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Preface to Instructors

What Kind of a Book Is This?

It has been more than three decades since the first so-called transition book appeared
on the mathematics shelves of college bookstores, and there are currently several
dozen such books available. The aim of these books is to bridge the gap between
the traditional lower-level courses, primarily calculus, and the upper-level courses
that require deeper understanding and maturity, such as modern algebra and real
analysis. Thus, the main focus of transition books is on the foundations of abstract
mathematics, giving a thorough treatment of elementary logic and set theory and
introducing students to the art and craft of proof writing.

While this book certainly hopes to provide students with a firm foundation for
the upper-level courses of an undergraduate mathematics program, it is not geared
solely toward students who intend to major in mathematics. It is the disappointing
reality at many institutions that some of the most able students are not considering
mathematics as a possible major; in fact, coming out of a standard calculus
sequence, most students are not familiar with the true nature of this beautiful
subject. Therefore, an important mission of the book is to provide students with
an understanding and an appreciation of (abstract) mathematics, with the hope that
they choose to study these topics further.

Recognizing that not all our students will have the opportunity to take additional
courses in mathematics, this textbook attempts to give a broad view of the field.
Even students majoring in mathematics used to complain that they were not given
an opportunity to take a course on “mathematics” without an artificial division
of subjects. In this textbook, we make an attempt to remedy these concerns
by providing a unified approach to a diverse collection of topics, by revisiting
concepts and questions repeatedly from differing viewpoints, and by pointing
out connections, similarities, and differences among subjects whenever possible.
If during or after reading this book students choose to take further courses in
mathematics, then we have achieved our most important goal.
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vi Preface to Instructors

In order to provide students with a broad exposure to mathematics, we have
included an unusually diverse array of topics. Beyond a thorough study of concepts
that are expected to be found in similar books, we briefly discuss important mile-
stones in the history of mathematics and feature some of the most interesting recent
accomplishments in the field. This book aims to show students that mathematics is a
vibrant and dynamic human enterprise by including historical perspectives and notes
on the giants of mathematics and their achievements; by mentioning more recent
results and updates on a variety of questions of current activity in the mathematical
community; and by discussing many famous and less well-known questions that
have not yet been resolved and that remain open for the mathematicians of the
future.

We also intended to go beyond the typical elementary text by providing a more
thorough and deeper treatment whenever feasible. While we find it important not to
assume any prerequisites for the book, we attempt to travel further on some of the
most enchanting paths than is customary at the beginning level. Although we realize
that perhaps not all students are willing to join us on these excursions, we believe
that there are a great many students for whom the rewards are worth the effort.

Another important objective—and here is where the author’s Hungarian roots
are truly revealed—is to center much of the learning on problem solving. George
Pólya’s famous book How to Solve It1 introduced students around the world to
mathematical problem solving, and, as its editorial review says, “show[ed] anyone in
any field how to think straight.” Paul Halmos—another mathematician of Hungarian
origin2—is often quoted3 about the importance of problems:

The major part of every meaningful life is the solution of problems; a considerable
part of the professional life of technicians, engineers, scientists, etc., is the solution
of mathematical problems. It is the duty of all teachers, and of teachers of
mathematics in particular, to expose their students to problems much more than
to facts.4

Our text takes these recommendations to heart by offering a set of carefully chosen,
instructive, and challenging problems in each chapter.

It is the author’s hope that this book will convince students that mathematics is
a wonderful and important achievement of humankind and will generate enough
enthusiasm to convince them to take more courses in mathematics. In the process,

1Originally published in hardcover by Princeton University Press in 1945. Available in paperback
from Princeton University Press (2004).
2Halmos, author of numerous prize-winning books and articles on mathematics and its teaching, is
also known as the inventor of the � symbol, used to mark the end of proofs, and the word “iff,” a
now-standard abbreviation for the phrase “if, and only if.”
3For example, by a report of the Mathematical Association of America Committee on the Teaching
of Undergraduate Mathematics (Washington, D.C., 1983) and by the Notices of the American
Mathematical Society (October, 2007, page 1141)
4“The Heart of Mathematics,” American Mathematical Monthly 87 (1980), 519–524



Preface to Instructors vii

students should learn how to think, write, and talk abstractly and precisely—skills
that will prove immeasurably useful in their future.

How Can One Teach from This Book?

Can abstract mathematical reasoning be taught? In my view, it certainly can be.
However, an honest answer would probably qualify this by saying that not all
students will be able (or willing) to acquire this skill to the maximal degree. I
often tell people that, when teaching this course, I feel like a ski instructor; I can
show them how the pros do it and be there for them when they need my advice,
praise, or criticism, but how well they will learn it ultimately depends on their
abilities, dedication, and enthusiasm. Some students will become able to handle
the steepest slopes and the most dangerous curves, while others will mostly remain
on friendlier hills. A few might become Olympic champions, but most will not;
however, everyone who gives it an honest effort will at least learn how to move
forward without falling. And, perhaps most importantly, I hope that, even though
some occasionally find the training frightening and difficult, they will all enjoy the
process.

The book contains 24 chapters. Each chapter consists of a lecture followed
by about a dozen problems. I am a strong believer in the “spiral” method:
topics are often discussed repeatedly throughout the book, each time with more
depth, additional insights, or different viewpoints. The chapters are written in an
increasingly advanced fashion; the last eight chapters (and especially the last three
or four) are particularly challenging in both content and language. The lectures and
the problems build on one another; the concepts of the lectures are often introduced
by problems in previous chapters or are extended and discussed again in problems
in subsequent chapters. (The LATEX command “ref” appears more than one thousand
times in the source file.) Therefore, if any part of a lecture or any problem is skipped,
this should be done with caution. The material can be covered in a one-semester
course or in a two-semester sequence; the latter choice will obviously allow for a
more leisurely pace with opportunities for deeper discussions and additional student
interactions.

The heart and soul of this book is in its approximately 280 problems (some
with multiple parts); the lectures are intended to be as brief as possible and yet
provide enough information for students to attack the problems. I put considerable
effort into keeping the number of problems relatively small. Each problem was
carefully chosen to clarify a concept, to demonstrate a technique, or to enthuse.
There are very few routine problems; most problems will require relatively extensive
arguments, creative approaches, or both. Particularly in later chapters, the problems
aim for students to develop substantial insight. To make even the most challenging
problems accessible to all students, hints are provided liberally. An Instructor’s
Guide, containing solutions to all problems in the book, is available on request at
the book’s product page on www.springer.com.

www.springer.com


viii Preface to Instructors

Many of the problems are followed by remarks aimed at connecting the problems
to areas of current research with the hope that some of these notes will invite stu-
dents to carry out further investigations. The book also contains several appendices
with additional material and questions for possible further research. Some of these
questions are not difficult, but others require a substantial amount of ingenuity—
there are even known open conjectures among them; any progress on these questions
would indeed be considered significant and certainly publishable. I feel strongly
that every undergraduate student should engage in a research experience. Whether
they will go on to graduate school, enroll in professional studies, or take jobs in
education, government, or business, students will benefit from the opportunities for
perfecting a variety of skills that a research experience provides.

Allow me to add a few notes on my personal experiences with this book. I taught
courses using this text more than 20 times but find it challenging each time. The
approach I find best suited for this course is one that maximizes active learning
and class interaction (among students and between students and myself). Students
are asked to carefully read the lecture before class and to generate solutions to
the assigned problems. Our organized and regular out-of-class “Exploratorium”
sessions—where students work alone or with other students in the class under the
supervision of teaching associates—seem particularly beneficial in helping students
prepare for class. I spend nearly every class by asking students to present the results
of their work to the class. As I tell them, it is not necessary that they have completely
correct solutions, but I expect them to have worked on all of the problems before
class to the best of their ability. I try to be generous with encouragement, praise, and
constructive criticism, but I am not satisfied until a thorough and complete solution
is presented for each problem. It is not unusual for a problem to be discussed several
times before it gets my final PFB (“Perfect for Béla”) approval.

Without a doubt, teaching this course has been one of the most satisfying
experiences that I have had in this profession. Watching my students develop and
succeed, perhaps more so than in any other course, is always a superbly rewarding
adventure.



Preface to Students

For Whom Is This Book Written?

This book is intended for a broad audience. Any student who wishes to learn and
perfect his or her ability to think and reason at an advanced level will benefit
from taking a course based on this textbook. The skills of understanding and
communicating abstract ideas will prove useful in every professional career: law,
medicine, engineering, business, education, politics, science, economics, and others.
The ability to express oneself and to argue clearly, precisely, and convincingly helps
in everyday interactions as well. Just as others can see if we look healthy physically,
they can also assess our intellectual fitness when they listen to our explanations
or read our writings. Abstract mathematics, perhaps more than any other field,
facilitates the learning of these essential skills.

An important goal of this book, therefore, is to help students become more
comfortable with abstraction. Paradoxically, the more one understands an abstract
topic or idea, the less abstract it will seem! Thus, the author’s hope is that his
Invitation to Abstract Mathematics is accepted, but that by the time students finish
the book, they agree that there is no need for the word “abstract” in the title—indeed,
this book is (just) about mathematics.

The prerequisites to the text are minimal; in particular, no specific knowledge
beyond high school mathematics is assumed. Instead, students taking this course
should be willing to explore unusual and often difficult topics and be ready to
face challenges. Facing and overcoming these challenges will be students’ ultimate
reward at the end.

How Can One Learn from This Book?

Welcome to abstract mathematics! If you are like 99 % of the students who have
taken a course based on this book, you will find that the course is challenging you in
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x Preface to Students

ways that you have not been challenged before. Unlike in your previous mathematics
courses, the problems in this book will not ask you to find answers using well-
prescribed methods. Instead, you will be facing problems that you have not seen
before, and you will often find yourself puzzled by them for hours, sometimes days.
In fact, if you don’t need to struggle with the concepts and problems in this book,
then this is the wrong course for you since you are not being challenged enough
to sharpen your mind. (You shouldn’t worry too much about not being challenged
though!)

My recommendations to you are as follows. If your instructor gives a lecture,
make sure you understand what is being said by asking questions—your classmates
will be grateful too. At home, read the relevant material slowly. Again, if anything
is not completely clear, ask. Next, attack the assigned problems. Don’t say that I
didn’t warn you: these problems are hard! In almost all cases, you will need several
attempts before you find a solution. It can happen that you spend days without any
progress on a given problem or that the solution you discover at midnight will prove
wrong when you try to write it up the next morning. If this happens, don’t panic!
And, don’t give up!

If you feel you don’t know where to start, make sure that you understand what
the problem is asking. Look at special cases. Draw illustrative diagrams. Try to turn
the question into a simpler question and solve that first. If all these fail, give yourself
a break (by moving to another problem) and come back to the beast at a later time.

If you are not sure whether your solution is valid, explain it to others. If they are
not convinced or cannot follow your argument, it often means that you have a gap
in your proof. Making a jump from one statement to the next without being able to
furnish the details means that your work is incomplete.

Even if you succeed in solving a problem, I recommend that you consult with
other students of your class. It is always beneficial to discuss your work with others;
you might find it interesting to listen to the thoughts of a variety of people and to
compare different approaches to the same questions. You might learn more from
these brainstorming sessions than by working alone—and, for all but the most
antisocial people, it is a lot more fun too!

I am absolutely convinced that your work will pay off, and I hope that you will
find it enjoyable as well!
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What’s Mathematics?



Chapter 1
Let’s Play a Game!

We start our friendship with abstract mathematics with an example that illuminates
how concrete quantitative problems may turn into abstract mathematical situations
and how mathematicians might be led from specific questions to the development
of highly abstract concepts and discoveries.

We should admit right away that not all abstractions have an immediate applica-
tion; indeed, many branches of mathematics were born and developed independently
of the “real world.” Some of these areas later found critical uses; for example,
number theory, dubbed by Carl Friedrich Gauss (1777–1855) as the “Queen of
Mathematics” but long considered arcane, is now playing major roles in computer
technology. Other areas, particularly those recently developed, are still waiting for
applications.

Our example comes from the interesting, newly developing field of combinatorial
game theory. We have simplified the problem as much as possible to reduce
technicalities and make our computations simpler. Yet this particular game—and
the more challenging (yet, more interesting) games introduced in the problems at the
end of this chapter—will enable us later on to discuss some of the most fundamental
elements of abstract mathematics, both its objects of study (e.g., the mathematical
structures of an abelian group and of a field) and its methods (logic, quantifiers,
proof techniques, and more). In fact, at the end of our journey, once we develop
the necessary tools, we will return to these games to provide a more thorough and
far-reaching analysis to see how we can compare games to one another and decide,
for example, when one game is more “advantageous” for a particular player than
another game! This will lead us to a deeper understanding of numbers (zero, positive
and negative integers, rational numbers, real numbers, and surreal numbers). As the
title of Chap. 24 declares, games are “value”-able!

To begin, let us consider the following situation. Suppose that there is a group
of competing companies, all trying to gain control of a certain segment of the
market. Each company has a number of possible options that it can carry out
(such as introducing or terminating a product and changing prices). These options
typically have a limiting effect on one another; in other words, once an option
(or a set of options) has been carried out by a certain company (or companies),

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-6636-9 1, © Béla Bajnok 2013
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4 1 Let’s Play a Game!

it prevents another company (or perhaps the same company) from exercising some
of its options later.

In our specific example we have two companies, A (Apple Core Corp.) and B

(Blue Ink, Inc.), with company A having three available options, which we denote
by a1, a2, and a3, and company B having another three available options, denoted
by b1, b2, and b3. Let us assume that the restrictions are as follows:

• b3 is available only if a3 is still available.
• a3 is available only if at least one of b1 or b2 is still available.
• b2 is available only if at least one of a1, a2, or b1 is still available.

We assume that the two companies take turns carrying out their options, with
each company having to exercise one of its options when it is its turn (each option
can only be performed once). The first company unable to exercise any of its options
loses. Our question: Which of the two companies is in a better position when the
game starts?

It is helpful to model our game with the following figure:

�
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�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
��

�
�
�
�
�
�

a1 a2 b1

b2

a3 b3

� � �

� �

�

�

The figure shows the six options arranged to form a “horse.” A move will
be reflected by removing the corresponding segment from the figure, and the
restrictions listed above will be seen by the fact that when certain segments are
removed, then some other segments get disconnected from the base. For example,
the first restriction means that if we remove the “neck” of the horse, then its “head”
gets cut off. It is easy to check that our figure reflects all three of our restrictions
and no others. As we play our game, we will regard segments disconnected from
the ground as unavailable options.

Let us see now how we can analyze this game that we call Aerion (after the horse
with the same name in Greek mythology). Note that we did not specify above which
company, or “player” from now on, starts the game. Is the winner going to depend
on that? In many games it certainly does.

We will see, however, that no matter who starts Aerion, A has a way to win
against B no matter how B plays. To see this, we check all possibilities as follows.



1 Let’s Play a Game! 5

Assume first that A starts. One (and, as we will see shortly, the best) choice for
A is to remove a3 first. Then b3 becomes unavailable for B , and the game reduces
to the following:
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�
�
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�
�
�

�
�
�

a1 a2 b1

b2

� � �

� �

Now both A and B have two available options, and it is B’s turn. No matter how B

moves, the game will terminate in two more rounds, and it will be B who will first
run out of options. Thus we see that if A starts, then for any sequence of moves by
B , A has some—maybe not always the same—way of responding that guarantees a
win for A. We describe this situation by saying that A has a winning strategy.

What if B has the chance to move first? If B starts by removing b3, then A can
respond by removing a3, and the game reduces to the one that we just analyzed,
and B loses. The other two initial options are even worse for B , since A will again
respond by removing a3, and the game will terminate in just one more round by B

running out of options. Again, A has some winning sequence of moves for every
sequence of moves by B . We see, therefore, that no matter who starts our game, A

will be able to win no matter how B plays. We can say that this game is a win for A.
We can similarly analyze larger games, but it is not hard to imagine that our

arguments become complicated as the number of options and restrictions increases.
There is a more systematic approach which, though only after some rather tedious
work, makes the conclusion clear. This approach uses the so-called decision trees.

Part of the decision tree of our game, showing all possible plays that start with
A starting the game by removing a3, is shown below. The figure is read from left to
right and shows all possible moves at each round. We see that A can win the game
in all cases.
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In comparison, consider the next figure, which shows all possible plays if A starts
by removing a1.
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We see from the tree that in this case B has a winning strategy. Namely, if B

removes b3, then A loses whether it plays a2 or a3 (in the latter case, B should
respond by removing b2). The situation is similar if A’s initial move is a2; B again
will win if it responds by b3. Thus, B has some winning strategy against some initial
moves on A’s part. However, we saw that the game is a win for A; that is, if A plays
optimally, the game is won by A regardless of who starts the game or how B plays.

The game that we just analyzed is an instance of the so-called Hackenbush
games. Naturally, not all competitive situations can be modeled by Hackenbush
games. The field of combinatorial game theory attempts to analyze and evaluate
various kinds of games as well as to develop a theory that applies to all games.

We will often employ games to introduce abstract topics and methods in this
book. We introduce some of these games in the problem set below.

Problems

1. Draw diagrams that represent the following Hackenbush games. Assume that
the available options for companies A and B are a1, a2, a3 and b1, b2, b3,
respectively, subject to the restrictions listed below. Use decision trees or other
arguments to decide which player has a winning strategy:

(a) • b3 is available only if a3 is still available.
• a3 is available only if at least one of a1 or a2 is still available.
• b2 is available only if at least one of a2 or b1 is still available.
• a2 is available only if at least one of a1 or b1 is still available.

(b) • b3 is available only if b2 is still available.
• b2 is available only if at least one of a1 or a2 is still available.
• a3 is available only if at least one of a2 or b1 is still available.
• a2 is available only if at least one of a1 or b1 is still available.
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2. The Divisor game is played by two players who choose a positive integer n and
then take turns naming a positive divisor of n with the condition that they cannot
name a multiple of a number named earlier (including the number itself). The
player who is forced to name the number 1 loses (and the other player wins).
For example, if the originally chosen number is n D 9, then the first player can
name 3 or 9 (the third choice, being 1, would result in an immediate loss). If
the first player chooses 3, then the second player loses immediately as the only
number left to be named is 1; therefore, the first player has a winning strategy.
(If the first player chooses 9, then the second player will choose 3, after which
the first player is forced to name 1 and will lose the game. Thus, the first player
must start the game by naming 3 in order to win.)

Use decision trees or other arguments to decide which player has a winning
strategy if the initial number is:

(a) n D 8.
(b) n D 10.
(c) n D 12.

Remark. Later in the book we return to the Divisor game for a more general
analysis.

3. Two players, High and Low, play the following game on the “board” shown
below. They place a coin on the top node, and then they take turns to move the
coin one node downward until the coin arrives at one of the sixteen terminal
nodes. High’s goal is that the game ends with the coin at a node with as high a
value as possible, while Low’s aim is that the target node has as low a value as
possible. Assuming that both of them play optimally, what is the outcome (the
value of the last node) of the game if:

(a) High starts?
(b) Low starts?
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4. The game Capture is played by two players, First and Second, who take turns
to move towards one another on a narrow bridge. Initially, the two players are
at opposite ends of the bridge, at a distance of n feet from each other. (Here n

is an arbitrary positive integer.) When it is their turn, they are allowed to jump
1, 2, or 3 feet toward each other. The game starts by First making a move first;
the game is over when one player is able to capture (jump on top of) the other
player.

(a) Which player has a strategy to capture the other player if n D 8?
(b) What if the initial distance is n D 21 feet?
(c) Generalize the problem for all positive integers n.
(d) Generalize the problem further to the case when the initial distance is n feet

and the players are allowed to jump any (positive) integer number of feet
up to k feet. (Here n and k are arbitrary natural numbers.)

Remark. This game—with n D 21 and k D 3, as in part (b)—was a featured
challenge on the American reality television show Survivor in the “Thailand”
season of 2002.

5. The game Cutcake is played using a cake that has a rectangular shape and that
is scored by lines parallel to its edges, as shown.

The game is played by two players, Horizontal and Vertical, who take turns
cutting the cake into pieces along the scoring, each time cutting one of the pieces
created earlier into two pieces. Horizontal is only allowed to make horizontal
cuts, and Vertical is to make vertical cuts. The game ends when one player is
unable to move; this player is then the loser, and the other player is the winner.

(a) Which player has a winning strategy on the cake illustrated above if
Horizontal moves first?

(b) Which player has a winning strategy on the same cake if Vertical moves
first?

(c) Repeat parts (a) and (b) for a cake of size 4 by 7 (i.e., the cake is scored by
three horizontal lines and six vertical lines).

Remark. We will periodically return to Cutcake to provide further analysis.

6. The classical game Nim is played with a finite collection of heaps where
each heap consists of some chips (or coins, matches, etc.). The notation
N.n1; n2; : : : ; nm/ stands for the game played with m heaps, containing n1; n2;



1 Let’s Play a Game! 9

: : : ; nm chips, respectively; here m is a positive integer and n1; n2; : : : ; nm

are (not necessarily distinct) nonnegative integers. Two players, named First
(making the first move) and Second, take turns to select a single heap and to
remove any number of chips from it. They are allowed to remove every chip
from their chosen heap if they so choose, but must remove at least one chip.
The player who is unable to move loses (and the other player wins).

The Nim game N.n1/, consisting of a single heap, is quite obvious to
analyze: if n1 D 0, then First loses immediately (and thus Second wins); if
n1 > 0, then First wins by removing all chips (and thus Second loses).

(a) Which player has a winning strategy for the two-heap game N.5; 8/?
(b) Generalize part (a) for any two-heap game N.n1; n2/.
(c) Which player has a winning strategy for the three-heap game N.2; 3; 5/?
(d) Which player has a winning strategy for the three-heap game N.5; 7; 9/?

7. (a) The game Quatro is played by two players, First and Second (with First
making a move first), on a game board that has four points marked; no
three of the points are collinear (are on the same straight line). The players
take turns, each time connecting two of the four points by a straight line
segment. They are allowed to connect any two of the four points that have
not been connected yet, except that they are not allowed to form a triangle
(a triangle is formed when each of three original points are connected with
the other two; triangles whose vertices are not all among the four given
points are okay). The first player unable to move loses. Draw the decision
tree for this game and determine which player has a winning strategy.

(b) A modified version of Quatro is played on the same board, but this time the
players’ goal is to create a triangle; the player first able to do so wins the
game. Determine which player has a winning strategy.

(Hints: The key to being able to provide a complete analysis to these games,
without having to discuss a huge number of possible move sequences, is in
understanding how certain positions are essentially the same. (The formal word
for this equivalence is that the positions are isomorphic.) Clearly, all first moves
by First are essentially the same, so it is sufficient to assume that the move
connects points 1 and 2, for example. Second can then have two choices: either
draw in a segment that is adjacent to the segment drawn by the first player or
draw one that is not. Therefore, we have to distinguish between only two cases:
the segment can connect points 2 and 3 or 3 and 4. Continuing the analysis this
way greatly reduces the number of cases to be considered.)

8. (a) The game Two-Color Quatro is similar to Quatro (cf. the previous prob-
lem), except that the two players use different colors to draw their line
segments: player Red draws his connections with red and player Green
draws hers with green. They are allowed to connect any two of the
four points that have not been connected yet, except that they are not
allowed to form a monochromatic triangle (a triangle whose three sides
are drawn with the same color). The first player who is forced to create
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a monochromatic triangle loses; if the game ends without either player
creating a monochromatic triangle, then we say that the game ends in a
draw. Without loss of generality, assume that Red makes the first move.
Does either player have a winning strategy or does the game end in a tie?

(b) The game Two-Color Penta is just like Two-Color Quatro, but it is played
on a board with five points. Is it possible that, perhaps not playing optimally,
the two players end the game in a tie? (Warning: Do not attempt to
analyze who has the winning strategy in Two-Color Penta as it is quite
complicated!)

(c) Is a tie possible in Two-Color Hexi?

Remarks. This game, sometimes referred to as SIM, is played on a board
with six points. In the 1970s, a group of researchers at McMaster University
in Canada showed that the second player has a winning strategy, but
this strategy is very complicated. You may play Two-Color Hexi against
a computer program on the Web site www.dbai.tuwien.ac.at/proj/ramsey/
intro.htm.

9. (a) The game Acrostic Twins is played on a rectangular grid where each square
contains a coin; in the initial position, each coin is showing “heads.” Two
players, First and Second (as usual, First is to move first) take turns; each
move entails (i) selecting a coin that shows heads, (ii) selecting another coin
to the left of it in the same row or above it in the same column (this second
coin may show either heads or tails), and (iii) turning over both coins. The
first player unable to move loses (and the other player wins).

For each positive integer m and n with m � 5 and n � 5, decide which
player has a winning strategy on an m-by-n board.

(b) The game Turning Corners is similar to Acrostic Twins, but here a move
consists of turning over the four corners of a rectangle (whose edges are
parallel to the sides of the board) with the condition that the coin at the
lower right must show heads. Again, the initial configuration shows all
heads, and the game ends when a player is unable to move (this player
then loses and the other wins).

For each positive integer m and n with m � 5 and n � 5, decide which
player has a winning strategy on an m-by-n board.

www.dbai.tuwien.ac.at/proj/ramsey/intro.htm
www.dbai.tuwien.ac.at/proj/ramsey/intro.htm


Chapter 2
What’s the Name of the Game?

Abstract mathematics deals with the analysis of mathematical concepts and state-
ments. Mathematics is unique among all disciplines in that its concepts have a
precise and consistent meaning, and its results, once established, are not subject
to opinions or experimental verification and remain valid independently of time,
place, and culture—although their perceived importance might vary. In this chapter
we discuss mathematical concepts; in Chap. 3 we study mathematical statements.

Mathematical concepts are usually introduced by definitions. A definition needs
to say unambiguously what the meaning of the newly introduced concept is and has
to be expressed in terms of previously introduced concepts only.

As an example, consider the definition of primes, which can be stated as follows:

Definition 2.1. An integer is a prime if it has exactly two positive divisors.

For example, 2, 3, 5, and 7 are prime numbers, since their two positive divisors
are 1 and themselves. Note that our definition allows for the possibility of negative
primes as well; indeed, �2, for example, is a prime as it has two positive divisors (1
and 2). But 4, 6, 8, and 9 (and their negatives) are not primes, as they have more than
two positive divisors; such integers are called composites. Note that 1 and �1 are
not primes either, since they have only one positive divisor, and neither is 0 a prime,
as it has infinitely many positive divisors. We can categorize the integers according
to how many positive divisors they have. Letting d.k/ denote the number of positive
divisors of the integer k, we can say that:

• If k is 1 or �1, then d.k/ D 1.
• If k is a prime number, then d.k/ D 2.
• If k is a composite number, then d.k/ is greater than 2 but finite.
• If k D 0, then d.k/ is infinite.

Primes are the basic building blocks of integers. According to the Fundamental
Theorem of Arithmetic (which we will prove in Chap. 14), every integer n with
n � 2 is either a prime or can be expressed as a product of primes; furthermore, this
factorization into primes is essentially unique (i.e., there is only one factorization if
we ignore the order of the prime factors or the possibility of using their negatives).

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-6636-9 2, © Béla Bajnok 2013
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Note that this uniqueness is one reason why we do not consider 1 to be a prime; if
it were, then even the number of prime factors would not be unique (e.g., we could
factor 6 as 6 D 2 � 3 or 6 D 1 � 2 � 3 or 6 D 1 � 1 � 2 � 3). We will soon see other
important properties of primes. An excellent source of information for primes and
their properties (including current prime records) can be found at www.primes.utm.
edu.

The wording of a definition needs to be chosen carefully. For example, none of
the descriptions:

• Integers that are divisible by 1 and themselves
• Integers that have no divisors between 1 and themselves
• Integers that do not factor into a product of other integers

provides a correct definition for primes. The first description applies to every integer
(e.g., 6 is certainly divisible by both 1 and 6); the second includes 1 (it has no
divisors between 1 and itself); and the last condition is not satisfied by any number,
since every integer factors (e.g., 7 D 1 � 7 or 7 D .�1/ � .�7/).

However, there might be several alternative ways to define primes correctly. For
example, it is easy to see that the following would work:

Definition 2.1a. An integer is a prime if it is different from 1 and �1, and it cannot
be factored into a product of two integers without one of them being 1 or �1.

To be able to claim that Definition 2.1a is equivalent to Definition 2.1 requires
us to verify that Definition 2.1a is satisfied by the primes but not by integers that are
not primes. This can be easily accomplished, as follows. Definition 2.1a explicitly
excludes 1 and �1, and it also excludes 0 since we can factor 0 as, say, 0 D 0 � 2.
Furthermore, it also excludes composite numbers, since for a composite number k

to have more than two positive divisors means that k has factorizations different
from k D 1 � k or k D .�1/ � .�k/ (only one of k or �k is positive). Conversely,
we see that for a prime number p to have exactly two positive divisors means that p

cannot be factored in any way other than p D 1 � p or p D .�1/ � .�p/. Therefore,
Definition 2.1a is satisfied by primes and nothing but the primes, so it is equivalent
to Definition 2.1.

It is considerably more difficult to see that the following is also a valid definition
for primes:

Definition 2.1b (Euclid’s Principle). An integer is a prime if it is different from
0, 1, and �1, and it cannot divide a product of two integers without dividing at least
one of them.

One can prove that Definition 2.1b is equivalent to Definition 2.1, that is, that
the two definitions are satisfied by the same set of integers. Since Definition 2.1b
explicitly excludes 0, 1, and �1, one only needs to prove that it also excludes
composite numbers but includes all primes. We can illuminate why composite
numbers don’t satisfy Definition 2.1b by considering, for example, p D 20: it
does not divide 4 or 5, but it divides the product of 4 and 5. We can easily adapt
this argument for an arbitrary composite number—see Problem 3. The claim that

www.primes.utm.edu
www.primes.utm.edu


2 What’s the Name of the Game? 13

a prime number cannot divide a product of two integers without dividing at least
one of them was stated first by the Greek mathematician Euclid of Alexandria about
twenty-three hundred years ago. For example, for p D 2, this claim states that the
product of two integers can only be even if at least one of the factors is even. While
this may be quite clear, the claim for an arbitrary prime is considerably more difficult
to verify—we will provide a proof in Chap. 13.

A definition is given in terms of other concepts, and we assume that, by the time
we state our definition, we are familiar with their meaning. This can happen in two
ways: either these concepts have been previously defined or we agree to understand
their meaning without definitions. Concepts that are assumed to be understood
without definitions are called fundamental concepts or primitives. Every branch
of mathematics will have to have some fundamental concepts, as we cannot reduce
our concepts to previous terms endlessly.

At this point, it might be desirable for us to list all fundamental concepts so that
we can rely on them as we proceed. We will not be following such a “fundamentalist
approach,” however. Although it may sound tempting to build our theory on such
a solid foundation, it turns out that this approach is not feasible; it would be too
cumbersome, too lengthy, and too limiting (not to mention quite boring for most
people). For now, let us assume that the following concepts are primitives:

• Natural numbers, integers, rational numbers, real numbers, and complex
numbers

• Equality, addition, and multiplication of two real (rational, etc.) numbers
• Positive real number
• Set and element of a set
• Point, line, plane, and intersection of lines and planes
• Segment, angle, and congruent segments and angles
• Distance between two points, between a point and a line, etc.

Note that the choice of primitives is unavoidably arbitrary. For example, we listed
the term “positive” as a primitive (and then can use it to define the term “negative”).
We could have, instead, listed “negative” as a primitive (and then could use that to
define “positive”).

Another reason for our fluidness with the list of primitives is that, depending
on our desire to avoid shortcuts, we could reduce the number of primitives in our
list. For example, instead of assuming that the natural numbers, the integers, the
rationals, the reals, and the complex numbers are all primitives, it would suffice to
just list two numbers: 0 and 1. We could then provide formal definitions for all other
numbers. We may use the concepts of 1 and addition to define all positive integers: 2
can be defined as 1C1, after which 3 can be defined as 2C1, and so on. Then we can
use the positive integers and zero to define the negative integers; from the set of all
integers we can define the set of rational numbers, from there the real numbers, and
finally the complex numbers. We will not provide this development here; however,
we return to a more formal development of the number sets in Chap. 23 where even
0 and 1 will be defined!
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Our definition of primes in Definition 2.1 uses only one other mathematical
concept that needs definition, the concept of divisors. This can be done as follows:

Definition 2.2. Given two integers a and b, we say that a is a divisor of (or divides)
b (or b is divisible by a) whenever there is an integer c for which a � c D b. If a is
a divisor of b, we write ajb.

For example, 3j6 and 6j6, but 6 6 j3. Also, 5j0, since 5 � 0 D 0; in fact, 0j0, since,
for example, 0 � 7 D 0. But 0 6 j5, since (as we will see in Chap. 11) there is no
integer c for which 0 � c D 5 because for every real number c, 0 � c D 0. Again,
we need to be very careful with the precise meaning of our definition. According to
Definition 2.2, saying that a is a divisor of b is not quite equivalent to saying that
the fraction b=a is an integer: 0 is a divisor of 0, but 0=0 is not an integer!

We should point out that we only listed the addition and multiplication of two
numbers. Can we give definitions for operations of three or more terms/factors?
How can we define, for example, 2 C 3 C 5? Or how about 27? The answer is
provided by recursive definitions. For example, we define 2 C 3 C 5 as the sum of
2 C 3 (which is understood as a primitive) and 5. The power 27 can be defined as
the product of 26 and 2, where 26 is defined as the product of 25 and 2 and so on; we
can trace this back to 22 that can be defined as the primitive concept 2 � 2. We can
formalize this as follows:

Definition 2.3. Let a1, a2, a3, : : : be an infinite list of real numbers. The sum a1 C
a2 C � � � C an, denoted by ˙n

iD1ai , is defined as follows:

1. ˙1
iD1ai D a1I and

2. ˙n
iD1ai D .˙n�1

iD1 ai / C an for any integer n � 2.

Note that in our definition of the sum of an arbitrary number of terms, we only
used the primitive concept of the sum of two terms (and the method of recursion).
Our definition is complete: it defines the sum of an arbitrary number of terms (the
“sum” of a single term had to be defined separately). The product

Qn
iD1 ai of an

arbitrary positive integer number of factors and the positive integer power an of a
number a can be defined similarly (cf. Problem 4). The issue of having to provide
definitions using only previously understood concepts is particularly relevant to such
recursive definitions.

The idea of recursive definitions is to use the previous term to define the current
term. We often use this method to describe sequences. For example, the power
sequence 1, 2, 4, 8, 16, : : : can be described (or defined) recursively by a1 D 1,
and for n � 2, an D 2an�1.

Recursions can even use more than just the previous term; for example, if the
terms of the sequence are defined using the previous two terms, the recursion is said
to have order 2. Consider, for example, the sequence defined as follows: F1 D 1,
F2 D 2, and for n � 3, Fn D Fn�1 C Fn�2. This sequence is called the Fibonacci
sequence after the Italian merchant and mathematician Leonardo of Pisa (c. 1170–
1250) who was known as Fibonacci. Is this second-order recursion for this sequence
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of numbers well defined? Using the recursion, we find that F3 D F2 C F1 D 2 C
1 D 3, F4 D F3 C F2 D 3 C 2 D 5, and F5 D F4 C F3 D 5 C 3 D 8. Continuing
this way, we arrive at the sequence

1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; : : :

We see that each term in the sequence is computed easily from the previous terms;
however, this method is not efficient if one only needs to find a particular term in
the sequence as we need to compute all previous terms. An explicit formula exists
too: in Chap. 14 we will prove that

Fn D 1p
5

2

4

 
1 C p

5

2

!nC1

�
 

1 � p
5

2

!nC1
3

5

for every natural number n. It is surprising that, while the formula involves irrational
numbers, it claims to give an integer value (namely, Fn) for every n. The number
1Cp

5
2

is a famous number, sometimes referred to as the golden ratio; the other

irrational base involved in the above expression, 1�p
5

2
, is the negative of its

reciprocal. Since 1�p
5

2
has absolute value less than 1, its powers become very small

for large values of its exponent. This fact enables us to compute Fn even faster;
namely, Fn is simply the closest integer to

1p
5

 
1 C p

5

2

!nC1

:

Fibonacci numbers appear in surprising places in mathematics, nature, music, art,
architecture, and elsewhere.

Problems

1. Write a precise definition for the following concepts. Use only the primitives
listed and the concepts defined in this chapter. (Once you define a concept, you
may choose to use it in the definition of a subsequent concept in the list below.)

(a) An even integer
(b) An odd integer
(c) A real number being greater than another
(d) A real number being less than another
(e) The greatest common divisor of two positive integers
(f) Two positive integers being relatively prime
(g) Three positive integers being relatively prime
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(h) Three positive integers being pairwise relatively prime
(i) A perfect square number
(j) The square root of a nonnegative number
(k) The absolute value jxj of a real number x (it is best to separate cases when

x � 0 and when x < 0; you may use the term negative of without providing
its definition)

(l) The floor bxc of a real number x (careful: b3:9999 : : : c D 4, not 3!)
(m) The ceiling dxe of a real number x

(n) A circle of a given radius and center
(o) Two lines being parallel

2. Definition-like sentences are often used to define notations that appear in math-
ematics books and other works. For example, as we have already mentioned,
for a given integer k, the quantity d.k/ denotes the number of positive divisors
of k.

The notations N.a/, K.a; b/, M.a; c/, P.b; c/, and R.a; b; c/ are taken
from an imaginary mathematics paper. Their definitions, in a random order, are
stated below; there are also three additional definitions without corresponding
notations. Match the notations with their corresponding definitions. Assume
that all variables denote integers. Also compute the values of N.10/, K.2; 3/,
M.2; 3/, P.2; 3/, and R.1; 2; 3/.

(a) a3 C b3

(b) The least integer b for which b3 > a

(c) The largest integer b for which b3 > a

(d) a3 C b3 C c3

(e) The least integer a for which b3 > a3 C c3

(f) The largest integer a for which b3 > a3 C c3

(g) The least integer b for which b3 > a3 C c3

(h) The largest integer b for which b3 > a3 C c3

3. (a) Decide which of the following descriptions provide a correct definition for
primes. Justify your answer:

i. An integer is a prime if it has exactly four divisors.
ii. An integer is a prime if it is different from 1 and �1 and it has at most

four divisors.
iii. An integer p is a prime if it is different from 1 and �1 and it cannot be

factored into a product of two integers without one of them being jpj.
iv. An integer p is a prime if it is different from 1 and �1 and it cannot

be factored into a product of two integers with both factors having
absolute value less than jpj.

v. An integer p is a prime if it is different from 0, 1, and �1 and it cannot
be factored into a product of two integers with both factors having
absolute value less than jpj.

vi. An integer is a prime if it is different from 1 and �1 and it cannot
divide a product of two integers without dividing at least one of them.
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(b) Explain why any integer satisfying Definition 2.1b also satisfies
Definition 2.1.
(Hints: We only need to verify that an integer p satisfying Definition 2.1b
cannot be composite. Note that if p has a positive divisor a, then p divides
the product of the integers a and p=a. Explain why p dividing a can only
happen if a D jpj and why p dividing p=a can only happen if a D 1. This
then means that an integer p satisfying Definition 2.1b cannot have more
than two positive divisors and thus cannot be composite.)

4. Recall that we consider multiplication of two real numbers as a primitive.

(a) Define the product of three real numbers.
(b) Define the product of five real numbers.
(c) Give a recursive definition for the product of an arbitrary (positive integer)

number of real numbers.
(d) Give a recursive definition for an arbitrary positive integer exponent of a

real number.

5. (a) Is the number 8; 191 prime? Why or why not?
(b) Describe an efficient method that finds all positive prime numbers up to

100. How about up to 1,000?
6. In this problem we study two of the most famous number sequences: Mersenne

numbers and Fermat numbers. (Our approach here will be experimental; a more
precise treatment—with proofs—will be provided in Chap. 14.)

(a) The n-th Mersenne number can be defined recursively by M0 D 0 and

Mn D n C
n�1X

iD0

Mi

for n � 1.

i. Compute Mn for 0 � n � 5.
ii. Find a recursive definition for Mn that has order 1, that is, the recursive

formula for Mn only involves Mn�1 (and possibly some constants).
iii. Find an explicit formula for Mn.

Remarks. The number Mn is called the n-th Mersenne number, named
after the French monk Marin Mersenne (1588–1648) who first studied
them. It is a very intriguing problem to find those Mersenne numbers
that are prime. With the discovery by the Norwegian computer scientist
Odd Magnar Strindmo of April 12, 2009, there are forty-seven Mersenne
primes known today. The largest one of these, which was found on August
23, 2008, at UCLA, has more than twelve million decimal digits and is
listed in TIME Magazine’s Top 50 Best Inventions of 2008! For more
information on the Great Internet Mersenne Prime Search (GIMPS), see
www.mersenne.org. We will study Mersenne numbers in Chaps. 3 and 4
in more detail.
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(b) The n-th Fermat number can be defined recursively by F0 D 3 and

Fn D 2 C
n�1Y

iD0

Fi

for n � 1.

i. Compute Fn for 0 � n � 5.
ii. Find a recursive definition for Fn that has order 1.

iii. Find an explicit formula for Fn.

Remarks. The great French mathematician Pierre Fermat (160?–1665)
conjectured that Fn is prime for every nonnegative integer n. Indeed, Fn

is prime for 0 � n � 4. However, this conjecture of Fermat turned out
to be false, as Leonhard Euler (1707–1783) discovered in 1732 that 641 is
a factor of F5 (checking this is easy, but finding factorizations of large
numbers is a highly difficult problem). The only Fermat primes known
to this day are the five values found above; today we know that Fn is
definitely not prime for n D 5; 6; : : : ; 32. Fermat primes have an interesting
connection with the constructibility of regular polygons.

7. Which of the following sequences are well defined? If a sequence is well
defined, find its fifth term.

(a) a1 D 1, an D an�1 C an�2 for n � 2.
(b) b1 D 1, b2 D 2, bn D bn�1 C bn�2 for n � 4.
(c) c1 D 1, c2 D 2, cnC2 D cnC1 C cn for n � 1.
(d) d1 D 1, d2 D 2, d3 D 3, dn D dn�1 C dn�2 C dn�3 for n � 4.
(e) e1 D 1, e2 D 2, en D en�1 C en�2 C en�3 for n � 3.
(f) f1 D 1, f2 D 2, fn D fnC1 C fn�1 for n � 3.
(g) g1 D 1, g2 D 2, gn D gnC1 C gn�1 for n � 2.
(h) h1 D 1, h2 D 2, h3 D 4, hn D hn�1 C hn�2 for n � 3.

8. (a) Give a recursive definition for each of the following sequences. (Assume
that the patterns continue indefinitely.)

i. 41; 44; 47; 50; 53; 56; : : :

ii. 41; 43; 47; 53; 61; 71; : : :

iii. 41; 42; 44; 48; 56; 72; : : :

(b) Give two recursive definitions for each of the following sequences, one of
order 1 and one of order 2:

i. 41; 83; 167; 335; 671; 1343; : : :

ii. 41; 83; 165; 331; 661; 1323; : : :

Remark. We will find explicit formulae for these sequences in Chap. 3.
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9. Give a “recursive” solution to each of the following questions:

(a) Andrew is standing at one end of a narrow bridge that is 12 feet long. He
takes steps toward the other end of the bridge; each of his steps is either 1
foot or 2 feet long. In how many ways can he reach the other end of the
bridge? (The order of his steps matters when counting the number of ways,
e.g., a 1-foot step followed by a 2-foot step is different from a 2-foot step
followed by a 1-foot step.)

(b) Consider the following 2-by-12 board:

In how many ways can you cover the board with twelve 1-by-2 dominoes?
(c) How does the answer to part (a) change if Andrew’s steps can be 1 foot, 2

feet, or 3 feet long?
(d) How does the answer to part (b) change if a 3-by-12 board needs to be

covered with twelve 1-by-3 “trominoes”?

Remarks. As a generalization of parts (b) and (d), one may ask for the number
of ways that an arbitrary board can be covered with dominoes, trominoes,
or even more general tiles. The general question remains largely unsolved,
but a stunning discovery from 1961 answers the case when an even by even
rectangular board is to be covered by dominoes. According to this result,
published in two separate physics journals by Fisher and Temperley (jointly)
and by Kastelyn (independently), a 2m-by-2n board has exactly

mY

j D1

nY

iD1

4

�

cos2 j�

2m C 1
C cos2 i�

2n C 1

�

different domino tilings. It is quite remarkable that this formula works—it is
not even clear why it should yield a positive integer value!

10. When discussing divisibility, we restrict our attention to the set of integers; for
example, we say that 2 is not divisible by 5 as there is no integer c for which
2 D 5 � c even though, of course, there is a rational number (namely, c D 2=5)
for which the equation holds. Similarly, we may limit ourselves to even integers
only. The concept of divisibility in the set of even integers is then different from
its meaning among all integers; for example, among the even integers 4 is not
a divisor of 12 since there is no even integer c (and we are ignoring odd ones!)
for which 4 � c D 12.

In this problem we examine what happens to Definitions 2.1, 2.1a, and 2.1b
among even integers. It turns out that, while the three definitions are equivalent
in the set of all integers, they describe different sets when considering even
integers only. For example, 12 is prime according to Definition 2.1 since it has
exactly two positive divisors: 2 and 6. However, 12 is not a prime according to
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Definition 2.1a since it factors into the product 2 � 6. We can also see that 12
is not a prime according to Definition 2.1b either: 12 divides the product 4 � 6

(since for c D 2 we have 12 � c D 24), but 12 fails to divide either 4 or 6. On
the other hand, 10, for example, is a prime according to Definition 2.1a, but not
a prime according to Definitions 2.1 and 2.1b. So the three definitions are not
at all equivalent in the set of even integers!

For each of the three definitions above, characterize the integers that are
prime among even integers according to the definition. Justify your answers.

11. In this problem we use the recursive method to define what is called Nim
addition and Nim multiplication, denoted by ˚ and ˝, respectively.

(a) The Nim sum a˚b of nonnegative integers a and b is defined as the smallest
nonnegative integer that is not of the form a ˚ j or i ˚ b for any integers
0 � i < a and 0 � j < b.

The Nim addition table begins as follows:

0 1 2 3 4 5 6 : : :

0 0 1 2 3 4 5 6

1 1 0 3 2 5 4 7

2 2 3 0 1 6 7 4

3 3 2 1 0 7 6 5

4 4 5 6 7 0 1 2
:::

Note that from the way we phrased our definition, no initial conditions are
necessary; trivially, 0 ˚ 0 D 0. To illustrate how one arrives at the values
in the table, consider 2 ˚ 3: it equals 1, as it is the smallest nonnegative
integer that does not appear either to the left of or above this position in the
table.

Verify each entry in the table above, and extend the table to include the
values a ˚ b for all 0 � a � 6 and 0 � b � 6.

Remarks. Not surprisingly, the name Nim addition refers to the game Nim,
introduced in Problem 6 of Chap. 1. The connection between the game and
the operation is the following: player Second has a winning strategy for the
game N.n1; n2; : : : ; nm/ exactly when the Nim sum

n1 ˚ n2 ˚ � � � ˚ nm D 0;

and player First is able to win exactly when this Nim sum is not 0. For
example, N.2; 3; 5/ can be won by First, since .2˚3/˚5 D 1˚5 D 4 ¤ 0.
We can, actually, see that if First starts the game by taking away 4 chips
from the largest heap, then the resulting Nim sum is 2 ˚ 3 ˚ 1 D 0, thus
the second player of this game (i.e., First) will win.
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In fact, Nim addition governs the game Acrostic Twins (cf. Problem 9 (a)
of Chap. 1) also: Second has a winning strategy for the game played on an
m-by-n board exactly when

m�1M

iD0

m�1M

j D0

.i ˚ j / D 0

(and First can win if the Nim sum is not 0). For example, First has a winning
strategy on the 2-by-3 board as the Nim sum of the six relevant entries is 1.
Furthermore, this also reveals what First’s first move should be, leaving
the board in such a way that the Nim sum of the coins showing heads is 0
guarantees that Second, who moves next, will lose. Therefore, First should
turn over the two coins at the right of the board.

The explanations for these statements are beyond our scope for the
moment; we return to a thorough analysis of these and other games in
Chap. 24.

(b) The Nim product a ˝ b of nonnegative integers a and b is defined as the
smallest nonnegative integer that is not of the form

.i ˝ j / ˚ .a ˝ j / ˚ .i ˝ b/

for any integers i and j with 0 � i < a and 0 � j < b.
The Nim multiplication table begins as follows:

0 1 2 3 4 5 6 : : :

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 3 1 8 10 11

3 0 3 1 2 12 15 13

4 0 4 8 12 6 2 14
:::

To find, for example, the value of 2 ˝ 3, we need to consider the rectangles
with lower-right corner corresponding to a D 2 and b D 3. There are
six such rectangles (with upper-left corners corresponding to i D 0; 1 and
j D 0; 1; 2). For each of these rectangles, we need to compute the Nim sum
of the entries of the other three corners:

j D 0 j D 1 j D 2

i D 0 0 ˚ 0 ˚ 0 0 ˚ 2 ˚ 0 0 ˚ 3 ˚ 0

i D 1 0 ˚ 0 ˚ 3 1 ˚ 2 ˚ 3 2 ˚ 3 ˚ 3
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These values, using the table in part (a), come to 0; 2; 3; 3; 0; and 2,
respectively, and thus the smallest nonnegative integer that is not among
them is 1; hence, 2 ˝ 3 D 1.

Verify each entry in the table above and extend the table to include the
values a ˝ b for all 0 � a � 6 and 0 � b � 6.

Remarks. After our similar remarks above, it may not be surprising that
Nim multiplication also has to do with games. Namely, Second is able to
win Turning Corners (cf. Problem 9 (b) of Chap. 1) on an m-by-n board
exactly when

m�1M

iD0

m�1M

j D0

.i ˝ j / D 0;

and First has a winning strategy when it is not 0. As above, this also reveals
how the players should play for optimal outcome.



Chapter 3
How to Make a Statement?

In the previous chapter we learned how to introduce mathematical concepts with
definitions or as primitives. Once we introduce a new concept, we are interested in
its properties, usually stated as mathematical statements. Statements are sentences
that are either true or false—but not both.

To understand the difference between statements and non-statements, let us
consider some examples:

• 2n � 1.
• 2n � 1 is a prime number.
• This sentence is false.
• 6 is a nice number.
• The equation x2 C 1 D 0 has no solutions.

None of these expressions are statements. The first expression is not a statement
since it is not even a sentence. The second expression is a sentence but is not a
statement, as its truth cannot be determined until we know the value of n. For
example, it will be a true statement if n D 2 and a false statement if n D 4. Such
open sentences are called predicates. We could make this sentence into a statement
by, for example, saying that “if n D 5, then 2n�1 is a prime number”; this statement
is clearly true as 31 is prime.

“This sentence is false” is not a statement because, as it can quickly be verified,
it can be neither true nor false. Such sentences are called paradoxes.

The sentence “6 is a nice number” is not a statement either, since its truth
depends on the term “nice,” which (fortunately!) does not have a universally agreed
upon definition. However, by replacing the word “nice” with “perfect,” our sentence
becomes a statement, as perfect numbers are mathematical concepts and are defined
as follows:

Definition 3.1. A positive integer n whose positive divisors other than n add up to
exactly n is called perfect.

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-6636-9 3, © Béla Bajnok 2013
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Having made this definition, we see that 6 is indeed a perfect number, as its
positive divisors are 1, 2, 3, and 6 and 1C2C3 D 6. We will see some other perfect
numbers and examine their properties below.

Finally, the sentence “the equation x2 C 1 D 0 has no solutions” becomes a
statement only after we specify what kind of solutions we are looking for. The
equation has no real number solutions, but it has two complex number solutions,
namely, x D ˙i , where i denotes the (imaginary) square root of �1.

Mathematicians are interested in developing new concepts, making statements
about them, and deciding whether these statements are true or false. Coming up with
statements that seem true may require a lot of experimentation, and to determine
whether these statements indeed are true may require quite a bit of precise and
thorough reasoning. Let us see an example.

Above we introduced the concept of perfect numbers and saw that 6 was a perfect
number. Are there any others? It is not difficult to check that the only two-digit
perfect number is 28, for which we have 1 C 2 C 4 C 7 C 14 D 28. It takes more
work (and perhaps a computer) to verify that the only three-digit perfect number is
496, the only four-digit perfect number is 8,128, and there are no perfect numbers
with five, six, or seven digits. Perfect numbers are rather rare; to this day we only
know of a few dozen (but it is widely assumed that there are infinitely many). The
study of perfect numbers originated with the ancient Greeks who were interested in
them for certain mystical beliefs. Perfect numbers are closely related to Mersenne
primes, as we are about to see.

How can one make a true statement about perfect numbers? One can try to see
if the four perfect numbers we have found follow a pattern. If we factor them into a
product of primes, we get

6 D 2 � 3;

28 D 2 � 2 � 7;

496 D 2 � 2 � 2 � 2 � 31;

and

8; 128 D 2 � 2 � 2 � 2 � 2 � 2 � 127:

We see that each product contains a number of 2s and one relatively large prime.
Let us be more precise. One can count the number of 2s and observe that the large
prime is always one less than a power of 2. Namely, we find that

6 D 21 � .22 � 1/;

28 D 22 � .23 � 1/;

496 D 24 � .25 � 1/;
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and

8; 128 D 26 � .27 � 1/:

Now it is easy to observe that all these numbers have the form 2n�1.2n � 1/; we
get 6 for n D 2, we get 28 for n D 3, we get 496 for n D 5, and we get 8,128 for
n D 7—thus, we have found a pattern. Our next task is to find out why only these n

values appear in our pattern; in particular, why do we not get a perfect number for
n D 4 or n D 6, for example. We see that for n D 4 the expression 2n�1.2n � 1/

becomes 23 � 15 (which equals 120, not a perfect number) and for n D 6 we get
25 � 63 (another non-perfect number). It is apparent that the odd factors in these two
products (15 and 63, respectively) are not primes. Thus, we are led to the following
statement:

• The number 2n�1.2n�1/ is a perfect number for each positive integer n for which
2n � 1 is a prime number.

In order to claim that this statement is indeed true, one must verify that it holds
in every case. That is, we need to show that there are no exceptional values of n for
which 2n�1.2n�1/ is not a perfect number even though 2n�1 is a prime number. We
will see in the next chapter how this can be done. We also note in passing that it can
be proved that every even perfect number is of the form 2n�1.2n � 1/ but that only
when 2n � 1 is prime does 2n�1.2n � 1/ yield a perfect number. We do not know of
any odd perfect numbers. It has been verified that there are no such numbers below
10300, and it is generally doubted that any exist at all.

Our discussion thus far leads us to wonder when the expression 2n � 1 gives
a prime number. The number 2n � 1 is called the n-th Mersenne number (cf. our
remark after Problem 6 (a) of Chap. 2). We have seen above that 22 � 1, 23 � 1,
25 � 1, and 27 � 1 were the primes 3, 7, 31, and 127, respectively; however, 24 � 1

and 26 � 1 are not primes. We then might conjecture that the expression 2n � 1 is
prime if, and only if, n itself is prime. In other words, we suspect that the following
statements are true:

• If 2n � 1 is a prime number for some positive integer n, then n is a prime.
• If n is a positive prime number, then 2n � 1 is a prime.

How can we decide if these statements are true or false?
Let us first examine some examples. The table below contains the value and

prime factorization of 2n � 1 for n D 1; 2; : : : ; 12.
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n 2n � 1 Factorization
1 1 ��
2 3 Prime
3 7 Prime
4 15 3 � 5

5 31 Prime
6 63 3 � 3 � 7

7 127 Prime
8 255 3 � 5 � 17

9 511 7 � 73

10 1; 023 3 � 11 � 31

11 2; 047 23 � 89

12 4; 095 3 � 3 � 5 � 7 � 13

Our table shows that 2n � 1 is prime for n D 2; 3; 5, and 7, but for no other value
of n under thirteen. We then immediately see that the statement “If n is a positive
prime number, then 2n �1 is a prime” is false because we could find a prime number
n, namely, n D 11, for which 2n � 1 is not a prime. In this case we say that n D 11

is a counterexample for the statement. (The statement has other counterexamples as
well, but it is enough to find one to conclude that the statement is false.)

Let us turn now to the statement “If 2n � 1 is a prime number for some positive
integer n, then n is a prime.” This statement seems true because in the four cases
when 2n � 1 was a prime number, n was a prime as well. This is not convincing,
however, as perhaps a counterexample can be found by checking higher values of
n. We can only claim that the statement is true if we can also explain why no such
counterexample exists, and obviously, we need to do this without having to check
every value of n since there are infinitely many cases to check. We will accomplish
this in the next chapter.

While formulating statements may be easy, it can often be quite difficult to decide
if they are true or false. As our example clearly shows, if our statement involves
infinitely many cases, examining a small number of them—indeed, not examining
all of them—may lead us to an incorrect or incomplete statement. Leonhard Euler,
for example, pointed out in the eighteenth century that the quantity n2 � n C 41 is
prime for every integer value of n between �39 and 40, inclusive—a list of eighty
consecutive values—but that the values of n D �40, n D 41, n D 42, and many
others, yield composite numbers. (The number 41 is one of the lucky numbers of
Euler—see Problem 3.) It is not known to this day whether the quantity n2 � nC41

yields primes infinitely often (though this is generally believed to be the case). An
even more dramatic example was recently discovered by New York mathematician
Kevin O’Bryant: The equation

�
1

n
p

2 � 1

�

D
�

n

ln 2
� 1

2

�
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holds for every integer n that is greater than 1 and less than 777; 451; 915; 729; 368,
but is false for n D 777; 451; 915; 729; 368 (and certain other n values).

As these examples demonstrate, it is not hard to be misled by a pattern that
seems true in many cases, only to discover later that it is false in others. Most
mathematicians have at least once fallen for “capricious coincidences” to make
“careless conjectures;” several such interesting false statements are discussed in
Richard Guy’s article, The Strong Law of Small Numbers, in the American
Mathematical Monthly, Vol. 95, Issue 8 (Oct., 1988).

Problems

1. The first four perfect numbers are 6, 28, 496, and 8,128.

(a) Verify that 496 and 8,128 are indeed perfect numbers.
(b) Find the fifth perfect number. Explain why there are no other perfect

numbers strictly between 8,128 and the one found.
(Hint: You may use Problem 5 (a) of Chap. 2.)

2. Consider the following sequences (cf. Problem 8 of Chap. 2). (Assume that the
patterns continue indefinitely.) Find a pattern and then an explicit formula for
each sequence. (You do not need to provide proofs; we will do so in Chap. 13.)

(a) 41; 44; 47; 50; 53; 56; : : :

(b) 41; 43; 47; 53; 61; 71; : : :

(c) 41; 42; 44; 48; 56; 72; : : :

(d) 41; 83; 167; 335; 671; 1343; : : :

(Hint: Try a formula of the form a � 2n C b.)
(e) 41; 83; 165; 331; 661; 1323; : : :

(Hint: Try a formula of the form a � 2n C b � .�1/n.)

3. Let k be an arbitrary positive integer, and consider the function f .n/ D n2 �
n C k.

(a) Prove that there is no value of k for which f .k/ is prime.
(b) Prove that there is no value of k for which f .�k C 1/ is prime.
(c) A value of k that is more than 1 and for which f .n/ is prime for every n

between �k C 2 and k � 1, inclusive, is called a lucky number of Euler. As
we mentioned earlier, 41 is a lucky number of Euler; in fact, it is the largest
one. Find all others.

Remark. The lucky numbers of Euler play a deep role in algebraic number
theory; cf. Problem 13 in Chap. 23.

4. The following statements are all false. Provide a counterexample for each
statement.
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(a) If we write down the positive integers starting with 41 in an infinite spiral,
as partially shown, then the entries in the Northwest–Southeast diagonal are
all primes.

83

61 62 63 64 65 66

60 47 48 49 50 67

59 46 41 42 51 68

58 45 44 43 52 69

57 56 55 54 53 70

77 71

(Hint: Start by using a bit of geometry to explain why the values in question
are given either by the recursive formula you developed in Problem 8 (a)
ii of Chap. 2 or by the explicit formula you determined in Problem 2 (b)
above.)

(b) Let pi denote the i -th positive prime (i D 1; 2; 3; : : :), and for a positive
integer n, define

Kn D 1 C
nY

iD1

pi :

Then Kn is a prime number.

Remark. The number Kn is called the n-th Euclid number; we will return
to these numbers in Chap. 5.

(c) If n circles (n is a positive integer) are given in the plane in such a
way that any two of them intersect in exactly two separate points but no
three intersect in the same point, then the number of different regions they
determine in the plane is 2n.

(d) If n points (n is a positive integer) are given on a circle in general position
(i.e., no three chords meet at a single point inside the circle), then the
number of different regions that the chords determine inside the circle is
2n�1.

5. Consider the following definition:

Definition 3.2. Suppose that m is a positive integer and that r is a nonnegative
integer that is less than m. We say that an integer n is congruent to r mod m if
n leaves a remainder of r when divided by m, that is, if n � r is divisible by m.

(�64, �9, 1, 46, and 91, e.g., are all congruent to 1 mod 5.)
Consider the predicate C.m; r/:

• Every positive integer other than 1 that is congruent to r mod m has a positive
prime divisor that is also congruent to r mod m.
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Find all values of m and r with 2 � m � 8 and 0 � r � m�1 for which C.m; r/

becomes a true statement. (For each pair m, r , either find a counterexample or
explain why a counterexample does not exist.)

6. Consider the following four statements:

(a) Every positive integer can be written as the sum or the difference of two
perfect squares. (Consider 0 to be a perfect square.)

(b) Every odd positive integer can be written as the sum or the difference of
two perfect squares.

(c) Every positive integer can be written as the sum or the difference of two
positive primes.

(d) Every even positive integer can be written as the sum or the difference of
two positive primes.

Two of these statements are false, one is true, and one is an undecided
open problem. Decide which is which. For each false statement, provide a
counterexample; for the true statement, provide a justification. (The open
problem is a famous conjecture that mathematicians have been unable to decide
for hundreds of years—though most believe that it is true.)

7. The objective of this problem is to learn the lesson that diagrams (especially
faulty ones like ours below) can lead us to false conjectures.

Recall that we defined the Fibonacci sequence recursively by F1 D 1, F2 D
2, and Fn D Fn�1 C Fn�2 for n � 3 (cf. page 14). The following is a diagram
of a square with side lengths Fn, divided into four regions. Two of the regions
are right triangles with side lengths Fn�2 and Fn; the other two regions are
trapezoids with two right angles and side lengths Fn�1, Fn�1, and Fn�2, as
indicated. (Note that a segment of length Fn may be divided into a segment of
length Fn�1 and a segment of length Fn�2.) The area of the square equals F 2

n .
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Fn�2 Fn�1

Fn�1 Fn�2

Fn�1

Fn�2

Fn�1

Fn�2

Fn

Our next diagram is a rearrangement of the four regions so that they form a
rectangle of side lengths FnC1 and Fn�1, respectively. (Note that a segment of
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length FnC1 may be divided into a segment of length Fn�1 and a segment of
length Fn.) The area of the rectangle equals Fn�1 � FnC1.

������������������������

Fn�1 Fn�1

Fn Fn�1

Fn�1 Fn

Fn�2

Fn�2

Since the rectangle of the second diagram must have the same area as the
square of the first diagram, we get the claim

Fn�1 � FnC1 D F 2
n :

(a) Find some counterexamples for this claim.
(b) Find the mistake(s) in the argument above. Be as specific as possible.

(Hint: Draw accurate diagrams for some small values of n. Make sure to
include both even and odd n values.)

(c) Although our claim is false, Fn�1 � FnC1 and F 2
n are quite close to

one another. State a correct conjecture for an equation involving these
quantities. (You do not need to prove your claim.)

8. For positive integers n, m, and k, let P.n; m; k/ denote the predicate that n can
be written as the sum of m terms, each of which is a perfect k-th power (the k-
th power of a nonnegative integer). For example, P.100; 4; 2/ is the statement
that 100 can be written as the sum of four squares (true, since, e.g., 100 D
102 C 02 C 02 C 02 or 100 D 92 C 32 C 32 C 12), and P.100; 5; 3/ is the
statement that 100 can be written as the sum of five nonnegative cubes (also
true, since 100 D 43 C 33 C 23 C 13 C 03).

For each predicate below, find at least one example for n, m, and k for which
the predicate becomes a true statement and at least one example for which it
becomes a false statement. If this is not possible, explain why.

(a) P.100; 5; k/

(b) P.100; m; 4/

(c) P.n; 3; 2/

Remark. The predicate P.n; 4; 2/ is true for every n, as proved by Joseph-
Louis Lagrange in 1770.

(d) P.n; 8; 3/
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Remark. The predicate P.n; 9; 3/ is true for every n; this was proved by
Arthur Wieferich and Aubrey Kempner around 1912.

(e) P.n; k2; k/

(f) P.2k � 1; 2k � 2; k/

(g) P.2k � b. 3
2
/kc � 1; 2k C b. 3

2
/kc � 3; k/

Remark. These questions are related to a famous problem in additive number
theory. For a given positive integer k, Waring’s problem asks for g.k/, the
smallest integer m for which P.n; m; k/ is true for every n. Part (g) above yields
the lower bound

g.k/ � 2k C
$�

3

2

�k
%

� 2:

At the present time we know that g.k/ indeed exists for every k (a 1909 result
of David Hilbert) and agrees with this lower bound for every k � 471; 600; 000

and every “sufficiently large” k (thus leaving only finitely many cases open).

9. For each statement below, decide whether the statement is true or false. Provide
as thorough a justification as you deem necessary. (Cf. Problem 8 in Chap. 1.)

(a) In every group of five people, there are two people who know the same
number of people in the group (assume that “knowing one another” is
mutual).

(b) In every group of five people, either there are three people who all know
each other or there are three people so that no two of them know each other
(or both).

(c) In every group of six people, either there are three people who all know
each other or there are three people so that no two of them know each other
(or both).



Chapter 4
What’s True in Mathematics?

In the last chapter we made the assertions that the statements

• The number 2n�1.2n�1/ is a perfect number for each positive integer n for which
2n � 1 is a prime number.

• If 2n �1 is a prime number for some positive integer n, then n is a prime number.

are true, and we promised arguments that demonstrate them without any doubt. We
will provide these in this chapter.

Before addressing these two mathematical statements, let us discuss briefly what
we mean by an argument that demonstrates a statement’s truth without any doubt.
We mean what we say: our argument should not leave any possible doubt to the truth
of our statement. How does this notion compare to that in other fields? In criminal
law, the highest level of proof requires the establishment of the claim to the extent
that there is no reasonable doubt in the mind of a reasonable person. (Even lower
levels of proof may be satisfactory in civil trials.)

The standards are higher in some branches of science, where a statement is
considered true if it can be experimentally verified. While this assures that there
is overwhelming evidence for the claim and there are no known counterexamples
for it, the level of certainty in mathematics is absolute: mathematicians must verify
that no one could ever possibly find any counterexamples for the statement in the
future either. This is quite a demanding requirement!

The following puzzle demonstrates our point. Given a standard 8-by-8 chess
board from which two diagonally opposite corner squares are removed, as shown
below, is it possible to tile the remaining 62 squares with 31 dominoes (2-by-1
rectangles)? Some experimentation will sooner or later lead everyone to conjecture
that this cannot be done—but can we be sure?

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-6636-9 4, © Béla Bajnok 2013
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Well, it is clear that the top row of the board, which only has seven squares,
cannot be tiled without some dominoes also partially covering the next row. So the
top row will fully house at most three dominoes, but perhaps none (maybe each of
its seven squares will be covered by vertically placed dominoes). Soon we find that
there are too many cases with too many subcases—so we cannot possibly expect to
explore every possible scenario. (In theory, one could delegate the verification of all
cases to an extensive computer program—something that not all mathematicians
view as satisfactory. In situations with infinitely many possibilities, a computer
cannot possibly suffice.)

Here is a beautifully simple argument that convinces us that the tiling cannot be
done. Recall that each square of the chess board is colored by one of two colors
(usually black or white) in an alternating pattern. This assures that each domino
will cover exactly one square of each color. Thus, 31 nonoverlapping dominoes
will cover exactly 31 black and 31 white squares. But the two diagonally opposite
squares are of the same color, so, after removing them, we are left with 30 squares
of one color and 32 of the other; therefore, the required tiling is not possible.

The difficulty of this puzzle lies in the fact that we have to verify that something
is impossible; this requires evaluating every possibility. Nevertheless, our argument
achieves its task: after understanding this elegant argument, we can be absolutely
sure that no one in the future will find a tiling! In fact, it achieves more; it shows that
the board cannot be tiled whenever any two squares of the same color are removed.
In Problem 1, we examine the case when two squares of opposite color are removed.

In mathematics, a rigorous logical argument that will convince everyone (i.e.,
everyone with sufficient mathematical background) of the truth of the statement
is called a proof. A mathematical statement that is supported by a proof is called
a theorem. (The term proposition is usually used instead when we regard our
statement as less important.) The idea of proofs was originated by Thales of Miletus
more than 2,500 years ago and is the cornerstone of mathematics. We will see a
large number and variety of proofs in this book.

Let us now return to the two statements at the beginning of our chapter and see
how we can provide proofs for them so that they become theorems. These particular
theorems were chosen because their statements involve very few terms that require
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definition and explanation, yet their proofs are complex enough to illustrate various
components and techniques that often appear in proofs.

We start with the following:

Theorem 4.1. Let n be a positive integer for which 2n � 1 is a prime number. Then
the number 2n�1.2n � 1/ is a perfect number.

Before proving Theorem 4.1, let us make some comments. We have already seen
in Chap. 3 that our theorem holds for n D 2 and n D 3, and in Problem 1 (a) of
Chap. 3, we also verified the cases n D 5 and n D 7. Note, however, that, as we
pointed out earlier, we need to prove that our statement has no counterexamples and
we know nothing about the positive integer n other than the fact that 2n � 1 is a
prime number. We have infinitely many n values to consider, so we cannot possibly
evaluate every case individually. Our proof below will address all cases.

Let us make another observation. The definition of a perfect number
(cf. Definition 3.1) refers to the sum of the positive divisors of the number other
than the number itself. It will be convenient for us to use the notation �.n/ for the
sum all of the positive divisors of a given integer n (i.e., the number n itself is
included). In terms of this notation, we can say that the positive integer n is perfect
exactly when �.n/ D 2n. Now let us see the proof of Theorem 4.1.

Proof. We are given that n is a positive integer for which 2n � 1 is a prime number,
and our goal is to prove that 2n�1.2n � 1/ is a perfect number. According to the
notation we just introduced, for 2n�1.2n � 1/ to be perfect, we would need to
verify that

�.2n�1.2n � 1// D 2 � 2n�1.2n � 1/ D 2n.2n � 1/:

We first list the positive divisors of 2n�1.2n � 1/. Since we are assuming that the
number 2n � 1 is prime, the divisors of 2n�1.2n � 1/ are as follows:

1; 2; 22; 23; : : : ; 2n�1;

and

2n � 1; 2.2n � 1/; 22.2n � 1/; 23.2n � 1/; : : : ; 2n�1.2n � 1/:

The sum of the divisors in the first row is

1 C 2 C 22 C 23 C � � � C 2n�1 D 2n � 1;

and the sum in the second row is

.2n � 1/.1 C 2 C 22 C 23 C � � � C 2n�1/ D .2n � 1/.2n � 1/:

Therefore, we get

�.2n�1.2n � 1// D .2n � 1/ C .2n � 1/.2n � 1/ D 2n.2n � 1/;

and this is what we intended to prove. Therefore, 2n�1.2n�1/ is a perfect number.ut
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Our proof consists of the recollection of the relevant definitions (e.g., divisor,
perfect number) and a sequence of true statements, and we mark the end of a proof
by the symbol �. When reading a proof, one needs to carefully verify that each
statement in the proof is true. How can one be sure that each statement is true?

Consider, for example, the statement that

1 C 2 C 22 C 23 C � � � C 2n�1 D 2n � 1:

(This is, perhaps, the least obvious of the statements involved in our proof.) This
statement is clearly true for n D 1 (we get 1 D 1); we can also easily verify our
statement for n D 2 (1C2 D 22 �1), for n D 3 (1C2C4 D 23 �1), etc. As n gets
larger, however, these identities get more complicated, and there are infinitely many
n values to check! To claim that our equation holds for every n, we must provide
an argument. We will indeed provide such an argument in Chap. 13 using the proof
technique of mathematical induction.

If the proof of a theorem, say Theorem A, uses the statement of Theorem B , then
we say that Theorem A is a corollary of Theorem B and that Theorem B is a lemma
for Theorem A. For example, our theorem above is a corollary of the stated identity
for 1 C 2 C 22 C 23 C � � � C 2n�1, and this identity is a lemma for our theorem. In
turn, this identity will itself be the corollary (indeed, a special case) of the following
more general lemma:

Lemma 4.2. If a and b are arbitrary real numbers and n is a positive integer, then

.a � b/ � �an�1 C an�2b C an�3b2 C � � � C abn�2 C bn�1
� D an � bn:

In our proof above, we used Lemma 4.2 with a D 2 and b D 1.
Let us now consider another statement involved in our proof, the statement that

.2n � 1/ C .2n � 1/.2n � 1/ D 2n.2n � 1/:

How do we know that this is true? This statement seems quite obvious for everyone
who is familiar with basic algebra: we can factor out 2n � 1, then combine the terms
1 and 2n �1 to write 2n.2n �1/. We could, in fact, state these statements as lemmas,
but one feels that they are pretty obvious and, therefore, the need for a formal proof
is not as keen. How can we decide if a particular statement requires a proof or not?

Clearly, one cannot reduce all statements to previously proved lemmas, as these
lemmas would have to rely on earlier ones as well—the process cannot be traced
back indefinitely. So, just as we had to build our definitions on a collection of
undefined concepts (primitives), we have to build our proofs on a collection of
statements that we regard as true. Statements whose truth we accept without proofs
are called axioms.

Each branch of mathematics has its own axioms; however, as with primitives, the
choice of axioms is somewhat flexible. For example, when we study geometry, we
use Euclid’s five axioms, two of which can be stated as follows:
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Axiom 4.3. Given two points P and Q in the plane, there is a unique line l that
contains both P and Q.

Axiom 4.4. Given two points P and Q on a line l , and given an arbitrary distance
d , there is a unique point R on l such that Q is between P and R and the points Q

and R have distance d .

Our proof above uses the axioms of algebra, such as the associativity, commuta-
tivity, and distributivity of addition and multiplication of numbers. These axioms of
algebra allow us, for example, to write

.2n � 1/ C .2n � 1/.2n � 1/ D 2n.2n � 1/:

Our goal in this course is not to reduce every statement to the axioms—this would
take too long and would not be very interesting. We will, however, see later in this
course how this could be done.

The truth of our mathematical system depends on the set of axioms we choose.
If we start with a different set of axioms, then we develop a different theory as its
consequence. Thus, one might say that what is true in mathematics (the question
posed in the title of this chapter) is whatever we wish to be true. It is its perceived
importance and applicability that determines which set of axioms is most useful.

We call a collection of axioms:

• Consistent if they do not lead to a contradiction
• Independent if no axiom can be proved using the others

We require that any system of axioms be consistent; independence, while desirable,
is not essential.

It is not always easy—and, as we will see, it is sometimes impossible—to decide
whether a particular axiomatic system is independent and consistent. The usual way
to prove that a system is consistent is to create a model for the system. For example,
it is possible to construct models for the various number systems (e.g., the integers
or the real numbers), and thus, their axiomatic systems are consistent (we will carry
this out in Chap. 23).

The question of independence is also difficult. A famous historical example is
the case of the fifth of Euclid’s axioms, referred to as the Parallel Postulate:

Axiom 4.5 (The Parallel Postulate). If P is a point and l is a line so that P does
not lie on l , then there is a unique line l 0 that contains P and is parallel to l .

It was unknown for more than two thousand years whether the Parallel Pos-
tulate could be proved using Euclid’s other four axioms. Finally, in the 1830s,
three mathematicians—the Hungarian János Bolyai (1802–1860), the German Carl
Friedrich Gauss (1777–1855), and the Russian Nicolai Ivanovitch Lobachevsky
(1792–1856)—proved (independently of each other, although, according to some
accounts, Gauss was aware of Bolyai’s work) that this is not the case:

Theorem 4.6. The Parallel Postulate is independent of Euclid’s other four axioms.
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Sometimes two contradicting axioms may both give rise to interesting and
applicable theories. For example, assuming that the line l 0 that contains P and
is parallel to l is not unique, we can develop the theory of a non-Euclidean
geometry (in particular, elliptic geometry assumes that there is no parallel line,
and hyperbolic geometry assumes that there are infinitely many). It is for physicists
and astronomers to decide which of these models describes the geometry of the
universe—mathematicians, staying out of such arguments, are only concerned with
the consequences of the particular choice of axioms.

As we have mentioned above, the proof of a mathematical statement consists of
other true statements, and each statement, in turn, needs to follow from the axioms.
The concept of one statement following from another can be made more precise, but
we will not explain this here. We will, instead, develop a heuristic understanding of
the logical structure of our proofs. In some cases, this structure will be apparent and
easy to follow. Our second theorem includes an example of a logical structure that
is not necessarily evident, yet is typical for many proofs.

Theorem 4.7. Let n be a positive integer. If 2n � 1 is a prime number, then n is a
prime number as well.

Proof. We are given that n is a positive integer for which 2n � 1 is a prime number,
and our goal is to prove that n is a prime; that is, n has exactly two positive divisors.
We will accomplish this by showing that n has at least two, but not more than two,
positive divisors.

First, we note that n cannot be 1 if 2n � 1 is a prime, since for n D 1 we have
2n � 1 D 1, which is not a prime. Since n is certainly divisible by 1 and n and these
two divisors are different (as n 6D 1), n has to have at least two positive divisors.

To prove that n has no divisors other than 1 and n, we assume that c is a positive
divisor of n, and we will show that then either c D 1 or c D n. Because c is a
positive divisor of n, by definition, there is a positive integer k for which n D c � k,
and therefore, 2n � 1 D 2c�k � 1. We can rewrite this latter quantity as .2c/k � 1.

With a D 2c , b D 1, and n D k, Lemma 4.2 implies that .2c/k � 1 is divisible
by 2c � 1. But, according to our assumption, 2n � 1 is a prime, so it can only have
2c � 1 as a divisor if 2c � 1 D 1 or 2c � 1 D 2n � 1. From these equations we get
that c D 1 or c D n, as claimed.

Thus, we have proved that n has at least two, but not more than two, positive
divisors. Therefore, n must be a prime number. ut

Theorem 4.7 gives us the opportunity to point out a logical structure that is rather
peculiar. When proving that n had to be a prime, we needed to establish that it had
exactly two positive divisors. We did not prove this directly. Instead, we proved that
n could not have less than two or more than two positive divisors—in other words,
n could not be 1 or a composite number. This only left the case of n having exactly
two positive divisors, so n had to be a prime by Definition 2.1. Proofs that use this
kind of an argument are called indirect proofs; they are based on the notion that if
a statement cannot be false, then it has to be true. We will study indirect proofs in
detail later.
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There are many different kinds of proofs—mathematical induction and indirect
proofs, mentioned above, are two of the most important techniques—and one can
write a proof in a variety of different ways. In fact, there is no single correct way
to write a proof; it depends on who it is intended for (beginner students, experts in
the field, etc.) and what we wish to emphasize (why our statement is true, how we
discovered it, etc.). But proofs, above all, must be clear and convincing.

Needless to say, constructing and writing (and sometimes even understanding)
a proof can be quite challenging. We will practice these skills extensively (but
gradually) in this book.

Problems

1. Prove that whenever two squares of opposite color are removed from a standard
8-by-8 chess board, it is always possible to tile the remaining 62 squares with
31 dominoes.

(Hints: Consider the following diagram:
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�
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��
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��

The diagram features a closed path through the 64 squares on the board, that
is, a path that always takes us from a square to a vertically or horizontally
neighboring square, going through each square exactly once, with the final
square in the path the same as the initial square. There are, of course, many
other such closed paths; any one of them will do. Use the diagram to generate
a proof that handles all of the cases simultaneously, regardless of which two
squares of opposite color are removed.)

2. Prove that there is no collection of points in the Euclidean plane that intersects
every line exactly once.

(Hint: Rely on two of Euclid’s axioms mentioned above to prove that neither a
collection of at least two points nor one consisting of a single point works.)

Remark. It is known that a point set that intersects every line in the plane
exactly twice does exist; however, one cannot visualize such a set (cf. page 227).
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3. Suppose that c is an arbitrary real number and m is a positive integer. Use
Lemma 4.2 to find a direct formula (one without summation) for each of the
following. Your formula should work for any choice of c and m.

(a) 1 C c C c2 C c3 C � � � C cm

(b) .1/ C .1 C c/ C .1 C c C c2/ C � � � C .1 C c C c2 C c3 C � � � C cm/

4. Alvin has a New Year’s resolution: he wants to start saving money toward his
ultimate goal of $100,000. His bank accounts earn a 0.3 % daily interest rate,
compounded each day; the bank is open for business every day of the year.
(Why can’t we all have access to this bank?)

(a) How long would it take him to achieve his goal if he opened a new account
every day with a $1 investment?

(b) Not being satisfied with the answer above, Alvin decides to adopt the
following strategy: starting on January 1, and each day of the year, he (i)
opens a new account with a $1 investment and (ii) deposits $1 into each
of his other existing accounts. (So this will cost him $1 on January 1, $2
on January 2, etc.) Will Alvin achieve his goal by December 31? (Note: A
year contains either 365 or 366 days.)

5. (a) Let a, b, k, and n be positive integers, and suppose that a ¤ b (and
therefore, an 6D bn). Prove that Lemma 4.2 implies that

akn � bkn

an � bn
and

ak � bk

a � b

are integers.
(b) Consider the following theorem:

Theorem 4.8. Suppose that a and b are distinct positive integers and that
k and n are relatively prime positive integers. Then

akn � bkn

an � bn
is divisible by

ak � bk

a � b
:

Verify Theorem 4.8 for a D 2, b D 1, n D 3, and each value of k between
1 and 10, inclusive.

(c) Use Theorem 4.8 to prove the following:

Lemma 4.9. If a and b are positive integers and n is an odd positive
integer, then an C bn is divisible by a C b:

(Hint: Since Theorem 4.8 assumes that a and b are distinct, you need to
treat the case when a D b separately.)

(d) Use Theorem 4.8 to prove the following:

Lemma 4.10. If a and b are positive integers and n is a positive integer
that is not divisible by 3, then a2n Canbn Cb2n is divisible by a2 CabCb2:
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(e) Prove Lemma 4.9 using Lemma 4.2 but without relying on Theorem 4.8.
(In Chap. 14 we will use induction to prove Lemma 4.10.)

6. (a) Prove that the only positive integer n for which 4n � 1 is a prime number is
n D 1.

(b) Prove that the only positive integer n for which n7 � 1 is a prime number
is n D 2.

(c) Prove that the only positive integer n for which n7 C 1 is a prime number
is n D 1.

(d) Prove that the only positive integer n for which 4n4 C 1 is a prime number
is n D 1.
(Hint: 4n4 C 1 D 4n4 C 4n2 C 1 � 4n2 D .2n2 C 1/2 � .2n/2.)

Remark. It is generally very hard to see how many prime values a given
expression yields. For example, it is still unknown whether n2 C 1 assumes
finitely many or infinitely many prime values as n ranges through the positive
integers.

7. Recall that a positive integer n is perfect whenever �.n/, the sum of all its
positive divisors, equals 2n. It is customary to call n deficient when �.n/ < 2n

and abundant when �.n/ > 2n. For example, among the first thirty positive
integers, two (6 and 28) are perfect, five (12, 18, 20, 24, and 30) are abundant,
and the rest are deficient. Below we investigate deficient and abundant numbers;
in particular, we show that there are infinitely many deficient numbers and
infinitely many abundant numbers:

(a) Prove that the number 2n is deficient for every positive integer n.
(b) Prove that the number 3n is deficient for every positive integer n.
(c) Prove that the number 2n � 3 is perfect for n D 1 and abundant for every

integer n � 2.
(d) Prove that the number 2 � 3n is perfect for n D 1 and abundant for every

integer n � 2.
(e) Prove that 2n�1.2n � 1/ is abundant whenever n is a positive integer for

which the number 2n � 1 is composite.
(f) Let m and n be positive integers and assume that 2n � 1 is a prime number.

Theorem 4.1 says that 2m.2n � 1/ is a perfect number when m D n � 1.
Prove that 2m.2n�1/ is a deficient number when m < n�1 and an abundant
number when m > n � 1.

8. We say that a positive integer n is super perfect whenever �.�.n// D 2n. For
example, 16 is a super-perfect number since

�.�.16// D �.1 C 2 C 4 C 8 C 16/ D �.31/ D 1 C 31 D 32:

Find, with proof, a statement similar to Theorem 4.1 about super-perfect
numbers.
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9. Given positive integers n and m, set

Fn.m/ D
mX

iD0

.2i /n D 1 C 2n C � � � C .2m/n:

We then have F1.m/ D 2mC1 � 1 (Mersenne numbers) and Fn.1/ D 2n C 1

(Fermat numbers); cf. Problem 6 of Chap. 2. Earlier in this chapter we discussed
when F1.m/ could be prime; in this problem we do the same for Fn.1/ and
Fn.2/. (These ideas can also be generalized for Fn.m/ for all n and m.)

(a) Use Lemma 4.9 above to prove that if n is a positive integer for which
Fn.1/ D 2n C 1 is a prime number, then n must be even or equal to 1.
(Hint: Prove that if Fn.1/ is prime, then the only way for n to be odd is if
n D 1.)

(b) Use Lemma 4.9 above and the following lemma to prove that if n is a
positive integer for which 2n C 1 is a prime number, then n is a power of 2,
that is, n D 2k for some nonnegative integer k:

Lemma 4.11. Every positive integer can be expressed as the product of an
odd positive integer and a (nonnegative integer) power of 2.

Remarks. Lemma 4.11 can be easily established: it simply says that given
a positive integer n, once we factor out as many factors of 2 as we are able
to (if any), we are left with an odd factor c. For example, for n D 120 we
have 120 D 2 � 60 D 2 � 2 � 30 D 2 � 2 � 2 � 15 D 23 � 15; for n D 16,
we have 128 D 27 � 1. Lemma 4.11 is an immediate consequence of the
Fundamental Theorem of Arithmetic discussed in Chap. 14.

As we mentioned in Problem 6 (b) in Chap. 2, the only prime Fermat
numbers known to this day are 21 C 1 D 3, 22 C 1 D 5, 24 C 1 D 17,
28 C 1 D 257, and 216 C 1 D 65; 537.

(c) Use Lemma 4.10 above to prove that if n is a positive integer for which
Fn.2/ D 4n C 2n C 1 is a prime number, then n must be divisible by 3 or
equal to 1.

(d) Use Lemma 4.10 above and the following lemma to prove that if n is a
positive integer for which 4n C 2n C 1 is a prime number, then n is a power
of 3, that is, n D 3k for some nonnegative integer k:

Lemma 4.12. Every positive integer can be expressed as the product of an
integer that is not divisible by 3 and a (nonnegative integer) power of 3.

Remarks. It is easy to check that Nk D 43k C 23k C 1 is a prime number
for k D 0 (when N0 D 7), k D 1 (when N1 D 73), and k D 2 (when
N2 D 262; 657); however, Nk is composite for all other values of k below
10. It is not known how many values of n there are for which 43k C 23k C 1

is a prime number.
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10. In the Plutonian alphabet, used on planet (asteroid?) Pluto, there are only four
letters: A, B, C, and D. Therefore, any word in Plutonian is a finite string of
these four letters (where each letter can appear any number of times or not at
all). Suppose that the following rules hold:

• (W1) A and BCD are words in the language.
• (W2) Whenever a word contains the letter B, it also remains a word if the B

is deleted (and the remaining space is closed up). Similarly, strings obtained
from Plutonian words by deleting two consecutive Cs or three consecutive
Ds are also Plutonian words.

• (W3) If the letter A appears in a word, then it can be replaced by the string
DCB, and the result is another word.

• (W4) The letter B can be replaced by the string CDA and we get another
word.

• (W5) If any two words are written consecutively, then we can delete the
space between them, and the resulting string is another word in the language.

Prove that every finite string (of the four letters) is a Plutonian word.
11. Policies at a certain college require that the following “axioms” hold:

• (C1) There must be at least two classes offered each semester.
• (C2) Each class must have at least three students in it.
• (C3) Every student must take at least three classes each semester.
• (C4) For each two students, there must be exactly one class that both students

take (during the same semester).
• (C5) For each two classes, there must be exactly one student who is in both

classes.

(a) Suppose that the college offers seven classes in a certain semester. Suppose
that the enrollments in these classes are as follows (students are numbered
1, 2, 3, etc.):
Class A: 1, 2, 4
Class B: 2, 3, 5
Class C: 3, 4, 6
Class D: 4, 5, 7
Class E: 5, 6, 1
Class F: 6, 7, 2
Class G: 7, 1, 3
Decide which of the five axioms are satisfied.

(b) Design an example where all five axioms are satisfied and at least one class
has four students in it.
(Hints: Suppose that thirteen classes are offered and start with students 1,
2, 4, and 10 taking Class A.)

(c) Explain why the five axioms are consistent.
(d) Explain why axiom (C1) is independent from the other four axioms.
(e) Explain why axiom (C2) is independent from the other four axioms.
(f) Explain why the five axioms are not independent.
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(Hint: Prove that axioms (C1), (C2), (C4), and (C5) imply (C3).)

Remark. This problem is modeled after an important and well-studied mathe-
matical structure. A system of points and lines satisfying the five axioms above
(with “students” playing the role of points and “classes” interpreted as lines)
is called a projective plane. Note that the Parallel Postulate does not hold in a
projective plane; in fact, by axiom (C5), any two lines meet at a point. It can
be shown that in a finite projective plane, the number of points and the number
of lines must be equal, and they must be of the form n2 C n C 1 for some
integer n � 2; furthermore, each point is on exactly n C 1 lines, and each line
contains exactly n C 1 points. It is a very famous open question to decide what
the possible values of n can be. As parts (a) and (b) above indicate, n D 2

and n D 3 are possible; it is widely believed that all possible values of n are
(nonnegative integer) powers of primes such as n D 2, 3, 4, 5, 7, 8, 9, 11, 13,
16, etc. It has been shown that n cannot be 6, 10, 14, 21, 22, or any of another
infinitely many values; of these, n D 10 was the one most recently excluded
(this was done by a computer program designed by C.W.H. Lam, L. Thiel, and
S. Swierz in 1989). Infinitely many others remain undecided as of today, the
five smallest of which are n D 12, 15, 18, 20, and 24.



Chapter 5
Famous Classical Theorems

There are many famous theorems in mathematics. Some are known for their
importance, others for their depth, usefulness, or sheer beauty. In this chapter we
discuss seven of the most remarkable classical theorems; in the next chapter, we
discuss three others from more recent times. Our choices for this top ten list were
motivated primarily by the nature of their proofs; we apologize if we did not
choose your favorite theorem. (A more representative top 40 list can be found in
Appendix D at the end of the book.) Here we included theorems that are considered
to have the oldest, the most well-known, the most surprising, the most elegant, and
the most unsettling proofs. Some of the theorems in our list were disappointing—
even angering—to mathematicians of the time, others were celebrated instantly
by most.

The first four of our theorems come from antiquity, and their proofs will be
studied in detail. However, as we turn to more recent results, we will not be able
to provide proofs—this would be far beyond the scope of this book.

We start with what historians of mathematics regard as the oldest theorem in
mathematics, oldest in the sense that it was the first statement for which a rigorous
proof was given. This is the following theorem discovered in the sixth century BCE
by the Greek mathematician and scientist Thales of Miletus:

Theorem 5.1 (Thales’s Theorem). If a triangle is inscribed in a circle so that one
of its sides goes through the center of the circle, then the angle of the triangle that
is opposite to this side is a right angle.

A proof to Thales’s Theorem, using basic properties of triangles, can be
established easily—we leave this as Problem 1.

Our next theorem might be the “most well-known” theorem in mathematics.
While once thought to have been discovered by Pythagoras and his circle of friends
at the end of the sixth century BCE, we now know that the Babylonians as well as
the Chinese knew of this result about a 1,000 years earlier.
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Theorem 5.2 (The Pythagorean Theorem). If a and b are the lengths of the two
legs of a right triangle and c is the length of its hypotenuse, then

a2 C b2 D c2:

There are many nice proofs of this theorem (a collection of 370 proofs, published
by Elisha Scott Loomis, appeared in 1927); one such proof is assigned as Problem 2.

About a century and a half after Pythagoras’s time came the shocking discovery
that not every number can be written as a fraction of two integers, as was believed
by the Greeks of the fifth century BCE. In particular, the diagonal of a square
is incommensurable with its sides: there is no unit length (no matter how small)
such that both the side and the diagonal of the square have lengths that are integer
multiples of this unit length. Applied to the square with side length 1 and using
today’s terminology, we can say that

p
2 is not a rational number. This was quite a

setback in ancient Greece where irrational numbers were not accepted. The proper
theory of real numbers, including both rationals and irrationals, was not fully
developed until the nineteenth century. We will discuss this theory in Chap. 23; in
particular, we will prove that

p
2—defined as the unique positive real number whose

square equals 2 (cf. Problem 1 of Chap. 2)—indeed exists.
Taking the existence of

p
2 now for granted, we may state our claim as follows:

Theorem 5.3. The number
p

2 is irrational.

We will provide a proof to this theorem. Our proof will again demonstrate an
indirect method, as was the case for our proof of Theorem 4.7. Namely, we prove
that

p
2 is irrational by proving that it cannot be rational.

Proof. Suppose, indirectly, that
p

2 is a rational number, so there are integers a and
b for which

p
2 D a

b
. Let d be the greatest common divisor of a and b. Then there

are integers a0 and b0 for which a D da0, b D db0, and a0 and b0 are relatively
prime. Furthermore, we have

p
2 D a0

b0
.

Now squaring both sides and multiplying by .b0/2 yields 2.b0/2 D .a0/2. This
implies that .a0/2 is an even integer. But if .a0/2 is even, then a0 must also be
even. Therefore, there exists an integer Oa for which a0 D 2 Oa. Substituting this into
2.b0/2 D .a0/2 and dividing by 2 yields .b0/2 D 2. Oa/2. This means that .b0/2 is even
from which, as above, we can conclude that b0 is even; thus there exists an integer Ob
for which b0 D 2 Ob. Therefore, we now get that a0 and b0 have a common factor of 2,
contradicting that they are relatively prime. Hence

p
2 cannot be a rational number.

Note that our proof relies (twice) on the statement that if the square of an integer
is even, then the integer must also be even. There are several (easy) proofs for this
statement; we here just refer to Euclid’s Principle: a prime number cannot divide a
product of two integers without dividing at least one of them (cf. page 12). So, for
example, if .a0/2 D a0 � a0 is divisible by 2, then a0 must be divisible by 2.
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Our last theorem from antiquity is not at all surprising, but its first proof, given
by Euclid around 300 BCE, is what many mathematicians consider to be the most
elegant proof of all time.

Theorem 5.4. There are infinitely many prime numbers.

Proof. We will prove that there are infinitely many positive primes by showing
that no finite list of positive primes can contain all of them. Suppose that we are
given finitely many, say n, positive primes, namely, p1; p2; : : : , and pn. Consider
the quantity

Kn D p1 � p2 � � � � � pn C 1:

Since Kn is an integer greater than 1, by the Fundamental Theorem of Arithmetic
(cf. Chap. 2), it must have at least one positive prime factor (whether it is prime or
not). We will prove that this prime cannot equal any of p1; p2; : : : ; pn; therefore,
there must exist at least one additional positive prime.

Indeed, if Kn were divisible by pj (where j D 1; 2; : : : ; or n), then we could
write Kn as pj � c for some positive integer c. Clearly, the product p1 � p2 � � � � � pn

is also divisible by pj ; say it equals pj � d for some positive integer d . But then we
have

1 D Kn � p1 � p2 � � � � � pn D pj � c � pj � d D pj � .c � d/;

which is impossible, since 1 cannot be divisible by the prime pj . This establishes
our claim.

Why is this proof so elegant? Because it establishes the fact that the number of
primes is indeed infinite without ever exhibiting more than finitely many primes.
Furthermore, the argument establishing that no finite list of primes can possibly
contain all of them does not yield explicit additional primes. It is important to point
out that we do not claim that Kn itself is prime, only that it has some prime divisor
that is different from those listed (cf. Problem 3(b) in Chap. 3). We should also note
that the Fundamental Theorem of Arithmetic, which our proof uses but which we
choose to prove only in Chap. 14, can be proved without the theorem just proven, so
we do not have a circular argument.

We now jump more than 2,000 years and turn to a surprising theorem that was
discovered in the nineteenth century. First some background.

For a given nonnegative integer n and for real numbers cn; : : : ; c2; c1; c0, with
cn 6D 0, a polynomial of degree n is a function f defined on the set of real numbers
R with

f .x/ D cnxn C � � � C c2x2 C c1x C c0:

Here cn; : : : ; c0 are called the coefficients of f . If n D 0, n D 1, n D 2,
or n D 3, then the polynomial is called constant, linear, quadratic, or cubic,
respectively. (Also, so that the set of polynomials forms a closed set for addition and
subtraction—for example, x2 can be added to �x2—we define the zero polynomial
with f .x/ D 0; it is customary to say that the zero polynomial has degree �1.)
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Clearly, a nonzero constant polynomial has no roots; a linear polynomial c1xCc0

has one root: �c0=c1. We are all familiar with the quadratic formula; it determines
the roots of a polynomial of degree 2, and it involves square roots as well as the
four arithmetic operations (addition, subtraction, multiplication, and division). The
prominent question of whether there are similar formulas for polynomials of higher
degree wasn’t settled until the sixteenth century, when Niccolo Tartaglia developed
a formula for the roots of the general cubic (degree 3) polynomial, a formula that
uses only the arithmetic operations, square roots, and cube roots. Soon after, a
formula for quartic (degree 4) polynomials was developed by Tartaglia’s nemesis
Ludovico Ferrari. Both formulas were published by Gerolamo Cardano in 1545 in
his book Ars Magna; in fact, Tartaglia’s solution for the cubic equation is known to
this day as Cardano’s Formula. (The question of who really deserves full credit for
discovering these formulae was hotly debated at the time; the vicious fight among
Tartaglia, Ferrari, Cardano, and several other Renaissance Italians was a low point
of sixteenth-century mathematics.)

The search eventually turned to finding an algebraic formula (one that only uses
arithmetic operations and roots) for the solution of the general quintic (degree 5)
equation. In one of the most surprising moments in the history of mathematics,
in 1824 the Norwegian mathematician Niels Abel (1802–1829) announced that
no such formula can exist. Later it was discovered that the Italian mathematician
Paolo Ruffini (1765–1822) had published a proof of the same result 25 years earlier.
Although Ruffini’s proof was not complete, the theorem is now known under the
names of both Abel and Ruffini.

Theorem 5.5 (The Abel–Ruffini Theorem). There is no algebraic formula for the
roots of the general polynomial of degree 5 or higher.

We need to emphasize that the Abel–Ruffini Theorem does not imply that
the roots of a specific quintic polynomial cannot be expressed algebraically. For
example, the roots of x5 � 15x4 C 85x3 � 225x2 C 274x � 120 are 1, 2, 3, 4, and
5; and the roots of x5 � 4x3 C 3x are 0; ˙1; ˙p

3. But, as it turns out, the roots of
x5 �6x C3 or x5 C20x C16, for example, cannot be written algebraically, so there
cannot be a general algebraic formula for the solution of the quintic. The question
of which equations have algebraic solutions was settled a few years after Abel’s
work by the French mathematician Évariste Galois (1811–1832). (It is a very sad
fact that neither Abel nor Galois received much recognition for their work in their
lifetime; both young men died under tragic circumstances in their twenties.) Galois
theory, and the proof of the Abel–Ruffini Theorem, in particular, are discussed in
most textbooks on abstract algebra.

Our next theorem is the famous Prime Number Theorem. We chose this theorem
for two reasons. First, it answers a long-standing question of the eighteenth century
that is of fundamental importance. Second, its first proof, given by Charles-Jean de
la Vallée Poussin (1866–1962) and Jacques Hadamard (1865–1963) in 1896, was
greatly simplified by a different approach a half century later by both Paul Erdős
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(1913–1996) and Atle Selberg (1917–2007) in 1949. Paul Erdős, who published
more papers than any mathematician in history, used to refer—somewhat jokingly—
to an imaginary Book that contains the best proof for each theorem in mathematics.
While one considers a theorem proven as long as it has any—correct and complete—
proof, it is its “Book-proof” (often given many years after the first proof) that is
most beautiful and insightful. The proofs given by Erdős and Selberg for the Prime
Number Theorem were such Book-proofs.

We mention, in passing, another phenomenon inspired by Erdős: the so-called
Erdős number, defined recursively as follows. The only one with Erdős number 0
is Paul Erdős himself. Then, for any natural number n, the family of people with
Erdős number n is made up of those who have a joint publication with someone
who has Erdős number n � 1 but not with anyone whose Erdős number is less than
n � 1. (Those without a finite Erdős number are said to have Erdős number equal
to infinity.) Thus, the people who themselves collaborated with Erdős have Erdős
number 1 (there are currently 511 such people); those who collaborated with anyone
with Erdős number 1 but not with Erdős himself have Erdős number 2 (currently,
there are 9,267 such individuals); and so on. (Even though Erdős has been dead for
quite a while, some of his contributions are still being published with coauthors.)
It has been estimated that more than 90 % of the approximately 400,000 authors
with mathematical publications have an Erdős number of 8 or less.

Let us return to the Prime Number Theorem. After spending time with the
(infinite) sequence of positive prime numbers, one discovers that they behave rather
randomly. In particular, we see that the sequence of primes is occasionally quite rare
(there is only one prime between 90 and 100), but at other times, quite dense (the
odd numbers between 100 and 110 are all primes except for 105). (cf. Problem 6
on long gaps between consecutive primes.) Therefore, there are no good practical
formulas that tell us exactly how many primes we have in a given interval (but
cf. Problem 10). In addition, while we have reasonably simple tests for deciding if a
given positive integer is prime or not, for a given large composite number, it may be
a difficult task to find its prime factorization. (Cryptography, the field of encoding
and decoding secret transactions, takes advantage of this discrepancy.)

However, when one looks at the density of the primes on a large interval, the
behavior is much more regular: we have a pretty good way to estimate how many
positive primes we have up to a given value. Namely, if we choose a large positive
integer N , then the number of primes between 1 and N , denoted by �.N /, will be
quite close to N

ln N
, as the following table demonstrates:
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N �.N / N= ln N �.N /=.N= ln N /

10 4 4:3 0:921

100 25 21:7 1:151

1000 168 144:8 1:161

106 78; 498 72; 382:4 1:084

109 50; 847; 534 48; 254; 942:4 1:054

1012 37; 607; 912; 018 36; 191; 206; 825:3 1:039

1015 29; 844; 570; 422; 669 28; 952; 965; 460; 216:8 1:031

1018 24; 739; 954; 287; 740; 860 24; 127; 471; 216; 847; 323:8 1:025

1021 21; 127; 269; 486; 018; 731; 928 20; 680; 689; 614; 440; 563; 221:5 1:022

This observation is stated more precisely in the following theorem:

Theorem 5.6 (The Prime Number Theorem). Let N be an integer greater than
1, and let �.N / be the number of primes between 1 and N . Then �.N / � N

ln N
, that

is, we have

lim
N !1

�.N /

N= ln N
D 1:

The Prime Number Theorem can be summarized by saying that �.N / and N
ln N

are asymptotically equal. Note that the statement is about the ratio of these two
functions and not their difference (as the table suggests, the difference �.N / � N

ln N

actually goes to infinity!).
Our next theorem is perhaps the theorem that generated the greatest interest

outside mathematics. As we have discussed in Chap. 4, all branches of mathematics
strive to build their theory on the basis of a set of axioms; these axioms are desired
to be both independent (no axiom can be proved using the others) and consistent
(they do not lead to contradictions). In the 1930s, the Austrian logician Kurt Gödel
(1906–1978) proved a twofold result, which we state in a simplified fashion.

Theorem 5.7 (Gödel’s Incompleteness Theorems). No system of axioms (which
is rich enough to contain the axioms of arithmetic) is complete; that is, there will
be statements that can be stated using the concepts of the system, but will remain
independent from the axioms and thus neither their truth nor their falsehood can be
proved using the axioms. Furthermore, it will not be possible to decide (within the
system) if the system of axioms is consistent; that is, the statement that the system is
consistent will itself remain an independent statement in the system.

Recall that we have already learned (cf. Chap. 4) that the Parallel Postulate is
independent from Euclid’s other axioms. According to Gödel’s result, adding more
and more axioms to our system will not suffice: there will be new statements whose
truth cannot be established within this larger system. Later in the book we learn
another famous case when a statement was proved to be independent from a system,
namely, the so-called Continuum Hypothesis. There is still considerable mystery to
understanding the full scope of Gödel’s results.
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Problems

1. Use the figure below to prove Thales’s Theorem. You may use, without proof,
the following two lemmas:

Lemma 5.8. If in a triangle the lengths of the sides opposite to two vertices
are equal, then the measures of the angles at these two vertices are also equal.

Lemma 5.9. The sum of the radian measures of the three angles in any triangle
equals � .
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2. Use the figures below to prove the Pythagorean Theorem. You may use, without
proof, Lemma 5.9 and the following four lemmas:

Lemma 5.10. Given a triangle ABC, let us denote the angles at vertices A, B,
and C by ˛, ˇ, and � , respectively, and let us denote the lengths of the sides
opposite to A, B, and C by a, b, and c, respectively. We introduce notations for
the angles and side lengths in triangle A’B’C’ similarly. If

• a D a0; b D b0; c D c0; or
• a D a0; b D b0; � D � 0; or
• a D a0; ˇ D ˇ0; � D � 0;

then triangles ABC and A’B’C’ are congruent, that is, we have

a D a0; b D b0; c D c0; ˛ D ˛0; ˇ D ˇ0; � D � 0:

Lemma 5.11. The area of a square of side length d equals d 2.

Lemma 5.12. Congruent triangles have equal areas.

Lemma 5.13. If a polygon is divided into a finite number of polygonal parts,
then the sum of the areas of the parts equals the area of the whole polygon.
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3. Prove that the following numbers are irrational. You may use, without proof,
Euclid’s Principle stated on page 12.

a.
p

3

b.
p

6

c.
p

12

d.
p

2 C p
3

e. 3
p

2

f. log2.3/

4. Consider the equation 2x3 C 6x C 1 D 0.

a. Prove that the equation has no integer solutions.
b. Prove that the equation has no rational number solutions.
c. We know that the equation has a unique real number solution (as well as

two non-real solutions). According to Cardano’s Formula, this solution is

x D 3

sp
17 � 1

4
� 3

sp
17 C 1

4
:

Verify that this number indeed satisfies the given equation.
(Hint: The computation can be greatly simplified by noting that the two
terms in the expression are reciprocals of one another.)

5. Write all five real roots of the polynomial x5 � 7x3 C 2x algebraically. Explain
how this does not contradict the Abel–Ruffini Theorem.

6. a. Find the smallest positive integer value of N so that there are no prime
numbers between N and N C 10, inclusive.

b. Find a positive integer value of N so that there are no prime numbers
between N and N C 1000, inclusive.
(Hint: Try looking at around 1000!.)

Remarks. According to part (b), it is possible to find two consecutive primes
that are more than 1000 apart; similarly, one can prove that the gap between two
consecutive primes can be arbitrarily long. In the opposite direction, one might
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wonder how small the gap between two consecutive primes may be. Obviously,
2 and 3 differ by 1, and this is the only case when two positive primes are only
1 apart. Consecutive primes that differ by 2, as do 3 and 5, 5 and 7, 11 and 13,
17 and 19, etc., are called twin primes. It is a very old and famous conjecture
that there are infinitely many twin primes, but a proof of this statement remains
to be found.

7. (Note: This problem requires a basic understanding of limits.) Our goal is to
compare the relative density of primes, perfect squares, and integers that are
divisible by a million. Before answering the questions below, you may want to
guess which is most common: prime numbers, square numbers, or integers that
are divisible by a million? Which is least common?
Let N be an integer greater than 1.

a. Use the Prime Number Theorem to estimate the number of primes between
1 and N .

b. Find an estimate for the number of perfect squares between 1 and N .
c. Find an estimate for the number of integers between 1 and N that are

divisible by a million.
d. Use your answers to the previous parts to rank the three magnitudes as N

approaches infinity.

8. A landmark theorem in number theory is Dirichlet’s Theorem (proved in 1837),
stated as follows:

Theorem 5.14 (Dirichlet’s Theorem). Suppose that q and r are relatively
prime positive integers and r < q. Then there are infinitely many positive
primes that leave a remainder of r when divided by q.

In fact, an extension of Dirichlet’s Theorem says that, for large values of N , the
number of such primes between 1 and N is approximately �.N /=d where d is
the number of different possible values of r .
For q D 2, Dirichlet’s Theorem simply claims that there are infinitely many
odd primes; of course, this holds as all positive primes except for 2 are odd. For
q D 3, Dirichlet’s Theorem says that there are infinitely many positive primes
of the form 3k C 1 and also of the form 3k C 2; in fact, for large values of
N , the number of such primes up to N is about the same. (Of course, 3 is the
only positive prime that is in neither of these forms.) Similarly, about half the
positive primes (up to a certain N ) leave a remainder of 1 when divided by 4
and half leave a remainder of 3 (with 2 being the single prime that is in neither
group), and about a quarter of all positive primes have a last digit of 1, 3, 7, and
9, respectively.
In this problem we prove two cases of Dirichlet’s Theorem (other cases are
considerably more difficult).

a. Prove that there are infinitely many positive primes that leave a remainder
of 3 when divided by 4.
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(Hints: The first few such positive primes are 3, 7, 11, 19, 23, 31, 43,
and 47. Suppose, indirectly, that there are finitely many such primes, say
p1; p2; : : : , and pn, then consider the quantity

Kn D 4p1 � p2 � � � � � pn � 1:

Use Problem 5 of Chap. 3.)
b. Prove that there are infinitely many positive primes that leave a remainder

of 5 when divided by 6.

9. In a letter to Leonhard Euler, written in 1730, Christian Goldbach noted that the
infinitude of primes follows from the fact that the Fermat numbers are pairwise
relatively prime. Provide the details to Goldbach’s proof; namely, verify that the
Fermat numbers—as defined recursively in Chap. 2 Problem 6(b)—are pairwise
relatively prime, and explain why this implies that there are infinitely many
primes.

10. Justify that the following formulae are correct. (The sums and the product below
have no inherent meaning for the initial values of n and k; as is customary, we
define the sum of no elements to be 0 and the product of no elements to be 1.)

a.

�.n/ D
nX

kD2

k�1Y

iD2

��
k

i

	

�
�

k

i

��

b.

�.n/ D
nX

kD2

6
6
6
4

1
Pk�1

iD1

j
1

1Ck�ibk=ic
k

7
7
7
5



Chapter 6
Recent Progress in Mathematics

In the last chapter we discussed seven of the most famous classical theorems of
mathematics. We now turn to three more recent results to complete our top ten list.
We will not provide any proofs—in fact, there are very (very!) few people who have
seen complete proofs for these results.

Our first example has a proof that, at present, relies heavily on computers. As the
proof cannot be read and verified manually, some mathematicians do not accept it
as a theorem that has been proven.

In 1852 the South African botanist and mathematician Francis Guthrie, while
trying to color the map of the counties of England, asked the following question:
How many different colors are needed if one wants to color a map of connected
regions in the plane (or on the surface of the globe) in such a way that regions
with a common boundary segment (of positive length) receive different colors?
The minimum number of colors needed for such a coloring is called the chromatic
number of the map. Guthrie noticed that his map had chromatic number 4, and he
wondered if four colors would suffice for all maps. In 1976, more than 120 years
after Guthrie’s investigations, Kenneth Appel and Wolfgang Haken proved that this
is indeed the case for any planar map.

Theorem 6.1 (The Four-Color Theorem). Any planar map has chromatic number
at most 4.

The proof given by Appel and Haken consists of two parts: first, they prove that
every map can be reduced to one of 1,482 configurations and then, second, they use
a computer program to verify that these 1,482 maps can indeed be colored with four
colors. Since the computer program is too long for a human to check, an argument
can be made that the Four-Color Theorem has not been proven in the traditional
sense. However, from a practical point of view, the chance of a computer error
on all of the many successful runs of the program is small, even smaller than the
likelihood of a human error during the same amount of case checking. Thus, most
mathematicians, but not all, agree that we indeed have a proof of the Four-Color
Theorem. Efforts to reduce the number of configurations to be checked are under
way.
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While the Four-Color Theorem has a rather playful nature, the theory of graph
coloring has a wide range of applications; in fact, there is an entire branch
of mathematics that deals with chromatic numbers. Consider, for example, the
following scheduling problem. A set of tasks has to be performed under the
conditions that certain pairs of tasks cannot be done at the same time. We want to
know how long it will take to perform all tasks (for simplicity, assume that every task
alone takes a unit amount of time). Assign a color to every task so that conflicting
tasks will get different colors. The minimum amount of time needed to perform all
tasks will then be the least number of colors that can be used. Note that this number
might be larger than four, as we may have a situation that does not correspond to a
planar map. Problem 2 provides some examples for the scheduling problem.

The next theorem is often regarded as the greatest achievement of twentieth-
century mathematics, perhaps even all of mathematics. It is a classification theorem;
it provides a complete list of all examples for a certain class of objects called finite
simple groups. Group theory is considered one of the main branches of modern
mathematics; here, we provide only a brief introduction.

A group is a particular kind of structure; it comprises a set of objects (e.g.,
numbers, matrices, and functions) and a binary operation (i.e., an operation with
two variables) on these objects (e.g., addition, multiplication, and composition) with
certain properties. Let us examine some examples.

First consider the set of integers with the operation of addition. Among the
numerous properties of integer addition are the following four:

• The addition operation is closed, that is, the sum of two integers is also an integer.
• The addition of integers is associative, that is, for all integers a, b, and c, we have

.a C b/ C c D a C .b C c/.
• There is a special integer, 0, called the identity element, for which a C 0 D

0 C a D a holds for any integer a.
• Every integer a has an inverse for the operation, that is, another integer, �a, for

which .�a/ C a D a C .�a/ D 0.

For our second example, let’s consider the set of positive rational numbers for
multiplication. We see that similar properties hold:

• The multiplication operation is closed, that is, the product of two positive rational
numbers is also a positive rational number.

• The multiplication of positive rational numbers is associative, that is, for all
positive rational numbers a, b, and c, we have .a � b/ � c D a � .b � c/.

• There is a special positive rational number, 1, called the identity element, for
which a � 1 D 1 � a D a holds for any positive rational number a.

• Every positive rational number a has an inverse for the operation, that is, another
positive rational number 1=a for which 1=a � a D a � 1=a D 1.

Of course, the addition of integers and the multiplication of positive rational
numbers have many other properties as well. For example, both are commutative
operations; that is, for all integers a and b, we have a C b D b C a, and for all
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positive rational numbers a and b, we have a � b D b � a. However, it turns out that
it is best to limit the definition of groups to the four properties listed.

We are now ready to make the following general definition:

Definition 6.2. Let G be a set of objects, and let � be a binary operation defined on
pairs of elements of G. We say that G is a group for the operation � if the following
properties hold:

• (G1) (Closure) For every pair of group elements a and b, a�b is a group element.
• (G2) (Associativity) For all group elements a, b, and c, .a � b/ � c D a � .b � c/.
• (G3) (Identity) There is an identity element in the set, denoted by e, so that, for

every group element a, we have e � a D a � e D a.
• (G4) (Inverse) For every group element a, there exists a group element x, called

the inverse of a, such that a � x D x � a D e. (Here e denotes the unique identity
element of G; in Problem 5 of Chap. 11, we will prove that a group cannot have
more than one identity element.)

As we have seen, the set of integers forms a group for addition and the set of
positive rational numbers forms a group for multiplication. We should note that it
is entirely possible for a set to be a group for one operation but not for another. For
example, the integers do not form a group for multiplication (only 1 and �1 would
have an inverse for multiplication), and the set of positive rational numbers does not
form a group for addition (the set does not contain an identity for addition).

The two groups mentioned so far are infinite groups, as they have an infinite
number of elements. The classification theorem we are about to state refers to finite
groups: groups that only have finitely many elements. The number of elements in
a group is called the order of the group. For example, the digits 0; 1; : : : ; 9 form a
finite group of order 10 if the binary operation � is defined as addition “mod 10,”
that is, if a and b are digits, then a � b is the last digit of the sum of the two digits
(e.g., 2 � 7 D 9, but 6 � 7 D 3 and 5 � 9 D 4). This group is known as C10. One can
similarly define Cn for any positive integer n: the elements of Cn are the integers
from 0 to n � 1, inclusive, and the binary operation � is defined as addition “mod
n.” For n D 12, for example, we get C12 where addition is defined “mod 12” as in
“clock arithmetic”: 9 � 8 D 5 expresses the fact that an 8-hour workday (without a
lunch break) that starts at 9 is over at 5. As we will soon learn, there are many other
finite groups besides Cn.

Groups, particularly relatively small finite groups, can be conveniently described
by their operation tables. For example, the group C4 defined in the previous
paragraph has the following table:

C4 W

0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2
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In group theory one is not concerned with the particular meaning of the elements
and the operation. As we said above, any set of objects on which a binary operation
is defined forms a group as long as the four axioms above are satisfied. For example,
one can check (cf. Problem 3) that both of the following tables describe groups:

G1 W

A B C D

A D C A B

B C D B A

C A B C D

D B A D C

G2 W

A B C D

A A B C D

B B A D C

C C D A B

D D C B A

If we pursue the question of finding all groups, we clearly cannot regard two
groups as different if they only differ in the labeling of the elements. We make this
notion more precise with the following definition:

Definition 6.3. We say that two groups are isomorphic if it is possible to get from
the operation table of one group to the operation table of the other group by
relabeling the elements and then reshuffling the rows and columns as needed.

When two groups are isomorphic, we consider them to be the same, although the
proper terminology is to say that they belong to the same isomorphism class. Let us
see a few examples.

It is quite obvious that there is only one group of order 1, the one with (trivial)
operation table

A

A A

(whether we call the single element A or something else does not matter). More
precisely, using Definition 6.3 we say that any two groups of order 1 are isomorphic.

Similarly, it only takes a moment to verify that there is only one group of order
two, given as

A B

A A B

B B A

It is a bit more work to prove that there is only one group of order 3 as well; this
group has the operation table

A B C

A A B C

B B C A

C C A B

Thus far we have described groups of order 4 in three different ways. Are these
three groups all isomorphic too?
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Consider first the groups C4 and G1 above. We can see that these two groups are
isomorphic by setting A D 1, B D 3, C D 0, and D D 2. Indeed, after these
substitutions the latter group becomes

1 3 0 2

1 2 0 1 3

3 0 2 3 1

0 1 3 0 2

2 3 1 2 0

A quick reshuffling of the rows and columns produces the table of C4 exactly.
Therefore, we see that the two operation tables describe the same group.

Let us turn now to the group G2 above. We argue that this group is not isomorphic
to C4, as follows. Consider the element A. The operation table indicates that every
element “squared” in the group is equal to A (i.e., x � x D A for every element x).
Since neither 0, 1, 2, nor 3 in C4 has this property (the main diagonal of the table for
C4 contains more than one element), we see that A cannot equal any of the elements
in C4. Therefore, the two groups are not isomorphic. The group G2 is referred to as
the Klein 4-group, named after the German mathematician Felix Klein (1849–1925),
who was one of the pioneers of group theory.

The problem of classification of all finite groups can be stated as follows: for
every positive integer n, find the number of pairwise non-isomorphic groups of order
n, called the group number of n and denoted by gnu.n/, and find a representative of
each isomorphism class. Today we are quite far from a full answer to this problem;
however, the number of pairwise non-isomorphic groups of order up to 20 is as
follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

gnu.n/ 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14 1 5 1 5

We see that the sequence of group numbers is quite peculiar: it contains
occasional values that are much higher than any previous value (e.g., gnu.8/ D 5

and gnu.16/ D 14) but, quite often, we have gnu.n/ D 1. Regarding orders for
which the gnu is 1, it can be shown that gnu.p/ D 1 for all positive primes p (but,
as n D 15 shows, gnu.n/ may be 1 for composite n as well). As for high gnu values,
it was recently shown by John Horton Conway (1937–) and his collaborators that
when n is a power of 2, gnu.n/ is large. (The term and notation for group numbers
comes from them also.) For example, of the approximately 50 billion (pairwise
non-isomorphic) groups of order less than 2048 (D 211), more than 99% have
order exactly 1024 (D 210). In spite of this and other results achieved mainly by
computational techniques, we are quite far today from being able to characterize all
finite groups.

As a first attempt at such a classification, the attention has been focused on
classifying all finite simple groups. We will not define simple groups here (these
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concepts are defined and studied in detail in a course on group theory or abstract
algebra); let us just say that, much like integers factor into primes, groups can be
built from smaller simple groups. For example, it turns out that the group Cn is
simple exactly when n is a positive prime number.

The enormous task of classifying all finite simple groups was completed in 1983
after the contributions of many mathematicians on thousands of pages of journal
articles spanning several decades. The result can be summarized as follows:

Theorem 6.4 (The Classification of Finite Simple Groups). Every finite simple
group is isomorphic to one member of eighteen infinite families or is isomorphic to
one of twenty-six other “sporadic” groups.

One of the eighteen infinite families mentioned in Theorem 6.4 consists of
the groups Cp for p prime. We will not specify the other 17 families, but just
mention that none of their members are commutative—that is, have operations that
are commutative—while Cp is, of course. The main result here is that the list is
complete; every finite simple group is accounted for. The 18 infinite families of
simple groups have been studied extensively and possess many applications. The 26
sporadic groups are also the subject of considerable recent investigations; the largest
one, the so-called Monster group, has order precisely:

808; 017; 424; 794; 512; 875; 886; 459; 904; 961; 710; 757; 005; 754; 368; 000; 000; 000:

At the present time, no one person has read the proof of the classification in its
entirety, though attempts are currently under way. One might naturally wonder if
such a lengthy work contains any errors. In fact, quite a few gaps in the proof have
been discovered, but each of these could be fixed relatively easily. While no one
knows for certain, most mathematicians believe that the proof—and certainly the
result—is now essentially complete.

The last theorem that we will discuss here is another very difficult theorem of
mathematics, one that attracted a lot of media attention during the 1990s. This
theorem will be much easier to explain, however, than the Classification of Finite
Simple Groups.

It is not hard to find positive integers x, y, and z for which

x2 C y2 D z2:

For example, we can choose x D 3, y D 4, and z D 5 or x D 5, y D 12, and
z D 13. In fact, all (infinitely many) integer solutions to the equation x2 C y2 D z2

can be determined using elementary number theory—see Problem 6. In about 1637,
the French mathematician Pierre Fermat, while reading Diophantus’s Arithmetica
(the 1621 edition), wrote the following (in Latin) in the margin of the book:

It is impossible to write a cube as the sum of two cubes, a fourth power as the sum
of two fourth powers, and, in general, any power beyond the second as the sum
of two similar powers. For this, I have discovered a truly wonderful proof, but the
margin is too small to contain it.
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Fermat often left his results unpublished, and while all his other statements have
been proved, this proof resisted both professionals and numerous amateurs for more
than 350 years. The statement came to be known as “Fermat’s Last Theorem” and
can be stated as follows:

Theorem 6.5 (Fermat’s Last Theorem). If n is an integer and n � 3, then the
equation

xn C yn D zn

has no positive integer solutions x, y, and z.

A very large number of mathematicians (as well as amateurs, cf. Problem 10)
worked on Fermat’s Last Theorem with little progress. Even in the 1970s, the
statement was only proven for a finite number of exponents (Fermat himself knew
a proof for the case n D 4, the only proof he ever cared to write down). The news
traveled almost instantaneously around the world when the English mathematician
Andrew Wiles (1953–) announced in 1993 that he finally succeeded in proving
Fermat’s Last Theorem after several years of solitary work. As Wiles’s work became
the subject of scrupulous investigation, a substantial gap was found in the proof.
Wiles managed, however, to fill this gap soon after with the help of Richard Taylor
(1962–). The proof was finally published in 1995. As is the case with the Four-
Color Theorem and the Classification of Finite Simple Groups, to this day only
a few people have checked the proof; it involves a large amount of and a wide
variety of very difficult mathematics. While the significance of proving Fermat’s
Last Theorem may only be symbolic, the mathematics that was discovered in the
process has far-reaching applications.

The three theorems mentioned in this chapter are perhaps the three most well-
known theorems of recent years. However, there are more new results every day
as research in abstract mathematics is more active now than ever. It is a common
misconception that the questions of mathematics have all been answered—this is far
from the truth. In Appendix A, we discuss some famous open questions, including
our top ten list of conjectures about the integers and the recently solved Poincaré
Conjecture. The history of mathematics is a fascinating saga spanning several
thousand years and taking place in every corner of the world inhabited by humans.
It is a story full of hopes, successes, and disappointments; its greatest achievements
are interspersed with perplexing questions unresolved to this day.

Problems

1. (a) For an integer n � 3, the map Wn, called the wheel graph of order n,
is a configuration of n C 1 regions where one region is at the center and
the other n regions each have exactly three neighbors, of which one is the
center region. (Two regions are said to be neighbors whenever they share
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a boundary of positive length.) An illustration of W5, for example, is as
follows:

�
�
�
� �

�
�
�

Find the chromatic number of Wn for each value of n.
(b) What is the chromatic number of a map of the 48 contiguous states of the

United States? Justify your answer.
(Hint: Use part (a).)

2. (a) A certain (very small) college offers eight different mathematics courses
each semester. The Xs in the following table indicate which two distinct
classes have students in common:

1 2 3 4 5 6 7 8

1 X X X X

2 X X X

3 X X X X

4 X X X X X

5 X X X X

6 X X X X

7 X X

8 X X X X

Find a planar map containing eight regions representing the eight courses,
with two regions sharing a common boundary precisely when the two
corresponding courses have students in common. Then color your map
with colors so that neighboring regions receive different colors. How many
colors are needed? How many exam periods does the college have to offer
for these classes during finals week, at the minimum?
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(b) Suppose now that the time conflicts are as follows:

1 2 3 4 5 6 7 8

1 X X X X

2 X X X

3 X X X X

4 X X X X X

5 X X X X

6 X X X X X

7 X X X

8 X X X X

This time, there is no planar map representing the situation like in the
previous part (so don’t even try—we will prove this in Problem 13(d)
of Chap. 17). Nevertheless, find the minimum number of exam periods
needed. Prove your answer.

3. (a) Verify that the groups of orders 1, 2, and 3 given in the lecture are indeed
groups.

(b) Prove that the group of order 3 in the lecture is isomorphic to the group
C3 by finding an explicit correspondence between the elements of the two
groups that transforms one operation table into the other.

(c) Verify that the Klein 4-group is indeed a group. (Although you are
supposed to prove associativity for all choices of the elements, it is all right
to demonstrate this property using specific examples. The other group of
order 4 described by its operation table is isomorphic to C4, so must indeed
be a group.)

(d) Decide whether the following operation table describes a group of order 5.
If so, verify each axiom; if not, find the axiom(s) that fail(s).

A B C D E

A A B C D E

B B A D E C

C C E A B D

D D C E A B

E E D B C A

4. For a given positive integer n, we define Cn, C �
n , and Un to be the sets formed

by the numbers 0; 1; 2; : : : ; n � 1; by 1; 2; : : : ; n � 1; and by those integers
between 0 and n that are relatively prime to n, respectively. We also define the
binary operation � to be addition mod n in Cn and multiplication mod n in C �

n

and Un:
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(a) Construct the operation tables for C6, C �
7 , and U9. Verify that they are

all groups of order 6. (You do not need to prove that the operations are
associative; this indeed follows from the associativity of the addition and
multiplication of integers.)

(b) Construct the operation tables for C4, C �
5 , U8, and U10. Verify that they

are all groups of order 4. (You do not need to prove that the operations are
associative.)

(c) It is easy to see that, for every n, Cn is a group for addition mod n; it
requires techniques not discussed here to establish that Un is also a group
for multiplication mod n. Prove that if n is not prime, then C �

n is not a group
for multiplication mod n. (The converse of this statement is also true: if n

is a prime, then C �
n is a group, since then we have C �

n D Un.)
(d) Prove that C6, C �

7 , and U9 are all isomorphic to each other.
(e) Are C4, C �

5 , U8, and U10 also all isomorphic to each other?

5. Let m and n be arbitrary positive integers, and let us define the direct product
of groups Cm and Cn, denoted by Cm ˚Cn, to consist of all ordered pairs .a; b/

where a is an element of Cm and b is an element of Cn, with addition in Cm ˚
Cn performed component-wise; that is, .a1; b1/ C .a2; b2/ is the ordered pair
.a3; b3/ where a3 and b3 equal a1 C a2 mod m and b1 C b2 mod n, respectively.
It can be shown that Cm ˚ Cn is indeed a group for this operation:

(a) Prepare the operation table for C2 ˚ C2.
(b) Decide whether C2 ˚ C2 is isomorphic to C4 or to the Klein 4-group.
(c) Prepare the operation table for C2 ˚ C3.
(d) Is C2 ˚ C3 isomorphic to C6?
(e) Under what condition do you think Cm ˚ Cn is isomorphic to Cmn? (You

do not need to prove your conjecture.)

6. (a) Verify that x D k � .m2 �n2/; y D k � .2mn/; z D k � .m2 Cn2/ is a solution
of the equation x2 C y2 D z2 for all choices of the integers k, m, and n.

Remark. It can also be shown that every solution is of this form.

(b) Use the remark above to find all positive integers A under 100 for which
there is a right triangle with area A and with all three sides having integer
lengths.

Remarks. A positive integer A for which there is a right triangle with
area A and with all three sides having rational number lengths is called
a congruent number. (Congruent numbers are not to be confused with two
integers being congruent to each other or two triangles being congruent to
each other!) For example, 6 is a congruent number as it is the area of a right
triangle with side lengths 3, 4, and 5. It takes a bit more effort to see that 5
is also a congruent number; it is the area of a right triangle with side lengths
3/2, 20/3, and 41/6. Leonhard Euler established that 7 is also a congruent
number; the next congruent number is 13. At the present time, we know that
exactly 23 numbers under 50 are congruent numbers, but, to this day, we
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do not have a good understanding of congruent numbers. Indeed, deciding
whether a given positive integer is a congruent number or not touches on
some of the deepest and most advanced areas of mathematics.

7. According to Fermat’s Last Theorem, there are no positive integers x, y, z, and
n � 3 for which

xn C yn D znI
but there is considerable interest in finding examples where the two sides of the
equation are “very close.” One such example,

178212 C 184112 D 192212;

was featured in 1995 (after Andrew Wiles’s announcement) on the animated
television series The Simpsons (the longest running sitcom on American
television). When David Cohen (a writer for the show responsible for the
program that generated this near miss) was told that his example can be too
easily seen to be wrong by observing that the left-hand side is odd while
the right-hand side is even, he adapted his program to check for parity. His
subsequent example,

398712 C 436512 D 447212;

was exhibited on the show 3 years later. Prove (without relying on Fermat’s
Last Theorem) that this second equation cannot hold either.

Remark. Most handheld calculators will—incorrectly—evaluate .178212 C
184112/1=12 to 1922 and .398712 C 436512/1=12 to 4472.

8. Show that it is enough to prove Fermat’s Last Theorem when the exponent is 4
or an odd prime.
(Hint: Use Lemma 4.11.)

9. Suppose that n is a positive integer. Find all positive integers x, y, and z for
which nx C ny D nz. (This equation, although it superficially resembles the
equation in Fermat’s Last Theorem, is considerably easier.)

10. It is believed that Fermat’s Last Theorem is the mathematical statement for
which the greatest number of false proofs has been published. For example,
during the 4 years after the Academy of Science at Göttingen offered a 100,000
mark prize for a correct solution in 1908, more than a 1,000 alleged proofs
appeared, mostly printed as private pamphlets.

What is right and what is wrong with the following “proofs” of Fermat’s
Last Theorem?

(a) Let n � 3 be an integer and suppose, indirectly, that the equation

xn C yn D zn



66 6 Recent Progress in Mathematics

has a positive integer solution .x; y; z/. By Problem 8 above, we can
assume that n D 4 or n is an odd prime. The case n D 4 was already
proved by Fermat himself, so we only have the case when n is an odd
prime left.

Since n is odd, we can use Lemma 4.9 to conclude that xn C yn is
divisible by x C y. Therefore, the right-hand side must also be divisible.
But if z is divisible by x C y, then z � x C y, so

zn � .x C y/n:

Since for positive x and y we have

.x C y/n > xn C yn;

we get
zn > xn C yn;

a contradiction.
(b) Let n � 3 be an integer and suppose, indirectly, that the equation

xn C yn D zn

has a positive integer solution .x; y; z/. Substituting 2n for n into our
equation yields

x2n C y2n D z2n:

On the other hand, squaring both sides of the original equation results in

x2n C 2xnyn C y2n D z2n:

Comparing our two derived equations yields 2xnyn D 0, but that is
impossible if x and y are positive.

(c) Let n � 3 be an integer and suppose, indirectly, that the equation

xn C yn D zn

has a positive integer solution .x; y; z/. Squaring both sides yields

.xn C yn/2 D z2n:

By Problem 6 above, we know that the equation

x2 C y2 D z2

has some (actually, infinitely many) solutions; raising this equation to the
nth power gives

.x2 C y2/n D z2n:
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Comparing our two equations, we can write

.xn C yn/2 D .x2 C y2/n:

We will now prove that this can never happen.
Assume first that x � y (the case x � y can be done similarly).

Dividing both sides of our equation by y2n gives




x
y

�n C 1
�2

D
�


x
y

�2 C 1

�n

:

Since n > 2, for the right-hand side, we have

�

x
y

�2 C 1

�n

>

�

x
y

�2 C 1

�2

:

Furthermore, since n > 2 and x
y

� 1, for the left-hand side above, we have




x
y

�n C 1
�2

�
�


x
y

�2 C 1

�2

:

Therefore,




x
y

�n C 1
�2

<

�

x
y

�2 C 1

�n

;

a contradiction with the two sides being equal.
(d) Let n � 3 be an integer and suppose, indirectly, that the equation

xn C yn D zn

has a positive integer solution .x; y; z/. Rewriting our equation, we get

�
x

z

�n

C
�

y

z

�n

D 1:

This implies that x
z and y

z are both less than 1. Therefore, if n is a large
enough positive integer, then

�
x

z

�n

<
1

2

and �
y

z

�n

<
1

2
;
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which makes �
x

z

�n

C
�

y

z

�n

D 1

impossible. This proves that Fermat’s Last Theorem holds for every value
of n that is large enough, leaving only finitely many cases. These cases then
can be verified individually.



Part II
How to Solve It?



Chapter 7
Let’s Be Logical!

In arithmetic we learned how to perform arithmetical operations (addition, mul-
tiplication, taking negatives, etc.) on numbers; then, in algebra, we generalized
arithmetic using variables instead of numbers. Similarly, we can build compounded
statements from simple statements, and we can study their general structures. The
branch of mathematics dealing with the structure of statements is called logic.
A study of the rules of logic is essential when one studies correct reasoning.

We start with the “arithmetic” of logic. The operations on statements are called
logical connectives. We are about to define the unary (one-variable) operation of
negation and the two binary (two-variable) operations of disjunction, conjunction,
conditional, and biconditional. The variables we use for general statements will be
P , Q, R, etc.; recall that their truth values can either be T (true) or F (false), but
that no statement can be both true and false.

Definition 7.1. The negation of a statement P is the statement :P (read as “not
P ”), which is true when P is false and false when P is true.

For example, consider the statement P that “3 > 4.” Then the negation :P of
P is the statement “3 6> 4,” which can be rewritten in the more customary form
“3 � 4.” In this example P is false and :P is true; clearly, we always have exactly
one of P or :P true.

Definition 7.2. The disjunction of statements P and Q is the statement P _ Q

(read as “P or Q”), which is true when P or Q (or both) is/are true and false only
when both P and Q are false.

For example, if P is the statement “345 is even” and Q stands for “345 is
divisible by 5,” then P _ Q is the statement that “345 is even or divisible by 5.”
Since Q is a true statement, the disjunction P _ Q is true as well (regardless of the
fact that P is false).

Note that the definition of disjunction differs somewhat from its everyday usage.
Our “or” is an inclusive or: it is true when either or both components are true. For
example, the statement “32 D 9 or 42 D 16” is a true statement. (In everyday life
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“or” is usually used as an exclusive or. When we say “I will either call you or send
you a letter,” we normally mean that we do not intend to both call and write.)

Definition 7.3. The conjunction of statements P and Q is the statement P ^ Q

(read as “P and Q”), which is true only when both P and Q are true and is false
when P or Q (or both) is false.

If again P is the statement that “345 is even” and Q is “345 is divisible by 5,”
then P ^ Q is the statement that “345 is even and divisible by 5.” Since P is a false
statement, the conjunction P ^ Q is false as well (regardless of the fact that Q is
true).

It is also possible to define the disjunction and conjunction of more than two
statements: the disjunction of P1; : : : ; Pn (here n is a natural number), denoted by

n_

iD1

Pi D P1 _ � � � _ Pn;

is true when at least one of the statements P1; : : : ; Pn is true and false if they are all
false; similarly, the conjunction of P1; : : : ; Pn, denoted by

n̂

iD1

Pi D P1 ^ � � � ^ Pn;

is true when all of the statements P1; : : : ; Pn are true and false if at least one
of them is false. Note that, as we will explain in Chap. 10, we do not need to
write parentheses in conjunctions and disjunctions of more than two variables, but
parentheses are necessary when both conjunctions and disjunctions are involved.

We have two more logical connectives to define: conditionals and biconditionals.
We start with the latter.

Definition 7.4. The biconditional of statements P and Q is the statement P , Q

(read as “P if, and only if, Q” or “P iff Q” for short), which is true when P and
Q have the same truth value and false otherwise.

Thus, P , Q means that either P and Q are both true or they are both false.
We can rephrase our definition, therefore, to say that P , Q holds exactly when
the logical expression

.P ^ Q/ _ .:P ^ :Q/

is true. We should also point out that, according to our definition, the biconditional
of two statements may hold even when there is no evident connection between the
two statements. For example, the biconditional that “345 is odd if, and only if, 345 is
divisible by 5” is true in spite of the fact that divisibility by 2 and by 5 are unrelated.

Definition 7.5. The conditional of statements P and Q is the statement P ) Q

(read as “if P then Q” or “P only if Q”), which is true when P is false or Q is
true, and false when P is true and Q is false.
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Note that, according to our definition, P ) Q holds whenever statement P

is false, regardless of the validity of statement Q. For example, the statements “if
3 D 4 then 32 D 42” and “if 3 D 4 then 32 6D 42” are both true statements!
Furthermore, we should point out that, like with biconditionals, any hidden meaning
of causation is removed from our definition; for example, the statement “if 32 D 9

then 5 C 5 D 10” is true!
We can also observe that conditionals are not commutative: P ) Q and its

converse, Q ) P , may have different truth values. Indeed, P ) Q is true exactly
when the logical expression :P _ Q is true, while Q ) P holds exactly when
P _ :Q does. Thus, when, for example, P is false and Q is true, the conditional
P ) Q is true but its converse is false. For example, “if 345 is even then 345 is
divisible by 5” is true, but the statement that “if 345 is divisible by 5 then 345 is
even” is false.

While we consider biconditionals and conditionals logical connectives with
truth values as defined above, it is often also helpful to think of them as possible
relationships that two statements might have. In this context, we say that statements
P and Q are equivalent (or that P is necessary and sufficient for Q) if their
biconditional, P , Q, is true, and we say that P implies Q (or that P is sufficient
for Q or that Q is necessary for P ) when the conditional P ) Q holds.

We will study relations in general in Chaps. 17 and 18, but we can already point
out some of their properties. Regarding equivalence, we see that the relation is:

• Reflexive: for every statement P , P , P .
• Symmetric: for all statements P and Q, P , Q if, and only if, Q , P .
• Transitive: for statements P , Q, and R, if P , Q and Q , R, then P , R.

Note that the same relations hold for equality of numbers: equality is reflexive (a
number equals itself), symmetric (if one number equals another, then that number
also equals the original number), and transitive (if the first number equals the second
number and the second number equals the third, then the first number also equals
the third number). We intend to use these properties without mention. Analogous
properties of implications are examined in Problem 3.

Let us now turn to the “algebra” of logic where, instead of dealing with
operations between specific statements, we examine the same logical connectives
between logical variables. The computations of truth values of a logical expression
depending on its logical variables can be conveniently done via truth tables. The
above definitions, for example, can be summarized by the following truth tables:

P :P

T F

F T
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P Q P _ Q P ^ Q P , Q P ) Q

T T T T T T

T F T F F F

F T T F F T

F F F F T T

Consider now a more complicated expression such as

.P _ :Q _ R/ ^ .:.P _ R//:

We call such expressions logical formulae: they are predicates that become state-
ments once we know what the truth values of P , Q, and R are. The logical formula
above has the following truth table (only the first three columns and the last column
are considered to form the truth table; we included the other three columns only as
auxiliaries):

P Q R :Q _ R P _ :Q _ R :.P _ R/ .P _ :Q _ R/ ^ .:.P _ R//

T T T T T F F

T T F F T F F

T F T T T F F

T F F T T F F

F T T T T F F

F T F F F T F

F F T T T F F

F F F T T T T

It may happen that two different logical formulae have identical truth tables; after
all, we can have only finitely many different truth tables on a given finite number
of variables, but we can build up infinitely many different formulae. For example,
from the truth table of

.P _ :Q _ R/ ^ .:.P _ R//

above, one can see that this expression has the same truth table as the less
complicated

:P ^ :Q ^ :R:

Indeed, both predicates are true exactly when P , Q, and R are all false. In this
case, we say (somewhat sloppily) that the two logical formulae are equivalent;
more precisely, the two formulae become equivalent statements for every choice
of their variables. Similarly, we say that one logical formula implies another if the
implication holds whatever the truth values of their variables.
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The truth table of a logical expression might indicate that it is always true or that
it is always false. We have special terms for such situations.

Definition 7.6. A logical formula is called a tautology whenever it is true for every
assignment of truth values to its variables.

Definition 7.7. A logical formula is called a contradiction whenever it is false for
every assignment of truth values to its variables.

It is easy to verify, for example, that P _ .:P / is a tautology and that P ^ .:P /

is a contradiction. We will see further examples for tautologies and contradictions
later; in fact, we study the algebra of logic in more depth in Chaps. 10 and 11.

It is not an exaggeration to say that logic is the subsistence of mathematics. In
fact, every definition is, technically, an equivalence. For example, by Definition 2.1
we meant that “an integer is a prime if, and only if, it has exactly two positive
divisors,” even though, as customary, the “only if” part was skipped. Similarly, we
often use words such as “when” or “whenever” in definitions (like in Definitions 7.6
and 7.7 above) although we really have equivalence in mind.

Moreover, most mathematical theorems can be put in the form of an implication
or an equivalence. For example, Theorem 4.1 can be stated as “The implication

2n � 1 is a prime number ) 2n�1.2n � 1/ is a perfect number

is true for every positive integer n.” As we saw in Problem 7(e) of Chap. 4, the
converse implication that

2n�1.2n � 1/ is a perfect number ) 2n � 1 is a prime number

is true for every positive integer n as well, so the predicates
A.n/ W 2n � 1 is a prime number

and
B.n/ W 2n�1.2n � 1/ is a perfect number

are equivalent for every positive integer n. For example, if n D 3, then A.n/ is true
(7 is prime) and B.n/ is true (28 is perfect), so A.3/ , B.3/; if n D 4, then A.n/ is
false (15 is not prime) and B.n/ is false (120 is not perfect), so A.4/ , B.4/ holds
again. (Theorem 4.1 and Problem 7(e) of Chap. 4 prove all cases.)

Similarly, using the language of logic more explicitly, Theorem 4.7 can be stated
as “The implication

2n � 1 is a prime number ) n is a prime number

is true for every positive integer n.” However, the converse implication

n is a prime number ) 2n � 1 is a prime number

is not true for every positive integer n: as we pointed out in Chap. 4, 11 is a prime
number but 211 � 1 is not. As we pointed out before, care has to be taken so that
we don’t confuse our implication P ) Q with its converse Q ) P —these two
implications are generally not equivalent! It is true, however (cf. Problem 1), that
P ) Q is always equivalent to :Q ) :P ; this latter statement is called the
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contrapositive of the implication. We will return to the usage of implications and
their converses and contrapositives in proofs in Chap. 12.

The laws of logic in this chapter provide the bases for a variety of amusing (and
often quite tricky) puzzles. We close this chapter by examining one such puzzle.

Example. Every inhabitant of a certain distant planet has one of two possible
occupations: educator or politician. The educators always tell the truth and the
politicians always lie. After arriving at this planet, we meet three inhabitants: A,
B , and C . A turns to us and says “B and C have the same occupation.” Someone
then asks C : “Do A and B have the same occupation?” What will C answer?

We will provide two different solutions for this puzzle.

Solution I. Let us construct a table that lists the possible occupations for A, B ,
and C as well as the truth values of the statements that “A and B have the same
occupation” and “B and C have the same occupation,” denoted by statement R and
S , respectively:

A B C R S

1 E E E T T

2 E E P T F

3 E P E F F

4 E P P F T

5 P E E F T

6 P E P F F

7 P P E T F

8 P P P T T

We see that the second and third lines in our table are impossible: if A is an
educator, then statement S must be true. Similarly, the fifth and the eighth lines are
impossible: if A is a politician, then S must be false. This leaves us with lines 1 and
7, where C is an educator, and lines 4 and 6, where C is a politician. In lines 1 and
7, R is true and, since C is an educator, he or she will say that R is true. R is false
in lines 4 and 6 but, since C is a politician there, he or she will say that R is true.
Thus we see that C will say that R is true in every case. �
Solution II. We know that A is either an educator or a politician. We examine the
two cases separately.

If A is an educator, then B and C have the same occupation: either both are
educators or both are politicians. In the first case C will say the truth, namely, that
A and B have the same occupation; in the second case C will lie and, therefore, he
or she will say that A and B have the same occupation.

If A is a politician, then either B is an educator and C is a politician, or B is a
politician and C is an educator. Again, in both cases C will have to say that A and
B have the same occupation. �
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Problems

1. Suppose that P and Q are logical variables. Use truth tables to prove each of
the following facts about logical formulae:

(a) .P ) Q/ , .:Q ) :P /

(This says that an implication is equivalent to its contrapositive.)
(b) .P ) Q/ 6, .Q ) P /

(This says that an implication is not equivalent to its converse.)
(c) :.P ^ Q/ , .:P _ :Q/ and :.P _ Q/ , .:P ^ :Q/

(These equivalences are called De Morgan’s Laws; cf. Theorem 11.9.)

2. Use truth tables to decide which of the following implications are tautologies:

(a) If P , Q, then .P _ R/ , .Q _ R/.
(b) If P , Q, then .P ^ R/ , .Q ^ R/.
(c) If .P _ R/ , .Q _ R/, then P , Q.
(d) If .P ^ R/ , .Q ^ R/, then P , Q.

Remark. This problem is asking you to analyze how similar equivalences are
to equalities. In particular, parts (a) and (b) ask whether you can apply a
disjunction/conjunction to the two sides of an equivalence and still preserve
the equivalence; parts (c) and (d) ask whether you can cancel a disjunc-
tion/conjunction from both sides.

3. (a) Formulate definitions for the relation of implication to be:

i. Reflexive
ii. Symmetric

iii. Transitive

(b) Using truth tables, decide if the relation of implication is reflexive,
symmetric, or transitive.

4. Suppose that � is an irrational number given by its infinite (nonperiodic)
decimal representation. State the negation of the following statements without
using the word “not”:

(a) The 100th decimal digit of � is odd.
(b) The 100th decimal digit of � is at most 4.
(c) The 100th decimal digit of � is odd or it is at most four.
(d) The 100th decimal digit of � is odd and at most 4.
(e) If the 100th decimal digit of � is odd, then it is at most 4.
(f) If the 100th decimal digit of � is at most 4, then it is odd.
(g) The 100th decimal digit of � is odd iff it is at most 4.
(h) The 100th decimal digit of � is even iff it is at most 4.
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5. Consider the following pairs of statements. Which pairs are equivalent?

(a) P: I will not be accepted at law school if I don’t do well on the LSAT.
Q: If I do well on the LSAT, I will be accepted at law school.
(Hint: Let R denote the statement that “I will be accepted at law school”
and let S denote that “I do well on the LSAT.” Write the logical form
of P and Q using R and S ; that is, write a logical expression capturing
the meaning of the two sentences using R, S , and appropriate logical
operations.)

(b) P: In order for it to rain, there must be clouds.
Q: If it does not rain, then there are no clouds.

(c) P: If it is sunny tomorrow, then I’ll go hiking.
Q: I go hiking only if it is sunny tomorrow.

(d) P: Only completely justified answers will receive full credit.
Q: If complete justification is not given, the answer will not receive full
credit.

6. State the contrapositive and the converse of each of the following statements:

(a) In order for it to rain, there must be clouds.
(b) In order for it to rain, it is sufficient that there are clouds.
(c) What is good for the goose is good for the gander.
(d) If wishes were horses, then beggars would ride.

7. Consider the predicates

a D 0I a > 0I a < 0I b D 0I b > 0I b < 0I
a D bI �a D bI a D b2I a > bI �a > bI a > b2:

Many other predicates that are frequently used in algebra are equivalent to
logical expressions built from these predicates. For example, for arbitrary real
numbers a and b, we have

a � b D 0 , .a D 0 _ b D 0/:

(cf. Theorem 12.2 for a proof of this statement.)
For each of the predicates below, combine some of the 12 given predicates
above into a logical expression using conjunctions and/or disjunctions so that
your expression is equivalent to the given predicate for all real number values
of a and b. (You don’t need to provide proofs for your statements here; you’ll
be asked to do so in Problem 7 of Chap. 12.)

(a) a � b > 0

(b) jaj D b

(c) jaj > b

(d)
p

a D b

(e)
p

a > b
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(Hints: Recall that the absolute value of a real number x is defined to be x

when x � 0 and �x when x < 0; also, for a nonnegative real number y,
p

y

is defined as the nonnegative real number whose square is y—cf. Problem 1 of
Chap. 2.)

8. There are four cards on a desk, each containing a letter on one side and a whole
number on the other. We see the top of the four cards showing the characters
R, U , 4, and 1. Which cards do we have to turn over if we want to verify the
following statements?

(a) Each card contains a vowel or an even number.
(b) If the letter on one side of the card is a vowel, then the number on the other

side is even.
(c) The letter on one side of the card is a vowel if, and only if, the number on

the other side is even.

9. (a) How many pairwise nonequivalent logical formulae (of arbitrary length)
are there on two variables?

(b) For each expression in part (a), find a representation that only involves
negation and disjunction. (You do not need to use both.)

10. Every citizen of the town of Logicville is either a knight who always tells the
truth or a knave who always lies (but they can’t be both, of course).

(a) A and B are citizens of Logicville, and A says “I am a knave or B is a
knight.” What are A and B?

(b) One day you meet three of the citizens of Logicville, C, D, and E, and they
tell you the following:
C says: “All three of us are knaves.”
D says: “Exactly two of us are knaves.”
What can you determine about who is a knight and who is a knave?

(c) The next day you meet F, G, and H, and the following conversation takes
place:
F says: “All three of us are knights.”
G says: “Exactly two of us are knights.”
What can you determine now about who is a knight and who is a knave?

11. Every inhabitant of a certain distant planet has one of three possible occupa-
tions: educator, lawyer, or politician. The educators always tell the truth, the
politicians always lie, and the lawyers sometimes say the truth and sometimes
lie—whatever they happen to feel like. Educators are considered to be members
of the upper class, lawyers are members of the middle class, and politicians
belong to the lower class.

(a) A and B , who live on this planet, say the following:
A says: “B is in a higher class than I am.”
B says: “That’s not true.”
Can we determine the occupations of A and B?
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(b) One day we meet three inhabitants of the planet: C , D, and E . We know
that all three have different occupations. They tell us the following:
C says: “I am a lawyer.”
D says: “That’s true.”
E says: “I am not a lawyer.”
Can we determine the occupations of these three people?

12. At one time or another, we have all heard the saying that “not everything is black
or white.” Fuzzy logic, an extension of the classical two-valued logic discussed
above, takes this sentiment to heart. In fuzzy logic, a statement P may have any
real number truth value �.P / between 0 and 1, with �.P / D 0 and �.P / D 1

corresponding to P being completely false and completely true, respectively.
For example, the statement that “This classroom is warm” may be given a truth
value of 0.9 if its temperature is 80ıF, but only 0.1 if it cools to 60ıF. While
fuzzy logic has been discussed for a very long time, its formal development
started with a 1965 paper of Lofti A. Zadeh.

The definitions of negation, disjunction, conjunction, equivalence, and
implication can be generalized as follows:

Definition 7.8. Let P and Q be fuzzy statements, that is, statements with truth
values �.P / and �.Q/ between 0 and 1, inclusive. Then:

• The negation of P , :P , has truth value

�.:P / D 1 � �.P /:

• The disjunction of P and Q, P _ Q, has truth value

�.P _ Q/ D maxf�.P /; �.Q/g:

• The conjunction of P and Q, P ^ Q, has truth value

�.P ^ Q/ D minf�.P /; �.Q/g:

Furthermore, we say that:

• P and Q are equivalent if �.P / D �.Q/.
• P implies Q if �.P / � �.Q/.

(a) Verify that Definition 7.8 indeed generalizes our corresponding definitions
for (non-fuzzy) statements.

(b) Generalize De Morgan’s Laws (cf. Problem 1(c) above) for fuzzy state-
ments and prove that the identities still hold.

Remarks. A somewhat different way to generalize two-valued logic is to assign
one of several predetermined truth values to each statement—this modification
of fuzzy logic is referred to as multivalued logic. In the simplest case, we may
restrict the possible truth values to 0 (false), 0.5 (undecided), or 1 (true). An
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even more general idea is the development of set-valued logic, which assigns
not a single truth value but an entire collection of truth values to each statement.
For example, one might choose to say that, for P being the statement that “this
classroom is warm,” �.P / is the entire interval Œ0:6; 0:75�.

There is considerable discussion among mathematicians, computer scientists,
engineers, and other scientists whether fuzzy logic or any of its variations are
valuable. Some claim that fuzzy logic is nothing more than imprecise logic;
others argue that there is no need for fuzzy logic as one has probability theory
available to discuss statements whose truth values are not exactly known. In
response, fans of fuzzy logic point to the ever-growing number of applications
(e.g., fuzzy control systems, artificial intelligence, pattern recognition); there
are even attempts to modify probability theory to serve the needs of fuzzy logic
(this not-fully-accepted field is referred to as possibility theory). In any case,
it seems that fuzzy logic has many fans and has indeed developed into a vast
research area.



Chapter 8
Setting Examples

When we are interested in studying several objects at the same time, we may put
these objects into a set. Some of the most commonly used sets in mathematics are
the following sets of numbers:

• N is the set of natural numbers (positive integers).
• Z is the set of integers (natural numbers, their negatives, and zero).
• Q is the set of rational numbers (positive and negative fractions and zero).
• R is the set of real numbers (finite and infinite decimals).
• C is the set of complex numbers (real numbers, imaginary numbers, and their

sums).

Other standard notations for sets of numbers include intervals. For example, the
intervals .�2; 3/, Œ�2; 3�, and .�1; 3/ include all real numbers between �2 and 3
exclusive, between �2 and 3 inclusive, and below 3, respectively.

Sets may also contain objects other than numbers. We may talk about, for
example, the set of students in a class, the set of days in a week, or the set of books
in a library. As we will see shortly, however, not every collection of objects can be
considered a set!

In this chapter we develop a heuristic understanding of sets; our study will be
carried out through examples (hence the title). We do not give a definition for sets;
as we have mentioned in Chap. 2, we treat the concepts of “set” and “element” as
primitives. Appendix B discusses a more advanced approach to set theory.

We usually denote sets by capital letters and their elements by lower case letters.
If x is an element of the set S , we denote this by x 2 S and say that S contains x

or x is a member of S . If x is not an element of S , we write x 62 S .
Let us turn to the question of describing sets and the various notations used for

this purpose. We may identify sets by listing their elements: for example, A D
f1; 4; 9g denotes the set with the three elements 1, 4, and 9, while B D f1; 4; 9; : : :g
has infinitely many elements in that it contains all positive perfect squares. (When
using “: : : ” we must implicitly understand what all the other elements of the set
are!) This description of sets is called the list notation. We should note that a proper
list cannot contain more than one “: : : .” Even though, in some cases, descriptions
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83



84 8 Setting Examples

such as

C D f: : : ; �7�=2; �3�=2; �=2; 5�=2; 9�=2; : : : g
or even

D D f1; 1:1; 1:11; 1:111; : : : ; 2; 2:1; 2:11; 2:111; : : : ; 3; 3:1; 3:11; 3:111; : : : ; g

may identify a set clearly enough, these notations are not considered to be proper
lists!

Can every set be written as a list? Obviously, any finite set can be given as a list.
The situation is not so clear for infinite sets. Listing the natural numbers causes no
concern:

N D f1; 2; 3; 4; 5; : : :g:
The set of all integers is still not hard either:

Z D f0; 1; �1; 2; �2; 3; �3; 4; �4; : : :g:

(Other lists for these sets are, of course, possible.) The sets C and D of the previous
paragraph can also be put in lists:

C D f�=2; �3�=2; 5�=2; �7�=2; 9�=2; �11�=2; 13�=2; : : : g

and

D D f1; 2; 1:1; 3; 2:1; 1:11; 4; 3:1; 2:11; 1:111; 5; 4:1; 3:11; 2:111; 1:1111; : : : g:

(The meanings of “: : : ” in these descriptions are clear enough.) Even the set of all
rational numbers can be listed (cf. Problem 12).

It might come as a surprise that the elements of some infinite sets cannot be
listed! We will see, for example, that the set of all real numbers cannot be listed; as
we will explain in Chap. 22, there are just too many of them to be put in a single list.
It is quite an interesting question to decide if a particular set can be listed or not.

There are some more concise ways to describe sets. One such description follows
the pattern

fformula j variable(s)g:
For example, B D fn2 j n 2 Ng is the set of positive perfect squares, E D f2k j k 2
Zg is the set of even integers, and O D f2k C 1 j k 2 Zg is the set of odd integers.
The symbol “j” is read as such that or for which. This description of sets is called
the formula notation.

It is not always easy—or even possible—to describe a set using the formula
notation. A famous example when the list notation is more practical than the formula
notation is the case of Fibonacci numbers listed as

f1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; : : :g
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(cf. Chap. 2). It might be quite surprising that the precise formula notation for this
set is

8
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even the fact that this formula, which involves irrational numbers such as the
golden ratio 1Cp

5
2

, yields integer values is less than obvious (we will prove this
in Chap. 14). For other such amazing examples visit the On-Line Encyclopedia of
Integer Sequences at http://www.research.att.com/�njas/sequences/.

Alternatively, we may describe our set with one or more condition(s) that its
elements must satisfy; this description has the structure

fvariable(s) j condition(s)g:

For example,

fn 2 Z j 0 � n � 5g D f0; 1; 2; 3; 4; 5g;
while

fx 2 R j 0 � x � 5g D Œ0; 5�:

This description of sets is called the conditional notation.
The conditional notation allows us to describe a large variety of finite or infinite

sets. For example,

fn 2 N j xn C yn D zn has positive integer solutions .x; y; z/g

is, according to Fermat’s Last Theorem, the set f1; 2g, while it is easy to see that

fn 2 N j xn C yn D zn has positive real solutions .x; y; z/g

is the set N of all positive integers. The fact that one is able to define sets by
restricting a given set to the collection of those elements that satisfy a certain
property (or properties) is an axiom that can be stated as follows:

Axiom 8.1 (The Axiom of Separation). If U is an arbitrary set and P is an
arbitrary predicate defined on the elements of U , then

fx 2 U j P.x/ is a true statementg

is a set.

We now address the question of whether every collection of objects is a set. The
fact that this is not the case was first observed in 1902 by the Welsh philosopher
and mathematician Bertrand Russell (1872–1970). Before we examine Russell’s
Paradox, let us note that some collections contain themselves and some do not.

http://www.research.att.com/~{ }njas/sequences/
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For example, T D f2g only contains the number 2 and not the set f2g, so T 62 T .
Similarly, the set P of all people in the world only contains people and not the set
of all people P , so P 62 P . However, we can say that the collection I of all abstract
ideas is certainly an abstract idea, so I 2 I ; similarly, if J is the collection of all
infinite collections, then J itself is infinite, hence J 2 J .

Now define Z to be the collection of all sets that do not contain themselves,
that is,

Z D fA j A is a set and A 62 Ag:
By our considerations above, T 2 Z and P 2 Z, but I 62 Z and J 62 Z. Now
we can ask whether Z is an element of Z or not. It is easily seen that if Z were
a set, then both Z 2 Z and Z 62 Z would be false (check!). Thus, Z cannot be a
well-defined set; this is referred to as Russell’s Paradox.

Note that the Axiom of Separation does not contradict Russell’s Paradox. In
general, one cannot assume that fx j P.x/ is trueg is a set; instead, we only require
that inside a given set (whose existence we already assume) the elements satisfying
predicate P form a set.

For this reason, when describing a set S , we often have an underlying universal
set U given, and we specify which elements of U belong to S and which do not.
(We may omit the designation of the universal set when it is already clear from the
context.)

At the other end of the spectrum from the universal set, we have the empty set,
denoted by ;: it is the unique set with no elements. For example,

fx 2 R j x C 1=2 2 Rg D R;

but

fx 2 Z j x C 1=2 2 Zg D ;:

Let us now turn to set operations. We introduce three operations on sets: the unary
(one-variable) operation of complementation and the two binary (two-variable)
operations of union and intersection. In the definitions below we assume that the
elements of sets A and B come from a given universal set U . To emphasize
the strong similarity between operations on sets and statements (which we will
investigate further in Chaps. 10 and 11), we state these definitions using the
terminology of logic from Chap. 7.

Definition 8.2. The complement of a set A (with respect to the universal set U ) is
the set

A D fx 2 U j :.x 2 A/g:

Definition 8.3. The union of sets A and B is the set

A [ B D fx 2 U j .x 2 A/ _ .x 2 B/g:
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Definition 8.4. The intersection of sets A and B is the set

A \ B D fx 2 U j .x 2 A/ ^ .x 2 B/g:

Furthermore, we define two relations that may hold between two sets.

Definition 8.5. We say that sets A and B are equal and write A D B if, and only if,

.x 2 A/ , .x 2 B/:

Definition 8.6. We say that A is a subset of B and write A � B if, and only if,

.x 2 A/ ) .x 2 B/:

We also say that A is a proper subset of B and write A 	 B , whenever A � B

but A ¤ B .
It is easy to see that the relation of equality between two sets is:

• Reflexive: A D A for every set A.
• Symmetric: if A D B then B D A.
• Transitive: if A D B and B D C , then A D C .

while the relation of being a subset is:

• Reflexive: A � A for every set A.
• Antisymmetric: A � B and B � A cannot both be true, unless A D B .
• Transitive: if A � B and B � C , then A � C .

We can also define the union and intersection of more than two sets. The union
of sets A1; : : : ; An (n 2 N), denoted by

n[

iD1

Ai D A1 [ � � � [ An;

consists of all elements of the universal set that are in at least one of them; similarly,
the intersection of A1; : : : ; An, denoted by

n\

iD1

Ai D A1 \ � � � \ An;

contains those elements of the universal set that are in all of them. (As was the case
with the disjunction and conjunction of statements, we may freely omit parentheses
in expressions involving only unions or only intersections.) We can define the union
and intersection of infinitely many sets analogously; if sets Ai are “indexed” by the
elements of any set I , then their union and intersection is denoted by

[

i2I

Ai and
\

i2I

Ai ;
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respectively. (If I is the set of positive integers, then the notations

1[

iD1

Ai and
1\

iD1

Ai

are also used.)
Comparing Definitions 8.2 through 8.6 above to Definitions 7.1 through 7.5

of Chap. 7, we see a strong parallel between sets and statements. In particular,
complements, unions, and intersections of sets seem to correspond to negations, dis-
junctions, and conjunctions of statements, respectively. Furthermore, the relations of
implication and equivalence between two logical expressions seem to correspond to
a set being a subset of another set and to two sets being equal, respectively.

To further demonstrate the similarity between the algebra of statements and the
algebra of sets, consider the example of Chap. 7 that the logical formulae

.P _ :Q _ R/ ^ .:.P _ R//

and
:P ^ :Q ^ :R

are equivalent; that is,

.P _ :Q _ R/ ^ .:.P _ R// , :P ^ :Q ^ :R

is a tautology. Making the appropriate changes described above—and replacing the
letters P , Q, and R by A, B , and C , respectively, as it is more customary to denote
sets by letters chosen from the beginning of the alphabet—one gets that the identity

.A [ B [ C / \ .A [ C / D A \ B \ C

holds for all sets A, B , and C .
To see this, we can use a truth table very similar to the one in Chap. 7:

x 2 A x 2 B x 2 C x 2 A [ B [ C x 2 .A [ C/ x 2 .A [ B [ C/ \ .A [ C/ x 2 A \ B \ C

T T T T F F F

T T F T F F F

T F T T F F F

T F F T F F F

F T T T F F F

F T F F T F F

F F T T F F F

F F F T T T T

We will provide a deeper analysis of the similarities between the algebra of
statements and the algebra of sets in Chaps. 10 and 11.
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In addition to truth tables, combinations of sets can sometimes be conveniently
visualized using Venn diagrams. The Venn diagram of an expression involving sets
consists of an outer box representing the universal set U and simple closed curves
inside the box corresponding to the individual sets involved. (We avoid having any
two curves intersect in more than two points or more than two curves intersect at
the same point.) Regions within the box should correspond to the rows of the truth
table. For example, the Venn diagram for the general position of the set A consists
of two regions (A and A); the Venn diagram for the general position of the sets A

and B consists of four regions (A \ B , A \ B , A \ B , and A \ B); and the Venn
diagram for the general position of the sets A, B , and C consists of eight regions:

��

��

U

A

��

��

��

��

U

A B
��

��

��

��

��

��

U

A B

C

The Venn diagram of more than three sets cannot be drawn using circles only
(cf. Problem 9 (c) in Chap. 13). However, one can find other simple closed curves
for the Venn diagram of an arbitrary (finite) number of sets (cf. Problem 11).

If we have additional information about our sets (so they will not be in “general
position”), then we wish to reflect that in our diagram. Suppose, for example, that
we are given sets A, B , and C for which we have C � A. In this case, we may draw
a diagram like this:

��

��

��

��

�	


�

U

A
BC

Note that this time we only have six regions and not eight; there are no regions
corresponding to A \ B \ C and A \ B \ C . Such diagrams are often convenient
for illustrations; to distinguish them from Venn diagrams, we refer to them as Euler
diagrams.

We note in passing that, unfortunately, it is not possible to draw an Euler diagram
for every situation without some concessions. For example, suppose that we have an
expression involving the sets A, B , and C and that we know that A \ B � C . Then
our desired diagram should consist of only seven regions (there will be no region
for A \ B \ C ). The first diagram below has two separate regions corresponding to
A \ B \ C ; while the second diagram has the correct seven regions, it violates the
condition that no three curves intersect in a single point:
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��
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Venn diagrams can be used to verify statements involving sets. For example, to
see that

.A [ B [ C / \ .A [ C / D A \ B \ C

holds for arbitrary sets A, B , and C , one can check that the region of the Venn
diagram corresponding to .A[B [C /\.A [ C / matches the region corresponding
to A \ B \ C . Indeed, we find that the regions (marked by

p
) corresponding to

A [ B [ C and .A [ C / are

��

��

��

��

��

��

U

A B

C

p

p

p

p
p

pp

and
��

��

��

��

��

��

U

A B

C

p

p

respectively, with the diagrams corresponding to the columns of A [ B [ C and
.A [ C / in the truth table on page 88. It is now easy to see that their intersection is
A \ B \ C , as claimed.

While Venn diagrams and Euler diagrams often help us with visualizing or
illustrating such statements, mathematicians prefer not to rely on them in written
proofs.

Let us now define an important set whose elements are themselves sets.

Definition 8.7. Suppose that S is a set. The power set P.S/ of S is the set of all
subsets of S ; that is, P.S/ D fA j A � Sg.

For example, if S D f1; 2g, then

P.S/ D f;; f1g; f2g; f1; 2ggI

similarly, P.N/ consists of all (finite and infinite) subsets of N (we will see in
Chap. 22 that the subsets ofN cannot be listed!). The reason behind the name “power
set” lies in the fact that, as we will see in Chap. 21, if S has n elements, then P.S/

has 2n elements; for this reason, the power set of S is sometimes denoted by 2S .
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Note that our definition above does not automatically tell us that P.S/ is a set (there
is no universal set given); thus, we need to rely on this fact as an axiom.

Finally, we turn to the Cartesian product (sometimes called cross product) of sets.
Note that, by our definition, the sets fx; yg and fy; xg are equal. However, we often
need to distinguish between the ordered pairs .x; y/ and .y; x/. For this purpose,
we make the following definition:

Definition 8.8. The Cartesian product or direct product of sets A and B is the set

A 
 B D f.x; y/ j .x 2 A/ ^ .y 2 B/g:

The elements of A 
 B are called ordered pairs. The Cartesian product of sets
A1; A2; : : : ; An (n 2 N) is defined similarly:

nY

iD1

Ai D A1 
 A2 
 � � � 
 An

D f.x1; x2; : : : ; xn/ j .x1 2 A1/ ^ .x2 2 A2/ ^ � � � ^ .xn 2 An/g:

(The direct product of an infinite number of sets will be defined in Chap. 19.)
We should mention that it can be proven that Cartesian products are sets and the
proof, although skipped here, is necessary as the definition above does not rely on a
universal set.

For example, if A D f1; 2; 3g and B D f2; 4g, then

A 
 B D f.1; 2/; .1; 4/; .2; 2/; .2; 4/; .3; 2/; .3; 4/g

and

B
B
B D f.2; 2; 2/; .2; 2; 4/; .2; 4; 2/; .2; 4; 4/; .4; 2; 2/; .4; 2; 4/;

.4; 4; 2/; .4; 4; 4/g:

When A1 D A2 D � � � D An, we write

A1 
 A2 
 � � � 
 An D An:

For example, R2 is the set of ordered pairs of real numbers (this set can be identified
with the set of points in the plane), andR3 is the set of ordered triples of real numbers
(this set can be identified with the set of points in three-dimensional space).

Sets are used in all branches of mathematics. In fact, it is possible (though rarely
worthwhile) to translate every mathematical statement to the language of sets. The
branch of mathematics dealing with the precise treatment of sets is set theory. We
will use and further study sets in every subsequent chapter in this book.
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Problems

1. Which of the following expressions describe sets? Are any two of the sets
equal?

a. fn 2 N j n2 C 9g.
b. fn2 C 9 j n 2 Ng.
c. fn 2 N j n2 C 9 > 100g.
d. fn2 C 9 > 100 j n 2 Ng.
e. fn 2 N j n 2 Rg.
f. fn 2 R j n 2 Ng.

2. Describe the following sets using list notation:

a. fn 2 N j .�1/n D �1g
b. fx 2 R j p

x C 6 D xg
c. fx 2 R j x2 D 2g
d. fx 2 Z j x2 D 2g
e. f.x; y/ 2 R

2 j .x C 2/2 C .y � 3/2 D 0g
f. f.x; y/ 2 N

2 j x D yg
g. f.x; y/ 2 Z

2 j x D yg
h. f.x; y/ 2 Z

2 j x2 D y2g
i. fx 2 R j sin x D 1g
j. f.x; y/ 2 Z

2 j 2x C 3y D 1g
3. Describe the following sets using the formula notation (cf. Problem 2 in

Chap. 3):

a. f41; 44; 47; 50; 53; 56; : : :g
b. f41; 43; 47; 53; 61; 71; : : :g
c. f41; 42; 44; 48; 56; 72; : : :g
d. f41; 83; 167; 335; 671; 1343; : : :g
e. f41; 83; 165; 331; 661; 1323; : : :g

4. Consider the following sets: ;, f;g, ff;gg, f;; ;g, ff;g; f;gg, fff;gg; ff;ggg,
f;; f;gg, f;; ff;ggg, ff;g; ff;ggg, P.;/, P.P.;//, ; 
 ;, and ; 
 f;g.

a. How many different sets are listed?
b. Find the smallest possible set that has all the given sets as elements.
c. Find the smallest possible set that contains all the given sets as subsets.

5. Assume that U is a set, and let Z D fA 2 U j A is a set and A 62 Ag.

a. Explain why Z is a set.
b. Is Z � U ?
c. Is Z 2 U ?
d. Is Z 2 Z?
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6. For sets A and B , we define the difference A n B (read as “A minus B”) of A

and B as
A n B D A \ B D fa 2 A j a 62 Bg:

Use Venn diagrams to verify each of the following:

a. A \ .B n C / D .A \ B/ n .A \ C /

b. A n .B \ C / D .A n B/ [ .A n C /

7. Suppose that A is a set of three elements, B is a set of five elements, and C is
a set of eight elements. What can you say about the number of elements in the
following sets? If there are several possibilities, find all of them. (It might be
convenient to use the notation jX j for the size of the set X .)

a. A [ B , A \ B , and A 
 B

b. A [ B [ C , A \ B \ C , .A [ B/ \ C , and A [ .B \ C /

c. P.A [ B/, P.A \ B/, and P.A 
 B/

d. P.A/ [ P.B/, P.A/ \ P.B/, and P.A/ 
 P.B/

8. For each predicate below, find sets A and B for which the predicate becomes a
true statement, and find sets A and B for which the predicate becomes a false
statement. If any of these is not possible, explain why.

a. P.A [ B/ D P.A/ [ P.B/

b. P.A \ B/ D P.A/ \ P.B/

c. P.A 
 B/ D P.A/ 
 P.B/

9. A special relation involving sets is when they have no elements in common,
that is, their intersection is the empty set ;; in this case we say that the sets
are disjoint. If, given a collection of sets, we find that every two of them are
disjoint, then we say that the collection of sets is pairwise disjoint.

a. Are the three sets f1; 2g, f2; 3g, and f3; 4g disjoint? Are they pairwise
disjoint?

b. Are the three sets ff1; 2g; f3; 4gg, ff1; 3g; f2; 4gg, and ff1; 4g; f2; 3gg dis-
joint? Are they pairwise disjoint?

c. Find an example for three sets that are disjoint but where no two of the sets
are pairwise disjoint.

d. Find three infinite subsets of N (i.e., subsets of N with infinitely many
elements) that are disjoint, but their pairwise intersections are all infinite.

e. Find infinitely many infinite subsets of N that are pairwise disjoint, but their
union is N.

(Hint: One possible approach is to use Lemma 4.11.)

10. For a given n 2 N, the set f0; 1gn, sometimes referred to as the hypercube of
order n, is a set that is often used in most areas of mathematics and computer
science.

a. How many elements does f0; 1g3 have?



94 8 Setting Examples

b. List the elements of f0; 1g3 in lexicographic order: .a1; a2; a3/ will come
before .b1; b2; b3/ if, and only if,

.a1 < b1/_ Œ.a1 D b1/^ .a2 < b2/�_ Œ.a1 D b1/^ .a2 D b2/^ .a3 < b3/�:

c. List the elements of f0; 1g3 in co-lexicographic order: .a1; a2; a3/ will
come before .b1; b2; b3/ if, and only if,

.a3 < b3/_ Œ.a3 D b3/^ .a2 < b2/�_ Œ.a3 D b3/^ .a2 D b2/^ .a1 < b1/�:

d. List the elements of f0; 1g3 in a Gray code order: The first and the last
elements, as well as any two adjacent elements, differ in exactly one
position.

(Hint: There is more than one such order. A drawing of a cube, with
vertices appropriately labeled, may be helpful.)

e. List the elements of f0; 1g4 in a Gray code order.
(Hint: Use the Gray code order of f0; 1g3.)

11. The general position of one, two, or three sets was illustrated on page 89.

a. Use the Gray code order of f0; 1g3 to draw a Venn diagram that shows the
general position of four sets. (Note that the diagram will have to contain
curves other than circles; cf. Problem 9 in Chap. 13.)

b. Use the Gray code order of f0; 1g4 to draw a Venn diagram that shows the
general position of five sets.

12. a. List all elements of the Cartesian product N 
 N.
b. List all elements of the set of rational numbers Q.

(Hint: Use part (a).)

Remarks. The method we employed here to list the elements of Q does
not yield a convenient formula. Such a formula, however, does exist, as
was very recently discovered by Neil Calkin and Herbert Wilf.

Theorem 8.9. The infinite sequence q1; q2; q3; : : :, defined recursively by
q1 D 1 and

qnC1 D 1

2bqnc � qn C 1

for n � 1, provides a listing of all positive rational numbers; that is, each
positive rational number appears exactly once in the sequence.

The list generated by the Calkin–Wilf sequence starts as

1; 1
2
; 2; 1

3
; 3

2
; 2

3
; 3; 1

4
; 4

3
; 3

5
; 5

2
; 2

5
; 5

3
; 3

4
; 4; : : :

The proof of Theorem 8.9 is quite elementary, though it is a bit too lengthy
to be presented here.



Chapter 9
Quantifier Mechanics

We introduced abstract mathematics in Chap. 1 with Hackenbush games; in particu-
lar, we analyzed one such game, the Aerion. Here we review this rather simple game
as it will enable us to discuss quantifiers in a simple and natural way. Consider the
following figure:
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a1 a2 b1

b2

a3 b3

� � �

� �

�

�

The figure consists of six segments, labeled a1; a2; a3; b1; b2, and b3, arranged
to form a “horse.” Two players, A and B , take turns removing one segment each
time. Player A can only remove segments marked a1; a2, and a3; player B can only
remove segments b1; b2; and b3. A further restriction is that when, by the removal
of some segment(s), a part of the diagram gets disconnected from the “ground,” that
part of the diagram becomes unavailable. For example, when the “neck” of the horse
(segment a3) is removed, then its “head” (segment b3) gets cut off. The winner of
the game is the last player who has an available option. We want to know which
player has a winning strategy, that is, which player will win the game if both players
play optimally? Note that we did not specify above which player starts the game,
so, indeed, we have two questions: Which player wins if A starts and which player
wins if B starts?

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-6636-9 9, © Béla Bajnok 2013
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As we have already seen in Chap. 1, Aerion is a win for A no matter who starts the
game, and what we mean by that is that A has a winning strategy that guarantees her
a win regardless of what B does. (Unless we explicitly state otherwise, we always
assume that each player plays optimally.) Therefore, we can make the following
claims:

Claim 1: There is some first move for A that results in a win for A. (In other words,
A can win if she starts the game.)

Claim 2: Every first move for B will result in a win for A. (In other words, B will
be unable to win no matter how he starts the game.)

Below we will provide a careful analysis and a proof for each of these claims. In
effect, what we will show will be slight restatements:

Claim 1’: There is some first move for A for which every response by B will result
in a wwill prevent her from winning.)

Claim 2’: For every first move by B , A has some response that will result in a win
for A. (In other words, A can win no matter how B starts the game.)

It is easy to see that Claims 1 and 1’ are equivalent and that Claims 2 and 2’ are
equivalent. Furthermore, we will prove the following strengthening of Claim 2’:

Claim 2*: For every first move by B and for every response by A, the game will
result in a win for A. (In other words, A can respond “blindly” and still win when
B starts the game.)

Clearly, Claim 2* implies Claim 2’ (and thus Claim 2).

To provide a more thorough analysis of our game—and to develop a better
understanding of quantifiers—we will carry out further investigations. In particular,
we will also establish the following:

Claim 3: There is some first move by A that results in a win for B . (In other words,
if A wants to win, she must select her first move carefully.)

Or, equivalently:

Claim 3’: There is some first move by A for which B has some response that will
result in a win for B . (In other words, if A starts the game by a certain move, then
B will be able to win if he responds by the right move.)

We can then ask for the exact number of possible first moves by A that result in
a win for her and prove the following:

Claim 3*: There is a unique first move for A that results in a win for A. (In other
words, if A wants to win, she only has one choice for how to start the game.)

The words “some,” “every,” and “unique,” as well as the similar words “all,”
“none,” and “any,” are quantifiers that are to be discussed in this chapter.
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To analyze this game, in Chap. 1 we introduced so-called decision trees. Above,
we see the complete decision tree of this game in the case when A starts.

The figure is read from left to right and shows all possible moves at each round.
(A similar decision tree can be constructed for the case when B makes the first
move.) For example, the topmost branch of the decision tree corresponds to the
following play of the game:

� A starts the game by removing a1.
� B removes b1.
� A wins by removing a2.

Since this particular play ends in a win for A, we may label the rightmost
endpoint of this branch of the tree with an A. We can similarly label all other
endpoints.

Next we discuss how to label intermediate points in our decision tree in a way
that indicates who would win if a particular play reached that position and if both
players played optimally afterwards.

Obviously, if the tree does not fork beyond the intermediate point in question,
then we can label the point the same way as the end of the branch was labeled. For
example, if the play starts with A removing a1, and is followed by B removing b1

and then A removing a3, then at that point we already know that the game will end
by A winning.

Furthermore, even if the tree does fork, the label is clear if every branch beyond
the point is labeled the same. For example, if the play starts with A removing a3,
then A will win in every case. This proves Claim 1 above.

How do we label points where two (or, perhaps, more) branches originate and
where these branches are labeled differently? To answer that, we need to know
whose turn it is to make a move at that point. Naturally, each player will move
in the direction where the branch is favoring him or her. For example, if a particular
play of our game starts with A removing a1 and then B removing b2, then the play,
assuming both players play optimally afterwards, will end in a win for A since A

will move next by removing a3. Therefore, we can label that point in the diagram
by A. Similarly, we can label the point after a1, b3, and a3 have been played by B

because, at that point in the play, it is B’s decision, and he has the option of moving
toward a branch ending in a win for him by removing b2.

After completing the labeling process as just described, we see that the starting
point is labeled A; thus Claim 3 holds. Furthermore, since only one of the three
“neighbors” of the starting point is labeled by A (when A starts the game by
removing a3), we also see that Claim 3* holds. The analysis of the game when
B starts is considerably easier: every point will be labeled A. This proves Claims 2
and 2*.

Let us now discuss quantifiers more formally.

Suppose that S is a given set and that P.x/ is a predicate that becomes a
statement for every x 2 S (we write P.x/ to express the fact that P depends on x).
We then may define the truth set of P.x/ on S to be the set

SP D fx 2 S j P.x/ is truegI
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this is the subset of S for which P.x/ holds. According to the Axiom of Separation,
SP is a well-defined set.

Many questions in mathematics essentially ask for the truth set of a certain
predicate on a given set. For example, if S D N and P.n/ is the predicate that
2n � 1 is a prime number, then, as we have seen in Chap. 3, 7 2 SP , but 11 62 SP .
Furthermore, according to Theorem 4.7, every element of SP is a prime number.
(The Mersenne Prime Conjecture says that SP has infinitely many elements; cf. page
394.) Another, more familiar example is when we need to solve an equation E.x/

in a given set, such as x2 � 5x C 6 D 0 in R. The truth set of this equation in R is
the set RE D f2; 3g.

Often we are only interested in knowing whether the truth set contains all
elements of the underlying set or if it contains at least one element. Our terminology
for these cases is as follows:

Definition 9.1. We say that P.x/ holds for every x 2 S , and write

8x 2 S; P.x/

if, and only if, SP D S , i.e., the predicate P.x/ is a true statement for every x 2 S .
The symbol 8 is called the universal quantifier.

Definition 9.2. We say that P.x/ holds for some x 2 S , and write

9x 2 S; P.x/

if, and only if, SP 6D ;, i.e., the predicate P.x/ is a true statement for at least one
x 2 S . The symbol 9 is called the existential quantifier.

The universal and existential quantifiers appear frequently in mathematics. For
example,

8x 2 R; x2 � 0

stands for the fact that the square of every real number is nonnegative, and

9x 2 R; x2 D 2

says that there is a (t least one) real number whose square equals 2. (Both statements
are true, although the proof of the second statement is considerably harder than the
first and will have to wait until Chap. 23.)

Often, we need to use the negation of a quantified statement. The negation of

8x 2 S; P.x/

means that P.x/ is false for at least one x 2 S , that is

9x 2 S; :P.x/:
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The negation of
9x 2 S; P.x/

occurs even more often. It is denoted by

6 9x 2 S; P.x/;

and it means that P.x/ is true for none of the elements of S or, equivalently, that it
is false for every x 2 S , that is,

8x 2 S; :P.x/:

Thus, in short, we can write

:Œ8x 2 S; P.x/� , Œ9x 2 S; :P.x/�

and
:Œ9x 2 S; P.x/� , Œ8x 2 S; :P.x/�:

Note that the existential quantifier does not specify how many elements the set S

has for which P.x/ is true, except to claim that there is at least one such element.
Sometimes we are interested in the case when there is exactly one x for which P.x/

holds. The notation for this is

9Šx 2 S; P.x/;

and we say that there is a unique x 2 S for which P.x/ holds.
Let us now return to our Aerion game. To make our discussion more precise, we

introduce some notation. Let A and B denote the set of options that are available
for A and B , respectively, so we have A D fa1; a2; a3g and B D fb1; b2; b3g. Let
WA.x/ (resp. WB.x/) denote the predicate that the game is a win for A (resp. B)
after the initial move x 2 A [ B. (As always, we assume that both players play
optimally on the game that results after the initial move x is made.) Our analysis of
the game above revealed that WA.a3/, WA.b1/, WA.b2/, and WA.b3/ are all true
statements, establishing

Claim 1: 9a 2 A; WA.a/

and

Claim 2: 8b 2 B; WA.b/:

We also pointed out, however, that WA.a1/ and WA.a2/ are false; hence, their
negation, WB.a1/ and WB.a2/; are true, and we have

Claim 3: 9a 2 A; WB.a/:

In fact, since there are two different elements of A for which WB.a/ is true and
only one for which WA.a/ holds, we have

Claim 3*: 9Ša 2 A; WA.a/:
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When determining whether WA.x/ or WB.x/ holds for a given initial move
x 2 A[B, we had to look at the possible moves by the second player. For example,
to see that WA.a3/ is true, we verified that the game can be won by A regardless of
how B responds to the initial move a3. Similarly, to see that WA.b/ is true for every
b 2 B, we had to verify that every initial move of B could be followed by some
move by A that resulted in a win for A.

To do such an analysis more precisely, we need to discuss statements involving
two or more quantifiers. Let WA.x; y/ (resp. WB.x; y/) stand for the predicate that
the game can be won by player A (resp. B) after the initial move x by the first
player is followed by the response move y by the second player (x 2 A [ B and
y 2 A [ B).

So, for example, to say that a3 is a winning initial move for A, we have to verify
that WA.a3; b1/ and WA.a3; b2/ are both true. (Note that, after moving a3, option b3

becomes unavailable.) That is, we had to check that WA.a3; b/ held true for every
b 2 B. On the other hand, to claim that b1 was not a winning initial move for player
B , we had to verify that WA.b1; a/ was true for some (but not necessarily every)
a 2 A. In fact, we saw that B had no winning initial moves at all; that is, there is an
a 2 A for which WA.b2; a/ is true, and there is an a 2 A for which WA.b3; a/ is
true.

Let us now discuss these double quantifiers in general. Suppose that A and B

are sets, and let P.a; b/ be a predicate that becomes a statement once we know
a 2 A and b 2 B . In this case, P.a; b/ is a predicate on two variables; it is defined
on the elements of A 
 B , and the truth set of P.a; b/ on A 
 B will be a subset
of A 
 B , which we denote by .A 
 B/P . For example, if A D Z, B D N, and
P.a; b/ is the predicate a � b, then .3; 2/ 2 .A 
 B/P , but .2; 3/ 62 .A 
 B/P and
.�2; 3/ 62 .A 
 B/P .

Using the universal quantifier 8 and the existential quantifier 9, we can form
compounded statements such as

8a 2 A; 9b 2 B; P.a; b/;

which can be read as “for every a 2 A, there exists some b 2 B for which
P.a; b/ holds.” When analyzing such compounded statements, we separate the first
quantifier and regard the rest of the statement as a predicate Q.a/ with one free
variable. For example,

8a 2 A; 9b 2 B; P.a; b/

means that

8a 2 A; Q.a/;

where Q.a/ is the predicate

9b 2 B; P.a; b/:
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In the example of the previous paragraph we see, for example, that Q.5/ is true,
since we can choose b D 3, for example, for which 5 � b. On the other hand,
Q.�4/ is false, since we cannot choose a b 2 N for which �4 � b. Therefore, the
statement

8a 2 A; 9b 2 B; P.a; b/

is false in this example.
We can now rewrite our remaining claims using double quantifiers as follows:

Claim 1’: 9a 2 A; 8b 2 B; WA.a; b/:

Claim 2’: 8b 2 B; 9a 2 A; WA.b; a/:

Claim 3’: 9a 2 A; 9b 2 B; WB.a; b/:

Claim 2*: 8b 2 B; 8a 2 A; WA.b; a/:

We can, in fact, introduce triple quantifiers analogously. The triple-quantified
versions of Claims 1’ and 2’, for example, would be (with self-explanatory notation)
Claim 1”: 9a 2 A; 8b 2 B; 9a0 2 A; WA.a; b; a0/
and
Claim 2”: 8b 2 B; 9a 2 A; 8b0 2 B; WA.b; a; b0/:

Here the statement

9a 2 A; 8b 2 B; 9a0 2 A; WA.a; b; a0/

stands for the claim that there is an initial move for player A such that no matter
what the response move of player B is, player A has a winning follow-up move
(this statement is true, as we have seen above). Similarly, Claim 2” says that no
matter how B starts to play, A will have a move in response so that no matter how
B moves next, A will win.

Note that the quantifiers involved in a statement do not commute! Keeping our
earlier example above, consider, for example, the two statements

8b 2 N; 9a 2 Z; a � b;

and

9a 2 Z; 8b 2 N; a � b:

The first statement claims that for every positive integer b, one can find an integer
a that is greater than or equal to b; this statement is true (choose, e.g., a D b C 3).
The second statement says that there is an integer a that is greater than or equal to
every positive integer b; this statement is false, because there is no largest integer.

The fact that quantifiers don’t commute confuses many who are not trained in
logic and is also the source of some amusing riddles. The American comedian Sam
Stevenson, for example, gives us the following warning: “Somewhere on this globe,
every ten seconds, there is a woman giving birth to a child. She must be found and
stopped.” The joke comes from the fact that the statements

8 time, 9 place, 9 woman giving birth
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and

9 place, 9 woman, 8 time giving birth

are not equivalent (the first is apparently true, while the second is ridiculous).
Triple quantifiers play an extremely important role in advanced calculus (often

referred to as real analysis). Namely, they provide the definition of limits, which in
turn are the foundations of topics such as differentiation, integration, and infinite
series. We will discuss limits in Chap. 20.

Problems

1. Let G be a Hackenbush game in which the set of available options for players
A and B are A and B, respectively. For each x 2 A[B, let WA.x/ and WB.x/

denote the predicates that G is a win for A, respectively B , if the first player’s
move is x (and both players play optimally thereafter). Similarly, let WA.x; y/

and WB.x; y/ be the predicates that player A, respectively B , has a winning
strategy after option x is removed by the first player and option y is removed
by the second player. Define WA.x; y; z/ and WB.x; y; z/ analogously.

We say that a Hackenbush game is fair if whoever is the second player wins
when both players play optimally. In other words, the game is a win for A (and
thus a loss for B) if B starts, and a loss for A (and thus a win for B) if A starts.

It is easy to verify that the following three games are all fair:

�
�
��

�
�

��

� � � �

� � � �

� �

� �

�

a1 a2 b1 b2 a1 b1

b2 a2

We also say that a game is advantageous for a particular player if that player
can win the game regardless of who starts. For example, we have seen that the
game Aerion is advantageous for A.

(a) i. Write the definition for G to be a fair game using quantifiers and the
predicates WA.x/ and WB.x/. Do the same for G being advantageous
for A and G being advantageous for B .

ii. Repeat part i using the predicates WA.x; y/ and WB.x; y/.
iii. Repeat part i using the predicates WA.x; y; z/ and WB.x; y; z/.

(b) Prove that the following game is fair by drawing as few branches of the
decision tree as you deem necessary:
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�
�
�
��

�
�

�
��

�
�

�
��

�
�
�
�

�
�
�
��

a1 a2 b1

b2

a3 b3

� � �

� �

�

�

�

�

�

a4

b4

Remarks. In Chap. 24 we will learn how to assign numerical values to all
Hackenbush games in a way that measures just how advantageous the game
is to a particular player. Fair games will have zero value, games that are
advantageous to A will have a positive value (the more advantageous the game,
the higher the value), and games that are advantageous to B will have a negative
value. We will also see that some (in fact, most) games can only be assigned
“surreal” values as no real number will do. Surreal numbers (invented by John
H. Conway in the 1970s) form an ordered field extension of the field of reals.
(In fact, one can show that they form the largest such extension.)

2. Let A D f1; 3; 5; 7g and B D f2; 4; 6g.

(a) Let P.a; b/ be the predicate a � b. List the elements of the truth set .A 

B/P .

(b) Let Q.a; b/ be a predicate that becomes a statement for every a 2 A and
b 2 B , and suppose that the truth set .A 
 B/Q is the set

f.1; 2/; .1; 4/; .3; 2/; .3; 4/; .3; 6/; .5; 4/; .7; 6/g:
Which of the following statements are true and which are false?

i. 9a 2 A; 9b 2 B; Q.a; b/

ii. 9a 2 A; 9Šb 2 B; Q.a; b/

iii. 9Ša 2 A; 9b 2 B; Q.a; b/

iv. 9Ša 2 A; 9Šb 2 B; Q.a; b/

v. 9a 2 A; 8b 2 B; Q.a; b/

vi. 9Ša 2 A; 8b 2 B; Q.a; b/

vii. 8a 2 A; 9b 2 B; Q.a; b/

viii. 8a 2 A; 9Šb 2 B; Q.a; b/

ix. 8a 2 A; 8b 2 B; Q.a; b/

x. 9b 2 B; 9a 2 A; Q.a; b/

xi. 9b 2 B; 9Ša 2 A; Q.a; b/

xii. 9Šb 2 B; 9a 2 A; Q.a; b/

xiii. 9Šb 2 B; 9Ša 2 A; Q.a; b/

xiv. 9b 2 B; 8a 2 A; Q.a; b/

xv. 9Šb 2 B; 8a 2 A; Q.a; b/

xvi. 8b 2 B; 9a 2 A; Q.a; b/

xvii. 8b 2 B; 9Ša 2 A; Q.a; b/
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xviii. 8b 2 B; 8a 2 A; Q.a; b/

(c) Suppose that R.a; b/ is a predicate that becomes a statement for every a 2
A and b 2 B , and consider the following three statements:

i. 9Ša 2 A; 9b 2 B; R.a; b/

ii. 9a 2 A; 9Šb 2 B; R.a; b/

iii. 9Ša 2 A; 9Šb 2 B; R.a; b/

For each of the three statements, find an example, if possible, for a predicate
R.a; b/ for which that statement is true, but the other two statements are
false. You can give the predicate in terms of its truth set, as in part (b).

3. Let S D f0; 1; 2; 3; 4; 5g, and suppose that P.x/, Q.x; y/, and R.x; y; z/ are
the predicates that x is divisible by 3, that x is divisible by y, and that x is
divisible by y C z, respectively. Read each of the following statements in plain
English. (Try to express yourself as clearly and concisely as possible.) Which
of the following statements are true and which are false?

(a) i. 9x 2 S; P.x/

ii. 8x 2 S; P.x/

iii. 9Šx 2 S; P.x/

(b) i. 9x 2 S; 9y 2 S; Q.x; y/

ii. 9x 2 S; 8y 2 S; Q.x; y/

iii. 8x 2 S; 9y 2 S; Q.x; y/

iv. 8x 2 S; 8y 2 S; Q.x; y/

(c) i. 9Šx 2 S; 9y 2 S; Q.x; y/

ii. 9x 2 S; 9Šy 2 S; Q.x; y/

iii. 9Šx 2 S; 8y 2 S; Q.x; y/

iv. 8x 2 S; 9Šy 2 S; Q.x; y/

v. 9Šx 2 S; 9Šy 2 S; Q.x; y/

(d) i. 9Šy 2 S; 9x 2 S; Q.x; y/

ii. 9y 2 S; 9Šx 2 S; Q.x; y/

iii. 9Šy 2 S; 8x 2 S; Q.x; y/

iv. 8y 2 S; 9Šx 2 S; Q.x; y/

v. 9Šy 2 S; 9Šx 2 S; Q.x; y/

(e) i. 9x 2 S; 9y 2 S; 9z 2 S; R.x; y; z/
ii. 9x 2 S; 9y 2 S; 8z 2 S; R.x; y; z/

iii. 9x 2 S; 8y 2 S; 9z 2 S; R.x; y; z/
iv. 9x 2 S; 8y 2 S; 8z 2 S; R.x; y; z/
v. 8x 2 S; 9y 2 S; 9z 2 S; R.x; y; z/

vi. 8x 2 S; 9y 2 S; 8z 2 S; R.x; y; z/
vii. 8x 2 S; 8y 2 S; 9z 2 S; R.x; y; z/

viii. 8x 2 S; 8y 2 S; 8z 2 S; R.x; y; z/
(f) i. 9Šx 2 S; 9y 2 S; 9z 2 S; R.x; y; z/

ii. 9x 2 S; 9Šy 2 S; 9z 2 S; R.x; y; z/
iii. 9x 2 S; 9y 2 S; 9Šz 2 S; R.x; y; z/
iv. 9Šx 2 S; 9Šy 2 S; 9z 2 S; R.x; y; z/
v. 9Šx 2 S; 9y 2 S; 9Šz 2 S; R.x; y; z/
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vi. 9x 2 S; 9Šy 2 S; 9Šz 2 S; R.x; y; z/
vii. 9Šx 2 S; 9Šy 2 S; 9Šz 2 S; R.x; y; z/

4. In a certain multiple-choice test, one of the questions was illegible, but the
choice of answers, given below, was clearly printed. What is the right answer?
Can more than one answer be correct?

(A) All of the below
(B) None of the below
(C) All of the above
(D) One of the above
(E) None of the above
(F) None of the above

5. Write the following statements using mathematical notations (sets and quan-
tifiers). Denote the set of prime numbers by P , but do not use any other
nonstandard notation.

(a) No square number is a prime.
(b) There is a prime number between 100 and 110.
(c) There are no primes between 200 and 210.
(d) There is a unique prime between 90 and 100.
(e) There is a unique even positive prime number.
(f) 2 is the only even positive prime.
(g) 199 and 211 are consecutive primes.
(h) There are twin primes between 100 and 110.
(i) There is a perfect square between any positive integer and its double

(inclusive).

Remark. We will prove this statement in Chap. 15.

(j) There is a prime between any positive integer and its double (inclusive).

Remark. This is known as Chebyshev’s Theorem after the Russian math-
ematician Pafnuty Chebyshev (1821–1894) who provided a (remarkably
complicated) proof for this statement in 1852.

(k) There is a prime between any two consecutive positive perfect squares.

Remark. This is known as the Legendre Conjecture, named after the
French mathematician Adrien-Marie Legendre (1752–1833). Although it
has been pursued vigorously by many mathematicians, no proof is known
for the statement at this time.

6. Suppose that � is an irrational number given by its infinite (nonperiodic)
decimal representation.

(a) Consider the following statements:

i. Every decimal digit of � is 3, 5, or 7.
ii. Every decimal digit of � is an odd prime.



9 Quantifier Mechanics 107

iii. Every decimal digit of � that is odd must be prime.
iv. No decimal digit of � is an odd prime.
v. No decimal digit of � that is odd can be prime.

vi. If a decimal digit of � is odd, then it is a prime.
vii. For every decimal digit of � , the digit is odd iff it is a prime.

viii. No decimal digit of � that is odd can be 1 or 9.
ix. No decimal digit of � is 1 or 9.

Partition this set of statements into equivalence classes; that is, two
statements should be in the same equivalence class if, and only if, they
are equivalent.

(b) State the negation of each statement (it suffices to only do this for one
member of each equivalence class). Do not use the word “not.”

7. Suppose that A is a given set of real numbers. Use only the mathematical
symbols
9, 9Š, 8, 2, D, 6D, >, <, _, ^, x, y, z, A, 0, (, and )
to write each of the following statements as well as their negations:

(a) A has a unique negative element.
(b) A has exactly two negative elements.

8. Write a logical form for each of the sentences below. Then write the negation of
the sentences, first in their logical form and then in plain English. Your logical
forms should use only the variables and predicates given and the quantifiers 8
and 9; do not use the negation operation.

(a) “Every family has its secrets.”
Let P.f; s/ be the predicate that family f has the secret s, and let Q.f; s/

be the predicate that family f does not have the secret s.
(b) “There is a moment in everyone’s life when nothing seems to go well.”

Let P.p; x; t/ be the predicate that task x seems to go well for person p at
time t , and let Q.p; x; t/ be the predicate that task x does not seem to go
well for person p at time t .

(c) “Everybody loves somebody sometime.” (from a Dean Martin song)
Let P.p; q; t/ be the predicate that person p loves person q at time t , and let
Q.p; q; t/ be the predicate that person p does not love person q at time t .

(d) “You can fool all of the people some of the time, and you can fool some of
the people all of the time, but you cannot fool all of the people all of the
time.” (Abraham Lincoln)
Let P.p; t/ be the predicate that you can fool person p at time t , and let
Q.p; t/ be the predicate that you cannot fool person p at time t .

9. In this problem we further analyze the game Cutcake of Problem 5 of Chap. 1.
Let C.m; n/ denote the game played on an m by n cake (i.e., a rectangular cake
that is divided into little pieces by m�1 horizontal lines and n�1 vertical lines;
m; n 2 N). Let � denote here the set of all such games; that is, let

� D fC.m; n/ j m; n 2 Ng:
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We will introduce some additional notations for the possible outcomes of these
games as follows:

• �H!H : the collection of games that Horizontal can win if Horizontal starts
• �H!V : the collection of games that Vertical can win if Horizontal starts
• �V !H : the collection of games that Horizontal can win if Vertical starts
• �V !V : the collection of games that Vertical can win if Vertical starts

Furthermore, we set
�H D �H!H \ �V !H ;

�V D �H!V \ �V !V ;

�I D �H!H \ �V !V ;

and

�II D �H!V \ �V !H :

In other words, �H and �V are the collections of games that Horizontal and
Vertical can win, respectively, regardless of who starts the game; �I and
�II are the collections of games that are won by the first player and second
player, respectively. For example, according to Problem 5 of Chap. 1, we have
C.3; 5/ 2 �V and C.4; 7/ 2 �II .

(a) Prove the following two statements:

• If 9k 2 f1; 2; : : : ; m � 1g; fC.k; n/; C.m � k; n/g 	 �H [ �II , then
C.m; n/ 2 �H!H .

• If 8k 2 f1; 2; : : : ; m � 1g; fC.k; n/; C.m � k; n/g 	 �V [ �II but
fC.k; n/; C.m � k; n/g 6	 �II , then C.m; n/ 2 �H!V .

(b) Make and prove two analogous statements regarding C.m; n/ 2 �V !H and
C.m; n/ 2 �V !V .

(c) Use the statements above to decide the outcome (�H , �V , �I , or �II ) of
C.m; n/ for each 1 � m � 8 and 1 � n � 8.
(Hints: Start with the obvious claims—which also follow from parts (a)
and (b) above!—that C.1; 1/ 2 �II , C.1; n/ 2 �V for all n � 2, and
C.m; 1/ 2 �H for all m � 2. Next, proceed to decide the outcome of
C.2; 2/, C.2; 3/, etc.)

(d) Make a conjecture for the set of all values of n for which C.1000; n/ 2 �H .
(You don’t need to provide a proof for your conjecture.)

(e) Conjecture a set of criteria, in terms of m and n, that determines the out-
come of C.m; n/. (You don’t need to provide a proof for your conjecture.)

Remarks. As our computations demonstrate, for each m; n 2 N,

C.m; n/ 2 �H [ �V [ �II :

We will return to a more thorough evaluation of this game in Chap. 24.



Chapter 10
Mathematical Structures

In Chap. 8 we made the somewhat heuristic claim that properties and identities about
statements can easily be altered so that they also hold true for sets. As an example,
we considered the claim that

.P _ :Q _ R/ ^ .:.P _ R// , :P ^ :Q ^ :R

holds for all statements P , Q, and R. Then we made certain replacements and
arrived at a claim about sets, namely, that

.A [ B [ C / \ .A [ C / D A \ B \ C

holds for all sets A, B , and C . We proved both of these claims by considering their
truth tables. (We also illustrated the proof of the claim for sets using Venn diagrams.)

As it turns out, there is a more sophisticated approach, one that not only avoids
having to examine (sometimes rather large) truth tables but also carries out the two
proofs simultaneously. Our goal is to make these notions more precise. Namely, we
will follow the following three-step approach:

• Step 1: We “abstract” some of the properties that both sets and statements satisfy.
(There is a reason why higher mathematics is often referred to as “abstract
mathematics!”) As we have already pointed out, there is a strong analogy be-
tween negation of statements and complementation of sets, between disjunction
of statements and union of sets, and between conjunction of statements and
intersection of sets. We will, in fact, see that, if done efficiently, our abstract
properties will be applicable not just for statements and sets but in a variety of
other settings.

• Step 2: We then collect some of these properties and say that any setting that
satisfies these properties is a particular structure. We will, in fact, form several
different structures this way. We have already seen one such structure: groups
were defined as collections of objects with a binary operation satisfying four
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DOI 10.1007/978-1-4614-6636-9 10, © Béla Bajnok 2013
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specific properties (cf. Chap. 6). Like with primitives (cf. Chap. 2) and axioms
(cf. Chap. 3), our aim is to keep the number of properties small enough so
as to make them applicable in a variety of settings, yet large enough so that,
cumulatively, they help us make far-reaching conclusions.

• Step 3: Our third step will be to formulate general claims about our various
structures and to prove these claims using only the properties that any setting
of the structure satisfies. For example, we will provide a single unified proof for
the equivalence of the logical formulae

.P _ :Q _ R/ ^ .:.P _ R//

and
:P ^ :Q ^ :R

and for the equality of the expressions

.A [ B [ C / \ .A [ C /

and
A \ B \ C

about sets. Once such statements are proved in a general structure, they can be
applied to any particular model of the structure.

In this chapter we carry out Steps 1 and 2 in a variety of settings: we
systematically study some of the familiar and less familiar operation properties and
form certain structures that possess certain ones of them. We will then see how Step
3—proving statements about these structures—can be done in Chap. 11.

We start with the operation properties. Let us assume that X is a collection
of objects (e.g., numbers, statements, sets, and polynomials). A unary operation
on X (e.g., taking the negative of a number, the negation of a statement, and the
complement of a set) assigns to each object in X another object; if this other object
is also in X , we say that the operation is closed. Similarly, a binary operation
(e.g., addition or multiplication of two numbers, taking the union or intersection
of sets) assigns an object to each pair of objects of X . Formally:

• Closure property: The unary operation � is closed if, for any element x 2 X , we
have x 2 X .

• Closure property: The binary operation � is closed if, for any pair of elements
x 2 X and y 2 X , we have x � y 2 X .

Two fundamental properties one needs to know about a binary operation are
whether the order of the terms can be interchanged or if the terms can be grouped in
any way when we have more than two of them. More precisely:

• Commutative property: The binary operation � is commutative if, for any pair of
elements x 2 X and y 2 X , we have
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x � y D y � xI

• Associative property: The binary operation � is associative if, for any ordered
triple of elements x 2 X , y 2 X , and z 2 X , we have

.x � y/ � z D x � .y � z/:

Two distinguishing properties of groups are the existence of an identity element
and the existence of an inverse to each element. We formalize these as follows:

• Identity property: The binary operation � has an identity in X if there is an
element e 2 X for which a � e D a and e � a D a hold for every a 2 X .

• Inverse property: Assume that binary operation � has an identity e. (It can be
shown that the identity element is unique; cf. Problem 5 in Chap. 11.) We say
that � satisfies the inverse property if for each a 2 X , there is an x 2 X for
which the equations a � x D e and x � a D e hold.

We now turn to properties involving more than one operation. The most familiar
of these is distributivity:

• Distributive property: The binary operation � is distributive with respect to the
binary operation ˘ if

a � .b ˘ c/ D .a � b/ ˘ .a � c/

and
.a ˘ b/ � c D .a � c/ ˘ .b � c/

hold for every a; b; c 2 X .

While a group by definition has the inverse property, some other collections come
only very close. For example, the set of real numbers does not quite have the inverse
property for multiplication since 0 has no reciprocal (0 times any real number is 0

and not 1), but, indeed, all other real numbers do. Keeping this in mind, we introduce
the following property:

• Nonzero inverse property: The binary operation � satisfies the nonzero inverse
property excepting e˘ (the identity element of the binary operation ˘ in X ) if
for every a 2 X , either a D e˘ or there is an x 2 X for which the equations
a � x D e� and x � a D e� both hold (here e� is the identity element of �).

As we know (and will prove in Theorem 11.6) zero times any real number equals
zero. The converse statement that the product of two real numbers can only equal
zero if at least one of the factors equals zero also holds (cf. Theorem 10.3 below).
This important property can be defined as follows:
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• Nonzero product property: The binary operation ˘ satisfies the nonzero product
property with respect to the binary operation � if for every a 2 X and b 2 X ,
a ˘ b D e� can only happen if either a D e� or b D e�.

Finally, we define a property that involves three operations:

• Complementation property: Given a unary operation �, the binary operation �
has the complementation property with respect to the binary operation ˘ if a �
a D e˘ and a � a D e˘ hold for every a 2 X (here e� and e˘ denote the identity
elements for � and ˘, respectively, and a denotes the result of the given unary
operation applied to a).

We can now (re)define some of the most common mathematical structures. We
list our definitions in increasing order of complexity.

Definition 10.1. Suppose that G is any collection of objects on which a binary
operation � is defined. We say that G is a group for the operation � if all of the
following properties hold:

• (�1) � has the closure property.
• (�3) � has the associative property.
• (�4) � has the identity property.
• (�5) � has the inverse property.

If, in addition, we also know that

• (�2) � has the commutative property,

then we say that G is an abelian group (the term “commutative group” is also used).

(We placed labels next to the properties above so we can refer to them later.)
Obviously, the primary number sets Z, Q, R, and C all form abelian groups for

addition. Furthermore, in Chap. 6 we saw that the set f0; 1; 2; : : : ; n � 1g is also
an abelian group for addition mod n (here n 2 N). Not every group is abelian: the
primary examples for non-abelian groups include groups formed by certain matrices
(with the operation being matrix multiplication) and symmetry transformations
(where the operation is composition; cf. Problem 1). There is an entire branch of
mathematics called group theory; in fact, virtually all parts of mathematics rely on
groups.

Now as we know, numbers in Z, Q, R, and C can be both added and multiplied!
So next we define structures with two binary operations: rings, integral domains,
and fields.

Definition 10.2. Suppose that R is any collection of objects on which two binary
operations are defined: � and ˘. We say that R is a ring for the operations � and ˘
if all of the following properties hold:

• (�1) � has the closure property.
• (�2) � has the commutative property.
• (�3) � has the associative property.



10 Mathematical Structures 113

• (�4) � has the identity property.
• (�5) � has the inverse property.
• (˘1) ˘ has the closure property.
• (˘3) ˘ has the associative property.
• (˘D�) ˘ has the distributive property with respect to �.

If, in addition, in our ring

• (˘2) ˘ has the commutative property,

then we say that R is a commutative ring for � and ˘, and if in our ring

• (˘4) ˘ has the identity property,

then we call R a ring with identity for � and ˘.
Furthermore, if R is a commutative ring with identity that has at least two

elements and for which

• (˘�) ˘ has the nonzero product property with respect to �,

then we say that R is an integral domain for � and ˘.
Finally, if R is a commutative ring with identity that has at least two elements

and for which

• (˘5’) ˘ has the nonzero inverse property excepting e�,

then we say that R is a field for � and ˘.

We must note that the operations � and ˘ are not interchangeable in Defini-
tion 10.2; they satisfy different axioms. Even in the case of a field, when the two
operations come closest to symmetry, the first operation, �, has the inverse property
while the second operation, ˘, only has the nonzero inverse property (and, according
to Problem 7 of Chap. 11, this cannot be remedied). Also, � is distributive with
respect to ˘, but not vice versa. Therefore, to be precise, we should say that R is a
ring or field for the ordered pair .�; ˘/—however, we will just say that R is a ring (or
field) for � and ˘ and assume that the two operations play their respective roles in
order. We should also call attention to the fact that integral domains and fields must
have at least two elements (which is equivalent to saying that the identity elements
for the two operations are distinct). For traditional reasons, while we see that a set
X D fag of a single element is a ring with a � a D a and a ˘ a D a, we do not
consider this one-element structure an integral domain or a field.

Now let us see some standard examples. We all know that the number sets Z, Q,
R, and C form integral domains for addition and multiplication. Of these, Q, R, and
C are all fields. However, Z is not a field as it does not satisfy property (˘5’) above:
for example, there is no integer x for which 2 � x D 1. This shows that not every
integral domain is a field. On the other hand, we have the following fact:

Theorem 10.3. Every field is an integral domain. In other words, the field axioms
imply the nonzero product property.

We will postpone the proof of Theorem 10.3 until Chap. 12.
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Besides the infinite fields Q, R, and C, there exist some finite fields—fields with
finitely many elements—as well. It takes only a few minutes to check that, if Z2

denotes the set f0; 1g and we define the operations � and ˘ as addition mod 2
and multiplication mod 2, respectively, then the resulting structure is a field, with
operation tables as follows:

� 0 1

0 0 1

1 1 0

˘ 0 1

0 0 0

1 0 1

We can also verify that Z3, the structure built on the set f0; 1; 2g with the
operations defined as addition and multiplication mod 3, is also a field; the operation
tables are now the following:

� 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

˘ 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

However, moving on to Z4, we find that the resulting operation tables do not give
a field.

� 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

˘ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Clearly, 2 has no multiplicative inverse, so this structure is not a field! (We can
also see that the nonzero product property fails: 2 times 2 is 0 (mod 4), contrary to
Theorem 10.3.) We will examine Zn in general in Problem 7.

In spite of our most promising candidate not cooperating, a field on four elements
does exist. Recall Nim addition and multiplication from Problem 11 of Chap. 2. The
operation tables on f0; 1; 2; 3g were the following:

˚ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

˝ 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 3 1

3 0 3 1 2

Quite amazingly, it turns out that all field axioms are satisfied. For example, to check
that multiplication is distributive with respect to addition, we would need to verify
that



10 Mathematical Structures 115

x ˝ .y ˚ z/ D .x ˝ y/ ˚ .x ˝ z/

holds for all x; y; z 2 f0; 1; 2; 3g. It may take a few minutes, but we can indeed verify
that this identity always holds as do all other field axioms. This example generalizes
to fields of order (size) n D 22m

for every m 2 N, thus, the next order for which the
Nim operations provide a field is n D 16; see page 407 in Appendix C.

Finite fields play an important role in several branches of mathematics, and they
have a beautiful and elegant theory. Here we mention only one crucial result:

Theorem 10.4. A finite field of order n exists if, and only if, n is a positive prime
power. Furthermore, any two fields of the same order are isomorphic.

By positive prime power, we mean a number of the form pk where p is a positive
prime and k is a positive integer; field isomorphism can be defined analogously
to group isomorphism (cf. Definition 6.3), except that the same “relabeling and
shuffling” must hold for both operations. We may illustrate Theorem 10.4 by
introducing the quantity fnu.n/ (abbreviating field number) for the number of
pairwise non-isomorphic fields of order n. (Cf. page 59 for the analogous term
“group number.”) By Theorem 6.3, the first few values of fnu.n/ are as follows:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fnu.n/ 0 1 1 1 1 0 1 1 1 0 1 0 1 0 0 1 1 0 1 0

Quite a contrast with the corresponding values of gnu.n/ on page 59! We have
already seen the fields for orders n D 2; 3; 4, and 16, and will see many others soon.

Let us now return to infinite fields. Perhaps the most important example of a field
is the field of real numbers R. It might be useful to explicitly list the field axioms
for this set. Since we will not prove these properties here, we treat them as axioms.
The properties for Q and C can be listed similarly.

Axiom 10.5 (The Field Axioms of R). The set R of real numbers and the usual
addition and multiplication operations on R satisfy the following:

• (¤ 0) (Nontriviality)
There are at least two real numbers.

• (C1) (Closure)
For all real numbers a and b, a C b is a real number.

• (C2) (Commutativity)
For all real numbers a and b, we have a C b D b C a.

• (C3) (Associativity)
For all real numbers a, b, and c, we have .a C b/ C c D a C .b C c/.

• (C4) (Identity)
For every real number a, we have 0 C a D a C 0 D a.

• (C5) (Inverse)
For every real number a, there exists a real number x, such that aCxDxCaD0.

• (�1) (Closure)
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For all real numbers a and b, a � b is a real number.
• (�2) (Commutativity)

For all real numbers a and b, we have a � b D b � a.
• (�3) (Associativity)

For all real numbers a, b, and c, we have .a � b/ � c D a � .b � c/.
• (�4) (Identity)

For every real number a, 1 � a D a � 1 D a.
• (�5’) (Nonzero inverse)

For every real number a, either a D 0 or there exists a real number y such that
a � y D y � a D 1.

• (�DC) (Distributivity)
For all real numbers a, b, and c, we have a � .b C c/ D a � b C a � c and
.a C b/ � c D a � c C b � c.

Here, we treat the terms addition, multiplication, 0, and 1, which are used in the
axioms above, as primitives—see the list in Chap. 2. The field axioms do not refer
to the other two binary operations of numbers, namely, subtraction and division; in
fact, these concepts are not on our list of primitives either. This is because these
terms can be defined as follows:

Definition 10.6. The negative of a real number a is the real number x for which
a C x D 0. The negative of a will be denoted by �a.

Definition 10.7. Given two real numbers a and b, we define the difference a � b as
the number a C .�b/.

Definition 10.8. The reciprocal of a nonzero real number a is the real number y

for which a � y D 1. The reciprocal of a will be denoted by 1
a

.

Definition 10.9. Given two real numbers a and b, where b is not 0, we define the
quotient a

b
as the number a � 1

b
.

Axioms (C5) and (�5’) guarantee the existence of the negative of a real number
and the reciprocal of a nonzero real number, respectively. It also must be added
that these terms are well defined: one can prove that the inverses for addition and
multiplication are unique (cf. Problem 5 of Chap. 11).

It is also worth pointing out that the field axioms, as we listed them above,
do contain some superfluous statements. For example, it is easy to prove one of
the two identities listed under (�DC) using the other one and (�2). Furthermore, in
Chap. 11 we will prove that axiom (C2) follows from the other field axioms. Using
the terminology of Chap. 5, we can state this by saying that the axioms as listed
above are not independent. We mention, in passing, that the rest of the field axioms
are independent. To verify that, one would need to construct structures, for each of
the remaining axioms, such that the chosen axiom is false but every other axiom is
true.

We will see further examples for rings, integral domains, and fields in the
problems at the end of this chapter.



10 Mathematical Structures 117

Last, but not least, we turn to the structure that statements and sets form. We
introduce the following structure:

Definition 10.10. Suppose that B is any collection of objects on which a unary
operation, �, and two binary operations, � and ˘, are defined. We say that B forms
a Boolean algebra for these operations if all of the following properties hold:

• (�) � has the closure property.
• (�1) � has the closure property.
• (�2) � has the commutative property.
• (�3) � has the associative property.
• (�4) � has the identity property.
• (�C˘) � has the complementation property with respect to ˘.
• (˘1) ˘ has the closure property.
• (˘2) ˘ has the commutative property.
• (˘3) ˘ has the associative property.
• (˘4) ˘ has the identity property.
• (˘C�) ˘ has the complementation property with respect to �.
• (�D˘) � has the distributive property with respect to ˘.
• (˘D�) ˘ has the distributive property with respect to �.

We note that, unlike with rings and fields, the two binary operations in
Definition 10.10 can be interchanged: they play perfectly symmetrical roles.

We then have the following theorem about sets;

Theorem 10.11. Let X be an arbitrary set. Then P.X/, the power set of X ,
is a Boolean algebra for taking complements in X and for forming unions and
intersections. Namely, we have the following properties:

• (�) (Closure)
For all sets A 2 P.X/, we have A 2 P.X/.

• ([1) (Closure)
For all sets A; B 2 P.X/, we have A [ B 2 P.X/.

• ([2) (Commutativity)
For all sets A; B 2 P.X/, we have A [ B D B [ A.

• ([3) (Associativity)
For all sets A; B; C 2 P.X/, we have .A [ B/ [ C D A [ .B [ C /.

• ([4) (Identity)
For all sets A 2 P.X/, we have A [ ; D A and ; [ A D A.

• ([C\) (Complementation)
For all sets A 2 P.X/, we have A [ A D X and A [ A D X .

• (\1) (Closure)
For all sets A; B 2 P.X/, we have A \ B 2 P.X/.

• (\2) (Commutativity)
For all sets A; B 2 P.X/, we have A \ B D B \ A.

• (\3) (Associativity)
For all sets A; B; C 2 P.X/, we have .A \ B/ \ C D A \ .B \ C /.
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• (\4) (Identity)
For all sets A 2 P.X/, we have A \ X D A and X \ A D A.

• (\C[) (Complementation)
For all sets A 2 P.X/, we have A \ A D ; and A \ A D ;.

• (\D[) (Distributivity)
For all sets A; B; C 2 P.X/, we have A \ .B [ C / D .A \ B/ [ .A \ C / and
.A [ B/ \ C D .A \ C / [ .B \ C /.

• ([D\) (Distributivity)
For all sets A; B; C 2 P.X/, we have A [ .B \ C / D .A [ B/ \ .A [ C / and
.A \ B/ [ C D .A [ C / \ .B [ C /.

The proof of Theorem 10.11 can be carried out easily using truth tables.
Let us now turn to the corresponding theorem about statements. Here we need to

be a bit more careful: rather than claiming that two statements are equal (which we
did not define), we claim that they are equivalent.

Theorem 10.12. The collection of all statements forms a Boolean algebra for the
operations of negation, disjunction, and conjunction. In particular, we have the
following properties for statements:

• (:) (Closure)
For all statements P , :P is a statement.

• (_1) (Closure)
For all statements P and Q, P _ Q is a statement.

• (_2) (Commutativity)
For all statements P and Q, we have P _ Q , Q _ P .

• (_3) (Associativity)
For all statements P , Q, and R, we have .P _ Q/ _ R , P _ .Q _ R/.

• (_4) (Identity)
For all statements P and all false statements F , we have P _ F , P and
F _ P , P .

• (_C^) (Complementation)
For all statements P and all true statements T , we have P _ .:P / , T and
.:P / _ P , T .

• (^1) (Closure)
For all statements P and Q, P ^ Q is a statement.

• (^2) (Commutativity)
For all statements P and Q, we have P ^ Q , Q ^ P .

• (^3) (Associativity)
For all statements P , Q, and R, we have .P ^ Q/ ^ R , P ^ .Q ^ R/.

• (^4) (Identity)
For all statements P and all true statements T , we have P ^ T , P and
T ^ P , P .

• (^C_) (Complementation)
For all statements P and all false statements F , we have P ^ .:P / , F and
.:P / ^ P , F .
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• (^D_) (Distributivity)
For all statements P , Q, and R, we have P ^ .Q _ R/ , .P ^ Q/ _ .P ^ R/

and .P _ Q/ ^ R , .P ^ R/ _ .Q ^ R/.
• (_D^) (Distributivity)

For all statements P , Q, and R, we have P _ .Q ^ R/ , .P _ Q/ ^ .P _ R/

and .P ^ Q/ _ R , .P _ R/ ^ .Q _ R/.

Again, each of these statements can be easily proved by constructing truth tables.
Let us now introduce another well-known example for a Boolean algebra. We

define Bn to be the set of sequences of a given length n of 0s and 1s, that is, strings
of binary digits (called bits) of length n. For example,

B3 D f000; 001; 010; 011; 100; 101; 110; 111g:

We then define the unary operation � on Bn as the component-wise change of all
bits: we turn each 0 bit into a 1 and vice versa. We also define two binary operations:
component-wise addition and multiplication specified with the rules in the following
tables.

C 0 1

0 0 1

1 1 1

� 0 1

0 0 0

1 0 1

We can verify that Bn is a Boolean algebra by verifying each property in the
previous theorems (cf. Problem 2). For example, in B3 we have

101 � 101 D 101 � 010 D 000

and

.101 C 001/ � 011 D 101 � 011 D 001 D 001 C 001 D 101 � 011 C 001 � 011;

verifying particular instances of the complementation and distributivity properties.
The Boolean algebra Bn is employed frequently in computer science.

It is interesting to compare the Boolean algebra properties above to the field
axioms. One can make the observation that, in many ways, statements act like
numbers with the operations of disjunction, conjunction, and negation acting like
addition, multiplication, and taking negatives of numbers, respectively; furthermore,
a contradiction plays the role of zero, and a tautology plays the role of 1.

This parallel, however, is not complete; there are differences in the properties
above. In particular, there is no inverse to a statement; instead, statements satisfy
the complementation property. Also, in a field we have one fewer distributive rule
than we do for statements: addition of numbers is not distributive with respect to
multiplication. Thus, the algebra of statements and sets follow different rules from
the algebra of numbers!
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Groups, rings, integral domains, fields, and Boolean algebras are just some
of the most common structures in abstract mathematics. Others include lattices,
vector spaces, and modules—each studied extensively in a corresponding branch
of mathematics.

Problems

1. (This problem serves as an introduction to the symmetric group Sn—one of
the most famous groups in mathematics.) Recall that the Plutonian alphabet
consists of only four letters: A, B, C, and D. As we verified in Problem 10 of
Chap. 4, every finite string consisting of these letters is a Plutonian word. In this
problem we will focus on six of these words—ABC, ACB, BAC, BCA, CAB,
and CBA—that are the six three-letter words that contain exactly one A, one
B, and one C. Actually, our interest is in the transformations that move one of
these words into other ones.

It turns out that we need six transformations. Three of these transformations
are called transpositions: they switch two letters and leave the third letter
unchanged. Specifically, �1 switches the second and third letters (and leaves
the first letter unchanged), �2 switches the first and third letters (and leaves
the second letter unchanged), and �3 switches the first and second letters (and
leaves the third letter unchanged). We also need two cyclic permutations: 	L

moves each letter one position to the left; more precisely, it moves the third
letter in the word to the second position, the second letter to the first position,
and the first letter to the last position. In a similar way, 	R moves each letter one
position to the right (with the third letter moving to the front). For the sake of
completeness, we also let id denote the identity transformation, which moves
none of the letters. For example, we see that �3(ABC)=BAC, 	R(BCA)=ABC,
and id (BAC)=BAC. The set formed by these six transformations is denoted by
S3; it is not hard to see that for any two words in our list above, there is exactly
one element of S3 that transforms the first word into the second word.

We then define the binary operation � on S3 to be composition; that is, for
f; g 2 S3, f � g is what we get by first performing transformation g and
then applying transformation f to the result. For example, it is easy to see that
	R � 	L D id .

(a) Construct the operation table for S3.
(b) Verify that S3 is a group. (Although you are supposed to prove associativity

for all choices of the elements, it is all right to demonstrate this property on
specific examples.)

(c) Is S3 an abelian group?

2. Recall that we let B2 be the collection of all length-2 strings of binary digits;
we also defined the operations of negation, addition, and multiplication on B2

on page 119.
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(a) List the elements of B2.
(b) Construct the operation tables for the three operations.
(c) Verify that B2 is a Boolean algebra. (Although you are supposed to

prove commutativity, associativity, and distributivity for all choices of
the elements, it is all right to demonstrate these properties on specific
examples.)

3. For each of the following sets, decide which of the field axioms hold and
whether the nonzero product property holds. (Assume that the operations
are usual addition and multiplication.) Which are rings? Which are integral
domains? Which are fields? (If you have not yet seen matrices, then skip the
last part.)

(a) The set of even integers
(b) The set of odd integers
(c) The set of positive rational numbers
(d) The set of rational numbers that can be written in the form a

b
where a and

b are integers and b is odd
(e) The real numbers between �1 and 1 (inclusive)
(f) The set of real polynomials (polynomials with real number coefficients) of

degree 5
(g) The set of real polynomials of degree at most 5
(h) The set of all real polynomials
(i) The set of integral polynomials (polynomials with integer coefficients)
(j) The set of all functions of the form f .x/

g.x/
where f and g are arbitrary real

polynomials and g ¤ 0

(k) The set of all functions of the form f .x/

g.x/
where f and g are arbitrary integral

polynomials and g ¤ 0

(l) The set of 2-by-2 matrices with real number entries

4. Let us define the binary operations ˚ and ˝ on a finite set S of real numbers
as follows:

a ˚ b D minfa; bg
and

a ˝ b D maxfa; bg
for every .a; b/ 2 S 
 S (here min and max denote the smaller and the larger—
or, in case of equality, either—of the two numbers, respectively). Decide
whether these operations satisfy the commutative, associative, distributive,
identity, and inverse properties.

5. Let us define the binary operations � and ˘ on the set of real numbers as follows:

a � b D a C b C 1 and a ˘ b D a � b C a C b

for every .a; b/ 2 R
2. (Here C and � denote ordinary addition and multiplica-

tion.)
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Decide which of the twelve axioms listed in Definition 10.2 are satisfied. What
kind of structure does R have for these operations?

6. For each of the following sets, decide if the set forms an integral domain for the
usual addition and multiplication operations:

(a) 10Z D f10z j z 2 Zg (multiples of 10).
(b) 1

10
Z D ˚

z
10

j z 2 Z
�

(multiples of 1/10).
(c) Z



1
10

� D ˚
z

10n j z 2 Z; n 2 N
�

(finite decimals).

7. Suppose that n is a positive integer and let Zn consist of the numbers

f0; 1; 2; : : : ; n � 1g:

Define ˚ and ˇ to be addition and multiplication of these numbers mod n; that
is, let a ˚ b and a ˇ b be the remainder of a C b and a � b when divided by n.

(a) Verify that, for these operations, Zn is a commutative ring with a multi-
plicative identity. (As before, it is all right to demonstrate commutativity,
associativity, and distributivity on specific examples.)

(b) Find some values of n for which Zn is an integral domain and some for
which it is not an integral domain. Make a conjecture regarding the general
case. Justify your conjecture.

(c) Find some values of n for which Zn is a field and some for which it is not
a field. Make a conjecture regarding the general case. (You do not need to
prove your conjecture—we will do so in Chap. 15.)

8. Let S be a nonempty set and let P.S/ be the power set of S . Define the
operations � and ˘ as follows:

A � B D .A n B/ [ .B n A/ and A ˘ B D A \ B:

(Here, A n B D A \ B; A � B is called the symmetric difference of A and B .)

(a) Use Venn diagrams to verify that P.S/ is a ring for these operations.
(b) Is P.S/ a field?

9. Let n be a positive integer, and define D.n/ to be the set of all positive divisors
of n. Define the unary operation � and the binary operations � and ˘ on D.n/

as follows:
a D n

a
;

a � b D lcm.a; b/;

and
a ˘ b D gcd.a; b/

for every a; b 2 D.n/. (Here, lcm and gcd denote the least common multiple
and the greatest common divisor of the two numbers, respectively.)

(a) Is D.6/ a Boolean algebra for these operations?
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(b) Is D.8/ a Boolean algebra for these operations?
(c) Find all values of n under 40 for which D.n/ is a Boolean algebra for these

operations. Make a conjecture regarding the general case in terms of the
prime factorization of n. (You do not need to prove your conjecture.)

10. In this problem we define and study the so-called order axioms.

Definition 10.13. We say that a ring R (with operations C and �) is an ordered
ring if it contains a subset P with the following properties:

• (O) For every a 2 R, exactly one of the following holds: a D 0, a 2 P , or
�a 2 P .

• (OC) For all a 2 P and b 2 P , a C b 2 P .
• (O �) For all a 2 P and b 2 P , a � b 2 P .

Elements in P are called the positive elements of R. Ordered integral
domains (ordered fields) are defined as ordered rings that are also integral
domains (fields).

Here we state as an axiom that, unsurprisingly,Z, Q, and R satisfy the order
axioms.

Axiom 10.14. The integers form an ordered integral domain and both the
rational numbers and the real numbers form ordered fields.

(a) Define the negative elements of an ordered ring R.
(Hint: Be careful not to confuse the “negative elements” of R with the
“negatives of elements” of R. For example, the negative elements of Z

form the set f�1; �2; �3; : : :g, but every integer (even a positive one) is
the negative of some integer!)

(b) Define the order relations greater than or equal to and less than or equal
to and the strict order relations greater than and less than in an ordered
ring R.

(c) Let RŒx� denote the set of all real polynomials. Verify that RŒx� is an
ordered integral domain.
(Hint: Define a polynomial to be positive if its leading coefficient (the
coefficient of the term of highest degree) is positive.)

(d) Let R.x/ denote the set of all functions of the form f .x/

g.x/
where f and g are

arbitrary real polynomials and g ¤ 0. Verify that R.x/ is an ordered field.
(e) Prove that Zn cannot be an ordered ring for any integer n � 2.

(Hints: Suppose, indirectly, that there is a subset P of Zn for which the
three order axioms hold. By axiom (O), we must have either 1 2 P or
n � 1 2 P , but not both. Show that repeated application of axiom (OC)
yields a contradiction.)



Chapter 11
Working in the Fields (and Other Structures)

In Chap. 10 we got acquainted with mathematical structures such as groups, rings,
integral domains, fields, and Boolean algebras. As discussed there, the benefit of
abstracting the common properties of various systems into a unifying structure is
that, once we prove certain statements about a structure using only the properties
that apply to all models of the structure, they will then be true for each system that
models the structure. In this chapter we see examples for such axiomatic proofs.

Naturally, our theorems here cannot be too advanced—in fact, they will not
only be familiar but usually taken for granted. (The statement “2 times 2 is 4”
will be one of the most advanced claims we prove; cf. Proposition 11.8.) While
in theory all theorems of higher mathematics could be proved axiomatically, we
will usually not proceed this way; one would need to develop an extensive family of
previously proven results, and this would be too tedious and time consuming for us.
Nevertheless, the formal axiomatic proofs in this chapter are quite instructive: one
can develop a very clear understanding of what constitutes a proof since each step
needs to be derived directly from one of the axioms or previously proven statements.
Techniques learned in this chapter will be beneficial when studying other axiomatic
branches of mathematics such as (abstract) algebra, (real and complex) analysis,
topology, and others.

We start by proving some well-known theorems about Boolean algebras. Since
we will only use properties that hold for every Boolean algebra, our theorem will
be true for the particular Boolean algebras we have seen: statements, sets, and 0–1
sequences.

Theorem 11.1 (The Bound Laws). Suppose that B is a Boolean algebra for the
unary operation � and the binary operations � and ˘ (as listed in Definition 10.10).
Let e� and e˘ denote the identity elements of the operations � and ˘, respectively,
and suppose that a 2 B. Then we have a � e˘ D e˘ and a ˘ e� D e�.

Proof. We start with the first identity. Our proof will consist of a sequence of
equations; at each step we indicate the particular property we use (cf. the Boolean
algebra properties of Definition 10.10).
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a � e˘
.˘4/D .a � e˘/ ˘ e˘

.�C ˘/D .a � e˘/ ˘ .a � a/

.�D˘/D a � .e˘ ˘ a/

.˘4/D a � a

.�C ˘/D e˘

For the second identity, recall that the two binary operations in a Boolean algebra
play a symmetrical role, so we can simply interchange � and ˘ (easy with a
typesetting program that has a “replace” command).

a ˘ e�
.�4/D .a ˘ e�/ � e�

.˘C �/D .a ˘ e�/ � .a ˘ a/

.˘D�/D a ˘ .e� � a/

.�4/D a ˘ a

.˘C �/D e�

This completes our proof. �

It is worthwhile to state the Bound Laws for our three favorite Boolean algebras:

Corollary 11.2 (The Bound Laws for Statements). Suppose that T is a true
statement, F is a false statement, and P is an arbitrary statement. Then P _T , T

and P ^ F , F .

Corollary 11.3 (The Bound Laws for Sets). Suppose that A is an arbitrary set
inside a universal set U and ; is a set with no elements. Then A [ U D U and
A \ ; D ;.

Corollary 11.4 (The Bound Laws for 0-1 Sequences). Suppose that a is an
arbitrary 0–1 sequence of a given length and e and z are the sequences of all 1s
and all 0s, respectively, of the same length. Then a C e D e and a � z D z.

Now we turn to proving a theorem about rings (and thus, as a special case, about
fields). Our claim will be very similar to one of the claims in Theorem 11.1 above,
but it is just a superficial resemblance: we are in a ring, not in a Boolean algebra!

Theorem 11.5. Suppose that R is a ring for the binary operations � and ˘ (as
listed in Definition 10.2). Let e� denote the identity element of � and suppose that
a 2 R. Then we have a ˘ e� D e�.
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Proof. As before, our proof will consist of a sequence of equations; at each step we
indicate the particular property we use (cf. the ring properties of Definition 10.2).

a ˘ e�
.�4/D .a ˘ e�/ � e�
.�5/D .a ˘ e�/ � Œ.a ˘ e�/ � �.a ˘ e�/�

.�3/D Œ.a ˘ e�/ � .a ˘ e�/� � �.a ˘ e�/

.˘D�/D Œa ˘ .e� � e�/� � �.a ˘ e�/

.�4/D .a ˘ e�/ � �.a ˘ e�/

.�5/D e�

This completes our proof. �

Theorem 11.5 has the following important corollary:

Corollary 11.6. For every real number a, we have a � 0 D 0.

When comparing Theorems 11.1 and 11.5, we see several discrepancies: the
properties of Boolean algebras are different from those of rings. In particular, the
corresponding dual of the claim of Theorem 11.5 is false; namely, in a ring we
generally do not have a � e˘ D e˘. First of all, the ˘ operation may not even have
an identity, and even in a field (when it does), the claim is false! For example, it
is not true that for real numbers we have a C 1 D 1 (unless, of course, a D 0;
cf. Problem 2).

Our next theorem will fulfill an earlier promise (cf. page 116): we prove that the
set of field axioms, as stated in Chap. 10, is not independent.

Theorem 11.7. Commutativity of addition follows from the other field axioms.

Proof. We assume that the field in question is R with operations denoted by C
and � playing the roles of � and ˘, respectively, and that the corresponding identity
elements are 0 and 1. This is just a notational change to make the reading of this
proof easier; as long as we do not assume properties of the real numbers beyond
those listed in the field axioms, our proof is valid.

We need to prove that for every pair of real numbers a and b, we have a C b D
b C a. Since this proof is a bit more complicated than our earlier ones, we will
elaborate more; providing a proof in the style of our previous proofs in this chapter
will be done in Problem 3.

Consider the product
.1 C 1/ � .a C b/:

We can use distributivity (�DC) to rewrite it as

.1 C 1/ � a C .1 C 1/ � b;
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then, using (�DC) again, we further rewrite this as

.1 � a C 1 � a/ C .1 � b C 1 � b/:

By (�4), this is equal to
.a C a/ C .b C b/:

Starting with the same expression and using the two distributivity axioms in the
other order, we get

.1 C 1/ � .a C b/ D .1 � .a C b// C .1 � .a C b//

D ..1 � a/ C .1 � b// C ..1 � a/ C .1 � b//;

from which, using (�4), we get

.a C b/ C .a C b/:

Since we started with the same expression, we must have

.a C a/ C .b C b/ D .a C b/ C .a C b/:

Now we add �a on the left as well as �b on the right to both sides (which are
available by (C5)) and use (C3) to get

...�a/ C a/ C a/ C .b C .b C .�b/// D ...�a/ C a/ C b/ C .a C .b C .�b///:

Four applications of (C5) yield

.0 C a/ C .b C 0/ D .0 C b/ C .a C 0/;

from which the result
a C b D b C a

follows after applying (C4). ut
In our final proposition, we assume that the positive integers are defined using

the primitives 1 and C: we have 2 D 1 C 1, 3 D 2 C 1, etc.

Proposition 11.8. We have 2 � 2 D 4.

Proof. We proceed by using the various field axioms (and the definitions of 2, 3,
and 4) to rewrite 2 � 2 until we get 4.

Using the definition of 2, we see that

2 � 2 D .1 C 1/ � 2:
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Then we use axiom (�DC) to write the right-hand side as

.1 C 1/ � 2 D 1 � 2 C 1 � 2:

Next we use axiom (�4) and get

1 � 2 C 1 � 2 D 2 C 2:

The next step is to use the definition of 2 again, this time for our last term, and write

2 C 2 D 2 C .1 C 1/:

Then we use axiom (C3) and write the right-hand side as

2 C .1 C 1/ D .2 C 1/ C 1:

Next we use the definition of 3 to write

.2 C 1/ C 1 D 3 C 1:

Finally, the definition of 4 says that our result is 4. ut
As we mentioned above, in theory every proof can be reduced to axioms and

written formally. This is not done in general; however, it would take much too
long to do so. In this chapter we merely attempted to demonstrate formal axiomatic
proofs. In upcoming chapters we will write as most mathematicians write proofs
today, less formally.

Problems

1. (a) Suppose that R is a field for the binary operations � and ˘ (as listed in
Definition 10.2). Let e� denote the identity element of � and e˘ denote the
identity element of ˘. Prove that e� ¤ e˘.
(Hint: Use Theorem 11.5 and the requirement that a field has at least two
elements.)

(b) Consider the following claim:
Claim. For the real numbers 1 and 0, we have 0 D 1.
According to part (a), this claim is false. Find the mistake(s) in the
following argument:
Argument. Let a be an arbitrary real number. By axiom (C5), we must have
a real number x such that a C x D 0. Multiplying this equation by a yields
.a C x/ � a D 0 � a or, after using distributivity, a2 C x � a D 0 � a (denoting
a � a by a2). Axiom (�5) guarantees an inverse to a2 C x � a; that is, there
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exists a real number y for which .a2 C x � a/ � y D 1. Using this y to
multiply our equation a2 C x � a D 0 � a, we get .a2 C x � a/ � y D .0 � a/ � y.
Now the left-hand side equals 1, so we have 1 D .0 � a/ � y. According to
Corollary 11.6, 0 times any real number is 0, so .0 � a/ � y D 0 � y D 0.
Therefore, we proved that 0 D 1.

2. Suppose that F is a field for the binary operations � and ˘ (as listed in
Definition 10.2). Let e� and e˘ denote the identity elements of � and ˘,
respectively, and suppose that a 2 F .

(a) Find the mistake(s) in the following argument:
Claim. We have a � e˘ D e˘.
Argument. At each step we refer to a particular property under Defini-
tion 10.2.

a � e˘
.˘4/D .a � e˘/ ˘ e˘
.˘50/D .a � e˘/ ˘ Œ.a � e˘/ ˘ �.a � e˘/�

.˘3/D Œ.a � e˘/ ˘ .a � e˘/� ˘ �.a � e˘/

.�D˘/D Œa � .e˘ ˘ e˘/� ˘ �.a � e˘/

.˘4/D .a � e˘/ ˘ �.a � e˘/

.˘50/D e˘

(b) Prove that one cannot have a � e˘ D e˘ unless a D e�.
(Hint: Simplify a � .e˘ � �e˘/ in two different ways. As a corollary, this
says that if a real number a satisfies a C 1 D 1, then we must have a D 0.)

3. Rewrite the proof of Theorem 11.7 in the style of the proofs of Theorems 11.1
and 11.5, that is, as a string of equations starting with a C b and ending with
b C a. (Be careful not to use the claim itself!)

4. In this problem we discuss the following important theorem about Boolean
algebras:

Theorem 11.9 (De Morgan’s Laws). Suppose that B is a Boolean algebra
for the unary operation � and the binary operations � and ˘ (as listed in
Definition 10.10). Let e� and e˘ denote the identity elements of the operations
� and ˘, respectively, and suppose that a; b 2 B.
Then we have

.a � b/ D a ˘ b

and

.a ˘ b/ D a � b:
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(a) Rewrite De Morgan’s Laws for the Boolean algebra of statements.
(b) Rewrite De Morgan’s Laws for the Boolean algebra of all subsets of a

given set.
(c) Consider the following proof of the first identity of Theorem 11.9. For each

line in the proof, supply all the necessary Boolean algebra properties that
are used.

.a � b/ D e˘ ˘ e˘ ˘ .a � b/

D .e˘ � b/ ˘ .e˘ � a/ ˘ .a � b/

D Œ.a � a/ � b� ˘ Œ.b � b/ � a� ˘ .a � b/

D Œ.a � b/ � .a ˘ b/� ˘ .a � b/

D Œ.a � b/ ˘ .a � b/� � Œ.a ˘ b/ ˘ .a � b/�

D e� � Œ.a ˘ b/ ˘ .a � b/�

D e� � e� � Œ.a ˘ b/ ˘ .a � b/�

D .e� ˘ b/ � .e� ˘ a/ � Œ.a ˘ b/ ˘ .a � b/�

D Œ.a ˘ a/ ˘ b� � Œ.b ˘ b/ ˘ a� � Œ.a ˘ b/ ˘ .a � b/�

D Œ.a ˘ b/ ˘ .a � b/� � Œ.a ˘ b/ ˘ .a � b/�

D .a ˘ b/ ˘ Œ.a � b/ � .a � b/�

D .a ˘ b/ ˘ e˘
D a ˘ b

5. Prove that in a group there is exactly one identity element and exactly one
inverse to each element.

6. A group G is called an elementary abelian 2-group if a � a D e holds for every
a 2 G (� is the operation in G and e is the identity element).

(a) Prove that, as the name suggests, an elementary abelian 2-group is indeed
abelian.

(b) Find all values of n under 40 for which the group Un (cf. Problem 4 of
Chap. 6) is an elementary abelian 2-group.

7. (a) Let F be a collection of two or more objects on which two binary operations
are defined, say � and ˘. Suppose that F is a group for � (with identity element
e�) and that ˘ is distributive with respect to �. Prove that F cannot also be a
group for ˘.

(Hint: Prove that the identity element e� cannot have an inverse for the ˘
operation.)
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(b) Use the previous part to explain why no real number can be divided by
zero.

8. Using the Boolean algebra properties of statements or previously proven
theorems, prove that the following properties hold for arbitrary statements P

and Q:

(a) Idempotent Laws: .P _ P / , P and .P ^ P / , P .
(b) Absorption Laws: ŒP ^ .P _ Q/� , P and ŒP _ .P ^ Q/� , P .
(c) Involution Law: :.:P / , P .

(Hint: Simplify

Œ:P _ P � ^ Œ:.:P / _ :P � ^ Œ:.:P / _ P �

in two different ways.)

9. Use the Boolean algebra properties of sets (or previously proven theorems) to
provide an axiomatic proof for the two identities of Problem 6 of Chap. 8.

10. Prove each of the following statements using the field axioms and Defini-
tions 10.6–10.9 (as well as previously proven statements). For parts (e) and
(f), you may use Theorem 10.3 as well.

(a) For every real number a, �.�a/ D a.
(b) For every real number a, .�1/ � a D �a.
(c) For all real numbers a and b, .�a/ � b D �.a � b/.
(d) For all real numbers a and b, .�a/ � .�b/ D a � b.
(e) If a, b, c, and d are real numbers, b 6D 0, and d 6D 0, then

a

b
� c

d
D a � c

b � d
:

(f) If a, b, c, and d are real numbers, b 6D 0, and d 6D 0, then

a

b
C c

d
D a � d C b � c

b � d
:

11. Use the field axioms and the order axioms (cf. Definition 10.13) as well as
your definitions from parts (a) and (b) of Problem 10 of Chap. 10 to prove the
following properties of the real numbers:

(a) Trichotomy: For all real numbers a and b, exactly one of the following
statements holds: a < b, a D b, or a > b.

(b) Transitivity: If a, b, and c are real numbers so that a > b and b > c, then
a > c.

(c) Addition Law: If a, b, and c are real numbers so that a > b, then a C c >

b C c.
(d) Multiplication Law: If a, b, and c are real numbers so that a > b and c > 0,

then ac > bc.
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(e) Multiplication Law: If a, b, and c are real numbers so that a > b and c < 0,
then ac < bc.

(f) If a is a real number and a 6D 0, then a2 > 0.
(g) If a and b are positive real numbers and a < b, then a2 < b2.
(h) For all real numbers a and b, a3 < b3 holds if, and only if, a < b.



Chapter 12
Universal Proofs

We have already discussed the role of proofs in mathematics and have seen a variety
of examples for proofs (e.g., in Chaps. 4, 5, and 11). Having learned about logic,
sets, and quantifiers, we are now able to study proofs more formally and thus deepen
our understanding of them.

Many of the most common statements are of (or can be put in) the form

8a 2 U; P.a/

for some set U and predicate P ; to prove such a statement, we need to show that the
predicate P.a/ becomes a true statement for every element a under consideration.
For example, De Morgan’s Laws (cf. Theorem 11.9) claim that the identities hold
for every pair of elements in the Boolean algebra. Often, the predicate P in our
statement is an implication, as in one of our first claims that the n-th Mersenne
number 2n � 1 can only be prime if n is prime (cf. Theorem 4.7). This claim can be
written as

8n 2 N; .2n � 1 prime/ ) .n prime/:

In fact, in many situations, our predicate expresses an equivalence. A typical
example of this is when we solve an equation among real numbers; for example,
when we say that the solution of x2 D 4 in R is x D ˙2, then we claim that

8x 2 R; .x2 D 4/ , .x D 2 _ x D �2/

holds. (We will see a proof for this claim shortly.)
In this chapter, as the title indicates, we study the proofs of such universally

quantified statements in general. Our title has a less literal meaning as well: we will
discuss some very general proof techniques—many of these even have names—that
appear frequently in proofs. But, needless to say, we cannot possibly provide a single
“universal proof” for everything; in fact, the creative process of finding proofs for
statements is exactly what keeps mathematicians challenged.
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Consider again the statement

8a 2 U; P.a/:

While a single counterexample would disprove such a statement, constructing a
proof usually involves a comprehensive argument. As we explained in Chap. 4, a
proof can only contain statements that are listed in our hypotheses, are axioms, have
been proven already, or follow immediately from the previous statements. Usually
we do not intend to trace all our theorems back to the axioms; this would be too
tedious and time consuming. (We demonstrated this method in Chap. 11.) Nor are
we attempting to make our proofs formal; in particular, we will not always be precise
about how one statement in a proof follows from the one(s) before it. Our goal here,
instead, is to discuss the most important proof structures and to learn some of the
commonly used techniques.

Perhaps the most often used logical structure in a proof is what is referred to
as the

• Law of Modus Ponens: For arbitrary statements P and Q, the statement

ŒP ^ .P ) Q/� ) Q

is a true statement.

One can easily verify the Law of Modus Ponens by either considering the
appropriate truth tables or using the Boolean algebra properties discussed in
Chap. 11, but most people with a bit of experience in logic would find this law quite
convincing without a proof. It is perhaps a bit less obvious to see the following
variation, called the

• Law of Modus Tollens: For arbitrary statements P and Q, the statement

Œ:Q ^ .P ) Q/� ) :P

is a true statement.

A closer look at the Law of Modus Tollens reveals that it is essentially the
contrapositive of the Law of Modus Ponens. Indeed, applying the Law of Modus
Ponens to statements :Q and :P rather than to P and Q gives

Œ:Q ^ .:Q ) :P /� ) :P;

from which the Law of Modus Tollens follows by the fact that P ) Q and its
contrapositive, :Q ) :P , are equivalent.

The laws of Modus Ponens and Modus Tollens are frequently applied in everyday
situations. For example, if we assume that the statements
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• P : “It is raining” and
• P ) Q: “If it is raining, then there are clouds in the sky”

are both true, then using Modus Ponens we can safely conclude that

• Q: “There are clouds in the sky.”

Similarly, assuming that

• :Q: “There are no clouds in the sky” and
• P ) Q: “If it is raining, then there are clouds in the sky”

both hold lets us conclude, using Modus Tollens, that

• :P : “It is not raining.”

Care needs to be taken, however, that we use these laws correctly. For example,
the statements

• :P : “It is not raining” and
• P ) Q: “If it is raining, then there are clouds in the sky”

do not imply that

• :Q: “There are no clouds in the sky.”

This last argument has the logical form

Œ:P ^ .P ) Q/� ) :Q;

which is not a tautology! (Modus Pollens, while a perfectly plausible name for an
allergy medication, is not a legitimate combination of Modus Ponens and Modus
Tollens!)

Of course, most mathematical claims require a longer proof than a single
application of the laws of Modus Ponens and Modus Tollens. The law that allows
us to combine implications is the

• Law of Transitivity: For arbitrary statements P , Q, and R, the statement

Œ.P ) Q/ ^ .Q ) R/� ) .P ) R/

is true.

Now let us address the situation when our claim itself is of the form of an
implication, as in

8a 2 U; P.a/ ) Q.a/:

Here the predicate P.a/ is called the hypothesis and the predicate Q.a/ is called
the conclusion. The proof of claims of this form can sometimes be given using
indirect methods; we used such techniques in Chap. 5 when showing that

p
2 is

irrational and that there are infinitely many primes. There are two basic forms for
indirect proofs: the
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• Law of Contraposition: For arbitrary statements P and Q, the statement

.P ) Q/ , .:Q ) :P /

is true, and the
• Law of Contradiction: For arbitrary statements P and Q and for an arbitrary false

statement F , the statement

.P ) Q/ , Œ.P ^ :Q/ ) F �

is true.

The Law of Contraposition says that, instead of proving that “P implies Q,” we
may prove the equivalent contrapositive: “If Q is false then P has to be false as
well.” The contrapositive of a statement is not to be confused with the converse of
the statement: The converse of “If P then Q” is the statement “If Q then P .” While
the contrapositive of a statement is equivalent to the statement, its converse is not
(cf. Problem 1 of Chap. 7).

The Law of Contradiction lets us prove that “P implies Q” by proving instead
that if P is true and Q is false, then we can find a false statement F . It allows us a bit
more freedom than the Law of Contraposition; we may choose any false statement
F (in our system)!

The following proposition allows us to compare three proof methods: direct
proof, proof by contraposition, and proof by contradiction.

Proposition 12.1. The sum of a positive number and its reciprocal is at least 2.
More formally,

8x 2 R; .x > 0/ ) .x C 1

x
� 2/:

I: Direct Proof. Let x be an arbitrary positive real number. Then we have

x C 1

x
D x2 C 1

x
D .x � 1/2 C 2x

x
D 1

x
� .x � 1/2 C 2 D

�
1

x

�2

� x � .x � 1/2 C 2:

Since the first term is at least zero (cf. Problem 11 (f) in Chap. 11), we have

x C 1

x
� 2:

�
II: Proof by Contraposition. Let us assume that x is an arbitrary real number for
which

x C 1

x
< 2:
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Then x 6D 0, and thus we have x2 > 0 (cf. Problem 11 (f) in Chap. 11). Multiplying
the inequality by x2 will yield

x3 C x < 2x2;

or, equivalently,

x3 � 2x2 C x < 0;

or

x.x � 1/2 < 0:

This last inequality implies that x 6D 1, hence 1=.x � 1/ is a real number; since it’s
nonzero, its square, 1=.x � 1//2; must be positive. Therefore, multiplying

x.x � 1/2 < 0

by 1=.x � 1/2, we get x < 0 (cf. Problem 11 (d) in Chap. 11), the negation of our
hypothesis. �
III: Proof by Contradiction. Let us assume that x is an arbitrary positive real number.
Assume indirectly that

x C 1

x
< 2:

Since x > 0, multiplying by x we get

x2 C 1 < 2x;

which can be rewritten as

.x � 1/2 < 0;

which is a contradiction (cf. Problem 11 (f) in Chap. 11). �
Note that, between the two indirect proofs, the proof by contradiction is simpler.

This is perhaps no surprise; the form .P ^:Q/ ) F lets us assume two statements,
P and :Q, and allows us to derive any false statement, while the form :Q ) :P

used in a proof by contraposition has only one hypothesis and a more restrictive
conclusion. Thus, in a certain sense, proofs by contradiction allow us more to work
with and with more freedom than proofs by contraposition.

Let us now turn to some more complex structures. Often the hypothesis and the
conclusion are composed of several statements; even when this is not the case, one
finds that it is easier to prove another implication instead and deduce our implication
from it. The following are some of the logical equivalences that will help us deal
with such situations:

• Law of Case Separation: For arbitrary statements P , Q, and R, the statement

Œ.P _ Q/ ) R� , Œ.P ) R/ ^ .Q ) R/�

is true.
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• Law of Case Exclusion: For arbitrary statements P , Q, and R, the statement

ŒP ) .Q _ R/� , Œ.P ^ :Q/ ) R�

is true.
• Law of Equivalence: For arbitrary statements P and Q, the statement

.P , Q/ , Œ.P ) Q/ ^ .Q ) P /�

is true.

Let us use these laws in some examples. All three laws come into play when
proving the following theorem with which we make good on a promise we made
in Problem 7 of Chap. 7. Although we state this here for real numbers, the proof
is essentially the same for any field. Therefore, we consider Theorem 10.3 (which
only relies on one direction of our claim below) proved.

Theorem 12.2. Suppose that x and y are real numbers. Then x � y D 0 if, and only
if, x D 0 or y D 0.

Proof. First the Law of Equivalence tells us how to reduce our theorem to two
implications, namely:

(i) If x D 0 or y D 0, then x � y D 0.
(ii) If x � y D 0, then x D 0 or y D 0. To prove our proposition, we need to prove

both of these implications. According to the Law of Case Separation, the first
implication can be proved in two parts:

(i.i) If x D 0, then x � y D 0.
(i.ii) If y D 0, then x � y D 0.

Both of these statements follow directly from Corollary 11.6.
Turning to (ii), we apply the Law of Case Exclusion and restate our claim as (ii’)

If x � y D 0 and x 6D 0, then y D 0.
To prove (ii’), we note that, since x 6D 0, we can rewrite y as

y D 1 � y D
�

1

x
� x

�

� y D 1

x
� .x � y/:

Using our hypothesis and Corollary 11.6, we get

y D 1

x
� 0 D 0;

as claimed.
Our proof is now complete. ut
This is a good time to point out that if the two cases we are using in the Law of

Case Separation are completely symmetrical, as (i.i) and (i.ii) were above (switching



12 Universal Proofs 141

x and y turns one statement into the other), then it is enough to prove one of the
cases—but, of course, this needs to be accomplished without relying on the other.
In such situations it is customary to assume that one of the cases holds without loss
of generality (or wlog). For example, in our proof we could have written “without
loss of generality, assume that x D 0.” But care needs to be taken that the two cases
are indeed similar. Had we had, for example, the hypothesis “x D 0 or y 6D 0,”
we may not just say “assume wlog that x D 0;” we would need to treat both cases
separately. (“Wlog” does not stand for “without lots (!) of generality.”)

Theorem 12.2 provides one of the most common techniques for solving equa-
tions. Let us demonstrate it on the following examples. First we solve the equation
x2 D 4 among the real numbers.

Proposition 12.3. For every x 2 R, we have x2 D 4 if, and only if, x D 2 or
x D �2.

Proof. Our equation is clearly equivalent to .x �2/ � .x C2/ D 0. By Theorem 12.2,
we deduce that .x � 2/ � .x C 2/ D 0 if, and only if, x D 2 or x D �2. Thus x2 D 4

if, and only if, x D 2 or x D �2.
The next equation is a bit more complicated (cf. Problem 2 (b) in Chap. 8). ut

Proposition 12.4. For every x 2 R, we have x D p
x C 6 if, and only if, x D 9.

We provide two proofs.

I: Proof by the Law of Equivalence. By the Law of Equivalence, we need to show
that:

(i) If x D p
x C 6, then x D 9.

(ii) If x D 9, then x D p
x C 6.

To prove (i), rewrite the equation as x�6 D p
x. If two numbers are equal, then their

squares are equal, so x2 �12x C36 D x, which is equivalent to x2 �13x C36 D 0.
The left-hand side factors as .x � 4/ � .x � 9/, so by our theorem above we see that
x D 4 or x D 9. However, x � 6 D p

x also implies that x � 6, so x 6D 4, leaving
only the case x D 9. Statement (ii) is quite clear. �
II: Direct proof by equivalent predicates. The equation

x D p
x C 6

is equivalent to
x � 6 D p

x

for every real number x. Next, we use the fact that the square root of a number a is
equal to another number b if, and only if, a D b2 and b � 0 (cf. Problem 7 (d)).
Therefore, we see that our equation is equivalent to the conjunction

.x � 6/2 D x and x � 6 � 0
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or
.x � 4/.x � 9/ D 0 and x � 6:

Using Theorem 12.2, we get that our original equation is equivalent to the logical
form

.x D 4 or x D 9/ and x � 6:

We can rewrite this using De Morgan’s Laws as

.x D 4 and x � 6/ or .x D 9 and x � 6/;

which is clearly (according to the Bound Law for conjunction and the identity
property of disjunction) equivalent to

x D 9;

as claimed. �

We need to emphasize that, when writing a proof using equivalent predicates as
in our second proof above, one needs to make sure that, when reading from top to
bottom, every line implies the line below it, and when reading from bottom to top,
every line implies the line above it. This introduces additional considerations; for
example, while x � 6 D p

x implies x2 � 12x C 36 D x (in our first proof), these
two predicates are not equivalent! If we insist on equivalences, then we must write

.x � 6 D p
x/ , Œ.x � 6/2 D x and x � 6 � 0�:

This may be an additional burden, but the benefit is that we don’t need to have two
parts to our proof.

Let us see two more examples for our proof techniques.

Proposition 12.5. For every integer n, we have n5 � n3 mod 8; that is, the number
n5 � n3 is divisible by 8.

Proof. We will separate two cases (Law of Case Separation): n is even and n is odd.

Case 1. If n is even, then there is a k 2 Z for which n D 2k; so n5 � n3 becomes

n5 � n3 D n3.n2 � 1/ D 8k3.4k2 � 1/ D 8 � .4k5 � k3/:

Since 4k5 � k3 2 Z, n5 � n3 is divisible by 8.

Case 2. If n is odd, then there is a k 2 Z for which n D 2k C 1; in this case n5 � n3

becomes

n5 � n3 D n3.n2 � 1/ D .2k C 1/3.4k2 C 4k/ D 4k.k C 1/.2k C 1/3:

We have two subcases: k is even and k is odd.
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Case (i). If k is even, say k D 2m for some m 2 Z, then 4k D 8m is divisible by 8,
and, therefore, 4k � .k C 1/.2k C 1/3 is divisible by 8.

Case (ii). If k is odd, say k D 2m C 1 for some m 2 Z, then 4.k C 1/ D 8.m C 1/

is divisible by 8, and therefore, 4.k C 1/ � k.2k C 1/3 is divisible by 8.
Thus n5 � n3 is divisible by 8 for every integer n. ut
We have already seen several ways to prove identities and other statements about

sets (truth tables, Venn diagrams, Boolean algebra rules). Perhaps the most natural
way, however, is to provide an essay-style argument, as follows:

Proposition 12.6. Let A, B , and C be sets inside a universal set U . Then

.A [ B/ \ C � .A \ B [ C / [ .B \ A \ C/:

Proof. We need to prove that if

x 2 .A [ B/ \ C;

then
x 2 .A \ B [ C / [ .B \ A \ C/:

Suppose that
x 2 .A [ B/ \ C :

Then x 2 A [ B and x 2 C . Let us consider two cases: x 2 B and x 62 B .

Case 1. Assume first that x 2 B . Since x 2 C , we have x 62 C , so we must also
have x 62 A \ C and, therefore, x 2 A \ C . But x 2 B as well, so x 2 B \ A \ C ,
and, therefore,

x 2 .A \ B [ C / [ .B \ A \ C/:

Case 2. Assume now that x 62 B . Since x 2 C , we have x 62 C and, therefore,
x 62 B [ C or x 2 B [ C . But we also have x 2 A [ B , so x 2 A or x 2 B . But
now x 62 B , so we must have x 2 A and, therefore, x 2 A \ B [ C , and

x 2 .A \ B [ C/ [ .B \ A \ C /

holds again. ut
We note that we could have given an axiomatic proof for our statement. In

particular, it is possible, though tedious, to prove using the set axioms that the right-
hand side above equals

Œ.A [ B/ \ C � [ .A \ B \ C /;

which clearly contains the left-hand side above as a subset. In Problems 4 and 5,
we have the opportunity to compare the axiomatic method of Chap. 11 and the
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essay-style method above, as well as the earlier techniques of truth tables and Venn
diagrams.

We have now seen a variety of proof techniques: direct proofs and indirect
proofs; the Laws of Case Separation, Case Exclusion, and Equivalence; and
several variations of these—in subsequent chapters, we will see quite a few others.
Naturally, one cannot give a complete list of all proof methods and techniques; in
fact, the same statement may often be proved via entirely different methods, can be
presented giving different emphases, or may be explained providing various levels
of detail. As we have already discussed in Chap. 4, there are many different ways to
write a correct proof, depending, for example, on our audience and our emphasis.

Nevertheless, some proofs are generally accepted as more beautiful than others.
What exactly makes a beautiful proof is hard to say—yet most mathematicians
would recognize it when they see it. There is a wonderful book entitled Proofs
from THE BOOK (by Martin Aigner, Günter Ziegler, and K.H. Hofmann, Springer-
Verlag, Berlin, 4th ed. 2010) that attempts to collect the most beautiful proofs;
the title refers to the notion of the great late Hungarian mathematician Paul Erdős
who maintained that God kept a book containing the single best proof of every
mathematical statement and that the task of mathematicians was to discover these
proofs.

While our repertoire of proof techniques is now quite extensive, it does not,
however, include the proof technique of convenience (“it would be very nice if it
were true”), imagination (“let’s pretend it’s true”), plausibility (“it sounds good,
so it must be true”), or profanity (example omitted). These and other humorous
“proof techniques” are listed in the October 1998 issue of the Mathematics Teacher
magazine.

Problems

1. The following examples come from the English writer and mathematician
Lewis Carroll (1832–1898), author of Alice’s Adventures in Wonderland.
Justify that the arguments are correct.

(a) • Babies are illogical.
• Nobody is despised who can manage a crocodile.
• Illogical persons are despised.
Therefore, babies cannot manage crocodiles.

(b) • No ducks waltz.
• No officers ever decline to waltz.
• All my poultry are ducks.
Therefore, my poultry are not officers.

2. (a) Suppose that n denotes an arbitrary integer and P.n/ and Q.n/ are
predicates that become statements for each value of n. Put the following
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claims in equivalence classes: Two claims should be in the same class if,
and only if, they are equivalent.

Claim 1. 8n 2 Z; P.n/ ) Q.n/.
Claim 2. 8n 2 Z; :P.n/ ) :Q.n/.
Claim 3. 8n 2 Z; Q.n/ ) P.n/.
Claim 4. 8n 2 Z; :Q.n/ ) :P.n/.
Claim 5. 8n 2 Z; P.n/ , Q.n/.
Claim 6. 8n 2 Z; :P.n/ , :Q.n/.

(b) Suppose that P.n/ is the predicate that “3jn” and Q.n/ is the predicate that
“3jn2.” For each of the following arguments, decide if it provides a proof
for any of the claims in the previous part:

i. Argument A. Suppose that n is divisible by 3. Then n is of the form
n D 3k for some integer k, and therefore, n2 D 9k2 D 3 � .3k2/, a
number that is clearly divisible by 3.

ii. Argument B. Suppose that n is of the form n D 3k C1 for some integer
k. Then n2 D 9k2 C 6k C 1 D 3 � .3k2 C 2k/ C 1, a number that is
clearly not divisible by 3.

iii. Argument C. Suppose that n is of the form n D 3k �1 for some integer
k. Then n2 D 9k2 � 6k C 1 D 3 � .3k2 � 2k/ C 1, a number that is
clearly not divisible by 3.

iv. Argument D. Suppose that n is not divisible by 3. Then n is either of the
form n D 3k C 1 or of the form n D 3k � 1 for some integer k. In the
first case, follow Argument B; in the second case, follow Argument C.

v. Argument E. If n is divisible by 3, follow Argument A; otherwise,
follow Argument D.

vi. Argument F. If n D 3, then n2 D 9, which is divisible by 3.
vii. Argument G. If n2 D 9, then n D 3 or n D �3, both of which are

divisible by 3.

3. (a) Prove that the product of any two consecutive integers is even.
(b) Prove that the product of any three consecutive integers is divisible by 6.
(c) Prove that the product of any four consecutive integers is divisible by 24.
(d) Prove that the product of any five consecutive integers is divisible by 120.

Remark. We will prove a generalization of these statements in Chap. 14.

4. Suppose that A, B , and C are arbitrary sets. In Chap. 8 we considered the
identity

.A [ B [ C / \ .A [ C / D A \ B \ C :

There we verified the identity using truth tables; we also illustrated why the
equality holds using Venn diagrams. In this problem we compare two additional
proof techniques for the identity.

(a) Prove the identity using the axiomatic method of Chap. 11.
(b) Prove the identity using the verbal method of Proposition 12.6.
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5. Provide a verbal (essay-style) proof like the one given for Proposition 12.6 for
the two identities of Problem 6 of Chap. 8 (cf. also Problem 9 in Chap. 11).

6. Prove or disprove each of the following statements. You may use the axiom
that the set of rational numbers forms a field for addition and multiplication; in
particular, if x 2 Q and y 2 Q, then x C y 2 Q and x � y 2 Q.

(a) If x 2 Q and y 2 R n Q, then x C y 2 R n Q.
(b) If x 2 R n Q and y 2 R n Q, then x C y 2 R n Q.
(c) If x 2 R n Q and y 2 R, then x C y 2 R n Q or x � y 2 R n Q.
(d) If x 2 Q and y 2 R n Q, then x � y 2 R n Q.
(e) If x 2 R n Q and y 2 R n Q, then x � y 2 R n Q.
(f) If x 2 R n Q and y 2 R n Q, then xy 2 R n Q.

(Hint: Use Theorem 5.3 and Problem 3 (f) of Chap. 5.)

Remarks. By a highly nontrivial proof—certainly beyond our scope

here—one can establish that the number
p

2

p
2

is irrational. However,
it is interesting to note that, even without relying on this result, one can

easily see that either
p

2

p
2

or

�p
2

p
2
�p

2

provides a counterexample for

(f) above. Indeed, if
p

2

p
2 2 Q, then we can set x D y D p

2, and ifp
2

p
2 62 Q, then x D p

2

p
2

and y D p
2 provide a counterexample.

Following the hint above, we can construct a counterexample that avoids
this ambiguity.

7. Provide a proof for each of your claims in Problem 7 of Chap. 7.
8. Solve the following equations and inequalities among the set of real numbers.

(Hint: For each problem below, you may use the corresponding part of
Problem 7 of Chap. 7.):

(a) .x � 1/.2x � 3/ > 0

(b) jx � 1j D 2x � 3

(c) jx � 1j > 2x � 3

(d)
p

x � 1 D 2x � 3

(e)
p

x � 1 > 2x � 3

9. Prove the following:

Theorem 12.7 (The Triangle Inequality). For arbitrary real numbers x

and y, we have
jx C yj � jxj C jyj:

Remark. The theorem is named after a generalization: Given a triangle ABC in
R

2 (or higher dimensions), if x and y denote the vectors pointing from A to B
and from B to C, respectively, then the vector pointing from A to C is given by
x C y. The inequality above expresses the fact that no side of a triangle can be
longer than the sum of the lengths of the other two sides.
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10. Solve the equation

q

x C p
2x � 1 C

q

x � p
2x � 1 D p

2

among the real numbers.

Remark. This problem was given at the International Mathematical Olympiad
in 1959.

11. For each real number a, determine the number of real solutions to the following
equations:

(a) jxj C jx C aj D 4

(b)
x � a

x � 2
C 10

x C 2
D 44

4 � x2

12. We started this problem set with two of Lewis Carroll’s puzzles; we end with a
third one. Do the nine hypotheses imply the conclusion?

• All, who neither dance on tight ropes nor eat penny buns, are old.
• Pigs that are liable to giddiness are treated with respect.
• A wise balloonist takes an umbrella with him.
• No one ought to lunch in public who looks ridiculous and eats penny buns.
• Young creatures who go up in balloons are liable to giddiness.
• Fat creatures who look ridiculous may lunch in public if they do not dance

on tight ropes.
• No wise creatures dance on tight ropes if they are liable to giddiness.
• A pig looks ridiculous carrying an umbrella.
• All, who do not dance on tight ropes and who are treated with respect, are fat.

Therefore, a wise young pig will not become a balloonist.
(Hint: Argue indirectly. Make the assumption—that, apparently, Carroll did
too—that an old creature is not young.)



Chapter 13
The Domino Effect

In Chap. 12 we studied universal statements of the form

8a 2 U; P.a/

for given sets U and predicates P . Here we continue this discussion by examining
the case when U is the set of natural numbers.

Recall from Chap. 12 the Law of Modus Ponens, one of the most commonly
used steps in writing proofs: this law says that if we know that the statements P and
P ) Q are true, then we can conclude that statement Q is also true.

Suppose now that we need to prove not one but infinitely many statements and
that these statements can be arranged in a sequence: P.1/, P.2/, P.3/, etc. If we
know that P.1/ and P.1/ ) P.2/ are true, then Modus Ponens guarantees that
P.2/ is true. If we suppose further that we also know that P.2/ ) P.3/ is true,
then again by Modus Ponens we conclude that P.3/ is true. Suppose now that we
can carry on this argument indefinitely, that is, we know that P.k/ ) P.k C 1/ is
true for every positive integer k. Does this imply that all the statements in our list
are true?

This method of reasoning is called mathematical induction and is one of the most
often used proof techniques in mathematics. It can be stated formally as follows:

Theorem 13.1 (The Principle of Mathematical Induction). Suppose that P.n/

is a predicate that becomes a statement for all n 2 N. If

• P.1/ and
• 8k 2 N; P.k/ ) P.k C 1/

both hold, then P.n/ is true for every positive integer n.

So, when using mathematical induction to prove the statement P.n/ for every
n 2 N, we first verify that P.1/ is true; this is called the base step. We then prove
that, for every positive integer k, P.k/ implies P.k C 1/; this is referred to as
the inductive step, consisting of the inductive assumption P.k/ and the inductive
conclusion P.k C 1/. The method of mathematical induction can be imaginatively
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described: if our infinitely many dominoes are lined up in a queue, then toppling the
first one will topple all of them!

The Principle of Induction seems quite self-evident; indeed, it follows immedi-
ately from the following axiom. We call a subset of the positive integers inductive if
it has the property that, whenever it contains an element k, it also contains k C 1.

Axiom 13.2 (The Induction Axiom). If S is an inductive subset of N and 1 2 S ,
then S D N.

We accept this statement without proof. We will revisit the Induction Axiom—
and the other axioms of the natural number system—in Chap. 23.

Let us now see some well-known examples for proofs by induction. Recall that
we discussed recursively defined sequences in Chap. 2. For example, in Problem 8
(a) (ii), we saw that the sequence

41; 43; 47; 53; 61; 71; 83; 97; 113; 131; 151; 173; 197; 223; 251; 281; 313; : : :

can be defined recursively by a1 D 41 and akC1 D ak C 2k for k � 1; the Principle
of Induction guarantees that the recursive formula with the initial value uniquely
determines all values in the sequence. Later, in Problem 2 of Chap. 3, we stated
an explicit formula for the sequence; we now use induction to prove this formula.
(This sequence, discovered by Euler, yields a prime number value for every positive
integer up to k D 40; see discussion in Chap. 3.)

Proposition 13.3. Let us define the sequence a D .a1; a2; : : :/ recursively by a1 D
41 and akC1 D ak C 2k for k � 1. Then an D n2 � n C 41 for all n 2 N:

Proof. We use induction. First we need to check that the formula holds for n D 1:
Indeed, a1 D 41 D 12 � 1 C 41.

Next we need to show that, for any given value of k 2 N, if ak D k2�kC41, then
akC1 D .kC1/2 �.kC1/C41. To see that this is so, we start with ak D k2 �kC41

and add 2k to both sides. The left-hand side is then ak C2k D akC1 by the definition
of the sequence, and the right-hand side becomes

.k2 � k C 41/ C 2k D .k C 1/2 � .k C 1/ C 41;

which proves our claim. ut
One of the most well-known examples for an inductive proof is the following:

Proposition 13.4. For all positive integers n we have

nX

iD1

i D n.n C 1/

2
:

Thus, the sum of the first n positive integers equals n.n C 1/=2: (Recall from
Problem 3 (a) of Chap. 12 that the quantity n.n C 1/=2 is an integer; cf. also
Theorem 14.13.)
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Proof. We use induction on n. For n D 1 both sides of our equation equal 1, hence
the claim holds.

Suppose now that

1 C 2 C � � � C k D k.k C 1/

2

for some positive integer k. We need to prove that

1 C 2 C � � � C k C .k C 1/ D .k C 1/.k C 2/

2
:

We can use our inductive assumption to rewrite the sum of the first k terms; this
yields

1 C 2 C � � � C k C .k C 1/ D k.k C 1/

2
C .k C 1/:

The latter expression clearly equals

.k C 1/.k C 2/

2

as claimed. ut
Induction is a very powerful tool to prove that a formula holds for all values of

a variable. A drawback to this proof technique is that it only works if one already
knows (or at least conjectures) the formula to be verified. But how does one come
up with the right formula in the first place?

The answer to this question is not at all easy in general, but we can shed some
light on it at least in the case of Proposition 13.4. We will demonstrate this—without
lots of generality—for n D 5. Consider the figure below.

� � � � �

� � � �

� � �

� �

�

�

� �

� � �

� � � �

� � � � �

The diagram contains 5 rows and 6 columns and, therefore, a total of 5�6 symbols:
some open circles and some full circles. Clearly, exactly half of the symbols are open
circles and half are full circles; in particular, the number of open circles is .5 � 6/=2.
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Now looking at only the open circles in the diagram and counting them in each row,
we see that we have 1 C 2 C 3 C 4 C 5 open circles. This yields the identity

1 C 2 C 3 C 4 C 5 D .5 � 6/=2I

the statement of Lemma 13.4 can then be easily arrived at as a simple generalization.
According to a charming anecdote, the German mathematician Carl Friedrich

Gauss (1777–1855) discovered this argument as a young child. At school one day,
to keep the class quietly occupied, his teacher asked the pupils to add up the whole
numbers from 1 to 100. The young Gauss was done almost immediately, as he
discovered that the sum equaled .100 � 101/=2, or 5; 050. (After this episode, his
teacher was, rightfully, so impressed with the young prodigy that he called Gauss to
the attention of the Duke of Brunswick, whose continued financial assistance helped
Gauss become one of the greatest mathematicians of all time.)

With our next example, we fulfill a promise made in Chap. 4 and prove
Lemma 4.2. We repeat the statement here, this time as a proposition.

Proposition 13.5. If a and b are arbitrary real numbers and n is a positive integer,
then

.a � b/ � �an�1b0 C an�2b1 C an�3b2 C � � � C a1bn�2 C a0bn�1
� D an � bn:

More concisely,

.a � b/ �
 

n�1X

iD0

an�1�i bi

!

D an � bn:

Proof. We use induction on n. Our claim obviously holds for n D 1 as the sum in
the equation has only one term and that term equals 1.

Suppose now that the statement holds for n D k:

.a � b/ �
 

k�1X

iD0

ak�1�i bi

!

D ak � bk;

and consider

.a � b/ �
 

kX

iD0

ak�i bi

!

:

Since
kX

iD0

ak�i bi D
k�1X

iD0

ak�i bi C bk D a �
 

k�1X

iD0

ak�1�i bi

!

C bk;
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we have

.a � b/ �
 

kX

iD0

ak�i bi

!

D .a � b/ �
 

a �
 

k�1X

iD0

ak�1�i bi

!

C bk

!

D a � .a � b/ �
 

k�1X

iD0

ak�1�i bi

!

C .a � b/ � bk

D a � .ak � bk/ C .a � b/ � bk

D akC1 � bkC1:

Therefore, the statement is true for n D k C 1. ut
Next we prove an important property of the natural numbers.

Theorem 13.6. Every nonempty set of natural numbers contains a minimum (least)
element.

Formally, Theorem 13.6 says that if A � N and A 6D ;, then

9m 2 A; 8a 2 A; m � a:

For example, there is a smallest positive prime (namely, 2), and there is a smallest
positive prime n for which the n-th Mersenne number, 2n � 1, is not prime (namely,
11, see Chap. 3). Furthermore, by Theorem 13.6 we can say that if there is an integer
n � 5 for which the n-th Fermat number, 22n C 1, is prime, then there is a smallest
such integer as well. (According to the Fermat Prime Conjecture, there is no such
integer; cf. Problem 6 (b) in Chap. 2.) While Theorem 13.6 is intuitively obvious,
note that this property of N is not shared by Z, Q, or R; even the set of positive real
(or rational) numbers does not contain a minimum element!

Proof. Let A be a subset of N and suppose that A ¤ ;. We need to prove that A

has a minimum element. We use an indirect argument and assume that A has no
minimum element; our goal is then to prove that A cannot contain any elements.

Let P.n/ be the statement that, for a given positive integer n,

A \ f1; 2; : : : ; ng D ;I

that is, A contains no elements less than or equal to n. We use induction to prove
that for every n 2 N, P.n/ is true.

First observe that 1 is not in A; otherwise, it would clearly be its minimum
element. Therefore, A \ f1g D ;; thus, P.1/ holds.

Assume now that for some fixed k 2 N, P.k/ is true; that is,

A \ f1; 2; : : : ; kg D ;:
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This then implies that k C 1 62 A, since otherwise k C 1 would clearly be the
minimum element of A. Thus,

A \ f1; 2; : : : ; k; k C 1g D ;;

which means that P.k C 1/ is true. Therefore, by the Principle of Induction, P.n/

is true for every n 2 N.
But, if

A \ f1; 2; : : : ; ng D ;;

then n itself cannot be in A. Since we just proved that this holds for every n 2 N, A

cannot contain any n 2 N. Thus A D ;, which is a contradiction. ut
We proved Theorem 13.6 using the Principle of Mathematical Induction (Theo-

rem 13.1 above), but it is easy to see that the two theorems are, actually, equivalent.
Indeed, we can easily establish Theorem 13.1 from Theorem 13.6 by arguing that
if P.n/ were to be false for some n 2 N, then there would have to be a smallest
such value of n, say m. However, m could not be 1 as P.1/ is assumed to be
true, and if m � 2, then P.m � 1/ ) P.m/ could only hold if P.m � 1/ were
false, contradicting our choice of m. We repeat this argument below in the proof of
Theorem 13.7.

Sometimes we use the following generalized version of the Principle of
Induction:

Theorem 13.7 (The Generalized Induction Principle). Let P.n/ be a predicate
that becomes a statement for all n 2 N. Suppose further that n0 is a positive integer
for which the statements

• P.n0/ and
• 8k 2 N \ Œn0; 1/; P.k/ ) P.k C 1/

both hold. Then P.n/ is true for every integer n � n0.

Proof. We prove our claim by using Theorem 13.6. Consider the set A of positive
integers n for which n � n0 and for which P.n/ is false. Establishing our claim is
equivalent to proving that A D ;.

Assume indirectly that A ¤ ;. By Theorem 13.6, A has a minimum element, say
m. By assumption, P.n0/ is true, thus we must have m � n0 C 1 and, therefore,
m � 1 � n0. Since m is the minimum element of A, m � 1 62 A; therefore P.m � 1/

holds. Then by the inductive hypothesis, P.m/ must hold as well, which means that
m 62 A, a contradiction. ut

Our final pair of examples in this chapter gives us a good opportunity to compare
and contrast the Induction Principle and the Generalized Induction Principle.

Proposition 13.8. 1. For all positive integers n, we have

1:1n � 1 C n

10
:
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2. For all integers n � 100, we have

1:1n � 1 C n2

1000
:

Proof. We use induction to prove 1. The inequality obviously holds for n D 1.
Assume now that k is an arbitrary positive integer for which

1:1k � 1 C k

10
I

we need to prove that

1:1kC1 � 1 C k C 1

10
:

To accomplish this, we rewrite 1:1kC1 as 1:1 � 1:1k and apply the inductive
hypothesis. This yields

1:1kC1 D
�

1 C 1

10

�

� 1:1k �
�

1 C 1

10

�

�
�

1 C k

10

�

D 1 C k C 1

10
C k

100
;

from which our claim clearly follows since k
100

> 0.
We prove 2 using the Generalized Induction Principle. To verify the inequality

for the base case, we need to show that

1:1100 � 1 C 1002

1000
D 11:

But applying inequality 1 for n D 100, we get

1:1100 � 1 C 100

10
D 11I

thus inequality 2 holds for n D 100.
Suppose now that we know

1:1k � 1 C k2

1000

for some positive integer k � 100; we need to prove that

1:1kC1 � 1 C .k C 1/2

1000
D 1 C k2 C 2k C 1

1000
:
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Proceeding as above, we have

1:1kC1 D
�

1 C 1

10

�

�1:1k �
�

1 C 1

10

�

�
�

1 C k2

1000

�

D 1C k2

1000
C100 C k2=10

1000
:

It remains to be shown that the last term is not smaller than .2k C 1/=1000 or,
equivalently, that

100 C k2

10
� .2k C 1/ � 0:

With a bit of elementary algebra, we see that this inequality is equivalent to

k2 � 20k C 100 � �890;

which clearly holds since the left-hand side is the square of k � 10 and thus is never
negative. ut

We should mention that the first inequality in Proposition 13.8 is a special case of
the well-known Bernoulli inequality, which says that for every positive real number
a and positive integer n, we have

.1 C a/n � 1 C na:

The second inequality does not have a name, but it is, in fact, a special case of the far-
reaching fact that an exponential sequence with base greater than 1 is “eventually”
always bigger than any polynomial.

Induction is a very powerful proof technique that is used frequently in mathemat-
ics. We will see variations of the Induction Principle in Chap. 14.

Problems

1. Suppose that P.n/ is a predicate that becomes a statement for every positive
integer n. What can you say about the truth set of P.n/ in the following cases?
Determine all values of n that are guaranteed to be in the truth set and all values
of n that are certainly not in the truth set.

(a) •8k 2 N; P.k/ ) P.k C 1/.
(b) •P.1/ is true and

•8k � 2; P.k/ ) P.k C 1/.
(c) •P.7/ is true and

•8k 2 N; P.k/ , P.k C 1/.
(d) •P.7/ is true and

•8k � 4; P.k/ ) P.k C 1/.
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(e) •P.7/ is true and
•8k � 10; P.k/ , P.k C 1/.

(f) •P.1/ is true and
•8k 2 N; P.k/ ) P.2k/.

(g) •P.1/ is true and
•8k 2 N; P.k/ ) P.2k C 1/.

(h) •P.1/ is true and
•8k 2 N; P.k/ ) P.2k/ ^ P.2k C 1/.

(i) •P.10/ is false and
•8k 2 N; P.k/ ) P.k C 1/.

(j) •P.10/ is false and
•8k 2 N; P.k C 1/ ) P.k/.

(k) •P.10/ is true and
•8k 2 N; :P.k C 1/ ) :P.k/.

(l) •P.10/ is true and
•8k 2 N; :P.k/ ) :P.k C 1/.

(m) •P.10/ is true and
•8k 2 N; P.k/ ) :P.k C 1/.

2. Let n0 be any (positive, negative, or zero) integer, and suppose that P.n/ is a
predicate that becomes a statement for every integer n � n0. State and prove an
extension of the Generalized Induction Principle that could be used to prove a
theorem of the form

8n � n0; P.n/:

3. For a set S � R, let P.S/ denote the predicate that every nonempty subset of
S contains a least element. According to Theorem 13.6, P.N/ holds. For each
of the following sets S , decide if P.S/ is true or false. Justify your answer.

(a) S D .5; 6/

(b) S D Œ5; 6/

(c) S D f a
5

j a 2 Ng
(d) S D f a

b
j a 2 N; b 2 f5; 6gg

(e) S D f a
b

j a 2 N; b 2 Ng
4. The claims below are all false. Create a counterexample for each and then find

the mistakes in their arguments. Be as specific as possible.

(a) Claim. Every positive integer is a perfect square.
Argument. Let P.n/ be the predicate that the positive integer n is a perfect
square; we need to prove that P.n/ is true for all n 2 N. Since 1 D 12 is a
perfect square, P.1/ is true.
To prove the inductive step, let k 2 N be an arbitrary positive integer
for which P.k/ is true. Since k was arbitrary, we could let k D n, and,
therefore, P.n/ is true as claimed.
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(b) Claim. For every n 2 N we have

1 C 2 C � � � C n D n2 C n C 2

2
:

Argument. We will use induction on n. The claim holds for n D 1.
Suppose that

1 C 2 C � � � C k D k2 C k C 2

2

for some k 2 N. We then have

1 C 2 C � � � C k C .k C 1/ D k2 C k C 2

2
C .k C 1/I

a simple calculation verifies that this expression equals

.k C 1/2 C .k C 1/ C 2

2
;

which completes the proof.
(c) Claim. If we have a finite number of lines in space so that each pair

intersects in a point, then they all go through the same point.
Argument. We use induction on the number of lines, n. The claim is clearly
true for n D 2 (the claim is meaningless for n D 1).
Now let k 2 N and suppose that the claim is true for k, i.e., that if any
k lines in the space are such that each pair intersects in a point, then they
go through the same point. To prove our claim for k C 1, take an arbitrary
collection fl1; l2; : : : ; lkC1g of k C 1 lines so that each pair intersects in a
point. Then both sets fl1; l2; : : : ; lkg and fl2; l3; : : : ; lkC1g are collections of
k lines in space such that each pair intersects in a point. Therefore, by our
inductive hypothesis, there is a point P such that the lines l1; l2; : : : ; lk as
well as the lines l2; l3; : : : ; lkC1 go through P . Therefore, every line in the
set fl1; l2; : : : ; lkC1g goes through P as claimed.

(d) Claim. If S is a finite set of real numbers then all the elements in S have
the same sign (positive, zero, or negative).
Argument. We will use induction on the number of elements in the set
(called the size of the set). Clearly in every set containing exactly 1 element,
all the elements have the same sign.
Now let k 2 N, and suppose that in every set of k elements, all the
elements have the same sign. Consider a set S of k C 1 elements, S D
fa1; a2; : : : ; akC1g. Since S n fa1g has k elements, these elements have the
same sign by our inductive hypothesis. Similarly, all numbers in S n fa2g
have the same sign. Choose an element a 2 S nfa1; a2g. Since a 2 S nfa1g,
whatever the sign of a is, so is the sign of every element in S n fa1g (since
all elements must share their signs); similarly, every element of S n fa2g
must also have the same sign as a.
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Therefore, all numbers in

.S n fa1g/ [ .S n fa2g/

must have the same sign, but, clearly,

.S n fa1g/ [ .S n fa2g/ D S;

so all numbers in S have the same sign.
(e) Recall from Problem 10 of Chap. 4 that in the Plutonian alphabet there are

only four letters—A, B, C, and D—and that every finite string containing
these letters is a Plutonian word. We say that a Plutonian word is a “D-lite”
if at most half of its letters are Ds.
Claim. If a Plutonian word contains the letter D at all, then it cannot be a
“D-lite.”
Argument. We will use induction on the length n of the words. The claim is
clearly true for n D 1: the four 1-letter words are A, B, C, and D; of these,
only the word D contains a letter D, and since it contains no other letters,
the claim holds.
Now let k 2 N and suppose that our claim is true for all Plutonian words
of length k. Consider a word of length k C 1. If this word contains no Ds,
we are done. Assume, therefore, that it contains exactly m Ds for some
1 � m � k C 1; it will then contain k C 1 � m other letters. We will need
to prove that m > k C 1 � m.
Deleting one of the Ds from our word will then result in a word of length
k that has exactly m � 1 Ds and k C 1 � m other letters. By our inductive
hypothesis, m � 1 > k C 1 � m. But this inequality implies that m >

k C 1 � m, which was our claim.

5. Prove that the following identities hold for every natural number n:

(a)
nX

iD1

i2 D n.n C 1/.2n C 1/

6

(b)
nX

iD1

i3 D
�

n.n C 1/

2

�2

6. Suppose that n 2 N. Find and prove a closed formula for each of the following
expressions:

(a) 1 C 2 C 4 C 8 C � � � C 2n

(b) 1 � 1Š C 2 � 2Š C 3 � 3Š C � � � C n � nŠ

(c) 1
2

C 1
6

C 1
12

C � � � C 1
n.nC1/

(d) 1
2Š

C 2
3Š

C 3
4Š

C � � � C n
.nC1/Š

(e)
�
1 � 1

4

� � �1 � 1
9

� � � � � �


1 � 1

.nC1/2

�
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7. For each of the following, determine (with proof) the set of all natural numbers
n for which the statement holds:

(a) 2n < nŠ

(b) 2n > n2

(c) 3n C 5 is divisible by 8.
(Hint: Use the fact that 3kC2 C5 D .3k C5/C8 �3k holds for every k 2 N.)

(d) 3n C 4n is divisible by 13.

8. Given an 8-by-8 board with one square missing (any square), use induction to
prove that the remaining 63 squares can be covered with 21 L-shaped trominoes
(tiles covering three squares).

9. (a) Define the infinite sequence .a1; a2; a3; : : :/ recursively by a1 D 2, anC1 D
anC2n for n 2 N. Find and prove an explicit formula for an (i.e., a formula
in terms of n only).

(b) Find a formula for the number of regions created by n pairwise intersecting
circles in the plane in general position (i.e., every pair of circles intersects
in two points and no three of the circles intersect at the same point).

(c) Prove that it is possible to draw the Venn diagram of n sets in general
position using only circles if, and only if, n � 3.

10. (a) Define the infinite sequence .a1; a2; a3; : : :/ recursively by a1 D 2, anC1 D
an C n C 1 for n 2 N. Find and prove an explicit formula for an (i.e., a
formula in terms of n only).

(b) Find a formula for the number of regions created by n lines in the plane
in general position (i.e., no two of the lines are parallel and no three pass
through the same point).

(c) Consider the planar map created by n lines in the plane in general position.
(Note that some of the regions may be unbounded.) Find (with proof) the
chromatic number of this map.

11. Given positive integers a1; a2; : : : ; an (here n 2 N), let Z be the set of positive
integers that can be written as a linear combination of a1; a2; : : : ; an over the
set of integers; that is,

Z D N \ fa1x1 C a2x2 C � � � C anxn j x1; x2; : : : ; xn 2 Zg:

Let d.a1; a2; : : : ; an/ be the minimum element of Z .

(a) Explain how Theorem 13.6 guarantees that d.a1; a2; : : : ; an/ exists for
every a1; a2; : : : ; an.

(b) Find, with proof, the values of d.3; 10/, d.6; 10/, and d.6; 10; 15/.
(c) Formulate a conjecture for d.a1; a2; : : : ; an/ in general. (You do not need

to prove your conjecture.)
(d) Find a way to describe the elements of the set Z .



Chapter 14
More Domino Games

In this chapter we discuss three variations of induction: strong induction, split
induction, and double induction. This arsenal of induction techniques will allow
us to prove a variety of fundamental and powerful mathematical statements.

Let us start by recalling that, according to Theorem 13.6, every nonempty set
of natural numbers contains a minimum element. (As we explained in Chap. 13,
this result is actually equivalent to the Principle of Mathematical Induction,
Theorem 13.1.) A frequent way of employing Theorem 13.6 in order to prove that
a predicate P.n/ is true for all n 2 N is to assume indirectly that it is not; by
Theorem 13.6 there is then a smallest value of m 2 N for which P.m/ is false. If
we know that P.1/ is true (thus m � 2) and that

.P.1/ ^ P.2/ ^ � � � ^ P.m � 1// ) P.m/;

then this contradicts the fact that m is the least natural number for which the
predicate is false, thus P.n/ is true for all n 2 N. This particular proof technique is
referred to as the Principle of Strong Induction and is stated formally as follows:

Theorem 14.1 (The Principle of Strong Induction). Suppose that P.n/ is a
predicate that becomes a statement for all n 2 N. If

• P.1/ and
• 8k 2 N; .P.1/ ^ P.2/ ^ � � � ^ P.k// ) P.k C 1/

both hold, then P.n/ is true for every positive integer n.

To prove the statement P.n/ for every n 2 N using the Principle of Strong
Induction, we first verify that P.1/ is true (the base step). We then prove that for
every positive integer k, if P.1/; P.2/; : : : ; P.k/ are all true, then so is P.kC1/ (the
inductive step). Note that the Principle of Strong Induction is indeed a strengthening
of the Principle of Induction in that when proving P.k C 1/ in the inductive step,
we can use any or all of the inductive assumptions P.1/, P.2/, : : : ; P.k/.

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
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The generalized version of the Principle of Strong Induction is the following:

Theorem 14.2 (Generalized Strong Induction). Suppose that P.n/ is a predicate
that becomes a statement for all n 2 N and that n0 is a positive integer. If

• P.n0/ and
• 8k 2 N \ Œn0; 1/; .P.n0/ ^ P.n0 C 1/ ^ � � � ^ P.k// ) P.k C 1/

both hold, then P.n/ is true for every integer n � n0.

The following proposition nicely illustrates the similarities and differences
between the Principle of Induction and the Principle of Strong Induction. We prove
that the following three definitions for Mersenne numbers (cf. Problem 6 (a) of
Chap. 2) are equivalent.

Proposition 14.3. Let us define three sequences as follows:

1. For all n 2 N [ f0g, let Mn D 2n � 1.
2. Let M 0

0 D 0 and for all n 2 N, let M 0
n D 2M 0

n�1 C 1.
3. Let M 00

0 D 0 and for all n 2 N, let M 00
n D n CPn�1

iD0 M 00
i .

Then the three sequences are identical; that is, for every n 2 N [ f0g, we have
Mn D M 0

n D M 00
n .

Proof. First we use induction to prove that for all n 2 N[ f0g, we have Mn D M 0
n.

This is obviously true for n D 0. Let k be an arbitrary nonnegative integer and
assume that M 0

k D 2k � 1. (Technically, we are using the generalized version of
induction with n0 D 0; we could easily just verify that M1 D M 0

1 and stick with
n0 D 1.) We need to show that M 0

kC1 D 2kC1 � 1.
But, according to the recursive formula, M 0

kC1 D 2M 0
k C 1; since M 0

k D 2k � 1,
we immediately get M 0

kC1 D 2kC1 � 1, as claimed.
Next we use strong induction to prove that for all n2N[f0g, we have Mn D M 00

n .
Again, this is obviously true for n D 0. Let k be an arbitrary nonnegative integer
and assume that the equality also holds for all i D 0; 1; 2; : : : ; k. Therefore, we
assume that M 00

i D 2i � 1 holds for i D 0; 1; 2; : : : ; k, and we need to show that
M 00

kC1 D 2kC1 � 1.
We use the definition of the sequence and our hypotheses to write

M 00
kC1 D k C1C

kX

iD0

M 00
i D k C1C

kX

iD0

.2i �1/ D k C1C
kX

iD0

2i �
kX

iD0

1 D
kX

iD0

2i I

from which we arrive at the desired M 00
kC1 D 2kC1 � 1 using Lemma 4.2.

Thus we proved that Mn D M 0
n D M 00

n holds for all n 2 N [ f0g, and thus the
three definitions yield the same sequence. ut

We can also prove that the three different definitions for Fermat numbers given
in Problem 6 (b) of Chap. 2 are equivalent; cf. Problem 6.



14 More Domino Games 163

We now proceed to establish some famous results whose proofs we have been
postponing since Chap. 2.

Theorem 14.4 (The Factorization Theorem). Every integer n with n � 2 can be
expressed as a product of (positive) primes.

Note that we have defined the product of one number as the number itself (cf.
Problem 4 of Chap. 2), so our claim holds trivially if n itself is prime.

Proof. We use generalized strong induction. The statement clearly holds for n D 2

since 2 is a prime.
Let k be an integer and k � 2, and suppose that every integer between 2 and k

(inclusive) can be expressed as a product of primes. Consider the integer k C 1. If
it is prime, we are done. If it is not prime, then it must have a divisor a such that
1 < a < k C 1. Therefore, k C 1 D a � b for some positive integer b; furthermore,
both a and b are between 2 and k (inclusive). Applying our inductive hypothesis,
both a and b factor into a product of primes, and the product of these yields a prime
factorization of k C 1. ut

The theorem we just proved has an important sibling that states that the prime
factorization is essentially unique. First, however, we prove Euclid’s Principle,
that Definitions 2.1 and 2.1b are equivalent. The fact that every number satisfying
Definition 2.1b also satisfies Definition 2.1 is the easy part of this claim and
was done in Problem 3 of Chap. 2. We now prove the other direction, known as
Euclid’s First Theorem, which we have been postponing since page 12. There are
many proofs known for this famous result; here we present a particularly concise
argument.

Theorem 14.5 (Euclid’s First Theorem). If a prime number divides the product
of two integers, then it must divide one of them.

Proof. It clearly suffices to prove the result for positive integers. Suppose indirectly
that there are some positive primes for which the claim fails. By Theorem 13.6, there
is then a smallest one; let this prime be p. Then we have positive integers a and b

so that ab is divisible by p but neither a nor b is; using Theorem 13.6 again, we can
assume that we made our selection in such a way that ab is the minimum number
with these properties. Our assumptions imply that a ¤ 1; by Theorem 14.4, we can
then let q be any positive prime divisor of a. We then set c D a=q and n D .ab/=p.
Note that a not being divisible by p implies that neither c nor a � p is divisible by
p—we will use both of these facts momentarily.

Observe that p.n�b/ D .a�p/b is divisible by p but neither a�p nor b is. By
the minimum property of ab, this can only happen if a � p is negative, so a < p.
Therefore, q < p as well, so q cannot divide a product of two integers without
dividing one of them. Since q divides qcb D np and q does not divide p, q must
divide n; let m D n=q.

Now p divides pm D cb and cb is less than ab, so p must divide c or b, which
is a contradiction. ut
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Using induction, one can easily prove the following generalized version:

Theorem 14.6. If a prime number divides the product of any finite number of
integers then it must divide one of them.

We are now ready to prove the following famous result:

Theorem 14.7 (The Unique Factorization Theorem). No positive integer can
be factored into a product of primes in two essentially different ways; that is, if
p1; p2; : : : ; pk and q1; q2; : : : ql are two lists of positive primes in increasing order
(i.e., p1 � p2 � � � � � pk and q1 � q2 � � � � � ql ) for which

p1 � p2 � � � � � pk D q1 � q2 � � � � � ql ;

then k D l and p1 D q1; p2 D q2; : : : ; pk D qk .

Proof. Assume indirectly that at least one positive integer violates unique factoriza-
tion, as stated above. By Theorem 13.6, there is then a smallest positive integer N

that has two essentially different prime factorizations, say

N D p1 � p2 � � � � � pk

with 2 � p1 � p2 � � � � � pk and

N D q1 � q2 � � � � � ql

with 2 � q1 � q2 � � � � � ql . Note that the sets P D fp1; p2; � � � ; pkg and
Q D fq1; q2; � � � ; qlg are disjoint since, if they had a common element p, then N=p

would also have two essentially different prime factorizations, contradicting that N

is the smallest such positive integer.
Next observe that p1 divides N D q1 � q2 � � � � � ql , so by Theorem 14.6, p1 must

also divide qi for some 1 � i � l . But qi is prime, so it only has two positive
divisors, 1 and itself. Since p1 cannot be 1, we have p1 D qi , a contradiction with
P \ Q D ;. ut

Theorems 14.4 and 14.7 together are referred to as the Fundamental Theorem of
Arithmetic.

Theorem 14.8 (The Fundamental Theorem of Arithmetic). Every positive inte-
ger n with n � 2 can be factored into a product of primes in an essentially unique
way (as described in the Unique Factorization Theorem).

As a corollary, we immediately get Lemmas 4.11 and 4.12; in fact, for any posi-
tive prime p, every positive integer can be written as the product of a (nonnegative)
power of p and an integer that is not divisible by (and, therefore, relatively prime
to) p. We also get that the expression is unique. While the Fundamental Theorem
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of Arithmetic among positive integers seems to state the obvious, it is far from it.
In fact, one can construct and study instances of other sets of numbers where the
factorization or the uniqueness part fails.

The next variations of inductive proofs that we will discuss are the Principle of
Split Induction and its generalized version.

Theorem 14.9 (The Principle of Split Induction). Let P.n/ be a predicate that
becomes a statement for all n 2 N, and suppose that there exists a positive integer
d such that the statements

• P.1/, P.2/, : : :, P.d/, and
• 8k 2 N; P.k/ ) P.k C d/

all hold. Then P.n/ is true for every positive integer n.

Theorem 14.10 (Generalized Split Induction). Let P.n/ be a predicate that
becomes a statement for all n 2 N, and suppose that n0 and d are positive integers
such that the statements

• P.n0/, P.n0 C 1/, : : :, P.n0 C d � 1/, and
• 8k � n0; P.k/ ) P.k C d/

all hold. Then P.n/ is true for every integer n � n0.

The proofs of Theorems 14.9 and 14.10 can be easily established using, for
example, Theorem 13.6. The next proposition uses the Principle of Split Induction.

Proposition 14.11. Let S be the set of all positive integer values of n for which it
is not possible to tile a 1-by-n board using a combination of 1-by-4 tetrominoes and
1-by-5 pentominoes. Then S D f1; 2; 3; 6; 7; 11g.

Proof. Instead, let us find the set T of all positive integer values of n for which the
tiling is possible. Algebraically, T is the set of all n 2 N for which the equation
4x C 5y D n has nonnegative integer solutions.

Experimenting with small nonnegative integer values of x and y, we see that
n D4, 5, 8, 9, 10, 12, 13, 14, and 15 are all members of T , but other positive integers
under 15 are not. We now use the generalized version of split induction with d D 4

and n0 D 12 to prove that all values of n with n � 12 are in T .
We already know that the equations 4xC5y D 12, 4xC5y D 13, 4xC5y D 14,

and 4x C 5y D 15 all have nonnegative integer solutions, namely .x; y/ D .3; 0/,
.x; y/ D .2; 1/, .x; y/ D .1; 2/, and .x; y/ D .0; 3/, respectively.

Let k be an integer and k � 12, and suppose that the equation 4x C 5y D k

has a solution .x; y/ D .a; b/ where a and b are nonnegative integers. Consider the
equation 4x C5y D k C4. Then it is easy to see that .x; y/ D .a C1; b/ provides a
solution to 4x C 5y D k C 4 and that a C 1 and b are nonnegative. This completes
our proof.

So, in summary, T D f4; 5; 8; 9; 10g [ f12; 13; 14; 15; : : :g and thus S D
f1; 2; 3; 6; 7; 11g; as claimed. ut
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The third version of induction we discuss here is double induction: it applies
to predicates with two variables. There are several alternate ways of stating the
principle; we find the following version most helpful:

Theorem 14.12 (Double Induction). Let P.m; n/ be a predicate that becomes a
statement for all m 2 N and n 2 N. Suppose that the statements

• 8m 2 N; P.m; 1/,
• 8n 2 N; P.1; n/, and
• 8k 2 N; 8l 2 N; .P.k; l C 1/ ^ P.k C 1; l// ) P.k C 1; l C 1/

all hold. Then P.m; n/ is true for every pair of positive integers .m; n/.

We use double induction to prove the following important theorem (a generaliza-
tion of Problem 3 of Chap. 12):

Theorem 14.13. For any m 2 N, the product of an arbitrary m consecutive positive
integers is divisible by mŠ. In particular, if n and m are positive integers, then

n.n C 1/ � � � .n C m � 1/

mŠ

is an integer.

Proof. Let us set

f .m; n/ D n.n C 1/ � � � .n C m � 1/

mŠ
:

We will use double induction, as specified by Theorem 14.12, to prove that f .m; n/

is an integer for all m; n 2 N.
Since f .m; 1/ D 1 and f .1; n/ D n are integers, the base cases hold.
Suppose now that k and l are positive integers for which f .k; l C 1/ and f .k C

1; l/ are integers. We will need to show that these two assumptions imply that f .kC
1; l C 1/ is also an integer. We will accomplish this by simply verifying that

f .k C 1; l C 1/ D f .k; l C 1/ C f .k C 1; l/:

To see that this is true, we write

f .k C 1; l C 1/ D .l C 1/.l C 2/ � � � .l C k/.l C k C 1/

.k C 1/Š

D .lC1/.lC2/ � � � .lCk/l

.kC1/Š
C .l C 1/.l C 2/ � � � .l C k/.k C 1/

.k C 1/Š

D l.l C 1/.l C 2/ � � � .l C k/

.k C 1/Š
C .l C 1/.l C 2/ � � � .l C k/

kŠ

D f .k C 1; l/ C f .k; l C 1/:
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By our inductive hypothesis, both terms are integers, so we have proved that f .k C
1; l C 1/ is also an integer. ut

We should note that Theorem 14.13 is valid for all integers n—however, we will
only need it and prove it here for the case when n is positive.

We now introduce two notations that are often used in combinatorics and many
other areas of mathematics. For nonnegative integers n and m, we let

 
n

m

!

D f .m; n � m C 1/ D n.n � 1/ � � � .n � m C 1/

mŠ

and h n

m

i
D f .m; n/ D n.n C 1/ � � � .n C m � 1/

mŠ
:

According to the theorem we just proved, these quantities denote integers.
The symbols

�
n
m

�
and



n
m

�
are pronounced “n choose m” and “n multichoose m,”

respectively—the reason for these names will become clear in Chap. 21. Here we
just mention that Pascal’s Triangle, whose first few rows are in the figure below,
tabulates these values. (Entries with m > n, which yield

�
n
m

� D 0, are skipped.)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

Namely, if we label the rows, the left diagonals, and the right diagonals 0, 1, 2, etc.
(we start with 0), then

�
n
m

�
appears as the entry where row n and right diagonal m

intersect;



n
m

�
is the entry where left diagonal n � 1 and right diagonal m intersect.

For example, we see that
�

5

2

� D 10 and
h

5

2

i
D 15. We will study the entries in

Pascal’s Triangle—the so-called binomial coefficients—in more detail in Chap. 21.

Problems

1. Suppose that P.n/ is a predicate that becomes a statement for every positive
integer n. What can you say about the truth set of P.n/ in the following cases?
Determine all values of n that are guaranteed to be in the truth set and all values
of n that are certainly not in the truth set.
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(a) •P.3/ is true and
•8k 2 N; .P.k/ ^ P.3// ) P.k C 1/.

(b) •P.3/ is true and
•8k 2 N; .P.k/ ^ P.3// ) :P.k C 1/.

(c) •P.6/ is true and
•8k 2 N; .P.k � 2/ ^ P.k � 1// ) P.k/.

(d) •P.6/ and P.7/ are true and
•8k 2 N; .P.k � 2/ ^ P.k � 1// ) P.k/.

(e) •P.5/ and P.7/ are true and
•8k 2 N; .P.k � 2/ ^ P.k � 1// ) P.k/.

(f) •P.1/ is true and
•8k � 2; ŒP.1/ ^ P.2/ ^ � � � ^ P.k/� ) P.k C 1/.

(g) •P.2/ is true and
•8k � 3; ŒP.1/ ^ P.2/ ^ � � � ^ P.k/� ) P.k C 1/.

(h) •P.1/ and P.2/ are true and
•8k 2 N; P.k/ ) P.k C 3/.

(i) •P.1/ is true,
•8k 2 N; P.k/ ) P.2k/, and
•8k 2 N; P.k C 1/ ) P.k/.

2. State the generalized version (in the sense of Theorems 14.2 and 14.10) of the
Principle of Double Induction.

3. Suppose that P.m; n/ is a well-defined mathematical statement for every m 2
N and n 2 N. For each of the following cases, determine all values of .m; n/

that are guaranteed to be in the truth set of P.m; n/.

(a) •P.1; 1/ and
•P.k; l/ ) P.k C 1; l C 1/ for every k; l 2 N.

(b) •P.1; 1/ and
•P.k; l/ ) P.k C 1; l/ ^ P.k; l C 1/ for every k; l 2 N.

(c) •P.1; 1/,
•P.k; 1/ ) P.k; 2/ for every k 2 N, and
•P.k; l/ ) P.k C 1; l/ for every k; l 2 N.

(d) •P.1; 1/ and
•ŒP.1; k/ ^ P.2; k � 1/ ^ � � � ^ P.k; 1/� ) ŒP.1; k C 1/ ^ P.2; k/ ^ � � � ^
P.k C 1; 1/� for every k 2 N.

(e) •P.m; 1/ for every m 2 N,
•P.1; n/ for every n 2 N, and
•ŒP.k; l C1/^P.k C1; l/^P.l; k C1/^P.l C1; k/� ) P.k C1; l C1/

for every k; l 2 N.
(f) •P.m; 1/ for every m 2 N,

•P.1; n/ for every n 2 N,
•.P.k; l C 1/ ^ P.k C 3; l// ) P.k C 3; l C 1/ for every k; l 2 N, and
•.P.k C 1; l/ ^ P.k; l C 4// ) P.k C 1; l C 4/ for every k; l 2 N.

(g) •P.1; 1/ ^ P.1; 2/ ^ P.1; 3/ ^ P.2; 1/ ^ P.2; 2/ ^ P.2; 3/ and
•P.k; l/ ) P.k C 2; l C 3/ for every k; l 2 N.
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(h) •P.1; 1/,
•P.k; l/ ) P.2k; 3l/ for every k; l 2 N, and
•P.k C 1; l C 1/ ) P.k C 1; l/ ^ P.k; l C 1/ for every k; l 2 N.

4. For each of the claims below, decide if the claim is true or false. In either case,
analyze the arguments given; if the argument is incorrect, find the mistakes. Be
as specific as possible.

(a) Claim. The inequality 2n < mŠ holds for every pair of positive integers
.m; n/ with m � 5 and n � 5. (cf. Problem 7 (a) of Chap. 13.)
Argument. The inequality clearly holds for n D 5 and m D 5 since 32 <

120.
Assume now that 2k < lŠ holds for some k � 5 and l � 5; we will then

prove that 2kC1 < .l C 1/Š. Note that

2kC1

.l C 1/Š
D 2k

.l/Š
� 2

l C 1
:

The first factor is less than 1 by our inductive hypothesis; the second factor
is less than 1 for all l � 2 (and thus for l � 5). Therefore,

2kC1

.l C 1/Š
< 1;

from which our claim follows.
(b) Claim. Let n 2 N. Then an D a for every positive real number a.

Argument. We will use strong induction on n. The claim holds for n D 1,
since a1 D a for every positive real number a. Let k 2 N and assume that
at D a for all t 2 N, t � k. We need to show that akC1 D a for every
positive real number a. But we have

akC1 D akak

ak�1
:

Since we have assumed that our statement holds for t D k and t D k � 1,
we have ak D a and ak�1 D a, so

akC1 D a � a

a
D a;

which completes the proof.
(c) Claim. No positive integer can be factored into a product of primes in

two essentially different ways. Namely, if some positive integer n has a
factorization into a product of positive primes (or is itself a prime) and
this factorization contains the prime p exactly m times, then every other
factorization of n into a product of positive primes will contain p exactly
m times.
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Argument. We use strong induction on n. The claim is trivially true for
n D 1 since 1 has no prime factorizations at all.

Suppose now that the claim holds for all positive integers up to k and
consider k C 1. If k C 1 itself is a prime, then it clearly has no other prime
factorizations, hence our claim holds.
If k C 1 is composite, then there are integers a and b with 2 � a � k and
2 � b � k so that k C 1 D a � b. Let us apply our inductive hypothesis
for a and b: if a prime p is contained in a (positive) prime factorization of
a exactly m1 times, then it will appear in every other prime factorization
of a exactly m1 times. Similarly, the number of times p appears in any
prime factorization of b is a fixed m2. But then the prime p has to appear
exactly m1 C m2 times in every prime factorization of a � b, which is what
we needed to prove.

5. Recall that the Fibonacci sequence is the sequence defined recursively by
F1D1, F2 D 2, and FnC2 D Fn C FnC1 for n � 1.

(a) Prove that

Fn D 1p
5

2

4

 
1 C p

5

2

!nC1

�
 

1 � p
5

2

!nC1
3

5

for every natural number n.

Remark. Note that, while the formula involves irrational numbers, it gives
an integer value (namely, Fn) for every n.

(b) Prove that Fn is the closest integer to

1p
5

 
1 C p

5

2

!nC1

:

Remark. This fact enables us to compute Fn even faster than the previous
part.

6. Prove that the three definitions given for Fermat numbers in Problem 6 (b) of
Chap. 2 are equivalent.

7. For each of the following, determine (with proof) the set of all ordered pairs
of natural numbers .n; m/ for which the statement holds. (cf. Problem 7 of
Chap. 13.)

(a) 3n C 5m is divisible by 8.
(b) 3n C 4m is divisible by 13.

8. Use Problem 1 (h) above to prove Lemma 4.10.
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9. (a) Prove that if an integer has divisors a and b with gcd.a; b/ D 1, then it is
divisible by a � b.
(Hint: Use the Fundamental Theorem of Arithmetic.)

(b) Generalize part (a) to the case of more than two divisors.
(Hint: Note that 30 is divisible by 6, 10, and 15 and gcd.6; 10; 15/ D 1, but
30 is not divisible by 6 � 10 � 15!)

10. Prove that if the product of integers a and b is divisible by c and gcd.a; c/ D 1,
then c must divide b.
(Hint: Use the Fundamental Theorem of Arithmetic.)

11. Given positive integers a1; a2; : : : ; an (here n 2 N), let N be the set of nonneg-
ative integers that can be written as a linear combination of a1; a2; : : : ; an over
the set of nonnegative integers; that is, let

N D N .a1; a2; : : : ; an/ D fa1x1Ca2x2C� � �Canxn j x1; x2; : : : ; xn 2 N[f0gg:

The Frobenius number of a1; a2; : : : ; an, denoted by g.a1; a2; : : : ; an/, is
defined to be the maximum element of N n N , if it exists. For example,
Proposition 14.11 shows that g.4; 5/ D 11:

(a) Explain why g.a1; a2; : : : ; an/ can only exist if a1; a2; : : : ; an are relatively
prime.

Remark. The converse of this statement is true as well: if the integers are
relatively prime, then their Frobenius number exists.

(b) Find, with proof, g.3; 10/.
(c) Find, with proof, g.3; 5; 7/.
(d) Find, with proof, g.7; 19; 37/.
(e) Assuming that a and b are relatively prime, formulate a conjecture for

g.a; b/ (in terms of a; b 2 N). (You do not need to prove your claim.)
(f) Assuming again that a and b are relatively prime, conjecture a formula for

the size of the set N n N .a; b/. (You do not need to prove your claim.)

Remark. There is no nice formula known for the Frobenius number of three or
more numbers.

12. (a) Prove that for every positive integer n � 6, a square can be divided into n

(not necessarily congruent) squares.
(Hint: Use Problem 11 (c) above.)

Remarks. It is true—though not entirely straightforward to prove—that the
claim is false for n D 5.

In a variation of this problem, one asks for all values of n > 1 for which
a square can be divided into n squares that are pairwise incongruent.
This famous problem is called squaring the square (or perfect square
dissection). As a first attempt, one may try to arrange squares of side
lengths 1, 2, 3, etc., to form one large square, but it turns out that this is
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impossible. Indeed, there is just one pair of integers m and n (with n > 1)
for which

12 C 22 C � � � C n2 D m2I
namely, n D 24 and m D 70, but, as it turns out, a square of side length 70
cannot be divided into 24 squares of side lengths 1; 2; : : : ; 24, respectively.
For a long time it was conjectured that squaring the square is not possible
for any n, until four University of Cambridge mathematicians discovered
in the 1930s that the answer is affirmative for n D 69. (Their methods
used electrical network theory and Kirchoff’s Laws.) Then, in 1978, A.J.W.
Duijvestijn proved that the smallest value of n for which a square can be
divided into n pairwise incongruent squares is n D 21. The amazing (and
unique) example is shown below.

2

4

6

7

8

9

11
15

16

17

18

19

24

25

27

29

33

35

37
42

50

(b) Prove that for every positive integer n � 71, a cube can be divided into n

(not necessarily congruent) cubes.
(Hint: Use Problem 11 (d) above.)
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Remarks. It can be shown that the claim is true for every n � 48 but not for
n D 47; in fact, the only positive integers n for which a cube can be divided
into n cubes are n D 1; 8; 15; 20; 22; 27; 29; 34; 36; 38; 39; 41; 43; 45; 46;

and n � 48. In contrast to squaring the square, one can prove that “cubing
the cube” is not possible; that is, a cube cannot be divided into smaller
cubes that are pairwise incongruent!



Chapter 15
Existential Proofs

In the last several chapters we discussed proof techniques for universal statements
of the form

8x 2 U; P.x/I
in this chapter we focus on the existential quantifier and analyze existential
statements of the form

9x 2 U; P.x/:

For instance, we may claim that a certain equation has a real number solution (the
existence of

p
2, to be formally proven only in Chap. 23, is a prime example), or

we may claim that a certain set has a minimum element (by Theorem 13.6, every
nonempty set of natural numbers does). Quite often, we deal with statements of the
form

8x 2 U; 9y 2 V; P.x; y/I
for example, when in Chap. 1 we claimed that a certain game had a winning strategy
for Player 2, we made an existential statement that for any sequence of moves by
Player 1, there was a response by Player 2 that resulted in a win for Player 2.

Obviously, the proof of an existential statement requires establishing that a
certain object exists. This can be done in two ways: we may provide a constructive
proof in which we find the required object explicitly (and prove that it satisfies the
requirements), or we might find a nonconstructive method to verify the existence of
the object without actually specifying it. In this chapter we will see examples for
both of these techniques.

As a matter of fact, we have already seen examples of constructive and
nonconstructive proofs. We gave a constructive proof for the statement in Problem 6
(b) of Chap. 3 that “Every odd positive integer can be written as the sum or the
difference of two perfect squares”: we showed that if n is an odd integer, then

�
n � 1

2

�2

and

�
n C 1

2

�2
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are squares of integers whose difference is n. Actually, constructive proofs have
been particularly abundant among our problems; it might be an interesting exercise
to list all statements from previous chapters for which a constructive proof was
given.

We have also seen numerous nonconstructive proofs. Perhaps the most famous of
these was Euclid’s proof for the infinitude of primes: although our proof guaranteed
the existence of an infinite sequence comprised of distinct primes, our construction
was not given explicitly (cf. Theorem 5.4). In Problem 9 (a) of Chap. 3 we proved
that “In every group of five people, there are two people who know the same number
of people in the group” by proving that the negation of the statement (that all five of
them know a different number of people) could not be true.

Occasionally, it is not even clear if a particular proof for an existential statement
is constructive or not. For example, in what one may call a semi-constructive proof,
we can prove that the set of irrational numbers is not closed for exponentiation by
exhibiting two numbers,

p
2

p
2

and .
p

2

p
2
/
p

2;

and proving that one of them (although it is not clear which one) provides an
example of irrational numbers x and y for which xy is rational. Indeed, we have

two possibilities: if
p

2

p
2

is rational, we are done; otherwise,

.
p

2

p
2
/
p

2

(which equals 2) provides an example. (It has actually been proved that
p

2

p
2

is
irrational, but our point is that we don’t need to know this very complicated proof
to establish our claim. See also Problem 6 (f) of Chap. 12.) The proof of part (c) of
Problem 6 at the end of this chapter follows a similar outline.

We now make good on two of our promises made earlier and provide proofs for
two well-known existential statements (cf. Problem 5 (i) of Chap. 9 and Problem 7 of
Chap. 10). One of the proofs will be a constructive proof; the other will demonstrate
a nonconstructive technique.

Proposition 15.1. There is a perfect square between any positive integer and its
double (inclusive).

Proof. Let a be an arbitrary positive integer; we will construct a perfect square
number b that satisfies a � b � 2a.

Note that by the definition of the ceiling function,

p
a � dp

ae <
p

a C 1

and therefore p
a

2 � dp
ae2 < .

p
a C 1/2

or
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a � dp
ae2 < a C 2

p
a C 1:

We claim that b D dp
ae2 satisfies all required conditions. By definition, b is a

perfect square; from above, b � a. It remains to be shown that b � 2a. This
can be verified easily for a D 1; 2; 3; 4, and 5; for example, for a D 5 we have
b D 9 < 10 D 2a.

Suppose now that a � 6. Since a � 6, we have a�1 > 0, a2�2a D a.a�2/ > 0,
and a2 � 6a D a.a � 6/ � 0. Thus, we have

b D dp
ae2

< a C 2
p

a C 1

D a C p
4a C 1

D a C 1 C
p

.a2 � 2a/ � .a2 � 6a/

� a C 1 C
p

a2 � 2a

< a C 1 C
p

a2 � 2a C 1

D a C 1 C a � 1

D 2a;

as claimed. ut
While this proof was constructive, our next one will be nonconstructive (although

we should note that a different, constructive proof for the same result does exist).
Recall that, for a given positive integer n, the ring Zn consists of the numbers

f0; 1; : : : ; n � 1g;

and addition and multiplication are performed mod n (cf. Problem 7 of Chap. 10).
We prove the following well-known result:

Theorem 15.2. The ring Zp is a field whenever p is a positive prime.

Proof. Since we have already established that Zp is a commutative ring with 1
serving as a multiplicative identity, it remains to be shown that every nonzero
element has a multiplicative inverse; that is, we need to prove that

8a 2 f1; 2; : : : ; p � 1g; 9x 2 Zp; a � x D 1

holds in Zp (multiplication is performed mod p).
Suppose that a 2 f1; 2; : : : ; p � 1g, and consider the set

A D f1 � a; 2 � a; : : : ; .p � 1/ � ag � Zp:
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We first show that none of the elements of A is 0 (in Zp). Indeed, if k � a were
to equal 0 mod p for some integer k with 1 � k � p � 1, then the integer ka

would have to be divisible by p. Since p is prime, by Euclid’s Principle, either k

or a would then be divisible by p. But this cannot happen, since both k and a are
integers between 1 and p � 1. Therefore, 0 62 A, and so A � f1; 2; : : : ; p � 1g.

To show that a has a multiplicative inverse, we need to prove that 1 2 A. We will
accomplish this by proving that A has exactly p � 1 elements. Then, since A is a
subset of f1; 2; : : : ; p � 1g, we must have A D f1; 2; : : : ; p � 1g; in particular, we
must have that 1 2 A.

To prove that A has p � 1 elements, we need to show that the elements 1 � a; 2 �
a; : : : ; and .p � 1/ � a are all distinct. Suppose that i � a D j � a for some integers
1 � i � p � 1 and 1 � j � p � 1; our goal is to prove that i D j . But i � a D j � a

implies that .i � j / � a D 0; that is, the integer .i � j /a is divisible by p. Therefore,
since p is prime, either i �j or a must be divisible by p. Since a 2 f1; 2; : : : ; p�1g,
it cannot be divisible by p, so i � j must be. But, since i and j are both between
1 and p � 1, i � j can only be divisible by p if it is zero. Therefore, i D j as
claimed. ut

The key idea in our proof is worth a bit of discussion. We constructed a subset A

of f1; 2; : : : ; p � 1g; then, to conclude that 1 must be an element of A, we proved
that A had size p � 1. Indeed, if 1 were not in A, then A would have to be a subset
of B D f2; : : : ; p � 1g. Since B has fewer than p � 1 elements, it cannot contain A

as a subset—a contradiction. This seemingly simple method is used quite often in
mathematics; it can be stated in general as follows:

Theorem 15.3 (The Pigeonhole Principle). Let m and n be positive integers with
m > n. If m objects are placed into n boxes, then at least one box will contain at
least two objects.

The name of this principle comes from an historic formulation where the objects
are pigeons and the boxes are pigeonholes. Note that we cannot claim that exactly
one box will have at least two objects in it or that some box will have exactly two
objects in it. For example, with m D 6 and n D 3, we could leave one box empty
and place three objects in both of the other boxes.

We can generalize the Pigeonhole Principle as follows:

Theorem 15.4 (The Generalized Pigeonhole Principle). Let m, n, and k be
positive integers with m > kn. If we place m objects into n boxes, then at least
one box will contain at least k C 1 objects in it.

The proof of these principles can be established by an easy indirect argument: if
the claims were to be false, then the total number of objects in the n boxes would
be less than m, a contradiction. We will discuss this in a more general and precise
manner in Chap. 21.

Our next example states a well-known result—often referred to as “the first result
in Ramsey theory.” We have already assigned this proof in Chap. 1 Problem 8 (c) as
well as in Chap. 3 Problem 9 (c), but it is a beautiful enough proof to be repeated
here.
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Proposition 15.5. In any group of six people, there are either three people who all
know each other or three people so that no two of them know each other.

Proof. Let the six people be A, B, C, D, E, and F. Consider person A. By the
Generalized Pigeonhole Principle (with the five objects being B, C, D, E, and F
and the two boxes being the ones whom A knows and the ones whom A does not
know, respectively), we can claim that either A knows three or more of the other
people or there are three or more of them whom A does not know.

Consider the first case; assume wlog that A knows B, C, and D (and perhaps also
E and/or F). Again there are two cases: either B, C, and D are three people such that
none of them know each other or there is (at least) one pair of them, wlog B and
C, who do know each other. In either case we are done: either we have B, C, and
D forming three people who are all strangers or we have A, B, and C who all know
each other.

The case when there are three people whom A does not know is the reverse of the
first case; replacing “knowing each other” by “not knowing each other” completes
the proof. ut

Note that Proposition 15.5 implies that the conclusion holds for any group of
n people with n � 6 (first choose an arbitrary six of the n people, then use
Proposition 15.5). The conclusion fails, however, when n D 5, as Chap. 1 Problem 8
(b) and Chap. 3 Problem 9 (d) demonstrate.

Proposition 15.5 motivates the following famous concept:

Definition 15.6. The Ramsey number R.h; k/ of positive integers h and k is the
smallest value of n for which it is true that in any group of n people, there are either
h people who all know each other or k people so that no two of them know each
other.

According to Proposition 15.5, we have R.3; 3/ � 6; since the conclusion of
Proposition 15.5 fails for n D 5, we actually have R.3; 3/ D 6. In Problem 3 we
prove that R.3; 4/ D 9. One can prove that the Ramsey number R.h; k/ exists for
all positive integers h and k but, at the present time, exact values of R.h; k/ are only
known for very small values of h and k.

We now turn to two important variations of existential statements: nonexistence
statements and uniqueness statements.

A typical nonexistence statement is of the form

6 9x 2 U; P.x/

or
8x 2 U; 6 9y 2 V; P.x; y/I

these statements are equivalent to

8x 2 U; :P.x/
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and
8x 2 U; 8y 2 V; :P.x; y/;

respectively. Proving that a particular player of a certain game has no winning
strategy and proving that

p
2 is irrational were examples for nonexistence proofs;

we will be seeing others soon.
A uniqueness statement is one such as

9Šx 2 U; P.x/

or
8x 2 U; 9Šy 2 V; P.x; y/:

Uniqueness proofs can naturally be broken up into two parts: we need to prove that
the desired object exists and then we need to prove that we cannot have two or more
such objects (this latter part is frequently accomplished by an indirect argument).

Let us see an important example of a uniqueness statement. While the claim is
quite evident (in fact, one might be inclined to use this result without proof), it
provides a good example of techniques used to prove uniqueness statements.

Theorem 15.7 (The Division Theorem). Suppose that a and b are integers and
b > 0. Then there are unique integers q and r such that a D bq C r and 0 � r �
b � 1.

Here q is called the quotient and r is called the remainder; the notation for the
quotient and the remainder are “a div b” and “a mod b,” respectively. According
to the Division Theorem, when we divide an integer by a positive integer, there is a
unique quotient and a unique remainder.

Proof. We first prove the existence. Let us set

q D
ja

b

k
and r D a � b �

ja

b

k
:

With these choices, it is clear that a D bq C r ; we can verify that r falls into the
required range, as follows: by the definition of the floor function, we have

a

b
� 1 <

ja

b

k
� a

b
:

Multiplying by �b (note that �b < 0) and then adding a implies

0 � a � b �
ja

b

k
< b;

as required.
To prove the uniqueness, suppose that a D bq1 C r1 with 0 � r1 < b, and

a D bq2 C r2, with 0 � r2 < b; we need to prove that q1 D q2 and r1 D r2. Note
that the two equations yield



15 Existential Proofs 181

r1 � r2 D b.q2 � q1/;

and the two pairs of inequalities imply that

�b < r1 � r2 < b:

Since the only number strictly between �b and b that is divisible by b is 0, we must
have r1 � r2 D 0, from which q2 � q1 D 0 as well. Therefore, q1 D q2 and r1 D r2,
as claimed. ut

An immediate—and rather obvious—consequence of the Division Theorem is
that every integer is either of the form 2k or 2k C 1 (k 2 Z); similarly, every
integer is of the form 3k, 3k C 1, or 3k C 2, etc. A representation of the integers
in these forms is frequently used (cf., for example, congruences introduced in
Definition 3.2). Another application of the Division Theorem is the following
important result for the greatest common divisor of integers:

Recall from Problem 11 of Chap. 13 that, for given positive integers
a1; a2; : : : ; an, we defined Z as the set of positive integers that can be written
as a linear combination of a1; a2; : : : ; an over the set of integers; that is,

Z D N \ fa1x1 C a2x2 C � � � C anxn j x1; x2; : : : ; xn 2 Zg:

According to Theorem 13.6, the set Z has a minimum element.

Theorem 15.8. Given positive integers a1; a2; : : : ; an, let Z be the set of positive
integers that can be written as a linear combination of a1; a2; : : : ; an over the set
of integers. Then the minimum element of Z is the greatest common divisor of
a1; a2; : : : ; an.

Proof. Let d D min Z; as we explained, d exists.
First we prove that d is a common divisor of a1; a2; : : : ; an; wlog we show that

d divides a1.
By the Division Theorem, we have integers q and r so that a1 D dq C r and

0 � r � d � 1. We need to show that r D 0. We proceed indirectly and assume that
1 � r � d � 1.

Since d 2 Z , there are some integers x1; x2; : : : ; xn for which

d D a1x1 C a2x2 C � � � C anxn:

Therefore, we have

r D a1 � dq

D a1.1 � x1q/ C a2.�x2q/ C � � � C an.�xnq/:
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Therefore, r is a linear combination of a1; a2; : : : ; an over the set of integers; since
we also assume that r 2 N, we have r 2 Z . Since d D min Z , we have d � r ,
which is a contradiction with 1 � r � d � 1. Therefore, d is a divisor of a1;
similarly, d is a divisor of a2; : : : ; an as well, and thus it is a common divisor of
a1; a2; : : : ; an.

To prove that d is the greatest common divisor, we let c be any common
divisor of a1; a2; : : : ; an. But then c is also a divisor of any linear combination of
a1; a2; : : : ; an; in particular, c divides d . Therefore, c � d , proving that d is indeed
the greatest common divisor. ut

We will see further examples for existence, nonexistence, and uniqueness
statements later in this book.

Problems

1. A college has 2,500 students. We do not have any information about their
birthdays.

(a) Find all positive integer values of a for which we can be sure that there are
a students who all have the same birthday.

(b) Find all positive integer values of b for which we can be sure that there
are b male students who all have the same birthday or there are b female
students who all have the same birthday.

(c) Find all positive integer values of c and d for which we can be sure that
there are c male students who all have the same birthday or there are d

female students who all have the same birthday.

2. (a) Use the Pigeonhole Principle to prove that no matter how 7 points are
placed within an 8-by-9 rectangle, there will always be a pair whose
distance is at most 5. You may use, without proof, the following:

Lemma 15.9. If two points are placed within a rectangle with side lengths
a and b, then their distance is at most

p
a2 C b2.

(b) Use the Pigeonhole Principle to prove that no matter how 7 points are
placed within an 8-by-9 rectangle, there will always be three that form a
triangle of area at most 12. You may use, without proof, the following:

Lemma 15.10. If three points are placed within a rectangle with side
lengths a and b, then the triangle that they determine has area at most
ab=2.

Remark. It is an interesting—but likely to be quite difficult—question to
determine what the maximum value of the minimal distance (and of the minimal
area) among the points could be.
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3. In this problem we establish that the Ramsey number R.3; 4/ equals 9.

(a) Prove that R.3; 4/ � 10.
(Hint: Follow the approach of Theorem 15.5. Consider one of the people in
the group, and explain first why that person must either know at least four
other people or not know at least six.)

(b) Prove that R.3; 4/ � 9:

(Hint: Explain first why there must be at least one person in the group who
either knows at least four other people or does not know at least six.)

(c) Prove that R.3; 4/ � 9.

4. Prove the following “partial converse” of Theorem 10.3.

Theorem 15.11. Every finite integral domain is a field.

(Hint: Follow the proof of Theorem 15.2.)
5. We call an integer d a primary number if d � 2 and for every positive integer

n that is relatively prime to d , the number nd�1 � 1 is divisible by d .

(a) Find, with proof, the first four primary numbers.
(b) Prove the following theorem:

Theorem 15.12 (Fermat’s Little Theorem). Every positive prime is a
primary number; that is, for every positive prime p and every positive
integer n, if n is not divisible by p, then the number np�1 � 1 is divisible
by p.

(Hints: Use the method of Theorem 15.2 to show that for each positive
integer n that is not divisible by p, the equation

np�1 � .p � 1/Š D .p � 1/Š

holds in the field Zp .)
(c) The converse of Fermat’s Little Theorem is false: even though the first 102

primary numbers happen to agree with the first 102 positive primes, the
103rd primary number is 561, which is not a prime. Prove that 561 is a
primary number.
(Hints: 561 D 3 � 11 � 17. Let n and 561 be relatively prime. Since 3 is a
primary number, n2 � 1 is divisible by 3. Since 560 is even, n560 � 1 is
divisible by n2 � 1. Apply this method to the other two factors.)

Remarks. A composite primary number such as 561 is called a Carmichael
number. It was a famous open problem, until proved in 1994, that there are
infinitely many Carmichael numbers.

6. We say that a subset S of an ordered field (cf. Definition 10.13) is dense if for
any two given distinct elements of S , there is an element of S that is strictly
between them.

(a) Prove that the field of real numbers R is dense.
(b) Prove that the field of rational numbers Q is dense.
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(c) Prove that the set of irrational numbers R n Q is dense.
(Hint: Given two distinct irrational numbers, construct two real numbers
strictly between them with the property that at least one of them is
irrational.)

7. (a) Prove that if an integer greater than 1 has no divisors between 2 and its
square root (inclusive), then it is a prime. (cf. Problem 5 in Chap. 2.)

(b) Find all positive integers that are divisible by every positive integer below
their square roots; in particular, prove that 24 is the largest such integer.

Remark. According to our claim, we may say that 24 is the “most
composite” number.

(Hints: Use Problem 9 of Chap. 14 to claim that integers with this property
between 25 and 48, inclusive, would have to be divisible by 3�4�5, but there
is no such integer; and integers between 49 and 99, inclusive, would have to
be divisible by 5 �6 �7, but there is no such integer either. To rule out integers
n that are 100 or higher, prove that if k D bp

nc is odd, then n would have
to be divisible by k.k � 1/.k � 2/ but that k.k � 1/.k � 2/ > n; similarly,
if k is even, then n would have to be divisible by .k � 1/.k � 2/.k � 3/ but
that .k � 1/.k � 2/.k � 3/ > n.)

8. (a) Suppose that a and b are integers and b > 0. Prove that there are unique
integers q, r1, and r0 such that a D b2q C br1 C r0, 0 � r1 � b � 1, and
0 � r0 � b � 1.

(b) Prove the following theorem:

Theorem 15.13. Suppose that a and b are positive integers and b > 1.
Then there exist unique nonnegative integers m, rm, rm�1; : : : ; r1; r0 so that

a D rmbm C rm�1b
m�1 C � � � C r1b C r0;

0 � ri � b � 1 holds for each 0 � i � m, and rm � 1.

Remarks. This is called the base b (for b D 2: binary; for b D 3: ternary;
and for b D 10: decimal) representation of a. When the base b is clear, we
usually write simply a D rmrm�1 : : : r1r0.
(Hints: For the existence, use strong induction on a. Set

m D maxfl 2 N [ f0g j bl � ag

and rm D ba=bmc.)
(c) As an extension of Theorem 15.13, one can prove the following:

Theorem 15.14. Suppose that a is a positive real number and that b >

1 is a positive integer. Then there exist nonnegative integers m, rm,
rm�1; : : : ; r1; r0; r�1; r�2; : : : so that
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a D rmbm C rm�1b
m�1 C � � � C r1b C r0 C r�1

b
C r�2

b2
C � � �

and 0 � ri � b � 1 holds for each i � m. Furthermore, if m > 0, then we
may also assume that rm > 0.

The expression of a in this form is unique with one exception: if, for
some index k � m, rk > 0 but ri D 0 for all i < k, then this number can
also be written so that r 0

k D rk � 1 and r 0
i D b � 1 for i < k.

Here, when the base b is clear, we usually write simply

a D rmrm�1 : : : r1r0:r�1r�2 : : : :

The following table shows (the beginnings of) the binary, ternary, and
decimal representations of some numbers; if the number has two repre-
sentations, both are given.

Binary Ternary Decimal

1=2 0:10000000000000000 : : : 0:11111111111111111 : : : 0:50000000000000000 : : :

0:01111111111111111 : : : 0:49999999999999999 : : :

1=3 0:01010101010101010 : : : 0:10000000000000000 : : : 0:33333333333333333 : : :

0:02222222222222222 : : :p
2 1:01101010000010011 : : : 1:10201122122200121 : : : 1:41421356237309504 : : :

� 11:00100100001111110 : : : 10:01021101222201021 : : : 3:14159265358979323 : : :

Find the septenary (base 7) representation of 1=2, 1=3,
p

2, and � . (The
first few “septenary digits” will suffice.)

Remarks. To be precise, we’d need to define carefully what the “: : : ”
means in an infinite representation; we will do this using limits in Prob-
lem 10 of Chap. 20. There we will also prove that, conversely, every
decimal representation rmrm�1 : : : r1r0:r�1r�2 : : : : determines a unique
real number.

(d) The repeating decimal form of a number is a decimal representation

˙n:c1c2 : : : ckd1d2 : : : dpd1d2 : : : dpd1d2 : : : dp : : : ;

where n and k are nonnegative integers, p is a positive integer, and
c1; c2; : : : ; ck (if any) and d1; d2; : : : ; dp are integers between 0 and 9.
(Repeating binary and ternary forms can be defined analogously.) For
example, the table above shows that 1=2 and 1=3 have repeating decimal
forms (1=2 has two), but

p
2 and � do not have repeating decimal forms.

Prove that every rational number can be expressed as a repeating
decimal.
(Hint: Use the Pigeonhole Principle.)
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Remark. In Problem 10 (c) of Chap. 20 we will prove the converse of this
statement.

The finite binary form of a number is a binary representation

˙a1a2 : : : am:c1c2 : : : ck000 : : : ;

where m is a positive integer, k is a nonnegative integer, and a1; a2; : : : ; am

and c1; c2; : : : ; ck (if any) are all 0 or 1; in the case when k > 0, we
may further assume that ck D 1. (Finite ternary and decimal forms can
be defined analogously.) We can, of course, just ignore the zeros after ck

and write ˙a1a2 : : : am:c1c2 : : : ck :

For example, the finite binary form of 24 is 11000 and (as the table above
shows) 1=2 has a finite binary form: 0.1. The set of all real numbers that
have a finite binary representation is denoted by ZŒ 1

2
�. (cf. Problem 6 (c) of

Chap. 10.)
For each of the following statements, decide if the statement is true or

false:
(e) i. Every real number with a finite binary form can be written as z

2k for
some integer z and positive integer k.

ii. Every real number with a finite binary form can be written uniquely
as z

2k for some integer z and positive integer k.
iii. Every real number with a finite binary form is either an integer or

can be written as ˙ �
n C a

2k

�
for some nonnegative integer n, positive

integer k, and odd integer a with 1 � a < 2k .
iv. Every real number with a finite binary form is either an integer or can

be written uniquely as ˙ �
n C a

2k

�
for some nonnegative integer n,

positive integer k, and odd integer a with 1 � a < 2k.
v. Every real number that can be written as ˙ �

n C a
2k

�
for some

nonnegative integer n, positive integer k, and odd integer a with
1 � a < 2k has a finite binary form.

vi. Every real number that can be written as ˙ �
n C a

2k

�
for some

nonnegative integer n, positive integer k, and odd integer a with
1 � a < 2k has a unique finite binary form.

vii. ZŒ 1
2
� is an integral domain.

viii. ZŒ 1
2
� is a field.

9. (a) Let n be a positive integer. Prove that there are unique nonnegative integers
m and r such that n D m2 C r and 0 � r � 2m.

(b) For a positive integer m, the m-th triangular number tm is defined as

tm D m.m C 1/

2
:

Suppose that n is a positive integer. Prove that there are unique integers m

and r such that n D tm C r and 0 � r � m.
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(Hint: Suppose that n is a positive integer and choose m so that tm is the
largest triangular number not larger than n. What can be said about n� tm?)
Remarks. The reason for the name is clear: rather than arranging m2 dots
in an m-by-m array to yield squares, one can place tm dots in a triangular
pattern so that m dots are in the first row, m � 1 in the second row, and so
on, all the way to a single dot in the last row. By Proposition 13.4, the total
number of points in the arrangement is then tm.

10. In Chaps. 3 and 4 we learned that if n is not prime, then the n-th Mersenne
number Mn D 2n � 1 definitely cannot be prime as it must have more than
two positive divisors. In fact, even when n is prime, Mn may have nontrivial
divisors (e.g., M11 is divisible by 23 and 89 in addition to being divisible by
1 and itself). Use the Pigeonhole Principle and the Division Theorem to prove
that, in fact, for every odd integer d , there is a Mersenne number Mn that is
divisible by d .
(Hint: Use the Division Theorem with a D Mn and b D d , then use the
Pigeonhole Principle for the possible remainders.)

11. Let n be an integer with n � 2 and suppose that S is a set of n positive integers
so that none of them is more than 2n � 2.

(a) Prove that S has two elements that are relatively prime.
(Hint: Use the Pigeonhole Principle to argue that, in fact, S will contain
two consecutive numbers.)

(b) Prove that S has two elements so that one of them is divisible by the other.
(Hint: Use Lemma 4.11.)

(c) Does our claim in part (a) remain valid if we replace 2n � 2 by 2n � 1?
(d) Does our claim in part (b) remain valid if we replace 2n � 2 by 2n � 1?

12. Prove that the first player has a winning strategy for the Divisor game
(cf. Problem 2 of Chap. 1) no matter what the chosen value of n is.
(Hints: Assume indirectly that for some integer n, the second player has a
winning strategy; that is, no matter what divisor of n the first player names
at the beginning, the second player can win the game. What if the first player
names n in the first turn?)

Remark. Although we can provide a nonconstructive argument to prove that
the first player always has a winning strategy, such a strategy (for arbitrary n)
has not yet been found.



Chapter 16
A Cornucopia of Famous Problems

Just like we have many famous theorems in mathematics, we have many famous
problems. (In fact, there really is no clear distinction between theorems and solved
problems or, similarly, between conjectures and unsolved problems.) In Chaps. 5
and 6 we discussed our top ten list of most famous classical theorems; in this chapter
we feature a list of ten problems whose solutions, while considered elementary—
that is, not requiring any knowledge beyond what we already have at this point—
provide challenges beyond the typical problems of the earlier chapters. Hopefully,
our collection will prove to be interesting.

1. Nobody Knows Nothing!
Alvin is thinking of two distinct integers, each more than 1 but less than
100. He tells their sum to Sam, and the product to Preston, then leaves the
room. Sam and Preston are trying to figure out what the two numbers are. We
overhear the following conversation:

Preston: “I don’t know what the two numbers are.”
Sam: “I knew that. I don’t know what the numbers are either.”
Preston: “In that case I know what the two numbers are.”
Sam: “Well, then I do too.”
What were the two numbers?

2. Mathematical Survivor.
The game begins with n people on an island. The people are numbered 1
through n. Each day, the remaining islanders vote on whether the remaining
islander with the highest number can stay on the island. If half or more of
them say the person with the highest number must leave, then that person
leaves the island and the game continues. Otherwise, the game ends and the
remaining islanders split a million dollars equally. Assume the islanders act
independently, are perfectly rational, and will vote in whatever way will give
them the most money at the end. How long will the game last and how many
people will remain on the island at the end?
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3. From the West Wing.

(a) When n couples arrived at a party given by the President and the First
Lady, a certain number of handshakes took place. The President asked
each of the other people present how many people they shook hands
with (the members of the Secret Service and other staff in the room were
not involved in handshakes). Amazingly, all answers were different. How
many hands did the First Lady shake? (We don’t know who shook hands
with whom, only that spouses did not shake each other’s hands.)

(b) After getting acquainted, everybody took a seat around a round table.
Protocol maintains that for each course, servers serve the First Lady first,
then move around the table clockwise and serve the second person they
come to who has not been served yet, continuing this way, until only one
person remains who then gets served last (e.g., with n D 2 and numbering
the 6 people at the table clockwise as 1, 2, 3, 4, 5, and 6, with the First
Lady being 1, the order is 1, 3, 5, 2, 6, and finally 4). Where shall the
President sit in order to be served last?

4. The Towers of Hanoi.

(a) The towers of Hanoi consist of n disks, with holes in the middle and with
all different sizes, placed on three pegs in such a way that no disk is placed
on another disk with smaller size. If, initially, all n disks are on a single
peg, is it possible to move them all onto another peg one disk at a time
so that at no time is a disk sitting on a smaller disk? If so, what is the
minimum number of moves required?

(b) How does the answer change if initially all disks are on peg #1, they must
be moved to peg #3, and only moves to “neighboring” pegs are allowed?

Remark. These questions have not been answered in general when there are
more than three pegs available.

5. More Checkerboard Tilings.
Let’s call a positive integer p a primino number if it is impossible to tile an
m-by-n board (m; n 2 N) with a collection of 1-by-p tiles unless at least one
of m or n is divisible by p. By Euclid’s Principle, every positive prime is a
primino number. Find all other primino numbers.

6. Watching Your Weights.
You are a grocer at the market, and you are required to measure various items
using a balance scale with two pans and some certified measuring weights. (A
balance scale cannot show the actual weight of items; it is only able to tell if
the total weight of items placed on the left pan equals, is more than, or is less
than the total weight of items placed on the right pan.)

(a) What is the minimum number of measuring weights that you will need to
measure each integer weight up to n units if the weights must all be placed
on the same pan?
(Hint: Note that for n D 3, two measuring weights are needed: one of 1
unit and another of 2 units.)
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(b) How many measuring weights are needed if they can be placed on either
pan?

(c) Suppose that you know that the item you need to measure has an integer
weight somewhere between 1 and n units. What is the minimum number
of measuring weights that you will need to have available so that you are
guaranteed to be able to identify the weight of the item? (As in part (b),
the weights can be placed on either pan.)
(Hint: Observe that for n D 3, a single measuring weight of 2 units
suffices.)

7. Some Are Sums.

(a) Let us say that a positive integer is accommodating if it can be written as
the sum of (at least two) consecutive positive integers. For example, 13 D
6C7, 14 D 2C3C4C5, and 15 D 4C5C6 are accommodating. Prove
that a number is accommodating if, and only if, it is not a (nonnegative
integer) power of 2.

(b) Let us say that a positive integer is yielding if it can be written as the
sum of (at least two) consecutive odd positive integers or the sum of
consecutive even positive integers. For example, 14 D 6 C 8, 15 D
3 C 5 C 7, and 16 D 1 C 3 C 5 C 7 are yielding. Prove that a number is
yielding if, and only if, it is a composite (i.e., not 1 and not prime).

Remarks. We can generalize the previous parts as follows. For a positive integer
d , we define the positive integer n to be a d -sum if it can be written as the
sum of (at least two) terms of an arithmetic sequence of positive integers with
difference d , that is, if

n D a C .a C d/ C .a C 2d/ C � � � C .a C kd/

for some positive integers a and k. There is no pretty characterization of all
d -sums when d � 3.

8. A Really “Mean” Problem.
Suppose that a and b are positive real numbers. The arithmetic mean, the
geometric mean, and the harmonic mean of a and b are defined as

A.a; b/ D a C b

2
;

G.a; b/ D
p

ab;

and

H.a; b/ D 2ab

a C b
;

respectively.
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(a) Consider the following figure of a semicircle with center O and right tri-
angles OAB and ABC , as shown: Prove that the lengths of the segments
OA, AB , and AC are A.a; b/, G.a; b/, and H.a; b/, respectively.

(b) Use part (a) to conclude that for all positive real numbers a and b, we have

H.a; b/ � G.a; b/ � A.a; b/:

(c) Use algebraic methods to prove the inequalities of part (b).
(d) The arithmetic and geometric means of the positive real numbers

a1; a2; : : : ; an (n 2 N) are defined as

A.a1; a2; : : : ; an/ D a1 C a2 C � � � C an

n

and
G.a1; a2; : : : ; an/ D n

p
a1a2 � � � an;

respectively. Prove that

G.a1; a2; : : : ; an/ � A.a1; a2; : : : ; an/:

(Hints: Use Problem 1(i) of Chap. 14. When proving that P.kC1/ implies
P.k/, let akC1 D A.a1; a2; : : : ; ak/.)

(e) (Note: This part requires a basic understanding of derivatives.) Let r be a
nonzero real number. We define the r th mean value of a and b to be
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Mr.a; b/ D
�

ar C br

2

�1=r

:

Note that
M�1.a; b/ D H.a; b/

and
M1.a; b/ D A.a; b/:

Prove that for any pair of nonzero real numbers r1 and r2 with r1 � r2, we
have

Mr1.a; b/ � Mr2.a; b/:

(f) Where does the geometric mean of a and b fit into the chain of inequalities
of part (e)?

9. Waring’s Problem with Negativity.
In Problem 8 of Chap. 3, for k 2 N, we introduced the quantity g.k/ as the
smallest positive integer m for which every n 2 N can be written as

n D xk
1 C xk

2 C � � � C xk
m

with some nonnegative integers x1; x2; : : : ; xm. Analogously, 
.k/ is defined
as the smallest positive integer m for which every n 2 N can be written as

n D ˙xk
1 ˙ xk

2 ˙ � � � ˙ xk
m

with some nonnegative integers x1; x2; : : : ; xm. Here we investigate 
.k/ for
small values of k.

(a) Prove that 
.2/ D 3.
(Hint: Problem 6 of Chap. 3.)

(b) Prove that 
.3/ � 5.
(Hint: Start with the identity .k C 1/3 � 2k3 C .k � 1/3 D 6k:/

(c) Prove that 
.3/ � 4.
(Hint: Look at integers of the form 9k C 4.)

(d) Prove that 
.4/ � 12.
(Hint: Use the identity .k C3/4 �3.k C2/4 C3.k C1/4 �k4 D 24k C36:/

(e) Prove that 
.4/ � 9.
(Hint: Look at integers of the form 16k C 8.)

Remarks. Of course, we have 
.k/ � g.k/ for all k, but the exact value of

.k/ is only known for k D 2. This is in sharp contrast to g.k/ that is known
for “almost all” k; see remarks on page 31. As parts (b) and (c) above show, we
have 
.3/ D 4 or 5. With a more clever identity than in the hint for (d), we get

.4/ � 10, so the current question is whether 
.4/ is 9 or 10. At this time we
only know that 5 � 
.5/ � 10 and even less is known about 
.k/ for k � 6.
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We should also note that the identities in the hints above will make more
sense once we discuss difference sequences in Problem 11 of Chap. 21. For
example, the identity used in part (d) above comes from the third difference
sequence of the sequence of fourth powers:

���.k4/ D ��..k C 1/4 � k4/

D �..k C 2/4 � 2.k C 1/4 C k4/

D .k C 3/4 � 3.k C 2/4 C 3.k C 1/4 � k4:

10. Coloring Lines, Planes, and Space.
The chromatic number of the n-dimensional space R

n, denoted by �.Rn/, is
the minimum number of colors needed to color all points of Rn in such a way
that no two points of distance 1 have the same color.

(a) Prove that the chromatic number of the line is 2; that is, �.R/ D 2.
(b) Prove that the chromatic number of the plane satisfies �.R2/ � 4:

(Hints: Our goal is to find a small number of points in the plane that
require four colors. We provide hints for two possible approaches. The
first, given by Canadian mathematicians Leo and William Moser, consists
of two diamonds attached to the same point. A different solution, given by
American mathematician Solomon Golomb, consists of the wheel graph
W6 (cf. Problem 1 of Chap. 6) together with a regular triangle.)

(c) Prove that the chromatic number of the plane satisfies �.R2/ � 7:

(Hints: We need to partition the plane into seven parts so that any two
points that are exactly distance 1 apart are in different parts. We again
provide hints for two possible approaches. The first, given by Swiss
mathematician Hugo Hadwiger, is based on a tiling of the plane by reg-
ular hexagons. The second partition, given by Hungarian mathematician
László Székely, looks like a brick wall that is partially shown below.)
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(d) Prove that �.R3/ � 5:

(e) Prove that �.R3/ � 21:

Remarks. The question of finding the chromatic number of Rn has been open
for many years with relatively little progress. There are no better bounds
known for two dimensions than those in (b) and (c); the currently known best
bounds for three dimensions are

6 � �.R3/ � 15;

which is quite a wide gap.
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Advanced Math for Beginners



Chapter 17
Good Relations

We begin our adventure into advanced mathematics with the study of one of the
most fundamental objects: relations.

We have already seen several instances when two objects in a collection have
a specific relationship. For example, two real numbers may satisfy an inequality,
an integer might be divisible by another, two statements might be equivalent, a set
might be a subset of another, and so on. In this chapter we study relationships like
these in a general—and, therefore, more abstract—framework.

Definition 17.1. Suppose that A and B are two sets. A relation R from A to B is
any subset of A
B; here A is called the domain of R and B is called the codomain
of R. If the domain and the codomain of a relation are the same set S , then we say
that R is a relation on S .

If elements a 2 A and b 2 B are such that .a; b/ 2 R, then we say that a is in
(this) relationship with b and denote this by a �R b or simply a � b. If .a; b/ 62 R,
then we write a 6� b.

Note that in our terminology a relation is a collection of relationships. Further-
more, a relation can be an arbitrary subset of the direct product and does not have
to satisfy any particular characteristics; there are as many relations from one set
to another as there are subsets of their direct product. For example, the number of
different relations on S D f1; 2; 3g can be determined by calculating the size of
the power set of S 
 S ; since S 
 S consists of 9 elements, its power set has size
29 D 512. Among these 512 relations on S are:

• Equality: RD D f.1; 1/; .2; 2/; .3; 3/g (the two components are equal).
• Order: R< D f.1; 2/; .1; 3/; .2; 3/g (the first component is less than the second).
• Divisibility: Rj D f.1; 1/; .1; 2/; .1; 3/; .2; 2/; .3; 3/g (the first component di-

vides the second).

But most of the other 509 relations on S have no particular distinguishing features.
In this chapter we discuss arbitrary relations; we are, however, most interested in
the “good relations” that satisfy certain properties—we will identify what we mean
by this soon.
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There are a variety of ways to specify and describe relations. The simplest way
to describe a relation, particularly if the relation consists of only a few relationships,
is the list notation. For example,

R D f.1; f1g/; .1; f1; 2g/; .2; f2g/; .2; f1; 2g/g

is the relation from the set A D f1; 2g to the set P.A/ D f;; f1g; f2g; f1; 2gg (which
is the power set of A); it describes the relation of “being an element of.” We should
note that, just as is the case for sets in general, relations cannot always be put in list
notation!

Another option for describing a relation might be the formula or conditional
description; the relation above, for example, can be written as

R D f.x; X/ j x 2 A; X � A; x 2 Xg

or
R D f.x; X/ 2 A 
 P.A/ j x 2 Xg:

The matrix description of a relation R from a domain A to a codomain B is a
table where rows are indexed by the elements of A, columns are indexed by the
elements of B , and the entry in row a (a 2 A) and column b (b 2 B) is 1 or 0
depending on whether .a; b/ 2 R or not. For example, if A D f1; 2; 3g, B D P.A/,
and R is the relation of “being an element of,” then R can be given by the following
matrix:

; f1g f2g f3g f1; 2g f1; 3g f2; 3g f1; 2; 3g
1 0 1 0 0 1 1 0 1

2 0 0 1 0 1 0 1 1

3 0 0 0 1 0 1 1 1

Relations may also be represented in several ways graphically. If the domain and
the codomain of the relation are both sets of real numbers, then the relation can
be graphed in the Descartes coordinate plane: let the “horizontal” axis represent the
domain, the “vertical” axis represent the codomain, and mark the point .a; b/ if the
relation contains the ordered pair .a; b/. The resulting graphs are often quite helpful
to visualize and understand the relation. For example, the relations

R1 D f.x; y/ 2 R
2 j x2 C y2 � 9g;

R2 D f.x; y/ 2 R
2 j jxj C jyj � 9g;

and
R3 D f.x; y/ 2 R

2 j jx � yj � 9g
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can be viewed in the usual Descartes coordinate plane, in order, as a “full” disk of
radius 3 centered at the origin, a “full” square with vertices .˙9; 0/ and .0; ˙9/,
and a “diagonal” band bounded by the lines y D x ˙ 9.

Another graphical representation is primarily used when describing a relation
on a finite set A. Here the elements of A are represented by different points in the
plane (usually it does not matter how these points are arranged), and we draw an
arrow from a to b if a � b (if we also have b � a, then we draw another arrow
from b to a). The resulting diagram is called the directed graph or digraph of the
relation. For example, the 	 (“strict subset”) relation on P.f1; 2g/, the power set of
the two-element set f1; 2g, has the following digraph:

� �

� �

f2g

; f1g

f1; 2g�

�

� �

�
�
�
�
�
�
�
�
�
�
�
���

If the relation is symmetric, that is, if for any two points in its digraph, either
there is no arrow between the points or there is an arrow in both directions, then
we might simplify the diagram by replacing each of these double arrows by a single
line; the resulting picture is called the (undirected) graph of the relation. We study
these kinds of graphs shortly, but first we make some important definitions.

In our title we promised some “good relations.” Indeed, there are several relations
that deserve special mention; as is the case with any good relations, they are
“visited” often (and we promise to do so in this book). In particular, we make the
following definitions:

Definition 17.2. A relation R on the set A is said to be

• Reflexive: If for every a 2 A, a � a.
• Irreflexive: If for every a 2 A, a 6� a.
• Symmetric: If for every a 2 A and b 2 A, a � b implies that b � a.
• Asymmetric: If for every a 2 A and b 2 A, a � b implies that b 6� a.
• Antisymmetric: If for every a 2 A and b 2 A, a � b and b � a imply that

a D b.
• Transitive: If for every a 2 A, b 2 A, and c 2 A, a � b and b � c imply that

a � c.

For example, it is easy to see that:

• < (less than) is an irreflexive, asymmetric, and transitive relation on the set of
real numbers.

• � (less than or equal to) is a reflexive, antisymmetric, and transitive relation on
the set of real numbers.
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• j (divisibility) is a reflexive, antisymmetric, and transitive relation on the set of
positive integers.

• � (subset) is a reflexive, antisymmetric, and transitive relation on a set of sets.
• , (equivalence) is a reflexive, symmetric, and transitive relation on a set of

statements.

Relations with several of the characteristics we defined, such as the ones
above, play important roles. The following three types of relations are particularly
ubiquitous in mathematics:

Definition 17.3. Suppose that R is a relation on a set S . We say that R is:

• An equivalence relation if R is reflexive, symmetric, and transitive
• A graph relation if R is irreflexive and symmetric
• An order relation if R is reflexive, antisymmetric, and transitive

In the rest of this chapter we focus on equivalence relations and graph relations;
order relations get their own chapter, Chap. 18. (Functions may also be viewed as
special relations; cf. Chap. 19.)

First we discuss equivalence relations. Suppose that R is an equivalence relation
on a set A. Note that, as a consequence of R being an equivalence relation on A,
any element of A is in the relationship with itself; furthermore, for any two distinct
elements x and y of A, either both x � y and y � x or neither relationship holds.
For a given element x 2 A, the collection of all elements of A that are in the
relationship with x, denoted by

Œx�R D fy 2 A j x � yg;
is called the equivalence class of x determined by R. As we just observed, every
element of A is an element of its own equivalence class, and if x is in the equivalence
class of y, then y is also in the equivalence class of x.

Let us consider some examples. First let A D P.f1; 2; 3; 4g/, the power set of
f1; 2; 3; 4g, and let R be the relation on A of “having the same number of elements.”
Clearly, R is an equivalence relation on A with five different equivalence classes:

Œf1; 2; 3; 4g�R = ff1; 2; 3; 4gg

Œf1; 2; 3g�R = ff1; 2; 3g; f1; 2; 4g; f1; 3; 4g; f2; 3; 4gg

Œf1; 2g�R = ff1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4gg

Œf1g�R = ff1g; f2g; f3g; f4gg

Œ;�R = f;g

The sizes of these equivalence classes are 1, 4, 6, 4, and 1—which we recognize
as row 4 in Pascal’s Triangle (cf. page 167). Observe also that the five equivalence
classes are pairwise disjoint and their union gives all of A D P.f1; 2; 3; 4g/.
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As another example, consider the relation R on N of “having the same number
of positive divisors.” It is easy to see that R is an equivalence relation and we find
that Œ1�R D f1g (only 1 has one positive divisor); Œ2�R and Œ3�R are both equal to the
set of all positive primes (cf. Definition 2.1),

Œ4�R D f4; 9; 25; 49; : : : g

is the set of prime squares, and so on. It is not difficult to prove that there are
infinitely many equivalence classes and that each one, except for Œ1�R , consists
of infinitely many elements. (This provides another approach to Problem 9 (e) of
Chap. 8.)

Perhaps the most important example of equivalence relations is the congruence
relation among integers. As an extension of Definition 3.2, we make the following
definition:

Definition 17.4. Suppose that m is a positive integer. We say that integers a and b

are congruent mod m if a and b leave the same remainder when divided by m; this
is denoted by a � b mod m. We call m the modulus of the congruence.

It is obvious that a congruence is an equivalence relation. The equivalence class
of an integer x 2 Z for a modulus m is the congruence class

Œx�m D fx C km j k 2 Zg D fx; x C m; x � m; x C 2m; x � 2m; : : : gI

for example,
Œ3�10 D f3; 13; �7; 23; �17; : : : g:

It is easy to see that there are exactly m congruence classes mod m; for example,
the two congruence classes mod 2 are the set of even integers and the set of odd
integers:

Œ0�2 D f0; 2; �2; 4; �4; 6; �6; : : : g
and

Œ1�2 D f1; �1; 3; �3; 5; �5; : : : g:
As each of our examples demonstrates, the equivalence classes of a given relation

on a set partition the set into pairwise disjoint and nonempty parts with each element
of the underlying set belonging to an equivalence class. We make the following
general definition:

Definition 17.5. A partition of the nonempty set A is a set … of its subsets such that
(i) no subset in … is empty, (ii) any two distinct subsets in … are disjoint, and (iii)
the union of all the subsets in … is the entire set A.

If … is a partition of a set A, then a subset T of A is called a set of representatives
for … if T intersects every member of … in a single element.

For instance, the set T D f0; 1; 2; : : : ; m � 1g is a set of representatives for the
partition
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… D fŒ0�m; Œ1�m; Œ2�m; : : : ; Œm � 1�mg
of the set of integers, but this partition has (infinitely) many other sets of represen-
tatives as well:

f0; 1; 2; 3; 4; 5; 6g;
f10; 11; 12; 13; 14; 15; 16g;

and
f10; 20; 30; 40; 50; 60; 70g

are all sets of representatives for the congruence partition of the integers mod 7. As
a less explicit example, consider a partition

… D fS1; S2; : : : ; Sng

of the set of natural numbers N. Since, by definition, each part Si (i D 1; : : : ; n)
is nonempty, we can, for example, invoke Theorem 13.6 to select the minimum
element mi of Si ; the set

T D fm1; m2; : : : ; mng
is then a set of representatives for ….

One of the most natural assumptions about set partitions is that one can always
choose a set of representatives for the partition: this only entails selecting an element
from each part of the partition. (Note that each part is nonempty.) It might thus be
quite surprising that if … is infinite and no particular rule is available for choosing
all the representative elements for T , then the existence of T cannot be proven from
the basic properties of set theory and must be assumed as an axiom.

Axiom 17.6 (The Axiom of Choice). Any partition of any set has a set of
representatives.

As is (almost) customary, we add the Axiom of Choice to our collection of
axioms. However, there are reasons to be skeptical about the validity of this axiom;
see Appendix B and upcoming Chaps. 18, 19, and 22 for more on this subject.

If our set A is small, we can easily list all its partitions. For example, the set
A D f1; 2; 3g has five partitions, namely,

…1 D ff1g; f2g; f3gg;
…2 D ff1; 2g; f3gg;
…3 D ff1g; f2; 3gg;
…4 D ff1; 3g; f2gg; and

…5 D ff1; 2; 3gg:



17 Good Relations 205

As the size of the set increases, however, the number of partitions grows in a rapid,
but not entirely transparent, manner. Denoting the number of distinct partitions
of a set with n elements by Bn—named the n-th Bell number after the Scottish
mathematician and science fiction author Eric Temple Bell (1883–1960)—one can
determine the following values:

n 1 2 3 4 5 6 7 8 9 10

Bn 1 2 5 15 52 203 877 4; 140 21; 147 115; 975

For example, as we have seen above, B3 D 5. (For more on this fascinating
sequence, see A000110 in the On-Line Encyclopedia of Integer Sequences at
http://www.research.att.com/�njas/sequences/.)

As our examples above show, there is a strong correspondence between equiva-
lence relations and partitions, as stated in the following important theorem:

Theorem 17.7 (The Fundamental Theorem of Equivalence Relations). Let A

be a set.

1. If R is an equivalence relation on A, then the equivalence classes on A

determined by R form a partition of A.
2. Conversely, let … be a partition of A, and define a relation R by making two

elements have the relationship whenever they are in the same set in the partition
…. Then R is an equivalence relation on A.

We leave the rather easy proof for Problem 8.
Let us now turn to graph relations, that is, relations that are irreflexive and

symmetric. We have already seen several examples: in a group of people, “knowing
one another” is a graph relation (cf. Ramsey numbers in Definition 15.6) and so
is “having joint publications” (cf. Erdős numbers on page 49). A graph relation
is indeed one of the most ubiquitous concepts, not just in mathematics, but in a
wide variety of applications in the physical and social sciences, computer science,
and engineering. Here we attempt to provide a brief introduction to the vibrant and
extensive field of graph theory.

As the name implies, a graph relation R on a set S can be represented by a
drawing in the plane where points in the plane represent the elements of S and
where two points u and v are connected by a line (or curve) whenever .u; v/ 2 R. In
the resulting drawing, the points in the plane representing S are called vertices, and
the connections are called edges. For example, the relations

f.a; b/ 2 f1; 2; 3; 4; 5; 6g2 j ja � bj 2 f1; 5gg

and
f.a; b/ 2 f1; 2; 3; 4; 5; 6g2 j ja � bj 2 f2; 4gg

are both easily seen to be graph relations with six vertices and six edges; they can
be drawn as shown below.

http://www.research.att.com/~njas/sequences/
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Of course, a graph has many different drawings; for example, the two triangles
in the second graph above could be drawn next to one another so that they do
not intersect (neither do they need to have straight line edges). Given two graph
drawings, it is an interesting, but often very difficult, question to decide whether
the two drawings represent the same relation. To be precise, we would need to
differentiate between a graph relation R on a set S and its drawing G in the plane;
for simplicity, however, we will just use the term graph for both—hoping that
it is clear from the context what we mean. (A further source of confusion may
come from the fact that the graphs in this context are different from the graphs
introduced on page 200; for this reason, we sometimes refer to graphs described here
as combinatorial graphs and the graphs given in a coordinate system as Cartesian
graphs, named after the French philosopher and mathematician René Descartes
(1596–1650).)

Let us introduce some terminology. We say that two vertices in a graph are
adjacent if they are connected by an edge and that an edge is incident to a vertex if
the vertex is one of its endpoints. The number of edges that are incident to a vertex
is called the degree of the vertex. For example, each vertex in the two graphs above
has degree 2.

Suppose that u and v are vertices in a graph G. By a .u; v/-trail in G, we mean
an alternating sequence of vertices and edges, starting with u and ending with v, so
that any two consecutive vertices in the sequence are distinct and each edge in the
sequence is incident to the two vertices next to it in the sequence. We say that G is
connected if there is a .u; v/-trail in G between any two distinct vertices u and v. For
example, the first graph on page 205 is connected, but the second is not: there is no
trail in the graph from, for example, vertex 1 to vertex 2.

We say that the .u; v/-trail is a path if all vertices on the trail are distinct; if u D v
but all other vertices are distinct on the trail, then we say that the trail is a cycle.

We say that a graph is a forest if it contains no cycles, and we say that it is a tree if
it is a connected forest. Decision trees, introduced in Chap. 1, are examples for trees.
Trees have the characteristic property that there is a unique path between any two
of their vertices. This and other properties make trees very useful in applications,
particularly in computer science.



17 Good Relations 207

Another important type of graph is the planar graph, defined as follows. We say
that a drawing of a graph is a plane drawing if no two edges intersect each other
(other than, perhaps, at one of their endpoints), and we say that a graph is planar
if it has (at least one) plane drawing. For example, the first drawing on page 205 is
a plane drawing, but the second is not; however, both graphs are planar, since the
second graph can be redrawn without any edge crossings. The regions in the plane
that are created by a plane drawing are called faces. (Somewhat more precisely, the
faces of a plane drawing G are the connected components of R2 n G.) If the graph
has finitely many vertices, then all but one of the faces in the plane drawing are
bounded.

Planar graphs are reminiscent of planar maps, introduced in Chap. 6. Indeed,
each planar map corresponds to a planar graph G where the “countries” of the map
form the vertex set and where two vertices are adjacent whenever the corresponding
countries share a boundary (of nonzero length). Conversely, it is also easy to see
that every planar graph arises this way. Recall that the Four-Color Theorem states
that the chromatic number of planar maps is at most 4. Equivalently, we can define
the chromatic number of a graph G to be the minimum number of colors needed to
color the vertices of G so that adjacent vertices receive different colors; we can then
rephrase the Four-Color Theorem to say that the chromatic number of every planar
graph is at most 4. (In Problem 11, we prove a weaker statement that the chromatic
number of a planar graph is at most 6.)

Graph theory is a highly applicable and fascinating branch of mathematics; we
explore some of its main results and applications in the problem set below.

Problems

1. Decide if the following claim is true or false. If the claim is false, provide a
counterexample; in either case, analyze the argument given. Be as specific as
possible:
Claim. In the definition of an equivalence relation, it is enough to require that
the relation be symmetric and transitive. That is, if the relation R on a set A is
both symmetric and transitive, then it is also reflexive.
Argument. Since R is symmetric, a � b implies b � a. But R is also transitive,
so a � b and b � a imply that a � a. Therefore, R is reflexive.

2. Describe the (Cartesian) graph of each of the following relations, and decide
whether the relation is reflexive, symmetric, and/or transitive. For those that are
equivalence relations, describe the equivalence classes.

(a) R D f.x; y/ 2 R
2 j x � y C 1g

(b) R D f.x; y/ 2 R
2 j xy > 0g

(c) R D f.x; y/ 2 R
2 j xy � 0g

(d) R D f.x; y/ 2 R
2 j xy 6D 0g

(e) R D f.x; y/ 2 .R n f0g/2 j xy > 0g
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(f) R D f.x; y/ 2 R
2 j jx � yj � 1g

(g) R D f.a; b/ 2 Z
2 j a � b is divisible by 2g

(h) R D f.a; b/ 2 Z
2 j a C b is divisible by 2g

(i) R D f.a; b/ 2 Z
2 j a � b is divisible by 5g

(j) R D f.a; b/ 2 Z
2 j a C b is divisible by 5g

3. (a) Which of the following collections of congruence classes form partitions of
the set of integers Z?

i. fŒ1234�4; Œ4123�4; Œ3412�4; Œ2341�4g
ii. fŒ0�2; Œ1�4; Œ2�8; Œ6�8g

iii. fŒ0�2; Œ1�4; Œ3�8; Œ7�8g
iv. fŒ0�2; Œ0�3; Œ1�6; Œ5�6g

(b) Find some examples for partitions of Z into exactly five parts where each
part is a congruence class.

Remarks. It has been known that no such partition exists with all moduli
distinct. In fact, if m is the largest modulus, then it was shown by
Davenport, Mirsky, Newman, and Rado that a congruence class partition
of Z will contain at least p distinct congruence classes mod m where p is
the smallest positive prime divisor of m. Each example in part (a) satisfies
this condition (though not all are partitions).

4. Verify the values of the first four Bell numbers given on page 205.
5. Suppose that S is a set with 4 elements. Find the number of:

(a) Relations
(b) Reflexive relations
(c) Irreflexive relations
(d) Symmetric relations
(e) Asymmetric relations
(f) Antisymmetric relations
(g) Equivalence relations
(h) Graph relations

on the set S . (Note that we did not ask for the number of transitive relations as
it is difficult to determine.)

6. Let S be a nonempty set, and suppose that R1 and R2 are relations on S . Prove
or disprove each of the following statements:

(a) If R1 and R2 are reflexive, then R1 [ R2 is reflexive.
(b) If R1 and R2 are symmetric, then R1 [ R2 is symmetric.
(c) If R1 and R2 are transitive, then R1 [ R2 is transitive.
(d) If R1 or R2 is reflexive, then R1 [ R2 is reflexive.
(e) If R1 or R2 is symmetric, then R1 [ R2 is symmetric.
(f) If R1 or R2 is transitive, then R1 [ R2 is transitive.
(g) If R1 and R2 are reflexive, then R1 \ R2 is reflexive.



17 Good Relations 209

(h) If R1 and R2 are symmetric, then R1 \ R2 is symmetric.
(i) If R1 and R2 are transitive, then R1 \ R2 is transitive.
(j) If R1 or R2 is reflexive, then R1 \ R2 is reflexive.
(k) If R1 or R2 is symmetric, then R1 \ R2 is symmetric.
(l) If R1 or R2 is transitive, then R1 \ R2 is transitive.

7. Prove that each of the following relations is an equivalence relation. For each
relation R, describe explicitly the equivalence classes Œ.3; 1/�R, Œ.2; 2/�R, and
Œ.1; 3/�R.

(a) R D f..a; b/; .c; d // 2 .N2/2 j a C d D b C cg
(b) R D f..a; b/; .c; d // 2 .Z 
 .Z n f0g//2 j a � d D b � cg

8. Prove the Fundamental Theorem of Equivalence Relations (Theorem 17.7).
9. (a) Sketch the (combinatorial) graph of the following relations:

i. R1 D f.a; b/ 2 f1; 2; 3; 4; 5g2 j ja � bj 2 f1; 4gg
ii. R2 D f.a; b/ 2 f1; 2; : : : ; 8g2 j ja � bj 2 f1; 4; 7gg

iii. R3 D f.a; b/ 2 f1; 2; : : : ; 13g2 j ja � bj 2 f1; 5; 8; 12gg
(b) What does each of these graphs have to do with the Ramsey numbers? (See

Definition 15.6 and also Proposition 15.5, Problem 9 (b) in Chap. 3, and
Problem 3 in Chap. 15.)

10. Prove each of the following results:

(a) Proposition 17.8. Suppose that G is a graph on V vertices and E edges;
for i D 1; 2; : : : ; V , let deg.vi / denote the degree of the vertex vi . Then we
have

E D 1

2

VX

iD1

deg.vi /:

(b) Lemma 17.9. If every vertex in a finite graph G has degree at least 2, then
G contains a cycle.

(c) Theorem 17.10. Suppose that a tree has V vertices and E edges. Then
E D V � 1.
(Hints: Use induction on V . Note that, by Lemma 17.9, every tree with two
or more vertices contains a vertex with degree 1.)

11. Prove each of the following results about planar graphs:

(a) Lemma 17.11. Let G be a connected planar graph with V vertices, E

edges, and F faces, and suppose that V � 3. Then E � 3F=2:

(b) Theorem 17.12 (Euler’s Formula). Let G be a connected planar graph
with V vertices, E edges, and F faces. Then V � E C F D 2:

(Hints: Use induction on the number of faces. If F D 1, then G is a tree;
use Theorem 17.10. For the inductive step, choose an edge e of G that is on
a cycle; consider the graph G0 that results from G by removing e from it.)

(c) Theorem 17.13. Let G be a planar graph with V vertices and E edges,
and suppose that V � 3. Then E � 3V � 6:
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(Hints: Wlog we can assume that G is connected. Use Lemma 17.11 and
Euler’s Formula.)

(d) Theorem 17.14. Let G be a planar graph with V vertices and E edges,
and suppose that V � 3 and that no face of G is a triangle (i.e., a face
bounded by three edges). Then E � 2V � 4:

(e) Lemma 17.15. Every planar graph contains a vertex that has degree at
most 5.
(Hint: Use Proposition 17.8 and Theorem 17.13.)

(f) Theorem 17.16. Every planar graph has chromatic number at most 6.
(Hint: Use Lemma 17.15.)

Remark. Of course, the Four-Color Theorem states a much stronger result.
To prove that 6 colors are not needed is trickier, and to prove that 5 colors
are not needed requires substantial computer usage.

12. Regular polyhedra generalize the notion of regular polygons to three dimen-
sions. A regular polyhedron is a polyhedron whose faces are bounded by
congruent regular polygons and whose polyhedral angles are congruent (and
therefore, the same number of edges is incident at each vertex). Interestingly,
while regular polygons exist for any number of (at least three) vertices, there
are only five regular polyhedra. Prove the following classification theorem:

Theorem 17.17. There are exactly five different regular polyhedra: the regular
tetrahedron, the regular octahedron, the cube, the icosahedron, and the dodec-
ahedron.

(Hints: For any polyhedron P , one can associate a planar graph G.P / so that
the vertices, edges, and faces of P correspond to the vertices, edges, and faces
of G.P /. Note that all but one face of G.P / is bounded. For example, if P is
the cube, then G.P / is the graph below.
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Now let k be the degree of each vertex of the regular polyhedron P , and
let l be the number of edges surrounding each surface. Prove that V D 2E=k,
F D 2E=l and then use Euler’s Formula.)
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13. (a) For a positive integer n, the complete graph Kn is defined to be the
graph on n vertices where every pair of (distinct) vertices is adjacent. For
example, K5 is the graph shown below.
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Prove the following:

Proposition 17.18. The complete graph Kn is planar if, and only if, n � 4.

In particular, K5 is not a planar graph.
(Hints: To prove that Kn is not planar for n � 5, use Theorem 17.13.)

(b) For positive integers m and n, the complete bipartite graph Km;n is defined
to be the graph on two disjoint sets on vertices, one of size m and the other
of size n, where every vertex from the first set of vertices is adjacent to
every vertex in the second set of vertices, but there are no other edges. For
example, K3;3 is the graph shown below. (The top row of vertices is one
set, and the bottom row is the other set.)
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Prove the following:

Proposition 17.19. The complete bipartite graph Km;n is planar if, and
only if, m � 2 or n � 2.

In particular, K3;3 is not a planar graph.
(Hint: Use Theorem 17.14.)

(c) Construct the graph G corresponding to Problem 2 (a) of Chap. 6; that is,
the vertices of G will correspond to the courses, with two of them adjacent
whenever the corresponding courses have students in common. Prove that
G is planar.
(Hint: Find an explicit plane drawing for G.)

(d) Construct the graph G corresponding to Problem 2 (b) of Chap. 6. Prove
that G is not planar.
(Hint: Use Proposition 17.19.)
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Remarks. By Propositions 17.18 and 17.19, if K5 or K3;3 are subgraphs of a
graph G, then G cannot be planar. Obviously, the same holds if edges of these
two graphs are replaced by paths having the same endpoints but passing through
some other vertices, that is, if G contains subdivisions of K5 or K3;3. The
famous theorem of the Polish mathematician Kazimierz Kuratowski of 1930
says that this condition of planarity is sufficient as well.

Theorem 17.20 (Kuratowski’s Theorem). A graph is planar if, and only if, it
contains no subgraphs that are subdivisions of K5 or K3;3.



Chapter 18
Order, Please!

As promised, in this chapter we discuss an important and highly applicable type of
relations: order relations. Since the usual “less than or equal to” relation on R (or
a subset of R such as N, Z, or Q) is a primary example of an order relation, it is
useful to use notation resembling the � sign; however, since our discussion applies
to other orderings as well, we choose the symbol 
 that is similar, but not identical,
to the symbol �. Throughout this chapter (and beyond), a 
 b denotes the fact that
a �R b holds for some elements a and b (of a given set) and order relation R (on
the same set).

We now restate the definition of an order relation. Before doing so, however, we
should point out that we are here to talk about order relations that do not necessarily
satisfy the property that any two elements can be compared; that is, given elements
a and b in our set, it is not necessarily the case that we have a 
 b or b 
 a. For this
reason, order relations are often referred to as partial order relations—in contrast
to total order relations where any two elements are comparable.

Definition 18.1. A relation 
 on a set P is said to be a partial order relation (or
simply order relation) if it is reflexive, antisymmetric, and transitive; in this case we
say that P forms a partially ordered set or poset for the relation.

Posets, therefore, are mathematical structures in the sense of Chap. 10—
matching the importance of groups, rings, fields, and Boolean algebras. Since a set
P may be a poset for a variety of different partial order relations, when referring to
a particular relation 
, we will talk about the poset system .P; 
/. (If the relation is
already clear from the context, then we will simply talk about the poset P .)

The following three examples are important poset systems, and we will return to
them throughout this chapter:

• Any set X of real numbers is a poset for the “less than or equal to” relation; this
poset system is denoted by .X; �/. In fact, .X; �/ is a total order system since
any two real numbers are comparable.

• The power set P.U / of any set U is a poset for the “subset” relation; this system
is called the Boolean poset and is denoted by .P.U /; �/. As a special case, if

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-6636-9 18, © Béla Bajnok 2013
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U D f1; 2; : : : ; ng for some positive integer n, then we simply write Bn for
.P.U /; �/.

• Any set of nonnegative integers S is a poset for the “divisibility” relation; this
system is called the divisor poset and is denoted by .S; j/. In particular, if S is
the set of all positive divisors of a positive integer n, we let Dn denote .S; j/.
We should note that the set of integers is not a poset for divisibility as it fails

antisymmetry; for example, we have 7j.�7/ and .�7/j7, but, of course, 7 ¤ �7.
Each partial order relation has a corresponding “strict” version, as follows:

Definition 18.2. Suppose that 
 is a partial order relation on a set P . The strict
order relation corresponding to 
 is the relation � on P consisting of all ordered
pairs .a; b/ 2 P 2 for which a 
 b but a ¤ b.

It is then not hard to prove that � is an irreflexive, asymmetric, and transitive
relation on P —see Problem 1.

Partially ordered sets may be visualized via diagrams constructed as follows.
Suppose that P is a set with partial order relation 
 (and corresponding strict
order �). For two distinct elements a 2 P and b 2 P , we say that b is a
(consecutive) successor of a if a � b and there is no c 2 P for which a � c

and c � b. For example, in the divisor poset D18, 18 is a successor of 6, since 6j18

and there is no c 2 N different from 6 and 18 for which 6jc and cj18. However, 18
is not a successor of 3, as we have 3j9 and 9j18.

The Hasse diagram of a poset P —so named after the German mathematician
Helmut Hasse (1898–1979) —is a graph G in the plane (in the sense of Chap. 17)
so that the vertices of G correspond to the elements of P ; two vertices of G are
adjacent if, and only if, one is a successor of the other, and the vertices are positioned
in the plane in such a fashion that if b 2 P is a successor of a 2 P , then the vertex
corresponding to a is “lower” than the vertex corresponding to b. Note that, since
the partial order relation is antisymmetric, we cannot have two vertices so that one
of them is both “lower” and “higher” than the other. On the other hand, if two
elements of P are such that neither is a successor of the other, then we may choose
to put either one “lower” than the other or we may put them at the same “height.”
Of course, a poset has many different Hasse diagrams, and it is not always easy to
decide if two diagrams correspond to the same poset.

Hasse diagrams are particularly convenient for finite posets. The Hasse diagram
of D108, for example, is
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The most well-known (and used) Hasse diagram is probably that of Bn; due to its
structure, it is referred to as the n-dimensional hypercube. For example, the Hasse
diagram of B3 is the (not very “hyper”) three-dimensional cube:
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;

f2g

f1; 3g

f1; 2; 3g

f1g

f1; 2g

f3g

f2; 3g

Hasse diagrams of infinite posets can sometimes also be clear. For example, the
Hasse diagrams of the total orders .N; �/ and .Z; �/ are vertical paths (cf. page
206), infinite in both directions for Z, but infinite only upward for N. The Hasse
diagrams for .Q; �/ or .R; �/, however, are not feasible: there are no successors as
Q and R are dense (cf. Problem 6 in Chap. 15).
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Posets and their properties are discussed in almost all branches of mathematics.
Here we examine some of their basic properties. Let us start by introducing some
terminology.

Definition 18.3. Suppose that 
 is a partial order relation on a set P , and let S be
a subset of P .
We say that an element a 2 S is:

• A minimal element of S if there is no b 2 S different from a for which b 
 a

• A maximal element of S if there is no b 2 S different from a for which a 
 b

• The minimum element of S if a 
 b holds for every b 2 S

• The maximum element of S if b 
 a holds for every b 2 S

Furthermore, we say that an element a 2 P is:

• A lower bound for S in P if a 
 b holds for every b 2 S

• An upper bound for S in P if b 
 a holds for every b 2 S

• The infimum of S in P if it is a lower bound of S and c 
 a holds for every
lower bound c of S

• The supremum of S in P if it is an upper bound of S and a 
 c holds for
every upper bound c of S

Finally, we say that S is:

• Bounded below in P if it has at least one lower bound in P

• Bounded above in P if it has at least one upper bound in P

• Bounded in P if it is both bounded below and bounded above in P

It is probably wise to briefly discuss these rather delicate terms. We start with the
first four definitions. The difference between a minimal element and the minimum
element of a subset S of a poset P is that, while both capture the fact that no element
of S can be less than them, the minimum element has the additional property that it
must be comparable to (and, therefore, less than) every other element of S . Clearly
(cf. Problem 4), if the minimum element of S exists at all, then it must be unique,
and if S has more than one minimal element, then it cannot have a minimum; the
analogous facts hold for maximal and maximum elements. If they exist, then we will
use the notations min S and max S for the minimum and maximum elements of S ,
respectively. For example, in the poset P given by its Hasse diagram below, the
elements a, b, c, and g are minimal elements of P ; there is no minimum element,
f is the only maximal element, and max P D f .
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Let us now examine the rest of the terms in Definition 18.3. First note that, unlike
the minimal, maximal, minimum, and maximum elements of the subset S of P ,
lower and upper bounds and the infimum and supremum elements do not need to be
in S . The set of lower bounds for S in P is denoted by S# (pronounced “S lower”),
and the set of upper bounds for S in P is denoted by S" (pronounced “S upper”). If
neither S# nor S" is empty, then S is bounded in P . Clearly, a subset S in a poset P

may have many upper or lower bounds, but the infimum and supremum of S in P ,
if they exist, must be unique; they will be denoted by inf S and sup S , respectively.

Let us further illuminate these concepts through some examples. Consider first
the set S D f2; 6; 9g in the poset .N; �/. Then x D 1 is a lower bound for S since
1 � y holds for every y 2 S . However, x D 1 is not the infimum of S as x � 1 does
not hold for every lower bound x of S : clearly, x D 2 is a lower bound and 2 6� 1.
However, inf S D 2 as 1 and 2 are the only lower bounds of S in P and 1 � 2. We
can also verify that sup S D 9. It is easy to see that every nonempty subset of N has
an infimum (the minimum element of the set, which exists by Theorem 13.6), but
an infinite subset does not have a supremum.

Next, consider again the set S D f2; 6; 9g, but now in the divisor poset .N; j/.
This time, we have inf S D 1 and sup S D 18. For example, 18 is the supremum as
it is a common multiple of 2, 6, and 9, and every common multiple of 2, 6, and 9
is a multiple of 18 (so 18 is the least common multiple of 2, 6, and 9). We find that
every nonempty subset of N has an infimum (the greatest common divisor), but an
infinite subset does not have a supremum; cf. Theorem 18.7 below.

Partially ordered sets where every subset (or at least every finite subset) has an
infimum and a supremum play important roles in many parts of mathematics.

Definition 18.4. Suppose that 
 is a partial order relation on a set P .
If every two-element subset of P has an infimum and a supremum, then .P; 
/ is

called a lattice.
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If every subset of P has an infimum and a supremum, then .P; 
/ is called a
complete lattice.

It is obvious that, in every poset, all one-element subsets have an infimum and a
supremum. Using induction, it is easy to prove that, if every two-element subset in
P has a supremum and an infimum (i.e., P is a lattice), then every nonempty finite
subset has an infimum and a supremum—see Theorem 18.10.

It is worth examining the case of the empty set: When does ; have an infimum
and a supremum in a poset P ? Note that, since (trivially) every element of P serves
both as an upper bound and a lower bound for ;, in order for ; to have a supremum
or infimum, P itself must have a minimum or maximum element, respectively.
Therefore, since in a complete lattice even ; must have an infimum and a supremum,
we get the following:

Proposition 18.5. In a poset P , inf ; exists if, and only if, max P does, in which
case

inf ; D max P I
and sup ; exists if, and only if, min P does, in which case

sup ; D min P:

In particular, a complete lattice must have both a minimum and a maximum element.

As a consequence of Proposition 18.5, we see that every complete lattice is
bounded.

Let us now examine our main examples for posets on page 213. Clearly, .N; �/,
.Z; �/, .Q; �/, and .R; �/ are all lattices, with the minimum and maximum of
the two numbers in question serving as infimum and supremum, respectively; for
example, inff3; 8g D 3 and supf3; 8g D 8. However, none of these posets is a
complete lattice, since none of them has a maximum element (and only N has
a minimum element). Thus, in these posets, only nonempty sets may possibly
have infima and suprema. Indeed, in both .N; �/ and .Z; �/, every nonempty and
bounded subset has both a supremum and an infimum; for example, if S is the set
of all integers strictly between 3 and 8, then inf S D 4 and sup S D 7.

This is not the case, however, in .Q; �/. Consider the set

S D fx 2 Q j x2 < 2g
in this poset. (We see that

S D fx 2 Q j � p
2 < x <

p
2g;

but we wanted to define S in terms of rational numbers only.) Clearly, S is nonempty
and bounded in Q. However, we find that S has neither an infimum nor a supremum;
indeed, the set of lower bounds of S and the set of upper bounds of S in Q are
given by

S# D fy 2 Q j y � �p
2g
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and

S" D fy 2 Q j y � p
2g;

respectively, but S# has no maximum element, and S" has no minimum element
among the rational numbers. Thus, in .Q; �/, even a nonempty bounded set may
have no supremum and infimum. We will return to this example in Chap. 23.

At the same time, we find that the set S above has both an infimum and a
supremum in .R; �/: clearly, inf S D �p

2 and sup S D p
2. It turns out that,

in fact, every nonempty and bounded subset of R has an infimum and a supremum.
Since, clearly, this fact cannot be proven from the ordered field axioms—otherwise it
would apply to the ordered field of rational numbers as well (see also Problem 7)—
we state this as an axiom.

Axiom 18.6 (The Completeness Axiom). If S is a nonempty and bounded subset
of R, then S has both a supremum and an infimum in the poset .R; �/.

(Here we state this statement as an axiom, as it is customary, but we should note
that it is possible to use a different axiom system for the set of real numbers from
which the Completeness Axiom can be derived; cf. Problem 9 in Chap. 23.) The fact
that the ordered field of the real numbers satisfies the Completeness Axiom is often
stated in the condensed form that R is a complete ordered field. We will examine
some of the important and well-known consequences of the Completeness Axiom
in Chap. 20.

Regarding the Boolean poset .P.U /; �/, we can easily verify that it is a complete
lattice for every set U . For any set S � P.U /, the infimum and supremum of S are
given by the intersection and the union of all sets in S , respectively; that is,

inf S D
\

X2S

X and sup S D
[

X2S

X:

(We should note that, by the axioms of set theory, these intersections and unions are
themselves subsets of U —see Appendix B.) Clearly, we have min P.U / D ; and
max P.U / D U .

Finally, we examine the divisor posets. As our earlier example shows,
.f2; 6; 9g; j/ is not a lattice: for example, S D f6; 9g has neither an infimum
nor a supremum in the set. On the other hand, we have the following result:

Theorem 18.7. The divisor poset .N; j/ is a lattice. That is, for all pairs of positive
integers a and b:

• There is a unique positive integer d such that (i) d is a common divisor of a and
b and (ii) d is a multiple of all common divisors of a and b.

• There is a unique positive integer l such that (i) l is a common multiple of a and
b and (ii) l is a divisor of all common multiples of a and b.
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Proof. We use the Fundamental Theorem of Arithmetic (cf. Theorem 14.8) to show
that gcd.a; b/ and lcm.a; b/ satisfy the respective requirements and it will also be
clear from our proof that no other integers do. Since our claim clearly holds if a D 1

or b D 1, we will assume that a � 2 and b � 2.
Let Pa and Pb be the set of positive primes that divide a and b, respectively, and

set P D Pa \ Pb . For each p 2 P , let ˛p be the number of times p appears in the
prime factorization of a; define ˇp similarly. (Note that ˛p or ˇp may be 0.) With
these notations, we can write

a D
Y

p2P

p˛p and b D
Y

p2P

pˇp :

It is easy to see that a positive integer c is a common divisor of a and b if, and only
if, c is of the form

c D
Y

p2P

p�p

where
0 � �p � minf˛p; ˇpg

holds for each prime p 2 P . In particular, setting

�p D minf˛p; ˇpg

for each p 2 P , we get the greatest common divisor, which then is clearly a multiple
of every c in the form given above.

Similarly, we see that any common multiple of a and b will have a prime
factorization that contains every p 2 P with exponent at least

ıp D maxf˛p; ˇpgI

and thus the least common multiple of a and b is

lcm.a; b/ D
Y

p2P

pıp ;

and this number is then a divisor of all common multiples of a and b. ut
Theorem 18.7 also implies that the finite divisor poset Dn is a lattice for every

n 2 N and, since it’s finite, it is a complete lattice (cf. Theorem 18.11). In contrast,
.N; j/ is not a complete lattice: there is no n 2 N that is divisible by all positive
integers. However, as we show in Problem 9, .N [ f0g; j/ is a complete lattice!

Lattices, especially complete lattices, are important mathematical structures that
appear in algebra, linear algebra, analysis, combinatorics, and topology—just about
all branches of mathematics.
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Before we close this chapter on order relations, we must mention a special type
of order relation that plays a crucial role in the development of set theory. Recall
Theorem 13.6, which states that in the poset .N; �/, every nonempty set contains a
minimum element. We make the following definition:

Definition 18.8. Suppose that 
 is a partial order relation on a set P . If every
nonempty subset of P contains a minimum element, then 
 is said to be a well-
order on P , and .P; 
/ is called a well-ordered set or woset.

Here we have to restrict the requirement of having a minimum to nonempty
subsets of P ; the empty set, of course, has no minimum element. An interesting
question—with a surprising answer—is: Which sets can be well-ordered, that is, on
which sets can one define a well-ordering relation?

We already noted that, by Theorem 13.6, the poset .N; �/ is a woset. It may be
worth pointing out that there are many ways to well-order N besides the usual “less
than or equal to” relation. Here are some examples (with m � n denoting the strict
order that m 
 n but m ¤ n):

1 � 2 � 3 � 4 � 5 � 6 � � � �

2 � 1 � 4 � 3 � 6 � 5 � � � �
4 � 5 � 6 � 7 � � � � � 1 � 2 � 3

1 � 3 � 5 � 7 � � � � � 2 � 4 � 6 � 8 � � � �
1 � 2 � 4 � 8 � � � � � 3 � 6 � 12 � 24 � � � � � 5 � 10 � 20 � 40 � � � �

We can easily verify that each order is a well-order.
Clearly, .Z; �/, .Q; �/, and .R; �/ are not wosets as there is no minimum

integer, rational number, or real number. It is not too surprising, however, that the set
of integers and even the set of rational numbers can be well-ordered; after all, each
set can even be put in a list (cf. Problem 12 in Chap. 8). For example, the integers
can be well-ordered as

0 � 1 � �1 � 2 � �2 � 3 � �3 � 4 � �4 � � � �

or
0 � 1 � 2 � 3 � 4 � � � � � �1 � �2 � �3 � �4 � � � � :

It was one of the most shocking events in the history of mathematics when
in 1904 the German mathematician Ernst Zermelo announced his proof of the
following theorem:

Theorem 18.9 (The Well-Ordering Theorem). Every set has a well-ordering;
that is, for every set X , there exists an order 
, so that .X; 
/ is a woset.

While Zermelo’s proof is not too complicated, the statement itself is hard to
grasp. No one, to this day, knows, for example, how to create a well-ordering of the
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real numbers (Zermelo’s proof is not constructive). Any proof of the Well-Ordering
Theorem uses the Axiom of Choice (cf. page 204); in fact, it can be proven that they
are equivalent: each one implies the other. So we have two equivalent statements—
the Axiom of Choice and the Well-Ordering Theorem—where one statement (the
Axiom of Choice) agrees with our intuition and the other seems impossible to
imagine. The majority of mathematicians have already made peace with the Well-
Ordering Theorem, but having to accept consequences like this made some argue
for dropping the Axiom of Choice from our axiom system. (Another, perhaps even
more striking, consequence of the Axiom of Choice is the so-called Banach–Tarski
Paradox, cf. Theorem B.9.)

Problems

1. (a) Suppose that 
 is a partial order relation on a set P . Prove that the strict
order relation � corresponding to 
 (defined by Definition 18.2) is an
irreflexive, asymmetric, and transitive relation on P .

(b) Suppose that � is an irreflexive, asymmetric, and transitive relation on a set
P . Prove that the relation 
 corresponding to � (defined by the union of �
and D) is a partial order relation on P .

2. Recall that in Definition 10.13 we defined ordered rings, ordered integral
domains, and ordered fields via respective subsets P of “positives” for which
axioms (O), (OC), and (O �) held. (We then used P to define the usual “less
than or equal to” relation on such structures.) In this problem we prove that the
set P is unique in Z, Q, and R; furthermore,C contains no subset P that makes
it an ordered field.

(a) Prove that if P is a subset of Z for which the order axioms hold, then
P D N.
(Hint: First prove that 1 2 P .)

(b) Prove that if P is a subset of Q for which the order axioms hold, then P is
the usual set of positive rationals.

(c) Prove that if P is a subset of R for which the order axioms hold, then
P D .0; 1/.
(Hint: Use the fact that every element of .0; 1/ has a square root in R.)

(d) Prove that C contains no subset P that makes it an ordered field.
(Hint: i2 D �1.)

3. For a positive integer n, the partition lattice Pn of order n consists of all
partitions of f1; 2; : : : ; ng, with the partial ordering 
 defined as “refinement”:
for ˘1 2 Pn and ˘2 2 Pn, we say that ˘1 
 ˘2 if every element of ˘1 is
a subset of some element of ˘2. For example, among the partitions of the set
f1; 2; 3g listed on page 204, we have ˘1 
 ˘2 and ˘3 
 ˘5, but ˘2 6
 ˘3

since f1; 2g 6� f1g and f1; 2g 6� f2; 3g.
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(a) List all elements of the partition lattice of order 4.
(b) Draw the Hasse diagram of the partition lattice of order n for every n � 4.

4. Suppose that P is a partially ordered set and that S is a subset of P . For
each statement below, decide (by providing a proof or a counterexample) if
the statement is true or false.

(a) If the minimum element of S exists at all, then it must be unique.
(b) If S has more than one minimal element, then it cannot have a minimum

element.
(c) If S has only one minimal element, then this element is its minimum

element.
(d) If the infimum of S in P exists at all, then it must be unique.
(e) If S has more than one lower bound, then it cannot have an infimum in P .
(f) If S has only one lower bound, then this element is its infimum.
(g) If S has a minimum element, then this element is also the infimum of S

in P .
(h) If S has an infimum in P , then this element is also the minimum element

of S .
(i) If S has an infimum in P , then this element is also the maximum element

of S#.
(j) If S has a minimum element, then this element is also the supremum

element of S# in P .

5. In Definition 18.4, we defined a lattice as a poset where every two-element
subset has an infimum and a supremum and a complete lattice as a poset in
which every subset has an infimum and a supremum. The following theorems
state alternative criteria. Prove each result.

(a) Theorem 18.10. A partially ordered set P is a lattice if, and only if, every
nonempty finite subset of P has an infimum and a supremum.

(b) Theorem 18.11. A finite partially ordered set P is a complete lattice if,
and only if, P is a lattice.
(Hint: Use Theorem 18.10, but don’t forget about the empty set!)

(c) Theorem 18.12. A partially ordered set P is a complete lattice if, and only
if, every subset of P has an infimum.
Remarks. According to Theorem 18.12, it is enough to verify “half” of
what Definition 18.4 requires. A similar result can be attained by replacing
“infimum” by “supremum.”
(Hints: Let S � P ; by assumption, a D inf S" exists. Prove that a D
sup S .)

6. For each of the following posets, decide whether it is a lattice and, if so, if it is
a complete lattice:

(a) P is given by its Hasse diagram below.



224 18 Order, Please!

�������

�������

�������

�������

��������������

�

�

�

�

�

�

(b) P is given by its Hasse diagram below.
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(c) P D f1; 2; 4; 5; 6; 12; 20; 30; 60g with the partial order being divisibility.
(d) P D f1; 2; 5; 15; 20; 60g with the partial order being divisibility.
(e) P D .6; 7� with the partial order being �.
(f) P D Œ6; 7� with the partial order being �.
(g) P D f5g [ .6; 7� with the partial order being �.

7. Recall that the set of rational functions R.x/ (cf. Problem 10 (d) of Chap. 10)
is an ordered field where f =g (with real polynomials f and g ¤ 0) is positive
whenever the leading coefficients of f and g have the same sign. Decide
whether the Completeness Axiom holds in R.x/.
(Hint: Consider the subset R of R.x/.)

8. (a) Consider the following claim:
Claim 1. The poset .N; �/ is a complete lattice.
We have already pointed out that Claim 1 is false; for example, it violates
Proposition 18.5. Therefore, the following argument must be incorrect;
explain why.
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Argument. According to Theorem 18.12, it is enough to verify that every
set of positive integers has an infimum for �. But, by Theorem 13.6,
every subset of N has a minimum element; this element then is clearly
the infimum of the set.

(b) Consider the following claim:
Claim 2. The poset .N; j/ is a lattice.
In Theorem 18.7 we proved that Claim 2 was true. The following argument
seems considerably simpler—unfortunately, it is not correct. Explain what
is wrong with it.
Argument. We need to prove that for all pairs of positive integers a and
b, there are integers i D inffa; bg and s D supfa; bg. We will show that
i D gcd.a; b/ and s D lcm.a; b/ satisfy the definition of infimum and
supremum, respectively. We will only do this here for i ; the argument for s

is similar.
Note that the partial order 
 here is divisibility; therefore, we need to

prove that i is a common divisor of a and b and that if c is any common
divisor of a and b, then i is greater than or equal to c. But both of these
claims follow trivially from the definition of the greatest common divisor.
This proves that N is a lattice for the divisibility relation.

9. Prove that the set of nonnegative integers is a complete lattice for the divisibility
relation. Explain why this does not violate Proposition 18.5.

10. Consider the following proposition:

Proposition 18.13. Suppose that L is a lattice with partial order 
, and let
a; b; c 2 L be arbitrary. If a 
 b, then inffa; cg 
 inffb; cg.

(a) Restate Proposition 18.13 for the lattice .R; �/.
(b) Restate Proposition 18.13 for the Boolean lattice .P.U /; �/. (As usual,

P.U / denotes the power set of a set U .)
(c) Restate Proposition 18.13 for the divisor lattice .N; j/.
(d) Prove Proposition 18.13.
(e) Is the converse of Proposition 18.13 true?

11. (a) Consider the following theorem:

Theorem 18.14. Suppose that L is a lattice with partial order 
, and let
a; b; c 2 L be arbitrary. Then

supfinffa; bg; inffa; cgg 
 inffa; supfb; cgg:

i. Restate Theorem 18.14 for the Boolean lattice .P.U /; �/. (P.U /

denotes the power set of a set U .)
ii. What is wrong with the following “proof”? Wlog we can assume

that b 
 c, so supfb; cg D c. By Proposition 18.13, we also have
inffa; bg 
 inffa; cg, and thus, supfinffa; bg; inffa; cgg D inffa; cg.
Therefore, the claim of Theorem 18.14 simplifies to

inffa; cg 
 inffa; cg;
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which obviously holds.
iii. Prove Theorem 18.14.

(Hint: Prove first that inffa; bg 
 a, inffa; cg 
 a, inffa; bg 

supfb; cg, and inffa; cg 
 supfb; cg.)

(b) Lattices where equality holds in Theorem 18.14 play an important role in
the algebra of lattices.

Definition 18.15. A lattice L with partial order 
 is called a distributive
lattice if for every a; b; c 2 L,

supfinffa; bg; inffa; cgg D inffa; supfb; cgg:

(It can be shown that requiring the condition above is equivalent to
requiring the dual condition where inf and sup are interchanged.)

i. Verify that .R; �/ is a distributive lattice.
ii. Verify that the Boolean lattice .P.U /; �/ is a distributive lattice.

iii. Verify that the divisor lattice .N; j/ is a distributive lattice.
(Hint: Use prime factorizations.)

iv. Show that neither of the two lattices, given by their Hasse diagrams
below, is a distributive lattice.
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Remarks. The two lattices above are usually denoted by M3 and N5,
respectively. We have the following famous result, reminiscent of
Kuratowski’s Theorem:

Theorem 18.16. A lattice L is distributive if, and only if, it does not
contain M3 or N5 as sublattices.

12. (a) Prove the following proposition:

Proposition 18.17. Every well-order is a total order; that is, if 
 is a well-
order on a set X , then for any a; b 2 X we have a 
 b or b 
 a.

(Hint: Consider the set fa; bg.)
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(b) Prove the following proposition:

Proposition 18.18. In every woset, at most one element has no successor.

(Hints: Let 
 be a well-order on a set X ; we need to prove that, given any
pair of distinct elements a and b of X , at least one has a successor. By
Proposition 18.17, we can assume, wlog, that a 
 b. Consider the set of
strict upper bounds of fag; that is, fag* D fag" n fag.)

(c) One can easily think of examples for totally ordered sets where no element
has a successor (e.g., .R; �/), and total orders where exactly one element
does not have one (e.g., the well-order

4 � 5 � 6 � 7 � � � � � 1 � 2 � 3

of N that we have seen earlier). Find an example of a total order on a set
where exactly two elements have no successors.

13. Prove the following theorem:

Theorem 18.19 (The Principle of Transfinite Induction). Let X be a
nonempty set, 
 be a well-order on X with corresponding strict order �,
m be the (unique) minimum element of X , and let P.x/ be a predicate that
becomes a statement for every x 2 X . If

• P.m/ and
• 8a 2 X , ^x�aP.x/ ) P.a/

both hold, then P.x/ is true for every x 2 X .

(Hints: Proceed indirectly, and assume that the truth set XP of the predicate is a
proper subset of X . Then X nXP is nonempty; consider its minimum element.)

Remarks. We included the assumption that P.m/ holds, even though it vacu-
ously follows from the inductive assumption since there are no elements in X

for which x � m.

The Principle of Transfinite Induction is a far reaching generalization of the
Principle of Induction; it is powerful in proving statements involving “very
large” sets (cf. Chap. 22). For example, it helps us prove strikingly simple-
sounding statements, such as the following result:

Theorem 18.20. There is a subset of the Euclidean plane that intersects every
line exactly twice.

Recall from Problem 2 of Chap. 4 that a subset of the plane that intersects
every line exactly once does not exist! Theorem 18.20 can be proven by a
recursive construction using transfinite induction.



Chapter 19
Let’s Be Functional!

In this chapter we discuss functions. Although the concept of functions is
undoubtedly familiar, here we follow a more abstract approach; in particular,
we consider functions as special relations.

Definition 19.1. Suppose that A and B are nonempty sets, and let f be a relation
from A to B . We say that f is a function from A to B if for every a 2 A there is
a unique b 2 B with a � b; in this case we write f W A ! B and a 7! b or
f .a/ D b.

For a function f W A ! B , we say that A is the domain of f , B is the codomain
of f , and the set

Im.f / D f .A/ D fb 2 B j 9a 2 A; f .a/ D bg

is the image (or range) of f .
If A D B , then we say that f is a function on A.

We can easily see from the matrix or (Cartesian) graph representation of a
relation if it is a function (cf. page 200). A relation is a function whenever:

• Each row in its matrix description has exactly one 1 in it.
• Its graph crosses every vertical line (over its domain) exactly once (this is called

the vertical line test).

The conditional notation of a relation might also reveal if it describes a function; for
example,

f.x; y/ 2 R
2 j x4 C y3 D 10g

yields a function y D f .x/, but for the relation

f.x; y/ 2 R
2 j x3 C y4 D 10g;

y is not a function of x!

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-6636-9 19, © Béla Bajnok 2013
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In addition, some functions—particularly those with finite domain—can be
described efficiently with a table of two rows: the first row lists the elements of the
domain and the second row lists the corresponding function values. An alternative to
the table description is a diagram where elements of the domain and codomain are
listed in (two rows or) two columns, with an arrow from each element of the domain
to the corresponding element in the codomain. Finally, some of the most useful
functions are conveniently defined by formulas. For example, the representations
below all describe the same function.

a �2 �1 0 1 2

f .a/ 4 1 0 1 4
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A B

f W f�2; �1; 0; 1; 2g ! f0; 1; 2; 3; 4g
a 7! a2

It may be useful to state explicitly when two functions are equal.

Definition 19.2. We say that the functions f1 and f2 are equal if they have the
same domain, the same codomain, and for each element a in the domain, we have
f1.a/ D f2.a/.

For example, according to Proposition 12.5, the functions

f1 W Z8 ! Z8

n 7! n3

and
f2 W Z8 ! Z8

n 7! n5
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are equal. Note that for two functions to equal each other, we assume that their
codomains are equal; so, for example, the function

g W f�2; �1; 0; 1; 2g ! R

a 7! a2

is considered unequal to the function f defined on page 230 even though their
domains and all their values agree.

There are, of course, many different kinds of functions—some with well-known
names, some without. Perhaps the simplest function of all is the identity function on
a set A. It is denoted by idA and is defined by idA.a/ D a for every a 2 A.

We now turn to three fundamentally important classes of functions.

Definition 19.3. A function f W A ! B with image Im.f / is called:

• Injective (or one-to-one) if

8b 2 Im.f /; 9Ša 2 A; f .a/ D b

• Surjective (or onto) if Im.f / D B

• Bijective (or a one-to-one correspondence) if it is both injective and surjective

In theory, it is easy to tell if a given function is injective, surjective, or bijective.
The matrix representation shows that a function is:

• Injective if, and only if, each column in its matrix representation has at most one
1 in it

• Surjective if, and only if, each column in its matrix representation has at least one
1 in it

• Bijective if, and only if, each column in its matrix representation has exactly one
1 in it

Equivalently, its graph shows that a function is:

• Injective if, and only if, it crosses every horizontal line at most once (this is called
the horizontal line test)

• Surjective if, and only if, it crosses every horizontal line at least once
• Bijective if, and only if, it crosses every horizontal line exactly once

For example, the function described on page 230 is not injective: it maps both
1 and �1 (and also 2 and �2) to the same element of the codomain. Neither is it
surjective: the elements 2 and 3 of the codomain are not in the image of f . On
the other hand, the identity function is obviously a bijection on any set. Injections,
surjections, and bijections are discussed often in mathematics, and we will see a
variety of examples later.

If two functions are given in such a way that the codomain of the first is the same
as the domain of the second, then we are able to combine them into a new function
as follows:
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Definition 19.4. If f W A ! B and g W B ! C , then the composition of g with f

is the function h W A ! C defined by

h.a/ D g.f .a//:

In this case we write h D g ı f .

Note that compositions don’t commute: gıf and f ıg are not only different, but
usually they are not even both meaningful—only when the codomain of each is the
same as the domain of the other can they be both defined! However, compositions
satisfy the associative property: for all functions f W A ! B , g W B ! C , and
h W C ! D, we have

.h ı g/ ı f D h ı .g ı f /:

Compositions can be used to define left and right inverses.

Definition 19.5. Let f W A ! B .

• The left inverse of f is a function g W B ! A for which g ı f D idA.
• The right inverse of f is a function h W B ! A for which f ı h D idB .

As an example, let
f W Œ0; 1/ ! R

x 7! p
xI

and
g W R ! Œ0; 1/

x 7! x2:

Then f is a right inverse of g, since for all x 2 Œ0; 1/, we have

.g ı f /.x/ D g.f .x// D g.
p

x/ D xI

however, f is not a left inverse of g: for example, we have .f ı g/.�1/ D 1, so
f ı g 6D idR! Similarly, g is a left inverse (but not a right inverse!) of f .

We should point out that, in general, a function may have more than one left
inverse or more than one right inverse. In our last example, for instance, since it
made no difference how g was defined for negative x values when calculating .g ı
f /.x/, f would have infinitely many left inverses. On the other hand, we have the
following theorem:

Theorem 19.6. Let f W A ! B . If f has both a left inverse g W B ! A and a
right inverse h W B ! A, then

• g is the unique left inverse of f .
• h is the unique right inverse of f .
• g D h.

Proof. To prove the first claim, suppose that g1 and g2 are both left inverses of f .
Then for each b 2 B , we have



19 Let’s Be Functional! 233

g1.b/ D g1.idB.b// D g1..f ı h/.b// D .g1 ı f /.h.b// D idA.h.b// D h.b/I

similarly we have
g2.b/ D h.b/;

so g1 D g2. The proofs of the other two claims are similar. ut
By Theorem 19.6, we can make the following definition:

Definition 19.7. Let f W A ! B , and suppose that f has both a left inverse and a
right inverse. Then we say that f is invertible; the (unique) function f �1 W B ! A

for which f �1 ı f D idA and f ı f �1 D idB is called the inverse of f .

According to Theorem 19.6, if f has both a left inverse and a right inverse, then
f �1 exists and is unique. (Special care needs to be taken with the notation: f �1

here stands for the inverse of f and not for its reciprocal!)

Proposition 19.8. Let f W A ! B , and suppose that f is invertible. Then f �1 is
invertible as well, and

.f �1/�1 D f:

Proof. We need to show that f is both a left inverse and a right inverse of f �1.
Now for every b 2 B , we have

.f ı f �1/.b/ D b

since f �1 is a right inverse of f ; therefore, f is a left inverse of f �1. The proof of
the other claim is similar. ut

According to Proposition 19.8, the phrase that f and f �1 are “inverses of each
other” is legitimate. As an example, we can easily verify that the functions

f W R ! R

x 7! 3
p

x

and
g W R ! R

x 7! x3

are inverses of each other.
We close this chapter by fulfilling an earlier promise. In Chap. 8, we defined the

direct product of a finite number of sets A1; : : : ; An as

nY

iD1

Ai D A1 
 A2 
 � � � 
 An

D f.x1; x2; : : : ; xn/ j .x1 2 A1/ ^ .x2 2 A2/ ^ � � � ^ .xn 2 An/g;
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and said that we would define the product of an infinite number of sets in Chap. 19.
Not surprisingly, the reason for the postponement was that such infinite products are
defined via functions.

Note first that there is a bijection between the direct product
Qn

iD1 Ai above and
the set of functions

ff W f1; 2; : : : ; ng ! [n
iD1Ai j .f .1/ 2 A1/ ^ .f .2/ 2 A2/ ^ � � � ^ .f .n/ 2 An/g :

Indeed, the element

.x1; x2; : : : ; xn/ 2
nY

iD1

Ai

can be identified with the function f given by the following table representation:

i 1 2 : : : n

f .i/ x1 x2 : : : xn

This gives us the suggestion for the following definition:

Definition 19.9. Let I be a set, and suppose that Xi is a set for each i 2 I . Then
the Cartesian or direct product of the set of sets Xi is defined as the set of functions

Y

i2I

Xi D ff W I ! [i2I Xi j 8i 2 I; f .i/ 2 Xi g:

Note that the definition we gave in Chap. 8 for the case when I is nonempty and
finite is a special case of Definition 19.9. Of course, if I or any Xi is the empty set,
then so is

Q
i2I Xi . Conversely, we have the following theorem:

Theorem 19.10. Let I be a set, and let Xi be a set for each i 2 I . Suppose that
I ¤ ; and Xi ¤ ; for each i 2 I . Then

Q
i2I Xi ¤ ;.

We prove Theorem 19.10 in Problem 15; in fact, we prove that it is equivalent to
the Axiom of Choice.

When I D N, the infinite direct product is also denoted by

1Y

iD1

Xi D X1 
 X2 
 � � � D f.x1; x2; x3; : : : / j 8i 2 N; xi 2 Xi gI

furthermore, when Xi D X for all i 2 N, then

1Y

iD1

X D f.x1; x2; x3; : : : / j 8i 2 N; xi 2 Xg
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is simply denoted by X1. The elements of X1 are called infinite sequences. We
have already discussed sequences occasionally, and we will take these discussions
to the limit in Chap. 20 (pun intended).

Functions—as the first three letters in the word indicate—are the source of much
fascination in mathematics; they appear in almost all branches in fun(damental)
ways.

Problems

1. Let f W A ! B be a function. For a subset X of A, we define the image of X

under f as the set f .X/ D ff .x/ j x 2 Xg. Let C and D be subsets of A.

(a) Prove that f .C [ D/ D f .C / [ f .D/.
(b) Prove that f .C \ D/ � f .C / \ f .D/.
(c) Find an explicit example where equality fails in part (b).

2. For each piecewise-defined function f W Z ! Z below, decide if the function is
injective and/or surjective.

(a)

f .a/ D
�

a C 2 when a is odd,
2a C 1 when a is even;

(b)

f .a/ D
�

a C 3 when a is odd,
2a C 1 when a is even;

(c)

f .a/ D
�

a=2 when a is even,
3a C 1 when a is odd;

Remark. This last example is the source of what many mathematicians consider
to be a particularly challenging conjecture (cf. Collatz’s Conjecture on page
382). Namely, when composing this function with itself repeatedly, the image
of any positive integer seems to become 1 eventually. For example, we have

13 7! 40 7! 20 7! 10 7! 5 7! 16 7! 8 7! 4 7! 2 7! 1:

Paul Erdős, one of the greatest mathematicians of the twentieth century,
commented that “mathematics is just not ready to solve problems like this.”

3. Prove that the function f W N 
 N ! N defined by

f .m; n/ D 2m�1.2n � 1/

is a bijection. (See Problem 12 of Chap. 8 and Lemma 4.11.)
4. (a) Prove that every linear polynomial on R is a bijection.
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(b) Prove that no quadratic polynomial on R is a bijection.
(c) (This question requires a bit of calculus.) Find a simple necessary and suf-

ficient condition (in terms of its coefficients) for a given cubic polynomial
to be a bijection.

5. Suppose that A and B are sets with sizes given as follows. Find the number of
functions, injections, surjections, and bijections from A to B . (You do not need
to give a formal proof for your answers.)

(a) jAj D 2 and jBj D 5

(b) jAj D 5 and jBj D 2

(c) jAj D 5 and jBj D 5

(d) jAj D 3 and jBj D 5

(e) jAj D 5 and jBj D 3

6. (a) Find a function that has exactly four left inverses.
(b) Find a function that has exactly four right inverses.

(Hint: It is best to think of such functions in terms of their diagram descriptions.)
7. Prove each of the following propositions:

(a) Proposition 19.11. Suppose that A and B are nonempty finite sets. The
following three statements are equivalent:

i. There is an injection from A to B .
ii. There is a surjection from B to A.

iii. jAj � jBj.
(b) Proposition 19.12. Suppose that A and B are nonempty finite sets. The

following three statements are equivalent:

i. There is an injection from A to B and an injection from B to A.
ii. There is a bijection from A to B .

iii. jAj D jBj.
(c) Proposition 19.13. Suppose that A and B are nonempty finite sets with

jAj D jBj, and let f W A ! B . Then:

i. If f is an injection, then it is also a bijection.
ii. If f is a surjection, then it is also a bijection.

(d) Proposition 19.14. Suppose that A and B are nonempty finite sets. At least
one of the two statements below is always true:

i. There is an injection from A to B .
ii. There is a surjection from A to B .

8. Prove the following proposition:
Proposition 19.15. 1. A function has a left inverse if, and only if, it is

injective.
2. A function has a right inverse if, and only if, it is surjective.
3. A function is invertible if, and only if, it is bijective.
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(Hint for Claim 2: Use the Axiom of Choice, cf. page 204.)
9. (a) Prove the following proposition:

Proposition 19.16. Suppose that f W A ! B , g W B ! C , and h D
g ı f .

i. If f and g are injective, then so is h.
ii. If f and g are surjective, then so is h.

iii. If f and g are bijective, then so is h.
iv. If f and g are invertible, then so is h, and h�1 D f �1 ı g�1.

(b) Suppose again that f W A ! B , g W B ! C , and h D g ı f . Prove or
disprove each of the following statements:

i. If h is injective, then f is injective.
ii. If h is injective, then g is injective.

iii. If h is surjective, then f is surjective.
iv. If h is surjective, then g is surjective.

10. (a) Recall the equivalence relation R defined in Problem 7 (a) of Chap. 17:

R D f..a; b/; .c; d // 2 .N2/2 j a C d D b C cg:

Let N2=R denote the set of equivalence classes in N
2 determined by R.

Find, with proof, an explicit bijection between the set of integers Z and
N

2=R.
(b) Recall the equivalence relation R defined in Problem 7 (b) of Chap. 17:

R D f..a; b/; .c; d // 2 .Z 
 .Z n f0g//2 j a � d D b � cg:

Let .Z
.Z n f0g//=R denote the set of equivalence classes in Z
.Z n f0g/
determined by R. Find, with proof, an explicit bijection between the set of
rational numbers Q and .Z 
 .Z n f0g// =R.

11. Find an explicit bijection from the set of real numbersR to each of the following
sets:

(a) .0; 1/

(Hints: There are both simple trigonometric and algebraic invertible func-
tions with domain R and range .0; 1/.)

(b) Œ0; 1/

(Hints: By part (a) and Problem 9 (a) iii above, it suffices to find a bijection
from .0; 1/ to Œ0; 1/. Start by mapping 1

2
to 0.)

(c) Œ0; 1�

12. For a positive integer n, Sn denotes the set of all bijections on f1; 2; : : : ; ng. (In
Problem 1 of Chap. 10 we already studied S3. Here we examine the much larger
set S5.)

(a) Let f 2 S5 be defined by the following table:
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i 1 2 3 4 5

f .i/ 4 5 1 3 2

(In short, we can write

f D .1 7! 4 7! 3 7! 1/.2 7! 5 7! 2/

or, as it is customary, f D .143/.25/:)
Find f ı f and f �1.

(b) Prove that S5 is a group for the operation of composition.
(c) Is S5 an abelian group?
(d) How many elements does S5 have?
(e) We define the order of some f 2 S5 to be the smallest positive integer n

for which
f ı f ı � � � ı f
„ ƒ‚ …

n

D idA

where A D f1; 2; 3; 4; 5g (for n D 1 the left-hand side is understood to
be f ).
Find the order of the element f given in part (a).

(f) How many elements of S5 have order 6?
(g) For each positive integer m, find the number of elements of S5 whose order

is m.

13. Let S be a set with a partial order relation 
, and let f be a bijection on S .
Suppose further that f is order preserving (or increasing); that is, for any a; b 2
S , a 
 b implies that f .a/ 
 f .b/. Prove or disprove each of the following
statements:

(a) f D idS .
(b) If 
 is a total order, then f D idS .
(c) If 
 is a well-order, then f D idS .

14. In this problem we investigate a certain equivalence relation among partially
ordered sets. We make the following definition:

Definition 19.17. Let A and B be sets with partial orders 
A and 
B ,
respectively. We say that the two posets are isomorphic, and write

.A; 
A/ Š .B; 
B/;

if there is an order-preserving bijection from A to B; that is, a bijection f W
A ! B with the property that for any pair of elements a1 and a2 of A, we have
a1 
A a2 if, and only if, f .a1/ 
B f .a2/. When two posets are isomorphic, we
also say that they have the same order type.
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(a) Prove that having the same order type is an equivalence relation. (To be
precise, we should say that, while reflexivity, symmetry, and transitivity
hold, having the same order type is not a relation as the collection of all
posets is not a set—there are too many of them!)

(b) Prove each of the following statements:

i. Every total order on a finite set determines the same order type.
ii. The intervals .0; 1/, .0; 1�, Œ0; 1/, and Œ0; 1�, with the usual order �, all

have different order types.
iii. The number sets N, Z, and Q, with the usual order �, all have different

order types.
iv. The rational numbers in the interval .0; 1/ and the set Q of all rational

numbers, with the usual order �, have the same order types.

(c) Suppose that posets .A; 
A/ and .B; 
B/ are isomorphic. Prove that if one
poset is a woset then so is the other.

(d) In Chap. 18 we listed the following well-orders of N:

1 < 2 < 3 < 4 < 5 < 6 < � � �

4 � 5 � 6 � 7 � � � � � 1 � 2 � 3

1 � 3 � 5 � 7 � � � � � 2 � 4 � 6 � 8 � � � �
1 � 2 � 4 � 8 � � � � � 3 � 6 � 12 � 24 � � � � � 5 � 10 � 20 � 40 � � � �
Prove that each of these well-orders provides a different order type.

(e) Prove that every infinite set accommodates infinitely many well-orders with
pairwise distinct order types.

15. Prove that Theorem 19.10 is equivalent to the Axiom of Choice.

(Hints: To prove that the Axiom of Choice implies Theorem 19.10, define, for
each i 2 I ,

Yi D f.i; xi / j xi 2 Xi gI
then consider the set Y D [i2I Yi .)



Chapter 20
Now That’s the Limit!

We have seen examples for infinite sequences throughout this book; in Chap. 19
we finally defined them officially as functions whose domain is the set of natural
numbers N or, equivalently, as the elements of the infinite Cartesian product X1 for
some set X . In this chapter we study the most important attribute of some sequences:
their limits.

Limits are frequently discussed in mathematics and are widely used in many
applications. A precise definition of limits, however, is usually not given at an
elementary level. This is no surprise as the limit concept is a rather difficult one;
it took mathematicians many centuries to come up with the precise definition.
The concept was finally crystallized by the French mathematician Augustine–Louis
Cauchy (1789–1857) and others in the nineteenth century—relatively late in the
development of “basic” mathematics! In this chapter we formulate the precise
definition using triple quantifiers (cf. Chap. 9). (Here we deal only with limits of
sequences; functions and their limits can be treated analogously and can be found
in books on analysis.)

We have already discussed statements involving one or two quantifiers: In
Chap. 12 we considered statements of the form

8x 2 U; P.x/I

and in Chap. 15 we saw examples for the form

8x 2 U; 9y 2 V; P.x; y/:

To study limits, we now add one more quantifier and analyze statements of the form

8x 2 U; 9y 2 V; 8z 2 W; P.x; y; z/:

But let’s develop the definition one step at a time.
What, exactly, do we mean when we say that the limit of the sequence

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
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�
1

n

�1

nD1

D
�

1

1
;

1

2
;

1

3
;

1

4
;

1

5
; : : :

�

is zero?
In a first approach, one might say that:

• The limit of a sequence is zero if the terms get smaller and smaller.

This cannot possibly be the precise definition, however. We certainly wish to say
that the sequence

�
.�1/n

n

�1

nD1

D
�

�1

1
;

1

2
; �1

3
;

1

4
; �1

5
; : : :

�

has limit zero, but it is not true that “the terms get smaller and smaller.” In view of
this, we may try to say that:

• The limit of a sequence is zero if the terms get closer and closer to zero or,
somewhat more precisely, that

• The limit of a sequence is zero if the absolute value of the terms gets smaller and
smaller.

One quickly finds that this will not work either. Consider a sequence such as

 
n
p

2

100

!1

nD1

� .0:02; 0:0141; 0:0126; 0:0119; 0:0115; : : : / :

The terms seem to be getting “closer and closer to zero” (indeed, they are!).
However, the limit of this sequence is not zero! The value of n

p
2 is always greater

than 1, so the terms in our sequence will never get below 0:01. (It can be shown,
in fact, that the limit is 0:01.) So a correct definition should require that the terms
become arbitrarily close to zero, that is, closer than any tiny bound (we will make
this notion more precise soon).

On the other hand, how about the sequence

�
sin n

n

�1

nD1

� .0:841; 0:455; 0:047; �0:189; �0:192; : : : /‹

Does it have limit 0?
This time, the terms do not “get closer and closer to zero” (e.g., the third term

is much closer to zero than the next two terms are), but the limit of the sequence is
zero! To convince yourself that the limit is indeed zero, note that the value of sin n

is always between �1 and 1; thus, our sequence lies somewhere between

�
1

n

�1

nD1

and

�

� 1

n

�1

nD1

;
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both of which have limit zero (this argument is based on the Squeeze Theorem—
see Problem 6). This example shows that a correct definition should allow for the
terms to become arbitrarily close to zero eventually, but the terms do not need to
get closer to zero in a monotone way. For example, since j sin nj � 1, the terms of
.sin n=n/1

nD1 will all be less than 0:1 away from zero when n > 10, although, as we
have seen, some of the first ten terms might also be less than 0:1 away from zero.

Before stating the definition correctly, let us consider one other example:

.1 C .�1/n/
1
nD1 D .0; 2; 0; 2; 0; : : : / :

Do we want to say that this sequence has limit zero? No; the limit should not be
zero since, although there are infinitely many zero terms, the sequence will never
become “arbitrarily close” to zero, not even “eventually.” (Similarly, the limit of
this sequence is not 2 either—in fact, one can easily see that this sequence has no
limit!)

In summary, what we wish to say is something like this:

• The limit of a sequence is zero if the absolute values of the terms eventually
become arbitrarily close to zero.

What do the terms “eventually” and “arbitrarily close” mean? We say that the
terms become eventually “whatever” if there is an index K so that all the terms after
the K-th term (and perhaps some of the ones even before) are “whatever.” That is,
the sequence a D .a1; a2; a3; : : : / is eventually “whatever” if

9K 2 N; 8n 2 N \ .K; 1/; an is “whatever.”

And by arbitrarily close to zero, we mean that, no matter how small a distance we
specify, the terms become closer than the specified distance to zero.

Now we are ready for the formal definition.

Definition 20.1. Let .a1; a2; a3; : : : / be an infinite sequence of real numbers. We
say that the limit of the sequence is zero if

8
 2 .0; 1/; 9K 2 N; 8n 2 N \ .K; 1/; janj < 
:

It is important to note that the order of the quantifiers cannot be switched: first we
fix 
, then K , and finally n. We can understand this better by playing the following
two-person game that we call the Zero-Limit game. It goes as follows:

1. Player I chooses a sequence of real numbers .a1; a2; a3; : : : /.
2. Player II chooses a positive number 
.
3. Player I chooses a positive integer K .
4. Player II chooses an integer n such that n > K .

The game is won by Player I if janj < 
; and Player II wins if janj � 
:
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We then see that Player I has a winning strategy for this game, namely, to choose
a sequence that has limit zero. For example, suppose Player I chooses the sequence
.1=n/1

nD1. Let’s say Player II chooses 
 D 0:0001. Then Player I can respond by
K D 10; 000; now Player II will be unable to pick an n > 10; 000 for which
j1=nj � 0:0001: We will see this more precisely in Proposition 20.4 below.

On the other hand, suppose that Player I chooses the sequence



n
p

2=100
�1

nD1
. If

Player II chooses 
 D 0:005 (or any value under 0:01), Player I will not be able to
pick a K so that j n

p
2=100j < 0:005 for every (actually, for any!) n > K—this is

because the terms of this sequence are all greater than 0:01.
Similarly, if Player I chooses the sequence .0; 2; 0; 2; 0; : : : /, then Player II can

again win by selecting 
 D 0:5 (indeed, any positive 
 less than 2). No matter which
index K Player I responds with, Player II will be able to find an n > K (making
sure to choose an even value for n), so that janj � 
:

Of course, one is interested in limit values other than zero as well. More
generally, we can define a sequence having a limit of any real number as follows:

Definition 20.2. Let a D .a1; a2; a3; : : : / be an infinite sequence of real numbers,
and let L be a real number. We say that the limit of the sequence a is L if

8
 2 .0; 1/; 9K 2 N; 8n 2 N \ .K; 1/; jan � Lj < 
:

If the limit of a is L, then we write limn!1 an D L, or simply lim an D L or
lim a D L.

Furthermore, if lim a D L for some real number L, then we say that the sequence
a is convergent; otherwise we say it is divergent.

We are almost ready to return to our first sequence, .1=n/1
nD1, and prove that,

according to our definition, its limit is indeed zero. Before we do this, however, we
state and prove an important, though quite obvious and unsurprising, fact that we
will need.

Theorem 20.3 (The Archimedean Property ofR). For every real number x, there
is a natural number n such that n > x:

The Archimedean Property is named after the ancient Greek mathematician
Archimedes of Syracuse (cca. 287–212 BCE). The statement is usually taken
for granted; after all, one can easily “construct” the desired natural number—for
example, n D dxe C 1 will do. But such “constructions,” of course, take the
Archimedean Property itself for granted, thus a proof is called for. We should also
note that the order of the two quantifiers here is not interchangeable: there is no
natural number that is greater than every real number!

Proof. We prove the equivalent claim that, for any x 2 R,

A D fn 2 N j n � xg

is a proper subset of N.
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Suppose, indirectly, that A D N. Then x is an upper bound of N, so, by the
Completeness Axiom, s D sup N exists. Since s � 1 < s, s � 1 is not an upper
bound for N; therefore, there exists an n 2 N for which s � 1 < n. Thus, s < n C 1,
which contradicts the fact s is an upper bound of N. ut

With the Archimedean Property in our repertoire, we can now evaluate our first
limit.

Proposition 20.4. lim 1
n

D 0.

Proof. The predicate in Definition 20.2, jan � Lj < 
, can be written in our case as
j 1

n
j < 
, and since 1

n
> 0, we can remove the absolute value sign and write 1

n
< 
.

Since both n and 
 are to be positive, we can further rewrite this inequality as n > 1


.

Thus, rewriting the definition gives

8
 2 .0; 1/; 9K 2 N; 8n 2 N \ .K; 1/; n >
1



:

We now explain why this last statement is true. Let us try to unwrap it from the
“inside.” The predicate

8n 2 N \ .K; 1/; n >
1




means that, for a given 
 and K (fixed by the first two quantifiers), we have K C1 >
1


, K C2 > 1



, K C3 > 1



, etc. Though we have infinitely many inequalities that we

need to satisfy, it is clearly enough to make sure that the first one holds: if KC1 > 1


,

then we will have K C 2 > 1


, K C 3 > 1



, etc. as well. Thus our statement is true

as long as we prove

8
 2 .0; 1/; 9K 2 N; K C 1 >
1




or, equivalently,

8
 2 .0; 1/; 9K 2 N; K >
1



� 1:

This last statement asks: Once we fix an arbitrary positive real number 
, is there
a positive integer K that is bigger than 1



� 1? The answer to this question is “yes”

by the Archimedean Property of R: the quantity 1



� 1 is a real number (negative if

 > 1 and nonnegative if 0 < 
 � 1), and no matter how much it is, there will be a
positive integer K that is larger. ut

We can also define the concept of a sequence approaching infinity or negative
infinity, as follows:

Definition 20.5. Let a D .a1; a2; a3; : : : / be an infinite sequence of real numbers.
We define the limit of the sequence to be infinity if

8B 2 .0; 1/; 9K 2 N; 8n 2 N \ .K; 1/; an > B:
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If the limit of a is infinity, then we write limn!1 an D 1, or simply lim an D 1 or
lim a D 1.

Similarly, we define the limit of the sequence to be negative infinity if

8B 2 .0; 1/; 9K 2 N; 8n 2 N \ .K; 1/; an < �B:

If the limit of a is negative infinity, then we write limn!1 an D �1, or simply
lim an D �1 or lim a D �1.

Note that we changed 
 to B in the definitions above; this was done purely to
emphasize that, while both 
 and B can be arbitrary positive real numbers, we prefer
to think of 
 as very small (“almost zero”) and B as very large (“almost infinity”).

Let us see an example of a sequence with limit infinity.

Proposition 20.6. lim.2n C 3/ D 1.

Proof. The proof is similar to the one given for Proposition 20.4 above, but here we
will be more concise.

Let B be an arbitrary positive real number; by the Archimedean Property, we can
choose a positive integer K for which

K � B � 3

2
:

With our choice for K , we have

8n 2 N \ .K; 1/; n >
B � 3

2
;

or, equivalently,
8n 2 N \ .K; 1/; 2n C 3 > B:

Therefore, we proved that

8B 2 .0; 1/; 9K 2 N; 8n 2 N \ .K; 1/; 2n C 3 > B;

and thus lim.2n C 3/ D 1. ut
Admittedly, our two examples, Propositions 20.4 and 20.6, feature sequences

whose limits are quite obvious and are included here only to facilitate a better
understanding of Definitions 20.2 and 20.5. Our next example is much less apparent.

Proposition 20.7. Define the sequence a D .a1; a2; a3; : : : / recursively by a1 D 1

and

anC1 D 3an C 4

2an C 3

for n � 1. Then a is convergent and lim a D p
2.
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Our proof of Proposition 20.7 will rely on a far-reaching method. First, a couple
of definitions.

Definition 20.8. The sequence a D .a1; a2; : : : / of real numbers is said to be
bounded if the set fa1; a2; : : : g is bounded in R.

Definition 20.9. The sequence a D .a1; a2; : : : / of real numbers is said to be
increasing if an � anC1 for all n 2 N; the sequence is decreasing if an � anC1

for all n 2 N. A sequence is called monotone if it is increasing or decreasing.

Of course, every sequence a D .a1; a2; : : : / satisfies the trivial condition

8n 2 N; .an � anC1 _ an � anC1/I

the sequence is called monotone only if

.8n 2 N; an � anC1/ _ .8n 2 N; an � anC1/:

We then have the following useful result:

Theorem 20.10 (The Monotone Convergence Theorem). Every monotone and
bounded sequence of real numbers is convergent. In particular, if a is increasing,
then lim a D supfa1; a2; : : : g, and if a is decreasing, then lim a D inffa1; a2; : : : g.

For a proof, see Problem 7. For instance, the sequence . 1
n
/1
nD1 is decreasing

and has infimum 0, thus has limit 0 in accordance with Proposition 20.4. (The
sequence .2n C 3/1

nD1 is increasing and is unbounded, thus has limit infinity—see
Theorem 20.21 in Problem 7.)

The beauty of the Monotone Convergence Theorem is that it enables us to find the
limit of a monotone sequence even without knowing what the infimum or supremum
of it is. In the case of Proposition 20.7, we can proceed as follows:

Proof of Proposition 20.7. First we show that the sequence a is bounded and
increasing—see Problem 5. Therefore, by the Monotone Convergence Theorem, it
converges to a finite limit L.

We can find L as follows. First we use some elementary properties of convergent
sequences (see, e.g., the Addition Theorem in Problem 6) to calculate that if
lim an D L, then

lim anC1 D lim
3an C 4

2an C 3
D 3 lim an C 4

2 lim an C 3
D 3L C 4

2L C 3
:

(Since the terms of the sequence are positive, none of the denominators above is
equal to 0.) Next, we note that the limit of a sequence is not altered by omitting (or
changing) the first (or any finite number of) terms, so

lim anC1 D lim.a2; a3; a4; : : : / D lim.a1; a2; a3; : : : / D L:
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But the sequence .anC1/
1
nD1 has a unique limit (see Theorem 20.16), so we must

have

L D 3L C 4

2L C 3
;

from which a simple calculation, noting also that we must have L > 0, yields
L D p

2. �
Each infinite sequence of real numbers gives rise to a related sequence, called an

infinite series, defined as follows:

Definition 20.11. Given an infinite sequence of real numbers a D .a1; a2; : : : /,
we define the infinite series (or sequence of partial sums) s D .s1; s2; : : : / of a
recursively by s1 D a1 and sn D sn�1 C an for n � 2.

If the limit of s exists (is a finite number, infinity, or negative infinity), then we letP1
nD1 an, or simply

P
an or

P
a denote lim s.

Furthermore, if lim s exists and is a finite number, then we say that the series
P

a
is convergent; otherwise we say that it is divergent.

We will examine some well-known infinite series in Problem 9; here we treat
only one famous series: the series of Euler’s number e.

We first prove the following lemma:

Lemma 20.12. Define the infinite sequence .an/1
nD1 by

an D 1

.n � 1/Š
:

(Note that 0Š is defined to be 1.) Let .sn/1
nD1 be the corresponding sequence of partial

sums. Then for all positive integers n and m, we have

sn � sm <
m C 1

m � mŠ
:

In particular, we have 1 � sn < 3 for all n 2 N.

Proof. Let us start with our first claim. If n � m, then sn � sm � 0 since the terms
of the sequence .an/1

nD1 are positive, so our claim obviously holds.
Assume then that n > m, in which case we have

sn � sm D amC1 C amC2 C amC3 C � � � C an

D 1

mŠ
C 1

.m C 1/Š
C 1

.m C 2/Š
C � � � C 1

.n � 1/Š

D 1

mŠ

�

1 C 1

m C 1
C 1

.m C 1/.m C 2/
C � � � C 1

.m C 1/ � � � .n � 1/

�

:
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Note that
1

.m C 1/.m C 2/
�
�

1

m C 1

�2

;

1

.m C 1/.m C 2/.m C 3/
�
�

1

m C 1

�3

;

and so on, so we have

sn � sm � 1

mŠ

 

1 C 1

m C 1
C
�

1

m C 1

�2

C � � � C
�

1

m C 1

�n�m�1
!

:

We can find a closed form for the sum above using Lemma 4.2, namely,

1 C 1

m C 1
C
�

1

m C 1

�2

C � � � C
�

1

m C 1

�n�m�1

D 1 � �
1

mC1

�n�m

1 � 1
mC1

I

this quantity is clearly less than

1

1 � 1
mC1

D m C 1

m
:

Therefore,

sn � sm <
1

mŠ
� m C 1

m
;

as claimed.
Clearly, sn � s1 D a1 D 1 for all n 2 N; substituting m D 1 into our inequality,

we get sn < s1 C 2 D 3, completing our proof. ut
As an immediate corollary, we get the following:

Theorem 20.13. The series

1X

nD1

1

.n � 1/Š
D 1

0Š
C 1

1Š
C 1

2Š
C 1

3Š
C � � �

converges to a real number.

Proof. According to Lemma 20.12, the sequence .sn/1
nD1 of partial sums is bounded

(between 1 and 3); since the series is clearly increasing, our claim follows from the
Monotone Convergence Theorem. ut

The real number in Theorem 20.13 is called Euler’s number and is denoted by
e, thus

e D
1X

nD1

1

.n � 1/Š
D 1

0Š
C 1

1Š
C 1

2Š
C 1

3Š
C � � � :
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As a consequence of Lemma 20.12 and the Monotone Convergence Theorem, we
have the following:

Corollary 20.14. Let m be any positive integer, and set

sm D
mX

iD1

1

.i � 1/Š
D 1

0Š
C 1

1Š
C 1

2Š
C � � � C 1

.i � 1/Š
:

We then have

sm < e � sm C m C 1

m � mŠ
:

Using Corollary 20.14 for m D 3, we get the bounds

2:5 D s3 < e � s3 C 3 C 1

3 � 3Š
D 2:777 : : : ;

while an even better estimate would give e � 2:71828. The number e plays a
crucial role in many parts of mathematics and other fields. Of its many fascinating
properties, let us mention the identity

1

e
D

1X

nD1

.�1/n�1 1

.n � 1/Š
D 1

0Š
� 1

1Š
C 1

2Š
� 1

3Š
C � � � � ;

which we will return to later in the book. Thus, interestingly, the infinite series of e
and its reciprocal defer only in the signs of every other term.

In closing, we prove the following result:

Theorem 20.15. The number e is irrational.

Proof. Let us assume indirectly that e D a
b

for some integers a and b; we may also
assume that b 2 N.

By Corollary 20.14 (with m D b C 1), we have

0 < e � sbC1 � b C 2

.b C 1/ � .b C 1/Š
I

multiplying by bŠ we get

0 < bŠ � e � bŠ � sbC1 � b C 2

.b C 1/2
:

Note that
b C 2

.b C 1/2
<

b C 2

b2 C 2b
D 1

b
� 1;
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and thus
0 < bŠ � e � bŠ � sbC1 < 1I

in particular, bŠ � e �bŠ � sbC1 cannot be an integer. We show, however, that both bŠ � e
and bŠ � sbC1 are integers.

Indeed, by our assumption,

bŠ � e D bŠ � a

b
D .b � 1/Š � a

is an integer and so is

bŠ � sbC1 D bŠ �
�

1

0Š
C 1

1Š
C 1

2Š
C � � � C 1

bŠ

�

:

This is a contradiction. ut

Problems

1. (a) Suppose that you are playing the Zero-Limit game, you are Player II, and
Player I started the game by choosing the sequence

a D
�

n C 4

3n

�1

nD1

:

Can you win? What is a good choice for your 
?
(b) Suppose that you are playing the Zero-Limit game, you are Player I, and

you made the mistake of starting the game by choosing the sequence

a D
�

n C 4

3n

�1

nD1

:

Fortunately (?), your opponent responded with 
 D 1=2. Can you then win?
What is a good choice for your K?

2. Suppose that a D .a1; a2; a3; : : : / is a given infinite sequence of real numbers,
and consider the following statements:

(i) 9
 2 .0; 1/; 9K 2 N; 8n 2 N \ .K; 1/; jan � 1j < 


(ii) 9
 2 .0; 1/; 8K 2 N; 8n 2 N \ .K; 1/; jan � 1j < 


(iii) 8K 2 N; 9
 2 .0; 1/; 8n 2 N \ .K; 1/; jan � 1j < 


(iv) 8
 2 .0; 1/; 9K 2 N; 8n 2 N \ .K; 1/; jan � 1j < 
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(v) 9K 2 N; 8
 2 .0; 1/; 8n 2 N \ .K; 1/; jan � 1j < 


(vi) 8
 2 .0; 1/; 8K 2 N; 8n 2 N \ .K; 1/; jan � 1j < 


For each of the sequences below, decide which of the statements above are
true and which are false:

(a) .1; 1; 1; 1; 1; : : : /

(b) .4; 3; 2; 1; 1; 1; 1; : : : /

(c) .1; 0; 1; 0; 1; 0; : : : /

(d) .1; 2; 1; 3; 1; 4; 1; 5; : : : /

(e) .1:1; 1:01; 1:001; 1:0001; 1:00001; : : : /

(f) .1; 1:1; 1; 1:01; 1; 1:001; 1; 1:0001; : : : /

3. Suppose that a D .a1; a2; a3; : : : / is a given infinite sequence of real numbers,
and consider the following statements:

(i) 9c 2 .0; 1/; fn 2 N j an > cg is finite,
(ii) 8c 2 .0; 1/; fn 2 N j an > cg is finite,

(iii) 9c 2 .0; 1/; fn 2 N j an > cg is infinite,
(iv) 8c 2 .0; 1/; fn 2 N j an > cg is infinite,
(v) 9c 2 .0; 1/; fn 2 N j an < cg is finite,

(vi) 8c 2 .0; 1/; fn 2 N j an < cg is finite,
(vii) 9c 2 .0; 1/; fn 2 N j an < cg is infinite,

(viii) 8c 2 .0; 1/; fn 2 N j an < cg is infinite,
(ix) 9c 2 .0; 1/; fn 2 N j janj > cg is finite,
(x) 8c 2 .0; 1/; fn 2 N j janj > cg is finite,

(xi) 9c 2 .0; 1/; fn 2 N j janj > cg is infinite,
(xii) 8c 2 .0; 1/; fn 2 N j janj > cg is infinite,

(xiii) 9c 2 .0; 1/; fn 2 N j janj < cg is finite,
(xiv) 8c 2 .0; 1/; fn 2 N j janj < cg is finite,
(xv) 9c 2 .0; 1/; fn 2 N j janj < cg is infinite,

(xvi) 8c 2 .0; 1/; fn 2 N j janj < cg is infinite.

(By saying that a set is finite or infinite, we mean that the set has finitely many
or infinitely many elements, respectively.)

(a) Which of the statements above are necessary for lim a D 1?
(b) Which of the statements above are sufficient for lim a D 1?
(c) Which of the statements above are equivalent to lim a D 1?
(d) Which of the statements above are necessary for lim a D 0?
(e) Which of the statements above are sufficient for lim a D 0?
(f) Which of the statements above are equivalent to lim a D 0?

4. Decide if the following limits exist. Prove your answers using the definitions.

(a) lim 2
5nC3

(b) lim 2n
nC3

(c) lim 1p
n
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(d) lim 1
ln n

(e) lim n2

(f) lim 1:1n

(Hint: Use Proposition 13.8.)
(g) lim rn where r is a real number with 0 < r < 1.

(Hint: Use the Monotone Convergence Theorem and the method of Propo-
sition 20.7.)

(h) lim.n C .�1/nn/

(i) lim.2n C .�1/nn/

5. (a) Prove that the sequence in Proposition 20.7 is bounded by
p

2 from above.
(Hint: Use induction.)

(b) Prove that the sequence in Proposition 20.7 is increasing.
(Hint: Use part (a).)

6. Prove the following well-known theorems:

(a) Theorem 20.16 (The Uniqueness of Limits). A sequence of real numbers
can have at most one limit.
(Hints: You need to prove that for any sequence a and for any two distinct
real numbers L1 and L2, we can have at most one of lim a D L1, lim a D
L2, lim a D 1, or lim a D �1.)

(b) Theorem 20.17 (The Comparison Theorem). Let a D .a1; a2; : : : / and
b D .b1; b2; : : : / be sequences for which

8n 2 N; an � bn;

and suppose that lim a D 1. Then lim b D 1.

Remark. Similarly, if 8n 2 N; an � bn and lim b D �1, then lim aD�1.

(c) Theorem 20.18 (The Squeeze Theorem). Let L be a real number and
a D .a1; a2; : : : /, b D .b1; b2; : : : /, and c D .c1; c2; : : : / be sequences for
which

8n 2 N; an � bn � cn;

and suppose that lim a D L and lim c D L. Then b is convergent and
lim b D L.

(d) Theorem 20.19 (The Addition Theorem). Let L1 and L2 be real num-
bers and a D .a1; a2; : : : / and b D .b1; b2; : : : / be sequences for which
lim a D L1 and lim b D L2. Define c D .c1; c2; : : : / by

8n 2 N; cn D an C bn:

Then c is convergent and lim c D L1 C L2.
(Hint: Use the Triangle Inequality: Theorem 12.7.)

7. Prove each of the following theorems:
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(a) Theorem 20.20. Every convergent sequence of real numbers is bounded.
(b) The Monotone Convergence Theorem, as stated on page 247.
(c) Theorem 20.21. Suppose that the sequence a is increasing but not

bounded. Then lim a D 1.
(d) Theorem 20.22. Suppose that the sequence a is decreasing but not

bounded. Then lim a D �1.

8. Suppose that the infinite series
P

a corresponding to the sequence a is
convergent. Prove that the sequence a is also convergent and lim a D 0.
(Hint: Use the Addition Theorem.)

9. (a) Prove that
1X

nD1

1

2n
D 1

2
C 1

4
C 1

8
C 1

16
C � � � D 1:

(Hint: Use Lemma 4.2.)
(b) Prove that if r is a real number with 0 < r < 1, then the so-called

geometric series
P1

nD1 rn converges to r
1�r

.
(Hint: Use part (g) of Problem 4 above.)

(c) Evaluate
1X

nD1

1

2dlog2 ne D 1

1
C 1

2
C 1

4
C 1

4
C 1

8
C � � � :

(d) Prove the following classical result:

Proposition 20.23. The harmonic series, defined as the series

1X

nD1

1

n
D 1

1
C 1

2
C 1

3
C 1

4
C 1

5
C � � � ;

is divergent.

(Hint: Use part (c) and the Comparison Theorem.)
(e) Evaluate

1X

nD1

1

n.n C 1/
D 1

2
C 1

6
C 1

12
C 1

20
C � � � :

(Hint: Use part (c) of Problem 6 in Chap. 13.)
(f) Evaluate

1X

nD1

n

.n C 1/Š
D 1

2
C 1

3
C 1

8
C 1

30
C � � � :

(Hint: Use part (d) of Problem 6 in Chap. 13.)
10. (a) Given an infinite sequence .rm; rm�1; : : : ; r1; r0; r�1; r�2; : : : / of digits

(integers between 0 and 9, inclusive), provide a definition for the decimal
representation
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rmrm�1:::r1r0:r�1r�2 : : :

(cf. Theorem 15.14). Prove also that every decimal representation defines
a unique real number.
(Hint: Use the Monotone Convergence Theorem.)

(b) Write
0:83883838838388383883 : : :

as a fraction of two integers.
(Hint: Use part (b) of Problem 9 above.)

(c) Prove that every real number with a repeating decimal representation is a
rational number (cf. Problem 8 (d) in Chap. 15).

(d) Let
rmrm�1:::r1r0:r�1r�2 : : : and r 0

mr 0
m�1:::r

0
1r 0

0:r
0�1r 0�2 : : :

be the decimal representations of real numbers x and y, respectively, and
suppose that for some index k � m, we have

• ri D r 0
i for i > k,

• r 0
k D rk � 1, and

• ri D 0 and r 0
i D 9 for i < k.

Prove that x D y.
11. Let F be an ordered field (cf. Definition 10.13). We say that a subset S of F is

dense in F if for any two distinct elements of F , there is an element of S that
is strictly between them. By Problem 6 of Chap. 15, Q is dense in itself and R

is also dense in itself.

(a) Prove that Q is dense in R.
(Hint: Use the Archimedean Property twice: first to select the denominator
and then to select the numerator of the rational number to be constructed.)

(b) Prove that R n Q is dense in R.
(Hint: Use part (a).)

12. Suppose that A is a set of positive integers, and for a positive integer n, let
A.n/ denote the number of elements of A that are between 1 and n (inclusive).
The natural density of A is defined as

d.A/ D lim
A.n/

n
;

if this limit exists.
Find, with precise proof, the natural density of each of the following sets,

or prove that the natural density does not exist. (Try to guess the answers first.
Cf. Problem 7 of Chap. 5.)

(a) The set of positive integers that are divisible by a million
(b) The set of perfect squares
(c) The set of positive primes

(Hint: Use the Prime Number Theorem.)
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(d) The set of positive integers whose decimal contains six consecutive 0s

Remark. Note that these numbers include those in part (a) above.

(e) The set of positive integers that have an odd number of decimal digits
(Hint: Prove that this set has no natural density.)

13. The famous Cantor set—named after the German mathematician Georg Cantor
(1845–1918)—is defined recursively as follows:

We let I1 denote the interval Œ0; 1�; for each integer n � 1, we define

InC1 D
nx

3
j x 2 In

o
[
�

x C 2

3
j x 2 In

�

:

So, we have
I2 D Œ0; 1=3� [ Œ2=3; 1�;

I3 D Œ0; 1=9� [ Œ2=9; 1=3� [ Œ2=3; 7=9� [ Œ8=9; 1�;

and so on; InC1 is what is left after we remove the open middle 1/3 of each
interval that makes up In. We can illustrate the first few iterations as follows:

I5 W
I4 W
I3 W
I2 W
I1 W

We then define the Cantor set as

C D
1\

iD1

In:

(a) Let an denote the total length of all the intervals that make up In. Prove that
lim an D 0.
(Hint: You can do this in two different ways: directly or by adding up the
lengths of all the intervals that got removed and subtracting that from 1.)

(b) Characterize the elements of the Cantor set using their ternary representa-
tions. In particular, show that the Cantor set has infinitely many elements.

Remarks. A vague question one may ask is as follows: How big is the Cantor
set? Depending on how one makes this question precise, one gets entirely
different answers. As we have just seen, in a certain sense, C is small as it
has measure zero, but in another sense, it is large, since it has infinitely many
elements. In Problem 4 of Chap. 22 we examine further how large the Cantor
set really is.
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The Cantor set has many other interesting properties as well; it has been
an influential object of study in various branches of mathematics. One such
property is that it is a prime example of a self-similar set, popularly known as
a fractal. What we mean by self-similarity is that if instead of starting with
the interval I1 D Œ0; 1�, we start with the interval Œ0; 1=3� (which is the left-
half of I2), as the middle thirds get repeatedly removed, one sees exactly the
same picture as one did with the original interval—except that everything looks
1/3 as big. Similarly, zooming in on Œ2=3; 1� generates the same smaller-scale
version of the original set. One can make these ideas more precise and show that
the fractional dimension of the Cantor set is log3 2 � 0:68—a value between
0 (the dimension of “isolated” points) and 1 (the dimension of a “continuous”
interval).



Chapter 21
Sizing It Up

Counting is probably one of our earliest intellectual pursuits, and it is a ubiquitous
task in everyday life. The principles of counting are also what several branches
of mathematics are based on, especially combinatorics, probability theory, and
statistics. In this chapter we discuss elementary counting in a systematic and
precise—shall we say abstract—manner.

A typical counting problem asks us to determine the size of a set: the size of a set
A, denoted by jAj, is the number of elements in A. Clearly, each set has either finite
or infinite size. In this chapter we focus on finite sets (sets with finite size) only; we
will discuss infinite sets in Chap. 22.

We have already seen several counting questions. For example, in Problem 7 of
Chap. 8, we studied the sizes of unions, intersections, Cartesian products, and power
sets of given finite sets. The answers to these and other simple questions are based
on two fundamental principles of counting: the Addition Rule and the Multiplication
Rule.

Lemma 21.1 (The Addition Rule). If A and B are disjoint finite sets, then we have

jA [ Bj D jAj C jBj:

More generally, if A1, A2; : : : ; An are pairwise disjoint finite sets (n 2 N), then we
have

jA1 [ � � � [ Anj D jA1j C � � � C jAnj:

Proof. The identity is quite clear for n D 2: by the definition of union, if
jAj D k, jBj D l , A D fa1; : : : ; akg, and B D fb1; : : : ; blg, then A [ B D
fa1; : : : ; ak; b1; : : : ; blg. Since A and B are disjoint, these kCl elements are distinct;
hence, jA [ Bj D k C l , as claimed. The identity for n sets can be established by
induction. ut
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Lemma 21.2 (The Multiplication Rule). For arbitrary finite sets A and B , we
have jA 
 Bj D jAj � jBj:
More generally, for arbitrary finite sets A1, A2; : : : ; An (n 2 N), we have

jA1 
 � � � 
 Anj D jA1j � � � � � jAnj:
Proof. We can reduce the identity for n D 2 to the Addition Rule, as follows. First
note that if jAj D k and A D fa1; : : : ; akg, then

A 
 B D f.a1; b/ j b 2 Bg [ � � � [ f.ak; b/ j b 2 BgI
if a1; : : : ; ak are distinct, then the k sets on the right-hand side above are pairwise
disjoint. Furthermore, these sets all have the same size as B , and, therefore, by the
Addition Rule, we get

jA 
 Bj D k � jBj;
as claimed. The identity for n sets can then be proved by induction. ut

Observe that the Addition Rule—unlike the Multiplication Rule—requires that
the sets be pairwise disjoint. If we don’t know whether A1, A2; : : : ; An are pairwise
disjoint, then we can only claim that

jA1 [ � � � [ Anj � jA1j C � � � C jAnj:
It is worth pointing out that the Pigeonhole Principle and the Generalized Pigeon-
hole Principle (cf. Theorems 15.3 and 15.4) are easy corollaries of this inequality.
Namely, if we have

jA1 [ � � � [ Anj > kn

for some nonnegative integer k, then there must be an index i 2 f1; : : : ; ng for
which jAi j � k C 1; otherwise, the inequality above would fail.

Later in this chapter we state a more precise result for the size of the union of n

(not necessarily pairwise disjoint) sets.
We now turn to the size of the power set of a given set. (The formula explains the

name “power” set; cf. Chap. 8.)

Proposition 21.3. For an arbitrary finite set A, we have

jP.A/j D 2jAj:

Proof. Suppose that jAj D n and A D fa1; : : : ; ang (of course, n 2 N). First we
find a bijection from P.A/ to the set

f0; 1gn D f.x1; : : : ; xn/ j x1 2 f0; 1g; : : : ; xn 2 f0; 1gg;

as follows.
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Let X be an arbitrary subset of A. Define f .X/ to be the element

.f1.X/; : : : ; fn.X// 2 f0; 1gn

where for i 2 f1; : : : ; ng,

fi .X/ D
�

1 if ai 2 X I
0 if ai 62 X:

Then f is both injective and surjective, so it is a bijection.
So there is a bijection from P.A/ to the set f0; 1gn, and therefore, by Proposi-

tion 19.12, these two sets have the same size. Since for the size of f0; 1gn we can
apply the Multiplication Rule, we immediately get our result that jP.A/j D 2n. ut

Before we move on to the four main counting questions in mathematics, we
review some familiar terminology and notations and introduce some new ones.
Recall that, for a given set A and positive integer m, an element .a1; a2; : : : ; am/ of
Am is called a sequence of length m. The order of the terms in the sequence matters;
for example, the sequence .2; 3; 4; 5/ of integers is different from .3; 2; 4; 5/. On
the other hand, a subset of A of size m is simply a collection of m of its elements
where two subsets are considered equal without regard of the order in which the
terms are listed; for example, f2; 3; 4; 5g and f3; 2; 4; 5g are equal subsets of the set
of integers. Recall also that a set remains unchanged if we choose to list some of
its elements more than once (cf. Definition 8.5); for example, the sets f2; 3; 3; 5g,
f2; 3; 5; 5g, and f2; 3; 5g are all equal, while the sequences .2; 3; 3; 5/, .2; 3; 5; 5/,
and .2; 3; 5/ are all different. Thus, we can consider sets as twofold relaxations of
sequences: we don’t care about the order in which the elements are listed, nor do we
care how many times the elements are listed.

It will be useful for us to introduce two other objects. First we say that a sequence
.a1; a2; : : : ; am/ of elements of a set A is a list, if the m terms are pairwise distinct.
Thus, in a list, the order of the elements still matters, but each element is only
allowed to appear once. For example, the sequence .2; 3; 4; 5/ is a list, but .2; 3; 3; 5/

is not. Conversely, in a so-called multiset of size m, denoted by Œa1; a2; : : : ; am�, the
order of the elements a1; a2; : : : ; am of A does not matter (as it is the case with sets),
but elements may appear repeatedly (as they may in sequences). For example, the
multisets Œ2; 3; 3; 5�, Œ2; 3; 5; 5�, and Œ2; 3; 5� are all different, but Œ2; 3; 3; 5� is still
the same as Œ2; 5; 3; 3�.

Given a set A and a positive integer m, we are interested in counting the number
of m-sequences (sequences of length m), m-lists (lists of length m), m-multisubsets
(multisubsets of size m), and m-subsets (subsets of size m) of A. The schematic
summary of these four terms is given in the following table:
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Order matters Order does not matter

Elements distinct m-lists m-sets

Elements may repeat m-sequences m-multisets

Obviously, if jAj < m, then A has neither m-lists nor m-subsets. If jAj D m,
then the (only) m-subset of A is A itself, while, as we will soon see, if jAj D m,
then A has mŠ m-lists. For other situations, we introduce the following notations:

Suppose that n is a nonnegative integer and m is a positive integer. We define the
rising factorial m-th power and the falling factorial m-th power of n to be

nm D n.n C 1/ � � � .n C m � 1/

and
nm D n.n � 1/ � � � .n � m C 1/;

respectively. For example, we have 103 D 10 �11 �12 D 1; 320 and 103 D 10 �9 �8 D
720: Analogously to n0 D 1 and 0Š D 1, we extend these notations with

n0 D 1 and n0 D 1

for arbitrary nonnegative integers n.
Furthermore, we recall from Chap. 14 the notations

�
n
m

�
(pronounced “n choose

m”) and



n
m

�
(pronounced “n multichoose m”): For nonnegative integers m and n,

 
n

m

!

D nm

mŠ
D n.n � 1/ � � � .n � m C 1/

mŠ

and
h n

m

i
D nm

mŠ
D n.n C 1/ � � � .n C m � 1/

mŠ
:

According to Theorem 14.13, these quantities denote integers. The values of
�

n
m

�
,

also known as binomial coefficients, are exhibited in Pascal’s Triangle (cf. page
167); here we tabulate some of these values in a table format. (Observe that, when
m > n, the formula above yields

�
n
m

� D 0; keeping the traditional shape of Pascal’s
Triangle, we omitted these entries from the table below.)
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�n
m

�
m D0 m D1 m D2 m D3 m D4 m D5 m D6 m D7

n D0 1

n D1 1 1

n D2 1 2 1

n D3 1 3 3 1

n D4 1 4 6 4 1

n D5 1 5 10 10 5 1

n D6 1 6 15 20 15 6 1

n D7 1 7 21 35 35 21 7 1

Note that since

n.n � 1/ � � � .n � m C 1/

mŠ
D n.n � 1/ � � � .m C 1/

.n � m/Š

(which we can check by cross-multiplying), we have the identity

 
n

m

!

D
 

n

n � m

!

;

expressing the fact that the rows in Pascal’s Triangle are “palindromic.” The
explanation for the term “binomial coefficient” will be clear once we discuss
Theorem 21.6 below.

The first few values



n
m

�
are as follows:


 n
m

�
m D0 m D1 m D2 m D3 m D4 m D5 m D6 m D7

n D1 1 1 1 1 1 1 1 1

n D2 1 2 3 4 5 6 7 8

n D3 1 3 6 10 15 21 28 36

n D4 1 4 10 20 35 56 84 120

n D5 1 5 15 35 70 126 210 330

n D6 1 6 21 56 126 252 462 792

n D7 1 7 28 84 210 462 924 1,716

As we can see, the two tables contain the same data—values are just shifted: the
entries in column m in the first table are moved up by m � 1 rows in the second
table. Indeed, since for integers n and m we clearly have

nm D n.n C 1/ � � � .n C m � 1/ D .n C m � 1/.n C m/ � � � n D .n C m � 1/m;

we see that values of



n
m

�
can be expressed via the more-often used binomial

coefficients as
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h n

m

i
D
 

n C m � 1

m

!

:

The binomial coefficients possess many interesting properties. For example,
looking at the table of values on page 262, we may conjecture that:

• The entries in each row add up to a power of 2.
• The entries in each column, above a certain row, add to an entry in the next row.
• The entries in each NE–SW diagonal add to a Fibonacci number.
• The entries in each NW–SE diagonal, above a certain row, add to an entry in the

next row.

We will prove these and some other identities in Problems 1–4.
We are now ready to “size up” our four main configurations.

Theorem 21.4. Let A be a set of size n, and let m be a positive integer. Then:

1. The number of m-sequences of A is nm.
2. The number of m-lists of A is nm.
3. The number of m-multisubsets of A is



n
m

�
.

4. The number of m-subsets of A is
�

n
m

�
.

(Note that, if n < m, then nm D 0 and
�

n

m

� D 0, in accordance with the fact that
A has no m-lists and no m-subsets in this case.)

Proof. We can easily prove Claims 1 and 2 using the Multiplication Rule. Namely,
for i D 1; : : : ; m, letting Ai and Bi denote the subsets of A from which we can select
the i -th element in the m-sequence and m-list of A, respectively, we see that we have
jAi j D n (any element of A can be chosen for the m-sequence) and jBi j D n�.i�1/

(when choosing the i -th element for our m-list, only those elements of A can be
chosen that were not chosen for the first i � 1 elements of the m-list). Therefore, by
the Multiplication Rule, the number of m-sequences of A is

mY

iD1

jAi j D
mY

iD1

n D nm;

and the number of m-lists of A is

mY

iD1

jBi j D
mY

iD1

.n � i C 1/ D nm:

Next, we use Claim 2 to prove Claim 4. Let L.A; m/ denote the collection of
m-lists of A; by Claim 2 we know that

jL.A; m/j D nm:
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We introduce a relation R on L.A; m/ by saying that two m-lists have the
relationship whenever their corresponding sets are equal; that is, for m-lists
.a1; : : : ; am/ and .a0

1; : : : ; a0
m/, we define

.a1; : : : ; am/ �R .a0
1; : : : ; a0

m/

whenever

fa1; : : : ; amg D fa0
1; : : : ; a0

mg:
It is easy to see that R is an equivalence relation: it is reflexive, symmetric,
and transitive. Therefore, by the Fundamental Theorem of Equivalence Relations
(cf. Theorem 17.7), the equivalence classes of R partition L.A; m/.

Clearly, the number of m-subsets of A is the number of equivalence classes of R;
let us denote this number by C.A; m/. Using Claim 2 of our theorem again, we see
that an m-list is equivalent to exactly

mm D mŠ

m-lists, so each equivalence class has mŠ elements. Therefore, by the Addition Rule,
we have

jL.A; m/j D C.A; m/ � mŠ;

from which we get

C.A; m/ D jL.A; m/j
mŠ

D nm

mŠ
D
 

n

m

!

;

as claimed.
Finally, we use Claim 4 to prove Claim 3. Let

h
A
m

i
denote the set of m-

multisubsets of A, and let
�

I
m

�
denote the set of m-subsets of the set I D

f1; 2; : : : ; n C m � 1g. We will show that there is a bijection between
h

A
m

i
and

�
I
m

�
.

First we find a bijection f from
h

A
m

i
to the set Q.m; n � 1/, denoting here the

set of .m C n � 1/-sequences of f0; 1g that contain exactly m 0s and n � 1 1s.
Let M be an m-multisubset of a set A D fa1; : : : ; ang, and, for each i D 1; : : : ; n,

let ˛i denote the repetition number of ai in M ; that is, the number of times ai

appears in M . We then have

M D Œa1; : : : ; a1„ ƒ‚ …
˛1

; a2; : : : ; a2„ ƒ‚ …
˛2

; : : : ; an; : : : ; an„ ƒ‚ …
˛n

�:
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Now define f .M / to be the sequence where ˛1 0s are followed by a 1, followed
by ˛2 0s, followed by another 1, and so on, until the .n � 1/-st 1 is followed by
˛n 0s:

f .M / D .0; : : : ; 0
„ ƒ‚ …

˛1

; 1; 0; : : : ; 0
„ ƒ‚ …

˛2

; 1; : : : ; 1; 0; : : : ; 0
„ ƒ‚ …

˛n

/:

Since
˛1 C � � � C ˛n D m;

f .M / is an .m C n � 1/-sequence containing exactly m 0s and n � 1 1s. Thus, we
have

f W
h

A
m

i
! Q.m; n � 1/

M 7! f .M /I
it is also easy to see that f is a bijection.

Next, we find a bijection g from Q.m; n � 1/ to
�

I
m

�
. Let

v D .v1; v2; : : : ; vmCn�1/

be an .m C n � 1/-sequence of f0; 1g that contains exactly m 0s and n � 1 1s; we
define g.v/ to be

g.v/ D fi 2 I j vi D 0g:
With these notations, the function

g W Q.m; n � 1/ ! �
I
m

�

v 7! g.v/

is clearly a bijection.

By Proposition 19.16, the composition g ı f is a bijection from
h

A
m

i
to
�

I
m

�
,

and so, by Proposition 19.12 and by Claim 4 of our theorem, the number of m-
multisubsets of A equals

ˇ
ˇ
ˇ
ˇ

�
A

m

�ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ

 
I

m

!ˇ
ˇ
ˇ
ˇ
ˇ

D
 

m C n � 1

m

!

D
h n

m

i
:

ut
The counting techniques discussed in this chapter are often employed to determine
the number of choices one has for selecting or arranging a given number of
elements from a given set or collection of sets. For example, the Addition Rule
and the Multiplication Rule can be interpreted to say that, given boxes labeled A1,
A2; : : : ; An, if box Ai contains mi distinct objects (i D 1; 2; : : : ; n), then there are

m1 C m2 C � � � C mn
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ways to choose one object from one of the n boxes, and there are

m1 � m2 � � � � � mn

ways to choose one object from each of the n boxes. In a similar manner, the four
basic counting functions of Theorem 21.4 are sometimes called “choice functions”;
the following table summarizes our results for the number of ways to choose m

elements from a given set of n elements:

Order matters Order does not matter

Elements distinct nm
�

n
m

�

Elements may repeat nm



n
m

�

The following proposition provides a fundamental example for counting prob-
lems:

Proposition 21.5. Let n and m be positive integers. The numbers of solutions to the
equation

x1 C x2 C � � � C xm D n

in positive integers and in nonnegative integers are
�

n�1
m�1

�
and

h
nC1
m�1

i
, respectively.

Note that order does matter when counting the number of solutions; for example,
we consider .x1; x2/ D .3; 5/ and .x1; x2/ D .5; 3/ to be different solutions to
x1 C x2 D 8: This makes our proposition more unexpected: the answers resemble
the forms under “order does not matter” rather than under “order matters” in the
table above.

Proof. First, observe that the number of solutions to the equation

x1 C x2 C � � � C xm D n

in positive integers (the number of “positive solutions,” in short) is the same as the
number of positive solutions to the inequality

x1 C x2 C � � � C xm�1 � n � 1I
indeed, there is a one-to-one correspondence between the two sets of solutions:
any positive solution .x1; : : : ; xm/ of the equation satisfies the inequality, and any
positive solution .x1; : : : ; xm�1/ to the inequality determines a unique positive
solution to the equation with

xm D n � .x1 C � � � C xm�1/:
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It is easy to see that the number of positive solutions to the inequality

x1 C x2 C � � � C xm�1 � n � 1

equals the number of .m � 1/-subsets of A D f1; 2; : : : ; n� 1g; indeed, any positive
solution of the inequality determines a unique .m � 1/-subset

fx1; x1 C x2; : : : ; x1 C x2 C � � � C xm�1g

of A, and any .m � 1/-subset fa1; a2; : : : ; am�1g of A, where

1 � a1 < a2 < � � � < am�1 � n � 1;

generates a unique positive solution .a1; a2 �a1; : : : ; am�1 �am�2/ of the inequality.
Therefore, the number of positive solutions to the equation is

�
n�1
m�1

�
.

Similarly, we can see that the number of nonnegative solutions to the equation

x1 C x2 C � � � C xm D n

is the same as the number of nonnegative solutions to the inequality

x1 C x2 C � � � C xm�1 � n;

which further equals the number of .m � 1/-multisubsets of A D f0; 1; 2; : : : ; ng.

Therefore, the number of nonnegative solutions of the equation is
h

nC1

m�1

i
.

(For an alternative approach, note that the number of nonnegative solutions to the
equation

x1 C x2 C � � � C xm D n

equals the number of positive solutions to the equation

y1 C y2 C � � � C ym D n C m;

which, by the first argument, equals
�

nCm�1
m�1

� D
h

nC1
m�1

i
. For yet another approach,

we may think of the number of nonnegative solutions to the equation as the number
of ways we can place n identical objects in m distinct boxes; this number is given

by



m
n

�
, which also equals

h
nC1
m�1

i
.) ut

We will see a variety of further counting problems in the problem set below.
The following famous theorem is a corollary of Theorem 21.4 and explains why

binomial coefficients are called “binomial”:

Theorem 21.6 (The Binomial Theorem). For all real numbers a and b and for all
positive integers n, we have
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.a C b/n D
nX

mD0

 
n

m

!

an�mbm

D an C nan�1b C
 

n

2

!

an�2b2 C � � � C
 

n

n � 2

!

a2bn�2 C nabn�1 C bn:

Proof. We will verify the identity above by performing some simple algebra
and using appropriate binomial coefficients to combine terms. When using the
distributive law to expand the expression

.a C b/n D .a C b/ � � � .a C b/;

we arrive at a sum of products of n factors, where each factor is either a or b. Using
the commutative property of multiplication, each term can be arranged so that the
a’s (if any) all come before the b’s (if any). Then, using the commutative property
of addition, we can collect “like” terms, that is, terms of the form an�mbm for the
same m D 0; 1; : : : ; n. The number of such terms clearly equals the number of n-
sequences of the set fa; bg that contain exactly n � m a’s and m b’s, which, by
Theorem 21.4, is exactly

�
n

m

�
. ut

As promised earlier, we will now return to the Addition Rule and examine what
we can say in the situation when the sets are not necessarily pairwise disjoint. Recall
Problem 7 of Chap. 8: there we determined that, given finite sets A and B , the size
of A [ B could vary between the larger of jAj and jBj to jAj C jBj; similarly, the
size of A \ B could vary between 0 and the smaller of jAj and jBj. In short, we can
write

0 � jA \ Bj � minfjAj; jBjg � maxfjAj; jBjg � jA [ Bj � jAj C jBj:

A bit of investigation reveals that the six quantities in this sequence satisfy a more
precise—and more useful—property: the sum of the two middle quantities always
equals the sum of the second and the fifth, and this further equals the sum of the first
and last:

minfjAj; jBjg C maxfjAj; jBjg D jA \ Bj C jA [ Bj D 0 C .jAj C jBj/:

The fact that
minfjAj; jBjg C maxfjAj; jBjg D jAj C jBj

is easy to see; here we prove that

jA \ Bj C jA [ Bj D jAj C jBj

always holds as well.
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Proposition 21.7. If A and B are finite sets, then we have

jA [ Bj D jAj C jBj � jA \ Bj:

Proof. Consider the sets A n .A \ B/, B n .A \ B/, and A \ B . Clearly, these are
pairwise disjoint sets whose union is A [ B , so the Addition Rule gives us

jA [ Bj D jA n .A \ B/j C jB n .A \ B/j C jA \ Bj:

Using the Addition Rule just for the disjoint sets A n .A \ B/ and A \ B , whose
union is A, we have

jAj D jA n .A \ B/j C jA \ BjI
similarly, we have

jBj D jB n .A \ B/j C jA \ Bj:
Our claim now follows easily from the three equations. ut

The situation gets more complicated as the number of sets increases. For three
sets we have the following result:

Proposition 21.8. If A, B , and C are finite sets, then we have

jA [ B [ C j D jAj C jBj C jC j � jA \ Bj � jA \ C j � jB \ C j C jA \ B \ C j:

Proof. Using Proposition 21.7 first for the sets A [ B and C and then again for A

and B yields

jA [ B [ C j D jA [ Bj C jC j � j.A [ B/ \ C j
D jAj C jBj � jA \ Bj C jC j � j.A [ B/ \ C j:

Next, we use distributivity to write

.A [ B/ \ C D .A \ C / [ .B \ C /I

Proposition 21.7 then gives

j.A [ B/ \ C j D jA \ C j C jB \ C j � j.A \ C / \ .B \ C /j:

But
.A \ C / \ .B \ C / D A \ B \ C;

so we have

jA [ B [ C j D jAj C jBj � jA \ Bj C jC j � .jA \ C j C jB \ C j � jA \ B \ C j/;

as claimed. ut



21 Sizing It Up 271

The generalized version of Propositions 21.7 and 21.8 to an arbitrary (finite)
number of finite sets is called the Inclusion–Exclusion Principle (or sometimes the
Sieve Principle).

Theorem 21.9 (The Inclusion–Exclusion Principle). Let n 2 N, and suppose that
A1; A2; : : : ; An are finite sets. We then have

jA1 [ A2 [ � � � [ Anj D jA1j C jA2j C � � � C jAnj
�jA1 \ A2j � jA1 \ A3j � � � � � jAn�1 \ Anj
CjA1 \ A2 \ A3j C jA1 \ A2 \ A4j C � � � C jAn�2 \ An�1 \ Anj
� C � � �
C.�1/n�1 � jA1 \ A2 \ � � � \ Anj:

The proof of the Inclusion–Exclusion Principle is left to Problem 9 (a).
As an application of Theorems 21.4 and 21.9, we prove the following general-

ization of Problem 5 of Chap. 19:

Theorem 21.10. Let A be a set of size m and B be a set of size n. Then:

1. The number of functions from A to B is nm.
2. The number of injections from A to B is nm.
3. The number of surjections from A to B is

 
n

0

!

nm �
 

n

1

!

.n � 1/m C
 

n

2

!

.n � 2/m � C � � � C .�1/n

 
n

n

!

0m:

(There is no closed form for the number of surjections.)

Proof. Claims 1 and 2 follow from parts 1 and 2 of Theorem 21.4.
To prove 3, we first enumerate functions that are not surjections. Clearly, a

function from A to B is not a surjection if, and only if, at least one element of
B is not in its image.

Let B D fb1; b2; : : : ; bng. For each integer i D 1; 2; : : : ; n, let Ai be the
collection of those functions from A to B that do not contain bi in their image.
The number of functions that are not surjections is then

jA1 [ A2 [ � � � [ Anj:
We will use the Inclusion–Exclusion Principle to find this quantity.

First note that jAi j D .n � 1/m for each i (each element of A can be mapped
to any element of B except for bi ). For two distinct indices i; j 2 f1; : : : ; ng, we
have jAi \ Aj j D .n � 2/m (each element of A can be mapped to any element of
B except for bi or bj ). Similarly, the size of the intersection of three distinct sets
from A1; : : : ; An is .n � 3/m and so on. At the end, A1 \ A2 \ � � � \ An consists
of .n � n/m D 0 functions; in other words, there are no functions that avoid all
elements of B .
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Now by claim 4 of Theorem 21.4, there are
�

n
1

� D n sets of the form Ai ,
�

n
2

�
sets

of the form Ai \ Aj , and so on. We thus have

jA1 [A2 [� � �[Anj D
 

n

1

!

.n�1/m �
 

n

2

!

.n�2/m C� � � �C.�1/n�1

 
n

n

!

.n�n/m

according to the Inclusion–Exclusion Principle.
Since there are nm functions all together from A to B , there are

nm � jA1 [ A2 [ � � � [ Anj

surjections, which proves our claim. ut
Recall from Proposition 19.13 that if m D n, then an injection or a surjection

from A to B must also be a bijection. Therefore, as a corollary to Theorem 21.10,
we get the following:

Corollary 21.11. If A and B are both sets of size n, then the number of bijections
from A to B is

nŠ D
 

n

0

!

nn �
 

n

1

!

.n � 1/n C
 

n

2

!

.n � 2/n � C � � � C .�1/n

 
n

n

!

0n:

Corollary 21.11 gives us a nice identity for binomial coefficients.
We close this chapter by discussing another interesting application of the

Inclusion–Exclusion Principle. For a fixed positive integer n, consider a bijection f

on the set In D f1; 2; : : : ; ng. (As we just mentioned, there are nŠ such bijections.)
We say that an element i 2 In is a fixed point of f , if f .i/ D i .

Clearly, every element of In is a fixed point of the identity function idIn . At
the other end of the spectrum, we have bijections with no fixed points at all—such
bijections are called derangements of In. For example, we see that the set I3 has two
derangements: the bijections f1 and f2 given by the table

i 1 2 3

f1.i/ 2 3 1

f2.i/ 3 1 2

Similarly, we find that I4 has nine derangements:

i 1 2 3 4

f1.i/ 2 1 4 3

f2.i/ 2 3 4 1

f3.i/ 2 4 1 3

i 1 2 3 4

f4.i/ 3 1 4 2

f5.i/ 3 4 1 2

f6.i/ 3 4 2 1

i 1 2 3 4

f7.i/ 4 1 2 3

f8.i/ 4 3 1 2

f9.i/ 4 3 2 1
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The following theorem enumerates derangements:

Theorem 21.12. Let n be a positive integer. The number of derangements of a set
of n elements equals

dn D nŠ

0Š
� nŠ

1Š
C nŠ

2Š
� C � � � C .�1/n nŠ

nŠ
:

According to this result, we have

d3 D 6

1
� 6

1
C 6

2
� 6

6
D 2

and

d4 D 24

1
� 24

1
C 24

2
� 24

6
C 24

24
D 9;

in agreement with our tables above. We leave the proof of Theorem 21.12 to
Problem 9 (b).

The following table exhibits the first few values of dn and (mostly approxima-
tions for) dn=nŠ, the proportion of derangements among all bijections of a set of
size n.

n 1 2 3 4 5 6 7 8 9

dn 0 1 2 9 44 265 1; 854 14; 833 133; 496

dn=nŠ 0 0:5 0:33333 0:375 0:36667 0:36806 0:36786 0:36788 0:36788

It appears that the values of dn=nŠ rapidly converge to a limit. Indeed, recall from
page 250 that

1

e
D 1

0Š
� 1

1Š
C 1

2Š
� 1

3Š
C � � � � ;

where e is Euler’s number. Therefore, by Theorem 21.12, we have

dn � nŠ

e

(in fact, it can be shown that dn is the integer nearest to nŠ=e). This can be strikingly
illustrated by saying that whether we have a handful of friends going out for dinner
or we deal with a banquet with hundreds of participants, if everyone orders different
meals and the meals are delivered to people randomly, then the chances that nobody
will get their own order is about the same—just under 37 %—in either situation!

Counting questions can be quite challenging to answer. Count on countless
amounts of fun while doing the problems below!
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Problems

1. Let m and n be positive integers with m < n. Consider the following identities:

i

 
n

m

!

D
 

n � 1

m

!

C
 

n � 1

m � 1

!

ii

 
n

m

!

D
 

n � 1

m

!

C
 

n � 2

m � 1

!

C � � � C
 

n � m � 1

0

!

iii

 
n

m

!

D
 

n � 1

m � 1

!

C
 

n � 2

m � 1

!

C � � � C
 

m � 1

m � 1

!

(a) Provide an illustration for n D 7 and m D 3 for each identity using
Pascal’s Triangle.

(b) Each of the identities could be proved using algebraic manipulations
and induction. Here, however, we wish to establish these identities
using counting arguments, as follows. The left-hand side of each
identity equals the number of m-subsets of a given set A of n elements.
For each identity, find a different way of counting the m-subsets of A

that yield the right-hand side of the identity. This technique for proving
identities is often called the “bijective method.”
(Hint for ii: Suppose that A D fa1; : : : ; ang, and consider those m-
subsets of A that do not contain a1, then those that contain a1 but do
not contain a2, etc.)

(c) The corresponding identities for multisubsets are as follows:

i.
h n

m

i
D
�

n � 1

m

�

C
h n

m � 1

i

ii.
h n

m

i
D
�

n � 1

m

�

C
�

n � 1

m � 1

�

C � � � C
�

n � 1

0

�

iii.
h n

m

i
D
h n

m � 1

i
C
�

n � 1

m � 1

�

C � � � C
�

1

m � 1

�

These identities could be easily reduced to the ones for subsets
above. Instead, use the bijective method, that is, provide a counting
argument for each identity by counting the number of m-multisubsets
of an n-element set in different ways.

2. Let n be a positive integer. Explain how each of the following identities is a
simple corollary to the Binomial Theorem:

(a)

 
n

0

!

C
 

n

1

!

C
 

n

2

!

C � � � C
 

n

n

!

D 2n

(b)

 
n

0

!

�
 

n

1

!

C
 

n

2

!

� C � � � C .�1/n

 
n

n

!

D 0
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(c)

 
n

0

! 
n

n

!

C
 

n

1

! 
n

n � 1

!

C
 

n

2

! 
n

n � 2

!

C � � � C
 

n

n

! 
n

0

!

D
 

2n

n

!

(Hint: Consider the identity .1 C b/n � .1 C b/n D .1 C b/2n.)
3. Suppose that n is an arbitrary positive integer, and define

an D
 

n

0

!

C
 

n � 1

1

!

C
 

n � 2

2

!

C � � � C
 

dn=2e
bn=2c

!

:

(a) Prove that an is the number of ways to cover a 2 by n board with n 1-by-2
dominoes. (Cf. Problem 9 (b) of Chap. 2.)

(b) Prove that for all n 2 N, an equals the n-th Fibonacci number Fn.
(Hints: Verify that a1 D F1, a2 D F2 and that anC2 D an C anC1 holds for
all n 2 N. Use identity i of Problem 1.)

4. In this problem we prove the identity

1 �
 

n

1

!

C 2 �
 

n

2

!

C � � � C n �
 

n

n

!

D n � 2n�1

for all positive integers n using the bijective method as in Problem 1.
Let A be an arbitrary set of n elements, and consider the bijection f W

P.A/ ! f0; 1gn defined in the proof of Proposition 21.3. Construct a table
with 2n rows and n columns, where rows are indexed by the different subsets
of A, columns are indexed by the integers from 1 to n, and the entry in row
X and column i equals fi .X/. Count the total number of 1s in this table in
two different ways (once by rows and once by columns) to arrive at the identity
above.

5. The game poker is played using a standard deck of 52 cards, each of a certain
rank (2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, or Ace) and of a certain suit
(club, diamond, heart, or spade). At the beginning of the game, each player is
dealt a hand consisting of five cards; the players’ aim is to get the best possible
hand matching one of the following distinguished hands:

• A pair: two cards of the same rank and three other cards of different ranks
• A two-pair: two pairs of different ranks and a fifth card of a third rank
• A three of a kind: three cards of the same rank and two other cards of

different ranks
• A straight: five cards of consecutive ranks, not all the same suit
• A flush: all five cards of the same suit, but not a straight
• A full house: a pair and a three of a kind
• A four of a kind: four cards of the same rank and one other card
• A straight flush: all five cards of the same suit and of consecutive ranks, but

not a royal flush
• A royal flush: a 10, a jack, a queen, a king, and an ace of the same suit



276 21 Sizing It Up

For the purposes of a straight or straight flush, an ace can be placed before a 2
(so that it plays the role of a 1).

The winner of the game is the player who has the least likely type of
distinguished hand from the list above. (For the situation when more than one
player achieves the same type, additional rules are in place. For exact rules of
poker, see, for example, www.poker.com.)

For each of the eight distinguished types of poker hands above, find the
number of possible hands of that type. What is more likely: that a hand is a
distinguished hand or that it is not?

6. The College Bookstore is selling n different books (each in “unlimited” supply;
two copies of the same book are indistinguishable). Alvin decided to purchase
m books at the Bookstore and wants to place them in his brand new cabinet that
contains k different shelves. (Assume that there is no limitation on how many
books the shelves can house.) In how many ways can he purchase and arrange
the books given the following conditions? Give each of your answers either as
one of the following quantities or as the product of two of these quantities:

nm; nm; nm; km; km; km;
�

n
m

�
;



n
m

�
;
�

k
m

�
;
h

k
m

i
;
�

nk
m

�
;
h

nk
m

i
:

(a) The m books are all different, and the order of the books on each shelf
matters.

(b) The m books are all different, and the order of the books on the shelves
does not matter.

(c) The m books are not necessarily different, and the order of the books on
each shelf matters.

(d) The m books are not necessarily different, and the order of the books on
the shelves does not matter.
(Hint: Suppose that the Bookstore makes each of the n books available in
k different varieties, labeled “shelf 1 only,” “shelf 2 only,” etc.)

Remark. This problem provides a generalization to Theorem 21.4; namely,
when k D 1, the answers to the questions above should agree with the
corresponding values in the chart on page 267.

7. In a certain city, streets run in the East–West direction and avenues run in the
North–South direction; avenues are numbered starting with 1st Avenue on the
East side of the city and streets are numbered starting with 1st Street at the
Southern border. An exception to this perfect grid is a grassy and wooded city
park with a rectangular shape between 5th and 8th Avenues and 59th and 110th
Streets.

In how many ways can one walk from the corner of 5th Avenue and 34th
Street to the corner of 10th Avenue and 116th Street avoiding the park and
walking always either directly North or West? (Walking alongside of the park
is fine.)

Remarks. This problem is loosely based on a possible walk in Manhattan, NY,
from the CUNY Graduate Center at 34th Street and Fifth Avenue to Columbia
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University, at 116th Street and Tenth Avenue. (The Empire State building is
also at 34th Street at Fifth Avenue.) The park mentioned above is Central Park.

8. Recall from Problem 10 of Chap. 4 that in the Plutonian alphabet there are
only four letters—A, B, C, and D—and that every finite string containing these
letters is a Plutonian word.

(a) Prove that there are
.a C b C c C d/Š

aŠ � bŠ � cŠ � dŠ

Plutonian words with exactly a As, b Bs, c Cs, and d Ds. (Here and below,
a; b; c; d are nonnegative integers.)

(b) Prove that there are

.a C b C c C d C 1/Š

.a C b C c C 1/ � aŠ � bŠ � cŠ � dŠ

Plutonian words with exactly a As, b Bs, c Cs, and at most d Ds.
(c) Recall from Problem 4 (e) of Chap. 13 that a Plutonian word is a “D-lite”

if at most half of its letters are Ds. How many D-lites are there with exactly
a As, b Bs, and c Cs?

9. (a) Prove Theorem 21.9, the Inclusion–Exclusion Principle.
(b) Prove Theorem 21.12 on the number of derangements.

10. Let n be an integer that is greater than 1, and suppose that the prime
factorization of n is

n D
rY

iD1

p
˛i

i :

(Here r � 1 is the number of distinct positive prime divisors of n; p1; : : : ; pr

are the prime divisors; and for an i 2 f1; : : : ; rg, ˛i is the “multiplicity” of pi

in the prime factorization of n.)

(a) Prove that the number of positive divisors of n is

d.n/ D
rY

iD1

.˛i C 1/:

Use this to verify that n is prime if, and only if, d.n/ D 2 (cf. Defini-
tion 2.1).

(b) Prove that the sum of positive divisors of n is

�.n/ D
rY

iD1

p
˛i C1
i � 1

pi � 1
:
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Use this to verify that if n is of the form n D 2k�1.2k � 1/ where k is
a positive integer for which 2k � 1 is a prime number, then n is a perfect
number. (See Theorem 4.1.)

(c) Prove that the number of integers between 1 and n, inclusive, that are
relatively prime to n is

�.n/ D
rY

iD1

p
˛i �1
i .pi � 1/:

(Hint: Use the Inclusion–Exclusion Principle.)

Remark. �.n/ is the famous Euler �-function; it appears in various places
in mathematics. For example, the group Un (cf. Problem 4 in Chap. 6) has
order �.n/.

11. In this problem we briefly discuss “discrete” analogues of some familiar
concepts of “continuous” calculus.

Definition 21.13. Let a D .an/1
nD1 D .a1; a2; a3; : : : / be an infinite sequence

of real numbers.

• The difference sequence of a is the sequence

�a D .anC1 � an/1
nD1 D .a2 � a1; a3 � a2; : : : /:

• If a is the difference sequence of a sequence b, then b is called an
antidifference sequence of a. The set of all antidifference sequences of a
is denoted by ��1a.

Remarks. The difference anC1 � an equals the familiar difference quotient

anC1 � an

.n C 1/ � n
:

Thus, we may think of �a and ��1a as the discrete analogous of the continuous
derivative and antiderivative, respectively.

(a) Prove the following proposition:

Proposition 21.14. Let c 2 R. If b D .bn/1
nD1 is an antidifference

sequence of the sequence a, then the sequence b0 D .bn C c/1
nD1 is also

an antidifference sequence of a.
Conversely, if b D .bn/1

nD1 and b0 D �
b0

n

�1
nD1

are both antidifference
sequences of a sequence a, then there is a constant c 2 R for which bn �
b0

n D c holds for all n 2 N.
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Remark. The antidifference sequence b of a that has first element b1 D c

is denoted by ��1
c a. According to Proposition 21.14, ��1

c a exists and is
unique for all sequences a and constants c.

(b) Prove the following proposition:

Proposition 21.15. Let a D .a1; a2; a3; : : : / be an arbitrary sequence and
c 2 R be an arbitrary constant. Prove that

���1
c a D a

and

��1
a1

�a D a:

Remark. Proposition 21.15 is the discrete version of the Fundamental
Theorem of Calculus.

(c) Let m be a fixed positive integer and c 2 R be an arbitrary constant. Prove
that

� .nm/
1
nD1 D �

m � nm�1
�1

nD1

and that

��1
c .nm/

1
nD1 D

�

c C nmC1

m C 1

�1

nD1

:

(d) Let a D .1/1
nD1 D .1; 1; 1; 1; : : : /. Prove that

��1
1 ��1

1 ��1
1 ��1

1 a D
  

n

4

!

C
 

n

2

!

C 1

!1

nD1

D .1; 2; 4; 8; 16; 31; 57; : : : /:

(cf. Problem 3 (d) of Chap. 3 and Problem 12 below.)

12. In this problem we analyze Problem 3 (d) of Chap. 3.

(a) Suppose that n points are given on a circle in general position (no three
chords meet at the same point inside the circle). Prove that the number of
regions that the chords determine inside the circle is

 
n

4

!

C
 

n

2

!

C 1:
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(Hints: Let G be the planar graph created by the circle and the chords; let
V , E , and F be the number of vertices, edges, and faces of G, respectively.
Prove that

V D
 

n

4

!

C n and E D 4
�

n
4

�C .n C 1/n

2
;

then use Euler’s Formula.)
(b) Prove that

 
n

4

!

C
 

n

2

!

C 1 D 2n�1 �
n�1X

iD5

 
n � 1

i

!

:

Remark. This shows that the claim of Problem 3 (d) of Chap. 3 is false if
n � 6.

13. Given a nonnegative integer k, let Sk denote the diagram that results by taking
the first 2k rows of Pascal’s Triangle (i.e., rows n with n D 0; 1; : : : ; 2k � 1)
and replacing each odd integer by a “full” circle and each even integer by an
“open” circle. For example, S3 is shown below.

�
� �

� ı �
� � � �

� ı ı ı �
� � ı ı � �

� ı � ı � ı �
� � � � � � � �

Remarks. Our diagram is essentially the Sierpiński Triangle (also known as the
Sierpiński Sieve or Sierpiński Gasket), named after the Polish mathematician
who introduced it first in 1915.

The infinite version of the Sierpiński Triangle is a well-known example
of a fractal or self-similar set (cf. page 257). In our diagram of S3 above,
we may note that the full circles form (the boundaries of) three smaller
triangles (corresponding to three images of S2) and each of these triangles
can be divided into three smaller triangles (each one corresponding to S1).
Beautiful images of the Sierpiński Triangle can be found, for example, at
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http://mathworld.wolfram.com/SierpinskiSieve.html, and mesmerizing an-
imated images may be viewed on YouTube.

In this problem we investigate some interesting properties of Sk :

(a) Let n and m be nonnegative integers with n � 2k � 1 and m � n. Prove
that the exponent of 2 in the prime factorization of

�
n
m

�
equals

k�1X

iD0


j n

2i

k
�
jm

2i

k
�
jn � m

2i

k�
:

(b) Let n and m be nonnegative integers with n � 2k � 1 and m � n. Let

n D nk�1 : : : n1n0

and
m D mk�1 : : : m1m0

be the binary representations of n and m, respectively (cf. Theorem 15.13;
here we insert initial bits of 0s if the numbers have fewer than k bits). Prove
that

�
n
m

�
is odd if, and only if, mi � ni holds for all i D 0; 1; : : : ; k � 1.

(c) Find all values of n between 0 and 2k � 1 for which the n-th row of Sk

contains only full circles and those values of n for which the n-th row
contains only open circles other than the two full circles at each end.

(d) Prove that Sk contains exactly 3k full circles.

Remark. For a nonnegative integer n, let fn denote the number of odd
values in the first n rows of Pascal’s Triangle. The first few terms of the
sequence f D .f0; f1; f2; : : : / are 0, 1, 3, 5, 9, 11, 15, 19, 27. According to
our claim, we have f2k D 3k. It can be shown that the terms of f satisfy the
recursion f0 D 0, f1 D 1,

fn D 2f .bn=2c/ C f .dn=2e/

for n � 2. This more general fact clearly implies our claim for n D 2k .
(However, your proof should not rely on this fact.)

(e) Define A.Sk/ (the “density” of full circles in the diagram) to be the number
of full circles in Sk divided by the total number of circles in Sk. For
example, as the diagram above demonstrates, we have

A.S3/ D 27

36
D 0:75:

Prove that

lim
k!1 A.Sk/ D 0:



Chapter 22
Infinite Delights

In Chap. 20 we defined what it means for a sequence to have an infinite limit. In this
chapter we discuss a different aspect of the intriguing concept of infinity; namely,
as promised in Chap. 21, we study sets of infinite size. As we will soon see, not
all infinite sets are created equal: some are “larger” (“much larger”) than others. On
the other hand, as it was already realized by the Italian mathematician and physicist
Galileo Galilei (1564–1642), even when an infinite set is a proper subset of another
infinite set, we may have to accept the notion that they have the “same size.” Among
other things, in this chapter we will make precise the following statements about the
sizes of our five basic number sets:

• N, Z, and Q are the “same size.”
• R and C are the “same size.”
• But R and C are “larger than” N, Z, and Q.

As we pursue our development, we will be confronted with some of the most
fundamental, yet least understood, questions in abstract mathematics today.

Let us start by first pointing out what is arguably the main characteristic of finite
sets and which distinguishes them from infinite sets: the elements of a finite set—
except for the empty set that we also consider finite—can be listed from first to last.
(Of course, we are talking here about a theoretical possibility only: a list description
may not be very practical if the set is large or if the elements are not given explicitly.)

Thus, if a set A has n elements for some n 2 N, then it is possible to find
a1; a2; : : : ; an 2 A so that fa1; a2; : : : ; ang D A. More precisely, we can say that
for every nonempty finite set A, there is a positive integer n and a surjection f

from f1; 2; : : : ; ng to A. (Actually, we can require that f be a bijection—and that
n be as small as possible—but here we want to emphasize the fact that the set
fa1; a2; : : : ; ang “covers” all of A and not that the elements are distinct.)

For an infinite set A, however, there is no positive integer n and elements
a1; a2; a3; : : : ; an for which fa1; a2; a3; : : : ; ang D A; that is, a function from
f1; 2; : : : ; ng to A is never a surjection. It is possible to restate this description of
infinite sets differently; rather than saying what one cannot do, we can say what
we can do: for an infinite set A, we can create an infinite list .a1; a2; a3; : : : / with

B. Bajnok, An Invitation to Abstract Mathematics, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-6636-9 22, © Béla Bajnok 2013

283



284 22 Infinite Delights

pairwise distinct elements. Here a1 is the first element in the list, a2 is the second
(different from the first), a3 is the third (different from the first two), and so on,
and the list does not contain a last element. For a set A to possess an infinite list
consisting of pairwise distinct elements can be concisely stated as being able to find
an injection g W N ! A. (As we will see later, requiring that g be a bijection is not
equivalent to this!)

We can summarize our observations as follows:

Proposition 22.1. For any set A, exactly one of the following three possibilities
holds:

• A is the empty set.
• There is a positive integer n for which there is a surjection from f1; : : : ; ng to A.
• There is an injection from N to A.

In the first two cases A is finite; if the third possibility holds, then A is infinite.
While we hope that our explanations for Proposition 22.1 above were convincing,
a precise proof based on the axioms of set theory (including the Axiom of Choice)
would take considerable effort.

Next, and for most of the rest of this chapter, we discuss how large an infinite
set may be. At the most elementary level, we may just say that an infinite set A

has size jAj D 1. It turns out, however, that it is possible—indeed, desirable—to
distinguish among different “kinds of infinities.”

Let us return to the issue of trying to arrange the elements of a set in a list. As
we discussed above, every nonempty finite set can be listed (in theory). It turns
out that some—but not all!—infinite sets can also be arranged in list notation: the
list would have to be infinitely long, but every element of the set must appear in
the list in a “finite position.” That is, an infinite set A can be listed, if there is a
sequence .a1; a2; a3; : : : / so that fa1; a2; a3; : : : g D A or, more concisely, if there is
a surjection from N to A. In this sense infinite sets that can be listed are not all that
different from finite sets.

So we find that it is possible to distinguish between two types of sets: those that
can be arranged as a list and those that cannot be. We make this precise with the
following definition.

Definition 22.2. We say that a set A is countable if it is the empty set or if there is
a surjection from N to A. If A is not countable, we say that it is uncountable.

As the most obvious example, we have:

Proposition 22.3. The set N of natural numbers is countable.

Proof. The identity map idN is clearly a surjection from N to N. ut
It is a bit less obvious that the set Z of all integers and the set Q of all rational

numbers are also countable; we will establish these results below (cf. also page 84
and Problem 12 in Chap. 8, respectively). In Chap. 8 we also mentioned that the set
R of real numbers is uncountable, and we will prove this surprising fact below as
well.
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It is important to note that the surjection in Definition 22.2 need not be a
bijection and, therefore, a countable set may be either finite or infinite. In fact, every
nonempty finite set is countable: if A D fa1; : : : ; ang is a finite set, then the function

f W N ! A

i 7! aminfi;ng
—corresponding to the sequence .a1; a2; : : : ; an; an; an; : : : /—is a surjection.
Therefore, we now have four types of sets:

• The empty set
• Nonempty finite sets (which are all countable)
• Sets that are infinite and countable (in short, countably infinite sets)
• Uncountable sets (which are all infinite)

Heuristically, we want to say that our four types of sets are listed here in increas-
ing order by size: in particular, an infinite set (whether countable or uncountable) is
larger than a finite set, and an uncountable set is larger than a countable set (whether
finite or countably infinite). This is indeed feasible, according to the following
proposition:

Proposition 22.4. Let A and B be arbitrary sets for which A � B . Then:

1. If A is infinite, then B is infinite.
2. If A is uncountable, then B is uncountable.

Proof. To prove our first claim, we use Proposition 22.1. Assume that f W N ! A

is an injection. Define the function g as

g W A ! B

a 7! aI

clearly, g is an injection. Therefore, by Proposition 19.16, g ı f W N ! B is an
injection; thus, B is infinite.

We prove our second claim by showing that if B is countable, then A must be
countable as well. Since the empty set is countable, we may assume that A ¤ ;;
therefore, there exists a surjection f W N ! B . Since A 6D ; we can choose an
a0 2 A, with which we define the function

g W N ! A

n 7!
8
<

:

f .n/ if f .n/ 2 A

a0 if f .n/ 62 A

Then, since A � B and f is a surjection, g is also a surjection, and thus A is
countable, as claimed. ut
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The following table summarizes the possibilities for A and B allowed by
Proposition 22.4:

Is A � B possible? B finite B countably infinite B uncountable

A finite Yes Yes Yes
A countably infinite No Yes Yes
A uncountable No No Yes

Later in this chapter we discuss a much more refined method of ranking sets
by how large they are, but for now we just focus on the two sizes: countable and
uncountable.

We turn to the infinite versions of the Addition Rule and Multiplication Rule
(cf. Lemmas 21.1 and 21.2).

Lemma 22.5 (The Addition Rule for Infinite Sets). If A and B are countable
sets, then A [ B is also countable.

More generally, if A1; A2; : : : ; An are countable sets .n 2 N/, then

A1 [ A2 [ � � � [ An

is also countable.
If at least one of A1; A2; : : : ; An is uncountable, then their union is also

uncountable.

Note that, unlike we did for the finite case (cf. Lemma 21.1), here we do not need
to assume that the sets are pairwise disjoint.

Proof. If A and B are countable sets, then we have surjections f W N ! A and
g W N ! B . It is not difficult to see that

ff .1/; g.1/; f .2/; g.2/; : : : g D A [ B:

More precisely, we can prove that the function

h W N ! A [ B

i 7!
8
<

:

f . iC1
2

/ if i is odd

g. i
2
/ if i is even

is a surjection, as follows. Let x 2 A[B; we need to show that x is in Im.h/. Let us
suppose that x 2 A—the case when x 2 B is quite similar. Since f is a surjection,
we have some j 2 N for which f .j / D x. But then h.2j � 1/ D f .j / D x.

The claim that, for any positive integer n, the union of n countable sets is
countable can be easily established by induction from the case of n D 2. We omit
the details.
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To prove the last statement, assume wlog that A1 is uncountable. Since

A1 � A1 [ A2 [ � � � [ An;

our claim follows directly from Proposition 22.4. ut
As a corollary, we get that Z is countable.

Proposition 22.6. The set Z of all integers is countable.

Proof. Note that
Z D N [ f0g [ .�N/

where �N denotes the set of negative integers. Our claim follows from the Addition
Rule above, since all three components are countable. ut
Lemma 22.7 (The Multiplication Rule for Infinite Sets). If A and B are count-
able sets, then A 
 B is also countable.

More generally, if A1; A2; : : : ; An are countable sets (n 2 N), then

A1 
 A2 
 � � � 
 An

is also countable.
If none of the sets A1; A2; : : : ; An is empty and at least one of them is

uncountable, then their Cartesian product is uncountable.

Proof. Let us start with the first claim. Since A and B are countable sets, we have
surjections gA W N ! A and gB W N ! B . It is then easy to see that the function

g W N 
 N ! A 
 B

.i; j / 7! ..gA.i/; gB.j //

is a surjection from N
N to A
B . Indeed, for an arbitrary element .a; b/ of A
B ,
we have an i 2 N for which gA.i/ D a and a j 2 N for which gB.j / D b. This
yields g.i; j / D .a; b/.

In order to find a surjection from N to A 
 B , we will use several results from
Chap. 19. First, by Problem 3 of Chap. 19, we have a bijection f W N 
 N ! N.
Therefore, by Proposition 19.15, f has an inverse f �1 W N ! N 
 N, and by
Proposition 19.8, f �1 is also invertible and thus is also a bijection. In particular,
f �1 is a surjection from N to N 
 N.

But, if f �1 is a surjection from N to N 
 N and g is a surjection from N 
 N to
A 
 B , then, by Proposition 19.16, g ı f �1 is a surjection from N to A 
 B , and so
A 
 B is countable.

Analogously to the Addition Rule for Infinite Sets, the second claim follows from
the first by induction.
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To prove our last claim, suppose wlog that A1 is uncountable. If n D 1, there
is nothing to prove, so assume that n � 2. Since the set Ai is not empty for any
i 2 f2; : : : ; ng, we can choose elements ai 2 Ai . Consider the set

A�
1 D A1 
 fa2g 
 � � � 
 fang:

It is then quite clear that there is a bijection f W A�
1 ! A1, so, since A1 is

uncountable, A�
1 must be uncountable as well. Indeed, if g W N ! A�

1 were to be a
surjection, then, by Proposition 19.16, f ı g W N ! A1 would also be a surjection,
which is impossible since A1 is uncountable.

Since
A�

1 � A1 
 A2 
 � � � 
 An;

our claim follows via Proposition 22.4. ut
As a corollary, we get that Q is countable.

Proposition 22.8. The set Q of all rational numbers is countable.

Proof. Let us define the function

f W Z 
 N ! Q

.a; b/ 7! a
b

Clearly, f is a surjection (though not a bijection!). By Propositions 22.6 and 22.3,
Z and N are countable, so by Lemma 22.7, there is some surjection g from N to
Z 
 N. But then, by Proposition 19.16, f ı g is a surjection from N to Q, and so Q

is countable. ut
It is quite useful to also consider the versions of the Addition and Multiplication

Rules for countably many sets.

Lemma 22.9 (The Addition Rule for Countably Many Sets). Suppose that for
each n 2 N, An is a countable set. Then their union

A D
1[

nD1

An D A1 [ A2 [ � � �

is countable.
If at least one of the sets A1; A2; : : : is uncountable, then their union is also

uncountable.

Note that by the axioms of set theory, we know that the infinite union above is
indeed a set (cf. Appendix B).
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Proof. Suppose that fn is a surjection from N to An. Define the function

f W N 
 N ! A

.n; m/ 7! fn.m/

We can easily show that f is a surjection. Indeed, if a 2 A, then, by definition, there
is an n 2 N for which a 2 An. Since fn is a surjection from N to An, there is an
m 2 N for which fn.m/ D a, and, therefore, we have f .n; m/ D a.

By Lemma 22.7, N 
 N is countable, so there is a surjection g from N to N 
 N.
Then, by Proposition 19.16, f ıg is a surjection from N to A, and so A is countable.

The proof that the union will be uncountable if at least one of the sets A1; A2; : : :

is uncountable follows immediately from Proposition 22.4. ut
So far, none of our “rules” allows us to create an uncountable set from a countable

(finite or countably infinite) set of countable sets. The following rule does just that.

Lemma 22.10 (The Multiplication Rule for Countably Many Sets). Suppose
that for each n 2 N, An is a set with at least two (distinct) elements. Then their
Cartesian product

A D
1Y

nD1

An

is uncountable.

Recall that we defined infinite direct products in Definition 19.9; in particular,
the set A above denotes the set of all sequences .a1; a2; : : : / with ai 2 Ai for
i D 1; 2; : : : . We should note again that the axioms of set theory guarantee that this
product is indeed a set (cf. Appendix B).

Proof. Let us assume indirectly that A is countable; we then have a surjection

f W N ! A D Q1
nD1 An

k 7! f .k/ D .f .k/1; f .k/2; : : : /

where, for each k 2 N and n 2 N, f .k/n 2 An. In particular, for each n 2 N,
f .n/n 2 An.

Since An has at least two elements for each n, we can find an element bn 2
An n ff .n/ng. Now let b D .b1; b2; : : : /. Clearly, b 2 A; therefore, since f is a
surjection, we must have a k 2 N for which f .k/ D b. Then, f .k/k D bk , but this
is a contradiction since f .k/k 2 Ak but bk 2 Ak n ff .k/kg. ut

We are now ready to prove that R is uncountable.

Theorem 22.11. The set R of all real numbers is uncountable.

We provide two proofs as they are both beautiful.
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Proof I. Let us consider the set A of real numbers between 0 and 1 that have only
decimal digits 3 or 8, that is,

A D f0:d1d2 � � � j 8n 2 N; dn 2 Dg
where D D f3; 8g. Since A 	 R, by Proposition 22.4, it is enough to prove that A

is uncountable.
It is easy to see that there is a bijection f from A to the set D 
 D 
 � � �

mapping the real number 0:d1d2 : : : to the sequence .d1; d2; : : : /. So if there were
to be a surjection g from N to A, then f ı g would be a surjection from N to
D 
 D 
 � � � , implying that the latter set is countable. This is a contradiction with
Lemma 22.10. �
Proof II. Let f W N ! R be any function. Then f .n/ is a real number for each
n 2 N, so we can choose an interval In of length 1

2n so that f .n/ 2 In, thus

Im.f / �
1[

nD1

In:

Recall that, by Problem 9 (a) of Chap. 20,

1X

nD1

1

2n
D 1;

so we cannot have 1[

nD1

In D R;

and, therefore, f cannot be a surjection. �
Since the set of real numbers is a subset of the set of complex numbers,

Theorem 22.11 immediately implies the following:

Corollary 22.12. The set C of all complex numbers is uncountable.

So far, we have classified infinite sets into two categories: those that are
countable, empty-set and those that are uncountable, such as R and C. Our stated
goal at the beginning of the chapter, however, involved making comparisons by
“size”: we talked about some sets having the “same size” while some being “larger”
than others. In order to make these notions precise, we need to carefully define what
we mean by these comparisons.

The approach we follow is due to the German mathematician Georg Cantor
(1845–1918) who developed much of the foundations for modern set theory. (As
we will soon see, not all of Cantor’s efforts were fruitful.)

We already have efficient methods to compare finite sets. Namely, by Proposi-
tion 19.11, for finite sets A and B , the inequality jAj � jBj is equivalent to both of
the following statements:

• There is an injection from A to B .
• There is a surjection from B to A.
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Furthermore, by Proposition 19.12, the equality jAj D jBj is equivalent to both of
the following:

• There is an injection from A to B and an injection from B to A.
• There is a bijection from A to B .

Our goal is to verify that the two pairs of predicates are equivalent for infinite
sets A and B as well; by doing so, we can safely use these conditions to define when
two infinite sets have the “same size” or when one is “larger” than the other.

Our first claim can be established easily.

Theorem 22.13. Suppose that A and B are arbitrary sets. Then there is an injection
from A to B if, and only if, there is a surjection from B to A.

Proof. Suppose first that there is an injection f from A to B . By Proposition 19.15,
f then has a left inverse; that is, there is a function g W B ! A for which g ı f D
idA. But then g has a right inverse; thus, g is a surjection using Proposition 19.15
again.

The other direction can be proved similarly. ut
Now we turn to the proof of our second claim, which is considerably more

challenging. The first proofs for the fact that, given any two sets, having injections
from each set to the other set is equivalent to having a bijection between the two sets
were first given independently by German mathematicians Felix Bernstein (1878–
1956) and Ernst Schröder (1841–1902) during the last decade of the nineteenth
century. (Bernstein was only 21 years old when his proof appeared.) Since the claim
was first conjectured by Cantor, the statement is now usually known as the Cantor–
Schröder–Bernstein Theorem.

Theorem 22.14 (The Cantor–Schröder–Bernstein Theorem). Suppose that A

and B are arbitrary sets. Then there is a bijection from A to B if, and only if,
there is both an injection from A to B and an injection from B to A.

Theorem 22.14 is considered a major milestone in set theory, and there is a
variety of different proofs known for it; our proof here is based on Ignace Kolodner’s
1967 article in the American Mathematical Monthly. We will need the following
lemma:

Lemma 22.15. Let X be a complete lattice for the partial order 
. Suppose that
f is an order-preserving function on X ; that is, whenever we have x1 
 x2 for
elements x1; x2 2 X , we also have f .x1/ 
 f .x2/. Then f has a fixed point; that
is, there is an element s 2 X for which f .s/ D s.

Proof. Consider the set

S D fx 2 X j x 
 f .x/g:

Note that S is nonempty; the minimum element m of X (which exists by
Theorem 18.5) is an element of S since obviously m 
 f .m/.
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Since X is a complete lattice, every subset of X must have a supremum. In
particular, S must have a supremum s. We will prove that f .s/ D s.

First we show that s 
 f .s/. Let x 2 S be arbitrary; then x 
 f .x/. Since
s D sup S , it is also an upper bound for S ; thus, we have x 
 s. Since f is order
preserving, f .x/ 
 f .s/, and, therefore, by transitivity, we get x 
 f .s/. But x

was an arbitrary element of S , so this means that f .s/ is an upper bound for S . By
the definition of supremum, we get s 
 f .s/ (and, consequently, that s 2 S ).

Next, we show that f .s/ 
 s. We just saw that we have s 
 f .s/; therefore,
since f is order preserving, we get f .s/ 
 f .f .s//, so f .s/ 2 S . Since s D sup S ,
we get f .s/ 
 s.

Since 
 is a partial order on X , it must be antisymmetric, so s 
 f .s/ and
f .s/ 
 s imply that f .s/ D s as claimed. ut
Proof of the Cantor–Schröder–Bernstein Theorem. One direction is easy: if f is a
bijection from A to B , then obviously f is also an injection from A to B; since f �1

is a bijection from B to A, it is an injection from B to A.
For the other direction, let f W A ! B and g W B ! A be injections. By

Proposition 19.15, g has a left inverse that we denote by g�. Recall that for a
function ˛ W C ! D and a subset X of C , the image ˛.X/ of X is defined as
˛.X/ D f˛.x/ j x 2 Xg.

We use the Boolean lattice .P.A/; �/ that, as we discussed in Chap. 18, is a
complete lattice (cf. page 219). Consider the function

� W P.A/ ! P.A/

X 7! A n g.B n f .X//

First we show that � is order preserving; that is, if X1 and X2 are subsets of A

with X1 � X2, then �.X1/ � �.X2/. Indeed, we have

X1 � X2

+
f .X1/ � f .X2/

+
B n f .X2/ � B n f .X1/

+
g.B n f .X2// � g.B n f .X1//

+
A n g.B n f .X1// � A n g.B n f .X2//

+
�.X1/ � �.X2/
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Therefore, by Lemma 22.15, we have a subset S of A for which �.S/ D S .
(As the proof of Lemma 22.15 shows,

S D
[

fX 2 P.A/ j X � �.X/g

is one such set.)
We can now define a bijection from A to B as follows:

h W A ! B

a 7!
8
<

:

f .a/ if a 2 S

g�.a/ if a 62 S

The rest of the proof will be the verification that h is a bijection.
Before doing so, we note that for an element a of A, a 62 S holds if, and only if,

there is some b 2 B n f .S/ for which a D g.b/. Indeed,

S D �.S/ D A n g.B n f .S//;

so for an element a 2 A, a 62 S is equivalent to a 2 g.B n f .S//.
To prove that h is injective, let us assume that we have some a1; a2 2 A for which

h.a1/ D h.a2/. We need to address three possibilities:

i a1 2 S and a2 2 S .
ii a1 62 S and a2 2 S .

iii a1 62 S and a2 62 S .

In the first case, h.a1/ D f .a1/ and h.a2/ D f .a2/. Since f is an injection,
h.a1/ D h.a2/ implies that a1 D a2.

In the second case, by our note above, we have an element b 2 B n f .S/ for
which a1 D g.b/. Then

h.a1/ D g�.a1/ D g�.g.b// D .g� ı g/.b/ D idB.b/ D b;

so h.a1/ 62 f .S/. But a2 2 S , so h.a2/ D f .a2/ 2 f .S/, and thus, we cannot have
h.a1/ D h.a2/; this case cannot occur.

Finally, in the third case, we have some b1; b2 2 B n f .S/ for which a1 D g.b1/

and a2 D g.b2/. Therefore,

h.a1/ D g�.a1/ D g�.g.b1// D .g� ı g/.b1/ D idB.b1/ D b1

and
h.a2/ D g�.a2/ D g�.g.b2// D .g� ı g/.b2/ D idB.b2/ D b2;
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so h.a1/ D h.a2/ implies b1 D b2, from which we get

a1 D g.b1/ D g.b2/ D a2:

This completes the proof that h is an injection.
It remains to be shown that h is a surjection. Let b 2 B; we need to find an a 2 A

for which h.a/ D b. We have two possibilities: b 2 f .S/ or b 62 f .S/.
If b 2 f .S/, then we have an a 2 S for which b D f .a/; in this case we have

h.a/ D b.
If b 62 f .S/, then b 2 B n f .S/, so g.b/ 2 g.B n f .S//, and thus,

g.b/ 62 A n g.B n f .S//:

But
A n g.B n f .S// D �.S/ D S;

so g.b/ 62 S . Then, by the definition of h, we have

h.g.b// D g�.g.b// D .g� ı g/.b/ D idB.b/ D b;

so, with a D g.b/, we have h.a/ D b. This completes the proof that h is a
surjection.

Since h is both an injection and a surjection, it is a bijection, and we are done. �
We are now ready to address the issue of comparing sets by their “sizes.” We start

by introducing the following relation on sets:

Definition 22.16. Suppose that A and B are sets. We say that A and B are
equinumerous if there is a bijection from A to B; this will be denoted by A � B . If
A and B are not equinumerous, we write A 6� B .

As our term suggests, we have the following:

Proposition 22.17. The relation of equinumerosity is an equivalence relation on
P.U /, the set of all subsets of a (universal) set U . In particular, the following
properties hold:

1. For any subset A of U , we have A � A.
2. If A and B are two subsets of U for which A � B , then we also have B � A.
3. If A, B , and C are three subsets of U for which A � B and B � C , then we

also have A � C .

Note that the collection of all sets is not a set, so we need a universal set U in
Proposition 22.17 (see the Axiom of Separation in Chap. 8). To make our discussion
as meaningful as possible, we assume that U is “very large,” namely, that it contains
all sets that we discuss. We leave the proof of Proposition 22.17 to Problem 10.

As a consequence of Proposition 22.17 and the Fundamental Theorem of
Equivalence Relations, we can partition the power set P.U / of U into equivalence
classes: two sets will belong to the same equivalence class if, and only if, they are
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equinumerous. The equivalence classes determined this way are called cardinality
classes; we denote the cardinality class of a set A by ŒA�.

The situation for finite subsets of U is easy to understand. Clearly, the only
element of Œ;� is ;. Recall that there is a bijection between two finite sets if, and
only if, they have the same size (cf. Proposition 19.12). Therefore, for each positive
integer n, the n-element subsets of U will form a single cardinality class (a distinct
class for each n).

Cardinality classes of infinite sets are considerably more complicated. Let us now
examine ŒN�, the cardinality class of the set of positive integers.

Proposition 22.18. A set A is equinumerous with N if, and only if, it is countably
infinite.

Proof. If A � N, then there is a bijection f from A to N. In particular, f is a
surjection from A to N, which, according to Theorem 22.13, implies that there is an
injection from N to A, so A is infinite by Proposition 22.1. Furthermore, f �1 is a
surjection from N to A; thus, A is countable by definition. Therefore, A is countably
infinite.

In the other direction, assume that A is countably infinite. Therefore, we have
an injection f from N to A and a surjection g from N to A. By Theorem 22.13,
the latter fact implies that there is also an injection h from A to N. The Cantor–
Schröder–Bernstein Theorem then guarantees that we also have a bijection f from
A to N, and thus A � N. ut

According to Proposition 22.18, all countably infinite sets are in the same
cardinality class. As the next theorem shows, this is definitely not the case for
uncountable sets. The proof is not very difficult, but the claim is both historic and
far reaching, so it deserves the “theorem” designation.

Theorem 22.19. For an arbitrary set A, there is no surjection from A to P.A/. In
particular, we have A 6� P.A/.

Proof. Suppose, indirectly, that there is a surjection f from A to P.A/. Let

Z D fa 2 A j a 62 f .a/g:

Since Z 2 P.A/ and f is a surjection, we must have an element z 2 A for which
f .z/ D Z.

There are now two possibilities: either z 2 Z or z 62 Z; we can easily see that
both of these possibilities lead to a contradiction. Indeed, in the first case, by the
definition of Z, we get z 62 f .z/, which contradicts f .z/ D Z; the other case is
analogous. ut

As a consequence of Theorem 22.19, we immediately see that there are infinitely
many different infinite cardinality classes: for example,

ŒN�; ŒP.N/�; ŒP.P.N//�; ŒP.P.P.N///�;
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and so on are all distinct. It is interesting to see where the sets R and C fall into
this sequence or whether, perhaps, they represent other cardinality classes. Our next
proposition addresses the case of the reals, leaving the set C to Problem 12.

Theorem 22.20. The set of real numbers is equinumerous with the power set of the
set of positive integers; that is, R � P.N/:

Proof. By Problem 11 of Chap. 19, the interval Œ0; 1/ is equinumerous with R;
therefore, since � is a transitive relation, it suffices to show that Œ0; 1/ � P.N/: By
the Cantor–Schröder–Bernstein Theorem, this can be reduced to finding injections
from Œ0; 1/ to P.N/ and from P.N/ to Œ0; 1/.

We start by finding an injection from P.N/ to Œ0; 1/. As in the proof of
Theorem 22.11, we consider the set A of real numbers between 0 and 1 that have
only decimal digits 3 or 8; that is,

A D f0:d1d2 � � � j 8n 2 N; dn 2 f3; 8gg:

It is easy to see that there is a bijection from P.N/ to A: to each subset S of N, we
can assign the real number 0:d1d2 � � � 2 A by setting dn D 3 if n 2 S and dn D 8 if
n 62 S . Since A 	 Œ0; 1/, this determines an injection from P.N/ to Œ0; 1/.

For the other direction, rather than using decimal representations for real
numbers, it is more convenient to use binary representations. According to Theo-
rem 15.14, every real number a 2 Œ0; 1/ can be written in the form

a D 0:d1d2 : : :

where dn 2 f0; 1g for all n 2 N; if we exclude the possibility of having an index
n 2 N for which dk D 1 for each k � n, then the representation is unique. In other
words, there is a bijection between the interval Œ0; 1/ and the set

� D f.d1; d2; : : : / j 8n 2 N; dn 2 f0; 1g and 6 9n 2 N for which 8k � n; dk D 1g:

Therefore, it suffices to find an injection f from � to P.N/. This is simple: for any
given a D .d1; d2; : : : / 2 �, let

f .a/ D fn 2 N j dn D 1g:

Then f is an injection (but not a bijection!) from � to P.N/ and thus we are done.
ut

Our final topic of this chapter is the introduction of cardinalities (or cardinal
numbers)—one of Cantor’s ingenious notions. Here we will not provide a formal
definition for cardinalities; instead, we treat the concept as a fundamental concept
and just say that we can assign to each cardinality class its own cardinality.
Analogously to the sizes of finite sets, cardinalities will indicate how “large” the
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sets in the various cardinality classes are. The cardinality of a set A (which is then
shared by any set in the cardinality class of A) will be denoted by jjAjj.

In order to be consistent with the notion of size for finite sets, in case A is finite,
we let jjAjj be simply the size jAj of A. In particular, we write jj;jj D 0 and, if A

has n elements (n 2 N), then jjAjj D n.
For infinite sets, we start by introducing the following notations:

jjNjj D Æ0;

jjP.N/jj D Æ1;

jjP.P.N//jj D Æ2;

jjP.P.P.N///jj D Æ3;

and so on; the cardinality Æn can be defined recursively for all n 2 N. (Here Æ,
pronounced “beth,” is the second letter of the Hebrew alphabet.) As we have seen,
these cardinalities are all distinct.

We should note that there are (many) other cardinalities besides the ones we listed
here. For example, we can set T to be

T D N [ P.N/ [ P.P.N// [ � � � I

it is now easy to see that jjT jj, denoted usually by Æ! , is different from all previous
cardinalities. And, we don’t need to stop with Æ! : we can consider jjP.T /jj D
Æ!C1, jjP.P.T //jj D Æ!C2, and so on. (Here the indices !, ! C 1, etc., are ordinal
numbers—see Problem 14.)

By Propositions 22.6, 22.8, and 22.18, we have jjZjj D jjQjj D Æ0: The
traditional notation for the cardinality of the set of real numbers is jjRjj D c,
abbreviating the word “continuum” that is sometimes used for the points on the
real line. According to Theorem 22.20, we have c D Æ1: As we mentioned before,
the set of real numbers is larger than the set of rationals; we now define precisely
what we mean by this.

Definition 22.21. Let A and B be arbitrary sets. We say that the cardinality of A is
less than or equal to the cardinality of B , if there is an injection from A to B; this
will be denoted by jjAjj � jjBjj. Equivalently, we say that the cardinality of B is
greater than or equal to the cardinality of A and write jjBjj � jjAjj.

Furthermore, we say that the cardinality of A is less than the cardinality of B ,
if jjAjj � jjBjj but jjAjj 6D jjBjj, in other words, if there is an injection from A

to B but there is no bijection from A to B . This will be denoted by jjAjj < jjBjj.
Equivalently, we say that the cardinality of B is greater than the cardinality of A

and write jjBjj > jjAjj.
Before anything else, it is important to note that Definition 22.21 is logically

correct: since we are comparing cardinalities and not sets, we need to verify that
the existence of the required injection (or the nonexistence of the relevant bijection)
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does not depend on which representatives of the cardinality classes we picked. The
easy proof is left for Problem 10.

We should also verify that our usage of the terms “less than or equal to” and “less
than” are in line with our expectations for such terminology. Namely, we want to
prove that if ‰ is the set of cardinalities of the sets in a (universal) set of sets U ,
then the � relation in Definition 22.21 defines a partial order on ‰. The proof of
this is left for Problem 10.

In Theorem 22.19, we proved that there is never a bijection from a set to its
power set. At the same time, an injection clearly exists: for example, we can map
each element a of the set A to fag 2 P.A/. Therefore, for any set A we have
jjAjj < jjP.A/jj. Thus, among the cardinalities we have mentioned, we have the
total order

0 < 1 < 2 < 3 < � � � < Æ0 < Æ1 < Æ2 < Æ3 < � � � < Æ! < Æ!C1 < Æ!C2 < � � � :

According to Proposition 22.1, for any infinite set A, there is an injection from
N to A. Furthermore, by Proposition 22.18, for any countably infinite set A, there is
a bijection from A to N, but if A is uncountable, no such bijection exists. Using our
new terminology, we can state these as follows:

Proposition 22.22. For any infinite cardinality ˛, we have Æ0 � ˛, and for any
uncountable cardinality ˛, we have Æ0 < ˛.

Therefore, it makes sense to define @0 to be the smallest infinite cardinality; by
Proposition 22.22, we have @0 D Æ0. (Here @, pronounced “aleph,” is the first letter
of the Hebrew alphabet.)

It is also natural to wonder if there is a smallest uncountable cardinality. This
is indeed the case, but its proof is beyond our scope here. We state the following
results without proof:

Theorem 22.23. The partial order relation defined on a set ‰ of cardinalities is a
total order; that is, for any two cardinalities ˛; ˇ 2 ‰, we have exactly one of the
following:

˛ < ˇ; ˛ D ˇ; ˛ > ˇ:

By Theorem 22.23, any cardinality ˛ can be inserted into our chain of cardinali-
ties above. The following theorem states an even stronger result.

Theorem 22.24. The partial order relation defined on a set of cardinalities ‰ is a
well-order; that is, for any nonempty „ � ‰, we have a cardinality ˛ 2 „ that is
less than or equal to any cardinality in ‰.

Therefore, among all cardinalities that are larger than @0, there is a smallest
cardinality; this cardinality is denoted by @1. By Proposition 22.22, we can say
that @1 is the smallest uncountable cardinality. At this point, one may conjecture the
following:
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Axiom 22.25 (The Continuum Hypothesis). @1 D Æ1; that is, there is no set A

for which jjNjj < jjAjj < jjRjj:
Georg Cantor dedicated enormous efforts trying to prove the Continuum

Hypothesis—with no success. (Sadly, this contributed to a debilitating mental
illness during much of the last part of his life.) In 1900, the German mathematician
David Hilbert stated a famous list of twenty-three open questions ranging over
most branches of mathematics. The first problem on his list was the Continuum
Hypothesis (cf. page 383).

By now we know that the task of proving the Continuum Hypothesis was to be
hopeless. In 1938, Kurt Gödel proved that the Continuum Hypothesis is consistent
with the usual axioms of set theory; that is, it can be added without a contradiction.
In 1963 Paul Cohen showed that the negation of the Continuum Hypothesis is also
consistent with the axioms of set theory, that is,

Theorem 22.26. The Continuum Hypothesis is independent from the usual axioms
of set theory.

By Theorem 22.24 we can also define @2 to be the smallest cardinality that is
greater than @1, @3 to be the smallest cardinality that is greater than @2, and so on.
We can then extend the Continuum Hypothesis as follows:

Axiom 22.27 (The Generalized Continuum Hypothesis). @n D Æn for all n 2 N.

(Even more generally, the axiom is usually stated to say that the above equation
holds for all ordinals n, e.g., @! D Æ! , @!C1 D Æ!C1, etc.; cf. Problem 14.)

At the present time, it is unclear how the Continuum Hypothesis and the
Generalized Continuum Hypothesis are to be viewed by mathematicians. While
many accept them just like any of the other axioms of set theory, others believe
that it’s better to assume their negations. And, of course, there are also those who
argue for a middle ground: let’s develop two theories, one based on the acceptance
and one on the denial of the hypotheses. (This twofold approach is usually followed
when it comes to the Parallel Postulate.)

In closing, we point out what has evidently become an unfortunate irony in
the hope to lay a solid foundation to abstract mathematics. Toward the end of
the nineteenth century, many mathematicians looked to the newly developing
branches of logic and set theory to cement the foundations of much of, even all of,
mathematics. For example, David Hilbert, the prolific and highly influential giant of
the era, was hoping for and advocated such efforts. But today, at the beginning of the
twenty-first century, after numerous “disappointing” results by Gödel, Cohen, and
others, it seems that not only would we have to give up on the effectiveness of such
axiomatic systems, but we also have to—at least for a while—live with the fact that
there may be more than one legitimate foundation. Thus, set theory not only failed
at uniting and synchronizing all of mathematics, it actually caused vast divisions.
We will see what the future holds for us in this regard—so much for the “absolute
truth” in mathematics!
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Problems

1. Let P.X; Y / denote the predicate that there exists an injection from the set X

to the set Y , and let Q.X; Y / denote the predicate that there exists a surjection
from the set X to the set Y . Furthermore, for a positive integer n, let In denote
the set f1; : : : ; ng. Using these and other standard notations, below we form a
variety of statements about a certain nonempty set A. For each such statement,
write another statement that is equivalent to it and that is in the format jjAjj �˛,
where ˛ is a specific cardinality and � is one of the following relation signs:
D, �, �, <, or >. (For example, if the statement holds for all sets A, you may
answer jjAjj � 1; if it holds for no set A, you may write jjAjj < 1.)

(a) 9n 2 N, P.In; A/

(b) 9n 2 N, Q.In; A/

(c) 9n 2 N, P.A; In/

(d) 9n 2 N, Q.A; In/

(e) 8n 2 N, P.In; A/

(f) 8n 2 N, Q.In; A/

(g) 8n 2 N, P.A; In/

(h) 8n 2 N, Q.A; In/

(i) P.N; A/

(j) Q.N; A/

(k) P.A;N/

(l) Q.A;N/

2. In Lemma 22.9, we proved that if sets A and B can be listed, then so can A
B .
Our proof took advantage of the fact that the function f W N
 N ! N, defined
by

f .m; n/ D 2m�1.2n � 1/;

is a bijection, which, in turn, relied on Lemma 4.11. (Here, as customary, we
simply write f .m; n/ instead of f ..m; n//.) Given the lists .a1; a2; : : : / and
.b1; b2; : : : / for (infinite) sets A and B , respectively, our method results in the
list

..a1; b1/; .a2; b1/; .a1; b2/; .a3; b1/; .a1; b3/; .a2; b2/; : : : /

for A 
 B . We can visualize this list with the help of the following table:

b1 b2 b3 b4 b5 : : :

a1 1 3 5 7 9 : : :

a2 2 6 10 14 18 : : :

a3 4 12 20 28 36 : : :

a4 8 24 40 56 72 : : :

a5 16 48 80 112 144 : : :
:::

:::
:::

:::
:::

:::
: : :
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The fact that f above is a bijection can be rephrased to say that each positive
integer appears exactly once in the table.

Of course, there are other ways to list A 
 B—in fact, it can be shown that
the set of all lists is uncountable. In this problem, we examine two other lists,
given by their schematic tables. For each table, find the corresponding bijection
function is a bijection.

(a)
b1 b2 b3 b4 b5 : : :

a1 1 2 5 10 17 : : :

a2 4 3 6 11 18 : : :

a3 9 8 7 12 19 : : :

a4 16 15 14 13 20 : : :

a5 25 24 23 22 21 : : :
:::

:::
:::

:::
:::

:::
: : :

(Hint: Use Problem 9 (a) of Chap. 15.)
(b)

b1 b2 b3 b4 b5 : : :

a1 1 2 4 7 11 : : :

a2 3 5 8 12 17 : : :

a3 6 9 13 18 24 : : :

a4 10 14 19 25 32 : : :

a5 15 20 26 33 41 : : :
:::

:::
:::

:::
:::

:::
: : :

(Hint: Use Problem 9 (b) of Chap. 15.)

3. Let A D f0; 1; 2g, and let

A D
1Y

nD1

A D A 
 A 
 � � � :

Then, by Lemma 22.10, A is an uncountable set.
Let B be the set of those infinite sequences in A where consecutive terms

are always distinct. Decide whether B is countable or uncountable.
4. Prove that the Cantor set is uncountable.

(Hint: Use Problem 13 (b) of Chap. 20.)
5. Let X be an infinite set of nonzero intervals (i.e., intervals of positive lengths).

(a) Prove that if the intervals in X are pairwise disjoint, then X is countable.
(Hint: Use the fact that Q is dense in R; see Problem 11 (a) of Chap. 20.)

(b) Suppose that no pair of intervals in X is disjoint. Is X necessarily
countable?
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(c) Suppose that no interval in X contains another. Is X necessarily countable?

6. We say that a real number a is algebraic, if there is a not identically zero
polynomial f with integer coefficients for which f .a/ D 0; if a is not
algebraic, we say that it is transcendental.

Let A be the set of algebraic numbers and let T be the set of transcendental
numbers. Use the following lemma to prove that A is countable but T is
uncountable.

Lemma 22.28. A polynomial with real number coefficients and degree n 2 N

has at most n roots in R.

Remarks. It is easy to verify that certain numbers, such as 0, �7, 3:14,
p

11,
and .

3
p

11 C p
7/=5, are all algebraic. Even though, as this problem asks you

to verify, “almost all” numbers are transcendental, there are very few specific
numbers that are known to be transcendental. We have known for over a century
that e and � are transcendental (the proofs are not easy); more recently, it was
proven that 2

p
2, e� , and even

e�
p

163

are also transcendental. (More on this last number, called Ramanujan’s con-
stant, in Chap. 23.) But, at the present time, we do not know whether e C � ,
e �� , or �e are algebraic or transcendental (most likely they are transcendental).

7. The claims below are all false. Find the mistakes—shall we say, the cardinal
mistakes—in their arguments. Be as specific as possible.

(a) Claim. Every nonempty set is countable.
Argument. Since every nonempty finite set is clearly countable, it suffices
to prove our claim for infinite sets.

Let A be an infinite set. Then, by definition, there is an injection f W
N ! A. Consider the set

Im.f / D ff .1/; f .2/; : : : g:

If Im.f / D A, then f is a surjection, and A is countable. Assume then that
Im.f / is a proper subset of A, and let a 2 A n Im.f /. Define a function g

as follows:
g W N ! A

n 7!
8
<

:

a if n D 1

f .n � 1/ if n � 2

Note that

Im.g/ D fg.1/; g.2/; : : : g D fa; f .1/; f .2/; : : : g:
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If Im.g/ D A; then g is a surjection, so A is countable. If Im.g/ is a proper
subset of A, then we proceed as above; continuing the process until we
eliminate all of A, we finally arrive at a function h from N to A whose
image is all of A, and thus A is countable.

(b) Claim. The set P.N/ is countable.
Argument. Let A be the set of all functions from N to the two-element set
f0; 1g. We first show that A � P.N/. To see this, consider the function

f W A ! P.N/

g 7! fn 2 N j g.n/ D 1g

Then it is not hard to see that f is a bijection.
Note that any function in A can be uniquely identified with its graph

G.f / D f.n; f .n// j n 2 Ng:

Now for each f 2 A, the graph G.f / is a subset of N
f0; 1g. However, by
Lemma 22.7, the entire set N
f0; 1g is countable, so certainly any subset is.
Putting it together, we have shown that P.N/ � A and that A is countable;
therefore, P.N/ is also countable.

(c) Claim. The set P.N/ is countable.
Argument. Let P D f2; 3; 5; 7; 11; : : : g be the set of positive primes. Note
that, by the Fundamental Theorem of Arithmetic, every positive integer n

can be written in the form

n D 2˛1 � 3˛2 � 5˛3 � � �

with nonnegative integers ˛1; ˛2; ˛3; : : : , and the expression of n in this
form is unique.
Using the expression of n above, we can define the function

f W N ! P.N/

n 7! f˛i j ˛i � 1g

(For example, we have f .1/ D ;, f .2/ D f .6/ D f1g, f .63/ D f1; 2g,
and f .63; 000; 000/ D f1; 2; 6g.)
It is easy to see that f is a surjection (though clearly not an injection), thus
P.N/ is countable.

(d) Recall from Problem 10 of Chap. 4 that in the Plutonian alphabet there are
only four letters, A, B, C, and D, and that every finite string containing
these letters is a Plutonian word.
Claim. The set of Plutonian words is uncountable.
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Argument. Let S D fA; B; C; D; ^g be the set consisting of the four letters
in the Plutonian alphabet and of the symbol ^. Each Plutonian word can be
thought of as an infinite sequence of elements of S where a finite string of
the four letters is followed by infinitely many ^’s. For example, the word
AABCDA can be identified with the infinite sequence AABCDA ^^^

� � � . Therefore, the set of Plutonian words is essentially the same as the
Cartesian product S 
 S 
 � � � , which, by Lemma 22.10, is uncountable.

(e) Claim. The set of real numbers in the interval Œ0; 1/ is countable.
Argument. Write each real number x 2 Œ0; 1/ in its binary representation
(cf. Theorem 15.14):

x D 0:d1d2 : : :

where the binary digits (bits) d1; d2; : : : all equal 0 or 1. Note that certain
numbers have two such representations; namely, if in the representation of
x above, there is a k 2 N for which the k-th bit is 0 and it is followed
by infinitely many 1 bits, then x is unchanged if we replace the k-th bit
by a 1 and each successive bit by 0. Therefore, we may assume that each
real number between 0 and 1 has a binary representation with only finitely
many 1 bits.
We can now create a list of all real numbers between 0 and 1, as follows.
The list will start with the only real number in Œ0; 1/ with no 1 bit: 0 D
0:00000 : : : . It is followed by the other number that has no 1 bits beyond
the first bit, 1

2
D 0:100000 : : : . Then, we list the two numbers in Œ0; 1/ that

have no 1 bits beyond the second bit (and that have not been listed before):
1
4

D 0:010000 : : : and 3
4

D 0:110000 : : : , and so on. Note that for each
positive integer n, there is only a finite number of binary representations
that have no 1 bits beyond the n-th bit; these can obviously be arranged
in a finite list. Therefore, proceeding like this for successive values of n

creates a list that contains all real numbers with only finitely many 1 bits
and, therefore, all real numbers in the interval Œ0; 1/.

8. The aim of this problem is to facilitate a thorough understanding of the proof
of the Cantor–Schröder–Bernstein Theorem. In each part below, a pair of sets
A and B is given, together with functions f W A ! B and g W B ! A. Verify
that f and g are injections (but not bijections), then find an explicit description
for the key elements of the proof of the theorem: the set S and the function
h W A ! B . In each case, verify that �.S/ D S and that h is a bijection.

(a) A D N, B D N; f W n 7! n C 1, and g W n 7! n C 1.
(Hint: S is the set of all odd positive integers.)

(b) A D .0; 1/, B D .0; 1�; f W x 7! x, and g W x 7! x=2.
(Hint: S is the set of all real numbers between 0 and 1, except for those that
have a binary representation with exactly one 1 bit.)

9. Use results obtained in this chapter to prove that the collection of all sets is not
a set.
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10. In this problem we fulfill promises made earlier in this chapter.

(a) Prove Proposition 22.17.
(b) Prove that Definition 22.21 is logically correct. In particular, prove that if

sets A1; A2; B1, and B2 satisfy A1 � A2 and B1 � B2, then there is an
injection from A1 to B1 if, and only if, there is an injection from A2 to B2.

(c) Suppose that U is a (universal) set of sets, and let ‰ be the set of
cardinalities of the sets in U :

‰ D fjjAjj j A 2 U g:

Prove that the � relation in Definition 22.21 defines a partial order on ‰;
that is, prove that the � relation is reflexive, antisymmetric, and transitive.

11. For a given cardinality ˛, we say that a partition ˘ of the Euclidean plane R2 is
an ˛-coloring of the plane if the cardinality of ˘ is jj˘ jj D ˛. For example, a
partition of the plane into four quadrants (with each boundary point in a unique
part) is a 4-coloring, and a partition into “horizontal” lines is a c-coloring as
there are uncountably many such lines.
Furthermore, for a fixed cardinality ˛, let P.˛/ be the predicate that every ˛-
coloring of the plane contains a monochromatic triangle (i.e., three points, not
all on the same line, that are in the same part of the partition); similarly, let Q.˛/

be the predicate that every ˛-coloring of the plane contains a monochromatic
regular triangle, and let R.˛/ be the predicate that every ˛-coloring of the plane
contains a monochromatic right triangle.

(a) Prove that P.n/ is true for every n 2 N.
(b) Prove that Q.2/ is true.

(Hint: Consider the diagram

� � �

� � �

� � �

where the points are equally spaced.)
Remark. It is an open question if there are any integers n � 3 for which
Q.n/ holds.

(c) Prove that R.n/ is true for every n 2 N.
(d) Prove that P.@0/ is true.
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Remarks. By a result of Jack Ceder, we know that Q.@0/ is false; that is,
it is possible to color each point of the plane with one of @0-many colors
without creating a monochromatic regular triangle.
A deep result of Paul Erdős and Péter Komjáth says that R.@0/ holds if,
and only if, the Continuum Hypothesis is false.

12. Prove that each of the following sets is equinumerous with R and, therefore,
has the cardinality c D Æ1. Do not use the Continuum Hypothesis. (For parts
(f) and (g) recall that X1 stands for the set of infinite sequences of elements
from X .)

(a) R n N

(b) R n Q

(c) Œ0; 1� 
 Œ0; 1�

(d) C

(e) R
3

(f) N
1

(g) R
1

Remarks. According to part (c), one can find a surjection from R (or from
the interval Œ0; 1�) to the square region Œ0; 1� 
 Œ0; 1�. It is very surprising
that, in fact, a continuous surjection can also be found; that is, it is possible
to draw a curve that “fills” the entire two-dimensional region. (By this
we mean that there exists a continuous function with domain Œ0; 1� and
image Œ0; 1� 
 Œ0; 1�.) Such functions (which, according to a result of
Eugen Netto, cannot be bijections) are called space filling curves. The
first such curve was discovered by Giuseppe Peano in 1890; a year later,
a simpler example was given by David Hilbert. The interactive Web page
http://www.cs.utexas.edu/users/vbb/misc/sfc/0index.html allows one to
generate approximations for Peano’s and Hilbert’s curves (as well as ones
given by others).

13. In this problem we develop the basics of what is known as cardinal arithmetic.
We make the following definitions:

Definition 22.29. Let ˛ and ˇ be cardinalities, and suppose that A and B are
disjoint sets with jjAjj D ˛ and jjBjj D ˇ. Then ˛ C ˇ is defined as the
cardinality of A [ B .

We should note that for any cardinalities ˛ and ˇ, one can always find disjoint
sets A and B with jjAjj D ˛ and jjBjj D ˇ. Without changing their
cardinalities, we can always modify A and B and set A� D f.1; a/ j a 2 Ag
and B� D f.2; b/ j b 2 Bg; these sets are then disjoint.

Definition 22.30. Let ˛ and ˇ be cardinalities, and suppose that A and B are
sets with jjAjj D ˛ and jjBjj D ˇ. Then ˛ � ˇ is defined as the cardinality of
A 
 B .
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Definition 22.31. Let ˛ and ˇ be cardinalities, and suppose that A and B are
sets with jjAjj D ˛ and jjBjj D ˇ. Then ˛ˇ is defined as the cardinality of the
set Fun.B ! A/ of functions from B to A.

As before, we can easily verify that the three operations are well defined; that
is, they do not depend on which sets A and B one uses:

(a) Show that these definitions extend the corresponding notions for finite sets;
that is, verify that for finite—in the case of addition, disjoint—sets A and
B , we have

jjAjj C jjBjj D jAj C jBj;
jjAjj � jjBjj D jAj � jBj;

and
jjAjjjjBjj D jAjjBj:

(b) Explain how the validity of the entries in the following tables follows from
previous results:

C @0 c

@0 @0 c
c c c

� @0 c

@0 @0 c
c c c

(c) Explain how the identities

2Æm D ÆmC1;

@@0

0 D c;

and
c@0 D c

follow from previous results.
(d) Prove that the addition and multiplication of cardinalities are commutative

and associative operations and that multiplication is distributive with
respect to addition.

(e) Prove that for arbitrary cardinalities ˛, ˇ, and � , we have

i.
˛ˇ � ˛� D ˛ˇC� I

ii.
˛� � ˇ� D .˛ � ˇ/� I

iii. �
˛ˇ
�� D ˛ˇ�� :
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(f) Prove that, for all nonnegative integers n and m, we have

i.
Æn C Æm D Æmaxfn;mgI

ii.
Æn � Æm D Æmaxfn;mgI

iii.
.Æn/Æm D Æmaxfn;mC1g:

Remark. More generally, one can prove the following:

Theorem 22.32. For any two infinite cardinalities ˛ and ˇ, we have

˛ C ˇ D ˛ � ˇ D maxf˛; ˇg:

According to Theorem 22.32, addition and multiplication of cardinalities
are rather trivial operations; exponentiation, however, without assuming the
Generalized Continuum Hypothesis, is considerably more complicated and
is still the subject of much study.

14. In this problem we briefly investigate another—as we will see, much more
refined—method of measuring the magnitude of sets; namely, we introduce
Cantor’s concept of ordinals or ordinal numbers. At a very intuitive level, an
ordinal measures how “long” a set is (while a cardinal measures how “large”
it is).
Consider, for example, the following well-orders of N:

1 < 2 < 3 < 4 < 5 < 6 < � � �
4 � 5 � 6 � 7 � � � � � 1 � 2 � 3

1 � 3 � 5 � 7 � � � � � 2 � 4 � 6 � 8 � � � �
1 � 2 � 4 � 8 � � � � � 3 � 6 � 12 � 24 � � � � � 5 � 10 � 20 � 40 � � � �

As we discussed in Problem 14 of Chap. 19, each of these well-orders of N is
of a different order type—this distinction allows us to differentiate among sets
based on their “lengths.” Rather than providing a formal definition for ordinals,
we say that the order type of a well-ordered set (cf. Definition 19.17) is called
an ordinal number or ordinal, for short.
The ordinal number of a finite set of size n—which, according to Problem 14
of Chap. 19, is unique—is denoted simply by n; the ordinal numbers of the four
distinct well-orders for N above are denoted, in order, by

!;

! C 3;
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! C ! (or ! � 2/;

and
! � ! (or !2/;

respectively. We explain these notations by introducing arithmetic operations
on ordinals, as follows.

Recall from Problem 13 above that for a given pair of sets A and B , we
introduced A� D f.1; a/ j a 2 Ag and B� D f.2; b/ j b 2 Bg. (Here A� and
B� are disjoint, and we have jjA�jj D jjAjj and jjB�jj D jjBjj.)
Definition 22.33. Let � and � be ordinals, and suppose that wosets .A; 
A/

and .B; 
B/ have order types � and �, respectively. The sum � C � is then
defined as the order type of the lexicographic order on A� [ B�.

Note that the lexicographic order on A� [ B� puts all elements of A� before
any of the elements of B� but keeps the order of the elements in both A� and
B� unchanged (see Problem 10 of Chap. 8).

Definition 22.34. Let � and � be ordinals, and suppose that wosets .A; 
A/

and .B; 
B/ have order types � and �, respectively. The product � � � is then
defined as the order type of the co-lexicographic order on A 
 B .

Recall that, in co-lexicographic order, the element .a; b/ 2 A
B comes before
an element .a0; b0/ 2 A 
 B if, and only if, b 
B b0 or b D b0 and a 
A a0. We
then see that the co-lexicographic order on A
B starts with the set of elements

f.a; b1/ j a 2 Ag

arranged in order according to 
A (here b1 D min B); this is followed by the
elements of

f.a; b2/ j a 2 Ag
in similar order (here b2 D min B n fb1g), etc.

Next, we define exponentiation, but only in the case when the exponent is a
finite ordinal.

Definition 22.35. Let n be a positive integer and � be any ordinal; we define
�n recursively by �1 D � and �n D �n�1 � � for n � 2.

The definition of ordinal exponentiation for nonfinite exponents is considerably
more complicated and will not be given here.

As usual, we need to verify that the operations do not depend on which sets A

and B one uses—this can, indeed, be accomplished easily; we skip the details.

(a) Verify that, given Cantor’s notation ! for the order type of N with the usual
� order, the other well-orders on N above, denoted by !C3, !C!, ! �2, ! �
!, and !2, are consistent with the operation of addition and multiplication.

(b) Prove that for all n 2 N, we have
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n C ! D ! ¤ ! C n

and
n � ! D ! ¤ ! � n:

(c) As we have just seen, addition and multiplication are not commutative.
(However, they are associative.) Does any form of distributivity hold?

(d) Given an infinite sequence of ordinal numbers .�1; �2; : : : /, provide a
definition for the sum

1X

nD1

�n D �1 C �2 C � � � :

Verify that your definition gives

! C ! C ! C � � � D !2:

(e) Provide an explicit well-order on N that has order type

! C !2 C !3 C � � � :

Remark. The ordinal number corresponding to this order type is denoted
by !! .



Chapter 23
Number Systems Systematically

Throughout this book, we frequently considered our familiar sets of numbers:

• N: the set of natural numbers
• Z: the set of integers
• Q: the set of rational numbers
• R: the set of real numbers
• C: the set of complex numbers

We have already seen many of their distinguishing attributes, including some
elaborate and far-reaching properties. But we have never, actually, defined these
number sets; up till now, we treated them as primitives (cf. page 13). In this chapter
we discuss how one can “build up” these number sets in the order above; we will
also explain why, in a certain sense, C cannot be—and needn’t be—enlarged further.

In Chap. 22, we studied these sets from the viewpoint of set theory: we focused
only on their cardinalities and not on their algebraic or analytical properties. In
this chapter, we look deeper into the structure of these number sets and discuss
such features as their distinguished elements (e.g., 0 or 1), specific operations
(e.g., addition, multiplication), and relations (e.g., order). A number set together
with some specific additional structure is referred to as a number system.

Before we proceed, we should explain why we would want to “build” these—
already very familiar—number systems; furthermore, we should explain why we
waited until almost the end of this book to do so.

There are at least two reasons for studying the development of number systems.
Firstly, numbers, of course, are at the heart of mathematics, and thus, it is interesting
to see how one can “create” them precisely using as few primitives and axioms as
possible. Secondly, with a constructive approach, we verify that a certain model for
these number systems indeed exists. For example, without providing a legitimate
model for the set of real numbers (using the previously constructed model of the
rationals), a statement such as “the square root of two is irrational” would need to
be rephrased to say that “if the square root of two exists at all, then it cannot be a
rational number.” Of course,

p
2 can be uniquely characterized as the positive real
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number whose square equals 2, but wishing for such a positive number to exist is
not the same as creating one using previously constructed numbers (in this case, the
rational numbers).

As for having to wait until now to study number systems, we will soon see that a
precise treatment is quite involved, using many of the previously studied concepts.
Therefore, in a way, this chapter can be thought of as a unifying capstone for much
of the previously discussed material in this book. Some of the difficulty in this
chapter comes from the fact that when constructing a number system, we need to
avoid the mistake of assuming, without proof, that the numbers in question exist or
that they have the familiar properties.

We should emphasize that our constructions will be highly abstract; while it is
certainly pleasing to see that it is possible to construct each system from, literally,
nothing more than the empty set (and properties of logic and set theory), a drawback
is that the constructions yield virtually unrecognizable systems. Thus, we need
to admit that this development, although of high theoretical importance, does not
produce practical applications.

So, if our constructions are so abstract, how can we claim that the number
systems that we create are the ones we want? Even if we check that they satisfy
some of the properties that we expect of the systems, can we be sure that they are
the number systems we have always been working with?

For each system, we address this issue with the following twofold approach.
First, we assemble a collection of axiomatic properties that are categorical of the
number system in question; that is, we exhibit a list of characteristic properties
that, collectively, identify the system “up to isomorphism” (we will describe this
precisely below). Second, we construct an explicit model for each number system;
this then also proves that the axiomatic properties are consistent.

For example, in the case of the real number system, our axiomatic properties
can be summarized by saying that the system is a complete ordered field; in other
words, any complete ordered field is isomorphic (essentially the same as) the real
number system. Then, we construct an explicit model for a complete ordered field;
the resulting model of this construction can then legitimately be called the real
number system.

We carry out our development following the order of containment:

N 	 Z 	 Q 	 R 	 C:

The construction of the natural number system will use only the concepts and
axioms of set theory (cf. Appendix B); the construction of each subsequent system
will be based on the one preceding it in the list above. Since we insist on a
constructive approach, extending a number system to a larger one cannot use
“imaginary” elements. For example, moving from Z to Q, we cannot just “add”
the fractions to the already constructed set of integers, since, at that point, we do
not know what “fractions” are. We circumvent this difficulty by thinking of rational
numbers as equivalence classes of ordered pairs of integers. Therefore, technically,
Q will not contain Z; instead, we construct Q in such a way that it contains a set Z0
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that is isomorphic to Z. Similarly, for each of our number systems, except for the
natural numbers, we identify a subsystem contained in it that is isomorphic to the
previously constructed system.

We will clarify all this below; however, since a precise and thorough development
would be rather long and tedious, we will sometimes omit the details. (Some of the
notable steps will be left to the problems at the end of the chapter.) Our construction
of the natural numbers will be particularly delicate and laborious. Paradoxically—
but perhaps not surprisingly—it is the most fundamental system that requires the
most advanced techniques.

So let us get started with our first number system: the natural numbers. Our first
task is to identify the axioms that categorically determine the set of natural numbers.

At the most fundamental level, our notion of the natural numbers is simply a list
of distinct elements, with a first element, a second element, a third element, and so
on, indefinitely. It turns out that once we make this concept more precise, we arrive
at a categorical set of axioms for the natural number system.

Let N be an arbitrary set. (To make it clear that we don’t yet want to rely on the
set of natural numbers N, we chose a slightly different notation.) The fact that the
elements of N form a list that continues “indefinitely” can be expressed by saying
that each element will have a successor in the list; we denote the successor of an
element n 2 N by S.n/. (It is important to note that, in spite of the suggestive term,
we do not attach additional meaning to the successor function other than the fact
that it is a function on N ; later, we will define n C 1 to be S.n/.) Furthermore, our
list of natural numbers has an initial element, and this element is denoted by 1. Thus,
our natural number system involves a set N , a function S W N ! N , and a special
element 1 2 N ; we now attempt to collect the properties of the system .N; 1; S/

that categorically identify the natural number system.
The first such property is that 1 is not the successor of any other element in

the list.

Axiom 23.1 (P1). There is no n 2 N for which S.n/ D 1.

This property alone is not yet sufficient for fully characterizing the kind of
list we have in mind. For example, it does not exclude the possibility that our list
is “periodic” and contains only finitely many distinct elements such as the list
1; 2; 3; 2; 3; 2; 3; : : : does. It is not even necessarily the case that we arrive at a
list: for example, we may have two or more lists merging into one. The following
property aims to forbid such situations:

Axiom 23.2 (P2). The successor function is injective; that is, for any pair of
distinct elements m 2 N and n 2 N , we have S.m/ ¤ S.n/.

These two properties go a long way toward describing our notion of N , but they
allow for sets much larger than what we need. The next property expresses the fact
that N has no additional elements besides the ones in a single list. To make our
statement more succinct, let us introduce the term 1-inductive subset of N for a
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subset that contains 1 and has the property that whenever it contains an element
n 2 N , it also contains its successor S.n/. We can now state our final property as
follows:

Axiom 23.3 (P3). The only 1-inductive subset of N is N itself.

We have already seen axiom (P3) in Chap. 13 as the Induction Axiom.
These three axioms collectively are called the Peano axioms, named after the

Italian mathematician Giuseppe Peano (1858–1932) who, at the beginning of the
twentieth century, developed and studied them. All further concepts and properties
of the natural numbers, including their addition and multiplication, can be built up
from the Peano axioms. We will see some of this development shortly.

The Peano axioms uniquely characterize N (and thus N). What we mean by this
is the following. For any set N , particular element 1 2 N , and function S W N ! N

for which the Peano axioms above hold, the triple .N; 1; S/ is called a Peano system.

We say that the Peano systems .N; 1; S/ and .N 0; 10; S 0/ are isomorphic if there
is a bijection f W N ! N 0 with the following two properties:

• f .1/ D 10.
• f .S.n// D S 0.f .n// holds for all n 2 N .

In other words, .N; 1; S/ and .N 0; 10; S 0/ are isomorphic if there is a one-to-one
correspondence between N and N 0 where 1 and 10 correspond to each other, as
do S.1/ and S 0.10/, S.2/ and S 0.20/, and so on. Given these definitions, one can
prove that any two Peano systems are isomorphic; that is, the Peano axioms are
categorical. (We omit the details.)

Our next task is to construct a Peano system. Since the Peano axioms are
categorical, all Peano systems are essentially the same. Therefore, it is legitimate
to identify N with the set we are about to construct.

Our construction will yield a list of sets, all of which are sets of sets. Our initial
set is the set containing the empty set, f;g. The next set in our list will be the union
of this set and the set containing it, that is,

f;g [ ff;gg D f;; f;gg:

Then, the next set in our list will be the union of this set and the set containing it:

f;; f;gg [ ff;; f;ggg D f;; f;g; f;; f;ggg:

We continue to form our list of sets in the same fashion: the set following a set A in
our sequence will be the set A [ fAg. For example, the fourth and fifth sets in our
list will be

f;; f;g; f;; f;gg; f;; f;g; f;; f;gggg
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and

f;; f;g; f;; f;gg; f;; f;g; f;; f;ggg; f;; f;g; f;; f;gg; f;; f;g; f;; f;ggggg:

We can introduce notations for the sets we just constructed as follows:

1N D f;g;
2N D f;; f;gg;
3N D f;; f;g; f;; f;ggg;
4N D f;; f;g; f;; f;gg; f;; f;g; f;; f;gggg;
5N D f;; f;g; f;; f;gg; f;; f;g; f;; f;ggg; f;; f;g; f;; f;gg; f;; f;g; f;; f;ggggg;

and so on; more concisely, we may write

1N D f;g;
2N D f;; 1Ng;
3N D f;; 1N; 2Ng;
4N D f;; 1N; 2N; 3Ng;
5N D f;; 1N; 2N; 3N; 4Ng:

We note in passing that following Cantor, we can differentiate between ordinal
numbers (denoting positions in a list) and cardinal numbers (denoting sizes of sets).
Our construction for the natural numbers has the convenient property that the ordinal
numbers correspond to the appropriate cardinal numbers: for example, the fifth
natural number, 5N, is a set of size five.

Now we want to say that the set of natural numbers is

N D f1N; 2N; 3N; : : : g

but, unfortunately, the meaning of the “: : : ” cannot be made precise without relying
on some form of induction, and at this point, we do not have that tool yet. We can
instead proceed as follows.

We say that a set of sets A is f;g-inductive if f;g 2 A and it has the property
that whenever A 2 A for some set A, we also have A [ fAg 2 A. Heuristically,
we see that, by definition, every f;g-inductive set must contain f;g, f;; f;gg,
f;; f;g; f;; f;ggg, and so on (while, perhaps, containing other elements not at all
in this form). This leads us to the following definition:

Definition 23.4. A natural number is a set that is an element of every f;g-inductive
set. The set of natural numbers is denoted by N.
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Admittedly, Definition 23.4 is considerably more complicated and less explicit
than one would have hoped. We cannot even make the somewhat simpler declaration
that the set of natural numbers is formed by the intersection of the collection of
all f;g-inductive sets: the collection of all f;g-inductive sets is not a set (there
are too many f;g-inductive sets), and, therefore, we are unable to rely on their
intersection set!

Since the definition of a set A being f;g-inductive explicitly requires that f;g be
an element of A, f;g must be in every f;g-inductive set; so, by Definition 23.4, f;g
is a natural number. Thus, 1N 2 N. Furthermore, if a natural number nN is in every
f;g-inductive set, then so is nN [ fnNg. Therefore, the function SN, which assigns
nN [ fnNg to nN, is a map from N to N.

Next, we prove that .N; 1N; SN/ is a Peano system. It will be helpful to introduce
a term for the inverse of the successor function: we say that mN 2 N is a predecessor
of nN if SN.mN/ D nN. As we are about to prove, every natural number, other than
1N, has a unique predecessor, and the predecessor function is indeed the inverse of
the successor function.

Theorem 23.5. With our definitions and notations as above, .N; 1N; SN/ is a Peano
system. Furthermore, if nN 2 N and nN ¤ 1N, then nN has a unique predecessor.

Proof. We start by proving axiom (P2). Suppose that we have distinct natural
numbers mN and nN for which SN.mN/ D SN.nN/; that is,

mN [ fmNg D nN [ fnNg:

Clearly, mN 2 fmNg, thus mN is an element of the left-hand side. Therefore, it
must be an element of the right-hand side as well; since mN 62 fnNg, we must
have mN 2 nN. Similarly, we get nN 2 mN. Now consider the set fmN; nNg. Since
mN 2 nN and nN 2 mN, neither mN nor nN is disjoint from fmN; nNg, contradicting
the Axiom of Regularity (cf. page 388).

Next, we prove axiom (P3). Let M be a subset of N with the property that 1N 2
M and that nN 2 M implies SN.nN/ 2 M ; we need to prove that M D N. But,
since 1N D f;g and SN.nN/ D nN [ fnNg, this means that M is f;g-inductive. Let
nN 2 N be arbitrary. By definition, nN is an element of every f;g-inductive set; in
particular, nN 2 M . Therefore, M D N.

We now turn to the proof of our second statement. First we prove the existence.
Let P be a set of all elements of N that have a predecessor, and let M D f1Ng [ P .
Our claim is equivalent to proving that M D N.

We show that M is a 1N-inductive subset of N. Clearly, 1N 2 M . Let nN 2
M . Since SN.nN/ has a predecessor (namely, nN), we have SN.nN/ 2 P and thus
SN.nN/ 2 M . Therefore, M is a 1N-inductive subset of N, so, by (P3), M D N. The
uniqueness of the predecessor follows from (P2).

At last, we prove (P1). Assume indirectly that nN [ fnNg D 1N holds for some
nN 2 N. But 1N D f;g contains only one element, so we must have nN D ;. But
then nN ¤ 1N, so by the statement we just proved, nN has a (unique) predecessor
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mN. Therefore, SN.mN/ D nN; that is, mN [ fmNg D ;, which is a contradiction.
ut

We have thus achieved both of our goals about the natural number system that we
stated at the beginning of this chapter. We identified its categorical set of axioms as
those of a Peano system, and we proved that the system .N; 1N; SN/ we constructed
is a Peano system. Therefore, it is legitimate to think of the natural number system
as a “generic” Peano system; since this is what we do from now on, we will omit
the subscripts and just use .N; 1; S/; we also let 2 D S.1/, 3 D S.2/, etc.

According to Theorem 23.5, we can see that we have bijections S W N ! N n f1g
and P W N n f1g ! N so that P ı S D idN and S ı P D idNnf1g; that is, P and S

are inverses of each other.
We use these important facts to define addition and multiplication in N. We start

with addition.

Definition 23.6. We define the sum n1Cn2 of natural numbers n1 and n2 as follows:

n1 C n2 D
8
<

:

S.n1/ if n2 D 1

S.n1 C P.n2// if n2 ¤ 1

We then use addition to define multiplication.

Definition 23.7. We define the product n1 � n2 of natural numbers n1 and n2 as
follows:

n1 � n2 D
8
<

:

n1 if n2 D 1

.n1 � P.n2// C n1 if n2 ¤ 1

Our definitions are recursive; to be thorough, we would need to prove that they
indeed define binary operations on N (functions from N 
 N to N). We omit these
rather technical proofs; instead, we provide an example for how these definitions
yield the expected answer.

Proposition 23.8. We have 2 � 2 D 4.

Proof. Using Definition 23.7, we have

2 � 2 D .2 � .P.2// C 2I

since P.2/ D 1, this says that

2 � 2 D .2 � 1/ C 2:

Using Definition 23.7 again for 2 � 1, we get

2 � 2 D 2 C 2:
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Next, we use Definition 23.6 on the right-hand side, which gives us

2 � 2 D S.2 C P.2//I

which simplifies to
2 � 2 D S.2 C 1/:

We use Definition 23.6 once more, to get

2 � 2 D S.S.2//:

But S.2/ D 3 and S.3/ D 4, which proves our claim. ut
It is important to point out the difference between Propositions 23.8 and 11.8
as these propositions state the same result. In Proposition 11.8, we treated 1,
C, and � as primitives. Furthermore, we assumed that addition and multiplication
satisfy the usual axioms of associativity, commutativity, and distributivity. For
Proposition 23.8, on the other hand, we used the definitions of addition and
multiplication, and we did not use associativity, commutativity, or distributivity. In
fact, these properties can be proven!

Proposition 23.9. Both the addition and multiplication operations of natural
numbers, defined above, are associative and commutative, and multiplication is
distributive with respect to addition. Furthermore, 1 is a multiplicative identity in N.

We assign the proof in Problem 2.
Let us now move from the natural numbers to the integers. Before we proceed,

it is worth mentioning the historical fact that the integers appeared relatively late in
the development of mathematics and civilization at large. Long after the acceptance
of fractions and even irrational numbers such as

p
2, e, and � , people still had

difficulty accepting the notion of zero and of a negative number. One can, indeed,
easily circumvent expressions such as “minus 10 degrees Celsius” by saying instead
“10 degrees below freezing.” The main advantage of the introduction of negative
integers is that this way, the operation of subtraction is closed: for any a 2 Z and
b 2 Z, we have a � b 2 Z. (Thus, Z is a group for addition.) Of course, the integer
system has many other convenient properties; our first goal is to determine those
that constitute its categorical axioms.

The most important property of the integers, as we discussed in Chap. 10,
is that they form an integral domain for their usual operations of addition and
multiplication; that is, the system .Z; C; �/ is a commutative ring with identity that
satisfies the nonzero product property (cf. Definition 10.2). Furthermore, recall that
the integers also form an ordered integral domain; that is, there is a subset P 	 Z

that is closed for addition and multiplication, and for which for every integer a,
exactly one of a D 0, a 2 P , or �a 2 P holds (cf. Definition 10.13). For integers
a and b, we then defined a > b to mean that a � b 2 P .
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Being an ordered integral domain does not identify the integers: after all, Q and
R are also ordered integral domains. The latter two systems are, of course, ordered
fields—but, saying that we want Z to be an ordered integral domain that is not a
field is not satisfactory either. To see this, consider the set of finite decimals, ZŒ 1

10
�;

cf. Problem 6 in Chap. 10. This set is also an ordered integral domain that is not a
field, but it is “too big.”

What we want to say is that the integers form the “smallest” system with these
properties. Indeed, if a subset S of Z were to contain 1 and were to be an integral
domain for the same operations, then, in order for addition and subtraction to
be closed in S , it would also need to contain 2; 3; 4; : : : and 0; �1; �2; �3; : : : ;
therefore, we would need to have S D Z.

We will make this all precise as follows. Given an integral domain Z, we say
that a subset S is a subdomian of Z if S is an integral domain for the same
operations. For example, Z is a subdomain of Q, and Q is a subdomain of R; Z
is also a subdomain of the set ZŒ 1

10
� defined above. Trivially, any integral domain is

a subdomain of itself.
We need to emphasize that in order to be a subdomain, S has to be an integral

domain for the same operations. For example, the set f0; 1g, with addition and
multiplication defined “mod 2,” is not considered to be a subdomain of Z even
though f0; 1g is a subset of Z, and “mod 2” addition and multiplication make f0; 1g
into an integral domain (usually denoted by Z2; cf. Problem 7 of Chap. 10).

We can now define the integral system .Z; C; �; 1; P / as a system consisting of an
ordered integral domain Z, binary operations C and � on Z, a multiplicative identity
element 1, and a set of positives P , for which it is true that every subdomain of Z

that contains 1 is Z itself. Note that the condition that the only subdomain of an
integral system that contains 1 is the system itself is the analogue of property (P3) of
a Peano system: both these properties serve to assure that our system is the smallest
one possible possessing the other characteristics.

As our terminology suggests, there is essentially only one integral system:
the integer system. More precisely, any two integral systems .Z; C; �; 1; P / and
.Z0; C0; �0; 10; P 0/ are isomorphic, meaning that there is a bijection f W Z ! Z0
with the following properties:

• f .z1 C z2/ D f .z1/ C0 f .z2/ holds for all z1; z2 2 Z.
• f .z1 � z2/ D f .z1/ �0 f .z2/ holds for all z1; z2 2 Z.
• f .1/ D 10.
• p 2 P if, and only if, f .p/ 2 P 0.

We omit the rather straightforward (but tedious) proof.
Let us now turn to the construction of an integral system. It helps to recall that

our goal for enlarging the set of natural numbers to the set of integers is that for any
pair of integers (and, thus, natural numbers) a and b, we wish to have an integer c

for which a D b C c; that is, we want to define the difference a � b for any pair of
integers a and b. Of course, the difference 2 � 5, for example, should be defined to
be the same integer as 3 � 6, 8 � 11, etc; in general, we want to consider a � b and
c � d to be the same as long as—and we say this now without using subtraction at
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all—we have a C d D b C c. This brings to mind Problem 7 (a) of Chap. 17, which
we here restate and reprove.

Proposition 23.10. The relation defined by

R D f..a; b/; .c; d // 2 .N2/2 j a C d D b C cg

is an equivalence relation.

In the proof below, we want to be careful to not use subtraction (which was
permissible in Chap. 17 but not here since subtraction has not yet been defined).

Proof. We need to prove that R is reflexive, symmetric, and transitive.
By Proposition 23.9, addition of natural numbers is commutative, so for each

a; b 2 N, we have a C b D b C a. But this means that ..a; b/; .a; b// 2 R holds
for all .a; b/ 2 N

2, and thus, R is reflexive. Similarly, if ..a; b/; .c; d // 2 R, then
a C d D b C c, so c C b D d C a, thus ..c; d /; .a; b// 2 R, and R is symmetric.

To prove transitivity, assume that ..a; b/; .c; d // 2 R and ..c; d /; .e; f // 2 R.
Therefore, a C d D b C c and c C f D d C e; adding these equations, we get

.a C d/ C .c C f / D .b C c/ C .d C e/:

Using the associative and commutative properties of natural number addition, this
equation yields

.a C f / C .c C d/ D .b C e/ C .c C d/;

and this, using Proposition 23.32 (cf. Problem 3), implies that a C f D b C e, or
..a; b/; .e; f // 2 R, as needed. ut

According to the Fundamental Theorem of Equivalence Relations, the equiva-
lence classes formed by the relation in Proposition 23.10 create a partition of N2.

Definition 23.11. The equivalence classes of the relation in Proposition 23.10 are
called integers. The set of integers is denoted by Z.

So, according to Definition 23.11, an integer is a set consisting of ordered pairs
of certain natural numbers. For example, we can verify that the set

f.1; 4/; .2; 5/; .3; 6/; .4; 7/; .5; 8/; .6; 9/; : : :g

is one such equivalence class, to be denoted as �3Z. Indeed, we introduce the
following notations:
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0Z D Œ.1; 1/� D f.n; n/ j n 2 Ng;
1Z D Œ.2; 1/� D f.n C 1; n/ j n 2 Ng;

�1Z D Œ.1; 2/� D f.n; n C 1/ j n 2 Ng;
2Z D Œ.3; 1/� D f.n C 2; n/ j n 2 Ng;

�2Z D Œ.1; 3/� D f.n; n C 2/ j n 2 Ng;
3Z D Œ.4; 1/� D f.n C 3; n/ j n 2 Ng;

�3Z D Œ.1; 3/� D f.n; n C 3/ j n 2 Ng;
and so on. We should note that, at this point, the negative signs here are just

notations; soon, however, we shall see that they are well chosen.
Next, we define the binary operations of addition and multiplication in Z.

Definition 23.12. Let aZ and bZ be two integers, and suppose that .a1; a2/ 2 aZ

and .b1; b2/ 2 bZ. We define their sum as

aZ C bZ D Œ.a1 C b1; a2 C b2/�R

and their product as

aZ � bZ D Œ.a1 � b1 C a2 � b2; a1 � b2 C a2 � b1/�R:

Since we defined these binary operations on integers by taking (arbitrary)
elements from the equivalence classes represented by the integers, we need to verify
that the operations are well defined; that is, the results do not depend on which
particular elements we chose. This is left for Problem 4.

Our final definition regarding the integers is for the set of positive elements.

Definition 23.13. Let aZ be an integer, and suppose that .a1; a2/ 2 aZ. We say that
aZ is positive if there is a natural number k for which a1 D a2 C k. The set of
positive integers is denoted by PZ.

As with Definition 23.12, we need to make sure that this is not element
dependent; see Problem 4. We see that, for example, the integers 1Z, 2Z, and 3Z
are positive, while 0Z, �1Z, and �2Z are not. To see, for example, that �1Z D
Œ.1; 2/� 62 PZ, we can verify that there is no natural number k for which 2 C k D 1.
Indeed, 2 C 1 D 3, so 2 C k D 1 cannot occur with k D 1, and for all other k 2 N

we have 2 C k D S.2 C P.k//, which cannot equal 1 by Axiom (P1).
And now the expected result:

Theorem 23.14. With our definitions and notations above, .Z; C; �; 1Z; PZ/ is an
integral system.

Proof. Commutativity, associativity, and distributivity follow easily from the defi-
nitions and the corresponding properties of the natural numbers. The additive and
multiplicative identities in Z are easily seen to be 0Z and 1Z, respectively: for the
integer aZ D Œ.a1; a2/� we have

aZ C 0Z D Œ.a1; a2/� C Œ.1; 1/� D Œ.a1 C 1; a2 C 1/� D Œ.a1; a2/� D aZ
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and

aZ � 1Z D Œ.a1; a2/� � Œ.2; 1/� D Œ.2a1 C a2; a1 C 2a2/� D Œ.a1; a2/� D aZ:

The negative of an integer aZ D Œ.a1; a2/� is �aZ D Œ.a2; a1/�; we then get

aZ C .�aZ/ D Œ.a1 C a2; a2 C a1/� D 0Z:

Therefore, Z is a commutative ring with identity.
We can prove the nonzero product property as follows. Assume that aZ 2 Z,

bZ 2 Z, .a1; a2/ 2 aZ, .b1; b2/ 2 bZ and that aZ � bZ D 0Z. Let us assume that
aZ ¤ 0Z; we then need to prove that bZ D 0Z. Since aZ ¤ 0Z, we have a1 ¤ a2; by
Proposition 23.33, we can assume without loss of generality that there is a natural
number k for which a1 D a2 C k.

By the definition of multiplication, aZ � bZ D 0Z means that

a1 � b1 C a2 � b2 D a1 � b2 C a2 � b1I

substituting a1 D a2 C k yields

.a2 C k/ � b1 C a2 � b2 D .a2 C k/ � b2 C a2 � b1

or
a2 � b1 C k � b1 C a2 � b2 D a2 � b2 C k � b2 C a2 � b1:

By Proposition 23.32, we can cancel the terms a2 � b1 and a2 � b2, yielding

k � b1 D k � b2:

Using Proposition 23.34 this time, we get b1 D b2, from which bZ D 0Z, as claimed.
Therefore, .Z; C; �; 1Z/ is an integral domain.

Next, we verify the order properties. The proof of the fact that the sets f0Zg,
PZ, and �PZ D f�pZ j pZ 2 PZg form a partition of N2 follows directly from
Proposition 23.33.

To prove that PZ is closed for addition and multiplication, let aZ 2 PZ, bZ 2 PZ,
.a1; a2/ 2 aZ, and .b1; b2/ 2 bZ. By definition, we have natural numbers k and l

such that a1 D a2 C k and b1 D b2 C l .
We then have

a1 C b1 D .a2 C b2/ C .k C l/;

which means that aZ C bZ 2 PZ: Furthermore,

a1 � b1 C a2 � b2 D .a2 C k/ � .b2 C l/ C a2 � b2

D a2 � b2 C a2 � l C k � b2 C k � l C a2 � b2

D .a2 C k/ � b2 C a2 � .b2 C l/ C k � l

D a1 � b2 C a2 � b1 C k � l;

so aZ � bZ 2 PZ as well.
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Finally, to see that every subdomain that contains 1Z is the entire set, note that
the subdomain is an abelian group, thus must contain nZ and �nZ for each natural
number n, and, therefore, each integer. ut

Before leaving the integer system, let us point out that the set of positive integers
PZ can be identified with the set of natural numbers N; cf. Problem 5.

With that, let us now turn to Q. The development of the rational number system
is quite similar to the development of the integer system. The main difference, of
course, is that the rational numbers form a field and not just an integral domain:
every nonzero rational number has a multiplicative inverse (cf. Definition 10.2).
The rational number system, formed by the set of rational numbers, the operations
of addition and multiplication, and the set of positive elements, is an ordered field
(cf. Definition 10.13) that has no ordered subfields other than itself; furthermore, it
is the only such system up to isomorphism. We can construct the rational numbers
from the integers using the relation given in Problem 7 (b) of Chap. 17. We leave
the details to Problem 6.

Next, we move to the discussion of the real numbers—a substantially more
challenging task. We have already seen that the real numbers form an ordered field;
furthermore, in Chap. 18, we stated that this ordered field satisfies the Completeness
Axiom: every nonempty bounded set of real numbers has a supremum and an
infimum in R. (As we pointed out in Chap. 18, this axiom fails to hold in Q.) It turns
out that we do not need anything else to characterize the reals; it can be proven that
any two ordered fields that satisfy the Completeness Axiom are isomorphic. Thus,
the categorical set of axioms for the real numbers is quite evident. The construction
of the real number system, however, takes more effort.

Before defining the real numbers, let us note that to define integers, we
partitioned the set of ordered pairs of natural numbers, N2, into equivalence classes
via a certain equivalence relation R and then identified the set of integers Z with
the set of the equivalence classes generated by R. Our construction of the rational
numbers was similar. However, we cannot expect the same kind of construction for
the real numbers, because, as we learned in Chap. 22, while the cardinality of Z
is the same as the cardinality of N

2 and the cardinality of Q is the same as the
cardinality of Z2, the cardinality of R is greater than the cardinality of Q2 (and thus
also greater than the cardinality of the equivalence classes that any relation on Q

creates). We know, though, that the cardinality of R equals the cardinality of the
power set P.Q/ (see Theorem 22.20), so we can hope to identify the real numbers
with the subsets of rational numbers. It turns out that we do not need all subsets of
Q—only the so-called Dedekind cuts.

Definition 23.15. A nonempty proper subset C of rational numbers is called a real
number if for every q 2 C :

• C contains every rational number that is less than q.
• C contains some rational number that is greater than q.

The set of real numbers is denoted by R.
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Thus, we define real numbers as “initial segments” of rational numbers, also
known as Dedekind cuts, named after Gauss’s last doctoral student, Julius Dedekind
(1831–1916). As an example, we see that the set of negative rational numbers, that
is, the set

fq 2 Q j q < 0g
is a real number; we denote this real number by 0R.

Since Q does not satisfy the Completeness Axiom, a given subset of rational
numbers—such as a real number—may not have a supremum. We make the
following definition:

Definition 23.16. A real number C is called a rational real number if it has a
supremum in Q; otherwise, it is called an irrational real number.

It is easy to see that 0R is a rational real number. (Below we will see that rational
real numbers correspond nicely to rational numbers, but the distinction here is
important: here a rational real number, like any real number, is defined as an infinite
set of rational numbers!) The following proposition provides a generalization of this
example.

Proposition 23.17. For a given rational number r , define the set

frg+ D fq 2 Q j q < rg:

Then frg+ is a real number for every rational number r; furthermore, a real number
is a rational real number if, and only if, it is of the form frg+ for some rational
number r .

Note that we defined frg+ as the set of strict lower bounds of frg; that is, we have
r 62 frg+.

Proof. We see that ; ¤ frg+ ¤ Q: for example, r � 1 2 frg+ but r C 1 62 frg+.
Note that if a 2 frg+, b 2 Q, and b < a, then b 2 frg+ by transitivity. Furthermore,
if a 2 frg+, then a quick verification shows that b D .a C r/=2 (for example) is an
element of frg+ and a < b. Indeed, b 2 Q; and a < r implies that

a <
a C r

2
< r:

This proves our first claim.
We now turn to our second claim. Clearly, sup frg+ D r in Q, so frg+ is a

rational real number for every rational number r . Conversely, suppose that C is a
rational real number, so there exists an r 2 Q for which sup C D r . We will prove
that C D frg+.

To see that frg+ � C , let q 2 frg+. Then q < r , so q is not an upper bound
of C , and, therefore, we can find an s 2 C for which q < s. But, by definition, we
then have q 2 C ; this proves frg+ � C .
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Now let c 2 C . Since C is a real number, we must have some c0 2 C with
c < c0. Since r is an upper bound of C , we must have c0 � r . But then c < r , and,
therefore, c 2 frg+, proving that C � frg+ as well. ut

We can see that the set
Q

0 D ffrg+ j r 2 Qg
is essentially the same as the set of rational numbers; more precisely—once we
define addition, multiplication, and order in R—one can prove that it is isomorphic
to Q. By Proposition 23.17, we may safely use the notation rR for the real number
frg+. In fact, although real numbers are defined as (infinite) sets, keeping with
tradition, rather than capital letters, from now on we will use lower-case letters
(usually, from the end of the alphabet) and the subscript R to denote real numbers.
Thus, when writing, for example, xR, we imply that it is a real number; we do not,
however, assume that xR D fxg+ as xR is not necessarily a rational real number.
(Of course, as we learned in Chap. 22, there are not enough rational numbers to
index all real numbers.)

By Proposition 23.17, we have a good understanding of which real numbers are
rational. We now prove that a certain familiar real number is irrational.

Proposition 23.18. Let us define the set

p
2R D fq 2 Q j q � 0 or q2 < 2g:

Then
p

2R is an irrational real number.

At this point,
p

2R is just a notation for this particular set; in Proposition 23.24
below, we prove that the notation is well chosen.

Proof. Note that Q is an ordered field, so we may use the statements proved in
Problem 11 of Chap. 11.

First we show that
p

2R 2 R. Since 1 2 p
2R and 2 62 p

2R, we have ; ¤p
2R ¤ Q.
Suppose now that a 2 p

2R, b 2 Q, and b < a. If b � 0, then b 2 p
2R. If

b > 0, then b2 < a2 < 2, so again b 2 p
2R.

Suppose again that a 2 p
2R; we must find an element b 2 p

2R so that a < b. If
a � 0, we may choose b D 1. Suppose then that a > 0. Note that, since a 2 p

2R,
we must also have a < 2.

Choose a natural number n so that

5

2 � a2
< n:

(Note that we do not need to use the Archimedean property here—a property that
depends on the Completeness Axiom of R and which we may not yet use. Since
5=.2 � a2/ is a positive rational number, it can be written as a quotient of two
natural numbers; we can choose, for example, any natural number n that is greater
than the numerator.)
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Let b D a C 1
n

; clearly b 2 Q. We then have

b2 D
�

a C 1

n

�2

D a2 C 2 � a

n
C 1

n2
< a2 C 2 � 2

n
C 1

n
D a2 C 5

n
< 2;

so b 2 p
2R.

Next, we need to prove that
p

2R 62 Q
0. Assume, indirectly, that there is a rational

number r for which p
2R D frg+ D fq 2 Q j q < rg:

Since r 62 frg+, we must have r > 0 and r2 � 2. But we know that there is no
rational number whose square is 2, so r > 0 and r2 > 2.

Similarly to the method above, we can choose a natural number m so that

2r

r2 � 2
< m:

This gives
�

r � 1

m

�2

D r2 � 2 � r

m
C 1

m2
> r2 � 2 � r

m
> 2:

Therefore, r � 1
m

62 p
2R, contradicting our assumption that every rational number

less than r is in
p

2R. ut
We now turn to the addition and multiplication operations and order relation of

real numbers. Defining addition is quite simple.

Definition 23.19. The sum of real numbers xR and yR is defined as

xR C yR D fq1 C q2 j q1 2 xR and q2 2 yRg:

It is not hard to prove that addition of real numbers yields a real number—see
Problem 7. Commutativity and associativity of addition follow immediately from
the same properties of rational numbers. It is also quite straightforward to verify
that the real number 0R serves as the additive identity. The proof that every real
number has an additive inverse, however, needs some preparation.

It may be helpful to examine some examples. After a bit of contemplation, we
see that the additive inverse of

3R D fq 2 Q j q < 3g

should be
�3R D fq 2 Q j q < �3g;

while the additive inverse of

p
2R D fq 2 Q j q � 0 or q2 < 2g
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has to be
�p

2R D fq 2 Q j q < 0 and q2 > 2g:
(With a bit of routine work, one can verify that these are real numbers and that they
serve as additive inverses for the relevant numbers.) It is not immediately clear how
one can define additive inverses in general.

It turns out that the following approach works for all real numbers. First some
useful notation. For a real number xR, we let x

*
R

denote the set of strict upper bounds
for xR in Q; that is,

x
*
R

D fr 2 Q j 8q 2 xR; q < rg:
We then define

cxR D

8
<̂

:̂

x
*
R

n fsup xRg if xR is rational;

x
*
R

if xR is irrational.

In other words,cxR consists of all upper bounds of xR in Q, except for the supremum
of xR in Q, if it exists. For example, for the rational real number 3R, we have

b3R D fq 2 Q j q > 3g;
and for the irrational real number

p
2R, we get

b

p
2R D fq 2 Q j q > 0 and q2 > 2g:

We are now ready to define additive inverses of real numbers.

Definition 23.20. We define the additive inverse of the real number xR as

�xR D f�q j q 2 cxRg:

We can prove that the additive inverse of a real number is a real number and that
the sum of a real number and its additive inverse is 0R—see Problem 7.

For our previous examples, we can verify that Definition 23.20 yields the right
answer:

�3R D f�q j q 2 b3Rg
D f�q j q 2 Q and q > 3g
D fq 2 Q j q < �3g;

and

�p
2R D f�q j q 2 b

p
2Rg

D f�q j q 2 Q; and q > 0; and q2 > 2g
D fq 2 Q j q < 0 and q2 > 2g:
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We still need to define multiplication and order in R. Since multiplication will be
defined first for positive real numbers and then extended to the cases when one or
both terms are nonpositive, we first define order (as usual, via describing the set of
positive numbers).

Definition 23.21. We say that a real number xR is positive whenever 0R 	 xR.
The set of positive real numbers is denoted by PR.

Note that for xR to be positive, we require 0R to be a proper subset of xR;
therefore, 0R itself is not positive. It is not hard to see that our definition is equivalent
to saying that xR contains some positive rational number (and, therefore, infinitely
many).

Given Definition 23.21, we can define negative real numbers as those whose
additive inverse is positive; furthermore, we can define the order relations “less than”
and “greater than” in the usual way: xR < yR when xR�yR is negative and xR > yR

when xR � yR is positive. It is a fairly routine exercise to verify that the usual
properties hold—cf. Problem 7.

Let us now examine how we could define the product of positive real numbers
xR and yR. First we note that the set

fq1 � q2 j q1 2 xR and q2 2 yRg;

which would be the direct analogue of how we defined sums, would not work: this
set actually equals Q, which is not a real number! For example, with

2R D fq1 2 Q j q1 < 2g

and
3R D fq2 2 Q j q2 < 3g;

the products q1 � 1 with q1 < 0 yield all negative rationals, and q1 � .�1/ with q1 � 0

yield all nonnegative rationals.
We would, of course, like to have 2R � 3R D 6R or

fq1 2 Q j q1 < 2g � fq2 2 Q j q2 < 3g D fq 2 Q j q < 6g:

Note that

fq 2 Q j q < 6g D fq 2 Q j q � 0g [ fq1 � q2 j q1 2 2R; q1 2 3R; q1 > 0; q2 > 0g:

This prompts us to introduce the notation

xC
R

D fq 2 xR j q > 0g;

which enables us to define multiplication as follows:
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Definition 23.22. The product of real numbers xR and yR is defined as

xR�yR D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

fq 2 Q j q � 0g [ fq1 � q2 j q1 2 xC
R

; q2 2 yC
R

g if xR > 0R; yR > 0R;

0R if xR D 0R or yR D 0R;

�..�xR/ � yR/ if xR < 0R , yR > 0R;

�.xR � .�yR// if xR > 0R , yR < 0R;

.�xR/ � .�yR/ if xR < 0R , yR < 0R.

Definition 23.22 satisfies all our expectations; in particular, we can prove that the
product of two real numbers is a real number, 1R is the multiplicative identity, and
every nonzero real number has a multiplicative inverse—see Problem 7.

Let us now return to our set

p
2R D fq 2 Q j q � 0 or q2 < 2g:

As we promised, we now use Definition 23.22 to prove that the notation is well
chosen and we have p

2R � p
2R D 2R:

We will be careful to avoid using that the real number 2R has a square root. Our
proof below will rely solely on the properties of Q without even mentioning real
numbers.

We need the following result that is of interest in its own right.

Proposition 23.23. Let a and b be arbitrary positive rational numbers with a < b.
Then there exists a positive rational number r such that

a < r2 < b:

We should emphasize again that though Proposition 23.23 could be established
by methods similar to that of Proposition 15.1 (where we assumed the existence of
square roots) or Problem 11 of Chap. 20 (which relied on the Archimedean Property,
a consequence of the Completeness Axiom of R), here we provide a proof that is
entirely within the confines of the set of rational numbers.

Proof. We first assume that 1 � a < b: Let n be any natural number for which

n >
3a

b � a
:
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(Note that we do not need to use the Archimedean property here; see the relevant
comment in the proof of Proposition 23.18.) Furthermore, let m be the smallest
natural number for which m2 > an2. (The existence of such an m follows from
Theorem 13.6.)

We will show that r D m=n satisfies our requirements. By our choice of m, we
have m2 > an2, so a < r2 holds; the rest of the argument below will establish that
r2 < b holds as well.

We first observe that the assumption a � 1 and our choices for m and n imply that

9.m � 1/2 � 9an2 � 9a2n2 D .b � a/2n2

�
3a

b � a

�2

< .b � a/2n4;

and therefore

3.m � 1/ < .b � a/n2:

Since m2 > an2 � n2, we must have m � 2 and thus

2m � 1 D 3.m � 1/ � .m � 2/ � 3.m � 1/ < .b � a/n2:

Using this, we get

m2 D an2 C m2 � an2 � an2 C m2 � .m � 1/2

D an2 C 2m � 1 < an2 C .b � a/n2 D bn2;

which yields r2 < b as claimed.
The case 0 < a < 1 < b is trivial: r D 1 works.
Finally, assume that 0 < a < b � 1. In this case we have 1 � 1=b < 1=a, so by

the argument above, we can find a rational number Or with

1

b
< Or2 <

1

a
I

setting r D 1= Or will then satisfy our claim. ut
Proposition 23.24. For the real number

p
2R D fq 2 Q j q � 0 or q2 < 2g

we have
p

2R � p
2R D 2R.

Proof. Recall that

2R D fq 2 Q jq < 2g
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and, by Definition 23.22,

p
2R � p

2R D fq 2 Q j q � 0g
[fq1 � q2 j q1 2 Q; q2 2 Q; q1 > 0; q2 > 0; q2

1 < 2; q2
2 < 2g:

Clearly, for any q 2 Q with q � 0, we have q 2 p
2R � p

2R and q 2 2R, so it
suffices to prove that any positive rational number that is an element of one of these
sets is an element of both.

A positive rational number in
p

2R �p2R is of the form q1 �q2 where q1 and q2 are
positive rational numbers and q2

1 < 2 and q2
2 < 2. Therefore, we have q2

1 � q2
2 < 4;

so 0 < q1 � q2 < 2.
For the other direction, let q 2 Q with 0 < q < 2. By Proposition 23.23, we have

a positive rational number r for which q < r2 < 2. Setting q1 D r and q2 D q=r ,
we have q D q1 � q2, q2

1 < 2, and

q2
2 D q2

r2
D q � q

r2
< q < 2;

and therefore q 2 p
2R � p

2R. ut
We complete our discussion of real numbers by stating the following theorem.

Theorem 23.25. With our definitions as above, .R; C; �; PR/ is an ordered field that
satisfies the Completeness Axiom.

The proof of Theorem 23.25 entails verifying the required properties of addition,
multiplication, and order—see Problem 7.

Before moving on to the set of complex numbers, we should point out what the
main benefits of extending the set of natural numbers to the integers, the rational
numbers, and then to the real numbers has been. Going from N to Z we gained the
important property that we could subtract any two elements; similarly, enlarging Z

to Q enabled us to divide any two elements (except for dividing by zero, of course).
Thus, in Q, any linear polynomial f .x/ D axCb has a root. The main advantage of
extending Q to R is that the order relation became “complete”: any bounded subset
in R has an infimum and a supremum, and, therefore, the real numbers “fill in” an
entire line without “gaps.” The set R also has the advantage that many polynomials
that have no root in Q have a root in R; for example, in R we can take the square root
(and the cube root, the fourth root, etc.) of any nonnegative real number. However,
even in R, some simple polynomials, such as f .x/ D x2 C 1, have no roots. The
beauty of extending R to C is that, in C, every nonconstant polynomial has a root.

In Problem 6 of Chap. 22 we introduced the notion of algebraic numbers as those
numbers that are roots of some polynomials whose coefficients are integers (and not
all zero) and the term transcendental number for those numbers for which no such
polynomial exists. There we listed several examples for algebraic and transcendental
numbers; for example, 3.14 (the root of f .x/ D 100x � 314) and

p
11 (the root
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of f .x/ D x2 � 11) are algebraic, while � is transcendental (the proof of this is
not easy). Note that whether we require that the coefficients be integers or rational
numbers makes no difference: if f is a polynomial whose coefficients are rational
numbers, then its roots are also roots of the polynomial d �f where d is any nonzero
common multiple of the denominators of the coefficients of f (note that d � f has
the same degree as f ). Since here we talk about fields, we prefer to use the condition
that the coefficients be rational numbers.

We introduce the following general concepts.

Definition 23.26. Suppose that F is a field and K is a subfield of F .
We say that an element u 2 F is:

• Algebraic over K , if u is a root of some nonzero polynomial f with coefficients
in K

• Transcendental over K , if no such polynomial exists

Furthermore, we say that F is:

• An algebraic extension of K , if all elements of F are algebraic over K

• Algebraically closed, if its only algebraic extension is itself
• An algebraic closure of K , if it is an algebraic extension of K that is algebraically

closed

Note that every field K is an algebraic extension of itself; for example, Q is an
algebraic extension of itself as every rational number u is the root of the polynomial
f .x/ D x � u (among others). It turns out, however, that Q is not algebraically
closed; in fact, it has infinitely many algebraic extensions (cf. Problem 10). One
can prove that the set of algebraic numbers A forms an algebraic extension of Q
as well; furthermore, A is algebraically closed and thus it is an algebraic closure of
Q. In 1910, the German mathematician Ernst Steinitz proved that every field has an
algebraic closure and that this algebraic closure is (up to isomorphism) unique.

So we may wonder what the algebraic closure of the field of real numbers is. As
the following proposition shows, R is not algebraically closed.

Proposition 23.27. The field of complex numbers is an algebraic extension of the
field of real numbers.

Proof. It is easy to see that the complex number a C bi (with a; b 2 R and i
the imaginary unit with the property that i2 D �1) is the root of the quadratic
polynomial f .x/ D x2 � .2a/x C .a2 C b2/ W

f .a C bi/ D .a C bi/2 � 2a.a C bi/ C a2 C b2

D a2 C 2abi � b2 � 2a2 � 2abi C a2 C b2

D 0: ut
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Therefore, C is an algebraic extension of R. But is C also the algebraic closure
of R? The affirmative answer is given by the following important theorem:

Theorem 23.28 (The Fundamental Theorem of Algebra). The complex number
field is algebraically closed.

There are a variety of beautiful proofs for the Fundamental Theorem of Algebra,
some analytic, some algebraic, and some topological. All proofs, however, rely at
least in part on some tools from analysis.

We have thus arrived at the characterization of C.

Theorem 23.29. The set of complex numbers, C, has the categorical property that
it is the algebraic closure of R.

It is worth pointing out that the Fundamental Theorem of Algebra implies not
only that the algebraic closure of R is C but that the algebraic closure of C is C

itself. Namely, adding i to the set of real numbers (as well as all linear combinations
a C bi with a; b 2 R to ensure that the resulting set C is a field) assures that:

• Every nonconstant polynomial with real number coefficients has all its roots in C.
• Every nonconstant polynomial with complex number coefficients has all its

roots in C.

This is what we meant when we said that there is no need to enlarge C further.
(Nevertheless, we investigate the possibility of extending C below.)

Of course, the imaginary number i is purely a symbol at this point; we still need
to construct the complex numbers. As is well known, we identify the set of complex
numbers with the set of points in the Euclidean plane. (Thus, the construction of our
final number system is the easiest.)

Definition 23.30. The elements of R
2 are called complex numbers; C is just

another notation for R2.
The sum of complex numbers .a1; b1/ and .a2; b2/ is defined as

.a1 C a2; b1 C b2/:

The product of complex numbers .a1; b1/ and .a2; b2/ is defined as

.a1 � a2 � b1 � b2; a1 � b2 C b1 � a2/:

We also introduce the notations iC D .0; 1/ and .aCbi/C D .a; b/. Furthermore,
to emphasize that C contains the subfield R 
 f0g that is isomorphic to R, for a real
number a, we let aC denote the complex number .a; 0/.

While the definition of multiplication seems strange, using it we get

iC � iC D .0; 1/ � .0; 1/

D .0 � 0 � 1 � 1; 0 � 1 C 1 � 0/
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D .�1; 0/ D .�1/C;

as desired.
Naturally, Definition 23.30 is made to ensure that the system .C; C; �/ is the

algebraic closure of R. We omit the proof.
Note that we did not mention an order relation in C; as we pointed out in

Problem 2 of Chap. 18, it is not possible to define order in C that would make it
into an ordered field. So, extending R to C, we gained the convenient properties of
C being an algebraically closed field, but we had to give up on the notion of order.

Now that we have extended R to R
2, we may wonder if we can go further.

As the previous paragraph suggests, further extensions may come with additional
sacrifices. It is, in fact, possible to define addition and multiplication in R

4 in a
relatively familiar way. However, the new system, .H; C; �/, where H D R

4 is
the set of quaternions—or sometimes called Hamilton numbers after their inventor,
William Rowan Hamilton (1805–1865)—is not going to be a field; all properties will
hold with the exception that multiplication is not commutative any more. We can go
one step further and define the octonions—or Cayley numbers after Arthur Cayley
(1821–1895)—as the elements of R8 with specific addition and multiplication: the
octonion system .O; C; �/, however, fails both commutativity and associativity of
multiplication. Nevertheless, both the quaternions and the octonions are normed
division algebras—systems with some attractive and applicable properties (but
which we will not define here).

One of the breakthroughs of twentieth-century mathematics was the following
theorem:

Theorem 23.31 (Hurwitz’s Theorem). The only normed division algebras over R
are R, C, H, and O.

Well, we have already been “out of order” after R, and now we cannot even
continue conforming to the “norm,” so it is high time to end this chapter.

Problems

1. Recall that we have set 2 D S.1/, 3 D S.2/, etc.

(a) Use the relevant definitions to verify that 2 � 3 D 6.
(b) Given natural numbers n1 and n2, provide a definition for n

n2

1 . (Cf.
Problem 4 (d) of Chap. 2.)

(c) Use your definition from part (b) to verify that 23 D 8.

2. In this problem we prove Proposition 23.9. The proof is rather delicate; in
particular, the order in which the various properties are established has to be
chosen carefully.

(a) Prove that addition of natural numbers is associative.
(Hint: Show that, for each n1; n2 2 N, the set
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M.n1; n2/ D fn3 2 N j .n1 C n2/ C n3 D n1 C .n2 C n3/g
is 1-inductive.)

(b) Prove that addition of natural numbers is commutative.
(Hints: Prove that, for each n1 2 N, the set

M.n1/ D fn2 2 N j n1 C n2 D n2 C n1g
is 1-inductive. To show that 1 2 M.n1/, use induction to prove that 1Cn D
n C 1 holds for all n 2 N. In both these claims, use the fact that addition of
natural numbers is associative.)

(c) Prove that 1 is a multiplicative identity in N.
(d) Prove that multiplication of natural numbers is distributive with respect to

addition.
(Hint: Since we have not yet established commutativity of multiplication,
two identities need to be proved.)

(e) Prove that multiplication of natural numbers is commutative.
(f) Prove that multiplication of natural numbers is associative.

3. Suppose that .N; 1; S/ is a Peano system. Prove each of the following proposi-
tions:

(a) Proposition 23.32. For any elements m1, m2, and n of N , the equation
m1 C n D m2 C n implies m1 D m2.
(Hints: Let m1 2 N , m2 2 N , and suppose that m1 ¤ m2. Consider the set

A.m1; m2/ D fn 2 N j m1 C n ¤ m2 C ng:

Our claim follows from showing that A.m1; m2/ D N .)
(b) Proposition 23.33. For any elements m and n of N , exactly one of the

following three statements holds:

• m D n;
• 9k 2 N; m D n C k;
• 9k 2 N; n D m C k.

(Hints: Let n 2 N be arbitrary, and define

A.n/ D fm 2 N j 9k 2 N; m D n C kg;

B.n/ D fm 2 N j 9k 2 N; n D m C kg;
and

C.n/ D fng [ A.n/ [ B.n/:

Prove that C.n/ is 1-inductive, thus C.n/ D N . This implies that for all
m; n 2 N , at least one of the three statements holds.
To prove that no more than one of the three statements holds, first prove
that, for an arbitrary n 2 N ,
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fm 2 N j m ¤ n C mg D N

holds.)
(c) Proposition 23.34. For any elements m1, m2, and n of N , the equation

m1 � n D m2 � n implies m1 D m2.
(Hints: Proceed indirectly, and use Proposition 23.33.)

4. Verify that Definitions 23.12 and 23.13 are valid (they do not depend on which
elements we choose).

5. Let .Z; C; �; 1; P / be an integral system, and let S W Z ! Z denote the
function given by S.z/ D z C 1. Prove that .P; 1; S/ is a Peano system.

6. Make the development of the rational number system precise (cf. page 323)
following the outline below:

(a) Give a careful definition of a rational system .Q; C; �; P / listing a categor-
ical set of axioms.

(b) Construct the rational number system .Q; C; �; PQ/ using the relation given
in Problem 7 (b) of Chap. 17.
(Hints: Prove (again) that the relation is an equivalence relation; in order to
prove transitivity (without using division!), state and prove a cancellation
property for integer multiplication, similar to Proposition 23.34. Define
Q, C, �, and PQ; show that your definitions are independent of the
equivalence class representatives chosen. Prove that .Q; C; �; PQ/ satisfies
the characteristic properties of part (a).)

7. (a) Prove that the sum of two real numbers is a real number.
(b) Prove that the sum of two positive real numbers is a positive real number.
(c) Prove that the additive inverse of a real number, defined in Definition 23.20,

is a real number.
(d) Prove that the sum of a real number and its additive inverse is 0R.
(e) Prove that for any real number xR, exactly one of the following holds: xR

is positive, xR is negative, or xR D 0R.
(f) Prove that the product of two real numbers is a real number.
(g) Prove that the product of two positive real numbers is a positive real

number.
(h) Prove that every nonzero real number has a multiplicative inverse.
(i) Prove that a real number xR is less than a real number yR if, and only if,

xR 	 yR.
(j) Prove that every nonempty bounded set of real numbers has a supremum.

(Hint: Consider their union.)
8. Define the set p

3R D fq 2 Q j q � 0 or q2 < 3g:
(a) Use Definition 23.15 to prove that

p
3R is a real number.

(b) Use Definition 23.16 (and Proposition 23.17) to prove that
p

3R is an
irrational real number.
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(c) Use Definition 23.22 (and Proposition 23.23) to prove that
p

3R � p
3R D

3R.

9. We say that an ordered field F has the Cantor Property if every infinite chain
of closed, bounded, and nonempty intervals

I1 � I2 � I3 � � � �

in F has an element in common. In other words, suppose that .an/1
nD1 is an

increasing sequence in F and that .bn/1
nD1 is a decreasing sequence in F for

which an < bn for every n 2 N; the Cantor Property of F guarantees an
element f 2 F for which an � f � bn holds for all n.

(a) Prove that R has the Cantor Property. Prove also that if we further assume
that lim.bn � an/ D 0, then the element f 2 R is unique.

(b) Does Q have the Cantor Property?
(c) Does R.x/ have the Cantor Property?
(d) Is a version of the Cantor Property true in R where instead of a chain of

closed intervals we are given a chain of open intervals? In other words, can
we claim that there is a real number f for which an < f < bn holds for
all n?

(e) Prove that the Archimedean Property of R (cf. Theorem 20.3) and the
Cantor Property of R together (as well as the ordered field axioms) imply
the Completeness Axiom (cf. Axiom 18.6).

Remark. According to this result, we could have said that the categorical
axioms of R are the ordered field axioms together with the Archimedean
Property and the Cantor Property.

(Hints: Let S be a nonempty and bounded subset of R. We will prove that S

has a supremum; the proof that S also has an infimum can be done similarly
(cf. also Theorem 18.12). We will construct a chain of intervals

I1 � I2 � I3 � � � �

recursively, as follows. Since S is bounded, we can choose a lower bound
a1 2 R for S and an upper bound b1 2 R for S , and we set I1 D Œa1; b1�.
Given In D Œan; bn� with a midpoint of cn D .an C bn/=2 for some n � 1,
we set InC1 D ŒanC1; bnC1� equal to Œan; cn� if cn is an upper bound of S

and to Œcn; bn� otherwise. Use the Archimedean and the Cantor Properties
of R to prove that there is a unique real number f that is in \1

nD1In, and
then prove that f D supS .)

10. (a) Define the set

Q.
p

2/ D fa C b
p

2 j a 2 Q; b 2 Qg:
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i. Prove that Q.
p

2/ is a field.
ii. Prove that Q.

p
2/ is an algebraic extension of Q.

iii. Is Q.
p

2/ algebraically closed?

(b) Define the set

Q.
3
p

5/ D fa C b
3
p

5 C c
3
p

25 j a 2 Q; b 2 Q; c 2 Qg:

i. Prove that Q.
3
p

5/ is a field.
ii. Prove that Q.

3
p

5/ is an algebraic extension of Q.
iii. Is Q.

3
p

5/ algebraically closed?

11. As we have mentioned before, Euler’s number e is transcendental; that is, there
is no not identically zero polynomial f with integer coefficients for which
f .e/ D 0. The fact that there is no such linear polynomial is equivalent to
saying that e is irrational, and we proved this in Theorem 20.15. Prove that e is
not the root of any quadratic polynomial with integer coefficients either.
(Hints: Suppose, indirectly, that there are integers a, b, and c for which
a ¤ 0 and

ae2 C be C c D 0I
we then have

ae C b C c

e
D 0:

Use the infinite series for e and for 1=e; cf. page 250.)
12. Two players, Nate and Ria, play a game where one of them thinks of a sequence

.x1; x2; x3; x4/ of four positive integers and the other has to find out, using as
few questions as possible, what x1, x2, x3, x4 are. Each question must also
be of the form of a sequence of length four; in Nate’s case, the terms of the
sequence must be natural numbers; for Ria, they can be arbitrary real numbers.
(The sequences may vary from question to question.) The answer, in each case,
must be the linear combination of x1, x2, x3, and x4 with the four terms of the
sequence of the question; that is, if the question is the sequence .a1; a2; a3; a4/,
then the answer must be

a1x1 C a2x2 C a3x3 C a4x4:

(a) What is the minimum number of questions Nate will need to always be able
to discover the four numbers?
(Hints: Prove that two questions may be necessary but are always sufficient.
Note that Nate’s second question may depend on Ria’s answer to his first
question.)

(b) What is the minimum number of questions Ria will need to always be able
to discover the four numbers?
(Hint: Prove that a single question is always enough.)
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13. In this problem we briefly discuss the elements of algebraic number theory,
including some famous results, open questions, and even an April Fools hoax.

(a) A complex number ˛ is called a quadratic integer if it is the root of the
polynomial x2 C ux C v for some integers u and v.
In each part below, a pair of numbers is given so that one number is a
quadratic integer and the other is not. Decide which is which.

i. 11 and 3
2

ii. 7 C p
2 and 7 C 3

p
4

iii. 3
2

C 11
2

p
3 and 3

2
C 11

2

p
5

iv. 7 C 3i and 7 C 3
p

i
v. 3

2
C 11

2

p�3 and 3
2

C 11
2

p�5

(b) Prove that the roots of the polynomial x2 C ux C v are integers if, and only
if, u2 � 4v is a square number (including 0).

(c) Let u and v be integers for which u2 � 4v is not a square number; we define
a field associated with the polynomial x2 C ux C v, as follows. Let

m D u2 � 4v

k2
;

where k2 is the largest square number divisor of u2 � 4v. (Note that 1 is
a square, and thus every positive or negative integer has a unique largest
square divisor.) We thus see that m is a square-free integer: its largest square
divisor is 1.

Define the set

Q.
p

m/ D fa C b
p

m j a 2 Q; b 2 QgI

as Problem 10 (a) above suggests, Q.
p

m/ is a field for the usual oper-
ations. For example, we see that the field associated with the polynomial
x2 C 3x C 1 is Q.

p
5/. (The same field is associated with x2 C 3kx C k2

for any nonzero integer k.)
Furthermore, we define I.m/ as the set of quadratic integers in Q.

p
m/;

I.m/ is then an integral domain.
Prove that

I.m/ D
( fa C b

p
m j a 2 Z; b 2 Zg if m 6� 1 mod 4;

f a
2

C b
2

p
m j a 2 Z; b 2 Z; a � b mod 2g if m � 1 mod 4:

(d) Analogously to the integral domain of the integers, we can develop the
number theory of I.m/. We make the following definitions:

Definition 23.35. For quadratic integers ˛; ˇ 2 I.m/, we say that ˛

divides ˇ and write ˛jˇ, if there is a � 2 I.m/ for which ˛ � � D ˇ.
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Note that Definition 23.35 is analogous to Definition 2.2.

Definition 23.36. We say that an element � of I.m/ is a unit element if �

divides every element of I.m/.

It is easy to see that � is a unit element if, and only if, it has a multiplicative
inverse in I.m/. While we only had two unit elements among the integers,
this is not necessarily the case among quadratic integers.

Prove each of the following statements:

i. I.�1/ has four unit elements: ˙1 and ˙i.
ii. I.�3/ has six unit elements: ˙1 and ˙ 1

2
˙ 1

2

p�3.
iii. When m < 0 and m ¤ �1; �3, then I.m/ has two unit elements: ˙1.
iv. I.2/ has infinitely many unit elements.

(Hint: Verify that .3 C 2
p

2/n is a unit element for all n 2 N.)

(e) Next, we define primes in I.m/, but we need to be careful: unlike it
was the case for the integers, Definitions 2.1a and 2.1b (see Chap. 2) are
not equivalent in general. Therefore, we distinguish between irreducible
elements and primes, as follows:

Definition 23.37. An element of I.m/ is called irreducible if it is not a unit
element and it cannot be factored into a product of two other elements of
I.m/ without one of them being a unit element.

Definition 23.38. An element of I.m/ is called prime if it is not 0 and not
a unit element and it cannot divide a product of two other elements of I.m/

without dividing at least one of them.

Prove that each of the numbers

2; 3; 1 C p�5; 1 � p�5

is irreducible in I.�5/ but that none of them are prime.
(Hint: Note that the product of the first two equals the product of the last
two.)

(f) The most important number-theoretic question in any integral domain is
whether the Fundamental Theorem of Arithmetic (FTA) holds, that is,
if every nonzero and non-unit element factors into a product of irre-
ducible elements in an essentially unique way. (For irreducible elements
˛1; : : : ; ˛r I ˇ1; : : : ; ˇs 2 I.m/, we say that the irreducible factorization
˛1 � � � ˛r is essentially the same as the irreducible factorization ˇ1 � � � ˇs ,
if each factor in one factorization is a unit times a factor in the other
factorization—more precisely, if r D s and there are unit elements
�1; : : : ; �r for which the multisets Œ�1˛1; : : : ; �r ˛r � and Œˇ1; : : : ; ˇr � are
the same.)
Prove that the FTA fails in I.�5/.
(Hint: Use part (e).)
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Remarks. The problem of finding all square-free integers m for which the
FTA holds in I.m/ has a long and fascinating history. In the case when
m is negative, we have known the answer since 1952: the FTA holds if, and
only if,

m D �1; �2; �3; �7; �11; �19; �43; �67; or � 163:

These nine integers are known as Heegner’s numbers, named after the
German mathematician Kurt Heegner (1893–1965) who first established
the result.

Regarding the case when m > 0, at the present time, we know that the FTA
holds in I.m/ for

m D 2; 3; 5; 6; 7; 11; 13; 14; 17; 19; 21; 22; 23; 29; 31; 33;

37; 38; 41; 43; 46; 47; : : : I

but the complete characterization seems quite elusive.
Astute observers may notice that the last six Heegner’s numbers are in one-
to-one correspondence with the six lucky numbers of Euler (see Problem 3
in Chap. 3). In particular, one can prove that the existence of another such
value k would be equivalent to the FTA holding in I.m/ with m D 1 � 4k;
this fact rests on the factorization

n2 � n C k D
�

2n � 1

2
C 1

2

p
1 � 4k

�

�
�

2n � 1

2
� 1

2

p
1 � 4k

�

:

The Heegners numbers give us an opportunity to mention two other famous
individuals: Srinivasa Ramanujan (1887–1920) and Martin Gardner (1912–
2010). Ramanujan was a self-trained genius who, at the beginning of
the twentieth century in poor and rural India, made a range of amazing
mathematical discoveries, some of which are still not fully understood
today. Gardner was a brilliant American mathematics and science writer,
most famous for his long-running column in Scientific American magazine.

As an April Fools joke, Gardner wrote in 1975 that the conjecture of
Ramanujan regarding the value of

e�
p

163

has been proven: the value is exactly an integer! Gardner soon afterwards
admitted that his article was a hoax: Ramanujan made no such conjecture
and, in fact, as we mentioned on page 302, the value is transcendental!
However, it is indeed true that Ramanujan’s constant, as the number is now
being referred to, is very close to being an integer:
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e�
p

163 � 262537412640768743:99999999999925 : : : :

In fact, the other Heegners numbers yield near integers as well; for example,

e�
p

19 � 123 � .32 � 1/3 C 744 � 0:222 : : : ;

e�
p

43 � 123 � .92 � 1/3 C 744 � 0:000223 : : : ;

e�
p

67 � 123 � .212 � 1/3 C 744 � 0:00000134 : : : ;

e�
p

163 � 123 � .2312 � 1/3 C 744 � 0:00000000000075 : : : :

For an explanation, one needs to turn to another fast-developing branch of
mathematics: analytic number theory.



Chapter 24
Games Are Valuable!

In this chapter we return to our very first adventure in this book: the analysis
of games. As an illustrative example, we evaluate our good old game Aerion of
Chap. 1; namely, we show that it has exactly a “one half move advantage” for player
A (we will, of course, make this notion precise). But more generally—and a lot more
abstractly—we will discuss a fascinating novel branch of mathematics that has both
far-reaching theoretical significance as well as very practical applicability. In the
process, we revisit a remarkable variety of material from previous chapters and thus
take advantage of the opportunity to deepen and extend our understanding.

Our main focus in this chapter will be on a large collection � of two-person
games that includes a variety of games we have already seen. We will introduce
a very natural equivalence relation on � and thus create equivalence classes; we
then consider these equivalence classes of games to be our collection of “surreal
numbers” S. For example, we will see that all fair games (cf. Problem 1 of Chap. 9)
form a single equivalence class, and we identify this class with the surreal number
0S. (In a sense, the “further away” a game is from 0S, the more “unfair” it is.) We
will then learn that S is an ordered field for certain addition, multiplication, and
order. The field S of surreal numbers is, in fact, the largest ordered field in the
sense that it contains an isomorphic copy of every ordered field. In particular, S
will have a clearly identifiable subfield that is isomorphic to R; furthermore, it will
also contain (copies of) Cantor’s infinite ordinal numbers (ever-increasing notions
of infinite “lengths” of sets) as well as infinitesimals (positive values that are below
all the positive reals).

This branch of mathematics, sometimes referred to as combinatorial game theory
(to be distinguished from economic game theory), was invented and first developed
by John Horton Conway (1937–) in the 1970s; the beautiful and deep theory is
undoubtedly one of the top inventions in the history of mathematics. (The term
of “surreal number” was coined by Donald Knuth in a charming book—Surreal
Numbers, Addison–Wesley, 1974—that explains “how two ex-students” on a remote
island discover the concept “and found total happiness.”)

The collection of games that we are studying here are played by two players—
whom we call Left and Right—who take turns selecting one of the options available
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to them at the time. At each stage of the game, all options as well as all subsequent
options—both those available for Left and those available for Right—are known to
both players in advance. (This condition rules out card games that build on hidden
information and dice games where the options are determined by chance while the
game is being played.) Note that the number of options may be finite or infinite.
The game ends when one player is unable to move; this player is then declared the
loser and the last player able to move the winner. We require that every game ends
by one of the players winning it after a finite number of steps. (So here we exclude
games that can be drawn out forever or may end in a tie.) We let � denote the
class of games satisfying these very general conditions. The collection of games �

mentioned above is a certain subclass of �; while all games in � are in a certain
definite sense “value-able,” it is the games in � that we will assign numeric (though
“surreal”) values to. We will, of course, explain all this precisely below.

Note that, since we have full information, every game G is completely de-
termined by the set of options L and R available for players Left and Right,
respectively, and therefore, we may identify G with the ordered pair .L;R/. For
example, consider the game Aerion of Chap. 1 given by the following diagram:

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
��

�
�
�
�
�
�

a1 a2 b1

b2

a3 b3

� � �

� �

�

�

Recall that players A and B take turns to remove edges available to them; if the
removal of an edge disconnects a part of the diagram from the “ground,” then that
component becomes unavailable. Let L1, L2, and L3 denote the results of player
Left exercising options a1, a2, and a3, respectively, and let R1, R2, and R3 denote
the results of player Right exercising options b1, b2, and b3, respectively.

L1 W

�
��

�
��

�
��

��

a2 b1

b2

a3 b3

� �

� �

�

�

L2 W

�
��

�
��

�
��

��

a1 b1

b2

a3 b3

� �

� �

�

�

L3 W

�
��

�
��

�
��a1 a2 b1

b2

� � �

� �

R1 W

�
��

�
��

�
��

��

a1 a2

b2

a3 b3

� �

� �

�

�

R2 W

�
��

�
��

�
��

�
��

��

a1 a2 b1

a3 b3

� � �

� �

�

�

R3 W

�
��

�
��

�
��
�
��

a1 a2 b1

b2

a3

� � �

� �

�
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We then have

Aerion D .fL1; L2; L3g; fR1; R2; R3g/:
Of course, the elements of L D fL1; L2; L3g and R D fR1; R2; R3g are games
themselves and thus could each be presented as ordered pairs of their respective left
and right options.

When playing a game, each player, when it is his or her turn, chooses an
option and thereby transforms the game to another—“simpler”—game. The process
continues, and each play of a particular game G is essentially a finite sequence
of—ever “simpler”—games G0 D G, G1, G2, G3, etc., ending in a game Gn

that has no available options for the player whose turn it would be to move. For
instance, a particular play of Aerion is the sequence .G0; G1; G2; G3; G4; G5/

where G0 D Aerion, G1 D L3 (see above), and the games G2, G3, G4, and G5

are, in order, as follows:

G2 W

�
��

�
��a1 a2

b2

� �

� �

G3 W

�
�� a2

b2

�

� �

G4 W

�
�� a2

�

�

G5 W

In particular, in this play of the game, Left makes the final move and thus wins the
game. This list of games reveals pertinent information: for example, if Left makes
the initial move in G as well as the final (winning) move, as in the example above,
then:

• n is odd.
• Gi is a left option of Gi�1 for i D 1; 3; 5; : : : ; n and a right option of Gi�1 for

i D 2; 4; 6; : : : ; n � 1.
• Gn has no right options.

(Analogous claims could be made for the cases when Right starts the game or when
Right wins.)

After this heuristic introduction, let’s turn to a precise development. In the
treatment that we choose here, the collection � of games will not be given a
definition; instead, we consider it a primitive, satisfying—and, in the sense of
Chap. 23, categorically determined by—the following two axioms. We think of �

as a collection of ordered pairs of sets; that is, it consists of elements of the form
.L;R/ where L and R are sets. (We need to choose our terminology carefully:
while we insist on L and R being sets, � will only be a “collection” as it will be too
large to be a set—cf. Appendix B.) So that we can state our axioms more concisely,
we will use the following term: we say that a collection of ordered pairs of sets is
inductive if it has the property that whenever L and R are subsets of the collection,
the ordered pair .L;R/ is an element of the collection.

Our two axioms for � are as follows:

Axiom 24.1. The collection � is inductive.

Axiom 24.2. The only inductive subcollection of � is � itself.
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Axioms 24.1 and 24.2 resemble the Peano axioms (cf. Chap. 23); while the
objective of Axiom 24.1 is to ensure that � is large enough to contain all games
we would want to play with, Axiom 24.2 assures that it doesn’t contain other—
unnecessary—elements.

It may seem strange at first sight that—unlike it was the case with the Peano
axioms—we do not have an explicit axiom stating that � is nonempty. Note,
however, that the empty set clearly satisfies ; � � (even if � were to be empty
itself); thus, .;; ;/ 2 � by Axiom 24.1; adding this as an axiom is therefore not
necessary. We let

G.0/ D .;; ;/I
this (very uninteresting) game can be thought of as the Hackenbush game

�

where neither player has any options. We say that G.0/ appears in “generation 0.”
(G.0/ is the only game in generation 0.)

Once we have G.0/, we can use it to define three new games:

G.1/ D .fG.0/g; ;/;

G.�1/ D .;; fG.0/g/;
and

N.1/ D .fG.0/g; fG.0/g/I
these are the games of “generation 1”; these three games are indeed in � by
Axiom 24.1. It is helpful to see the Hackenbush representations of these games:

� � �

� � �

G.�1/ N.1/ G.1/

(We mark edges available for Left by solid lines, those available by Right by
dotted lines, and those available to both by dash lines.) For example, to see that
the Hackenbush game marked “G.�1/” above is indeed what we defined G.�1/ to
be, note that Left has no options and Right has one option that reduces the game to
G.0/; thus, we have .;; fG.0/g/ D G.�1/.

Our four games so far provide examples for the four different possible outcomes
that a game may have. Namely, by definition, the second player wins G.0/ (as the
first player immediately loses), Left wins G.1/ (as Right will run out of moves first,
regardless of who starts), Right wins G.�1/ (again, regardless of who starts to play
it), and the first player to move wins N.1/.

It is helpful to think of the recursive construction procedure of games in terms of
these “generations”; the collection of games appearing in generations 0, 1, 2, etc.,
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will be denoted by �0, �1, �2, and so on and are said to have birthdays 0, 1, 2,
etc., respectively. (We will see that not all games appear in a finite generation; thus,
we have games with infinite birthdays indexed not just by natural numbers but by
infinite ordinals.) So far, we have seen that

�0 D fG.0/g

and
�1 D fG.�1/; N.1/; G.1/g:

In order to create a game of birthday 2, observe that we may choose any subset
of �0 [ �1 for both the set of left options and the set of right options, as long as not
both are subsets of �0 (i.e., equal to ; or fG.0/g); therefore,

j�2j D 24 � 24 � 4 D 252:

Clearly, for each n 2 N [ f0g, j�nj is finite but grows very rapidly as n increases.
In particular, we see that

j�nj D 2
Pn�1

iD0 j�i j � 2
Pn�1

iD0 j�i j �
n�1X

iD0

j�i jI

for example, j�3j D 4256 � 256—a number that has 154 decimal digits!
Our next goal is to find a way to compare two games from the point of view of

the two players. Namely, we will introduce a “less than” relation on the collection
of all games: we will say that the game G1 is less than the game G2, if G1 is “less
desirable” for Left than G2 is (and thus G2 is “more desirable” for Right than G1

is). More precisely, we make the following definition:

Definition 24.3. Let G D .LG;RG/ 2 � and H D .LH ;RH / 2 �. We say that
G is less than or similar to H and write G . H if, and only if:

• There is no L 2 LG for which H . L.
• There is no R 2 RH for which R . G.

If G is not less than or similar to H , we write G 6. H .

Note that we have a recursive definition without an initial condition given.
However, as before, we see that the definition applies to the game G.0/ D .;; ;/:
we trivially have G.0/ . G.0/. More generally, we have the following obvious fact:

Proposition 24.4. For arbitrary sets of games X and Y , we have .;;X / . .Y; ;/.

By Proposition 24.4, we have G.0/ . G.0/, G.0/ . G.1/, G.�1/ . G.0/, and
G.�1/ . G.1/. By Definition 24.3, G.0/ . G.0/ implies that G.1/ 6. G.0/ and
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G.0/ 6. G.�1/; furthermore, G.�1/ . G.0/ implies that G.1/ 6. G.�1/. With a
bit more work, we can verify each entry in the following table—see Problem 1.

Is G . H? H D G.�1/ H D G.0/ H D N.1/ H D G.1/

G D G.�1/ Yes Yes Yes Yes
G D G.0/ No Yes No Yes
G D N.1/ No No Yes Yes
G D G.1/ No No No Yes

In addition to the “less than or similar to” relation on games just defined, we
introduce the following relations:

Definition 24.5. Suppose that G 2 � and H 2 �. We say that:

• G is similar to H and write G � H , if G . H and H . G.
• G is greater than or similar to H and write G & H , if H . G.
• G is less than H and write G < H , if G . H and G 6� H .
• G is greater than H and write G > H , if H < G.

For example, according to the table above, each of the four games of generations 0
and 1 is similar to itself; furthermore, we have

G.�1/ < G.0/ < G.1/

and
G.�1/ < N.1/ < G.1/:

(Without assuming that the “less than” relation is transitive—luckily, it is!—, it
would have been more clear to state these claims via separate inequalities; instead
of the somewhat ambiguous G.�1/ < G.0/ < G.1/, write G.�1/ < G.0/, G.0/ <

G.1/, and G.�1/ < G.1/.)
However, we see that . is not a total order relation on �: we have G.0/ 6. N.1/

and N.1/ 6. G.0/, that is, G.0/ and N.1/ are incomparable! We should also note
that while reflexivity and transitivity of . hold, antisymmetry fails: we will soon
see examples where each of two distinct games is less than or similar to the other.
(This explains why we prefer to use the . sign and not the � sign that suggests
antisymmetry.)

For all practical purposes, two similar games are indeed similar (pun intended):
exchanging one by the other will not make a difference. We will make this notion
more precise later; for now, we just state the following:

Proposition 24.6. Two games that have similar left options and similar right
options are themselves similar. More precisely, let G D .LG;RG/ 2 � and
H D .LH ;RH / 2 �, and suppose that

• 8LG 2 LG; 9LH 2 LH ; LG � LH ;
• 8LH 2 LH ; 9LG 2 LG; LH � LG;
• 8RG 2 RG; 9RH 2 RH ; RG � RH ; and
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• 8RH 2 RH ; 9RG 2 RG; RH � RG .

Then G � H .

We leave the easy proof to Problem 2.
We now define a subclass of � that we are most interested in: the class of numeric

games.

Definition 24.7. The collection of numeric games � consists of games .L;R/

where L � � , R � � , and there is no L 2 L and R 2 R for which R . L.

Definition 24.7 calls for a few comments. First of all, note that as before, while
we seem to have a recursive definition without a starting point, it is not necessary:
G.0/ D .;; ;/ is trivially a numeric game.

Also, observe that in Definition 24.7, we used the predicate

:.9L 2 L; 9R 2 R; R . L/

instead of the more direct form

8L 2 L; 8R 2 R; L < R:

The reason is that while, as we prove later, the two forms are indeed equivalent for
numeric games, we did not want to make this assumption in our definition. (In the
larger class � of not necessarily numeric games, the two forms are not equivalent:
as we have seen, we have neither G.0/ . N.1/ nor N.1/ < G.0/.)

Before continuing with our development, it may be worth to briefly recall our
discussion of real numbers from Chap. 23. We constructed real numbers using
Dedekind cuts, that is, “initial segments” of rational numbers (cf. Definition 23.15).
For example, we let

0R D fq 2 Q j q < 0Qg;
2R D fq 2 Q j q < 2Qg;

and p
2R D fq 2 Q j q � 0Q or q2 < 2Qg:

Perhaps a more pleasing variation of this approach would have been to let real
numbers denote ordered pairs of sets of rational numbers of the form .L;R/, where
the “left segment” L denotes a Dedekind cut and the “right segment” denotes its
complement Q n L. For example, we could write

0R D .fq 2 Q j q < 0Qg; fq 2 Q j q � 0Qg/;

2R D .fq 2 Q j q < 2Qg; fq 2 Q j q � 2Qg/;
and

p
2R D .fq 2 Q j q � 0Q or q2 < 2Qg; fq 2 Q j q > 0Q and q2 > 2Qg/:
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(As we have shown, there is no rational number q for which q2 D 2Q.)
This formulation would align well with our intuition of a “cut”: the ordered pair

.L;R/ is simply a partition of the (previously defined) set of rational numbers with
certain additional properties, most importantly, that L is “to the left” of R, that is,

8l 2 L; 8r 2 R; l < r:

(We should note that < here refers to the previously defined order relation among
the rational numbers.)

Conway’s brilliant idea was that the ordered pair .L;R/ can be considered in
general as a game. Thus, games are generalizations of Dedekind cuts; in fact, as we
already mentioned and will see below, the definition of games is so general that it
will lead us to rediscover not just real numbers but many other types of “numbers,”
such as Cantor’s infinite ordinal numbers, as well as infinitesimally small positive
numbers.

So let us return to Definition 24.7 and see some specific numeric games. We have
already seen that

G.0/ D .;; ;/

is trivially numeric; it is also easy to see that so are

G.1/ D .fG.0/g; ;/

and

G.�1/ D .;; fG.0/g/:
In fact, we have the following obvious generalization:

Proposition 24.8. For arbitrary sets of numeric games X and Y , we have .;;X / 2
� and .Y; ;/ 2 � .

However, N.1/ D .fG.0/g; fG.0/g/ 62 � , since, by Proposition 24.4, G.0/ .
G.0/, contrary to our requirement in Definition 24.7.

Letting �n D � \ �n denote the collection of numeric games with birthday n,
we thus see that

�0 D fG.0/g
and

�1 D fG.�1/; G.1/g:
Let us now attempt to exhibit �2. As it turns out, it is a bit easier to consider all

games that have birthday at most 2 (i.e., we include the games of �0 and �1). We
have three numeric games of birthdays at most 1 available, G.�1/, G.0/, and G.1/.
As we have already seen, we have

G.�1/ < G.0/ < G.1/:
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Each of the games in �0 [ �1 [ �2 is of the form .L;R/ for some sets

L � fG.�1/; G.0/; G.1/g

and
R � fG.�1/; G.0/; G.1/gI

we also must uphold the condition that no element of R is less than or similar to any
element of L. When creating such a game .L;R/, we may first decide how many of
the games G.�1/; G.0/, and/or G.1/ should appear in either L or R (no game may
appear in both). If we want k of them to appear (k 2 f0; 1; 2; 3g), then we have

�
3
k

�

choices for selecting them. Our next decision is to decide which of them will be in
L and which in R; we can put the l smallest ones (with 0 � l � k) into L and the
rest into R.

Therefore, we have a total of

3X

kD0

kX

lD0

 
3

k

!

D 20

numeric games that get created by generation 2; they are as follows:

k D 0 W l D 0 W .;; ;/

k D 1 W l D 0 W .;; fG.�1/g/ .;; fG.0/g/ .;; fG.1/g/

l D 1 W .fG.�1/g; ;g/ .fG.0/g; ;g/ .fG.1/g; ;g/

k D 2 W l D 0 W .;; fG.�1/; G.0/g/ .;; fG.�1/; G.1/g/ .;; fG.0/; G.1/g/

l D 1 W .fG.�1/g; fG.0/g/ .fG.�1/g; fG.1/g/ .fG.0/g; fG.1/g/

l D 2 W .fG.�1/; G.0/g; ;g/ .fG.�1/; G.1/g; ;g/ .fG.0/; G.1/g; ;g/

k D 3 W l D 0 W .;; fG.�1/; G.0/; G.1/g/

l D 1 W .fG.�1/g; fG.0/; G.1/g/

l D 2 W .fG.�1/; G.0/g; fG.1/g/

l D 3 W .fG.�1/; G.0/; G.1/g; ;g/

Since one of these, G.0/ D .;; ;/, was already created in generation 0 and two
others, G.�1/ D .;; fG.0/g/ and G.1/ D .fG.0/g; ;g/, were created in generation
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1, we get a total of 17 new games in �2. Here we introduce notations for four of
them:

G .�2/ D .;; fG.�1/; G.0/g/;

G
�� 1

2

� D .fG.�1/g; fG.0//g;

G
�

1
2

� D .fG.0/g; fG.1/g/;

G .2/ D .fG.0/; G.1/g; ;/I

these games have Hackenbush representations as follows:

� � � �

� � � �

� � � �

G.�2/ G.� 1
2
/ G. 1

2
/ G.2/

For example, to verify that the Hackenbush game marked “G. 1
2
/” is indeed the game

G
�

1
2

� D .fG.0/g; fG.1/g/;

note that both Left and Right have a single option; exercising their options, Left
would reduce the game to G.0/, and Right would reduce it to G.1/. Similarly, in the
game marked “G.2/,” Left has two options, to reduce the game to G.0/ or to G.1/,
and Right has no options, so this is indeed the game .fG.0/; G.1/g; ;/:

As we are about to show, these four games are pivotal among the seventeen games
of �2: every game in �2 is similar to one of these four or to one of the games of an
“earlier” generation.

Proposition 24.9. Among the seventeen games of �2:

• .fG.�1/g; ;/, .;; fG.1/g/; and .fG.�1/g; fG.1/g/ are similar to G.0/.
• .fG.�1/; G.0/g; ;/ is similar to G.1/.
• .;; fG.0/; G.1/g/ is similar to G.�1/.
• .fG.1/g; ;/, .fG.�1/; G.1/g; ;/, and .fG.�1/; G.0/; G.1/g; ;/ are similar to

G.2/.
• .;; fG.�1/g/, .;; fG.�1/; G.1/g/, and .;; fG.�1/; G.0/; G.1/g/ are similar to

G.�2/.
• .fG.�1/; G.0/g; fG.1/g/ is similar to G. 1

2
/.

• .fG.�1/g; fG.0/; G.1/g/ is similar to G.� 1
2
/.

We should point out that, as Proposition 24.9 illustrates, similar games may have
different birthdays!
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Proof. We only prove our first claim; the others can be proved similarly. (Also, all
claims other than our first claim follow directly from the Domination Theorem; see
Theorem 24.31.)

We start by noting that, by Proposition 24.4, we have

.fG.�1/g; ;/ & G.0/

and
.;; fG.1/g/ . G.0/:

Furthermore, we know that G.0/ 6. G.�1/, and therefore,

.fG.�1/g; ;/ . G.0/

and
.fG.�1/g; fG.1/g/ . G.0/:

Similarly, G.1/ 6. G.0/, and thus,

G.0/ . .;; fG.1/g/

and
G.0/ . .fG.�1/g; fG.1/g/:

Therefore, we see that
.fG.�1/g; ;/ � G.0/;

.;; fG.1/g/ � G.0/;

and
.fG.�1/g; fG.1/g/ � G.0/

by Definition 24.5. ut
While the size of �n is not nearly as large as that of �n, it still increases very

rapidly with n; for example, �3 has 7,143,404 elements (cf. Problem 3). Thus,
exhibiting each game of �—even of �3—is hopeless; however, as we will see, there
is no need to do that as all of them will be similar to one of only fifteen games: seven
of them,

G.�2/; G.�1/; G.� 1
2
/; G.0/; G. 1

2
/; G.1/; G.2/;

we met before, and we will define eight others,

G.�3/; G.� 3
2
/; G.� 3

4
/; G.� 1

4
/; G. 1

4
/; G. 3

4
/; G. 3

2
/; G.3/:

In other words, �3 can be partitioned into fifteen equivalence classes based on
similarity. To see this, we first turn to a more general discussion of the beautiful
theory of combinatorial games.
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Since games are defined recursively, it is natural to expect that many of our
proofs will be inductive; but, since we have more than just countably many games,
it is also clear that we need a version of induction that is stronger than regular
induction (which is suitable only for statements about countable sets). We have
already mentioned transfinite induction (cf. Theorem 18.19) that can handle such
proofs. The version of transfinite induction we employ here can be stated as follows:

Theorem 24.10 (Conway’s Induction Principle). Suppose that P.G/ is a predi-
cate that becomes a statement for all G 2 �. If the implication

 
^

K2L[R
P.K/

!

) P.H/

holds for all H D .L;R/ 2 �, then P.G/ is true for every G 2 �.

It is easy to see that Conway’s Induction Principle follows from Axiom 24.2.
So, to use Conway induction to prove that a predicate P.G/ is true for every

game G, one just needs to verify that for every game H 2 �, P.H/ holds whenever
P.L/ and P.R/ hold for all left options L and right options R of H . It might
be strange at first sight that in Conway induction there is no need for a “base
case.” Note, however, that the inductive hypothesis guarantees that P.G.0// is true:
indeed, since G.0/ D .;; ;/, the assumption in the inductive hypothesis is trivially
true for H D G.0/.

As an easy application, we use Conway induction to prove that every game (even
those with infinitely many options) comes to an end after a finite number of moves.
More generally, we prove the following:

Theorem 24.11. There is no infinite sequence of games .Gn/1
nD1 so that for each

n 2 N, GnC1 is a left or right option of Gn.

Proof. Let P.G/ be the predicate that there is no infinite sequence of games
.Gn/1

nD1 so that for each n 2 N, GnC1 is a left or right option of Gn and G1 is a
left or right option of G. We need to prove that P.G/ is true for every G 2 �.

Let H D .L;R/ 2 �, and suppose that P.K/ is true for all K 2 L [ R. If
P.H/ were to be false, then there would be an infinite sequence of games .Hn/1

nD1

so that for each n 2 N, HnC1 is a left or right option of Hn and H1 is a left or right
option of H . But this means that we also have an infinite sequence starting with H1,
making P.H1/ false, but H1 2 L [ R, so P.H1/ is true by assumption. Therefore,
P.H/ must be true, and our claim follows by Conway induction. ut

Theorem 24.11 is not only a consequence of Axiom 24.2, but it is equivalent to
it—see Problem 4.

Our next goal is to use Conway induction to prove that the relation . (and,
therefore, �) is reflexive and transitive. We start by showing that . is reflexive.

Proposition 24.12. For all games G, we have G . G.
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Proof. We use Conway induction. Let H D .L;R/ 2 �, and assume that L . L

and R . R hold for all L 2 L and R 2 R. We need to prove that H . H .
We suppose, indirectly, that H 6. H . By definition, this implies that either there

exists an L 2 L for which H . L or there exists an R 2 R for which R . H .
Let’s assume that the first situation holds and we have H . L for some L 2 L.
(The second situation can be handled similarly.) But this, by definition, implies that
there is no L0 2 L for which L . L0; in particular, we have L 6. L, which is a
contradiction with our inductive hypothesis above. ut

In order to prove that the . relation is transitive, we need a generalized version
of Conway induction. First we introduce a notation.

For a natural number n, let H D .H1; : : : ; Hn/ be an ordered n-tuple of games;
suppose that Hi D .Li ;Ri /. We then define ‚.H/ to be the set of n-tuples M D
.M1; : : : ; Mn/ where there is a unique index i 2 f1; : : : ; ng for which Mi 2 Li [Ri ;
for all other indices j , Mj D Hj . Finally, for each n-tuple M D .M1; : : : ; Mn/ of
‚.H/, we generate the nŠ possible permutations of the n components; the collection
of all these n-tuples is then denoted by ‰.H/.

For example, for n D 1, we have simply ‰.H/ D L1 [ R1. For n D 2, ‰.H/

consists of ordered pairs of the form

.L1; H2/ .R1; H2/ .H1; L2/ .H1; R2/

.H2; L1/ .H2; R1/ .L2; H1/ .R2; H1/

with Li 2 Li , Ri 2 Li , i 2 f1; 2g. For n D 3 (which is the instance we will need
for our proof of transitivity below), ‰.H/ consists of 23 � 3Š D 48 kinds of ordered
triples.

Theorem 24.13 (Conway’s Multiple Induction Principle). Let n be a natural
number, and suppose that P.G/ is a predicate that becomes a statement for all
n-tuples G D .G1; : : : ; Gn/ with G1; : : : ; Gn 2 �. If the implication

0

@
^

K2‰.H/

P.K/

1

A ) P.H/

holds for all n-tuples H D .H1; : : : ; Hn/, then P.G/ is true for every n-tuple of
games G D .G1; : : : ; Gn/.

The template of Conway’s Multiple Induction Principle looks complicated but
is, in fact, rather simple: to prove that P.G1; : : : ; Gn/ holds for all n-tuples of
games .G1; : : : ; Gn/, one needs to verify that P.H1; : : : ; Hn/ holds whenever the
predicate is assumed to be true in every case when the n games are permuted
arbitrarily and any one term is replaced by any of its left or right options. Note
that for n D 1, Conway’s Multiple Induction Principle reduces exactly to Conway’s
Induction Principle; for n D 2, this is the “game” equivalent of the double induction
template of Problem 3 (e) of Chap. 14. Conway triple induction (the case n D 3 of
Theorem 24.13) is used to prove that . is a transitive relation on games.



356 24 Games Are Valuable!

Proposition 24.14. Let G, H , and K be arbitrary games, and suppose that G . H

and H . K . Then we also have G . K .

Proof. We use Conway’s Multiple Induction Principle for the predicate
P.G1; G2; G3/ denoting the implication

.G1 . G2/ ^ .G2 . G3/ ) .G1 . G3/:

Let H1 D .L1;R1/, H2 D .L2;R2/, and H3 D .L3;R3/, and assume that H1 . H2

and H2 . H3. We need to prove that H1 . H3.
Indirectly, suppose that H1 6. H3. We assume that there is an L 2 L1 for which

H3 . L as the case when there is an R 2 R3 for which R . H1 can be treated
similarly. By our inductive hypothesis, we know that P.H2; H3; L/ holds; that is,
H2 . H3 and H3 . L imply H2 . L. But, since H1 . H2, we also have H2 6. L,
which is a contradiction. ut

The fact that . is transitive immediately implies the following useful variations
(cf. Problem 5):

Proposition 24.15. Let G1; G2; G3 2 � with G1 . G2 . G3, and suppose that
G1 < G2 or G2 < G3. In this case we have G1 < G3.

Proposition 24.16. Let G1; G2; H1; H2 2 �, and suppose that G1 � G2, H1 �
H2. In this case, if G1 . H1, then G2 . H2, and if G1 < H1, then G2 < H2.

Proposition 24.17. Let G1; G2 2 �, and suppose that G1 � G2. Then G1 > G.0/

if, and only if, G2 > G.0/.

We now turn to an important property of the . relation that says that any two
numeric games are comparable; that is, for any pair of numeric games G and H , we
have at least one of G . H or H . G. Indeed, as we prove below, for any pair of
numeric games G and H , we have exactly one of G � H , G < H , or G > H . It
is important to note, however, that these properties do not hold in the larger class of
(not necessarily numeric) games �!

First we prove the following useful proposition. (As we remarked earlier, the
recursive nature of � means that we will frequently need to rely on Conway’s
Induction Principle and Conway’s Multiple Induction Principle. From now on, in
these situations we will simply write “by induction.”)

Proposition 24.18. Suppose that G D .L;R/ 2 � , and let L 2 L, R 2 R. Then
we have

L < G < R:

According to Proposition 24.18, given an arbitrary numeric game G, Left’s move
in G will always result in a game L that is less than G, and Right’s move will always
be to a game R that is greater than G, reflecting the sentiment that having to make
a move is considered undesirable.
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Proof. We will only prove L < G here as G < R can be shown similarly. Let
L D .LL;RL/.

We first show that L . G. By definition, this means that (i) we must have no
H 2 R for which H . L and (ii) we must have no K 2 LL for which G . K .
Since G 2 � , (i) holds. To show (ii), let K 2 LL be arbitrary. By our inductive
hypothesis, we have K < L and therefore K . L. But this implies that we cannot
have G . K , proving (ii).

To complete our proof, we need to verify that G 6. L, but this follows
immediately from the definition of ., since by reflexivity we have L . L. ut
Theorem 24.19. For any pair of numeric games G and H , we have exactly one of
G � H , G < H , or G > H .

Proof. It is easy to see that Definition 24.5 guarantees that no G; H 2 � can satisfy
more than one of the above relations. For example, if we were to have G < H

and H < G, then we would have G . H and H . G, thus G � H , as well,
contradicting both G < H and H < G.

To prove that at least one of the relations holds, we proceed indirectly, and
assume that G 6� H , G 6< H , and H 6> G. Therefore, G 6. H and H 6. G

(since, if we had, say, G . H , then G 6� H would mean that G < H ).
Let G D .LG;RG/ and H D .LH ;RH /. Our inequality G 6. H means that:

(i) There exists an LG 2 LG for which H . LG .
(ii) There exists an RH 2 RH for which RH . G.

Similarly, H 6. G means that:

(i*) There exists an LH 2 LH for which G . LH .
(ii*) There exists an RG 2 RG for which RG . H .

We show that none of the four pairs of conditions (i) and (i*), (i) and (ii*), (ii)
and (i*), or (ii) and (ii*) can hold.

The case when (i) and (ii*) are both assumed to be true leads to a contradiction
immediately: by transitivity, we have RG . LG , contradicting Proposition 24.18.
Similarly, (ii) and (i*) cannot both hold.

To show that (i) and (i*) cannot both hold is only one step more complicated:
using Proposition 24.18, we get

LH < H . LG < G . LH ;

from which LH < LH , a contradiction. The proof that (i) and (ii*) cannot both hold
is similar. ut

Turning now to the similarity relation of games, we immediately see from
Propositions 24.12 and 24.14 that � satisfies the reflexive and transitive properties;
since, by definition, it is also symmetric, we arrive at the following:

Corollary 24.20. The relation � of similarity is an equivalence relation on the
collection of games �.
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By Corollary 24.20, the similarity relation partitions the collection � of all games
into equivalence classes. (A disclaimer is in order: since � is not a actually a set, the
terms “partition” and “equivalence class” would need to be qualified; as this slight
imprecision will not cause problems for us here, we will not make the distinction.)
Below, we will only be interested in the equivalence classes within the collection �

of numeric games. We denote the equivalence class of a game G by ŒG�; that is,

ŒG� D fH 2 � j H � Gg:

Definition 24.21. The equivalence classes of the similarity relation in � are called
surreal numbers. The collection of surreal numbers is denoted by S.

As we mentioned earlier, S is an ordered field for certain addition, multiplication,
and order; we are about to make this more precise. We start with the binary operation
of addition of games.

Definition 24.22. Let G D .LG;RG/ 2 � and H D .LH ;RH / 2 �. We define
the sum of G and H recursively as

G C H D ..G C LH / [ .LG C H/; .G C RH / [ .RG C H//:

Here, as customary, the sum of a game and a collection of games is simply the
collection of the appropriate sums; for example,

G C LH D fG C LH j LH 2 LH g:

The way we defined the addition of games captures our intuitive notion of
combining two games. Consider two players (Left and Right) playing the two games
G and H simultaneously, so that, when it is his or her turn, each player is to make
a move in exactly one of the games (the players can freely decide whether to make
a move in G or H ). Clearly, Left’s choices are to move from G “plus” H to either
G plus LH for some LH 2 LH (when choosing to move in H ) or to LG plus H for
some LG 2 LG (when deciding to move in G); Right’s choices are similar. Thus,
our definition of the addition of two games aligns with the situation when the players
play two games simultaneously.

As a matter of fact, it is quite often the case that the players only play a single
game but that, at some point during play, the game naturally decomposes into two
(or more) separate games. For example, when playing Aerion, one of Right’s initial
options is to remove b2, thereby decomposing the game into two components (cf. R2

on page 344). Thus, it is helpful to introduce and study the binary operation of
addition of games.

Examining the properties of game addition, we arrive at the following results:

Theorem 24.23. The addition of games has the following properties.

1. Addition is a closed operation: For all G 2 � and H 2 �, we have G CH 2 �.
2. Addition is commutative: For all G 2 � and H 2 �, we have
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G C H D H C G:

3. Addition is associative: For all G 2 �, H 2 �, and K 2 �, we have

.G C H/ C K D G C .H C K/:

4. Addition has the identity property: For all G 2 �, we have

G C G.0/ D G:

5. The additive inverse property holds up to similarity: For all G D .L;R/ 2 �,
we have

G C .�G/ � G.0/;

where �G is defined recursively as �G D .�R; �L/:

Thus, Theorem 24.23 says that .�; C/ is close to being an abelian group for addition
(� becomes equality in the last property only in the case when G D G.0/). We leave
the rather easy proof to Problem 9.

Additionally, we can prove that addition interacts with order, as expected.

Theorem 24.24. For all games G1 2 �, G2 2 �; and H 2 �, we have

G1 . G2 , G1 C H . G2 C H:

The proof of Theorem 24.24 is carried out in Problem 10. As a useful corollary,
we can prove that game addition preserves similarity.

Corollary 24.25. If games G1, G2, H1, and H2 satisfy G1 � G2 and H1 � H2,
then

G1 C H1 � G2 C H2:

Proof. Since G1 � G2 and H1 � H2 imply G1 . G2 and H1 . H2, by transitivity,
we have

G1 C H1 . G1 C H2 . G2 C H2I
the other direction is similar. ut

Next, we define the multiplication of games.

Definition 24.26. Let G D .LG;RG/ 2 � and H D .LH ;RH / 2 �. We define
the product of G and H recursively as

G � H D ..G � LH C LG � H � LG � LH / [ .G � RH C RG � H � RG � RH /;

.G � RH C LG � H � LG � RH / [ .G � LH C RG � H � RG � LH //:
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As usual, subtraction simply denotes the addition of the negative; furthermore,
unless parentheses dictate otherwise, multiplication is to be performed before
addition and subtraction.

Multiplication of games is not nearly as applicable as addition is; furthermore,
the rule we just defined leads to some unsettling situations, such as the fact that we
may have a pair of similar games that, when multiplied by the same game, result in
non-similar products (cf. Problem 11). However, one can prove that, when restricted
to numeric games, multiplication satisfies all the usual properties. For example,
assuming that

LG < G < RG

and
LH < H < RH

imply
.G � LG/ � .H � LH / > G.0/;

.RG � G/ � .H � LH / > G.0/;

.G � LG/ � .RH � H/ > G.0/;

and
.RG � G/ � .RH � H/ > G.0/;

the usual arithmetic operations yield

G � LH C LG � H � LG � LH

G � RH C RG � H � RG � RH

9
=

;
< G � H <

8
<

:

G � RH C LG � H � LG � RH

G � LH C RG � H � RG � LH

—providing some much-needed illumination for Definition 24.26.
We now return to the collection S of surreal numbers. We make the following

definitions:

Definition 24.27. Let xS and yS be surreal numbers, and suppose that G 2 xS and
H 2 yS. We define surreal addition and multiplication as

• xS C yS D ŒG C H�; and
• xS � yS D ŒG � H�.

Furthermore, we say that xS is positive if G > G.0/ and that it is negative if G <

G.0/; we let PS denote the collection of positive surreal numbers.

Note that, by Corollary 24.25 and Proposition 24.17, addition and order are well
defined; the fact that multiplication of surreal numbers is also independent of the
chosen representative can be established as well (we omit the lengthy proof).

We are now ready for one of our main results:

Theorem 24.28. The surreal number system .S; C; �; PS/ is an ordered field.
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Proof. First, we need to prove that the sum of any two numeric games is a numeric
game; that is, if G D .LG;RG/ 2 � and H D .LH ;RH / 2 � , then G C H 2 � .
This is indeed the case; in fact, we can prove the stronger claim that

G C LH

LG C H

�

< G C H <

�
G C RH

RG C H

holds for all LG 2 LG , RG 2 RG , LH 2 LH , and RH 2 RH . For example, to show
that

G C LH < G C H;

we can use Proposition 24.18 and Theorem 24.24 to write

G C LH . G C H:

Conversely,
G C H . G C LH

would imply H . LH , which cannot be. This establishes that surreal number
addition is closed.

Commutativity and associativity of addition follow immediately from Theo-
rem 24.23, as does the fact that 0S is the additive identity.

To verify the additive inverse property, we first prove that the negative of a
numeric game is numeric as well; that is, if G D .L;R/ 2 � , then �G D
.�R; �L/ 2 � as well. Indeed, for any L 2 L and R 2 R, we have L < R

and thus

�R D �R CG.0/ � �R CLC .�L/ . �R CR C .�L/ � G.0/C .�L/ D �L;

and thus �R . �L; to see that we cannot have �L . �R, observe that that would
imply

R � R C .�L/ C L . R C .�R/ C L � L;

which contradicts G 2 � . Therefore, for every surreal number xS, �xS is surreal as
well, and we have

xS C .�xS/ D 0S:

The order axiom that for every surreal number xS, exactly one of xS D 0S,
xS 2 PS, or �xS 2 PS holds follows immediately from Theorem 24.19.

To prove that PS is closed for addition, suppose that G D .LG;RG/ 2 � and
H D .LH ;RH / 2 � , G > G.0/, and H > G.0/. Therefore, by Theorem 24.24,
we have

G C H & G C G.0/ & G.0/ C G.0/ D G.0/I
if we also had G C H � G.0/, then this would imply

H D H C G.0/ . H C G � G.0/;

which is a contradiction.
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Verifying that each of the axioms involving multiplication holds as well is
remarkably complicated and will be omitted here. (However, we prove the multi-
plicative identity property in Problem 11.) ut

The surreal number field is, in fact, a very special ordered field. Recall that the
rational number field is the smallest ordered field; that is, for every ordered field
system .F; CF ; �F ; PF /, there exists a subfield Q � F for which the systems
.Q; C; �; PQ/ and .Q; CQ; �Q; PQ/ are isomorphic. (Here CQ, �Q, and PQ are the
restrictions of CF , �F , and PF to Q.) The surreal number system is at the other end
of the spectrum:

Theorem 24.29. The surreal number system .S; C; �; PS/ is the largest ordered
field; that is, for every ordered field system .F; CF ; �F ; PF /, there exist a subfield
S � S for which the systems .F; CF ; �F ; PF / and .S; CS ; �S ; PS / are isomorphic.

We will soon see that, in accordance with Theorem 24.29, the field of surreal
numbers contains (an isomorphic copy of) the rational numbers as well as the real
numbers, and one can show that it contains (an isomorphic copy of) the ordered field
R.x/ as well.

Let us now return to games. When analyzing a particular game, it is helpful
to “simplify” the game as much as possible. As we are about to explain, this
simplification procedure is quite efficient: with the application of only two types
of techniques, one can reduce every numeric game to a unique member of a well-
understood family of games. In order to make this precise, we introduce some
terminology.

Definition 24.30. Let G 2 � and H 2 � . We say that:

• H is a restriction of G if:

– Every left option of H is also a left option of G.
– Every right option of H is also a right option of G.

• H is a dominating restriction of G if it is a restriction so that:

– Every left option of G is less than or similar to some left option of H .
– Every right option of G is greater than or similar to some right option of H .

• H is a compromise of G if:

– Every left option of G is less than H .
– Every right option of G is greater than H .

• H is a simple compromise of G if it is a compromise of G, but:

– None of the left options of H are compromises of G.
– None of the right options of H are compromises of G.

Let’s consider some examples. The game

G D .fG.0/; .;; fG.1/g/g; fG.1/; G.2/g/
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has 16 restrictions, since with any

L � fG.0/; .;; fG.1/g/g

and
R � fG.1/; G.2/g;

H D .L;R/ is a restriction of G. For H to be a dominating restriction, we must
take at least one of G.0/ or .;; fG.1/g/ to be in L (note that G.0/ � .;; fG.1/g/),
and we must have G.1/ 2 R (but may or may not want to take G.2/). Therefore, G

has 3 � 2 D 6 dominating restrictions.
By verifying that

.fG.�2/g; fG.2/g/ � G.0/;

we can also see that
G.0/ D .;; ;/;

.;; fG.1/g/;
.fG.�1/g; ;/;

and
.fG.�1/g; fG.1/g/

are all compromises of the game

G D .fG.�2/g; fG.2/g/I

but only G.0/ is a simple compromise, since neither

G.1/ D .fG.0/g; ;/

nor
G.�1/ D .;; fG.0/g/

is a compromise of G.
We should note that every game G has a dominating restriction and a simple

compromise; in fact, by Proposition 24.18, G itself serves as an example for both.
We will now prove that all dominating restrictions of a game G are similar to G

(and thus to each other) and all simple compromises are similar to G (and thus to
each other).

Theorem 24.31 (The Domination Theorem). Let G 2 � . If H is a dominating
restriction of G, then G � H .

Proof. G D .LG;RG/ and H D .LH ;RH /. To show that G � H , we will need to
prove the following four statements:
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(i) There is no LG 2 LG for which H . LG .
(ii) There is no RH 2 RH for which RH . G.

(iii) There is no LH 2 LH for which G . LH .
(iv) There is no RG 2 RG for which RG . H .

Now Proposition 24.18 implies that for every LG 2 LG and RG 2 RG , we have

LG < G < RG I

since LH � LG and RH � RG , we have (ii) and (iii).
Furthermore, since H is a dominating restriction of G, for every LG 2 LG and

for every RG 2 RG , we can find options LH 2 LH and RH 2 RH for which
LG . LH and RH . RG . Therefore, by Proposition 24.18, we have

LG . LH < H < RH . RG;

and our claims (i) and (iv) follow by Proposition 24.15. ut
The Domination Theorem is quite useful in simplifying games. In particular,

it immediately implies the last six parts of Proposition 24.9 (which classifies the
seventeen games of �2): for example, to see that

.fG.�1/; G.0/; G.1/g; ;/

is similar to
G.2/ D .fG.0/; G.1/g; ;/;

note that, by the Domination Theorem, each game is similar to

.fG.1/g; ;/:

In order to classify numeric games with birthdays 3 or more, we need the
following sibling of the Domination Theorem.

Theorem 24.32 (The Simplicity Theorem). Let G 2 � . If H is a simple
compromise of G, then G � H .

Proof. Let G D .LG;RG/ and H D .LH ;RH /. Since H is a compromise of G,
we have

8LG 2 LG; 8RG 2 RG; LG < H < RG I
furthermore, since H is a simple compromise of G, the same condition does not
hold for any left or right option of H ; that is:

• There is no LH 2 LH for which 8LG 2 LG; 8RG 2 RG; LG < LH < RG .
• There is no RH 2 RH for which 8LG 2 LG; 8RG 2 RG; LG < RH < RG .
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We need to prove that G . H and H . G. Here we only show G . H as the
other claim is similar.

To show that G . H , we need to verify that:

(i) There is no LG 2 LG for which H . LG .
(ii) There is no RH 2 RH for which RH . G.

Clearly, (i) holds by our hypothesis that 8LG 2 LG; LG < H:

To verify (ii), we proceed indirectly, and assume that RH . G for some RH 2
RH . Therefore, we know that there is no RG 2 RG for which RG . RH ; that is,
RH < RG holds for all RG 2 RG . Furthermore, by Proposition 24.18, we have
H < RH ; therefore, by assumption and by transitivity, LG < RH holds for all
LG 2 LG . We thus have a right option RH of H for which

8LG 2 LG; 8RG 2 RG; LG < RH < RG;

and this is a contradiction with our hypothesis. ut
The Domination Theorem and the Simplicity Theorem allow us to simplify

games and make their evaluation easier. As an example, here we classify all
7,143,404 numeric games with birthday 3.

Given G 2 �3, we first find a dominating restriction H of G. In order to do so,
we will employ the set of games

S D fG.�2/; G.�1/; G.� 1
2
/; G.0/; G. 1

2
/; G.1/; G.2/gI

we can verify that the seven games above are listed in increasing order. We have the
following three possibilities for H :

(1) H � .fLg; ;/ for some L 2 S.
(2) H � .;; fRg/ for some R 2 S.
(3) H � .fLg; fRg/ for some L; R 2 S with L < R.

We may examine case (1) further to find that:

(a) If L < G.0/, then H � G.0/.
(b) If L D G.0/, then H � G.1/.
(c) If L D G. 1

2
/, then H � G.1/.

(d) If L D G.1/, then H � G.2/.
(e) If L D G.2/, then H � G.3/, where G.3/ is defined as

G.3/ D .fG.0/; G.1/; G.2/g; ;/:

Similarly, in case (2), we find that H is similar to one of the games in S or to

G.�3/ D .;; fG.�2/; G.�1/; G.0/g/:
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Finally, in case (3), we may use the Domination Theorem and the Simplicity
Theorem to verify that:

(a) If L < G.0/ and R > G.0/, then H � G.0/.
(b) If L; R 2 fG.0/; G. 1

2
/; G.1/; G.2/g, then:

(i) If L D G.0/ and R D G. 1
2
/, then H � G. 1

4
/, where

G. 1
4
/ D .fG.0/g; fG. 1

2
/; G.1/g/:

(ii) If L D G.0/ and R D G.1/, then H � G. 1
2
/.

(iii) If L D G.0/ and R D G.2/, then H � G.1/.
(iv) If L D G. 1

2
/ and R D G.1/, then H � G. 3

4
/, where

G. 3
4
/ D .fG.0/; G. 1

2
/g; fG.1/g/:

(v) If L D G. 1
2
/ and R D G.2/, then H � G.1/.

(vi) If L D G.1/ and R D G.2/, then H � G. 3
2
/, where

G. 3
2
/ D .fG.0/; G.1/g; fG.2/g/:

(c) If L; R 2 fG.�2/; G.�1/; G.� 1
2
/; G.0/g, then H is similar to G.�1/,

G.� 1
2
/ or to

G.� 3
2
/ D .fG.�2/g; fG.�1/; G.0/g/;

G.� 3
4
/ D .fG.�1/g; fG.� 1

2
/; G.0/g/;

or
G.� 1

4
/ D .fG.�1/; G.� 1

2
/g; fG.0/g/:

In summary, we can state our results as follows. Let

�0 D fG.0/g;

�1 D fG.�1/; G.1/g;
�2 D fG.�2/; G

�� 1
2

�
; G

�
1
2

�
; G.2/g;

and

�3 D fG.�3/; G
��1 1

2

�
; G

�� 3
4

�
; G

�� 1
4

�
; G

�
1
4

�
; G

�
3
4

�
; G

�
1 1

2

�
; G.3/gI

with these notations we have the following:

Proposition 24.33. Every numeric game of birthday 3 (or less) is similar to one of
the fifteen games in

�0 [ �1 [ �2 [ �3:
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(Similarly, the abbreviated summary of Proposition 24.9 is that each game in �2 is
similar to a dyadic game in �0 [ �1 [ �2.)

The fifteen games in Proposition 24.33 can be visualized by Hackenbush games;
more precisely, for each game, there is a Hackenbush string H so that G � H .
(A Hackenbush string is a Hackenbush game whose graph is a path.) The Hacken-
bush string representation of the fifteen games of birthday at most 3 are as follows.
(The label q corresponds to the game G.q/.)

� � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � �

�3 �2 �1 1
2

�1 � 3
4

� 1
2

� 1
4

0 1
4

1
2

3
4

1 1 1
2

2 3

For example, we can see that the Hackenbush string marked � 3
4

provides only
one option for Left (to move the game to G.�1/) and two options for Right (moves
to G.� 1

2
/ or G.0/). Thus, the game is indeed

G.� 3
4
/ D .fG.�1/g; fG.� 1

2
/; G.0/g/;

as defined above. As the chart indicates, the birthday of each Hackenbush string
corresponds to its “height” (the number of edges in it). Furthermore, the eight
elements of �3 alternate with the seven elements of �0 [ �1 [ �2; see Problem 6
for generalizations and proofs.

It is time for us now to explain how we chose the labels for our games thus far.
Notice that every game in

�0 [ �1 [ �2 [ �3

is of the form G.q/ for some real number q whose binary form is finite. For example,
we have

�3 D fG.�3/; G
��1 1

2

�
; G

�� 3
4

�
; G

�� 1
4

�
; G

�
1
4

�
; G

�
3
4

�
; G

�
1 1

2

�
; G.3/g;

corresponding, in order, to the binary forms

�11; �1:1; �:11; �:01; :01; :11; 1:1; 11:

Recall from Problem 8 (e) of Chap. 15 that ZŒ 1
2
� is the set of all real numbers

with finite binary forms; as we have seen there, ZŒ 1
2
� is an integral domain, and it

consists of the set of integers together with rational numbers of the form

˙


n C a

2k

�
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where n is a nonnegative integer, k is a positive integer, and a is an odd integer with
1 � a < 2k (this form is unique).

We can recursively define the game G.q/ for each q 2 ZŒ 1
2
�; for example, having

defined the elements of
�0 [ �1 [ �2 [ �3

above, we can set

G. 5
8
/ D .fG.0/; G. 1

2
/g; fG. 3

4
/; G.1/g/

and
G.4/ D .fG.0/; G.1/; G.2/; G.3/g; ;/:

We will carry out this development in Problem 6; here we only point out that our
notations are in line with the way we denoted natural numbers: for example, on page
315 we had the analogous

4N D f;; 1N; 2N; 3Ng:

The set of games
� D fG.q/ j q 2 ZŒ 1

2
�g

play an important role in the evaluation of games. The games of �, often called
dyadic games, behave as expected when it comes to addition, multiplication, and
order: they are consistent with our “labels.” Namely, we have the following:

Proposition 24.34. For any q1; q2 2 ZŒ 1
2
�, the following hold:

• G.q1/ C G.q2/ � G.q1 C q2/;
• �G.q1/ � G.�q1/;
• G.q1/ � G.q2/ � G.q1 � q2/;
• G.q1/ < G.q2/ if, and only if, q1 < q2.

In Problem 12, we prove that Proposition 24.34 holds when q1; q2 2 N.
Observe that there are only countably many games of finite birthday but, as we

mentioned earlier, the collection of all numeric games � is so large that it’s not even
a proper set; therefore, “most” games have infinite birthdays. So let us now meet
some games with infinite birthdays.

Two such games are the infinite game G.!/ and the infinitesimal game G.
/,
defined as

G.!/ D .fG.0/; G.1/; G.2/; G.3/; : : : g; ;/;

and
G.
/ D �fG.0/g; ˚G.1/; G

�
1
2

�
; G

�
1
4

�
; : : :

��
:

These two games are examples for games of �! , the games created in “generation
!” and thus have birthday !. (Here ! stands for the first infinite ordinal number;
see page 309.) �! contains a large variety of games beyond G.!/ and G.
/; most
importantly, it contains games corresponding to non-dyadic rational numbers and,
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in fact, all real numbers. For example, given the binary representations

1
3

D 0:010101010101010101 : : : ;

p
2 D 1:011010100000100111 : : : ;

and
� D 11:001001000011111101 : : :

(cf. page 185), we can set

G
�

1
3

� D �˚
G
�

1
4

�
; G

�
5
16

�
; G

�
21
64

�
; : : :

�
;
˚
G
�

1
2

�
; G

�
3
8

�
; G

�
11
32

�
; : : :

��
;

G.
p

2/ D �˚
G .1/ ; G

�
1 1

4

�
; G

�
1 3

8

�
; : : :

�
;
˚
G
�
1 1

2

�
; G

�
1 7

16

�
; G

�
1 29

64

�
; : : :

��
;

and

G .�/ D �˚
G.3/; G

�
3 1

8

�
; G

�
3 9

64

�
; : : :

�
;
˚
G
�
3 1

2

�
; G

�
3 1

4

�
; G

�
3 3

16

�
; : : :

��
:

(Note the resemblance of these ordered pairs to the corresponding Dedekind cuts.)
Of course, to establish that these games are well defined, one would need to verify
that their left options are all less than each of their right options, cf. Problem 8.

In fact, one can go further and create games in �!C1, etc., such as

G.! C 1/ D .fG.!/g; ;/;

G.! C 2/ D .fG.! C 1/g; ;/;

G.! � 2/ D .fG.!/; G.! C 1/; G.! C 2/; : : : g; ;/;

G.!2/ D .fG.!/; G.! � 2/; G.! � 3/; : : : g; ;/;

G.!!/ D .fG.!/; G.!2/; G.!3/; : : : g; ;/;

and on and on (cf. page 308 for a better understanding of these notations). Similarly,
one could define ever-decreasing infinitesimal games, such as

G
�



2

� D .fG.0/g; fG.
/g/;

G
�



4

� D .fG.0/g; fG �


2

�g/;

G.
2/ D .fG.0/g; fG �


2

�
; G

�


4

�
; G

�


8

�
; : : : g/;
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etc. Furthermore, the infinitesimal games can be “shifted” next to other games; for
example,

G.3 C 
/ D �fG.0/; G.1/; G.2/; G.3/g; ˚G.4/; G
�
3 1

2

�
; G

�
3 1

4

�
; : : :

��

is a game “infinitely close to,” but larger than, G.3/. And, of course, this is just the
beginning; there are too many games to exhibit explicitly!

It is important to note that our requirement that each game ends after a finite
number of moves applies to games with an infinite birthdays as well. For example,
we see that G.!/ ends immediately if Right starts and after a single move if Left
starts. Indeed, if Left moves

G.!/ D .fG.0/; G.1/; G.2/; G.3/; : : : g; ;/

to, say,
G.3/ D .fG.0/; G.1/; G.2/g; ;/;

then Right will be unable to respond. Thus, G.!/ is a win for Left. Similarly, we
see that G.
/ ends by Left winning after a single move if Left starts and after two
moves (one round) if Right starts. For example, if Right chooses to move from

G.
/ D �fG.0/g; ˚G.1/; G
�

1
2

�
; G

�
1
4

�
; : : :

��

to
G
�

1
4

� D �fG.0/g; fG �
1
2

�
; G.1/g� ;

then Left will move to G.0/ that leaves no options for Right. So G.
/ is also a win
for Left regardless of which player starts. Among the many intriguing properties, we
will see that G.
/ is similar to the reciprocal of G.!/; indeed, denoting the surreal
numbers corresponding to G.!/, G.
/, and G.1/ by !S, 
S, and 1S, respectively, we
can show that

!S � 
S D 1S

(see Problem 13).
We close this chapter—and, indeed, our book—with a brief discussion of the

analysis and evaluation of games. When playing a game, we are mostly interested,
of course, in whether we are able to win it or are destined to lose it. In fact, there are
two questions about every game: Who wins the game if Left makes the initial move
and who wins the game if Right starts? When we say, for example, that a certain
game G is a win for Left if Left starts, what we mean is that Left can conduct
a winning play of G no matter what Right’s moves are. (A thorough analysis of
these kinds of statements was presented in Chap. 9.) So we are uninterested in what
happens if the players don’t play optimally. Note also that the existence of a winning
strategy does not necessarily mean that such a strategy is known. For example, in
Problem 12 of Chap. 15, we proved that the Divisor game is always won by the first
player, but a winning strategy is not yet known.
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We introduce the following notations:

• �L!L: the collection of games that Left can win if Left starts
• �L!R: the collection of games that Right can win if Left starts
• �R!L: the collection of games that Left can win if Right starts
• �R!R: the collection of games that Right can win if Right starts

For example, as we have seen earlier, G.0/ is in �L!R and also in �R!L; the
games G.1/, G.!/, and G.
/ are all in �L!L and �R!L; and G.�1/ is in �L!R

and �R!R. It may seem quite obvious that every game is either in �L!L or �L!R,
but not both; similarly, each game is in �R!L or �R!R, but not both. This is indeed
the case:

Theorem 24.35 (The Fundamental Theorem of Combinatorial Game Theory).
The sets f�L!L; �L!Rg and f�R!L; �R!Rg are both partitions of the collection
of all games �; that is:

• Every G 2 � is a win for either Left or Right (but not both) if Left starts the
game.

• Every G 2 � is a win for either Left or Right (but not both) if Right starts the
game.

Proof. For a game G D .L;R/ 2 �, let P.G/ be the predicate that

G 2 Œ.�L!L n�L!R/[.�L!Rn�L!L/�\Œ.�R!Ln�R!R/[.�R!R n�R!L/�I

our two claims are equivalent to proving that P.G/ holds for all G 2 �.
We will use induction, so let us assume that P.G/ holds for all L 2 L and all

R 2 R. Below we prove only that

G 2 .�L!L n �L!R/ [ .�L!R n �L!L/I

the proof that we also have

G 2 .�R!L n �R!R/ [ .�R!R n �R!L/

is similar.
We will consider two cases depending on whether L \ �R!L is the empty set.

Case 1: If L \ �R!L ¤ ;, then let L 2 L \ �R!L. Then, by our inductive
hypothesis, L 62 �R!R. Therefore, if Left moves first in G, choosing option L will
assure that Left wins and Right loses; we thus have G 2 �L!L n �L!R.

Case 2: If L \ �R!L D ;, then, according to our inductive hypothesis,

L � .�R!R n �R!L/:
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Therefore, no matter what Left’s first move is in G, the game will result in a win for
Right and a loss for Left, so G 2 �L!R n �L!L. ut

Let us introduce some additional notations:

�L D �L!L \ �R!L;

�R D �L!R \ �R!R;

�I D �L!L \ �R!R;

and
�II D �L!R \ �R!L:

We call these four collections outcome classes as they correspond to the four
possible outcomes that a game may have. For example, �L denotes the collection of
games that Left can win (regardless of who starts), and �II stands for the collection
of those games that are won by the second player (whether that is Left or Right).

The Fundamental Theorem of Combinatorial Game Theory immediately implies
the following:

Corollary 24.36. The four outcome classes �L; �R; �I ; and �II are pairwise
disjoint and their union is �.

It turns out that we can say quite a bit more about the outcome classes within the
collection of numeric games �: Defining �L, �R, �I , and �II by �L D � \ �L and
so on, we have the following important theorem:

Theorem 24.37. We have the following characterization of numeric games:

1. G 2 �L if, and only if, G > G.0/.
2. G 2 �R if, and only if, G < G.0/.
3. G 2 �II if, and only if, G � G.0/.
4. �I D ;.

In particular, we see that only three of the four outcome classes within � are
nonempty: no numeric game is always a win for the first player (if both players
play optimally).

Proof. By Theorem 24.19, it suffices to prove that the predicate P.G/, defined as

Œ.G > G.0//^.G 2 �L/�_Œ.G < G.0//^.G 2 �R/�_Œ.G � G.0//^.G 2 �II /�;

holds for every game G 2 � . We will use induction.
Let G D .L;R/ 2 � , and assume first that G > G.0/. Since then G 6. G.0/ D

.;; ;/, we must have a left option L 2 L for which G.0/ . L. By our inductive
hypothesis P.L/ holds; thus, L 2 �L [ �II , and therefore, L 2 �R!L. This yields
G 2 �L!L. Similarly, we could show that G < G.0/ implies G 2 �R!R.

Assume next that G & G.0/. Then, by definition, there are no right options
R 2 R for which R . G.0/; that is, G.0/ < R holds for all R 2 R. By induction,
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we get that R � �L, which yields G 2 �R!L. A similar argument would show that
G . G.0/ implies G 2 �L!R.

In summary, we have shown that if G > G.0/ (in which case we also have G &
G.0/), then G 2 �L!L \ �R!L and so G 2 �L; if G < G.0/, then G 2 �R; and if
G � G.0/ (in which case G . G.0/ and G & G.0/), then G 2 .�R!L/ \ .�L!R/

and so G 2 �II . Therefore, P.G/ must hold for all G 2 � . ut
In closing, let us return one more time to our game Aerion. In our next

proposition, we evaluate the game in two different ways. Our first method, while
shorter here, relies on extensive work we have done in Problem 1 of Chap. 9; it
also has the disadvantage that we had to first guess the value of the game before we
could verify it. Our second approach is more general and, in fact, can be adapted to
evaluate any numeric game.

Proposition 24.38. The surreal number value of Aerion equals
�

1
2

�
S
.

Proof I. We can use Theorem 24.37, combined with our other previous results, to
show that Aerion � G

�
1
2

�
. Indeed, we have already seen that the game AerionC

G
�� 1

2

�
is in �II (cf. Problem 1 (b) of Chap. 9), and thus

Aerion C G
�� 1

2

� � G.0/I

this then yields

Aerion D Aerion C G.0/ � Aerion C G
�� 1

2

�C G
�

1
2

� � G.0/ C G
�

1
2

� � G
�

1
2

�
;

from which our claim follows. �
Proof II. Of the three left options L1, L2, and L3 and the three right options R1, R2,
and R3 (cf. page 344), here we evaluate two: L3 and R2 (admittedly, these are the
two easiest ones). Using Proposition 24.34, we immediately get

R2 D G.2/ C G
�� 3

4

� � G
�
1 1

4

�
:

For L3, we have

Therefore, using some of the Hackenbush values exhibited earlier, together with
Proposition 24.34, the Domination Theorem, the Simplicity Theorem, cases (3) (b)
and (3) (c) on page 366, and Proposition 24.6, we have

L3 D �˚
.fG.�2/g; fG.�1/ C G.1/; G. 1

2
/g/� ; f.fG.�1/ C G.1/g; fG.2/g/;

.fG. 1
2
/g; fG.2/g/��
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D �˚
.fG.�2/g; fG.0/; G. 1

2
/g/� ;

˚
.fG.0/g; fG.2/g/; .fG. 1

2
/g; fG.2/g/��

� �f.fG.�2/g; fG.0/g/g ;
˚
.fG.0/g; fG.2/g/; .fG. 1

2
/g; fG.2/g/��

� .fG.�1/g ; fG.1/g/
� G.0/:

Similar calculations show that L1 D L2 � G
�� 1

2

�
, R1 � G

�
3
2

�
, and R3 �

G.1/; see Problem 15. Thus, we arrive at

Aerion D .fL1; L2; L3g; fR1; R2; R3g/
� .fG �� 1

2

�
; G.0/g; fG �

3
2

�
; G

�
1 1

4

�
; G.1/g/

� .fG.0/g; fG.1/g/
D G

�
1
2

�
;

as claimed. �
We opened our book with the introduction of the game Aerion, and it is a

pleasing way to close it with its complete analysis. Our journey introduced us to
many different branches of (abstract) mathematics and had us meet many of its
classical results, recent developments, and future goals. We trust that the journey
was informative, instructive, and enjoyable. And, most importantly, we hope that
our book served as an invitation to engage in further studies of mathematics.

Problems

1. Verify the assertions in the table on page 348.
2. Prove Proposition 24.6.
3. Verify that j�3j D 7; 143; 404.
4. Prove that Theorem 24.11 implies Axiom 24.2.
5. Prove Propositions 24.15, 24.16, and 24.17.
6. In this problem we analyze dyadic games (games corresponding to real

numbers with finite binary forms).

(a) Provide a definition for the dyadic game G.q/ for every q 2 Z



1
2

�
. Verify

also that your definition yields numeric games.
(Hints: Separate the cases when q 2 Z and when q 62 Z. Proceed
recursively in both cases.)

(b) Find a formula for the birthday of the dyadic game G.q/ for every q 2
Z



1
2

�
.

(c) Let �n be the set of dyadic games with birthday n 2 N. Find the elements
of �4 explicitly.

(d) Extend the chart on page 367 to include all Hackenbush strings of height 4.
(Hint: Start with the Hackenbush strings of height 3.)
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(e) Prove that for every nonnegative integer n, j�nj D 2n.
(f) Prove that for every positive integer n, j [n�1

iD0 �i j D 2n � 1.
(g) Let n 2 N. Suppose that G1; G2; : : : ; G2n is the full list of games in �n in

increasing order, that is,

G1 < G2 < � � � < G2n;

and that G0
1; G0

2; : : : ; G0
2n�1 is the full list of games in [n�1

iD0�i , also in
increasing order. Prove that

G1 < G0
1 < G2 < G0

2 < � � � < G0
2n�1 < G2n :

(h) Let q1; q2 2 Z



1
2

�
with q1 < q2. Find (in terms of q1 and q2) the unique

element q 2 Z



1
2

�
for which

.fG.q1/g; fG.q2/g/ � G.q/:

(i) Prove Theorem 24.39.

Theorem 24.39. Any numeric game with a finite birthday is similar to a
dyadic game. More precisely, if G 2 �n for some nonnegative integer n,
then there exists a unique integer m 2 f0; 1; : : : ; ng and a unique dyadic
game G.q/ 2 �m for which G � G.q/.

(Hints: Use the Domination Theorem and the Simplicity Theorem.)

7. In this problem we learn a rule for the evaluation of Hackenbush strings. Note
that each Hackenbush string can be identified with a sequence of letters, each
being L (for edges available for Left) or R (for edges available for Right),
so that the first term in the sequence corresponds to the edge at the bottom,
the next term to the edge directly on top of it, and so on. For example, the
Hackenbush string corresponding to

�

�

�

�
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can be identified with the sequence .L; R; L/.
Suppose that a Hackenbush string G is given by the sequence

.X1; X2; : : : ; Xn/

(here n 2 N and Xi 2 fL; Rg for i D 1; 2; : : : ; n); assume that X1 D L. (A
similar calculation can be given if X1 D R.)
Define q 2 Z



1
2

�
, as follows. If Xi D L for all i , then let q D n. Otherwise,

let

q D m C
nX

iDk

si

2i�m
;

where k is the smallest index i for which Xi D R, m D k � 1, and si equals 1
when Xi D L and �1 when Xi D R (here i D k; k C 1; : : : ; n). For example,
if G is given by the sequence .L; R; L/, then n D 3, k D 2, m D 1, s2 D �1,
and s3 D 1, so

q D 1 � 1

21
C 1

22
D 3

4
:

Prove that G D G.q/.

Remark. This rule was discovered by Thea van Roode who was a Canadian
undergraduate student at the time.

8. In this problem we investigate infinite Hackenbush strings.

(a) Prove each of the following identities:

1

4
C 1

16
C 1

64
C 1

256
C � � � D 1

3
;

1

2
� 1

8
� 1

32
� 1

128
� � � � D 1

3
;

and

1 � 1

2
� 1

4
C 1

8
� 1

16
C 1

32
� 1

64
C � � � � D 1

3
:

(Hint: Use the formula for geometric series from Problem 9 (b) of
Chap. 20.)

(b) Recall that we defined G
�

1
3

�
as

G
�

1
3

� D �˚
G
�

1
4

�
; G

�
5
16

�
; G

�
21
64

�
; : : :

�
;
˚
G
�

1
2

�
; G

�
3
8

�
; G

�
11
32

�
; : : :

��
:

Prove that G
�

1
3

� 2 � .
(Hints: We need to prove that each of the left options of G

�
1
3

�
are less

than all of the right options. Use the first two identities of part (a).)



24 Games Are Valuable! 377

(c) Find the (infinite) Hackenbush string representation of G
�

1
3

�
.

(Hint: Use the third identity of part (a).)
(d) Find the Hackenbush string representation of G

�
2
7

�
.

(Hint: Use the identity
2

7
D 1 � 1

2
� 1

4

1 � 1
8

to write 2
7

as the limit of an infinite series.)
(e) Find the Hackenbush string representation of G

�
1
7

�
.

(f) Find the Hackenbush string representation of G
�

1
5

�
.

(g) Let p be any prime number that is greater than 2. Prove that the game
G. 1

p
/ has a periodic Hackenbush string representation; that is, there is a

nonnegative integer k and a positive integer r for which the Hackenbush
string representing G. 1

p
/ has the form

.X1; : : : ; Xk; XkC1; : : : ; XkCr ; XkC1; : : : ; XkCr ; XkC1; : : : ; XkCr ; : : : /:

(Hints: Note that p and 2 are relatively prime, so by Fermat’s Little
Theorem, we can then find a positive integer a for which

2p�1 � 1 D a � p

or, equivalently,
1

p
D a

2p�1
� 1

1 � 1=2p�1
:

We also see that a is odd and

1 � a � 2p�1 � 1:

Use the formula for infinite geometric series.)
(h) Find the Hackenbush string representation of G.
/.
(i) Find the infinite Hackenbush string representations of G.�!/, G.! C 3/,

G.! � 2/, and G.!2/.
(Hints: The well-orderings of N on page 308 may be helpful.)

(j) Prove that
G.! C 3/ C G.�!/ C G.�3/

is similar to G.0/ by verifying that it is a win for the second player.

9. Prove Theorem 24.23.
10. Prove Theorem 24.24.
11. (a) Prove that for every game G 2 �, we have

G � G.0/ D G.0/:
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(b) Prove that for every game G 2 �, we have

G � G.1/ D G:

(c) Find an example for games G1; G2; H 2 � for which G1 � G2 but

G1 � H 6� G2 � H:

12. Suppose that m and n are positive integers. Prove each of the following
statements:

(a) G.m/ C G.n/ � G.m C n/

(b) �G.m/ D G.�m/

(c) G.m/ � G.n/ � G.m � n/

(Hint: Prove that for every i 2 f0; 1; : : : ; n � 1g and j 2 f0; 1; : : : ; m � 1g
we have

0 � m � i C n � j � i � j � m � n � 1;

with equality possible at both ends.)

13. Prove the following identities:

(a) !S C 1S D .! C 1/S.
(b) !S C !S D .! � 2/S.
(c) 2S � !S D .! � 2/S.
(d) !S � 
S D 1S.

14. (a) Can two distinct games be mutual restrictions of each other?
(b) Can two distinct games be mutual compromises of each other?
(c) Can two distinct games be simple compromises of each other?

15. (a) Referring to the games listed on page 344, prove that L1 � G
�� 1

2

�
,

R1 � G
�

3
2

�
, and R3 � G.1/.

(b) Evaluate the Hackenbush game of Problem 1 (a) of Chap. 1.
(c) Evaluate the Hackenbush game of Problem 1 (b) of Chap. 1.

16. In this problem we evaluate the game Cutcake (cf. Problem 5 of Chap. 1 and
Problem 9 of Chap. 9). Suppose that Vertical plays as Left and Horizontal
plays as Right.

(a) Verify that the Cutcake game C.m; n/ for 1 � m � 8 and 1 � n � 8 is
similar to the dyadic game given by the entry in row m and column n in
the following table. (For G.q/ we only mark “q”.)
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8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7

�7

�6

�5

�4

�3

�2

�1
0 1 2 3

�1

�2

�3

0 1

�1 0

(Hints: Use the ideas of Problem 9 of Chap. 9. Start with C.1; n/ and
C.m; 1/, and proceed recursively. For example, for C.2; 3/, note that

C.2; 3/ D .fC.2; 1/ C C.2; 2/g; fC.1; 3/ C C.1; 3/g/
� .fG.�1/ C G.0/g; fG.2/ C G.2/g/
� .fG.�1/g; fG.4/g/
� G.0/:

For higher values of m and n you will also need to use the Domination
Theorem.)

(b) As the table above indicates (and as we already found in Problem 9 of
Chap. 9), the Cutcake game C.8; 8/ is a win for the second player. Suppose
that Horizontal starts this game by cutting the cake into a 3-by-8 piece and
a 5-by-8 piece, to which Vertical (mistakenly!) responds by cutting the 5-
by-8 piece into a 5-by-1 piece and a 5-by-7 piece. The status of the game
at this point is as follows:
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Prove that Horizontal can now win the game but only by cutting the 5-by-1
piece next.
(Hint: Use the table of values above.)

(c) Find a formula, in terms of m and n, for the value of C.m; n/ for all
positive integers m and n.



Appendix A
Famous Conjectures in Mathematics

There are many perplexing questions in mathematics that have not been resolved.
For most of these open questions—and particularly since computing power has
increased—researchers have been able to guess the answer; the question is not con-
sidered settled, however, until a rigorous proof has been established. A conjecture
is a statement for which there is no proof yet known.

While conjectures turn into theorems on a daily basis, one suspects that, as
mathematicians are introducing and investigating new concepts in an ever-growing
number of fields, the number of unsolved questions in mathematics is actually
increasing. Even about such familiar concepts as the positive integers, there is a
lot we do not know. Here is our selection for the top ten most famous conjectures
about the integers, together with some information on how much we currently know
about them.

Odd Perfect Number Conjecture. There are no odd perfect numbers. (It has been
verified that there are no odd perfect numbers under 10300; see also Chap. 3.)

Conjecture on Prime Values of Polynomials. There are polynomials of one
variable and of degree two or more that assume infinitely many prime values. In
particular, there are infinitely many values of n for which n2 C 1 and n2 � n C 41

are prime numbers. (It has been known that there are infinitely many values of n

for which n2 C 1 is either prime or the product of two primes; the same holds for
n2 � n C 41. The polynomial n2 � n C 41 generates primes for all �39 � n � 40;
see Chap. 3.)

Waring’s Problem Conjecture. The smallest integer m for which every positive
integer n can be expressed as the sum of m terms, each of which is a perfect k-th
power, is

g.k/ D 2k C
$�

3

2

�k
%

� 2:

(At the present time we know that this holds for every k � 471; 600; 000 and every
sufficiently large k, thus leaving only finitely many cases open; see Chap. 3).
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The Mersenne Prime Conjecture. There are infinitely positive integers n for
which 2n � 1 is a prime number. (There are currently 47 Mersenne primes known;
see Chap. 2.)

The Fermat Prime Conjecture. There are only five nonnegative integers n for
which 2n C 1 is a prime number. (It has been shown that no other n yields prime up
to n D 32; see Chap. 2.)

The Euclid Number Conjecture. There are infinitely many positive integers n for
which Euclid’s number

Kn D 1 C
nY

iD1

pi

is a prime number. (It has been shown that the only values of n under 200 for which
Kn is prime are n D 1; 2; 3; 4; 5; 11; 75; 171; and 172; see also Chaps. 3 and 5.)

The Twin Prime Conjecture. There are infinitely many pairs of prime numbers
that differ by 2. (The largest twin primes currently known have more than two
hundred thousand digits; see Chap. 5.)

The Goldbach Conjecture. Every even integer that is greater than 2 can be
expressed as the sum of two positive prime numbers. (As of today, the Goldbach
Conjecture has been shown to be true for all even integers up to about 1018. Note
that, as a consequence, every odd integer that is greater than 5 can be expressed
as the sum of three positive prime numbers; this latter claim is also unknown
and is usually referred to as the Weak Goldbach Conjecture. The Weak Goldbach
Conjecture has been proved for all odd integers greater than about 2 � 101346, leaving
only finitely many cases open that, in theory, can be completed with the help of
improved computer technology.)

Beal’s Conjecture. If a; b, and c are relatively prime positive integers, then the
equation

ax C by D cz

has no positive integer solutions with x, y, and z all greater than 2. (The banker
and amateur mathematician Andrew Beal offered $100,000 for a solution of this
conjecture; the funds are held in trust by the American Mathematical Society.)

The Collatz 3x C 1 Conjecture. On the positive integers, define the function
f .x/ D 3x C 1 if x is odd and f .x/ D x

2
if x is even. Then the iteration of f

starting with any initial value a (i.e., the sequence a; f .a/; f .f .a//; : : : ) eventually
leads to 1. (This conjecture is currently verified for all initial values up to 5:6 � 1013.)

We have to admit that, in our selection of these conjectures, we had a preference
for those questions that could be stated without complicated technicalities. The
questions considered most important, however, often require background that would
take more time to explain. In the year 1900, the German mathematician David
Hilbert (1862–1943), at the second International Congress of Mathematicians held
in Paris, stated 23 open questions ranging over most branches of mathematics.
(Many of Hilbert’s Problems, as they became known, are still open. As it turns out,
Hilbert was mistaken in thinking that every well-phrased problem has a solution:
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the first problem on his list, the so-called Continuum Hypothesis, is now known to
be independent of the usual axioms of mathematics; see Chap. 22.)

One hundred years later, at the turn of the twenty-first century, several mathemati-
cians collected what they believed were the most important open questions. Seven
of these questions are known as the Millennium Problems; the Clay Mathematics
Institute offers one-million-dollar prizes for the solution of each of seven important
conjectures (e.g., the Riemann Hypothesis, the Poincaré Conjecture, and “P D
NP ”)—see www.claymath.org for more information. As of now, six of the
Millennium Problems remain open; the Poincaré Conjecture, however, was solved
in 2003 in a fantastic achievement by Grigori Perelman of the Steklov Institute of
Mathematics in St. Petersburg. (Perelman chose not to accept the Millennium Prize,
as he also declined the most prestigious award in mathematics, the Fields Medal.
As he told the President of the International Mathematical Union, the prize “was
completely irrelevant for me. Everybody understood that if the proof is correct then
no other recognition is needed.”)

The Poincaré Conjecture deals with the characterization of n-dimensional
spheres, a fundamental topic in topology. We attempt to explain the Poincaré
Conjecture as follows. In topology, one considers two shapes equivalent if each
one can be continuously transformed into the other—breaking and punching holes
are not allowed. For example, a topologist would say that a doughnut and a coffee
cup are equivalent, but an apple is different. One way to see the difference is
by considering various loops on these surfaces. Every loop on an apple can be
continuously moved to any other loop—this, however, cannot be said about the
coffee cup where, for example, a loop around the ear of the cup cannot be moved to
a loop on the side (without breaking up the loop). In 1904, the French mathematician
Henri Poincaré asked whether this simple loop test is enough to identify Sn, the
n-dimensional sphere. Using more precise (yet here undefined) terminology, the
Poincaré Conjecture (now theorem) can be stated as follows:

Theorem A.1 (The Poincaré Theorem). Every compact, simply connected,
smooth n-dimensional manifold is equivalent to the sphere Sn.

The two-dimensional case was quickly solved by Poincaré himself, but several
decades passed before the next breakthrough occurred. In 1961, Stephen Smale
proved the conjecture for every n � 5; then, in 1982, Michael Freedman resolved
the case n D 4. This left only the three-dimensional case open, which became the
non plus ultra question in topology. Perelman’s breakthrough came after deep and
extensive work done by many mathematicians.

The assignments below offer you a wide variety of project possibilities for further
investigation of these conjectures and results as well as additional questions that
await mathematicians of the future.
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Assignments

1. Recall that we call a positive integer n perfect if its positive divisors other than
itself add up to n. Related to perfect numbers, we define a pair of positive
integers m and n amicable if the positive divisors of m other than m add up
to n and the positive divisors of n other than n add up to m. As of today, over 10
million pairs of amicable numbers are known, and it is a famous old conjecture
that there are infinitely many.

(a) Verify that 220 and 284 form an amicable pair.
(b) There have been numerous rules discovered that, under certain conditions,

yield amicable numbers. One such rule, known since the tenth century,
states that if p1 D 3 � 2k � 1, p2 D 3 � 2kC1 � 1, and p3 D 9 � 22kC1 � 1 are
primes for some positive integer k, then m D 2kC1 �p1 �p2 and n D 2kC1 �p3

are amicable. (For k D 1 we get m D 220 and n D 284.) Verify this result.

2. Here we investigate prime numbers in arithmetic progressions, that is, a
sequence of prime numbers of the form

a; a C d; a C 2d; : : : ; a C kd

for some positive integers a, d , and k.

(a) Find three primes in arithmetic progression.
(b) Find four primes in arithmetic progression.
(c) Find five primes in arithmetic progression.
(d) Find six primes in arithmetic progression.
(e) A recent breakthrough in this area was achieved in 2004 when Ben

Green and Terence Tao proved the long-standing conjecture that there are
arbitrarily long arithmetic progressions made up of primes. Their proof was
nonconstructive, so the question of finding explicit examples remains open.
Review the current records in this area.

(f) The question of primes in arithmetic progressions becomes even more
difficult if we insist on the primes being consecutive. Find four consecutive
primes in arithmetic progression.

3. While we still don’t know if any polynomial of one variable and of degree more
than one generates infinitely many primes, the question is easier when we allow
more than one variable.

(a) Find a polynomial of two variables and of degree greater than one that
generates all positive primes.

(b) There have been several examples of polynomials with more than one
variable and of degree more than one that generate all positive primes and
nothing else. Review some of these examples.
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4. Prime numbers seem to wonderfully combine regularity with unpredictability;
the list of primes has been studied by professional mathematicians and in-
terested amateurs alike. They seem to reveal just enough of their mystery to
keep everyone interested. Investigate some of the unsolved problems regarding
primes that we have not mentioned yet. A great place to start your research is
Richard Guy’s book Unsolved Problems in Number Theory, 3rd ed. (Springer–
Verlag, 2004), that has thousands of results and open questions and provides
all relevant references. There is also a wealth of information on prime number
records on the World Wide Web site http://primes.utm.edu.

5. The history of mathematics is a fascinating saga spanning several thousand
years and taking place in every corner of the world inhabited by humans.
It is a story full of hopes, successes, and disappointments; its greatest achieve-
ments are interspersed with perplexing questions unresolved to this day.
The assignments below ask you to bring some of the great moments in
the history of mathematics to light. Your research should probably start by
skimming some of the literature on the history of mathematics. Some of the
particularly useful Web pages include the American Mathematical Society’s
http://www.ams.org/mathweb/mi-mathhist.html and the MacTutor History
of Mathematics archive page, http://turnbull.mcs.st-and.ac.uk/history, which
is maintained by the University of St. Andrews in Scotland.

(a) What were some of the most important mathematical discoveries of
antiquity?

(b) Who were the mathematicians involved in the discovery of the formula
for the roots of general cubic and quartic polynomials? Who do you think
deserves most of the credit?

(c) How and when did the concept of limits develop?
(d) How has our concept of numbers evolved over history?
(e) What were the greatest contributions of the following mathematicians: Ben-

jamin Banneker, René Descartes, Euclid, Evariste Galois, Carl Friedrich
Gauss, David Hilbert, Emmy Noether, and Srinivasa Ramanujan? What
were some of the challenges they had to face in their work or in their
personal lives?

(f) Where were the most influential mathematical centers of antiquity? Where
were the greatest centers in the nineteenth century? How about today?

6. Review some of the open questions posed at www.mathpuzzle.com. (Cash
prizes at this site start at $10.)

7. Describe some of Hilbert’s Problems and review their status quo.
8. (a) Make the terminology of the Poincaré Theorem precise and explain the

basics of Perelman’s work.
(b) Describe some of the other Millennium Problems.

9. The late Hungarian mathematician Paul Erdős, the “Prince of Problem-Solvers
and the Monarch of Problem-Posers,” was famous for offering cash prizes for
certain of his unsolved problems. The prizes ranged from $25 to $10,000. (Since
Erdős’s death in 1996, the rewards can be collected from Ronald Graham,
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a former president of the American Mathematical Society. Though many
mathematicians have received checks for their solutions, most have decided to
frame the checks rather than to cash them.) Describe some of Erdős’s “cash
problems.”

10. (a) What are the major branches of mathematics today?
(b) Where and on what subjects are some of the biggest mathematical confer-

ences this year?
(c) Which mathematician has had the greatest number of works published to

this day? What is the median number of publications of a mathematician
today?

(d) Find some mathematical results that were achieved by undergraduate
students.

(e) Your professor and other mathematicians at your institution are undoubt-
edly working on their own unsolved questions. Find out what some of these
questions are.



Appendix B
The Foundations of Set Theory

Set theory plays a crucial role in the development of mathematics because all
ordinary mathematics can be reduced to set theory. (In Chap. 23 we learn(ed) how
to construct the usual number systems—N, Z, Q, R, and C—using only set theory.)
It is, therefore, important to make sure that the theory of sets is well founded.

Recall that we have listed the notions of a set and being an element of a set as
primitives. We have also seen that not every collection of objects is a set. Thus, a
key role of the axiomatic foundation of set theory is to distinguish sets from other
collections.

The Zermelo–Fraenkel axioms, denoted by ZF, provide a generally accepted
foundation of set theory. This system of axioms, named after Ernst Zermelo
(1871–1953) and Abraham Fraenkel (1891–1965), was developed by several math-
ematicians, including Zermelo, Fraenkel, Thoralf Skolem (1887–1963), and John
von Neumann (1903–1957).

The ZF axiom system was first formalized during the beginning of the twentieth
century, but even today we do not quite have a universally accepted version. The list
of seven axioms below, stated rather informally, is a variation that we find useful.

Axiom B.1 (The Axiom of Extensionality). If two sets have the same elements,
then they are equal.

Axiom B.2 (The Axiom of Pairing). Given two sets, there exists a set that contains
both of these sets as elements.

Axiom B.3 (The Axiom of the Union). The union of a set of sets is a set.

Axiom B.4 (The Axiom of the Power Set). The power set of a set is a set.

Axiom B.5 (The Axiom of Replacement). If f is a definable mapping and X is a
set, then f .X/ D ff .x/ j x 2 Xg, called the image of X under f , is a set.
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Axiom B.6 (The Axiom of Regularity). If A is a nonempty set of sets, then it
contains an element A that is disjoint from A.

Axiom B.7 (The Axiom of Infinity). There exists an infinite set.

Several comments are in order. First, note that the Axiom of Extensionality was
stated as a definition in Chap. 8. The meaning of this axiom is that sets do not
possess any additional properties beyond their elements. The next four axioms all
serve a similar purpose: they list specific rules for how one can build new sets from
old ones. We should note that the Axiom of Pairing is not independent from the
rest of the axioms (see below), but we chose to state it here as it proves to be
one of the most useful properties. Note also that the Axiom of Separation, stated
in Chap. 8, is missing; here it is replaced by a more general version, called the
Axiom of Replacement. (The Axiom of Separation was on Zermelo’s original list of
1908, but, in 1922, by recommendation of Fraenkel, it was replaced by the Axiom
of Replacement—no pun intended.) Next, the Axiom of Regularity works in the
opposite direction; it forbids us from calling strange collections sets. For example,
as a consequence (see below), it implies that no set can contain itself as an element.
Finally, the Axiom of Infinity is important; note that it is actually the only axiom on
our list that explicitly states that there exists a set.

In addition to the Zermelo–Fraenkel axioms, most mathematicians accept the
following axiom regarding the so-called set partitions (the meaning of this term
should be clear, but a precise definition is given in Chap. 17).

Axiom B.8 (The Axiom of Choice). If ˘ is a partition of a set X , then X contains
a subset A that intersects every member of ˘ in a single element.

The name of the axiom refers to the fact that, according to this axiom, one can
choose an element from each member of the partition. A particularly enlightening
and witty example for the Axiom of Choice was given by Bertrand Russell; we
paraphrase Russell’s words, as follows. Suppose that a repository holds infinitely
many distinct pairs of shoes. If we wish to separate all these shoes into two
collections with both of them containing one shoe from each pair, then we can do so
easily. However, if the repository holds infinitely many distinct pairs of socks, then
we cannot perform the separation without the Axiom of Choice! This is because,
while with shoes we can just put all left shoes in one collection and all right shoes in
the other, socks cannot be distinguished this way, and therefore, an infinite number
of arbitrary choices need to be made. (For finitely many pairs of socks, the Axiom
of Choice is not needed.)

It has been shown that the Axiom of Choice is independent from ZF; that is, there
is a model of ZF where the Axiom of Choice is true and there is another model of
ZF where the Axiom of Choice is false. While virtually all mathematicians accept
the Axiom of Choice and use it freely, some object to its nonconstructive nature
and choose to reject it. One reason for this is the following particularly dramatic
consequence of the Axiom of Choice:
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Theorem B.9 (The Banach–Tarski Paradox). It is possible to partition a solid
ball of volume 1 cubic feet into five disjoint parts in such a way that these parts can
be assembled to form two solid balls, each of volume 1 cubic feet. Here assembling
means that the parts are translated and rotated until they fit together without gaps
or overlaps.

Theorem B.9, which is called a paradox only because it seems to defy our
intuition, is named after Polish mathematicians Stefan Banach and Alfred Tarski
who published this result in 1924. (Their paper relies on earlier work by Giuseppe
Vitali and Felix Hausdorff.) Of course, the parts in the theorem are not solid pieces;
in particular, they will not have well-defined volumes. The Banach–Tarski Paradox
played an influential role in creating the concept of measurable sets (see below).
In contrast to the Banach–Tarski Paradox, a similar statement in two dimensions
cannot be made; as Banach himself showed, a rearrangement of any figure in the
plane must have the same area as the original figure. We mention that it is also
known that the number of pieces cannot be less than five.

The Banach–Tarski Paradox cannot hold in two-dimensional space; however,
when two regions have the same area, strange phenomena may still occur. Consider
the following striking result of the Hungarian mathematician Miklós Laczkovich,
published in 1989:

Theorem B.10 (“Squaring the Circle”). It is possible to partition a solid disk of
area 1 square feet into a finite number of disjoint parts in such a way that these parts
can be assembled to form a square of area 1 square feet. Here assembling means that
the parts are translated (no rotation is necessary) so that they fit together without
gaps or overlaps.

With paradoxes such as the Banach–Tarski Paradox explained, most of math-
ematics today is built on the axiom system of the Zermelo–Fraenkel axioms
combined with the Axiom of Choice (denoted by ZFC).

Assignments

1. Use the Axiom of Replacement to prove the Axiom of Separation.
2. Use the Axiom of Replacement and the Axiom of the Power Set to prove the

Axiom of Pairing.
3. Use the Axiom of Separation and the other ZF axioms to prove the following

statements:

(a) The empty set is a set.
(b) If A is a set, then fAg is also a set.
(c) If A is a set, then A 62 A.
(d) The intersection of a set of sets is a set.
(e) The Cartesian product of two sets is a set.
(f) The Cartesian product of an arbitrary number of sets is a set.
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4. Suppose that A and B are sets.

(a) Prove that A 2 B and B 2 A cannot happen simultaneously. (Thus, the
relation 2 is asymmetrical.)

(b) Prove that A [ fAg D B [ fBg can only happen if A D B .

5. There are many statements that are equivalent to the Axiom of Choice; review
some of these. (We have discussed several of them in this book, including the
Well-Ordering Theorem, cf. Theorem 18.9; the fact that the direct product of
nonempty sets is nonempty, cf. Theorem 19.10; and the trichotomy of cardinals,
cf. Theorem 22.23.)

6. Review some of the literature on the Banach–Tarski Paradox. A good place to
start is a book of the same title by Stan Wagon (Cambridge University Press,
Cambridge, UK, 1993).

7. Explain why the Banach–Tarski Paradox cannot hold in two dimensions.
8. What can one say about subsets A and B of the plane for which it is possible

to partition A into countably many parts so that these parts can then be
reassembled (without gaps or overlaps) to form B?

9. Explain the basics of measure theory, and find some explicit examples for
nonmeasurable sets.

10. Another pillar that the foundations of mathematics rests on is mathematical
logic; in fact, set theory is often viewed as part of mathematical logic. Review
some of the concepts and results of mathematical logic.



Appendix C
All Games Considered

Let us return to the beautiful and intriguing topic of combinatorial games. In
Chap. 24 we learned how to evaluate numeric games; we now attempt to do the
same for all games. As it turns out, several of our results for numeric games carry
through just fine, but some others need to be adjusted. In particular, while this much
larger collection of games is still “value-able,” the values do not form an ordered
field anymore.

As an example, consider the following Hackenbush flower F played by A and B:
options a1 and a2 are available to A, b1 is available to B, and c1 is available to both
A and B.

�
�
�
��

�
�

�
��

�

�

�

� �

c1

b1

a1 a2

It is quite clear that it is the first player who has a winning strategy (remove c1),
so we have F 2 �I , and the value of F is not zero, positive, or negative—it is said
to be fuzzy. However, one can show that F is comparable to all positive and to all
negative games: it is “between” them, it is greater than any negative game, and less
than any positive game. To see, for example, that F < G. 1

2
/, consider the following

sum of F and G.� 1
2
/:
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c1

b1

a1 a2
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�

b2

a3

This game is clearly won by B (B’s initial move should be c1) and so has a negative
value; therefore, F < G. 1

2
/. The same argument would show that F < G.
/;

indeed, F is less than any positive game. We could similarly show that F is greater
than any negative game. Yet, F 6� G.0/!

We can see, however, that the game has some advantage for A, as there are more
options that are available for A. Let us look at the game added to itself.
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�
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�

�

� �

c1

b1

a1 a2

�
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�
��

�
�

�
��

�

�

�

� �

c2

b2

a3 a4

It is not hard to see that the sum has a positive value, as A can play in such a way
that B will be forced to remove one of the c edges, after which A can remove the
other c edge and win the game. So F CF > G.0/, but F 6> G.0/—this is, literally,
beyond surreal!

Restricting our attention, however, to a certain family of games, the so-called
impartial games will result in a subclass that rivals in elegance the class of numeric
games; in particular, the values attached to impartial games form a field just like the
surreal numbers do. In fact, the theory of impartial games is more developed—and,
in many ways, simpler—than the theory of numeric games.

Definition C.1. A game G D .L;R/ with L D R is called impartial.

Impartial games have a beautiful theory that dates back to the works of Charles
Bouton, Patrick Grundy, and Roland Sprague during the first half of the twentieth
century and has been further developed by John H. Conway, Richard Guy, and many
others since then.

We have seen a variety of impartial games in this book: Capture, Acrostic Twins,
Turning Corners, and Nim among them. The simplest family of impartial games is
probably the star games N.n/, defined recursively as
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N.n/ D .fN.m/ j m < ng; fN.m/ j m < ng/:

(The reason for the name “star” is that N.n/ is sometimes denoted by �n in the
literature.) For example, we have

N.0/ D .;; ;/;

N.1/ D .fN.0/g; fN.0/g/;
N.2/ D .fN.0/; N.1/g; fN.0/; N.1/g/;

and so on. Of course, we have N.0/ D G.0/, and N.1/ D .fG.0/g; fG.0/g/, as we
have already defined earlier.

It is helpful to illustrate star games using Hackenbush diagrams. As we have
already seen before, the Hackenbush diagram of N.1/ D .fG.0/g; fG.0/g/ consists
of a single edge that is available to both players: when removing this edge, each
player reduces the game to G.0/. This game is clearly won by the player who
starts the game. Similarly, we see that N.n/ corresponds to a Hackenbush string
of “height” n where each edge is available to both players.

One fundamental property of star games is the following:

Proposition C.2. Let

G D .fN.n1/; : : : ; N.nm/g; fN.n1/; : : : ; N.nm/g/;

and define n as the smallest nonnegative integer that is not an element of
fn1; : : : ; nmg. Then G � N.n/.

Proposition C.2 is analogous to the Simplicity Theorem for numeric games. For
example, we have

.fN.0/; N.3/g; fN.0/; N.3/g/ � N.1/;

.fN.1/; N.2/; N.3/g; fN.1/; N.2/; N.3/g/ � N.0/ D G.0/;

and, of course,

.fN.0/; N.1/; : : : ; N.n � 1/g; fN.0/; N.1/; : : : ; N.n � 1/g/ D N.n/:

The star family plays a crucial role in the theory of games; for example, we can
easily see that the one-heap Nim game N.n/ (cf. Problem 6 of Chap. 1) is exactly
the just-introduced star N.n/, hence the same notation. Indeed, when playing Nim
with a single heap of size n, each player can reduce the heap to any size less than n,
thus

N.n/ D .fN.m/ j m < ng; fN.m/ j m < ng/:
In particular, we see that N.n/ 2 �I for any n > 0 and, of course, N.0/ 2 �II :
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It is quite easy to see that Capture is also governed by star games. Let C.n; k/

stand for the general version of the game Capture (cf. Problem 4 (d) of Chap. 1);
for example, C.n; 3/ is the case of (c). We can analyze C.n; 3/, as follows:

Clearly, neither player has a move in C.0; 3/, so C.0; 3/ D N.0/. In C.1; 3/,
each player has only one option: to reduce the game to C.0; 3/. Thus,

C.1; 3/ D .fN.0/g; fN.0/g/ D N.1/:

Similarly, C.2; 3/ D N.2/, and C.3; 3/ D N.3/. Next, we have

C.4; 3/ D .fC.1; 3/; C.2; 3/; C.3; 3/g; fC.1; 3/; C.2; 3/; C.3; 3/g/
D .fN.1/; N.2/; N.3/g; fN.1/; N.2/; N.3/g/I

by Proposition C.2 above, we thus have C.4; 3/ � N.0/. Moving on to C.5; 3/, we
have

C.5; 3/ D .fC.2; 3/; C.3; 3/; C.4; 3/g; fC.2; 3/; C.3; 3/; C.4; 3/g/
D .fN.2/; N.3/; N.0/g; fN.2/; N.3/; N.0/g/
D N.1/;

and so on. An easy inductive argument thus leads the following:

Proposition C.3. For fixed positive integers n and k, let r be the remainder of
n when divided by k C 1. Then the game Capture C.n; k/ is similar to N.r/.
Consequently, the second player has a winning strategy for C.n; k/ when n is
divisible by k C 1, and the first player wins the game if n is not divisible by k C 1.

The following classical and striking result states that Proposition C.3 can be
generalized to any impartial game.

Theorem C.4 (The Sprague–Grundy Theorem). Every impartial game is similar
to N.n/ for some ordinal number n.

Thus, analyzing impartial games is easy in theory: the second player to move has
a winning strategy when the number n in Theorem C.4 is 0, and the first player can
win if it is not 0. In reality, however, it is often very difficult (or even unknown) how
to find this value. We will analyze Acrostic Twins, Turning Corners, and Nim below.

Combinatorial game theory is a vibrant and relatively new field of study, and
it has an interdisciplinary flavor that attracts mathematicians, computer scientists,
professional players, and amateurs alike. The assignments below offer a wide variety
of questions for everyone with an interest in pursuing research projects on this topic.
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Assignments

1. Prove the claim made on page 115 that for every nonnegative integer m, the set
f0; 1; 2; : : : ; 22m � 1g, equipped with Nim addition and Nim multiplication, is a
field.

2. We have already seen in Problem 12 of Chap. 24 that for all m; n 2 N, we have

G.m/ C G.n/ � G.m C n/:

(a) Prove that for all m; n 2 N, we have

N.m/ C N.n/ � N.m ˚ n/

(here, ˚ denotes Nim addition).
(b) Is there a nice formula for G.n/ C N.m/?

3. Prove Proposition C.2.
4. Prove Theorem C.4.
5. Prove each of the following claims made in Problem 11 of Chap. 2:

(a) The Nim game N.n1; n2; : : : ; nm/ is a win for Second if, and only if,

n1 ˚ n2 ˚ � � � ˚ nm D 0

(and thus for First if, and only if, the Nim sum is not 0).
(b) The game Acrostic Twins on an m-by-n board is a win for Second if, and

only if,
m�1M

iD0

m�1M

j D0

.i ˚ j / D 0

(and First can win if the Nim sum is not 0).
(c) The game Turning Corners on an m-by-n board is a win for Second if, and

only if,
m�1M

iD0

m�1M

j D0

.i ˝ j / D 0

(and First can win if the Nim sum is not 0).

6. Design an algorithm that evaluates any finite impartial Hackenbush game.
7. In the game Subtraction S.nI A/, we are given a heap of size n and a finite set

of positive integers A. The game is played by two players taking turns choosing
an element a 2 A and removing a chips from the heap. As usual, the first
player who is unable to move loses. Note that S.nI A/ is a generalization of the
Capture game C.n; k/ (with A D f1; 2; : : : ; kg).

(a) Prove that
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S.nI f2; 5; 6g/ �

8
ˆ̂
<

ˆ̂
:

N.0/ when n � 0; 1; 4; or 8 mod 11;
N.1/ when n � 2; 3; 6; or 10 mod 11;
N.2/ when n � 5 or 9 mod 11;
N.3/ when n � 7 mod 11.

In particular,

S.nI f2; 5; 6g/ 2
�

�II when n � 0; 1; 4; or 8 mod 11;
�I otherwise.

(b) Prove that S.nI A/ is always periodic; that is, there exists a positive integer
p (assumed to be the smallest) for which S.nI A/ has the same outcome
as S.n C pI A/ does for all “large-enough” n. What can one say about p?
When is S.nI A/ purely periodic (i.e., when does periodicity hold for all
n 2 N)?

(c) What if A is allowed to be infinite in S.nI A/?
(d) In the (non-impartial) generalization S.nI A; B/ of S.nI A/, Left and Right

must choose the number of chips from sets A 	 N and B 	 N, respectively.
Prove that

S.nI f1; 2g; f2; 3g/ 2
8
<

:

�L when n � 1 mod 4;
�II when n � 0 mod 4;
�I when n � 2 or 3 mod 4.

(e) Analyze S.nI A; B/ in general.

8. An entertaining yet deep and influential book on combinatorial games contain-
ing, indeed, the complete foundation to the field is Winning Ways, by Elwyn
Berlekamp, John Conway, and Richard Guy (A K Peters, Second edition,
2001–2004). The four-volume set describes hundreds of games, discusses what
is known about them, and lists specific open questions about them, thereby
serving as an excellent source for research projects. By browsing through the
books, choose your favorite game(s) and analyze them as thoroughly as possible
(outcome class, similarity class, winning strategy, etc.).

9. The theoretical foundation of combinatorial game theory is laid out in the book
On Numbers and Games, written by John Conway (A K Peters, Second edition,
2001). The book builds up the entire field starting with the axioms and including
the deep theory of algebra and analysis on surreal numbers and other, more
general, numbers. While the book is not an easy read, those interested in a
fuller understanding of the field are encouraged to study it.

10. The very last theorem in Conway’s book On Numbers and Games says the
following:

Theorem C.5. This is the last theorem in this book.

Prove Theorem C.5.



Appendix D
A Top 40 List of Math Theorems

This is the author’s (very subjective) list of the top forty greatest theorems of
mathematics—or, at least, the top 40 greatest theorems in this book—arranged
in approximate chronological order. For each theorem in our list, we provide the
reference number where it can be found in this book.

Thales’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1
The Pythagorean Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.2
The irrationality of

p
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3

The classification of platonic solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.17
Euclid’s First Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5
The infinitude of primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4
The Fundamental Theorem of Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.8
The formula for even perfect numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1
The Principle of Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1
The divergence of the harmonic series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.23
Fermat’s Little Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.12
The Binomial Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.6
The Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.15
Euler’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17.12
The Monotone Convergence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20.10
The Fundamental Theorem of Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23.28
The Abel–Ruffini Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5
The independence of the Parallel Postulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6
Dirichlet’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.14
The set Q is countable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.8
The set R is uncountable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.11
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399



400 Index

bounded sequence, 247
bounded subset, 216
Bouton, Charles, 392

C
Calkin, Neil, 94
Calkin–Wilf sequence, 94
Cantor Property, 337
Cantor set, 256, 301
Cantor, Georg, 256, 290
Cantor–Schröder–Bernstein Theorem, 291
Capture (game), 8, 394
Cardano, Gerolamo, 48
cardinal addition, 306
cardinal arithmetic, 306
cardinal exponentiation, 307
cardinal multiplication, 306
cardinal number, 296
cardinality class, 295
Carmichael number, 183
Carroll, Lewis, 144, 147
Cartesian graph, 206
Cartesian product of sets, 91, 234
Cauchy, Augustine-Louis, 241
Cayley, Arthur, 334
Ceder, Jack, 306
ceiling, 16
Chebyshev’s Theorem, 106
Chebyshev, Pafnuty, 106
chromatic number, 55, 160, 207
circle, 16
classification of finite simple groups, 60
classification theorem, 56
Clay Mathematics Institute, 383
closure property, 110
codomain of a function, 229
coefficient, 47
Cohen, David, 65
Cohen, Paul, 299
co-lexicographic order, 94, 309
Collatz Conjecture, 382
combinatorial game theory, 6
commutative group, 112
commutative property, 110
commutative ring, 113
Comparison Theorem, 253
complement of a set, 86
complementation property, 112
complete bipartite graph, 211
complete graph, 211
complete lattice, 218
complete ordered field, 219
Completeness Axiom, 219

complex number, 13, 333
composite number, 11
composition of functions, 232
composition of transformations, 120
compromise of a game, 362
computer science, 119
conclusion, 137
conditional, 73
conditional notation of relations, 200
conditional notation of sets, 85
congruence, 28, 203
congruence class, 203
congruent number, 64
congruent segments and angles, 13
conjecture, 27, 29, 61, 381
conjunction, 72
connected graph, 206
consistence of axioms, 37
constructive proof, 175
Continuum Hypothesis, 299
contradiction, 75
contrapositive, 76, 138
convergent sequence, 244
convergent series, 248
converse, 73, 138
Conway’s Induction Principle, 354
Conway’s Multiple Induction Principle, 355
Conway, John Horton, 59, 343, 392
corollary, 36
countable set, 284
countably infinite set, 285
counterexample, 26
cryptography, 49
cube, 210
Cutcake (game), 8, 107
cycle in a graph, 206
cyclic permutation, 120

D
Davenport, Harold, 208
de la Vallée Poussin, Charles-Jean, 48
De Morgan’s Laws, 130
decimal representation, 184
decision tree, 5, 98
decreasing sequence, 247
Dedekind cut, 324
Dedekind, Julius, 324
deficient number, 41
definition, 11
degree of a polynomial, 47
degree of a vertex, 206
dense, 183, 255
derangement, 272



Index 401

Descartes coordinate plane, 201
Descartes, René, 385
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multivalued logic, 80

N
natural density, 255
natural number, 13, 315
necessary condition, 73
negation of a statement, 71
negative element, 123
negative of a real number, 116
Netto, Eugen, 306
von Neumann, John, 387
Newman, Donald, 208
Nim (game), 8, 20, 393
Nim addition, 20, 114, 395
Nim multiplication, 20, 114, 395
Noether, Emmy, 385
nonconstructive proof, 175
nonzero inverse property, 111
nonzero product property, 112
normed division algebra, 334
number system, 311
numeric game, 349

O
O’Bryant, Kevin, 26
octahedron, 210
octonion, 334
odd, 15
On-Line Encyclopedia of Integer Sequences,

205
one-to-one correspondence, 231
one-to-one function, 231
onto function, 231
order of a group, 57
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order of a recursion, 14
order of an element in a group, 238
order preserving function, 238
order relation, 202, 213
order type, 238
ordered field, 123
ordered integral domain, 123
ordered pair, 91
ordered ring, 123
ordinal addition, 309
ordinal exponentiation, 309
ordinal multiplication, 309
ordinal number, 308

P
pairwise disjoint, 93
pairwise relatively prime, 16
paradox, 23
parallel, 16
Parallel Postulate, 37
partial order, 213
partially ordered set (poset), 213
partition, 203
partition lattice, 222
Pascal’s Triangle, 167, 262
path in a graph, 206
pattern recognition, 81
Peano axioms, 314
Peano system, 314
Peano, Giuseppe, 306, 314
Perelman, Grigori, 383
perfect number, 23, 35
perfect square dissection, 171
piecewise-defined function, 235
Pigeonhole Principle, 178, 260
planar graph, 207
planar map, 55, 207
plane, 13
plane drawing, 207
Plutonian alphabet, 43, 120, 159, 277, 303
Poincaré Theorem, 383
Poincaré, Henri, 383
point, 13
poker, 275
Pólya, George, vi
polynomial, 47
Pósa, Lajos, xi
positive element, 123
positive real number, 13
possibility theory, 81
predecessor, 316
predicate, 23
primary number, 183

prime number, 11, 340
Prime Number Theorem, 50
primitive, 13
Principle of Double Induction, 166
Principle of Mathematical Induction, 149
Principle of Split Induction, 165
Principle of Strong Induction, 161
Principle of Transfinite Induction, 227
probability theory, 81
product, 17
projective plane, 44
proof, 34
proof by contradiction, 139
proof by contraposition, 138
proper subset, 87
proposition, 34
Pythagoras, 45
Pythagorean Theorem, 46, 51

Q
Quadratic Formula, 48
quadratic integer, 339
quantifier, 96
quaternion, 334
Quatro (game), 9

R
Rado, Richard, 208
Ramanujan’s constant, 302, 341
Ramanujan, Srinivasa, 341, 385
Ramsey number, 179, 183
range of a function, 229
rational number, 13, 323
rational real number, 324
real number, 13, 324
reciprocal of a nonzero real number,

116
recursive definition, 14
reflexive relation, 73, 87, 201
regular polygon, 18
regular polyhedron, 210
relation, 199
relationship, 199
relatively prime, 15
restriction of a game, 362
right inverse of a function, 232
ring, 112
ring with identity, 113
rising factorial power, 262
Ruffini, Paolo, 48
Russell’s Paradox, 85
Russell, Bertrand, 85, 388
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S
scheduling problem, 56
Schröder, Ernst, 291
Scientific American (magazine), 341
segment, 13
Selberg, Atle, 49
self-similar set, 257
sequence, 235, 241
sequence of partial sums, 248
series, 248
set, 13, 83
set of representatives for a partition, 203
set theory, 91
set-valued logic, 81
Sierpiński Triangle, 280
Sieve Principle, 271
SIM (game), 10
simple compromise of a game, 362
simple group, 59
Simplicity Theorem, 364
size of a set, 259
Skolem, Thoralf, 387
Smale, Stephen, 383
space filling curves, 306
split induction, 165
sporadic groups, 60
Sprague, Roland, 392
Sprague–Grundy Theorem, 394
squaring the circle, 389
squaring the square, 171
Squeeze Theorem, 253
star game, 392
statement, 23
Steinitz, Ernst, 332
Stevenson, Sam, 102
strict order, 214
Strindmo, Odd Magnar, 17
strong induction, 161
subdivision, 212
subgraph, 212
subset, 87
Subtraction (game), 395
subtraction of numbers, 116
successor, 214, 313
sufficient condition, 73
sum, 14
super-perfect number, 41
supremum, 216
surjective function, 231
surreal number, 358
Survivor (television show), 8
Swierz, S., 44
symmetric difference of sets, 122
symmetric group, 120

symmetric relation, 73, 87, 201
Székely, László, 194

T
table notation of functions, 230
Tao, Terence, 384
Tartaglia, Niccolo, 48
tautology, 75
Taylor, Richard, 61
ternary representation, 184
tetrahedron, 210
Thales, 34, 45
Thales’s Theorem, 45, 51
The Simpsons (television show), 65
theorem, 34
Thiel, L., 44
TIME Magazine, 17
total order, 213
trail in a graph, 206
transcendental element, 332
transcendental number, 302
transitive relation, 73, 87, 201
transitivity, 132
transposition, 120
tree, 206
Triangle Inequality, 146
triangular number, 186
trichotomy, 132
triple quantifiers, 102
truth set of a predicate, 98
truth table, 73
truth value, 71
Turning Corners (game), 10, 22, 395
twin primes, 53, 382
Two-Color Hexi (game), 10
Two-Color Penta (game), 10
Two-Color Quatro (game), 9

U
unary operation, 71, 110
uncountable set, 284
union, 86
unique, 100
unit element, 340
universal proof, 135
universal quantifier, 99
universal set, 86
upper bound, 216

V
Venn diagram, 89
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vertex, 205
vertical line test, 229
Vitali, Giuseppe, 389

W
Waring’s problem, 31, 381
well-order, 221
well-ordered set (woset), 221
Well-Ordering Theorem, 221
wheel graph, 61
Wieferich, Arthur, 31
Wiles, Andrew, 61

Wilf, Herbert, 94
without loss of generality (wlog), 141

Y
YouTube, 281

Z
Zadeh, Lofti A., 80
Zermelo, Ernst, 221, 387
Zero-Limit game, 243
Ziegler, Günter, 144
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