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Preface 

..... "'10" SUoni"l with the 12th printing, this book haa been IOet 

W1tX 10 thaI the book will be mo~ read.lble. In I»nicubr, there 
I I rruilert...l on each page, 10 there are more p;lgeL However, 

are tiMl only changes from prerious printlnp except that ['w.: 
bibliography. 

"",',," III the finn Edition 

.... ,Iy of this book, .nd the e:xerdaea, ahould give the , 
of tequcnca and gOO of fUnetiona. An abilil}' 

write Pfl)(lQ; ...nl be 1ItreAed. A prt:(:ise Ir.nowledp of 
Ia _nlial. TlIe beginner should memorize them; RICh 

wUl help leMIlll undc .... ndifll, 
l-ctl thc.ccne ilnd, except for the completcneaa:dom, 

or leM foImiliilr. Accordingly. reade ... and instructors 
''''''d to move quickly through this chapter and refer b;ick to II 

~~~~)j~J';'~:'~'~'~~!t critical sectiona in the book are Sectiona 1 Il In If these $CCtIoM are thoroughly d igeated 
r I lhl' remainder of the book . hould belmooth IIOIliing. 

v 



Vii ............ 

The first fou r chaptms form a unit for aahan course on analyaia. 
I cover these four chapters (czocpt for the optional IeCtions ~nd 
Section 20) In aboul 38 cl.tM periods; thlllncludeB time bl' qu~ 
~nd aamlnationa. For tueha shoncour'K, my phl106Opl\y It that the 
5tUdcntll .re relatively comfonable with derivatives and IntegTala but 
do not really undclSta nd lleQuences ~nd aeries, much leu aequencci 
and aerie. offunctloru, 80 Chapters 1- 4 fclCUS on these toplcl.. On two 
or three oc.c:&Iions I draw on the FUndamental Theo::lrem of Calcu1lU 
or the Mean Value Theo::lrem, which .ppear later in the book, but 0( 

OO\lrse theae Imponant theoreI!l5 are at 1uR dilCllsaed In a standard 
calculu. claaa. 

In the ea rly sectlonl, especially In Chapter 2, the pmoli are very 
detilUed with carefu l references foreven the most elementilry facts. 
MOR IOphlatkated reade,.. find ea::.eMlve dctillU .nd referencea • 
hindrance (they break the now of the proofand tend to obIcure the 
..... in tdeaa) ~nd would prefer to check the iteI!l5 mentillly .. they 
proceed. At;.cordingly, In Later chapten the pmofll wUJ be somewhat 
less detailed, and referencea lOr the alm plest facia wUl ollen be omll­
led. Thlt ahould help prep;lre the reader for more ildv.nced boo .... 
which frequently give W!ry brlefltgumenla. 

Mutery of the baak concepts In this book should make the 
analysis In .uch areu .. oomplex varUbles, differential equ~tion .. 
nu merical analysla, and wtl&!icII more meaningful. The book can 
~bo aerve as a foundation fur an In-depth study of real analysla 
given In boo .... auch "12~ 125~ [2ti~ IlJ~ Il6L and [38J listed in the 
bibliography. 

RMden planning to teach calculus willibo benefit from a careful 
5tUdy ofanalysla. Even after Bludylng thia book (or writill3lt) it will 
not be e .. y to handle qUeMlonl auch aa "WhItis a number?", but II 
least this book ahould help give ~ clurer picl:ure of the lubtleties to 
which IIIch questions lead 

The opl:ionalleCtionl contain dixuAions of lOme top\cl WI I 
think Inllmponant or Interesting. Sometime. the topic Isdealt with 
Ilgh tly, and .uggestlons lOr funher read ing are given Though these 
aectlona ani nOI pan iwt..uly daigned furelaMmom uae, I hope tNt 
lOme readeTll wUl Ute them III blt*len their horbons and tee how 
this ..... terUl fila In the genelOll..::heme Or things. 



r_ ... lIMo PI,. Mltlon VII 

I tl.1l~e benefitted from numeroul helpfulluautloru from my 
INo(UU Robert freeman, William Kamo~, Rk:lulrd Koch, .ndJohn 

I ~hv, Ind from Timothy Hall, Clmll Khazad , and Jorp: LOpez. I 
.'r .1110 kad kelpful conve ..... lionl with my wjfe Lynn concerning 

.,."un.r Ind loa,te. Of COUrK, f!:maining errors in lrammar and 
, 'I.~ lI1~tla af!: the retporulb,lity of the author. 

·,fVt.ral uecrs luve Iupplled me with correctioru.oo Iuggestio ... 
h ... I'YiIlncorporated In l\1bsequent prlntinga. I thank them .11, in­

d". Robert Measer of Albion College who aught. lubtle error 
ntl proof of Theorem \2.1. 

Kenneth .... Ross 
Eugene, Oregon 
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Introduction 
C UAPTER 

The underlyina'p;oce for all the analy.1I in th;. book II the Kt of 
n:al numbe .... In thi$ chilpcer we Kt down some basic pmperue. of 
this aet. These propertlell will aerve iI! our uiom. In th811enao that 
it is poAible to denw:. aU the properties of the rut numbe .. uSini 
only these uloma. However, W8 will avoid geltins bogged down In 
thll endeavor: Some readers may wish to n:fer to the appendix on 
.:t notation. 

§1 The Set N of Natural Numbers 

We denote the aet 11.2,3, ... 1 of all lUIn.ml numbel'll by N. Elements 
ofN will allO be called pDIIl1ue InI~ Each natul3l number II has 
a .ua:.euor, namely II + I Thus the M>CCeIaOr of2 ;'3,.nd 37 It the 
'UGGeuorof36. You will probably agree that the following properties 
of N are obvious; at Ie&st the first four .re. 

N I . I belongs to N. 
Nl. If n belonp to N, then itllucceuor II + I belonp to N. 
Nl. I II not the IUCJCeIiOr of any element in N 

I 



N4. If II and III in N have the Iilme auc.ceuor; then n ,. 1ft. 

N.5. A lubeel of N which contains I, ilnd which oontilina II + 1 
whenever It contains n, must equal N. 

Propeniet Nl through N.5 ilre known ill the ""'no A.nolltll or ""'no fbslulalM. it tUml 0111 that most f.1mlll.or propeT"tle. ofN can 
be proved based on theae 1lY(l uioma; lee ilJ or J28J. 

Let's focus our illlentMln on ulom NS, lhe one oiom lhat may 
not be obvlou.&. I lere" what the .. lorn Is ..... yi ... COnsider a ,ubIet 
S ofN ilIdeacribed in NS. Then 1 belonp to S. Since S conulnt n + I 
whenever it oonuins n, it follOWll that S must oonuin 2 _ 1 + I. 
Again, alDl:e S contains 11+ I whenever II conulns II, It follow. that S 
muatcontaln 3 =0 2+1.0nceagaln, slnceScontalnsn+1 whenever II 
contillnsn, it foJJowa thatS mUMoontaln 4,. 3+ I. We could continue 
this monolOlIOlU line of re.uonl"" 10 conclude !hilt S contaiN Jln)' 
number In N. Thus It...,ems rea&Onable to conclude thai S _ N. It Is 
this re;o.sonable conclulion that is alilerted by olom NS 

IJere Is another way 10 view "10m NoS. AMume ulom NoS .. flIbe. 
1"hen N contains I tel 3 auch thai 

(I> I eS, 
(") ifneS,thenn+l ES, 

and)'et S <F- N. CONider the .malleat member of the let tn eN: 
II , 3}. call It no. Since (I) hokll, It is clear thai 110 ~ I. SO no mUSI 
be. IUGCeAOl'" to lOme number tn N, namely no - I We mu,t have 
no - I e S Iince no Is the .manes! member of tn EN. n , S/ 8y 
(II), the IIUc.ceasor of no - I, namely no. mUSI illto be In S, which la, 
contradiction. Th" ditCuMlon mily be pLau.ible, but we empllil5iv:. 
that we hllve not pmwd uIom NS us!"" the successor notion .nd 
uloma NI through N4, becaule we implicitly uaed two unproven 
facta. We at$urned that every nonempty whset ofN contaiN a IMat 
element and we UIIumed Ihilt If ... <F- I then no is the auccessor 10 
lOme number In N 

A."I:lorn NoS .. the baaisohrat1wllotlCallndloawn. Let PI, p." P;" • 
be ~ lisl of tultemcnUl or propositioN that may or may not be 
true . The principle of mathematical Induction _Ttl Wt aU the 
IUtementa PI'~. p;" ••• are true provided 

(I l l PI "true, 



I . TlN:Ilet N oIs.. ..... I ,s._ .. 3 

(I ) p ..... it .rue whenever p. it trw::. 

"" will refer to CI,). i.e.. the fact thai P, is true. aa the brl.$tS {or 
".I·"ron and we will refer to f'd as.he ,ndutiron ~q1 For a sound 
I'",.,fh.ued on mathemallcal induction. propenles (I,)and (11) must 
I~"h be verified. In pra.cdce. (II) will be easy to chec" 

I \Mmple I 
I' OY'I' I + 2 + ... + n = ~n(n + I) for nalural numbe .... II 

"'"Iullon 
(IIIr nih propollition ~ 

p.,", + 2+··· + n ~ i"(n+ I)" 

Ih'" P, aSllenlthat 1 = ! · 1(1 + I). p) assertll thai 1 +2 _ ~ ·2(2+ I l. 
I' ... ssensthat 1 +2+·· ·+37 "" !.37(37+ I) = 703. etC. In p"Mlcular • 
. '. a .rue UAenion which serves lIS our basis for induction 

~or the Induction step. AUppose that p. is !TUe. That Is. we 

.""'" 
1+2+"'+n=in{n+l) 

till<' Since we wish 10 prove P . ... , from this, we add n + I ((I both 
.kln 10 obtain 

1+ 2+ ···+n+(n+ 1)_ in(II+ l)+(n+ I) 

- tln(n + I) + 2(n + 11J - tcn + IXn + 2) 

- t(II + 1)('1 + ')+ 1) 

l1,ul p .... , holds if p. holds. 8y the princ'pie of IIkIthemaucal 
~u(tion. we conclude that p. is true for all n 0 

We emphaslU thai prior 10 the last sentence of our solution w~ 
.hd not prove "PO+ I is true." We merely proved an impliciltion "if p. 
"true. then p •• , Is true' In a sense we proved an inhnite number 
,.It _nions. namely P, 15 true; If P, IS lrue then p) 15 true; il PI is 
"0" thcn P1 I,true; if p, ia true th ... n p. it true; etC Th .. n we applied 
m.th~mauc:.JllndkKllon 10 conclude P, IS (rue. P, is lru". PI ia tru .... 
". II tru~. N( We al$O oonlr-M Out fomm1 ;.! u ..... Ih ... on .. JUSt proved 
.". "d~ll'r to'llroVl" thdn tn denve. It can be. tn, ..... IIt.lIl~r to gu ... 



4 I . . ...... h.cuon 

such a resull. SOmetimes resulUi such .. thIa are dbcow:red by trial 
and enw; 

I'.umple Z 
All numbe .. of the form'" - r are divisible by 5. 

Solu tion 
More precleely, we show tNl"" - 20 Isdivlslble by 5 fo, ~ n E N. 
OUr nth propotllion Is 

Po: '7" - 20 Is divisible by 5.' 

The basis fOr Induction PI is dearly tTUe, .Ince 71 - 21 .. 5. For the 
Inducuon step, .... ppoee thai p. is Irue.1b w:rIIY Po+ 1, we write 

7"+1 - 2"+1 .. 7"+1 -7.2" +7·2" - 1· 2" -717" _ 2"1+ 5.2". 

Since .,. - 2" ]a a multiple of 5 by the inducUon hypolhe.it, il 1blkJw1i 
that 7'*' - ZO+' Is alto a multiple of5. In fact. If.,. _ r .. Sm, then 
.,.-+1 _ 2"+1 .. 5. (7m + 2"~ We haw: aIIown thai p. Impllel 1'.+1, '" 
the Induction ltep holds. .... n IppliQtion of mathemaliQllnducdon 
oomplctu the proof. 0 

Esam ple J 
Show Ih.It I .In MI ~ nlllnill for all D41lural numbe", n and all real 
numbers It. 

Sol u tio n 
OUr nth proposition Is 

p.:' I,InMI ~ nlain.o1 rorall real numbers II.' 

11le baalI for Induction Is again clear: SuPPD'C p. Is tTUe. We apply 
the lIdditlon fonnula for line 10 obtain 

Illn(n + 1)Jt1 _ I sin(M + 1t)1 _I sln IU'OOU + COIMlin.o1. 

Now we apply the niangle lneqll.lllly and propertlelofthe absolute 
value [see 3.7 and 3.51 to obtain 

I aln(n + 1)Jt1 ~ ) sin ""1' I caul + I cos.,..I·I_lnltl. 

Since I cosyl ~ I for all!J we see that 

Illn(n + 1}l'1 ~ Illn""l + lal n.o1 . 



, 5 

Now we apply the Indualon h~ p. to obuln 

Ilin(n + I)¥I :!; 1'11111'1"1 + lain.:1 = (n + 1)I,ln"j. 

1111,1. P.+l holda. Finally. the reau!! holda for aU n by mathematical 
Induction. a 

Exerciscs 
1.1. PmVI! 1' +2'+ ·· .+,,>. i r(n+IX2n+I) IOtan natlolrat mul\be,. ... 

· I .~. PmVI! J + 11 + ... + (81'1 _ S) _ 4nl ~ .. iI. aU fLltural numben n. 

' 1.3. Prove I' + z> + . .. +,,' ... (\ + l+ .. · + II)' lOran natural numbc", 

•• 
1.4. (a) Cueaa. rormu~ lOr 1 + 3 + ... + (lII - I) by eYah,l&tIna tho: 

.... m lOr " _ I , 2, ] , and" [fbi" II ... I, tho: IUm II Itmply l.] 

(b) Pruve,.out IOrmu.la lUI ....... themalk.ollnducdoll . 

.. ,. Prove I + I +t + .. + .... 2-. braD narunll nuroben ... 

· 1.1i . Pro"., that ( II )" - .. " .. dlvlliblc by 7 when PI ~. natural numbef; 

. 1.1. Pro..., that .,. - 8,. - 1 \a dlvilible by 36 fOr all poeltlve lntqe .. n. 

1.11. The prlncJple of m.othe ..... tlaIlnduction Gin be fIIU'!ndod u 101· 
~ A list p .. . p ... .. ,. of pTtIpo.;OOni !llrue provided (I) p ... Is 
true, ( II) 1' •• , II tru.e ... heneve, p." true.nd n ~ '", 

(a) J>rovc thall'll ;> ,,+ I lOr aUlntqe", PI ;ec 2. 

(b) f'rove that .. l ;> .r lOr .U intege'" II ~ 4. [llecall that II! _ 
n(n - 1) ... 2 . 1; ilreumple, 51_ ' · 4 · ] · 2 · \ _ 120.1 

1.1. (a) DecIde fOr which Integen the Inequ.al ity 2" > II' .. true. 

(b) Pmveyour clalm In (.) by mawmaticllindualon. 

I. 10. """"" (211 + I) + (211 + 3) + (211 + 5) + ... + (411 - I) _ 3,,1 lOr aU 
pwltiYI: intqen II 

I , ll . ro.. eIICh .. f: N, Iet p. denote the _nion ... ' +~ + I ".n o:~n 
Integer." 

(.) PYovt: that p •• , "truOl whioneve, p." ""e. 



6 I. 1.'""'''''.iD .. 

(b) FOr whkh .. II p • .oct\IaIty true? Wha. II the IQOI"J./ of thll 
c:en;:iIc? 

1.12. ror .. t N, let .. ! [read· .. faccorlJ,]'[ denot~ the produce 1 · 2 · J ... .. 
""" leI O! _ I and define 

(;) · kl( .... 1 k)1 lOr k . O. ] .. .. ... . 

"I1le "'-"W theort!:PIt usena that 

(/I + t )· . (:)/1. + (;) .... -'b+ (;}'.-'IJ' + ... 

+(": ,)"'-' + (:)"" 
_ .... + "".-I t + i"'. -])g"-'IJ' + ... + nab" - I + &" 

(a) VerifY the binoml.ol theomm m- .. _ I. 2 • • nd l 

(It) ShowthatC)+(.~,) - (·;')b-~ - ] . 2. , '" 
(0;) I'TcMo the binomial theomm UIIirljj malh~matlc&l Induceion 

and pa.rI (b). 

§2 The Set Q of Rational Numbers 

S""II children first lam 10 add and 10 multiply "",tuTllI numberL 
After Bubtracelon is Introduced. the need to t:lpand the number IY. 
tern 10 include 0 and neptlve numbers becomes apparenL AI thll 
point the world of numbers is enbry;ed 10 Include the tel Z of.1I 
Int~. Thus we have Z _ [0. 1. -I , 2. -2, ... 1. 

Soon the space Z .Iao becomea jnadequaltl when dlvlalon is in· 
troduced. The aoludon]a II) enbfie the world ofnumbcrs II) Include 
.11 tnctiona. ACcordingly. we study the apace Q of all mnonal num 
berI. i.e. , nurnbeTll of the form -i where "'. " E Z and n ", O. Note 
thai Q conta ins aU termlnatin& decl""l. such lIB 1.492 - VI. The 
connection between de<:imau and re.:ll numbe .. la di3cu1tlCd In 10.3 
.nd §16. The space Q ]a • highly ... Lisfactory aigebTllIc Iy$lem In 
which the lY&1c opeTlltlonl addition. multiplication, 5UbtTllCtlon .nd 
dIvision can be fu lly Itudlod No .yltern Is perfect, however. and Q 



FIGURE 2. 1 

"lnadcqUlote In.orne way&. In this sealon _ will consider !he de­
r~ orQ. In the ne-.t KCtion _ will wut the good ru,turel orQ 
and then move on to the system orrul numben. 

TIle let Q of nHion.! numbe~ is a very nice ~Igebraic s}'Stem 
until one tries to .olve equations like xl _ 2. It turns out thilt no 
mllonal number utlsfiea this CQuatlon, and yet there are good re;I' 

lIOns 10 bellt:vc th,u lOme kind of number utisfiea this CQUIotion. 
Conalder; lOr cumple, I aqUire with ,Ides hilvina lerlilh one; ace 
t'!&ure 2.1. If d represcnu the length ofme dlqonal, then from ge.­
ometry we know thai I ~ + I~ '" dl , I.e., tP _ 2. Apparentlylhere 
iI. positive length whose square is 2, which _ write as ./i Bul 
.fi Cil nnQt be a rntionil number, as we will show In t:Umple 2. 
or coune, ./2 can be apprrudmaU'ld by ralic.mal numbe .... There 
are rational numbe ... whose sqWlret are close to 2; for cumplc. 
(l4142i = 1.m96I64lnd (1.414Ji _ 2.00024"9. 

II is evident that there .re lots or rndona! numbcn and yet there 
Ire "pps" in Q . Here is another w.y to view lhlssitualion. Consider 
the graph ortne polynomlal:xl - 21n figure 2.2. DoeIIlhe graph of 
xl- 2 cross the .. ·axla? We Ire inclined to say It doea, be<:aUIe when 
_ draw the .. ·ula we include "all" the points. We .1I0w no "gaps." 
IIUI notio:.e thai the graph of :xl- 2 sUps by.n the rational numbers 
on the .. .,uIs.11w:.t-all1a is our picture of the number line, and the 
llel of rational numbe ... again .ppean to have lignificant "ppL" 

There iUe even moreewUc numbe~ IUch lilt and e t .... t Ire not 

r.tlonal numbe ... but which come up nlturally in rmIthernatiCI. 11w: 
number 1f Is basic to the llIludy ofeln:le. and spheres, and e arises In 
problema ofexponentlal growth. 

We return to./2, This Isan exampleofwlut laalled an algebraic 
numberbeCilu.e it ulilfies!he equation:xl - 2,. 0 
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f'ICURI! 1.1 

1.1 Dc6nltion. 
A number if ulJooA an a/sdImlC ruur<l::toer If It utilflea • polynoml.ll 
equation 

a..i" +a._,x"-l + ... + all! + ao _ 0 

when:: the coefficlen~ /10. II" ... ,II,. are Integcft, a. # 0 and n ~ I . 

RIItlonal numbe .. ill'e always a1&ebnlc numbe~ In fact, Ifr ="i­
II 11 ratlonal number 1m, n E Z and n 'I O~ then It satisfiea the 
oqUOloon 11K _ m .. O. Nllmben defined In terms of.r, T. etc. [or 
fractional exponents, If you prel'er[ and ordinary atacbralc operatioN 
on the rational nl,lmbers are invanmly aJaebralc numbel'L 

EDmple t n. 3,2, (17)11), (1 + S,n)'1l and ((4 - 1 . JI " )/7)'11 all n:ptUenl 
.lgclmlLc numben.. In bel, l> i4 11 IOlutlon of 17 .. - .. = 0,3' /'2 
n::preaents I IOlutlon of xl- - J _ 0, and (17)'" represents 11 so. 
lutlan of ~ _ 17 = O. The expression a .. (2 + !j"l),,1 mcan& 
111 .. 2. + 5 111 or a l _ 2. ... 5113 10 thai {III 2)l .. S. Therefore 
we have a l . 6a~ + 12a1 _ 13 .. 0 which show. thai a .. (2 + 5111)"1 
.. uslie. the polynoml,d equation ~ - 6x" + I ~· 13 .. 0 Similarly, 
\hce>:prualonb {(4 .1.J'·)f7)'·lle""'",7~ .. 1·3"I,hence 



1 Jill _ 4 - 7f12, hence 12 _ (4 _7b"}l, hence 49b" - 5lif12 + 4 _ 0 , 
Thu, It ..atisfie. the polynomLtI equation 4!b" - 56r' + 4 _ O. 

The ntJ:1 thton:m rNybe r~milbr from elementary a!geb13. [I i5 
the Ihtortm IhiItjuttifie. the fol1owilll rtma.-u: the only possible 13· 

tlonalllOlurlons of ;tl-7.wl + 2.1- 12 '"' 0 art 201 , :i:2, ±3, ±4, %6, ± 11, 
10 the only pou.ible (rallonal) monomial faclOTli of;tl-7.wl + 2.1 - 12 
Irtx-I,x+l,x-2,x+2,x-3,x+3,x-4,x+4,x - 6,x+6, 
x 12, x+ 12. We won'! pu~ue these algtbralc; pmblerm; we mertly 
ltUlde thesc observationa in the hope that they would be £amUIar. 

The rteXllhtorem alllOallowa one to pm~ thl!u]gcbn[c numbc~ 
tMt do nOt look like I3lio",,1 numbc .. art not I1Itlonal numbers. Thu, 
./i Ia obvioualy .. rational number, whIle .fi . ./3, ..;s, elC. turn out 
w be nonl31lona1. See the examplc! fOliowina the theorem. Recall 
that an inlegC.r k II ill f«;:tor of an [nleger m or divrdu m If f Ia ~bo 
I n Integer. An Integer p O! 2 1$ ill prUnI! provided the only ~ltlve 
fIcto~ ofp Irt I and p. Jt CiIIn be aIlown that cvcry poeilive inUlger 
gn be written as a produCt of p rtl'l\C5 and that thla CiIIn be done ;n 
only one way, except fOr the ordcrofthe factors. 

1.1 Rational Zo:nlII Theorem. 
Suppoae IMl OG,a ..... , a. a~ mlllft13 and lhat r i3 a ralional number 
1tIl14{yi", fire polynonfiaJ apuuion 

a"x" +a.._1r'-L + ... +aLx + 110 = 0 ('J 

iIIIIen! n 2:: I, a.. ~ 0 and 110 It 0 wnf~' _ ; I<iI1ue p. q a~ inlq£n 

Mill", nocommon{actorsandq ¢ O. ThenqditWsa" andpdillldaao 

In other word&, the only ratlonal candidlll" fur solutions of (l) 
luve the form! where p divide. 110 and q divideIL a,. . 

I'roof 
Wt artalvcn 

(P)" (P) O-> p~ q + P.·L q + 
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We multiply through by q" and obtain 

a.,p" +u,,_ ,p"- 'q+a"_~-lrI+··· +aziq"-' +a,pq"-' +aoq" ~ D. 

(2) 
If we solve for aoJi' • we obtain 

a.,p" "" -q[a~_,p·-' +"._~->q+ ... +a,rq"-l +a,pq"-I +aoq"-' ). 

[t folloW!! that q divides a..F'. 8utp and q have no common factors, 
so q must divide " •. [Here are more details: P can be wrillen 3!1 

II produCt of primes P,P>"'A where the p,'s need not be distinCt. 
Ukewlse q can be written as a produCt of primes q,q," 'q,. Since q 
divides a.,p", the quantity ¥ '" -r:::..t( must be an integer: Since 
no p, can equal any q., the unique !actorlz.atlon of u" as a product of 
primes mu.st Include the product q,qz" ·ql. 11ms q divides u".J 

Now we solve (2) fora"q" and obtain 

aoq" '" - P(a.P"-' +"._ IP"-lq+,,"_~-3r1 + .. . +,,:tP'I'-1 +",q"-' J. 

Thus P dIVides aoq" . Since p and q have no common factors, p mUSt 
divide au. • 

Eumple 2 
./2 cannot represent a rational number. 

Proor 
By Theorem 2.2 the only rational numbers that could possibly be 
solutions of Ii' - 2 = 0 are ± 1,±2. [Here n = 2, "I'" I. ", = D, 
au = - 2. So "'tional solutions must have the form ~ wherep divides 
au = -2 and q divides al '" I.] One can substitute each of the fou r 
numbers ±I, ±2 Into the equation,r - 2 = 0 to quickly eliminate 
them ;us possible solutiona of the equation, Since ./2 represenUi a 
!IOlutlon of,r - 2 = 0, it cannot represent a rational number, • 

EDmple 3 
./l7 cannOt represent a "'tional number. 

p~r 

The only possible rational !IOlutiona of,r - 17 = 0 are ±I, ±17 and 
none of these numbers are !IOlutlona. • 



EDmploe -4 
6 ' ) cannot represent iI rational number. 

I'roof 
The only ponible rational AOlutloru of xl - 6 = 0 Ire * I, ±2, *3, *6. 
It Is ClIfy to verify that none of these eight numbera satisfies the 
equalion xl - 6 "" O. • 

eumple5 
.. .. (2 + 5" 1)"1 doc5 no( repreaent iI rational number. 

,-, 
In Exilmple I we showed that /I represents a AOlution of K' - '"' + 
12r - 13 .. O. By Theorem 2.2, the only poIiIible r.l\lon.llIOlutions 
'1') ±I, ±Il. when" _ 1 or - I, the leA hand side Oflhc equation 
~ - 6 .nd when" .. 13 or - 13, the leA hand side of the equ.tion 
IU,.". OUI to cqua.l4,657,458. 11118 lutcomputationoould be aY'Oided 
by ull", • lillie cornman Kille. tither observe thalli 18 "obviously" 
bllJ8e:r than 1 and lell than 13, Of" oo.el"Ye thaI 

l:f - 6· U' + 12 · U I - IJ _ 13(IJ~ - 6·13' + 12 · 13 - I);o! 0 

11nc;e the lenn In p-ncnthesel e;lnnOl be zero: it 18 one lelll than 
lOme multi ple of 13. • 

l:..omplc 6 
II ({4 - 2./3)17) ,1] docs not repreaent a rational number. 

,-, 
In I::Dlmpie I we showed thai b 18 I IOlution of 49X' - !i&' + -4 ,. O. 
The only poIIIIibie rational IOlutioru are 

*1 , ± 1/ 7, ± 1/ -49, ±2, ±217, * 21-49, *4, ±-417, ±4/ 49 

Iboomplete our proof, all we need todo IsIII05tltutc these eighteen 
14IIndidatea Into the equation 49.t - W + 4 _ O. Thla prospect 
" 110 dlac.ouraging. however, that we chOO5C II) lind a more clever 
oIpproaeh. In Exilmplc I , we al.:I showW that 12 '" (-4 - 71rt. Now 
If b were rational, then -4 - 71r would aIso be rational [£.v;rclac 2.61. 
10 the equation 12 _ r would have a rational IOlution But the only 
' ...... lblc rationallOlutlons to;xl .. 12 .. 0 are *1 , ±2, ::1:3, ±-4, ±6, *12, 
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and lhese .U can be eliminated by mentally 5ubetltutina them Into 
the equation. We oonc:1ude thaI 4 -71r unnO! be !'lItionai, $() b COInnal 
be !OIliena!. • 

AS iI pnalallNtter, miloyor all orthe rational candilbteagiven 
by the Rational Zeros11leorem can be eliminated by apprw:ilTlilti", 
the qlUlntity In quesliun lpemaps with the aid of • e;olcul'lIorl. It 
is nearly obv1oua WI the value. In Eumplea 1 through 5 are nOI 
Inrcgera, while.U the fllionai cand idates are. MycalculalOTuYllhal 
b in E1ample 6 iaapPlUl'im;o.lCiy .2767; the nuresl rational CAndidarc 
is +217 whlth ilapprmimatcly .2851. 

Excn::isc8 
2. 1. Show thai ./3, ./5, .ti . .fii, and 51 are not rational numbers. 

2.2. Show lhal 2'11, 5"", and (13)'" do nat rep~nt ratlona] numbers. 

• 2.3. Show thol (2 + .!i)tn doeI nat repreleRl I ratlorllli number; 

2.4. Show llYt (5 - ./l)'" doa not repn:-entl rational number; 

• :'/'.5. Show lhalll +./iF doeI not repruent. rational number. 

1.6. tn connection with £Umpl~ 6, diM:uMwhy 4 - 11i' must be "ulo",,1 
if b II rat1QnaI 

\.1r r (Q.r#O,o-..( .( " ,u .. t_ .. l""O< tht r~J< 
... 01. ,. " .. ,e ,r ~ . t _l 101 ... "" ,u"e ..., ' .. l .. ~fi._ . 

§3 The Set IR of Rcal Numbers 

The aet Q Is probably the larsest 'y"em of numbel'll with which 
you rully feel comfortilble. There au aome aubtledes but you lulvoe 
Iurned (0 cope with them. For example, Q Is not simply the .set 
t ~ , lit, n .. Z, n -,; 01, sinor. we reprdllOme ~In of different look­
ing fnlctlo", .u equal. For cumple, ! and I are regarded u the 
sune element ofQ. A rigorou,development ofQhued on Z, which 
In tum Is bMed on N, would ""lulu us (0 Introduce the notion of 
equi valence clau; aee [38]. In th'- book we iMume a familiarity with 
and undel1U1ndina orQ a. an alpl1llc I)'stem lIowever, In order 



10 ~rify exactly what we need 10 know about Q. we let down aome 
of Iu ""'Ic uioms and propeniea. 

'!"he basic aJgcbl;llcopel;lOOnl in Q are addition and multlplfu.. 
tion GIven 1 pair <II. b of 1;10011;11 numbctt. the turn <II + b and the 
productab llao repreaent rational numbeB. Moreover, the following 
propertlell hold. 

A I . II + (b + c) _ (II + II) + c for all II. II, c. 
A2.II+b _ b+llforallll,lI. 
A3. II + 0 _ II for all II. 
A4. for each <II, there is an element - II tuCh thai <II + ( - <II) '" O. 
MI. ll(k)_(tib);foral\lI,b.c. 
M2. lib _ ba for all <II, b . 
.. 3.1I ·1_ <IIIOr&lI<ll. 
M4 .• ·or each II ". o. ~ is an element <11-1 IIUdt wt ",, _1 .. I . 

ilL Il(b +e) _ ab + <Ie: i:lr all <II, b,c. 

Propert~ Al and Ml are called the Q"PrilltlW /(lUll, and prop­
rrtlet A2 and M2 are the commUUlIlW ill ..... Property DL is the 
d..tnbunw /(Iw; this Is the [ea3t obv\oUllaw and b the one rnalju5-
tltlea '(;,ctomation' and 'multiplying out'ln .lgcbl;l. A system rnal 
h ... more than one element and aalllllies theIe nine properties is 
CAlled I ~Id. The basic algebraic properdc:a ofQ can proved solely 
n" the balia of thelle field propertie& We do nOI want to pursue 
Ih is topic In any depth. but we UJustr.lle our ~Im by proyl", some 
I~,"n"r propertlellin Theorem 3.1 below 

The 8111 Q.1ao hu an order &uucture!!; ullsfylng 

01. Given a and b. either <II !!; b or b !!; a 
01. [fa !!;bandll!!;a,lhena_b. 
UJ. [fQ!!; bandb !!;c,\hena !!;c. 
().t . rfll!!;b,thcna+c!!;b+c. 
U'I.lfa!!;lIandO!!;c, thenox!!;k. 

Property 03 Is called the mm.nfiw iIIw. ThJa Ja the chaTlicteristic 
PfI)peny of In ordering. A field with an ordcrina IllIJarylng properties 
III through OS Ja called an ordcrtd field. MOlt of the algebr.lic and 
IIfd,.r properties ofQ ColIn be e5t;1bllshed for Iny ordered field. We 
_Ill prove a few orlhem In Theorem 3.2 below 
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I I I I , , -, • j , 'I' • • , • 
' ICURI!: 3. 1 

'the mathemalic.tllym:m on which we will do our al1.ilytls will 
be the set R of an real nwnbcr.l. The set R will Include aU ratioral 
numbe.., ,II algebraic numbert, "', e, and mo~ It wUl be a tet Wt 
Colin be drawn uthe real number line; see Figure 3.1. That Ia, every 
real number will coTl9p:lI1d 10 a point on the number Une, and 
every point On the number line will OOTl9pond 10. real number; 
In particular, unlike Q, R will not have any "gaps.' we will al"" see 
that real numbera have decimal expaMiona; see 10.3lnd §I6. These 
remarks help describe R. but we certainly have not defined R ;III 

a concise mathemallc;al objec::L It IU~ OUt Wt R an be defined 
entirely In lenni of the IIttQ ofrallonal numbera; we Indicate In the 
oplioral §6 one way thai this can be done. aut then il Is. Iong.nd 
tedious tuk to show how 10 add and multiply the objectl defined In 
this w.y and 10 ahaw that the lit! R , with tileae operations, utlaflea 
all the familiar algebralc.nd OrUcr propenles duot we eJlpe<;I. to hold 
ror R. 1b develop R properly from Q In thll way and 10 develop Q 
properly from N would take us several chaptef'l. Thill would defeat 
the purpollt of this book, which is to ;u:eept R ... nUlthematial 
lI)'5tem and 10 Itudy .orne Importaot pmpertiel ofR and functio"* 
on R. Nevenhelesa, Ills desirable to specify exactly wlult propenlel 
ofR we Ire lSIuming. 

Real nurnbe .... le. , elemenf3 of R, an be lidded together and 
multiplied together. That 15, given real numbert 0 and It, the fUm 
o+1t and the product 011 1110 n:pre$ent teal numbera. MOI"I'>OYer, these 
operatlona satisfy the field propenlea AI through A4, M! through 
M4, and DL. 'the tet R;llso ha.a an order IItnIcture :5 Wt satisfies 
propenielOI through 05. ThUI, like Q, R II an ordered field. 

In the remainder of this IeCdon, we wUl obtain lOme reaulll 
for R WI are valid in any ordered field. In panlcular, these n:IUllS 
would be equ.Uy valid if we restricted our .tlention 10 Q These 
n:marlu empha.alze the limit,ritlet between R.nd Q. We have not 

yetlndi(.ll~d how R can be dlacingul.ahed from Q as a malhc.matleal 
object, although WI: ha....,. aasened that R hal no '&lPIl< • We will make 
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thl& obiervalion milch more precise In the nut ICCdon. and then we 
will give. 'pp filling" axiom that finally will dl$tlnguWt It from Q. 

1.1 Theorem. 
llw= ft;IlIowI", "'" co~nca 0{ 1M fWd propazlU. 

<I) lI+c _ b+ cimp/ta'lI = b. 
<"l II ' a _ a fOr 118 II, 

I III) ( - ll}b '" - 00 {or aU a, b; 
{I,,} (-llX-b) .. ab{oral/a,b, 
( ,,) DC _ Ix: and c". a Imply a = b, 

("I) ab _ a ,mpIia tellhua = a or b '" 0, 
{ora,b,CER. 

,-, 
<I) a+c _ b+c Impliell (a+ .:) +(-c) _ (b+c)+(-c), 10 by AI , 

we ha'le 11+ [c +(-c)] = b+I.:+{~)I. By M , lh\t. red\lces to 
II +0 _ b+O, lOa = bby Al. 

<"l We \lie Allnd DL to obIainll ' O _ a · (0+0) _ .. · 0+ 11·0, 
10 0 + 11 · 0 ", a· 0 + a· O. By (I) we eoncll.lde that 0 _ a · O. 

(III) Since II + (-a) _ 0, we have ab + (-11)11 _ III + (-a)1' b = 
O· b _ a _ lib + (-(ab). From (i) we obtain (-a)ll _ -Cab). 

(II,) lind (,,) are leA to Exercise 3.3. 
( ,,) [rob _ a and b '" a, then 0 .. b-I · 0 _ 0, b- ' '" (ab)· b-I = 

lI(bb- ' ) _ II · 1 = a. • 

1.:1 TIw:orem. 
1"" P'lo"""1 a'" colUllqllClICQ 0{ 1M propemlI 0{ IV! ordu£d fidd. 

(' ) ifa ~ b, lhen - b ~ -a, 
(II ) if II :5 b 11M C :5 0, fhert be :5 AC,' 

(III ) ifO:5l1aMO:5b,lnmO:5ab, 
(I ,,) O ~ IIJ{oralla, 
(.) 0<1 , 

( ... 1) Ira < a, tI1o!n 0 < a-'; 
(.11) Iro < a < b, IMn 0 < b-I < 11 -'; 

~a,b,cER 

Note that a < bmeansa :5bandll",b 
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....., 
( i) SUPIJ05C that /I :5 h. By 04 applied to c ~ (-II) + (-b), we 

hlIve /I + 1(-/1) + (-hl] :5 b + [(-/I) + (-b)[. It followti thai 
-b :5 -4.. 

(ii) If /I :5 b and c :5 0, then 0 :5 --c by (I). Now by OS we hl.ve 
/I(-c):5 b(-c), I.e., -1IC:5 -be. From (11 again, we see thai 
b<: :5 /Ie. 

em) If we pul/l .. 0 In property OS, weobu.in: 0:5 b and O!S c 
Imply 0 :5 be. Except fOr noulion, !hit ill euWy ilMertion 
(ill), 

(Iy) For any a, either a l": 0 or /I !S 0 by 01. If /I l": 0, then /I' l": 0 
by (Ui). If /I :5 0, then we hne -/I l": 0 by (I), 10 (-at l": 0, 
I.e.., /I' ? 0 

(v) II left to Exerclle3.4 . .. >t tV 

(vi) Suppoee thai 0 < /I but thai 0 < ,,_I &olla. L1>en we mUM have 
/I_I !S 0 and 0 :5 _/I-I. Now by (III) 0 :5 a{-a- 1) = -I, 10 
that I :5 0, contrary to (v). 

(vii) Ia left to Exercl5e 3.4. • 

Another Important notion that should be &omnlar III thai of 
abtolute yalue. 

3,3 Ocfinltlon. 
We define 

\aI-a if 1Il":0 .nd ~I .. -/I if a:5 O. 

lal Is called the IIb&ob.<te!GI1ie ora, 
Intuitively, tho ablolute val\lC of a reprexnts tho dlsunce be­

tween 0 and a, bu t In &oct we wU1 dqine the idCII of'dillunce' In 
terTJl50fthe "abaolute Villue," which In tum waa defined In terms of 
the onleriq. 

3.4 Ocfinidon. 
For numbe ... a and b we define dist(II, oJ "" \a - hI ; dlst(lI. oJ 
represents the diMtI.,," lIetot«rl/l and h, 

L1>e basic pfOpen~ Orthe IbIo;>iute yalue are given In the next 
theorem 
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l .5 n..r:orem. 
(I) IaJ ~Op-alllleR. 

( n) IabJ_ IaJ·Jbtp-ah,beR. 
(UI) la+bJ-s IaI + (III,1Oralla,beR 

''roo' 
(I) Is OOvlou. from the definition. (The word 'OO"lou," lIS U&ed here 
l lanifies that the reader . hould be able IOquic;kty see why the resu lt 
ill true. Cenalnly If a ~ 0, then lal _ a ~ 0, while II " 0 implies 
"' I - - a > O. We will use upresaions like "obviou.aly" ,nd "clearly" 
In pl...::e of very almple argumenl.l, bUI we wl1l not ute these umtU 

\I) obec:ure IJUbtie p:llnm.1 
(U) 1l1.ere are four e;LIy uses here. I f a ~ 0 and b ~ 0, then 

lib ~ 0, 10 lal ·Ibl .. I1b .. labl. If a !: 0 ,nd b :s 0, then - II ~ 0, 
b ~ 0 ,nd (-aX- b) ~ 0 110 that ]/il l· JbI- (- IIX-b) _ all '" 1abI. If 

• ~ Oandb :s 0, then - b ~ O.ndll(- II) ~ OlOthal laHbJ - II{- b) .. 
(ab) _ lab1. If II :s 0 "nd b ~ O, lhen - II ~ 0 and (-11)11 ~ 0 10 Uu.1 

1111· Ibl - (-11)11 _ - all = labl. 
(UI) The Inequalities -Ial :s II :s ]al ,re obvlou', tlnee either II =­

~I or elae a _ - ]al. Similarly -Ibl .:s b .:s Ibl. Now fou r applications 
"r04 yield 

lI'that 

- (Ial + Ibn!: a + b:s ]al + 1111 , 

Ill .. tel .. UlI WIll + b:s 1111 + IIII.nd alao thai -(a + b) :s ]al + 1bI. 
'lfIol.e ·11 + III It equal ro either a + b or -(a + b), we oonclude thai 

1 +- bt .:s lal + lb!· • 

I.f! Corollary. 
,hll(a, c) ~ dlal(II, b) + dist(b. ~) fOr aR a , h, c 6 R. 

""'<If 
""', un apply Inequality (Iii) ofThcorem 3.5 to /I It and b - C 10 
,>lll.tln I(a b) + (b - ell OS III bl + ,b eJ or dlll(a, e) _ la - cl .:s 
'. III +Ib cI OS dtal(lI,b)+dltt(b. c). • 
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FIGURE 3.2 

The ineqWlHty In Corol1My 3.6 ill very cIoeely reblOd to an 
lnequ.ality ooncernl.,. poinl.l a, b , C In the pbne, and the Jauer In­
equality can be Int.erpreted u a 'liHemenl about tm"8lC5: !he length 
of iI .Ide of. Imngle t. Leu than Or equal t.O the ,urn of the lengths 
of the other two aidea. See Figure 3.2. For this reason, the inequality 
In Corollary J 6 and Its close relative (UI) In 3.5 are often ailed the 
1hangie t~lIl1 

3.7 'niang.le Inequality. 
ja + hi .:".: 1111 + 1111 ~ CIll a,1I 

A useful variant of the lri.I.ngle IneqlUlll\y .. given In Exer· 
cIse 3.5{b). 

E~erci8c8 

:1.1. (.) Which of the propertiQ ... '· ... 4, MI -M4, Dt., 01-05 fall fOr N1 

(b) Which oro- pn:>pertiQ tail iI. Z? 

3.1. (a) The commutative law A2 wu ..-I In the proof of (II) In 
Theorem U Where? 

(b) The rommulatl"" Law 1\2 w ... 110 \lied In the proof of(UI) In 
Theoreml] where? 

.J.]. Prow: ( i .. ) and ("1 of Theorem 3.1 

·3.4. """'" (v) and ("'1) oI'~m l.2. 

l.5. Cal Show thal lbl ~ .. ifand only if _a ~ II':!" 

(b) Prove Wi t"" lilt l ~ '" '" ",".n a, II' <Ii!. 



• :1.5. (a) PI-ovo! thalia +"+<:1 s laHlbI+1cI iI. all ", ".t • It. Hi11l, ~pply 
the INngIe inequality IWioe. Do _ oonNde. e.,,1 caMa 

(b) Ule IndllCOon 10 prove 

la, +"1 + ... + ... 1 s ""I + lal l + ... + ""'I 

for .. "umbe,.",,"l, .. , .... 
• ).? (a) Show thallbl < " Ifand only If - " < b < II. 

(b) Show willa-I>[ < c ifandonly If"-.: < a < b+c. 

(c:) Show !.Nt Ia - III s c Ifand only Ifb - <: S":5 b +.:. 

· I.a. l.et II, b ~ It. Show !.Nt if" S b, for every b, > b, then" :5 b. 

§4 The Completeness Axiom 

In this I«llon we give the: eomplctcnelS a.dom lOr R. Thill Is the 
ulom that wl\J uaure ua Wt R has no ·P .. • It "-- f" .... reac:hing 
r.onaequenc::e. and .lmoIIt every aignilicant reault in this book relies 
"n It. MOIIt theorenu In this book would be £alae If we restricted our 
world of numbers to the let Q ofratkmal numbera. 

4, 1 Ik lln ltlon. 
1,1'1 S be. nonempty IUb5et ofR. 
(a) If S oonulllt . I~rgest element", (that iI.", belongs to S and 

• S II) for "II. E 5], then we call"" the maoim .. m O/"S Ind write 
.. _~XS. 

(b) If S oonul", a amallest element, then we c:.all the .mallest 
element the mznimwn O/"S and write It as min S 

' ..umpJc: I 
(a) t:very finIte nonemply subset of R has a rNJlmum and <II 

minimum Th .... 

ntaJ(I,2,3.4,51=5 ~nd mln(l,2,3,4,51 = 1, 

lItuIO,". -?~. 3, 4/31 = " ~nd mlnjO, 11", -7, ~.3, 4/31 = -7, 

mUIII E Z: - 4 < 11:5 1001 _ 100 .nd 

minI" E Z - 4 < II :5 1001 -.1 
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(b) Consider real numbers a and b where a < b. The following 
notation will be used throughout the book: 

[a, b] = {x E JR. : a ~ x ~ b}, 
[a, b) = {x E JR. : a ~ x < b}, 

Ca, b) = {x E JR. : a < x < b}, 
Ca, b] = {x E JR. : a < x ~ b}. 

[a, b] is called a closed interval, Ca, b) is called an open interval, 
while [a, b) and Ca, b] are called half-open or semi-open intervals. 
Observe that max[a, b] = band min[a, b] = a. The set Ca, b) has 
no maximum and no minimum, since the endpoints a and b 
do not belong to the set. The set [a, b) has no maximum, but a 
is its minimum. 

(c) The sets Z and Q! have no maximum or minimum. The set N 
has no maximum, but min N = 1. 

(d) The set {r E Q! : 0 ~ r ~ .J2} has a minimum, namely 0, but 
no maximum. This is because .J2 does not belong to the set, 
but there are rationals in the set arbitrarily close to .J2. 

(e) Consider the set {n(~l)" : n EN}. This is shorthand for the set 

The set has no maximum and no minimum. 

4.2 Definition. 
Let 8 be a nonempty subset of JR.. 

(a) If a real number M satisfies s ~ M for all s E 8, then M is called 
an upper bound of 8 and the set 8 is said to be bounded above. 

(b) If a real number m satisfies m ~ s for all s E 8, then m is called 
a lower bound of 8 and the set 8 is said to be bounded below. 

(c) The set 8 is said to be bounded if it is bounded above and 
bounded below. Thus 8 is bounded if there exist real numbers 
m and M such that 8 ~ [m, M]. 

Example 2 
(a) The maximum of a set is always an upper bound for the set. 

Likewise, the minimum of a set is always a lower bound for 
the set. 

(b) Consider u, h in ~,a < h. Th(: numher his;1ll upper bOIIll(j filr 

e;l(:h of the sets I{I, "I, (({, Ii), ItI, h), (fl, hi. I':vcry 1I11111bel i;lrgcr 
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than b is also an upper bound for each of these sets, but b is 
the smallest or least upper bound. 

(c) None of the sets Z, !Q and N is bounded above. The set N is 
bounded below; 1 is a lower bound for N and so is any number 
less than 1. In fact, 1 is the largest or greatest lower bound. 

(d) Any nonpositive real number is a lower bound for {r E Q : 
o ~ r ~ viz} and 0 is the set's greatest lower bound. The least 
upper bound is viz. 

(e) The set {nC- 1)" : n E N} is not bounded above. Among its many 
lower bounds, 0 is the greatest lower bound. 

We now formalize two notions that have already appeared in 
Example 2. 

4.3 Definition. 
Let S be a nonempty subset of lIt 
(a) If S is bounded above and S has a least upper bound, then we 

will call it the supremum of S and denote it by sup S. 
(b) If S is bounded below and S has a greatest lower bound, then 

we will call it the infimum of S and denote it by inf S. 

Note that, unlike max S and min S, sup Sand inf S need not 
belong to S. Note also that a set can have at most one maximum, min­
imum, supremum and infimum. Sometimes the expressions "least 
upper bound" and "greatest lower bound" are used instead of the 
Latin "supremum" and "infimum" and sometimes sup S is written 
lub S and inf S is written glb S. We have chosen the Latin terminol­
ogy for a good reason: We will be studying the notions "lim sup" and 
~im inf" and this notation is completely standard; no one writes "lim 
lub" for instance. 

Observe that if S is bounded above, then M = sup S if and only if 
(i) 8 ~ M for all 8 E S, and (ii) whenever Ml < M, there exists 81 E S 
such that 81 > MI. 

Example 3 
(a) Ifa setShas a maximum, then max S = supS. A similar remark 

applies to sets that have minimums. 
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(b) If a, b E lR and a < b, then 

supra, b] = sup(a, b) = supra, b) = sup(a, b] = b. 

(c) As noted in Example 2, we have inf N = 1. 
(d) !fA = {r E Ql: 0 S r S .J2}, then supA =.J2 and inf A = O. 

(e) We have inf{nC- 1)" : n E N} = O. 

Notice that, in Examples 2 and 3, every set S that is bounded 
above possesses a least upper bound, i.e., sup S exists. This is not an 
accident. Otherwise there would be a "gap" between the set Sand 
the set of its upper bounds. 

4.4 Completeness Axiom. 
Every nonempty subset S oflR that is bounded above has a least upper 
bound. In other words, sup S exists and is a real number 

The completeness axiom for Ql would assert that every nonempty 
subset of Ql, that is bounded above by some rational number, has a 
least upper bound that is a rational number. The set A = {r E Q : 
o S r S .J2} is a set of rational numbers and it is bounded above by 
some rational numbers [312 for example], but A has no least upper 
bound that is a rational number. Thus the completeness axiom does 
not hold for Ql! Incidentally, the set A can be described entirely in 
terms of rationals: A = {r E Ql : 0 S rand r2 S 2}. 

The completeness axiom for sets bounded below comes free. 

4.5 Corollary. 
l~very nonempty subset S oflR that is bounded below has a greatest lower 
bound inf S. 

Proof 
l.ct -8 be the set {-s : S E S}; -S consists of the negatives of the 
n u m hers in S. Since S is bounded below there is an m in lR such 
that m < s for all s E S. This implies that -m ::>: --s for all s E S, 
so m > u f()r all u in the set -So Thus -8 is hounded ahove hy 

rn. The Completeness Axiom 4.4 applies to -S, sO sup(S) exists. 
!"iglln: if.l sugg(~sts that we prove int'S -,c - sur( -8). 

! .el SII sup(-S); we need to prove 

(I) 
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t • • • 
m o The set S 

• • • I 
/sup (-S) 

o -m 

The set-S 

FIGURE 4.1 

and 

ift::::: s for all s E S, then t::::: -so. (2) 

The inequality (1) will show that -so is a lower bound for S, while 
(2) will show that -so is the greatest lower bound, that is, -so = inf S. 
We leave the proofs of (1) and (2) to Exercise 4.9. • 

It is useful to know: 

if a > 0, then 
1 

< a for some positive integer n, (*) 
n 

;md 

if b > 0, then b < n for some positive integer n. (* *) 

'I 'hese assertions are not as obvious as they may appear. If fact, there 
(:x ist ordered fields that do not have these properties. In other words, 
I here exists a mathematical system that satisfies all the properties 
/\ I-A4, MI-M4, DL and 01-05 in§3 and yet possesses elements a > 0 
,llld b > 0 such that a < lin and n < b for all n. On the other 
lund, such strange elements cannot exist in lR or CQl. We next prove 
III is; in view of the previous remarks we must expect to use the 
,mnpleteness Axiom. 

,1.(; Archimedean Property. 
I f II > 0 and b > 0, then for some positive integer n, we have na > b. 

I'his tells us that, even if a is quite small and b is quite large, some 
IIIlcgcr multiple of a will exceed b. Or, to quote [2], given enough 
11I1W, one can empty a large bathtub with a small spoon. [Note that if 
\\'(' sci h I, we ohtain assertion (*), and if we set a = I, we obtain 
,I:,';cllioll (**),1 
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Proof 
Assume the Archimedean property fails. Then there exist a > ° and 
b > ° such that na :s b for all n E N. In particular, b is an upper 
bound for the set S = Ina : n EN}. Let So = supS; this is where we 
are using the completeness axiom. Since a > 0, we have So < So +a, 
so So - a < so. [Th be precise, we obtain So :s So + a and So - a :s So 

by property 04 and the fact that a + (-a) = 0. Then we conclude 
So - a < So since So - a = So implies a = 0 by Theorem 3.1(i).] Since 
So is the least upper bound for S, So - a cannot be an upper bound 
for S. It follows that So - a < noa for some no E N. This implies 
that So < (no + 1 )a. Since (no + ])a is in S, So is not an upper bound 
for S and we have reached a contradiction. Our assumption that the 
Archimedean property fails must be in error. • 

We give one more result that seems obvious from our experi­
ence with the real number line, but which cannot be proved for an 
arbitrary ordered field. 

4.7 Denseness of Q. 
If a, b E lR and a < b, then there is a rational r E Q such that a < r < b. 

Proof 
We need to show that a < ~ < b for some integers m and n where 
n > 0, and thus we need 

an < m < bn. (1) 

Since b - a > 0, the Archimedean property shows that there exists 
an n E N such that neb - a) > 1. Since bn - an > 1, it is fairly 
evident that there is an integer m between an and bn, so that (1) 
holds. However, the proof that such an m exists is a little delicate. 
We argue as follows. By the Archimedean property again, there exists 
an integer k > max{lanl, Ibn!}, so that 

-k < an < bn < k. 

Then the sct U E Z : -k < j :s k and an < j} is finite and nonempty 
and we can set 

m - min{j (;r::k < j < kand WI < /I. 
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Then an < m but m - 1 ::::: an. Also, we have 

m = (m - 1) + 1 ::::: an + 1 < an + (bn - an) = bn, 

so (1) holds. 

Exercises 

• 

·4.1. For each set below that is bounded above, list three upper bounds 
for the set. Otherwise write "NaI' BOUNDED ABOVE" or "NBA." 
~(a) [0,1] >'-(b) (0,1) 
(c) {2,7} (d) {]f, e} 
.(e){~:nEN} (f){0} 
(g) [0, 1] U [2, 3] (h) U~l [2n, 2n + 1] 

~ (i) n~=l[-~' 1 +~] )< (j) {I - -dn : n E N} 

(k) {n + (-~l" : n E N} (1) {r E Ql : r < 2} 
.(m) {r E Ql : r2 < 4} fr (n) {r E Ql : r2 < 2} 

(0) {x E JR: x < O} (p) {I,}, ]f2, 10} 

(q) {O,l,2,4,8,16} (r) n~l(l-~,l+~) 
.(8) {~:nENandnisprime} (t) {XEJR:X3 < 8} 
(n) {X2 : X E JR} ~(v) {cos(~): n E N} 

. (w) {sin(n;): n E N} 

'4.2. Repeat Exercise 4.1 for lower bounds. 

,4.3. For each set in Exercise 4.1, give its supremum if it has one. 
Otherwise write "NO sup." 

.4.4. Repeat Exercise 4.3 for infima [plural of infimum]. 

,4.5. Let S be a nonempty subset of JR that is bounded above. Prove that 
if sup S belongs to S, then sup S = max S. Hint: Your proof should 
be very short. 

,,4.6. Let S be a nonempty bounded subset ofR 

(a) Prove that inf S ::::: sup S. Hint: This is almost obvious; your 
proof should be short. 

(b) What can you say about S if inf S = sup S? 

>: 4.7. Let Sand T be nonempty bounded subsets of R 

(a) Prove that if S <; T, then inf T ::::: inf S ::::: sup S ::::: sup T. 
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(b) Prove that sup(S U T) = max{supS, sup T}. Note: In part (b), 
do not assume S <;: T. 

04.8. Let Sand T be nonempty subsets oflR with the following property: 
sst for all s E Sand t E T. 

( a) Observe that S is bounded above and that T is bounded below. 

(b) Prove that supS S infT. 

( c) Give an example of such sets Sand T where sn Tis nonempty. 

(d) Give an example of sets Sand T where sup S = inf T and S n T 
is the empty set. 

4.9. Complete the proof that inf S = - sup( -S) in Corollary 4.5 by 
proving (1) and (2). 

4.10. Prove that if a > 0, then there exists n E N such that ~ < a < n. 

A 4.11. Consider a,b E IR where a < b. Use Denseness ofQ4.7 to show 
that there are infinitely many rationals between a and b. 

\,4.12. Let IT be the set of real numbers that are not rational; elements of IT 
are called irrational numbers. Prove that if a < b, then there exists 
x E IT such that a < x < b. Hint: First show {r + ../2 : r E Q} <;: IT. 

4.13. Prove that the following are equivalent for real numbers a, b, c. 
[Equivalent means that either all the properties hold or none of the 
properties hold.] 

(a)!a-b!<c, 

(b) b - c < a < b + c, 

(c) a E (b - c, b + c). 

Hint: Use Exercise 3.7(b). 

4.14. Let A and B be nonempty bounded subsets of 1R, and let S be the 
set of all sums a + b where a E A and b E B. 

(a) Prove that supS = supA + supE. 

(b) Prove that inf S = inf A + inf B. 

y. 4.15. Let a, b E R Show that if a < b + 1 for all n E' 1':], thcn {/ < h. - n 
Compare Exercise 3.8. 

:4.16. Show that surlr E Q: r < al a filr cach (/ ( I~. 
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§5 The Symbols +00 and -00 

The symbols +00 and -00 are extremely useful even though they 
are not real numbers. We will often write +00 as simply 00. We will 
adjoin +00 and -00 to the set lR and extend our ordering to the set 
lRU{ -00, +oo}. Explicitly, we will agree that -00 ::: a S +00 for all a 
inlRU{-oo, oo}. This provides the setlRU{ -00, +oo} with an ordering 
that satisfies properties aI, 02 and 03 of§3. We emphasize that we 
will not provide the set lR U {-oo, +oo} with any algebraic structure. 
We may use the symbols +00 and -00, but we must continue to 
remember that they do not represent real numbers. Do not apply a 
theorem or exercise that is stated for real numbers to the symbols 
+00 or -00. 

It is convenient to use the symbols +00 and -00 to extend the 
notation established in Example 1(b) of §4 to unbounded intervals. 
For real numbers a, b E lR, we adopt the following notation: 

[a, (0) = {x E lR : a S x}, 
C -00, b] = {x E lR : x S b}, 

Ca, (0) = {x E lR : a < x}, 
C -00, b) = {x E lR : x < b}. 

We occasionally also write (-00, (0) for R [a, (0) and (-00, b] are 
called closed intervals or unbounded closed intervals, while Ca, (0) and 
C -00, b) are caned open intervals or unbounded open intervals. 

Consider a nonempty subset S of R Recall that if S is bounded 
above, then sup S exists and represents a real number by the 
completeness axiom 4.4. We define 

sup S = +00 if S is not bounded above. 

Likewise, if S is bounded below, then inf S exists and represents a 
real number [Corollary 4.5]. And we define 

inf S = - 00 if S is not bounded below. 

For emphasis, we recapitulate: 
Let S be any nonempty subset of TIt The symbols sup Sand inf S 

always make sense. If S is bounded above, then sup S is a real num­
ber; otherwise sup S = +00. If S is bounded below, then inf S is a real 
number; otherwise inf S = -00. Moreover; we have inf S ::: sup S. 

The exercises for this section clear up some loose ends. Most of 
them extend results in §4 to sets that are not necessarily bounded. 
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Exercises 
5.1. Write the following sets in interval notation: 

(a) {x E JR : x < O} (b) {x E JR: X3 :::: 8} 
(c) {X2:XEJR} (d) {XEJR:X2<8} 

5.2. Give the infimum and supremum of each set listed in Exercise 5.1. 

5.3. Give the infimum and supremum of each unbounded set listed in 
Exercise 4.1. 

5.4. Let S be a nonempty subset of JR, and let -S = {-s : S E S}. Prove 
that inf S = - supe -S). Hint: For the case -00 < inf S, simply state 
that this was proved in Exercise 4.9. 

5.5. Prove that inf S :::: sup S for every nonempty subset of R Compare 
Exercise 4.6(a). 

,5.6. Let Sand T be noncmpty subsets of lR such that S t; T. Prove that 
infT:::: infS:::: supS:::: supT. Compare Exercise 4.7(a). 

§6 * A Development of IR 

There are several ways to give a careful development of lit based on 
Q!. We will briefly discuss one of them and give suggestions for fur­
ther reading on this topic. [See the remarks about optional sections 
in the preface.] 

Tb motivate our development we begin by observing that 

a = sup{r E Q! : r < a} for each a E lit; 

see Exercise 4.16. Note the intimate relationship: a :::: b if and only 
if{r E Q!: r < a} ~ {r E Q!: r < b} and, moreover, a = b ifand only 
if {r E Q! : r < a} = {r E Q! : r < b}. Subsets (X ofQ! having the form 
{r E Q! : r < a} satisfy these properties: 

(i) (X =f Q and (X is not empty, 
(ii) ifr E (x, SEQ! and s < r, then S E (x, 

(iii) (X contains no largest rational. 

Moreover, every subset (X of Q! that satisfies (i)-(iii) has th(~ /()rm 

{r E Q! : r < a} for some a E lR; in fact, a - - sura. Suhscts a of ((~ 
satisfying (i)-(iii) arc called TJ(;dckind Wis. 
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The remarks in the last paragraph relating real numbers and 
Dedekind cuts are based on our knowledge offfi., including the com­
pleteness axiom. But they can also motivate a development of ffi. 
based solely on Q. In such a development we make no a priori as­
sumptions about R We assume only that we have the ordered field 
Q and that Q satisfies the Archimedean property 4.6. A Dedekind 
cut is a subset a of Q satisfying (i)-(iii). The set ffi. of real numbers 
is defined as the space of all Dedekind cuts. Thus elements of ffi. are 
defined as certain subsets of Q. The rational numbers are identified 
with certain Dedekind cuts in the natural way: each rational s cor­
responds to the Dedekind cut s* = {r E Q : r < s}. In this way 
Q is regarded as a subset of ffi., that is, Q is identified with the set 
Q* = {s* : SEQ}. 

The set ffi. defined in the last paragraph is given an order structure 
as follows: if a and {3 are Dedekind cuts, then we define a :s {3 to 
signify that a S; {3. Properties 01, 02 and 03 in §3 hold for this 
ordering. Addition is defined in ffi. as follows: if a and {3 are Dedekind 
cuts, then 

a + {3 = {rl + r2 : rl E a and r2 E {3}. 

It turns out that a + {3 is a Dedekind cut [hence in ffi.] and that this 
definition of addition satisfies properties Al-A4 in §3. Multiplication 
of Dedekind cuts is a tedious business and has to be defined first for 
Dedekind cuts that are:::: 0*. For a naive attempt, see Exercise 6.4. 
After the product of Dedekind cuts has been defined, the remaining 
properties of an ordered field can be verified for R The ordered field 
ffi. constructed in this manner from Q is complete: the completeness 
property in 4.4 can be proved rather than taken as an axiom. 

The development of ffi. outlined above is given in [34] and [36]. 
The real numbers are developed from Cauchy sequences in Q in 
[23], §5. A thorough development of ffi. based on Peano's axioms is 
given in [28]. 

Exercises 
6.1. Consider s, t E Q. Show that 

(a) s.:::: t if and only if s* s;: t*; 
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(b) s = t if and only if s* = t*; 

(c) ( s + t)* = s* + t*. Note that s* + t* is a sum of Dedekind cuts. 

6.2. Show that if a and {3 are Dedekind cuts, then so is a + {3 = {rJ + rz : 
r] E a and r2 E {3}. 

6.3. (a) Show that a + 0* = a for all Dedekind cuts a. 

(b) We claimed, without proof, that addition of Dedekind cuts sat­
isfies property A4. Thus if a is a Dedekind cut, there must exist 
a Dedekind cut -a such that a + ( -a) = 0*. How would you 
define -a? 

6.4. Let a and {3 be Dedekind cuts and define the "product": a· {3 = {r] r2 : 

r] E a and rz E {3}. 

(a) Calculate some "products" of De de kind cuts using the Dedekind 
cuts 0*, 1 * and ( -1 )*. 

(b) Discuss why this definition of "product" is totally unsatisfactory 
for defining multiplication in R 

6.5. (a) Show that {r E Ql : r3 < 2} is a Dedekind cut, but that {r E Ql : 
rZ < 2} is not a Dedekind cut. 

(b) Does the Dedekind cut {r E Ql : r3 < 2} correspond to a rational 
number in ~? 

(c) Show that 0* U {r E Ql : r ::: 0 and r2 < 2} is a Dedekind cut. 
Does it correspond to a rational number in ~? 

6.6. Let a = 0* U {p E Ql : p ::: 0 andp2 < 2}. Prove that a is a Dedekind 
cut and also that it has the property a . a = 2*; that is, the square 
of a is 2*. Note: This seems to be surprisingly tricky, as pointed out 
by Linda Hill and Robert J. Fisher at Idaho State University. Their 
solution is available from them or from the author. 



Sequences 
CHAPTER 

§7 Limits of Sequences 

A sequence is a function whose domain is a set that has the form 
{n E Z: n ~ m}; m is usually 1 or O. Thus a sequence is a function 
that has a specified value for each integer n ~ m. It is customary to 
denote a sequence by a letter such as s and to denote its value at n 
as Sn rather than sen). It is often convenient to write the sequence 
as (sn)~m or (sm, Sm+1, Sm+2, ... ). If m = 1 we may write (Sn)nEN 

or of course (S1, S2, S3, ... ). Sometimes we will write (sn) when the 
domain is understood or when the results under discussion do not 
depend on the specific value of m. In this chapter, we will be inter­
ested in sequences whose range values are real numbers, i.e., each 
Sn represents a real number. 

Example 1 
Cal Consider the sequence (Sn)nEN where Sn = ~. This is the 

sequence (1, i, ~, 116 , -is, ... ). Formally, of course, this is the 
function with domain N whose value at each n is ~. The set of 

1 . {I 1 1 1 1 } va ues IS '4' 9' 16' 25' .. , . 
(b) Consider the sequence given by an = (-It for n ~ 0, i.e., 

(an)~=o where an = (-It. Note that the first term of the se-

31 
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quence is aD = 1 and the sequence is (I, -I, I, -I, I, -I, I, ... ). 
Formally, this is a function whose domain is {O, 1,2, ... } and 
whose set of values is {-I, I}. 

It is important to distinguish between a sequence and its 
set of values, since the validity of many results in this book 
depends on whether we are working with a sequence or a set. 
We will always use parentheses ( ) to signifY a sequence and 
braces { } to signifY a set. The sequence given by an = (-1 t 
has an infinite number of terms even though their values are 
repeated over and over. On the other hand, the set {( -1 r : n = 
0, 1,2, ... } is exactly the set {-I, l} consisting of two numbers. 

(e) Consider the sequence cosCJr), n E N. The first term of this 
sequence is coseD = cos 60° = ~ and the sequence looks like 

The set of values is {cos(n;) : n E N} = {~, -~, -1, l}. 

(d) If an = nUn, n E N, the sequence is (1, V2, 3113 , 4114 , .. . ). Ifwe 
approximate values to four decimal places, the sequence looks 
like 

(1,1.4142,1.4422,1.4142,1.3797,1.3480,1.3205,1.2968, ... ). 

It turns out that alOO is approximately 1.0471 and that alOOO is 
approximately 1.0069. 

(e) Consider the sequence bn = (1 + ~r, n E N. This is the se­
quence (2, (~i, (~i, (%)4, ... ). Ifwe approximate the values to 
four decimal places, we obtain 

(2,2.25,2.3704,2.4414,2.4883,2.5216,2.5465,2.5658, ... ). 

Also b lOO is approximately 2.7048 and blOOD is approximately 
2.7169. 

The "limit" of a sequence (sn) is a real number that the values 
Sn are close to for large values of n. For instance, the values of the 
sequence in Example I(a) are close to 0 for large n and the values of 
the sequence in Example I(d) appear to be close to 1 for large n. The 
sequence (an) given by an = (-} t requires some thought. We rn ight 
say that 1 is a limit hccaus(~ in f;lct all -= I f()[ the large v:1111cs of' n 

that arc cv(~n, On the oth(~r h:ltld, (/" I Iwhich is qllilc;1 disl;ltlcc 

I 
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from 1] for other large values of n. We need a concise definition in 
order to decide whether 1 is a limit of an = (-1 y. It turns out that 
our definition will require the values to be close to the limit value 
for all large n, so 1 will not be a limit of the sequence an = ( -1 Y . 

7.1 Definition. 
A sequence (sn) of real numbers is said to converge to the real number 
S provided that 

for each E > 0 there exists a number N such that 
n > N implies ISn - sl < E. 

(1) 

If (sn) converges to s, we will write limn ---+ oo Sn = s, or Sn -* s. The 
number S is called the limit of the sequence (sn). A sequence that 
does not converge to some real number is said to diverge. 

Several comments are in order. First, in view of the Archimedean 
property, the number N in Definition 7.1 can be taken to be a natural 
number if we wish. Second, the symbol E [lower case Greek epsilon] 
in this definition represents a positive number, not some new ex­
otic number. However, it is traditional in mathematics to use E and 8 
[lower case Greek delta] in situations where the interesting or chal­
lenging values are the small positive values. Third, condition (1) is 
an infinite number of statements, one for each positive value of E. 

The condition states that to each E > 0 there corresponds a number 
N with a certain property, namely n > N implies ISn - sl < E. The 
value N depends on the value E, and normally N must be large if E 

is small. We illustrate these remarks in the next example. 

Example 2 

Consider the sequence Sn = ~~~!. Ifwe write Sn as ~=~ and note that 

~ and ~ are very small for large n, it seems reasonable to conclude 
that lim Sn = ~. In fact, this reasoning will be completely valid after 
we have the limit theorems in §9: 

. . [3+~] lim3+lim(*) 3+0 3 
hm Sn = hm --4 = 1 = = -. 

7 - ;::; lim 7 - 4lim(;::;) 7 - 4 . 0 7 
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However, for now we are interested in analyzing exactly what we 
mean by lim sn = ~. By Definition 7.1, lim sn = ~ means that 

for each E > a there exists a number N such that 
n > N implies I' 3n+l - lj < E. 

7n-4 7 
(1) 

As E varies, N varies. In Example 2 of the next section we will show 
that, for this particular sequence, N can be taken to be liE +~. Using 
this observation and a calculator; we find that for E equal to I, 0.1, 
0.01, 0.001 and 0.000001, respectively, N can be taken to be approx­
imately 0.96, 4.45, 39.35, 388.33 and 387,755.67, respectively. Since 
we are interested only in integer values of n, we may as well drop 
the fractional part of N. Then we see that five of the infinitely many 
statements given by (1) are: 

n > a implies 13n + 1 _ ~I < 1· (2) 
7n - 4 7 

, 

n > 4 implies 13n + 1 _ ~I < 0.1; (3) 
7n - 4 7 

n > 39 implies 13n + 1 _ ~I < 0.01; (4) 
7n - 4 7 

n > 388 implies 13n + 1 _ ~I < 0.001; (5) 
7n - 4 7 

n > 387,755 implies 13n + 1 _ ~I < 0.000001. (6) 
7n - 4 7 

Thble 7.1 partially confirms assertions (2) through (6). We could go 
on and on with these numerical illustrations, but it should be dear 
that we need a more theoretical approach if we are going to prove 
results about limits. 
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Thble 7.1 

S - 3n+1 
n - 7n-4 ISn - ~I 

n approximately approximately 

1 l.3333 .9047 
2 0.7000 .2714 
3 0.5882 .1597 
4 0.5417 .1131 
5 0.5161 .0876 
6 0.5000 .0714 

40 0.4384 .0098 
400 0.4295 .0010 

Example 3 
We return to the examples in Example 1. 

(a) lim ~2 = O. This will be proved in Example 1 of the next section. 
(b) The sequence (an) where an = (-1 Y does not converge. Thus 

the expression "lim an" is meaningless in this case. We will 
discuss this example again in Example 4 of the next section. 

(c) The sequence cose;) does not converge. See Exercise 8.7. 
(d) The sequence nlln appears to converge to l. We will prove 

lim nlln = 1 in 9.7(c). 
(e) The sequence (bn ) where bn = (1 + ~Y converges to the num­

ber e that should be familiar from calculus. The limit lim bn 

and the number e will be discussed further in the optional 
§37. Recall that e is approximately 2.7182818. 

We conclude this section by showing that limits are unique. That 
is, if lim Sn = S and lim Sn = t, then we must have S = t. In short, 
the values Sn cannot be getting arbitrarily close to different values 
for large n. Th prove this, consider E > O. By the definition of limit 
there must exist N1 so that 

implies 

and there must exist N2 so that 

n > N2 implies 

E 
ISn - sl < -

2 

E 
ISn - tl < -

2 
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For n > max{N1, N 2 }, the Triangle Inequality 3.7 shows that 

E E 
Is - tl = I(s - sn) + (sn - t)1 :::: Is - snl + ISn - tl :::: "2 + "2 = E. 

This shows that Is - tl < E for all E > O. It follows that Is - tl = 0, 
hence S = t. 

Exercises 
7.1. Write out the first five terms of the following sequences. 

(a) Sn = 3n~1 (b) bn = !~=i 
(c) Gn = f,;- (d) sinC n

4,,) 

7.2. For each sequence in Exercise 7.1, determine whether it converges. 
If it converges, give its limit. No proofs are required. 

7.3. For each sequence below, determine whether it converges and, ifit 
converges, give its limit. No proofs are required. 

( ) n (b b n'+3 a an = n+l ) n = n2-3 

(c) Gn = 2-n . (d) tn = 1 + ~ 
(e) Xn = 73 + (-lr (f) Sn = (2)1In 
(g) Yn = n! (h) dn = (-lrn 
( i) ( -1 )n (J') 7n' +8n 

n 2n3 -31 

(k) 96:;:: (1) siner) 
(m) sin(mI') (n) sinCZ~") 
(0) ~ sin n (p) 2;:~~5 

(~ ~ ~) C1+~t 
() 

4n2+3 6n+4 
S 3n2-2 ' (t) 9n'+7 

7.4. Give examples of 

( a) a sequence C xn) of irrational numbers having a limit lim x" that 
is a rational number. 

(b) a sequence (rn) of rational numbers having a limit lim rn that 
is an irrational number. 

v 7.5. Determine the following limits. No proofs are required, but show 
any relevant algebra. 

(a) lim Sn where Sn = .JY!2+l - n, 

(b) lime Jn2 + n - n), 
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(c) lime v'4n2 + n - 2n). 
Hint for (a): First show that Sn = ~ . 

n +l+n 

§8 A Discussion about Proofs 

In this section we give several examples of proofs using the definition 
of the limit of a sequence. With a little study and practice, students 
should be able to do proofs of this sort themselves. We will sometimes 
refer to a proof as a formal proof to emphasize that it is a rigorous 
mathematical proof. 

Example 1 
Prove that lim ;2 = o. 

Discussion. Our task is to consider an arbitrary E > 0 and show 
that there exists a number N [which will depend on E] such that 
n > N implies Idr - 01 < E. SO we expect our formal proof to begin 
with "Let E > 0" and to end with something like "Hence n > N 
implies 1 ;2 - 01 < E." In between the proof should specify an Nand 
then verify that N has the desired property, namely that n > N does 
indeed imply 1 dr - 01 < E. 

As is often the case with trigonometric identities, we will initially 
work backward from our desired conclusion, but in the formal proof 
we will have to be sure that our steps are reversible. In the present 
example, we want 1 ;2 - 01 < E and we want to know how big n 
must be. So we will operate on this inequality algebraically and try 
to "solve" for n. Thus we want dr < E. By multiplying both sides by n2 

and dividing both sides by E, we find that we want ~ < n2 or ~ < n. 

If our steps are reversible, we see that n > ~ implies 1 ;2 - 01 < E. 

This suggests that we put N = ~. 

Formal Proof 
Let E > O. Let N = ~. Then n > N implies n > ~ which implies 

n2 > ~ and hence E > ;2. Thus n > N implies Idr - 01 < E. This 
proves that lim 1, = O. • n 
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Example 2 
Prove that lim 3r1+1 = 0.. 

7'1-4 7 
Discussion. For each E > 0, we need to decide how big n must be 

to guarantee that 1311+1 
- 0.1 < E. Thus we want 711-4 7 

1
21 n + 7 - 21 n + 121 < E or 1 19 1 

7(7n - 4) 7(7n _ 4) < E. 

Since 7n - 4 > 0, we can drop the absolute value and manipulate 
the inequality further to "solve" for n: 

19 19 19 4 
- < 7n - 4 or 
7E 

- + 4 < 7n or 
7E 

- + - < n. 49E 7 

Our steps are reversible, so we will put N = 4
1iE + ~. Incidentally, 

we could have chosen N to be any number larger than ;:0 + ~. 

Formal Proof 
O d I N 19 4 Th N' I' 19 4 Let E > an et = 49E + 7' en n > Imp les n > 49E + 7' 

hence 7n > ~ + 4, hence 7n - 4 > ~;, hence 7(7;1
9
_4) < E, and hence 

1
3n+1 _ 0.1 < E. This proves lim 3n+1 = 0.. • 
7n-4 7 7n-4 7 

Example 3 
Prove that lim 4nl+3n = 4. 

nl-6 

Discussion. For each E > 0, we need to determine how large n 
must be to imply 

1
4n3 + 3n _ 41 < E or 

n 3 - 6 1
3n + 241 

3 < E. 
n - 6 

By considering n > I, we may drop the absolute values; thus we 
need to find how big n must be to give 3,;\~264 < E. This time it would 
be very difficult to "solve" for or isolate n. Recall that we need to find 
some N such that n > N implies 3~ll~264 < E, but we do not need to find 
the least such N. So we will simplify matters by making estimates. 
The idea is that 3n1+2

6
4 is bounded b\T some constant times -; = ~ 

n- - .) H' il 

for sufficiently large n. To find such a bound we will find an upper 
bound for the numerator and a lower bound for the denominator. 
For example, since 3n + 24 ::: 27n, it suffices for us to get Y121~16 < E. 

To make the denominator smaller and yet a constant multiple of n3 , 

we note that n3 
- 6 ::0: r.f provided n is sufficiently large; in fact, all 
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,\Te need is ~ :::: 6 or n3 
:::: 12 or n > 2. So it suffices to get :Z/~ < E 

or ~ < E or n > (ii, provided that n > 2. 
n V ~ 

Formal Proof 
Let E > 0 and let N = max{2, jii}. Then n > N implies n > jii, 
~ence ~i < E, hence :z/n2 < E. Since n > 2, we have ~3 ::: n3 

- 6 and 
also 27n :::: 3n + 24. Thus n > N implies 

3n + 24 27n 54 
---< -=- < E, 
n3 - 6 - ln3 n2 

2 

and hence 

1

4n3 + 3n I 3 - 4 < E, 
n - 6 

as desired. • 
Example 3 illustrates that direct proofs of even rather simple 

limits can get complicated. With the limit theorems of §9 we would 
just write 

. [4n
3

+3n] _. [4+:2] _lim4+3.lim(~)_ hm 3 - hm --6 - 1 - 4. 
n - 6 1 - - lim 1 - 6 ·lim(-) n3 n3 

Example 4 
Show that the sequence an = (-1 Y does not converge. 

Discussion. We will assume that lim ( -1 Y = a and obtain a con­
tradiction. No matter what a is, either 1 or -1 will have distance at 
least 1 from a. Thus the inequality I( _1)n - al < 1 will not hold for 
all large n. 

Formal Proof 
Assume that lime -1 Y = a for some a E lR.. Letting E = 1 in the 
definition of the limit, we see that there exists N such that 

n > N implies I( -It - al < 1. 

By considering both an even and an odd n > N, we see that 

11 - al < 1 and 1-1 - al < 1. 
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Now by the Triangle Inequality 3.7 

2= 11-(-1)1 = 11-a+a-(-1)1:S 11-al+la-(-1)1 < 1+1 =2. 

This absurdity shows that our assumption that lime -1 r = a must 
be wrong, so the sequence (-1 r does not converge. • 

Example 5 
Let (sn) be a sequence of nonnegative real numbers and suppose 
that s = limsn . Note that s :::: 0; see Exercise 8.9(a). Prove that 
limFn =-/S. 

Discussion. We must consider E > 0 and show that there exists N 

such that 

n > N implies I~ - v'sl < E. 

This time we cannot expect to obtain N explicitly in terms of E be­
cause of the general nature of the problem. But we can hope to show 
such N exists. The trick here is to violate our training in algebra and 
"irrationalize the denominator": 

Since Sn ~ s we will be able to make the numerator small [for large 
n). Unfortunately, if s = 0 the denominator will also be small. So we 
consider two cases. If s > 0, the denominator is bounded below by 
-/S and our trick will work: 

so we will select N so that ISn - sl < -/SE for n > N. Note that N 
exists, since we can apply the definition oflimit to -/SE just as well 
as to E. For s = 0, it can be shown directly that lim sn = 0 implies 
lim Fn = 0; the trick of "irrationalizing the denominator" is not 
needed in this case. 

Formal Proof 
Case I: s > O. Let E > O. Since lim Sn = s, there exists N such that 

n > N implir-s /.<'" - 81 < -,fw. 
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:'\ow n > N implies 

r;::- _ r.:. _ ISn - sl < ISn - sl vlsE _ 
Iysn ysl - r;. - r;. < r;. - E. 

,JSn"+yS yS yS 

Case II: s = O. This case is left to Exercise 8.3. • 
- Example 6 

Let (sn) be a convergent sequence of real numbers such that Sn i- 0 
for all n E Nand limsn = s i- o. Prove that inf{lsnl : n E N} > O. 

Discussion. The idea is that "most" of the terms Sn are close to S 
and hence not close to O. More explicitly, "most" of the terms sn are 
within ~ lsi of s, hence most Sn satisfy ISn I ~ ~ lsi. This seems clear 
from Figure 8.1, but a formal proof will use the triangle inequality. 

Formal Proof 
Let E = ~ lsi > O. Since lim Sn = s, there exists N in N so that 

n > N implies 

Now 

n > N implies 

since otherwise the triangle inequality would imply 

I I I I I I I I ~ + ~ = lsi S = S - Sn + Sn :S S - Sn + Sn < 
2 2 

which is absurd. If we set 

. {lSI } m = mm 2' ISll, IS21. ... , ISNI , 

most Sn here 
;----~)..'---~, 

(1) 

----------------------~I------~------~-----+I---s>O 
o S S 

2" 
most Sn here 

,--____ ~A~ __ _____ 

--+-----~------~----~I~-----------------------s<O 
S 

FIGURE 8.1 

§... 
2 

o 
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then we clearly have m > 0 and ISn I :::: m for all n E N in view of (1). 
Thus inf{lsnl : n EN} :::: m > 0, as desired. • 

Formal proofs are required in the following exercises. 

Exercises 
B.l. Prove the following: 

(a) lim (-~l" = 0 (b) lim )13 = 0 

(c) lim 2n-1 = .? (d) lim n,+6 = 0 3n+2 3 n -6 

B.2. Determine the limits of the following sequences, and then prove 
your claims. 
( ) n (b) b - 7n-19 

~ a an = n'+1 n - 3n+7 
(c) C = 4n+3 • (d) d - 2n+4 n 7n-5 n - 5n+2 
(e) Sn = ~ sin n 

B.3. Let (sn) be a sequence of nonnegative real numbers, and suppose 
that lim Sn = O. Prove that lim Fn = O. This will complete the 
proof for Example 5. 

'B.4. Let (tn) be a bounded sequence, i.e., there exists M such that Itnl :s 
M for all n, and let (sn) be a sequence such that limsn = O. Prove 
that lim(sntn) = O. 

B.5. (a) Consider three sequences (an), (bn) and (sn) such that an :s 
Sn :s bn for all n and lim an = lim bn = s. Prove that lim Sn = S. 

(b) Suppose that (sn) and (tn) are sequences such that Is,,1 :s tn for 
all n and lim tn = O. Prove that lim s" = O. 

B.6. Let (sn) be a sequence in lR. 

«a) Prove that limsn = 0 if and only iflim ISnl = o. 

(b) Observe that if Sn = (-1)", then lim ISnl exists, but lim Sn does 
not exist. 

B.7. Show that the following sequences do not converge. 
(a) cos(n]"-) (b) Sn = (-l)"n 

.(c) sine";) 

B.B. Prove the following [see Exercise 7.5]: 

(a) lim[Jn2+l - n] = 0 (b) lim[Jn2 + n - n] = ~ 
(c) lim[J4n2 + n - 2n] = i 



§9. Limit Theorems for Sequences 43 

8.9. Let (s,,) be a sequence that converges. 

(a) Show that if s" :::: a for all but finitely many n, then lim s" :::: a. 

(b) Show that if s" ::: b for all but finitely many n, then lim s" ::: b. 

(c) Conclude that if all but finitely many s" belong to [a, b], then 
lims" belongs to [a, b] . 

. 8.10. Let (s,,) be a convergent sequence, and suppose that lim Sn > a. 
Prove that there exists a number N such that n > N implies s" > a. 

§9 Limit Theorems for Sequences 

In this section we prove some basic results that are probably already 
familiar to the reader. First we prove that convergent sequences are 
bounded. A sequence (sn) of real numbers is said to be bounded if 
the set {sn : n E N} is a bounded set, i.e., if there exists a constantM 
such that Is" I .::: M for all n. 

9.1 Theorem. 
Convergent sequences are bounded. 

Proof 
Let (SI1) be a convergent sequence, and let s = lim Sn. Applying 
Definition 7.1 with E = 1 we obtain N in N so that 

n > N implies Is" - sl < l. 

From the triangle inequality we see that n > N implies ISI1I < lsi + 1. 

Define M = max{lsl + I, IS11, IS21, ... , ISNI}. Then we have Is,,1 .::: M 
for all n E N, so (s,,) is a bounded sequence. • 

In the proof of Theorem 9.1 we only needed to use property 7.1 (1 ) 
for a single value of E. Our choice of E = 1 was quite arbitrary. 

9.2 Theorem. 
If the sequence (SI1) converges to sand k E lR, then the sequence (ks,,) 
converges to ks. That is, lim(ksn ) = k lim SI1. 
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Proof 
We assume k #- 0, since this result is trivial for k = O. Let E > 0 
and note that we need to show that /ksn - ks/ < E for large n. Since 
lim Sn = 8, there exists N such that 

n > N implies 
E 

/sn - s/ < /k/. 

Then 

n > N implies /ksn - ks/ < E. • 
9.3 Theorem. 
If (sn) converges to sand (tn) converges to t, then (sn + tn) converges to 
s + t. That is, 

lime Sn + tn) = lim Sn + lim tn. 

Proof 
Let E > 0; we need to show that 

/sn + tn - (s + t)/ < E for large n. 

We note that /sn + tn - (s + t)/ ::'S /sn - s/ + /tn - t/. Since limsn = s, 
there exists Nl such that 

implies 

Likewise, there exists N2 such that 

n > N2 implies 

Let N = max{N1 , N2}. Then clearly 

E 
/sn - s/ < -

2 

E 
/tn - t/ < -

2 

E E 
n > N implies /sn + tn - (s + t)/ ::'S /sn - s/ + /tn - t/ < - + - = E. 

2 2 • 

9.4 Theorem. 
If(sn) converges to sand (tn) converges to t, then (sntn) converges to 81. 

That is, 

lim(s"I,,) (lirnslI)(lilll III). 
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Discussion. The trick here is to look at the inequality 

ISntn - stl = ISntn - Snt + Snt - stl 

:s ISntn - sntl + ISnt - stl = ISnl . Itn - tl + It I . ISn - si. 

I 'or large n, Itn - tl and ISn - sl are small and It I is, of course, constant. 
I'ortunately, Theorem 9.1 shows that ISnl is bounded, so we will be 
,Ible to show that ISntn - stl is small. 

proof 

I.ct E > O. By Theorem 9.1 there is a constant M > 0 such that 
I;)" I :s M for all n. Since lim tn = t there exists N1 such that 

E 
n > N1 implies It -tl < -. 

n 2M 

Also, since limsn = S there exists N z such that 

E 
n > N z implies ISn - sl < -2(-lt-I-+-1-)· 

I w(~ used 2(l tl+1) instead of 21tl' since t could be 0.] Now if N 
III<lX{N1' N 2 }, then n > N implies 

ISntn - stl :s ISnl . Itn - tl + It I . ISn - sl 
E E E E 

< M· - + It I . < - + - = E. 
- 2M 2(ltl + 1) 2 2 • 

lb handle quotients of sequences, we first deal with reciprocals. 

'1.5 Lemma. 
II (8,,) converges to s, if Sn i= 0 for all n, and if s i= 0, then (1/ sn) 
I ml/J(~r;~BS to 11 s. 

I Jiscussion. We begin by considering the equality 

lor i;lrgc n, the nurnerator is small. The only possible difficulty 
wOlild Iw il the d(~Il()millalor were also small fClr large n. This dif-
11t.lilly is s()lved ill I':x;rlllpic (j ()I' ~g where it is prov(~d that m 
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inf{lsnl : n E N} > O. Thus 

Is - snl 

misl ' 

and it is clear how our proof should proceed. 

Proof 
Let E > O. By Example 6 of §8, there exists m > 0 such that ISnl ~ m 
for all n. Since lim Sn = S there exists N such that 

n > N implies Is - snl < E' misi. 

Then n > N implies 

I 
~ - ~ I = _ls_-_sn_1 < _ls_-_sn_1 < E. 

Sn S ISnsl misl • 
9.6 Theorem. 
Suppose that (sn) converges to sand (tn) converges to t. If S "# 0 and 
Sn "# 0 for all n, then (tnl sn) converges to tis. 

Proof 
By Lemma 9.S (llsn) converges to lis, so 

. tn . 1 1 t 
hm - = hm - . tn = - . t = -

sn sn S S 

by Theorem 9.4. • 
The preceding limit theorems and a few standard examples allow 

one to easily calculate many limits. 

9.7 Basic Examples. 
(a) limn-HXl(;P) = 0 for p > O. 
(b) limn->-oo an = 0 if lal < l. 
(c) lim(nlln) = l. 

(d) limn->-oo(alln ) = 1 for a > O. 

Proof 
(a) LetE > OandletN=(~)I/p.Thenn > N impliesnP > ~and 

hence ( > --'--". Since --'--" > Il, this shows that n > N impli(~s 
n 11 
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I ~p - 01 < E. [The meaning of nP when p is not an integer will 
be discussed in §37.] 

(b) We may suppose that a #- 0, because limn---+ oo an = 0 is obvious 
for a = o. Since lal < I, we can write lal = l!b where b > O. By 
the binomial theorem [Exercise 1.12], (1 + bn ) ::': 1 + nb > nb, 
so 

Now consider E > 0 and let N = ~. Then n > N implies 
n > ~ and hence Ian - 01 < ;b < E. 

(e) Letsn = (nlln)_1 and note thatsn ::': 0 for all n. By Theorem 9.3 

it suffices to show that limsn = O. Since 1 + Sn = (n lln ), we 
have n = (1 + snY. For n ::': 2 we use the binomial expansion 
of (1 + snY to conclude 

1 1 
n = (1 + snt ::': 1 + nSn + "2 n (n - l)s~ > "2n(n - l)s~. 

Thus n > ~n(n - l)s~, so s~ < n:l. Consequently, we have 

Sn < J n:l for n ::': 2. A standard argument now shows that 

limsn = 0; see Exercise 9.7. 
(d) First suppose a ::': 1. Then for n ::': a we have 1 :::: alln < 

nlln. Since limnlln = I, it follows easily that lim(alln ) = 1; 

compare Exercise 8.S(a). Suppose that 0 < a < 1. Then ~ > 
I, so lim(~)]/n 1 from above. Lemma 9.5 now shows that 
lim(a1/ n) = 1. • 

Example 1 
Prove that lim Sn = ~, where 

n3 + 6n2 + 7 
Sn = . 

4n3 + 3n - 4 

Solution 
We have 

8" 
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By 9.7(a) we have lim ~ = 0 and lim ~ = O. Hence by Theorems 9.3 
and 9.2 we have 

lim (1 + ~ + :3 ) = lim(l) + 6 . lim (~) + 7 . lim (~3 ) = 1. 
Similarly, we have 

lim (4 + ~ - ~) = 4. 
n2 n3 

Hence Theorem 9.6 implies that limsn = ~. 

Example 2 
. d l' n-5 FIn 1m n2+7' 

Solution 

o 

Let Sn = 1~2~~' We can write Sn as ~~i, but then the denominator 

does not converge. So we write 

1 5 n - Yi2 
Sn = --7-' 

1 + ;J2 

Now lim(~ - ~) = 0 by 9.7(a) and Theorems 9.3 and 9.2. Likewise 
lim(l + :2) = I, so Theorem 9.6 tells us that limsn = ¥ = O. 0 

Example 3 
Find lim n

2
+3 

n+l . 

Solution 
2 

We can write ::13 as 

or 

Both fractions lead to problems: either the numerator does not con­
verge or else the denominator converges to O. It turns out that :2:13 

does not converge and the symbol lim ::13 is undefined, at least for 
the present; see Example 6. The reader may have the urge to use the 
symbol +00 here. Our next task is to make such use of the symbol 
t 00 Icgiti mat<~. For a s(~qucnc(~ (8,,), lim 8" = +00 will signify that th(~ 
terms "" arc eventually ;dllarge. Ilcn~ is the concise definition. I I 

, 
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(1.8 Definition. 
l'Of a sequence (sn), we write limsn = +00 provided 

for each M > 0 there is a number N such that 
n > N implies Sn > M. 

I n this case we say that the sequence diverges to +00. 

Similarly, we write lim Sn = -00 provided 

for each M < 0 there is a number N such that 
n > N implies Sn < M. 

Henceforth we will say that (sn) has a limit or that the limit exists 
provided (sn) converges or diverges to +00 or diverges to -00. In 
I he definition of lim Sn = +00 the challenging values of M are large 
positive numbers: the larger M is the larger N will need to be. In the 
definition of lim Sn = -00 the challenging values of M are "large" 
rlegative numbers like -10,000,000,000. 

Example 4 
We have lim n2 = +00, lim ( -n) = -00, lim 2n = +00 and 
Ii m(.Jn + 7) = +00. Of course, many sequences do not have limits 
foo or -00 even if they are unbounded. For example, the sequences 
d(~fined by Sn = (-1 tn and tn = n COS2(~) are unbounded, but they 
do not diverge to +00 or -00, so the expressions lim[( -1 tn] and 
Ii m[ n cos2Cn] are meaningless. Note that tn = n when n is even 
.rnd tn = 0 when n is odd. 

The strategy for proofs involving infinite limits is very much the 
sa me as for finite limits. We give some examples. 

Example 5 
Civc a formal proof that lim(.Jn + 7) = +00. 

I Jiscussion. We must consider an arbitrary M > 0 and show that 
Iltnc (~xists N [which will depend on M] such that 

n > N implies In + 7 > M. 
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1b see how big N must be we "solve" for n in the inequality .JYt + 7 > 
M. This inequality holds provided.JYt > M - 7 or n > (M - 7)2. Thus 
we will take N = (M - 7i. 

Formal Proof 
Let M > 0 and let N = (M - 7)2. Then n > N implies n > (M - 7i, 
hence.JYt > M-7, hence .JYt+7 > M. This shows thatlim( -JYi+7) = 
+00. _ 

Example 6 
Give a formal proof that lim ::13 = +00; see Example 3. 

Discussion. Consider M > o. We need to determine how large 
n must be to guarantee that nn

2:13 > M. The idea is to bound the 

fraction ~;:13 below by some multiple of ~ = n; compare Example 3 

of §8. Since n2 + 3 > n2 and n + 1 :s 2n, we have :2:13 > ~~ = ~n, 
and it suffices to arrange for ~n > M. 

Formal Proof 
Let M > 0 and let N = 2M. Then n > N implies ~n > M, which 
implies 

n2 + 3 n2 1 
> - = -n > M. 

n + 1 2n 2 

Hence lim n
2
+3 = +00 

n+1 . -
The limit in Example 6 would be easier to handle if we could 

apply a limit theorem. But the limit theorems 9.2-9.6 do not apply. 
WARNING_ Do not attempt to apply the limit theorems 9.2-9.6 to 

infinite limits. Use Theorem 9.9 or 9.10 below or Exercises 9.9-9.12. 

9.9 Theorem. 
Let (sn) and (tn) be sequences such that lim Sn = +00 and lim tn > 0 
(lim tn can be finite or +00)' Then lim sntn = +00. 

Discussion. Let M > O. We need to show that s"t" > M for large 
n. We have lim 811 = +00, and we need to b(~ sure that the II/'S ,Ire 
bounded away from () for large n. We will choose ;J rcal lllltlllH',r m 
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so that 0 < m < lim tn and observe that tn > m for large n. Then all 
we need is Sn > ~ for large n. 

Proof 
Let M > O. Select a real number m so that 0 < m < lim tn. Whether 
lim tn = +00 or not, it is clear that there exists N] such that 

n > N] implies tn > m; 

see Exercise 8.10. Since lim Sn = +00, there exists N2 so that 

M 
n > N2 implies Sn > -. 

m 

Put N = max{N], N 2 }. Then n > N implies sntn > !:i . m = M. • 
m 

Example 7 
Use Theorem 9.9 to prove that lim ::} = +00; see Example 6. 

Solution 
n2 +3 _ n+~ _ n _ 3 _] 

We observe that -+] - -] -, - "ntn where Sn - n + - and tn - -] -, . It n +~ n +~ 

is easy to show that lim Sn ~ +00 and lim tn = 1. So by Theorem "9.9, 
we have lim sntn = +00. 0 

Here is another useful theorem. 

9.10 Theorem. 
For a sequence (sn) of positive real numbers, we have lim Sn = +00 if 
and only iflim( t) = O. 

Proof 
Let (sn) be a sequence of positive real numbers. We have to show 

lim Sn = +00 implies lim (sIn) = 0 (1) 

and 

lim (~ ) = 0 implies lim Sn = +00. 
Sn 

(2) 

In [his case [he proofs will appear very similar, but the thought 
processes will he 'Ill if(: dif'f(:renl. 
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To prove (1), suppose that lim Sn = +00. Let E > 0 and let M = ~. 
Since lim Sn = +00, there exists N such that n > N implies Sn > M = 
1. Therefore n > N implies E > 1.. > 0, so 
E ~ 

n > N implies 1 SIn - 01 < E. 

That is, lime t) = O. This proves (1). 
To prove (2), we abandon the notation of the last paragraph and 

begin anew. Suppose thatlim(t) = O. LetM > 0 and letE = it. Then 

E > 0, so there exists N such that n > N implies 11.. - 01 < E = -MI. 
Sn 

Since Sn > 0, we can write 

n > N implies 
1 1 

0< - < 
Sn M 

and hence 

n > N implies M < Sn. 

That is, lim Sn = +00 and (2) holds. • 

Exercises 
9.1. Using the limit theorems 9.2-9.6 and 9.7, prove the following. 

Justify all steps. 
(a) lim n~1 = 1 

(c) lim 17n5+73n4 -18n'+3 = lZ 
23n'+!3n1 23 

(b) lim 3n+~ = 1. 
6n-j 2 

9.2. Suppose that limxn = 3, limYn = 7 and that all Yn are nonzero. 
Determine the following limits: 
(a) lim(xn + Yn) (b) 1· 3Yn-xn 

1m 2 
Yn 

• 9.3. Suppose that lim an = a, lim bn = b, and that Sn 

lim Sn = a~,:4: carefully, using the limit theorems. 

9.4. Let 81 = 1 and for n ::: 1 let Sn+l =~. 

(a) List the first four terms of (sn). 

(b) It turns out that (sn) converges. Assume this fact and prove 
that the limit is ~(l + y'S). 



Exercises 53 

t'+2 
'9.5. Let t1 = 1 and tn+1 = ~ for n :::: 1. Assume that (tn) converges 

and find the limit. 

9.6. Let Xl = 1 and Xn+1 = 3x~ for n :::: l. 

(a) Show that if a = lim Xn, then a = ~ or a = o. 

(b) Does limxn exist? Explain. 

(c) Discuss the apparent contradiction between parts (a) and (b). 

9.7. Complete the proof of 9.7(c), i.e., give the standard argument 
needed to show that lim Sn = o. 

9.B. Give the following when they exist. Otherwise assert "NOT EXIST." 
(a) lim n3 (b) lim( -n3) 

(c) lime -n)'" (d) lim(l.Ol)n 
(e) lim nn 

• 9.9. Suppose that there exists No such that Sn :::: tn for all n > No. 

(a) Prove that if lim Sn = +00, then lim tn = +00. 

(b) Prove that iflim tn = -00, then lim Sn = -00. 

(c) Prove that if lim Sn and lim tn exist, then lim Sn :::: lim tn. 

9.10. (a) Show that iflim Sn = +00 and k > 0, then lim(ksn ) = +00. 

(b) Show that lim Sn = +00 if and only iflim( -sn) = -00. 

(c) Show that iflimsn = +00 and k < 0, then lim(ksn) = -00. 

9.11. (a) Show that iflimsn = +00 and inf{tn : n E N} > -00, then 
lim(sn + tn) = +00. 

(b) Show thatiflimsn = +00 and lim tn > -00, then lim(sn+tn) = 
+00. 

(c) Show that if lim Sn = +00 and if (tn) is a bounded sequence, 
then lim(sn + tn ) = +00. 

• 9.12. Assume all Sn f:. 0 and that the limit L = lim I Sn+1 I exists. 
Sn 

(a) Show that if L < I, then Hmsn = o. Hint: Select a so that 
L < a < 1 and obtain N so that ISn+11 < alsn I for n :::: N. Then 
show that ISnl < an-NlsNI for n > N. 

(b) Show that if L > I, then lim ISnl = +00. Hint: Apply (a) to the 
sequence tn = ILl; see Theorem 9.lD. 
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9.13. Show that 

{" 
if lal < 1 

lim an = 1 if a=l 
n~CXl +00 if a > 1 

does not exist if a::: -l. 

9.14. Let p > O. Use Exercise 9.12 to show 

a" { 
0 if lal ::: 1 

lim - = +00 if a > 1 
n~CXl nP 

does not exist if a < -l. 

9.15. Show that limn ..... oo ~ = 0 for all a E lit n. 

9.16. Use Theorems 9.9, 9.10 or Exercises 9.9-9.15 to prove the following: 

(a) lim n4+Sn = +00 
n'+9 

(b) lim[~ + (-It] = +00 
3n 3 11 

(c) lim[;;< - nd = +00 

.9.17. Give a formal proof that lim n2 = +00 using only Definition 9.8. 
2 1 n+i 

9.18. (a) Verify 1 + a + a + ... + an = ~~a for a#- 1. 

(b) Find limn~oo(l + a + a2 + ... + an) for lal < l. 

(c) Calculate limn ..... oo(l + ~ + ~ + -b + ... +:in). 
(d) What is limHoo(l + a + a2 + ... + an) for a :::: I? 

§lO Monotone Sequences and Cauchy 
Sequences 

In this section we obtain two theorems [Theorems 10.2 and 10.11] 
that will allow us to conclude that certain sequences converge with­
out knowing the limit in advance. These theorems are important 
because in practice the limits are not usually known in advance. 

10.1 Definition. 
A sequence C sn) of real numbers is called a nondecreasing sequence 
if Sn ::: Sn+l for all n, and C sn) is called a nonincreasing sequence 
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if Sn ::::: Sn+1 for all n. Note that if (sn) is nondecreasing, then 
Sn :::: Sm whenever n < m. A sequence that is nondecreasing or 
nonincreasing will be called a monotone sequence or a monotonic 
sequence. 

Example 1 
The sequences defined by an = 1 - ~, bn = n3 and Cn = (1 + ~t 
are nondecreasing sequences, although this is not obvious for the se­
quence (cn ). The sequence dn = ';2 is nonincreasing. The sequences 

Sn = (-It, tn = cose;), Un = (-ltn and Vn = (-~)" are not mono­
tonic sequences. Also Xn = nlln is not monotonic, as can be seen by 
examining the first four values; see Example l(d) in §7. 

Of the sequences above, (an), (cn), (dn), (sn), (tn), (vn) and (xn) 
are bounded sequences. The remaining sequences, (bn) and (un), 
are unbounded sequences. 

10.2 Theorem. 
All bounded monotone sequences converge. 

Proof 
Let (sn) be a bounded nondecreasing sequence. Let 8 denote the set 
{sn : n E N}, and let u = sup 8. Since 8 is bounded, u represents a 
real number. We show that lim Sn = u. Let E > O. Since u - E is not 
an upper bound for 8, there exists N such that SN > u - E. Since (sn) 
is nondecreasing, we have SN :::: Sn for all n ::::: N. Of course, Sn :::: u 
for all n, so n > N implies u - E < Sn :::: u, which implies ISn - ul < E. 

This shows that lim Sn = u. 
The proof for bounded nonincreasing sequences is left to 

Exercise 10.2. • 

Note that the Completeness Axiom 4.4 is a vital ingredient in the 
proof of Theorem 10.2. 

10.3 Discussion of Decimals. 
We have not given much attention to the notion that real numbers 
are simply decimal expansions. This notion is substantially correct, 
but there are subtleties to be faced. For example, different decimal ex­
pansions can represent the same real number. The somewhat more 
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abstract developments of the set lR of real numbers discussed in §6 
turn out to be more satisfactory. 

We restrict our attention to nonnegative decimal expansions and 
nonnegative real numbers. From our point of view, every nonneg­
ative decimal expansion is shorthand for the limit of a bounded 
nondecreasing sequence of real numbers. Suppose we are given a 
decimal expansion k.d1d2d3d4 •• . where k is a nonnegative integer 
and each dj belongs to {O, I, 2, 3, 4, 5, 6, 7, 8, 9}. Let 

d1 d2 dn 
S =k+-+-+···+-. n 10 102 IOn (1) 

Then (sn) is a nondecreasing sequence of real numbers, and (sn) 
is bounded [by k + I, in fact]. So by Theorem 10.2, (sn) converges 
to a real number that we traditionally write as k.d1 d2d3d4 •••• For 
example, 3.3333 ... represents 

lim 3+-+-+···+- . ( 
3 3 3 ) 

n---+oo 10 102 IOn 

To calculate this limit, we borrow the following fact about geometric 
series from Example 1 in §14: 

1· 2 n a 
1m a(l + r + r + ... + r ) = --

n---+oo 1 - r 
for Irl < 1; (2) 

see also Exercise 9.18. In our case, a = 3 and r = fa, so 3.3333··· 
represents 1~-'- = ~, as expected. Similarly, 0.9999· .. represents 

10 

. (9 9 9) fa J~~ 10 + 102 + ... + IOn = 1 - fa = 1. 

Thus 0.9999· .. and 1.0000· .. are different decimal expansions that 
represent the same real number! 

The converse of the preceding discussion also holds. That is, 
every nonnegative real number x has at least one decimal expansion. 
This will be proved, along with some related results, in the optional 
§16. 

Unbounded monotone sequences also have limits. 
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10.4 Theorem. 
(i) If (sn) is an unbounded nondecreasing sequence, then lim Sn = 

+00. 

(ii) If (sn) is an unbounded nonincreasing sequence, then lim Sn = 
-00. 

Proof 
(i) Let (sn) be an unbounded nondecreasing sequence. Let M > O. 
Since the set {sn : n E N} is unbounded and it is bounded below by 
51, it must be unbounded above. Hence for some N in N we have 
5x > M. Clearly n > N implies Sn ::::: SN > M, so lim Sn = +00. 

(ii) The proof is similar and is left to Exercise 10.5. • 

10.5 Corollary. 
If (sn) is a monotone sequence, then the sequence either converges, di­
verges to +00, or diverges to -00. Thus lim Sn is always meaningful for 
monotone sequences. 

Proof 
Apply Theorems 10.2 and 10.4. • 

Let (Sn) be a bounded sequence in lR; it mayor may not converge. 
It is apparent from the definition of limit in 7.1 that the limiting 
behavior of (sn) depends only on sets of the form {sn : n > N}. For 
example, if lim Sn exists, clearly it must lie in the interval [UN, VN 1 
where 

UN = inf{sn : n > N} and VN = sup{sn : n > N}; 

see Exercise 8.9. As N increases, the sets {sn : n > N} get smaller, 
so we have 
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10.6 Definition. 
Let (sn) be a sequence in R We define 

lim sup Sn = lim sup {sn : n > N} 
N---+oo 

(1 ) 

and 

lim inf Sn = lim inf {sn : n > N}. 
N---+oo 

(2) 

Note that in this definition we do not restrict (sn) to be bounded. 
However, we adopt the following conventions. If (sn) is not bounded 
above, sup{sn : n > N} = +00 for all N and we decree limsupsn = 
+00. Likewise, if (sn) is not bounded below, inf{sn : n > N} = -00 

for all N and we decree lim inf Sn = -00. 

We emphasize that lim sup Sn need not equal sup{sn : n E N}, but 
thatlimsupsn:::: sup{sn: n E N}.Someofthevaluessnmaybemuch 
larger than lim sup Sn; lim sup Sn is the largest value that infinitely 
many sn's can get close to. Similar remarks apply to lim inf Sn. These 
remarks will be clarified in Theorem 11.7 and §12, where we will 
give a thorough treatment of lim inf's and lim sup's. For now, we 
need a theorem that shows (sn) has a limit if and only iflim inf Sn = 
limsupsn. 

10.7 Theorem. 
Let (sn) be a sequence in R 

(i) If limsn is defined [as a real number; +00 or -ooJ then 
lim inf Sn = lim Sn = lim sup Sn. 

(ii) If lim inf Sn = lim sup Sn, then lim Sn is defined and lim Sn = 
lim inf Sn = lim sup Sn. 

Proof 
We use the notation UN = inf{sn : n > N}, VN = sup{sn : n > N}, 
U = lim UN = lim inf Sn and v = lim VN = lim supsn. 

(i) Suppose lim Sn = +00. Let M be a positive real number. Then 
there is a natural number N so that 

n > N implies Sn > M. 

Then UN = inf{sn : n > N} :::: M. It follows that m > N 
implies Urn :::: M. In other words, the sequence (UN) satisfies 
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the condition defining lim UN = +00, i.e., lim inf Sn = +00. 

Likewise limsupsn = +00 . 

The case limsn = -00 is handled in a similar manner. 
Now suppose that lim Sn = S where S is a real number. 

Consider E > o. There exists a natural number N such that 
ISn - sl < E for n > N. Thus Sn < S + E for n > N, so 

VN = sup{sn: n > N} ~ S+E. 

Also, m > N implies Vrn ~ S+E, so lim sup Sn = lim Vrn ~ S+E. 

Since lim sup Sn ~ S + E for all E > 0, no matter how small, 
we conclude that lim sup Sn ~ S = lim sn. A similar argument 
shows that limsn ~ liminfsn. Since liminfsn ~ limsupsn, 
we infer that all three numbers are equal: 

lim inf Sn = lim Sn = lim sup Sn . 

(ii) Iflim inf Sn = lim sup Sn = +00 it is easy to show that lim sn = 
+00. And if lim inf Sn = lim sup sn = -00 it is easy to show 
that limsn = -00. We leave these two special cases to the 
reader. 

Suppose, finally, that lim inf Sn = lim sup Sn = S where S 

is a real number. We need to prove that lim Sn = s. Let E > O. 
Since S = lim VN there exists a natural number No such that 

Is - sup{sn : n > No}1 < E. 

Thus sup{sn : n > No} < S + E, so 

Sn < S + E for all n > No. 

Similarly, since S = lim UN there exists NI such that 

Is - inf{sn : n > NIl I < E, 

hence inf{sn : n > NI} > S - E, hence 

Sn > S - E for all n > NI. 

From (1) and (2) we conclude 

S - E < Sn < S + E for n > max{No, NIl, 

equivalently 

ISn - sl < E for n > max{No, NIl. 

(1) 

(2) 
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This proves that lim sn = S as desired. • 
If (sn) converges, then lim inf Sn = lim sup Sn by the theorem 

just proved, so for large N the numbers sup{sn : n > N} and inf{sn : 
n > N} must be close together. This implies that all the numbers in 
the set {sn : n > N} must be close to each other. This leads us to a 
concept of great theoretical importance that will be used throughout 
the book. 

10.8 Definition. 
A sequence (sn) of real numbers is called a Cauchy sequence if 

for each E > 0 there exists a number N such that 

m, n > N implies ISn - sml < E. (1) 

Compare this definition with Definition 7.1. 

10.9 Lemma. 
Convergent sequences are Cauchy sequences. 

Proof 
Suppose that lim Sn = s. The idea is that, since the terms Sn are close 
to S for large n, they also must be close to each other; indeed 

ISn - sml = ISn - S + S - sml :::: ISn - sl + Is - sml· 

Th be precise, let E > O. Then there exists N such that 

n > N implies 

Clearly we may also write 

m > N implies 

so 

E 
ISn - sl < -. 

2 

E 

ISm - sl < 2' 

m, n > N implies ISn - sml :::: ISn - sl + Is - sml < 

Thus (sn) is a Cauchy sequence. 

10.10 Lemma. 
Cauchy sequences are bounded. 

E E - + - = E. 
2 2 

• 
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Proof 
The proofis similar to that of Theorem 9.1. Applying Definition 10.8 
",\'ith E = 1 we obtain N in N so that 

m, n > N implies /sn - sm/ < l. 

In particular, /sn - SN+l/ < 1 for n > N, so /sn/ < /SN+l/ + 1 for 
rl > N. If M = max{/sN+l/ + I, /SI/, /S2/, ... , /SN/}' then /sn/ ::s M for 
all n EN. • 

The importance of the next theorem is the fonowing conse­
quence: 1b verify that a sequence converges it suffices to check that 
it is a Cauchy sequence, a property that does not involve the limit 
itself. 

10.11 Theorem. 
A sequence is a convergent sequence if and only if it is a Cauchy sequence. 

Proof 
The expression "if and only if' indicates that we have two assertions 
to verify: (i) convergent sequences are Cauchy sequences, and (ii) 
Cauchy sequences are convergent sequences. We already verified 
(i) in Lemma 10.9. 1b check (ii), consider a Cauchy sequence (sn) 
and note that (sn) is bounded by Lemma lD.lD. By Theorem 10.7 we 
need only show 

liminfsn = limsupsn. (1) 

Let E > O. Since (sn) is a Cauchy sequence, there exists N so that 

m, n > N implies /sn - sm/ < E. 

In particular, Sn < Sm + E for an m, n > N. This shows that Sm + E is 
an upper bound for {sn : n > N}, so VN = sup{sn : n > N} ::s Sm + E 

for m > N. This, in turn, shows that VN - E is a lower bound for 
{sm : m > N}, so VN - E ::s inf{sm : m > N} = UN. Thus 

lim sup Sn ::s VN ::s UN + E ::s lim inf Sn + E. 

Since this holds for an E > 0, we have lim sup Sn ::s lim inf Sn. The 
opposite inequality always holds, so we have established (1). • 
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The proof of Theorem 10.11 uses Theorem 10.7, and Theo­
rem 10.7 relies implicitly on the Completeness Axiom 4.4, since 
without the completeness axiom it is not clear that lim inf Sn and 
lim sup Sn are meaningful. The completeness axiom assures us that 
the expressions sup{sn : n > N} and inf{sn : n > N} in Defini­
tion 10.6 are meaningful, and Theorem 10.2 [which itself relies on 
the completeness axiom] assures us that the limits in Definition 10.6 
also are meaningful. 

Exercises on lim sup's and lim inf's appear in §§11 and 12. 

Exercises 
10.1. Which of the following sequences are nondecreasing? nonincreas­

ing? bounded? 

(a) ~ 
(c) n5 

(e) (-2r 

(b) 
(d) 
(f) 

( -1)" 
----;:J2 

sincn 
n 
3n 

10.2. Prove Theorem 10.2 for bounded nonincreasing sequences. 

10.3. For a decimal expansion k.d1d2d3d4 ···, let (sn) be defined as 
in 10.3. Provethatsn < k+1forallnEN.Hint:fri+l~2+···+I~n = 
1 - 16n for all n. 

10.4. Discuss why Theorems 10.2 and 10.11 would fail if we restricted 
our world of numbers to the set IQ of rational numbers. 

10.5. Prove Theorem lO.4(ii). 

,,10.6. (a) Let (sn) be a sequence such that 

iSn+l - sni < Z-n for all n E N. 

Prove that (sn) is a Cauchy sequence and hence a convergent 
sequence. 

(b) Is the result in (a) true if we only assume that iSn+l - Sn i < ~ 
for all n E N? 

.10.7. Let S be a bounded nonempty subset oflR and suppose sup S ¢ S. 
Prove that there is a nondecreasing sequence (s,,) of points in S 
such that lim Sn = sup S. 
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10.8. Let (8n ) be a nondecreasing sequence of positive numbers and 
define an = ~ (81 + 82 + ... + 8n). Prove that (un) is a nondecreasing 
sequence. 

10.9. Let 81 = 1 and 8n+l = (n~1 )8~ for n ::::: l. 

Cal Find 82,83 and 84' 

(b) Show that lim 8 n exists. 

Cc) Prove that lim8n = O. 

·10.10. Let 81 = 1 and 8n+l = ~(8n + 1) for n ::::: l. 

Cal Find 82,83 and 84. 

(b) Use induction to show that Sn > ~ for all n. 

Cc) Show that (8n ) is a nonincreasing sequence. 

Cd) Show that lim8n exists and find limsn . 

10.11. Let tl = 1 and tn+l = [1 - 4~d . tn for n ::::: l. 

Cal Show that lim tn exists. 

(b) What do you think lim tn is? 

'10.12. Let tl = 1 and tn+l = [l - (n~I)2 J . tn for n ::::: 1. 

§ll 

C a) Show that lim tn exists. 

(b) What do you think lim tn is? 

Ce) Use induction to show that tn = n2~1 , 

Cd) Repeat part (b). 

Subsequences 

11.1 Definition. 
Suppose that (Sn)nEN is a sequence. A subsequence of this sequence 
is a sequence of the form (tk)kEN where for each k there is a positive 
integer nk such that 

(1) 
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and 

(2) 

Thus (tk) is just a selection of some [possibly all] of the s,/s taken in 
order. 

Here are some alternative ways to approach this concept. Note 
that (1) defines an infinite subset ofN, namely {nl' n2, n3," .}. Con­
versely, every infinite subset of N can be described by (1). Thus a 
subsequence of (Sll) is a sequence obtained by selecting, in order, an 
infinite subset of the terms. 

For a more concise definition, recall that we can view the se­
quence (Srl)IlEN as a function s with domain N; see §7. for the subset 
{nl' n2, n3, ... j, there is a natural function a [lower case Greek sigma] 
given by a(k) = nk for kEN. The function a "selects" an infinite 
subset of N, in order. The subsequence of S corresponding to a is 
simply the composite function t = so a. That is, 

tk = t(k) = so a(k) = s(a(k)) = sen,,) = SIlk for kEN. (3) 

Thus a sequence t is a subsequence of a sequence s if and only if 
t = so a for some increasing function a mapping N into N. We will 
usually suppress the notation a and often suppress the notation t 

also. Thus the phrase "a subsequence (Srlk) of (Sri)" will refer to the 
subsequence defined by (1) and (2) or by (3), depending upon your 
point of view. 

Example 1 
Let (sn) be the sequence defined by Sri = n2( -1)". The positive terms 
of this sequence comprise a subsequence. In this case, the sequence 
(s,,) is 

(-1,4, -9, 16, -25, 36, -49,64, ... ) 

and the subsequence is 

(4,16,36,64,100,144, ... ). 

More precisely, the subsequence is (S'lk)kEN where n" = 2k so that 
Silk = (2ki ( -1 i k = 4k2 . The selection function a is given by 
a(k) = 2k. 
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Example 2 
Consider the sequence an = sinC;) and its subsequence (ank ) of 
nonnegative terms. The sequence (an)nEN is 

and the desired subsequence is 

1 1 1 1 
("2 J3, "2J3, 0, 0, "2J3, "2J3, 0, 0, ... ). 

It is evident that n] = I, n2 = 2, n3 = 3, n4 = 6, ns = 7, n6 = 8, 
n7 = 9, ns = 12, ng = 13, etc. We could obtain a general formula for 
nk, but the project does not seem worth the effort. 

Example 3 
It can be shown that the set Q of rational numbers can be listed 
as a sequence (fn), though it is tedious to specify an exact formula. 
Figure 1l.1 suggests such a listing [with repetitions] where f] = 0, 
f2 = I, f3 = ~, f4 = -~, fs = -I, f6 = -2, f7 = -I, etc. Readers 
familiar with some set theory will recognize this assertion as the 
fact that I/Q is countable." This sequence has an amazing property: 
given any real number a there exists a subsequence (f nk) of (f n) that 
converges to a, i.e., limk---+oo fnk = a. Th see this, we will show how 
to define or construct step-by-step a subsequence (fnk ) that satisfies 

1 
Ir - al < - for kEN. nk k (1 ) 

FIGURE 11.1 



66 2. Sequences 

Specifically, we will assume nl, n2, ... , nk have been selected satis­
fying (1) and show how to select nk+l. It is fairly evident that this 
will give us an infinite sequence (n")kEN and hence a subsequence 
(rnk ) of (rn) satisfying (1). Th make this fully rigorous would require a 
technical lemma concerning step-by-step constructions whose proof 
depends in the end on Peano's axiom N5. For this reason, a construc­
tion of this sort is called an "inductive definition" or "definition by 
induction. " 

We now indicate the construction discussed above. Select ni so 
that Irnl -al < 1; this is possible by the Denseness oflQ! 4.7. Suppose 
that nl, n2, ... , nk have been selected so that 

(2) 

and 

for j=1,2, ... ,k. (3) 

Since there are infinitely many rational numbers in the interval 
(a - "!I' a + k!l) by Exercise 4.11, there must exist an nk+1 > nk 

such that rnk+l belongs to this interval. Then Irnk+l - al < k!1 and 
hence (2) and (3) hold for k + 1 in place ofk. The procedure defines 
(nk)kEN by induction. Since (3) holds, (1) holds and we conclude that 
limk~oo rnk = a. 

Example 4 
Suppose that (sn) is a sequence of positive numbers such that 
inf{sn : n E N} = O. The sequence (sn) need not converge or 
even be bounded, but it has a subsequence that converges mono­
tonically to O. We will again give an inductive construction. Since 
inf{sn : n E N} = 0, there exists ni E N such that snl < l. Suppose 
that nl, n2, ... , n" have been selected so that 

(1 ) 

and 

SnJ+l < min{sn}'j~l} for j=1,2, ... ,k-1. (2) 

Note that we are requiring Sl1}Tl < sn] so that our subsequence will 
be monotonic, and we are requiring sn}+l < J~I to guarantee that 
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it will converge to O. Since min{sn : 1 :s n :s nk} > 0, it follows 
that inf{sn : n > nkl = O. Thus there exists nk+l > nk such that 
snk+l < min {snk' k! 1 } . Hence (1) and (2) hold for k + 1 in place of 
k, and the construction continues by induction. As noted above, (2) 
shows that (snk) converges monotonically to O. 

The next theorem is almost obvious. 

11.2 Theorem. 
If the sequence (sn) converges, then every subsequence converges to the 
same limit. 

proof 
Let (snk) denote a subsequence of (sn). Note that nk ::: k for all k. 
This is easy to prove by induction; in fact, nl ::: 1 and nk ::: k implies 
nk+l > nk ::: k and hence nk+l ::: k + 1. 

Let s = lim Sn and let E > O. There exists N so that n > N implies 
ISn - sl < E. Now k > N implies nk > N, which implies ISnk - sl < E. 

Thus 

lim snk = S. 
k ---H X) • 

Our immediate goal is to prove the Bolzano-Weierstrass the­
orem which asserts that every bounded sequence has a conver­
gent subsequence. First we prove a theorem about monotonic 
subsequences. 

11.3 Theorem. 
Every sequence (sn) has a monotonic subsequence. 

Proof 
Let's say that the n-th term is dominant if it is greater than every 
term which follows it: 

sm < Sn for all m > n. (1) 

Case 1. Suppose that there are infinitely many dominant terms, 
and let (s nk ) be any subsequence consisting solely of dominant terms. 
Then snk+l < snk for all k by (1), so (snk) is a decreasing sequence. 

Case 2. Suppose that there are only finitely many dominant 
terms. Select nl so that sn, is beyond all the dominant terms of the 
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sequence. Then 

given N ~ nl there exists m > N such that Sm ~ SN. (2) 

Applying (2) with N = nl we select n2 > nl such that snz > sn" 
Suppose that nl, n2, ... , nk have been selected so that 

nl < n2 < ... < nk (3) 

and 

(4) 

Applying (2) with N = nk we select nk+ l > nk such that snk+1 ~ snk ' 
Then (3) and (4) hold with k+ 1 in place ofk, the procedure continues 
by induction, and we obtain a nondecreasing subsequence (snk) ' • 

The elegant proof in Theorem 11.3 was brought to our attention 
by David M. Bloom and is based on a solution in D. J. Newman's 
beautiful book A Problem Seminar, Springer-Verlag, New York-Berlin­
Heidelberg: 1982. 

11.4 Corollary. 
Let (sn) be any sequence. There exists a monotonic subsequence whose 
limit is lim sup Sn, and there exists a monotonic subsequence whose limit 
is lim inf Sn. 

Proof 
For N in N, let VN = sup{sn : n > N} . Then VI ~ Vz ~ V3 ~ . . . and 
V = limN VN = lim sup S'1; see Definition 10.6. Our task is to show 
that there is a monotonic subsequence of (sn) that converges to u. 

If v = -00, then limsn = -00 by Theorem 10.7, the sequence (sn) 
itself converges to lim sup Sn, and so a monotonic subsequence of (sn) 
converges to lim sup Sn by Theorem 11.3. Henceforth we assume that 
vol -00. 

First look at Case 1 of the previous proof. Then snk = sup{sn : 
n ~ nkl = Vnk- I, so limk-HXJ snk = limN VN = lim SUPSn, as desired. 

Suppose now that there are only finitely many dominant terms, 
and let s mo be the last dominant term. We claim 

sup{sn : n > N} = VN = v for N > mo . (1) 

Otherwise, since (VN) is a nonincreasing sequ n e, the re is an in ­
teger N > mo so that VN+ I < UN.' 0 .'iN I I mlls t b(: higge r thatt 
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VN+l = sup{sn : n 2: N + 2}, but this implies that SN+l is dominant, 
contrary to the choice of rna. 

If infinitely many Sn equal v, simply select a subsequence of (sn) 
consisting of terms equal to v. Otherwise, there exists nl 2: rna so 
that 

Sn < v for all n 2: nl. (2) 

Select a sequence (tN) that increases to v. In fact, tN = v- ~ will do if 
v is finite, and tN = N will do if v = +00. The desired subsequence is 
obtained by induction, the first term being sn, . Note that, by (2), we 
have sn, < v. Assume that nl < nz < ... < nk have been selected 
so that 

Snl < sn2 < ... < snk < v, 

and tk < snk for k 2: 2. 

(3) 

(4) 

Using (1), we select nk+l > nk so that snk+l > snk and snk+1 > tk+l' By 
(2), we also have snk+' < v. The procedure continues by induction, 
and by (3) we obtain an increasing subsequence of(sn). Also, by (4), 
we have tk < snk < v for all k, so v = limk-HlO tk ~ limk ..... oo snk ~ v, 
and the subsequence (snk) converges to v as desired. 

The assertion about lim inf Sn has a similar proof, but it also can 
be derived from the first assertion; see Exercise 11.B. This revised 
proof is based on correspondence with Ray Hoobler, City College, 
ru~ • 

11.5 Bolzano-Weierstrass Theorem. 
Every bounded sequence has a convergent subsequence. 

Proof 
If (sn) is a bounded sequence, it has a monotonic subsequence by 

heorem 11.3. The subsequence converges by Theorem 10.2. • 

The Bolzano-Weierstrass theorem is very important and will be 
lIsed at critical points in Chapter 3. Our proof, based on Theo­
rem 11 .3, is somewhat nonstandard for reasons we now discuss. 
M ny of the notions introduced in this chapter make equally good 
1011SC in mor general settings. For example, the ideas of conver­
gont scqucnce, auc:hy sequcnc and bounded sequence all make 
Ne ilS!! for " S(~qll(!lIce ('\'11) where ench SII belongs to the plan. But 
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the idea of a monotonic sequence does not carry over. It turns out 
that the Bolzano-Weierstrass theorem also holds in the plane and 
in many other settings [see Theorem 13.5], but clearly it would no 
longer be appropriate to prove it directly from an analogue ofTheo­
rem 11.3. Since the Bolzano-Weierstrass Theorem 11 .5 generalizes to 
settings where Theorem 11.3 makes little sense, in applications we 
will emphasize 11.5 rather than 11.3. 

We need one more notion, and then we will be able to tie our 
various concepts together in Theorem 11.7. 

11.6 Definition. 
Let (sn) be a sequence in lR. A subsequential limit is any real number 
or symbol +00 or -00 that is the limit of some subsequence of (sn) . 

When a sequence has a limit s, then all subsequences have limit s, 
so {s} is the set of subsequential limits. The interesting case is when 
the original sequence does not have a limit. We return to some of 
the examples discussed after Definition 11 .1. 

Example 5 
Consider (sn) where Sn = n 2(-lt. The subsequence of even terms 
diverges to +00, and the subsequence of odd terms diverges to -00. 

All subsequences that have a limit diverge to +00 or -00, so that 
{-oo, +oo} is exactly the set of subsequential limits of (sn) . 

Example 6 
Consider the sequence an = sin(n;). This sequence takes each of 
the values ~.J3, 0 and -~.J3 an infinite number of times. The 
only convergent subsequences are constant from some term on, 
and {-~.J3, 0, ~.J3} is the set of subsequential limits of (an). If 
nk = 3k, then ank = 0 for all kEN and obviously limk---*oo ank = O. If 
nk = 6k + I, then an k = ~.J3 for all k and limk---* oo ank = ~.J3 . And if 
nk = 6k + 4, then limk---*oo ank = -~.J3. 

Example 7 
Let (rn) be a list of all rational numbers. It was shown in Example 3 
that every real number is a subsequential limit of ern ). Also, +00 
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and -00 are subsequential limits; see Exercise 11 .7. Consequently, 
IR U {-oo, +oo} is the set of subsequential limits of ern). 

Example 8 
Let bn = n[1 + (-1 Y] for n E N. Then bn = 2n for even nand bn = a 
for odd n. Thus {O,+oo} is the set of subsequential limits of (bn). 

11. 7 Theorem. 
Let (sn) be any sequence in 1R, and let S denote the set of subsequential 
limits of (sn). 

(i) S is nonempty. 
(ii) supS = limsupsn and inf S = liminf Sn. 

(iii) lim Sn exists if and only if S has exactly one element, namely 
limsn. 

Proof 
(i) is an immediate consequence of Corollary 11.4. 

Th prove (ii), consider any limit t of a subsequence (snk) of (sn). 
By Theorem 10.7 we have t = liminfsnk = limsupsnk. Since {snk : 
k > N} ~ {sn : n > N} for each N E N, we have 

lim inf Sn ::: lim inf snk = t = lim sup snk ::: lim sup Sn. 

This inequality holds for all t in S; therefore 

lim inf Sn ::: inf S ::: sup S ::: lim sup Sn. 

Corollary 11.4 shows that lim inf Sn and lim sup Sn both belong to S. 

Therefore (ii) holds. 
Assertion (iii) is simply a reformulation of Theorem 10.7. • 

Theorem 11.7 and Corollary 11.4 show that lim sup Sn is exactly 
the largest subsequential limit of (sn), and lim inf Sn is exactly the 
Hmallest subsequential limit of (sn). This makes it easy to calculate 
lim sup's and liminf's. 

We return to the examples given before Theorem 11.7. 

I·:xample 9 
If' .'l,t = n2( It, then S = {- oo, +oo} as noted in Example 5. 
'l'lwrefore lim sup sn = supS = +00 and liminfsn = inf S = -00. 
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Example 10 
Ifan = sin(n;), then S = {-~.J3, 0, ~.J3} as observed in Example 6. 
Hence lim supan = supS = ~.J3 and liminf an = inf S = -~.J3. 

Example 11 
If (r n) denotes a list of all rational numbers, then the set JR U 

{-oo, +oo} is the set of subsequential limits of (rn). Consequently 
we have lim sup rn = +00 and lim inf rn = -00. 

Example 12 
If bn = n[l + (-1 tJ, then lim sup bn = +00 and lim inf bn = 0; see 
Example 8. 

The next result shows that the set S of subsequential limits always 
contains all limits of sequences from S. Such sets are called closed sets. 
Sets of this sort will be discussed further in the optional §13. 

11.8 Theorem. 
Let S denote the set of subsequential limits of a sequence (sn} Suppose 
(tn) is a sequence in S n JR and that t = lim tn . Then t belongs to S. 

Proof 
Since a subsequence of (Sn) converges to tl, there exists ni such that 
ISnl - tIl < 1. Assume that nl, n2, ... , nk have been selected so that 

(1) 

and 

for j=l,2,,, . ,k. (2) 

Since a subsequence of (sn) converges to tk+b there exists nk+1 > nk 
such that ISnk+1 - tk+11 < k!I' Thus (1) and (2) hold for k + 1. 

For the rest of the proofwe need to consider cases. Suppose first 
that t E JR, i.e., that t is not +00 or -00. Since 

1 
ISnk - tl ~ ISnk - tkl + Itk - tl < k + Itk - tl (3) 

for all kEN, it follows easily that limk-4oo snk = t, so t belongs to 
S. [Tb check that limk-400 snk = t, consider € > O. There exists N so 
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that k > N implies Itk - tl < ~. Ifk > max{N, ~}, then t < ~ and 
Itk - tl < ~, so ISnk - tl < Eby (3).] 

Suppose next that t = +00. From (2) we have 

1 
snk > tk - k for kEN. (4) 

Since lim tk = +00 it follows easily that limk~oo snk = +00. Therefore 
t = +00 belongs to S. The case t -00 is handled in a similar 
way. • 

Exercises 
11.1 . Let an = 3 + 2( -It for n E N. 

(a) List the first eight terms of the sequence (an) . 

(b) Give a subsequence that is constant [takes a single value]. 
Specify the selection function a. 

11.2. Consider the sequences defined as follows: 

1 
an = (_I)n, bn = -, en = n2

, 
n 

dn = 6n +4. 
7n-3 

(a) For each sequence, give an example of a monotone subse-
quence. 

(b) For each sequence, give its set of subsequential limits. 

(e) For each sequence, give its lim sup and lim info 

(d) Which of the sequences converges? diverges to +oo? diverges 
to -oo? 

(e) Which of the sequences is bounded? 

11.3. Repeat Exercise 11.2 for the sequences: 

mr 3 1 n 
Sn = cos( 3'), tn = 4n + I' Un = (-2) , 

.. 11.4. Repeat Exercise 11.2 for the sequences: 

Wn = ( - 2Y, Xn = 5(-1)", 

n 1 
Vn = (-1) +-. 

n 

mr 
Zn = n cos(-). 

4 

11.5. Let (q'l) be an enumeration of all the rationals in the interval (0,1]. 
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(a) Give the set of subsequential limits for (qn). 

(b) Give the values oflimsupqn and liminf qn . 

• 11.6. Show that every subsequence of a subsequence of a given se­
quence is itself a subsequence of the given sequence. Hint: Define 
subsequences as in (3) of Definition 11.1. 

11.7. Let (rn) be an enumeration of the set Q of all rational numbers. 
Show that there exists a subsequence (rnt ) such that limk-+oo rnt = 
+00. 

-11.8. (a) Use Definition 10.6 and Exercise 5.4 to prove that lim inf Sn = 
-lim sup( -sn). 

(b) Let (tk) be a monotonic subsequence of (-sn) converging to 
lim sup( -sn). Show that (-tk) is a monotonic subsequence of 
(Sri) converging to lim inf SrI. Observe that this completes the 
proof of Corollary 11.4. 

11.9. (a) Show that the closed interval [a, b] is a closed set. 

(b) Is there a sequence (sn) such that (0,1) is its set of 
subsequential limits? 

' 11.10. Let (sn) be the sequence of numbers in Figure 11.2 listed in the 
indicated order. 

(a) Find the set S of subsequential limits of (Sri). 

(b) Determine lim sup Sri and lim inf Sri. 

/) /) 
/1/2/1/3/ 1/4 1/5 

(1/11'/1/3 1/4 1/5 

1 1/2 1/3 1/4 1/5 

1/1/2 1/3 1/4 1/5 

0: 
FIGURE 11.2 
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. \ 12 lim sup's and lim inf's 

!.ol (sn) be any sequence of real numbers, and let S be the set of 
11 hseq uentiallimits of (sn). Recall that 

lim sup Sn = lim sup {sn : n > N} = sup S (*) 
N-+oo 

Illd 

lim inf Sn = lim inf {sn : n > N} = inf S. (* *) 
N-+oo 

'l'he first equalities in (*) and (* *) are the definitions given in 10.6, 
I nd the second equalities are proved in Theorem 11.7. This section 

designed to increase the students' familiarity with these concepts. 
Most of the material is given in the exercises. We illustrate the tech­
"iques by proving some results that will be needed later in the 
"'xl. 

12.1 Theorem. 
If' (sn) converges to a positive real number S and (tn) is any sequence, 
then 

lim sup sntn = S . lim sup tn. 

I/ere we allow the conventions: s· (+00) = +00 and s . (-00) = -00 
li)r S > O. 

1'1'00£ 
W first show 

(1) 

W' have three cases. Let 13 = lim sup tn . 
Case 1. Suppose 13 is finite. 
By Corollary 11.4, there exists a subsequence (tnk) of(tn) such that 

lirnk-+oo tnk = 13· We also have limk-+oo Snk = S [by Theorem 11 .2], so 
Iimk-+oo SnJnk = sf3. Thus (SnJnk) is a subsequence of (sntn) that con­
V(, rges to sf3, and therefore sf3 .::: lim sup Sn tn. [Recall that lim sup Sn tn 
Iii the largest possible limit of a subsequence of (Sn tn).] Thus (1) holds. 
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Case 2. Suppose ~ = +00. 
There exists a subsequence (tnk) of (tn) such that limk-+oo tnk 

+00. Since limk-+oo snk = S > 0, Theorem 9.9 shows that 
limk-+oo snJnk = +00. Hence lim sup sntn = +00, so (1) clearly holds. 

Case 3. Suppose ~ = -00. 
Since S > 0, the right-hand side of (1) is equal to s· (-00) = -00. 

Hence (1) is obvious in this case. 
We have now established (1) in all cases. For the reversed in­

equality, we resort to a little trick. First note that we may ignore the 
first few terms of (sn) and assume that all Sn * O. Then we can write 
lim 1.. = 1 by Lemma 9.5. Now we apply (1) with Sn replaced by 1.. 

~ S ~ 

and tn replaced by sntn: 

1 1 
lim sup tn = lim sup( - )(sntn) 2: (-) lim sup sntn, 

Sn S 

i.e., 

lim sup sntn ~ S . lim sup tn. 

This inequality and (1) prove the theorem. • 
The next theorem will be useful in dealing with infinite series; 

see the proof of the Ratio '"lest 14.8. 

12.2 Theorem. 
Let (sn) be any sequence of nonzero real numbers. Then we have 

lim inf 1 S::1 1 ~ lim inf ISnl
1/n ~ lim sup ISnl

lin ~ lim sup 1 S::1 I· 

Proof 
The middle inequality is obvious. The first and third inequalities 
have similar proofs. We will prove the third inequality and leave the 
first inequality to Exercise 12.11. 

Let a = lim sup ISnllin and L = lim sup 1 Sn+ 1 I. We need to prove 
Sn 

that a ~ L. This is obvious if L = +00, so we assume L < +00.1b 
prove a ~ L it suffices to show 

a < L1 for any 1.\ > L. (1 ) 
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Since 

. I Sn+1 I' {I Sn+1 I } L = hmsup -- = hm sup --: n > N 
Sn N-.+oo Sn 

there exists a natural number N such that 

sup {I S::l I : n ~ N} < L1. 
Thus 

I S:: 1 I < L1 for n ~ N. 

Now for n > N we can write 

I 
Sn Il

s
n-

1
1 ISN+11 ISnl= - . - ... - ·ISNI. 

Sn-1 Sn-2 SN 

There are n - N fractions here, so applying (2) we see that 

ISnl < L~-NlsNI for n > N. 

(2) 

Since L1 and N are fixed in this argument, a = L1NIsNI is a positive 
constant and we may write 

ISnl < L~a for n > N. 

Therefore we have 

ISnl1 / n < L 1a
lln for n > N. 

Since limn-.+ oo a1/ n = 1 by Example 9.7(d), we conclude that a 
lim sup ISnl1 / n ::: L 1; see Exercise 12.1. Consequently (1) holds as 
desired. • 

12.3 Corollary. 
Iflim I S~:I I exists [and equals LJ then lim ISnl1 / n exists [and equals L]. 

Proof 
Iflim ISn+1 1= L, then all four values in Theorem 12.2 must equal L. Sn 
Hence lim ISnl1 / n = L; see Theorem 10.7. • 

Exercises 
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- 12.1. Let (sn) and (tn) be sequences and suppose that there exists 
No such that Sn :s tn for all n > No . Show that lim inf Sn :s 
lim inf tn and lim sup Sn :s lim sup tn. Hint: Use Definition 10.6 
and Exercise 9.9(c). 

12.2. Prove that lim sup ISnl = ° if and only iflim Sn = 0. 

12.3. Let (sn) and (tn) be the following sequences that repeat in cycles 
of four: 

(Sn) = (0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0, .. J 
(~)= (2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2, .. J 

Find 
(a) lim inf Sn + lim inftn, 
(e) lim inf Sn + lim sup tn, 
(e) limsupsn + lim sup tn, 
(g) lim sup(sntn) 

(b) lim inf(sn + tn), 
(d) limsup(sn + tn), 
(f) lim inf(sntn), 

-12.4. Show that lim sup( sn + tn) :s lim sup Sn + lim sup tn for bounded 
sequences (sn) and Un) . Hint: First show 

sUP{Sn + tn : n > N} :s sup{sn : n > N} + sup{tn : n > N}. 

Then apply Exercise 9.9(c). 

12.5. Use Exercises 1l.8(a) and 12.4 to prove 

lim inf (sn + tn) ::: lim inf Sn + lim inf tn 

for bounded sequences (sn) and (tn). 

12.6. Let (sn) be a bounded sequence, and let k be a nonnegative real 
number. 

(a) Prove that limsup(ksn) = k ·limsupsn. 

(b) Do the same for lim info Hint: Use Exercise 1l.8(a). 

(e) What happens in (a) and (b) ifk < O? 

12.7. Prove that iflimsup Sn = +ooandk > 0, then lim sup(ksn) = +00. 

· 12.8. Let (sn) and (tn) be bounded sequences of nonnegative numbers. 
Prove that lim sup sntn :s (lim sup sn)(1im sup tn). 

12.9. (a) Prove that iflimsn = +00 and liminftn > 0, then lims"tn = 
+00. 

(b) Prove that if lim sup Sn = +00 and lim inf tn > 0, then 
lim sup sntn = +00. 
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(c) Observe that Exercise 12.7 is the special case of (b) where 
tn = k for all n E N. 

012.10. Prove that (sn) is bounded if and only iflim sup ISn I < +00. 

12.11. Prove the first inequality in Theorem 12.2. 

012.12. Let (sn) be a sequence of nonnegative numbers, and for each n 
define an = ~(Sl + S2 + ... + sn). 

(a) Show that 

lim inf Sn ~ lim inf an ~ lim sup an ~ lim sup Sn. 

Hint: For the last inequality, show first that M > N implies 

1 
sup {an : n > M} ~ M(SI + S2 + ... + SN) + sup{sn : n > N}. 

(b) Show that if limsn exists, then liman exists and liman = 
limsn. 

12.13. Let (sn) be a bounded sequence in R Let A be the set of a E ~ 
such that {n EN: sn < a} is finite, i.e., all but finitely many sn are 
::: a. Let B be the set of b E ~ such that {n EN: sn > b} is finite. 
Prove that sup A = lim inf Sn and inf B = lim sup Sn. 

-12.14. Calculate (a) lim(n!)lIn , 

§13 * Some Thpological Concepts in 
Metric Spaces 

In this book we are restricting our attention to analysis on R Ac­
cordingly, we have taken full advantage of the order properties of~ 
and studied such important notions as lim sup's and lim inf's. In §3 
we briefly introduced a distance function on R Most of our analy­
sis could have been based on the notion of distance, in which case 
it becomes easy and natural to work in a more general setting. For 
example, analysis on the k-dimensional Euclidean spaces ~k is im­
portant, but these spaces do not have the useful natural ordering 
that IR has, unless of course k = 1. 
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13.1 Definition. 
Let S be a set, and suppose d is a function defined for all pairs (x, y) 
of elements from S satisfying 
Dl. d(x, x) = 0 for all XES and d(x, y) > 0 for distinct x, yin S. 

D2. d(x, y) = dey, x) for all x, YES. 

D3. d(x, z) :::: d(x, y) + dey, z) for all x, y, z E S. 
Such a function d is called a distance function or a metric on S. A metric 
space S is a set S together with a metric on it. Properly speaking, the 
metric space is the pair (S, d) since a set S may well have more than 
one metric on it; see Exercise 13.1. 

Example 1 
As in Definition 3.4, let dist(a, b) = la - bl for a, b E lR. Then dist 
is a metric on lR. Note that Corollary 3.6 gives D3 in this case. As 
remarked there, the inequality 

dist(a, c) :::: dist(a, b) + dist(b, c) 

is called the triangle inequality. In fact, for any metric d, property 
D3 is called the triangle inequality. 

Example 2 
The space of all k-tuples 

X=(X1,X2, ... ,Xk) where XjE]R for j=l,2, ... ,k, 

is called k-dimensional Euclidean space and written ]Rk. As noted in 
Exercise 13.1, ]Rk has several me tries on it. The most familiar metric 
is the one that gives the ordinary distance in the plane ]R2 or in 
3-space ]R3: 

[ 

k ] 112 

d(x,y) = ~(x) - Yji 

[The summation notation L is explained in 14.1.] Obviously this 
function d satisfies properties D1 and D2. The triangle inequality 
D3 is not so obvious. For a proof, see for example [33], §6.1, or [36], 
1.37. 
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13.2 Definition. 
A sequence (sn) in a metric space (S, d) converges to s in S if 
limn--+ oo d(sn, s) = O. A sequence (sn) in S is a Cauchy sequence if 
for each E > 0 there exists an N such that 

m, n > N implies d(sm, sn) < E. 

The metric space (S, d) is said to be complete if every Cauchy 
sequence in S converges to some element in S. 

Since the Completeness Axiom 4.4 deals with least upper bounds, 
the word "complete" now appears to have two meanings. However, 
these two uses of the term are very closely related and both reflect 
the property that the space is complete, i.e., has no gaps. Theo­
rem 10.11 asserts that the metric space (JR, dist) is a complete metric 
space, and the proof uses the Completeness Axiom 4.4. We could 
just as well have taken as an axiom the completeness of (JR, dist) as 
a metric space and proved the least upper bound property in 4.4 as a 
theorem. We did not do so because the concept ofleast upper bound 
in JR seems to us more fundamental than the concept of Cauchy 
sequence. 

We will prove that JRk is complete. But we have a notational 
problem, since we like subscripts for sequences and for coordinates 
of points in JRk. When there is a conflict, we will write (xCn)) for a 
sequence instead of (xn). In this case, 

In) _ (en) en) en)) .r- - Xl ,x2 , ... , xk . 

Unless otherwise specified, the metric in JRk is always as given in 
Example 2. 

13.3 Lemma. 
A sequence (xCn)) in JRk converges if and only if for each} = 1, 2, ... , k, 
the sequence (xy)) converges in lR. A sequence (xCn)) in JRk is a Cauchy 

sequence if and only if each sequence (xy)) is a Cauchy sequence in lR. 

Proof 
The proof of the first assertion is left to Exercise 13.2. For the second 
IIssertion, we first observe for x, yin JRk and} = 1,2, ... ,k, 

Ix} Yil < d(x,y) < .Jk max{lx} - Yjl :} = 1,2, ... , k}. (1) 
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Suppose (xCn)) is a Cauchy sequence in ]R.k, and consider fixedj. 
If E > 0, there exists N such that 

m, n > N implies d(xcm),xCn )) < E. 

From (1) we see that 

m, n > N implies lim) - in) I < E 
J ; , 

so (x;C
n
)) is a Cauchy sequence in R 

Now suppose each sequence (xy)) is a Cauchy sequence in R 
Let E > O. Forj = 1,2, ... , k, there exist ~ such that 

m, n > ~ implies Ixt) - xY)1 < ~. 

If N = max{NI, N 2, ••• , Nk}, then by (1) 

m, n > N implies d(xCm),xCn)) < E, 

i.e., (xCn)) is a Cauchy sequence in ]R.k. • 
13.4 Theorem. 
Euclidean k-space ]R.k is complete. 

Proof 
Consider a Cauchy sequence (xCn)) in ]R.k. By Lemma l3.3, (x;Cn

)) is a 

Cauchy sequence in]R. foreachj. Hence by Theorem 10.ll, (xy)) con­
verges to some real number Xj. By Lemma 13.3 again, the sequence 
(xCn

)) converges, in fact to x = (Xl, X2, .. . , Xk). • 

We now can prove the Bolzano-Weierstrass theorem for ]R.k; com­
pare Theorem ll.5. A set S in ]R.k is bounded if there exists M > 0 
such that 

max{lxjl:j=l,2, ... ,k}~M forall XES. 

13.5 Bolzano-Weierstrass Theorem. 
Every bounded sequence in ]R.k has a convergent subsequence. 

Proof 
Let (xCn)) be a bounded sequence in ]R.k. Then each sequence (xy)) 
is bounded in R By Theorem ll.5, we may replace (xCn)) by a sub­
sequence such that (x~n)) converges. By the same lheorem, we may 
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replace (xCn)) by a subsequence of the subsequence such that (x~n)) 
converges. Of course, (x~n)) still converges by Theorem 11.2. Repeat­
ing this argument k times, we obtain a sequence (xCn)) so that each 
sequence (xy)) converges, j = 1,2, ... , k. This sequence represents 
a subsequence of the original sequence, and it converges in ]Rk by 
Lemma 13.3. • 

13.6 Definition. 
Let (S, d) be a metric space. Let E be a subset of S. An element So E E 
is interior to E if for some r > 0 we have 

{s E S: d(s,so) < r} S; E. 

We write EO for the set of points in E that are interior to E. The set 
E is open in S if every point in E is interior to E, i.e., if E = EO. 

13.7 Discussion. 
One can show [Exercise 13.4] 

(i) S is open in S [trivial]. 
(li) The empty set 0 is open in S [trivial]. 

(iii) The union of any collection of open sets is open. 
(iv) The intersection of finitely many open sets is again an open 

set. 

Our study ofl~k and the exercises suggest that metric spaces are 
fairly general and useful objects. When one is interested in conver­
gence of certain objects [such as points or functions], there is often a 
metric that assists in the study of the convergence. But sometimes no 
metric will work and yet there is still some sort of convergence no­
lion. Frequently the appropriate vehicle is what is called a topology. 
This is a set S for which certain subsets are decreed to be open sets. 
I n general, all that is required is that the family of open sets satisfies 
(i)-(iv) above. In particular, the open sets defined by a metric form a 
topology. We will not pursue this abstract theory. However, because 
or this abstract theory, concepts that can be defined in terms of open 
/lets [see Definitions 13.8,13.11 and 22.1] are called topological, hence 
t he. title or this section. 
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13.8 Definition. 
Let (S, d) be a metric space. A subset E of S is closed if its complement 
S \ E is an open set. In other words, E is closed if E = S \ U where U 
is an open set. 

Because of (iii) in Discussion 13.7, the intersection of any collec­
tion of closed sets in closed [Exercise 13.5]. The closure E- of a set E 
is the intersection of all closed sets containing E. The boundary of E 
is the set E- \ EO; points in this set are called boundary points of E. 

1b get a feel for these notions, we state some easy facts and leave 
the proofs as exercises. 

13.9 Proposition. 
Let E be a subset of a metric space (S, d). 

( a) The set E is closed if and only if E = E- . 
(b) The set E is closed if and only if it contains the limit of every 

convergent sequence of points in E. 
(c) A n element is in E- if and only if it is the limit of some sequence 

of points in E. 
(d) A point is in the boundary of E if and only if it belongs to the 

closure of both E and its complement. 

Example 3 
In R, open intervals (a, b) are open sets. Closed intervals [a, b] are 
closed sets. The interior of [a, b] is (a, b) . The boundary of both (a, b) 
and [a, b] is the two-element set {a, bJ. 

Every open set in R is the union of a disjoint sequence of open 
intervals [Exercise 13.7]. A closed set in JR need not be the union of a 
disjoint sequence of closed intervals and points; such a set appears 
in Example 5. 

Example 4 
In Rk, open balls {x : d(x,xo) < r} are open sets, and closed balls 
{x : d(x, xo) :::: r} are closed sets. The boundary of each of these sets 
is {x : d( x, xo) = r}. In the plane JR2, the sets 



§13. • Some Thpological Concepts in Metric Spaces 85 

are open. If > is replaced by~, we obtain closed sets. Many sets are 
neither open nor closed, for example 

13.10 Theorem. 
Let (Fn) be a decreasing sequence [i.e., Fl ;2 F2 ;2 ... ] of closed bounded 
nonempty sets in ~k. Then F = n~lFn is also closed, bounded and 
nonempty. 

Proof 
Clearly F is closed and bounded. It is the nonemptiness that needs 
proving! For each n, select an element Xn in Fn. By the Bolzano­
Weierstrass theorem 13.5, a subsequence (xnm)~=l of (xn) converges 
to some element Xo in JRk. 1b show Xo E F, it suffices to show Xo E Fno 
with no fixed. If m ~ no, then nm ~ no, so xnm E Fnm S; Fno' Hence 
the sequence (Xnm)~=no consists of points in Fno and converges to Xo. 
Thusxo belongs to Fno by (b) of Proposition 13.9. • 

Example 5 
Here is a famous nonempty closed set in JR called the Cantor set. 
Pictorially, F = n~lFn where Fn are sketched in Figure 13.1. The 
Cantor set has some remarkable properties. The sum of the lengths 
of the intervals comprising Fn is (~t-l and this tends to 0 as n -+ 

00. Yet the intersection F is so large that it cannot be written as a 
sequence; in set-theoretic terms it is "uncountable." The interior of 

----~O--------------------------------------------Fl 

-----O-------------_-I-------------2----------------- F2 

3 3' 

-------------------------------------------------F3 012 I 278 
9" 9" 3' 3' 9" 9" 

-------------------------------------·-------------F4 o 1 2 1 2 7 8 1 2 19 20 7 8 25 26 1 
27 27 '9 '9 'i7 'i7 3" 3" 27 27 '9 '9 'i7 27 

FIGURE 13.1 
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F is the empty set, so F equals its boundary. For more details, see 
[36], 2.44, or [23], 6.62. 

13.11 Definition. 
Let (S, d) be a metric space. A family U of open sets is said to be an 
open cover for a set E if each point of E belongs to at least one set in 
U, i.e., 

E ~ U{U : U E U}. 

A subcover of U is any subfamily of U that also covers E. A cover 
or subcover is finite if it contains only finitely many sets; the sets 
themselves may be infinite. 

A set E is compact if every open cover of E has a finite sub cover 
ofE. 

This rather abstract definition is very important in advanced 
analysis; see, for example, [22]. In IRk, compact sets are nicely 
characterized, as follows. 

13.12 Heine-Borel Theorem. 
A subset E of IRk is compact if and only ifit is closed and bounded. 

Proof 
Suppose that E is compact. For each mEW, let Urn consist of all x in 
IRk such that 

max{lxjl :} = 1,2, ... , k} < m. 

The family U = {Urn: mEN} is an open cover of E [it covers IRk!], 
so a finite subfamily of U covers E. If Umo is the largest member of 
the subfamily, then E ~ Umo . It follows that E is bounded. 1b show 
that E is closed, consider any point Xo in IRk \ E. For mEW, let 

Vm = {x E IRk : d(x,xo) > ~}. 
Then each V m is open in IRk and V = {V m : mEN} covers E since 
U~=l V m = IRk \ {xo}. Since E can be covered by finitely many V m, for 
orne mo we have 

E ~ {x E IRk: d(x,xo) > ~o} ' 
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Thus {x E IRk : d(x, xo) < n!a} ~ IRk \ E, so that Xo is interior to IRk \ E. 

Since Xo in IRk \ E was arbitrary, IRk \ E is an open set. Hence E is a 
closed set. 

Now suppose that E is closed and bounded. Since E is bounded, 
E is a subset of some set F having the form 

F={XEIRk:lxjl:::::m for j=1,2, ... ,k}. 

As noted in Exercise 13.12, it suffices to prove thatF is compact. We 
do so in the next proposition after some preparation. • 

The set F in the last proof is a k-cell because it has the following 
form. There exist closed intervals [aI, bI], [a2, b2], ... , [ak, bk] so that 

F = {x E IRk : Xj E [aj, bj ] for j = 1,2, .. . , k}. 

The diameter of F is 

that is, 8 = sup{d(x,y) : X,y E F}. Using midpoints Cj = ~(aj + bj ) of 
[aj, bj ], we see that F is a union of 2k k-cells each having diameter %. 
If this remark is not clear, consider first the cases k = 2 and k = 3. 

13.13 Proposition. 
Every k-cell F in IRk is compact. 

Proof 
Assume F is not compact. Then there exists an open cover U ofF, no 
finite subfamily of which covers F. Let 8 denote the diameter of F . 
As noted above, F is a union of 2k k-cells having diameter %. At least 
one of these 2k k-cells, which we denote by FI, cannot be covered 
by finitely many sets from U. Likewise, FI contains a k-cell F2 of 
diameter % which cannot be covered by finitely many sets from U. 
Continuing in this fashion, we obtain a sequence (Fn) ofk-cells such 
that 

FI 2. F2 2. F3 2. ... ; (1) 

Fn has diameter 8 . 2-ni (2) 

F" cannot be covered by finitely many sets from U. (3) 
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By Theorem 13.10, the intersection n~IFn contains a pointxo. This 
point belongs to some set Uo in U. Since Uo is open, there exists r > 0 
so that 

{x E Rk : d(x,xo) < r} ~ Uo. 

lt follows that Fn ~ Uo provided 8 . Z-n < r, but this contradicts (3) 
in a dramatic way. • 

Since R = RI, the preceding results apply to R. 

Exercises 
13.1. For points x, y in IRk, let 

and 

d1(x,y) = max{lxj - Yjl : j = 1,2, ... , k} 

k 

d2(x,y) = L IXj - Yjl. 
j=l 

(a) Show that d1 and d2 are metrics for IRk. 

(b) Show that d1 and d2 are complete. 

13.2. (a) Prove (1) in Lemma 13.3. 

(b) Prove the first assertion in Lemma 13.3. 

13.3. Let B be the set of all bounded sequences x = (Xl,X2, .. • ), and 
define d(x,y) = sup{lxj - Yjl :j = 1,2, ... }. 

(a) Show that d is a metric for B. 

(b) Does d*(x,y) = L:}:l IXj - Yjl define a metric for B? 

13.4. Prove (iii) and (iv) in Discussion 13.7. 

13.5. (a) Verify one of DeMorgan's Laws for sets: 

n{S \ U : U E U} = S \ U{U : U E U}. 

(b) Show that the intersection of any collection of closed sets is 
a closed set. 

13.6. Prove Proposition 13.9. 
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13.7. Show that every open set in lR. is the disjoint union of a finite or 
infinite sequence of open intervals. 

13.8. Cal Verify the assertions in Example 3. 

(b) Verify the assertions in Example 4. 

13.9. Find the closures of the following sets: 

C a ) {~ : n E N}, 

(b) Q, the set of rational numbers, 

Cc) {r E Q : r2 < 2}. 

13.10. Show that the interior of each of the following sets is the empty 
set. 

Cal {~ : n E N}, 

(b) Q, the set of rational numbers, 

Cc) the Cantor set in Example 5. 

13.11. LetEbe a subset oflR.k. Show thatE is compact if and only if every 
sequence in E has a subsequence that converges to a point in E. 

13.12. Let (S, d) be any metric space. 

Cal Show that if E is a closed subset of a compact set F, then E 
is also compact. 

(b) Show that the finite union of compact sets in S is compact. 

13.13. Let E be a compact nonempty subset ofR Show that supE and 
inf E belong to E. 

13.14. LetEbe a compact nonempty subset oflR.k, andlet8 = sup{d(x,y): 
x,y E E}. Show that E contains points Xo, Yo such that d(xo,yo) = 8. 

13.15. Let (B, d) be as in Exercise 13.3, and let F consist of all x E B such 
that sup{lxjl : j = 1,2, ... } ~ l. 

C a) Show that F is closed and bounded. [A set F in a metric space 
(S, d) is bounded if there exist So E Sand r > 0 such that 
F ~ {s E S : des, so) ~ r}.] 

(b) Show that F is not compact. Hint: For each x in F, let u(x) = 
{y E B : d(y, x) < I}, and consider the cover U of F consisting 
of all U(x) . For each n E N, letxCn) be defined so that x~n) = -1 
and x;n) = 1 for j =f. n . Show that distinct xCn) cannot belong 
to the sam e member of U. 

• 
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§14 Series 

Our thorough treatment of sequences now allows us to quickly 
obtain the basic properties of infinite series. 

14.1 Summation Notation. 
The notation L~=m ak is shorthand for the sum am + am+i + ... + 
an. The symbol ilL" instructs us to sum and the decorations "k = 
m" and lin" tell us to sum the summands obtained by successively 
substituting m, m+ I, ... , n for k. For example, L~=2 k2~k is shorthand 
for 

1 1 1 1 1111 

22 + 2 + 32 + 3 + 42 + 4 + 52 + 5 = 6" + 12 + 20 + 30 

and L~=o 2-k is shorthand for 1 + 112 + 114 + ... + l/2n . 

The symbol L::m an is shorthand for am + am+l + am+2 + .. ', 
although we have not yet assigned meaning to such an infinite sum. 
We now do so. 

14.2 Infinite Series. 
1b assign meaning to L::m an, we consider the sequences (sn)~m 
of partial sums: 

n 

Sn = am + am+l + ... + an = L ak· 
k=m 

The infinite series L::m an is said to converge provided the sequence 
(sn) of partial sums converges to a real number S, in which case we 
define L::m an = S. Thus 

00 

Lan = S means limsn = S or 
n=m 

A series that does not converge is said to diverge. We say that L::m an 

diverges to +00 and we writeL::m an = +00 provided lim Sn = 
+00; a similar remark applies to -00. The symbol L::m an has no 
meaning unless the series converges or diverges to +00 or -00. 
Often we will be concerned with properties of infinite series but 
not their exact values or precisely where the summation begins, in 
which case we may writ L a" rather than L:; 1/1 an . 
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If the terms an of an infinite series L an are all nonnegative, 
then the partial sums (sn) form a nondecreasing sequence, so The­
orems 10.2 and 10.4 show that L an either converges or diverges 
to +00. In particular, L lanl is meaningful for any sequence (an) 
whatever. The series L an is said to converge absolutely or to be ab­
solutely convergent if L lanl converges. Absolutely convergent series 
are convergent, as we shall see in 14.7. 

Example 1 
A series of the form L~o arn for constants a and r is called ageomet­
ric series. These are the easiest series to sum. For r i I, the partial 
sums sn are given by 

n 1 _ rn+1 

Lark=a---
k=O 1 - r 

(1) 

This identity can be verified by mathematical induction or by mul­
tiplying both sides by 1 - r, in which case the right hand side equals 
a - arn+l and the left side becomes 

n n n 
(1 - r) Lark = Lark - Lark+l 

k=O k=O k=O 
= a + ar + ar2 + ... + arn 

-Car + ar2 + ... + arn + arn+l) 

= a - arn+l. 

For Irl < I, we have limn--+ oo rn+1 = 0 by Example 7(b) in §9, so from 
(1) we have limn--+oosn = l~r' This proves 

00 a 
Larn = -- if Irl < 1. 
n=O 1 - r 

(2) 

If a i 0 and Irl ::: I, then the sequence (arn) does not converge to 
0, so the series Larn diverges by Corollary 14.5 below. 

Example 2 
Formula (2) of Example 1 and the next result are very important 
1\ nd both should be used whenever possible, even though we will 
not prove (1) below until the next section. Consider a fixed positive 
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real number p. Then 

00 1 
~ - converges if and only if p > 1. 
L-nP n=I 

(1) 

In particular, for p ::: I, we can write L l/nP = +00. The exact 
value of the series for p > 1 is not easy to determine. Here are 
some remarkable formulas that can be shown by techniques [Fourier 
series or complex variables, to name two possibilities] that will not 
be covered in this text. 

~oo I rr2 
Ln=I n2 = "6 = 1.6449· .. , 
~oo I rr4 
Ln=I n4 = 90 = 1.0823···. 

(2) 

(3) 

Similar formulas hold for L:'I ~p when p is any even integer, but 
no such elegant formulas are known for p odd. In particular, no such 
formula is known for L:'I ~3 though of course this series converges 
and can be approximated as closely as desired. 

It is worth emphasizing that it is often easier to prove that a limit 
exists or that a series con verges than to determine its exact value. 
In the next section we will show without much difficulty that L ~p 
converges for all p > I, but it is a lot harder to show that the sum is 

2 • 
~ when p = 2 and no one knows exactly what the sum IS for p = 3. 

14.3 Definition. 
We say that a series L an satisfies the Cauchy criterion ifits sequence 
(sn) of partial sums is a Cauchy sequence [see Definition 10.8]: 

for each E > 0 there exists a number N such that 
m, n > N implies ISn - sml < E. 

(1) 

Nothing is lost in this definition if we impose the restriction n > m. 
Moreover, it is only a notational matter to work with m - 1 where 
m ::: n instead of m where m < n. Therefore (1) is equivalent to 

for each E > 0 there exists a number N such that 
n ~ m > N implies ISn - sm- II < E. 

(2) 
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Since Sn - Sm-l = L~=m ak, condition (2) can be rewritten 

for each E > 0 there exists a number N such that 
n 

n :::: m > N implies L ak < E. 

k=m 

(3) 

We will usually use version (3) of the Cauchy criterion. Theo­
rem 10.11 implies the following. 

14.4 Theorem. 
A series converges if and only if it satisfies the Cauchy criterion. 

14.5 Corollary. 
if a series L an converges, then lim an = o. 

Proof 
Since the series converges, (3) in Definition 14.3 holds. In particular, 
(3) in 14.3 holds for n = m; i.e., for each E > 0 there exists a number 
N such that n > N implies lanl < E. Thus lim an = o. • 

The converse of Corollary 14.5 does not hold as the example 
E lin = +00 shows. 

We next give several tests to assist us in determining whether a 
'eries converges. The first test is elementary but useful. 

14.6 Comparison 'lest. 
Let L an be a series where an :::: 0 for all n. 

(i) If L an converges and Ibn I .::: an for all n, then L bn converges. 
(ii) If Lan = +00 and bn :::: an for all n, then L bn = +00. 

I'roof 
(i) For n :::: m we have 

n n n 
Lbk .::: Llbkl.::: Lak; 
k=m k=m k=m 

the first inequality follows from the triangle inequality [Ex­
ercise 3.6(b)]. Since L an converges, it satisfies the Cauchy 
criterion 14.3(3). It follows from (1) that L bn also satisfies 
the Cauchy criterion, and hence L bn converges. 
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(il) Let (sn) and (tn) be the sequences of partial sums for Lan 
and L bn, respectively. Since bn ::: an for all n, we obviously 
have tn ::: Sn for all n. Since lim Sn = +00, we conclude that 
limtn = +00, i.e., Lbn = +00. • 

14.7 Corollary. 
Absolutely convergent series are convergent. 

Proof 
Suppose that L bn is absolutely convergent. This means that Lan 
converges where an = Ibnl for all n. Then Ibnl ~ an trivially, so L bn 
converges by 14.6(i). • 

We next state the Ratio Test which is popular because it is often 
easy to use. But it has defects: It isn't as general as the Root Test. An 
important result concerning the radius of convergence of a power 
series uses the Root Test. Finally, the Ratio Test is worthless if some of 
the an's equal o. 1b review lim sup's and lim inf's, see 10.6, 10.7, 11.7 
and §12. 

14.8 Ratio 'lest. 
A series L an of nonzero terms 

(i) converges absolutely if lim sup lan+l/anl < I, 
(il) diverges ifliminf lan+l/anl > 1. 

(iii) Otherwise liminf lan+l/anl ~ 1 ~ lim sup lan+l/anl and the 
test gives no information. 

We give the proof after the proof of the Root Test. 
Remember that if lim lan+l/anl exists, then it is equal to both 

lim sup I an+ 1/ an I and lim inf I an+ 1/ an I and hence the Ratio Test will 
give information unless, or course, the limit lim lan+ 1/ an I equals 1. 

14.9 Root 'lest. 
Let Lan be a series and leta = lim sup lani lln, The series Lan 

(i) converges absolutely if a < I, 

(ii) diverges if a > 1. 
(iii) Otherwise a = 1 and the test gives no information. 
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Proof 
(i) Suppose a < I, and select E > 0 so that a + E < 1. Then by 

Definition 10.6 there is a natural number N such that 

a - E < sup{lanl lln : n > N} < a + E. 

In particular, we have lani lln < a + E for n > N, so 

lanl < (a+Et for n > N. 

Since 0 < a + E < I, the geometric series L:::N+l(a + Ey 

converges, and the Comparison 'lest shows that the series 
L:::N+l an also converges. Then clearly L an converges; see 
Exercise 14.9. 

(ii) If a > I, then by Corollary 11.4 a subsequence of lani lln has 
limit a > 1. It follows that Ian I > 1 for infinitely many choices 
of n. In particular, the sequence (an) cannot possibly converge 
to 0, so the series L an cannot converge by Corollary 14.5. 

(iii) For each of the series L ~ and L ~2' a turns out to equal 1 
as can be seen by applying 9.7(c). Since L ~ diverges and 
L ~2 converges, the equality a = 1 does not guarantee either 
convergence or divergence of the series. • 

Proof of the Ratio 'lest 
Let a = lim sup lani lln . By Theorem 12.2 we have 

liminf I a:: 1 I :::: a:::: lim sup la::1 1. (1) 

[f lim sup I an+ 1 I an I < I, then a < 1 and the series converges by the 
Root 'lest. Iflim inf lan+ 1 I an I > I, then a > 1 and the series diverges 
by the Root 'lest. Assertion 14.8(iii) is verified by again examining 
lhe series L lin and L I/n2

• • 

Inequality (1) in the proof of the Ratio 'lest shows that the Root 
'( st is superior to the Ratio 'lest in the following sense: Whenever 
lhe Root 'lest gives no information. [i.e., a = 1] the Ratio 'lest will 
liurely also give no information. On the other hand, Example 8 be­
low gives a series for which the Ratio Test gives no information but 
which converges by the Root lest. Nevertheless, the tests usually fail 
together as the next remark shows. 
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14.10 Remark. 
If the terms an are nonzero and if lim lan+l Ian I = 1, then a = 
lim sup lanl 1/ n = 1 by Corollary 12.3, so neither the Ratio Thst nor the 
Root Thst gives information concerning the convergence of Lan. 

We have three tests for convergence of a series [Comparison, 
Ratio, Root] and we will obtain two more in the next section. There 
is no clearcut strategy advising us which test to try first. However, if 
the form of a given series L an does not suggest a particular strategy, 
and if the ratios an+ 11 an are easy to calculate, one may as well try 
the Ratio Thst first. 

Example 3 
Consider the series 

~ ( -~) n = ~ _ 2~ + :1 - 2:3 + .... (1) 

This is a geometric series and has the form L~o arn if we write 
it as (l/9)L~o(-1/3t. Here a = 1/9 and r = -1/3, so by (2) of 
Example 1 the sum is (1/9)/[1- (-1/3)] = 1/12. 

The series (1) can also be shown to converge by the Comparison 
Thst, since L 1/3n converges by the Ratio Thst or by the Root Thst. In 
fact, if an = (-1/3t, then lim lan+1lanl = limsuplani lln = 1/3. Of 
course, none of these tests will give us the exact value of the series 
(1). 

Example 4 
Consider the series 

n 
If an = -2--' then 

n +3 

n+l -----.--
(n+l)2+3 n 

(1) 

n+l n2 +3 
-- . --::-----

n2 + 2n + 4' n 

so lim lan+ 11 an I = l. As noted in 14.10, neither the Ratio Thst nor 
the Root Test gives any information in this case. Before trying the 
Comparison Thst we need to decide whether we believe the series 
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converges or not. Since an is approximately lin for large n and since 
L:(I/n) diverges, we expect the series (1) to diverge. Now 

n n n 1 
--> = 
n 2 + 3 - n 2 + 3n2 4n2 4n 

Since L:(lIn) diverges, L:(I/4n) also diverges [its partial sums are 
snl4 where Sn = L:~=I (1 1k)], so (1) diverges by the Comparison Test. 

Example 5 
Consider the series 

1 

L n2 +1 · (1) 

As the reader should check, neither the Ratio Rest nor the Root Test 
gives any information. The nth term is approximately ;2 and in fact 
n2~1 ~ ;2. Since L: ;2 converges, the series (1) converges by the 
Comparison Test. 

Example 6 
Consider the series 

(1) 

If an = nl 3n, then an+Ilan = (n + I)/(3n), so lim lan+llanl = 1/3. 
Hence the series (1) converges by the Ratio Test. In this case, ap­
plying the Root Test is not much more difficult provided we recall 
lim nIln = l. It is also possible to show that (1) converges by 
comparing it with a suitable geometric series. 

Example 7 
Consider the series 

""' an where an = [ 2 In 
~ (-I)n - 3 

(1) 

The form of an suggests the Root Test. Since Ian II ln = 1 for even n 
and lanilln = 112 for odd n, we have a = lim sup lanlIln = l. So the 
Root Test gives no information and the Ratio Test cannot help either. 

n the other hand, if we had been alert, we would have observed 
that an = 1 for even n, so (an) cannot converge to o. Therefore the 
se ries (1) diverges by Corollary 14.5. 
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Example 8 
Consider the series 

~ (-l)n-n 1 1 1 1 1 
~2 =2+-+-+-+-+-+···. 
n=O 4 2 16 8 64 

(1) 

Let an = 2(-1)"-n . Since an :::: 2Ll for all n, we can quickly conclude 
that the series converges by the Comparison lest. But our real in­
terest in this series is that it illustrates the difference between the 
Ratio lest and the Root lest. Since an+llan = 1/8 for even nand 
an+! I an = 2 for odd n, we have 

1 I an+ 1 I I an+ 1 I - = liminf -- < 1 < limsup -- = 2. 
8 an an 

Hence the Ratio lest gives no information. 
Note that (an)lIn = 2 ~- 1 for even nand (an)l /n = 2-~-1 for odd 

1 1 

n. Since lim 2;; = lim T ;; = 1 by Example 7(d) in §9, we conclude 
that lim(any /n = ~. Therefore a = lim sup (an) lin = ~ < 1 and the 
series (1) converges by the Root lest. 

Example 9 
Consider the series 

'" (-It 
~ ,JYi . (1) 

Since lim Jnl(n + 1) = 1, neither the Ratio lest nor the Root lest 
gives any information. Since L .In diverges, we will not be able to 
use the Comparison lest 14.6(i) to show that (1) converges. Since the 
terms of the series (1) are not all nonnegative, we will not be able to 
use the Comparison lest 14.6(ii) to show that (1) diverges. It turns 
out that this series converges by the Alternating Series lest 15.3, 
which we have deferred to the next section. 

Exercises 
14.1. Determine which of the following series converge. Justify your 

answers. 
'" n' (a) ~F '" 2" (b) ~ n! 



(c) L f­
(e) L co~~n 

(d) L n:l3 

(f) L::"=2 lo~ n 

14.2. Repeat Exercise 14.1 for the following. 
(a) L n;,l (b) L( -It 

,,3n d "n' (c) ~ nJ ( ) ~ 3n 

(e) L ~ (f) L ;n 
(g) L f.;-

. 14.3. Repeat Exercise 14.1 for the following. 
(a) L In,. (b) L 2+~~sn 
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(c) L 2n~n (d) L(~t(50 + ~) 
(e) L sine,,;) (f) L (l~~)" 

• 14.4. Repeat Exercise 14.1 for the following. 
(a) L~2 [n+(~IN (b) L[v'nTI - -vn] 
(c) L$. 

14.5. Suppose that Lan = A and L bn = B where A and Bare 
real numbers. Use limit theorems from § 9 to qUickly prove the 
following. 

(a) L(an + bn) = A + B. 

(b) Lkan = kA for k E R 

(c) Is L anbn = AB a reasonable conjecture? Discuss. 

14.6. (a) Prove that if L lanl converges and (bn) is a bounded 
sequence, then Lanbn converges. Hint: Use Theorem 14.4. 

(b) Observe that Corollary 14.7 is a special case of part (a). 

• 14.7. Prove that if L an is a convergent series of nonnegative numbers 
and p > I, then L a~ converges . 

. 14.8. Show that if L an and L bn are convergent series of nonnegative 
numbers, then L ..j anbn converges. Hint: Show that ..j anbn ~ an + 
bn for all n. 

14.9. The convergence of a series does not depend on any finite number 
of the terms, though of course the value of the limit does. More 
precisely, consider series L an and L bn and suppose that the set 
{n EN: an i= bn } is finite. Then the series both converge or else 
they both diverge. Prove this. Hint: This is almost obvious from 
Theorem 14.4. 
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14.10. Find a series 2: an which diverges by the Root Test but for which 
the Ratio Test gives no information. Compare Example 8. 

14.11. Let (an) be a sequence of nonzero real numbers such that the 
sequence (a~:I) of ratios is a constant sequence. Show that 2: an 
is a geometric series . 

• 14.12. Let (an)neN be a sequence such that liminflanl = O. Prove that 
there is a subsequence (an. )keN such that 2::1 an. converges. 

14.13. We have seen that it is often a lot harder to find the value of an 
infinite sum than to show that it exists. Here are some sums that 
can be handled. 

(a) Calculate 2:~1(~)" and 2::;'=1(-~)"' 

(b) Prove 2::;'=1 n(n~l) = l. Hint: Note that 2:~=1 k(k~l) 
2:~=l[t - k!l]' 

( ) P th ,,00 n-1 1 H' N h t k-1 k k+1 
C rove at .Gn=l 2"+1 = "2' mt: ote t a 2k+1 = 2k - 2k+1 • 

(d) Use (c) to calculate 2::;'=1 fn-. 

· 14.14. Prove that 2::;'=2 ~ diverges by comparing with the series 2::;'=2 an 
where (an) is the sequence 

§15 

(
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) 
2'4'4'8'8'8'8' 16' 16' 16' 16'16' 16' 16' 16' 32' 32"" . 

Alternating Series and Integral 
Thsts 

Sometimes one can check convergence or divergence of series by 
comparing the partial sums with familiar integrals. We illustrate. 

Example 1 
We show that L ~ = +00. 

Consider the picture of the functionf(x) = ~ in Figure 15.1. For 
n ::: 1 it is evident that 

n 1 L k = Sum of the areas of the first n rectangles in Figure 15.1 
k 1 
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Area -1, 
Area .1 

3 

- ----"4't----:L-----=----!--__ ....L.... ___ .L.-_x 
~ 

fix) =.1 
x 

FIGURE 15.1 

1 
~ Area under the curve - between 1 and n + 1 

x 

i
n+11 

= -dx=log(n+l). 
1 x 

ince limn~oo log(n + 1) = +00, we conclude that 2::'1 ~ = +00. 
The series 2: ~ diverges very slowly. In Example 7 of §16, we 

observe that 2:~=1 ~ is approximately loge N + 0.5772. Thus for N = 
1,000 the sum is approximately 7.485, and for N = 1,000,000 the sum 
Is approximately 14.393. 

Another proof that 2: ~ diverges was indicated in Exercise 14.14. 
r Iowever, an integral test is useful to establish the next result. 

Example 2 
We show that 2: ~ converges. 

Consider the graph of [(x) = ~ in Figure 15.2. Then we have 

n 1 . 
L k2 = Sum of the areas of the first n rectangles 
k= l 

< 1+ -dx=2-- < 2 j n 1 1 

- 1 x2 n 

fOf all n ~ 1. Thus the partial sums form an increasing sequence 
that is bounded above by 2. Therefore 2::'1 ;2 converges and its 
IIU m is less than or equal to 2. Actually, we have already mentioned 
Iwithout proofl] that the sum is ~2 = 1.6449··· . 
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y 

Area I 

~~--L-~~~~~~==~x 
2 3 4 5 

[(x) = ~ 
x 

FIGURE 15.2 

Note that in estimating I:~=l tz we did not simply write 
I:~=l tz ::::: fon "* dx, even though this is true, because this integral 
is infinite. We were after a finite upper bound for the partial sums. 

The techniques just illustrated can be used to prove the following 
theorem. 

15.1 Theorem. 
I: ~p converges if and only if p > 1. 

Proof 
Supply your own picture and observe that ifp > I, then 

n 1 In 1 1 1 1 P L - < 1 + - dx = 1 + --(1 - -) < 1 + -- = --. k=l kp - 1 XP P - 1 nP- 1 p - 1 P - 1 

Consequently I:::l ~p ::::: P~l < +00. 
Suppose that 0 < p ::::: 1. Then ~ ::::: ~p for all n. Since I: ~ diverges, 

we see that I: ~p diverges by the Comparison Test. • 

15.2 Integral Thsts. 
Here are the conditions under which an integral test is advisable: 

(a) The tests in §14 do not seem to apply. 
(b) The terms of the series I: an are nonnegative. 
(e) There is a nice nonincreasing function f on [1,00) such that 

fen) = an for all n if is nonincreasing if x < y implies fCx) ~ 

fCY)]. 
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(d) The integral of f is easy to calculate or estimate. 
Iflimn-+oo fIn f(x) dx = +00, then the series will diverge just as in 

I ~xample 1. Iflimn-+oo fIn f(x) dx < +00, then the series will converge 
,lust as in Example 2. The interested reader may formulate and prove 
lhe general result [Exercise 15.8]. 

The following result is a bit tricky to prove, but it enables us to 
onc1ude that series like I: (-;dn converge even though they do not 
onverge absolutely. See Example 9 in §I4. 

15.3 Alternating Series Theorem. 
If al :::: a2 :::: ... :::: an :::: ... :::: 0 and lim an = 0, then the alternating 
series I:( -ltan converges. 

The series I:( -1 tan is called an alternating series because the 
signs of the terms alternate between + and -. 

Proof 
I t suffices to show that the series satisfies the Cauchy crite­
rion 14.3(3). This will follow easily from 

n 

n:::: m > N implies L(-liak::::: aN, (1) 
k=m 

since for each E > 0 there exists N E N such that aN < E. 

1b prove (I), we fix n :::: m and define 

so that 
n 

L(-Ilak = (-I)mA. 
k=m 

I r n - m is odd, the last term of A is -an, so 

A = [am - am+l] + [am+2 - am+3] + ... + [an-I - an] :::: 0 

nd also 

(2) 
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Remember that the numbers in brackets are nonnegative, since (an) 
is nonincreasing. If n - m is even, the last term of A is +an, so 

A = [am - am+l] + [am+2 - am+3] + ... + [an-2 - an-I] + an ~ 0 

and 

A = am - [am+l - am+2] - [am+3 - amH] - ... - [an-l - an] ::: am· 

In either case we have 0 ::: A ::: am. Hence from (2) we see that 

n 

L(-liak = A::: am. 
k=m 

Assertion (1) now follows since n ~ m > N implies 

n 

L ( -1 i ak ::: am ::: aN· 
k=m • 

Exercises 
15.1. Determine which of the following series converge. Justify your 

answers. 
(a) L: C-~)" (b) L: C-;fn

! 

15.2. Repeat Exercise 15.1 for the following. 
(a) L:[sin(~)r (b) L:[sinCnr 

15.3. Show that L:~2 nClo~ nY' converges if and only if p > 1. 

15.4. Determine which of the following series converge. Justify your 
answers. 
( ) 

,,",00 1 (b) ,,",00 log n 
a L...n=2 .Jj1log n L...n=2 n 

(e) L:::O=4 n(logn)JOgIOgn) (d) L:::O=2 ~ 
15.5. Why didn't we use the Comparison Thst to prove Theorem 15.1 for 

p > I? 

15.6. (a) Give an example of a divergent series L:an for which La~ 
converges. 

(b) Observe that if L an is a convergent series of nonnegative 
terms, then L a~ also converges. See Exercise 14.7. 
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(e) Give an example of a convergent series L an for which L a~ 
diverges. 

15.7. (a) Prove that if (an) is a nonincreasing sequence of real num­
bers and if L an converges, then lim nan = O. Hint: Consider 
laN+l + aN+2 + ... + ani for suitable N. 

(b) Use (a) to give another proof that L ~ diverges. 

15.8. Formulate and prove a general integral test as advised in 15.2. 

§16 * Decimal Expansions of Real 
Numbers 

We begin by recalling the brief discussion of decimals in Discus­
ion 10.3. There we considered a decimal expansion k.d1d2d3 ·•• 

where k is a nonnegative integer and each digit lit belongs to 
{O, I, 2, 3, 4, 5, 6, 7, 8, 9}. This expansion represents the real number 

00 d . 00 

k+ I:-} = k+ Ldj .1O-j 

j=l 1()J j=l 

which we also can write as 
n 

lim Sn where Sn = k + '" dj . lO-j . 
n--+oo ~ 

j=l 

Thus every such decimal expansion represents a nonnegative real num­
her. We will prove the converse after we formalize the process of 
long division. The development here is based on some suggestions 
by Karl Stromberg. 

16.1 Long Division. 
(.el's first consider positive integers a and b where a < b. We analyze 
I II familiar long division process which gives a decimal expansion 
fbr E' Figure 16.1 shows the first few steps where a = 3 and b = 7. If 
we name lhe digitsd1, d2, d3, ... and the remainders rl, r2, r3, ... , then 
o rar d l = 4, d2 = 2 and rl = 2, r2 = 6. At the next step we divide 7 

lllto 60 10 . r2 and obtain 60 -- 7·8 + 4. The quotient 8 becomes the 
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FIGURE 16.1 

.42 d3 

713.0000 
28 

20 
14 

60 

third digit d3 , we place the product 56 under 60, subtract and obtain 
a new remainder 4 = r3. That is, we are calculating the remainder 
obtained by dividing 60 by 7. Next we multiply the remainder r3 = 4 
by 10 and repeat the process. At each stage 

dn E to, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

rn = 10 . rn-l - 7 . dn 
o ~ rn < 7. 

These results hold for n = 1,2, ... if we set ro = 3. In general, we 
set ro = a and obtain 

dn E to, 1, 2, 3, 4, 5, 6, 7, 8, 9} 

rn = 10 . rn-l - b . dn 
o ~ rn < b. 

(1) 

(2) 

(3) 

We next show that this construction is well defined in general and 
that the decimal expansion represents ~. In what follows we do not 
need to assume that a and b are integers; a and b will represent positive 
numbers. The only noticable change in our construction will be that 
the "remainders" r n will not necessarily be integers. We also do not 
assume that a < b, so the first step will be a little different than in 
our example. The first step will provide us with the integer part of 
a 
Ii' 

Let Z+ = N U {OJ. By the Archimedean property 4.6, we have 
a ~ nb for some positive integer n. Hence {m E Z+ : mb ~ a} 
is finite . This set is also nonempty, since it contains 0, so we can 
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define 

k = max {m E Z+ : mb ::::: a}. 

Thus kb ::s a < (k + l)b. Let Yo = a - kb and note that 0 ::s Yo < b. 
Next define 

dl = max{d E Z+ : db ::s 10 . Yo} 

and 

YI = 10 . Yo - dlb. 

Note that dl ::::: 9, because 10 . b ::::: 10· Yo would imply b ::s Yo, a 
contradiction. Also note that dlb ::::: 10 . Yo < (dl + l)b, so 0 ::s YI = 
10· Yo - dlb < b. Thus the following holds for n = 1: 

dn E {O, I, 2, 3, 4, 5, 6, 7, 8, 9} 

Yn = 10· Yn-I - dnb 

0::::: Yn < b. 

(1) 

(2) 

(3) 

Suppose that dI , d2 , ... , dn E Z+ and Yo, YI, •.• , Yn have been defined 
satisfying (1 )-(3). Next define 

dn+I = max{d E Z+ : db ::::: 10· Yn} 

and 

Then dn+l ::::: 9 since 10· b ::::: 10· Yn would imply b ::s Yn, violating (3). 
I r ence (1) holds for n + 1 and (2) is obvious for n + 1 by our definition 
of Yn+I. Finally dn+lb ::::: 10· Yn < (dn+I + l)b implies 0 ::::: Yn+I < b, 
IlO (3) holds for n + 1. The construction of the sequences (dn ) and 
ern) satisfying (1)-(3) is completed by an appeal to the principle of 
induction. 

1b see that the decimal expansion k.dld2d3 •• . represents ~, we 
observe that (2) implies 

Yn ' lO- n = Yn- l . lO-n+I - dn . lO-n . b 

fbr n ~ 1. Transposing and changing n to), we obtain 

. +1' d) . 10- ) . b = Yj - l ·lO- } - Yj ·lO-} 
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for j ::: 1. When we sum from j = 1 to j = n, most of the terms on 
the right side cancel [it's called a telescoping sum]. Hence the partial 
sums Sn for the decimal expansion satisfY 

Sn . b = [k + t d) . lO-j
] . b = kb + ro - r n . lO-n

. 

}=l 

In view of (3), we have limn[rn .1O-n ] = 0, so limn Sn = k +~. Recall 
that ro = a - kbj hence 

a-kb a 
lim Sn = k+ -b- = -b' 

n-*oo 

Thus k.d1 d2d3 ••• is a decimal expansion for ~. 

16.2 Theorem. 
Every nonnegative real number x has at least one decimal expansion. 

Proof 
Let a = x and b = 1 in 16.1 above. • 

As noted in Discussion 10.3, l.000··· and .999··· are decimal 
expansions for the same real number. That is, the series 

00 

1 + LO . 1O-j 

j=l 

00 

and L9 .1O-} 
j=l 

have the same value, namely l. Similarly, 2.75000··· and 2.74999··· 
are both decimal expansions for ¥ [Exercise 16.1]. The next theorem 
shows that this is essentially the only way a number can have distinct 
decimal expansions. 

16.3 Theorem. 
A real number x has exactly one decimal expansion or else x has two 
decimal expansions, one ending in a sequence of all D's and the other 
ending in a sequence of all9's. 

Proof 
We assume x ::: O. If x has decimal expansions k.OOO· .. with k > 0, 
then it has one other decimal expansion, namely (k - 1).999···. If 
x has decimal expansion k.d1dzd3 • .. drOOO· .. where dr =1= 0, then it 
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has one other decimal expansion k.d1d2d3 ••· (dr - 1)9999···. The 
reader can easily check these claims [Exercise 16.2]. 

Now suppose that x has two distinct decimal expansions 
k.d1d2d3 ... and .e.ele2e3· . '. Suppose that k < .e. If any dj < 9, then 
by Exercise 16.3 we have 

00 

x < k + L 9 . lO-j = k + 1 ~ .e ~ x, 
j=l 

a contradiction. It follows that x = k + 1 = .e and its decimal expan­
sions must be k.999 ... and (k + 1 ).000· . '. In the remaining case, we 
have k = .e. Let 

m = minU : dj =I ej}. 

We may assume that dm < em. If dj < 9 for any j > m, then by 
Exercise 16.3, 

m 00 m 

X < k + L dj • lO-j + L 9· lO-j = k + L dj • lO-j + lO-m 

j=l j=m+l j=l 

m-l m 

= k + L ej . lO-j + dm . 10-m + lO-m ~ k + L e) . lO-j ~ x, 
j=l j=l 

a contradiction. Thus ~ = 9 for j > m. Likewise, if ej > 0 for any 
j > m, then 

m m-l 

X > k + L ej • lO-j = k + L d; . lO-j + em . lO-m 

j=l ]=1 

m-l 

:::: k + L dj • lO-j + dm . lO-m + lO-m 

j=1 

m 00 

= k + L dj • lO-j + L 9· lO-j :::: x, 
j=1 j=m+l 

II contradiction. So in this case, dj = 9 for j > m, em = dm + 1 and 
Cj = 0 for j > m. • 

16.4 Definition. 
A n expression of the form 

k.d,d2 ••• dede+1 ... de+r 
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represents the decimal expansion in which the block dl+l ... dHr is 
repeated indefinitely: 

k.d1d2 ... dedH1 ... dHrdH1 ... dHrdH1 ... dHrdH1 ... dHr .... 

We call such an expansion a repeating decimal. 

Example 1 
Every integer is a repeating decimal. For example, 17 17.0 = 
17.000· . '. Another simple example is 

- ~ . 8 ~ . 8 10 8 
.8 = .888··· = L..J 8·10-) = -- L..J 10-) = -- . -- = -. 

j=l 10 j=O 10 9 9 

Example 2 
The expression 3.967 represents the repeating decimal 3.9676767 .. '. 
We evaluate this as follows: 

3.967 = 3 + 9· 10-1 + 6 . 10- 2 + 7 . 10-3 + 6 . 10-4 + 7 . 10-5 + ... 
00 

= 3 + 9 . 10-1 + 67· 10-3 LClO-2y 
j=O 

= 3 + 9 . 10-1 + 67 . 10-3 
- = 3 + -- + -(
100) 9 67 
99 10 990 

3928 1964 
-- --
990 495 

Thus the repeating decimal 3.967 represents the rational number 
1::54. Any repeating decimal can be evaluated as a rational number 
in this way, as we'll show in the next theorem. 

Example 3 
We find the decimal expansion for ¥-. By the usual long division 
process in 16.1, we find 

11 -- = 1.571428571428571428571428571428571 ... , 
7 

i.e., ¥- = 1.571428. To check this, observe 

00 571428 
1.571428 = 1 + 57l428· 10- 6 LClO-6y = 1 + --

)=0 999999 
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4 11 
= 1 + - =-. 

7 7 

Many books give the next theorem as an exercise, probably to 
avoid the complicated notation. 

16.5 Theorem. 
A real number x is rational if and only if its decimal expansion is repeat­
ing. [Theorem 16.3 shows that if x has two decimal expansions, they are 
both repeating.] 

Proof 
Pirst assume x ~ 0 has a repeating decimal expansion x 
k.d1 dz ... dldH1 ... dHr . Then 

l 

X = k + L dj . lO-j + lO-l y 
j=l 

where 

so it suffices to show such yare rational. 1b simplify the notation, 
we write 

A little computation shows that 

r 0 [ 00 oJ r 0 lOr 
Y = Lej .1O-} L(lO-ry = Lej .1O-} r _ . 

j=l j=O j=l 10 1 

I n fact, if we write el ez ... er for the usual decimal Lj~~ ej . lOr
-

1- j 

~lo t the product, then y = e~~~ ~~r ; see Example 3. 
Next consider any positive rational, say E where a, bEN. We 

may assume that a < b. As we saw in 16.1, E is given by the decimal 
(lxpansion .d1dzd3 •·· where ro = a, 

dn E to, 1,2,3,4,5,6,7,8, 9} 

rn = 10 . Yn- l - dnb 

o ~ Yn < b, 

(1 ) 

(2) 

(3) 
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for n :::: 1. Since a and b are integers, each Y n is an integer. Thus (3) 
can be written 

Yn E {O, 1, 2, .. . , b - I} for n:::: O. (4) 

This set has b elements, so the first b + 1 remainders Yn cannot all 
be distinct. That is, there exist integers m :::: 0 and p > 0 so that 

o ~ m < m + p ~ band Y m = Y m+p' 

From the construction giving (1)-(3) it is clear that given Yn-l, the 
integers Yn and dn are uniquely determined. Thus 

Since Ym = Ym+p , we conclude that Ym+l = Ym+HP and d m+1 

dm+HP ' A simple induction shows that the statement 

holds for all integers n :::: m + 1. Thus the decimal expansion of E is 
periodic with period p after the first m digits. That is, 

• 
a b = .d1d 2 ... dmdm+1 ••. d m+p ' 

Example 4 
An expansion such as 

.101001000100001000001000000100000001000000001000000000100··· 

must represent an irrational number, since it cannot be a repeating 
decimal: we've arranged for arbitrarily long blocks of O's. 

Example 5 
We do not know the complete decimal expansions of ../2, ..[3 and 
many other familiar irrational numbers, but we know that they 
cannot be 'repeating by virtue of the last theorem. 

Example 6 
We have claimed that 7r and e are irrational. These facts and many 
others are proved in a fascinating book by Ivan Niven [30]. Here is 
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the proof that 

00 1 
e=L-

k=O k! 

is irrational. Assume that e = ~ where a, bEN. Then both b!e and 

b! L~=o t must be integers, so the difference 

00 1 
b! L -

k=b+l k! 

must be a positive integer. On the other hand, this last number is 
less than 

1 1 1 1 
b + 1 + (b + 1)2 + (b + 1)3 + ... = b ~ 1, 

a contradiction. 

Example 7 
There is a famous number introduced by Euler over 200 years ago 
lhat arises in the study of the gamma function. It is known as Euler's 
constant and is defined by 

Even though 

y = l~m [~~ - loge n] . 
n--+oo ~ k 

k=l 

n 1 
lim ,,- = +00 and lim loge n = +00, 
n--+oo ~ k n--+oo 

k=l 

the limit defining y exists and is finite [Exercise 16.9]. In fact, y is ap­
proximately .577216. The amazing fact is that no one knows whether 
y is rational or not. Most mathematicians believe y is irrational. This 
III because it is "easier" for a number to be irrational, since repeating 
decimal expansions must be regular. The remark in Exercise 16.8 
hints at another reason it is easier for a number to be irrational. 

Exercises 
16.1. (a) Show that 2.749 and 2.750 are both decimal expansions for Jf. 
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(b) Which of these expansions arises from the long division 
process described in 16.1? 

16.2. Verify the claims in the first paragraph of the proof of Theo­
rem 16.3. 

16.3. Suppose that L an and L bn are convergent series of nonnegative 
numbers. Show that if an :s bn for all n and if an < bn for at least 
one n, then Lan < Lbn. 

16.4. Write the following repeating decimals as rationals, i.e., as fractions 
of integers. 
(a) .2 (b) .02 
(c) .02 (d) 3.14 
(e) .10 (1) .1492 

16.5. Find the decimal expansions of the following rational numbers. 
(a) ~ 
(c) ~ 
(e) * 

(b) is 
(d) ~ 
(1) ¥ 

16.6. Find the decimal expansions of ~, ~, ~, t, ~ and ~. Note the 
interesting pattern. 

16.7. Is .123456789lO11121314151617181920212223242526··· rational? 

16.8. Let (sn) be a sequence of numbers in (0, 1). Each Sn has a decimal 
expansion .d~n) d~n) d~n) .. ' . For each n, let en = 6 if d~n) i= 6 and 

en = 7 if d~n) = 6. Show that el e2e3 . .. is the decimal expansion for 
some number yin (0,1) and that y i= Sn for all n . Remark: This 
shows that the elements of (0, 1) cannot be listed as a sequence. In 
set-theoretic parlance, (0,1) is "uncountable." Since the set Qnco, 1) 
can be listed as a sequence, there must be a lot of irrational numbers 
in (0, I)! 

16.9. Let Yn = (L~=l t) - loge n = L~=l t - It idt . 

(a) Show that (Yn) is a decreasing sequence. Hint: Look at Yn -Yn+l . 

(b) Show that 0 < Yn :s 1 for all n. 

(c) Observe that Y = limn Yn exists and is finite. 



Continuity 
CHAPTER 

Most of the calculus involves the study of continuous functions. 
In this chapter we study continuous and uniformly continuous 
functions. 

§17 Continuous Functions 

Recall that the salient features of a function fare: 

(a) the set on whichf is defined, called the domain off and written 
dom(f); 

(b) the assignment, rule or formula specifying the value fex) of f 
at each x in domCf). 

We will be concerned with functions f such that dom(f) ~ Rand 
Huch that f is a real-valued function, i.e., fex) E R for all x E domCf). 
Properly speaking, the symbol f represents the function while fex) 
I e presents the value of the function at x. However, a function is often 
given by specifying its values and without mentioning its domain. 
III this case, the domain is understood to be the natural domain: the 
Inrgcst subset of R on which the function is a well defined real-

______ ~ ________________________ ~115 
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valued function. Thus "the function f(x) = ~" is shorthand for "th 
function f given by f(x) = ~ with natural domain {x E ~ : X i- O} ,' 

Similarly, the natural domain of g(x) = ../4 - x2 is [-2,2] and th 
natural domain of csc x = Si~ x is the set of real numbers x not of th 
form nJr, n E Z. 

In keeping with the approach in this book, we will define con· 
tinuity in terms of sequences. We then show that our definition i 
equivalent to the usual E-B definition. 

17.1 Definition. 
Let f be a real-valued function whose domain is a subset of R Th 
function f is continuous at Xo in domCf) if, for every sequence (xn) in 
domCf) converging to xo, we have limnf(xn) = f(xo). Iff is continuo 
ous at each point of a set S ~ domCf) , then f is said to be continuou 
on S . The function f is said to be continuous if it is continuous on 
domCf). 

Our definition implies that the values f(x) are close to f(xo) whe 
the values x are close to Xo. The next theorem says this in anoth 
way. In fact, condition (1) of the next theorem is the E-B definitio 
of continuity given in many calculus books. 

17.2 Theorem. 
Let f be a real-valued function whose domain is a subset ofR. Then f 
continuous at Xo E domCf) if and only if 

for each E > 0 there exists 8 > 0 such that 
x E domCf) and Ix - xol < B imply If(x) - f(xo) I < E. 

Proof 
Suppose that (1) holds, and consider a sequence (xn) in domCf) su 
that limxn = Xo. We need to prove that limf(xn) = f(xo) . Let E > 
By (1), there exists B > 0 such that 

X E domCf) and Ix - xol < B imply If(x) - f(xo) I < (. 

Since limxn = xo , there exists N so that 

n > N implies IXn - xol < B. 
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II follows that 

n > N implies If(xn) - f(xo) I < E. 

I'his proves that limf(xn) = f(xo). 
Now assume that f is continuous at Xo, but that (1) fails. Then 

t" re exists E > 0 so that the implication 

/Ix E domCf) and Ix - xol < 8 imply If(x) - f(xo) I < E" 

JfIIls for each 8 > O. In particular, the implication 

1 
"x E domCf) and Ix - xol < - imply If (x) - f(xo) I < E" 

n 
Jflils for each n E N. So for each n E N there exists Xn in domCf) such 
tllnt IXn-xol < ~ and yet If(xn)-f(xo) I :::: E. Thus we have limxn = Xo, 
hill we cannot have limf(xn) = f(xo) since If(xn) - f(xo) I :::: E for all 
/I This shows that f cannot be continuous at Xo, contrary to our 
II 8umption. • 

As the next example illustrates, it is sometimes easier to work 
with the sequential definition of continuity in Definition 17.1 than 
lILt) E-8 property in Theorem 17.2. However, it is important to get 
comfortable with the E-8 property, partly because the definition of 
uniform continuity is more closely related to the E-8 property than 
III c; sequential definition. 

I~ ample 1 
I.c,l {(x) = 2X2 + 1 for x E JR. Prove that f is continuous on lR by 

( a) using the definition, 
(b) using the E-8 property of Theorem 17.2. 

,Iution 
( I) Suppose that limxn = Xo. Then we have 

limf(xn) = lim[2x~ + 1] = 2[limxn]2 + 1 = 2x~ + 1 = f(xo) 

where the second equality is an application of the limit theo­
ms 9.2-9.4. Hence f is continuous at each Xo in JR. 

(b) Let Xo be in 1R and let E > O. We want to show If(x) - feXo) I < 
provided Ix xol is sufficiently small, i.e., less than some 8. We 
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observe that 

If (x) - f(xo) I = 12x2 + 1 - (2x~ + 1)1 = 12x2 - 2x~1 

= 2Ix- xol·lx+xol· 

We need to get a bound for x + Xo I that does not depend on x. We 
noticethatiflx-xol < 1,say,thenlxl < Ixol+1 and hence Ix+xol ~ 
Ixi + IXol < 21xol + 1. Thus we have 

If (x) - f(Xo) I < 21x - XoI(21xol + 1) 

provided Ix - xol < 1. Th arrange for 21x - xol(2lxol + 1) < E, it 
suffices to have Ix - xol < 2(2Ix:l+l) and also Ix - xol < 1. So we put 

8=min{1 E }. 
, 2(21xol + 1) 

The work above shows that Ix - xol < 8 implies If(x) - f(xo) I < E, as 
desired. 0 

The reason that solution (a) in Example 1 is so much easier is 
that the careful analysis was done in proving the limit theorems in 
§9. 

Example 2 
Let f(x) = X2 sin(~) for x :f. 0 and f(O) = O. The graph of f in 
Figure 17.1 looks continuous. Prove that f is continuous at O. 

Solution 
Let E > O. Clearly IfCx) - fCO)1 = If(x) I ~ X2 for all x. Since we 
want this to be less than E, we set 8 = ../E. Then Ix - 01 < 8 implies 
x2 < 82 = E, so 

Ix - 01 < 8 implies If(x) - f(O)1 < E. 

Hence the E-8 property holds and f is continuous at O. [ 1 

In Example 2 it would have been equally easy to show that if 
limxn = 0 then limf(xn) = O. The function f in Example 2 i also 
continuous at the other points ofR; see Example 4. 
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Example 3 
Letf(x) = ~sin(dr) for x f:. 0 andf(O) = 0; see Figure 17.2. Show 
that f is discontinuous, i.e., not continuous, at O. 

Solution 
[t suffices for us to find a sequence (xn) converging to 0 such 
lhat f(x n) does not converge to f(O) = o. So we will arrange 
for 1.. sine -\) = 1.. where Xn ~ O. Thus we want sine -\) = I, 

Xn Xn Xn Xn 

~ = 2rrn +~, x~ = 2 l+!!: or Xn = ~. Then lirnxn = 0 while 
. " = 2 2=+2 
limf(xn ) = lim t = +00. 0 

Letfbe a real-valued function. For k inlR, kf signifies the function 
defined by (kf)(x) = kf(x) for x E dorner). Also If I is the function 
d fined by IfI(x) = I[(x) I for x E dornCf). Thus iff is given by f(x) = 
.fi 4 for x. >: 0, lhen 3[ is given by (3D(x) = 3-v'x - 12 for x 2: 0, and 
11'1 is given by Iflex.) IJx 41 for x. ~ O. Here is an easy theorem. 
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y 

---
Ht-t+-t-++--+--+-x 
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[(x) = ~in(J,) .\ x -

FIGURE 17.2 

17.3 Theorem. 
Let f be a real-valued function with domCf) ~ lR. Iff is continuous at 
Xo in domCf), then If I and kf, k E JR, are continuous at Xo. 

Proof 
Consider a sequence (xn) in domCf) converging to Xo. Since f is con­
tinuous at Xo, we have limf(xn) = f(xo). Theorem 9.2 shows that 
lim kf(xn) = kf(xo). This proves that kf is continuous at Xo. 

'Ib prove that If I is continuous at Xo, we need to prove that 
lim If(xn)I = If(xo)l. This follows from the inequality 

(1 ) 

see Exercise 3.5. [In detail, consider E > O. Since limf(xn) = f(xo), 
there exists N such that n > N implies If(xn) - f(xo) I < E. SO by (1), 
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n > N implies 

I If(xn) I - If(xo) I I < E; 

thus lim If(xn)I = If(xo)I.] • 
We remind readers that if f and g are real-valued functions, then 

we can combine f and g to obtain new functions: 

Cf + g)(x) = f(x) + g(x); 

Cf/g)(x) = ~; 
max(f,g)(x) = max{f(x),g(x)}; 

fg(x) = f(x)g(x); 

go f(x) = gCf(x)); 

min(f, g)(x) = min{f(x), g(x)} . 

The function g 0 f is called the composition of g and f . Each of these 
new functions is defined exactly where they make sense. Thus the 
domains off +g, fg, max(f, g) and min(f, g) are domCf)ndom(g), the 
domain of fig is the set domCf) n {x E dom(g) : g(x) =I- O}, and the 
domain ofgof is {x E domCf) : f(x) E dom(g)}. Note thatf +g = g+f 
and fg = gf but that in general fog =I- g 0 f. 

These new functions are continuous if f and g are continuous. 

17.4 Theorem. 
Let f and g be real-valued functions that are continuous at Xo in lit Then 

(i) f + g is continuous at xo; 
(li) fg is continuous at Xo; 

(iii) fig is continuous at Xo ifg(xo) =I- O. 

Proof 
We are given that Xo E domCf) n dom(g). Let (xn) be a sequence in 
domCf) n dom(g) converging to xo. Then we have limf(xn) = f(xo) 
and limg(xn) = g(xo). Theorem 9.3 shows that 

limCf + g)(xn) = limrt(xn) + g(xn)] = limf(xn) + limg(xn) 

= f(xo) + g(xo) = Cf + g)(xo), 

so f + g is continuous at Xo. Likewise, Theorem 9.4 implies thatfg is 
e,o ntinuous at xo. 

1b handle fig we assume g(xo) =I- 0 and consider a sequence 
(XII) in dom(f) n Ix dom(g) : g(x) i- O} converging to Xo . Then 
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Theorem 9.6 shows that 

lim (L) (Xn) = lim f(xn) = f(xo) = (L) (Xo); 
g g(Xn) g(xo g 

so fig is continuous at Xo. • 
17.5 Theorem. 
If f is continuous at Xo and g is continuous at f (xo), then the composite 
function g 0 f is continuous at Xo . 

Proof 
We are given that Xo E domCf) and that f(xo) E dom(g). Let (xn) be 
a sequence in {x E domCf) : f(x) E dom(g)} converging to Xo. Since 
f is continuous at xo, we have limfCxn ) = f(xo). Since the sequence 
Cf(xn)) converges to f(Xo) and g is continuous atf(xo), we also have 
limgCf(xn)) = gCf(xo)); that is, limg 0 f(xn) = g 0 f(xo). Hence g 0 f 
is continuous at Xo. • 

Example 4 
For this example, let us accept as known that polynomial functions 
and the functions sin x, cos x and C are continuous on R. Then 4c 
and i sinxi are continuous on 1R by Theorem 17.3. The function 
sin x+4C +x3 is continuous on lR by (i) of Theorem 17.4. The function 
X4 sin x is continuous on lR by (ii) of Theorem 17.4, and (iii) of The­
orem 17.4 shows that tan x = sinx is continuous wherever cosx::j:. 0, cosx 
i.e., at all x not of the form mr +~, n E Z. Theorem 17.5 tells us that 
esinx and cos(C) are continuous onlR; for example, cos(c) = gof(x) 
where f(x) = c and g(x) = cosx. Several applications of Theo­
rems 17.3-17.5 will show that x2 sin(~) and ~ sin(~) are continuous 
at all nonzero x in R. 

Example 5 
Let f and g be continuous at Xo in R. Prove that max(f, g) is 
continuous at Xo. 

Solution 
First observe that 

1 1 
max(f,g) = z-([ + g) + Z-if - gi· 
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This equation holds because max{a, b} = ~(a + b) + ~Ia - bl is true 
for all a, b E lR, a fact which is easily checked by considering the 
cases a :::: b and a < b. By Theorem 17.4(i), f + g and f - g are 
continuous at xo. Hence If - gl is continuous at Xo by Theorem 17.3. 
Then ~(f + g) and ~If - gl are continuous at Xo by Theorem 17.3, 
and another application of Theorem 17.4(i) shows that max(f, g) is 
continuous at Xo. 0 

Exercises 
17.1. Let [(x) ="",4 - x for x:s 4 andg(x) = x2 for all x E R 

(a) Give the domains of [ + g,fg,f 0 g and g 0 f. 

(b) Find the values [0 g(O), go [(0), [ 0 g(l), go [(1), [ 0 g(2) and 
go [(2). 

(c) Are the functions [ 0 g and go [ equal? 

(d) Are [og(3) andg 0 [(3) meaningful? 

17.2. Let [(x) = 4 for x ~ 0, [(x) = 0 for x < 0, and g(x) = x2 for all x. 
Thus domCf) = dom(g) = R 

(a) Determine the following functions: [+ g, [g, [0 g, go f. Be 
sure to specify their domains. 

(b) Which of the functions[, g,f +g,fg,f og, got is continuous? 

17.3. Accept on faith that the following familiar functions are contin­
uous on their domains: sinx, cosx, f!', 2", loge x for x > 0, x!' for 
x > 0 (p any real number]. Use these facts and theorems in this 
section to prove that the following functions are also continuous. 

(a) loge(l + cos4 x) 

(b) [sin2 x + cos6 xyr 

(c) 2"l 

(d) 8x 

(e) tan x for x =1= odd multiple of } 

(f) x sine ~ ) for x =1= 0 

(g) x2 sinn ) for xi 0 
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(h) ~ sin(~) for x =I 0 

17.4. Prove that the function ,.;x is continuous on its domain [0,00). 
Hint: Apply Example 5 in §8. 

17.5. (a) Prove that ifm E N, then the function[(x) = xm is continuous 
onR 

(b) Prove that every polynomial function p(x) = ao + alx + ... + 
anxn is continuous on JR. 

17.6. A rational function is a function [ of the formp/q wherep andq are 
polynomial functions. The domain off is {x E JR : q(x) =I OJ. Prove 
that every rational function is continuous. Hint: Use Exercise 17.5. 

17.7. (a) Observe that if k is in JR, then the function g(x) = kx is 
continuous by Exercise 17.5. 

(b) Prove that Ixl is a continuous function on R 

(e) Use (a) and (b) and Theorem 17.5 to give another proof of 
Theorem 17.3. 

17.8. Let [ and g be real-valued functions. 

(a) Show that min(f,g) = iCf + g) - il[ - gl· 

(b) Show that min(f, g) = - max( -f, -g). 

(e) Use (a) or (b) to prove that if [ and g are continuous at Xo in 
JR, then min(f,g) is continuous at Xo. 

17.9. Prove that each of the following functions is continuous at Xo by 
verifying the E-8 property of Theorem 17.2. 

(a) [(x) = x2
, Xc = 2; 

(b) [(x) = ,.;x, Xo = 0; 

(e) [(x) = x sin(~) for x =I 0 and [(0) = 0, Xo = 0; 

(d) g(x) = x3 , Xc arbitrary. 
Hint [or Cd): x3 

- x~ = (x - xo)(x2 + XcX + X6). 

17.10. Prove that the following functions are discontinuous at the in­
dicated points. You may use either Definition 17.1 or the E-8 
property in Theorem 17.2. 

(a) [(x) = 1 for x > 0 and [(x) = 0 for x ::: 0, Xo = 0; 

(b) g(x) = sin(~) for x =I 0 and g(O) = 0, Xo -c 0; 
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(e) sgn(x) = -1 for x < 0, sgn(x) = 1 for x > 0, and sgn(O) = 0, 
Xo = 0; 

(d) P(x) = 15 forO ~ x < 1 andP(x) = 15+13n forn ~ x < n+l, 
Xo a positive integer. 
The function sgn is called the signum function; note that 
sgn(x) = ~ for x 1= O. The definition of P, the postage-stamp 
function circa 1979, means P takes the value 15 on the inter­
val [0,1), the value 28 on the interval [1,2), the value 41 on 
the interval [2, 3), etc. 

17.11. Letfbe a real-valued function with domCf) ~ JR. Prove thatf is 
continuous at Xo if and only if, for every monotonic sequence (xn) 
in domCf) converging to xo, we have limf(xn) = f(Xo). Hint: Don't 
forget Theorem 1l .3. 

17.12. (a) Letfbe a continuous real-valued function with domain (a, b). 
Show that iff(r) = 0 for each rational number r in Ca, b), then 
f(x) = 0 for all x E (a, b). 

(b) Letf andg be continuous real-valued functions on (a, b) such 
that fer) = g(r) for each rational number r in (a, b). Prove 
thatf(x) = g(x) for all x E (a, b). 

17.13. (a) Letf(x) = 1 for rational numbers x andf(x) = o for irrational 
numbers. Show that f is discontinuous at every x in JR. 

(b) Let hex) = x for rational numbers x and hex) = 0 for irrational 
numbers. Show that h is continuous at x = 0 and at no other 
point. 

17.14. For each rational number x, write x as ~ where p, q are integers 

with no common factors and q > 0, and then define f(x) = ~. Also 
define f(x) = 0 for all x E IR \ Q. Thus f(x) = 1 for each integer, 
f(1) = f( -1) = f(~) = ... = ~, etc. Show that f is continuous at 
each point ofR \ Q and discontinuous at each point ofQ. 

17.15. Let f be a real-valued function whose domain is a subset of JR. 
Show that f is continuous at Xo in dom(f) if and only if, for ev­
ery sequence (xn) in domCf) \ {xo} that converges to xo, we have 
Iimf(xn) = [(xo) · 
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§18 Properties of Continuous Functions 

A real-valued function [is said to be bounded if {[(x) : X E domCf)} is a 
bounded set, i.e., ifthere exists a real number M such that 1[(x)1 ::: M 
for all x E domCf). 

1B.1 Theorem. 
Let [ be a continuous real-valued [unction on a closed interval [a, b]. 
Then [ is a bounded [unction. Moreove", [ assumes its maximum and 
minimum values on [a, bj; that is, there exist xo, Yo E [a, bj such that 
[(xo) ::: [(x) ::: [(Yo) [or all x E [a, b]. 

Proof 
Assume that [ is not bounded on [a, bj. Then to each n E N 
there corresponds an Xn E [a, bj such that I[(xn)I > n. By the 
Bolzano-Weierstrass theorem 11.5, (xn) has a subsequence (xnk ) that 
converges to some real number Xo. The number Xo also must be­
long to the closed interval [a, bj, as noted in Exercise 8.9. Since [ is 
continuous at xo, we have limk--+oo[(Xnk) = [(xo), but we also have 
limk--+oo I[(xnk )I = +00, which is a contradiction. It follows that [ is 
bounded. 

Now let M = sup{[(x) : X E [a, b]}i M is finite by the preced­
ing paragraph. For each n E N there exists Yn E [a, bj such that 
M - ~ < [(Yn) ::: M. Hence we have lim[(Yn) = M. By the Bolzano­
Weierstrass theorem, there is a subsequence (Ynk) of (Yn) converging 
to a limit Yo in [a, bj. Since [ is continuous at Yo, we have [(Yo) = 
limk--+oo[(Ynk)· Since Cf(Ynk))kEN is a subsequence of Cf(Yn))nEN, The­
orem 11.2 shows that limk--+oo[(Ynk) = limn--+oo[(Yn) = M and 
therefore [(Yo) = M. Thus [ assumes its maximum at Yo. 

The last paragraph applies to the function -[, so -[ assumes 
its maximum at some Xo E [a, bj. It follows easily that [ assumes its 
minimum at Xoi see Exercise 8.1. • 

Theorem 18.1 is used all the time, at least impliCitly, in solvin~ 
maximum-minimum problems in ca1culus because it is taken for 
granted that the problems have solutions, namely that (J ontinuouM 
function on a closed interval actually takes on H maximum lind II 
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minimum. If the domain is not a closed interval, one must be careful; 
see Exercise 18.3. 

Theorem 18.1 is false if the closed interval [a, b] is replaced by an 
open interval. For example, f(x) = ~ is continuous but unbounded 
on (a, 1). The function x2 is continuous and bounded on (-1, 1), but 
it does not have a maximum value on (-1,1). 

18.2 Intermediate Value Theorem. 
Iff is a continuous real-valued function on an interval I, then f has the 
intennediate value property on I : Whenever a, b E I, a < band y lies 
betweenf(a) andf(b) [i.e., fCa) < y < feb) orf(b) < y < f(a)], there 
exists at least one x E ( a, b) such that f (x) = y. 

Proof 
We assume f(a) < y < feb); the other case is similar. Let 8 = (x E 

[a, b] : f(x) < y}; see Figure 18.1. Since a belongs to 8,8 is nonempty, 
so Xo = sup 8 represents a number in [a, b]. For each n E N, Xo - ~ is 
not an upper bound for 8, so there exists Sn E 8 such that Xo - ~ < 
Sn :::: Xo. Thus limsn = Xo and, since f(sn) < y for all n, we have 

f(xo) = limfCsn) :::: y. (1) 

Let tn = min{b,xo + ~}. Since Xo :::: tn :::: Xo + ~ we have limtn = Xo. 
Each tn belongs to [a, b] but not to 8, so f(tn) ::: y for all n. Therefore 

y 

feb) 

--y-

f(a) 

----~----~~~Pr~_+._~--_+------X 

a Xo b 

FIGURE 18.1 
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we have 

[(xo) = lim[(tn) ::: Y; 

this and (1) imply that [(xo) = y. 

18.3 Corollary. 

• 
I[ [ is a continuous real-valued function on an interval I, then the set 
[(I) = {[(x) : X E I} is also an interval or a single point. 

Proof 
The set I = [(I) has the property: 

YO,Yl E I and Yo < Y < Yl imply Y E J. (1) 

If inf I < sup I, then such a set I must be an interval. In fact, we will 
show that 

inf 1< Y < supl implies Y E I, (2) 

so I is an interval with endpoints inf I and sup I; inf I and sup I may 
or may not belong to I and they mayor may not be finite. 

1b prove (2) from (1), consider inf I < Y < sup J. Then there 
existYo,Yl inl so that Yo < Y < Yl. Thus Y E I by (1). • 

Example 1 
Let [ be a continuous function mapping [0, 1] into [0, 1]. In other 
words, domCf) = [0, 1] and [(x) E [0, 1] for all x E [0, 1]. Show that [ 
has ajixedpoint, i.e., a point Xo E [0,1] such that [(xo) = Xo; Xo is left 
"fixed" by [. 

Solution 
The graph off lies in the unit square; see Figure 18.2. Our assertion 
is equivalent to the assertion that the graph of [ crosses the Y = x 
line, which is almost obvious. 

A rigorous proof involves a little trick. We consider g(x) = [(x) - x 
which is also a continuous function on [0, 1]. Since g(O) = [(0) - ° = 
[(0) ::: ° and g(l) = [(1) - 1 ~ 1 - 1 = 0, the Intermediate Value 
theorem shows that g(xo) = ° for some Xo E [0,1]. Then obviously 
we have [(xo) = Xo. 0 

Example 2 

Show that if Y > ° and mEN, then Y has a positive mlh root. 
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y 

----~--r---~-------x 

FIGURE 18.2 

Solution 
The function [(x) = xm is continuous [Exercise 17.5]. There exists 
b > 0 so thaty ::::: bm; in fact, ify ::::: 1 let b = 1 and ify > 1 let b = y. 
Thus [(0) < y ::::: feb) and the Intermediate Value theorem implies 
that [(x) = y for some x in (0, b). So y = xm and x is an mth root 
ofy. 0 

Let us analyze the function[(x) = xm in Example 2 more closely. 
it is a strictly increasing function on [0, 00): 

o ::::: Xl < X2 implies x;" < x~. 

Therefore [ is one-to-one and each nonnegative y has exactly one 
nonnegative mth root. This assures us that the notation yllm is un­
Imbiguous. In fact, [-l(y) = yllm is the inverse function of [ since 
r 1 0 [(x) = x for x E dom(f) and [0 [-ley) = y for y E domCf-I). 
Since [(x) = xm is continuous, the function [-l(y) = yllm is contin­
IIOUS on [0,00) by the next theorem. Note that for m = 2 this result 
Ippears in Exercise 17.4. 

10.4 Theorem. 
' ,/:/ f be a continuous strictly increasing function on some interval I. Then 
J'( ') is an interval J by Corollary 18.3 and [-1 represents a function with 
domain J. The function f I is a continuous strictly increasing function 
01/ J. 
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Proof 
The function f- l is easily shown to be strictly increasing. Since f- l 

maps J onto I, the next theorem shows that f- l is continuous. • 

18.5 Theorem. 
Let g be a strictly increasing function on an interval J such that gU) is 
an interval I. Then g is continuous on 1. 

Proof 
Consider Xo in J. We assume Xo is not an endpoint of J; tiny changes 
in the proof are needed otherwise. Then g(xo) is not an endpoint of 
I, so there exists EO > 0 such that (g(xo) - Eo,g(Xo) + Eo) S; I. 

Let E > O. Since we only need to verify the E-8 property of The­
orem 17.2 for small E, we may assume that E < Eo. Then there exist 
Xl, X2 E J such that g(XI) = g(xo) - E and g(X2) = g(xo) + E. Clearly we 
have Xl < Xo < X2. Also, if Xl < X < X2, then g(XI) < g(x) < g(X2), 
hence g(xo) - E < g(x) < g(Xo) + E, and hence Ig(x) - g(xo)1 < E. 
Now if we put 8 = min{x2 - xo, Xo - xd, then Ix - xol < 8 implies 
Xl < X < X2 and hence Ig(x) - g(xo) I < E. • 

Theorem 18.5 provides a partial converse to the Intermediate 
Value theorem, since it tells us that a strictly increasing function 
with the intermediate value property is continuous. However, Ex­
ercise 18.12 shows that a function can have the intermediate value 
property without being continuous. 

18.6 Theorem. 
Let f be a one-to-one continuous function on an interval I . Then f is 
strictly increasing [Xl < X2 implies f(XI) < f(X2)] or strictly decreasing 
[Xl < X2 implies f(xI) > fCX2)]. 

Proof 
First we show 

if a < b < c in I, then feb) lies between f( a) and f( c). (1) 

If not, then feb) > max{f(a),f(e)}, say. Select y so that feb) > y > 
max{f(a),f(c)}. By the Intermediate Value theorem 18.2 applied to 
[a, b] and to [b, e], there exist Xl E (a, b) and X2 E (b, e) such that 
f(XI) = f(X2) = y. This contradicts the one-to-onc property of f. 
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Now select any ao < bo in I and suppose, say, that fC ao) < fCbo). 
We will show that f is strictly increasing on I. By (1) we have 

fCX) < fCao) 
fCao) < fCx) < fCbo) 
fCbo) < fCx) 

In particular, 

for x < ao 
for ao < x < bo, 
for x > bo 

[since x < ao < bo], 

[since ao < bo < x]. 

fCx) < fCao) for all x < ao, 

fCao) < fCx) for all x > ao. 

(2) 

(3) 

Consider any Xl < X2 in I. If Xl ~ ao ~ X2, then fCXI) < fCX2) by (2) 
and (3). If Xl < X2 < ao, thenfCxI) < fCao) by (2), so by (1) we have 
fCXI) < fCX2). Finally, if ao < Xl < X2, then fCao) < fCX2), so that 
[CXI) < fCX2). • 

Exercises 
lB. 1. Letfbe as in Theorem 18.1. Show that if the function -f assumes 

its maximum at Xo E [a, b], then f assumes its minimum at Xo . 

1B.2. Reread the proof of Theorem 18.1 with [a, b] replaced by (a, b). 
Where does it break down? Discuss. 

1B.3. Use calculus to find the maximum and minimum of f(x) = x3 -

6x2 + 9x + 1 on [0, 5). 

1B.4. Let S ~ R and suppose there exists a sequence (xn) in S that con­
verges to a number Xo E S. Show that there exists an unbounded 
continuous function on S. 

IB.5. (a) Letf andg be continuous functions on [a, b] such thatf(a) ~ 
g(a) and feb) :s g(b). Prove that f(Xo) = g(xo) for at least one 
Xo in [a, b]. 

(b) Show that Example 1 can be viewed as a special case of 
part (a). 

IB.6. Prove that x = cosx for some x in (0, ~). 

lB. 7. Prove that xZx. = 1 for some x in (0, 1). 

IB.8. Suppose thatf is a real-valued continuous function on R and that 
[(a)f(b) < 0 for some a, bE JR.. Prove that there exists x between 
a and b such that [ex) = o. 
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18.9. Prove that a polynomial function f of odd degree has at least one 
real root. Hint: It may help to consider first the case of a cubic, 
i.e., [ex) = ao + alX + azxz + a3X> where a3 =1= O. 

18.10. Suppose thatf is continuous on [0, 2] and thatf(O) = f(2) . Prove 
that there exist x, y in [0,2] such that Iy - xl = 1 and f(x) = fey). 
Hint: Consider g(x) = f(x + 1) - [ex) on [0, 1]. 

18.11. (a) Show that if f is strictly increasing on an interval I, then -f 
is strictly decreasing on I . 

(b) State and prove Theorems 18.4 and 18.5 for strictly decreas­
ing functions. 

18.12. Let [ex) = sine~) for x =1= 0 and let [(0) = o. 

(a) Observe thatf is discontinuous at 0 by Exercise 17.1O(b). 

(b) Show that f has the intermediate value property on lR. 

§19 Uniform Continuity 

Let f be a real-valued function whose domain is a subset of lR. The­
orem 17.2 tells us that f is continuous on a set S ~ dom(f) if and 
only if 

for each Xo E Sand f > 0 there is 8 > 0 so that 
x E dom(f), Ix - xol < 8 imply If(x) - f(xo) I < f. 

The choice of 8 depends on f > 0 and on the point Xo in S. 

Example 1 

(*) 

We verifY (*) for the function f(x) = -!r on (0,00). Let Xo > 0 and 
E > O.We need to show that IfCx)-f(xo)1 < fforlx - xolsufficiently 
small. Note that 

1 1 x2 - x2 

f(x) - f(xo) = x2 - x2 = -O=-X2-X~2-
o 0 

(1 ) 
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y 

f(x) =~ 
x 

3 

FIGURE 19.1 

I 
If Ix - xol < T' then we have Ixi > T' Ixl < ~ and Ixo + xl < 
These observations and (1) show that if Ix - Xo I < T' then 

Ixo -xl· ~ 
I[(x) - [(xo)1 < (~? 2 2 

2 Xo 

3 

Thus if we set d = min{T, ~~E}, then 

10lXo - xl 

x~ 

Ix - xol < d implies I[(x) - [(xo) I < E. 

~ 
2 . 

This establishes (*) for [ on (0, (0). Note that 8 depends on both E 

and Xo. Even if E is fixed, 8 gets small when Xo is small. This shows 
that our choice of 8 depends on Xo as well as E, though this may be 
because we obtained d via sloppy estimates. As a matter of fact, in 
this case d must depend on Xo as well as Ej see Example 3. Figure 19.1 
shows how a fixed E requires smaller and smaller d as Xo approaches 
O. [In the figure, dl signifies a 8 that works for Xl and E, 82 signifies a 
8 that works for X2 and E, etc.] 

It turns out to be very useful to know when the 8 in condition 
C*) can be chosen to depend only on E > 0 and S, so that 8 does 
not depend on the particular pOint Xo. Such functions are said to be 
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uniformly continuous on S. In the definition, the points x and Xo play 
a symmetric role and so we will call them x and y. 

19.1 Definition. 
Let f be a real-valued function defined on a set S ~ lR. Then f is 
uniformly continuous on S if 

for each E > 0 there exists 0 > 0 such that 
x, YES and Ix - yl < 0 imply IfCx) - f(y) I < E. 

(1) 

We will say that f is uniformly continuous iff is uniformly continuous 
on domCf). 

Note that if a function is uniformly continuous on its domain, 
then it must be continuous on its domain. This should be obvious; if 
it isn't, Theorem 17.2 and Definition 19.1 should be carefully scru­
tinized. Note also that uniform continuity is a property concerning 
a function and a set [on which it is defined]. It makes no sense to 
speak of a function being uniformly continuous at a point. 

Example 2 
We show that f(x) = -dz is uniformly continuous on any set of the 
form [a, 00) where a > O. Here a is fixed. Let E > O. We need to show 
that there exists 0 > 0 such that 

x ~ a, y::::: a and Ix - yl < 0 imply If (x) - f(y) I < E. (1) 

As in formula (1) of Example I, we have 

f(x) - fey) = (y - x)(y + x) . 
x2y2 

Ifwe can show that ~ is bounded on [a, 00) by a constant M, then 
we will take 0 = if. But we have 

y+x 1 1 1 1 2 
--=-+-<-+-=-
x2y2 x2y xy2 - a3 a3 a3 ' 

3 
so we set 0 = f~ • It is now straightforward to verify (1). In fact, x > "', 
y::::: a and Ix - yl < 0 imply 

If(x) - fCY) I = Iy - x1
2
· I; + xl < 0 (1 + 1 ) < 2~ 

x. Y x2y xyl. a l 



§19. Uniform Continuity 135 

We have shown that f is uniformly continuous on [a, 00) since II 
depends only on E and the set [a, 00). 

Example 3 
The functionf(x) = ~ is not uniformly continuous on the set (0, 00) 
or even on the set (0, 1). 

We will prove this by directly violating the definition of uni­
form continuity. The squeamish reader may skip this demonstration 
and wait for the easy proof in Example 6. We will show that (1) in 
Definition 19.1 fails for E = 1; that is 

for each II > 0 there exist x, y in (0, 1) such that 
Ix - yl < 8 and yet If(x) - f(y) I 2: 1. 

(1) 

[Actually, for this function, (1) in 19.1 fails for all E > 0.] 'Ib show (1) 
it suffices to take y = x + ~ and arrange for 

(2) 

[The motivation for this maneuver is to go from two unknowns, x 
and y, in (1) to one unknown, x, in (2).] By (1) in Example I, (2) is 
equivalent to 

(x + ~ - x)(x + ~ + x) 8(2x + ~) 
1 < =. (3) 

- X2(X + ~)2 2X2(X + ~)2 
l t suffices to prove (1) for II < ~. Th obtain (3), let us try x = 8 for no 
particular reason. Then 

ll(2ll + ~) 5;2 5 5 20 
---::;--=-=->--=->1 
2ll2(ll + ~)2 9;4 9112 - 9(~? 9 . 

We were lucky! Th summarize, we have shown that if 0 < II < ~, 
then If(ll) - fell + ~)I > I, so (1) holds with x = 8 and y = II + ~. 

Example 4 
III the functionf(x) = x2 uniformly continuous on [-7, 7]? Th see ifit 
iii, consider f > O. Note that If(x) - f(y) I = Ix2 

- y21 = Ix - yl·lx + YI· 
Since Ix + yl ~ 14 for x,y in [- 7,7], we have 

I{(x) {(.I1)1 < 14Ix yl for x,YE[- 7,7] . 
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Thus if /) = l~' then 

x,Y E [-7,7] and Ix - yl < /) imply If(x) - f(y) I < f. 

We have shown that f is uniformly continuous on [-7, 7]. A similar 
proof would work for f(x) = x2 on any closed interval. However, 

,~.:te.("" these results are not accidents as the next important theorem shows. 
(VII ---7> _ - _ - - - - - _ 
IA.r -\,0 
\t\e( e 19.2 Theorem. 

If f is continuous on a closed interval [a, b], then f is uniformly 
continuous on [a, b]. 

Proof 
Assume that f is not uniformly continuous on [a, b]. Then there 
exists f > 0 such that for each /) > 0 the implication 

"Ix - yl < /) implies If (x) - f(y) I < f" 

fails. That is, for each /) > 0 there exist x, y E [a, b] such that Ix-yl < /) 
and yet If(x) - f(y) I 2: f. Then for each n E N there exist xn, Yn 
in [a, b] such that IXn - Ynl < ~ and yet If(xn) - f(Yn) I 2: E. By 
the Bolzano-Weierstrass theorem 11.5, a subsequence (xnk ) of (xn) 
converges. Moreover, if Xo = limk-+oo xnk , then Xo belongs to [a, b]; 
see Exercise B.9. Clearly we also have Xo = limk-+ooYnk' Since f is 
continuous at Xo, we have 

so 

Since If(xnk ) - f(Ynk) I 2: E for all k, we have a contradiction. We 
conclude that f is uniformly continuous on [a, b]. • 

The preceding proof used only two properties of [a, b]: (a) bound­
edness, so that the Bolzano-Weierstrass theorem applies, and (b) a 
convergent sequence in [a, b] must converge to an element in [a, b). 
As noted prior to Theorem 11.B, sets with property (b) are called 
closed sets. Hence Theorem 19.2 has the following generalization. If' 
f is continuous on a closed and bounded set 8, then f is uniformly contin 
uous on 8. See also Theorems 21.4 and 13.12 that appear in optional 
sections. 
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Example 5 
In view of Theorem 19.2, the following functions are uniformly 
continuous on the indicated sets: x73 on [-13, 13], ~ on [0,400], 
X

l7 sin(tf) - e4x cos 2x on [-8n, 8n], and -!s on [i, 44]. 

19.3 Discussion. 
Example 5 illustrates the power of Theorem 19.2, but it still may not 
be clear why uniform continuity is worth studying. One of the im­
portant applications of uniform continuity concerns the integrability 
of continuous functions on closed intervals. 1b see the relevance of 
uniform continuity, consider a continuous nonnegative real-valued 
functiont on [0, 1]. For n E Nand i = 0, 1,2, ... , n -1, let 

Mi,n = sup {t(x) : X E [*, i~l]} and m· = inf {t(x) . x E [i. HI]} t,n .... . n' n . 

Then the sum of the areas of the rectangles in Figure 19.2(a) equals 

and the sum of the areas of the rectangles in Figure 19.2(b) equals 

l1.J.!l 
n n n n n 

(a) 

FIGURE 19.2 

1 n-l 

Ln = - Lml,n . 
n i=O 

f 

11.1.!1 
n n n n n 

(b) 

n-2 
n 
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The function f would turn out to be Riemann integrable provided 
the numbers Un and Ln are close together for large n, i.e., if 

lim (Un - Ln) = 0; 
n--+oo 

(1) 

see Exercise 32.6. Moreover, we would have f01 f(x)dx = lim Un = 
lim Ln. Relation (1) may appear obvious from Figure 19.2, but 
uniform continuity is needed to prove it. First note that 

for all n. Let E > O. By Theorem 19.2, f is uniformly continuous on 
[0, I], so there exists 8 > 0 such that 

x, Y E [0, 1] and Ix - yl < 8 imply If(x) - f(y) I < E. (2) 

Select N so that ~ < 8. Consider n > N; for i = 0, 1,2, ... , n - I, 
Theorem 18.1 shows that there exist Xi, Yi in [~, i~l] satisfyingf(xD = 
mi,n and f(Yi) = Mi,n. Since IXi - yd :::: * < ~ < 8, (2) shows that 

M i,n - mi,n = f(Yi) - f(Xi) < E, 

so 

1 n-1 1 n-1 

o :::: Un - Ln = - L(Mi,n - mi,n) < - L E = E. 
n i=O n i=O 

This proves (1) as desired. 

The next two theorems show that uniformly continuous func­
tions have nice properties. 

19.4 Theorem. 
Iff is uniformly continuous on a set Sand (sn) is a Cauchy sequence in 
S, then Cf(sn)) is a Cauchy sequence. 

Proof 
Let (sn) be a Cauchy sequence in S and let E > O. Since f is uniformly 
continuous on S, there exists 8 > 0 so that 

X,YES and Ix - YI < 8 imply If(x) f(y) I < (. (\) 
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Since (sn) is a Cauchy sequence, there exists N so that 

m, n > N implies ISn - sml < 8. 

From (1) we see that 

m, n > N implies If(sn) - f(sm)1 < E. 

This proves that Cf(sn)) is also a Cauchy sequence. 

Example 6 

• 
We show that f(x) = -!z is not uniformly continuous on (0,1). Let 
sn = ~ for n E N. Then (sn) is obviously a Cauchy sequence in 
(0, 1). Since f(sn) = n2

, Cf(sn)) is not a Cauchy sequence. Therefore 
f cannot be uniformly continuous on (0, 1) by Theorem 19.4. 

The next theorem involves extensions of functions. We say that 
a function f is an extension of a function f if 

domCf) ~ domCf) and f(x) = fcx) for all x E domCf). 

Example 7 
Letf(x) = xsin(~) for x E (0, ~]. The function defined by 

- { x sine 1 ) for 0 < x ::: .1 
f(x) = 0 x for x = 0 7r 

is an extension of f. Note that domCf) = (O,~] and domeD = [O,~]. 
[n this case,f is a continuous extension off. See Figure 19.3 as well 
as Exercises 17.3(f) and 17.9(c). 

Example 8 
Let g(x) = sin(~) for x E (O,~]. The function g can be extended 
lo a function g with domain [0, ~] in many ways, but g will not be 
continuous. See Figure 19.4. 

The function f in Example 7 is uniformly continuous [since f 
is), and f extends to a continuous function on the closed interval. 
The function g in Example 8 does not extend to a continuous func­
l ion on the closed interval, and it turns out that g is not uniformly 
continuous. These examples illustrate the next theorem. 
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FIGURE 19.3 

19.5 Theorem. 

/ 
/ 

/ 

y 

1. 
7f 

/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 

[(x) = x sin (~) 

A real-valued function f on Ca, b) is uniformly continuous on Ca, b) if 
and only ifit can be extended to a continuous function f on [a, b]. 

Proof 
First suppose that f can be extended to a continuous function f on 
[a, b]. Then f is uniformly continuous on [a, b] by Theorem 19.2, so 
clearly f is uniformly continuous on Ca, b). 

Suppose now thatf is uniformly continuous on Ca, b). We need to 
define f C a) and f Cb) so that the extended function will be continuous. 
It suffices for us to deal withfCa). We make two claims: 

if CSn) is a sequence in (a, b) converging 
to a, then ([(Sn)) converges, 

(1 ) 
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y 

1- - -------
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Graph 
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often near 
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1T 

g(x) = sin (~) 

-1 -- ------

FIGURE 19.4 

and 

if (sn) and (tn) are sequences in (a, b) converging 
to a, then limf(sn) = limf(tn). 

Momentarily accepting (1) and (2) as valid, we define 

lea) = limf(sn) for any sequence 
(sn) in (a, b) converging to a. 

(2) 

(3) 

Assertion (1) guarantees that the limit exists, and assertion (2) ~ar­
antees that this definition is unambiguous. The continuity of f at a 
follows directly from (3); see Exercise 17.15. 
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1b prove (1), note that (sn) is a Cauchy sequence, so (f( sn)) is 
also a Cauchy sequence by Theorem 19.4. Hence (f(sn)) converges 
by Theorem 10.11 . 1b prove (2) we create a third sequence (un) such 
that (sn) and (tn) are both subsequences of (un). In fact, we simply 
inter1eaf (sn) and (tn) : 

It is evident that lim Un = a, so limf(un) exists by (1). Theorem 11.2 
shows that the subsequences (f(sn)) and (f(tn)) of (f(un)) both must 
converge to limf(un), so limf(sn) = limf(tn). • 

Example 9 
Let hex) = sinx for x =1= O. The function it defined on lR by 

.Y 

{ 

sinx 

hex) = 1 x 
for x =1= 0 
for x = 0 

is an extension of h. Clearly h and it are continuous at all x =1= o. It 
turns out that it is continuous at x = 0 [see below], so h is uniformly 
continuous on (a, 0) and (0, b) for any a < 0 < b by Theorem 19.5. 
In fact, it is uniformly continuous on lR [Exercise 19.11]. 

We cannot prove the continuity of it at 0 in this book because 
we do not give a definition of sin x. The continuity of it at 0 reflects 
the fact that sin x is differentiable at 0 and that its derivative there is 
cos(O) = I, i.e., 

1 
sin x - sin 0 sin x 

1 = im = lim --; 
x->o X - 0 x->o X 

see Figure 19.5. The proof of this depends on how sin x is defined; 
see the brief discussion in 37.12. For a discussion of this limit and 
L'Hospital's rule, see Example 1 in §30. 

Here is another useful criterion that implies uniform continuity. 

19.6 Theorem. 
Let f be a continuous function on an interval I [I may be bounded or 
unbounded]. Let ro be the interval obtained by removing [rom I 'my 
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FIGURE 19.5 

endpoints that happen to be in I . Iff is differentiable on r and iff' is 
bounded on 1°, then f is uniformly continuous on I . 

Proof 
For this proofwe need the Mean Value theorem, which can be found 
in most calculus texts or later in this book [Theorem 29.3]. 

Let M be a bound for f' on I so that If' C x) I :'S M for all x. Let E > 0 
and let ~ = if. Consider a, bEl where a < band Ib - al < ~. By the 

Mean Value theorem, there exists x E Ca, b) such that f' Cx) = f(bt~(a), 
so 

IfCb) - fCa) I = If'Cx) I . Ib - al :'S Mlb - al < M~ = E. 

This proves the uniform continuity of f on I. • 
Example 10 
Let a > 0 and consider fCx) = ~ . Since f'Cx) = -~ we have 
I['ex) I :'S ~ on [a,oo). Hence f is uniformly continuous on [a, 00) 
by Theorem 19.6. For a direct proof of this fact, see Example 2. 
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Exercises 
19.1. Which ofthe following continuous functions are uniformly con­

tinuous on the specified set? Justify your answers. Use any 
theorems you wish. 

(a) rex) = X
l7 sin x - tf cos 3x on [0, ]f], 

(b) rex) = x3 on [0, 1], 

(c) rex) = x3 on (0, 1), 

(d) rex) = x3 on JR, 

(e) rex) = ~ on (0, 1], 

(t) rex) = sin ~ on (0, 1], 

(g) rex) = x2 sin ~ on (0, 1]. 

19.2. Prove that each of the following functions is uniformly continu­
ous on the indicated set by directly verifying the E-l) property in 
Definition 19.1. 

(a) rex) = 3x + 11 on JR, 

(b) rex) = x2 on [0,3], 

(c) rex) = ~ on [~, 00). 

19.3. Repeat Exercise 19.2 for the following. 

(a) rex) = X~l on [0,2], 

(b) rex) = ~:'l on [1,00). 

19.4. (a) Prove that if r is uniformly continuous on a bounded set S, 
then r is a bounded function on S. Hint: Assume not. Use 
Theorems 11.5 and 19.4. 

(b) Use (a) to give yet another proof that ~ is not uniformly 
continuous on (0, 1). 

19.5. Which ofthe following continuous functions is uniformly contin­
uous on the specified set? Justify your answers, using appropriate 
theorems or Exercise 19.4(a). 

(a) tan x on [0, n 
(b) tan x on [0, ¥), 

(c) ~ sin2 x on (0, ]fl, 



(d) ;<~3 on (0,3), 

(e) ;<~3 on (3,00), 

(1) ;<~3 on (4, 00). 
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19.6. (a) Let [(x) = .jX. for x :::: o. Show that f' is unbounded on (0,1] 
but that [ is nevertheless uniformly continuous on (0,1]. 
Compare with Theorem 19.6. 

(b) Show that [ is uniformly continuous on [1,00). 

19.7. (a) Let[be a continuous function on [0,00). Prove that if [is uni­
formly continuous on [k,oo) for some k, then [ is uniformly 
continuous on [0,00). 

(b) Use (a) and Exercise 19.6(b) to prove that .jX. is uniformly 
continuous on [0,00). 

19.8. (a) Use the Mean Value theorem to prove that 

I sin x - sinyl ~ Ix - yl 

for all x, y in JR.; see the proof of Theorem 19.6. 

(b) Show that sinx is uniformly continuous on R 

19.9. Let [(x) = x sin(~) for x#-O and [(0) = o. 
(a) Observe that [ is continuous on R; see Exercises 17.3(f) 

and 17.9(c). 

(b) Why is[ uniformly continuous on any bounded subset ofR? 

(e) Is [uniformly continuous on R? 

19.10. Repeat Exercise 19.9 for the function g where g(x) = x2 sin(~) for 
x#-O andg(O) = o. 

19.11. Accept the fact that the function h in Example 9 is continuous on 
lR; prove that it is uniformly continuous on R 

§20 Limits of Functions 

A function f is continuous at a point a provided the values [ex) are 
"I; r the value rca) for x near a [and x E domCf)). See Definition 17.1 
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and Theorem 17.2. It would be reasonable to view f(a) as the limit 
of the values f(x), for x near a, and to write limx-7af(x) = f(a). In 
this section we formalize this notion. This section is needed for our 
careful study of derivatives in Chapter 5, but it may be deferred until 
then. 

We will be interested in ordinary limits, left-handed and right­
handed limits and infinite limits. In order to handle these various 
concepts efficiently and also to emphasize their common features, 
we begin with a very general definition, which is not a standard 
definition. 

20.1 Definition. 
Let S be a subset of JR, let a be a real number or symbol 00 or -00 

that is the limit of some sequence in S, and let L be a real number 
or symbol +00 or -00. We write limx-7as f(x) = L if 

and 

f is a function defined on S, 

for every sequence (xn) in S with limit a, 
we havelimn-7oof(xn) = L. 

(1) 

(2) 

The expression "limx-7as f(x)" is read "limit, as x tends to a along S, 
off(x) ." 

20.2 Remarks. 
(a) From Definition 17.1 we see that a functionf is continuous at 

a in dom(f) = S if and only if limx-7as fCx) = f( a). 
(b) Observe that limits, when they exist, are unique. This fol­

lows from (2) of Definition 20.1, since limits of sequences are 
unique, a fact that is verified at the end of §7. 

We now define the various standard limit concepts for functions. 

20.3 Definition. 
(a) For a E JR and a functionf we write limx-7af(x) = L provided 

limx-7as f(x) = L for some set S = J \ {a} where J is an open 
interval containing a. limx-7a f(x) is called the [two-sided] limit 
of f at a. Note that f need not be defined at a and, even if f 
is defined at a, the value rea) need not qual limx (/ rex). In 
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fact, [(a) = limx---+ a [(x) if and only if [ is defined on an open 
interval containing a and [ is continuous at a. 

Cb) For a E JR and a function [ we write limx---+a+ [(x) = L provided 
lim,Has [(x) = L for some open interval S = (a, b). lim,Ha+ [(x) 
is the right-hand limit 0[[ at a. Again [ need not be defined at a. 

Cc) For a E JR and a function [ we write lim,Ha- [(x) = L provided 
limx---+as [(x) = L for some open interval S = (c, a). limx---+ u - [(x) 
is the left-hand limit o[[at a. 

Cd) For a function [ we write limx---+o<J(x) = L provided that 
limx->oos [(x) = L for some interval S = (c, (0). Likewise, we 
write limx->_oo[(x) = L provided limx---+_oo" j'(x) = L for some 
interval S = (-00, b). 

The limits defined above are unique; i.e., they do not depend on 
tpe exact choice of the set S [Exercise 20.19]. 

Example 1 
We have limx---+4 x3 = 64 and limx---+2 ~ = ~ because the functions x3 

and ~ are continuous at 4 and 2, respectively. It is easy to show that 
Iimx->o+ 1. = +00 and that limx->o- 1. = -00; see Exercise 20.14. It x '. x 
follows that lim,HO ~ does not exist; see Theorem 20,10, 

Example 2 
Consider limx---+2 x:~i. This is not like Example I, because the func­
tion under the limit is not even defined at x = 2. However, we can 
rewrite the function as 

x2 -4 (x-2)(x+2) 
-- = = x + 2 for x i- 2. 
x-2 x-2 

2 

Now it is clear that limx->2 xX:24 = limx---+2(x + 2) = 4. We should 
2 

Gmphasize that the functions xX:24 and x + 2 are not identical. The 
2 4 -domain of[(x) = :~2 is (-00, 2)U(2, (0) while the domain of[(x) = 

.v t 2 is JR, so that [ is an extension of f. This seems like nitpicking 
lind this example may appear silly, but the function [, not 1, arises 
Ilaturally in computing the derivative ofgex) = x2 at x = 2. Indeed, 
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using the definition of derivative we have 

g(x) - g(2) x2 - 4 
gl(2) = lim = lim --, 

x~2 X - 2 x~2 X - 2 

so our modest computation above shows that g'(2) = 4. Of course, 
this is obvious from the formula g'(x) = 2x, but we are preparing 
the foundations of limits and derivatives, so we are beginning with 
simple examples. 

Example 3 

Consider limx~ 1 !~ 1 
. We employ a trick that should be familiar by 

now; we multiply the numerator and denominator by .JX + 1 and 
obtain 

.JX -1 

x-I 

x-I 

(x - 1)(.JX + 1) 

1 

.JX+ 1 
for x =j:. 1. 

H h 1· ~-l - 1· 1 - 1 Wi h . ence we ave Imx~l x-I - Imx~l ~+l - 2· e ave Just 

laboriously verified that ifh(x) = .JX, then hl(l) = ~. 

Example 4 
Let [(x) = (X~2)3 for x =j:. 2. Then limx_oo[(x) = limx~_oo[(x) = 0, 
limx_2+ [(x) = +00 and limx~2- [(x) = -00. 

Th verify limx~oo[(x) = 0, we consider a sequence (xn) such 
that limn_ooxn = +00 and show that limn~oo[(xn) = O. This will 
show that limx~oos [(x) = 0 for S = (2, (0), for example. Exer­
cise 9.11 and Theorem 9.9 show that limn~oo(xn - 2i = +00, and 
then Theorem 9.10 shows that 

lim [(xn) = lim (xn - 2)-3 = o. 
n_oo n~oo 

(1 ) 

Here is a direct proof of (1). Consider E > O. For large n, we need 
IXn - 21-3 < EorC1 < IXn-21 3 0rc1l3 < IXn-21. Thelastinequality 
holds if Xn > C I/3 + 2. Since limn~oo Xn = +00, there exists N so 
that 

n > N implies Xn > E-1I3 + 2. 

Reversing the algebraic steps above, we find 

n > N implies IXn - 21 ·3 < 
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This establishes (1). 
Similar arguments prove limx .... - oo[(x) = 0 and limx .... 2+ [(x) = 

+ 00. 'Ib prove limx .... 2- [(x) = -00, consider a sequence (xn) such 
that Xn < 2 for all nand limn .... oo Xn = 2. Then 2 - Xn > 0 for all n 
andlimn .... 00(2-xn) = o. Hencelimn .... 00 (2-xni = ObyTheorem9.4, 
and Theorem 9.10 implies that limn .... 00 (2 - xnr 3 = +00. It follows 
[Exercise 9.10(b)] that 

lim [(xn) = lim (xn - 2)-3 = -00. 
n .... oo n .... oo 

(2) 

This proves that limx .... 2s [(x) = -00 for S = (-00,2), so that 
limx .... 2- [(x) = -00. Of course, a direct proof of (2) also can be given. 

The limits discussed above are confirmed in Figure 20.1. 

We will discuss the various limits defined in Definition 20.3 fur­
ther at the end df this section. First we prove some limit theorems 
in considerable generality. 

1 
f(x) = (x-2)3 

y 

~========~~r-~--~--~~========~---x 
-} 

-I 

FIGURE 20.1 
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20.4 Theorem. 
Let f1 and f2 be functions for which the limits L1 = limx~as f1(X) and 
L2 = limx~as 12 (x) exist and are finite. Then 

(i) limx~as (f1 + 12) (x) exists and equals L1 + L2; 
(li) limx-"';as(f112)(X) exists and equals L1L2; 

(iii) limx~as (f1/12)(x) exists and equals L1/L2 provided L2 =I 0 and 
12(x) =I 0 for XES. 

Proof 
The hypotheses imply that both f1 and12 are defined on S and that a 
is the limit of some sequence in S. Clearly the functions f1 + f2 and 
f112 are defined on S and so is f1/12 if 12 (x) =I 0 for XES. 

Consider a sequence (xn) in S with limit a. By hypotheses we have 
L1 = limn~oof1(Xn) and L2 = limn~oo12(xn). Theorems 9.3 and 9.4 
now show that 

and 

Thus (2) in Definition 20.1 holds for f1 + f2 and fIt2, so that (i) and (ii) 
hold. Likewise (iii) follows by an application of Theorem 9.6. • 

Some of the infinite variations of Theorem 20.4 appear in Exer­
cise 20.20. The next theorem is less general than might have been 
expected; Example 7 shows why. 

20.5 Theorem. 
Let f be a function for which the limit L = limx~as f(x) exists and is 
finite. If g is a function defined on if (x) : XES} U {L} that is continuous 
at L, then limx~as go f(x) exists and equals geL). 

Proof 
Note that g 0 f is defined on S by our assumptions. Consider a se­
quence (xn) in S with limit a. Then we have L = limn~oof(xn). Since 
g is continuous at L, it follows that 

geL) = lim g(f(xn)) = lim go [(xn). 
n~oo n ~oo 
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• 
Example 5 
rf f is a function for which the limit L = limx~af(x) exists and 
is finite, then we have limx~a If (x) I = ILl. This follows immediately 
from Theorem 20.5 withg(x) = 14 Similarly, we have limx~a efCx} = 
eL provided we accept the fact that g(x) = ~ is continuous on R 

Example 6 
[f f is a function for which limx~o+ f(x) = 0 and limx~oof(x) = 
~ , then we have limx~o+ efCx) = eO = I, limx~oo efCx} = d, 
Iimx~o+ sin(f(x)) = sin(O) = 0 and limx~oo sin(f(x)) = sin ~ = l. 

Example 7 
We give an example to show that continuity of g is needed in Theo­
rem 20.5. Explicitly, we give examples offunctionsf andg such that 
limx~of(x) = I,limx~lg(x) = 4andyetlimx~ogof(x)doesnotexist. 
One would expect this limit to exist and to equal 4, but in the example 
[(x) will equal 1 for arbitrarily small x while g(I) #- 4. The functions 
[andg are defined by f(x) = 1 +xsin ~ for x#- 0, g(x) = 4 for x #- I, 
and g(l) = -4. Clearly limx~of(x) = 1 and limx~l g(x) = 4. Let 
I~" = ~ for n E N. Then f(x,,) = 1 + ~ sin(n;); hence f(x,,) = 1 for 
even nand f(x,,) #- 1 for odd n . Therefore g 0 f(xn) = -4 for even n 
nnd go f(xn) = 4 for odd n. Since limn~oo Xn = 0, we conclude that 
Iimx~og 0 f(x) does not exist. 

As in Theorem 17.2, the limits defined in Definitions 20.1 
II nd 20.3 can be recast to avoid sequences. First we state and prove 
II typical result of this sort. Then, after Corollary 20.8, we give a 
peneral scheme without proof. 

:W.6 Theorem. 
I'(l l [ be a function defined on a subset S of lR, let a be a real number 
I hal is the limit of some sequence in S, and let L be a real number. Then 
Ilmx~as f(x) = L if and only if 

for each E > 0 there exists ~ > 0 such that 
XES and Ix - al < 8 imply If(x) - LI < E. 

(1) 
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Proof 
We imitate our proof of Theorem 17.2. Suppose that (1) holds, and 
consider a sequence (xn) in S such that limn--+ oo Xn = a. 1b show 
lim n--+ oo f(x n) = L, consider E > O. By (1) there exists 8 > 0 such 
that 

XES and Ix - al < 8 imply If(x) - LI < E. 

Since lim n--+ oo Xn = a, there exists a number N such that n > N 
implies IXn - al < 8. Since Xn E S for all n, we conclude that 

n > N implies If(xn) - LI < E. 

Thus limn--+ oo f(xn) = L. 
Now assume that limx--+a8 f(x) = L, but that (1) fails. Then for 

some E > 0 the implication 

/Ix E S and Ix - al < 8 imply If(x) - LI < E" 

fails for each 8 > O. Then for each n E N there exists Xn in S 
where IXn - al < ~ while If(xn) - LI ~ E. Hence (xn) is a sequence 
in S with limit a for which limn--+oof(xn) = L fails. Consequently 
limx--+ as f(x) = L must also fail to hold. • 

20.7 Corollary. 
Let f be a function defined on 1 \ {a} for some open intervall containing 
a, and let L be a real number. Then limx--+ a f( x) = L if and only if 

for each E > 0 there exists 8 > 0 such that 
o < Ix - al < 8 implies If(x) - LI < E. 

20.8 Corollary. 

(1) 

Let f be a function defined on some interval (a, b), and let L be a real 
number. Then limx--+a+ f(x) = L if and only if 

for each E > 0 there exists 8 > 0 such that 
a < x < a + 8 implies If(x) - LI < E. 

20.9 Discussion. 

(1) 

We now consider limx--+sf(x) = L where L can be finite, +00 or -
and s is a symbol a, a+, a- , 00 or - 00 [here a E lR] . Note that WI 
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have fifteen [= 3 . 5] different sorts of limits here. It turns out that 
limx--+s f(x) = L if and only if 

for each there exists ___ such that 
___ implies __ _ (1) 

For finite limits L, the first and last blanks are filled in by "E > Oil 
and "If(x) - LI < E." For L = +00, the first and last blanks are filled 
in by "M > Oil and "f(x) > M," while for L = -00 they are filled in 
by "M < 0" and "f(x) < M." When we consider limx--+af(x), then f 
is defined on J \ {a} for some open interval J containing a, and the 
second and third blanks are filled in by "8 > 0" and "0 < Ix - al < 8." 

Por limx--+a+ f(x) we require f to be defined on an interval (a, b) and 
lhe second and third blanks are filled in by "8 > Oil and "a < x < 
a + 8." For limx--+a- f(x) we require f to be defined on an interval 
(e, a) and the second and third blanks are filled in by "8 > 0" and 

\ lIa - 8 < x < a." For limx--+oof(x) we require f to be defined on 
an interval (c,oo) and the second and third blanks are filled in by 
"et < 00 and "et < x." A similar remark applies to limx--+-oof(x). 

The assertions above with L finite and s equal to a or a+ are 
contained in Corollaries 20.7 and 20.8. 

20.10 Theorem. 
I ,et f be a function defined on J \ {a} for some open interval J containing 
u Then limx--+af(x) exists if and only if the limits limx--+a+ f(x) and 
l imx--+a - f(x) both exist and are equal, in which case all three limits are 
I.qual. 

I'roof 
Su ppose that limx--+af(x) = L and that L is finite. Then (1) in Corol­
lary 20.7 holds, so (1) in Corollary 20.8 obviously holds. Thus we 
hove limx--+a+ [(x) = L; similarly limx--+a- f(x) = L. 

Now suppose that limx--+a+ f(x) = limx--+a- f(x) = L where L is 
I nite. Consider E > 0; we apply Corollary 20.8 and its analogue for 
(/ to obtain 81 > 0 and 82 > 0 such that 

a < x < a + 81 implies If(x) - LI < E 

IllId 

a 82 < X. < a implies If(x.) - LI < f. 
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1[8 = min{81, 82}, then 

o < Ix - al < 8 implies I[Cx) - LI < E, 

so limx-4a[Cx) = L by Corollary 20.7. 
Similar arguments apply if the limits L are infinite. For example, 

suppose that limx-4afCx) = +00 and consider M > O. There exist 
8 > 0 such that 

o < Ix - al < 8 implies [Cx) > M. Cl) 

Then clearly 

a < x < a + 8 implies [Cx) > M (2) 

and 

a - 8 < x < a implies [Cx) > M, (3) 

so that limx-4a+ [Cx) = limx-4a- [Cx) = +00. 
As a last example, suppose that limx-4a+ [Cx) = limx-4a- [Cx) 

+00. For each M > 0 there exists 81 > 0 so that (2) holds, and ther 
exists 82 > 0 so that (3) holds. Then (1) holds with 8 = min{81,82 }. 

We conclude that limx-4a[Cx) = +00. 

20.11 Remark. 
Note that limx-4-oo[Cx) is very similar to the right-hand limit 
limx-4a+ [Cx). For example, if L is finite, then limx-4a+ [Cx) = L If 
and only if 

for each E > 0 there exists a > a such that 
o < x < a implies I[Cx) - LI < E, 

(1) 

since a > a ifand only if a = a+8 for some 8 > 0; see Corollary 20.8. 
If we set a = -00 in (1), we obtain the condition 20.9(1) equivalent 
to limx-4-oo[Cx) = L. 

In the same way, the limits limx-4oo[Cx) and limx-4a- [Cx) wl\l 
equal L [L finite] if and only if 

for each E > 0 there exists a < a such that 
a < x < a implies I[Cx) - LI < E. 

Obvious changes are need d if L is infinite. 

(2) 



Exercises 155 

II; ercises 
.W.l. Sketch the function f(x) = ~ . Determine, by inspection, the 

limits limHoof(x), limHo+ f(x), limHo- f(x), limx-+-oof(x) and 
limx-+of(x) when they exist. Also indicate when they do not exist. 

~O.2. Repeat Exercise 20.1 for f(x) = ~. 

lO.3. Repeat Exercise 20.1 for f(x) = Si~X. See Example 9 of §19. 

~().4 . Repeat Exercise 20.1 for f(x) = x sin ~. 

~O.5 . Prove the limit assertions in Exercise 20.1. 

~().6. Prove the limit assertions in Exercise 20.2. 

~(). 7. Prove the limit assertions in Exercise 20.3. 

~().8 . Prove the limit assertions in Exercise 20.4. 

;tOl9. Repeat Exercise 20.1 for f(x) = 1-/. 
u. LO. Prove the limit assertions in Exercise 20.9. 

I). 11. Find the following limits. 

1
. x2_a2 

Cal lmx-+a x-a 

C ) 1· x'l-a3 e lmx-+a x=a 
Hint for (c): x3 - a3 = (x - a)(x2 + ax + a2). 

0. 12. Cal Sketch the functionf(x) = (x - 1rl(x - 2)- 2. 

(b) Determine limH2+ f(x),limH 2- f(x),limHI + f(x) andlimx-+I- f(x) . 

Ce) Determine limx-+ zf(x) and limHd(x) if they exist. 

11. 13. Prove that iflimx-+af(x) = 3 and limHag(x) = 2, then 

Cal limx-+a[3f(x) + g(X)2] = 13, 

(b) 1" 1 1 
lmx-+a g(x) = 2' 

Ce) limx-+a J3f(x) + 8g(x) = 5. 

n. 14. Prove that limx-+o+ ~ = +00 and limx ..... o- ~ = -00. 

0 . 15. Prove limx ..... - oo f(x) = 0 and limH 2+ f(x) = +00 for the function 
f in Example 4. 

0.16. u ppose that the limits Ll = limx-+a+ fl (x) and L2 = limx-+a+ hex) 
exist. 
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(a) Show that ifJl(x) ~ fz(x) for all x in some interval (a, h), then 
LI ~L2. 

(b) Suppose that, in fact, fl(x) < fz(x) for all x in some interval 
(a, h). Can you conclude that LI < L2? 

20.17. Show that iflimHa+ fleX) = limx~a+ hex) = Land ifJl(x) ~ f2(X) ~ 
f3(X) for all x in some interval (a, h), then limx~a+ f2(X) = L. Warn­
ing: This is not immediate from Exercise 20.16(a), because we are 
not assuming that limx~a+ fz(x) exists; this must be proved. 

20.18. Let f(x) = ~-I for x "I o. Show that limHof(x) exists and 
determine its value. Justify all claims. 

20.19. The limits defined in Definition 20.3 do not depend on the choice 
of the set S. As an example, consider a < hI < h2 and suppose 
thatf is defined on (a, h2). Show that if the limitlimHas f(x) exists 
for either S = (a, hI) or S = (a, h2), then the limit exists for the 
other choice of S and these limits are identical. Their common 
value is what we write as limx~a+ f(x). 

20.20. Let fl and fz be functions such that limx~as fl (x) = +00 and such 
that the limit L2 = limx~as fz(x) exists. 

(a) Prove that limHasCfl + f2)(X) = +00 if L2 "I -00. Hint: Use 
Exercise 9.11. 

(b) Prove that limHasCfIf2)(x) = +00 if 0 < L2 ~ +00. Hint: Use 
Theorem 9.9. 

(c) Prove that limHasCfIf2)(X) = -00 if -00 ~ L2 < o. 
(d) What can you say about limHasCfIf2)(X) if L2 = O? 

§21 * More on Metric Spaces: 
Continuity 

In this section and the next section we continue the introduction to 
metric space ideas initiated in §13. More thorough treatments appear 
in [25], [33] and [36]. In particular, for this brief introduction we avoid 
the technical and somewhat confusing matter of relative topo10 
gies that is not, and should not be, avoided in the more thorough 
treatments. 
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We are interested in functions between metric spaces (S, d) and 
(8*, d* ). We will write "f: S ~ S*" to signify that domCf) = S and that 
r takes values in S*, i.e., [(x) E S* for all s E S. 

~ 1.1 Definition. 
Consider metric spaces (S, d) and (S*, d*) . A function f: S ~ S* is 
r:ontinuous at So in S if 

for each E > 0 there exists ~ > 0 such that 
des, so) < ~ implies d*Cf(s),f(so)) < E. 

(1) 

We say that [ is continuous on a subset E of S if [ is continuous at 
(loch point of E. The function [ is uniformly continuous on a subset E 
oC S if 

for each E > 0 there exists ~ > 0 such that 
s, tEE and des, t) < ~ imply d*Cf(s),f(t)) < E. 

i 
I':xample 1 

(2) 

Let S = S* =}R andd = d* = dist where, as usual, dist(a, b) = la-bl. 
'I'he definition of continuity given above is equivalent to that in §17 
n view of Theorem 17.2. The definition of uniform continuity is 

(,quivalent to that in Definition 19.1. 

.·:xa.mple 2 
I n several variable calculus, real-valued functions with domain ]Rz 

or]R3, or even ]Rk, are extensively studied. This corresponds to the 
C:lse S =}Rk , 

S'" = ]R and d* = dist. We will not develop the theory, but generally 
peaking, functions that look continuous will be. Some examples on 

11{2 are [(x}, xz) = xi + X~ , [(Xl, X2) = xlxzJxi + x~ + I, reXI, xz) = 
C:OS(XI - x~). Some examples on ]R3 are g(Xl' xz, X3) = xi + x~ + x~, 
H(xl, x2 , X3) = XIXZ + Xlx3 + XZX3, g(XI' X2, X3) = e"' 1 +x2 log(x~ + 2) . 

• ·:xample 3 
Functions with domain ]R and values in ]R2 or }R3, or generally ]Rk, 

Ire also studied in several variable calculus. This corresponds to the 
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case S = JR d = dist S* = JRk and , , 

The images of such functions are what nonmathematicians often 
would call a "curve" or "path." In order to distinguish a function from 
its image, we will adhere to the following terminology. Suppose that 
y: JR ~ JRk is continuous. Then we will call y a path; its image y(lR) 

in JRk will be called a curve. We will also use this terminology if y is 
defined and continuous on some subinterval ofJR, such as [a, b); see 
Exercise 21. 7. 

As an example, consider y where yet) = (cos t, sin t). This func­
tion maps JR onto the circle in JR2 about (0, 0) with radius 1. More 
generally yoU) = (a cos t, b sin t) maps JR onto the ellipse with 

2 2 

equation ~2 + ~ = 1; see Figure 21.1. 
The graph of an ordinary continuous function J: JR ~ JR looks 

like a curve, and it is! It is the curve for the path Yet) = (t, J(t)). 
Curves in JR3 can be quite exotic. For example, the curve for the 

path h(t) = (cos t, sin t, ·D is a helix. See Figure 21.2. 

We did not prove that any of the paths above are continuous, 
because we can easily prove the following general fact. 

y 

• t o 7r 7r 

"2 
domain of 1'0 

image of 1'0 

FIGURE 21.1 
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z 

• t 
o 7r 

2" 
domain of h 

x 

FIGURE 21.2 

~1.2 Proposition. 
I r fl, fz, ... ,[k are continuous real-valued functions on :IR, then 

defines a path in :IRk . 

• >roof 
We need to show that y is continuous. Recall formula (1) in the proof 
of Lemma 13.3 and Exercise 13.2: 

d*(x,y):::: .Jkmax{lxj - Yjl :} = 1,2, ... , k}. (1) 

onsider to E :IR and E > O. For each} = 1,2, ... , k, there exists d} > 0 
such that 

E 
It - tol < dj implies l!j(t) - !j(to) I < ,Jk' 

I'or d = min{dl, d2, ... , dk} and It - tol < d, we have 

E 
max{I!j(t) - !j(to) I :} = 1,2, ... , k} < ,Jk' 

110 by (1) we have d*(y(t), y(to)) < E. Thus y is continuous at to. • 

The next theorem shows that continuity is a topological property; 
\ Discussion 13.7. 



160~3.~~~ ______________________ ___ 

21.3 Theorem. 
Consider metric spaces (S, d) and (S*, d*). A function [: S 
continuous on S i[ and only i[ 

[-1(U) is an open subset o[ S 
[or every open subset U o[ S* . 

Recall that [-l(U) = {s E S : res) E U} . 

Proof 
Suppose that [ is continuous on S. Let U be an open subset of S*, and 
consider So E [-1(U). We need to show that So is interior to [-l(U). 
Since fC so) E U and U is open, we have 

{s* E S* : d*(s*,f(so)) < E} ~ U 

for some E > O. Since f is continuous at so, there exists 0 > 0 such 
that 

des, so) < 0 implies d*(f(s),f(so)) < E. (3) 

From (2) and (3) we conclude that des, so) < 0 implies res) E U, 
hence s E [-l(U). That is, 

{s E S : des, so) < o} ~ [-l(U), 

so that So is interior to [-leU). 
Conversely, suppose (1) holds, and consider So E Sand E > O. 

Then U = {s* E S* : d*(s*,f(so)) < E} is open in S*, so [-leU) is 
open in S. Since So E [-leU), for some 8 > 0 we have 

{s E S : des, so) < o} ~ [-\U). 

It follows that 

des, so) < 0 implies d*(f(s),f(so)) < E. 

Thus [ is continuous at so. • 
Continuity at a point is also a topological property; see Exer­

cise 21.2. Uniform continuity is a topological property, too, but if we 
made this precise we would be led to a special class of topologies 
given by so-called "uniformities." 

We will show that continuous functions preserve two important 
topological properties: compactness and connectedness, which will 



- §21. • More on Metric Spaces: Continuity 161 

I II defined in the next section. The next theorem and corollary 
Illustrate the power of compactness. 

J l.4 Theorem. 
(:onsider metric spaces (S, d), (S*, d*) and a continuous function f: S ~ 
I' • Let E be a compact subset of S. Then 

(i) feE) is a compact subset of S*, and 
(li) f is uniformly continuous on E. 

.. roof 
" i> prove (i), let U be an open cover of feE). For each U E U, f-l(U) 
I open in S. Moreover, if-leU) : U E U} is a cover of E. Hence there 
tl ist Ul , U2, . .. , Urn in U such that 

Then 

feE) ~ ul U u2 U ... U Urn, 

o {Ul , u2 , .. • , Urn} is the desired finite subcover ofU for feE) . This 
proves (i). 

Th establish (ii), let E > O. For each sEE there exists ~s > 0 [this 
X depends on s] such that 

E 
des, t) < ~s implies d*(f(s),f(t)) < -. 

2 
(1 ) 

I "~ reach sEE, let Vs = {t E S : des, t) < ~~s}. Then the family 
V = {Vs : sEE} is an open cover of E. By compactness, there exist 
11 nitely many points Sl, S2, ... , Sn in E such that 

I.et ~ = ~ min{~stl ~S2 ' • •• , ~sJ . We complete the proofby showing 

s, tEE and des, t) < ~ imply d*(f(s),f(t)) < E. (2) 

For some k in {I, 2, .. . , n} we have s E VSk/ i.e., des, Sk) < ~~Sk ' Also 
w have 
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Therefore applying (1) twice we have 

E 
d*(f(S),f(Sk)) < 2: and 

Hence d*(f(s),f(t)) < E as desired. 

Assertion (ii) in Theorem 21.4 generalizes Theorem 19.2. Th 
next corollary should be compared with Theorem 18.1. 

21.5 Corollary. 
Let f be a continuous real-valued function on a metric space (S, d). If E 
is a compact subset of S, then 

(i) f is bounded on E, 
(ll) f assumes its maximum and minimum on E . 

Proof 
Since fCE) is compact in ]R, the set fee) must be bounded by 
Theorem 13.12. This implies (i) . 

Sincef(E) is compact, it contains supf(E) by Exercise 13.13. ThU8 
there exists So E E so that f(so) = supf(E). This tells us that f 
assumes it maximum value on E at the point so. Similarly, f assume 
its minimum on E. 

Example 4 

All the functions f in Example 2 are bounded on any compact subset 
of]R2, i.e., on any closed and bounded set in ]R2. Likewise, all the 
functions g in Example 2 are bounded on each closed and bounded 
set in ]R3 . 

Example 5 
Let y be any path in ]Rk; see Example 3. For -00 < a < b < 00, th(, 
image y([a, b]) is closed and bounded in]Rk by Theorem 21.4. Notl. 
that Corollary 21.5 does not apply in this case, since S* is ]Rk I not R 
Theorem 21.4 also tells us that y is uniformly continuous on [a, bl. 
Thus if E > 0, there exists 8 > 0 such that 

s, t E [a, b) and Is - tl < 8 imply d(y(s), yet)) < E. 

This fact is useful in several variable calculus, where one integra t(l/~ 

along paths y; compare Discussion 19.3. 
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bxercises 
21.1. Show that if the functions fl.f2, . .. .fk in Proposition 2l.2 are 

uniformly continuous, then so is y. 

21.2. Consider f: S ~ S* where (S, d) and (S*, d*) are metric spaces. 
Show that f is continuous at So E S if and only if 

for every open set U in S* containingf(so), there is 
an open set V in S containing So such that f(V) ~ U. 

21.3. Let (S, d) be a metric space and choose So E S. Show that f(s) = 
des, so) defines a uniformly continuous real-valued function f on 
S. 

21.4. Consider f: S ~ ~ where (8, d) is a metric space. Show that the 
following are equivalent: 

(i) f is continuous; 
(ii) f- 1((a, b)) is open in S for all a < b; 

(iii) f- 1((a, b)) is open in S for all rational a < b. 

21.5. Let E be a noncompact subset of ~k. 

(a) Show that there is an unbounded continuous real-valued 
function on E. Hint: Either E is unbounded or else its clo­
sure E- contains Xo e E. In the latter case, use ~ where 
g(x) = d(x, xo). 

(b) Show that there is a bounded continuous real-valued function 
on E that does not assume its maximum on E. 

21.6. For metric spaces (SI, d l ), (82 , d2), (83 , d3), prove that iff: SI ~ S2 
and g: 82 ~ 83 are continuous, then g 0 f is continuous from SI 

into S3. Hint: It is somewhat easier to use Theorem 2l.3 than to 
use the definition. 

21. 7 . (a) Observe that if E ~ 8 where (S, d) is a metric space, then 
(E, d) is also a metric space. In particular, if E ~ ~, then 
dCa, b) = la - bl for a, bEE defines a metric on E. 

(b) For y: [a, b] ~ ~k, give the definition of continuity of y. 

21.8. Let (8, d) and (8*, d*) be metric spaces. Show that if f: 8 ~ 8* is 
uniformly continuous, and if (sn) is a Cauchy sequence in 8, then 
(f(sn)) is a Cauchy sequence in 8* . 

21.9. W say a function f maps a set E onto a set F provided feE) = F . 
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(a) Show that there is a continuous function mapping the unit 
square 

onto [0, I). 

(b) Do you think there is a continuous function mapping [0,1 J 
onto the unit square? 

21.10. Show that there exist continuous functions 

(a) mapping (0,1) onto [0, I], 

(b) mapping (0, 1) onto JR, 

(e) mapping [0, 1] U [2,3] onto [0, I). 

21.11. Show that there do not exist continuous functions 

(a) mapping [0,1] onto (0, I), 

(b) mapping [0, 1] onto R 

§22 * More on Metric Spaces: 
Connectedness 

Consider a subset E of~ that is not an interval. As noted in the proof 
of Corollary 18.3, the property 

Yl, Y2 E E and Yl < Y < Y2 imply Y E E 

must fail. So there exist Yl, Y2, Y in ~ such that 

Yl < Y < Y2, Yl,Y2 E E, y~E. C*) 

The set E is not "connected" because Y separates E into two pieces. 
Put another way, if we set U1 = C-oo,y) and U2 = Cy, 00), then we 
obtain disjoint open sets such that 

En U2 # 0. 

The last observation can be promoted to a useful general defi nition . 
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l2.1 Definition. 
I.(,t E be a subset of a metric space (S, d). The set E is disconnected if 
t here are disjoint open subsets U1 and U2 in S such that 

E ~ U1 U U2 , 

En U1 "# 0 and En U2 "# 0. 

A set E is connected if it is not disconnected. 

I ~xample 1 

(1) 

(2) 

As noted before the definition, sets in lR that are not intervals are 
disconnected. Conversely, intervals in lR are connected. Th prove 
I his from the definition, consider an interval I and assume open sets 
II I and U2 exist as described in Definition 22.1. Select a1 E In U1 
and a2 E In U2. We may suppose that a1 < a2. Let 

\ 

L1earlya1 < b :::: a2. Since bE I, we must have bE U1 or bE U2 and 
Ilot both. Hence for some € > 0, we have either 

(1) 

or 

(2) 

In case (I), we have a1 < b < a2 and (b, a2) n U1 "# 0, so that b 
ca nnot be an upper bound of [aI, a2) n U1 much less a least upper 
hound. In case (2), we have U1 n (b - E, b) = 0 . If b is an upper 
hound for [aI, a2) nUl, then so is b - E in which case b cannot be the 
It:ast upper bound for this set. Both cases lead to a contradiction, so 
I must be connected. 

22.2 Theorem. 
Consider metric spaces (S, d), (S*, d*), and let f: S -+ S* be continuous. 
IrE is a connected subset of S, then f (E) is a connected subset of S*. 

I 'roof 
Assume feE) is not connected in S*. Then there exist disjoint open 
Ills VI and V2 in S* such that 

(1) 
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feE) n VI f. 0 and feE) n Vz f. 0. 

Let U1 = f-1(VI) and Uz = f-1(Vz). Then U1 and Uz are disjoint 
open sets in S, E ~ U1 U Uz, En U1 f. 0 and E n Uz f. 0. • 

The next corollary generalizes Theorem 18.2 and its corollary. 

22.3 Corollary. 
Let f be a continuous real-valued function on a metric space (S, d). If E 
is a connected subset of S, then feE) is an interval in lR. In particular, f 
has the intermediate value property. 

Example 2 
Curves are connected. That is, if y is a path in IRk as described in 
Example 3 of §21 and I is a subinterval of IR, then the image y(I) is 
connected in IRk. 

22.4 Definition. 
A subset E of a metric space (S, d) is said to be path-connected if, 
for each pair s, t of points in E, there exists a continuous function 
y: [a, b] ---+ E such that y( a) = sand y(b) = t. We call y a path. 

22.5 Theorem. 
If E in (S, d) is path-connected, then E is connected. [The failure of the 
converse is illustrated in Exercise 22.4.] 

Proof 
Assume E is disconnected by disjoint open sets U1 and Uz: 

E ~ U1 U UZ, 

En U1 f. 0 and En Uz f. 0 . 

(1) 

(2) 

Select SEE n U1 and tEE n Uz . Let y: [a, b] ---+ E be a path wher 
Yea) = sand y(b) = t. Let F = y([a, b]). Then (1) and (2) hold with 
F in place of E. Thus F is disconnected, but F must be connected by 
Theorem 22.2. • 

Figure 22.1 gives a path-connected set and a disconnected set in 
]Rz. 
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\ 

path-connected 

FIGURE 22.1 
disconnected 

convex not convex 

FIGURE 22.2 

Example 3 
Many familiar sets in IRk such as the open ball {x : d(x, 0) < r}, the 
closed ball {x: d(x, 0) ~ r} and the cube 

{x: max{lxjl :j = 1,2, ... , k} ~ I} 

are convex. A subset E of IRk is convex if 

x,Y E E and 0 < t < 1 imply tx + (1 - t)y E E, 

i.e., whenever E contains two points it contains the line segment 
connecting them. See Figure 22.2. Convex sets E in IRk are always 
path-connected. This is because yet) = tx + (1 - t)y defines a path 
y : [0, 1] --+ E such that yeO) = Y and y(l) = x. For more details, see 
any book on several variable calculus. 

We end this section with a discussion of some very different 
metric spaces. The poi.nts in these spaces are actually functions 
th ' mselves. 



168 3. Continuity 

22.6 Definition. 
Let S be a subset of R Let C( S) be the set of all bounded continuous 
real-valued functions on S and, for f,g E C(S), let 

d(f,g) = sup{lf(x) - g(x) I : XES}. 

With this definition, C(S) becomes a metric space [Exercise 22.6]. 
Now note that a sequence Cfn) in this metric space converges to a 
point [function!] f provided limn~oo dCfn, n = 0, that is 

lim [suP{lfn(x) - f(x) I : XES}] = O. 
n~oo 

(*) 

Put another way, for each E > 0 there exists a number N such that 

Ifn(x) - f(x) I < E for all XES and n > N . 

We will study this important concept in the next chapter, but without 
using metric space terminology. See Definition 24.2 and Remark 24.4 
where (*) is called uniform convergence. 

A sequence Cfn) in C( S) is a Cauchy sequence with respect to 
our metric exactly when it is uniformly Cauchy as defined in Defi­
nition 25.3. In our metric space terminology, Theorem 25.4 simply 
asserts that C( S) is a complete metric space. 

Exercises 
22.1. Show that there do not exist continuous functions 

(a) mapping [0,1] onto [0, 1] U [2, 3], 

(b) mapping (0, 1) onto Q. 

22.2. Show that {(Xl, X2) E ]R2 : xi + X~ = I} is a connected subset oflR2. 

22.3. Prove that if E is a connected subset of a metric space (8, d), then 
its closure E- is also connected. 

22.4. Consider the following subset oflR2
: 

E= {(x, sin~) :XE(O,l]}i 

E is simply the graph of [(x) = sin ~ along the interval (0, 1]. 

(a) Sketch E and determine its closure E . 
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(b) Show that E- is connected. 

(c) Show that E- is not path-connected. 

22.5. Let E and F be connected sets in some metric space. 

(a) Prove that if En F i= 0, then E U F is connected. 

(b) Give an example to show that E n F need not be connected. 
Incidentally, the empty set is connected. 

22.6. (a) Show that C(S) given in Definition 22.6 is a metric space. 

(b) Why did we require the functions in C( S) to be bounded when 
no such requirement appears in Definition 24.2? 

22.7. Show that the metric space B in Exercise 13.3 can be regarded as 
C(N). 

22.8. Consider C(S) for a subset S ofR For a fixed So in S, define FCf) = 
f(so). Show that F is a uniformly continuous real-valued function 
on the metric space C(S). 

22.9. Consider f,g E C(S) where S £ R Let F(t) = tf + (1 - t)g. Show 
that F is a uniformly continuous function from lR into C(S). 

22.10. Letfbe a uniformly continuous function in C(lR). For each x E lR, 
let fx be the function defined by fx(y) = f(x + y). Let F(x) = fx; 
show that F is uniformly continuous from lR into C(lR). 

22.11. Consider C(S) where S £ lR, and let [consist of allf in C(S) such 
thatsup{lf(x)1 : XES} ::s l. 
(a) Show that [is closed in C(S). 

(b) Show that C(S) is connected. 

(c) Show that [is connected. 

22.12. Consider a subset [ of C(S), S £ lR. A function fo in [ is interior to 
[ if there exists a finite subset F of S and an E > a such that 

if E C(S) : If(x) - fo(x) I < E for x E F} £ [. 

The set [ is open if every function in [ is interior to [. 

(a) Reread Discussion 13.7. 

(b) Show that the family of open sets defined above forms a topol­
ogy for C( S). Remarks. This topology is different from the one 
given by the metric in Definition 22.6. In fact, this topology 
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does not come from any metric at all! It is called the topology 
of pointwise convergence and can be used to study the conver­
gence in Definition 24.1 just as the metric in Definition 22.6 
can be used to study the convergence in Definition 24.2. 

22.13. Show that a function f: R ~ R is continuous if and only ifits graph 
G = {(x,f(x)) : X E R} is connected and closed in R2 . See C.E. 
Burgess's article, Continuous Functions and Connected Graphs, 
American Mathematical Monthly, vol. 97 (1990), pp. 337-339. 



CHAPTER 

Sequences and 
Series of 
Functions 

In this chapter we develop some of the basic properties of power 
series. In doing so, we will introduce uniform convergence and il­
lustrate its importance. In §26 we prove that power series can be 
differentiated and integrated term-by-term. 

§23 Power Series 

Given a sequence (an)~o of real numbers, the series L~o anxn is 
called a power series. Observe the variable x. Thus the power series 
is a function of x provided it converges for some or all x. Of course, 
it converges for x = 0; note the convention 00 = 1. Whether it 
converges for other values of x depends on the choice of coefficients 
(an). It turns out that, given any sequence (an), one of the following 
holds for its power series: 

(a) the power series converges for all x E 1R; 
(b) the power series converges only for x = 0; 
(c) the power series converges for all x in some bounded interval 

centered at 0; the interval may be open, half-open or closed. 

171 
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These remarks are consequences of the following important 
theorem. 

23.1 Theorem. 
For the power series L anxn, let 

1 
,8 = limsuplanl 11n and R= p' 

[If,8 = 0 we set R = +00, and if,8 = +00 we set R = 0.] Then 
(i) the power series converges for Ixl < R; 

(li) the power series diverges for Ixl > R. 

R is called the radius of convergence for the power series. Note 
that (i) is a vacuous statement if R = 0 and that (ii) is a vacuous 
statement if R = +00. Note also that (a) above corresponds to the 
case R = +00, (b) above corresponds to the case R = 0, and (c) above 
corresponds to the case 0 < R < +00. 

Proof of Theorem 23.1 
The proof follows quite easily from the Root Thst 14.9. Here are the 
details. We want to apply the Root Thst to the series L anxn. So for 
each x E lR let (1;'( be the number or symbol defined in 14.9 for the 
series L anxn. Since the nth term of the series is anxn, we have 

ax = lim sup lanxnll in = lim sup Ixllanl 11n = Ixl·limsup lanl 11n = ,8lxl. 

The third equality is justified by Exercise 12.6(a). Now we consider 
cases. 

Case 1. Suppose 0 < R < +00. In this case ax = ,8lxl = W. 
If Ixl < R then ax < I, so the series converges by the Root Thst. 
Likewise, if Ixl > R, then ax > 1 and the series diverges. 

Case 2. Suppose R = +00. Then ,8 = 0 and ax = 0 no matter what 
x is. Hence the power series converges for all x by the Root Thst. 

Case 3. Suppose R = O. Then,8 = +00 and ax = +00 for x#- O. 
Thus by the Root Thst the series diverges for x#- o. • 

Recall that if lim I an+l I exists, then this limit equals ,8 of the last 
an 

theorem by Corollary 12.3. This limit is often easier to calculate than 
lim sup lanl 11n; see the examples below. 
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Example 1 
Consider""oo .lxn If a =.1 then an+1 = _1_ so lim I an+1 I = O. 

L ... m=O n!' n n!' an n+1' an 

Therefore f3 = 0, R = +00 and this series has radius of convergence 
+00. That is, it converges for all x in lR. In fact, it converges to tf' for 
all x, but that is another story; see Example 1 in §31 and also §37. 

Example 2 
Consider L::'o xn. Then f3 = 1 and R = 1. Note that this series does 
not converge for x = 1 or x = -I, so the interval of convergence is 
exactly (-1, 1). [By interval of convergence we mean the set of x for 
which the power series converges.] The series converges to l~X by 
formula (2) of Example 1 in §14. 

Example 3 
1 

Consider L::'1 ~xn. Since lim nt1 = I, we again have f3 = 1 and 

R --:: 1. This series diverges for ~ = 1 [see Example 1 of §15], but it 
converges for x = -1 by the Alternating Series theorem 15.3. Hence 
the interval of convergence is exactly [-1, 1). 

Example 4 
Consider L::'1 ;2 xn. Once again f3 = 1 and R = 1. This series con­
verges at both x = 1 and x = -I, so its interval of convergence is 
exactly [-1,1]. 

Example 5 
The series L::'o n!xn has radius of convergence R = 0 because we 
have lim I (n+,l)! 1= +00. It diverges for every x =I O. 

n. 

Examples 1-5 illustrate all the possibilities discussed in (a)-(c) 
prior to Theorem 23.1. 

Example 6 
Consider L::'o 2-nx 3n . This is deceptive, and it is tempting to cal­
culate f3 = lim sup(z-n)l / n = ~ and conclude R = 2. This is wrong 
b cause Z-n is the coefficient of x 3n not x n , and the calculation of 
fJ must involve the coefficients an of xn. We must handle this series 
more carefully. The series can be written L~o anxn where a3k = 2-k 
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and an = a if n is not a multiple of 3. We calculate f3 by using the 
subsequence of all nonzero terms, i.e., the subsequence given by 
u(k) = 3k. This yields 

f3 = lim sup Ian I lin = lim la3kl 1l3k = lim (Z-k)1I3k = Z-1I3. 
k-'>oo k-'>oo 

Therefore the radius of convergence is R = ~ = 21/3. 

One may consider more general power series of the form 
00 

Lan(X-xot, (*) 
n=O 

where Xo is a fixed real number, but they reduce to series of the 
form L~o anyn by the change of variable y = x - Xo. The interval 
of convergence for the series (*) will be an interval centered at xo .. 

Example 7 
Consider the series 

00 ( I)n+1 L - (x-It· 
n=1 n 

(1) 

00 (_1)"+1 
The radius of convergence for the series Ln=1 n yn is R = I, so 
the interval of convergence for the series (1) is the interval (a, 2) 
plus perhaps an endpoint or two. Direct substitution shows that the 
series (1) converges at x = 2 [it's an alternating series] and diverges 
to -00 at x = O. So the exact interval of convergence is (a, 2]. It turns 
out that the series (1) represents the function loge x on (a, 2]. See 
Examples 1 and 2 in §26. 

One of our major goals is to understand the function given by a 
power series: 

00 

[(x) = L akxk for Ixl < R. 
k=O 

We are interested in questions like: Is [ continuous? Is [ differen­
tiable? If so, can one differentiate [ term-by-term: 

00 

['(x) = L kakxk- 1 ? 
k=1 
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-1 
[1 

FIGURE 23.1 

-1 

Can one integrate f term-by-term? 

-1 
[5 

Returning to the question of continuity, what reason is there to 
believe that f must be continuous? Its partial sums fn = L~=o akxk 
are continuous, since they are polynomials. Moreover, we have 
limn-+oofn(x) = f(x) for Ixl < R. Therefore f would be continuous if 
a result like the following were true: If (fn) is a sequence of contin­
uous functions on (a, b) and if limn-+ oo fn(x) = f(x) for all x E (a, b), 
then f is continuous on (a, b). However, this fine sounding result is 
false! 

Example 8 
Letfn(x) = (1-lxlt for x E (-1,1); see Figure 23.l. Letf(x) = 0 
for x I- 0 and let f(O) = l. Then we have limn-+oo fn(x) = f(x) for all 
x E (-1,1), since limn-+oo an = 0 if lal < 1. Each fn is a continuous 
function, but the limit function f is clearly discontinuous at x = o. 

This example, as well as Exercises 23.7-23.9, may be discourag­
ing, but it turns out that power series do converge to continuous 
functions. This is because 

n 

lim ~ akxk converges uniformly to 
n-+oo~ 

k=O 

on sets [-R1,RI] such thatR1 < R. The definition of uniform con­
vergences is given in the next section, and the next two sections will 
be devoted to this important notion. We return to power series in 
§26. 
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Exercises 
23.1. For each of the following power series, find the radius of 

convergence and determine the exact interval of convergence. 
(a) L n2xn (b) L(~t 
(e) L(~)Xn (d) L(fn)Xn 

(e) L(~)Xn (f) L((n+~)22")Xn 
( ) "( 3" ) 71 (h) ,,((_I)" ) 71 g L... 71.4" X L... ~ x 

23.2. Repeat Exercise 23.1 for the following: 
(a) L fon (b) L n~xn 
(e) LXn! (d) L ~x2n+1 

23.3. Find the exact interval of convergence for the series in Example 6. 

23 4 F - 0 1 2 3 1 - [4+2(-1)"]71 .• or n - , , , , ... , et an - 5 . 

(a) Findlimsup(an)l /n, lim inf(an)l/n,limsup I a;:, I and lim inf I~I . 

(b) Do the series Lan and L(-ltan converge? Explain briefly. 

(e) Now consider the power series L anxn with the coefficients an 
as above. Find the radius of convergence and determine the 
exact interval of convergence for the series. 

23.5. Consider a power series L anxn with radius of convergence R. 

(a) Prove that if all the coefficients an are integers and if infinitely 
many of them are nonzero, then R ~ 1. 

(b) Prove that if lim sup lanl > 0, then R ~ l. 

23.6. (a) Suppose that L anxn has finite radius of convergence Rand 
that an 2: 0 for all n. Show that if the series converges at R, 
then it also converges at -R. 

(b) Give an example of a power series whose interval of conver-
gence is exactly (-1, 1]. 

The next three exercises are designed to show that the notion of 
convergence of functions discussed prior to Example 8 has many 
defects. 

23.7. For each n E N, letfn(x) = (cosxt. Eachfn is a continuous function. 
Nevertheless, show that 

(a) limfn(X) = 0 unless x is a multiple ofn, 
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(b) limfnCx) = 1 ifx is an even multiple ofrr, 

(e) limfnCx) does not exist ifx is an odd multiple ofrr. 

23.8. For each n E N, let fnCx) = ~ sin nx. Each fn is a differentiable 
function. Show that 

(a) limfnCx) = 0 for all x E R, 

(b) but limf~Cx) need not exist [at x = rr for instance]. 

23.9. Let fnCx) = nxn for x E [0, 1] and n E N. Show that 

(a) limfnCx) = 0 for x E [0,1). Hint: Use Exercise 9.12. 

(b) However, limHOO f01 fnCx) ax = l. 

- §24 Uniform Convergence 

We first formalize the notion of convergence discussed prior to 
Example 8 in the preceding section. 

24.1 Definition. 
Let Cfn) be a sequence of real-valued functions defined on a set S ~ R 
The sequence Cfn) converges pointwise [i.e., at each point] to a function 
f defined on S if 

lim fn(x) = f(x) for all XES. 
n---+oo 

We often write limfn = f pointwise [on S] or fn -+ f pointwise [on S]. 

Example 1 
All the functions f obtained in the last section as a limit of a se­
quence of functions were pointwise limits. See Example 8 of §23 
and Exercises 23.7-23.9. In Exercise 23.8 we have fn -+ 0 pointwise 
on JR, and in Exercise 23.9 we havefn -+ 0 pointwise on [0, 1). 

Example 2 
Let fn(x) = xn for x E [0,1]. Then fn -+ [ pointwise on [0,1] where 
[ex) = 0 for x E [0,1) and [(1) = 1. 
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Now observe that fn -,)- f pointwise on S means exactly the 
following: 

for each E > 0 and XES there exists N such that 
Ifn(x) - f(x) I < E for n > N. 

Note that the value of N depends on both E > 0 and x in S. If for 
each E > 0 we could find N so that 

Ifn(x) - f(x) I < E for all XES and n > N, 

then the values fn(x) would be "uniformly" close to the values f(x). 
Here N would depend on E but not on x. This concept is extremely 
useful. 

24.2 Definition. 
Let (fn) be a sequence of real-valued functions defined on a set S ~ R 
The sequence (fn) converges uniformly on S to a function f defined 
on S if 

for each E > 0 there exists a number N such that 
Ifn(x) - f(x) I < E for all XES and all n > N. 

We write limfn = f uniformly on S or fn -,)- f uniformly on S. 

Note that if fn ---+ f uniformly on S and if E > 0, then there exists 
N such that f(x) - E < fn(x) < f(x) + E for all XES and n > N. In 
other words, for n > N the graph of fn lies in the strip between the 
graphs of f - E and f + E. In Figure 24.1 the graphs of fn for n > N 
would all lie between the dotted lines. 

y 

,"-', graph ofj+ € 
-,_- __ } , ...... -~graphofj 
~ ___ -__ I ' 

' ... _'-...... _ .. _ ... ___ , "'---graph ofj-€ 

------4---~--------------~------x s 

FIGURE 24.1 
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We return to our earlier examples. 

Example 3 
Let fn(x) = (1 - Ixl)n for x E (-1,1). Also, let f(x) = 0 for x i= 0 and 
f(O) = 1. As noted in Example 8of§23,fn -+ fpointwiseon(-l, 1). It 
turns out that the sequence (fn) does not converge uniformly to f on 
(-1,1) in view of the next theorem. This can also be shown directly, 
as follows. Assume that fn -+ f uniformly on (-1, 1). Then [with 
E = ~inmind]weseethatthereexistsNinNsothatlf(x)-fn(x)1 < ~ 
for all x E (-1,1) and n > N. Hence 

1 
x E (0,1) and n > N imply 1(1 - xtl < 2" 

In particular, 

1 
x E (0,1) implies (1 - X)N+1 < -. 

2 

However, this fails for sufficiently small Xi for example, if we set 
x = 1 - 2-1I(N+1), then 1 - x = 2-1I(N+l) and (1 - X)N+l = 2-1 = ~. 
This contradiction shows that (fn) does not converge uniformly to f 
on ( -I, 1) as had been assumed. 

Example 4 
Letfn(x) = ~ sin nx for x E R Thenfn -+ 0 pointwise on lR as shown 
in Exercise 23.8. In fact, fn -+ 0 uniformly on R 1b see this, let E > 0 
and let N = ~. Then for n > N and all x E lR we have 

1

1 I 1 1 Ifn(x) - 01 = - sin nx :s - < - = E. 
n n N 

Example 5 
Letfn(x) = nxn for x E [0,1). Since limn~oofn(l) = limn~oo n = +00, 

we have dropped the number 1 from the domain under considera­
lion. Then fn -+ 0 pointwise on [0, I), as shown in Exercise 23.9. We 
show that the convergence is not uniform. If it were, there would 
oxist N in N such that 

1m" - 01 < 1 forall x E [0,1) and n > N. 
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In particular, we would have (N + 1 )XN+l < 1 for all x E [0, 1). 
But this fails for x sufficiently close to 1. Consider, for example, the 
reciprocal x of (N + 1 ) lI(N+l). 

Example 6 
As in Example 2, let fn(x) = xn for x E [0, 1], f(x) = 0 for x E [0, 1) and 
f(l) = 1. Then fn ~ f pointwise on [0, 1], but (fn) does not converge 
uniformly to f on [0, 1], as can be seen directly or by applying the 
next theorem. 

24.3 Theorem. 
The uniform limit of continuous functions is continuous. More precisely, 
let (fn) be a sequence of functions on a set S ~ lR, suppose that fn ~ f 
uniformly on S, and suppose that S = domCf). If each fn is continuous 
at Xo in S, then f is continuous at Xo . [So if each fn is continuous on S, 
then f is continuous on S.] 

Proof 
This involves the famous "j argument. II The critical inequality is 

If(x) - f(xo) I ~ If (x) - fn(x) I + Ifn(x) - fn(xo) I + Ifn(xo) - f(xo)l· (1) 

If n is large enough, the first and third terms on the right side of (1 ) 
will be small, since fn ~ f uniformly. Once such n is selected, the 
continuity of fn implies that the middle term will be small provided 
x is close to xo. 

For the formal proof, let E > O. There exists N in N such that 
E 

n > N implies Ifn(x) - f(x) I < 3 for all XES. 

In particular, 
E 

IfN+l(X) - f(x) I < - for all XES. (2) 
3 

Since fN+l is continuous at Xo there is a 8 > 0 such that 
E 

XES and Ix - xol < 8 imply IfN+l(X) - fN+l(Xo)1 < 3; (3) 

see Theorem 17.2. Now we apply (1) with n = N + I, (2) twice [one 
for x and once for xo] and (3) to conclude 

XES and Ix - xol < 8 imply If (x) - f(xo) I < 3· . 
3 
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This proves that f is continuous at Xo. • 
One might think that this theorem would be useless in practice, 

since it should be easier to show that a single function f is continuous 
than to show that a sequence (fn) consists of continuous functions 
and that the sequence converges to f uniformly. This would no doubt 
be true iff were given by a simple formula. But consider, for example, 

00 1 
f(x) = L 2"xn for x E [-1,1] 

n=l n 
or 

00 (-It(lxin 
lo(x) = ~ (n!)22 for x E R 

The partial sums are clearly continuous, but neither f nor 10 is given 
by a simple formula. Moreover, many functions that arise in math­
ematics and elsewhere, such as th~ Bessel function 10, are defined 
by power series. It would be very useful to know when and where 
power series converge uniformly; an answer is given in §26. 

24.4 Remark. 
Uniform convergence can be reformulated as follows. A sequence (fn) 
of functions on a set S ~ lR converges uniformly to a function f on S if 
and only if 

lim [sup{lf(x) - fn(x) I : XES}] = O. 
n--+oo 

(1) 

We leave the straightforward proof to Exercise 24.12. 
According to (1) we can decide whether a sequence (fn) converges 

uniformly to f by calculating sup{lf(x) - fn(x) I : XES} for each n. If 
f - fn is differentiable, we may use calculus to find these suprema. 

Example 7 
Let fn(x) = 1+~2 for x E R Clearly we have limn--+oofn(O) = o. 
rf x t= 0, then limn--+oo(l + nx2) = +00, so limn--+oofn(x) = o. Thus 
hI ~ 0 pointwise on R 1b find the maximum and minimum of fn, we 
calculate f~(x) and set it equal to O. This leads to (1 +nx2)-1-x(2nx) = 
Oor1 - nx2 = O. Thusf~(x) = Oifandonlyifx = In. Further analysis 
or a sketch of fn leads one to conclude that fn takes its maximum at 
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)n and its minimum at - )n. Since fn(± )n) = ±2.Jn, we conclude 
that 

1 
lim [suP{lfn(x) I : XES}] = lim ~ = o. 

n--+oo n--+oo 2-y n 

Therefore fn -+ 0 uniformly on 1R by Remark 24.4. 

Example 8 
Let fn(x) = n2xn(1- x) for x E [0,1]. Then we have limn--+ oo fn(l) = O. 
For x E [0,1) we have limn--+ oo n2xn = 0 by applying Exercise 9.12 
[since 

and hence limn--+oofn(x) = o. Thus fn -+ 0 pointwise on [0, 1]. Again, 
to find the maximum and minimum of fn we set its derivative equal 
to o. We obtain xn( -1) + (1 - x)nxn- 1 = 0 or xn-l[n - (n + l)x] = o. 
Since fn takes the value 0 at both endpoints of the interval [0, 1], it 
follows that fn takes it maximum at n~ 1 . We have 

fn (n : 1) = n
2 
(n : 1) n (1 - n: 1) = n ~ 1 (n: 1) n (1) 

The reciprocal of(n~lt is (1 +*)n, the nth term ofasequence which 
has limit e. This was mentioned, but not proved, in Example 3 of§7; 
a proof is given in Theorem 37.11. Therefore we have lim(n~lt = ~. 

2 

Since lim[n~l] = +00, we conclude from (1) that limfn(n~l) = +00; 
see Exercise 12.9(a). In particular, ern) does not converge uniformly 
to O. 

Exercises 
24.1. Letfn(x) = 1+2~t nx. Prove carefully that Cfn) converges uniformly 

to ° on lR. 

24.2. For x E [0,00), let fn(x) = ;. 

Ca) Findf(x) = limfn(x) . 

(b) Determine whether fn ~ f uniformly on 10, II. 
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(e) Determine whether fn ~ f uniformly on [0, 00). 

24.3. Repeat Exercise 24.2 for fn(x) = I~xn. 

24.4. Repeat Exercise 24.2 for fn(x) = I~:n. 

24.5. Repeat Exercise 24.2 for fn(x) = n~:n. 

24.6. Let fn(x) = (x - ~i for x E [0,1]. 

(a) Does the sequence Cfn) converge pointwise on the set [0, IJ? 
If so, give the limit function. 

(b) Does Cfn) converge uniformly on [O,l]? Prove your assertion. 

24.7. Repeat Exercise 24.6 for fn(x) = x - xn. 

24.8. Repeat Exercise 24.6 for fn(x) = L~=a xk . 

24.9. Consider fn(x) = nxn(l - x) for x E [0, 1]. 

(a) Findf(x) = limfn(x). 

(b) Does fn ~ f uniformly on [0, 1 J? Justify. 

(e) Does fal 
fn(x)dx converge to f~ f(x)dx? Justify. 

24.10. (a) Prove that if fn ~ f uniformly on a set S, and if gn ~ g 
uniformly on S, then fn + gn ~ f + g uniformly on S. 

(b) Do you believe that the analogue of (a) holds for products? 
If so, see the next exercise. 

24.11 . Letfn(x) = x andgn(x) = ~ for all x E JR. Letf(x) = x andg(x) = 0 
for x E JR. 

(a) Observe thatfn ~ f uniformly on JR [obvious!] and thatgn ~ 
g uniformly on JR [almost obvious]. 

(b) Observe that the sequence Cfngn) does not converge uni­
formly to fg on JR. Compare Exercise 24.2. 

24.12. Prove the assertion in Remark 24.4. 

24.13. Prove that ifCfn) is a sequence of uniformly continuous functions 
on an interval Ca, b), and if fn ~ f uniformly on (a, b), then f is 
also uniformly continuous on (a, b). Hint: Try an ~ argument as 
in the proof of Theorem 24.3. 

24.14 . Letfn(x) = l+~xl. 
(a) Show thatfn ~ 0 pointwise on lR. 



184 4. Sequences and Series of Functions 

(b) Does f" -+ 0 uniformly on [0, I]? Justify. 

(c) Does fn -+ 0 uniformly on [I, oo)? Justify. 

24.15. Letf,,(x) = l~~X for x E [0,00)' 

(a) Find f(x) = limf,,(x) . 

(b) Does fn -+ f uniformly on [0, I]? Justify. 

(c) Does fn -+ f uniformly on [I , oo)? Justify. 

24.16. Repeat Exercise 24.15 for f,,(x) = )';~X2' 

24.17. Let (f,,) be a sequence of continuous functions on [a, b] that con· 
verges uniformly to f on [a, b]. Show that if (x ,,) is a sequence in 
[a, b] and if x" -+ x, then lim"-H>of,, (x,,) = f(x). 

§25 More on Uniform Convergence 

Our next theorem shows that one can interchange integrals and 
uniform limits. The adjective "uniform" here is important; compare 
Exercise 23.9 . 

25.1 Discussion. 
1b prove Theorem 25.2 below we merely use some basic facts about 
integration which should be familiar [or believable] even if your 
calculus is rusty. Specifically, we use: 
(a) Ifgandhareintegrableon[a,b]andifg(x)::: h(x) for all x E [a,iJl, 

then J: g(x) dx ::: J: hex) dx. See Theorem 33.4. 
We also use the following corollary: 

(b) If g is integrable on [a , b], then 

Continuous functions on closed intervals are int grable, as notl~d 
in Discussion 19.3 and proved in Theorem 33.2. 
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25.2 Theorem. 
Let (fn) be a sequence of continuous functions on [a, b], and suppose that 
fn ~ f uniformly on [a, b]. Then 

lim ib fn(x)dx = ib f(x)dx. (1) 
n-+oo a a 

Proof 
By Theorem 24.3 f is continuous, so the functions fn - f are all 
integrable on [a, b]. Let E > O. Since fn ~ f uniformly on [a, b], there 
exists a number N such that Ifn(x) - f(x) I < b~a for all x E [a, b] and 
all n > N. Consequently n > N implies 

lib fn(x) ax -i
b 

f(x) dxl = lib [fn(X) - f(x)] axl 

~ lb Ifn(x) - f(x) I dx ~ lb b ~ a ax = E. 

The first ~ follows from 25.1(b) applied to g = fn - f and the second 
~ follows from 25.1(a) applied to g = Ifn - fl and h = b~a; h happens 
to be a constant function, but this does no harm. 

The last paragraph shows that given E > 0, there exists N such 
that I J: fn(x) dx - J: f(x) dxl ~ E for n > N. Therefore (1) holds. • 

Recall one of the advantages of the notion of Cauchy sequence: 
A sequence (sn) of real numbers can be shown to converge without 
knowing its limit by simply verifying that it is a Cauchy sequence. 
Clearly a similar result for sequences of functions would be valuable, 
since it is likely that we will not know the limit function in advance. 
What we need is the idea of "uniformly Cauchy." 

25.3 Definition. 
A sequence (fn) of functions defined on a set S ~ lR is uniformly 
Cauchy on S if 

for each E > 0 there exists a number N such that 
Ifn(x)- fm(x) I < E for all XES and all m, n > N. 

Compare this definition with that of a Cauchy sequence of real 
numbers [Definition 10.8] and that of uniform convergence [Defini­
tion 24.2]. It is an easy exercise to show that uniformly convergent 
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sequences offunctions are uniformly CauchYi see Exercise 25.4. Th 
interesting and useful result is the converse, just as in the case 0 

sequences of real numbers. 

25.4 Theorem. 
Let (fn) be a sequence of functions defined and uniformly Cauchy on a 
set S ~ lR. Then there exists a function f on S such that fn ---:)- f uniformly 
on S. 

Proof 
First we have to "find" f. We begin by showing 

for each Xo E S the sequence (fn(XO)) is a Cauchy 
sequence of real numbers. 

For each E > 0, there exists N such that 

Ifn(x) - fm(x) I < E for XES and m, n > N. 

In particular, we have 

Ifn(xo) - fm(xo) I < E for m, n > N. 

This shows that (fn(XO)) is a Cauchy sequence, so (1) holds. 

(1 ) 

Now for each Xo E S, assertion (1) implies that limn-+oo fn( Xo) must 
existi this is proved in Theorem 10.11 which in the end depends on 
the Completeness Axiom 4.4. Hence wedefinef(xo) = limn-+oofn(Xo). 
This defines a function f on S such that fn ---:)- f pointwise on S. 

Now that we have "found" f, we need to prove that fn ---:)- f 
uniformly on S. Let E > O. There is a number N such that 

E 
Ifn(x) - fm(x) I < 2" for all XES and all m, n > N. (2) 

Consider m > N and XES. Assertion (2) tells us that fn(x) lies in 
the open interval (fm(x) - ~,fm(X) + D for all n > N. Therefore, as 
noted in Exercise 8.9, the limitf(x) = limn-+oofn(x) must lie in the 
closed interval rtm(x) - ~,fm(x) + n In other words, 

E 
If(x) - fm(x) I ::: 2" for all XES and m > N . 

Then of course 

If(x) - fm(x) I < E for all XES and m > N. 
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This shows thatfm ~ f uniformly on S, as desired. • 
Theorem 25.4 is especially useful for "series of functions." Let 

us recall what L~l ak signifies, where the ak's are real numbers. 
This signifies limn-+ oo L~=l ak provided this limit exists [as a real 
number, +00 or -00]. Otherwise the symbol L~l ak has no mean­
ing. Thus the infinite series is the limit of the sequence of partial 
sums L~=l ak . Similar remarks apply to series of functions. A se­
ries offunctions is an expression L~ogk or L~ogk(X) which makes 
sense provided the sequence of partial sums L~=o gk converges, or 
diverges to +00 or -00 pointwise. If the sequence of partial sums 
converges uniformly on a set S to L~o gk, then we say that the series 
is uniformly convergent on S. 

Example 1 
Any po~er series is a series of functions, since L~o akxk has the 
form L~ogk wheregk(x) = akxk. 

Example 2 
k 

L~o l:xk is a series of functions, but is not a power series, at least 
not in its present form. This is a series L~ogk where go(x) = ~ for 

all x, gl(X) = l:X for all x, g2(X) = 1:X2 for all x, etc. 

Example 3 
Let g be the function drawn in Figure 25.1, and let gn(x) = g(4nx) 
ror all x E R. Then L~odtgn(X) is a series of functions. The limit 

y 

2 

- 5 - 4 -3 -2 - 1 2 3 4 5 x 

FIGURE 25.1 
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function f is continuous on JR, but has the amazing property that it is 
not differentiable at any point! The proof of the nondifferentiability 
off is somewhat delicate; see 7.18 of[36]. 

Theorems for sequences of functions translate easily into 
theorems for series of functions. Here is an example. 

25.5 Theorem. 
Consider a series L~o gk of functions on a set S ~ R Suppose that each 
gk is continuous on S and that the series converges uniformly on S. Then 
the series L~o gk represents a continuous function on S. 

Proof 
Each partial sum fn = L~=l gk is continuous and the sequence (fn) 
converges uniformly on S. Hence the limit function is continuous 
by Theorem 24.3. 

Recall the Cauchy criterion for series L ak given in Defini­
tion 14.3: 

for each E > 0 there exists a number N such that 
n ::: m > N implies I L~=m akl < E. 

The analogue for series of functions is also useful. The sequence of 
partial sums of a series L~o gk of functions is uniformly Cauchy on 
a set S if and only if the series satisfies the Cauchy criterion [uniformly 
on S]: 

for each E > 0 there exists a number N such that 
n::: m > N implies I L~=mgk(X)1 < E for all XES. 

25.6 Theorem. 
If a series L~ogk offunctions satisfies the Cauchy criterion uniformly 
on a set S, then the series converges uniformly on S. 

Proof 
Let fn = L~=ogk' The sequence ern) of partial sums is uniformly 

auchy on S, so ern) converges uniformly on Sby Theorem 25.4. 

Here i a useful corollary. 
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25.7 Weierstrass M-test. 
Let (Mk) be a sequence of nonnegative real numbers where LMk < 00. 

lflgk(X)1 ~ Mk for aU x in a set S, then Lgk converges uniformly on S. 

Proof 
Th verify the Cauchy criterion on S, let E > O. Since the series L Mk 
converges, it satisfies the Cauchy criterion 14.3. So there exists a 
number N such that 

n 

n::: m > N implies LMk < E. 

k=m 

Hence ifn ::: m > N and XES, then 

n n n 
L gk(X) ~ L Igk(X) I ~ L Mk < E. 

k=m k=m k=m 

Thus the series Lgk satisfies the Cauchy criterion uniformly on S 
Hnd Theorem 25.6 shows that it converges uniformly on S. • 

I~xample 4 
Show that L~l Z-nxn represents a continuous function f on (-2,2), 
but that the convergence is not uniform. 
I 

Solution 
This is a power series with radius of convergence 2. Clearly the 
cries does not converge at x = 2 or at x = -2, so its interval of 

convergence is (-2,2). 
Consider 0 < a < 2 and note that L~12-nan = L~l(~t con­

verges. Since Iz-nxnl ~ Z-nan = (~t for x E [-a,a], the Weierstrass 
M-test 25.7 shows that the series L~l 2-nxn converges uniformly 
to a function on [-a, a]. By Theorem 25.5 the limit functionf is con­
tinuous at each point of the set [-a, a]. Since a can be any number 
IIl~s than 2, we conclude that f represents a continuous function on 
( 2,2). 

inee we have sup{12- nxn l : X E (-2, 2)} = 1 for all n, the conver­
(,nee of the series cannot be uniform on (-2,2) in view of the next 

flxllmple. 0 
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Example 5 
Show that if the series Lgn converges uniformly on a set S, then 

lim [sup{!gn(X)! : XES}] = O. 
n~oo 

(1) 

Solution 
Let E > O. Since the series Lgn satisfies the Cauchy criterion, there 
exists N such that 

n 

n:::m>N implies Lgk(X) < E for all XES. 
k=m 

In particular, 

n > N implies !gn(x)! < E for all XES. 

Therefore 

n > N implies sup{!gn(X)! : XES} ::: E. 

This establishes (1). 0 

Exercises 
25.1. Derive 25.1(b) from 25.1(a). Hint: Apply (a) twice, once to g and 

Igl and once to -Igl andg. 

25.2. Let fn(x) = ~. Show that Cfn) is uniformly convergent on [-1,1) 
and specify the limit function. 

25.3. Let fn(x) = t+cos: for all real numbers x. 
n+sm" 

(a) Show that Cfn) converges uniformly on R. Hint: First de­
cide what the limit function is; then show Cfn) converges 
uniformly to it. 

(b) Calculate limn ..... oo J; fn(x) dx. Hint: Don't integrate fn . 

25.4. Let Cfn) be a sequence of functions on a set S ~ R, and suppose 
that fn -+ f uniformly on S. Prove that Cfn) is uniformly Cauchy on 
S. Hint: Use the proof of Lemma 10.9 as a model, but be careful. 

25.5. Let Cfn) be a sequence of bounded functions on a set S, and sup­
pose thatfn -+ f uniformly on S. Prove that! is a bounded function 
onS. 
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25.6. Cal Show that if L lakl < 00, then L akxk converges uniformly 
on [-1, 1] to a continuous function. 

(b) Does L~=I ~xn represent a continuous function on [-1,1]? 

25.7. Show that L~=I ~ cos nx converges uniformly on lR to a continu­
ous function. 

25.8. Show that L:::l n~;n has radius of convergence 2 and that the 
series converges uniformly to a continuous function on [-2,2]. 

25.9. Cal Let 0 < a < 1. Show that the series L~=o xn converges 
uniformly on [-a, a] to I~X. 

(b) Does the series L:::oXn converge uniformly on (-1,1) to 
I ? E 1· I-x. xp am. 

25.10. Cal Show that L I::n converges for x E [0,1). 

(b) Show that the series converges uniformly on [0, a] for each 
a,O < a < 1. 

Cc) Does the series converge uniformly on [0, I)? Explain. 

25.11. Cal Sketch the functions go, gI, gz andg3 in Example 3. 

(b) Prove that the function f in Example 3 is continuous. 

25.12 . Suppose that L;;:I gk is a series of continuous functionsgk on [a, b] 
that converges uniformly to g on [a, bJ. Prove that 

lb g(x)dx = ~ lb gk(x)dx. 

25.13. Suppose that L;;:I gk and L;;:I hk converge uniformly on a set S. 
Show that L;;:I (gk + hk) converges uniformly on S. 

25.14. Prove that if Lgk converges uniformly on a set S and if h is a 
bounded function on S, then L hgk converges uniformly on S. 

25.15. Let Cfn) be a sequence of continuous functions on [a, bJ. Suppose 
that, for each x E [a, b], Cfn(x)) is a nonincreasing sequence ofreal 
numbers. 

C a) Prove that if fn --+ 0 pointwise on [a, b], then fn --+ 0 uniformly 
on [a, bJ. Hint: lfnot, there exists E > 0 and a sequence (xn) 
in [a, b] such thatfn(xn) :::: E for all n. Obtain a contradiction. 

(b) Prove that if fn --+ f pointwise on [a, b] and iff is continu­
ous on fa, b], then fn --+ f uniformly on [a, bJ. This is Dini's 
theorem. 
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§26 Differentiation and Integration of 
Power Series 

The following result was mentioned in §23 after Example 8. 

26.1 Theorem. 
Let L~o anxn be a power series with radius of convergence R > 0 
fpossibly R = +00]' If 0 < Rl < R, then the power series converges 
uniformly on [-R 1, R1] to a continuous function. 

Proof 
Consider 0 < Rl < R. A glance at Theorem 23.1 shows that the 
series L anxn and L lanlxn have the same radius of convergence, 
since f3 and R are defined in terms of lanl. Since IRII < R, we must 
have L lanlRr < 00. Clearly we have lanxnl ::: lanlRr for all x in 
[-Rl' Rd, so the series LanXn converges uniformly on [-Rl' Rd by 
the Weierstrass M -test 25.7. The limit function is continuous at each 
point of[ -R1,R1] by Theorem 25.5. • 

26.2 Corollary. 
The power series L anxn converges to a continuous function on the open 
interval ( - R, R). 

Proof 
If Xo E (-R, R), then Xo E (-Rl' R1) for some Rl < R. The theor m 
shows that the limit of the series is continuous at Xo. 

We emphasize that a power series need not converge uniformly 
on its interval of convergence though it might; see Example 4 of §2 
and Exercise 25.8. 

We are going to differentiate and integrate power series term-by 
term, so clearly it would be useful to know where the new sorl 
converge. The next lemma tells us. 
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26.3 Lemma. 
rf the power series L~o anx l1 has radius of convergence R, then the 
power series 

00 

Lna l1 x l1
-

1 and 
11=1 

also have radius of convergence R. 

Proof 

00 

'"""' a l1 11+1 ~--x 
11=0 n + 1 

First observe that the series L nanx l1
-

1 and L nanxn have the same 
radius of convergence; since the second series is x times the first 
series, they converge for exactly the same values of x . Likewise 
" ..5LX

I1+1 and'" ..5Lxl1 have the same radius of convergence. '-- n+l '-- n+l 
Next recall that R = ~ where f3 = lim sup la l1 1

1/n. For the se-

ties Lnanxn, we consider limsup(nlanly ln = limsupnl /nlanll /n. 
By 9.7(c) we have limn1l11 = 1, so limsup(nlanl) lIn = f3 by The­
orem 12.l. Hence the series L nanxn has radius of convergence 
1<' 

For the series L n~l xl1, we consider lim sup(~~; )l /n. It is easy to 
. how that limen + 1)1In = 1; therefore lim(I1~I)l /n = l. Hence by 

Theorem 12.1 we have lim SUp(l£d)1 / 11 = R so the series'" ..5Lxl1 
n+l~' '-- n+1 

Il(ls radius of convergence R. • 

~(1.4 Theorem. 
Suppose that f(x) = L~o a l1 xn has radius of convergence R > o. Then 

l
x 00 a 

f(t) dt = L _ n_xl1+1 for Ixl < R. 
o n=O n + 1 

(1) 

I'loof 
WI: fix x and assume x < 0; the case x > 0 is similar [Exercise 26.1]. 
()II lhe interval [x,O], the sequence of partial sums L~=o aktk 
I tlilverge uniformly to f(t) by Theorem 26.l. Consequently, by 
Illt;or m 25.2 we have 

1° 
.\ [(I) (II I i III 

" 
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n [Ok+l - Xk+l ] 00 a 
= Ji~Lak k = - L -k k xk+l. 

k=O +1 k=O +1 
(2) 

The second e-'luality is valid because e_cf!;n interchange integrals 
and finite sums; this is a basic property of integrals [Theorem 33.3]. 
Since J; f(t) dt = - t f(t) dt, equation (2) implies equation (1). • 

The theorem just proved shows that a power series can 
be integrated term-by-term inside its interval of convergence. 
Thrm-by-term differentiation is also legal. 

26.5 Theorem. 
Let f(x) = L~o anxn have radius of convergence R > 0. Then f is 
differentiable on ( - R, R) and 

00 

['(x) = LnanXn- 1 for Ixl < R. (1) 
n=l 

The proof of Theorem 26.4 was a straightforward application of 
Theorem 25.2, but the direct analogue of Theorem 25.2 for deriva­
tives is not true [see Exercise 23.8 and Example 4 of §24]. So we give 
a devious indirect proof of the theorem. 

Proof 
We begin with the series g(x) = L~l nanxn- 1 and observe that this 
series converges for Ixl < R by Lemma 26.3. Theorem 26.4 shows 
that we can integrate g term-by-term: 

Thus if ° < Rl < R, then 

f(x) = 1:
1 

get) dt + k for Ixl < R1, 

where k is a constant; in fact, k = ao - J~RI get) dt . Since g is contin 
uous, one of the versions of the Fundamental Theorem ofCa1cululI 
[Theorem 34.3] shows that r is differe ntiable and that ['(x) g(x ). 
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Thus 
00 

['(x) = g(x) = L nanxn- 1 for Ixl < R. 
n=1 • 

Example 1 
R call that 

00 1 
L xl1 = -- for Ixl < l. 
n=O 1 - x 

I )ifferentiating ~by.-t~ry!!, we obtain 

00 1 
'" nxn- 1 

- for Ixl < l. ~ - (1 - X) 2 
11=1 

In tegrating (1) term-by-term, we get 

00 1 1x 
1 L __ xn+1 = -- dt = -log(l - x) 

n=O n + 1 0 1 - t 

or 

(1) 

00 1 
10g(1 - x) = - L _xn for Ixl < 1. (2) 

n=1 n 

Replacing x by -x, we find 

x2 x3 X4 
10g(1 + x) = x - "2 + "3 - 4" + . . . for Ixl < 1. (3) 

II lurns out that this equality is also valid for x = 1 [see Example 2], 
() we have the interesting identity 

1 1 1 1 1 
loge 2 = 1 - "2 + 3" - "4 + 5 - 6 +.... (4) 

III equation (2) set x = m~1 . Then 

",I (m-1)n (m-1) (1) fr;:; ---;;- = - log 1 - ---;;- = - log m = log m. 

11 1: 11 C we have 

00 1 1 (m 1)11 L - > L --- = logm 
",'I ",'I m 

for all m. 



196 4. Sequences and Series of Functions 

Here is yet another proof that L::::l ~ = +00. 

1b establish (4) we need a relatively difficult theorem abou 
convergence of a power series at the endpoints of its interval 0 

convergence. 

26.6 Abel's Theorem. 
Let f(x) = L::::o anxn be a power series with finite positive radius of 
convergence R. If the series converges at x = R, then f is continuous at 
x = R. If the series converges at x = - R, then f is continuous at x = - R. 

Example 2 
As promised, we return to (3) in Example 1: 

x2 x3 X4 
10g(I + x) = x - - + - - - + . . . for Ixl < 1. 

2 3 4 

For x = 1 the series converges by the Alternating Series Theo· 
rem 15.3. Thus the series represents a function f on (-1,1] that 
is continuous at x = 1 by Abel's theorem. The function 10g(I + x) 
is also continuous at x = 1, so the functions agree at x = 1. 
[In detail, if (xn) is a sequence in (-1, 1) converging to 1, then 
[(1) = limn-+oo[(xn) = limn-+oolog(I + xn) = log 2.] Therefore w 
have 

1 1 1 1 1 
loge 2 = 1 - 2" + "3 - "4 + :5 - "6 + .... 

Another proof of this identity is given in Example 2 of §3I. 

Example 3 
Recall that L::::o xn = 1 ~x for Ixl < 1. Note that at x = -1 th 
function 1 ~x is continuous and takes the value ~. However, the series 
does not converge for x = -1, so Abel's theorem does not apply. 

Proof of Abel's Theorem 
The heart of the proof is in Case 1. 

Case 1. Suppose f(x) = L::::o anxn has radius of convergence 1 
and that the series converges at x = 1. We need to prove that f I 
continuous at x = 1. 
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Let[n(x) = L~=o akxk and Sn = L~=o ak = [n(l) forn = 0, I, 2, ... , 
Ind let S = L~o ak = [(1) so that limsn = s. For 0 < x < 1 we have 

n n 

[n(x) = L akxk = So + L(Sk - Sk_l)X
k 

k=O k=l 
n n 

= So + L SkXk - xL Sk_l Xk- 1 

k=l k=l 
n n-l 

= So + LSkXk - X LSkXk 
k=l k=O 

n-l 
= So + Snxn + L sk(1 - x)xk - X . So 

k=l 
n-l 

= L sk(1 - X)xk + Snxn. 
k=O 

We now take limits as n tends to 00. We have limn .... cx,[n(x) = [(x) 
,md limn .... oo snxn = lim Sn . lim xn = s· 0 = o. Therefore we conclude 

00 

[(x) = LSn(1- x)xn for 0 < x < 1. 
n=O 

Since L:'oXn = l~X we also have 

00 

[(1) = S = L s(1 - x)xn. 
n=O 

Il ence we have 
00 

[(1) - [(x) = L(s - sn)(1 - x)xn. (1) 
n=O 

Now let € > O. Since lim Sn = S there exists N in N such that n > N 
Implies Is - snl < ~. LetgN(x) = L~=o Is - snl(1 - x)xn. From (1) we 
obtain 

00 

1[(1) - [(x) I ::: gN(X) + L Is - snl(1 - x)xn 
n=N+l 
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for a < x < 1. The function gN is continuous and gN(I) = O. He 
there exists 8 > a such that 

E 
1 - 8 < x < 1 implies gN(X) < 2' 

Then from (2) we see that 

1 - 8 < x < 1 implies 
E E 

1[(1) - [(x) I < - + - = E. 
2 2 

This proves that [ is continuous at x = 1. [We do not consider x 
because dom(f) S; [-1,1].] 

Case 2. Suppose [(x) = L~o anxn has radius of convergenCll 
a < R < 00, and that the series converges at x = R. Letg(x) = f( 
and note that 

00 

g(x) = L anRnxn for Ixl < 1. 
n=O 

This series has radius of convergence 1 and it converges at x 
By Case I, g is continuous at x = 1. Since [(x) = gCV, it follows 
[ is continuous at x = R. 

Case 3. Suppose [(x) = L~o anxn has radius of convergenc(. 
a < R < 00, and that the series converges at x = -R. Let hex) 
[( -x) and note that 

00 

hex) = L(-ltanxn for Ixl < R. 
n=O 

The series for h converges at x = R, so h is continuous at x 
Case 2. It follows that [(x) = h( -x) is continuous at x = - R. 

The point of view in our extremely brief introduction to 
series has been: For a given power series LanXn, what can orw 
about the function [(x) = L anxn? This point of view was m 
ing. Often, in real life, one begins with a function [ and swk 
power series that represents the function for some or all vahu. 
x. This is because power series, being limits of polynomials, a r 
some sense basic objects. 

If we have [(x) = L~oanXn for Ixl < R, then we can dim, 
ate [ term-by-term forever. At each step, we may calculate th 
derivative off at a, written[(k)(O). It is easy Lo show thalf(k)(O) 
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hll k 2': O. This tells us that iff can be represented by a power series, 

Ilion that power series must be L~o f(k;fO)xk . This is the 1llylor series 
,,,' r about o. Frequently, but not always, the Thylor series will agree 

Ilh f on the interval of convergence. This turns out to be true for 
lilt I ny familiar functions. Thus the following relations can be proved: 

00 1 
,,\ = ~_xk 

~kl ' 

00 ( l)k 
cosx= L~X2k 

k=O (2k)! ' 

00 (_l)k 
sinx = L X

2k+1 

k=O (2k + I)! k=O • 

1111 all x in JR. A more detailed study of Thylor series is given in §31. 

(;rcises 

I . 1. Prove Theorem 26.4 for x > O. 

f .'J,. (a) Observe that L::'=l nxn = (1~X)2 for \x\ < 1; see Example l. 

(b) EvaluateL::'=l fk· Compare with Exercise 14.13(d). 

() E I ~oo n d~oo (-l)"n 
C va uate ~n=l 3n an ~n=l 3" . 

f ,: t. (a) Use Exercise 26.2 to derive an explicit formula for L::'=l n2xn . 

(b I ~oo n2 d ~oo n2 

) Eva uate L.m=l 2n an ~n=l 3n' 

(a) Observe that e-x2 = L~o (-nt x2n for x E R, since we have 
eX = L~o ~xn for x E R 

(b) Express F(x) = J; e- t2 dt as a power series. 

Lel [(x) = L::'=o ~xn for x E R Show that f' = f. Do not use the 
lilcl that [(x) = eX; this is true but has not been established at this 
poinl in the text. 

x3 ;c5 d x2 x' C. TTl> Lot sex) = x - 3T + 5! - . . . an e(x) = 1 - 2! + 4! - ... lor x E !N... 

(u) Prove that s' = e and e' = -8. 

(h) Prove that (82 + e2y = o. 

(c:) Prove that S2 t e2 = l. 
Acluully 8(X) = sinx and e(x) cos x, but you do not need these 
f Iclll . 
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26.7. Let [(x) = Ixl for x E R Is there a power series L: anxn such tha 
[(x) = L:::"=o anxn for all x? Discuss. 

26.8. (a) Show that L:::"=o( -1)"x2n = I~X2 for x E (-1,1). Hint : 
",,00 nIL t 2 
L...,n=OY = I-y· e Y = -x . 

(b) Show that arctan x =",,00 (_I)" X2n+1 for x E (-1 1) 
L...,n=O 2n+I ' . 

(e) Show that the equality in (b) also holds for x = l. Use this to 
find a nice formula for ]'(. 

(d) What happens at x = -I? 

§27 * Weierstrass's Approximation 
Theorem 

Suppose that a power series has radius of convergence greater than 
I, and let f denote the function given by the power series. The­
orem 26.1 tells us that the partial sums of the power series g t 
uniformly close to f on [-1, 1]. In other words, f can be approximated 
uniformly on [-1, 1] by polynomials. Weierstrass's approximation 
theorem is a generalization of this last observation, for it tells us that 
any continuous function on [-1, 1] can be uniformly approximated 
by polynomials on [ -I, 1]. This result is quite different because such 
a function need not be given by a power series; see Exercise 26.7. 
The approximation theorem is valid for any closed interval [a, b] and 
can be deduced from the case [0, 1]; see Exercise 27.1. 

We give the beautiful proof due to S. N. Bernstein. Bernstein 
was motivated by probabilistic considerations, but we will not us 
any probability here. One of the attractive features of Bernstein' 
proof is that the approximating polynomials will be given explicitly. 
There are more abstract proofs in which this is not the case. On th 
other hand, the abstract proofs lead to far-reaching and important 
generalizations. See the treatment in [23] or [36]. 

We need some preliminary facts about polynomials involvin 
binomial coefficients. 
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~7.1 Lemma. 
/II,r every x E lR and n ::: 0, we have 

I'roof 
'I'his is just the binomial theorem [Exercise 1.12] applied to a = x 
md b = 1 - x, since in this case (a + bf = 1 n = 1. • 

'J,7.2 Lemma. 
fit)r x E lR and n ::: 0, we have 

(1) 

I'roof 
,' Ince kG) = nG::::~) for k::: I, we have 

n (n) n (n -1) L k xk(I - X)"-k = n L _ Xk(I - x)"-k 
k=O kk=l k 1 

= m L n ~ xi(I - X)"-l-j = m. (2) n-1 ( 1) 
j=O ] 

Since k(k - I)(~) = n(n - I)(~::::~) for k ::: 2, we have 

t k(k - 1) (n)xk(I - X)"-k = n(n - I)x2 I: (n ~ 2)xi(I - X)"-2-j 

k 0 k j=O ] 

= n(n - 1 )x2
. (3) 

Adding the results in (2) and (3), we find 

t k2(n)xk(I - X)"-k = n(n - I)x2 + m = n2x2 + m(l - x). (4) 
k=O k 

Since (m - ki = n2x2 - 2m· k + k2
, we use Lemma 27.1, (2) and (4) 

10 obtain 
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This establishes the equality in (1). The inequality in (1) simply 
reflects the inequality x(l - x) ::: ~, which is equivalent to 4x2 

- 4x + 
1 ~ 0 or (2x - 1)2 ~ O. • 

27.3 Definition. 
Let f be a function defined on [0,1]. The polynomials Bnf defined 
by 

are called Bernstein polynomials for the function f. 

Here is Bernstein's version of the Weierstrass approximation 
theorem. 

27.4 Theorem. 
For every continuous function f on [0, 1], we have 

Bnf -+ f uniformly on [0, 1]. 

proof 
We assume that f is not identically zero, and we let 

M = sup{lf(x)1 : x E [0, I]). 

Consider E > O. Since f is uniformly continuous by Theorem 19.2, 
there exists 8 > 0 such that 

E 
x, Y E [0 , 1] and Ix - yl < 8 imply If(x) - f(y) I < 2 (1 ) 

L l N = €~2' This choice of N is unmotivated at this point, but WI' 

make it here to emphasize that it does not depend on the choice ot 
x. We will show that 

IBnf(x) - f(x)1 < E for all x E [0,1] and all n > N, (2) 

ompleting the proof of the theorem. 
1b prove (2), consider a fixed x E [0,1] and n > N. In view ot 

L mma 27.1, we have 
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so 
, 

IBnf(x) - f(x) I ~ ~ It (~) - f(X)I· (~)Xk(1 - xt-
k
. (3) 

Th estimate this sum, we divide the set {O, I, 2, ... , n} into two sets: 

k E A if I~ -xl < 8 while k E B if I~ -xl :::: 8. 

For k E A we have If(~) - f(x) I < ~ by (I), so 

"I ( k) I (n) k n k " E (n) k n k E ~ f - - f(x)· x (1 - x) - ~ ~ - x (1 - x) - ~-
kEA n k kEA 2 k 2 

(4) 
using Lemma 27.l. For k E B, we have I k~nx I :::: 8 or (k - nxi :::: n282

, 

so 

l3y Lemma 27.2, this is bounded by 

2Mn M ME 
--.-=--<--=-
n 282 4 2n82 2N82 2· 

This observation, (4) and (3) show that 

IBnf(x) - f(x) I < E . 

. I 'hat is, (2) holds. • 
~7.5 Weierstrass's Approximation Theorem. 
i':vcry continuous function on a closed interval [a, b] can be uniformly 
(I"proximated by polynomials on [a, b]. 

I n other words, given a continuous function f on [a, b], there 
" lilts a sequenc (P,,) or polynomials such that Pn ---+ f uniformly 

"" la, bl· 
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Exercises 
27.1. Prove Theorem 27.5 from Theorem 27.4. Hint: Let ¢(x) = (b-a)x+ 

a so that ¢ maps [0, 1] onto [a, bJ. If [ is continuous on [a, b], then 
[ 0 ¢ is continuous on [0, 1 J. 

27.2. Show that if [ is continuous on JR, then there exists a sequence 
(pn) of polynomials such that Pn -+ [ uniformly on each bounded 
subset ofR Hint: Arrange for I[(x) - Pn(x) I < ~ for Ixl ~ n . 

27.3. Show that there does not exist a sequence of polynomials 
converging uniformly on JR to [ if 
(a) [(x) = sin x, (b) [(x) = ff. 

27.4. Let [be a continuous function on [a, bJ. Show that there exists a 
sequence (Pn) of polynomials such thatpn -+ [uniformly on [a, b] 
and such thatpn(a) = [(a) for all n. 

27.5. Find the sequence (Bnn of Bernstein polynomials in case 
(a) [(x) = x, (b) [(x) = x2

• 

27.6. The Bernstein polynomials were defined for any function [ on 
[0,1]. Show that if Bn[ -+ [ uniformly on [0, 1], then [ is continuous 
on [0, 1]. 

27.7. Let[be a bounded function on [0,1], say I[(x) I ~ M for all x E [0,1]. 
Show that all the Bernstein polynomials Bn[ are bounded by M. 



Differentiation 
CHAPTER 

In this chapter we give a theoretical treatment of differentiation and 
related concepts, most or all of which will be familiar from the stan­
dard calculus course. Three of the most useful results are the Mean 
Value Theorem, which is treated in §29, L'Hospital's Rule, which is 
treated in §30, and Thylor's Theorem, which is given in §31. 

§28 Basic Properties of the Derivative 

The reader may wish to review the theory of limits treated in §20. 

28.1 Definition. 
Let [ be a real-valued function defined on an open interval con­
taining a point a. We say that [ is differentiable at a, or that [ has a 
derivative at a, if the limit 

1
. [Cx) - [Ca) 
Im:......:....~-=--~ 

I( a x - a 

205 
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exists and is finite. We will write f'(a) for the derivative of [ at a: 

f'(a) = lim [(x) - [(a) 
x~a X - a 

whenever this limit exists and is finite. 

(1) 

Generally speaking, we will be interested in f' as a function in 
its own right. The domain of f' is the set of points at which [ is 
differentiable; thus domCf') ~ domCf). 

Example 1 
The derivative of the function g(x) = x2 at x = 2 was calculated in 
Example 2 of §20: 

x2 - 4 
g'(2) = lim -- = lim(x + 2) = 4. 

x~2 X - 2 x~2 

We can calculate g'(a) just as easily: 

x2 - a2 

g'(a) = lim = lim(x + a) = 2a. 
x~a x - a x-+a 

This computation is even valid for a = o. We may write g(x) -
2x since the name of the variable a or x is immaterial. Thus the 
derivative of the function given by g(x) = x2 is the function given 
by g(x) = 2x, as every calculus student knows. 

Example 2 
The derivative ofh(x) = ,.fi at x = 1 was calculated in Example 3 of 
§20: h'(l) = ~. In fact, hex) = x l12 for x :::: 0 and h'(x) = ~x-1I2 for 
x > 0; see Exercise 28.3 . 

Example 3 
Let n be a positive integer, and let [(x) = xn for all x E JR. We show 
thatf'(x) = nxn- 1 for all x E lR. Fix a in JR and observe that 

[(x)-[(a) = xn_an = (x_a)(xn-1+axn-2+a2xn-3+. +an- 2x+an- 1), 

so 
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for x =J a . It follows that 

f'(a) = lim f(x) - f(a) 
x-+a X - a 

= an - 1 + aan - 2 + a2an - 3 + ... + an- 2a + an- 1 = nan-I; 

we are using Theorem 20.4 and the fact that limx-+a xk = a k for kEN. 

We first prove that differentiability at a point implies continuity 
at the point. This may seem obvious from all the pictures of familiar 
differentiable functions. However, Exercise 28.8 contains an exam­
ple of a function that is differentiable at 0 and of course continuous 
at 0 [by the next theorem], but is discontinuous at all other points. 

28.2 Theorem. 
Iff is differentiable at a point a, then f is continuous at a . 

Proof 
We are given f'(a) = limx-+a f(x;=~(a) and we need to prove that 
limx-+af(x) = f(a). We have 

f(x) = (x - aleX) - f(a) + f(a) 
x-a 

£i d en ...J.. S' l' ( ) 0 d l' f(x)-f(a) or x E om ,x -r a. lnce lmx-+a x - a = an Imx-+a x-a 

exists and is finite, Theorem 20.4(ii) shows limx-+a(x-a}f(x;=~(a) = O. 
Therefore limx-+af(x) = f(a), as desired. • 

We next prove some results about sums, products, etc. of deriva­
tives. Let us first recall why the product rule is not (fg)' = f'g' [as 
many naive calculus students wish!] even though the product of 
limits does behave as expected: 

lim(fI!2)(x) = rlim!I(X)] . rlim!2(X)] 
x-+a ~-+a ~-+a 

provided the limits on the right side exist and are finite; see Theo­
re m 20.4(ii). The difficulty is that the limit for the derivative ofthe 
product is not the product of the limits of the derivatives, i.e., 

fCx)g(x) - [(a)g(a) =J f(x) - fCa) . gCx) - g(a) . 
x a x - a x - a 
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The correct product rule is obtained by shrewdly writing the left 
hand side in terms of f(x)-f(a) and g(x)-g(a) as in the proof of 28.3(iii) x-a x-a 
below. 

28.3 Theorem. 
Let f and g be functions that are differentiable at the point a. Each of 
the functions cf [c a constant], f + g, fg and fig is also differentiable at 
a, except f/ g if g( a) = 0 since f / g is not defined at a in this case. The 
formulas are 

(i) (cf)'(a) = c· f'(a); 
(ii) (f + g)'(a) = f'(a) + g'(a); 

(iii) (product ruZe] (fg)'(a) = f(a)g'(a) + f'(a)g(a); 
(iv) [quotient ruZe] (f/g)'(a) = [g(a)f'(a) - f(a)g'(a)]lg2(a) if 

g(a) =J. o. 

Proof 
(i) By definition of cf we have (cf)(x) = c . f(x) for all x E dom(f); 
hence 

(cf)'(a) = lim (cf)(x) - (cf)(a) = lime. f(x) - f(a) = c· f'(a). 
x_a X - a x-+a X - a 

(ii) This follows from the identity 

(f + g)(x) - (f + g)(a) f(x) - f(a) g(x) - g(a) 
-'----'--'-"'-------'----'--'--'- = + --'-"---~~ 

x-a x-a x-a 

upon taking the limit as x ~ a and applying Theorem 20.4(i). 
(iii) Observe that 

-=-(fg=-.::.)-=-(x-=-)_---:cCfl-=...;g):....:,(a--.:.,) = f(x)g(X) - g(a) + g(a/(X) - f(a) 
x-a x-a x-a 

for x E dom(fg), x =J. a. We take the limit as x ~ a and not 
that limx-+af(x) = f(a) by Theorem 28.2. We obtain [again usin 
Theorem 20.4] 

(fg)'(a) = f(a)g'(a) + g(a)f'(a). 

(iv) Since g(a) =J. 0 and g is continuous at a, there exists an open 
interval I containing a such thatg(x) =J. 0 for x E I. For x E I we can 
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write 

(f/g)(x) - (f/g)(a) = f(x) _ f(a) = g(a)f(x) - f(a)g(x) 
g(x) g(a) g(x)g(a) 

so 

g(a)f(x) - g(a)f(a) + g(a)f(a) - f(a)g(x) 

g(x)g(a) 

(f/g)(x) - (f/g)(a) 

x-a 

= {g(a)f(X) - f(a) _ r(a)g(X) - g(a)} 1 
x-a x-a g(x)g(a) 

for x E I, x =f:. a. Now we take the limit as x -+ a to obtain (iv); note 

that limx-+a g(x~(a) = g2~a)· • 

Example 4 
Let m be a positive integer, and let hex) = x-m for x =f:. o. Then 
hex) = f(x)/g(x) where f(x) = 1 and g(x) = xm for all x. By the 
quotient rule, 

, g(a)f'(a) - f(a)g'(a) am. 0 - 1· mam- 1 

h (a) - - ------- g2(a) - a2m 

-m -m-l 
=--=-ma 

am+1 

for a =f:. O. Ifwe write n for -m, then we see that the derivative ofxn 

is nxn- 1 for negative integers n as well as for positive integers. The 
result is also trivially valid for n = O. For fractional exponents, see 
Exercise 29.15. 

28.4 Theorem [Chain Rule]. 
Iff is differentiable at a and g is differentiable at f (a), then the composite 
function go r is differentiable at a and (g 0 f)'(a) = g'(f(a)) . f'(a). 

Discussion. Here is a faulty "proof' which nevertheless contains 
the essence of a valid proof. We write 

go f(x) - g o f(a) gCf(x)) - g(f(a)) f(x) - f(a) 

x a [(x) - [(a) x - a 
(1) 
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for x"# a. Since limx-+af(x) = f(a), we have 

lim gCf(x)) - gCf(a)) = lim g(y) - gCf(a)) = g'Cf(a)). 
x-+a f(x) - f(a) Y-+f(a) y - f(a) 

We also have limx-+a f(x~=~a) = f'(a), so (1) shows that (g 0 f)'(a) 
g'Cf(a)) . f'(a). 

This "proof' can be made rigorous providedf(x) "# f(a) for x"# a 
In this case, the only vague part of the "proof' is the first e~ralit 
in (2) which is justified by Exercise 28.16 with hey) = g(Y~=~Wa)). I 
f(x) = f(a) for some x's near a, the "proof' cannot be repaired usin 
(2). In fact, Exercise 28.5 gives an example of differentiable function 
f d c. h· h 1· g(f(x))-g(f(O)) . . 1 I th c. I an g lor w IC Imx-+O f(x)-f(O) IS meamng ess. n e lorm 
proof, we will avoid writing f(x) - f( a) as a denominator and we will 
appeal to Theorem 20.5 instead of the awkward Exercise 28.16. For 
recent enlightening proof, see the article by Stephen Kenton, Colleg 
Math. J. 30 (1999), 216-218. 

Proof 
It is easy to check that g 0 f is defined on some open interval 
containing a; see Exercise 28.13. Let 

hey) = g(y) - gCf(a)) for y E dom(g) and Y"# f(a), 
y - f(a) 

and let hCf(a)) = g'Cf(a)). Since limY-+f(a) hey) = hCf(a)), the fum: 
tion h is continuous atf(a). Note thatg(y) - gCf(a)) = h(y)[y - f(a)l 
for all y E dom(g), so 

go f(x) - g 0 f(a) = hCf(x))[f(x) - f(a)] for x E dom(g 0 f). 

Hence 

go f(x) - go f(a) _ hCf x f(x) - f(a) 
x - a - ()) x - a 

for x E dom(g 0 f), x "# a. Since limx-+a fex) = f(a) and the function 
h is continuous atf(a), Theorem 20.5 shows that 

lim hCf(x)) = hCf(a)) = g'Cf(a)). 
x-+a 

Of course, limx-+a fcxl=~(a) = f'(a) , so taking the limit in (3) as x a 
we obtain (g 0 f)'(a) = g'Cf(a))· f'Ca). 
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It is worth emphasizing that iff is differentiable on an interval I 
Ind if g is differentiable on {f(x) : X E I}, then (g 0 n' is exactly the 
f'unction (g' 0 n . [' on I . 

II:xample 5 

Let hex) = sin(x3 + 7x) for x E R The reader can undoubtedly verify 
Ihat h'(x) = (3x2 + 7) COS(X3 + 7x) for x E lR using some automatic 
I chnique learned in calculus. Whatever the automatic technique, it 
Illjustifiedbythe chain rule. In this case, h = gofwheref(x) = x3+7x 
md g(y) = siny. Then ['(x) = 3x2 + 7 andg'(y) = cosy so that 

h'(x) = g'Cf(x)) . ['(x) = [cosf(x)] . ['(x) = [COS(X3 + 7x)] . (3x2 + 7). 

We do not want the reader to unlearn the automatic technique, but 
I he reader should be aware that the chain rule stands behind it. 

Exercises 
28.1. For each of the following functions defined on JR, give the set of 

points at which it is not differentiable . Sketches will be helpful. 
Ca) e1xl (b) sin Ixl 
Ce) I sin xl Cd) Ixl+lx - ll 
Ce) Ix2-11 Cf) Ix3 -81 

28.2. Use the definition of derivative to calculate the derivatives of the 
following functions at the indicated points. 

Ca) fex) = x3 atx = 2; 

(b) gex) = x + 2 at x = a; 

Ce) fex) = x2 cosx at x = 0; 

Cd) rex) = ~~i at x = 1. 

28.3. Ca) Let hex) = .JX = x1/2 for x 2: o. Use the definition of derivative 
to prove that h/ex) = ~x-1I2 for x > o. 

(b) Let fex) = X1l3 for x E JR and use the definition of derivative 
to prove that rex) = ~X-2/3 for x f- o. 

Ce) Is the functionf in part (b) differentiable at x = O? Explain. 

20.4. Let [(x) = x2 sin ~ for x 1= 0 and [(0) = o. 
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(a) Use Theorems 28.3 and 28.4 to show that [ is differentiabl 
at each a =1= 0 and calculate f'(a). Use, without proof, the fact 
that sin x is differentiable and that cos x is its derivative. 

(b) Use the definition to show that [ is differentiable at x = 0 
and thatf'(O) = o. 

(c) Show that f' is not continuous at x = O. 

28.5. Let [(x) = x2 sin ~ for x =1= 0, f(O) = 0, and g(x) = x for x E lR. 

(a) Observe that [ and g are differentiable on lR. 

(b) Calculate [(x) for x = ;n' n = ±1, ±2, .... 

( ) E 1 · h 1· g(f(x))-g(f(O)) . . 1 c xp am w y Imx->O f(x)-f(O) IS meanmg ess. 

28.6. Let [(x) = x sin ~ for x =1= 0 and [(0) = o. 

(a) Observe thatf is continuous at x = 0 by Exercise 17.9(c). 

(b) Is [ differentiable at x = O? Justify your answer. 

28.7. Letf(x) = x2 for x:::: 0 andf(x) = 0 for x < o. 

(a) Sketch the graph of f. 

(b) Show that [ is differentiable at x = O. Hint: You will have to 
use the definition of derivative. 

(c) Calculate f' on lR and sketch its graph. 

(d) Is f' continuous on lR? differentiable on lR? 

28.8. Letf(x) = x2 for x rational and [(x) = 0 for x irrational. 

(a) Prove thatf is continuous at x = o. 

(b) Prove that [ is discontinuous at all x =1= o. 

(c) Prove that f is differentiable at x = o. Warning: You cannot 
simply claimf'(x) = 2x. 

28.9. Let hex) = (X4 + 13x/. 

(a) Calculate h'(x). 

(b) Show how the chain rule justifies your computation in part 
(a) by writing h = g 0 f for suitable f and g. 

28.10. Repeat Exercise 28.9 for the function hex) = [cosx + e"' J1 2. 
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28.11. Suppose that[ is differentiable at a, g is differentiable at[(a), and 
h is differentiable at g 0 [(a). State and prove the chain rule for 
(h 0 go f)'(a). Hint: Apply Theorem 28.4 twice. 

28.12. (a) Differentiate the function whose value at x is COS(e"5_ 3X
). 

(b) Use Exercise 28.11 or Theorem 28.4 to justify your computa­
tion in part (a). 

28.13. Show that if [ is defined on an open interval containing a, if g is 
defined on an open interval containingf( a), and if [ is continuous 
at a, then g 0 [ is defined on an open interval containing a. 

28.14. Suppose that [ is differentiable at a. Prove 
(a) limh->-O f(a+htf(a) = r(a), (b) limh->-O f(a+h);!(a-h) = rCa). 

28.15. Prove Leibniz' rule 

(fg)(n)(a) = t (n)[(k)(a)g(n-k)(a) 
k=O k 

provided both [ and g have n derivatives at a. Here h0) Signifies 
the jth derivative of h so that h(O) = h, hC1) = h', h(2) = h", etc. 
Also, (~) is the binomial coefficient that appears in the binomial 
expansion; see Exercise l.12. Hint: Use mathematical induction. 
For n = I, apply Theorem 28.3(iii) . 

28.16. Let [be a function defined on an open interval I containing a. 
Let h be a function defined on an open interval! containing [(a), 
except at [(a), and suppose that [(x) E ! and [(x) ::f. [(a) for all 
x E I \ {a}. Then h 0 [ is defined on I \ {a}. Use Corollary 20.7 to 
prove that iflirnx->-a[(x) = [(a) and iflimY->-f(a) hey) exists and is 
finite, then limx->-a h 0 [(x) = limY->-f(a) hey). 

§29 The Mean Value Theorem 

ur first result justifies the following strategy in calculus: 'Ib find the 
maximum and minimum of a continuous function f on an interval 
la, b] it suffices to consider (a) the points x where ['(x) = 0; (b) the 
points where f is not differentiable; and (c) the endpoints a and b. 
'['hese are the candidates for maxima and minima. 
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29.1 . Theorem. 
If f is defined on an open interval containing XOJ if f assumes it 
maximum or minimum at XOJ and if f is differentiable at XOJ then 
f'(xo) = O. 

Proof 
We suppose thatf is defined on (a, b) where a < Xo < b. Since either 
f or -f assumes its maximum at Xo, we may assume that f assumes 
its maximum at Xo. 

Assume first thatf'(xo) > O. Since 

['(Xo) = lim f(x) - f(xo) , 
X-'Xo X - Xo 

there exists 8 > 0 such that a < Xo - 8 < Xo + 8 < band 

f(x) - f(xo) o < Ix - xol < 8 implies > 0; (1) 
x-Xo 

see Corollary 20.7. If we select x so that Xo < x < Xo + 8, then (1) 
shows that f(x) > f(xo) , contrary to the assumption that f assumes 
its maximum at Xo. Likewise, if f'(xo) < 0, there exists 8 > 0 such 
that 

fex) - f(xo) o < Ix - xol < 8 implies < O. (2) 
x-xo 

Ifwe select x so that Xo - 8 < x < Xo, then (2) implies f(x) > f(xo), 
again a contradiction. Thus we must have f'(xo) = O. • 

Our next result is fairly obvious except for one subtle point : 
one must know or believe that a continuous function on a closed 
interval assumes its maximum and minimum. We proved this in 
Theorem 18.1 using the Bolzano-Weierstrass theorem. 

29.2 Rolle's Theorem. 
Let f be a continuous function on [a, b] that is differentiable on (a, b) 

and satisfies f(a) = feb). There exists [at least one] x in (a, b) such that 
['(x) = o. 

Proof 
By Theorem 18.1, there exist Xo, Yo E [a, bl such that f(xo) ~ f{x} 
f(yo) for all x E [a, b]. Iho andyo are both endpoints offa, b], then r I 
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(a,[(a» 

-...... ....... ........ -...... 
....... 

(b,f(b» 

• x 
a b 

FIGURE 29.1 

II constant function [since f(a) = feb)] and ['(x) = 0 for all x E (a, b). 
therwise, f assumes either a maximum or a minimum at a point x 

In (a , b), in which case ['(x) = 0 by Theorem 29.1. • 

The Mean Value Theorem tells us that a differentiable function 
on [a, b] must somewhere have its derivative equal to the slope ofthe 
line connecting (a,f(a)) to (b,f(b)), namely f(bi=~(a). See Figure 29.1. 

29.3 Mean Value Theorem. 
Let f be a continuous function on [a, b] that is differentiable on (a, b). 
'then there exists [at least one] x in (a, b) such that 

['(x) = feb) - f(a). 
b-a 

(1) 

Note that Rolle's Theorem is the special case of the Mean Value 
Theorem where f(a) = feb). 

Proof 
I. t L be the function whose graph is the straight line connecting 
(a.r(a)) to (b,f(b)), i.e., the dotted line in Figure 29.1. Observe 
Ihat L(a) = f(a), L(b) = feb) and L'(x) = f(bt~(a) for all x. Let 
II(X) = f(x) - L(x) for x E [a, b]. Clearly g is continuous on [a, b] 
Ind differentiable on (a, b). Also g(a) = 0 = g(b), so g'(x) = 0 
f()r some x. E (a, b) by Rolle's Theorem 29.2. For this x, we have 
/,(x) - L'(x) - lS!!f; ~ a2. • 

t ( ) J ((,) t) i J (c ) 
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29.4 Corollary. 
Let f be a differentiable function on (a, b) such that f'(x) = 0 for an 
x E (a, b). Then f is a constant function on (a, b). 

Proof 
If f is not constant on ( a, b), then there exist Xl, X2 such that 

a < Xl < X2 < band f(XI) # f(X2). 

By the Mean Value Theorem, for some X E (Xl, X2) we have f'(x) 
f(1(2)-[(;'Il) 4 0 a contradiction. 

X2-X I T, 

29.5 Corollary. 
Let f and g be differentiable functions on (a, b) such that f' = g' on 
(a, b). Then there exists a constant c such that f(x) = g(x) + c for all 
X E (a, b). 

Proof 
Apply Corollary 29.4 to the function f - g. 

Corollary 29.5 is important for integral ·calculus because 
guarantees that all anti-derivatives, alias indefinite integrals, fo 
a function differ by a constant. Integral tables [and sophisticated 
calculators] contain formulas like 

J X2 cosxdx = 2x cosx + (X2 - 2) sin X + C. 

It is straightforward to show that the derivative of each function 
2xcosx + (X2 - 2) sin X + C is in fact X2 cosx. Corollary 29.5 show 
that these must be the only antiderivatives of X2 cos x. 

We need some terminology in order to give another useful 
corollary of the Mean Value Theorem. 

29.6 Definition. 
Let f be a real-valued function defined on an interval I. We say th t 
f is strictly increasing on I if 

Xl, X2 E I and Xl < X2 imply f(XI) < f(X2), 

strictly decreasing on I if 

Xl, X2 E I and XI < X2 imply [(Xl) > f(X2), 
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increasing on I if 

decreasing on I if 

I ~xample 1 
The functions eY on lR and ,.;x on [0,00) are strictly increasing. 
The function cosx is strictly decreasing on [O,1l']. The signum func­
I ion and the postage-stamp function in Exercise 17.10 are increasing 
functions but not strictly increasing functions. 

29.7 Corollary. 
Let [ be a differentiable function on an interval (a, b). Then 

(i) [is strictly increasing i[f'(x) > 0 [or all x E (a, b); 
(li) [is strictly decreasing i[f'(x) < 0 [or all x E (a, b); 

(iii) [is increasing i[f'(x) ::: 0 [or all x E (a, b); 
(iv) [is decreasing i[f'(x) ~ 0 [or all x E (a, b). 

Proof 
(i) Consider Xl. X2 where a < Xl < X2 < b. By the Mean Value 
Theorem, for some x E (Xl, X2) we have 

Since X2 - Xl > 0, we see that [(X2) - [(Xl) > 0 or [(X2) > [(Xl)' 

The remaining cases are left to Exercise 29.8. • 

Exercise 28.4 shows that the derivative f' of a differentiable 
f'u nction [ need not be continuous. Nevertheless, like a continuous 
function, f' has the intermediate value property [see Theorem 18.2]. 

29.8 Intermediate Value Theorem for Derivatives. 
/'e / f be a differentiable function on (a, b). Whenever a < Xl < X2 < b 
a rId c lies between f' (Xl) and f' (X2), there exists [at least one] X in (Xl, X2) 
,~uch that ['(x) = c. 
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Proof 
We may assume that f'(XI) < c < f'(X2). Let g(x) = f(x) - cx fo 
x E (a, b) . Then we have g'(XI) < 0 < g'(X2). Theorem 18.1 show 
that g assumes its minimum on [XI,X2] at some point Xo E [XI,X2) 
Since 

g'(XI) = lim g(y) - g(xI) < 0, 
y--H) Y - Xl 

g(y) - g(XI) must be negative for y close to and larger than Xl. In 
particular, there existsYI E (Xl, X2) such thatg(YI) < g(XI)' Therefo 
g does not take its minimum at Xl, so we must have Xo #- Xl. Similarly) 
there exists Y2 E (Xl, X2) such that g(Y2) < g(X2)' so Xo #- X2. We hay 
shown that Xo is in (Xl, X2), so g'(xo) = 0 by Theorem 29.1. Therefo 
f'(xo) = g'(xo) + c = c. 

We next show how to differentiate the inverse of a differentiabl 
function. Let f be a one-to-one differentiable function on an op n 
interval I. By Theorem 18.6, f is strictly increasing or strictly d 
creasing on I, and by Corollary 18.3 the image f(I) is an interval I . 
The set J is the domain of f- I and 

f- I 
0 f(x) = X for X E I; f 0 f-I(y) = Y for Y E J. 

The formula for the derivative off-I is easy to obtain [or remembMI 
from the Chain Rule: X = [-1 0 fcx), so 

1 = (f-I)'(f(X))' f'(x) for all X E I. 

Ifxo E I and Yo = [(xo), then we can write 1 = (f-I)'(yO) . f'(xo) or 

1 , 1 
(f- ) (Yo) = [-- where Yo = f(xo). 

, (xo) 

This is not a proof because the Chain Rule requires that the fu nc 
tions, f- I and [ in this case, be differentiable. We assumed that I 
is differentiable, but we must prove thatf-I is also differentiable. I 
addition, observe thatf'(xo) might be 0 [considerf(x) = X3 atxo 01. 
so our final result will have to avoid this possibility. 

29.9 Theorem. 
Let f be a one-to-one continuous function on an open interval 1, and I , 
J = f(I) . Iff is differentiable at Xo E I and if f'(xo) f 0, then f I j 
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differentiable at Yo = [(xo) and 

-1 / 1 
if ) (Yo) = f'(xo)' 

Proof 
Note that! is also an openinterval. We have limx~xo f(X;:::~Xo) = f'(xo). 
ince f'(xo) =I=- 0 and since [(x) =I=- [(xo) for x =I=- xo, we can write 

x -xo 1 lim -:---_____ -
x~xo [(x) - [(xo) [/(xo) ' 

(1) 

see Theorem 20.4(iii) . Let E > O. By (1) and Corollary 20.7, there 
exists 8 > 0 such that 

o < Ix - xol < 8 implies 
I 

X-Xo 1 I 
[(x) - [(xo) - f'(xo) < E. 

(2) 

Let g = [-1 and observe thatg is continuous at Yo by Theorems 18.6 
and 18.4 [or Exercise 18.11]. Hence there exists 1/ > 0 [lower case 
Greek eta] such that 

o < Iy - Yol < 1/ implies Ig(y) - g(yo) I < 8, i.e., Ig(y) - xol < 8. 
(3) 

Combining (3) and (2) we obtain 

o < Iy - yol < 1/ implies I 
g(y) - Xo 1 I 

[(g(y)) - [(xo) - f'(xo) < E. 

Since g(y)-xo = g(y) -g(yo) this shows that 
f (g(y))-f(xo) y - yo' 

lim g(y) - g(yo) = _1_. 
y~yo Y - Yo [/(xo) 

I [ence g/ (Yo) exists and equals f' (~o)' • 
I~xample 2 
I, t n be a positive integer, and let g(y) = ;fjj = y lln. If n is even, the 
(Iomain of g is [0, 00) and, if n is odd, the domain is R In either case, 
II is strictly increasing and its inverse is [(x) = Xnj here dom(f) = 
10,00) if n is even. Consider Yo e dom(g) where Yo =I=- 0, and write 
.'/0 = Xo where Xo e domif) . Since f'( Xo ) = nx~- l, Theorem 29.9 
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shows that 

'e) 1 1 _ ~ylln-l 
g Yo = ----n=I = (n-l)l n - n 0 

nxo nyo 

This shows that the function g is differentiable for y 1= 0 and tha 
the rule for differentiating xn holds for exponents of the form lin; 
see also Exercise 29.15. 

Theorem 29.9 applies to the various inverse functions encoun· 
tered in calculus. We give one example. 

Example 3 
The functionf(x) = sinx is one-to-one on [-~, ~], and it is tradition 1 
to use the inverse g off restricted to this domain; g is usually denoted 
sin-lor arcsin. Note that dom(g) = [-1,1]. For Yo = sinxo in (-1, 1) 

where Xo E (-~, ~), Theorem 29.9 shows thatg'(yo) = co!xo' Sine 

1 = sin2 Xo + cos2 Xo = y~ + cos2 Xo and cosxo > 0, we may write 

I 1 
g (Yo) = ~ for Yo E (-1,1). 

,,1 - Yo 

Exercises 
29.1. Determine whether the conclusion of the Mean Value Theorem 

holds for the following functions on the specified intervals. If th 
conclusion holds, give an example of a point x satisfying (1) 0 

Theorem 29.3. If the conclusion fails, state which hypotheses 0 

the Mean Value Theorem fail . 
(a) x2 on[-l,2], (b) sin x on [O,1r], 
(c)lxlon[-l,2], (d) ±on[-l,l], 
(e) ±on[l,3], (f) sgn(x) on [- 2,2]. 
The function sgn is defined in Exercise 17.10. 

29.2. Prove that I cosx - cosyl ::: Ix - yl for all X,Y E lR. 

29.3. Suppose that [ is differentiable on R and that [(0) = a, [(1) 
and [(2) = l. 

(a) Show thatf'(x) = ~ for some x E (0,2). 

(b) Show thatf'(x) = ~ for some x E (0,2). 
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29.4. Let f and g be differentiable functions on an open interval I. 
Suppose that a, b in I satisfY a < band f(a) = feb) = o. Show 
that f'(x) + f(x)g'(x) = 0 for some x E (a, b). Hint: Consider 
hex) = f(x)eS(X). 

29.5. Let f be defined on 1R, and suppose that If(x) - fey) I ~ (x - yi for 
all x, y E R Prove that f is a constant function. 

29.6. Give the equation of the straight line used in the proof of the Mean 
Value Theorem 29.3. 

29.7. (a) Suppose that f is twice differentiable on an open interval I 
and that ["(x) = 0 for all x E I. Show that f has the form 
f(x) = ax + b for suitable constants a and b. 

(b) Suppose f is three times differentiable on an open interval 
I and that fill = 0 on I. What form does f have? Prove your 
claim. 

29.8. Prove (ii)-(iv) of Corollary 29.7. 

29.9. Show that ex ~ e" for all x E R 

29.10. Letf(x) = x2 sin(~) + i for x =1= 0 andf(O) = o. 
(a) Show thatf'(O) > 0; see Exercise 28.4. 

(b) Show that f is not increasing on any open interval contain­
ing o. 

(e) Compare this example with Corollary 29.7(i). 

29.11. Show that sin x ~ x for all x ~ O. Hint: Show thatf(x) = x - sin x 
is increasing on [0,00). 

29.12. (a) Show that x < tan x for all x E (0, D. 
(b) Show that Si~X is a strictly increasing function on (0, ~). 

(e) Show that x ~ ~ sin x for x E [0, n 
:l9.13. Prove that iff and g are differentiable on 1R, if f(O) = g(O) and if 

f'(x) ~ g'(x) for all x E 1R, thenf(x) ~ g(x) for x ~ o. 
29.14. Suppose that f is differentiable on 1R, that 1 ~ f' (x) ~ 2 for x E 1R, 

and that f(O) = o. Prove that x ~ f(x) ~ 2x for all x ~ o. 
:l9.15. Let rbe a nonzero rational number r; where n is a positive integer, 

m is any nonzero integer, and m and n have no common factors. 
Let hex) = xr where dom(h) = [0, (0) if n is even and m > 0, 
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dom(h) = (0,00) if n is even and m < 0, dom(h) = R if n is 0 

and m > 0, and dam (h) = R \ {OJ ifn is odd and m < O. Show th 
h'(x) = rxr

-
1 for x E dom(h), x -I O. Hint: Use Example 2. 

29.16. Use Theorem 29.9 to obtain the derivative of the inverse g 
arctan of [where [(x) = tan x for x E (-~, ~). 

29.17. Let [ and g be differentiable on an open interval I and consid 
a E I. Define h on I by the rules: hex) = [(x) for x < a, an 
hex) = g(x) for x ::: a. Prove that h is differentiable at a if an 
only if both [(a) = g(a) andf'(a) = g'(a) hold. Suggestion: Draw 
picture to see what is going on. 

29.18. Let [ be differentiable on R with a = sup{if'(x)I : X E R} < 1. 

§30 

Select So E R and define Sn = [(Sn-1) for n ::: l. Thus S1 = [(so), 
S2 = [(sd, etc. Prove that (sn) is a convergence sequence. Hint : 
1b show (sn) is Cauchy, first show that ISn+1 - snl :::: alsn - Sn Ii 
for n ::: l. 

* I1Hospital's Rule 

In analysis one frequently encounters limits of the form 

lim [(x) 
x..-+s g(x) 

where s signifies a, a+, a-, 00 or -00. See Definition 20.3 concern· 
ing such limits. The limit exists and is simply ~~mx-+s T~ provided th 

tffiX-i>sg )(. 

limits limx..-+sf(x) and limx..-+sg(x) exist and are finite and provided 
limx..-+sg(x) =f. 0; see Theorem 20.4. If these limits lead to an ind 
terminate form such as g or :' then I.:Hospital's rule can often b 
used. Moreover, other indeterminate forms, such as 00 - 00, 100

, 00°, 

0° or 0 . 00, can usually be reformulated so as to take the form g or 
:; see Examples 5-9. Before we state and prove I.:Hospital's rul , 
we will prove a generalized mean value theorem. 

30.1 Generalized Mean Value Theorem. 
Let [ and g be continuous functions on [a, b] that are differentiable on 
(a, b). Then there exists [at least one] x in (a, b) such that 

f'(x)[g(b) - g(a)] = g'(x)ff(b) - [(a)]. 



§30. • IlHospital's Rule 223 

This result reduces to the standard Mean Value Theorem 29.3 
when g is the function given by g(x) = x for all x . 

Proof 
The trick is to look at the difference of the two quantities in (1) and 
hope that Rolle's Theorem will help. Thus we define 

hex) = f(x)[g(b) - g(a)] - g(x)[f(b) - f(a)] ; 

It suffices to show that h'(x) = 0 for some x E (a, b). Note that 

h(a) = f(a)[g(b) - g(a)] - g(a)[f(b) - f(a)] = f(a)g(b) - g(a)f(b) 

md 

h(b) = f(b)[g(b)-g(a)1-g(b)[f(b) - f(a)] = - f(b)g(a)+g(b)f(a) = h(a). 

Clearly h is continuous on [a, b] and differentiable on (a, b), so Rolle's 
Theorem 29.2 shows that h'(x) = 0 for at least one x in (a, b). • 

Our proof of UHospital's rule below is somewhat wordy but is 
really quite straightforward. It is based on the elegant presentation 
In Rudin [36]. Many texts give more complicated proofs. 

30.2 I1Hospital's Rule. 
Let s signifY a, a+, a - , 00 or -00 where a E lR, and suppose f and g 
are differentiable functions for which the following limit exists: 

If 

or if 

then 

lim f'(x) = L. 
x~s g'(x) 

limf(x) = limg(x) = 0 
x~s x~s 

lim Ig(x)1 = +00, 
x~s 

lim f (x) = L. 
x-+s g(x) 

(1) 

(2) 

(3) 

(4) 
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Note that the hypothesis (1) includes some implicit assumption 
[ and g must be defined and differentiable "near" sand g' (x) mu 

be nonzero "near" s. For example, if limx-+a+ ;~:~ exists, then the 
must be an interval (a, b) on which [ and g are differentiable an 
g' is nonzero. The requirement that g' be nonzero is crucial; se 
Exercise 30.7. 

Proof 
We first make some reductions. The case oflimx-+a follows from th 
cases limx-+a+ and limx-+a-, since limx-+a hex) exists if and only ifth 
limits limx-+a+ hex) and limx-+a- hex) exist and are equal; see Theo­
rem 20.10. In fact, we restrict our attention to limx-+a+ and limx-+_oo1 

since the other two cases are treated in an entirely analogous man· 
nero Finally, we are able to handle these cases together in view of 
Remark 20.11. 

We assume a E lR or a = -00. We will show that if -00 ::: L < 00 

and L1 > L, then there exists a1 > a such that 

implies [(x) < L 1 . 

g(x) 
(5) 

A similar argument [which we omit] shows that if -00 < L ::: 00 and 
L2 < L, then there exists a2 > a such that 

a < x < a2 implies [(x) > L2. 
g(x) 

(6) 

We now show how to complete the proof using (5) and (6); (5) will b 
proved in the next paragraph. If L is finite and E > 0, we can apply 
(5) to L1 = L + E and (6) to L2 = L - E to obtain a1 > a and a2 > a 
satisfying 

a < x < a1 implies 

a < x < a2 implies 

Consequently if a = min{a1' a2} then 

a < x < a implies 

[(x) < L + E 
g(x) , 

[(x) > L _ E. 

g(x) 

I[(X) - LI < €; 
g(x) 
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In view of Remark 20.11 this shows that limx--+a+ ~ = L [if a = -00, 

then a+ = -00]. If L = -00, then (5) and the fact that L1 is arbitrary 

how that lirnx--+a+ ~~:~ = -00. If L = 00, then (6) and the fact that 

L2 is arbitrary show that limx--+a+ ~ = 00. 

lt remains for us to consider L1 > L ~ -00 and show that there 
(,xists a1 > a satisfying (5). Let (a, b) be an interval on whichf and 
H are differentiable and on which g' never vanishes. Theorem 29.8 
IIhows that either g' is positive on (a, b) or else g' is negative on 
(a, b). The former case can be reduced to the latter case by replacing 
n by -g. So we assume g'(x) < 0 for x E (a, b), so that g is strictly 
decreasing on (a, b) by Corollary 29.7. Since g is one-to-one on (a, b), 
p(x) can equal 0 for at most one x in (a, b). By choosing b smaller 
If necessary, we may assume that g never vanishes on (a, b). Now 
elect K so that L < K < L1 • By (1) there exists a > a such that 

['(x) 
a < x < a implies -- < K. 

g'(x) 

If a < x < y < a, then Theorem 30.1 shows that 

'I'herefore 

f(x) - fey) 

g(x) - g(y) 

['(z) 

g'(z) 
for some z E (x, y). 

a < x < y < a implies 
f(x) - fey) 
--=--=----~ < K. 
g(x) - g(y) 

I r hypothesis (2) holds, then 

lim f(x) - fey) = fey) 
x--+a+ g(x) - g(y) g(y) , 

110 (7) shows that 

fOJ) < K < L for a < y < a·, 
g(y) _ 1 

(7) 

II nce (5) holds in this case. Ifhypothesis (3) holds, then limx--+a+ g(x) = 
I 00 since g is strictly decreasing on (a, b). Also g(x) > 0 for x E (a, b) 
ince g never vanishes on Ca, b). We multiply both sides of (7) by 
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g(X)-g(y ) which is positive to see that 
g(x) , , 

a < x < y < a implies f(x) - fey) < K .g =-..c(:.....:x)'-----=g:....:::(y:...:..) 
g(x) g(x) 

and hence 

f(x) < K. g(x) - g(y) + fey) = K + fey) - Kg(y). 
g(x) g(x) g(x) g(x) 

We regard y as fixed and observe that 

lim fey) - Kg(y) = o. 
X4a+ g(x) 

Hence there exists a2 > a such that a2 :'S y < a and 

implies 

Thus again (5) holds. 

Example 1 

f(x) 
-- < L 1 · 
g(x) 

Ifwe assume familiar properties of the trigonometric functions, then 
limx4 0 Si~ x is easy to calculate by I1Hospital's rule: 

sin x cosx 
lim -- = lim -- = cos(O) = 1. 
X40 X X40 1 

(1) 

Note that f(x) = sin x and g(x) = x satisfy the hypotheses in The 
orem 30.2. This particular computation is really dishonest becausfl 
the limit (1) is needed to prove that the derivative of sinx is cos x. 
This fact reduces to the assertion that the derivative of sin x at 0 is 
I, i.e., to the assertion 

I 
sin x - sin 0 sin x 

im =lim-- = l. 
X40 x - 0 X40 X 

Example 2 
We calculate limx40 CO~~-l. I1Hospital's rule will apply provided the 
limit limx4 0 - ~nx exists. But - ~nx = _~ Si~x and this has limit - ~ 
by Example 1. We conclude that 

1
. cosx - l 
Im---

X4 0 x2 

1 

2 
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" ~xample 3 
We show that limx--+ oo ::x = O. As written we have an indeterminate 
or the form :. By UHospital's rule, this limit will exist provided 
Ilrnx--+ oo 3~ exists and by UHospital's rule again, this limit will exist 
provided limx--+oo 9~ exists. The last limit is 0, so we conclude that 

I x2 
I mx--+oo e3:< = o. 

";xample 4 
Consider limx--+o+ 10; x if it exists. By L'Hospital's rule, this appears to 
he 

l/x 
lim -=+00 

x--+o+ 1 

md yet this is incorrect. The difficulty is that we should have checked 
t he hypotheses. Since limx--+o+ log x = -00 and limx--+o+ x = 0, 
neither of the hypotheses (2) or (3) in Theorem 30.2 hold. 1b 
find the limit, we rewrite ~ as _lo

ge
:lx) . It is easy to show 

that limx--+o+ 10g~/X) will agree with limy--+ooylogy provided the lat­

ter limit exists; see Exercise 30.4. It follows that limx--+o+ ~ = 
- l imy--+ooylogy= -00. 

The next five examples illustrate how indeterminate limits of 
various forms can be modified so that I1Hospital's rule applies. 

Example 5 
Consider limx--+o+ x log x. As written this limit is of the indeterminate 
rorm 0 . (-00) since limx--+o+ x = 0 and limx--+o+ logx = -00. By 
writing x log x as l~J: we obtain an indeterminate of the form -::' so 
we may apply UHospital's rule: 

logx 1. 
lim xlogx = lim -)- = lim --\- = - lim x = o. 

x--+ 0+ x--+ 0+ x x--+ 0+ - Xi" x--+ 0+ 

We could also write xlogx as lI rog x to obtain an indeterminate 

of the form g. However, an attempt to apply L'Hospital's rule only 
makes the problem more complicated: 

x 1 
lim x log x = lim -1- = lim -_-) - = - lim x(log X) 2. 

x 0+ x--+ O+ - x--+O+ ~ x--+O+ logx x(logx) 
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Example 6 
The limit limx-+o+ XX is of the indeterminate form 00

• We write )(" 
as if10gx [remember x = e1ogx] and note that limx-+o+ xlogx = 0 by 
Example 5. Since g(x) = if is continuous at 0, Theorem 20.5 shows 
that 

lim XX = lim c 10gx = eO = l. 
x-+o+ x-+o+ 

Example 7 
The limit limx-+oo Xlix is of the indeterminate form 000 . We write x1/ 

as e(logx)/x . By L'Hospital's rule 

logx ~ 
lim -- = lim - = o. 

x-+oo X x-+oo 1 

Theorem 20.5 now shows that limx-+oo Xlix = eO = 1. 

Example 8 
The limit limx-+00(1 - ~y is indeterminate of the form 100. Since 

(1 - ~ r = clogCl-lIx) 

we evaluate 

( 
1) log (1 - 1) (1 - 1)-1 x-2 

lim x log 1 - - = lim x = lim ~_x::..:--::--_ 
x-+oo X x-+oo 1 x-+oo -x-2 

x 

( 
1)-1 = lim - 1 - - = -l. 

x-+oo x 

So by Theorem 20.5 we have 

lim (1 _ ~) X = e-1, 
x-+oo X 

as should have been expected since limn-+00(1 - ~r = e- 1• 

Example 9 
Consider limx-+o hex) where 

1 1 ) I 
hex) = -- - - = (c - 1r - x- for x f O. ex - 1 x 
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Neither of the limits limx~o(eX - lrI or limx~ox-I exists, so 
limx~o hex) is not an indeterminate form as written. However, 
limx~o+ hex) is indeterminate of the form 00 - 00 and limx~o- hex) 
is indeterminate of the form (-00) - (-00). By writing 

h x-eX+l 
(x) = x(eX _ 1) 

the limit limx~o hex) becomes an indeterminate of the form g. By 
UHospital's rule this should be 

I-eX 
lim , 
x~o xeX + eX - 1 

which is still indeterminate g. Note that xeX + eX - 1 "# 0 for x "# 0 
so that the hypotheses of Theorem 30.2 hold. Applying L'Hospital's 
rule again, we obtain 

-eX 1 
lim----
x~o xeX + 2eX 2 

Note that we have xeX + 2eX "# 0 for x in (-2,00). We conclude that 
limx~o hex) = -~. 

Exercises 
30.1. Find the following limits if they exist. 

Ca) lim e2"-cosx (b) lim I- cosx 
x~o x x~o ---xr-

C ) 1· £ Cd) 1· v'f+X-.JI=X e Imx~oo e2. lIDx~O x 

:10.2. Find the following limits if they exist. 
C ) 1· xl (b) 1· tan x-x a Imx~O sin x-x lIDx~O -x3-

Ce) limx~o[si~x - ~] Cd) limx~o(cosx)I/x2 

:10.3. Find the follOwing limits if they exist. 
Ca) limx~oo x-~inx (b) limx~oo XSin(1 / x) 

Ce) 11·m I+cosx Cd) llID· l-cos2x-2x2 
X~O+ e" - I x~o x' 

:10.4. Let f be a function defined on some interval (0, a), and define 
g(JJ) = re!) for y E ea I, (0); here we set a-I = 0 if a = 00. Show 
that limk . 0 1 rex) oxillts if and only if limy~oo g(JJ) exists, in which 
cas they arc equal. 
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30.5. Find the limits 
(a) limH o(l + 2xih: 

(c) lim"' .... oo(e" + X)lh 

30.6. Let [ be differentiable on some interval (e,oo) and suppose that 
lim"' .... oo[f(x)+f'(x)] = L, where L is finite. Prove thatlimHoo[(x) 
L and that limHoof'(x) = O. Hint: [(x) = f(;:e'. 

30.7. This example is taken from [38] and is due to Otto Stolz, Math . 
Annalen 15 (1879), 556-559. The requirement in Theorem 30.2 that 
g'(x) =1= 0 for x "near" s is important. In a careless application of 
I1Hospital's rule in which the zeros of g' "cancel" the zeros of [" 
erroneous results can be obtained. For x E IR, let 

[(x) = x + cos x sin x and g(x) = eSin",(x + cos x sin x). 

(a) Show that lim", .... 00 [(x) = lim"' .... oog(x) = +00. 

(b) Show ['(x) = 2(cosxi andg'(x) = esin ", cosx[2 cosx + [(x)]. 

( ) Sh th t LSz1 2e-
sinx 

cos", ·f -I- 0 d 3 c ow a g' ("') = 2cos"'+f("') 1 COSX r an x > . 

(d) Sh h t 1· 2e- sonx cos", - 0 d h 1· ·t 1· &1 ow t a 1m"' .... 00 2 COS "'+f("') - an yet t e 1m1 1m"' .... 00 fI( ,I) 

does not exist. 

§31 Thylor's Theorem 

31.1 Discussion. 
Consider a power series with radius of convergence R > 0 [R rna 
be +00]: 

00 

[(x) = Lakxk. 
k=O 

By Theorem 26.5 the function [ is differentiable in the intervallxl 
Rand 

00 

['ex) = L kakxk- 1
• 

k I 

( I) 
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The same theorem shows thatf' is differentiable for Ixl < Rand 
00 

["(x) = L k(k - 1)akxk- 2
• 

k=2 

Continuing in this way, we find that the nth derivative fen) exists for 
Ixl < Rand 

00 

f(n)(x) = L k(k - 1)··· (k - n + l)akxk-n. 
k=n 

In particular, 

f(n)(O) = n(n - 1)··· (n - n + l)an = n!an. 

This relation even holds for n = 0 if we make the convention f(O) = f 
and recall the convention O! = 1. Since f(k)(O) = k!ak, the original 
power series (1) has the form 

00 f(k)(O) 
f(x) = L -I-xk , Ixl < R. (2) 

k=O k. 

As suggested at the end of §26, we now begin with a function f 
and seek a power series for f. The last paragraph shows that f should 
possess derivatives of all orders at 0, i.e.,['(O), ["(0),["'(0), ... should 
all exist. For suchf formula (2) might hold for some R > 0, in which 
case we have found a power series for f. 

:U.2 Definition. 
Let f be a function defined on some open interval containing O. Iff 
possesses derivatives of all orders at 0, then the series 

00 f(k)(O) L--xk 

k=O k! 
(1) 

1/'1 aIled the Taylor series for f about o. The remainder Rn(x) is defined 
hy 

n-l f(k)(O) 
Rn(x) = f(x) - L __ Xk. 

k=O k! 
(2) 

f course the remaindor RI1 depends onf, so a more accurate no­
tlltion would htl HornClthinj./, like R,,(fi x). The remainder is important 
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because, for any X, 

00 [Ck)(O) 
[(x) = L __ xk if and only if lim Rn(x) = o. 

k=O k! n-+oo 

We will show in Example 3 that [ need not be given by its Thylo 
series, i.e., that limn-+oo Rn(x) = 0 can fail. Since we want to know 
when [ is given by its Thylor series, our various versions of Thylor' 
theorem all concern the nature of the remainder Rn. 

31.3 'Th.ylor's Theorem. 
Let [ be defined on ( a, b) where a < 0 < b, and suppose the nth deriva 
tive [Cn) exists on (a, b). Then [or each nonzero x in (a, b) there is som8 
y between 0 and x such that 

Rn(x) = [cn)(Y)xn. 
n! 

The proof we give is due to James Wolfe [41]; compar 
Exercise 31.6. 

Proof 
Fix X =1= O. Let M be the unique solution of 

n-l [Ck)(O) Mxn 
[(x) = L--xk+-

k=O k! n! 
(1) 

and observe that we need only show that 

[cn)(y) = M for some y between 0 and x. (2) 

[Th see this, replace M by [cn)(1f) in equation (1) and recall th 
definition of Rn(x).] Th prove (2), consider the difference 

n-l [Ck)(O) Mtn 
get) = L __ tk + - - fCt). 

k=O k! n! 
(3) 

A direct calculation shows that g(O) = 0 and that gCk)(O) = 0 fo 
k < n. Alsog(x) = Obythe choice ofM in (1). By RoUe's theorem 29.2 
we have g'(xI) = 0 for some Xl between 0 and x. Since g'(O) = 0, 
second application of Rolle's theorem shows that g" (X2) = 0 som 
X2 between 0 and Xl. Again, since g"(O) = 0 we have g"'(X3) - 0 fo 
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some X3 between 0 and X2. This process continues until we obtain Xn 
between 0 and Xn-l such that g(n)(xn) = O. From (3) it follows that 
g(n)(t) = M - f(n)(t) for all t E (a, b), so (2) holds with y = Xn. • 

31.4 Corollary. 
Let f be defined on (a, b) where a < 0 < b. If all the derivatives fen) 
exist on (a, b) and are bounded by a single constant C, then 

lim Rn(x) = 0 for all x E (a, b). 
n--+oo 

Proof 
Consider x in (a, b). From Theorem 31.3 we see that 

C 
IRn(x) I ::: ,Ixln for all n. 

n. 

ince limn--+ oo Ixl," = Oby Exercise 9.15, we conclude thatlimn--+ oo Rn(x) 
n. 

= 0. • 

Example 1 
We assume the familiar differentiation properties of tr, sin x, etc. 

(a) Letf(x) = tr for x E R Then f(n) (x) = tr for all n = 0, I, 2, ... , 
so f(n)(o) = 1 for all n. The Thylor series for e! about 0 is 

For any bounded interval (-M, M) in JR all the derivatives of fare 
bounded [by eM, in fact], so Corollary 31.4 shows that 

(b) Iff(x) = sin x for x E JR, then 

cosx 
-sinx 
- cosx 

sinx 

n = 1,5,9, .. . 
n = 2,6,10, .. . 
n=3,7,ll, .. . 
n = 0,4,8,12, .. . ; 



234 5. Differentiation 

thus 

1 
-1 

o 

n = 1,5,9, .. . 
n = 3,7,11, .. . 
otherwise. 

Hence the Thylor series for sin x is 

f (-I)k X2k+l. 

k=O (2k + I)! 
The derivatives of [ are all bounded by I, so 

00 (_I)k 
sin x = L X

2
k+l for all x E lR. 

k=O (2k + I)! 

Example 2 
In Example 2 of §26 we used Abel's theorem to prove 

1 1 1 1 1 1 
loge 2 = 1 - "2 + "3 - "4 + 5" - 6" + "7 - . . . . (1 ) 

Here is another proof, based on Thylor's theorem. Consider th 
function [(x) = 10g(I + x) for x E (-1, (0). Differentiating, we find 

f'(x) = (1 + xr\ f"(x) = -(1 + xr2, ["'(x) = 2(1 + X) - 3, 

etc. A simple induction argument shows that 

[cn)(x) = (-It+l(n - I)!(1 + x)-n. (2) 

In particular, [Cn)(O) = (-Iy+l(n - I)!, so the Thylor series for f 
about 0 is 

00 (-1 )k+l k x2 x3 X4 XS L x =x--+---+--···. 
k=l k 2 3 4 5 

We also could have obtained this Thylor series using Example 1 In 
§26, but we need formula (2) anyway. We now apply Theorem 31 .. 
with a = -I, b = +00, and x = 1. Thus for each n there xist 
Yn E (0, 1) such that Rn(1) = f(n;~n). Equation (2) shows that 

(-Iy+l(n - I)! 
R (1) - . 

n - (1 + Yn)nn! ' 
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hence 

1 1 
IRnl'"l)I = < for all n. 

(1 + Yn)nn n 

Therefore limn.-+ oo Rn(l) = 0, so (1) holds. 

The next version of Thy lor's theorem gives the remainder in inte­
gral form. The proof uses results from integration theory that should 
be familiar from calculus; they also appear in the next chapter. 

31.5 'Thylor's Theorem. 
Let [ be defined on (a, b) where a < 0 < b, and suppose the nth 
derivative fen) exists and is continuous on (a, b). Then [or x E (a, b) 
we have 

Rn(x) = - [Cn)(t) dt. l
x (x ty-l 

o (n-I)! 
(1) 

Proof 
For n = I, equation (1) asserts 

Rl(X) = [(x) - [(0) = l x 

['(t)dt; 

lhis holds by Theorem 34.1 . For n :::: 2, we repeatedly apply integra­
lion by parts, i.e., we use mathematical induction. So, assume (1) 
holds for some n, n :::: 1. We evaluate the integral in (1) by Theo­

rem 34.2, using u(t) = [(n)(t), viet) = (~~;;l, so that u/(t) = [(n+l)(t) 

tnd vet) = _(X~?n . We obtain 

- Rn(x) = u(x)v(x) - u(O)v(O) - lx 

v(t)u/ (t) dt 

xn lx 
(x ty = [(n)(x) .0 + [(n)(O)_ + - [(n+l)(t) dt. 

n! 0 n! 

The definition of Rn+l in Definition 31.2 shows that 

[(n\O) 
Rn+l(X) = Rn(x) - __ xn; 

n! 

Iu:n e from (2) we see that (1) holds for n + 1. 

(2) 

(3) 

• 



236 5. Differentiation 

31.6 Corollary. 
Iff is as in Theorem 31.5, then for each x in (a, b) different from 0 there 
is some y between 0 and x such that 

Rn(x) = (x - yt-
1 
[Cn)(y) . X. (1) 

(n - I)! 

This form of Rn is known as Cauchy's form of the remainder. 

Proof 
We suppose x < 0, the case x > 0 being similar. The Intermediat 
Value Theorem for Integrals 33.9 shows that 

x - [Cn)(t) dt = [0 _ x] x - Y [Cn)(y) 10 ( t)n-l ( )n-l 

x (n-l)! (n-l)! 
(2) 

for some y in (x,O) . Since the integral in (2) equals -Rn(x) by 
Theorem 31.5, formula (1) holds. 

Recall that the binomial theorem tells us that 

(a + bt = t (n)akbn
-

k 

k=O k 

where 

(
n) __ n! __ n( n - 1) ... (n - k + 1) 

k k!(n - k)! k! 
for 1::: k ::: n. 

Let a = x and b = 1; then 

~ n( n - 1) ... (n - k + 1) k 
(1 + xt = 1 + ~ x . 

k=l k! 

This result holds for some values of x even if the exponent n isn' 
an integer, provided we allow the series to be an infinite series. W 
next prove this using Thylor's Theorem 31.5. Our proof follows th l 
in [34]. 

31.7 Binomial Series Theorem. 
Ifa E lR and Ixl < I, then 

~ a( a - I) ... (a - k + 1) k 
(1 + xl = 1 + ~ x . 

k I k! 
( I) 
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Proof 
k - 1 - a(a-I}--(a-k+l) f . . . For - 1,2,3, ... , et ak - k! . I ex IS a nonnegatIve lll-

teger, then ak = 0 for k > ex and (1) holds for all x as noted in our 
discussion prior to this theorem. Henceforth we assume ex is not a 
nonnegative integer so that ak =j:. 0 for all k. Since 

lim -- = lim -- =1 
l
ak+11 lex - kl 

k-+oo ak k-+oo k + 1 ' 

lhe series in (1) has radius of convergence 1; see Theorem 23.1 and 
Corollary 12.3. Likewise Lkakxk-I converges for Ixl < 1; hence 

lim nanxn- I = 0 for Ixl < l. 
n-+oo 

(2) 

Let f(x) = (1 + xt for Ixl < 1. For n = 1,2, ... , we have 

f(n)(x) = ex(ex - 1)··· (ex - n + 1)(1 + xt- n = n!an(1 + xt- n. 

Thus f(n)(o) = n!an for all n ::: I, and the series in (1) is the Thylor 
series for f. Also, by Theorem 3l.5 we have 

l
x (x t)n-I 

Rn(x) = n!an(1 + tt- n dt 
o (n-I)! 

= l x 
nan [X - tJn-1 (1 + tt- I dt 

o 1 + t 
(or Ixl < l. It is easy to show that 

I
x- tl -- <Ixl 
1 + t -

if - 1 < x ~ t ~ 0 or 0 ~ t ~ x < 1. 

'Ib see this, note that t = xy for some y E [0,1], so 

I;~~I = I;~:~I = IXI·III;~1 ~ Ixl 

ince 1 + xy ::: 1 - y. Thus the integrand in (3) is bounded by 

nlanl . Ixln-I (I + tt-I ; 

therefore 

f 'X
' IR,,(x)1 nla"l· Ixln-

I (1 + tt-I dt. 
I ,~I 

(3) 
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Applying (2), we now see that limn-HX,Rn(x) = 0 for Ixl < I, so that 
(1) holds. • 

We next give an example of a function [ whose Thylor series ex­
ists but does not represent the function. The function [ is infinitely 
differentiable on JR, i.e., derivatives of all order exist at all points ofR 
The example may appear artificial, but the existence of such func­
tions [see also Exercise 31.4] is vital to the theory of distributions, 
an important theory related to recent work in differential equations 
and Fourier analysis. 

Example 3 
Let [(x) = e- lIx for x > 0 and {(x) = 0 for x ~ 0; see Figure 31.1. 
Clearly {has derivatives of all orders at all xi=- O. We will prove 

[cn)(O) = 0 for n = 0, 1,2,3, .... (1) 

Hence the Thylor series for { is identically zero, so { does not agree 
with its Thylor series in any open interval containing O. First we 
show that for each n there is a polynomial pn of degree 2n such that 

[cn)(x) = e-lIxPn(l!x) for x > O. (2) 

This is obvious for n = 0; simply set Poet) = 1 for all t. And this is 
easy for n = 1 and n = 2; the reader should check that (2) holds with 
n = 1 and PI (t) = t2 and that (2) holds with n = 2 and P2(t) = t4 - 2t3. 
1b apply induction, we assume the result is true for n and write 

Pn(t) = ao + al t + a2 t2 + ... + a2nt2n where a2n i=- O. 

y 

-----1 -----------------

2 3 4 5 

f(x) 0= e- llx for x > 0 

FIGURE 31.1 
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Then for x > 0 we have 

Hnd a single differentiation yields 

1'"+'1«) ~ e-1
1< [ 0 - t:::; ] + [t, ~ ] e-· I< . (:, ) . 

The assertion (2) is now clear for n + 1; in fact, the polynomialpn+l 
s evidently 

p"+.(t) = - tkaktk+1 + [t,aktk] . (t'), 

which has degree 2n + 2. 
We next prove (1) by induction. Assume that fcn) (0) = 0 for some 

n 2:: o. We need to prove 

fcn)(x) - f Cn) (0) 1 
lim = lim -fcn)(x) = o. 
x-+-o X - 0 x-+-o X 

)bviously limx-+-o- ycn)(x) = 0 since fCn)(x) = 0 for all x < O. By 
'llleorem 20.10 it suffices to verify 

1 
lim -fcn)(x) = o. 

x-+-o+ X 

I n view of (2), it suffices to show 

lim e- lIXq (~) = 0 
x-+-o+ X 

fOf any polynomial q. In fact, since q(l/x) is a finite sum of terms of 
the form bk(llxi, it suffices to show 

lim (~)k e- lIx = 0 for fixed k 2:: o. 
x-+-o+ x 

Because of Definition 20.1 we consider a sequence (xn) of positive 
numbers such that limxn = 0 and show 

lim (~) k e-lIxn = o. 
" x" 
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If Yn = ~, then limYn = +00 [by Theorem 9.10] and we need 
show limn~oo y~e-Yn = 0 or 

lim le-Y = o. 
y~oo 

k+1 

1b see (3) note that eY 2': C~+l)! for y > 0 by Example l(a) so that 

(k + 1)! 
yke-Y ~ yk(k + 1)! y-k-l = for y > o. 

y 

The limit (3) also can be verified via k applications of I1Hospital' 
Rule 30.2. 

Just as with power series, one can consider Thylor series that a 
not centered at o. 

31.8 Definition. 
Let f be a function defined on some open interval containing Xo E lit 
If f has derivatives of all order at Xo, then the series 

~ fCk)(xo) k 
~ k! (x-xo) 

is called the Taylor series for f about Xo. 

The theorems in this section are easily transferred to the gener I 
Thylor series just defined. 

Exercises 
31.1. Find the Thylor series for cosx and indicate why it converges 

cos x for all x E lR. 

31.2. Repeat Exercise 31.1 for sinh x = ~ (f1" - e- X
) and cosh x = ~ (e'" + e 

31.3. In Example 2, why did we apply Theorem 31.3 instead 
Corollary 31.4? 

31.4. Consider a, b in IR where a < b. Show that there exist infinit 1 
differentiable functions fa, gb, ha,b and h:,b on lR. with the followl 
properties. You may assume, without proof, that the sum, pro 
uct, etc. of infinitely differentiable functions is again inflnlt I 
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differentiable. The same applies to the quotient provided that the 
denominator never vanishes. 

(a) fa(x) = 0 for x ::: a and fa(x) > 0 for x > a . Hint: Let fa(x) = 
f(x - a) where f is the function in Example 3. 

(b) gb(X) = 0 for x ~ band gb(X) > 0 for x < b. 

(e) ha,b(X) > 0 for x E (a, b) and ha,b(X) = 0 for x e (a, b). 

(d) h~b(x) = 0 for x ::: a and h~b(x) = 1 for x ~ b. Hint: Use 
faiCfa + gb)· ' 

31.5. Let g(x) = e-1/ x2 for x =f 0 and g(O) = O. 

(a) Show that gcn)(o) = 0 for all n = 0, 1,2,3, . . .. Hint: Use 
Example 3. 

(b) Show that the Thylor series for g about 0 agrees withg only at 
x=o. 

31.6. A standard proof of Theorem 3l.3 goes as follows. Assume x > 0, 
let M be as in the proof of Theorem 31 .3, and let 

n- 1 (x t)k (x t)n 
FU) = f(t) + L - f Ck)U) + M . -

k=l k! n! 

for t E [0, x). 

(a) Show that F is differentiable on [0, x] and that 

( t)"- l 
F'U) = x - [fCn)U) - M]. 

(n - I)! 

(b) Show that F(O) = F(x). 

(e) Apply Rolle's Theorem 29 .2 to F to obtain yin (0, x) such that 
f Cn)(y) = M. 





Integration 
CHAPTER 

This chapter serves two purposes. it contains a careful development 
of the Riemann integral, which is the integral studied in standard 
calculus courses. It also contains an introduction to a generalization 
of the Riemann integral called the Riemann-Stieltjes integral. The 
generalization is easy and natural. Moreover, the Riemann-Stieltjes 
integral is an important tool in probability and statistics, and other 
areas of mathematics. 

§32 The Riemann Integral 

The theory of the Riemann integral is no more difficult than several 
other topics dealt with in this book. The one drawback is that it 
Involves some technical notation and terminology. 

:12 .1 Definition. 
I. 'If be a bounded function on a closed interval [a, b]. For S ~ [a, b], 
we adopt the notation 

M(f,) sup(j'(x) : ,,< 8} and m(f, S) = inflf(x) : XES}. 

243 
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A partition of[a, b] is any finite ordered subset P having the form 

P = {a = to < t1 < ... < tn = b}. 

The upper Darboux sum U(f, P) of [ with respect to P is the sum 
n 

U (f, P) = L M (f, [tk-1' tk D . (tk - tk-1) 
k=l 

and the lower Darboux sum L(f, P) is 
n 

L(f, P) = L m(f, [tk-1' tkD . (tk - tk-I). 
k=l 

Note that 
n 

U(f, P) ~ LM(f, [a, bD· (tk - tk-1) = M(f, [a, bD . (b - a); 
k=l 

likewise L(f, P) ::::: m(f, [a, bD . (b - a), so 

m(f, [a, bD . (b - a) ~ L(f, P) ~ U(f, P) ~ M(f, [a, bD . (b - a). (1) 

The upper Darboux integral UCf) of [ over [a, b] is defined by 

uet) = inf{U(f, P) : P is a partition of[a, b]} 

and the lower Darboux integral is 

LCf) = sup{L(f, P) : P is a partition of[a, b]}. 

In view of (1), UCf) and LCf) are real numbers. 

We will prove in Theorem 32.4 that LCf) ~ UCf). This is no 
obvious from (1). [Why?] We say that [ is integrable on [a, b] provide 

Let) = UCf). In this case, we write J: [ or J: [(x) ax for this common 
value: 

lb [= lb [(x) ax = Let) = UCf). 

Specialists call this integral the Darboux integral. Riemann's deli 
nition of the integral is a little different [Definition 32.8], but we will 
show in Theorem 32.9 that the definitions are equivalent. For thl 
reason, we will follow customary usage and call the integral defim, 
above the Riemann integral. 
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graph off 

FIGURE 32.1 a b 

For nonnegative functions, J: f is interpreted as the area of the 
region under the graph off [see Figure 32.1] for the following reason. 
Each lower Darboux sum represents the area of a union of rectangles 
inside the region, and each upper Darboux sum represents the area 
of a union of rectangles that contains the region. Moreover, J: f is the 
unique number that is larger than or equal to all lower Darboux sums 
and smaller than or equal to all upper Darboux sums. Figure 19.2 on 
page 137 illustrates the situation for [a, b] = [0,1] and 

{
I 2 n-l} 

p= 0<-<-<···<--<1. 
n n n 

Example 1 
The simplest function whose integral is not obvious is fex) = x2 • 

onsider f on the interval [0, b] where b > O. For a partition 

p = {O = to < tl < ... < tn = b}, 

we have 
n n 

U(f, P) = L SUp{X2 : X E [tk-I. tk]} . (tk - tk-I) = L t~(tk - tk-l). 
k=l k=l 

I r we choose tk = ~, then we can use Exercise 1.1 to calculate 
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Forlarge n, this is close to ~, so we conclude that U(f) ::: ~. For th 
same partition we find 

(f, 
= ~ (k - 1ib

2 (!!.) = b3 
. (n - 1)(n)(2n - 1) 

L ,P) ~ 2 3 ' 
k=l n n n 6 

so L(f) ::: ~. Therefore f(x) = x2 is integrable on [0, b] and 

(b x2 dx = b
3

. 

10 3 

Of course, any calculus student: could have calculated this int( 
gral using a formula that is based on the Fundamental Theorem of 
Calculus; see Example 1 in §34. 

Example 2 
Consider the interval [0, b] and let f(x) = 1 for rational x in [0, hi, 
and let f(x) = 0 for irrational x in [0, b]. For any partition 

P = {O = to < t1 < ... < tn = b}, 

we have 
n n 

U(f, P) = L M(f, [tk-l' tk]) . (tk - tk-l ) = L 1 . (tk - tk-l) = b 
k=l k=l 

and 
n 

L(f,P) = LO. (tk - tk-1) = O. 
k=l 

It follows that U(f) = band L(f) = O. The upper and lower Darbou 
integrals for f do not agree, so f is not integrable! 

We next develop some properties of the integral. 

32.2 Lemma. 
Let f be a bounded function on [a, b]. If P and Q are partitions ofla, h] 
and P ~ Q, then 

L(f, P) ::: L(f, Q) ::: U(f, Q) ::: U(J, P). ( I) 
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Proof 
The middle inequality is obvious. The proofs of the first and third 
inequalities are similar, so we will prove 

L(f, P) ~ L(f, Q). (2) 

An induction argument [Exercise 32.4] shows that we may assume 
that Q has only one more point, say u, than P. If 

P = {a = to < t 1 < ... < tn = b}, 

then 

Q = {a = to < tl < ... < tk-l < u < tk < ... < tn = b} 

[or some k E {I,2, ... , n}. The lower Darboux sums for P and Q 

are the same except for the terms involving tk-l or tk. In fact, their 
difference is 

L(f, Q) - L(f, P) = m(f, [tk-l, uD . (u - tk-l) + m(f, [u, tkD . (tk - u) 

-m(f, [tk-l, tkD . (tk - tk-I). (3) 

Tb establish (2) it suffices to show that this quantity is nonnegative. 
Using Exercise 4.7(a), we see that 

m(f, [tk-l, tkD . (tk - tk-l) 

= m(f, [tk-l, tkD . {(tk - u) + (u - tk-l)} 

~ m(f, [u, tkD' (tk - u) + m(f, [tk- l, uD . (u - tk-l). • 
32.3 Lemma. 
Iff is a bounded function on [a, b], and if P and Q are partitions of[ a, b], 
I hen L(f, P) ~ U (f, Q). 

Proof 
The set P U Q is also a partition of [a, b]. Since P ~ P U Q and 
() ~ P U Q, we can apply Lemma 32.2 to obtain 

L(f, P) ~ L(f, P U Q) ~ U(f, P U Q) ~ U(f, Q). • 
:12.4 Theorem. 
Iff i' a bounded j'um;lion on la, b], then Lct) < Uct). 
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Proof 
Fix a partition P of [a, b]. Lemma 32.3 shows that L(f, P) is a lowe 
bound for the set 

{U(f, Q) : Q is a partition of [a, bJ}. 

Therefore L(f, P) must be less than or equal to the greatest lowe 
bound [infimum!] of this set. That is, 

L(f, P) ~ U(f). 

Now (1) shows that U(f) is an upper bound for the set 

{L(f, P) : P is a partition of [a, bJ}, 

so U(f) ~ L(f). 

(1) 

Note that Theorem 32.4 follows from Lemma 32.3 and Exer 
cise 4.8; see Exercise 32.5. The next theorem gives a "Cauch 
criterion" for integrability. 

32.5 Theorem. 
A bounded function f on [a, b] is integrable if and only iffor each € > 0 
there exists a partition P of[ a, b] such that 

U(f, P) - L(f, P) < €. ( 1 

Proof 
Suppose first that f is integrable and consider € > O. There exl 
partitions PI and P2 of [a, b] satisfying 

€ € 
L(f, PI) > L(f) - 2" and U(f, P2) < U(f) + 2"' 

For P = PI U P2, we apply Lemma 32.2 to obtain 

U(f, P) - L(f, P) ~ U(f, P2) - L(f, PI) 

< U(f) + 1- [L(f) -1] = U(f) -L(f) +c. 

Since f is integrable, U(f) = L(f), so (1) holds. 
Conversely, suppose that for each E > 0 the inequality (1) hoi 

for some partition P. Then we have 

U(f) ~ U(f, P) = U(f, P) - L(f, P) + L(f, P) 

< E + L(f, P) ~ E + L(f). 
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Since E is arbitrary, we conclude that Uif) :::: Lif). Hence we have 
Uif) = Lif) by Theorem 32.4, i.e., f is integrable. • 

The remainder of this section is devoted to establishing the 
equivalence of Riemann's and Darboux's definitions of integra­
bility. Subsequent sections will depend only on items 32.1-32.5. 
Therefore the reader who is content with the Darboux integral in 
Definition 32.1 can safely proceed directly to the next section. 

32.6 Definition. 
The mesh of a partition P is the maximum length of the subintervals 
comprising P. Thus if 

P = {a = to < t1 < ... < tn = b}, 

then 

mesh(P) = max{tk - tk-1 : k = 1,2, .. . , n}. 

Here is another "Cauchy criterion" for integrability. 

32.7 Theorem. 
A bounded function f on [a, b] is integrable if and only iffor each E > 0 

there exists a a > 0 such that 

mesh(P) < a implies UCf, P) - LCf, P) < E (1) 

{or all partitions P of[a, b]. 

Proof 
' ('heorem 32.5 shows that the E-a condition in (1) implies integrabil­
ity. 

Conversely, suppose that f is integrable on [a, b]. Let E > 0 and 
lIelect a partition 

Po = {a = Uo < Ul < ... < Urn = b} 

"('la, bl such that 

E 
lJ(f, Po) - LCf, Po) < 2' (2) 
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Since [ is bounded, there exists B > 0 such that I[(x) I ::: B for all 
x E [a, b]. Let ~ = 8~B; m is the number of intervals comprising Po. 

Th verify (1), we consider any partition 

P = {a = to < tl < ... < tn = b} 

with mesh(P) < ~. Let Q = P U Po. If Q has one more element than 
P, then a glance at (3) in the proof of Lemma 32.2 leads us to 

L(f, Q) - L(f, P) ::: B· mesh(P) - (-B) . mesh(P) = 2B· mesh(P). 

Since Q has at most m elements that are not in P, an induction 
argument shows that 

€ 
L(f, Q) - L(f, P) ::: 2mB· mesh(P) < 2mB~ = "4' 

By Lemma 32.2 we have L(f, Po) ::: L(f, Q), so 

Similarly 

so 

E 
L(f, Po) - L(f, P) < - . 

4 

E 
U(f, P) - U(f, Po) < 4' 

E 
U(f, P) - L(f, P) < U(f, Po) - L(f, Po) + 2' 

Now (2) implies U(f, P) - L(f, P) < E and we have verified (1). 

Now we give Riemann's definition of integrability. 

32.8 Definition. 
Let [be a bounded function on [a, b], and let P = {a = to < t) 

... < tn = b} be a partition of [a, b]. A Riemann sum of [ associat 
with the partition P is a sum of the form 

n 

L[(Xk)(tk - tk- l) 
k= l 

where Xk E [tk- l, tk] for k = 1,2, ... , n . The choice of Xk'S is quit 
arbitrary, so there are infinitely many Riemann sums asso ,i It 
with a single function and partition . 
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The function f is Riemann integrable on [a, b] if there exists a 
number r with the following property. For each E > 0 there exists 
8 > 0 such that 

IS - rl < E (1) 

for every Riemann sum S of f associated with a partition P having 
rnesh(P) < 8. The number r is the Riemann integral off on [a, b] and 
will be provisionally written as 'R f: f. 
:12.9 Theorem. 
t\ bounded function f on [a, b] is Riemann integrable if and only ifit is 
IOarboux] integrable, in which case the values of the integrals agree. 

I) roof 
Suppose first that f is [Darboux] integrable on [a, b] in the sense of 
Definition 32.1. Let E > 0, and let 8 > 0 be chosen so that (1) of 
Theorem 32.7 holds. We show that 

(1) 

fhr every Riemann sum 
n 

S = Lf(Xk)(tk - tk-l) 
k=l 

Illsociated with a partition P having mesh(P) < 8. Clearly we have 
' ,if,P) ~ S ~ U(f,P), so (1) follows from the inequalities 

U(f, P) < LCf, P) + E ~ LCf) + E = lb f + E 

IIId 

LCf,P) > UCf,P) - E ~ UCf) - E = lb f - E. 

'I'h is proves (1); hence f is Riemann integrable and 

Now suppose that r is Riemann integrable in the sense of Def­
Inition 32.8, and c:onsid(lr ( > O. Let 8 > 0 and r be as given in 
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Definition 32.8. Select any partition 

P = {a = to < tJ < ... < tn = b} 

with mesheP) < 0, and for each k = 1,2, ... , n, select Xk in [tk-J, tkl 
so that 

The Riemann sum S for this choice of Xk 'S satisfies 

S ::: L(f, P) + Eeb - a) 

as well as 

IS - rl < E. 

It follows that 

L(f) ~ L(f, P) ~ S - Eeb - a) > r - E - Eeb - a). 

Since E is arbitrary, we have L(f) ~ r. A similar argument show 
that U(f) ::: r. Since L(f) ::: U(f), we see that L(f) = U(f) = r. Thi 
shows that [ is [Darboux] integrable and that 

Exercises 
32.1. Find the upper and lower Darboux integrals for [ (x) = x3 on til 

interval [a, bj. Hint: Exercise 1.3 and Example 1 in §1 will be usn!1I1 

• 32.2. Let [ex) = x for rational x and [(x) = a for irrational x. 

(a) Calculate the upper and lower Darboux integrals for f Oil til 
interval [a, b] . 

(b) Is f integrable on [a, b]? 

· 32.3. Repeat Exercise 32.2 for g whereg(x) = x2 for rational x and g('\' ) 
for irrational x. 

32.4. upply the indu tion argument ne dedinth proororLc mnlol . l ~ 
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32.5. Use Exercise 4.8 to prove Theorem 32.4. Specify the sets Sand T 
in this case. 

32.6. Let[be a bounded function on [a, b] . Suppose there exist sequences 
(UI? ) and (LI? ) of upper and lower Darboux sums for [ such that 
lim(Un - Ln) = o. Show [is integrable and J: [ = lim U" = limL". 

32.7. Let [be integrable on [a, b] , and suppose that g is a function on 
[a, b] such that g(x) = [(x) except for finitely many x in [a, b] . Show 
that g is integrable and that J: [ = J: g. 

32.8. Show that if [ is integrable on [a, b] , then [ is integrable on every 
interval [e, d] S; [a, b]. 

§33 Properties of the Riemann Integral 

[n this section we establish some basic properties of the Riemann 
integral and we show that many familiar functions, including piece­
wise continuous and piecewise monotonic functions, are Riemann 
integrable. 

A function is monotonic on an interval if it is either increasing or 
decreasing on the interval; see Definition 29.6. 

33.1 Theorem. 
Every monotonic function f on [a, b] is integrable. 

Proof 
We assume [ is increasing on [a, b] and leave the decreasing case to 
I ~xercise 33.l. Since rCa) ::: [(x) ::: feb) for all x E [a, b], [ is clearly 
bounded on [a, b]. In order to apply Theorem 32.5, let E > 0 and 
e lect a partition P = {a = to < tl < ... < tn = b} with mesh less 

t h n f(b)~f(a) . Then 

n 

liCf, P) - LCf, P) = I)MCf, [tk-l, tkD - mCf, [tk-l' tk])] . (tk - tk- l) 
k= 1 

n 

= Llf(tk) - fUk- I)]· (tk - tk- I). 
k I 
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Since mesheP) < E, we have 

n E 

Uif, P) - Lif, P) < (;[fUk) - fUk- l)] . feb) - fea) 

E 

= [feb) - fea)] . feb) _ fea) = E. 

Theorem 32.5 now shows that f is integrable. 

33.2 Theorem. 
Every continuous function f on [a , b] is integrable. 

Proof 
Again, in order to apply Theorem 32 .5, consider E > O. Since j' i 
uniformly continuous on [a , b] by Theorem 19.2, there exists 8 > II 

such that 
E 

X, Y E [a , b] and Ix - yl < 8 imply Ifex) - fey) I < b _ a' (I) 

Consider any partition P = {a = to < t1 < ... < tn = b} where 

max{tk -tk-1: k= l , 2, ... , n} < 8. 

Since f assumes its maximum and minimum on each int rv,11 
[tk- l , tk] by Theorem 18.1, it follows from (1) that 

for each k . Therefore we have 

n E 

Uif, P) - Lif, P) < L --Uk - tk-1 ) = E 
k=l b - a 

and Theorem 32.5 shows that f is integrable. 

33.3 Theorem. 
Let f and g be integrable functions on [a, b], and let c be a rea l nUll/I)" 
Then 

(i) cf is integrable and f: cf = c ;;~ f; 

(ii) f + g is integrable and t Cf -t g) - ;;:' f i t ,q. 
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Exercise 33.8 shows that [g , max(f, g) and min(f, g ) are also inte­
grable, but there are no formulas giving their integrals in terms of J: [and J: g. 

Proof 
The proof of (i) involves three cases: e > 0, e = -I, and e < O. Of 
course, (i) is obvious for e = O. 

Let e > 0 and consider a partition 

P = {a = to < t) < . .. < tn = b} 

of[a, b] . A simple exercise [Exercise 33.2] shows that 

for all k, so U(ef, P) = e · U(f, P). Another application of the same 
exercise shows that U(ef) = e· UCf). Similar arguments show that 
L( ef) = e . LCf). Since [ is integrable, we have L( ef) = e . LCf) = 
c . UCf) = U( ef) . Hence e[ is integrable and 

lb c[ = U(ef) = e· UCf) = e lb f, e > O. (1) 

Now we deal with the case c = -1. Exercise 5.4 implies that 
U( -f, P) = -L(f, P) for all partitions P of [a, b]. Hence we have 

U( -f) = inf{U( -f, P) : P is a partition of[a, bJ} 

= inf{ -L(f, P) : P is a partition of [a , bJ} 

= - sup{L(f, P) : P is a partition of [a, bJ} = -LCf) . 

Replacing [by -[, we also obtain L( -f) = -Ucf). Since [ is inte­
grable, U( -f) = -LCf) = -Ucf) = L( -f); hence -[ is integrable 
li nd 

(2) 

Th case c < 0 is handled by applying (2) and then (1) to -c: 

f
/I 

(:1 = 
II 

f /I fb l b 
( c)[ = - ( -c) [ = c f 

/I (I II 
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Th prove (ii) we will again use Theorem 32.5. Let E > O. By 
Theorem 32.5 there exist partitions Pl and P2 of [a, b] such that 

E E 
U(f, Pl) - L(f, Pl) < 2 and U(g, P2) - L(g, P2) < 2' 

Lemma 32.2 shows that if P = p] U P2 , then 

E E 
U(f, P) - L(f, P) < 2 and U(g, P) - L(g, P) < 2' (3) 

For any subset S of [a, b], we have 

inflf(x) + g(x) : XES} ::: inf{f(x) : XES} + inf{g(x) : XES}, 

i.e., mCf + g, S) ::: m(f, S) + meg, S). It follows that 

LCf + g, P) ::: L(f, P) + L(g, P) 

and similarly we have 

Ucf + g, P) :s U(f, P) + U(g, P) . 

Therefore from (3) we obtain 

U cf + g, P) - LCf + g, P) < E. 

Theorem 32.5 now shows that f + g is integrable. Since 

ib cf + g) = Ucf + g) :s Ucf + g, P) :s U(f, P) + U(g, P) 

i
b iii < L(f, P) + L(g, P) + E :s LCf) + L(g) + E = a f + a g I 

and 

ib cf + g) = LCf + g) ::: LCf + g, P) ::: L(f, P) + L(g, P) 

> U(f, P) + U(g, P) - E ::: UCf) + U(g) - E = ib f + fll 
a " 

we see that 
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33.4 Theorem. 
If f and g are integrable on [a, b] and if f(x) ~ g( x) for x E [a, b], then 

J:f ~ J:g. 
proof 
By Theorem 33.3, h = g - f is integrable on [a, b]. Since hex) :::: 0 for 
all x E [a, b], it is clear that L(h, P) :::: 0 for all partitions P of [a, b], so J: h = L(h) :::: O. Applying Theorem 33.3 again, we see that 

lb g - lb f = lb h :::: O. 

• 
33.5 Theorem. 
Iff is integrable on [a, b], then If I is integrable on [a, b] and 

(1 ) 

Proof 
This follows easily from Theorem 33.4 provided we know If I is 
integrable on [a, b]. In fact, -If I ~ f ~ If I ; therefore 

-lb If I S lb f ~ lb If I, 
which implies (1). 

We now show that If I is integrable, a point that was conveniently 
glossed over in Exercise 25.1. For any subset S of [a, b], we have 

M(lfl, S) - m(lfl, S) ~ M(f, S) - m(f, S) (2) 

by Exercise 33.6. From (2) it follows that 

U(lfl, P) - L(lfl, P) ~ u(f, P) - L(f, P) (3) 

f'or all partitions P of [a, b]. By Theorem 32.5, for each E > 0 there 
!:xists a partition P such that 

U(f, P) - L(f, P) < E. 

In vi w of (3), the: snrno mmClrk applies to 1[1, so If I is integrable by 
Tlleorc:1I1 :~2 . . • 
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33.6 Theorem. 
Let f be a function defined on [a, b]. If a < c < band f is integral}/,' orl 

[a, c] and on [c, b], then f is integrable on [a, b] and 

( I ) 

proof 
Since f is bounded on both [a, c] and [c, b], f is bounded on [(I, /11 
In this proof we will decorate upper and lower sums so that it will 
be clear which intervals we are dealing with. Let E > O. By '1'1", 
orem 32.5 there exist partitions PI and Pz of [a, c] and [c, b] Sill" 
that 

and 

The set P = PI U Pz is a partition of [a, b], and it is obvious that 

U~(f, P) = U~(f, PI) + U%(f, Pz) ( ) 

with a similar identity for lower sums. It follows that 

U~(f, P) - L~(f, P) < E, 

so f is integrable on [a, b] by Theorem 32.5. Also (1) holds becallsl' 

lb f :::: U~(f, P) = U~(f, PI) + U%(f, Pz) 

< L~(f, PI) + L~(f, Pz) + E :::: l c 

f + lb f + E 

and similarly J: f > J: f + t f - E. 

Most functions encountered in calculus and analysis are covell'd 
by the next definition. However, see Exercises 33.10-33.12. 

33.7 Definition. 
A function f on [a, b] is piecewise monotonic if there is a partition 

P = {a = to < t] < ... < tn = b} 

of[a, b] such thatf is monotonic on each interval (tk- l, tk). Th fll'l! 
tionf is piecewise continuous ifthere is a partition P of[a, b] su ,h th •• 1 
f is uniformly continuous on each interval (tk- J Ilk). 



33.8 Theorem. 
I fr is a piecewise continuous function or a bounded piecewise monotonic 
jimction on [a, b], then [is integrable on [a, b]. 

Proof 
Let P be the partition described in Definition 33.7. Consider a fixed 
Interval [tk-l' tk]. If [ is piecewise continuous, then its restriction to 
(lk-I , tk) can be extended to a continuous function[k on [tk-l' tk] by 
Theorem 19.5. If [ is piecewise monotonic, then its restriction to 
(lk-l, tk) can be extended to a monotonic function A on [tk-l' tk]; for 
(!xample, if [ is increasing on Uk-I , tk), simply define 

ilnd 

AUk-I) = inf{f(x) : X E Uk- I, tk)}. 

In either case, A is integrable on [tk-I' tk] by Theorem 33.1 or 33.2. 
Since [ agrees with [k on [tk-l' tk] except possibly at the endpoints, 
I ~xercise 32.7 shows that [ is also integrable on [tk-l' tk]. Now Theo­
r m 33.6 and a trivial induction argument show that [ is integrable 
on [a, b]. • 

We close this section with a simple but useful result. 

;13.9 Intermediate Value Theorem for Integrals. 
Iff is a continuous function on [a, b], then [or at least one x in [a, b] we 
have 

1 lb 
[(x) = b _ a a f 

Proof 
Hy Theorem 18.1, the function [ assumes its maximum value M and 
ils minimum value m on [a, b]. Since 

m < _1_1b[ <M 
- b-a a - , 

I h ' present lhcor ,m follows from the Intermediate Value Theo­
Inm 18.2 for COlltillllOll. functions. • 
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Exercises 
33.1. Complete the proof of Theorem 33.1 by showing that a decreasing 

function on [a, b] is integrable. 

33.2. This exercise could have appeared just as easily in §4. Let S be 
a nonempty bounded subset of R For fixed c > 0, let cS = {cs : 
S E S}. Show that sup(cS) = c· sup(S) and inf(cS) = c· inf(S). 

33.3. A function f on [a, b] is called a step-function if there exists a par­
tition P = {a = Uo < UI < .. . < Urn = b} of [a, b] such that f is 
constant on each interval (Uj-I, Uj), say f(x) = Cj for x in (Uj-I, Uj). 

(a) Show that a step-functionf is integrable and evaluate 1: f. 
(b) Evaluate the integral 104 

P(x) dx for the postage-stamp func-
tion P in Exercise 17.10. 

33.4. Give an example of a function f on [0, 1] that is not integrable for 
which If I is integrable. Hint: Modify Example 2 in §32. 

33.5. Show that I 1~;7r x2 sin8(~) dxl S 1S;3. 
33.6. Prove (2) in the proof of Theorem 33.5. Hint: For xo, Yo E S, we 

have If(Xo) I - If(yo) I s If(xo) - f(yo) I s MCf, S) - mCf, S). 

33.7. Let f be a bounded function on [a, b], so that there exists B > 0 
such that If(x) I S B for all x E [a, bJ. 

(a) Show that 

UCf2, P) - LCf2, P) S 2B[UCf, P) - LCf, P)] 

for all partitions P of[a, bJ. Hint: f(xi - f(y)2 = [[(x) + f(y)]· 
[[(x) - fey)] . 

(b) Show that iff is integrable on [a, b], thenF also is integrable 
on [a, b]. 

33.8. Let f and g be integrable functions on [a, b]. 

(a) Show that fg is integrable on [a, b]. Hint: Use 4fg = Cf + g)2 -
Cf - g)2; see Exercise 33.7. 

(b) Show that maxCf, g) and minCf,g) are integrable on [a, b].IIinl: 
Exercise 17.8. 

33.9. Let Cfn) be a sequence of integrable functions on la, bl, and sup 
pose thatfn ~ f uniformly on ra, b]. Prove thatf is intograble nnd 
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that 

l
b 
[= lim lb tn. 

a "-+-00 a 

Compare this result with Theorem 25.2. 

33.10. Let [(x) = sin ~ for x i= 0 and [(0) = o. Show that [ is integrable 
on [-1,1]. Hint: See the answer to Exercise 33.11(c), 

33.11. Let[(x) = x sgn(sin~) for x i= 0 and [(0) = o. 
(a) Show that [ is not piecewise continuous on [-I, 1]. 

(b) Show that [ is not piecewise monotonic on [-1, 1 ]. 

(e) Show that [ is integrable on [-1,1]. 

33.12. Let[be the function described in Exercise 17.14. 

(a) Show that [ is not piecewise continuous or piecewise 
monotonic on any interval [a, b]. 

(b) Show [is integrable on every interval [a, b] and that f: [ = O. 

33.13. Suppose [andg are continuous functions on [a, b] such that f: [ = f: g. Prove that there exists x in [a, b] such that [(x) = g(x). 

33.14. (a) Suppose [ and g are continuous functions on [a, b] and that 
g(x) ~ 0 for all x E [a, b]. Prove that there exists x in [a, b] 
such that 

lb [(t)g(t) dt = [(x) lb get) dt. 

(b) Show that Theorem 33.9 is a special case of part (a). 

§34 Fundamental Theorem of Calculus 

There are two versions of the Fundamental Theorem of Calculus. 
Each says, roughly speaking, that differentiation and integration are 
inverse operations. In fact, our first version [Theorem 34.1] says that 
"the integral of the derivative of a function is given by the function," 
find our second version [Theorem 34.3] says that "the derivative of 
the integra1 ofa continuous function is the function." It is somewhat 
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traditional for books to prove our second version first and use it t 
prove our first version, although some books do avoid this approach. 
F. Cunningham, Jr. [9] offers some good reasons for avoiding th 
traditional approach: 

Ca) Theorem 34.3 implies Theorem 34.1 only for functionsg whos 
derivative g' is continuous; see Exercise 34.l. 

(b) Making Theorem 34.1 depend on Theorem 34.3 obscures th( 
fact that the two theorems say different things, have different 
applications, and may leave the impression that Theorem 34.3 i 
the fundamental theorem. 

Cc) The need for Theorem 34.1 in calculus is immediate and easily 
motivated. 

In what follows, we say a function h defined on (a, b) is integrable 
on [a, b] if every extension of h to [a, b] is integrable. In view of 
Exercise 32.7, the value f: h will not depend on the values of tht 
extensions at a or b. 

34.1 Fundamental Theorem of Calculus I. 
Ifg is a continuous function on [a, b] that is differentiable on (a, b), and 
if g' is integrable on [a, b], then 

lb g' = g(b) - g(a). 

Proof 
Let E > O. By Theorem 32.5, there exists a partition P = {a = to 
tl < ... < tn = b} of [a, b] such that 

U(g', P) - L(g', P) < E. 

(1 ) 

(2) 

We apply the Mean Value Theorem 29.3 to each interval [tk- l' t~;j t 
obtain Xk E (tk-I, tk) for which 

(tk - tk-l)g'(Xk) = g(tk) - g(tk- I). 

Hence we have 
n n 

g(b) - g(a) = :~:)g(tk) - g(tk- l)] = Lg'(Xk)(tk tk I). 
k=l k' 1 
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It follows that 

L(g', P) ~ g(b) - g(a) ~ U(g', P); 

see Definition 32.1. Since 

L(g', P) ~ ib g' ~ U(g', P), 

inequalities (2) and (3) imply that 

lib g' - [g(b) - g(a)] I < E. 

Since E is arbitary, (1) holds. 

(3) 

• 
The integration formulas in calculus all rely in the end on 

Theorem 34.1. 

Example 1 
Ifg(x) = ~:~, theng'(x) = xn

, so 

In particular, 

rb 
xn dx = b

n+1 
_ an+1 = b

n+1 
- an+1 

Ja n + 1 n + 1 n + 1 

l
b b3 - a3 

x2 dx= ---
a 3 

(1 ) 

Formula (1) is valid for any powers n for which g(x) = ~:~ is 
defined on [a, b]. See Examples 3 and 4 in §28 and Exercises 29.15 
and 37.5. For example, 

i
b 

.../Xdx = ~[b312 - a312 ] for 0 ~ a < b. 
a 3 

34.2 Theorem [Integration by Parts]. 
[f u and v are continuous functions on [a, b] that are differentiable on 
(a, b), and ifu' and v' are integrable on [a, b], then 

f.b u(x)u'(x) dx t- f.b u'(x)v(x) dx = u(b)v(b) - u(a)v(a). (1) 
n n 
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Proof 
Letg = uVi theng' = uv' +u'vbyTheorem 28.3. Exercise 33.8 shows 
that g' is integrable. Now Theorem 34.1 shows that 

1b g'(x)dx = g(b) - g(a) = u(b)v(b) - u(a)v(a), 

so (1) holds. • 
Note that the use of Exercise 33.8 above can be avoided ifu' and 

v' are continuous, which is normally the case. 

Example 2 
Here is a simple application of integration by parts. Th calculat 
fo1C 

xcosxdx, we note that the integrand has the form u(x)v'(x) where 
u(x) = x and vex) = sinx. Hence 

l 1C 

xcosxdx = U(1l')V(1l')-U(O)V(O)-1
1C 

l·sinxdx = -11f sinxdx = 

In what follows we use the convention f: f = - fba f for a > b. 

34.3 Fundamental Theorem of Calculus II. 
Let f be an integrable function on [a, b). For x in [a, b], let 

F(x) = 1)( f(t) dt. 

Then F is continuous on [a, b). Iff is continuous at Xo in (a, b), then ,. 
is differentiable at Xo and 

F'(xo) = f(Xo). 

Proof 
Select B > 0 so that If(x) I :::: B for all x E [a, b]. If x,Y E [a, bl an 
Ix - yl < ~ where x < y, say, then 

IF(y) - F(x)1 = 11Y f(t) dtl :::: lY If(t) I dt :::: lY B dt = B(y x) < I 

This shows that F is [uniformly] continuous on [a, bj. 
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Suppose that f is continuous at Xo in (a, b). Observe that 

F(x) - F(xo) 1 lxf d 
---=-=------"--''- = -- (t) t 

X-Xo x-xo Xo 

for x f= Xo. The trick is to observe that 

1 lx 

f(xo) = -- f(xo) dt 
X-Xo Xo 

and therefore 

F(x) - f(xo) _ f(xo) = _1_1x [J(t) - f(xo)]dt . 
X-Xo X-Xo Xo 

(1) 

Let E > O. Since f is continuous at Xo, there exists 8 > 0 such that 

t E (a, b) and It - xol < 8 imply If(t) - f(xo) I < E; 

see Theorem 17.2. It follows from (1) that 

I 
F(x) - F(Xo) - f(xo) I ::: E 

X-Xo 

for x in (a, b) satisfying Ix - xol < 8; the cases x > Xo and x < Xo 
require separate arguments. We have just shown that 

F(x) - F(xo) 
lim = f(xo) . 
X--+Xo X - Xo 

In other words, F'(xo) = f(xo). • 
A useful technique of integration is known as "substitution." A 

more accurate description of the process is "change of variable. II The 
lechnique is the reverse of the chain rule. 

34.4 Theorem [Change of Variable]. 
Let u be a differentiable function on an open interval J such that u' is 
continuous, and let I be an open interval such that u(x) E I for all x E J. 
Iff is continuous on I, then f 0 u is continuous on J and 

l
b 

iU(b) 
f 0 u(x)u'(x) dx = feu) du 

II u(a) 
(1) 

F)r a, bE'. 
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Note that u(a) need not be less than u(b), even if a < b. 

Proof 
The continuity off 0 u follows from Theorem 17.5. Fix C E I and 1 t 
F(u) = feU f(t) dt. Then F'(u) = feu) for all u E I by Theorem 34.3. 
Letg = Fou. By the Chain Rule 28.4, we haveg'(x) = F'(u(x)}u'(x) 
f(u(x)) . u'(x), so by Theorem 34.1 

lb f 0 u(x)u'(x) dx = lb g'(x)dx = g(b) - g(a) = F(u(b)) - F(u(a)) 

[

U(b) [u(a) lU(b) 
= f(t) dt - f(t) dt = f(t) dt. 

e e ~~ 

This proves (1). 

Example 3 
Let g be a one-to-one differentiable function on an open interval I . 
Then J = g(l) is an open interval, and the inverse function g- l I 
differentiable on J by Theorem 29.9. We show 

1
b 

19(b) 
g(x)dx + g-l(u)du = bg(b) - ag(a) 

a g(a) 
(1 ) 

for a, bE I. 
We put f = g-l and u = g in the change of variable formula to 

obtain 

1
b 

g-l og(x)g'(x)dx = 19
(b) g-l(u)du. 

a g(a) 

Since g-l 0 g(x) = x for x E I, we obtain 

1
9(b) 1b 

g-l(U) du = xg'(x) dx. 
g(a) a 

Now integrate by parts with u(x) = x and vex) = g(x): 

1
9

(b) g-l (u) du = bg(b) - ag(a) _ 1b g(x) dx. 
g(a) a 

This is formula (1). 
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Exercises 
34.1. Use Theorem 34.3 to prove Theorem 34.1 for the case that g' 

is continuous. Hint: Let F(x) = f: g'; then F' = g'. Apply 
Corollary 29.5. 

34.2. Calculate 
1 1 rx 12 d (b 1· 1 f3+h 12 d (a) imx-+o X Jo e t ) lIDh-+O h 3 e t. 

34.3. Let f be defined as follows: f(t) = 0 for t < O;f(t) = t for 0 :::: t :::: 1; 
fet) = 4 for t > l. 

(a) Determine the function F(x) = f; f(t) dt . 

(b) Sketch F . Where is F continuous? 

(e) Where is F differentiable? Calculate F' at the points of 
differentiability. 

34.4. Repeat Exercise 34.3 for f where f(t) = t for t < 0; f(t) = tZ + 1 
for 0 :::: t :::: 2; f(t) = 0 for t > 2. 

34.5. Let f be a continuous function on JR and define 

1
X+1 

F(x) = x-I f(t) dt for x E R 

Show that F is differentiable on JR and compute F'. 

34.6. Let f be a continuous function on JR and define 

G(x) = 1sinx 

f(t) dt for x E JR. 

Show that G is differentiable on JR and compute G' . 

34.7. Use change of variables to integrate fol x~dx. 

34.8. (a) Use integration by parts to evaluate 

11 xarctanxdx. 

Hint: Let u(x) = arctan x, so that u'(x) = I~X2. 

(b) If you used vex) = ~ in part (a), do the computation again 

with vex) = x2i1. This interesting example is taken from J. L. 
Borman [6]. 

4.9. Usc Exampl 3 to show fol /z arcsinxdx = TI + :If - l. 
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34.10. Let g be a strictly increasing continuous function mapping [0, 

onto [0,1]. Give a geometric argument showing fol g(x) t:bt 
fol g -I (U) du = 1. 

34.11. Suppose that [ is a continuous function on [a, b] and that [(x) 

for all x E [a, b]. Show that if f: [(x) ax = 0, t.h.en [(x) = 0 for all 
in [a, b]. 

34.12. Show that if [ is a continuous real-valued function on [a, b] s t 

fying f: [(x)g(x) ax = 0 for every continuous function g on [a, bl. 
then [(x) = 0 for all x in [a, b]. 

§35 * Riemann-Stieltjes Integrals 

In this long section we introduce a useful generalization of the RI 
mann integral. In the Riemann integral, all intervals of the sa 
length are given the same weight. For . example, in our definition 
upper sums 

n 

U(f',P) = LM(f', [tk-l' tkD' (tk - tk-I), 
k=l 

the factors (tk - tk-l) are the lengths of the intervals involved. In 
plications such as probability and statistics, it is desirable to modi 
the definition so as to weight the intervals according to some I 
creasing function F. In other words, the idea is to replace the facto 
(tk - tk-l) in (*) by [F(tk) - F(tk-l)]' The Riemann integral is, th 
the special case where F(t) = t for all t. 

It is also desirable to allow some points to have positive wd 
This corresponds to the situations where F has jumps, i.e., wh 
the left-hand and right-hand limits of F differ. In fact, if (Ck) I 
sequence of positive numbers for which L Ck < 00 and if (Uk) I 
sequence in R, then the sums ' 

00 

LCkf(Uk) 
k= l 

can be viewed as a generalized integral for a suitable Fib 
cise 36.14]. In this case, F has ajump at ach Uk. 
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The traditional treatment, in all books that I am aware of, re­
places the factors (tk - tk-l ) in (*) by [F(tk) - F(tk-l)] and develops 
the theory from there, though some authors emphasize upper and 
lower sums while others stress generalized Riemann sums. In this 
section, we offer a slightly different treatment, so 

Warning. Theorems in this section do not necessarily correspond 
to theorems in other texts. 

We deviate from tradition because: (a) Our treatment is more 
general. Functions that are Riemann-Stieltjes integrable in the tra­
ditional sense are integrable in our sense [Theorem 35.20]. (b) In 
the traditional theory, if f and F have a common discontinuity, 
then f is not integrable using F. Such unfortunate results disap­
pear in our approach. We will show that piecewise continuous and 
piecewise monotonic functions are always integrable using F [The­
orem 35.17]. We also will observe that if F is a step-function, then 
all bounded functions are integrable; see Example 1. (c) We will give 
a definition involving Riemann-Stieltjes sums that is equivalent to 
our definition involving upper and lower sums [Theorem 35.25]. The 
corresponding standard definitions are not equivalent. 

Many of the results in this section are straightforward general­
izations of results in §§32 and 33. Accordingly, many proofs will be 
brief or omitted. 

35.1 Notation. 
We assume throughout this section that F is an increasing function 
on a closed interval [a, b]. Th avoid trivialities we assume F(a) < 
F(b). All left-hand and right-hand limits exist; see Definition 20.3 
and Exercise 35.1. We use the notation 

F(t-) = lim F(x) and F(t+) = lim F(x) . 
x-+t- x-+t+ 

For the endpoints we decree 

F(a-) = F( a) and F(b+) = F(b). 

Note that F(t- ) ~ F(t+) for all t E [a, b]. If F is continuous at t, then 
F(t- ) = F(t) = F(t+). Otherwise F(C) < F(t+) and the difference 
F(t+) - F(t- ) is called the jump of Fat t . The actual value of F(t) at 
Jumps t will play no role in what follows. 
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In the next definition we employ some of the notation established 
in Definition 32.1. 

35.2 Definition. 
For a bounded function f on [a, b] and a partition P = {a = to < tl < 
... < tn = b} of [a, b], we write 

n 

!F(f, P) = Lf(tk) . [F(tt) - F(tk)]. 
k=O 

The upper Darboux-Stieltjes sum is 
n 

UF(f, P) = !F(f, P) + L M(f, (tk-I. tk)) . [F(tk) - F(tt_I)] 
k=1 

and the lower Darboux-Stieltjes sum is 
n 

LF(f, P) =!F(f, P) + L m(f, (tk-I, tk)) . [F(tk) - F(tt_I)]· 
k=1 

These definitions explicitly take the jump effects of F into account. 
Note that 

UF(f, P) - LF(f, P) 
n 

= L[M(f, (tk-I, tk)) - m(f, (tk-I, tk))][F(tk) - F(tt-I)] (1) 
k=1 

and 

m(f, [a, b]) . [F(b) - F(a)] ::: LF(f, P) ::: UF(f, P) 

::: M(f, [a, b]) . [F(b) - F(a)]. (2) 

In checking (2), note that 
n n 

L[F(tt) - F(tk)] + L[F(tk ) - F(tt-I)] 
k=O k=1 

= F(t;;) - F(te) = F(b+) - F(a-) = F(b) - F(a) . 

The upper Darboux-Stieltjes integral is 

UF(f) = inf{UF(f, P) : P is a partition of [a, b]} 

and the lower Darboux-Stieltjes integral is 

LF(f) = sup{Lp(f, P) : P is a partition of [a, b]} . 

(3) 
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Theorem 35.5 will show that LF(f) ~ UF(f). Accordingly, we say [ is 
Darboux-Stieltjes integrable on [a, b] with respect to F or, more briefly, 
F-integrable on [a, b], provided LF(f) = UF(f); in this case we write 

1b [ dF = 1b [(x) dF(x) = LF(f) = UF(f). 

Example 1 
For each u in [a, b], let lu be an increasing step-function with jump 
1 at u. For example, we can let 

{ 
0 for 

luU) = 1 for 
t < u, 
t ::: u, 

for u > a, and we can let 

{ 
0 for t = a, 

laU) = 1 for t > a. 

Then every bounded function [ on [a, b] is I u-integrable and 

1b [dIu = feu). 

More generally, if Ul, U2, .. . , Um are distinct points in [a, b] and if 
CI, C2, •.• , Cm are positive numbers, then 

I 
2" 

y 

m 

F = LCjlu} 
j=l 

• 

-
4 

F=!:' cjJu -
j=l } 

--~----~~O=====4------+------+--~---x 
2 3 b a 

FIGURE 35.1 
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is an increasing step-function with jumps Cj at Uj. See Figure 35.1 fi 
a special case. Every bounded function [ on [a, b] is F -integrable an 

lb [dF = t, Cj . [(Uj)' 

Tb check (1), 1etPbe the partition of [a, b] consisting of a, b and all 
u}, U2, ... , Um. For this computation we may assume, without loss 0 

generality, that a = U1 < U2 < ... < um = b. Then F(ut) - F(uj- ) 

Cj for j = 1,2, ... , m and F(uj-) - F(U/=.l) = 0 for j = 2,3, ... , m. 
Therefore 

m 

UF(f, P) = LF(f, P) =!F(f, P) = L[(Uj) . Cj 
j=l 

for any bounded function [ on [a, bJ. In view of Theorem 35.5, It 
follows that 

m 

UFCf) = LFCf) = L[(Uj) . Cj; 
J=l 

hence [is F-integrab1e and (1) holds. 

Example 2 
We specialize Example 1 to the case U1 = 0, U2 = I, U3 = 2, U4 = 
C1 = C4 = ~, C2 = C3 = ~. Thus we must have a :::: 0 and b :::: 3; se 
Figure 35.1. For any bounded function [ on [a, b], we have 

l
b 1 3 3 1 
[dF = -[(0) + -[(1) + -[(2) + -[(3). 

a 8 888 

35.3 Lemma. 
Let [ be a bounded function on [a, b], and let P and Q be partitions of 
[a, b] such that P ~ Q. Then 

(1 

Proof 
We imitate the proof of Lemma 32.2 down to, but not inc1udin , 
formula (3). In the present case, the difference Lp(f, Q) Lf"(/. P) 
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equals 

feu) . [F(u+) - F(u-)] + m(f, (tk-I, u)) . [F(u-) - F(tt-I)] 
+m(f, (u, tk)) . [F(t;) - F(u+)] (3) 

-m(f, (tk-I, tk)) . [F(t;) - F(tt_I)]' 

and this is nonnegative because 

m(f, (tk-I, tk)) . [F(t;) - F(tt-I)] 
= m(f, (tk-I, tk)) . [F(t;) - F(u+) + F(u+) - F(u- ) 

+F(u-) - F(tt-I)] 
~ m(f, (u, tk)) . [F(t;) - F(u+)] + feu) . [F(u+) - F(u-)] 

+m(f, (tk-I, u)) . [F(u-) - F(tt-I)]. 

35.4 Lemma. 

• 
Iff is a bounded function on [a, b] and if P and Q are partitions of[ a, b], 
then LF(f, P) ~ UF(f, Q). 

Proof 
Imitates the proof of Lemma 32.3. • 
35.5 Theorem. 
For every bounded function f on [a, b], we have LF(f) ~ UF(f). 

Proof 
Imitates the proof of Theorem 32.4. • 
35.6 Theorem. 
A bounded function f on [a, b] is F-integrable if and only iffor each E > 0 
there exists a partition P such that 

Proof 
Imitates the proof of Theorem 32.5. • 

We next develop analogues of results in §33; we return later to 
generalizations of items 32.6-32.9. We begin with the analogue of 
Theorem 33.2. The analogue of Theorem 33.1 is true, but its proof 
requires some preparation, so we defer it to Theorem 35.16. 
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35.7 Theorem. 
Every continuous function f on [a, b] is F-integrable. 

Proof 
1b apply Theorem 35.6, let E > O. Since f is uniformly continuou , 
there exists 8 > 0 such that 

E 
x,Y E [a, b] and Ix - yl < 8 imply If (x) - f(y) I < F(b) _ Fea) 

Just as in the proof of Theorem 33.2, there is a partition P of fa, hi 
such that 

for each k. Hence by (1) of Definition 35.2 we have 

Theorem 35.6 now shows thatf is F -integrable. 

35.8 Theorem. 
Let f andg be F-integrable functions on [a, b], and let c be a real numbt:r 
Then 

(i) cf is F -integrable and f: (cn dF = c f: f dF; 

(li) f + g is F-integrable and f:Cf + g)dF = f: f dF + f: gdF. 

Proof 
Imitates the proof of Theorem 33.3, using Theorem 35.6 instead ()f 
Theorem 32.5. 

35.9 Theorem. 
Iff andg are F-integrable on [a, b] and iff(x) ~ g(x) for x E [a, b), th .n 

f: f dF ~ f: g dF. 

Proof 
Imitates the proof of Theorem 33.4. 
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35.10 Theorem. 
If f is F-integrable on [a, bl then If I is F-integrable and 

Proof 
Imitates the proof of Theorem 33.5 and uses formula (1) of 
Definition 35.2. • 

35.11 Theorem. 
Let f be a function defined on [a, b]. If a < c < band f is F-integrable 
on [a, c] and on [c, b], then f is F-integrable on [a, b] and 

lb fdF = lc 

fdF + lb fdF. (1) 

Proof 
Imitates the proof of Theorem 33.6. Note that an upper or lower sum 
on [a, c] will include the term f(c)[F(c) - F(c- )] while an upper or 
lower sum on [c , b] will include the termf(c)[F(c+) - F(c)]. • 

The next result clearly has no analogue in §32 or §33. 

35.12 Theorem. 
Let F l and F2 be increasing functions on [a, b]. Iff is F1-integrable and 
F2-integrable on [a, b] and if c > 0, then f is CFl -integrable, f is (Fl + 
F2)-integrable, 

(1) 

and 

(2) 

Proof 
From Theorem 20.4 we see that 

(Fl + F2)(t+) = lim [Fl (X) + F2(X)] = lim Fl(X) + lim F2(X) 
X~I+ x~t+ X~ I+ 

F I (t-l ) + F2 (t+) 
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with similar identities for(F1 +F2)(t-), (cFI)(t+) and (cF1)(t-). Henc 
for any partition P of [a, b], we have 

UF,+Fif',P) = UF,if,P) + UF2 if,P) 
LF,+F2 if, P) = LF, if, P) + LF2if, P), 

(3) 

UcF, if, P) = cUF, if, P) and LcF, if, P) = cLF, if, P). It is now clear that 
f is cF1-imegrable and that (1) holds. 'Ib check (2), let € > O. By 
Theorem 35.6 and Lemma 35.3, there is a single partition P of [a, bl 
so that both 

€ € 
UF, if, P) - LF, if, P) <"2 and UF2 if, P) - LF2 if, P) < "2. 

Hence by (3) we have 

This and Theorem 35.6 imply that f is (F1 + F2)-integrable. Th 
identity (2) follows from 

lb f d(F1 + F2 ) :::: UF,+F2if, P) < LF,+F2if, P) + € 

= LF, if, P) + LF2if, P) + € :::: lb f dF1 + lb f dF2 + ( 

and the similar inequality 

lb f d(F1 + F2 ) > lb f dF1 + lb f dF2 - €. 

Example 3 
Let (un) be a sequence of distinct points in [a, b], and let (cn) b 
a sequence of positive numbers such that L Cn < 00. Using th 
notation of Example 1, we define 

00 

F = LCnJun • 

n=l 

Then F is an increasing function on [a, b]; note that F(a) 0 
and F(b) = L~l Cn < 00 . Every bounded function f on [a, hi I 
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F-integrable and 

lb f dF = ~ cnf(un). (1) 

1b verify (I), fix f and let B > 0 be a bound for If I: If(x) I ~ B 
for all x E [a, b]. Consider E > 0 and select an integer m so that 
L~m+l Cn < ~. Let 

00 

and F2 = L cnJun 

n=m+l 

so that F = Fl + F2 • As noted in Example I, 

Since 
00 

L Cn < 
n=m+l 

inequality (2) in Definition 35.2 leads to 

hence 

E E 
- - < LF (f, P) < UF (f, P) < _. 4 - 2 ' - 2 ' - 4' 

E 
UF2(f, P) - LF2(f, P) ~ 2 

for all partitions P of [a, b]. Ifwe select P so that 

E 
UFt (f, P) - LFt(f, P) < 2' 

4B' 

(2) 

(3) 

then (3) in the proof of Theorem 35.12 and the identity F = Fl + F2 
imply 

UF(f, P) - LF(f, P) < E. 

Theorem 35.6 now shows thatf is F-integrable. From (3) we quickly 
lnfer that 

(4) 



278 6. Integmtion 

By Theorem 35.12 and (2) we have 

lb f dF = lb f dFi + lb f dF2 = ~ cnf(un)-n~l cnf(un)+ lb f dF2 • 

Since 
00 

L 
n=m+I 

we use (4) to conclude that 

00 E 

L Cn < 4' 
n=m+I 

lb f dF - ~ cnfCun) 

Since E is arbitrary, (1) is verified. 

E 
< -. 

2 

The next theorem shows that F-integrals can often be calcu 
lated using ordinary Riemann integrals. In fact, most F-integral 
encountered in practice are either covered by Example 3 or thi 
theorem. 

35.13 Theorem. 
Suppose that F is differentiable on [a, b] and that F' is continuous (m 
[a, b]. Iff is continuous on [a, b], then 

lb f dF = lb f(x)F'(x) fix. (I) 

Proof 
Note that f F' is Riemann integrable by Theorem 33.2, and f is F 
integrable by Theorem 35.7. By Theorems 32.5 and 35.6, there is II 
partition 

P = {a = to < tl < ... < tn = b} 

such that 

UCf P', P) - LCf F', P) < i and UF(f, P) - LFCf, P) < i. (l ) 

By the Mean Value Theorem 29.3 applied to F on each int<:rv I 
[tk- l ' tk], there exists Xk in (tk- I, tk) so that 

F(tk) - F(tk- l) = F'(Xk)(tk - tk I); 
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hence 
n n 

L[(Xk) . [F(tk) - F(tk-I)] = L[(Xk)F'(Xk) . (tk - tk-l). (3) 
k=l k=l 

Since F is continuous, it has no jumps, so by (3) 

LF(f, P) :::: U(f F', P) and LCf F', P) :::: UF(f, P). 

Now by (2) we have 

1
b E E 

a [dF:::: UF(f,P) < 2 +LF(f,P):::: 2 + U(fF',P) 

E E 1b < 2 + 2 +LCf F',P):::: E + a [(x)F'(x)dx 

and similarly f: [dF > J: [(x)F'(x) dx - E. Since E > 0 is arbitrary, 
(1) holds. • 

An extension of Theorem 35.13 appears in Exercise 35.10. 

Example 4 
Let F(t) = 0 for t < 0, F(t) = t2 for 0 :::: t < 2, and F(t) = t + 5 
for t ~ 2; see Figure 35.2. We can write F = Fl + 3h where Fl is 
continuous. The function Fl is differentiable except at t = 2; the 
differentiability of Fl at t = 0 is shown in Exercise 28.7. Let [ be 
continuous on [-3,3], say. Clearly J~3 [dFl = O. Since Fl agrees with 
the differentiable function t 2 on [0, 2], we can apply Theorem 35.13 
to obtain 

12 [dFl = 12 [(x)· ~xdx = 212 x[(x)dx. 

Similarly we have 

13 

[dFl = 13 

[(x) . 1 dx = 13 

[(x) dx. 

Theorem 35.11 now shows that 

j3 12 13 

r dfi'l - 2 x[(x) dx + [(x) dx, 
'\ 0 2 
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y 

Fl andF\ 

--------~--~~_r_r_+_+----------.x 

-1 1 2 3 

FIGURE 35.2 

and then Theorem 35.12 shows that 

13 [dF = 13 

[dF1 +313 

[dh = 212 x[(x)dx+ t [(x)dx+3[(2) . 
-3 -3 -3 0 12 

As a specific example, if[(x) = x3 then 

13 12 13 
1061 [ dF = 2 X4 dx + x3 dx + 3 . 8 = -- = 53.05. 

-3 0 2 20 

For the results in the remainder of the section we need a rna 
detailed analysis of increasing functions. Some readers may wish to 

skip the proofs and move on to the next section. We will write Sn t 
to signifY that (sn) is a nondecreasing sequence converging to s, and 
Sn ,).. S if (sn) is a nonincreasing sequence with limit s. 

35.14 Lemma. 
Let g be an increasing function on [a, b]. 

(i) I[un t u, then g(u;;) t g(u-). 
(ii) I[un ,).. u, then g(u~) ,).. g(u+). 

Proof 
Suppose Un t U and let ~ > 0; here U E (a, b]. There exists v < U 

such that v E [a, b) and g(v) > g(u- ) -~. Select N in N so that n > N 
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implies Un > v. Then 

n > N implies g(u;;) 2: g(v) > g(u-) - E. 

Since g(u;;) ~ g(u- ) for all n, we conclude that g(u;;) t g(u-). This 
proves (i), and the proof of (ii) is similar. • 

35.15 Lemma. 
If g is an increasing function on [a, b) and if E > 0, then there exists a 
partition 

P = {a = to < tl < ... < tn = b} 

such that 

g(t;-) - gCtt-l) < E for k = 1,2, .. . , n. 

Proof 
First we show that there exists a partition 

Q = {a = So < SI < ... < Sm = b} 

such that 

g(u+) - g(u-) < E for u rl. Q 

It suffices to show that 

S = {s E (a, b) : g(s+) - g(s- ) 2: E} 

(1) 

(2) 

is finite. Select r in N so that rE > g(b) - g(a). If S has more than 
r - 1 elements, we can select 

a < tl < t2 < ... < tr < b 

so that gCtt) - gCt;-) 2: E for k = 1,2, . .. , r. But this implies 
r 

g(b) - g(a) 2: get:) - gCtl) 2: ~)gCtt) - g(t;- )] 2: rE > g(b) - g(a). 
k=1 

So S is finite and Q can be selected satisfying (2). 
Next we show there exists 8 > 0 such that 

u, v E [Sj-lr Sj], U < v, v - u < 8 imply g(v-) - g(u+) < E. (3) 

If (3) fails, then for some j there exist sequences (un) and (vn) in 
[Sj- l, Sj] where Un < V n , V n - Un < ~ and g(v;; ) - g(u~) 2: E. Passing 
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to subsequences, we may suppose that (un) and (vn) are monotoni(, 
by Theorem 1l.3. Let u = lim Un = lim vn. 1b obtain a contradiction, 
we consider four cases. 

If Un t u and Vn t u, then by Lemma 35.14 we have g(u;;) 
g(u-) and g(v;; ) --+ g(u- ) ; therefore [g(v;;) - g(u;;)] --+ O. Since 

g(v;; ) - g(u;; ) ::: g(v;;) - g(u~) ::: E 

for all n, we have a contradiction. 
If Un -l- u and Vn -l- u, then Lemma 35.14 shows that g(u~) 

g(u+) and g(v~) --+ g(u+), so [g(v~) - g(u~)] --+ O. On the other 
hand, for each n we have 

a contradiction. 
The case Un -l- u and Vn t u is impossible since this would imply 

u ~ Un < Vn ~ u . 
Finally, suppose Un t u and Vn -l- u. Then Sj-I < u < Sj; otherwis , 

(un) or (vn) would be a constant sequence and we could appeal to an 
earlier case. This time Lemma 35.14 shows thatg(u;;) --+ g(u- ) and 
g(v~) --+ g(u+), and hence 

g(u+) - g(u-) = lim [g(v~) - g(u;;)] ::: lim inf[g(v;;) - g(u~)] ::: f. 
n-*oo 

Since u e Q, this contradicts (2). We have proved (3). 
By adding points to the partition Q we can obtain a partition 

P = {a = to < tl < ... < tn = b} such that P ;2 Q and such th t 
tk - tk- I < d for all k = 1,2, . .. , n. Ifk is in {I, 2, ... , n}, both tk- I an 
tk belong to some [Sj-I, Sj], so by (3) we have get;) - gUt- I) < E. 

35.16 Theorem. 
Every monotonic function f on [a, b] is F-integrable. 

Proof 
We may assume f is increasing. Since f(a) ~ f(x.) ~ feb) for all 
in [a, b], f is bounded on [a, b]. For E > 0 we apply Lemma 35. 1 fl t< 
obtain 

P = {a = to < tJ < ... < tn = b} 
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where 
E 

fUk) - fUt-I) < F(b) - F(a) 

for k = 1,2, ... , n. Since 

we have 
n 

UF(f, P) - LF(f, P) = L[fUk) - fUt-I)] . [F(tk) - F(tt_I)] 
k=l 

n E 
< '" [F(t-) - F(t+ )] < E. 8 F(b) - F(a) k k-l-

Since E is arbitrary, Theorem 35.6 shows thatf is F-integrable. • 

35.17 Theorem. 
If f is piecewise continuous or bounded piecewise monotonic on [a, b], 
then f is F -integrable. 

Proof 
Just as in the proof of Theorem 33.8, this follows from Theorems 
35.7,35.16 and 35.11, provided we have the following generalization 
of Exercise 32.7. • 

35.18 Proposition. 
If f is F-integrable on [a, b] and g(x) = rex) except for finitely many 

points, then g is F-integrable. Note that we do not claim f: f dF = 

f:g dF. 

Proof 
An induction argument shows that we may assume g(x) = f(x) ex­
cept for one value x = u in [a, b]. For E > 0, Theorem 35.6 shows 
that 

(1) 

for some partition P = (a = to < tl < ... < tn = b}. In view of 
Lemma 35.3, we can add u to P without invalidating (1). Then u = te 
for some lin {O, 1, 2, .. . , n} . The upper sums for f andg are identical 
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except for the k = i term in IF, so 

The same remark applies to the lower sums, so 

Therefore 

so Theorem 35.6 shows that g is F-integrable. 

If Fl and F2 are increasing functions with continuous deriva· 
tives, then Theorem 35.13 allows the formula on integration by partK 
[Theorem 34.2] to be recast as 

lb Fl dF2 + lb F2 dFl = Fl (b)F2(b) - Fl (a)F2( a). 

There is no hope to prove this in general because if F(t) = 0 for t < 0 
and F(t) = 1 for t :::: 0, then i: F dF + i: F dF = 2 -# 1 = F(l)F(l) - F( -l)F( -1). 

The generalization does hold provided the functions in the intf 
grands take the middle values at each of their jumps, as we n(~ 
prove. The result is a special case of a theorem given by Edwl 
Hewitt [21 ]. 

35.19 Theorem [Integration by Parts]. 
Suppose that Fl and F2 are increasing functions on [a, b] and define 

1 1 
F{(t) = Z(Fl(t-) + Fl(t+)] and F;(t) = Z(F2(C) + F2(t t)1 

for all t E [a, b]. Then 

lb F{ dF2 + lb F; dFl = Fl (b)F2(b) - F J (a)F2(a). (1 

As usual, we decree FJ(b+) = FICb), F1Ca- ) = FICa), t. 
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Proof 
Both integrals in (1) exist in view of Theorem 35.16. For an E > 0, 
there exists a partition 

P = {a = to < tl < ... < tn = b} 

such that 

UF , (F;, P) - LF, (F;, P) < E. 

Some algebraic manipulation [discussed in the next paragraph] 
shows that 

UF2(F{, P) + LF, (F;, P) = FI (b)F2(b) - FI(a)F2(a), (2) 

so that also 

UF, (F;, P) + LF2(F{, P) = FI (b)F2(b) - FI(a)F2(a). (3) 

It follows from (2) that 

lb F{dF2+ lb F;dFI ~ UF2(F{,P)+UF,(F;,P) 

while (3) leads to 

< UF2(F{, P) + LF,(F;,P) + E 

= FI(b)F2(b) - FI(a)F2(a) + E, 

lb F{ dF2 + lb F; dFI > FI(b)F2(b) - FI(a)F2(a) - E. 

Since E is arbitrary, (1) holds. 
1b check (2), observe 

n 

UFi F{, P) + LF, (F;, P) = L F{(tk) . [F2(tt) - F2(tk)] 
k=O 

n 

+ LM(F{, (tk-l, tk))· [F2(tk) - F2(tt-I)] 
k=l 

n 

+ LF;(tk)· [FI(tt) - FI(tk )] 
k=O 

n 

+ L m(F; , (tk- lr tk)) · [F1(tk) - FI (tt- I )] 
k I 
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n 

+ LFIUk) . [F2(tk ) - FUt-I)] 
k=l 

n 1 
+ L -[F2(tk) +F2Ut)]· [FIUt) - FI(tk)1 

k=O 2 
n 

+ LF2Ut-I)' [FIUk) - FIUt_I)]. 
k=l 

The first and third sums add to 
n 

L [FIUt)F2Ut) - FIU;;-)F2(tk )], (4) 
k=O 

while the second and fourth sums add to 
n 

L [FI (tk )F2Uk ) - FIUt_I)F2(tLI)]' ( ) 
k=l 

Since the sums in (4) and (5) add to FI (b)F2(b) - FI (a)F2( a), equality 
(2) holds. Of course, this algebra simplifies considerably if FI and F'J 
are continuous. 

We next compare our approach to Riemann-Stieltjes integration 
to the usual approach. For a bounded function r on [a, b], the usual 
Darboux-Stieltjes integral is defined via the upper sums 

n 

[h(f, P) = LM(f, [tk-l' tkD' [F(tk) - F(tk-l)] 
k=l 

and the lower sums 
n 

LF(f, P) = L m(f, [tk-l, tkD . [F(tk) - F(tk-l)]' 
k=l 

The expressions [hen, LF(f) and J:r dF are defined in analo y 
to those in Definition 35.2. The usual Riemann-Stieltjes integral 
defined via the sums 

n 

SF(f, P) = Lf(Xk)fF(tk) - F(tk 1)1, 
k· ) 
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where Xk E [tk-I. tk], and the mesh defined in Definition 32.6; 
compare Definition 35.24. 

The usual Riemann-Stiel1jes integrability criterion implies the 
usual Darboux-Stiel1jes integrability criterion; these criteria are not 
equivalent in general, but they are equivalent if F is continuous. See, 
for example, [33], §12.2; [34], Chapter 8; or [36], Chapter 6, the most 
complete treatment being in [34]. 

35.20 Theorem. 
Iff is Darboux-Stieltjes integrable on [a, b] with respect to F in the usual 
sense, then f is F -integrable and the integrals agree. 

Proof 
For any partition P, LF(f, P) equals 

n 

L m(f, [tk-I, tkD . [FCtk) - FCtk) + F(tk) - F(tt_l) 
k=I 

n 

:s LfCtk)[FCtk) - F(tk)] 
k=1 

n 

+ L m(f, Ctk-I, tk)) . [FCtk ) - FCtt-I)] 
k=1 

n 

+ LfCtk-I)[F(tt-l) - FCtk-I)]. 
k=1 

The first and third sums add to 
n n-I 

LfCtk)[FCtk) - F(tk)] + LfCtk)[FCtt) - F(tk)] 
k=I k=O 

n-I 

= f(tn)[FCtn) - F(t;;-)] + LfCtk)[FCtt) - F(tk)] 
k=1 

+fCto)[F(tri) - F(to)] 
n 

= LfCtk)[FCtt) - FCtk)] = h(f, P). 
k=O 

These observations and a glance at the definition of LF(f, P) now 
show that f'Fif, P) < L,.·if, P). Likewise we have UFif, P) ~ UF(f, P), 
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so 

(1) 

If E > 0, the usual theory shows that there exists a partition P such 
that fh(f, P) - LF(f, P) < E. By (1) we see that we also have UF(f, P) ­
LF(f, P) < E, so f is F-integrable by Theorem 35.6. 

1b see equality of the integrals, simply observe that 

-b b f / dF :::: fh(f, P) < LF(f, P) + E :::: LF(f, P) + E :::: 1 f dF + E 

and similarly 

- b b 

!/dF> 1 fdF-E. • 
We will define Riemann-Stieltjes integrals using a mesh defined 

in terms of F instead of the usual mesh in Definition 32.6. 

35.21 Definition. 
The F-mesh of a partition Pis 

F-mesh(P) = max{F(tk") - F(tt-l) : k = 1,2, ... , n}. 

It is convenient to restate Lemma 35.15 for F: 

35.22 Lemma. 
If 8 > 0, there exists a partition P such that F-mesh(P) < 8. 

35.23 Theorem. 
A bounded function f on [a, b] is F -integrable if and only if for each EO > () 
there exists 8 > 0 such that 

F-mesh(P) < 8 implies UF(f, P) - LF(f, P) < E (I) 

for all partitions P of[a, b]. 

Proof 
Suppose that the E-8 condition stated in the theorem holds. If w 
have E > 0, then (1) applies to some partition P by L mma :t .' 
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and hence UF(f, P) - LF(f, P) < E. Since this remark applies to all 
E > 0, Theorem 35.6 implies that f is F-integrable. 

The converse is proved just as in Theorem 32.7 with "mesh" 
replaced by "F-mesh" and references to Lemma 32.2 replaced by 
references to Lemma 35.3. • 

35.24 Definition. 
Let f be bounded on [a, b), and let 

P = {a = to < tl < ... < tn = b}. 

A Riemann-Stieltjes sum of f associated with P and F is a sum of the 
form 

n 

h(f, P) + Lf(Xk)[F(tk) - F(t:-l)] 
k=l 

where Xk E (tk-I, tk) for k = 1,2, ... , n. 
The function f is Riemann-Stieltjes integrable on [a, b) if there exists 

r in lR with the following property. For each E > 0 there exists 8 > 0 
such that 

IS - rl < E (1) 

for every Riemann-Stieltjes sum S of f associated with a partition P 
having F-mesh(P) < 8. We call r the Riemann-Stieltjes integral of f 
and temporarily write it as 

35.25 Theorem. 
A bounded function f on [a, b) is F -integrable if and only if it is Riemann­
Stieltjes integrable, in which case the integrals are equal. 

Proof 
The proof that F-integrability implies Riemann-Stieltjes integrability 
imitates the corresponding proof in Theorem 32.9. The proof of the 
converse also imitates the corresponding proof, but a little care is 
needed, so we give it. 

Let f be a Riemann-Stieltjes integrable function, and let r be as 
in Definition 35.24. Consider E > 0, and let 8 > 0 be as provided 
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in Definition 35.24. By Lemma 35.22 there exists a partition P = 
{a = to < tl < ... < tn = b} with F-mesh(P) < 8. For each k = 
I, 2, ... , n, select Xk in (tk-I, tk) so that f(Xk) < m(f, (tk-I, tk)) + E. The 
Riemann-Stieltjes sum S for this choice of Xk'S satisfies 

S :::: LF(f, P) + E[F(b) - F( a)] 

and also 

IS - rl < E; 

hence LFCf) ::: LF(f, P) > r - E - E[F(b) - F(a)]. It follows that 
LFCf) ::: r and similarly UFCf) ~ r. Therefore LFCf) = UFCf) = r. 
Thus f is F-integrable and 

lb [dF = r = RS lb [ dF. 

• 

Exercises 
35.1. Let F be an increasing function on [a, b]. 

(a) Show that limx_w F(x) exists for t in (a, b) and is equal to 
sup{F(x) : x E Ca, t)}. 

(b) Show that limx->t+ F(x) exists for t in [a, b) and is equal to 
inf{F(x) : x E (t, b)}. 

35.2. Calculate f~ x2 dF(x) for the function F in Example 4. 

35.3. Let F be the step-function such that F(t) = n for t E [n, n + I), n 
an integer. Calculate 
(a) f06 

x dF(x) , (b) f~ x2 dF(x), 

(c) f1%4 x2 dF(x). 

35.4. Let F(t) = sin t for t E [- I' n Calculate 

(a) fo"l2 xdF(x) (b) f~~;2 xdF(x). 

35.5. Let [(x) = 1 for rational x and f(x) = 0 for irrational x. 

(a) Show that if F is continuous on [a, b) and F(a) < F(b), the n 
f is not F-integrable on [a, b]. 

(b) Observe thatf is F-integrable if F is as in Example 1 or:i. 
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35.6. Let (fn) be a sequence of F-integrable functions on I", bJ, and 
suppose in -+ [ uniformly on [a, b]. Show that f is V-integrable 
and 

[b [ dF = lim [b in dF. 
Ja n-+oo Ja 

35.7. Let [ and g be F-integrable functions on [a, b). Show that 

Ca) [2 is F-integrable. 

(b) [g is F-integrable. 

Ce) max(f,g) and min(f,g) are F-integrable. 

35.8. Let g be continuous on [a, b] where g(x) ~ 0 for all x E [a, b] and 
define F(t) = f~ g(x) ax for t E [a, b]. Show that if [ is continuous, 
then 

35.9. Let i be continuous on [a, b]. 

Ca) Show that f: i dF = [(x)[F(b) - F(a)] for some x in [a, b]. 

(b) Show that Exercise 33.14 is a special case of part (a). 

35.10. Suppose F is differentiable on [a, b] and F' is Riemann integrable 
on [a, b]. Prove that a bounded function [ on [a, b] is F-integrable 
if and only if [ F' is Riemann integrable, in which case 

Note: The proof is difficult and delicate. A solution is available 
from the author. 

35.11. Here is a ·change of variable" formula. Let [be F-integrable on 
[a, b]. Let t/J be a continuous, strictly increasing function on an 
interval [c, d] such that t/J(c) = a and t/J(d) = b. Define 

g(u) = [(t/J(u)) and G(u) = F(t/J(u)) for u E [c, d]. 

Show that g is G-integrable and fed g dG = f: [ dF. 



292 6. Integration 

§36 * Improper Integrals 

The Riemann integral in §32 has been defined only for functions 
that are bounded on a closed interval [a, b]. It is convenient to be 
able to integrate some functions that are unbounded or are defined 
on an unbounded interval. 

36.1 Definition. 
Consider an interval [a, b) where b is finite or +00. Suppose that [ 
is a function on [a, b) that is integrable on each [a, d] for a < d < b, 
and suppose that the limit 

lim ld [(x) dx 
d-+b- a 

exists either as a finite number, +00 or -00. Then we define 

l
b 

[(x) dx = lim ld [(x) dx. 
a d-+b- a 

(1) 

If b is finite and [ is integrable on [a, b], this definition agrees with 
that in Definition 32.1 [Exercise 36.1]. Ifb = +00 or iff is not inte­
grable on [a, b], but the limit in (1) exists, then (1) defines an improper 
integral. 

An analogous definition applies if [ is defined on (a, b] where a 
is finite or -00 and if [ is integrable on each [e, b] for a < e < b. 
Then we define 

l
b 
[(x)dx = li~ [b [(x)dx 

a c-+a c 
(2) 

whenever the limit exists. 
If [is defined on (a, b) and integrable on all closed subinterv 1 

[e, d], then we fix a in (a, b) and define 

lb [(x) dx = llX [(x) dx + 1b [(x) dx 

provided the integrals on the right exist and the sum is not of th 
form +00 + (-00). Here we agree that 00 + L = 00 if L '# - 00 n 
(- 00) + L = -00 if L '# 00. It is easy [Exercise 36.2] to see that thl 
definition does not depend on the choice of ex . 
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Whenever the improper integrals defined above exist and are 
finite, the integrals are said to converge. Otherwise they diverge to 
+00 or to -00. 

Example 1 
Consider [(x) = ~ for x E (0,00). For d > I, we have J: ~ ax = logd, 
so 

1
001 

- ax = lim logd = +00. 
1 X d-+oo 

This improper integral diverges to +00. For 0 < c < I, we have 
t ~ ax = -log c, so 

i ll 
- ax = lim [-logc] = +00. 

o X c-+o+ 

Also we have 

roo 1 
10 ~ = +00. 

Example 2 
Consider [(x) = x-P for x E [1,00) and a fixed positive numberp =1= 1. 
For d > I, 

[

d 1 
x-P ax = __ [d1- P - 1]. 

1 I-p 

It follows that 

100 1 1 
x-Pax = --[0 -1] =-­

I I-p p-I 
if P > 1 

and 

[00 x-P ax = +00 if 0 < p < 1. 

Example 3 
We have J: sin x ax = I-cos d for all d. The value (I-cos d) oscillates 
between 0 and 2, as d ~ 00, and therefore the limit 

lim {d sin x ax does not exist. d 00 10 
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Thus the symbol Jooo sin x fix has no meaning and is not an improper 

integral. Similarly, J~oo sin x fix and J~oo sin x fix have no meaning. 
Note that the limit 

lim la 

sin x fix 
a--+oo - a 

clearly exists and equals O. When such a "symmetric" limit exists 
even though the improper integral J~oo does not, we have what is 
called a Cauchy principal value of J~oo' Thus 0 is the Cauchy principal 
value of J~oo sin x fix, but this is not an improper integral. 

It is especially valuable to extend Riemann-Stiel1jes integrals to 
infinite intervals; see the discussion after Theorem 36.4 below. Let F 
be a bounded increasing function on some interval I . The function 
F can be extended to all of lR by a simple device: if I is bounded 
below, define 

F(t) = inf{F(u) : u E I} for t ~ inf I; 

if I is bounded above, define 

F(t) = sup{F(u) : u E I} for t:::: supI. 

For this reason, we will henceforth assume that F is a bounded 
increasing function on all of R We will use the notations 

F( -00) = lim F(t) and F(oo) = lim F(t) . 
t--+-oo t--+oo 

Improper Riemann-Stiel1jes integrals are defined in analogy to 
improper Riemann integrals. 

36.2 Definition. 
Suppose thatf is F-integrable on each interval [a, b] in lR. We mak(, 
the following definitions whenever the limits exist: 

roo f dF = lim r f dF; 10 

f dF = lim 10 

f dF. Jo b--+ oo Jo - 00 a--+ - oo a 

Ifboth limits exist and their sum does not have the form 00 + ( - ), 
we define 

100 f dF = 10 

f dF + roo f dF. 
- 00 - 00 Jo 
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If this sum is finite, we say [ is F -integrable on R If [ is F -integrable 
on JR for F(t) = t [i.e., the integrals are Riemann integrals], we say [ 
is integrable on JR. 

36.3 Theorem. 
1[[ is F-integrable on each interval [a, b] and i[[(x) :::: 0 [or all x E JR, 
then [is F-integrable on JR or else f~[ dF = +00. 

Proof 
We indicate why lima~-oo fao [dF exists, and leave the case of 

limb~oo f: [dF to the reader. Let h(a) = f~ [dF for a < 0, and 
note that a' < a < 0 implies h(a') :::: h(a). This property implies 
that lima~_oo h(a) exists and 

lim h(a) = sup{h(a) : a E (-00, O)}. 
a~-oo 

We omit the simple argument. • 
36.4 Theorem. 
Supposethat-oo < F(-oo) < F(oo) < 00. Let[be a bounded function 
on JR that is F-integrable on each interval [a, b]. Then [ is F-integrable 
onR 

Proof 
Select a constant B such that I[(x) I .::s B for all x E R Since we have 
F(oo) - F( -00) < 00, constant functions are F-integrable. Since 0 .::s 
[ + B .::s 2B, Theorem 36.3 shows that [ + B is F-integrable. It follows 
[Exercise 36.10] that [ = if + B) + (-B) is also F-integrable. • 

Increasing functions F defined on JR come up naturally in prob­
ability and statistics. In these disciplines, F is called a distribution 
function if we also have F( -00) = 0 and F(oo) = l. Of course, the 
function F(t) = t that corresponds to the Riemann integral is not a 
distribution function. Here is how a distribution function comes up 
in probability. Consider a random experiment with numerical out­
comes; then F(t) can represent the probability that the numerical 
value will be .::s t. As a very simple example, suppose the experiment 
involves tossing three fair coins and counting the number of heads. 
The num rical values 0, 1, 2, and 3 will result with probabilities ~, 



296 6. Integration 

~, ~, and ft, respectively. The corresponding distribution function is 
defined in Example 2 of §35 and sketched in Figure 35.1. 

Frequently a distribution function F has the form 

F(t) = itoo g(x) dx 

for an integrable function g satisfying g(x) 2: 0 for all x E JR. Then g 
is called a density for F. Note that we must have i: g(x) dx = 1. 

Also, if g is continuous, then get) = F' (t) for all t by Theorem 34.3. 

Example 4 
It turns out that f~oo e-x2 dx = -Iii [Exercise 36.7] and hence 

100 e-x212 dx = hii. 
-00 

The most important density in probability is the normal density 

1 g(x) = __ e-x212 

$ 
which gives rise to the normal distribution 

see Figure 36.1. 

F(t) = _I_It e-x212 dx; 
$ -00 

Exercises 36.1-36.8 below deal only with Riemann integrals. 

Exercises 
36.1. Show that if [is integrable on [a, b] as in Definition 32.1, then 

lim rd 

[(x) dx = rb 

[(x) dx. 
d--+b- Ja Ja 

36.2. Show that the definition (3) in Definition 36.1 does not d pcn 
on the choice of a. 
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y 

--------- ---- =:...:=-=----

normal distribution 

FIGURE 36.1 

36.3. (a) Show that 

11 x-P ax = _1_ if 0 < p < 1 and fo 1 x-P ax = +00 if P > 1. 
o 1-P 10 

(b) Show that Jooo x-P ax = +00 for all p > O. 

36.4. Calculate 
(a) Jo1 logxax, (b) J200 ~ ax, 
(e) Jooo 

11x2 ax. 
36.5. Let [be a continuous function on Ca, b) such that [Cx) ~ 0 for all 

x E Ca, b); a can be -00, b can be +00. Show that the improper 

integral J: [Cx) ax exists and equals 

sup {ld 

[(x) ax : [c, d] s; Ca, b)) . 

36.6. Prove the following comparison tests. Let [ and g be continuous 
functions on Ca, b) such that 0 .::: [Cx) .::: gCx) for all x in Ca, b); a 
can be -00, b can be +00. 

(a) If J: gCx) ax < 00, then J: [ex) ax < 00. 

(b) If J: [ex) ax = +00, then J: gex) ax = +00. 

36.7. (a) Use Exercise 36.6 to show J::'ooe- x2 ax < 00. 

(b) Show that this integral equals,.fif. Hint: Calculate the double 
integral J oooo J oooo e- X> e- y2 ax dy using polar coordina tes. 
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36.8. Suppose that f is continuous on (a, b) and that J: If(x) I dx < OOj 

again a can be -00, b can be +00. Show that the integral J: f(x)dx 
exists and is finite. 

36.9. Let F be the normal distribution function in Example 4. 

(a) Show that iff is continuous on JR and if the improper integral 
J::'oof(x)e-X2/2 dx exists, then the improper integral J::'oc,f tiP 
exists and 

Calculate 
(b) J:O X2 dF(x), 
(d) J::'oo Ixl dF(x), 

f dF = -- f(x)e- X2/2 dx. Joo 1 Joo 
-00 ,.j2ii -00 

(c) J::'oo e;"2 dF(x), 

(e) J::'ooxdF(x) . 

36.10. Let f and g be F-integrable functions on R Show that f + g is 
F-integrable on lR. and 

i: Cf+g)dF = i: fdF + i: gdF. 

36.11. Show that iff andg are F-integrable on JR and iff(x) ~ g(x) for)( 
in JR, then J::'oo f dF ~ J::'oo g dF. 

36.12. Generalize Exercise 36.6 to F-integrals on R 

36.13. Generalize Exercise 36.8 to F-integrals on R 

36.14. Let (un) be a sequence of distinct points in JR, and let (en) be a 
sequence of positive numbers such that L Cn < 00. 

(a) Show that F = L~=l cnJun is an increasing function on JR . 
Hint: See Example 3 in §3S. 

(b) Show that every bounded functionf on JR iSF-integrable and 

i: fdF = ~cnf(un). 
( c) Show that if (un) is an enumeration of the rationals, the n It' 

is strictly increasing on R 

(d) When will F be a distribution function? 

36.15. (a) Give an example ofa sequence Cfn) of integrable functions on 
JR where J::'oofnCx)dx = 1 for an nand yet!n ~ 0 uniformly 
on :JR. 
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(b) Suppose that F is a distribution function on R Show that if 
(fn) is a sequence of F-integrable functions on JR and iffn -7 f 
uniformly on JR, then f is F-integrable on JR and 

100 f dF = lim 100 

fn dF. 
-00 n~oo -00 

§37 * A Discussion of Exponents and 
Logarithms 

In this book we have carefully developed the theory but have been 
casual about using the familiar exponential, logarithmic and trigono­
metric functions in examples and exercises. Most readers probably 
found this an acceptable approach, since they are comfortable with 
these basic functions. In this section, we indicate three ways to de­
velop the exponential and logarithmic functions assuming only the 
axioms in Chapter 1 and the theoretical results in later chapters. We 
will provide proofs for the third approach. 

Recall that for x in IR and a positive integer n, xn is the product 
of x by itself n times. For x #- 0, we have the convention XO = 1. And 
for x#-O and negative integers -n where n E N, we define x-n to be 
the reciprocal of xn, i.e., x-n = (xnr 1. 

37.1 Piecemeal Approach. 
This approach starts with Example 2 in §29 and Exercise 29.15 where 
it is shown that xr is meaningful whenever x > 0 and r is rational, 
i.e., r E Q. Moreover, 

if hex) = xr, then h'(x) = rX-
r- 1

. 

The algebraic properties xrlt = xY+s and (xyy = xYyr can be verified 
for r, SEQ and positive x and y. For any t E IR and x ::: 1, we define 

xt = sup{xr : r E Q and r ~ t} 

and 
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This defines ;l for x > O. It can be shown that with this definition 
xt is finite and the algebraic properties mentioned above still hold. 
Further, it can be shown that hex) = xt is differentiable and h'(x) = 
txt-I. 

Next we can consider a fixed b > 0 and the function B defined 
by B(x) = if for x E lR. The function B is differentiable and B'(x) = 
CbB(X) for some constant Cb. We elaborate on this last claim. In view 
of Exercise 28.14, we can write 

if+h - if bh - 1 
H(x) = lim = if . lim --

h~O h h~O h 

provided these limits exist. Some analysis shows that the last limit 
does exist, so 

1 
B'(x) = CbB(X) where Cb = lim _[bh 

- 1]. 
h~O h 

It turns out that Cb = 1 for a certain b, known universally as e. 
Since B is one-to-one if b =j:. I, B has an inverse function L which is 
namedL(y) = 10gbY' Since B is differentiable, Theorem 29.9 can b 
applied to show that L is differentiable and 

L'(y) = _1 . 
CbY 

Finally, the familiar properties oflogb can be established for L. 

When all the details are supplied, the above approach is very t . 
dious. It has one, and only one, meriti it is direct without any tricks. 
One could call it the "brute force approach.· The next two approach , 
begin with some well defined mathematical object [either a powc 
series or an integral] and then work backwards to develop the famll. 
iar properties of exponentials and logarithms. In both instances, f() 
motivation we will draw on more advanced facts that we believ but 
which have not been established in this book. 

37.2 Exponential Power Series Approach. 
This approach is adopted in two of our favorite books: [8], §4 .9 n 
[36], Chapter 8. As noted in Example 1 of §31, we believe 

ff = f ~;l 
k= O k! 
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though we have not proved this, since we have not even defined 
exponentials yet. In this approach, we define 

00 1 
E(x) = ~ k! x\ (1) 

and we define e = E(l). The series here has radius of convergence 
+00 [Example 1, §23], and E is differentiable on lR [Theorem 26.5]. It 
is easy [Exercise 26.5] to show thatE' = E. The fundamental property 

E(x + y) = E(x)E(y) (2) 

can be established using only the facts observed above. Actually [36] 
uses a theorem on multiplication of absolutely convergent series, 
but [8] avoids this. Other properties of E can be quickly established. 
In particular, E is strictly increasing on lR and has an inverse L. 
Theorem 29.9 assures us that L is differentiable and L'(y) = ~. For 
rational r and x > 0, xr was defined in Exercise 29.15. Applying that 
exercise and the chain rule to g(x) = L(xr) - rL(x), we find g'(x) = 0 
for x > O. Since g(l) = 0, we conclude that 

L(xr) = rL(x) for r E Q and x > O. (3) 

For b > 0 and rational r, (3) implies that 

br = E(L(br)) = E(rL(b)). 

Because of this, we define 

if = E(xL(b)) for x E R 

The familiar properties of exponentials and their inverses [loga­
rithms!] are now easy to prove. 

The choice between the approach just outlined and the next ap­
proach is really a matter of taste and depends on the appeal of power 
series. One genuine advantage to the exponential approach is that 
the series in (1) defining E is equally good for defining E(z) = ~ for 
complex numbers z. 

37.3 Logarithmic Integral Approach. 
Let us attempt to solve f' = f where f never vanishes; we expect 
to obtain E(x) - t:f as one of the solutions. This simple differential 
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equation can be written 

f' - = 1 f . (1) 

In view of the chain rule, if we could find L satisfYing L'(y) = ~, 
then equation (1) would simplify to 

(LoD' = I, 

so one of the solutions would satisfy 

L of(y) =y. 

In other words, one solution f of (1) would be an inverse to L where 
L'(y) = ~. But by the Fundamental Theorem of Calculus II [Theo­
rem 34.3], we know such a function L exists. Since we also expect 
L(I) = 0, we define 

L(y) = l Y 
~ dt for y E (0,00). 

1 t 

We use this definition to prove the basic facts about logarithms and 
exponentials. 

37.4 Theorem. 
(i) The function L is strictly increasing, continuous and differentiable 

on (0,00)' We have 

1 
L'(y) = - for y E (0,00). 

Y 

(li) L(yz) = L(y) + L(z) for y, z E (0,00). 
(iii) L(?) = L(y) - L(z) for y, z E (0,00). 
(iv) limy_ oo L(y) = +00 and limy_o+ L(y) = -00. 

Proof 
It is trivial to show that the function f(t) = t is continuous on IR, 
so its reciprocal t is continuous on (0,00) by Theorem 17.4. It 1 
easy to see that L is strictly increasing, and the rest of (i) follow 
immediately from Theorem 34.3. 

Assertion (ii) can be proved directly [Exercise 37.1]. Altern 
lively, fix z and consider g(y) = L(yz) - L(y) - L(z). Since g(l) - 0, 
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it suffices to show g'(y) = a for y E (0,00) [Corollary 29.4]. But since 
z is fixed, we have 

, z 1 
g (y) = - - - - a = o. 

yz Y 

1b check (iii), note that L(~) + L( z) = L(~ . z) = L(I) = a, so that 
L(~) = -L(z) and 

L (~) = L (y.~) = L(y) +L (~) = L(y) - L(z). 

1b see (iv) , first observe that L(2) > a and that L(2n) = n . L(2) 
in view of (ii). Thus limn400 L(2n) = +00. Since L is increasing, it 
follows that limy400 L(y) = +00. Likewise L(~) < 0 and L(ay) = 
n . L(~), so limy4o+ L(y) = -00. • 

The Intermediate Value Theorem 18.2 shows that L maps (a, 00) 
onto R. Since L is a strictly increasing function, it has an inverse and 
the inverse has domain R. 

37.5 Definition. 
We denote the function inverse to L by E. Thus 

E(L(y)) = y for y E (0,00) 

and 

L(E(x)) = x for x E R. 

We also define e = E(I) so that It t dt = 1. 

37.6 Theorem. 
(i) The function E is strictly increasing, continuous and differentiable 

on R. We have 

E'(x) = E(x) for x E R. 

(il) E(u + v) = E(u)E(v) for u, v E llt 
(iii) limx ~oo E(x) = +00 and lirnX4 - 00 E(x) = O. 
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Proof 
All of (i) follows from Theorem 37.4 in conjunction with Theo­
rem 29.9. In particular, 

, 1 1 
E (x) = L'(E(x)) = E~X) = E(x). 

If u, v E lR, then u = L(y) and v = L(z) for some y, z E (0,00). 
Then u + v = L(yz) by (ii) of Theorem 37.4, so 

E(u + v) = E(L(yz)) = yz = E(L(y))E(L(z)) = E(u)E(v). 

Assertion (iii) follows from (iv) of Theorem 37.4 [Exercise 37.2] . • 

Consider b > 0 and r E Q, say r = ~ where m, n E Z and 
n > o. It is customary to write bY for that positive number a such 
thatan = bm . By (ii) of Theorem 37.4, we have nL(a) = mL(b); hence 

bY = a = E(L(a)) = E (~. nL(a)) = E (~. mL(b)) = E(rL(b)). 

This motivates our next definition and also shows that the definition 
is compatible with the usage of fractional powers in algebra. 

37.7 Definition. 
For b > 0 and x E lR, we define 

bX = E(xL(b)). 

Since L(e) = I, we have ~ = E(x) for all x E lR. 

37.8 Theorem. 
Fix b > o. 

(i) The function B(x) = bX is continuous and differentiable on JR. 
(ii) lfb > I, then B is strictly increasing; ifb < I, then B is strictl.1I 

decreasing. 
(iii) lfb ¥ I, then B maps lR onto (0,00)' 
(iv) bU+v = bUbV for u, v E lR. 

Proof 
Exercise 37.3. 

If b ¥ I, the function B has an inverse function. 
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37.9 Definition. 
For b > 0 and b f. I, the inverse of B(x) = if is written 10gb. The 
domain oflogb is (0,00) and 

logbY = x if and only if If = y. 

Note that logeY = L(y) for y > o. 

37.10 Theorem. 
Fix b > 0, b f. 1. 

(i) The function 10gb is continuous and differentiable on (0, 00). 
(li) If b > I, 10gb is strictly increasing; if b < I, 10gb is strictly 

decreasing. 
(iii) logb(Yz) = logby + 10gb z for y, Z E (0,00)' 
(iv) logb(;) = 10gb y - 10gb Z for y, Z E (0,00). 

Proof 
This follows from Theorem 37.4 and the identity logbY 
[Exercise 37.4]. Note that L(b) is negative if b < l. 

L(y) 
L(b) • 

The function E(x) = e! has now been rigorously developed and, 
as explained in Example 1 of §31, we have 

00 1 
E(x) = {; k!x

k
. 

In particular, e = L~o t. Also 

37.11 Theorem. 

e = lim(1 + h)lIh = lim (1 + ~)n 
h~O n~oo n 

Proof 
It suffices to verify the first equality. Since L'(I) = I, we have 

L(1 + h) - L(I) 1 
1 = lim = lim -L(1 + h) = lim L ((1 + h)lIh). 

h~O h h~O h h~O 

Since E is continuous, we can apply Theorem 20.5 to the function 
f(h) = L((1 + h)l /h) to obtain 

lim(1 + h)l /h = limE (L ((1 + hi/h)) = E(I) = e. 
h~O h~O • 
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37.12 'Itigonometric Functions. 
Either approach 37.2 or 37.3 can be modified to rigorously develop 
the trigonometric functions. They can also be developed using th 
exponential functions for complex values since 

1 · . 
sinx = _[e lX 

- e- lX
] etc.,· 

2i ' 

see [36], Chapter 8. The development of the trigonometric functions 
analogous to approach 37.3 can proceed as follows. Since we believ 

arcsinx = 1x 

(1 - t2)-1I2 dt, 

we can define A(x) as this integral and obtain sin x from this. Then 
cos x and tan x are easy to obtain. In this development, the number 
1r is defined to be 2 Jo\l - t2)-1I2 dt. 

In the exercises, use results proved in Theorem 37.4 and 
subsequent theorems but not the material discussed in 37.1 and 37.2. 

Exercises 
37.1. Prove directly that 

- dt = - dt + - dt 1
YZ 

1 1Y 
1 1z 

1 
1 tIt 1 t 

for y, Z E (0,00). 

37.2. Prove (iii) of Theorem 37.6. 

37.3. Prove Theorem 37.8. 

37.4. Consider b > 0, b I- 1. Prove logbY = ~ for Y E (0,00). 

37.5. Letp be any real number and define [(x) = xP for x > o. Show that 
[is differentiable andf'(x) = PXP-1i compare Exercise 29.1S.lIirll : 
[(x) = E(PL(x)). 

37.6. Show that xPyP = (xyJ for p E IR and positive x, y. 

37.7. (a) Show that ifB(x) =~, thenB'(x) = (loge b)~ . 

(b) Find the derivative oflogb · 

37.8. For x > 0, lctf(x) - )! . Show lhatf'(x) = [l + l08rxj . x y
• 



37.9. (a) Show that logeY < Y for Y > l. 

(b) Show that 
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logeY 2 
-- < - for Y > l. Hint: logeY = 2 loge ..;y. 

Y v'Y 
(c) Use part (b) to prove that limy .... oo ~ logeY = O. This neat little 

exercise is based on the paper [20]. 





Appendix on Set Notation 

Consider a set S. The notation XES means that x is an element 
of S; we might also say "x belongs to S" or "x is in S." The notation 
x ri. S signifies that x is some element but that x does not belong to 
S. By T S; S we mean that each element of T also belongs to S, i.e., 
x E T implies XES. Thus we have 1 E N, 17 E N, -3 ri. N, ~ ri. N, 
viz ri. N, ~ E Q, ~ E JR, .J2 E JR, .J2 ri. Q, and 7r E R Also we have 
N S; JR, Q S; JR, and JR S; JR. 

Small finite sets can be listed using braces { }. For example, 
{2, 3, 5, 7} is the four-element set consisting of the primes less than 
10. Sets are often described by properties of their elements via the 
notation 

{: }. 

Before the colon the variable [n or x, for instance] is indicated and 
after the colon the properties are given. For example, 

{n : n E Nand n is odd} (1) 

represents the set of positive odd integers. The colon is always read 
"such that," so the set in (1) is read "the set of all n such that n is in 

309 
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Nand n is odd." Likewise 

{x : X E lR and 1 ::: x < 3} (2) 

represents the set of all real numbers that are greater than or equal 
to 1 and less than 3. In §4 this set is abbreviated [1,3). Note that 
1 E [1,3) but 3 E [1,3). Just to streamline notation, the expressions 
(1) and (2) may be written as ' 

{n EN: n is odd} and {x E lR : 1 ::: x < 3}. 

The first set is then read "the set of all n in N such that n is odd." 
Another way to list a set is to specifY a rule for obtaining its 

elements using some other set of elements. For example, {n2 
: n E N} 

represents the set of all positive integers that are the square of other 
integers, i.e., 

{n2 
: n E N} = {m EN: m = n 2 for some n E N} = {I, 4, 9,16,25, . . . }. 

Similarly {sin ': : n E N} represents the set obtained by evaluating 
sin n; for each positive integer n. Actually this set is finite: 

{Sin": ,n E Nl = {~'l'O, -~,-+ 
The set in (1) can also be written as {2n - 1 : n EN}. One more 
example: {x3 

: x > 3} is the set of all cubes of all real numbers bigger 
than 3 and of course equals {y E lR : y > 27}, i.e., (27,00) in the 
notation of §5. 

For sets Sand T, S \ T signifies the set {x E S : x E T}. For 
a sequence (An) of sets, the union UAn and intersection nAn are 
defined by 

UAn = {x : X E An for at least one n}, 

nAn = {x : X E An for all n}. 

The empty set 0 is the set with no elements at all. Thus, for example, 
{n EN: 2 < n < 3} = 0, {r E Q : r2 = 2} = 0, {x E lR : x2 < O} = 
0, and [0,2] n [5, 00) = 0 . 

For functions f and g, the notation f + g, fg, fog, etc. is explained 
on page 121. 

The end of a proof is indicated by a small black box. This replaces 
the classical QED. 



Selected Hints and 

Answers 

Notice. These hints and answers should be consulted only after serious 
attempts have been made to solve the problems. Students who ignore this 
advice will only cheat themselves. 

Many problems can be solved in several ways. Your solution need 
not agree with that supplied here. Often your solution should be more 
elaborate. 

1.1 Hint: The following algebra is needed to verify the induction step: 

n(n + 1)(2n + 1) [2n2 + n ] 
6 +(n+li=(n+l) 6 +n+l = ... 

(n + l)(n + 2)(2n + 3) 
6 

1.3 Hint: Suppose the identity holds for n. Then work on the right side 
of the equation with n+l in place ofn. Since (x+yi = x2+2xy+y2, 

(1 + 2 + ... + n + (n + 1))2 = (1 + 2 + ... + ni 

+2(n + 1)(1 + 2 + ... + n) + (n + Ii. 

Use Example 1 to show that the second line has sum (n + 1 i; hence 

(1+2+· .+(n+l)i = (1+2+· · · n)2+(n+l)3 = 13+23+. +(n+l)3. 

1.5 llint : 2 - -in + zh-r = 2 - zk· 
1.7 flint : 71111 6(n t 1) I 7(711 6n I) t 36n . 

----~--------__ _.Jll _ 
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1.9 (a) n::: 5 and also n = l. 
(b) Clearly the inequality holds for n = 5. Suppose 2" > n2 for 

some n ::: 5. Then 2"+1 = 2·2" > 2n2, so 2"+1 > (n + Ii 
provided 2n2 ::: (n + 1)2 or nZ ::: 2n + 1 for n ::: 5._In fact, 
this holds for n ::: 3, which can be verified using calculus or 
directly: n2 ::: 3n = 2n + n > 2n + 1. 

l.ll (a) Hint: Ifn2 + 5n + 1 is even, then so is (n + 1)2 + 5(n + 1) + 1 = 

n2 + 5n + 1 + [2n + 6]. 
(b) p" is false for all n. Moral: The basis for induction (11) is crucial 

for mathematical induction. 
2.1 Hint: Imitate Example 3. You should, of course, verify your asser­

tions concerning nonsolutions. Note that there are sixteen rational 
candidates for solving 1'2 - 24 = O. 

2.3 Hint: (2 + ../2)112 represents a solution of 1'4 - 41'2 + 2 = O. 
2.5 Hint: [3 + ../2]Z/3 represents a solution of 1'6 - 221'3 + 49 = O. 
3.1 (a) A3 and A4 hold for a E N, but 0 and -a are not in N. Likewise 

M4 holds for a E N, but a -I is not in N unless a = l. These 
three properties fail for N since they implicitly require the 
numbers 0, -a and a-I to be in the system under scrutiny, 
namely N in this case. 

(b) M 4 fails in the sense discussed in (a). 
3.3 (iv) Apply (iii), DL, A2, A4, (ii) and A4 again to obtain 

(-a)( -b) + (-ab) = (-a)( -b) + (-a)b = (-a)[( -b) + b] 

= (-a)[b + (-b)] = (-a) . 0 = 0 = ab + ( 

Now by (i) we conclude that (-a)( -b) = abo 
(v) Suppose ae = be and e 1= O. By M4 there exists e- I such that 

e . e-1 = 1. Now (supply reasons) 

a = a·l = a(e.e-1
) = (ac)e-1 = (be)e- 1 = b(e.e-1

) = b·l = b. 

3.5 (a) If Ibl ~ a, then -a ~ -Ibl, so -a ~ -Ibl ~ b ~ Ibl ~ a. Now 
suppose that -a ~ b ~ a. If b ::: 0, then Ibl = b ~ a. If b < 0, 
then Ibl = -b ~ a; the last inequality holds by Theotem 3.2(i) 
since -a ~ b. 

(b) By (a), it suffices to prove -Ia - bl ~ lal - Ibl ~ la - bl . 
Each of these inequalities follows from the triangle inequality: 
Ibl = I(b - a) + al ~ Ib - al + lal = la - bl + lal which implies 
the first inequality; lal = I(a - b) + bl ~ la - bl 1- Ibl whi h 
implies the second inequality. 



Selected Hints and Answers 313 

3.7 (a) Imitate Exercise 3.5(a). 
(b) By (a), la - bl < c if and only if -c < a - b < c, and this 

obviously holds [see 04] if and only if b - c < a < b + c. 
4.1 If the set is bounded above, use any three numbers ~ supremum 

of the set; see the answers to Exercise 4.3. The sets in (h), (k) and 
(u) are not bounded above. Note that the set in (i) is simply [0,1]. 

4.3 (a) 1; (e) 7; (e) 1; (g) 3; (i) 1; (k) No sup; (m) 2; (0) 0; (q) 16; 

(8) t; (n) No sup; (w) 1. In (s), note that 1 is not prime. 
4.5 Proof Since sup S is an upper bound for S, we have sup S ~ 8 for all 

8 E S. Also sup S E S by assumption. Hence sup S is the maximum 
of S, i.e., sup S = max S. 

4.7 (a) Suppose S ~ T . Since sup T ~ t for all t E T we obviously 
have sup T ~ 8 for all 8 E S. So sup T is an upper bound for 
the set S. Hence sup T must be ~ the least upper bound for S, 
i.e., sup T ~ sup S. A similar argument shows inf T ~ inf S; 

give it. 
(b) Since S ~ S U T, sup S ~ sup(S U T) by (a). Similarly 

sup T ~ sup(S U T), so max {sup S, sup T} ~ sup(S U T). 
Since sup(S U T) is the least upper bound for S U T, we will 
have equality here provided we show: max{sup S, sup T} is 
an upper bound for the set S U T. This is easy. If XES, 
then x ~ supS ~ max{supS,supT} and if x E T,then 
x ~ supT ~ max{supS,supT}. I.e., x ~ max{supS,supT} 
for all XES U T . 

4.9 (1) If 8 E S, then -8 E -S, so -8 ~ 80. Hence we have 8 ~ -80 by 
Theorem 3.2(i). 

(2) Suppose t ~ 8 for all 8 E S. Then -t ~ -8 for all 8 E S, i.e., 
-t ~ x for all x E - So So -t is an upper bound for the set -So 

So -t ~ sup( -S). I.e., -t ~ 80 and hence t ~ -80. 

4.11 Proof By 4.7 there is a rational YI such that a < YI < b. By 4.7 
again, there is a rational Y2 such that a < Y2 < YI. We continue by 
induction: Ifrationals YI, ... , Yn have been selected so that a < Yn < 
Yn - I < ... < r2 < YI, then 4.7 applies to a < Yn to yield a rational 
Yn+I such that a < Yn+I < rn. This process yields an infinite set 
{YI, Y2 , · .. } in Q n (a, b). 
Alternative Proof Assume Qn(a, b) is finite. The set is nonempty 
by 4.7. Let c = min(Q n (a, b)) . Then a < c, so by 4.7 there is a 
rational Y such that a < Y < c. Then Y belongs to Q n (a, b), so c ~ Y, 

a contradiction . 
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4.13 By Exercise 3.7(b), we have (i) and (ii) equivalent. The equivalence 
of (ii) and (iii) is obvious from the definition of an open interval. 

4.15 Assume a ~ b+ ~ for all n E Nbut that a > b. Then a - b > 0, and 
by the Archimedean property 4.6 we have no(a - b) > 1 for some 
no EN. Then a > b + ~ contrary to our assumption. 

5.1 (a) (-00,0); (b) (-00,2]; (c) [0,00); (d) (-v'B, v'B). 
5.3 Hint: The unbounded sets are in (h), (k), 0), (0), (t) and (u). 
5.5 PIuof Select So E S. Then inf S ~ So ~ sup S whether these 

symbols represent ±oo or not. 
6.1 (a) If s ~ t, then clearly s* ~ to. Conversely, assume s* ~ t* but 

that s > t. Then t E s* but t fj to, a contradiction. 
(b) s = t if and only if both s ~ t and t ~ s if and only if both 

s* ~ t* and t* ~ s* if and only if s* = t*. 
(c) Consider rj E s* and r2 E to. Then rj < sand r2 < t; so 

rj + r2 < s + t, i.e., rj + r2 E (s + t)*. Hence s* + t* ~ (s + t)*. 
Now consider r E (s + t)* so that r < s + t. Ifrj = hs - t + r) 
and r2 = ~(t - s + r), then rj < ~(s - t + s + t) = sand 
r2 < ~(t-s+s+t)=t. Sorj Es*andr2Et*.Sincer=rl+r2, 
we have r E s* + to. Hence (s + t)* ~ s* + to . 

6.3 (a) If rEa and s E 0*, then r + s < r, so r + SEa. Hence 
a + 0* ~ a. Conversely, suppose rEa. Since a has no largest 
element, there is a rational tEa such that t > r. Then r - t 
is in 0*, so r = t + (r - t) E a + 0*. This shows a ~ a + 0*. 

(b) -a = {r E Q : S fj a for some rational s < -r}. 
6.5 (b) No; it corresponds to (2)1 /3. 

(c) This is the Dedekind cut corresponding to v'2. 
71 () 1 1 1 1 1 

. a 4' 7' 10' 13' 16 
()

12145 
C 3' 9' 9' 81' 243 

7.3 (a) converges to 1; (c) converges to 0; (e) does not converge; 
(g) does not converge; (i) converges to 0; (k) does not converge; 
(m) converges to 0 [this sequence is (0, 0, 0, ... )]; (0) converges to 
0; (q) converges to 0 [see Exercise 9.15]; (8) converges to 1. 

7.5 (a) Has limit 0 since Sn = 1/(.JYl2"+l + n). 

(c) .J 4n2 + n - 2n = nl( J 4n2 + n + 2n) and this is close to 2n~2n 
for large n. So limit appears to be t; it is. 

8.1 (a) Formal Proof Let E > O. Let N = ~. Then n > N implies 

ICLI = 1. < E. n- O n 
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(b) Discussion. We want n- 1I3 < or ~, ' I III I I I I < n, So for 
each E > 0, let N = l/E3. You should WIlli (lilt Iho formal 
proof. 

() D' . Wi t1 2n- 1 21 I 7 I c tScusswn. e wan 3n+2 -:3 < E or (3n+2)-3 < (or I( III , ~ ) < 
E or i < 3n + 2 or ~ - ~ < n. So set N equal to :. \ ' 

(d) Discussion. We want (n + 6)/(n2 - 6) < E; we assum() " > 2 
so that absolute values can be dropped. As in Example 3 W • 

observe that n + 6 ~ 7n and that n2 - 6 ~ ~n2 provided n > 3. 
So it suffices to get 7nlan2) < E [for n > 3] or 1(4 < n . So try 
N = max{3, 11}. 

( 

8.3 Discussion. We want Fn < Ear Sn < E2. But Sn --+ 0, so we can get 
Sn < E2 for large n. 

Formal Proof Let E > O. Since E2 > 0 and lim Sn = 0, there exists 
N so that ISn - 01 < E2 for n > N. Thus Sn < E2 for n > N, so 
Fn < E for n > N . I.e., IFn - 01 < E for n > N. We conclude that 
limFn= O. 

8.5 (a) Let E > O. Our goal is to show that S - E < Sn < S + E for large 
n . Since lim an = s, there exists NJ so that Ian - sl < E for 
n > N 1• In particular, 

n > NJ implies S - E < an. (1) 

Likewise there exists N2 so that Ibn - sl < E for n > N2, so 

n>N2 implies bn<s+E. (2) 

Now 

n>max{NJ ,N2} implies s-E<an~sn~bn<s+E; 

hence Is - snl < E. 
(b) It is easy to show that lime -tn) = 0 if lim tn = O. Now apply 

(a) to the inequalities -tn ~ Sn ~ tn . 
8.7 (a) Assume lim cos(nn = a . Then there exists N such that n > N 

implies I cos(n;) - al < 1. Consider n > Nand n + 3 where n 
is a multiple of 6; substituting these values in the inequality 
gives 11 - al < 1 and I - 1 - al < 1. By the triangle inequality 

I 
I 

2 = 1(1 - a) - (-1 - a)1 ~ 11 - al + 1-1 - al < 1 + 1 = 2, 

a contradiction. 
(b) Assume lim ( -1 yn = a. Then there exists N such that n > N 

implies I( - 1)nn - al < 1. For an even n > N and for n + 2 
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this tells us that In - al < 1 and In + 2 - al < 1. So 2 = 
In+2-a-(n-a)1 ~ In+2-al+ln-al < 2, a contradiction. 

Ce) Note that the sequence takes the values ±1 for large n. 
Assume lim sinC~) = a. Then there must exist N such that 

mr v'3 
n > N implies I sin(-) - al < - . 

3 2 

Substituting suitable n > N, we obtain 11 - al < 1 and 

I-f - al < 1· By the triangle inequality 

~ = I ~ - ( -~) I ~ I ~ - al + la - ( -~) I 
v'3 v'3 
<-+-=~ 

2 2 ' 

a contradiction. 
8.9 Cal Hint: There exists No in N such that Sn ::: a for n > No. Assume 

that S = lim Sn and that S < a . Let E = a - S and select N ::: No 
so that ISn - sl < E for n > N . Show that Sn < a for n > Ni a 
picture might help. 

9.1 Cal lim("~l) = lim(l+~) = lim1+lim~ = 1+0 = 1. The second 
equality is justified by Theorem 9.3 and the third equality 
follows from Basic Example 9.7(a). 

(b) lim(3n + 7)/(6n - 5) = lim(3 + 7In)/(6 - Sin) = (lim(3 + 
7In))/lim(6 - Sin)) = (lim3 + 7 . lim(1/n))/(lim6 - 5 . 
lim(l/n)) = (3 + 7 . 0)/(6 - 5 . 0) = i. The second equality 
is justified by Theorem 9.6, the third equality follows from 
Theorems 9.3 and 9.2, and the fourth equality uses Basic 
Example 9.7(a). 

9.3 First we use Theorem 9.4 twice to obtain lima~ = lim an .lima~ = 
a . lima~ = a . lim an . lim an = a . a . a = a3 . By Theorems 9.3 
and 9.2, we have lim(a~ + 4an) = lima~ + 4· lim an = a3 + 4a. 
Similarly lim(b~ + 1) = lim bn . lim bn + 1 = b2 + 1. Since b2 + 1 =1= 0, 
Theorem 9.6 shows that limsn = (a3 + 4a)/(b2 + 1). 

9.5 Hint: Let t = limtn and show that t = (t2 + 2)l2t. Then show that 
t =.Ji. 

9.7 It has been shown that Sn < J2/(n -1) for n ::: 2, and we need to 
prove lim sn = o. 
Discussion. Let E > O. We want Sn < E, so it suffices to W t 
J2I(n - 1) < Eor2l(n-l) < E2 0r2C2 +1 < n . 
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Formal Proof. Let E > 0 and let N = 2E- 2 + 1. Then n > N implies 
Sn < J2I(n - 1) < J2/(2E 2 + 1 - 1) = E. 

9.9 (a) Let M > O. Since limsn = +00 there exists N ::: No such that 
Sn > M for n > N . Then clearly tn > M for n > N, since 
Sn :::: tn for all n. This shows that lim tn = +00. 

(e) Parts (a) and (b) take care of the infinite limits, so assume (sn) 

and (tn) converge. Since tn - Sn ::: 0 for all n > No, we have 
lim(tn - sn) ::: 0 by Exercise 8.9(a). Hence lim tn - lim sn ::: 0 
by Theorems 9.3 and 9.2. 

9.11 (a) Discussion. Let M > 0 and let m = inf{tn : n EN}. We want 
sn + tn > M for large n, but it suffices to get Sn + m > M or 
Sn > M - m for large n. So select N so that Sn > M - m for 
n > N. 

(b) Hint: Iflim tn > - 00, then inf{tn : n E N} > -00. Use part (a). 
9.13 If lal < 1, then lim an = 0 by Basic Example 9.7(b). If a = 1, then 

obviously lim an = 1. 
Suppose a > 1. Then ~ < 1, so lim(l / a)n = 0 as above. Thus 
lim l / an = O. Theorem 9.10 [with Sn = an] now shows that lim an = 
+00. [This case can also be handled by applying Exercise 9.12.] 
Suppose a :::: - 1 and assume lim an exists. For even n, an ::: 1 and 
for odd n, an :::: - 1. Clearly lim an = +00 and lim an = -00 are 
impossible. Assume that lim an = A for a real number A. There 
exists N such that Ian - AI < 1 for n > N . For even n this implies 
A > 0 and for odd n this implies A < 0, a contradiction. 

9.15 Apply Exercise 9.12 with Sn = anln!. Then L = lim ISn+l / snl = 

lim n~1 = 0, so lim Sn = O. 
9.17 Discussion. LetM > O. We wantn2 > Morn> ../M. So letN =../M. 

10.1 nondecreasing: (c); nonincreasing: (a), (f); bounded: (a), (b), 
(d), (£) . 

10.3 The equality in the hint can be verified by induction; compare 
Exercise 1.5. Now by (l) in Discussion 10.3 we have 

d1 dn 9 9 
S =k+-+ · · ·+-<k+-+ ··· +-<k+1. 

n 10 Ion - 10 IOn 

10.7 Let So = sup S. Since So - 1 is not an upper bound for S, there 
exists SI E S such that SI > So - 1. Since So ¢ S, we have So -
1 < Sl < so. Now max{so - ~ ,Sl} is not an upper bound for S, 

so there exists S2 E S such that S2 > max {so - ~ ,Sl} ' Then we 
have Sj < S2 and So - ~ < S2 < So. We proceed by induction. 
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Assume that Sl, S2, ... ,Sn have been selected in S so that SI < 
S2 < ... < Sn and So - ~ < Sn < So· Then max{so - n~I' SrI} 

is not an upper bound for S, so there exists Sn+1 E S such that 
Sn+1 > max{so-n~l,sn} . Thens1 < S2 < . . . < sn+1andso-n~J < 
Sn+1 < So and therefore the construction continues. Clearly we 
have constructed a nondecreasing sequence in S and we also have 
lim Sn = So since So - ~ < Sn < So for all n. [Similar constructions 
will appear in the next section.] 

10.9 (a) S2 = }, S3 = i, S4 = -la. 
(b) First we prove 

(c) 

10.11 (a) 
(b) 

11.1 (a) 
(b) 

11.3 (b) 

(c) 

(d) 
(e) 

o < Sn+1 < Sn :s I for all n ~ 1. (1) 

This is obvious from part (a) forn = 1,2,3. Assume (1) holds 
for n. Then Sn+1 < I, so 

n+1 2 (n+l ) 
Sn+2 = --Sn+1 = --Sn+1 Sn+1 < Sn+1 

n+2 n+2 

since G!~)Sn+1 < 1. Since Sn+1 > 0 we also have Sn+2 > O. 
Hence 0 < Sn+2 < Sn+1 :s 1 and (1) holds by induction. 
Assertion (1) shows that (sn) is a bounded monotone 
sequence, so (sn) converges by Theorem 10.2. 

Let S = limsn. Using limit theorems we find S = limsn+1 = 
lim n~l • lim s~ = S2. Consequently S = 1 or S = O. But S = 1 
is impossible since Sn :s } for n ~ 2. So S = o. 
Show (tn) is a bounded monotone sequence. 
The answer is not obvious! It turns out that lim tn is a Wallis 
product and has value ~ which is about 0.6366. Observe how 
much easier part (a) is than part (b). 
1,5, I, 5, 1,5, I, 5 
Let a(k) = nk = 2k. Then (ank ) is the sequence that takes 
the single value 5. [There are many other possible choices 
of a.] 
For (sn), the set S of subsequential limits is {- I, - }, } , I} . 

For (tn), S = {OJ. For (un), S = {OJ. For (un), S = {- I, I} . 
limsupsn = I, liminfsn = -I, limsuptn = liminftn = 

lim tn = 0, lim sup un = lim inf Un = lim Un = 0, lim sup Un = 

I, lim inf un = -1. 

(tn) and (un) converge. 
(sn), (tn), (un) and (un) are all bounded. 



Selected Hints and Answers 319 

11.5 (a) [0,1]; (b) limsupq" = I, liminfq" = O. 
11.7 Hint: Use an inductive construction to show that there is a 

subsequence (r"k) satisfying r"k > k for kEN; compare 
Example 3. 

11.9 (a) 1b show that [a, b] is closed, we need to consider a limit s 
of a convergent sequence (s,,) from [a, b] and show that s is 
also in [a, b]. But this was done in Exercise 8.9. 

(b) No! (0,1) is not closed, i.e., (0,1) does not have the property 
described in Theorem 11.8. For example, t" = ~ defines a 
sequence in (0, 1) such that t = lim t" does not belong to 
(0,1). 

12.1 Let UN = inf{s" : n > N} and WN = inf{tn : n > N}. Then (UN) and 
(WN) are nondecreasing sequences and UN :'S WN for all N > No. 

By Exercise 9.9(c), lim inf Sn = lim UN :'S lim WN = lim inf t". The 
inequality lim sup S>" :'S lim sup t" can be shown in a similar way 
or one can apply Exercise 11.8(a). 

12.3 (a) 0; (b) 1; (c) 2; (d) 3; (e) 4; (f) 0; (g) 2. 

12.5 By Exercise 12.4, lim sup( -s" - t,,) :'S lim sup( -s,,) + lim sup( -tn), 

so -lim sup( -( sn + tn)) 2: -lim sup( -s,,) + [-lim sup( -t,,)]. Now 
apply Exercise 1l.8(a). 

12.7 Let (snJ be a subsequence of (s,,) such that limj--+oo S'1
1 

= +00. 
[We used j here instead of k to avoid confusion with the given 

k > 0.] Then limhoo kS"1 = +00 by Exercise 9.lO(a). Since (kS'1J is 
a subsequence of (ks n ), we conclude that lim sup(ks,,) = +00. 

12.9 (a) Since lim inf tn > 0, there exists NI such that m = inf{t" : 
n > NI} > o. Now consider M > O. Since lim Sn = +00, 
there exists N2 such that S" > ~ for n > N 2 . Then n > 
max{NI, N2} implies sntn > (~)tn 2: (~)m = M. Hence 

lim s"t" = +00. 
12.11 Partial Proof Let M = lim inf Is,,+1 / s,,1 and f3 = lim inf Is" 11 / 1'1. 

1b show M :'S f3, it suffices to prove that MJ :'S f3 for all Ml < M. 
Since 

. . f I S,,+I I . . f {I S,,+1 I } hm In -- = 11m In --: n > N 
Sn N->oo S" 

there exists N such that 

. f { I SI1+1 IN} In -- :n> 
S/1 
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Now imitate the proof of Theorem 12.2, but note that many of the 
inequalities will be reversed. 

12.13 Proof of sup A = lim inf Sn. Consider N in N and observe that 
UN = inf{sn : n > N} is a number in A, since {n EN: sn < 
UN} ~ {l, 2, ... , N}. So UN ~ supA for all N and consequently 
lim inf Sn = lim UN ~ supA. 

Next consider a E A. Let No = max{n EN: Sn < a} < 00. 

Then Sn ~ a for n > No. Thus for N ~ No we have UN = inf{sn : 
n > N} ~ a. It follows that lim inf sn = lim UN ~ a. We have just 
shown that lim inf Sn is an upper bound for the set A. Therefore 
lim inf Sn ~ supA . 

13.1 (a) It is clear that d] and d2 satisfy D1 and D2 of Definition 13.l. 
Ifx,y,z E IR.k, then for each} = 1,2, ... , k, 

IXj - Zjl ~ IXj - Yjl + IYj - Zjl ~ d](x,y) + d]{j,z), 

so d1(x,z) ~ d](x,y) + d](y,z). So d1 satisfies the triangle 
inequality and a similar argument works for d2 ; give it. 

(b) For the completeness of d1 we use Theorem 13.4 and the 
inequalities 

d](x,y) ~ d(x,y) ~ .Jkd](x,y). 

In fact, if (xn) is Cauchy for d], then the second inequality 
shows that (xn) is Cauchy for d. Hence by Theorem 13.4, for 
some x E lR.k we have lim d(xn, x) = O. By the first inequality, 
we also have limd](xn,x) = 0, i.e., (xn) converges to x in 
the metric d] . For d2 , use the completeness of d] and the 
inequalities d](x,y) ~ d2(x,y) ~ kd1(x,y). 

13.3 (b) No, because d* (x, y) need not be finite. For example, consider 
the elements x = (1, 1, 1, .... ) andy = (0,0,0, .. . ). 

13.7 Outline of Proof Consider an open set U ~ R Let (qn) be an 
enumeration of the rationals in U . For each n, let 

an = inf{a E lR. : (a, qn] ~ U}, bn = sup{b E lR. : [qn , b) ~ U}. 

Showthat(an,bn) ~ UforeachnandthatU = U::"=l (an,bn).Show 
that 

(an, bn) n (am, bm) =1= 0 implies (an, bn) = (am, bm). 

Now either there will be only finitely many distinct [and dill 
joint] intervals or else a subsequence {(an., bn. )}r- I of {(a'l , h,,)) 
will consist of disjoint intervals for which ur 1 (an;. bilk) U . 
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13.9 (a) {~ : n E N} U {OJ; (b) IR; (c) [-v'z, v'z]. 
13.11 Suppose that E is compact, hence closed and bounded by The­

orem 13.12. Consider a sequence (xn) in E. By Theorem 13.5, a 
subsequence of (xn) converges to some x in IRk. Since E is closed, 
x must be in E; see Proposition 13.9(b). 

Suppose every sequence in E has a subsequence that converges 
to a point in E. By Theorem 13.12, it suffices to show E is closed 
and bounded. If E were unbounded, E would contain a sequence 
(xn) where limd(xn, 0) = +00 and then no subsequence would 
converge at all. Thus E is bounded. If E were nonclosed, then by 
Proposition 13.9 there would be a convergent sequence (xn) in E 

such that x = limxn f/ E. Since every subsequence would also 
converge to x f/ E, we would have a contradiction. 

13.13 Assume, for example, that supE f/ E. The set E is bounded, 
so by Exercise 10.7, there exists a sequence (sn) in E where 
limsn = supE. Now Proposition 13.9(b) shows that supE E E, 
a contradiction. 

13.15 (a) F is bounded because d(x,O) ::'S 1 for all x E F where 
0= (0,0,0, ... ). To show F is closed, consider a convergent 
sequence (xCn)) in F. We need to show x = limxCn) is in F . 
F h · 1 2 .. h l' en) or eac ) = , , ... , It IS easy to see t at Imn--?oo Xj = Xj. 

Since each xY) belongs to [-1, 1], Xj belongs to [-1, 1] by 
Exercise 8.9. It follows that x E F. 

(b) For the last assertion of the hint observe that xCn), xCm) E 

U(x) implies d(xCn),xCm)) :5 d(xCn),x) + d(x,xCm)) < 2 while 
d(xCn) , xCm)) = 2 for m =1= n. Now show that no finite subfamily 
ofU can cover {xCn) : n EN} . 

14.1 (a), (b), (c) Converge; use Ratio Thst. 
(d) Diverges; use Ratio Thst or show nth terms don't converge 

to 0 [see Corollary 14.5]. 
(e) Compare with L I/n2

. 

(f) Compare with L ~. 
14.3 All but (e) converge. 
14.5 (a) We assume the series begin with n = 1. Let Sn = L;=l aj 

and tn = L~l bj • We are given limsn = A and limtn = B. 
Hence lim(sn + tn) = A + B by Theorem 9.3. Clearly Sn + 
tn = L~l (aj + bj) is the nth partial sum for L( an + bn), so 
L(an + bn) = lim(sn + tn) = A + B. 
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(e) The conjecture is not even reasonable for series of two 
terms: albl + azbz -:f (al + az)(bl + bz). 

14.7 By Corollary 14.5, there exists N such that an < 1 for n > N. Since 
p > I, t4: = ana~-l < an for n > N. Hence L~N+I a~ converges 
by the Comparison Test, so L a~ also converges. 

14.9 Hint: Let No = max{n EN: an -:f bn} < 00. If n ::: m > No, then 

L~=m ak = L~=m bk. 
14.11 Assume an+l/an = r for n :::: 1. Then az = ral, a3 = r2az, etc. 

A simple induction argument shows that an = rn-Ial for n ::: 1. 

Thus Lan = L al rn- l is a geometric series. 
14.13 Ca) 2 and -~. 

(b) Note that 

Sn = (1 _ ~)+(~ ~ ~)+(~ _ ~)+. +(.!. __ 1 ) = 1 _ _ 1 
2 2 3 3 4 n n+I n+1 

since the intermediate fractions cancel out. Hence we have 
limsn = 1. 

(d) 2. 
15.1 (a) Converges by Alternating Series Theorem. 

(b) Diverges; note that lim(n!l2n) = +00 by Exercise 9.12(b). 
15.3 Hint: Use integral tests. Note that 

i n 1 110gn 
1 lim dx = lim - duo 

n~oo 3 x(logx)p n->oo log3 uP 

15.5 There is no smallestpo > I, so there is no single series LI/nPo 

with which all series L I/nP [p > 1] can be compared. 
15.7 (a) PIuof Let E > O. By the Cauchy criterion, there exists N 

such that n :::: m > N implies I L~=m akl < ~. In particular, 

E 
n > N implies aN+l + ... + an < -

2 

So n > N implies 

E 
(n - N)an :S aN+l + ... + an < 

2 

Ifn > 2N, then n < 2(n - N), so nan < 2(n - N)an < . 
This proves lim(nan) = O. 

16.1 Ca) In other words, show 

00 

2+7.IO- I +4.1Q- z+Lg.1Q-i= 2+7.10 1+5.10 2 

r ·3 

II 

4 
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The series is a geometric series; see Example 1 of §14. 
(b) 2.750 

16.3 Let A and B denote the sums of the series. By Exercise 14.5, we 
have B-A = I:(bn -an). Since bn -an 2: 0 for all n, and bn - an> 0 
for some n, we clearly have B - A > O. 

16.5 (a) .1250 and .1249; (c) .6; (c) .54 
16.7 No. 
16.9 (a) I,n+1 - 1 d 1 1 1 ~ 11 ' Yn - Yn+1 = n t t - n+l > 0 since n+1 < t - ~or a tIn 

[n,n+1). 
(b) For any n, Yn ::: Y1 = 1. Also 

(c) Apply Theorem 10.2. 
17.1 (a) dom(f +g) = dom(fg) = (-00,4], dom(f og) = [- 2,2], 

dom(g 0 n = (-00,4]. 
(b) [og(O) = 2,go[(0) = 4,fog(1) = -v'3,go[(l) = 3,fog(2) = 0, 

g 0[(2) = 2. 
(c) No! 
(d) [0 g(3) is not, but g 0 [(3) is. 

17.3 (a) We are given that [(x) = cosx and g(x) = X4 [p = 4] 
are continuous. So g 0 [ is continuous by Theorem 17.5, 
i.e., the function g 0 [(x) = cos4 X is continuous. Obviously 
the function identically 1 is continuous [if you do not find 
this obvious, check it]. Hence 1 + cos4 X is continuous by 
Theorem 17.4(i). Finally loge(l + cos4 x) is continuous by 
Theorem 17.5 since this is h 0 k(x) where k(x) = 1 + cos4 x 
and hex) = loge x. 

(b) Since we are given sinx andx2 are continuous, Theorem 17.5 
shows that sin2 x is continuous. Similarly, cos6 x is continu­
ous. Hence sin2 x + cos6 X is continuous by Theorem 17.4(i). 
Since sin2 x + cos6 X > 0 for all x and since X' is given to 
be continuous for x > 0, we use Theorem 17.5 again to 
conclude that [sin2 x + cos6 xl" is continuous. 

(e) We are given that sin x and cosx are continuous at each x E lR. 

So Theorem 17.4(iii) shows that ~~~~ = tanx is continuous 
wherever cosx f. 0, i .e. , for x f. odd multiple of ~. 
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17.5 (a) Remarks. An E-8 proof can be given based on the identity 

xm _ ym = (x _ y)(xm- 1 + xm-2y + ... + xym-2 + ym-l). 

Or the result can be proved by induction on m, as follows. 
It is easy to prove that g(x) = x is continuous on JR. If 
[(x) = xm is continuous on JR, then so is ([g)(x) = xm+! by 
Theorem 17.4(ii). 

(b) Just use (a) and Theorems 17.4(i) and 17.3. 
17.9 (a) Discussion. Let E > O. We want Ix2 

- 41 < E for Ix - 21 small, 
i.e., we want Ix-21'lx+21 < E for Ix-21 small. Iflx-21 < 1, 

then Ix + 21 < 5, so it suffices to get Ix - 21 . 5 < E. Set 
8 = min{l, ~}. 

(c) For E > 0, let 8 = E and observe that 

Ix - 01 < 8 implies Ix sin (~) - 01 < E. 

17.11 If [ is continuous at Xo and if (xn) is a monotonic sequence 
in domCf) converging to xo, then we have lim[(xn) = [(?Co) by 
Definition 17.1. 

Now assume that 

if (xn) is monotonic in dom([) and limxn = xo, 
then lim[(xn) = [(xo), 

(1) 

but that [ is discontinuous at Xo. Then by Definition 17.1, there 
exists a sequence (xn) in domCf) such that lim Xn = Xo but ([(xn) 
does not converge to [(xo). Negating Definition 17.1, we see that 
there exists E > 0 such that 

for each N there is n > N satisfYing I[(xn) - [(xo) I :::: E. (2) 

It is easy to use (2) to obtain a subsequence (xnk ) of (xn) such that 

(3) 

Now Theorem 11.3 shows that (xnk ) has a monotonic subsequence, 
(xnk)' By (1) we have limj-+oo[(xnk ) = [(xo), but by (3) we have , , 
I[(xnk ) - [(xo) I :::: E fqr allj, a contradiction. , 

17.13 (a) Hint: Letx E lR. Select a sequence (xn) such that lim Xn = x, x" 
is rational for even n, andxn is irrational for odd n. Thcnf(x,,) 
is 1 for even nand 0 for odd n, so ([(xn)) cannot converge . 

17.15 We abbreviate 

(1) f is continuous at xo, 



Selected Hints and Answers 325 

(ii) limf(xn) = f(xo) for every sequence (xn) in domCf) \ {xo} 
that converges to Xo. 

From Definition 17.1 it is clear that (i) implies (ii). Assume (ii) 
holds but (i) fails. As in the solution to Exercise 17.11, there is a 
sequence (xn) in domCf) and an E > 0 such that lim Xn = Xo and 
If(xn) - f(Xo) I :::: E for all n. Obviously Xn i= Xo for all n, i.e., (xn) is 
in domCf) \ {xo}. The existence of this sequence contradicts (ii). 

18.3 This exercise was deliberately poorly stated, as iff must have a 
maximum and minimum on [0,5); see the comments following 
Theorem lB. 1. The minimum off on [0,5) is 1 = f(O) = f(3), but 
f has no maximum on [0,5) though sup{f(x) : X E [0, 5)} = 21. 

18.5 (a) Let h = f - g. Then h is continuous [why?] and h(b) ~ 0 ~ 
h(a). Now apply Theorem IB.2. 

(b) Use the function g defined by g(x) = x for x E [0,1] . 
18.7 Hint: Letf(x) = x2x; f is continuous, f(O) = 0 andf(l) = 2. 

18.9 Let f(x) = ao + alx + ... + anxn where an i= 0 and n is odd. We 
may suppose that an = 1; otherwise we would work with (1/an)f. 
Since f is continuous, Theorem IB.2 shows that it suffices to show 
thatf(x) < o for some x andf(x) > Oforsomeotherx. This is true 
because limx->cxd(x) = +00 and limx->-oof(x) = -00 [remember 
an = 1], but we can avoid these limit notions as follows. Observe 
that 

f 
n [ ao + alx + ... + an_IXn- 1 ] 

(x) = x 1 + . xn (1) 

Let c = 1 + laol + lall + ... + lan-II. If Ixl > c, then 

laO+alx+···+an_IXn-11 ~ (laol+lall+···+lan_ll)lxln-l < Ixl n, 

so the number in brackets in (1) is positive. Now if x > c, then 
xn > O,sof(x) > O.Andifx < -c,thenxn < O[why?],sof(x) < O. 

19.1 Hints: Th decide (a) and (b), use Theorem 19.2. Parts (c), (e), Cf) 
and (g) can be settled using Theorem 19.5. Theorem 19.4 can also 
be used to decide (e) and (f); compare Example 6. One needs to 
resort to the definition to handle (d). 

19.3 (a) Discussion. Let E > O. We want 

I_X --y I<E or 
x+l y+l I 

x-y I 
(x+l)(y+l) < E 

for Ix - yl small, x, y E [0, 2]. Since x + 1 :::: 1 and y + 1 :::: 1 
for x, y E [0,2], it suffices to get Ix - yl < E. SO we let 8 = E. 
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Formal Proof Let E > 0 and let 0 = E. Then x, y E [0,2] and 
Ix - yl < 0 = E imply 

I 
x-y I 

If(x) - fCY)1 = (x + I)CY + 1) ~ Ix - yl < E. 

(b) Discussion. Let E > O. We want Ig(x) - g(y) I = I (2x~l)(~;-1) I < 
E for Ix - yl small, x :::: I, y :::: l. For x, y :::: I, 2x - 1 :::: 1 and 
2y - 1 :::: I, so it suffices to get 15y - 5xl < E. SO let 0 = ~. 

You should write out the formal proof. 
19.5 (a) tan x is uniformly continuous on [O,~] by Theorem 19.2. 

(b) tanxis not uniformly continuous on[O, ~)byExercise 19.4(a), 
since the function is not bounded on that set. 

(c) Let h be as in Example 9. Then (sinx)h(x) is a continuous 
extension of (~) sin2 x on [0, n]. Apply Theorem 19.5. 

(e) X~3 is not uniformly continuous on (3, 4) by Exercise 19.4(a), 
so it is not uniformly continuous on (3,00) either. 

(f) Remark. It is easy to give an E-O proof that X~3 is uni­
formly continuous on (4,00). It is even easier to apply 
Theorem 19.6. 

19.7 (a) We are given thatf is uniformly continuous on [k, 00), andf 
is uniformly continuous on [0, k + 1] by Theorem 19.2. Let 
E > o. There exist 01 and 02 so that 

Ix - yl < 01, x,y E [k,oo) imply If(x) - f(y) I < E,(I) 

Ix - yl < 02, x, Y E [0, k + 1] imply If (x) - fCY)1 < E.(2) 

Let 0 = min{I, 01, 02} and show that 

Ix - yl < 0, x,y E [0,00) imply If(x) - f(y) I < E. 

19.9 (c) This is tricky, but it turns out thatf is uniformly continuous 
on lR. A simple modification of Exercise 19.7(a) shows that 
it suffices to show that f is uniformly continuous on [I, 00) 
and (-00, -1]. This can be done using Theorem 19.6. Note 
that we cannot apply Theorem 19.6 on lR because f is not 
differentiable at x = 0i also f' is not bounded near x = O. 

19.11 As in the solution to Exercise 19.9(c), it suffices to show 
that h is uniformly continuous on [1,00) and (-00, - 1]. Apply 
Theorem 19.6. 

20.1 limx->cxJ(x) = limx-+ o+ fex) = Ii limx->o fex) = limx-+-oofex) = 
Ii limx->ofex) docs NOT EXIST. 
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20.3 limx~oo[(x) = limx~_oo[(x) = 0; limx~o+ [(x) = limx~o- [(x) = 
limx~o[(x) = 1. 

20.5 Let S = (0,00). Then [(x) = 1 for all XES. So for any sequence 
(xn) in S we have lim[(xn) = 1. It follows that limx~os [(x) = 

limx~oos [(x) = 1, i.e., limx~o+ [(x) = limx~oo[(x) = 1. Like­
wise if S = (-00,0), then limx~os [(x) = limx~-oos [(x) = -1, 
so limHo- [(x) = limH- OO[(x) = -1. Theorem 20.10 shows that 
limx~o[(x) does not exist. 

20.7 If (xn) is a sequence in (0, 00) and limxn = +00, then lim(lIxn) = 
O. Since (sinxn) is a bounded sequence, we conclude that 
lim(sinxn)!xn = 0 by Exercise 8.4. Hence limHoo[(x) = O. Simi­
larlylimx~_oo[(x) = O. Theremainingassertionislimx~o Si~X = 1 
which is discussed in Example 9 of§19. 

20.9 limHOO [(x) = -00; limHo+ [(x) = +00; limHo- [(x) = -00; 
limH_oo [(x) = +00; limHO[(x) does Nar EXIST. 

20.11 (a) 2a; (c) 3a2• 

20.13 First note that iflimx~as [(x) exists and is finite and ifk E JR, then 
limHas(kf)(x) = k . limx~as [(x) . This is Theorem 20.4(ii) where 
[1 is the constant k and!2 = [. 

(a) The remark above and Theorem 20.4 show that 

lim[3[(x) + g(xi] = 3 lim [(x) + [limg(x)]2 = 3 . 3 + 22 = 13. 
x~a x~a x~a 

(c) As in (a), limHa[3[(x) + 8g(x)] = 25. There exists an open 
interval! containing a such that[(x) > 0 andg(x) > 0 for x E 

J\ {a} . Theorem 20.5 applies with S =!\ {a}, 3[ +8g in place 
of [ and with g(x) = -vIx to give limx~a J3[(x) + 8g(x) = 
../2s = 5. 

20.15 Let (xn) be a sequence in (-00,2) such that limxn 
contend that 

lim(xn - 2r3 = o. 

-00. We 

(1) 

We apply Exercises 9.10 and 9.11 and Theorems 9.9 and 9.10 to 
conclude lime -Xn) = +00, lim(2 - xn) = +00, lim(2 - Xn)3 = +00, 
lim(2 - xnr3 = 0, and hence (1) holds. 
Now consider a sequence (xn) in (2,00) such that limxn = 2. We 
show 

lim(xn - 2)- 3 = +00. (2) 
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Since lim(xn - 2) = 0 and each Xn - 2 > 0, Theorem 9.10 shows 
that we have lim(xn - 2r 1 = +00 and (2) follows by an application 
of Theorem 9.9. 

20.17 Suppose first that L is finite . We use (1) in Corollary 20.8. Let 
E > O. There exist ~l > 0 and ~3 > 0 such that 

a < x < a + ~l implies L - E < fi (x) < L + E 

and 

a < x < a + ~3 implies L - E < hex) < L + E. 

If ~ = min{~l, ~3}, then 

a < x < a + ~ implies L - E < hex) < L + E. 

SO by Corollary 20.8 we have limx~a+ f2(X) = L. 

Suppose L = +00. Let M > O. In view of Discussion 20.9, there 
exists ~ > 0 such that 

a < x < a + ~ implies fleX) > M. 

Then clearly 

a < x < a+~ implies f2(X) > M, 

and this shows that limx~a+ hex) = +00. The case L = -00 is 
similar. 

20.19 Suppose L2 = limx~as f(x) exists with S = (a, b2). Consider a se­
quence (xn) in (a, bl)withlimita. Then (xn) is a sequence in (a, b2) 

with limit a, so limf(xn ) = L2. This shows limx~as f(x) = L2 with 
S = (a, bl ). 

Suppose LJ = limx~as f(x) exists with S = (a, b l ), and consider a 
sequence (xn) in (a, b2) with limit a. There exists N so that n ::: N 
implies Xn < bl . Then (Xn):'N is a sequence in (a, bJ) with limit 
a. Hence limf(Xn) = Ll whether we begin the sequence at n = N 
or n = 1. This shows limHas f(x) = Ll with S = (a, b2). 

21.1 Let E > O. For j = 1,2, ... , k, there exist ~j > 0 such that 

. E 
S, t E IR and Is - tl < ~j Imply lfi(s) - fi(t)1 < ,.jk ' 

Let ~ = min{~l' ~2," " ~kl. Then by (1) in the proof of Propo­
sition 21.2, 

s, t E IR and Is - tl < ~ imply d*(y(s), yet)) < E. 
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21.3 Hint: Show that Id(s, so) - dU, so)1 ::::: des, t). Hence if E > 0, then 

s, t E Sand des, t) < E imply I[(s) - [U)I < E. 

21.5 (b) By part (a), there is an unbounded continuous real-valued 
function [ on E. Show that h = SIJI is continuous, bounded 
and does not assume its supremum 1 on E. 

21. 7 (b) Y is continuous at to if for each to E [a, b] and E > 0 there 
exists <5 > 0 such that 

t E [a, b] and It - tol < <5 imply d*(y(t), y(to)) < E. 

Note: Ify is continuous at each to E [a, b], then y is uniformly 
continuous on [a, b] by Theorem 21.4. 

21.9 (a) Use[(xI,x2)=xI,say. 
(b) This is definitely not obvious, but there do exist continuous 

mappings of[O, 1] onto the unit square. Such functions must 
be "wild" and are called Peano curves [after the same Peano 
with the axioms]i see [8], §5.5, or [34], §6.3. 

21.11 (a) If a continuous function mapped [0,1] onto (0, I), then the 
image (0, 1) would be compact by Theorem 21.4(i). But (0, 1) 
is not closed and hence not compact. 

22.1 (a) [0,1] is connected but [0, 1] U [2, 3] is not. See Theorem 22.2. 
Alternatively, apply the Intermediate Value Theorem 18.2. 

22.3 Assume that E is connected but that E- is not. Then there exist 
disjoint open sets UI and U2 such that E- ~ UI U U2, E- n U l i= 0 

and E- n U2 i= 0. Since E ~ UI U U2, it suffices to show En UI i= 0 
and E n U2 i= 0. In fact, if En UI = 0, then E- n (S \ UI ) would 
be a closed set containing E that is smaller than E-, contrary to 
the definition of E-. Likewise E n U2 i= 0. 

22.5 (a) Assume disjoint open sets UI and U2 disconnect E U F. Con­
sider So E E n Fi So belongs to one of the open sets, say 
So E U l . Since E ~ U l U U2, E n U l i= 0 and E is connected, 
we must have E n U2 = 0. Similarly F n U2 = 0. But then 
(E U F) n U2 = 0, a contradiction. 

(b) No such example exists in R [why?], but many exist in the 
plane. For example, consider 

E = {(Xl, X2) : xi + X~ = 1 and Xl ~ OJ, 
F - {(XI,X2): Xf +x~ = 1 and Xl ::::: OJ . 
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22.9 Discussion. Given E > 0, we need 8 > 0 so that 

s, t E 1R and Is - tl < 8 imply d(F(s), F(t)) < E. (1) 

Now 

d(F(s), F(t)) = sup{ls[(x) + (1 - s)g(x) - tf(x) - (1 - t)g(x) I : XES} 

= sup{lsfCx) - tf(x) - sg(x) + tg(x)1 : XES} 

~ Is - tl . sup{l[(x)1 + Ig(x) I : XES}. 

Since [ and g are fixed, the last supremum is a constant M. We 
may assume M > 0, in which case 8 = ~ will make (1) hold. 

22.11 (a) Let ern) be a convergent sequence in c. By Proposi­
tion 13.9(b), it suffices to show [ = lim[n is in c. For each 
XES, 

I[(x) I ~ I[(x) - [n(x) I + I[n(x) I ~ dCf,[n) + 1. 

Since limdCf,[n) = 0, we have I[(x) I ~ 1. 

(b) It suffices to show that C(S) is path-connected. So use 
Exercise 22.9. 

23.1 Intervals of convergence: (a)( -1, 1); (c)[-~, ~]; (e) 1R; (g) [-~,~). 
23.3 (_(2)1 /3, (2y /3). 

23.5 (a) Since lanl ~ 1 for infinitely many n, we have sup{lani l/n : 
n > N} ~ 1 for all N . Thus fJ = lim sup lani l/n ~ 1; hence 

R=~~1. 
(b) SelectcwithO < c < limsuplanl. Thensup{lanl : n > N} > 

c for all N. A subsequence (ank) of (an) has the property that 
lank I > c for all k. Since lank Il /nk > (c)l /nk and limk ..... oo cl Ink = 
1 [by 9.7(d)], Exercise 12.1 shows that lim sup lankll /nk ~ l. 
It follows that fJ = limsuplanil/n ~ 1 [use Theorem 11 .7]. 
Hence R = ~ ~ l. 

23.9 (a) Obviously lim[n(O) = O. Consider 0 < x < 1 and let 
Sn = nxn. Then Sn+l/Sn = [n~l]x, so lim ISn+l /Snl = x < 1. 
Exercise 9.12(a) shows that 0 = lim Sn = lim nxn = lim[n(x). 

24.1 Discussion. Let E > O. We want I[n( x) - 01 < E for all x and for largo 
n . It suffices to get In < E for large n. So consider n > 9/ €2 = N . 

24.3 (a) [(x) = 1 for 0 ~ x < 1; [(1) = t; [(x) = 0 for x > I. Seo 
Exercise 9.13. 

(b) ern) does not conve rge uni formly on ro, 11 by Theore m 24.:i. 
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24.5 (a) f(x) = 0 for x :s 1 and f(x) = I for x > l. Note that 
fn(x) = 1/[1 + nlxn] and that limn-+oo nlxn = 0 for x > 1 
by Exercise 9.12 or 9.14. 

(b) fn ~ 0 uniformly on [0,1]. Hint: Show that Ifn(x) I :s ~ for 
XE[O,I]. 

(e) Hint: Use Theorem 24.3. 
24.7 (a) Yes. f(x) = x for x < 1 andf(I) = O. 

(b) No, by Theorem 24.3 again. 
24.9 (a) f(x) = 0 for x E [0,1]. For x < 1, limn-+oonxn = 0 as in 

Exercise 23.9(a). 

(b) Use calculus to show that fn takes its maximum at n~l . Thus 
suP{lfn(x)I : x E [0, In = fn(n~l) = (n:1)"+l. As in Example 8, 
itturns out thatlimfn(n:1) = lie. So Remark 24.4 shows that 
(fn) does not converge uniformly to o. 

(e) f; fn(x) ax = (n+1xn+2) ~ 0 = fo1 f(x) ax. 
24.15 (a) f(O) = 0 andf(x) = 1 for x > o. (b) No. (e) Yes. 

25.3 (a) Sincefn(x) = (1 + (cos x)ln)/(2 + (sin2 x)ln), we havefn ~ t 
pointwise. Th obtain uniform convergence, show that 

If, 
1112COSX-Sin2XI 3 (x) - - = < -- < E 

n 2 2(2n + sin2 x) - 2(2n) 

for all real numbers x and all n > i. 
(b) fJ tax = ~, by Theorem 25.2. 

25.5 Since fn ~ f uniformly on S, there exists N E N such that n > N 

implies Ifn(x) - f(x)1 < 1 for all XES. In particular, IfN+1(X) -
f(x) I < 1 for XES. If M bounds IfN+d on S [Le., if IfN+1(X)1 :s M 
for XES], then M + 1 bounds If I on S [why?]. 

25.7 Let gn(x) = n - 2 cos nx. Then we have Ign(x) I :s n-2 for x E Rand 
L n-2 < 00. So Lgn converges uniformly on R by the Weierstrass 
M-Thst 25.7. The limit function is continuous by Theorem 25.5. 

25.9 (a) The series converges pointwise to l~X on (-1,1) by (2) of 
Example 1 in §14. The series converges uniformly on [-a, a] 
by the Weierstrass M-Thst since Ixnl :s an for x E [-a, a] and 
since Lan < 00. 

(b) One can show directly that the sequence of partial sums 
Sn(X) = L~=oxk = (1 - xn+1)/(1 - x) does not converge 
uniformly on (- 1, 1). It is easier to observe that the partial 
sums sn a re each bounded on (- 1, 1), and hence if (sn) con-
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verges uniformly, then the limit function must be bound d 
by Exercise 25.5. But l~X is not bounded on (-1, 1). 

25.11 (b) Hint: Apply the Weierstrass M-Test to L hn, where hn(x) 
(~)ngn(X). 

25.13 The series Lgk and L hk are uniformly Cauchy on S and it sur 
fices to show that L(gk + hk) is also; see Theorem 25.6. Let E > O. 
There exist Nl and N2 such that 

n ::: m > Nl implies l~gk(X)1 < i for XES, (1) 

n ::: m > N2 implies l~hk(X)1 < i for XES. (2) 

Then 

n ::: m > max{N1, N2} implies I~(gk + hk)(X) I < E for x € 8, 

25.15 (a) Note that fn(x) ::: 0 for all x and n. Assume Cfn) does not 
converge to 0 uniformly on [a, b]. Then there exists E > 0 
such that 

for each N there exists n > N and x E [a, b] 
such thatfn(x) ::: E. • 

(1) 

We claim 

for each n E N there is Xn E [a, b] where fn(Xn) ::: E. (2) 

If not, there is no E N such that fno(x) < E for all x E [a, b). 
Since Cfn(x)) is nonincreasing for each x, we conclude that 
fn(x) < E for all x E [a, b] and n ::: no. This clearly contradicts 
(1). We have now established the hint. 
Now by the Bolzano-Weierstrass theorem, the sequence (xn) 

given by (2) has a convergent subsequence (xnk): Xnk -+ Xo. 

Since limfn(Xo) = 0, there exists m such that fm(Xo) < 
E. Since xnk -+ Xo and fm is continuous at Xo, we have 
limk->-oofm(xnk) = fm(xo) < E. SO there exists K such that 

k > K implies fm(xnk) < E. 

Ifk > max{K, m}, then n k ::: k > m, so 
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But [n(xn) ::: E for all n, so we have a contradiction. 
(b) Hint: Show that part (a) applies to the sequence gn where 

gn =[n - [. 
26.3 (a) Let [(x) = L:1 nxn = x/(1 - xi for Ixl < 1. Then by 

Theorem 26.5 

t n2xn- 1 = ['(x) = ~ [ x ] = (1 + x)(1 - xr3. 
n=l ax (1 - X) 2 ' 

therefore L~=l n 2xn = (x + x2)(1 - xr3. 
(b) 6 and~. 

26.5 Hint: Apply Theorem 26.5. 
26.7 No! The power series would be differentiable at each x E JR, but 

[(x) = Ixl is not differentiable at x = O. 
27.1 Let </J be as in the hint. By Theorem 27.4, there is a sequence (qn) 

of polynomials such that qn 4 [0 </J uniformly on [0, 1]. Note that 
</J is one-to-one and </J-1 (y) = 1::::~ . Let pn = qn 0 </J- 1. Then each Pn 
is a polynomial andpn 4 [uniformly on [a, b]. 

27.3 (a) Assume that a polynomial P satisfies Ip(x) - sinxl < 1 for 
all x E JR. Clearly p cannot be a constant function. But if P 
is nonconstant, then p is unbounded on JR and the same is 
true for p(x) - sin x, a contradiction. 

(b) Assume that Ie' - L~:6 akxkl < 1 for all x E JR. For x > 0 we 
have 

and for large x the right side will exceed 1. 
27.5 (a) Bn[(x) = x for all n . Use (2) in Lemma 27.2. 

(b) Bn[(x) = x2 + ~X(1 - x) . Use (4) in Lemma 27.2. 
28.1 (a) to}; (b) to}; (e) {rur : n E Z}; (d) {O,I}; (e) {-I, I}; (f) {2}. 
28.3 (b) Since x - a = (X1l3 - a 1/ 3)(x2/ 3 + a 1/ 3x1/ 3 + a 2l3), 

for a =1= O. 
(e) [is not differentiable at x = 0 since the limit limx .... ox1/ 3/x 

does not exist as a real number. The limit does exist and 
equals +00, which reflects the geometric fact that the graph 
of [ has a vertical tangent at (0, 0). 
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28.5 (e) Let 

hex) = g(f(x)) - g(f(O)). 
f(x) - f(O) 

According to Definition 20.3(a), for limx-->o hex) to be mean­
ingful, h needs to be defined on J \ {O} for some open interval 
J containing O. But the calculation in (b) shows that h is 
undefined at (nnr1 for n = ±1, ±2, .... 

28. 7 (d) f' is continuous on IR, but f' is not differentiable at x = O. 
28.9 (b) f(x) = X4 + 13x andg(y) = y7. Then 

h'(x) = g'(f(x)). f'(x) = 7(X4 + 13x)6 . (4x3 + 13). 

28.11 With the stated hypotheses, hog 0 f is differentiable at a and 
(h og 0 D'(a) = h'(g 0 f(a))· g'(f(a))· f'(a). Proof By 28.4, g 0 f is 
differentiable at a and (g 0 D'(a) = g'(f(a))· f'(a). Again by 28.4, 

(h 0 (g 0 D),(a) = h'((g 0 D(a)) . (g 0 D'(a). 

28.13 There exist positive numbers (h and E so thatf is defined on the 
interval (a - 01, a + 01) and g is defined on (f(a) - E,f(a) + E). By 
Theorem 17.2, there exists 02 > 0 so that 

X E domcn and Ix - al < 02 imply If(x) - f(a) I < E-

If Ix - al < min{ol, 02}, then x E domeD and If(x) - f(a) I < E, so 
f(x) E dom(g), i.e., x E dom(g 0 D. 

29.1 (a) x = ~ 
(e) If f(x) = Ixl, then f'(x) = ±1 except at O. So no x satisfies 

the equation f'(x) = f(;~-c0~12 = ~. Missing hypothesis: f is 
not differentiable on (-1, 2), since f is not differentiable at 
X= O. 

(e) x =.j3 
29.3 (a) Apply Mean Value Theorem to [0, 2]. 

(b) By the Mean Value Theorem, f'(y) = 0 for some y E (1,2). 
In view of this and part (a), Theorem 29.8 shows thatf' takes 
all values between 0 and i. 

29.5 For any a E IRwehave If(xt~(a)1 :5 Ix-al. Itfollowseasilythat['(a) 
exists and equals 0 for all a E lR. So f is constant by Corollary 29 .4. 

29.7 (a) Applying 29.4 to f', we findf'(x) = a for some constant a. If' 
g(x) = f(x) - ax, then g'(x) = 0 for x E I, so by 29.4 th rc I 
a constant b such thatg(x) = b for x E f. 
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29.9 Hint: Let[(x) = eX -ex for x E R Usef' to show that [ is increasing 
on [I, 00) and decreasing on (-00,1]. Hence [takes its minimum 
at x = 1. 

29.13 Let hex) = g(x) - [(x) and show hex) 2: 0 for x 2: o. 
29.15 As in Example 2, let g(x) = xl /no Since dom(g) = [0,00) if n is 

even and dom(g) = lR ifn is odd, we have dom(g) = dom(h) U {OJ. 
Also h = gm. Use the Chain Rule to calculate h'(x). 

29.17 Suppose that [(a) = g(a) . Then 

hex) - h(a) hex) - h(a) 
lim = g'(a) and lim = f'(a). (1) 

x-->a+ X - a x-->a- X - a 

If also f'(a) = g'(a), then Theorem 20.10 shows that h'(a) exists 
and, in fact, h'(a) = f'(a) = g'(a). 

Now suppose h is differentiable at a. Then h is continuous at a 

and so [(a) = limx .... a- [(x) = limx-.a- hex) = h(a) = g(a). Hence 
(1) holds. But the limits in (1) both equal h'(a), so f'(a) = g'(a). 

30.1 Ca) 2; (b) i; Ce) 0; Cd) 1. Sometimes L'Hospital's rule can be 
avoided. For example, for (d) note that 

.Jf+x - v'1=X 2 

x 

30.3 Ca) 0; (b) 1; Ce) +00 Cd) -~. 
30.5 Ca) e2

; (b) e2
; Ce) e. 

= --===--== .Jf+x + v'1=X. 

31.1 Differentiate the power series for sinx term-by-term and cite 
Theorem 26.5. 

31.3 The derivatives do not have a common bound on any interval 
containing 1. 

31.5 Ca) g(x) = [(x2
) for x E lR where [is as in Example 3. Use induc­

tion to prove that there exist polynomials Pkn, 1 ~ k ~ n, so 
that 

n 

gCn)(x) = L[Ck)(X2)Pkn(X) for x E JR, n 2: 1. 
k=l 

32.1 Use the partitionP in Example 1 to show UCf.P) = b4n2(n + li/(4n4) 
and LCf.P) = b4(n -lin2/(4n4

). Conclude that UCf) = b4/4 and 
LCf) = b4/4 . 

32.3 Ca) The upper sums are the same as in Example I, so U(g) = 
lJ3 /3. Show that L(g) = o. 

(b) No. 
32.5 S is an the numbers L(J, P) and T is all UCf. P) . 
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32.7 A simple induction shows that we may assume g(x) = f(x) except 
at one point U E [a, b]. Let B be a bound for If I and Igl, B > o. If 
£ > 0 there exists a partition P such that U(f, P) - L(f, P) < f. We 

may assume that tk - tk-l < I;B for all k. Since u belongs to at 
most two intervals [tk-l, tk], we see that 

£ 
IU(g,P) - U(f,P)1 ~ 2· [B - (-B)]· max{tk - tk-d < 3. 

Likewise IL(g, P) - L(f, P)I < f, so U(g, P) - L(g, P) < £. Hence g 
is integrable. The integrals agree since since 

l
b 

E 2£ lb 2£ 
a g ~ U(g, P) < U(f, P) + 3 < L(f, P) + 3 ~ a f + 3 

and similarly f: g > f: f - ¥. 
33.1 Iff is decreasing on [a, b], then -f is increasing on [a, b], so -f is 

integrable as proved in Theorem 33.1. Now apply Theorem 33.3 
with c = -l. 

33.3 (b) 138 
33.7 (a) For any set 8 ~ [a, b] and Xo, Yo E 8, we have 

f(Xoi - f(Yoi ~ If(Xo) + f(yo) I . If(Xo) - f(yo) I 

~ 2Blf(xo) - f(yo) I ~ 2B[M(f, S) - m(f, S)]. 

It follows that M(r, S) - m(f2, S) ~ 2B[M(f, 8) - m(f, 8)]. Use 
this to show that U(f2, P) - L(f2, P) ~ 2B[U(f,P) - L(f, P)]. 

(b) Use Theorem 32.5 and part (a). 
33.9 Select mEN so that If ex) - fm(x) I < 2(b~a) for all x E [a, b]. Then 

for any partition P 

£ £ 
-2 ~L(f-fm,P) ~ U(f-fm,P) ~ 2· 

Select a partition Po so that U(fm,PO) - L(fm, Po) < ~ . Since 
f = (f - fm) + fm, we can use inequalities from the proof of 
Theorem 33.3 to conclude that U(f, Po) - L(f, Po) < £. Now The­
orem 32.5 shows that f is integrable. Th complete the exercise, 
proceed as in the proof of Theorem 25.2. 

33.11 (a) and (b): Show that f is neither continuous nor monotonic 
on any interval containing o. 

(e) Let E > O. Since f is piecewise continuous on [ij, I], there 
is a partition PI of [i,l] such that U(f,PI) - L(f,P1) < ~. 

Likewise there is a partitionP2 of[ - I, - ~] such that U(f, P2)-
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L(f, P2) < ~. Let P = PI U P2, a partition of [-1, 1]. Since 

we conclude that U(f, P) - L(f, P) < E. Now Theorem 32.5 
shows that [ is integrable. 

33.13 Apply Theorem 33.9 to [ - g. 
34.3 (a) F(x) = 0 for .~ < OJ F(x) = x2/2 for 0:::: x :::: Ij F(x) = 4x - ~ 

for x > 1. 

(c) F is differentiable except possibly at x = 1 by Theorem 34.3. 
'Ib show F is not differentiable at x = I, use Exercise 29.17. 

34.5 F'(X) = [(x + 1) - [(x - 1). 

34.9 Use a = 0, b = ~ and g(x) = sinx. 
34.11 If [ is not identically 0 on [a, b], then [("0) > 0 for some Xo in 

[a, b] which can be taken to be in (a, b). Choose 0 > 0 so that 
a < Xo - 0 < "0 + 0 < b and [(x) > [(xo)12 for Ix - xol < o. 

Let g(x) = f("o)12 for Ix - xol < 0 and g(x) = 0 otherwise. Then 
[(x) :::: g(x) for x E [a, b], so 

1b [(x) ax:::: 1b g(x) ax = o[(xo) > O. 

35.3 (a) 21j (b) 14j (c) o. 
35.5 (a) Every upper sum is F(b) - F(a) and every lower sum is o. 

Hence UFCf) = F(b) - F(a) -=/: 0 = LFCf). 
35.7 (a) Imitate solution to Exercise 33.7. 

(b) and (c): Use hints in Exercise 33.8. 
35.9 (a) Let m and M be the [assumed] minimum and maximum 

of[on[a,b].Thenf:mdF:::: f:[dF:::: I:MdForm:::: 

[F(b) - F(a)r l f: [dF :::: M. Apply Theorem 18.2. 
(b) Consider [ and g as in Exercise 33.14, and let F be as in 

Exercise 35.8. By part (a), for some x E [a, b] we have 

1b [(t)g(t)dt = 1b [dF = [(x)[F(b)-F(a)] = [(x) 1b g(t)dt. 

35.11 Let E > 0 and select a partition 

P = {a = to < tl < ... < tn = b} 

Q = Ie = Uo < Ul < . .. < Un = d} . 
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Show that UG(g, Q) = UF(f, P) and LG(g, Q) = LF(f, P). Then 
UG(g, Q) - LG(g, Q) < E , so g is G-integrable. The equality of 
the integrals follows easily. 

36.1 Hint: If B bounds If I , then 

36.3 (b) Use part (a) and Examples 1 and 2. 
36.7 (a) It suffices to show It" e-xl ax < 00. But e-x2 S e-x for x ~ 1 

and roo e-x ax - 1 Jl - e· 

(b) The double integral equals [f.~oo e-x2 axf, and it also equals 

[00 [2IT [00 
Jo Jo e-

r
\ dB dr = 211" Jo e-r

\ dr = 11". 

36.9 (a) Hint: Use Theorem 35.13. 
(b) 1; (e) +00; (d) ./2111"; (e) O. 

36.13 Claim: If f is continuous on lR and 1:0 If I dF < 00, then f is F­
integrable. Proof Since 0 S f + If I, the integral I~ooff + If I] dF 
exists, and since f + If I s 21fl, this integral is finite, i.e., f + If I is 
F-integrable. Since -If I is F-integrable, Exercise 36.10 shows that 
the sum off + If I and -If I is F-integrable. 

36.15 (a) For example, let fn(x) = ~ for x E [0, n] and fn(x) = 0 
elsewhere. 

(b) Outline of Proof First, f is F-integrable on each [a, b] by 
Exercise 35.6. An elaboration of Exercise 25.5 shows that 
there is a common bound B for If I and all Ifni. Consider any 
b > 0 such that 1 - F(b) < 2~. There exists N so that 

I/~fdF- l~fndFl < ~ forn > N. Then 

n > N implies 11b f dF -100 
fndFl < E. (1) 

In particular, m, n > N implies 1/000 fn dF - 1000 fm dFl < 2E, 
so cJooo 

fn dF)nEN is a Cauchy sequence with a finite limit L. 
From (1) it follows that 

1 - F(b) < 2EB implies 11b f dF - LI < t:, 
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so limb-HlO I~ f dF = L. Hence 1000 f dF exists, is finite, 
and equals limn-+oo 1000 fn dF. A similar argument handles 

I~oof dF. 

l YZ 

t-
I dt - l Y 

t- I dt = l YZ 

t- I dt. 

37.7 (a) B(x) = E(xL(b)) , so by the Chain Rule, we have B'(x) 
E(xL(b))· L(b) = L(b)Ci' = (loge b)Ci'. 

37.9 (a) 10geY = L(y) = Ii c l dt ~ Y - 1 < y . 
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e, 35, 303 
N [natural numbers], 1 
Ql [rational numbers], 6 
IR [real numbers], 14 
IRk, 80 
Z [all integers], 6 

Bnf [Bernstein polynomial], 202 
C(S),168 
d [a metric], 80 
dist(a, b), 16 
domCf) [domain], US 
F-mesh(P),288 
hCf, P), UFCf, P), LFCf, P), 270 
Ju [jump function at u], 271 
limHas f(x), 146 
limHaf(x), limx .... a+ f(x), 

limHOOf(x), etc., 146 
limsn , Sn -+ s, 33, 49 
lim sup Sn, lim inf sn, 58, 75 
MCf, 8), mCf, 8), 244 
maxif,g), min(f,g), 121 

maxS, minS, 19 
mesh(P), 249 
n! [factorial], 6 
G) [binomial coefficients], 6 
Rn(x) [remainder], 231 
sgn(x) [signum function], 125 
supS, inf S, 21, 27 
UCf), LCf), 244 
UCf, P), LCf, P), 244 
UFCf), LFCf), 270 

EO, 83 
E-,84 
f' [derivative off],. 206 
1 [extension off], 139 
f - 1 [inverse function], 129 
f + g,fg,flg,f og, 121 
F(t-), F(t+), 269 
fn -+ f pointwise, 177 
fn -+ f uniformly, 178 
f: S -+ S*, 157 
sn -+ s, 33 

45 
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8n t 8, 8n i 8, 280 
(8nk ), 64 

L an [summation], 90 f: f = f: f(x.) dx, 244, 292 f: f dF = J: f(x.) dF(x.), 27l 
. f~oof dF, 295 

[a, b], (a, b), [a, b), (a, b], 20 
[a, 00), (a, 00), (-00, b], etc., 27 
+00, -00,27 
o [empty set], 310 
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Abel's theorem, 196 
absolute value, 16 
absolutely convergent series, 91 
algebraic number, 8 
alternating series theorem, 103 
Archimedean property, 23 
associative laws, 13 

basic examples, limits, 46 
basis for induction, 3 
Bernstein polynomials, 202 
binomial series theorem, 236 
binomial theorem, 6 
Bolzano-Weierstrass theorem, 69 

for IRk, 82 
boundary of a set, 84 
bounded function, 126 
bounded sequence, 43 
bounded set, 20 

in .IRk, 82 
in a metric space, 89 

Cantor set, 85 
Cauchy criterion 

for integrals, 248, 249 
for series, 92 
for series of functions, 188 

Cauchy form of the remainder of 
a Thylor series, 236 

Cauchy principal value, 294 
Cauchy sequence, 60 

in a metric space, 81 
uniformly, 185 

cell in :IRk, 87 
chain rule, 209 
change of variable, 265, 291 
closed interval, 20, 27 
closed set, 72 

in a metric space, 84 
closure of a set, 84 
coefficients of a power series, 17l 
commutative laws, 13 
compact set, 86 
comparison test 

for integrals, 297 
for series, 93 
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complete metric space, 81 
completeness axiom, 22 
composition of functions, 121 
connected set, 165 
continuous function, ll6, 157 

piecewise, 258 
uniformly, 134, 157 

convergence, interval of, 173 
convergence, radius of, 172 
convergent improper integral, 293 
convergent sequence, 33 

in a metric space, 81 
convergent series, 90 
converges absolutely, 91 
converges pointwise, 177 
converges uniformly, 178 
convex set, 167 
cover, 86 
curve, 158 

Darboux integrals, 244 
Darboux sums, 244 
Darboux-Stieljtes sums, 270 
Darboux-Stieltjes integrable 

function,27l 
Darboux-Stieltjes integrals, 270 
decimal expansions, 55, lOS, llO 
decreasing function, 217 
Dedekind cuts, 28 
definition by induction, 66 
deMorgan's laws, 88 
denseness of Q, 24 
density function, 296 
derivative, 205 
diameter of a k-cell, 87 
differentiable function, 205 
Dini's theorem, 191 
disconnected set, 165 
discontinuous function, ll9 
distance between real numbers, 

16 
distance function, 80 

distribution function, 295 
distributive law, 13 
divergent improper integral, 293 
divergent sequence, 33 
divergent series, 90 
diverges to +00 or -00,49,90 
divides, 9 
domain of a function, ll5 

e, 35, 303 
is irrational, ll3 

equivalent properties, 26 
Euclidean k-space, 80 
Euler's constant, ll3 
exponentials, a definition, 304 
extension of a function, 139 

factor, 9 
factorial, 6 
field,13 

ordered, 13 
F-integrable function, 271, 295 
fixed point of a function, 128 
F-mesh of a partition, 288 
formal proof, 37 
function, ll5 
fundamental theorem of calculus, 

262, 264 

generalized mean value theorem, 
222 

geometric series, 91 
greatest lower bound, 21 

half-open interval, 20 
Heine-Borel theorem, 86 
helix, 158 
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improper integral, 292 
converges, 293 

increasing function, 217 
indeterminate forms, 222 
induction step, 3 
induction, mathematical, 2 
inductive definition, 66 
infimum of a set, 21 
infinite series, 90 
infinitely differentiable function, 

238 
infinity +00, -00, 27 
integers, 6 

positive, 1 
integrable function, 244, 251, 262 

on JR, 295 
integral tests for series, 102 
integration by parts, 263, 284 
integration by substitution, 265 
interior of a set, 83 
intermediate value property, 127 
intermediate value theorem, 127 

for derivatives, 217 
for integrals, 259 

interval of convergence, 173 
intervals, 20, 27 
inverse function 

continuity of, 129 
derivative of, 218 

irrational numbers, 26 

jump of a function, 269 

k-cell,87 
k-dimensional Euclidean space, 

80 

L'Hospital's rule, 223 
Lagrange's form of the remainder, 

232 

least upper bound, 21 
left-hand limit, 147 
Leibniz' rule, 213 
lim inf, lim sup, 58, 75 
limit of a function, 146 
limit of a sequence, 33, 49 
limit theorems 

for functions, 150 
for sequences, 43, 50 
for series, 99 

limits of basic examples, 46 
logarithms, a definition, 305 
long division, 105 
lower bound of a set, 20 
lower Darboux integral, 244 
lower Darboux sum, 244 
lower Darboux-Stieltjes integral, 

270 
lower Darboux-Stieltjes sum, 270 

maps, 163 
mathematical induction, 2 
maximum of a set, 19 
mean value theorem, 215 

generalized, 222 
mesh of a partition, 249 
metric, metric space, 80 
minimum of a set, 19 
monotone or monotonic 

sequence, 55 
monotonic function, 253 

piecewise, 258 

natural domain of a function, 115 
natural numbers, 1 
nondecreasing sequence, 54 
nonincreasing function, 102 
nonincreasing sequence, 54 
normal density, 296 
normal distribution, 296 
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open cover, 86 
open interval, 20, 27 
open set in a metric space, 83 
order properties, 13 
ordered field, 13 

partial sums, 90 
partition of [a, b), 244 
parts, integration by, 263, 284 
path, 158, 166 
path-connected set, 166 
Peano Axioms, 2 
piecewise continuous function, 

258 
piecewise monotonic function, 

258 
pointwise convergence, 177 
polynomial approximation 

theorem, 202, 203 
polynomial function, 124 
positive integers, 1 
postage-stamp function, 125 
power series, 171 
prime number, 9 
product rule for derivatives, 

208 
proof 

formal,37 

quotient rule for derivatives, 208 

radius of convergence, 172 
ratio test, 94 
rational function, 124 
rational numbers, 6 

as decimals, III 
denseness of, 24 

rational zeros theorem, 9 
real numbers, 14 
real-valued function, 115 

remainder of a Thylor seri s, 2:11 
Cauchy's form, 236 
Lagrange's form, 232 

repeating decimals, 110 
Riemann integrable function, Z!ll 
Riemann integral, 244, 251 
Riemann sum, 250 
Riemann-Stieltjes integral, 289 
Riemann-Stieltjes sum, 289 
right-hand limit, 147 
Rolle's theorem, 214 
root test, 94 
roots of numbers, 129 

selection function a, 64 
semi-open interval, 20 
sequence, 31 
series, 90 

of functions, 187 
signum function, 125 
step-function, 260 
Stieltjes integrals, 271, 289 
strictly decreasing function, 2] fi 
strictly increasing function, 129, 

216 
subcover, 86 
subsequence, 63 
subsequential limit, 70 
substitution, integration by, 26., 
successor, 1 
summation notation, 90 
supremum of a set, 21 

Thylor series, 231, 240 
Taylor's theorem, 232, 235 
topology, 83 

of pointwise converg nco, 1711 
transitive law, 13 
triangle inequality, 18,80 
two-sided limit, 14 
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unbounded intervals, 27 
uniform convergence, 168, 178 
uniformly Cauchy sequence, 168, 

185 
uniformly continuous function, 

134, 157 
uniformly convergent series of 

functions, 187 
upper bound of a set, 20 
upper Darboux integral, 244 

upper Darboux sum, 244 
upper Darboux-Stieltjes integral, 

270 
upper Darboux-Stieltjes sum, 270 

Weierstrass M-test, 189 
Weierstrass's approximation 

theorem, 202, 203 
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