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intlon: Starting with the 12th printing, this book has been set

X s0 that the book will be more readable. In particular, there
fas material on each page, so there are more pages. However,
b0 are the only changes from previous printings except that I've
ted the bibliography.

e to the First Edition

Wldy of this book, and especially the exercises, should give the
i1 & thorough understanding of a few basic concepts in analysis
s continuity, convergence of sequences and series of numbers,
ponvergence of sequences and series of functions. An ability
and write proofs will be stressed. A precise knowledge of
lons is essential. The beginner should memorize them; such
zation will help lead to understanding.
pter | sets the scene and, except for the completeness axiom,
I be more or less familiar. Accordingly, readers and instructors
8l to move quickly through this chapter and refer back to it
Necessary. The most critical sections in the book are Sections 7
gl IlinChlpmri If these sections are thoroughly digested
inderstood, the remainder of the book should be smooth sailing,

v



vi Preface

The first four chapters form a unit for a short course on analysis.

I cover these four chapters (except for the optional sections and
Section 20) in about 38 class periods; this includes time for quizzes
and examinations. For such a short course, my philosophy is that the
students are relatively comfortable with derivatives and integrals but
do not really understand sequences and series, much less sequences
and series of functions, so Chapters 1-4 focus on these topics. On two
or three occasions | draw on the Fundamental Theorem of Calculus
or the Mean Value Theorem, which appear later in the book, but of
course these important theorems are at least discussed in a standard
calculus class.

In the early sections, especially in Chapter 2, the proofs are very
detailed with careful references for even the most elementary facts.
Most sophisticated readers find excessive details and references a
hindrance (they break the flow of the proof and tend to obscure the
main ideas) and would prefer to check the items mentally as they
proceed. Accordingly, in later chapters the proofs will be somewhat
less detailed, and references for the simplest facts will often be omit-
ted. This should help prepare the reader for more advanced books
which frequently give very brief arguments.

Mastery of the basic concepts in this book should make the
analysis in such areas as complex variables, differential equations,
numerical analysis, and statistics more meaningful. The book can
also serve as a foundation for an in-depth study of real analysis
given in books such as [2], [25], [26], [33], [36], and [38] listed in the
bibliography.

Readers planning to teach calculus will also benefit from a careful
study of analysis. Even after studying this book (or writing it) it will
not be easy to handle questions such as *What is a number?”, but at
least this book should help give a clearer picture of the subtleties to
which such questions lead.

The optional sections contain discussions of some topics that 1
think are important or interesting. Sometimes the topic is dealt with
lightly, and suggestions for further reading are given. Though these
sections are not particularly designed for classroom use, | hope that
some readers will use them to broaden their horizons and see how
this material fits in the general scheme of things.




Preface to the Pirst Edition v

| have benefitted from numerous helpful suggestions from my
#gues Robert Freeman, William Kantor, Richard Koch, and John
Yy, and from Timothy Hall, Gimli Khazad, and Jorge Lépez. I
#lso had helpful conversations with my wife Lynn concerning
mar and taste. Of course, remaining errors in grammar and
hematics are the responsibility of the author.

Soveral users have supplied me with corrections and suggestions
#l I've incorporated in subsequent printings. I thank them all, in-

ing Robert Messer of Albion College who caught a subtle error
the proof of Theorem 12,1,

Kenneth A. Ross
Eugene, Oregon
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Introduction

CHAPTER

The underlying space for all the analysis in this book is the set of
real numbers. In this chapter we set down some basic properties of
this set. These properties will serve as our axioms in the sense that
it is possible to derive all the properties of the real numbers using
only these axioms. However, we will avoid getting bogged down in
this endeavor. Some readers may wish to refer to the appendix on
set notation.

§1 The Set N of Natural Numbers

We denote the set (1, 2, 3, ...} of all natural numbers by N. Elements
of N will also be called positive integers. Each natural number n has
a successor, namely n+ 1, Thus the successor of 2 is 3, and 37 is the
successor of 36. You will probably agree that the following properties
of N are obvious: at least the first four are.

N1. 1 belongs to M.
N2. If n belongs to N, then its successor n + 1 belongs to N.
N3. 1 is not the successor of any element in N,
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N4. If n and m in N have the same successor, then n = m.
N5. A subset of N which contains 1, and which contains n + 1
whenever it contains n, must equal N.

Properties N1 through N5 are known as the Peano Axioms or
Peano Postulates. It turns out that most familiar properties of N can
be proved based on these five axioms; see [3] or [28].

Let's focus our attention on axiom N3, the one axiom that may
not be obvious. Here is what the axiom is saying. Consider a subset
§ of N as described in N5. Then 1 belongs to S. Since § contains n + 1
whenever it contains n, it follows that § must contain 2 = 1 + 1.
Again, since S contains n+ 1 whenever it contains n, it follows that §
must contain 3 = 2+1. Once again, since S contains n+1 whenever it
contains n, it follows that § must contain 4 = 3+1. We could continue
this monotonous line of reasoning to conclude that § contains any
number in N. Thus it seems reasonable to conclude that § = N. It is
this reasonable conclusion that is asserted by axiom N5,

Here is another way to view axiom N5. Assume axiom N5 is false.
Then N contains a set § such that

@) 1 €35,
(ii) ifne S, thenn+1€ 8§,

and yet § # N. Consider the smallest member of the set [n e N :
n ¢ 8}, call it ny. Since (i) holds, it is clear that ny, # 1. So ny, must
be a successor to some number in N, namely ny — 1. We must have
ng — 1 € § since ng is the smallest member of {(n € N : n ¢ §). By
(ii), the successor of ng — 1, namely np, must also be in §, which isa
contradiction. This discussion may be plausible, but we emphasize
that we have not proved axiom N5 using the successor notion and
axioms N1 through N4, because we implicitly used two unproven
facts. We assumed that every nonempty subset of N contains a least
element and we assumed that if ny # 1 then ng is the successor to
some number in N.

Axiom N5 is the basis of mathematical induction. Let Py, Py, Ps, . ..
be a list of statements or propositions that may or may not be
true. The principle of mathematical induction asserts that all the
statements Py, P;, P;, ... are true provided

(L) P, is true,
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" (1) Pusy is true whenever P, is true.

We will refer to (1,), i.e, the fact that P, is true, as the basis for
iduction and we will refer to (1;) as the induction step. For a sound
prroot based on mathematical induction, properties (1; ) and (1;) must
buth be verified. In practice, (I,) will be easy to check.

Example 1
Prove 1 +2 4 --- 4+ n = in(n+ 1) for natural numbers n.

Solution
Dur nth proposition is

Pi*l42+ - +n=inn+1)"

Thus P, assertsthat 1 = }-I[l +1), P;asserts that 142 = %-2{2+1],
Iy asserts that 14-2+4- - -+437 = 1.37(37+1) = 703, etc. In particular,
is a true assertion which serves as our basis for induction.

For the induction step, suppose that P, is true. That is, we
ppose

1424 -4n=1nn+1)

true. Since we wish to prove P, from this, we add n + 1 to both

+24--4n+m+)=inn+1)+(n+1)
=imn+ 1)+ 2n+1)=Ln+1)n+2)
=in+1)n+1)+1)

us Pusy holds if P, holds. By the principle of mathematical
uction, we conclude that P, is true for all n, O

We emphasize that prior to the last sentence of our solution we

not prove Py, is true,” We merely proved an implication: “if P,
true, then Py, is true.” In a sense we proved an infinite number
assertions, namely: Py is true; if P, is true then P, is true; if P, is
e then Py is true; if Py is true then Py is true; etc. Then we applied
_ matical induction to conclude Py is true, P, is true, P, is true,
s I8 true, etc, We also confess that formulas like the one just proved
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such a result. Sometimes results such as this are discovered by trial
and error.

Example 2
All numbers of the form 7" — 2" are divisible by 5.

Solution
More precisely, we show that 7" — 2" is divisible by 5 for each n € N.
Our nth proposition is

Py:*7" —2" isdivisibleby 5.

The basis for induction P, is clearly true, since 7' — 2' = 5. For the
induction step, suppose that P, is true. To verify P, ,, we write

T M = 7. 7. 2. " = 7" - 2" 452",

Since 7" — 2" is a multiple of 5 by the induction hypothesis, it follows
that 7"*! — 2"*! g also a multiple of 5. In fact, if 7" — 2" = 5m, then
7" — 2" = 5.[7m + 2"). We have shown that P, implies P, ,, so
the induction step holds. An application of mathematical induction
completes the proof. O

Example 3
Show that | sin nx| < n|sinx| for all natural numbers n and all real
numbers x,

Solution
Our nth proposition is

Py:*|sinnx| < n|sinx| for all real numbers x.*

The basis for induction is again clear. Suppose P, is true. We apply
the addition formula for sine to obtain

| sin(n + 1)x| = | sin(nx + x)| = | sin nxcosx + COs nx sin x|.

Now we apply the Triangle Inequality and properties of the absolute
value [see 3.7 and 3.5] to obtain

| sin(n + 1)x| < |sinnx|- | cosx| + | cos nx| - | sin x).
Since | cosy| < 1 for all y we see that
|sin(n + 1)x| < |sin nx| + | sin x].




Now we apply the induction hypothesis P, to obtain
| sin(n + 1)x| < n|sinx| + |sinx| = (n + 1)|sina|.

Thus P,4; holds. Finally, the result holds for all n by mathematical
induction. O

Exercises
1.1. Prove 1’4+2%+...+n’ = {n(n+1)(2n+1) for all natural numbers n.
*1.2. Prove 3+ 11 4 -+- 4 (Bn — 5) = 4n” — n for all natural numbers n.

1.3, Prove 1° + 28 4 ... 4 n* = (1 + 24 .. 4+ n)? for all natural numbers
n.

1.4, (a) Guess a formula for 1 + 3+ --- + (2n = 1) by evaluating the
sum forn =1, 2, 3, and 4. [For n = 1, the sum is simply 1.

(b) Prove your formula using mathematical induction.
1.5. Prove 1 + 1 +1 4 ... 4 & =2~ L for all natural numbers n.
*1.6. Prove that (11)" — 4" is divisible by 7 when n is a natural number.
*1.7. Prove that 7" — 6n — | is divisible by 36 for all positive integers n.

1.8. The principle of mathematical induction can be extended as fol-
lows. A list Py, Py, . . . of propositions is true provided (i) Py is
true, (ii) Pas, is true whenever Py is trueand n > m.

(a) Prove that n’ > n + 1 for all integers n > 2.

(b) Prove that n! > n® for all integers n > 4. [Recall that n! =
n(n—1)---2-1; for example, 5! =5-4-3-2-1 =120}

«1.9. (a) Decide for which integers the inequality 2" > n’ is true.
(b) Prove your claim in (a) by mathematical induction.

1.10. Prove (2n+ 1)+ (2n +3) + (2n+5) +--- + (4n = 1) = 3n? for all
positive integers n.

1.11. For each n € N, let P, denote the assertion *n? + 5n + 1 is an even

integer.”

(a) Prove that P, is true whenever P, is true.
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(b) For which n is P, actually true? What is the moral of this
exercise?

1.12. For n € N, let n! [read “n factorial”] denote the product 1-2-3---n
Also let 0! = 1 and define

n n!
(.i,‘) = m for k=ﬂ.l,...,ﬂ

The binomial theorem asserts that

b= (e (s (Yot
HaloJar+ ()

=a"+na""'b+in(n—-1)a" P +--- + nab"' + 5"

(a) Verify the binomial theorem forn = 1, 2, and 3.
(b) Show that () + (,",) = ("}") fork=1,2,...,n.

(c) Prove the binomial theorem using mathematical induction
and part (b).

§2 The Set () of Rational Numbers

Small children first learn to add and to multiply natural numbers.
After subtraction is introduced, the need to expand the number sys-
tem to include 0 and negative numbers becomes apparent. At this
point the world of numbers is enlarged to include the set Z of all
integers. Thus we have Z = {0,1,-1,2,-2,.. ).

Soon the space Z also becomes inadequau when division is in-
troduced. The solution is to enlarge the world of numbers to include
all fractions. Accordingly, we study the space Q of all rational num-
bers, i.e., numbers of the = where m,n € Z and n # 0. Note
that Q contains all terminating decimals such as 1.492 = 182, The
connection between decimals and real numbers is discussed in 10.3
and §16. The space Q is a highly satisfactory algebraic system in
which the basic operations addition, multiplication, subtraction and
division can be fully studied. No system is perfect, however, and @
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FIGURE 2.1

is inadequate in some ways. In this section we will consider the de-
fects of Q. In the next section we will stress the good features of Q
and then move on to the system of real numbers.

The set Q of rational numbers is a very nice algebraic system
until one tries to solve equations like x* = 2. It turns out that no
rational number satisfies this equation, and yet there are good rea-
sons to believe that some kind of number satisfies this equation.
Consider, for example, a square with sides having length one; see
Figure 2.1. If d represents the length of the diagonal, then from ge-
ometry we know that 17 + 17 = d’, ie, d® = 2. Apparently there
Is a positive length whose square is 2, which we write as +/2. But
V2 cannot be a rational number, as we will show in Example 2.
Of course, +/2 can be approximated by rational numbers. There
are rational numbers whose squares are close to 2; for example,
(1.4142) = 1.99996164 and (1.4143)* = 2.00024449,

It is evident that there are lots of rational numbers and yet there
are “gaps” in (. Here is another way to view this situation. Consider
the graph of the polynomial #* — 2 in Figure 2.2. Does the graph of
a' — 2 cross the x-axis? We are inclined to say it does, because when
we draw the x-axis we include "all* the points. We allow no “gaps.”
But notice that the graph of x* — 2 slips by all the rational numbers
on the x-axis. The x-axis is our picture of the number line, and the
set of rational numbers again appears to have significant “gaps.”

There are even more exotic numbers such as x and e that are not
rational numbers, but which come up naturally in mathematics. The
number m is basic to the study of circles and spheres, and e arises in
problems of exponential growth.

We return to +/2. This is an example of what is called an algebraic
number because it satisfies the equation x* — 2 = 0.




FIGURE 2.2

2.1 Definition.
A number is called an algebraic number if it satisfies a polynomial
equation

AnX" + ny X 4@kt ag =0
where the coefficients ag, a, . .., @, are integers, a, # 0and n > 1.

Rational numbers are always algebraic numbers. In fact, ifr = 7
is a rational number [m,n € Z and n # 0], then it satisfies the

cquaﬂﬂnnx-m=ﬂ.Numhendeﬁnedintemsnff,r,m[nr

fractional exponents, if you prefer] and ordinary algebraic operations
on the rational numbers are invariably algebraic numbers.

Example 1

%I 3].!"1' (]nh’!i (2+ 5[!’3}!.’2 and ((4 N 3]!1}'3?}!!] all represent
algebraic numbers. In fact, 3 is a solution of 17x — 4 = 0,:3'3
represents a solution of > — 3 = 0, and (17)""? represents a so-
lution of #* — 17 = 0. The expression a = (2 + 5'%)'"? means
a* = 2 4 5 or a? — 2 = 53 so that (a* — 2)’ = 5. Therefore
we have a® — 6a* + 12a® — 13 = 0 which shows thata = (2+5'%)'?
satisfies the polynomial equation x® — ix* 4 12+’ — 13 = 0. Similarly,
the expression b = ((4—2:3')/7)"? leads to 7b* = 4-2.3"% hence

TSR L IR
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2-3Y% = 4— 7b, hence 12 = (4 — 7b*)?, hence 49b* — 56b% +4 = 0,
Thus b satisfies the polynomial equation 49x* — 56x" + 4 = 0.

The next theorem may be familiar from elementary algebra. Itis
the theorem that justifies the following remarks: the only possible ra-
tional solutions of X — 74 +2x— 12 = Oare £1, £2, £3, +4, 16, £12,
so the only possible (rational) monomial factors of x* — 7x* + 2x - 12
arex—1,x+1, x-2,x+2,x—3,x+3, x—4,x+4,x—6,x+6,
x—12, x4 12. We won't pursue these algebraic problems; we merely
made these observations in the hope that they would be familiar.

The next theorem also allows one to prove that algebraic numbers
that do not look like rational numbers are not rational numbers. Thus
/4 is obviously a rational number, while +/2, /3, /5, etc. turn out
to be nonrational. See the examples following the theorem. Recall
that an integer k is a factor of an integer m or divides m if T is also
an integer. An integer p > 2 is a prime provided the only positive
factors of p are 1 and p. It can be shown that every positive integer
can be written as a product of primes and that this can be done in
only one way, except for the order of the factors.

1.1 Rational Zeros Theorem.,
Suppose that ag, ay, . . ., a, are integers and that r is a rational number

satisfying the polynomial equation
A" + 8+ +as =0 )

wheren > 1, a, # 0 and ag # 0. Wﬁur-_—-;mhmp,thum
having no common factors and q # 0. Then q divides a,, and p divides ag.

In other words, the only rational candidates for solutions of (1)
hlvuﬁuﬁ:nnswhurepdividuau and g divides a,,.

Proof
‘We are given

) ) 0n ()
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We multiply through by ¢" and obtain

anp" +an1p" '+ anap" g+ +ap’q"  +apg" " +aog" = 0.
(2)
If we solve for a,p”, we obtain

anp" = —qlan-1p""" +an-2p" g+ -+ a0’ +aipq" " +aog" ),

It follows that g divides a,p". But p and g have no common factors,
so q must divide a,. [Here are more details: p can be written as
a product of primes p,p; - - - pr where the p;'s need not be distinct.
Likewise g can be written as a product of primes g4 - - - q;. Since g
divides a,p", the quantity 5'-'1"- M{t must be an integer. Since
no p; can equal any gj, the un:que factorization of a, as a product of
primes must include the product 4,4; - - - g;. Thus g divides a,.)
Now we solve (2) for agq” and obtain

aoq" = —planp" ™" +an 10" g+ an 20" 0" +- - -+ axpg" g™,

Thus p divides apq”. Since p and g have no common factors, p must
divide ag. |

Example 2
+/2 cannot represent a rational number.

Proof

By Theorem 2.2 the only rational numbers that could possibly be
solutions of x> — 2 = O are £1,4+2. [Heren = 2, a; = 1, a; = 0,
ap = —2. So rational solutions must have the form E where p divides
ag = —2 and g divides a; = 1.) One can substitute each of the four
numbers +1, 42 into the equation x* — 2 = 0 to quickly eliminate
them as possible solutions of the equation. Since +/2 represents a
solution of ¥ — 2 = 0, it cannot represent a rational number, n

Example 3
+/17 cannot represent a rational number.

Proof
The only possible rational solutions of ¥* — 17 = 0 are +1, +17 and
none of these numbers are solutions. -
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Example 4

6''? cannot represent a rational number.

Proof

The only possible rational solutions of ¥* —6 = 0 are +1, 42, 43, +6.

It is easy to verify that none of these eight numbers satisfies the
equation x* — 6 = 0. L]

Example 5
a = (24 5'%)"? does not represent a rational number.

Proof

In Example 1 we showed that a represents a solution of ¥* — 6x* +
12¢¥* — 13 = 0. By Theorem 2.2, the only possible rational solutions
are £1,+13. When x = 1 or —1, the left hand side of the equation
is —6 and when x = 13 or —13, the left hand side of the equation
turns out to equal 4,657,458. This last computation could be avoided
by using a little common sense. Either observe that a is "obviously”
bigger than 1 and less than 13, or observe that

13° - 6-13*+12.137 - 13=13(13°-6-13" +12- 13- 1) # 0

since the term in parentheses cannot be zero: it is one less than
some multiple of 13, [ ]

Example 6
b = ((4 — 24/3)/7)"/? does not represent a rational number.

Proof
In Example 1 we showed that b is a solution of 49x* — 56x" + 4 = 0.
The only possible rational solutions are

+1,£1/7, £1/49, £2, £2/7, £2/49, +4, £4/7, £4/49.

‘Ib complete our proof, all we need to do is substitute these eighteen
vandidates into the equation 49x' — 56x° + 4 = 0. This prospect
s0 discouraging, however, that we choose to find a more clever
In Example 1, we also showed that 12 = (4 — 7b%)’. Now
were rational, then 4 — 7b” would also be rational [Exercise 2.6},
the equation 12 = »* would have a rational solution. But the only
rational solutions to x* —12 = Oare £1, +2, +3, +4, 46, £12,
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and these all can be eliminated by mentally substituting them into
the equation. We conclude that 4—7b” cannot be rational, so b cannot
be rational. n

As a practical matter, many or all of the rational candidates given
by the Rational Zeros Theorem can be eliminated by approximating
the quantity in question [perhaps with the aid of a calculator]. It
is nearly obvious that the values in Examples 2 through 5 are not
integers, while all the rational candidates are. My calculator says that
bin Example 6 is approximately .2767; the nearest rational candidate
is +2/7 which is approximately .2857.

Exercises
2.1. Show that /3, /5, /7, ¥/24, and /31 are not rational numbers.
2.2. Show that 2'%, 57 and (13)"* do not represent rational numbers.
» 2.3. Show that (2 + +/Z)"? does not represent a rational number.
2.4. Show that (5 — +/3)'"® does not represent a rational number.
+2.5. Show that [3 + +/2]""* does not represent a rational number.

2.6. In connection with Example 6, discuss why 4 — 7b" must be rational
if b is rational.
. 7f c€Q.r20, ond x s wratimal, provl that r+x

and rx arc irratpral. HeL® preve by cont radittion.

§3 The Set R of Real Numbers

The set {Q is probably the largest system of numbers with which
you really feel comfortable. There are some subtleties but you have
learned to cope with them. For example, Q is not simply the ser
(2 :m,n € Z, n # 0], since we regard some pairs of different look-
ing fractions as equal. For example,  and ; are regarded as the
same element of Q. A rigorous development of § based on Z, which
in turn is based on N, would require us to introduce the notion of
equivalence class; see [38]. In this book we assume a familiarity with
and understanding of Q as an algebraic system. However, in order
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to clarify exactly what we need to know about (, we set down some
of its basic axioms and properties.

The basic algebraic operations in Q are addition and multiplica-
tlon. Given a pair a, b of rational numbers, the sum a + b and the
product ab also represent rational numbers. Moreover, the following
properties hold.

Al.a+(b+c)=(a+b)+cforalla,b,c.

A2. a+b=Db+aforalla,b.

A3d. a4+ 0 =a forall a.

A4, For each a, there is an element —a such that a + (—a) = 0.
M1. a(bec) = (ab)c forall a, b, c.

M2, ﬂbnhﬁ]fﬂuﬂ,h

M3. a-1 =a for all a.

M4. For each a # 0, there is an element a~! such thataa™! = 1.
DL a(b+c)=ab+acforalla,b,c.

Properties Al and M1 are called the associative laws, and prop-
erties A2 and M2 are the commutative laws. Property DL is the
gliatributive law; this is the least obvious law and is the one that jus-
Wfies “factorization” and “multiplying out® in algebra. A system that
has more than one element and satisfies these nine properties is

lled a field. The basic algebraic properties of @ can proved solely
the basis of these field properties. We do not want to pursue
i# topic in any depth, but we illustrate our claim by proving some
iliar properties in Theorem 3.1 below.
The set Q also has an order structure < satisfying

1. Givena and b, eithera <bor b < a.
Ifa<bandb <a, thena=b.
Ifa<bandb <c thena <c.
fa<b thena+c<b+ec.

. fa<band 0 <c, thenac < be.

Property O3 is called the transitive law. This is the characteristic
rty of an ordering. A field with an ordering satisfying properties
through O5 is called an ordered field. Most of the algebraic and
properties of Q can be established for any ordered field. We
prove a few of them in Theorem 3.2 below.
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The mathematical system on which we will do our analysis will
be the set R of all real numbers. The set R will include all rational
numbers, all algebraic numbers, &, €, and more. It will be a set that
can be drawn as the real number line; see Figure 3.1. That is, every
real number will correspond to a point on the number line, and
every point on the number line will correspond to a real number.
In particular, unlike Q, R will not have any “gaps.” We will also see
that real numbers have decimal expansions; see 10.3 and §16. These
remarks help describe R, but we certainly have not defined R as
a concise mathematical object. It turns out that R can be defined
entirely in terms of the set @ of rational numbers; we indicate in the
optional §6 one way that this can be done. But then it is a long and
tedious task to show how to add and multiply the objects defined in
this way and to show that the set R, with these operations, satisfies
all the familiar algebraic and order properties that we expect to hold
for R. To develop R properly from Q in this way and to develop Q
properly from N would take us several chapters. This would defeat
the purpose of this book, which is to accept R as a mathematical
system and to study some important properties of R and functions
on R. Nevertheless, it is desirable to specify exactly what properties
of R we are assuming.

Real numbers, ie, elements of R, can be added together and
multiplied together. That is, given real numbers a and b, the sum
a+b and the product ab also represent real numbers. Moreover, these
operations satisfy the field properties Al through A4, M1 through
M4, and DL. The set R also has an order structure < that satisfies
properties O1 through O5. Thus, like @, R is an ordered field.

In the remainder of this section, we will obtain some results
for R that are valid in any ordered field. In particular, these results
would be equally valid if we restricted our attention to Q. These
remarks emphasize the similarities between R and Q. We have not
yet indicated how R can be distinguished from Q as a mathematical
object, although we have asserted that R has no *gaps.” We will make
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this observation much more precise in the next section, and then we
will give a “gap filling" axiom that finally will distinguish R from Q.

4.1 Theorem.

The following are consequences of the field properties:
(i) a+ ¢ =b+cimpliesa = b,
(ii)a-0=0foralla:

(iil) (~a)b = —ab for all a, b;

(iv) (—a)(—b) = ab for all a, b;

(v) ac=bcandc # 0 implya = b;

(vi) ab = 0 implies eithera=0o0r b = 0;
fora,bce R

Proof
(i) a+c = b+ cimplies (a+c)+(—¢) = (b+¢)+(—c), soby Al,

we have a + [¢ + (—¢)] = b+ [c + (—¢)). By A4, this reduces to
a+0=b+0,s0a=>bbyA3.

(ii) We use A3and DLtoobtaina-0=a-(0+0)=a-0+a-0,
so0+a-0=a-0+a-0. By (i) we conclude that 0 =a - 0.

(lii) Since a + (—a) = 0, we have ab + (—a)b = [a + (—a)]-b =
0-b = 0= ab + (—(ab)). From (i) we obtain (—a)b = —(ab).

(iv) and (v) are left to Exercise 3.3,

(v) fab=0andb#0,then0=b"-0=0:b" = (ab) - b ' =
abbY=a-1=a. &

Theorem.

Jollowing are consequences of the properties of an ordered field:
(i) ifa < b, then —b < —a;

(ii) ifa < band c < 0, then be < ac;

Hii) fo<aand0 <b, then 0 < ab;

(iv) 0 < a’ forall a;

(v)0 <1,

) if0 < a, then0 < a™';
JfOD<a<hthend<h'<al;

fora, b,ce R

Note thata < bmeansa < band a # b.



Proof

(i) Suppose that @ < b. By 04 applied to ¢ = (—a) + (—b), we
have a + [(—a) + (=b)] < b + [(—a) + (=b)]. It follows that
—-b < —a.

(ii) Ifa < band ¢ < 0, then 0 < —c by (i). Now by O5 we have
a(—c) < b(—c), i.e,, —ac < —bec. From (i) again, we see that
be < ac.

(iii) If we put a = 0 in property O5, we obtain: 0 < band 0 < ¢
imply 0 < bc. Except for notation, this is exactly assertion
(iif).

(iv) For any a, eithera > 0ora <0by Ol. Ifa = 0, then a* > 0
by (iii). If @ < 0, then we have —a > 0 by (i), s0 (—a)’ > 0,
ie,a®>0.

(v) is left to Exercise 3.4, w3 (v

(vi) Suppose that0 < abutthat0 < a~' fails. Then we must have
@' <0and0 < —a~'. Now by (iii) 0 < a(-a™') = -1, so
that 1 < 0, contrary to (v).

(vii) is left to Exercise 3.4. -]
Another important notion that should be familiar is that of

absolute value.

3.3 Definition.

We define

lal=a if a=0 and |a|=-a if a=<0.
la| is called the absolute value of a.

Intuitively, the absolute value of a represents the distance be-
tween 0 and a, but in fact we will define the idea of “distance® in
terms of the *absolute value,” which in turn was defined in terms of
the ordering.

3.4 Definition.
For numbers a and b we define dist(a,b) = |a — b|; dist(a, b)
represents the distance between a and b.

The basic properties of the absolute value are given in the next
theorem,
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1.5 Theorem.

(i) la| >0 foralla e R

(ii) |ab| = |a|- |b| foralla,b e R
(iii) |la + b| < |a| + |b| foralla,b e R.

Proof

(1) is obvious from the definition. [The word "obvious” as used here
signifies that the reader should be able to quickly see why the result
Is true, Certainly if @ > 0, then |a| = a > 0, while a < 0 implies
la| = —a > 0. We will use expressions like "obviously” and “clearly”
in place of very simple arguments, but we will not use these terms
o obscure subtle points.|

(ii) There are four easy cases here, If a > 0 and b > 0, then
ab > 0,80 |a| - |b| = ab = |abl. Ifa < 0and b < 0, then —a > 0,
~b > 0 and (—a)(=b) > 0 so that |a| - |b| = (~a)(—b) = ab = |ab|. If
@t > 0Dandb < 0, then —b > 0anda(—b) = Osothat |a|-|b| = a(—b) =
~(ab) = |ab|. Ifa = 0 and b = 0, then —a = O and (—a)b > 0 so that
| - |b| = (—a)b = —ab = |ab|.

(iii) The inequalities —|a| < a < |a| are obvious, since eithera =
la| or else a = —|a|. Similarly —|b| < b < |b|. Now four applications
of 04 yield

~lal + (=b]) < —la| +|bl <a+b < |al + b < |a| + |b]|
#0 that
—(lal + |bl) <a+ b < |a| + |b].

tells us that a + b < |a| + |b| and also that —(a + b) < |a] + |b|.
la + b| is equal to either a + b or —(a + b), we conclude that
+ b| < |al| + |b]. ]

6 Corollary.
(@, ¢) < dist(a, b) + dist(b,¢) forall a, b,c € R.

f
s can apply inequality (iii) of Theorem 3.5t0oa — band b — ¢ to
btain |(a — b) + (b~ ¢)| < |a— b| + |b - c| or dist(a,c) = |a —¢| =
= bl + |b - ¢| < dist(a, b) + dist(b, ). L
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FIGURE 3.2

The inequality in Corollary 3.6 is very closely related to an
inequality concerning points a, b, ¢ in the plane, and the latter in-
equality can be interpreted as a statement about triangles: the length
of a side of a triangle is less than or equal to the sum of the lengths
of the other two sides. See Figure 3.2. For this reason, the inequality
in Corollary 3.6 and its close relative (iii) in 3.5 are often called the

Triangle Inequality.

3.7 Triangle Inequality.
la+b| < la| + |b| foralla, b.

A useful variant of the triangle inequality is given in Exer-
cise 3.5(b).

Exercises
3.1. (a) Which of the properties Al-A4, M1-M4, DL, 01-05 fail for N?
(b) Which of these properties fail for Z?

3.2. (a) The commutative law A2 was used in the proof of (ii) in
Theorem 3.1, Where?

(b) The commutative law A2 was also used in the proof of (iii) in
Theorem 3.1. Where?

=3.3. Prove (iv) and (v) of Theorem 3.1.
+3.4. Prove (v) and (vif) of Theorem 3.2
3.5. (a) Show that bl <aifandonlyif—-a<b <a.
(b) Prove that |la] — |b]| < |a — b| forall a,b € R.
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*3.6. (a) Prove that |a+b+c| < lal+Ibl+|c| forall a, b, c € R. Hint: Apply
the triangle inequality twice. Do not consider eight cases.

(b) Use induction to prove
lay +az+---+an| < lail + laal + -+ + |aal
for n numbers a;, a;, . .., a,.
*3.7. (a) Show that |b| < aifandonly if —a < b < a.
(b) Show that |a —b| < cifandonly ifb—¢c < a < b+c.
(c) Show that |a —b| <cifandonlyifb—-c<a<b+c.
*0.B. Leta, b e R Show that ifa < b, for every by > b, thena < b.

§4 The Completeness Axiom

In this section we give the completeness axiom for R. This is the
axiom that will assure us that R has no *gaps.” It has far-reaching
consequences and almost every significant result in this book relies
on it. Most theorems in this book would be false if we restricted our
world of numbers to the set (§ of rational numbers.

(a) If § contains a largest element s, [that is, 5o belongs to § and
8 < & for all s € §), then we call s, the maximum of § and write
S = max S.

) If § contains a smallest element, then we call the smallest

element the minimwm of S and write it as min §.

) Every finite nonempty subset of R has a maximum and a
minimum. Thus
max{1,2,3,4,5}=5 and min{l1,2,3,4,5}=1,
max{0,m, ~7,63,4/3} =x and min{0,x, -7, 3,4/3) = -7,
max{n € Z: -4 < n < 100} = 100 and
minjne Z: -4 < n < 100} = -3,
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(b) Consider real numbers a and b where a < b. The following
notation will be used throughout the book:

[a,h]={x e R:a <x < b}, (a,h)={xeR:a < x < b},
[a,b)={xeR:a<x < b}, (a,b)={xe€R:a < x <h}.

[a, b] is called a closed interval, (a, b) is called an open interval,
while [a, b) and (a, b] are called half-open or semi-open intervals.
Observe that max[a, b} = b and min{a, b] = a. The set (a, b) has
no maximum and no minimum, since the endpoints a and b
do not belong to the set. The set [4, b) has no maximum, but a
is its minimum.

(c) The sets Z and Q have no maximum or minimum. The set N
has no maximum, but minN = 1.

(d) Theset{r e Q:0<r < v/2} has a minimum, namely 0, but
no maximum. This is because +/2 does not belong to the set,
but there are rationals in the set arbitrarily close to +/2.

(e) Consider the set {nC"1" : n € N}. This is shorthand for the set

{174,2,34,4,5,677" ..1=1{1,2

The set has no maximum and no minimum.

4.2 Definition.
Let S be a nonempty subset of R.
(a) Ifareal number M satisfies s < M forall s € S, then M is called
an upper bound of S and the set S is said to be bounded above.
(b) If a real number m satisfies m < s forall s € §, then m is called
a lower bound of S and the set S is said to be bounded below.
(c) The set S is said to be bounded if it is bounded above and
bounded below. Thus S is bounded if there exist real numbers
m and M such that S C [m, M].

Example 2
(a) The maximum of a set is always an upper bound for the set.
Likewise, the minimum of a set is always a lower bound for
the set.
(b) Considera,bin R, a < b. The number b is an upper bound for
cach of the sets |a, by, (a, b), |a, b), (¢, b]. Every number larger
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than b is also an upper bound for each of these sets, but b is
the smallest or least upper bound.

(c) None of the sets Z, Q and N is bounded above. The set N is
bounded below; 1 is a lower bound for N and so is any number
less than 1. In fact, 1 is the largest or greatest lower bound.

(d) Any nonpositive real number is a lower bound for {r € Q :
0 < r < +/2} and 0 is the set’s greatest lower bound. The least
upper bound is +/2.

(e) The set {n"1" : n € N} is not bounded above. Among its many
lower bounds, 0 is the greatest lower bound.

We now formalize two notions that have already appeared in
Example 2.

4.3 Definition.
Let S be a nonempty subset of R.
(a) If S is bounded above and § has a least upper bound, then we
will call it the supremum of S and denote it by sup S.
(b) If S is bounded below and S has a greatest lower bound, then
we will call it the infimum of S and denote it by inf S.

Note that, unlike max$§ and min§, sup$§ and inf S need not
belong to S. Note also that a set can have at most one maximum, min-
imum, supremum and infimum. Sometimes the expressions “least
upper bound” and “greatest lower bound” are used instead of the
Latin “supremum” and “infimum” and sometimes sup § is written
lub S and inf § is written glb S. We have chosen the Latin terminol-
ogy for a good reason: We will be studying the notions “lim sup” and
“lim inf” and this notation is completely standard; no one writes “lim
lub” for instance.

Observe that if S is bounded above, then M = sup § if and only if
(i) s <M forall s € §, and (ii) whenever M; < M, there exists s; € S
such that s; > M;.

Example 3
(a) IfasetShasamaximum,then max§ = sup§. A similar remark
applies to sets that have minimums.
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(b) Ifa,b e Rand a < b, then
sup[a, b] = sup(a, b) = sup|a, b) = sup(a, b] = b.

(c) As noted in Example 2, we have inf N = 1.
() IfA={reQ:0<r<+/2} thensupA = +/2 and inf A = 0.
(e) We have inf{n"V" :n e N} = 0.

Notice that, in Examples 2 and 3, every set S that is bounded
above possesses a least upper bound, i.e., sup S exists. This is not an
accident. Otherwise there would be a “gap” between the set S and
the set of its upper bounds.

4.4 Completeness Axiom.
Every nonempty subset S of R that is bounded above has a least upper
bound. In other words, sup S exists and is a real number.

The completeness axiom for (Q would assert that every nonempty
subset of Q, that is bounded above by some rational number, has a
least upper bound that is a rational number. The set A = {r € Q :
0<r< ﬁ} is a set of rational numbers and it is bounded above by
some rational numbers [3/2 for example], but A has no least upper
bound that is a rational number. Thus the completeness axiom does
not hold for Q! Incidentally, the set A can be described entirely in
terms of rationals: A = {r e Q: 0 < r and r? < 2}.

The completeness axiom for sets bounded below comes free.

4.5 Corollary.
Fivery nonempty subset S of R that is bounded below has a greatest lower
bound inf S.

Proof
lLet —S be the set {—s : s € §}; —S consists of the negatives of the
numbers in S. Since S is bounded below there is an m in R such
that m < s for all s € 8. This implies that —m > s for all s € S,
so  m > u for all u in the set —S. Thus —S is bounded above by

m. 'The Completeness Axiom 4.4 applies to —S, so sup(--S) cxists.
Figure 4.1 suggests that we prove inf' S = — sup(—S8).

Letsy  sup(-8); we need to prove

So s forall s S, ()
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f 1
m 0 The set S
sup (—S)
L 4 ,
1 4
0 —m
The set —S
FIGURE 4.1
and
ift<s forall ses§ then t< —s. (2)

'The inequality (1) will show that —sy is a lower bound for §, while
(2) will show that —sg is the greatest lower bound, that is, —sg = inf S.
We leave the proofs of (1) and (2) to Exercise 4.9. |

It is useful to know:
ifa > 0, then % < a for some positive integer n, (*)
and
ifb >0, then b < n forsome positive integer n. (**)

‘I'hese assertions are not as obvious as they may appear. If fact, there
cxist ordered fields that do not have these properties. In other words,
there exists a mathematical system that satisfies all the properties
A1-A4, M1-M4, DL and O1-05in §3 and yet possesses elementsa > 0
and b > 0suchthata < 1/nand n < b for all n. On the other
hand, such strange elements cannot exist in R or Q. We next prove
this; in view of the previous remarks we must expect to use the
t.ompleteness Axiom.

‘1.6 Archimedean Property.
Ila > 0andb > 0, then for some positive integer n, we have na > b.

This tells us that, even if a is quite small and b is quite large, some
micger multiple of a will exceed b. Or, to quote [2], given enough
Lune, one can empty a large bathtub with a small spoon. [Note that if
we sel b - 1, we obtain assertion (%), and if we set a = 1, we obtain

Aansertion (sx).|
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Proof

Assume the Archimedean property fails. Then there exista > 0 and
b > 0 such that na < b for all n € N. In particular, b is an upper
bound for the set S = {na : n € N}. Let s, = sup §; this is where we
are using the completeness axiom. Since a > 0, we have sy < sp+a4,
S0 sp —a < sp. [To be precise, we obtain so < sp+a and sp —a < 59
by property O4 and the fact that a + (—a) = 0. Then we conclude
Sp—a < §g since sop —a = so implies a = 0 by Theorem 3.1(i).] Since
o is the least upper bound for §, s — a cannot be an upper bound
for S. It follows that s — a < mnga for some ny, € N. This implies
that sp < (ng + 1)a. Since (ng + 1)a is in §, sp is not an upper bound
for § and we have reached a contradiction. Our assumption that the
Archimedean property fails must be in error. ]

We give one more result that seems obvious from our experi-
ence with the real number line, but which cannot be proved for an
arbitrary ordered field.

4.7 Denseness of Q.
Ifa,b € Randa < b, then thereis arationalr € Q suchthata < r < b.

Proof
We need to show that a < 7 < b for some integers m and n where
n > 0, and thus we need

an < m < bn. €))

Since b — a > 0, the Archimedean property shows that there exists
an n € N such that n(b — a) > 1. Since bn — an > 1, it is fairly
evident that there is an integer m between an and bn, so that (1)
holds. However, the proof that such an m exists is a little delicate.
We argue as follows. By the Archimedean property again, there exists
an integer k > max{|an|, |bn|}, so that

—k < an < bn < k.

Thentheset{j € Z: —k < j <k and an < j}is finite and nonempty
and we can set

m=—min{j e 7 : -k <j<kand an < j}.
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Then an < mbutm — 1 < an. Also, we have
m=(m-1)+1<an+1 < an+ (bn — an) = bn,

so (1) holds. [

Exercises

*4.1. For each set below that is bounded above, list three upper bounds
for the set. Otherwise write “NOT BOUNDED ABOVE” or “NBA.”

»(a) [0,1] =(b) (0,1)
(c) 2,7} (d) {m, e}
»(e) {{:neN} {0}
(® [0,1]V([23] (h) U3, [2n, 2n + 1]
s (1) N2y [—1 141 ¥ (1-5:neN}
k) n+EX neN M {reQ:r<2)
J(m) {reQ:r* < 4} *(M) {reQ:r* <2}
(0) (xeR:x < 0} (» {1,%,7%10}
(q4) {0,1,2,4,8,16} () N2, (1-11+1
o(s) {£ :neNandnisprime} (t) {xeR:x* < 8}
() {¥*:xeR} #(v) {cos(E):neN}

+(w) {sin(5"):neN}
»4,2. Repeat Exercise 4.1 for lower bounds.

-4.3. For each set in Exercise 4.1, give its supremum if it has one.
Otherwise write “NO sup.”

-4.4. Repeat Exercise 4.3 for infima [plural of infimum)].

+4.5. Let S be a nonempty subset of R that is bounded above. Prove that
if sup S belongs to S, then sup § = max S. Hint: Your proof should
be very short.

< 4.6. Let S be a nonempty bounded subset of R.

(a) Prove that inf S < sup§S. Hint: This is almost obvious; your
proof should be short.

(b) What can you say about § if inf § = sup §?
% 4.7. Let S and T be nonempty bounded subsets of R.

(a) Prove thatif SC T, theninf T <inf§ <supS <supT.
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4.9.

4.10.
A 4.11.

©4.12.

4.13.

4.14.

¥ 4.15.

»4.16.

(b) Prove that sup(SU T) = max{supS, sup T}. Note: In part (b),
do not assume S C T.

. Let S and T be nonempty subsets of R with the following property:

s<tforallse Sandte T.

(a) Observe that S is bounded above and that T is bounded below.
(b) Prove that supS < inf T.

(c) Give an example of such sets S and T where SNT is nonempty.

(d) Give an example of sets S and T where sup S = inf T'and SNT
is the empty set.

Complete the proof that inf S = —sup(-S8) in Corollary 4.5 by
proving (1) and (2).

Prove that if a > 0, then there exists n € N such that % <a<n.

Consider a,b € R where a < b. Use Denseness of Q 4.7 to show
that there are infinitely many rationals between a and b.

Let I be the set of real numbers that are not rational; elements of [
are called irrational numbers. Prove that if a < b, then there exists
x € Isuch thata < x < b. Hint: First show {r + v/2:r € Q} C I

Prove that the following are equivalent for real numbers a, b, c.
[Equivalent means that either all the properties hold or none of the
properties hold.]

(a) la—b| <c,
(b) b—~c<a<b+c,
(c) ae(b—c¢b+o).
Hint: Use Exercise 3.7(b).

Let A and B be nonempty bounded subsets of R, and let S be the
set of all sums a + b where a € A and b € B.

(a) Prove that supS =supA + supB.
(b) Prove thatinf S = inf A + inf B.

Let a,b € R. Show that ifa < b+ + forall n € N, then a < b,
Compare Exercise 3.8.

Show thatsup{r e Q:r < a}  u forcacha ¢ R.
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§5 The Symbols +oo and —o0

The symbols +o0c and —oo are extremely useful even though they
are not real numbers. We will often write +oo as simply cc. We will
adjoin 400 and —oo to the set R and extend our ordering to the set
RU{—oc, +oc}. Explicitly, we will agree that —co < a < +oo foralla
in RU{--o0, oo}. This provides the set RU{—o00, 400} with an ordering
that satisfies properties O1, O2 and O3 of §3. We emphasize that we
will not provide the set RU {—oc, +o0} with any algebraic structure.
We may use the symbols +oo and —oo, but we must continue to
remember that they do not represent real numbers. Do not apply a
theorem or exercise that is stated for real numbers to the symbols
400 or —00.

It is convenient to use the symbols +o0 and —oc to extend the
notation established in Example 1(b) of §4 to unbounded intervals.
For real numbers a, b € R, we adopt the following notation:

[a,00) ={x e R:a <x}, (a,00)={xeR:a < x},
(oo, b ={x e R:x < b}, (—oo, by =[x e R:x < b}.

We occasionally also write (—oc, o¢) for R. [g, 00) and (—oc, b] are
called closed intervals or unbounded closed intervals, while (a, o) and
(—00, b) are called open intervals or unbounded open intervals.

Consider a nonempty subset S of R. Recall that if § is bounded
above, then supS exists and represents a real number by the
completeness axiom 4.4. We define

supS = +oc if § is not bounded above.

Likewise, if S is bounded below, then inf S exists and represents a
real number [Corollary 4.5). And we define

inf S = —o0 if § is not bounded below.

For emphasis, we recapitulate:

Let S be any nonempty subset of R. The symbols sup S and inf S
always make sense. If S is bounded above, then supS is a real num-
ber; otherwise sup S = +o00. If S is bounded below, then inf S is a real
number; otherwise inf S = —oo. Moreover, we have inf S < sup S.

The exercises for this section clear up some loose ends. Most of
them extend results in §4 to sets that are not necessarily bounded.
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Exercises

5.1. Write the following sets in interval notation:
(@) (xeR:x < 0} (b) xeR:x* <8}
(©) {¥:xeR} (d) xeR:x* < 8}

5.2.
5.3.

5.4.

5.5.

+5.6.

§6

Give the infimum and supremum of each set listed in Exercise 5.1.

Give the infimum and supremum of each unbounded set listed in
Exercise 4.1.

Let S be a nonempty subset of R, and let —§ = {—s : s € S8}. Prove
that inf § = — sup(—S). Hint: For the case —oco < Inf S, simply state
that this was proved in Exercise 4.9.

Prove that inf § < sup§ for every nonempty subset of R. Compare
Exercise 4.6(a).

Let S and T be noncmpty subsets of R such that § € T. Prove that
inf T < infS§ < sup$ < supT. Compare Exercise 4.7(a).

* A Development of R

There are several ways to give a careful development of R based on
@. We will briefly discuss one of them and give suggestions for fur-
ther reading on this topic. [See the remarks about optional sections
in the preface.)

To motivate our development we hegin by observing that

a=sup{reQ:r <a} foreach ackR;

see Exercise 4.16. Note the intimate relationship: a < b if and only
if{freQ:r<a}l C{reQ:r < b} and, moreover, a = b if and only
if{freQ:r < a}l={reQ:r < b}. Subsets ¢ of Q having the form
{r € Q : r < a} satisfy these properties:

(i) a # Q and « is not empty,
(ii) ifrea,s€ Qand s < 7, then s € ¢,
(iii) o contains no largest rational.

Moreover, every subset « of Q that satisfies (i)-(iii) has the form
{r € Q:r < a} for some a € R; in fact, a - supa. Subscts « of ()
satisfying (i)-(iii} are called Dedekind cuts.
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The remarks in the last paragraph relating real numbers and
Dedekind cuts are based on our knowledge of R, including the com-
pleteness axiom. But they can also motivate a development of R
based solely on Q. In such a development we make no a priori as-
sumptions about R. We assume only that we have the ordered field
Q and that Q satisfies the Archimedean property 4.6. A Dedekind
cut is a subset o of Q satisfying (i)-(iii). The set R of real numbers
is defined as the space of all Dedekind cuts. Thus elements of R are
defined as certain subsets of Q. The rational numbers are identified
with certain Dedekind cuts in the natural way: each rational s cor-
responds to the Dedekind cut s* = {r € Q : r < s}. In this way
Q is regarded as a subset of R, that is, Q is identified with the set
Q*={s*:5€Q}.

The set R defined in the last paragraph is given an order structure
as follows: if « and B are Dedekind cuts, then we define ¢ < 8 to
signify that ¢ C B. Properties O1, O2 and O3 in §3 hold for this
ordering. Addition is defined in R as follows: if @ and B are Dedekind
cuts, then

at+B={n+r:rneaandr; € B}

It turns out that « + B is a Dedekind cut [hence in R] and that this
definition of addition satisfies properties Al-A4 in §3. Multiplication
of Dedekind cuts is a tedious business and has to be defined first for
Dedekind cuts that are > 0*. For a naive attempt, see Exercise 6.4.
After the product of Dedekind cuts has been defined, the remaining
properties of an ordered field can be verified for R. The ordered field
R constructed in this manner from Q is complete: the completeness
property in 4.4 can be proved rather than taken as an axiom.

The development of R outlined above is given in [34] and [36].
The real numbers are developed from Cauchy sequences in Q in
(23], §5. A thorough development of R based on Peano’s axioms is
given in [28].

Exercises
6.1. Consider s, t € Q. Show that

(@) s <tifandonly ifs* C t*;
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6.2.

6.3.

6.4.

6.5.

6.6.

(b) s =t ifand only if s* = t*;
(c) (s+t)* = s* + t*. Note that s* + t* is a sum of Dedekind cuts.

Show that if ¢ and 8 are Dedekind cuts, thensoisa + 8 = {r; + 12 :
rneaandr; € g}.

(a) Show that o + 0" = « for all Dedekind cuts .

(b) We claimed, without proof, that addition of Dedekind cuts sat-
isfies property A4. Thus if @ is a Dedekind cut, there must exist
a Dedekind cut —e« such that & + (—a) = 0*. How would you
define —a?

Let @ and 8 be Dedekind cuts and define the “product”: «- 8 = {72 :
n eaandr; € B}

(a) Calculate some “products” of Dedekind cuts using the Dedekind
cuts 0%, 1* and (—-1)*.

(b) Discuss why this definition of “product” is totally unsatisfactory
for defining multiplication in R.

(a) Show that {r € Q: r* < 2} is a Dedekind cut, but that {r € Q :
r? < 2} is not a Dedekind cut.

(b) Does the Dedekind cut {r € Q : r* < 2} correspond to a rational
number in R?

(c) Show that 0* U{r € Q : r > 0and r* < 2} is a Dedekind cut.
Does it correspond to a rational number in R?

Leta=0*U{p € Q:p>0andp® < 2}. Prove that « is a Dedekind
cut and also that it has the property ¢ - ¢ = 2*; that is, the square
of « is 2*. Note: This seems to be surprisingly tricky, as pointed out
by Linda Hill and Robert J. Fisher at Idaho State University. Their
solution is available from them or from the author.
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CHAPTER

§7 Limits of Sequences

A sequence is a function whose domain is a set that has the form
{n € Z : n > m}; mis usually 1 or 0. Thus a sequence is a function
that has a specified value for each integer n > m. It is customary to
denote a sequence by a letter such as s and to denote its value at n
as s, rather than s(n). It is often convenient to write the sequence
as (8.)%2.,, OT (Sm, Sm+1,Smt2,.-.). If m = 1 we may write (Sy)neN
or of course (81, Sz, 83, - . .). Sometimes we will write (s,) when the
domain is understood or when the results under discussion do not
depend on the specific value of m. In this chapter, we will be inter-
ested in sequences whose range values are real numbers, i.e., each
s, represents a real number.

Example 1
(a) Consider the sequence (8n)nen where s, = 1 . This is the
sequence (1, h 9, 116, 5¢, -+ -). Formally, of course this is the
function with domam N whose value at each n is nz . The set of
values is {1, 1 o 9, 116, 215, . h
(b) Consider the sequence given by a, = (=1)" forn > 0, i.e,

()52, where a, = (—1)". Note that the first term of the se-

31
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)

CY

(e)

quence isap = 1 and the sequence is (1, —-1,1,—-1,1, ~1,1,...).
Formally, this is a function whose domain is {0, 1, 2, ...} and
whose set of values is {—1, 1}.

It is important to distinguish between a sequence and its
set of values, since the validity of many results in this book
depends on whether we are working with a sequence or a set.
We will always use parentheses ( ) to signify a sequence and
braces { } to signify a set. The sequence given by a,, = (—1)"
has an infinite number of terms even though their values are
repeated over and over. On the other hand, the set {(—1)" : n =
0,1, 2,...}is exactly the set {—1, 1} consisting of two numbers.
Consider the sequence cos(3), n € N. The first term of this
sequence is cos(%3) = cos60° = % and the sequence looks like

)

The set of values is {cos(7) : n € N} = {%, —%, —1,1}L

If a, = n", n e N, the sequence is (1,+/2, 33,44, .. ). If we
approximate values to four decimal places, the sequence looks
like

(1,1.4142,1.4422,1.4142,1.3797,1.3480,1.3205, 1.2968, . . .).

1 1
I T The

1

1 1 1 1
D) 1 T

2121 Yy 1 -1

1 1 i
‘El—lr_' » g T o

It turns out that a,gy is approximately 1.0471 and that ajgg is
approximately 1.0069.

Consider the sequence b, = (1 + +)", n € N. This is the se-
quence (2, (3%, (%)%, ()%, ...). If we approximate the values to
four decimal places, we obtain

(2,2.25,2.3704, 2.4414, 2.4883, 2.5216, 2.5465, 2.5658, . . .).

Also by is approximately 2.7048 and byggo is approximately
2.7169.

The “limit” of a sequence (s,) is a real number that the values
s, are close to for large values of n. For instance, the values of the
sequence in Example 1(a) are close to 0 for large n and the values of
the sequence in Example 1(d) appear to be close to 1 for large n. The
sequence (a,) given by a, = (—1)" requires some thought. We might
say that 1 is a limit because in fact a,, = 1 for the large values ol n
that arc cven. On the other hand, a,, [which is quite a distance
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from 1] for other large values of n. We need a concise definition in
order to decide whether 1 is a limit of a, = (—1)". It turns out that
our definition will require the values to be close to the limit value
for all large n, so 1 will not be a limit of the sequence a,, = (—1)".

7.1 Definition.
A sequence (8,,) of real numbers is said to converge to the real number
s provided that

for each € > 0 there exists a number N such that
n > N implies |s, — s| < €.

M)

If (s,) converges to s, we will write lim,_,o s, = s, or s, — s. The
number s is called the limit of the sequence (s,). A sequence that
does not converge to some real number is said to diverge.

Several comments are in order. First, in view of the Archimedean
property, the number N in Definition 7.1 can be taken to be a natural
number if we wish. Second, the symbol € [lower case Greek epsilon]
in this definition represents a positive number, not some new ex-
otic number. However, it is traditional in mathematics to use € and §
[lower case Greek delta] in situations where the interesting or chal-
lenging values are the small positive values. Third, condition (1) is
an infinite number of statements, one for each positive value of e.
The condition states that to each € > 0 there corresponds a number
N with a certain property, namely n > N implies |s, — 8| < €. The
value N depends on the value ¢, and normally N must be large if ¢
is small. We illustrate these remarks in the next example.

Example 2
3+
74

n

% and % are very small for large n, it seems reasonable to conclude
that lims, = % In fact, this reasoning will be completely valid after
we have the limit theorems in §9:

Consider the sequence s, = ;Zﬂ If we write s, as

and note that

2 —

_ C | 3+1 lim 3 + lim(1) 340 3
lims, = lim = | = —I— = ==,
- = lim7 —4lim(3) 7—-4-0 7
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However, for now we are interested in analyzing exactly what we
mean by lims, = % By Definition 7.1, lim s, = % means that

for each € > 0 there exists a number N such that

n > N implies |2 — 2| < €.

)

As € varies, N varies. In Example 2 of the next section we will show
that, for this particular sequence, N can be taken to be 4%’; + %. Using
this observation and a calculator, we find that for € equal to 1, 0.1,
0.01, 0.001 and 0.000001, respectively, N can be taken to be approx-
imately 0.96, 4.45, 39.35, 388.33 and 387,755.67, respectively. Since
we are interested only in integer values of n, we may as well drop
the fractional part of N. Then we see that five of the infinitely many
statements given by (1) are:

n >0 implies — =< 1; 2

P m—4 7‘ )
o 3n+1 3

n > 4 implies - = < 0.1; 3)
n—-4 7
. . 3n+1 3

n > 39 implies - -1 < 0.01; 4)
n—4 7
L 3n+1 3

n > 388 implies — =1 < 0.001; (5)
mn—-4 7
L 3n+1 3

n > 387,755 implies — —1 < 0.000001. (6)
m—4 7

Table 7.1 partially confirms assertions (2) through (6). We could go
on and on with these numerical illustrations, but it should be clear
that we need a more theoretical approach if we are going to prove
results about limits.
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Table 7.1

_ 3n+l _ 3

Sn = 7y In 7
n approximately approximately

1 1.3333 .9047

2 0.7000 2714

3 0.5882 .1597

4 0.5417 1131

5 0.5161 .0876

6 0.5000 .0714
40 0.4384 .0098
400 0.4295 .0010

Example 3
We return to the examples in Example 1.

(a) lim & = 0. This will be proved in Example 1 of the next section.

(b) The sequence (a,) where a,, = (—1)" does not converge. Thus
the expression “lima,” is meaningless in this case. We will
discuss this example again in Example 4 of the next section.

(c) The sequence cos(’3") does not converge. See Exercise 8.7.

(d) The sequence n!’" appears to converge to 1. We will prove
lim n'" = 1 in 9.7(c).

(e) The sequence (b,) where b, = (1 + 1) converges to the num-
ber e that should be familiar from calculus. The limit lim b,
and the number e will be discussed further in the optional
§37. Recall that e is approximately 2.7182818.

We conclude this section by showing that limits are unique. That
is, if lim s, = s and lims, = t, then we must have s = t. In short,
the values s, cannot be getting arbitrarily close to different values
for large n. To prove this, consider € > 0. By the definition of limit
there must exist Ny so that

€

n > N; implies |[s, —s| < 5

and there must exist N, so that

€
n >N, implies |[s, —t] < >
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For n > max{N;, N;}, the Triangle Inequality 3.7 shows that

[s =t =1(s—58n)+ (8n — )] <|8—8ul +ISn +——

—tl=5
2

This shows that [s — t| < ¢ for all ¢ > 0. It follows that |s — t| = 0,
hence s = t.

Exercises

7.1. Write out the first five terms of the following sequences.
(a) 8, = ﬁ (b) b — 3n+1
(©) on=1 (d) sin(%)

7.2. For each sequence in Exercise 7.1, determine whether it converges.
If it converges, give its limit. No proofs are required.

7.3. For each sequence below, determine whether it converges and, if it
converges, give its limit. No proofs are requlred

(@ an. =75 ('D)b“H3
() cn=27" @ t,=1+2
(€) %u =73+ (~1)" () s.= (2"
() ynlzn n! (h) d"z: (-1)'n
M S- O

&) T8 (@ sin(*)
(m) sin(nn) (n) sm(Z””)
(0) %nsinn (p) 2;:;5

@ 3 - @ O +5)
() 325 NORE=

7.4. Give examples of

(a) asequence (x,) of irrational numbers having a limit lim x,, that
is a rational number.

(b) a sequence (r,) of rational numbers having a limit limr, that
is an irrational number.

¢ 7.5. Determine the following limits. No proofs are required, but show
any relevant algebra.

(a) lims, where s, = vn’+1—n,
(b) lim(vn? +n—n),
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(c) lim(v/4n? +n — 2n).

Hint for (a): First show that s, = Jn_z“jr~pr—n

§8 A Discussion about Proofs

In this section we give several examples of proofs using the definition
of the limit of a sequence. With a little study and practice, students
should be able to do proofs of this sort themselves. We will sometimes
refer to a proof as a formal proof to emphasize that it is a rigorous
mathematical proof.

Example 1
Prove that lim # = 0.

Discussion. Our task is to consider an arbitrary € > 0 and show
that there exists a number N [which will depend on €] such that
n > N implies In% — 0| < €. So we expect our formal proof to begin
with “Let € > 0” and to end with something like “Hence n > N
implies |nl—2 — 0] < €.” In between the proof should specify an N and
then verify that N has the desired property, namely thatn > N does
indeed imply |# —0] < e.

As is often the case with trigonometric identities, we will initially
work backward from our desired conclusion, but in the formal proof
we will have to be sure that our steps are reversible. In the present
example, we want ];117 — 0] < € and we want to know how big n
must be. So we will operate on this inequality algebraically and try
to “solve” for n. Thus we want % < ¢. By multiplying both sides by n?
and dividing both sides by ¢, we find that we want 2 < n” or 71—; < n.

If our steps are reversible, we see that n > ﬁ implies ];12— -0} < e

This suggests that we put N = ﬁ

Formal Proof
Lete > 0. Let N = ﬁ Then n > N implies n > ﬁ which implies

n* > 1 and hence € > ;. Thus n > N implies |5 — 0] < €. This
proves that lim -5 = 0. [ |
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Example 2
3n+l 3

Prove that lim L=

Discussion. For each € > 0, we need to decide how big n must be

to guarantee that |25 — 2| < . Thus we want
2In+7—2In+12 19
E U —
7(7n — 4) 7(7n — 4)

Since 7n — 4 > 0, we can drop the absolute value and manipulate
the inequality further to “solve” for n:
19 19 19 4
— + =< n
U3 7€ 49¢ 7
Our steps are reversible, so we will put N = % + % Incidentally,
we could have chosen N to be any number larger than j—(i + %

Formal Proof
Lete > Oand let N = 41—996—{—4 Then n > N implies n > 41—996—!-~
hence 7n > 2 + 4, hence 7n—4 > 12 hence 52— < ¢, and hence

7e! 7(7n—4)
Sntl 3 3nt+t 3
|5 l < €. This proves lim 5147 = = B
Example 3

Prove that lim
Discussion. For each € > 0, we need to determine how large n
must be to imply

4n +3n _
=5 = 4.

4nd + 3n
n:—6

3n+ 24
n? —6

< € Or

By considering n > 1, we may drop the absolute values; thus we
need to find how big n must be to give % < €. This time it would
be very difficult to “solve” for or isolate n. Recall that we need to find
some N such thatn > Nimplies =75 3““4 < ¢, butwe donotneedto find
the least such N. So we will s1mp11fy matters by making estimates.
The idea is that 3”+24 is bounded by some constant times 5 = ”%
for sufficiently large n. To find such a bound we will find an upper
bound for the numerator and a lower bound for the denominator.
For example, since 3n + 24 < 27n, it suffices for us to get —27—} < €.
To make the denommator smaller and yet a constant multiple of n®,

we note that n® — 6 > 11— provided n is sufficiently large; in fact, all




§8. A Discussion about Proofs 39

27n
n3/2

we need is § >6o0rn®>12o0rn > 2. So it suffices to get < €

or% < eorn > /2 provided thatn > 2.

Formal Proof
Lete > 0 and let N = max({2,,/2}. Thenn > N implies n > /2

R . 3
nence 2 < ¢ hence 2% < €. Since n > 2, we have & < n® — 6 and

also 27n = 3n + 24. Thus n > N implies
3n+24 27n 54
—_—<

< = — < €
n—6 T Ind n?2 7
and hence
4n® 4 3n
3 — 4] < g,
n°—=6
as desired. [ |

Example 3 illustrates that direct proofs of even rather simple
limits can get complicated. With the limit theorems of §9 we would
just write

_ {4n3+3n] . [4+%] lim 4 + 3 - lim(:})
lim| ——— | =lim = =4

&1 lim1-6-lim(k)
Example 4
Show that the sequence a,, = (—1)" does not converge.

Discussion. We will assume that lim(—1)" = a and obtain a con-
tradiction. No matter what a is, either 1 or —1 will have distance at
least 1 from a. Thus the inequality |(—1)" — a| < 1 will not hold for
all large n.

Formal Proof
Assume that lim(—1)" = a for some a € R. Letting € = 1 in the
definition of the limit, we see that there exists N such that

n >N implies |(-1)"—al < 1.
By considering both an even and an odd n > N, we see that

1—al<1 and |[—1-—af < 1.
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Now by the Triangle Inequality 3.7
2=1—(-Dl=1—a+a— (=Dl <1—a|+la—(-1)| < 1+1=2.

This absurdity shows that our assumption that lim(—1)* = a must
be wrong, so the sequence (—1)" does not converge. n

Example 5
Let (s,) be a sequence of nonnegative real numbers and suppose
that s = lims,. Note that s > 0; see Exercise 8.9(a). Prove that
lim /s, = /s.

Discussion. We must consider € > 0 and show that there exists N
such that

n >N implies |/s; —+/s| < e

This time we cannot expect to obtain N explicitly in terms of € be-
cause of the general nature of the problem. But we can hope to show
such N exists. The trick here is to violate our training in algebra and
“irrationalize the denominator”:

WS VS HS)  su—s
I gy S SR

Since s, —> s we will be able to make the numerator small [for large
n]. Unfortunately, if s = 0 the denominator will also be small. So we
consider two cases. If s > 0, the denominator is bounded below by
/8 and our trick will work:

I$p — s}

Iv/$n — /5| < 7

so we will select N so that |s, — 8| < +/se for n > N. Note that N
exists, since we can apply the definition of limit to /se just as well
as to €. For s = 0, it can be shown directly that lims, = 0 implies
lim /s, = 0; the trick of “irrationalizing the denominator” is not
needed in this case.

Formal Proof
Case I: s > 0. Let € > 0. Since lims,, = s, there exists N such that

n >N implics |[s, —s| < sc.
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Now n > N implies
— g <8 S| fe

Vo= VAl = s P

Case II: s = 0. This case is left to Exercise 8.3. [ ]

Example 6

Let (s,) be a convergent sequence of real numbers such that s, # 0

for all n € N and lims,, = s # 0. Prove that inf{|s,| : n € N} > 0.
Discussion. The idea is that “most” of the terms s,, are close to s

and hence not close to 0. More explicitly, “most” of the terms s,, are

within %Isl of s, hence most s, satisfy |s,| > %lsl. This seems clear

from Figure 8.1, but a formal proof will use the triangle inequality.

Formal Proof
Let € = %Isl > 0. Since lim s,, = s, there exists N in N so that
o Is
n >N implies |s, —s| <
Now
N Is|
n >N implies |[s,| > 5 (1)

since otherwise the triangle inequality would imply

Is| | Is]

Is| = Is — Sp + 8al < |8 —8p| + 8] < S t5 = Is]
which is absurd. If we set
.
m = min 71]Slxr[SZIr"'rlle ’

most s,, here
A

s —
1 ] |
T T t 1 s>0
0 S s
2
most s, here
A
' B
[ ! ] !
T 1 — T s<0
s S 0
2

FIGURE 8.1
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then we clearly have m > 0 and |s,| > m for all n € N in view of (1).
Thus inf{|s,|: n € N} > m > 0, as desired. |

Formal proofs are required in the following exercises.

Exercises
8.1. Prove the following:
(@ lim&r =0 (b) lim -1 =0
(c) lim 221 = 2 (d) lim 32 =0

8.2. Determine the limits of the following sequences, and then prove
your claims.

7n—19

«(a) a, = nzrji-é (b) bn = 23nn+47
_ Ant __ 2n+

(¢) e = 72—5 ‘(d) dn = 52+2

(e) s, = isinn

8.3. Let (s,) be a sequence of nonnegative real numbers, and suppose
that lims, = 0. Prove that lim ,/s; = 0. This will complete the
proof for Example 5.

<8.4. Let (t,) be a bounded sequence, i.e., there exists M such that |t,] <
M for all n, and let (s,) be a sequence such that lims, = 0. Prove
that lim(s,t,) = 0.

8.5. (a) Consider three sequences (a,), (b») and (s,) such that a, <
$p < b, for all n and lim a,, = limb,, = s. Prove that lims,, = s.

(b) Suppose that (s,) and (t,) are sequences such that |s,| < t, for
all n and limt, = 0. Prove that lims, = 0.

8.6. Let (s,) be a sequence in R.
<(a) Prove that lims, = 0 if and only if lim |s,,| = 0.

(b) Observe thatif' s, = (—1)", then lim [s,] exists, but lim s,, does
not exist.

8.7. Show that the following sequences do not converge.
(a) cos(%Z) () 0= (~1)'n
«(€) sin(%)
8.8. Prove the following [see Exercise 7.5]:
(a) lim[vnZ +1-n]=0 (b) im[vVnZ+n—-nj=1
(¢) im[v4nZ +n—2n] =}
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8.9. Let (s,) be a sequence that converges.

(a) Show thatif's, > a for all but finitely many n, then lims, > a.

(b) Show thatif's, < b for all but finitely many n, thenlims, < b.

(c) Conclude that if all but finitely many s, belong to [a, b], then
lim s, belongs to [a, b).

»8.10. Let (s,) be a convergent sequence, and suppose that lims, > a.
Prove that there exists a number N such thatn > N impliess, > a.

§9 Limit Theorems for Sequences

In this section we prove some basic results that are probably already
familiar to the reader. First we prove that convergent sequernces are
bounded. A sequence (s,) of real numbers is said to be bounded if
the set {s, : n € N} is a bounded set, i.e., if there exists a constant M
such that |s,,| < M for all n.

9.1 Theorem.
Convergent sequences are bounded.

Proof
Let (sn) be a convergent sequence, and let s = lims,. Applying
Definition 7.1 with € = 1 we obtain N in N so that

n > N implies |s, —s| < 1.

From the triangle inequality we see that n > N implies |s,| < |s{+1.
Define M = max{|s| + 1, |s11, sz, .. ., sSy|}. Then we have [s,| < M
for all n € N, so (s,) is a bounded sequence. |

In the proof of Theorem 9.1 we only needed to use property 7.1(1)
for a single value of €. Our choice of € = 1 was quite arbitrary.

9.2 Theorem.
If the sequence (s,) converges to s and k € R, then the sequence (ks,)
converges to ks. That is, lim(ks,) = klims,.
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Proof

We assume k # 0, since this result is trivial for k = 0. Let ¢ > 0
and note that we need to show that |ks,, — ks| < ¢ for large n. Since
lims, = s, there exists N such that

n >N implies s, —s| <

'[?] .

Then

n > N implies [ks, —ks| < €.

9.3 Theorem.
If (sn) converges to s and (t,) converges to t, then (s, + t,) converges to
s+t Thatis,

lim(s, + t,) = lims, + limt,.

Proof
Let € > 0; we need to show that

[Sp +t, —(s+ 1) < € forlarge n.

We note that |s, +t, — (s + )| < |s, — 8| + |t, — t]. Since lims, = s,
there exists Ny such that

€
n > N; implies s, —s| < 7

Likewise, there exists N, such that
. . €
n > N; implies |[t, —t]| < 5

Let N = max{Nj, Nb}. Then clearly

€ €
n > N implies |sn+tn—(s+t)|Slsn—s[+|tn—t[<§+§:e.
|

9.4 Theorem.
If (sn) converges to s and (t,) converges to t, then (Suty) converges to st.
That is,

Him(s,t,,) — (lims)(limd,).
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Discussion. The trick here is to look at the inequality

[Sntyn — St| = [Sptn — Sut + Sat — St
< |Sutn — Spt| + [Spt — St| = |8ul - [tn — £ + [t] - |8y — 8]

'or large n, |t, —t| and |s,, —s| are small and |¢] is, of course, constant.
| l'ortunately, Theorem 9.1 shows that |s,| is bounded, so we will be
| able to show that |s,t, — st| is small.

’roof
let € > 0. By Theorem 9.1 there is a constant M > 0 such that
ls,] < M for all n. Since limt, = t there exists N; such that

€
n > N; implies |, —t] < —.
1 p [tn | M

Also, since lim s, = s there exists N, such that

€
n > N, implies s, —s] <« ————.
2 p ln ] 2(]t|+1)

|We used 2(l—f|€+.1—) instead of éﬁ, since t could be 0.] Now if N =

max{Ny, Ny}, then n > N implies

Isntn - Stl =< 'Snl ) |tn - tl + |t| ' Isn - SI

<M € e e+e
- 2M

AT A
20l+1) 2 2

To handle quotients of sequences, we first deal with reciprocals.

9.5 Lemma.
11" (s,) converges to s, if s, # 0 for all n, and if s # 0, then (1/sy)
converges to 1/s.

Discussion. We begin by considering the equality

1 1

Sn S

s8-8,

SpS

For large n, the numerator is small. The only possible difficulty
would be il the denominator were also small for large n. This dif-
heulty s solved in Example 6 of §8 where it is proved that m
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inf{|s,| : n € N} > 0. Thus
1 1

S, 8

§—S8
_ls=sl

’

m|s|
and it is clear how our proof should proceed.
Proof

Let € > 0. By Example 6 of §8, there exists m > 0 such that |s,| > m
for all n. Since lim s, = s there exists N such that

n > N implies |s—s,| < €-m]s|.
Then n > N implies

_ IS — 8yl - [ ~ Snl

susl — mls| n

9.6 Theorem.
Suppose that (s,) converges to s and (t,) converges to t. If s # 0 and
sp, # 0 for all n, then (t,/s,) converges to t/s.

Proof
By Lemma 9.5 (1/s,) converges to 1/s, so
t 1 1 t
lim = =lim— t, = — -t = -
Sn Sp s s
by Theorem 9.4. u

The preceding limit theorems and a few standard examples allow
one to easily calculate many limits.

9.7 Basic Examples.
(@) lim,— (=) =0forp > 0.
(b) lim,a" =0if|al < 1.
(c) im(n") =1.
(d) lim, (@™ =1 fora > 0.

Proof

(a) Lete > 0and let N = (%)'/’7. Then n > N implies n” > }and

hence ¢ > L. Since 2. > 0, this shows that n > N implics

et n'
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(b)

(<)

(d)

# — 0] < €. [The meaning of n” when p is not an integer will

be discussed in §37.]

We may suppose that a # 0, because lim, .o, a" = 0 is obvious
fora = 0. Since |a| < 1, we can write |a| = ﬁ where b > 0. By
the binomial theorem [Exercise 1.12], (1 +b") > 1+ nb > nb,

SO
1 1

"0 =la" = ——— :
la” = 0] = la”) (A +b)y ~ nb

Now consider € > 0 and let N = % Then n > N implies

1 n_. 1
n > - and hence [@" — 0] < 5 < €.

Lets, = (nl/”)——l and note thats, > 0 for all n. By Theorem 9.3
it suffices to show that lims, = 0. Since 1 + s, = (n””), we
have n = (1 + s,)". For n > 2 we use the binomial expansion

of (1 + s,)" to conclude

n 1 2 1 2
n=01+s)" =21+ns,+ -Z-n(n —1)s; > En(n — 1)s;,.

2
n

§n < /727 for n > 2. A standard argument now shows that

lims, = 0; see Exercise 9.7.

First suppose a > 1. Then for n > a we have 1 < a’/n <
n/". Since limn!'" = 1, it follows easily that lim(a"") = 1;
compare Exercise 8.5(a). Suppose that 0 < a < 1. Then 61—1 >

1, so lim($)"" = 1 from above. Lemma 9.5 now shows that

Thus n > in(n— 1)s?, so s < =%. Consequently, we have

lim(a'™) = 1. [

Example 1
Prove that lims, = %, where

n +6n’+7

Sy =

4n3 +3n—4
Solution
We have
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By 9.7(a) we have lim ;11- = 0 and lim 7113 = 0. Hence by Theorems 9.3
and 9.2 we have

: 6 7 : (1 . 1
hm(1+—+—3):hm(1)+6-hm(—)+7-hm(——3) =
n o n n n

Similarly, we have
. 3 4
hm(4+—-——) = 4.
B

Hence Theorem 9.6 implies that lims, = ;. a
Example 2
H H n-—>5
Find lim 5=,
Solution
Let s, = 5> +7 We can write s,, as - +Z, but then the denominator
does not converge. So we write
1_ 5
8y = 1
n 1 + ;17_2
Now lim(+ — 3) = 0 by 9.7(a) and Theorems 9.3 and 9 2. Likewise
lim(1 + nz) =1, so Theorem 9.6 tells us that lims, = T =0. O
Example 3
n’+3
Find lim 7%=,
Solution
43
n+1
n+3 1+ 2
1 or 1 1

1+5 n
Both fractions lead to problems: either the numerator does not con-
verge or else the denominator converges to 0. It turns out that ’;La

n+3

does not converge and the symbol lim is undefined, at least for
the present; see Example 6. The reader may have the urge to use the
symbol 400 here. Our next task is to make such use of the symbol
I oo legitimate. For a sequence (s,,), lims, = 4o0 will signify that the
terms s, arc eventually all large. Tere is the concise definition. 1
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9.8 Definition.
I'or a sequence (s,), we write lim s, = +oo provided

for each M > 0 there is a number N such that
n > N implies s, > M.

[n this case we say that the sequence diverges to -+00.
Similarly, we write lims, = —oc provided

for each M < 0 there is a number N such that
n > N implies s, < M.

Henceforth we will say that (s,) has a limit or that the limit exists
provided (s,) converges or diverges to +oo or diverges to —oo. In
the definition of lim s, = 400 the challenging values of M are large
positive numbers: the larger M is the larger N will need to be. In the
definition of lims, = —oo the challenging values of M are “large”
negative numbers like —10,000,000,000.

Ixample 4

We have limn? = +oo, lim(—n) = -—oo, lim2" = +oo0 and
lim(y/n + 7) = +o00. Of course, many sequences do not have limits
-oo or —oo even if they are unbounded. For example, the sequences
defined by s, = (—1)"n and t, = ncos?(%%) are unbounded, but they
do not diverge to +o00 or —oc, so the expressions lim[(—1)"n] and
lim[n cos®(%F)] are meaningless. Note that t, = n when n is even
and t, = 0 when n is odd.

The strategy for proofs involving infinite limits is very much the
same as for finite limits. We give some examples.

kxample 5
Give a formal proof that lim(y/n + 7) = +o0.

Discussion. We must consider an arbitrary M > 0 and show that
there exists N [which will depend on M] such that

n>N implics Vn+7>M.
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To see how big N must be we “solve” for n in the inequality /n+7 >
M. This inequality holds provided «/n > M—7orn > (M—7)* Thus
we will take N = (M — 7).

Formal Proof
LetM > Oandlet N = (M —7)%. Thenn > N implies n > (M — 7)?,
hence /n > M—7, hence ¢/n+7 > M. This shows thatlim(/n+7) =

+00. ]
Example 6

2
Give a formal proof that lim ﬂn—i—l% = 400; see Example 3.

Discussion. Consider M > (. We need to determine how large
2 . «
n must be to guarantee that =2 > M. The idea is to bound the

n+1
. 2 . 2
fraction V,‘hff below by some multiple of *~ = n; compare Example 3
. 2 4" 2
of §8. Since n? +3 > n? and n + 1 < 2n, we have ’;:13 > L =1n,

and it suffices to arrange for %n > M.

Formal Proof
Let M > 0 and let N = 2M. Then n > N implies %n > M, which
implies

n+3 n? 1

> — = —n > M.
n+t1 2n 2

. 2
Hence lim ’;;*13 = +o00. [ ]

The limit in Example 6 would be easier to handle if we could
apply a limit theorem. But the limit theorems 9.2-9.6 do not apply.

WARNING. Do not attempt to apply the limit theorems 9.2-9.6 to
infinite limits. Use Theorem 9.9 or 9.10 below or Exercises 9.9-9.12.

9.9 Theorem.
Let (s,) and (t,) be sequences such that lims, = +oo and lim¢t, > 0
[lim t, can be finite or +00). Then lim s,t, = +o0.

Discussion. Let M > 0. We need to show that s,t, > M for large
n. We have lims,, = +o0, and we need to be sure that the 1,’s arc
bounded away from 0 for large n. We will choose a real number m
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so that 0 < m < limt, and observe that ¢, > m for large n. Then all
we need is s, > 2 for large n.

Proof
Let M > 0. Select a real number m so that 0 < m < lim¢t,. Whether
limt, = 400 or not, it is clear that there exists N; such that

n > Ny implies ¢, > m;

see Exercise 8.10. Since lim s,, = +00, there exists N, so that
. . M
n > N; implies s, > —.
m

Put N = max{Ny, N;}. Thenn > N implies s;t, > %-m=M. R

Example 7
2

Use Theorem 9.9 to prove that lim 22 = +o0; see Example 6.
Solution s

2 n+=
We observe that ’;—jﬁ = 1+§ = §,t, where s, = n+% andt, = l-i—l It
is easy to show thatlims, = +oo and lim ¢, = 1. So by Theorem 9.9,
we have lim s, t,, = +00. O

Here is another useful theorem.

9.10 Theorem.
For a sequence (8,) of positive real numbers, we have lims, = +oo if
and only if lim(;-) = 0.

Proof
Let (s,) be a sequence of positive real numbers. We have to show

1
lims, = +o0 implies lim (—) =0 €Y}
Sn

and

1
lim <—) =0 implies lims, = +o00. (2)
Sn

In this case the proofs will appear very similar, but the thought
processes will be quite different.
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To prove (1), suppose thatlims, = +00. Lete > OandletM = %
Since lim s,, = +o0, there exists N such thatn > N impliess, > M =
t. Therefore n > N impliese > + > 0, so

1
— -0
Sp

n > N implies < €.

That is, lim(si) = 0. This proves (1).
To prove (2), we abandon the notation of the last paragraph and

begin anew. Suppose that lim(si) =0.LetM > Oandlete = ﬁ Then

€ > 0, so there exists N such that n > N implies |- — 0| < € = &

i
Since s, > 0, we can write
) ) 1 1
n >N implies 0< — < —
Sn M
and hence
n >N implies M < s,.
That is, lim s, = +o0 and (2) holds. n
Exercises

9.1. Using the limit theorems 9.2-9.6 and 9.7, prove the following.
Justify all steps.

o 17747300 180243 _ 17
(€) lim 3= = 5

9.2. Suppose that limx, = 3, limy, = 7 and that all y, are nonzero.
Determine the following limits:

(@) lim(x, + y») (b) lim @y—jx
3
«9.3. Suppose that lima, = a, limb, = b, and that s, = ag:‘f‘f". Prove
lims, = “;;ff carefully, using the limit theorems.

9.4. Letsy =1andforn>1lets, ; =+/sn + 1.
(a) List the first four terms of (s,).

(b) It turns out that (s,) converges. Assume this fact and prove
that the limit is $(1 + +/5).




Exercises 53

9.6.

9.7.

9.8.

2 9.9,

9.10.

9.11.

<9.12,

. Lett) = 1 and tyy; =

2
t"zfz for n > 1. Assume that (t,) converges

and find the limit.

Letx; = 1 and x,4; = 3x% forn > 1.

(a) Show that ifa = limx,, thena = ora = 0.
(b) Does lim x, exist? Explain.

(c) Discuss the apparent contradiction between parts (a) and (b).

Complete the proof of 9.7(c), i.e., give the standard argument
needed to show that lims, = 0.

Give the following when they exist. Otherwise assert “NOT EXIST.”
(a) limn® (b) lim(—n)

(c) lim(—n)" (d) lim(1.01)"

(e) limn"

Suppose that there exists Ny such that s, < t, for all n > Ng.
(a) Prove that iflims, = +oo, then limt, = 4occ.

(b) Prove that iflimt, = —oc, then lims, = —co.

(c) Prove that iflim s, and lim¢, exist, then lims,, < lim¢,.
(a) Show that iflims, = +oo and k > 0, then lim(ks,) = +o0.
(b) Show that lims, = +oo if and only if lim(—s,) = —oc.

(c) Show that iflims, = +o0 and k < 0, then lim(ks,) = —oc.

(a) Show that if lims, = 400 and inf{t, : n € N} > —oo, then
im(s, +t,) = +oc.

(b) Show thatiflims, = +ocandlim¢, > —oo, thenlim(s,+t,) =
+oC.

(c) Show that if lims, = +o0 and if (#,) is a bounded sequence,
then lim(s, + t,) = +o0.

Assume all s, # 0 and that the limit L = lim | SZ“ | exists.

(a) Show that if L < 1, then lims, = 0. Hint: Select a so that
L < a < 1 and obtain N so that |s,,;| < a|s,| forn > N. Then
show that |s,| < a" Visy| forn > N.

(b) Show thatif L > 1, then lim|s,| = 4o00. Hint: Apply (a) to the

sequence t, = ]—Sl—l; see Theorem 9.10.
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9.13. Show that

0 if Jal <1
1 it a=1
. n
;}Lrga ] 4+ if a>1

does not exist if a< ~-1.
9.14. Letp > 0. Use Exercise 9.12 to show

, 0 if Jal <1
lim — = +o0o if a>1
e does not exist if a < —1.

9.15. Show that lim,,_, (:T =0foralla e R.

9.16. Use Theorems 9.9, 9.10 or Exercises 9.9-9.15 to prove the following:

(@) lim %8 = fo0

(b) Lim[7; +(~1)"] = +o0
(c) lim[% ~ 5] =+oo
«9.17. Give a formal proof that lim n® = +oo using only Definition 9.8.
9.18. (a) Verify 1 +a+a’+-- +a" = 5% fora # 1.
(b) Findlim,oe(l+a+a®+---+a*) for|al < 1.
(¢) Calculate limyoo(1+5+ 3+ 5+ + 3)-
(d) Whatislim,,e(l +a+a*+---+a") fora>17?

§10 Monotone Sequences and Cauchy
Sequences

In this section we obtain two theorems [Theorems 10.2 and 10.11]
that will allow us to conclude that certain sequences converge with-
out knowing the limit in advance. These theorems are important
because in practice the limits are not usually known in advance.

10.1 Definition.
A sequence (s,) of real numbers is called a nondecreasing sequence
if s, < su4q for all n, and (s,) is called a nonincreasing sequence
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if s, > sp4;1 for all n. Note that if (s,) is nondecreasing, then
S, < s, whenever n < m. A sequence that is nondecreasing or
nonincreasing will be called a monotone sequence or a monotonic
sequence.

Example 1
The sequences defined by a, =1 — %, b, = n* and ¢, = (1 + 1)"
are nondecreasing sequences, although this is not obvious for the se-
quénce (cn)- The sequence d,, = ,—q% is nonincreasing. The sequences
Sp = (=1)", tp = cos(F), up = (—1)'mand v, = % are not mono-
tonic sequences. Also x, = n'’” is not monotonic, as can be seen by
examining the first four values; see Example 1(d) in §7.

Of the sequences above, (a,), (¢»), (dn), (Sn), (trn), (Vn) and (x,)
are bounded sequences. The remaining sequences, (by,) and (u,),

are unbounded sequences.

10.2 Theorem.
All bounded monotone sequences converge.

Proof
Let (s,) be a bounded nondecreasing sequence. Let S denote the set
{s, : n € N}, and let u = supS. Since S is bounded, u represents a
real number. We show that lims,, = u. Let € > 0. Since u — € is not
an upper bound for §, there exists N such that sy > u — €. Since (s,)
is nondecreasing, we have sy < s, for all n > N. Of course, 8, < u
foralln,son > Nimpliesu—¢ < s, < u, which implies |s, —u| < e.
This shows that lim s, = u.

The proof for bounded nonincreasing sequences is left to
Exercise 10.2. n

Note that the Completeness Axiom 4.4 is a vital ingredient in the
proof of Theorem 10.2.

10.3 Discussion of Decimals.

We have not given much attention to the notion that real numbers
are simply decimal expansions. This notion is substantially correct,
butthere are subtleties to be faced. For example, different decimal ex-
pansions can represent the same real number. The somewhat more
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abstract developments of the set R of real numbers discussed in §6
turn out to be more satisfactory.

We restrict our attention to nonnegative decimal expansions and
nonnegative real numbers. From our point of view, every nonneg-
ative decimal expansion is shorthand for the limit of a bounded
nondecreasing sequence of real numbers. Suppose we are given a
decimal expansion k.dyd,dzd, - - - where k is a nonnegative integer
and each d; belongs to {0, 1, 2,3,4,5,6,7,8,9}. Let

di | dy dn

n =kt =+ 2 .
Tttt

)

Then (s,) is a nondecreasing sequence of real numbers, and (s,)
is bounded [by k + 1, in fact]. So by Theorem 10.2, (s,) converges
to a real number that we traditionally write as k.dyddad, - - -. For
example, 3.3333 - - - represents

lim (3+ - +3 5
S w02 T e )

To calculate this limit, we borrow the following fact about geometric
series from Example 1 in §14:

lima(l +7+r? 4. +7" =2 for Ir| < 1; 2
lim a( )= @
see also Exercise 9 18 Inourcase, a = 3andr = 101 so 3.3333-
represents 1—_3—_ = 3, as expected. Similarly, 0.9999 - - - represents

10

(9 9 9 5

,}E{,lo( Tt 10'7)_1—;6_1'

Thus 0.9999 - - - and 1.0000- - - are different decimal expansions that
represent the same real number!

The converse of the preceding discussion also holds. That is,
every nonnegative real number x has at least one decimal expansion.
This will be proved, along with some related results, in the optional
§16.

Unbounded monotone sequences also have limits.
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10.4 Theorem.
(1) If (sn) is an unbounded nondecreasing sequence, then lims, =
+0o0.
(ii) If (sn) is an unbounded nonincreasing sequence, then lims, =
—00.

Proof

(i) Let (s») be an unbounded nondecreasing sequence. Let M > 0.
Since the set {s, : n € N} is unbounded and it is bounded below by
s$1, it must be unbounded above. Hence for some N in N we have
sy > M. Clearly n > N implies s, > sy > M, so lims, = +oc.

(ii) The proof is similar and is left to Exercise 10.5. [ ]

10.5 Corollary.

If (sx) is a monotone sequence, then the sequence either converges, di-
verges to +00, or diverges to —oo. Thus lim s, is always meaningful for
MONOtoNe SequUences.

Proof
Apply Theorems 10.2 and 10.4. |

Let (s») be abounded sequence in R; it may or may not converge.
It is apparent from the definition of limit in 7.1 that the limiting
behavior of (s,) depends only on sets of the form {s, : n > N}. For
example, if lim s, exists, clearly it must lie in the interval [uy, vn]
where

uy = inf{s, : n > N} and vy =sup{s,:n > N};

see Exercise 8.9. As N increases, the sets {s, : n > N} get smaller,
so we have

U <up<uz<-.-- and =V >V3>--;
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10.6 Definition.
Let (s,) be a sequence in R. We define

limsups, = lim sup{s,:n > N} 1)
N—>o0
and
liminf's, = lim inf{s,:n > N}. (2)
N—>xo

Note that in this definition we do not restrict (s,) to be bounded.
However, we adopt the following conventions. If (s,) is not bounded
above, supf{s, : n > N} — 400 for all N and we decree limsups, =
+00. Likewise, if (s,) is not bounded below, inf{s, : n > N} = —o0
for all N and we decree liminf's, = —oc.

We emphasize that lim sup s, need not equal sup{s, : n € N}, but
thatlim sups, < sup{s, : n € N}. Some of the values s,, may be much
larger than lim sups,; limsups, is the largest value that infinitely
many s,'s can get close to. Similar remarks apply to lim inf's,,. These
remarks will be clarified in Theorem 11.7 and §12, where we will
give a thorough treatment of liminf’'s and lim sup’s. For now, we
need a theorem that shows (s,) has a limit if and only if lim inf's, =
lim sup s,.

10.7 Theorem,
Let (s,) be a sequence in R.
(i) If lims, is defined [as a real number, +00 or —oQ], then
liminfs, = lims, = limsups,.
(i) If liminfs, = limsups,, then lims, is defined and lims, =
liminfs, = limsups;.

Proof
We use the notation uy = inf{s, : n > N}, vy = sup{s, : n > N},
u = limuy = liminf s, and v = limvy = lim sups,.
(i) Suppose lims, = +oc. Let M be a positive real number. Then
there is a natural number N so that

n >N implies s, > M.

Then uy = inf{s, : n > N} > M. It follows that m > N
implies u, > M. In other words, the sequence (uy) satisfies
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(i)

the condition defining limuy = +o9, i.e,, liminfs, = +o0.
Likewise lim sup s,, = +00.
The case lim s,, = —oo is handled in a similar manner.
Now suppose that lims, = s where s is a real number.
Consider € > 0. There exists a natural number N such that
|s, —8| < eforn > N. Thuss, < s+e€forn > N, so

vy =sup{s,:n > N} <s+e.

Also, m > N implies v,, < s+¢, solimsups, = limv,, < s+e.
Since limsups, < s + € for all € > 0, no matter how small,
we conclude that lim sups, < s = lims,. A similar argument
shows that lims, < liminfs,. Since liminfs, < limsups,,

we infer that all three numbers are equal:
liminf's, = lims, = limsupsy.

Ifliminf's, = lim sups, = +o0 it is easy to show thatlims, =

+00. And if liminf's, = limsups, = —o0 it is easy to show
that lims, = —oo. We leave these two special cases to the
reader.

Suppose, finally, that liminfs, = limsups, = s where s
is a real number. We need to prove that lims, = s. Let € > 0.
Since s = lim vy there exists a natural number Ny such that

|s —sup{s, : n > Np}| < €.
Thus sup{s, : n > No} < s+¢€, s0
: s, < s+e€ forall n > Nj. €]
Similarly, since s = lim uy there exists N; such that
|s —inf{s, : n > N1}| < ¢,
hence inf{s, : n > N1} > s — ¢, hence
s, >s—e€ forall n> N. @)
From (1) and (2) we conclude
§—€< 8, <s+e for n > max{Ny, N1},
equivalently

|s, —s| < € for n > max{Ny, N;}.
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This proves that lim s,, = s as desired. |

If (sn) converges, then liminfs, = limsups, by the theorem
just proved, so for large N the numbers sup{s, : n > N} and inf{s, :
n > N} must be close together. This implies that all the numbers in
the set {s, : n > N} must be close to each other. This leads us to a
concept of great theoretical importance that will be used throughout
the book.

10.8 Definition.
A sequence (sy) of real numbers is called a Cauchy sequence if

for each € > 0 there exists a number N such that
m,n > N implies |s, — spn| < €. )
Compare this definition with Definition 7.1.
10.9 Lemma.
Convergent sequences are Cauchy sequences.

Proof
Suppose that lim s, = s. The idea is that, since the terms s,, are close
to s for large n, they also must be close to each other; indeed

I8 — Sml = I8p — 8+ 8 — 8| < [8p — 8| + |s — 8l
To be precise, let € > 0. Then there exists N such that

€
n >N implies |s,—s| < 5

Clearly we may also write

€
m > N implies sy, —s| < —,

2
S0
_ ) € €
m,n > N implies |, —8ul < lsn — 8| + s — 8| < §+§ =e.
Thus (s,) is a Cauchy sequence. |

10.10 Lemma.
Cauchy sequences are bounded.
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Proof
The proof'is similar to that of Theorem 9.1. Applying Definition 10.8

with € = 1 we obtain N in N so that
m,n > N implies |[s, —sn| < 1.

In particular, |s,, — sy+1] < 1 forn > N, so [s,] < [sy41] + 1 for
n > N.If M = max{[sy1|+1,Is1], [82], ..., [sxl}, then |s,| < M for
alln eN. n

The importance of the next theorem is the following conse-
quence: To verify that a sequence converges it suffices to check that
it is a Cauchy sequence, a property that does not involve the limit
irself.

10.11 Theorem.
A Sequence is a convergent sequence if and only if it is a Cauchy sequence.

Proof
The expression “if and only if” indicates that we have two assertions

to verify: (i) convergent sequences are Cauchy sequences, and (ii)
Cauchy sequences are convergent sequences. We already verified
(i) in Lemma 10.9. To check (ii), consider a Cauchy sequence (s,)
and note that (s,) is bounded by Lemma 10.10. By Theorem 10.7 we
need only show

liminf's, = lim sups,. (1)
Let € > 0. Since (s,) is a Cauchy sequence, there exists N so that
m,n > N implies |[s, —8y| < €.

In particular, s, < 8, + € for all m,n > N. This shows that s,, + € is
an upper bound for {s,, : n > N}, sovy = sup{s, : n > N} <s,, +¢
for m > N. This, in turn, shows that vy — ¢ is a lower bound for
{s$n : m > N}, sovy — € < inf{s,, : m > N} = uy. Thus

limsups, <vy <uy +¢ <liminf's, + €.

Since this holds for all ¢ > 0, we have limsups, < liminfs,. The
opposite inequality always holds, so we have established (1). |
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The proof of Theorem 10.11 uses Theorem 10.7, and Theo-
rem 10.7 relies implicitly on the Completeness Axiom 4.4, since
without the completeness axiom it is not clear that liminf's, and
lim sups, are meaningful. The completeness axiom assures us that
the expressions sup{s, : n > N} and inf{s, : n > N} in Defini-
tion 10.6 are meaningful, and Theorem 10.2 [which itself relies on
the completeness axiom] assures us that the limits in Definition 10.6
also are meaningful.

Exercises on lim sup’s and lim inf’s appear in §§11 and 12.

Exercises

10.1. Which of the following sequences are nondecreasing? nonincreas-
ing? bounded?

@ ; ® S
(c) n° (d) sin(%)
(e) (-2 ® 3

10.2. Prove Theorem 10.2 for bounded nonincreasing sequences.

10.3. For a decimal expansion k.djdydsds---, let (s,) be defined as
in 10.3. Prove that s,, < k+1 forall n € N. Hint: 1%+ 4. '+T%F =

. 107
1— 57 for all n.

10.4. Discuss why Theorems 10.2 and 10.11 would fail if we restricted
our world of numbers to the set Q of rational numbers.
10.5. Prove Theorem 10.4(ii).
<10.6. (@) Let (s,) be a sequence such that
|Spe1 —8u]l < 277 forall neN.
Prove that (s,) is a Cauchy sequence and hence a convergent
sequence.

1

(b) Is the result in () true if we only assume that [sp4) — sl < 5,

foralln e N?

:10.7. Let S be a bounded nonempty subset of R and suppose sup S ¢ S.
Prove that there is a nondecreasing sequence (s,,) of points in §
such that lim s, = sup S.

LT T
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10.8.

10.9.

-10.10.

10.11.

-10.12.

§11

Let (s,) be a nondecreasing sequence of positive numbers and
define o, = 1(s;+ 8,4+ - +8,). Prove that (o,) is a nondecreasing
sequence.

Lets) = 1 and 8,41 = (7i7)s forn > 1.

(a) Find s, s3 and s;.

(b) Show that lims, exists.

(c) Prove thatlims, = 0.

Let s; =1 and 8,41 = 3(sn +1) forn > 1.

(a) Find sz, s3 and sy.

(b) Use induction to show that s, > 3 for all n.
(c) Show that (s,) is a nonincreasing sequence.
(d) Show that lim s, exists and find lims,,.
Lett; =1 and fyyy =[1— 3]ty forn > 1.

(a) Show that limt, exists.

(b) What do you think lim¢, is?

Lett; =1 and tpy =[1 — ﬁ)—z]-tn forn > 1.
(a) Show that limt, exists.

(b) What do you think lim#, is?

ntl

(¢) Use induction to show that t, = 55=.

(d) Repeat part (b).

Subsequences

11.1 Definition.

Suppose that (s,).eN is a sequence. A subsequence of this sequence
is a sequence of the form (tx)reny Where for each k there is a positive
integer ny such that

My < Np < -+ <A < g < -0 (1)
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and
tk = Sy, . (2)

Thus (t) is just a selection of some [possibly all] of the s,,'s taken in
order.

Here are some alternative ways to approach this concept. Note
that (1) defines an infinite subset of N, namely {n;, ny, n3, .. .}. Con-
versely, every infinite subset of N can be described by (1). Thus a
subsequence of (s,) is a sequence obtained by selecting, in order, an
infinite subset of the terms.

For a more concise definition, recall that we can view the se-
quence (s,)neN as a function s with domain N; see §7. For the subset
{n1, nz, n3, ...}, there is a natural function o [lower case Greek sigma]
given by o(k) = ny for k € N. The function o “selects” an infinite
subset of N, in order. The subsequence of s corresponding to ¢ is
simply the composite function t = s o ¢. That is,

tx = t(k) =soo(k)=s(o(k)) =s(n)=s, for keN  (3)

Thus a sequence t is a subsequence of a sequence s if and only if
t = s o o for some increasing function o mapping N into N. We will
usually suppress the notation o and often suppress the notation ¢
also. Thus the phrase “a subsequence (s, ) of (s,)” will refer to the
subsequence defined by (1) and (2) or by (3), depending upon your
point of view.

Example 1
Let (s,) be the sequence defined by s, = n?(—1)". The positive terms
of this sequence comprise a subsequence. In this case, the sequence

(sn) 18
(—1,4,-9,16, —25,36, —49, 64, ...)
and the subsequence is
(4,16,36,64, 100, 144, .. .).

More precisely, the subsequence is (s, Jkeny Where ng = 2k so that
S = (2k)*(—=1)* = 4k’ The selection function o is given by
o(k) = 2k.
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Example 2
Consider the sequence a, = sin(’3") and its subsequence (ay,) of
nonnegative terms. The sequence (an)neN is

1 1 1 1 1 1 1 1
—4/3,=+43,0, —=+/3, —=+/3,0, =3, =+/3,0, —=+/3, —=+/3,0, . ..
and the desired subsequence is
1 1 1 1
(Eﬁ,z«/@o,o,?/&Eﬁ,o,o,...).

Itisevidentthatn, =1, ny = 2, n3 = 3, ny = 6, ns =7, ng = 8§,
ny =9, ng = 12, ng = 13, etc. We could obtain a general formula for
n, but the project does not seem worth the effort.

Example 3

It can be shown that the set Q of rational numbers can be listed
as a sequence (7,,), though it is tedious to specify an exact formula.
Figure 11.1 suggests such a listing [with repetitions] where r; = 0,
rp =171 =131 =3 15 =—1,7 = —2, 1, = —1, etc. Readers
familiar with some set theory will recognize this assertion as the
fact that “Q is countable.” This sequence has an amazing property:
given any real number a there exists a subsequence (7,,) of (7,,) that
converges to a, i.e., limg_, o 7, = a. To see this, we will show how

to define or construct step-by-step a subsequence (r,,,) that satisfies

lrn, —al < % for keN. (1
.- 2-«-——1:0—-»1 2 —— Aot e
. Cj —3/2 le —1/2<—-1/(2) C\ 37°DC\

4 { f bt
4{3 C:JI U_ 113 = 1/3 LJB L 4f/3

-1 3[4 <——24 <——1/4 ——1/4 <= 24 <—3/4D ]

—4/5 ——3[S = —2[5—> —1/5 —> 1/5 —> 2/5 —> 3/5 —> 4/5 .

FIGURE 11.1
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Specifically, we will assume n;, ny, . .., nx have been selected satis-
fying (1) and show how to select nx4;. It is fairly evident that this
will give us an infinite sequence (ni)keny and hence a subsequence
(n,) Of (v,) satisfying (1). To make this fully rigorous would require a
technical lemma concerning step-by-step constructions whose proof
depends in the end on Peano’s axiom N5. For this reason, a construc-
tion of this sort is called an “inductive definition” or “definition by
induction.”

We now indicate the construction discussed above. Select n; so
that [r,, —al| < 1; this is possible by the Denseness of (Q 4.7. Suppose

that ny, ny, ..., nx have been selected so that
n1<n2<~-<‘nk (2)
and
1 .
lr, —al < = for j=1,2,... k 3
J

Since there are infinitely many rational numbers in the interval
(a— E%* a-+ ﬁf) by Exercise 4.11, there must exist an ngy; > Nk
such that r,,,, belongs to this interval. Then |r,, ., —al < %% and
hence (2) and (3) hold for k + 1 in place of k. The procedure defines
(mx)xen by induction. Since (3) holds, (1) holds and we conclude that

limy 00 1, = a.

Example 4
Suppose that (s,) is a sequence of positive numbers such that
inf{s, : n € N} = 0. The sequence (s,) need not converge or

even be bounded, but it has a subsequence that converges mono-
tonically to 0. We will again give an inductive construction. Since
inf{s, : n € N} = 0, there exists n; € N such thats,, < 1. Suppose

that ny, ny, . .., nx have been selected so that
Ny < Ny < -+ < W (1)
and
. 1 .
Sn,, < mm{snﬂm} for j=1,2,...,k—1. (2)

Note that we are requiring s,,_, < s, so that our subsequence will

. .. 1
be monotonic, and we are requiring s,,, < 47 to guarantee that
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it will converge to 0. Since min{s, : 1 < n < nx} > 0, it follows
that inf{s, . n. > nx} = 0. Thus there exists ngy1 > nx such that
Sy, < min{sy,, ﬁ}. Hence (1) and (2) hold for k 4+ 1 in place of
k, and the construction continues by induction. As noted above, (2)
shows that (s,,) converges monotonically to 0.

The next theorem is almost obvious.

11.2 Theorem.
If the sequence (s,) converges, then every subsequence converges to the
same limit.

Proof
Let (s,,) denote a subsequence of (s,). Note that n;x > k for all k.
This is easy to prove by induction; in fact, n; > 1 and ny > k implies
Nge1 > Nx > k and hence ngy, > k+ 1.

Lets = lims, and lete > 0. There exists N so that n > N implies
|s, —s| < €. Now k > N implies nx > N, which implies |s,, —s| < €.
Thus

lim s, = s.
k— 00 | |

Our immediate goal is to prove the Bolzano-Weierstrass the-
orem which asserts that every bounded sequence has a conver-
gent subsequence. First we prove a theorem about monotonic
subsequences.

11.3 Theorem.
Every sequence (sy,) has a monotonic subsequence.

Proof
Let’s say that the n-th term is dominant if it is greater than every
term which follows it:

Sm < 8 for all v m > mn. 1)

Case 1. Suppose that there are infinitely many dominant terms,
and let (s, ) be any subsequence consisting solely of dominant terms.
Then s,,,, < s, for all k by (1), so (s,,) is a decreasing sequence.

Case 2. Suppose that there are only finitely many dominant
terms. Select n; so that s,, is beyond all the dominant terms of the
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sequence. Then

given N > n; there exists m > N such that s,, > sy. (2)

Applying (2) with N = n; we select n, > n; such that s,, > s,,.

Suppose that ny, ny, . .., nx have been selected so that

n <Ny < -+ < Ny (3)
and

Sny SSnZS"'SSnk- (4)

Applying (2) with N = n; we select nx, > ni such that s, > sy,.
Then (3) and (4) hold with k+1 in place of k, the procedure continues
by induction, and we obtain a nondecreasing subsequence (s,,). W

The elegant proof in Theorem 11.3 was brought to our attention
by David M. Bloom and is based on a solution in D. J. Newman's
beautiful book A Problem Seminar, Springer-Verlag, New York-Berlin-
Heidelberg: 1982.

11.4 Corollary.
Let (s,) be any sequence. There exists a monotonic subsequence whose

limit is lim sup s,,, and there exists a monotonic subsequence whose limit
is lim inf s,,.

Proof
For N in N, let vy = sup{s, : n > N}. Thenv; > v, > v3 > --- and
v = limy vy = limsups,; see Definition 10.6. Our task is to show
that there is a monotonic subsequence of (s,) that converges to v.
If v = —o0, then lims, = —oo by Theorem 10.7, the sequence (s;)
itself converges to lim sup s,,, and so a monotonic subsequence of (s,,)
converges to lim sup s, by Theorem 11.3. Henceforth we assume that
v # —o0.
First look at Case 1 of the previous proof. Then s, = sup{s, :
n > ni} = Up,—1, 80 liMy— o0 Sy, = limy vy = lim sup sy, as desired.
Suppose now that there are only finitely many dominant terms,
and let s,,, be the last dominant term. We claim

sup{sp,:n > N}=vy=v for N > my. (1)

Otherwise, since (vy) is a nonincreasing sequence, there is an in-
teger N > my so that vyy) < vn. SO Sy4; must be bigger than
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Un+1 = sup{s, : n = N + 2}, but this implies that sy4; is dominant,
contrary to the choice of my.

If infinitely many s, equal v, simply select a subsequence of (s,)
consisting of terms equal to v. Otherwise, there exists n; > mg so
that

s, <v forall n=>n;. (2)

Select a sequence (ty) that increases to v. In fact, ty = v— % will do if
v is finite, and ty = N will do if v = 4+00. The desired subsequence is
obtained by induction, the first term being s,, . Note that, by (2), we

have s,, < v. Assume that n; < n; < --- < nx have been selected
so that
Spj < Spy < 0+ < 8y, <V, 3)
and fx < s, for k=>2. (4)

Using (1), we select nx4; > ng so that s, > s, and sy, > tky1. By
(2), we also have s,,,, < v. The procedure continues by induction,
and by (3) we obtain an increasing subsequence of (s,). Also, by (4),
we have tx < s, < v forall k, so v = limg o0 tx < liMgs00Sn, < v,
and the subsequence (sy,) converges to v as desired.

The assertion about lim inf s, has a similar proof, but it also can
be derived from the first assertion; see Exercise 11.8. This revised
proof is based on correspondence with Ray Hoobler, City College,
CUNY. |

11.5 Bolzano-Weierstrass Theorem.
Every bounded sequence has a convergent subsequence.

Proof
If (s,) is a bounded sequence, it has a monotonic subsequence by
Theorem 11.3. The subsequence converges by Theorem 10.2. (2]

The Bolzano-Weierstrass theorem is very important and will be
used at critical points in Chapter 3. Our proof, based on Theo-
rem 11.3, is somewhat nonstandard for reasons we now discuss.
Many of the notions introduced in this chapter make equally good
sense in more general settings. For example, the ideas of conver-
gent sequence, Cauchy sequence and bounded sequence all make
sense for a sequence (s,) where each s, belongs to the plane. But
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the idea of a monotonic sequence does not carry over. It turns out
that the Bolzano-Weierstrass theorem also holds in the plane and
in many other settings [see Theorem 13.5], but clearly it would no
longer be appropriate to prove it directly from an analogue of Theo-
rem 11.3. Since the Bolzano-Weierstrass Theorem 11.5 generalizes to
settings where Theorem 11.3 makes little sense, in applications we
will emphasize 11.5 rather than 11.3.

We need one more notion, and then we will be able to tie our
various concepts together in Theorem 11.7.

11.6 Definition.
Let (s,) be a sequence in R. A subsequential limit is any real number
or symbol +o00 or —oo that is the limit of some subsequence of (s;).

When a sequence has alimit s, then all subsequences have limit s,
so {s} is the set of subsequential limits. The interesting case is when
the original sequence does not have a limit. We return to some of
the examples discussed after Definition 11.1.

Example 5

Consider (s,) where s, = n?(—1)". The subsequence of even terms
diverges to 400, and the subsequence of odd terms diverges to —oo.
All subsequences that have a limit diverge to +00 or —oo, so that
{—o00, +00} is exactly the set of subsequential limits of (s,).

Example 6

Consider the sequence a, = sin(7"). This sequence takes each of
the values 14/3, 0 and —14/3 an infinite number of times. The
only convergent subsequences are constant from some term on,
and {-1+/3,0,14/3} is the set of subsequential limits of (ay). If
nx = 3k, then a,, = 0 for all k € N and obviously limy_,« a,, = 0. If
g = 6k + 1, then a,, = 3+/3 for all k and limi_c0 a4, = 3+/3. And if
Nk = 6k + 4, then limy, o0 an, = —%ﬁ

Example 7
Let (r,) be a list of all rational numbers. It was shown in Example 3
that every real number is a subsequential limit of (r,). Also, +o00
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and —oo are subsequential limits; see Exercise 11.7. Consequently,
R U {—o00, 400} is the set of subsequential limits of (7;,).

Example 8
Let b, = n[1 4+ (—1)"] for n € N. Then b, = 2n for even n and b, = 0
for odd n. Thus {0, +o0} is the set of subsequential limits of (by,).

11.7 Theorem.
Let (s,) be any sequence in R, and let S denote the set of subsequential
limits of (sp).
(i) S is nonempty.
(ii) sup 8 = limsups, and inf § = lim inf s,,.
(iii) lims, exists if and only if S has exactly one element, namely
lim s,,.

Proof
(i) is an immediate consequence of Corollary 11.4.

To prove (ii), consider any limit t of a subsequence (sy,) of (s,).
By Theorem 10.7 we have t = liminf's, = limsups,,. Since {s,, :
k > N} C {s,:n > N} for each N € N, we have

liminfs, < liminfs, =t =limsups, <limsups,.
This inequality holds for all ¢ in S; therefore
liminfs, <inf 8 < sup 8 < lim sup sy,.

Corollary 11.4 shows that lim inf's,, and lim sups,, both belong to S.
Therefore (ii) holds.
Assertion (iii) is simply a reformulation of Theorem 10.7. L

Theorem 11.7 and Corollary 11.4 show that lim sup s, is exactly
the largest subsequential limit of (s,), and liminf's, is exactly the
smallest subsequential limit of (s,). This makes it easy to calculate
lim sup’s and lim inf’s.

We return to the examples given before Theorem 11.7.

Example 9
If s, = n?’(-1)", then S = {—o00,+o00} as noted in Example 5.
Therefore limsups, = sup8 = 400 and liminf's, = inf § = —o0.
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Example 10

If a, = sin(%), then 8 = {—14/3,0, 14/3} as observed in Example 6.
Hence lim supa, = sup 8 = 3+/3 and lim inf @, = inf § = —34/3.
Example 11

If (r,) denotes a list of all rational numbers, then the set R U
{—o00, 400} is the set of subsequential limits of (r,). Consequently
we have lim supr, = +00 and lim inf r,, = —o0.

Example 12
If b, = n[1 + (—=1)"), then limsup b, = 400 and liminf b, = 0; see
Example 8.

The next result shows that the set S of subsequential limits always
contains all limits of sequences from S. Such sets are called closed sets.
Sets of this sort will be discussed further in the optional §13.

11.8 Theorem.
Let S denote the set of subsequential limits of a sequence (s,). Suppose
(tn) is a sequence in SN R and that t = limt,. Then t belongs to §.

Proof

Since a subsequence of (s,) converges to t;, there exists n; such that

Isp, —t1] < 1. Assume that n;, ny, ..., nx have been selected so that
n<ng<-.---<ng €8]

and

1
|s,,]—t,-|<]—_ oo G RS 0 B 2

Since a subsequence of (s,) converges to tx4;, there exists nx+; > ni
such that |s,,,, — ti41| < - Thus (1) and (2) hold for k + 1.

For the rest of the proof we need to consider cases. Suppose first
that t € R, i.e., that t is not 400 or —o0. Since

1
S, — t] < |Sp — ticl + It — t] < % + |tk — t| 3)

for all k € N, it follows easily that limy_, o Sy, = t, S0 t belongs to
§. [To check that limy_, 8y, = t, consider € > 0. There exists N so
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that k > N implies |ty — t| < §. If k > max{N, %}, then } < § and
|tk —t] < 5, 80 |sp, —t| < € by (3).]
Suppose next that t = +00. From (2) we have

I
Sy >tk—% for keN. 4
Since lim t = +o0 it follows easily that lim_, o 8y, = +00. Therefore
t = 400 belongs to S. The case t = —oo is handled in a similar
way. |
Exercises

11.1. Leta, =3+ 2(—1)" forn e N.
(a) List the first eight terms of the sequence (a,).

(b) Give a subsequence that is constant [takes a single value].
Specify the selection function o.

11.2. Consider the sequences defined as follows:

1 6n + 4
Gp= (=11, CBaE=, S, e o

(a) For each sequence, give an example of a monotone subse-
quence.

(b) For each sequence, give its set of subsequential limits.
(c) For each sequence, give its lim sup and lim inf.

(d) Which of the sequences converges? diverges to +00? diverges
to —o0?

(e) Which of the sequences is bounded?
11.3. Repeat Exercise 11.2 for the sequences:
3
T an+1
#11.4. Repeat Exercise 11.2 for the sequences:

nm 1 1
By = BORLEES) ¥ b = (=W, n = (—1)"+;‘

wn = (-2)", R Yn = 14+(-1)", T — ncos(%).

11.5. Let (g,)be an enumeration of all the rationals in the interval (0, 1].
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¢11.6.

11.7.

«11.8.

11.9.

°11.10.

(@) Give the set of subsequential limits for (g,).
(b) Give the values of lim sup g, and lim inf g,.

Show that every subsequence of a subsequence of a given se-
quence is itself a subsequence of the given sequence. Hint: Define
subsequences as in (3) of Definition 11.1.

Let (r,) be an enumeration of the set Q of all rational numbers.
Show that there exists a subsequence (7y,) such that limy_, o0 7, =
+00.

(@) Use Definition 10.6 and Exercise 5.4 to prove that lim inf's, =
— lim sup(—sy).

(b) Let (t) be a monotonic subsequence of (—s,) converging to
lim sup(—s,). Show that (—tx) is a monotonic subsequence of
(sn) converging to lim inf s,,. Observe that this completes the
proof of Corollary 11.4.

(@) Show that the closed interval [a, b] is a closed set.

(b) Is there a sequence (s,) such that (0,1) is its set of
subsequential limits?

Let (sy) be the sequence of numbers in Figure 11.2 listed in the
indicated order.

(a) Find the set S of subsequential limits of (s,).

(b) Determine limsups, and liminf's,.

e

1 1/2/ 1/3 14 1/5

/ 1/2/ 1/3 1/4 15

C 1/3 /4  1/5
1/2

1/3 1/4 1/5

FIGURE 11.2
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§12 limsup’s and lim inf’s

Let (s,) be any sequence of real numbers, and let S be the set of
subsequential limits of (sy,). Recall that

limsups, = A};%SUP {sn :n > N} =sup$ ™)
and
liminfs, = lim inf{s, :n > N} =infS. 5
N—oo

The first equalities in (*) and (**) are the definitions given in 10.6,
and the second equalities are proved in Theorem 11.7. This section
Is designed to increase the students’ familiarity with these concepts.
Most of the material is given in the exercises. We illustrate the tech-
niques by proving some results that will be needed later in the
text.

12.1 Theorem.
If (sn) converges to a positive real number s and (t,) is any sequence,
then

limsup syt, = s - limsupt,.

Here we allow the conventions: s - (+00) = +00 and s - (—00) = —00
fors > 0.

Proof
We first show

limsupsyt, > s-limsupt,. 1)
We have three cases. Let 8 = lim supt,.

Case 1. Suppose B is finite.

By Corollary 11.4, there exists a subsequence (t,, ) of (t,) such that
limg—, 0 tn, = B. We also have limy_, o S5, = s [by Theorem 11.2], so
My 00 Snytn, = SB. Thus (s, ty,) is @ subsequence of (sut,) that con-
verges to sB, and therefore s < lim sup s,t,. [Recall that lim sup s,t,,
18 the largest possible limit of a subsequence of (s,t,,).] Thus (1) holds.
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Case 2. Suppose B = +00.

There exists a subsequence (t,,) of (t,) such that limy_, t, =
+o00. Since limi,eS,, = s > 0, Theorem 9.9 shows that
limy_, o0 Sy, tn, = +00. Hence lim sup syt, = +00, so (1) clearly holds.

Case 3. Suppose B = —o0.

Since s > 0, the right-hand side of (1) is equal to s - (—00) = —
Hence (1) is obvious in this case.

We have now established (1) in all cases. For the reversed in-
equality, we resort to a little trick. First note that we may ignore the
first few terms of (s,) and assume that all s, # 0. Then we can write
11m =1 < by Lemma 9.5. Now we apply (1) with s, replaced by =
and t,l replaced by s,t,:

1 1
limsupt, = lim sup(s—)(sntn) > (E) lim sup suty,
n

16
lim sup syt, < s-limsupt,.

This inequality and (1) prove the theorem. L

The next theorem will be useful in dealing with infinite series;
see the proof of the Ratio Test 14.8.

12.2 Theorem.
Let (sn) be any sequence of nonzero real numbers. Then we have

Sn+1

< liminf |s,|"" < limsup |s,|'/" < limsup

liminf :

Sn n

Proof
The middle inequality is obvious. The first and third inequalities
have similar proofs. We will prove the third inequality and leave the
first inequality to Exercise 12.11.

Let @ = limsup|s,|'” and L = lim sup|**|. We need to prove
that ¢ < L. This is obvious if L, = 400, so we assume L < +00. To
prove a < L it suffices to show

a=<ILy forany L, > L. (n




Since

X Sp+1 ) Sp+1
L =limsup |——| = lim sup in>Ny < L,
Sn N—o00 Sn
there exists a natural number N such that
Sp+1
sup{| =2 :n>N} < L.
Sn
Thus
Sp+1
"l <L, for n>N. )
Sn
Now for n > N we can write
Sp Sp—1 SN+
Il = || | =2 - lsnl-
Sp—1 Sn—2 SN

There are n — N fractions here, so applying (2) we see that
Isnl < LT N|sy| for n > N.

Since L; and N are fixed in this argument, a = LI"N |si| is a positive
constant and we may write

Isx| < LYa for n > N.
Therefore we have
Isp|¥'" < LyaV" for n > N.

Since lim, a'’" = 1 by Example 9.7(d), we conclude that @ =
limsup |s,|"/" < Li; see Exercise 12.1. Consequently (1) holds as
desired. [ |

12.3 Corollary.
If lim | 22| exists [and equals L), then lim |s,|"/" exists [and equals L]

Proof
If lim || = L, then all four values in Theorem 12.2 must equal L.

Hence lim |s,|''" = L; see Theorem 10.7. [ |

Exercises
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«12.1.

12.2.
12.3.

«12.4.

12.5.

12.6.

12.7.
*12.8.

12.9.

Let (sy,) and (t,) be sequences and suppose that there exists
Ny such that s, < t, for all n > Ny. Show that liminfs, <
liminft, and limsups, < limsupt,. Hint: Use Definition 10.6
and Exercise 9.9(c).

Prove that limsup |s,| = 0 if and only if lims, = 0.

Let (s,) and (t,) be the following sequences that repeat in cycles
of four:

(s") = (01 1521 110;1121 1:0; 1; 2; 1,0,1,2, 1,0, L0 )
(tn) = (2» 1» 110: 21 lr 1,0, 2; 1; 1’0» Zrly 1I0!2F LT )

Find

(a) liminf's, +liminft,, (b) liminf(s, + tn),
(c) liminfs, +limsupt,, (d) limsup(ss + tn),
(e) limsups, + limsupt,, () liminf(sytn),

(g) limsup(syt,)

Show that lim sup(s, + t,) < limsups, + limsupt, for bounded
sequences (8,) and (t,). Hint: First show

sup{s, +t, : n > N} < sup{s, : n > N} + sup{t, : n > N}.
Then apply Exercise 9.9(c).
Use Exercises 11.8(a) and 12.4 to prove
lim inf(s, + t,) > liminf's, + liminf't,
for bounded sequences (s,) and (t,).

Let (s,) be a bounded sequence, and let k be a nonnegative real
number.

(a) Prove that lim sup(ks,) = k - lim sup sy,.

(b) Do the same for liminf. Hint: Use Exercise 11.8(a).

(c) What happens in (a) and (b) if k < 0?

Prove thatiflimsups, = +ooand k > 0, then lim sup(ks,) = +o0.

Let (s,) and (t,) be bounded sequences of nonnegative numbers.
Prove that lim sup s,t,, < (limsups,)(limsupt,).

(a) Prove that if lims, = +o00 and liminft, > 0, then lim s,t, =
+00.

(b) Prove that if limsups, = +o00 and liminft, > 0, then
lim sup spt, = +o00.
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(c) Observe that Exercise 12.7 is the special case of (b) where
t, =k for all n € N.

+12.10. Prove that (s,) is bounded if and only if lim sup |s,| < +o0.
12.11. Prove the first inequality in Theorem 12.2.

*12.12. Let (s,) be a sequence of nonnegative numbers, and for each n
define o0, = %(sl + 82+ +8n).

(a) Show that

liminfs, <liminfo, <limsupo, < limsups,.

Hint: For the last inequality, show first that M > N implies
i
sup{o, : n > M} < M(Sl + 83+ +8y)+supfs,: n > N}

(b) Show that if lims, exists, then limo, exists and limo, =
lim s,,.

12.13. Let (s,) be a bounded sequence in R. Let A be the set ofa € R
such that {n € N : s, < a} is finite, i.e., all but finitely many s, are
> a. Let B be the set of b € R such that {n € N : s, > b} is finite.
Prove that sup A = liminf's, and inf B = lim sup s,.

+12.14. Calculate (a) lim(n!)"/", (®) limi(nh"

§13 * Some Topological Concepts in
Metric Spaces

In this book we are restricting our attention to analysis on R. Ac-
cordingly, we have taken full advantage of the order properties of R
and studied such important notions as lim sup’s and lim inf’s. In §3
we briefly introduced a distance function on R. Most of our analy-
sis could have been based on the notion of distance, in which case
it becomes easy and natural to work in a more general setting. For
example, analysis on the k-dimensional Euclidean spaces R* is im-
portant, but these spaces do not have the useful natural ordering
that R has, unless of course k = 1.
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13.1 Definition.
Let S be a set, and suppose d is a function defined for all pairs (%, y)
of elements from § satisfying
D1. d(x,x) = 0 for all x € § and d(x,y) > 0 for distinct x, y in §.
D2. d(x,y) =d(y,x) forallx,y € S.
D3. d(x,z) <d(x,y)+d(y,z) forall x,y,z € §S.
Such a function d is called a distance function or a metric on S. A metric
space S is a set S together with a metric on it. Properly speaking, the
metric space is the pair (8, d) since a set S may well have more than
one metric on it; see Exercise 13.1.

Example 1

As in Definition 3.4, let dist(a, b) = |a — b| for a,b € R. Then dist
is a metric on R. Note that Corollary 3.6 gives D3 in this case. As
remarked there, the inequality

dist(a, ¢) < dist(a, b) + dist(b, ¢)

is called the triangle inequality. In fact, for any metric d, property
D3 is called the triangle inequality.

Example 2
The space of all k-tuples
x="{x,%,... %) where' % eR “for j=12 ...k

is called k-dimensional Euclidean space and written RX. As noted in
Exercise 13.1, R has several metrics on it. The most familiar metric
is the one that gives the ordinary distance in the plane R? or in
3-space R3:

k 172
d(x,y) = [Z(x, —y,-)z] :
j=1

[The summation notation ) is explained in 14.1.] Obviously this
function d satisfies properties D1 and D2. The triangle inequality
D3 is not so obvious. For a proof, see for example [33], §6.1, or [36],
1.37.
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13.2 Definition.

A sequence (s,) in a metric space (S,d) converges to s in § if
lim,_, o0 d(sn, 8) = 0. A sequence (s,) in § is a Cauchy sequence if
for each € > 0 there exists an N such that

m,n > N implies d(sp,sn) < €.

The metric space (8,d) is said to be complete if every Cauchy
sequence in S converges to some element in §.

Since the Completeness Axiom 4.4 deals with least upper bounds,
the word “complete” now appears to have two meanings. However,
these two uses of the term are very closely related and both reflect
the property that the space is complete, i.e., has no gaps. Theo-
rem 10.11 asserts that the metric space (R, dist) is a complete metric
space, and the proof uses the Completeness Axiom 4.4. We could
just as well have taken as an axiom the completeness of (R, dist) as
a metric space and proved the least upper bound property in 4.4 as a
theorem. We did not do so because the concept of least upper bound
in R seems to us more fundamental than the concept of Cauchy
sequence.

We will prove that R¥ is complete. But we have a notational
problem, since we like subscripts for sequences and for coordinates
of points in R¥. When there is a conflict, we will write (x(") for a
sequence instead of (x,). In this case,

XM a2y,

Unless otherwise specified, the metric in R* is always as given in
Example 2.

13.3 Lemma.

A sequence (x™) in R¥ converges if and only if for eachj = 1,2, ...,k
() : nn L

the sequence (x; ) converges in R. A sequence ) in R is a Cauchy

sequence if and only if each sequence (x)-(")) is a Cauchy sequence in R.

Proof

The proof of the first assertion is left to Exercise 13.2. For the second
assertion, we first observe forx, yin R¥ andj=1,2,...,k,

| =yl <d(x,y) < vk max{|x; -yl:j=1,2,...,k} @)
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Suppose (x(™) is a Cauchy sequence in R, and consider fixed j.
If e > 0, there exists N such that

m,n >N implies dx™,x™) < e.
From (1) we see that

m,n > N implies Ix](m)

—x}") | < €,
SO (x](")) is a Cauchy sequence in R.

Now suppose each sequence (x}")) is a Cauchy sequence in R.
Lete > 0. Forj=1,2,...,k, there exist N; such that

R m _ ™ £
m,n > N; implies |[x; ~%7P<e ﬁ
If N = max{N;, Ny, ..., Ny}, then by (1)
m,n > N implies dx™,x™) < ¢,

i.e., (x™) is a Cauchy sequence in R, [ |

13.4 Theorem.
Euclidean k-space R is complete.

Proof

Consider a Cauchy sequence (x() in R¥. By Lemma 13.3, (xj(")) isa
Cauchy sequence in R for eachj. Hence by Theorem 10.11, (xj(")) con-
verges to some real number x;. By Lemma 13.3 again, the sequence
(x(™) converges, in fact to x = (%1, %2, . .., Xk). ©

We now can prove the Bolzano-Weierstrass theorem for R¥; com-
pare Theorem 11.5. A set S in R¥ is bounded if there exists M > 0
such that

max{lx| :j=1,2,...,k} <M forall xeS8.

13.5 Bolzano-Weierstrass Theorem.
Every bounded sequence in R* has a convergent subsequence.

Proof

Let (x(") be a bounded sequence in R¥. Then each sequence (xj("))
is bounded in R. By Theorem 11.5, we may replace (x™) by a sub-
sequence such that (x%")) converges. By the same theorem, we may
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replace (x™) by a subsequence of the subsequence such that (x”

converges. Of course, (xgn)) still converges by Theorem 11.2. Repeat-
ing this argument k times, we obtain a sequence (x(™) so that each

sequence (x)(")) converges, j = 1, 2, ..., k. This sequence represents
a subsequence of the original sequence, and it converges in R¥ by
Lemma 13.3. "

13.6 Definition.
Let (8, d) be a metric space. Let E be a subset of S. An element sy € E
is interior to E if for some r > 0 we have

{se8:d(s,s0) < r} CE.

We write E° for the set of points in E that are interior to E. The set
E is open in § if every point in E is interior to E, i.e., if E = E°.

13.7 Discussion.
One can show [Exercise 13.4]
(i) Sis open in § [trivial].
(ii) The empty set @ is open in § [trivial].
(iii) The union of any collection of open sets is open.
(iv) The intersection of finitely many open sets is again an open
set.

Our study of RF and the exercises suggest that metric spaces are
fairly general and useful objects. When one is interested in conver-
gence of certain objects [such as points or functions), there is often a
metric that assists in the study of the convergence. But sometimes no
metric will work and yet there is still some sort of convergence no-
tion. Frequently the appropriate vehicle is what is called a topology.
This is a set S for which certain subsets are decreed to be open sets.
In general, all that is required is that the family of open sets satisfies
(i)-(iv) above. In particular, the open sets defined by a metric form a
topology. We will not pursue this abstract theory. However, because
of this abstract theory, concepts that can be defined in terms of open
sets [see Definitions 13.8, 13.11 and 22.1] are called topological, hence
the title of this section.




84 2. Sequences

13.8 Definition.
Let (S, d) be a metric space. A subset E of § is closed if its complement
S\ E is an open set. In other words, E is closed if E = S\ U where U
is an open set.

Because of (iii) in Discussion 13.7, the intersection of any collec-
tion of closed sets in closed [Exercise 13.5]. The closure E~ of a set E
is the intersection of all closed sets containing E. The boundary of E
is the set E~ \ E°; points in this set are called boundary points of E.

To get a feel for these notions, we state some easy facts and leave
the proofs as exercises.

13.9 Proposition.
Let E be a subset of a metric space (S, d).
(@) The set E is closed if and only if E = E™.
(b) The set E is closed if and only if it contains the limit of every
convergent sequence of points in E.
(c) An element is in E™ if and only if it is the limit of some sequence
of points in E.
(d) A point is in the boundary of E if and only if it belongs to the
closure of both E and its complement.

Example 3

In R, open intervals (a, b) are open sets. Closed intervals [a, b] are
closed sets. The interior of [a, b] is (a, b). The boundary of both (a, b)
and [a, b] is the two-element set {a, b}. ‘

Every open set in R is the union of a disjoint sequence of open
intervals [Exercise 13.7]. A closed set in R need not be the union of a
disjoint sequence of closed intervals and points; such a set appears
in Example 5.

Example 4
In R¥, open balls {x : d(x,x,) < r} are open sets, and closed balls :
{x : d(x,x) < r} are closed sets. The boundary of each of these sets
is {x : d(x, x0) = r}. In the plane R?, the sets

{(x1,%2) : %1 > 0} and {(x1,x2):x > 0andx; > 0}




§13. * Some Topological Concepts in Metric Spaces 85

are open. If > is replaced by >, we obtain closed sets. Many sets are
neither open nor closed, for example

{(1,x2) : xy > 0 and x; > 0}.

13.10 Theorem.

Let (F) be a decreasing sequence [i.e., F; 2 F, 2 - - -] of closed bounded
nonempty sets in R¥. Then F = NX | F, is also closed, bounded and
nonempty.

Proof

Clearly F is closed and bounded. It is the nonemptiness that needs
proving! For each n, select an element x,, in F,,. By the Bolzano-
Weierstrass theorem 13.5, a subsequence (x,, ), of (x,) converges
to some element xp in R¥. To show x, € F, it suffices to show xy € Fy,
with ny fixed. If m > ny, then n,, > ng, so x,, € F,, € Fy,,. Hence
the sequence (Xy,, )p—y,, Consists of points in Fy, and converges to x,.
Thus x, belongs to Fy,, by (b) of Proposition 13.9. |

Example 5

Here is a famous nonempty closed set in R called the Cantor set.
Pictorially, F = N32,F, where F, are sketched in Figure 13.1. The
Cantor set has some remarkable properties. The sum of the lengths
of the intervals comprising F, is (%)""1 and this tends to 0 as n —
00. Yet the intersection F is so large that it cannot be written as a
sequence; in set-theoretic terms it is “uncountable.” The interior of

F,
0 1 /
0 il 2 I

3 3

F3

0 o 2 b 2 v 8 1
9 3 3 9 9

Fy

Ol ol 21871 219207 825261
27 279 92727 3 327219 9 27 27
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F is the empty set, so F equais its boundary. For more details, see
[36], 2.44, or [23], 6.62.

13.11 Definition.

Let (S, d) be a metric space. A family U of open sets is said to be an
open cover for a set E if each point of E belongs to at least one set in
U, ey

EgU{U:UeU}.

A subcover of U is any subfamily of U that also covers E. A cover
or subcover is finite if it contains only finitely many sets; the sets
themselves may be infinite.

A set E is compact if every open cover of E has a finite subcover
of E.

This rather abstract definition is very important in advanced
analysis; see, for example, [22]. In R¥, compact sets are nicely
characterized, as follows.

13.12 Heine-Borel Theorem.
A subset E of R is compact if and only if it is closed and bounded.

Proof
Suppose that E is compact. For each m € N, let U,, consist of all x in
R* such that

max{lx] :j = 1, 2,550, k) <m.

The family U = {U,, : m € N} is an open cover of E [it covers R1),
s0 a finite subfamily of U covers E. If U, is the largest member of
the subfamily, then E C U, . It follows that E is bounded. To show
that E is closed, consider any point x; in R* \ E. For m € N, let

1
Vin = {xe R¥ : d(x,x0) > —}.
m

Then each V,, is open in R* and V = {V,, : m € N} covers E since
U%_, V,n = R¥\ {xo}. Since E can be covered by finitely many V,,, for
some my we have

EC {xeRk:d(x,xo) > i]
Mo
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Thus {x € R* : d(x, %) < ;-} € R¥\E, so that x, is interior to R*\ E.
Since xo in R¥ \ E was arbitrary, R¥ \ E is an open set. Hence E is a
closed set.

Now suppose that E is closed and bounded. Since E is bounded,
E is a subset of some set F having the form

F={xeRk:|xj|5m for =l 2 it}

As noted in Exercise 13.12, it suffices to prove that F is compact. We
do so in the next proposition after some preparation. =]

The set F in the last proof is a k-cell because it has the following
form. There exist closed intervals [a;, b1 ], [az2, 2], . . ., [ak, Dx] so that

F={xeRk:xje[aj,bj] toxir 1 2,0 win Ly

The diameter of F is

4 1/2
8= [Z(bj & aj)z} 3
=1

that is, § = sup{d(x,y) : x,y € F}. Using midpoints ¢; = %(aj + bj) of
[@;, bj], we see that F is a union of 2% k-cells each having diameter 3.
If this remark is not clear, consider first the cases k = 2 and k = 3.

13.13 Proposition.
Every k-cell F in R¥ is compact.

Proof

Assume F is not compact. Then there exists an open cover Y/ of F, no
finite subfamily of which covers F. Let § denote the diameter of F.
As noted above, F is a union of 2¥ k-cells having diameter % At least
one of these 2% k-cells, which we denote by F;, cannot be covered
by finitely many sets from U. Likewise, F; contains a k-cell F, of
diameter % which cannot be covered by finitely many sets from U.
Continuing in this fashion, we obtain a sequence (F,) of k-cells such
that

Fi2F2F;2---; €3]
Fy, has diameter é - 277"; (2
F,, cannot be covered by finitely many sets from U. 3)
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By Theorem 13.10, the intersection N92; F,, contains a point x,. This
point belongs to some set Uy in . Since Uy is open, there existsr > 0
so that

{x e R*: d(x,xp) < r} € Up.

It follows that F,, € U, provided 8 - 27" < 7, but this contradicts (3)
in a dramatic way. n

Since R = R!, the preceding results apply to R.

Exercises
13.1. For points x, y in R¥, let
dl(xry) oy max{lx) —yJI =12 yk}

and

k
dxy) =) 1% -yl
j=1

(a) Show that d, and d, are metrics for R¥.
(b) Show that d; and d, are complete.

13.2. (a) Prove (1) in Lemma 13.3.
(b) Prove the first assertion in Lemma 13.3.

13.3. Let B be the set of all bounded sequences x = (¥,%z,...), and
define d(x,y) = sup{lxj —y;| : j =1,2,...}.

(a) Show that d is a metric for B.
(b) Does d*(x,y) = 3 2, |x — y;| define a metric for B?
13.4. Prove (iii) and (iv) in Discussion 13.7.
13.5. (a) Verify one of DeMorgan’s Laws for sets:
(s\U:Ueuy=s\|Jw:Ueu.

(b) Show that the intersection of any collection of closed sets is
a closed set.

13.6. Prove Proposition 13.9.
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13.7.

13.8.

13.9.

13.10.

13.11.

13.12.

13.13.

13.14.

13.15.

Show that every open set in R is the disjoint union of a finite or
infinite sequence of open intervals.

(a) Verify the assertions in Example 3.
(b) Verify the assertions in Example 4.
Find the closures of the following sets:
(@) {::neN},

(b) Q, the set of rational numbers,

(c) reQ:r? <2}

Show that the interior of each of the following sets is the empty
set.

(@ {::neN},
(b) Q, the set of rational numbers,
(c) the Cantor set in Example 5.

Let E be a subset of R¥. Show that E is compact if and only if every
sequence in E has a subsequence that converges to a point in E.

Let (8, d) be any metric space.

(a) Show that if E is a closed subset of a compact set F, then E
is also compact.

(b) Show that the finite union of compact sets in S is compact.

Let E be a compact nonempty subset of R. Show that sup E and
inf E belong to E.

Let E be a compact nonempty subset of R¥, and let 8 = sup{d(x,y) :
x,y € E}. Show that E contains points xg, y, such that d(x,,y,) = 6.

Let (B, d) be as in Exercise 13.3, and let F consist of all x € B such
that suplixli: =112} =4

(a) Show that F is closed and bounded. [A set F in a metric space
(S, d) is bounded if there exist sy € S and r > 0 such that
FCc{seS8:d(ss0) <r1}]

(b) Show that F is not compact. Hint: For each x in F, let U(x) =
{y € B:d(y,x) < 1}, and consider the cover U of F consisting
ofall U(x). For each n € N, letx") be defined so that A0 =1

and x,(") =1 for j # n. Show that distinct x® cannot belong
to the same member of U.
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§14 Series

Our thorough treatment of sequences now allows us to quickly
obtain the basic properties of infinite series.

14.1 Summation Notation.

The notation Z,'(':m ay is shorthand for the sum a,, + a4 + -+ +
an. The symbol “Y " instructs us to sum and the decorations ‘k =
m” and “n” tell us to sum the summands obtained by successively

substitutingm, m+1, ..., nfork. For example, ZLZ Pﬁ is shorthand
for
1 1 1 i 1
242 ¥13 #F4 5245 _6+ +_+%

and Y ;_, 27 is shorthand for 1 +1/2 +1/4 +--- + 1/2".

The symbol Y oo a, is shorthand for @y + Gmi1 + Gmez + -+,
although we have not yet assigned meaning to such an infinite sum.
We now do so.

14.2 Infinite Series.
To assign meaning to ) oo
of partial sums:

3 o0
n—m @n, W& consider the sequences (s,)5,,

n
Spn =0m +amy1 + -+ 0n = Zak-
k=m
The infinite series Y o ay is said to converge provided the sequence

(sn) of partial sums converges to a real number §, in which case we
define Y°2°  a, = S. Thus

Zan = § Jmeans. «lims, =801 r}-}-)r{.lo (Z ak) —

n=m

A series that does not converge is said to diverge. We say that Y oo ay
diverges to +oo and we write Y oo a, = +oo provided lims, =
+00; a similar remark applies to —oo. The symbol ) > a, has no
meaning unless the series converges or diverges to 400 or —o0.
Often we will be concerned with properties of infinite series but
not their exact values or precisely where the summation begins, in
which case we may write )" a, rather than 0" a,




§14. Series Q]

If the terms a, of an infinite series ) a, are all nonnegative,
then the partial sums (s,) form a nondecreasing sequence, so The-
orems 10.2 and 10.4 show that )_a, either converges or diverges
to +00. In particular, ) |a,| is meaningful for any sequence (a,)
whatever. The series Y _ a, is said to converge absolutely or to be ab-
solutely convergent if ) |a,| converges. Absolutely convergent series
are convergent, as we shall see in 14.7.

Example 1

A series of the form Y . ar™ for constants a and r is called a geomet-
ric series. These are the easiest series to sum. For r # 1, the partial
sums s, are given by

n it i = rn+1
Zar = aT. M
k=0 g

This identity can be verified by mathematical induction or by mul-
tiplying both sides by 1 — r, in which case the right hand side equals
a — ar"*! and the left side becomes

n n n
Q-0 ak=) arr-) ar*"
k=0 k=0 k=0

=a+ar+ar’+.. . +ar"
—(ar+ar’ + -+ ar" + ar"™h)

=a—ar*!

For |r| < 1, we have lim,_, o r**! = 0 by Example 7(b) in §9, so from
(1) we have lim,, 8, = 7=. This proves

o a
ar® = if 7] < 1. 2
5 et A 2)

n=0

If a # 0 and |r| > 1, then the sequence (ar™) does not converge to
0, so the series Y  ar" diverges by Corollary 14.5 below.

Example 2

Formula (2) of Example 1 and the next result are very important
and both should be used whenever possible, even though we will
not prove (1) below until the next section. Consider a fixed positive
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real number p. Then
o 1
Z o converges if and only if p > 1. €]
n=1

In particular, for p < 1, we can write Y 1/n” = +o00. The exact
value of the series for p > 1 is not easy to determine. Here are
some remarkable formulas that can be shown by techniques [Fourier
series or complex variables, to name two possibilities] that will not
be covered in this text.

=1.6449- - -, 2)
=1.0823---. ©)

Similar formulas hold for 3,7 = when p is any even integer, but
no such elegant formulas are known for p odd. In particular, no such
formula is known for ) 2| n% though of course this series converges
and can be approximated as closely as desired.

It is worth emphasizing that it is often easier to prove that a limit
exists or that a series converges than to determine its exact value.
In the next section we will show without much difficulty that ) ;11;
converges for all p > 1, but it is a lot harder to show that the sum is
%2 when p = 2 and no one knows exactly what the sum is for p = 3.

14.3 Definition.
We say that a series ) a,, satisfies the Cauchy criterion if its sequence
(sn) of partial sums is a Cauchy sequence [see Definition 10.8]:

for each € > 0 there exists a number N such that )
m,n > N implies |s, — sy| < €.

Nothing is lost in this definition if we impose the restriction n > m.
Moreover, it is only a notational matter to work with m — 1 where
m < n instead of m where m < n. Therefore (1) is equivalent to

for each € > 0 there exists a number N such that
n>m > N implies |s;, — Sn—1| < €.

(2)
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Since s, — 8m—1 = Y _p_,, G, condition (2) can be rewritten
for each € > 0 there exists a number N such that

n
D a

k=m

3

n > m > N implies <E€

We will usually use version (3) of the Cauchy criterion. Theo-
rem 10.11 implies the following.

14.4 Theorem.
A series converges if and only if it satisfies the Cauchy criterion.

14.5 Corollary.
If a series ) a, converges, then lima, = 0.

Proof

Since the series converges, (3) in Definition 14.3 holds. In particular,
(3) in 14.3 holds for n = m; i.e., for each € > 0 there exists a number
N such that n > N implies |a,| < €. Thus lima, = 0. ]

The converse of Corollary 14.5 does not hold as the example
Y 1/n = 400 shows.

We next give several tests to assist us in determining whether a
series converges. The first test is elementary but useful.

14.6 Comparison Test.
Let Y ay be a series where a, > 0 for all n.

(i) If Y_ ay, converges and |by| < ay, for all n, then y_ b, converges.
(ii) If Y a, = +oc and b, > a, for all n, then Y_ b, = +o0.

Proof
(i) For n > m we have

n
2. b
k=m
the first inequality follows from the triangle inequality [Ex-
ercise 3.6(b)]. Since )_ a, converges, it satisfies the Cauchy

criterion 14.3(3). It follows from (1) that ) b, also satisfies
the Cauchy criterion, and hence ) _ b, converges.

n n
<Y <) a

=m k=m
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(ii) Let (s,) and (t,) be the sequences of partial sums for ) a,
and )_ b, respectively. Since b, > a, for all n, we obviously
have t, > s, for all n. Since lims,, = +00, we conclude that
limt, = 400, i.e., Y. b, = +00. =

14.7 Corollary.
Absolutely convergent series are convergent.

Proof

Suppose that ) b, is absolutely convergent. This means that )_ a,
converges where a, = |b,| for all n. Then |b,| < a, trivially, so )_ b,
converges by 14.6(i). |

We next state the Ratio Test which is popular because it is often
easy to use. But it has defects: It isn’t as general as the Root Test. An
important result concerning the radius of convergence of a power
series uses the Root Test. Finally, the Ratio Test is worthless if some of
the a,’s equal 0. To review lim sup’s and lim inf’s, see 10.6, 10.7, 11.7
and §12.

14.8 Ratio Test.
A series Y _ a, of nonzero terms
(i) converges absolutely if lim sup |a,+1/a,| < 1,
(ii) diverges if liminf |a,41/a,| > 1.
(iii) Otherwise liminf |a,1/a,| < 1 < limsup |ay+1/a,| and the
test gives no information.

We give the proof after the proof of the Root Test.

Remember that if lim |a,4+,/a,| exists, then it is equal to both
lim sup |a,+1/ay| and lim inf |a,.+1/a,| and hence the Ratio Test will
give information unless, or course, the limit lim |a,+1/ay| equals 1.

14.9 Root Test.
Let Y ay be a series and let & = lim sup |a,|'/". The series Y an
(i) converges absolutely if e < 1,
(ii) divergesifa > 1.
(iii) Otherwise @ = 1 and the test gives no information.
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Proof
(i) Suppose @ < 1, and select € > 0 so that @ + € < 1. Then by
Definition 10.6 there is a natural number N such that

o—€ < sup{la,)’’":n > N} < a+e.
In particular, we have |a,|'’" < @+ € forn > N, so
la,| < (@+¢€)" for n > N.

Since 0 < a + € < 1, the geometric series ) o . (@ + €)"
converges, and the Comparison Test shows that the series
Y mo N1 0n also converges. Then clearly Y a, converges; see
Exercise 14.9.

(i) If@ > 1, then by Corollary 11.4 a subsequence of |ay,|'/" has
limite > 1. Itfollows that |a,| > 1 for infinitely many choices
of n. In particular, the sequence (a,) cannot possibly converge
to 0, so the series ) _ a, cannot converge by Corollary 14.5.

(iii) For each of the series )1 and ) 3, « turns out to equal 1
as can be seen by applying 9.7(c). Since Z% diverges and
¥ ;17 converges, the equality o = 1 does not guarantee either
convergence or divergence of the series. ]

Proof of the Ratio Test
Let @ = lim sup |a,|'/". By Theorem 12.2 we have

An+41
an

An41

lim inf

<a <limsup

1
7 m
If lim sup |ay+1/a,| < 1, then @ < 1 and the series converges by the
Root Test. Iflim inf |a,41/a,| > 1,thena > 1 and the series diverges
by the Root Test. Assertion 14.8(iii) is verified by again examining
the series Y 1/nand Y 1/n%. ®

Inequality (1) in the proof of the Ratio Test shows that the Root
‘Test is superior to the Ratio Test in the following sense: Whenever
the Root Test gives no information [i.e., @ = 1] the Ratio Test will
surely also give no information. On the other hand, Example 8 be-
low gives a series for which the Ratio Test gives no information but
which converges by the Root Test. Nevertheless, the tests usually fail
together as the next remark shows.
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14.10 Remark.

If the terms a, are nonzero and if lim |a,+1/a,] = 1, then @ =
lim sup |a,|'" = 1by Corollary 12.3, so neither the Ratio Test nor the
Root Test gives information concerning the convergence of ) _ a,,.

We have three tests for convergence of a series [Comparison,
Ratio, Root] and we will obtain two more in the next section. There
is no clearcut strategy advising us which test to try first. However, if
the form of a given series ) a,, does not suggest a particular strategy,
and if the ratios a,+1/a, are easy to calculate, one may as well try
the Ratio Test first.

Example 3

Consider the series
i TR Ll R, a
L=\ 3/ 79 27 8 243 :

This is a geometric series and has the form Y oo ar" if we write
it as (1/9) Y oo ,(—1/3)". Here a = 1/9 and r = —1/3, so by (2) of
Example 1 the sum is (1/9)/[1 — (=1/3)] = 1/12.

The series (1) can also be shown to converge by the Comparison
Test, since ) 1/3" converges by the Ratio Test or by the Root Test. In
fact, if a, = (—1/3)", then lim |a,41/ay| = limsup |a,|''" = 1/3. Of
course, none of these tests will give us the exact value of the series

M-

Example 4
Consider the series
p d =t M
n2+3

n
Ifan=nz—+3,then

GOV St D T W

G M+1»+3 n  n n’+2n+4’

so lim |a,41/a,] = 1. As noted in 14.10, neither the Ratio Test nor
the Root Test gives any information in this case. Before trying the
Comparison Test we need to decide whether we believe the series
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converges or not. Since a,, is approximately 1/n for large n and since
Y _(1/n) diverges, we expect the series (1) to diverge. Now
nEo n oo 4
n24+3 " n24+3n2  4n?2  4n’
Since ) (1/n) diverges, » (1/4n) also diverges [its partial sums are
sn/4 where s, = Y ,_,(1/k)], so (1) diverges by the Comparison Test.

Example 5
Consider the series

1
2Tt ®

As the reader should check, neither the Ratio Rest nor the Root Test
gives any information. The nth term is approximately % and in fact
= < ;. Since ) ;; converges, the series (1) converges by the
Comparison Test.

Example 6

Consider the series
n

7 1)
If a, = n/3", then an41/a, = (n+ 1)/(3n), so lim |a,41/ax| = 1/3.
Hence the series (1) converges by the Ratio Test. In this case, ap-
plying the Root Test is not much more difficult provided we recall
limn" = 1. It is also possible to show that (1) converges by
comparing it with a suitable geometric series.

Example 7
Consider the series

Zan where a, = I:(—_—l)—i_—s] i @

The form of a, suggests the Root Test. Since |a,|'/" = 1 for even n
and |a,|'" = 1/2 for odd n, we have a = limsup |a,|"/" = 1. So the
Root Test gives no information and the Ratio Test cannot help either.
On the other hand, if we had been alert, we would have observed
that a, = 1 for even n, so (a,) cannot converge to 0. Therefore the
series (1) diverges by Corollary 14.5.
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Example 8

Consider the series
iz<-1>"—"—z+l+l+l+l+—l—+ 1)
e e ke G :

Let a, = 2CD"""_ Since a, < # for all n, we can quickly conclude
that the series converges by the Comparison Test. But our real in-
terest in this series is that it illustrates the difference between the
Ratio Test and the Root Test. Since a,41/a, = 1/8 for even n and
Ont1/a, = 2 for odd n, we have

An+1 an+1

=2

1
— = liminf

< 1 < limsup

an an

Hence the Ratio Test gives no information.

Note that (a,)"/" = 25~ for even n and (a,)"'" = 27+~ for odd
n. Since lim 2» = lim2™# = 1 by Example 7(d) in §9, we conclude
that lim(a,)/" = . Therefore @ = lim sup(a,)’" = } < 1 and the
series (1) converges by the Root Test.

Example 9
Consider the series

D"
X M
Since lim \/n/(n + 1) = 1, neither the Ratio Test nor the Root Test
gives any information. Since ) ﬁ diverges, we will not be able to
use the Comparison Test 14.6(i) to show that (1) converges. Since the
terms of the series (1) are not all nonnegative, we will not be able to
use the Comparison Test 14.6(ii) to show that (1) diverges. It turns

out that this series converges by the Alternating Series Test 15.3,
which we have deferred to the next section.

Exercises

14.1. Determine which of the following series converge. Justify your
answers.

@ X% b)) %
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14.2.

+14.3.

14.4.

14.5.

14.6.

114.7.

*14.8.

14.9.

© X ; @ X5

() X %" L Teat
Repeat Exercise 14.1 for the following.

(@ X5 ) D"

(© =& @ X%

() T% GO

@ X

Repeat Exercise 14.1 for the following.

(a) Z “_/l_r? (b) 2+cosn

©) X5m @ Fye0+ )
(e) Lsin(%) ® ¥ 0
Repeat Exercise 14.1 for the following.

@ X%, iy (b) YWn+1-
© X%

Suppose that Y a, = A and )} b, = B where A and B are
real numbers. Use limit theorems from § 9 to quickly prove the
following.

(a) Z(an = bn) = A = B.
(b) > ka, = kA fork € R.
(c) Is Y aub, = AB a reasonable conjecture? Discuss.

(a) Prove that if ) |a,| converges and (b,) is a bounded
sequence, then Zanbn converges. Hint: Use Theorem 14.4.

(b) Observe that Corollary 14.7 is a special case of part (a).

Prove that if ) a, is a convergent series of nonnegative numbers
andp > 1, then Y_ ah, converges.

Show that if )" a, and ) b, are convergent series of nonnegative
numbers, then ) «/a,b, converges. Hint: Show that «/a,b, < a,+
b, for all n.

The convergence of a series does not depend on any finite number
of the terms, though of course the value of the limit does. More
precisely, consider series ) a, and ) b, and suppose that the set
{n € N: a, # by} is finite. Then the series both converge or else
they both diverge. Prove this. Hint: This is almost obvious from
Theorem 14.4.
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14.10.

14.11.

«14.12,

14.13.

*14.14.

§15

Sometimes one can check convergence or divergence of series by
comparing the partial sums with familiar integrals. We illustrate.

Example 1
We show that )~ 1 = +o0.

Consider the picture of the function f(x) = 1 + in Figure 15.1. For
n > 1 it is evident that

Z — = Sum of the areas of the first n rectangles in Figure 15.1

k=1

Find a series ) _ a, which diverges by the Root Test but for which
the Ratio Test gives no information. Compare Example 8. ‘

Let (a,) be a sequence of nonzero real numbers such that the
sequence ( fiir—') of ratios is a constant sequence. Show that )_a,
is a geometric series.

Let (an)nen be a sequence such that liminf |a,| = 0. Prove that
there is a subsequence (ay, )ken such that Y r, an, converges.

We have seen that it is often a lot harder to find the value of an
infinite sum than to show that it exists. Here are some sums that
can be handled.

(a) Calculate Y ;7 (3)" and Y n2, (—%
(b) Prove Y o2, ﬁ‘(;;l+_1) = 1. Hint: Note that Y ;_, @
)N e
k=1lx ~ &)
(c) Prove that Y o, 251 = 1. Hint: Note that 571 = & — ko
(d) Use (c) to calculate ) 7| =

Prove that } -, % diverges by comparing with the series Y ., an
where (ay,) is the sequence

(11111111111111111)

Alternating Series and Integral
Tests
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Area |

Area '.l,- 1

T
>
a
£
w

W |
-h]—-INI-— ¥
T

FIGURE 15.1

1
> Area under the curve - between 1 and n+1

n+1 1
=f —dx:log(n-l-l).
1

Since lim,— oo log(n + 1) = 400, we conclude that Y o2, 2 = +oo0.

The series Z diverges very slowly. In Example 7 of §16, we
observe that Zn_l 5 is approximately log, N + 0.5772. Thus for N =
1,000 the sum is approximately 7.485, and for N = 1,000,000 the sum
is approximately 14.393.

Another proofthat ) % diverges was indicated in Exercise 14.14.
However, an integral test is useful to establish the next result.

Example 2
- We show that ) & converges.
Consider the graph of f(¥) = & in Flgure 15.2. Then we have

z - Sum of the areas of the first n rectangles

L | il
LS LI NERD PO
1 n

for all n > 1. Thus the partial sums form an increasing sequence
that is bounded above by 2. Therefore ) o, 2 converges and its
sum is less than or equal to 2. Actually, we have already mentioned
[without proof!] that the sum is % = 1.6449- -
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%

" it |

4 Area 7y

1 Area 4 1

3\ Area 1 9 Area 16

SRANINL

16~ E ,/ o

1 2 3 4 5
s oned (0
f(x) xz
FIGURE 15.2

Note that in estimating ) ;_, Elg we did not simply write

Yiei % < Jo & dx, even though this is true, because this integral
is infinite. We were after a finite upper bound for the partial sums.

The techniques just illustrated can be used to prove the following
theorem.

15.1 Theorem.
Y & converges if and only if p > 1.

Proof
Supply your own picture and observe that if p > 1, then
Bl | 1 1 1 P
= < —dx=1 1= =
gkp_ +1 xP +p—1( np—1)< +p 12 p=
Consequently Y o2 & < o3 < hoe.
Suppose that0 < p < 1.Then 1 = L foralln. Smcez diverges,
we see that ) L -5 diverges by the Companson Test. L

15.2 Integral Tests.
Here are the conditions under which an integral test is advisable:
(a) The tests in §14 do not seem to apply.
(b) The terms of the series ) a, are nonnegative.
(c) There is a nice nonincreasing function f on [1, 00) such that
f(n) = ay for all n [f is nonincreasing if x < y implies f(x) >

f))-
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(d) The integral of f is easy to calculate or estimate.
Iflim, o ' f(¥X) dx = +o0, then the series will diverge just as in
Example 1. Iflim,, [, f(¥)dx < +00, then the series will converge
just as in Example 2. The interested reader may formulate and prove
the general result [Exercise 15.8].

The following result is a bitntricky to prove, but it enables us to
conclude that series like ) % converge even though they do not

converge absolutely. See Example 9 in §14.

15.3 Alternating Series Theorem.
Ifay, >a; > --->a, > ---> 0andlima, = 0, then the alternating
series Y_(—1)"a, converges.

The series ) (—1)"a, is called an alternating series because the
signs of the terms alternate between + and —.

Proof
It suffices to show that the series satisfies the Cauchy crite-
rion 14.3(3). This will follow easily from

n

Y (Da

k=m

n>m > N implies <an, 1)

since for each € > 0 there exists N € N such that ay < e.
To prove (1), we fix n > m and define

A=an—0ni1+ iz — Az + - Ty

80 that
n
Y 0 =(-1)"A. ©)
k=m
If n — m is odd, the last term of A is —a,, so
A = [am — Ami1] + [@m+2 — Apa3] + - +H[An-1 —An] = 0
and also

A =y —[Amy1 = Omi2] = [@mi3 — Omia] = - - —[Gn-2—An_1]—0n < Gm.
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Remember that the numbers in brackets are nonnegative, since (a,)
is nonincreasing. If n — m is even, the last term of A is +a,, so

A = [@m — Amy1] + [Am42 — Gma3] + -+ [An—2 — n1] + 30 20
and
A = am — [Gm+1 — Omt2] — [Am+3 — Amys] — -+ — [Gn-1 — Gn] < Gm.
In either case we have 0 < A < a,,. Hence from (2) we see that

X")(—l)kak

k=m

=LA .

Assertion (1) now follows since n > m > N implies

Xn:(—l)kak

< am < an.

Exercises

15.1. Determine which of the following series converge. Justify your
answers.
(n) e (V'Y

15.2. Repeat Exercise 15.1 for the following.
(@ X[sin()" () X [sin(Z)J"

15.3. Show that Y o, n(log ny converges if and only itp's 1.

15.4. Determine which of the following series converge. Justify your
answers.
@ X2, ﬁT]ogn- ) Bome %= o
() T et @ T, %

15.5. Why didn’t we use the Comparison Test to prove Theorem 15.1 for

p>1?

15.6. (a) Give an example of a divergent series ) a, for which Y a?
converges.

(b) Observe that if ) a, is a convergent series of nonnegative
terms, then Y a2 also converges. See Exercise 14.7.

!
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(c) Give an example of a convergent series Y a, for which ) a?
diverges.

15.7. (@) Prove that if (a,) is a nonincreasing sequence of real num-
bers and if ) a, converges, then limna, = 0. Hint: Consider
|any1 + anyz + - - + ay| for suitable N.

(b) Use (a) to give another proof that ) 1 diverges.

15.8. Formulate and prove a general integral test as advised in 15.2.

§16 * Decimal Expansions of Real
Numbers

We begin by recalling the brief discussion of decimals in Discus-
sion 10.3. There we considered a decimal expansion k.d;d,ds - - -
where k is a nonnegative integer and each digit d; belongs to
{0,1,2,3,4,5,6,7,8,9}. This expansion represents the real number

o0 d] o0 _j
k+z;ﬁ=k+2dj-10
]:

7=t

which we also can write as

n

i n L aan—

nl_lglosn where s, = k+;dj 107,
):

- Thus every such decimal expansion represents a nonnegative real num-

ber. We will prove the converse after we formalize the process of

long division. The development here is based on some suggestions

by Karl Stromberg.

16.1 Long Division.

Let's first consider positive integers a and b where a < b. We analyze
the familiar long division process which gives a decimal expansion
for §. Figure 16.1 shows the first few steps where a = 3and b = 7. If
we name the digits d,, d;, ds, . . . and the remainders ry, r3, 73, . . ., then
80 fard, = 4,d, = 2 and r; = 2, r; = 6. At the next step we divide 7
into 60 = 10-r; and obtain 60 = 7-8 4 4. The quotient 8 becomes the
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.42d3 dl =4 d2=2

7|3.0000
28 r,=2
20
14 r; =6
60
3

FIGURE 16.1

third digit d3, we place the product 56 under 60, subtract and obtain
a new remainder 4 = r;. That is, we are calculating the remainder
obtained by dividing 60 by 7. Next we multiply the remainder r3 = 4
by 10 and repeat the process. At each stage

d, €{0,1,2,3,4,5,6,7,8,9}
Tn =10 “rply = 74dy
=" < 7:

These results hold for n = 1, 2, ... if we set rp = 3. In general, we
set ro = a and obtain

dn G {01 1' 2! 3) 4' 5’ 6’ 77 8) 9} (1)
rn = 10 = rn_.] i~ b » dn (2)
0<r, <bh )

We next show that this construction is well defined in general and
that the decimal expansion represents 7. In what follows we do not
need to assume that a and b are integers; a and b will represent positive
numbers. The only noticable change in our construction will be that
the “remainders” r,, will not necessarily be integers. We also do not
assume that a < b, so the first step will be a little different than in
our example. The first step will provide us with the integer part of
a

Let Z* = N U {0}. By the Archimedean property 4.6, we have
a < nb for some positive integer n. Hence {m € Z* : mb < aj
is finite. This set is also nonempty, since it contains 0, so we can
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define
k = max{m € Z* : mb < a}.

Thus kb < a < (k+ 1)b. Let ro = a — kb and note that 0 < ry < b.
Next define

di =max{d € Z" : db <10 - 1y}
and
ra=10.79 —dlb.

Note that d; < 9, because 10 - b < 10 - ro would imply b < 1y, a
contradiction. Also note that dib < 10-79 < (di +1)b,s00 <1 =
10 - ro — dib < b. Thus the following holds for n = 1:

dn € {0; 1)213: 4) 5; 6) 71 8; 9} (1)
¥n =10 - 7y_y — dpb 2
0<7m <h. 3)

Suppose that d, dy, . ..,d, € Z* and 1y, 11, . .., 1, have been defined
satisfying (1)-(3). Next define

dny1 =max{d € Z* : db < 10 - 1.}
and
Tng1 = 10 - 1, — dpy1b.

Then dy4+1 < 9 since 10-b < 10-r, would imply b < r,, violating (3).
Hence (1) holds for n+1 and (2) is obvious for n+1 by our definition
of ¥ny1. Finally dy41b < 10 - 1, < (dn41 + 1)b implies 0 < 7,41 < b,
50 (3) holds for n 4+ 1. The construction of the sequences (d,) and
(rn) satisfying (1)-(3) is completed by an appeal to the principle of
induction.

To see that the decimal expansion k.dydyds - - - represents 3, we
observe that (2) implies

el =107 —d, 107" D
for n > 1. Transposing and changing n to j, we obtain

d; - 107 .b= 71+ G0l e 7 - 1077
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for j > 1. When we sum from j = 1 to j = n, most of the terms on
the right side cancel [it’s called a telescoping sum]. Hence the partial
sums s, for the decimal expansion satisfy '

n
By b= l:k+Zd,-10—f] “b=kb+r1ry—1,-107".
Jj=1
In view of (3), we have lim,[r, - 10™"] = 0, so lim,, s, = k+ 2. Recall
that ro = a — kb; hence
a—kb

2 a
i e e

Thus k.didzd3 - - - is a decimal expansion for £.

16.2 Theorem.
Every nonnegative real number x has at least one decimal expansion.

Proof
Leta=xand b =1 in 16.1 above. 5]

As noted in Discussion 10.3, 1.000--- and .999 - -- are decimal '
expansions for the same real number. That is, the series

o0 [o ¢]
- 10=7 107
1+-EIO 10 and 219 10
j= j=

have the same value, namely 1. Similarly, 2.75000 - - - and 2.74999 - - -
are both decimal expansions for - [Exercise 16.1]. The next theorem
shows that this is essentially the only way a number can have distinct
decimal expansions.

16.3 Theorem.

A real number x has exactly one decimal expansion or else x has two
decimal expansions, one ending in a sequence of all 0’s and the other
ending in a sequence of all 9's.

Proof

We assume x > 0. If x has decimal expansions k.000 - - - with k > 0,
then it has one other decimal expansion, namely (k — 1).999 ... If
x has decimal expansion k.d,d,d; - - - d,000 - - - where d, # 0, then it
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has one other decimal expansion k.didyds - - - (d, — 1)9999- - -. The
reader can easily check these claims [Exercise 16.2].

Now suppose that x has two distinct decimal expansions
k.didyds - - - and £.e1eze3 - - -. Suppose that k < £. If any d; < 9, then
by Exercise 16.3 we have

o0
x<k+) 9-107=k+1<l=<x
j=1
a contradiction. It follows that x = k + 1 = £ and its decimal expan-
sions must be k.999 - - - and (k +1).000 - - -. In the remaining case, we
have k = £. Let

m = min{j : d; # ¢}.

We may assume that d, < en. If d; < 9 for any j > m, then by
Exercise 16.3,

m o0 m
x<k+) d-107+ ) 9107 =k+ ) d-107 +107"
j=1 j=m+1 j=1
m—1 m ;
=k+) 107 +d, - 10" +10" <k+ Y ¢-107 <x,

j=1 j=1

a contradiction. Thus d; = 9 for j > m. Likewise, if ¢; > 0 for any

j > m, then

m m—1
x> k+26,--10"j =k+2d, % RS
=1 =1
m—1
>k+ Y 107 +dy-107"+107"

j=1

m o0
=k+) 4107+ ) 9107 > %,
j=1 j=m+1

a contradiction. So in this case, d; = 9 forj > m, ey, = d, + 1 and
¢ =0forj > m. [ |

16.4 Definition.
An expression of the form

kdidy -« -+ dedpyy - - Aoy
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represents the decimal expansion in which the block dy41 - - - dg4- i8
repeated indefinitely:

k.dydy -« - Aedeyy -+ gy - - Apyroyr - gy Ggr -+ - Gy -
We call such an expansion a repeating decimal.
Example 1

Every integer is a repeating decimal. For example, 17 = 17.0 =
17.000 - - -. Another simple example is

Example 2
The expression 3.967 represents the repeating decimal 3.9676767 - - .
We evaluate this as follows:

3967 =3+9-10014+6-1024+7-1073+6-107447-1075 3 ...

o0
=3+9-107"+67-107°) "(107%

j=0
=3+9-10‘1+67-10-3(@)=3+—9—+ﬂ
99 10~ 990
3928 1964
T 990 495

Thus the repeating decimal 3.967 represents the rational number

3{:—;. Any repeating decimal can be evaluated as a rational number

in this way, as we'll show in the next theorem.

Example 3
We find the decimal expansion for % By the usual long division
process in 16.1, we find

11
i 1.571428571428571428571428571428571 - - -,

i.e., & = 1.571428. To check this, observe

571428
999999

o0
1.571428 = 1+ 571428 -107° ) "(107% =1+
j=0
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Many books give the next theorem as an exercise, probably to
avoid the complicated notation.

16.5 Theorem.

A real number x is rational if and only if its decimal expansion is repeat-
ing. [Theorem 16.3 shows that if x has two decimal expansions, they are
both repeating.]

Proof
First assume ¥ > 0 has a repeating decimal expansion x =

k.d]dz s dedg.H Lpi dg+r. Then
‘
x=k+Y d-107+107
j=1
where
9= g1+ dyyr,

80 it suffices to show such y are rational. To simplify the notation,
we write

Y= .6 6.
A little computation shows that

y=3 o107 S0y |- Sa gt

Jj=0 j=1

In fact, if we write e;¢; - - - €, for the usual decimal /) ¢ - 10"~
not the product, then y = 5{-5371&, see Example 3.

Next consider any positive rational, say 7 where a,b € N. We
may assume thata < b. As we saw in 16.1, 7 is given by the decimal

expansion .d,dyds - - - where rg = a,

d’l G {0' 1’2, 3‘ 4’ 5' 6! 7' 87 g} (1)
Tn =101y — dnb 2
0<r7r,<b, 3
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for n > 1. Since a and b are integers, each r, is an integer. Thus (3)
can be written

r.€1{0,1,2,...,b—1} for n>0. (4)

This set has b elements, so the first b + 1 remainders r, cannot all
be distinct. That is, there exist integers m > 0 and p > 0 so that

0<m<m+p=<b and 7m = Tmip-

From the construction giving (1)-(3) it is clear that given r,_;, the
integers r,, and d, are uniquely determined. Thus

rj =71 implies 741 =741 and dip = diya-

Since 7, = ¥myp, we conclude that 1y = Tmpi14p and dppy =
Amy14p- A simple induction shows that the statement

“In =Tnyp and d, =dnyp"

holds for all integers n > m + 1. Thus the decimal expansion of 7 is
periodic with period p after the first m digits. That is,

a 45T ey PSLIL,
B idy -+ Al ** - Amp-
]

Example 4
An expansion such as

.101001000100001000001000000100000001000000001000000000100 - - «

must represent an irrational number, since it cannot be a repeating
decimal: we've arranged for arbitrarily long blocks of 0’s.

Example 5

We do not know the complete decimal expansions of +/2, /3 and
many other familiar irrational numbers, but we know that they
cannot be repeating by virtue of the last theorem.

Example 6
We have claimed that 7 and e are irrational. These facts and many
others are proved in a fascinating book by Ivan Niven [30]. Here is
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the proof that
o 1
P td
2
is irrational. Assume that ¢ = ; where a,b € N. Then both ble and
b y0_, & must be integers, so the difference
W
‘k=b+l k!
must be a positive integer. On the other hand, this last number is
less than

1 1 1
YT ey i T

a contradiction.

__1<1
__b_ .

Example 7

There is a famous number introduced by Euler over 200 years ago
that arises in the study of the gamma function. It is known as Euler’s
constant and is defined by

s fgid
Y Sanos [Z b } |
Eiven though

“\ 1
lim ;?: o +o00 and nllglo log, n = +o0,

n—>oo
the limit defining y exists and is finite [Exercise 16.9]. In fact, y is ap-
proximately .577216. The amazing fact is that no one knows whether
y is rational or not. Most mathematicians believe y is irrational. This
is because it is “easier” for a number to be irrational, since repeating

decimal expansions must be regular. The remark in Exercise 16.8
hints at another reason it is easier for a number to be irrational.

Exercises
16.1. (a) Show that 2.749 and 2.750 are both decimal expansions for 1.
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16.2.

16.3.

16.4.

16.5.

16.6.

16.7.
16.8.

16.9.

2. Sequences

(b) Which of these expansions arises from the long division
process described in 16.1?

Verify the claims in the first paragraph of the proof of Theo-
rem 16.3.

Suppose that _a, and Y _ b, are convergent series of nonnegative
numbers. Show that if a,, < b, for all n and if a,, < b,, for at least
one n, then Y a, < Y_b,.

Write the following repeating decimals as rationals, i.e., as fractions
of integers.

(@ 2 (b) .02

(c) .02 (d) 3.14

(e) .10 (f) .1492

Find the decimal expansions of the following rational numbers.
@ % (b) }%

(© 3 C)) g

(©) n ® 7

Find the decimal expansions of 1, 2, 3, 4 2 and £. Note the

interesting pattern.
Is .1234567891011121314151617181920212223242526 - - - rational?

Let (s,) be a sequence of numbers in (0, 1). Each s, has a decimal
expansion .dg")dgn)dgn) ... For each n, let e, = 6 if d” # 6 and
er= it dﬁ") = 6. Show that e;ee;3 - - - is the decimal expansion for
some number y in (0,1) and that y # s, for all n. Remark: This
shows that the elements of (0, 1) cannot be listed as a sequence. In
set-theoretic parlance, (0, 1) is “uncountable.” Since the set QN (0, 1)
canbe listed as a sequence, there mustbe a lot of irrational numbers
in (0, 1)!

Let yn = (Xjo ) —log,n =30, ¢ — [ 14t.

(a) Show that (y,)is adecreasing sequence. Hint : Look at ¥, —¥n+1.
(b) Show that 0 < y, <1 for all n.

(c) Observe that y = lim, y, exists and is finite.




Continuity

CHAPTER

Most of the calculus involves the study of continuous functions.
In this chapter we study continuous and uniformly continuous
functions.

§17 Continuous Functions

Recall that the salient features of a function f are:

(a) the set on which f is defined, called the domain of f and written
dom(f);

(b) the assignment, rule or formula specifying the value f(x) of f
at each x in dom(f).

We will be concerned with functions f such that dom(f) € R and
such that f is a real-valued function, i.e., f(x) € R for all x € dom(f).
Properly speaking, the symbol f represents the function while f(x)
represents the value of the function at x. However, a function is often
given by specifying its values and without mentioning its domain.
In this case, the domain is understood to be the natural domain: the
largest subset of R on which the function is a well defined real-

115
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valued function. Thus “the function f(x) = %" is shorthand for “th
function f given by f(x) = % with natural domain {x € R : x # O}\
Similarly, the natural domain of g(x) = +/4 — x? is [-2, 2] and th
natural domain of cscx = Sllm is the set of real numbers x not of th
form nx,n € Z.

In keeping with the approach in this book, we will define con
tinuity in terms of sequences. We then show that our definition i

equivalent to the usual -8 definition.

17.1 Definition.

Let f be a real-valued function whose domain is a subset of R.
function f is continuous at xy in dom(f) if, for every sequence (xy) i
dom(f) converging to xo, we have lim,, f(x,) = f(xo). If f is continu
ous at each point of a set S € dom(f), then f is said to be continuou
on 8. The function f is said to be continuous if it is continuous 0!

dom(f).

Our definition implies that the values f(x) are close to f(xp) whe
the values x are close to xy. The next theorem says this in anothe
way. In fact, condition (1) of the next theorem is the -8 definitio
of continuity given in many calculus books.

17.2 Theorem. e »
Let f be a real-valued function whose domain is a subset of R. Then f ‘
continuous at xy € dom(f) if and only if

for each € > 0 there exists § > 0 such that
x € dom(f) and |x — x| < & imply |f(x) — f(%0)| < €.

Proof
Suppose that (1) holds, and consider a sequence (x,,) in dom(f") sue
that lim x,, = xyp. We need to prove that lim f(x,) = f(%p). Let € > (
By (1), there exists § > 0 such that r

xedom(f) and |x—x| <é imply |f(*)—f(x)l < €.
Since lim x,, = xp, there exists N so that

n > N implies |x, — x| < 8.
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It follows that
n > N implies |[f(x,)— f(%0)| < €.

This proves that lim f(x,) = f(%0).
Now assume that f is continuous at x,, but that (1) fails. Then
there exists € > 0 so that the implication

“xedom(f) and |x—=x| <8 imply |[f(x)—f(x)l < €
Juils for each 8§ > 0. In particular, the implication

i1!
“x € dom(f) and |x— x| < ™ imply [f(x) — f(%)| < €

Juils for each n € N. So for each n € N there exists x, in dom(f) such
that |x,—xo| < % and yet |[f(x,)—f(%0)| = €. Thus we have lim x,, = x,,
but we cannot have lim f(x,) = f(xo) since |f(x») — f(*o0)| > € for all
n. This shows that f cannot be continuous at xy, contrary to our
aussumption. |

As the next example illustrates, it is sometimes easier to work
with the sequential definition of continuity in Definition 17.1 than
the €-8 property in Theorem 17.2. However, it is important to get
tomfortable with the -8 property, partly because the definition of
uniform continuity is more closely related to the €-8 property than
the sequential definition.

Example 1

Let f(x) = 2x* + 1 for x € R. Prove that f is continuous on R by
(a) using the definition,
(b) using the -8 property of Theorem 17.2.

Solution
(4) Suppose that lim x, = x,. Then we have

lim f (%) = lim[2x2 + 1] = 2[lim x,]* + 1 = 2x% 4+ 1 = f(xo)

where the second equality is an application of the limit theo-
ms 9.2-9.4. Hence f is continuous at each x; in R.

(b) Let xo be in R and let € > 0. We want to show |f(x) — f(x)| <
provided |x — x| is sufficiently small, i.e., less than some 8. We
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observe that

If(®) — f(x0)| = 12¢° +1 — (2] + 1)| = |24* — 2x(|
= 2|x — x| - |x + xo|.

We need to get a bound for x + xy| that does not depend on x. We
notice that if [x—xp| < 1, say, then |x| < |x|+1 and hence |x+x,| <
|x] + |x0| < 2|x0] + 1. Thus we have

If(®) = f(x0)l < 2|x — x0(2|%0] + 1)

provided |x — x| < 1. To arrange for 2|x — x|(2]x0] + 1) < ¢, it

suffices to have |x — xy| < TZ'Ix—ZH—l) and also |x — x| < 1. So we put

8=min{1,——e—}.
2(2|xo] + 1)

The work above shows that [x — xy| < 8 implies |f(x) — f(x0)| < €, as
desired. o

The reason that solution (a) in Example 1 is so much easier is
that the careful analysis was done in proving the limit theorems in

§9.

Example 2
Let f(¥) = #?sin(2) for ¥ # 0 and f(0) = 0. The graph of f in
Figure 17.1 looks continuous. Prove that f is continuous at 0.

Solution

Let € > 0. Clearly |f(¥) — f(0)| = If(x)| < #* for all x. Since we
want this to be less than €, we set § = 4/e. Then |x — 0| < § implies
X <8 =¢ s0

|x —0] < & implies |[f(x)—f(0)| < e.
Hence the €-§ property holds and f is continuous at 0. 0
In Example 2 it would have been equally easy to show that i

limx, = 0 then lim f(x,) = 0. The function f in Example 2 is also
continuous at the other points of R; see Example 4. -
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flxy= x? sin(l)

%

FIGURE 17.1

- Example 3
Let f(¥) = 1sin(%) for x # 0 and f(0) = 0; see Figure 17.2. Show

that f is discontinuous, i.e., not continuous, at 0.

Solution
It suffices for us to find a sequence (x,) converging to 0 such
that f(x,) does not converge to f(0) = 0. So we will arrange

L ges 1 P 2ol o o
for g sin(e)i= where x, — 0. Thus we want sin(zz) = 1,

-~y TG iy bl - 1 . " .
- g 2nn+ 3, X, = FnfT Of Xn = JomiE Then lim x, = 0 while

lim f (x,) = lim ;- = +o00. O

Let f be areal-valued function. For k in R, kf signifies the function
defined by (kf)(x) = kf(x) for x € dom(f). Also |f| is the function
defined by |f|(x) = |f(x)| for x € dom(f). Thus if f is given by f(x) =
Jx—4 forx > 0, then 3f is given by (3f)(x) = 3y/x—12forx > 0, and
If| is given by |f|(x) = |/x — 4| for x > 0. Here is an easy theorem.
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FIGURE 17.2

17.3 Theorem.
Let f be a real-valued function with dom(f) € R. If f is continuous at
Xp in dom(f), then |f| and kf, k € R, are continuous at x,.

Proof
Consider a sequence (x,) in dom(f) converging to x,. Since f is con-
tinuous at xp, we have lim f(x,) = f(%). Theorem 9.2 shows that
lim kf (x,) = kf (x0). This proves that kf is continuous at xo.

To prove that |f| is continuous at x;, we need to prove that
lim |[f(x,)| = |f(x0)|. This follows from the inequality

[f Gl — If (xo) Il < If (%n) — f(x0); (1)

see Exercise 3.5. [In detail, consider € > 0. Since lim f(x,) = f(xp),
there exists N such that n > N implies |f(x,) — f(%)| < €. So by (1),
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n > N implies
[fF )l = If (x0)I| < €
thus lim |f(x,)| = |f (%0)|-] L

We remind readers that if f and g are real-valued functions, then
we can combine f and g to obtain new functions:

(f +8)®) = () +g); fo(9) = F®)e(®);
(78)®) = £2; gof(® =g(f();

max(f, g)(¥) = max{f(x),g(®»)};  min(f g)(x) = min{f(x), g(x)}.

The function g o f is called the composition of g and f. Each of these
new functions is defined exactly where they make sense. Thus the
domains of f + g, fg, max(f, g) and min(f, g) are dom(f)Ndom(g), the
domain of f/g is the set dom(f) N {x € dom(g) : g(x) # 0}, and the
domain of gof is {x € dom(f) : f(x) € dom(g)}. Note thatf+g = g+f
and fg = gf but that in general fog # gof.

These new functions are continuous if f and g are continuous.

17.4 Theorem.
Let f and g be real-valued functions that are continuous at xy in R. Then
(i) f + g is continuous at xo;
(ii) fg is continuous at xy;
(iii) f/g is continuous at xq if g(xo) # 0.

Proof

We are given that xy € dom(f) N dom(g). Let (x,) be a sequence in
dom(f) N dom(g) converging to xy. Then we have lim f(x,) = f(xo)
and lim g(x,,) = g(%o). Theorem 9.3 shows that

lim(f + g)(%x) = Lm[f (%) + g(¥»)] = lim f(%,) + lim g(x»)
= f(*0) + 8(%0) = (f + 8)(%0),

50 f + g is continuous at xy. Likewise, Theorem 9.4 implies that fg is
continuous at xq.

To handle f/g we assume g(x) # 0 and consider a sequence
(%y) in dom(f) N {x € dom(g) : g(x) # 0} converging to xy. Then
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Theorem 9.6 shows that
£ i) _f) _ (f :
g ( ) e ™ 0 (g) o
so f/g is continuous at x. [ ]

17.5 Theorem.
If f is continuous at xy and g is continuous at f(xo), then the composite
function g o f is continuous at xg.

Proof

We are given that xy € dom(f) and that f(x) € dom(g). Let (x,) be
a sequence in {x € dom(f) : f(x) € dom(g)} converging to x,. Since
f is continuous at xy, we have lim f(x,) = f(xo). Since the sequence
(f (%)) converges to f(xp) and g is continuous at f(xy), we also have

lim g(f (x»)) = g(f(%0)); that is, lim g o f(x,) = g o f(x). Hence g o f
is continuous at x,.

Example 4

For this example, let us accept as known that polynomial functions
and the functions sinx, cosx and €* are continuous on R. Then 4e*
and |sinx| are continuous on R by Theorem 17.3. The function
sin x+4€*+x is continuous on Rby (i) of Theorem 17.4. The function
x*sinx is continuous on R by (i) of Theorem 17.4, and (iii) of The-
orem 17.4 shows that tan x = 1% 2 is continuous wherever cosx # 0,
i.e., at all x not of the form mr+ x , h € Z. Theorem 17.5 tells us that
eSi‘”‘ and cos(¢e*) are continuous on R; for example, cos(e*) = gof(x)
where f(x) = ¢* and g(x) = cosx. Several applications of Theo-
rems 17.3-17.5 will show that »? sin(%) and 1 sin() are continuous
at all nonzero x in R.

Example 5
Let f and g be continuous at x, in R. Prove that max(f g) i8
continuous at xy.

Solution {
First observe that y

maX(f.g)=-;-(f+g)+%lf—gl- i
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This equation holds because max{a, b} = %(a +Db)+ %Ia — b| is true
for all a,b € R, a fact which is easily checked by considering the
cases a > b and a < b. By Theorem 17.4(i), f + g and f — g are
continuous at x,. Hence |f — g| is continuous at xy by Theorem 17.3.

Then

1(f + &) and 1|f — gl are continuous at %, by Theorem 17.3,

and another application of Theorem 17.4(i) shows that max(f, g) is

continuous at xg. O
Exercises
17.1. Letf(¥) =4 —xforx <4 and g(x) = x* forallx e R.

17.2.

17.3.

(a) Give the domains of f + g, fg, fogand gof.

(b) Find the values f 0 g(0), g of(0), fog(1),gof(1), fog(2) and
gof(2).

(c) Are the functions f o g and g o f equal?

(d) Are f og(3) and g o f(3) meaningful?

Let f(x) = 4 forx > 0, f(x) = 0 for x < 0, and g(x) = »* for all x.
Thus dom(f) = dom(g) = R.

(a) Determine the following functions: f + g, fg, f o g, gof. Be
sure to specify their domains.

(b) Which of the functions f, g, f +g, fg, f og, g of is continuous?

Accept on faith that the following familiar functions are contin-
uous on their domains: sinx, cosx, €*, 2¥, log, x for x > 0, ¥’ for
x > 0 [p any real number]. Use these facts and theorems in this
section to prove that the following functions are also continuous.

(a) log,(1 + cos*x)

(b) [sin® x + cos® x]"

(c) 2¥

(d) &

(e) tanx for x # odd multiple of 7
() xsin(i) forx#0

(8) ¥*sin() forx #0
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17.4.

17.5.

17.6.

17.7.

17.8.

17.9.

17.10.

(h) isin(%)forx#0

Prove that the function 4/ is continuous on its domain [0, 00).
Hint: Apply Example 5 in §8. .

(a) Prove thatifm € N, then the function f(x) = ¥™ is continuous
on R.

(b) Prove that every polynomial function p(x) = ap + a1x + - -+ +
anx" is continuous on R.

A rational function is a function f of the form p/q where p and g are
polynomial functions. The domain of f is {x € R : g(x) # 0}. Prove
that every rational function is continuous. Hint: Use Exercise 17.5.

(a) Observe that if k is in R, then the function g(x) = kx is
continuous by Exercise 17.5. 1

(b) Prove that |x| is a continuous function on R.

(c) Use (a) and (b) and Theorem 17.5 to give another proof of
Theorem 17.3.

Let f and g be real-valued functions.
(a) Show that min(f,g) = 3(f +&) — 5If —&l.
(b) Show that min(f,g) = — max(—f, —g).

(c) Use (a) or (b) to prove that if f and g are continuous at ¥ in
R, then min(f, g) is continuous at x;.

Prove that each of the following functions is continuous at ¥y by
verifying the e-§ property of Theorem 17.2.

@ f=%x%=2
(®) f(¥)=Vx % =0;
(©) f(x) =xsin(2) for x # 0 and f(0) = 0, X = 0;

(d) g(x) = ¥°, x, arbitrary.
Hint for (d): * — 23 = (x — x)(x* + Xox + X2).

Prove that the following functions are discontinuous at the in-
dicated points. You may use either Definition 17.1 or the €-§
property in Theorem 17.2.

(@) fx)=1forx >0and f(x) =0forx <0, xp = 0;
(b) g(x) = sin(}) for x # 0 and g(0) = 0, xy = 0;
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17.11.

17.12.

17.13.

17.14.

17.15.

(c) sgn(x) = —1forx < 0, sgn(x) =1 forx > 0, and sgn(0) = 0,
X =0;

(d) P(x) =15for0 <x < 1and P(¥) = 15+13nforn <x < n+1,
Xp a positive integer.
The function sgn is called the signum function; note that
sgn(x) = ﬁ for x # 0. The definition of P, the postage-stamp
function circa 1979, means P takes the value 15 on the inter-
val [0, 1), the value 28 on the interval [1, 2), the value 41 on
the interval [2, 3), etc.

Let f be a real-valued function with dom(f) € R. Prove that f is
continuous at x, if and only if, for every monotonic sequence (xy)
in dom(f) converging to Xy, we have lim f(x,) = f(xo). Hint: Don’t
forget Theorem 11.3.

(a) Letf be a continuous real-valued function with domain (a, b).
Show that if f(r) = 0 for each rational numberr in (&, b), then
f(x) =0 for all x € (a, b).

(b) Letf and g be continuous real-valued functions on (4, b) such
that f(r) = g(r) for each rational number r in (a, b). Prove
that f(x) = g(x) for all x € (a, D).

(a) Letf(x) = 1 for rational numbers x and f(x) = 0 for irrational
numbers. Show that f is discontinuous at every x in R.

(b) Leth(x) = x for rational numbers x and h(x) = 0 for irrational
numbers. Show that h is continuous at x = 0 and at no other
point.

For each rational number x, write x as IE’ where p, g are integers
with no common factors and g > 0, and then define f(x) = é. Also
define f(x) = 0 for all x € R\ Q. Thus f(x) = 1 for each integer,
f3)=f(-H=f3)=-- =}, etc. Show that f is continuous at
each point of R \ Q and discontinuous at each point of Q.

Let f be a real-valued function whose domain is a subset of R.
Show that f is continuous at xy in dom(f) if and only if, for ev-
ery sequence (x,) in dom(f) \ {xy} that converges to x;, we have

lim f(xx) = f(%o).
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§18 Properties of Continuous Functions

Areal-valued function f is said to be bounded if {f (x) : x € dom(f)} isa
bounded set, i.e., if there exists a real number M such that |f(x)| <M
for all x € dom(f).

18.1 Theorem.
Let f be a continuous real-valued function on a closed interval [a, D).
Then f is a bounded function. Moreover, f assumes its maximum and
minimum values on [a, b); that is, there exist xy, Yo € [a, b] such that

f(x0) < f(*¥) < f(yo) for all x € [a, b].

Proof
Assume that f is not bounded on [a,b]. Then to each n € N
there corresponds an x, € [a,b] such that |f(x,)] > n. By the
Bolzano-Weierstrass theorem 11.5, (¥,) has a subsequence (xy,,) that
converges to some real number xy. The number x, also must be-
long to the closed interval [a, b], as noted in Exercise 8.9. Since f is
continuous at xo, we have limy_, f(*5,) = f(%0), but we also have
limy_ o0 |f (%0, )| = 400, which is a contradiction. It follows that f is
bounded.

Now let M = sup{f(x) : ¥ € [a,b)}; M is finite by the preced-
ing paragraph. For each n € N there exists y, € [a,b] such that
M —1 < f(y,) < M. Hence we have lim f(y,) = M. By the Bolzano-
Weierstrass theorem, there is a subsequence (yy,) of (y») converging
to a limit yo in [a, b]. Since f is continuous at yo, we have f(yo) =
limy_, 00 f(Yn,)- Since (f (Yn,))keN is a subsequence of (f(yYn))nen, The=
orem 11.2 shows that limiseo f(Yn,) = liMyooeof(Yn) = M and
therefore f(yo) = M. Thus f assumes its maximum at yo. {

The last paragraph applies to the function —f, so —f assumes
its maximum at some x, € [a, b]. It follows easily that f assumes its
minimum at xy; see Exercise 8.1. n

Theorem 18.1 is used all the time, at least implicitly, in solvin,
maximum-minimum problems in calculus because it is taken for
granted that the problems have solutions, namely that a continuous
function on a closed interval actually takes on a maximum and a
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minimum. If the domain is not a closed interval, one must be careful;
see Exercise 18.3.

Theorem 18.1 is false if the closed interval [a, b] is replaced by an
open interval. For example, f(x) = 1 is continuous but unbounded
on (0,1). The function ¥? is continuous and bounded on (-1, 1), but
it does not have a maximum value on (—1, 1).

18.2 Intermediate Value Theorem.

If f is a continuous real-valued function on an interval I, then f has the
intermediate value property on I: Whenever a,b € I, a < b and y lies
between f(a) and f (D) [i.e., f(a) < y < f(b) or f(b) < y < f(a)), there
exists at least one x € (a, b) such that f(x) = y.

Proof

We assume f(a) < y < f(b); the other case is similar. Let § = {x €
[a,b] : f(%) < y}; see Figure 18.1. Since a belongs to §, S is nonempty,
S0 Xo = sup S represents a number in [a, b]. For eachn € N, xo — & is
not an upper bound for §, so there exists s, € S such that xg — % <
8, < xp. Thus lims, = x( and, since f(s,) < y for all n, we have

f(%) = limf(sy) < y. @

Let t, = min{b, % + +}. Since %y < t, < xo + 1 we have limt, = x.
Each t, belongs to [a, b] but not to 8, so f(t,) > y for all n. Therefore

FIGURE 18.1
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we have

f(%0) = limf(ty) > y;
this and (1) imply that f(xp) = y.

18.3 Corollary.
If f is a continuous real-valued function on an interval I, then the set
f@) = {f(x) : x € I} is also an interval or a single point.

Proof
The set ] = f(I) has the property:

Yoy1 €] and Yy <y<y imply yeJ. @)

Ifinf ] < supJ, then such a set ] must be an interval. In fact, we will
show that

inf] < y < supJ implies ye€], 2)

so ] is an interval with endpoints inf ] and sup J; inf ] and sup ] may
or may not belong to J and they may or may not be finite.

To prove (2) from (1), consider inf] < y < sup]. Then there
exist Yo, y1 in ] so thatyy < y < y;. Thus y € J by (1). n

Example 1
Let f be a continuous function mapping [0, 1] into [0, 1]. In other
words, dom(f) = [0, 1] and f(¥) € [0, 1] for all x € [0, 1]. Show that f
has a fixed point, i.e., a point xy € [0, 1] such that f(xp) = xo; %o is left
“fixed” by f.

Solution
The graph of f lies in the unit square; see Figure 18.2. Our assertion
is equivalent to the assertion that the graph of f crosses the y = ¥
line, which is almost obvious.

A rigorous proofinvolves a little trick. We consider g(x) = f(x)—&
which is also a continuous function on [0, 1]. Since g(0) = f(0)—0 =
f(0) > 0and g(1) = f(1) =1 < 1 —1 = 0, the Intermediate Value
theorem shows that g(x,) = 0 for some xy € [0, 1]. Then obviously
we have f(x) = xp.

Example 2
Show that if y > 0 and m € N, then y has a positive mth root.
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FIGURE 18.2

Solution

The function f(x) = x¥™ is continuous [Exercise 17.5]. There exists
b > 0sothaty <b™;infact,ify <llethb=1andify > 1letb =y.
Thus f(0) < y < f(b) and the Intermediate Value theorem implies
that f(x) = y for some x in (0,b]. So y = ¥™ and x is an mth root
of y. O

Let us analyze the function f(x) = x™ in Example 2 more closely.
It is a strictly increasing function on [0, 00):

0<x <x; implies " < xj.

Therefore f is one-to-one and each nonnegative y has exactly one
nonnegative mth root. This assures us that the notation y/™ is un-
ambiguous. In fact, f~!(y) = y¥/™ is the inverse function of f since
f~' o f(x) = x for x € dom(f) and f o f ! (y) = y for y € dom(f ™).
Since f(x) = ¥™ is continuous, the function f~!(y) = y'/™ is contin-
uous on [0, 00) by the next theorem. Note that for m = 2 this result

appears in Exercise 17.4.

18.4 Theorem.

Let f be a continuous strictly increasing function on some interval 1. Then
[(I) is an interval ] by Corollary 18.3 and f ! represents a function with
domain J. The function f~" is a continuous strictly increasing function
onJ.
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Proof
The function f~! is easily shown to be strictly increasing. Since f~*
maps J onto I, the next theorem shows that f~! is continuous. W

18.5 Theorem.
Let g be a strictly increasing function on an interval | such that g(J) is
an interval I. Then g is continuous on J.

Proof

Consider x( in J. We assume ¥x, is not an endpoint of J; tiny changes
in the proof are needed otherwise. Then g(x,) is not an endpoint of
I, so there exists €p > 0 such that (g(%o) — €0, 8(%0) + €) < I.

Let € > 0. Since we only need to verify the -8 property of The-
orem 17.2 for small €, we may assume that € < €;. Then there exist
X1,X; € ] such that g(x;) = g(xo) — € and g(x2) = g(Xo) + €. Clearly we
have x; < x5 < x3. Also, if ; < x < x;, then g(x1) < g(*) < g(*2),
hence g(xp) — € < g(x) < g(x) + ¢, and hence |g(x) — g(x0)| < € |
Now if we put § = min{x, — x9, Xo — %1}, then |x — xo| < § implies
X; < x < x; and hence |g(x) — g(x0)| < €. n

Theorem 18.5 provides a partial converse to the Intermediate
Value theorem, since it tells us that a strictly increasing function
with the intermediate value property is continuous. However, Ex-
ercise 18.12 shows that a function can have the intermediate value
property without being continuous.

18.6 Theorem.

Let f be a one-to-one continuous function on an interval I. Then f i8
strictly increasing [x; < x, implies f(x1) < f(x2)] or strictly decreasing
[x1 < x; implies f(x1) > f(x2)].

Proof

First we show

ifa < b < cin I, then f(b) lies between f(a) and f(c). (1)

If not, then f(b) > max{f(a), f(c)}, say. Select y so that f(b) > y >
max{f(a), f(c)}. By the Intermediate Value theorem 18.2 applied to
[a,b] and to [b,c], there exist x; € (a,b) and x; € (b,c) such that
f(x1) = f(x2) = y. This contradicts the one-to-one property of f.




Exercises ]3]

Now select any ag < bg in I and suppose, say, that f(ag) < f(bo).
We will show that f is strictly increasing on I. By (1) we have

f®) < f(ao) for x < ag

[since x < ag < by,

f(ao) < f(X) < f(bo) for ao < x < by,

In particular,

f(bo) < f(x) for x > by [since ap < by < %]
f(®) < f(ag) forall x < aq, (2)
f(ao) < f(x) forall x > ag. 3

Consider any x; < x; inI. If x; < ag < x,, then f(x) < f(x2) by (2)
and (3). If x; < x; < ay, then f(x;) < f(ao) by (2), so by (1) we have
f(x1) < f(x2). Finally, if ag < % < x,, then f(ap) < f(x2), so that

f(x1) < f(x2). |
Exercises
18.1. Letf be as in Theorem 18.1. Show that if the function —f assumes

18.2.

18.3.

18.4.

18.5.

18.6.
18.7.
18.8.

its maximum at Xy € [a, b], then f assumes its minimum at xo.
Reread the proof of Theorem 18.1 with [a, b] replaced by (a, b).
Where does it break down? Discuss.

Use calculus to find the maximum and minimum of f(x) = x> —
6x* +9x+ 1 on [0, 5).

Let S € R and suppose there exists a sequence (%) in S that con-
verges to a number x, € S. Show that there exists an unbounded
continuous function on S.

(a) Letf and g be continuous functions on [a, b] such that f(a) >
g(a) and f(b) < g(b). Prove that f(xy) = g(xo) for at least one
X in [a, b].

(b) Show that Example 1 can be viewed as a special case of
part (a).
Prove that x = cos x for some x in (0, 5).

Prove that x2* = 1 for some x in (0, 1).

Suppose that f is a real-valued continuous function on R and that
f(a)f(b) < 0 for some a, b € R. Prove that there exists x between
a and b such that f(x) = 0.
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18.9.

18.10.

18.11.

18.12.

§19

Let f be a real-valued function whose domain is a subset of R. The-
orem 17.2 tells us that f is continuous on a set § € dom(f) if and
only if

The choice of § depends on € > 0 and on the point x; in S.

Example 1

We verify (*) for the function f(x) = % on (0,00). Let x, > 0 and
€ > 0. We need to show that |[f(x) — f(x0)| < € for |x — xo| sufficiently
small. Note that

Prove that a polynomial function f of odd degree has at least on
real root. Hint: It may help to consider first the case of a cubic,
ie., f(¥) = ap + a1x + axx* + azx® where az # 0.

Suppose that f is continuous on [0, 2] and that f(0) = f(2). Prove
that there exist x, y in [0, 2] such that |y — x| = 1 and f(x) = f(¥).
Hint: Consider g(x) = f(x + 1) — f(¥) on [0, 1].

(a) Show that if f is strictly increasing on an interval I, then —f
is strictly decreasing on I.

(b) State and prove Theorems 18.4 and 18.5 for strictly decreas-
ing functions.

Let f(x) = sin(3) for x # 0 and let f(0) = 0.
(a) Observe that f is discontinuous at 0 by Exercise 17.10(b).

(b) Show that f has the intermediate value property on R.

Uniform Continuity

for each xy € S and € > 0 there is § > 0 so that

x € dom(f), |x — x| < 8 imply |f(x) — f(%0)| < €. *)

e 5
L E g e n . L gy o st S

R . xx3

(1)
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If |x — x| < %, then we have |x| > %, || < 3—;*1 and |xp + x| < sxf

These observations and (1) show that if [x — x| < %, then

o — - 58 10jx — ]
(3% A

If(x) = f(xo)l <

Thus if we set § = min{%, ’;——a—;}, then

|x —xo| < 8 implies |f(x)— f(x0)| < €.

This establishes (*) for f on (0, 00). Note that § depends on both €
and xy. Even if € is fixed, § gets small when x; is small. This shows
that our choice of § depends on x; as well as €, though this may be
because we obtained § via sloppy estimates. As a matter of fact, in
this case § must depend on x; as well as €; see Example 3. Figure 19.1
- shows how a fixed e requires smaller and smaller § as xy approaches
0. [In the figure, 8, signifies a § that works for x; and ¢, §; signifies a
4 that works for x; and ¢, etc.]

It turns out to be very useful to know when the § in condition
(*) can be chosen to depend only on € > 0 and S, so that § does
not depend on the particular point x,. Such functions are said to be
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uniformly continuous on 8. In the definition, the points x and x, play
a symmetric role and so we will call them x and y.

19.1 Definition. '
Let f be a real-valued function defined on a set S € R. Then f is
uniformly continuous on § if

for each € > 0 there exists § > 0 such that 0
x,y € Sand |x — y| < § imply |f(x) — f(y)| < €. ‘

We will say that f' is uniformly continuous if f is uniformly continuous
on dom(f).

Note that if a function is uniformly continuous on its domain,
then it must be continuous on its domain. This should be obvious; if
it isn't, Theorem 17.2 and Definition 19.1 should be carefully scru-
tinized. Note also that uniform continuity is a property concerning
a function and a set [on which it is defined]. It makes no sense to
speak of a function being uniformly continuous at a point.

Example 2
We show that f(x) = xl—z is uniformly continuous on any set of the
form [a, o0) where a > 0. Here a is fixed. Let € > 0. We need to show
that there exists § > 0 such that

x>a, y=za and |x—y|<é imply If()—f@)l<e (1)
As in formula (1) of Example 1, we have
Ut (Ut}
x2y?
If we can show that ﬂ;%" is bounded on [a, 00) by a constant M, then
we will take § = But we have

+x11112
Y iuey

f&-fy =

!

sowesetd = 5“2'—3 It is now straightforward to verify (1). In fact, x > a,
Yy =>aand |x —y| < § imply

70 -l = B <o (v ) < 5
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We have shown that f is uniformly continuous on [a, o0) since 8
depends only on € and the set [a, 00).

Example 3
The function f(x) = ,—37 is not uniformly continuous on the set (0, 00)
or even on the set (0, 1).

We will prove this by directly violating the definition of uni-
form continuity. The squeamish reader may skip this demonstration
and wait for the easy proof in Example 6. We will show that (1) in
Definition 19.1 fails for € = 1; that is

for each § > 0 there exist ¥, y in (0, 1) such that o)
|x—yl < dand yet |f(x) — f(y)| = 1.

[Actually, for this function, (1) in 19.1 fails for all € > 0.] To show (1)
it suffices to take y = x + % and arrange for

8
f—f (x + 5)
[The motivation for this maneuver is to go from two unknowns, x
and y, in (1) to one unknown, %, in (2).] By (1) in Example 1, (2) is
equivalent to
e x+E-0@F+3+2 & s2x+ ) ;
¥ X2(x + 3?2 22%(x + $)?

> 1. 2)

&)

It suffices to prove (1) for § < % To obtain (3), let us try x = § for no
particular reason. Then

Tt I S R o 20y
2825 +3)2 ¥ T 982 T 932 9 '

We were lucky! To summarize, we have shown that if 0 < § < %,

then |f(8) — f(8 + $)| > 1, s0 (1) holds withx =8 and y = 6 + 3.

Example 4

Is the function f(x) = ¥* uniformly continuous on [—7, 7]? To see if it
is, consider € > 0. Note that [f(x) — f(¥)| = [¥* —¥%| = |x—y| - |x+ y|.
Since |x 4 y| < 14 for x, y in [—7, 7], we have

If(x) = f(y)| < 14x—y| for xye([-77]
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Thus if § = <, then

147
xy€[-7,7] and [x—y| <8 imply I|f(x)-f()l <e.

We have shown that f is uniformly continuous on [—7, 7]. A similar
proof would work for f(x¥) = ¥* on any closed interval. However,

T |t i || S e — -

19.2 Theorem. .
If f is continuous on a closed interval [a,D), then f is uniformly
continuous on [a, b).

Proof
Assume that f is not uniformly continuous on [a, b]. Then there
exists € > 0 such that for each § > 0 the implication

“x -yl <8 implies [f(x)—f(Y)l < €"

fails. That is, foreach 8 > 0there existx, y € [a, b]such that [x—y| < &
and yet |[f(x) — f(y)| = €. Then for each n € N there exist x,, yn
in [a,b] such that |x, — y.| < 1 and yet |f(x.) — f(¥n)l > €. By
the Bolzano-Weierstrass theorem 11.5, a subsequence (x,,) of (%)
converges. Moreover, if Xy = limy_, o %y, then ¥, belongs to [a, b];
see Exercise 8.9. Clearly we also have ¥y = limy_, o Yn,. Since f i8
continuous at xy, we have

£a) = Jim f(en) = lim fun),
SO
klglgo[f (*n) = f(Yn)] = 0.

Since |f(xn,) — f(Un)| = € for all k, we have a contradiction. We
conclude that f is uniformly continuous on [a, b]. a

The preceding proof used only two properties of [a, b]: (a) bound-
edness, so that the Bolzano-Weierstrass theorem applies, and (b) a
convergent sequence in [, b] must converge to an element in [a, b].
As noted prior to Theorem 11.8, sets with property (b) are called
closed sets. Hence Theorem 19.2 has the following generalization. If
f is continuous on a closed and bounded set S, then f is uniformly contin-
uous on S. See also Theorems 21.4 and 13.12 that appear in optional
sections.
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Example 5

In view of Theorem 19.2, the following functions are uniformly
continuous on the indicated sets: x> on [—13,13], 4/ on [0, 400],
x'7 sin(€*) — e** cos 2x on [—8x, 87, and % on [}, 44].

19.3 Discussion.

Example 5 illustrates the power of Theorem 19.2, but it still may not
be clear why uniform continuity is worth studying. One of the im-
portant applications of uniform continuity concerns the integrability
of continuous functions on closed intervals. To see the relevance of
uniform continuity, consider a continuous nonnegative real-valued
function f on [0,1]. Forne Nandi=0,1,2,...,n—1, let

M, =sup{f(x):x€[L, 2]} and m,=inf{f(x):x €[ L]}.

n' n n' n

Then the sum of the areas of the rectangles in Figure 19.2(a) equals
ln—l
Unis =) M
n ,12; in

and the sum of the areas of the rectangles in Figure 19.2(b) equals

1n—1
Ln - - E ml'n‘
n 35

=" =
TN f
f
_Lzé.ii.../n-l\l 12345 n=L\
B an N n n nnnnn n
ni=2 =2
n n

(a) (b)
FIGURE 19.2
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The function f would turn out to be Riemann integrable provided‘
the numbers U, and L, are close together for large n, i.e., if

lim (U, — Ly) = 0; O}

see Exercise 32.6. Moreover, we would have fo1 f(x)dx = lim U, ==
limL,. Relation (1) may appear obvious from Figure 19.2, but
uniform continuity is needed to prove it. First note that

1 n—1
0<U,—L,= ; Z(Mi,n i mi,n)
i=0
for all n. Let € > 0. By Theorem 19.2, f is uniformly continuous on
[0, 1], so there exists § > 0 such that
xy€[0,1] and |x—yl<é imply [f(x)—f(Wl<e (2)
Select N so that % < &. Considern > N; fori =0,1,2,...,n —18

Theorem 18.1 shows that there exist x;, y; in [£, 2] satisfying f(x) =

m;, and f(y;) = M. Since |%; —yi| <+ < « < &, (2) shows that
Min —min = f(y) — f(%) < ¢,
SO
1 n—1 1 n-—1
0SUp—Ly==) Mp—my)<=) e=c
n =0 1 i=0
This proves (1) as desired.

The next two theorems show that uniformly continuous func-
tions have nice properties.

19.4 Theorem.
If f is uniformly continuous on a set S and (s,) is a Cauchy sequence in
S, then (f(sn)) is a Cauchy sequence.

Proof
Let (s,) be a Cauchy sequence in S and lete > 0. Since f is uniformly
continuous on §, there exists § > 0 so that

x,yeS and |x—y|l <é imply |f(x)-f(y)l < e. (1)
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Since (sy) is a Cauchy sequence, there exists N so that
m,n > N implies |s, —Sn| < 6.
From (1) we see that
m,n > N implies |f(sn) = f(sm)l < €.
This proves that (f(s,)) is also a Cauchy sequence. »

Example 6

We show that f(x) = xl—z is not uniformly continuous on (0, 1). Let
8y = % for n € N. Then (s,) is obviously a Cauchy sequence in
(0, 1). Since f(s,) = n?, (f(sn)) is not a Cauchy sequence. Therefore
f cannot be uniformly continuous on (0, 1) by Theorem 19.4.

The next theorem involves extensions of functions. We say that
a function f is an extension of a function f if

dom(f) € dom(f) and f(x)=f(x) forall xe dom(f).

Example 7
Let f(x) = xsin(2) for x € (0, 2]. The function defined by

z . [ axsin@d) for 0<x<i
f(x)_{o " for x=0

is an extension of f. Note that dom(f) = (0, 1] and dom(f) = [0, 1.
In this case, f is a continuous extension of f. See Figure 19.3 as well
as Exercises 17.3(f) and 17.9(c).

Example 8

Let g(x) = sin(2) for x € (0, 2]. The function g can be extended
to a function g with domain [0, 2] in many ways, but g will not be
continuous. See Figure 19.4.

The function f in Example 7 is uniformly continuous [since f
is], and f extends to a continuous function on the closed interval.
The function g in Example 8 does not extend to a continuous func-
tion on the closed interval, and it turns out that g is not uniformly
continuous. These examples illustrate the next theorem.
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19.5 Theorem.
A real-valued function f on (a,b) is uniformly continuous on (a, b) if
and only if it can be extended to a continuous function f on [a, b).

Proof
First suppose that f can be extended to a continuous function f on
[a, b]. Then f is uniformly continuous on [a, b] by Theorem 19.2, so
clearly f is uniformly continuous on (a, b).

Suppose now that f is uniformly continuous on (a, b). We need to
define f(a) and f (b) so that the extended function will be continuous.
It suffices for us to deal with f(a). We make two claims:

if (s,) is a sequence in (a, b) converging

to a, then (f(sn)) converges, (1)
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and

if (s,) and (t,) are sequences in (a, b) converging 9
to a, then limf(s,) = lim f(t,). @

Momentarily accepting (1) and (2) as valid, we define

f (a) = lim f(s,) for any sequence
(sn) in (a, b) converging to a.

3

Assertion (1) guarantees that the limit exists, and assertion (2) guar-
antees that this definition is unambiguous. The continuity of f at a
follows directly from (3); see Exercise 17.15.
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To prove (1), note that (s,) is a Cauchy sequence, so (f(sp)) is
also a Cauchy sequence by Theorem 19.4. Hence (f(s,)) converges
by Theorem 10.11. To prove (2) we create a third sequence (u,) such
that (s,) and (t,) are both subsequences of (u,). In fact, we simply
interleaf (s,) and (t,):

(un)?lg—-l = (S]’ t1, 82, t2, 83, t3, 84, t4, Ss, By s )

It is evident that lim u, = a, so lim f(u,) exists by (1). Theorem 11.2
shows that the subsequences (f(s,)) and (f(tn)) of (f(un)) both must
converge to lim f(uy), so lim f(s,) = lim f(t,). -

Example 9 |
Let h(x) = == for x # 0. The function h defined on R by
- SinX for x#£0
— X
hed 1 for x=0
is an extension of h. Clearly h and h are continuous at all x # 0. It .
turns out that h is continuous at x = 0 [see below], so h is uniformly
continuous on (4, 0) and (0, b) for any a < 0 < b by Theorem 19.5.
In fact, h is uniformly continuous on R [Exercise 19.11].

We cannot prove the continuity of h at 0 in this book because
we do not give a definition of sin x. The continuity of h at 0 reflects
the fact that sin x is differentiable at 0 and that its derivative there is
cos(0)i=ilyise,

sinx —sin 0 . sinx

le=litn = lim ;
x—0 x—0 x—>0 X

see Figure 19.5. The proof of this depends on how sinx is defined;
see the brief discussion in 37.12. For a discussion of this limit and
L'Hospital’s rule, see Example 1 in §30.

Here is another useful criterion that implies uniform continuity.
19.6 Theorem.

Let f be a continuous function on an interval I [I may be bounded or
unbounded ). Let 1° be the interval obtained by removing from I any
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FIGURE 19.5

endpoints that happen to be in 1. If f is differentiable on I° and if f' is
bounded on I°, then f is uniformly continuous on I.

Proof

For this proof we need the Mean Value theorem, which can be found

in most calculus texts or later in this book [Theorem 29.3].
Let M be a bound for f’ on I so that |f'(x)| < M for all x. Lete > 0

and let § = ;. Consider a,b € I where a < band |b —a| < 8. By the

Mean Value theorem, there exists x € (a, b) such that f'(x) = f—(%:—’;@,

80

If@®) — f@| = If'®)|-1b—al <M|b—a| < Mé=e.

This proves the uniform continuity of f on I. |
Example 10
Let @ > 0 and conmsider f(x) = 3. Since f'(x) = —% we have

If'(*)| < % on [a,00). Hence f is uniformly continuous on [a, o)
by Theorem 19.6. For a direct proof of this fact, see Example 2.
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Exercises
19.1.

19.2.

19.3.

19.4.

19.5.

Which of the following continuous functions are uniformly con-
tinuous on the specified set? Justify your answers. Use any
theorems you wish.

(@) f(¥) = x""sinx — €* cos 3x on [0, 7],
() f(x)=#*on|0,1],

(¢) fx)=x*on(0,1),

(@) f(x)=x*onR,

(e) f(x) = 3 on(0,1],

() f(x) =sing on (0,1],

(8) f(x) =**sin? on (0,1].

Prove that each of the following functions is uniformly continu-
ous on the indicated set by directly verifying the e-8 property in
Definition 19.1. :

(a) f(x) =3x+11 onR,

(b) f(®) =#*on[0,3],

(©) f(*) =1 on[3} ).

Repeat Exercise 19.2 for the following.
(@) f(x) = F5 on|0,2],

(b) f(x) = 525 on[1,00).

(a) Prove that if f is uniformly continuous on a bounded set §,
then f is a bounded function on 8. Hint: Assume not. Use
Theorems 11.5 and 19.4.

(b) Use (a) to give yet another proof that 3 is not uniformly
continuous on (0, 1).

Which of the following continuous functions is uniformly contin-
uous on the specified set? Justify your answers, using appropriate
theorems or Exercise 19.4(a).

(a) tanxon|0, 7],
(b) tanxon [0, 3),

() 1sin*xon (0,7),
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(d) %5 0n(0,3),
(e) ;5 on (3,00),
(f) ;% on (4,00).

19.6. (a) Let f(¥) = +/x for x > 0. Show that f’ is unbounded on (0, 1]
but that f is nevertheless uniformly continuous on (0, 1].
Compare with Theorem 19.6.

(b) Show that f is uniformly continuous on [1, 00).

19.7. (a) Letf be acontinuous function on [0, 00). Prove that if f is uni-
formly continuous on [k, 00) for some k, then f is uniformly
continuous on [0, 00).

(b) Use (a) and Exercise 19.6(b) to prove that /x is uniformly
continuous on [0, 00).

L 19.8. (a) Use the Mean Value theorem to prove that
|sinx —siny| < |x — y|
for all %,y in R; see the proof of Theorem 19.6.
(b) Show that sin x is uniformly continuous on R.
19.9. Let f(x) = xsin() for x # 0 and f(0) = 0.

(a) Observe that f is continuous on R; see Exercises 17.3(f)
and 17.9(c).

(b) Why is f uniformly continuous on any bounded subset of R?
(c) Is f uniformly continuous on R?

19.10. Repeat Exercise 19.9 for the function g where g(x) = #? sin(3) for
X # 0 and g(0) = 0.

19.11. Accept the fact that the function h in Example 9 is continuous on
R; prove that it is uniformly continuous on R.

§20 Limits of Functions

A function f is continuous at a point a provided the values f(x) are
near the value f(a) for x near a [and x € dom(f)]. See Definition 17.1
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and Theorem 17.2. It would be reasonable to view f(a) as the limi
of the values f(x), for x near a, and to write lim,,, f(¥) = f(a). In
this section we formalize this notion. This section is needed for our
careful study of derivatives in Chapter 5, but it may be deferred until
then.

We will be interested in ordinary limits, left-handed and right-
handed limits and infinite limits. In order to handle these various
concepts efficiently and also to emphasize their common features,
we begin with a very general definition, which is not a standard
definition.

20.1 Definition.

Let S be a subset of R, let a be a real number or symbol co or —o0
that is the limit of some sequence in S, and let L be a real number
or symbol +00 or —oo. We write lim,_, s f(x) = L if

f is a function defined on S, 1)
and

for every sequence (x,) in § with limit a, 2
we havelim,_, f(%,) = L. )

The expression “lim,_,,s f(¥)” is read “limit, as x tends to a along §,

of f(x).”

20.2 Remarks.

(a) From Definition 17.1 we see that a function f is continuous at
a in dom(f) = § if and only if lim,_, s f (%) = f(a).

(b) Observe that limits, when they exist, are unique. This fol-

lows from (2) of Definition 20.1, since limits of sequences are.

unique, a fact that is verified at the end of §7.

We now define the various standard limit concepts for functions.

20.3 Definition.
(a) For a € R and a function f we write lim,—,, f(x) = L provided
lim,_, s f(x) = L for some set § = J \ {a} where ] is an op
interval containing a. lim,_,, f(x) is called the [two-sided] limit

of f at a. Note that f need not be defined at a and, even if

is defined at a, the value f(a) need not equal lim,_,, f(x). In



§20. Limits of Functions 147

fact, f(a) = lim,,, f(x) if and only if f is defined on an open
interval containing a and f is continuous at a.

(b) Fora € R and a function f we write lim,_, ,+ f(x) = L provided
lim,_, s f(x¥) = L forsome open interval S = (a, b). lim,_, .+ f(X)
is the right-hand limit of f at a. Again f need not be defined at a.

(c) Fora € R and a function f we write lim,_,,- f(x) = L provided
lim,_, s f(¥) = L for some open interval § = (¢, a). limy_, .- f(x)
is the left-hand limit of fat a.

(d) For a function f we write lim,, f(x¥) = L provided that
limy_, 005 f(¥) = L for some interval S = (¢, 00). Likewise, we
write lim,_, _o f(¥) = L provided lim,_, _s f(x) = L for some
interval S = (—o0, b).

The limits defined above are unique; i.e., they do not depend on
the exact choice of the set S [Exercise 20.19].

Example 1

We have lim,_,4 x* = 64 and lim,_,, 1 = 1 because the functions x*
and l are continuous at 4 and 2, respectively. It is easy to show that
hmx_)o+ = 400 and that lim,o- 2 = —00; see Exercise 20.14. It
follows that hmg_,o - does not exist; see Theorem 20.10.

Example 2 :

Consider limy., == ¥=4 This is not like Example 1, because the func-
tion under the 11m1t is not even defined at x = 2 However, we can
rewrite the function as

Xt —4 _x=2(x+2) _
A xX=—2

X HOT ok 2.

Now it is clear that 1lmx_>2 = lim,(x + 2) = 4. We should

x—4

o and x + 2 are not identical. The

emphasize that the functlons

domain of f(x) = ’;‘

X+ 2 is R, so that f is an extension of f. This seems like nitpicking
and this example may appear silly, but the function f, not f, arises
naturally in computing the derivative of g(x) = x* at x = 2. Indeed,
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using the definition of derivative we have

—g(2 24
x—->2 X— 2 x=>2 X — 2

so our modest computation above shows that g’(2) = 4. Of course,
this is obvious from the formula g’(x) = 2x, but we are preparing
the foundations of limits and derivatives, soc we are beginning with
simple examples.

Example 3
Consider lim,_;, L . We employ a trick that should be familiar by |
now; we multlply the numerator and denominator by +/x + 1 and
obtain

N % L x—1

1
— = fi ik
pessy koo | 7ot AT el e g
Hence we have lim,_,; { 11 lim,,q 7;1+—1 = 3. We have just
laboriously verified that if h(x) = /%, then h'(1) = 3.
Example 4
Let f(x) = e 2 == for x # 2. Then lim;_, o f(¥) = lim,—, oo f(x) =48
limy_, o+ f (x) = +oo and lim,_,,- f(¥) = —o0.

To verify lim,,» f(¥) = 0, we consider a sequence (x,) such
that lim, .0 ¥, = 400 and show that lim,_, o f(*,) = 0. This will
show that lim, s f(x) = 0 for § = (2,00), for example. Exer-
cise 9.11 and Theorem 9.9 show that lim,, (¥, — 2)* = +00, and
then Theorem 9.10 shows that

; y o :

lim f(x,) = lim (x, —2)™" = 0. a)

Here is a direct proof of (1). Consider € > 0. For large n, we need
%, — 2|72 < eore™! < |x,—2[2ore 1? < |x,—2|. The last inequality

holds if x, > €~'/3 4 2. Since lim,_, o ¥, = 400, there exists N s0
that

n >N implies x, > ¢ 34 2.
Reversing the algebraic steps above, we find

n> N implies |x,—2|™ < ¢
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This establishes (1).
Similar arguments prove lim,_, o f(¥) = 0 and lim,_,,+ f(x) =
+00. To prove lim,,»- f(¥) = —oo, consider a sequence (¥,) such

that x, < 2 for all n and lim,,;0 %, = 2. Then 2 — x,, > 0 for all n
and lim,_,00(2—%,) = 0. Hence lim,,_, (2—%,)® = 0by Theorem 9.4,
and Theorem 9.10 implies that lim,_, (2 — x,) ™2 = +o0. It follows
[Exercise 9.10(b)] that

3 i 4, g )

Sal) Sl G B siey Q

This proves that lim, ;s f(¥) = —oo for § = (—00,2), so that
lim,_,,- f(¥) = —o0. Of course, a direct proof of (2) also can be given.

The limits discussed above are confirmed in Figure 20.1.

We will discuss the various limits defined in Definition 20.3 fur-
ther at the end of this section. First we prove some limit theorems
in considerable generality.

y
b
¥y 1
fx) (X—2)3
{74=
1 f %

FIGURE 20.1
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20.4 Theorem.
Let f; and f, be functions for which the limits Ly = lim,_,,s fi(X) a
Ly = lim,_, 45 f>(x) exist and are finite. Then 4
(1) lim,_,.s(fi + f2)(%) exists and equals Ly + Ly; .
(i) lim,_;,s(fif2)(%) exists and equals L Ly; )
(iii) lim,_,.s(f1/f2)(%) exists and equals L,/L; provided L, # 0 an
f2(x) # 0 for x € S.

Proof
The hypotheses imply that both f; and f, are defined on S and thata
is the limit of some sequence in S. Clearly the functions f; + f, and
fif2 are defined on 8 and so is fi/f; if fo(x) # 0 for x € §.

Consider a sequence (x,) in S with limit a. By hypotheses we have
L, = lim, fi(*,) and L; = limy,_,  f2(¥»). Theorems 9.3 and 9.4
now show that

Lim (i +£)(%) = Hm fi(xa) + lim fo(en) = Li + Lo

and
i = [ o] [pm ] =

Thus (2) in Definition 20.1 holds for f; +f; and fif3, so that (i) and (ii)
hold. Likewise (iii) follows by an application of Theorem 9.6.

Some of the infinite variations of Theorem 20.4 appear in Exer-
cise 20.20. The next theorem is less general than might have been
expected; Example 7 shows why.

20.5 Theorem.

Let f be a function for which the limit L = lim,_,,s f(X) exists and i
finite. If g is a function defined on {f (x) : x € S} U {L} that is continuo
at L, then lim,_, ;s g o f(X) exists and equals g(L).

Proof
Note that g o f is defined on S by our assumptions. Consider a se-
quence (x,) in S with limit a. Then we have L = lim,_, » f(*,). Since
g is continuous at L, it follows that

g(L) = lim g(f(¥xn)) = lim g o f(¥n).
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Hence lim,, s g o f(%) = g(L). 1]

Example 5

If f is a function for which the limit L = lim,.,, f(x) exists and
is finite, then we have lim,_,, |[f(x)| = |L|. This follows immediately
from Theorem 20.5 with g(x) = |x|. Similarly, we have lim,_,, &® =
e" provided we accept the fact that g(x) = €* is continuous on R.

Example 6
If f is a function for which lim,_ ¢+ f(¥) = 0 and lim,, o f(X¥) =
I then we have lim,,o+ €® = € = 1, lim,,0d/® = 3,

lim, o+ sin(f(x)) = sin(0) = 0 and lim,_, » sin(f(x)) = sin 5 = 1.

Example 7

We give an example to show that continuity of g is needed in Theo-
rem 20.5. Explicitly, we give examples of functions f and g such that
lim,—o f(%) = 1,lim,,; g(x) = 4 and yetlim,_,( gof (x) does not exist.
One would expect this limit to exist and to equal 4, but in the example
f(x) will equal 1 for arbitrarily small x while g(1) # 4. The functions
[ and g are defined by f(x) = 1 +xsin § forx # 0, g(x) = 4forx # 1,
and g(1) = —4. Clearly lim,f(x) = 1 and lim,_,, g(x) = 4. Let
Xn = 2 for n € N. Then f(x,) = 1 + 2 sin(%); hence f(x,) = 1 for
even n and f(x,) # 1 for odd n. Therefore g o f(x,) = —4 for even n
and g o f(x,) = 4 for odd n. Since lim,_,« ¥, = 0, we conclude that
lim,_,0 g o f(x) does not exist.

As in Theorem 17.2, the limits defined in Definitions 20.1
and 20.3 can be recast to avoid sequences. First we state and prove
i typical result of this sort. Then, after Corollary 20.8, we give a
general scheme without proof.

20.6 Theorem.

Let [ be a function defined on a subset S of R, let a be a real number
that is the limit of some sequence in S, and let L be a real number. Then
lim,_,4s f(X) = L if and only if

for each € > 0 there exists 8 > 0 such that

x€Sand|x —al < 8imply |f(x) — L| < e. M
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Proof
We imitate our proof of Theorem 17.2. Suppose that (1) holds, and
consider a sequence (x,) in S such that lim,_, o x, = a. To show
limy— o0 f(%:) = L, consider € > 0. By (1) there exists § > 0 such
that i

x€S and |x—a|l <é imply |f(x)—L|<e.

Since lim,_,o X, = a, there exists a number N such that n > N
implies |x, — a| < 8. Since x, € § for all n, we conclude that 1

n > N implies [f(x,)—L| < e.

Thus lim,_, o0 f(*) = L.
Now assume that lim,_,,s f(x¥) = L, but that (1) fails. Then for
some € > 0 the implication

‘€S and |x—a|<é imply |f(x)—L|<¢€

fails for each § > 0. Then for each n € N there exists x, in §
where |x, — a| < % while |f(x,) — L| > €. Hence (¥,) is a sequenc
in § with limit a for which lim,_,« f(x,) = L fails. Consequently
lim,_, s f(¥) = L must also fail to hold.

20.7 Corollary.
Let f be a function defined on ] \ {a} for some open interval | containi
a, and let L be a real number. Then lim,_,, f(x) = L if and only if

for each € > 0 there exists § > 0 such that 1 '
0 < |x —al| < éimplies |f(x) — L| < €. (
20.8 Corollary.

Let f be a function defined on some interval (a,b), and let L be a
number. Then lim,_, .+ f(x) = L if and only if

for each € > 0 there exists § > 0 such that 1
a < x < a+éimplies |f(x) — L| < e. (,

20.9 Discussion. ,
We now consider lim,_, f(¥) = L where L can be finite, +00 or —o
and s is a symbol a, a*, a~, 00 or —o0 [here a € R]. Note that w
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have fifteen [= 3 - 5] different sorts of limits here. It turns out that
lim,_s f(%) = L if and only if

for each there exists such that

)

For finite limits L, the first and last blanks are filled in by “e > 0"
and “|f(x) — L| < €.” For L = +o00, the first and last blanks are filled
inby “M > 0” and “f(x) > M,” while for L = —oo they are filled in
by “M < 0" and “f(x) < M.” When we consider lim,_,, f(x), then f
is defined on ] \ {a} for some open interval J containing a, and the
second and third blanks are filled inby “6 > 0”and “0 < [x—a| < §.”
For lim,_, .+ f(x) we require f to be defined on an interval (a, b) and
the second and third blanks are filled in by “6 > 0” and “a < x <
a + 8.” For lim,_,,- f(x¥) we require f to be defined on an interval
(¢,a) and the second and third blanks are filled in by “6 > 0” and
\'‘a —8 < x < a. For lim,_, f(x) we require f to be defined on
an interval (¢, 00) and the second and third blanks are filled in by
‘@ < oo and “a < x.” A similar remark applies to lim,_, _, f(¥).

The assertions above with L finite and s equal to a or a* are
contained in Corollaries 20.7 and 20.8.

implies

20.10 Theorem.

Let f be a function defined on ] \ {a} for some open interval ] containing
a. Then lim,_,, f(x) exists if and only if the limits lim,_, .+ f(x) and
lim,, .- f(x) both exist and are equal, in which case all three limits are
equal.

Proof
Suppose that lim,_,, f(¥) = L and that L is finite. Then (1) in Corol-
lary 20.7 holds, so (1) in Corollary 20.8 obviously holds. Thus we
have lim,_, .+ f(x) = L; similarly lim,_,,- f(x) = L.
Now suppose that lim,_,,+ f(x) = lim,_,,- f(x) = L where L is
finite. Consider € > 0; we apply Corollary 20.8 and its analogue for
«  to obtain §; > 0 and 8, > 0 such that

a<x<a+é implies |f(x)—L|<e
and

a—¥8; <x<a implies [f(x)—L| < e.
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IF¥= min{Sl, 82}, then
0<|x—al <8 implies |f(x)—L| < e, '

so lim,_,, f(x) = L by Corollary 20.7.

Similar arguments apply if the limits L are infinite. For exampl -
suppose that lim,_,, f(x) = 400 and consider M > 0. There exist
8 > 0 such that

0<|x—al <dé implies f(x) > M.
Then clearly

a<x<a+d implies f(x) >M
and

a—8 < x<a implies f(x)> M, @

so that lim,_, .+ f(x) = lim,, .- f(x) = +o0. .

As a last example, suppose that lim,_,,+ f(x) = lim,_,,- f(¥) =
+00. For each M > 0 there exists §; > 0 so that (2) holds, and therg
exists §; > 0 so that (3) holds. Then (1) holds with § = min{$,, §,}
We conclude that lim,._,, f(x) = +o0

20.11 Remark.

Note that lim,, o f(x) is very similar to the right-hand hmi
lim,_, .+ f (). For example, if L is finite, then lim,_,,+ f(¥) = L il
and only if

for each € > 0 there exists @ > a such that (1
0 < x < aimplies |[f(x) — L| < ¢,

since@ > aifand only ifa = a+4é for some § > 0; see Corollary 20.8,
If we set a = —oo in (1), we obtain the condition 20.9(1) equivalen
to im0 f(¥) =L

In the same way, the limits lim,,« f(x) and lim,_,,- f(x) wil
equal L [L finite] if and only if

for each € > 0 there exists @ < a such that
a < x < aimplies |f(x) — L| < e.

Obvious changes are needed if L is infinite.




lixercises

- 20.1. Sketch the function f(x) = ﬁ Determine, by inspection, the
limits limy_ o f(%), limyo+ f(%), limy_o- f(¥), limy— oo f(*) and
lim,_,¢ f (¥) when they exist. Also indicate when they do not exist.

Repeat Exercise 20.1 for f(x) = I%

Repeat Exercise 20.1 for f(x) = 2%, See Example 9 of §19.
Repeat Exercise 20.1 for f(x) = xsin 1.

Prove the limit assertions in Exercise 20.1.

. Prove the limit assertions in Exercise 20.2.

. Prove the limit assertions in Exercise 20.3.

. Prove the limit assertions in Exercise 20.4.

. Repeat Exercise 20.1 for f(x) = 1;:2-

. Prove the limit assertions in Exercise 20.9.

. Find the following limits.

(a) 1imx—->a _x;:_zi (b) limx_’b @#’ b>0

(c) lim,, o
Hint for (¢): ¥* — a® = (x — a)(¥* + ax + a?).

. (@) Sketch the function f(x) = (x — 1)7!(x — 2) 2.

(b) Determine lim,_,,+ f(x), lim,_, - f(¥), lim,_,1+ f(¥) and lim,_, - f(%).
(c) Determine lim,.,; f(x) and lim,_,, f(x) if they exist.

Prove that if lim,,, f(x) = 3 and lim,_,, g(¥) = 2, then

(a) lim,.,.[3f(x) +g(®)%] = 13,

(b) limys g5 = 3,

(c) lim,..+/3f(x)+ 8g(x) = 5.

Prove that lim,_.o+ 1 = 400 and lim,_,o- 1 = —00.

Prove lim,., _« f(x) = 0 and lim,_,,+ f(x) = 400 for the function
f in Example 4.

Suppose that the limits L, = lim,_, .+ fi(¥) and L = lim,_, 4+ f(X)
exist.
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(a) Show that if fi (%) < f>(x) for all x in some interval (a, b), the
Ly < Ls. ¢

Suppose that, in fact, fi(x) < f2(x) for all x in some interv:
) ) )
(a, b). Can you conclude that L; < L,?

20.17. Show thatiflim,., .+ fi(x) = limy,,+ f3(x) = Land if fi (%) < f2(%) =
f3(x) for all x in some interval (a, b), then lim,_, .+ f2(¥) = L. Wa
ing: This is not immediate from Exercise 20.16(a), because we are
not assuming that lim,_, .+ f2(x) exists; this must be proved.

20.18. Let f(x) = YH32=1 for x # 0. Show that lim,,o f(¥) exists a
determine its value. Justify all claims.

20.19. The limits defined in Definition 20.3 do not depend on the choi
of the set S. As an example, consider a < b; < b, and suppose
that f is defined on (a, b;). Show that if the limit lim,_, s f(x) exists
for either S = (a,b;) or § = (a, by), then the limit exists for the
other choice of § and these limits are identical. Their common
value is what we write as lim,_, .+ f ().

20.20. Let f; and f; be functions such that lim,_,,s fi (¥) = 400 and suc
that the limit L, = lim,_, ;s f>(%) exists. ¢

(a) Prove that lim,,.s(fi + 2)(X) = 400 if L, # —o00. Hint: Us@
Exercise 9.11. '

(b) Prove that lim,_,,s(fif2)(¥) = 400 if 0 < Ly < 4o0. Hint: Use
Theorem 9.9.

(c) Prove that lim,.,,s(fif2)(x¥) = —o0 if —00 < L, < 0.
(d) What can you say about lim,., s(fif2)(¥) if L, = 0?

§21 * More on Metric Spaces:
Continuity

In this section and the next section we continue the introduction t
metric space ideas initiated in §13. More thorough treatments appe
in [25], [33] and [36]. In particular, for this brief introduction we avoid
the technical and somewhat confusing matter of relative topolo
gies that is not, and should not be, avoided in the more thoro
treatments.
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We are interested in functions between metric spaces (S, d) and
(8%, d*). We will write “f: § — §*” to signify that dom(f) = § and that
| takes values in 8%, i.e., f(x) € 8* forall s € S.

21.1 Definition.
Consider metric spaces (8,d) and (8%, d*). A function f:§ — §* is
tontinuous at sy in 8 if

for each € > 0 there exists § > 0 such that 1
d(s, so) < & implies d*(f(s), f(so0)) < €. @

We say that f is continuous on a subset E of § if f is continuous at
each point of E. The function f is uniformly continuous on a subset E
of § if

for each € > 0 there exists § > 0 such that 2
s,t € E and d(s, t) < 8 imply d*(f(s),f(t)) < €. 2)

|
Example 1
LetS = 8* = Randd = d* = dist where, as usual, dist(a, b) = |a—b|.
The definition of continuity given above is equivalent to that in §17
in view of Theorem 17.2. The definition of uniform continuity is
equivalent to that in Definition 19.1.

Example 2
In several variable calculus, real-valued functions with domain R?
or R3, or even R, are extensively studied. This corresponds to the
case S = R¥,

¥ 1/2
d(x,y) = [Z(xj —yj)z] )
=1
§* = R and d* = dist. We will not develop the theory, but generally
speaking, functions that look continuous will be. Some examples on
R? are f(x), %) = 22 + 23, f(x1,%) = mx/E + 52+ 1, f(x1,%) =
cos(x; — x3). Some examples on R? are g(x;, x2, x3) = ¥ + x2 + &2,
B(%1, %2, X3) = %1% + X1%3 + Xa%3, 8(X1, %2, %3) = €2 log(x] + 2).

Example 3
Functions with domain R and values in R? or R?, or generally RF,
are also studied in several variable calculus. This corresponds to the
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case 8§ = R, d = dist, 8* = R¥ and

x 1/2
d*(x,y) = [Z(x, = yj)z] :

=1

The images of such functions are what nonmathematicians often
would call a “curve” or “path.” In order to distinguish a function from
its image, we will adhere to the following terminology. Suppose that
y:R — RF is continuous. Then we will call y a path; its image y(R)
in R* will be called a curve. We will also use this terminology if y is
defined and continuous on some subinterval of R, such as [a, b]; see
Exercise 21.7.

As an example, consider y where y(t) = (cost, sint). This func-
tion maps R onto the circle in R? about (0, 0) with radius 1. More
generally yo(t) (acost,bsint) maps R onto the ellipse with
equation = -— + %22— = 1; see Figure 21.1. :

The graph of an ordlnary continuous function f:R — R looks
like a curve, and it is! It is the curve for the path y(t) = (t, f(1)).

Curves in R® can be quite exotic. For example, the curve for the
path h(t) = (cost, sint, £) is a helix. See Figure 21.2.

i

We did not prove that any of the paths above are continuous,
because we can easily prove the following general fact.

1
! a
T

O—JF
o+

domain of v,

image of Y

FIGURE 21.1
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z
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gl o
(l') = I t Z ‘—\/l y
T s
: h(0)—/ N ety
domain of &
X
FIGURE 21.2
21.2 Proposition.
If fi,f2, - - ., fx are continuous real-valued functions on R, then
y(®) = (h@®, (@), - - -, fi(®)
defines a path in R,
Proof

We need to show that y is continuous. Recall formula (1) in the proof
of Lemma 13.3 and Exercise 13.2:

d*(xyy) & ‘\/imax{lx] —'yjl ] B 1;2; " 'rk}' (1)
Considerty €e Rande > 0. Foreachj=1,2,...,k, there exists §, > 0
such that
€
t —to| < § implies |fi(t) — fi(to)] < —=.
|t —to| < 8 imp Ifi(®) — fi(to) 7
For § = min{é;,d,, ...,8c} and |t — ty| < &, we have

€

max{lfi(t) — fi(to)l : j = 1,2,...,k} < 7?

so by (1) we have d*(y(t), y(to)) < €. Thus y is continuous att,. W

The next theorem shows that continuity is a topological property;
see Discussion 13.7.
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21.3 Theorem.
Consider metric spaces (S,d) and (8*,d*). A function f:§ — 8*
continuous on 8 if and only if
f~1(U) is an open subset of S
for every open subset U of S*.

Recall that f~(U) = {s € S : f(s) € U}.

Proof
Suppose that f is continuous on 8. Let U be an open subset of §*, a
consider sy € f~!(U). We need to show that s, is interior to f~*(
Since f(so) € U and U is open, we have

{s* € 8*:d*(s* f(s0)) <€} CU

for some € > 0. Since f is continuous at sg, there exists § > 0 such
that

d(s,so) < 8 implies d*(f(s),f(80)) < €. (3

From (2) and (3) we conclude that d(s,sg) < 8 implies f(s) € U,
hence s € f~1(U). That is,

{se8:d(s s) < 8} Cf (L),

so that sy is interior to f~!(U).

Conversely, suppose (1) holds, and consider sy € S and € > 0.
Then U = {s* € 8" : d*(s* f(s0)) < €} is open in 8*, so f~1(U) i§
open in 8. Since sy € f~!(U), for some § > 0 we have

{seS:d(s s) < 8 Cf(U).
It follows that

d(s,s0) < 8§ implies d*(f(s),f(s0)) < €.

Thus f is continuous at sp. ]

Continuity at a point is also a topological property; see Exer-
cise 21.2. Uniform continuity is a topological property, too, but if we
made this precise we would be led to a special class of topologies
given by so-called “uniformities.”

We will show that continuous functions preserve two important
topological properties: compactness and connectedness, which will
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be defined in the next section. The next theorem and corollary
Illustrate the power of compactness.

21.4 Theorem.
Consider metric spaces (S, d), (8%, d*) and a continuous function f: § —
8*. Let E be a compact subset of S. Then
(i) f(E) is a compact subset of S*, and
(ii) f is uniformly continuous on E.

Proof

Ib prove (i), let U be an open cover of f(E). For each U € U, f~1(U)
Is open in 8. Moreover, {f~1(U) : U € U} is a cover of E. Hence there
exist Uy, Uy, ..., Uy in U such that

ECf N U)UF Y (U)U---UFf Y (Up).
Then
f(E) SULUUU---U Uy,

80 {Uy, Uy, ..., Uy} is the desired finite subcover of U for f(E). This
proves (i).

To establish (ii), let € > 0. For each s € E there exists §; > 0 [this
4 depends on s] such that

d(s,t) < 8, implies d*(f(s), (1) < % M

For each s € E, let V; = {t € 8 : d(s,t) < 38}. Then the family
V = {V; : s € E} is an open cover of E. By compactness, there exist
finitely many points s;, sz, . . ., 8, in E such that

BV, UV UV,
Letd = % min{d;,, &s,, . - ., 8s,}. We complete the proof by showing
s,te E and d(st)<é imply d*(f(s),f(t)) < e. (2)

For some k in {1,2,...,n} we have s € V, i.e., d(s,s) < 38. Also
we have

1
d(t,sx) < d(t,s)+d(s,sx) < 6+ Essk < 8.
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Therefore applying (1) twice we have

&) fo) < 5 and AU, f() < 5.
Hence d*(f(s), f(t)) < € as desired.

Assertion (ii) in Theorem 21.4 generalizes Theorem 19.2.
next corollary should be compared with Theorem 18.1.

21.5 Corollary.
Let f be a continuous real-valued function on a metric space (S, d). If
is a compact subset of S, then
(i) f is bounded on E,
(ii) f assumes its maximum and minimum on E.

Proof
Since f(E) is compact in R, the set f(E) must be bounded by
Theorem 13.12. This implies (i). :

Since f(E) is compact, it contains sup f(E) by Exercise 13.13. Thus
there exists s; € E so that f(sg) = supf(E). This tells us that f
assumes it maximum value on E at the point sy. Similarly, f assumes
its minimum on E.

Example 4
All the functions f in Example 2 are bounded on any compact subset
of R?, i.e., on any closed and bounded set in R?. Likewise, all the
functions g in Example 2 are bounded on each closed and bounded
set in R3. :

Example 5

Let y be any path in R¥; see Example 3. For —00 < a < b < 00, the
image y([a, b]) is closed and bounded in R¥ by Theorem 21.4. Note
that Corollary 21.5 does not apply in this case, since 8* is R¥, not R,
Theorem 21.4 also tells us that y is uniformly continuous on (a, b|,
Thus if € > 0, there exists § > 0 such that

s,tefab] and |s—t| <8 imply d(y(s),y(1)) < €.

This fact is useful in several variable calculus, where one integrates
along paths y; compare Discussion 19.3.
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I xercises

21.1.

21.2.

21.3.

21.4.

21.5.

21.6.

21.7.

21.8.

21.9.

Show that if the functions fi, f;,...,fx in Proposition 21.2 are
uniformly continuous, then so is y.

Consider f:S§ — 8* where (S,d) and (S8* d*) are metric spaces.
Show that f is continuous at sy € S if and only if

for every cpen set U in 8* containing f(sp), there is
an open set V in S containing s, such that f(V) € U.

Let (S, d) be a metric space and choose sy € S. Show that f(s) =
d(s, 8o) defines a uniformly continuous real-valued function f on
S.

Consider f: S — R where (S, d) is a metric space. Show that the
following are equivalent:
(i) f is continuous;
(i) f~'((a,b))isopenin §foralla < b;
(iii) f~!((a, b)) is open in § for all rational a < b.

Let E be a noncompact subset of R¥.

(a) Show that there is an unbounded continuous real-valued
function on E. Hint: Either E is unbounded or else its clo-

sure E- contains xo € E. In the latter case, use é where

g(x) = d(x, xp).

(b) Show that there is abounded continuous real-valued function
on E that does not assume its maximum on E.

For metric spaces (81, d1), (Sz2,d2), (S3,d3), prove that if f: §; — S,
and g: S, — 83 are continuous, then g o f is continuous from §;
into S3. Hint: It is somewhat easier to use Theorem 21.3 than to
use the definition.

(a) Observe that if E C S where (8,d) is a metric space, then
(E,d) is also a metric space. In particular, if E C R, then
d(a,b) = |a — b| for a, b € E defines a metric on E.

(b) For y:[a,b] — R, give the definition of continuity of y.

Let (S, d) and (S*,d*) be metric spaces. Show that if f:§ — §* is
uniformly continuous, and if (s,) is a Cauchy sequence in S, then
(f(sn)) is a Cauchy sequence in S*.

We say a function f maps a set E onto a set F' provided f(E) = F.
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(a) Show that there is a continuous function mapping the
square

{(x1,%)eR?*: 0<% <1,0<x <1}
onto [0, 1]. <

(b) Do you think there is a continuous function mapping [0, 1
onto the unit square?

21.10. Show that there exist continuous functions
(a) mapping (0, 1) onto [0, 1],
(b) mapping (0, 1) onto R,
(c) mapping [0,1]U[2, 3] onto [0, 1].
21.11. Show that there do not exist continuous functions
(a) mapping [0, 1] onto (0, 1),
(b) mapping [0, 1] onto R.

§22 * More on Metric Spaces:
Connectedness

-

Consider a subset E of R that is not an interval. As noted in the p
of Corollary 18.3, the property

Y Y2€E and Yy, <y<y, imply y€E
must fail. So there exist y1, Y2,y in R such that

Y<Y<Y, Yn,Y2€E  y¢€E. &

The set E is not “connected” because y separates E into two pieces.
Put another way, if we set U; = (—00,y) and U; = (y, 00), then we
obtain disjoint open sets such that

ECU,UU, ENU#D, ENUy#@.

The last observation can be promoted to a useful general definition.
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22.1 Definition.
Let E be a subset of a metric space (S, d). The set E is disconnected if
there are disjoint open subsets U; and U, in § such that

ECU U, )
ENU, #@ and ENU,# @. 2)

A set E is connected if it is not disconnected.

Fxample 1

As noted before the definition, sets in R that are not intervals are
isconnected. Conversely, intervals in R are connected. To prove
this from the definition, consider an interval I and assume open sets
[/, and U, exist as described in Definition 22.1. Select a; € I N U,
and a; € I N U,. We may suppose that a; < a,. Let

\ b= Sup[al, az) NU;.

Clearly a; < b < a;. Since b € I, we must have b € U, or b € U; and
not both. Hence for some € > 0, we have either

(b—€b+e€)C U €3]
or
(b—¢€b+¢€) C Us. @)

In case (1), we have a; < b < az and (b,a;) N U, # &, so that b
cannot be an upper bound of [a;, a;) N U; much less a least upper
bound. In case (2), we have U, N (b — ¢,b] = @. If b is an upper
bound for [a;, a;) N Uy, then so is b — € in which case b cannot be the
least upper bound for this set. Both cases lead to a contradiction, so
I must be connected.

22.2 Theorem.
Consider metric spaces (S, d), (S*,d*), and let f: S — §* be continuous.
If E is a connected subset of S, then f(E) is a connected subset of S*.

Proof
Assume f(E) is not connected in 8*. Then there exist disjoint open
sets V, and V; in 8* such that

f(E) S ViUV, 1)
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f(E) nv =,é @ and f(E) nv, # .

Let Uy = f~}(Vy) and U, = f~1(V3). Then U, and U, are disjoin
opensetsinS, EC U UU,;, ENU; # @and ENU, # 2.

The next corollary generalizes Theorem 18.2 and its corollary.

22.3 Corollary.

Let f be a continuous real-valued function on a metric space (S, d). If
is a connected subset of S, then f(E) is an interval in R. In particular, |
has the intermediate value property.

Example 2
Curves are connected. That is, if y is a path in R* as described in
Example 3 of §21 and I is a subinterval of R, then the image y(I) i§
connected in R¥.

22.4 Definition.

A subset E of a metric space (S,d) is said to be path-connected if,
for each pair s,t of points in E, there exists a continuous function
v:[a, b] = E such that y(a) = s and y(b) = t. We call y a path.

22.5 Theorem.
If E in (8, d) is path-connected, then E is connected. [The failure of the
converse is illustrated in Exercise 22.4.]

Proof
Assume E is disconnected by disjoint open sets U; and Us:

EC U UU,, 1)
ENU, #92 and ENU, # 2. (2)

Select s € ENU, and t € EN U,. Let y:[a, b] — E be a path where
y(a) = s and y(b) = t. Let F = y([a, b]). Then (1) and (2) hold with
F in place of E. Thus F is disconnected, but F must be connected by
Theorem 22.2. n

Figure 22.1 gives a path-connected set and a disconnected set in
R?,
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path—connected disconnected
FIGURE 22.1

convex not convex

FIGURE 22.2

Example 3
Many familiar sets in R such as the open ball {x : d(x,0) < 7}, the
closed ball {x : d(x, 0) < r} and the cube

{x:maxflxlj=1,2, v, k} =1}
are convex. A subset E of R¥ is convex if
x,yeE and 0<t<1 imply tx+(1—-t)y€E,

i.e., whenever E contains two points it contains the line segment
connecting them. See Figure 22.2. Convex sets E in R¥ are always
path-connected. This is because y(t) = tx + (1 — t)y defines a path
¥:[0,1] = E such that y(0) = y and y(1) = x. For more details, see
any book on several variable calculus.

We end this section with a discussion of some very different
metric spaces. The points in these spaces are actually functions
themselves.
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22.6 Definition. |
Let S be a subset of R. Let C(S) be the set of all bounded continuous
real-valued functions on § and, for f, g € C(S), let

da(f, 8) = sup{lf (x) — g(®)| : x € S}.

With this definition, C(S) becomes a metric space [Exercise 22.6].
Now note that a sequence (f) in this metric space converges to a
point [function!] f provided lim,_, d(f, f) = 0, that is

nli)r&[sup{lfn(x) —f(®)|:x€8})]=0. ™3
Put another way, for each € > 0 there exists a number N such that
Ifa(®*) —f(x)l <€ forall x€8 and n > N.

We will study this important concept in the next chapter, but without
using metric space terminology. See Definition 24.2 and Remark 24.4
where (*) is called uniform convergence.

A sequence (f,) in C(S) is a Cauchy sequence with respect to
our metric exactly when it is uniformly Cauchy as defined in Defi-
nition 25.3. In our metric space terminology, Theorem 25.4 simply
asserts that C(S) is a complete metric space.

Exercises
22.1. Show that there do not exist continuous functions
(a) mapping [0, 1] onto [0, 1]U [2, 3],
(b) mapping (0, 1) onto Q.
22.2. Show that {(x;,%2) € R? : X} + x2 = 1} is a connected subset of R?,

22.3. Prove thatif E is a connected subset of a metric space (S, d), then
its closure E~ is also connected.

22.4. Consider the following subset of R?:

Bi= [(x,sin::) :xe(O,I]l;

E is simply the graph of f(x) = sin  along the interval (0, 1.

(a) Sketch E and determine its closure .
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22.5.

22.6.

22.7.

22.8.

22.9.

22.10.

22.11.

22.12.

(b) Show that E™ is connected.

(c) Show that E~ is not path-connected.

Let E and F be connected sets in some metric space.
(a) Prove that if ENF # @, then E U F is connected.

(b) Give an example to show that E N F need not be connected.
Incidentally, the empty set is connected.

(a) Show that C(8) given in Definition 22.6 is a metric space.

(b) Why did we require the functions in C(S) to be bounded when
no such requirement appears in Definition 24.2?

Show that the metric space B in Exercise 13.3 can be regarded as
C(N).

Consider C(8) for a subset S of R. For a fixed sy in S, define F(f) =
f(8o). Show that F is a uniformly continuous real-valued function
on the metric space C(S).

Conmsider f, g € C(S) where S C R. Let F(t) = tf + (1 — t)g. Show
that F is a uniformly continuous function from R into C(S).

Let f be a uniformly continuous function in C(R). For each x € R,
let f; be the function defined by fy(y) = f(x + y). Let F(x) = f;
show that F is uniformly continuous from R into C(R).

Consider C(S) where S C R, and let £ consist of all f in C(S) such
that.sup{lf(x)l :xe 8} <1.

(a) Show that £ is closed in C(8).
(b) Show that C(S) is connected.
(c) Show that £ is connected.

Consider a subset € of C(S), S € R. A function f; in £ is interior to
£ if there exists a finite subset F of S and an € > 0 such that

{f €eCS): If(x)—fo(x)| < eforxe F} C €.
The set € is open if every function in £ is interior to £.
(a) Reread Discussion 13.7.

(b) Show that the family of open sets defined above forms a topol-
ogy for C(8). Remarks. This topology is different from the one
given by the metric in Definition 22.6. In fact, this topology
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does not come from any metric at all! It is called the topology
of pointwise convergence and can be used to study the conver- l
gence in Definition 24.1 just as the metric in Definition 22.6
can be used to study the convergence in Definition 24.2.

22.13. Show thata function f: R — R is continuous if and only ifits graph
G = {(%,f(®)) : x € R} is connected and closed in R?. See C.E.
Burgess'’s article, Continuous Functions and Connected Graphs,
American Mathematical Monthly, vol. 97 (1990), pp. 337-339. ‘



- Sequences and
~ Series of

In this chapter we develop some of the basic properties of power
series. In doing so, we will introduce uniform convergence and il-
lustrate its importance. In §26 we prove that power series can be
differentiated and integrated term-by-term.

§23 Power Series

Given a sequence (a,)%, of real numbers, the series Y .-, anx" is
called a power series. Observe the variable x. Thus the power series
is a function of x provided it converges for some or all x. Of course,
it converges for x = 0; note the convention 0° = 1. Whether it
converges for other values of x depends on the choice of coefficients
(ay). It turns out that, given any sequence (a,), one of the following
holds for its power series:

(a) the power series converges for all x € R;

(b) the power series converges only for x = 0;

(c) the power series converges for all x in some bounded interval
centered at 0; the interval may be open, half-open or closed.

171
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These remarks are consequences of the following important
theorem.

23.1 Theorem.
For the power series ) anx", let

1
B = limsup|a,|''" and R= 5
[If B = 0 we set R = 400, and if B = +00 we set R = 0.] Then
(i) the power series converges for |x| < R;
(ii) the power series diverges for |x| > R.

R is called the radius of convergence for the power series. Note
that (i) is a vacuous statement if R = 0 and that (ii) is a vacuous
statement if R = +o00. Note also that (a) above corresponds to the
case R = 400, (b) above corresponds to the case R = 0, and (c) above
corresponds to the case 0 < R < +00.

Proof of Theorem 23.1

The proof follows quite easily from the Root Test 14.9. Here are the
details. We want to apply the Root Test to the series Y a,x". So for
each x € R let a, be the number or symbol defined in 14.9 for the
series Y _ a,x". Since the nth term of the series is a,x", we have

@, = limsup |a,x"|"" = lim sup |¥||a,|"’" = |x|-lim sup |a,|*" = BIx|.

The third equality is justified by Exercise 12.6(a). Now we consider
cases.

Case 1. Suppose 0 < R < +o00. In this case ay = Blx| = J%.
If |x| < R then oy < 1, so the series converges by the Root Test.
Likewise, if [x| > R, then @, > 1 and the series diverges.

Case 2. Suppose R = +00. Then g = 0 and e, = 0 no matter what
x is. Hence the power series converges for all x by the Root Test.

Case 3. Suppose R = 0. Then B = +00 and o, = +00 for x # 0.
Thus by the Root Test the series diverges for x # 0. n

Recall that if lim |“"+‘ | exists, then this limit equals B of the last
theorem by Corollary 12.3. This limit is often easier to calculate than
lim sup |a,|'/"; see the examples below.
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Example 1

Consider Y oo ix". If a, = &, then %t = <7180 hml"il = 0.
Therefore B = 0, R = +o00 and this senes has radius of convergence
+00. That is, it converges for all x in R. In fact, it converges to ¢* for
all x, but that is another story; see Example 1 in §31 and also §37.

Example 2
Consider ) o> ,¥". Then B =1 and R = 1. Note that this series does
not converge for x = 1 or x = —1, so the interval of convergence is

exactly (—1, 1). [By interval of convergence we mean the set of x for
which the power series converges.] The series converges to T-l—_x by
formula (2) of Example 1 in §14.

Example 3
Con81der Yooy Lx". Since 11m+ 1, we again have g = 1 and

R = 1. This series diverges for x'=1 [see Example 1 of §15], but it
converges for x = —1 by the Alternating Series theorem 15.3. Hence
the interval of convergence is exactly [—1, 1).

Example 4

Consider Z i —;x Once again B = 1 and R = 1. This series con-
verges at both ¥ = 1 and x = —1, so its interval of convergence is
exactly [—1, 1].

Example 5

The series Y .o, n'x" has radius of convergence R = 0 because we
have lim |%)—!| = +o00. It diverges for every x # 0.

Examples 1-5 illustrate all the possibilities discussed in (a)-(c)
prior to Theorem 23.1.

Example 6

Consider Zn—o 2-"x%", This is deceptive, and it is tempting to cal-
culate B = limsup(2~")!" = 1 and conclude R = 2. This is wrong
because 27" is the coefficient of ¥*" not x*, and the calculation of
B must involve the coefficients a, of ¥". We must handle this series
more carefully. The series can be written Y 0 | a,x" where ag, = 27
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and a, = 0 if n is not a multiple of 3. We calculate 8 by using the
subsequence of all nonzero terms, i.e., the subsequence given by
o(k) = 3k. This yields

ﬁ — lim sup Ianll/n oy 111’1'1 |a3k|1/3k s hm (z—k)l/Bk 2—1/3

Therefore the radius of convergence is R = 5 = 2!/,

One may consider more general power series of the form

o0

> anx =%, @

n=0
where %, is a fixed real number, but they reduce to series of the
form Y >°  any" by the change of variable y = x — x,. The interval
of convergence for the series (*) will be an interval centered at xg. -

Example 7
Consider the series
n+1

Z ( ) l)n. (1)

The radius of convergence for the series ) - —L—y isR=1,s0
the interval of convergence for the series (1) is the interval (0, Z)
plus perhaps an endpoint or two. Direct substitution shows that the
series (1) converges at x = 2 [it's an alternating series] and diverges
to —oo at x = 0. So the exact interval of convergence is (0, 2]. It turns
out that the series (1) represents the function log,x on (0, 2]. See
Examples 1 and 2 in §26. )

One of our major goals is to understand the function given by a
power series:

o0
e = Zakxk for |x| < R.
k=0

We are interested in questions like: Is f continuous? Is f differen-
tiable? If so, can one differentiate f term-by-term:

o0
{10y = N WG
k=1
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h f fs
FIGURE 23.1

Can one integrate f term-by-term?

Returning to the question of continuity, what reason is there to
believe that f must be continuous? Its partial sums f, = Y y_, axx*
are continuous, since they are polynomials. Moreover, we have
lim,—, o fu(¥) = f(*) for |x|] < R. Therefore f would be continuous if
a result like the following were true: If (f,) is a sequence of contin-
uous functions on (a, b) and if lim,, « fu(x) = f(¥) for all x € (a, b),
then f is continuous on (a, b). However, this fine sounding result is
false!

Example 8

Let fo(x) = (1 — |x])" for x € (—1,1); see Figure 23.1. Let f(x) = 0
for x # 0 and let f(0) = 1. Then we have lim,_, « fx(x) = f(x) for all
x € (—1,1), since lim, . a"™ = 0 if |a| < 1. Each f, is a continuous
function, but the limit function f is clearly discontinuous at x = 0.

This example, as well as Exercises 23.7-23.9, may be discourag-
ing, but it turns out that power series do converge to continuous
functions. This is because

n o0
lim Z axx*  converges uniformly to Z axk
k=0

n—00
k=0

on sets [—Ry, R;] such that R; < R. The definition of uniform con-
vergences is given in the next section, and the next two sections will
be devoted to this important notion. We return to power series in
§26.
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Exercises

23.1.

23.2.

23.3.
23.4.

23.5.

23.6.

23.7.

4. Sequences and Series of Functions

For each of the following power series, find the radius of
convergence and determine the exact interval of convergence.

(@ X nx" () T ‘
(©) (&) @ Y(Ew

(e) T(En" B El

® XGEw ) TG

Repeat Exercise 23.1 for the following:

@) ¥ /nx" ) X 5%

(C) an! (d) Z %x2n+l

Find the exact interval of convergence for the series in Example 6. '

Forn=0,1,2,3,... leta, = [¥20y
(a) Findlimsup(a,)'",liminf(a,)"’", lim sup |%=| and lim inf | %
(b) Do the series ) a, and ) (—1)"a, converge? Explain briefly.

(c) Now consider the power series ) a,x" with the coefficients a,
as above. Find the radius of convergence and determine the
exact interval of convergence for the series.

Consider a power series Y  a,x" with radius of convergence R.

4 |
(a) Prove that if all the coefficients a, are integers and if infinitely
many of them are nonzero, then R < 1.

(b) Prove that iflimsup|a,| > 0, then R < 1.

(a) Suppose that ) a,x" has finite radius of convergence R and
that a, > 0 for all n. Show that if the series converges at R,
then it also converges at —R.

(b) Give an example of a power series whose interval of conver-
gence is exactly (-1, 1].

The next three exercises are designed to show that the notion of
convergence of functions discussed prior to Example 8 has many
defects. .
For eachn € N, let f,(x) = (cos x)". Each f, is a continuous functio
Nevertheless, show that

(a) limf,(x) = 0 unless x is a multiple of x,
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(b) limf,(x) =1 if x is an even multiple of &,
(c) lim f,(x) does not exist if x is an odd multiple of =.

23.8. For each n € N, let fu(x) = %sin nx. Each f, is a differentiable
function. Show that

(a) limfy(x) =0forallx e R,

(b) but lim f;,(x) need not exist [at x = & for instance].
23.9. Let fu(x) = nx" for x € [0, 1] and n € N. Show that

(@) limf,(x) = 0 for x € [0, 1). Hint: Use Exercise 9.12.

(b) However, lim,_,« fol ) de=1.

§24 Uniform Convergence

We first formalize the notion of convergence discussed prior to
Example 8 in the preceding section.

24.1 Definition.
Let (f,) be a sequence of real-valued functions definedonaset S € R.
The sequence (f,,) converges pointwise [i.e., at each point] to a function
f defined on § if

nlir{.lo fm(x) =f(kx) forall xeS.

We often write lim f,, = f pointwise [on 8] or f, — f pointwise [on S].

Example 1

All the functions f obtained in the last section as a limit of a se-
quence of functions were pointwise limits. See Example 8 of §23
and Exercises 23.7-23.9. In Exercise 23.8 we have f,, - 0 pointwise
on R, and in Exercise 23.9 we have f, — 0 pointwise on [0, 1).

Example 2
Let fu(x) = x" for x € [0,1]. Then f, — f pointwise on [0, 1] where
f(x) =0forxe[0,1)and f(1) = 1.
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Now observe that f;, — f pointwise on S means exactly the
following:

for each € > 0 and x € S there exists N such that
Ifn(*) — f(x)| < eforn > N.

Note that the value of N depends on both € > 0 and x in . If for
each € > 0 we could find N so that

Ifu(®*) —f(x)| < € forall xe€S and n > N,

then the values f,,(x) would be “uniformly” close to the values f(%). :
Here N would depend on € but not on x. This concept is extremely
useful.

24.2 Definition.
Let (f,) be a sequence of real-valued functions defined onaset § € R.

The sequence (f,) converges uniformly on S to a function f defined
on § if ‘

for each € > 0 there exists a number N such that
Ifu(*¥) — f(x)| < eforallx € Sand alln > N.

We write lim f,, = f uniformly on S or f,, — f uniformly on S.

Note that if f, — f uniformly on S and if € > 0, then there exists |
N such that f(¥) — € < f,(¥) < f(¥) +eforallx € Sandn > N. In
other words, for n > N the graph of f, lies in the strip between the
graphs of f — € and f + €. In Figure 24.1 the graphs of f,, forn > N
would all lie between the dotted lines.

graph of f + €
graph of f

FIGURE 24.1
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We return to our earlier examples.

Example 3

Let fo(x) = (1 — |x|)" for x € (—1, 1). Also, let f(x) = 0 for x # 0 and
f(0) = 1. As noted in Example 8 0of§23, f,, — f pointwise on (—1,1).It
turns out that the sequence (f,,) does not converge uniformly to f on
(—1, 1) in view of the next theorem. This can also be shown directly,
as follows. Assume that f, — f uniformly on (-1, 1). Then [with
¢ = 1 in mind] we see that there exists N in N so that |f(x)—f.(%)| < 3

forallx € (—1,1)and n > N. Hence
! Al &
x€(0,1) and n>N imply [(1-—%)" < 2

In particular,

1
<_

N+1
— X} 2

x€(0,1) implies (1
However, this fails for sufficiently small x; for example, if we set
x= 1270 then | -4 p U Band (1 26" =2 =2
This contradiction shows that (f,) does not converge uniformly to f

on (—1, 1) as had been assumed.

Example 4

Let fo(x) = % sin nx for x € R. Then f, — 0 pointwise on R as shown
in Exercise 23.8. In fact, f,, — 0 uniformly on R. To see this, lete > 0
and let N = % Then for n > N and all x € R we have

ey 1 1
—sinnx| < — < —=e.
n n

Ifn(x) i< Ol = N

Example 5

Let fn(%) = nx" for x € [0, 1). Since lim,,_,  fu(1) = limy_, 00 7 = 400,
we have dropped the number 1 from the domain under considera-
tion. Then f, — 0 pointwise on [0, 1), as shown in Exercise 23.9. We
show that the convergence is not uniform. If it were, there would
exist N in N such that

[nx" —~0] <1 forall x€[0,1) and n > N.
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In particular, we would have (N + 1)x¥*! < 1 for all x € [0, 1).
But this fails for x sufficiently close to 1. Consider, for example, the
reciprocal x of (N + 1)V/(V+1),

Example 6 ‘
As in Example 2, let f,,(x) = x" forx € [0, 1], f(¥) = O forx € [0, 1) and
f(1) = 1. Then f, — f pointwise on [0, 1], but (f,) does not converge
uniformly to f on [0, 1], as can be seen directly or by applying the
next theorem. '

24.3 Theorem. :
The uniform limit of continuous functions is continuous. More precisely,
let () be a sequence of functions on a set S C R, suppose that f, — f
uniformly on S, and suppose that S = dom(f). If each f, is continuo
at xo in S, then f is continuous at xo. [So if each f, is continuous on §,
then f is continuous on 8.] '
Proof

This involves the famous “§ argument.” The critical inequality is

IF() = F0)| < If (%) — fa@)] + fa(®) — fa(xo)] + Ifa(0) — f(x0)]- (1)

If n is large enough, the first and third terms on the right side of (1)
will be small, since f, — f uniformly. Once such n is selected,
continuity of f,, implies that the middle term will be small provided
x is close to xg.

For the formal proof, let € > 0. There exists N in N such that
n > N implies |[f(x)—f(x)| < g forall xeS.
In particular,
Ifn+1(%) — f(®)] < g forall xeS.
Since fy41 is continuous at xy there is a § > 0 such that
x€8 and |x—x| <38 imply |fy41(%)— fvr1(x0)| < gi

see Theorem 17.2. Now we apply (1) withn = N + 1, (2) twice [one “
for x and once for xq] and (3) to conclude

= €.

x€S8 and |x—x| <8 imply [|f(x)—f(x)l <3-
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This proves that f is continuous at xg. i)

One might think that this theorem would be useless in practice,
since it should be easier to show that a single function f is continuous
than to show that a sequence (f,) consists of continuous functions
and that the sequence converges to f uniformly. This would no doubt
be true if f were given by a simple formula. But consider, for example,

il ol i |
f(x)—;nzx gt e, 1]
or
o (CDGH™
Jo(x) = ; (2 for xeR.

The partial sums are clearly continuous, but neither f nor J; is given
by a simple formula. Moreover, many functions that arise in math-
ematics and elsewhere, such as the Bessel function Jy, are defined
by power series. It would be very useful to know when and where
power series converge uniformly; an answer is given in §26.

24.4 Remark.
Uniform convergence can be reformulated as follows. A sequence (f,)
of functions on a set S C R converges uniformly to a function f on S if

and only if
nli)r&[sup{lf(x) — (@) :x € 8}]=0. €9

We leave the straightforward proof to Exercise 24.12.

According to (1) we can decide whether a sequence (f,,) converges
uniformly to f by calculating sup{|f(x) — fu(x)| : ¥ € S} for each n. If
f — fn is differentiable, we may use calculus to find these suprema.

Example 7

- Let fu(¥) = 175z for x € R. Clearly we have lim,_, o fn(0) = 0.
If x # 0, then lim,_,oo(1 + n¥%*) = 400, 50 lim,_, « fu(¥) = 0. Thus
fa = 0 pointwise on R. To find the maximum and minimum of f,,, we
calculate f!(x) and set it equal to 0. This leads to (1+nx?)-1—x(2nx) =
0or1—nx? = 0. Thusf!(x) = 0ifand only ifx = —% Further analysis
or a sketch of f,, leads one to conclude that f, takes its maximum at
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ﬁ and its minimum a —ﬁ. Since fn(:l:ﬁ) = :i:ﬁ, we conclude
that

1 Y= Jim: === 0:

i suplifn(l :.x & 8= lim, f

Therefore f, — 0 uniformly on R by Remark 24.4.

Example 8

Let fo(¥) = n®x"(1 —x) for x € [0, 1]. Then we have lim,_, « fn(1) = 0.
For x € [0,1) we have lim,_,, n*x" = 0 by applying Exercise 9.12
[since

(h 4 12+ (n + 1)2
. = X — X,
nexr n ,
and hence lim,_, « fn(¥) = 0. Thus f, — 0 pointwise on [0, 1]. Again,
to find the maximum and minimum of f,, we set its derivative equal
to 0. We obtain ¥"(—1)+ (1 —x)n¥" ! =0or ¥ '[n— (n+ 1) =0
Since f,, takes the value 0 at both endpoints of the interval [0, 1], it
follows that f;, takes it maximum at 7. We have .

n T 5 BIE G A 0L T n? W
f“(n+1)_n (n+1) (1 n+1)_n+1(n+1>' a

The reciprocal of (;37)" is (1+ )” the nth term of a sequence which
has limit e. This was mentloned but not proved, in Example 3 of §7~
a proof'is given in Theorem 37.11. Therefore we have lim(;77)" =

Since lim[;%5] = 400, we conclude from (1) that lim f,(;25 H) = +oo,

)

2
il =
see Exercise 12.9(a). In particular, (f,,) does not converge uniformly
to 0.

Exercises
24.1. Letfy(x) = % Prove carefully that (f,,) converges uniformly
to 0 on R. '

24.2. For x € [0,00), let fu(x) =

(a) Find f(x) = lim f,(x). ‘
(b) Determine whether f,, — f uniformly on [0, 1].
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24.3.
24.4.
24.5.
24.6.

24.7.
24.8.
24.9.

24.10.

24.11.

24.12.

- 24.13.

24.14.

(c) Determine whether f, — f uniformly on [0, 00).
Repeat Exercise 24.2 for fy(x) =

14am°
x'l

Repeat Exercise 24.2 for f(x) = 115

Repeat Exercise 24.2 for f,(x) = %

Let fu(x) = (x — £)* for x € [0,1].

(a) Does the sequence (f,) converge pointwise on the set [0, 1]?
If so, give the limit function.

(b) Does (fy,) converge uniformly on [0, 1]? Prove your assertion.
Repeat Exercise 24.6 for f,(x) = x — x™.

Repeat Exercise 24.6 for f(x) = Y r_, **.

Consider f,(x) = nx"(1 — x) for x € [0, 1].

(a) Find f(x) = lim f,().

(b) Does f, — f uniformly on [0, 1]? Justify.

(c) Does j;)l fn(x) dx converge to fol f (%) dx? Justify.

(a) Prove that if f, — f uniformly on a set §, and if g, — g
uniformly on §, then f, + g, — f + g uniformly on S.

(b) Do you believe that the analogue of (a) holds for products?
If so, see the next exercise.

Let f(X) = x and g,(x) = 1 forall x € R. Let f(x¥) = x and g(x) = 0
for x e R.

(a) Observe that f;, — f uniformly on R [obvious!] and that g, —
g uniformly on R [almost obvious].

(b) Observe that the sequence (f,gn) does not converge uni-
formly to fg on R. Compare Exercise 24.2.

Prove the assertion in Remark 24.4.

Prove that if (f,,) is a sequence of uniformly continuous functions
on an interval (a, b), and if f, — f uniformly on (a, b), then f is
also uniformly continuous on (a, b). Hint: Try an 5 argument as
in the proof of Theorem 24.3.

Let fn(X) = T:’l:'!;y

(a) Show that f;, — 0 pointwise on R.
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(b) Does f, — 0 uniformly on [0, 1]? Justify.
(c) Does f, — 0 uniformly on [1, 00)? Justify.

24.15. Let fu(¥) = 135 for x €0, 00).

(a) Find f(x) = lim f,,(x).
(b) Does f, — f uniformly on [0, 1]? Justify.

(c) Does f, — f uniformly on [1, 00)? Justify.

24.16. Repeat Exercise 24.15 for fu(x) = 17572

24.17. Let (fy) be a sequence of continuous functions on [a, b] that cons
verges uniformly to f on [a, b]. Show that if (x,) is a sequence i
[a, b] and if x, — x, then lim,_, o fu(xn) = f(X).

§25 More on Uniform Convergence

Our next theorem shows that one can interchange integrals an
uniform limits. The adjective “uniform” here is important; compa
Exercise 23.9.

25.1 Discussion. :
To prove Theorem 25.2 below we merely use some basic facts abou
integration which should be familiar [or believable] even if you
calculus is rusty. Specifically, we use:

(a) Ifgandh areintegrable on[a, blandifg(x) < h(x) for allx € [a, b

then fab g(x)dx < fab h(x) dx. See Theorem 33.4.
We also use the following corollary:
(b) If g is integrable on [a, b], then

fa bg(X) dx

Continuous functions on closed intervals are integrable, as note
in Discussion 19.3 and proved in Theorem 33.2.

b
< f g0l db.
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25.2 Theorem.
Let (fn) be a sequence of continuous functions on [a, b), and suppose that
fu = f uniformly on [a, b]. Then

b b
tim [ fmax= [ feodx M

Proof

By Theorem 24.3 f is continuous, so the functions f, — f are all
integrable on [a, b]. Lete > 0. Since f, — f uniformly on [q, b], there
exists a number N such that |f,(x) — f(x)| < 3=; forallx € [a,b] and
alln > N. Consequently n > N implies

fa g f bf(x)dx‘ : f ) - f(x)]dx’

b b €
< [ e -reoras [ o a=e
a a =
The first < follows from 25.1(b) applied to g = f,, — f and the second

< follows from 25.1(a) applied to g = |f, — f| and h = 3*; h happens
to be a constant function, but this does no harm.
The last paragraph shows that given € > 0, there exists N such

that | f:fn(x)dx—f:f(x) dx| < eforn > N. Therefore (1)holds. W

Recall one of the advantages of the notion of Cauchy sequence:
A sequence (s,) of real numbers can be shown to converge without
knowing its limit by simply verifying that it is a Cauchy sequence.
Clearly a similar result for sequences of functions would be valuable,
since it is likely that we will not know the limit function in advance.
What we need is the idea of “uniformly Cauchy.”

25.3 Definition.
A sequence (f,) of functions defined on a set § € R is uniformly
Cauchy on § if

for each € > 0 there exists a number N such that
Ifu(x) — fin(*)| < eforall x € S and all m,n > N.

Compare this definition with that of a Cauchy sequence of real
numbers [Definition 10.8] and that of uniform convergence [Defini-
tion 24.2]. It is an easy exercise to show that uniformly convergent
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sequences of functions are uniformly Cauchy; see Exercise 25.4. Th¢
interesting and useful result is the converse, just as in the case 0
sequences of real numbers. |

25.4 Theorem.

Let (f,) be a sequence of functions defined and uniformly Cauchy on &
set S C R. Then there exists a function f on S such that f, — f uniformly
onS. '

Proof
First we have to “find” f. We begin by showing

for each x; € S the sequence (f,(xo)) is a Cauchy
sequence of real numbers.

)]
For each € > 0, there exists N such that
Ifn(®) = fm(x)l <€ for x€8 and m,n > N.
In particular, we have _
Ifn(%0) — fm(%0)| < € for m,n > N. }

This shows that (f,(xo)) is a Cauchy sequence, so (1) holds.

Now for each xy € S, assertion (1) implies that lim,,_, o fn(%0) must
exist; this is proved in Theorem 10.11 which in the end depends on
the Completeness Axiom 4.4. Hence we define f (xp) = limy— oo f,,(xo)
This defines a function f on § such that f,, — f pointwise on 8.

Now that we have “found” f, we need to prove that f, — fj
uniformly on S. Let € > 0. There is a number N such that

Ifu(X¥) = fin(®)| < % forall xe€S§ andall mn>N. (2)

Consider m > N and x € S. Assertion (2) tells us that f,(x) lies in
the open interval (fn(X) — 5, fm(¥) + 5) for all n > N. Therefore, as
noted in Exercise 8.9, the limit f(x) = lim,_, « fu(x) must lie in the
closed interval [fi,(X) — 5, fu(x) + 5]. In other words,

If(®) — fm(®)] < g forall xe8  and m >N

Then of course

If(x) — fm(x)| < € forall x€S and m > N.
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This shows that f,, — f uniformly on S, as desired. ]

Theorem 25.4 is especially useful for “series of functions.” Let
us recall what ) oo, ax signifies, where the a's are real numbers.
This signifies lim,_,o0 Y x_; @k provided this limit exists [as a real
number, +o00 or —oo)]. Otherwise the symbol Y p-; ax has no mean-
ing. Thus the infinite series is the limit of the sequence of partial
sums Y r_, ax. Similar remarks apply to series of functions. A se-
ries of functions is an expression Y pe 8k OT Y s, 8k(X¥) which makes
sense provided the sequence of partial sums ) ;_, gk converges, or
diverges to +o00 or —oo pointwise. If the sequence of partial sums
converges uniformly on a set Sto Y po, 8k, then we say that the series
is uniformly convergent on 8.

Example 1
Any power series is a series of functions, since Z;";U axx* has the
form Y 22, gk where gi(x) = axx*.

Example 2
D i ﬁ is a series of functions, but is not a power series, at least
not in its present form. This is a series ) o, 8k where go(x) = % for

all x, g1(x) = ﬁ; for all x, go(x) = 1:‘37 for all %, etc.
Example 3

Let g be the function drawn in Figure 25.1, and let g,(x) = g(4"x)
for all x € R. Then Z;";o(%)"gn(x) is a series of functions. The limit

FIGURE 25.1
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function f is continuous on R, but has the amazing property that it i§
not differentiable at any point! The proof of the nondifferentiability
of f is somewhat delicate; see 7.18 of [36].

Theorems for sequences of functions translate easily into
theorems for series of functions. Here is an example.

25.5 Theorem. ;
Consider a series Y 4, gk of functions on a set S C R. Suppose that eac: 3
8k 18 continuous on S and that the series converges uniformly on S. Then
the series ZZ‘;O 8k represents a continuous function on S.

Proof
Each partial sum f, = 3;_, g is continuous and the sequence (fy)
converges uniformly on S. Hence the limit function is continuou§
by Theorem 24.3.

Recall the Cauchy criterion for series ) ax given in Defin
tion 14.3:

for each € > 0 there exists a number N such that
n>m > N implies | Y x_,, ax| < €.

The analogue for series of functions is also useful. The sequence of
partial sums of a series ) ., 8« of functions is uniformly Cauchy on
aset 8 if and only if the series satisfies the Cauchy criterion [uniformly
on §j:

for each € > 0 there exists a number N such that
n>m > N implies | Y ;_,, 8x(¥)| < eforallx € 8.

25.6 Theorem.
If a series y_pe., 8k Of functions satisfies the Cauchy criterion unifo
on a set S, then the series converges uniformly on S.

Proof
Let fu = 3 p_o8. The sequence (f,) of partial sums is unifo
Cauchy on §, so (f,) converges uniformly on S by Theorem 25.4.

Here is a useful corollary.
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25.7 Weierstrass M-test.
Let (My) be a sequence of nonnegative real numbers where ) My < 0.
If |gk(%)| < My for all x in a set S, then Y gy converges uniformly on §.

Proof

To verify the Cauchy criterion on §, let € > 0. Since the series ) Mx
converges, it satisfies the Cauchy criterion 14.3. So there exists a
number N such that

n
> m

k=m

n>m > N implies < €.

Hence if n > m > N and x € §, then

> a@®| =) @I <) M <e

k=m k=m k=m

Thus the series ) _ gk satisfies the Cauchy criterion uniformly on §
and Theorem 25.6 shows that it converges uniformly on S. @

Example 4
Show that Y o2 | 27"x" represents a continuous function f on (-2, 2),
but that the convergence is not uniform.

Solution
This is a power series with radius of convergence 2. Clearly the
series does not converge at x = 2 or at x = —2, so its interval of
convergence is (—2, 2).
Consider 0 < a < 2 and note that ) »> | 27"a" = Y2 ($)" con-
verges. Since [27"x"| < 27"a" = (%)" for x € [—a, a], the Weierstrass
- M-test 25.7 shows that the series ) -, 27"x" converges uniformly
to a function on [—a, a]. By Theorem 25.5 the limit function f is con-
tinuous at each point of the set [—a, a]. Since a can be any number
less than 2, we conclude that f represents a continuous function on
(-2, 2).
Since we have sup{|27"X"| : x € (—2, 2)} = 1 for all n, the conver-
gence of the series cannot be uniform on (-2, 2) in view of the next

example. O
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Example 5
Show that if the series ) _ g, converges uniformly on a set S, then

nl;lf&[sup{lgn(x)l :xe8}]=0. 1)

Solution
Let € > 0. Since the series ) _ g, satisfies the Cauchy criterion, there
exists N such that

<e¢ forall xeS.

> &)

=m

n>m > N implies

In particular,
n > N implies [gn(X)| <€ forall xe€S.
Therefore
n > N implies sup{|gn(x)|:x € S} <e.

This establishes (1). a

Exercises

25.1. Derive 25.1(b) from 25.1(a). Hint: Apply (a) twice, once to g
lg| and once to —|g| and g.

25.2. Let f,(x) = %-. Show that (f,) is uniformly convergent on [—1, 1}
and spemfy the limit function.

25.3. Let fu(X) = yr2*- for all real numbers .

(a) Show that (f,) converges uniformly on R. Hint: First de-
cide what the limit function is; then show (f,) converg e
uniformly to it.

(b) Calculate lim,_, f27 fa(x)dx. Hint: Don't integrate f;,. |

25.4. Let (f,) be a sequence of functions on a set § € R, and suppose
that f, — f uniformly on 8. Prove that (f},) is uniformly Cauchy on
8. Hint: Use the proof of Lemma 10.9 as a model, but be careful.

25.5. Let (f,) be a sequence of bounded functions on a set 8, and sup:
pose thatf, — f uniformly on §. Prove that f is abounded function
on S. 1
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25.6.

25.7.

25.8.

25.9.

25.10.

25.11.

25.12.

25.13.

25.14.

25.15.

(a) Show that if ¥ |ax| < oo, then Y axx* converges uniformly
on [—1, 1] to a continuous function.

(b) Does Y >, x" represent a continuous function on [-1,1]?

Show that 72, - cos nx converges uniformly on R to a continu-
ous function.

Show that ) -, ;’2‘%; has radius of convergence 2 and that the
series converges uniformly to a continuous function on [-2, 2].

(@) Let 0 < a < 1. Show that the series Y ,.,x" converges
uniformly on [—a, a] to ﬁ

(b) Does the series } ., x" converge uniformly on (—1,1) to
1 .
17 Explain.
(a) Show that }" ;X converges for x € [0, 1).

(b) Show that the series converges uniformly on [0, a] for each
al<a<]l.

(c) Does the series converge uniformly on [0, 1)? Explain.
(a) Sketch the functions go, g1, g2 and g3 in Example 3.
(b) Prove that the function f in Example 3 is continuous.

Suppose that Y ;- | gk is a series of continuous functions gi on [a, b]
that converges uniformly to g on [a, b]. Prove that

fabg(X)dx = g;fabgk(@d&

Suppose that Y - | gk and Y s, hx converge uniformly on a set 8.
Show that } ., (8 + hx) converges uniformly on §.

Prove that if )  gx converges uniformly on a set S and if h is a
bounded function on 8, then Y hgx converges uniformly on S.

Let (f,) be a sequence of continuous functions on [a, b]. Suppose
that, for each x € [a, b], (f,(x)) is a nonincreasing sequence of real
numbers.

(a) Prove thatiff, — 0pointwise on [a, b], then f, — 0 uniformly
on [a, b]. Hint: If not, there exists € > 0 and a sequence (xy)
in [a, b] such that f,(x,) > € for all n. Obtain a contradiction.

(b) Prove that if f, — f pointwise on [a, b] and if f is continu-
ous on [a, b], then f, — f uniformly on [a, b]. This is Dini's
theorem.
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§26 Differentiation and Integration of
Power Series

The following result was mentioned in §23 after Example 8.

26.1 Theorem.

Let Y oo o anX" be a power series with radius of convergence R > 0
[possibly R = +o0]. If 0 < Ry < R, then the power series converges
uniformly on [—R,, R,] to a continuous function.

Proof
Consider 0 < R; < R. A glance at Theorem 23.1 shows that the
series Y a,x" and Y |a,|x" have the same radius of convergence,
since B and R are defined in terms of |ay|. Since |R;| < R, we must
have ) |a,|R} < oo. Clearly we have |a,x"| < |a,|R} for all x in
[—Ri, Ry), so the series ) a,x" converges uniformly on [—R;, R;] by
the Weierstrass M-test 25.7. The limit function is continuous at each
point of [—R;, R;] by Theorem 25.5. {

26.2 Corollary. !
The power series Y anx" converges to a continuous function on the open
interval (—R, R).

Proof

shows that the limit of the series is continuous at xp.

We emphasize that a power series need not converge uniforml
on its interval of convergence though it might; see Example 4 of §
and Exercise 25.8. 14

We are going to differentiate and integrate power series term-by
term, so clearly it would be useful to know where the new seriel
converge. The next lemma tells us.
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26.3 Lemma.
If the power series Y e, anx" has radius of convergence R, then the
power series

o
E nax" !
n=1

also have radius of convergence R.

Proof
First observe that the series Y na,x"~! and }_ na,x" have the same
radius of convergence; since the second series is x times the first
series, they converge for exactly the same values of x. Likewise
- n‘flflx"“ and ) ;%-¥" have the same radius of convergence.

Next recall that R = % where B = limsup |a,|'/". For the se-

ries Y na,x", we consider lim sup(n|a,|)'’" = limsupn'/"|a,|"".
By 9.7(c) we have limn'" = 1, so limsup(n|a,|)’’* = B by The-
orem 12.1. Hence the series ) na,x" has radius of convergence
R.

For the series ) -3:x", we consider lim sup(i%"ll-)” ". It is easy to
show that lim(n + 1)“" = 1; therefore lim(;57)"/" = 1. Hence by
Theorem 12.1 we have lim sup(i%)l/” = B, so the series } ;35
has radius of convergence R. l

26.4 Theorem.
Suppose that f(x) = Zf;o ayx" has radius of convergence R > 0. Then

f fiydt = n_ 1 for x| < R. €))
1=l

Proof

We fix x and assume x < 0; the case x > 0 is similar [Exercise 26.1].

On the interval [x,0], the sequence of partial sums ) ;_, axtk

vonverges uniformly to f(t) by Theorem 26.1. Consequently, by

Theorem 25.2 we have

0 QAF n n 0
m % Vi = 14 k
/;f(t)dt-”l_i{&fn (gakt>dt—r}£§°§ak-/x tdt

o e
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The second equality is valid because we can interchange integra s
‘and finite sums; this is a basic property of integrals [Theorem 33.3].
Since [ f(t)dt = — [ f(t)dt, equation (2) implies equation (1). M

The theorem just proved shows that a power series
be integrated term-by-term inside its interval of convergence
Term-by-term differentiation is also legal.

26.5 Theorem. ¢
Let f(x) = Y pooanX" have radius of convergence R > 0. Then f i§
differentiable on (—R, R) and

]

)= Znanxn_l for |x| < R. 1)
n=1

The proof of Theorem 26.4 was a straightforward application of
Theorem 25.2, but the direct analogue of Theorem 25.2 for deriva~
tives is not true [see Exercise 23.8 and Example 4 of §24]. So we give
a devious indirect proof of the theorem.

Proof

We begin with the series g(x) = Y -, na,x""! and observe that
series converges for |x¥| < R by Lemma 26.3. Theorem 26.4 sho
that we can integrate g term-by-term:

X o0
f gt)yadt = Zanx“ =f(x)—ag for |x|] <R.
0 n=1
Thus if 0 < R; < R, then

f(x) = f g)dt+k for |x| <Ry,
=R

where k is a constant; in fact, k = ag — fle g(t)dt. Since g is con

uous, one of the versions of the Fundamental Theorem of Calculus

[Theorem 34.3] shows that f is differentiable and that f’(x) = g(x).
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Thus
o0
F(x) =2t = Znanx"_1 for |x| < R.
n=1 |
Example 1
Recall that
= 1
Y X'=—— for |x<1. 1)
=0, 1=
Differentiating tgrrg_—_?x-pqrn;, we obtain
- 1
an"“l = e g [l < L
=1 =%
Integrating (1) term-by-term, we get
1 L,
Z X = | ——dt = —1log(l —x)
) n-+ 1 0 1—t
or
N 1
logl—x)=-) =" for |¥ <1. (2)
Replacing x by —x, we find
 RRRPE i
1og(1+x)=x——2—+—3——z+~-- for _l¥ < 1. 3)

It turns out that this equality is also valid for x = 1 [see Example 2],
#0 we have the interesting identity
log 2 =1 : i ik i BT + 4
RN B e : )
In equation (2) set x = “=1. Then
=1 (m—-1\" m—1 1
Z_ —— ) =—log({1——— ) =—-log| — ) =logm.
=i n m m m

Ilence we have

00 o0 == n
ZlZZl(m——) =logm forall m.
nml o i D B
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Here is yet another proof that Y oo, 1 = +o0.

To establish (4) we need a relatively difficult theorem abou
convergence of a power series at the endpoints of its interval ¢
convergence.

26.6 Abel’s Theorem. v
Let f(x) = Y oo, anX" be a power series with finite positive radius
convergence R. If the series converges at x = R, then f is continuous at

x = R. If the series converges at x = —R, then f is continuous at x = —R
Example 2
As promised, we return to (3) in Example 1:
2 3 4
-l
log(1+x)=x——2-+§—z+--- for |x| < 1.

For x = 1 the series converges by the Alternating Series Theos
rem 15.3. Thus the series represents a function f on (—1,1]
is continuous at x = 1 by Abel’s theorem. The function log(1 +
is also continuous at x = 1, so the functions agree at x = 1,
[In detail, if (x,) is a sequence in (—1,1) converging to 1, then
f(1) = limys 00 f(%2) = limp—o0log(1 + x,) = log 2.] Therefore we
have '

B Sl il e Tt g
BeA=E5D Waag T B :

Another proof of this identity is given in Example 2 of §31.

Example 3 N
Recall that ) o2 *" = ;L for |x| < 1. Note that at x = —1 the
function 11Tx is continuous and takes the value % However, the series
does not converge for x = —1, so Abel’s theorem does not apply.

Proof of Abel’s Theorem

The heart of the proof is in Case 1. .
Case 1. Suppose f(x) = Y o, anX" has radius of convergence

and that the series converges at x = 1. We need to prove that f is

continuous at x = 1.
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Let fi(%) = Xob g apehandisy = Y Lo av=fil 0 ai=si0p1; 23000
andlets = Y 22 ax = f(1) so that lims, = s. For 0 < x < 1 we have

fa(¥) = Zakxk =8y + Z(Sk = Sk—l)xk
k=1

k=0

n n
=S¢ +Zskxk —stk_lxk_l
k=1 k=1

n n—1
=8+ Zskxk - stkx"
k=1 k=0
n-—1

= 8p + Spx" +Zsk(1 -k —x-8
o

n—1
=) sl — O + 52",
k=0

We now take limits as n tends to 0co. We have lim, ., fa(¥) = f(%)
and lim,,_5 o0 $,x" = lims,, - lim " = s-0 = 0. Therefore we conclude

o0
f(x)= an(l —x)x" for 0<x<1.
n=0
Since ) o, " = = we also have

00

f)=s=) s(1—xx"
n=0
Hence we have
fA) =@ =) (s—sa)(A — 0" €y
n=0

Now let € > 0. Since lim s, = s there exists N in N such thatn > N
Iimplies |s — s,| < 5. Let gn(x) = ZLO |s — sn|(1 — x)x™. From (1) we
obtain

o0

IF() - fCOl <gn(@)+ Y ls—sal(1 — 2)x"
n=N+1

< gn() + ZN: SO <g@ s @
n=N+1

T RN
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for 0 < x < 1. The function gy is continuous and gy(1) = 0. Hen
there exists § > 0 such that

1-6<x<1 implies gn(¥) < g

Then from (2) we see that
1-8<x<1 implies [f(1)—fX)| < §+§ =e.

This proves that f is continuous at x = 1. [We do not consider ¥
because dom(f) € [—1,1]]

Case 2. Suppose f(x) = Y oo, an.X" has radius of convergence
0 < R < o0, and that the series converges at x = R. Let g(x) = f(R

and note that

(o]
gx) = Zaanx" for, ¥ & 1.

n=0
This series has radius of convergence 1 and it converges at x =
By Case 1, g is continuous at x = 1. Since f(¥) = g(%), it follows tl
f is continuous at x = R.
Case 3. Suppose f(¥) = Y oo, an,x" has radius of convergence
0 < R < 00, and that the series converges at x = —R. Let h(X)
f(—%) and note that

o0
h(®) =Y (-1)"anx* for |x| <R.

n=0
The series for h converges at x = R, so h is continuous at x = R
Case 2. It follows that f(x) = h(—x) is continuous at x = —R.

The point of view in our extremely brief introduction to pow
series has been: For a given power series ) a,x", what can one §
about the function f(x) = ) a,x"? This point of view was i1t
ing. Often, in real life, one begins with a function f and seek
power series that represents the function for some or all valugs
x. This is because power series, being limits of polynomials, a:
some sense basic objects.

If we have f(x) = Y2 anx" for |x| < R, then we can differe
ate f term-by-term forever. At each step, we may calculate the
derivative of f at 0, written f})(0). It is easy to show that f*)(0) = &
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1 k > 0. This tells us that if f can be represented by a power series,
en that power series must be ) ﬂ;,gxk. This is the Taylor series
r [ about 0. Frequently, but not alwayé, the Taylor series will agree
ith f on the interval of convergence. This turns out to be true for
nny familiar functions. Thus the following relations can be proved:

o1 (1) 1
& RO D0t ol o Z (k ) s
£ ! £ (2k + 1)!

rall x in R. A more detailed study of Taylor series is given in §31.

xercises
.1. Prove Theorem 26.4 for x > 0.

2. (a) Observe that Y oo nx" = for |x| < 1; see Example 1.

(l—x)2
(b) Evaluate ), 7. Compare with Exercise 14.13(d).
(c) Evaluate 3 7 % and y 7, tl—,?"—

3. (a) Use Exercise 26.2 to derive an explicit formula for ) oo, n’x"
(b) Evaluate 3% % and 300, .

. (a) Observe that e = Y L—sz" for x € R, since we have
n=0 n!

€ =Y ix forxeR.

U

Express F(x) = [Fe " dt asa power series.
p 0

8. Let f(x) = Yo, 4x" for x € R. Show that f' = f. Do not use the
fact that f(x) = €; this is true but has not been established at this
point in the text.

W, Lets(x)=x—§—3,+§—---andc(x):l—’;—2!+’;—:—---forxeR.
' (a) Prove thats’ =candc = —s.

(b) Prove that (s* +¢?) = 0.

(¢) Prove thats® +¢? = 1.

Actually s(x) = sinx and ¢(x) = cosx, but you do not need these
fhcts.
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26.7. Let f(x) = || for x € R. Is there a power series )_ a,x" such tha
f(X) = Yoo anx" for all x? Discuss.

26.8. (a) Show that Y 7 (—-1)*™ = 5 for x € (—1,1). Hinl
Yol = - Lety = -2 '

(b) Show that arctanx =) oo %;—%nxz"“ for x € (—1,1).

(c) Show that the equality in (b) also holds for x = 1. Use this ta
find a nice formula for 7.

(d) What happens at x = —1?

§27 * Weierstrass’s Approximation
Theorem

Suppose that a power series has radius of convergence greater than
1, and let f denote the function given by the power series. Thes
orem 26.1 tells us that the partial sums of the power series g

theorem is a generalization of this last observation, for it tells us
any continuous function on [—1, 1] can be uniformly approxima:
by polynomials on [—1, 1]. This result is quite different because such:
a function need not be given by a power series; see Exercise 26.7.
The approximation theorem is valid for any closed interval [a, b] and
can be deduced from the case [0, 1]; see Exercise 27.1. '

We give the beautiful proof due to S. N. Bernstein. Bernstein
was motivated by probabilistic considerations, but we will not use
any probability here. One of the attractive features of Bernstein's
proof is that the approximating polynomials will be given explicitly,
There are more abstract proofs in which this is not the case. On the
other hand, the abstract proofs lead to far-reaching and important
generalizations. See the treatment in [23] or [36].

We need some preliminary facts about polynomials involvi
binomial coefficients.
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27.1 Lemma.
l'or every x € R and n > 0, we have

Zn: (:)xk(l —ayr k=1,

=0

Proof
This is just the binomial theorem [Exercise 1.12] applied to a = x
and b =1 — x, since in this case (a +b)" =1" = 1. B

27.2 Lemma.
Ibr x € R and n > 0, we have

Z(nx k) ( )x"(l X)) = nx(1 —x) <

k=0

S

M

Proof
Since k(}) = n(}7;) fork > 1, we have

Zk( )xk(l )k = nz ( )xk(l N
cul nxz (n ]_ )x"(l - T =m ()

j=0

Since k(k — 1)(}) = n(n — 1)(;~2) for k > 2, we have

Zk(k— 1)( )x A-x)"*=nm- 1)x22( j )X’(l -

k=0 j=0
=n(n — 1% €))

Adding the results in (2) and (3), we find

Zkz( )xk(l —)" F=nm-1D2+mx=n’ +nx(1 —x). (4
k=0

Since (nx — k)? = n’x> — 2nx - k + k?, we use Lemma 27.1, (2) and (4)
to obtain

Zn:(nx - k)? (:)x"(l —)h k= — 2nx(nx) + [n*x* + nx(1 — X)]
k=
: = nx(1 — x).
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This establishes the equality in (1). The inequality in (1) simply
reflects the inequality x(1 —x) < %, which is equivalent to 4x* — 4x +
1>0or(2x—1)*>0. [ ]

27.3 Definition.
Let f be a function defined on [0, 1]. The polynomials B,f defined

by

2 k Nk n—k
Byf (%) = k;f(;) : (k>" 1 -
are called Bernstein polynomials for the function f.

Here is Bernstein's version of the Weierstrass approximation
theorem.

27.4 Theorem.
For every continuous function f on [0, 1], we have
B.f — f uniformlyon [0,1].

Proof
We assume that f is not identically zero, and we let

M = sup{|f(¥)| : x € [0, 1]}.

Consider € > 0. Since f is uniformly continuous by Theorem 19.2
there exists § > 0 such that

s €
xy€[01] and lx—yl <8 imply If(x)—f)l < 3.

Let N = 2. This choice of N is unmotivated at this point, but w
make it here to emphasize that it does not depend on the choice ¢
x. We will show that

|Buf (x) = f(x)| < € forall xe[0,1] andall n > N,

completing the proof of the theorem. \
To prove (2), consider a fixed x € [0,1] and n > N. In view ¢
Lemma 27.1, we have

f =Y 1 (Z)x"(l —x,

k=0
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SO
3 k rll k n—k
Bf @) — I < D If (=) —fe| - JFa -0 ©
k=0
~ To estimate this sum, we divide the set {0, 1, 2, ..., n} into two sets:

ke A if )

<8 while keB if l;—x

k
——x
n

For k € A we have |f(¥) — f(%)| < £ by (1), so

>l (E) ~ @) (Z)x"(l e i D §(Z)x"(1 < gk 2.2

keA keA
(4)

using Lemma 27.1. For k € B, we have Ik_—n""-l > § or (k — nx)? > n%§?,

80
k
N (;) - f(x)

b3

keB

.(Z)xk(l - k<M (Z)xk(l — Xk

keB

2M
< 5 Z(k — nx)? (Z)xk(l =k,

keB
By Lemma 27.2, this is bounded by
2M n_ M M e

W22 4 me - INE 2
This observation, (4) and (3) show that
IBof (%) = f(X)| < €.
That is, (2) holds. [ |

- 27.5 Weierstrass’s Approximation Theorem.
Lvery continuous function on a closed interval [a, b] can be uniformly
upproximated by polynomials on [a, b).

In other words, given a continuous function f on [a, b], there
oxists a sequence (p,) of polynomials such that p, — f uniformly
on [a, b).
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Exercises

27.1.

27.2.

27.3.

27.4.

27.5.

27.6.

27.7.

Prove Theorem 27.5 from Theorem 27.4. Hint: Let ¢(x) = (b—a)x+
a so that ¢ maps [0, 1] onto [a, b). If f is continuous on [a, b], then
f o ¢ is continuous on [0, 1].

Show that if f is continuous on R, then there exists a sequence
(pn) of polynomials such that p,, — f uniformly on each bounded
subset of R. Hint: Arrange for |f(x) — pn(¥)| < % for |x| < n.

Show that there does not exist a sequence of polynomials
converging uniformly on R to f if
(@) f(x) =sing, (b) f(x)=¢"

Let f be a continuous function on [a, b]. Show that there exists a
sequence (p,) of polynomials such that p, — f uniformly on [a, b]
and such that p,(a) = f(a) for all n.

Find the sequence (B,f) of Bernstein polynomials in case
@ fx=x (b) f(x)=#.

The Bernstein polynomials were defined for any function f on
[0, 1]. Show that if B,f — f uniformly on [0, 1], then f is continuous
on [0, 1]. '
Let f be abounded function on [0, 1], say |f(x)| < M forall x € [0, 1],
Show that all the Bernstein polynomials B,f are bounded by M.



Differentiation

CHAPTER

In this chapter we give a theoretical treatment of differentiation and
related concepts, most or all of which will be familiar from the stan-
dard calculus course. Three of the most useful results are the Mean
Value Theorem, which is treated in §29, U'Hospital’s Rule, which is
treated in §30, and Taylor’'s Theorem, which is given in §31.

§28 Basic Properties of the Derivative

The reader may wish to review the theory of limits treated in §20.

28.1 Definition.

Let f be a real-valued function defined on an open interval con-
taining a point a. We say that f is differentiable at a, or that f has a
derivative at a, if the limit

i [0~ (@

X=>a X—a

205
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exists and is finite. We will write f/(a) for the derivative of f at a:

1oy _ i S = f(a)
f'(a) =lim Ry

X—=>a

)

whenever this limit exists and is finite.

Generally speaking, we will be interested in f’ as a function i
its own right. The domain of f’ is the set of points at which f i
differentiable; thus dom(f") € dom(f).

Example 1
The derivative of the function g(x) = x? at x = 2 was calculated in
Example 2 of §20:

2

(@) =lim =" = lim(x+2) = 4
g()_xgréx— _xl—>2(x )_ ¥
We can calculate g’(a) just as easily:

2 2

X
/ HwY, Rt s
g'(a) _}‘1_{2 T _)1‘1_r>13(x+a)_2a.
This computation is even valid for a = 0. We may write g'(x) =
2x since the name of the variable a or x is immaterial. Thus the
derivative of the function given by g(x) = ¥? is the function given
by g’(x) = 2x, as every calculus student knows.

Example 2 :
The derivative of h(x) = 4/x at x = 1 was calculated in Example 3 of
§20: W'(1) = 3. In fact, h(x) = x/2 for x > 0 and I'(x) = 1x~'/2 for
x > 0; see Exercise 28.3.

Example 3
Let n be a positive integer, and let f(x) = x" for all x € R. We show
that f'(x) = nx""! for all x € R. Fix a in R and observe that

f(x)_f(a) s xn_an - (x_a)(xn—l+axn—2+a2xn—3+. 2 _+an—2x+an—l)’
SO

)~ f@ _

X—a

xn—l +axn—2 L. azxn—s o v o5 o an—zx 4 an—l
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for x # a. It follows that

= lig (O —S@

x—)a

=a" ! + ad” 4@ T L e a 4adh T = el

we are using Theorem 20.4 and the fact thatlim,_,, x* = a* fork € N.

We first prove that differentiability at a point implies continuity
at the point. This may seem obvious from all the pictures of familiar
differentiable functions. However, Exercise 28.8 contains an exam-
ple of a function that is differentiable at 0 and of course continuous
at 0 [by the next theorem)], but is discontinuous at all other points.

28.2 Theorem.
If f is differentiable at a point a, then f is continuous at a.

Proof
We are given f'(a) = lim,—, (’2—’;(“) and we need to prove that
lim,,, f(x) = f(a). We have

f9 = -l g

for x € dom(f), x # a. Since lim,_,,(x — a) = 0 and lim,._,, ~=—2% f (")_f @

exists and is finite, Theorem 20.4(ii) shows lim,_, ,(x—a)- £ (") zf (a) =
Therefore lim,_,, f(x) = f(a), as desired. L]

We next prove some results about sums, products, etc. of deriva-
tives. Let us first recall why the product rule is not (fg) = f'g’ [as
many naive calculus students wish!] even though the product of
limits does behave as expected:

(A = [lim i) - [lim A0

provided the limits on the right side exist and are finite; see Theo-
rem 20.4(ii). The difficulty is that the limit for the derivative of the
product is not the product of the limits of the derivatives, i.e.,

fx)g(x) — f(a)g(a) R f®) - f(@) sx) —g@)

X—a X=a —=a
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The correct product rule is obtained by shrewdly writing the lefi
hand side in terms of m‘%}ﬂ and ﬂ’%:—igﬂ as in the proof of 28.3(iii]
below. '

28.3 Theorem.
Let f and g be functions that are differentiable at the point a. Each of
the functions cf [c a constant), f + g, fg and f/g is also differentiable at
a, except f/g if g(a) = 0 since f/g is not defined at a in this case. The
formulas are
@) (fY (@ =c-f'();

() (f +8)(a@) = f'(a) + &' (@)

(iii) [product rule] (f2) (a) = f(a)g'(@) + f' (@ (); !

(iv) [quotient rule] (f/g)(@) = [g(@)f'(a) — f(@g'(@)V/&*(@) t‘

g(a) # 0. |

Proof
(i) By definition of ¢f we have (c¢f)(x) = ¢ - f(x) for all x € dom(f);
hence ‘

n DA-D@ _ [0/

x—)a XxX—a x-—>a

() (@) = =c-f(@).
(ii) This follows from the identity

e - +8@ _f@O-f@  s®-8s@

X—=a X—a X —ad

upon taking the limit as x = a and applying Theorem 20.4(i).
(iii) Observe that

(B — (3) @)

x=—=0

f(x)g( i g( )+g( )f() f(a)

for x € dom(fg), x # a. We take the limit as x — a and note
that lim,,, f(x) = f(a) by Theorem 28.2. We obtain [again usin
Theorem 20.4]

(8) (@) = f(@)g'(@) + g(@)f (@).

(iv) Since g(a) # 0 and g is continuous at a, there exists an open
interval I containing a such that g(x) # 0 for x € 1. For x € I we cai
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write

a0 ~ faa) = LB f@ _ s@f () — f(@)e@)

g® g@  g®s@
_ 8@f(® —g@f(@) +s@f(@) —f (a)g(x)
8(¥)g(a)
S0
(78)®) — (f/8)(@)
x—a
g (x) f ( ) g(x) —g(@) 1
{g i usEy, } 8@
for x € I, x # a. Now we take the limit as x — a to obtain (iv); note
. 1 1
that llmx_"z m — Eﬁm. |
Example 4

Let m be a positive integer, and let h(x) = x™™ for x # 0. Then
h(x) = f(x)/g(x) where f(x) = 1 and g(x) = x™ for all x. By the
quotient rule,

g(@f'(a)—f(a)g'(@) a™-0—1-ma™"’
g*(@) A a?m

H(a) =

—-m
= gmtl R g

—m—1

for a # 0. If we write n for —m, then we see that the derivative of x"
is nx"~! for negative integers n as well as for positive integers. The
result is also trivially valid for n = 0. For fractional exponents, see
Exercise 29.15.

28.4 Theorem [Chain Rule].
If f is differentiable at a and g is differentiable at f (a), then the composite

function g o f is differentiable at a and (g o f)'(a) = g'(f(a)) - f'(a).

Discussion. Here is a faulty “proof” which nevertheless contains
the essence of a valid proof. We write

gof® —gof(a) _ () -s(f(@) f(x)—f(a)
X—a f(%) = f(a) X—a

)
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for x # a. Since lim,_,, f(x) = f(a), we have

1im 8@ — 8¢ @) _ .. 8W) —8(f(@)
x~>a  f(x)—f(a) y=>f@ y—f(a)

We also have lim,_,, %’c—@ f'(a), so (1) shows that (g o f)(a)
g (f(@) - f'(@.

This “proof” can be made rigorous provided f(x) # f(a) for x #
In this case, the only vague part of the “proof” is the first equal
in (2) which is justified by Exercise 28.16 with h(y) = £ _f o
f(x) = f(a) for some ¥’s near a, the “proof” cannot be repaired us
(2). In fact, Exercise 28.5 gives an example of differentiable functio
f and g for which lim,_, %—Hﬂ@ is meaningless. In the fo
proof, we will avoid writing f (x) )‘l (a) as a denominator and we
appeal to Theorem 20.5 instead of the awkward Exercise 28.16. For
recent enlightening proof, see the article by Stephen Kenton, College

Math. J. 30 (1999), 216-218.

i

=g(f(@). (

Proof
It is easy to check that g o f is defined on some open interv
containing a; see Exercise 28.13. Let

g8(y) — 8(f(a))
W)= BEaes e )
@) y—f(a)

and let h(f(a)) = g'(f(a)). Since lim,_, ) h(y) = h(f(a)), the fu
tion h is continuous at f(a). Note that g(y) — g(f(a)) = h(¥)[y — f(&
for all y € dom(g), so

gof(®) —gof(@=h(fNf*) —f(@)] for xedom(gof).

Hence

for yedom(g) and y # f(a),

gof(x)—gof(a)
o = h{f(X]j—===ia

for x € dom(g o f), x # a. Since lim,_,, f(x) = f (a) and the functio
h is continuous at f(a), Theorem 20.5 shows that

lim h(f () = h(f(@)) = g (F(@)

Of course, lim,_,, {2~ = f/(a), so taking the limit in (3) as x —»
we obtain (g o f)'(a) = g'(f(a)) - f'(a).

f (x) f (a)
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It is worth emphasizing that if f is differentiable on an interval I
and if g is differentiable on {f(x) : x € I}, then (g o f)' is exactly the
function (g’ of) - f on I.

Example 5

Let h(x) = sin(x® + 7x) for x € R. The reader can undoubtedly verify
that h'(x) = (3x* + 7) cos(¥® + 7x) for x € R using some automatic
lechnique learned in calculus. Whatever the automatic technique, it
s justified by the chain rule. In this case, h = gof where f(x) = ¥*+7x
and g(y) = siny. Then f’(x) = 3x? + 7 and g’(y) = cosy so that

H(x) =g (f ) - f'(¥) = [cosf(¥)] - f'(¥) = [cos(x’ + 7x)] - (3" + 7).

We do not want the reader to unlearn the automatic technique, but
the reader should be aware that the chain rule stands behind it.

Exercises

28.1. For each of the following functions defined on R, give the set of
points at which it is not differentiable. Sketches will be helpful.

(@) e"‘" (b) sin |x|
(c) |sinx| (@) [x|+|x—1|
(e) 1x¥* —1| ® ¥ -8

28.2. Use the definition of derivative to calculate the derivatives of the
following functions at the indicated points.

(@) fR)=»atx £ 2;

(b)) gx)=x+2atx=gq;
(c) f(x¥) =x*cosx atx = 0;
(@ r)=2H atx=1.

28.3. (a) Leth(x) = /x = ¥/ for x > 0. Use the definition of derivative
to prove that #'(x) = 3x~ /2 for x > 0.

(b) Let f(x) = x'/ for x € R and use the definition of derivative
to prove that f'(x) = 1x 23 for x # 0.

(c) Is the function f in part (b) differentiable at x = 0? Explain.
28.4. Let f(x) = ¥?sin 1 for x # 0 and f(0) = 0.
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28.5.

28.6.

28.7.

28.8.

28.9.

28.10.

(a) Use Theorems 28.3 and 28.4 to show that f is differentiab;
at each a # 0 and calculate f’(a). Use, without proof, the fac
that sin x is differentiable and that cosx is its derivative.

(b) Use the definition to show that f is differentiable at x = 0
and that f'(0) = 0.

(c) Show that f’ is not continuous at x = 0.

Let f(x) = ¥*sin 1 forx # 0, f(0) =0, and g(¥) = x for x € R.
(a) Observe that f and g are differentiable on R.

(b) Calculate f(x) forx = L, n==41,42,....

(¢) Explain why lim,_,, g(ffzex):?ggo ) js meaningless.

Let f(x) = xsin : for x # 0 and f(0) = 0.
(a) Observe that f is continuous at x = 0 by Exercise 17.9(c).
(b) Is f differentiable at x = 0? Justify your answer.
Let f(x) = x* forx > 0 and f(x) = 0 forx < 0.

(a) Sketch the graph of f.

(b) Show that f is differentiable at x = 0. Hint: You will have to
use the definition of derivative.

(c) Calculate f’ on R and sketch its graph.

(d) Is f’ continuous on R? differentiable on R?

Let f(x) = x* for x rational and f(x) = 0 for x irrational.
(a) Prove that f is continuous at x = 0.

(b) Prove that f is discontinuous at all x # 0.

(c) Prove that f is differentiable at x = 0. Warning: You cannot
simply claim f’(x) = 2x.

Let h(x) = (x* + 13x)’.
(a) Calculate 1'(x).

(b) Show how the chain rule justifies your computation in p
(a) by writing h = g o f for suitable f and g.

Repeat Exercise 28.9 for the function h(x) = [cos x + €*]'%.
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28.11.

28.12.

28.13.

28.14.

28.15.

28.16.

§29

Suppose that f is differentiable at a, g is differentiable at f(a), and
h is differentiable at g o f(a). State and prove the chain rule for
(hogof)(a). Hint: Apply Theorem 28.4 twice.

(a) Differentiate the function whose value at x is cos(e* ~).

(b) Use Exercise 28.11 or Theorem 28.4 to justify your computa-
tion in part (a).

Show that if f is defined on an open interval containing a, if g is
defined on an open interval containing f(a), and if f is continuous
at a, then g o f is defined on an open interval containing a.

Suppose that f is differentiable at a. Prove
(a) hmh—»o ﬁa_""?'—i@ sn=s f’(a), (b) 1im;1_.,0 f;(%ﬂl e f’(a).

Prove Leibniz' rule
n

@@= (:)f"‘)(a)g‘""‘)(a)

k=0

provided both f and g have n derivatives at a. Here h() signifies
the jth derivative of h so that h® = h, k() = &', h® = R, etc.
Also, (}) is the binomial coefficient that appears in the binomial
expansion; see Exercise 1.12. Hint: Use mathematical induction.
For n = 1, apply Theorem 28.3(iii).

Let f be a function defined on an open interval I containing a.
Let h be a function defined on an open interval ] containing f(a),
except at f(a), and suppose that f(x) € J and f(x) # f(a) for all
x € I\ {a}. Then hof is defined on I \ {a}. Use Corollary 20.7 to
prove that if lim,_,, f(x) = f(a) and if lim,_, ) h(y) exists and is
finite, then limy.,, h o f(x) = limy_, () h(y).

The Mean Value Theorem

Our first result justifies the following strategy in calculus: To find the
maximum and minimum of a continuous function f on an interval
[a, b] it suffices to consider (a) the points x where f'(x) = 0; (b) the
points where f is not differentiable; and (c) the endpoints a and b.
These are the candidates for maxima and minima.
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29.1 Theorem. -
If f is defined on an open interval containing xp, if f assumes il
maximum or minimum at Xo, and if f is differentiable at x,

f’(XO) =),

Proof
We suppose that f is defined on (a, b) where a < xy < b. Since eithel
f or —f assumes its maximum at xy, we may assume that f assumes
its maximum at x;.

Assume first that f'(x) > 0. Since

im [ — f(x0)

x-”‘o X — X

o
0

f'(x0) =

there exists § > O such thata < xo —8 < ¥y +68 < b and

—f(x
0 < |x—2%x| < & implies J1?()—1E>0; (1)
X — X
see Corollary 20.7. If we select x so that ) < x < xo + &, then (1)
shows that f(x) > f(x), contrary to the assumption that f assumes’
its maximum at x,. Likewise, if f'(%y) < 0, there exists § > 0 such
that

[0 -1 _
L @

If we select x so that xp — § < x < xg, then (Z) implies f(x) > f (xo),
again a contradiction. Thus we must have f’(xp) = 0. A

0 < |x—2x| <4 implies

Our next result is fairly obvious except for one subtle point:
one must know or believe that a continuous function on a closed
interval assumes its maximum and minimum. We proved this in
Theorem 18.1 using the Bolzano-Weierstrass theorem.

29.2 Rolle’s Theorem.

Let f be a continuous function on [a, b] that is differentiable on (a, b)
and satisfies f(a) = f(b). There exists [at least one] x in (a, b) such thaﬁ
f'® =0.
Proof
By Theorem 18.1, there exist xg, Yo € [a, b] such that f(x) < f(x) =
f(yo) for all x € [a, b). If X, and y, are both endpoints of [, b), then f
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(®,1®)

1
T I I

v ——

a
FIGURE 29.1

a constant function [since f(a) = f(b)] and f'(x) = 0 for all x € (a, b).
Otherwise, f assumes either a maximum or a minimum at a point x
in (a, b), in which case f'(x) = 0 by Theorem 29.1. [ ]

The Mean Value Theorem tells us that a differentiable function
on [a, b) must somewhere have its derivative equal to the slope of the

line connecting (a, f(a)) to (b, f(b)), namely ===~ (b) B (“) . See Figure 29.1.

29.3 Mean Value Theorem.
Let f be a continuous function on [a, b] that is differentiable on (a, b).
Then there exists [at least one] x in (a, b) such that

ro=0-I@ -

Note that Rolle’s Theorem is the special case of the Mean Value
Theorem where f(a) = f(b).

Proof
Let L be the function whose graph is the straight line connecting
" (a,f(a)) to (b,f(D)), i.e., the dotted line in Figure 29.1. Observe
that L(a) = f(a), L(b) = f(b) and L'(x) = M for all x. Let
g(x) = f(x) — L(x) for x € [a,Db]. Clearly g is contmuous on [a, b]
and differentiable on (a,b). Also g(a) = 0 = g(b), so g'(x) =
for some x € (a,b) by Rolle’s Theorem 29.2. For this x, we have
f'(%) = L) = (Q=L4, &

b—-a

L(x2 = £Cb) - )(“J(*"L Fla)
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29.4 Corollary.
Let f be a differentiable function on (a,b) such that f'(x) = 0 for
x € (a,b). Then f is a constant function on (a, b).

Proof
If f is not constant on (a, b), then there exist x;, x; such that

a<x <x<b and f(x) #f(x2).

By the Mean Value Theorem, for some x € (x;, ;) we have f’(x)
f%gfm # 0, a contradiction.
29.5 Corollary.

Let f and g be differentiable functions on (a,b) such that f' = g’
(a, b). Then there exists a constant ¢ such that f(x) = g(x) + c for a
x € (a,b).

Proof
Apply Corollary 29.4 to the function f — g.

Corollary 29.5 is important for integral -calculus because
guarantees that all anti-derivatives, alias indefinite integrals, fo
a function differ by a constant. Integral tables [and sophistica
calculators] contain formulas like

fxz cosxdx = 2xcosx + (x* — 2)sinx + C.

1

It is straightforward to show that the derivative of each function
2xcosx + (x* — 2)sinx + C is in fact ¥? cos x. Corollary 29.5 sh
that these must be the only antiderivatives of x* cos x.

We need some terminology in order to give another usefu
corollary of the Mean Value Theorem.

29.6 Definition.
Let f be a real-valued function defined on an interval I. We say
f is strictly increasing on I if

x, %€l and x <x imply f(x) < f(x2),
strictly decreasing on I if

x,% €l and x <x; imply f(x) > f(x2),
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increasing on I if
x1,2€l and x <x imply f(x) <f(x2),
decreasing on I if

x,x2€l and x < x imply f(x1) > f(x2).

Example 1

The functions ¢* on R and ./x on [0, c0) are strictly increasing.
The function cosx is strictly decreasing on [0, 7]. The signum func-
tion and the postage-stamp function in Exercise 17.10 are increasing
functions but not strictly increasing functions.

29.7 Corollary.
Let f be a differentiable function on an interval (a, b). Then
(1) f is strictly increasing if f'(x) > 0 for all x € (a, b);
(ii) f is strictly decreasing if f'(x) < 0 for all x € (a, b);
(iii) f is increasing if f'(x) > 0 for all x € (a, b);
(iv) f is decreasing if f'(x) < O for all x € (a, b).

Proof
(i) Consider x;,x, where a < x; < x; < b. By the Mean Value
Theorem, for some x € (x;, x;) we have

f(x2) — f(x1)

= (%) > 0.
o 1)
Since x, — x; > 0, we see that f(x;) — f(x1) > 0 or f(x2) > f(x1).
The remaining cases are left to Exercise 29.8. =

Exercise 28.4 shows that the derivative f’ of a differentiable
function f need not be continuous. Nevertheless, like a continuous
function, f” has the intermediate value property [see Theorem 18.2].

29.8 Intermediate Value Theorem for Derivatives.
Let f be a differentiable function on (a, b). Whenever a < x; < X, < b
and c lies between f'(x,) and f'(x;), there exists [at least one] x in (x, x,)
such that f'(x) = c.
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Proof
We may assume that f'(x;) < ¢ < f'(x2). Let g(x) = f(x) — cx
x € (a,b). Then we have g'(x;) < 0 < g’(x;). Theorem 18.1 sho
that g assumes its minimum on [;, ;] at some point x, € [x1, X
Since

o) = 1im SH) —8(1) _
B0 S g o) S

g(y) — g(x1) must be negative for y close to and larger than x;. It
particular, there exists y; € (¥, %;) such thatg(y:) < g(*1). Therefor
g does not take its minimum at x;, so we must have x # ;. Similarly
there exists y; € (x1, x2) such that g(y2) < g(x2), S0 Xp # x2. We hay
shown that x, is in (¥, 2), s0 g’(%0) = 0 by Theorem 29.1. Therefor
f'(%) = &'(x) +c=c.

We next show how to differentiate the inverse of a differentiabl
function. Let f be a one-to-one differentiable function on an ope
interval I. By Theorem 18.6, f is strictly increasing or strictly de
creasing on I, and by Corollary 18.3 the image f(I) is an interval J
The set ] is the domain of f~! and

fTlof(@=x for xel fof'y)=y for yeJ. ,“.

The formula for the derivative of f~! is easy to obtain [or remember
from the Chain Rule: x = f~! o f(x), so

1= @) -f'®) forall xel
If %9 € I and yo = f(%), then we can write 1 = (f ') (yo) - f'(%0) OF
1t

—15/ =
™) @) FGo)
This is not a proof because the Chain Rule requires that the fung
tions, f~! and f in this case, be differentiable. We assumed that |
is differentiable, but we must prove that f ! is also differentiable, I

addition, observe that f’(xo) might be 0 [consider f(x) = x* at xy = 0
so our final result will have to avoid this possibility.

i

where  yo = f(x0). .

29.9 Theorem.
Let f be a one-to-one continuous function on an open interval I, and li
J = f(I). If f is differentiable at xo € I and if f'(xo) # 0, then f~'
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differentiable at yo = f(xo) and

1
—-1v/ 39
W) = 5o
Proof
Note that ] is also an open interval. We have lim,_, ,, [@=f @) — g1 (*0)-

Since f'(x0) # 0 and since f(x) # f(xo) for x # xy, we :;;xﬁ write

Ty A S ad) of Saliq

=x f(X) = f(x)  f'(x0)’
see Theorem 20.4(iii). Let ¢ > 0. By (1) and Corollary 20.7, there
exists § > 0 such that

)

X — Xg 1 &
f®) —fx0)  f'(*0)
Let g = f~! and observe that g is continuous at yo by Theorems 18.6

and 18.4 [or Exercise 18.11]. Hence there exists n > 0 [lower case
Greek eta] such that

0 < |x—x <8 implies

€ 1l

0 < |y—yol < n implies |[g(y)—g(wo)l <4, ie., |g(y) —xl < 4.

3)
Combining (3) and (2) we obtain
Sy 8¥) — % 1
0 < ly—yol < n implies - <E€
feW) —f(x) f'(x0)

Since ﬁﬁ%}’%ﬁ = %y—"), this shows that

lim ¥ —8Wo) _ 1

¥=>% Y —Yo f'(%0)
Hence g’(yo) exists and equals JTlxoi [ ]

Example 2

Let nbe a positive integer, and let g(y) = J/y = yY". If nis even, the
domain of g is [0, 00) and, if n is odd, the domain is R. In either case,
& is strictly increasing and its inverse is f(x) = x"; here dom(f) =
[0, 00) if n is even. Consider y, € dom(g) where y, # 0, and write
Yo = xi where xy € dom(f). Since f'(xg) = nxj ', Theorem 29.9




22(0 5. Differentiation

shows that

1 1
J e o pie s l/n—l-
8 Yo) = 3—1 nygn_l)/" nyO

This shows that the function g is differentiable for y # 0 and t
the rule for differentiating ¥ holds for exponents of the form 1/
see also Exercise 29.15. v

Theorem 29.9 applies to the various inverse functions enco
tered in calculus. We give one example.

Example 3
The function f(¥) = sin x is one-to-one on [—7, 7], and it is tradition
to use the inverse g of f restricted to this domain; g is usually denote
sin™! or arcsin. Note that dom(g) = [—1, 1]. For yo = sinxg in (-1, 1
where xo € (—%, %), Theorem 29.9 shows that g’(yo) = ——. Sinet

cosxp
1 = sin? %y + cos® xg = y2 + cos? xy and cosxy > 0, we may write
{

i Condd w1 0g -
g (Yo) = e or yo€(—1,1).

0

Exercises

29.1. Determine whether the conclusion of the Mean Value Theorer
holds for the following functions on the specified intervals. If
conclusion holds, give an example of a point x satisfying (1) 0
Theorem 29.3. If the conclusion fails, state which hypotheses
the Mean Value Theorem fail.

(@) ¥ on[-1,2], (b) sinx on [0, 7],
(c) x| on[-1,2], (@ ion[-1,1),
(e) on[,3, () sgn(x) on[-2,2].

The function sgn is defined in Exercise 17.10.
29.2. Prove that |cosx —cosy| < |x —y| forall x,y € R.

29.3. Suppose that f is differentiable on R and that f(0) = 0, f(1)
and f(2) = 1.

(a) Show that f'(x) = } for some x € (0, 2).
(b) Show that f'(x) = } for some x € (0, 2).
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29.4. Let f and g be differentiable functions on an open interval I.

29.5

29.6.

29.7.

29.8.
29.9.
29.10.

29.11.

29.12.

29.13.

29.14.

29.15.

Suppose that a,b in I satisfy a < b and f(a) = f(b) = 0. Show
that f'(x) + f(*)g'(¥) = 0 for some x € (a,b). Hint: Consider
h(x) = f(x)es™.

Let f be defined on R, and suppose that |f(¥) — f(y)| < (x —y)? for
all x,y € R. Prove that f is a constant function.

Give the equation of the straight line used in the proof of the Mean
Value Theorem 29.3.

(a) Suppose that f is twice differentiable on an open interval I
and that f”(x) = 0 for all x € I. Show that f has the form
f(x) = ax + b for suitable constants a and b.

(b) Suppose f is three times differentiable on an open interval
I and that f”” = 0 on I. What form does f have? Prove your
claim.

Prove (ii)-(iv) of Corollary 29.7.

Show that ex < €* for all x € R.

Let f(x) = #*sin(3) + § for x # 0 and f(0) = 0.
(a) Show that f'(0) > 0; see Exercise 28.4.

(b) Show that f is not increasing on any open interval contain-
ing 0.

(c) Compare this example with Corollary 29.7(i).

Show that sinx < x for all x > 0. Hint: Show that f(x) = x — sinx
is increasing on [0, 00).

(a) Show thatx < tanx for all x € (0, §).
(b) Show that ;X is a strictly increasing function on (0, ).
(c) Show thatx < Zsinx for x € [0, 7).

Prove that if f and g are differentiable on R, if f(0) = g(0) and if
f'(%) < g'(x) for all x € R, then f(x) < g(x) for x > 0.

Suppose that f is differentiable on R, that 1 < f'(x) < 2 for x € R,
and that f(0) = 0. Prove that x < f(x) < 2x for all x > 0.

Let r be a nonzero rational number 2 where n is a positive integer,
m is any nonzero integer, and m and n have no common factors.
Let h(x) = x" where dom(h) = [0,00) if n is even and m > 0,
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dom(h) = (0,00) if n is even and m < 0, dom(h) = R if n is od
and m > 0, and dom(h) = R\ {0} if n is odd and m < 0. Show thi
W' (%) = ra"~! for x € dom(h), x # 0. Hint: Use Example 2.

29.16. Use Theorem 29.9 to obtain the derivative of the inverse g
arctan of f where f(x) = tanx for x € (-7, 7).

29.17. Let f and g be differentiable on an open interval I and conside
a € I. Define h on I by the rules: h(x) = f(x) for x < a, an
h(x) = g(x) for x > a. Prove that h is differentiable at a if
only if both f(a) = g(a) and f'(a) = g'(a) hold. Suggestion: Draw |
picture to see what is going on. '

29.18. Let f be differentiable on R with a = sup{|f'(¥)| : x € R} <
Select sp € R and define s, = f(s,-1) for n > 1. Thus s; = f(8),
sy = f(s1), etc. Prove that (s,) is a convergence sequence. Hint:
To show (s,) is Cauchy, first show that [s,11 — 8x| < alSn — Sp-1
forn > 1.

§30 * I’Hospital’s Rule

In analysis one frequently encounters limits of the form

lim &
X—>$ g(x)

where s signifies a, a*, a~, 0o or —o0. See Definition 20.3 concern:
ing such limits. The limit exists and is simply E:"—:s;g% provided the
limits lim,_, f(%) and lim,_,;g(x) exist and are finite and provided
lim,_,;g(x) # 0; see Theorem 20.4. If these limits lead to an indes
terminate form such as % or 2, then L'Hospital’s rule can often b '
used. Moreover, other indeterminate forms, such as oo — o0, 1%, 00%,
0° or 0 - 00, can usually be reformulated so as to take the form %
o; see Examples 5-9. Before we state and prove L'Hospital’s

we will prove a generalized mean value theorem.

30.1 Generalized Mean Value Theorem.
Let f and g be continuous functions on [a, b] that are differentiable ox
(a, b). Then there exists [at least one] x in (a, b) such that

f'(®)[g(b) — g(@)] = g'MIf (b) — f(@)]. (1)
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This result reduces to the standard Mean Value Theorem 29.3
when g is the function given by g(x) = x for all x.

Proof
The trick is to look at the difference of the two quantities in (1) and
hope that Rolle’s Theorem will help. Thus we define

h(x) = f(2)[8 (D) — g(@)] — 8Mf (b) — f(A)];
it suffices to show that h'(x) = 0 for some x € (a, b). Note that
h(@) = f(@)[g(b) — g(@)] — g(@)f (P) — f(a)] = f(a)g(P) — g(@)f (b)
and
h(b) = f (D)[g(b)—g(@]-gD)f (D) —f ()] = —f (P)g(@)+8(b)f (&) = h(@).

Clearly h is continuous on [a, b] and differentiable on (a, b), so Rolle’s
Theorem 29.2 shows that /'(x) = 0 for at least one x in (a, b). |

Our proof of L'Hospital’s rule below is somewhat wordy but is
really quite straightforward. It is based on the elegant presentation
in Rudin [36]. Many texts give more complicated proofs.

30.2 I’Hospital’s Rule.
Let s signify a, at, a~, 0o or —oo where a € R, and suppose f and g
are differentiable functions for which the following limit exists:

tim 29 1 M |
If Il
lmfi() = lme(y =0 @ il
or if ' ‘
| lim [5()] = +oo, @) I
then il
“
|
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Note that the hypothesis (1) includes some implicit assumptions
f and g must be defined and differentiable “near” s and g’(x) mu

be nonzero “near” s. For example, if lim,_, ,+ -f(—’;) exists, then ther
must be an interval (a, b) on which f and g are differentiable ani
g’ is nonzero. The requirement that g’ be nonzero is crucial; se

Exercise 30.7.

Proof
We first make some reductions. The case of lim,_,, follows from
cases lim,_, ,+ and lim,._, ,-, since lim,.,, h(x) exists if and only if th
limits lim,_, ,+ h(x) and lim,_,,- h(¥) exist and are equal; see Theo
rem 20.10. In fact, we restrict our attention to lim,_, ,+ and lim,—, —g,
since the other two cases are treated in an entirely analogous man
ner. Finally, we are able to handle these cases together in view of
Remark 20.11.

and L; > L, then there exists &; > a such that
G
8(x)

A similar argument [which we omit] shows thatif —co < L < o0 a
L, < L, then there exists @, > a such that

f—(x—)>L

a< x < implies gie

a< x < a; implies 2.
We now show how to complete the proof using (5) and (6); (5) will b
proved in the next paragraph. If L is finite and € > 0, we can apply
(5)toL; =L+e€and (6)to L = L — e to obtainey > aand a; > &
satisfying

a< x < a; implies @ < bal€
8(*)

a < x < az implies f® >L—¢€
8(x)

Consequently if @« = min{e;, o} then

a < x < a implies '@—L < €
8(%)
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in view of Remark 20.11 this shows that lim,_, ,+ g%% =[L[ifa= -0,
then at = —o0]. If L = —o0, then (5) and the fact that L, is arbitrary

show that lim,_, 4+ gé{) —00. If L = o0, then (6) and the fact that

L, is arbitrary show that lim,_, ,+ & _ oo,
1 « 8(®)

It remains for us to consider L; > L > —oo and show that there
exists a; > a satisfying (5). Let (a, b) be an interval on which f and
g are differentiable and on which g’ never vanishes. Theorem 29.8
shows that either g’ is positive on (a,b) or else g’ is negative on
(a, b). The former case can be reduced to the latter case by replacing
g by —g. So we assume g’(x) < 0 for x € (a,b), so that g is strictly
decreasing on (a, b) by Corollary 29.7. Since g is one-to-one on (a, b),
#(x) can equal 0 for at most one x in (a, b). By choosing b smaller
if necessary, we may assume that g never vanishes on (a, b). Now
select K so that L < K < L. By (1) there exists @ > a such that

/
g™
Ifa < x < y < a, then Theorem 30.1 shows that

f) - f@) _ £
g0 —8w) €@

a < x < o implies

for some z € (x,Y).

Therefore

FO-f® _ .

200 —2) @

a<x<y<a implies

If hypothesis (2) holds, then

f(x) f¥)
ot g —8)  8W)'

50 (7) shows that
f—(y—) <K < I
8)

hence (5) holds in this case. If hypothesis (3) holds, then lim,_, ,+ g(x) =
+-00 since g is strictly decreasing on (a, b). Also g(x) > 0forx € (a, b)
since g never vanishes on (a, b). We multiply both sides of (7) by

for a<y<q;
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£00-80) which is positive, to see that

8()
&) —fW) _ . 83 —8()

a<x<y<a implies

g(®) 8(*)
and hence
f®) _ (.83 ~8W) +f(y) =KJrf(y) —Ke()
8(*) 8() 8(*) 8(*)
We regard y as fixed and observe that
tim {&) —Ke@) _
x>at  g(X)
Hence there exists @; > a such that @y <y < a and
g o P
a<x<a; implies — <L
2 P 2™ 1-
Thus again (5) holds.
Example 1

If we assume familiar properties of the trigonometric functions, the

lim, o 3% sinx js easy to calculate by L'Hospital’s rule:
Y
sinx cosx :
lim — = lim ="cos(0) = 1. (1
x>0 X x—>0

Note that f(x) = sinx and g(x) = x satisfy the hypotheses in Th
orem 30.2. This particular computation is really dishonest beca
the limit (1) is needed to prove that the derivative of sinx is cos¥.
This fact reduces to the assertion that the derivative of sinx at 0 |
1, i.e., to the assertion

sinx —sin0 e S

lim ——— =1lim — = 1.
x—0 x—0 x—>0 X

Example 2
We calculate lim,_,o 25— . L'Hospital’s rule will apply provided the
limit lim,_,q = s‘"" ex1sts But sm” = ;s‘;"‘ and this has limit —*
by Example 1. We conclude that

cosx—1

1 cosx — 1 is 1

x>0 xZ 2
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Example 3

We show that lim,_, o f;— = 0. As written we have an indeterminate
of the form 2. By L'Hospital's rule, this limit will exist provided
Mmoo 88 30 €xists and by LHospital’s rule again, this limit will exist
provided lim,_, oo 2 5.z exists. The last limit is 0, so we conclude that

2
limy—s 0o 2= ==0.

Example 4
Consider lim,_, o+ —2% 1°g" if it exists. By L'Hospital’s rule, this appears to
bhe

S L
lim — =400
x—>07*
and yet this is incorrect. The difficulty is that we should have checked
the hypotheses. Since lim,_,o+logx = —oo and lim,,¢p+x = 0,

neither of the hypotheses (2) or (3) in Theorem 30.2 hold. To
find the limit, we rewrite 1"% as —l"g(—xl/"). It is easy to show
that lim,_, o+ 10_8()(&2 will agree with lim,_,» ylogy provided the lat-
ter limit exists; see Exercise 30.4. It follows that lim,_, o+ 1—°f—" =

~limy_, o ylogy = —00.

The next five examples illustrate how indeterminate limits of
various forms can be modified so that LHospital’s rule applies.

Example 5
Consider lim,_, ¢+ x log x. As written this limit is of the indeterminate
form 0 - (—o0) since lim,_,o+ ¥ = 0 and lim,_,¢+ logx = —o00. By

writing x log x as 1—;’% we obtain an indeterminate of the form =22, so
we may apply LHospital’s rule:
1

0 - .
lim xlogx = lim lg = lim -4 = — lim x=0.
x>0t x=0t. = 20t —— x—>0t
X X
We could also write xlogx as Tf;ﬁ to obtain an indeterminate

of the form %. However, an attempt to apply LHospital’s rule only
makes the problem more complicated:

X 1
lim xlogx = lim —— = 11m vE = — lim x(log %P,
x=>0t x=>0t —— x>0
logx x(logx)
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Example 6
The limit lim,_,¢+ ¥* is of the indeterminate form 0°. We write
as €°1°8* [remember x = €'°*] and note that lim,_,o+ xlogx = 0 b
Example 5. Since g(x) = €* is continuous at 0, Theorem 20.5 show
that

lim ¥* = lim €°8* = ¢® = 1.

x—>0t x—0"

Example 7
The limit lim,_, o ¥/* is of the indeterminate form occ®. We write x‘,
as e(°8¥/* By ’Hospital’s rule

Yix

logx 1
lim —= BX l'm 2
X*—>00 X oo 1

x!

=)L

Theorem 20.5 now shows that lim,_, o x!/* = €° = 1.

Example 8
The limit lim,_, (1 — %)" is indeterminate of the form 1°°. Since

1 X
(et ah, exlog(l—l/x)
(-3)

we evaluate
1 Tog(l - = R
limxlog(l——)zlimg—(lL) lim ( Tt
X—>00 X x—>00 = x—00 L
. /A i
= hm—(l——) -2
x—>00 X

So by Theorem 20.5 we have

1 X
lim (1 - -) =t
X—>00 X

as should have been expected since lim,_, (1 — 1) = ¢~

Example 9
Consider lim,._, h(x) where
h(x)—;——-—(ez“’—l)"l x' for x#0.

1
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Neither of the limits lim,,o(e* — 1)™! or lim,,ox™! exists, so
lim,_,oh(¥) is not an indeterminate form as written. However,
lim,_, o+ h(%) is indeterminate of the form oo — oo and lim,_,o- h(x)
is indeterminate of the form (—o00) — (—00). By writing
—-e+1
h(x) = i
x(e* — 1)
the limit lim,_, h(x) becomes an indeterminate of the form g. By
L'Hospital’s rule this should be
¢ 1—¢*
lim ———,
x>0 xe* +¢e* — 1
which is still indeterminate 3. Note that xe* +€* — 1 # 0 for x # 0

so that the hypotheses of Theorem 30.2 hold. Applying L'Hospital’s
rule again, we obtain

~et 1

lim ————— ;

x—0 xe* + 2¢* 2
Note that we have xe* + 2¢* # 0 for x in (—2, c0). We conclude that
lim, o h(x) = —3.

Exercises

30.1. Find the following limits if they exist.
(a) lim,_o c“—;osx (b) limy_o 1—:osx
(d) lim, o Y

(c) lim,, e%s;

30.2. Find the following limits if they exist.

(a) lim,_,o smﬂm (b) lim,_,o ﬂ;g__x
(€) limyso[gs — 7] (d) lim,,o(cos %)/

30.3. Find the following limits if they exist.

(a) lim,_,q *=Sin% (b) lim,,q x50/
() lim, o Lheoss () lim, o 1=cos2=2

30.4. Let f be a function defined on some interval (0,a), and define
8(y) = f(%) for y € (a”', 00); here we set a™! = 0 if a = 0o. Show
that lim,.,o+ f(x) exists if and only if lim,_, g(y) exists, in which
case they are equal.
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30.5.

30.6.

30.7.

§31 Taylor’s Theorem

31.1 Discussion.
Consider a power series with radius of convergence R > 0 [R
be +o0]:

By Theorem 26.5 the function f is differentiable in the interval |x| «
R and .

Find the limits
(a) lim,,o(1 + 2x)'/* (b) limyoeo(l+ 2)
(©) lim, (€ +%)V*

Let f be differentiable on some interval (¢, o0) and suppose thal
lim,o0[f (%) +f'(x)] = L, where L is finite. Prove that lim,_, « f(¥) =
L and that lim,_,« f'(¥) = 0. Hint: f(x) = ’12—”?.

This example is taken from [38] and is due to Otto Stolz, Matk

Annalen 15 (1879), 556-559. The requirement in Theorem 30.2 that
g'(x) # 0 for x “near” s is important. In a careless application
L'Hospital’s rule in which the zeros of g’ “cancel” the zeros of
erroneous results can be obtained. For x € R, let

sinx

f(*¥) =x+cosxsinx and g(x)=€e""*(x+ cosxsinx).

(a) Show that lim, ., f(x) = lim,_, o g(¥) = +00.
(b) Show f’(x) = 2(cosx)? and g'(x) = €5"* cos X[2 cos x + f(X)].

(©) Showthatg,-g’% = %ﬁ% ifcosx # 0 and x > 3.

(d) Show that lim,.,o0 55:755%5 = 0 and yet the limit lim,,o0 i
does not exist.

fxy= Zakxk.

k=0

f'(x) = i kaxx* 1.
k=1
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The same theorem shows that f” is differentiable for |x| < R and
o0
@) =) k(k — a2,
k=2

Continuing in this way, we find that the nth derivative " exists for
|¥x| < R and

M) = i k(k — 1)+« (k — n+ Dagxk™".

k=n

In particular,
fP0)=nmn—1)---(n—n+ 1a, = nla,.

This relation even holds for n = 0 if we make the convention f(® = f
and recall the convention 0! = 1. Since f®)(0) = klay, the original
power series (1) has the form

fx) = Zf 19 X, |x] <R 2)

As suggested at the end of §26, we now begin with a function f
and seek a power series for f. The last paragraph shows that f should
possess derivatives of all orders at 0, i.e., f'(0), f”(0), f”(0), . . . should
all exist. For such f formula (2) might hold for some R > 0, in which
case we have found a power series for f.

31.2 Definition.
~ Let f be a function defined on some open interval containing 0. If f
possesses derivatives of all orders at 0, then the series
= B0 4 it
k=0 TR
is called the Taylor series for f about 0. The remainder R,(x) is defined
by

Ru(®) = f(2) — Zf iy @

k=0

Of course the remainder R,, depends on f, so a more accurate no-
tation would be something like R, (f; x). The remainder is important

et S - L. e
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because, for any x,

fx) = Zf (O)xk if and only if  lim R(x) = 0.
=0

We will show in Example 3 that f need not be given by its Taylo
series, i.e., that lim,_, o R,(¥) = 0 can fail. Since we want to know
when f is given by its Taylor series, our various versions of Taylor!
theorem all concern the nature of the remainder R,,.

31.3 Taylor’s Theorem.
Let f be defined on (a, b) where a < 0 < b, and suppose the nth deriva
tive f) exists on (a, b). Then for each nonzero x in (a, b) there is some
Y between 0 and x such that

()
Ra(®) = f—nsylx”.

The proof we give is due to James Wolfe [41]; compa
Exercise 31.6.

Proof
Fix x # 0. Let M be the unique solution of
n—=1 ok
f®©) o
Z k! + n!

f& =

k:
and observe that we need only show that

f (")(y) =M forsome y between 0 and =x.

[To see this, replace M by f((y) in equation (1) and recall
definition of R,(x).] To prove (2), consider the difference

sy T M gy @
k=0 .
A direct calculation shows that g(0) = 0 and that g®(0) = 0 for
k < n. Also g(x) = 0by the choice of M in (1). By Rolle’s theorem 29.2
we have g’(x) = 0 for some x; between 0 and x. Since g’(0) = 0, &
second application of Rolle's theorem shows that g”(x;) = 0 some
x, between 0 and x,. Again, since g”(0) = 0 we have g"”(x3) = 0 fo



§31. Taylor’s Theorem 27373

some x3 between 0 and x,. This process continues until we obtain x,,
between 0 and x,_; such that g'"(x,) = 0. From (3) it follows that
gM(t) = M — f0(¢) for all t € (a, b), so (2) holds with y = x,. "

31.4 Corollary.
Let f be defined on (a,b) where a < 0 < b. If all the derivatives f(

exist on (a, b) and are bounded by a single constant C, then
n]gf,lo Ry(x)=0 forall x € (a,b).

Proof
Consider x in (a, b). From Theorem 31.3 we see that

C
[Ra(¥)| < ;l—'lxl" forall n.

Since hmn_,oo = 0by Exercise 9.15, we conclude thatlim,_, oo Rn(%)
—0. %
Example 1

We assume the familiar differentiation properties of €%, sin x, etc.
(@) Let f(x) = ¢ forx € R. Then f(V(x) = ¢* foralln =0, 1, 2,.
80 f(M(0) = 1 for all n. The Taylor series for ¢* about 0 is

S~ Lk
kl

For any bounded interval (—M, M) in R all the derivatives of f are i
bounded [by €, in fact], so Corollary 31.4 shows that i

o0 1 “p\[
¢* =Zﬁx" forall xeR. [
k=0 " i

(b) If f(x) = sinx for x € R, then

COS X =184 ..
—sinx n=a2.6:10.. . .
— COSX ni=8, 711 ..
sinx n=04812 ...;

FO0 =
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thus
i n= 1, 8,9, :
oy = A2 37 1L
0 otherwise.
Hence the Taylor series for sin x is

O G AP
§(2k+1)!x ;

The derivatives of f are all bounded by 1, so

sinx = i ﬂxm‘“ forall xeR.

£ 2k + 1)
Example 2
In Example 2 of §26 we used Abel’s theorem to prove
log. 2 =1 1+:l 1+l 1+1
e AN Gt - bR '

Here is another proof, based on Taylor's theorem. Consider
function f(x) = log(1 + x) for x € (—1, 00). Differentiating, we fi

fH=0+»", f@=-0+97 ["@=20+97
etc. A simple induction argument shows that .
O =) -1+

In particular, f™(0) = (—1)"*'(n — 1)}, so the Taylor series for
about 0 is ‘

We also could have obtained this Taylor series using Example 1
§26, but we need formula (2) anyway. We now apply Theorem 31
with a = —1, b = 400, and x = 1. Thus for each n there
Yn € (0,1) such that R,(1) = fﬂ)n,w Equation (2) shows that

_=)rim -1y

Ry(1) (1 +yn)'n! )
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hence

1 1
[Ra(D} = =————=— < — forall: n,
1 +ys)"n n

Therefore lim,,_, o0 Ry(1) = 0, so (1) holds.

The next version of Taylor’s theorem gives the remainder in inte-
gral form. The proof uses results from integration theory that should
be familiar from calculus; they also appear in the next chapter.

31.5 Taylor’s Theorem.

Let f be defined on (a,b) where a < 0 < b, and suppose the nth
derivative f" exists and is continuous on (a,b). Then for x € (a,b)
we have

3 % e ()
R = [ E g M

Proof
For n = 1, equation (1) asserts

Ri(¥) = f() — f(0) = fo Fod

this holds by Theorem 34.1. For n > 2, we repeatedly apply integra-
tion by parts, i.e., we use mathematical induction. So, assume (1)
holds for some n, n > 1. We evaluate the integral in (1) by Theo-

rem 34.2, using u(t) = fOO(t), V'(t) = K(T_?ﬁ- so that /() = fO*+)(r)
and v(t) = —f%. We obtain
Ry (%) = u(x)v(x) — u(0)v(0) — f i v(tu'(t) dt
—10m-0+100% + [T enna @
The definition of R, in Definition 31.2 shows that

Rypy1(¥) = R(¥) — f_@ i 3

hence from (2) we see that (1) holds for n + 1. [ ]
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31.6 Corollary.
If f is as in Theorem 31.5, then for each x in (a, b) different from 0 t
is some y between 0 and x such that
( )n 1
(n—1)!

This form of R, is known as Cauchy’s form of the remainder.

Ru(%) = ~—==f"(y) - x.

Proof
We suppose x < 0, the case x > 0 being similar. The Intermediaté
Value Theorem for Integrals 33.9 shows that !

L s e o SRR
o, Sy AP b

for some y in (x,0). Since the integral in (2) equals —R,(x)
Theorem 31.5, formula (1) holds.

et ot e V)

Recall that the binomial theorem tells us that

(@a+b)' = zn: (Z)akb"‘k

k=0
where
n n! nn—1)---(n—k+1)
r = fa 1<k<n.
(k) Ki(n — k! k! 05 et

Leta=xand b = 1; then

afar=14 Y AT k,(n K+ Dy,
k=1

This result holds for some values of x even if the exponent n isn'
an integer, provided we allow the series to be an infinite series. Wi
next prove this using Taylor’s Theorem 31.5. Our proof follows tha
in [34].

31.7 Binomial Series Theorem.
Ifa e Rand |x| < 1, then

(1 +x)° —1+Za(a kl(a Erla

k=1
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Proof

For k =:1,2,3,.,. letas= M)—k,(w If @ is a nonnegative in-
teger, then ax = 0 for k > a and (1) holds for all x as noted in our
discussion prior to this theorem. Henceforth we assume « is not a
nonnegative integer so that ax # 0 for all k. Since

a—k
k+1

Ak+1

Ok

lim

k—>00

= lim
k—00

)

the series in (1) has radius of convergence 1; see Theorem 23.1 and
Corollary 12.3. Likewise Y kaxx*~! converges for |x| < 1; hence

lim na,x"' =0 for |x| < 1. )
n—>oo
Let f(x) = (1 +4)* for |x] .« 1. Forn =1,2.. .., we have
fOX) =a@—1)---(@—n+ 1)1 +2)*" = nla,(1 +x)* "
Thus f(W(0) = nla, for all n > 1, and the series in (1) is the Taylor |
series for f. Also, by Theorem 31.5 we have ‘

X Elioey=1
Rofy) = ‘/0‘ %n!an(l + )" " dt

X i n-1
i fo At [’I‘—Jr;] 1+ 1dt 3)

for |x| < 1. It is easy to show that

< labdif =l <x<t<0i0r 0=t S52<1].

'Ib see this, note that t = xy for some y € [0, 1], so

< I

=l |—Z
1+t |1+ 1+2xy

since 1 + xy > 1 — y. Thus the integrand in (3) is bounded by

x—tl X —xy -y

nla| - %" 711 + 6%

therefore

x|
|Ru(X)] < nlay] - |x"! Q4+ 6)*at.
=[xl
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Applying (2), we now see that lim,,_, R,(x) = 0 for |x| < 1, so
(1) holds.

We next give an example of a function f whose Taylor series ex:
ists but does not represent the function. The function f is infinitel;
differentiable on R, i.e., derivatives of all order exist at all points of R
The example may appear artificial, but the existence of such funec«
tions [see also Exercise 31.4] is vital to the theory of distributions,
an important theory related to recent work in differential equations
and Fourier analysis.

Example 3 .
Let f(x) = e /* for x > 0 and f(x) = 0 for x < 0; see Figure 31.1,
Clearly f has derivatives of all orders at all x # 0. We will prove

TO0T =0 "o\ "/ =0, 12,3} 1)

Hence the Taylor series for f is identically zero, so f does not agree
with its Taylor series in any open interval containing 0. First we
show that for each n there is a polynomial p,, of degree 2n such that

fO@) = e V*p,(1/x) for x > 0. 2)

This is obvious for n = 0; simply set po(t) = 1 for all t. And this i§
easy for n = 1 and n = 2; the reader should check that (2) holds with
n = 1and p,(t) = t? and that (2) holds with n = 2 and p,(t) = t* -2t

To apply induction, we assume the result is true for n and write

Pn(t) = Go + art + azt? + -+ + amgt”™ where ay, # 0.

f(x) =" " forx >0
FIGURE 31.1
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Then for x > 0 we have
[~ 2n a
fO@ =6 3 —"] :

and a single differentiation yields

) — =12 | g e kak- N ax Lypxi 51
f (x)=¢€ —ZWJ"F ZF e ‘X3 -

k=1

The assertion (2) is now clear for n + 1; in fact, the polynomial p,44
is evidently

2n 2n
Pri(t) = — Z kapt*t! + I:Z aktk:| (1Y),

k=1 k=0
which has degree 2n + 2.

We next prove (1) by induction. Assume that f("(0) = 0 for some
n > 0. We need to prove

fO@® — f20)
x—0

1
=1i —_fm =
11_1)13 xf 51l

lim
x—0

Obviously lim, o~ 2f((x) = 0 since f()(x) = 0 for all x < 0. By
Theorem 20.10 it suffices to verify
1
lim —f"(x) = 0.
Ran xf ()

In view of (2), it suffices to show

1
lim e *q(=)=0
x-1->0+ 1 (X)
for any polynomial g. In fact, since g(1/x) is a finite sum of terms of
the form by(1/x)%, it suffices to show

I\K
lim (—) e V*=0 forfixed k>0.

x—>0t \ X

Because of Definition 20.1 we consider a sequence (x,) of positive

numbers such that lim x,, = 0 and show

1 k
lim (—) eV =,
n=>00 \ Xy,
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If yo = ;-, then limy, = +oo [by Theorem 9.10] and we need
show lim,_, o yke ™% = 0 or

: ] o
yl_lglo ye ¥ =0.
To see (3) note that e/ > @% for y > 0 by Example 1(a) so that

yre ¥ <y + 1)1y*1

The limit (3) also can be verified via k applications of L'Hospi
Rule 30.2.

1)!
___Qc_—;__)_ for y > 0.

Just as with power series, one can consider Taylor series that
not centered at 0.

31.8 Definition.
Let f be a function defined on some open interval containing xg € |
If f has derivatives of all order at x,, then the series 2

f(k) (xo)

k=0

(x — xo)*
is called the Taylor series for f about x,.

The theorems in this section are easily transferred to the gene
Taylor series just defined.

Exercises

31.1. Find the Taylor series for cosx and indicate why it converges
cosx for all x € R.

31.2. Repeat Exercise 31.1 for sinh x = }(¢*—e ™) and coshx = %(e" +e

31.3. In Example 2, why did we apply Theorem 31.3 instead
Corollary 31.4?

31.4. Consider a,b in R where a < b. Show that there exist infi
differentiable functions f;, g, hap and kY, on R with the follow:
properties. You may assume, without proof that the sum,
uct, etc. of infinitely dlfferentlable functions is again infin
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differentiable. The same applies to the quotient provided that the
denominator never vanishes.

(@) fa(¥) =0 for x < a and f,(x) > 0 for x > a. Hint: Let f;(x) =
f(x — a) where f is the function in Example 3.

(b) g»(¥) = 0 for x > b and g,(x) > 0 for x < b.
(c) hgp(x) > 0 for x € (a, b) and h,(x) = 0 for x € (a, b).
(@) h;,(x) = 0 for x < a and hy,(x) = 1 for x > b. Hint: Use
fa/ (fa + 8b)-
31.5. Let g(x) = e~ /% for x # 0 and g(0) =

(a) Show that g™(©0) = 0 for all n = 0,1,2,3,.... Hint: Use
Example 3.

(b) Show that the Taylor series for g about 0 agrees with g only at
x =10,

31.6. A standard proof of Theorem 31.3 goes as follows. Assume x > 0,
let M be as in the proof of Theorem 31.3, and let

x-0"

n!

F(t) = f(t)+Z( IPCIANEYS

fort € [0, x].
(a) Show that F is differentiable on [0, x] and that
/ (x t)n ) (n)
FO = o - M

(b) Show that F(0) = F(x).

(c) Apply Rolle’s Theorem 29.2 to F to obtain y in (0, x) such that
) =M.







Integration

CHAPTER

This chapter serves two purposes. it contains a careful development
of the Riemann integral, which is the integral studied in standard
calculus courses. It also contains an introduction to a generalization
of the Riemann integral called the Riemann-Stieltjes integral. The
generalization is easy and natural. Moreover, the Riemann-Stieltjes
integral is an important tool in probability and statistics, and other
areas of mathematics.

§32 The Riemann Integral

The theory of the Riemann integral is no more difficult than several
other topics dealt with in this book. The one drawback is that it
involves some technical notation and terminology.

32.1 Definition.
Let f be a bounded function on a closed interval [a, b]. For § C [a, b],
we adopt the notation

M(f, 8) = supl{f(x) : x € S} and m(f,8) = inf{f(x) : x € S}.

243
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A partition of [a, b] is any finite ordered subset P having the form
B =g =l <t < -« < Ei=D}.

The upper Darboux sum U(f, P) of f with respect to P is the sum

U(f,P)= ZM(f. [te—1, t]) - (b — tk—1)
k=1

and the lower Darboux sum L(f, P) is

L(f, P) =Y m(f, [te—1, te]) - (t — te-1)-
k=1
Note that
U(f,P) < ) M(f,[a,B]) - (tx — tx—1) = M(f, [, b]) - (b — @);
k=1

likewise L(f, P) > m(f,[a, b]) - (b — a), so
m(f,[a,b]) - (b — @) < L(f; P) < U(f, P) < M(f, [a,b]) - (b — ). (1]
The upper Darboux integral U(f) of f over [a, b] is defined by '
U(f) = inf{U(f, P) : P is a partition of [a, b]}
and the lower Darboux integral is
L(f) = sup{L(f, P) : P is a partition of [a, b]}.
In view of (1), U(f) and L(f) are real numbers.
We will prove in Theorem 32.4 that L(f) < U(f). This is
obvious from (1). [Why?] We say that f is integrable on [a, b] pro

L(f) = U(f). In this case, we write f:f or fabf(x)dx for this commo
value:

/ & / ’ f0 dx = L) = UG, (2

Specialists call this integral the Darboux integral. Riemann'’s defi
nition of the integral is a little different [Definition 32.8], but we wi
show in Theorem 32.9 that the definitions are equivalent. For thi
reason, we will follow customary usage and call the integral define
above the Riemann integral.
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graph of f

FIGURE 32.1 a b

For nonnegative functions, [ ab f is interpreted as the area of the
region under the graph of f [see Figure 32.1] for the following reason.
Each lower Darboux sum represents the area of a union of rectangles
inside the region, and each upper Darboux sum represents the area
of a union of rectangles that contains the region. Moreover, [ ab f isthe
unique number that is larger than or equal to all lower Darboux sums
and smaller than or equal to all upper Darboux sums. Figure 19.2 on
page 137 illustrates the situation for [a, b] = [0, 1] and

2 n—1 }
< s & N o

1
P={0<— —
n n n

Example 1
The simplest function whose integral is not obvious is f(x) = x%.
Consider f on the interval [0, b] where b > 0. For a partition

P = S B e T = ]

we have
n n
U(f,P) =) supla® : x € [tio1, tel} - (tk — ti1) = D etk — ti1).
k=1 k=1

If we choose tx = k—:, then we can use Exercise 1.1 to calculate

"\ k*0? (b b & b nn+1)(2n+1)
ool e 50 -

3
£ n n 6
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For large n, this is close to %, so we conclude that U(f) < % For th

same partition we find

“ (k—1)’p? (b P (n—1)m2n-—1)
s e e 1=

so L(f) > % Therefore f(x) = x? is integrable on [0, b] and

b g
f xzdxzb—.
0 3

Of course, any calculus student could have calculated this inte:
gral using a formula that is based on the Fundamental Theorem ol
Calculus; see Example 1 in §34. '

Example 2
Consider the interval [0, b] and let f(x) = 1 for rational x in [0, b}
and let f(x) = 0 for irrational x in [0, b]. For any partition

Rl =it i dies: s & b=bl;

we have
Ur = an]M(ﬁ [tke=1, &]) - (tx — tk—1) = k}n:{ 1-(tk—tr-1) =18

and ! 3
L(f,P) = kznl:o “(tx — te—1) = 0.

It follows that U(f) = b and L(f) = 0. The upper and lower Darbou
integrals for f do not agree, so f is not integrable!

We next develop some properties of the integral.

32.2 Lemma.
Let f be a bounded function on [a, b]. If P and Q are partitions of [a, |
and P C Q, then '

L(f,P) = L(f,Q = U(f, Q) = U(f, P).
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Proof
The middle inequality is obvious. The proofs of the first and third
inequalities are similar, so we will prove

L(f, P) = L(f, Q). ()
An induction argument [Exercise 32.4] shows that we may assume
that Q has only one more point, say u, than P. If
P=la=t< i <> %< &, =h},
then
Qi={a =lgi<ilti € ~»» < hho1 € U < <+« < ity =Db}

for some k € {1,2,...,n}. The lower Darboux sums for P and Q
are the same except for the terms involving t;_; or t. In fact, their
difference is

L(f, Q) — L(f, P) = m(f, [te—1, ul) - ( — te—1) + m(f, [, t]) - (tx — )
—m(f, [tror, &) - (t — tir). 3)

To establish (2) it suffices to show that this quantity is nonnegative.
Using Exercise 4.7(a), we see that

m(f, [tk—1, t]) - (tx — te—1)
— m(f, [tk—ly tk]) . {(tk =)+ U— tk—l)}
< m(f, [u, tx]) - (tc — w) + m(f, [tc—1, u]) - (U — tx—1)- a

32.3 Lemma.
If f is a bounded function on [a, b], and if P and Q are partitions of [a, b],
then L(f, P) < U(f, Q).

Proof :
The set P U Q is also a partition of [a, b]. Since P € P U Q and
(Q € PUQ, we can apply Lemma 32.2 to obtain

L(f,P) < L(f,PUQ) < U(,PUQ) = U(f,Q).

32.4 Theorem.
If f is a bounded function on |a, b), then L(f) < U(f).
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Proof
Fix a partition P of [a, b]. Lemma 32.3 shows that L(f, P) is a lo
bound for the set

{U(f, Q) : Q is a partition of [a, b]}.

Therefore L(f, P) must be less than or equal to the greatest low
bound [infimum!] of this set. That is,

L(f, P) < U(f).
Now (1) shows that U(f) is an upper bound for the set
{L(f, P) : P is a partition of [a, b]},
so U(f) = L(f).
Note that Theorem 32.4 follows from Lemma 32.3 and

cise 4.8; see Exercise 32.5. The next theorem gives a “Ca
criterion” for integrability.

32.5 Theorem.

A bounded function f on [a, b] is integrable if and only if for each € >

there exists a partition P of [a, b] such that
U(f,P) — L(f,P) < €.

Proof
Suppose first that f is integrable and consider € > 0. There
partitions P, and P, of [a, b] satisfying

L(f, P)) > L(f')—% and U(f,Py) < U(f)+-;-. ‘

For P = P, U P,, we apply Lemma 32.2 to obtain
U, P) — L(f, P) < UC, P2) - L(F, P) ,
< U(f)+§—[L(f)—§]=U(f)—L(f)+e..

Since f is integrable, U(f) = L(f), so (1) holds.
Conversely, suppose that for each € > 0 the inequality (1) ho
for some partition P. Then we have

U(f) < U(f, P) = U(f, P) — L(f, P) + L(f, P)
< €+ L(f, P) < € + L(f).
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Since € is arbitrary, we conclude that U(f) < L(f). Hence we have
U(f) = L(f) by Theorem 32.4, i.e., f is integrable. [

The remainder of this section is devoted to establishing the
equivalence of Riemann's and Darboux’s definitions of integra-
bility. Subsequent sections will depend only on items 32.1-32.5.
Therefore the reader who is content with the Darboux integral in
Definition 32.1 can safely proceed directly to the next section.

32.6 Definition.
The mesh of a partition P is the maximum length of the subintervals
comprising P. Thus if

P=la=1 < tj < --- < t;=b},
then

mesh(P) = max{ty —'tx_1 1k =1,2,...,n}

Here is another “Cauchy criterion” for integrability.

32.7 Theorem.
A bounded function f on [a, b] is integrable if and only if for each € > 0
there exists a § > 0 such that

mesh(P) < § implies U(f,P)—L(f,P) < € @D
for all partitions P of [a, b].

Proof
Theorem 32.5 shows that the €-8 condition in (1) implies integrabil-

ity.
Conversely, suppose that f is integrable on [a, b]. Let € > 0 and
select a partition

Po={a=1uUg shily € ss%<Uy =b)

of [a, b] such that

UG, Po) — LY Po) < 5. )
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Since f is bounded, there exists B > 0 such that |[f(x)| < B for a

X € [a, b]. Let § = g-=; m is the number of intervals comprising Py

To verify (1), we consider any partition
P =g =yt i<ieiabil<it = b}

with mesh(P) < 8. Let Q = PU P,. If Q has one more element tha
P, then a glance at (3) in the proof of Lemma 32.2 leads us to

L(f, Q) — L(f, P) < B - mesh(P) — (—B) - mesh(P) = 2B - mesh(P).

Since Q has at most m elements that are not in P, an inducti )
argument shows that

L({f, Q) — L(f, P) < 2mB - mesh(P) < 2mB5 = Z.
By Lemma 32.2 we have L(f, Py) < L(f, Q), so
L(f, Po) — L(f, P) < Z.
Similarly
07 - ) <
SO
UG, P) ~ L(f,P) < U(f, Po) — L, Po) + .

Now (2) implies U(f, P) — L(f, P) < € and we have verified (1).
Now we give Riemann’s definition of integrability.

32.8 Definition.
Let f be a bounded function on [a,b], and let P = {a =ty < t

- < t, = b} be a partition of [a, b]. A Riemann sum of f associate
with the partition P is a sum of the form

D F (b — ti-1)
k=1

where x; € [te—1,t] for k = 1,2,...,n. The choice of x's is qui
arbitrary, so there are infinitely many Riemann sums associati
with a single function and partition.
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The function f is Riemann integrable on [a, D] if there exists a
number r with the following property. For each € > 0 there exists
4 > 0 such that

IS—7| <€ €3]
for every Riemann sum 8 of f associated with a partition P having

mesh(P) < 8. The number r is the Riemann integral of f on [a, b] and
will be provisionally written as R [ : i

32.9 Theorem.
A bounded function f on [a, b] is Riemann integrable if and only if it is
[ Darboux] integrable, in which case the values of the integrals agree.

Proof

Suppose first that f is [Darboux] integrable on [a, b] in the sense of
Definition 32.1. Let € > 0, and let § > 0 be chosen so that (1) of
Theorem 32.7 holds. We show that

s_fabf

$ =) )t — te-1)
k=1

<e€ 1)

for every Riemann sum

associated with a partition P having mesh(P) < é. Clearly we have
L(f, P) < 8 < U(f, P), so (1) follows from the inequalities

b
U(f, P) < L(f,P)+e§L(f)+e=/ f+e
a
and
b
L(f,P) > U(f,P) —e > U(f)—e:/ e
a
This proves (1); hence f is Riemann integrable and

Rfabf=fabf.

Now suppose that f is Riemann integrable in the sense of Def-
Inition 32.8, and consider ¢ > 0. Let § > 0 and r be as given in
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Definition 32.8. Select any partition

P = N el s e e B

with mesh(P) < §, and for each k = 1,2, ..., n, select x; in [tx—1,
so that

f(xx) < m(f, [te—1, t]) + €.
The Riemann sum S for this choice of x;'s satisfies
S < L(f,P)+ €(b — a)
as well as
|S—7| < €.
It follows that
L= L(f,P)=8S—€(b—a) >r—ec—€b—a).

Since e is arbitrary, we have L(f) > r. A similar argument show:
that U(f) < r. Since L(f) < U(f), we see that L(f) = U(f) = r. Thi
shows that f is [Darboux] integrable and that

fabf=r=72fabf-

Exercises o
32.1. Find the upper and lower Darboux integrals for f(x) = x* on tk
interval [0, b]. Hint: Exercise 1.3 and Example 1 in §1 will be usefi

*32.2. Let f(x) = « for rational x and f(x) = 0 for irrational x.

.

(a) Calculate the upper and lower Darboux integrals for f on tk
interval [0, b]. 4

(b) Is f integrable on [0, b]?

-32.3. Repeat Exercise 32.2 for g where g(x) = »* for rational x and g(x) ‘>
for irrational x. '

32.4. Supply the induction argument needed in the proof of Lemma 3
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32.5. Use Exercise 4.8 to prove Theorem 32.4. Specify the sets S and T
in this case.

32.6. Letf be abounded function on [a, b]. Suppose there exist sequences
(Uy) and (L) of upper and lower Darboux sums for f such that

lim(U, — L,) = 0. Show f is integrable and fabf = lim U, = lir B!

32.7. Let f be integrable on [a, b], and suppose that g is a function on
[a, b] such that g(x) = f(x) except for finitely many x in [a, b]. Show
that g is integrable and that fah § = fab g.

32.8. Show that if f is integrable on [a, b], then f is integrable on every
interval [c,d] € [a, b].

§33 Properties of the Riemann Integral

In this section we establish some basic properties of the Riemann
integral and we show that many familiar functions, including piece-
wise continuous and piecewise monotonic functions, are Riemann
integrable.

A function is monotonic on an interval if it is either increasing or
decreasing on the interval; see Definition 29.6.

33.1 Theorem.
Every monotonic function f on [a, b] is integrable.

Proof

We assume f is increasing on [a, b] and leave the decreasing case to

Exercise 33.1. Since f(a) < f(x) < f(b) for all x € [a, b], f is clearly

bounded on [a, b]. In order to apply Theorem 32.5, let ¢ > 0 and

select a partition P = {a =ty < t; < --- < t, = b} with mesh less
€

than fo—-r@- Then

UG, PY— L, P) = D IMUf, [ter, ti]) = mCF, [thct, 8D - (t — tier)
k=1

= D [f(%) = F(tx-1)] - (t — tem1)-

k=1
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Since mesh(P) < €, we have

UG, P) = L(f, P) < Y_[f () = f(te-1)] - m
k=i

€
—[f(b)—f(a)]‘m—f-

Theorem 32.5 now shows that f is integrable.

33.2 Theorem.
Every continuous function f on [a, b] is integrable.

Proof
Again, in order to apply Theorem 32.5, consider € > 0. Since f
uniformly continuous on [a, b] by Theorem 19.2, there exists § >
such that 3

: €
xy€[ab] and |x—y| <é imply |[f(x)—f(y)l < P
Consider any partitionP={a=1t; < t; < -+ < t, = b} where
maxlte =ty k=1, 2.5, 1) <0,

Since f assumes its maximum and minimum on each inter
[tk—1, tx] by Theorem 18.1, it follows from (1) that

=
b—a

M(f, [tk-1, t]) — m(f, [te—1, t]) <

for each k. Therefore we have

n

€
U B) <= Lgf, P)'=
;b—a

(tk — tr—1) = €
and Theorem 32.5 shows that f is integrable.

33.3 Theorem.
Let f and g be integrable functions on [a, b], and let ¢ be a real nu
Then

(i) cf is integrable and f: f =c fabf ;
(ii) f + g is integrable and [(f + g) = fabf 2y fab &
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Exercise 33.8 shows that fg, max(f, g) and min(f, ) are also inte-
grable but there are no formulas giving their integrals in terms of

ffandfg

Proof
The proof of (i) involves three cases: ¢ > 0, ¢ = —1, and ¢ < 0. Of
course, (i) is obvious for ¢ = 0.

Let ¢ > 0 and consider a partition

P=da=1t; &t < 4~ =4.=Db)}
of [a, b]. A simple exercise [Exercise 33.2] shows that
M(cf, [te—1, t]) = ¢ - M(f, [tk-1, tx])

for all k, so U(cf, P) = ¢ - U(f, P). Another application of the same
exercise shows that U(cf) = ¢ - U(f). Similar arguments show that
L(cf) = ¢ - L(f). Since f is integrable, we have L(cf) = ¢ - L(f) =
¢- U(f) = U(cf). Hence cf is integrable and

b b
fcf:U(cf):c-U(fj:cff, ¢ > 0. 1)

Now we deal with the case ¢ = —1. Exercise 5.4 implies that
U(—f, P) = —=L(f, P) for all partitions P of [a, b]. Hence we have

U(—f) = inf{U(—f, P) : P is a partition of [a, D]}
= inf{—L(f, P) : P is a partition of [a, D]}
= —sup{L(f, P) : P is a partition of [a, b]} = —L(f).

Replacing f by —f, we also obtain L(—f) = —U(f). Since f is inte-
grable, U(—f) = —L(f) = —U(f) = L(—f); hence —f is integrable

and
[en=-[7r @

The case ¢ < 0 is handled by applying (2) and then (1) to —c:

fabcf= —fab(-c)f=—(—c)fabf=cfabﬁ
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To prove (ii) we will again use Theorem 32.5. Let € > 0. By
Theorem 32.5 there exist partitions P, and P; of [a, b] such that

Uulf,p)-L({f,A) < % and U(g,P;)—L(g P,) < %
Lemma 32.2 shows that if P = P; U P,, then
U(f,P) — L(f, P) < % and U(g,P)— L(g P) < % 3)
For any subset S of [a, b], we have |
inf{f(x) + g(x) : x € §} > inf{f(x) : x € 8} + inf{g(x) : x € §},
ie., m(f +g,8) = m(f, S) + m(g, S). It follows that
L(f +g,P) = L(f,P) + L(g, P)
and similarly we have
U(f + g, P) < U(f, P) + U(g, P).
Therefore from (3) we obtain
Uf +8P)—L(f +8P) < e

Theorem 32.5 now shows that f + g is integrable. Since
b
f F+8)=U(f+8)=<U(f +gP) = U(f,P)+ U(g P)
a

b b
<L(ﬁP)+L(g,P)+€SL(f)+L(g)+€=f f+/8

and
f (f+8) =L(f+8) = L(f +8 P) = L(f, P) + L(g, P)

> U(fP)+U(g,P)—e>U(f)+U(g)—e—/ f+f

fab(f+g)=fabf+fabg

we see that
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33.4 Theorem.
If f and g are integrable on [a, b] and if f(x) < g(x) for x € [a, b), then

fabf = fabg‘

Proof

By Theorem 33.3, h = g — f is integrable on [a, b]. Since h(x) > 0 for
all x € [a, b), it is clear that L(h, P) > 0 for all partitions P of [a, b], so
f ab h = L(h) > 0. Applying Theorem 33.3 again, we see that

b b b
[o-fr=[re0
a a a -
33.5 Theorem.

If f is integrable on [a, b), then |f| is integrable on [a, b] and

fabf < /ab 1. )
Proof

This follows easily from Theorem 33.4 provided we know |[f] is
integrable on [a, b]. In fact, —|f| < f < |f]; therefore

—/ablﬂsfabfsfabw,
which implies (1).

We now show that [f] is integrable, a point that was conveniently
glossed over in Exercise 25.1. For any subset S of [a, b], we have

M(If1, 8) = m(If1,8) = M(f, ) — m(f, ) (2)
by Exercise 33.6. From (2) it follows that
U(lfl, P) = L(If1, P) = U(f, P) = L(f, P) 3

for all partitions P of [a, b]. By Theorem 32.5, for each € > 0 there
- exists a partition P such that

U(f,P) — L(f,P) < €.

In view of (3), the same remark applies to |f], so |f| is integrable by
Theorem 32.5. ]
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33.6 Theorem.
Let f be a function defined on [a, b]. If a < ¢ < b and f is integrable
[a, c] and on [c, D), then f is integrable on [a, b] and \

/abf=f:f+/cbﬁ
Proof

Since f is bounded on both [a, c] and [c, b), f is bounded on [a,
In this proof we will decorate upper and lower sums so that it
be clear which intervals we are dealing with. Let € > 0. By
orem 32.5 there exist partitions P; and P, of [a,c] and [c, b] su
that

USCE Py — LE(F, Py) < % and UY(f, P,) — LV(f, Py) < %
The set P = P, U P, is a partition of [a, b], and it is obvious that
UL(f, P) = Ug(f, P) + UZ (f, P2)
with a similar identity for lower sums. It follows that
UL(f, P) — LU(f, P) < ¢,
so f is integrable on [a, b] by Theorem 32.5. Also (1) holds becau

b
/foﬂmﬁ=W“H)+W@5)
c b
<LZ(ﬁP1)+L?(ﬂP2)+€Sff+f f+e

and similarly fabf > [Cf+ fcbf —€

Most functions encountered in calculus and analysis are cover
by the next definition. However, see Exercises 33.10-33.12.

33.7 Definition. i
A function f on [a, b] is piecewise monotonic if there is a partition
P=ia =ity < 3TN <EE =ik

of [a, b] such that f is monotonic on each interval (¢, tx). The fu
tion f is piecewise continuous if there is a partition P of [a, b] such
f is uniformly continuous on each interval (t;_;, ti).
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33.8 Theorem.
If f is a piecewise continuous function or a bounded piecewise monotonic
function on [a, D), then f is integrable on [a, b].

Proof

Let P be the partition described in Definition 33.7. Consider a fixed
interval [tx—1, tx]. If f is piecewise continuous, then its restriction to
(tx—1, tx) can be extended to a continuous function f on [tx_1, tx] by
Theorem 19.5. If f is piecewise monotonic, then its restriction to
(fx—1, tx) can be extended to a monotonic function f; on [tx—y, tx]; for
example, if f is increasing on (tx—, tx), simply define

fe(tk) = sup{f (%) : x € (tx-1, t)}

and

fk(tk—l) = inf{f(x) X E (tl1, tk)}.

In either case, fi is integrable on [tx—, tx] by Theorem 33.1 or 33.2.
Since f agrees with fi on [t;—1, tx] except possibly at the endpoints,
Exercise 32.7 shows that f is also integrable on [tx—;, tx]. Now Theo-
rem 33.6 and a trivial induction argument show that f is integrable
on [a, b]. L]

We close this section with a simple but useful result.
33.9 Intermediate Value Theorem for Integrals.

If f is a continuous function on [a, b], then for at least one x in [a, b] we
have

1 b
foy= g s
Proof

By Theorem 18.1, the function f assumes its maximum value M and
its minimum value m on [a, b]. Since

1 b
m < / f=<Mm,
b—alJ,
the present theorem follows from the Intermediate Value Theo-
rem 18.2 for continuous functions. |
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Exercises
33.1.

33.2.

33.3.

33.4.

33.5.
33.6.

33.7.

33.8.

33.9.

Complete the proof of Theorem 33.1 by showing that a decreasi
function on [a, b] is integrable.

This exercise could have appeared just as easily in §4. Let 8 be;:
a nonempty bounded subset of R. For fixed ¢ > 0, let ¢S = {cs :
s € §}. Show that sup(cS) = ¢ - sup(S) and inf(cS) = ¢ - inf(8).

A function f on [a, b] is called a step-function if there exists a par-
tition P = {a = ug < U3 < -+ < Uy, = b} of [a,b] such that f is
constant on each interval (y-1, %), say f(¥) = ¢; for x in (-1, %).

(a) Show that a step-function f is integrable and evaluate | ab b7

(b) Evaluate the integral f: P(x)dx for the postage-stamp func-
tion P in Exercise 17.10.

Give an example of a function f on [0, 1] that is not integrable for
which |[f| is integrable. Hint: Modify Example 2 in §32.

Show that | [ **sin®(e*)dx| < 16

Prove (2) in the proof of Theorem 33.5. Hint: For xg,yo € S, we
have |f(x0)| = If (o)l < If (*0) = f(¥o)| = M(f; §) — m(f, S).

Let f be a bounded function on [a, b], so that there exists B > 0
such that |f(x)| < B for all x € [a, b].

(a) Show that
U(f*,P) - L(f*, P) < 2B[U(f, P) — L(f, P)]

for all partitions P of [a, b]. Hint: f(x)* — f(y)* = [f(*) +f O
Fe) = f@)l ‘

(b) Show that if f is integrable on [a, b], then f? also is integrable
on [a, b].

Let f and g be integrable functions on [a, b].

(a) Show that fg is integrable on [a, b). Hint: Use 4fg = (f +g)* . 
(f — )% see Exercise 33.7.

(b) Show that max(f, g) and min(f, g) are integrable on [a, b). Hint:
Exercise 17.8.

Let (f,) be a sequence of integrable functions on [a, b], and sup-
pose that f, — f uniformly on [a, b]. Prove that f is integrable a
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33.10.

33.11.

33.12.

33.13.

33.14.

§34

that

f fr=hm f,,
n—>oo
Compare this result with Theorem 25.2.

Let f(x) = sin 1 for x # 0 and f(0) = 0. Show that f is integrable
on [—1, 1]. Hint: See the answer to Exercise 33.11(c).

Let f(x) = x sgn(sin 1) for x # 0 and f(0) = 0.

(a) Show that f is not piecewise continuous on [—1, 1].
(b) Show that f is not piecewise monotonic on [-1,1].
(c) Show that f is integrable on [—1, 1].

Let f be the function described in Exercise 17.14.

(a) Show that f is not piecewise continuous or piecewise
monotonic on any interval [a, b].

(b) Show f is integrable on every interval [a, b] and that [ f = 0.

Suppose f and g are continuous functions on [a, b] such that | ab fo=
f: g. Prove that there exists x in [a, b] such that f(x) = g(x).

(a) Suppose f and g are continuous functions on [a, b] and that
g(x) > 0 for all x € [a, b]. Prove that there exists x in [a, b]
such that

b b
fa f(oet)dt = f) / g(t)dt

(b) Show that Theorem 33.9 is a special case of part (a).

Fundamental Theorem of Calculus

There are two versions of the Fundamental Theorem of Calculus.
Each says, roughly speaking, that differentiation and integration are
inverse operations. In fact, our first version [Theorem 34.1] says that
“the integral of the derivative of a function is given by the function,”
and our second version [Theorem 34.3] says that “the derivative of
the integral of a continuous function is the function.” It is somewhat
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traditional for books to prove our second version first and use it |
prove our first version, although some books do avoid this approa:
F. Cunningham, Jr. [9] offers some good reasons for avoiding thi
traditional approach:

(a) Theorem 34.3 implies Theorem 34.1 only for functions g whost
derivative g’ is continuous; see Exercise 34.1.
(b) Making Theorem 34.1 depend on Theorem 34.3 obscures the
fact that the two theorems say different things, have differen
applications, and may leave the impression that Theorem 34.3
the fundamental theorem.
(c) The need for Theorem 34.1 in calculus is immediate and easily
motivated.

In what follows, we say a function h defined on (a, b) is integrable
on [a,b] if every extension of h to [a,b] is integrable. In view of
Exercise 32.7, the value [ ab h will not depend on the values of
extensions at a or b.

34.1 Fundamental Theorem of Calculus I.
If g is a continuous function on [a, b] that is differentiable on (a, b), a
if g’ is integrable on [a, b], then
; ;

[ ¢ =s0r-s@. (1)

Proof
Let € > 0. By Theorem 32.5, there exists a partition P = {a = fy
ti < --- < t, = b} of [a, b] such that

U(g,P)— L(g,P) < . (2)

We apply the Mean Value Theorem 29.3 to each interval [t ti] €
obtain xx € (tx—1, tx) for which {

(tk — te—-1)8' (%) = g(t) — 8(tk-1)-

Hence we have

g(b) — g(@) = Y _[8(tx) — 8(ti—1)] = Y &'(xi)(tk — ti-1).
k=1 k=1
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It follows that
L(g', P) < g(b) — g(a) < U(g', P); 3)

see Definition 32.1. Since
b
L(g,P) < / g =U(,p),
a
inequalities (2) and (3) imply that

< €L

b
fa ¢ — [e(b) — (@]

Since € is arbitary, (1) holds. L]

The integration formulas in calculus all rely in the end on
Theorem 34.1.

Example 1
If g(x) = f—-ﬁ, then g'(x) = x", so

b prtl n+1 prtl _ gntl
[ X dx = g - )
a 1 bl Uil 7 {1
In particular,
b b3 ]
f 8 dea ol
d 3

Formula (1) is valid for any powers n for which g(x) = % is

defined on [a, b]. See Examples 3 and 4 in §28 and Exercises 29.15
and 37.5. For example,

b
2
/ﬁdng[bm—ae‘/z] for 0<a<b.
a

34.2 Theorem [Integration by Parts].
If u and v are continuous functions on [a, b] that are differentiable on
(a,b), and if u' and V' are integrable on [a, b), then

b b
f u(x)V' (x) dx + / W' (X)v(x) dx = u(byu(b) — u(ayv(a). (1)
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Proof
Letg = uv; then g’ = wv’+u'v by Theorem 28.3. Exercise 33.8 sho
that g’ is integrable. Now Theorem 34.1 shows that

b
[ &) dx = g(b) — 8(@) = u(byo(b) — u@W(a),
so (1) holds. -

]

Note that the use of Exercise 33.8 above can be avoided if v’ and
v are continuous, which is normally the case.

Example 2 \
Here is a simple application of integration by parts. To calculate
Jy x cos xdx, we note that the integrand has the form u(x)v/(x) wheru

u(x) = x and v(x) = sinx. Hence

f”xcosxdx s u(ﬂ)v(n)—u(O)v(O)—fﬂ l-sinxdx = — f” sinxdx =
0 0 0 l

In what follows we use the convention [ f = — [*f fora > b,

34.3 Fundamental Theorem of Calculus II.
Let f be an integrable function on [a, b]. For x in [a, b], let

Fx) = f f()adt.

Then F is continuous on [a, b]. If f is continuous at x, in (a, b), then

is differentiable at xy and 4
F'(%0) = f (x0)-

Proof

Select B > 0 so that |[f(x)| < B for all x € [a,D]. If x,y € [a,b]

[x —yl < § where x < y, say, then

/xyf(t)dt 5/j|f(t)|dt5/;y3dt=3(y-x)<-

This shows that F is [uniformly] continuous on [a, b].

IE(y) — F)l =
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Suppose that f is continuous at x, in (a, b). Observe that

PR 1
X —Xp X — X0 Jx,
for x # xo. The trick is to observe that

1 X
X_XO/XO Fxo) dt

f(x0) =
and therefore

F(x) — f(*0) 1 / ¥
s DT B e t) — f(x0)] dt. 1
e i = T O — f] )
Let € > 0. Since f is continuous at xg, there exists § > 0 such that
te(a,b) and |t—2x| <8 imply [f(t)—f(x0)l < €

see Theorem 17.2. It follows from (1) that

F(x) — F(x)

X=X

for x in (a, b) satisfying |x — x9| < §; the cases ¥ > Xy and x < xp
require separate arguments. We have just shown that

i FG) = F(xo)
X—>Xo X — X
In other words, F'(x) = f(xo)- =]

— f(*0)

<€

= f(*o0)-

A useful technique of integration is known as “substitution.” A
more accurate description of the process is “change of variable.” The
technique is the reverse of the chain rule.

34.4 Theorem [Change of Variable].

Let u be a differentiable function on an open interval ] such that u' is
continuous, and let I be an open interval such that u(x) € I forallx € J.
If f is continuous on I, then f o u is continuous on ] and

b u(b)
| routmea= [ raa M
a u(a)

fora, b€ ].
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Note that u(a) need not be less than u(b), even ifa < b.

Proof
The continuity of f o u follows from Theorem 17.5. Fix ¢ € I and |
F(u) = [’ f(t)dt. Then F'(u) = f(u) for all u € I by Theorem 34.
Letg = Fou. By the Chain Rule 28.4, we have g'(x) = F'(u(x))-v/(¥)
f(u(x)) - ¥'(x), so by Theorem 34.1

b b
f £ o UG () de = f g9 dx = g(b) — g(a) = F(u(b)) — F(u(@

u(b) u(a) u(b)
= f(tdt — f f(tat = f(t)at.

c u(a)

This proves (1).

Example 3
Let g be a one-to-one differentiable function on an open interval
Then J = g(I) is an open interval, and the inverse function g~
differentiable on J by Theorem 29.9. We show

b 2(b)
f g dx + f g (u) du = be(b) — ag(@)
a g2(a)

fora,b € I.
We put f = g~! and u = g in the change of variable formula
obtain {

b i : 8(b) i
fg 0 g(xg (x)dx = A g (Wdu. 3
a g(a

Since g7! o g(x) = x for x € I, we obtain

g(b) b
f g () du = f %8/ () dx.
g a

Now integrate by parts with u(x) = x and v(x) = g(x):

g(b) b
f g ' (w) du = bg(b) — ag(a) — f g(x)dx.
8(a) a

This is formula (1).
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Exercises

34.1. Use Theorem 34.3 to prove Theorem 34.1 for the case that g’
is continuous. Hint: Let F(x) = [ g/; then F' = g'. Apply
Corollary 29.5.

34.2. Calculate
a) limeol [Fe dt limyo L [3"e? at.
(@ xJo ) nJ3

34.3. Letf be defined as follows: f(t) = 0fort < 0; f(t) =tfor0 <t <1;
f(H)=4fort > 1.

(a) Determine the function F(x) = [; f(t)dt.
(b) Sketch F. Where is F' continuous?

(c) Where is F differentiable? Calculate F’ at the points of
differentiability.

34.4. Repeat Exercise 34.3 for f where f(t) =t fort < 0; f(t) = t* + 1
for0<t<2;f(t)y=0fort > 2.

34.5. Let f be a continuous function on R and define
x+1
E@X) = / f(Hdt for xeR.
x—1

Show that F is differentiable on R and compute F’.

34.6. Let f be a continuous function on R and define

sinx

G(x) = s f(H)dt for xeR.

Show that G is differentiable on R and compute G'.
34.7. Use change of variables to integrate fol xv/1 — x% dx.
34.8. (a) Use integration by parts to evaluate

1
/ xarctan x dx.
0

Hint: Let u(x) = arctan x, so that «/(x) = —

1+x2°

(b) If you used vz(x) = % in part (a), do the computation again
with v(x) = 2. This interesting example is taken from J. L.
Borman [6].

34.9. Use Example 3 to show [)'” arcsinxdx = % + %3 — 1.
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34.10. Let g be a strictly increasing continuous function mapping [0,
onto [0,1]. Give a geometric argument showing fol g(x) dx
fo g \(wdu= 1.

34.11. Suppose that f is a continuous function on [a, b] and that f(x) ',
for all x € [a, b]. Show that iffabf(x)dx =0, then f(x) =0fora
in [a, D). ‘

34.12. Show that if f is a continuous real-valued function on [a, b] sath

fying f f(®)g(x)dx = 0 for every continuous function g on [a,
then f(x) = 0 for all x in [a, b].

§35 * Riemann-Stieltjes Integrals

In this long section we introduce a useful generalization of the Ril
mann integral. In the Riemann integral, all intervals of the sam
length are given the same weight. For example, in our definition
upper sums

U(f, P) = ) M(f, [te—1, &]) - (t — te-1),
k=i

the factors (tx — tx—1) are the lengths of the intervals involved. In &
plications such as probability and statistics, it is desirable to mod\
the definition so as to weight the intervals according to some I
creasing function F. In other words, the idea is to replace the facto
(tx — tx—1) in (*) by [F(tx) — F(tx—1)]- The Riemann integral is, the
the special case where F(t) = t for all t.

It is also desirable to allow some points to have positive wei
This corresponds to the situations where F has jumps, i.e., whi
the left-hand and right-hand limits of F differ. In fact, if (ex)
sequence of positive numbers for which ¢k < oo and if (uy)
sequence in R, then the sums

> e ()

k=1
can be viewed as a generalized integral for a suitable F
cise 36.14]. In this case, F has a jump at each uy. '
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The traditional treatment, in all books that I am aware of, re-
places the factors (tx — tx—1) in (*) by [F(tx) — F(tx—1)] and develops
the theory from there, though some authors emphasize upper and
lower sums while others stress generalized Riemann sums. In this
section, we offer a slightly different treatment, so

Warning. Theorems in this section do not necessarily correspond
to theorems in other texts.

We deviate from tradition because: (a) Our treatment is more
general. Functions that are Riemann-Stieltjes integrable in the tra-
ditional sense are integrable in our sense [Theorem 35.20]. (b) In
the traditional theory, if f and F have a common discontinuity,
then f is not integrable using F. Such unfortunate results disap-
pear in our approach. We will show that piecewise continuous and
piecewise monotonic functions are always integrable using F' [The-
orem 35.17]. We also will observe that if F is a step-function, then
all bounded functions are integrable; see Example 1. (c) We will give
a definition involving Riemann-Stieltjes sums that is equivalent to
our definition involving upper and lower sums [Theorem 35.25]. The
corresponding standard definitions are not equivalent.

Many of the results in this section are straightforward general-
izations of results in §§32 and 33. Accordingly, many proofs will be
brief or omitted.

35.1 Notation.

We assume throughout this section that F' is an increasing function
on a closed interval [a, b]. To avoid trivialities we assume F(a) <
F(b). All left-hand and right-hand limits exist; see Definition 20.3
and Exercise 35.1. We use the notation

F(t™) = lim F(*) and F(t) = lim F().
"o < x—>tt
For the endpoints we decree
F(a")=F(a) and F(b")=F(D).

Note that F(t7) < F(t™) for all ¢ € [a, b]. If F is continuous at t, then
F(t™) = F(t) = F(t1). Otherwise F(t~) < F(t*) and the difference
F(t*t) — F(t7) is called the jump of F at t. The actual value of F(t) at
jumps t will play no role in what follows.
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In the next definition we employ some of the notation established
in Definition 32.1. i

35.2 Definition.
For a bounded function f on [4, b] and a partition P = {a =ty < t; <
- < t, = b} of [a, D], we write

Jr(hP) =Y _f(t) - [F() — F(t))-

k=0
The upper Darboux-Stieltjes sum is

Ur(f, P) = Jr(f, P) + Y M(f, (te-1, ) - [F(t5) — F( )]
k=1
and the lower Darboux-Stieltjes sum is
Le(f, P) = Jr(f, P) + )_ m(f, (tx-1, ) - [F(t5) — F(,)]
k=1

These definitions explicitly take the jump effects of F into account,
Note that o

Ue(f, P) = Le(f, P)
& Z[M(f (te-1, 1)) — m(f, (tr—r, ED]F ) — F(t)]

and
m(f, [a, b]) - [F(b) — F(a)] < Lr(f, P) < Ur(f, P)
< M(f, [a, b)) - [F(b) — F(a)].
In checking (2), note that
IR — P+ Z[F(tk )= F(6E)]
Tal FitH) —F(t) = F(b+) F(a™) = F(b) — F(a).
The upper Darboux-Stieltjes integral is
Ur(f) = inf{Ug(f, P) : P is a partition of [a, b]}
and the lower Darboux-Stieltjes integral is
Lp(f) = sup{Lr(f, P) : P is a partition of [a, b]}.
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Theorem 35.5 will show that Ly(f) < Ug(f). Accordingly, we say f is
Darboux-Stieltjes integrable on [a, b] with respect to F' or, more briefly,
F-integrable on [a, b], provided Lr(f) = Ur(f); in this case we write

b b
fde:/f(x)dF(x)zLF(f)zUp(f).

Example 1

For each u in [a, b], let ], be an increasing step-function with jump
1 at u. For example, we can let

0/ for' <t
]“(t)_{l for t>u,

for u > a, and we can let

0 lor” t'=a,
I“(t)_{l for t > a.

Then every bounded function f on [a, b] is J,-integrable and

/ " = £

More generally, if uy, uy, ..., un, are distinct points in [a, b] and if
1,Cz, - - ., Cm are positive numbers, then

m
AR Z Gl
j=1

y
14 -—
e
=L B PO 4
27 F=Z ciJuj
=1

T 0 f —= f } x
a 1 2 3 b

FIGURE 35.1
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is an increasing step-function with jumps ¢; at u;. See Figure 35.1 |
a special case. Every bounded function f on [a, b] is F-integrable ai

b m
[ rar=Yq s

a )=1
To check (1), let P be the partition of [a, b] consisting of a, b and &
Uy, Uy, - . ., Uy. For this computation we may assume, without loss 0
generality, thata = u; < Uz < -+ < uy, = b. Then F(u)+ )—F(uyN
gforj=1,2,.. ., mand F(u') - F(u,) = 0 forj = 2,35
Therefore

m
Ur(f,P) = Le(£,P) = Jr(f, P) = D () ¢

j=1
for any bounded function f on [a,b]. In view of Theorem 35.5, |
follows that

Ur(f) = Le(f) = Y _f(w) - c;
=1

hence f is F-integrable and (1) holds.
Example 2 |
We specialize Example 1 tothe case u; =0, uz =1, uz3 = 2, ug = 3
€1 =¢4 = 3,0 =3 = 3. Thus we must have a < 0 and b > 3; set
Figure 35.1. For any bounded function f on [a, b], we have

X

¥ 1 3 3 1
[ rar =g+ gar+ g+ .

35.3 Lemma. ;
Let f be a bounded function on [a, b, and let P and Q be partitions o
[a, b] such that P € Q. Then

Le(f, P) = Lr(f, Q) = Ur(f, Q) = Uk(f, P).

Proof
We imitate the proof of Lemma 32.2 down to, but not including
formula (3). In the present case, the difference Lg(f, Q) — Lg(f, I
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equals

f@) - [Fh) — F )] + m(f, (te—1, w) - [F(u™) — F(t_,)]
+m(f, (u, &) - [F(tg) — F(u™)] 3)
—m(f, (te—1, t6)) - [F(t; ) — F(5))],

and this is nonnegative because

m(f, (tx-1, ) - [F () — F(t_,)]
= m(f, (tx—1, 1)) - [F(tc) — Fh) + F(uh) — Fu™)
+F(u) — F(t5.)]
< m(f, (u, &) - [F(t) — F@h]+ f(w) - [F(ut) — Fu )]
+m(f, (tx—1,w)) - [Fw™) — F(t;_))]. -

35.4 Lemma.
If f is a bounded function on [a, b] and if P and Q are partitions of [a, b),
then Lr(f, P) < Ur(f, Q).

Proof
Imitates the proof of Lemma 32.3. ]

35.5 Theorem.
For every bounded function f on [a, b], we have Lr(f) < Ur(f).

Proof
Imitates the proof of Theorem 32.4. |

35.6 Theorem.
A bounded function f on[a, b]is F-integrable if and only if for each € > 0
there exists a partition P such that

Up(ﬁ P) -—Lp(f; P) < €.

Proof
Imitates the proof of Theorem 32.5. ]

We next develop analogues of results in §33; we return later to
generalizations of items 32.6-32.9. We begin with the analogue of
Theorem 33.2. The analogue of Theorem 33.1 is true, but its proof
requires some preparation, so we defer it to Theorem 35.16.
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35.7 Theorem.
Every continuous function f on [a, b] is F-integrable.

Proof
To apply Theorem 35.6, let € > 0. Since f is uniformly continuo
there exists § > 0 such that p

x,y€lab] and |x—y| <8 imply |f(x)—f(y)l < Fb) - F(a

Just as in the proof of Theorem 33.2, there is a partition P of [a, |
such that

M(f, (te—1, tx)) — m(f, (tx-1, tx)) < m

for each k. Hence by (1) of Definition 35.2 we have

n

Ur(f,P) — Le(f;P) < 3 .

k=1

=) - FE e
F(b)—F(a)" ¥ k=140

Theorem 35.6 now shows that f is F-integrable.

35.8 Theorem.
Let f and g be F-integrable functions on [a, b], and let ¢ be a real n
Then
(i) cf is F-integrable and fab(cf) dF = ¢ j;b f dF;
(ii) f + g is F-integrable and ['(f + g)dF = [’ f dF + [’ gdF.

Proof
Imitates the proof of Theorem 33.3, using Theorem 35.6 instead o
Theorem 32.5.

35.9 Theorem.
Iff and g are F-integrable on [a, b] and if f (x) < g() for x € [a, b), t

[Prar < [’ gaF.

Proof
Imitates the proof of Theorem 33.4.
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35.10 Theorem.
If f is F-integrable on [a, b), then |f| is F-integrable and

fahde‘ sf: 1 dF.
Proof

Imitates the proof of Theorem 33.5 and uses formula (1) of
Definition 35.2. ]

35.11 Theorem.
Let f be a function defined on [a, b]. If a < ¢ < b and f is F-integrable
on [a, c] and on [c, b], then f is F-integrable on [a, b] and

_/;bdezf:de+‘/c.bde. €8]
Proof

Imitates the proof of Theorem 33.6. Note that an upper or lower sum
on [a, c] will include the term f(¢)[F(c) — F(c~)] while an upper or
lower sum on [c, b] will include the term f(c)[F(ct) — F(c)]. =

The next result clearly has no analogue in §32 or §33.

35.12 Theorem.
Let Fy and F, be increasing functions on [a, b]. If f is Fi-integrable and
Fy-integrable on [a, b] and if ¢ > 0, then f is cFi-integrable, f is (F1 +
Fy)-integrable,
b b
[ raery=c [ srar, M
a a

and

/;bfd(F1+Fz)=fabdel+fabdez. )

Proof
From Theorem 20.4 we see that

(F + F)(thH) = lirg [Fi(X) + F2(%)] = lirg Fi(%) + 1ir{1+ Fy(X)
X X=> =

=Rt + Ft™)
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with similar identities for (F; +F;)(t ), (cF1)(t") and (cFy)(t ™). Henc:
for any partition P of [a, b], we have '

UF1+F2(f;P) = UF,(f;P) + UFZO‘; £) (
Lr+r(fi P) = Lr,(f, P) + Lr,(f, P), -

Ucr, (f, P) = cUr,(f, P) and Lr, (f, P) = cLg,(f, P). It is now clear that
f is cFi-integrable and that (1) holds. To check (2), let € > 0. By
Theorem 35.6 and Lemma 35.3, there is a single partition P of [4, D)
so that both

€ €
UF;(fyP) —Lpl(f;P) < E and Upz(f; P)—Lpz(f; P) < 5
Hence by (3) we have

UF1+F2(f; P) —LF|+F2(f;P) < €.

This and Theorem 35.6 imply that f is (F;, + F3)-integrable.
identity (2) follows from

{

b
f fd(F1 + F3) < Ur+r,(f, P) < Lr+r,(f, P) +€
a

b b
=Ln D)+ LaGP) +e< [ rar+ [ farte

and the similar inequality

e

/;bfd(F1+F2) >/abde1+£bdez—e.

Example 3 -
Let (u,) be a sequence of distinct points in [a, b], and let (cn) b
a sequence of positive numbers such that ) ¢, < oo. Using th
notation of Example 1, we define

Eat= icn]un-

n=1

Then F is an increasing function on [a, b]; note that F(a) =
and F(b) = Y o> ¢, < oo. Every bounded function f on [a,b
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F-integrable and

b 00

[ rar =3 ason. o
a n=1

To verify (1), fix f and let B > 0 be a bound for [f|: |f(x)| < B

for all x € [a,b]. Consider € > 0 and select an integer m so that

o0 €
n=m+41 On < 35 BT

m )
F, = ch]un and F; = Z Cnlu,
n=1 n=m+1

so that F = F; + F,. As noted in Example 1,

b m
[ £am =3 e @
a n=1
Since

Fy(b) — Fy(@) = Fa(b) = Y cn < é

n=m+1

inequality (2) in Definition 35.2 leads to

—ZsLFz(f’P)SUFz(fvP)S (3)

W m

hence
Un(f,P) ~ Le(,P) <
for all partitions P of [a, b). If we select P so that
Ur,(f,P) — Ls,(f, P) < %

then (3) in the proof of Theorem 35.12 and the identity F = F; + F;
imply

UF(f; P) e Lp(f; P) < E.

Theorem 35.6 now shows that f is F-integrable. From (3) we quickly

infer that
b
f fdr;
a

<3 @)
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By Theorem 35.12 and (2) we have

‘/a‘bde i fabde1+/abdez - gcnf(un)—n-_ir:;rl cnf(un)+fabfdpz,

Since
o0 o0
€
D el Un)| BB Do % 7
n=m+1 n=m+1

we use (4) to conclude that

b o0
[ £ =3 cuftun
a n=}l

Since € is arbitrary, (1) is verified.

€
e
2

The next theorem shows that F-integrals can often be cal¢
lated using ordinary Riemann integrals. In fact, most F-inte
encountered in practice are either covered by Example 3 or thi§
theorem.

35.13 Theorem. -
Suppose that F is differentiable on [a,b] and that F' is continuous on
[a, D). If f is continuous on [a, b], then

/ fpar = § oo o) . 0

Proof ,
Note that f F’ is Riemann integrable by Theorem 33.2, and f is F«
integrable by Theorem 35.7. By Theorems 32.5 and 35.6, there is a
partition

PEd = ] < e by = D)
such that
U(fF',P)—L(fF’,P)<§ and U(f,P) — L(f, P) < %

s

By the Mean Value Theorem 29.3 applied to F' on each inter
[tk-1, tx], there exists xx in (tx_1, tx) so that

F(tx) — F(tk-1) = F'(xk)(tk = tx=1);
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hence
> F) - [F(t) = F(tr-1)] = ) FO)F () - (t — te-1). - (3)
k=1 k=1

Since F' is continuous, it has no jumps, so by (3)

Le(fP)<U(fF,P) and L(fF,P) < Ug(f,P).

Now by (2) we have
b € €
/ fdF < Up(f,P) < 5+LF(f,P) < —Z——I—U(fF’,P)
a
€ € 7 3 /
< E+E+L(fF,P)se+~ f(X)F (x)dx

and similarly fab fdr > | ab f(x)F'(x)dx — €. Since € > 0 is arbitrary,
(1) holds. L

An extension of Theorem 35.13 appears in Exercise 35.10.

Example 4

Let F(tf) = 0fort < 0, F(t) =t>*for0 <t < 2,and F(t) = t+5
for t > 2; see Figure 35.2. We can write F = F; + 3J; where F; is
continuous. The function F; is differentiable except at t = 2; the
differentiability of F; at t = 0 is shown in Exercise 28.7. Let f be
continuous on [—3, 3], say. Clearly ffs f dFy = 0. Since F; agrees with
the differentiable function t? on [0, 2], we can apply Theorem 35.13
to obtain

/:del :/Ozf(x)-z:xdxzz‘/;zxf(x)dx.

Similarly we have

/;3de1 =f23f(x)-1dX=f23f(X)dX-

Theorem 35.11 now shows that

'/:del = Zj;zxf(x)dx+/23f(x)dx,
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FIGURE 35.2

and then Theorem 35.12 shows that
3 3 3 2 3
[ rae= [ sar+s [ an=z [ wwact [ reoam+asc
=3 =3 -3 0 2
As a specific example, if f(x¥) = x° then

@ 2 2 1061
fde=2/ x‘*dx+f xdx+ 3-8 =—- =53.05.
-3 0 2 20

For the results in the remainder of the section we need a mo
detailed analysis of increasing functions. Some readers may wish
skip the proofs and move on to the next section. We will write s, 1‘
to signify that (s,) is a nondecreasing sequence converging to s,
sy | s if (s,) is a nonincreasing sequence with limit s.

35.14 Lemma.
Let g be an increasing function on [a, D).
@) Ffn 1 u, then g(u;) 1 g(u).
(i) Ifun | u, then g(ut) | g(u™).

Proof
Suppose u, 1 u and let € > 0; here u € (a, b]. There exists v <
such that v € [a, b] and g(v) > g(u™) —e€. Select N in N so thatn >
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implies u, > v. Then
n > N implies g(u,)>g®) >gu ) —e.
Since g(u,,) < g(u™) for all n, we conclude that g(u,;) 1 g(»™). This

proves (i), and the proof of (ii) is similar. L]

35.15 Lemma.
If g is an increasing function on [a, b] and if € > 0, then there exists a
partition
P={a'=lly < ti /g % < )= b}
such that
gt )—gth ) <e for k=1,2,...,n €))

Proof
First we show that there exists a partition

Qi={a= Sor RS pi<Smi= b}
such that

guH—gu)<e for uéqQ 2
It suffices to show that

S={s€(@b):g(s)—8(s) = ¢

is finite. Select r in N so that re > g(b) — g(a). If S has more than
r — 1 elements, we can select

A vl € g it <h
so that g(t,'(")—g(t,:) >efork=1,2,...,r. But this implies

g(b) —g(@) = g(t) —8(t) = ) _[8(th) — 8(t:)] = 7e > g(b) — g(a).

k=1

So § is finite and Q can be selected satisfying (2).
Next we show there exists § > 0 such that

WU E[si-1,s], u<v, v—u<4§ imply gv)—gu") <e (3

If (3) fails, then for some j there exist sequences (u,) and (v,) in
[8/-1, 8] where uy < Uy, v, — up <  and g(v;) — g(u;}) > e. Passing
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to subsequences, we may suppose that (u,) and (v,) are monotonie
by Theorem 11.3. Let u = lim u,, = lim v,,. To obtain a contradiction,
we consider four cases.

If u, * u and v, 1 u, then by Lemma 35.14 we have g(u,,) =
g(u™) and g(v;,) — g(u™); therefore [g(v,,) — g(u,,)] — 0. Since

g8(Wy) —8(uy) > 8(v) —g(ut) > €

for all n, we have a contradiction.

If u, | u and v, | u, then Lemma 35.14 shows that g(u}) —»
g(u*) and g(v}) — g(u"), so [g(v}) — g(w})] — 0. On the other
hand, for each n we have

W) —awh) = g(v;) — g > ¢,

a contradiction.
The case u, | u and v, 1 u is impossible since this would imply
U<u, < vy <u
Finally, suppose u, 1 uandv, | u.Thens;_; < u < s;; otherwis:
(un) or (v,) would be a constant sequence and we could appeal to ai
earlier case. This time Lemma 35.14 shows that g(u,;) — g(u™) and
g — g(uh), and hence

8(u™) —g(u7) = lim [g(v;) — g(u,)] = liminf(g(v;) — 8(uy )] = &

Since u € Q, this contradicts (2). We have proved (3).

By adding points to the partition Q we can obtain a partitio
P={a=1ty <t <--- < t, = b} such that P D Q and such tha
te—ti1 < 8forallk=1,2,...,n. Ifkisin{1,2,...,n}, both ty_; an
t belong to some [s;-1, 5;], so by (3) we have g(t, ) —g(t{_,) < €.

35.16 Theorem.
Every monotonic function f on [a, b] is F-integrable.

Proof
We may assume f is increasing. Since f(a) < f(x) < f(b) for all.
in [a, b], f is bounded on [a, b]. For € > 0 we apply Lemma 35.15 |
obtain

P=i{ai=tg € i €an:<tys=b)
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where

" €
f&) = f) < Fb) — F(@)

fork=1,2,...,ni8ince

M(f, (te—1, ) = f(t) and  m(f, (te—1, &) = F(5)),

we have

Ur(f, P) — Le(f, P) = 3 _[f(te) — FE_ D] - [F(t) — F(6)))]
k=1

n

S s m[F(t;) ~Ft ) <e

Since e is arbitrary, Theorem 35.6 shows that f is F-integrable. H

35.17 Theorem.
If f is piecewise continuous or bounded piecewise monotonic on [a, b],
then f is F-integrable.

Proof

Just as in the proof of Theorem 33.8, this follows from Theorems
35.7, 35.16 and 35.11, provided we have the following generalization
of Exercise 32.7. =

35.18 Proposition.

If f is F-integrable on [a, b] and g(x) = f(x) except for finitely many

points, then g is F-integrable. Note that we do not claim j;b el =
b

[, gadF.

Proof

An induction argument shows that we may assume g(x) = f(x) ex-
cept for one value x = u in [a, b). For € > 0, Theorem 35.6 shows
that

Up(f; P) - Lp(f; P) 06 (1)

for some partition P = {a = tp < t; < -+ < t, = b}. In view of
Lemma 35.3, we can add u to P without invalidating (1). Thenu = t,
forsome £in {0, 1, 2, ..., n}. The upper sums for f and g are identical
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except for the k = £ term in Jr, so {

Ur(f, P) — Ur(g, P) = f)[F(u") — F(u")] — g@)[F(u*) — F(u )}

The same remark applies to the lower sums, so

Le(f, P) — Lr(8, P) = Ur(f, P) — Ur(8, P).

w!

Therefore

Ur(g, P) — Lr(g, P) = Ur(f, P) — Lr(f, P) < ¢,

so Theorem 35.6 shows that g is F-integrable.

If F; and F;, are increasing functions with continuous derivi
tives, then Theorem 35.13 allows the formula on integration by p.
[Theorem 34.2] to be recast as

b b
f Flsz-l-f deFl=F1(b)Fz(b)—F1(a)F2(a).

There is no hope to prove this in general because if F(t) = 0 fort <
and F(t) =1 for t > 0, then i

1 1
f FdF + f FdF =2 # 1= F(1)F(1) — F(—1)F(-1).
~¥ =1

l

The generalization does hold provided the functions in the in
grands take the middle values at each of their jumps, as we ‘
prove. The result is a special case of a theorem given by Ed
Hewitt [21]. b
35.19 Theorem [Integration by Parts]. :
Suppose that Fy and F, are increasing functions on [a, b] and define

FI(O) = SR+ REH] and F0 = S[F00) + B(D]

I

¥

for all t € [a, b). Then

b b %
f FFdF, + f F} dFy = Fy(b)Fy(b) — Fi(@)Fy(a).

As usual, we decree Fy(b") = Fi(b), Fi(a™) = Fi(a), etc.



§35. * Riemann-Stieltjes Integrals 285

Proof
Both integrals in (1) exist in view of Theorem 35.16. For an € > 0,
there exists a partition

Pi=Mai=ity < ity 'S o0t < 1= B}
such that
Ur,(F3, P) — L, (F}, P) < .

Some algebraic manipulation [discussed in the next paragraph]

shows that

Ur,(FT, P) + Lr, (F3, P) = Fi(b)F(b) — Fi(@)F;(a), 2
so that also

Ur,(F5, P) + Lr,(Ff, P) = Fy(b)F,(b) — F1(a)F3(a). )
It follows from (2) that

b b
f FldF, + f F; dFy < Ug,(F}, P) + Ur(F;, P)
a a
< UFZ(FT' P) Ft Lpl(F;, P) €
= Fi(b)F2(b) — Fi(a)F3(a) + €,
while (3) leads to

b b
f F; sz +/ F;dFl > Fl(b)Fz(b) —Fl(a)Fz(a) = €.

Since € is arbitrary, (1) holds.
To check (2), observe

Ur,(Ff, P)+ Lp,(F3, P) = ) _ F1(t) - [F2(t)) — Fa(t0)]
k=0

+ ) M(F}, (te-1, 0)) - [Fa(te) — Fa(t))]
k=1

+ ) F3(t) - [Pt — Fi(t)]

k=0

+ Y mFs, (-1, 1) - Fi(60) — Fa(ty)]
k=1
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n 1 q

= 5IFE) + R [Fa() — Fa(t))
k=0

LB ) = FEL]

-
+Z “[Fa(te) + F2(t0)] - [Fi(t) — Fa(t))

k-O
+ZF2( Y FRE) - AL

The first and third sums add to

n

Y DR — FitOF(t)),

k=0

while the second and fourth sums add to .
Y FOF() — P P )) (5)
k=1

Since the sums in (4) and (5) add to F, (b)Fy(b) — F1(a)Fa(a), equality
(2) holds. Of course, this algebra simplifies considerably if F; and Fy
are continuous.

We next compare our approach to Riemann-Stieltjes integrati
to the usual approach. For a bounded function f on [a, b], the usua
Darboux-Stieltjes integral is defined via the upper sums |

Te(f, P) = Y M, [te-1, ] - [F(t) = F(tx-1))]
k=1
and the lower sums

Le(f,P) = ) m(f, [tx-1, &) - [F(t) — F(te-1)]:
=l

o 5 ~b
The expressions Up(f), Lr(f) and [ fdF are defined in analog
to those in Definition 35.2. The usual Riemann-Stieltjes integrll.
defined via the sums

8¢(f, P) = Zf("k)[F(tk) = F(tx-1)),

k=]
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where xx € [tx—1,tx], and the mesh defined in Definition 32.6;
compare Definition 35.24.

The usual Riemann-Stieltjes integrability criterion implies the
usual Darboux-Stieltjes integrability criterion; these criteria are not
equivalent in general, but they are equivalent if F is continuous. See,
for example, [33], §12.2; [34], Chapter 8; or [36], Chapter 6, the most
complete treatment being in [34].

35.20 Theorem.
If f is Darboux-Stieltjes integrable on [a, b] with respect to F in the usual
sense, then f is F-integrable and the integrals agree.

Proof
For any partition P, Lg(f, P) equals

D o m(f, (e, D) - [F () — F(t;) + F(t) — F(6)
k=1
+F(t,) — F(tx-1)]

<) fIFt) — F(t;)]
k=1
+ Y m(f, (b1, 1)) - [F(t5) — F(E,)]
k=1

+ ) Ft-DIF () — F(te-1)]
k=1
The first and third sums add to

n n=1
D F@IFE) — FEO]+ ) FEF () — F(t)
k=1

=0
n—1
= f(t)[F(tn) — F(t;)] + Y _ fIF () — F(t;)]
k=1
+f (to)[F(t3) — F(to)]
=Y fFE) — Ft)] = Jr(f, P).
k=0

These observations and a glance at the definition of Lr(f, P) now
show that Lg(f, P) < Lg(f, P). Likewise we have Ug(f, P) > Ur(f, P),
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SO

Ur(f, P) — Le(f, P) < Ur(f, P) — Le(f, P).

If € > 0, the usual theory shows that there exists a partition P such

that Ur(f, P)— Lr(f, P) < €. By (1) we see that we also have Ur(f; P)
Lr(f, P) < €, so f is F-integrable by Theorem 35.6.

To see equality of the integrals, simply observe that

~b b
fdesflp(ﬁP)<Ilp(f,P)+e5LF(f,P)+esf fdF +e€

and similarly
~ b b
/de>[de—e.

We will define Riemann-Stieltjes integrals using a mesh defined
in terms of F instead of the usual mesh in Definition 32.6.

35.21 Definition.
The F-mesh of a partition P is

F-mesh(P) = max{F(t; ) — F(t},) :k=1,2,...,n}

It is convenient to restate Lemma 35.15 for F:

35.22 Lemma.
If 8 > 0, there exists a partition P such that F-mesh(P) < 8.

35.23 Theorem.
A bounded function f on [a, b] is F-integrable if and only if for each € > |
there exists § > 0 such that

F-mesh(P) < 8 implies Ug(f,P)— Lg(f,P) < €
for all partitions P of [a, b).
Proof

Suppose that the €8 condition stated in the theorem holds.
have € > 0, then (1) applies to some partition P by Lemma
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and hence Ur(f, P) — Lr(f, P) < €. Since this remark applies to all
€ > 0, Theorem 35.6 implies that f is F-integrable.

The converse is proved just as in Theorem 32.7 with “mesh”
replaced by “F-mesh” and references to Lemma 32.2 replaced by
references to Lemma 35.3. |

35.24 Definition.
Let f be bounded on [a, b], and let

P={a=t0<t1 < ---<tn=b}_

A Riemann-Stieltjes sum of f associated with P and F is a sum of the
form

Jr(fi P)+ ) fIF () — F(t,)]
k=1

where x; € (tx—1,tx) fork=1,2,...,n.

The function f is Riemann-Stieltjes integrable on [a, b] if there exists
r in R with the following property. For each € > 0 there exists § > 0
such that

|IS—7r| < € €Y}

for every Riemann-Stieltjes sum S of f associated with a partition P
having F-mesh(P) < 8. We call r the Riemann-Stieltjes integral of f
and temporarily write it as

Rsfabde.

35.25 Theorem.
A bounded function f on [a, b] is F-integrable if and only if it is Riemann-
Stieltjes integrable, in which case the integrals are equal.

Proof
The proof'that F-integrability implies Riemann-Stieltjes integrability
imitates the corresponding proof in Theorem 32.9. The proof of the
converse also imitates the corresponding proof, but a little care is
needed, so we give it.

Let f be a Riemann-Stieltjes integrable function, and let r be as
in Definition 35.24. Consider € > 0, and let § > 0 be as provided
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in Definition 35.24. By Lemma 35.22 there exists a partition P
fa=t <t < -+ < t, = b} with F-mesh(P) < 8. For each k
1,2,...,n, select x; in (tx—1, tx) so that f(xx) < m(f, (tx-1, tx)) +¢€.
Riemann-Stieltjes sum § for this choice of x;’s satisfies

8 < Le(f, P) + €[F(b) — F(a)]
and also

[S—71| < ¢

hence Lr(f) > Lr(f,P) > r — € — ¢[F(b) — F(a)]. It follows that
Lp(f) > r and similarly Up(f) < r. Therefore Lp(f) = Up(f) = 1.
Thus f is F-integrable and A

/abfdp=r=7zsfabfdﬂ K

Exercises
35.1. Let F be an increasing function on [a, b].

(a) Show that lim,,,- F(x) exists for t in (a, b] and is equal to
sup{F(x) : x € (a,t)}.
(b) Show that lim,_, .+ F(x) exists for t in [a,b) and is equal ¢
. inf{F(%) : x € (t,b)}.
35.2. Calculate [; x? dF(x) for the function F in Example 4.

35.3. Let F be the step-function such that F(t) = nfort € [n,n+1), n
an integer. Calculate ‘

@ Jy xdF@), () fy ¥ dF@),

©) [Tl R ar).
35.4. Let F(t) = sint for t € [-7, §]. Calculate

(@) Jy'*xdF() (b) 7, xdF ().
35.5. Let f(x) = 1 for rational x and f(x) = 0 for irrational x.

(a) Show that if F is continuous on [a, b] and F(a) < F(b),
f is not F-integrable on [a, b].

(b) Observe that f is F-integrable if F is as in Example 1 or 3,
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35.6.

35.7.

35.8.

35.9.

35.10.

35.11.

Let (f,) be a sequence of F-integrable functions on [a, b), and
suppose f, — f uniformly on [a, b]. Show that f is F-integrable
and

[ 1o [ e
Let f and g be F-integrable functions on [a, b]. Show that
(a) f? is F-integrable.
(b) fg is F-integrable.
(c) max(f, g) and min(f, g) are F-integrable.

Let g be continuous on [a, b] where g(x) > 0 for all x € [a,b] and
define F(t) = _/: g(x)dx for t € [a, b]. Show that if f is continuous,
then

/ far = / ’ eogee dx.
Let f be continuous on [a, b].
(a) Show that [” f dF = f(x)[F(b) — F(a)] for some x in [a, b].
(b) Show that Exercise 33.14 is a special case of part (a).

Suppose F is differentiable on [a, b] and F’ is Riemann integrable
on [a, b]. Prove that a bounded function f on [a, b] is F-integrable
if and only if f F’ is Riemann integrable, in which case

fa . fdrF = fa ¢ FOF' (%) dx.

Note: The proof is difficult and delicate. A solution is available
from the author.

Here is a “change of variable” formula. Let f be F-integrable on
[a, b]. Let ¢ be a continuous, strictly increasing function on an
interval [c, d] such that ¢(c) = a and ¢(d) = b. Define

g(u) = f(¢(u)) and G(u)=F(¢(u)) for uelcd]
Show that g is G-integrable and fcdgdG = fab fdr.
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§36 * Improper Integrals

The Riemann integral in §32 has been defined only for functions
that are bounded on a closed interval [a, b]. It is convenient to be

able to integrate some functions that are unbounded or are defined
on an unbounded interval.

36.1 Definition.
Consider an interval [a, b) where b is finite or +o00. Suppose that f'

is a function on [a, b) that is integrable on each [a,d] fora < d < b,
and suppose that the limit

da
gglfmk

exists either as a finite number, +00 or —o0o. Then we define

b d
[ reas= yim [“reax (1)

If b is finite and f is integrable on [a, b), this definition agrees with
that in Definition 32.1 [Exercise 36.1). If b = 400 or if f is not inte«
grable on [a, b], but the limit in (1) exists, then (1) defines an improper
integral.

An analogous definition applies if f is defined on (a, b] where a
is finite or —oo and if f is integrable on each [c,b] fora < ¢ < b
Then we define

ﬂ?ma=g$L7®a

whenever the limit exists.

If f is defined on (a, b) and integrable on all closed subinterv. Is
[c,d], then we fix a in (a, b) and define

L?ma=£7ma+l7®k

provided the integrals on the right exist and the sum is not of th
form +o00 + (—00). Here we agree that oo + L = oo if L # —00 an
(—00) + L = —o0 if L # o0. It is easy [Exercise 36.2] to see that tk
definition does not depend on the choice of a. b
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Whenever the improper integrals defined above exist and are
finite, the integrals are said to converge. Otherwise they diverge to
400 or to —oo.

Example 1
Consider f(x) = 1 for x € (0,00). Ford > 1, we have [ 1 dx = logd,
s0

i
f —dx = lim logd = +oc0.
This improper integral diverges to +00. For 0 < ¢ < 1, we have
f} Lax = —loge, so

1
1

f —dx = lim[—logc] = +00.
0 X

c—>07*

Also we have

Example 2
Consider f(x) = x7? for x € [1, 00) and a fixed positive numberp # 1.
Ford > 1,

% 1
/ xPdx=——[d"?-1)
1 el

It follows that
o0 " 1
xPdx=——[0—-1]= ¥ p>1
/ 011 ==
and
o0
f xPdx=400 if 0<p< 1.
1
Example 3

We have fod sinxdx = 1—cosd for all d. The value (1—cos d) oscillates
between 0 and 2, as d — 00, and therefore the limit

d
lim sinxdx does not exist.

d-»00 0
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Thus the symbol fo°° sin x dx has no meaning and is not an improper
integral. Similarly, ffoo sinxdx and [ sinxdx have no meaning.
Note that the limit :

a

lim sinxdx 1
a—>0o0

—a
clearly exists and equals 0. When such a “symmetric” limit exists
even though the improper integral ff°°° does not, we have what i§
called a Cauchy principal value of [°. . Thus 0 is the Cauchy principal
value of ff°°° sin x dx, but this is not an improper integral. y

It is especially valuable to extend Riemann-Stieltjes integrals to
infinite intervals; see the discussion after Theorem 36.4 below. Let I
be a bounded increasing function on some interval I. The function
F can be extended to all of R by a simple device: if I is bounded

below, define
F(t)=inf{F(u):uel} for t<infl;

if I is bounded above, define \
4
For this reason, we will henceforth assume that F is a boundeé‘
increasing function on all of R. We will use the notations

F(t)=sup{F(w):uel} for t>supl

F(~00)= lim F(f) and F(co)= lim F(f).

Improper Riemann-Stieltjes integrals are defined in analogy to
improper Riemann integrals.

36.2 Definition.
Suppose that f is F-integrable on each interval [a, b] in R. We make
the following definitions whenever the limits exist:

(o} b 0
f fdF = lim | fdF; f far = lim /de
0 b—>00 0 Lt

If both limits exist and their sum does not have the form oo + (—00

we define
(o] 0 00
f de=f de+f fdr.
—00 -00 0
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If this sum is finite, we say f is F-integrable on R. If f is F-integrable
on R for F(t) = t [i.e., the integrals are Riemann integrals], we say f
is integrable on R.

36.3 Theorem.
If f is F-integrable on each interval [a, b] and if f(x) > 0 for all x € R,
then f is F-integrable on R or else [° f dF = +oo.

Proof
We indicate why lim,—, _ [ : f dF exists, and leave the case of

limp 0 j:)b fdF to the reader. Let h(a) = fao fdF fora < 0, and
note that a’ < a < 0 implies h(a’) > h(a). This property implies
that lim,_, _ h(a) exists and

aEIIloo h(a) = sup{h(a) : a € (—o0, 0)}.

We omit the simple argument. |

36.4 Theorem.

Suppose that —oo < F(—o0) < F(00) < oo. Let f be a bounded function
on R that is F-integrable on each interval [a, b]. Then f is F-integrable
onR.

Proof

Select a constant B such that |f(x)| < B for all x € R. Since we have
F(00) — F(—00) < 00, constant functions are F-integrable. Since 0 <
f+ B < 2B, Theorem 36.3 shows that f + B is F-integrable. It follows
[Exercise 36.10] that f = (f + B) + (—B) is also F-integrable. [

Increasing functions F defined on R come up naturally in prob-
ability and statistics. In these disciplines, F is called a distribution
function if we also have F(—o0) = 0 and F(o0) = 1. Of course, the
function F(t) = t that corresponds to the Riemann integral is not a
distribution function. Here is how a distribution function comes up
in probability. Consider a random experiment with numerical out-
comes; then F(t) can represent the probability that the numerical
value will be < t. As a very simple example, suppose the experiment
involves tossing three fair coins and counting the number of heads.
The numerical values 0, 1, 2, and 3 will result with probabilities %,
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3,3, and §, respectively. The corresponding distribution function is
defined in Example 2 of §35 and sketched in Figure 35.1.
Frequently a distribution function F has the form
t
FO= [ g®ax
—00

for an integrable function g satisfying g(x) > 0 for all x € R. Then g
is called a density for F. Note that we must have

f:g(x)dx=1. r'

Also, if g is continuous, then g(t) = F'(t) for all t by Theorem 34.3. ‘

Example 4
It turns out that /% e~ dx = /7 [Exercise 36.7] and hence

0
f e_xz/z dx = «/2m.
—00

The most important density in probability is the normal density

1 _wn A
X) = ——e
8(*) e ]
which gives rise to the normal distribution o
1 o1 4
F(t) = — [l e 7 !
O=7=_ .‘

see Figure 36.1.

Exercises 36.1-36.8 below deal only with Riemann integrals.

Exercises
36.1. Show that if f is integrable on [a, b] as in Definition 32.1, then
d b
lim f Q) dx = / f(x) ax.
d—b~ J, a

36.2. Show that the definition (3) in Definition 36.1 does not depe
on the choice of a. -



normal distribution

FIGURE 36.1

36.3.

(a) Show that

1 1 1
/x‘f’dx=— if 0<p<1 and fx"’dx=+oo R vl
0 1-p 0

36.4.

36.5.

36.6.

36.7.

(b) Show that [;°x 7P dx = +oc forallp > 0.

Calculate
(a) jg log x dx, m lﬁ? dx,
(c) fooo ﬁlif dx.

Let f be a continuous function on (a, b) such that f(x) > 0 for all
X € (a,b); a can be —00, b can be +oco0. Show that the improper

integral [ : f(%) dx exists and equals

d
sup [/ f(x)dx : [c,d] € (a, b)} .

Prove the following comparison tests. Let f and g be continuous
functions on (a, b) such that 0 < f(x) < g(x) for all ¥ in (a,b); a
can be —o0, b can be +o00.

(a) Ifj:’g(x)dx < o0, then fabf(x)dx < 0.
(b) If [7 f(x)dx = +oo, then [ g(x)dx = +o0.
(a) Use Exercise 36.6 to show [* e dx < oo.

(b) Show that this integral equals /7. Hint: Calculate the double
integral [°, [° e eV dxdy using polar coordinates.
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36.8. Suppose that f is continuous on (a, b) and that | ab [f(x)|dx < o0;

36.9.

36.10.

36.11.

36.12.
36.13.
36.14.

36.15. (a) Give an example of a sequence (f,) of integrable functions

again a can be —oo, b can be +o00. Show that the integral [ ab f(x)dx
exists and is finite.

Let F be the normal distribution function in Example 4.

(a) Show that if f is continuous on R and if the improper integral -
[%2 f(x)e /2 dx exists, then the improper integral [ fdF
exists and

f_ far = % i Fx)e™ "2 ax.

Calculate
(b) [To ¥ dF(x), (© [ € dF(x),
(@) [, 1XIdF (), (©) [ o XdF ().

Let f and g be F-integrable functions on R. Show that f + g i8
F-integrable on R and

[ wni=[rae+ [Luu

Show that if f and g are F-integrable on R and if f(¥) < g(x) for ¥
inR, then (% fdF < [% gdF.

Generalize Exercise 36.6 to F-integrals on R.
Generalize Exercise 36.8 to F-integrals on R.

Let (u,) be a sequence of distinct points in R, and let (¢,) be a
sequence of positive numbers such that ) ¢, < oo. '

(a) Show that F = Y 7" cnJy, is an increasing function on R,
Hint: See Example 3 in §35.

(b) Show that every bounded function f on R is F-integrable and
o0 00

| rar =Y afm)
—00 n=1

(c) Show that if (u,) is an enumeration of the rationals, then F
is strictly increasing on R.

(d) When will F be a distribution function?

R where [ fu(x)dx = 1 for all n and yet f, — 0 unifo
on R.
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(b) Suppose that F is a distribution function on R. Show that if
(f») is a sequence of F-integrable functionson R and if f;, — f
uniformly on R, then f is F-integrable on R and

fdF = lim f,, dF.
£

n—oo

§37 * A Discussion of Exponents and
Logarithms

In this book we have carefully developed the theory but have been
casual about using the familiar exponential, logarithmic and trigono-
metric functions in examples and exercises. Most readers probably
found this an acceptable approach, since they are comfortable with
these basic functions. In this section, we indicate three ways to de-
velop the exponential and logarithmic functions assuming only the
axioms in Chapter 1 and the theoretical results in later chapters. We
will provide proofs for the third approach.

Recall that for x in R and a positive integer n, ¥ is the product
of x by itself n times. For x # 0, we have the convention x° = 1. And
for x # 0 and negative integers —n where n € N, we define x™" to be
the reciprocal of ¥", i.e., x™" = (¥")"L.

37.1 Piecemeal Approach.

This approach starts with Example 2 in §29 and Exercise 29.15 where
it is shown that ¥ is meaningful whenever x > 0 and r is rational,
ie., r € Q. Moreover,

if h(xy =%, " then  R(x)=rx . .

The algebraic properties ¥’ ¥° = x"*$ and (xy)" = ¥"y" can be verified
for r, s € Q and positive x and y. For any t € R and x > 1, we define

¥ =sup{x :reQandr <t}

Q-

and
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This defines x' for x > 0. It can be shown that with this definition
X' is finite and the algebraic properties mentioned above still hold.
Further, it can be shown that h(x) = %' is differentiable and 1'(¥) =
B

Next we can consider a fixed b > 0 and the function B defined
by B(x) = b* for x € R. The function B is differentiable and B'(x) =

cpB(x) for some constant c;. We elaborate on this last claim. In view
of Exercise 28.14, we can write ‘
pth — b -1
B(*) =lim ——— =b*-lim

h—0 h

h—0

provided these limits exist. Some analysis shows that the last limit
does exist, so

T, EIPT. P
B'(x) = cpB(x) where ¢, = }11_1)1:.’ h[b 1].

It turns out that ¢, = 1 for a certain b, known universally as e.
Since B is one-to-one if b # 1, B has an inverse function L which i§
named L(y) = log, y. Since B is differentiable, Theorem 29.9 can be
applied to show that L is differentiable and

L'(y) = L
CvY
Finally, the familiar properties of log, can be established for L.

]

l

When all the details are supplied, the above approach is very te-
dious. It has one, and only one, merit; it is direct without any tricks,
One could call it the “brute force approach.” The next two approaches
begin with some well defined mathematical object [either a power
series or an integral] and then work backwards to develop the famil:
iar properties of exponentials and logarithms. In both instances, for
motivation we will draw on more advanced facts that we believe but
which have not been established in this book. i

37.2 Exponential Power Series Approach.
This approach is adopted in two of our favorite books: [8], §4.9
[36], Chapter 8. As noted in Example 1 of §31, we believe

o0

1
=) ot

k=0
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though we have not proved this, since we have not even defined
exponentials yet. In this approach, we define

o~ 1

E R
B =) ¢))

k=0
and we define e = E(1). The series here has radius of convergence
+o0 [Example 1, §23], and E is differentiable on R [Theorem 26.5]. It
is easy [Exercise 26.5] to show that E' = E. The fundamental property

E(x +y) = E(OE() (2

can be established using only the facts observed above. Actually [36]
uses a theorem on multiplication of absolutely convergent series,
but [8] avoids this. Other properties of E can be quickly established.
In particular, E is strictly increasing on R and has an inverse L.
Theorem 29.9 assures us that L is differentiable and L'(y) = i For
rational r and ¥ > 0, ¥ was defined in Exercise 29.15. Applying that
exercise and the chain rule to g(x) = L(¥") — rL(x), we find g'(x) = 0
for x > 0. Since g(1) = 0, we conclude that

LxX)=7rL(x) for reQ and x > 0. 3)
For b > 0 and rational r, (3) implies that
v = E(L(V")) = E(rL(b)).
Because of this, we define
b* = E(xL(b)) for xeR.

The familiar properties of exponentials and their inverses [loga-
rithms!] are now easy to prove.

The choice between the approach just outlined and the next ap-
proach is really a matter of taste and depends on the appeal of power
series. One genuine advantage to the exponential approach is that
the series in (1) defining E is equally good for defining E(z) = €* for
complex numbers z.

37.3 Logarithmic Integral Approach.
Let us attempt to solve f' = f where f never vanishes; we expect
to obtain E(x) = €* as one of the solutions. This simple differential
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equation can be written
f,
-f—' —
In view of the chain rule, if we could find L satisfying L'(y) = 2
then equation (1) would simplify to
(Lofy =1,

so one of the solutions would satisfy

Lof(y) =

In other words, one solution f of (1) would be an inverse to L where
L'(y) = . But by the Fundamental Theorem of Calculus II [Theo-
rem 34.3], we know such a function L exists. Since we also expect
L(1) = 0, we define

)

y
Ly) = [ %dt for y e (0,00).

We use this definition to prove the basic facts about logarithms and |
exponentials.

37.4 Theorem.
(i) The function L is strictly increasing, continuous and dzjferennabla
on (0, 00). We have

) 1
L'(y)= J_J_ for y € (0, 00).

(ii) L(yz) = L(y) + L(2) for y, z € (0, 00).
(iii) L(%) = L(y) 7 L(Z) fOT Y,z € (Ov 00)
(iv) limy 0 L(y) = 400 and limy_,o+ L(y) = —

Proof
It is trivial to show that the function f(t) = t is continuous on R
80 its reciprocal % is continuous on (0, 00) by Theorem 17.4. It
easy to see that L is strictly increasing, and the rest of (i) follo
immediately from Theorem 34.3.

Assertion (ii) can be proved directly [Exercise 37.1]. Alte
tively, fix z and consider g(y) = L(yz) — L(y) — L(z). Since g(1) = (
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it suffices to show g’(y) = 0 for y € (0, 0o) [Corollary 29.4]. But since
z is fixed, we have

g'(y)—z . 0=0
yz y :

To check (iii), note that L(1) + L(z) = L(2 - 2) = L(1) = 0, so that
L(%) = —L(2) and

1
L (*’E’) il (y - ;) = Ly)+L (%) = L(y) - L(2).

To see (iv), first observe that L(2) > 0 and that L(2") = n - L(2)
in view of (ii). Thus lim,_,« L(2") = +00. Since L is increasing, it
follows that lim,_,« L(y) = +o0. Likewise L(3) < 0 and L((3)") =
n- L(3), so limy_,+ L(y) = —oo. *

The Intermediate Value Theorem 18.2 shows that L maps (0, 00)
onto R. Since L is a strictly increasing function, it has an inverse and
the inverse has domain R.

37.5 Definition.
We denote the function inverse to L by E. Thus

E(L(y) =y for ye(0,00)
and
L(E(x))=x for xeR.

We also define e = E(1) so that [ $ dt = 1.

37.6 Theorem.
(i) The function E is strictly increasing, continuous and differentiable
on R. We have

E'(x) =E(x) for x€R.

(ii) E(u +v) = E(W)E(v) for u,v € R.
(iii) lim,., o E(X) = 400 and lim,_, o E(x) = 0.
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Proof ,
All of (i) follows from Theorem 37.4 in conjunction with Theo-
rem 29.9. In particular,

1

= = — = E(x).
1) W
If u,v € R, then u = L(y) and v = L(z) for some y,z € (0, 00),

Then u + v = L(yz) by (ii) of Theorem 37.4, so

E(u +v) = E(L(y2)) = yz = E(LY)E(L(2)) = EWE().
Assertion (iii) follows from (iv) of Theorem 37.4 [Exercise 37.2].

E'(x)

Consider b > O and r € Q, say r = ! where m,n € Z ant
n > 0. It is customary to write b” for that positive number a such
thata™ = b™. By (ii) of Theorem 37.4, we have nL(a) = mL(b); hence

V =a=E(l(a)=E (% - nL(a)) =E (% : mL(b)) = E(rL(b)).

This motivates our next definition and also shows that the definition
is compatible with the usage of fractional powers in algebra.

37.7 Definition.
For b > 0 and x € R, we define

v* = E(xL(b)).
Since L(e) = 1, we have ¢ = E(x) for all x € R.

37.8 Theorem.
Fixb > 0.
(i) The function B(x) = b* is continuous and differentiable on R.
(ii) If b > 1, then B is strictly increasing; if b < 1, then B is 8 Iy
decreasing. :
(iii) If'b # 1, then B maps R onto (0, 00).
(iv) b“*’ =b“p’ for u,v € R.

Proof
Exercise 37.3.

If b # 1, the function B has an inverse function.
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37.9 Definition.
For b > 0 and b # 1, the inverse of B(x) = b* is written log,. The
domain of log;, is (0, o0) and

log,y =x ifandonlyif »*=y.
Note that log, y = L(y) fory > 0.

37.10 Theorem.
Fixb >0,b#1.
(i) The function log,, is continuous and differentiable on (0, 00).
(ii) If b > 1, log, is strictly increasing; if b < 1, log, is strictly
decreasing.
(iii) logy(yz) = log,y + log), z for y, z € (0, 00).
(iv) log,(¥) =log, y — log, z for y, z € (0, o).

Proof
This follows from Theorem 37.4 and the identity log,y = %%
[Exercise 37.4]. Note that L(b) is negative if b < 1. [

The function E(x) = €* has now been rigorously developed and,
as explained in Example 1 of §31, we have

In particular, e = Y 22 & Also
37.11 Theorem.
1 n
e = lim(1 + h)"" = lim (1 + —) .
h—>0 n—00 n

Proof
It suffices to verify the first equality. Since L'(1) = 1, we have

P iint L(1+h)—L(1)
h—0 h

— 1 l AL 1/h
—}llir(l]hL(1+h)—}ll_£r(1)L((l+h) j 3

Since E is continuous, we can apply Theorem 20.5 to the function
f(h) = L((1 + h)'"") to obtain

lim (1 + /" = lim E (L(Q+m"™)=EQ) =
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37.12 Trigonometric Functions.
Either approach 37.2 or 37.3 can be modified to rigorously devel

the trigonometric functions. They can also be developed using the
exponential functions for complex values since

X 1 !
smx:z[e”“—e Hwrokeg

see [36], Chapter 8. The development of the trigonometric functio:
analogous to approach 37.3 can proceed as follows. Since we believ

X
arcsinx = f -ty 2a,
0

we can define A(x) as this integral and obtain sin x from this. Then
cosx and tan x are easy to obtain. In this development, the number
7 is defined to be 2 [ (1 — )2 k.
i

In the exercises, use results proved in Theorem 37.4 a
subsequent theorems but not the material discussed in 37.1 and 37.

Exercises
37.1. Prove directly that

¥ v1 P!
/ —dt=/ —dt+f —dt for y,z e (0,00).
s 3 f 5 3

37.2. Prove (iii) of Theorem 37.6.
37.3. Prove Theorem 37.8.
37.4. Consider b > 0, b # 1. Prove log, y = % for y € (0, 00).

37.5. Let p be any real number and define f(x) = ¥” for x > 0. Show tha
f is differentiable and f’(x) = px*~!; compare Exercise 29.15. Hint
f() = E(pL(x)).

37.6. Show that ¥’y? = (xy)’ for p € R and positive ¥, y.

37.7. (a) Show that if B(x) = b*, then B'(x) = (log, b)b*.
(b) Find the derivative of log,,.

37.8. For x > 0, let f(x) = x*. Show that f'(x) = [1 + log, x] - x*.



Exercises 3()7

37.9. (a) Show thatlog,y < y fory > 1.

(b) Show that
log, y 2 X
—== < — for s> 1. _Hint: “lo = 2lo )
5 . Y 8. Y 8. VY

(c) Use part (b) to prove that lim,_, 5 log, y = 0. This neat little
exercise is based on the paper [20].







Appendix on Set Notation

Consider a set 8. The notation x € § means that x is an element
of §; we might also say “x belongs to §” or “x is in 8.” The notation
x & § signifies that x is some element but that ¥ does not belong to
S. By T € S we mean that each element of T also belongs to §, i.e.,
x € T impliesx € S. Thuswehave 1 € N,17 € N, -3 ¢ N, 1 € N,
ﬁéN,%GQ,%e]R,ﬁe]R,ﬁé@,andneR.Alsowehave
NCR QCR, andR CR.

Small finite sets can be listed using braces { }. For example,
{2, 3, 5,7} is the four-element set consisting of the primes less than
10. Sets are often described by properties of their elements via the
notation

e }.

Before the colon the variable [n or x, for instance] is indicated and
after the colon the properties are given. For example,

{n:n e Nand nis odd} (1)

represents the set of positive odd integers. The colon is always read
“such that,” so the set in (1) is read “the set of all n such that n is in

309
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N and n is odd.” Likewise
{x:xeRand1 <x < 3} (2

represents the set of all real numbers that are greater than or equal
to 1 and less than 3. In §4 this set is abbreviated [1, 3). Note that
1 €[1,3) but 3 € [1, 3). Just to streamline notation, the expressions
(1) and (2) may be written as :

fneN:nisodd} and {xeR:1<x < 3}.

The first set is then read “the set of all n in N such that n is odd.”

Another way to list a set is to specify a rule for obtaining its
elements using some other set of elements. For example, {n? : n € N}
represents the set of all positive integers that are the square of other
integers, i.e.,

(" neN}={meN:m=n’forsomeneN}=1{1,4,916,25,...}.

Similarly {sin % : n € N} represents the set obtained by evaluating
sin " for each positive integer n. Actually this set is finite:

sin-ni:neN = ﬁ,l,o,—ﬁ,—l ;
[ 4 } 2 2

The set in (1) can also be written as {2n — 1 : n € N}. One more
example: {x* : x > 3} is the set of all cubes of all real numbers bigger
than 3 and of course equals {y € R : y > 27}, i.e., (27, 00) in the
notation of §5.

For sets S and T, S \ T signifies the set {x € § : x € T}. For
a sequence (A,) of sets, the union UA, and intersection NA, a
defined by

UA,, = {x:x € A, for at least one n},
ﬂA,, ={x:x € A, for all n}.

The empty set @ is the set with no elements at all. Thus, for example,
mMeN:2<n<3=02 {reQ:r’=2}=2, {xcR:x% <0} =
@, and [0,2]N[5,00) = &.

For functions f and g, the notation f + g, fg, f og, etc. is explained
on page 121.

The end of a proof'is indicated by a small black box. This replaces
the classical QED.




Selected Hints and

Answers

Notice. These hints and answers should be consulted only after serious
attempts have been made to solve the problems. Students who ignore this
advice will only cheat themselves.

Many problems can be solved in several ways. Your solution need
not agree with that supplied here. Often your solution should be more
elaborate.

1.1 Hint: The following algebra is needed to verify the induction step:

"("+1)6(2n+1)+(n+1)2:(n+1)[2”2+n+n+1]="‘
_(n+(n+2)(2n+3)
= ;

1.3 Hint: Suppose the identity holds for n. Then work on the right side
of the equation with n+1 in place of n. Since (x+y)? = ¥*+2xy+y?,

A+2+-+n+m+1))P=Q+2+---+n)?
2+ DA +2+---+n)+(n+1)%
Use Example 1 to show that the second line has sum (n+1)3; hence
Q42+ - +n+1))? = 142+ - - n)2+(n+1)* = 13423+ . .+ (n+1)>.

1.5 Hint: 2 - 3 + zr = 2 — zr.
1.7 Hint: 7"*' —6(n+1) =1 = 7(7" — 6n — 1) + 36n.

11
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1.9 (@) n>5andalson =1.

(b) Clearly the inequality holds for n = 5. Suppose 2" > n? for
some n > 5. Then 2™! = 2.2" > 2n? so 2" > (n+1)2
provided 2n* > (n + 1)? or n* > 2n + 1 for n > 5._In fact,
this holds for n > 3, which can be verified using calculus or
directly: n? >3n=2n+n > 2n+1.

1.11 (a) Hint: Ifn?+5n+1is even, thensois(n+1)?+5n+1)+1=
n?+5n+1+[2n+ 6].

(b) P, is false for all n. Moral: The basis for induction (1) is crucial
for mathematical induction.

2.1 Hint: Imitate Example 3. You should, of course, verify your asser-
tions concerning nonsolutions. Note that there are sixteen rational
candidates for solving x> — 24 = 0.

2.3 Hint: (2 + +/2)"/? represents a solution of x* — 4x? + 2 = 0.

2.5 Hint: [3 + /23 represents a solution of x® — 22x% + 49 = 0.

3.1 (a) A3and A4 hold fora € N, but 0 and —a are not in N. Likewise
M4 holds for a € N, but a™! is not in N unless a = 1. These
three properties fail for N since they implicitly require the
numbers 0, —a and a~! to be in the system under scrutiny,
namely N in this case.

(b) M4 fails in the sense discussed in (a).

3.3 (iv) Apply (iii), DL, A2, A4, (ii) and A4 again to obtain

(~a)(~b) + (~ab) = (~a)(~b) + (~@)b = (~@)[(~b) +b]
= (—a)b+ (-b)] = (-a) - 0 = 0 = ab+ (~¢

Now by (i) we conclude that (—a)(—b) = ab.
(v) Suppose ac = bc and ¢ # 0. By M4 there exists ¢! such that
¢-¢”! = 1. Now (supply reasons) [

a=al=a(cc")=(ac)™ =) =bc-c)=b1=0

3.5 (a) If|p| <a,then —a < —|b|, so —a < —|b| < b < |b| < a. Now
suppose that —a <b <a.Ifb>0,then |b|=b <a.1fb < 0,
then |b| = —b < a; the last inequality holds by Theotem 3.2(i)
since —a < b.
(b) By (a), it suffices to prove —|a — b| < |a| — |b| < |a — b|.
Each of these inequalities follows from the triangle inequality:
. |bl=|(b—a)+al| < |b—al|+|a|l = |a—b|+ |a| which implies
the first inequality; |a| = |(a — b) + b| < |a — b| + |b| which
implies the second inequality.
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3.7 (a) Imitate Exercise 3.5(a).

(b) By (a), la —b| < cifand only if —¢c < a — b < ¢, and this
obviously holds [see O4] if and only if b—c < a < b+c.

4.1 If the set is bounded above, use any three numbers > supremum

of the set; see the answers to Exercise 4.3. The sets in (h), (k) and
(u) are not bounded above. Note that the set in (i) is simply [0, 1].
4.3 (a) 1; () 7; (e) 1; (8) 3; (1) 1; (k) No sup; (m) 2; (o) 0; (q) 16;
(8) 1; () No sup; (w) %£. In (s), note that 1 is not prime.
4.5 Proof Since sup S is an upper bound for S, we have sup § > s for all
s € 8. Also sup $ € 8§ by assumption. Hence sup S is the maximum
of §, i.e., supS = max S.

4.7 (a) Suppose S € T. Since supT > t for all t € T we obviously
have supT > s for all s € S. So sup T is an upper bound for
the set S. Hence sup T must be > the least upper bound for §,
i.e., supT > supS§. A similar argument shows inf T' < inf'§;
give it.

(b) Since § € SU T, supS < sup(S U T) by (a). Similarly
supT < sup(S U T), so max{supS,supT} < sup(SU T).
Since sup(S U T') is the least upper bound for SU T, we will
have equality here provided we show: max{sup S, sup T} is
an upper bound for the set SU T. This is easy. If x € §,
then x < supS < max{supS8,supT} and if x € T, then
x < supT < max{supS,supT}. Le., x < max{supS§,sup T}
forallx e SUT.

4.9 (1) Ifse S, then —s € —§, so —s < sp. Hence we have s > —sy by
Theorem 3.2(3).

(2) Suppose t < s for all s € S. Then —t > —s for all s € §, i.e,,
—t > x for all x € —8. So —t is an upper bound for the set —S.
So —t > sup(—S8). L.e., —t > sg and hence t < —sg.

4.11 Proof By 4.7 there is a rational r; such thata < r; < b. By 4.7
again, there is a rational r; such thata < r; < r;. We continue by
induction: If rationals ry, . . ., 7, have been selected so thata < r, <
Tm—1 < +-- < 13 < 11, then 4.7 applies to a < r, to yield a rational
Tmt1 such that a < 7,41 < 1,. This process yields an infinite set
{r1,72,...}in QN (a, b).

Alternative Proof Assume QN(a, b)is finite. The set is nonempty

by 4.7. Let ¢ = min(Q N (a, b)). Then a < c, so by 4.7 there is a
rational r such thata < r < ¢. Then r belongs to QN (a, b), soc <,

a contradiction.
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4.13 By Exercise 3.7(b), we have (i) and (ii) equivalent. The equivalence
of (ii) and (iii) is obvious from the definition of an open interval.
4.15 Assumea < b+ % foralln € Nbutthata > b. Thena—b > 0, and
by the Archimedean property 4.6 we have ng(a — b) > 1 for some
ng € N. Thena > b+ % contrary to our assumption.
5.1 (a) (—00,0); (b) (—00, 2]; (€) [0, 00); (d) (—/8, V).
5.3 Hint: The unbounded sets are in (h), (k), (1), (0), (t) and (u).
5.5 Proof Select s € 8. Then infS < sy < supS whether these
symbols represent +00 or not.
6.1 (a) Ifs <t, then clearly s* C t*. Conversely, assume s* C t* but
thats > t. Then t € s* but t ¢ t*, a contradiction.
(b) s =t if and only if both s < t and t < s if and only if both
§* C t* and t* C s* if and only if s* = t*.
(c) Consider r; € s*andr, € t*. Thenr, < sand r; < t; s0O
r+ry < s+t ie., n+r € (s+t)*. Hences* +t* C (s+ )%
Now consider r € (s+t)* sothatr < s+t. If r, = %(s —
andr, = 3(t—s+7), thenn < i(s—t+s+t) = sand
r, < 3(t—s+s+t)=t.Sor, €s*andr; € t*. Since r = 1, +73,
we have r € s* + t*. Hence (s +t)* C s* + t*.
6.3 (a) Ifr e xands € 0%, thenr+s < r,s07r +s € a. Hence
a+0* C «. Conversely, suppose r € a. Since « has no largest
element, there is a rational t € @ such thatt > v. Thenr —t
isin 0*, sor =t + (r —t) € @ + 0*. This shows o C « + 0*.
(b) —a={r € Q: s ¢ « for some rational s < —r}.
6.5 (b) No; it corresponds to (2)!/3.
(c) This is the Dedekind cut corresponding to /2.
71 (@) 1770 5 16
(© 35 5 5 25
7.3 (a) converges to 1; (c) converges to 0; (e) does not converge;
(g) does not converge; (i) converges to 0; (k) does not converge;
(m) converges to 0 [this sequence is (0, 0,0, ...)]; (0) converges to
0; (q) converges to 0 [see Exercise 9.15]; (8) converges to g—.
7.5 (@) Has limit 0 since s, = 1/(v/n? +1 + n). .
(c) V4n* +n—2n=n/(+/4n? + n+ 2n) and this is close to 35
for large n. So limit appears to be }; it is.
8.1 (a) Formal Proof Lete > 0. Let N = 1. Thenn > N implies
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(b)

©
(d)

Discussion. We want n™'/3 < e or 1 « ¢ or 1/¢' < n. So for
each € > 0, let N = 1/€. You should write out the formal
proof.

Discussion. Wewant|3n+2 | < eor|(3n+z)3| < €or m <
€or 4 < 3n+2org — 32 < n SosetN equal to - ~ §.
Discussion. We want (n + 6)/(n* — 6) < € we assume n > 2
so that absolute values can be dropped As in Example 3 we
observe that n+6 < 7n and that n?> —6 > in? provided n > 3.
So it suffices to get 7n/(3n?) < € [for n > 3] or £ < n. So try
N = max({3, }.

8.3 Discussion. We want /s, < € ors, < €. But s, — 0, so we can get
s, < € for large n.
Formal Proof Lete > 0. Since € > 0 and lims, = 0, there exists
N so that |s, — 0] < € forn > N. Thus s, < € forn > N, so
A/8n < eforn > N.1le., | /s, — 0| < € forn > N. We conclude that

lim /s, = 0.

8.5 (a)

(b)

8.7 (a)

(b)

Lete > 0. Our goal is to show that s — e < s, < s+ € for large
n. Since lima, = s, there exists N; so that |a, — s| < € for
n > Nj. In particular,

n>N; implies s—e¢€ < ay. 1)
Likewise there exists N so that |b, — s| < € forn > N, so
n > N, implies b, < s+e€. 2
Now
n > max{N;, N} implies s—€ < a, <8, <b, < s+¢€;

hence [s — s,| < €.

It is easy to show that lim(—t,) = 0 if limt, = 0. Now apply
(a) to the inequalities —t, < s, < ty.

Assume lim cos(5") = a. Then there exists N such thatn > N
implies | cos(5") —al < 1. Consider n > N and n+ 3 where n
is a multiple of 6; substituting these values in the inequality
gives |1 —a| < 1and | — 1 —al < 1. By the triangle inequality

2=|0-a)—(-1-@<[1-al+|-1-a <1+1=2,

a contradiction.
Assume lim(—1)"n = a. Then there exists N such thatn > N
implies |[(—=1)"'n —a| < 1. For an even n > N and for n + 2
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(©

8.9 (a)

9.1 (a)

()

this tells us that [n —a| < 1and n+2—a|l < 1. So 2 =
In+2—a—(—a)| < |n+2—al+|n—al| < 2, acontradiction.
Note that the sequence takes the values :I:ﬁg for large n.
Assume lim sin(*J") = a. Then there must exist N such that

‘ : (15 3
n > N implies Ism(?) —al < R

Substituting suitable n > N, we obtain |§ —al < @ and
]lgé —al < 325 By the triangle inequality
a — —
2
a contradiction.

V3. (=3
g

Hint: There exists Ny in N such that s, > a forn > Ny. Assume
that s = lims, and that s < a. Let e = a — s and select N > Njp
so that |s, — s| < e forn > N. Show thats, < aforn > N; a
picture might help. _
lim(%) =lim(1+1) =lim1+lim 1 = 1+0 = 1. The second
equality is justified by Theorem 9.3 and the third equality
follows from Basic Example 9.7(a).
lim(3n + 7)/(6n — 5) = lim(3 + 7/n)/(6 — 5/n) = (lim(3 +
7/n))/lim(6 — 5/n)) = (lim3 + 7 - lim(1/n))/(lim6 — 5 -
lim(1/n)) = (3 + 7 -0)/(6 — 5-0) = 3. The second equality
is justified by Theorem 9.6, the third equality follows from
Theorems 9.3 and 9.2, and the fourth equality uses Basic
Example 9.7(a).

2

< ‘/T§+—‘é—§=«/§,

9.3 First we use Theorem 9.4 twice to obtain lima? = lima,, - lima? =
a-lima? = a-lima, -lima, = a-a-a = a® By Theorems 9.3
and 9.2, we have lim(a} + 4a,) = lima2 + 4 - lima, = a® + 4a.
Similarly lim(b2 +1) = limb,,-lim b, +1 = b*+ 1. Since b?> +1 # 0,
Theorem 9.6 shows that lims, = (a® + 4a)/(b* +1).

9.5 Hint: Let t = limt, and show that t = (t* + 2)/2t. Then show that
t = /2.

9.7 It has been shown that s, < \/2/(n — 1) forn > 2, and we need to
prove lims, = 0.

Discussion. Let € > 0. We want s, < ¢, so it suffices to get

V2/(n—1) < €or2/(n—1) < € or2e¢?+1 < n.
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Formal Proof. Lete > Oandlet N = 2¢ ?+1. Thenn > N implies
sn < 2/(n—1) < J2/(2e2+1-1)=e.
9.9 (a) Let M > 0. Since lims, = 400 there exists N > Ny such that
8, > M forn > N. Then clearly t, > M for n > N, since
Sp <ty for all n. This shows that limt,, = +o0.
(c) Parts (a) and (b) take care of the infinite limits, so assume (s,)
and (t,) converge. Since t, — s, > 0 for all n > Np, we have
lim(t, — s,) > 0 by Exercise 8.9(a). Hence limt, — lims, > 0
by Theorems 9.3 and 9.2.
9.11 (a) Discussion. Let M > 0 and let m = inf{t, : n € N}. We want
s, +t, > M for large n, but it suffices to get s, + m > M or
Sp > M — m for large n. So select N so thats, > M — m for
n > N.
(b) Hint: Iflimt, > —oo, then inf{t, : n € N} > —oo. Use part (a).
9.13 If |a| < 1, then lima" = 0 by Basic Example 9.7(b). If a = 1, then
obviously lima" = 1.
Suppose a > 1. Then % < 1, so lim(1/a)* = 0 as above. Thus
lim1/a" = 0. Theorem 9.10 [with s, = a"] now shows thatlima”" =
+o0. [This case can also be handled by applying Exercise 9.12.]
Suppose a < —1 and assume lim a" exists. For even n, a" > 1 and
for odd n, a” < —1. Clearly lima” = 400 and lima” = —oo are
impossible. Assume that lima"” = A for a real number A. There
exists N such that |a" — A| < 1 for n > N. For even n this implies
A > 0 and for odd n this implies A < 0, a contradiction.
9.15 Apply Exercise 9.12 with 5, = a"/n!. Then L = lim|8,41/8,] =
lim 4= =0, so lims, = 0.

n+l1
9.17 Discussion. LetM > 0. Wewantn? > Morn > ~/M.SoletN = JA_J

10.1 nondecreasing: (c); nonincreasing: (a), (f); bounded: (a), (b),
(@, (-

10.3 The equality in the hint can be verified by induction; compare
Exercise 1.5. Now by (1) in Discussion 10.3 we have

dl dn 9 9
= RS QLS IO S e Rl IS LBt k4+1.
Sn +10+ +10n_ +10+ +10n< o

10.7 Let sy = supS8. Since sp — 1 is not an upper bound for §, there
exists s; € S such thats; > sy — 1. Since sy € S, we have sy —
1 < 8 < 8. Now max{sy — %, 81} is not an upper bound for S,
so there exists s, € S such that s; > max{sy — },s1}. Then we

have s, < s; and sy — % < § < §). We proceed by induction.
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Assume that s, s;,...,s, have been selected in S so that s, <
s < ++- < spand g — 1 < s, < so. Then max{so — 717, 8u)
is not an upper bound for S, so there exists s,4+; € S such that
Spt1 > max{sy— nH,s,,} Thens; < 83 < -++ < Sp41 andso-m <
Sp41 < So and therefore the construction continues. Clearly we
have constructed a nondecreasing sequence in S and we also have
lims, = s; since so — £ < s, < 8o for all n. [Similar constructions
will appear in the next section.]
109 (a) s;=13,83=3, 8= 3.
(b) First we prove

0 < B.ne 8§ < etorall " n=1% 1)

This is obvious from part (a) forn = 1, 2, 3. Assume (1) holds
for n. Then s,4; < 1, so

n+1 (n+1

Spy2 =

n+2 n+1 n+28"+1) Snt1 < Sp4l

since (%%)snﬂ < 1. Since s,4+; > 0 we also have s, > 0.

Hence 0 < Sp42 < Spt1 < 1 and (1) holds by induction.
Assertion (1) shows that (s,) is a bounded monotone
sequence, so (s,) converges by Theorem 10.2.

(c) Let s = lims,. Using limit theorems we find s = lim s,4; =
lim ;2 . lims? = . Consequently s =1 ors=0. Buts=4%
is impossible since s, < 3 L forn>2.Sos=0.

10.11 (a) Show (t,) is a bounded monotone sequence. ‘

(b) The answer is not obvious! It turns out that limt, is a Wallis
product and has value % which is about 0.6366. Observe how
much easier part (a) is than part (b).

1.1 (a) 1,5,1,51,5,1,5

(b) Let o(k) = mx = 2k. Then (ay,) is the sequence that takes
the single value 5. [There are many other possible choices
of 0.]

11.3 (b) For (s,), the set S of subsequential limits is {—1,—3, 3, 1}.

For (t,), S = {0}. For (u,), 8 = {0}. For (v,), $={—1,1}

(c) limsups, = 1, liminfs, = —1, limsupt, = liminft, =
limt, = 0,limsupu, = liminfu, = limu, = 0, limsupv, =
1, liminf v, = —1.

(d) (t») and (u,) converge.

(€) (8n), (tn), (un) and (v,) are all bounded.
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11.5
11.7

11.9

12.1

12.3

12.5

12.7

12.9

12.11

(a) [0,1]; (b) limsupg, =1, liminf g, = 0.

Hint: Use an inductive construction to show that there is a

subsequence (ry) satisfying r, > k for k € N; compare

Example 3.

(a) To show that [a, b] is closed, we need to consider a limit s
of a convergent sequence (s,) from [a, b] and show that s is
also in [a, b]. But this was done in Exercise 8.9.

(b) No! (0, 1) is not closed, i.e., (0, 1) does not have the property
described in Theorem 11.8. For example, t, = }1 defines a
sequence in (0, 1) such that t = lim¢t, does not belong to
(0,1).

Letuy = inf{s, : n > N}andwy = inf{t, : n > N}. Then (uy) and

(wn) are nondecreasing sequences and uy < wy for all N > Nj.

By Exercise 9.9(c), liminf's, = limuy < limwy = liminf't,. The

inequality limsups, < limsupt, can be shown in a similar way

or one can apply Exercise 11.8(a).

(a) 0; (b) 1; (¢) 2; (d) 3; (€) 4 () 0; (g) 2.

By Exercise 12.4, lim sup(—s, —t,) < lim sup(—s,)+lim sup(—t,),

so — limsup(—(sp+1t,)) = —lim sup(—s,) +[— lim sup(—t,)]. Now

apply Exercise 11.8(a).

Let (sy,) be a subsequence of (s,) such that lim;_, s, = +o00.

[We used j here instead of k to avoid confusion with the given

k > 0.] Then lim;_, « ks,, = +00 by Exercise 9.10(a). Since (ksy,) is

a subsequence of (ksy), we conclude that lim sup(ks,) = +00.

(a) Since liminft, > 0, there exists N; such that m = inf{t, :
n > N;} > 0. Now consider M > 0. Since lims, = 400,
there exists N, such that s, > % forn > N,. Thenn >
max{Nj, Nz} implies spt, > (%), > (¥)ym = M. Hence
lim s, t;, = +00.

Partial Proof Let M = liminf|[s,;,/s,| and B = liminf |s,|'/".

To show M < B, it suffices to prove that M; < g for all M; < M.

Since

s S
liminf |2 = 1im inf {222 ). n > N! > My,
Sn N—oo Sn
there exists N such that
S
inf[ uld et >N} > M.
Sp
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12.13

13.1

13.3

13.7

Now imitate the proof of Theorem 12.2, but note that many of the
inequalities will be reversed.

Proof of supA = liminfs,. Consider N in N and observe that
uy = inf{s, : n > N} is a number in A, since {n € N : 5, <
un} € {1,2,...,N}. So uy < supA for all N and consequently
liminfs, = limuy < supA.

Next consider a € A. Let Ny = max{n € N : 5, < a} < oo.
Then s, > a forn > Ny. Thus for N > Ny we have uy = inf{s,, :
n > N} > a. It follows that lim inf's,, = limuy > a. We have just
shown that liminf's, is an upper bound for the set A. Therefore
liminfs, > supA.

(a) Itisclear thatd; and d; satisfy D1 and D2 of Definition 13.1.
Ifx,y,z € R¥, then foreachj=1,2,...,k,

1% — 7| < % —yj| + ly; — 2| < di(*,¥) +d(,2),

so di(x,z) < di(x,y) + di(y,2). So d; satisfies the triangle
inequality and a similar argument works for ds; give it.

(b) For the completeness of d; we use Theorem 13.4 and the
inequalities

di(x,y) < d(x,y) < Vkdi(x,y).

In fact, if (x,) is Cauchy for d;, then the second inequality
shows that (x,,) is Cauchy for d. Hence by Theorem 13.4, for
some x € R¥ we have lim d(x,, x) = 0. By the first inequality,
we also have limd,(x,,x) = 0, i.e, (x,) converges to x in
the metric d,. For d,, use the completeness of d; and the
inequalities d; (x,y) < da(x,y) < kdi(x,Y).

(b) No, because d*(x, y) need not be finite. For example, consider
the elementsx =i(1,1,1,..: ) andy =.(0,0,0;.:.)-

Outline of Proof Consider an open set U C R. Let (g,) be an

enumeration of the rationals in U. For each n, let

a, =infla e R: (a,g,] € U}, b, =sup{b e R:[gn,b) € U}.

Show that (a,, b,) € U for each nand that U = | J;2, (@n, b,). Show
that

(@n, bp) N\ (Gm, b)) # @ implies (an, by) = (Gm, bm).

Now either there will be only finitely many distinct [and dis-
joint] intervals or else a subsequence {(an,, bp, )72, of {(an, by))
will consist of disjoint intervals for which |}, (@n,, by,) = U.




Selected Hints and Answers 321

13.9
13.11

13.13

13.15

14.1

(@) {1 : ne N}U{0}; (b) R; () [-+/2,V2].

Suppose that E is compact, hence closed and bounded by The-
orem 13.12. Consider a sequence (x,) in E. By Theorem 13.5, a
subsequence of (x,) converges to some x in R¥. Since E is closed,
x must be in E; see Proposition 13.9(b).

Suppose every sequence in E has a subsequence that converges

to a point in E. By Theorem 13.12, it suffices to show E is closed
and bounded. If E were unbounded, E would contain a sequence
(xn) where limd(x,,0) = +oo and then no subsequence would
converge at all. Thus E is bounded. If E were nonclosed, then by
Proposition 13.9 there would be a convergent sequence (x,) in E
such that x = limx, ¢ E. Since every subsequence would also
converge to x € E, we would have a contradiction.
Assume, for example, that supE ¢ E. The set E is bounded,
so by Exercise 10.7, there exists a sequence (s,) in E where
lims, = supE. Now Proposition 13.9(b) shows that supE € E,
a contradiction.

(a) F is bounded because d(x,0) < 1 for all x € F where
0=(0,0,0,...). To show F is closed, consider a convergent
sequence (x™) in F. We need to show x = limx™ is in F.
Foreachj =1,2,..., it is easy to see that lim,,_, x](") =S
Since each x}") belongs to [—1,1], x; belongs to [—1,1] by
Exercise 8.9. It follows thatx € F.

(b) For the last assertion of the hint observe that x(™, x™ ¢
U(x) implies d(x™,x(™) < dx™,x) + d(x,x"™) < 2 while
d(x™, x™Y = 2 for m # n. Now show that no finite subfamily
of U can cover {x™ : n € N}.

(a), (b), (c) Converge; use Ratio Test.

(d) Diverges; use Ratio Test or show nth terms don’t converge
to 0 [see Corollary 14.5].

(e) Compare with ) 1/n?.

(f) Compare with ) L.

14.3 All but (e) converge.
14.5 (a) We assume the series begin with n = 1. Let s, = Y /', 4

and t, = Z;;l bj. We are given lims, = A and limt, = B.
Hence lim(s, + t,) = A + B by Theorem 9.3. Clearly s, +
tn = Y-, (a4 + by) is the nth partial sum for Y"(a, + b,), so
Y (an + by) = lim(s, +t,) = A +B.
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(c) The conjecture is not even reasonable for series of two
terms: ay b, + a;b; # (a1 + az)(bl + by).

14.7 By Corollary 14.5, there exists N such thata, < 1 forn > N. Since
p>1,d =ad " <a,forn> N.Hence Yoo N41 G converges
by the Comparison Test, so }_ al, also converges.

14.9 Hint: Let Ny = max{n € N : a, # by} < 00.If n > m > Ny, then
Dk @k = Y i

14.11 Assume a,y1/a, = r for n > 1. Then a; = ra,, as = r’ay, etc.
A simple induction argument shows that a, = r""'a, for n > 1.
Thus Y a, = Y a;7"! is a geometric series.

14.13 (a) 2and —%.
(b) Note that

(D)D)
e 2 25y CHrTS B n n+1l) nE

since the intermediate fractions cancel out. Hence we have
limsye=1y.
@ 2.
15.1 (a) Converges by Alternating Series Theorem.
(b) Diverges; note that lim(n!/2") = +oo by Exercise 9.12(b).
15.3 Hint: Use integral tests. Note that

n logn 1
lim | ————d¥'= lim — du.
n—>oo J3  x(log x)? n=>00 Jiog 3
15.5 There is no smallest p, > 1, so there is no single series ) 1/n
with which all series ) 1/n” [p > 1] can be compared.
15.7 (a) Proof Lete > 0. By the Cauchy criterion, there exists N
such that n > m > N implies | }_;_,, ax| < 5. In particular,

€
n >N implies ayy +---+ay < 3

Son > N implies
€
(n—N)a, <any1 +:--+an < 5

Ifn > 2N, thenn < 2(n — N), so na, < 2(n — N)a, < €
This proves lim(nay,) = 0.
16.1 (a) In other words, show

00
1
2+7-107' +4:107%+) 9107 =2+47-107" +5.107% = 71-
j=3
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The series is a geometric series; see Example 1 of §14.

(b) 2.750

16.3 Let A and B denote the sums of the series. By Exercise 14.5, we

have B—A = ) (b,—ay). Since b,—a, > 0foralln, and b,—a, > 0
for some n, we clearly have B— A > 0.

16.5 (a) .1250 and .1249; (c) .6; (€) .54
16.7 No.

16.9

17.1

17.3

@) Vo— Vo= [t dt - - > 0since 17 < t7! foralltin
[n,n+1).
(b) Forany n, y, < y1 = 1. Also

n 1 k+1
> i_/ tdt) > o.
k=1 k

(c) Apply Theorem 10.2.

(a) dom(f + g) = dom(fg) = (—00, 4], dom(f o g) = [-2,2]
dom(g o f) = (—00, 4].

(b) fog(0) = 2,g0f(0) = 4, fog(1) = +/3,g0f (1) = 3, fog(2) = 0,
gof(2)=2.

(c) No!

(d) f og(3)is not, but g o f(3) is.

(a) We are given that f(x) = cosx and g(x) = x* [p = 4]
are continuous. So g o f is continuous by Theorem 17.5,
i.e., the function g o f(¥) = cos* x is continuous. Obviously
the function identically 1 is continuous [if you do not find
this obvious, check it]. Hence 1 + cos*x is continuous by
Theorem 17.4(i). Finally log,(1 + cos* x) is continuous by
Theorem 17.5 since this is h o k(x) where k(x) = 1 + cos*x
and h(x) = log, x.

(b) Since we are given sin x and x are continuous, Theorem 17.5
shows that sin? x is continuous. Similarly, cos® x is continu-
ous. Hence sin® x + cos® x is continuous by Theorem 17.4(i).
Since sin’x + cos®x > 0 for all x and since X" is given to
be continuous for x > 0, we use Theorem 17.5 again to
conclude that [sin x + cos® x]” is continuous.

(e) We are given that sin x and cos x are continuous ateach x € R.
So Theorem 17.4(iii) shows that $2% = tanx is continuous

cosx
wherever cosx # 0, i.e., for x # odd multiple of 7.
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17.5 (@) Remarks. An €-6 proof can be given based on the identity
xm 4y ym 14 (X _y)(xm—l 4 xm—zy A xym-z +ym—l).

Or the result can be proved by induction on m, as follows.
It is easy to prove that g(x) = x is continuous on R. If
f(x) = ¥™ is continuous on R, then so is (fg)(¥) = ¥™*! by
Theorem 17.4(ii).

(b) Just use (a) and Theorems 17.4(i) and 17.3.

17.9 (a) Discussion. Let e > 0. We want |¥* — 4| < € for |x — 2| small,
i.e., wewant [x—2|-|x+2| < efor |x—2|small. If |x—2| < 1,
then |x + 2| < 5, so it suffices to get |[x — 2| - 5 < €. Set
8 = min{1, g 5

(c) Fore > 0, let § = € and observe that

n(3)
xsin|{—)—0
x

17.11 If f is continuous at X, and if (x,) is a monotonic sequence
in dom(f) converging to xo, then we have limf(x,) = f(xo) by
Definition 17.1.

Now assume that

<ME:

|x— 0| < & implies

if (%,) is monotonic in dom(f) and limx, = xo, 1)
then IMf(xn) = f(x())r (

but that f is discontinuous at xy. Then by Definition 17.1, there
exists a sequence (x,) in dom(f) such that lim x,, = xo but (f(x,))
does not converge to f(p). Negating Definition 17.1, we see that
there exists € > 0 such that

for each N there is n > N satisfying [f(x,) — f(%0)| = €.  (2)
It is easy to use (2) to obtain a subsequence (xy,) of () such that

If ) — f(%0)] = € forall k. 3)

Now Theorem 11.3 shows that (x,,) has a monotonic subsequence
(¥%ny)- By (1) we have lim;_, f(%n, ) = f(%0), but by (3) we have
If (%n, ) — f(x0)| = € for all j, a contradiction.

17.13 (a) Hint: Letx € R. Select a sequence (x,) such thatlimx, = x, x,
is rational for even n, and x, is irrational for odd n. Then f(x,)
is 1 for even n and 0 for odd n, so (f(x,)) cannot converge.

17.15 We abbreviate

(i) f is continuous at xo,
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(ii) limf(x,) = f(x) for every sequence (x,) in dom(f) \ {xo}
that converges to xg.

From Definition 17.1 it is clear that (i) implies (ii). Assume (ii)
holds but (i) fails. As in the solution to Exercise 17.11, there is a
sequence (x,) in dom(f) and an € > 0 such that limx, = x; and
If (%n) — f(%0)| = € for all n. Obviously x,, # x; for all n, i.e., (x,) is
in dom(f) \ {x0}. The existence of this sequence contradicts (ii).

18.3 This exercise was deliberately poorly stated, as if f must have a
maximum and minimum on [0, 5); see the comments following
Theorem 18.1. The minimum of f on [0, 5) is 1 = f(0) = f(3), but
f has no maximum on [0, 5) though sup{f(x) : x € [0, 5)} = 21.

18.5 (a) Leth = f —g. Then h is continuous [why?] and h(b) < 0 <

h(a). Now apply Theorem 18.2.
(b) Use the function g defined by g(x) = x for x € [0, 1] .

18.7 Hint: Let f(x) = x2%; f is continuous, f(0) = 0 and f(1) = 2.

18.9 Let f(¥) = ap + a1x + - - - + ayx" where a, # 0 and n is odd. We
may suppose that a,, = 1; otherwise we would work with (1/a,)f.
Since f is continuous, Theorem 18.2 shows that it suffices to show
that f(x) < 0 for some x and f(x) > 0 for some other x. This is true
because lim,_, o f(¥) = +00 and lim,_,  f(¥) = —oo [remember
a, = 1], but we can avoid these limit notions as follows. Observe
that

ag+ ax + -+ + Gy X"}
an :

=" [1 +

Letc =1+ |ag|l + |a1]| + - - - + |an-1|. If |x| > ¢, then

ey

lag +a1x + - - -+ an12"7'| < (laol + @] + - - + lan—1 DIx"" < |2,

so the number in brackets in (1) is positive. Now if x > ¢, then
x" > 0,s0f(x) > 0. Andifx < —c, thenx" < 0[why?],sof(x) < 0.
19.1 Hints: To decide (a) and (b), use Theorem 19.2. Parts (c), (e), (f)
and (g) can be settled using Theorem 19.5. Theorem 19.4 can also
be used to decide (e) and (f); compare Example 6. One needs to
resort to the definition to handle (d).
19.3 (a) Discussion. Let € > 0. We want

X Y Xy

— = | <e€
x+1 y+1 x+1y+1)
for |x — y| small, ¥, y € [0,2]. Since x+1>1andy+1>1
for x, y € [0, 2], it suffices to get |x — y| < €. Sowe let § = e.
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Formal Proof Lete > 0 andletd =e€. Thenx, y € [0,2] and
¥ —y| < 8§ = € imply

o ST YR
x+D+1)

(b) Discussion. Lete > 0. We want |g(x) —g(y)| = I(—Zx—_s-;i)_as;‘fljl <
efor|x —y|small, x>1,y>1.Forx,y>1,2x—1>1and
2y — 1 = 1, so it suffices to get |5y — 5x| < €. Solet § = ¢.
You should write out the formal proof.

19.5 (a) tanx is uniformly continuous on [0, ] by Theorem 19.2.

(b) tanxisnotuniformly continuous on [0, 5) by Exercise 19.4(a),
since the function is not bounded on that set.

(c) Let h be as in Example 9. Then (sin X)h(x) is a continuous
extension of (i) sin x on [0, 7r]. Apply Theorem 19.5.

(e) % is notuniformly continuous on (3, 4) by Exercise 19.4(a),
so it is not uniformly continuous on (3, co) either.

() Remark. 1t is easy to give an €-8 proof that ﬁ is uni-
formly continuous on (4,00). It is even easier to apply
Theorem 19.6.

19.7 (a) We are given that f is uniformly continuous on [k, 00), and f
is uniformly continuous on [0, k + 1] by Theorem 19.2. Let
€ > 0. There exist §; and §, so that

'x_yl < 81) XY € [k; w) imply If(x) _f(Ay)I < 65(1)
Ix _yl < 82; XY € [On k + 1] lmply If(x) _f(y)l < 6'(2)
Let § = min{1, 8, 8;} and show that

If(x) - f)l =

<lx-yl <e

lx—yl < 81 XY € [0, oo) lmply If(x)_f(y)l <€

19.9 (c) This is tricky, but it turns out that f is uniformly continuous
on R. A simple modification of Exercise 19.7(a) shows that
it suffices to show that f is uniformly continuous on [1, c0)
and (—oo, —1]. This can be done using Theorem 19.6. Note
that we cannot apply Theorem 19.6 on R because f is not
differentiable at x = 0; also f” is not bounded near x = 0.

19.11 As in the solution to Exercise 19.9(c), it suffices to show
that h is uniformly continuous on [1,00) and (—o0, —1]. Apply
Theorem 19.6.

20.1 limyoeo f(*) = limyso+ f(X) = 1; limyo- (%) = limyoy -0 f(X) =

—=1; limy, f(¥) does NOT EXIST.
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20.3

20.5

20.7

20.9

20.11
20.13

20.15

limay g () =ailim, 2, =5 fi () L =105 Lt o8 F(R) s=alimpsy o2 if () =
].imx_,o f(X) =l

Let 8§ = (0,00). Then f(x) = 1 for all x € 8. So for any sequence
(%) in S we have limf(x,) = 1. It follows that lim,_,¢s f(¥) =
lim, o8 f(X)= 1, 1€, lim, o+ f(#) = 1m0 f(x) = 1. Like-
wise it 'SE=E—00, 0), then. lim, o f)'=lim, s f(X) = =1,
so lim,_,¢- f(¥) = lim,_, _ f(x) = —1. Theorem 20.10 shows that
lim,_, f(%) does not exist.

If (%,) is a sequence in (0, 00) and lim x, = 400, then lim(1/x,) =
0. Since (sinx,) is a bounded sequence, we conclude that
lim(sin x,)/%, = 0 by Exercise 8.4. Hence lim,_, « f(¥) = 0. Simi-
larly lim,_, _ f (%) = 0. The remaining assertion is lim,._, i‘? =
which is discussed in Example 9 of §19.

lim, .o f(%) = —o00; limy o+:f(X) = +00; limuso- f(X¥) = —oo;
lim,, _ f(x) = +00; lim,_,( f(x) does NOT EXIST.

(a) 2a; (c) 3a°.

First note that if lim,_, s f(X) exists and is finite and if k € R, then
lim,, s (kf)(x) = k - lim,—,4s f(x). This is Theorem 20.4(ii) where
fi is the constant k and f, = f.

(a) The remark above and Theorem 20.4 show that
m[3f(%) + g(¥)*] = 3lim f(x) + [limg(x)]* = 3-3 + 2> = 13.
xX—=>a xX—=>a X—>a

(c) As in (a), lim,_,4[3f(x) + 8g(x)] = 25. There exists an open
interval ] containing a such thatf(x) > 0Oandg(x) > Oforx €
J\{a}. Theorem 20.5 applies with § = J\ {a}, 3f +8g in place
of f and with g(x) = J/x to give lim,_,/3f(x) + 8g(*) =
25 = 5.

Let (x,) be a sequence in (—oo, 2) such that limx, = —oo. We
contend that

lim(x, —2)"* =0. €))

We apply Exercises 9.10 and 9.11 and Theorems 9.9 and 9.10 to
conclude lim(—x,) = 00, lim(2 — x,,) = 00, lim(2 — x,)* = +00,
lim(2 — x,)~ = 0, and hence (1) holds.

Now consider a sequence (x,) in (2, c0) such that limx, = 2. We
show

lim(x, — 2)™% = +o00. (2)
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20.17

20.19

21.1

Since lim(x, — 2) = 0 and each x, — 2 > 0, Theorem 9.10 shows
that we have lim(x, —2)~! = +oc and (2) follows by an application
of Theorem 9.9.

Suppose first that L is finite. We use (1) in Corollary 20.8. Let
€ > 0. There exist §; > 0 and 83 > 0 such that

a<x<a+é implies L—e€< fi(¥) <L+e
and

a<x<a+é; implies L—€ < f3(x) < L+e.
If § = min{é,, 83}, then

a<x<a+é implies L—e€ < fo(x) < L+e.

So by Corollary 20.8 we have lim,_, .+ fo(x) = L.
Suppose L = +o00. Let M > 0. In view of Discussion 20.9, there
exists § > 0 such that

a<x<a+é implies fi(x) > M.
Then clearly
a<x<a+d implies f(x) > M,

and this shows that lim,_, 4+ fo(x¥) = +00. The case L = —o0 is
similar.

Suppose Ly = lim,_,,s f(x) exists with § = (a, b;). Consider a se-
quence (x,) in (a, b;) with limit a. Then (x,,) is a sequence in (a, b;)
with limit a, so lim f(x,) = L,. This shows lim,_, ;s f(x) = L, with
S= (a, bl)

Suppose L; = lim,_,,s f(x) exists with § = (a, b1), and consider a
sequence (%) in (a, bz) with limit a. There exists N so thatn > N
implies ¥, < b;. Then (x,)52y is a sequence in (a, b;) with limit
a. Hence lim f(x,,) = L; whether we begin the sequence atn = N
or n = 1. This shows lim,_, s f(¥) = L, with 8§ = (a, by).

Lete > 0. Forj=1,2,...,k, there exist §; > 0 such that

€
7
Let § = min{é,,dz,...,8}. Then by (1) in the proof of Propo-
sition 21.2,

s;teR and |s—t| <§ imply |[fi(s)—fi(Dl <

s,;teR and [s—t| <8 imply d*(y(s), ¥(1)) < €.
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21.3

21.5

21.7

21.9

21.11

22.1

22.3

Hint: Show that |d(s, so) — d(t, so)| < d(s,t). Hence if € > 0, then

Q)

(b)

@)
(b)

@

(@

s,teS and d(st) <e imply [f(s)—f()| < e

By part (a), there is an unbounded continuous real-valued
function f on E. Show that h = ; +If| is continuous, bounded
and does not assume its supremum 1 on E.

y is continuous at t, if for each t; € [a,b] and € > 0 there
exists 8§ > 0 such that

te[a,b] and |t—tg| <8 imply d*(y(t),v(to)) < €.

Note: If y is continuous at each t; € [a, b], then y is uniformly
continuous on [a, b] by Theorem 21.4.

Use f(x1,x2) = %1, say.

This is definitely not obvious, but there do exist continuous
mappings of [0, 1] onto the unit square. Such functions must
be “wild” and are called Peano curves [after the same Peano
with the axioms]; see [8], §5.5, or [34], §6.3.

If a continuous function mapped [0, 1] onto (0, 1), then the
image (0, 1) would be compact by Theorem 21.4(i). But (0, 1)
is not closed and hence not compact.

[0, 1] is connected but [0, 1]U[2, 3] is not. See Theorem 22.2.
Alternatively, apply the Intermediate Value Theorem 18.2.

Assume that E is connected but that E~ is not. Then there exist
disjoint open sets U; and U, such that E- C U, UU,, ETNU; # @
and E-NU; # @. Since E C U, UU,, it suffices to show ENU; # @
and ENU; # @. In fact, if ENU; = @, then E- N (S \ U;) would
be a closed set containing E that is smaller than E~, contrary to
the definition of E~. Likewise EN U, # 9.

22.5 (a) Assume disjoint open sets U; and U, disconnect EU F. Con-

sider sp € E N F; sy belongs to one of the open sets, say
8o € Uy. Since E C U, U U, ENU; # @ and E is connected,
we must have E N U, = @. Similarly F N U, = &. But then
(EUF)NU; = &, a contradiction.

(b) No such example exists in R [why?], but many exist in the

plane. For example, consider

E={(x,%): ¥ +x; =1and x, >0},
F={(x,%): % +x =1and x <0J.
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22.9 Discussion. Given € > 0, we need § > 0 so that
s,teR and |s—t| <é imply d(F(s),F(t) <e (1)

Now

d(F(s), F(t)) = sup{|sf(x) + (1 — 8)g(x) — tf (x) — (1 — D)g(x)| : x € §}
= sup{|sf(x) — tf (%) — sg(x) + 8(¥)| : x € §}
< |s—t| - sup{lf (¥)| + [g(®)| : x € S}.

Since f and g are fixed, the last supremum is a constant M. We
may assume M > 0, in which case § = ;; will make (1) hold.
22.11 (a) Let (f,) be a convergent sequence in £. By Proposi-
tion 13.9(b), it suffices to show f = limf, is in £. For each
X €S,

IFCI < If () = fu()] + Ifu(®)] < d(f f) + 1.

Since lim d(f, f,) = 0, we have |f(¥)| < 1.
(b) It suffices to show that C(S) is path-connected. So use
Exercise 22.9.

23.1 Intervals of convergence: (a) (—1,1); (¢) [-3, 3] (@) R; (8) [—%, §).

23.3 (—(2)'3, (2)'3).

23.5 (a) Since |ay| > 1 for infinitely many n, we have sup{|an|'/" :
n > N} > 1 for all N. Thus B = limsup|a,|'/” > 1; hence
R=3<1

(b) Selectcwith 0 < ¢ < limsup |a,|. Then sup{|a,| : n > N} >
c for all N. A subsequence (ay,) of (a,) has the property that
|an,| > c for all k. Since |a,, |"/™ > (€)™ and limy_, ¢'/™ =
1 [by 9.7(d)], Exercise 12.1 shows that lim sup |a,,|"/™ > 1.
It follows that B = limsup|a,|'/" > 1 [use Theorem 11.7).
Hence R= 4 < 1. .

23.9 (a) Obviously limf,(0) = 0. Consider 0 < x < 1 and let
Sn = nx". Then s,41/s, = [2 ], s0 lim [sp41/8,| = x < 1,
Exercise 9.12(a) shows that 0 = lims, = limnx" = lim f,,(x).

24.1 Discussion. Lete > 0. We want |f,(x) —0| < € for all x and for large

n. It suffices to get 73; < € for large n. So consider n > 9/¢* = N,

24.3 (a) f®) =1for0<x < 1;f(1) = ; f(*) = 0 for x > 1. See
Exercise 9.13.

(b) (fn) does not converge uniformly on [0, 1] by Theorem 24.3,
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24.5 (a) f(x) = 0forx < 1 and f(x) = 1 for x > 1. Note that
fu(®*) = 1/[1 + n/x"] and that lim,_,,n/x" = 0 for x > 1
by Exercise 9.12 or 9.14.

(b) fn — 0 uniformly on [0, 1]. Hint: Show that |f,(x)| < + for
x €[0,1].

(c) Hint: Use Theorem 24.3.

24.7 (a) Yes.f(x) =xforx < 1andf(1)=0.

(b) No, by Theorem 24.3 again.

24.9 (a) f(x) = 0 for x € [0,1]. For x < 1, lim,,cnx" = 0 as in
Exercise 23.9(a).

(b) Use calculus to show that f, takes its maximum at ;5. Thus
sup{lfu(®)! : x € [0, 1]} = fu(;E7) = A7) Asin Example 8,
it turns out thatlim f,(;37) = 1/e. So Remark 24.4 shows that
(f») does not converge uniformly to 0.

(©) Jy () dx = Gty > 0 = [, f@)d.

24.15 (a) f(0) =0 and f(x) =1 for x > 0. (b) No. (c) Yes.

25.3 (a) Since fu(x) = (1+(cosx)/n)/(2+(sin’ x)/n), we have f, — 1
pointwise. To obtain uniform convergence, show that

3
< <e€
2(2n)

2cosx — sinx
2(2n + sin*x)

1
fu(x) — E‘ =

for all real numbers x and alln > 2

4e”’

(b) J, 1dx =%, by Theorem 25.2.

25.5 Since f, — f uniformly on §, there exists N € N such thatn > N
implies |f,(¥) — f(x¥)| < 1 for all x € 8. In particular, |fy+1(%) —
f®)| < 1 for x € 8. If M bounds |fy41]| on 8 [i.e., if [fn41(*)| < M
for x € §], then M + 1 bounds |f| on S [why?].

25.7 Let gn(¥) = n~ 2 cosnx. Then we have |g,(x)| < n~2 for x € R and
> n~?% < 00.S0 ) _ g, converges uniformly on R by the Weierstrass
M-Test 25.7. The limit function is continuous by Theorem 25.5.

25.9 (a) The series converges pointwise to 1lTx on (—1,1) by (2) of

Example 1 in §14. The series converges uniformly on [—a, a]
by the Weierstrass M-Test since |x"| < a” for x € [—a, a] and
since Y a" < oo.

(b) One can show directly that the sequence of partial sums
sn(®) = Yro® = (1 — ¥**1)/(1 — x) does not converge
uniformly on (-1, 1). It is easier to observe that the partial
sums s, are each bounded on (-1, 1), and hence if (s,) con-
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verges uniformly, then the limit function must be bounded
by Exercise 25.5. But 1% is not bounded on (-1, 1).
25.11 (b) Hint: Apply the Weierstrass M-Test to ) h,, where hy(x) =
(3)"8n (-
25.13 The series ) _ gk and ) hx are uniformly Cauchy on S and it sufs
fices to show that } (g + hx) is also; see Theorem 25.6. Lete > 0.
There exist N; and N, such that
n
> a®

n>m > N; implies <§ for xe8, ‘@)

k=m
w €
n>m > N, implies th(x) %5 for xe€8. (2)
k=m
Then
n
n >m > max{N;, N;} implies Z(gk +h)(%)| <€ for x€
k=m

25.15 (a) Note that f,(x) > 0 for all x and n. Assume (f,,) does not
converge to 0 uniformly on [a, b]. Then there exists € > 0
such that

for each N there exists n > N and x € [a, ]
such that f,(x) > e.

a

We claim
for each n € N there is x, € [a, b] where fy(x,) > €. (2)

If not, there is ny € N such that f,, (x) < € for all x € [a, b].
Since (f,(¥)) is nonincreasing for each x, we conclude that
fa(x) < eforall x € [a, b] and n > n,. This clearly contradicts
(1). We have now established the hint.

Now by the Bolzano-Weierstrass theorem, the sequence ()
given by (2) has a convergent subsequence (¥,): X,, —> Xo.
Since limf,(%)) = 0, there exists m such that f,(%) <
€. Since x,, — X and f;, is continuous at x,, we have
limg_, 00 fin(%n,) = fm(*0) < €. So there exists K such that

k> K implies fin(xn,) < €.
If k > max{K, m}, then nx > k > m, so

Fi S Fnln) < €.
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But fu(x,) = € for all n, so we have a contradiction.
(b) Hint: Show that part (a) applies to the sequence g, where
gn=fn—f.
26.3 (a) Let f(x) = Y oo, nx" = x/(1 — x)? for |¥| < 1. Then by

Theorem 26.5

d
an p ‘—f’(x)——[(1 iy ]—(1 +R)(1 -2

therefore Y o | n?x" = (x + x%)(1 —x)~3.
(b) 6and 3.

26.5 Hint: Apply Theorem 26.5.

26.7 No! The power series would be differentiable at each x € R, but
f(x) = |x| is not differentiable at x = 0.

27.1 Let ¢ be as in the hint. By Theorem 27.4, there is a sequence (g,)
of polynomials such that g, — f ¢ uniformly on [0, 1]. Note that
¢ is one-to-one and ¢~ (y) = {==. Let p, = gn0¢~'. Then each p,
is a polynomial and p,, — f uniformly on [a, b].

27.3 (a) Assume that a polynomial p satisfies [p(x) — sinx| < 1 for
all x € R. Clearly p cannot be a constant function. But if p
is nonconstant, then p is unbounded on R and the same is
true for p(x) — sinx, a contradiction.

(b) Assume that |¢* — Y j_; axx| < 1 forallx € R. Forx > 0 we
have

n—1 1 n—1
e — Zakxk > —'x" - Z |ag |2
k=0 it k=0

and for large x the right side will exceed 1.
27.5 (@) B,f(x) = x for all n. Use (2) in Lemma 27.2.
(b) B.f(%) = ** + 1x(1 — x). Use (4) in Lemma 27.2.
28.1 (a) {0}; (b) {0}; (c) {nm:n e Z}; (d) {0,1}; (e) {—1,1}; (F) {2}.
28.3 (b) Since x —a = (x1/3 £ a1/3)(x2/3 4 a1/3x1/3 Al a2/3),

fl(a) 7 }Ci_{%(XZ/s + a1/3x1/3 +a2/3)—1 _— (3a2/3)—1 — %a~2/3

for a # 0.

(c) f is not differentiable at x = 0 since the limit lim,_ox'/3/x
does not exist as a real number. The limit does exist and
equals +o00, which reflects the geometric fact that the graph
of f has a vertical tangent at (0, 0).
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28.5 (c) Let

no = E0CD ~80 (@)
f®) - f(0)

According to Definition 20.3(a), for lim,_,( h(x) to be mean-
ingful, h needs to be defined on ] \ {0} for some open interval
J containing 0. But the calculation in (b) shows that h is
undefined at (7n)~! for n = +1, £2, .. ..

28.7 (d) f’is continuous on R, but f” is not differentiable at x = 0.

28.9 (b) f(x)=x"+13xand g(y) =y’. Then

WX =g (f®)-f(x) = 7(x* + 13x)° - (4x° +13).

28.11 With the stated hypotheses, h o g o f is differentiable at a and
(hogof)(a)=N(gof(a)) g (f(a))-f'(a). Proof By 28.4,gof is
differentiable at a and (g o f)(a) = g'(f(a)) - f'(a). Again by 28.4,

(ho(gof))(@) =H((gof)@) (g f)(a).

28.13 There exist positive numbers §;, and € so that f is defined on the
interval (a — 81, a + 6:) and g is defined on (f(a) — €, f(a) + €). By
Theorem 17.2, there exists §; > 0 so that

xedom(f) and |x—a| <é; imply [f(x)—f(a)l <e.

If |[x — a| < min{é,, 4}, then x € dom(f) and |f(x) — f(a)| < €, so
f(x) € dom(g), i.e., x € dom(g o f).
29.1 (a) x=3 .
(c) If f(x) = x|, then f'(x) = £1 except at 0. So no x satisfies
the equation f'(x) = f%%}ll o= % Missing hypothesis: f i§
not differentiable on (—1, 2), since f is not differentiable at
x=0.
(e) x=+/3
29.3 (a) Apply Mean Value Theorem to [0, 2].
(b) By the Mean Value Theorem, f'(y) = 0 for some y € (1, 2). :
In view of this and part (a), Theorem 29.8 shows that f” takes
all values between 0 and 1.
29.5 Foranya € R we have |ﬁi‘%%@| < |x—al|. It follows easily that f'(a)
exists and equals 0 for alla € R. So f is constant by Corollary 29.4,
29.7 (a) Applying 29.4 to f’, we find f'(¥) = a for some constant a. If
g(%) = f(X) — ax, then g'(x) = 0 for x € I, so by 29.4 there I8
a constant b such that g(x) = b forx € I.
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29.9 Hint: Let f(x) = ¢* —ex for x € R. Use f” to show that f is increasing
on [1, 00) and decreasing on (—oo, 1]. Hence f takes its minimum
atx=1.

29.13 Let h(x) = g(x) — f(x) and show h(x) > 0 for x > 0.

29.15 As in Example 2, let g(x) = x!/". Since dom(g) = [0, 00) if n is
even and dom(g) = R if n is odd, we have dom(g) = dom(h)U({0}.
Also h = g™. Use the Chain Rule to calculate %'(x).

29.17 Suppose that f(a) = g(a). Then

. hx)—h@ _ , . h®) -h@) _
e ]
If also f'(a) = g'(a), then Theorem 20.10 shows that /’(a) exists
and, in fact, h'(a) = f'(a) = g'(a).
Now suppose h is differentiable at a. Then h is continuous at a
and so f(a) = lim,,,- f(¥) = lim,_,,- h(¥) = h(a) = g(a). Hence
(1) holds. But the limits in (1) both equal h'(a), so f'(a) = g'(a).
30.1 (a) 2; (b) 3; (c) 0; (d) 1. Sometimes L'Hospital’s rule can be
avoided. For example, for (d) note that

JTFx—T=x _ 2
x CVIFx+T-%
30.3 (a) 0; (b) 1; (c) +oo (d) —2.
30.5 (a) ¢% (b) €% (c) e
31.1 Differentiate the power series for sinx term-by-term and cite
Theorem 26.5.
31.3 The derivatives do not have a common bound on any interval
containing 1.
31.5 (a) g(¥) = f(*¥?) for x € R where f is as in Example 3. Use induc-
tion to prove that there exist polynomials px,, 1 < k < n, so
that

g™ = Z fOCHP(x) for xeR, n>1.
k=1
32.1 Use the partition P in Example 1 to show U(f, P) = b*n*(n + 1)*/(4n*)
and L(f, P) = b*(n — 1)?n?/(4n*). Conclude that U(f) = b*/4 and
L(f) = b*/4.
32.3 (a) The upper sums are the same as in Example 1, so U(g) =
b/3. Show that L(g) = 0.

(b) No.
32.5 §is all the numbers L(f, P) and T is all U(f, P).
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32.7 A simple induction shows that we may assume g(x) = f(x) except
at one point u € [a, b]. Let B be a bound for |f| and |g|, B > 0. If
€ > 0 there exists a partition P such that U(f, P) — L(f, P) < 5. We
may assume that ty — tx_; < 35 for all k. Since u belongs to at
most two intervals [tx_, tx], we see that

|U(g, P) — U(f, P)| <2 [B — (~B)]- max{ty — tx_1} < g

Likewise |L(g, P) — L(f,P)| < 5,50 U(g,P) — L(g,P) < €. Hence g
is integrable. The integrals agree since since

b
fg<U(g,P)< U(fP)+—<L(fP)+—</ f+

andsimilarlyfag>faf—%

33.1 Iff is decreasing on [a, b, then —f is increasing on [a, b], so —f is
integrable as proved in Theorem 33.1. Now apply Theorem 33.3
with ¢ = —1.

33.3 (b) 138

33.7 (a) For any set S C [a,b] and x, Yo € S, we have

fx0)* = f(0)* < If (o) + F o)l - If (*0) — F (o)
< 2BIf (%) — f(yo)| < 2B[M(f, S) — m(f, S)].

It follows that M(f?, 8) — m(f?, 8) < 2B[M(f, S) — m(f, S)]. Use
this to show that U(f?, P) — L(f2, P) < 2B[U(f, P) — L(f, P)].
(b) Use Theorem 32.5 and part (a).
33.9 Select m € N so that |f(x) — fu(¥)| < 55— for all x € [a, b]. Then
for any partition P

—g <L(f — f, P) S U(f — fin, P) < g

Select a partition Py so that U(fn, Po) — L(fm, Po) < 3. Since

f = (f — fm) + fm, we can use inequalities from the proof of

Theorem 33.3 to conclude that U(f, Py) — L(f, Py) < €. Now The-

orem 32.5 shows that f is integrable. To complete the exercise,
proceed as in the proof of Theorem 25.2.

33.11 (@) and (b): Show that f is neither continuous nor monotonic

on any interval containing 0.

(c) Let € > 0. Since f is piecewise continuous on [, 1], there

is a partition P, of [§,1] such that U(f, P,) — L(f,P1) < §.

Likewise there is a partition P, of [~1, —§ ] such that U(f, P;)—
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L(f,P;) < 5. Let P = P, U P, a partition of [-1, 1]. Since

€ € € € € € €
(s [-5.5) -mGl-g3DF 5= =3
we conclude that U(f, P) — L(f, P) < €. Now Theorem 32.5
shows that f is integrable.
33.13 Apply Theorem 33.9to f — g.
34.3 (a) F(x) =0forx < 0; F(x) =x*/2for0 <x < 1; F(x) = 4x—
forx>vl,
(c) F isdifferentiable except possibly at x = 1 by Theorem 34.3.
To show F is not differentiable at x = 1, use Exercise 29.17.
34.5 F'(x) = f(x+ 1) — f(x — 1).
34.9 Usea =0, b = % and g(x) = sinx.
34.11 If f is not identically 0 on [a,b], then f(x) > 0 for some x; in
[a, b] which can be taken to be in (a,b). Choose § > 0 so that
a < x—8 < x+38 < band f(x) > f(x)/2 for |[x — x| < 6.
Let g(x) = f(x0)/2 for |x — x| < & and g(x) = 0 otherwise. Then
f(x) = g(x) for x € [a, b], so

b b
ff(x)dxzf g(x)dx = 8f (x0) > 0.

35.3 (a) 21; (b) 14; (c) 0.
35.5 (a) Every upper sum is F(b) — F(a) and every lower sum is 0.
Hence Ur(f) = F(b) — F(a) # 0 = Lg(f).
35.7 (a) Imitate solution to Exercise 33.7.
(b) and (c): Use hints in Exercise 33.8.
35.9 (a) Let m and M be the [assumed] minimum and maximum
of f on [a,b]. Then f:mdF < fabde < f:MdF orm <
[F(b) — F(@)]™ [’ f dF < M. Apply Theorem 18.2.
(b) Consider f and g as in Exercise 33.14, and let F be as in
Exercise 35.8. By part (a), for some x € [a, b] we have

b b b
[ roewa= [ rar —serer-rai-re [ swa
35.11 Lete > 0 and select a partition
P ={a =ty <ty «esaug ti=1b)
satisfying Ur(f, P) — L¢(f, P) < €. Let ux = ¢~ !(t) and

Ql={c=upy < Ut < =+ € Uy =d}.



338 Selected Hints and Answers

Show that Ug(g, Q) = Ur(f,P) and Lg(g, Q) = Lp(f,P). Then
Us(g, Q) — Lg(8,Q) < €, so g is G-integrable. The equality of
the integrals follows easily.

36.1 Hint: If B bounds [f], then

[ PN / ’ feoae| < B -

36.3 (b) Use part (a) and Examples 1 and 2.
36.7 (a) It suffices to show [® e dx < co. Bute™ < e forx > 1
and [P e*dx=1.
(b) The double integral equals [[°C ’ dx)?, and it also equals

oo p2m (o]
f / e rdddr = er/ e rdr=m.
o Jo 0

36.9 (a) Hint: Use Theorem 35.13.

(b) 1; () +oo; (d) V2/7; (€) 0.

36.13 Claim: If f is continuous on R and ff; If|dF < oo, then f is F-
integrable. Proof Since 0 < f + [f|, the integral [ [f + |f|]dF
exists, and since f + [f| < 2|f], this integral is finite, i.e., f + [f] is
F-integrable. Since —|f| is F-integrable, Exercise 36.10 shows that
the sum of f + |f| and —|f| is F-integrable.

36.15 (a) For example, let f(x) = % for x € [0,n] and f(x) = 0O

elsewhere.

(b) Outline of Proof First, f is F-integrable on each [a, b] by
Exercise 35.6. An elaboration of Exercise 25.5 shows that
there is a common bound B for |f| and all |f,|. Consider any
b > 0 such that 1 — F(b) < 53. There exists N so that

|f0bde—fobfndFl < £ forn > N. Then

[Obde—fowfan

In particular, m,n > N implies | [;° fndF — [ fn dF| < 2,
50 ( f0°° frndF)pen is a Cauchy sequence with a finite limit L.
From (1) it follows that
b
f fdF - L
0

n > N implies <e @)

1 - F(b) < % implies <e
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so limp, e fob fdF = L. Hence [ fdF exists, is finite,
and equals lim,,« [;° fndF. A similar argument handles

[ far.

37.1 Hint:
yz Y Yz
f t_ldt—/ t‘ldtzf £t
1 1 y

37.7 (a) B(x) = E(xL(b)), so by the Chain Rule, we have B'(x) =
E(xL(b)) - L(b) = L(b)b* = (log, b)b*.
37.9 (a) log.y=Ly)=f{tldt<y—1<y.
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that introduces logic as a mathematical tool in an interesting way.
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Symbols Index

e, 35, 303
N [natural numbers], 1
Q [rational numbers], 6
R [real numbers], 14
R¥, 80

Z [all integers], 6

B,f [Bernstein polynomial], 202

C(S), 168

d [a metric], 80

dist(a, b), 16

dom(f) [domain], 115

F-mesh(P), 288

Je(f, P), Ur(f, P), Li(f, P), 270

Ju [jump function at u], 271

lim,_, ,s f(x), 146

lim,_, (%), lim,_, .+ f(%),
lim,, « f (%), etc., 146

limsy, s, = s, 33, 49

limsupsy, liminf's,, 58, 75

M(f, §), m(f, ), 244

max(f, g), min(f, ), 121

max §, min §, 19
mesh(P), 249
n! [factorial], 6

(%) [binomial coefficients], 6

Ry (%) [remainder], 231

sgn(x) [signum function], 125

sup§,inf'§, 21, 27
u(n), L(f), 244
U(f, P), L(f, P), 244
UF(f); LF(f); 270

E°, 83

E~, 84

f' [derivative of f],.206
f~‘ [extension of f], 139
f~! [inverse function], 129
f+8 18 1/8 fog 121
F(t7), F(t1), 269

fn — f pointwise, 177
fn = f uniformly, 178
f:8— 8*, 157

Sp, —> 8, 33
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sn 18,8, | s, 280
(Sn:), 64

* Y ay [summation], 90

J2f = [ f(x)dx, 244, 292 3
[y f aF = [} () dF (), 271 :
[ fadF, 295
[a, b}, (a,b), [a,b), (a,D], 20
[a, 00), (a, 0), (—o0, b}, etc., 27
+00;:—00, 27
2 [empty set], 310
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Index

Abel’s theorem, 196

absolute value, 16

absolutely convergent series, 91
algebraic number, 8

alternating series theorem, 103
Archimedean property, 23
associative laws, 13

basic examples, limits, 46
basis for induction, 3
Bernstein polynomials, 202
binomial series theorem, 236
binomial theorem, 6
Bolzano-Weierstrass theorem, 69

for R¥, 82
boundary of a set, 84
bounded function, 126
bounded sequence, 43
bounded set, 20

in R, 82

in a metric space, 89

Cantor set, 85
Cauchy criterion

for integrals, 248, 249

for series, 92

for series of functions, 188
Cauchy form of the remainder of

a Taylor series, 236

Cauchy principal value, 294
Cauchy sequence, 60

in a metric space, 81

uniformly, 185
cell in Rk, 87
chain rule, 209
change of variable, 265, 291
closed interval, 20, 27
closed set, 72

in a metric space, 84
closure of a set, 84
coefficients of a power series, 171
commutative laws, 13
compact set, 86
comparison test

for integrals, 297

for series, 93
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Index

complete metric space, 81
completeness axiom, 22
composition of functions, 121
connected set, 165
continuous function, 116, 157

piecewise, 258

uniformly, 134, 157
convergence, interval of, 173
convergence, radius of, 172
convergent improper integral, 293
convergent sequence, 33

in a metric space, 81
convergent series, 90
converges absolutely, 91
converges pointwise, 177
converges uniformly, 178
convex set, 167
cover, 86
curve, 158

Darboux integrals, 244
Darboux sums, 244
Darboux-Stieljtes sums, 270
Darboux-Stieltjes integrable
function, 271
Darboux-Stieltjes integrals, 270
decimal expansions, 55, 105, 110
decreasing function, 217
Dedekind cuts, 28
definition by induction, 66
deMorgan’s laws, 88
denseness of Q, 24
density function, 296
derivative, 205
diameter of a k-cell, 87
differentiable function, 205
Dini’s theorem, 191
disconnected set, 165
discontinuous function, 119
distance between real numbers,
16
distance function, 80

distribution function, 295
distributive law, 13

divergent improper integral, 293
divergent sequence, 33
divergent series, 90

diverges to +00 or —oo, 49, 90
divides, 9

domain of a function, 115

e, 35, 303

is irrational, 113
equivalent properties, 26
Euclidean k-space, 80
Euler’s constant, 113
exponentials, a definition, 304
extension of a function, 139

factor, 9
factorial, 6
field, 13

ordered, 13
F-integrable function, 271, 295
fixed point of a function, 128
F-mesh of a partition, 288
formal proof, 37
function, 115
fundamental theorem of calculus,

262, 264

generalized mean value theorem,
222

geometric series, 91

greatest lower bound, 21

half-open interval, 20
Heine-Borel theorem, 86
helix, 158
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improper integral, 292
converges, 293
increasing function, 217
indeterminate forms, 222
induction step, 3
induction, mathematical, 2
inductive definition, 66
infimum of a set, 21
infinite series, 90
infinitely differentiable function,
238
infinity +o00, —00, 27
integers, 6
positive, 1
integrable function, 244, 251, 262
on R, 295
integral tests for series, 102
integration by parts, 263, 284
integration by substitution, 265
interior of a set, 83
intermediate value property, 127
intermediate value theorem, 127
for derivatives, 217
for integrals, 259
interval of convergence, 173
intervals, 20, 27
inverse function
continuity of, 129
derivative of, 218
irrational numbers, 26

jump of a function, 269

k-cell, 87
k-dimensional Euclidean space,
80

L'Hospital’s rule, 223
Lagrange's form of the remainder,
232

least upper bound, 21
left-hand limit, 147
Leibniz’ rule, 213
lim inf, lim sup, 58, 75
limit of a function, 146
limit of a sequence, 33, 49
limit theorems
for functions, 150
for sequences, 43, 50
for series, 99
limits of basic examples, 46
logarithms, a definition, 305
long division, 105
lower bound of a set, 20
lower Darboux integral, 244
lower Darboux sum, 244
lower Darboux-Stieltjes integral,
270
lower Darboux-Stieltjes sum, 270

maps, 163

mathematical induction, 2

maximum of a set, 19

mean value theorem, 215
generalized, 222

mesh of a partition, 249

metric, metric space, 80

minimum of a set, 19

monotone or monotonic

sequence, 55

monotonic function, 253

piecewise, 258

natural domain of a function, 115
natural numbers, 1
nondecreasing sequence, 54
nonincreasing function, 102
nonincreasing sequence, 54
normal density, 296

normal distribution, 296
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Index

open cover, 86

open interval, 20, 27

open set in a metric space, 83
order properties, 13

ordered field, 13

partial sums, 90

partition of [a, b], 244

parts, integration by, 263, 284

path, 158, 166

path-connected set, 166

Peano Axioms, 2

piecewise continuous function,
258

piecewise monotonic function,
258

pointwise convergence, 177

polynomial approximation
theorem, 202, 203

polynomial function, 124

positive integers, 1

postage-stamp function, 125

power series, 171

prime number, 9

product rule for derivatives,
208

proof

formal, 37

quotient rule for derivatives, 208

radius of convergence, 172
ratio test, 94
rational function, 124
rational numbers, 6
as decimals, 111
denseness of, 24
rational zeros theorem, 9
real numbers, 14
real-valued function, 115

\

remainder of a Taylor series, 231
Cauchy's form, 236
Lagrange's form, 232
repeating decimals, 110
Riemann integrable function, 251
Riemann integral, 244, 251
Riemann sum, 250
Riemann-Stieltjes integral, 289
Riemann-Stieltjes sum, 289
right-hand limit, 147
Rolle’s theorem, 214
root test, 94
roots of numbers, 129

selection function o, 64
semi-open interval, 20
sequence, 31
series, 90
of functions, 187
signum function, 125
step-function, 260
Stieltjes integrals, 271, 289
strictly decreasing function, 216
strictly increasing function, 129,
216 '
subcover, 86
subsequence, 63
subsequential limit, 70 ‘
substitution, integration by, 265
successor, 1
summation notation, 90
supremum of a set, 21

LS

Taylor series, 231, 240
Taylor's theorem, 232, 235
topology, 83

of pointwise convergence, 171
transitive law, 13 &
triangle inequality, 18, 80
two-sided limit, 146
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unbounded intervals, 27

uniform convergence, 168, 178

uniformly Cauchy sequence, 168,
185

uniformly continuous function,
134, 157

uniformly convergent series of
functions, 187

upper bound of a set, 20

upper Darboux integral, 244

upper Darboux sum, 244

upper Darboux-Stieltjes integral,
270

upper Darboux-Stieltjes sum, 270

Weierstrass M-test, 189
Weierstrass’s approximation
theorem, 202, 203
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