3.5.1. A topological space X is locally compact if for every point
x in X and every neighborhood G of x there is another neighborhood U of x
such that clU is compact and contained in G.

Locally compact spaces are everywhere and are the most common spaces
discussed in analysis. Here are some examples.

Example 3.5.2. (a) Note that a metric space (X, d) is locally compact if
and only if for every x in X and every r > 0 there is an ε with 0 < ε < r
such that B(x; ε) ⊆ B(x; r) and clB(x; ε) is compact.

(b) R
q is locally compact.

(c) Every compact space is locally compact.
(d) Q is not locally compact. This follows from Example 1.4.9.
(e) Let Y be any compact space and fix a point y0 in Y . If X = Y \{y0} has

its relative topology, then X is locally compact (Exercise 2).

Proposition 3.5.3. (a) If X is a topological space, then X is locally com-
pact if and only if for every point x in X there is a neighborhood G of
x such that clG is compact.

(b) If X is a locally compact topological space and E ⊆ X such that E is
either open or closed, then E with its relative topology is locally compact.

(c) If {Xi} is a collection of topological spaces and X =
∏

iXi, then X is
locally compact if and only if each Xi is locally compact and all but a
finite number of the spaces Xi are compact.

(d) If (X, d) is a metric space, then X is locally compact if and only if for
every x in X there is an r > 0 such that clB(x; r) is compact.

Proof. (a) The proof of one direction in this statement is trivial. For the
other direction, let G be as in the statement of (a), and let U be any
neighborhood of x; we must show that there is a neighborhood V of x
such that clV is compact and contained in U . Note that W = G∩U is
a neighborhood of x and clW is compact; however, it may not satisfy
clW ⊆ U . For each y in ∂W , let Vy and Hy be disjoint open sets such
that x ∈ Vy ⊆ W and y ∈ Hy. Since ∂W ⊆ clW , ∂W is compact.
Let y1, . . . , yn ∈ ∂W such that ∂W ⊆

⋃n
j=1 Hyj , and let V =

⋂n
j=1 Vyj .

Thus, V is a neighborhood of x, clV is compact, clV ⊆ X\
⋃n

j=1 Hyj

since V is a subset of this closed set. Also, V ⊆W and V ∩ ∂W = ∅, so
clV ⊆W ⊆ U , as required.

(b) Assume that E is closed and x ∈ E. There is an open subset G in X such
that x ∈ G and clG is compact. Thus U = G∩E is relatively open in E
and contains x. Since E is closed, the closure of U in E is contained in
E ∩ clG and hence is compact. It follows from part (a) that E is locally
compact. The proof of the case where E is open is Exercise 3.

(c) Suppose that X is locally compact , and fix an index i0; we will show
that Xi0 is locally compact. Let xi0 in Xi0 , and let x be any point in
X with xi0 as its i0-coordinate. Let Gi0 be a neighborhood of xi0 , and
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consider G = π−1
i0

(Gi0 ), a neighborhood of x in X . Since X is locally
compact, there is a neighborhood U of x such that clU is compact and
clU ⊆ G. Thus, Ui0 = πi0(U) is open in Xi0 (Proposition 2.6.5(a)),
Ui0 contains xi0 , clUi0 is compact since it is contained in πi0(clU), and
clUi0 ⊆ Gi0 (Why?). Thus, Xi0 is locally compact. Also, note that
the definition of the topology on X implies that there is a finite number
of indices i0, i1, . . . , in such that when i �= i0, 1i, . . . , in, πi(clU) = Xi;
hence each of these spaces Xi is compact.

The proof of the converse is Exercise 4.
(d) This is an easy consequence of (a). (Exercise 5.) �

We should note that some restriction on the subset E in part (b) of the
preceding proposition is required. For example, we have noted that Q is not
locally compact, even though R is. Also, see Exercise 1. So there are subsets
of a locally compact space that are not locally compact when furnished with
their relative topology. Look at Exercise 2 for further information. As a
comment on part (d), note that R with the metric d(x, y) = |x − y|(1 +
|x− y|)−1 is locally compact since this metric is equivalent to the usual one;
however, it is not true that clB(x; r) is compact for every value of r (for
example, r = 1).

The next lemma, which is almost just an observation because of its easy
proof, has a use beyond its application in the subsequent theorem.

Lemma 3.5.4. If X is a locally compact space, K is a compact subset of X,
and G is an open set that contains K, then there is an open set U such that
K ⊆ U ⊆ clU ⊆ G and clU is compact.

Proof. For each x in K, let Ux be a neighborhood such that clUx is compact
and contained in G. SinceK is compact, there are points x1, . . . , xn inK such
that K ⊆

⋃n
k=1 Uxk

. If U =
⋃n

k=1 Uxk
, it has the required properties. �

Theorem 3.5.5. If X is a locally compact space, K is a compact subset
of X, and G is an open set that contains K, then there is a continuous
function f : X → [0, 1] such that f(x) = 1 for all x in K and f(x) = 0 when
x /∈ G.

Proof. Invoke the preceding lemma to find an open set with K ⊆ U ⊆
clU ⊆ G and clU compact. Since clU is compact, Urysohn’s Lemma implies
there is a continuous function g : clU → [0, 1] with g(x) = 1 for x in K
and g(x) = 0 for x in ∂U . If we define h : X\U → R to be the identically
0 function, then we can use Proposition 2.3.4 to get the desired continuous
function f . �

There is a temptation to call the preceding theorem Urysohn’s Lemma,
and some do. After all, ifB = X\G, then B is a closed set disjoint fromK and
the function equals 0 on B. So it certainly has the flavor of Urysohn’s Lemma.
Nevertheless, it adds an extra condition to the hypothesis by requiring that
K be compact since we do not know that X is normal. Similarly, there is
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a temptation to call the Theorem 3.5.7 below Tietze’s Extension Theorem,
but we will also resist such an impulse for the same reason.

Corollary 3.5.6. A locally compact space is completely regular.

Proof. If F is a closed subset of X and x ∈ X\F , put K = {x}, G = X\F ,
and apply the preceding theorem. �

A locally compact space is not necessarily normal. In fact, we pointed
out that Example 4 on page 145 of [4] gives an open subset of a compact
space that is not normal. By Proposition 3.5.3(b), such an open set with the
relative topology is locally compact. (In fact, that example uses the space of
ordinal numbers, which is defined in the next section.)

Theorem 3.5.7. If X is a locally compact space, K is a compact subset, G
is an open set with K ⊆ G, and f : K → [0, 1] is a continuous function, then
there is a continuous functionF : X → [0, 1] such that F (x) = f(x) for all x
in K and F (x) = 0 when x /∈ G.

Proof. Again use Lemma 3.5.4 to find an open set U such that clU is com-
pact and K ⊆ U ⊆ clU ⊆ G. As in the proof of the preceding theorem, clU
is normal, so Tietze’s Extension Theorem implies there is a continuous func-
tionF1 : clU → [0, 1] such that F1(x) = f(x) for all x in K and F1(x) = 0
when x ∈ ∂U . Now we proceed as in the proof of Theorem 3.5.5 and obtain
the sought-after function F . �

See Exercise 7.
There is a Baire Category Theorem for locally compact spaces, and this

time we succumb to the temptation and call it precisely that.

Theorem 3.5.8 (Baire Category Theorem). If X is locally compact and
{Un} is a sequence of open subsets of X each of which is dense, then

⋂∞
n=1 Un

is dense.

The proof of this is along the lines of the proof of the Baire Category
Theorem for a complete metric space (Theorem 1.6.1), with neighborhoods
having compact closures replacing the open balls used there. See Exercise 6.

Definition 3.5.9. If X is locally compact and φ : X → R is a continuous
function, say that φ vanishes at infinity if for every ε > 0, {x ∈ X : |φ(x)| ≥ ε}
is compact. For any continuous functionφ : X → R, define the support of φ,
in symbols sptφ, as the set

sptφ = cl {x ∈ X : φ(x) �= 0}.

A continuous functionφ on X is said to have compact support if sptφ is a
compact set. We denote by C0(X) the set of all continuous functions on X
that vanish at infinity and by Cc(X) the set of continuous functions on X
having compact support.
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The reader may have noticed that the definition of a function vanishing at
infinity does not need the underlying topological space to be locally compact.
It follows that if there are many continuous functions that vanish at infinity,
then there are many open sets with compact closures; and this is close to
having X locally compact. In fact, if there is a nonzero function φ on X with
compact support, then for every ε > 0, {x ∈ X : |φ(x)| ≥ ε} is a compact set
with an interior that at least includes the set {x ∈ X : |φ(x)| > ε}. So if we
want to assume that there are plenty of continuous functions that vanish at
infinity, there must be many open sets with compact closure. So to simplify
our lives, we will never discuss C0(X) unless X is locally compact. The same
remarks apply to Cc(X).

Example 3.5.10. Let X be a locally compact space.

(a) The nonzero constant functions on X do not have compact support and
do not vanish at infinity unless X is compact.

(b) Cc(X) ⊆ C0(X), and Theorem 3.5.5 shows the existence of many func-
tions in Cc(X).

(c) A function φ belongs to C0(R) if and only if limx→±∞ φ(x) = 0.
(d) If φ(x) = exp(−x2) for x in R, then φ ∈ C0(R), but φ /∈ Cc(R).

Proposition 3.5.11. Let X be a locally compact space.

(a) Both C0(X) and Cc(X) are subalgebras of Cb(X).
(b) C0(X) is closed in Cb(X).
(c) Cc(X) is dense in C0(X).

Proof. (a) The fact that C0(X) ⊆ Cb(X) is straightforward. In fact, if
φ ∈ C0(X), let K be a compact subset of X such that |φ(x)| < 1
when x /∈ K. Since K is compact, there is a constant M such that
|φ(x)| ≤ M whenever x ∈ K. Thus, |φ(x)| ≤ max{M, 1} for all x, and
so φ ∈ Cb(X). If φ1, φ2 ∈ C0(X) and ε > 0, then there are compact sets
K1,K2 such that for j = 1, 2 and x ∈ X\Kj, |φj(x)| < ε/2. Therefore,
for x in X\(K1 ∪ K2), |φ1(x) + φ2(x)| ≤ |φ1(x)| + |φ2(x)| < ε. Thus,
φ1 + φ2 ∈ C0(X). The proof of the rest of (a) is Exercise 8.

(b) Let {φn} be a sequence in C0(X) , and suppose f ∈ Cb(X) such that
φn → f . Let ε > 0, and choose N such that |φn(x) − f(x)| < ε/2
when n ≥ N . Let K = {x : |φN (x)| ≥ ε/2}. If x ∈ X\K, then
|f(x)| ≤ |f(x)− φN (x)|+ |φN (x)| < ε. Hence f ∈ C0(X).

(c) Let φ ∈ C0(X), and assume that φ(X) ⊆ [a, b]. If ε > 0, let K be a
compact set such that |φ(x)| < ε/2 when x /∈ K. Let G be an open set
with compact closure that contains K (Lemma 3.5.4), and let ψ : X →
[0, 1] be a continuous functionwith ψ(x) = 1 for x in K and ψ(x) = 0 for
x in X\G. So φ(x)ψ(x) = 0 when x ∈ X\G and, hence, φψ ∈ Cc(X).
Now |ψ(x)φ(x) − φ(x)| = 0 for x in K and is less than ε/2 when x /∈ G.
When x ∈ G\K, |ψ(x)φ(x) − φ(x)| ≤ |ψ(x)φ(x)| + |φ(x)| ≤ 2|φ(x)| < ε.
Hence, ρ(φ, ψφ) < ε, and we have that Cc(X) is dense in C0(X).

�
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When the locally compact space is metrizable, we get a bonus for the
functions that vanish at infinity.

Proposition 3.5.12. If (X, d) is a locally compact metric space, then every
function in C0(X) is uniformly continuous.

Proof. Let ε > 0, and put L = {x : |φ(x)| ≥ ε/2}; so L is compact.
Since X is locally compact, for every x in L there is an rx > 0 such that
clB(x; rx) is compact [Proposition 3.5.3(d)]. Let x1, . . . , xm ∈ L such that
L ⊆

⋃m
j=1 B(xj ; rxj ). Choose γ > 0 such that dist (x, L) ≤ γ implies

x ∈
⋃m

j=1 B(xj ; rxj ) (Exercise 1.4.7), and set K = {x : dist (x, L) ≤ γ}.
Note that K is compact since it is contained in

⋃m
j=1 clB(xj ; rxj ). If we only

consider φ as a function onK, it is uniformly continuous there; so there exists
δ1 such that |φ(x)−φ(y)| < ε when x, y ∈ K and d(x, y) < δ1. Choose a pos-
itive δ with δ < min{δ1, γ}. Let x, y ∈ X such that if x, y ∈ L, then it must
be that x, y ∈ K, and so |φ(x)− φ(y)| < ε. If x ∈ L but y /∈ L, then the fact
that d(x, y) < δ < γ implies that x, y ∈ K; hence, |φ(x)−φ(y)| < ε. If neither
point belongs to L, then |φ(x) − φ(y)| ≤ |φ(x)| + |φ(y)| < ε/2 + ε/2 = ε. �

We now turn our attention to embedding a locally compact space inside
a compact one. If the reader has seen § 3.4, that presents one way of doing
this since every locally compact space is completely regular. But here we
seek a simpler way, which, of course, does not possess all the properties of
βX but has other virtues—especially simplicity. The process is related to
Example 3.5.3(d). Specifically, if X = (0, 1], then the embedding will be into
[0, 1], which, as was pointed out in § 3.4, is far different than βX .

Before giving the definition, we prove a result that justifies it. But first,
let us take a moment to see how we add a single point to a given abstract
set X . What we want to do is just add it: we are given a set X and take
some abstract point—for lack of a better name we call it ∞—and we consider
the set X ∪ {∞}. If you are comfortable with that, go directly to the next
proposition and do not worry about the intervening material. If you are
bothered by taking the union of these two sets X and {∞} when they are not
both subsets of a common set, let us take a moment to allay your concerns.

There are many ways to do this, and all are equivalent. Here is one way.
First take two points anywhere—say, the points 0 and 1 in R—and look at
X × {0, 1}. Now fix a point y in X and consider the set Z = X × {0} ∪
{(y, 1)} ⊆ X ×{0, 1}. The set Z contains a copy of X , namely X ×{0}, and
Z\X is a single point, {(y, 1)}. So X ×{0} and X are identified, and we call
the point (y, 1) by the name ∞. Thus we have added a single point to X .

My advice is to be practical, abandon this formality, and just be direct.
Adopt the casual approach described previously. That is what we do in what
follows.

Proposition 3.5.13. If X is a locally compact space, then there is a compact
space X∞ having the following properties.
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(a) X ⊆ X∞ and X∞\X is a single point denoted by ∞;
(b) A subset U of X∞ is open if and only if the following two conditions

are satisfied: (i) U ∩X is open in X; (ii) if ∞ ∈ U , then X∞\U is a
compact subset of X;

(c) If φ ∈ C0(X) and we define φ̃ : X∞ → R by setting φ̃(x) = φ(x) when

x ∈ X and φ̃(∞) = 0, then φ̃ ∈ C(X∞). Conversely, if f ∈ C(X∞)

such that f(∞) = 0 and φ = f |X, then φ ∈ C0(X) and φ̃ = f .

Note that part (b) of the proposition says that the relative topology
that X has as a subset of X∞ is its original topology. Equivalently, X is
homeomorphically contained in X∞.

Proof. Let ∞ be an abstract point, and let X∞ = X ∪ {∞}. Let U be the
collection of all subsets U of X∞ that satisfy the condition stated in (b). We
leave it to the reader to verify that U is a topology on X∞ (including that it
has the Hausdorff property). Now to show that (X∞, U) is compact. If C is
an open cover of X∞, then there is a set U0 in the cover C such that ∞ ∈ U0.
By definition of the topology U , K = X∞\U0 is compact. Thus, there are sets
Un, . . . , Un in C such that X∞\U0 ⊆

⋃n
k=1 Uk. Therefore, {U0, U1, . . . , Un}

is the sought-after finite subcover of C, and we have established that X∞ is
compact. This proves parts (a) and (b) of the proposition.

To show that (c) holds is not difficult. If φ ∈ C0(X) and φ̃ is as in
(c), then for any open subset G of R that does not contain 0 we have that

φ̃−1(G) = φ−1(G), an open subset of X ; thus, φ̃−1(G) ∈ U . If r > 0, then

X∞\φ̃−1((−r, r)) = {x ∈ X : |φ(x)| ≥ r} is compact, so φ̃−1((−r, r)) ∈ U .
Thus, φ̃ is continuous on X∞. Now assume that f ∈ C(X∞) with f(∞) = 0,
and put φ = f |X . It is immediate from the definition of the relative topology
on X that φ ∈ Cb(X). On the other hand, for any ε > 0, the fact that
f(∞) = 0 implies that {x ∈ X : |φ(x)| ≥ ε} = X\f−1((−ε, ε)), which is

compact. Thus, φ ∈ C0(X). The fact that φ̃ = f is clear. �

Definition 3.5.14. If X is a locally compact space, the topological space
X∞ in the preceding proposition is called the one-point compactification of
X .

See Exercise 10.

Example 3.5.15. (a) The one-point compactification of R is homeomor-
phic to the circle {(x, y) ∈ R

2 : x2 + y2 = 1}. It is not [−∞,∞] because
this requires adding two points.

(b) The one-point compactification of (0, 1] is the closed unit interval. The
one-point compactification of (0, 1) is the circle.

(c) The one-point compactification of the plane is the sphere inR
3: {(x, y, z)

∈ R
3 : x2 + y2 + z2 = 1}.

The one-point compactification has many uses. For example, when we
want to prove something about a locally compact space, we can first prove
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it for compact spaces and then show that it holds for the open subset of a
compact space that results from removing a single point. In effect, that is
what was going on when we proved the analogues of Urysohn’s Lemma (The-
orem 3.5.5) and Tietze’s Theorem (Theorem 3.5.7) to locally compact spaces.
See Exercise 11.

Nevertheless, the only topological property we will investigate about the
one-point compactification is the question of when it is metrizable. That is,
when is there a metric on X∞ such that the topology defined by the metric
is the topology of X∞? (See the end of § 2.1.) As it turns out, we will
see that this question is related to another question that has importance.
Several necessary conditions are revealed after a few minutes’ thought. First
is that when X∞ is metrizable, then X is metrizable since the topology of
X is the relative topology it gets as a subspace of X∞. Second, if (X, d) is
a locally compact metric space and X∞ is metrizable, then the metric on X
will not necessarily be the restriction of the metric from X∞. For example, as
we pointed out in Example 3.5.15(a), the one-point compactification of R is
homeomorphic to the circle. For a compact metric space, the metric must be
bounded. That is, if (Z, η) is a compact metric space, then there is a constant
M such that η(z, w) ≤ M for all z, w in Z. So if X∞ is metrizable, then all
we can conclude is that the metric on X is equivalent (Definition 1.3.12) to
the metric it inherits from X∞. Finally, note that if X∞ is metrizable and η
is a metric on X∞ that defines its topology, then for any r > 0, X\B(∞; r) is
a compact subset of X since B(∞; r) is an open subset of X∞ that contains
∞. By taking r = 1/n, we see that X can be written as the union of a
sequence of compact sets. We isolate this property.

Definition 3.5.16. Say that a topological space X is σ-compact if it is the
union of a sequence of compact sets.

We note that Rq is σ-compact, as is every open subset of Euclidean space
(Exercise 16). If X is locally compact and σ-compact, then we can write X
as the union of compact sets Kn such that Kn ⊆ intKn+1 (Exercise 17).

The proof of the next theorem is long and complicated, though each step
is not so difficult. Just take it slow and understand each step. After going
through the proof once, go back over it and try to get the big picture. In
other words, first examine all the trees and then step back and look at the
forrest. You will be better off for the double effort. In this proof, we will see
our first significant use of a partition of unity (Corollary 3.5.11) and perhaps
begin to appreciate the power of this tool.

Theorem 3.5.17. If (X, d) is a locally compact metric space, the following
statements are equivalent.

(a) X∞ is metrizable.

(b) X is σ-compact.

(c) The metric space C0(X) is separable.
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Proof. (a) implies (b). This was already shown prior to the statement of
the theorem.

(b) implies (c). We write X =
⋃∞

n=1Kn, where each Kn is compact and
Kn ⊆ intKn+1 for all n ≥ 1 (Exercise 17). Find a decreasing sequence of
positive numbers {δn} such that {x : dist (x,Kn) < δn} ⊆ intKn+1. (How?)

For each n and each k ≥ n, let {B(ajnk; δk) : 1 ≤ j ≤ mnk} be open disks

with ajnk in Kn such that Kn ⊆
⋃mnk

j=1 B(ajnk; δk). Note that for k ≥ n this
union of open disks is a subset of intKn+1. As in Corollary 3.3.11, for each

n ≥ 1 and k ≥ n, let {φjnk : 1 ≤ j ≤ mnk} be continuous functions on X

with 0 ≤ φjnk ≤ 1, φjnk(x) = 0 for x /∈ B(ajnk; δk),
∑mnk

j=1 φ
j
nk(x) = 1 when

x ∈ Kn, and
∑mnk

j=1 φ
j
nk ≤ 1. Let M be the linear span of the functions

{φjnk : n ≥ 1, k ≥ n, and 1 ≤ j ≤ mnk} with coefficients from the rational
numbers Q. Note that M is a countable subset of Cc(X). We will show that
M is dense in Cc(X) and, hence, in C0(X) (Proposition 3.5.11).

Fix f in Cc(X), and let ε > 0; so there is an integer n such that f(x) = 0
when x /∈ Kn. Since f is uniformly continuous, there is a δ > 0 such that
|f(x) − f(y)| < ε/2 whenever d(x, y) < δ. Pick k ≥ n such that δk < δ.

For 1 ≤ j ≤ mnk let qjnk ∈ Q such that |qjnk − f(ajnk)| < ε/2. Hence,

g =
∑mnk

j=1 q
j
nkφ

j
nk ∈ M. Now fix x in Kn. Thus (reader: pay attention here

to how the partition of unity is used),

|f(x)− g(x)| =

∣∣∣∣∣∣
mnk∑
j=1

[f(x)− qjnk]φ
j
nk(x)

∣∣∣∣∣∣
≤

mnk∑
j=1

∣∣∣f(x)− f(ajnk)
∣∣∣φjnk(x) +

mnk∑
j=1

∣∣∣f(ajnk)− qjnk

∣∣∣φjnk(x)
≤

mnk∑
j=1

∣∣∣f(x)− f(ajnk)
∣∣∣φjnk(x) + ε/2.

Now when φjnk(x) �= 0, x ∈ B(ajnk; δk), and so
∣∣∣f(x)− f(ajnk)

∣∣∣ < ε/2. That

is, each term in the last sum is either 0 or, if not, smaller than ε/2. Thus,
the sum is dominated by

mnk∑
j=1

(ε/2)φjnk(x) = ε/2.

Inserting this inequality into the preceding one yields that |f(x) − g(x)| < ε

when x ∈ Kn. Suppose now that x ∈
[⋃mnk

j=1 B(ajnk; δk)
]
\Kn. So f(x) = 0.

If x ∈ B(ajnk; δk), then, by the uniform continuity condition on f ,
∣∣∣f(ajnk)∣∣∣ =∣∣∣f(ajnk)− f(x)

∣∣∣ < ε/2. Therefore,

|f(x)− g(x)| = |g(x)|
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≤
mnk∑
j=1

∣∣∣qjnk∣∣∣φjnk(x)
≤

mnk∑
j=1

[∣∣∣qjnk − f(ajnk)
∣∣∣+ ∣∣∣f(ajnk)∣∣∣]φjnk(x)

< (ε/2 + ε/2)

mnk∑
j=1

φjnk(x).

≤ ε

Finally, if x /∈
⋃mnk

j=1 B(ajnk; δk), then f(x) = 0 = g(x). Therefore, if ρ denotes

the metric on C0(X), then we have that ρ(f, g) < ε, and so M is dense in
C0(X).

(c) implies (a). Here is an outline of the proof, which will be followed
by the details. First note that when φ ∈ C0(X), ηφ(x, y) = |φ(x) − φ(y)|
is symmetric (ηφ(x, y) = ηφ(y, x)) and satisfies the triangle inequality. ηφ is
called a semimetric. Extending φ to X∞ by setting φ(∞) = 0 enables us to
see that ηφ defines a semimetric on X∞. Now using the fact that C0(X) is
separable we can use a countable dense subset of B = {φ ∈ C0(X) : |φ(x)| ≤
1 for all x} to generate a sequence of such semimetrics and sum them up to
get a true metric on X∞. We will then show that this metric defines the
topology on X∞. Now for the details.

Let {φn} be a countable dense sequence in the subset B of C0(X) defined
in the last paragraph, and define η(x, y) =

∑∞
n=1 2

−n|φn(x) − φn(y)| for all
x, y in X∞. Note that for x in X , η(x,∞) =

∑∞
n=1 2

−n|φn(x)| since φn(∞) =
0 for all n. Clearly, η(x, y) = η(y, x). If η(x, y) = 0, then φn(x) = φn(y)
for all n ≥ 1. Assume x �= y; provided x �= ∞, there is a function φ in
Cc(X) such that φ(x) = 1 and φ(y) = 0. (Why?) Let n ≥ 1 such that
ρ(φ, φn) <

1
2 . It follows that |φn(x)| > 1

2 and |φn(y)| < 1
2 . Thus, it cannot

be that η(x, y) = 0. We leave it to the reader to verify that the triangle
inequality holds for η so that it is a metric on X .

It remains to prove that this metric η on X∞ defines its topology. To
accomplish this, we will show that the inclusion map (X, d) → (X∞, η) is a
homeomorphism onto its image and that {x : η(x,∞) ≥ ε} is compact for
every ε > 0. (Are you clear that this will do the job?)

Claim. A sequence {xn} converges to x in (X∞, η) if and only if φk(xn) →
φk(x) for all k ≥ 1.

If xn → x in (X∞, η), then the fact that 2−k|φk(xn)− φk(x)| ≤ η(xn, x)
implies φk(xn) → φk(x) for all k ≥ 1. Now assume that φk(xn) → φk(x) for
all k ≥ 1, and let ε > 0. Choose m such that

∑∞
k=m

1
2k < ε/2, and choose

N such that for n ≥ N and 1 ≤ k ≤ m, |φk(xn)− φk(x)| < ε/2m. Thus, for



104 3. Continuous Real-Valued Functions

n ≥ N ,

η(xn, x) < ε/2 +

m∑
k=1

1

2k
ε

2m
< ε,

proving the claim.

Claim. The inclusion map (X, d) → (X∞, η) is a homeomorphism.

The first claim proves that if xn → x in X , then η(xn, x) → 0; that
is, the inclusion map (X, d) → (X∞, η) is continuous. For the converse,
suppose that η(xn, x) → 0, where x and xn belong to X for all n ≥ 1.
Suppose that {d(xn, x)} does not converge to 0; then there is an ε > 0 and
a subsequence {xnj} such that d(xnj , x) ≥ ε for all nj . We can assume

that ε is small, say ε < 1
2 . Using Theorem 3.5.5, there is a function φ in

Cc(X) such that 0 ≤ φ ≤ 1, φ(x) = 1, and φ(y) = 0 when d(y, x) ≥ ε/2.
Since {φk} is dense in B, there is a φk such that ρ(φk, φ) < ε/2. Hence,
|φk(xnj )| = |φk(xnj ) − φ(xnj )| < ε/2. On the other hand, 1 = φ(x) ≤
|φ(x)−φk(x)|+ |φk(x)| < ε/2+ |φk(x)|, and so |φk(x)| > 1− ε/2 > ε/2. This
contradicts the assumption that φk(xnj ) → φk(x), which, by the first claim,
contradicts the assumption that η(xn, x) → 0. This establishes the second
claim.

Claim. {x : η(x,∞) ≥ ε} is compact for every ε > 0.

Let ε > 0 and put K = {x ∈ X : η(x,∞) ≥ ε}. Suppose K is not
compact. For each n ≥ 1, put Kn = {x ∈ X : |φk(x)| ≥ 1

n for 1 ≤ k ≤ n}.
Since K is closed and each Kn is compact, it cannot be that K ⊆ Kn.
Therefore, there is a point xn in K such that xn /∈ Kn. That is, |φk(xn)| < 1

n
for 1 ≤ k ≤ n. This says that for every k ≥ 1, limn φk(xn) = 0. According to
the first claim, this implies that xn → ∞ or that η(xn,∞) → 0. Since each
xn ∈ K, this is a contradiction. Therefore, K must be compact.

This completes the proof. �
Corollary 3.5.18. If X is a compact topological space, then C(X) is sepa-
rable if and only if X is a compact metric space.

Proof. The fact that X is a compact space implies X = X∞. Thus, the
corollary is immediate from the theorem. �

Exercises

(1) Show that X = {(0, 0)} ∪ {(x, y) : x > 0, y ∈ R} with the relative
topology from R

2 is not locally compact. So an arbitrary subset of a
locally compact space is not necessarily locally compact.

(2) (a) Show that a dense subset of a locally compact space is locally com-
pact if and only if it is open. (This gives another proof that Q is not
locally compact.) (b) Show that a subset E of a locally compact space
X is locally compact if and only if E = A\B, where both A and B are
closed subsets of X .
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(3) Finish the proof of Proposition 3.5.3(b).

(4) Finish the proof of Proposition 3.5.3(c).

(5) Give the details of the proof of Proposition 3.5.3(d).

(6) Prove the Baire Category Theorem for locally compact spaces.

(7) If X is a locally compact space, K is a compact subset, G is an open
set with K ⊆ G, and f ∈ Cb(X) with a ≤ f(x) ≤ b for all x in X , then
there is a continuous functionF : X → [a, b] such that F (x) = f(x) for
all x in K and F (x) = 0 when x /∈ G.

(8) Complete the proof of Proposition 3.5.11(a).

(9) If X is a locally compact space and f, g ∈ C0(X), show that f ∨ g
and f ∧ g ∈ C0(X). Similarly, if f, g ∈ Cc(X), show that f ∨ g and
f ∧ g ∈ Cc(X).

(10) Phrase and prove a proposition that shows that the one-point compact-
ification of a locally compact space is unique up to a homeomorphism.

(11) If X is a locally compact space, use the one-point compactification
of X to give proofs of Theorems 3.5.5 and 3.5.7 as a consequence of
Urysohn’s Lemma and the Tietze Extension Theorem.

(12) What is the one-point compactification of Rq?

(13) Describe the one-point compactification of N by finding a subset of
R that is homeomorphic to it.

(14) Let I be any nonempty set, and for each i in I let Xi be a copy of
R with the metric di(x, y) = |x − y|. Let X be the disjoint union of
the sets Xi. (That is a verbal description that can be used in any
circumstance, but if you want precision, you can say X = R × I, the
cartesian product, where I has the discrete topology.) Define a metric
on X by letting d agree with di on each Xi; and when x ∈ Xi, y ∈ Xj ,
where i �= j, then define d(x, y) = 1. (a) Show that d is indeed a metric
on X . (b) Show that {Xi : i ∈ I} is the collection of components of X
and each of these components is an open subset of X . (c) Show that
(X, d) is separable if and only if I is a countable set.

(15) Consider the metric space (X, d) defined in Exercise 14, and assume
that I is not countable. (a) Show that (X, d) is locally compact. (b)
Show that (X, d) is not σ-compact and, hence, X∞ is nonmetrizable.
(c) Find an infinite subset A of X such that ∞ is in the closure of A in
X∞ but no sequence of points from A converges to ∞ in the one-point
compactification.

(16) If X is a locally compact, σ-compact topological space, show that every
open subset and every closed subset with the relative topology is also
σ-compact. [See Proposition 3.5.3(b).]

(17) Assume that X is locally compact and σ-compact. (a) Show that we
can write X as the union of compact sets Kn such that Kn ⊆ intKn+1.
(b) Show that there is a sequence of functions {φn} in Cc(X) such that
for every φ in C0(X), φnφ→ φ in the metric of C0(X).



106 3. Continuous Real-Valued Functions

(18) If X is locally compact, show that X is σ-compact if and only if there
is a function φ in C0(X) such that X = {x : φ(x) �= 0}.

3.6. Ordinal Numbers*

The purpose of this short section is to introduce two topological spaces that
are very useful for constructing examples. The building of these spaces relies
on the concept of an ordinal number. For a precise exposition of this topic
the reader is referred to [4] and to the appendix of [6]. There are many other
sources. The approach here is to outline the definition of ordinal numbers
and then state the basic properties needed for the progress of this section.
We omit the proofs of those properties that would take us too far from our
main objective. The reader can take these unproven statements as axioms or
consult the references for the proofs.

The definition of ordinal numbers is similar to that of cardinal numbers.
We consider all well-ordered sets, that is, a linearly ordered set (§A.4) (S,≤)
such that if E is a nonempty subset of S, then E contains a least element.
Say that two such sets are equivalent if there is an order isomorphism be-
tween them; that is, there is a bijection between the two sets that preserves
the order. An ordinal number is an equivalence class of such sets. (There
are some logical problems here in considering the collection of all such sets.
Nevertheless, ignoring such problems will not cause any difficulty for us. If
you want to delve into this, consult a friendly logician.) If two well-ordered
sets are equivalent, then we may say that they have the same order type.

It is not difficult to give examples of such sets. Every finite set is easily
made into a well-ordered set, and no matter how we do this, two finite,
well-ordered sets are equivalent if and only if they have the same number of
elements. The set N is a well-ordered set, but Z and R with their natural
ordering are not. (Why?) Other examples of well-ordered sets are {1 − 1

n :

n ∈ N}∪{1}, {2− 1
n : n ∈ N}∪{2}, {1− 1

n : n ∈ N}∪{2− 1
n : n ∈ N}∪{1, 2},

and {m− 1
n : m,n ∈ N} ∪ N, with the order they have as subsets of R.

For the rest of this section we only consider well-ordered sets (S,≤).
We might pause to look at these examples and observe that nonempty

subsets of a well-ordered set do not always contain a largest element even
though they contain a smallest one. Nevertheless, we want to define supE
for a nonempty subset E of S. When {y ∈ S : y ≥ x for all x ∈ E} = ∅,
this is not possible, as a moment’s reflection will show. When this is not the
case, however, we define supE as the smallest element in the set {y ∈ S :
y ≥ x for all x ∈ E}. What we just observed prior to this definition is that
when supE exists, it may not belong to E. We will denote the always extant
smallest element of E as inf E or minE.

We note that the sets {1− 1
n : n ∈ N}∪{1} and {2− 1

n : n ∈ N}∪{2} have
the same order type, while {1− 1

n : n ∈ N}∪{1} and {1− 1
n : n ∈ N}∪{2− 1

n :
n ∈ N} ∪ {1, 2} do not. While the positive of these two statements is easy to
see and the negative one is intuitively clear, one way to prove the negative
statement is as follows.
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We give a well-ordered set (S,≤) the order topology (Exercise 2.2.5).
In this situation the order topology on S is Hausdorff. In fact, if x < y
in S, then U = {z ∈ S : z < y} and V = {z ∈ S : x < z} are disjoint
open sets, x ∈ U and y ∈ V . Now note that an order isomorphism between
two well-ordered sets is a homeomorphism when they are given their order
topology. Since the set {1 − 1

n : n ∈ N} has one limit point while the set

{1− 1
n : n ∈ N} ∪ {2− 1

n : n ∈ N} has two, they cannot have the same order
type.

When we have a well-ordered set (S,≤), we will often refer to its elements
as ordinals. In fact, if x ∈ S, then the set {y ∈ S : y ≤ x} is a well-ordered
set and we can take x as its order type. The last paragraph illustrates that
there are two distinct types of ordinals in (S,≤): limit ordinals and nonlimit
or discrete ordinals. Say that x is a limit ordinal in (S,≤) precisely when
it is a limit point in the order topology. Using the order this means x is a
limit ordinal if and only if for any y in S with y < x there is a z in S with
y < z < x. Say that x is a discrete ordinal when it is not a limit point in the
order topology or, equivalently, when it is an isolated point of the topological
space. Thus, x is a discrete ordinal if and only if the singleton {x} is an
open set. Using the order, this means that x is a discrete ordinal if and only
if there is a y < x such that (y, x) = ∅; in other words, x has an immediate
predecessor in the order. We denote the immediate predecessor by x− 1.

Some additional notation is useful. In (S,≤), if a ≤ b, we will give the
sets (a, b), [a, b], (a, b], and [a, b) their obvious meaning. Also, if x ∈ S and
{y ∈ S : x < y} �= ∅, then this set has a least element and we denote it by
x+ 1. That is, x+ 1 is the first element in S bigger than x.

It is also true that the set of ordinal numbers is itself a well-ordered
set—a fact that needs a proof that will not be given here. If we consider
all the ordinal numbers that are uncountable, then it follows that there is a
least such ordinal number and we denote it by Ω. (Giving an example of an
uncountable ordinal is difficult. It can be shown that there is a well ordering
of R, but that is very difficult. Another example is the set of all countable
ordinals.) The number Ω is called the first uncountable ordinal.

The spaces [0,Ω] of all ordinal numbers that are less than or equal to
Ω and [0,Ω) of all countable ordinals, as topological spaces, are the object
of study in this section. We record some fundamental order properties of
[0,Ω] and [0,Ω).

Proposition 3.6.1. (a) The spaces [0,Ω] and [0,Ω) are uncountable, well-
ordered spaces such that if x ∈ [0,Ω), then {y ∈ [0,Ω] : y ≤ x} = {y ∈
[0,Ω) : y ≤ x} is a countable set.

(b) If ∅ �= E ⊆ [0,Ω], then supE ∈ [0,Ω].
(c) If E is a countable subset of [0,Ω), then supE < Ω.

The spaces [0,Ω] and [0,Ω) have many interesting topological properties.
We begin with some of the most basic.
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Proposition 3.6.2. (a) The collection of sets {(a, b] : a, b ∈ [0,Ω] and a <
b} is a base for the topology of [0,Ω].

(b) The collection of sets {(a, b] : a, b ∈ [0,Ω) and a < b} is a base for the
topology of [0,Ω).

(c) If {xn} is an increasing sequence in [0,Ω] and x = sup{xn}, then xn →
x in the order topology.

(d) A subset F of [0,Ω) is closed if and only if it is sequentially closed.

Proof. The proofs of (a) and (b) are similar, and we only prove (b). Note
that when a < b, then (a, b] = (a, b + 1), so each set in B = {(a, b] : a, b ∈
[0,Ω) and a < b} is open in [0,Ω). Now assume G is an open set in [0,Ω) and
x ∈ G. Since the order intervals {(a, b) : a, b ∈ X and a < b} form a
base for the topology (Exercise 2.2.5), there is one such interval such that
x ∈ (a, b) ⊆ G. But then x ∈ (a, x] ⊆ G.

(c) If G is a neighborhood of x, then by (a) there is a point a with a < x
such that (a, x] ⊆ G. From the definition of supremum there is an integer
N such that xn > a when n ≥ N . Thus xn ∈ G for all n ≥ N , proving the
statement.

(d) Since one implication is obvious, it is only required to show that F is
closed when it is sequentially closed. Let x ∈ clF . If x is a discrete ordinal,
then {x} is open, and it follows that x ∈ F . Assume that x is a limit ordinal
and G is a neighborhood of x. By (b), there is a point a < x such that
(a, x] ⊆ G. By Proposition 3.6.1(a), (a, x) is a countable set; thus, we can
find a sequence {xn} in (a, x) such that xn < xn+1 and x = supxn. (Why?)
By (c), xn → x. Thus, x ∈ F . �
Theorem 3.6.3. The following conditions hold.

(a) [0,Ω] is a compact topological space.
(b) A subset of [0,Ω) is compact if and only if it is closed and order bounded.
(c) [0,Ω) is locally compact but not compact.
(d) [0,Ω) is a normal space.

Proof. We begin this proof by establishing the following claim.

Claim. If a < b < Ω, then [a, b] is compact.

From the properties of the ordinal numbers we know that [a, b] is a count-
able set, so any open cover of [a, b] has a countable subcover. Thus, we
need only show that a countable open cover G = {Gn : n ∈ N} of [a, b]
has a finite subcover. Suppose G has no finite subcover; then for each n in
N we have that Fn = [a, b]\

⋃n
k=1Gk �= ∅. If xn = inf Fn, then xn ∈ Fn.

Also, Fn+1 ⊆ Fn. (Why?) So for n ≥ N , xn ∈ FN and xn ≥ xN . If
x = supxn, then it follows that x ∈ [a, b] and x ∈ Fn for all n in N. That
is, x ∈ [a, b] ∩

⋂∞
n=1 Fn = [a, b]\

⋃∞
n=1Gn, contradicting the fact that G is a

cover of [a, b].

(a) Using Proposition 2.4.5 we need only show that every cover by sets from
the base of the topology has a finite subcover. If G is an open cover
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of [0,Ω] by basic open sets of the form (a, b], fix (a0,Ω] in G. Now
[0,Ω]\(a0,Ω] = [0, a0], and the claim says that this latter set is compact.
Thus, we can find a finite number of sets in G that cover [0, a0], and,
together with (a0,Ω], this provides the sought-after finite subcover of G.
Thus, [0,Ω] is compact.

(b) If K is closed and bounded in [0,Ω), then there are a < b < Ω such
that K ⊆ [a, b]. Using the claim we have that K is a closed subset of a
compact set.

(c) If x ∈ [0,Ω), then each set (a, x] is a neighborhood of x, which, by the
claim, has compact closure.

(d) Suppose A and B are two disjoint closed sets in [0,Ω). For each a in A
put ba = sup{b ∈ B : b < a}. Note that (ba, a] is an open neighborhood
of a that is disjoint from B. Thus, if U =

⋃
{(ba, a] : a ∈ A}, then U

is an open set, A ⊆ U , and U ∩ B = ∅. Similarly for each b in B put
ab = sup{a ∈ A : a < b}, so that ab ∈ A, and if V =

⋃
{(ab, b] : b ∈ B},

then V is an open set that contains B and is disjoint from A. Now to
show that U ∩ V = ∅. In fact, if this is not the case, then there is an a
in A and a b in B such that (ba, a] ∩ (ab, b] �= ∅. Let c ∈ (ba, a] ∩ (ab, b];
so ba < c ≤ a and ab < c ≤ b. Now either b < a or a < b. If b < a, then,
by the definition of ba, we have that b ≤ ba < c ≤ a. Since we also have
that ab < c ≤ b, we have a contradiction. Similarly, the assumption that
a < b leads to a contradiction. Thus, U ∩ V = ∅.

�

Now for a truly surprising fact about [0,Ω).

Proposition 3.6.4. If f : [0,Ω) → R is a continuous function, then there is
a point a in [0,Ω) such that f is constant on {x ∈ [0,Ω) : x ≥ a}.

Proof. We assume the proposition is false and establish the following claim.

Claim. For every n ≥ 1 there is an an in [0,Ω) such that whenever x > an,
we have that |f(x)− f(an)| < 1

n .

If this claim is false, then it follows that there is an n0 ≥ 1 such that
for every z in [0,Ω) there exists an x > z with |f(x) − f(z)| ≥ 1/n0. We
now define a sequence x0, x1, . . . inductively. Let x0 = 0. If we have xn for
some n ≥ 0, let xn+1 = inf{x ∈ (xn,Ω) : |f(x) − f(xn)| ≥ 1/n0}, where we
know this set is nonempty because we assumed the claim was false. Note
that xn < xn+1 and, because f is continuous, |f(xn+1) − f(xn)| ≥ 1/n0. It
follows that c = supn xn < Ω [Proposition 3.6.1(c)] and xn → c. Again using
the continuity of f , f(xn) → f(c), and so {f(xn)} is a Cauchy sequence. But
we have that |f(xn+1)− f(xn)| ≥ 1/n0, contradicting the Cauchy condition.
This establishes the claim.

If {an} is the sequence whose existence is given by the claim, then put
a = supn an; again, a < Ω and an → a. But for any x in [a,Ω) we have
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that x > an, and so |f(x) − f(an)| < 1
n . Since f(an) → f(a), we have that

f(x)− f(a)| = 0. That is, f(x) = f(a) for all x ≥ a. �

Corollary 3.6.5. If f : [0,Ω) → R is a continuous function, then f is
bounded.

Corollary 3.6.6. The Stone–C̆ech compactification of [0,Ω) is the space
[0,Ω], which is also its one-point compactification.

Proof. By the proposition every f in C([0,Ω)) = Cb([0, ω)) is eventually

constant. Thus letting f̃(Ω) be this constant implies that this gives a contin-

uous extension of f̃ to [0,Ω]. Thus, β[0,Ω) = [0,Ω] by the uniqueness part
of Theorem 3.4.1. �

3.7. Paracompactness

The definition of paracompactness requires two preliminary concepts.

Definition 3.7.1. If X is a topological space and S is a collection of subsets
of X , then S is locally finite if for each x in X there is a neighborhood U of
x such that U meets only a finite number of sets in S. If S and D are two
collections of subsets of X , then D is said to be a refinement of S if each D
in D is contained in some set S that belongs to S.

Let us underline a few points about this last definition. First, the sets
in S and D are not assumed open or closed and neither is assumed to be
a cover of X . Most of the time when we use the concepts of locally finite
and refinement we will be discussing open covers, but there will be times,
especially as we develop this topic, when we want extra leeway.

Note that every finite collection of sets is locally finite and a subcollection
of S is a refinement of S. Also, if D is a refinement of S and E is a refinement
of D, then E is a refinement of S.

Definition 3.7.2. A topological space X is paracompact if for every open
cover C of X there is an open cover D of X that is locally finite and a
refinement of C.

Example 3.7.3. (a) Every compact space is paracompact.
(b) If X can be written as the pairwise disjoint union of open subsets {Gi :

i ∈ I} such that each Gi with its subspace topology is paracompact,
then X is paracompact. In fact, if C is an open cover of X and Di =
{C ∩ Gi : C ∈ C, i ∈ I}, then Di is a cover of Gi and a refinement of
C. Since Gi is paracompact, there is an open cover Ei of Gi that is a
locally finite refinement of Di. If E =

⋃
i Ei, then it can be verified (do

it) that E is a cover of X that is a locally finite refinement of D =
⋃

i Di

and, hence, of the original cover C.

We will see many more examples as we progress. You can interpret para-
compactness as a generalization of compactness. This will become amplified



3.7. Paracompactness 111

as we progress. Far less apparent is that paracompactness is a generalization
of metrizability. In fact, we have some work to do before this becomes even
a meaningful comment, let alone a verifiable one.

Proposition 3.7.4. If X is paracompact and F is a closed subset of X, then
F is paracompact.

Proof. If D is an open cover of F , then C = D ∪ {X\F} is an open cover of
X . Thus, there is a locally finite open cover of X , C1, that is a refinement of
C. If D1 = {U ∈ C1 : U ∩ F �= ∅}, then it can be verified that D1 is a locally
finite refinement of D that covers F . �

An open subset of a paracompact space is not necessarily paracompact.
In fact, the space [0,Ω] (§ 3.6) is compact, [0,Ω) is an open subset, but
[0,Ω) is not paracompact (Example 3.7.13).

Proposition 3.7.5. A paracompact space is normal.

Proof. Assume X is a paracompact topological space. This proof proceeds
in stages. We first show that X is regular and then use this to show it is
normal.

To show that X is regular, we will use Proposition 3.2.2 and show that
if F is a closed subset of X and c /∈ F , then there is an open set V such
that F ⊆ V and c /∈ clV . To see this, use the fact that X is Hausdorff to
obtain that for every point x in F there is a neighborhood Gx of x such that
c /∈ clGx (Exercise 2.1.7). Thus, {Gx : x ∈ F} is an open cover of F . By the
preceding proposition, there is an open cover U of F that is a locally finite
refinement of {Gx : x ∈ F}. Put V =

⋃
{U : U ∈ U}. Note that V is an

open set that contains F . Exercise 1 implies that since U is locally finite,
clV =

⋃
{clU : U ∈ U}, something that is far from true for arbitrary unions.

By the refinement property, for each U in U there is an x in F such that
U ⊆ Gx. Since c /∈ clGx, c /∈ clU ; hence we have that c /∈ clV .

We now prove that X is normal. By Proposition 3.3.2, it suffices to
show that if A and B are disjoint closed sets, then there is an open set V
such that B ⊆ V and A ∩ clV = ∅. For each b in B the regularity of X
implies there is an open set Ob such that b ∈ Ob ⊆ clOb ⊆ X\A. Let U be
a locally finite refinement of the open cover {Ob : b ∈ B} of B, and put
V =

⋃
{U : U ∈ U}; clearly, B ⊆ V . As in the preceding paragraph, it

follows that clV =
⋃
{clU : U ∈ U}; and, since A ∩ clOb = ∅ for every b in

B, it follows that A ∩ clU = ∅ for every U in U and so A ∩ clV = ∅. �

See Example 3.7.13 below for a normal space that is not paracompact.
The next result can be found in [7], and some extensions appear in [8].
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Theorem 3.7.6 (Michael’s5 Theorem). If X is a regular topological space
such that every open cover of X has a refinement cover A that can be written
as A =

⋃∞
n=1 An, where each An is a locally finite collection, then X is

paracompact.

The proof requires a few lemmas, but before we start that process, a few
remarks about the condition and the nature of the result would be helpful.
First, note that, even though we started with an open cover of X , the collec-
tions An are not required to be covers, nor are the sets in them required to
be open; A, however, is required to be a cover. Second, since the refinement
A is not required to be locally finite but only the countable union of locally
finite collections, this builds even more flexibility into the condition. It is
this lack of restrictions that gives the theorem merit. This result does not
give insight into the structure of paracompact spaces but rather provides us
a tool for showing that a space is paracompact. Finally, the reader may have
observed that the condition here is far weaker than the stated definition, so
that we could have stated this as a necessary and sufficient condition for
paracompactness. Later we will use this theorem to give several important
examples of classes of paracompact spaces.

Here is the first lemma, whose purpose here is to facilitate the proof of
the second lemma.

Lemma 3.7.7. If X is a topological space such that every open cover of X
has a locally finite closed cover that is a refinement, then X is paracompact.

Proof. Let G be an open cover of X . By hypothesis, there is a closed cover
refinement F = {Fi : i ∈ I} of G that is locally finite. By the definition
of locally finite, for each x in X there is a neighborhood Wx of x such that
Wx ∩ Fi �= ∅ for only a finite number of the closed sets Fi in F . Note that
W = {Wx : x ∈ X} is an open cover of X . Once again, apply the hypothesis
to obtain a closed cover C that is locally finite and a refinement of W . Now
for each Fi define

Vi = X\
⋃

{C : such that C ∈ C and C ∩ Fi = ∅}.

By Exercise 1, Vi is open. Moreover, Fi ⊆ Vi (Verify!), so it follows that
V = {Vi : i ∈ I} is an open cover of X .

Claim. V is a locally finite open cover.

To see this, examine what it means to have a C in C such that Vi∩C �= ∅.
In fact, from the definition of Vi this can only happen when Fi ∩C �= ∅. On
the other hand, each C in C is contained in someWx; since eachWx intersects
only a finite number of the sets in F , C can intersect only a finite number

5Ernest Michael was an American mathematician who was born in Zurich in 1925. He spent
most of his career at the University of Washington, where he published over 100 papers, focusing
his research efforts on an examination of paracompactness. Many of the deepest results on this
topic are due to him. Besides this theorem, he is well known as the author of the Michael
Selection Theorem. He produced five doctoral students. He died in Seattle in 2013.
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of Fi. Because C is a locally finite cover of X , this implies V is locally finite.
Now we need to adjust the sets in V to obtain a locally finite open refinement
of the original cover G; this is not hard. For each i in I consider Vi and the
corresponding Fi in the closed locally finite cover. Recall that Fi ⊆ Vi. Since
F is a refinement of G, there is a set Gi in G with Fi ⊆ Gi. Look at the
collection of open sets U = {Vi∩Gi : i ∈ I}. This is an open cover since each
Fi ⊆ Vi ∩Gi, and it is locally finite by the claim. Clearly U , from the way it
was defined, is a refinement of G, so this completes the proof. �

Lemma 3.7.8. If X is a regular topological space such that for every open
cover G of X there is a cover C that is a locally finite refinement of G, then
X is paracompact, even though it is not required that C contain either open
or closed sets.

Proof. Let G be an open cover of X . By the previous lemma we need only
show that there is a refinement of G by a closed locally finite cover. For x in
X , let Gx ∈ G such that x ∈ Gx. Since X is regular, there is a neighborhood
Vx of x with clVx ⊆ Gx. Thus, V = {Vx : x ∈ X} is an open cover that
refines G. V itself may not be locally finite, but, according to the hypothesis,
there is a cover C that is a locally finite refinement of V . Now Exercise 2
implies that F = {clC : C ∈ C} is also locally finite. But if C ∈ C, then
there is a Vx in V with C ⊆ Vx. Thus, clC ⊆ clVx ⊆ Gx, so that F is a
locally finite closed cover that is a refinement of the original open cover G.
By the preceding lemma, X is paracompact. �

Proof of Michael’s Theorem. For an open cover G of X let A =
⋃∞

n=1 An

be a cover of X , where each An is a locally finite collection of subsets of X
and such that A is a refinement of G. By the last lemma, to show that X is
paracompact, we need only show that A has a locally finite refinement cover
by not necessarily open sets.

For each n ≥ 1 let

Bn =
⋃

{A : A ∈ An}.

Put B0 = ∅; since A is a cover, so is {Bn : n ≥ 1}. Let
Cn = Bn\Bn−1.

Note that: (1) {Cn : n ≥ 1} is a cover of X since {Bn : n ≥ 1} is; (2) the
sets C1, C2, . . . are pairwise disjoint; (3) Cn ⊆ Bn. Let

D = {A ∩ Cn : n ≥ 1 and A ∈ An}.
If x ∈ X , let n be the smallest integer such that there is a set A in An

that contains x. Thus, n is the smallest integer such that x ∈ Bn, and it
follows that x ∈ Cn. Hence, D is a cover of X . Clearly, D is a refinement of
A. Let x ∈ X , and again let n be the smallest integer such that there is a set
A in An that contains x. Since An is locally finite, there is a neighborhood U
of x that meets only a finite number of sets in An. Since the sets C1, C2, . . .
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are pairwise disjoint, this says that U meets only a finite number of the sets
in D. That is, D is locally finite. By Lemma 3.7.8, X is paracompact. �
Corollary 3.7.9. If X is a regular topological space and X =

⋃∞
n=1Xn where

each Xn is paracompact, then X is paracompact.

Proof. If G is an open cover of X , then Gn = {G ∈ G : G ∩Xn �= 0} is an
open cover of Xn. Since Xn is paracompact, there is an open cover An of Xn

that is a refinement of Gn. If A =
⋃∞

n=1 An, then A satisfies the condition in
Michael’s Theorem. �
Corollary 3.7.10. A separable metric space is paracompact.

Proof. If (X, d) is separable and {a1, a2, . . . } is a dense subset, let {r1, r2, . . . }
be an enumeration of the rational numbers in the open unit interval. So every
open subset of X is the union of a collection of balls B = {B(an; rm) : n,m ≥
1} (Corollary 2.2.4). Let G be an open cover of X . There is a countable
subfamily A of B such that each open set G in G is the union of sets from
some subcollection of A. By letting A =

⋃∞
n=1 An, where each An consists of

a single element, Michael’s Theorem implies that (X, d) is paracompact. �
It turns out that every metric space is paracompact. This is a theorem

of Stone [12]. A simplified proof was found by Rudin [10]. Rudin’s proof is
indeed simple, but it uses the well-ordering principle, which I decided was
something that in a course for this audience was not worth the exposition
because we would not use it again. If you wish to learn about well ordering,
then, with that under your belt, Rudin’s paper is easily readable. The fact
that separable metric spaces are paracompact (but with a different proof)
was discovered by Dieudonné [3]. In fact, it was in this same paper that
the concept of paracompactness was introduced and many properties were
established.

Recall the definition of a σ-compact space given in the last section. Here
is another consequence of Michael’s Theorem.

Corollary 3.7.11. If X is a regular σ-compact topological space, then X is
paracompact.

Theorem 3.7.12. If X is locally compact, then X is paracompact if and
only if X =

⋃
{Xi : i ∈ I}, where the sets {Xi} are pairwise disjoint open

σ-compact subsets.

Proof. Assume X =
⋃
{Xi : i ∈ I}, as in the stated condition. Since X is

locally compact, it is regular (Corollary 3.5.6). Thus, each Xi is paracom-
pact by the preceding corollary. The fact that X is paracompact follows by
Example 3.7.3(b).

Now assume X is paracompact. By first applying the fact that X is
locally compact and then that it is paracompact, we have the existence of
an open cover U of X that is locally finite and such that clU is compact for
each U in U . (Verify!)
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Claim. There is a subset C of X such that: (i) C is simultaneously open
and closed; (ii) C is σ-compact.

We establish this claim by showing that there is a sequence of open
subsets {Gn} satisfying: (a) clGn ⊆ Gn+1 for each n ≥ 1; (b) each clGn is
compact; (c) each Gn is the union of a finite number of sets from U . This
is done by induction. For G1 take any set from U . Now assume that we
have G1, . . . , Gn satisfying (a), (b), and (c). Since U is an open cover, there
are sets U1, . . . , Um in U such that clGn ⊆

⋃m
k=1 Uk; let Gn+1 =

⋃m
k=1 Uk.

Clearly (a), (b), and (c) hold.
Now put C =

⋃∞
n=1Gn. By the nature of the sets Gn, C is open and

σ-compact. But since each Gn is the union of a finite number of sets from
U and U is locally finite, we have that the collection {G1, G2, . . . } is locally
finite. By Exercise 1, clC =

⋃∞
n=1 clGn ⊆

⋃∞
n=1Gn = C, so C is also closed.

This establishes the claim.
To finish the proof, we use Zorn’s Lemma (Theorem A.4.6). Let C be

the collection of all σ-compact subsets C that are simultaneously open and
closed in X . By the claim, C �= ∅. Now let W be the collection of all subsets
S of 2X satisfying: (i) S ⊆ C; (ii) if C1, C2 ∈ S and C1 ∩ C2 �= ∅, then
C1 = C2. Order W by inclusion. Since C �= ∅, W �= ∅. If B is a chain in W ,
put S0 =

⋃
{S : S ∈ B}. Clearly, S0 ⊆ C and, since B is a chain, condition

(ii) of the definition of W is also satisfied by S0. Thus, Zorn’s Lemma implies
there is a maximal Sm in W .

We want to show that
⋃
{C ∈ Sm} = X . If this is not the case, then

∅ �= Y = X\
⋃
{C ∈ Sm}. Now Y is a closed subset of X and, therefore, is

paracompact. Y is also an open set since Sm is a locally finite collection, so
that cl (X\Y ) = cl

⋃
{C ∈ Sm} =

⋃
{clC ∈ Sm} =

⋃
{C ∈ Sm} = X\Y .

According to the claim, there is a set C0 in C such that C0 ⊆ Y . Thus,
Sm ∪ {C0} ∈ W and is properly larger than Sm, a contradiction. Therefore,
X =

⋃
{C ∈ Sm}, and the proof is complete. �

Example 3.7.13. The space [0,Ω) (§ 3.6) is not paracompact, though it is
normal [Theorem 3.6.3(d)]. (See Exercise 4; the faint of heart can find this
in [4], page 163, Example 3.)

Recall Theorem 3.3.10, where we proved that when we have a finite open
cover of a normal space, we have a continuous partition of unity. Here we
extend this to infinite covers, but we need to assume that the underlying space
is paracompact. In a sense, it is the existence of partitions of unity as stated
in Theorem 3.7.17 below that brings about our interest in paracompactness.

Definition 3.7.14. If X is a topological space, then a partition of unity is a
collection of continuous functions {φi : i ∈ I} having the following properties.

(a) φi : X → [0, 1] for all i in I.
(b) The collection of sets {{x ∈ X : φi(x) > 0} : i ∈ I} is a locally finite

open cover of X .
(c) For every x in X ,

∑
i φi(x) = 1 (see below).
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If G is an open cover of X , then we say that this partition of unity is sub-
ordinate to the cover G if the open cover {{X ∈ X : φi(x) > 0} : i ∈ I} is a
refinement of G.

We need to say a word about condition (c) in the definition. Note that
for any x in X condition (b) implies that there is only a finite number of
indices i in I such that φi(x) �= 0. So the sum in (c) is actually a finite sum.
Even more dramatic, there is a neighborhood U of x such that U ∩ {x ∈ X :
φi(x) > 0} �= ∅ for only a finite number of i in I. This last, more dramatic,
version will be useful when we apply partitions of unity.

How do we apply partitions of unity? That is a bit difficult to state
in the abstract, but they are a means of putting together local results to
obtain a global result. (Do not try to understand in detail that statement
or what follows; just try to get the spirit of it.) For example, we might
find that in a neighborhood of every point we can manufacture a continuous
functionwith a certain property. The collection of all these neighborhoods
constitutes an open cover of X . Then, assuming the underlying topological
space X is paracompact and using Theorem 3.7.17 below, we manufacture a
partition of unity {φi} subordinate to this cover. Multiplying each φi by the
manufactured continuous function fi for the neighborhood {x ∈ X : φi(x) >
0}, we form

∑
i φifi to get a continuous function defined on all of X that has

the property we have been seeking. (Again we use local finiteness to get that∑
i φifi is actually a finite sum near each point and is therefore a continuous

function.)
Before stating the theorem we seek, we state a pair of lemmas needed for

its proof.

Lemma 3.7.15. If X is paracompact and U is a locally finite open cover of
X, then for every U in U there is an open set WU such that clWU ⊆ U and
{WU : U ∈ U} is a locally finite open cover of X.

Proof. Let A be the collection of all open sets A such that A ∩ U �= ∅ for
only a finite number of the sets U in U and clA is contained in at least one
of these sets U . At this point it is not transparent that A is a nonempty
collection. We will establish this and much more in what follows.

Claim. A is an open cover of X .

Fix an x in X . Since U is locally finite, there is a neighborhood G of x
such that {U ∈ U : x ∈ G ∩ U} = {U1, . . . , Un}. Thus, G ∩

⋂n
k=1 Uk is an

open set that contains x. Since X must be normal (Proposition 3.7.5), there
is an open set A with x in A and such that clA ⊆ G∩

⋂n
k=1 Uk. A ∈ A, and

this establishes the claim.
Now take a locally finite refinement V of A. Temporarily fix a V in V ;

since V is a refinement of A, there is an A in A with V ⊆ A. By the definition
of A, there must be a set U in U such that clV ⊆ U . Thus, for every U in
U we can define the nonempty open set

WU =
⋃

{V ∈ V : clV ⊆ U}.



3.7. Paracompactness 117

Let W = {WU : U ∈ U}. We must show that W is a locally finite open cover
of X . First, from the definition ofWU we see that each V in V is contained in
someWU ; since V is a cover, so is W . Also, sinceWU ⊆ U , W is a refinement
of U . To see that W is locally finite, let x ∈ X and choose a neighborhood G
of x that meets only a finite number of the sets U in U . But if G ∩WU �= ∅,
then G ∩U �= ∅; hence G meets only a finite number of the sets in W . Since
x was arbitrary, W is locally finite. Because W is locally finite, Exercise 1
implies that clWU =

⋃
{clV : V ∈ V and clV ⊆ U} ⊆ U . This completes

the proof. �

The next lemma has some independent interest.

Lemma 3.7.16. If X is a normal topological space, U is a locally finite open
cover of X, and W = {WU : U ∈ U} is a second open cover with the property
that clWU ⊆ U for every U in U , then there is a partition of unity on X
subordinate to U .

Proof. For each U in U apply Urysohn’s Lemma to obtain a continuous
function gU : X → [0, 1] such that gU (x) = 1 for every x in clWU and
gU (x) = 0 for x in X\U . If x ∈ X , choose a neighborhood G of x that meets
only a finite number of sets in the cover U , say {U1, . . . , Un} = {U ∈ U :
U ∩G �= ∅}. Thus, {gUk

: 1 ≤ k ≤ n} are the only functions in {gU : U ∈ U}
that do not vanish on G. Thus,

∑
U∈U gU (y) =

∑n
k=1 gUk

(y) is well defined
and continuous on G. That is, each point x in X has a neighborhood such
that on this neighborhood the function g =

∑
U∈U gU is well defined and

continuous. Moreover, since x ∈WUk
for at least one k between 1 and n, we

have that g(x) ≥ 1 for each x in X . For each U in U let

φU (x) =
gU (x)

g(x)
.

It follows that φU is continuous. The reader can check that {φU : U ∈ U} is
a partition of unity subordinate to U . �

Theorem 3.7.17. A topological space X is paracompact if and only if every
open cover has a partition of unity subordinate to it.

Proof. If G is an open cover and there is a partition of unity {φi : i ∈ I}
subordinate to it, then {{x : φi(x) > 0} : i ∈ I} is a locally finite open cover
that is a refinement of G; hence X is paracompact.

The proof of the converse is a matter of putting together the preceding
two lemmas with the fact that a paracompact space is normal. If G is an
open cover, then let U be a locally finite refinement. There is a locally finite
open cover W = {WU : U ∈ U} as in Lemma 3.7.15. Now use Lemma 3.7.16
to manufacture the partition of unity and check that it is subordinate to the
original cover G. �
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Proving in the metric space setting that every open cover has a par-
tition of unity subordinate to it involves proving that the metric space is
paracompact.

Many theorems prove that a topological space is metrizable. One that
is easy to state is Smirnov’s Theorem: X is metrizable if and only if it is
paracompact and locally metrizable. (See Exercise 5.) This is a good example
of the process referred to earlier in this section of using paracompactness to
extend local results to a global result. We might also refer to Exercise 3 below,
which gives a sufficient condition for a space to be paracompact. Along this
line, the reader might also want to look at the references for the Nagata–
Smirnov Metrization Theorem.

Exercises

(1) Show that if S is a locally finite collection of sets, then cl [
⋃
{S : S ∈ S}]

=
⋃
{clS : S ∈ S}. In particular, the union of a locally finite collection of

closed sets is closed. (This extends Proposition 2.1.7(c) stated for finite
unions.)

(2) Show that if S is a locally finite family of sets, then {clS : S ∈ S} is also
locally finite.

(3) A topological space is called a Lindelöf 6 space if every open cover has a
countable subcover. Prove that a regular Lindelöf space is paracompact.

(4) Verify Example 3.7.13.
(5) Say that a topological space is locally metrizable if every point has a

neighborhood on which the relative topology is metrizable. Show that X
is locally metrizable if and only if for each x inX and every neighborhood
U of x there is a neighborhood G of x that is metrizable and contained
in U .

6Ernst Leonard Lindelöf was born in 1870 at Helsingfors, Russian Empire, which is now
Helsinki, Finland. (Helsinki had been under Swedish and Russian domination for a long time
until Finland achieved independence in 1917 with the collapse of Russia.) His father was a
professor of mathematics there, but by the time Lindelöf began to study at the university in
1887, his father was no longer on the faculty. In 1891 he went to study in Stockholm and in 1893–
1894 in Paris. After this he returned to Helsingfors and graduated in 1895. In 1902 he became
an Assistant Professor there, where, eventually as Professor, he remained until his retirement in
1938. The bulk of his research was in the theory of analytic functions, where several theorems
of importance are due to him. His monograph Le calcul des résidus et ses applications à la
théorie des fonctions, published in 1905, is still a valid reference that has been translated into
several languages. In his later life he concentrated on teaching and writing several excellent
texts. He died in 1946 in Helsinki.
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Appendix

In this appendix we present some topics that arise during the course of the
book. It is hard to tell what students starting the study of topology know out-
side of calculus, especially given the diverse paths that exist at a university.
In fact, this is true in a given class at any given university, let alone students
at different universities. Do all know the language of sets and functions? Do
they know about the density of rational numbers? The list of questions could
continue. So in this appendix we present some topics that start with sets and
go up through a discussion of Zorn’s Lemma, but mostly without proofs. I
am fairly certain that most students who take this course will not have seen
Zorn’s Lemma, and I would advise all professors or instructors to cover this
section—but not until it is needed in § 2.4. Also, don’t look for a thorough
treatment of the topics here. This appendix does not constitute a course in
set theory or any other part of fundamental mathematics.

A.1. Sets

We want to talk a little about sets and functions in this section and the
next so that we have a handy reference and to be sure that every reader has
access to some of this material, which will be used without mention during
the course of this book. Of course, this is not a complete exposition of this
topic but merely a survey. We are going to assume some familiarity with the
idea of a set and its subsets. In general we adopt what is often considered
the naive approach to this topic, avoiding the rigorous logical approach.

We consider a set X and subsets A,B, . . . of X . For any subset A of X
and any point x in X , the notation x ∈ A means that x belongs to the set
A. Similarly, the notation x /∈ A means that x is an element of X that does

J.B. Conway, A Course in Point Set Topology, Undergraduate Texts
in Mathematics, DOI 10.1007/978-3-319-02368-7,
© Springer International Publishing Switzerland 2014
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not belong to A. We also talk of the singleton set, {x}, that is, the set that
consists of the single point x. The empty set is the set consisting of nothing
and is denoted by ∅. So there is no point x in X such that x ∈ ∅; equivalently,
x /∈ ∅ for every x in X .

If A and B are subsets of X , then the relation A ⊆ B means that each
x in A is also an element belonging to B; that is, if x ∈ A, then x ∈ B.
Observe that ∅ ⊆ A and A ⊆ X for any subset A of X . Similarly, A ⊇ B
means B ⊆ A. Note that if A ⊆ B and B ⊆ A, then A = B. This gives a
standard way of showing that two sets are equal. First take an element of A
and show it belongs to B; that is, show that A ⊆ B. Then take an element
of B and show it belongs to A; that is, show that B ⊆ A. This is put into
action in the proof of Proposition A.1.3 below.

When A,B ⊆ X , we define the union of A and B as the set

A ∪B = {x ∈ X : x ∈ A or x ∈ B}.

Note that the use of the word or here includes the possibility that x belongs to
both A and B. In fact, if we ever need to exclude the possibility that x belongs
to both sets, we will say this explicitly. There is in mathematics a term for
the set that includes everything that belongs to A or to B but excludes those
elements that belong to both; it’s called the symmetric difference, but we will
not use it.

Example A.1.1. (a) If X is any set and A ⊆ X , then A ∪ ∅ = A and
X ∪A = X .

(b) If X = R, the set of all real numbers, A is the open unit interval (0, 1),
and B = (1

2 , 3], then A ∪B = (0, 3].

(c) If X = R
2, the plane, A is the x-axis {(x, 0) : x ∈ R} and B = {(x, 1

2 ) :

x ∈ R}, then A ∪B = {(x, y) : x ∈ R and either y = 0 or y = 1
2}.

The intersection of A and B is the set

A ∩B = {x ∈ X : x ∈ A and x ∈ B}.

So A ∩ B ⊆ A ∪ B. When the sets A and B have no points in common, we
say that the sets A and B are disjoint and write A ∩B = ∅.

Example A.1.2. (a) If X is any set and A ⊆ X , then A ∩ X = A and
A ∩ ∅ = ∅.

(b) If X,A, and B are as in Example A.1.1(b), then A ∩B = (1
2 , 1).

(c) If X,A, and B are as in Example A.1.1(c), then A ∩B = ∅.

Proposition A.1.3. If X is any set and A,B,C ⊆ X, then:

(a) A ∩ (B ∩ C) = (A ∩B) ∩C;
(c) A ∪ (B ∪ C) = (A ∪B) ∪C;
(c) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C);
(d) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
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Proof. This is a good place to practice proving relations between sets. We
will do part (c) in some detail, but proving the others is required of the reader
in Exercise 1. The strategy here, which was alluded to earlier, is rather simple
and straightforward. First we take an x on the left-hand side and show it
belongs to the right-hand side, and then we do the opposite. This is the
standard approach. Use it when an exercise asks you to show that two sets
are equal.

(c) Let x ∈ A∩(B∪C); so x ∈ A and simultaneously x ∈ B∪C. It follows
that either x ∈ B or x ∈ C. If it is the case that x ∈ B, then x ∈ A ∩ B; if
x ∈ C, then x ∈ A ∩ C. That is, either x ∈ A ∩B or x ∈ A ∩ C, which is to
say that x ∈ (A ∩B) ∪ (A ∩C).

Now assume that x ∈ (A∩B)∪(A∩C); so either x ∈ A∩B or x ∈ A∩C.
If x ∈ A∩B, then x ∈ A and x ∈ B; if x ∈ A∩C, then x ∈ A and x ∈ C. So
under either alternative, x ∈ A; in addition, either x ∈ B or x ∈ C. Thus,
x ∈ A ∩ (B ∪ C). �

We also define the difference of the two sets as

A\B = {x ∈ X : x ∈ A but x /∈ B}.
Some mathematicians use the notation A − B instead of A\B. I prefer the
notation A\B because in some situations A−B is ambiguous. For example, if
A and B are subsets of the real numbers, we will use the definition A−B =
{a − b : a ∈ A, b ∈ B}. The same applies when A and B are subsets of
a vector space. So throughout this book the difference of two sets will be
denoted using the backslash.

Example A.1.4. (a) If X is any set and A ⊆ X , then A\∅ = A and
A\X = ∅.

(b) If X,A, and B are as in Example A.1.1(b), then A\B = (0, 1
2 ].

(c) If X,A, and B are as in Example A.1.1(c), then A\B = A.

A notion that the reader may have encountered is the complement of a
set: when A ⊆ X , the complement is X\A. You can find various notations

for this in the literature such as Ac or A′ or Ã, but we will stick with X\A. Of
course, we have X\(X\A) = A, which some might interpret as two negatives
make a positive.

Proposition A.1.5 (De Morgan’s1 Laws). If X is any set and A and B are
subsets of X, then:

1Augustus De Morgan was born in 1806 in Madura, India (now Madurai). His father was an
officer in the British army stationed there. The young Augustus lost his sight in one eye shortly
after birth and the family returned to England when he was 7 months old. He entered Trinity
College Cambridge in 1823. He received his bachelor’s degree but refused to take a theology
exam, which was required for an advanced degree. He returned to London in 1826 to study
for the bar exam, but he became the first professor of mathematics at the newly established
University College London despite the fact that he had never published in the subject. On a
matter of principle he resigned in 1831. He was once again appointed in 1836, but he resigned
again in 1866. In 1838 he introduced the term mathematical induction. The process had been
in use before, but without clarity; De Morgan managed to give it a rigorous basis. Throughout
his life he was a prolific writer with hundreds of articles and many books to his name. He
introduced the laws of the present proposition and was a great reformer of mathematical logic.
In addition, he founded the London Mathematical Society and became its first president. He
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(a) X\(A ∪B) = (X\A) ∩ (X\B);
(b) X\(A ∩B) = (X\A) ∪ (X\B).

Proof. We prove (a) and leave the proof of (b) as Exercise 3. Again we use
the standard approach to proving that two sets are equal. If x ∈ X\(A∪B),
then x /∈ A ∪ B. The only way this can happen is if both of the following
two statements are true: x /∈ A and x /∈ B. That is, x ∈ X\A and x ∈ X\B;
equivalently, x ∈ (X\A) ∩ (X\B).

Now assume that x ∈ (X\A) ∩ (X\B). This says that x ∈ X\A and
x ∈ X\B; that is, x /∈ A and x /∈ B. But combining these two statements
means x /∈ A ∪B, or that x ∈ X\(A ∪B). �

Finally, if X and Y are any sets, define the cartesian product of the sets as

X × Y = {(x, y) : x ∈ X, y ∈ Y }.
In words, this is described as the set of all ordered pairs (x, y), where x ∈ X
and y ∈ Y . The use of the word ordered is meant to distinguish X × Y
from Y ×X . In a similar fashion, if X1, . . . , Xn are sets, then we define their
cartesian product X1 × · · · ×Xn in a similar way.

In the next section we will define the cartesian product of an arbitrary
collection of sets because to do that we need the idea of a function. But we
can define now the union and intersection of an arbitrary collection of sets.
Let X be a set, and suppose I is another set such that for each i in I we have
a subset Ai of X ; the set I is often called an index set, and we refer to the
collection of subsets as {Ai : i ∈ I}. Define⋃

i∈I

Ai = {x ∈ X : x ∈ Ai for at least one value of i in I}, ,

⋂
i∈I

Ai = {x ∈ X : x ∈ Ai for all values of i in I}.

Of course, when the index set I is the set of natural numbers N = {1, 2, . . .},
we use the notation ∞⋃

n=1

An and

∞⋂
n=1

An.

The proof of the next result is left as Exercise 4.

Theorem A.1.6 (De Morgan’s Laws). If X is a set and {Ai : i ∈ I} is a
collection of subsets, then:

(a) X\
[⋃

i∈I Ai

]
=
⋂

i∈I(X\Ai);

(b) X\
[⋂

i∈I Ai

]
=
⋃

i∈I(X\Ai).

was quite dogmatic, as his two resignations might indicate. He never voted and never visited
the House of Commons, the Tower, or Westminster Abbey. He died in 1871 in London.
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Exercises.

(1) Prove parts (a), (b), and (d) in Proposition A.1.3.
(2) Give a detailed proof that X\(X\A) = A.
(3) Prove part (b) of de Morgan’s Laws.
(4) Prove Theorem A.1.6.

A.2. Functions

If X and Y are two sets, then a function from X into Y is a rule, denoted by
f : X → Y , that assigns to each x in X a unique point y in Y . Synonyms for
function are the termsmap andmapping. The setX is called the domain of f ,
and the set Y is called the range of f . The set f(X) = {f(x) ∈ Y : x ∈ X}
is called the image of f . Note the distinction between range and image.
Now that you have noted the distinction, you should be aware that some
mathematicians define the range of a function as what we are calling the
image and vice versa. When they do this, they sometimes use the term
codomain for what we call the range. Confused? Don’t worry too much
about it except when you consult other sources; we will consistently use the
terms as we defined them here.

Example A.2.1. (a) f : R → R defined by f(x) = x2 is a function. Its
domain and range are R , and its image is [0,∞).

(b) If for each x in R we let f(x) = +1 when x ≥ 0 and f(x) = −1 when
x ≤ 0, then this is not a function since the value of f(0) is not uniquely
defined. If we were to redefine f by stating that f(x) = −1 when x < 0,
then it would be a function.

(c) If X and Y are sets, y0 ∈ Y , and f(x) = y0 for every x in X , then
f : X → Y is a function —called a constant function.

(d) If X is a set and A ⊆ X , define χA : X → R by

χA(x) =

{
1 if x ∈, A
0 if x /∈ A.

This function is called the characteristic function of A. Some call this the
indicator function. Observe that for all x in X , χ∅(x) = 0 and χX(x) = 1.

The set of all functions from X into Y is denoted by

Y X .

Consistent with this is the notation 2X used to denote the set of all subsets of
X . This consistency results from identifying the collection of all subsets with
the set of all characteristic functions from X into the two-point set {0, 1}.

If f : X → Y and g : Y → Z, then the composition of f and g is the
function g ◦ f : X → Z defined by

g ◦ f(x) = g(f(x))

for all x in X . So, for example, if f(x) = x2 and g(x) = sinx, then g ◦f(x) =
sin(x2), while f ◦ g(x) = (sinx)2.
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Definition A.2.2. A function f : X → Y is injective or one-to-one if when-
ever x1, x2 ∈ X and f(x1) = f(x2), then x1 = x2. The function is said to be
surjective or onto if for every y in Y there is an x in X such that f(x) = y.
A function is bijective if it is both injective and surjective.

In this book we will use the terms injective and surjective. There is a
linguistic objection to using “onto” here as the term “an onto function” is bad
English; onto is a preposition, not an adjective. Some people are passionate
about avoiding onto; I would not say I am passionate about this, but I do
care. Hence I use surjective. I use injective to maintain the symmetry of the
terms.

Example A.2.3. (a) If π : R2 → R is defined by π(x, y) = x, then π is
surjective but not injective.

(b) If X is any set and A is a nonempty subset of X , then the inclusion
map i : A→ X is defined by i(a) = a for all a in A. This map is always
injective but fails to be surjective unless A = X , in which case it is
called the identity function.

(c) The map f : R → (−π/2, π/2) defined by f(t) = arctan t is bijective.
(d) The map f : R → R defined by f(t) = sin t is neither injective nor

surjective. If we consider the sine function as mapping R into [−1, 1],
then it is surjective; if we consider it as a mapping from [−π/2, π/2] into
R, it is injective but not surjective; if we consider it as a mapping from
[−π/2, π/2] to [−1, 1], the sine function is bijective. So by changing the
domain or the range or both of a function, we can often have it acquire
one of the properties of the last definition.

If f : X → Y is a bijective function, then we can define the inverse of f
as follows. If y ∈ Y , then by surjectivity there is an x in X with f(x) = y; by
injectivity, this x is unique. Thus, we can define f−1(y) = x for the unique
point x with f(x) = y. This makes f−1 : Y → X into a function.

The proof of the next proposition is Exercise 2.

Proposition A.2.4. Let f : X → Y and g : Y → Z be functions.

(a) If f is bijective, then f ◦ f−1 is the identity function on Y and f−1 ◦ f
is the identity function on X.

(b) If both f and g are bijective, then so is g ◦ f and (g ◦ f)−1 = f−1 ◦ g−1.

We conclude this section by using the concept of a function to define the
cartesian product of an arbitrary collection of sets.

Definition A.2.5. If {Xi : i ∈ I} is a collection of sets, then the cartesian
product or just product of the sets is defined by

∏
i∈I

Xi =

{
x : I →

⋃
i∈I

Xi such that for all i, x(i) ∈ Xi

}
.
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First note that this is consistent with the definition of the product of a
finite number of sets given in the preceding section. Indeed, if X1 and X2 are
two sets and we define X1 ×X2 as in §A.1, then for each (x1, x2) in X1 ×X2

we can define a function x : {1, 2} → X1 ∪ X2 by x(1) = x1, x(2) = x2 and
vice versa. So even though the idea of an ordered pair has been suppressed,
it is implicit in the use of {1, 2} as the domain of these functions. We will
have more to say on arbitrary products in § 2.6.

Exercises.

(1) Consider the composition of the two functions g ◦ f , look at the nine
possible situations where f and g each have one of the properties in-
jective, surjective, and bijective, and ascertain which, if any, of these
properties is possessed by g ◦ f .

(2) Prove Proposition A.2.4.

A.3. The Real Numbers

Here we collect a few facts about the real numbers, some of which readers
might know and some which they might not. It may also be that the reader
has a subliminal understanding about some properties of the real numbers,
and this section will help bring those into a more vivid focus. In addition,
the real numbers not only serve as an inspiration for the study of many
topological spaces, but their properties help us to discover many important
results about continuous functions from a topological space into the space of
real numbers. So my advice is to give this section at least a quick read.

The set of real numbers, R, has its usual order ≤. If E ⊆ R, then we say
that E is bounded above if there is a number a such that x ≤ a for all x in E.
Such a number a is called an upper bound of E. Similarly, E is bounded below
if there is a number b with b ≤ x for all x in E; b is called a lower bound of
E. It is easy to see that E is bounded above by an upper bound a if and
only if the set −E = {−x : x ∈ E} is bounded below by a lower bound −a.
For this reason any statement about the upper bound of a set has its analog
for the lower bound, and we will frequently only do the upper version. A set
E is bounded if it is bounded both above and below.

Definition A.3.1. If E ⊆ R and E is bounded above, then a least upper
bound or supremum of E is a number α that satisfies the following conditions:

(i) α is an upper bound for E;

(ii) α ≤ a for any other upper bound a for E.

Similarly, if E is bounded below, then the greatest lower bound or infimum
of E is a number β that satisfies the following conditions:

(i) β is a lower bound for E;

(ii) b ≤ β for any other lower bound b for E.
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In symbols we write α = supE and β = inf E. (The reader may have seen
the notation α = lub E and β = glb E, but we will use the sup and inf
notation.)

It is straightforward that the supremum or infimum of a set, if it exists,
is always unique (Exercise 1).

An interesting project is to give a rigorous development or definition
of the real numbers starting with the basic axioms of the positive integers
N. The most common way to do this is to define the rational numbers
Q using standard algebra and then introduce the concept of Dedekind cuts
for the rational numbers. We will not carry this out here but instead will just
assume that we are given the real numbers with all their properties. Two
fundamental properties are as follows, which we take as axioms but would
follow from a rigorous definition and development.

Axiom A.3.2 (Density Property). If a and b are rational numbers and a < b,
then there is an irrational number x with a < x < b. Similarly, if a, b
are irrational numbers and a < b, then there is a rational number x with
a < x < b.

Axiom A.3.3 (Completeness Property). If a nonempty subset E of R has
an upper bound, then it has a supremum.

These may seem obvious to you, but that is probably because you have
always thought of R as having these properties. Unless, however, you are
in possession of an exact definition of the real numbers such as the set of
all Dedekind cuts, you cannot give a rigorous proof of the Completeness
Property. Let us also remark that the set Q does not have the Completeness
Property. For example, {q ∈ Q : q2 < 2} does not have a supremum within

the set Q. Of course, it has a supremum in R, namely
√
2.

It follows from the Completeness Property that if a nonempty subset E
of R is bounded below, then inf E exists. In fact, as mentioned earlier, this
follows by applying Axiom A.3.3 to the set −E.

The next proposition, in spite of its trivial proof, will be most useful and
applied frequently.

Proposition A.3.4. If E ⊆ R has a supremum α and ε > 0, then there is
an x in E with α − ε < x ≤ α. Similarly, if β = inf E, then there is a y in
E with β ≤ y < β + ε.

Proof. In fact, by the definition of supremum, α − ε cannot be an upper
bound for E, so the existence of x follows. The statement about the infimum
can be proven by applying the first part of the set −E. See Exercise 1. �

Be aware that when we say a sequence {xn} is increasing, we mean that
xn ≤ xn+1 for all n. Some call this a nondecreasing sequence, but in spite
of the accuracy, I have always found that term counterintuitive, or at least
cumbersome. In this terminology, a constant sequence is increasing. We
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will use the term strictly increasing to denote a sequence {xn} that satisfies
xn < xn+1 for all n. A sequence {xn} is decreasing or strictly decreasing if
the sequence {−xn} is, respectively, increasing or strictly increasing.

Corollary A.3.5. If E is a set that is bounded above and α = supE, then
there is an increasing sequence {xn} in E such that xn → α. Similarly, if
E is a set that is bounded below and β = inf E, then there is a decreasing
sequence {yn} in E such that yn → β.

Proof. We will establish the following claim.

Claim. For each n ≥ 1 there is an xn in E such that x1 ≤ · · · ≤ xn and
α− n−1 < xn ≤ α.

We establish this by induction. We get x1 by applying the proposition
with ε = 1. Assume we have x1, . . . , xn with the stated properties. If one of
the xk equals α, choose xn+1 = α. Assume that xk < α for 1 ≤ k ≤ n, and
let 0 < ε < min{(n+ 1)−1, α− x1, . . . , α− xn}. By the proposition , we can
find a point xn+1 in E with α − ε < xn+1 ≤ α. It follows that xn+1 has the
properties listed in the claim when n is replaced by n+ 1.

Once we have the claim, we can apply the definition of convergence for
a sequence to conclude the proof. The statement about the infimum can be
proven by applying the first part to the set −E. See Exercise 1. �

A fact that emerges from close examination of the proof of the preceding
corollary is that if α /∈ E, then the sequence {xn} can be chosen to be strictly
increasing.

In one sense, the next result is the converse of the last corollary, but
strictly speaking it is not.

Proposition A.3.6. If a bounded sequence is either increasing or decreasing,
then it must converge.

Proof. Let us assume that {xn} is an increasing sequence in R that is
bounded. (Note that in this case this amounts to assuming the sequence
is bounded above since x1 is automatically a lower bound for the sequence.)
By the Completeness Property, α = sup{x1, x2, . . . } exists. If ε > 0, then the
preceding proposition says there is an integer N with α− ε < xN ≤ α. Since
the sequence is increasing, we have that α − ε < xn ≤ α whenever n ≥ N .
Thus, |xn − α| < ε for all n ≥ N , so that xn → α. The proof when the
sequence is decreasing is left to the reader. �

Exercises.

(1) (a) If E is a subset of R that is bounded above, show that the supremum
is unique. (b) If α = supE, show that −α = inf{−E}.

(2) In Corollary A.3.5, show that if α /∈ E, then the sequence {xn} can be
chosen to be strictly increasing.
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A.4. Zorn’s Lemma

This is a section I believe will be unfamiliar to almost every reader. It is
included in the appendix only because it is not a part of topology, though it
is essential to know in order to prove some of the most important results in
that subject. It is essential to master this material.

Definition A.4.1. A partially ordered set is a pair (S,≤), where S is a set
and ≤ is a relation on the elements of S that has the following properties for
all x, y, z in S: (i) x ≤ x (reflexivity); (ii) if x ≤ y and y ≤ x, then x = y
(antisymmetry); (iii) if x ≤ y and y ≤ z, then x ≤ z (transitivity).

Example A.4.2. (a) The real line is an example of a partially ordered set.
(b) If (S,≤) is a partially ordered set and T ⊆ S, then (T,≤) is a partially

ordered set.
(c) If X is any set and 2X is the collection of all subsets of X , define ≤

on 2X to be containment. That is, for A,B in 2X , A ≤ B means that
A ⊆ B. This makes (2X ,≤) a partially ordered set.

(d) From (b) and (c) we see that any collection G of subsets of X is also a
partially ordered set. For example, if (X, T ) is a topological space and
G is the collection of all open sets, then (G,⊆) is a partially ordered set.

(e) Let X be a set, and let R
X denote the collection of all functions f :

X → R. If f, g ∈ R
X , define f ≤ g to mean that f(x) ≤ g(x) for all x

in X . With this definition (RX ,≤) is a partially ordered set.
(f) Suppose (S,≤) is a partially ordered set, and define a new relation � on

S by saying that x � y means y ≤ x. It follows that (S,�) is a partially
ordered set.

As can be expected, when we have a partially ordered set (S,≤) and
x, y ∈ S, the notation y ≥ x means x ≤ y.

Definition A.4.3. If (S,≤) is a partially ordered set and T ⊆ S, an upper
bound for T is an element x in S (but not necessarily in T itself) such that
x ≥ y for every y in T . A maximal element for T is an element x of T
such that T contains no larger element. That is, x is a maximal element if
whenever y ∈ T and x ≤ y, then y = x.

Note that when x is a maximal element of T , it is possible for there to
be an upper bound y of T that is different from x, but if this happens, we
have that y /∈ T . That is, y ∈ S\T .

Definition A.4.4. A partially ordered set (S,≤) is called linearly ordered if
for any elements x and y in S either x ≤ y or x ≥ y. Some mathematicians
say that a linearly ordered set is simply, completely, or totally ordered.

Of course, the real line is a linearly ordered set. Also, see Exercise 2.

Definition A.4.5. If (S,≤) is a partially ordered set, then a chain in S is a
subset that is linearly ordered.
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After this long string of definitions, we are now in a position to state
Zorn’s Lemma.

Theorem A.4.6 (Zorn’s2 Lemma). If (S,≤) is a partially ordered set such
that every chain in S has an upper bound, then S has a maximal element.

We will not prove this; the reader is asked to accept it as a given truth.
The proof takes us too far from the philosophy and objectives of this book.
Actually, the proof relies on the Axiom of Choice, which most mathematicians
accept as a given fact of set theory. In fact, in its simplest formulation, this
axiom seems obviously true. It states that if you are given an arbitrary
collection of nonempty sets {Ai : i ∈ I}, it is possible to choose one element
ai from each set. Nevertheless, it is known that the Axiom of Choice does not
follow as a consequence of the standard axioms of set theory. So we assume it
is true. A proof that Zorn’s Lemma and the Axiom of Choice are equivalent
is available in Theorem 3.12 of [5].

In what follows, we will give an application of Zorn’s Lemma, but first
an example where it does not apply. Consider the partially ordered set R

X

defined in Example A.4.2(e). If we take C = {f1.f2, . . . }, where each fn is the
constant function fn(x) = n, then C is a chain, but it has no upper bound.
Therefore, Zorn’s Lemma does not apply. Here is an application of the use
of Zorn’s Lemma.

Consider an arbitrary vector space X over the real numbers. Recall
that a (possibly infinite) set of vectors B in X is linearly independent if for
any finite subset {x1, . . . , xn} of B the only scalars a1, . . . , an that satisfy∑n

k=1 akxk = 0 are a1 = · · · = an = 0. If M is the collection of all linearly
independent sets of vectors, we use set inclusion to make M into a partially
ordered set as in Example A.4.2(c). A basis for X is a maximal linearly
independent set of vectors.

Once you have a basis for X , it follows that every vector in X can be
written as a unique linear combination of basis elements (Exercise 4). Proving

2Max August Zorn was born in Krefeld, Germany, near Dusseldorf, in 1906. He received
his Ph.D. from Hamburg University in 1930, having worked under Emil Artin. He was forced to
leave his first position at Halle in 1933 because of Nazi anti-Semitic policies. He emigrated to the
USA with an appointment at Yale University, where he proved his famous lemma. Later he made
contributions in analysis with an investigation of the differentiability of functions defined on a
Banach space. In 1936 he went to the University of California at Los Angeles, where he remained
until 1946; he then went to Indiana University, where I had the pleasure of being his colleague
for many years. We lived a block apart and occasionally walked home together. He retired
in 1971. Like some, he retired from teaching and committee work, but not from mathematics.
Until his death he remained involved with mathematics, not publishing but attending a long
list of seminars and every colloquium in the department. He had the practice of always asking
a question at the end of a lecture. My experience when I gave my interview talk at Indiana
was typical. The question he asked me seemed weird initially, though I gave something like an
answer. Thirty minutes later what he was asking finally hit me; it was insightful and worth
thinking about. Needless to say, I went to see him about it. I am not sure all his questions
were relevant and insightful, but as far as I could see, most were. Nevertheless, the speakers,
especially those from outside Indiana University, frequently had the same befuddled reaction I
did. In 1993 he died after being hit by an automobile while crossing the street in front of the
mathematics department.
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the existence of a basis in the finite-dimensional setting is not difficult, but
in the infinite-dimensional case it requires Zorn’s Lemma.

Theorem A.4.7. Every vector space over R has a basis.

Proof. Let M be the collection of all linearly independent subsets of X and
order M by inclusion: if A,B ∈ M, then A ≤ B means that A ⊆ B. Let
C be a chain in M and put B =

⋃
{A : A ∈ C}. Let x1, . . . , xn ∈ B; so there

are A1, . . . , An in C such that xk ∈ Ak for 1 ≤ k ≤ n. Since C is a chain one
of the sets contains all the others (Exercise 3); denote this biggest set by Ak.
Thus, for 1 ≤ j ≤ n, xj ∈ Ak, and so {x1, . . . , xn} is linearly independent.
That is, B ∈ M. Clearly, B is an upper bound for the chain, so that Zorn’s
Lemma applies and proves the existence of a maximal linearly independent
set. �

The preceding theorem is phrased for vector spaces over R, but the same
concepts and proof work for a vector space over any field.

Exercises.

(1) Verify that each of the examples in Example A.4.2 is a partially ordered
set.

(2) Which of the partially ordered sets in Example A.4.2 are linearly or-
dered?

(3) If (S,≤) is a linearly ordered set and A is any finite subset of S, then
there is an element a in A with x ≤ a for each x in A.

(4) Prove that if X is a vector space, then a set B of linearly independent
vectors in X is a basis (a maximal linearly independent set) if and only
if for each x in X there are unique vectors x1, . . . , xn in B and unique
scalars a1, . . . , an such that x =

∑n
k=1 akxk.

(5) (This exercise requires that you know the definition of a group.) If G is
a group and H is an abelian subgroup, then there is a maximal abelian
subgroup K of G such that H ⊆ K.

A.5. Countable Sets

In this section we will explore the notion of a countably infinite set, the small-
est of the orders of infinity. The fact that not all infinite sets are equivalent
is one that comes as a surprise to many people. Indeed, historically this was
a shock to the world of mathematics when Cantor3 first revealed it.

Definition A.5.1. A set X is countable if there exists a subset A of the
natural numbers N and a bijective function f : A→ X .

Example A.5.2. (a) Any finite set is countable. For infinite sets that are
countable, we will say they are countably infinite. Some say that such
an infinite set is denumerable. Below we show the existence of sets that
are not countable.

3See the biographical note to Theorem 1.2.12.
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(b) The set of all integers, Z, is countable. In fact, 0, 1,−1, 2,−2, 3,−3, . . .
describes a bijective function from N onto Z. For convenience we will
often show a set is countable by describing how to exhaust the set by
writing it as a sequence, as we just did. Such an undertaking tells us
how to define a bijective function even though finding a formula for that
function may be far from clear. In the present case, it is not difficult to
write a formula for this function. Indeed if n ∈ N and we set

f(n) =

{
n
2 if n is even,

−n−1
2 if n is odd,

then f : N → Z is a function that gives the correspondence described
earlier. In other situations, writing a formula for the function may
range from challenging to impossible. The point of this discussion is
that proving the existence of such a function does not mean we have to
write a formula for the function. If we describe a process or algorithm
for determining which element of a set corresponds to each integer and
if this process exhausts the set, then we have described the required
function.

(c) Any subset of a countable set is countable. In fact, this is immediate
from the definition of a countable set.

The next proposition is useful in showing that a given set is countable.

Proposition A.5.3. (a) If X is any set such that there is a subset A of
N and a surjective function f : A→ X, then X is countable.

(b) If X is a countable set, Y is a another set, and there is a surjection
f : X → Y , then Y is countable.

Proof. To prove (a), let f and A be as in the statement. For each x in X
let nx be the first integer n in A with f(n) = x; that is, nx = min f−1(x).
Thus, B = {nx : x ∈ X} is another subset of N and g : B → X defined by
g(nx) = x is a bijection.

Part (b) is immediate from (a) and the definition of a countable set. �

The next result will be quite helpful in proving that some sets are count-
able. See, for example, the subsequent corollary.

Proposition A.5.4. If X is countable, then so is X ×X.

Proof. If X is finite, then the result is easy. Thus, assume that X is infinite.
To prove the proposition , it is equivalent to show that N × N is countable.
(Why?) Here we want to define a bijection f : N → N × N. Again we need
only show how to arrange the elements (m,n) in N × N in a sequence. So
imagine N×N as an infinite square array of pairs of positive integers. In the
first row are all the pairs {(1, n) : n ∈ N}; in the second {(2, n) : n ∈ N}; and
so forth. We write down the following sequence of entries:

(1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), (4, 1), (3, 2), (2, 3), (1, 4), . . . .
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If you write the array on paper and draw northeast diagonal lines connecting
these pairs, you should be able to discern the pattern. (Many other patterns
are possible.) This describes the bijection. �

Corollary A.5.5. The set of rational numbers is countable.

Proof. Writing each rational number as a fraction in reduced terms we see
that there is a bijection between Q and a subset of Z×Z, which is countable
by the proposition. �

Proposition A.5.6. If X =
⋃∞

n=1Xn and each of the sets Xn is countable,
then X is countable.

Proof. We write Xn = {x1
n, x

2
n, . . . }; if Xn is infinite, we can do this with

xkn �= xjn for all k, j ≥ 1. Otherwise, repeat one of the points an infinite
number of times. Thus, f : N×N → X defined by f(n, k) = xkn is surjective.
It follows by Proposition A.5.3(b) that X is countable. �

Corollary A.5.7. The set of all finite subsets of N is countable.

Proof. If F denotes the set of all finite subsets of N, then note that F =⋃∞
n=1 Sn, where Sn is the set of all subsets of {1, 2, . . . , n}. But Sn is a finite

set. In fact, from combinatorics we know that Sn has 2n elements. By the
preceding proposition, F is countable. �

Now we turn to some results showing the existence of uncountable sets.

Proposition A.5.8. The set of all sequences of zeros and ones is not
countable.

Proof. Let X be the set of all sequences of zeros and ones, and suppose it is
countable; thus, we can write X = {x1, x2, . . . }. We manufacture an element
a inX such that a �= xn for any n ≥ 1. This will furnish a contradiction to the
assumption that we have an exhaustive list and thus proves the proposition.
Suppose that for each n ≥ 1, xn = x1

nx
2
n · · · is a sequence of zeros and ones;

in other words, xn = {xkn : k = 1, 2, . . . }. If n ≥ 1 and xnn = 0, let an = 1;
otherwise, let an = 0. This defines an a = a1a2 . . . in X . Since an �= xnn,
a �= xn for any n ≥ 1. This gives our desired contradiction. �

Corollary A.5.9. The collection of all subsets of N, 2N, is not countable.

Proof. In fact, by looking at the characteristic functions of subsets of N, we
see that the set of all sequences of zeros and ones is in bijective correspondence
with 2N. �

To prove the next proposition, we must consider the dyadic expansions
of numbers in the unit interval, a topic we also use in § 3.3. For 0 ≤ x ≤ 1
we can write

x =

∞∑
n=1

xn
2n
,
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where each xn = 0 or 1. (This series always converges since
∑∞

n=1 2
−n = 1.)

The proof that each x in the unit interval can be so expanded is not too
complicated and proceeds as follows. Consider x, and divide the interval into
its equal halves: [0, 1

2 ] and [ 12 , 1]. If x belongs to the first half, let x1 = 0;

if x ∈ [ 12 , 1], let x1 = 1. (We note an ambiguity here if x = 1
2 , and we will

address this shortly.) Note that in either case we have that |x − x1/2| < 1
2 .

Now consider whichever half interval contains x and divide it into two equal
halves; let x2 = 0 if x belongs to the first half and x2 = 1 if it belongs to the
second half. Now we have that∣∣∣x−

(x1

2
+
x2

22

)∣∣∣ < 1

22
.

Continue this process, and we see that the series so defined will converge to
x. (The reader who wants to write out the details can formulate an induction
statement based on what we just did and prove it. See Exercise 3.)

What about the ambiguity? If x = a/2n for some n ≥ 1 and 0 < a < 2n,
then the choice of xn can be either 0 or 1. This is the only way such an
ambiguity arises since, in fact, using the summation for a geometric series,

∞∑
k=n

1

2k
=

1

2n

∞∑
k=0

1

2k
=

1

2n
1

1− 1
2

=
1

2n−1
.

It follows that if {xn}, {yn} are two sequences of zeros and ones, then the
only way we can have that

∑∞
n=1 xn/2

n =
∑∞

n=1 yn/2
n is for one sequence

to end in all zeros and the other to end in all ones. See Exercise 4.

Proposition A.5.10. The interval (0, 1) is not countable.

Proof. In a sense, this proposition is a corollary of Proposition A.5.8, but its
proof is a bit more involved than you usually associate with a corollary. Let
X be the set of all sequences of zeros and ones that are not constantly zero
from some point on. We observe that there is an injective mapping between
X and the open interval (0, 1) by the discussion preceding the statement
of the proposition. On the other hand, by considering the characteristic
functions of subsets of N, there is a bijective mapping between this set of
sequences and the infinite subsets of N. By Corollaries A.5.9 and A.5.7, X is
not countable. �

Exercises.

(1) Show that if A is an infinite subset of N, X is a countably infinite set,
and f : A→ X is a bijection, then there is a bijection g : N → X . (Hint:
first show that if A is an infinite subset of N, then there is a bijection
h : N → A.)

(2) Show that if X1, . . . , Xn are countable sets, then so is X1 × · · · ×Xn.

(3) Write out a detailed proof that each x in the unit interval has a dyadic
expansion.
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(4) If {xn}, {yn} are two sequences of zeros and ones, show that
∑∞

n=1 xn/2
n

=
∑∞

n=1 yn/2
n if and only if there is an integer n such that xk = 0 and

yk = 1 for all k ≥ n.
(5) Show that if X1, X2, . . . are countably infinite sets, then

∏∞
n=1Xn is

not countable.
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Fσ-set, 90
Gδ-set, 90
ε-chain, 33
σ-compact, 29, 101
(co), 79

C̆ech, Eduard, 90

Alexander’s Theorem, 54
Alexander, James Waddell, 54
antisymmetric, 128
arcwise connected, 59
arcwise connected component, 60
Axiom of Choice, 62, 129

Baire Category Theorem, 36, 97
Baire, René-Louis, 36
base, 44
base generated by, 46
basis, 129
bijective, 19, 124
Borel, Emile, 27
boundary, 6, 41
bounded above, 125
bounded below, 125
bounded function, 24, 75
bounded set, 14, 125
box topology, 63, 66

Cantor’s Theorem, 15
Cantor’s theorem, 13
Cantor, Georg, 13

cartesian product, 8, 122, 124
category, 37
Cauchy sequence, 12
Cauchy, Agustin Louis, 3
Cauchy–Schwarz inequality, 3
characteristic function, 35, 123
closed ball, 4
closed map, 52
closed mapping, 89
closed path, 58
closed relative to, 5
closed set, 5, 41
closure, 6, 41
clustering net, 68
cofinal, 68
cofinal topology, 40
comb, 61
comeager set, 37
compact, 24, 52
compact support, 97
compact-open topology, 79
complement, 121
complete, 12
completely ordered, 128
completely regular, 81
Completeness Property of R, 126
component, 32
composition, 18, 123
connected, 30, 55
continuous, 48
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continuous at a point, 16
continuous function, 16
convergent net, 68
converges, 10
converges uniformly, 76
countable, 130
countably infinite, 130
cover, 24

De Morgan’s Laws, 121, 122
De Morgan, Augustus, 121
decreasing, 127
Dedekind cuts, 126
deleted comb, 61
dense, 9, 42
Density Property of R, 126
denumerable, 130
diameter, 13
difference, 121
Dini’s Theorem, 77
Dini, Ulisse, 77
directed set, 67
disconnected, 30
discrete metric, 2
discrete ordinals, 107
discrete topology, 39
disjoint, 120
disjoint union, 35, 105
distance, 12
distance from A to B, 29
domain, 123
dyadic rational number, 86

empty set, 120
equivalence classes, 72
equivalence relation, 71
equivalent metrics, 19
extreme value, 25

final point, 58
finite intersection property, 25, 53
FIP, 25, 53
first category, 37
first uncountable ordinal, 107
function, 123

greatest lower bound, 125

Hausdorff space, 40
Hausdorff, Felix, 40

Heine, Heinrich Eduard, 27
Heine–Borel Theorem, 27
homeomorphic, 19
homeomorphism, 19, 51

identity function, 124
image, 123
inclusion map, 124
increasing, 126
index set, 122
indicator function, 123
infimum, 125
initial point, 58
injective, 19, 124
interior, 6, 41
Intermediate Value Theorem, 31
intersection, 120
inverse, 124
isolated point, 11
isometry, 19

least upper bound, 125
limit ordinal, 107
limit point, 11, 42
Lindelöf space, 118
Lindelöf, Ernst Leonard, 118
linearly ordered, 46, 128
Lipschitz function, 21
locally compact, 95
locally connected, 56
locally finite, 110
locally metrizable, 118
locally pathwise connected, 60
loop, 58
lower bound, 125

map, 123
mapping, 123
maximal element, 128
meager set, 37
metric, 1
metric space, 1
metrizable, 43, 118
Michael’s Theorem, 111
Michael, Ernest, 111

natural map, 72
neighborhood, 42
net, 68
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net clusters, 68
net converges, 68
nonconnected, 30
nondecreasing, 126
nonlimit ordinals, 107
normal, 85
nowhere dense, 37

one-point compactification, 100
one-to-one, 124
onto, 124
open ball, 4
open cover, 24
open map, 50
open relative to, 5
Open set, 5
open set, 39
order topology, 47
order type, 106
ordered pairs, 122
ordinal number, 106

paracompact, 110
partially ordered set, 46, 128
partition, 71
partition of unity, 88, 117
partition of unity subordinate to the

cover, 89
path, 58
pathwise connected, 59, 74
polygon, 35
product, 62
product of paths, 58
product topology, 50, 63
projection, 50, 63

quotient map, 72
quotient space, 72
quotient topology, 72

range, 123
refinement, 110
reflexivity, 71, 128
regular, 80
relation, 71
relative topology, 40
relatively closed in, 5

relatively open in, 5
reverse inclusion, 67
reverse triangle inequality, 5

Schwarz, Hermann Amandus, 3
second category, 37
separable, 9, 42
simply ordered, 128
singleton, 120
standard subbase, 63
Stone, Marshall, 90
Stone–C̆ech compactification, 90, 92
strictly decreasing, 127
strictly increasing, 127
subbase, 46
subcover, 24
subnet, 68
subsequence, 11
subspace, 3
subspace topology, 40
support, 97
supremum, 125
surjective, 19, 124
symmetric difference, 120
symmetry, 71

thick set, 37
Tietze’s Extension Theorem, 87, 90,

97
Tietze, Heinrich Franz Friedrich, 87
Tikhonov’s Theorem, 64
Tikhonov, Andrei Nikolaevich, 64
topological space, 39
topological vector space, 79
topologist’s sine curve, 33, 60
topology, 39
topology generated by, 45, 46
totally bounded, 25
totally ordered, 128
transitivity, 71, 128
triangle inequality, 1
trivial topology, 39

uniform convergence, 76
uniformly Cauchy, 76
uniformly continuous, 21
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union, 120
upper bound, 125, 128
Urysohn’s Lemma, 18, 86, 96
Urysohn, Pavel Samuilovich, 18

vanishes at infinity, 97

weak topology, 62
Weierstrass M -test, 78
well-ordered, 106

Zorn’s Lemma, 129
Zorn, Max August, 129
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(X, d), 1
(X1 ×X2, d), 8
2X , 39, 123
A ∪ B, 120
A\B, 121
A ∩ B, 120
A ⊆ B, 120
B(x; r), 4
B ⊇ A, 120
C(X), 75
C(X,Z), 79
C0(X), 97
Cb(X), 75
Cc(X), 97
Fσ-set, 90
Gδ-set, 90
X × Y , 122
X/∼, 72
X1 ×X2, 8
X1, . . . , Xn, 122
X∞, 99
Y X , 123
[a, b], 58
[x, y], 31
∅, 120
Ω, 107
βX, 91⋂

i∈I Ai, 122⋃
i∈I Ai, 122

χA, 35, 123
clA, 6, 41

diamE, 13
dist (A,B), 29
dist (x,A), 12
�1, 47
�∞, 10, 15, 29
inf E, 126
intA, 6, 41
Q, 7, 126
R, 120, 125
Z, 131
R, 2
R

2, 2
Z, 10
B(x; r), 4
∂A, 6, 41
πi, 63∏

i∈I Xi, 124∏
i∈I Xi, 62∏∞
n=1, 63

ρ(f, g), 75
TY , 40
supE, 126
f ∨ g, 51
f ∧ g, 51
fβ , 91
f−1, 19, 124
g · f , 59
g ◦ f , 123
x = limi xi, 68
x ∈ A, 119
x /∈ A, 119
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xi → x, 68
xi →cl x, 68
N, 126
R

q, 2

(co), 79
glb E, 126
lub E, 126
sptφ, 97
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