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Preface

This book is intended to serve as a first course in analysis for scientists and
engineers. It can be used either at the advanced undergraduate level or as part of
the curriculum in a graduate program. We have taught from preliminary drafts of the
book for several years.

The book is built around metric spaces. In the first three chapters, we lay the foun-
dational material. We cover the all-important “four Cs”: convergence, completeness,
compactness, and continuity. We have organized the material to be as simple and as
logical as possible.

In subsequent chapters, we use the basic tools of analysis to give a brief intro-
duction to closely related topics such as differential and integral equations, convex
analysis, and measure theory. The book is short and yet covers in some depth the most
important subjects. We gave careful consideration to what to include and what to leave
out. In all such considerations, we asked ourselves whether the material would be of
direct and immediate use to scientists and engineers. Our philosophy is “if in doubt,
do without.”

What makes this book different? We pull together some of the foundational ma-
terial one might find, for example, in the classic book by Rudin [Rud76] with material
on convexity and optimization at a level commensurate, say, with the book by Borwein
and Lewis [BL06] and with a completely modern treatment of the basics of measure
theory. The importance of measure theory has increased over the years as stochastic
modeling has become more central to all aspects of analysis. Similarly, optimiza-
tion plays an ever increasing role as one tries to design and analyze the best possible
“widget.”

We hope that the reader will enjoy the book and learn some important mathe-
matics.

We would like to thank the many students whom we have had the pleasure of
teaching over the years. We give a special thanks to John D’Angelo; he carefully read
a draft of the manuscript and made numerous helpful suggestions.

E. Çınlar and R.J. Vanderbei
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Notation and Usage

We use the terms “positive” and “negative” in their wide sense: positive means
≥ 0, negative means ≤ 0. Similarly, “increasing” means x ≤ y implies f(x) ≤
f(y). If strict inequalities hold, we say “strictly positive,” “strictly negative,” “strictly
increasing,” etc. Here is a list of frequently used notations.

∅: The empty set.
N = {0, 1, 2, . . .}: The set of natural numbers.
N

∗ = {1, 2, 3, . . .}: The set of strictly positive integers.
Z = {0, 1,−1, 2,−2, . . .}: The set of integers.
Q = {x : x = m

n for some m in Z and some n in N
∗}: The set of rationals.

R = (−∞,∞) = {x : −∞ < x < +∞}: The set of reals.
R+ = [0,∞) = {x ∈ R : x ≥ 0}: The set of positive reals.
R

∗ = (−∞,∞]: The set of reals and plus infinity.
R̄ = [−∞,∞]: The set of extended reals.
[a, b] = {x ∈ R : a ≤ x ≤ b}: The closed interval with endpoints a and b.
(a, b) = {x ∈ R : a < x < b}: The open interval with endpoints a and b.
log(x): The natural logarithm of x.
x · y =

∑n
1 xiyi: The inner product of x and y.

‖x‖ =
√
x · x: The Euclidean norm of x.

C: The set of continuous functions.
d(x, y): The distance from x to y.
B(x, r) = {y : d(x, y) < r}: The open ball centered on x of radius r.
A◦: The interior of the set A.
Ā: The closure of the set A.
∂A: The boundary of the set A.
f̂ : The Legendre transform of the function f .
f � g: The infimal convolution of the functions f and g.
x ∧ y: The minimum of the real numbers x and y.
x ∨ y: The maximum of the real numbers x and y.
1A: The indicator function of the set A.
B(E): The Borel σ-algebra on the metric space E.

ix





CHAPTER 1

Sets and Functions

This introductory chapter is devoted to general notions regarding sets, functions,
sequences, and series. We aim to introduce and review the basic notation, terminology,
conventions, and elementary facts.

A. Sets

A set is a collection of some objects. Given a set, the objects that form it are
called its elements. Given a set A, we write x ∈ A to mean that x is an element of A.
To say that x ∈ A, we also say x is in A, or x is a member of A, or x belongs to A, or
A includes x.

One can specify a set by listing its elements inside curly braces, but doing so is
not feasible in most cases. More often we specify a set by precisely describing its
elements. For example, A = {a, b, c} is the set whose elements are a, b, and c, and
B = {x : x > 2.7} is the set of all numbers exceeding 2.7. The following are some
special sets:

∅: The empty set. It has no elements.
N = {0, 1, 2, . . .}: The set of natural numbers.
N

∗ = {1, 2, 3, . . .}: The set of strictly positive integers.
Z = {0, 1,−1, 2,−2, . . .}: The set of integers.
Q = {x : x = m

n for some m in Z and some n in N
∗}: The set of rationals.

R = (−∞,∞) = {x : −∞ < x < +∞}: The set of reals.
R+ = [0,∞) = {x ∈ R : x ≥ 0}: The set of positive reals.
[a, b] = {x ∈ R : a ≤ x ≤ b}: The closed interval with endpoints a and b.
(a, b) = {x ∈ R : a < x < b}, defined for numbers a and b with a < b: The
open interval with endpoints a and b.

We assume that the reader is familiar with these sets. For example, we take it for
granted that real numbers are limits of rationals.

Subsets
A set A is said to be a subset of a set B if every element of A is an element of B.

We write A ⊂ B or B ⊃ A to indicate this and say A is contained in B, or B contains
A, to the same effect. The sets A and B are the same if and only if A ⊂ B and A ⊃ B,

E. Çınlar and R.J. Vanderbei, Real and Convex Analysis, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-5257-7 1, © Springer Science+Business Media New York 2013

1



2 Sets and Functions Chap. 1

and then we write A = B. For the contrary situations, we write A 	= B when A and
B are not the same. The set A is called a proper subset of B if A is a subset of B, and
A and B are not the same.

The empty set is a subset of every set. Let A be a set. The claim is that ∅ ⊂ A,
that is, that every element of ∅ is also an element of A, or equivalently, there is no
element of ∅ that does not belong to A. But the last phrase is true simply because ∅
has no elements.

Set Operations
Let A and B be sets. Their union, denoted by A ∪ B, is the set consisting of all

elements that belong to either A or B (or both). Their intersection, denoted by A∩B,
is the set of all elements that belong to both A and B. The complement of A in B,
denoted by B \A, is the set of all elements of B that are not in A. Sometimes, when B
is understood from context, B \ A is also called the complement of A and is denoted
by Ac. Regarding these operations, the following statements hold:

Commutative laws:

A ∪B = B ∪A,

A ∩B = B ∩A.

Associative laws:

(A ∪B) ∪ C = A ∪ (B ∪ C),

(A ∩B) ∩ C = A ∩ (B ∩ C).

Distributive laws:

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩C),

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪C).

The associative laws show that A∪B∪C and A∩B∩C have unambiguous meanings.
Definitions of unions and intersections can be extended to arbitrary collections of

sets. Let I be a set. For each i in I , let Ai be a set. The union of the sets Ai, i ∈ I ,
is the set A such that x ∈ A if and only if x ∈ Ai for some i in I . The intersection of
them is the set A such that x ∈ A if and only if x ∈ Ai for every i in I . The following
notations are used to denote the union and intersection respectively:

⋃

i∈I

Ai,
⋂

i∈I

Ai.

When I = {1, 2, 3, . . .}, it is customary to write

∞⋃

i=1

Ai,
∞⋂

i=1

Ai.
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All of these notations follow the conventions for sums of numbers. For instance,

n⋃

i=1

Ai = A1 ∪ · · · ∪ An,
9⋂

i=3

Ai = A3 ∩A4 ∩ · · · ∩ A9.

Disjoint Sets
Two sets are said to be disjoint if their intersection is empty; that is, if they have

no elements in common. A collection {Ai : i ∈ I} of sets is said to be disjointed if
Ai and Aj are disjoint for every i and j in I with i 	= j.

Products of Sets
Let A and B be sets. Their product, denoted by A × B, is the set of all pairs

(x, y) with x in A and y in B. It is also called the rectangle with sides A and B.
If A1, . . . , An are sets, then their product A1 × · · · × An is the set of all

n-tuples (x1, . . . , xn) where x1 ∈ A1, . . . , xn ∈ An. This product is called, vari-
ously, a rectangle, or a box, or an n-dimensional box. If A1 = · · · = An = A, then
A1 × · · · × An is denoted by An. Thus, R2 is the plane, R3 is the three-dimensional
space, R2

+ is the positive quadrant of the plane, etc.

Exercises

1.1 Let E be a set. Show the following for subsets A, B, C, and Ai of E. Here, all
complements are with respect to E; for instance, Ac = E \A.

(a) (Ac)c = A
(b) B \A = B ∩Ac

(c) (B \A) ∩ C = (B ∩ C) \ (A ∩ C)
(d) (A ∪B)c = Ac ∩Bc

(e) (A ∩B)c = Ac ∪Bc

(f) (
⋃

i∈I Ai)
c =

⋂
i∈I A

c
i

(g) (
⋂

i∈I Ai)
c =

⋃
i∈I A

c
i

1.2 Let a and b be real numbers with a < b. Find
∞⋃

n=1

ï
a+

1

n
, b− 1

n

ò
,

∞⋂

n=1

ï
a− 1

n
, b+

1

n

ò
.

1.3 Describe the following sets in words and pictures:

(a) A = {x ∈ R
2 : x2

1 + x2
2 < 1}
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(b) B = {x ∈ R
2 : x2

1 + x2
2 ≤ 1}

(c) C = B \A
(d) D = C ×B
(e) S = C × C

1.4 Let An be the set of points (x, y) in R
2 lying on the curve y = 1/xn, 0 < x < ∞.

What is
⋂

n≥1 An?

B. Functions and Sequences

Let E and F be sets. With each element x of E, let there be associated a unique
element f(x) of F . Then f is called a function from E into F , and f is said to map E
into F . We write f : E �→ F to indicate this.

Let f be a function from E into F . For x in E, the point f(x) in F is called the
image of x or the value of f at x. Similarly, for A ⊂ E, the set

{y ∈ F : y = f(x) for some x ∈ A}
is called the image of A. In particular, the image of E is called the range of f . Moving
in the opposite direction, for B ⊂ F ,

1.5 f−1B = {x ∈ E : f(x) ∈ B}
is called the inverse image of B under f . Obviously, the inverse image of F is E.

Terms like mapping, operator, transformation are synonyms for the term
“function” with varying shades of meaning depending on the context and on the sets E
and F . We shall become familiar with them in time. Sometimes, we write x �→ f(x)
to indicate the mapping f ; for instance, the mapping x �→ x3 +5 from R into R is the
function f : R �→ R defined by f(x) = x3 + 5.

Injections, Surjections, Bijections
Let f be a function from E into F . It is called an injection, or is said to be

injective, or is said to be one-to-one, if distinct points have distinct images, that is, if
x 	= y implies f(x) 	= f(y). It is called a surjection, or is said to be surjective, if its
range is F , in which case f is said to be from E onto F . It is called a bijection, or is
said to be bijective, if it is both injective and surjective.

These terms are relative to E and F . For example, x �→ ex is an injection from R

into R, but is a bijection from R onto (0,∞). The function x �→ sinx from R into R

is neither injective nor surjective, but it is a surjection from R onto [−1, 1].

Sequences
A sequence is a function fromN

∗ into some set. If f is a sequence, it is customary
to denote f(n) by something like xn and write (xn) or (x1, x2, . . . ) for the sequence
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(instead of f ). Then, the xn are called the terms of the sequence. For instance,
(1, 3, 4, 7, 11, . . . ) is a sequence whose first, second, etc. terms are x1 = 1, x2 = 3,
etc. Sometimes it is convenient to define a sequence over N, and then write (xn)n∈N

or (x0, x1, . . . ) for it.
If A is a set and every term of the sequence (xn) belongs to A, then (xn) is said to

be a sequence in A or a sequence of elements of A, and we write (xn) ⊂ A to indicate
this with a slight abuse of notation.

A sequence (xn) is said to be a subsequence of (yn) if there exist integers 1 ≤
k1 < k2 < k3 < · · · such that

xn = ykn

for each n. For instance, the sequence (1, 1/2, 1/4, 1/8, . . .) is a subsequence of
(1, 1/2, 1/3, 1/4, 1/5, . . .).

Exercises

1.6 Inverse images. Let f be a mapping from E into F . Show that

(a) f−1∅ = ∅,
(b) f−1F = E,
(c) f−1(B \ C) = (f−1B) \ (f−1C),
(d) f−1(

⋃
i∈I Bi) =

⋃
i∈I f

−1Bi,
(e) f−1(

⋂
i∈I Bi) =

⋂
i∈I f

−1Bi,

for all subsets B, C, Bi of F .

1.7 Exponential and logarithm. Show that x �→ e−x is a bijection from R+ onto
(0, 1]. Show that x �→ log x is a bijection from (0,∞) onto R. (Incidentally, log x
is the logarithm of x to the base e, which is nowadays called the natural logarithm.
We call it the logarithm. Let others call their logarithms “unnatural” and, while they
are at it, they can also invent unnatural exponentials like x �→ ax.)

1.8 Bijections between N
∗ and Z. Let f be defined by the arrows below (for instance,

f(6) = −3):

1 2 3 4 5 6 7 · · ·
↓ ↓ ↓ ↓ ↓ ↓ ↓
0 −1 1 −2 2 −3 3 · · ·

This defines a bijection from N
∗ onto Z. Using this, construct a bijection from Z

onto N
∗.
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1.9 Bijection from Z × Z onto N
∗. Let f : N∗× N

∗ �→ N
∗ be defined by the table

below where f(i, j) is the entry in the ith row and the jth column. Use this and the
preceding exercise to construct a bijection from Z× Z onto N

∗.

. . . j 1 2 3 4 5 6 · · ·
i

. . .
1 1 3 6 10 15 21
2 2 5 9 14 20
3 4 8 13 19
4 7 12 18
5 11 17
6 16
...

1.10 Functional inverses. Let f be a bijection from E onto F . Then, for each y in
F there is a unique x in E such that f(x) = y. In other words, in the notation of 1.5,
f−1({y}) = {x} for each y in F and some unique x in E. In this case, we drop some
brackets and write f−1(y) = x. The resulting function is a bijection from F onto E;
it is called the functional inverse of f . This particular usage should not be confused
with the general notation of f−1. (Note that 1.5 defines a function f−1 from F into
E , where F is the collection of all subsets of F and E is the collection of all subsets
of E.)

C. Countability

Two sets A and B are said to have the same cardinality if there exists a bijection
from A onto B, and then we write A ∼ B. Obviously, having the same cardinality is
an equivalence relation: it is

(a) reflexive, A ∼ A;
(b) symmetric, A ∼ B ⇒ B ∼ A;
(c) transitive, A ∼ B and B ∼ C ⇒ A ∼ C.

A set is said to be finite if it is empty or has the same cardinality as {1, 2, . . . , n} for
some n in N

∗; in the former case it has 0 elements, in the latter exactly n. It is said to
be countable if it is finite or has the same cardinality as N∗; in the latter case it is said
to have a countable infinity of elements.

In particular, N∗ is countable. So are Z and N
∗ × N

∗ in view of Exercises 1.8
and 1.9. Note that an infinite set can have the same cardinality as one of its proper
subsets. For instance, Z ∼ N

∗, R+ ∼ (0, 1], R ∼ R+ ∼ (0, 1); see Exercise 1.7 for
the latter. Incidentally, R+, R, etc. are uncountable, as we shall show shortly.
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A set is countable if and only if it can be injected into N
∗, or equivalently, if and

only if there is a surjection from N
∗ onto it. Thus, a set A is countable if and only if

there is a sequence (xn) whose range is A. The following lemma follows easily from
these remarks.

1.11 LEMMA. If A can be injected into B, and if B is countable, then A is countable.
If A is countable and there is a surjection from A onto B, then B is countable.

1.12 THEOREM. The product of two countable sets is countable.

PROOF. Let A and B be countable. If one of them is empty, then A × B is empty
and there is nothing to prove. Suppose that neither is empty. Then, there exist injec-
tions f : A �→ N

∗ and g : B �→ N
∗. For each pair (x, y) in A × B, let h(x, y) =

(f(x), g(y)); then h is an injection from A×B into N
∗×N

∗. Since N∗×N
∗ is count-

able (see Exercise 1.9), this implies via the preceding lemma that A×B is countable.
�

1.13 COROLLARY. The set of all rational numbers is countable.

PROOF. Recall that each rational is a ratio m/n with m in Z and n in N
∗. Thus,

f(m,n) = m/n defines a surjection from Z×N
∗ onto the set Q of all rationals. Since

Z and N
∗ are countable, so is Z×N

∗ by the preceding theorem. Hence, Q is countable
by Lemma 1.11. �

1.14 THEOREM. The union of a countable collection of countable sets is countable.

PROOF. Let I be a countable set, and let Ai be a countable set for each i in I . The
claim is that A =

⋃
i∈I Ai is countable. Now, there is a surjection fi : N

∗ �→ Ai

for each i, and there is a surjection g : N∗ �→ I; these follow from the countability
of I and the Ai. Note that, then, h(m,n) = fg(m)(n) defines a surjection h from
N

∗ × N
∗ onto A. Since N

∗ × N
∗ is countable, this implies via Lemma 1.11 that A is

countable. �

The following theorem exhibits an uncountable set. As a corollary, we show that
R is uncountable.



8 Sets and Functions Chap. 1

1.15 THEOREM. Let E be the set of all sequences whose terms are the digits 0 and 1.
Then, E is uncountable.

PROOF. Let A be a countable subset of E. Let x1, x2, . . . be an enumeration of the
elements of A, that is, A is the range of (xn). Note that each xn is a sequence of zeros
and ones, say xn = (xn,1, xn,2, . . . ) where each term xn,m is either 0 or 1. We define
a new sequence y = (yn) by letting yn = 1 − xn,n. The sequence y differs from
every one of the sequences x1, x2, . . . in at least one position. Thus, y is not in A but
is in E.

We have shown that if A is countable, then there is a y in E such that y 	∈ A. If E
were countable, the preceding would hold for A = E, which would be absurd. Hence,
E must be uncountable. �

1.16 COROLLARY. The set of all real numbers is uncountable.

PROOF. It is enough to show that the interval [0, 1) is uncountable. For each x in [0, 1),
let 0.x1x2x3 · · · be the binary expansion of x (in case x is dyadic, say x = k/2n for
some k and n in N

∗, there are two such possible binary expansions, in which case we
take the expansion with infinitely many zeros), and then identify the binary expansion
with the sequence (x1, x2, . . . ) in the set E of the preceding theorem. Thus, to each
x in [0, 1) there corresponds a unique element f(x) of E. In fact, f is a surjection
onto the set E \ D where D denotes the set of all sequences of zeros and ones that
are eventually all ones. It is easy to show that D is countable and hence that E \D is
uncountable. It follows that [0, 1) is uncountable. �

Exercises

1.17 Dyadics. A number is said to be dyadic if it has the form k/2n for some integers
k and n in N. Show that the set of all dyadic numbers is countable. Of course, every
dyadic number is rational.

1.18 Let D denote the set of all sequences of zeros and ones that are eventually all
ones. Show that D is countable.

1.19 Suppose that A is uncountable and that B is countable. Show that A \ B is
uncountable.
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1.20 Let x be a real number. For each n in N, let xn be the smallest dyadic number
of the form k/2n that exceeds x. Show that x0 ≥ x1 ≥ x2 ≥ · · · and that xn > x for
each n. Show that, for every ε > 0, there is an nε such that xn − x < ε for all n ≥ nε.

D. On the Real Line

The object is to review some facts and establish some terminology regarding the
set R of all real numbers and the set R̄ = [−∞,+∞] of all extended real numbers.
The extended real number system consists of R and two extra symbols, −∞ and ∞.
The relation < is extended to R̄ by postulating that −∞ < x < +∞ for every real
number x. The arithmetic operations are extended to R̄ as follows: for each x in R,

x+∞ = x− (−∞) = ∞,

x+ (−∞) = x−∞ = −∞,

x · ∞ =

⎧
⎨

⎩

∞ if x > 0,
0 if x = 0,

−∞ if x < 0,

x · (−∞) = (−x) · ∞,

x/∞ = x/(−∞) = 0,

∞+∞ = ∞,

(−∞) + (−∞) = −∞,

∞ ·∞ = (−∞) · (−∞) = ∞,

∞ · (−∞) = −∞.

The operations (∞−∞), (−∞) − (−∞), +∞/+∞, −∞/−∞, and 0/0 are unde-
fined.

Positive and Negative
We call x in R̄ positive if x ≥ 0 and strictly positive if x > 0. By symmetry,

then, x is negative if x ≤ 0 and strictly negative if x < 0. A function f : E �→ R̄ is
said to be positive if f(x) ≥ 0 for all x in E and strictly positive if f(x) > 0 for all
x in E. Negative and strictly negative functions are defined similarly. This usage is in
accord with modern tendencies,1 though at variance with common usage.

Increasing, Decreasing
A function f : R̄ �→ R̄ is said to be increasing if f(x) ≤ f(y) whenever x ≤ y.

1 Often-used concepts should have simpler names. Mind-bending double negatives should be avoided,
and as much as possible, mathematical usage should not conflict with ordinary language.
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It is said to be strictly increasing if f(x) < f(y) whenever x < y. Decreasing and
strictly decreasing functions are defined similarly.

These notions carry over to functions f : E �→ R̄ with E ⊂ R̄. In particular,
since a sequence is a function on N

∗, these notions apply to sequences in R̄. Thus,
for example, (xn) ⊂ R̄ is increasing if x1 ≤ x2 ≤ · · · and is strictly decreasing if
x1 > x2 > · · · .

Bounds
Let A ⊂ R̄. A real number b is called an upper bound for A provided that

A ⊂ [−∞, b], and then A is said to be bounded above by b. Lower bounds and being
bounded below are defined similarly. The set A is said to be bounded if it is bounded
above and below; that is, if A ⊂ [a, b] for some real interval [a, b].

These notions carry over to functions and sequences as follows. Given f : E �→
R̄, the function f is said to be bounded above, below, etc. accordingly as its range is
bounded above, below, etc. Thus, for instance, f is bounded if there exist real numbers
a ≤ b such that a ≤ f(x) ≤ b for all x in E.

Supremum and Infimum
These generalize the notions of maximum and minimum. Let A ⊂ R̄. The

supremum of A is the smallest number b in R̄ such that A ⊂ [−∞, b]; the infimum of
A is the largest number a in R̄ such that A ⊂ [a,∞]. They are denoted, respectively,

supA, inf A.

In particular, sup ∅ = −∞, inf ∅ = +∞, inf(a, b] = inf[a, b] = a, and sup(a, b) =
sup(a, b] = b. For A = {1, 1/2, 1/3, . . .}, the supremum is 1 and the infimum is 0.

If A is finite, then inf A is the smallest element of A, and supA is the largest.
Even when A is infinite, it is possible that inf A is an element of A, in which case it is
called the minimum of A. Similarly, if supA is an element of A, then it is also called
the maximum of A.

If f : E �→ R̄ and D ⊂ E, it is customary to write

inf
x∈D

f(x) = inf{f(x) : x ∈ D}

and call it the infimum of f over D, and similarly with the supremum. In the case of
sequences (xn) in R̄,

inf xn, supxn

denote, respectively, the infimum and supremum of the range of (xn). Other such
notations are generally self-explanatory; for example,

inf
n≥k

xn = inf{xk, xk+1, . . . }, sup
k≥1

xnk = sup{xn1, xn2, . . . }.
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FIGURE 1.1. lim sup and lim inf . The pairs (n, xn) are connected
by the solid lines for clarity. The pairs (n, xn) form the lower dotted
line and (n, x̄n) the upper dotted line.

Limits
If (xn) is an increasing sequence in R̄, then supxn is also called the limit of (xn)

and is denoted by lim xn. If it is a decreasing sequence, then inf xn is called the limit
of (xn) and again denoted by limxn.

Let (xn) be an arbitrary sequence in R̄. Then

1.21 xm = inf
n≥m

xn, x̄m = sup
n≥m

xn, m ∈ N
∗,

define two sequences; (xn) is increasing, and (x̄n) is decreasing. Their limits are
called the limit inferior and the limit superior, respectively, of the sequence (xn):

1.22 lim inf xn = limxn = sup
m

inf
n≥m

xn,

1.23 lim supxn = lim x̄n = inf
m

sup
n≥m

xn,

Figure 1.1 is worthy of careful study. Note that, in general,

1.24 −∞ ≤ lim inf xn ≤ lim supxn ≤ +∞.

If lim inf xn = lim supxn, then the common value is called the limit of (xn) and
is denoted by limxn. Otherwise, if limits inferior and superior are not equal, the
sequence (xn) does not have a limit.

Convergence of Sequences
A sequence (xn) of real numbers is said to be convergent if limxn exists and is

a real number.
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An examination of Fig. 1.1 shows that this is equivalent to the classical definition
of convergence: (xn) converges to x if for every ε > 0 there is an integer nε such
that |xn − x| < ε for all n ≥ nε. The phrase “there is nε . . . for all n ≥ nε” can
be expressed in more geometric terms by phrases like “the number of terms outside
(x − ε, x + ε) is finite,” or “all but finitely many terms are in (x − ε, x + ε),” or
“|xn − x| < ε for all n large enough.”

The following is a summary of the relations between convergence and algebraic
operations. The proof will be omitted.

1.25 THEOREM. Let (xn) and (yn) be convergent sequences with limits x and y
respectively. Then,

(a) lim cxn = cx,
(b) lim(xn + yn) = x+ y,
(c) limxnyn = xy,
(d) limxn/yn = x/y provided that yn, y 	= 0.

In practice, we do not have the sequence laid out before us. Instead, some rule
is given for generating the sequence and the object is to show that the resulting se-
quence will converge. For instance, a function may be specified somehow and a
procedure described to find its maximum; starting from some point, the procedure
will give the successive points x1, x2, . . . which are meant to form the sequence that
converges to the point x where the maximum is achieved.

Often, to find the limit of (xn), one starts with a search for sequences that bound
(xn) from above and below and whose limits can be computed easily: supposing that

yn ≤ xn ≤ zn for all n, lim yn = lim zn,

then limxn exists and is equal to the limit of the other two. The art involved is in
finding such sequences (yn) and (zn).

1.26 EXAMPLE. This is to illustrate the technique mentioned above. We want to show
that (n1/n) converges. Note that n1/n ≥ 1 always, so put xn = n1/n−1, and consider
the sequence (xn). Now, (1 + xn)

n = n, and by the binomial theorem

(a+ b)n = an + nan−1b+
n(n− 1)

2
an−2b2 + · · ·+ bn ≥ n(n− 1)

2
an−2b2

for a, b ≥ 0 and n ≥ 2. So,

n = (1 + xn)
n ≥ n(n− 1)

2
x2
n,

or

0 ≤ xn ≤
»
2/(n− 1).
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It follows that limxn = 0, and hence

limn1/n = 1.

Exercises

1.27 Show that if A ⊃ B 	= ∅ then inf A ≤ inf B ≤ supB ≤ supA. Use this to
show that, if A1 ⊃ A2 ⊃ · · · , then

inf A1 ≤ inf A2 ≤ · · · ≤ inf An ≤ · · · ≤ supAn ≤ · · · ≤ supA2 ≤ supA1.

Use this to show that (xn) is increasing, (x̄n) is decreasing, and lim xn ≤ lim x̄n

(see 1.21–1.23 for definitions).

1.28 Show that sup(−xn) = − inf xn for any sequence (xn) in R̄. Conclude that
lim sup(−xn) = − lim inf xn.

1.29 Cauchy criterion. Sequence (xn) is convergent if and only if for every ε > 0
there is an integer nε such that |xm − xn| ≤ ε for all m ≥ n ≥ nε. Prove this by
examining Fig. 1.1 on the definition of the limit.

1.30 Monotone sequences. If (xn) is increasing, then limxn exists (but could be
+∞). Thus, such a sequence converges if and only if it is bounded above. Show this.
State the version of this for decreasing sequences.

1.31 Iterative sequences. Often, xn+1 is obtained from xn via some rule, that is,
xn+1 = f(xn) for some function f , in which case the sequence is said to be iterative.
If (xn) is such a sequence and f is continuous and limxn = x exists, then x = f(x).
This works well for identifying the limit especially when f is simple and x = f(x)
has only one solution. In general, with complicated functions f , the reverse is true:
To find x satisfying x = f(x), one starts at some point x0, computes x1 = f(x0),
x2 = f(x1), . . . and tries to show that x = limxn exists and satisfies x = f(x).

1.32 Domination. A sequence (xn) is said to be dominated by a sequence (yn) if
xn ≤ yn for each n. Show that, if this is the case, then

(a) inf xn ≤ inf yn,
(b) supxn ≤ sup yn,
(c) lim inf xn ≤ lim inf yn,
(d) lim supxn ≤ lim sup yn.

In particular, if the limits exist, limxn ≤ lim yn.
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Incidentally, (xn) defined by 1.21 is the maximal increasing sequence dominated
by (xn), and (x̄n) is the minimal decreasing sequence dominating (xn).

1.33 Comparisons. Let (xn) be a positive sequence. Then, (xn) converges to 0 if
and only if it is dominated by a sequence (yn) with lim sup yn = 0. Show this.

Favorite sequences (yn) used in this role are given by yn = 1/n, yn = rn for
some fixed number r ∈ (0, 1), and yn = nprn with p ∈ (−∞,+∞) and r ∈ (0, 1).

1.34 Existence of least upper bounds. Let A be a nonempty subset of R and let
B = {b : b is an upper bound of A}. Assuming that B is nonempty, show that B is an
interval of the form B = [a,∞]. Thus a is the minimum of B and is the definition of
supA.

E. Series

Given a sequence (xn) in R, the sequence (sn) defined by

1.35 sn =

n∑

i=1

xi

is called the sequence of partial sums of (xn), and the symbolic expression

1.36
∑

xn

is called the series associated with (xn). The series is said to converge to s if and only
if the sequence (sn) converges to s, and then we write

1.37

∞∑

1

xn = s.

Sometimes, we write x1+x2+· · · for the series 1.36. Sometimes, for convenience
of notation, we shall consider series of the form

∑∞
0 or

∑∞
m , depending on the index

set. Here are a few examples:
∞∑

n=0

xn =
1

1− x
, x ∈ (−1, 1),

∞∑

n=0

xn

n!
= ex, x ∈ R,

∞∑

n=1

1

n2
=

π2

6
,

∞∑

n=m

xn =
xm

1− x
, x ∈ (−1, 1).
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The following result is obtained by applying the Cauchy criterion (Exercise 1.29)
to the sequence of partial sums.

1.38 THEOREM. The series
∑

xn converges if and only if for every ε > 0 there is an
integer nε such that

1.39

∣
∣
∣
∣
∣

m∑

i=n

xi

∣
∣
∣
∣
∣
≤ ε

for all m ≥ n ≥ nε.

In particular, taking m = n in 1.39 we obtain |xn| ≤ ε. Thus we have the
following consequence.

1.40 COROLLARY. If
∑

xn converges, then limxn = 0.

The converse is not true. For example, lim 1/n = 0 but
∑

1/n is divergent.
In the case of series with positive terms, partial sums form an increasing sequence,
and hence, the following proposition holds (see Exercise 1.30).

1.41 PROPOSITION. Suppose that the terms xn are positive. Then
∑

xn converges if
and only if the sequence of partial sums is bounded.

In many cases, we encounter series whose terms are positive and decreasing.
The following theorem due to Cauchy is helpful in such cases, especially if the terms
involve powers. Note the way a rather thin sequence determines the convergence or
divergence of the whole series.

1.42 THEOREM. Suppose that (xn) is decreasing and positive. Then
∑

xn converges
if and only if the series

x1 + 2x2 + 4x4 + 8x8 + · · ·
converges.

PROOF. Let sn = x1 + · · ·+ xn as usual and put tk = x1 +2x2 + · · ·+2kx2k . Now,
for n ≤ 2k, since x1 ≥ x2 ≥ · · · ≥ 0,

sn ≤ x1 + (x2 + x3) + (x4 + · · ·+ x7) + · · ·+ (x2k + · · ·+ x2k+1−1)

≤ x1 + 2x2 + 4x4 + · · ·+ 2kx2k

= tk,
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and for n ≥ 2k,

sn ≥ x1 + x2 + (x3 + x4) + (x5 + · · ·+ x8) + · · ·+ (x2k−1+1 + · · ·+ x2k)

≥ 1

2
x1 + x2 + 2x4 + · · ·+ 2k−1x2k

=
1

2
tk.

Thus, the sequences (sn) and (tn) are either both bounded or both unbounded, which
completes the proof via Proposition 1.41. �

1.43 EXAMPLE.
∑

1/np converges if p > 1 and diverges if p ≤ 1. For p ≤ 0, the
claim is trivial to see. For p > 0, the terms xn = 1/np form a decreasing positive
sequence, and thus, the preceding theorem applies. Now, writing x(n) for xn,

∞∑

k=0

2kx(2k) =
∑

(21−p)k,

which converges if 21−p < 1 and diverges otherwise. Since 21−p < 1 if and only if
p > 1, we are done.

1.44 EXAMPLE. The series ∞∑

2

1

n(log n)p

converges if p ∈ (1,∞) and diverges otherwise. Here we start the series with n = 2
since log 1 = 0. Since the logarithm function is monotone increasing, Theorem 1.42
applies. Now, x(n) = 1/n(logn)p, and so

∞∑

k=1

2kx(2k) =
∞∑

1

2k
1

2k(log 2k)p
=

1

(log 2)p

∞∑

1

1

kp
,

which converges if and only if p > 1 in view of the preceding example.

Ratio Test, Root Test
The ratio test ties the convergence of

∑
xn to the behavior of the ratios xn+1/xn

for large n; it is highly useful.

1.45 THEOREM. We have the following:

(a) If lim sup |xn+1/xn| < 1, then
∑

xn converges.
(b) If lim inf |xn+1/xn| > 1, then

∑
xn diverges.
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PROOF. If lim sup |xn+1/xn| < 1, then there is a number r in [0, 1) and an integer
n0 such that |xn+1/xn| ≤ r for all n ≥ n0. Thus |xn0+k| ≤ |xn0 |rk for all k ≥ 0,
and therefore, for m > n > n0,

∣
∣
∣
∣
∣

m∑

i=n

xi

∣
∣
∣
∣
∣
≤

∞∑

i=n

|xi| ≤ |xn0 |
∞∑

i=n

ri−n0 = |xn0 |
rn−n0

1− r
.

Given ε > 0 choose nε so that |xn0 |rnε−n0/(1 − r) < ε. Then Cauchy’s criterion
works with this nε and

∑
xn converges.

If lim inf |xn+1/xn| > 1 then there is an integer n0 such that |xn+1| ≥ |xn| for
all n ≥ n0. Hence, |xn| ≥ |xn0 | for all n ≥ n0 which shows that (xn) does not
converge to 0 as it must in order for

∑
xn to converge (see Corollary 1.40). �

The preceding test gives no information in cases where

lim inf |xn+1/xn| ≤ 1 ≤ lim sup |xn+1/xn|.

For instance, for the two series
∑

1/n and
∑

1/n2, the preceding lim inf and lim sup
are equal to 1, but the first series diverges whereas the second converges. Also, the
series

1.46
1

2
+

1

3
+

1

22
+

1

32
+

1

23
+

1

33
+

1

24
+

1

34
+ · · ·

obviously converges to 3/2; yet, the ratio test is miserably inconclusive:

lim inf
xn+1

xn
= lim

Å
2

3

ãn
= 0,

lim sup
xn+1

xn
= lim

Å
3

2

ãn
= ∞.

The following test, called the root test, is a stronger test—if the ratio test works, so
does the root test. But the root test works in some situations where the ratio test fails;
for example, the root test works for the series 1.46.

1.47 THEOREM. Let a = lim sup |xn|1/n. Then
∑

xn converges if a < 1, and
diverges if a > 1.

PROOF. Suppose that a < 1. Then, there is a number b ∈ (a, 1) such that |xn|1/n ≤ b
for all n ≥ n0, where n0 is some integer. Then, |xn| ≤ bn for all n ≥ n0, and
comparing

∑
xn with the geometric series

∑
bn shows that

∑
xn converges.
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Suppose that a > 1. Then, a subsequence of |xn| must converge to a > 1, which
means that |xn| ≥ 1 for infinitely many n. So, (xn) does not converge to zero, and
hence,

∑
xn cannot converge. �

Power Series
The convergence of series is extended to series of complex numbers as follows.

Each complex number z can be thought of as a pair (x, y) of real numbers, or better
yet as z = x + iy where i =

√−1. For a sequence (zn) of complex numbers, the
sequence is said to converge to z if (xn) converges to x and (yn) converges to y,
where zn = xn + iyn and z = x+ iy.

Given a sequence (cn) of complex numbers, the series

1.48

∞∑

0

cnz
n

is called a power series. The numbers c0, c1, . . . are called the coefficients of the
power series; here z is a complex number.

In general, the series will converge or diverge depending on the choice of z. As
the following theorem shows, there is a number r ∈ [0,∞], called the radius of conver-
gence, such that the series converges if |z| < r and diverges if |z| > r. The behavior
for |z| = r is much more complicated and cannot be described easily.

1.49 THEOREM. Let a = lim sup |cn|1/n and r = 1/a.

(a) If |z| < r, then
∑

cnz
n converges.

(b) If |z| > r, then
∑

cnz
n diverges.

PROOF. Put xn = cnz
n and apply the root test with

lim sup |xn|1/n = |z| lim sup |cn|1/n = a|z| = |z|
r
.

�

1.50 EXAMPLE.

(a)
∑

zn/n! = ez and r = ∞.
(b)

∑
zn converges for |z| < 1 and diverges for |z| ≥ 1; r = 1.

(c)
∑

zn/n2 converges for |z| ≤ 1 and diverges for |z| > 1; r = 1.
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(d)
∑

zn/n converges for |z| < 1 and diverges for |z| > 1; r = 1; for z = 1 the
series diverges, but for |z| = 1 with z 	= 1 it converges.

Absolute Convergence
A series

∑
xn is said to converge absolutely if

∑ |xn| is convergent. If the xn

are all positive numbers, then absolute convergence is the same as convergence. Using
Cauchy’s criterion (see Theorem 1.38) on both sides of

∣
∣
∣
∣
∣

m∑

i=n

xi

∣
∣
∣
∣
∣
≤

m∑

i=n

|xi|

shows that if
∑

xn converges absolutely then it converges. But the converse is not
true: for example,

∑
(−1)n/n

converges but is not absolutely convergent.
The comparison tests above, as well as the root and ratio tests, are in fact tests

for absolute convergence. If a series is not absolutely convergent, one has to study the
sequence of partial sums to determine whether the series converges at all.

Rearrangements
Let (k1, k2, . . . ) be a sequence in which every integer n ≥ 1 appears once and

only once, that is, n �→ kn is a bijection from N
∗ onto N

∗. If

yn = xkn , n ∈ N
∗,

for such a sequence (kn), then we say that (yn) is a rearrangement of (xn).
Let (yn) be a rearrangement of (xn). In general, the series

∑
yn and

∑
xn are

quite different. However, if
∑

xn is absolutely convergent, then so is
∑

yn and it
converges to the same number as does

∑
xn. The converse is also true: if every

rearrangement of the series
∑

xn converges, then the series
∑

xn is absolutely con-
vergent and all its rearrangements converge (to the same sum).

On the other hand, if
∑

xn is not absolutely convergent, its various rearrange-
ments may converge or diverge, and in the case of convergence, the sum generally
depends on the rearrangement chosen. For instance,

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− · · ·

is convergent, but not absolutely so. Its rearrangement

1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
+

1

9
+ · · ·
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(with ++−++−++− pattern) is again convergent, but not to the same sum. In fact,
the following theorem due to Riemann shows that one can create rearrangements that
are as bizarre as one wants.

1.51 THEOREM. Let
∑

xn be convergent but not absolutely. Then, for any two num-
bers a ≤ b in R̄ there is a rearrangement

∑
yn of

∑
xn such that

lim inf
n∑

1

yi = a, lim sup
n∑

1

yi = b.

We omit the proof. Note that, in particular, taking a = b we can find a rearrange-
ment

∑
yn with sum a, no matter what a is.

Exercises

1.52 Determine the convergence or divergence of the following:

(a)
∑

(
√
n+ 1−√

n)
(b)

∑
(
√
n+ 1−√

n)/n
(c)

∑
(sinn)/(n

√
n)

(d)
∑

(−1)nn/(n2 + 1)

In case of convergence, indicate whether it is absolute convergence.

1.53 Show that if
∑

xn converges then so does
∑√

xn/n .

1.54 Show that if
∑

xn converges and (yn) is bounded and monotone (either in-
creasing or decreasing), then

∑
xnyn converges.

1.55 Find the radius of convergence of each of the following power series:

(a)
∑

n2zn

(b)
∑

2nzn/n!
(c)

∑
2nzn/n2

(d)
∑

n3zn/3n

1.56 Suppose that f(z) =
∑

cnz
n. Express the sum of the even terms,

∑
c2nz

2n,
and the sum of the odd terms,

∑
c2n+1z

2n+1, in terms of f .

1.57 Suppose that f(z) =
∑

cnz
n. Express

∑
c3nz

3n in terms of f .
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1.58 Rearrangements. Let
∑

xn be a series that converges absolutely. Prove that
every rearrangement of

∑
xn converges, and that they all converge to the same sum.

1.59 Riemann’s theorem. Prove Riemann’s theorem 1.51 by filling in the details in
the following outline:

(a) Let (x+
n ) denote the subsequence consisting of the positive elements of (xn)

and let (x−
n ) denote the subsequence of negative elements of (xn). Both of

these sequences must be infinite.
(b) Both sequences (x+

n ) and (x−
n ) converge to zero.

(c) Both series
∑

x+
n and

∑
x−
n diverge.

(d) Suppose that a, b ∈ R and define a rearrangement as follows: start with
the positive elements and choose elements from this set until the partial sum
exceeds b. Then, choose elements from the set of negative elements un-
til the partial sum is less than a. Then, choose elements from the set of
positive elements until the partial sum exceeds b. Continue this procedure of
alternating between elements of the positive and negative sets indefinitely.

(e) Prove that the procedure described above can be continued ad infinitum.
(f) Prove that this rearrangement has the properties stated in Riemann’s theorem.
(g) Extend the above arguments to the case where a, b = ±∞.

1.60 Poisson distribution. Let pn = e−λλn/n! where λ is a strictly positive real
number. Show that

(a) pn > 0,
(b)

∑∞
n=0 pn = 1,

(c)
∑∞

n=0 npn = λ.

1.61 Borel summability. Consider a series
∑∞

n=0 xn with partial sums sn =
∑n

i=0 xi.
We say that the series is Borel summable if

lim
λ→∞

∞∑

n=0

snpn

converges, where pn are the Poisson probabilities defined in Exercise 1.60. For what
values of z is the geometric series

∑∞
n=0 z

n Borel summable?
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CHAPTER 2

Metric Spaces

Basic questions of analysis on the real line are tied to the notions of closeness and
distances between points. The same issue of closeness comes up in more complicated
settings, for instance, when we try to approximate a function by a simpler function.
Our aim is to introduce the idea of distance in general so that we can talk of the distance
between two functions with the same conceptual ease as when we talk of the distance
between two points in a plane. After that, we discuss the main issues: convergence,
continuity, approximations. All along, there will be examples of different spaces and
different ways of measuring distances.

A. Euclidean Spaces

This section will review the space Rn together with its Euclidean distance. Recall
that each element of Rn is an n-tuple x = (x1, . . . , xn), where the xi are real num-
bers. The elements of Rn are called points or vectors, and we are familiar with vector
addition and scalar multiplication.

Inner Product and Norm
For x and y in R

n, their inner product x · y is the number

2.1 x · y =

n∑

1

xiyi.

If we regard x and y as column vectors, then x ·y = xTy, where xT is the transpose of
x, the row vector with the same elements as x. For x in R

n, the norm of x is defined
as the length of x, that is, the positive number

2.2 ‖x‖ =
√
x · x =

Ã
n∑

1

x2
i .

The norm satisfies the following conditions:

2.3 ‖x‖ ≥ 0 for every x in R
n,

2.4 ‖x‖ = 0 if and only if x = 0,

E. Çınlar and R.J. Vanderbei, Real and Convex Analysis, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-5257-7 2, © Springer Science+Business Media New York 2013
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2.5 ‖λx‖ = |λ|‖x‖ for every λ in R,

2.6 ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x and y in R
n.

Of these, 2.3–2.5 are obvious, and 2.6 is an immediate consequence of the following
proposition.

2.7 PROPOSITION. Schwarz’s inequality. |x · y| ≤ ‖x‖‖y‖ for all x and y in R
n.

PROOF. Fix x and y. Consider the function f with

f(λ) = ‖λy − x‖2 = λ2‖y‖2 − 2λ(x · y) + ‖x‖2.
This function is clearly positive and quadratic, and its minimum occurs at

λ =
x · y
‖y‖2 .

For this value of λ we have

0 ≤ f(λ) = − (x · y)2
‖y‖2 + ‖x‖2,

from which the claimed inequality follows. �

Euclidean Distance
For x and y in R

n, the Euclidean distance between x and y is defined as the
number ‖x− y‖. It follows from the properties given above that, for all x, y, z in R

n,

2.8 ‖x− y‖ ≥ 0,

2.9 ‖x− y‖ = ‖y − x‖,

2.10 ‖x− y‖ = 0 if and only if x = y,

2.11 ‖x− y‖+ ‖y − z‖ ≥ ‖x− z‖.

The last is called the triangle inequality: on R
2, if the points x, y, z are the vertices of

a triangle, this is simply the well-known fact that the sum of the lengths of two sides
is greater than or equal to the length of the third side.

The set R
n together with the Euclidean distance is called n-dimensional Eu-

clidean space. The Euclidean spaces are important examples of metric spaces.
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Exercises

2.12 Inner product. Show that the mapping (x, y) �→ x · y from R
n ×R

n into R is a
linear transformation in x and is a linear transformation in y (and therefore is said to
be bilinear). Conclude that

(x + y) · (x+ y) = x · x+ 2x · y + y · y.

Use this and the Schwarz inequality to prove 2.6.

2.13 Parallelograms. Show that ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2. Interpret
this in geometric terms, on R

2, as a statement about parallelograms.

2.14 Orthogonality. Points x and y are said to be orthogonal if x · y = 0. Show that
this is equivalent to saying that the line segments connecting the origin to x and y are
perpendicular. In general, letting α be the angle between these line segments, we have
x · y = ‖x‖‖y‖ cosα.

B. Metrics

Let E be a nonempty set. A metric on E is a function d : E × E �→ R+ that
satisfies the following for all x, y, z in E:

(a) d(x, y) = d(y, x),
(b) d(x, y) = 0 if and only if x = y,
(c) d(x, y) + d(y, z) ≥ d(x, z).

A metric space is a pair (E, d) where E is a set and d is a metric on E. In this context,
we think of E as a space, call the elements of E points, and refer to d(x, y) as the
distance from x to y.

Examples

2.15 Euclidean spaces. Consider Rn with the Euclidean distance d(x, y) = ‖x− y‖
on it. It follows from 2.8 to 2.11 that d is a metric on R

n. Thus, (Rn, d) is a metric
space; it is called the n-dimensional Euclidean space.



26 Metric Spaces Chap. 2

2.16 Manhattan metric. On R
n define a metric d by

d(x, y) =

n∑

1

|xi − yi|.

This d is called the Manhattan metric, or l1-metric, on R
n, and (Rn, d) is a metric

space again. Note that for n > 1 this metric is different from the Euclidean metric of
the preceding example.

2.17 Space C. Let C denote the set of all continuous functions from the interval [0, 1]
into R. For x and y in C, let

d(x, y) = sup
0≤t≤1

|x(t)− y(t)|.

It is clear that d(x, y) is a positive real number, that d(x, y) = d(y, x), and that
d(x, y) = 0 if and only if x = y. As for the triangle inequality, we note that

|x(t)− z(t)| ≤ |x(t)− y(t)|+ |y(t)− z(t)| ≤ d(x, y) + d(y, z)

for every t in [0, 1], from which we have d(x, z) ≤ d(x, y) + d(y, z). Thus, d is a
metric on C, and (C, d) is a metric space. This metric space is important in analysis.

Usage
In the literature, it is common practice to call E a metric space if (E, d) is a

metric space for some metric d. If there is only one metric under consideration, this
is harmless and saves time. For instance, the phrase “Euclidean space R

n” refers to
(Rn, d) where d is the Euclidean metric. For a while at least, we shall indicate the
metric involved in each case in order to avoid all possible confusion.

Distances from Points to Sets and from Sets to Sets
Let (E, d) be a metric space. For x in E and A a subset of E, let

2.18 d(x,A) = inf{d(x, y) : y ∈ A};
this is called the distance from the point x to the set A. For subsets A and B of E, the
distance from A to B is defined by

2.19 d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.
The diameter of a set A ⊂ E is defined as

2.20 diamA = sup{d(x, y) : x ∈ A, y ∈ A}.
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A set is said to be bounded if its diameter is finite.

Balls
Let (E, d) be a metric space. For x in E and r in (0,∞),

2.21 B(x, r) = {y ∈ E : d(x, y) < r}
is called the open ball with center x and radius r, and

2.22 B̄(x, r) = {y ∈ E : d(x, y) ≤ r}
is the corresponding closed ball.

For example, if E = R
3 and d is the usual Euclidean metric, then B(x, r)

becomes the set of all points inside the sphere with center x and radius r, and B̄(x, r)
is the set of all points inside or on that sphere.

Exercises and Complements

2.23 Discrete metric. Let E be an arbitrary nonempty set. Define

d(x, y) =

ß
1 if x �= y,
0 if x = y.

Show that this d is a metric on E. It is called the discrete metric on E.

2.24 Metrics on R
n. For each number p ≥ 1,

dp(x, y) =

(
n∑

1

|xi − yi|p
)1/p

defines a metric dp on R
n. Note that d1 is the Manhattan metric, and d2 is the

Euclidean metric. Finally,

d∞(x, y) = sup
1≤i≤n

|xi − yi|

is again a metric on R
n. Show this last statement.

2.25 Equivalent metrics. Two metrics d and d′ are equivalent if there exist strictly
positive constants c1 and c2 such that for all x, y

c1d
′(x, y) ≤ d(x, y) ≤ c2d

′(x, y).

Show that d1, d2, and d∞ are all equivalent to each other as distances on R
n.
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2.26 Weighted metrics on R
n. The metrics introduced in Exercise 2.24 treat all

components of x and y equally. This is reasonable if Rn is thought of geometrically
and the selection of a coordinate system is unimportant. On the other hand, if x =
(x1, . . . , xn) stands for a shopping list that requires buying x1 units of product one,
and x2 units of product two, and so on, then it would be better to define the distance
between two shopping lists x and y by

d(x, y) =
n∑

1

wi|xi − yi|

where w1, . . . , wn are fixed strictly positive numbers, with wi being the value of one
unit of product i. Show that this d is indeed a metric. More generally, paralleling the
metrics introduced in Exercise 2.24,

dp(x, y) =

(
n∑

i

wi|xi − yi|p
)1/p

, x, y ∈ R
n,

is a metric on R
n for each p ≥ 1 and each fixed strictly positive vector w (the latter

means w1 > 0, . . . , wn > 0).

2.27 l2-Spaces. Instead of Rn, now consider the space R
∞ of all infinite sequences

in R, that is, each x in R
∞ is a sequence x = (x1, x2, . . . ) of real numbers. In analogy

with the d2 metrics introduced on R
n in Exercises 2.24 and 2.26, we define

d2(x, y) =

( ∞∑

1

|xi − yi|2
)1/2

.

This d2 satisfies all the conditions for a metric except that d2(x, y) can be ∞ for some
x and y. To remedy the latter, we let E be the set of all x in R

∞ with

∞∑

1

x2
i < ∞.

Then, by an easy generalization of the Schwarz inequality, it follows that d2(x, y) <
∞ for all x and y in E. Thus, (E, d2) is a metric space. It is generally denoted by l2.

2.28 Metrics on C. Consider the set C of all continuous functions from [0, 1] into
R. The interval [0, 1] can be replaced by any bounded interval [a, b], in which case
one writes C([a, b]). A number of metrics can be defined on C in analogy with those
in Exercise 2.24 by observing that every x in R

n can be thought of as a function x
from { 1

n ,
2
n , . . . ,

n
n} into R, namely, the function x with x(t) = xi for t = i/n. Thus,

replacing the set { 1
n ,

2
n , . . . ,

n
n} with the interval [0, 1] and replacing the summation
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by integration, we obtain

dp(x, y) =

Ç∫ 1

0

|x(t)− y(t)|p dt
å1/p

for all x and y in C. Since every continuous function on [0, 1] is bounded, the integral
here is finite, and it is easy to check the conditions for this dp to be a metric. So, for
each p ≥ 1, this dp is a metric on C. Incidentally, the metric of Example 2.17 can be
denoted by d∞ in analogy with d∞ in Exercise 2.24.

2.29 Open balls. Let E = R
2. Describe the open ball B(x, r), for fixed x and r,

(a) under d2 of Exercise 2.24,
(b) under d1 of Exercise 2.24,
(c) under d∞ of Exercise 2.24,
(d) under d2 of Exercise 2.26 with w1 = 1 and w2 = 5.

2.30 Open balls in C. For the metric space of Example 2.17, describe B(x, r) for a
fixed function x and fixed number r > 0. Draw pictures!

2.31 Product spaces. Let (E1, d1) and (E2, d2) be arbitrary metric spaces. Let
E = E1 × E2 and define, for x = (x1, x2) in E and y = (y1, y2) in E,

d(x, y) = [d1(x1, y1)
2 + d2(x2, y2)

2]1/2.

Show that d is a metric on E. The metric space (E, d) is called the product of the
metric spaces (E1, d1) and (E2, d2).

C. Open and Closed Sets

Let (E, d) be a metric space. All points mentioned below are points of E, all sets
are subsets of E. Recall the definition 2.21 of the open ball B(x, r) with center x and
radius r.

2.32 DEFINITION. A set A is said to be open if for every x in A there is a number
r > 0 such that B(x, r) ⊂ A. A set is said to be closed if its complement is open.

For example, if E = R with the usual distance, the intervals (a, b), (−∞, b),
(a,∞) are open, the intervals [a, b], (−∞, b], [a,∞) are closed, and the interval (a, b]
is neither open nor closed.

2.33 PROPOSITION. Every open ball is open.
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PROOF. Fix x and r. To show that B(x, r) is open, we need to show that for every y
in B(x, r) there is a number q > 0 such that B(y, q) ⊂ B(x, r). This is accomplished
by picking q = r − d(x, y). Since y is in B(x, r), we have d(x, y) < r and, hence,
q > 0. And, every point of B(y, q) is a point of B(x, r), because z ∈ B(y, q) means
d(z, y) < q, which implies that

d(z, x) ≤ d(z, y) + d(y, x) < q + d(y, x) = r.

�

2.34 THEOREM. The sets ∅ and E are open. The intersection of a finite number of
open sets is open. The union of an arbitrary collection of open sets is open.

PROOF. The first assertion is trivial from the definition.
We prove the second assertion for the intersection of two open sets. The general

case follows from the repeated application of the case for two. Let A and B be open.
Let x ∈ A ∩ B. Since A is open and x is in A, there is a number p > 0 such that
B(x, p) ⊂ A. Similarly, there is a number q > 0 such that B(x, q) ⊂ B. Let r = p∧q,
the smaller of p and q. Then, B(x, r) ⊂ B(x, p) ⊂ A and B(x, r) ⊂ B(x, q) ⊂ B.
Hence, B(x, r) ⊂ A ∩B. So, A ∩B is open.

For the last assertion, let {Ai : i ∈ I} be an arbitrary collection of open sets. We
want to show that A =

⋃
iAi is open. Let x be in A. Then, x ∈ Ai for some i ∈ I .

Since Ai is open, there is a number r > 0 such that B(x, r) ⊂ Ai. Since Ai ⊂ A, this
shows that B(x, r) ⊂ A. So, A is open. �

The following characterization is immediate from the preceding theorem together
with Proposition 2.33.

2.35 PROPOSITION. A set is open if and only if it is the union of a collection of open
balls.

PROOF. If A is the union of a collection of open balls, then A must be open in view
of Propositions 2.33 and 2.34. To show the converse, let A be open. Then, for every
x in A, there is an open ball Ax = B(x, r(x)) contained in A. Obviously, the union
of all these Ax is exactly A. �
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Closed Sets
Recall that a subset of E is closed if and only if its complement is open. Thus,

the following theorem is immediate from Theorem 2.34 above and the fact that the
complement of a union is the intersection of complements and vice versa.

2.36 THEOREM. The sets ∅ and E are closed. The union of finitely many closed sets
is closed. The intersection of an arbitrary collection of closed sets is closed.

Every closed ball is closed. This last observation can be proved along the lines of
Proposition 2.33: if y ∈ E \ B̄(x, r) then d(y, x) > r, and picking p = d(x, y)− r >
0, we see that B(y, p) ⊂ E \ B̄(x, r), which proves that E \ B̄(x, r) is open. In
particular, for each x in E, the singleton {x} is closed. It follows from this and the
preceding theorem that every finite set is closed.

Interior, Closure, and Boundary
Let A be a subset of E. The collection of all closed sets containing A is not

empty (since E belongs to that collection). The intersection Ā of that collection is a
closed set by the last theorem. The set Ā is called the closure of A. Clearly, Ā is the
smallest closed set that contains A, that is, if B ⊃ A and B is closed then B ⊃ Ā.

We define the interior of A similarly as the largest open set contained in A, and
we denote it by A◦. In other words, A◦ is the union of all open sets contained in A.
Note that

2.37 A◦ ⊂ A ⊂ Ā.

We define the boundary of A to be the set ∂A = Ā \A◦.
For example, if A is the open ball B(x, r) in the Euclidean space E = R

n, then
A◦ = A, Ā = B̄(x, r), and ∂A is the sphere of radius r centered at x. If E = R with
the usual metric, and if A = (a, b], then Ā = [a, b] and A◦ = (a, b) and ∂A = {a, b}.
The following seems self-evident.

2.38 PROPOSITION. A set is closed if and only if it is equal to its closure. A set is
open if and only if it is equal to its interior.

Open Subsets of the Real Line
We take E = R with the usual distance. Then, every open ball is an open interval,

and according to Proposition 2.35, every open set is the union of a collection of open
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balls. The following sharpens the picture by taking into account the special nature of
the real line.

2.39 THEOREM. A subset of R is open if and only if it is the union of a countable
collection of disjoint open intervals.

PROOF. The “if” part is immediate from Proposition 2.35 and the fact that every open
ball is an interval in this case.

To prove the “only if” part, let A be an open subset of R. Recall that the set Q of
all rationals is countable. For each q in Q ∩A, let

aq = sup{y ≤ q : y �∈ A}, bq = inf{y ≥ q : y �∈ A}.
Then,

B =
⋃

q∈Q∩A

(aq, bq)

is the union of a countable collection of open intervals. We show next that A = B by
showing that A ⊂ B and B ⊂ A.

Let x be in A. Since A is open, there is a ball B(x, r) contained in A. Take a
rational number q in this ball. Clearly, B(x, r) ⊂ (aq, bq). Thus, x is in B. Since this
is true for every x in A, we have that A ⊂ B.

Fix q ∈ Q ∩A. Clearly, (aq, bq) ⊂ A. Hence, B ⊂ A.
We have shown that A = B, and B has the desired form except that the intervals

(aq, bq) are not necessarily disjoint. Note that if r ∈ (aq, bq) then (ar, br) = (aq, bq)
and q ∈ (ar, br). Let us write q ≈ r if and only if (aq, bq) = (ar, br). This defines
an equivalence relation on the set Q ∩ A. Thus, by picking exactly one q from each
equivalence class, we can form a set I ⊂ Q ∩ A such that (aq, bq) ∩ (ar, br) = ∅ for
all distinct q and r in I , and

A = B =
⋃

q∈I

(aq, bq).

�

2.40 EXAMPLE. The Cantor set. Start with the unit interval B = [0, 1]. To each q
in the set I = {1/2; 1/4, 3/4; 1/8, 3/8, 5/8, 7/8; 1/16, 3/16, . . . , 15/16; . . .}
we associate an open interval Dq in the following fashion: D1/2 is the open interval
(1/3, 2/3), which is the middle third of B. Deleting it from B leaves two closed
intervals, [0, 1/3] and [1/3, 1]. Let D1/4 be the interval (1/9, 2/9), which is the
middle third of [0, 1/3], and let D3/4 be (7/9, 8/9), which is the middle third of
[2/3, 1]. Deleting those middle thirds, we are left with four closed intervals of length
1/9 each. Let D1/8, D3/8, D5/8, D7/8 be the open intervals that make up the middle
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10

FIGURE 2.1. The set D =
⋃
Dq.

thirds of those closed intervals. Delete the middle thirds, and continue in this manner
(see Fig. 2.1). Then,

D =
⋃

q∈I

Dq

is the union of the countably many disjoint open intervals Dq, q ∈ I . It is an example
of a nontrivial open set. Incidentally, note that the lengths of the Dq sum to
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27
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ã
+ · · · = 1.

Thus, the “length” of D is 1. But the set C = B \D is not empty.
The set C = B \D is called the Cantor set. It is a closed set. The construction

above shows that C is obtained by starting with B and deleting the middle third of
every interval we can find. Thus, there is no open interval contained in C. That is,
there are no open balls in C. Hence, the interior of C must be empty, and C is pure
boundary:

C◦ = ∅, C̄ = C, ∂C = C.

Also, since the length of D is equal to the length of B, the length of C = B \D must
be 0. In summary, the Cantor set is very thin.

Nevertheless, C has at least as many points as the interval [0, 1]. We prove this
next by showing, via construction, that there exists an injection g from [0, 1] into C.

To this end, we start by defining an increasing function f from D into [0, 1] by
letting

f(x) = q, if x ∈ Dq.

Then, we define the function g on [0, 1] by setting g(1) = 1 and

g(y) = inf{x ∈ D : f(x) > y}, 0 ≤ y < 1.

We show first that g(y) ∈ C for every y. This is obvious for y = 1. Let y ∈ [0, 1);
note that g(y) is the infimum of the union of all intervals Dq with q > y; that infimum
cannot belong to D; so g(y) must belong to C (since it is obvious that g(y) ∈ B).
Finally, we show that g : [0, 1] �→ C is an injection by showing that if y < z, then
g(y) < g(z). Fix y < z. Note that there is at least one q in I such that y < q < z,
and the corresponding set Dq is contained in {x ∈ D : f(x) > y} but not in {x ∈ D :
f(x) > z}. It follows that the number g(y) is to the left of the interval Dq whereas
g(z) is to the right. So, g(y) < g(z) if y < z. Hence, g : [0, 1] �→ C is an injection
(Fig. 2.2).
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x=g(y)

y=f(x)

FIGURE 2.2. The Cantor function f .

Exercises and Complements

2.41 Let (E, d) be a metric space. Show that

Ā = {x ∈ E : d(x,A) = 0},
A◦ = {x ∈ E : d(x,Ac) > 0},
∂A = {x ∈ E : d(x,A) = 0 and d(x,Ac) = 0}.

2.42 Let (E, d) be a metric space. Fix A ⊂ E. Let Aε = {x ∈ E : d(x,A) < ε}
for each ε > 0. Show that Aε is an open set containing A for each ε > 0. Show that
Ā =

⋂
ε>0 Aε.

2.43 Boundedness. Let (E, d) be a metric space. Show that a subset A of E is
bounded if and only if it is contained in some ball, that is, if and only if A ⊂ B(x, r)
for some x and r.

2.44 Take E = R and d the usual metric. Let A ⊂ E. Show that if A is closed and
bounded above, then supA belongs to A (that is, A has a maximum). Similarly, if A
is closed and bounded below, then it has a minimum. Show that an open set A cannot
have a minimum, that is, inf A cannot belong to A.

2.45 Let D be the open set of Example 2.40. Find its interior and boundary.
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2.46 Denseness. A set D is said to be dense in E if D̄ = E. Let D be dense in E.
Show that every x in E is at 0 distance from D. Thus, every open ball has at least one
point of D. Show that the set Q of all rationals is dense in R, the set of all pairs of
rationals is dense in R

2, etc.

2.47 Separability. A metric space E is said to be separable if there exists a countable
set D that is dense in E. So, for example, the Euclidean spaces R, R2, R3, . . . are
separable.

2.48 Discrete metric spaces. Let E be arbitrary and suppose that d is the discrete
metric (see Exercise 2.23 for this) on E. Show that each subset A is both open and
closed. For r ≤ 1, every open ball B(x, r) consists of exactly the point x. Note
that B(x, 1) = {x}, B̄(x, 1) = E for every x. (Moral: B̄(x, r) is not necessarily
the closure of B(x, r).) If E is countable, then it is separable (trivially). If E is
uncountable, it is not separable. Show this.

2.49 Half-spaces. A set H in R
n of the form H = {x : ξ · x ≤ b}, where ξ in R

n

and b in R are given, is called a half-space. Show that half-spaces are closed.

D. Convergence

Let (E, d) be a metric space. Our goal is to discuss the notion of convergence for
a sequence of points in E. We do so by employing the concept of convergence in R,
for which we refer to Sect. D of Chap. 1.

2.50 DEFINITION. A sequence (xn) in E is said to be convergent in E if there exists
a point x in E such that lim d(xn, x) = 0. If so, then (xn) is said to converge to x,
the point x is called the limit of (xn), and the notation x = limxn is used to indicate
this.

2.51 REMARK. The preceding definition includes, implicitly within it, the fact that a
convergent sequence has exactly one limit. To see this, suppose that (xn) converges
to x and to y, that is, lim d(xn, x) = 0 and lim d(xn, y) = 0. Then,

0 ≤ d(x, y) ≤ d(x, xn) + d(xn, y)

by the triangle inequality, and the right side converges to zero. Thus, d(x, y) = 0,
which means that x = y.
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The following brings together a number of rewordings of convergence. Each is a
slight alteration of the others. No proof seems needed.

2.52 THEOREM. The following statements are equivalent:

(a) (xn) converges to x.
(b) For every ε > 0 there is an integer nε such that d(xn, x) < ε for all n ≥ nε.
(c) The set {n : d(xn, x) ≥ ε} is finite for each ε > 0.
(d) For every ε > 0, the ball B(x, ε) includes all but a finite number of the

terms xn.

2.53 COROLLARY. Every convergent sequence is bounded.

PROOF. Let (xn) be convergent and x its limit. In view of the equivalence of (a) and
(d) in the preceding theorem, B(x, 1) includes all but a finite number of the terms xn.
Let r be the maximum of the distances from x to those terms xn outside B(x, 1), if
there are any; otherwise, set r = 1. Clearly r < ∞ and B(x, r) contains (xn), which
means that (xn) is bounded. �

Subsequences
It follows from Theorem 2.52 that we may remove a finite number of terms, or

rearrange the terms, without affecting the convergence. The following generalizes this.

2.54 PROPOSITION. If a sequence converges to x, then every subsequence of it con-
verges to the same x.

PROOF. Let (xn) be a sequence with limit x. Let (yn) be a subsequence of it, that is,
yn = xkn for some k1 < k2 < · · · . Now, by Theorem 2.52, for every ε > 0, the
ball B(x, ε) includes all the terms xn except for some finite number of them; therefore
the same must be true for the terms yn. So, by Theorem 2.52, the subsequence (yn)
converges to x. �

Convergence and Closed Sets
Think of a particle that moves in E by jumps: first it is at x1, then at x2, then at

x3, and so on. The following gives meaning to the term “closed set” if you think of
sequences in this fashion.
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2.55 THEOREM. A set is closed if and only if it includes the limit of every convergent
sequence in it.

PROOF. “Only if” part. Suppose that A is a closed set and that (xn) is a sequence in
A with limit x. We show that, then, x must belong to A. For, otherwise, if x were in
Ac, there would exist an ε > 0 such that B(x, ε) ⊂ Ac since Ac is open, and B(x, ε)
would include infinitely many terms since x is the limit, which would contradict the
fact that all the xn are in A.

“If” part. We show that if A is not closed then there is a sequence (xn) in A
that converges to some point x in Ac. Suppose that A is not closed. Then Ac is not
open. Thus, there exists an x in Ac such that B(x, r) ∩ A has at least one point for
each r > 0. Hence, for each n in N

∗, there is an xn in A such that d(xn, x) < 1/n.
Obviously, (xn) is in A and converges to x which is not in A. �

Exercises

2.56 Discrete metric spaces. Suppose that d is the discrete metric on E. Show that
(xn) is convergent if and only if it is ultimately stationary, that is, if and only if it has
the form (x1, x2, . . . , xn, x, x, x, . . . ) for some n.

2.57 Let (E, d) be a metric space. Show that if (xn) converges to x and (yn) con-
verges to y, then d(xn, yn) converges to d(x, y). Hint: first show that, for arbitrary
x, y, z in E,

|d(x, y) − d(x, z)| ≤ d(y, z).

Use this to write

|d(xn, yn)− d(x, y)| ≤ |d(xn, yn)− d(xn, y)|+ |d(xn, y)− d(x, y)|
≤ d(yn, y) + d(xn, x),

and take limits.

2.58 Show that if (xn) converges to x, then d(xn, A) converges to d(x,A) for each
fixed subset A of E.

E. Completeness

Let (E, d) be a metric space. Recall that a sequence (xn) in E is convergent if
there is an x in E such that lim d(xn, x) = 0. This definition has two shortcomings.
First, starting with (xn), we rarely have a candidate x for the limit. Second, often we
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are not interested in computing the limit itself; it is generally sufficient to know that
the limit exists and has such and such properties. This section is aimed at rectifying
these shortcomings.

Cauchy Sequences

2.59 DEFINITION. A sequence (xn) in E is said to be Cauchy if for every ε > 0 there
is an integer nε such that d(xm, xn) < ε for all m > n ≥ nε.

The following is nearly a restatement of this definition in more geometric terms.

2.60 LEMMA. A sequence (xn) is Cauchy if and only if for every ε > 0 there is a ball
of radius ε that contains all but finitely many of the terms xn.

PROOF. Suppose that (xn) is Cauchy. Let ε > 0. Then, there is nε such that
d(xm, xn) < ε for all m > n ≥ nε. Thus, in particular, the ball B(xnε , ε) con-
tains all the terms except possibly x1, . . . , xnε−1. This proves the necessity of the
condition.

Conversely, suppose that for every ε > 0 there is a ball B(x, ε) with some x as its
center such that all but a finite number of the terms are in the ball. Given ε > 0, pick
x so that B(x, ε/2) contains all the xn except perhaps finitely many, that is, there is
nε such that xn ∈ B(x, ε/2) for all n ≥ nε. Now, if m > n ≥ nε, then

d(xm, xn) ≤ d(xm, x) + d(x, xn) < ε/2 + ε/2 = ε.

Hence, (xn) is Cauchy. This proves the sufficiency. �

2.61 THEOREM.

(a) Every convergent sequence is Cauchy.
(b) Every Cauchy sequence is bounded.
(c) Every subsequence of a Cauchy sequence is Cauchy.

PROOF. The first claim is immediate from the preceding lemma and Theorem 2.52.
The second claim is proved, via the preceding lemma, by following the proof of Corol-
lary 2.53. The last claim is immediate from the preceding lemma. �
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The following shows that if a sequence is Cauchy and one can find a subsequence
of it that converges to some point x, then the original sequence converges to x.

2.62 PROPOSITION. A Cauchy sequence that has a convergent subsequence is itself
convergent.

PROOF. Let (xn) be Cauchy. Let x be the limit of a convergent subsequence of it. Pick
ε > 0. By Lemma 2.60, there is a ball B(y, ε) that contains all but a finite number of
the xn. That ball B(y, ε) must contain all but a finite number of the subsequence as
well. Thus, x must be in B̄(y, ε). Then, B(x, 3ε) contains B̄(y, ε) and hence contains
all but a finite number of the xn. Thus, (xn) is convergent and x = limxn in view of
Theorem 2.52. �

Complete Metric Spaces
The results above suggest that all Cauchy sequences should be convergent. Un-

fortunately, this is not true in general. Here is an example.
Suppose that E = Q, the set of all rationals, with the metric it inherits from the

real line. Let x =
√
2, which is not a rational number, and let (xn) be a sequence in

Q that converges to x in the sense of convergence in R: for instance, pick xn to be a
rational number in the interval (x, x + 1/n) for each n. Over the metric space Q, the
sequence (xn) is Cauchy, but fails to be convergent in Q simply because x is not in Q.
The problem here is not with the Cauchy sequence, but with the space Q. The space
Q has holes in it!

The following introduces the extra notion we want.

2.63 DEFINITION. The metric space E is said to be complete if every Cauchy sequence
in E converges to a point of E.

Theorem 2.61a becomes stronger: when E is complete, a sequence is convergent
if and only if it is Cauchy. The following is immediate from Theorem 2.55.

2.64 PROPOSITION. If E is complete and D is a closed subset of E, then D is a
complete metric space with the metric it inherits from E.

The next theorem shows that certain familiar spaces are complete. Other examples
are listed in exercises.
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2.65 THEOREM. Every Euclidean space is complete.

PROOF. We start with the one-dimensional Euclidean space, namely R. Let (xn) ⊂ R

be Cauchy. Then, for every ε > 0 there is a ball of radius ε (namely an open interval
of length 2ε) that contains all but finitely many of the xn. Therefore, the numbers
x = lim inf xn and y = lim supxn must belong to that ball, which means that 0 ≤
y − x < 2ε. Since this is true for every ε > 0, we must have x = y, that is, (xn) is
convergent. This proves that R is complete.

Now, fix k ≥ 2 and consider the Euclidean space R
k. We write x = (a, b, . . . , c)

for each x in R
k for simplicity of notation (in other words, the coordinates of x are

a, b, . . . , c).
Consider a Cauchy sequence of points xn = (an, bn, . . . , cn) in R

k. Given ε > 0,
then, for all m and n large enough, we have

d(xm, xn) = (|am − an|2 + |bm − bn|2 + · · ·+ |cm − cn|2)1/2 < ε,

which shows that

|am − an| < ε, |bm − bn| < ε, . . . , |cm − cn| < ε.

In other words, the sequences (an), (bn), . . . , (cn) in R are Cauchy. We have just
shown that R is complete. So, these sequences must be convergent in R, say, with
limits a, b, . . . , c respectively. Now, let x = (a, b, . . . , c) and note that

d(xn, x)
2 = |an − a|2 + |bn − b|2 + · · ·+ |cn − c|2

converges to 0. Hence, lim d(xn, x) = 0, and (xn) is convergent. This completes the
proof that Rk is complete. �

Exercises and Complements

2.66 Show that the following metric spaces are complete:

(a) E = R
2 with the Manhattan metric d.

(b) E arbitrary, d is the discrete metric.

In fact, each R
n is a complete metric space with every one of the metrics introduced

in Exercises 2.24 and 2.26.

2.67 Show that the space l2 introduced in Exercise 2.27 is complete. Incidentally, so
is the space C of Example 2.17 and Exercise 2.28.
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2.68 Two Cauchy sequences (xn) and (yn) are said to be equivalent if their merger
(x1, y1, x2, y2, . . . ) is Cauchy. In this case, we write (xn) ≡ (yn). Show that this
defines an equivalence relation. That is,

(a) (xn) ≡ (xn),
(b) (xn) ≡ (yn) implies that (yn) ≡ (xn),
(c) (xn) ≡ (yn), (yn) ≡ (zn) implies that (xn) ≡ (zn).

F. Compactness

Let (E, d) be a metric space. It will be convenient to refer to E as a metric space,
without mentioning d. Also, all sets mentioned will be subsets of E. We shall use the
picturesque phrase “the collection {Ai : i ∈ I} covers B” to mean that

⋃
i∈I Ai ⊃ B.

2.69 DEFINITION. A set C is said to be compact if every collection of open sets that
covers C has a finite subcollection that covers C. The metric space (E, d) is said to
be compact if E is so.

We shall show that, for many metric spaces, compact sets are precisely the sets
that are bounded and closed. The following are aimed in that direction.

2.70 PROPOSITION. Every compact set is bounded.

PROOF. Let C be compact. Cover C by the collection of balls of radius 1 about each
x in C. By the definition of compactness, C can be covered by finitely many of these
balls. Since a finite union of bounded sets is bounded, C is bounded. �

2.71 PROPOSITION. Every closed subset of a compact set is compact.

PROOF. Let D be compact. Let C ⊂ D be closed. Fix a collection of open sets that
covers C. Adding the open set E \C to that collection, we obtain a collection of open
sets that covers D. Since D is compact, the latter collection has a finite subcollection
that still covers D. Removing E \C from that subcollection (if it were in), we obtain a
finite subcollection of the original collection that covers C. Thus, C must be compact.

�

Compact Subspaces
Recall that every subset D of E can be regarded as a metric space by itself,

with the metric it inherits from E; see Proposition 2.64. Whether D is open or
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not as a subset of E, it is open automatically when it is regarded as a metric space.
Compactness is not so shiftless.

2.72 PROPOSITION. A set D is compact as a metric space if and only if it is compact
as a subset of E.

PROOF. A subset of D is an open ball in the space D if and only if it has the form
B ∩ D for some open ball B of the space E. Since an open set is the union of all
the open balls it contains, it follows that A is an open subset of the space D if and
only if A = B ∩ D for some open subset B of the space E. Now, the definition of
compactness does the rest. �

Cluster Points, Convergence, Completeness
This is to look into the connections between compactness and convergence.

2.73 DEFINITION. A point x in E is called a cluster point of a subset A of E provided
that every open ball centered at x contains infinitely many points of A.

2.74 THEOREM. Every infinite subset of a compact set has at least one cluster point
in that compact set.

PROOF. We shall show that if C is compact, and A ⊂ C, and A has no cluster point
in C, then A is finite. Let A and C be such. Since no x in C is a cluster point of A,
for every x in C there is an open ball B(x, r) that contains only finitely many points
of A. Those open balls cover C obviously. Since C is compact, there must be a finite
number of them that cover C and, therefore, A. Since each one of those finitely many
balls has a finite number of points of A, the total number of points in A must be finite.

�

The following theorem shows how compactness helps in discussing convergence.
In particular, together with Proposition 2.62, it shows that every Cauchy sequence in
a compact set is convergent.

2.75 THEOREM. Every sequence in a compact set has a subsequence that converges
to some point of that set.
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PROOF. Let C be compact. Let (xn) ⊂ C. If the set A = {x1, x2, . . . } is finite,
then at least one point of A, say x, appears infinitely often in the sequence, and hence
(x, x, . . . ) is a subsequence which obviously converges to x ∈ A ⊂ C. Now suppose
that A is infinite. By the preceding theorem, then A has a cluster point x in C. Since
each one of the balls B(x, 1/n), n ∈ N

∗, has infinitely many points in C, we may pick
k1 so that xk1 is in B(x, 1), pick k2 > k1 so that xk2 is in B(x, 1/2), pick k3 > k2 so
that xk3 is in B(x, 1/3), and so on. Obviously, (xkn) converges to x. �

2.76 COROLLARY. Every compact set is closed.

PROOF. Let C be compact. The preceding theorem implies that every convergent
sequence in C converges to a point of C. Thus, C is closed by Theorem 2.55. �

2.77 COROLLARY. Every compact metric space is complete. Every Cauchy sequence
in a compact metric space is convergent.

PROOF. The second statement is immediate from Theorem 2.75 and Proposition 2.62.
The first follows from the second by the definition of completeness. �

Compactness in Euclidean Spaces
We have seen that, for an arbitrary metric space, every compact set is bounded

and closed; see Proposition 2.70 and Corollary 2.76. In the case of Euclidean spaces,
the converse is true as well. This is called the Heine–Borel theorem.

2.78 THEOREM. A subset of a Euclidean space is compact if and only if it is bounded
and closed.

We start by listing an auxiliary result that is trivial at least for R, R2, R3. We omit
its proof.

2.79 LEMMA. Let B be a bounded subset of a Euclidean space E. Then, for every
ε > 0 there is a finite collection of closed balls of radius ε that covers B.
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PROOF OF THEOREM 2.78. As mentioned above, Proposition 2.70 and Corollary
2.76 prove the necessity part. We now prove the sufficiency of the condition.

Let E be a Euclidean space and let C be a closed and bounded subset of E.
Suppose that C is not compact. Then, there is a collection {Ai : i ∈ I} of open sets
that covers C but is such that

2.80 no finite subcollection of {Ai : i ∈ I} covers C.

(a) Let ε = 1/2. By the preceding lemma, we can find a finite number m of closed
balls B1, . . . , Bm of radius ε that cover C. Then, C = (C ∩B1)∪ · · · ∪ (C ∩Bm). In
view of 2.80, at least one of C ∩B1, . . . , C ∩Bm cannot ever be covered by a finite
subcollection of the Ai; let that one be denoted by C1. Now, C1 is closed, its diameter
is at most 2ε = 1 (since the Bk have diameter 1), and 2.80 is true for C1.

(b) Applying the arguments of the preceding paragraph with ε = 1/4 to the set
C1 we get a new set C2 ⊂ C1 that is closed, has diameter at most 1/2, and 2.80
holds for C2. Repeating this with ε = 1/6, 1/8, 1/10, . . . we obtain further sets
C3, C4, C5, . . . with the same properties but with diameters at most 1/3, 1/4, 1/5,
. . . . Clearly C1 ⊃ C2 ⊃ C3 ⊃ · · · .

(c) Since 2.80 holds for each Cn, it must be that no Cn is empty (covering an
empty set takes no effort). Thus, we may pick x1 from C1 and x2 from C2, and so on
to obtain a sequence (xn).

(d) This sequence is Cauchy: given ε > 0 choose n so that 1/2n < ε, and then
xn, xn+1, . . . are all in a ball of radius ε since all these terms are in Cn which has di-
ameter less than 1/n. Since E is Euclidean, it is complete (see Theorem 2.65), which
means that every Cauchy sequence converges. Hence, the sequence (xn) converges to
some point x0 in E. Since, for each n, (xm : m ≥ n) ⊂ Cn and Cn is closed, the
limit x0 belongs to Cn by Theorem 2.55.

(e) Since the Ai cover C, there must exist an index i in I such that x0 is in Ai.
Fix that i. Since Ai is open, there is a number ε > 0 such that

B(x0, ε) ⊂ Ai.

Now choose n large enough that 1/n < ε/2. Since x0 ∈ Cn and diamCn ≤ 1/n <
ε/2, we see that

Cn ⊂ B(x0, ε).

In other words, Ai covers Cn. This contradicts the earlier assertion that 2.80 holds for
all Cn. This completes the proof. �
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Exercises

2.81 Supremums. Let A be a nonempty subset of R. Suppose that A is bounded
above but has no greatest element. Show that, then, supA is a cluster point of A.

2.82 Show that the union of a finite number of compact sets is again compact.

2.83 Give an example of an infinite subset of R that has no cluster points. Give an
example of one with exactly two cluster points. Identify the cluster points of the set

A =

ß
x ∈ R : x =

1

m
+

1

n
for some m,n in N

∗
™
.

2.84 Sequences in R. By 2.78, the Heine–Borel theorem, every closed interval
[a, b] ⊂ R is compact. Thus, every bounded sequence in R has a convergent sub-
sequence (cf. Theorem 2.75). Another consequence is the following useful result:

Let (xn) be a bounded sequence in R. Suppose that all convergent subsequences
of it have the same limit x. Then, (xn) converges to x.

Prove this by following the steps below.
(a) Show that x = lim inf xn and x̄ = lim supxn are cluster points of (xn).
(b) Show that there is a subsequence of (xn) that converges to x. Similarly, then,

there is a subsequence that converges to x̄.
(c) By the hypothesis that all convergent subsequences have the same limit, we

conclude that x = x̄, which means that limxn exists (and is in R since (xn) is
bounded).
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CHAPTER 3

Functions on Metric Spaces

Elementary analysis is mostly about functions from R into R, functions from
R

n into R, or, somewhat more generally, functions from R
n into R

m. Our aim is
to consider functions from one metric space to another. Replacing Euclidean spaces
by metric spaces introduces no new difficulties and is useful for dealing with various
problems concerning differential and integral equations.

For mappings from one metric space to another we employ either notations like
T, S, U or notations like f, g, h. Generally, the transformation notation is cleaner: we
write Tx for the image of x under T , which becomes f(x) in the standard function
notation.

A. Continuous Mappings

Throughout this section, E, E′, etc. will be metric spaces with corresponding
metrics d, d′, etc. Given a mapping T from E into E′, we write Tx for the image of
the point x of E and T−1B for the inverse image of the subset B of E′. On a first
reading, the reader may wish to take E′ = R and d′(x, y) = |x− y| as usual.

3.1 DEFINITION. A mapping T : E �→ E′ is said to be continuous at the point x of E
provided that for every ε > 0 there is a number δ > 0 such that

y ∈ E, d(x, y) < δ ⇒ d′(Tx, T y) < ε.

The mapping T is said to be continuous if it is continuous at every x of E.

3.2 REMARKS. (a) In the definition, δ is allowed to depend on ε and x.
(b) When E = E′ = R with the usual metric, the preceding is the classic defi-

nition of continuity.
(c) The condition for T to be continuous at x can be rephrased in more geometric

terms as follows: for every ε > 0 there is a number δ > 0 such that T maps
the open ball B(x, δ) of E into the open ball B′(Tx, ε) of E′. Here,

B(x, δ) = {y ∈ E : d(x, y) < δ}, B′(Tx, ε) = {y ∈ E′ : d′(Tx, y) < ε}.

E. Çınlar and R.J. Vanderbei, Real and Convex Analysis, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-5257-7 3, © Springer Science+Business Media New York 2013
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Continuity and Open Sets

3.3 THEOREM. A mapping T : E �→ E′ is continuous if and only if T−1B is an open
subset of E for every open subset B of E′.

PROOF. Suppose that T is continuous. Let B ⊂ E′ be open. We want to show that
A = T−1B is open, that is, for every x in A there is δ > 0 such that B(x, δ) ⊂ A. To
this end, fix x in A, note that y = Tx is in B, and, therefore, there is ε > 0 such that
B′(y, ε) ⊂ B (because B is open). By the continuity of T , for that ε, there is δ > 0
such that T maps B(x, δ) into B′(y, ε). Because B′(y, ε) ⊂ B, we have B(x, δ) ⊂ A
as needed.

Suppose that T−1B is open in E for every open subset B of E′. Let x in E be
arbitrary. We want to show that T is continuous at x. To this end, fix ε > 0. Because
B′(Tx, ε) is open, its inverse image is open, that is, A = T−1B′(Tx, ε) is an open
subset of E. Note that x is in A; therefore, there is a δ > 0 such that B(x, δ) ⊂ A,
and then T maps B(x, δ) into B′(Tx, ε). So, T is continuous at x. �

Continuity and Convergence

If (xn) is a sequence in E, we write xn
d→ x to mean that (xn) converges to x in

E in the metric d, that is, d(xn, x) → 0. Similarly, yn
d′→ y means that the sequence

(yn) in E′ converges to y in the metric d′. The following is probably the most useful
characterization of continuity.

3.4 THEOREM. A mapping T : E �→ E′ is continuous at the point x of E if and only if

(xn) ⊂ E, xn
d→ x ⇒ Txn

d′→ Tx.

PROOF. Suppose that T is continuous at x. Let (xn) ⊂ E and suppose that xn
d→ x.

We want to show that, then, Txn
d′→ Tx, which is equivalent to showing that for

every ε > 0 the ball B′(Tx, ε) contains all but finitely many of the points Txn. To
this end, fix ε > 0. By the continuity of T at x, there is δ > 0 such that T maps
B(x, δ) into B′(Tx, ε). Since xn ∈ B(x, δ) for all but finitely many n, it follows that
Txn ∈ B′(Tx, ε) for all but finitely many n, which is as desired.
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Suppose that T is not continuous at x. Then, there is ε > 0 such that for every
δ > 0 there is y in E such that d(x, y) < δ and d′(Tx, T y) ≥ ε. Thus, for that ε, taking
δ = 1, 1/2, 1/3, . . . we can pick y = x1, x2, x3, . . . such that d(xn, x) < 1/n and

d′(Txn, T x) ≥ ε. Hence, there is a sequence (xn) in E such that xn
d→ x but (Txn)

does not converge to Tx. �

Compositions
The following result is recalled best by the phrase “a continuous function of a

continuous function is continuous.” Here, E, E′, and E′′ are metric spaces with their
own metrics.

3.5 THEOREM. If T : E �→ E′ is continuous at x ∈ E and S : E′ �→ E′′ is continuous
at Tx ∈ E′, then S ◦T : E �→ E′′ is continuous at x ∈ E. If T is continuous and S is
continuous, then S ◦T is continuous.

PROOF. The second assertion is immediate from the first. To show the first, let (xn) ⊂
E be such that xn

d→ x. If T is continuous at x, then Txn
d′→ Tx by the last theorem;

and if S is continuous at Tx, this in turn implies that S(Txn)
d′′→ S(Tx) by the last

theorem again, which means that S ◦T is continuous at x. �

Examples

3.6 Constants. Let T : E �→ E′ be defined by Tx = b where b in E′ is fixed. This T
is continuous.

3.7 Identity. Let T : E �→ E be defined by Tx = x. This T is continuous, as is easy
to see from Theorems 3.3 or 3.4.

3.8 Restrictions. Let T : E �→ E′ be continuous. For D contained in E, the restric-
tion of T to D is the mapping S : D �→ E′ defined by putting Sx = Tx for each
x ∈ D. Obviously, the continuity of T implies that of S.

3.9 Discontinuity. Let f : R �→ R be defined by setting f(x) = 1 if x is rational and
f(x) = 0 if x is irrational. This function is discontinuous at every x in R. To see this,
fix x in R. For every δ > 0, the ball B(x, δ) has infinitely many rationals and infinitely
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many irrationals. Thus, it is impossible to satisfy the condition for continuity at x (for
ε < 1).

3.10 Lipschitz continuity. A mapping T : E �→ E′ is said to satisfy a Lipschitz
condition if there exists a constant K in (0,∞) such that

d′(Tx, T y) ≤ Kd(x, y)

for all x, y in E. Every such mapping is continuous: given ε > 0, choose δ = ε/K no
matter what x is.

3.11 Coordinate mappings. Let E = R
n, the n-dimensional Euclidean space, fix i in

{1, . . . , n}, and define Pi : R
n �→ R by Pix = xi, the ith coordinate of x. Then, Pi

satisfies the Lipschitz condition above with K = 1 and, thus, is continuous.

Real-Valued Functions
Functions f from a metric space E into R can be combined through arithmetic

operations to obtain new functions. For instance, f+g is the function whose value at x
is f(x) + g(x). In defining f/g, however, one must exercise some caution at points x
where g(x) = 0. It is best to limit the definition of f/g to the set {x ∈ E : g(x) �= 0}.
The following is immediate from Theorem 3.4.

3.12 PROPOSITION. If f : E �→ R and g : E �→ R are continuous, then so are f + g,
f − g, f · g, and f/g, except that, in the last case, f/g should be treated as a function
on {x : g(x) �= 0}.

R
n-Valued Functions

These are functions from a metric space E into the Euclidean space Rn (with the
Euclidean distance). The following reduces the notion of continuity for such mappings
to the case of real-valued functions. We use the projection mappings Pi introduced in
Example 3.11: Pix is the i-coordinate of the vector x in R

n.

3.13 PROPOSITION. A mapping T : E �→ R
n is continuous if and only if the map-

pings P1 ◦T, . . . , Pn ◦T from E into R are continuous.
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PROOF. Let T be continuous. Then, Pi ◦T is continuous for each i because a contin-
uous function of a continuous function is continuous.

Suppose that P1 ◦T, . . . , Pn ◦T are continuous. To show that, then, T is contin-
uous, we start by observing that

3.14 ‖u− v‖ =

(
n∑

1

|Piu− Piv|2
)1/2

, u, v ∈ R
n.

Now, fix x in E and ε > 0. Using the definition of continuity for Pi ◦T at x with
εi = ε/

√
n, we find δi > 0 such that

d(x, y) < δi ⇒ |PiTx− PiTy| < ε/
√
n.

Let δ = min{δ1, . . . , δn}. Then δ > 0 and

d(x, y) < δ ⇒ |PiTx− PiTy| < ε/
√
n for each i

⇒ ‖Tx− Ty‖ < ε

in view of 3.14 used with u = Tx and v = Ty. �

Exercises

3.15 Continuity of metrics. For the metric d onE, show that the mapping x �→ d(x, y)
is continuous for each fixed y. By symmetry, so is y �→ d(x, y) for each fixed x.
Indeed, the mapping d : E×E �→ R+ is continuous (which implies the preceding two
statements). Hint: let (xn) and (yn) be sequences in E converging to x and y, and
show that d(xn, yn) → d(x, y).

3.16 Continuity of pairs. Let f : E �→ E′ and g : E �→ E′′ be continuous. Define
h : E �→ E′ ×E′′ by letting h(x) be the pair (f(x), g(x)). Show that h is continuous.

3.17 Closed sets. If T : E �→ E′ is continuous, then T−1B is a closed subset of E
for every closed subset B of E′. Show. For f : E �→ R continuous, show that the sets
{x ∈ E : f(x) ≤ b}, {x ∈ E : f(x) = b}, {x ∈ E : f(x) ≥ b} are closed in E.

3.18 Indicators. For A ⊂ E let 1A be the indicator of A, that is, 1A(x) = 1 if x ∈ A
and 1A(x) = 0 if x �∈ A. Show that 1A is continuous at all points x in E except for
x ∈ ∂A.

3.19 Left-continuity, right-continuity. Let f : R �→ E′. Order properties of the real
line enable us to refine the notion of continuity as follows. The function f is said to be
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right-continuous at x in R provided that f(xn)
d′→ f(x) for every decreasing sequence

(xn) ⊂ R with limit x. Similarly, f is said to be left-continuous at x if f(xn)
d′→ f(x)

for every increasing sequence (xn) with limit x.
Show that f is continuous at x if and only if it is both right-continuous and left-

continuous at x.

3.20 Functional inverses. Let f : R+ �→ R+ be a continuous and strictly increasing
bijection. Let f−1(y) be that point x for which f(x) = y. Show that the function f−1

is continuous and strictly increasing.

3.21 Legendre transforms. A function f : R �→ R is called convex if

f(px+ qy) ≤ pf(x) + qf(y)

for all x, y in R and all p, q in (0, 1) satisfying p+ q = 1. The Legendre transform of
a convex function f is the function g : R �→ R defined by

g(y) = max
x

(xy − f(x)).

Show that g is convex and that

f(x) = max
y

(xy − g(y)).

State any extra “smoothness” assumptions you might need.

3.22 Sections. Let f : E1 × E2 �→ R be continuous. Show that, for each y in E2,
the mapping x �→ f(x, y) from E1 into R is continuous. Similarly, y �→ f(x, y) is
continuous for each x. Unfortunately, the converse does not hold: it is possible to
have x �→ f(x, y) continuous for each y and y �→ f(x, y) continuous for each x even
though f is not continuous. Give an example of such a function.

B. Compactness and Uniform Continuity

As before, E, E′, etc. are metric spaces with metrics d, d′, etc. This section is on
the effect of compactness on continuity.

3.23 THEOREM. Let T : E �→ E′ be continuous. If E is compact, then the range of T
is a compact subset of E′.

PROOF. Let D ⊂ E′ be the range of T . Assuming that E is compact, we need to show
that D is compact. Let {Bi : i ∈ I} be a collection of open subsets of E′ that covers
D. Then, the continuity of T implies via Theorem 3.3 that the sets Ai = T−1Bi,
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i ∈ I , are open. Moreover, {Ai : i ∈ I} covers E: if x is in E then Tx is in
D, and hence, Tx is in Bi for some i, which implies that x is in the corresponding
Ai. Now the compactness of E implies that there exists a finite subset J of I such
that {Ai : i ∈ J} covers E. Thus, if x ∈ E, then x ∈ Ai for some i in J and
therefore Tx ∈ Bi for some i in J . That is, {Bi : i ∈ J} covers D. So, D must be
compact. �

Recall that every compact set is closed and bounded. Thus, if f : E �→ R is
continuous andE is compact, then the range of f is bounded and closed, which implies
that f attains a maximum and a minimum, that is, there are x0 and x1, such that
f(x0) ≤ f(x) ≤ f(x1) for all x in E (see Exercise 2.81 to the effect that if a subset
D of R is closed and bounded then inf A and supA belong to D). We have thus shown
the following result.

3.24 COROLLARY. Let E be compact and f : E �→ R continuous. Then, f is bounded
and attains a maximum and a minimum.

The conclusion fails if E is not compact. For instance, f(x) = x on E = (0, 1) is
bounded but has neither a maximum nor a minimum. Also, f(x) = 1/x on E = (0, 1)
is not bounded and has neither a maximum nor a minimum.

Uniform Continuity
Recall the definition of continuity: a mapping T : E �→ E′ is continuous provided

that for every x in E and every ε > 0 there is a number δ > 0 (depending on x and
ε) such that d(x, y) < δ implies d′(Tx, T y) < ε for all y in E. The import of the
following is to remove the dependence of δ on x.

3.25 DEFINITION. A mapping T : E �→ E′ is said to be uniformly continuous pro-
vided that for every ε > 0 there is a number δ > 0 such that

x, y ∈ E, d(x, y) < δ ⇒ d′(Tx, T y) < ε.

Obviously, every uniformly continuous function is continuous. The converse is
false. For example, the function f : (0, 1) �→ R defined by f(x) = 1/x is continuous
but not uniformly so. The failure here is not due to the unboundedness of f . For
instance, the function f : (0, 1) �→ [−1, 1] defined by f(x) = sin(1/x) is continuous
but not uniformly so. The mappings of Examples 3.6, 3.7, 3.10, and 3.11 are
uniformly continuous. In fact, they are all special cases of Example 3.10 on Lipschitz
continuity. Being Lipschitz almost encapsulates the notion of uniform continuity.
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3.26 PROPOSITION. Let T : E �→ E′ be Lipschitz continuous. Then T is uniformly
continuous.

PROOF. Fix ε > 0 and choose δ = ε/K . This δ works and is independent of x. �

See Exercise 3.34 for an “almost converse” to this result. The following shows
the important role of compactness in relation to uniform continuity.

3.27 THEOREM. Let T : E �→ E′ be continuous. If E is compact, then T is uniformly
continuous.

PROOF. Fix ε > 0. We search for δ > 0 that will fulfill the condition for uniform
continuity. Since T is continuous, for each x in E there is δ(x) > 0 such that

3.28 d(x, y) < δ(x) ⇒ d′(Tx, T y) < ε/2.

The collection of open balls B(x, δ(x)/2), x ∈ E, covers E. Since E is compact,
there must exist a finite number of them, say those corresponding to x1, . . . , xn, that
cover E. Define

δ =
1

2
min{δ(x1), . . . , δ(xn)}.

Then, δ > 0 and it remains to show that this δ works. Let x, y in E be arbitrary and
suppose that d(x, y) < δ. By the way the x1, . . . , xn are chosen, there is an i such
that x is in B(xi, δ(xi)/2), that is,

d(x, xi) <
1

2
δ(xi).

Moreover, for the same i,

d(y, xi) ≤ d(y, x) + d(x, xi) ≤ δ +
1

2
δ(xi) ≤ δ(xi).

Thus, d(x, xi) < δ(xi) and d(y, xi) < δ(xi), which by 3.28 imply that

d′(Tx, Txi) < ε/2, and d′(Ty, Txi) < ε/2.

Thus, d′(Tx, T y) < ε by the triangle inequality. �
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Exercises

3.29 Metrics. Show that, for fixed x0 in E, the function x �→ d(x, x0) from E into
R+ is uniformly continuous.

3.30 Compositions. Let T : E �→ E′ and S : E′ �→ E′′ be uniformly continuous.
Show that, then, S ◦T : E �→ E′′ is uniformly continuous.

3.31 Homeomorphisms. Recall that for a bijection f : E �→ E′ we define the func-
tional inverse f−1 by setting f−1(y) = x if and only if f(x) = y. A homeomorphism
from E onto E′ is a bijection that is continuous and whose functional inverse is also
continuous. Incidentally, two spaces E and E′ are said to be homeomorphic if there
exists a homeomorphism from one to the other. Compactness helps in checking for
homeomorphisms. Show that if f : E �→ E′ is a continuous bijection and E is com-
pact, then f is a homeomorphism.

3.32 Extensions. Let D be dense in E (see Exercise 2.46 for the definition). Note that
this means that every point of E \D is a cluster point of D. Suppose that f : D �→ R

is uniformly continuous. Show that, then, there exists a unique continuous function
f̄ : E �→ R such that f̄(x) = f(x) for all x in D. Then, f̄ is called the continuous
extension of f onto E.

3.33 Cantor function. Let E = [0, 1], and C be the Cantor set, and D = E \ C; see
Example 2.40. Note that D is dense in E, since C contains no open intervals.

Show that the function f constructed in Example 2.40 of Chap. 2 is a uniformly
continuous function from D into [0, 1]. By the preceding exercise, then, f has a con-
tinuous extension f̄ onto E = [0, 1]. In fact, f̄ is uniformly continuous (why?).

The function f̄ is called the Cantor function. It is increasing and continuous. Its
derivative exists at every x in D and is equal to 0. So, although f̄ increases from 0 to
1 in a continuous fashion, all its increase is on the set C, and C has “length” 0.

3.34 Lipschitz continuity. A mapping T : Rn �→ R is uniformly continuous if and
only if for every ε > 0 there exists Kε such that

|Tx− Ty| ≤ Kε · ‖x− y‖+ ε

for all x and y in R
n. Prove this.

Hints: (a) The “if” part is easy. Choose δ = ε/2Kε/2.
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(b) For the “only if” part: fix ε > 0 and x and y; choose a chain of points
x = x0, x1, x2, . . . , xm = y with distances ‖xi − xi+1‖ < δ; ask, how many such
points do we need, and note that

|Tx− Ty| ≤
m∑

1

|Txi − Txi+1| ≤ nε;

figure out the m needed and then what Kε should be.

C. Sequences of Functions

Let E and E′ be metric spaces with respective metrics d and d′. Let (Tn) be a
sequence of mappings from E into E′.

3.35 DEFINITION. The sequence (Tn) is said to converge pointwise to a mapping
T : E �→ E′ provided that the sequence (Tnx) converges to Tx in E′ for each point x
in E.

In other words, for each x in E, we must have

3.36 lim
n

d′(Tnx, Tx) = 0,

that is, for every ε > 0 there must be an integer nε,x such that d′(Tnx, Tx) < ε for
all n ≥ nε,x. If nε,x can be chosen to be free of x, we obtain the following stronger
concept of convergence.

3.37 DEFINITION. The sequence (Tn) is said to converge uniformly to a mapping T
provided that

lim
n

sup
x∈E

d′(Tnx, Tx) = 0.

Obviously, uniform convergence of (Tn) implies pointwise convergence (and the
limit T is the same). That the converse is generally false can be seen from Figs. 3.1
and 3.2: here the functions fn : R+ �→ [0, 1] converge pointwise, but not uniformly
(Fig. 3.3).

Cauchy Criterion
As with sequences of points, it is important to have a criterion for the uniform

convergence of (Tn) expressed in terms of the Tn themselves. The following Cauchy
criterion does this.
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f1

f3

f2

1
x

fn (x)

FIGURE 3.1. Here (fn) converges to f , where f(x) = 0 for x < 1
and f(x) = 1 for x ≥ 1. Convergence is pointwise but not uniform.

fn (x)

nn−1
x

fn

FIGURE 3.2. These fn converge to f = 0 pointwise, but not uniformly.

f3

f2

f1

FIGURE 3.3. These fn converge to 0 uniformly (and hence pointwise).

3.38 THEOREM. Suppose that E′ is complete. Then, (Tn) is uniformly convergent if
and only if for every ε > 0 there is an integer nε with

3.39 sup
x

d′(Tnx, Tmx) < ε for all m > n ≥ nε.
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PROOF. Suppose that (Tn) converges uniformly, say, to T . Then, for every ε > 0,
there is an integer nε such that d′(Tnx, Tx) < ε/2 for all n ≥ nε. Thus, for m,n≥nε,

d′(Tnx, Tmx) ≤ d′(Tnx, Tx) + d′(Tx, Tmx) < ε/2 + ε/2 = ε

for all x. So, (Tn) is Cauchy (for every ε > 0 there is nε such that 3.39 holds).
Let (Tn) be Cauchy. Then, in particular, for each x in E, the sequence (Tnx) in

E′ is Cauchy. Since E′ is complete, this implies that (Tnx) converges to some point
of E′, call it Tx. This defines a mapping T : E �→ E′. We want to show that (Tn)
converges to T uniformly. Since (Tn) is Cauchy, for every ε > 0 there is an integer nε

such that
d′(Tnx, Tmx) < ε for all m,n ≥ nε

for all x. Now, let m → ∞; then, (Tmx) converges to Tx and the continuity of
y �→ d′(Tnx, y) implies that d′(Tnx, Tmx) → d′(Tnx, Tx). Thus, as we needed to
show, for ε > 0 there is an integer nε with

d′(Tnx, Tx) < ε for all n ≥ nε and all x ∈ E.

�

Continuity of Limit Functions
As can be seen from Fig. 3.1, the pointwise limit of a sequence of continuous

functions is not necessarily continuous. In fact, the primary use of uniform conver-
gence is to ensure the continuity of the limit function.

3.40 THEOREM. Suppose that each Tn is continuous and (Tn) converges to T
uniformly. Then, T is continuous.

PROOF. Fix x in E. Note that for all n and y

d′(Tx, T y) ≤ d′(Tx, Tnx) + d′(Tnx, Tny) + d′(Tny, T y).

Given ε > 0, there is an integer nε such that the first and third terms on the right
side are less than ε/3 each for n = nε; this comes from the uniform convergence of
(Tn) to T . Moreover, the continuity of Tnε at the point x implies the existence of
δ = δε,x such that the second term on the right with n = nε is less than ε/3 for all
y in B(x, δ). Hence, for every ε > 0 there is a δ = δε,x such that d(x, y) < δ implies
that d′(Tx, T y) < ε for all y; that is, T is continuous at x. �

Exercises

3.41 Let 0 ≤ a < b < 1. Let fn : [a, b] �→ R+ be defined by fn(x) = xn. Show that
(fn) converges uniformly to f = 0.
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3.42 Let Tn : [0, 1] �→ [0, 1] be defined by Tnx = xn(1 − x). Show that (Tn) is
uniformly convergent.

3.43 Let f : R �→ R be uniformly continuous. Define fn(x) = f(x + 1/n). Show
that (fn) converges uniformly to f .

3.44 Let (fn) be defined as a sequence of functions from R+ into R+ by f1(x) =
√
x,

f2(x) =
√

x+
√
x, f3(x) =

»
x+

√
x+

√
x, . . . . Show that (fn) is convergent

and find the limit function.

D. Spaces of Continuous Functions

Throughout this section (E, d) will be a compact metric space, and all functions
are from E into R. On a first reading, the reader should take E = [a, b], a closed
interval. Our aim is to illustrate the uses of the foregoing concepts in the analysis of
the function space C(E �→ R) of all continuous functions from E into R. For brevity,
we write C for C(E �→ R).

The set C is a vector space: if f and g are in C then so is af + bg for each a in
R and b in R. Moreover, various arithmetic operations are well-defined on C: f + g,
f − g, f · g, and f/g all belong to C if f and g are in C, except that in the case of f/g
one must worry about g(x) = 0.

Although each point of C is a function, in many respects C is like a Euclidean
space. We may, for instance, define a norm on C as follows. Let f ∈ C. Being a
continuous function on a compact metric space, f is bounded and attains its maximum
and minimum. It follows that

3.45 ‖f‖ = max
x∈E

|f(x)|

is a well-defined positive real number; it is called the norm of f . It is indeed a norm:

3.46 ‖f‖ ≥ 0; ‖f‖ = 0 if and only if f = 0;

3.47 ‖cf‖ = |c| · ‖f‖;

3.48 ‖f + g‖ ≤ ‖f‖+ ‖g‖.
As with Euclidean spaces, we may use the norm above to define a metric on C. We
define the distance between f and g to be

3.49 d(f, g) = ‖f − g‖.
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Convergence in C
The following shows that convergence in the metric space C is equivalent to

uniform convergence of functions on E.

3.50 THEOREM. A sequence (fn) in C is convergent if and only if the sequence of
functions fn : E �→ R is uniformly convergent.

PROOF. In view of the definition of convergence for a sequence of points in a metric
space and the definition of uniform convergence for a sequence of functions fn : E �→
R, the claim is simply that

lim
n

d(fn, f) = 0 ⇔ lim
n

sup
x∈E

|fn(x) − f(x)| = 0.

But this is obvious in view of 3.49 and 3.45. �

Conceptually, then, the somewhat complex concept of uniform convergence of
a sequence of functions is equivalent to the simpler concept of convergence of a
sequence in a metric space.

Lipschitz Continuous Functions
A function f in C is said to be Lipschitz continuous if there exists a constant K

such that

3.51 |f(x)− f(y)| ≤ K · d(x, y) for all x, y ∈ E.

The constant K is called the Lipschitz constant. For example, if E = [a, b], f is
differentiable, and the derivative f ′ is bounded by K , then 3.51 holds with the same
K , and f is Lipschitz continuous.

Let BK be the set of all f in C satisfying 3.51. Then, clearly, the set of all
Lipschitz continuous functions is exactly the union of the BK’s over all K in R+. The
next theorem shows that each BK is closed. Unfortunately, the union

⋃
KBK is not

closed, as can be seen from the sequence of functions shown in Fig. 3.4. In fact, the
closure of this union is precisely C, that is, every f in C is the limit of a sequence of
Lipschitz continuous functions; we leave this as an exercise to prove.

3.52 PROPOSITION. Each BK is a closed subset of C.
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ba

f

f1

f2

FIGURE 3.4. A sequence of Lipschitz continuous functions con-
verging to a continuous function that is not Lipschitz.

PROOF. We use the characterization given in Theorem 2.55. Let (fn) in BK converge
to the point f in C. We need to show that f is in BK . Now, for arbitrary x and y in E,

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x) − fn(y)|+ |fn(y)− f(y)|
≤ ‖f − fn‖+Kd(x, y) + ‖fn − f‖

for all n. Since ‖fn − f‖ → 0, this shows that f satisfies 3.51. �

Completeness
The space C is not bounded. Therefore it cannot be compact. But, at least, it is

complete.

3.53 THEOREM. The space C is complete.

PROOF. Let (fn) ⊂ C be Cauchy, that is, for every ε > 0 there is an integer nε such
that ‖fn− fm‖ ≤ ε for all m > n ≥ nε. This is equivalent to the condition 3.39 (here
E′ = R which is complete). Thus, by Theorem 3.38, (fn) is uniformly convergent
as a sequence of functions on E. But, by Theorem 3.50, uniform convergence is
equivalent to convergence in C. So, (fn) is convergent in C. �

Functionals
Since C = C(E �→ R) is a metric space, we may speak of functions defined on

C as we speak of functions defined on E. For linguistic clarity, a function from C into
R is called a functional. Here are some examples of functionals:

3.54 M : f �→ M(f) = max
x∈E

f(x),
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3.55 Px : f �→ Px(f) = f(x), x ∈ E fixed,

3.56 F : f �→ ϕ(f(x1), . . . , f(xk)),

where k ≥ 1 is a fixed integer, ϕ : Rk �→ R is fixed, and x1, . . . , xk are fixed in E.
Here are some further examples in the particular case where E = [a, b]:

3.57 L(f) =

∫ b

a

f(x) dx,

3.58 Lϕ(f) =

∫ b

a

ϕ(x)f(x) dx,

where ϕ ∈ C is some fixed function.
The functional M is uniformly continuous; in fact, it is Lipschitz continuous with

Lipschitz constant K = 1:

|M(f)−M(g)| = |max
x

f(x)−max
x

g(x)|
≤ max

x
|f(x)− g(x)| = ‖f − g‖ = d(f, g).

Even easier is the Lipschitz continuity of the coordinate mapping Px for fixed x:

|Px(f)− Px(g)| = |f(x)− g(x)| ≤ ‖f − g‖.
Assuming that the function ϕ : Rk �→ R is continuous, the functional F is continuous:
if ‖fn − f‖ → 0, then the sequence of points (fn(x1), . . . , fn(xk)) in R

k converges
to the point (f(x1), . . . , f(xk)) of Rk as n → ∞, and the continuity of ϕ implies that
F (fn) → F (f).

The functional L is a linear transformation from C into R. It is uniformly contin-
uous; in fact, it is Lipschitz continuous with Lipschitz constant K = b− a. So is Lϕ,

with Lipschitz constant K =
∫ b

a
|ϕ(x)| dx.

Exercises

3.59 If f and g are continuous functions on a compact metric space, show that

|max
x

f(x)−max
x

g(x)| ≤ max
x

|f(x)− g(x)|.

3.60 Differentiable functions. For fixed K in R+, let AK denote the set of all differ-
entiable functions f whose derivatives f ′ are continuous and bounded by K . The set
AK is not closed, which can be seen from Fig. 3.5 where (fn) ⊂ AK , (fn) converges
to f in C, but f is not in AK . In fact, the closure of AK is precisely BK . Show this.
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ba

f

f1

f2

FIGURE 3.5. A sequence of differentiable functions whose deriva-
tives are bounded but whose limit is not differentiable.

3.61 Closure of
⋃

KBK is C. For each f in C there exists a sequence (fn) of Lipschitz
continuous functions whose limit is f . Prove this.
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CHAPTER 4

Differential and Integral Equations

The aim of this chapter is to discuss several applications of metric space ideas to
some classical problems of engineering analysis.

We shall start with one theorem, the fixed point theorem for contractions on a
metric space, and show how various problems can be beaten into submission with it.

A. Contraction Mappings

The aim of this section is to prepare the stage for some applications for differential
and integral equations encountered frequently in engineering. Throughout, E is a
metric space with some metric d.

We shall use the term transformation on E to mean a mapping from E into E.
If T is a transformation on E, then the image Tx of x is a point in E, which allows
us to apply T to the point Tx; the image of Tx is T (Tx), for which we write T2x. In
other words, we are writing T2 for T ◦T . Further iterates are defined by

4.1 Tn+1x = T (Tnx), x ∈ E, n ∈ N,

with T0x = x. So, T0 is the identity, T1 = T , etc.
Given a point x in E, the sequence (xn) obtained by putting xn = Tnx, n ∈ N, is

called the orbit of x. One should think of xn as the position at time n of a particle that
starts at x0 = x and moves successively to x1 = Tx0, x2 = Tx1, . . . ; see Fig. 4.1.

Contractions

Let (E, d) be a metric space. A transformation T on E is said to be a contraction
if it is Lipschitz continuous with some Lipschitz constant α < 1. In other words, T is
a contraction of E if there exists a constant α in [0, 1) such that

4.2 d(Tx, T y) ≤ α · d(x, y) for all x, y ∈ E.

Then, for the iterates of T we obtain

4.3 d(Tnx, Tny) ≤ αn · d(x, y) for all x, y ∈ E, n ∈ N.

E. Çınlar and R.J. Vanderbei, Real and Convex Analysis, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-5257-7 4, © Springer Science+Business Media New York 2013
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FIGURE 4.1. The orbit of x under the map T .

y=x

y=Tx

x0x1x2x*

y

x
1

FIGURE 4.2. A contraction T on [0, 1] and its fixed point x∗.

Thinking of the orbits of x and y, we see that the two particles starting at x and y are
approaching each other geometrically quickly.

Fixed Point Theorem
Let T be a transformation. A point x is said to be a fixed point of T if Tx=x.

Then, the orbit of x is stationary; that is, Tnx = x for all n. Figure 4.2 shows a
transformation T on E = [0, 1]; there, x∗ is the unique fixed point of T , and the orbit
(Tnx0) of x0 converges to the fixed point x∗.

The following theorem shows that every contraction of a complete metric space
has a unique fixed point. Its proof shows how to obtain the fixed point by the method
of successive approximations.
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4.4 THEOREM. Suppose that E is complete. Let T be a contraction on E. Then, T
has a unique fixed point, and, for each point x0 in E, the orbit of x0 converges to that
fixed point.

PROOF. Fix x0 in E, let (xn) be its orbit, and put c = d(x0, x1) for simplicity.
Observe from 4.1 and 4.3 that

d(xn, xn+1) = d(Tnx0, Tnx1) ≤ αnd(x0, x1) = cαn

for every n. Thus, for n < m, using the triangle inequality,

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ cαn + cαn+1 + · · ·+ cαm−1 ≤ cαn(1+α+α2 + · · · ) = c
αn

1− α
.

Since α < 1, the right side goes to 0 as n → ∞. Hence, the sequence (xn) is Cauchy
and must converge to some point x in E in view of the hypothesis that E is complete.
Then, by the continuity of T ,

Tx = T (limxn) = limTxn = limxn+1 = x,

that is, x is a fixed point.
To complete the proof, we now show that the fixed point is unique. To this end,

let x and y be fixed points. Then, since Tx = x and Ty = y, we have via 4.2 that

d(x, y) ≤ αd(x, y).

Since α < 1, this is possible only if d(x, y) = 0, that is, x = y. �

The preceding theorem can be used to prove existence and uniqueness of solutions
to a wide variety of equations. Besides showing that Tx = x has a solution, the proof
gives a practical method for arriving at it. Indeed, start from an arbitrary point x0 and
successively compute x1 = Tx, x2 = Tx1, x3 = Tx2, . . . . The xn get close to x
geometrically fast: since xn = Tnx0 and x = Tnx,

d(xn, x) = d(Tnx0, Tnx) ≤ αnd(x0, x).

Exercises

4.5 For the transformation T : [0, 1] �→ [0, 1] shown in Fig. 4.3, find the orbit of the
point x0 indicated.
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FIGURE 4.3. Exercise 4.5.
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FIGURE 4.4. Exercise 4.6.

4.6 For the transformation T : [0, 1] �→ [0, 1] given by Tx = 0.3 + 0.2x + 0.5x3,
Fig. 4.4 shows that there are exactly two fixed points. Find them. Show that, for
arbitrary x0 �= 1, the orbit of x0 converges to the smaller fixed point x∗.

4.7 Branching processes. In a chain reaction, each particle gives rise to a random
number of new particles. Each of these new particles acts independently and produces
random numbers of newer particles. And this continues indefinitely. Let pk be the
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generations

FIGURE 4.5. Exercise 4.7.

probability that a particle produces k particles; here p0, p1, p2, . . . are positive num-
bers with

∑
pk = 1. Starting with one particle, we now consider the probability that

the chain reaction fizzles out, that is, the population of particles becomes extinct. Let
xn be the probability that the nth generation is extinct already (Fig. 4.5). Note that
the (n + 1)th generation consists of particles that are nth-generation offspring of the
individuals of the first generation. In order for the population to be extinct at or before
the (n + 1)th generation, populations initiated by the particles of the first generation
must all become extinct. Thus,

xn+1 =
∞∑

k=0

pk(xn)
k.

In other words, xn+1 = Txn where T : [0, 1] �→ [0, 1] is defined by

Tx =
∞∑

k=0

pkx
k, x ∈ [0, 1].

Now, the probability x∗ of eventual extinction for the population is the limit of xn,
and thus satisfies

x∗ = Tx∗.

(a) Show that x1 = p0. Show that the sequence (xn) increases to the extinction
probability x∗.

(b) Assume that p0 > 0. If p0 + p1 = 1 (so that p2 = p3 = · · · = 0) show that
x∗ = 1.

(c) Show that the mapping x �→ Tx is increasing and convex.
(d) Let a =

∑∞
k=1 pkk, that is, a is the expected number of particles produced by

one particle. Show that if a ≤ 1, then x = Tx has only one solution and the fixed
point is x∗ = 1.
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(e) Suppose that a > 1. Then, show that x = Tx has exactly two solutions. One
solution is 1, the other is the extinction probability x∗. Show this by examining the
graph of T and using (a).

4.8 Let T : [0, 1] �→ [0, 1] be defined by

Tx = 4x(1− x).

Show that T has exactly two fixed points. Compute them. Give an example of an orbit
that converges to the fixed point x∗ = 0. Note the highly chaotic nature of the orbits.

4.9 Let T : [0, 1] �→ [0, 1] be defined by Tx = 2x (mod 1), that is, Tx = 2x if
2x < 1 and Tx = 2x− 1 if 2x ≥ 1. The only fixed point is x∗ = 0.

Incidentally, if x = 0.ω1ω2ω3 · · · is the binary representation of x then Tx =
0.ω2ω3ω4 · · · and T2x = 0.ω3ω4ω5 · · · , etc. Note the highly chaotic nature of the
orbits by plotting (Tnx).

4.10 Let T : Rn �→ R
n be a linear transformation, say Tx = Ax where A is some

n × n matrix. Give a condition on A that guarantees T to be a contraction (with the
Euclidean metric on R

n).

4.11 Let Tx = Ax + b where A is an n × n matrix and b is a fixed vector in R
n.

Consider E = R
n with the weighted Manhattan metric d(x, y) =

∑n
i=1 wi · |xi − yi|

where the weights w1, . . . , wn are strictly positive. Show that, to establish that T is a
contraction of this metric space E, it is sufficient to have

n∑

i=1

wi|aij | < wj , j = 1, . . . , n.

B. Systems of Linear Equations

In this section we discuss the use of the fixed point theorem in solving systems
of linear equations. As a by-product, we get a chance to discuss the importance of
choosing the right metric for a particular application.

Let E = R
n; we do not specify the metric just yet. Fix b in R

n and consider the
system of linear equations

4.12 xi =
n∑

j=1

aijxj + bi, i = 1, . . . , n,
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where the aij are real numbers. Writing A for the n × n matrix of elements aij , the
system 4.12 is equivalent to

4.13 x = Ax+ b.

In other words, the problem is to find the fixed point of the transformation T : Rn �→
R

n defined by

4.14 Tx = Ax+ b.

If T is a contraction, then we can use Theorem 4.4 and obtain the unique solution of
Tx = x by the method of successive approximations.

The conditions under which T is a contraction depend on the choice of metric on
E = R

n. We discuss three cases.

Maximum Norm
Suppose that d is the metric associated with the maximum norm:

d(x, y) = max
1≤i≤n

|xi − yi|.

Then, since Tx− Ty = Ax−Ay = A(x − y),

d(Tx, T y) = max
i

∣
∣
∣
∣
∣

n∑

j=1

aij(xj − yj)

∣
∣
∣
∣
∣

≤ max
i

∑

j

|aij | · |xj − yj |

≤ max
i

∑

j

|aij |max
k

|xk − yk| =

(

max
i

∑

j

|aij |
)

d(x, y).

Thus, the contraction condition 4.2 is satisfied if

4.15 α = max
i

∑

j

|aij | < 1.

Manhattan Metric
Suppose that d is the Manhattan metric:

d(x, y) =

n∑

i=1

|xi − yi|.
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Then,

d(Tx, T y) =
∑

i

∣
∣
∣
∣
∣

∑

j

aij(xj − yj)

∣
∣
∣
∣
∣

≤
∑

i

∑

j

|aij | · |xj − yj | ≤
(

max
j

∑

i

|aij |
)

d(x, y),

and the contraction condition is satisfied if

4.16 α = max
j

∑

i

|aij | < 1.

Euclidean Metric
Suppose that d is the ordinary Euclidean distance. Then,

d(Tx, T y)2 =
∑

i

(
∑

j

aij(xj − yj)

)2

≤
∑

i

(
∑

j

a2ij

)(
∑

j

(xj − yj)
2

)

=

(
∑

i

∑

j

a2ij

)

d(x, y)2,

where we used Schwarz’s inequality at the second step. Thus, the contraction condi-
tion 4.2 is satisfied if

4.17 α =
∑

i

∑

j

a2ij < 1.

Conclusion
Under each of the metrics discussed, Rn is a complete metric space. Hence, if at

least one of the conditions 4.15–4.17 holds, Theorem 4.4 applies to show that there
exists a unique solution to 4.12. The solution x∗ is a fixed point of T , and it can be
obtained as the limit of the sequence of approximations

4.18 x, Tx, T2x, . . .

starting with an arbitrary initial point x. However, none of the conditions 4.15–
4.17 is necessary; it is easy to give examples of A where one condition holds but not
the others.
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C. Integral Equations

The most interesting applications of fixed point theorems arise when the underly-
ing metric space is a function space. Here we discuss the existence and uniqueness of
solutions to Fredholm and Volterra equations.

Fredholm Equation
A Fredholm equation (of the second kind) is an integral equation of the form

4.19 f(x) = ϕ(x) + λ

∫ b

a

K(x, y)f(y) dy.

Here, the functions ϕ : [a, b] �→ R and K : [a, b] × [a, b] �→ R are given, λ is an
arbitrary fixed real number, and f : [a, b] �→ R is the unknown function. The function
K is called the kernel of the equation. The equation is said to be homogeneous if
ϕ = 0, and nonhomogeneous otherwise.

The Fredholm equation is the continuous version of the system of linear Eqs. 4.12.
To see this, suppose that the interval is discretized and is replaced by n+1 equidistant
points a = x0 < x1 < · · · < xn = b. Then, writing yi = f(xi) and bi = ϕ(xi) and
aij = λK(xi, xj)/n, we see that 4.19 becomes

yi = bi +
∑

j

aijyj .

Whether this discretization is appropriate is a different matter; but it serves to visual-
ize 4.19 as a generalization of 4.13.

Let C = C([a, b] �→ R), the collection of all continuous functions f from [a, b]
into R, and let the metric on C be defined through the supremum norm:

4.20 d(f, g) = ‖f − g‖ = sup
a≤x≤b

|f(x)− g(x)|.

With this metric, C is a complete metric space (see Theorem 3.53).
Suppose that K is continuous on the square [a, b]× [a, b] and that ϕ is continuous

on [a, b]. Then, the function Tf defined by

4.21 Tf(x) = ϕ(x) + λ

∫ b

a

K(x, y)f(y) dy

is continuous on [a, b] for each continuous function f on [a, b]. In other words, the
mapping f �→ Tf is a transformation on C. Now, the Fredholm Eq. 4.19 becomes

4.22 f = Tf,

and thus, solving 4.19 is equivalent to finding the fixed points of the transformation T
on C.
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To this end, in order to apply the fixed point theorem (Theorem 4.4), all we need
to show is that T is a contraction (recall that C is complete). The following shows that
T is indeed so if the parameter λ is small enough.

4.23 THEOREM. Suppose that ϕ and K are continuous. Then there exists λ0 > 0 such
that Eq. 4.19 has a unique solution f for each λ in (−λ0, λ0). Moreover, the solution
f is continuous.

PROOF. Since K is continuous on the square [a, b]× [a, b], it is bounded there (con-
tinuous functions on compact spaces are bounded). So, there is a constant c > 0 such
that |K(x, y)| ≤ c for all x, y. Thus,

‖Tf − Tg‖ = max
x

∣
∣
∣
∣λ

∫ b

a

K(x, y)(f(y)− g(y)) dy

∣
∣
∣
∣

≤ |λ| · c · (b− a)max
y

|f(y)− g(y)| = |λ| · c · (b− a) · ‖f − g‖.

Choose λ0 = 1/(c · (b− a)). Then, for each λ in (−λ0, λ0), the preceding shows that
T is a contraction on C. By Theorem 4.4, consequently, there is a unique fixed point
f in C of the transformation T . �

4.24 EXAMPLE. Suppose that K(x, y) = xy on [0, 1]× [0, 1]. Let ϕ ∈ C and consider
the Fredholm equation

4.25 f(x) = ϕ(x) + λ

∫ 1

0

xyf(y) dy.

The proof of Theorem 4.23 shows that, for |λ| < 1, there is a unique solution f . And
the solution is the limit of the sequence

f0 = ϕ, f1 = Tf0, f2 = Tf1, f3 = Tf2, . . .

where, in general,

Tf(x) = ϕ(x) + λx

∫ 1

0

yf(y) dy, x ∈ [0, 1].
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Now, we start computing. Defining a =
∫ 1

0
yϕ(y) dy, we have

f0(x) = ϕ(x),

f1(x) = Tf0(x) = ϕ(x) + λx
∫ 1

0
yϕ(y) dy

= ϕ(x) + aλx,

f2(x) = Tf1(x) = ϕ(x) + λx
∫ 1

0
y(ϕ(y) + aλy) dy

= ϕ(x) + aλx + aλ2

3 x,

f3(x) = Tf2(x) = ϕ(x) + λx
∫ 1

0
y(ϕ(y) + aλy + aλ2

3 y) dy

= ϕ(x) + aλx + aλ2

3 x+ aλ3

9 x,

...

fn(x) = Tfn−1(x) = ϕ(x) + aλx
Ä
1 + λ

3 +
(
λ
3

)2
+ · · ·+ (

λ
3

)n−1ä
.

It is clear from this that a fixed point f exists for every λ in (−3, 3), and the solution
to 4.25 is

4.26 f(x) = lim
n

fn(x) =
3aλ

3− λ
x+ ϕ(x).

Going back to 4.25, the special form of the kernel K suggests a quicker method.
Indeed, let

c =

∫ 1

0

yf(y) dy.

Then, using 4.25 in the form

f(x) = ϕ(x) + λxc,

we get

c =

∫ 1

0

xf(x) dx =

∫ 1

0

xϕ(x) dx +

∫ 1

0

xλxc dx = a+
λ

3
c.

Solving this for c, we see that

f(x) = ϕ(x) + λxc = ϕ(x) +
3aλ

3− λ
x

as before provided that λ �= 3. Note that this is the solution for arbitrary λ �= 3. But
the method of successive approximations works for |λ| < 3 only.

Studying the iterative method in the preceding example, we can get a theoretical
understanding of the nature of solutions. To this end, we redo the computations of
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f0 = ϕ, f1 = Tf0, f2 = Tf1, . . . once more, now with an arbitrary kernel K , and
omitting the limits of integration. We get

f0(x) = ϕ(x),

f1(x) = Tf0(x) = ϕ(x) + λ
∫
K(x, y)ϕ(y) dy,

f2(x) = Tf1(x) = ϕ(x) + λ
∫
K(x, y)f1(y) dy

= ϕ(x) + λ
∫
K(x, y)

[
ϕ(y) + λ

∫
K(y, z)ϕ(z) dz

]
dy

= ϕ(x) + λ
∫
K(x, y)ϕ(y) dy + λ2

∫
K2(x, z)ϕ(z) dz

where

K2(x, z) =

∫

K(x, y)K(y, z) dy.

Continuing,

f3(x) = Tf2(x)

= ϕ(x) + λ

∫

K(x, y)

ï
ϕ(y) + λ

∫

K(y, z)ϕ(z) dz

+ λ2

∫

K2(y, z)ϕ(z) dz

ò
dy

= ϕ(x) + λ

∫

K(x, z)ϕ(z) dz

+ λ2

∫

K2(x, z)ϕ(z) dz + λ3

∫

K3(x, z)ϕ(z) dz

where

K3(x, z) =

∫

K(x, y)K2(y, z) dy.

The pattern is now clear. We have

4.27 fn(x) = ϕ(x) +
n∑

i=1

λi

∫ b

a

Ki(x, y)ϕ(y) dy

with K1 = K , and K2, K3, . . . defined recursively via

4.28 Ki+1(x, y) =

∫ b

a

K(x, z)Ki(z, y) dz.

Theorem 4.23 shows that when |λ| < λ0, the sequence fn converges to the fixed point
f , where

4.29 f(x) = ϕ(x) +

∞∑

i=1

λi

∫ b

a

Ki(x, y)ϕ(y) dy.
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Since this is true for arbitrary ϕ, we can change the order of summation and integra-
tion. Thus, with

4.30 Rλ(x, y) =
∞∑

i=1

λiKi(x, y),

we have

4.31 f(x) = ϕ(x) +

∫ b

a

Rλ(x, y)ϕ(y) dy.

Although 4.28, 4.30, 4.31 together give an “explicit” solution to the Fredholm
equation, this explicitness is only theoretical. For, computing Rλ is of the same order
of difficulty as solving 4.19 (in fact, even harder).

On the other hand, if the kernel K is simple enough, analytic solutions might be
possible. The following illustrates the computations for such a special case.

4.32 EXAMPLE. Suppose that

K(x, y) =

n∑

j=1

pj(x)qj(y), x, y ∈ [a, b],

for some continuous functions p1, . . . , pn and q1, . . . , qn on [a, b]. For ϕ continuous
on [a, b], consider the Fredholm Eqs. 4.19. Now, if f ∈ C satisfies 4.19, then

4.33 f(x) = ϕ(x) + λ
n∑

j=1

zjpj(x)

where

4.34 zj =

∫ b

a

qj(y)f(y) dy, j = 1, . . . , n.

In view of 4.33, then

zi =

∫ b

a

qi(x)f(x) dx

=

∫ b

a

qi(x)ϕ(x) dx + λ

n∑

j=1

Ç∫ b

a

qi(x)pj(x) dx

å
zj .

Thus, letting

4.35 ci =

∫ b

a

qi(x)ϕ(x) dx, aij =

∫ b

a

qi(x)pj(x) dx,

we obtain

4.36 zi = ci + λ
n∑

j=1

aijzj, i = 1, 2, . . . , n.
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Note that the ci and aij are known. If we can solve 4.36 for the zi’s, then 4.33 gives
the solution f .

In vector–matrix notation, 4.36 becomes

z = c+ λAz,

whose solution is easy to discern. We can solve it for z (for arbitrary c) as long as
I − λA is invertible, that is, as long as 1/λ is not an eigenvalue for A. Thus, we have
a solution z for arbitrary b provided that λ ∈ (−1/λ0, 1/λ0), where λ0 is the modulus
of the largest eigenvalue of A.

Volterra Equation
Let K be a continuous function on [a, b]×[a, b] and let ϕ be a continuous function

on [a, b]. Consider the equation

4.37 f(x) = ϕ(x) + λ

∫ x

a

K(x, y)f(y) dy, x ∈ [a, b].

It is called the Volterra equation. It differs from the Fredholm equation only slightly,
and in form only. If we define

K̂(x, y) =

ß
K(x, y) if y ≤ x,

0 if y > x,

then 4.37 becomes the Fredholm Eq. 4.19 with kernel K̂. However, it is easier to
attack 4.37 directly.

4.38 THEOREM. For each λ in R, the Volterra Eq. 4.37 has a unique solution f that is
continuous on [a, b].

PROOF. Let C = C([a, b] �→ R), the set of all continuous functions from [a, b] into
R, with the usual uniform metric ‖f − g‖. Let c be the maximum of |K(x, y)| over
all x, y in [a, b]; this number is finite since K is continuous. Define the transformation
T : f �→ Tf on C by

Tf(x) = ϕ(x) + λ

∫ x

a

K(x, y)f(y) dy.

Now, for f and g in C,

|Tf(x)− Tg(x)| =

∣
∣
∣
∣λ

∫ x

a

K(x, y)[f(y)− g(y)] dy

∣
∣
∣
∣

≤ |λ| c (x− a) ‖f − g‖, x ∈ [a, b].
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We use this, next, to bound T2f − T2g = T (Tf − Tg):

|T2f(x)− T2g(x)| =

∣
∣
∣
∣λ

∫ x

a

K(x, y)[Tf(y)− Tg(y)] dy

∣
∣
∣
∣

≤ |λ|
∫ x

a

|K(x, y)| |λ| c(y − a) ‖f − g‖ dy

≤ |λ|2c2
∫ x

a

(y − a) dy ‖f − g‖

≤ |λ|2c2(x− a)2

2
‖f − g‖.

Iterating in this manner, we see that

|Tkf(x)− Tkg(x)| ≤ |λ|kck(x− a)k

k!
‖f − g‖

for all x in [a, b]. Hence,

‖Tkf − Tkg‖ ≤ [ |λ|c(b− a)]k

k!
‖f − g‖.

Recalling that rn/n! tends to 0 as n �→ ∞ for any r in R, we conclude that there exists
k such that Tk is a contraction: simply take k large enough to have [ |λ|c(b−a)]k/k! <
1. Finally, the existence and uniqueness of f in C satisfying f = Tf follows from the
next theorem. Obviously, if f = Tf , then f solves 4.37. �

Generalization of the Fixed Point Theorem

4.39 THEOREM. Let E be a complete metric space and let T be a continuous trans-
formation on E. If Tk is a contraction for some k ≥ 1, then T has a unique fixed
point.

PROOF. Fix k such that U = Tk is a contraction. By Theorem 4.4, then, U has
a unique fixed point x, and limn Unx0 = x for every point x0 in E. Now, by the
continuity of T , and since T ◦Un = Un ◦T ,

Tx = lim
n

TUnx0 = lim
n

UnTx0 = x,
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that is, x is a fixed point of T . To show that it is the only fixed point of T we note that
every fixed point of T is a fixed point of Tk = U , whereas U has only one fixed point,
namely x. �

Exercises

4.40 Solve the Fredholm Eq. 4.19 for arbitrary ϕ, on [a, b] = [0, 2π], with the kernel

K(x, y) = sin(x+ y).

4.41 Do the same with [a, b] = [0, 1] and K(x, y) = (x− y)2.

4.42 Let p be a continuous function of [0, b]. Show that

f(x) = ϕ(x) +

∫ x

0

p(y)f(x− y) dy, x ∈ [0, b],

has a unique solution f for each continuous function ϕ.

D. Differential Equations

We continue with applications of the fixed point theorem by discussing Picard’s
method of successive approximations for solving systems of differential equations.

We start with the simplest case where the differential equation describes the po-
sition of a particle moving on R. The picture of the motion is given in Fig. 4.6.
The motion is described by the initial data t0 and x0 and by a continuous function
v : R×R �→ R as follows. The particle starts from x0 at time t0; its velocity at time t
is v(t, x) if its position then is x. Thus, letting x(t) denote the position of the particle
at time t, we have

4.43 x(t) = x0 +

∫ t

t0

v(s, x(s)) ds, t ≥ t0.

The points t0 and x0 and the velocity function v are given. We are interested in the
existence and uniqueness of the function x.

In the classical formulation of this problem, it is usual to express 4.43 as a differ-
ential equation:

4.44
dx

dt
= v(t, x), x(t0) = x0.

The following is Picard’s theorem:
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1

v(t,x(t))

tt0

x0

x(t)

FIGURE 4.6. A moving particle.

4.45 THEOREM. Let v be defined and continuous on [t0,∞)× [a, b], and let x0 be in
(a, b), and suppose that v satisfies a Lipschitz condition in its spatial argument:

4.46 |v(t, x) − v(t, y)| ≤ K|x− y|, x, y ∈ [a, b].

Then, there is a number t1 > t0 such that 4.43 has a unique solution {x(t) : t0 ≤ t ≤
t1}.

PROOF. Let t′1 be an arbitrary number larger than t0. By the continuity of v, we have

4.47 |v(t, x)| ≤ c, t0 ≤ t ≤ t′1, a ≤ x ≤ b

for some constant c. Choose δ > 0 so that

4.48 Kδ < 1 and a ≤ x0 − cδ < x0 < x0 + cδ ≤ b.

Let t1 = min{t′1, t0+δ}. Let C∗ be the space of all continuous functions x : [t0, t1] �→
[x0−cδ, x0+cδ ]with the usual supremum metric; that is, ‖x−y‖ = supt0≤t≤t1 |x(t)−
y(t)|.

The set C∗ is a closed subset of the space C([t0, t1] �→ R). Since the latter is
complete, C∗ is complete.

Consider the transformation T defined by letting Tx be the function

4.49 Tx(t) = x0 +

∫ t

t0

v(s, x(s)) ds, t ∈ [t0, t1].

For x in C∗, we have from 4.47 that

|Tx(t)− x0| ≤
∫ t

t0

|v(s, x(s))| ds ≤ c(t− t0) ≤ cδ,
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which shows that Tx ∈ C∗. Moreover, for x, y in C∗,

|Tx(t)− Ty(t)| ≤
∫ t

t0

|v(s, x(s)) − v(s, y(s))| ds

≤
∫ t

t0

K|x(s)− y(s)| ds

≤ Kδ‖x− y‖
in view of 4.46. Thus, ‖Tx − Ty‖ ≤ Kδ‖x − y‖ and Kδ < 1 by the way δ was
chosen. So, T is a contraction on C∗. Since C∗ is complete, Theorem 4.4 applies to
show that T has a unique fixed point x. But, x = Tx means that x solves 4.43. This
completes the proof. �

The preceding can be easily generalized to the case of systems of differential
equations

4.50
dxi

dt
= vi(t, x1, . . . , xn), i = 1, 2, . . . , n.

Before stating this generalization, we mention that the term “domain” means “an open
and connected subset of a Euclidean space,” and we note that 4.43 can be interpreted
for t < t0 by the convention that integrals from t0 to t are the negatives of integrals
from t to t0. The following is the analog of Theorem 4.45 for motions in R

n.

4.51 THEOREM. Let D be a domain in R× R
n. Let v be a continuous function from

D into R
n. Suppose that (t0, x0) ∈ D and that v(t, x) = (v1(t, x), . . . , vn(t, x))

satisfies the following Lipschitz condition for some K:

4.52 max
1≤i≤n

|vi(t, x)− vi(t, y)| ≤ K max
1≤j≤n

|xj − yj |.

Then, there is an interval [t0−δ, t0+δ ] in which the system 4.50 has a unique solution
{x(t) : t0 − δ ≤ t ≤ t0 + δ} satisfying x(t0) = x0.

4.53 REMARK. In integral notation, we may write 4.50 as

xi(t) = x0i +

∫ t

t0

vi(s, x1(s), . . . , xn(s)) ds, i = 1, . . . , n.

The claim of the preceding theorem is that this has a unique solution {x(t) : t0 − δ ≤
t ≤ t0 + δ}. In vector notation, we may rewrite this as

x(t) = x0 +

∫ t

t0

v(s, x(s)) ds, |t− t0| ≤ δ,

which is exactly the same as 4.43 except that here x : [t0 − δ, t0 + δ ] �→ R
n and

v : D �→ R
n.
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In preparation for the proof of Theorem 4.51, let the metric on R
n be

d(x, y) = max
1≤i≤n

|xi − yi|.

Then, the Lipschitz condition 4.52 can be written as

4.54 d(v(t, x), v(t, y)) ≤ Kd(x, y).

It should be clear by now that the proof of Theorem 4.45 will go through for Theo-
rem 4.51 as well, with some notational changes:

PROOF. By the continuity of v1, . . . , vn, we have

|vi(t, x)| ≤ c, i = 1, . . . , n,

for some c > 0, for all (t, x) in some domain D′ ⊂ D containing (t0, x0). Choose
δ > 0 so that

Kδ < 1

and

(t, x) ∈ D′ if t ∈ [t0 − δ, t0 + δ ] and d(x, x0) ≤ cδ.

Let C∗ be the space of continuous functions x : [t0 − δ, t0 + δ ] �→ B̄(x0, cδ), and
let the metric on C∗ be defined by

‖x− y‖ = max
t

d(x(t), y(t)).

It is clear that C∗ is complete. Define, for x ∈ C∗,

Tx(t) = x0 +

∫ t

t0

v(s, x(s)) ds, t0 − δ ≤ t ≤ t0 + δ.

We proceed to show that T is a contraction on C∗, which will complete the proof via
Theorem 4.4.

First, we show that Tx ∈ C∗ for x in C∗. For such x, it is clear that Tx is a
continuous function, and

d(Tx(t), x0) = max
i

∣
∣
∣
∣

∫ t

t0

vi(s, x(s)) ds

∣
∣
∣
∣ ≤ cδ
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for t in [t0 − δ, t0 + δ ] in view of the bounding of vi by c. Thus, Tx ∈ C∗ if x ∈ C∗.
Moreover, for x, y in C∗,

‖Tx− Ty‖ = max
t

d(Tx(t), T y(t))

= max
t

max
i

∣
∣
∣
∣

∫ t

t0

[vi(s, x(s)) − vi(s, y(s))] ds

∣
∣
∣
∣

≤ max
t

∫ t

t0

d(v(s, x(s)) − v(s, y(s))) ds

≤ max
t

∫ t

t0

Kd(x(s), y(s)) ds

≤ Kδ‖x− y‖,
which follows from the Lipschitz condition 4.52 on v; see 4.54 as well. Since Kδ < 1,
this shows that T is a contraction on C∗. �

The preceding theorem ensures the existence and uniqueness of a solution x to the
system 4.50 of differential equations. Successive approximations to x can be obtained
as follows. Define

x(0)(t) = x0, t ∈ [t0 − δ, t0 + δ ],

x(n+1)(t) = Tx(n)(t)

= x0 +

∫ t

t0

v(s, x(n)(s)) ds, t ∈ [t0 − δ, t0 + δ ].

Then, the sequence of functions x(n) converges to the solution x.

Exercises

4.55 Solve the system

dxi(t)

dt
=

n∑

j=1

aijxj(t) + bi(t), i = 1, 2, . . . , n,

for smooth b and initial condition x(0) = x0. How does the method of successive
approximations work?



CHAPTER 5

Convexity

Linear functions are the simplest functions in linear spaces. Their study is of
fundamental importance and forms the subject known as linear algebra. In this chapter
we assume the reader has mastered the essentials of linear algebra. We therefore spend
some time on the class of functions and sets that are just one step more complicated
than the linear ones, namely convex functions and convex sets.

A. Convex Sets and Convex Functions

For the needs of this chapter, it will be convenient to introduce the notation

R
∗ = R ∪ {+∞} .

5.1 DEFINITION. A function f : Rn �→ R
∗ is said to be convex if

5.2 pf(x) + qf(y) ≥ f(px+ qy)

for all x, y in R
n and p, q in (0, 1) with p + q = 1. A function f on R

n is said to be
concave if −f is convex.

5.3 DEFINITION. A subset C of Rn is said to be convex if

px+ qy ∈ C

for all x, y in C and 0 < p < 1 and q = 1− p.

Figure 5.1 shows a convex subset of R2 and a convex function on R. Figure 5.2
gives examples of nonconvex functions and sets; the aim is to illustrate the geometric
meanings of convexity.

Epigraphs

For f : Rn �→ R
∗, the epigraph of f is the set of all pairs (x, r) in R

n × R

satisfying f(x) ≤ r. The epigraph relates the convexity of functions to the convexity
of sets, as the next theorem shows.

E. Çınlar and R.J. Vanderbei, Real and Convex Analysis, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-5257-7 5, © Springer Science+Business Media New York 2013
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x

y

x y

a

b

FIGURE 5.1. (a) A convex set. (b) A convex function.

5.4 THEOREM. A function f : Rn �→ R
∗ is convex if and only if its epigraph is a

convex subset of Rn × R.

PROOF. Let f be convex. Fix (x, r) and (y, s) to be points in its epigraph. Fix
0 < p < 1 and put q = 1− p. Then, by 5.2,

f(px+ qy) ≤ pf(x) + qf(y) ≤ pr + qs,

which means that the pair (px + qy, pr + qs) = p(x, r) + q(y, s) belongs to the
epigraph. Thus, the epigraph is convex.

For the converse, suppose that the epigraph of f is convex. Fix x, y in R
n, 0 <

p < 1, q = 1 − p. If f(x) or f(y) is equal to ∞, then 5.2 holds trivially. If both f(x)
and f(y) are real numbers, then (x, f(x)) and (y, f(y)) both belong to the epigraph
of f , and thus

p (x, f(x)) + q (y, f(y)) = (px+ qy, pf(x) + qf(y))
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x
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x y
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b

FIGURE 5.2. (a) A nonconvex set. (b) A nonconvex function.

belongs to the epigraph by the assumed convexity of the epigraph. It follows from the
definition of epigraph that 5.2 holds, that is, the function f is convex. �

Exercises

5.5 Intersections of convex sets. Show that the intersection of an arbitrary collection
of convex sets is convex.

5.6 Concavity. Let f : Rn �→ R ∪ {−∞}. Show that it is concave if and only if

pf(x) + qf(y) ≤ f(px+ qy)

for all x, y in R
n and 0 < p < 1 and q = 1− p.

5.7 Epigraph. Show that the epigraph of f is the empty set if and only if f = ∞
identically.



88 Convexity Chap. 5

5.8 Supremum of convex functions. Let f and g be convex functions on R
n. Show

that, then, f ∨ g is again convex. Show that the epigraph of f ∨ g is the intersection of
the epigraphs of f and g. These properties extend to arbitrary collections (countable
or uncountable) of convex functions: if {fi : i ∈ I} is a collection of convex functions
on R

n, then f = supi∈I fi is a convex function on R
n, and the epigraph of f is the

intersection of the epigraphs of fi, i ∈ I .

B. Projections

Throughout this section, C will remain a fixed nonempty closed convex subset of
R

n, all points are in R
n, and ‖x − y‖ is the usual Euclidean distance from point x to

point y.
Figure 5.3 suggests that, for every point x, there is a unique point x̄ that is the

point of C closest to x. If C is a straight line in R
2, then x̄ would be the perpendicular

projection of x onto the line C.

5.9 DEFINITION. A point x̄ is called the projection of the point x onto C if x̄ ∈ C
and

5.10 ‖x− x̄‖ = inf
z∈C

‖x− z‖.

5.11 THEOREM. Every x in R
n has a unique projection x̄ on C.

PROOF. Existence. Fix x. Let y ∈ C, and let B be the closed ball of radius ‖x − y‖
and center x. Note that

inf
z∈C

‖x− z‖ = inf
z∈B∩C

‖x− z‖ = inf
z∈B∩C

f(z),

where f(z) = ‖x − z‖. This function f is continuous. The set B ∩ C is bounded
since B is bounded, and is closed since both B and C are closed. Thus, B ∩ C is
compact, and Corollary 3.24 implies that the function f must attain its infimum over
that compact set. Hence, there exists x̄ in B ∩ C ⊂ C such that 5.10 holds.

Uniqueness. Suppose that x̄ and x̃ are in C and satisfy 5.10, that is

5.12 ‖x− x̄‖ = ‖x− x̃‖ = inf
z∈C

‖x− z‖.

Put y = 1
2 x̄+ 1

2 x̃. Since C is convex, y ∈ C. Note that x− y is orthogonal to y − x̄:

(x− y) · (y − x̄) =

Å
1

2
(x− x̄) +

1

2
(x− x̃)

ã
·
Å
1

2
(x− x̄)− 1

2
(x− x̃)

ã

=
1

4
‖x− x̄‖2 − 1

4
‖x− x̃‖2 = 0
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FIGURE 5.3. The projection of x on C is the point x̄ of C.

in view of 5.12. This orthogonality implies that

‖x− x̄‖2 = (x− y + y − x̄) · (x− y + y − x̄)

= ‖x− y‖2 + ‖y − x̄‖2 ≥ ‖x− y‖2.
Since x̄ satisfies 5.12, and since y ∈ C, the last inequality must be an equality, which
means that ‖y − x̄‖ = 0. Thus, y = x̄, which implies that x̄ = x̃ as needed to show
uniqueness. �

Characterization of Projection
The following is a useful characterization of the projection x̄ of a point x. Its

geometric meaning is explained in Fig. 5.4.

5.13 THEOREM. A point x̄ is the projection on C of the point x if and only if x̄ ∈ C
and
5.14 (x− x̄) · (x̄− z) ≥ 0, z ∈ C.

PROOF. Suppose that x̄ ∈ C and 5.14 holds. For z in C, then,

‖x− z‖2 = (x− x̄+ x̄− z) · (x− x̄+ x̄− z)

= ‖x− x̄‖2 + ‖x̄− z‖2 + 2(x− x̄) · (x̄− z).

On the right side, all three terms are positive, the last one by 5.14. It follows that
‖x− x̄‖ ≤ ‖x− z‖ for all z in C; thus, x̄ is the projection of x on C by definition.

Suppose that x̄ is the projection on C of the point x. Then, x̄ ∈ C by definition,
and there remains to show 5.14. To that end, fix z in C, and with 0 < p < 1 put

y = pz + (1 − p)x̄.
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x C
x
_

z

FIGURE 5.4. The vector from x̄ to x makes an obtuse angle with the
vector from x̄ to every other point z of C.

Then, y ∈ C by the convexity of C, and by the definition of x̄,

‖x− x̄‖2 ≤ ‖x− y‖2 = ‖x− x̄+ p(x̄− z)‖2
= ‖x− x̄‖2 + 2p(x− x̄) · (x̄− z) + p2‖x̄− z‖2.

Hence,
2(x− x̄) · (x̄− z) + p‖x̄− z‖2 ≥ 0.

Since p > 0 can be taken arbitrarily small, this implies 5.14. �

5.15 COROLLARY. Let x̄ ∈ C and suppose that z · x = z · x̄ for every z in C. Then,
x̄ is the projection of x on C.

PROOF. Under the assumption, x̄ · x = x̄ · x̄ as well (take z = x̄). Thus, for every z
in C,

(x − x̄) · (x̄− z) = x · x̄− x̄ · x̄− x · z + x̄ · z = 0,

and the claim follows from the preceding theorem. �

The following gives a converse to the preceding corollary in the special case where
C is a linear subspace of Rn. In addition, it lists an explicit formula for computing the
projection.

5.16 THEOREM. Let A be an m× n matrix of rank m. Suppose that

C = {z ∈ R
n : z = AT y for some y in R

m}.
Then, the following are equivalent:

(a) x̄ is the projection of x onto C.
(b) x̄ = AT(AAT)−1Ax.
(c) x̄ ∈ C and x · z = x̄ · z for every z in C.
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REMARK. The matrix A has m rows; each row is a vector in R
n; the rows are linearly

independent since A has rank m. The assumption is that C is the linear space spanned
by these vectors, that is, each point of C is a linear combination of the rows of A.
Also, since A has rank m, the m×m matrix AAT is nonsingular, that is, the inverse
(AAT)−1 exists.

PROOF. (a) ⇒ (b): Suppose (a). By the definition of projections, x̄ ∈ C and ‖x −
x̄‖2 ≤ f(y) for every y in R

m, where

f(y) = ‖x−ATy‖2 = x · x− 2x · (ATy) + (ATy) · (ATy).

Let ȳ be a point in R
m where the gradient of f vanishes, that is,

∇f(ȳ) = −2Ax+ 2AATȳ = 0.

Since AAT is nonsingular, ȳ is unique and is given by

ȳ = (AAT)−1Ax.

Hence, x̄ = ATȳ is as claimed by (b).
(b) ⇒ (c): Let x̄ be as given in (b). Then, x̄ = ATȳ, with an obvious definition

for ȳ in R
m; hence x̄ ∈ C. If z ∈ C, then z = ATy for some y in R

m, and

z · x̄ = (yTA)AT(AAT)−1Ax = (yTA)x = z · x
as claimed by (c).

(c) ⇒ (a): by Corollary 5.15. �

C. Supporting Hyperplane Theorem

A half-space H is a set of the form

5.17 H = {z ∈ R
n : ξ · z ≤ b},

where b is a fixed real number and ξ is a fixed nonzero vector in R
n. Then, its boundary

∂H is the hyperplane

5.18 ∂H = {z ∈ R
n : ξ · z = b}.

5.19 THEOREM. Let C be a nonempty closed convex set in R
n. Let x be a point in

R
n \ C. Then, there exists a half-space H such that

C ⊂ H, C ∩ ∂H �= ∅, x �∈ H.
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FIGURE 5.5. The supporting hyperplane theorem.

PROOF. Let x̄ denote the projection of x on C. Put ξ = x− x̄. Since x̄ is in C and x
is outside, ξ �= 0. Thus,

H = {z ∈ R
n : ξ · z ≤ ξ · x̄}

is a half-space. If z ∈ C, then Theorem 5.13 shows that z ∈ H ; thus, C ⊂ H . Since
ξ · x − ξ · x̄ = ‖ξ‖2 > 0, it follows that x is outside H . Finally, since x̄ ∈ C and
x̄ ∈ ∂H , the intersection C ∩ ∂H is not empty (Fig. 5.5). �

Exercises

5.20 Supporting hyperplanes. Let f : Rn �→ R
∗ be a convex function. Show that f

is the supremum of all affine functions it dominates. That is,

f(x) = sup
h∈H:h≤f

h(x),

where
H = {h : h(x) = ξ · x− b for some ξ ∈ R

n, b ∈ R}.

D. Legendre Transform

Let f : Rn �→ R
∗ and let ξ ∈ R

n be fixed. Suppose that f dominates the affine
function x �→ ξ · x− b, that is, f(x) ≥ ξ · x− b for all x in R

n. Then,

ξ · x− f(x) ≤ b, x ∈ R
n,

that is, b is an upper bound for the function x �→ ξ · x− f(x). When f is convex, the
smallest such bound is of fundamental importance, especially as a function of ξ.
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5.21 DEFINITION. Let f : Rn �→ R
∗ be convex. Its Legendre transform is the function

f̂ : Rn �→ R
∗ defined by

f̂(ξ) = sup
x∈Rn

(ξ · x− f(x)) , ξ ∈ R
n.

Examples
We shall see shortly that the Legendre transform f̂ of a convex function f is again

convex. Here are some explicit examples.
5.22 Let f : R �→ R be given by f(x) = |x|. Then, for ξ in R,

f̂(ξ) =

ß
0 if |ξ| ≤ 1,
∞ otherwise.

5.23 Let f(x) = ax, x ∈ R, where a ∈ R is fixed. Then, for ξ in R,

f̂(ξ) =

ß
0 if ξ = a,
∞ otherwise.

5.24 Let f(x) = ax2, x ∈ R, with a > 0 fixed. Then, for ξ ∈ R,

f̂(ξ) =
1

4a
ξ2.

5.25 Let a ∈ R
n, b ∈ R, both fixed. Let f(x) = a · x− b, x ∈ R

n. Then,

f̂(ξ) =

ß
b if ξ = a,
∞ otherwise.

5.26 Let a and b be as in the preceding example, and, for x inRn, let f(x) = b if
x = a and f(x) = ∞ otherwise. Then,

f̂(ξ) = aξ − b, ξ ∈ R
n.

Involution

As the examples above illustrate, the Legendre transform f̂ of a convex function
f is again convex, and the transform of f̂ is the original f . Before stating this as a
theorem, we set forth next an elementary fact or two.
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5.27 LEMMA. Let f and g be convex functions on R
n.

(a) If f ≤ g, then f̂ ≥ ĝ.
(b) If f = cg for some constant c > 0, then f̂(ξ) = cĝ(ξ/c).

PROOF. If f ≤ g, then

f̂(ξ) = sup
x

(ξ · x− f(x)) ≥ sup
x

(ξ · x− g(x)) = ĝ(ξ).

If f = cg with c > 0 constant, then

f̂(ξ) = sup
x

(ξ · x− cg(x))

= c sup
x

ÅÅ
1

c
ξ

ã
· x− g(x)

ã
= cg

Å
1

c
ξ

ã
.

�

The following is the promised theorem. Recall that a function is convex if and
only if its epigraph is convex.

5.28 THEOREM. (Involution) If the epigraph of f is nonempty, closed, and convex,

then so is the epigraph of its Legendre transform f̂ , and, moreover,
““f = f .

PROOF. Let the epigraph of f be as described. The supporting hyperplane theorem
implies that there exists an affine function h ≤ f , say h(x) = a · x − b. Also, since
the epigraph is not empty, there is a point x∗ such that f(x∗) = c < ∞; define g(x)
to be equal to c if x = x∗, and to ∞ otherwise. Then, h ≤ f ≤ g, which implies via
Proposition 5.27 that

5.29 ĝ ≤ f̂ ≤ ĥ,

whereas, as Examples 5.25 and 5.26 show,

ĝ(ξ) = ξ · x∗ − c, ĥ(ξ) =

ß
b if ξ = a,
∞ otherwise.

The first inequality in 5.29 implies that f̂ cannot take −∞ as a value; that is, f̂ : Rn �→
R

∗. The second inequality implies that f̂ takes some real values. Hence, the epigraph
of f̂ is nonempty.

Next, observe that

f̂(ξ) = sup
x

(ξ · x− f(x)) = sup{ξ · x− b : b ≥ f(x), x ∈ R
n},
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FIGURE 5.6. The functions f , g, and h.

that is, the epigraph of f̂ is the intersection of the epigraphs of all the affine functions
x �→ ξ · x − b dominated by f . The epigraph of an affine function is a closed half-
space, which is closed and convex. The intersection of an arbitrary family of closed
sets is closed (Theorem 2.34), and similarly, an arbitrary intersection of convex sets
is convex (Exercise 5.5). Hence, the epigraph of f̂ is closed and convex (Fig. 5.6).

Finally, by Exercise 5.20,

f(x) = sup{ξ · x− b : ξ ∈ R
n, b ≥ f̂(ξ)} = sup

ξ

Ä
ξ · x− f̂(ξ)

ä
=
““f(x).

�

Fenchel’s Inequality

5.30 PROPOSITION. Let f be convex. Then ξ · x ≤ f(x) + f̂(ξ), for every ξ and x.

PROOF. By the definition of the Legendre transform, for every ξ, f̂(ξ) ≥ ξ ·x− f(x),
which is equivalent to the claim. �
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Subgradient

5.31 DEFINITION. Let f : Rn �→ R
∗ and ξ ∈ R

n. Then, ξ is a subgradient of f at x if

f(z) ≥ f(x) + ξ · (z − x)

for z in R
n, that is, if z �→ f(x) + ξ · (z − x) is a supporting hyperplane for the

epigraph of f . Define

∂f(x) = {ξ ∈ R
n : ξ is a subgradient of f at x} .

It is easy to check that ∂f(x) is a closed convex subset of Rn. The following
gives some geometric meanings and connections to the Legendre transform.

5.32 THEOREM. Let f : Rn �→ R
∗ be convex and fix x in R

n. Then the following are
equivalent:

(a) ξ ∈ ∂f(x).
(b) ξ · z − f(z) attains its maximum at z = x.
(c) f(x) + f̂(ξ) = ξ · x.
(d) x ∈ ∂f̂(ξ).
(e) λ · x− f̂(λ) attains its maximum at λ = ξ.

PROOF. By definition, ξ is a subgradient if and only if

ξ · x− f(x) ≥ ξ · z − f(z),

for all z ∈ R
n. Thus, since f̂(ξ) is the supremum of the right side,

ξ · x− f(x) = f̂(ξ).

Hence, (a), (b), and (c) are equivalent. By the symmetry of (c), then, (c), (d), and (e)
are equivalent. �

Examples

Returning to the examples from R
1, we make the following subgradient calcula-

tions.
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5.33 Let f and f̂ be as in Example 5.23. Then, it follows from Theorem 5.32(c) that
∂f(x) = {a}, which agrees with the usual definition of the derivative of f .

5.34 Let f and f̂ be as in Example 5.22. Now, the equality given by Theorem 5.32(c)
can be satisfied if and only if xξ = |x| and |ξ| ≤ 1. These two conditions are equiva-
lent to

ξ =

⎧
⎨

⎩

1 x > 0,
−1 x < 0,

[−1, 1] x = 0.

Thus, again ∂f(x) agrees with the usual definition of the derivative of f , at least for
x �= 0. And, for x = 0, the function is not differentiable in the normal sense but has a
subdifferential that is given by the interval [−1, 1].

5.35 Let f and f̂ be as in Example 5.24. Now, part (c) of Theorem 5.32 reads
xξ = f(x) + f̂(ξ) = ax2/2 + ξ2/(2a). This equality can be satisfied if and only if
ξ2 − 2axξ + a2x2 = 0. This quadratic form is easily factored:

(ξ − ax)
2
= 0.

Hence, ξ = ax, which, again, is consistent with the usual definition of derivative.

Exercises

5.36 For each of the following functions, compute its Legendre transform and check

whether
““f = f .

(a) f(x) = ex.
(b) Assuming that 1 < p < ∞, f(x) = |x|p/p.
(c) Assuming a ≥ 0,

f(x) =

ß −(a2 − x2)1/2 if |x| ≤ a,
∞ otherwise

(see Fig. 5.7).
(d) Assuming that 0 < a < b,

f(x) =

⎧
⎨

⎩

|x| |x| < a,
b |x| = a,
∞ |x| > a.
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FIGURE 5.7. The functions f in Exercise 5.36 part (c).

E. Infimal Convolution

This is similar, conceptually, to the convolution of two functions. We shall see,
also, that the Legendre transform plays the same role here as the Fourier transform
does in that classical setting.

5.37 DEFINITION. Let f and g be functions defined on R
n. Their infimal convolution,

denoted f � g, is defined by

f � g(x) = inf
y∈Rn

(f(y) + g(x− y)) .

It is checked easily that the operation is commutative and associative (see Exer-
cise 5.40) and thus extends to any finite number of functions: the infimal convolution
f of f1, . . . , fm is given by

f(x) = inf {f1(x1) + · · ·+ fm(xm) : x1, . . . , xm ∈ R
n, x1 + · · ·+ xm = x} .

5.38 THEOREM. The Legendre transform of an infimal convolution is the sum of the
Legendre transforms, that is,

¤�f1 � · · · � fm = f̂1 + · · ·+ f̂m.
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PROOF. It is sufficient to prove this for m = 2. Let f = g � h. Fix ξ ∈ R
n. Using the

formula for the infimal convolution, we have

f̂(ξ) = sup
x

Å
ξ · x− inf

y,z:y+z=x
(g(y) + h(z))

ã

= sup
x

sup
y,z:y+z=x

(ξ · x− g(y)− h(z))

= sup
y,z

(ξ · y − g(y) + ξ · z − h(z))

= sup
y

(ξ · y − g(y)) + sup
z

(ξ · z − h(z)) = ĝ(ξ) + ĥ(ξ).

�

5.39 COROLLARY. If the epigraphs of f1, . . . , fm are nonempty, closed, and convex,
and the epigraph of f̂1 � · · · � f̂m also satisfies these same three conditions, then

¤�f1 + · · ·+ fm = f̂1 � · · · � f̂m.

PROOF. Again, it suffices to prove the result for m = 2. If the epigraphs of g and h
are nonempty, closed, and convex, then the involution theorem implies that

‘̂
g � ĥ= ̂̂g +

̂̂
h = g + h.

If the epigraph of ĝ � ĥ is nonempty, closed, and convex, then

’g + h = ĝ � ĥ.

�

Exercises

5.40 Show that f � g = g � f and that (f � g) � h = f � (g � h).
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CHAPTER 6

Convex Optimization

This chapter is about the problem of optimizing a convex function. The concept
of duality is introduced and connections with Lagrangians are made. Throughout, a
convex function is said to be proper if its epigraph is not empty, that is, the function
does take some real values. Also, by an abuse of language, it will be said to be closed
if its epigraph is closed.

A. Primal and Dual Problems

The basic problem of convex optimization is that of finding the infimum of a
convex function on R

n. It turns out to be highly beneficial to enlarge the problem
somewhat and to consider the problem of finding the infimum of f(x, 0) over all x,
where f is a convex function on R

n×R
m. Because the last m variables are set to zero,

this is still the problem of minimizing a convex function over Rn. But, the presence of
the last m variables enables us to perturb the original problem in a systematic fashion.
In turn, this leads to a maximization problem in the dual space R

m, and it is best to
consider the two problems together.

6.1 DEFINITION. Let f be a proper, closed, convex function on R
n × R

m and let

6.2 f∗(ξ, λ) = inf
x∈Rn,y∈Rm

(−ξ · x− λ · y + f(x, y)) , ξ ∈ R
n, λ ∈ R

m.

The primal problem is that of finding

inf
x∈Rn

f(x, 0),

and the dual problem is that of finding

sup
λ∈Rm

f∗(0, λ).

Throughout this section, f and f∗ will be as described in the preceding definition.
Because of their roles, they are called the primal and dual functions.

Note that the dual function f∗ is the negative of the Legendre transform of f , that
is, f∗ = −f̂ in the notation of Definition 5.21. Thus, it follows from the involu-
tion theorem (Theorem 5.28) that −f∗ is proper, closed, and convex, and f = ‘−f∗

E. Çınlar and R.J. Vanderbei, Real and Convex Analysis, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-5257-7 6, © Springer Science+Business Media New York 2013
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(the Legendre transform of −f∗). In short, dual of dual equals primal. We state this
next.

6.3 THEOREM. The dual function f∗ is proper, closed, and concave and

f(x, y) = sup
ξ,λ

(ξ · x+ λ · y + f∗(ξ, λ)) , x ∈ R
n, y ∈ R

m.

Weak Duality

Interest in duality stems from the so-called duality theorems. There are two of
them: weak and strong. We start with the weak duality theorem; it is simple and easy
to prove.

6.4 THEOREM. We have f∗(0, λ) ≤ f(x, 0) for every λ in R
m and x in R

n.

PROOF. In the definition 6.2, put ξ = 0 and replace x with w; we get

f∗(0, λ) = inf
w,y

(−λ · y + f(w, y)) ≤ inf
w

f(w, 0) ≤ f(x, 0)

for arbitrary λ and x. �

The preceding proof treated the primal and dual functions in an asymmetric
manner. A better proof is via Fenchel’s inequality (see Proposition 5.30 and recall
that f∗ = −f̂ ):

ξ · x+ λ · y ≤ f(x, y)− f∗(ξ, λ).

Now, put ξ = 0 and y = 0 to obtain f∗(0, λ) ≤ f(x, 0) once again.
An equivalent way of stating the weak duality theorem is that

6.5 sup
λ

f∗(0, λ) ≤ inf
x

f(x, 0).

The difference between the two sides is called the duality gap.

Strong Duality

The strong duality theorem asserts, under some mild conditions, that the duality
gap vanishes, that is,

6.6 sup
λ

f∗(0, λ) = inf
x

f(x, 0),
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or, in other words, the value of the optimal solution to the primal problem is the same
as that to the dual problem.

We shall lead to the theorem via several lemmas; our aim is to reveal the reasons
for the needed conditions. We start by introducing two functions which play important
roles, ϕ : Rm �→ R̄ and ϕ∗ : Rn �→ R̄ (recall that R̄ = R ∪ {−∞,+∞}), by letting

6.7 ϕ(y) = inf
x∈Rn

f(x, y), ϕ∗(ξ) = sup
λ∈Rm

f∗(ξ, λ).

The development below uses ϕ; the arguments with ϕ∗ are similar.

6.8 LEMMA. If ϕ is proper, closed, and convex, then the duality gap vanishes.

PROOF. Suppose that ϕ is such. By the definition 6.2 of the dual function f∗,

f∗(0, λ) = inf
x,y

(−λ · y + f(x, y)) = inf
y
(−λ · y + ϕ(y)) .

Since ϕ is convex, the last expression here is the definition of −ϕ̂, where ϕ̂ is the
Legendre transform ofϕ. Since ϕ is proper, closed, and convex, the involution theorem
(Theorem 5.28) applies: ϕ is the Legendre transform of ϕ̂ = −f∗(0, λ), that is,

ϕ(y) = sup
λ

(λ · y − ϕ̂(λ)) = sup
λ

(λ · y + f∗(λ)) .

Putting y = 0 here and in 6.7 shows that 6.6 holds, that is, the duality gap vanishes.
�

The preceding lemma reduces strong duality to the condition that ϕ be proper,
closed, and convex. The following reduces the condition further.

6.9 LEMMA. The function ϕ is proper. It is also convex provided that ϕ(y) > −∞
for all y in R

m.

PROOF. Since f is proper, there is a point (x′, y′) such that f(x′, y′) < ∞, which
implies by 6.7 that ϕ(y′) < ∞; thus, ϕ is proper. Suppose, next, that ϕ(y) > −∞ for
all y; then, ϕ maps Rm into R

∗ = R ∪ {+∞} as necessary for ϕ to be convex. As to
the convex inequality, fix (x, y) and (w, z) in R

n × R
m and let 0 < p, q < 1 with

p+ q = 1. Then,

ϕ(py + qz) ≤ f(px+ qw, py + qz)

≤ f(p(x, y) + q(w, z)) ≤ pf(x, y) + qf(w, z),
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where the last inequality used the convexity of f . Now, holding y and z fixed, take
the infimum of the rightmost expression over x and w; the result is the convexity
inequality for ϕ. �

The next definition paves the way to checking whether ϕ(y) > −∞ for all y, and
thus to convexity of ϕ.

6.10 DEFINITION. The primal function f is said to be feasible if there exists some x
such that f(x, 0) < ∞. The dual function f∗ is said to be feasible if there exists some
λ such that f∗(0, λ) > −∞.

6.11 LEMMA. If f∗ is feasible, then ϕ is proper and convex. If f is feasible, then ϕ∗

is proper and concave.

PROOF. We prove the first statement only; the second is similar. Suppose that f∗ is
feasible, and pick λ̄ such that f∗(0, λ̄) > −∞. By Theorem 6.3,

f(x, y) = sup
ξ,λ

(ξ · x+ λ · y + f∗(ξ, λ)) ≥ λ̄ · y + f∗(0, λ̄)

for all x and y. Hence,

ϕ(y) = inf
x
f(x, y) ≥ λ̄ · y + f∗(0, λ̄) ≥ −∞

for all y. It follows from Lemma 6.9 that ϕ is proper and convex. �

Combining the lemmas above, we obtain the following version of the strong du-
ality.

6.12 THEOREM. (a) If f∗ is feasible and ϕ is closed, then the primal and dual prob-
lems have the same optimal value, that is,

inf
x
f(x, 0) = sup

λ
f∗(0, λ);

the common value may be +∞.
(b) If f is feasible and ϕ∗ is closed, then the same equality holds; the common

value may be −∞.
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The subtle point is that ϕ or ϕ∗ might fail to be closed; see Exercises 6.30
and 6.34 for possible examples. The duality theorem above has a strong conclu-
sion, but its utility is marred by the difficulty of checking whether ϕ or ϕ∗ is closed.
We seek simpler conditions next.

Closedness

Recall that the primal function f is proper, closed, and convex, which is the same
as saying that its epigraph is a nonempty, closed, convex subset of Rn × R

m × R.
We are interested in checking whether the function ϕ is closed, that is, whether its
epigraph is a closed subset of Rm × R.

The next theorem relates the two epigraphs, epi f and epiϕ for short.

6.13 THEOREM. Let D be the natural projection of epi f into R
m × R, that is, let

D = {(y, r) ∈ R
m × R : (x, y, r) ∈ epi f for some x in R

n} ,

and let D̄ be its closure. Then, D ⊂ epiϕ ⊂ D̄.

PROOF. Let (y, r) ∈ D. Then, (x, y, r) ∈ epi f for some x, which means that
f(x, y) ≤ r for some x. Thus,

6.14 ϕ(y) = inf
x
f(x, y) ≤ r,

which is equivalent to saying that (y, r) ∈ epiϕ. Hence, D ⊂ epiϕ.
To prove the other containment, let (y, r) ∈ epiϕ, which is equivalent to saying

that 6.14 holds. If the infimum in 6.14 is attained, there is an x such that f(x, y) =
ϕ(y) ≤ r, which implies that (x, y, r) ∈ epi f , which in turn yields (y, r) ∈ D ⊂ D̄,
and the proof is done. Next, suppose that the infimum is not attained, and pick a
sequence (εk) of numbers strictly decreasing to 0. By the definition of infimum, for
each k there is a vector xk such that

f(xk, y) ≤ ϕ(y) + εk ≤ r + εk.

Then, (xk, y, r + εk) ∈ epi f , and thus, (y, r + εk) ∈ D for every k. Letting k → ∞,
we see that (y, r) ∈ D̄. Hence, epiϕ ⊂ D̄. �

6.15 COROLLARY. If D is closed, then ϕ is closed.
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PROOF. If D is closed, D = D̄, which means that the conclusion of the preceding
theorem becomes epiϕ = D̄, which is closed. �

In the next section, we take up linear programming, where the shape of f is such
that D is always closed.

B. Linear Programming and Polyhedra

6.16 DEFINITION. A polyhedron in R
n is a set P of the form

P = {x ∈ R
n : Ax ≤ b},

where A is an m× n matrix and b is a vector in R
m.

6.17 THEOREM. Every polyhedron is closed.

PROOF. The inequality Ax ≤ b is in fact a set of inequalities of the form ξi · x ≤ bi,
where ξi is the i-row of A. Since {x : ξi ·x ≤ bi} is a half-space for each i, we see that
a polyhedron is the intersection of some number m of half-spaces. Each half-space
is closed by Theorem 2.49, and the intersection of closed sets is closed. So, every
polyhedron is closed. �

Consider a polyhedron. If it is a bounded set, then it can be characterized as the set
of all convex combinations of its vertices. If it is unbounded, then there must be some
edges that extend to infinity. In this case, the polyhedron cannot be characterized
solely in terms of its vertices—one must also include positive combinations of its
unbounded edges (see Fig. 6.1). These comments provide the intuition behind the
following theorem, which we offer without proof. It is known as the Minkowski–Weyl
theorem or finite basis theorem.

6.18 THEOREM. (Finite basis)
(a) Given a matrix A and a vector b, there exists a finite set of vectors vj and a

finite set of vectors wk such that

6.19 {x : Ax ≤ b} =

{
∑

j

αjvj +
∑

k

βkwk : αj ≥ 0,
∑

j

αj = 1, βk ≥ 0

}

.

(b) Given a finite set of vectors vj and another finite set of vectors wk , there exist
a matrix A and a column vector b such that 6.19 holds.
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FIGURE 6.1. The gray region is a polyhedron formed by the inter-
section of three half planes. The vectors v1, v2, w1, and w2 from the
finite basis theorem are shown.

6.20 THEOREM. Let P be a polyhedron in R
n, and B a matrix of dimension m× n.

Then,
BP = {Bx : x ∈ P}

is a polyhedron in R
m.

PROOF. By the finite basis theorem, there are vj’s and wk’s in R
n such that 6.19 holds.

Then, the Bvj’s and the Bwk’s are vectors in R
m, and

BP =

{
∑

j

αjBvj +
∑

k

βkBwk : αj ≥ 0,
∑

j

αj = 1, βk ≥ 0

}

,

which is a polyhedron by the sufficiency part of 6.19. �

We apply the theorems above on polyhedra to settle the matter of closedness.
Recall the primal function f on R

n ×R
m, define ϕ as before by 6.7, and recall Theo-

rem 6.13 and its Corollary 6.15. Note that the set D of Theorem 6.13 has the form
BP where P = epi f , and B is a matrix of dimensions m+ 1 by m+ n+ 1. Hence,
as a corollary to the preceding theorem, we get the following.

6.21 THEOREM. If epi f is a polyhedron, then ϕ is closed.

In the case of linear programs, we have seen that epi f is a polyhedron. Thus,
strong duality follows provided only that either the primal or the dual be feasible.
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C. Lagrangians

Let f be a primal function, and f∗ its dual. Lagrangians represent halfway points
between them. As such, Lagrangians are computationally convenient. Recall the no-
tation R̄ for the extended real line, R ∪ {+∞,−∞}.

6.22 DEFINITION. The primal Lagrangian is the function L : Rn × R
m �→ R̄ de-

fined by

L(x, λ) = inf
y
(−λ · y + f(x, y)) ,

and the dual Lagrangian is the function L∗ : Rn × R
m �→ R̄ given by

L∗(x, λ) = sup
ξ

(ξ · x+ f∗(ξ, λ)) .

Here is the point of introducing them.

6.23 THEOREM. Let L be the primal Lagrangian, and L∗ the dual. Then,

f∗(ξ, λ) = inf
x

(−ξ · x+ L(x, λ)) ,

f(x, y) = sup
λ

(λ · y + L∗(x, λ)) .

PROOF. Putting together the definitions of f∗ and L, we get

f∗(ξ, λ) = inf
x,y

(−ξ · x− λ · y + f(x, y))

= inf
x

Å
−ξ · x+ inf

y
(−λ · y + f(x, y))

ã
= inf

x
(−ξ · x+ L(x, λ)) .

as claimed. The claim regarding f and L∗ is proved similarly. �

One might hope, or even expect, that L and L∗ are the same function—after all,
both represent halfway points between f and f∗. This is true, but subject to some
conditions—see Example 6.26 for its failure.

6.24 THEOREM.
(a) For fixed λ in R

m, suppose that the function x �→ L(x, λ) is proper, closed,
and convex; then L(x, λ) = L∗(x, λ) for all x in R

n.
(b) For each x in R

n, suppose that the function λ �→ L(x, λ) is proper, closed,
and concave; then L(x, λ) = L∗(x, λ) for all λ in R

m.
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PROOF. We prove the first statement; the second is analogous. Fix λ, let g(x) =
L(x, λ), and assume that g is proper, closed, and convex. By Theorem 6.23, we have
f∗( · , λ) = −ĝ, the negative of the Legendre transform of g. Since g is proper, closed,
and convex by assumption, Theorem 5.28 applies: g is the Legendre transform of
−f∗( · , λ). But this last Legendre transform is equal to L∗( · , λ) by Definition 6.22.
Hence, L( · , λ) and L∗( · , λ) are the same function. From Theorem 6.23, we have

f∗( · , λ) = −◊�L( · , λ).
By assumption, L( · , λ) is proper, closed, and convex. Therefore,

L( · , λ) = Ÿ�−f∗( · , λ) = L∗( · , λ),
where the second equality follows from the definition of L∗. �

D. Saddle Points

Strong duality is equivalent to the equality of the saddle points of L and L∗, the
Lagrangians defined in Definition 6.22.

6.25 THEOREM. Strong duality, 6.6, holds if and only if

inf
x
sup
λ

L∗(x, λ) = sup
λ

inf
x
L(x, λ).

PROOF. From Theorem 6.23, we have that

inf
x
f(x, 0) = inf

x
sup
λ

L∗(x, λ),

sup
λ

f∗(0, λ) = sup
λ

inf
x
L(x, λ).

Strong duality means that the expressions on the left are equal. �

Examples

6.26 Linear programming. Consider the linear programming problem of minimiz-
ing a linear function c · x subject to a collection of m linear inequalities Ax ≥ b and
positivity of the n variables x ≥ 0:

minimize c · x
subject to Ax ≥ b

x ≥ 0.



110 Convex Optimization Chap. 6

The m-vector b is called the “right-hand side.” Perturbing the right-hand side by y, we
get the following primal function

f(x, y) =

ß
c · x x ≥ 0 and Ax ≥ b+ y,
∞ otherwise.

Recall the definition of the Lagrangian:

L(x, λ) = inf
y
(−λ · y + f(x, y)) .

If x 
≥ 0, then the Lagrangian is plus infinity. So, let us suppose that x ≥ 0. To
keep things finite, we need y ≤ Ax − b. Each component yi of y will be set either
to its largest possible value (Ax − b)i or will tend to −∞ depending on the sign of
its coefficient −λi. If the coefficient is positive, then −yiλi is minimized by making
yi as small as possible; that is, by letting it approach −∞. If on the other hand the
coefficient is negative, then the term is minimized by setting yi to its largest possible
value (Ax−b)i. If any term goes to minus infinity, then the overall minimum is minus
infinity. Hence, the Lagrangian is finite if and only if −λ ≤ 0. To summarize, we have

L(x, λ) =

⎧
⎪⎨

⎪⎩

∞ x 
≥ 0,

−∞ x ≥ 0, λ 
≥ 0,

−λ · (Ax− b) + c · x x ≥ 0, λ ≥ 0.

Similar considerations allow us to compute f∗ from L:

f∗(ξ, λ) = inf
x
(−ξ · x+ L(x, λ))

=

⎧
⎨

⎩

inf
x:x≥0

(
(c−ATλ− ξ) · x)+ b · λ if λ ≥ 0,

−∞ otherwise

=

®
b · λ if λ ≥ 0 and ATλ ≤ c− ξ,

−∞ otherwise.

Hence, the dual problem is given by

maximize b · λ
subject to ATλ ≤ c

λ ≥ 0.

Reversing directions, it is easy to compute L∗ from f∗:

L∗(x, λ) =

⎧
⎪⎨

⎪⎩

−∞ λ 
≥ 0,

∞ λ ≥ 0, x 
≥ 0,

(c−ATλ) · x+ b · λ λ ≥ 0, x ≥ 0.
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Note that L 
= L∗ in the third quadrant. Note also that f is feasible if and only if

{x : Ax ≥ b, x ≥ 0} 
= ∅
and that f∗ is feasible if and only if

{λ : ATλ ≤ c, λ ≥ 0} 
= ∅.

6.27 An unbounded LP. Consider the following trivial linear programming problem:

minimize −x
subject to x ≥ 1

x ≥ 0.

Here, x ∈ R. The problem is unbounded. The primal function is

f(x, y) =

ß −x if x ≥ 0 and x ≥ 1 + y,
∞ otherwise.

The associated dual function is

f∗(ξ, λ) =
ß

λ if λ ≥ 0 and λ ≤ −1− ξ,
−∞ otherwise,

and the dual problem therefore is

maximize λ
subject to λ ≤ −1

λ ≥ 0.

The dual problem is clearly infeasible. The functions ϕ and ϕ∗ are easy to compute:

ϕ(y) = inf
x
f(x, y) = −∞

and

ϕ∗(ξ) = sup
λ

f∗(ξ, λ) =
ß −1− ξ ξ ≤ −1,

−∞ ξ > −1.

We see now that f is feasible and ϕ∗ is closed. Therefore the first part of the strong
duality theorem tells us that

inf
x
f(x, 0) = sup

λ
f∗(0, λ).

Indeed, this is the case. Both sides are minus infinity.

6.28 Quadratic programming. The problem of minimizing a convex quadratic
function subject to a collection of m linear inequalities Ax ≥ b is called the quadratic
programming problem:

minimize c · x+ 1
2x ·Qx

subject to Ax ≥ b.



112 Convex Optimization Chap. 6

As before, we perturb the right-hand side by y to get

f(x, y) =

ß
c · x+ 1

2x ·Qx Ax ≥ b+ y,
∞ otherwise.

The Lagrangian is easy to compute:

L(x, λ) = inf
y
(−λ · y + f(x, y))

=

ß −λ · (Ax− b) + c · x+ 1
2x ·Qx λ ≥ 0,

−∞ otherwise.

Computing f∗ from L is a little trickier than before. We start out in the same way:

f∗(ξ, λ) = inf
x
(−ξ · x+ L(x, λ))

=

⎧
⎨

⎩

b · λ+ inf
x

Å
(c− ξ −ATλ) · x+

1

2
x ·Qx

ã
λ ≥ 0,

−∞ otherwise.

The function x �→ (c − ξ − ATλ) · x + 1
2x · Qx is a convex quadratic function and

it is being minimized over all x in R
n. Hence, its minimum is found by taking the

gradient of the function and setting that to zero. That is, the expression is minimized
at the point that solves

c− ξ −ATλ+Qx = 0.

Therefore, the minimum value is

(c− ξ −ATλ) · x+
1

2
x ·Qx =

(
c− ξ −ATλ+Qx

) · x− 1

2
x ·Qx

= −1

2
x ·Qx,

and the dual function f∗ is given by

f∗(ξ, λ) =

⎧
⎨

⎩

b · λ− 1
2x ·Qx

∣
∣
x:c−ξ−ATλ+Qx=0

λ ≥ 0,

−∞ otherwise.

Hence, the dual problem is given by

maximize b · λ− 1
2x ·Qx

subject to ATλ−Qx = c
λ ≥ 0.
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Exercises

6.29 Let f : R �→ R be a proper, closed, convex function and suppose that it is
differentiable at those points where it is finite. Show that f̂ is differentiable on the set
where it is finite and

f̂ ′ = (f ′)−1.

6.30 Consider the linear programming problem: maximize x subject to 0 · x ≤ −1,
x ≥ 0. Compute L, f , and f∗. Does strong duality hold?

6.31 Compute the dual of the linear programming problem: minimize c · x subject
to Ax = b, x ≥ 0. Hint: use a perturbation to the right-hand side by replacing b with
b+ y.

6.32 Given a convex function f : Rn �→ R and a convex and monotonically increasing
function g : R �→ R ∪ {∞}, show that the composition g ◦ f is convex.

6.33 Show that the geometric mean

f(x1, . . . , xn) =

ß
(x1 · · ·xn)

1/n if xi ≥ 0 for all i,
−∞ otherwise.

is concave.

6.34 Compute f∗ when

f(x, y) =

ß
x if x2 ≤ y,
∞ if x2 > y.

Does strong duality hold? Is the primal optimal solution attained? Is the dual optimal
solution attained?

6.35 Compute f∗ when

f(x, y) =

ß
e−

√
xy if x, y ≥ 0,

∞ otherwise.
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CHAPTER 7

Measure and Integration

This chapter is an introduction to measure and integration on abstract spaces. The
treatment is driven by the needs of modern analysis and probability. The result is a
robust concept of integration that extends the concepts familiar in calculus.

A. Algebras

Let E be a set. Let E be a collection of subsets of E; see Chap. 1 for the notations
and terminology. The collection E is called an algebra on E if it includes E and
is closed under the operations of complementation and finite unions. It is called a
σ-algebra if it is an algebra that is closed under countable unions. To reiterate, E is a
σ-algebra on E if

7.1
(i) E ∈ E ,
(ii) A ∈ E ⇒ Ac ∈ E ,
(iii) A1, A2, . . . ∈ E ⇒ ⋃∞

n=1 An ∈ E .

A σ-algebra is also closed under countable intersections because the intersection of
a collection of subsets is the complement of the union of the complements of those
subsets.

The sets E and ∅ belong to every σ-algebra on E. Thus, the simplest σ-algebra
on E is E = {∅, E}; it is called the trivial σ-algebra. The largest is the collection of
all subsets, denoted by 2E or P(E); it is called the discrete σ-algebra on E.

The intersection of an arbitrary family (countable or uncountable) of σ-algebras
on E is again a σ-algebra. If C is a collection of subsets of E, the intersection of
all σ-algebras containing C is the smallest σ-algebra that contains C; it is called the
σ-algebra generated by C and is denoted by σ(C).

If E is a metric space, then the σ-algebra generated by the collection of all open
subsets is called the Borel σ-algebra on E; it is denoted by B(E), and its elements are
called Borel sets. Thus, every open set, every closed set, and every set obtained from
open and closed sets through countably many set operations are all Borel sets.

E. Çınlar and R.J. Vanderbei, Real and Convex Analysis, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-5257-7 7, © Springer Science+Business Media New York 2013
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Monotone Class Theorem
This useful theorem simplifies the task of showing that a given collection is a

σ-algebra. Throughout this subsection, E is an arbitrary set.
A collection C of subsets of E is called a π-system if it is closed under finite

intersections, that is, if

7.2 A,B ∈ C ⇒ A ∩B ∈ C.
A collection D of subsets of E is called a d-system on E if

7.3
(i) E ∈ D,
(ii) A,B ∈ D and B ⊂ A ⇒ A \B ∈ D,
(iii) (An) ⊂ D and An ↗ A ⇒ A ∈ D.

On the last line, we wrote (An) ⊂ D to mean that (An) is a sequence of elements of
D, and we wrote An ↗ A to mean that A1 ⊂ A2 ⊂ · · · and

⋃
n An = A.

7.4 PROPOSITION. Let E be a collection of subsets of E. Then, E is a σ-algebra on E
if and only if E is both a π-system and a d-system on E.

PROOF. If E is a σ-algebra then it is obviously a π-system and a d-system. To
show the converse, suppose that E is both a π-system and a d-system. Now, 7.3
(i) and 7.3 (ii) show that E is closed under complements. Because A∪B = (Ac∩Bc)c,
this implies that E is closed under unions: if A,B ∈ E then Ac, Bc ∈ E , and thus
Ac ∩ Bc ∈ E because E is a π-system, and hence (Ac ∩ Bc)c ∈ E . This implies that
E is closed under countable unions. If A1, A2, . . . ∈ E , put

B1 = A1, B2 = B1 ∪A2, B3 = B2 ∪A3, . . . .

Each Bn belongs to E by what we have just shown. Obviously, B1 ⊂ B2 ⊂ · · · and
⋃

n Bn =
⋃

n An. Thus, using the property 7.3 (iii) of the d-system E , we see that⋃
n An ∈ E . �

The following lemma is needed in the proof of the main theorem. Its proof is
obtained by checking the conditions of 7.3 one by one; we leave it as an exercise.

7.5 LEMMA. Let D be a d-system on E. Fix D in D and let

D̂ = {A ∈ D : A ∩D ∈ D}.
Then, D̂ is again a d-system.
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The following is the main result of this section. It is called Dynkin’s monotone
class theorem.

7.6 THEOREM. If a d-system contains a π-system, then it contains also the σ-algebra
generated by that π-system.

PROOF. Let C be a π-system. Let D be the smallest d-system on E that contains C.
We need to show that D ⊃ σ(C). To that end, because σ(C) is the smallest σ-algebra
containing C, it is sufficient to show that D is a σ-algebra. For this, it is in turn
sufficient to show that D is a π-system (and then Proposition 7.4 implies that the
d-system D is a σ-algebra).

Fix B in C and let D1 = {A ∈ D : A ∩ B ∈ D}. Because B ∈ C ⊂ D,
Lemma 7.5 shows that D1 is a d-system. Moreover,D1 ⊃ C since A∩B ∈ C ⊂ D for
everyA ∈ C by the fact that C is a π-system. So D1 must contain the smallest d-system
containing C, that is, D1 ⊃ D. In other words, A ∩ B ∈ D for every A in D and B
in C.

Next, fix A in D and let D2 = {B ∈ D : A ∩B ∈ D}. We have just shown that
D2 ⊃ C. Moreover, by Lemma 7.5 again, D2 is a d-system. Thus, D2 ⊃ D. In other
words, A ∩B ∈ D for every A in D and B in D, that is, D is a π-system. �

Exercises

7.7 Partitions. A partition of E is a countable disjointed collection of subsets whose
union is E. It is called a finite partition if it has only finitely many elements.

(a) Let {A,B,C} be a partition of E. List the elements of the σ-algebra generated
by this partition.

(b) Let C be a partition of E. Let E be the collection of all countable unions of
elements of C. Show that E is a σ-algebra. Show that, in fact, E = σ(C).

Generally, if C is not a partition, the elements of σ(C) cannot be obtained through
such explicit constructions.

7.8 Let B and C be two collections of subsets of E. If B ⊂ C, then σ(B) ⊂ σ(C). If
B ⊂ σ(C) ⊂ σ(B), then σ(B) = σ(C). Show these.

7.9 Borel σ-algebra on R. Show that B(R) is generated by the collection of all
open intervals. Hint: Recall that every open subset of R is a countable union of open
intervals.
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7.10 Continuation. Show that every interval of R is a Borel set. In particular,
(−∞, x), (−∞, x], (x, y], [x, y] are all Borel sets. Every singleton {x} is a Borel
set.

7.11 Show that B(R) is also generated by any one of the following:

(a) The collection of all intervals of the form (x,∞)
(b) The collection of all intervals of the form (x, y]
(c) The collection of all intervals of the form [x, y]
(d) The collection of all intervals of the form (−∞, x]
(e) The collection of all intervals of the form (x,∞) with x rational

B. Measurable Spaces and Functions

A measurable space is a pair (E, E), where E is a set and E is a σ-algebra on E.
Then, the elements of E are called measurable sets. When E is a metric space and
E = B(E), the Borel σ-algebra on E, the measurable sets are also called Borel sets.

Let (E, E) and (F,F) be measurable spaces and let f be a mapping from E into
F . Then, f is said to be measurable relative to E and F if f−1B ∈ E for every B in
F (these are the functions we wish to be able to integrate). Recall that, for subsets B
of F , f−1B denotes the inverse image of B under f ; see 1.5 and Exercise 1.6. If E
and F are metric spaces and E = B(E) and F = B(F ) and f : E �→ F is measurable
relative to E and F , then f is also called a Borel function.

Measurable Functions
The following proposition uses Exercise 1.6 to reduce the checks for measura-

bility.

7.12 PROPOSITION. Let (E, E) and (F,F) be measurable spaces. For f : E �→ F to
be measurable relative to E and F , it is necessary and sufficient that f−1B ∈ E for
every B in F0 for some collection F0 that generates F .

PROOF. The necessity part is trivial. To prove the sufficiency, let F0 ⊂ F be such that
σ(F0) = F and suppose that f−1B ∈ E for every B in F0. We need to show that,
then,

F1 = {B ∈ F : f−1B ∈ E}
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is equal to F . For this, it is sufficient to show that F1 is a σ-algebra because F1 ⊃ F0

by hypothesis and F is the smallest σ-algebra containing F0. But checking that F1 is
a σ-algebra is easy in view of the relations given in Exercise 1.6. �

Borel Functions
LetE andF be metric spaces and let E andF be their respective Borel σ-algebras.

Let f : E �→ F . Since F is generated by the open subsets of F , in order for f to be a
Borel function, it is necessary and sufficient that f−1B ∈ E for every open subset B
of F ; this is an immediate corollary of the preceding proposition. In particular, if f is
continuous, then f−1B is open in E for every open B ⊂ F . Thus, every continuous
function f : E �→ F is Borel measurable. The converse is generally false.

Compositions of Functions
Let (E, E), (F,F), and (G,G) be measurable spaces. Let f : E �→ F and

g : F �→ G. Then, their composition g ◦ f : x �→ g(f(x)) is a mapping from E into
G. The following proposition will be recalled by the phrase “measurable functions of
measurable functions are measurable.”

7.13 PROPOSITION. If f is measurable relative to E and F , and if g is measurable
relative to F and G, then g ◦ f is measurable relative to E and G.

PROOF. Recall that (g ◦ f)−1C = f−1(g−1C) for every C ⊂ G. If C ∈ G and
g is measurable, then B = g−1C is in F . Therefore, if f is measurable, f−1B =
f−1(g−1C) is in E for every C in G. �

Numerical Functions
By a numerical function on E we mean a mapping from E into R̄ or some subset

thereof. Such a function is said to be positive if all its values are in R̄+ and is said
to be real-valued if all its values are in R. If (E, E) is a measurable space and f is a
numerical function on E, then f is said to be E-measurable if it is measurable with
respect to E and B(R̄).

Let (E, E) be a measurable space and let f be a numerical function on E. Using
Proposition 7.12 with F = R̄ and F = B(R̄) and recalling Exercise 7.11, we see that
the following holds.



120 Measure and Integration Chap. 7

7.14 PROPOSITION. The numerical function f is E-measurable if and only if any one
of the following is true:

(a) {x ∈ E : f(x) ≤ r} ∈ E for every r in R,
(b) {x ∈ E : f(x) > r} ∈ E for every r in R,
(c) {x ∈ E : f(x) < r} ∈ E for every r in R, etc.

7.15 COROLLARY. Suppose that f : E �→ F , where F is a countable subset of R̄.
Then, f is E-measurable if and only if {x : f(x) = a} ∈ E for every a in F .

PROOF. Necessity is trivial since each singleton {a} is a Borel set. For the sufficiency,
fix r in R and note that {x : f(x) ≤ r} is the union of {x : f(x) = a} over all
a ≤ r, a ∈ F , and therefore belongs to E since it is a countable union of the sets
{x : f(x) = a} ∈ E . Thus, f is E-measurable by the preceding proposition. �

Positive and Negative Parts of a Function
Let (E, E) be a measurable space. Let f be a numerical function on E. Then,1

f+ = f ∨ 0, f− = −(f ∧ 0)

are called the positive part of f and negative part of f , respectively. Note that both f+

and f− are positive functions and

f = f+ − f−.

7.16 PROPOSITION. The function f is E-measurable if and only if both f+ and f−

are E-measurable.

The proof is left as an exercise. The decomposition f = f+ − f− enables us to
state most results for positive functions only, since it is easy to obtain the correspond-
ing result for arbitrary f .

Indicators and Simple Functions
Let A ⊂ E. Its indicator, denoted by 1A, is defined by

1A(x) =

ß
1 if x ∈ A,
0 if x �∈ A.

Obviously, 1A is E-measurable if and only if A ∈ E .

1For a, b ∈ R̄ we write a ∨ b for the maximum of a and b, and a ∧ b for the minimum. The notation
extends to functions: f ∨ g is the function whose value at x is f(x) ∨ g(x); similarly for f ∧ g.
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A function f on E is said to be simple if it has the form

7.17 f =
n∑

1

ai1Ai

for some integer n, real numbers a1, . . . , an, and measurable sets A1, . . . , An. It
is clear that, then, there exist an integer m ≥ 1, distinct real numbers b1, . . . , bm,
and a measurable partition {B1, . . . , Bm} of E such that f =

∑m
1 bi1Bi ; this latter

representation is called the canonical form of the simple function f .
Every simple function on E is E-measurable; this is immediate from Corol-

lary 7.15 applied to the canonical form of f . Conversely, if f is E-measurable and f
takes only finitely many values, and all those values are real, then f is simple.

In particular, every constant is a simple function. Moreover, if f and g are simple,
then so are

f + g, f − g, fg, f/g, f ∨ g, f ∧ g,

except that in the case of f/g one must make sure that g is never 0.

Approximations by Simple Functions
We start by constructing a sequence of simple functions that approximate the

identity function d from R̄+ into R̄+. For each n ∈ N
∗, let

7.18 dn(x) =

ß
k/2n if k

2n ≤ x < k+1
2n , k ∈ {0, 1, . . . , n2n − 1},

n if x ≥ n.

The following lemma should be self-evident.

7.19 LEMMA. Each dn is a simple Borel function on R̄+. Each dn is right-continuous
and increasing. The sequence (dn) is increasing pointwise to the function d : x �→ x.

The following theorem characterizes all E-measurable positive functions and, via
Proposition 7.16, all E-measurable functions.

7.20 THEOREM. A positive function on E is E-measurable if and only if it is the limit
of an increasing sequence of simple positive functions.

PROOF. Necessity. Let f : E �→ R̄+ be E-measurable. Let the functions dn be defined
by 7.18. Since each dn is a measurable function from R̄+ into R̄+, and since mea-
surable functions of measurable functions are measurable, the function fn = dn ◦ f
is E-measurable for each n. Since dn is simple, so is fn. Finally, lim fn(x) =
lim dn(f(x)) = f(x) since lim dn(y) = y for all y in R̄+. Thus, f is the limit of the
sequence (fn) of simple positive functions and f1 ≤ f2 ≤ · · · since d1 ≤ d2 ≤ · · · .
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Sufficiency. Let f1 ≤ f2 ≤ · · · be simple and positive and let f = lim fn. Now,
for each x in E and r in R, we have f(x) ≤ r if and only if fn(x) ≤ r for all n; thus,

{x ∈ E : f(x) ≤ r} =
⋂∞

n=1
{x ∈ E : fn(x) ≤ r}

for each r in R. Since the fn are simple (and therefore measurable), each factor on
the right side belongs to E and, therefore, so does the intersection. Hence, f is E-
measurable by Proposition 7.14. �

Limits of Sequences of Functions
Let (E, E) be a measurable space and let (fn) be a sequence of numerical func-

tions on E.

7.21 THEOREM. Suppose that each fn is E-measurable. Then, each one of

inf fn, sup fn, lim inf fn, lim sup fn

is again E-measurable. Moreover, if lim fn exists, then it is E-measurable.

PROOF. For x in E and r in R, we have inf fn(x) ≥ r if and only if fn(x) ≥ r for all
n. Thus, for each r in R,

{x ∈ E : inf fn(x) ≥ r} =
⋂

n
{x ∈ E : fn(x) ≥ r}.

Now, {x : fn(x) ≥ r} ∈ E for each n by the measurability of fn, and therefore the
intersection on the right side belongs to E since E is closed under countable intersec-
tions. Thus, inf fn is E-measurable by Proposition 7.14.

The proof that sup fn is E-measurable follows via similar reasoning upon noting
that

{x ∈ E : sup fn(x) ≤ r} =
⋂

n
{x ∈ E : fn(x) ≤ r}.

It follows from these that

lim inf fn = sup
m

inf
n≥m

fn, lim sup fn = inf
m

sup
n≥m

fn

are both E-measurable. Finally, lim fn exists if and only if lim inf fn = lim sup fn,
and then lim fn is the common limit; so, it must be E-measurable. �

Monotone Classes of Functions
Often we are interested in showing that a certain property holds for all measurable

functions. The following are useful in such quests.
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Let M be a collection of functions on E. Then, M is called a monotone class of
functions provided that

7.22
(i) 1 ∈ M,
(ii) f, g ∈ M, and a, b ∈ R ⇒ af + bg ∈ M,
(iii) (fn) ⊂ M, fn ≥ 0, and fn ↗ f ⇒ f ∈ M.

The following is called the monotone class theorem for functions.

7.23 THEOREM. Let M be a monotone class of functions on E. Suppose that 1A ∈
M for every A in C for some π-system C that generates the σ-algebra E . Then, M
includes all positive E-measurable functions.

PROOF. We start by showing that 1A ∈ M for every A ∈ E . To this end, let

D = {A ∈ E : 1A ∈ M}.
Using the properties 7.22 of M, it is easy to check that D is a d-system. Moreover,
D ⊃ C by hypothesis. Thus, by Dynkin’s monotone class theorem, D ⊃ σ(C) = E .
In other words, 1A ∈ M for every A ∈ E .

Consequently, in view of property 7.22(ii), M includes all simple positive E-
measurable functions.

Let f be a positive E-measurable function. By Theorem 7.20, there exists a
sequence of positive simple functions fn ↗ f . Since each fn is in M by the preceding
step, 7.22(iii) implies that f is in M.

�

Notation
We shall write f ∈ E to mean that f is an E-measurable function. Thus, E stands

both for a σ-algebra and for the collection of all numerical functions measurable with
respect to it. Furthermore, we shall use the notation

F+ = {f ∈ F : f ≥ 0}
for any collection F of numerical functions. Thus, in particular, E+ is the collection
of all positive E-measurable functions.

Exercises

7.24 Trace spaces. Let (E, E) be a measurable space and let D ⊂ E be fixed. Show
that

D = {A ∩D : A ∈ E}
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is a σ-algebra on D. Then, D is called the trace of E on D, and (D,D) is called the
trace of (E, E) on D.

7.25 σ-Algebra generated by a function. LetE be a set and let (F,F) be a measurable
space. Let f be a mapping from E into F and set

f−1(F) = {f−1B : B ∈ F}.
Use Exercise 1.6 to show that f−1(F) is a σ-algebra on E; it is called the σ-algebra
on E generated by f . It is the smallest σ-algebra on E such that f is measurable
relative to it and F .

7.26 Product spaces. Let (E, E) and (F,F) be measurable spaces. A rectangle
A × B is said to be measurable if A ∈ E and B ∈ F . Show that the collection of all
measurable rectangles form a π-system. The σ-algebra on E×F generated by that π-
system is denoted by E⊗F and is called the productσ-algebra. Further, (E×F, E⊗F)
is called the product of (E, E) and (F,F) and is denoted by (E, E) × (F,F) also. If
(E, E) = (F,F), then it is usual to write E2 for E × F and E2 for E ⊗ F . In
particular, it can be shown that (R2,B(R2)) = (R,B(R)) × (R,B(R)), and by an
obvious extension, (Rn,B(Rn)) = (R,B(R))× · · · × (R,B(R)), n times.

7.27 Continuation. Let (E, E), (F,F), (G,G) be measurable spaces. Let f : E �→ F
be measurable relative to E and F , and let g : E �→ G be measurable relative to E and
G. Then,

h(x) = (f(x), g(x)), x ∈ E,

defines a mapping from E into F × G. Show that h is measurable relative to E and
F ⊗ G.

In particular, a function f : E �→ R
n is measurable relative to E and B(Rn) if and

only if its coordinates are measurable relative to E and B(R); recall that the coordi-
nates of f are the functions f1, . . . , fn such that f(x) = (f1(x), . . . , fn(x)), x ∈ E.

7.28 Discrete spaces. A measurable space (E, E) is said to be discrete if E is count-
able and E is the σ-algebra of all subsets of E. Then, show that every numerical
function on E is E-measurable.

7.29 Suppose that E is generated by a partition of E. Show that, then, a numerical
function on E is E-measurable if and only if it is constant over each member of that
partition.
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7.30 Approximation by simple functions. Show that a numerical function on E is
E-measurable if and only if it is the limit of a sequence of simple functions.

7.31 Arithmetic operations. Let f and g be E-measurable. Show that, then, each
one of

f + g, f − g, f · g, f/g, f ∨ g, f ∧ g

is E-measurable provided that it is well-defined.

7.32 Functions on R. Let f : R �→ R+ be increasing. Show that it is a Borel function.

7.33 Step functions. A function f : R+ �→ R is called a step function if there exists a
subdivision

0 = x0 < x1 < x2 < · · ·
with limxn = +∞ such that f is constant over (xi, xi+1) for each i ≥ 0. Show that
every such f is a Borel function.

7.34 Right-continuous functions. Show that every right-continuous function f : R+ �→
R is Borel measurable. Similarly, every left-continuous function is Borel. Hint for
right-continuous f : define dn(x) = (k + 1)/2n if k/2n ≤ x < (k + 1)/2n for some
k = 0, 1, 2, . . . for n = 1, 2, . . . . Show that dn is Borel. Let fn(x) = f(dn(x)).
Show that each fn is a step function, and show that fn → f as n → ∞.

C. Measures

Let (E, E) be a measurable space. A measure on (E, E) is a mapping μ : E �→ R̄+

such that

(a) μ(∅) = 0 ,
(b) μ(

⋃
n An) =

∑
n μ(An) for every disjointed sequence (An) in E .

The latter condition is called countable additivity.
A measure space is a triplet (E, E , μ) where E is a set, E is a σ-algebra on E, and

μ is a measure on (E, E).

7.35 PROPOSITION. Let μ be a measure on (E, E). Then, the following hold for all
measurable sets A, B, and An, n ≥ 1:

Finite additivity: A ∩B = ∅ implies that μ(A ∪B) = μ(A) + μ(B).
Monotonicity: A ⊂ B implies that μ(A) ≤ μ(B).
Sequential continuity: An ↗ A implies that μ(An) ↗ μ(A).
Boole’s inequality: μ(

⋃
n An) ≤ ∑

n μ(An).
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PROOF. Finite additivity is a particular instance of the countable additivity of μ: take
A1 = A, A2 = B, A3 = A4 = · · · = ∅. Monotonicity follows from it and the
positivity of μ: if A ⊂ B,

μ(B) = μ(A) + μ(B \A) ≥ μ(A)

since μ(B \A) ≥ 0. Sequential continuity follows from (and is equivalent to) count-
able additivity: suppose that An ↗ A; then,

B1 = A1, B2 = A2 \A1, B3 = A3 \A2, . . .

are disjoint, their union is A, and the union of the first n is An; hence, the sequence of
numbers μ(An) increases by the monotonicity of μ, and

limμ(An) = limμ
(⋃n

1
Bi

)
= lim

n

n∑

1

μ(Bi) =
∞∑

1

μ(Bi) = μ
(⋃∞

1
Bi

)
= μ(A).

Finally, Boole’s inequality follows from the observation that

μ(A ∪B) = μ(A) + μ(B \A) ≤ μ(A) + μ(B).

�

Arithmetic of Measures
Let (E, E) be a measurable space. If μ is a measure on it and if c ≥ 0 is a

constant, then cμ is again a measure. If μ and ν are measures on (E, E), so is μ + ν.
If μ1, μ2, . . . are measures, then so is μ =

∑
μm: it is obvious that μ(∅) = 0, and if

A1, A2, . . . are disjoint then

μ
Ä⋃

n
An

ä
=

∑

m

μm

Ä⋃
n
An

ä

=
∑

m

∑

n

μm(An)

=
∑

n

∑

m

μm(An) =
∑

n

μ(An),

where the crucial step (where the order of summation is changed) is justified by the
elementary fact that ∑

m

∑

n

amn =
∑

n

∑

m

amn

if amn ≥ 0 for all m,n.

Finite, σ-Finite, Σ-Finite Measures
Let μ be a measure on (E, E). It is said to be finite if μ(E) < ∞. It is called a

probability measure if μ(E) = 1. It is said to be σ-finite if there exists a measurable
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partition (En) of E such that μ(En) < ∞ for each n. It is said to be Σ-finite if there
exist finite measures μ1, μ2, . . . such that μ =

∑
μn. Note that every finite measure

is trivially σ-finite, every σ-finite measure is Σ-finite. The converses are false (see
Exercise 7.49).

Specification of Measures
It is generally difficult to specify μ(A) for each A, simply because there are too

many A in a σ-algebra. The following proposition is helpful in reducing the task to
that of specifying μ(A) for those A belonging to a π-system that generates the given
σ-algebra.

7.36 PROPOSITION. Let μ and ν be measures on (E, E). Suppose that μ(E) =
ν(E) < ∞, and that μ and ν agree on a π-system generating E . Then, μ = ν.

PROOF. Let C be a π-system with σ(C) = E . Suppose that μ(A) = ν(A) for every
A in C. We need to show that, then, μ(A) = ν(A) for every A in E . This amounts to
showing that

D = {A ∈ E : μ(A) = ν(A)}

contains E . Now, D ⊃ C by hypothesis, and it is straightforward to check that D is a
d-system. Thus, by Dynkin’s monotone class theorem, D ⊃ σ(C) = E . �

7.37 COROLLARY. Let μ and ν be probability measures on (R,B(R)). Then, μ = ν
if and only if, for every x in R,

μ((−∞, x]) = ν((−∞, x]).

PROOF. The collection C of all intervals of the form (−∞, x] is a π-system generat-
ing B(R). Thus, the preceding proposition applies to prove sufficiency. Necessity is
trivial. �

The following proposition extends Proposition 7.36 to σ-finite measures.

7.38 PROPOSITION. Let μ and ν be σ-finite measures on (E, E). Suppose that they
agree on a π-system C generating E . Suppose further that there is a partition (En) of
E such that En ∈ C and μ(En) = ν(En) < ∞ for every n. Then, μ = ν.
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PROOF. For each n, define the measures μn and νn on (E, E) by

μn(A) = μ(A ∩ En), νn(A) = ν(A ∩ En), A ∈ E .
Since En ∈ C, and since A ∩En ∈ C for every A ∈ C, we have

μn(A) = μ(A ∩ En) = ν(A ∩ En) = νn(A) for A ∈ C.
And, by hypothesis, μn(E) = μ(En) = ν(En) = νn(E) < ∞. Thus, the last
proposition applies to show that μn = νn for each n. This completes the proof since
μ =

∑
μn and ν =

∑
νn. �

Almost Everywhere
Often we face situations where a certain statement is true for every x in E0 and

E0 is almost the same as E in the sense that E0 ∈ E and μ(E \E0) = 0. In that case,
we say that the statement is true for almost every x in E or that the statement is true
almost everywhere.

Incidentally, a set N ⊂ E is said to be negligible if there is an A in E such that
N ⊂ A and μ(A) = 0. So, a statement holds almost everywhere if and only if it fails
only over a negligible set.

Examples

7.39 Dirac measure. Let (E, E) be a measurable space. Fix x ∈ E. Define

δx(A) =

ß
1 if x ∈ A
0 if x �∈ A

for each A in E . Then, δx is a measure on (E, E). It is called the Dirac measure sitting
at x.

7.40 Counting measures. Let (E, E) be a measurable space and let D be a countable
subset of E. Define a measure ν on (E, E) by

ν =
∑

x∈D

δx.

Note that ν(A) is the number of points in A ∩D. Such measures are called counting
measures.
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7.41 Discrete measure spaces. Let E be countable and E be the collection of all
subsets of E. Specifying a measure on (E, E) is equivalent to assigning a number
m(x) in R̄+ to each point x in E and then letting

μ(A) =
∑

x∈A

m(x), A ∈ E .

Then, m is called the mass function corresponding to μ. In particular, if E = {1, 2,
. . . , n}, every measure μ on (E, E) can be regarded as a vector in R

n.

7.42 Purely atomic measures. Let (E, E) be a measurable space, let D be a countable
subset of E, and let m(x) be a positive number for each x in D. Define

μ(A) =
∑

x∈D

m(x)δx(A), A ∈ E .

Then, μ is a measure on (E, E). It puts the mass m(x) at the point x, and there are
only countably many such points x. Such measures μ are said to be purely atomic,
and the points x with μ({x}) > 0 are called the atoms of μ provided that {x} ∈ E .

Lebesgue Measures

These are the fundamental examples of measures that are familiar from calculus.
A measure μ on (R,B(R)) is called a Lebesgue measure on R if μ(A) is the length
of A for every interval A; thus, μ is a generalization of the concept of length from
intervals to Borel subsets of R. Similarly, Lebesgue measure on R

2 is the “area”
measure, Lebesgue measure on R

3 is the “volume” measure, and so on.
It is impossible to display μ(A) explicitly for each Borel set A, but countable

additivity and various properties listed in Proposition 7.35 enable us to figure μ(A)
out for most reasonable sets A.

More generally, given a Borel subset E of R
n, it makes sense to talk of the

Lebesgue measure on E; this is the restriction (see Exercise 7.47 below) of the
Lebesgue measure on R

n to the trace space (E,B(E)). These measures are unique.
For instance, on R, the collection C of all open intervals forms a π-system that satisfies
the conditions of Proposition 7.38; thus, there can be at most one measure that assigns
to each interval the length of that interval.

The existence of Lebesgue measure is another matter: countable additivity is to
hold for every disjointed sequence of Borel sets. Since there are uncountably many
such sequences, it is not clear whether such a measure exists. The following answers
this question, albeit without proof.
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7.43 THEOREM. There exists a unique measure on (R,B(R)), called the Lebesgue
measure, that assigns to each interval its length.

Let λ denote the Lebesgue measure on (R,B(R)). The domain of λ can be ex-
tended slightly: let B̄ be the collection of all sets having the form B ∪ N where
B ∈ B(R) and N is λ-negligible. Then, B̄ is again a σ-algebra on R, and defin-
ing λ̄ : B̄ �→ R̄+ by putting λ̄(B ∪ N) = λ(B) we obtain a measure λ̄ on (R, B̄).
The elements of B̄ are called Lebesgue measurable sets, and λ̄ is called the extended
Lebesgue measure.

It seems impossible to extend λ much further. For instance, with P(E) denoting
the collection of all subsets of E, we have the following, again without proof.

7.44 PROPOSITION. Let E = [0, 1] and E = P(E). Let μ be a finite measure on
(E, E). Then, there is a countable subset of D of E and positive numbers m(x) for x
in D such that

μ(A) =
∑

x∈D

m(x)1A(x), A ∈ E .

As a corollary, we see that there can be no finite measure μ on (E, E) such that
μ(A) is the length of A for intervals A. Similarly, there can be no such Σ-finite
measure either.

Exercises

7.45 Infinite measures. Let (E, E) be as in Proposition 7.44. For A in E , let μ(A) be
the number of points in A; this is an integer if the set A is finite, and is +∞ otherwise.
Show that μ is a measure.

7.46 Show that D in the proof of Proposition 7.36 is a d-system.

7.47 Restrictions. Let (E, E , μ) be a measure space. Let D ∈ E and let D = {A ∈
E : A ⊂ D}. Then, (D,D) is the trace of (E, E) on D. Define ν(A) = μ(A) for A in
D. Then, ν is a measure on (D,D); it is called the restriction of μ to D.

7.48 Uniform distribution. Let D ⊂ R be an interval of finite length. With λ
Lebesgue measure on R, let μ(B) = λ(B)/λ(D) for Borel subsets B of D. Show
that μ is a probability measure on (D,D) where D = B(D). It is called the uniform
distribution on D.
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7.49 Σ-Finiteness. Let E = {a, b} with the discrete σ-algebra, and define μ({a}) =
0, μ({b}) = +∞. Show that this defines a Σ-finite measure μ that is not σ-finite.

7.50 Atoms, atomic measures, diffuse measures. Let (E, E) be such that {x} ∈ E for
every x in E. A point x is said to be an atom for the measure μ if μ({x}) > 0. If μ
has no atoms, then it is said to be diffuse. If μ puts no mass outside the set of its atoms,
then it is purely atomic. In general, μ will have some atomic part and some diffuse
part. This is to show this decomposition.

(a) Let μ be finite. Show that it has at most countably many atoms. Hint: Let
D be the set of atoms, note that D =

⋃
n Dn where Dn = {x : μ({x}) ∈

[1/n, 1/(n − 1)), n = 1, 2, . . . . Use the finiteness of μ to conclude that
each Dn is a finite set, and therefore, that D must be countable.

(b) Let μ be Σ-finite. Show that it has at most countably many atoms.
(c) Let D be the set of atoms of a Σ-finite measure μ. Define

ν(A) = μ(A ∩D), λ(A) = μ(A ∩Dc), A ∈ E .
Then, ν is purely atomic, λ is diffuse, and

μ = ν + λ.

D. Integration

Let (E, E) be a measurable space. Recall that E stands also for the collection of
all E-measurable functions and that E+ is the subcollection consisting of positive E-
measurable functions. Given a measure μ on (E, E), our aim is to define the “integral
of f with respect to μ” for all reasonable functions f in E . We shall denote it by any
of the following:

μf =

∫

E

μ(dx)f(x) =

∫

E

f dμ.

When E is an interval of R and f is continuous and μ is the Lebesgue measure,
the integral will coincide with the usual Riemann integral of f on E. When E =
{1, . . . , n} and E is the discrete σ-algebra, every measure μ is specified by a row
vector (μ1, . . . , μn) with μi denoting μ({i}), and every function f in E corresponds
to a column vector (f1, . . . , fn) with fi = f(i); in this case the integral μf will
coincide with the product of the row vector (μ1, . . . , μn) with the column vector with
entries f1, . . . , fn. As this last case illustrates, it is best to think of the integral as a
product. After we define it, we shall show that it has the properties of products.

Definition of the Integral
We define the integral μf in three steps: first for simple positive f , then for f in

E+, finally for reasonable f in E .
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Step 1. Let f be a positive simple function. If its canonical form is f =
∑n

1 ai1Ai ,
then we define

7.51 μf =
n∑

1

ai μ(Ai).

Step 2. Let f ∈ E+. Let (dn) be defined by 7.18 and recall from the proof of
Theorem 7.20 that lim dn ◦ f = f . Now, for each n, the function dn ◦ f is simple and
positive, and the integral μ(dn ◦ f) is defined by the preceding step. We shall show
in the remarks below that the numbers μ(dn ◦ f) form an increasing sequence, and
hence, limμ(dn ◦ f) exists (it may be +∞). Since f = lim dn ◦ f , we define

7.52 μf = limμ(dn ◦ f).

Step 3. Let f ∈ E arbitrary. Then, f+ and f− belong to E+, and their integrals
are defined by the preceding step. Noting that f = f+ − f−, we define

7.53 μf = μf+ − μf−

provided that at least one term on the right is finite. Otherwise, if μf+ = μf− = +∞,
then μf does not exist.

7.54 REMARKS. (a) Formula 7.51 holds for positive simple functions even when∑n
1 ai1Ai is not the canonical representation for f :

f =
n∑

1

ai1Ai =
m∑

1

bj1Bj ⇒ μf =
n∑

1

ai μ(Ai) =
m∑

1

bj μ(Bj).

This is easy to check using the finite additivity of μ.
(b) If f and g are positive simple functions and a, b ∈ R+, then af + bg is again

a positive simple function, and

μ(af + bg) = a μf + b μg.

This can be checked using the preceding remark.
(c) If f is a positive simple function, then 7.51 shows that μf ≥ 0 (it can be +∞).
(d) If f and g are positive simple functions and f ≤ g, then the preceding two

remarks applied to f and g − f show that μf ≤ μg.
(e) In Step 2 of the definition, we have d1 ◦ f ≤ d2 ◦ f ≤ · · · and the preceding

remark shows that μ(d1 ◦ f) ≤ μ(d2 ◦ f) ≤ · · · as claimed.
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Integral over a Set
Let f be a measurable function, and A a measurable set. Then, f1A ∈ E . The

integral of f over A is defined to be the integral of f1A; it exists if and only if μ(f1A)
exists. The following notations are used for it:

7.55 μ(f1A) =

∫

A

μ(dx)f(x) =

∫

A

f dμ.

Integrability
A function f in E is said to be integrable if μf exists and is a real (i.e., finite)

number. Thus, f is integrable if and only if μf+ < ∞ and μf− < ∞, or equivalently,
if and only if μ|f | < ∞ (note that |f | = f+ + f−). It is easy to see that, if f is
integrable, then it is real-valued almost everywhere.

Elementary Properties
Here are some familiar properties of the integrals. A few others are put into the

exercises.

7.56 PROPOSITION. (a) Positivity. If f ∈ E+, then μf ≥ 0.
(b) Monotonicity. If f, g ∈ E+ and f ≤ g, then μf ≤ μg. If f, g ∈ E and f, g are

integrable, and f ≤ g, then μf ≤ μg.
(c) Finite additivity over sets. Let f ∈ E+. If {A1, . . . , Am} is a measurable

partition of A in E , then

∫

A

f dμ =
m∑

i=1

∫

Ai

f dμ.

PROOF. (a) If f ≥ 0, then the definition of μf yields μf ≥ 0.
(b) If 0 ≤ f ≤ g, then dn ◦ f ≤ dn ◦ g and so

μ(dn ◦ f) ≤ μ(dn ◦ g)
by the monotonicity of integration for simple functions. Now, the left-hand side con-
verges to μf and the right-hand side converges to μg. Hence μf ≤ μg. The general
case follows from the observation that if f ≤ g then f+ ≤ g+ and −f− ≤ −g−.

(c) Fix f in E+. Let A1, . . . , Am in E be disjoint with union A. If f is simple,
the claim of (c) is immediate from Remark 7.54(b) applied to the simple functions
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f1A1, . . . , f1Am whose sum is f1A. Applying this to the simple functions dn ◦ f , we
see that

m∑

1

μ(1Aidn ◦ f) = μ(1Adn ◦ f).

Note that 1B(x)dn ◦ f(x) = dn(1B(x)f(x)) for each x by the way the function dn is
defined. Putting this observation into the preceding expression and letting n → ∞ we
obtain

m∑

1

μ(f1Ai) =
m∑

1

lim
n

μ(dn ◦(f1Ai))

= lim
n

m∑

1

μ(dn ◦(f1Ai))

= lim
n

μ(dn ◦(f1A)) = μ(f1A),

where the interchange of the limit and the sum is justified by the finiteness of m. �

Of course, if f = 0 then μf = 0. The following converse is useful when μf is
known but f is not.

7.57 COROLLARY. Let f ∈ E+. If μf = 0 then f = 0 almost everywhere.

PROOF. Let f ∈ E+ and μf = 0. We are to show that μ(A) = 0 for A = {x :
f(x) > 0}. Note that A is the limit of the increasing sequence of measurable sets
An = {x : f(x) > 1/n}. Thus, μ(A) = limμ(An) by the sequential continuity of
measures; and μ(An) = 0 for every n, since 0 ≤ μ(An) = μ1An ≤ nμf = 0 by the
monotonicity of integration and the observation that 1An ≤ nf . �

Monotone Convergence Theorem
This is the key result in the theory of integration. It allows interchanging the

order of taking limits and integrals under reasonable conditions.

7.58 THEOREM. Let (fn) ⊂ E+ be increasing. Then,

μ(lim fn) = limμfn.
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PROOF. Let f = lim fn; it is well-defined since f1 ≤ f2 ≤ · · · , and is positive and
E-measurable. So, μf is well-defined. By the monotonicity of integration, μf1 ≤
μf2 ≤ · · · ≤ μf . Therefore limμfn exists and

lim
n

μfn ≤ μf.

It remains to show that limn μfn ≥ μf . This is accomplished in steps.
Step 1. If b ∈ R+, B ∈ E , and f(x) > b for x in B, then limn μ(fn1B) ≥ b μ(B).
First, note that {f1 > b} ⊂ {f2 > b} ⊂ · · · and that

⋃

n
{fn > b} = {x : fn(x) > b for some n} = {f > b}.

Put Bn = {fn > b} ∩B. Then, Bn ↗ ⋃
n Bn = {f > b} ∩B = B. Thus,

7.59 lim
n

μ(Bn) = μ(B)

by the sequential continuity of μ under increasing limits. Now, note that

fn1B ≥ fn1Bn ≥ b1Bn ,

and so the monotonicity of integration yields that

μ(fn1B) ≥ μ(b1Bn) = b μ(Bn).

Taking limits on both sides and using 7.59, we get

7.60 limμ(fn1B) ≥ b μ(B).

Step 2. The same inequality holds even if f(x) ≥ b for every x in B.
For b = 0, this is trivial. For b > 0, apply Step 1 with b − ε to see that

limn μ(fn1B) ≥ (b − ε)μ(B). Since ε is arbitrary, we can let it go to zero to ob-
tain the desired inequality.

Step 3. If g is a simple function and g ≤ f , then limn μfn ≥ μg.
Let

∑m
1 bi1Bi denote the canonical representation for g. Then, our assumptions

imply that f(x) ≥ g(x) = bi for x in Bi. Hence, we may apply the result of Step 2 to
conclude that

lim
n

μ(fn1Bi) ≥ bi μ(Bi), i = 1, . . . ,m.

Hence, by Proposition 7.56(c) applied to the function fn, we see that

lim
n

μfn = lim
n

m∑

1

μ(fn1Bi)

=
m∑

1

limμ(fn1Bi) ≥
m∑

1

bi μ(Bi) = μg.
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Step 4. limn μfn ≥ μf .
Put g = dm ◦ f . Step 3 applied with this g yields limn μfn ≥ μ(dm ◦ f). Letting

m → ∞ we get the desired result. �

A particular consequence of the monotone convergence theorem is that, in the
definition 7.52, the special sequence (dn ◦ f) can be replaced by any sequence (fn) ⊂
E+ increasing to f .

Linearity of Integration

7.61 PROPOSITION. If f, g ∈ E+ and a, b ∈ R+, then

μ(af + bg) = a μf + b μg.

The same holds for arbitrary f, g in E and a, b in R provided that both sides are well-
defined. It holds, in particular, if f and g are integrable.

PROOF. If f, g are simple, the result is established by direct checking as was remarked
in Remark 7.54(b). For f, g in E+, and a, b in R+, choose (fn) and (gn) to be
sequences of simple positive functions increasing to f and g, respectively. Then,

μ(afn + bgn) = a μfn + b μgn,

and afn+bgn ↗ af+bg, fn ↗ f , gn ↗ f . Taking limits on both sides and using the
monotone convergence theorem completes the proof. If f, g in E are arbitrary, write
f = f+ − f− and g = g+ − g− and go through the same steps. �

Fatou’s Lemma
This gives a useful inequality for arbitrary sequences of positive measurable

functions.

7.62 LEMMA. Let (fn) ⊂ E+. Then, μ(lim inf fn) ≤ lim inf μfn.

PROOF. Define gm = infn≥m fn. Then, lim inf fn is the limit of the increasing
sequence (gm) ⊂ E+, and thus

μ(lim inf fn) = μ(lim gm) = limμgm

by the monotone convergence theorem. On the other hand, gm ≤ fn for all n ≥ m,
which yieldsμgm ≤ μfn for all n ≥ m, which in turn means that μgm ≤ infn≥m μfn.
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Hence, as needed,

limμgm ≤ lim
m

inf
n≥m

μfn = lim inf μfn.

�

7.63 COROLLARY. (a) Let (fn) ⊂ E . If fn ≥ g for all n for some integrable function
g, then

μ(lim inf fn) ≤ lim inf μfn.

(b) Let (fn) ⊂ E . If fn ≤ g for all n for some integrable function g, then

μ(lim sup fn) ≥ lim supμfn.

PROOF. Suppose that the integrable function g is real-valued, so that fn−g and g−fn
are well-defined. If fn ≥ g for all n, then Fatou’s lemma applies to the sequence of
positive functions fn − g and the result is the claimed inequality. If fn ≤ g for all n,
then Fatou’s lemma applies to g − fn and the desired inequality is obtained by noting
that lim sup rn = − lim inf(−rn) for every sequence (rn) in R̄. If g is integrable, it is
real-valued almost everywhere, that is, μ(E \D) = 0 for D = {x ∈ E : g(x) ∈ R},
and the integrals of fn and g on E are the same as their integrals over D; thus, the
preceding proof applies to fn1D and g1D and yields the desired conclusions. �

Dominated Convergence Theorem
This is the second important tool for interchanging the order of taking limits and

integrals.
A function f is said to be dominated by a function g if |f | ≤ g; note that g ≥ 0

necessarily. A sequence of functions (fn) is said to be dominated by g if |fn| ≤ g for
each n. If g can be taken to be a finite constant, then (fn) is said to be bounded.

7.64 THEOREM. Suppose that (fn) ⊂ E and is dominated by an integrable function
g. If lim fn exists, then it is integrable and

μ(lim
n

fn) = lim
n

μfn.

PROOF. By assumption, −g ≤ fn ≤ g for every n, and g and −g are both integrable.
Thus, μfn exists and is sandwiched between the finite numbers −μg and μg. Now,
both statements of the last corollary apply and we get

μ(lim inf fn) ≤ lim inf μfn ≤ lim supμfn ≤ μ(lim sup fn).
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If lim fn exists, then lim inf fn = lim sup fn = lim fn, and lim fn is integrable
since it is dominated by g. Hence, the extreme members of the preceding series of
expressions are finite and equal, which means that equality holds throughout. �

If (fn) ⊂ E and is bounded, say by the constant b, and if the measure μ is finite,
then we can take g = b in the preceding theorem. The resulting corollary is called the
bounded convergence theorem.

7.65 THEOREM. Let (fn) ⊂ E and bounded. Suppose that μ is finite. If lim fn exists,
then

μ(lim
n

fn) = lim
n

μfn.

7.66 REMARK. In Theorem 7.64, the condition that the sequence be dominated by
some integrable function is necessary. Here is an example of what can happen other-
wise. Let (E, E) = (R+,B(R+)) and let fn be the sequence of functions shown in
Fig. 7.1. Note that the sequence is not monotone and there is no integrable function
that dominates them. Also, μfn = 1 for all n and so limμfn = 1, whereas lim fn = 0
and so μ lim fn = 0.

Characterization of the Integral
The definition of the integral through 7.51–7.52 yields the integral μf for every

f in E+. Thus, in effect, integration extends the domain of μ from the measurable sets
to the space E+ of all positive E-measurable functions (and beyond). Hence, we may
regard μ as the mapping f �→ μf from E+ into R̄+. This mapping is positive, linear,
and continuous under increasing limits; see Propositions 7.56(a), 7.58, and 7.61.
Here is a summary and a useful converse.

7.67 THEOREM. Let (E, E) be a measurable space. Let L be a mapping from E+ into
R̄+. Then, there exists a unique measure μ on (E, E) such that L(f) = μf for every
f in E+ if and only if

(a) f, g ∈ E+ and a, b ∈ R+ =⇒ L(af + bg) = aL(f) + bL(g),
(b) (fn) ⊂ E+ and fn ↗ f =⇒ L(fn) ↗ L(f).

PROOF. Necessity of the conditions follows from the properties of the integral μf . To
show the sufficiency, suppose that the properties (a) and (b) hold for L. Define

μ(A) = L(1A), A ∈ E .
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n

1

0 1/n 1

fn

FIGURE 7.1. The first and nth functions in a sequence for which the
dominated convergence theorem does not apply.

We show that μ is a measure. For the empty set ∅, we have μ(∅) = 0 becauseL(f) = 0
when f = 0 (as can be seen by taking a = b = 0 in the linearity property (a)). Second,
if A1, A2, . . . are disjoint sets in E with union A, then the indicator of

⋃n
1 Ai is equal

to
∑n

1 1Ai , the latter is increasing to 1A, and hence

μ(A) = L(1A) = limL

Ç n∑

1

1Ai

å

= lim

n∑

1

L(1Ai)

= lim
n∑

1

μ(Ai) =
∞∑

1

μ(Ai),

where we used the condition (b) to justify the second equality, and (a) to justify the
third.
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So, μ is a measure on (E, E). It is unique by the necessity that μ(A) = L(1A).
Now, L(f) = μf for simple f in E+ by the linearity property (a) for L and the linearity
of integration. For arbitrary f in E+, choosing simple functions fn ↗ f ,

L(f) = limL(fn) = limμfn = μf

by the condition (b) for L and the monotone convergence theorem for μ. �

Lebesgue Versus Riemann
Let E = [a, b], an interval on the real line. Let E = B(E) and let λ be the

Lebesgue measure on (E, E). This is to discuss the Lebesgue integral

λf =

∫

[a,b]

λ(dx)f(x)

versus the Riemann integral

Rf =

∫ b

a

f(x) dx

familiar from calculus. We limit the discussion to f in E+, that is, to positive Borel
functions f .

Heuristically, the integral of f on E is the area under f over the interval E. If
f is a step function, this has a clear meaning and is the same as λf and Rf . If f
is continuous, it can be approximated by step functions, and, again, both λf and Rf
exist and λf = Rf . Similarly, if f is piecewise continuous. On the other hand, there
are functions f for which λf exists but Rf does not: for example, suppose that f(x) is
equal to 1 or 0 accordingly as x is rational or irrational, that is, f is the indicator of the
set Q ∩E of rational numbers in E; then, λf = λ(Q ∩E) = 0 since Q has Lebesgue
measure 0, but the Riemann integral Rf does not exist. As this example illustrates, the
Lebesgue integral exists for a larger class of functions than the Riemann integral does,
and λf corresponds better to our intuitive expectations. The following is the complete
picture; we omit the proof.

7.68 THEOREM. Let f : [a, b] �→ R and let D be the set of points of discontinuity for
f . The Riemann integral Rf exists if and only if λ(D) = 0. If it exists, then so does
the Lebesgue integral and the two integrals are the same.
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Exercises

7.69 Discrete spaces. Let E, E , μ be as in Example 7.41. Then, every f : E �→ R is
E-measurable. Show that, for f : E �→ R+,

μf =
∑

x∈E

m(x)f(x).

7.70 Purely atomic measures. Let E, E , D, μ be as in Example 7.42 and suppose
that {x} ∈ E for every x in E (this is true for E = R

d and E = B(Rd) in particular).
Show that, for f in E+,

μf =
∑

x∈D

m(x)f(x).

7.71 Integrability. If f ∈ E+ and μf < ∞, then f is real-valued almost everywhere.
Show this. More generally, if f is integrable, then f is real-valued almost everywhere.

7.72 Monotone convergence. If (fn) ⊂ E+ then show that

μ
∞∑

1

fn =
∞∑

1

μfn.

7.73 Absolute values. If f is integrable, then |μf | ≤ μ|f |. Show.

7.74 Mean value theorem. If μ(A) > 0 and a ≤ f(x) ≤ b for every x in A, then
show that

a ≤ 1

μ(A)

∫

A

f dμ ≤ b.

E. Transforms and Indefinite Integrals

There are two basic methods of creating new measures from an old one. This
section is to introduce them and their uses.

Image Measures
Let (E, E) and (F,F) be measurable spaces. Let μ be a measure on (E, E), and

let h be a transformation from E into F that is measurable with respect to E and F .
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Then, the inverse image h−1B belongs to E for every B in F , and

7.75 ν(B) = μ(h−1B), B ∈ F ,

defines a measure ν on (F,F). The new measure ν is called the image of μ under
the transformation h; various notations used for ν are μ ◦h−1, μh, h(μ). The next
theorem relates the integrals with respect to ν to the integrals with respect to the old
measure μ.

7.76 THEOREM. For every f in F+, we have νf = μ(f ◦ h).

PROOF. In integral notation, the defining relation 7.75 becomes

ν1B = μ(1B ◦ h),
since the indicator of h−1B is equal to 1B ◦h. Using this, if f is simple, say f =
∑n

1 bi1Bi with B1, . . . , Bn in F ,

νf =
∑

i

bi ν1Bi =
∑

i

bi μ(1Bi ◦h) = μ

Ç
∑

i

bi1Bi ◦h
å

= μ(f ◦ h).

If f ∈ F+, there is a sequence (fn) of simple positive functions increasing to f ,
and the preceding applies to give νfn = μ(fn ◦h) for every n. Thus, taking limits
as n → ∞, we obtain the claimed formula via the monotone convergence theorem
applied to each side separately. �

The preceding theorem is a generalization of the change of variable formula from
calculus. In more explicit notation, the claim is that

7.77

∫

F

ν(dy)f(y) =

∫

E

μ(dx)f(h(x)),

that is, if h(x) is replaced with y then the measure element μ(dx) is to be replaced
with ν(dy). In calculus, often, E = F = R

d for some dimension d ≥ 1, and μ and ν
are measures that are expressed in terms of the Lebesgue measure and the Jacobian of
the transformation h. See Exercises 7.86– 7.88 for images of the Lebesgue measure
on R.

Indefinite Integrals
Let (E, E , μ) be a measure space. Let p be a positive E-measurable function.

Define

7.78 ν(A) =

∫

A

μ(dx)p(x), A ∈ E .



Sec. E Transforms and Indefinite Integrals 143

Then ν is a measure on (E, E); this follows from the monotone convergence theorem
for sums. We call ν the indefinite integral of p with respect to μ.

7.79 THEOREM. We have νf = μ(pf) for every f in E+.

PROOF. If f is an indicator, the claim is the definition 7.78 of ν. If f is simple, say
f =

∑n
1 ai1Ai , then

νf =
∑

i

ai ν(Ai) =
∑

i

ai

∫

E

μ(dx)p(x)1Ai (x) = μ(pf).

For arbitrary f in E+, there is a sequence of positive simple functions fn increasing to
f , and, by the monotone convergence theorem,

νf = lim νfn = limμ(pfn) = μ(lim pfn) = μ(pf).

�

Written in explicit notation, the preceding theorem is that

7.80

∫

E

ν(dx)f(x) =

∫

E

μ(dx)p(x)f(x)

for every f in E+. Obviously, this holds for arbitrary E-measurable functions f for
which the integrals are well-defined. Informally, this amounts to replacing ν(dx) with
μ(dx)p(x), which we may write as

7.81 ν(dx) = μ(dx)p(x), x ∈ E.

Heuristically, we think of μ(dx) as the amount of mass put by μ on the “infinitesimal
neighborhood” dx of the point x, and similarly for ν(dx). Then, 7.81 expresses p(x)
as the mass density at x of the measure ν with respect to μ. Thus, the function p is
called the density function of ν with respect to μ, and the following notations are used
for it:

7.82 p =
dν

dμ
; p(x) =

ν(dx)

μ(dx)
, x ∈ E.

The expressions 7.80–7.82 are equivalent ways of saying the same thing.

Radon–Nikodym Theorem
Let μ and ν be measures on a measurable space (E, E). Then, ν is said to be

absolutely continuous with respect to μ if, for every set A in E ,

7.83 μ(A) = 0 =⇒ ν(A) = 0.
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If ν is an indefinite integral as in 7.78, then it is absolutely continuous with respect to
μ. The following, called the Radon–Nikodym theorem, provides a converse. We state
this here without proof.

7.84 THEOREM. Suppose that μ is σ-finite, and that ν is absolutely continuous with
respect to μ. Then, there exists a positive E-measurable function p such that

7.85

∫

E

ν(dx)f(x) =

∫

E

μ(dx)p(x)f(x), f ∈ E+.

Moreover, p is unique up to almost sure equality, that is, if p̂ is in E+ and 7.85 holds
with p̂, then p̂(x) = p(x) for μ-almost every x in E.

The function p in the preceding theorem can be denoted by dν/dμ in view of the
equivalence of 7.80–7.82; and thus, p is called the Radon–Nikodym derivative of ν
with respect to μ.

Exercises

7.86 Distribution functions and quantiles. Let μ be a measure on (R,B(R)) such that
c(x) = μ(−∞, x] is finite for every x. Then, c is called the cumulative distribution
function of the measure μ, especially when μ is a probability measure. Show that c is
an increasing right-continuous function. Define

q(u) = inf{x ∈ R : c(x) > u}, u ∈ [0, b],

where b = limx→∞ c(x) = μ(R); it is possible that b = +∞. Show that q is increas-
ing and right-continuous; it is called the quantile function corresponding to c. When c
is continuous and strictly increasing, q(u) = x if and only if c(x) = u, that is, q and c
are functional inverses of each other.

7.87 Images of Lebesgue. Let μ, c, q, b be as in the preceding exercise. Let λ be the
Lebesgue measure on the interval (0, b) with its Borel σ-algebra. Show that

μ(A) = λ(q−1A), A ∈ B(R).
Thus, most measures μ on (R,B(R)) are images of Lebesgue measures on intervals.
Of course, then, by Theorem 7.76,

∫

R

μ(dx)f(x) =

∫ b

0

λ(du)f(q(u))

for every positive Borel function f on R (and positivity can be removed if f is in-
tegrable). This reduces integrals with respect to μ to integrals with respect to the
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Lebesgue measure; and the latter integral is equal to a Riemann integral if f is contin-
uous or piecewise continuous.

As a corollary, this exercise shows the following. If c is an increasing right-
continuous function on R, then there exists a measure μ on (R,B(R)) whose distribu-
tion function is c.

7.88 Continuation. This is to extend the preceding to measures μ that are Σ-finite,
say, μ =

∑∞
1 μn where each μn is a finite measure on (R,B(R)). Let bn = μn(R)

and define cn and qn as in the preceding exercise but for μn. Let a0 = 0, an =∑n
1 bm for n ≥ 1, and q(u) = qn+1(u − an) for u in [an, an+1). Show that, then,

μ = λ ◦ q−1 where λ is the Lebesgue measure on (R+,B(R+)). Again, then, the
integral μf becomes the Lebesgue integral of f ◦ q on R+.

7.89 Radon–Nikodym derivatives. Let μ be a measure on (R,B(R)) such that c(x) =
μ(−∞, x] is a real number for every x in R. Suppose that μ is absolutely continuous
with respect to the Lebesgue measure λ. Then, the function c is differentiable at
λ-almost every point x, and

p(x) =
μ(dx)

λ(dx)
=

d

dx
c(x) for λ-almost every x.

7.90 Singularity. Let μ and ν be measures on some measurable space (E, E). Then,
ν is said to be singular with respect to μ if there exists a set D in E such that μ(D) = 0
and ν(E \D) = 0. The notion is the opposite of absolute continuity. For example, if
μ is diffuse and ν purely atomic, then ν is singular with respect to μ.

7.91 Cantor set, Cantor measure. Consider the Cantor set C of Example 2.40, and
recall the set D that consists of open intervals. Show that λ(D) = 1 and λ(C) = 0,
where λ is the Lebesgue measure on [0, 1]. Let g be as in Example 2.40, and define
μ = λ ◦ g−1, where λ is the Lebesgue measure on [0, 1). Then, μ(C) = 1 and
μ(D) = 0. The measure μ is called the Cantor measure; it is singular with respect to
the Lebesgue measure, and its distribution function is the function f of Example 2.40.

7.92 Lebesgue–Stieltjes integrals. Let g : R �→ R+ be increasing and right-continu-
ous. Let μ be the measure on R whose cumulative distribution function is g; see
Exercise 7.87. For positive Borel functions f on R, define

∫

R

f(x) dg(x) =

∫

R

μ(dx)f(x).
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The left side is called the Lebesgue–Stieltjes integral of f with respect to the function
g; the right side is the integral μf . This can be extended to arbitrary Borel f as usual
by using the decomposition f = f+ − f−, assuming that either μf+ or μf− is finite.
Integration can be extended to functions g that can be decomposed as g = g1 − g2,
where both g1 and g2 are increasing right-continuous:

∫

R

f(x) dg(x) =

∫

R

f(x) dg1(x) −
∫

R

f(x) dg2(x),

for those f for which the integrals on the right side both make sense and are not both
+∞ or both −∞.

7.93 Functions of bounded variation. These are functions that can be written as the
difference of two increasing functions. For g : R �→ R, we define

Vg(x, y) = sup
A

∑

i

|g(xi+1)− g(xi)| ,

where the supremum is taken over all subdivisions A of [x, y], where A is a finite
collection of intervals (x0, x1], (x1, x2], . . . , (xn−1, xn] with x = x0 < x1 < x2 <
· · · < xn = y. The number Vg(x, y) is called the total variation of g over the interval
[x, y], and g is said to be of bounded variation over [x, y] if Vg(x, y) < ∞. Show the
following:

(a) If g is increasing, then Vg(x, y) = g(y)− g(x).
(b) If x < y < z, then Vg(x, y) + Vg(y, z) = Vg(x, z).
(c) If g = g1 + g2, then Vg(x, y) ≤ Vg1(x, y) + Vg2(x, y).
(d) The function g is of bounded variation over [x, y] if and only if g = g1 − g2,

where g1 and g2 are increasing. Hint: For u in (x, y], define g1 and g2 such that

2g1(u) = Vg(x, u) + g(u) + g(x), 2g2(u) = Vg(x, u)− g(u) + g(x).

F. Kernels and Product Spaces

Let (E, E) and (F,F) be measurable spaces. A mapping K : E × F �→ R̄+ is
called a transition kernel from (E, E) to (F,F) if

(a) the mapping x �→ K(x,B) is E-measurable for each B in F , and
(b) the mapping B �→ K(x,B) is a measure on (F,F) for each x in E.

It will be convenient to write Kx for the measure B �→ K(x,B).
For example, with E = F = R and E = F = B(R), putting

K(x,B) =

∫

B

dy
e−(y−x)2/2

√
2π

, x ∈ R, B ∈ B(R),

yields a transition kernel K , which is further a probability kernel. For another exam-
ple, let E = {1, 2, . . . ,m} and F = {1, 2, . . . , n} with their discrete σ-algebras; then,
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a transition kernel from (E, E) to (F,F) is specified by the numbers K(x, {y}), and
we may regard K as an m × n matrix of positive numbers. Thus, transition kernels
are generalizations of positive matrices; recall that functions are generalizations of
column vectors and measures are generalizations of row vectors.

Functions on Product Spaces
If f : E×F �→ R, then the mapping y �→ f(x, y) is called the section of f at the

point x of E, and, similarly, x �→ f(x, y) is called the section of f at the point y of F .
The following shows that sections of a measurable function are measurable.

7.94 THEOREM. Let f : E × F �→ R be E ⊗ F-measurable. Then, y �→ f(x, y) is
F -measurable for each x in E, and x �→ f(x, y) is E-measurable for each y in F .

PROOF. Fix x0 in E and let h : y �→ f(x0, y); we are to show that h is F -measurable.
Observe that h = f ◦ g, where g : F �→ E × F is defined by setting g(y) = (x0, y).
For a measurable rectangle A×B in E⊗F , the inverse image g−1(A×B) is either ∅ or
B, either case being in F . Since the measurable rectangles generate E ⊗F , this shows
that g is measurable with respect to F and E⊗F . Hence, the composition h = f ◦ g of
measurable functions f and g is F -measurable. Since x0 in E is arbitrary, this proves
the measurability of y �→ f(x, y) for every x. The measurability of x �→ f(x, y) is
proved by symmetry. �

Unfortunately, the converse to the preceding proposition is generally false: it
is possible that x �→ f(x, y) is E-measurable for every y and y �→ f(x, y) is F -
measurable for every x, and yet f fails to be E⊗F-measurable. If f(x, y) = g(x)h(y)
for some E-measurable function g and some F -measurable function h, then f is E⊗F -
measurable. In general, one needs some such special property to conclude that f is
E ⊗ F-measurable; see Exercise 7.105 for an example.

Kernels–Functions

7.95 PROPOSITION. Let K be a transition kernel from (E, E) to (F,F). For positive
E ⊗ F-measurable functions f , define

Tf(x) =

∫

F

K(x, dy)f(x, y), x ∈ E.

Then, Tf is a positive E-measurable function.
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PROOF. Let f be such. For x in E, its section at x is the F -measurable function
fx : y �→ f(x, y). Note that Tf(x) is the integral of fx with respect to the measure
Kx. Thus, Tf is well-defined; and, by the linearity of integration and the monotone
convergence theorem,

7.96 T (af + bg) = a Tf + b T g, limTfn = Tf,

the latter for (fn) increasing to f . In view of these properties, proving that Tf is E-
measurable reduces to showing that Tf is E-measurable for f that are indicators of the
measurable rectangles A × B; recall that the measurable rectangles form a π-system
generating the product σ-algebra and the monotone class theorem applies to the class
of f for which Tf is E-measurable. But for A in E and B in F ,

T 1A×B(x) =

∫

F

K(x, dy)1A(x)1B(y) = 1A(x)K(x,B), x ∈ E,

which is E-measurable since both 1A and x �→ K(x,B) are such. �

In particular, if f(x, y) is free of x, we prefer to write Kf instead of Tf , thereby
giving full play to the matrix–column vector analogy; that is, for f : F �→ R that is
positive F -measurable,

Kf(x) =

∫

F

K(x, dy)f(y), x ∈ E.

Measures on the Product Space
The following is the general method for constructing measures on the product

space (E × F, E ⊗ F).

7.97 THEOREM. Let μ be a measure on (E, E). Let K be a transition kernel from
(E, E) to (F,F). Then, there is a unique measure π on (E × F, E ⊗ F) such that

7.98

∫

E×F

π(dx dy)f(x, y) =

∫

E

μ(dx)

∫

F

K(x, dy)f(x, y)

for every positive E ⊗ F -measurable function f . In particular,

7.99 π(A×B) =

∫

A

μ(dx)K(x,B), A ∈ E , B ∈ F .

PROOF. For positive E ⊗F-measurable f , the right side of 7.98 is equal to μ(Tf), the
integral of the function Tf of the last proposition with respect to the measure μ. The
linearity of the integration with respect to μ and the monotone convergence theorem
yield, together with 7.96, that

μ(T (af + bg)) = μ(a Tf + b T g) = a μ(Tf) + b μ(Tg)
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and

limμ(Tfn) = μ(Tf) if fn ↗ f.

It follows from Theorem 7.67 that there is a unique measure π on (E × F, E ⊗ F)
such that μ(Tf) is equal to the integral of f with respect to π for every positive f in
E ⊗ F . In particular, for f = 1A×B with A in E and B in F , we obtain the claimed
formula for π(A×B). �

In the preceding theorem, the measure π defined through its integral by 7.98 is
unique, and it satisfies 7.99. But there might be other measures that satisfy 7.99 but
fail to satisfy 7.98 for some f . The following is directed at this matter of uniqueness
of π satisfying 7.99. We call K σ-bounded if there exists an F -measurable partition
(Fn) of F such that x �→ K(x, Fn) is a bounded function for each n.

7.100 COROLLARY. In the preceding theorem, suppose that μ is σ-finite and K is
σ-bounded. Then, there is exactly one measure π satisfying 7.99, and it is σ-finite and
it satisfies 7.98.

PROOF. Let (Em) be an E-measurable partition of E such that μ(Em) is finite for
each m. Let (Fn) be an F -measurable partition of F such that x �→ K(x, Fn) is
bounded for each n. Then, π(Em × Fn) defined by 7.99 is finite for each pair (m,n),
and the measurable rectangles Em × Fn form a partition of E × F .

Let π̂ be a measure on the product space satisfying 7.99. Then, π(A × B) =
π̂(A × B) for every measurable rectangle, and there is a partition (Em × Fn) of
E×F for which π(Em×Fn) = π̂(Em×Fn) < ∞. It follows from Proposition 7.38
that π̂ = π. �

Product Measures and Fubini
In the last theorem, the measure π is often denoted by μ × K . In particular, if

the kernel K has the special form K(x,B) = ν(B) for some measure ν on (F,F),
then π is called the product of μ and ν and is denoted by μ × ν. Note that, then,
π(A × B) = μ(A)ν(B) for A in E and B in F , and the condition of σ-boundedness
on K is equivalent to the σ-finiteness of the measure ν.

The next theorem, called Fubini’s, is concerned with integration with respect to
the product measure π = μ × ν. Its main point is the formula 7.102: under rea-
sonable conditions, in repeated integration, one can change the order of integration
without harm. Recall that E ⊗F stands also for the collection of all E ⊗F-measurable
functions.
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7.101 THEOREM. Letμ and ν be σ-finite measures on (E, E) and (F,F), respectively.
There exists a unique σ-finite measure π on (E×F, E⊗F) such that, for every positive
f in E ⊗ F ,

7.102 πf =

∫

E

μ(dx)

∫

F

ν(dy)f(x, y) =

∫

F

ν(dy)

∫

E

μ(dx)f(x, y).

This holds for arbitrary f in E ⊗F provided that f is π-integrable, that is, π(f+) and
π(f−) are both finite; moreover, then, y �→ f(x, y) is ν-integrable for μ-almost every
x, and x �→ f(x, y) is μ-integrable for ν-almost every y.

7.103 REMARK. Since we have more than one measure, we need to indicate the mea-
sure involved for notions like integrability and negligibility. So, μ-almost every x
means for every x outside a set N in E with μ(N) = 0, and ν-integrable means
integrable with respect to the measure ν, etc.

PROOF. The measure π = μ × ν; its existence, uniqueness, and σ-finiteness follow
from Theorem 7.97 and Corollary 7.100 with K(x,B) = ν(B).

We show next that, for f positive and E ⊗ F -measurable,

7.104

∫

E

μ(dx)

∫

F

ν(dy)f(x, y) =

∫

F

ν(dy)

∫

E

μ(dx)f(x, y).

The left side is equal to πf where π = μ × ν as mentioned above. The right side is
equal to π̂f̂ , where π̂ = ν × μ on (F × E,F ⊗ E) and f̂(y, x) = f(x, y). Note that
f = f̂ ◦h, where h : E × F �→ F × E is the transposition mapping (x, y) �→ (y, x).
It is obvious that h is measurable with respect to E ⊗F and F ⊗ E . For A in E and B
in F ,

π(h−1(B × A)) = π(A×B) = μ(A) ν(B) = π̂(B ×A).

Assuming that μ and ν are finite, this equality of π̂ and π ◦h−1 on the π-system of
measurable rectangles implies that π̂ = π ◦h−1. Thus,

π̂f̂ = (π ◦ h−1)f̂ = π(f̂ ◦h) = πf.

This establishes 7.104 for μ and ν finite and f positive.
Assume, next, that μ and ν are σ-finite. Let (Em) be a measurable partition of

E such that μ(Em) < ∞ for every m; similarly, pick (Fn) such that ν(Fn) < ∞ for
every n. Then, the preceding step yields

∫

Em

μ(dx)

∫

Fn

ν(dy)f(x, y) =

∫

Fn

ν(dy)

∫

Em

μ(dx)f(x, y)

for everym and n. Summing both sides over all m and n gives the result 7.104 claimed
for f positive.
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Dropping the condition of positivity on f , suppose next that f is π-integrable.
Then, 7.104 holds for f+ and f− separately, and πf = π(f+) − π(f−) with both
terms finite. Hence 7.104 holds.

As to the integrability of sections, observe that the integrability of f implies that
x �→ ∫

ν(dy)f(x, y) is real-valued for μ-almost every x, which in turn implies that
y �→ f(x, y) is ν-integrable for μ-almost every x. By symmetry, the finiteness of the
right side of 7.104 implies that x �→ f(x, y) is μ-integrable for ν-almost every y. �

Infinite Product Spaces
The concepts and results can be extended by induction to products of finitely

many spaces: let (E1, E1), . . . , (En, En) be measurable spaces. Their product is
denoted by

n⊗

i=1

(Ei, Ei) = (E1 × · · · × En, E1 ⊗ · · · ⊗ En),

where E1×· · ·×En is the set of all n-tuples (x1, . . . , xn) with xi in Ei for each i, and
E1 ⊗ · · · ⊗ En is the σ-algebra generated by the measurable rectangles A1 × · · · ×An

with Ai in Ei for each i.
Measures on the product space are obtained by repeated applications of Theo-

rem 7.97. We illustrate the technique with n = 3. Let μ1 be a measure on (E1, E1),
let K2 be a transition kernel from (E1, E1) to (E2, E2), and let K3 be a transition
kernel from (E1 × E2, E1 ⊗ E2) to (E3, E3). Then, the formula

πf =

∫

E1

μ1(dx1)

∫

E2

K2(x1, dx2)

∫

E3

K3((x1, x2), dx3)f(x1, x2, x3)

for positive f in E1 ⊗ E2 ⊗ E3 defines a measure on (E1 × E2 × E3, E1 ⊗ E2 ⊗ E3).
In short, π = (μ1 ×K2)×K3, which can be written as

π = μ×K2 ×K3.

New issues arise when the product space is that of infinitely many measurable
spaces, especially when there are uncountably many spaces. Let T be an arbitrary set,
countable or uncountable; it will play the role of an index set, we think of it as the time
set (this of the special cases where T = N or T = R+). For each t in T , let (Et, Et)
be a measurable space. Let xt be a point in Et for each t. We write (xt)t∈T for the
resulting collection and think of it as a function on T ; this is especially appropriate
when (Et, Et) = (E, E) for all t, in which case x = (xt)t∈T can be regarded as a
function t �→ xt from T into E. The set F of all such functions x = (xt)t∈T is called
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the product space defined by {Et : t ∈ T }. On the set F , we introduce the product
σ-algebra F generated by the collection of all measurable rectangles

×
t∈T

At = {x ∈ F : xt ∈ At for each t in T },

where At differs from Et for only finitely many t, and At ∈ Et for those t. The
resulting measurable space (F,F) is denoted as

(F,F) =
⊗

t∈T

(Et, Et),

and it is usual to write
⊗

t∈T Et for F . In the special case where (Et, Et) = (E, E)
for all t, one writes (E, E)T or (ET, ET) for (F,F); and when T = {1, 2, . . .}, it is
usual to write (E, E)∞ = (E∞, E∞) for the same.

Such product spaces occur naturally in probability theory. There, each x in F
is a possible path for some particle moving through the spaces Et over time. The
probability measure π on (F,F) then assigns to the set B in F the chances that the
particle’s path is a function belonging to B. Often, π is to be constructed from “finite-
dimensional” data, the latter giving π(B) for B that are measurable rectangles. The
details of such a construction are outside the scope of this book.

Exercises

7.105 Measurability. Suppose that E = R, E = B(R), and (F,F) is arbitrary.
Let f : E × F �→ R. Suppose that x �→ f(x, y) is right-continuous for each y, and
y �→ f(x, y) is F -measurable for each x. Then, show that f is E ⊗ F -measurable.

7.106 Images and kernels. Let (E, E) and (F,F) be measurable spaces, and let
h : E �→ F be measurable with respect to E and F . Define

K(x,B) = 1B ◦h(x), x ∈ E, B ∈ F .

Show that K is a transition probability kernel. For f in F+, show that Kf(x) =
f ◦h(x).

7.107 Transition densities. Let ν be a σ-finite measure on (F,F), and let k be a
positive function in E ⊗ F . Define K by

K(x,B) =

∫

B

ν(dy)k(x, y), x ∈ E, B ∈ F .

Show that K is a transition kernel. Then, k is called the transition density of K with
respect to ν.
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7.108 Measure–kernel–function. Let K be a transition kernel from (E, E) to (F,F).
For f in F+ define

Kf(x) =

∫

F

K(x, dy)f(y), x ∈ E,

and show that Kf ∈ E+. For a measure μ on (E, E), let

μK(B) =

∫

E

μ(dx)K(x,B), B ∈ F ,

and show that μK is a measure on (F,F). Show that (μK)f = μ(Kf). Interpret
these when E and F are finite spaces.

7.109 Products of kernels. Let (E, E), (F,F), and (G,G) be measurable spaces. Let
K be a transition kernel from (E, E) to (F,F), and L a transition kernel from (F,F)
to (G,G). Define

M(x,B) =

∫

F

K(x, dy)L(y,B), x ∈ E, B ∈ G.

Show that M is a transition kernel from (E, E) to (G,G). It is usual to write KL for
M . When (E, E) = (F,F) = (G,G), and K = L, then one writes K2 for KL.
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Further Reading

The treatment here follows Rudin [Rud76] and Royden [Roy88] closely, espe-
cially on the classic material about metric spaces. On measure theory, we followed
Halmos [Hal74] and Cohn [Coh94]. Convex analysis material is based on Rockafellar
[Roc70]. The following bibliography lists the reference books and related literature.

E. Çınlar and R.J. Vanderbei, Real and Convex Analysis, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-5257-7, © Springer Science+Business Media New York 2013
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Symbols
Σ-Finiteness, 131
π-System, 116

A
Absolute convergence, 19
Almost everywhere, 128
Atomic measure, 129, 141
Atoms, 131

B
Bijection, 4
Borel, 115
Borel set, 118
Borel summability, 21
Boundary, 31, 91
Bounded, 10
Bounded convergence, 138
Bounded set, 27
Bounded variation, 146
Branching process, 68

C
Cantor function, 55
Cantor set, 32, 145
Cauchy sequence, 38
Cauchy criterion, 13, 56
Closed ball, 27
Closed interval, ix, 1
Closure, 31, 63
Cluster point, 42
Compactness, 41
Complement, 2
Completeness, 39, 61
Composition, 49
Continuity, 48

Lipschitz, 60
uniform, 53

Continuous extension, 55
Continuous mapping, 47
Contraction, 65
Contraction mapping, 65
Convergence, 11, 35, 48

pointwise, 56
uniform, 56

Convex
function, 85
set, 85

Countable, 6
Countable additivity, 125
Counting measure, 128
Cumulative distribution, 144

D
D-system, 116
Decreasing, 9
Denseness, 35
Diameter of a set, 26
Dirac measure, 128
Discrete spaces, 141
Disjoint, 3
Distribution functions, 144
Dual problem, 101
Duality gap, 102
Dyadic number, 8

E
Element, 1
Empty set, ix, 1
Epigraph, 85
Euclidean distance, 24
Euclidean space, 24

159



160 Index

Exponential, 5
Extended reals, 9

F
Finite, 6
Finite basis, 106
Finite basis theorem, 106
Fixed point, 66
Fredholm equation, 73
Function, 4
Functional, 61
Functional inverse, 6, 52

H
Half-space, 91
Heine–Borel theorem, 43
Homeomorphism, 55
Homogeneous, 73

I
Image, 4
Increasing, 9
Indicator function, 120
Infimal convolution, 98
Injection, 4
Inner product, 23, 25
Integers, ix, 1
Integrable, 133
Interior, 31
Intersection, 2
Inverse image, 4, 5

K
Kernel, 73

L
l2 Space, 28
Lebesgue measures, 129
Lebesgue–Stieltjes integral, 145
Left-continuity, 51
Legendre transform, 92
Limit, 11, 35
Limit inferior, 11
Limit superior, 11
Lipschitz continuity, 55, 60
Logarithm, 5

M
Map, 4
Maximum, 10
Mean value theorem, 141
Measurability, 152

Measurable set, 118
Measurable space, 118
Measure, 125
Measure space, 125
Metric, 25

discrete, 27, 35
Euclidean, 72
Manhattan, 71
weighted, 28

Metric space, 47
Minimum, 10
Minkowski–Weyl theorem, 106
Monotone, 13
Monotone class, 123
Monotone convergence, 141

N
Natural numbers, ix, 1
Negative, 9
Norm, 23

function, 59
maximum, 71

O
One-to-one, 4
Onto, 4
Open ball, 27, 29
Open interval, ix, 1
Open set, 48
Orbit, 65
Orthogonality, 25

P
Parallelogram, 25
Partitions, 117
Picard’s theorem, 80
Point, 23
Poisson distribution, 21
Polyhedron, 106
Positive, 9
Power series, 18
Primal problem, 101
Probability measure, 126
Product set, 3
Product space, 29, 124
Projection, 88

Q
Quadratic programming problem, 111
Quantiles, 144
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R
Radius, 27
Radon–Nikodym derivative, 145
Range, 4
Rationals, ix, 1
Reals, ix, 1
Rearrangements, 21
Rectangle, 3
Riemann’s theorem, 21
Right-continuity, 51
Root test, 17

S
Schwarz inequality, 24
Separability, 35
Sequence, 4
Series, 14
Set, 1

countable, 6
Simple function, 121
Singular measure, 145
Subgradient, 96
Subsequence, 5

Subset, 1
Supporting hyperplane, 91
Supremum, 45
Surjection, 4

T
Total variation, 146
Trace space, 123
Transformation, 65
Transition densities, 152
Transition kernel, 146
Triangle inequality, 24

U
Uniform continuity, 53
Uniform distribution, 130
Union, 2
Upper bound, 10

V
Vector, 23
Volterra equation, 78
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