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Preface 

This book covers two main areas of mathematical finance. One is 
portfolio risk management, culminating in the Capital Asset Pricing 
Model and the other is asset pricing theory, culminating in the Black­
Scholes option pricing formula. Our discussion of portfolio risk 
management takes but a single chapter. The rest of the book is devoted to 
the study of asset pricing models, which is currently a subject of great 
interest and much research. 

The intended audience of the book is upper division undergraduate or 
beginning graduate students in mathematics, finance or economics. 
Accordingly, no measure theory is used in this book. 

I realize that the book may be read by people with rather diverse 
backgrounds. On the one hand, students of mathematics may be well 
prepared in the ways of mathematical thinking but not so well prepared 
when it comes to matters related to finance (portfolios, stock options, 
forward contacts and so on). On the other hand, students of finance and 
economics may be well versed in financial topics but not as 
mathematically minded as students of mathematics. 

Since the subject of this book is the mathematics of finance, I have not 
watered down the mathematics in any way (appropriate to the level of the 
book, of course). That is, I have endeavored to be mathematically 
rigorous at the appropriate level. On the other hand, the reader is not 
assumed to have any background in finance, so I have included the 
necessary background in this area (stock options and forward contracts). 

I have also made an effort to make the book as mathematically self­
contained as possible. Aside from a certain comfort level with 
mathematical thinking, a freshman/sophomore course in linear algebra is 
more than enough. In particular, the reader should be comfortable with 
matrix algebra, the notion of a vector space and the kernel and range of a 
linear transformation. The method of Lagrange multipliers is used in a 
couple of proofs related to risk management, but these proofs can be 
skimmed or omitted if desired. 

Of course, probability theory is ever present in the area of mathematical 
finance. In this respect, the book is self-contained. Several chapters on 
probability theory are placed at appropriate places throughout the book. 
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The idea is to provide the necessary theory on a "need-to-know" basis. In 
this way, readers who choose not to cover the continuous pricing theory, 
for example, need not deal with matters related to continuous probability. 

The book is organized as follows. The first chapter is devoted to the 
elements of discrete probability. The discussion includes such topics as 
random variables, independence, expectation, covariance and best linear 
predictors. If readers have had a course in elementary probability theory 
then this chapter will serve mostly as a review. 

Chapter 2 is devoted to the subject of portfolio theory and risk 
management. The main goal is to describe the famous Capital Asset 
Pricing Model (CAPM). The chapter stands independent of the 
remainder of the book and can be omitted if desired. 

The remainder of the book is devoted to asset pricing models. Chapter 3 
gives the necessary background on stock options. In Chapter 4, we 
briefly illustrate the technique of asset pricing through the assumption of 
no arbitrage by pricing plain-vanilla forward contracts and discussing 
some simple issues related to option pricing, such as the put-call option 
parity formula, which relates the price of a put and a call on the same 
underlying asset with the same strike price and expiration time. 

Chapter 5 continues the discussion of discrete probability, covering 
conditional probability along with more advanced topics such as 
partitions of the sample space and knowledge of random variables, 
conditional expectation (with respect to a partition of the sample space) 
stochastic processes and martingales. This material is covered at the 
discrete level and always with a mind to the fact that it is probably being 
seen by the student for the first time. 

With the background on probability from Chapter 5, the reader is ready 
to tackle discrete-time models in Chapter 6. Chapter 7 describes the 
Cox-Ross-Rubinstein model. The chapter is short, but introduces the 
important topics of drift, volatility and random walks. 

Chapter 8 introduces the very basics of continuous probability. We need 
the notions of convergence in distribution and the Central Limit Theorem 
so that we can take the limit of the Cox-Ross-Rubinstein model as the 
length of the time periods goes to 0. We perform this limiting process in 
Chapter 9 to get the famous Black-Scholes Option Pricing Formula. 
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In Chapter 10 we discuss optimal stopping times and American options. 
This chapter is perhaps a bit more mathematically challenging than the 
previous chapters. 

There are two appendices in the book, both of which are optional. In 
Appendix A, we discuss the problem of pricing nonattainable alternatives 
in a discrete model. The material may be read anytime after reading 
Chapter 6. Appendix B covers background information on convexity that 
is used in Chapter 6. 

A Word on Definitions 

Unlike many areas of mathematics, the subject of this book, namely, the 
mathematics of finance, does not have an extensive literature at the 
undergraduate level. Put more simply, there are very few undergraduate 
textbooks on the mathematics of finance. 

Accordingly, there has not been a lot of precedent in setting down the 
basic theory at the undergraduate level, where pedagogy and use of 
intuition are (or should be) at a premium. One area in which this seems to 
manifest itself is the lack of terminology to cover certain situations. 

Accordingly, on rare occasions I have felt it necessary to invent new 
terminology to cover a specific concept. Let me assure the reader that I 
have not done this lightly. It is not my desire to invent terminology for 
any other reason than as an aid to pedagogy. 

In any case, the reader will encounter a few definitions that I have 
labeled as nonstandard. This label is intended to convey the fact that the 
definition is not likely to be found in other books nor can it be used 
without qualification in discussions of the subject matter outside the 
purview of this book. 

Thanks Be to ... 

Finally, I would like to thank my students Lemee Nakamura, Tristan 
Egualada and Christopher Lin for their patience during my preliminary 
lectures and for their helpful comments about the manuscript. Any errors 
in the book, which are hopefully minimal, are my reponsibility, of 
course. The reader is welcome to visit my web site at 
www.romanpress.com to learn more about my books or to leave a 
comment or suggestion. 

Irvine, California, USA Steven Roman 





Contents 

Preface 

Notation Key and Greek Alphabet 

Introduction 

1 

Portfolio Risk Management 
Option Pricing Models 
Assumptions 
Arbitrage 

Probability I: An Introduction to Discrete Probability 
1.1 Overview 
1.2 Probability Spaces 
1.3 Independence 
1.4 Binomial Probabilities 
1.5 Random Variables 
1.6 Expectation 
1. 7 Variance and Standard Deviation 
1.8 Covariance and Correlation; Best Linear Predictor 

Exercises 

vii 

XV 

1 
1 
2 
4 
4 

7 
7 

11 
15 
16 
21 
25 
29 
31 
36 

2 Portfolio Management and the Capital Asset Pricing Model 41 

3 

4 

2.1 Portfolios, Returns and Risk 41 
2.2 Two-Asset Portfolios 46 
2.3 Multi-Asset Portfolios 52 

Exercises 7 5 

Background on Options 
3.1 Stock Options 
3.2 The Purpose of Options 
3.3 Profit and Payoff Curves 
3.4 Selling Short 

Exercises 

An Aperitif on Arbitrage 
4.1 Background on Forward Contracts 
4.2 The Pricing of Forward Contracts 
4.3 The Put-Call Option Parity Formula 
4.4 Option Prices 

Exercises 

79 
79 
79 
80 
85 
85 

89 
89 
90 
92 
96 
99 



xii Contents 

5 Probability II: More Discrete Probability 103 
5.1 Conditional Probability 103 
5.2 Partitions and Measurability 104 
5.3 Algebras 109 
5.4 Conditional Expectation 115 
5.5 Stochastic Processes 126 
5.6 Filtrations and Martingales 126 

Exercises 134 

6 Discrete-Time Pricing Models 139 
6.1 Assumptions 139 
6.2 Positive Random Variables 141 
6.3 The Basic Model by Example 141 
6.4 The Basic Model 144 
6.5 Portfolios and Trading Strategies 148 
6.6 The Pricing Problem: Alternatives and Replication 158 
6.7 Arbitrage Trading Strategies 163 
6.8 Admissible Arbitrage Trading Strategies 165 
6.9 Characterizing Arbitrage 167 
6.10 Computing Martingale Measures 177 

Exercises 182 

7 The Cox-Ross-Rubinstein Model 187 
7.1 The Model 187 
7.2 Martingale Measures in the CRR model 190 
7.3 Pricing in the CRR Model 193 
7.4 Another Look at the CRR Model via Random Walks 195 

Exercises 200 

8 Probability III: Continuous Probability 203 
8.1 General Probability Spaces 203 
8.2 Probability Measures on R 207 
8.3 Distribution Functions 210 
8.4 Density Functions 214 
8.5 Types of Probability Measures on R 217 
8.6 Random Variables 219 
8.7 The Normal Distribution 222 
8.8 Convergence in Distribution 224 
8.9 The Central Limit Theorem 228 

Exercises 233 



Contents xiii 

9 The Black-Scholes Option Pricing Formula 237 
9.1 Stock Prices and Brownian Motion 23 7 
9.2 The CRR Model in the Limit: Brownian Motion 245 
9.3 Taking the Limit as t::.t ---+ 0 248 
9.4 The Natural CRR Model 253 
9.5 The Martingale Measure CRR Model 258 
9.6 More on the Model From a Different Perspective: 

Ito's Lemma 263 
9.7 Are the Assumptions Realistic? 265 
9.8 The Black-Scholes Option Pricing Formula 266 
9.9 How Black-Scholes is Used in Practice: 

Volatility Smiles and Surfaces 270 
9.10 How Dividends Affect the Use ofBlack-Scholes 273 

Exercises 274 

10 Optimal Stopping and American Options 277 
10.1 An Example 277 
10.2 The Model 278 
10.3 The Payoffs 278 
10.4 Stopping Times 279 
10.5 Stopping the Payoff Process 280 
10.6 The Stopped Value of an American Option 281 
10.7 The Initial Value of an American Option, or 

What to Do At Time t0 282 
10.8 What to Do At Time tk 286 
10.9 Optimal Stopping Times and the Snell Envelop 288 
10.10 Existence of Optimal Stopping Times 288 
10.11 Characterizing the Snell Envelop 290 
10.12 Additional Facts About Martingales 295 
10.13 Characterizing Optimal Stopping Times 298 
10.14 Optimal Stopping Times and the Doob Decomposition 299 
10.15 The Smallest Optimal Stopping Time 300 
10.16 The Largest Optimal Stopping Time 302 

Exercises 303 

Appendix A: Pricing Nonattainable Alternatives in an 
Incomplete Market 

A.1 Fair Value in an Incomplete Market 
A.2 Mathematical Background 
A.3 Pricing Nonattainable Alternatives 

Exercises 

305 
305 
306 
315 
318 



xiv Contents 

Appendix B: Convexity and the Separation Theorem 
B.l Convex, Closed and Compact Sets 
B.2 Convex Hulls 
B.3 Linear and Affine Hyperplanes 
B.4 Separation 

Selected Solutions 

References 

Index 

321 
321 
322 
323 
325 

331 

349 

351 



Notation Key and Greek Alphabet 

(,)inner product (dot product) on m_n 
1 the unit vector (1, ... , 1) 
1 ~ indicator function for A ~ S 
A = { 111 , ... , lln} assets 
C (price of a call) 
ei the ith standard unit vector 
£ p (X): expected value of X with respect to probability P 
<Pi asset holding process 
K (strike price) 
J.Lx: expected value of X 
0 = { w1, ... , Wm} states of the economy 
P (price of a put) 
Pi = { Bi,l, ... , Bi,mi} state partition 
JlD probability 
r riskfree interest rate 
RV(O) vector space of all random variables from n to lR 
RVn(n) vector space of all random vectors from 0 to m_n 
Px,Y: correlation yoefficient of X andY 
S (price of stock or other asset) 
a= (s1, ... , sm) state vector 
a~: variance of X 
ax,Y: covariance of X andY 
ei portfolio 
V0 initial cost function 
Vr payoff function 

Greek Alphabet 

A a alpha H 'fJ eta 
B (3 beta e () theta 

r 'Y gamma I L iota 

.6. 8 delta K "' kappa 
E f epsilon A .X lambda 

Z ( zeta M JL mu 

N v nu 

2 ~xi 

0 o omicron 

II 11' pi 

P p rho 

I; a sigma 

T T tau 

Y v upsilon 

<P ¢ phi 

X X chi 

w 'ljJ psi 

n w omega 



Introduction 

Portfolio Risk Management 

Risk is an inevitable side effect of the effort to make more money than 
the next guy. To be sure, money makes money and this process can be 
carried out without any significant measure of risk: All an investor needs 
to do is buy United States Treasury bonds, generally considered to be 
riskfree investments. The price paid for such an investment is generally a 
boring rate of return. 

The real problem is that if everyone makes the same rate of return, then 
this return serves only to maintain the status quo. Put another way, if you 
want to buy a Rolls Royce or a yacht or even a Rolex watch, then you 
need to make more money than the next guy, and this requires taking 
risk. 

The first problem is to decide how to quantify the level of risk of an 
asset. This turns out to be simple. However, like the rest of life, simple 
answers often tum out to be incomplete. In particular, not only is it 
important to measure an asset's risk, but it is essential to measure the risk 
that results from the asset's interaction with the other assets in a 
portfolio. After all, in the end it is the performance of an investor's entire 
portfolio that separates one investor from another. 

Of course, the future return of an asset is generally unknown in the 
present. In probabilistic terms, an asset's return is a random variable. So 
too is the return on an entire portfolio of assets. However, it is not hard to 
see that by combining assets in a careful manner, it is possible to 
engineer the overall risk of the portfolio, possibly even to a point that is 
below the level of risk of each individual asset. This risk-lowering 
process of asset selection is called diversification. 

Speaking more mathematically, it is generally accepted that a good 
measure of an asset's risk is the variance (or standard deviation) of the 
return. As the reader probably knows, the variance (or standard 
deviation) is a measure of the spread of possible values of a random 
variable. The greater the variance, the greater is the probability that the 
risk will deviate significantly from the average. By the same token, the 
covariance of an asset's return with respect to the returns of the other 
assets in the portfolio provides a good measure of risk-interaction. 

0 0 e na 

oma 
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Thus, in portfolio management theory, one examines the expected value 
of an asset's return as well as its variance and covariance with other 
assets. Only through these statistics can one determine whether adding a 
particular asset to a portfolio is justified based on a risk-return analysis. 
As we will see, a remarkably simple procedure is provided by the Capital 
Asset Pricing Model (or CAPM). 

The CAPM leads to the notion of a market portfolio, which is a portfolio 
of risky assets that has perfect diversification. In theory, such a portfolio 
must contain a positive amount of every available asset in the universe. 
This is because all investors will want to invest exclusively in this 
portfolio (along with the riskfree asset) and so any asset that is not in the 
market portfolio will wither from neglect and die. 

From a practical standpoint, the market portfolio is nothing but hot air. 
On the other hand, studies indicate that it is possible to approximate a 
market portfolio by investing in a few dozen or so well-chosen assets. 
Fortunately, this also partially mitigates the problem of withering assets, 
because an asset that doesn't make it into one investor's "market 
portfolio" may very well make it into another's portfolio. 

Once a market portfolio (or approximation thereof) has been identified, 
there remains only one consideration for the rational investor (at least in 
theory) and that is how much to invest in the risky portfolio and how 
much to invest instead in a riskfree asset. This is a question not for 
mathematics but for personal introspection and this is where our story 
will end. 

Option Pricing Models 

A financial security or financial instrument is a legal contract that 
conveys ownership (such as in the case of a stock), credit (such as in the 
case of a bond) or rights to ownership (such as in the case of a stock 
option). 

Some financial securities have the property that their value depends upon 
the value of another security. In this case, the former security is called a 
derivative of the latter security, which is then called the underlying 
security for the derivative. The most well-known examples of 
derivatives are ordinary stock options (puts and calls). In this case, the 
underlying security is a stock. 
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However, derivatives have become so popular that they now exist based 
on more exotic underlying financial entities, some that would not 
normally be considered financial securities, such as interest rates and 
currency exchange rates. Perhaps this is why it has become common to 
refer to the underlying entity simply as the underlying. 

It is also possible to base derivatives on other derivatives. For example, 
one can trade options on futures contracts. Thus, a given financial entity 
can be a derivative under some circumstances and an underlying under 
other circumstances. 

Indeed, the business of investors is to make money and this can only be 
done (arbitrage opportunities aside) by taking risk, that is, by gambling. 
Just as the Las Vegas casinos are always on the lookout for a new game 
of chance with which to increase their profits, the investment community 
is always on the lookout for a new financial game of chance. These 
games often take the form of exotic derivatives. 

In this book, we concentrate on simple derivatives, primarily ordinary 
stock options. We are interested in both the purchase and sale of such 
securities. When a purchase is made the buyer is said to take a long 
position in the security. When a sale is made, the seller is said to take the 
short position in the security. The two positions are said to be opposite 
positions of one another. 

The central theme of this portion of the book is to find ways to determine 
the initial value (or price) of a derivative as a function of the price of its 
underlying asset. This is the derivative pricing problem. 

The only time at which the derivative pricing problem is relatively easy 
to solve is at the time of expiration of the derivative. For example, if a 
certain derivative gives you the right to buy a stock at $100 per share at 
this very moment (the time of expiration) then this option is worthless if 
the current market price of the stock is below $100. On the other hand, if 
the current market price of the stock is $110 then the current value of the 
derivative is $10. More generally, if the current stock price isS then the 
option is worth max{S- 100, 0} assuming, as we do, that there are no 
external costs or fees involved. 

At any time before expiration, the connection between the current value 
of a derivative and the current value of its underlying asset is complex 
and this is why the theory of derivative pricing is also complex. At the 
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current state of knowledge, the only way to deal with the full complexity 
of this relationship is to assume it away. 

Assumptions 

Financial markets are complex. As with most complex systems, creating 
a mathematical model of the system requires making some simplifying 
assumptions. 

In the course of our analysis, we will make several such simplifying 
assumptions. For example, we will assume a perfect market, that is, a 
market in which 

• there are no commissions or transaction costs, 
• the lending rate is equal to the borrowing rate, 
• there are no restrictions on short sales. 

Of course, there is no such thing as a perfect market in the real world, but 
this assumption will make the analysis considerably simpler and will also 
let us concentrate on certain key issues that appear less clearly under less 
restrictive conditions. 

Arbitrage 

Surprisingly, the term arbitrage suffers from a bit of a dichotomy. In a 
general, nontechnical sense, the term is often used to signify a condition 
under which an investor is guaranteed to make a profit regardless of 
circumstances. 

The more commonly adopted technical use of the term is a bit different. 
An arbitrage opportunity is an investment opportunity that is 
guaranteed not to result in a loss and may (with positive probability) 
result in a gain. Note that the gain is not guaranteed, only the lack ofloss 
is guaranteed. Also, we must be very careful how we measure the gain. 
For instance, if$100 today grows to $100.01 in a year, is this true gain? 
Put another way, would you make this investment? Probably not, 
because there are undoubtedly riskfree alternatives, such as depositing 
the money in a federally insured bank account that will produce a better 
gain. 

As we will see, the key principle behind asset pricing is the notion that 
the market tries to avoid arbitrage. More specifically, if an arbitrage 
opportunity exists, then prices will be adjusted to eliminate that 
opportunity. 
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As a simple example, suppose that gold is selling for $380.10 per ounce 
in New York and $380.20 in London. Then investors could buy gold in 
New York and sell it in London, making a profit of 10 cents per ounce 
(assuming that transaction costs do not absorb the profit). However, the 
purchasing of gold in New York will drive the New York price higher 
and the selling of gold in London will drive the London price lower. 
Result: no more arbitrage. 

As a consequence of this tendency to an arbitrage-free market 
equilibrium, it only makes sense to price securities under the assumption 
that there is no arbitrage. 

The No-Arbitrage Principle 

The no-arbitrage principle for pricing is actually quite simple. Imagine 
two portfolios of assets (stocks, bonds, derivatives, etc.). Let us refer to 
these portfolios as Portfolio A and Portfolio B. Let us also consider two 
time periods: the initial time t = 0 and a time t = T in the future. 

Accordingly, each portfolio has an initial value (value at time 0) and a 
final value (value at timeT) or payoff Let us denote the initial value of 
the two portfolios by VA,o and V3 ,0 and the final values by VA,T and 
VB,T· The values of Portfolio A are shown in Figure 1. A similar figure 
holds for Portfolio B. 

time 0 

Possible 
Values of 

VA,T 

Figure 1: The values ofPortfolio A 

As can be seen in the figure, Portfolio A has an initial value that is either 
known or capable of being determined. On the other hand, the final value 
of portfolio A is unknown at time t = 0. In fact, we assume that this 
value depends on the state of the economy at timeT, which can be one 
of n possible states w1 , ... , Wn. Thus, the final value V A,T is actually a 
function of these states. 
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Similarly, we assume that the initial value of Portfolio B is known or 
capable of being determined and that the final value is a function of the 
possible states of the economy. 

Now, consider what happens if Portfolios A and B have exactly the same 
payoffs regardless of the state of the economy, that is 

VA,r(wi) = VB,r(wi) 

for i = 1, ... , n. The no-arbitrage principle then implies that the initial 
values must be equal, that is 

VA,O = VB,O 

For suppose that VA,o > VB,O· Then under the assumption of a perfect 
market, an investor can purchase the cheaper Portfolio B and sell the 
more expensive Portfolio A, pocketing the difference. At time T, no 
matter what state the economy is in, the investor receives the common 
final value of the portfolios and must pay out the same amount. Thus, he 
loses nothing at the end and can keep the initial profit. This is arbitrage. 

Thus, we see that the no-arbitrage principle can be used to price a 
portfolio, that is, to determine an initial value of a portfolio. To price 
Portfolio A, for example, all we need to do is find another portfolio, say 
Portfolio B, that has the same payoff function as Portfolio A and has a 
known initial value. It follows that the initial value of Portfolio A must 
be equal to the initial value of Portfolio B. 

The no-arbitrage principle can be used in other ways to determine prices. 
For example, if the initial values of the two portfolios are equal, then it 
cannot be that one portfolio always yields a higher payoff than the other. 

We will see many examples of the use of the no-arbitrage principle 
throughout the book. 



Chapter 1 

Probability 1: An Introduction to Discrete 
Probability 

Asset pricing involves the prediction of future events and as such relies 
very heavily on the mathematical theory of probability. In this chapter, 
we begin a discussion of basic probability. This discussion will continue 
in later chapters, as the need for more information arises in connection 
with subsequent topics to be covered in the book. 

Probability seems to have had its origins in an effort to predict the 
outcome of games of chance and is generally considered to have begun 
as a formal theory in a series of letters between the two famous 
mathematicians Blaise Pascal and Pierre de Fermat in the summer of 
1654. 

1.1 Overview 

In the ·study of probability, the typical scenario is that of an experiment, 
such as rolling a pair of dice, administering a drug to a patient or 
predicting the future price of a stock. The key is that the experiment must 
have a well-defined set of possible outcomes. This set is referred to as the 
sample space of the experiment. 

Subsets of the sample space, that is, subsets of outcomes, are referred to 
as events. When an outcome occurs that is in a particular event, we say 
that the event has occurred. Thus, for example, we have the event of 
getting a sum of 7 on the dice, the event that a patient's temperature 
drops to 98.6 after receiving a drug or the event that a stock price rises 
by 10%. 

Next, a method must be determined to measure the probability, or 
likelihood that various events will occur as a result of conducting the 
experiment. More specifically, the probability of an event is a real 
number between 0 and 1 that measures the likelihood that the outcome 
will lie in the event. A probability of 0 indicates that the event cannot 
occur (is impossible) and a probability of 1 indicates that the event is 
certain to occur. 

0 0 e na 
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The method that is used to determine these probabilities is not really part 
of the subject of probability per se. Two approaches are common. One is 
simply to assume the probabilities. For instance, consider the experiment 
of tossing a single coin. Assuming that the coin is fair is equivalent to 
assuming that the probability of heads and tails are both 1/2. Another 
approach is statistical in nature, using empirical data to assign 
probabilities. For example, if the coin is flipped 10000 times and results 
in 5003 heads, we may decide to set the probability of heads equal to 
5003/10000. 

The flavor of probability theory depends quite markedly on the nature of 
the sample space. The basic concepts of probability theory require far 
less mathematical machinery when dealing withfinite sample spaces, for 
in this case probabilities can be assigned to individual outcomes in the 
sample space, as we did with the coin-tossing example just discussed. As 
we will soon see, all that is required is that the probabilities be numbers 
between 0 and 1 (inclusive) that add up to 1. Then the probability of an 
event is simply the sum of the probabilities of the outcomes that lie in 
that event. The term finite probability theory is used to refer to the theory 
of probability on finite sample spaces. 

As an example, suppose that based on market research, we decide that a 
certain stock, currently selling at $100 per share, will be selling at either 
$99, $100 or $101 by the end of the day. Thus, we have an experiment 
wfiose sample space consists of the possible stock prices 

n = {99,100,101} 

Further, after research into the price history of the stock, we may decide 
to assign empirical probabilities as follows: 

JP>(99) = 0.25, JP>(100) = 0.5, JP>(101) = 0.25 

In this case, the event that the price does not fall is { 100, 101}, whose 
probability is JP>(100) + JP>(101) = 0.75. 

Probability theory for countably infinite sample spaces is also relatively 
approachable, at least at the beginning. Again, probabilities can be 
assigned to the individual outcomes in the sample space. However, the 
issue of convergence of an infinite sum now comes into play. The term 
discrete probability is used to refer to the probability of finite or 
countably infinite sample spaces. Whole books have been written on the 
subject of discrete probability alone. 
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As an example of a discrete (but nonfinite) sample space, consider the 
experiment of tossing a coin until the first heads appears. The outcome is 
the toss number of this first heads. At the outset, we cannot confine the 
set of outcomes to any finite sample space, because there is no way to tell 
in advance how many tosses will be necessary before a heads appears. So 
the sample space must be the set 

n = {1, 2, 3, ... } 

of all positive integers. Indeed, one must argue (or assume) that a heads 
must eventually appear, for if not then even this set does not represent all 
possible outcomes. 

It is possible to show that if the coin is fair, that is, if the likelihood of 
heads is the same as that of tails, then the probability that the so-called 
waiting time to the first heads is k is given by 

Since the infinite sum 

1 
IP( first heads at toss k) = 2k 

converges to 1, we have a legitimate probability measure. (We will 
define this term precisely in a moment.) 

To get some idea of why these probabilities make sense, it should be 
rather obvious that the probability that the first heads occurs at toss 
k = 1 is 112 = 1121. The only way that the first heads can occur at toss 
k = 2 is if the first toss results in tails and the second in heads. But there 
is a total of four equally likely possibilities for the first two tosses 

(H, H), (H, T), (T, H), (T, T) 

so it is reasonable to set the probability of waiting until the second toss 
for the first heads to 1 I 4 = 1 I 22• This reasoning can be extended to 
larger values of k. 

We do not want to leave the reader with the impression that discrete 
probability is somehow "easier" than nondiscrete probability, where the 
sample space is uncountable. This is decidedly not the case. However, it 
is true that a basic understanding of discrete probability requires much 
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less mathematical background. For example, discrete probability does 
not, in general, require the notion of integrability and finite probability 
does not, in general, require the notion of limit. 

For the nondiscrete case, things take a dramatic tum toward more 
sophisticated mathematics. For example, imagine the stock in a company 
that is headed for (or has already declared) bankruptcy. It is only a matter 
of time before the stock price is essentially 0 (say). Let us call it the time 
to failure of the stock. The waiting time for this event could, at least in 
theory, be any positive real number (assume the stock trades 24 hours per 
day) so the sample space is the set 0 of all positive real numbers, which 
is uncountable. 

Unlike the case of a discrete sample space, we cannot simply assign a 
probability to each of the uncountably many times to failure because it is 
a fact of mathematics that the sum of uncountably many positive 
numbers is never finite, let alone equal to 1. So rather than attempt to 
determine probabilities for individual outcomes (failure times), we must 
limit ourselves to assigning probabilities directly to events. However, not 
all subsets of the sample space can qualify as events. This issue gets 
rather involved and we will not discuss it here. 

The most dir~ct and elegant way to assign probabilities to events is to use 
a function. Figure 1 shows how this might be done. 

Figure 1: A probability density function 

This figure shows the graph of a function that specifies the probability of 
failure for any time interval. In particular, it is the area under the curve 
that specifies the probability. For example, the probability that failure 
will occur sometime between the 5th and 6th day is the area under the 
curve between the vertical lines x = 5 and x = 6, which is 0.1. This 
function is referred to as a probability density function. Probability 
density functions, such as the well-known bell-shaped curve that students 
often want professors to use in determining their grades, are often, but 
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not always, used to specify probabilities in the nondiscrete case. Indeed, 
some probability measures cannot be specified using a probability 
density function. 

In any case, the point we. wish to make at this time is that even the 
specification of probabilities requires much more mathematical 
machinery in the nondiscrete case than in the discrete case. 

We will need only finite probability for our study of discrete-time pricing 
models. We will discuss some aspects of the general theory (including 
the nondiscrete case) much later in the book, as a prelude to our 
discussion of the Black-Scholes option pricing formula. 

So let us proceed to set down the basic principles of the subject of finite 
probability. Since this is not, after all, a textbook on probability, we will 
tend to be brief, covering what we need for our immediate purposes. In a 
subsequent chapter, we will expand our discussion of discrete probability 
to cover what is necessary to make sense of the general discrete-time 
pricing model. 

1.2 Probability Spaces 

We may as well begin with the main definition. 

Definition A finite probability space is a pair (0, JID) consisting of a 
finite nonempty set 0, called the sample space and a real-valued 
function lP defined on the set of all subsets of 0, called a probability 
measure on 0. The function JID must satisfy the following properties. 
1) (Range) For all A ~ 0 

0 ::; JID(A) ::; 1 

2) (Probability of 0) 

JID(O) = 1 

3) (Additivity property) If A and Bare disjoint then 

JID(A u B) = JID(A) + JID(B) 

In this context, subsets ofO are called events. 0 

As mentioned earlier, the sample space is intended to represent the set of 
all possible outcomes of an experiment. The probability JID(w) of a 
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particular outcome w is intended to represent the likelihood that the 
outcome of the experiment will be w. 

On the other hand, this is all intuition, not mathematics. Formally 
speaking, all we care about is that 0 is a finite nonempty set and JP> is a 
probability measure as defined by the properties in the definition. 
Property 2) says that the event consisting of the entire sample space is a 
certain event, that is, any outcome must lie in the sample space. Property 
3) says that if two events have nothing in common, then the likelihood 
that either one occurs is the sum of the likelihood of each event. Note 
that it is vital that the events be disjoint for this to hold. 

Sometimes we will forget ourselves and engage in a common abuse of 
terminology by referring to the set 0 by itself as a probability space. In 
this case, the probability measure JP> still exists, but we just don't need to 
mention it explicitly at that time. The student would be well-advised to 
avoid this peccadillo. 

Probability Mass Functions 

If 0 is a finite set, then for each w E 0 the event { w} is called an 
elementary event. The simplest way to define a probability measure on 
a finite sample space 0 is just to specify the probability of all elementary 
events. Equivalently, we assign to each of the elements w E 0 a number 
Pw satisfying 0 :::; Pw :::; 1 and 

Then we can define a probability measure JP> by setting 

JP>( {w}) = Pw 

and extending this to all events by finite additivity. This is a fancy way 
of saying that the probability of any event E is the sum of the 
probabilities of the elementary events contained in E. 

The set {Pw I w E n} is referred to as a probability distribution and the 
function f: n ~ ~ defined by 

f(w) = Pw 

is called a probability mass function. (Do not confuse the term 
probability distribution with the term distribution function, which has a 
different meaning that we will define in a later chapter.) 
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Note the subtle but important difference between the probability measure 
JP> and the probability mass function J, namely, JP> is defined on all 
subsets of 0 whereas f is defined on all elements of 0. 

When a probability distribution is given, the probability of any event 
A ~ 0 is the sum of the probabilities of the outcomes in the event, that is 

JP>(A) = L)w 
wE A 

Moreover, if each outcome in the sample space is equally likely, that is, 
if each outcome has the same probability, this probability is 1/ I 0 I and so 
the probability of any event E is simply the size of E divided by the size 
of the sample space 0, that is 

JP>(E) = ~ 
IOI 

EXAMPLE 1 Studies of the price history of a certain stock over the last 
several years have shown that, for the month of January, the probability 
that the stock will reach a certain maximum value during the month is as 
follows: 

JP>(0-4.99) = 0.65 

JP>(5-9.99) = 0.2 
JP>(10-14.99) = 0.1 
JP>(15-19.99) = 0.04 
JP>(20-24.99) = 0.01 

What is the probability that the stock will reach $10 during the month? 
What is the probability that the stock will either not reach $5 during the 
month or will reach $20? 
Solution The stock will reach $10 during the month if and only if the 
maximum stock price during the month is at least 10. Hence 

P(price reaches 10) 

= P(l0-14.99) + P(15-19.99) + P(20-24.99) 
= 0.1 + 0.04 + 0.01 = 0.15 
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Similarly, 

P(not reach 5 or reach 20) = P(0-4.99) + P(20- 24) 0 
= 0.65 + 0.01 = 0.66 

Probability theory tends to have its own vocabulary, even when it comes 
to simple concepts like the disjointness of sets. 

Definition When two events A and B are disjoint as sets, we say that 
they are mutually exclusive. When a collection { A1, ... , An} of events 
satisfies 

for all i,j we say that the collection is pairwise mutually exclusive. 0 

Some easy consequences of the definition of probability space are given 
below. 

Theorem 1 Let (0, J!D) be a finite probability space. Then 
1) (Probability of the empty event) 

J!D(0) = 0 

2) (Monotonicity) 

A~ B => JID(A) ::; J!D(B) 

3) (Probability of the complement) 

J!D(Ac) = 1 - JID(A) 

4) (Finite additivity property) If { A1, ... , An} is a finite collection of 
pairwise mutually exclusive events in n then 

0 

Partitions and the Theorem on Total Probabilities 

The following simple concept will play a central role in our discussion of 
derivative pricing models. 

Definition Let n be a nonempty set. Then a partition ofO is a collection 
'P = { B1, ... , Bn} of nonempty subsets of 0, called the blocks of the 
partition, with the following properties: 
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1) The blocks are pairwise disjoint 

Bin BJ = 0 

for all i, j. 
2) The union of the blocks is all of D. 

B1 U ··· UBn =D. D 

The following important theorem says we can determine the probability 
of an event E if we can determine the probability of that portion of E 
that belongs to each block of a partition. We leave proof to the reader. 

Theorem 2 (fheorem on Total Probabilities) Let n be a sample space 
and let E1, ... , En be events that form a partition of f.'l. Then for any 
event A in D., 

n 

JP>(A) = L JP>(A n Ek) D 
k=l 

1.3 Independence 

Afair coin is one for which the probability of heads is 1/2. Indeed, this 
is the definition of the term fair coin. Suppose we toss a fair coin 99 
times and get heads each time, admittedly an unlikely event but 
nevertheless possible. Would you be willing to bet that the lOOth toss 
will result in another heads? Many people would not, reasoning 
(incorrectly) that since heads has occurred so many times in a row, an 
outcome of tails is way "overdue." 

The fact is, however, that the outcome of each toss of the coin is 
independent of the outcomes of the other tosses, and so the probability of 
getting a heads on the lOOth toss is stilll/2, despite the previous results. 

Perhaps the reason for confusion on this point has to do with the 
probability of getting 99 heads in a row in the first place, which is 
certainly very small. But once that has happened, the extreme 
unlikeliness has been "factored out" so-to-speak and we are back to the 
likeliness of the outcome of a single toss. 

Intuitively speaking, two events are independent if the knowledge that 
(or assumption that) one event will happen does not affect the probability 
of the other event happening. We will be able to make this statement 
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precise when we discuss conditional probability in a later chapter. In any 
case, we can state the formal definition of independence now. 

Definition The events E and F on the probability space (0, JP>) are 
independent if the probability that both events occur is the product of 
the probabilities of the events, in symbols 

JP>(E n F) = JP>(E)JP>(F) D 

For example, suppose that a certain stock can move up in price or down 
in price over a day and a certain bond can do likewise. If we assume that 
the actions of the stock and the bond are independent then 

JP>( stock up and bond down) = JP>( stock up )JP>(bond down) 

We can also define independence of a collection of events. 

Definition The collection of events { E1, ... , En} is independent if for 
any subcollection { Ei1 , ••• , Eik} of these events we have 

JP>(E- n ... n E- ) = JP>(E- ) .. ·JP>(E- ) ~I ~k ~I ~k D 

Note that to check whether or not 3 events A, Band Care independent, 
we must check 3 conditions: 

A and B are independent 
A and C are independent 
B and C are independent 

In general, to check that a collection of k events is independent, we must 
check a total of 1/2k - 1 conditions. Thus, the number of conditions 
grows very rapidly with the number of events. 

1.4 Binomial Probabilities 

The simplest type of meaningful experiment is one that has only two 
outcomes. Such experiments are referred to as Bernoulli experiments, 
or Bernoulli trials. The two outcomes are often described by the terms 
success and failure, and the probability of success is usually denoted by 
p. Hence, the probability of failure is 1 - p. 

For example, tossing a coin is a Bernoulli experiment, where we may 
consider heads as success and tails as failure (or vice versa). As a more 
relevant example, we will consider a derivative pricing model in which at 
any given time tk the price of a certain stock may rise from its previous 
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value S to Su or it may fall from its previous value S to Sd where 
0 < d < 1 < u. Thus, at each time tk we have a Bernoulli experiment. 

If a Bernoulli experiment with probability of success p is repeated n 
times, this is called a binomial experiment with n trials. Note that since 
the exact same experiment is being repeated, the outcomes of the trials 
are independent, that is, the outcome of the kth trial does not affect the 
outcome of the ( k + 1 )-st trial. The parameters of the binomial 
experiment are p and n. 

For example, tossing a coin n times is a binomial experiment. Drawing a 
card n times, with success being the drawing of an ace, is a binomial 
experiment provided that we replace each card before drawing the next 
card. This is necessary since we must repeat the same binomial 
experiment each time. 

Because the individual Bernoulli trials in a binomial experiment are 
independent, it is easy to compute the probability of any particular 
outcome of the binomial experiment, as the following example 
illustrates. Indeed, we will study a generalization of the following 
example carefully in a later chapter. 

EXAMPLE 2 Consider a stock whose price can change at any one of 6 
times 

to < t1 < .. · <is 

Suppose the stock's initial price at time t 0 is S. Moreover, during each 
time interval [tk, tk+I] the stock price goes up by a factor of u or down 
by a factor of d, where 0 < d < 1 < u, independently of the previous 
changes in the price. The probability that the stock price goes up is p. 
Thus, for each time interval we have a Bernoulli experiment with 
probability of success p. Moreover, the entire price history is a binomial 
experiment with parameters p and n = 5. 

A typical outcome of this binomial experiment can be written as a 
sequence of U's and D's of length 5 and so the sample space is the set 

0 = {U,D} 5 

of all such sequences. For instance, the sequence UU DUD says that 
during the intervals [to, t1], [t1, t2] and [t3, t4] the stock price went up 
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whereas during the intervals [t2 , t3] and [t4 , t5] the stock price went 
down. 

To compute the probability of this outcome, we use the fact that the 
individual trials are independent and so the probability of their 
intersection is the product of their probabilities. Thus 

JID(UU DUD) = pp(1 - p)p(1- p) = p3(1- p) 2 

It is clear that the probability of an element w E n depends only upon the 
number of U's and D's in wand not their order. Thus, if we set 

Nu(w) =number of U's in w 
ND(w) =number of D's in w 

then 

Let us compute the probability of the event of having exactly 3 up-ticks 
in the stock price. The tedious method is to list all such price histories 
thusly 

UUUDD UUDUD 
UUDDU UDUUD 
UDUDU UDDUU 
DUUUD DUUDU 
DUDUU DDUUU 

Since there are 10 of these histories and each one has probability 
p3(1- p) 2 the probability is 10p3(1- p) 2• 

The smart way to compute this probability is to observe that there are 
(~) = 10 such histories--one for each way to choose the 3 spots for the 
U's. Since each history has probability p3 ( 1 - p) 2, the probability of the 
event is 10p3 (1 - p )2. 

It is now easy to generalize this result. The probability of having exactly 
k up-ticks (and thus n - k down-ticks) is just 

D 

We have established the following useful result. 
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Theorem 3 Consider a binomial experiment with parameters p and n. 
The sample space of this experiment is the set n = { s, f}n of all 
sequences of s 's and f 's of length n, where s stands for success and f for 
failure. For any wEn let 

N 8 (w) =number of s's in w 

1) Jfw En then 

2) The probability of getting exactly k successes is given by 

JID( exactly k successes) = ( ~) pk ( 1 - p) n D 

EXAMPLE 3 Four cards are drawn, with replacement, from a deck of 
cards. What is the probability of getting at least 3 aces? 
Solution The probability of getting at least 3 aces is equal to the 
probability of getting exactly 3 aces plus the probability of getting 
exactly 4 aces. Since we are dealing with a binomial experiment, with 
probability of success (getting an ace) equal to p = 4/52 = 1/13 we 
have 

JID(getting at least 3 aces) 

= JID(getting exactly 3 aces) + JID(getting exactly 4 aces) 

= (!) (113) 3 (~~) 1 + (!) (113) 4 (~~) 0 

49 

28561 
~ 0.0017 

which is quite small. D 

The probability distribution described in the previous example and 
theorem is extremely important. 

Definition Let 0 < p < 1 and let n be a positive integer. Let 
n = { 0, ... , n}. The probability distribution on n with mass function 

b(k; n,p) = (~ )pk(1- p)n 

for k = 0, ... , n is called the binomial distribution. This distribution 



20 Introduction to the Mathematics of Finance 

gives the probability of getting exactly k successes in a binomial 
experiment with parameters p and n. D 

Figure 2 shows the graph of two binomial distributions. 

.. 1 ~":' 111111 

··J 

b(k;12,0.75) 

I 1111 

0.1 

I 

0.1 

I 
1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 7 8 9 10 11 12 

Figure 2: Binomial distributions 

Empirical Versus Theoretical Probabilities 

As alluded to earlier, there are two common ways in which to assign 
probabilities. Consider, for example, the problem of setting the value of 
the probability p in Example 2. This is the probability that the stock price 
will rise. 

One approach is to carefully examine the history of the stock's price over 
a substantial period of time. Then we can estimate p by taking the 
number of times that the stock price increased divided by the total 
number of times. For instance, if the stock price increased 5003 times in 
the last 10000 time periods, then we can set 

5003 
p = 10000 

Of course, it follows that the probability of a decrease is 

1 - - 1 - 5003 - 4997 
P- 10000- 10000 

Because these probabilities are the result of analyzing empirical data, or 
at least because they are the result of some analysis of actual physical 
phenomena, they are referred to as empirical probabilities. 

On the other hand, we could simply have assumed, perhaps through lack 
of any actual data for analysis that p = 1/2. This type of probability is 
termed a theoretical probability. As we will see, both types of 
probabilities have their place in the mathematics of finance. 

1.5 Random Variables 

The following concept is key. 



1. Probability 1: An Introduction to Discrete Probability 21 

Definition A real-valued function X: 0-----* ~defined on a finite sample 
space 0 is called a random variable on 0. The set of all random 
variables on 0 is denoted by RV(O). 0 

As the definition states, for finite (or discrete) probability spaces, a 
random variable is nothing more or less than a real-valued function. 
However, as we will see in a later chapter, for nondiscrete sample spaces, 
not all real-valued functions can qualify as random variables. 

Since RV(O) is just the set of all functions on 0, it is a vector space 
under ordinary addition and scalar multiplication of functions. Thus, if X 
and Y are random variables on 0 and a, b E ~ then 

aX+bY 

is a random variable on 0. Note also that the product of two random 
variables on n is a random variable on n. 

One of the most useful types of random variables is those that identify 
specific events. 

Definition Let A be an event in 0. The function 1 ~ defined by 

111 ( )-{1 wEA 
AW- 0 w~A 

is called the indicator function (or indicator random variable) for A. 
When the set 0 is clear, we may also write 1A for the indicator function 
for A.D 

EXAMPLE 4 Let 

n = {0.5, o.75, 1, 1.25, 1.5, 1.75} 

be a sample space of possible federal discount rates. Consider a company 
whose stock price tends to fluctuate with interest rates. The stock prices 
can be represented by a random variableS on 0. For example 
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8(0.5) = 105 
8(0.75) = 100 

8(1) = 100 
8(1.25) = 100 

8(1.5) = 95 
8(1.75) = 90 

The event that { 8 = 100} is the event consisting of the discount rates 
{0. 75, 1, 1.25}, that is, 

{8 = 100} = {0.75, 1, 1.25} 0 

EXAMPLE 5 Consider the experiment of rolling two fair dice and 
recording the values on each die. The sample space consists of the 36 
ordered pairs 

n = {(1,1),(1,2),(1,3), ... ,(6,4),(6,5),(6,6)} 

Since the dice are fair, each ordered pair is equally likely to occur and so 
the probability of each outcome is 1/36. 

However, for some games of chance, we are interested only in the sum of 
the two numbers on the dice. So let us define a random variable 
8: n ---+ JR by 

8(a,b) =a+ b 

The event { S = 7} of getting a sum of 7 is 

and 

{S = 7} = { (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} 

6 1 
JP>(sum equals 7) = JP>(8 = 7) = 36 = 6 0 

Perhaps the most fundamental fact about random variables is that they 
are used to identify events. In fact, there are times when we don't really 
care about the actual values of 8-we only care about the events that are 
represented by these values. For example, in the previous example if we 
instead used the "doubled sum" random variable 

D((a, b)) = 2(a +b) 

then D serves equally well to describe the relevant events in the game of 
chance. For instance, {8 = 7} = {D = 14}. 
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Of course, this is not always the case. The actual values of some random 
variables are important in their own right Some examples are stock price 
random variables, the interest rate random variables, the cost random 
variables. All of these random variables serve to describe a particular set 
of events in which we are interested. Let us look at this a bit more 
formally. 

The Probability Distribution of a Random Variable 

Let X be a random variable on a probability space (n, IF') where 
n = { Wl' ... ' Wn}. Since n is finite, X takes on a finite number of 
possible values, say A= {x1, ... , xm}. For each Xi we can form the 
event 

which is simply the inverse image of Xi. The expression {X = Xi} is the 
most common notation for events described by random variables. Since 
the range of a random variable is the set of real numbers, we can also 
consider events such as 

The events 

{X= X1}, {X= X2}, ... , {X= Xm} 

form a partition of the sample space n, that is, the events are pairwise 
disjoint and their union is all of n (because X must be defined on all of 
D). Thus, 

m 

L:r(x =xi)= 1 
i=l 

Note that it is customary to replace the somewhat cumbersome notation 
IF'( {X= x}) by the simpler IF'( X= x). 

It follows that the numbers IF'( X= xi) form a probability distribution on 
the set A = { x1, ... , Xm}, which is a subset of R Thus, the random 
variable X describes a probability measure IF' x on the set A of values of 
X by 

This is called the probability measure (or probability distribution) 
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defined by X. The corresponding probability mass function f: A ---t JR. 
defined by 

is called the probability mass function of X. 

Thus, for example, to say that a random variable X has a binomial 
distribution with parameters p and n is to say that the values of X are 
{ 0, ... , n} and that the probability mass function of X is the function 

IP'(X = k) = b(k; n, p) = (~ )pk(1- p)n 

It is also common to say in this case that X is binomially distributed. 

These facts about random variables are so important that they bear 
repeating. Random variables are used to identify certain relevant events 
from the sample space. Moreover, a random variable serves to "transfer" 
the probability measure from the events in the sample space that it 
identifies to the range of the random variable in JR.. 

We will also have need of random vectors. 

Definition A function X: 0 ---t JR.n from a sample space 0 to the vector 
space JR.n is called a random vector on 0. D 

The set RVn(n) of all random vectors on a sample space 0 is also a 
vector space under ordinary addition and scalar multiplication of 
functions. 

EXAMPLE 6 Let 

n = {0.5, o.75, 1, 1.25, 1.5, 1.75} 

be a sample space of possible federal discount rates. Consider a company 
whose stock price tends to fluctuate with interest rates. Of course, bond 
prices also fluctuate with respect to interest rates. We might define the 
price random vectorS: 0 ---t JR.2 by S(w) = (s, b) where sis the price of 
the stock and b is the price of the bond when the discount rate is w. For 
example, 

8(0.5) = (105, 112) 
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means that if the discount rate is 0.5% then the stock price is 105 and the 
bond price is 112.0 

Independence of Random Variables 

Two random variables X and Y on the sample space 0 are independent 
if the events {X = x} and {Y = y} are independent for all choices of x 
and y. Intuitively, this says that knowing the value of one of the random 
variables provides no knowledge of the value of the other random 
variable. Here is a more formal definition, where the notation 
IP'(X = x, Y = y) is shorthand for lP'( {X= x} n {Y = y} ). 

Definition The random variables X and Y on 0 are independent if 

IP'(X = x, Y = y) = lP'(X = x)lP'(Y = y) 

for all x, y E JR. More generally, the random variables X1, ... , Xn are 
independent if 

n 

lP'(X1 = X1, ... , Xn = Xn) = IIJP'(Xi =Xi) 
i=l 

for all X1, ... , Xn E JR. 0 

1.6 Expectation 

The notion of expected value plays a central role in the mathematics of 
finance. 

Definition Let X be a random variable on a finite probability space 
(0, IP') where 0 = {w1, ... , wn}. The expected value (also called the 
expectation or mean) of X is given by 

n 

ElP'(X) = LX(wi)lP'(wi) 
i=l 

This is the sum of terms of the form: value of X at Wi times probability 
that Wi occurs. If X takes on the distinct values { x1, ... , Xm} then we 
also have 

m 

ElP'(X) = LXilP'(X = xi) 
i=l 

(Note the different upper limit of summation.) This is a weighted sum of 
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the values of X, each value weighted by its probability of occurring. The 
expected value of X is also denoted by J.lx.D 

The expected value function £: RV(O) ---+ lR maps random variables on 
(0, J.!D) to real numbers. One of the most important properties of this 
function is that it is a linear functional. 

Theorem 4 The expectation function £: RV( n) ---+ lR is a linear 
functional, that is, for any random variables X and Y and real numbers 
a and b 

£(aX+ bY)= a£(X) + b£(Y) 

Proof. Let us suppose that X has values { x1, ... , Xn} and Y has values 
{y1, ... , Ym}. Then aX+ bY has values axi + byj fori= 1, ... , nand 
j = 1, ... , m. To compute the expected value of aX+ bY consider the 
events 

for i = 1, ... , n and j = 1, ... , m. These events form a partition of n 
with the property that aX+ bY has constant value axi + byj on Ei,j and 
so, using the theorem on total probabilities, we have 

n m 

£(aX+ bY)= LL (axi + byj)JP(X =Xi, Y = Yj) 
i=l j=l 

=at x; [ti'(X = x;, Y = Y;)l 

+ b t Y; [ti'(X = x,, Y = Y;)l 
n m 

= aL:xiJ.!D(X =xi)+ bLyjlP(Y = Yj) 
i=l j=l 

= a£(X) + b£(Y) 

as desired. D 

Expected Value of a Function of a Random Variable 

Note that iff: lR---+ lR is a real-valued function of a real variable and X 
is a random variable, then the composition f (X): n ---+ lR is also a 
random variable. (For fmite probability spaces, this is nothing more than 
the fact that the composition of functions is a function.) 
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The expected value of the random variable f (X) is equal to 

n 

£r(f(X)) = Lf(X(wi))JID(wi) 
i=l 

or 

m 

£r(f(X)) = Lf(xi)JP>(X =xi) 
i=l 

When there is no need to emphasize the probability measure, we will 
drop the subscript and write £ instead of £r but it is important to keep in 
mind that the expectation depends on the probability. 

EXAMPLE 7 Consider a stock whose current price is 100 and whose 
price at time T depends on the state of the economy, which may be one 
ofthe following states: 

n = {sl,s2,s3,s4} 

The probabilities of the various states are given by 

JID(s1) = 0.2 
JID(s2) = 0.3 
JID(s3) = 0.3 
JID(s4) = 0.2 

The stock price random variable is given by 

S(si) = 99 
S(s2) = 100 
S(s3) = 101 
S(s4) = 102 

If we purchase one share of the stock now the expected return at time T 
IS 

£(8) = 99(0.2) + 100(0.3) + 101(0.3) + 102(0.2) = 100.5 

and so the expected profit is 100.5- 100 = 0.5. Consider a derivative 
whose return D is a function of the stock price, say 
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D(99) = -4 
D(100) = 5 
D(101) = 5 
D(102) = -6 

Thus D is a random variable on 0. The expected return of the derivative 
is 

£(return) = D(99)J!D(99) + D(100)J!D(100) D 
+ D(101)J!D(101) + D(102)J!D(102) 

= -4(0.2) + 5(0.3) + 5(0.3) - 6(0.2) 
=1 

The previous example points out a key property of expected values. The 
expected value is seldom the value expected! In this example, we never 
expect to get a return of 100.5. In fact, this return is impossible. The 
return must be one of the numbers in the sample space. The expected 
value is an average, not the value most expected. (The value most 
expected is called the mode.) 

Expectation and Independence 

We have seen that the expected value operator is linear, that is, 

E(aX +bY)= aE(X) + bE(Y) 

It is natural to wonder also about E(XY). Let us suppose that X has 
values { x1, ... , Xn} and Y has values { YI. ... , Ym}. Then the product 
XY has values XiYj fori = 1, ... , nand j = 1, ... , m. 

Consider the events 

for i = 1, ... , n and j = 1, ... , m, which form a partition of 0 with the 
property that XY has constant value XiYj on Ei,j· Hence 

n m 

E(XY) = LL XiYjJID(X =Xi, y = Yj) 
i=l j=l 

In general, we can do nothing with the probabilities JID(X =Xi, Y = Yj)· 
However, if X and Y are independent then 
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n m 

£(XY) = LL Xiy)Jl>(X =Xi, y = Yj) 
i=l j=l 

n m 

= LL Xiy)Jl>(X = Xi)JP>(Y = Yj) 
i=l j=l 

= [t xiJP>(X = Xi)] [f yjJP>(Y = Yj)l 
1=1 J=l 

= £(X)£(Y) 

Thus, we have an important theorem. 

Theorem 5 If X and Y are independent random variables on a 
probability space (0, JP>) then 

£(XY) = £(X)£(Y) D 

This theorem can be generalized to the product of more than two 
independent random variables. For example, it is not hard to see that if 
X, Y and Z are independent, then XY and Z are also independent and 
so 

£(XYZ) = £(XY)£(Z) = £(X)£(Y)£(Z) 

1. 7 Variance and Standard Deviation 

The expectation of a random variable X is a measure of the "center" of 
the distribution of X. A common measure of the "spread" of the values 
of a random variable is the variance and its square root, which is called 
the standard deviation. The advantage of the standard deviation is that it 
has the same units as the random variable. However, its disadvantage is 
the often awkward presence of the square root. 

Definition Let X be a random variable with finite expected value f.L The 
variance of X is 

ai = Var(X) =£((X- fli) 

and the standard deviation is the positive square root of the variance 

ax = SD(X) = )Var(X) D 

The following theorem gives some simple properties of the variance. 
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Theorem 6 Let X be a random variable with finite expected value 11· 
Then 
1) Var(X) = e(X2) - 112 = e(X2) - e(X) 2 

2) For any real number a 

Var(aX) = a2Var(X) 

3) If X andY are independent random variables then 

Var(X + Y) = Var(X) + Var(Y) 

4) If c is a constant then 

Var(X +c)= Var(X) 

Proof. We leave proof as an exercise.D 

Note that, unlike the expectation operator, the variance is not linear. 
Thus, the quantities 

Var(aX +bY) 

and 

aVar(X) + bVar(Y) 

are not the same. We will explore this matter further a bit later in the 
chapter. 

Standardizing a Random Variable 

If X is a random variable with expected value 11 and variance a 2 we can 
define a new random variable Y by 

Then 

and 

X -11 
Y=-­

a 

( X -11) 1 1 e(Y) = e -- = -[e(x - 11)] = -[e(X) - 11] = o 
a a a 

( X -11) 1 1 Var(Y) = Var -- = 2 Var(X- 11) = 2 Var(X) = 1 
a a a 

Thus, we see that Y has expected value 0 and variance 1. The process of 
going from X to Y is called standardizing the random variable X. 
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Expected Value of a Binomial Random Variable 

We can easily compute the expected value and variance of a binomial 
random variable. 

Theorem 7 Let X be a binomial random variable with distribution 
b(k; n, p). Then 

t'(X) = np 

Var(X) = np(1- p) 

Proof. Let q = 1- p. For the expected value, we have 

n 

t'(X) = L kJID(X = k) 
k=O 

= t k(n )pkqn-k 
k=1 k 

_ ~ (n- 1) k-1 (n-1)-(k-1) 
- np~ k -1 P q 

k=1 

n-1 ( 1) = np L n- pkq(n-1)-k 

k=O k 
=np 

We leave derivation of the variance as an exercise. D 

1.8 Covariance and Correlation; Best Linear Predictor 

We now wish to explore the relationship between two random variables 
defined on the same sample space. 

Definition If X and Y are random variables with finite means then the 
covariance of X and Y is defined by 

O"x,Y = Cov(X, Y) = t'[(X- f.lx)(Y- f-ly)] 

Some properties of the covariance are given in the next theorem. 

Theorem 8 The covariance satisfies the following properties. 
1) Covariance in terms of expected values 

Cov(X, Y) = t'(XY)- t'(X)t'(Y) 

D 
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2) (Symmetry) 

Cov(X, Y) = Cov(Y,X) 

3) The covariance of X with itself is just the variance of X 

Cov(X, X)= u~ 

4) If X is a constant random variable (that is, if ux = 0) then 

Cov(X, Y) = 0 

5) The covariance function is linear in both coordinates (that is, it is 
bilinear) 

Cov(aX +bY, Z) = aCov(X, Z) + bCov(Y, Z) 

6) The covariance is bounded by the product of the standard deviations 

ICov(X, Y)l ::; uxuy 

Moreover, equality holds if and only if either one of X or Y is 
constant or if there are constants a and b for which 

Y =aX +b 

Proof. We prove only part 6). If X or Y is constant then the result 
follows since both sides are 0, so let us assume otherwise. Let t be a real 
variable. Then 

0::; E((tX + Y) 2) 

= E(t2 X 2 + 2tXY + Y2) 

= t 2E(X2) + 2tE(XY) + E(Y2) 

= f(t) 

where f(t) is a quadratic function in t. Since f(t) 2:: 0 and since the 
leading coefficient of f ( t) is positive, we conclude that the discriminant 
of f ( t) must be nonpositive (draw the graph and look at the zeros), that 
lS, 

or 

Furthermore, equality holds (the discriminant is 0) if and only if there is 
a value oft for which f(t) = E((tX + Y)2) = 0. But this is possible if 
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and only ifY = -tX. (Our assumption that Yis not constant implies that 
t-=!= 0.) 

Since this applies to any random variables X and Y we can also apply it 
to the random variables X- J-tx andY- /-tY to conclude that 

[Cov(XYW::; cr~cr~ 

that is, 

ICov(XY)I ::; crxcry 

with equality holding if and only if at least one of X or Y is constant or 
there is a nonzero real number a such that 

Y- J-ty = a(X- J-tx) 

that is, 

Y = aX - aJ-tx + J-ty = aY + b 

This concludes the proof of part 6). D 

The following definition gives a dimensionless version of covariance. 

Definition If X and Y have finite means and nonzero variances then the 
correlation coefficient of X and Y is 

Cov(X, Y) 
PX,Y = 

crxcry 
D 

It follows immediately that 

-1 ::; PX,Y::; 1 

Moreover, as we will soon see, PX,Y assumes one of the boundary values 
± 1 if and only if there is a linear relationship between X and Y, that is, 
there exist constants a -=/= 0 and b for which 

Y =aX +b 

In fact, p x,Y = + 1 implies that the slope a > 0 and p x,Y = -1 implies 
that a< 0. Thus, if PX,Y = +1 then Y moves in the same direction as X 
(both increase or both decrease) whereas if PX,Y = -1 then Y decreases 
when X increases and vice-versa. 
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Also, it is easy to see that if X andY are independent then Px,Y = 0. 
However, the converse is not true. The condition Px,Y = 0 does not 
imply that X and Y are independent. 

Two random variables are said to be uncorrelated if Px,Y = 0, perfectly 
positively correlated if Px,Y = 1 and perfectly negatively correlated if 
PX,Y = -1. We will have much use for these terms during our study of 
portfolio risk management. 

Best Linear Predictor 

Let us examine the meaning of the correlation coefficient more closely. It 
is often said that the correlation coefficient is a measure of the linear 
relationship between X and Y. Indeed, we have just said that perfect 
correlation is equivalent to a (perfect) linear relationship between the 
random variables. 

To explore this further, suppose we wish to approximate Y using some 
linear function (3X +a of X. Such an approximation is called a best 
linear predictor ofY by X. The error in this approximation 

E = Y- (3X- a 

is called the residual random variable. The best fit is generally 
considered to be the linear predictor that minimizes the mean squared 
error, defined by 

When Px,Y = ±1 we have said that the approximation can be made 
exact and so the MSE = 0. 

In general, the MSE can be written 

MSE = E(Y2)- 2(3E(XY)- 2aE(Y) + (32E(X2) + 2a(3E(X) + a 2 

The minimum value of this expression (which must exist) is found by 
setting its partial derivatives to 0. We leave it to the reader to show that 
the resulting equations are 

/3E(X2) + o£(X) = E(XY) 
/3E(X) +a= E(Y) 
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Solving this system gives 

(J _ O'X,Y 
- 2 

O'x 

a = £(Y) - (J£(X) 

Let us summarize, beginning with a definition. 

Definition Let X and Ybe random variables. Write 

where (J and a are constants and E is the random variable defined by 

E = Y- (JX- a 

Thus, Y is approximated by the linear function (JX + a with error 
random variable E. The best linear predictor of Y with respect to X, 
denoted by BLP is the linear function (JX + a that minimizes the mean 
squared error £( t: 2). The coefficient (J is called the beta of Y with 
respect to X. The line y = (Jx + a is called the regression line. D 

Theorem 9 The best linear predictor ofY with respect to X is 

O'XY O'XY 
BLP = -' X + /-lY - -' J-tx O'i O'i 

Moreover, the minimum mean squared error is 

£( E2 ) = 0'} (1 - Pi,Y) D 

Now we can state the following properties of the correlation coefficient. 

• px,Y = ±1 if and only ifthere is a linear relationship between X and 
Y. 

• The closer PX,Y is to ±1 the smaller is the mean squared error in 
using the best linear predictor. 

• If px,Y is positive then the BLP has positive slope. Hence, as X 
increases so does the BLP of Y and as X decreases so does the BLP 
ofY. 

• If p x,Y = -1 then the slope of the BLP is negative. Hence, as X 
increases the BLP of Y decreases and vice-versa. 

It is worth mentioning that a strong correlation does not imply a causal 
relationship. Just because a random variable Y is observed to take values 
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that are in an approximate linear relationship with the values of another 
random variable X does not mean that a change in X causes a change in 
Y. It only means that the two random variables are observed to behave 
similarly. For example, during the early 1990s the sale of personal 
computers rose significantly. So did the sale of automobiles. Just because 
there may be a positive correlation between the two does not mean that 
the purchase of personal computers caused the purchase of automobiles. 

The Variance of a Sum 

The covariance is just what we need to obtain a formula for the variance 
of a linear combination of random variables. Theorem 6 implies that if 
the random variables X and Y are independent then 

Var(aX +bY)= a2Var(X) + b2Var(Y) 

However, this does not hold if the random variables fail to be 
independent. In this case, we do have the following formula. 

Theorem 10 If X andY are random variables on nand a, bE lR then 

Var(aX +bY)= a 2Var(X) + b2Var(Y2) + 2abCov(X, Y) 

More generally, if X1, ... , Xn are random variables on 0 and a1, ... , an 
are constants then 

D 

Exercises 

1. A pair of fair dice is rolled. Find the probability of getting a sum that 
is even. 

2. Three fair dice are rolled. Find the probability of getting exactly 
one 6. 

3. A basket contains 5 red balls, 3 black balls, and 4 white balls. A ball 
is chosen at random from the basket. 
a) Find the probability of choosing a red ball. 
b) Find the probability of choosing a white ball or a red ball. 
c) Find the probability of choosing a ball that is not red. 

4. A certain true-and-false test contains 10 questions. A student guesses 
randomly at each question. 
a) What is the probability that he will get alllO questions correct? 
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b) What is the probability that he will get at least 9 questions 
correct? 

c) What is the probability that he will get at least 8 questions 
correct? 

5. A die has six sides, but two sides have only 1 dot. The other four 
sides have 2, 3, 4 and 5 dots, respectively. Assume that each side is 
equally likely to occur. 
a) What is the probability of getting a 1? 
b) What is the probability of getting a 2? 
c) What is the probability of getting an even number? 
d) What is the probab~lity of getting a number less than 3? 

6. Four fair coins are tossed. Find the probability of getting exactly 2 
heads. 

7. Four fair coins are tossed. Find the probability of getting at least 2 
heads. 

8. A fair die is rolled and a card is chosen at random. What is the 
probability that the number on the die matches the number on the 
card? (An ace is counted as a one.) 

9. Studies of the weather in a certain city over the last several decades 
have shown that, for the month of March, the probability of having a 
certain amount of sun/smog is as follows: 

P(full sun/no smog) = 0.07 P(full sun/light smog) = 0.09, 
P(full sun/heavy smog)= 0.12, P(haze/no smog)= 0.09, 
P(haze/light smog) = 0.07, P(haze!heavy smog) = 0.11, 
P(no sun/no smog)= 0.16, P(no sun/light smog)= 0.12, 
P(no sun/heavy smog)= 0.17 

What is the probability of having a fully sunny day? What is the 
probability of having at day with some sun? What is the probability 
of having a day with no or light smog? 

10. a) Consider a stock whose current price is 50 and whose price at 
some fixed time T in the future may be one of the following 
values: 48, 49, 50, 51. Suppose we estimate that the probabilities 
of these stock prices are 

JID(48) = 0.2 
JID( 49) = 0.4 

JID(50) = 0.3 
JID(51) = 0.1 
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If we purchase one share of the stock now, what is the expected 
return at time T? What is the expected profit? 

b) Consider a derivative of the stock in part a) whose return D is a 
function of the stock price, say 

D(48)=2 
D(49) = -1 
D(50) = 0 
D(51) = 3 

Thus, the return D is a random variable on n. What is the 
expected return of the derivative? 

11. Suppose that you roll a fair die once. If the number on the top face of 
the die is even, you win that amount, in dollars. If it is odd, you lose 
that amount. What is the expected value of this game? Would you 
play? 

12. For a cost of$1, you can roll a single fair die. Ifthe outcome is odd, 
you win $2. Would you play? Why? 

13. Suppose you draw a card from a deck of cards. You win the amount 
showing on the card if it is not a face card, and lose $10 ifit is a face 
card. What is your expected value? Would you play this game? 

14. An American roulette wheel has 18 red numbers, 18 black numbers 
and two green numbers. If you bet on red, you win an amount equal 
to your bet (and get your original bet back) if a red number comes 
up, but lose your bet otherwise. What is your expected winnings in 
this game? Is this a fair game? 

15. Consider the dart board shown below 

A single dart cost $1.50. You are paid $3.00 for hitting the center, 
$2.00 for hitting the middle ring and $1.00 for hitting the outer ring. 
What is the expected value of your winnings? Would you play this 
game? 

16. Prove that Var(X) = E(X) 2 - J-12 where J-l = E(X). 
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17. Prove that for any real number a 

Var(aX) = a2Var(X) 

18. Prove that if X and Y are independent random variables then 

Var(X + Y) = Var(X) + Var(Y) 

19. Let X be a binomial random variable with distribution b(k; n, p). 
Show that Var(X) = np(1- p). Hint: use the fact that 
Var(X) = £(X2)- £(X)2. 

20. Prove the theorem on total probabilities. 
21. Show that if X, Y and Z are independent random variables then so 

are XY and Z. 
22. Let X andY be independent random variables on (0, IP'). Let f and 

g be functions from lR to JR. Then prove that f(X) and g(Y) are 
independent. 

23. Show that Px,Y = +1 implies that the slope a> 0 and px,Y = -1 
implies that a < 0, where Y = aX + b. 

24. Show that for any random variables X and Y 

Var(aX +bY) = a2Var(X) + b2Var(Y2) + 2abCov(X, Y) 





Chapter 2 

Portfolio Management and the Capital Asset 
Pricing Model 

In this chapter, we explore the issue of risk management in a portfolio of 
assets. The main issue is how to balance a portfolio, that is, how to 
choose the percentage (by value) of each asset in the portfolio so as to 
minimize the overall risk for a given expected return. The first lesson that 
we will learn is that the risks of each asset in a portfolio alone do not 
present enough information to understand the overall risk of the entire 
portfolio. It is necessary that we also consider how the assets interact, as 
measured by the covariance (or equivalently the correlation) of the 
individual risks. 

2.1 Portfolios, Returns and Risk 

For our model, we will assume that there are only two time periods: the 
initial time t = 0 and the final time t = T. Each asset ai has an initial 
value Vi 0 and a final value Vi T· , , 

Portfolios 

A portfolio consists of a collection of assets a1, ... , an in a given 
proportion. Formally, we define a portfolio to be an ordered n-tuple of 
real numbers 

8=({h, ... ,On) 

where ei is the number of units of asset ai. If ei is negative then the 
portfolio has a short position on that asset: a short sale of stock, a short 
put or call and so on. A positive value of ei indicates a long position: an 
owner of a stock, long on a put or call and so on. 

Asset Weights 

It is customary to measure the amount of an asset within a portfolio by its 
percentage by value. The weight wi of asset ai is the percentage of the 
value of the asset contained in the portfolio at timet = 0, that is, 

0 0 e 

oma 

ei vi,o 
Wi= n 

2:.0jVi,o 
j=l 

na 
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Note that the sum of the weights will always be 1: 

WI+··· +wn = 1 

Asset Returns 

The return ~ on asset lli is defined by the equation 

Vi,T = Vi,o(1 + ~) 
which is equivalent to 

V·r- V·o ~ = t, t, 

Vi,O 

Since the value of an asset at time T in the future is a random variable, so 
is the return ~. Thus, we may consider the expected value and the 
variance of the return. The expected return of asset ai is denoted by 

f..ti = £(~) 

The variance of the return of asset ai 

a}= Var(~) 

is called the risk of asset ai. We will also consider the standard deviation 
as a measure of risk when appropriate. 

Portfolio Return 

The return on the portfolio itself is defined to be the weighted sum of 
the returns of each asset 

For instance, suppose that a portfolio has only 2 assets, with weights 0.4 
and 0.6 and returns equal to 10% and 8%, respectively. Then the return 
on the portfolio is 

(0.4)(0.10) + (0.6)(0.08) = 0.088 = 8.8% 

Since the expected value operator is linear, the expected return of the 
portfolio as a whole is 

n 

f..t = LWif..ti 
i=l 
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Since the individual returns generally are not independent, the variance 
of the portfolio's return is given by the formula 

n n 

= LLWiWjPi,jO"iO"j 
i=l j=l 

where Cov(Ri, Rj) is the covariance of Ri and Rj and Pi,j is the 
correlation coefficient. Let us make some formal definitions. 

Definition The expected return p, on a portfolio is the expected value of 
the portfolio's return, that is, 

The risk of a portfolio is the variance of the portfolio's return, that is, 

n n 

= LLWiWjPi,jO"iO"j 
i=l j=l 

An asset is risky if its risk a[ is positive and riskfree if its risk is 0. 0 

Until further notice, we will assume that the all assets in 
a portfolio are risky; that is, ar > 0. 

More on Risk 

Let us take a closer look at the notion of risk. Generally speaking, there 
are two forms of risk associated with an asset. The systematic risk of an 
asset is the risk that is associated with macroeconomic forces in the 
market as a whole and not just with any particular asset. For example, a 
change in interest rates affects the market as a whole. A change in the 
nation's money supply is another example of a contributor to systematic 
risk. Global acts such as those of war or terrorism would be considered 
part of systematic risk. 
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On the other hand, unsystematic risk or unique risk is the risk that is 
particular to an asset or group of assets. For instance, suppose that an 
investor decides to invest in a company that makes pogs. There are many 
unsystematic risks here. For example, customers may lose interest in 
pogs, or the pog company's factory may bum down. 

The key difference between these two types of risk is that unsystematic 
risk can be diversified away, whereas systematic risk cannot. For 
instance, an investor can reduce or eliminate the risk that the pog 
company's factory will bum down by investing in all pog-making 
companies. In this way, if one pog factory bums down, another pog 
company will take up the slack. More generally, an investor can reduce 
the risk associated with an apathy for pogs by investing in all toy and 
game companies. After all, when was the last time you heard a child say 
that he was tired of buying pogs and has decided to put his allowance in 
the bank instead? 

A Primer on How Risks Interact 

To see the effect of individual assets upon risk, consider a portfolio with 
a single asset a1, with expected return p,1 and risk O"i. The overall risk of 
the portfolio is also O"I. Let us now add an additional asset a2 to the 
portfolio. Assume that the asset has expected return p,2 and risk O"~. 

If the weight of asset a1 is t then the weight of asset a2 is 1 - t. Hence, 
the expected return of the portfolio is 

1-£ = tp,1 + (1 - t)J-£2 

and the risk is 

How does this risk compare to the risks of the individual assets in the 
portfolio? We may assume (by reversing the numbering if necessary) that 
0 < (71 ~ 0"2. 
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a' a' a' 

a,' 

1, 1 1 1, 1, 1 

P =-1 1,2 

Figure 1: Some risk possibilities. Bold curves indicate no short selling. 

Suppose first that the assets are uncorrelated, that is, p1,2 = 0. The 
portfolio risk is equal to 

(J2 = t2CJr + (1- t)2(J~ = (CJr + CJDt2- 2CJ~t + (J~ 

This quadratic in t is shown on the left in Figure 1. A bit of 
differentiation shows that the minimum risk occurs at 

and is equal to 

Note that since 

the minimum risk is positive but can be made less than either of the risks 
of the individual assets. 

Now suppose that the assets are perfectly positively correlated, that is, 
P1,2 = 1. Then the risk is 

CJ2 = t2CJr + (1- t) 2 CJ~ + 2t(1- t)CJW2 = [(Cil- CJ2)t + CJ2l 2 

This quadratic is shown in the middle of Figure 1. The minimum risk is 
actually 0 and occurs at 

Note that 
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1-tm = <0 

and so the minimum-risk portfolio must take a short position in the asset 
a2 with larger risk. 

Finally, suppose that the assets are perfectly negatively correlated, that 
is, PI,2 = -1. Then the risk is 

(]'2 = t2(]'? + (1- t) 2 (J'~- 2t(1- t)(J'W2 =[((]'I+ (]'2)t- (]'2] 2 

This quadratic is shown on the right side of Figure 1. The minimum risk 
is again 0 and occurs at 

In this case 

and so the minimum-risk portfolio does not require short selling. 

Thus, the case where the assets are perfectly negatively correlated seems 
to be the most promising, in that the risk can be reduced to 0 without 
short selling. Short selling has its drawbacks, indeed it is not even 
possible in many cases and when it is, there can be additional costs 
involved. Of course, it is in general a difficult (or impossible) task to 
select assets that are perfectly negatively correlated with the other assets 
in a portfolio. 

2.2 Two-Asset Portfolios 

Let us now begin our portfolio analysis in earnest, starting with 
portfolios that contain only two assets a1 and a2, with weights w1 and 
w2, respectively. It is customary to draw risk-expected return curves with 
the risk on the horizontal axis and the expected return on the vertical 
axis. It is also customary to use the standard deviation as a measure of 
risk for graphing purposes. 

The expected return of such a portfolio is given by 

f.-L = Wif.-Ll + W2P,2 

and the risk is 
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As before, we assume that the assets are risky, in fact, we assume that 

0 < 0"1 ~ 0"2 

For readability let us write 

P = P1,2 

The Case p = ±1 

Let us first consider the case p = ±1. In these cases, the expression for 
0"2 simplifies considerably and we have 

O" = lww1 ± w20"2l 

where the plus sign is taken if p = 1 and the minus sign is taken if 
p = -1. Since w1 + w2 = 1, let us for convenience set 

W2 = 8, W1 = 1 - 8 

to get the parametric equations 

Jl = (1- 8)Jl1 + 8Jl2 

O" = 1(1- 8)0"1 ± 80"21 

where 8 ranges over all real numbers. For 8 in the range [0, 1] both 
weights are nonnegative and so the portfolio has no short positions. 
Outside this range, exactly one of the weights is negative, indicating that 
the corresponding asset is held short and the other asset is held long. 

To help plot the points (O", J-L) in the plane, let us temporarily ignore the 
absolute value sign and consider the parametric equations 

Jl = (1- 8)J-L1 + 8Jl2 

0"1 = (1 - 8 )0"1 ± 80"2 

These are the equations of a straight line in the ( 0"1 , Jl )-plane. When 
p = 1 the plus sign is taken and the line passes through the points 
(0"1, Jl1) and (0"2, Jl2)· For p = -1 the line passes through the points 
(0"1, Jl1) and ( -0"2, J-L2). These lines are plotted in Figure 2. 
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J.l J.l 

---+------cr' 

Figure 2: The graphs before taking absolute values 

Now, the effect of the absolute value sign is simply to flip that part of the 
line that lies in the left half-plane over the J.t-axis (since a-= io-'1). The 
resulting plots are shown in Figure 3. The bold portions correspond to 
points where both weights are nonnegative, that is, no short selling is 
required. 

J.l J.l 

---+------cr 

Figure 3: The risk-return lines 

From the parametric equations (or from our previous discussion), we can 
deduce the following theorem, which shows again that there are cases 
where we can reduce the risk of the portfolio to 0. 

Theorem 1 For p = P1,2 = ±1 the risk and expected return of the 
portfolio are given by the parametric equations 

J.l = (1 - S )J.£1 + SJ.l2 

a-= 1(1- s)o-1 ± so-2l 

where s is the weight of asset a2 and ranges over all real numbers. For 
s E [0, 1] both weights are nonnegative and the portfolio has no short 
positions. Outside this range, exactly one of the weights is negative, for 



2. Portfolio Management and the Capital Asset Pricing Model 49 

which the corresponding asset is held short. The plots of (u, J-L) are 
shown in Figure 3. 

Moreover, we have the following cases. 
1) When p = 1 and u1 = u2 then all weights give the same (and 

therefore minimum) risk Umin = u1 = u2. 

2) When p = 1 and u 1 < u2 then the minimum risk weights are 

-U2 U! 
W1 = , W2 = 

U1- U2 U!- U2 

with 

3) When p = -1 then the minimum risk weights are 

with 

0 

Let us emphasize that it is not in general possible to find assets that 
satisfy p = ± 1 and so the previous theorem is more in the nature of a 
theoretical result. It does show the dependence of the overall risk upon 
the correlation coefficient of the assets. 

The Case -1 < p < 1 

When -1 < p < 1 the parametric equations for the risk and expected 
return are 

Parametrizing as above by letting 

W2 = S, W1 = 1 - 8 

gives 
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J.1, = (J.1,2 - J.1,1)s + J.1,1 

CY2 = (CYr + (Y~- 2p(Yw2)s2 - 2CY1(CY1- PeY2)s + (Yr 
We next observe that since p < 1 the coefficient of s2 in CY2 satisfies 

CY~ + CY~- 2pCYW2 = (CY1- CY2) 2 + 2CY1CY2(1- p) > 0 

and so the expression for CY2 is truly quadratic (not linear). The graph of 
the points ( CY2, J.1,) is a parabola lying on its side, opening to the right and 
going through the points ( CYi, J.1, I) and ( CY~, J.1,2). Figure 4 shows the graph 
as well as two possible placements of the points ( CYr, J.1,1) and (CY~, J.1,2). In 
the graph on the right, the minimum-risk requires a short position. 

1-l 1-l 
( a,',!-1,) 

(a',!-1) 

---+------a' ---+------a' 

Figure 4: The risk-return graph 

Let us assume again that 0 < CY1 ::; CY2• Differentiating the risk CY2 with 
respect to s gives 

d 2 2 2 ) ds (CY ) = 2(CY1 + CY2 - 2pCYW2)s- 2CY1(CY1- PCY2 

so the minimum-risk point occurs at 

(71 ( CY1 - PCY2) 
Smin = 2 2 

CY1 + CY2- 2pCY1CY2 

and the minimum risk is 

The minimum risk portfolio will have no short positions if and only if 
Smin E [0,1]. 
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We can incorporate the previous cases p = ±1 if we exclude the 
degenerate case p = 1, a 1 = a2 for which the denominator above is 0. 
Since the degenerate case is excluded, a little algebra shows that 
Smin < 1. (The degenerate case corresponds to Smin = 1.) Moreover, 

a1 
0 < Smin < 1 {::} -1 ~ p < -

. a2 

a1 
Smin = 0 {::} p = -

a2 
a1 

Smin < 0 {::} - < p ~ 1 
a2 

Here is the final result. 

Theorem 2 Assume that 0 < a1 ~ a2 and let p = P1,2 be the correlation 
coefficient. Assume further that if p = 1 then a1 =I= a2. If Smin denotes the 
weight of asset a2 required to minimize the risk, then 

a1 ( a1 - pa2) 
Smin = 2 2 

a 1 + a 2 - 2pa1a2 

and 

Furthermore 
1) When p = 1 and a1 = a2 then all weights give the same (and 

therefore minimum) risk 

2) The condition -1 ~ p < ad a 2 is equivalent to 0 < Smin < 1 and so 
the minimum risk can be achieved with no short selling. 
Furthermore, 

2 . { 2 2} 
amin < mm a1,a2 

but 

a~n = 0 {::} p = -1 

3) The condition p = ad a2 (except for p = 1, a 1 = a2) is equivalent to 
Smin = 0, in which case 
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which is achieved by holding only asset a1. 

4) The condition a 1;a2 < p ~ 1 is equivalent to Smin < 0 and so short 
selling of asset a2 is required in order to minimize risk. Furthermore 

but 

a~n = 0 {::} p = 1 D 

As with the previous theorem, this result is also in the nature of a 
theoretical result, but it does show the dependence of the overall risk 
upon the correlation coefficient of the assets. 

2.3 Multi-Asset Portfolios 

Now let us turn our attention to portfolios with an arbitrary number 
n ~ 2 of assets. The weights of the portfolio can be written in matrix (or 
vector) form as 

W = ( W1 W2 · · · Wn ) 

It is also convenient to define the matrix (or vector) of 1 's by 

0=(1 1 1) 

(this is a script upper-case "oh" standing for "one") so that the condition 

W1 + ··· +wn = 1 

can be written as a matrix product 

owt=1 

where wt is the transpose of W. We will also denote the matrix of 
expected returns by 

M = ( f..tl J.t2 • • · f..tn ) 

and the covariance matrix by 

where 

c· · = Cov( v. R·) ~J ~~, J 
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Note that Ci,i =a~ is the variance of~- It can be shown, although we 
will not do it here, that the matrix C is symmetric (that is, ct = C) and 
positive semidefinite, which means that for any matrix A= (a1, ... , an) 
we have ACAt ~ 0. We shall also assume that Cis invertible, which in 
this case implies that C is positive definite, that is, for any matrix 
A= (a1, ... , an) we have ACAt > 0. 

The expected return can now be written as a matrix product 

1-£ = MWt = J-liWI + · · · + J-lnWn 

and the risk can be written as 

n 

a2 = Var(wlRl + ... + WnRn) = L Ci,jWiWj = wcwt 
i,j=l 

The Markowitz Bullet 

Let us examine the relationship between the weights W = (w1, ... , wn) 
of a portfolio and the corresponding risk -expected return point (a, 1-£) for 
that portfolio, given by the equations above. Note that we are now 
referring to risk in the form of the standard deviation a. 

Figure 5 describes the situation is some detail for a portfolio with three 
assets and this will provide some geometric intuition for the multi-asset 
case in general. (We will define the terms Markowitz bullet and 
Markowitz efficient frontier a bit later.) 

w, 
I 

''2 

Figure 5: The Markowitz bullet 

fl Markowitz efficient 
.( frontier 

-a 

The left-hand portion of Figure 5 shows the n-dimensional space in 
which the weight vectors (w1, ... , wn) reside. (In Figure 5 we have 
n = 3 of course.) Since the sum of the weights must equal 1, the weight 
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vectors must lie on the hyperplane whose equation is 

WI+··· +wn = 1 

For n = 3 this is an ordinary plane in 3-dimensional space, passing 
through the points (1, 0, 0), (0, 1, 0) and (0, 0, 1). For the sake of clarity, 
the figure shows only that portion of this hyperplane that lies in the 
positive orthant. This is the portion of the plane that corresponds to 
portfolios with no short selling. Let us refer to the entire hyperplane as 
the weight hyperplane. 

We denote by f the function that takes each weight vector in the weight 
hyperplane to the risk-expected return ordered pair for the corresponding 
portfolio, that is, 

where 

n 

a 2 = I: ci,jwiwj = wcwt 
i,j=l 

The function f is also pictured in Figure 5. Our goal is to determine the 
image of a straight line in the weight hyperplane under the function f. 
This will help us get an idea of how the function f behaves in general. (It 
is analogous to making a contour map of a function.) 

The equation of a line in n-dimensional space (whether in the weight 
hyperplane or not) can be written in the parametric form 

f(t) = (a1t + b1, ... , ant+ bn) =At+ B 

where 

A= (a!, ... ,an) 
B = ( b1, ... , bn) 

and where the parameter t varies from -oo to oo. The value t = 0 
corresponds to the point f(O) =A and t = 1 corresponds to £(1) =B. It 
is also true that any equation of this form is the equation of a line. 

Now, for any point W = (wb ... , wn) on the line, corresponding to a 
particular value oft, the expected return is 
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!-" = MW = M(At +B)= (MA)t + MB 

which is a linear function oft. This is a critical point. Solving for t gives 

J-t- MB 
t = = aJ-t + (3 

MA 

where a and (3 are used simply for convenience and where we must 
assume that the denominator M A is not 0. 

Now let us look at the risk (in the form of the variance) 

0'2 = wcwt 
=(At+ B)C(Att + Bt) 

= (ACAt)t2 +(BOAt+ ACBt)t + BCBt 

= 1t2 + bt + E 

where we have used the letters ,, 8 and E to simplify the expression, 
which is just a quadratic in t. Replacing t by its expression in terms of J-l 
gives 

which is a quadratic in !-"· 

Thus, as t varies from -oo to oo and .e(t) traces out a line in the weight 
hyperplane, the risk -expected return points ( 0'2, !-") trace out a parabola 
(lying on its side) in the ( 0', !-")-plane. Taking the square root of the first 
coordinate produces a curve that we will refer to as a Markowitz curve, 
although this term is not standard. Thus, straight lines in the weight 
hyperplane are mapped to Markowitz curves in the ( 0', J-t )-plane under 
the function f. Note that Markowitz curves are not parabolas. 

Figure 6 shows an example of a Markowitz curve generated using 
Microsoft Excel. For future reference, we note now that the data used to 
plot this curve are 

(J-tl, /-l2, !-"3) = (0.1, 0.11, 0.07) 
(0'1, 0'2, 0'3) = (0.23, 0.26, 0.21) 
P1,2 = P2,1 = -0.15 
Pl,3 = P3,1 = 0.25 
P2,3 = P2,3 = 0.2 
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Markowitz Bullet 

0.35 -y----------------------. 
0.3 

0.25 

~ 0.2 

~ 0.15 

0.1 

0.05 

0 +---~---~--~~~--~----~~--~--~ 
0 0.2 0.4 0.6 0.8 1.2 1.4 

Risk 

Figure 6: A Markowitz bullet 

The Shape of a Markowitz Curve 

It is important to make a clear distinction between the parabola traced out 
by (a2 ,f..L) and the Markowitz curve traced out by the points (a ,f..L), as 
pictured in Figure 6. To get a feel for the differences in more familiar 
territory, consider the functions 

y = ax2 + bx + c 

and 

z = J ax2 + bx + c 

for a > 0. The first graph is a parabola. The slope of the tangent lines to 
this parabola are given by the derivative 

y' = 2ax + b 

and these slopes increase without bound as x tends to oo. On the other 
hand, for the function z, for large values of x the first term dominates the 
others and so 

z = J ax2 + bx + c ~ ~ = Jaixi 

The graph of the equation z = Jaixi is a pair of straight lines. This 
shows that as x tends to oo the graph of z flattens, unlike the case of a 
parabola. In particular, the derivative is 
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, 2ax + b 
z = --r========= 

2Jax2 + bx + c 

Squaring this makes it easier to take the limit 

1. ( ')2 1. 4a2x2 + 4abx + b2 
tmz =tm =a 

x--->oo x--->oo 4( ax2 + bx + c) 

so we see that z' approaches Ja as x approaches oo. 

Thus, unlike parabolas Markowitz curves flatten out as we move to the 
right. One of the implications of this fact, which is important to the 
capital asset pricing model, is that (looking ahead to Figure 9) if /-Lrf is 
too large, there is no tangent line from the point (0, /-Lrf) to the upper 
portion of the Markowitz curve. 

The Point of Minimum Risk 

Let us denote the point of minimum risk by (O"min, /-Lmin). We will be 
content with finding the portfolio weights (in the weight hyperplane) that 
correspond to this point. For any particular case, these weights can easily 
be plugged into the formulas forO" and p, to get the actual point. (As the 
reader will see, the general formulas can get a bit messy.) 

The next theorem gives the minimum-risk weights. The proof uses the 
technique of Lagrange multipliers, which can be found in any standard 
multivariable calculus book, so we will not go into the details here. The 
reader may skim over the few proofs that require this technique if 
desired. 

Theorem 3 A portfolio with minimum risk has weights given by 

oc-1 
w = oc-lot 

Note that the denominator is a number and is just the sum of the 
components in the numerator. 
Proof. We seek to minimize the expression 

n 

0"2 = L ci,jwiwj = wcwt 
i,j=l 

subject to the constraint 
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QWt = W1 + · · · + Wn = 1 

According to the technique of Lagrange multipliers, we must take the 
partial derivatives with respect to each wi and a of the function 

n 

g(w1, ... , Wn) = L Ci,jWiWj + a(1- W1- · · ·- Wn) 

i,j=1 

and set them equal to 0. We leave it as an exercise to show that this 
results in the equation 

and so 

w = ~oc-1 
2 

Substituting this into the constraint (and using the fact that C and c-1 

are symmetric) gives 

a 1 

2 oc-10t 

and so we get the desired result. D 

The Markowitz Efficient Frontier 

The set of points (amin, t-t) that gives the minimum riskfor each expected 
return t-t is called the Markowitz efficient frontier ("frontier" is another 
word for boundary). The next theorem describes this set of points. While 
the formula is a bit messy, there is an important lesson here. Namely, the 
minimum-risk weights are a linear function of the expected return. This 
means that as the expected return t-t takes on all values from -oo to oo, 
the minimum-risk weights trace out a straight line in the weight 
hyperplane and the corresponding points (amin, t-t) trace out a Markowitz 
curve! 

In other words, the Markowitz efficient frontier is a Markowitz curve. 
The weight line that corresponds to the Markowitz curve is called the 
minimum-risk weight line. 

Theorem 4 For a given expected return f.-t, the porifolio with minimum 
risk has weights given by 
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Ill. Me-lot I I Me- 1Mt ~~.I /"" Me-1 + ~""1 oe-1 

w = _,_1 __ o_e_-_1-..,.o_t....!.,_ __ __,__o_e_-.,-1_M-..,.t _ __,_ __ 

I 
Me-l Mt Me-lot I 
oe-1 Mt oe-1ot 

In particular, each weight Wi is a linear function of J-l. 

Proof. In this case, we seek to minimize the expression 

n 

(]"2 = L ci,jwiwj = wewt 
i,j=l 

subject to the constraints 

MWt = Wl/-ll + · · · + WnJ-ln = J-l 

and 

0Wt = W1 + · · · + Wn = 1 

This is done by setting the partial derivatives of the following function to 
0 

n 

g = L Ci,jWiWj + a(J-L- Wl/-ll - ... - WnJ-ln) + ;3(1 - Wl - ... - Wn) 

i,j=l 

This results in the matrix equation 

2ewt = aMt + ;JOt 

and so 

w =~(aM+ ;JO)e-1 

Substituting the expression for wt into the matrix form of the constraints 
gives the system of equations 

(Me-1 Mt)a + (Me-1ot);J =2M 

(oe-1 Mt)a + (oe-1ot);J = 2 

Cramer's rule can now be used to obtain a formula for a and ;J. 
Substituting this into the expression for W gives the desired result. We 
leave all details to the reader as an exercise. D 
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An ordered pair ( x, y) is said to be an attainable point if it has the form 
(a, 11) for some portfolio. Since the Markowitz efficient frontier contains 
the points of minimum risk, all attainable points must lie on or to the 
right (corresponding to greater risk) of some point on this frontier. In 
other words, the attainable points are contained in the shaded region on 
the right-hand side of Figure 5. This region (including the frontier) is 
known as the Markowitz bullet, due to its shape. 

To explain the significance of the Markowitz efficient frontier, we make 
the following definition. 

Definition Let PI = (ai, 11d and P2 = (a2, 112) be attainable points. 
Then (ai, 11d dominates (a2, 112) if 

ai ~ a2 and J1I ~ 112 

In words, PI has smaller or equal risk and larger or equal expected 
return.D 

Theorem 5 Any attainable point is dominated by an attainable point on 
the Markowitz efficient frontier. Thus, investors who seek to minimize 
risk for any expected return need only look on the Markowitz efficient 
frontier.D 

EXAMPLE 1 Let us sketch the computations needed in order to get the 
Markowitz bullet in Figure 6. The data are as follows: 

(J1I, J12, J13) = (0.1, 0.11, 0.07) 
(ai, a2, a3) = (0.23, 0.26, 0.21) 

PI,2 = P2,I = -0.15 

PI,3 = P3,I = 0.25 

P2,3 = P2,3 = 0.2 

Since the computations are a bit tedious, they are best done with some 
sort of software program, such as Microsoft Excel. Figure 7 shows a 
portion of an Excel spreadsheet that has the required computations. The 
user need only fill in the gray cells and the rest will adjust automatically. 
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Figure 7: Excel worksheet 

Referring to Figure 7, the point of minimum risk is given in Theorem 3 
by 

oc-1 

W = OC-lQt 

These weights can be used to get the expected return and risk 

J-L = MWt 

and 

CJ2 = wcwt 
Thus, the minimum-risk point is 

(CYmin, Jkmin) = (0.146, 0.094) = (14.6%, 9.4%) 

Next, we compute the minimum risk for a given expected return J-L. The 
formula for the minimum risk is given in Theorem 4. All matrix products 
are computed in Figure 7, and so is the denominator, which does not 
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depend on 11· Figure 8 shows the computation of the minimum risk for 
three different expected returns. D 

Figure 8: Computing minimum risk for a given expected return 

The Capital Asset Pricing Model 

Now that we have discussed the Markowitz portfolio theory, we are 
ready to take a look at the Capital Asset Pricing Model, or CAPM 
(pronounced "Cap M"). The major factor that turns Markowitz portfolio 
theory into capital market theory is the inclusion of a riskfree asset in the 
model. (Recall that up to now we have been assuming that all assets are 
risky.) 

As we have said, a riskfree asset is one that has 0 risk, that is, variance 
0. Thus, its risk-expected return point lies on the vertical axis, as shown 
in Figure 9. 

The inclusion of a riskfree asset into the Markowitz portfolio theory is 
generally regarded as the contribution of William Sharpe, for which he 
won the Nobel Prize, but John Lintner and J. Mossin developed similar 
theories independently and at about the same time. For these reasons, the 
theory is sometimes referred to as the Sharpe-Lintner-Mossin (SLM) 
capital asset pricing model. 

The basic idea behind the CAPM is that an investor can improve his or 
her risk/expected return balance by investing partially in a portfolio of 
risky assets and partially in a riskfree asset. Let us see why this is true. 

Imagine a portfolio that consists of a riskfree asset arr with weight Wrf 

and the risky assets a1 , ... , an as before, with weights w1, ... , Wn. Note 
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that now the sum of the weights of the risky assets will be at most 1. In 
fact, we have 

n 

Wrf + LWi = 1 
i=I 
n 

Wrisky = L Wi ::; 1 
i=I 

The expected return of the complete portfolio is 

n 

fJ = Wrf /Jrf + L Wif.-li = Wrf /Jrf + /Jrisky 
i=I 

and since the variance of the riskfree asset is 0, the return Rrf is a 
constant. Hence, its covariance with any other return is 0 and so 

n 

(]"2 = Var(WrfRrf + LWiR) 
i=I 

Hence 

n 

= Var(LwiRi) 

i=I 
2 

= (]"risky 

(J = (]"risky 

We also want to consider the portfolio formed by removing the riskfree 
asset and "beefing up" the weights of the risky assets by the same factor 
to make the sum of these weights equal to 1. Let us call this portfolio the 
derived risky portfolio (a nonstandard term). For example, if the 
original portfolio is composed of a 

riskfree asset With weight Wrf = 0.20 
risky asset a I with weight WI = 0.30 
risky asset a2 with weight WI = 0.50 

then the sum of the risky weights is 0.80 so the derived risky portfolio 
consists of the 

risky asset ai with weight WI = 0.30/0.80 = 0.375 
risky asset a2 with weight WI = 0.50/0.80 = 0.625 
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which has a total weight of 1. Let us denote the expected return of the 
derived risky portfolio by /-Lder and the risk by O"~er· It follows that 

and 

Thus 

n 

J-L = Wrf/-Lrf + LWiJ-li 

i=l 

~ Wi 
= Wrf /-Lrf + Wrisky ~ -- /-Li 

i=l Wrisky 

= Wrf/-Lrf + Wrisky/-Lder 

n 

0"2 = Var(Lwin) 
i=l 

n 
2 (""' Wi = wriskyVar ~--n) 

i=l Wrisky 
2 2 

= wrisky(J der 

J-L = Wrf /-Lrf + Wrisky /-Lder 
0" = WriskyO" der 

or since Wrf + Wrisky = 1 

1-L = /-Lrf + Wrisky(/-Lder - /-Lrf) 
0" = WriskyO" der 

(1) 

As Wrisky ranges over all real numbers, equations ( 1) trace out a straight 
line. Solving the second equation for Wrisky and using that in the first 
equation, we get the equation 

/-Lder - /-Lrf + 
1-L = 0" /-Lrf (2) 

O"der 

Figure 9 shows this line. 
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Figure 9: The capital market line 

It is clear that if Wrisky = 0 then 

and if Wrisky = 1 then 

Moreover, the point (O"der, /kder) corresponding to Wrisky = 1, being the 
risk-expected return point for a purely risky portfolio, must lie in the 
Markowitz bullet. 

So where do we stand? An investor who invests in a riskfree asset along 
with some risky assets will have risk-expected return point lying 
somewhere on the line joining the points (0, /krf) and ( O"der, /kder)· But it is 
clear from the geometry that among all lines joining the point ( 0, /krf) 

with various points (O"cter, /-Lder) in the Markowitz bullet, the line that 
produces the points with the highest expected return for a given risk is 
the tangent line to the upper portion of the Markowitz bullet, as shown in 
Figure 10. 

Figure 10: The investment portfolio for a given level of risk 
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The tangent line in Figure 10 is called the capital market line and the 
point of tangency on the Markowitz efficient frontier is called the 
(capital) market portfolio. 

The reader may recall our previous discussion about the flattening out of 
the Markowitz curves. It follows from this discussion that if the riskfree 
rate is too large then there will be no capital market line and hence no 
market portfolio. 

Assuming that a capital market line does exist, by adjusting the balance 
between the riskfree asset and the risky portion of the portfolio, that is, 
by adjusting the weights Wrf and Wrisky, any point on the capital market 
line can be achieved. To get a point to the right of the market portfolio 
requires selling the riskfree asset short and using the money to buy more 
of the market portfolio. 

We can now state the moral of this discussion: 

In order to maximize the expected return for a given 
level of risk the investor should invest is a portfolio 
consisting of the riskfree asset and the market portfolio 
(no other risky portfolio). The relative proportions of 
each is determined by the level of acceptable risk. 

The Equation of the Capital Market Line 

If the market portfolio has risk-expected return point ( (JM, /-LM) then the 
equation of the capital market line is 

/-LM- /-Lrf 
JL = () + /-Lrf 

(JM 

For any point ( (), JL) on the line, the value 

/-LM - /-Lrf 
JL- /-Lrf = () 

(JM 

which is the additional expected return above the expected return on the 
riskfree asset, is called the risk premium. It is the additional return that 
one may expect for assuming the risk. Of course, it is the presence of risk 
that implies that the investor may not actually see this additional return. 

To get a better handle on this equation, we need more information about 
the market portfolio's risk-expected return point ( (JM, /-LM ). The weights 
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that correspond to the market portfolio's risk and expected return are 
given in the next theorem. 

Theorem 6 For any expected rislifree return /-Lrf, the capital market 
portfolio has weights 

Note that the denominator is just a number, being the sum of the 
coordinates of the vector in the numerator. 
Proof. For any point ( CJ, 1-L) in the Markowitz bullet, the slope of the line 
from (0, /-Lrf) to ( CJ, f-L) is 

(J 

L,f-LiWi - /-Lrf 

"L,ci,jWiWj 

It is intuitively clear that the point of tangency is the point with the 
property that this slope is a maximum among all points ( CJ, 1-L) in the 
Markowitz bullet. So we seek to maximize s subject to the constraint that 
L-wi = 1. Using Lagrange multipliers once again, we must take the 
partial derivatives of the following function and set the results to 0: 

'L.f-LiWi - /-Lrf 

f = i + .\(1- L:wi) 
L_ci,jWiWj 
i,j 

We leave it as an exercise to show that the resulting equations are 

8j ll.k"L,c· ·w·w ·- ("L,II.·W· - II. r)("L-c· kw·) __ = ,_., 2,3 2 J r2 2 rr 2, 2 _ A = 0 
8wk (L,ci,jWiWj) 3/ 2 

This can be cleaned up to get 

(WCWt)!-Lk- (MWt- /-Lrr)CkWt = .\(WCWt)312 

where Ck is the kth row of the covariance matrix C. This can be written 

CJ2 /-Lk - (1-L - /-Lrf )Ck wt = ACJ3 

Since this holds for all k, we have 

(J2 Mt - (1-L - /-Lrf )CWt = ACJ30t 
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Taking transposes and recalling that Ct = C gives 

a 2 M- (!-l- f-lrr)WC = A.a3a 

Multiplying on the right by wt and recalling that awt = 1, we get 

a 2 MWt- (!-l- 1-lrr)WCWt = A.a3 

or 

and so 

We can now use this value of A. in an earlier equation to get 

a 2 M- (!-l- f-lrr)WC = /-lrra2a 

This can be rewritten as 

Multiplying on the right by at and noting that W at = 1 we get 

1-l- 1-lrr = (M- /-lrfa)c-lat 
a2 

Using this in the previous equation gives 

as desired. 0 

(M- /-lrfa)c-1 

W = (M- 1-lrra)C-lat 

To illustrate, let us continue Example 1 to derive the market portfolio. 

EXAMPLE 2 Continuing Example 1, Figure 11 shows more of our 
Excel worksheet. This portion computes the market portfolio's risk­
expected return based on various riskfree rates (in this case only three 
rates). 
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Market Portfolio 
Rlsk.fn• Rate M-Kf'R D•n 

1 : ~~ oe. 1 
:yJ 1 [1)1r)':) 

04 1 518.59 

w we 

Figure 11: The market portfolio 

For instance, a riskfree return on investment of /1rf = 0.03 leads to an 
expected return of 

/1m = 1.02956084 

and a risk of 

(Jm = 0.155092557 D 

More on the Market Portfolio 

According to our theory, all rational investors will invest in the market 
portfolio, along with some measure of riskfree asset. This has some 
profound consequences for this portfolio. First, the market portfolio must 
contain all possible assets! For if an asset is not in the portfolio, no one 
will want to purchase it and so the asset will wither and die. 

Since the market portfolio contains all assets, the portfolio has no 
unsystematic risk-this risk has been completely diversified out. Thus, 
all risk associated with the market portfolio is systematic risk. 

In practice, the market portfolio can be approximated by a much smaller 
number of assets. Studies have indicated that a portfolio can achieve a 
degree of diversification approaching that of a true market portfolio if it 
contains a well-chosen set of perhaps 20 to 40 securities. We will use the 
term market portfolio to refer to an unspecified portfolio that is highly 
diversified and thus can be considered as essentially free of unsystematic 
risk. 

The Risk-Return of an Asset Compared with the Market Portfolio 

Let us consider any particular asset ak in the market portfolio. We want 
to use the best linear predictor, discussed in Chapter 1, to approximate 
the return Rk of asset ak by a linear function of the return RM of the 
entire market portfolio. According to Theorem 9 of Chapter 1, we can 
write 
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where 

and E is the error (residual random variable). The coefficient f3k is the 
beta of the asset's return with respect to the market portfolio's return and 
is the slope of the linear regression line. 

To get a feel for what to expect, Figure 12 shows the best linear predictor 
in the case of a relatively large beta and three magnitudes of error, 
ranging from very small to rather large . 

. . · 
.·. 

. . 
. . 

-+-------- RM 

.. 
. :. ,.;· . : .·: 

-+------- RM -+-------- RM 

Figure 12: A large beta and different magnitudes of error 

Because the beta is large, in all three cases when the market return 
fluctuates a certain amount, the asset's return fluctuates a relatively larger 
amount. Put another way, if the market returns should fluctuate over a 
specific range of values (as measured by the variance, for example), the 
asset returns will fluctuate over a larger range of values (as measured by 
the variance). Thus, the market risk is "magnified" in the asset risk. 

Figure 13 shows the best linear predictor when the beta is small, again 
with three magnitudes of error. 
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R, R, R, 

Figure 13: A small beta and different magnitudes of error 

Because the beta is small, in all three cases when the market return 
fluctuates a certain amount, the asset's return fluctuates a relatively 
smaller amount. Thus, the market risk is "demagnified" in the asset risk. 

It is intuitively clear then that an asset's systematic risk, that is, the risk 
that comes from the asset's relationship to the market portfolio (whose 
risk is purely systematic) is related in some way to the beta of the asset. 

In addition, it can be seen from the graphs in Figures 12 and 13 that there 
is another factor that contributes to the asset's risk, a factor that has 
nothing whatsoever to do with the market risk. It is the error. The larger 
the errorE, as measured by its variance Var(E) for example, the larger the 
uncertainty in the asset's expected return. 

Now let us tum to the mathematics to see if we can justify these 
statements. In fact, the BLP will provide formulas for the expected return 
and the risk of the individual asset Rk in terms of the beta. 

The Risk 
As to the risk, we leave it as an exercise to show that 

and so the risk associated with the asset ak is (since ak is a constant) 

(J~ = Var(Rk) = Var(f3kRM + ak +E) 

= Var(f3kRM +E) 

= (3~fJ~ + Var(E) 

Thus, the quantity (3~fJ~, which is referred to as the systematic risk of 
the asset ak. is proportional to the market risk, with a proportionality 
factor of (3~. 
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The remaining portion of the asset's risk is the term Var( E), which is 
precisely the measure of the error that we discussed earlier. This is called 
the unsystematic risk or unique risk of the asset. 

According to economic theory, when adding an asset to a diversified 
portfolio, the unique risk of that asset is canceled out by other assets in 
the portfolio. Hence, the unique risk should not be considered when 
evaluating the risk-return performance of the asset and so the asset's beta 
becomes the focal point for the risk-return analysis of an asset. 

The Expected Return 
To justify this viewpoint further consider the expected return of the 
market portfolio 

and the expected return of the individual asset ai 

/1k = Mekt 

where 

ek = ( 0 · · · 0 1 0 · · · 0 ) 

is the matrix with a 1 in the kth position and Os elsewhere. To relate 
these two quantities, we need an expression for M. 

Recall that the weights of the market portfolio are given in Theorem 6 by 

(M- /1rfO)C- 1 

WM = (M- /1rfO)C-lQt 

Since the denominator is just a constant, let us denote its reciprocal by 8. 
Thus 

Solving for M gives 

We can now write 
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/1M= MWk 

= (~wMc + f1rfO )wt-
1 t t 

= -gWMCWM + J1rr0WM 

1 2 
= 8(J"M + /1rf 

Also 

J1k =Me% 

= (~wMc + /1rfo )e% 
1 t t 

= 8 W MC ek + J1rf0ek 

1 
= 8cov(Rk, RM) + J1rf 

Now, the reader may notice a resemblance between some of these terms 
and the beta 

Solving the previous equations for the numerator and denominator of fA 
gives 

f3k = Cov(R~, RM) = b(J1k - J1rf) = J1k - J1rf 
(J"M b(J1M- /1rf) /1M- /1rf 

Finally, solving this for /1k gives 

/1k = f3k(J1M - J1rf) + /1rf 

Let us collect these important formulas in a theorem. 

Theorem 7 The expected return and risk of an asset ak in the market 
portfolio is related to the asset's beta with respect to the market portfolio 
as follows: 

(3) 

and 
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where E is the error (residual random variable).D 

The expression for the expected return justifies our earlier discussion: An 
asset's expected return depends only on the asset's systematic risk j3~<YJw 
(through its beta) and not on its unique risk Var( E). This justifies 
considering only the term j3~<YJw in assessing the asset's risk relative to 
the market portfolio. 

Since f.-LM- f.-trf is positive under normal conditions, the slope of the 
linear relation is positive, meaning that large betas imply large expected 
returns and vice versa. This makes sense-the more (systematic) risk in 
an asset the higher should be its expected return under market 
equilibrium. 

Of course, there is no law that says that higher risk should be rewarded 
by higher expected return. However, this is the condition of market 
equilibrium. If an asset is returning less than the market feels is 
reasonable with respect to the asset's perceived risk, then no one will buy 
that asset and its price will decline, thus increasing the asset's return. 
Similarly, if the asset is returning more than the market feels is required 
by the asset's level of risk, then more investors will buy the asset, thus 
raising its price and lowering its expected return. 

The mathematics bears this out. For instance, if the asset's systematic risk 
is less than the risk in the market portfolio, that is, if 

/3~ <YJw < <YJw 

or equivalently if f3k < 1 then the asset's return satisfies 

f.-tk = f3k(f.-LM- f.-trf) + f.-trf < (J.-LM- f.-trf) + f.-trf = f.-LM 

that is, its expected return is less than that of the market portfolio. On the 
other hand, if f3k = 1 then f.-tk = f.-LM and if f3k > 1 then f.-tk > f.-LM, just as 
we would expect in a market that is in equilibrium. 

The graph of the line in equation (3) is called the security market line or 
SML for short. The equation shows that the expected return of an asset is 
equal to the return of the riskfree asset plus the risk premium 
f3k(f.-LM- f.-trf) ofthe asset. 
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EXAMPLE 3 Suppose that the riskfree rate is 3% and that the market 
portfolio's risk is 12%. Consider the following assets and their betas 

Asset Beta 

Ill 0.65 

112 1.00 
113 1.20 
114 -0.20 

115 -0.60 

Since 

J-lM- J-lrf = 0.12- 0.03 = 0.09 

the security market equation is 

J-lk = 0.09/3 + 0.03 

We can now compute the expected returns under market equilibrium 

Asset Beta Expected Return J-lk 

Ill 0.65 8.85% 

112 1.00 12% 

113 1.20 13.8% 

114 -0.20 1.2% 

115 -0.60 -6.9% 

The expected returns in the previous table are the values that the market 
will sustain based on the market portfolio's overall systematic risk (and 
the riskfree rate). For example, since asset a1 has a beta less than 1, it has 
a smaller risk than the market portfolio. Therefore, the market will 
sustain a lower expected return than that of the market portfolio-in this 
case 8.85% rather than 12%. Asset a2 has the same systematic risk as the 
market portfolio so the market will sustain an expected return equal to 
that of the market portfolio.D 

Exercises 

1. What is the beta of the market portfolio? Can a portfolio have any 
real number as its /3? 

2. For a riskfree rate of 4% and a market portfolio expected return of 
8% calculate the equation of the security market line. 
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3. Show that the parametric equations 

J-l = (1- s)J-tl + SJ-l2 

CJ1 = (1 - S )Cil ± SCJ2 

are the equations of a straight line in the ( CJ1 , J-l )-plane. (Here s is the 
parameter and ranges over all real numbers. Take the plus sign first 
and then the minus sign.) 

4. For p1,2 = 1 we have R2 = aR1 + b for a> 0. If the risk is 0 then 
compute the expected return. 

5. Under the assumption that CJ1 ~ CJ2 and p1,2 < 1 show that 

CJ1 ( CJ1 - P1,2CJ2) 1 
Smin = 2 2 < 

(J 1 + (J 2 - 2p1,2CJ1 CI2 

6. If E is the error in the best linear predictor of an asset ai with respect 
to the market portfolio, show that Cov(RM, E) = 0. 

7. Show that the regression lines for all assets in the market portfolio go 
through a single point. What is that point? 

8. Let PM be the market portfolio, where asset ai has weight wi. Write 
the best linear predictor of~ as 

BLP(~) = f3iRM + ai 

Consider the first two assets a1 and a2, with their respective weights 
w1 and w2. The return from these two assets is -

Ro = w1R1 + w2R2 

If the best linear predictor is 

BLP(Ro) = f3oRM +aM 

what is the relationship between (30 , (31 and (32 and between a 0 , a 1 
and a 2? Can you generalize this result to any subset of assets in the 
market portfolio, that is, to any subportfolio? 

9. Verify the data in Figure 14 (at least to a few decimal places). For a 
5% return, show that the minimum risk is 0.238952. If the riskfree 
rate is 3% show that the market portfolio has weights 
(0.335, 0.372, 0.293) and risk-return (0.194, 0.196). 
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Figure 14 





Chapter 3 

Background on Options 

In preparation for our study of derivative pricing models, we need to 
discuss the basics of stock options. Readers who are familiar with these 
derivatives will want merely to skim through the chapters to synchronize 
the terminology, as it were. 

3.1 Stock Options 

Stock options take two forms: put options (puts) and call options (calls). 
Here are the definitions. 

Definition A call is a contract between the writer (or seller) of the call 
and the buyer of the call. The buyer has the right to buy from the writer 
(that is, call for) the stock at a fixed price called the exercise price or 
strike price, which we denote by E or K (both are commonly used 
symbols). In a European call, the right to buy can only be exercised on 
the expiration date of the call. In an American call, the right to buy can 
be exercised at any time on or before the expiration date of the call. 

A put is a contract between the writer (or seller) of the put and the 
buyer of the put. The buyer has the right to sell to (or put to) the writer 
the stock at the exercise price or strike price. In a European put, the 
right to sell can only be exercised on the expiration date of the call. In an 
American put, the right to sell can be exercised at any time on or before 
the expiration date of the call. 

The writer of an option has a short position and the buyer of an option 
has a long position. D 

3.2 The Purpose of Options 

Options are primarily used for hedging and for speculation. (Arbitrage is 
always good too if you can get it.) Also, options have one significant 
advantage over owning the underlying asset, namely, leverage. 

A hedge is an investment that reduces the risk in an existing position, 
such as another investment. To illustrate the hedging feature of an 
option, suppose an investor currently (October) owns 1000 shares of a 
stock IBM whose current price is about $88 per share. The investor is 

0 0 e na 

oma 
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justifiably concerned that a significant drop is the stock's price will cause 
his portfolio to take a big hit. 

So to hedge against this possibility the investor buys a December put 
with strike price $85. This gives him the right to sell the stock at $85 per 
share for the next 3 months. Thus, if the stock price tumbles the investor 
can bail out at $85 per share. The price paid for this hedge is the price of 
the put, which is currently selling for $1.50. So a total cost of$1500 will 
protect an $88,000 investment. 

Leverage 

At the moment of this writing, IBM is selling for about $90 per share. A 
small investor with $450 can purchase only 5 shares of the stock. If the 
investor feels that the stock price is about to rise significantly, then the 
use of options allows him to leverage his meager bankroll and speculate 
on the stock in a much more meaningful way than buying the shares. 

For example, the current price of a 1-month call with strike price of $90 
is $3.80. Thus, the investor is able to purchase 118 such calls (ignoring 
commissions). If the price of IBM is $95 at exercise time the profit on 5 
shares would be only $25 whereas the profit on the calls would be $590. 
The return is thus over 100% on the investment in options, whereas it is 
less than 6% for the stock investment. This is leverage. 

Of course, the downside to the call options is that if the stock does not 
rise, or does not rise before the expiration date, the investor will receive 
nothing from the options and will be out the commission on the purchase 
of these options, whereas the stockholder still owns the stock. 

3.3 Profit and Payoff Curves 

When the expiration date arrives, the owner of an option will exercise 
that option if and only if there is a positive return. Thus, if the strike 
price of the option is K and the spot price of the stock is S, the owner of 
a call will exercise the option (call for the stock at the price K) if and 
only if K < S. On the other hand, the owner of a put will exercise the 
option (put the stock at the price K) if and only if K > S. Some terms 
are used to describe the various possibilities. 

Definition A call option is 
1) in-the-money if K < Sr 
2) at-the-money if K = Sr 
3) out-of-the-money if K > Sr 
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A put option is 
4) in-the-money if K > Sr 
5) at-the-money if K = Sr 
6) out-of-the-money if K < SrD 

It is important to note that just because an option is in the money does 
not mean that the owner makes a profit. The problem is that the initial 
cost (as well as any commissions, which we will ignore throughout this 
discussion) may outweigh the return gained from exercising the option. 
In that case, the investor will still execute because the positive return will 
help reduce the overall loss. 

Figure 1 shows the payoffs (ignoring costs) for each option position. 
Note that the horizontal axis is the stock price at exercise time and all 
line segments are either horizontal or have slope ±1. 

For example, for a long call, the owner will exercise if and only if the 
spot price S of the, stock is greater than K. In this case, the payoff to the 
owner is S - K. Otherwise, the owner will let the call expire, receiving 
nothing. 

Payoff 

Stock 
-----1---~K -- Price 

Long Call 

Payoff 

Stock 
-+-----".,_K --Price 

Long Put 

Figure 1: Payoff curves 

Payoff 

Stock 
-----1---~K -- Price 

Short Call 

Payoff 

Stock 
--+----:;-K -- Price 

Short Put 

Figure 2 shows the actual profit curves, which take into account the cost 
of the purchase or sale of the option. (As mentioned, we will ignore all 
commissions.) 
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Profrt Profit 

cost r---, 

Long Call Short Call 

Profit Prof~ 

cost ,..---Stock 

K Price 

Long Put Short Put 

Figure 2: Profit curves 

The payoff formulas are actually quite simple. For a long call, if the 
stock price S satisfies S 2: K then the payoff from exercising the call is 
S - K whereas if S < K then the call will expire and so the payoff is 0. 
Thus, the payoff is 

Payoff(Long Call)= max{S- K, 0} 

On the put side, we have 

Payoff(Long Put)= max{K- S, 0} 

As mentioned, the payoff curves are very informative. Here are some of 
the things we can see immediately from these curves. 

Long Call 

• Limited downside: The downside is limited to the cost ofthe call. 
• Unlimited upside: The upside is unlimited since there is no limit to 

the price of the stock. 
• Optimistic position: The buyer hopes the stock price will rise. 
• A long call should be exercised when the stock price is above the 

strike price K. 

Short Call 

• Unlimited downside: The downside is unlimited because there is no 
limit to the price of the stock. 
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• Limited upside: The upside is limited to the selling price of the call. 
• Pessimistic position: The buyer hopes the stock price will fall. 
• A short call should be exercised when the stock price falls below the 

strike price K. 

Long Put 

• Limited downside: The downside is limited to the cost of the put. 
• Limited upside: The upside is also limited because the stock price 

can only fall to 0, in which case the profit is equal to the strike price 
times the number of shares minus the cost of the put. 

• Pessimistic position: The buyer hopes the stock price will fall. 
• A long put should be exercised when the stock price falls below the 

strike price K. 

Short Put 

• Limited downside: The downside is limited because the stock price 
can only fall to 0, in which case the loss is equal to the strike price 
times the number of shares plus the cost of the put. 

• Limited upside: The upside is also limited to the selling price of the 
put. 

• Optimistic position: The buyer hopes the stock price will rise. 
• A short put should be exercised when the stock price rises above the 

strike price K. 

It is also worth noting that long calls and short puts are related in that 
they are both optimistic (bullish) positions, that is, they are profitable 
when the stock rises. It is the degree of risk and the degree of profit that 
distinguish the two in this regard, however. Similarly, long puts and 
short calls are both pessimistic (bearish) positions. 

The profit curves also hold some interesting information. Setting aside 
for the moment the risk factor, we can say the following: 

• If we believe that a stock's price will decline but only slightly, 
settling within the interval (K -Cost, K], then a short call is the 
most advantageous position. In this case, a long put will still be in 
the red, due to the cost of the put. However, if we believe that a 
stock's price will decline sharply, then a long put is the most 
advantageous position. 

• If we believe that a stock's price will rise but only slightly, then a 
short put is the most advantageous position. If we believe that a 
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stock's price will rise sharply, then a long call 1s the most 
advantageous position. 

Covered Calls 

We have said that a short call position has an unlimited downside 
because the stock price can theoretically rise indefinitely. Of course, this 
assumes that the writer of the call buys the shares at exercise time in 
order to deliver them to the owner of the call. However, if the writer of 
the call already owns the shares his downside is limited to the price paid 
for those shares, because they can be used to "cover" the call. 

If the writer of a call owns the shares at the time he writes the call, then 
he is said to write a covered call. Writing covered calls is far safer than 
writing uncovered (also called naked) calls. 

Profit Curves for Option Portfolios 

An option portfolio consists of a collection of options. The following 
example shows how to obtain the profit curve for a simple portfolio. 

EXAMPLE 2 Consider the purchase and sale of options, all with the 
same expiration date, given by the following expression: 

- Pwo + P12o + 2C15o - C1so 

This position is: short a put with strike price 100, long a put with strike 
price 120, long two calls with strike price 150 and short a call with strike 
price 180. The overall profit curve can be obtained from the individual 
profit curves by plotting them all on a single set of coordinates, as shown 
in Figure 3. Note that it is simpler to ignore all costs in drawing the 
curves and then simply translate the final curve up or down an amount 
equal to the total cost for all the options involved, which in this case is 

-Cost(P10o) + Cost(H2o) + 2Cost(Cl5o)- Cost(Clso) D 
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Figure 3: Profit curve (no costs) 

3.4 Selling Short 
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A complete analysis of options cannot be made without also discussing 
the notion of selling a stock short. Simply put, to sell a stock short, the 
investor borrows the stock (usually from a broker) and sells it 
immediately (in one transaction), thus realizing an amount equal to the 
current price of the stock (less the ever-present commission). For this 
privilege, the investor must return the stock (not the money) to the 
lender. 

As with short calls, selling a stock short incurs a potentially unlimited 
downside, unless the seller also owns shares of the stock with which to 
cover the inevitable return of the stock borrowed. Figure 4 shows the 
profit curve for a short sale of stock, as well as the profit curve for a long 
position. 

Profrt 

s 
Profrt 

-S 

Short a Stock Long a Stock 

Figure 4: Profit curves for short and long stock positions 

Exercises 

1. Without looking in the book, draw the profit curves for a long put, 
short put, long call and short call. 

2. To write a covered put, the investor writes a put and at the same 
time must be short the same quantity of the underlying stock. For 
example, suppose an investor writes a put for 100 shares of IBM and 
is also short 100 shares of IBM. This means that the investor has 
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borrowed 100 shares of IBM and sold them. Describe the upside and 
downside to writing covered puts. Why would someone want to 
write a covered put? 

3. Draw the payoff graph for the following option portfolio 

- Pso + Hoo + 2CBo- C1so 

A spread is a transaction in which an investor simultaneously buys one 
option and sells another option, both on the same underlying asset, but 
with different terms (strike price and/or expiration date). A call spread 
involves the purchase and sale of calls, and similarly for a put spread. 
The idea is that one option is used to hedge the risk of the other option. 

4. In a bull spread, the investor buys a call at a certain strike price K 1 

and sells another call at a higher strike price K 2, with the same 
expiration date. Draw the profit curve for a bull spread. When is a 
bull spread most profitable? Is this an optimistic or pessimistic 
investment? Hint: you must first decide how the costs of the two 
calls compare. 

5. In a bear spread, the investor buys a call at a certain strike price K 1 

and sells another call at a lower strike price K 2, with the same 
expiration date. Draw the profit curve for a bear spread. When is a 
bear spread most profitable? Is this an optimistic or pessimistic 
investment? Hint: you must first decide how the costs of the two 
calls compare. 

6. In a calendar spread also called a time spread an investor sells a 
call with a certain expiration date D1 and buys a more distant call, 
that is, a call with a longer expiration date D 2 > D 1. Assume that the 
calls have the same strike price. Consider the following calendar 
spread. The current (JAN) price of XYZ is $50. Call prices are as 
follows: 

APR 50 call: (expiring in April at a strike price of $50) costs $5 
JUL 50 call: $8 
OCT 50 call: $10 

Suppose that in 3 months (in April) the stock price is still $50. Then 
if all things else are equal the call prices should be 

APR 50 call: $0 (expiring) 
JUL 50 call: $5 
OCT 50 call: $8 
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Is there a profit here for the investor? Describe the reason. 
7. A butterfly spread is a combination of a bull spread and a bear 

spread. A call butterfly spread consists of buying a call at strike price 
K 1, selling two calls at strike price K 2 > K 1 and selling another call 
at strike price K 3 > K 2. All calls have the same expiration date. 
Draw a profit curve for a butterfly spread. Hint: They don't call it a 
butterfly spread for nothing. 





Chapter 4 

An Aperitif on Arbitrage 

As a simple introduction to the concept of arbitrage and how to use the 
assumption of no arbitrage to price assets, let us briefly discuss the 
pricing of forward contracts and some simple issues related to option 
pncmg. 

4.1 Background on Forward Contracts 

We begin with the necessary background on forward contracts. 

Forward Contracts 

A forward contract is an agreement to buy a certain quantity of an 
asset, called the underlying asset at a given price K, called the 
settlement price or delivery price to be paid at a given time T in the 
future, called the settlement date or delivery date. Entering a forward 
contract does not require any initial purchase price-it is free. 

The party that agrees to buy the asset is taking the long position on the 
contract and is said to be the buyer of the contract. The party that agrees 
to sell the asset is taking the short position on the contract and is said to 
be the seller of the contract. 

Futures Contracts 

In contrast to plain-vanilla forward contracts as described above, a 
futures contract is a forward contract with a number of constraints and a 
much more complicated payoff model. Indeed, futures contracts seldom 
come to maturity, that is, very few (perhaps on the order of 1 or 2 
percent) of all futures contracts survive to the delivery date. The main 
properties of futures contracts are as follows. 

1) Futures contracts trade on an organized exchange. For example, the 
Chicago Board of Trade (CBT or CBOT) is the largest futures 
exchange. 

2) Futures contracts have standardized terms, specifying the amount 
and precise type of the underlying, the delivery date and delivery 
price. Just like you can only buy bolts of specific lengths and 
diameters at the hardware store, you can only buy futures contracts 
with specific terms. 
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3) Performance (delivery of losses or gains) of futures contracts is 
guaranteed by a clearinghouse. 

4) The purchase of a futures contract requires that the buyer post 
margin, that is, some amount of money to cover potential day-to-day 
price changes. 

5) Futures markets are regulated by a government agency, whereas 
forward contracts are largely unregulated. 

6) Futures contracts can be closed (terminated) either by delivery, by 
offset (that is, by a reversing trade that cancels both contracts) or by 
exchange-for-physical (which is a form of "settle up early" 
arrangement). 

We will not discuss the details of futures contracts in this book. 

Forward Prices 

Consider forward contracts for a given underlying (such as wheat) that 
have a given delivery date T (such as December 2003). At any time 
t < T, one can potentially enter into such a contract. Of course, the 
delivery price will depend on the time t of formation of the contract, so 
we will denote it by Ft,T· This would-be delivery price is called the 
forward price of the contract. 

For example, on July 1 the forward price of a contract to deliver 5000 
bushels of wheat in September might be 170 cents (per bushel). A week 
later, the forward price for such a contract might be 168 cents. 

Spot Prices 

In contrast to forward prices, the spot price St of an asset at a given time 
t is the price of the asset at that time for immediate delivery. For 
example, we can speak of the current spot price of a bushel of wheat. We 
can also speak of the spot price of wheat in one month. This is the price 
that investors would pay in one month for immediate delivery at that 
time. Of course, at the present time, this spot price is unknown. 

4.2 The Pricing of Forward Contracts 

To determine the forward price of a forward contract, we can use a 
simple no-arbitrage argument. Suppose that the forward contract is for 
one "share" of an asset whose initial price is S0 • (One share of a wheat 
contract is 5000 bushels of wheat, for example.) Consider the following 
two portfolios. 
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Portfolio A: Long the Contract 
One forward contract. 

Portfolio B: Cash-and-Carry the Asset 
One share of the asset itself and a debt of S0 dollars 

In a perfect market it is possible to go either long or short on either 
portfolio. To short Portfolio A, we short (sell) the forward contract. To 
short Portfolio B, we sell the asset short (borrow the asset and sell it for 
S0) and then lend the resulting income. This is referred to as reverse 
cash-and-carry. 

The initial values for these portfolios are 0. The final payoffs are 

V(long contract) = Sr- Fo,T 
V(short contract) = Fo,T- Sr 

V(cash-and-carry) = Sr- S0erT 

V(reverse cash-and-carry) = S0erT- Sr 

For example, in the case of cash-and-carry, at timeT the investor owns 
the asset, worth Sr but must repay the loan, which values S0erT. 

Now consider the following two strategies. 

Strategy 1: Long the contract and reverse cash-and-carry the asset 
The final payoff for this strategy is 

V(long contract)+ V(reverse cash-and-carry) = SoerT- Fo,T 

Strategy 2: Short the contract and cash-and-carry the asset 
The final payoff for this strategy is 

V(short contract)+ V(cash-and-carry) = Fo,T- S0erT 

If either of these constant payoffs is positive, the investor has an 
arbitrage strategy. Hence, the lack of arbitrage implies that 

SoerT - Fo,T = 0 

that is, 
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Theorem 1 Consider a forward contract to buy an underlying asset 
whose current price is So at time T in the future. In a perfect market with 
no arbitrage, the forward price is 

Fo,T = SaerT 

where r is the interest rate. D 

4.3 The Put-Call Option Parity Formula 

We can also apply the no-arbitrage principle to derive relationships 
between the prices of puts and calls for the same underlying under the 
same conditions (strike price and expiration date). 

First, let us make a comment about riskfree bonds. We will assume that it 
is possible to buy or sell any amount of a riskfree bond (such as a U.S. 
Treasury bond). The bond pays a continuously compounded interest at 
the rate r. We will assume that the value of 1 unit of riskfree bond at 
time 0 is 1 dollar. 

It is important to keep separate in one's mind the notion of quantity and 
price of the bond. For example, if we invest in A units ofriskfree bond at 
time 0 then at timet the quantity is still A but the value is Aert. Also, if 
we invest K dollars in the riskfree bond at timet we get K e-rt units.of 
bond each worth ert. 

The use of riskfree bonds is traditional in pricing models. However, we 
can also think in terms of riskfree cash earning a fixed interest rate r. We 
will use both types of riskfree assets interchangeably in our discussion. 

It will also be convenient to use the following common notation: 

x+ =max{ X, 0} 

The European Case 

The put-call option parity formula is a formula that compares the price P 
of a European put to the price C of a European call on the same 
underlying stock and with the same expiration date and strike price K. 

Assume that the underlying stock pays no dividend and is currently 
selling for S0. Consider the following two portfolios. 
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Portfolio A 
A long position on the put and a short position on the call. The initial 
value of this portfolio is P - C and the payoff is 

max(K- ST, 0)- max(ST- K, 0) = K- ST 

where ST is the final price of the stock. 

Portfolio B 
A short position on one share of stock and K e-rT worth of riskfree 
bond. The initial value of this portfolio is 

Ke-rT- So 

and the final payoff is 

K-ST 

Since the final payoffs of the two portfolios are the same, the initial 
values must also be the same. Otherwise, an investor could sell the more 
expensive portfolio and buy the cheaper portfolio, which would produce 
a guaranteed profit at timeT. Hence 

P-C= Ke-rT- So 

This is the put-call option parity formula. 

If the stock pays a dividend then the analysis is somewhat different. The 
reason is that the investor from whom the stock was borrowed under 
Portfolio B will demand not only the return of his share of stock, but also 
the return of the dividends that he has foregone by lending the stock. 
Suppose that the time-t0 value of the dividend is d0• Then the final 
payoff of Portfolio B is 

K- ST- doerT 

Thus, we cannot compare the initial values of the two portfolios, since 
the final payoffs are not equal. This calls for an adjustment to Portfolio B 
so that the payoff is the same as that of Portfolio A. 

Portfolio B' 
A short position on one share of stock and K e-rT + do worth of riskfree 
bond. The initial value of this portfolio is 

Ke-rT +do- So 
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and the final payoff is 

K + doerT - Sr - doerT = K - Sr 

Now we can equate the initial values of Portfolio A and Portfolio B' to 
get 

P - C = K e -rT + do - So 

Theorem 2 (European Options with Dividends) Suppose that a stock is 
currently selling at a price of So per share, a European put on this stock 
sells for P dollars and a European call for C dollars, both having the 
same strike price K and expiration time T. Suppose that the present 
value of any dividends paid by the stock during the period in question is 
d0 . Then assuming that no arbitrage occurs, we have 

C - P = So - K e -rT - do 

where r is the rislifree interest rate. This formula is called the put-call 
option parity formula. D 

The American Case 

The case of American options is more complicated. Here the price 
difference C - P is not a constant as it was in the European case. 

Consider the following strategy: Go long one put, short one call and long 
one share of stock (to cover the call in case it is exercised). The initial 
portfolio is thus 

1) 1 put@ P 
2) -1 call@ C 
3) 1 share@ So 

with initial value 

Vo = P- C+So 

Now, one of two things can happen during the lifetime of the holdings: 
The call can be exercised against us or it can expire worthless. If the call 
is exercised at time t then we give up the stock to cover the call, taking in 
K e -rt units of cash. Our position at the final time T is thus 

1) 1 put @ ( K - Sr) + 
2) K e-rt dollars @ erT 
3) d0erT dollars if the call was exercised after the dividend was paid 



4. An Aperitif on Arbitrage 95 

This has final value 

Vr,l = (K- Sr )+ + K er(T-t) + doerT 8 

where 8 = 1 if the call was exercised after the dividend payment date 
and 8 = 0 otherwise. 

If the call is not exercised, we do nothing until the final time, when the 
holdings are 

1) 1 put @ ( K - Sr) + 
2) -1 call@ 0 
3) 1 share @ Sr 
4) doerT dollars 

This has final value 

Vr,2 = (K- Sr)+ + Sr + doerT = max{Sr, K} + doerT 

Both of these expressions for the final value are a bit complicated, but we 
can get upper and lower bounds. In fact Vr, 1 and Vr,2 both satisfy 

K < V < K erT + d erT _ T,l _ 0 

K < V < K erT + d erT _ T,2 _ 0 

An alternative to this portfolio is to invest the initial price Vo in bonds at 
the riskfree rate, giving a final payoff of 

VoerT =(P-C+ So)erT 

Now, if V0erT < K then the bond strategy always pays less than the 
portfolio so there is arbitrage: Sell the bonds and buy the portfolio. This 
has initial cost 0 and final payoff at least 

K- VoerT > 0 

Hence, to avoid arbitrage, we must have 

K ~(P-C+ S0 )erT 

A little algebra turns this into 

C - P ~ So - K e -rT 

Similarly, if V0erT > K erT + d0erT then the bond strategy always pays 
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more than the portfolio and so there is also arbitrage: Buy the bonds and 
sell the portfolio. Hence, to again avoid arbitrage we must have 

(P-C+ So)erT ~ KerT + doerT 

or, with a little algebra 

So - K - do ~ C - P 

Let us summarize. 

Theorem 3 (American Options With Dividends) Suppose that a stock is 
currently selling for So per share, an American put on this stock sells for 
P and an American call sells for C, both having the same strike price K 
and expiration time T. The present value of any dividends paid by the 
stock during the period in question is d0 . Then assuming that no 
arbitrage occurs, we must have 

So - K - do ~ C - P ~ So - K e -rT 

where r is the rislifree interest rate. Thus, in the American case, the 
difference C - P can be no larger than in the European case, but it can 
be smaller. 0 

4.4 Option Prices 

Simple arbitrage arguments, along with some common sense, can give us 
some information about option prices. For instance, since an American 
option provides all of the features of a corresponding European option 
and more, it seems obvious that American options should not be less 
expensive than their European counterparts. In symbols, 

CA 2: CE, pA 2: pE 

We leave it to the reader to produce an arbitrage argument to support 
these inequalities. 

It is not hard to see that the price of an American put can exceed the 
price of its European counterpart. The idea is that early exercise of the 
American put can tum a share of stock into bonds that earn the riskfree 
rate r. If that rate is sufficiently high, the profit can be higher than that of 
the European put, which is limited by the strike price, since the best case 
scenario for the owner of a European put is when the stock price is 0 at 
timeT. 
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More specifically, suppose that the bond rate is r and a share of stock is 
selling for S0 . Consider an American put with strike price K. The 
maximum profit from a similar European put is K, which happens if the 
stock price drops to 0 at timeT. On the other hand, suppose we exercise 
the American put at time 0, and invest the resulting K - So dollars at 
rater. The resulting profit is (K- S0)(1 + r). Hence, if 

(K- S0)(1 + r) > K 

then the American put is more valuable than its European counterpart. 

As a numerical example, there was a time when the bond rate was 12% 
(and even higher). Suppose a share of stock is selling for $5. Consider an 
American put with strike price 50. The resulting profit is 

(K- So)(1 + r) = 45(1.12) = 50.40 >50 

Thus, the American 50 put is worth more than the European 50 put. 

On the other hand, it is a perhaps somewhat surprising result that an 
American call is worth exactly the same as a European call with the same 
terms. That is, 

cA=cE 

(We are assuming that the stock does not pay a dividend.) However, 
some reflection reveals the reason. Namely, the ownership of a European 
call implies that the owner can borrow a share of stock at any time and 
can use the call to cover the short position at time T for at most the strike 
price K. This provides protection against early exercise of the American 
call. 

To be specific, suppose that cA > cE and consider the following initial 
portfolio 

1) -1 American call @ CA 
2) 1 European call @ cE 
3) CA - CE > 0 bonds @ 1 

This portfolio has initial value 0. As mentioned, the ownership of the 
European call protects us against exercise of the American call since we 
can always borrow a share of stock to cover early exercise of the 
American call. 
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In particular, clearly, if the calls are never exercised then there is a 
guaranteed profit from the riskfree position. If the American call is 
exercised at time T then we can also exercise the European call in 
response, again resulting in a net profit from the bonds. Finally, if the 
American call is exercised at time t < T then we borrow one share of 
stock and cover the call. At that time, the portfolio is 

1) -1 share @ St 
2) 1 European call @ ? 
3) CA - CE > 0 bonds @ ert 

4) K dollars 

At time T this becomes 

1) -1 share@ Sr 
2) 1 European call@ (K- Sr )+ 
3) CA - CE > 0 bonds @ erT 

4) K er(T-t) dollars 

Now we simply exercise the call to cover the short stock position or, if 
the stock price has fallen below the strike price K, buy the stock on the 
open market. In this way, we cover the short stock position at a cost of 
min { K, Sr}. The final profit is thus 

(CA- cE)erT + Ker(T-t)- min{K, Sr} > 0 

The essence of this inequality is that K er(T -t) > K. In words, it is better 
to pay the strike price at the end than anywhere in the middle. 

There is one more lesson to be learned here. Namely, it is never wise to 
exercise an American call early. 

There are several ways to see this. First, if the intention is to hold onto 
the stock until expiration T, then exercising early, say at timet, results in 
the same portfolio at time T. The difference in that with early exercise, 
the investor pays the strike price at time t rather than at time T, thus 
losing interest on the strike price for the period of time from t to T. On 
the other hand, if the intention is to immediately sell the stock, early 
exercise and sale nets the investor St- K (assuming this is positive). 
This is the intrinsic value of the option. But the market value of the 
option must be at least this amount and is probably more. Hence, rather 
than exercise, it is more advantageous to sell the option itself. 
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Another way to see this is to note that 

cA = cE 2 So - K e -rT 

(we ask you to prove the latter inequality in the exercises). However, the 
value of early exercise at time 0 is S0 - K so as long as r > 0 the value 
of the American call is greater than its early exercise value. 

Finally, we can observe that the alternative of borrowing the stock still 
gives the investor possession of the stock but at no immediate cost. The 
cost K can be deferred to the final time T by exercising the option at that 
time (or buying the stock on the open market if it is cheaper) to cover the 
short position on the stock. 

Theorem 4 Assume that the underlying stock does not pay a dividend. 
For an American and European call under the same terms, we have 

cA=cE 
For an American and European put under the same terms, we have 

pA 2PE 

with strict inequality possible. Moreover, it is never wise to exercise an 
American call before the expiration date. D 

Exercises 

If the underlying asset of a forward contract provides a dollar income 
during the life of the contract, then the long investor in the contact will 
lose out on this income and the cash-and-carry investor will get the 
income. This effects the previous no-arbitrage argument. The following 
exercises are a propos to this situation. 

1. Suppose that the income from the underlying asset has present value 
I. What are the payoffs in this case? Assume that the annual interest 
rate is r compounded continuously. 

2. What are the payoffs for the two strategies in this case? 
3. Show that the assumption of no arbitrage implies that 

Fo,T = (So - I)erT 

We have seen that in the simplest case of a forward contract that does not 
produce an income, the nonarbitrage forward price at time 0 is 
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However, we derived this formula under the very idealistic assumption 
of a perfect market. Let us examine what happens if this restriction is 
lifted. In particular, suppose that the lending and borrowing rates are 
different, as is almost always the case in real life. Let the lending rate for 
the investor berg and the borrowing rate be rb. Of course, life being what 
it is for individual investors, we have rg < rb. 

4. Under these conditions, what are the payoffs? Assume that the 
annual interest rate is r compounded continuously. 

5. What are the payoffs for the two strategies in this case? 
6. Show that the assumption of no arbitrage implies that 

S ertT < R < S erbT 0 _ O,T _ 0 

Hint: To avoid arbitrage, both strategies must yield a nonpositive 
payoff. 

The upper and lower bounds given in Exercise 6 are called no-arbitrage 
bounds and the range of values of the futures price that is implied by the 
absence of arbitrage is the no-arbitrage spread. Thus, in the absence of 
a perfect market, the lack of arbitrage implies that the futures price can 
lie anywhere within a range of values. 

Upper Bounds for Option Prices 

7. Prove by an arbitrage argument that the initial value of a European or 
American call is less than the initial price of the stock, that is, 

CE <S - 0 

cA < s - 0 

8. Prove the following by an arbitrage argument 

pE:::; Ke-rT 

pA:::;K 



Lower Bounds for Option Prices 

9. Prove that 
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So- Ke-rT- do :S cE 
Ke-rT +do- So :S pE 

10. a) Prove that for a nondividend paying stock 

So- Ke-rT :S cA 
K- So :SpA 

b) If the stock pays a dividend whose discounted value is do then 

max{So- K e-rT- do, So- K} :S CA 

max { K e -rT + do - So, K - So} :S pA 





Chapter 5 

Probability II: More Discrete Probability 

In this chapter, we cover the material on finite probability spaces that is 
needed for the discussion of discrete-time models in the next chapter. 

5.1 Conditional Probability 

When additional information is available about an experiment, the notion 
of conditional probability can be used to take that information into 
account. The idea is to "concentrate" all of the probability of 0 onto the 
set E, in a manner that is proportional to the original probability measure 
IP. 

Definition Let (0, IP) be a probability space. Let E be an event with 
IP( E) > 0. Then for any event A, the conditional probability of A given 
E is 

IP(A I E) = IP(A n E) 
IP(E) 

0 

The symboliP(A I E) is read "the probability of A given E." Note that 
we do not need to worry about the case IP(E) = 0, for it makes little 
sense to ask about a probability conditioned upon the occurrence of an 
impossible event. 

Conditioning on an event allows us to define a new "conditional" 
probability measure on 0. 

Theorem 1 Let (0, JID) be a finite probability space and let E be an event 
for which IP( E) > 0. Then the set function lP E defined by 

IPE(A) = IP(A I E) 

is a probability measure on Ofor which IPE(E) = 1. 
Proof. To show that IPE is a probability measure on 0 we must verify a 
few facts. First, monotonicity oflP implies that 

0 ~ IP(A n E) ~ IP(E) 

and so 0 ~ IP(A I E) ~ 1, that is, 
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0 :::; IP'E(A) :::; 1 

Also 

lP' (n) = IP'(n I E) = IP'(n n E) = IP'(E) = 1 
E IP'(E) IP'(E) 

Finally, if An B = 0 then since An E and B n E are also disjoint, we 
have 

IP'E(A u B) = IP'(A u B I E) 
IP'((A U B) n E) 

IP'(E) 

This completes the proof. D 

IP'((A n E) u (B n E)) 
IP'(E) 

IP'(A n E)+ IP'(B n E) 
IP'(E) 

IP'(A n E) IP'(B n E) 
= IP'(E) + IP'(E) 
= IP'(A I E)+ IP'(B I E) 
= IP'E(A) + IP'E(B) 

The theorem on total probabilities takes on a nice form using conditional 
probabilities. 

Theorem 2 (fheorem on Total Probabilities) Let n be a sample space 
and let E1, ... , En form a partition of D. Provided that IP'(Ek) =/= 0 for all 
k, we have for any event A in n, 

n 

IF'( A) = 2:: IF'( A I Ek)IP'(Ek) 0 
k=l 

5.2 Partitions and Measurability 

For convenience, let us repeat the definition of a partition. 

Definition Let n be a nonempty set. Then a partition ofO is a collection 
P = {B1 , ... , Bk} of nonempty subsets of n, called the blocks of the 
partition, with the following properties: 
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1) The blocks are pairwise disjoint 

Bin Bj = 0 

2) The union of the blocks is all of D. 

B1 U ··· U Bk =D. 

Figure 1 shows a partition of a set D.. 

Figure 1: A partition of D. 

We will also have use for the notion of a refinement of a partition. 

0 

Definition Let P = { B1, ... , Bk} be a partition of a set D.. Then a 
partition Q = { C1, ... , Cn} that comes from P by breaking up some of 
the blocks Bi into smaller blocks is called a refinement ofP. Thus, Q is 
a refinement ofP if each block of Q is contained in a some block ofP 
or, equivalently, each block ofP is a union of blocks of Q. We denote 
thisbyP ~ Q. 0 

Note that when we say that a set A is the union of sets in the collection 
{ B 1, ... , Bn} this includes the possibility that A is the "union" of a 
single set Bk. that is, A= Bk. 

Figure 2 shows a refinement of the partition in Figure 1. Note that 

B1 = c1 u c2 
B2 = c3 u c4 u c5 
B3 = c6 
B4 = c7 

and so each block Bi is the union of blocks Cj. 
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Figure 2: A refinement 

The Partition Defined by a Random Variable 

If X is a random variable it is customary to denote the inverse image of a 
set B under X not by x-1(B), as for ordinary functions, but instead by 

{X E B} 

Also, instead ofwriting x-1(x) it is customary to write 

{X=x} 

We also remind the reader that the set of distinct values { x1, ... , Xn} of 
X is called the image of X and is denoted by im( X). 

Any random variable X on a finite sample space n defines a partition 
Px of n, as shown in Figure 3. 

The partition Px 

••• 

QL_~L_~~~~~=-~ 

Figure 3: The partition defined by a random variable 

Definition Let X be a random variable on n with 

im(X) = { X1, ... , Xn} 

Then X defines a partition of n whose blocks are the inverse images of 
the elements ofim(X), that is, 

Px ={{X= x} I x E im(X)} ={{X= x1}, ... , {X= Xn}} 

This is called the partition defined by X. D 
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Measurability of a Random Variable with Respect to a Partition 

The partition Px defined by a random variable has one very important 
property: X is constant on the blocks {X= x} ofPx. In fact, at the risk 
of being redundant, X takes the constant value x on {X = x}. This 
property is expressed by saying that X is Px-measurable. 

Definition Let P be any partition of 0. A random variable X on 0 is 
said to be P-measurable if X is constant on each block ofP. D 

There is another rather obvious property of X with respect to Px, 
namely, not only is X constant on the blocks of Px, but it is a different 
constant on each block ofPx. · 

Now, given a nonconstant random variable, there are many partitions Q 
for which X is constant on each block of Q, that is, for which X is Q­
measurable. However, Px is the only partition for which X is a different 
constant on each block. We can characterize all partitions Q for which X 
is Q-measurable quite simply. (See Figure 4.) 

The partition Px 

••• 

A refinement Q of Px 

JB R 
{X=x1} {X=x2} • • • {X=xn} 

Figure 4: A refinement ofPx 

Theorem 3 Let X be a random variable on 0. 
1) Then X is Q -measurable if and only if Q is a refinement ofP x. 
2) Px is the coarsest partition for which X is measurable and the only 

partition for which X is measurable and takes on a different 
constant value on each block. 

Proof. For 1), if X is Q-measurable and Q = {B1, ... , Bk} then for any 
wE Bi we have 
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Bi ~{X= X(w)} 

and so Q is a refinement of P x. The converse is clear. We leave proof of 
part 2) to the reader.D 

The following very important theorem states that there is a very strong 
connection between a random variable X and any other random variable 
Y that is Px-measurable. 

Theorem 4 Let X and Y be random variables. Then Y is Px­
measurable if and only ifY is a function of X, that is, if and only if there 
is a function f: lR--+ lRfor which 

Y = f(X) 

Proof. We know that Y is constant on the blocks of the partition 
Px = { B1, ... , Bk}· Let us assume that 

Of course, X is also constant on the blocks of Px, so let 

Define f by setting 

Then for w E Bi 

f(X)(w) = f(X(w)) = f(xi) = Yi = Y(w) 

and soY= f(X), as desired. The converse is much easier and we leave 
it as an exercise.D 

Partitions and Independence 

Let us take another brief look at the notion of independence. Here again 
is the definition. 

Definition The events E and F of(O, JlD) are independent if 

JlD(E n F) = JlD(E)JlD(F) 

The events E1, ... , Ek are independent if for any subcollection 
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Ei1 , ••• , Eim of these events 

JP>(K n ... n E- ) = JP>(E- ) ... JP>(E- ) Zi Zm Zi Zm D 

We can extend the definition of independence to families of collections 
of events. 

Definition The collections C1, ... , Ck of events is independent if for any 
choice of events Ei E Ci the events E1, ... , Ek are independent. D 

We will have reason to apply this definition when the collections are 
partitions of 0. In fact, let us recall that the random variables X 1, ... , Xn 
are independent if 

n 

JP>(X1 =X!, ... , Xn = Xn) = IJP(Xi =Xi) 
i=l 

for all X1, ... , Xn E lR D 

This definition can be reformulated in terms of partitions as follows. 

Theorem 5 The random variables X1, ... , Xn are independent if and 
only if the partitions P(X1), ... , P(Xn) are independent collections of 
events. 
Proof. This follows immediately from the fact that the blocks of P(Xi) 
are precisely the sets {xi = Xi}. D 

5.3 Algebras 

We have seen that for a finite sample space, partitions are intimately 
connected with random variables. As it happens, the notion of a partition 
does not generalize readily for nonfinite sample spaces. For this, we need 
another concept called an algebra. 

We will not use the topics discussed in this section directly, because 
partitions are sufficient for our analysis of discrete time pricing models, 
and they are a bit more intuitive than algebras. However, we do want to 
discuss algebras here because they provide a helpful bridge between the 
intuitive notion of partition and the notion of O"-algebra, which we will 
need for our analysis of continuous-time pricing models and the Black­
Scholes option pricing formula. 
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Definition Let n be a nonempty set. A collection A of subsets of n is 
called an algebra of sets (or just an algebra) if it satisfies the following 
properties: 
1) (Empty set is in A) 

0 EA 

2) (A is closed under complements) 

A E A =? Ac E A 

3) (A is closed under unions) 

A, B E A =? A U B E A D 

It is not hard to show that any algebra of sets IS closed under 
intersections and differences as well, that is, 

A, B E A =? A n B E A 
A, B E A =? A \ B E A 

The following concept will be very useful. It makes precise the notion of 
the "smallest" nonempty sets in an algebra A. 

Definition Let A be an algebra of sets on n. An atom of A is a 
nonempty set A E A with the property that no nonempty proper subset of 
A is also in A.D 

Partitions and Algebras 

Starting with a partition P of n we can generate an algebra A(P) of sets 
simply by taking all possible finite unions of the blocks of P. The 
reverse is also possible: Starting with an algebra of sets on a finite sample 
space, we can get a partition. 

Theorem 6 Let n be a nonempty finite set. 
1) For any partition P of!1 the set 

A(P) = {C ~ n I C = 0 or C =union of blocks ofP} 

is an algebra, called the algebra generated by P. 
2) If A is an algebra on n then the set of all atoms of A 

P(A) ={all atoms of A} 

is a partition of!1, called the partition defined by A. 
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Proof. We prove part 2), leaving part 1) as an exercise. Let 

P = {A1, ... ,Ak} 

be a complete list of distinct atoms of A. We must show that P is a 
partition of 0. By definition, atoms are nonempty. If Ai n Aj =!= 0 for 
i =!= j then Ai n Aj would be an element of A that was nonempty and a 
proper subset of Ai, which is not possible. Hence, the atoms are pairwise 
disjoint. Finally, suppose that w E 0. The intersection I of all elements 
of A containing w is an element of A that contains w. Moreover, I is 
nonempty and no proper subset of I is in A, for any such proper subset 
would have been part of the intersection that defined I. Hence, I is 
actually an atom of A. This shows that every element of 0 is contained 
in some atom of A and so the union of the atoms of A is all of 0. Thus, 
P is a partition of A. 0 

The main theme of our current discussion is that for finite sample spaces, 
the notions of partition and algebra are in some sense equivalent 

Partitions of 0 {:::> Algebras on 0 

By this we mean that, while these concepts are certainly not the same, all 
statements made about partitions have an analog for algebras and vice­
versa. Put another way, whatever theory we can develop in the context of 
partitions could just as well have been developed in the context of 
algebras and vice-versa. 

The precise connection between the two concepts is made by the 
correspondences 

Q --t A( Q) [Partition to algebra generated by partition] 
B --t P(B) [Algebra to partition defined by algebra] 

described in Theorem 6. The first correspondence takes any partition of 
0 and produces an algebra and the second takes any algebra and 
produces a partition. It is a fact that these correspondences are inverses of 
each other (and are therefore one-to-one). 

To see this, suppose that Q is a partition of 0. The algebra A( Q) is the 
set of all unions of blocks of Q. Hence, the blocks of Q are precisely the 
atoms of the algebra A( Q), that is, 

P(A(Q)) = Q 

Similarly, if we start with an algebra B of 0, then the partition P(B) is 
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the set of atoms of B. But all elements of Bare unions of atoms of Band 
so A(P(B)) is the same as B, that is, 

A(P(B)) = B 

This shows that the two correspondences are one-to-one and are inverses 
of each other. This is a very tight connection indeed between the two 
concepts. 

The next theorem strengthens the connection between partitions and 
algebras. It says that the concept of refinement of partitions corresponds 
to set inclusion of algebras. Notice that there are two statements in the 
theorem. These statements say exactly the same thing: One from the 
point of view of partitions and the other from the point of view of 
algebras. Recall that we denote the fact that Q is a refinement of P by 
p--< Q. 

Theorem 7 
1) Let P and Q be partitions ofO. Then 

A(P) ~ A(Q) {::} P--< Q 

2) Let A and B be algebras on 0. Then 

A ~ B {::} P(A) --< P(B) 

Proof. We only need to prove statement 1). (Why?) Suppose that 
A(P) ~ A(Q). Then the blocks ofP are the atoms in A(P). If A is an 
atom of P then it is also in A ( Q) and so it is the union of blocks of Q. 
In other words, each block ofP is the union of blocks of Q and so Q is a 
refinement ofP. 

Conversely, suppose that Q is a refinement ofP. Then any block ofP is 
the union of blocks of Q. It follows that any element of A(P), being the 
union of blocks of P, is also the union of blocks of Q and so belongs to 
A(Q). Thus A(P) ~ A(Q).D 

The Algebra Generated by a Random Variable 

We have seen the strong connection between partitions of 0 and algebras 
on 0. It is now time to bring random variables into the picture. 

Just as a random variable X defines a partition Px of 0 

Px ={{X= x} I x E im(X)} 
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consisting of the inverse images of the elements of im( X), the random 
variable also defines an algebra Ax on n consisting of the inverse 
images of the subsets ofim(X). 

Definition Let X be a random variable on n. Then X defines an algebra 
on n whose elements are the inverse images of the subsets ofim(X), that 
is, 

Ax= {{X E B} I B ~ im(X)} D 

It is easy to see that Px and Ax are connected (see Figure 5). 

X 

/\ 
Px ( ) Ax 

Figure 5: The partition and algebra generated by a random variable 

In fact, Ax is nothing more than the algebra generated by Px, m 
symbols 

Ax= A(Px) 

To see this, note that if B = {b1, ... , bm} is a subset ofim(X) then 

m 

{X E B} = U{X = bi} E A(Px) 
i=l 

and so Ax~ A(Px). But A(Px) is the smallest algebra that contains 
the blocks ofPx, that is, the sets {X= bi}. Hence, Ax= A(Px). 

Theorem 8 Let X be a random variable on a finite sample space 0. 
Then the algebra generated by X is the algebra generated by Px, in 
symbols 

Ax= A(Px) 

and the partition defined by X is the partition defined by Ax, in symbols 

Px = P(Ax) D 
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Measurability of a Random Variable with Respect to an Algebra 

We have defined measurability of a random variable X with respect to a 
partition P of n. This simply means that X is constant on the blocks of 
P. We have also seen that X is P-measurable if and only if P is a 
refinement ofPx. Now let us tum to measurability of X with respect to 
an algebra of sets on n. 

It should come as no surprise that we want this concept to be defined so 
that a random variable X is A(P)-measurable if and only if it is P­
measurable, that is, constant on the blocks of P. In fact, since any 
algebra A is generated by a partition 

A= A(P(A)) 

we can actually use this as the defining property of measurability with 
respect to an algebra. This definition reads as follows: If A is an algebra 
on n then X is A -measurable if X is constant on all of the atoms of A. 

While this definition is quite intuitive, it is not standard and we would be 
doing the reader a disservice by adopting it. To understand the usual 
definition, note that the following are equivalent: 

1) X is P-measurable 
2) X is constant on the blocks of P 
3) X is constant on the atoms of A(P) 
4) Each set {X = x} is the union of atoms of A(P) 
5) Each set {X= x} is in A(P) 
6) For any subset B ~ im(X), the set {X E B} is in A(P) 

Now we are ready for the standard definition, which we have just shown 
is equivalent to the previous intuitive definition. 

Definition Let X be a random variable on a finite sample space n. Let 
A be any algebra of sets on n. Then X is A-measurable if 

{X= B} E A, for all B ~ im(X) 0 

We have shown that X is P-measurable if and only if X is A(P)­
measurable. 

Theorem 9 Let X be a random variable on n. 
1) If A is an algebra on n then X is A-measurable if and only if it is 

P(A)-n1easurable. 



5. Probability II: More Discrete Probability 115 

2) If P is a partition of n then X is P-measurable if and only if it is 
A(P)-measurable.D 

Just as we have characterized measurability with respect to a partition by 
showing that X is P-measurable if and only if Px-< P, we can 
characterize measurability with respect to an algebra. 

Theorem 10 A random variable X on n is measurable with respect to 
an algebra A if and only if Ax S: A. 
Proof. The following statements are equivalent and prove the theorem 
1) X is A-measurable 
2) X is P(A)-measurable 
3) P(A) is a refinement ofPx 
4) A(Px) is contained in A(P(A)) 
5) Ax is contained in A D 

5.4 Conditional Expectation 

We can put together the notions of conditional probability and 
expectation to get conditional expectation, which plays a key role in 
derivative pricing models. 

Conditional Expectation with Respect to an Event 

Conditional expectation with respect to an event A with positive 
probability is pretty straightforward-we just take the ordinary 
expectation but with respect to the conditional probability measure lP' A 

defined by 

lP' A(B) = JID(B I A) 

Definition Let (0, JID) be a finite probability space and let A be an event 
for which JID(A) > 0. The conditional expectation of a random variable 
X with respect to the event A is 

D 

The symbol £I!'( X I A) is read "the expected value of X given A." 

A little algebra gives another useful expression for the conditional 
expectation in terms of the nonconditional expectation. 

Theorem 11 Let (0, JID) be a finite probability space and let A be an 
event for which IP'( A) > 0. The conditional expectation of a random 
variable X with respect to the event A is 
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£ (X I A) = £r(X1A) 
r JP>(A) 

where 1 A is the indicator function of A. 
Proof. We have 

n 

ErA (X)= LX(wi)JP>(wi I A) 
i=l 

= ~X( ·) JP>(wi n A) 
{;;{ Wz JP>(A) 

1 n 

= JP>(A) ~X(wi)JP>(wi n A) 

1 n 

= JP>(A) ~X(wi)1A(wi)JP>(wi) 

1 
= JP>(A) £r(X1A) 

as desired. D 

One simple consequence of the previous theorem is the following useful 
result. 

Theorem 12 If A and Bare events with JP>(A n B) > 0 then 

£rA(X I B)= £(X 1 An B) 

Proof. Using the previous theorem, we have 

as desired. D 

£ (X I B)= ErA (X1B) 
II' A JP> A(B) 

£r(X1B1A) 
JP>(A)JP> A(B) 
£r(X1AnB) 

JP>(A n B) 
= £r(X I An B) 

Next we have the expected value analog of the theorem on total 
probabilities. 
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Theorem 13 Let P = { B1, ... , Bn} be a partition of 0. Then for any 
random variable X on n 

n 

£(X) = 2:£(X I Bi)JID(Bi) 
i=l 

Moreover, if A is an event of positive probability then 

n 

£(X I A) = 2:£(X I Bi n A)IP'(Bi I A) 
i=l 

These sums are valid provided that we consider each term in which the 
conditional probability is not defined as equal to 0. Put another way, if 
either of the factors in a term is 0 then the term is considered 0, that is, 

undefined · 0 = 0 

Proof. For the first part, suppose that 
a) JID(Bi) > 0 fori = 1, ... , m 
b) IP'(Bi)=Ofori=m+l, ... ,n 
Since 

m n 

X = l:XlB; + 2: XlB; 
i=l i=m+l 

applying expected values gives 

m n 

£(X) = 2:£(X1BJ + L £(X1BJ 
i=l i=m+l 

= ft'(XlBJJID(Bi) 
i=l IP'(Bi) 
m 

= 2:£(X I Bi)JID(Bi) 
i=l 

which proves the first statement. 

For the second statement, we apply the first statement to the conditional 
probability JID A 

n 

t'r(X I A)= t'rJX) = l:£rA(X I Bi)JID A(Bi) 
i=l 
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where the undefined terms are 0. But these are the terms for which 
[pA (X I Bi) is not defined, that is, for which JP> A(Bi) = 0, or finally 
JP>(A n Bi) = 0. [Note that JP> A (Bi) is always defined because A is 
assumed to have positive probability.] For all other terms, we may write 

to get the desired sum. D 

Conditional Expectation with Respect to a Partition 

Next we define conditional expectation with respect to a partition of the 
sample space. Unlike the conditional expectation given an event, which 
is a real number, the conditional expectation given a partition is a 
random variable. 

By way of motivation, let us briefly revisit the ordinary expected value 
of a random variable. Of course, the expected value £ (X) of a random 
variable X is a constant. In fact, it represents the best possible 
approximation of X by a constant. The measure that is used to judge the 
quality of the approximation is the mean squared error or MSE, 
defined by 

where c is a constant. As it happens, for all constants c, the mean squared 
error is smallest if and only if c is the expected value J-L x, that is, 

with equality if and only if c = J-Lx. To prove this, we write 

f[(X- c)2] = f[{(X- J-Lx) + (J-Lx- c)}2] 

= f[(X- J-Lx) 2] + f[(X- J-Lx)(J-Lx- c)]+ f[(J-Lx- c) 2] 

But the middle term is 0 (why?) and so 

f[(X- c) 2] =£[(X- J-Lx) 2] + f[(J-Lx- c) 2] ~ f[(X- J-Lx) 2] 

with equality holding if and only if c =/-LX· 

Now, we want the expected value with respect to a partition P of 0 to be 
the best approximation to X that is constant on each block of the 
partition. The point is that ifwe are given a block B of the partition, then 
we can get a better constant approximation to X on B than the ordinary 
expected value. In fact, we get the best constant approximation by using 
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the conditional expectation £(X I B). This idea is shown in Figure 6 for 
a random variable X that is defined on an interval [a, b] of the real line. 
(We chose this illustration because it is easier to picture the conditional 
expectation for such intervals than for random variables on a finite 
sample space). 

X 

Figure 6: Conditional expectation 

The definition of £ll'(X I P) should now be fairly clear: Its value on each 
block Bi of P is £ (X I Bi). Hence, we can define the random variable 
£ll'(X I P) as a linear combinations of the indicator functions of the 

- blocks ofP. 

Definition Let (0, JP>) be a finite probability space and let 
P = {B1, ... , Bn} be a partition ofn for which JP>(Bi) > 0 for all i. The 
conditional expectation of a random variable X with respect to the 
partition P is a random variable 

£ll'(x 1 P): n _. ~ 

defined by 

£ll'(X I P) = £ll'(X I B1)lB1 + · · · + £ll'(X I Bn)lBn 

In particular, for any w E 0 

£ll'(X I P)(w) = £ll'(X I [w]p) 

where [w]p is the block ofP containing w.D 

Here is a formal statement of the value of the conditional expectation in 
approximating X. 

Theorem 14 The random variable £(X I P) is the best approximation to 
X among all functions that are constant on the blocks of P, that is, the 
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best approximation to X among all P-measurable random variables, in 
the sense of mean squared error. By this, we mean that 

for all P-measurable random variables Y, with equality holding if and 
only ifY =£(X I P). 
Proof. As an aid to readability let us set 

£(X I P) = 1-LXIP 

We begin by writing for any P-measurable random variable Y 

£[(X- Y)2] =£[{(X- 1-LXIP) + (J-LXIP- Y)} 2] 

=£[(X- 1-LXIP )2] + £[(1-LXIP- Y) 2] 

+£[(X- 1-lXIP)(J-LxiP- Y)] 

Now, we want to show that the last term is 0. This can be done by using 
Theorem 13. Assuming that P = { B 1, ... , Bn} we have 

n 

£[(X- 1-lXIP)(J-LxiP- Y)] = L£[(X- 1-lXIP)(J-LxiP- Y) I Bi]JP>(Bi) 
i=l 

Let us now focus on the expressions 

1 
£[(X- 1-lXIP)(J-LxiP- Y) I Bi] = JP>(Bi)£[(X- 1-lXIP)(J-LxiP- Y)1sJ 

for the terms with JP>(Bi) > 0. (The other terms are equal to 0.) Since Y 
is P-measurable, the random variable 1-LXIP- Y is constant on each 
block Bi and can be pulled from under the expectation to get 

1 
JP>(Bi) (J-LXIP- Y)£[(X- /1XIP)1sJ 

But since J1XIP1Bi =£(X I Bi)1si we have 

1 1 
JP>(Bi) £[(X- I-LXIP)1BJ = JP>(Bi) [£(X1BJ- £(J-LXIP1BJ] 

1 
= JP>(Bi) [£(X1sJ- £(£(X I Bi)1sJ] 

= £(X I Bi) -£(X I Bi) 
=0 

Thus, we have shown that the last term is 0 and so 
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with equality if and only if Y = p, XIP. This completes the proof. D 

The following theorem gives some key properties of conditional 
expectation. 

Theorem 15 Let (0, JID) be a finite probability space. Let 
P = {B1, ... , Bn} be a partition ofOfor which JP>(Bi) > Ofor all i. The 
conditional expectation t'r(X I P) has the following properties. 
1) The function £ ( · I P) is linear, that is, for random variables X and 

Y and real numbers a and b, 

£(aX+ bY I P) = at'(X I P) + bt'(Y I P) 

2) The conditional expectation satisfies 

£(£(X I P)) =£(X) 

3) The conditional expectation £(X I P) can be characterized as the 
only random variable Y that is P-measurable and satisfies 

for all blocks Bi ofP. 
4) (Taking out what is known) IfY is a P-measurable random variable 

then 

t'(YX I P) = Yt'(X I P) 

5) If X is P-measurable then 

£(X I P) =X 

6) (fhe Tower Properties) If Q is a finer partition than P we have 

£(£(X I P) I Q) =£(X I P) =£(£(X I Q) I P) 

In words, if we take the expected values with respect to P and Q in 
either order then only the expected value with respect to the coarser 
partition has any effect. 

7) (An Independent Condition Drops Out) If X and P are independent, 
that is, ifPx and Pare independent then 

£(X I P) =£(X) 
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Proof. To prove 1), we have 

k 

£(aX+ bY I P) = L£(aX +bY I Bi)lEi 
i=l 

= t£((aX + bY)lEJ lEi 

i=l lP'( Bi) 

= t£(aX1Ei + bYlEJ lEi 

i=l lP'(Bi) 

= t a£(X1EJ + b£(Y1EJ lE; 

i=l lP'( Bi) 

=a t£(X1EJ lE; + b t£(YlEJ lE; 

i=l lP'(Bi) i=l lP'(Bi) 
k k 

=a L:c(X I Bi)lE; + b L:c(Y I Bi)lEi 
i=l i=l 

= a£(X I P) + b£(Y I P) 

To prove 2), we have 

£(£(X 1 PJJ ~ e(~e(x 1 B,)ln,) 
k 

= 'L:£(X I Bi)£(1EJ 
i=l 

k 

= L:£(X I Bi)lP'(Bi) 
i=l 

i=l 

~ e(txln,) 
=£(X) 

To prove 3), let Y =£(X I P). Then Y is P-measurable by definition. 
Also (since lE)E; = 0 unless i = j) 
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£(Y1BJ =£(£(X I P)lBJ 
k 

= £(L£(X I Bj)lBjlBJ 
j=l 

=£(£(X I Bi)lBJ 
= £(X I Bi)£(1BJ 
=£(X I BSP(Bi) 
= £(X1BJ 

as desired. Now we show that Y =£(X I P) is the only such random 
variable. So suppose that Z is a random variable that is P-measurable 
and for which 

for all blocks Bi ofP. Since Z is constant on Bi, suppose that Z(w) = c 
for all w E Bi. Then ZlB; = clB; and so 

£(Z1BJ = £(c1BJ = c£(1BJ 

It follows that 

and so 

Z(w) = c = £i~~~)) =£(X I Bi) =£(X I P)(w) 

which shows that Z(w) =£(X I P), as desired. 

To prove 4), suppose that Z is P-measurable. Let Z(w) = b for all 
wE Bi. Then since ZX1 3 i = bX13 i we have 

£(ZX I P)(w) = £(ZX I Bi) 
£(ZX1BJ 

JP>(Bi) 
b£(X1BJ 

JP>(Bi) 
= b£(X I P)(w) 
= Z(w)£(X I P)(w) 

and so £(ZX I P) = Z£(X I P), as desired. 
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To prove 5) take X= 1 in part 4), to get 

E(Zl I P) = ZE(l I P) = z 

which is 5) with Z in place of X. 

To prove 6), first we have for wE 0 

E(E(X I P) I Q)(w) = E(E(X I P) I [w]Q) 
E(E(X I P)l[wjQ) 

JP>([w] Q) 

Now, since E(X I P) is constant on the blocks ofP and since Q is finer 
than P, it follows that E(X I P) is also constant on the blocks of Q. 
Hence 

E(E(X I P) I Q)(w) = E(X I P)(w)E(l[wjQ) 
JP>([w]Q) 

= E(X I P)(w) 

Since this holds for all w, we have 

E(E(X I P) I Q) = E(X I P) 

Now we must show that 

E(E(X I Q) I P) = E(X I P) 

It is possible to do so directly, but the computation is a bit long. So 
instead, let us use part 3). First, set 

y = E(X I Q) 

Then according to 3) 

(1) 

for all BE A(Q). Since Q is finer than P, it follows that 
A(P) ~ A(Q) and so the equation above holds a fortiori for all 
B E A(P). Now let 

z = E(X I P) 

Then according to 3) 

E(Zls) = E(Xls) (2) 

for all B E A(P). Putting together (1) and (2) we have 
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for all B E A(P). Finally, since Z is P-measurable, part 3) implies that 

z = E(Y I P) 

Substituting for Z and Y we have 

E(X I P) = E(Y = E(X I Q) I P) 

as desired. 

To prove 7) suppose that Px and P are independent. Then for any block 
B ofPwehave 

JID(X = r I B) = lP'(X = r) 

and so 

E(X I P)(w) = E(X I [w]p) 

= 2: rlP'(X = r I [w]p) 
rEX(O) 

= 2: rlP'(X = r) 
rEX(O) 

= E(X) 

This completes the proof. D 

Conditional Expectation with Respect to a Random Variable 

We can use the results concerning conditional expectation with respect to 
a partition to define conditional expectation with respect to a random 
variable. Indeed, this is really nothing new at all (for finite sample 
spaces). 

Definition Let (D, JID) be a finite probability space. Let Y be a random 
variable whose distinct values are {y1, ... , yk}. Then the conditional 
expectation of a random variable X with respect to Y is the conditional 
expectation of X with respect to the partition Py generated by Y, in 
symbols 

k 

E(X I Y) = E(X I Py) = l:E(X I {Y = yi} )l{Y=yi} D 
i=l 
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5.5 Stochastic Processes 

We will be very interested in the price of a stock as it progresses through 
a sequence of times t0 < t1 < t2 < · · · < tN. If the stock price at time ti 
is denoted by Xi then initially these prices are unknown and so they can 
be thought of as random variables on some probability space. This leads 
to the following simple concept, which plays a very important role in 
many areas of applied mathematics, including the mathematics of 
finance. 

Definition A (finite) stochastic process on a sample space n is a 
sequence XI, ... ' XN of random variables defined on n. D 

Stochastic processes are used to model phenomena, like stock prices, that 
evolve through time. In such cases, there is a relationship between the 
random variables that gives substance to the stochastic process. We 
explore this relationship next. 

5.6 Filtrations and Martingales 

Let us introduce the notion of a filtration using an example. 

Filtrations 

Consider the following game. At each time 

to < t1 < t2 < .. · < tN 

a coin is tossed. A record is kept of the sequence of results. 

Let us denote by { H, T}k the set of all sequences of H's and T's of 
length k. These sequences are called words or strings of length k over 
the alphabet { H, T}. 

Thus, at time ti, the current state of the game is a string oflength i over 
{ H, T}. The final states of the game consist of all words of length N 
over {H, T} 

n = {H,T}N = {el"'eN I ei = H orei = T} 

The State Tree 
Figure 7 gives a pictorial view of the states of the game, called the state 
tree for the game. (In this case N = 3.) The states are indicated on the 
lines of the tree. At time t0 there is only one state, which is not shown. It 
is the empty string. 
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HHH 

to t1 t2 t3 
Figure 7: A state tree 

The boxes (nodes of the tree) contain the set of still possible final states 
of the game given the current state. In particular, if the current state is 
8 = e1 · · ·ei then the set of still possible final states is the set of all final 
states with prefix 8, in symbols 

Fi(8) ={wEn I [w]i = 8} 

where [w]i denotes the prefix of w of length i. Let us make some 
observations about these sets. 

First, at each time ti the 2i subsets Fi ( 8) form a partition Pi of 0. For 
instance, 

and in general 

where 81 , ..• , 82; are the 2i elements of { H, T} i. 

Next, each block Fi ( 8) in 'Pi is contained in a block Fi-1 (E) of the 
previous partition 'Pi-1. In fact, 

Hence Pi is a refinement of 'Pi-1 and 

'Po ~ 'P1 ~ ... ~ 'PN 

is a sequence of finer and finer partitions of n. 
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Finally, note that Po = {0} is the coarsest possible partition of 0, with 
only one block consisting of 0 itself. On the other end, PN = 0 is the 
finest possible partition, since each block has size 1, containing just one 
final state. We are now ready for a definition. 

Definition A sequence lF = (Po, ... , PN) of partitions of a set 
0 = { W1, ... , Wm} for which 

Po -< P1 -< · · · -< PN 

is called a filtration. Moreover, if a filtration satisfies the following 
conditions it is called an information structure: 
1) Po is the coarsest possible partition 

Po= {0} 

representing no knowledge about 0. 
2) PN is the finest possible partition 

PN = {{w1}, ... , {wm}} 

in which each block has size 1, representing complete knowledge 
aboutO. D 

Thus, an information structure starts with no knowledge of the final state 
(other than the fact that it is in 0), possibly gains some additional 
knowledge at each time instance (but never loses information) and ends 
with complete knowledge of the final state. 

We should probably mention explicitly that the partitions in a filtration 
need not double in size as is the case in the example. All that is required 
is that Pi be a refinement of Pi-l· 

One final note. At any time ti there is a one-to-one correspondence 
between the possible states 8 at that time and the blocks of the partition 
Pi, given by 

8 +--+ { w E 0 I [w]i = 8} 

This allows us to identify the intermediate states of the game at time ti 
with the blocks Fi(8) of Pi. In fact, when we discuss discrete-time 
derivative pricing models, we will actually define the intermediate states 
of the model as the blocks ofthe partitions in a filtration. 



5. Probability II: More Discrete Probability 129 

Probabilities 
Let us now assume that the probability of getting heads is p and that the 
coin tosses are independent. Then for any k > 0 we can define a 
probability measure on the set {H, T}k by setting 

where 

JP>( 8) = PNH(8) qNr(8) 

NH(8) =Number of H's in 8 
Nr(8) =NumberofT'sin8 

It is not hard to show that ( { H, T}k, JP>) is a finite probability space. 

Theorem 16 For any 8 E { H, T}k let 

JP>(8) = pNH(8)qNr(8) 

I) If8 E {H, T}k and E E {H, TV then 

JP>( DE) = JP>( 8)JP>( E) 

2) The pair ( { H, T}k, JP>) is a probability space. 
Proof. For part 1), we have 

JP>( DE) = pNH(8E) qNr(&) 

= PNH(8)+NH(E) qNr(8)+Nr(E) 

= pNH(8) qNH(8) PNr(E) qNr(E) 

= JP>( 8)JP>( E) 

For part 2), it is clear that for any 8 E { H, T}k 

0 ~ JP>(8) ~ 1 

so we need only show that 

L JP>(a) = 1 
o-E{H,T}k 

This is clear for k = 1 since then we simply have 

JP>(H) + JP>(T) = p + (1- p) = 1 

We proceed by induction on k. Assuming it is true fork then 
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L IfD(O") = L W(HO") + L W(TO") 
crE{H,T}k+I crE{H,T}k crE{H,T}k 

L TID( H)TID( 0") + L TID(T)TID( 0") 
crE{H,T}k crE{H,T}k 

= [TID(H) + TID(T)] L IfD(O") 
crE{H,T}k 

= TID( H) + TID(T) 
=1 

and so the result is also true for k + 1. Thus, it is true for all k 2: 1. 0 

Adapted Random Variables 
Now let us suppose that for each heads, a player wins 1 dollar and for 
each tails the player loses 1 dollar. Let the random variable Xi denote the 
player's winnings at time ti. 

Thus, for a given time-ti state 8 E { H, T}i, the winnings are 

NH(8)- Nr(8) 

At first, it seems natural to define Xi(8) to be NH(8)- Nr(8). The 
problem is that in this case each function Xi would be defined on a 
different domain {H, T}i and so the functions Xi would not form a 
stochastic process. 

Instead, we define each Xi on the same set 0 = { H, T}N of final states 
simply by ignoring that portion of a final state that comes after time ti. In 
other words, for any w E 0 we define 

where [w]i is the prefzx of w of length i. In this way, the random variables 
Xi have a common domain and yet no "future knowledge" of the state of 
the game is required in order to compute the time-ti winnings Xi. 

Moreover, under this definition the function Xi is Pi-measurable. In fact, 
for any w E :Fi ( 8) we have 

Xi(w) = NH(8)- Nr(8) 

Hence, knowledge of Pi implies knowledge of the value of Xi. 
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In summary, we have a filtration 

IF= (Po, ... , PN) 

on the sample space n and a stochastic process 

X= (Xo,XJ, ... ,XN) 

on 0 (with Xo = 0) for which Xi is Pi-measurable for all i. Because Xi 
is Pi-measurable for all i, we say that the stochastic process X is 
adapted to the filtration IF, or is IF -adapted. 

Martingales 

We would now like to compute the conditional expectation 
£(Xk+l I Pk), which is the expected value of the time-tk+l winnings 
given knowledge of the previous time-tk partition. To this end, let us 
collect a few simple facts. 

Theorem 17 Let ( { H, T}k, lP'k) be the probability space defined by 

JP'k(8) = pNH(8)qNr(8) 

Then 
1) For 8 E {H, T}k 

lP'N(Fi(8)) = lP'k(8) 

2) lf8E{H,T}kandEE{H,T}cthen 

JP'k+£+1(8H E)± JP'k+C+J(DTE) = JP'k+£(8E)(p ± q) 

Proof. For part 1), we have 

lP'N(Fi(8)) = L lP'N(80") = lP'k(8) L lP'N-k(O") = lP'k(8) 
aE{H,T}N-k aE{H,T}N-k 

For part 2), we have 

lP'k+£+1 ( 8H E) ± lP'k+£+1 ( 8TE) = lP'k+£+1 ( 8EH) ± lP'k+£+1 ( OET) 
= lP'k+c(8E)[lP'l(H) ± lP'1(T)] 
= lP'k+£( DE) [p ± q] 

and the proof is complete. D 

Now we can proceed with our computation of £(Xk+l I Pk). For 
8E{H,T}k 
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£(Xk+l I Fk(b)) = L xk+l(w)JP>N({w} I Fk(b)) 
wE{H,T}N 

1 
= ]p> (:F (b)) L xk+l(w)JP>N({w}nFk(b)) 

N k wE{H,T}N 

But the set { w} n Fk (b) is empty unless w E Fk (b), in which case 
{w} n Fk(b) = {w} and so 

1 
£(Xk+l I Fk(b)) = ]p> (F. (b)) L xk+l(w)JP>N({w}) 

N k wE:Fk(6) 

As w ranges over the set Fk (b) we can write w = bCJ where CJ ranges over 
the set { H, T}N-k so 

Now, in order to evaluate Xk+l ( bCJ) we need the prefix of bCJ of length 
k + 1 so we need to know something about the first symbol in CJ. This 
prompts us to split the sum into two parts based on the first symbol in CJ 
to get 

We can now evaluate Xk+l 

and 

Substituting gives 

Xk+l(bHCJ) = NH(bH)- NT(bH) 
= 1 + NH(b)- NT( b) 
= Xk(b) + 1 

Xk+l(bTCJ) = NH(bT)- NT(bT) 
= NH(b)- NT( b)- 1 
= Xk(b) -1 
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1 
£(Xk+1 I Fk(8)) = lP' (8) L [Xk(8) + 1JlP'N(8Hu) 

k uE{H,T}N-k-1 

1 
+ lP' (8) L [Xk(8)- 1]JIDN(8Tu) 

k uE{H,T}N-k-1 

1 
lP' (8) L [JIDN( 8H u) - JIDN( 8Tu)] 

k uE{H,T}N-k-1 

+ !k(~)) L [JIDN(8Hu) + lP'N(8Tu)] 
k uE{H,T}N-k-1 

1 
= lP' (8) L lP'N-1(8u)(p- q) 

k uE{H,T}N-k-1 

+ !k((:)) L lP'N-1(8u)(p + q) 
k uE{H,T}N-k-1 

= [(p- q) + Xk(8)] L JID(u) 
uE{H,T}N-k-1 

= (p- q) + Xk(8) 

and so for any wEn we can write w = 8u and get 

and so 

£(Xk+1 I Pk)(w) = £(Xk+1 I Fk(8)) 
= (p- q) + Xk(8) 
= (p- q) + Xk(w) 

where 1 is the random variable whose value is always 1. 

For p = q this takes on special significance, for we get 

which says that if we know the time-tk partition Pk. that is, if we know 
the state of the game at time tk. then the expected value of the time­
tk+l winnings is the time-tk winnings. In other words, just as we would 
expect from the fact that p = q, the game is a fair one in that the 
expected gain from one time to the next is 0. 

We are ready for an important definition. 
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Definition A stochastic process 

X= (Xo,Xl, ... ,XN) 

is a martingale with respect to the filtration 

lF = (Po -< P1 -< · · · -< PN) 

or an lF -martingale if X is adapted to lF (that is, Xi is Pi-measurable) 
and 

that, is, given Pi, the expected value of Xk+l is just Xk. D 

Thus, martingales model fair games. The following result says that given 
Pi the expected value of any future random variable is just Xi. 

Theorem 18 If X = ( Xo, X 1, ... , X N) is an lF -martingale where 
lF = (Po, P1, ... , PN) then for any i > 0 

£(Xk+i 1 Pk) = xk 

Proof. We know that 

Taking conditional expected values gives 

But by the tower property, 

£(£(Xk+2 I pk+l) I Pk) = £(Xk+2 I Pk) 

and so 

An induction argument can now be used to complete the proof. We leave 
the details to the reader. D 

Exercises 

1. Show that if X is a random variable on n then 
a) x-1 (A u B) = x-1 (A) u x-1(B) 
b) x-1(A n B)= x-1(A) n x-1(B) 
c) x-1(A \B)= x-1(A) \ x-1(B) 



5. Probability II: More Discrete Probability 135 

2. Let P and Q be partitions of a nonempty set 0. Prove that the 
following are equivalent. 
a) Q is a refinement ofP 
b) Each block of Q is the union of blocks ofP 
c) Each block of P is contained in a block of Q 
d) A(P) ~ A(Q). 

3. Prove that if X is a nonnegative random variable, that is, X(w) ~ 0 
for all w E 0 then £(X I P) ~ 0. 

4. Let X be a random variable on (0, lP'). Show that X can be written as 
a linear combination of indicator functions of the blocks of the 
partition generated by X. 

5. A certain operation results in complete recovery 60% of the time, 
partial recovery 30% of the time and death 10% of the time. What is 
the probability of complete recovery, given that a patient survives the 
operation? 

6. Imagine the following experiment. You have an unfair coin, whose 
probabilities are 

lP'(heads) = ~, lP'( tails) = ~ 

You also have two urns containing colored balls, where 
1) urn 1 has 3 blue balls and 5 red balls 
2) urn 2 has 7 blue balls and 6 red balls 
First you toss the coin. If the coin comes up heads, you draw a ball at 
random from urn 1. If the coin comes up tails, you draw a ball at 
random from urn 2. What is the probability that the ball drawn is 
blue? Hint: Use the Theorem on Total Probabilities. 

7. Let 0 be a sample space and let E1, ... , En form a partition of 0 
with lP'(Ek) =I= 0 for all k. Show that for any event A in 0, 

n 

lP'(A) = L lP'(A I Ek)lP'(Ek) 
k=l 

8. Let P = {B1, ... , Bk} be a partition of (0, lP') with lP'(Bi) > 0 for all 
i. Prove Bayes' formula, which states that for any event A in 0 with 
lP'(A) > 0, we have 

lP'(Ej I A) = lP'(A I Ej)lP'(Ej) 
. k 

l:lP'(A I Ei)lP'(Ei) 
i=l 
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9. Show that any algebra of sets is closed under intersections and 
differences. What about symmetric differences? (The symmetric 
difference of two sets is the set of all elements that are in exactly one 
of the two sets.) 

10. Prove that any nonempty collection of subsets of 0 is an algebra if 
and only if it contains 0 and is closed under differences. (The 
difference A \ B is the set of all elements of A that are not in B.) 

11. Prove that if E 1, ... , En are events with lP'(E1 n · · · n En) > 0 then 

IP'(E1 n · · · n En) 
= lP'(E1)lP'(E2 I E1)1P'(E3 I E1 n E2)'. ·lP'(En I E1 n ... n En-1) 

12. Prove in detail that for any partition P of 0 the set 

A(P) = {C ~ 0 I C = 0 or C =union ofblocks ofP} 

is an algebra. 
13. Suppose that words of length 5 over the binary alphabet {0, 1} are 

sent over a noisy communication line, such as a telephone line. 
Assume that, because of the noise, the probability that a bit (0 or 1) 
is received correctly is 0. 75. Assume also that the event that one bit 
is received correctly is independent of the event that another bit is 
received correctly. 
a) What is the probability that a string will be received correctly? 
b) What is the probability that exactly 3 of the 5 bits in a string are 

received correctly? 
14. Let X andY be random variables on (0, lP'). Suppose that X andY 

have the same range { a1, ... , an} and that 

lP'(X = ai) = lP'(Y = ai) =Pi 

Compute lP'(X = Y). 
15. Let P be a partition of a probability space (0, lP'). What is £(1 I P) 

where 1 is the constant random variable 1 ( w) = 1? 
16. Let (Xi)i=1, ... ,n be a martingale with respect to the filtration 

(Pi)i=1, ... ,n· Prove that £(Xk) = £(Xo) for all k = 1, ... , n. Hint: 
Use the fact that £(£(X I P)) =£(X). 

17. Let X 1, ... , Xn be random variables on ( 0, lP') all of which have the 
same expected value J.l and the same range { r 1, ... , r m}. Let N be a 
random variable on (0, lP') where N takes the values 1, ... , n. 
Assume also that N is independent of the Xi's. Then we can define a 
random variable S by 
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where 

8(w) = X1(w) + · · · + XN(w)(w) 

Show that 
a) £ ( 8 I N = k) = J-Lk 
b) £(8 IN)= J1N 
c) £(8) = 11£(N) 
Explain in words why part c) makes sense. 

18. Prove if Q is finer than P then £(£(X I Q) I P) =£(X I P). Prove 
this directly. 

Exercises on Submartingales and Supermartingales 

Let X. = (X0 , ... , XN) be a stochastic process with respect to a filtration 
lF = (Po, ... , PN ). Then X. is an lF -submartingale if X. is adapted to lF 
and 

Similarly, X. is an lF -supermartingale if X. is adapted to lF and 

£(Xk+l 1 Pk) :::; xk 

A stochastic process A= (A0 , ... , AN) is predictable with respect to 
the filtration lF if Ak is Pk-1-measurable for all k. 

19. Show that X. is an lF -supermartingale if and only if -X. is an lF -sub­
martingale. Are submartingales fair games? Whom do they favor? 
What about supermartingales? 

20. (Doob Decomposition) Let (X0 , ... , XN) be an lF -adapted 
stochastic process. 
a) Show that there is a unique martingale (M0 , •.• , MN) and a 

unique predictable process (A0 , ... , AN) such that 
Xk = Mk + Ak and Ao = 0. Hint: Set Mo = Xo and Ao = 0. 
Then write 

Xk+l - Xk = Mk+l - Mk + Ak+1 - Ak 

and take the conditional expectation with respect to Pk· Use the 
martingale condition to get an expression for Ak+ 1 in terms of 
Ak. 

b) Show that if (Xk) is a supermartingale then Ak is nonincreasing 
(that is Ak+l :::; Ak). What if (Xk) is a submartingale? 
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21. Let :X= (Xk I k = 0, ... , T) be a stochastic process. 
a) Prove that for any partition P 

max{£(Xk I P)}::; £(max{Xk} I P) 
k k 

b) Prove that if :X and Y = (Yo, ... , YN) are submartingales then 
the process defined by 

is also a submartingale. What about supermartingales? 
22. Define the positive part of a random variable X by 

x+ =max {X, 0} 

If :X= (Xo, ... 'XN) is a martingale show that :x+ = (Xt, ... 'x:,t) 
is a submartingale. 



Chapter 6 

Discrete-Time Pricing Models 

We are now ready to discuss discrete-time pricing models, that is, pricing 
models in which all transactions take place at a series of discrete times. 

The derivative pricing problem is to determine a fair initial value of 
any derivative. The difficulty is that the final value of the derivative is 
not known at time t = 0, since it generally depends on the final value of 
the underlying asset. However, we will assume that the final value of the 
underlying is a known random variable and so the set of possible final 
values of the asset is known. Consequently, the set of possible final 
values of the derivative is also known. Knowledge of this set along with 
the no-arbitrage principle is the key to derivative pricing. 

6.1 Assumptions 

We will make the following basic assumptions for the model. 

A Unit of Accounting or Numeraire 

All prices are given in terms of an unspecified unit of accounting or 
numeraire. This numeraire may be dollars, Eurodollars, pounds Sterling, 
Yen and so on. A phrase such as "stock worth S" refers to S units of 
accounting. Later we shall find it useful to use one of the assets of the 
model as a numeraire. This will have the effect of expressing all prices in 
relative terms, that is, relative to the chosen asset. 

Assumption of a Riskfree Asset 

We will assume that there is always available a riskfree asset. The idea 
of the riskfree asset is simple: For each time interval [ti-l, ti], the riskfree 
asset is an asset that cannot decrease in value and generally increases in 
value. Furthermore, the amount of the increase over each interval is 
known in advance. Practical examples of securities that are generally 
considered risk free are US Treasury bonds and federally insured 
deposits. 

For reasons that will become apparent as we begin to explore the 
discrete-time model, it is important to keep separate the notions of the 
price of an asset and the quantity of an asset and to assume that it is the 
price of an asset that changes with time, whereas the quantity only 
changes when we deliberately change it by buying or selling the asset. 

0 0 e na 

oma 
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Accordingly, one simple way to model the riskfree asset is to imagine a 
special asset with the following behavior. At time t0 the asset's price is 1. 
During each interval [ti-l, ti], the asset's price increases by a factor of 
eri(ti-tH), where ri is the riskfree rate for that interval. 

It is traditional in books on the subject to model the riskfree asset as 
either a bank account or a riskfree bond. For a normal bank account, 
however, it is not the value of the units (say dollars) that change, but the 
quantity. If we deposit $10 (10 units of dollar) in an account at time t0 

then after a period of 5% growth we have $10.5, not 10 "dollars" each 
worth $1.05. 

Whatever the nature of the riskfree asset, the important thing for our 
analysis is the asset's price structure, which we will define when we 
formally define asset prices in a moment. 

Additional Assumptions 

In addition to the previous assumptions, we must also make some not-so­
realistic simplifying assumptions. These assumptions are very helpful to 
the analysis and despite their presence, we can still learn a great deal 
about how the market works based on these simple models. 

Infinitely Divisible Market 
The market is infinitely divisible, which means that we can speak of, for 
example, J2 or -1r worth of a stock or bond. 

Frictionless Market 
All transactions take place immediately and without any external delays. 

Perfect Market 
The market is perfect, that is, 
• there are no transaction fees or commissions, 
• there are no restrictions on short selling, 
• the borrowing rate is the same as the lending rate. 

Buy-Sell Parity 
As an extension of the notion of a perfect market, we assume that any 
asset's buying price is equal to its selling price, that is, if an asset can be 
bought for S then it can also be sold for S. For instance, if shares of a 
stock can be bought for S per share then shares can also be sold for S per 
share. If a bond can be purchased for S then a similar bond can be sold 
for S. 
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Prices Are Determined Under the No-Arbitrage Assumption 
As we have discussed, if an arbitrage opportunity exists in the market, 
then prices will be adjusted to eliminate that opportunity. Therefore, it 
makes sense to price securities under the assumption that there is no 
arbitrage. 

6.2 Positive Random Variables 

We wish to define the terms nonnegative, strictly positive and strongly 
positive for random variables on a sample space 0. 

Definition Let X be a random variable on 0. Then 
1) X is nonnegative, written X ~ 0 if 

X(w) ~ Ofor all wE 0 

(The term positive is also used in the literature for this property.) 
2) X is strictly positive, written X > 0 if 

X(w) ~ Ofor all wE 0 and X(w) > Ofor at least one wE 0 

3) X is strongly positive, written X» 0 if 

X(w) > Ofor all wE 0 

6.3 The Basic Model by Example 

0 

Before defining the discrete-time model formally, it seems like a good 
idea to motivate the definition with an example. 

Suppose we are interested in a certain stock that is very sensitive to 
interest rates, in such a way that the stock price generally rises when 
interest rates fall and vice versa. (A home-building company would be 
such a company, for example.) 

Thus, we decide to track the discount rate over the next few times that 
the Federal Reserve Board meets to consider changes in this rate. For our 
purposes, a state of the economy will correspond to a discount rate. (The 
discount rate is the rate that the federal government charges member 
banks to borrow money. This rate is often used as a starting-off point for 
other interest rates.) 

It is important to emphasize that when setting up a model of interest 
rates, we can only speculate about future changes based on economic 
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reports, research and other often tenuous tools. However, the model must 
be created at time t 0 so we have no other choice. 

Referring to Figure 1, let us assume that at the current time t0 the 
discount rate is 2%. At this time, the economy has only one state, 
denoted by wo. 

2 

roo 
100 

Now, the late~t economic information leads us to believe that at time t 1 

the Fed will raise interest rates either 0.25 points or 0.5 points. Thus, at 
time t 1 there will be two states of the economy, denoted by w1,o and w1,1. 

The interest rates are shown next to each state in Figure 1. 

We further believe upon good information that at time t2 the Fed will be 
inclined to raise rates again. We speculate that if the previous rate hike 
was 0.5 points, there is a possibility of further hikes of 0.5 or 0.25 points 
and also a possibility of no change in the rate. However, if the previous 
hike was only 0.25 points, the strong feeling is that another rate hike of 
0.5 or 0.25 points will occur. 

In general, we produce a model of interest rates, or states of the economy 
by speculating on the path of the discount rate over a period of time. 
Based on predicted interest rates, we also speculate on the price of the 
stock. These prices are shown in Figure 1 in italics. 

Note that there is a stock price for each state and each time. Thus, for 
example, the time-t1 price function S 1 can be defined by 

S1(wi,o) = 90, S1(w1,1) = 95 
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and the time-t2 price function S 2 is 

S2(w2,1) = 80 

S2(w2,2) = 85 

S2(w2,3) = 90 

S2(w2,4) = 85 

S2(w2,5) = 90 

While these functions are simple to understand, they do suffer from a 
significant drawback when it comes to doing mathematics, namely, they 

are defined on different domains. In particular, S 1 is defined on 

{ w1,o, w1,1} and S 2 is defined on { w2,1, ... , w2,5}. 

Accordingly, it is preferable to work with a sequence of price random 
variables defined on a single probability space. The first step in this 
endeavor is to take a slightly different view of the states of the economy. 
We begin with the set offinal states 

f2 = { W3,1, ... , WJ,lO} 

and define all intermediate states as subsets of the final states. This idea 
is pictured in Figure 2. 
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Thus, for example, at time t1 there are two intermediate states 

51= {w3,1, ... , WJ,6} 

52 = { W3,7, ... , WJ,lO} 
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Now, for example, we can define the time-t1 price random variable S1 

on the set 0 of final states by assigning the value 90 to all elements of 5 1 

and the value 95 to all elements of 5 2. In symbols 

S (w) = { 90 for all w E 5 1 
1 95 for all w E 52 

It is important to emphasize that this procedure is just a mathematical 
expediency. It makes no economic sense to talk about the time-t1 price of 
afinal state, since the final state does not exist at time t1. However, this 
expediency does no harm and is very useful. 

Of course, for this to make sense, the random variable S1 must be 
constant on each of the subsets 5 1 and 52 of 0, as it is in our example. 

Note that at each time ti the set of intermediate states is a partition Pi of 
the set 0 of final states and that the time-ti partition is a refinement of the 
previous time-ti-l partition. Moreover, the price random variable Si is 
Pi-measurable. 

With this example for motivation, we are ready to formally define the 
general discrete-time model. 

6.4 The Basic Model 

Here are the basic ingredients of the discrete-time model M. 

Time 

The model M has T + 1 times 

to< t1 < .. · < tr 

Note that there are precisely T time intervals [ti-l, ti] fori = 1, ... , T. 

Assets 

The model has a finite number of basic assets 

A={a1, ... ,an} 

The asset a1 is assumed to be the riskfree asset. 

States of the Economy 

At the final time tr, we assume that the economy is in one of m possible 
final states, given by the state space 
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n = {wl, ... ,wm} 

Initially, that is, at time t 0 we know nothing about the final state of the 
economy other than the fact that it lies in n. However, as time passes, we 
may gain some information (but never lose information) about the 
possible final state of the economy. 

To model this partial knowledge, at each time ti, we assume that there is 
a partition 

Pi= {Bi,l, ... , Bi,m;} 

of the state space 0, called the time-ti state partition. For i < T, the 
blocks of Pi correspond to the possible states of the economy at time ti 
and are called intermediate states. Figure 3 shows the state tree or 
information tree for the model. 

Thus, the term state can refer to either an intermediate state (which 
includes the initial state) or a final state. Also, we will think of both the 
element Wi and the singleton set { wi} as a final state, whichever is more 
convenient at the time. 

to 
Figure 3 

• •• 
• 

Since no loss of information can occur, it follows that Pi is a refinement 
of Pi-l· In fact, we will assume that the state filtration is an information 
structure 

lF = (Po, ... , Pr) 



146 Introduction to the Mathematics of Finance 

on 0. Thus 

and 

Natural Probabilities 

It is also customary to assume the existence of a probability measure on 
n that reflects the likelihood that each final state in n will be the actual 
final state. These are called natural probabilities. 

Asset Prices 

In a discrete-time model, each asset must not only have a price at each 
time ti but that price may depend on the state of the economy at that 
time. This calls for a price random variable for each time and for each 
asset. For reasons made clear in the previous example, the time-ti price 
random variable should be defined on the sample space 0 and be Pi­
measurable. 

Definition For each time ti and each asset aj, the price random 
variable S;,{ 0 ___. ~ is a 'P;-measurable random variable for which 
Si,j(w) is the time-ti price of asset aj under the final state w. The price 
random variables must satisfy the following properties. 
1) For the riskfree asset, the price random variables are constant, that 

is, they do not depend upon the state of the economy (which is 
precisely why they are called riskfree). In particular, 

So,1 = 1 

and for all times i > 0 

S r·(t-t i)s . 1 = e , , ,_ ·-11 
t, t ' 

where ri 2:: 0 is the riskfree rate in effect during the time interval 
[ti-1,ti]· 

2) For all other assets (that is,for j > 1) and for all times ti 

Si,j 2:: 0 
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3) For a fzxed time period tk the price vector is the random vector of 
time-tk prices 

4) For a fzxed asset aj the sequence 

(So,j, ... , ST,j) 

is a stochastic process, called the price process for aj. It describes 
the evolution of the price of aj over time. 0 

Using the Risk-Free Asset as Numeraire 

As we will see in some detail, rather than using dollars, yen or other 
constant (inflation aside) units of accounting, the use of the riskfree asset 
itself will provide a great simplification (although it may not seem like it 
now). 

As an example, suppose we wish to assess the quality of various 
investments. Consider an investment that turns $100 into $104 in one 
year. Is that a good investment? It is not possible to tell because the 
quality of an investment must be measured relative to some guaranteed 
standard. For example, if the riskfree asset turns $100 into $105 in a 
year, then the 4% investment is not good. 

Now, if we use the riskfree asset as unit of accounting instead of dollars, 
then it is easy to decide whether or not an investment is good (relative to 
the riskfree investment). For example, if an investment turns 100 riskfree 
asset units of value into any number greater than 100, then it is a good 
investment, at least relative to the minimal standard riskfree investment. 

The discounted asset prices are given by 

S·. _ Si,j 
t,J- s 

i,l 

Thus, the discounted price is the nondiscounted price divided by the 
price Si,l of the riskfree asset at the same time. The value Si,j is also 
called the (time-0) present value of the amount Si,j· Note in particular 
that 

si,l = 1 

In words, the riskfree asset has constant unit price at all times. This is 
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because the riskfree asset is neutral (not good and not bad) compared to 
itself. 

The discounted price vector is given by 

si = (Si,l, ... , si,n) 

6.5 Portfolios and Trading Strategies 

Portfolios are designed to model the holdings of an investor over a fixed 
period of time. Of course, it is reasonable to allow adjustments to the 
asset holdings at each intermediate time. It is also reasonable to allow 
these adjustments to depend on the state of the economy at that time. 
Here is the formal definition. 

Definition A portfolio for the time interval [ti-l, ti] is a random vector 

8i = (Oi,l, ... , Oi,n) 

on n where ei,j(wk) is the quantity of asset Clj acquired at time ti-l and 
held during the interval [ti-l, ti] assuming state Wk. Moreover, ei,j is 
required to be Pi-l -measurable. This corresponds to the obvious fact 
that the quantities ei,j must be known at the time ti-l at which the assets 
are acquired. 0 

It is worth repeating: The portfolio 8i is acquired at time ti-l and held 
up to time ti. 

Note also that the random variables ei,j indicate the position as well as 
the quantity: ei,j is positive for a long position and negative for a short 
position. 

It will be convenient to define a (nonstandard) term to denote the 
holdings of the risky portion of a portfolio, that is, all assets except the 
riskfree asset. 

Definition A risky holding for the time interval [ti-l, ti] is a random 
vector 

on n where ei,j(wk) is the quantity of the risky asset Clj acquired at time 
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ti-l and held during the interval [ti-l, ti] assuming state Wk. Moreover, 
ei,j is required to be Pi- 1-measurable.D 

Portfolio Rebalancing 

The use of portfolios in a discrete-time model is a dynamic process that 
proceeds as follows. At the initial time t0 the investor acquires the first 
portfolio 

81 = (81,1, ... 'el,n) 

which is held through the time interval [t0 , t1]. Note that the random 
variables B1,j are P 0-measurable, that is, constant. 

At time t1 the investor must liquidate the portfolio 8 1 and acquire a new 
portfolio 8 2• Of course, there is nothing to prevent the investor from 
simply rolling over the portfolio, by which we mean that 8 2 = 8 1. Even 
in this case, however, for reasons of consistency it is simpler to think in 
terms of liquidation followed by acquisition. This does no harm since the 
model is assumed to be commission-free. 

In general, at time ti-l the portfolio 8i-l is liquidated and a new 
portfolio 8i = ( Bi,l, ... , Bi,n) is acquired. This process is referred to as 
portfolio rebalancing. 

The sequence <I> = ( 81, ... , 8r) of portfolios obtained through portfolio 
rebalancing has a name. 

Definition A trading strategy for a model M is a sequence of portfolios 

<I>= (81, ... , 8r) 

where 8i is a portfolio for the time interval [ti-l, ti]· D 

We can isolate an individual asset from a trading strategy to obtain a 
stochastic process that describes the evolution of that asset's holdings. In 
particular, for each asset aj, the asset holding process is the stochastic 
process 

<I>j = (Bl,j, ... , Br,j) 
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A trading strategy can be represented by a matrix of random variables 

Or,2 

where the rows correspond to the times (the first row corresponding to 
time t0) and the columns correspond to the assets. In fact, the jth column 
is the asset pricing process for asset aj. 

Let us also give a (nonstandard) name to the risky portion of a trading 
strategy. 

Definition A risky substrategy for a model M is a sequence of risky 
holdings 

n..risky = (erisky erisky) 
'±' 1 , ... , T 

where e;isky is a risky holdingfor the time interval [ti-l, ti]. 0 

In terms of matrices, the risky portion of a trading strategy <I> is the 
matrix consisting of all columns of the matrix except the first column 

( 
8 nsky) ( e -1 1,2 

<I>risky = : = : 

8~sky ()T,2 

Recall that a random process X= (Xk) is adapted to a filtration 
IF = (Fk) if Xk is Fk-measurable for each k. This corresponds to the 
idea that Xk is known at time tk. when Fk is known. 

On the other hand, an asset holding process <I> j = ( 01,j, ... , Or;j) has the 
property that ek,j is Fk-1-measurable. This corresponds to the fact that 
ek,j is known at the previous time tk-1, when Fk-1 is known. There are 
many situations in which such knowledge is common. For example, 
when placing bets in a game of chance, the player knows the amount Xk 
of the time-tk bet before the outcome of the game at time tk. This is often 
modeled by saying that xk is known at time tk-1· 

Definition A stochastic process 



6. Discrete-Time Pricing Models 151 

is predictable or previewable with respect to the filtration 

IF = (Po -< P1 -< · · · -< Pr) 

if Xi is Pi-1-measurable for all i. D 

With this new language, we can say that an asset holding process is just 
another name for a predictable stochastic process. Also, a trading 
strategy is just a predicable stochastic process of random vectors. 

The Valuation of Portfolios 

If <I> = ( 81, ... , 8r) is a trading strategy then since the portfolio 8i 
exists only during the time interval [ti-l, ti], it makes sense to assign a 
value to ei only at the acquisition time ti-l and the liquidation time k 

The acquisition value or acquisition price of the portfolio ei is defined 
by the inner product (dot product) 

n 

vi-l(ei) = (ei, si-1) = L:ei,jsi-l,j 
j=l 

and the liquidation value or liquidation price of ei is defined by 

n 

vi(ei) = (ei, si) = "Lei,jsi,j 
j=l 

We can also discount the portfolio values 

and 

Note that the discounted value can be computed directly using the 
discounted price or indirectly by first computing the nondiscounted price 
and then discounting the result. 
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Self-Financing Trading Strategies 

For a trading strategy cp = (81' ... '8T) if the acquisition price of 8i+1 
is equal to the liquidation price of 8i, then no money is taken out or put 
into the model during the time-ti rebalancing process. 

Definition A trading strategy <P = ( 81, ... , 8T) is self-financing if for 
any time ti (for i -=/: 0, T) the acquisition price of 8i+1 is equal to the 
liquidation price of8i, that is, 

The set of all self-financing trading strategies is denoted by T. 0 

Thus, a self-financing trading strategy is initially purchased for the 
acquisition value V0 (81) of the first portfolio and is liquidated at time 
tT, producing a payoff of VT(8T ). No other money is added to or 
removed from the model during its lifetime. 

The set T of all self-financing trading strategies is a vector space under 
the operations of coordinate-wise addition 

(81,1, ... , 81,T) + (82,1, ... , 82,T) = (81,1 + 82,1, ... , 81,T + 82,T) 

and scalar multiplication 

a(81, ... ,8T) = (a81, ... ,a8T) 

Demonstration of this is left to the reader. 

We can extend the use of the symbol Vi to self-financing trading 
strategies by defining the time-ti value of <P to be the common value of 
the liquidation price of 8i and the acquisition price of 8i+ 1· In symbols 

It is worth emphasizing that this extension applies only to self-financing 
trading strategies. 

We will refer to Vo ( <P) as the initial cost of the trading strategy <P and to 
VT ( <P) as the payoff of <P. The following theorem gives some key 
properties of the valuation functions vi. 

Theorem 1 
1) For the valuation function defined on portfolios 
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a) The ith valuation function 

is a linear transformation, that is, for portfolios 
8 1,82 E RVn(O.) and real numbers a, bE lR we have 

Vi(a81 + b82) = aVi(81) + bVi(82) 

b) The acquisition random variable Vi(8i+l) is Pi-measurable. In 
other words, at time ti we know the purchase price of8i+l· 

2) The ith valuation function defined on self-financing trading 
strategies 

is a linear transformation on T, that is, for <I>1, <I>2 E T and a, b E lR 
we have 

Proof. Left to the reader. D 

Discounted Gains 

For self-financing trading strategies we can make the following 
definitions regarding the change in price or value. 

Definition Let <I> be a self-financing trading strategy. The discounted 
change in price from time ti-l to time ti is 

The discounted change in value from time ti-l to time ti is 

~Vi( <I>)= Vi( <I>)- Vi-l(<I>) 
= (8i, ~si) 
= (8i, (si- si-1)) 

n 

= "'e· ·(S· ·- B·-1 ·) L..J !,J !,) ! ,) 

j=l 
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The discounted (cumulative) gain G k is 

Gk(<I>) = 1:\(<I>)- Vo(<I>) 
k 

= L [Vi(<I>)- Vi-1(<I>)] 
i=1 

k 

= L (8i, /:iSi) 
i=1 

Fork <£the discounted gain Gk,e is 

Gk,e(<I>) = Ve(<I>)- Vk(<I>) 
e 

= L [Vi(<I>)- Vi-1(<I>)] 
i=k+1 

e 
= L (8i, /:iSi) 

i=k+1 

D 

A key property of the riskfree asset is the following. Suppose that we are 
given an initial value V0 ( <I>) for a self-financing trading strategy 
<I>= (81, ... , 8r) and we are also given all of the quantities ()i,j of assets 
(for all i = 1, ... , T) in <I> except the quantities ()i,l of the riskfree asset. 
Then the self-financing condition implies that there is one and only one 
possibility for the quantities of the riskfree asset. 

Intuitively speaking this is quite reasonable. To illustrate, suppose that 
the initial value of <I> is $1000. If the risky assets of 8 1 account for $900 
then there is one and only one choice for the quantity 81,1 of riskfree 
asset, namely, the rest of the initial value ()1,1 = 100. Now at time t1 the 
portfolio 8 1 is liquidated. Suppose it yields $1100 (in time-t1 dollars). If 
we are given the quantities and hence value of the risky assets in 8 2, say 
$1050 then the quantity of riskfree asset must be such that its value is 
$50. Hence, the quantity is ()2,1 = 50 I 81,1· 

In general, if at time tk we know the liquidation value Vk ( 8 k) of 8 k and 
we know the quantities and hence the value Vk(8k+ 1) of the risky assets, 
then the remaining value 

must be spent on the riskfree asset in order to preserve the self-financing 
condition. Hence 
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It follows from this discussion that there is one and only one self­
financing trading strategy <P for any given 
1) Initial value V0, which is a P 0-measurable random variable, that is, a 

constant random variable 
2) Risky substrategy 

;nrisky = (erisky erisky) 
'~' 1 , ... , T 

that is, set of asset holding processes <!12, ..• , <Pm for the risky assets 
a2, ... 'am. 

In matrix terms, we have shown that the initial value and the self­
financing condition uniquely determine the missing values in the matrix 

Thus, all that is required to specify a self-financing trading strategy is the 
initial value and n- 1 predictable processes (one for each risky asset). 

Locking In a Gain 
Now suppose that we are given a self-financing trading strategy <P. 
Suppose further that at some intermediate time tk we wish to "lock in" 
the discounted gain Gk(<P) at that time. This can be done simply by 
liquidating the portfolio ek at time tk and using all proceeds to buy only 
the riskfree asset. In symbols 

From this point forward, no changes are made to the quantities in the 
trading strategy. The new trading strategy <P' = ( 8~, ... , 8~) is thus 
defined by 

{ 8· ifi < k 
8~ = (~k(ek), o, ... , o) ifi; k 

Since the discounted gain Gk,r(<P) from tk to tr is 0 because the 
portfolios contain only the riskfree asset, we have 
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which expresses the fact that we have locked in the discounted gain 
G k ( ci>). Let us refer to the trading strategy ci>' as the trading strategy that 
is obtained by locking in the discounted gain of ci> at time tk. 

Here is a summary of what we have been discussing. 

Theorem 2 
1) Discounted gains are additive, that is,for j < k < f we have 

2) The contribution of the rislifree asset to the discounted gain of a self 
financing the trading strategy is 0. 

3) Given any constant random variable V0 and any risky substrategy 

;r..risky = (erisky erisky) 
'±' 1 ' .. ·' T 

that is, set of asset holding processes ci>2, •.. , ci>mfor the risky assets 
a2, ... , am, there is one and only one self-financing trading strategy 
ci> with initial value Vo ( ci>) = V0 that has these risky asset holdings. 
Thus, all that is required to specify a self-financing trading strategy 
is the initial value and n- 1 predictable processes (one for each 
risky asset). 

4) Given a self-financing trading strategy ci> and a time tk, it is possible 
to find a self-financing trading strategy <P' that locks in the 
discounted gain at time tk. that is, for which 

Value Shifting 

Let 

0 

be a self-financing trading strategy. Let us consider what happens if we 
initially change the quantity of the riskfree asset by an amount a E R In 
order to maintain the self-financing condition, we must roll over this 
asset at each subsequent time. In symbols, the new portfolios are 

e; = (ei,l + aln, ei,2, ... 'ei,n) = ei + a(ln, 0, ... '0) 

for i = 1, ... , T. 
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Let us take a moment to examine the rolling-over procedure. If, for 
example the initial portfolio contains 100 units of the riskfree asset, then 
at time t 1 the portfolio is liquidated, which realizes 100er1(h-to) from that 
asset. This money is immediately used to purchase 100 units of the 
riskfree asset again, so that the portfolio 8 2 also contains exactly 100 
units of the riskfree asset. 

On the other hand, if the initial portfolio contains -100 units of the 
riskfree asset (a short position) then the investor has sold 100 units of the 
riskfree asset and the value ofthis asset is -100. (The investor is "on the 
hook" for 100 units.) At time t 1, the portfolio is liquidated and the 
riskfree asset must be redeemed at a cost of 1 00er1 (t1-to) units. The 
riskfree asset is then immediately sold for its time-t1 value of 
100er1(t1-to) units. Hence, 8 2 also has a short position of -100 units of 
the riskfree asset. 

The self-financing condition for <I>' is 

vi(8;) = vi(8;+1) 

which is easily verified formally and we leave the details as an exercise. 

Comparing values for the trading strategies <I>' and <I> gives 

Vi (<I>') = Vi (<I>) + aSi,l 

which shows that the shift in the initial value of a trading strategy by an 
amount a using the riskfree asset will ripple through the model, 
producing a shift in value at time ti for all states by the amount aSi,l· On 
the other hand, the discounted values are changed by a constant amount 

and the discounted gains are not affected. 

Theorem 3 Let <I> be a self-financing trading strategy and let a E lit Let 
<I>' be the self-financing trading strategy obtained from <I> by adjusting 
the initial quantity of the riskfree asset by a, that is, 

8: = 8i + a(1!l, 0, ... '0) 

fori= 1, ... , T. 
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1) The time-ti value of <I>' is 

Vi( <I>')= Vi( <I>)+ aSi,l 

In particular, the initial value is 

and the final value is 

2) In discounted units 

It follows that the discounted gain is not affected by value shifting 

3) In particular, taking a = - V0 (<I>) (which is a constant) gives 
another self-financing trading strategy <I>' with the same discounted 
gain as <I> but with zero initial value. 0 

6.6 The Pricing Problem: Alternatives and Replication 

Our goal is to price assets that are derivatives of the basic assets. By 
price we mean determine an initial price for the derivative under the 
assumption that the market is free of arbitrage. 

To effectively price a derivative at time 0, we need to have some 
information about the possible payoffs of the derivative at time T. For 
stock options, this is not a problem, as we have seen. For example, in a 
two-state economy, suppose a2 is a stock with initial cost 100 and final 
payoff vector (120, 90). Then a call with strike price 95 has final payoff 
vector (25, 0). 

Consider an arbitrary derivative D of one (or more) of the assets in the 
model. This derivative is not initially part of the model, but we want to 
add it to the model in such a way that the no-arbitrage opportunities will 
result. The only thing we know about the derivative is its final payoff X, 
which is a random variable on n. 

Now, from the point of view of pricing the derivative, all that matters is 
its payoff random variable-the precise nature of the derivative (call, 
put, strike price, etc.) is no longer important. Thus, we are really 
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interested in pricing random variables in a manner that is consistent with 
the absence of arbitrage. In this context, random variables have a special 
name. 

Definition A random variable X: n ---> lR is called an alternative, or 
contingent claim. D 

Note that some authors require nonnegativity in this definition, the idea 
being that a claim based on an option will not have negative payoffs. In 
such cases the "claim" will simply expire. However, we do not make this 
additional restriction. 

Thus, the pricing problem is the problem of pricing alternatives. Perhaps 
the simplest and most intuitive method for pricing an alternative X is to 
find a self-fmancing trading strategy <I> whose payoff vector is equal to 
X, that is, 

Vr(<I>) =X 

and set the initial price of X equal to the initial price of <I>. Indeed, any 
other choice will lead to arbitrage. For if the initial price Po of X is not 
equal to V0 (<I>) then an investor could buy the cheaper of <I> and X and 
sell the more expensive one. This produces an immediate profit and at 
the end, the investor liquidates his long position and uses the proceeds to 
exactly pay off the short position. 

This prompts the following definition. 

Definition Let X: 0 ---> lR be an alternative. A replicating trading 
strategy (or replicating strategy or hedging strategy) for X is a self­
financing trading strategy <I> = ( 8 1, ... , 8r) whose payoff is equal to X, 
that is, 

Vr (<I>) = Vr ( 8r) = X 

An alternative X that has at least one replicating strategy is said to be 
attainable. A model is said to be complete if every alternative is 
attainable. D 

The set M of all attainable alternatives is a subspace of the vector space 
RV(O) of all random variables on n. We leave verification of this to the 
reader. 
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The strategy of pricing an alternative X by first finding a replicating 
trading strategy <I> for X and then setting the initial price of X equal to 
the initial value of <I> is the replicating trading strategy procedure. We 
will deal with the issues involved in employing this strategy as soon as 
we look at an example of finding replicating trading strategies. 

EXAMPLE 1 Let us consider an example of computing the replicating 
trading strategy for an attainable alternative. This is not hard, but it does 
involve solving systems of linear equations, which is generally best done 
by computer these days. 

Figure 4 shows a state tree with stock prices for a two-asset model. For 
convenience in doing hand computation, we assume that the riskfree 
rates are 0. 

80 8 0,1 

Figure 4: A state tree 

We will see later that this model is complete, so that all alternatives are 
attainable. Let us compute a self-financing trading strategy <I> = (81, 8 2) 

that replicates the alternative 

X(w1) = 100, X(w2) = 90, X(w3) = 80, X(w4) = 70 

that is, for which V2(82 ) =X, or equivalently, 

V2(82)(w1) = 100 
V2(82)(w2) = 90 
V2(82)(w3) = 80 
V2(82)(w4) = 70 
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Writing out these equations gives 

s2,I(WI)02,I(wl) + s2,2(wi)02,2(wi) = 100 
S2,I(w2)02,I(w2) + S2,2(w2)02,2(w2) = 90 
S2,I (w3)02,I (w3) + S2,2(w3)02,2(w3) = 80 
S2,I(w4)02,I(w4) + S2,2(w4)02,2(w4) = 70 

Substituting the actual prices gives 

02,I (wl) + 9002,2(wl) = 100 
02,I(w2) + 8002,2(w2) = 90 
02,I (w3) + 8002,2(w3) = 80 
02,I(w4) + 7502,2(w4) = 70 

The condition that 8 2 be PI-measurable is 

02,I (wl) = 02,I (w2) 
02,I (w3) = 02,I (w4) 
02,2 (WI) = 02,2 ( W2) 
02,2(w3) = 02,2(w4) 

and so the previous system can be written using only WI and w3 as 

02,I (WI) + 9002,2 (WI) = 100 
02,I ( wl) + 8002,2 (WI) = 90 
02,I ( W3) + 8002,2 ( W3) = 80 
B2,I(w3) + 75B2,z(w3) = 70 

The first two equations have a unique solution and so do the second two 
equations, giving 

82(wi) = 82(w2) = (10, 1) 
82(w3) = 82(w4) = ( -80, 2) 

Working backwards in time, we next compute the acquisition values for 
82: 

VI(82)(wi) = 10 + 85 ·1 = 95 
VI (82)(w3) = -80 + 78. 2 = 76 

The self-financing condition requires that these are also the liquidation 
values of 8I and so 
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V1(81)(w1) = 95 
V1(8l)(w3) = 76 

Writing these out and substituting the actual prices gives the system 

el,l (wl) + 8501,2(wl) = 95 

el,l (w3) + 7801,2(w3) = 76 

But 81 is 'Po-measurable, that is, constant on n, and so for any w E n 
el,l(w) + 8501,2(w) = 95 

el,l (w) + 7801,2(w) = 76 

This system has solution 

which is a portfolio consisting of a short position (sale) of 
950/7 ~ 135.71 bonds and a purchase of 19/7 ~ 2.71 shares of stock, 
for an initial cost of 

950 19 570 -- + 80 . - = - ~ 81.43 
7 7 7 

Thus, for a cost of 81.43 we can acquire a portfolio that is guaranteed to 
pay the following 

X(wt) = 100, X(w2) = 90, X(w3) = 80, X(w4) = 70 

Note that in some states we have a profit; in others a loss. This is 
expected in a model with no arbitrage. (We will prove that the model has 
no arbitrage later.) 0 

The Law of One Price and the Initial Pricing Functional 

It is clear that the replicating strategy procedure can only be used to price 
attainable alternatives. However, there is still one potential problem, and 
that is the problem of multiple replicating strategies for a given 
alternative having different initial values. The solution is to require the 
Law of One Price. 

Theorem 4 The following are equivalent. 
1) (Law of One Price) For all trading strategies q>1 and q>2 

Vr(q>l) = Vr(q>2) ==> Vo(q>l) = Vo(q>~) 
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2) For all trading strategies <I> 

Vr(<I>) = 0:::} Vo(<I>) = 0 

Proof. Left to the reader. 0 

The Law of One Price ensures that the following initial pricing 
functional is well-defined. 

Definition The initial pricing functional I: M ~ lR is defined on the 
vector space M of all attainable alternatives by 

I (X) = Vo (<I>) for any trading strategy <I> replicating X 0 

The existence of an initial pricing functional is the key to pricing 
attainable alternatives in a discrete-time model. For if X is an attainable 
alternative, that is, ifthere is a trading strategy <I> such that 

Vr(<I>) =X 

then X can be unambiguously priced at I (X) = Vo (<I>). In addition, we 
can price X at any time tk by setting 

Ik(X) = Vk( <I>) for any trading strategy <I> replicating X 

Note that any other pricing will lead to arbitrage. For if at time tk we 
have Ik (X) i- V k (<I>) then an investor can enter the market at this time 
buying the cheaper of <I> and X and selling the more expensive one. This 
produces a profit at time tk and at the end, the investor can liquidate his 
long position and use the proceeds to exactly pay off the short position. 

6. 7 Arbitrage Trading Strategies 

It is now time to formally consider the notion of arbitrage in a discrete­
time model. The idea is simple: Arbitrage is a situation in which there is 
no possibility of loss but there is a possibility of a gain. However, one 
must be careful to measure loss and gain relative to the "natural" 
guaranteed gain of the riskfree asset. For example, suppose that the 
simple annual riskfree rate is 10%. Then an investment of $100 that 
produces $105 in one year could hardly be considered a true gain, for the 
same $100 investment in the riskfree asset would have produced a 
riskfree $110! Thus, the first investment is a loss relative to the 
guaranteed riskfree investment. 

It may seem natural to define an arbitrage trading strategy <I> to be one 
whose discounted final gain is strictly positive, that is, 
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While this definition is used by some authors, the following definition 
seems a bit more common. It requires that the initial value be 0 as well, 
in which case the issue of discounting is moot. It is important to point out 
that while the definitions are not the same, they are equivalent in a sense 
we will make precise as soon as we have given the formal definition that 
we will adopt. 

Definition A self-financing trading strategy <I> is an arbitrage trading 
strategy (or arbitrage opportunity) if 

V0 (<I>) = OandVr(<I>) > 0 

or, equivalently in terms of gain, 

This says in words that <I> has zero initial cost, is guaranteed never to 
result in a loss at time tr and under at least one final state, will result in 
a positive payoff at time tr. D 

Let us show the equivalence of the two definitions of arbitrage 
mentioned earlier. We also show that a strictly positive discounted gain 
at any time will imply an arbitrage opportunity. After all, we have 
already seen that we can lock in any such gain until the model expires. 

Theorem 5 The following are equivalent for a model M. 
1) M has an arbitrage opportunity <I>, that is, 

V0 (<I>) = 0 and Gr(<I>) > 0 

2) M has a self-financing trading strategy <I> with strictly positive 
discounted final gain, that is, 

3) M has a self-financing trading strategy <I> with strictly positive 
discounted gain at some time tk. that is, for some 1 ~ k ~ T 

Proof. Obviously 1) implies 2) and a simple value shift shows that 2) 
implies 1). (See the last statement of Theorem 3.) Clearly 2) implies 3). 
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Finally, if 3) holds then we may lock in the discounted gain to get a 
trading strategy satisfying 2).0 

6.8 Admissible Arbitrage Trading Strategies 

Some authors require that arbitrage trading strategies never assume a 
negative value, as described by the following definition. 

Definition A self-financing trading strategy ci> is admissible if its value 
at all times is nonnegative, that is, 

for all i = 0, ... , T.D 

Thus, an admissible self-financing arbitrage trading strategy ci> satisfies 

1) Vo(<I>) = 0 
2) Vi(<I>)~Oalli 
3) Vr(<I>) > 0 

In terms of gain this is 

1) Vo ( ci>) = 0 
2) Gi(<I>) ~ 0 all i 
3) Gr(<I>) > 0 

The next result shows that requiring admissibility for arbitrage strategies 
is not an important distinction. 

Theorem 6 A model has an arbitrage opportunity if and only if it has an 
admissible arbitrage opportunity. 
Proof. Since an admissible arbitrage strategy is an arbitrage strategy, we 
only need to show the converse, namely, that a model that has an 
arbitrage strategy 

also has an admissible arbitrage strategy. 

Of course, if ci> is admissible, then we are done, so let us assume it is not. 
Let tk be the latest time for which the value of ci> is negative for some 
state Bk,u E Pk. Since Vk(ek+l) is constant on Bk,u we can write 
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for any w E Bk,u· 

Now the plan is actually quite simple: We want to isolate the holdings 
that produce the negative value by setting all other unrelated values to 0 
and then do a value shift to bring this value to 0. The devil is in the 
notational details. 

The first step is to do nothing before time tk, that is, 

ri = 0 fori:::; k 

From time tk forward, we follow the strategy <I> if and only if the state of 
the economy is in Bk.u, where <I> has negative value for the last time. For 
other states of the economy we do nothing. Thus, r is defined by 

r. = { 0 for i :::; k 
~ 1Bk,u 8i fori ~ k + 1 

To examine the values, we consider two cases. For w ~ Bk,u the 
acquisition and liquidation values are always 0, that is, 

for all i. For wE Bk,u the values are 0 up to and including the liquidation 
value at time tk. However, the acquisition value at time tk is negative 
(equal to a). Subsequently, all values are nonnegative. Hence, for 
wE Bk,u we can write the sequence of values in the suggestive form 

Now we are close to our goal. It is just a matter of adjusting the trading 
strategy to restore the self-financing condition at time tk (and not destroy 
it at subsequent times). This is done by adding the quantity -a/ Sk,1 > 0 
of riskfree asset to the acquisition portfolio ek+l at time tk under the 
states in Bk,u only and rolling this quantity over. 

In particular, set 

r~ = { 0 for i :::; k 
z 1Bk,uei- (a1Bk,)Sk,I,O, ... ,0) fori~ k + 1 

For w ~ Bk,u we still have 
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for all i but for wE Bk,u, the values are now 

0, ... , 0, [Vk(rU(w) = 0, Vk(rk+I)(w) = 0], 2::: -a> 0, ... , 2::: -a> 0 

Thus, (r~, ... , r~) is a self-financing admissible arbitrage trading 
strategy, as desired.D 

6.9 Characterizing Arbitrage 

We now come to the issue of characterizing arbitrage in a way that can 
be used to price alternatives. The key concept here is the martingale 
measure. 

Definition Let M be a discrete-time model. A probability distribution II 
on n is a martingale measure (or equivalent martingale measure or 
risk-neutral probability measure) for M if 
1) The probability measure lP'rr is strongly positive, that is, 

lP'rr(w) > 0 

for all wE 0 
2) For each asset aj, the discounted price process (Bo,j, ... , Sr,j) is an 

lF -martingale, that is, for all k 2::: 0 

t'rr(Sk+l,j I Pk) = Sk,j 

or equivalently, for any i, k 2: 0 

t'rr(Bk+i,j I Pk) = Sk,j D 

The next theorem characterizes martingale measures in terms of 
valuations and gains. 

Theorem 7 For a model M the following are equivalent for a strongly 
positive probability measure. 
1) II is a martingale measure, that is, the discounted price process for 

any asset is a martingale. In particular, for all k 2::: 0 

t'rr(Sk+l,j I Pk) = Sk,j 

or equivalently, for any i, k 2::: 0 

t'rr(Sk+i,j I Pk) = Sk,j 
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2) The discounted valuation process Vk ( <P) of any self-financing 
trading strategy <P is a martingale under II. In particular, for all 
k~O 

or, equivalently, for all i, k ~ 0 

3) At any time, the expected discounted value under II of any self 
financing trading strategy <P is equal to the initial value of<P, that is, 
for any k ~ 0 

or equivalently, the expected discounted gain under II is 0, that is, 

4) The expected discounted final payoff under II of any self-financing 
trading strategy <P is equal to the initial value of<P, that is, 

£n(Vr(<P)) = Vo(<P) 

or equivalently, the expected discounted final gain under II is 0, that 
is, 

Err(Gr(<P)) = 0 

Moreover, if any of these conditions holds, then for all k ~ 0 

Err(Sk,j) = So,j 

that is, the initial price of asset aj is the discounted expected price of aj. 
Proof. Assume that 1) holds and let <P = ( 8 1, ... , 8r) be a self­
financing trading strategy on M. Multiplying both sides of the martingale 
condition by fh+l,j gives 

fh+I,jErr(Sk+l,j 1 Pk) = fh+1,jsk,j 

Since fh+l,j is Pk-measurable, it follows from the properties of 
conditional expectation that we may move (}k+l,j under the expectation 
operator to get 
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Summing on j and using the linearity of the conditional expectation 
gives 

n n 

Err(Lek+I,jsk+I,j 1 Pk) = L:ek+l,jsk,j 
j=l j=l 

that is, 

or, equivalently 

which is the desired martingale condition for V k ( 4>) and so 2) holds. 

If 2) holds then 

Taking k = 0 gives 

or 

or in terms of gain 

which proves 3). Of course, 3) implies 4) since the latter is just a special 
case of the former. 

Suppose now that 4) holds. Thus, 

Err(Gr(<P)) = 0 

for all self-financing trading strategies 4>. Consider the following trading 
strategy. Fix a block Bk,u of the time-tk partition Pk. Also fix an asset aj. 
For time prior to tk acquire nothing, that is, 

e1 = e2 = ... = ek = o 

At time tk, act only if the state is Bk,u, in which case borrow the cost Sk,j 
of one share of asset aj and buy one unit of the asset. Since a bond is 
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worth Sk,l at time tk, the cash equivalent of -Sk,j dollars is 
-Sk,j/Sk,l = -Sk,j units ofbond. Thus,, the time-tk portfolio is 

8k+l = ( -Sk,jlBk,u' 0, ... , 0, lBk,u' 0, ... , 0) 

The acquisition value of this is 

Vk(8k+l) = ( -Sk,jlBk,JSk,l + lBk,uSk,j = 0 = Vk(8k) 

and so the self-financing condition does indeed obtain at time tk. 

At time tk+l liquidate 8k+l and invest only in the riskfree asset. Then 
roll over this asset until the end of the model. Thus, 8k+2, .•. , 8r 
contain only the riskfree asset and so there is no discounted gain from 
time tk+l forward. 

It follows that the only discounted gain takes place during the interval 
[tk, tk+ll· Thus, the discounted gain of the self-financing trading strategy 

lS 

<I> = ( 81, ... , 8r) 

Gr(<I>) = Go,k(<I>) + Gk,k+l(<I>) + Gk+I,r(<I>) 

= Gk,k+l(<I>) 

= vk+l(ek+l)- vk(ek) 

= vk+l(ek+l) 

= ( -Sk,jlBk,JSk+l,l + lBk,uSk+l,i 

= -Sk,jlBk,u + lBk,uSk+l,j 

Now, by assumption, the expected value of this is 0, so we have 

Err( -Sk,jlBk,u + Sk+l,jlBk,J = 0 

or 

Err(Sk+l,jlBk,J = Err(Sk,jlBk,J 

Dividing by the probability of Bk,u gives 

Err(Sk+l,j I Bk,u) = Err(Sk,j I Bk,u) 
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and since this works equally well for any u we have 

Err(Sk+l,j I Pk) = Err(Sk,j I Pk) 

ButS k,j is Pk-measurable and so this is 

Err(Sk+l,j I Pk) = Sk,j 

which is precisely the martingale condition for the discounted asset 
pricing process. Hence, II is a martingale measure and 1) holds. This 
completes the proof. D 

The First Fundamental Theorem of Asset Pricing 

The preceding theorem shows clearly that martingale measures are 
highly desirable. The First Fundamental Theorem of Asset Pricing tells 
us precisely when such probability measures exist. 

Theorem 8 (fhe First Fundamental Theorem of Asset Pricing) For a 
discrete-time model M the following are equivalent. 
1) There are no arbitrage trading strategies. 
2) There is a martingale measure II on M. 
Proof. The key to the proof of this theorem are the characterizations of 
arbitrage in Theorem 5 and of martingale measures in Theorem 7, along 
with one fact from convexity theory to connect them. 

Let us compare the two properties. Since arbitrage implies a self­
financing trading strategy <I> for which Gr (<I>) > 0, we have 

No Arbitrage: For all self-financing trading strategies <I> 

Gr(<I>) 1- 0 

Existence of Martingale Measure II: For all self-financing trading 
strategies <I> 

Err( Gr( <I>)) = 0 

We must show that these two properties are equivalent. One direction is 
actually quite easy. If there is a martingale measure II forM then there 
cannot be any self-financing trading strategies <I> for which 

Gr(<I>) > 0 

because such a strategy must have a positive expectation under a strongly 
positive probability measure. To see this, suppose that 
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II= (1r1, · · ·, 11"m) 

where 11"i > 0 for all i and suppose that 

where 9i 2:: 0 for all i and 9) > 0 for some j. Then 

Err(Gr(<I>)) = 11"191 + · · · + 11"m9m > 0 

Since this violates the martingale measure condition, there are no 
arbitrage opportunities. This proves one-half of the First Fundamental 
Theorem. 

For the converse, we must show that the absence of arbitrage implies that 
there is a martingale measure. In order to give the proof a more 
geometric flavor, we wish to view a random variable not as a function, 
but as a vector. This is possible because the sample space 0 is finite. In 
particular, if we fix the order of the elements of 0, say 
n = ( W1' ... ' Wm), then any random variable X: n ---> lR can be identified 
with its vector of values 

It is also clear that a random variable X is nonnegative, strictly positive 
or strongly positive if and only if the corresponding vector has this 
property. 

Now, the condition that II be a martingale measure can be written as a 
condition involving the inner product 

since 

m 

(Gr(<I>t"', II)= L Gr(<I>)(wi)11"i = Err(Gr(<I>)) 
i=1 

Let us consider the set g of all final gain vectors 

Q = { Gr( <P )_, I <P is a trading strategy} ~ JRm 

Since the valuations Vr and Vo are linear transformations, so is Gr and 
so Q, being the image of Gr is a subspace of JRm. The absence of 
arbitrage condition 
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is equivalent to the condition that Q is a vector space that does not 
intersect the nonnegative orthant in Rn, 

lR~ = {(xt, ... , Xn) I Xi~ 0} 

except at the origin, that is, 

Q n JR~ = {O} 

It follows from Theorem 5 of Appendix B that Qj_ contains a strongly 
positive vector II= (7r1, ... , 1l'm). In other words, for any self-financing 
trading strategy <P we have 

(Gr(<Pt•,II) = o 
exactly as required to show that II is a martingale measure. This 
completes the proof.D 

The Second Fundamental Theorem of Asset Pricing 

Let us now turn our attention to the Second Fundamental Theorem of 
Asset Pricing. Recall that a model M is complete if every alternative in 
JRm is attainable, that is, if for every X E JRm there is a self-financing 
trading strategy <P such that 

Vr(<P) =X 

We will have use of the following fact from linear algebra. Any strongly 
positive probability distribution r = ( '/'1' ... ''I'm) on n, where 
JlDr(wk) = '/'k defines an inner product on the vector space JRm by 

m 

(X, Y)r = L XiYi'/'i 

i=l 

We leave it to the reader to verify that this has the properties of an inner 
product, which are 
1) (Bilinearity) 

2) (Symmetry) 

(aX+ bY, Z)r = a(X, Z)r + b(Y, Z)r 
(X, aY + bZ)r = a(X, Y)r + b(X, Z)r 

(X, Y)r = (Y, X)r 
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3) (Positive definiteness) 

(X,X)r ~ 0 

with equality if and only if X = 0. 

Observe also that if 1 = ( 1, ... , 1) then for any vector (random variable) 
X 

m 

(X, l)r = L Xi/i = t'r(X) 
i=l 

Now we can turn to the theorem at hand. 

Theorem 9 (The Second Fundamental Theorem of Asset Pricing) Let 
M be a model with no arbitrage opportunities. Then there is a unique 
martingale measure on M if and only if the model M is complete. 
Proof. We first show that the completeness of M implies the uniqueness 
of the martingale measure on M. Suppose that II1 and II2 are martingale 
measures on a complete model M. We want to show that II1 = II2. 

Since II1 is a martingale measure, Theorem 7 implies that 

and similarly, 

Hence, 

Since the discounting periods are the same, we have 

But since M is complete, all random variables on 0 have the form Vr( <I>) 
for some self-financing trading strategy. Hence 

for all random variables X on 0. Taking X= 1{w} for wE 0 gives 

J!Dn1 (w) = J!Dn2 (w) 
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which implies that II1 = II2. Thus, the martingale measure on M is 
umque. 

For the converse, suppose that II is a martingale measure on M and that 
the market is not complete. We want to find a different martingale 
measure II* on M. As with the proof of the First Fundamental Theorem, 
we wish to fix the order of the elements of n = ( w1, ... , Wm) and think 
of a random variable on n as a vector in JRm. 

Since M is not complete, there is a vector that is not attainable. Put 
another way, the vector space M of all attainable vectors is a proper 
subspace of JRm. 

Let us consider the inner product defined on JRm by the martingale 
measure II 

m 

(X, Y)rr = L XiYi'1T'i 
i=l 

It is a simple fact of linear algebra that if a subspace, such as M, is not 
all of JRm then there is a vector Z = (zb ... , Zm) that is orthogonal to 
every vector in the subspace. Thus, for any attainable vector 
X= (x1, ... , xm) we have 

m 

(X, Z)rr = L XiZi'7l'i = 0 
i=l 

Moreover, since the vector 1 = (1, ... , 1) is attainable (just buy 1/Sr,1 

units of the riskfree asset and roll it over), we have 

m 

0 = (1, Z)rr = L Zi'7l'i = t'rr(Z) 
i=l 

Now let us attempt to define a different martingale measure 
II* = ( ?Ti, ... , ?T~) on M. This probability measure must be strongly 
positive, it must satisfy the martingale condition and it must be different 
from II. 

Of course, it must first be a probability measure. Noting that 

m 

LZi?Ti = 0 
i=l 
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we could try something of the form 

where c is a constant. At least this is a probability measure 

m m m m 

L 1l"i = L 11"i + c L Zi11"i = L 11"i = 1 
i=l i=l i=l i=l 

In addition, since Z .l M, for any attainable vector X E M we have 

m 

fn·(X) = LXi11"i 
i=l 
m 

= L Xi(11"i + CZi11"i) 
i=l 
m m 

= L Xi11"i + c LXiZi11"i 
i=l i=l 

= fn(X) +(X, Z)n 
= fn(X) 

Hence, for any self-financing trading strategy <I> we have 

fn· (Vr( <I>)) = fn(Vr( <I>)) 

and since II is a martingale measure, Theorem 7 implies that 

fn·(Vr(<I>)) = fn(Vr(<I>)) = Vo(<I>) 

But this same theorem then tells us that II* is also a martingale measure, 
that is, provided that II* is strongly positive. So all we need to do to 
complete the proof is choose the constant c so that II* is strongly 
positive, that is, 

or equivalently 

1 + CZi > 0 

for all i. To this end, let M = max{lzil}. Then 
~ 

-M < z· < M - ~-

and so 
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Zi 
-1 <- < 1 -M-

Dividing by 2 and adding 1 gives 

and so we can take 

1 Zi 3 -<1+-<-2- 2M-2 

1 
c=-

2M 

This completes the proof. 0 

6.10 Computing Martingale Measures 

We now want to consider the issue of computing a martingale measure 

II= (1r1, · · ·, 1rm) 

for a model M. The technique is quite simple, although writing down the 
details is a bit messy. 

First, note that any final outcome Wr E 0 lies in a sequence of blocks, 
one from each partition Pk. say 

{ Wr} = BT,ir ~ Br-l,ir-1 ~ ... ~ Bo,io = n 

Then 1r r = J!Drr ( Wr) is just a product of conditional probabilities 

1rr = IP'rr(wr) 
= IP'rr(wr I Br-l,ir_JIP'rr(Br-l,ir_J 
= IP'rr(Wr I Br-l,ir_1)JIDrr(Br-l,ir-1 I Br-2,ir-2)J1Drr(Br-2,ir-2) 

= IP'rr(wr I Br-l,ir_JIP'rr(Br-l,ir-1 I Br-2,ir-2)· · ·JIDrr(B1,i1 I Bo,i0 ) 

Thus, we can compute the probabilities in II if we can compute the 
conditional probabilities 

(1) 

for all pairs of blocks Bk+l,v ~ Bk,u· 

The state information tree gives a very intuitive picture of the conditional 
probabilities and how they are combined to get the martingale measure 
probabilities. Figure 5 shows a path from the initial block B0,1 to a final 
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block Wr = B4,i4 • The conditional probabilities are used to label the 
edges of the path. 

I':'~ f) 

Figure 5: A path probability 

Moreover, the martingale probability 1r r = JP>n ( Wr) is just the product of 
the conditional probabilities that label the edges of the path from B0,1 to 
Wr. For this reason, we may refer to the martingale probabilities as path 
probabilities. 

To actually compute the conditional probabilities in (1), we do not look 
at paths but rather at individual blocks and their immediate successors, as 
shown in Figure 6. This forms a submodel of the entire model M. 

Figure 6: The submodel starting at Bk,v 
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Fix a block Bk,v· Suppose that the blocks emanating from Bk,v are 

B = {Bk+l,l, ... , Bk+l,c} 

Then for each asset aj, the martingale condition is 

sk,j = EII(Sk+l,j I Pk) 

The random variable EII(Sk+l,j I Pk) is Pk-measurable, that is, it is 
constant on the blocks ofPk so we may suggestively write 

sk,j(on Bk,v) = EII(Sk+l,j I Pk)(on Bk,v) 

or equivalently 

Since Sk+l,j is constant on the blocks ofPk+l we have 

sk,j(on Bk,v) = EII(Sk+l,j I Bk,v) 
1 -

= JP> (B ) EII(1Bk,vSk+l,j) 
II k,v 

1 c -

= JP> (B ) L[1Bk,vSk+l,j]( on Bk+l,i)JP>II(Bk+l,i) 
II k,v i=l 
c 

= L:sk+l,j(on Bk+l,i)JP>II(Bk+l,i I Bk,v) 
i=l 

The equations (one for each j = 1, ... , m) 

c 

Sk,j(on Bk,v) = LSk+l,j(on Bk+l,i)JP>II(Bk+l,i I Bk,v) 
i=l 

provide the means to compute the conditional probabilities. Note that 
from j = 1 we have Se,1 = 1 so the equation in this case is 

c 

1 = L JP>II(Bk+l,i I Bk,v) 
i=l 

Theorem 10 Let II= (1r1 , ... , 7rm) be a martingale measure forM. Each 
Wr E 0 is contained in the unique chain of blocks 

Bo,l 2 B1,i1 2 · · · 2 Br,ir = { Wr} 

Then the martingale probability 1r r = JP>II ( Wr) is just a product of 
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conditional probabilities 

7rr = lP'rr(wr) = lP'rr(Bl,i1 I Bo,l)lP'rr(B2,i2 I B1,iJ· · ·lP'rr(BT,iT I BT-l,ir_J 

To compute the conditional probabilities lP'rr( · I Bk,v), suppose that the 
blocks emanating from Bk,v are 

B = {Bk+l,l, ... , Bk+l,c} 

Then we have the system of equations (one for each j = 2, ... , m) 

c 

sk,j(on Bk,v) = L:sk+l,j(on Bk+l,i)lP'rr(Bk+l,i I Bk,v) (1) 
i=l 

along with 

c 

L lP'rr(Bk+l,i I Bk,v) = 1 (2) 
i=l 

Let us illustrate the computation of a martingale measure. 

EXAMPLE 2 The left half of Figure 7 shows the state tree of Example 
1. Recall that riskfree rates are assumed to be 0. 

Po.1.1 217 

80 80,1 80 80,1 

Po.1.2 5/7 

2/5 

Figure 7: Computing martingale probabilities 

90 

80 

We can compute the conditional probabilities starting with each block of 
the penultimate partition P1. For the block B1,1 equations (2) and (3) 
gtve 

90lP'rr(B2,1 I Bt,t) + 80lP'rr(B2,2 I Bt,t) = 85 
JP>n(B2,1 I B1,1) + JP>u(B2,2 I B1,1) = 1 

Solving this system gives 
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as shown on the right in Figure 7. Similarly, for block B 1,2 we get 

80JP>rr(B2,3 I B1,2) + 75JP>rr(B2,4 I B1,2) = 78 
lPrr(B2,3 I B1,2) + lPrr(B2,4 I B1,2) = 1 

with solution 

Finally, for the block B0,1 we have 

with solution 

85JP>rr(Bl,l I Bo,l) + 78JP>rr(B1,2 I Bo,l) = 80 
lPrr(Bl,l I Bo,l) + lPrr(B1,2 I Bo,l) = 1 

2 5 
lPrr(Bl,l I Bo,l) = 7' lPrr(B1,2 I Bo,l) = 7 

The right half of Figure 7 shows the conditional probabilities. We can 
now compute the martingale measure II simply by taking the products 
along each path from the starting state to the final states 

2 1 2 
JP>rr(wl) = 7 · 2 = 14 

2 1 2 
JP>rr(w2) = 7 · 2 = 14 

5 3 3 
JP>rr(w3) = 7 . 5 = 7 

5 2 2 
JP>rr(w4) = 7. 5 = 7 

Let us now consider once again the alternative 

The payoffs for a replicating self-financing trading strategy 
q> = (81, 82) are 
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V2(82)(w1) = 100 
V2(82)(w2) = 90 
V2(82)(w3) = 80 
V2(82)(w4) = 70 

At this point, we can use Theorem 7, which tells us that 

Vo(<I>) = Err(Vr(<I>)) 

Hence, 

- 2 2 3 2 570 
V0( <I>) = 100 · - + 90 · - + 80 · - + 70 · - = - ~ 81.43 

14 14 7 7 7 

just as we found in Example 1. D 

Exercises 

1. For the state tree in Figure 4, compute a self-financing trading 
strategy <I>= (81 , 8 2) that replicates the alternative 

X(w!) = 95, X(w2) = 90, X(w3) = 85, X(w4) = 75 

Assume that the riskfree rates are 0. 
2. For the state tree in Figure 8 

100 

80 80,1 

Figure 8 

replicate the alternative 

(100,100,95,90,90,85) 

Assume that the riskfree rates are 0. Hint: There is more than one 
possible answer. 
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3. Consider the following game. Three fair coins are flipped. The 
player wins if three heads occur, otherwise the casino wins. For 
every $0.25 the player wagers, the casino must put up $2.00, making 
the wager fair. Imagine now that the casino wants to hedge its 
position against a player who wishes to wager $1 million dollars. 
(The casino is at risk for $8 million.) Accordingly, the casino finds a 
"market maker" in coin-tossing bets and done the following: Before 
the first toss, it bets $1 million dollars on heads at even money; 
before the second toss (if there is one), it bets $2 million dollars on 
heads at even money and before the third toss (if there is one), it bets 
$4 million dollars on heads at even money. Track the value of the 
casino's and the player's portfolio during the game. Justify the 
statement that the casino has entered into a self-financing, replicating 
complete hedge. 

4. Prove that the set T of all self-financing trading strategies is a vector 
space under the operations of coordinate-wise addition 

(81,1, ... , 81,T) + (82,1, ... , 82,T) = (81,1 + 82,1, ... , 81,T + 82,T) 

and scalar multiplication 

a(81, ... ,8r) = (a81, ... ,a8r) 

5. Consider the self-financing trading strategy 

<I>=(81, ... ,8r) 

where 

8i = ( ei,1' ... '()i,n) 

For any nonzero real number a, let 

<I>' = ( 8~ ' ... ' 8~) 
where 

8~ = (ei,1 + aln, ... 'ei,n) 

Show that <I>' is self-financing. 
6. Prove that the set M of all attainable alternatives is a subspace of the 

vector space RV(O) of all random variables on 0. 
7. Prove Theorem 4. 
8. Consider a model M with two assets: The riskfree asset and a stock. 

If the riskfree rates ri are large enough, will there always be an 
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arbitrage opportunity? Explain your answer. Does this apply to 
models with more than one risky asset? 

9. Consider the following game. A set of 3 coins exists. The first coin is 
fair, the second coin has probability of heads equal to 0.55 and the 
third coin has probability of heads 0.45. Draw a state tree indicating 
the possible outcomes along with their probabilities. Find the path­
weight probability distribution. 

10. Show that the replicating relation defined by <1>1 = <1>2 if and only if 
<1>1 replicates <1>2 is an equivalence relation on the set of self­
financing trading strategies, that is, the relation satisfies the 
following conditions: 
a) (reflexivity) <1>1 = <1>1 
b) (symmetry) <1>1 = <1>2 implies <1>2 = <1>1 
c) (transitivity) <1>1 = <1>2 and <1>2 = <!>3 implies <1>1 = <1>3 

11. Prove that if any strictly positive alternative is attainable then the 
market is complete. 

A Single-Period, Two-Asset, Two-State Model 

Consider a simple single-period, two-asset, two-state model M. The 
model has two assets A= (a1, a2) where a1 is the riskfree bond at rater 
and a2 is an underlying stock with initial price S0 and final price Sr. The 
model has only two states of the economy 0 = ( w1 , w2). It is customary 
to express the final stock price in terms of the initial price. In state w1 the 
stock price is multiplied by a factor u so that 

Sr =Sou 

and in state w2 the price is multiplied by a factor d so that 

Sr =Sod 

We will assume that d ~ u. The following exercises pertain to this 
model. 

12. Show that M is complete if and only if d < u. 
13. Consider an option with payoff X given by 

X(wl) = fu 
X(w2) = !d 

Find a replicating portfolio for X. 
14. Find the initial price of X. 
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erT- d 
7T' = ---

u-d 

and show that the price of the derivative is 

erT[1T'fu + (1- 7r)fd] 

What does this tell you about ( 7r, 1 - 7r)? 
16. Show that there is no arbitrage in this model if and only if 

d < erT < u. 
17. A day trader is interested in a particular stock currently priced at 

$100. His assessment is that by the end of the day, the stock will be 
selling for either $101 or $99. A European call is available at a strike 
price of$99.50. How should it be priced? Assume that r = 4%. 

18. a) Suppose a certain security is currently selling for 160. At timeT 
the security will sell for either 200 or 140. Price a European put 
on this asset with strike price 180, assuming no arbitrage and 
interest rater = 0. 

b) Suppose you are fortunate enough to acquire the put described 
above for only 20. Describe the various portfolios that include 
the put that will guarantee a profit. 

A Single-Period, Two-Asset, Three-State Model 

Consider now a single-period, two-asset model with three states. Assume 
a riskfree rate of 0. Suppose that 80,2 = 25 and 

S1,2(w1) = 40, S1,2(w2) = 30, S1,2(w3) = 20 

19. Show that the model is not complete. 
20. Find all martingale measures for this model. 
21. Show that the following are martingale measures: 

1. 4 7 
Ill = ( 12' 12' 12) 

1 1 4 
II2 = (6, 6' 6) 

22. Find a replicating trading strategy (portfolio) and price a call option 
with strike price 20 using the two martingale measures of the 
previous exercise. 





Chapter 7 

The Cox-Ross-Rubinstein Model 

In this chapter, we discuss a specific discrete-time model known as the 
Cox-Ross-Rubinstein model because it was first described by these 
gentlemen in 1979. We will abbreviate Cox-Ross-Rubinstein by CRR. 
The CRR model is also referred to in the literature as the binomial 
model for reasons that will become apparent as we proceed. 

In a later chapter, we will use this model to derive the famous Black­
Scholes option pricing formula. 

7.1 The Model 

Times 

The Cox-Ross-Rubinstein model is a discrete model, in that it has a 
finite number of times 

to < t1 < .. · < tr 

Moreover, the time intervals [ti, ti-l] have equal length 6.t, that is, 

ti -ti-l = 6.t 

Thus, the entire lifetime of the model is 

L = tr - to = T 6.t 

Assets 

The CRR model has only two assets: The riskfree asset a1 and a risky 
asset a2. 

The States of the Model 

Figure 1 shows a portion of the state tree for the CRR model. 

0 0 e na 

oma 
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t0 t1 t2 t3 

Figure 1: State tree for Cox-Ross-Rubinstein model 

The CRR model assumes that during each time interval [ti, ti+I] the state 
of the economy changes in one of two ways: It goes up or it goes down. 
Also, the direction of change in the economy is independent of past 
changes. 

If we denote an up-tick in the economy by U and a down-tick by D then 
a final state of the economy is a string of U's and D's of length T. Let us 
denote the set of all strings of U's and D's of length k by {U, D}k. For 
instance, 

{U,D}2 = {UU,UD,DU,DD} 

Thus, the final state space is 

Note that {U, D}k has size 2k, in particular, 0 has size 2r. 

Since we will be dealing regularly with strings of U's and D's, let us 
establish a bit of notation. For any wE {U, D}T we denote the prefix of 
w oflength i by [w]i. Thus, if w = e1 · · ·er then 

[w]i = e1· · ·ei 

for any i :S T. We also set 

Nu(w) =number ofU's in w 
ND(w) =number of D's in w 

The intermediate states of the model are defined as follows. There is one 
time-tk intermediate state for each string in {U, D}k. In particular, for 
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8 = e1· "ek E {U, D}k the intermediate state B6 E Pk is the set of all 
final states having prefix 8 

B6 = { w E n I [w]i = 8} 

Thus, Pk has exactly 2k blocks (intermediate states). 

For example, ifT = 4 then P1 consists of the two intermediate states 

Bu = {UUUU,UUUD,UUDU,UUDD, 
UDUU,UDUD,UDDU,UDDD} 

BD = {DUUU,DUUD,DUDU,DUDD, 
DDUU, DDU D, DDDU, DDDD} 

The partition P2 consists of the four intermediate states 

Buu = {UUUU,UUUD,UUDU,UUDD} 
BuD= {UDUU,UDUD,UDDU,UDDD} 
BDu = {DUUU,DUUD,DUDU,DUDD} 
BDD = {DDUU,DDUD,DDDU,DDDD} 

At time t0 there is only one (initial) state BE = n. This corresponds to 
the empty string E, which is a prefix of all strings. 

It is clear that each block Be1 •• ·ek of Pk gives rise to exactly 2 blocks of 
the next partition Pk+ 1, namely 

Put another way, each node of the state tree has exactly two edges 
emanating from it. 

Natural Probabilities 

We also need to consider the natural probability that the economy takes 
an upturn at any given time. Let us denote this probability by p. We 
should emphasize that the natural probability is estimated by economic, 
not mathematical means. 

The Price Functions 

To simplify the notation a bit, let us denote the time-tk price of the 
riskfree asset by Bk and the time-tk price of the risky asset, which we 
may think of as a stock for concreteness by Sk. 
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The CRR model specifies that the stock price is detennined by a pair of 
real numbers u and d satisfying 

O<d<u 

If during the time interval [tk, tk+I] the economy goes up then the stock 
price goes up from Sk to Sku and if the economy goes down then the 
stock price also goes down from Sk to Skd. Note that u and d are 
constants, that is, they do not depend on time. 

It follows that the time-tk stock price function sk is given by 

Sk(w) = SouNu([w]k)dNn([w]k) 

for any final state w E { U, D Y. In partic~lar, the final price is 

Sr(w) = SouNu(w)dNn(w) 

The fact that Sk is Pk-measurable is reflected in the fact that the value 
Sk(w) depends only on the prefix [w]k of w and thus only on what has 
happened up to time tk. Note also that the price of the stock at time tk 
depends only on the number of U's and D's in the state up to that time, 
and not on their order. This is a key feature of the CRR model that is not 
possessed by discrete-time models in general (and is probably not very 
realistic as well). 

Note that the stock price functions also satisfy a recurrence relation 

Sk(w) = Sk-lUEk(w)dl-Ek(w) 

The price of the riskfree asset is, as always, given by the riskfree rate. In 
the CRR model, we assume that this rate r is constant throughout the 
lifetime of the model. Thus, for all final states w, the price of the riskfree 
asset at time tk is 

(Of course, the units must match. For example, if r is an annual rate then 
the times tk must be measured in year.) 

7.2 Martingale Measures in the CRR model 

Suppose that II is a martingale measure for a CRR model M. Theorem 
10 of Chapter 6 tells us how to compute the conditional probabilities that 
are used to compute II. 
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Consider a block 

B.s = { w E n I [w]i = 6} 

ofPk. The blocks ofPk+l that are contained in B.s are 

Bou ={wEn I [w]i+l = 6U} 

and 

B.sv ={wEn I [w]i+l = 6D} 

Figure 2 shows the block B8 and its successors. 

81 

Figure 2: The block B8 and its successors 

Let us denote the conditional probabilities by 

Po,u = lPrr(Bou I B.s) 
1- Po,u = lPrr(B.sv I B.s) 

The CRR model dictates that 

Sk+l(on B.su) = uSk(on B.s) 
Sk+I(on B.sv) = dSk(on B.s) 

.. 
or in discounted form (multiplying both sides by e-(k+l)rt.t) 

- t.t -Sk+l(onB.su) = e-r uSk(onB.s) 
- t.t -Sk+I(on B.sv) = e-r dSk(on B.s) 

Theorem 10 of Chapter 6 then gives 

- t.t-Sk( on B.s) = e-r Sk( on B.s)[up.s,u + d(l - Po,u )] 

or 

erb.t = UPo,U + d(l- Po,U) = (u- d)p.s,u + d 
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It follows that Po,u is independent of 8 and writing 

1ru = Po,u 

we have 

and 

erl:it - d 
'ffU = 

u-d 

u - erl:it 
1-'ffu = ---

u-d 

Now, the ordered pair ( 1ru, 1 - 1ru) is a strongly positive probability 
distribution if and only if 0 < 1ru < 1. In this case, the conditional 
probabilities depend only on u, d and r and are unique. This implies that 
the martingale measure is unique and so the model is complete. 

The condition 0 < 1ru < 1 is equivalent to 

0 < erl:it - d < u - d 

or 

Assuming that this is the case, the resulting unique martingale measure II 
is given, for any wE {U, DV by 

lPrr(w) = 7r~u(w)(1-7ruf-Nu(w) 

We now have a very nice theorem describing martingale measures in the 
CRRmodel. 

Theorem 1 The Cox-Ross-Rubinstein model is complete and free of 
arbitrage if and only if 

d < erl:it < u 

In this case, the unique martingale measure II on M is defined, for any 
wE {U,DV by 
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where 

er6.t- d 
1rU = u-d 

7.3 Pricing in the CRR Model 

0 

Let us assume that M is a complete CRR model with no arbitrage. Then 
the replicating strategy procedure can be used to price alternatives. In 
particular, if X is an alternative then there is a replicating trading 
strategy <I> for X and the price of X is 

I(X) = Vo(<I>) 

= e-rL t'rr(Vr( <I>)) 

= e-rLerr(X) 

= e-rLLX(w)IP'rr(w) 
wEn 

= e-rLLX(w)1r~u(w)(l-1ruf-Nu(w) 
wEn 

For a stock option, such as a call, the final payoff is 

Vr = max{Sr- K, 0} = (Sr- K)+ 

where x+ is shorthand for max { x, 0}. 

Now, the stock price Sr is the same for all final states that have the same 
number of U's, in fact 

So, we can regroup the terms in the final summation above based on the 
number of U's in w. Since there are 

(T) n! 
n - k!(n- k)! 
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sequences of length T that have exactly k U's, we have 

e-rLL X(w)1r~u(w\ 1 _ 1ru ?-Nu(w) 
wEf! 

= e-rLL (SouNu(w)dT-Nu(w) _ K)+1r~u(w)( 1 - 1ruf-Nu(w) 
wEf! 

= e-rLt (T) (SoukdT-k- K)+7rt(l- 7ru ?-k 
k=O k 

This formula is important enough to be placed in a theorem. 

Theorem 2 Let M be a complete CRR model with no arbitrage. Then a 
European call option with strike price K expiring at the end of the model 
has initial value 

and a European put option has initial value 

EXAMPLE 1 A certain stock is currently selling for 100. The feeling is 
that for each month over the next 2 months, the stock's price will rise by 
1% or fall by 1%. Assuming a riskfree rate of 1%, calculate the price of a 
European call with the various strike prices K = 102, K = 101, 
K = 100, K = 99, K = 98 and K = 97. 
Solution The martingale probability is 

ert!.t _ d e(O.Ol)(l/12) _ 0.99 
1l"U = = ~ 0.54 

u- d 0.02 

and so 

I = e -O.OI/Otu G) (100(1.01 )'(0.99)2-' - K)+ (0.54)' (0.46)2-' 

= 0.9983[0.2116(98.01- K)+ + 0.4968(99.99- K)+ 
+ 0.2916(102.01 - K)+] 
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Thus, some calculation gives 

K So D 
102 0.0029 
101 0.2959 
100 0.5888 
99 1.3725 
98 2.1632 
97 3.1615 

7.4 Another Look at the CRR Model via Random Walks 

Let us take a somewhat different perspective on the CRR model. During 
each time interval [ti, ti+l] of length flt the stock price takes either an 
up-tick or a down-tick. Thus, the individual price movements can be 
modeled as a sequence Ei of independent Bernoulli random variables 
where 

JP>(Ei = u) = p 

JP>( Ei = d) = 1 - p 

that is, 

E· = { u with probability p 
2 d with probability q = 1 - p 

where p is the natural probability of an up-tick in the economy. Hence 
the stock price at the final time tr is given by 

Sr = SoE1· · · Er = SoeDog(E;) = SoeHT 

where 

Hr = log(~T) = tlog(Ei) 
0 2=1 

is the logarithmic growth of the stock price. Next, we define the 
constants J..l and a by 

1 1 
J..l = l:lt £(log Ei) = l:lt (p log u + q log d) 

1 1 
a 2 = l:lt Var(log Ei) = l:ltpq(log u- log d)2 

The significance of these constants will be discussed later. Now, since 
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and 

we can standardize the random variable log Ei to get (since CJ =f. 0) 

log Ei - J-Lf).t 
xi= (JJ!ij 

Now let us write 

where the random variables 

are independent Bernoulli random variables with 

Hence 

We now have 

that is, 

. _ { -}:;q with probability p 

x~ - :fiq with probability q 

£(Xi)= 0 
Var(Xi) = 1 

T 

HT = I)og(Ei) 
i=l 
T 

= l:)J-L/).t + (J)Mxi] 
i=l 

T 

= p,L + (J)b:i:Lxi 
i=l 
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T 

Hr = ~-tL + a~Lxi 
i=l 

This formula expresses the logarithmic growth as a sum of a 
deterministic part ~-tL, which is a constant multiple of the lifetime L of 
the model and a random part 

which is a constant multiple of a sum of independent Bernoulli random 
variables. Each term Xi describes the movement of the stock price 
during a subinterval of the model. Finally, the stock price itself is given 
by 

The constant 1-t is called the drift and the constant a is called the 
volatility of the stock price. These terms will be explained in a moment. 

Note that the expression 

is referred to as the return by some authors. The reason is that the 
equation above is equivalent to 

Sr = SoesT 

which shows that the stock price grows at a continuously compounded 
rate of s. Thus, sis the rate of return. 

Random Walks 

The sequence (Xi) that describes the behavior of the stock price over 
each subinterval is an example of a random walk. To understand random 
walks, imagine a flea who is constrained to jump along a straight line, 
say the x-axis. The flea starts at the point x = 0 at time t = 0 and during 
each interval of time (of length ~t) jumps randomly a distance a to the 
right or a distance b to the left. Assume that the probability of a jump to 
the right is p. This is shown in Figure 3. 
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... 
~ 

I I 
0 

Figure 3: The random walk of a flea 

Each variable X i in the sequence (Xi) describes a single step in the flea's 
perambulations and the partial sums 

represent the position of the flea at time tk . 

Figure 4 shows a couple of computer-generated random walks with 
p = q = 1/ 2 and a= b. (These are called symmetric random walks.) As 
is customary in order to see the path clearly, each position of the flea is 
marked by a point in the plane, where the x-axis represents time and the 
y-axis represents position. 

~vvv v~ 
~j 

Figure 4: Random walks 

There are many formulations of the random walk scenario, involving for 
example, drunks who are walking randomly along a street or gambler's 
playing a game of chance, or the price of a stock. Indeed, entire books 
have been written on the subject of random walks. 
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There are also many questions that can be asked about the behavior of a 
random walk. For example, given integers a and b for which a< 0 < b 
is it necessarily true that the flea must eventually arrive at one of these 
"boundary points" or can the flea oscillate back and forth forever, never 
reaching either boundary? 

Since the answer to the previous question is that the flea must eventually 
reach one of the boundary points, we can ask about the probability of 
reaching each of the boundary points and the expected time to reach a 
boundary. We might also inquire about whether the flea must return to 
the origin at some time in the future. 

In any case, this is not a book on random walks, so let us return to the 
situation at hand, namely 

T 

Hr = J-LL + O"~Lxi 
i=l 

The deterministic term J-LL is a constant multiple of the lifetime of the 
model and accounts for a steady change (drift) in the stock's price (if 
J-l =J. 0). It is akin to the behavior of the riskfree asset with interest rate J-l. 
The random term is a constant multiple of the position of the random 
walk. 

Let us summarize what we have learned about the CRR model. In a later 
chapter, we will use this model to derive the famous Black-Scholes 
option pricing formula. 

Theorem 3 For a CRR model with probability of up-tick equal top and 
down-tick equal to q = 1 - p, lifetime L and time increments !::..t the 
stock price is given by 

T 
J.tL+rr/liiL,Xi 

Sr = Soe i=l 

where the drift and volatility are defined by 

1 
J-l = !::..t (p log u + q log d) 

1 
0"2 = JA":pq(logu -logd)2 

v !:l.t 
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The random walk portion of the stock movement is given by 

T 

Yr = L:xi 
i=l 

where the random variables Xi are independent and 

. _ { }pq with probability p 

x2 - ;fiq with probability q 

Exercises 

D 

1. A certain stock is currently selling for 50. The feeling is that for each 
month over the next 2 months, the stock's price will rise by 10% or 
fall by 10%. Assuming a riskfree rate of 1%, calculate the price of a 
European call with strike price K given by 
a)52 b)51 c)50 
d) 49 e) 48 t) 4 7 
What about a European put with the same strike price and expiration 
date? 

2. A certain stock is currently selling for 10. The feeling is that for each 
month over the next 2 months, the stock's price will rise by 5% or 
fall by 10%. Assuming a riskfree rate of 1%, calculate the price of a 
European call with strike price K given by 
a)ll b)10 c)9 d)8 
What about a European put with the same strike price and expiration 
date? 

3. Referring to Example 1 explain why there is a loss in all states 
except the first, that is, there is a loss with probability 3/4. 

4. Show that {U, D}k has size 2k. Hint: Use mathematical induction or 
the fundamental counting principle (also known as the multiplication 
rule). 

5. Show that 

. _ { j;q with probability p 

x2 - ;fiq with probability q 

6. Show that the two values of a Bernoulli random variable X with 
p = 1/2 are given by £(X)± y'Var(X). 

7. An alternative X that depends on the final state only through the 
number of U's in the state is called a path-independent alternative. 
In particular, if P is the partition of D whose blocks are the subsets 
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G k of n that contain exactly k U's 

Gk ={wEn I Nu(w) = k} 

then X is path-independent if and only if there are constants Xk for 
which 

fork = 0, ... , T. 
a) Show that 

b) Show that the probability (under the martingale measure) of any 
wE Gk is 

1r~u(w) (1 _ 1f"U f-Nu(w) = 1rt (1- 1f"U )T-k 

c) Show that the probability of G k is 

d) Show that if X is a path-independent alternative then 

T(X) = e-rLtxk(T)1rt(l-1ruf-k 
k=O k 

8. Write a computer program or an Excel spreadsheet to compute the 
price of a European call under the CRR model where T = 2. 

9. Verify that 

£p(logEi) = plogu + qlogd 

Varp(logEi) = pq(logu -logd)2 

10. In a general discrete-time model, knowledge of the state of the 
economy at a given time implies knowledge of the asset prices at that 
time. Why? Is the converse necessarily true? What if at time tk we 
know all previous states and asset prices? Support your answer. 
What happens in the case of the CRR model? 





Chapter 8 

Probability III: Continuous Probability 

In this chapter we discuss some concepts of the general theory of 
probability, without restriction to finite or discrete sample spaces. This is 
in preparation for our discussion of the Black-Scholes derivative pricing 
model. 

Since this is not a book on probability and since a detailed discussion of 
probability would take us too far from our main goals, we will need to be 
a bit "sketchy" in our discussion. For a more complete treatment of 
probability, please consult the references at the end of the book. 

8.1 General Probability Spaces 

Let us recall the definition of a finite probability space. 

Definition A finite probability space is a pair (0, JID) consisting of a 
finite nonempty set 0, called the sample space and a real-valued 
function JlD defined on the set of all subsets of 0, called a probability 
measure on 0. Furthermore, the function JlD must satisfy the following 
properties. 
1) (Range) For all A~ 0 

0 :::; JID(A) :::; 1 

2) (Probability of 0) 

JID(O) = 1 

3) (Additivity property) If A and Bare disjoint then 

JID(A U B)= JID(A) + JID(B) 

In this context, subsets ofO are called events. D 

We have also seen that the additivity property of JlD is equivalent to the 
finite additivity property, that is, if 

A1,A2, ... ,An 

is a finite sequence of pairwise disjoint events then 

JID(A1 u .. · U An)= JID(Al) + .. · + JP>(An) 

0 0 e z na 

oma 
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Now, we would like to generalize this definition to sample spaces of 
arbitrary size, while preserving as much of the spirit of the current 
definition as possible. In particular, it is essential that lP' not only satisfy 
the three properties above but also that lP' be countably additive, that is, if 

Al,A2, ... 

is a sequence of pairwise disjoint events then 

where the infinite sum on the right must converge. We must fit as much 
of the previous definition as possible into the context of countable 
additivity. 

It turns out that this can be done by making only one compromise, 
namely, not all subsets of the sample space can be considered events. Put 
another way, it is not in general possible to define a countably additive 
set function on all subsets of an infinite set 0. We would very much like 
to give an example to support this statement, but such examples involve 
more mathematical machinery than is appropriate for this book, so we 
must ask the reader to take this point on faith. 

Given this fact, we need to consider what types of collections of subsets 
of the sample space can act as the collection of events of a probability 
measure. This leads us to the concept of a 0'-algebra. 

Definition Let 0 be a nonempty set. A nonempty collection ~ of subsets 
ofO is a 0'-algebra if 
1) 0 E ~ 

2) ~ is closed under countable unions, that is, if A1, A2,... is a 
sequence of elements of~ then 

3) ~is closed under complements, that is, if A E ~then AcE ~.0 

Note that 0 = oc E ~. Also, DeMorgan's laws show that ~ is closed 
under countable intersections. (We leave details as an exercise.) 
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Definition A measurable space is a pair (0, ~) consisting of a 
nonempty set 0 and a a-algebra ~ of subsets ofO. D 

Now we can define a general probability space. 

Definition A probability space is a triple (0, ~' JP>) consisting of a 
nonempty set 0, called the sample space, a a-algebra ~of subsets ofO 
whose elements are called events and a real-valued function JP> defined 
on ~ called a probability measure. The function JP> must satisfy the 
following properties. 
1) (Range) For all A ~ 0 

0 ::; JP>(A) ::; 1 

2) (Probability of 0) 

JP>(O) = 1 

3) (Countable additivity property) 

is a sequence of pairwise disjoint events then 

D 

A very useful property of probability measures is given in the following 
theorem. A decreasing sequence of events is a sequence of events 
satisfying 

Similarly, an increasing sequence of events is a sequence of events 
satisfying 

Theorem 1 Probability measures are monotonically continuous in the 
following sense. 
1) If A1 2 A2 2 · · · is a decreasing sequence of events then 
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2) If A1 ~ A2 ~ ···is an increasing sequence of events then 

Proof. For part 1), suppose that A1 2 A2 2 · · ·. Then the sequence 
JP>(Ai) of probabilities is a nonincreasing sequence of real numbers 
bounded below by 0. It is a theorem of elementary real analysis that such 
a sequence must converge, so the limit in question does exist. 

00 

For convenience, let A= n Ai. We first consider the events 
i=l 

These events are disjoint, since if i < j then i + 1 :::; j and so Aj ~ Ai+l· 
Hence if 

then a would be in Aj but not in the superset Ai+l· Also, each of these 
events is disjoint from the intersection A. Thus, A1 is the disjoint union 

For if a E A 1 then if a ~ A then we can let i + 1 be the first index for 
which a~ Ai+l· It follows that a E Ai \ Ai+l· 
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Now we can apply countable additivity to get 

Thus 

00 

= L JP>(Ai \ A-1) + JP>(A) 
i=l 

n 

= lim~ JP>(Ai \Ai-l)+ JP>(A) n->oo~ 
i=l 

= l~m JP> (0 (Ai \Ai-d) + JP>(A) 
n oo i=l 

= lim JP>(A1 \An-d + JP>(A) 
n->oo 

= lim [JP>(A1) - JP>(An-I)] + JP>(A) 
n->oo 

= JP>(A1)- lim JP>(An-d + JP>(A) 
n->oo 

lim JP>(An) = lim JP>(An-1) = JP>(A) 
n->oo n->oo 

as desired. We leave proof of part 2) as an ~xercise.D 

8.2 Probability Measures on lR 

The most important sample space from the point of view of both theory 
and applications is the real line R In fact, the only nonfinite probability 
space that we will need to consider in this book is JR.. 

The most important a-algebra on JR. is the Borel a--algebra B. A formal 
definition of the Borel a-algebra is simple to state, if not quite as simple 
to comprehend. 

Definition The Borel a--algebra B on JR. is the smallest a-algebra on JR. 
that contains all open intervals (a, b) where a, b E JR.. D 

Let us examine this definition. First, we must show that there is such a a­
algebra. After all, just because we use a phrase such as "the smallest set 
... " doesn't mean that there is such a set. 

The usual procedure for showing that there is a smallest set with some 
property is to show two things: First, that there is at least one set with the 
desired property and second that the intersection of any collection of sets 
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with the desired property also has the desired property. It follows that the 
intersection of all sets with the desired' property exists and is the smallest 
set with that property. 

For the case at hand, it is easy to see that there is at least one o--algebra 
on lR containing the open intervals: It is the collection of all subsets of R 
Second, it is not hard to see that the intersection of o--algebras is also a o-­
algebra. We leave the details to the reader. Hence, the Borel o--algebra 
does indeed exist and is the intersection of all o--algebras that contain the 
open intervals. 

Note that while we have established the existence ofthe Borel o--algebra, 
its description as the intersection of all o--algebras that contain the open 
intervals is not very practical. From a practical perspective, it is more 
useful to consider some examples of elements of B, that is, of Borel sets. 

Theorem 2 
1) All open, closed and half-open intervals are Borel sets. 
2) All rays ( -oo, b], ( -oo, b), [a, oo) and (a, oo) are Borel sets. 
3) All open sets and all closed sets are Borel sets. 
Proof. We sketch the proof. For 1), to see that the half-open interval 
(a, b] is a Borel set observe that 

00 1 
(a,b] = n(a,b+ -) 

n=l n 

and so (a, b] is the countable union of open intervals and is therefore in 
B. 

For 3) let us briefly discuss open sets in R A subset A oflR is open if for 
every x E A there is an open interval (a, b) for which 

x E (a, b) ~A 

A set is closed if its complement is open. Let A be an open set in R 
Then A is the union of all open intervals contained within A. In fact, A is 
the union of all maximal open intervals in A. An open interval I in A is 
maximal in A if no open interval containing I as a proper subset is also 
inA. 

Now, we claim that any two maximal open intervals are disjoint and that 
there are at most a countable number of maximal open intervals. As to 
the former, any two distinct maximal open intervals contained in A must 
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be disjoint, for otherwise their union would be a strictly larger open 
interval contained in A. As a result, each maximal open interval in A 
contains a distinct rational number and since there are only a countable 
number of rational numbers, there are at most a countable number of 
maximal open intervals containing A. 

Hence, A is the union of at most a countable number of open intervals 
and is therefore a Borel set. 

Finally, since all open sets are Borel sets and since a closed set is the 
complement of an open set, all closed sets are also Borel sets.D 

At first, the more one thinks about Borel sets, the more one comes to feel 
that all subsets of lR are Borel sets. Nevertheless, this is not the case. 
However, it is true that most "nonpathological" sets are Borel sets. Put 
another way, it is very hard (but not impossible) to describe a set that is 
not a Borel set. We must reluctantly ask the reader to take it on faith that 
there exist subsets of lR that are not Borel sets. 

From now on, the phrase "let JlD be a probability measure on JR" will carry 
with it the tacit understanding that the 0'-algebra involved is the Borel 0'­

algebra. 

Theorem 3 A probability measure on lR is uniquely determined by its 
values on the rays ( -oo, t]. That is, ifJP> and Q are probability measures 
on lR and 

JP>( ( -oo, t]) = Q( ( -oo, t]) 

for all t E lR then JlD = Q. 
Proof. Since for s ~ t 

(s, t] = ( -oo, t] \ ( -oo, s] 

we deduce that 

JP>((s, t]) = Q((s, t]) 

Since any open interval ( s, t) is the union of an increasing sequence of 
half-open intervals 

00 1 
(s,t)=U(s,t--] 

n=l n 
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the monotone continuity of probability measures implies that 

JID((s,t)) =limJID((s,t- ~l) =limQ((s,t- ~l) =Q((s,t)) 
n->oo n n->oo n 

Thus, JID and Q agree on open intervals. Now, it is possible to show that if 
JID and Q agree on open intervals then they agree on all Borel sets. 
However, we will omit this part of the proof, since it requires additional 
concepts (such as monotone classes) that would lead us too far from our 
goals.D 

8.3 Distribution Functions 

For finite (or discrete) probability spaces, probability measures are most 
easily described via their mass functions 

f(w) = JID({w}) 

However, the concept of a mass function is not general enough to 
describe all possible probability measures on the real line, let alone on 
arbitrary sample spaces. For this, we need the concept of a probability 
distribution function. 

Definition A (probability) distribution function IS the function 
F: R-+ R with the following properties. 
1) F is nondecreasing, that is, 

s < t => F(s) ~ F(t) 

(Note that some authors use the term increasing/or this property.) 
3) F is right-continuous, that is, the right-hand limit exists everywhere 

and 

limF(t) = F(a) 
t->a 

4) F satisfies 

lim F(t) = 0 
t---->-00 

D 

limF(t) = 1 
t->oo 

Figure 1 shows the graph of a probability distribution function. Note that 
the function is nondecreasing, right continuous (but not continuous) and 
has the appropriate limits at ± oo. 
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Figure 1: A probability distribution function 

The extreme importance of probability distribution functions is given in 
the next theorem. Basically, it implies that there is a one-to-one 
correspondence between probability measures on lR and probability 
distribution functions. Thus, knowing one uniquely determines the other 
and so the two concepts are essentially equivalent. We will omit the 
proof of this theorem. 

Theorem 4 
1) Let JP> be a probability measure on JR. The function FlP': lR ---+ lR 

defined by 

FlP'(t) = JP>(( -oo, t]) 

is a probability distribution function, called the distribution 
function ofJP>. 

2) Let F: lR ---+ lR be a distribution function. Then there is a unique 
probability measure lP'p on lR whose distribution function is F, that 
is, 

lP'p(( -oo, t]) = F(t) 0 

Suppose we begin with a probability measure JP>, take its distribution 
function FlP' and then form the probability measure Q of FJP'. According 
to the definitions, 

Q(( -oo, t]) = FlP'(t) = JP>(( -oo, t]) 

and so JP> and Q agree on the rays ( -oo, t]. We have seen that this implies 
that JP> = Q. Consequently, the correspondence 

JP> ---+ FlP' 

from probability measures to distribution functions and the 
correspondence 
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from distribution functions to probability measures are one-to-one and 
are inverses of one another. This establishes the fact that the notions of 
probability measure and distribution function are equivalent. 

EXAMPLE 1 Perhaps the simplest probability measures on lR are those 
that convey the notion of "equal likelihood" or "uniform probability" 
over an interval [a, b] ofR For example, consider the closed unit interval 
[0, 1]. 

How do we convey the notion that each outcome in [0, 1] is somehow 
equally likely? In the finite case, say of a sample space { 1, ... , n}, we 
simply assign the same probability 1/ n to each elementary event { k}. 
However, unlike the finite case, it is not possible to assign a positive real 
number p to each elementary event { r} for all r E [ 0, 1 J because there 
are an infinite number of elementary events and so the sum of their 
probabilities is not finite, let alone equal to 1. We must accept the fact 
that the probability of each elementary event is 0 and tum to more 
complex Borel sets. 

First we observe that if B is a Borel set then that portion of B that lies 
outside of the interval [0, 1] should not contribute anything to the 
probability. In other words, 

JID(B n [0, 1n = 0 

As for the rest of B, that is, the set B n [0, 1], the notion of uniform 
probability suggests that JID(B n [0, 1]) should be proportional to the 
"length" of B n [0, 1], whatever that means. 

For intervals, the concept oflength is well-defined 

len([a, b]) = b- a 

Thus, it seems reasonable to define 

II'( ( -oo, t]) = il'([O, t]) = { ~ t<O 
o:::;t:::;1 
t > 1 

This is the uniform distribution function on [0, 1]. Figure 2 shows the 
graph of this distribution function. D 
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(1 '1) 

Figure 2: The uniform distribution function for [0, 1] 

EXAMPLE 2 The most important of all probability distributions is the 
normal distribution, whose distribution function is 

1 jt -~ c/>Jt,u(t) = ~ e za dx 
27!'0'2 -()() 

This is quite a complicated function, but there is not much we can do 
about it. Nature does not always make our lives easy with simple 
formulas. Figure 3 shows the normal distribution function. 

Figure 3: The normal distribution function 

The parameters J.1- and 0'2 are called the mean (expected value) and 
variance, respectively. The standard normal distribution is the normal 
distribution with mean 0 and variance 1 and thus has distribution 
function 

The reason that the normal distribution is considered the most important 
goes beyond the fact that it appears often in applications. Actually, it is 
the reason why it appears so often .in applications that is the key. This 
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reason is expressed mathematically by the most famous theorem in 
probability-the central limit theorem. We will discuss this theorem later 
in the chapter.D 

Note that the uniform and the normal distribution functions are both 
continuous not just right-continuous. Put another way, their graphs have 
no jumps. A jump in the distribution function indicates a point at which 
the probability is not 0. Let us illustrate with an example. 

EXAMPLE 3 A public drug manufacturing company has a new drug 
that is awaiting FDA approval. If the drug is approved, the company 
estimates that its stock will end trading that day somewhere in the range 
[10, 15], with each price being equally likely. However, if the drug is not 
approved, the stock price will likely be 5. Let us assume that the 
probability of approval is 0. 75. 

We could model this situation with the sample space n = {5} U [10, 15] 
but it may be simpler to use the sample space lR and simply assign a 0 
probability outside the set n. The distribution function for this 
probability measure is 

0.25 {
0 

F(t) = ~.25 + 0.75(l-510 ) 

t<5 
5 ~ t < 10 
10 ~ t < 15 
t 2 15 

The graph is shown in Figure 4. Note the jump at t = 5.0 

0.25 

5 10 15 

Figure 4: A distribution function with a jump 

8.4 Density Functions 

The distribution function of a probability measure is extremely 
important, but it is not always the simplest way to describe a probability 
measure. Many probability measures that occur in applications have the 
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property that their distribution functions are differentiable and that the 
derivatives are very "well-behaved". 

By well-behaved, we mean that the derivative of the distribution function 
F can be integrated and the integral is again equal to F. (There are 
functions that have derivatives that are integrable, but the integral of the 
derivative is not the original function.) This can be expressed in symbols 
as follows: 

The function f(x) = F'(x) is called a density function for JP>. Let us have 
a formal definition. 

Definition A probability measure JP> or equivalently a distribution 
function Fr is absolutely continuous if it has a density function, which 
is a nonnegative function f: lR ---+ lR for which 

Fr(t) = [t
00

f(x) dx D 

From this definition, it follows that 

JP>((a, b]) = 1b f(x) dx 

In other words, the probability of the interval (a, b] is the area under 
graph of the density function from a to b. 

Note that a density function must be nonnegative and satisfy 

that is, the area under the entire graph of f over the entire x-axis must be 
equal to 1. In fact, any nonnegative function f with this property is a 
density function for some probability measure. 

Probability measures that have density functions, that is, absolutely 
continuous probability measures, are special. For example, their 
distribution functions are continuous (not just right-continuous). Thus, 
there are no points that have positive probability, as happened in a 
previous example. 
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EXAMPLE 4 The uniform distribution function on [0, 1] is absolutely 
continuous, with density function 

f(x) = { 0 x ¢ [0, 1] 
1 xE[0,1] 

The graph off is shown in Figure 5.0 

Figure 5: The uniform density function on [0, 1] 

EXAMPLE 5 The normal distribution is absolutely continuous, with 
density function 

1 -~ 
f(x) = ~e 2u 

The density of the standard normal distribution is 

This is pictured in Figure 6. The graph of the normal density function is 
the oft-spoken-of bell-shaped curve.D 

1/(21t)112 

Figure 6: The standard normal density function 
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8.5 Types of Probability Measures on 1R 

Probability measures on lR can be classified into the following groups: 
Finite, discrete, absolutely continuous, singular continuous and mixed. 
Let us take a quick look at each of these groups. 

Finite Probability Measures 

A probability measure JP> on lR is finite if there are a finite number of real 
numbers { r 1, ... , r n} for which 

n 

L JP>(ri) = 1 
i=l 

Put another way, all of the probability is concentrated in a finite number 
of points. A finite probability measure can be described by its 
probability mass function, which is 0 everywhere except at the points 
of positive probability 

f( ) { JP>(ri) x = ri 
x = 0 otherwise 

This is also referred to as the density function of JP>. The distribution 
function of a finite probability measure has a finite number of jumps and 
is constant everywhere else. Figure 7 illustrates. 

Figure 7: The distribution function of a finite probability measure 

Discrete Probability Measures 

A probability measure JP> on lR is discrete if there are a countable number 
of real numbers { r 1, r2, ... } for which 

00 

L JP>(ri) = 1 
i=l 

Put another way, all of the probability is concentrated in a countable 
number of points. (By countable we mean finite or countably infinite. 
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Hence, a finite probability measure is a discrete probability measure.) As 
with finite probability measures, a general discrete probability measure 
can be described by a probability mass function, although the term 
"density function" is more common in this case 

f( ) { JID(ri) x = ri 
x = 0 otherwise 

The distribution function of a discrete probability measure can actually 
be quite complex. While it is true that the function has only a countable 
number of jumps, these jumps can occur at sets, such as the set of all 
rational numbers, that are spread "uniformly" throughout the real line. 

Absolutely Continuous Probability Measures 

As we have seen, a probability measure JlD on ffi. is absolutely continuous 
if it has a density function, that is, a nonnegative function f: ffi. ---t ffi. for 
which 

Singular Continuous Probability Measures 

Singular continuous probability measures are definitely pathological in 
nature. A singular continuous (or just singular) probability measure is 
one whose distribution function is differentiable (and hence continuous) 
but whose derivative is 0 on "almost" the entire real line (all except a set 
of probability 0). Fortunately, we do not need to deal with such 
pathological probability measures in this book. 

Mixed Probability Measures 

It is a fact that any probability measure JlD on ffi. can be decomposed (in a 
unique way) into a linear combination of a discrete (including finite), an 
absolutely continuous and a singular continuous probability measure, in 
symbols 

JlD = O:dJID d + O:aJlD a + O:sJID s 

where the coefficients ad, a a and O:s are nonnegative and satisfy 
ad + aa + a 8 = 1. Thus, all probability measures are either discrete, 
absolutely continuous, singular continuous or a (convex) combination of 
these types. 
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8.6 Random Variables 

Just as the issue of events is more complex in the nonfinite case, so is the 
notion of random variable. In particular, not all functions are random 
variables. 

Definition Let (0, ~) be a measurable space. A function X: 0--+ ffi. is 
~-measurable if the inverse image of every open interval is in ~' in 
symbols 

x-1((a,b)) E ~ 

A measurable function on (0, ~)is also called a random variable.D 

This definition says that a random variable X has the property that the 
set x-l ( (a, b)) must be "measurable." 

Here are a few facts about random variables, whose proofs we omit. 

Theorem 5 
1) The sum and product of random variables are random variables, as 

is any constant multiple of a random variable. 
2) The composition of random variables is a random variable. 
3) Continuous and piecewise continuous functions are random 

variables. 0 

The Distribution Function of a Random Variable 

If (0, ~' JID) is an arbitrary sample space and X is a random variable on 
(0, ~) then X defines a distribution function Fx and a corresponding 
probability measure lP'x on ffi. by 

Fx(t) = lP'x(( -oo, t]) = JID(X ~ t) 

This can be proved by showing that the function F(t) = JID(X ~ t) is a 
distribution function. If JID x is finite, discrete or absolutely continuous 
then we say that the random variable is finite, discrete or absolutely 
continuous, respectively. Absolutely continuous random variables are 
often simply called continuous random variables. 

The u-Algebra Generated by a Random Variable 

If X: (0, ~) --+ ffi. is a random variable then the inverse image of any 
Borel set is in ~. However, it is not required that all elements of~ are 
inverse images of X. Those elements of~ that are inverse images form 
another O"-algebra that is a sub O"-algebra of~. 
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Definition The u-algebra generated by a random variable 
X: (0, :E) ~ JR. is the 0'-algebra O'(X) whose elements are the inverse 
images of the subsets of the Borel sets in JR., that is, 

O'(X) ={{X E B} I BE B} D 

The 0'-algebra O'(X) has a unique property, namely, it is the smallest 0'­
algebra of n under which X is measurable. In loose terms, it is just what 
is needed and no more to make X measurable. The following theorem is 
little more than the definition of measurability. 

Theorem 6 Let X: n ~JR. be a function and let :E be a 0'-algebra on 0. 
Then X is 0-measurable if and only if:E contains O'(X).D 

Independence of Rando"! Variables 

Here is the definition of independence of arbitrary random variables. 

Definition Two random variables X and Y on ~ are independent if 

JP>(X:::; t, Y:::; s) = JP>(X:::; t)JP>(Y:::; s) 

for all s, t E JR. More generally, a collection X1, ... , Xn of random 
variables is independent if 

n 

JP>(X1 :::; t1, ... , Xn :::; tn) = IlJP>(Xi :::; ti) 
i=l 

D 

This definition expresses formally the feeling that if random variables are 
independent then the value of one random variable does not affect the 
value of another. 

Expectation and Variance of a Random Variable 

Recall that for a random variable X on a finite probability space (n, JP>) 
with n = { w1, ... , Wn}, the expected value (or mean) is defined by 

n 

t'r(X) = LX(wi)JP>(wi) 
i=l 

If g: ~ ~ ~ is a function then the expected value of the random variable 
g(X) is 
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n 

t'p(g(X)) = Lg(X(wi))JJ:D(wi) 
i=l 

Also, the variance is defined by 

Var(X) =£((X- J-t) 2) 

Let us now extend these concepts to absolutely continuous random 
variables. 

Definition Let X be an absolutely continuous random variable, with 
density function f. The expected value or mean of X is the improper 
integral 

£(X)= 1: xf(x) dx 

which exists provided that 

l:lxlf(x) dx < oo 

The variance of X is 

and the standard deviation is the positive square root of the variance 

SD(X) = jVar(X) 0 

Also, if g: lR -+ lR is a measurable function then the random variable 
g( X) has expected value 

t'(g(X)) = l:g(x)f(x) dx 

provided that 

l:lg(x)lf(x) dx < oo 

Here are some basic properties of expectation and variance. 
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Theorem 7 
1) The expected value operator is linear, that is, 

£(aX+ bY)= a£(X) + b£(Y) 

2) If X1, ... , Xn are independent random variables on lR then 

n 

£(X1· · ·Xn) = II £(Xi) 
i=l 

3) Var(X) = £(X2) - ~-t2 = £(X2) - £(X) 2 

4) For any real number a 

Var(aX) = a2Var(X) 

and 

Var(X- a)= Var(X) 

5) If X1, ... , Xn are independent random variables on lR then 

n 

Var(X1 + · · · + Xn) = .I.:var(Xi) 
i=l 

8.7 The Normal Distribution 

0 

Let us take another look at the normal distribution, whose density 
function is 

NJL,CJ(x) = ~e_(x2-:/ 
2?ra2 

We mentioned that the parameters J-t and a 2 are the mean and variance, 
respectively. To calculate the mean, we need only a bit of first-year 
calculus. The definition is 

1 100 X- 2 
£ = .ji;;i xe -~ dx 

27Ta2 -oo 

Writing x = (x- J-t) + J-t and splitting the integral gives 

1 100 X- 2 fL 100 X- 2 
£ = .ji;;i (x- ~-t)e-~ dx + .ji;;i e-~ dx 

27Ta2 -oo 27Ta2 -oo 

The second integral is J-t times the integral of NJL,CJ and since this integral 
is 1, we get fL· As to the first integral, the substituting y = x- fL gives 
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1:ye-5dy 
But the integrand ye-y2

/ 2u2 is an odd function, from which it follows that 
the integral from -oo to oo must be 0. (We leave elaboration of this as 
an exercise.) Hence, £ = 0 + 1-l = J-L. 

Computation of the variance of the normal distribution requires the 
beautiful but nontrivial integral formula 

1:y2e-U: dy = y2; 

From here, the rest is straightforward, especially using the formula 

The upshot is that Var( N p,,u) = CJ2. We leave the details as an exercise. 

Suppose that Np,,u is a normal random variable with mean 1-l and variance 
CJ2. Consider the random variable 

In view of the properties of expectation and variance, 

1 1 
£(Z) = -£(.N:,u -J-L) = -(£(.N:,u) -J-L) = 0 

(J ,-, (J n 

and 

1 1 
Var( Z) = CJ2 V ar( Np,,u - J-l) = CJ2 Var( Np,,u) = 1 

To compute the distribution of Z we have 

lP'( Z ::; t) = lP'( Np,,u - 1-l ::; t) 
(J 

= lP'(Np,,u ::; CJt + J-l) 
1 ~ut+p, _ (x-~2 

= ~ e 2a dx 
y 21l'CJ2 -oo 

The substitution y = ( x - J-L) / CJ gives 
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1 /t 2 JID(Z ::; t) = ~ e-lf dx 
v 27r -00 

and so Z = N0,1 is a standard normal random variable. The process of 
going from X to Z is called standardization. 

Theorem 8 If Nf.L,a is a normal random variable with mean 11 and 
variance CJ2 then 

Nr _ Nf.L,a -11 
01-

, (J 

is a standard normal random variable. Similarly, if No,I is a standard 
normal random variable then 

Nr,a = CJ No,l + 11 

is a normal random variable with mean 11 and variance CJ2• D 

A distribution related to the normal distribution that we will have use for 
is the lognormal distribution. If a random variable X has the property 
that its logarithm log X is normally distributed, then the random variable 
X is said to have a lognormal distribution. (Note that X is lognormal if 
its logarithm is normal, not if it is the logarithm of a normal random 
variable. In other words, lognormal means "logisnormal" not 
"logojilormal. ") 

Proof of the following is left as an exercise. 

Theorem 9 If X is lognormally distributed, say Y = log X is normal 
with mean a and variance b2 then 

£(X) = £( ey) = ea+~b2 D 

Var(X) = Var(ey) = e2a+b\eb2 - 1) 

8.8 Convergence in Distribution 

You may be familiar with the notion of pointwise convergence of a 
sequence of functions. In any case, here is the definition. 

Definition Let Un) be a sequence of functions from lR to lR and let f be 
another such jUnction. Then ifn) converges pointwise to f if for each 
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real number x, the sequence of real numbers Un(x)) converges to the 
real number f(x).D 

If you are familiar with convergence of ordinary sequences of real 
numbers, then you are essentially familiar with pointwise convergence of 
functions. There is very little new here. 

Now consider a sequence (Xn) of random variables. Of course, these 
random variables are functions, albeit special kinds of functions. Let X 
be another random variable. It turns out that there are several useful ways 
in which the notion of convergence of the sequence (Xn) to X can be 
defined (only one of which is pointwise convergence). However, we are 
interested in one particular form of convergence. Here is the definition. 

Definition Let (Xn) be a sequence of random variables, where we allow 
the possibility that each random variable may be defined on a different 
probability space (Dn, JIDn). Let X be a random variable on a probability 
space (n, JID). Then (Xn) converges in distribution to X, written 

if the distribution functions (FxJ converge pointwise to the distribution 
function Fx at all points where Fx is continuous. Thus, if Fx is 
continuous at s then we must have 

limFxn(s) = Fx(s) 
n....;oo 

that is, 

lim HDn(Xn :::; s) = JID(X:::; s) 
n....;oo 

Convergence in distribution is also called weak convergence. D 

We need the following results about weak convergence. 

Theorem 10 Let (Xn) be a sequence ofrandom variables where Xn is 
defined on (Dn, JIDn)· Let X be a random variable defined on (D, JID). 
1) We have 
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for all bounded continuous functions g: lR ---t JR. In particular, 

fn>n (Xn) ---t cp(X) 

2) For all continuous functions f: lR ---t lR 

f(Xn) ~ f(X) 

Proof. We will omit the proof of part 1). As to part 2), let f be 
continuous. Then for any bounded continuous function g the composition 
g o f is also bounded and continuous. Hence, by part 1 ), 

f(g(f(Xn))) = f((g o f)(Xn)) ---t f((g o f)(X)) = f(g(f(X))) 

Part 1) then implies that 

f(Xn) ~ f(X) 

as desired. D 

Theorem 11 Let (Xn) be a sequence of random variables with 

where X is a random variable whose distribution function is continuous. 
If (an) and ( bn) are sequences of real numbers for which 

then 

dist 
anXn + bn -----t aX + b 

In particular, if a -=/= 0 and Xn ~ No, I where No, I is a standard normal 
random variable then 

where Na b is a normal random variable with mean a and variance b2• , 
Proof. The following proof requires the concepts of uniform 
convergence. The reader may omit this proof if these concepts are not 
familiar. Let Fxn and Fx denote the distribution functions of Xn and X, 
respectively. 

The first step is to show that for any s E lR there is an interval 
(s-A, s +>.)in which Fxn converges to Fx uniformly. For this, we use 
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the fact that distribution functions are nondecreasing. So let E > 0 be 
given and write 

FxJt)- Fx(t) ~ FxJs +a)- Fx(s- a) 
= [Fxn(s +a)- Fx(s +a)]+ [Fx(s +a)- Fx(s- a)] 

Since F Xn converges pointwise to F x we can choose an a 1 for which 

FxJs + a1)- Fx(s + a1) < E/2 

Moreover, because Fx is continuous at s we can choose a 2 such that 

Hence, taking a to be the minimum of the two previous choices gives 

for all t E (s-a, s +a). In the other direction, we also have 

FxJt)- Fx(t) 2: FxJs- {3)- Fx(s + {3) 
= [FxJs- {3)- Fx(s- {3)] + [Fx(s- {3)- Fx(s + {3)] 

It is clear that we can choose a {31. for which 

FxJs- {31)- Fx(s- {31) > -E/2 

and {32 such that 

Hence, taking {3 to be the minimum of {31 and {32 gives 

-E < Fxn(t)- Fx(t) 

for all t E (s-a, s +a). Finally, taking A to be the smallest of a and {3 
we get 

-E < FxJt)- Fx(t) < E 

for all t E (s-A, s +A). This proves the uniform convergence of Fxn 
to F x on ( s - A, s + A). 

Now we can address the issue at hand. Let t E ~ and choose a A such 
that F Xn converges uniformly to F x in the interval 

I= ( t- b _A, t- b +A) 
a a 
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For any E > 0, there is an N1 > 0 such that 

for all s E I. Also, there is an N2 > 0 such that 

t-b n > N2 =? __ n E I 
an 

It follows that 

Also, the continuity of Fx implies that there is an N3 > 0 for which 

I 
t-b t-b~ E 

n > N3 =? Fx( ~)- Fx(-a-) < 2 

Hence, 

But 

and 

t-b t-b 
Fx(-) = JID(X :S -) = JID(aX + b :S t) 

a a 

and so we have shown that 

that is, 

dist 
anXn + bn -----+ aX + b 

The second part follows from the fact that aNo,l + b = Na,b·D 

8.9 The Central Limit Theorem 

The Central Limit Theorem is the most famous theorem in probability 
and with good cause. Actually, there are several versions of the Central 
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Limit Theorem. We will state the most commonly seen version first and 
later discuss a different version that we will use in the next chapter. 

Speaking intuitively, if X is a random variable then it is the distribution 
function of X that describes its probabilistic "behavior" or 
"characteristics." More precisely, if X and Y are random variables with 
the same distribution function then 

IP( a :::; X :::; b) = IP( a :::; Y :::; b) 

for all real numbers a and b. (Note that the functions X and Y need not 
be the same. In fact, they need not even be defined on the same sample 
space.) When two or more random variables have the same distribution 
function, they are said to be identically distributed. 

Informally speaking, the Central Limit Theorem says that if Sn is the 
sum of n random variables that are 

1) mutually independent 
2) identically distributed 

and if we standardize Sn then the resulting random variable S~ has very 
special characteristics. In particular, the distribution function of S~ 
approximates the standard normal distribution regardless of the type of 
distribution of the original random variables. Moreover, the 
approximation gets better and better as n gets larger and larger. 

Thus, the process of summing and standardizing "washes out" the 
original characteristics of the individual random variables and replaces 
them with the characteristics of the standard normal random variable. 

Here is a formal statement of the Central Limit Theorem. 

Theorem 12 (Central Limit Theorem) Let X1, X2, ... be a sequence of 
independent, identically distributed random variables with finite mean 11 
and finite variance o-2 > 0. Let 

be the sum of the first n random variables. Thus, £(8) = nJ1 and 
V ar( S) = no-2. Consider the standardized random variable 
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S* = Sn - f(Sn) = S- nJ-L 
n Jvar(Sn) VnCJ 

The sequence of standardized random variables S~ converges in 
distribution to a standard normal random variable No,b that is, 

lim F s• ( t) = ¢>0,1 ( t) 
n-400 n 

Put another way 

where the error in the approximation tends to 0 as n tends to oo. D 

As you might expect, the proof of the Central Limit Theorem is a bit 
involved and we will not go into it in this book. However, the reader is 
advised to pause a while to consider the somewhat surprising nature of 
this theorem. It certainly accounts for the extreme importance of the 
normal distribution. 

As mentioned earlier, we need a different version of the Central Limit 
Theorem for our work on the Black-Scholes formula. On the one hand, 
we need only to consider Bernoulli random variables with mean 0 and 
variance 1, which are among the simplest of useful random variables. On 
the other hand, we need to make things more complex because our 
Bernoulli random variables are not identically distributed! 

In particular, we want to consider not just a simple sequence of random 
variables but a triangular array of random variables 

Bl,l 
B2,1 B2,2 

B3,1 B3,2 B3,3 

For each row, the random variables are independent, identically 
distributed Bernoulli random variables with mean 0 and variance 1. In 
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particular, Bn,i is a Bernoulli random variable with 

where Qn = 1- Pn· However, random variables from different rows need 
not be independent, nor are they necessarily identically distributed. In 
fact, they need not even be defined on the same probability space. This 
will tum out to be very important to us later on. 

We must also assume that the probabilities Pn are "well-behavied" in the 
sense that they do not get close to 0 or 1. In fact, we will assume that 
there is a p satisfying 0 < p < 1 for which 

Pn---> P 

It follows also that 

Qn---> q = 1- P E (0, 1) 

Now, there is a version of the Central Limit Theorem that addresses just 
this situation (even when the random variables are not Bernoulli random 
variables). 

We begin by "standardizing" each random variable in such as way that 
its mean is 0 and that the sum of the variances in each row is 1. Since 

£(Bn,i) = 0 
Var(Bn,i) = 1 

The standardized random variables are 

the new array is 

B1,1 

~B2,1 

7JB3,1 

* 1 B Bn,i = Vn n,i 

~B2,2 

7JB3,1 7JB3,1 

Now, the version of the Central Limit Theorem that covers this situation 
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says that under a certain condition the distribution of the row sums 

s1 = B1,1 
1 

S2 = J2(B2,1 + B2,2) 

1 
S3 = ;;:; (B3 1 + B3 2 + B3 3) y3 ) ' ' 

converges pointwise to the distribution </>o,1 of a standard normal random 
variable. 

The certain condition is a bit messy. Intuitively speaking, it says that 
each term in the sum Sn is "negligible" with respect to the entire sum. In 
the case of the Bernoulli random variables in which we are interested, the 
possible values of the standardized Bernoulli random variables B~,i that 
appear in the sums Sn are 

Now, as n tends to oo, we have 

qn q 
-----=== ---t --

~ yiN 
-Pn q -----===== ---t --

~ y!rKJ 

and since p and q are both positive these limits are finite. Hence, the 
possible values of B~ i satisfy , 

This turns out to be a sufficient condition for the Central Limit Theorem 
to apply. We have finally arrived at the theorem that we need. 
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Theorem 13 Consider a triangular array of random variables 

B1,1 

B2,1 B2,2 

B3,1 B3,2 B3,3 

where for each row n and 1 ::; i ::; n, the Bn,i are independent, 
identically distributed Bernoulli random variables with 

lP'(Bn,i = k) = Pn 
Pnqn 

-Pn 
lP'(Bn,i = ~) = qn 

yPnqn 

However, the random variables in different rows need not be 
independent or identically distributed, or even defined on the same 
probability space. Suppose also that Pn --+ p E (0, 1). Then the 
"standardized" random variables 

1 n 

Sn = r;::: L Bn,i 
V n i=l 

converge in distribution to a standard normal random variable. More 
specifically, if Z is a standard normal random variable on any 
probability space then Sn converges in distribution to Z.D 

As mentioned earlier, we will use this theorem in the next chapter to help 
derive the Black-Scholes option pricing formula. 

Exercises 

1. Let f(t) be a piecewise linear probability density function with the 
following properties: f(t) = 0 fort::; 0 and t 2:: 2, f(1) =a. Sketch 
the graph and find a. Sketch the corresponding distribution function. 

2. Let X have distribution function F given by 

Let Y = X 2. Find 
a) JID(O::; X::; 1) 
b) JID(1 ::; X::; 3) 
c) JID(Y ::; X) 

{
0 t<O 

F(t)= ~t o::;t::;2 
1 t > 2 
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d) JP>(X + Y::; ~) 
e) the distribution function ofthe random variable rx 

3. Let 0 = { w1, w2 , w3} and let JP> be the uniform probability measure 
on 0, that is, JP>(wi) = 1/3 for i = 1, 2, 3. Consider the following 
random variables 

X(wl) = 1, X(w2) = 2, X(w3) = 3 

Y(wl) = 2, Y(w2) = 3, Y(w3) = 1 
Z(wi) = 3, Z(w2) = 1, Z(w3) = 2 

Are these functions the same? What about their distribution 
functions? 

4. Show that a a--algebra is closed under countable intersections. 
5. Show that all rays are Borel sets. 
6. Show that all closed intervals are Borel sets. 
7. Prove that 

JP>(A u B) + JP>(A n B) = JP>(A) + JP>(B) 

for any events A and B. This is called the Principle of Inclusion­
Exclusion (for two events). 

8. Prove that a probability measure is subadditive, that is, 

JP>(A u B) ::; JP>(A) + JP>(B) 

for any events A and B. 
9. Find and graph the uniform distribution function on the interval 

[a,b]. 
10. Show that the most general Bernoulli random variable B with mean 

0 and variance 1 is given by 

q 
JP>(B = -) = P 

ftQ 
-p 

JP>(B = -) = q 
ftQ 

where q = 1 - p. 
11. Fill in the details to show that the normal distribution has mean 11· 
12. Compute the variance of the normal distribution using the integral 

formula in the text. 
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13. Prove that if A1 ~ A2 ~ · • · is an increasing sequence of events, each 
contained in the next event, then .lim JID( A) exists and 

t--->00 

14. Let X be a random variable on JR.. Prove that the function 

f(t) = JID(X::; t) 

is a probability distribution function. Hint: Make heavy use of 
monotone continuity. 

15. For a probability measure JID with distribution function F verify that 
a) JID((a, b]) = F(b)- F(a) 
b) JID((a, b))= F(b-)- F(a) 
c) JID([a, b))= F(b-)- F(a-) 
d) JID([a, b]) = F(b)- F(a-) 
where the negative sign means limit from below. 

dist 
16. If Xn -----+X show that for any real numbers a# 0 and b 

dist 
aXn + b -----+ aX + b 





Chapter 9 

The Black-Scholes Option Pricing Formula 
The models that we have been studying are discrete-time models, 
because changes take place only at discrete points in time. On the other 
hand, in continuous-time models, changes can take place (at least 
theoretically) at any real time during the life of the model. 

The most famous continuous-time derivative pricing model culminates in 
the Black-Scholes option pricing formula, which gives the price of a 
European put or call based on five quantities: 

• The initial price of the underlying stock, which is known. 
• The strike price of the option, which is known. 
• The time to expiration, which is known. 
• The riskfree rate during the lifetime of the option, which is assumed 

to be constant and can only be estimated. 
• The volatility of the stock price, a constant that provides a measure 

of the fluctuation in the stock's price and thus is a measure of the risk 
involved in the stock. This quantity can only be estimated as well. 

Our goal in this chapter is to describe this continuous-time model and to 
derive the Black-Scholes option pricing formula. We will derive the 
continuous-time model as a limiting case of the Cox-Ross-Rubinstein 
model. 

9.1 Stock Prices and Brownian Motion 

In 1827, just 35 years after the New York Stock Exchange was founded, 
an English botanist named Robert Brown studied the motion of small 
pollen grains immersed in a liquid medium. Brown wrote that pollen 
grains exhibited a "continuous swarming motion" when viewed under 
the microscope. 

The first scientific explanation of this phenomenon was given by Albert 
Einstein in 1905. He showed that this swarming motion, which is now 
called Brownian motion, could be explained as the consequence of the 
continual bombardment of the particle by the molecules of the liquid. A 
formal mathematical description of Brownian motion and its properties 
was first given by the great mathematician Norbert Wiener beginning in 
1918. 

cti n t the Math na 

oma 2004 
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It is especially interesting for us to note that the phenomenon now known 
as Brownian motion was used in 1900 by the French mathematician 
Bachelier to model the movement of stock prices, for his doctoral 
dissertation! 

Brownian Motion 

Let us look a little more closely at Brownian motion. We have defined a 
finite stochastic process as a sequence X 1, ... , X N of random variables 
defined on a sample space 0. A continuous stochastic process on an 
interval I ~ lR of the real line is a collection { Xt I t E I} of random 
variables on 0 indexed by a variable t that ranges over the interval I. For 
us, we will generally take I to be the interval [ 0, oo). Often the variable t 
represents time and so the value of the process at time t is the value of 
the random variable Xt. 

Definition A continuous stochastic process {Wt I t 2: 0} is a Brownian 
motion process or a Wiener process with volatility a if 
1) W0 = 0 
2) Wt is normally distributed with mean 0 and variance a 2t 
3) The process {Wt} has stationary increments, that is, for s < t, the 

increment Wt - Ws depends only on the value t - s. Thus Wt - Ws 
(which has the same distribution as Wt-s - Wo = Wt-s) is normally 
distributed with mean 0 and variance a 2 ( t - s). 

4) The process {Wt} has independent increments, that is, for any 
times t1 ~ t2 ~ · · · ~ tn, the nonoverlapping increments 

are independent random variables. D 

Brownian Motion with Drift 

It is also possible to define Brownian motion with drift. This is a 
stochastic process of the form {J.d + Wt I t 2: 0} where 11 is a constant 
and {Wt} is Brownian motion. Here is a formal definition. 

Definition A continuous stochastic process {Wt I t 2: 0} is a Brownian 
motion process or a Wiener process with volatility a and drift 11 if 
1) Wo = 0 
2) Wt is normally distributed with mean 11t and variance a 2t 
3) {Wt} has stationary increments. Thus, Wt- Ws is normally 

distributed with mean 11( t - s) and variance a 2 ( t - s ). 
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4) {Wt} has independent increments. D 

Sample Paths 

Figure 1 shows three simulated sample paths for Brownian motion with 

drift J-t = 0.08 and volatility IJ = 0.20 on the interval [0, 1]. The straight 

line shows the drift. 

0.3~----~----~----~----~----~ 

0.2 

0.1 
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-0.1 

-0.2 ......._ ___ ...._ __ _.__ __ _...._ __ ___,_ __ ____. 

0 0.2 0.4 0.6 0.8 1 

Figure 1: Brownian motion sample paths: J-t = 0.08, IJ = 0.20 

More specifically, if we fix an outcome wE n then we can define a 

function 

t ---t Wt(w) 

The graph of this function is called a sample path. 

Figure 2 shows a discrete sample path for a Brownian motion process 

that is the same as the previous one except that the volatility is only 

IJ = 0.05. As you can see, volatility is aptly named. 
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Figure 2: Brownian motion with small volatility 

Brownian motion is one of the most important types of random processes 
and has a great many applications. This should not be a surprise in view 
of the Central Limit Theorem, which tells us that the normal distribution 
is so important. (Brownian motion is a kind of "traveling normal 
distribution.") 

In any case, Brownian motion has some very special properties. For 
instance, the sample paths are always continuous functions. In other 
words, the sample paths do not have any jumps. On the other hand, these 
paths are also essentially nowhere differentiable, that is, it is not possible 
to define a tangent line at any place on the curve. Thus, a sample path 
has no jumps but is nonetheless very jerky, constantly changing direction 
abruptly. (The previous figures do not do justice to this statement 
because they are not true sample paths.) 

Standard Brownian Motion 

A Brownian motion process {Wt I t ~ 0} with 11 = 0 and a= 1 is called 
standard Brownian motion. In this case Wt has mean 0 and variance t. 
If {Wt I t ~ 0} is Brownian motion with drift 11 and variance a 2 then we 
can write 
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Wt = p,t + aZt 

where { Zt I t 2:: 0} is standard Brownian motion. 

Geometric Brownian Motion and Stock Prices 

How does Brownian motion with drift relate to stock prices? One 
possibility is to think of a stock's price as a "particle" that is subject to 
constant bombardment by "smaller particles" in the form of stock trades, 
or other local events. As further support of this viewpoint, we can note 
that the normal distribution seems like a reasonable choice to model a 
stock's price if we think of the vicissitudes of that price as being the 
result of a large number of more-or-less independent (and similarly 
distributed) factors. 

However, there are some obvious problems with the Brownian motion 
viewpoint for stock prices themselves. First, a Brownian motion process 
can be negative whereas stock prices are never negative. Second, in a 
Brownian motion process, the increments 

Wt-Ws 

have distributions that depend only on t - s. Thus, if a stock's price were 
to behave as a Brownian motion process Wt then the expected change 
£(Wt- Ws) in the stock's price over a period oftime would be p,(t- s), 
which does not depend on the initial price W8 • This is not very realistic. 
For instance, imagine a length of time t - s for which the change in price 
is JL(t- s) = $10. A $10 expected price change might be quite 
reasonable if the stock is initially priced at W8 = $100 but not nearly as 
reasonable ifthe stock is initially priced at W8 = $1. 

To resolve these issues, it would seem to make more sense to model the 
rate of return of the stock price as a Brownian motion process, for this 
quantity seems more reasonably independent of the initial price. For 
example, to say that a stock's rate of return is 10% is to say that the price 
may grow from $100 to $110 or from $1 to $1.10. 

This can be handled by assuming that the stock price St at time t is given 
by 

St = SoeHt 

where 80 is the initial price and Ht is a Brownian motion process. The 
exponent Ht represents a continuously compounded rate of return of the 
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stock price over the period of time [0, t]. Note also that Ht, which we 
will refer to as the logarithmic growth of the stock price, satisfies 

Ht =log(~:) 
Definition A stochastic process of the form { e Wt I t 2: 0} where 
{Wt I t 2: 0} is a Brownian motion process is called a geometric 
Brownian motion process. 0 

Figure 3 shows a simulated sample path from a geometric Brownian 
motion process with the same drift (/1 = 0.08) as before but with an 
unnaturally large volatility in order to demonstrate the exponential nature 
of the growth. 
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Figure 3: Geometric Brownian motion 

If we assume that Ht follows a Brownian motion process with drift then 
we can write 

Ht =log(~:) = 11t + uWt 

where { Wt} is standard Brownian motion. Therefore, Ht has a normal 
distribution with 
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£(Ht) = J.d 

Var(Ht) = e72t 

As we have seen, if a random variable X has the property that its 
logarithm log X is normally distributed, then the random variable X is 
said to have a lognormal distribution. 

Accordingly, Stf 80 is lognormally distributed. Figure 4 shows a typical 
lognormal density function. 
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Figure 4: A lognormal density function 

According to Theorem 9 of Chapter 8 

E(St) = Soe(!-L+~a2 )t 

Var(St) = (Soe(I-L+~a2 )t) 2 (ea2t- 1) 

This value of £(St) is quite interesting, for it tells us that the expected 
stock price depends not only on the drift t-t of Ht but also on the 
volatility e7. This should not necessarily be surprising from a 
mathematical point of view, for there is no law that the mean of a 
function of a random variable should be a function only of the mean of 
the random variable. 

A Different Approach to the Model 

As mentioned earlier, our approach to the continuous-time model is as a 
limiting case of the Cox-Ross-Rubinstein model. We will endeavor to 
be as mathematically rigorous as possible in this approach, which is often 
handled rather informally. However, we should take a few minutes to 
discuss what is generally considered to be a more rigorous approach to 
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the model. Since a formal discussion would require considerably more 
mathematical machinery than we have at hand, we will proceed 
informally. 

Let us begin by taking a closer look at the notion of rate of return on a 
stock price. This term has more than one meaning. We have already 
considered the continuously compounded rate of return Ht over the time 
period [0, t], which satisfies the equation 

St = SoeHt 

The simple rate of return of the stock price over a short period of time 
[t, t + ~t] is given by 

~St St+t..t - St 
=----

St St 

In the limit as ~t --t 0, the simple rate of return can be thought of as a 
rate of return over an infinitesimal time period dt. This is more 
appropriately called the instantaneous percentage return of the stock 
price and is denoted by 

Now, the most common approach to the continuous-time model of stock 
prices assumes that the instantaneous percentage return is a Brownian 
motion process, more specifically 

dSt 
St = J-Lo dt + uo dWt 

where {Wt I t 2:: 0} is standard Brownian motion and J-Lo and u0 are 
constants. This equation must remain somewhat vague for us, because 
the meaning of the differentials dSt and dWt are rather involved. 
However, we can say that the stochastic process 

(whatever that really is) is assumed to follow a Brownian motion process 
with drift J-Lo and volatility u0. 
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The previous formula can be written 

dSt = J-toStdt + (JoSt dWt 

This is an instance of what is known as a stochastic differential equation, 
whose formal solution requires some rather sophisticated mathematical 
machinery known as stochastic calculus. Fortunately, our plan of 
approach, through the CRR model, will lead us to an expression for the 
stock price itself without having to solve this differential equation. 

9.2 The CRR Model in the Limit: Brownian Motion 

At the end of Chapter 7 we took a look at the Cox-Ross-Rubinstein 
model from the point of view of the logarithmic growth in the stock 
price. Let us recall the pertinent results. 

Recap of the CRR Model 

We specify the model times 

to= 0 < t1 < · · · < tr-1 < tr = t 
Thus, the lifetime of the model is [0, t]. Note that we are using t instead 
of L because we want to think oft as a variable. Each of the T intervals 
has equal length 

t 
tk+l - tk = ~t = T 

During each subinterval, the stock price may rise by a factor of u or fall 
by a factor of d. The sample space for this model is the state space 

Or= {U,Df 

of all sequences of U's and D's of length T. 

We will be dealing with two different probabilities on Or: The natural 
probability and the martingale measure. Let us denote the natural 
probability of an up-tick by v (the Greek letter nu) and the martingale 
measure probability of an up-tick by 1r (dropping the subscript U used in 
earlier chapters). Before dealing with these probabilities and their 
interactions, however, it may help clarify the exposition to take another 
look at the logarithmic price growth using an arbitrary probability p for 
the up-tick in the stock price. (Then q = 1 - p is the probability of a 
down-tick.) 
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Let Ei give the stock price movement over the interval [ti, ti+l], that is, 
for any final state w = e1 · · ·er E Or where ei = U or D we set 

E-( ) = { u if ei = U (up-tick at time ti) 
~ w d if ei = D (down-tick at time ti) 

Hence, the stock price at the final time t is given by 

Sr = SoE1 · · · Er = SoeLJog(E;) = S0eHT 

where 

Hr = tlog(Ei) = log(~T) 
~=1 0 

is the logarithmic growth of the stock price. If the probability of an up­
tick in the stock is denoted by p then we define P,p and a P by 

1 1 
P,p = fl.t £p(log Ei) = fl.t (p log u + q log d) 

1 1 
a;= fl.t Varp(logEi) = fl.tpq(logu -logd)2 

Thus, P,p is the expected value and a-; is the variance of the logarithmic 
price change log Ei per unit of time. 

Since 

and 

Varp(log Ei) = a;fl.t 

we can standardize the random variable log Ei to get (since a =1- 0) 

X· _ log Ei- P,pfl.t 
~.p - (]' p ..;t;i 

Now let us write 

where 
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X . _ log Ei - /-lpD.t 
p,z - (]' p .jt;i 

After a bit more algebra, we see that 

x,,,(w) = { i 
The logarithmic growth is 

r 
Hr = 2)og(Ei) 

i=l 

r 

if ei = U 

if ei = D 

= l)l-lpt:.t + O'p~Xp,i] 

Note that this formula 

i=l 

r 
= /-lpt + O'p~l:Xp,i 

i=l 

r 
Hr = /-lpt + O'p~l:Xp,i 

i=l 

is valid for any 0 < p < 1. The number /-lp is called the drift and the 
number 0' P is called the volatility of the stock price. These quantities are 
with respect to the up-tick probability p, as the subscript notation 
indicates. Note, however, that Hr itself does not depend on p. It is just a 
function on the state space Or and has a different expression in terms of 
each probability p E (0, 1). 

More on the Probabilities 

As mentioned, p is the probability of an up-tick in the stock price over a 
subinterval. Later, we will take p = v or p = 1r but we do not want to 
make that restriction now. 

The probability p defines a probability measure JP> P on the state space Or 
for which 

From the definition of Xp,i we get 
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q 
JIDp(Xp,i = jiXJ) = JID(ei = U) = p 

-p 
JIDp(Xpi = -) = JID(ei =D)= q , .;pq 

and so the random variables Xp,i have this Bernoulli distribution under 

JID p· . 

We can also compute expected values and variances with respect to this 
probability measure 

q p 
fp(Xpi) = r;:;;;P- r;:;;;q = 0 

' yPq yPq 

and 

(We leave verification of this as an exercise.) 

The formula 

T 

Hr = f.-lpt + aP~LXp,i 
i=l 

can now be seen as expressing the logarithmic growth Hr as the sum of 
two components: A deterministic component ppt which is a constant 
times the time and thus grows at the fixed rate f.-lp just like a riskfree asset 
and a random component 

T 

Qp = ap~Lxp,i 
i=l 

which is apy'i;t times a sum of Bernoulli random variables. Since the 
terms in the sum are independent, we also have 

Ep(Qp) = 0 

Varp(Qp) = a;t 
9.3 Taking the Limit as A.t-+- 0 

In taking the limit as T -----> oo, or equivalently as ~t -----> 0 we want to be 
careful to make it clear which quantities vary with T. We also want to 
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make it clear that some quantities depend on the lifetime t, which we 
now think of as a variable. So let us change the notation as follows: 

• Let St,T denote the final stock price and Ht,T denote the logarithmic 
growth. The initial stock price So does not depend on T so we do not 
need to change this notation. 

• Let ur and dr denote the up-tick and down-tick factors for the stock 
price, respectively. 

• Let PT denote the probability of an up-tick. 
• Let 1-LPr,T and e5Pr,T denote the drift and volatility. 
• Let XPr,T,i denote the random variable XPr,i· 

With this notation at hand, the formula for Ht becomes 

T 

Ht,T = 1-LPr,rt + C5Pr,rVMLXPr,T,i 
i=l 

with deterministic part 1-LPr,rt and a random part 

T 

for which 

Q'Pr,r = C5Pr,rVMLXPr,r,i 
i=l 

f'Pr(QPr,T) = 0 

VarPr(QPr,T) = e5~,Tt 

We now want to apply the Central Limit Theorem to the random part. To 
this end, consider the triangular array of Bernoulli random variables 

Xp~,l,l 
xP2,2,1 x]J2,2,2 

XP:J,3,1 XP:J,3,2 XP:J,3,3 

For each fixed T, that is, for each row of the array, the random variables 
are independent (by assumption of the CRR model) and satisfy 

JP> (X T · - 1 - PT ) - PT 
PI' Pr,Z- VPT(1- PT) -

-PT 
JP> (X T · - ) - 1 - PT 

PI' Pr, ,z- VPT(1- PT) -
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and so they are also identically distributed. Note, however, that XPr,T,i is 
a random variable on the probability space (Or, JP>Pr) and so for different 
values ofT (that is, different rows of the array) the random variables 
XPr,T,i are defined on different probability spaces. This is precisely why 
we need the Central Limit Theorem in the form of Theorem 13 of 
Chapter 8, which applies provided that the probabilities PT satisfy 

Requirement 1: PT ~ p for some p E (0, 1) 

Assuming that this requirement is met, we can conclude that the random 
variables 

converge in distribution to a standard normal random variable, that is, 

Q* _ QPr,T- £Pr(QPr,T) _ QPr,T dist z 
r- - 0 -----+ t 

Pr, JVarPr(QPr,T) CJPr,TV t 

where Zt is any standard normal random variable on some probability 
space. To be more specific, this means that for any real numbers 

lim JP>Pr( QPrJt < s) = <l>o,l(s) 
T-+oo CJPT,T t 

where </>o,1 is the standard normal distribution function. To emphasize the 
fact that the convergence involves the probability measures JP>Pr, we write 

Q PI' T dist(Pr) 
-'-"-'---' -,:: -----+ Zt 
CJPT,Tyt 

We would now like to conclude that Ht,T itself converges in distribution 
to something. For this, let us recall Theorem 11 of Chapter 8, which says 
that if 

Requirement 2: f-LPr,T ~ f.-L, CJ Pr,T ~ CJ for real numbers f.-L and CJ =J. 0 

then we have the following limit: 
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As to the stock price itself, since St,T is a continuous function of Ht,T 

St,T = SoeHt,r 

Theorem 10 of Chapter 8 tells us that as long as requirements 1 and 2 are 
met we have 

S dist(PT)S p,t+aVtZt 
t,T ~ oe 

where ZPr,t has a standard normal distribution. Setting 

Wt = VtZt 

gives 

and 

where 

dist(PT) 
Ht,T ~ Ht = p,t + O"Wt 

S dist(PT)S - S p,t+aWt t,T ~ t- oe 

£(Wt) = 0 
Var(Wt) = t 

Brownian and Geometric Brownian Motion 

Although we have derived these formulas for a fixed total lifetime t, as 
mentioned earlier, we want to think oft as a variable. Unfortunately, our 
derivation does not directly expose the very important relationship 
between the different random variables Wt as t ranges over all 
nonnegative real numbers. 

We will not go into this issue formally. However, we can make a few 
informal observations. First, it should be intuitively clear that our model 
is "translation invariant" or "stationary" in the sense that we obtain 
essentially the same model over the interval [s, t] as over the interval 
[0, t- s]. Second, because we assume that the changes in each 
subinterval are independent, we should be able to piece together models 
from disjoint contiguous intervals into a model for one large interval. 
Thus, it should not come as a surprise that as t varies, the stochastic 
process 
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{Wt It~ 0} 

is actually a standard Brownian motion process. Hence, 

is a Brownian motion process with mean ~-tt and variance a 2t, that is, 
with drift J-t and volatility a. Finally, the stock price process itself 

{St It~ 0} 

is a geometric Brownian motion process with this drift and volatility. 

We can now summarize our knowledge of the behavior of the stock price 
in the limiting case of a CRR model. 

Theorem 1 Let St,T be the final stock price for the CRR model with 
probability Jfr of an up-tick, lifetime [0, t] and T equal-sized subintervals 
of length !:l.t. Assume that 
1) 'Jfr ---t pfor some p E (0, 1) 
2) f-£Pr,T ---t J-t, aPr,T ---t a for real numbers J-t and a# 0 
Let 

(Str) 
Ht,T =log So 

be the logarithmic price growth. Then 

dist(Pr) 
Ht,T ------* Ht = ~-tt + a Wt 

and 

where 

S dist(vr)S - s, J.tt+aWt 
t,T ------* t - oe 

is a standard Brownian motion process. Hence, the logarithmic growth 

{Ht It~ 0} 

is a Brownian motion process with mean J-tt, variance a 2t, drift J-t and 
volatility a. The stock price process itself 
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is a geometric Brownian motion process with drift J-t and volatility (]'. 
Note also that the stock price growth St/ 50 is lognormally distributed 
with 

£(St) = Soe(!l+~a2 )t D 
Var(St) = (Soe(!l+~a2)t)2(ea2t- 1) 

9.4 The Natural CRR Model 

We have done what we can for the general CRR model. Now it is time to 
consider how we should structure the model to reflect the "real" world. 
We will refer to the following model as the natural probability CRR 
model and denote it by CRRv. 

First, we will assume that there is a probability, called the natural 
probability that reflects the true probability of an up-tick in the market. 
Also, it is customary to make the following assumption about the natural 
probability. 

Assumption 1 
The natural probability of an up-tick is constant with respect to T 
throughout the lifetime of the model. We will denote this probability by 
ll. 

It is also customary to make the following assumption. 

Assumption 2 
Under the natural probability, the drift and volatility 

1 
/-tv = ~t ( vlog ur + ( 1 - v) log dr) 

2 1 2 
(J'v = ~tv(1- v)(logur -logdr) 

are constant with respect to ~t (and T). Thus, we can drop the subscript 
T and write /-tv and (J'v· The number /-tv is called the instantaneous drift 
and (]' v is called the instantaneous volatility. 

It is important to emphasize that the second assumption has some 
important consequences for the up-factor, down-factor and martingale 
measure parameters of the model. 
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In the general CRR model the quantities uT, dT and PI' ( = v) are 
unrelated, whereas the drift and volatility are defined in terms of these 
quantities. However, specifying that /-tv and CJ v are specific constants 
amounts to specifying a relationship among UT, dT and v. To draw a 
simple analogy, suppose that x andy are arbitrary variables and that we 
define the quantity A by 

A=x+y 

As soon as we postulate that A = 5, for instance, we have drawn a 
relationship between x andy. 

The relationship among UT, dT and v is obtained simply by solving the 
equations defining the drift and volatility to get 

r;:-; 1 - 1/ 
log Uv T = P,vflt + CJ v V L).f . 1 

' y v(l - v) 

logdv,T = P,vflt- CfvV,6.i Jv(~ _ v) 

The right-hand side depends on T through tlt = tjT. Also, we write 
Uv,T and dv,T to emphasize the dependence on v as well. Note that this 
dependence flows through to the martingale measure 

erT- d v,T 
1rvT = -----'----

' Uv,T - dv,T 

In fact, we can express the martingale measure directly in terms of the 
probability v and the drift and volatility. This also leads to an interesting 
limit. 

Theorem 2 
1) The martingale measure up-tick probability in the model CRRv is 

given by 

2) The martingale probability 1r v,T approaches the natural probability 
v as T ---> oo or equivalently as tlt ---> 0, that is, 

lim 1r v T = v 
T->oo ' 
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Proof. For part 1 ), the martingale measure up-tick probability is given by 

erT _ d erflt(d )-1 _ 1 v,T v,T 
1f v T = -----:,-'-- -

' Uv,T- dv,T Uv,r(dv,T )-1 - 1 

The previous equations for log Uv,T and log dv,T give 

and so 

and 

(d )-1 ~(Tv~ 
Uv,T v,T = evv\•-vJ 

Plugging these expressions into the right-hand side of the previous 
expression for 1r v,T gives the desired formula. 

Part 2) is a simple application ofl'Hopital's rule to evaluate the limit 

We leave this to the reader.D 

The assumption that the instantaneous drift and volatility are constant is 
perhaps a questionable one (as is the assumption of a constant natural 
probability), but is based on practical considerations (as is often the case 
with questionable assumptions). In fact, this assumption is usually 
extended into the past. In particular, it is assumed that the drift and 
volatility can be computed (or at least estimated) under the natural 
probability by looking at the past history of the price for the stock in 
question. 

Specifically, for the natural probability, the instantaneous drift and 
volatility can be estimated empirically as follows. First we choose a 
small value for /j.t (for example, /j.t may correspond to one day). Then 
over a large number of these short periods of time, we compute the 
logarithmic growth factors 
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I E . _ 1 ( Stock price at end of period ) 
og t - og k . f . d Stoc pnce at start o peno 

The average of these sample values is an estimate of Jlvllt and the 
sample variance of these sample values is an estimate of cr~f:lt. Of 
course, the more samples we take, the better will be the estimates. Let us 
consider an example. 

EXAMPLE 1 The following portion of an Excel spreadsheet shows 
closing stock prices over a 1 0-day period. Here we are taking f:lt to be 
one day, that is, 1/365 years. The initial price is $50. 

Day Price Growth Log Growth Average Sample Var 
0 50 0.000359354 0.000677264 
1 50.95 1.019 0.018821754 Per Unit Per Unit 
2 49.74 0.976251 -0.024035321 0.131164046 0.247201227 
3 49.46 0.994371 -0.005645176 
4 49.83 1.007481 0.00745295 
5 48.7 0.977323 -0.022938182 
6 50.2 1.030801 0.030335997 
7 49.57 0.98745 -0.012629215 
8 51.78 1.044583 0.043618162 
9 52.17 1.007532 0.007503643 

10 50.18 0.961855 -0.038891076 

The growth column contains the quotient of the stock price and the 
previous stock price. For example, 

50.95 = 1.019 
50 

The average is simply the sum of the logarithmic growths divided by the 
number of logarithmic growths. The sample variance is computed using 
the formula 

1 n 
Sample var = --L,)ith value- average)2 

n- 1 i=l 

(The reason for dividing by n - 1 instead of n has to due with obtaining 
an unbiased value.) Finally, the "per unit" values are obtained by 
multiplying the average and variance by 1/ f:lt = 365. It follows that 
Jlv :=::;j 0.13 and a~ :=::;j 0.25 on an annual basis (that is, the units of time are 
measured in years).D 
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With the aforementioned assumptions concerning the natural probability 
in mind, the conditions of Theorem 1 

I) PT---+ pforsome p E (0, 1) 
2) f..LPr,T ---+ J.L, rJ Pr,T ---+ rJ for real numbers J.L and rJ 

become evident. Since 'PT = v for all T, we have p = v and since 
f..LPr,T = f..Lv and CJPr,T = CJv for all T, we have J.L = f..Lv and rJ = CJv. Thus, 
the conditions of Theorem 1 are satisfied for the natural probability and 
we have the following. 

Theorem 3 Let St,T be the final stock price for the natural model CRRv. 
Let 

(stT) Ht,T =log So 

be the logarithmic price growth. Then 

and 

S dist(v) S S J.! t+a W: t,T -------> t = oe v v v,t 

where 

{Wv,t It~ 0} 

is a standard Brownian motion process. Hence, the logarithmic growth 

{Ht It~ 0} 

is a Brownian motion process with mean J.Lvt. variance CJ~t, drift f..Lv and 
volatility rJ v· The stock price process itself 

{St It~ 0} 

is a geometric Brownian motion process with the same drift and 
volatility. Note also that the stock price growth Stf So is lognormally 
distributed with 

E(St) = Soe(Mv+~a~)t D 
Var(St) = (Soe(Mv+~a~)t)2(ea~t- 1) 
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9.5 The Martingale Measure CRR Model 

Let us take a peek at our main goal to see what to do next. The payoff for 
a European put (for example) with strike price K is 

X= max{K- St,T, 0} 

= max{K- S0eHt,r, 0} 

The absence of arbitrage implies that the initial price of the put must be 

I(Put) = e-rtt'rrr(max{K- SoeHt,T,O}) 

where Ilr is the martingale measure (with up-tick probability 1fT). 
Taking limits as T tends to infinity gives 

Poo = limi(Put) = e-rt limt'rrr(max{K- SoeHt,r,o}) 
T->oo T->oo 

where P 00 denotes the limiting price random variable. Setting 

g( x) = max { K - So ex, 0} 

which is bounded and continuous on lR gives 

P00 = e-rt limt'rrr(g(Ht,r)) 
T->oo 

Now, we would like to pass the limit inside the expectation to get 

Poo = e-rtt'(g(Ht)) 

Let us recall Theorem 10 of Chapter 8, which says that if 

then 

dist( 7rT) 
Xn----> X 

for all bounded continuous functions g: lR ~ JR. This is just what we 
need, but in order to apply this theorem, we need to know the weak 
convergence of Ht,T under the martingale measure probability, not the 
natural probability, as given in Theorem 3. 

This tells us what to do next. In particular, we need a new CRR model to 
do the following. 
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1) The probability of an up-tick should be the martingale measure up­
tick probability 1r v,T so that Theorem 1 will give the weak limit of 
Ht,T under the martingale measure. 

2) At the same time, the model must preserve the "true" stock prices Sk 
from the natural model CRR11 , which is done by using the values 
U11 T and d11 T from that model. , , 

Thus, we define a new CRR model with the following parameters. 

1) The up-factor U11,T, down-factor dv,T and martingale measure up-tick 
probability 

erT- d v,T 
7r II T = ----'---

, Uv T- dv T , , 

are as in the natural probability model CRR11 • It follows that the 
stock prices sk are the prices are the "natural" prices, as desired. 

2) The probability of an up-tick is the martingale measure up-tick 
probability, that is, 

1!T = 1fv,T 

Hence the drift and volatility are 

1 
1-Lrrv,r,T = flt (7rv,T loguv,T + (1- 1fv,T) logd11,T) 

2 1 2 
an:v,r,T = ~t1fv,T(1-1fv,T)(loguv,T -logdv,T) 

We will call this model the martingale measure CRR model and denote 
it by CRR.n-. 

The next theorem describes the relationship between the drift and 
volatility of the model CRRrr and the drift and volatility of the model 
CRR11 • 

Theorem 4 The following hold: 

_ 1 (7rv,T- v) 
1-Lrrvr,T-J.Lv+av !A:J (1 ) , v D.t ll - ll 

a2 = a27rv,T(1-7rv,T) 
rrv,r,T v v(1 _ ll) 
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Proof. For the sake of readability, let us write 1fv,T = 1r, Uv,T = u and 
dv,T = d. Then 

/-t1rv,T,T - /-tv 

CYv 

_ tt(7rlogu + (1-7r) log d)- it(vlogu + (1- v) log d) 

Jrtvv(1- v)(logu -log d) 

it ( 1r - v) ( log u - log d) 

- Jrtvv(1- v)(logu -log d) 

1 7[-ZJ 

- JM Jv(1 - v) 

From here we solve for /-t1rv,r,T to get the desired result. The computation 
for CJ1r,T proceeds as follows: 

as desired. 0 

CJ1r,T tt7r(1 -1r)(logu -logd)2 

CJ~ ltv(1- v)(logu -logd)2 

7r(1 - 7r) 

v(1- v) 

Now we can compute the required limits in order to use Theorem 1 in the 
context of the model CRR1r. 

Theorem 5 The following limits hold: 

2 
1. (Jv 
1m ''1r r = r- -

T->rx/"' v,T, 2 

lim CY7r T T = CYv T__,.oo v, ' 

where r is the rislifree rate. 
Proof. Theorem 4 gives 

and so 
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1. O"v 1. (1rvT- V) 
1m Jl1r T T = Jlv + 1m --'-'--==-

T->oo "· ' J v(l - v) ~t->0 Jt;i 

Now we use the formula for 1r v T from Theorem 2 to evaluate the limit , 

This is a bit messy. Either l'Hopital's rule and a strong constitution or a 
symbolic algebra software package gives the limit 

2(r- Jlv)- (J; Jv(l- v) 
20"v 

and so 

. O"v [2(r- Jlv)- 0";. 1 ] 
)!!!P11"v,T,T = Jlv + Jv(l _ v) 20"v y v(l- v) 

(J2 
= r- _'l!_ 

2 

as desired. For the limit of the sequence 0"11"v,r,T we begin with the 
formula 

0"2 = (J2(1rv,T(l-1rv,T)) 
1rv,r,T v v(l _ v) 

from Theorem 4. Since by Theorem 2 we have 

lim 'lrvT = V 
ll.t->0 , 

it follows that 

1. 1rvr(l-1rvT) l 
1m ' ' = 

~t->O v(l- v) 

and so 

Taking square roots gives the desired result.D 

Now Theorem 1 will give us the desired weak limit. 
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Theorem 6 Let St,T be the final stock price for the CRR'lr model with 
martingale measure up-tick probability 'lrv,T, lifetime [0, t] and T equal­
sized subintervals of length /).t. Let 

( Str) Ht,T =log So 

be the logarithmic price growth. Under the martingale measure we have 

dist( 7rT) ( 0"~ ) Htr ----t Ht = r-- t + O"vW'lrt , 2 , 

and 

where 

is a standard Brownian motion process. Hence, the logarithmic growth 

is a Brownian motion process with 

I) mean (r- a})t 
2) variance O"~t 

2 

3) drift r- ~ 
4) volatility O" v 

The stock price process itself 

is a geometric Brownian motion process under the martingale measure 
with this drift and volatility. Note also that the stock price growth St/ So 
is lognormally distributed with 

E(St) = Soert D 
Var(St) = (Soert) 2 (ea~t- 1) 
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9.6 More on the Model from a Different Perspective: 
Ito's Lemma 

Earlier in the chapter, we spoke of the usual approach to developing a 
continuous-time model, namely, the assumption that stock prices behave 
according to the stochastic differential equation 

dSt 
St = f.-to dt + o-o dWt 

where {Wt I t ~ 0} is standard Brownian motion and f.-to and o-o are 
constants (not to be confused with f.-tv, f.-t1rr• O"v and o-1rr). We also 
mentioned that the precise meaning of this equation must remain 
somewhat vague for us, because it requires considerably more 
mathematical machinery than we will develop here. While this is true, we 
can "wave our hands" a bit to get some further insight into how this 
equation is used to develop the model. This is at least worthwhile from 
the perspective that the reader may encounter this equation when reading 
the literature. However, the reader may feel free to skip this discussion 
without loss of continuity. 

The previous equation can be written 

dSt = t-toSt dt + o-oSt dWt 

which is a special case of the formula 

dSt = a(St, t) dt + b(St, t) dWt 

where a(x, t) and b(x, t) are functions of two variables. In our case 

a(St, t) = t-toSt 
b(St, t) = o-oSt 

A process { St} that obeys the preceding equation is sometimes called an 
Ito process. 

Now, if f(x, t) is a function of two variables, then we may form the 
composition f ( St, t), which is a stochastic process since { St} is a 
stochastic process. We are interested in finding a formula for df. This is 
done by applying a result from the stochastic calculus known as Ito's 
lemma. 
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Theorem 7 (Ito's Lemma) Let {St} follow an Ito process 

dSt = a(St, t) dt + b(St, t) dWt 

where {Wt} is standard Brownian motion and a(x, t) and b(x, t) are 
functions of two variables. Let f(x, t) be a (sufficiently differentiable) 
function of two variables. Then 

( of of 1 o2f 2) of 
df = -a+-+ --b dt+ -bdWt 

ox ot 2 ox2 ox 

In the case at hand, we have 

and so Ito's lemma becomes 

a(St, t) = J,toSt 
b(St, t) = aoSt 

Let us now apply this formula to the function 

f(x, t) = log x 

In this case 

and we get 

d(log St) = ( ~t J,toSt - ~ ;l a5Sl) dt + ~t aoSt dWt 

= (f-Lo - ~5) dt + ao dWt 

0 

This says that d(log St) is normally distributed with mean (J-to - ~) dt 

and variance a5 dt. It follows that the change in log St over [0, t], that is, 

log St - log So 
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being the sum of independent nonnal random variables, is also nonnally 
distributed with mean 

and variance 

Hence, 

Ht =log(~:) = logSt -log So 

= (~-to - ~6) t + CTo VtZt 

where Zt is standard nonnal. Thus we see that (in general tenns) the 
stochastic differential equation leads to the same conclusion as that of 
Theorem 6. (We have not dealt specifically here with the martingale 
measure.) 

9.7 Are the Assumptions Realistic? 

We cannot continue without a short pause to comment on whether the 
assumption that stock prices are lognonnally distributed, or equivalently 
that the logarithmic growth in the stock price is nonnally distributed, is a 
realistic one. There has been much statistical work done on this question, 
resulting in evidence that growth rates exhibit a phenomenon known as 
leptokurtosis, which means two things: 

• The probability that the logarithmic growth is near the mean is 
greater than it would be for a nonnal distribution (higher peak). 

• The probability that the logarithmic growth is far away from the 
mean is greater than it would be for a nonnal distribution (fatter 
tails). 

There is other statistical evidence that the assumption of nonnality is 
perhaps not realistic. For a further discussion, with references, we refer 
the reader to Chriss [1997]. Of course, this should not necessarily come 
as a surprise. After all, the assumptions that lead to the fonnula 

Ht = (r- CT})t + C1vW1r,t 
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are not very realistic. Nevertheless, the Black-Scholes formula, which 
relies on this normal model, and to which we know tum, is the most 
widely used formula for option pricing. 

9.8 The Black-Scholes Option Pricing Formula 

We now have the tools necessary to derive the Black-Scholes option 
pricing formula for a European option. Consider again the complete, 
arbitrage-free CRR1r model. 

The payoff for a European put with strike price K is 

X= max{K- St,r,O} 
= max{K- SoeHt,r,o} 

The replicating pricing strategy implies that in order to avoid arbitrage, 
the initial price of the put must be 

I(Put) = e-rtt'rrr(max{K- SoeHt,r,o}) 

where IIr is the martingale measure, with up-tick probability 'Try. Taking 
limits as T tends to infinity gives 

Poo =lim I(Put) = e-rt lim Errr(max{ K- SoeHt,T, 0}) 
T---.oo T---.oo 

where P 00 denotes the limiting price random variable. This is a case for 
part 2) ofTheorem 10 of Chapter 8, where g is the function 

g(x) = max{K- S0ex,O} 

which is indeed bounded and continuous on R In this case, we have 

P00 = e-rt lim Errr(g(Ht,T)) 
T---.oo 

and since 

dist( 1l"T) ( . 0"~) r;_ 
Ht,T ------> Ht = r - 2 t + O" v y tZ1r,t 

Theorem 10 of Chapter 8 implies that 

Poo = e-rt lim £1l"T(g(Ht,T)) = e-rt£(g(Ht)) 
T---.oo 

Since Ht is normally distributed with mean 
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and variance 

we have 

(Here the 1r under the square root sign is just pi, not the martingale up­
tick probability.) 

All we need to do now is evaluate this integral. Making the substitution 

x-a 
y=--

b 

gives 

Now the function 

g(by +a)= max{K- S0eby+a, 0} 

is nonzero if and only if 

that is, if and only if 

or finally 

K - Soeby+a > 0 

K 
by + a < log( So ) 

y < ~ [log( K) - a] 
b So 

Let us denote the right-hand side of this by h: 
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h = ~ [log( K ) - a] 
b So 

We can write the integral as follows: 

Splitting this into two integrals gives 

n K e-rt ~h _.;_d Soe-rt ~h by+a _.;_d 
roo = -- e 2 y- -- e e 2 y 

y'2; -oo y'2; -oo 

The first of these integrals is in pretty good shape because 

Ke-rt1h 2 

r;;: e-"'idy = Ke-rtc/Jo,1(h) 
y 2?T -oo 

where ¢0,1 ( x) is the standard normal distribution function. The second 
integral could use some work 

oe by+a _'/L_d - aoe _l(y2-2by-2a)d S -rt ~h 2 C' -rt ~h 
-- e e 2 Y- -- e 2 y 
J2;r -oo J2;r -oo 

= ~ e-~[(y-W-b2-2aldy C' -rt ~h 

y'2; -oo 

Soe-rt l[b2+2a]jh _l(y-b)2d = --e2 e 2 y 
y'2; -oo 

S -rt+lb2+a _ly2d 1 j h-b 
= oe 2 -- e 2 y 

y'2; -oo 

= Soe-rt+W+a¢o,l(h- b) 

Thus 

P = Ke-rt,.t.. (h)- S e-rt+~b2+a,.t.. (h- b) oo 'f'O,l 0 'f'O,l 

Now we have a pleasant surprise with respect to the exponent in the 
second term: 
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12 1 2 t 2 
-rt + -b +a= -rt + -tCJ + -(2r- CJ ) 2 2 !I 2 !I 

1 2 . 1 2 = -rt + -tCJ + tr- -tCJ ) 2 !I 2 !I 

=0 

and so we arrive at our final destination 

where 

h =- log(-)- a = -- log(-)- tr + -tCJv 1 [ K ] 1 [ K 1 2] 
b So VtCJv So 2 

This is the famous Black-Scholes formula for the value of a European 
put. 

We can use the put-call option parity formula to get the corresponding 
price of a European call. Recall that this formula says that the price of a 
call is given by 

C = P + So - K e -rt 

Taking limits as T tends to oo gives 

C:x; = Poo +So- Ke-rt 

= Ke-rt(c/Jo,l(h)- 1)- So(c/Jo,l(h- VfCJv)- 1) 

Since 

c/Jo,1 ( -t) = 1 - c/Jo,l (t) 

the price of the call is 

Coo = - K e -rt c/Jo,l (-h) + Soc/Jo,l ( VtCJ v - h) 

By setting d2 =-hand d1 = d2 + CJVt as seems to be commonly done, 
we get the formulas shown in the following theorem. 

Theorem 8 (The Black-Scholes Option Pricing Formulas) For 
European options with strike price K and expiration time t we have 
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C = So¢o,l(dl)- Ke-rt¢o,1(d2) 

P = Ke-rt¢o,1(-d2)- So¢o,l(-dl) 

where 80 is the initial price of the underlying stock, 0' is the 
instantaneous volatility, ¢0,1 is the standard normal distribution function 
and 

where r is the rislifree rate. D 

We note that these formulas do not involve the instantaneous drift. In 
fact, the only "unknown" quantities are the instantaneous volatility 0' v 

and the riskfree rate r. 

EXAMPLE 2 Consider a European call option on a stock that is 
currently selling for $100. The option expires in 1 year at a strike price of 
$100. Suppose that the riskfree rate is 0.05 and that the volatility is 
u = 0.15 per year. Compute the value of the call. 
Solution This is simply a matter of plugging into the formula. First, we 
have 

d2 = o.~ 5 [o + o.o5- ~(0.15)2] ~ o.2583 

and 

dl = d2 +(]'Vi~ 0.2583 + 0.15 = 0.4083 

Hence, with the aid of a calculator or some other means of evaluating 
values of ¢o,1, we get 

C = 100¢0,1(0.4083)- 100e-0·05¢0,1(0.2583) ~ $8.596 D 

9.9 How Black-Scholes Is Used in Practice: 
Volatility Smiles and Surfaces 

The assumption that the volatility 0' is constant is a very unrealistic one, 
to say the least. This (among other things) raises questions about the 
quality of the Black-Scholes option pricing formula. A great deal of 
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research has been done to determine how the Black-Scholes formula can 
be used in light of the questionable assumptions about the parameters. 
Our intention is to very briefly discuss one method that is used in 
practice. 

The Volatility Smile 

We have said that the volatility can be estimated using historical data. 
However, in practice, the Black-Scholes formula is not used by simply 
plugging in an estimate for the volatility and grinding out option prices. 
Instead traders usually work with a quantity known as the implied 
volatility. Loosely speaking, this is the volatility that must be used in the 
Black-Scholes option pricing formula in order to make the formula 
reflect the actual market price at a given moment in time. 

Definition Consider a European option that has a particular market 
price of M. The implied volatility of this option is the volatility that is 
required in the Black-Scholes option pricing formula so that the formula 
gives M.D 

The implied volatility is, in effect, the market's opinion about the Black­
Scholes volatility of a stock. The implied volatility is a quantity that can 
be computed from the Black-Scholes formula by numerical methods 
(that is, educated guessing and reguessing). 

As it happens, and as further evidence that the Black-Scholes formula is 
not perfect, if one computes the implied volatility of otherwise identical 
options at various strike prices, one gets different values. Figure 5 shows 
a typical graph of implied volatility versus strike price. Because of the 
shape of the graph, it is known as a volatility smile. 

Implied 
Volatility 

Strike 
+---+-------Price 

K1 

Figure 5: A volatility smile 
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Now, suppose that an historical estimate of volatility for a particular 
stock is cr1. Then the Black-Scholes formula gives an option price that 
matches the market price for only one strike price, namely K 1. 

For larger strike prices, which correspond to out-of-the-money calls and 
in-the-money puts, the market price corresponds to a volatility that is 
much less than cr1. Now, the Black-Scholes formula gives prices that 
vary directly with the volatility, so a smaller volatility produces a smaller 
price. Hence the market price is below the Black-Scholes historical 
price. Put another way, the Black-Scholes formula, when used with a 
constant volatility based on historical data, tends to overprice out-of-the­
money calls and in-the-money puts relative to market prices. 

For smaller strike prices, which correspond to in-the-money calls and 
out-of-the-money puts, the market price corresponds to a volatility that is 
much greater than cr1. Hence the market price is above the Black-Scholes 
historical price. Put another way, the Black-Scholes formula, when used 
with a constant volatility based on historical data, tends to underprice in­
the-money calls and out-of-the-money puts relative to market prices. 

The Volatility Surface 

To understand how the Black-Scholes formula may be used in practice, 
consider Table 1, which shows data for a volatility surface, that is, a set 
of implicit volatilities for various maturity dates as well as strike prices. 
The columns represent differ~nt strike prices expressed as a percent of 
the stock price. (The data in this table is for illustration only.) 

90% 95% 100% 105% 110% 
1 month 14 13 12 11.3 14.4 
3 months 14.2 14.1 13.6 13.8 14.1 
6 months 14.5 14.3 14.2 14.5 14.6 
1 year 15.1 15 14.6 14.7 14.8 
2 years 16.2 16.1 16 16.1 16.2 

Table 1 -Data for a volatility surface 

Now, a trader who wants to price an option that has a maturity and strike 
price that is not in this table can interpolate from the table to get an 
implied volatility. For example, consider an option that matures in 9 
months at a strike price of 95% of stock price. A linear interpolation 
between the 6 month and 1 year maturity implied volatilities gives a 
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volatility of (14.3 + 15)/2 = 14.65. This volatility can be used in the 
Black-Scholes formula to produce a price for the option in question. 

9.10 How Dividends Affect the Use of Black-Scholes 

The Black-Scholes option pricing formula assumes that the underlying 
stock does not pay a dividend. We should briefly discuss how dividends 
can be handled in this context. 

First a bit of background on dividends. Four dates are important with 
respect to dividends. The declaration date is the date that the board of 
directors declares a dividend. The record date is the date that the 
registrar compiles a list of current shareholders, to whom the dividend 
will be paid. The key point is that an investor must be on record as 
owning the stock on the record date or else he will not receive a 
dividend. The payment date is the date that the dividend will be paid. 

Now, normal stock purchases take 3 days to clear. This is referred to as 
regular way settlement. Thus, an owner must have purchased the stock at 
least 3 days prior to the record date in order to be considered an owner of 
record on the record date and hence eligible for the dividend. The first 
date after this date is called the ex-dividend date. For example, if a 
dividend is declared as payable to stockholders of record on a given 
Friday then the New York Stock Exchange (who sets the ex-dividend 
dates for NYSE stocks) would declare the stock "ex-dividend" as of the 
opening ofthe market on the preceding Wednesday. 

We note that when the stock goes ex-dividend, typically the stock price 
will decline by an amount similar to the amount of the dividend. This 
makes sense from the perspective that the dividends are known in 
advance and are therefore built into the stock's price in some way. 

Now, a European option on a stock that pays a dividend can be thought 
of as composed of two separate processes: A risky process that represents 
the stock price itself and a riskfree process that represents the cash 
dividend payments. Thus, to price an option on such a stock, we first 
discount all of the forthcoming dividend payments to the present. If this 
amount is d then we can think of the components as a risky stock that has 
initial value S0 - d and a riskfree asset that has initial value d. The 
Black-Scholes formula can then be applied to the risky stock. 
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Exercises 

1. A stock has the initial price of $50. Over a five-day period, the stock 
price at day's end is given by $49.82, $50.02, $49.69, $49.34, 
$50.10. Estimate the instantaneous drift and volatility. 

2. Consider a European call option on a stock that is currently selling 
for $80. The option expires in 1 year at a strike price of $80. Suppose 
that the riskfree rate is 0.05 and that the volatility is ~ = 0.1 per 
year. Compute the value of the call. 

3. Consider a European put option on a stock that is currently selling 
for $50. The option expires in 1 year at a strike price of$51. Suppose 
that the riskfree rate is 0.04 and that the volatility is ~ = 0.15 per 
year. Compute the value of the put. 

4. Prove that 

5. Prove that 

£ (Q ) - ~ _t_ p- s 
P 8 - 8 vz:;:i -j-F=s (:==1 =_ =;=s) 

2 p(1- p) 
Varp(Q8 ) = ~8 t ( ) 

s1-s 

6. Let X be a random variable with a lognormal distribution, that is, 
Y = log X is normally distributed with mean a and variance b2 . 

Show that 
lb2 a) £(X) = ea+2 

b) Var(X) = e 2a+b2 ( eb2 - 1) 
Apply this to the random variable X= St/ 80 to deduce that 
c) £7r(St) = Soert 
d) Var7r(St) = (Soert) 2 (ea~t- 1) 

7. Show that the function f ( x) = max { K - S0ex, 0} is continuous and 
boundedonR 

8. Show that ¢0,1(-t) = 1- ¢0,1(t) for the standard normal 
distribution function. Hint: Draw a picture using the graph of the 
standard normal density function. 

9. Show using l'Hopital's rule that 

( 
e (r-J1)6.t+-:J;qa.;b:i - 1) 

lim 7rT = lim --...,.-1-=---
T-+oo 6.t-+0 -=a.;b:i 1 evpq -

=p 
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Hint: Write x = ( D..t )2. 

10. Suppose we assume that there is a martingale probability measure in 
the limiting case when T ---+ oo and that the Fundamental Theorem 
of Asset Pricing holds in this limiting case. If we denote this 
martingale measure by II then 

So= e-rtErr(St) = e-rtErr(Soe~'"t+~vVtZt) 

Evaluate the last expression to show that 

1 
/Jv = r- 20"v 

11. Let Nu be the random variable representing the number ofup-ticks 
in stock price over the lifetime of the CRR model. Show that 

and so 

Show that 

S _ S eNu(logu-logd)+Tiogd t,T- 0 

Ht,T = Nu (log u - log d) + Tlog d 

E(Ht,T) = Tv(log u -log d) + Tlog d 

Var(Ht,r) = Tv(l- v) (logu -logd)2 

12. Standardize the random variable Ht T to show that , 

H;r = N(; , 

Hence, the random variables Ht~T are standardized binomial random 
variables. 

13. Using the B1ack-Scholes formulas show that the value of a put and a 
call increases as the volatility a increases. Looking at the profit 
curves for a long put and long call, explain why this makes sense. 
Does the same effect obtain for the owner of a stock? 

14. Show that the probability that a European call with strike price K 
and expiration date t will expire in or at the money is 

A- (log(Sr/ K)- t(r- a~/2)) 
'1'0,1 !.. 

ayt 

where ¢0,1 is the standard normal distribution. 





Chapter 10 

Optimal Stopping and American Options 

The models that we have created thus far, including the Black-Scholes 
option pricing model, are designed to price European options, which are 
options that can only be exercised at the expiration time. However, in the 
real world, most stock options are of the American variety. In this 
chapter, we want to take a look at the issue of pricing American options. 

American options are far more complicated than European options, 
because they give up nothing but add one major additional feature-they 
can be exercised at any time between the purchase date and the 
expiration date. This is clearly a significant interpolation, since there is 
no way to look into the future to decide when to execute. An investor 
cannot call his broker and say, "If the stock price falls below $50 then 
sell the stock before it falls." 

The mathematics used to model American options has a significantly 
different flavor and is a bit more sophisticated than we have thus far 
encountered. 

10.1 An Example 

To aid the discussion, let us set up a simple example to which we will 
refer in the sequel. 

EXAMPLE 1 Figure 1 shows a CRR model state tree with stock prices 
(and option payoffs). 

0 0 e na 

oma 
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Figure 1: A CRR model state tree 

We will assume that r = 0. Note that for this model 

T = 3, u = 1.1, d = 0.9 

and the martingale measure probability is 

1- d 0.1 1 
1!'=--=-=-

u- d 0.2 2 

Finally, let C be an American call C with strike price K = 21.0 

Before beginning, a bit of notation. For any random variable X, it will be 
convenient to define the shorthand notation [X E A] as 

[X E A]= {wE 0 I X(w) E A} 

10.2 The Model 

In general, our context will be a discrete-time model that is arbitrage-free 
and thus has a martingale measure II, as is the case for Example 1. 
Consider an investment in an American option (also called an American 
claim). At any ofthe model's times 

to< t1 < .. · < tr 
the owner may exercise the option. 

10.3 The Payoffs 

The payoff of the option at any time tk is a random variable Yk. We will 
assume that (Yk) is adapted to a filtration lF = (Pk)· For our example, 
the payoffs of the American call C are 
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{ 
5.62 forw = w1 

Y3 = max{S3- 21,0} = 0.78 forw = w2,w3,w5 
0 otherwise 

y; = max{S _ 21 O} = { 3.2 for w E_ B2,1 
2 2 ' 0 otherwise 

{ 1 forw E B11 
}]_ = max{S1 - 21 ' O} = 0 otherwise ' 

and finally 

Yo =0 

These payoffs are shown in Figure 1 as well. 

10.4 Stopping Times 

The decision about when to exercise can be modeled as a random 
variable with special properties, called a stopping time. The idea is quite 
simple: A stopping time is a rule, that is, a random variable that 
identifies, for each time tk the outcomes in 0 for which we should 
exercise (stop the option, so to speak) at time tk. Let us refer to the set of 
these outcomes as the stopping event for time tk. For the final time tr, 
however, the stopping event consists of the outcomes for which we either 
exercise at time tr or let the option expire worthless. 

The only requirement for a stopping time is an obvious one: We must be 
able to tell which outcomes belong to the stopping event for time tk at 
that time. This is an important issue. We cannot say that the exercise 
event for time t2, for example, is based on what happens at time t 3• This 
is akin to asking our broker to sell the stock before its price drops below 
50. 

Definition A (bounded) stopping time is a random variable 

T:O-t{O, ... ,T} 

whose range is the set of integers from 0 to T. Moreover, it is required 
that the stopping event "stop at time tk " defined by 

[T = k] ={wEn I T(w) = k} 

is in the algebra A(Pk) generated by Pk for all k = 0, ... , T. We will 
denote the set of all stopping times with range { k, ... , T} by Sk,T· These 
are the stopping times that cannot stop before time tk. D 



280 Introduction to the Mathematics of Finance 

Let us consider an important example of stopping times. 

EXAMPLE 2 It would not be uncommon for an investor to tell his 
broker to "sell the stock if the price reaches $50 or more" for example. 
This rule is a stopping time. In fact, it is referred to mathematically as the 
first entry time of the stock price process (Sk) into the set [50, oo). 
Formally, it is defined as follows: 

T(w) = { min{k I sk ~50} if {k I ~k ~50} =1- 0 
T otherwise 

It is not hard to show that this is indeed a stopping time. For if k < T 
then we have 

[T = k] = { w I sk ~ 50 but Sj < 50 for j < k} 

= [So < 50] U .. · U [Sk-I < 50] U [Sk ~ 50] 

But since the price Si is Pi-measurable and since (Pi) is a filtration, we 
deduce that each of the events [Si < 50] and the event [Sk ~ 50] are in 
the largest algebra A(Pk)· This is the condition required of a stopping 
time. Finally, fork = T we have 

[T = T] =[So< 50] n .. · n [Sr-1 <50] E A(Pr) 

Thus, T is a stopping time. Note that the same argument will work for 
any value other than 50. 

In fact, it is also possible to show that the first entry time into any Borel 
set B is a stopping time. For example, the set 

B = ( -oo, 17) U (20, oo) 

corresponds to the first time that the stock price drops below 17 or rises 
above 20. The shaded blocks in Figure 1 show the st<_>pping events for 
the first entry time into B. D 

10.5 Stopping the Payoff Process 

Here is the scenario. Imagine that an investor has acquired an American 
option at time t 0. The investor sits down and looks at all possible 
stopping times in the set So,T· (This is possible at least in theory since 
there are only a finite number of such stopping times.) 
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Suppose that the investor has decided upon a particular stopping time 
T E So,T to use in determining when to exercise. We will discuss how 
this decision is made a bit later. In fact, that is the main issue of the 
chapter. 

It may help to think of the investor as phoning his broker at time t0 and 
giving him the stopping time rule T. From this point on, the broker can 
proceed without bothering the investor. In particular, at each time tk the 
broker checks to see if the current state of the economy is in the stopping 
event [T = k] for that time. He can do this because [T = k] E A(Pk) is 
just a union of the blocks of Pk and the broker knows which of the 
blocks represents the current state at that time. If the current state is in 
[T = k], then the broker exercises the option; otherwise he does not. 

10.6 The Stopped Value of an American Option 

In order to determine how to choose a stopping time, we must first 
discuss the consequences of any choice of stopping time. Suppose that 
the investor has decided upon a particular stopping time T E So,T. Then 
for any w E 0, the option will exercise at time t7 (w) and give a payoff of 

YT(w)(w) 

It is customary to denote this function by Y7 • Thus 

The random variable Y7 is referred to as the final value of the process 
(Yk) under the stopping timeT. 

EXAMPLE 3 Referring to Example 1, consider the stopping time T 

shown in gray in Figure 1. This is the first entry time into 

B = ( -oo, 17) U (20, oo) 

The (discounted) final value Y7 is 

A Detail About Discounting 

ifw E {w1,w2,w3,w4} 
ifw = W5 
if W E { W6, W7, Wg} 

D 

Now we must discuss a detail concerning discounting. If Xk is any 
process and T E So,r is a stopping time then the final value is XT" To 
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discount this value, we must discount each of the values 
( Xr) ( w) = Xr(w) ( w) by the appropriate amount 

X ( ) = Xr(w)(w) = (Xr) ( ) 
r(w) W B ( ) B W r(w) W T 

Thus, we set 

Note that in Example 1 we assume that the riskfree rate is 0 and so the 
issue of discounting is not relevant. 

10.7 The Initial Value of an American Option, 
or What to Do at Time t0 

At time t0 the possible choices for stopping times are the elements of the 
set So,T· If the investor stops the payoff process using a particular 
stopping timeT E So,T then he will realize the final value Y7 • However, 
there is a subtlety here, namely, for each w E n the payoff Yr(w) ( w) 
comes at time tr(w)· In keeping with the spirit of self-financing trading 
strategies, we will assume that the investor does not remove the funds 
from his brokerage account until the end of the model, at time tr and so 
the payoff at time tr(w) is allowed to grow at the riskfree rate for the time 
period from T(w) toT. This results in a final payoff of 

er(T-r(w))yr(w)(w) = BBT Yr(w)(w) 
r(w) 

where Bk = erk is the discounting factor. 

Thus, the final time-tr payoff resulting from the stopping time T is really 

Br -
Br Yr = BrYr 

where 

Put another way, each stopping time turns an American option into a 
guaranteed sequence of payoffs, where the time-tk payoff is 
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Yk1[r=k] 

The final value of this payoff stream is 

~Br Br -
L.....t BYk1[r=k] = BYr = BrYr 
k=O k T 

The Initial Value of an American Option 

Now let us consider what the investor should do to determine which 
stopping time to employ at time t 0• Keep in mind that the investor may 
change his mind at time t1, but we will not worry about that problem yet. 

In order to determine the best stopping time at time t0 , as mentioned 
earlier, the investor can look at all possible stopping times in the finite 
set So,T. At first, it seems logical that the investor should choose the 
stopping time that maximizes the final payoff 

max{BrYr} 
rESo,T 

However, the payoffs BrY r are functions (random variables) and there 
is no guarantee that there is a single stopping time that is best for all 
states w E 0. Indeed, this is highly unlikely. 

So an alternative is needed: We can maximize the initial value of the 
payoff. Assuming that the final payoff Br Y r is attainable, there is a self­
financing trading strategy <1> for which 

Vr(<P) = BrY r 

and the arbitrage-free price of this final payoff is (according to the 
martingale measure condition) 

Vo(T) = I(BrYr) 

= Vo(<l>) 
1 

= Br t'rr(Vr(<P)) 

1 -
= Br t'rr(BrYr) 

= t'rr(Yr) 

The quantity Vo ( T) is the initial value of the American option under T. 
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We have shown that assuming that the owner of the option follows the 
stopping time T, the nonarbitrage price of the claim must be V0 ( T). 

Now, at time t 0 the investor can choose a stopping time that maximizes 
the initial value of the option, since these values are constants. So let us 
define 

Vo = max Vo(T) = max £n(Y7 ) 

rESo,T rESo,T 

Then we can assume that the investor will choose a stopping time T* with 
the property that 

This is the stopping time that maximizes the initial value of the option or, 
equivalently, the expected final payoff Err(Y 7 ) under the martingale 
measure. It is called an optimal stopping time. With no vision into the 
future, this is the best that can be done. 

Let us look a bit more closely at this situation as it relates to arbitrage. As 
we have seen, for a European option with attainable final payoff Vr (<I>) 
the nonarbitrage initial value of the option must be Vo (<I>). For if not, 
then an investor could buy the cheaper and sell the more expensive of <I> 
and the option, realizing an immediate positive return. At the final time 
tr the European option has payoff Vr (<I>) and so the two ending 
positions (one long and one short) cancel each other out, leaving the 
investor with the future value of his initial profit. 

However, for an American option with payoff 

the situation is not as simple because the seller of an American option 
does not really know what the final payoff will be. (The buyer doesn't 
know either, but at least he has some control over the value.) 

We can say that if the option can be purchased for an amount A that is 
less than V0 (<I>) then arbitrage is available to the investor who purchases 
the cheaper option and shorts the more expensive trading strategy <I>. As 
with the European option, if the owner holds the option until expiration, 
there is an initial profit and offsetting positions at the end. 
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However, if the option is purchased for an amount A that is greater than 
Vo (<I>) then the immediate profit is made by the seller of the option (who 
also buys <I>). But the seller does not have control over the option and 
cannot be certain that the owner will not achieve a higher payoff than 
that given by <I>. The real point here is that replication by <I> does not 
work for American options in the same way that it does for European 
options. 

Thus, an arbitrage-free argument leads to the inequality A 2:: V0 (<I>). On 
the other hand, who would be willing to pay more than V0 (<I>) for the 
American option when there is no guarantee that a payoff greater than 
VT (<I>), obtained by following a time-to optimal stopping time, can be 
arranged? Thus, we come to the conclusion that V0 (<I>) is a fair price 
(more-or-less) for the American option. 

EXAMPLE 4 Again referring to Example 1, we have seen that the final 
payoff for the first entry time into 

lS 

Hence, 

B = (-oo, 17) U (20,oo) 

ifw E {w1,w2,w3,w4} 
ifw = W5 

if W E { W6, W7, Wg} 

- 1 1 3 
£n(Yr) = 2 ·1 + 8 · 0.78 + 8 · 0 = 0.5975 

Consider the stopping time 0' defined by 

O'(w) = { 2 ifw E ~wl,w2,w7,w8 } 
3 otherwise 

We leave it to the reader to show that this is a stopping time. In this case, 
the (discounted) final value is 

{ 
3.2 ifw E {w1,w2} 

Ya(w) = 0.78 ifw = {w3,w5} 
0 ifw E {w4,w6,w7,ws} 

Hence, 
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- 1 1 
Err(Ya) = 4 · 3.2 + 4 · 0.78 = 0.995 

Hence, a is a better stopping time than T. In fact, as we will see, a is an 
optimal stopping time. D 

10.8 What to Do at Time tk 

Now suppose that at time tk the investor has not yet exercised an 
American option. Then the previous discussion is still valid mutatis 
mutandis (that is, with the necessary changes). In particular, the choice of 
stopping times must now be made from the set Sk,T since at time tk the 
investor cannot exercise at any earlier time. 

If the investor stops the payoff process using a particular stopping time 
T E sk T then he will realize the value Yr. whose final time-tr value is , 

Br -
Br Yr = BrYr 

as before. Assuming that the final payoff Br Y 7 is attainable, there is a 
self-financing trading strategy cJ> for which 

Vr(ci>) = BrYr 

and the arbitrage-free time-tk price of this final payoff is 

Vk(T) = Ik(BrYr) 
= Vk(cJ>) 

Bk 
= Br Err(Vr(ci>) I Fk) 

= Err(BkYr I Fk) 

The quantity vk ( T) is the time-tk value of the American option under T. 

Now, at time tk we again assume that the investor makes the best 
possible stopping decision, which in this case amounts to choosing a 
stopping time T* for which vk ( T*) is maximized. Accordingly' let us 
define vk by 

and say that a stopping time T* is optimal if 
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We call (Vk) the value process of the American option. 

Let us take a moment to compare the decision process at time t 0 , namely 
to maximize according to 

Vo = max Vo(r) = max £n(YT) 
TESo,T TESo,T 

and the time tk decision process, namely, to maximize according to 

vk =max Vk(r) =max Err(BkYT I Fk) 
TESk,T TESk,T 

In the latter case, we are taking the maximum over a smaller set, since 

Sk,T ~ So,T 

so this would tend to make the maximum smaller. On the other hand, at 
time tk we are maximizing with more information, that is, we are 
maximizing the conditional expectations Err(BkY 7 I Fk), which would 
tend to make the maximum larger. Thus, we have two conflicting forces, 
the result of which is that we cannot say anything about which is larger. 

Definition For an American option with payoff process 
(Yk I k = 0, ... , T) the arbitrage-free value process is 

vk =max t'rr(BkYT I Fk) 
TESk,T 

and the discounted value process is 

V k =max t'rr(Y T I Fk) 
TESk,T 

The discounted value process (V k) is called the Snell envelop of the 
discounted payoff process (Y k ). 0 

Definition A stopping time r* is optimal for the interval [ k, T] if it 
maximizes the expected discounted payoff process (Y k ), that is, 

Err(YT· I Fk) = vk =max £n(YT I Fk) 
TESk,T 

that is, if r* achieves the best expected discounted payoff.O 



288 Introduction to the Mathematics of Finance 

10.9 Optimal Stopping Times and the Snell Envelop 

To simplify the notation, we will study Snell envelops in terms of 
arbitrary nondiscounted processes. The only difference is whether or not 
we need to include the overbar. 

Definition If Z = (Zk I k = 0, ... , T) is a random process then the 
process U = (Uk) defined by 

uk =max En(Zr I Fk) 
rESk,T 

is called the Snell envelop of Z. A stopping time r* that realizes this 
maximum over the interval [k, T], that is, for which 

Err(Zr· I Fk) = uk =max En(Zr I Fk) 
TESk,T 

is called an optimal stopping time for Z over [k, T]. D 

Thus, if Z is the discounted payoff process of an American option then 
the Snell envelop U is the discounted value process of the option. 

We will compute the Snell envelop of the payoff process (Yk) from 
Example 1 a bit later, when we have some additional tools that will make 
the computation simpler. 

10.10 Existence of Optimal Stopping Times 

The very first question that should be addressed with respect to optimal 
stopping times is whether or not they exist. For k = 0 it is clear that 
optimal stopping times exist because we are simply maximizing a finite 
set of constants £ rr ( Z7 ). But for k > 0 we are maximizing nonconstant 
functions Err(Zr I Fk). 

Theorem 1 For any interval [k, T] an optimal stopping time for Z exists. 
Proof. Recall that for 

the conditional expectation is defined by 

c 

Err(Zr I Pk) = L fn(Zr I Bk,u)lBk,u 
u=l 

Thus, for each Bk,u the random variable fn(Zr I Pk) is equal to the 
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constant £n(Z7 I Bk,u) on Bk,u· Hence, we can find a stopping time rk,u 
that maximizes these constants, that is, for which 

t'rr(ZTk,u I Bk,u) = mESax t'rr(ZT I Bk,u) 
T k,T 

Consider the random variable 

c 

ric = L rk,ulBk,u 
u=l 

which maximizes the conditional expectation on each block of Pk· To 
see that r* is a stopping time in Sk,T, note that rk ~ k and for any h ~ k 

c c 

[ric = h] = U ([ric = hJ n Bk,v) = U ([rk,v = h] n Bk,v) E A(Ph) 
v=l v=l 

as required of a stopping time. 

Now, if w E Bk v then , 

and so 

Hence, for any r E Sk,T 

c 

ZTk = L ZTk,u lBk,u 
u=l 

c 

Err(ZT;; I Pk) = L £n(ZTk,u1Bk,u I Pk) 
U=l 

c 

~ L£rr(ZT1Bk,u I Pk) 
u=l 

c 

= L £n(ZT I Pk)lBk,u 
u=l 

c 

= £n(ZT I Pk) L lBk,u 
u=l 

as required of an optimal stopping time.D 
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We should also prove that the Snell envelop is lF -adapted. 

Theorem 2 The Snell envelop (Uk) is lF -adapted. 
Proof. The random variable Uk is the maximum of a finite number of 
random variables t'rr(Zr I Pk), each of which is Pk-measurable. Hence, 
so is Uk.D 

10.11 Characterizing the Snell Envelop 

Consider again the situation of the investor who, at time tk needs to 
make a decision among the stopping times in Sk,T· When casting about 
for an optimal stopping time, he can divide the candidates Sk,T into three 
subsets based on the stopping event for the current time tk. 

The investor could simply decide to stop now (at time tk) and be done 
with it, he could decide not to stop at time tk under any circumstances, or 
he could decide upon a stopping time that may stop now or may stop 
later, depending on the state of the economy. In symbols, the set Sk,T is 
the disjoint union 

Sk,T = sk+l,T u Sk,k u S'k,r 

corresponding to the following: 

1) Do not stop now, that is, stop at time tk+I or later 

sk+l,T = {T E sk,r 1 [T = kJ = 0} 

2) Stop now, at time k 

Sk,k = {k1!1} = {T E Sk,T I [T = k] = 0} 

3) May stop at time tk or may stop later 

S'k,r = {T E Sk,T I [T = k]-=!= 0,0} 

We wish to show that the Snell envelop can be computed without the 
need to consider stopping times of type 3). Note that we are not saying 
that there is no optimal stopping time of type 3), but only that the values 
Uk can be computed without regard to stopping times of type 3). 

The mathematical version of this statement is that the Snell envelop 
satisfies 
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Note that the maximum is now being taken over the set Sk+l,T· 

Theorem 3 The Snell envelop satisfies 

uk =max { zk, max Err(Zr I Pk)} 
TESk+l,T 

for all k = 0, ... , T. 
Proof. First, since r = k is a (constant) stopping time and since 
sk+l,T ~ Sk,T, we clearly have 

uk =max Err(Zr I Pk) 
rESk,T 

?:: max{Err(Zk I Pk), max Err(Zr I Pk)} 
rESk+l,T 

=max {Zk, max Err(Zr I Pk)} 
rESk+l,T 

We must establish the reverse inequality. Let r E Sk,T and consider the 
stopping time r' defined from r by postponing any stopping from time tk 

to tk+l, that is, 

'( ) _ { k 1} _ { r(w) ifw E [r > k] 
7 w -max 7 ' + - k + 1 ifw E [r = k] 

Since the maximum of two stopping times is a stopping time, we have 
7 1 E Sk+l,T· 

Now, since [r > k] = [r = k]c E O'(Pk) we have 

Err(Zr I Pk) = Err(Zr1[r=k] I Pk) + Err(Zr1[r>k] I Pk) 
= Err(Zk1[r=k] I Pk) + Err(Zr'1[r>k] I Pk) 
S max{Zk, Err(Zr' I Pk)} 
= max{Zk. max Err(Zr I Pk)} 

aESk+I,T 

But the left-hand side is valid for all r E Sk T and so , 

as desired. D 
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The most important use of the previous formula is that from it we can 
derive a backward recurrence relation for Uk. Note that 

Ur =max £n(Zr I Pr) = En(Zr I Pr) = Zr 
rESr,T 

This provides the initial step in the backward recurrence. 

Let us look more closely at the random variable 

X= max £n(Zr I Pk) 
rESk+l,T 

that appears in the Theorem 3. If the conditioning was with respect to 
Pk+1 then X would just be Uk+l· This prompts us to condition further 
and use the tower property of conditional expectation. First, we need to 
mention that in general for any two random variables X and Y we have 

max{ £(X I P), £(Y I P)} :S: £(max{ X, Y} I P) 

We leave proof of this as an exercise. Now we have 

X= max En(Zr I Pk) 
rESk+l,T 

= max £n(£n(Zr I Pk+I) I Pk) 
rESk+l,T 

:SEn( max { £n(Zr I Pk+1)} I Pk)) 
rESk+l,T 

= En(Uk+l I Pk) 

and so 

For the reverse inequality, let r* E Sk+l,T be an optimal stopping for the 
interval [tk+l, T], that is, 

Then 

Hence, 

En(Uk+l I Pk) = £n(£n(Zr* I Pk+l) I Pk) 
= t'n(Zr* I Pk) 
:S max £n(Zr I Pk) 

rESk+l,T 

=X 
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and we arrive at the following recurrence relation for the Snell envelop. 

Theorem 4 The Snell envelop satisfies the backward recurrence relation 
1) UT = ZT 
2) 

uk =max {Zk, Err(Uk+l I Pk)} 

for all k = 0, ... , T - 1. 0 

Now we can compute the Snell envelop of the payoff process from 
Example 1. 

EXAMPLE 5 Again referring to Example 1, let us compute the Snell 
envelop ofthe payoffprocess (Yk)· First, we have 

Next, we need 

from which we get 

Next, we need 

u3 =Y3 

H5.26 + o.78) = 3.2 

~(0.78 + 0) = 0.39 

~(0.78 + 0) = 0.39 

ifw E B2,1 

ifw E B2,2 

ifw E B2,3 

ifw E B2,4 0 

ifw = W1,W2 

ifw = W3,W4 
ifw = ws,w6 
ifw = W7,W3 

£ (U I p) = { ~(3.2 + 0.39) = 1.795 
II 2 1 ~(0.39 + 0) = 0.195 

if W = W1, W2, W3, W4 

ifw = Ws,W6,W7,W8 

which gives 
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Finally, 

ul = max{Yi, £n(U2 I Pl)} 

= £n(U2 I P1) 

= { 1.795 ~fw = W1,W2,W3,W4 

0.195 lfW = Ws,W6,W7,W8 

1 
Uo = max{Yo,£n(Ul I Po)}= max{O, 2(1.795 + 0.195)} = 0.995 

Let us recall from Example 4 that the stopping time 0' defined by 

O'(w) = { 2 ifw E ~w1,w2,w7,w8 } 
3 otherwise 

has expected (discounted) final value 

-- 1 1 
£n(Yo-) = 4 · 3.2 + 4 · 0.78 = 0.995 

which is equal to U0 . Hence, 0' is indeed an optimal stopping time. In 
fact, as we will see, 0' is the smallest optimal stopping time in the sense 
that it stops before any other optimal stopping time. (Observe that we 
could have waited until time t 3 in states w7 and ws and still achieved 
optimality.)D 

This is a good time to emphasize a point about optimal stopping times, 
namely, optimal stopping times represent the best guess as to when to 
stop without being able to see into the future. Thus, an optimal stopping 
time is not guaranteed to produce the best possible payoff. Indeed, 
looking at Figure 1, it is clear that the best possible exercise procedure 
involves exercising at time t2 if the final state is w2 but waiting until time 
t3 if the final state is w1. However, at time t2 we do not know which state 
will prevail: w1 or w2 so this plan is not a stopping time. 

The Smallest Dominating Supermartingale 

It is clear from condition 2) of Theorem 4 that 

Err(Uk+I I Pk) :S uk 

which is the condition that Uk be a supermartingale: Formally, an IF­
adapted process (Xk) is an IF -supermartingale if 

£(Xk+1 1 Pk) :S xk 
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It is also clear that 

that is, Uk dominates Zk. It is not hard to see using the recurrence 
relation that Uk is the smallest supermartingale that dominates Zk. 

Theorem 5 The Snell envelop Uk is the smallest IF' -supermartingale that 
dominates Zk. 
Proof. We have seen that Uk is a supermartingale that dominates Zk. 
Suppose that Vk is a supermartingale that dominates Zk. This is 
equivalent to the single inequality 

vk ~max { zk, t'rr(Vk+l I Pk)} 

We can now proceed by backward induction using the recurrence 
relation. For the basis step in the induction, we have 

Vy ~ Zy = Uy 

Assuming that Vk+l ~ Uk+l then 

vk ~ max{Zk,t'rr(Vk+l I Pk)} ~ max{Zk,t'rr(Uk+l I Pk)} = uk 

and we are done.D 

10.12 Additional Facts About Martingales 

In order to continue our discussion of optimal stopping times, we need 
some additional results relating to martingales and supermartingales. 

Theorem 6 
1) lfX is an lF -martingale then for all j :::; k 

t'(Xj) = t'(Xk) 

2) lfX is an lF -supermartingale then for all j:::; k 

t'(Xj) ~ t'(Xk) 

Proof. For a martingale, we have 

Taking expected values and using the tower property gives 

For submartingales, the proof is similar.D 
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Stopping a Process: Doob 's Optional Stopping Theorem 

We begin with a formal definition of a sample path for a stochastic 
process. 

Definition Consider a stochastic process X= (Xo, ... , Xr ). For each 
element w E 0 the sequence 

Xo(w), ... , Xr(w) 

is called a sample path. D 

Intuitively, to stop a stochastic process, we stop the sample path for each 
wE n when T tells us to do so, that is, at time T(w). Thus, a sample path 
looks like this 

Xo(w), X1(w), ... , X 7 (w)(w), X 7 (w)(w), ... 

Thus, the indices in this path are equal to n 1\ T( w) = min{ n, T( w)} and 
we can write 

XoM(w)(w), XIM(w)(w), ... , XnM(w)(w), X(n+l)M(w)(w), ... 

Definition Let X= (X0 , ... , Xr) be a stochastic process adapted to a 
filtration lF and let T be a stopping time T on lF. The stopped process or 
sampled process is defined by 

X7 = (Xk) = (xki\T) = (xkt\o, ... , xkt\T) 

(Note that the first three expressions are just notation for thefourth.)D 

Observe that for each n 

n-l 

Xni\T = L Xil{T=i} + Xn1{7~n} 
i=l 

(1) 

The following theorem is one of the key results in martingale theory. (A 
stopping time is also called an optional random variable.) 

Theorem 7 (Doob's Optional Sampling Theorem) Let X= (Xk) be a 
martingale (or supermartingale) and T a stopping time. Then the stopped 
process X7 is also a martingale (or supermartingale). 
Proof. We know that 
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Starting from the expression (1) we have 

n-1 
£(Xni\T I Fn-1) = L £(Xil{r=i} I Fn-d + £(Xnl{r~n} I Fn-1) 

i=1 

Now, this simplifies quite a bit since { T = i} E A(Pn-1) fori ~ n- 1, 
Xi is Pn-1-measurable and { T ~ n} E A(Pn-1) this becomes 

n-1 
£(Xni\T I Fn-d = L Xil{r=i} + l{r~n}£(Xn I Fn-1) 

i=1 
n-1 

= L Xil{r=i} + l{r~n}Xn-1 
i=1 
n-2 

= L Xil{r=i} + l{r=n-1}Xn-1 + l{r~n}Xn-1 
i=1 
n-2 

= L Xil{r=i} + l{r~n-1}Xn-1 
i=1 

= X(n-1)1\T 

as desired. The proof for a supermartingale is almost identical.D 

The Doob Decomposition 

Finally, we need the following decomposition result. 

Theorem 8 (fhe Doob Decomposition) Let X = (X0 , •.• , Xr) be an IF­
adapted stochastic process. 
1) There are a unique martingale M = ( M0 , ... , Mr) and a unique 

predictable process A = ( A1, ... , Ar) such that 

Xk = Mk -Ak 

with Ao = 0. 
2) If X is a supermartingale then A is nondecreasing, that is, 

Ak+l ~ Ak. 
Proof. For part 1), set Mo = X 0, A0 = 0 and fork> 0 

k 

Mk = L[Xi- En(Xi I Fi-1)] + Xo 
i=1 

and Ak = Mk - Xk. Then it is easy to check that the desired properties 
hold. For part 2), suppose that X is a supermartingale. Then 
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Mk - Ak = xk ~ £(Xk+l 1 Fk) 

and soAk ::; Ak+l·D 

= £(Mk+l I Fk) - £(Ak+l I Fk) 

= Mk- Ak+I 

10.13 Characterizing Optimal Stopping Times 

Note that if two discrete random variables satisfy X ::; Y and 
£rr(X) = £rr(Y) then because II is strongly positive, it follows that 
X = Y. This fact will prove very useful. 

Armed with the previous additional facts about martingales and 
supermartingales, we can return to the matter at hand, namely 
characterizing optimal stopping times. 

We begin by exploring what happens if we stop the process (Uk)· Since 
Uk is a supermartingale, it follows by Doob's optional sampling theorem 
that for any stopping time r E So,T the stopped process (Uk) is also a 
supermartingale, that is, 

Moreover, since zk ::; uk it follows that the final values satisfy ZT ::; UT. 

The fact that (Uk) is a supermartingale and Z7 ::; U7 implies the chain of 
inequalities 

t'rr(ZT)::; t'rr(UT) = t'rr(UY,)::; · · ·::; t'rr(U{)::; · · ·::; £rr(U0) = Uo 

Now, if r* is an optimal stopping time for [0, T], that is, 

Uo = t'rr(ZT.) 

then the previous sequence of inequalities becomes a sequence of 
equalities. The first of these equalities 

implies, since zT. ::; uT. and II is strongly positive, that zT. = uT. 0 (See 
the remark at the beginning of this section.) 

Looking further down the chain of inequalities we also see that 

t'rr(U{) = t'rr(U{~I) 
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The supermartingale property now implies that (U{) 1s m fact a 
martingale. To see this, the supermartingale property is 

Err(U{ I Pk-1) ::; U'k~1 

But both sides have the same expected value. In fact, taking the expected 
value of the left side gives, by the tower property 

£n(£rr(U{ I Pk-1)) = Err(U{) = £rr(U{~ 1 ) 

In general if A::; B and £(A)= £(B) then A= B and so we deduce 
that 

Err(U{ I Pk-1) = U{~1 

that is, (U{) is a martingale. 

For the converse, suppose that Zr = Ur and that U{, is a martingale. 
Then the sequence of inequalities is a sequence of equalities and in 
particular, 

Uo = Err(Zr) 

which implies that Tis optimal for the interval [0, T]. 

We now have a characterization of optimal stopping times. 

Theorem 9 A stopping time T E So,T is optimal for the interval [0, T] if 
and only if 
1) Zr = Ur 
2) U{, is a martingale.D 

10.14 Optimal Stopping Times and the Doob Decomposition 

We have seen that a stopping time T is optimal if and only if Z7 = Ur 
and 1(]7 = (Uk) is a martingale. This prompts us to take a closer look at 
when 1(]7 is a martingale. 

We have seen that the Snell envelop 

1U = (Uo, ... , Ur) 

is a supermartingale. Using Doob's decomposition, we can write 

1U=M-A 
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where M= (Mo, ... ,Mr) is a martingale and A= (A1, ... ,Ar) 1s 
predictable and nondecreasing and A0 = 0. 

Suppose we now stop this sequence 

tor = MT - AT = ( Mo - A(j, ... , Mf - Ar) 

We know that MT is a martingale. It follows from the uniqueness of the 
Doob decomposition that "[F is a martingale if and only if AT is the zero 
process. 

Now, for any wEn the sequence Ak(w) is 

Ao(w), ... , AT(w)-1 (w), AT(w) (w), ... , AT(w)(w) 

Since this sequence is nondecreasing from 0, it is the zero sequence if 
and only if 

Hence, AT= 0 if and only if AT= 0, that is, UT is a martingale if and 
only if AT = 0. 

Theorem 10 Let liJ = (Uk) be the Snell envelop of(Zk). For a stopping 
time T E So,T the stopped process l[]T = ( Uk) is a martingale if and only 
if AT = 0 where A = ( Ak) is the predictable process in the Doob 
decomposition oflU. 0 

10.15 The Smallest Optimal Stopping Time 

The previous theorem makes it easy to determine the smallest optimal 
stopping time. First, we recall the recurrence formula 

uk = mix{Zk,Err(Uk+l I Pk)} 

Using the Doob decomposition, we notice that 

and so 

Err(Uk+l I Pk) = Err(Mk+l I Pk) - Err(Ak+l I Pk) 
= Mk- Ak+l 
= (Mk- Ak)- (Ak+l- Ak) 
= Uk - (Ak+l - Ak) 
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Hence, the strict inequality 

implies that 

Ak+l = Ak 

It follows that prior to the first time tk that uk = zk we do have the 
strict inequality Ui > Zi (i < k) and so Ai+l = Ai (i < k). But Ao = 0 
and so 

0 = A0 = ··· = Ak 

This prompts us to define T min by 

Tmin(w) = min{k I Zk(w) = Uk(w)} 

which exists since ZT(w) = UT(w). In addition, Tmin is the first entry 
time of the adapted process (Zk- Uk) into the Borel set {0} and so is a 
stopping time. By definition we have 

If T min is an optimal stopping time then it must be the smallest optimal 
stopping time because all optimal stopping times T satisfy Zr = Un that 
is, Zr(w)(w) = Ur(w)(w). Moreover, we have just seen that 

0 = Ao(w) = A1(w) = · · · = ATmin(w)(w) 

Hence Armin = 0, which implies that 1(Fmin is a martingale. Finally, 

Theorem 11 The smallest optimal stopping time is 

Tmin(w) E min{k I Zk(w) = Uk(w)} 

EXAMPLE 6 In Example 4 we defined the stopping time 

a(w) = { 2 if WE ~ w 1, w 2, w7 , w 8} 

3 otherwise 

D 

and showed in Example 5 that a is optimal. In fact, it is easy to see that a 
has the property 

a(w) E min{k I Zk(w) = Uk(w)} 

and so it is the smallest optimal stopping time.D 



302 Introduction to the Mathematics of Finance 

10.16 The Largest Optimal Stopping Time 

In view of Theorem 10, in casting about for the largest optimal stopping 
time, it is natural to consider the function 

Tmax(w) = max{k I Ak(w) = 0} 

which exists since A0 = 0. Since any optimal stopping time r satisfies 
Ar = 0 if T max is an optimal stopping time then it must be the largest 
optimal stopping time. Note that Tmax can also be defined by 

r, (w) = { min{k I Ak+I(w) > 0} if {k I ~k+I(w) > 0} =/= 0 
max T otherwise 

and since this is the first entry time (into (0, oo )) of the adapted process 
A we see that Tmax is a stopping time. Also, since Armax = 0 we know by 
Theorem 10 that (U{max) is a martingale. Thus, to show that Tmax is 
optimal, we need only show that Urrnax = Zrmax. 

Once again we look at the recurrence relation 

uk = max{ zk, t'rr(Uk+l I Pk)} 

which, using Doob's decomposition can be written 

Uk = max{ Zk, Uk - (Ak+l - Ak)} 

But fork= Tmax(w) we have 

Armax+l(w)- ATmax(w) = Armax+l(w) > 0 

and so the maximum above is just Zk. that is, 

Thus Urmax = Zrmax as desired. 

Theorem 12 The largest optimal stopping time is 

Tmax(w) = max{k I Ak(w) = 0} 

= { min { k I Ak+l ( w) > 0} if { k I Ak+l ( w) > 0} =/= 0 
T otherwise 

where 

is the Doob decomposition. D 
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Exercises 

1. Show that the first entry time into any set of the form (a, b) is a 
stopping time. 

2. Show that the first entry time into any Borel set B is a stopping time. 
3. Show that the first time that a stock's price doubles its initial price is 

a stopping time. 
4. Show that the first time that a stock's price doubles its previous price 

is a stopping time, that is, the random variable 

T(w) = 

{ min{k I Sk(w) ~ 2Sk-l(w)} if {k I Sk(w) ~ 2Sk-l(w)} # 0 
T otherwise 

is a stopping time. 
5. Show that the first exit time from a set of the form (a, b) is a 

stopping time. 
6. Prove that the maximum, minimum or sum of two stopping times is a 

stopping time. How about the difference? 
7. Prove that for any random variables X andY 

max{f(X I P), £(X I P)} :S f(max{X, Y} I P) 

8. Prove that since zk ::; uk for all k, it follows that ZT ::; UT for any 
stopping time T. 

9. Prove that if two discrete random variables satisfy X::; Y and 
frr(X) = frr(Y) then because II is strongly positive, it follows that 
X=Y. 

10. Prove that if (A0 , ... , Ar) is a martingale and (A1, ... , Ar) is 
predictable then (Ak) is a constant sequence, that is, 

A~=···=Ar 

11. For the CRR model with 

u = 1.2, d = 0.8, r = 0, So = 20 

compute the price process, payoff process for an American call with 
K = 21 and the Snell envelop. Find the first optimal stopping time. 

12. Write an Excel spreadsheet that given u, d, r, S0 and K will compute 
the price process, payoff process for an American call/put with strike 
price K and the Snell envelop. 





Appendix A 

Pricing N onattainable Alternatives in an 
Incomplete Market 

In this appendix, we discuss the problem of pricing nonattainable 
alternatives in an incomplete discrete model. The material is not required 
for the main body of the text and may be read anytime after reading 
Chapter 6. 

A.l Fair Value in an Incomplete Market 

It is often the case that a discrete model is not complete. Consider, for 
example, a single-period model. In such a model, a trading strategy 
reduces to just a single portfolio 8 = (01, ... , Bn), acquired at time t 0 

and held for the single period of the model. Hence, ei is a constant for 
each i. 

Consider now an alternative X= (x1,. :. , xm). For this to be attainable, 
there must be a portfolio (vector) 8 for which Vr(8) =X, that is, the 
following system of m equations (m is the number of states) in the n 
variables 01, ... , Bn must be satisfied: 

Sr,l(wi)Bl + .. · + Sr,n(wl)Bn =XI 

As you may know, if the number m of equations is greater than the 
number n of variables, then there cannot be a solution for all possible 
vectors X= (xi, ... , xm). (Writing this system in the matrix form 
S8 = X we see that the left-hand side defines a linear transformation 
f(8) = S8 from Rn to Rm and so the image f(Rn) has dimension at 
most n. Thus, ifn < m the image cannot be all ofRm.) 

Thus, we see that the market is incomplete whenever n < m, that is, 
whenever the number of states of the economy is greater that the number 
of assets in the model (and possibly at other times as well). But it is not 
at all unreasonable for a model to have more states than assets. 

This discussion raises the issue of how to assign a fair price to a 
nonattainable alternative in an incomplete discrete model. In particular, 
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suppose that a model M is incomplete and let W be a nonattainable 
vector, that is, W ~ M. Since the replicating alternative pricing 
procedure cannot be used to assign a fair value to W, how can we assign 
a fair value to W? 

Let us consider the question from the point of view o.f an investor who 
wants to sell the payoff W. This investor knows that he cannot duplicate 
the payoff with a self-financing trading strategy, since W is not 
attainable. However, in order to hedge the risk of the short position, the 
investor could purchase a self-financing trading strategy cl> whose payoff 
dominates W, that is, VT ( cl>) ~ W, since then the payoff from cl> would 
be enough to cover W and possibly more. 

Put another way, consider the set of all attainable alternatives that 
dominate W, written 

Dw = {X E M I X ~ W} 

Then the investor can hedge W by investing in any self-financing trading 
strategy that replicates any vector in Dw. 

Of course, there are some issues here, the first of which is whether or not 
the set Dw is nonempty. If Dw is empty then there are no dominating 
alternatives and this strategy cannot be applied. Setting this aside for the 
moment, let us assume that the hedger has no trouble finding, at least in 
theory, a dominating attainable alternative X E Dw. Of course, all 
dominating attainable alternatives X have a fair (nonarbitrage) price 
I( X), where I is the initial pricing functional. We could then define the 
price of W to be the minimum price of these dominating attainable 
alternatives, that is, the minimum price required to hedge the risk of W. 
In symbols, this is 

P(W) = min I(X) 
XE'Dw 

A.2 Mathematical Background 

In order to explore this issue further, we must first cover some 
mathematical background as it relates to linear functionals. 

Bases of Strongly Positive Vectors 

We begin with a result about bases consisting of strongly positive 
vectors. 



A. Pricing Nonattainable Alternatives in an Incomplete Market 307 

Theorem 1 Let S be a k-dimensional subspace of Rm that contains a 
strongly positive vector Z. 
1) All vectors "close enough" to Z are also strongly positive. 

Specifically, there is a real number E > 0 such that all vectors 
XES that satisfy IX- Zl < E are also strongly positive. 

2) S has a basis consisting of strongly positive vectors. 
Proof. For part 1), write Z = (z1, ... , zm) and let E = min{zi}. If 
IX- Zl < E then 

Zi- Xi :::; lzi- xi I :::; IZ- XI < E:::; Zi 

and so we must have Xi > 0 for all i, whence X is strongly positive. For 
part 2), the idea is that a sufficiently small ball about Z contains enough 
"directions" to define a basis and in view of the first part of the theorem, 
these vectors are strongly positive. Specifically, write Z = Z1 and 
extend { ZI} to a basis B = { Z1 , Z2 , .•• , Z k} for S. Consider the vectors 

Zi(>..) = >..Z1 + (1- >..)Zi 

fori= 1, ... , k and>.. E R We claim that for any given>.. E [0, 1) these 
vectors are linearly independent and hence form a basis for S. To see 
this, suppose that 

k 

I: aiZi(>..) = 0 
i=l 

for scalars ai. Then 

i=l 
k 

=I: ai(>..Z1 + (1- >..)Zi) 
i=l 

~ [t, a;~] Z1 + t, a,(l- ~)Z, 
and since B is a basis, it follows that ai(1- >..) = 0 for all i ~ 2, which 
implies that ai = 0 for all i. 

Finally, note that 

IZi(>..)- Zll = I>..Zl + (1- >..)Zi- Zll = (1- >..)IZi- Zll 

so by choosing >.. sufficiently close to 1 we can apply the first part of this 
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theorem to deduce that the vectors Zi ( >.) are strongly positive. This 
completes the proof. 0 

Dominating Vectors 

We now want to turn our attention to the issue of when dominating 
vectors exist. 

Theorem 2 If a subspace S ~ Rm contains a strongly positive vector 
then for any Z E Rm the set Vz ={XES I X 2:: Z} is nonempty. 
Proof. Suppose that S contains a strongly positive vector 
A= (a1, ... , am), that is, ai > 0 for all i. Then all we need to do is 
multiply A by a scalar a that is sufficiently large so that aai 2:: Zi for 
each i. We leave the details to the reader.O 

The Space of Attainable Vectors 

The following result shows why we have stated the previous two 
theorems. 

Theorem 3 The set M of all attainable vectors for a discrete model 
contains a strongly positive vector. Hence, 
1) M has a basis consisting of strongly positive vectors 
2) Vz = {X E M I X 2:: Z} is nonempty for any Z E Rm. 
Proof. Let <I> be the trading strategy that invests 1 unit in the riskfree 
asset and rolls it over. Then the final payoff X= Vr(<I>) EM is 
strongly positive. 0 

Linear Functionals 

For the record, here is the definition of linear functional, with which you 
are probably familiar. 

Definition Let S be a subspace of Rm. A linear functional on S is a 
function f: S ---t lR satisfying 

f(aX +bY)= af(X) + bf(Y) 

for all a, b E lR and X, Y E S. 0 

Since the image of a linear functional is only 1-dimensional, the kernel is 
"very large," that is, 

dim(ker(f)) = dim(S)- 1 

Hence, there is a nonzero vector W for which 
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S = ker(f) EB (W) 

where the direct sum is orthogonal, that is, W _i ker(f). Thus, any 
vector X E IRm has the form X = Z + a W where Z E ker(f) and 
a E lR and so 

f(X) = f(Z + aW) = f(Z) + af(W) = af(W) 

which shows that f is completely determined by its value on the single 
vector W. 

This has a several useful implications. For example, if g is another linear 
functional on S with the same kernel as f then we also have 
g(X) = ag(W) and so (assuming f is not zero) 

g(W) g(W) 
g(X) = ag(W) =a f(W) f(W) = f(W) f(X) = >.j(X) 

where ).. = g(W)/ f(W) is a constant. We have proved the following 
theorem. 

Theorem 4 Let f and g be linear functionals on a subspace S ~ IRm.lf 
ker(f) = ker(g) then there is a real number >.for which g = j>..D 

The Representation Theorem for Linear Functionals 

The following well-known theorem also characterizes linear functionals 
in terms of a single vector, through the notion of an inner product. We 
will denote the standard basis vectors in IRm by E 1, ... , Em. 

Theorem 5 (The Representation Theorem for Linear Functionals) 
1) Let f: S ---t lR be a linear functional on a subspace S ~ IRm. Then 

there is a unique vector YJ E S such that 

f(X) =(X, YJ) 

for all XES. 
2) Iff: IRm ---t lR is a linear functional on IRm then 

YJ = (f(EI), ... , f(Em)) 

Proof. For part 1), let WE (ker(f)).L have unit length and let 
YJ = f(W)W. Since any XES has the form X= Z + aW where 
Z E ker(f), it is easy to see that f(Z) = (Z, Yt) (since both are 0) and 
f(aW) = (aW, Yt) (since (W, W) = 1) and so f(Z) = (Z, Yt) for all 
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Z E S, as desired. As to uniqueness, suppose that 

f(X) = (X, Y) = (X, Z) 

for all XES. Then 

(X, Y- Z) = 0 

for all X E S. Taking X = Y - Z gives 

(Y - Z, Y - Z) = 0 

which can only happen if Y - Z = 0, that is Y = Z. We leave proof of 
part 2) to the reader.D 

From now on, we will reserve the notation YJ for the vector described in 
the previous theorem. 

Extensions of Linear Functionals 

If a linear functional f is defined on a proper subspace S of JRm there are 
an infinite number of ways to extend f to a linear functional on all of 
JRm. In fact, if XI, ... , Xk is a basis for Sand we extend this to a basis 
XI, ... , Xk, Yi., ... , Ym-k of JRm then we can define f on the additional 
basis vectors Yi in any way whatsoever. The result will uniquely 
determine a distinct linear functional on JRm. 

We want to explore the notion of extensions a bit further, but first, let us 
give a formal definition of an extension. 

Definition Let f: S ~ lR be a linear functional on a subspace S oflRm. 
Then an extension of f to JRm is a linear functional ]: JRm ~ lR for 
which 

f(X) = f(X) 

for all X E S.D 

The following theorem characterizes extensions of a linear functional in 
two ways. 

Theorem 6 Let f: S ~ lR be a linear functional on a subspace S oflRm 
and let K = ker(f) ~ S. 
1) Then g: JRm ~ lR is an extension off if and only if 

Yg=Y1+W 
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for some WE Sj_, that is, 

g(X) = (X, Yt + W) 

where WE S_i. 
2) If f is nonzero and g: IRm --+ lR is an extension of f then 

Yg E K j_ \ Sj_. Moreover, for each vector U E K j_ \ Sj_ there is 

exactly one scalar >.. for which the linear functional 
g(X) = (X, >..U) is an extension of f. 

Proof. For part 1), suppose that g(X) = (X, Y9). Then to say that g is an 
extension off is to say that 

(S, Yg) = (S, Yt) 

or 

for all S E S. In other words, Y9 - Yt E Sj_ or equivalently 
Y9 = Yt + W where W E Sj_. 

For part 2), the first statement follows from part 1), since Yg = Yt + W 
where WE Sj_. Now Yt E Kj_ and WE Sj_ ~ Kj_ and so Yg E Kj_. 
On the other hand, if Yg E Sj_ then we would also have Yt E Sj_, which 
would imply that f = 0, contrary to assumption. Hence Yg E K j_ \ Sj_. 

As to the second statement, let U E K j_ \ Sj_ and let g be defined by 
g(X) = (X, >..U). Let us denote the restriction of g to S by gls. We first 
show that 

ker(gls) = ker(f) 

First, note that 

ker(gls) = ker(g) n S = (U)j_ n S 

Since U E K j_ it follows that (U) ~ K j_ and so K ~ (U)j_. Also, 
K ~ S and so K ~ (U)j_ n S. To complete the proof of equality, we 
show that these two subspaces have the same dimension. Since U ~ Sj_ 
we know that S cJ. (U)j_ and so 

dim( (U)j_ + S) > dim( (U)j_) = m- 1 

which means that dim( (U)j_ + S) = m. Hence, by a well-known 
formula from linear algebra, we have 
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dim( (U)j_ n S) =dim( (U)j_) + dim(S)- dim( (U)j_ + S) 
= m -1 + dim(S)- m 
= dim(S) -1 
= dim(ker(f)) 

Thus K = (U)j_ n S, that is ker(gls) = ker(f). Hence, by Theorem 4 
there is a scalar f.1 for which gls = f.-Lf. If A= 1/ f.1 we have f = (Ag)ls, 
that is, Ag is an extension off. 

To finish the proof, we need to show that there is only one such scalar A. 
Suppose that A1 and A2 have the property that g1(X) =(X, A1U) and 
92(X) =(X, A2U) are both extensions of f. Since g1(X) = g2(X) for 
all v E S we have (X, (A1 - A2)U) = 0 for all XES. This means that 
(Al - A2)U E Sj_. But since U fj. Sj_ we conclude that A1 - A2 = 0, that 
is, A1 = A2, as desired.D 

Positive Linear Functionals 

We have defined positivity for vectors. For linear functionals, we have 
the following definition. 

Definition Let f: S---+ lR be a linear functional on S ~ JRm. Then 
1) f is nonnegative (written f 2: 0) if 

X 2: 0 =* f (X) 2: 0 

for all XES. 
2) f is strictly positive (written f > 0) if 

X> 0 =* f(X) > 0 

for all X E S.D 

It is not hard to see that the initial pricing functional I is strictly positive 
(in the absence of arbitrage). For if X > 0 is an attainable alternative and 
q, is a replicating trading strategy for X, then Vr ( q,) = X > 0 and so the 
initial price 

I(X) = V0(X) 

must be positive or else there will be arbitrage. This accounts for why we 
are studying strictly positive linear functionals. 
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The following theorem characterizes positivity for linear functionals on 
JRm. 

Theorem 7 Let f: JRm ---+ lR be a nonzero linear functional. Then 
1) f is nonnegative if and only if YJ is strictly positive, that is, 

2) f is strictly positive if and only ifYJ is strongly positive, that is, 

YJ = (f(E1), ... , f(Em)) » 0 

Proof. For 1), assume first that f is nonnegative. Then since Ei ;::: 0 it 
follows that f(Ei) ;::: 0. Since f(Ei) cannot all be 0 or else f would be 0, 
we conclude that YJ > 0. Conversely, if f(Ei) ;::: 0 for all i (not all 0) 
then since any X ;::: 0 has the form 

X= (x1, ... ,xm) 

where Xi ;::: 0 we conclude that 

m 

f(X) = L xd(Ei) ;::: 0 
i=l 

Part 2) is similar and we leave the proof to the reader. D 

It is worth pointing out that this theorem applies only to linear 
functionals on all of JRm. For instance, consider the subspace 
S = { (a, -a) I a E lR} of JR2 • Then for any nonzero vector W E JR2 the 
linear functional g: S---+ lR defined by g(X) = (X, W) is nonnegative 
since the zero vector is the only vector inS satisfying X ;::: 0. In fact, fit 
is strictly positive since there are no vectors in S satisfying X > 0! 

Extensions and Positivity 

Let us consider the issue of whether a strictly positive linear functional 
on a subspace S can be extended to a strictly positive functional on JRm. 
For any linear functional f let 

£?.o(f) = {nonnegative extensions of!} 

£>o (f) = {strictly positive extensions of!} 

Since strictly positive linear functionals are also nonnegative, we have 
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Theorem 8 Let f: S --+ ~ be a strictly positive linear functional on 
S ~ ~m. Then f has a strictly positive extension to ~m. that is, the set 
e>o(f) is nonempty and therefore so is e?.o(f). 
Proof. Since 

X > 0 =* f(X) > 0 

for all X E S it follows that iff ( Z) = 0 then Z 'f 0. In other words 

ker(f) n ~~ = {0} 

where 

is the nonnegative orthant in ~m. It follows from Theorem 5 of 
Appendix B that (ker(f) ).l contains a strongly positive vector W » 0. 
Then according to Theorem 1, (ker(f)).l has a basis B = {Wb ... , Wk} 
consisting entirely of strongly positive vectors. 

We claim that at least one of the strongly positive basis vectors Wi E B 
is not in S.i. Since dim(ker(f)) = dim(S) - 1, we have 

and so 

dim( S) + dim( S.i) = m 

= dim(ker(f)) +dim( (ker(f) ).l) 

= dim(S)- 1 + dim((ker(f)).l) 

dim( (ker(f)) _l) = dim( s_l) + 1 

which implies that the entire basis for (ker(f) ).i cannot be in S.i. Thus, 
Wi E (ker(f) ).l \ S.l for some i. Now we can apply Theorem 6 to get a 
scalar >. for which 

is an extension off. Since f » 0 and Wi » 0 we have 

which implies that >. > 0. Thus, >. wi is strongly positive and therefore g 
is a strictly positive extension off to ~m according to Theorem 7.0 
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A.3 Pricing Nonattainable Alternatives 

Now that we have the necessary background, let us return to the issue of 
pricing nonattainable alternatives. Figure 1 shows the situation that we 
wish to consider (at least in the two-state case). We wish to price the 
nonattainable alternative W. The attainable alternatives that dominate W 
are highlighted by a thick line. 

w 

M 

Figure 1: The set Vw 

Recall that the set of all attainable alternatives that dominate W IS 

denoted by 

Vw = {X E M I X ~ W} 

Then an investor can hedge W by investing in any self-financing trading 
strategy that replicates any vector in Vw. 

Since the alternatives in Vw are easily priced using the initial pricing 
functional I, it seems reasonable to set the fair price of W to be the 
minimum price of these dominating attainable alternatives, that is, the 
minimum price required to hedge the risk of W. 

Definition For a nonattainable alternative W, the minimum 
dominating price is defined to be 

P(W) = min I(X) D 
XE'Dw 

Now, since the set of dominating attainable alternatives is an infinite set, 
we do not know whether there is a particular dominating alternative 
X E Vw that actually achieves the price P(W). (By analogy, think of 
the set of all real numbers greater than 0. There is no real number in this 
set that achieves the minimum value 0.) 
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Thus, we come to the question of whether or not there is an X 0 E 'Dw for 
which 

I(X0 ) = P(W) = min I(X) 
XEVw 

Before pursuing this question, let us consider a slightly different 
viewpoint. The initial pricing functional I applies only to the vectors in 
M, but it is certainly possible to extend I to a linear functional I on the 
entire space ~m, perhaps in infinitely many ways. What about pricing W 
as the price I(W) of one of these extensions? 

Since the initial pricing functional I is strictly positive, perhaps we 
should restrict attention only to strictly positive extensions of I. 

Definition For a nonattainable alternative W, the maximum extension 
price is defined to be 

P' (W) = _max {I(W)} D 
IE£>0(I) 

For this pricing strategy, we can also ask whether or not there is a strictly 
positive extension I 0 of I that achieves this maximum, that is, 

Ia(W) =_max {I(W)} 
IEE>o(I) 

In this case, the answer is no, as the following example shows. 

EXAMPLE 1 Suppose that M = {(x,x) I x E ~} ~ ~2 and let 
I ( ( x, x)) = ax for some a > 0. Then I ( ( x, x)) = ( ( x, x), ( ~, ~)) and so 
YI = ( ~, ~). Any extension I of I has the form 

I(X) = (X, YI + W) 

where WE M.l. Hence, W has the form (~, -~) for z E ~ and we 
have 

Thus, I is nonnegative if and only if -a :::; z :::; a and I is strictly 
positive if and only if -a< z <a. Now let W = (0, 1), which is not 
attainable. Then 
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- 1 
I(W) = (W, Yy) = 2(a- z) 

and so 

- 1 
P'(W)=_max {I(W)}= max {-2(a-z)}=a 

IE£20(I) -a::;z::;a 

But no strictly positive extension achieves this maximum. In fact, the 
only extension that achieves this maximum is the one for which z = -a, 
and this extension is only nonnegative. 0 

In view of the previous example, we might want to broaden our view to 
include the nonnegative extensions. As it happens, we get the same 
maximum price, that is, 

_max {I(W)} =_max {I(W)} 
IE£>o(I) IE£?.o(I) 

and, furthermore, the maximum is always achieved by a nonnegative 
extension. However, we will not prove these statements here. 

Optimal Solutions to the Pricing Problem 

Thus, for a nonattainable alternative W we have two pnces: The 
minimum dominating price 

P(W) = min I(X) 
XE'Dw 

and the maximum extension price 

P' (W) = _max {I(W)} 
IE£2o(I) 

and we have said that both these prices are achieved. Moreover, it is a 
very pleasant fact that the two prices are the same 

P(W) = P'(W) 

The following theorem summarizes the results we have been discussing. 

Theorem 9 Let W be a nonattainable alternative. 
1) The sets £>0 (I), £?:.0 (I) and Dw are nonempty and 

_max {I(W)} =_max {I(W)} = min I(X) 
IE£>0(I) IE£20 (I) XE'Dw 
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2) There is a dominating attainable alternative X 0 E Mfor which 

I(X0) = min I(X) 
XE'Dw 

3) There is a nonnegative extension I of I for which 

I 0 (W) =_max {I(W)} 
IEE?.o(I) 

D 

Thus, it doesn't matter whether we choose to price a nonattainable 
alternative W using dominating attainable alternatives or nonnegative 
extensions of the initial pricing functional I-the result is the same. 
Hence, we can make the following definition. 

Definition The fair price of a nonattainable alternative W is defined to 
be 

_max {I(W)} = min I(X) 
IEE?.o(I) XE'Dw 

D 

The complete proof of Theorem 9 is a bit complicated and relies on an 
area of mathematics known as linear programming. Since we assume no 
familiarity with this subject on the part of the reader and since the 
necessary background would take us too far afield, we will not prove the 
theorem. In the exercises, we do ask the reader to prove that 

_max {I(W)} =_max {I(W)} 
IEE>o(I) IEE?.o(I) 

and that 

_max {I(W)} :::; min I(X) 
IEE?.o(I) XE'Dw 

Exercises 

1. Suppose that f is a linear functional on R2 for which 

x » 0 ==> f(x) > 0 

for all x E R2• Show that f need not be strictly positive. 
2. Iff: Rm --> R is a linear functional on Rm prove that 

YJ = (f(El), ... , f(Em)) 

where Ei are the standard basis vectors for Rm. 
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3. For Example 1, verify that 

_max {I(W)} = min I(X) 
IE£?.0(I) XE'Dw 

4. Let M = { (2a, 3a) I a E lR} ~ JR2 and let I(2, 3) = a. Show that 
the price of an arbitrary alternative W = ( x, y) is 

max{ax ay} 
2 ' 3 

5. Let W be a nonattainable alternative. Prove that 

_max {I(W)} ~ min I(X) 
IE£?.0(I) XE'Dw 

Hint: First show that if X E Dw and IE £?.0(I) then 

I(W) ~ I(X) 

using the fact that I is linear and I(X) = I(X). Then take the 
maximum over all strictly positive extensions and fmally the 
minimum over all elements X E Dw. 

6. Prove that 

_max {I(W)} =_max {I(W)} 
IE£>o(I) IE£?.o(I) 

Hint: Let the maximum over £?.0(I) be denoted by M. Then there is 
a sequence In of extensions in £?.0 (I) for which 

limin(W) = M 
n--+oo 

If g E £>o(I) show that for any n > 0 the linear functional 

1 - 1 
fn = (1-- )In+ -g 

n n 

is a strictly positive extension of I. What is the limit of fn(W) as 
n ~ oo? How does this prove the result? 





Appendix B 

Convexity and the Separation Theorem 

In this appendix, we develop the necessary material on convexity. 

B.l Convex, Closed and Compact Sets 

We shall need the following concepts. 

Definition 
1) Let XI, ... , Xk E JRn. Any linear combination of the form 

where 

tiXI + · · · + tkXk 

ti + ... + tk = 1 
0 ~ ti ~ 1 

is called a convex combination of the vectors XI, ... , xk. 
2) A subset X~ JRn is convex if whenever x, y E X then the entire line 

segment between x and y also lies in X, in symbols 

{sx + ty Is+ t = 1, 0 ~ s, t ~ 1} ~X 

3) A subset X~ JRn is a cone if x EX implies that axE X for all 
a> 0. 

4) A subset X ~ JRn is closed if whenever Xn E X is a convergent 
sequence of points in X then the limit is also in X. Simply put, a 
subset is closed if it is closed under the taking of limits. 

5) A subset X ~ JRn is compact if it is both closed and bounded. q 

We will also have need of the following facts from analysis. 

1) A continuous function that is defined on a compact set X in JRn takes 
on its maximum and minimum values at some points within the set 
X. 

2) A subset X of JRn is compact if and only if every sequence in X has 
a subsequence that converges in X. 

Theorem 1 Let X andY be subsets oflRn. Define 

X+ Y ={a+ b I a EX, bEY} 
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1) If X andY are convex then so is X + Y 
2) If X is compact andY is closed then X + Y is closed. 
Proof. For 1) let a0 + b0 and a1 + b1 be in X+ Y. The line segment 
between these two points is 

t(ao + bo) + (1 - t)(a1 + b1) = 

and so X + Y is convex. 

ta0 + (1 - t)a1 + tb0 + (1 - t)b1 
EX+Y 

For part 2) let an+ bn be a convergent sequence in X+ Y. Suppose that 
an+ bn--+ c. We must show that c EX+ Y. Since an is a sequence in 
the compact set X, it has a convergent subsequence ank whose limit o: 

lies in X. Since ank + bnk --+ c and ank --+ o: we can conclude that 
bnk --+c-o:. Since Y is closed, we must have c-o: E Y and so 
c = o: + ( c - o:) E X + Y, as desired. D 

B.2 Convex Hulls 

We will have use for the notion of convex hull. 

Definition The convex hull of a set S = { x1, ... , Xk} of vectors in JRn is 
the smallest convex set in ffi.n that contains the vectors x1, ... , Xk. We 
denote the convex hull of S by C(S). D 

Here is a characterization of convex hulls. 

Theorem 2 Let S = { x1, ... , Xk} be a set of vectors in JRn. Then the 
convex hull C(S) is the set .6. 

.6. = {tlXl + ... + tkXk I 0::; ti::; 1, I:ti = 1} 

of all convex combinations of vectors in S. 
Proof. First, we show that .6. is convex. So let 

X = tlXl + ... + tkXk 
Y = S1X1 + · · · + SkXk 

be convex combinations of S and let a + b = 1, 0 ::; a, b ::; 1. Then 

aX+ bY= a(t1X1 + · · · + tkXk) + b(s1X1 + · · · + SkXk) 
= (at1 + bs1)x1 + · · · + (atk + bsk)Xk 

But this is also a convex combination of S because 



and 

Thus, 
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0 < t. b . < { (a + b )si = si :::; 1 
- a 1 + 81 - (a + b )ti = ti :::; 1 

k k k 

:~::)ati + bsi) = al)i + b Lsi= a+ b = 1 
i=l i=l i=l 

X, Y E ~ =? aX + bY E ~ 

which says that ~ is convex. It is also clear that Xi E ~ for all i and so 
~ is a convex set that contains all of the vectors in S. It follows that 

C(S) ~ ~ 

To show the reverse inclusion, we must show that any convex set that 
contains S must also contain ~. So suppose that D is a convex set that 
contains S. Then D contains all convex combinations of any two vectors 
in S. Consider a convex combination, say t1x 1 + t2x 2 + t3x 3 of three 
such vectors. We can write 

Now, the expression in the parentheses at the far right is a convex 
combination of two vectors in S and so is in D. If we denote it by d then 

But the expression on the right side of the equal sign is a convex 
combination of two elements of D and so is in D. Thus, we see that any 
convex combination of three vectors inS is in D. An inductive argument 
along these lines, which we leave as an exercise, can be used to furnish a 
complete proof. D 

B.3 Linear and Affine Hyperplanes 

We next discuss hyperplanes in ~n. A linear hyperplane in ~n is an 
( n - 1 )-dimensional subspace of ~n. As such, it is the solution set of a 
linear equation of the form 

a1X1 + · · · + anXn = 0 

or 
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(a,x) = 0 

where a= (a1, ... ,an) and x = (x1, ... ,xn). Geometrically speaking, 
this is the set of all vectors in JRn that are perpendicular to the vector a. 

An (affine) hyperplane is a linear hyperplane that has been translated by 
a vector {3 = (b1, ... , bn)· Thus, it is the solution set to an equation of the 
form 

or 

or finally 

(a, x) = (a, {3) 

Let us write 'H( a, b), where a is a vector in JRn and b is a real number to 
denote the hyperplane 

'H(a,b) = {x E JRn I (a,x) = b} 

Note that the hyperplane 

'H(a, llall 2 ) = {x E lRn I (a,x) = llall 2 } 

contains the point a, which is the point of 'H( a, b) closest to the origin, 
smce 

(a, x) = llall 2 ==> llxllcos 0 = II all ==> llxll 2:: II all 

A hyperplane divides JRn into closed half-spaces 

'H+(a,b) = {x E JRn I (a,x) 2:: b} 
'H_(a,b) = {x E JRn I (a,x):::; b} 

and two open half-spaces 

'H~(a,b) = {x E JRn I (a,x) > b} 
'Ho_(a,b) = {x E JRn I (a,x) < b} 

It is not hard to show that 

'H+(a, b) n 'H_(a, b)= 'H(a, b) 



B. Convexity and the Separation Theorem 325 

and that 'H~(o:, b), rto_(o:, b) and 'H(o:, b) are pairwise disjoint and 

'H~(o:, b) U rto_(o:, b) U 'H(o:, b)= ~n 

Definition The subsets X and Y of ~n are completely separated by a 
hyperplane 1t ( o:, b) if X lies in one open half-space determined by 
'H( o:, b) andY lies in the other. Thus, one of the following holds: 

1) (o:, x) < b < (o:, y) for all x E X, y E Y 
2) (o:,y) < b < (o:,x)forall x EX, y E Y D 

B.4 Separation 

Now that we have the preliminaries out of the way, we can get down to 
some theorems. The first is a well-known separation theorem that is the 
basis for many other separation theorems. 

Theorem 3 Let C be a closed convex subset of~n that does not contain 
the origin, that is, 0 ~ C. Then there is a nonzero o: E ~n for which 

(o:, x) ~ llo:ll 2 

for all x E C. Hence, the hyperplane 'H( o:, ~ llo:ll 2) completely separates 
0 and C. 
Proof. First we want to show that C contains a point that is closest to the 
origin from among all points in C. The function 

d(x) = llxll 
which measures the distance from x to the ongm is a continuous 
function. Although C need not be compact, if we choose a real number s 
such that the closed ball Bs(O) = {z E JRn lllzll ::; s} of radius s about 
the origin intersects C, then the intersection 

C' = C n Bs(O) 

is both closed and bounded and so is compact. The distance function 
therefore achieves its minimum on this set C', say at the point 
o: E C' ~C. We want to show that 

for all x E C. 
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Suppose to the contrary that for some x E C we had 

(a, x) < llall2 

Then since C is convex, the line segment from a to x must be contained 
inC 

{(1- t)a + tx I 0 :S t :S 1} ~ C 

Let us look at the distance from a typical point on this line segment to the 
origin. If we discover that one point on this line is strictly closer than a 
we will have a contradiction because a is closest to the origin from 
among all points in C. This contradiction will show that (a, x) 2:: llall2 
for all x E C, as desired. 

So we compute 

11(1- t)a + txll 2 
= ((1- t)a + tx, (1- t)a + tx) 

= (1- t)2llall2 + 2t(1- t)(a, x) + t2llxll 2 

= (llall2 + llxll2 - (a, x) )t2 + ((a, x) - 2llall2)t + llall2 

Now, this is a quadratic in t that is concave up and has its minimum 
value at 

2llall2- (a, x) t = __ .:..:.__:.:.__----i----'-----'-----

2(11all2 + llxll2- (a, x)) 

Since we are assuming that (a, x) < llall2 we see that 0 < t and so the 
minimum value of 11(1- t)a + txll is strictly less than llall, which is 
what we wanted to show. D 

The next result brings us closer to our goal. 

Theorem 4 Let C be a compact convex subset of JR.nand let S be a 
subspace of JR.n such that C n S = 0. Then there exists a nonzero 
a E JR.n such that 
1) (a, a)= Ofor all a E S (that is, a E Sj_) 

2) (a, 'Y) 2:: llall2 for all"( E C 
Hence, the hyperplane H(a, ~llall 2 ) completely separates Sand C. 
Proof. We consider the set 

A=S+C 
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which is closed since S is closed and C is compact. It is also convex 
since S and C are convex. Furthermore, 0 f=. A because if 0 = (J + 'Y 
then 'Y = -(J would be in the intersection C n S, which is empty. 

So we can apply Theorem 3 to deduce the existence of a nonzero a E llln 
such that 

for all x E A= S +C. Let x = (J + 'Y be an arbitrary element of S +C. 
Then 

(a, (J) + (a, 'Y) = (a, (J + 'Y) 2:: llall 2 

Now, if (a, (J) is nonzero for any value of (J E S, we can replace (J by a 
scalar multiple of (J to make the left side negative, which is impossible. 
Hence, we must have (a, (J) = 0 for all (J E S, which is 1) above. Since 
(a, (J) = 0 we also get 

for all 'Y E C, as desired. 0 

Now we come to our main goal. 

Theorem 5 LetS be a subspace ofllln for which S n Ill~ = {0}, where 

IR~ = {(x1, ... ,xn) I Xi 2: 0} 

is the nonnegative orthant in llln. Then SJ.. contains a strongly positive 
vector. 
Proof. We would like to separate S from something, but we cannot 
separate it from Ill~. Consider instead the convex hull Ll of the standard 
basis vectors E1, ..• , En in Ill~ 

Ll = { t 1 E 1 + " · + tn En I 0 :::; ti :::; 1, :Eti = 1} 

It is clear that Ll ~Ill~\ {0} and so Ll n S = 0. Also, Ll is convex and 
closed and bounded and therefore compact. Hence, by Theorem 4 there 
is a nonzero vector a= (a1, ... , an) such that 
1) a E SJ.. 

2) (a, 8) 2:: llall 2 for a118 ELl 
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Taking 8 = Ei to be the ith standard basis vector, we get 

ai = (a, Ei) ~ llall 2 > 0 

and so a is strongly positive, as desired. D 

The following theorem is an analog to Theorem 5 for strictly positive 
vectors. 

Theorem 6 Let S be a subspace oflRn for which S n JR~+ = 0, where 

lR~+ = {(x1, ... ,xn) I Xi> 0} 

is the positive orthant in JRn. Then Sj_ contains a strictly positive vector. 
Proof. First note that Sj_ contains a strictly positive vector a if and only 
if it contains a strictly positive vector whose coordinates sum to 1. (Just 
divide a by the sum of its coordinates.) 

Let B = { B 1, ... , B k} be a basis for S and consider the matrix 

M = (Bl I B2 I ... I Bk) 

whose columns are the basis vectors in B. Let the rows of M be denoted 
by R1, ... , Rm. Note that Ri E JRk where k =dim( B). 

Now, a= (a1, ... , am) E Sj_ if and only if (a, Bi) = 0 for all i, which 
is equivalent to the matrix equation 

aM=O 

or the vector equation 

a1R1 + · · · + amRm = 0 

Hence, Sj_ contains a strictly positive vector a = ( a 1, ... , am) whose 
coordinates sum to 1 (or equivalently, any strictly positive vector) if and 
only if 

a1R1 + · · · + amRm = 0 

for coefficients ai ~ 0 satisfying :Eai = 1. In other words, Sj_ contains a 
strictly positive vector if and only if 0 is contained in the convex hull C 
of the vectors R1, ... , Rm in JRk. 

Now, let us assume that Sj_ does not contain a strictly positive vector and 
prove that S must contain a strongly positive vector. This will prove the 
theorem. Thus, we assume that 0 ~ C. Since C is closed and convex, it 



B. Convexity and the Separation Theorem 329 

follows from Theorem 3 that there is a nonzero vector 
/3 = (b1, ... , bk) E ~k for which 

(/3, x) ~ 11/311 2 > 0 

for all x E C. Now, consider the vector 

v = f31B1 + .. · + f3kBk E S 

The ith coordinate of v is 

and so vis strongly positive. This completes the proof.D 
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be the set of all pairs whose product is equal to a. Then 

ll'(XY =a, z = z) =II'{ [Q({x = x,,} n {Y = Yi,})l n {Z = z}} 

= JP{U({X = xik} n {Y = Y]k} n {Z = z})} 
k=l 

Chapter 2 

1. (3=1 

m 

= LlP(X = Xik)JP(Y = Y]k)JP(Z = z) 
k=l 

= [flP(X = Xik)IP'(Y = Y]k)]JP(Z = z) 
k=l 

= [flP'(X = Xik' Y = YJk)llP'(Z = z) 
k=l 

= IP'(XY = a)lP(Z = z) 

3. The equation for a' can be solved for s to get a linear function of s. 
Plug this into the equation for J-L to get J-l as a linear function of a'. 
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6. Wehave 

Cov(RM,E) = Cov(RM,Ri- f3kRM) 
= Cov(RM,Ri)- f3kCov(RM,RM) 

Cov(Ri,RM) 
= Cov(RM, Ri)- Cov(RM, RM) Cov(RM, RM) 

=0 

7. Solve for (3 from the equation of the capital market line and plug it 
into the equation y = (3x + a of the regression line to get the 
equation 

/-lk - /-lrf ( 
y = X - /-LM) + /-lk 

/-LM - /-lrf 

Setting x = /-lrf gives y = /-lrf· 

Chapter 3 

4. The cost C1 of the call with the smaller strike price is more than the 
cost C2 of the call with the higher strike price. The profit curve is 
shown in Figure 1. 

Profrt 

Stock 
K, •••.•• Price · .. 

···· ... 

Figure 1: A bull spread 
7. The profit curve is shown in Figure 2. 

Profit 

2C, ......................... ///,'/ 

Figure 2: The butterfly spread 

Chapter4 

1. We still have 

Stock 
Price 
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V(long contract)= Sr- Fo,T 
V(short contract) = Fo,T- Sr 

but the cash-and-carry investor has a final payoff of 

V (cash-and-carry) = Sr - S0erT + I erT 

and 

V( reverse cash-and-carry) = S0erT - Sr - I erT 

To explain the last term, note that the short sale of an asset requires a 
lender to lend that asset. This lender will demand the return of not 
only the asset itself, but also the income that would have come to the 
lender by virtue of owning the asset. 

3. Setting the final payoffs in Exercise 2 to 0 gives 

Fo,T =(So- I)erT 

5. The final payoff for Strategy 1 is 

V(long contract) + V(reverse cash-and-carry) = S0ertT- Fo,T 

For Strategy 2 we have 

V(short contract)+ V(cash-and-carry) = Fo,T- S0erbT 

7. If not then buy the share, sell the call and pocket the difference. Use 
the share to cover the call if and when it is exercised. 

9. Use put-call option parity formula. 

Chapter 5 

3. We have 

£(X I P)(w) =£(X I [w]p) 

= LX(a)IP'(a I [w]p) 
a EO 

~0 
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17. For wE 0 let k = N(w). Then 

£(8 I N)(w) = £(8 IN= k) 

18. The solution is 

m 

= I>iJP>(8 = Ti IN= k) 
i=l 

_ ~ . JP>((X1 + .. · + XN = ri) n (N = k)) 
- ~ rt JP>(N = k) 

t=l 
_ ~ . JP>((X1 + .. · + Xk = ri) n (N = k)) 
- ~ rt JP>(N = k) 

t=l 
_ ~ . JP>(X1 + · · · + Xk = ri)JP>(N = k) 
- ~ rt JP>(N = k) 

t=l 
m 

= L riJP>(Xl + ... + xk = ri) 
i=l 

= £(X1 + · · · + Xk) 
=J.l,k 

= J.tN(w) 

m 

= L£(£(X I Ci)1c; I P) 
i=l 
m 

= L£(X I Ci)£(1c; I P) 
i=l 

Now, since for each Ci there is a unique BJi for which Ci ~ BJi we 
know that 
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{ lc 
lc;UBj = 0 ' 

and so we pick up with 

Now we group the tenns of this sum into smaller sums, each one 
being over just the blocks Ci that are contained in one block Bj;· (In 
other words, group the sum by the blocks in P.) This gives 

as desired. 

Chapter 6 

1. The system of equations is 

or 

V2(82)(w1) = 95 
V2(82)(w2) = 90 
V2(82)(w3) = 85 

V2(82)(w4) = 75 

82,1 ( wl) 02,1 ( w1) + 82,2 ( wl) 02,2 ( w1) = 95 

82,1(w2)02,1(w2) + 82,2(w2)B2,2(w2) = 90 

82,1(w3)02,1(w3) + 82,2(w3)B2,2(w3) = 85 

82,1(w4)02,1(w4) + 82,2(w4)02,2(w4) = 75 

Substituting the actual prices gives 
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82,I(wi) + 9082,2(wi) = 95 
82,I (w2) + 8082,2(w2) = 90 
82,I (w3) + 8082,2(w3) = 85 
82,I (w4) + 7502,2(w4) = 75 

The condition that 8 2 be PI-measurable is 

82,I(wl) = 82,I(w2) 
82,I (w3) = 82,I (w4) 
82,2(wl) = 82,2(w2) 
82,2(w3) = 82,2(w4) 

and so the previous system can be written using only WI and w3 as 

82,I(wi) + 9082,2(wi) = 95 
82,I(wl) + 8082,2(wi) = 90 
82,I(w3) + 8082,2(w3) = 85 
82,I(w3) + 7582,2(w3) = 75 

The first two equations have a unique solution and so do the second 
two equations, giving 

1 
82(wi) = 82(w2) =(50, 2) 

82(w3) = 82(w4) = ( -75, 2) 

Working backward in time, we next compute the acquisition values 
for 8 2 

The self-financing condition requires that these are also the 
liquidation values of 8I and so 

185 
VI(81)(wi) = 2 
VI(8I)(w3) = 81 

Writing these out and substituting the actual prices gives the system 
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185 
el,l(wl) + 8501,2(wl) = 2 
el,l(w3) + 7801,2(w3) = 81 

But 8 1 is 'Po-measurable, that is, constant on 0, and so for any 
wEO 

185 
el,l(w) + 8501,2(w) = 2 
el,l(w) + 7801,2(w) = 81 

This system has solution 

which is a portfolio consisting of a short position (sale) of 330/7 
bonds and a purchase of 23/14 shares of stock, for an initial cost of 

- 330 + 80 0 23 = 590 ~ $84.29 
7 14 7 

2. The system of equations is 

V3(83)(w1) = 100 
V3(83)(w2) = 100 
V3(83)(w3) = 95 
V3(83)(w4) = 90 
V3(83)(w5) = 90 
V3(83)(w5) = 85 

or, since the price of the riskfree asset a1 is 1 

03,1 (wi) + S3,2(wl)e3,2(wi) = 100 
03,1(w2) + S3,2(w2)03,2(w2) = 100 
03,1(w3) + S3,2(w3)03,2(w3) = 95 
03,1(w4) + S3,2(w4)03,2(w4) = 90 
03,1(w5) + S3,2(w5)03,2(w5) = 90 
03,I(w6) + S3,2(w6)03,2(w6) = 85 

Substituting the actual prices gives 



338 Introduction to the Mathematics of Finance 

03,1 ( wr) + 10003,2 ( wr) = 100 
83,1(w2) + 9503,2(w2) = 100 
83,1(w3) + 9503,2(w3) = 95 
83,1(w4) + 9003,2(w4) = 90 
03,1 (w5) + 9003,2(w5) = 90 
03,I(w6) + 8003,2(w6) = 85 

The condition that 8 3 be P 2-measurable is 

03,I(WI) = 83,1(w2) 
03,1 (w4) = 03,1 (w5) 
03,2 ( wr) = 03,2 ( w2) 
03,2(w4) = 03,2(w5) 

and so the previous system can be written using only w1, w3 , w4 and 
w6 as 

83,1(wr) + 10083,2(wi) = 100 
03,1 (w1) + 9503,2(wr) = 100 
83,1(w3) + 9503,2(w3) = 95 
83,1(w4) + 9003,2(w4) = 90 
03,1(w4) + 9003,z(w4) = 90 
03,I(w6) + 8003,z(w6) = 85 

The first two equations have a unique solution and so do the fourth 
and fifth equations, giving 

along with 

83(wr) = 83(w2) = (100, 0) 
83(w4) = 83(w5) = (0, 1) 

where s and t are parameters. The acquisition values for 8 3 are 
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V2(83)(w1) = V2(83)(w2) = 100 
95- s 3s 

V2(83)(w3) = s + 80 · 95 = 19 + 80 

V2(83)(w4) = V2(83)(ws) = 80 
95- t 4t 

V2(83)(w6) = t + 75 · 95 = 19 + 75 

The self-financing condition requires that these are also the 
liquidation values of 8 2 and so 8 2 must replicate the alternative 

( 3s ~ ) 100, 19 + 80, 80, 19 + 75 

Since we are asked for only one replicating portfolio, let us choose 
s = t = 0 to get the alternative 

We have the system 

(100,80,80,75) 

02,1(w1) + 9002,2(wl) = 100 
82,1 (w2) + 9002,2(w2) = 100 
82,1 (w3) + 8002,2(w3) = 80 
82,1 (w4) + 8002,2(w4) = 80 
02,1(ws) + 8002,2(ws) = 80 
82,1 (w6) + 7502,2(w6) = 75 

Since 02,i is constant on the blocks { w1, w2, w3} and { w6 , w6 , w6} this 
can be written 

or 

02,1(wi) + 9002,2(wi) = 100 
82,1 (w1) + 9002,2(wi) = 100 
02,1(w1) + 8002,2(w1) = 80 
02,1(w4) + 8002,2(w4) = 80 
02,1(w4) + 8002,2(w4) = 80 
02,1(w4) + 7502,2(w4) = 75 
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giving 

82,1 (w1) + 9002,2(w1) = 100 
82,1 (w1) + 8002,2(w1) = 80 
82,1 (w4) + 8002,2(w4) = 80 
82,1 (w4) + 7502,2(w4) = 75 

82(w1) = 82(w2) = 82(w3) = ( -80, 2) 
82(w4) = 82(w5) = 82(w5) = (0, 1) 

Working backward in time, we next compute the acquisition values 
for82 

V1(82)(wi) = -80 + 85 · 2 = 90 
V1(82)(w4) = 0 + 78 = 78 

The self-financing condition requires that these are also the 
liquidation values of 8 1 and so 

V1(8I)(wi) = 90 
V1(8I)(w4) = 78 

Writing these out and substituting the actual prices gives the system 

01,1 (wi) + 8501,2(wi) = 90 
01,1 (w4) + 7801,2(w4) = 78 

But 8 1 is P0-measurable, that is, constant on 0, and so for any 
wEO 

01,1(w1) + 8501,2(wi) = 90 
01,1(w4) + 7801,2(w4) = 78 

This system has solution 

which is a portfolio consisting of a short position (sale) of 390/7 
bonds and a purchase of 12/7 shares of stock, for an initial cost of 

-390 + 80 . 12 = 570 ~ $81 43 
7 7 7 . 

3. Toss 1 is tails: Casino is even, player down $1 million, game over. 
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Toss 1 is heads: Casino up $2 million, player down $1 million, game 
continues. 
Toss 2 is tails: Casino is even, player down $1 million, game over. 
Toss 2 is heads: Casino up $4 million, player down $1 million, game 
continues. 
Toss 3 is tails: Casino is even, player down $1 million, game over. 
Toss 3 is heads: Casino is even, player up $8 million, game 
continues. 

In all ending cases, the casino is even. Thus, the casino has a perfect 
hedge. It is self-financing because the casino never added its own 
money or removed money. The side bets on heads replicated the 
payoff to the casino, but in the opposite position, resulting in a 0 
payoff to the casino. 

5. The self-financing condition is 

Vi(eD = Vi(e~+l) 

for all i = 1, ... , T- 1. Because <I> is assumed to be self-financing, 
the liquidation value of e~ is 

n 

Vi(eD = (Oi,l + a)Si,l + L)i,jSi,j 
j=2 

= Vi(ei) + aSi,1ln 
= Vi(ei+l) + aSi,1ln 

and the acquisition value is 

n 

Vi(e~+l) = (Oi+l,l + a)Si,l + L(}i+l,jsi,j 
j=2 

= Vi(ei+l) + aSi,1ln 

Thus <I>' is self-financing. 
7. Let <1>0 = 0 be the zero trading strategy (where all portfolios are the 

zero portfolio). If the Law of One Price holds then for any trading 
strategy <I> that has 0 final value we have 

Vr( <I>) = 0 ===> Vr( <I>) = Vr( <I>o) 
===> Vo(<I>) = Vo(<I>o) 
===> Vo (<I>) = 0 

and so 2) holds. Conversely, suppose that any trading strategy with 
payoff 0 has initial value 0. Then 
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Vr(<I>1) = Vr(<I>2) =? Vr(<I>1- <I>2) = 0 

=? Vo(<I>1- <I>2) = 0 

=? Vo(<I>1) = Vo(<I>2) 

and so the Law of One Price holds. 
11. In this case the random variables Xk = 1{wk} are attainable, say by 

<I>k. Hence, any random variable X= ~X(wk)Xk is attainable via 
the replicating strategy X = ~X(wk)<I>k. 

13. The solution is 

e -rT ufd - dfu 
11 = e ' u-d 

fu- fd 
01 '2 = So(u- d) 

15. It is a candidate for martingale measure. 
17. We have 

101 99 
u = 100 = 1.01, d = 100 = 0.99 

and 

fx = max(100x- 99.50, 0) = {~·50 ~ : ~ 

Thus, 

C = 1 - (0·99)e-rT 1.50 = 75(1 - (0.99)e-rT) = 0. 75813654 
0.02 

19. A trading strategy, which amount to nothing more than a single 
portfolio, is only two-dimensional whereas the space containing the 
alternatives is three-dimensional. Hence, the valuation V1 cannot be 
swjective. 

Chapter 7 

1. a) 0, b) 0.0015, c) 0.2944, d) .0816, e) 2.0799, f) .0783. For the put, 
use the put-call option parity formula P = K e-rt + C - S0 . For 
example, when K = 50 we have 

P = 50e0·0116 + 0.2944 - 50 = 0.3778 

3. A 10% gain followed by a 10% loss, or vice-versa, results in a slight 
loss, as shown by 
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(1 + 0.1)(1 - 0.1) = 1- 0.01 = 0.99 

{If the gain comes first, the loss is on a larger amount; if the loss 
comes first, the gain is on a smaller amount.) 

7. For part d), we can price a path-independent alternative X as 
follows: 

Chapter 8 

5. If a E ~then 

I(X) = Vo(<I>) 
= e-rLt'rr(Vi(<I>)) 
= e-rL t'rr(X) 

T 

= e-rLL X( any wE Gk)JP>rr(Gk) 
k=O 
T 

= e-rLL XkJP>rr(Gk) 
k=O 

(-oo,a) = u(-n,a) 
n>a 

is a countable union of open intervals and so is a Borel set. Also, 

1 
(-oo,a] = n(-oo,a+ -) E B 

n>O n 

The right rays are complements of the left rays. 
7. Write 

A = (A\ B) u (An B) 
B = (B \A) U (An B) 

Since these are disjoint unions, we have 

and so 

JP>(A) = JP>(A \B) U JP>(A n B) 
JP>(B) = JP>(B \A) U JP>(A n B) 

JP>(A) + JP>(B) = JP>(A \B) + JP>(A n B) + JP>(B \A) + JP>(A n B) 

But 
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(A\ B) u (An B) u (B \A) 

is a disjoint union that equals A U B and so we get the result. 
13. Suppose that A1 ~ A2 ~ · · · is an increasing sequence of events and 

let 

The limit exists because it is the limit of an increasing bounded 
sequence of real numbers. Set A0 = 0 and write 

00 

A= U(Ai \Ai-l) 
i=l 

where the events Ai \Ai-l are disjoint. Then 

15. For part b) 

00 

= LJP>(Ai \Ai-d 
i=l 

n 

= lim "JP>(Ai \Ai-d n-+oo~ 
i=l 

= lim [JP>(Ai) - JP>(Ao)] 
n-->oo 

ll'((a, b]) ~II' (Q (a, b- ~]) 

Chapter 9 

1. fJ, = 0.15, o-2 = 0.03. 
3. c = $33.36 

= lim JP>((a, b- .!]) 
n-->oo n 

= lim F(b- _!)- F(a) 
n-->00 n 

= F(b-)- F(a) 
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5. For the expected value, we have 

T 

10. We have 

Thus 

£p(Qs) = £p(O's~LXs,i) 
i=l 

i=l 

O'syft;t {--
= v' ( L..,.[(1- s)p- s(1- p)] 

s 1 - s) i=l 

= O'syft;t T(p- s) 
Js(1- s) 

t p- s 
= 0' s -yft;t-t -y',=s(;=1 =_ =7s) 

So= e-rt£n(St) 

= e-rt£n(Soe/l-vt+av/iZt) 

= Soe-rt+Jl-vt£n(eav/iZt) 

which happens if and only if 

1 2 
t(P,v- r) + 20') = 0 
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that is, 

11. Let Nu be the random variable representing the number ofup-ticks 
in stock price over the lifetime of the model. Then, of course, the 
number of down-ticks is T- Nu. It follows that 

and so 

St,T = SouNu dT-Nu 
= SoeNuiogu+(T-Nu)Iogd 

= SoeNu(Iogu-Iogd)+Tiogd 

Ht,T = Nu (log u - log d) + Tlog d 

Since Nu is a binomial random variable with parameters T and v we 
have E(Nu) =Tv and Var(Nu) = Tv(l- v). Thus 

E(Ht,T) = Tv(logu -log d)+ Tlogd 

Var(Ht,T) = Tv(l- v) (logu -logd)2 

13. High volatility implies that the stock price is more likely to be far 
from the strike price than is the case when the volatility is small. A 
high stock price is good for the owner of a call. On the other hand, 
when the stock price falls below the strike price, it doesn't really 
matter how far it falls-the call will expire and the owner will simply 
lose the purchase price. Thus, high upside volatility is good, high 
downside volatility is irrelevant. A similar argument obtains for a 
long put. 

Chapter 10 

3. This is the first time that Sk :2': 2So. 
5. Exiting a set B is the same as entering the complement Be. 
6. For the maximum, we have 

k 

[max{ 7,17} = k] = U([r = i] n [u = k- i]) E A(Pk) 
i=O 

The difference is not a stopping time, since it requires knowledge of 
the future. 
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11. Here is an Excel worksheet with the solution. 

V3Bar E(V3BariP2) V2Bar E(V2BariP1) V1Bar E(V1BariPO) 
13.56 7.8 7.8 4.41 4.41 2.46 
2.04 7.8 7.8 4.41 4.41 2.46 
2.04 1.02 1.02 4.41 4.41 2.46 

0 1.02 1.02 4.41 4.41 2.46 
2.04 1.02 1.02 0.51 0.51 2.46 

0 1.02 1.02 0.51 0.51 2.46 
0 0 0 0.51 0.51 2.46 
0 0 0 0.51 0.51 2.46 

VOBar 
2.46 
2.46 
2.46 
2.46 
2.46 
2.46 
2.46 
2.46 
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