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Preface

This book covers the aspects of linear algebra that are included in most advanced
undergraduate texts. All the usual topics from complex vector spaces, complex inner
products the spectral theorem for normal operators, dual spaces, quotient spaces,
the minimal polynomial, the Jordan canonical form, and the Frobenius (or rational)
canonical form are explained. A chapter on determinants has been included as the
last chapter, but they are not used in the text as a whole. A different approach to
linear algebra that does not use determinants can be found in [Axler].

The expected prerequisites for this book would be a lower division course in
matrix algebra. A good reference for this material is [Bretscher].

In the context of other books on linear algebra it is my feeling that this
text is about on a par in difficulty with books such as [Axler, Curtis, Halmos,
Hoffman-Kunze, Lang]. If you want to consider more challenging texts, I would
suggest looking at the graduate level books [Greub, Roman, Serre].

Chapter 1 contains all of the basic material on abstract vector spaces and
linear maps. The dimension formula for linear maps is the theoretical highlight.
To facilitate some more concrete developments we cover matrix representations,
change of basis, and Gauss elimination. Linear independence which is usually
introduced much earlier in linear algebra only comes towards to the end of the
chapter. But it is covered in great detail there. We have also included two sections
on dual spaces and quotient spaces that can be skipped.

Chapter 2 is concerned with the theory of linear operators. Linear differential
equations are used to motivate the introduction of eigenvalues and eigenvectors, but
this motivation can be skipped. We then explain how Gauss elimination can be used
to compute the eigenvalues as well as the eigenvectors of a matrix. This is used to
understand the basics of how and when a linear operator on a finite-dimensional
space is diagonalizable. We also introduce the minimal polynomial and use it to
give the classic characterization of diagonalizable operators. In the later sections we
give a fairly simple proof of the Cayley–Hamilton theorem and the cyclic subspace
decomposition. This quickly leads to the Frobenius canonical form. This canonical
form is our most general result on how to find a simple matrix representation for
a linear map in case it is not diagonalizable. The antepenultimate section explains

v



vi Preface

how the Frobenius canonical form implies the Jordan–Chevalley decomposition and
the Jordan-Weierstrass canonical form. In the last section, we present a quick and
elementary approach to the Smith normal form. This form allows us to calculate
directly all of the similarity invariants of a matrix using basic row and column
operations on matrices with polynomial entries.

Chapter 3 includes material on inner product spaces. The Cauchy–Schwarz
inequality and its generalization to Bessel’s inequality and how they tie in with
orthogonal projections form the theoretical centerpiece of this chapter. Along the
way, we cover standard facts about orthonormal bases and their existence through
the Gram–Schmidt procedure as well as orthogonal complements and orthogonal
projections. The chapter also contains the basic elements of adjoints of linear maps
and some of its uses to orthogonal projections as this ties in nicely with orthonormal
bases. We end the chapter with a treatment of matrix exponentials and systems of
differential equations.

Chapter 4 covers quite a bit of ground on the theory of linear maps between
inner product spaces. The most important result is of course the spectral theorem
for self-adjoint operators. This theorem is used to establish the canonical forms
for real and complex normal operators, which then gives the canonical form for
unitary, orthogonal, and skew-adjoint operators. It should be pointed out that the
proof of the spectral theorem does not depend on whether we use real or complex
scalars nor does it rely on the characteristic or minimal polynomials. The reason
for ignoring our earlier material on diagonalizability is that it is desirable to have
a theory that more easily generalizes to infinite dimensions. The usual proofs
that use the characteristic and minimal polynomials are relegated to the exercises.
The last sections of the chapter cover the singular value decomposition, the polar
decomposition, triangulability of complex linear operators (Schur’s theorem), and
quadratic forms.

Chapter 5 covers determinants. At this point, it might seem almost useless to
introduce the determinant as we have covered the theory without needing it much.
While not indispensable, the determinant is rather useful in giving a clean definition
for the characteristic polynomial. It is also one of the most important invariants of
a finite-dimensional operator. It has several nice properties and gives an excellent
criterion for when an operator is invertible. It also comes in handy in giving a
formula (Cramer’s rule) for solutions to linear systems. Finally, we discuss its uses
in the theory of linear differential equations, in particular in connection with the
variation of parameters formula for the solution to inhomogeneous equations. We
have taken the liberty of defining the determinant of a linear operator through the
use of volume forms. Aside from showing that volume forms exist, this gives a rather
nice way of proving all the properties of determinants without using permutations.
It also has the added benefit of automatically giving the permutation formula for the
determinant and hence showing that the sign of a permutation is well defined.

An * after a section heading means that the section is not necessary for the
understanding of other sections without an *.

Let me offer a few suggestions for how to teach a course using this book. My
assumption is that most courses are based on 150 min of instruction per week with
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a problem session or two added. I realize that some courses meet three times while
others only two, so I will not suggest how much can be covered in a lecture.

First, let us suppose that you, like me, teach in the pedagogically impoverished
quarter system: It should be possible to teach Chap. 1, Sects. 1.2–1.13 in 5 weeks,
being a bit careful about what exactly is covered in Sects. 1.12 and 1.13. Then, spend
2 weeks on Chap. 2, Sects. 2.3–2.5, possibly omitting Sect. 2.4 covering the minimal
polynomial if timing looks tight. Next spend 2 weeks on Chap. 3, Sects. 3.1–3.5, and
finish the course by covering Chap. 4, Sect. 4.1 as well as Exercise 9 in Sect. 4.1.
This finishes the course with a proof of the Spectral Theorem for self-adjoint
operators, although not the proof I would recommend for a more serious treatment.

Next, let us suppose that you teach in a short semester system, as the ones at
various private colleges and universities. You could then add 2 weeks of material
by either covering the canonical forms from Chap. 2, Sects. 2.6–2.8 or alternately
spend 2 weeks covering some of the theory of linear operators on inner product
spaces from Chap. 4, Sects. 4.1–4.5. In case you have 15 weeks at your disposal, it
might be possible to cover both of these topics rather than choosing between them.

Finally, should you have two quarters, like we sometimes do here at UCLA, then
you can in all likelihood cover virtually the entire text. I would certainly recommend
that you cover all of Chap. 4 and the canonical form sections in Chap. 2, Sects. 2.6–
2.8, as well as the chapter on determinants. If time permits, it might even be possible
to include Sects. 2.2, 3.7, 4.8, and 5.8 that cover differential equations.

This book has been used to teach a bridge course on linear algebra at UCLA
as well as a regular quarter length course. The bridge course was funded by a
VIGRE NSF grant, and its purpose was to ensure that incoming graduate students
had really learned all of the linear algebra that we expect them to know when
starting graduate school. The author would like to thank several UCLA students for
suggesting various improvements to the text: Jeremy Brandman, Sam Chamberlain,
Timothy Eller, Clark Grubb, Vanessa Idiarte, Yanina Landa, Bryant Mathews,
Shervin Mosadeghi, and Danielle O’Donnol. I am also pleased to acknowledge NSF
support from grants DMS 0204177 and 1006677.

I would also like to thank Springer-Verlag for their interest and involvement in
this book as well as their suggestions for improvements.

Finally, I am immensely grateful to Joe Borzellino at Cal Poly San Luis Obispo
who used the text several times at his institution and supplied me with numerous
corrections.
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Chapter 1
Basic Theory

In the first chapter, we are going to cover the definitions of vector spaces, linear
maps, and subspaces. In addition, we are introducing several important concepts
such as basis, dimension, direct sum, matrix representations of linear maps, and
kernel and image for linear maps. We shall prove the dimension theorem for linear
maps that relate the dimension of the domain to the dimensions of kernel and image.
We give an account of Gauss elimination and how it ties in with the more abstract
theory. This will be used to define and compute the characteristic polynomial in
Chap. 2.

It is important to note that Sects. 1.13 and 1.12 contain alternate proofs of some
of the important results in this chapter. As such, some people might want to go right
to these sections after the discussion on isomorphism in Sect. 1.8 and then go back
to the missed sections.

As induction is going to play a big role in many of the proofs, we have chosen to
say a few things about that topic in the first section.

1.1 Induction and Well-Ordering�

A fundamental property of the natural numbers, i.e., the positive integers N D
f1; 2; 3; : : :g, that will be used throughout the book is the fact that they are well
ordered. This means that any nonempty subset S � N has a smallest element
smin 2 S such that smin � s for all s 2 S . Using the natural ordering of the
integers, rational numbers, or real numbers, we see that this property does not
hold for those numbers. For example, the half-open interval .0;1/ does not have a
smallest element.

In order to justify that the positive integers are well ordered, let S � N be
nonempty and select k 2 S . Starting with 1, we can check whether it belongs to
S . If it does, then smin D 1. Otherwise, check whether 2 belongs to S . If 2 2 S and

P. Petersen, Linear Algebra, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-3612-6 1, © Springer Science+Business Media New York 2012
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2 1 Basic Theory

1 … S; then we have smin D 2. Otherwise, we proceed to check whether 3 belongs
to S . Continuing in this manner, we must eventually find k0 � k; such that k0 2 S;
but 1; 2; 3; : : : ; k0 � 1 … S . This is the desired minimum: smin D k0.

We shall use the well-ordering of the natural numbers in several places in this
text. A very interesting application is to the proof of the prime factorization theorem:
any integer � 2 is a product of prime numbers. The proof works the following way.
Let S � N be the set of numbers which do not admit a prime factorization. If S is
empty, we are finished; otherwise, S contains a smallest element n D smin 2 S . If n
has no divisors, then it is a prime number and hence has a prime factorization. Thus,
n must have a divisor p > 1. Now write n D p � q. Since p; q < n both numbers
must have a prime factorization. But then also n D p � q has a prime factorization.
This contradicts that S is nonempty.

The second important idea that is tied to the natural numbers is that of induction.
Sometimes, it is also called mathematical induction so as not to confuse it with the
inductive method from science. The types of results that one can attempt to prove
with induction always have a statement that needs to be verified for each number
n 2 N. Some good examples are

1. 1C 2C 3C � � � C n D n.nC1/
2

.
2. Every integer � 2 has a prime factorization.
3. Every polynomial has a root.

The first statement is pretty straightforward to understand. The second is a bit more
complicated, and we also note that in fact, there is only a statement for each integer
� 2. This could be finessed by saying that each integer n C 1, n � 1 has a
prime factorization. This, however, seems too pedantic and also introduces extra
and irrelevant baggage by using addition. The third statement is obviously quite
different from the other two. For one thing, it only stands a chance of being true
if we also assume that the polynomials have degree � 1. This gives us the idea of
how this can be tied to the positive integers. The statement can be paraphrased as:
Every polynomial of degree � 1 has a root. Even then, we need to be more precise
as x2 C 1 does not have any real roots.

In order to explain how induction works abstractly, suppose that we have a
statement P .n/ for each n 2 N. Each of the above statements can be used as an
example of what P .n/ can be. The induction process now works by first ensuring
that the anchor statement is valid. In other words, we first check that P .1/ is true.
We then have to establish the induction step. This means that we need to show
that if P .n � 1/ is true, then P .n/ is also true. The assumption that P .n � 1/
is true is called the induction hypothesis. If we can establish the validity of these
two facts, then P .n/ must be true for all n. This follows from the well-ordering of
the natural numbers. Namely, let S D fn W P .n/ is falseg. If S is empty, we are
finished, otherwise, S has a smallest element k 2 S . Since 1 … S , we know that
k > 1. But this means that we know that P .k � 1/ is true. The induction step then
implies that P .k/ is true as well. This contradicts that S is nonempty.



1.1 Induction and Well-Ordering 3

Let us see if we can use this procedure on the above statements. For 1, we begin
by checking that 1 D 1.1C1/

2
. This is indeed true. Next, we assume that

1C 2C 3C � � � C .n � 1/ D .n � 1/ n
2

;

and we wish to show that

1C 2C 3C � � � C n D n .nC 1/
2

:

Using the induction hypothesis, we see that

.1C 2C 3C � � � C .n � 1//C n D .n � 1/ n
2

C n

D .n � 1/ nC 2n
2

D .nC 1/ n
2

:

Thus, we have shown that P .n/ is true provided P .n � 1/ is true.
For 2, we note that two is a prime number and hence has a prime factorization.

Next, we have to prove that n has a prime factorization if .n � 1/ does. This,
however, does not look like a very promising thing to show. In fact, we need a
stronger form of induction to get this to work.

The induction step in the stronger version of induction is as follows: If P .k/ is
true for all k < n; then P .n/ is also true. Thus, the induction hypothesis is much
stronger as we assume that all statements prior to P .n/ are true. The proof that this
form of induction works is virtually identical to the above justification.

Let us see how this stronger version can be used to establish the induction step
for 2. Let n 2 N; and assume that all integers below n have a prime factorization.
If n has no divisors other than 1 and n, it must be a prime number and we are
finished. Otherwise, n D p � q where p; q < n. Whence, both p and q have
prime factorizations by our induction hypothesis. This shows that also n has a prime
factorization.

We already know that there is trouble with statement 3. Nevertheless, it is
interesting to see how an induction proof might break down. First, we note that
all polynomials of degree 1 look like ax C b and hence have � b

a
as a root. This

anchors the induction. To show that all polynomials of degree n have a root, we
need to first decide which of the two induction hypotheses are needed. There really
is not anything wrong by simply assuming that all polynomials of degree< n have a
root. In this way, we see that at least any polynomial of degree n that is the product
of two polynomials of degree < n must have a root. This leaves us with the so-
called prime or irreducible polynomials of degree n, namely, those polynomials that
are not divisible by polynomials of degree � 1 and < n. Unfortunately, there is not
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much we can say about these polynomials. So induction does not seem to work well
in this case. All is not lost however. A careful inspection of the “proof” of 3 can
be modified to show that any polynomial has a prime factorization. This is studied
further in Sect. 2.1.

The type of statement and induction argument that we will encounter most often
in this text is definitely of the third type. That is to say, it certainly will never be of
the very basic type seen in statement 1. Nor will it be as easy as in statement 2. In our
cases, it will be necessary to first find the integer that is used for the induction, and
even then, there will be a whole collection of statements associated with that integer.
This is what is happening in the third statement. There, we first need to select the
degree as our induction integer. Next, there are still infinitely many polynomials to
consider when the degree is fixed. Finally, whether or not induction will work or is
the “best” way of approaching the problem might actually be questionable.

The following statement is fairly typical of what we shall see: Every subspace
of Rn admits a basis with � n elements. The induction integer is the dimension n,
and for each such integer, there are infinitely many subspaces to be checked. In this
case, an induction proof will work, but it is also possible to prove the result without
using induction.

1.2 Elementary Linear Algebra

Our first picture of what vectors are and what we can do with them comes from
viewing them as geometric objects in the plane and space. Simply put, a vector is
an arrow of some given length drawn in the plane. Such an arrow is also known
as an oriented line segment. We agree that vectors that have the same length
and orientation are equivalent no matter where they are based. Therefore, if we
base them at the origin, then vectors are determined by their endpoints. Using a
parallelogram, we can add such vectors (see Fig. 1.1). We can also multiply them
by scalars. If the scalar is negative, we are changing the orientation. The size of
the scalar determines how much we are scaling the vector, i.e., how much we are
changing its length (see Fig. 1.2).

This geometric picture can also be taken to higher dimensions. The idea of
scaling a vector does not change if it lies in space, nor does the idea of how to
add vectors, as two vectors must lie either on a line or more generically in a plane.
The problem comes when we wish to investigate these algebraic properties further.
As an example, think about the associative law

.x C y/C z D x C .y C z/ :

Clearly, the proof of this identity changes geometrically from the plane to space. In
fact, if the three vectors do not lie in a plane and therefore span a parallelepiped,
then the sum of these three vectors regardless of the order in which they are added
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Fig. 1.1 Vector addition

Fig. 1.2 Scalar multiplication

x

y

z
x+y

x+y+z

y+z
z

Fig. 1.3 Associativity

is the diagonal of this parallelepiped. The picture of what happens when the vectors
lie in a plane is simply a projection of the three-dimensional picture on to the plane
(see Fig. 1.3).

The purpose of linear algebra is to clarify these algebraic issues by looking at
vectors in a less geometric fashion. This has the added benefit of also allowing other
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spaces that do not have geometric origins to be included in our discussion. The end
result is a somewhat more abstract and less geometric theory, but it has turned out
to be truly useful and foundational in almost all areas of mathematics, including
geometry, not to mention the physical, natural, and social sciences.

Something quite different and interesting happens when we allow for complex
scalars. This is seen in the plane itself which we can interpret as the set of complex
numbers. Vectors still have the same geometric meaning, but we can also “scale”
them by a number like i D p�1. The geometric picture of what happens when
multiplying by i is that the vector’s length is unchanged as ji j D 1; but it is rotated
90ı (see Fig. 1.2). Thus it is not scaled in the usual sense of the word. However,
when we define these notions below, one will not really see any algebraic difference
in what is happening. It is worth pointing out that using complex scalars is not
just something one does for the fun of it; it has turned out to be quite convenient
and important to allow for this extra level of abstraction. This is true not just
within mathematics itself. When looking at books on quantum mechanics, it quickly
becomes clear that complex vector spaces are the “sine qua non”(without which
nothing) of the subject.

1.3 Fields

The “scalars” or numbers used in linear algebra all lie in a field. A field is a set F of
numbers, where one has both addition

F � F! F

.˛; ˇ/ 7! ˛ C ˇ
and multiplication

F � F! F

.˛; ˇ/ 7! ˛ˇ:

Both operations are assumed associative, commutative, etc. We shall mainly be
concerned with the real numbers R and complex numbers C; some examples will
be using the rational numbers Q as well. These three fields satisfy the axioms we
list below.

Definition 1.3.1. A field F is a set whose elements are called numbers or when used
in linear algebra scalars. The field contains two different elements 0 and 1, and we
can add and multiply numbers. These operations satisfy

1. The associative law

˛ C .ˇ C �/ D .˛ C ˇ/C �:
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2. The commutative law

˛ C ˇ D ˇ C ˛:
3. Addition by 0:

˛ C 0 D ˛:
4. Existence of negative numbers: For each ˛, we can find �˛ so that

˛ C .�˛/ D 0:
5. The associative law:

˛ .ˇ�/ D .˛ˇ/ �:
6. The commutative law:

˛ˇ D ˇ˛:
7. Multiplication by 1:

˛1 D ˛:
8. Existence of inverses: For each ˛ ¤ 0, we can find ˛�1 so that

˛˛�1 D 1:
9. The distributive law:

˛ .ˇ C �/ D ˛ˇ C ˛�:

One can show that both 0 and 1 are uniquely defined and that the additive inverse
�˛ as well as the multiplicative inverse ˛�1 is unique.

Occasionally, we shall also use that the field has characteristic zero this
means that

n D n times
‚ …„ ƒ

1C � � � C 1
¤ 0

for all positive integers n. Fields such as F2 D f0; 1gwhere 1C1 D 0 clearly do not
have characteristic zero. We make the assumption throughout the text that all fields
have characteristic zero. In fact, there is little loss of generality in assuming that the
fields we work are the usual number fields Q, R, and C.

There are several important collections of numbers that are not fields:

N D f1; 2; 3; : : :g
� N0 D f0; 1; 2; 3; : : :g
� Z Df0;˙1;˙2;˙3; : : :g
D f0; 1;�1; 2;�2; 3;�3; : : :g :
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1.4 Vector Spaces

Definition 1.4.1. A vector space consists of a set of vectors V and a field F. The
vectors can be added to yield another vector: if x; y 2 V; then x C y 2 V or

V � V ! V

.x; y/ 7! x C y:

The scalars can be multiplied with the vectors to yield a new vector: if ˛ 2 F and
x 2 V; then ˛x 2 V ; in other words,

F � V ! V

.˛; x/ 7! ˛x:

The vector space contains a zero vector 0; also known as the origin of V . It is a bit
confusing that we use the same symbol for 0 2 V and 0 2 F. It should always be
obvious from the context which zero is used. We shall generally use the notation that
scalars, i.e., elements of F, are denoted by small Greek letters such as ˛; ˇ; �; : : :,
while vectors are denoted by small roman letters such as x; y; z; : : :. Addition and
scalar multiplication must satisfy the following axioms:

1. The associative law:
.x C y/C z D x C .y C z/ :

2. The commutative law:
x C y D y C x:

3. Addition by 0:

x C 0 D x:
4. Existence of negative vectors: For each x, we can find �x such that

x C .�x/ D 0:

5. The associative law for multiplication by scalars:

˛ .ˇx/ D .˛ˇ/ x:

6. Multiplication by the unit scalar:

1x D x:

7. The distributive law when vectors are added:

˛ .x C y/ D ˛x C ˛y:
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8. The distributive law when scalars are added:

.˛ C ˇ/ x D ˛x C ˇx:

Remark 1.4.2. We shall also allow scalars to be multiplied on the right of the vector:

x˛ D ˛x
The only slight issue with this definition is that we must ensure that associativity still
holds. The key to that is that the field of scalars have the property that multiplication
in commutative:

x .˛ˇ/ D .˛ˇ/ x
D .ˇ˛/ x
D ˇ .˛x/
D .x˛/ ˇ

These axioms lead to several “obvious” facts.

Proposition 1.4.3. Let V be a vector space over a field F. If x 2 V and ˛ 2 F;

then:

1. 0x D 0.
2. ˛0 D 0.
3. �1x D �x.
4. If ˛x D 0; then either ˛ D 0 or x D 0.

Proof. By the distributive law,

0x C 0x D .0C 0/ x D 0x:
This together with the associative law gives us

0x D 0x C .0x � 0x/
D .0x C 0x/ � 0x
D 0x � 0x
D 0:

The second identity is proved in the same manner.
For the third, consider

0 D 0x
D .1 � 1/ x
D 1x C .�1/ x
D x C .�1/ x;
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adding �x on both sides then yields

�x D .�1/ x:
Finally, if ˛x D 0 and ˛ ¤ 0; then we have

x D �

˛�1˛
�

x

D ˛�1 .˛x/

D ˛�10

D 0: ut
With these matters behind us, we can relax a bit and start adding, subtracting, and
multiplying along the lines we are used to from matrix algebra and vector calculus.

Example 1.4.4. The simplest example of a vector space is the trivial vector space
V D f0g that contains only one point, the origin. The vector space operations and
axioms are completely trivial as well in this case.

Here are some important examples of vectors spaces.

Example 1.4.5. The most important basic example is undoubtedly the Cartesian n-
fold product of the field F:

F
n D

8

ˆ
<

ˆ
:

2

6

4

˛1
:::

˛n

3

7

5 W ˛1; : : : ; ˛n 2 F

9

>
=

>
;

D f.˛1; : : : ; ˛n/ W ˛1; : : : ; ˛n 2 Fg :

Note that the n � 1 and the n-tuple ways of writing these vectors are equivalent.
When writing vectors in a line of text, the n-tuple version is obviously more
convenient. The column matrix version, however, conforms to various other natural
choices, as we shall see, and carries some extra meaning for that reason. The i th
entry ˛i in the vector x D .˛1; : : : ; ˛n/ is called the i th coordinate of x.

Vector addition is defined by adding the entries:

2

6

4

˛1
:::

˛n

3

7

5C

2

6

4

ˇ1
:::

ˇn

3

7

5 D

2

6

4

˛1 C ˇ1
:::

˛n C ˇn

3

7

5

and likewise with scalar multiplication

˛

2

6

4

˛1
:::

˛n

3

7

5 D

2

6

4

˛˛1
:::

˛˛n

3

7

5 ;

The axioms are verified by using the axioms for the field F.



1.4 Vector Spaces 11

Example 1.4.6. The space of functions whose domain is some fixed set S and whose
values all lie in the field F is denoted by Func .S;F/ D ff W S ! Fg. Addition and
scalar multiplication is defined by

. f̨ / .x/ D f̨ .x/ ;

.f1 C f2/ .x/ D f1 .x/C f2 .x/ :

And the axioms again follow from using the field axioms for F.

In the special case where S D f1; : : : ; ng, it is worthwhile noting that

Func .f1; : : : ; ng ;F/ D F
n:

Thus, vectors in F
n can also be thought of as functions and can be graphed as either

an arrow in space or as a histogram type function. The former is of course more
geometric, but the latter certainly also has its advantages as collections of numbers
in the form of n � 1 matrices do not always look like vectors. In statistics, the
histogram picture is obviously far more useful. The point here is that the way in
which vectors are pictured might be psychologically important, but from an abstract
mathematical perspective, there is no difference.

Example 1.4.7. The space of n �m matrices

Matn�m .F/ D

8

ˆ
<

ˆ
:

2

6

4

˛11 � � � ˛1m
:::
: : :

:::

˛n1 � � � ˛nm

3

7

5 W ˛ij 2 F

9

>
=

>
;

D ˚�

˛ij
� W ˛ij 2 F

�

:

n �m matrices are evidently just a different way of arranging vectors in F
n�m. This

arrangement, as with the column version of vectors in F
n; imbues these vectors with

some extra meaning that will become evident as we proceed.

Example 1.4.8. There is a slightly more abstract vector space that we can construct
out of a general set S and a vector space V . This is the set Map .S; V / of all maps
from S to V . Scalar multiplication and addition are defined as follows:

. f̨ / .x/ D f̨ .x/ ;

.f1 C f2/ .x/ D f1 .x/C f2 .x/ :

The axioms now follow from V being a vector space.

The space of maps is in some sense the most general type of vector space as all other
vector spaces are either of this type or subspaces of such function spaces.
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Definition 1.4.9. A nonempty subset M � V of a vector space V is said to be a
subspace if it is closed under addition and scalar multiplication:

x; y 2M ) x C y 2 M;
˛ 2 F and x 2M ) ˛x 2 M:

We also say that M is closed under vector addition and multiplication by scalars.

Note that since M ¤ ;, we can find x 2 M ; this means that 0 D 0 � x 2 M . Thus,
subspaces become vector spaces in their own right and this without any further
checking of the axioms.

Example 1.4.10. The set of polynomials whose coefficients lie in the field F

F Œt � D ˚p .t/ D a0 C a1t C � � � C aktk W k 2 N0; a0; a1; : : : ; ak 2 F
�

is also a vector space. If we think of polynomials as functions, then we imagine them
as a subspace of Func .F;F/. However, the fact that a polynomial is determined
by its representation as a function depends on the fact that we have a field of
characteristic zero! If, for instance, F Df0; 1g ; then the polynomial t 2C t vanishes
when evaluated at both 0 and 1. Thus, this nontrivial polynomial is, when viewed as
a function, the same as p .t/ D 0.

We could also just record the coefficients. In that case, F Œt � is a subspace of
Func .N0;F/ and consists of those infinite tuples that are zero except at all but a
finite number of places.

If

p .t/ D a0 C a1t C � � � C antn 2 F Œt � ;

then the largest integer k � n such that ak ¤ 0 is called the degree of p. In other
words,

p .t/ D a0 C a1t C � � � C aktk
and ak ¤ 0. We use the notation deg .p/ D k.

Example 1.4.11. The collection of formal power series

F ŒŒt �� D ˚

a0 C a1t C � � � C aktk C � � � W a0; a1; : : : ; ak; : : : 2 F
�

D
( 1
X

iD0
ai t

i W ai 2 F; i 2 N0

)

bears some resemblance to polynomials, but without further discussions on conver-
gence or even whether this makes sense, we cannot interpret power series as lying
in Func .F;F/. If, however, we only think about recording the coefficients, then we
see that F ŒŒt �� D Func .N0;F/. The extra piece of information that both F Œt � and
F ŒŒt �� carry with them, aside from being vector spaces, is that the elements can also
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be multiplied. This extra structure will be used in the case of F Œt �. Power series will
not play an important role in the sequel. Finally, note that F Œt �, is a subspace of
F ŒŒt ��.

Example 1.4.12. For two (or more) vector spaces V;W over the same field F we
can form the (Cartesian) product

V �W D f.v;w/ W v 2 V and w 2 W g :
Scalar multiplication and addition are defined by

˛ .v;w/ D .˛v; ˛w/ ;

.v1;w1/C .v2;w2/ D .v1 C v2;w1 C w2/ :

Note that V �W is not in a natural way a subspace in a space of functions or maps.

Exercises

1. Find a subset C � F
2 that is closed under scalar multiplication but not under

addition of vectors.
2. Find a subset A � C

2 that is closed under vector addition but not under
multiplication by complex numbers.

3. Find a subset Q � R that is closed under addition but not scalar multiplication
by real scalars.

4. Let V D Z be the set of integers with the usual addition as “vector addition.”
Show that it is not possible to define scalar multiplication by Q;R; or C so as to
make it into a vector space.

5. Let V be a real vector space, i.e., a vector space were the scalars are R. The
complexification of V is defined as VC D V � V . As in the construction of
complex numbers, we agree to write .v;w/ 2 VC as vC iw. Moreover, if v 2 V ,
then it is convenient to use the shorthand notations v D vC i0 and iv D 0C iv.
Define complex scalar multiplication on VC and show that it becomes a complex
vector space.

6. Let V be a complex vector space i.e., a vector space were the scalars are C.
Define V � as the complex vector space whose additive structure is that of V but
where complex scalar multiplication is given by � � x D N�x. Show that V � is a
complex vector space.

7. Let Pn be the set of polynomials in F Œt � of degree � n.

(a) Show that Pn is a vector space.
(b) Show that the space of polynomials of degree n � 1 is Pn � Pn�1 and does

not form a subspace.
(c) If f .t/ W F! F; show that V D fp .t/ f .t/ W p 2 Png is a subspace of

Func .F;F/.
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8. Let V D C
� D C � f0g. Define addition on V by x � y D xy. Define scalar

multiplication by ˛ � x D e˛x.

(a) Show that if we use 0V D 1 and �x D x�1; then the first four axioms for a
vector space are satisfied.

(b) Which of the scalar multiplication properties do not hold?

1.5 Bases

We are now going to introduce one of the most important concepts in linear algebra.
Let V be a vector space over F.

Definition 1.5.1. Our first construction is to form linear combinations of vectors.
If ˛1; : : : ; ˛m 2 F and x1; : : : ; xm 2 V; then we can multiply each xi by the scalar
˛i and then add up the resulting vectors to form the linear combination

x D ˛1x1 C � � � C ˛mxm:
We also say that x is a linear combination of the xi s.

If we arrange the vectors in a 1 �m row matrix
�

x1 � � � xm
�

and the scalars in a columnm� 1 matrix, we see that the linear combination can be
thought of as a matrix product

m
X

iD1
˛ixi D ˛1x1 C � � � C ˛mxm D

�

x1 � � � xm
�

2

6

4

˛1
:::

˛m

3

7

5 :

To be completely rigorous, we should write the linear combination as a 1� 1matrix
Œ˛1x1 C � � � C ˛mxm�, but it seems too pedantic to insist on this. Another curiosity
here is that matrix multiplication almost forces us to write

x1˛1 C � � � C xm˛m D
�

x1 � � � xm
�

2

6

4

˛1
:::

˛m

3

7

5 :

This is one reason why we want to be able to multiply by scalars on both the left
and right.

Definition 1.5.2. A finite basis for V is a finite collection of vectors x1; : : : ; xn 2 V
such that each element x 2 V can be written as a linear combination

x D ˛1x1 C � � � C ˛nxn
in precisely one way.
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This means that for each x 2 V , we can find ˛1; : : : ; ˛n 2 F such that

x D ˛1x1 C � � � C ˛nxn:
Moreover, if we have two linear combinations both yielding x

˛1x1 C � � � C ˛nxn D x D ˇ1x1 C � � � C ˇnxn;

then
˛1 D ˇ1; : : : ; ˛n D ˇn:

Since each x has a unique linear combination, we also refer to it as the expansion
of x with respect to the basis. In this way, we get a well-defined correspondence
V  ! F

n by identifying

x D ˛1x1 C � � � C ˛nxn
with the n-tuple .˛1; : : : ; ˛n/. We note that this correspondence preserves scalar
multiplication and vector addition since

˛x D ˛ .˛1x1 C � � � C ˛nxn/
D .˛˛1/ x1 C � � � C .˛˛n/ xn;

x C y D .˛1x1 C � � � C ˛nxn/C .ˇ1x1 C � � � C ˇnxn/
D .˛1 C ˇ1/ x1 C � � � C .˛n C ˇn/ xn:

This means that the choice of basis makes V equivalent to the more concrete vector
space F

n. This idea of making abstract vector spaces more concrete by the use of a
basis is developed further in Sects. 1.7 and 1.8.

Note that if x1; : : : ; xn 2 V form a basis, then any reordering of the basis vectors,
such as x2; x1; : : : ; xn 2 V , also forms a basis. We will think of these two choices
as being different bases.

We shall prove in Sect. 1.8 and again in Sect. 1.12 that the number of vectors in
such a basis for V is always the same.

Definition 1.5.3. This allows us to define the dimension of V over F to be the
number of elements in a basis. Note that the uniqueness condition for the linear
combinations guarantees that none of the vectors in a basis can be the zero vector.

Example 1.5.4. The simplest example of a vector space V D f0g is a bit special.
Its only basis is the empty collection due to the requirement that vectors must have
unique expansions with respect to a basis. Since such a choice of basis contains
0 elements, we say that the dimension of the trivial vector space is 0. Note also
that in this case, the “choice of basis” is not an ordered collection of vectors. So
if one insists on ordered collections of vectors for bases, there will be one logical
inconsistency in the theory when one talks about selecting a basis for the trivial
vector space.
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Another slightly more interesting case that we can cover now is that of one-
dimensional spaces.

Lemma 1.5.5. Let V be a vector space over F. If V has a basis with one element,
then any other finite basis also has one element.

Proof. Let x1 be a basis for V . If x 2 V; then x D ˛x1 for some ˛. Now, suppose
that we have z1; : : : ; zn 2 V; then zi D ˛ix1. If z1; : : : ; zn forms a basis, then none of
the vectors are zero and consequently ˛i ¤ 0. Thus, for each i , we have x1 D ˛�1

i zi .
Therefore, if n > 1; then we have that x1 can be written in more than one way as a
linear combination of z1; : : : ; zn. This contradicts the definition of a basis. Whence,
n D 1 as desired. ut
Let us consider some basic examples.

Example 1.5.6. In F
n define the vectors

e1 D

2

6

6

6

4

1

0
:::

0

3

7

7

7

5

; e2 D

2

6

6

6

4

0

1
:::

0

3

7

7

7

5

; : : : ; en D

2

6

6

6

4

0

0
:::

1

3

7

7

7

5

:

Thus, ei is the vector that is zero in every entry except the i th where it is 1. These
vectors evidently form a basis for Fn since any vector in F

n has the unique expansion

F
n 3 x D

2

6

6

6

4

˛1
˛2
:::

˛n

3

7

7

7

5

D ˛1

2

6

6

6

4

1

0
:::

0

3

7

7

7

5

C ˛2

2

6

6

6

4

0

1
:::

0

3

7

7

7

5

C � � � C ˛n

2

6

6

6

4

0

0
:::

1

3

7

7

7

5

D ˛1e1 C ˛2e2 C � � � C ˛nen

D �

e1 e2 � � � en
�

2

6

6

6

4

˛1
˛2
:::

˛n

3

7

7

7

5

:
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Example 1.5.7. In F
2 consider

x1 D
�

1

0

�

; x2 D
�

1

1

�

:

These two vectors also form a basis for F2 since we can write

�

˛

ˇ

�

D .˛ � ˇ/
�

1

0

�

C ˇ
�

1

1

�

D
�

1 1

0 1

� �

.˛ � ˇ/
ˇ

�

:

To see that these choices are unique, observe that the coefficient on x2 must be ˇ
and this then uniquely determines the coefficient in front of x1.

Example 1.5.8. In F
2 consider the slightly more complicated set of vectors

x1 D
�

1

�1
�

; x2 D
�

1

1

�

:

This time, we see

�

˛

ˇ

�

D ˛ � ˇ
2

�

1

�1
�

C ˛ C ˇ
2

�

1

1

�

D
�

1 1

�1 1
�
"

˛�ˇ
2

˛Cˇ
2

#

:

Again, we can see that the coefficients are unique by observing that the system

� C ı D ˛;
�� C ı D ˇ

has a unique solution. This is because � , respectively ı; can be found by subtracting,
respectively adding, these two equations.

Example 1.5.9. Likewise, the space of matrices Matn�m .F/ has a natural basis Eij
of nm elements, whereEij is the matrix that is zero in every entry except the .i; j /th
where it is 1.

The concept of a basis depends quite a lot on the scalars we use. The field of complex
numbers C is clearly a one-dimensional vector space when we use C as the scalar
field. To be specific, we have that x1 D 1 is a basis for C. If, however, we view
C as a vector space over the real numbers R, then only real numbers in C are
linear combinations of x1. Therefore, x1 is no longer a basis when we restrict to
real scalars. Evidently, we need to use x1 D 1 and x2 D i to obtain a basis over R.
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It is also possible to have infinite bases. However, some care must be taken in
defining this concept as we are not allowed to form infinite linear combinations.
We say that a vector space V over F has a collection xi 2 V; where i 2 A is some
possibly infinite index set, as a basis, if each x 2 V is a linear combination of a finite
number of the vectors xi in a unique way. There is, surprisingly, only one important
vector space that comes endowed with a natural infinite basis. This is the space F Œt �
of polynomials. The collection xi D t i ; i D 0; 1; 2; : : : evidently gives us a basis.
The other spaces F Œt � and Func .S;F/ ; where S is infinite, do not come with any
natural bases. There is a rather subtle theorem which asserts that every vector space
must have a basis. It is somewhat beyond the scope of this text to prove this theorem
as it depends on Zorn’s lemma or equivalently the axiom of choice. It should also
be mentioned that it is a mere existence theorem as it does not give a procedure for
constructing infinite bases. In order to get around these nasty points, we resort to the
trick of saying that a vector space is infinite-dimensional if it does not admit a finite
basis. Note that in the above lemma, we can also show that if V admits a basis with
one element, then it cannot have an infinite basis.

Finally, we need to mention some subtleties in the definition of a basis. In most
texts, a distinction is made between an ordered basis x1; : : : ; xn and a basis as a
subset

fx1; : : : ; xng � V:
There is a fine difference between these two concepts. The collection x1; x2 where
x1 D x2 D x 2 V can never be a basis as x can be written as a linear combination
of x1 and x2 in at least two different ways. As a set, however, we see that fxg D
fx1; x2g consists of only one vector, and therefore, this redundancy has disappeared.
Throughout this text, we assume that bases are ordered. This is entirely reasonable
as most people tend to write down a collection of elements of a set in some, perhaps
arbitrary, order. It is also important and convenient to work with ordered bases when
time comes to discuss matrix representations. On the few occasions where we shall
be working with infinite bases, as with F Œt �, they will also be ordered in a natural
way using either the natural numbers or the integers.

Exercises

1. Show that 1; t; : : : ; tn form a basis for Pn.
2. Show that if p0; : : : ; pn 2 Pn�f0g satisfy deg .pk/ D k; then they form a basis

for Pn.
3. Find a basis p1; : : : ; p4 2 P3 such that deg .pi / D 3 for i D 1; 2; 3; 4.
4. For ˛ 2 C consider the subset

Q Œ˛� D fp .˛/ W p 2 Q Œt �g � C:
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Show that:

(a) If ˛ 2 Q, then Q Œ˛� D Q

(b) If ˛ is algebraic, i.e., it solves an equation p .˛/ D 0 for some p 2
Q Œt � ; then Q Œ˛� is a finite-dimensional vector space over Q with a basis
1; ˛; ˛2; : : : ; ˛n�1 for some n 2 N. Hint: Let n be the smallest number so
that ˛n is a linear combination of 1; ˛; ˛2; : : : ; ˛n�1. You must explain why
we can find such n.

(c) If ˛ is algebraic, then Q Œ˛� is a field that contains Q. Hint: Show that ˛
must be the root of a polynomial with a nonzero constant term. Use this to
find a formula for ˛�1 that depends only on positive powers of ˛.

(d) Show that ˛ is algebraic if and only if Q Œ˛� is finite-dimensional over Q.
(e) We say that ˛ is transcendental if it is not algebraic. Show that if ˛ is

transcendental, then 1; ˛; ˛2; : : : ; ˛n; : : : form an infinite basis for Q Œ˛�.
Thus, Q Œ˛� and Q Œt � represent the same vector space via the substitution
t  ! ˛.

5. Show that

2

6

6

4

1

1

0

0

3

7

7

5

;

2

6

6

4

1

0

1

0

3

7

7

5

;

2

6

6

4

1

0

0

1

3

7

7

5

;

2

6

6

4

0

1

1

0

3

7

7

5

;

2

6

6

4

0

1

0

1

3

7

7

5

;

2

6

6

4

0

0

1

1

3

7

7

5

span C
4; i.e., every vector on C

4 can be written as a linear combination of these
vectors. Which collections of those six vectors form a basis for C4‹

6. Is it possible to find a basis x1; : : : ; xn for Fn so that the i th entry for all of the
vectors x1; : : : ; xn is zero?

7. If e1; : : : ; en is the standard basis for Cn; show that both

e1; : : : ; en; ie1; : : : ; ien

and
e1; ie1; : : : ; en; ien

form bases for Cn when viewed as a real vector space.
8. If x1; : : : ; xn is a basis for the real vector space V , then it is also a basis for the

complexification VC (see Exercise 5 in Sect. 1.4 for the definition of VC).
9. Find a basis for R3 where all coordinate entries are˙1.

10. A subspace M � Matn�n .F/ is called a two-sided ideal if for all X 2
Matn�n .F/ and A 2 M also XA;AX 2 M . Show that if M ¤ f0g ; then
M D Matn�n .F/. Hint: Assume A 2 M is such that some entry is nonzero.
Make it 1 by multiplying A by an appropriate scalar on the left. Then, show
that we can construct the standard basis for Matn�n .F/ by multiplyingA by the
standard basis matrices for Matn�n .F/ on the left and right.
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11. Let V be a vector space.

(a) Show that x; y 2 V form a basis if and only if x C y; x � y form a basis.
(b) Show that x; y; z 2 V form a basis if and only if x C y; y C z; zC x form

a basis.

1.6 Linear Maps

Definition 1.6.1. A map L W V ! W between vector spaces over the same field F

is said to be linear if it preserves scalar multiplication and addition in the following
way:

L.˛x/ D ˛L .x/ ;

L .x C y/ D L.x/C L.y/ ;

where ˛ 2 F and x; y 2 V .

It is possible to collect these two properties into one condition as follows:

L.˛1x1 C ˛2x2/ D ˛1L .x1/C ˛2L .x2/ ;

where ˛1; ˛2 2 F and x1; x2 2 V . More generally, we have that L preserves linear
combinations in the following way:

L

0

B

@

�

x1 � � � xm
�

2

6

4

˛1
:::

˛m

3

7

5

1

C

A D L.x1˛1 C � � � C xm˛m/

D L.x1/ ˛1 C � � � C L.xm/ ˛m

D �

L.x1/ � � � L.xm/
�

2

6

4

˛1
:::

˛m

3

7

5 :

To prove this simple fact, we use induction on m. When m D 1, this is simply the
fact that L preserves scalar multiplication

L.˛x/ D ˛L .x/ :
Assuming the induction hypothesis, that the statement holds for m � 1; we see that

L.x1˛1 C � � � C xm˛m/ D L..x1˛1 C � � � C xm�1˛m�1/C xm˛m/
D L.x1˛1 C � � � C xm�1˛m�1/C L.xm˛m/
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D .L .x1/ ˛1 C � � � C L.xm�1/ ˛m�1/C L.xm/ ˛m
D L.x1/ ˛1 C � � � C L.xm/ ˛m:

The important feature of linear maps is that they preserve the operations that are
allowed on the spaces we work with. Some extra terminology is often used for linear
maps.

Definition 1.6.2. If the values are the field itself, i.e.,W D F, then we also call L W
V ! F a linear function or linear functional. If V D W; then we call L W V ! V

a linear operator.

Before giving examples, we introduce some further notation.

Definition 1.6.3. The set of all linear maps L W V ! W is often denoted
Hom .V;W /. In case we need to specify the scalars, we add the field as a subscript
HomF .V;W /.

The abbreviation Hom stands for homomorphism. Homomorphisms are in general
maps that preserve whatever algebraic structure that is available. Note that

HomF .V;W / � Map .V;W /

and is a subspace of the latter. Thus, HomF .V;W / is a vector space over F.
It is easy to see that the composition of linear maps always yields a linear map.

Thus, if L1 W V1 ! V2 and L2 W V2 ! V3 are linear maps, then the composition
L2 ı L1 W V1 ! V3 defined by L2 ı L1 .x/ D L2 .L1 .x// is again a linear map.
We often ignore the composition sign ı and simply write L2L1. An important
special situation is that one can “multiply” linear operators L1;L2 W V ! V via
composition. This multiplication is in general not commutative or abelian as it rarely
happens that L1L2 and L2L1 represent the same map. We shall see many examples
of this throughout the text.

Finally, still staying with the abstract properties, we note that, if L W V ! W is
a linear map andM � V is a subspace, then the restriction LjM WM ! W defined
trivially by LjM .x/ D L.x/is also a linear map. We shall often even use the same
symbol L for both maps, but beware, many properties for a linear map can quickly
change when we restrict it to different subspaces. The restriction leads to another
important construction that will become very important in subsequent chapters.

Definition 1.6.4. Let L W V ! V be a linear operator. A subspace M � V is said
to be L-invariant or simply invariant if L.M/ �M .

Thus, the restriction of L to M defines a new linear operator LjM WM !M .

Example 1.6.5. Define a map L W F ! F by scalar multiplication on F via
L.x/ D �x for some � 2 F. The distributive law says that the map is additive, and
the associative law together with the commutative law say that it preserves scalar
multiplication. This example can now easily be generalized to scalar multiplication
on a vector space V; where we can also define L W V ! V by L.x/ D �x.
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Two special cases are of particular interest. First, the identity transformation 1V W
V ! V defined by 1V .x/ D x. This is evidently scalar multiplication by 1. Second,
we have the zero transformation 0 D 0V W V ! V that maps everything to 0 2 V
and is simply multiplication by 0. The latter map can also be generalized to a zero
map 0 W V ! W between different vector spaces. With this in mind, we can always
write multiplication by � as the map �1V thus keeping track of what it does, where
it does it, and finally keeping track of the fact that we think of the procedure as a
map.

Expanding on this theme a bit we can, starting with a linear operatorL W V ! V ,
use powers of L as well as linear combinations to create new operators on V . For
instance, L2 � 3 � LC 2 � 1V is defined by

�

L2 � 3 � LC 2 � 1V
�

.x/ D L.L .x// � 3L .x/C 2x:
We shall often do this in quite general situations. The most general construction
comes about by selecting a polynomial p 2 F Œt � and considering p .L/. If p D
˛kt

k C � � � C ˛1t C ˛0; then

p .L/ D ˛kLk C � � � C ˛1LC ˛01V :
If we think of t0 D 1 as the degree 0 term in the polynomial, then by substituting
L, we apparently define L0 D 1V . So it is still the identity, but the identity in the
appropriate set where L lives. Evaluation on x 2 V is given by

p .L/ .x/ D ˛kLk .x/C � � � C ˛1L .x/C ˛0x:

Apparently,p simply defines a linear combination of the linear operatorsLk; : : : ; L;
1V , and p .L/ .x/ is a linear combination of the vectors Lk .x/ ; : : : ; L .x/ ; x.

Example 1.6.6. Fix x 2 V . Note that the axioms of scalar multiplication also imply
that L W F! V defined by L.˛/ D x˛ is linear.

Matrix multiplication is the next level of abstraction. Here we let V D F
m and

W D F
n and L is represented by an n �m matrix

B D

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5 :

The map is defined using matrix multiplication as follows:

L.x/ D Bx

D

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5

2

6

4

�1
:::

�m

3

7

5



1.6 Linear Maps 23

D

2

6

4

ˇ11�1 C � � � C ˇ1m�m
:::

ˇn1�1 C � � � C ˇnm�m

3

7

5

Thus, the i th coordinate of L.x/ is given by

m
X

jD1
ˇij �j D ˇi1�1 C � � � C ˇim�m:

A similar and very important way of representing this map comes by noting that it
creates linear combinations. Write B as a row matrix of its column vectors

B D

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5 D �b1 � � � bm
�

; where bi D

2

6

4

ˇ1i
:::

ˇni

3

7

5

and then observe

L.x/ D Bx

D �

b1 � � � bm
�

2

6

4

�1
:::

�m

3

7

5

D b1�1 C � � � C bm�m:

Note that if m D n and the matrix we use is a diagonal matrix with �s down the
diagonal and zeros elsewhere, then we obtain the scalar multiplication map �1Fn .
The matrix looks like this

2

6

6

6

4

� 0 � � � 0
0 � 0
:::

: : :
:::

0 0 � � � �

3

7

7

7

5

A very important observation in connection with linear maps defined by matrix
multiplication is that composition of linear maps L W Fl ! F

m andK W Fm ! F
n is

given by the matrix product. The maps are defined by matrix multiplication

L.x/ D Bx;
B D �

b1 � � � bl
�

and
K .y/ D Cy:
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The composition can now be computed as follows using that K is linear:

.K ı L/ .x/ D K .L .x//
D K .Bx/

D K

0

B

@

�

b1 � � � bl
�

2

6

4

�1
:::

�l

3

7

5

1

C

A

D �

K .b1/ � � � K .bl/
�

2

6

4

�1
:::

�l

3

7

5

D ��

Cb1 � � � Cbl
��

2

6

4

�1
:::

�l

3

7

5

D �

C
�

b1 � � � bl
��

2

6

4

�1
:::

�l

3

7

5

D .CB/ x:
Evidently, this all hinges on the fact that the matrix product CB can be defined by

CB D C
�

b1 � � � bl
�

D �

Cb1 � � � Cbl
�

;

a definition that is completely natural if we think of C as a linear map. It should
also be noted that we did not use associativity of matrix multiplication in the form
C .Bx/ D .CB/ x. In fact, associativity is a consequence of our calculation.

We can also check things a bit more directly using summation notation. Observe
that the i th entry in the composition

K

0

B

@L

0

B

@

2

6

4

˛1
:::

˛l

3

7

5

1

C

A

1

C

A D

2

6

4

�11 � � � �1m
:::
: : :

:::

�n1 � � � �nm

3

7

5

0

B

@

2

6

4

ˇ11 � � � ˇ1l
:::
: : :

:::

ˇm1 � � � ˇml

3

7

5

2

6

4

�1
:::

�l

3

7

5

1

C

A

satisfies

m
X

jD1
�ij

 

l
X

sD1
ˇjs�s

!

D
m
X

jD1

l
X

sD1
�ij ˇjs�s
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D
l
X

sD1

m
X

jD1
�ij ˇjs�s

D
l
X

sD1

0

@

m
X

jD1
�ij ˇjs

1

A �s

where
	
Pm

jD1 �ij ˇjs



represents the .i; s/ entry in the matrix product
�

�ij
� �

ˇjs
�

.

Example 1.6.7. Note that while scalar multiplication on even the simplest vector
space F is the simplest linear map we can have, there are still several levels of
complexity depending on the field we use. Let us consider the map L W C! C

that is multiplication by i; i.e., L.x/ D ix. If we write x D ˛ C iˇ, we see that
L.x/ D �ˇ C i˛. Geometrically, what we are doing is rotating x 90ı. If we think
of C as the plane R2, the map is instead given by the matrix

�

0 �1
1 0

�

which is not at all scalar multiplication if we only think in terms of real scalars.
Thus, a supposedly simple operation with complex numbers is somewhat less simple
when we forget complex numbers. What we need to keep in mind is that scalar
multiplication with real numbers is simply a form of dilation where vectors are
made longer or shorter depending on the scalar. Scalar multiplication with complex
numbers is from an abstract algebraic viewpoint equally simple to write down, but
geometrically, such an operation can involve a rotation from the perspective of a
world where only real scalars exist.

Example 1.6.8. The i th coordinate map F
n ! F defined by

dxi .x/ D dxi

0

B

B

B

B

B

B

@

2

6

6

6

6

6

6

4

�1
:::

�i
:::

�n

3

7

7

7

7

7

7

5

1

C

C

C

C

C

C

A

D Œ0 � � �1 � � �0�

2

6

6

6

6

6

6

4

�1
:::

�i
:::

�n

3

7

7

7

7

7

7

5

D �i :
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is a linear map. Here the 1 � n matrix Œ0 � � �1 � � �0� is zero everywhere except in
the i th entry where it is 1. The notation dxi is not a mistake, but an incursion from
multivariable calculus. While some mystifying words involving infinitesimals are
often invoked in connection with such symbols, they have in more advanced and
modern treatments of the subject simply been redefined as done here.

A special piece of notation comes in handy here. The Kronecker ı symbol is
defined as

ıij D
�

0 if i ¤ j
1 if i D j

Thus, the matrix Œ0 � � �1 � � �0� can also be written as

�

0 � � � 1 � � � 0 � D �

ıi1 � � � ıi i � � � ıin
�

D �

ıi1 � � � ıin
�

:

The matrix representing the identity map 1Fn can then be written as

2

6

4

1 � � � 0
:::
: : :

:::

0 � � � 1

3

7

5 D

2

6

4

ı11 � � � ı1n
:::
: : :

:::

ın1 � � � ınn

3

7

5 :

Example 1.6.9. Let us consider the vector space of functions C1 .R;R/ that have
derivatives of all orders. There are several interesting linear operatorsC1 .R;R/!
C1 .R;R/

D .f / .t/ D df

dt
.t/ ;

S .f / .t/ D
Z t

t0

f .s/ ds;

T .f / .t/ D t � f .t/ :

In a more shorthand fashion, we have the differentiation operator D .f / D f 0; the
integration operator S .f / D R

f; and the multiplication operator T .f / D tf .
Note that the integration operator is not well defined unless we use the definite
integral, and even in that case, it depends on the value t0. Note that the space of
polynomials

R Œt � � C1 .R;R/

is an invariant subspace for all three operators. In this case, we usually let t0 D
0 for S . These operators have some interesting relationships. We point out an
intriguing one

DT � TD D 1:



1.6 Linear Maps 27

To see this, simply use Leibniz’ rule for differentiating a product to obtain

D .T .f // D D .tf /

D f C tDf
D f C T .D .f // :

With some slight changes, the identity DT � TD D 1 is the Heisenberg com-
mutation law. This law is important in the verification of Heisenberg’s uncertainty
principle.

Definition 1.6.10. The trace is a linear map on square matrices that adds the
diagonal entries.

tr W Matn�n .F/! F;

tr .A/ D ˛11 C ˛22 C � � � C ˛nn:

The trace satisfies the following important commutation relationship.

Lemma 1.6.11. (Invariance of Trace) If A 2 Matm�n .F/ and B 2 Matn�m .F/ ;
then AB 2 Matm�m .F/, BA 2 Matn�n .F/, and

tr .AB/ D tr .BA/ :

Proof. We write out the matrices

A D

2

6

4

˛11 � � � ˛1n
:::
: : :

:::

˛m1 � � � ˛mn

3

7

5

B D

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5 :

Thus,

AB D

2

6

4

˛11 � � � ˛1n
:::
: : :

:::

˛m1 � � � ˛mn

3

7

5

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5

D

2

6

4

˛11ˇ11 C � � � C ˛1nˇn1 � � � ˛11ˇ1m C � � � C ˛1nˇnm
:::

: : :
:::

˛m1ˇ11 C � � � C ˛mnˇn1 � � � ˛m1ˇ1m C � � � C ˛mnˇnm

3

7

5 ;
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BA D

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5

2

6

4

˛11 � � � ˛1n
:::
: : :

:::

˛m1 � � � ˛mn

3

7

5

D

2

6

4

ˇ11˛11 C � � � C ˇ1m˛m1 � � � ˇ11˛1n C � � � C ˇ1m˛mn
:::

: : :
:::

ˇn1˛11 C � � � C ˇnm˛m1 � � � ˇn1˛1n C � � � C ˇnm˛mn

3

7

5 :

This tells us that AB 2 Matm�m .F/ and BA 2 Matn�n .F/. To show the identity
note that the .i; i/ entry in AB is

Pn
jD1 ˛ij ˇj i ; while the .j; j / entry in BA is

Pm
iD1 ˇj i˛ij . Thus,

tr .AB/ D
m
X

iD1

n
X

jD1
˛ij ˇj i ;

tr .BA/ D
n
X

jD1

m
X

iD1
ˇj i˛ij :

By using ˛ij ˇj i D ˇji˛ij and

m
X

iD1

n
X

jD1
D

n
X

jD1

m
X

iD1
;

we see that the two traces are equal. ut
This allows us to show that Heisenberg commutation law cannot be true for
matrices.

Corollary 1.6.12. There are no matrices A;B 2 Matn�n .F/ such that

AB � BA D 1Fn :

Proof. By the above lemma and linearity, we have that tr .AB � BA/ D 0. On the
other hand, tr .1Fn/ D n; since the identity matrix has n diagonal entries each of
which is 1. ut
Remark 1.6.13. Observe that we just used the fact that n ¤ 0 in F or, in other words,
that F has characteristic zero. If we allowed ourselves to use the field F2 D f0; 1g
where 1C 1 D 0, then we have that 1 D �1. Thus, we can use the matrices

A D
�

0 1

0 0

�

;

B D
�

0 1

1 0

�

;
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to get the Heisenberg commutation law satisfied:

AB � BA D
�

0 1

0 0

� �

0 1

1 0

�

�
�

0 1

1 0

� �

0 1

0 0

�

D
�

1 0

0 0

�

�
�

0 0

0 1

�

D
�

1 0

0 �1
�

D
�

1 0

0 1

�

:

We have two further linear maps. Consider V D Func .S;F/ and select s0 2 S ; then,
the evaluation map evs0 W Func .S;F/ ! F defined by evs0 .f / D f .s0/ is linear.
More generally, we have the restriction map for T � S defined as a linear maps
Func .S;F/ ! Func .T;F/ ; by mapping f to f jT . The notation f jT means that
we only consider f as mapping from T into F. In other words, we have forgotten
that f maps all of S into F and only remembered what it did on T .

Linear maps play a big role in multivariable calculus and are used in a number
of ways to clarify and understand certain constructions. The fact that linear algebra
is the basis for multivariable calculus should not be surprising as linear algebra is
merely a generalization of vector algebra.

Let F W ˝ ! R
n be a differentiable function defined on some open domain

˝ � R
m, i.e., for each x0 2 ˝ , we can find a linear map L W Rm ! R

n satisfying

lim
jhj!0

jF .x0 C h/ � F .x0/ �L.h/j
jhj D 0:

It is easy to see that such a linear map must be unique. It is also called the differential
of F at x0 2 ˝ and denoted by L D DFx0 W Rm ! R

n. The differential DFx0 is
also represented by the n �m matrix of partial derivatives

DFx0 .h/ D DFx0

0

B

@

2

6

4

h1
:::

hm

3

7

5

1

C

A

D

2

6

6

4

@F1
@x1
� � � @F1

@xm
:::
: : :

:::
@Fn
@x1
� � � @Fn

@xm

3

7

7

5

2

6

4

h1
:::

hm

3

7

5



30 1 Basic Theory

D

2

6

6

4

@F1
@x1
h1 C � � � C @F1

@xm
hm

:::
@Fn
@x1
h1 C � � � C @Fn

@xm
hm

3

7

7

5

One of the main ideas in differential calculus (of several variables) is that linear
maps are simpler to work with and that they give good local approximations to
differentiable maps. This can be made more precise by observing that we have the
first-order approximation

F .x0 C h/ D F .x0/CDFx0 .h/C o .h/ ;

lim
jhj!0

jo .h/j
jhj D 0

One of the goals of differential calculus is to exploit knowledge of the linear map
DFx0 and then use this first-order approximation to get a better understanding of the
map F itself.

In case f W ˝ ! R is a function, one often sees the differential of f defined as
the expression

df D @f

@x1
dx1 C � � � C @f

@xm
dxm:

Having now interpreted dxi as a linear function, we then observe that df itself is a
linear function whose matrix description is given by

df .h/ D @f

@x1
dx1 .h/C � � � C @f

@xm
dxm .h/

D @f

@x1
h1 C � � � C @f

@xm
hm

D
h

@f

@x1
� � � @f

@xm

i

2

6

4

h1
:::

hm

3

7

5 :

More generally, if we write

F D

2

6

4

F1
:::

Fn

3

7

5 ;

then

DFx0 D

2

6

4

dF1
:::

dFn

3

7

5
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with the understanding that

DFx0 .h/ D

2

6

4

dF1 .h/
:::

dFn .h/

3

7

5 :

Note how this conforms nicely with the above matrix representation of the
differential.

Exercises

1. Let V;W be vector spaces over Q. Show that any additive map L W V ! W;

i.e.,

L.x1 C x2/ D L.x1/C L.x2/ ;
is linear.

2. Let D W F Œt �! F Œt � be defined by

D .˛0 C ˛1t C � � � C ˛ntn/ D ˛1 C 2˛2t C � � � C n˛ntn�1:

(a) Show that this defines a linear operator.
(b) Show directly, i.e., without using differential calculus, that this operator

satisfies Leibniz’ rule

D .pq/ D pD .q/C .D .p// q:

(c) Show that the subspace Pn � F Œt � of polynomials of degree � n is
invariant.

3. Let L W V ! V be a linear operator and V a vector space over F. Show that
the map K W F Œt �! HomF .V; V / defined by K .p/ D p .L/ is a linear map.

4. Let L W V ! V be a linear operator and V a vector space over F. Show that if
M � V is L-invariant and p 2 F Œt �, then M is also invariant under p .L/.

5. Let T W V ! W be a linear map, and QV is a vector space, all over the same
field. Show that right composition

RT W Hom
�

W; QV �! Hom
�

V; QV �

defined by RT .K/ D K ı T and left composition

LT W Hom
� QV ; V �! Hom

� QV ;W �

defined by LT .K/ D T ıK are linear maps.
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6. Assume that A 2 Matn�n .F/ has a block decomposition

A D
�

A11 A12
A21 A22

�

;

where A11 2 Matk�k .F/.

(a) Show that the subspace F
k D f.˛1; : : : ; ˛k; 0; : : : ; 0/g � F

n is invariant if
and only if A21 D 0.

(b) Show that the subspace Mn�k D f.0; : : : ; 0; ˛kC1; : : : ; ˛n/g � F
n is

invariant if and only if A12 D 0.

7. Let A 2 Matn�n .F/ be upper triangular, i.e., ˛ij D 0 for i > j or

A D

2

6

6

6

4

˛11 ˛12 � � � ˛1n
0 ˛22 � � � ˛2n
:::

:::
: : :

:::

0 0 � � � ˛nn

3

7

7

7

5

;

and p 2 F Œt �. Show that p .A/ is also upper triangular and the diagonal entries
are p .˛ii / ; i.e.,

p .A/ D

2

6

6

6

4

p .˛11/ � � � � �
0 p .˛22/ � � � �
:::

:::
: : :

:::

0 0 � � � p .˛nn/

3

7

7

7

5

:

8. Let t1; : : : ; tn 2 R and define

L W C1 .R;R/! R
n

L .f / D .f .t1/ ; : : : ; f .tn// :
Show that L is linear.

9. Let t0 2 R and define

L W C1 .R;R/! R
n

L .f / D �f .t0/ ; .Df / .t0/ ; : : : ;
�

Dn�1f
�

.t0/
�

:

Show that L is linear.
10. Let A 2 Matn�n .R/ be symmetric, i.e., the .i; j / entry is the same as the .j; i/

entry. Show that A D 0 if and only if tr
�

A2
� D 0.

11. For each n � 2, find A 2 Matn�n .F/ such that A ¤ 0; but tr
�

Ak
� D 0 for all

k D 1; 2; : : :.
12. Find A 2 Mat2�2 .R/ such that tr

�

A2
�

< 0.
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1.7 Linear Maps as Matrices

We saw above that quite a lot of linear maps can be defined using matrices. In this
section, we shall generalize this construction and show that all abstractly defined
linear maps between finite-dimensional vector spaces come from some basic matrix
constructions.

To warm up, we start with the simplest situation.

Lemma 1.7.1. Assume V is one-dimensional over F, then anyL W V ! V is of the
form L D �1V .

Proof. Assume x1 is a basis. Then, L.x1/ D �x1 for some � 2 F. Now, any x D
˛x1 so L.x/ D L.˛x1/ D ˛L .x1/ D ˛�x1 D �x as desired. ut
This gives us a very simple canonical form for linear maps in this elementary
situation. The rest of the section tries to explain how one can generalize this to
vector spaces with finite bases.

Possibly, the most important abstractly defined linear map comes from consider-
ing linear combinations. We fix a vector space V over F and select x1; : : : ; xm 2 V .
Then, we have a linear map

L W Fm ! V

L

0

B

@

2

6

4

˛1
:::

˛m

3

7

5

1

C

A D �x1 � � � xm
�

2

6

4

˛1
:::

˛m

3

7

5 D x1˛1 C � � � C xm˛m:

The fact that it is linear follows from knowing that L W F! V defined by L.˛/ D
˛x is linear together with the fact that sums of linear maps are linear. We shall
denote this map by its row matrix

L D �x1 � � � xm
�

;

where the entries are vectors. Using the standard basis e1; : : : ; em for Fm we observe
that the entries xi (think of them as column vectors) satisfy

L.ei / D
�

x1 � � � xm
�

ei D xi :

Thus, the vectors that form the columns for the matrix for L are the images of the
basis vectors for Fm. With this in mind, we can show

Lemma 1.7.2. Any linear map L W Fm ! V is of the form

L D �x1 � � � xm
�

;

where xi D L.ei /.
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Proof. Define L.ei / D xi and use linearity of L to see that

L

0

B

@

2

6

4

˛1
:::

˛m

3

7

5

1

C

A D L

0

B

@

�

e1 � � � em
�

2

6

4

˛1
:::

˛m

3

7

5

1

C

A

D L.e1˛1 C � � � C em˛m/
D L.e1/ ˛1 C � � � C L.em/ ˛m

D �

L.e1/ � � � L.em/
�

2

6

4

˛1
:::

˛m

3

7

5

D �

x1 � � � xm
�

2

6

4

˛1
:::

˛m

3

7

5 :

ut
If we specialize to the situation where V D F

n, then vectors x1; : : : ; xm really are
n � 1 column matrices. More explicitly,

xi D

2

6

4

ˇ1i
:::

ˇni

3

7

5 ;

and

�

x1 � � � xm
�

2

6

4

˛1
:::

˛m

3

7

5 D x1˛1 C � � � C xm˛m

D

2

6

4

ˇ11
:::

ˇn1

3

7

5 ˛1 C � � � C

2

6

4

ˇ1m
:::

ˇnm

3

7

5˛m

D

2

6

4

ˇ11˛1
:::

ˇn1˛1

3

7

5C � � � C

2

6

4

ˇ1m˛m
:::

ˇnm˛m

3

7

5
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D

2

6

4

ˇ11˛1 C � � � C ˇ1m˛m
:::

ˇn1˛1 C � � � C ˇnm˛m

3

7

5

D

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5

2

6

4

˛1
:::

˛m

3

7

5 :

Hence, any linear map F
m ! F

n is given by matrix multiplication, and the columns
of the matrix are the images of the basis vectors of Fm.

We can also use this to study maps V ! W as long as we have bases e1; : : : ; em
for V and f1; : : : ; fn forW . Each x 2 V has a unique expansion

x D � e1 � � � em
�

2

6

4

˛1
:::

˛m

3

7

5 :

So if L W V ! W is linear, then

L.x/ D L

0

B

@

�

e1 � � � em
�

2

6

4

˛1
:::

˛m

3

7

5

1

C

A

D �

L.e1/ � � � L.em/
�

2

6

4

˛1
:::

˛m

3

7

5

D �

x1 � � � xm
�

2

6

4

˛1
:::

˛m

3

7

5 ;

where xi D L.ei /. In effect, we have proven that

L ı � e1 � � � em
� D �L.e1/ � � � L.em/

�

if we interpret

�

e1 � � � em
� W Fm ! V;

�

L.e1/ � � � L.em/
� W Fm ! W

as linear maps.
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Expanding L.ei / D xi with respect to the basis forW gives us

xi D
�

f1 � � � fn
�

2

6

4

ˇ1i
:::

ˇni

3

7

5

and

�

x1 � � � xm
� D �f1 � � � fn

�

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5 :

This gives us the matrix representation for a linear map V ! W with respect to the
specified bases.

L.x/ D �

x1 � � � xm
�

2

6

4

˛1
:::

˛m

3

7

5

D �

f1 � � � fn
�

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5

2

6

4

˛1
:::

˛m

3

7

5 :

We will often use the notation

ŒL� D

2

6

4

ˇ11 � � � ˇ1m
:::
: : :

:::

ˇn1 � � � ˇnm

3

7

5

for the matrix representing L. The way to remember the formula for ŒL� is to use

L ı � e1 � � � em
� D �

L.e1/ � � � L.em/
�

D �

f1 � � � fn
�

ŒL� :

In the special case where L W V ! V is a linear operator, one usually only
selects one basis e1; : : : ; en. In this case, we get the relationship

L ı � e1 � � � en
� D �

L.e1/ � � � L.en/
�

D �

e1 � � � en
�

ŒL�

for the matrix representation.
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Example 1.7.3. Let

Pn D f˛0 C ˛1t C � � � C ˛ntn W ˛0; ˛1; : : : ; ˛n 2 Fg

be the space of polynomials of degree � n and D W Pn ! Pn the differentiation
operator

D .˛0 C ˛1t C � � � C ˛ntn/ D ˛1 C � � � C n˛ntn�1:

If we use the basis 1; t; : : : ; tn for Pn, then

D
�

tk
� D ktk�1;

and thus, the .nC 1/ � .nC 1/ matrix representation is computed via

�

D .1/ D .t/ D
�

t2
� � � � D .tn/

�

D �0 1 2t � � � ntn�1 �

D �1 t t2 � � � tn �

2

6

6

6

6

6

6

4

0 1 0 � � � 0
0 0 2 � � � 0
0 0 0

: : : 0
:::
:::
:::
: : : n

0 0 0 � � � 0

3

7

7

7

7

7

7

5

:

Next, consider the maps T; S W Pn ! PnC1 defined by

T .˛0 C ˛1t C � � � C ˛ntn/ D ˛0t C ˛1t2 C � � � C ˛ntnC1;

S .˛0 C ˛1t C � � � C ˛ntn/ D ˛0t C ˛1

2
t2 C � � � C ˛n

nC 1t
nC1:

This time, the image space and domain are not the same but the choices for basis
are at least similar. We get the .nC 2/ � .nC 1/ matrix representations

�

T .1/ T .t/ T
�

t2
� � � � T .tn/ �

D � t t2 t3 � � � tnC1 �

D � 1 t t2 t3 � � � tnC1 �

2

6

6

6

6

6

6

6

6

6

4

0 0 0 � � � 0
1 0 0 � � � 0
0 1 0 � � � 0
0 0 1

: : :
:::

:::
:::
:::
: : : 0

0 0 0 � � � 1

3

7

7

7

7

7

7

7

7

7

5
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�

S .1/ S .t/ S
�

t2
� � � � S .tn/ �

D
h

t 1
2
t2 1

3
t3 � � � 1

nC1 t
nC1

i

D � 1 t t2 t3 � � � tnC1 �

2

6

6

6

6

6

6

6

6

6

4

0 0 0 � � � 0
1 0 0 � � � 0
0 1
2
0 � � � 0

0 0 1
3

: : :
:::

:::
:::
:::
: : : 0

0 0 0 � � � 1
n

3

7

7

7

7

7

7

7

7

7

5

:

Doing a matrix representation of a linear map that is already given as a matrix can
get a little confusing, but the procedure is obviously the same.

Example 1.7.4. Let

L D
�

1 1

0 2

�

W F2 ! F
2

and consider the basis

x1 D
�

1

0

�

; x2 D
�

1

1

�

:

Then,

L.x1/ D x1;

L .x2/ D
�

2

2

�

D 2x2:

So

�

L.x1/ L .x2/
� D �x1 x2

�

�

1 0

0 2

�

:

Example 1.7.5. Again, let

L D
�

1 1

0 2

�

W F2 ! F
2

but consider instead the basis

y1 D
�

1

�1
�

; y2 D
�

1

1

�

:
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Then,

L.y1/ D
�

0

�2
�

D y1 � y2;

L .y2/ D
�

2

2

�

D 2y2:

So
�

L.y1/ L .y2/
� D �y1 y2

�

�

1 0

�1 2
�

:

Example 1.7.6. Let

A D
�

a c

b d

�

2 Mat2�2 .F/

and consider

LA W Mat2�2 .F/! Mat2�2 .F/

LA .X/ D AX:
We use the basis Eij for Matn�n .F/ where the ij entry in Eij is 1 and all other
entries are zero. Next, order the basis E11;E21; E12; E22. This means that we think
of Mat2�2 .F/ 	 F

4 where the columns are stacked on top of each other with the
first column being the top most. With this choice of basis, we note that

�

LA .E11/ LA .E21/ LA .E12/ LA .E22/
�

D �AE11 AE21 AE12 AE22
�

D
��

a 0

b 0

� �

c 0

d 0

� �

0 a

0 b

� �

0 c

0 d

��

D �E11 E21 E12 E22
�

2

6

6

4

a c 0 0

b d 0 0

0 0 a c

0 0 b d

3

7

7

5

Thus, LA has the block diagonal form
�

A 0

0 A

�

This problem easily generalizes to the case of n� n matrices, where LA will have a
block diagonal form that looks like
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2

6

6

6

4

A 0 � � � 0
0 A 0
:::

: : :
:::

0 0 � � � A

3

7

7

7

5

Example 1.7.7. Let L W Fn ! F
n be a linear map that maps basis vectors to basis

vectors. Thus, L
�

ej
� D e�.j /; where

� W f1; : : : ; ng ! f1; : : : ; ng :

If � is one-to-one and onto, then it is called a permutation. Apparently, it permutes
the elements of f1; : : : ; ng. The corresponding linear map is denotedL� . The matrix
representation ofL� can be computed from the simple relationshipL�

�

ej
� D e�.j /.

Thus, the j th column has zeros everywhere except for a 1 in the � .j / entry. This
means that ŒL� � D

�

ıi;�.j /
�

. The matrix ŒL� � is also known as a permutation matrix.

Example 1.7.8. Let L W V ! V be a linear map whose matrix representation with
respect to the basis x1; x2 is given by

�

1 2

0 1

�

:

We wish to compute the matrix representation ofK D 2L2C3L�1V . We know that

�

L.x1/ L .x2/
� D �x1 x2

�

�

1 2

0 1

�

or equivalently

L.x1/ D x1;
L .x2/ D 2x1 C x2:

Thus,

K .x1/ D 2L .L .x1//C 3L .x1/ � 1V .x1/
D 2L .x1/C 3x1 � x1
D 2x1 C 3x1 � x1
D 4x1;

K .x2/ D 2L .L .x2//C 3L .x2/ � 1V .x2/
D 2L .2x1 C x2/C 3 .2x1 C x2/� x2
D 2 .2x1 C .2x1 C x2//C 3 .2x1 C x2/� x2
D 14x1 C 4x2;
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and
�

K .x1/ K .x2/
� D �x1 x2

�

�

4 14

0 4

�

:

Exercises

1. (a) Show that, t3; t3 C t2; t3 C t2 C t; t3 C t2 C t C 1 form a basis for P3.
(b) Compute the image of .1; 2; 3; 4/ under the coordinate map

�

t3 t3 C t2 t3 C t2 C t t3 C t2 C t C 1 � W F4 ! P3

(c) Find the vector in F
4 whose image is 4t3 C 3t2 C 2t C 1.

2. Find the matrix representation for D W P3 ! P3 with respect to the basis t3;
t3 C t2; t3 C t2 C t; t3 C t2 C t C 1.

3. Find the matrix representation for

D2 C 2D C 1P3 W P3 ! P3

with respect to the standard basis 1; t; t2; t3.
4. Show that, if L W V ! V is a linear operator on a finite-dimensional vector

space and p .t/ 2 F Œt � ; then the matrix representations for L and p .L/ with
respect to some fixed basis are related by Œp .L/� D p .ŒL�/.

5. Consider the two linear mapsK;L W Pn ! C
nC1 defined by

K .f / D .f .t0/ ; .Df / .t0/ ; : : : ; .D
nf / .t0// ;

L .f / D .f .t0/ ; : : : ; f .tn// :

(a) Find a basis p0; : : : ; pn forPn such thatK .pi/ D eiC1;where e1; : : : ; enC1
is the standard (aka canonical) basis for CnC1.

(b) Provided t0; : : : ; tn are distinct, find a basis q0; : : : ; qn for Pn such that
L.qi / D eiC1.

6. Let

A D
�

a c

b d

�

and consider the linear map RA W Mat2�2 .F/ ! Mat2�2 .F/ defined by
RA .X/ D XA. Compute the matrix representation of this linear maps with
respect to the basis
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E11 D
�

1 0

0 0

�

;

E21 D
�

0 0

1 0

�

;

E12 D
�

0 1

0 0

�

;

E22 D
�

0 0

0 1

�

:

7. Compute a matrix representation for L W Mat2�2 .F/ ! Mat1�2 .F/ defined by
L.X/ D �1 �1 �X using the standard bases.

8. Let A 2 Matn�m .F/ and Eij the matrix that has 1 in the ij entry and is zero
elsewhere.

(a) If Eij 2 Matk�n .F/ ; then EijA 2 Matk�m .F/ is the matrix whose i th row
is the j th row of A and all other entries are zero.

(b) If Eij 2 Matn�k .F/ ; then AEij 2 Matn�k .F/ is the matrix whose j th
column is the i th column of A and all other entries are zero.

9. Let e1; e2 be the standard basis for C
2 and consider the two real bases

e1; e2; ie1; ie2 and e1; ie1; e2; ie2. If � D ˛ C iˇ is a complex number, then
compute the real matrix representations for �1C2 with respect to both bases.

10. Show that if L W V ! V has a lower triangular representation with respect to
the basis x1; : : : ; xn; then it has an upper triangular representation with respect
to xn; : : : ; x1.

11. Let V and W be vector spaces with bases e1; : : : ; em and f1; : : : ; fn, respec-
tively. Define Eij 2 Hom .V;W / as the linear map that sends ej to fi and all
other eks go to zero, i.e., Eij .ek/ D ıjkfi .
(a) Show that the matrix representation for Eij is 1 in the ij entry and 0

otherwise.
(b) Show that Eij form a basis for Hom .V;W /.
(c) Let L 2 Hom .V;W / and expandL DPi;j ˛ij Eij . Show that ŒL� D �˛ij

�

with respect to these bases.

1.8 Dimension and Isomorphism

We are now almost ready to prove that the number of elements in a basis for a fixed
vector space is always the same.

Definition 1.8.1. We say that a linear map L W V ! W is an isomorphism if we
can find K W W ! V such that LK D 1W and KL D 1V .
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One can also describe the equationsLK D 1W andKL D 1V in an interesting little
diagram of maps

V
L�! W

1V " " 1W
V

K � W;
where the vertical arrows are the identity maps.

Definition 1.8.2. Two vector spaces V and W over F are said to be isomorphic if
we can find an isomorphism L W V ! W .

Note that if V1 and V2 are isomorphic and V2 and V3 are isomorphic, then V1
and V3 are also isomorphic. The isomorphism is the composition of the given
isomorphisms.

Recall that a map f W S ! T between sets is one-to-one or injective if f .x1/ D
f .x2/ implies that x1 D x2. A better name for this concept is two-to-two as pointed
out by Arens, since injective maps evidently take two distinct points to two distinct
points. We say that f W S ! T is onto or surjective if every y 2 T is of the form
y D f .x/ for some x 2 S . In others words, f .S/ D T . A map that is both one-to-
one and onto is said to be bijective. Such a map always has an inverse f �1 defined
via f �1 .y/ D x if f .x/ D y. Note that for each y 2 T , such an x exists since f
is onto and that this x is unique since f is one-to-one. The relationship between f
and f �1 is f ı f �1 .y/ D y and f �1 ı f .x/ D x. Observe that f �1 W T ! S is
also a bijection and has inverse

�

f �1��1 D f .

Lemma 1.8.3. V and W are isomorphic if and only if there is a bijective linear
map L W V ! W .

The “if and only if” part asserts that the two statements:

• V and W are isomorphic.
• There is a bijective linear map L W V ! W .

are equivalent. In other words, if one statement is true, then so is the other. To
establish the proposition, it is therefore necessary to prove two things, namely, that
the first statement implies the second and that the second implies the first.

Proof. If V and W are isomorphic, then we can find linear maps L W V ! W and
K W W ! V so that LK D 1W and KL D 1V . Then, for any y 2 W

y D 1W .y/ D L .K .y// :

Thus, y D L.x/ if x D K .y/. This means L is onto. If L.x1/ D L.x2/, then

x1 D 1V .x1/ D KL.x1/ D KL.x2/ D 1V .x2/ D x2:

Showing that L is one-to-one.
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Conversely, assume L W V ! W is linear and a bijection. Then, we have an
inverse map L�1 that satisfies L ı L�1 D 1W and L�1 ı L D 1V . In order for
this inverse to be allowable as K , we need to check that it is linear. Thus, select
˛1; ˛2 2 F and y1; y2 2 W . Let xi D L�1 .yi / so that L.xi / D yi . Then we have

L�1 .˛1y1 C ˛2y2/ D L�1 .˛1L .x1/C ˛2L .x2//
D L�1 .L .˛1x1 C ˛2x2//
D 1V .˛1x1 C ˛2x2/
D ˛1x1 C ˛2x2
D ˛1L�1 .y1/C ˛2L�1 .y2/ :

ut
Recall that a finite basis for V over F consists of a collection of vectors x1; : : : ; xn 2
V so that each x 2 V has a unique expansion x D x1˛1C� � �Cxn˛n; ˛1; : : : ; ˛n 2 F.
This means that the linear map

�

x1 � � � xn
� W Fn ! V

is a bijection and hence by the above lemma an isomorphism. We saw in
Lemma 1.7.2 that any linear map F

m ! V must be of this form. In particular,
any isomorphism F

m ! V gives rise to a basis for V . Since F
n is our prototype

for an n-dimensional vector space over F, it is natural to say that a vector space has
dimension n if it is isomorphic to F

n. As we have just seen, this is equivalent to
saying that V has a basis consisting of n vectors. The only problem is that we do
not know if two spaces Fm and F

n can be isomorphic when m ¤ n. This is taken
care of next.

Theorem 1.8.4. (Uniqueness of Dimension) If Fm and F
n are isomorphic over F;

then n D m.

Proof. Suppose we have L W Fm ! F
n and K W Fn ! F

m such that LK D 1Fn and
KL D 1Fm . In Sect. 1.7, we showed that the linear mapsL andK are represented by
matrices, i.e., ŒL� 2 Matn�m .F/ and ŒK� 2 Matm�n .F/. Using invariance of trace
(Lemma 1.6.11), we then see that

n D tr .Œ1Fn �/

D tr .ŒL� ŒK�/

D tr .ŒK� ŒL�/

D tr .Œ1Fm�/

D m: ut
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This proof has the defect of only working when the field has characteristic 0. The
result still holds in the more general situation where the characteristic is nonzero.
Other more standard proofs that work in these more general situations can be found
in Sects. 1.12 and 1.13.

Definition 1.8.5. We can now unequivocally denote and define the dimension of a
vector space V over F as dimF V D n if V is isomorphic to F

n. In case V is not
isomorphic to any F

n, we say that V is infinite-dimensional and write dimF V D1.

Note that for some vector spaces, it is possible to change the choice of scalars. Such
a change can have a rather drastic effect on what the dimension is. For example,
dimC C D 1, while dimR C D 2. If we consider R as a vector space over Q,
something even worse happens: dimQ R D 1. This is because R is not countably
infinite, while all of the vector spaces Qn are countably infinite. More precisely, it
is possible to find a bijective map f W N!Q

n; but, as first observed by Cantor
using his famous diagonal argument, there is no bijective map f W N! R. Thus,
dimQ R D 1 for set-theoretic reasons related to the (non)existence of bijective
maps between sets.

Corollary 1.8.6. If V and W are finite-dimensional vector spaces over F; then
HomF .V;W / is also finite-dimensional and

dimF HomF .V;W / D .dimFW / � .dimF V /

Proof. By choosing bases for V andW , we showed in Sect. 1.7 that there is a natural
map:

HomF .V;W /! Mat.dimFW /�.dimF V / .F/ ' F
.dimFW /�.dimF V /:

This map is both one-to-one and onto as the matrix representation is uniquely
determined by the linear map and every matrix yields a linear map. Finally, one
easily checks that the map is linear. ut
In the special case where V D W and we have a basis for the n-dimensional space
V , the linear isomorphism

HomF .V; V / ! Matn�n .F/

also preserves composition and products. Thus, for L;K W V ! V , we have

ŒLK� D ŒL� ŒK� :

The composition in HomF .V; V / and matrix product in Matn�n .F/ give an extra
product structure on the vector spaces that make them into so-called algebras.
Algebras are vector spaces that also have a product structure. This product structure
must satisfy the associative law, the distributive law, and also commute with scalar
multiplication. Unlike a field, it is not required that all nonzero elements have
inverses. The above isomorphism is what we call an algebra isomorphism.
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Exercises

1. Let L;K W V ! V be linear maps between finite-dimensional vector spaces
that satisfy L ıK D 0. Is it true that K ı L D 0‹

2. Let L W V ! W be a linear map between finite-dimensional vector spaces.
Show that L is an isomorphism if and only if it maps a basis for V to a basis
for W .

3. If V is finite-dimensional, show that V and HomF .V;F/ have the same
dimension.

4. Show that a linear map L W V ! W is one-to-one if and only if L.x/ D 0

implies that x D 0.
5. Let V be a vector space over F. Consider the map

K W V ! HomF .HomF .V;F/ ;F/

defined by the condition that

K .x/ 2 HomF .HomF .V;F/ ;F/

is the linear functional on HomF .V;F/ such that

K .x/ .L/ D L.x/ ; for L 2 HomF .V;F/ :

Show that this map is one-to-one. Show that it is also onto when V is finite-
dimensional.

6. Let V ¤ f0g be finite-dimensional and assume that

L1; : : : ; Ln W V ! V

are linear operators. Show that if L1 ı � � �ıLn D 0, then at least one of the maps
Li is not one-to-one.

7. Let t0; : : : ; tn 2 R be distinct and consider Pn � C Œt �. Define L W Pn ! C
nC1

byL.p/ D .p .t0/ ; : : : ; p .tn//. Show thatL is an isomorphism. (This problem
will be easier to solve later in the text.)

8. Let t0 2 F and consider Pn � F Œt �. Show that L W Pn ! F
nC1 defined by

L.p/ D .p .t0/ ; .Dp/ .t0/ ; : : : ; .Dnp/ .t0//

is an isomorphism. Hint: Think of a Taylor expansion at t0.
9. (a) Let V be finite-dimensional. Show that if L1;L2 W F

n ! V are
isomorphisms, then for any linear operator L W V ! V

tr
�

L�1
1 ı L ı L1

� D tr
�

L�1
2 ı L ı L2

�

:

This means we can define tr .L/. Hint: Try not to use explicit matrix
representations.
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(b) Let V and W be finite-dimensional and L1 W V ! W and L2 W W ! V

linear maps. Show that

tr .L1 ı L2/ D tr .L2 ı L1/

10. Construct an isomorphism V ! HomF .F; V / with selecting bases for the
spaces.

11. Let V be a complex vector space. Is the identity map V ! V � an isomorphism?
(see Exercise 6 in Sect. 1.4 for the definition of V �.)

12. Assume that V and W are finite-dimensional. Define

HomF .V;W /! HomF .HomF .W; V / ;F/ ;

L! ŒA! tr .A ı L/� :
Thus, the linear mapL W V ! W is mapped to a linear map HomF .W; V /! F

that simply takes A 2 HomF .W; V / to tr .A ı L/. Show that this map is an
isomorphism.

13. Consider the map

� W C! Mat2�2 .R/

defined by

� .˛ C iˇ/ D
�

˛ �ˇ
ˇ ˛

�

:

(a) Show that this is R-linear and one-to-one but not onto. Find an example of
a matrix in Mat2�2 .R/ that does not come from C.

(b) Extend this map to a linear map

� W Matn�n .C/! Mat2n�2n .R/

and show that this map is also R-linear and one-to-one but not onto.
Conclude that there must be matrices in Mat2n�2n .R/ that do not come
from complex matrices in Matn�n .C/.

(c) Show that dimR Matn�n .C/ D 2n2; while dimR Mat2n�2n .R/ D 4n2.
14. For A D �

˛ij
� 2 Matn�m .F/, define the transpose At D �

ˇij
� 2 Matm�n .F/

by ˇij D ˛j i . Thus,At is gotten fromA by reflecting in the diagonal entries.

(a) Show that A ! At is a linear map which is also an isomorphism whose
inverse is given by B ! Bt .

(b) If A 2 Matn�m .F/ and B 2 Matm�n .F/, show that .AB/t D BtAt .
(c) Show that if A 2 Matn�n .F/ is invertible, i.e., there exists A�1 2

Matn�n .F/ such that

AA�1 D A�1A D 1Fn ;
then At is also invertible and .At /�1 D .A�1/t .
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1.9 Matrix Representations Revisited

While the number of elements in a basis is always the same, there is unfortunately
not a clear choice of a basis for many abstract vector spaces. This necessitates a
discussion on the relationship between expansions of vectors in different bases.

Using the idea of isomorphism in connection with a choice of basis, we
can streamline the procedure for expanding vectors and constructing the matrix
representation of a linear map.

Fix a linear map L W V ! W and bases e1; : : : ; em for V and f1; : : : ; fn for W .
One can then encode all of the necessary information in a diagram of maps

V
L�! W

" "
F
m

ŒL��! F
n

In this diagram, the top horizontal arrow represents L and the bottom horizontal
arrow represents the matrix for L interpreted as a linear map ŒL� W Fm ! F

n. The
two vertical arrows are the basis isomorphisms defined by the choices of bases for
V and W , i.e.,

�

e1 � � � em
� W Fm ! V;

�

f1 � � � fn
� W Fn ! W:

Thus, we have the formulae relating L and ŒL�

L D �

f1 � � � fn
� ı ŒL� ı � e1 � � � em

��1
;

ŒL� D �

f1 � � � fn
��1 ı L ı � e1 � � � em

�

:

Note that a basis isomorphism

�

x1 � � � xm
� W Fm ! F

m

is a matrix
�

x1 � � � xm
� 2 Matm�m .F/

provided we write the vectors x1; : : : ; xm as column vectors. As such, the map can
be inverted using the standard matrix inverse. That said, it is not an easy problem to
invert matrices or linear maps in general.

It is important to be aware of the fact that different bases will yield different
matrix representations. To see what happens abstractly let us assume that we have
two bases x1; : : : ; xn and y1; : : : ; yn for a vector space V . If we think of x1; : : : ; xn
as a basis for the domain and y1; : : : ; yn as a basis for the image, then the identity
map 1V W V ! V has a matrix representation that is computed via
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�

x1 � � � xn
� D �

y1 � � � yn
�

2

6

4

ˇ11 � � � ˇ1n
:::
: : :

:::

ˇn1 � � � ˇnn

3

7

5

D �

y1 � � � yn
�

B:

The matrix B , being the matrix representation for an isomorphism, is itself
invertible, and we see that by multiplying by B�1 on the right, we obtain

�

y1 � � � yn
� D �x1 � � � xn

�

B�1:

This is the matrix representation for 1�1
V D 1V when we switch the bases around.

Differently stated, we have

B D �

y1 � � � yn
��1 �

x1 � � � xn
�

;

B�1 D �

x1 � � � xn
��1 �

y1 � � � yn
�

:

We next check what happens to a vector x 2 V

x D �

x1 � � � xn
�

2

6

4

˛1
:::

˛n

3

7

5

D �

y1 � � � yn
�

2

6

4

ˇ11 � � � ˇ1n
:::
: : :

:::

ˇn1 � � � ˇnn

3

7

5

2

6

4

˛1
:::

˛n

3

7

5 :

Thus, if we know the coordinates for x with respect to x1; : : : ; xn; then we
immediately obtain the coordinates for x with respect to y1; : : : ; yn by changing

2

6

4

˛1
:::

˛n

3

7

5

to
2

6

4

ˇ11 � � � ˇ1n
:::
: : :

:::

ˇn1 � � � ˇnn

3

7

5

2

6

4

˛1
:::

˛n

3

7

5 :

We can evidently also go backwards using the inverse B�1 rather than B .
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Example 1.9.1. In F
2, let e1; e2 be the standard basis and

x1 D
�

1

0

�

; x2 D
�

1

1

�

:

Then B�1
1 is easily found using

�

1 1

0 1

�

D �

x1 x2
�

D �

e1 e2
�

B�1
1

D
�

1 0

0 1

�

B�1
1

D B�1
1

B1 itself requires solving

�

e1 e2
� D �

x1 x2
�

B1 or
�

1 0

0 1

�

D
�

1 1

0 1

�

B1:

Thus,

B1 D
�

x1 x2
��1

D
�

1 1

0 1

��1

D
�

1 �1
0 1

�

Example 1.9.2. In F
2, let

y1 D
�

1

�1
�

; y2 D
�

1

1

�

and

x1 D
�

1

0

�

; x2 D
�

1

1

�

:
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Then, B2 is found by

B2 D
�

x1 x2
��1 �

y1 y2
�

D
�

1 �1
0 1

� �

1 1

�1 1
�

D
�

2 0

�1 1
�

and

B�1
2 D

�

1
2
0

1
2
1

�

:

Recall that we know
�

˛

ˇ

�

D ˛e1 C ˇe2

D ˛ � ˇ
2

y1 C ˛ C ˇ
2

y2

D .˛ � ˇ/ x1 C ˇx2:
Thus, it should be true that

�

.˛ � ˇ/
ˇ

�

D
�

2 0

�1 1
�
"

˛�ˇ
2

˛Cˇ
2

#

;

which indeed is the case.

Now, suppose that we have a linear operator L W V ! V . It will have matrix
representations with respect to both bases. First, let us do this in a diagram of maps

F
n A1�! F

n

# #
V

L�! V

" "
F
n

A2�! F
n

Here the downward arrows come from the isomorphism
�

x1 � � � xn
� W Fn ! V;

and the upward arrows are

�

y1 � � � yn
� W Fn ! V:
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Thus,

L D �

x1 � � � xn
�

A1
�

x1 � � � xn
��1

L D �

y1 � � � yn
�

A2
�

y1 � � � yn
��1

We wish to discover what the relationship between A1 and A2 is. To figure this out,
we simply note that

�

x1 � � � xn
�

A1
�

x1 � � � xn
��1

D L
D �y1 � � � yn

�

A2
�

y1 � � � yn
��1

:

Hence,

A1 D
�

x1 � � � xn
��1 �

y1 � � � yn
�

A2
�

y1 � � � yn
��1 �

x1 � � � xn
�

D B�1A2B:

To memorize this formula, keep in mind that B transforms from the x1; : : : ; xn
basis to the y1; : : : ; yn basis while B�1 reverses this process. The matrix product
B�1A2B then indicates that starting from the right, we have gone from x1; : : : ; xn
to y1; : : : ; yn then used A2 on the y1; : : : ; yn basis and then transformed back from
the y1; : : : ; yn basis to the x1; : : : ; xn basis in order to find whatA1 does with respect
to the x1; : : : ; xn basis.

Definition 1.9.3. Two matrices A1;A2 2 Matn�n .F/ are said to be similar if there
is an invertible matrix B 2 Matn�n .F/ such that

A1 D B�1A2B:

We have evidently shown that any two matrix representations of the same linear
operator are always similar.

Example 1.9.4. We have the representations for

L D
�

1 1

0 2

�

with respect to the three bases we just studied earlier in Sect. 1.7

�

L.e1/ L .e2/
� D � e1 e2

�

�

1 1

0 2

�

;
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�

L.x1/ L .x2/
� D �x1 x2

�

�

1 0

0 2

�

;

�

L.y1/ L .y2/
� D �y1 y2

�

�

1 0

�1 2
�

:

Using the changes of basis calculated above, we can check the following relation-
ships:

�

1 0

0 2

�

D B1
�

1 1

0 2

�

B�1
1

D
�

1 �1
0 1

� �

1 1

0 2

� �

1 1

0 1

�

�

1 0

0 2

�

D B2
�

1 0

�1 2
�

B�1
2

D
�

2 0

�1 1
� �

1 0

�1 2
� �

1
2
0

1
2
1

�

:

One can more generally consider L W V ! W and see what happens if we change
bases in both V andW . The analysis is similar as long as we keep in mind that there
are four bases in play. The key diagram looks like

F
m A1�! F

n

# #
V

L�! W

" "
F
m

A2�! F
n

One of the goals in the study of linear operators or just square matrices is to find
a suitable basis that makes the matrix representation as simple as possible. This is a
rather complicated theory which the rest of the book will try to uncover.

Exercises

1. Let V D ff 2 Func .R;C/ W f .t/ D ˛ cos .t/C ˇ sin .t/ ; ˛; ˇ 2 Cg.
(a) Show that cos .t/ ; sin .t/ and exp .i t/ ; exp .�i t/ both form a basis for V .
(b) Find the change of basis matrix.
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(c) Find the matrix representation ofD W V ! V with respect to both bases and
check that the change of basis matrix gives the correct relationship between
these two matrices.

2. Let

A D
�

0 �1
1 0

�

W R2 ! R
2

and consider the basis

x1 D
�

1

�1
�

; x2 D
�

1

1

�

:

(a) Compute the matrix representation of A with respect to x1; x2.
(b) Compute the matrix representation of A with respect to 1p

2
x1, 1p

2
x2.

(c) Compute the matrix representation of A with respect to x1, x1 C x2.
3. Let e1; e2 be the standard basis for C2 and consider the two real bases e1; e2; ie1;
ie2 and e1; ie1; e2; ie2. If � D ˛ C iˇ is a complex number, compute the real
matrix representations for �1C2 with respect to both bases. Show that the two
matrices are related via the change of basis formula.

4. If x1; : : : ; xn is a basis for V; then what is the change of basis matrix from
x1; : : : ; xn to xn; : : : ; x1‹ How does the matrix representation of an operator on
V change with this change of basis?

5. LetL W V ! V be a linear operator,p .t/ 2 F Œt �, a polynomial andK W V ! W

an isomorphism. Show that

p
�

K ı L ıK�1� D K ı p .L/ ıK�1:

6. Let A be a permutation matrix (see Example 1.7.7 for the definition.) Will the
matrix representation for A still be a permutation matrix if we select a different
basis?

7. What happens to the matrix representation of a linear map if the change of basis
matrix is a permutation matrix (see Example 1.7.7 for the definition)?

1.10 Subspaces

We are now ready for a more in-depth study of subspaces. Recall that a nonempty
subset M � V of a vector space V is said to be a subspace if it is closed under
addition and scalar multiplication:

x; y 2M ) x C y 2 M;
˛ 2 F and x 2M ) ˛x 2 M
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The two axioms for a subspace can be combined into one as follows:

˛1; ˛2 2 F and x1; x2 2M ) ˛1x1 C ˛2x2 2 M

Any vector space always has two trivial subspaces, namely, V and f0g. Some
more interesting examples come below.

Example 1.10.1. Let Mi be the i th coordinate axis in F
n; i.e., the set consisting of

the vectors where all but the i th coordinate are zero. Thus,

Mi D f.0; : : : ; 0; ˛i ; 0; : : : ; 0/ W ˛i 2 Fg :

Example 1.10.2. Polynomials in F Œt � of degree � n form a subspace denoted Pn.

Example 1.10.3. The set of continuous functions C0 .Œa; b� ;R/ on an interval
Œa; b� � R is evidently a subspace of Func .Œa; b� ;R/. Likewise, the space of
functions that have derivatives of all orders is a subspace

C1 .Œa; b� ;R/ � C0 .Œa; b� ;R/ :

If we regard polynomials as functions on Œa; b�, then it too becomes a subspace

R Œt � � C1 .Œa; b� ;R/ :

Example 1.10.4. Solutions to simple types of equations often form subspaces:
˚

3˛1 � 2˛2 C ˛3 D 0 W .˛1; ˛2; ˛3/ 2 F
3
�

:

However, something like
˚

3˛1 � 2˛2 C ˛3 D 1 W .˛1; ˛2; ˛3/ 2 F
3
�

does not yield a subspace as it does not contain the origin.

Example 1.10.5. There are other interesting examples of subspaces of C1 .R;C/.
If ! > 0 is some fixed number, then we consider

C1
! .R;C/ D ff 2 C1 .R;C/ W f .t/ D f .t C !/ for all t 2 Rg :

These are the periodic functions with period !. Note that

f .t/ D exp .i2�t=!/

D cos .2�t=!/C i sin .2�t=!/

is an example of a periodic function.

Subspaces allow for a generalized type of calculus. That is, we can “add” and
“multiply” them to form other subspaces. However, it is not possible to find inverses
for either operation.
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Definition 1.10.6. If M;N � V are subspaces, then we can form two new
subspaces, the sum and the intersection:

M CN D fx C y W x 2M and y 2 N g ;
M \N D fx W x 2M and x 2 N g :

It is certainly true that both of these sets contain the origin. The intersection is most
easily seen to be a subspace so let us check the sum. If ˛ 2 F and x 2 M; y 2 N;
then we have ˛x 2M , ˛y 2 N so

˛x C ˛y D ˛ .x C y/ 2M CN:
In this way, we see that M CN is closed under scalar multiplication. To check that
it is closed under addition is equally simple.

We can think of M C N as addition of subspaces and M \ N as a kind of
multiplication. The element that acts as zero for addition is the trivial subspace f0g
asM Cf0g D M; whileM \V D M implies that V is the identity for intersection.
Beyond this, it is probably not that useful to think of these subspace operations as
arithmetic operations e.g., the distributive law does not hold.

Definition 1.10.7. If S � V is a subset of a vector space, then the span of S is
defined as

span .S/ D
\

S�M�V
M;

where M � V is always a subspace of V . Thus, the span is the intersection of all
subspaces that contain S . This is a subspace of V and must in fact be the smallest
subspace containing S .

We immediately get the following elementary properties.

Proposition 1.10.8. Let V be a vector space and S; T � V subsets.

(1) If S � T , then span .S/ � span .T /.
(2) If M � V is a subspace, then span .M/ DM .
(3) span .span .S// D span .S/.
(4) span .S/ D span .T / if and only if S � span .T / and T � span .S/.

Proof. The first property is obvious from the definition of span.
To prove the second property, we first note that we always have that S �

span .S/. In particular, M � span .M/. On the other hand, as M is a subspace
that containsM , it must also follow that span .M/ �M .

The third property follows from the second as span .S/ is a subspace.
To prove the final property, we first observe that if span .S/ � span .T / ; then

S � span .T /. Thus, it is clear that if span .S/ D span .T /, then S � span .T /
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and T � span .S/. Conversely, we have from the first and third properties that if
S � span .T / ; then span .S/ � span .span .T // D span .T /. This shows that if
S � span .T / and T � span .S/ ; then span .S/ D span .T /. ut
The following lemma gives an alternate and very convenient description of the span.

Lemma 1.10.9. (Characterization of span .M/ ) Let S � V be a nonempty subset
of M . Then, span .S/ consists of all linear combinations of vectors in S .

Proof. Let C be the set of all linear combinations of vectors in S . Since span .S/ is
a subspace, it must be true that C � span .S/. Conversely, if x; y 2 C; then we note
that also ˛x C ˇy is a linear combination of vectors from S . Thus, ˛x C ˇy 2 C
and hence C is a subspace. This means that span .S/ � C . ut
Definition 1.10.10. We say that two subspacesM; N � V have trivial intersection
provided M \ N D f0g ; i.e., their intersection is the trivial subspace. We say that
M and N are transversal providedM CN D V .

Both concepts are important in different ways. Transversality also plays a very im-
portant role in the more advanced subject of differentiable topology. Differentiable
topology is the study of smooth maps and manifolds.

Definition 1.10.11. If we combine the two concepts of transversality and trivial
intersection, we arrive at another important idea. Two subspaces are said to be
complementary if they are transversal and have trivial intersection.

Lemma 1.10.12. Two subspacesM;N � V are complementary if and only if each
vector z 2 V can be written as z D x C y, where x 2 M and y 2 N in one and
only one way.

Before embarking on the proof, let us explain the use of “one and only one.” The
idea is first that z can be written like that in (at least) one way the second part is that
this is the only way in which to do it. In other words, having found x and y so that
z D x C y, there cannot be any other ways in which to decompose z into a sum of
elements fromM and N .

Proof. First assume that M and N are complementary. Since V D M C N , we
know that z D x C y for some x 2M and y 2 N . If we have

x1 C y1 D z D x2 C y2;

where x1; x2 2 M and y1; y2 2 N; then by moving each of x2 and y1 to the other
side, we get

M 3 x1 � x2 D y2 � y1 2 N:
This means that

x1 � x2 D y2 � y1 2M \N D f0g
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and hence that

x1 � x2 D y2 � y1 D 0:
Thus, x1 D x2 and y1 D y2 and we have established that z has the desired unique
decomposition.

Conversely, assume that any z D x C y; for unique x 2 M and y 2 N . First,
we see that this means V D M C N . To see that M \ N D f0g, we simply select
z 2 M \ N . Then, z D z C 0 D 0 C z where z 2 M;0 2 N and 0 2 M; z 2 N .
Since such decompositions are assumed to be unique, we must have that z D 0 and
henceM \N D f0g. ut
Definition 1.10.13. When we have two complementary subspaces M;N � V , we
also say that V is a direct sum of M and N and we write this symbolically as
V DM ˚N . The special sum symbol indicates that indeed, V DM CN and also
that the two subspaces have trivial intersection. Using what we have learned so far
about subspaces, we get a result that is often quite useful.

Corollary 1.10.14. Let M;N � V be subspaces. If M \N D f0g ; then

M CN DM ˚N;

and if both are finite-dimensional, then

dim .M CN/ D dim .M/C dim .N / :

Proof. The first statement follows immediately from the definition. The second
statement is proven by selecting bases e1; : : : ; ek for M and f1; : : : ; fl for N and
then showing that the concatenation e1; : : : ; ek; f1; : : : ; fl is a basis for M C N .

ut
We also have direct sum decompositions for more than two subspaces. If
M1; : : : ;Mk � V are subspaces, we say that V is a direct sum of M1; : : : ;Mk

and write

V DM1 ˚ � � � ˚Mk

provided any vector z 2 V can be decomposed as

z D x1 C � � � C xk;
x1 2 M1; : : : ; xk 2Mk

in one and only one way.
Here are some examples of direct sums.

Example 1.10.15. The prototypical example of a direct sum comes from the plane,
where V D R

2 and
M D f.x; 0/ W x 2 Rg
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is the first coordinate axis and

N D f.0; y/ W y 2 Rg

the second coordinate axis.
Example 1.10.16. Direct sum decompositions are by no means unique, as can be
seen using V D R

2 and

M D f.x; 0/ W x 2 Rg
and

N D f.y; y/ W y 2 Rg
the diagonal. We can easily visualize and prove that the intersection is trivial. As for
transversality, just observe that

.x; y/ D .x � y; 0/C .y; y/ :

Example 1.10.17. We also have the direct sum decomposition

F
n D M1 ˚ � � � ˚Mn;

where

Mi D f.0; : : : ; 0; ˛i ; 0; : : : ; 0/ W ˛i 2 Fg :

Example 1.10.18. Here is a more abstract example that imitates the first. Partition
the set

f1; 2; : : : ; ng D fi1; : : : ; ikg [ fj1; : : : ; jn�kg
into two complementary sets. Let

V D F
n;

M D ˚

.˛1; : : : ; ˛n/ 2 F
n W �j1 D � � � D ˛jn�k

D 0� ;
N D f.˛1; : : : ; ˛n/ W ˛i1 D � � � D ˛ik D 0g :

Thus,

M D Mi1 ˚ � � � ˚Mik ;

N D Mj1 ˚ � � � ˚Mjn�k
;

and F
n D M˚N . Note thatM is isomorphic to F

k andN to F
n�k but with different

indices for the axes. Thus, we have the more or less obvious decomposition: Fn D
F
k � F

n�k. Note, however, that when we use F
k rather than M , we do not think

of Fk as a subspace of Fn, as vectors in F
k are k-tuples of the form

�

˛i1 ; : : : ; ˛ik
�

.
Thus, there is a subtle difference between writing F

n as a product or direct sum.
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Example 1.10.19. Another very interesting decomposition is that of separating
functions into odd and even parts. Recall that a function f W R ! R is said to
be odd, respectively even, if f .�t/ D �f .t/ ; respectively, f .�t/ D f .t/.
Note that constant functions are even, while functions whose graphs are lines
through the origin are odd. We denote the subsets of odd and even functions by
Funcodd .R;R/ and Funcev .R;R/. It is easily seen that these subsets are subspaces.
Also, Funcodd .R;R/\Funcev .R;R/ D f0g since only the zero function can be both
odd and even. Finally, any f 2 Func .R;R/ can be decomposed as follows:

f .t/ D fev .t/C fodd .t/ ;

fev .t/ D f .t/C f .�t/
2

;

fodd .t/ D f .t/� f .�t/
2

:

A specific example of such a decomposition is

et D cosh .t/C sinh .t/ ;

cosh .t/ D et C e�t

2
;

sinh .t/ D et � e�t

2
:

If we consider complex-valued functions Func .R;C/, we still have the same
concepts of even and odd and also the desired direct sum decomposition. Here,
another similar and very interesting decomposition is Euler’s formula

ei t D cos .t/C i sin .t/

cos .t/ D ei t C e�i t

2
;

sin .t/ D ei t � e�i t

2i
:

Some interesting questions come to mind with the definitions encountered here.
What is the relationship between dimFM and dimF V for a subspace M � V ? Do
all subspaces have a complement? How are subspaces and linear maps related?

At this point, we can show that subspaces of finite-dimensional vector spaces
do have complements. This result is central to almost all of the subsequent
developments in this chapter. As such, it is worth noting that the result is so basic
that it does not even depend on the concept of dimension. It is also noteworthy that
it gives us a stronger conclusion than stated here (see Corollary 1.12.6).
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Theorem 1.10.20. (Existence of Complements) Let M � V be a subspace and
assume that V D span fx1; : : : ; xng. If M ¤ V; then it is possible to choose
xi1 ; : : : :; xik 2 fx1; : : : ; xng such that

V DM ˚ span fxi1 ; : : : ; xik g

Proof. Successively choose xi1 ; : : : ; xik such that

xi1 … M;
xi2 … M C span fxi1g ;
:::

:::

xik … M C span fxi1 ; : : : ; xik�1 g :

This process can be continued until

V DM C span fxi1 ; : : : :; xik g ;

and since

span fx1; : : : ; xng D V;
we know that this will happen for some k � n. It now only remains to be seen that

f0g DM \ span fxi1 ; : : : :; xik g :

To check, this suppose that

x 2M \ span fxi1 ; : : : :; xik g

and write

x D ˛i1xi1 C � � � C ˛ikxik 2 M:
If ˛i1 D � � � D ˛ik D 0; there is nothing to worry about. Otherwise, we can find the
largest l so that ˛il ¤ 0. Then,

1

˛il
x D ˛i1

˛il
xi1 C � � � C

˛il�1
˛il

xil�1 C xil 2M

which implies the contradictory statement that

xil 2M C span fxi1 ; : : : ; xil�1g :

ut
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If we use Corollary 1.10.14, then we see that this theorem shows that dim .M/ �
dim .V / as long as we know that both M and V are finite-dimensional. Thus, the
important point lies in showing that M is finite-dimensional. We will establish this
in the next section.

Exercises

1. Show that the subset of linear maps L W R3 ! R
2 defined by

S D ˚L W R3 ! R
2 W L.1; 2; 3/ D 0; .2; 3/ D L.x/ for some x 2 R

2
�

is not a subspace of Hom
�

R
3;R2

�

.
2. Find a one-dimensional complex subspaceM � C

2 such that R2 \M D f0g.
3. Let L W V ! W be a linear map and N � W a subspace. Show that

L�1 .N / D fx 2 V W L.x/ 2 N g

is a subspace of V .
4. Is it true that subspaces satisfy the distributive law

M \ .N1 CN2/ DM \N1 CM \N2‹

If not, give a counter example.
5. Show that if V is finite-dimensional, then Hom .V; V / is a direct sum of the two

subspacesM D span f1V g and N D fL W trL D 0g.
6. Show that Matn�n .R/ is the direct sum of the following three subspaces (you

also have to show that they are subspaces):

I D span f1Rng ;
S0 D

˚

A W trA D 0 and At D A� ;
A D ˚

A W At D �A� :

(At is defined in Exercise 14 in Sect. 1.8.)
7. Let V be a vector space over a field F of characteristic zero. LetM1; : : : ;Mk  
V be proper subspaces of a finite-dimensional vector space and N � V a
subspace. Show that ifN �M1[� � �[Mk; thenN �Mi for some i . Conclude
that, if N is not contained in any of the Mi s, then we can find x 2 N such that
x …M1; : : : ; x …Mk . Hint: Do the case where k D 2 first.

8. An affine subspace A � V of a vector space is a subset such that affine linear
combinations of vectors inA lie in A; i.e., if ˛1C� � �C˛n D 1 and x1; : : : ; xn 2
A; then ˛1x1 C � � � C ˛nxn 2 A.
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(a) Show that A is an affine subspace if and only if there is a point x0 2 V and
a subspaceM � V such that

A D x0 CM D fx0 C x W x 2 M g :
(b) Show that A is an affine subspace if and only if there is a subspaceM � V

with the properties: (1) if x; y 2 A; then x � y 2 M and (2) if x 2 A and
z 2 M; then x C z 2 A.

(c) Show that the subspaces constructed in parts (a) and (b) are equal.
(d) Show that the set of monic polynomials of degree n in Pn, i.e., the

coefficient in front of tn is 1, is an affine subspace with M D Pn�1.

9. Show that the two spaces below are subspaces of C1
2� .R;R/ that are not equal

to each other:

V1 D fb1 sin .t/C b2 sin .2t/C b3 sin .3t/ W b1; b2; b3 2 Rg ;
V2 D

˚

b1 sin .t/C b2 sin2 .t/C b3 sin3 .t/ W b1; b2; b3 2 R
�

:

What is their intersection?
10. Show that ifM � V andN � W are subspaces, thenM �N � V �W is also

a subspace.
11. If A 2 Matn�n .F/ has tr .A/ D 0; show that

A D A1B1 � B1A1 C � � � C AmBm � BmAm
for suitable Ai ; Bi 2 Matn�n .F/. Hint: Show that

M D span fXY � YX W X; Y 2 Matn�n .F/g

has dimension n2 � 1 by exhibiting a suitable basis.
12. Let L W V ! W be a linear map and consider the graph

GL D f.x; L .x// W x 2 V g � V �W:

(a) Show that GL is a subspace.
(b) Show that the map V ! GL that sends x to .x; L .x// is an isomorphism.
(c) Show that L is one-to-one if and only if the projection PW W V �W ! W

is one-to-one when restricted to GL.
(d) Show that L is onto if and only if the projection PW W V �W ! W is onto

when restricted to GL.
(e) Show that a subspaceN � V �W is the graph of a linear mapK W V ! W

if and only if the projection PV W V � W ! V is an isomorphism when
restricted to N .

(f) Show that a subspaceN � V �W is the graph of a linear mapK W V ! W

if and only if V �W D N ˚ .f0g �W /.
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1.11 Linear Maps and Subspaces

Linear maps generate a lot of interesting subspaces and can also be used to
understand certain important aspects of subspaces. Conversely, the subspaces
associated to a linear map give us crucial information as to whether the map is
one-to-one or onto.

Definition 1.11.1. Let L W V ! W be a linear map between vector spaces. The
kernel or nullspace of L is

ker .L/ D N .L/ D L�1 .0/ D fx 2 V W L.x/ D 0g :
The image or range of L is

im .L/ D R .L/ D L.V / D fy 2 W W y D L.x/ for some x 2 V g :

Both of these spaces are subspaces.

Lemma 1.11.2. ker .L/ is a subspace of V and im .L/ is a subspace of W .

Proof. Assume that ˛1; ˛2 2 F and that x1; x2 2 ker .L/, then

L.˛1x1 C ˛2x2/ D ˛1L .x1/C ˛2L .x2/ D 0:
More generally, if we only assume x1; x2 2 V , then we have

˛1L .x1/C ˛2L .x2/ D L.˛1x1 C ˛2x2/ 2 im .L/ :

This proves the claim. ut
The same proof shows that L.M/ D fL.x/ W x 2 M g is a subspace ofW whenM
is a subspace of V .

Lemma 1.11.3. L is one-to-one if and only if ker .L/ D f0g.
Proof. We know that L.0 � 0/ D 0 � L.0/ D 0; so if L is one-to-one, we have that
L.x/ D 0 D L.0/ implies that x D 0. Hence, ker .L/ D f0g.

Conversely, assume that ker .L/ D f0g. If L.x1/ D L.x2/ ; then linearity of L
tells us that L.x1 � x2/ D 0. Then, ker .L/ D f0g implies x1 � x2 D 0; which
shows that x1 D x2. ut
If we have a direct sum decomposition V D M ˚N , then we can construct what is
called the projection of V ontoM along N .

Definition 1.11.4. The map E W V ! V is defined as follows. For z 2 V , we write
z D x C y for unique x 2 M; y 2 N and define

E .z/ D x:

Thus, im .E/ D M and ker .E/ D N .



1.11 Linear Maps and Subspaces 65

Note that

.1V � E/ .z/ D z� x D y:
This means that 1V � E is the projection of V onto N along M . So the
decomposition V D M ˚ N gives us similar resolution of 1V using these two
projections: 1V D E C .1V � E/.

Using all of the examples of direct sum decompositions, we get several examples
of projections. Note that each projectionE ontoM leads in a natural way to a linear
map P W V ! M . This map has the same definition P .z/ D P .x C y/ D x, but
it is not E as it is not defined as an operator V ! V . It is perhaps pedantic to insist
on having different names but note that as it stands we are not allowed to compose
P with itself as it does not map into V .

We are now ready to establish several extremely important results relating linear
maps, subspaces, and dimensions.

Recall that complements to a fixed subspace are usually not unique; however,
they do have the same dimension as the next result shows.

Lemma 1.11.5. (Uniqueness of Complements) If V D M1 ˚ N D M2 ˚ N; then
M1 and M2 are isomorphic.

Proof. Let P W V ! M2 be the projection whose kernel is N . We contend that the
map P jM1 WM1!M2 is an isomorphism. The kernel can be computed as

ker .P jM1/ D fx 2M1 W P .x/ D 0g
D fx 2 V W P .x/ D 0g \M1

D N \M1

D f0g :

Thus, P jM1 is one-to-one by Lemma 1.11.3. To check that the map is onto select
x2 2M2. Next, write x2 D x1 C y1, where x1 2 M1 and y1 2 N . Then,

x2 D P .x2/
D P .x1 C y1/
D P .x1/C P .y1/
D P .x1/
D P jM1 .x1/ :

This establishes the claim. ut
Theorem 1.11.6. (The Subspace Theorem) Assume that V is finite-dimensional
and that M � V is a subspace. Then,M is finite-dimensional and

dimFM � dimF V:
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Moreover, if V D M ˚N; then

dimF V D dimFM C dimFN:

Proof. If M D V , we are finished. Otherwise, select a basis x1; : : : ; xm for V and
use Theorem 1.10.20 to extract a complement to M in V

V D M ˚ span fxi1 ; : : : ; xik g :
On the other hand, we also know that

V D span
˚

xj1 ; : : : ; xjl
�˚ span fxi1 ; : : : ; xik g ;

where k C l D m and

f1; : : : ; mg D fj1; : : : ; jlg [ fi1; : : : ; ikg :v

Lemma 1.11.5 then shows that M and span
˚

xj1 ; : : : ; xjl
�

are isomorphic. Thus,

dimFM D l < m:

In addition, we see that if V D M ˚N; then Lemma 1.11.5 also shows that

dimFN D k:

This proves the theorem. ut
Theorem 1.11.7. (The Dimension Formula) Let V be finite-dimensional and L W
V ! W a linear map, then im .L/ is finite-dimensional and

dimF V D dimF ker .L/C dimF im .L/ :

Proof. We know that dimF ker .L/ � dimF V and that it has a complement N � V
of dimension k D dimF V � dimF ker .L/. Since N \ ker .L/ D f0g, the linear
map L must be one-to-one when restricted to N . Thus, LjN W N ! im .L/ is an
isomorphism. This proves the theorem. ut
Definition 1.11.8. The number nullity .L/ D dimF ker .L/ is called the nullity of
L, and rank .L/ D dimF im .L/ is known as the rank of L.

Corollary 1.11.9. IfM is a subspace of V and dimFM D dimF V D n <1, then
M D V .

Proof. If M ¤ V , there must be a complement of dimension > 0. This gives us a
contradiction with the subspace theorem. ut
Corollary 1.11.10. Assume that L W V ! W and dimF V D dimFW <1. Then,
L is an isomorphism if either nullity .L/ D 0 or rank .L/ D dimW .
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Proof. The dimension theorem shows that if either nullity.L/ D 0 or rank .L/ D
dimW; then also rank .L/ D dimV or nullity.L/ D 0, thus showing that L is an
isomorphism. ut
Knowing that the vector spaces are abstractly isomorphic can therefore help us in
checking when a given linear map might be an isomorphism.

Many of these results are not true in infinite-dimensional spaces. The differenti-
ation operator D W C1 .R;R/! C1 .R;R/ is onto and has a kernel consisting of
all constant functions. The multiplication operator T W C1 .R;R/! C1 .R;R/ on
the other hand is one-to-one but is not onto as T .f / .0/ D 0 for all f 2 C1 .R;R/.

Corollary 1.11.11. If L W V ! W is a linear map between finite-dimensional
spaces, then we can find bases e1; : : : ; em for V and f1; : : : ; fn for W so that

L.e1/ D f1;
:::

:::

L .ek/ D fk;
L .ekC1/ D 0;

:::
:::

L .em/ D 0;

where k D rank .L/.

Proof. Simply decompose V D ker .L/ ˚M . Then, choose a basis e1; : : : ; ek for
M and a basis ekC1; : : : ; em for ker .L/. Combining these two bases gives us a basis
for V . Then, define f1 D L.e1/ ; : : : ; fk D L.ek/. Since LjM WM ! im .L/ is an
isomorphism, this implies that f1; : : : ; fk form a basis for im .L/. We then get the
desired basis for W by letting fkC1; : : : ; fn be a basis for a complement to im .L/
in W . ut
While this certainly gives the nicest possible matrix representation for L, it is not
very useful. The complete freedom one has in the choice of both bases somehow
also means that aside from the rank, no other information is encoded in the matrix.
The real goal will be to find the best matrix for a linear operator L W V ! V with
respect to one basis. In the general situation L W V ! W , we will have something
more to say in case V andW are inner product spaces and the bases are orthonormal
(see Sects. 4.8, 4.9, and 4.10).

Finally, it is worth mentioning that projections as a class of linear operators on
V can be characterized in a surprisingly simple manner.

Theorem 1.11.12. (Characterization of Projections) Projections all satisfy the
functional relationshipE2 D E. Conversely, anyE W V ! V that satisfiesE2 D E
is a projection.
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Proof. First assume that E is the projection onto M along N coming from V D
M ˚N . If z D x C y 2M ˚N; then

E2 .z/ D E .E .z//
D E .x/
D x
D E .z/ :

Conversely, assume that E2 D E; then E .x/ D x provided x 2 im .E/. Thus, we
have

im .E/ \ ker .E/ D f0g ; and

im .E/C ker .E/ D im .E/˚ ker .E/

From the dimension theorem, we also have that

dim .im .E//C dim .ker .E// D dim .V / :

This shows that im .E/C ker .E/ is a subspace of dimension dim .V / and hence
all of V . Finally, if we write z D x C y, x 2 im .E/ and y 2 ker .E/ ; then
E .x C y/ D E .x/ D x; so E is the projection onto im .E/ along ker .E/. ut
In this way, we have shown that there is a natural identification between direct sum
decompositions and projections, i.e., maps satisfying E2 D E.

Exercises

1. Let L;K W V ! V be linear maps that satisfy L ıK D 1V . Show that

(a) If V is finite-dimensional, thenK ı L D 1V .
(b) If V is infinite-dimensional give an example whereK ı L ¤ 1V .

2. Let M � V be a k-dimensional subspace of an n-dimensional vector space.
Show that any isomorphism L W M ! F

k can be extended to an isomorphism
OL W V ! F

n; such that OLjM D L. Here we have identified F
k with the subspace

in F
n where the last n � k coordinates are zero.

3. Let L W V ! V be a linear operator on a vector space over F. Show that

(a) If K W V ! V commutes with L, i.e., K ı L D L ıK , then kerK � V is
an L-invariant subspace.

(b) If p 2 F Œt �, then kerp .L/ � V is an L-invariant subspace.
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4. Let L W V ! W be a linear map.

(a) If L has rank k, show that it can be factored through F
k; i.e., we can find

K1 W V ! F
k and K2 W Fk ! W such that L D K2K1.

(b) Show that any matrix A 2 Matn�m .F/ of rank k can be factored A D BC;
where B 2 Matn�k .F/ and C 2 Matk�m .F/.

(c) Conclude that any rank 1 matrix A 2 Matn�m .F/ looks like

A D

2

6

4

˛1
:::

˛n

3

7

5

�

ˇ1 � � � ˇm
�

:

5. Assume L1 W V1 ! V2 and L2 W V2 ! V3 are linear maps between finite-
dimensional vector spaces. Show:

(a) im .L2 ı L1/ � im .L2/. In particular, if L2 ı L1 is onto, then so is L2.
(b) ker .L1/ � ker .L2 ı L1/. In particular, if L2 ı L1 is one-to-one, then so is

L1.
(c) Give an example where L2 ı L1 is an isomorphism but L1 and L2 are not.
(d) What happens in (c) if we assume that the vector spaces all have the same

dimension?
(e) (Sylvester’s rank inequality) Show that

rank .L1/C rank .L2/� dim .V2/ � rank .L2 ı L1/
� min frank .L1/ ; rank .L2/g :

(e) Show that

dim .kerL2 ıL1/ � dim .kerL1/C dim .kerL2/ :

6. Let L W V ! V be a linear operator on a finite-dimensional vector space.

(a) Show that L D �1V if and only if L.x/ 2 span fxg for all x 2 V .
(b) Show that L D �1V if and only if L ıK D K ıL for allK 2 Hom .V; V /.
(c) Show that L D �1V if and only if L ı K D K ı L for all isomorphisms

K W V ! V .

7. Show that two 2-dimensional subspaces of a 3-dimensional vector space must
have a nontrivial intersection.

8. (Dimension formula for subspaces) Let M1;M2 � V be subspaces of a finite-
dimensional vector space. Show that

dim .M1 \M2/C dim .M1 CM2/ D dim .M1/C dim .M2/ :
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Conclude that if M1 and M2 are transverse, then M1 \M2 has the “expected”
dimension .dim .M1/C dim .M2// � dimV . Hint: Use the dimension formula
on the linear map L W M1 � M2 ! V defined by L.x1; x2/ D x1 � x2.
Alternatively, select a suitable basis for M1 CM2 by starting with a basis for
M1 \M2.

9. Let M � V be a subspace and V , W finite-dimensional vector spaces. Show
that the subset of HomF .V;W / consisting of maps that vanish on M , i.e.,
LjM D 0, is a subspace of dimension dimFW � .dimF V � dimFM/.

10. We say that a linear map L W V ! V is reduced by a direct sum decomposition
V D M ˚N if bothM and N are invariant under L and neither subspace is a
trivial subspace. We also say that L W V ! V is decomposable if we can find a
nontrivial decomposition that reduces L W V ! V .

(a) Show that for L D
�

0 1

0 0

�

with M D ker .L/ D im .L/, it is not possible

to find N such that V D M ˚N reduces L.
(b) Show more generally that one cannot find a nontrivial decomposition that

reduces L.

11. Let L W V ! V be a linear transformation andM � V a subspace. Show:

(a) IfE is a projection ontoM andELE D LE , thenM is invariant underL.
(b) If M is invariant under L, then ELE D LE for all projections ontoM .
(c) If V D M ˚ N and E is the projection onto M along N; then M ˚ N

reduces (see previous exercise) L if and only if EL D LE .

12. Assume V D M ˚N .

(a) Show that any linear mapL W V ! V has a 2�2matrix type decomposition

�

A B

C D

�

;

where A WM !M; B W N !M; C WM ! N; D W N ! N .
(b) Show that the projection ontoM along N looks like

E D 1M ˚ 0N D
�

1M 0

0 0N

�

(c) Show that if L.M/ �M; then C D 0.
(d) Show that if L.M/ �M and L.N/ � N , then B D 0 and C D 0. In this

case, L is reduced by M ˚N; and we write

L D A˚D
D LjM ˚ LjN :
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13. Let M1;M2 � V be subspaces of a finite-dimensional vector space.
Show that

(a) IfM1\M2 D f0g and dim .M1/Cdim .M2/ � dimV; then V D M1˚M2.
(b) IfM1CM2 D V and dim .M1/Cdim .M2/ � dimV; then V D M1˚M2.

14. Let A 2 Matn�l .F/ and consider LA W Matl�m .F/ ! Matn�m .F/ defined by
LA .X/ D AX . Find the kernel and image of this map.

15. Let

0
L0

!V1
L1

!V2
L2

! � � �
Ln�1
! Vn

Ln

! 0

be a sequence of linear maps. Note that L0 and Ln are both the trivial linear
maps with image f0g. Show that

n
X

iD1
.�1/i dimVi D

n
X

iD1
.�1/i .dim .ker .Li // � dim .im .Li�1/// :

Hint: First, try the case where n D 2.
16. Show that the matrix

�

0 1

0 0

�

as a linear map satisfies ker .L/ D im .L/.
17. Show that

�

0 0

˛ 1

�

defines a projection for all ˛ 2 F. Compute the kernel and image.
18. For any integer n > 1, give examples of linear maps L W Cn ! C

n such that

(a) C
n D ker .L/˚ im .L/ is a nontrivial direct sum decomposition.

(b) f0g ¤ ker .L/ � im .L/.

19. For Pn � R Œt � and 2 .nC 1/ points a0 < b0 < a1 < b1 < � � � < an < bn,
consider the map L W Pn ! R

nC1 defined by

L.p/ D

2

6

6

4

1
b0�a0

R b0
a0
p .t/ dt
:::

1
bn�an

R bn
an
p .t/ dt

3

7

7

5

:

Show that L is a linear isomorphism.
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1.12 Linear Independence

In this section, we finally come around to studying the concepts of linear dependence
and independence as well as how they tie in with kernels and images of linear maps.

Definition 1.12.1. Let x1; : : : ; xm be vectors in a vector space V . We say that
x1; : : : ; xm are linearly independent if

x1˛1 C � � � C xm˛m D 0

implies that
˛1 D � � � D ˛m D 0:

In other words, if L W Fm ! V is the linear map defined by L D �

x1 � � � xm
�

,
then x1; : : : ; xm are linearly independent if and only if ker .L/ D f0g.
The image of the map L can be identified with span fx1; : : : ; xmg and is described
as

fx1˛1 C � � � C xm˛m W ˛1; : : : ; ˛m 2 Fg :
Note that x1; : : : ; xm is a basis precisely when ker .L/ D f0g and V D imL. The
notions of kernel and image therefore enter our investigations of dimension in a very
natural way.

Definition 1.12.2. Conversely, we say that x1; : : : ; xm are linearly dependent if
they are not linearly independent, i.e., we can find ˛1; : : : ; ˛m 2 F not all zero
so that x1˛1 C � � � C xm˛m D 0.

In the next section, we shall see how Gauss elimination helps us decide when a
selection of vectors in F

n is linearly dependent or independent.
We give here a characterization of linear dependence that is quite useful in both

concrete and abstract situations.

Lemma 1.12.3. (Characterization of Linear Dependence) Let x1,. . . , xn 2 V . Then,
x1; : : : ; xn are linearly dependent if and only if either x1 D 0 or we can find a
smallest k � 2 such that xk is a linear combination of x1; : : : ; xk�1.

Proof. First observe that if x1 D 0; then 1x1 D 0 is a nontrivial linear combination.
Next, if

xk D ˛1x1 C � � � C ˛k�1xk�1;

then we also have a nontrivial linear combination

˛1x1 C � � � C ˛k�1xk�1 C .�1/ xk D 0:

Conversely, assume that x1; : : : ; xn are linearly dependent. Select a nontrivial
linear combination such that

˛1x1 C � � � C ˛nxn D 0:
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Then, we can pick k so that ˛k ¤ 0 and ˛kC1 D � � � D ˛n D 0. If k D 1; then we
must have x1 D 0 and we are finished. Otherwise,

xk D �˛1
˛k
x1 � � � � � ˛k�1

˛k
xk�1:

Thus, the set of ks with the property that xk is a linear combination of x1; : : : ; xk�1
is a nonempty set that contains some integer � 2. Now, simply select the smallest
integer in this set to get the desired choice for k. ut
This immediately leads us to the following criterion for linear independence.

Corollary 1.12.4. (Characterization of Linear Independence) Let x1,. . . , xn 2 V .
Then, x1; : : : ; xn are linearly independent if and only if x1 ¤ 0 and for each k � 2

xk … span fx1; : : : ; xk�1g :

Example 1.12.5. Let A 2 Matn�n .F/ be an upper triangular matrix with k nonzero
entries on the diagonal. We claim that the rank of A is � k. Select the k column
vectors x1; : : : ; xk that correspond to the nonzero diagonal entries from left to right.
Thus, x1 ¤ 0 and

xl … span fx1; : : : ; xl�1g
since xl has a nonzero entry that lies below all of the nonzero entries for
x1; : : : ; xl�1. Using the dimension formula (Theorem 1.11.7), we see that
dim .ker .A// � n � k.

It is possible for A to have rank > k. Consider, e.g.,

A D
2

4

1 0 0

0 0 1

0 0 0

3

5 :

This matrix has rank 2 but only one nonzero entry on the diagonal.

Recall from Theorem 1.10.20 that we can choose complements to a subspace by
selecting appropriate vectors from a set that spans the vector space. The proof of
that result actually supplies us with a bit more information.

Corollary 1.12.6. Let M � V be a subspace and assume that V D
span fx1; : : : ; xng. If M ¤ V; then it is possible to select linearly independent
xi1 ; : : : :; xik 2 fx1; : : : ; xng such that

V DM ˚ span fxi1 ; : : : ; xik g
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Proof. Recall that xi1 ; : : : ; xik were selected so that

xi1 … M;
xi2 … M C span fxi1g ;

:::

xik … M C span fxi1 ; : : : ; xik�1g ;
V D M C span fxi1 ; : : : ; xik g :

In particular, xi1 ¤ 0 and xil … span fxi1 ; : : : ; xil�1g for l D 2; : : : ; k so
Corollary 1.12.4 proves the claim. ut
A more traditional method for establishing that all bases for a vector space have the
same number of elements is based on the following classical result, often referred
to as the replacement theorem.

Theorem 1.12.7. (Steinitz Replacement) Let y1; : : : ; ym 2 V be linearly indepen-
dent and V D span fx1; : : : ; xng. Then, m � n and V has a basis of the form y1;

: : : ; ym; xi1 ; : : : ; xil where l � n �m.

Proof. Corollary 1.12.6 immediately gives us linearly independent xi1 ; : : : ; xil such
that span fxi1 ; : : : ; xil g is a complement to M D span fy1; : : : ; ymg. Thus, y1; : : : ;
ym; xi1 ; : : : ; xil must form a basis for V .

The subspace theorem (Theorem 1.11.6) tells us that mC l D dim .V /. The fact
that n � dim .V / is a direct application of Corollary 1.12.6 with M D f0g.

It is, however, possible to give a more direct argument that does not refer to the
concept of dimension. Instead, we use a simple algorithm that shows directly that
l � n �m.

Observe that y1; x1; : : : ; xn are linearly dependent since y1 is a linear combina-
tion of x1; : : : ; xn. As y1 ¤ 0, this shows that some xi is a linear combination of the
previous vectors. Thus, also

span fy1; x1; : : : ; Oxi ; : : : ; xng D V;

where Oxi refers to having deleted xi . Now, repeat the argument with y2 in place of
y1 and y1; x1; : : : ; Oxi ; : : : ; xn in place of x1; : : : ; xn. Thus,

y2; y1; x1; : : : ; Oxi ; : : : ; xn
is linearly dependent, and since y2; y1 are linearly independent, some xj is a linear
combination of the previous vectors. Continuing in this fashion, we get a set of n
vectors

ym; : : : ; y1; xj1 ; : : : xjn�m
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that spans V . Finally, we can use Corollary 1.12.6 to eliminate vectors to obtain a
basis. Note that the proof (Corollary 1.12.6) shows that the basis will be of the form

ym; : : : ; y1; xi1 ; : : : xil

as ym; : : : ; y1 are linearly independent. This shows that l � n �m. ut
Remark 1.12.8. This theorem leads us to a new proof of the fact that any two bases
must contain the same number of elements. It also shows that a linearly independent
collection of vectors contains no more vectors than a basis, while a spanning set
contains no fewer elements than a basis.

Next, we prove a remarkable theorem for matrices, that we shall revisit many more
times in this text.

Definition 1.12.9. ForA D �˛ij
� 2 Matn�m .F/, define the transposeAt D �ˇij

� 2
Matm�n .F/ by ˇij D ˛j i . Thus, the columns of At are the rows of A (see also
Exercise 14 in Sect. 1.8).

Definition 1.12.10. The column rank of a matrix is the dimension of the column
space, i.e., the space spanned by the column vectors. In other words, it is the
maximal number of linearly independent column vectors. This is also the dimension
of the image of the matrix viewed as a linear map. Similarly, the row rank is the
dimension of the row space, i.e., the space spanned by the row vectors. This is the
dimension of the image of the transposed matrix.

Theorem 1.12.11. (The Rank Theorem) Any n�m matrix has the property that the
row rank is equal to the column rank.

Proof. Let A 2 Matn�m .F/ and x1; : : : ; xr 2 F
n be a basis for the column space of

A. Next, write the columns of A as linear combinations of this basis

A D �

x1 � � � xr
�

2

4

ˇ11 ˇ1m

ˇr1 ˇrm

3

5

D �

x1 � � � xr
�

B

By taking transposes, we obtain

At D Bt
�

x1 � � � xr
�t
:

But this shows that the columns of At ; i.e., the rows of A; are linear combinations
of the r vectors that form the columns of Bt

2

6

4

ˇ11
:::

ˇ1m

3

7

5 ; : : : ;

2

6

4

ˇr1
:::

ˇrm

3

7

5

Thus, the row space is spanned by r vectors. This shows that there cannot be more
than r linearly independent rows.
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A similar argument starting with a basis for the row space of A shows that the
reverse inequality also holds. ut
There is a very interesting example associated to the rank theorem.

Example 1.12.12. Let t1; : : : ; tn 2 F be distinct. We claim that the vectors

2

6

6

6

4

1

t1
:::

tn�1
1

3

7

7

7

5

; : : : ;

2

6

6

6

4

1

tn
:::

tn�1
n

3

7

7

7

5

are a basis for Fn. To show this, we have to show that the rank of the corresponding
matrix

2

6

6

6

4

1 1 � � � 1

t1 t2 tn
:::

:::

tn�1
1 tn�1

2 � � � tn�1
n

3

7

7

7

5

is n. The simplest way to do this is by considering the row rank. If the rows are
linearly dependent, then we can find ˛0; : : : ; ˛n�1 2 F so that

˛0

2

6

6

6

4

1

1
:::

1

3

7

7

7

5

C ˛1

2

6

6

6

4

t1

t2
:::

tn

3

7

7

7

5

C � � � C ˛n�1

2

6

6

6

4

tn�1
1

tn�1
2
:::

tn�1
n

3

7

7

7

5

D 0:

Thus, the polynomial

p .t/ D ˛0 C ˛1t C � � � C ˛n�1tn�1

has t1; : : : ; tn as roots. In other words we have a polynomial of degree� n� 1 with
n roots. This is not possible unless ˛1 D � � � D ˛n�1 D 0 (see also Sect. 2.1).

The criteria for linear dependence lead to an important result about the powers of a
linear operator. Before going into that, we observe that there is a connection between
polynomials and linear combinations of powers of a linear operator. LetL W V ! V

be a linear operator on an n-dimensional vector space. If

p .t/ D ˛ktk C � � � C ˛1t C ˛0 2 F Œt � ;

then

p .L/ D ˛kLk C � � � C ˛1LC ˛01V
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is a linear combination of

Lk; : : : ; L; 1V :

Conversely, any linear combination of Lk; : : : ; L; 1V must look like this.
Since Hom .V; V / has dimension n2, it follows that 1V ; L;L2; : : : ; Ln

2
are

linearly dependent. This means that we can find a smallest positive integer k � n2
such that 1V ; L;L2; : : : ; Lk are linearly dependent. Thus, 1V ; L;L2; : : : ; Ll are
linearly independent for l < k and

Lk 2 span
˚

1V ; L;L
2; : : : ; Lk�1� :

In Sect. 2.7, we shall show that k � n. The fact that

Lk 2 span
˚

1V ; L;L
2; : : : ; Lk�1�

means that we have a polynomial

	L .t/ D tk C ˛k�1tk�1 C � � � C ˛1t C ˛0
such that

	L .L/ D 0:
This is the so-called minimal polynomial for L. Apparently, there is no polynomial
of smaller degree that has L as a root. For a more in-depth analysis of the minimal
polynomial, see Sect. 2.4.

Recall that we characterized projections as linear operators that satisfy L2 D
L (see Theorem 1.11.12). Thus, nontrivial projections are precisely the operators
whose minimal polynomial is 	L .t/ D t2 � t . Note that the two trivial projections
1V and 0V have minimal polynomials 	1V D t � 1 and 	0V D t .
Example 1.12.13. Let

A D
�

� 1

0 �

�

B D
2

4

� 0 0

0 � 1

0 0 �

3

5

C D
2

4

0 �1 0
1 0 0

0 0 i

3

5 :



78 1 Basic Theory

We note that A is not proportional to 1V , so 	A cannot have degree 1. But

A2 D
�

� 1

0 �

�2

D
�

�2 2�

0 �2

�

D 2�
�

� 1

0 �

�

� �2
�

1 0

0 1

�

:

Thus,
	A .t/ D t2 � 2�t C �2 D .t � �/2 :

The calculation for B is similar and evidently yields the same minimal polynomial

	B .t/ D t2 � 2�t C �2 D .t � �/2 :
Finally, for C , we note that

C2 D
2

4

�1 0 0

0 �1 0

0 0 �1

3

5 :

Thus,
	C .t/ D t2 C 1:

In the theory of differential equations, it is also important to understand
when functions are linearly independent. We start with vector-valued functions
x1 .t/ ; : : : ; xk .t/ W I ! F

n; where I is any set but usually an interval. These k
functions are linearly independent provided they are linearly independent at just
one point t0 2 I . In other words, if the k vectors x1 .t0/ ; : : : ; xk .t0/ 2 F

n are
linearly independent, then the functions are also linearly independent. The converse
statement is, not true in general. To see why this is we give a specific example.

Example 1.12.14. It is an important fact from analysis that there are functions

 .t/ 2 C1 .R;R/ such that


 .t/ D
�

0 t � 0;
1 t � 1:

These can easily be pictured, but it takes some work to construct them. Given this
function, we consider x1; x2 W R! R

2 defined by

x1 .t/ D
�


 .t/

0

�

;

x2 .t/ D
�

0


 .�t/
�

:
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When t � 0, we have that x1 D 0 so the two functions are linearly dependent on
.�1; 0�. When t � 0; we have that x2 .t/ D 0 so the functions are also linearly
dependent on Œ0;1/. Now, assume that we can find �1; �2 2 R such that

�1x1 .t/C �2x2 .t/ D 0 for all t 2 R:

If t � 1; this implies that

0 D �1x1 .t/C �2x2 .t/

D �1
�

1

0

�

C �2
�

0

0

�

D �1
�

1

0

�

:

Thus, �1 D 0. Similarly, we have for t � �1

0 D �1x1 .t/C �2x2 .t/

D �1
�

0

0

�

C �2
�

1

0

�

D �2
�

1

0

�

:

So �2 D 0. This shows that the two functions x1 and x2 are linearly independent
as functions on R even though the vectors x1 .t/ ; x2 .t/ are linearly dependent for
each t 2 R.

Next, we want to study what happens in the special case where n D 1, i.e.,
we have functions x1 .t/ ; : : : ; xk .t/ W I ! F. In this case, the above strategy for
determining linear independence at a point completely fails as the values lie in a
one-dimensional vector space. We can, however, construct auxiliary vector-valued
functions by taking derivatives. In order to be able to take derivatives, we have to
assume either that I D F and xi 2 F Œt � are polynomials with the formal derivatives
defined as in Exercise 2 in Sect. 1.6 or that I � R is an interval, F D C; and
xi 2 C1 .I;C/. In either case, we can then construct new vector-valued functions
z1; : : : ; zk W I ! F

k by listing xi and its first k � 1 derivatives in column form

zi .t/ D

2

6

6

4

xi .t/

.Dxi / .t/

�

Dk�1xi
�

.t/

3

7

7

5

:
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First, we claim that x1; : : : ; xk are linearly dependent if and only if z1; : : : ; zk are
linearly dependent. This is quite simple and depends on the fact that Dn is linear.
We only need to observe that

˛1z1 C � � � C ˛kzk D ˛1

2

6

6

6

4

x1

Dx1
:::

Dk�1x1

3

7

7

7

5

C � � � C ˛k

2

6

6

6

4

xk

Dxk
:::

Dk�1xk

3

7

7

7

5

D

2

6

6

6

4

˛1x1
˛1Dx1
:::

˛1D
k�1x1

3

7

7

7

5

C � � � C

2

6

6

6

4

˛kxk
˛kDxk
:::

˛kD
k�1xk

3

7

7

7

5

D

2

6

6

6

4

˛1x1 C � � � C ˛kxk
˛1Dx1 C � � � C ˛kDxk

:::

˛1D
k�1x1 C � � � C ˛kDk�1xk

3

7

7

7

5

D

2

6

6

6

4

˛1x1 C � � � C ˛kxk
D .˛1x1 C � � � C ˛kxk/

:::

Dk�1 .˛1x1 C � � � C ˛kxk/

3

7

7

7

5

:

Thus, ˛1z1 C � � � C ˛kzk D 0 if and only if ˛1x1 C � � � C ˛kxk D 0. This shows the
claim. Let us now see how this works in action.

Example 1.12.15. Let xi .t/ D exp .�i t/ ; where �i 2 C are distinct. Then,

zi .t/ D

2

6

6

6

4

exp .�i t/
�i exp .�i t/

:::

�k�1
i exp .�i t/

3

7

7

7

5

D

2

6

6

6

4

1

�i
:::

�k�1
i

3

7

7

7

5

exp .�i t/ :

Thus, exp .�1t/ ; : : : ; exp .�kt/ are linearly independent as we saw in Exam-
ple 1.12.12 that the vectors

2

6

6

6

4

1

�1
:::

�k�1
1

3

7

7

7

5

; : : : ;

2

6

6

6

4

1

�k
:::

�k�1
k

3

7

7

7

5

are linearly independent.
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Example 1.12.16. Let xk .t/ D cos .kt/ ; k D 0; 1; 2; : : : ; n. In this case, direct
check will involve a matrix that has both cosines and sines in alternating rows.
Instead, we can use Euler’s formula that

xk .t/ D cos .kt/ D 1

2
eikt � 1

2
e�ikt :

We know from the previous exercise that the 2n C 1 functions exp .ikt/ ; k D
0;˙1; : : : ;˙n are linearly independent. Thus, the original n C 1 cosine functions
are also linearly independent.

Note that if we added the n sine functions yk .t/ D sin .kt/ ; k D 1; : : : ; n, we
have 2nC 1 cosine and sine functions that also become linearly independent.

Exercises

1. (Characterization of Linear Independence) Show that, x1; : : : ; xn 2 V � f0g are
linearly independent if and only if

span fx1; : : : ; Oxi ; : : : ; xng ¤ span fx1; : : : ; xng

for all i D 1; : : : ; n . Here the “hat” Oxi over a vector means that it has been
deleted from the set.

2. (Characterization of Linear Independence) Show that x1; : : : ; xn 2 V � f0g are
linearly independent if and only if

span fx1; : : : ; xng D span fx1g ˚ � � � ˚ span fxng :

3. Assume that we have nonzero vectors x1; : : : ; xk 2 V and a direct sum of
subspaces

M1 C � � � CMk DM1 ˚ � � � ˚Mk:

Show that if xi 2 Mi; then x1; : : : ; xk are linearly independent.
4. Show that t3 C t2 C 1; t3 C t2 C t; t3 C t C 2 are linearly independent in P3.

Which of the standard basis vectors 1; t; t2; t3 can be added to this collection to
create a basis for P3‹

5. Show that, if p0 .t/ ; : : : ; pn .t/ 2 F Œt � all have degree � n and all vanish at t0;
then they are linearly dependent.

6. Assume that we have two fields F � L; such as R � C. Show that

(a) If x1; : : : ; xm form a basis for Fm; then they also form a basis for Lm.
(b) If x1; : : : ; xk are linearly independent in F

m; then they are also linearly
independent in L

m.
(c) If x1; : : : ; xk are linearly dependent in F

m; then they are also linearly
dependent in L

m.
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(d) If x1; : : : ; xk 2 F
m; then

dimF spanF fx1; : : : ; xkg D dimL spanL fx1; : : : ; xkg :

(e) If M � F
m is a subspace, then

M D spanL .M/\ F
m:

(f) Let A 2 Matn�m .F/. Then, A W Fm ! F
n is one-to-one (resp. onto) if and

only if A W Lm ! L
n is one-to-one (resp. onto).

7. Show that dimF V � n if and only if every collection of nC 1 vectors is linearly
dependent.

8. Let L W V ! W be a linear map.

(a) Show that if x1; : : : ; xk span V and L is not one-to-one, then
L.x1/ ; : : : ; L .xk/ are linearly dependent.

(b) Show that if x1; : : : ; xk are linearly dependent, then L.x1/ ; : : : ; L .xk/ are
linearly dependent.

(c) Show that ifL.x1/ ; : : : ; L .xk/ are linearly independent, then x1; : : : ; xk are
linearly independent.

9. Let A 2 Matn�m .F/ and assume that y1; : : : ; ym 2 V
�

y1 � � � ym
� D �x1 � � � xn

�

A;

where x1; : : : ; xn form a basis for V .

(a) Show that y1; : : : ; ym span V if and only if A has rank n. Conclude that
m � n.

(b) Show that y1; : : : ; ym are linearly independent if and only if ker .A/ D f0g.
Conclude that m � n.

(c) Show that y1; : : : ; ym form a basis for V if and only if A is invertible.
Conclude that m D n.

1.13 Row Reduction

In this section, we give a brief and rigorous outline of the standard procedures
involved in solving systems of linear equations. The goal in the context of what
we have already learned is to find a way of computing the image and kernel of a
linear map that is represented by a matrix. Along the way, we shall reprove that the
dimension is well defined as well as the dimension formula for linear maps.
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The usual way of writing n equations with m variables is

a11x1 C � � � C a1mxm D b1
:::

:::
:::

an1x1 C � � � C anmxm D bn;

where the variables are x1; : : : ; xm. The goal is to understand for which choices of
constants aij and bi such systems can be solved and then list all the solutions. To
conform to our already specified notation, we change the system so that it looks like

˛11�1 C � � � C ˛1m�m D ˇ1
:::

:::
:::

˛n1�1 C � � � C ˛nm�m D ˇn:

In matrix form, this becomes

2

6

4

˛11 � � � ˛1m
:::
: : :

:::

˛n1 � � � ˛nm

3

7

5

2

6

4

�1
:::

�m

3

7

5 D

2

6

4

ˇ1
:::

ˇn

3

7

5

and can be abbreviated to

Ax D b:
As such, we can easily use the more abstract language of linear algebra to address
some general points.

Proposition 1.13.1. Let L W V ! W be a linear map.

(1) L.x/ D b can be solved if and only if b 2 im .L/.
(2) If L.x0/ D b and x 2 ker .L/ ; then L.x C x0/ D b.
(3) If L.x0/ D b and L.x1/ D b; then x0 � x1 2 ker .L/.

Therefore, we can find all solutions to L.x/ D b provided we can find the kernel
ker .L/ and just one solution x0. Note that the kernel consists of the solutions to
what we call the homogeneous system: L.x/ D 0.

Definition 1.13.2. With this behind us, we are now ready to address the issue of
how to make the necessary calculations that allow us to find a solution to

2

6

4

˛11 � � � ˛1m
:::
: : :

:::

˛n1 � � � ˛nm

3

7

5

2

6

4

�1
:::

�m

3

7

5 D

2

6

4

ˇ1
:::

ˇn

3

7

5 :
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The usual method is through elementary row operations. To keep things more
conceptual, think of the actual linear equations

˛11�1 C � � � C ˛1m�m D ˇ1
:::

:::
:::

˛n1�1 C � � � C ˛nm�m D ˇn
and observe that we can perform the following three operations without changing
the solutions to the equations:

(1) Interchanging equations (or rows).
(2) Adding a multiple of an equation (or row) to a different equation (or row).
(3) Multiplying an equation (or row) by a nonzero number.

Using these operations, one can put the system in row echelon form. This is
most easily done by considering the augmented matrix, where the variables have
disappeared

2

6

4

˛11 � � � ˛1m
:::
: : :

:::

˛n1 � � � ˛nm

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ1
:::

ˇn

3

7

5

and then performing the above operations, now on rows, until it takes the special
form where

1. The first nonzero entry in each row is normalized to be 1. This is also called the
leading 1 for the row.

2. The leading 1s appear in echelon form, i.e., as we move down along the rows the
leading 1s will appear farther to the right.

The method by which we put a matrix into row echelon form is called Gauss
elimination. Having put the system into this simple form, one can then solve it by
starting from the last row or equation.

When doing the process on A itself, we denote the resulting row echelon matrix
by Aref. There are many ways of doing row reductions so as to come up with a row
echelon form for A, and it is quite likely that one ends up with different echelon
forms. To see why, consider

A D
2

4

1 1 0

0 1 1

0 0 1

3

5 :

This matrix is clearly in row echelon form. However, we can subtract the second
row from the first row to obtain a new matrix which is still in row echelon form:

2

4

1 0 �1
0 1 1

0 0 1

3

5 :
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It is now possible to use two more elementary row operations to arrive at

2

4

1 0 0

0 1 0

0 0 1

3

5 :

The important information about Aref is the placement of the leading 1 in each
row, and this placement will always be the same for any row echelon form. To
get a unique row echelon form, we need to reduce the matrix using Gauss-Jordan
elimination. This process is what we just performed on the above matrix A to get it
into final form. The idea is to first arrive at some row echelon form Aref and then,
starting with the second row, eliminate all entries above the leading 1; this is then
repeated with row three and so on. In this way, we end up with a matrix that is still
in row echelon form, but also has the property that all entries below and above the
leading 1 in each row are zero. We say that such a matrix is in reduced row echelon
form. If we start with a matrix A, then the resulting reduced row echelon form is
denoted Arref. For example, if we have

Aref D

2

6

6

4

0 1 4 1 0 3 �1
0 0 0 1 �2 5 �4
0 0 0 0 0 0 1

0 0 0 0 0 0 0

3

7

7

5

;

then we can reduce further to get a new reduced row echelon form

Arref D

2

6

6

4

0 1 4 0 2 �2 0
0 0 0 1 �2 5 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

3

7

7

5

:

The row echelon form and reduced row echelon form of a matrix can more
abstractly be characterized as follows. Suppose that we have an n � m matrix
A D �

x1 � � � xm
�

; where x1; : : : ; xm 2 F
n correspond to the columns of A. Let

e1; : : : ; en 2 F
n be the canonical basis. The matrix is in row echelon form if we can

find 1 � j1 < � � � < jk � m; where k � n, such that

xjs D es C
X

i<s

˛ijs ei

for s D 1; : : : ; k. For all other indices j , we have

xj D 0; if j < j1;

xj 2 span fe1; : : : ; esg ; if js < j < jsC1;

xj 2 span fe1; : : : ; ekg ; if jk < j:
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Moreover, the matrix is in reduced row echelon form if in addition we assume that

xjs D es:

Below, we shall prove that the reduced row echelon form of a matrix is unique,
but before doing so, it is convenient to reinterpret the row operations as matrix
multiplication.

Let A 2 Matn�m .F/ be the matrix we wish to row reduce. The row operations
we have described can be accomplished by multiplyingA by certain invertible n�n
matrices on the left. These matrices are called elementary matrices.

Definition 1.13.3. To define these matrices, we use the standard basis matrices Ekl
where the kl entry is 1 while all other entries are 0. The matrix product EklA is a
matrix whose kth row is the l th row of A and all other rows vanish.

1. Interchanging rows k and l : This can be accomplished by the matrix multiplica-
tion IklA; where

Ikl D Ekl C Elk C
X

i¤k;l
Eii

D Ekl C Elk C 1Fn � Ekk �Ell ;
or in other words, the ij entries ˛ij in Ikl satisfy ˛kl D ˛lk D 1; ˛i i D 1 if
i ¤ k; l; and ˛ij D 0 otherwise. Note that Ikl D Ilk and IklIlk D 1Fn . Thus Ikl
is invertible.

2. Multiplying row l by ˛ 2 F and adding it to row k ¤ l . This can be accomplished
via Rkl .˛/A; where

Rkl .˛/ D 1Fn C ˛Ekl ;
or in other words, the ij entries ˛ij in Rkl .˛/ look like ˛ii D 1; ˛kl D ˛; and
˛ij D 0 otherwise. This time, we note that Rkl .˛/Rkl .�˛/ D 1Fn .

3. Multiplying row k by ˛ 2 F�f0g. This can be accomplished byMk .˛/ A;where

Mk .˛/ D ˛Ekk C
X

i¤k
Eii

D 1Fn C .˛ � 1/Ekk;

or in other words, the ij entries ˛ij of Mk .˛/ are ˛kk D ˛, ˛ii D 1 if i ¤ k;

and ˛ij D 0 otherwise. Clearly, Mk .˛/Mk

�

˛�1� D 1Fn .
Performing row reductions on A is now the same as doing a matrix multiplication
PA; where P 2 Matn�n .F/ is a product of the elementary matrices. Note that
such P are invertible and that P�1 is also a product of elementary matrices. The
elementary 2 � 2 matrices look like.
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I12 D
�

0 1

1 0

�

;

R12 .˛/ D
�

1 ˛

0 1

�

;

R21 .˛/ D
�

1 0

˛ 1

�

;

M1 .˛/ D
�

˛ 0

0 1

�

;

M2 .˛/ D
�

1 0

0 ˛

�

:

If we multiply these matrices ontoA from the left, we obtain the desired operations:

I12A D
�

0 1

1 0

� �

˛11 ˛12
˛21 ˛22

�

D
�

˛21 ˛22
˛11 ˛12

�

R12 .˛/A D
�

1 ˛

0 1

� �

˛11 ˛12

˛21 ˛22

�

D
�

˛11 C ˛˛21 ˛12 C ˛˛22
˛21 ˛22

�

R21 .˛/A D
�

1 0

˛ 1

� �

˛11 ˛12
˛21 ˛22

�

D
�

˛11 ˛12
˛˛11 C ˛21 ˛˛12 C ˛22

�

M1 .˛/A D
�

˛ 0

0 1

� �

˛11 ˛12
˛21 ˛22

�

D
�

˛˛11 ˛˛12
˛21 ˛22

�

M2 .˛/A D
�

1 0

0 ˛

� �

˛11 ˛12

˛21 ˛22

�

D
�

˛11 ˛12

˛˛21 ˛˛22

�

:

We can now move on to the important result mentioned above.

Theorem 1.13.4. (Uniqueness of Reduced Row Echelon Form) The reduced row
echelon form of an n �m matrix is unique.

Proof. Let A 2 Matn�m .F/ and assume that we have two reduced row echelon
forms

PA D �

x1 � � � xm
�

;

QA D �

y1 � � � ym
�

;

where P;Q 2 Matn�n .F/ are invertible. In particular, we have that

R
�

x1 � � � xm
� D �y1 � � � ym

�

;

where R 2 Matn�n .F/ is invertible. We shall show that xi D yi ; i D 1; : : : ; m by
induction on n.
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First, observe that if A D 0; then there is nothing to prove. If A ¤ 0; then both
of the reduced row echelon forms have to be nontrivial. Then, we have that

xi1 D e1;
xi D 0 for i < i1

and

yj1 D e1;

yi D 0 for i < j1:

The relationshipRxi D yi shows that yi D 0 if xi D 0. Thus, j1 � i1. Similarly,
the relationship yi D R�1xi shows that xi D 0 if yi D 0. Hence, also j1 � i1. Thus,
i1 D j1 and xi1 D e1 D yj1 . This implies that Re1 D e1 and R�1e1 D e1. In other
words,

R D
�

1 0

0 R0
�

;

where R0 2 Mat.n�1/�.n�1/ .F/ is invertible.
In the special case where n D 1; we are finished as we have shown that R D

Œ1�. This anchors our induction. We can now assume the induction hypothesis: All
.n � 1/ �m matrices have unique reduced row echelon forms.

If we define x0
i , y

0
i 2 F

n�1 as the last n � 1 entries in xi and yi , i.e.,

xi D
�

�1i
x0
i

�

;

yi D
�

�1i
y0
i

�

;

then we see that
�

x0
1 � � � x0

m

�

and
�

y0
1 � � � y0

m

�

are still in reduced row echelon form.
Moreover, the relationship

�

y1 � � � ym
� D R �x1 � � � xm

�

now implies that
�

�11 � � � �1m
y0
1 � � � y0

m

�

D �

y1 � � � ym
�

D R
�

x1 � � � xm
�

D
�

1 0

0 R0
� �

�11 � � � �1m
x0
1 � � � x0

m

�

D
�

�11 � � � �1m
R0x0

1 � � � R0x0
m

�
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Thus,

R0 �x0
1 � � � x0

m

� D �y0
1 � � � y0

m

�

:

The induction hypothesis now implies that x0
i D y0

i . This combined with

�

y1 � � � ym
� D

�

�11 � � � �1m
y0
1 � � � y0

m

�

D
�

�11 � � � �1m
R0x0

1 � � � R0x0
m

�

D �

x1 � � � xm
�

shows that xi D yi for all i D 1; : : : ; m. ut
We are now ready to explain how the reduced row echelon form can be used to
identify the kernel and image of a matrix. Along the way, we shall reprove some of
our earlier results. Suppose that A 2 Matn�m .F/ and

PA D Arref

D �

x1 � � � xm
�

;

where we can find 1 � j1 < � � � < jk � m; such that

xjs D es for i D 1; : : : ; k
xj D 0; if j < j1;

xj 2 span fe1; : : : ; esg; if js < j < jsC1;

xj 2 span fe1; : : : ; ekg; if jk < j:

Finally, let i1 < � � � < im�k be the indices complementary to j1; ::; jk ; i.e.,

f1; : : : ; mg D fj1; ::; jkg [ fi1; : : : ; im�kg :

We are first going to study the kernel ofA. Since P is invertible, we see thatAx D 0
if and only if Arrefx D 0. Thus we only need to study the equation Arrefx D 0. If
we let x D .�1; : : : ; �m/ ; then the nature of the equationsArrefx D 0 will tell us that
.�1; : : : ; �m/ are uniquely determined by �i1 ; : : : ; �im�k

. To see why this is, we note
that if we have Arref D

�

˛ij
�

, then the reduced row echelon form tells us that

�j1 C ˛1i1�i1 C � � � C ˛1im�k
�im�k

D 0;

:::
:::
:::

�jk C ˛ki1�i1 C � � � C ˛kim�k
�im�k

D 0:
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Thus, �j1 ; : : : ; �jk have explicit formulas in terms of �i1 ; : : : ; �im�k
. We actually get

a bit more information: If we take .˛1; : : : ; ˛m�k/ 2 F
m�k and construct the unique

solution x D .�1; : : : ; �m/ such that �i1 D ˛1; : : : ; �im�k
D ˛m�k , then we have

actually constructed a map

F
m�k ! ker .Arref/

.˛1; : : : ; ˛m�k/! .�1; : : : ; �m/ :

We have just seen that this map is onto. The construction also gives us explicit for-
mulas for �j1 ; : : : ; �jk that are linear in �i1 D ˛1; : : : ; �im�k

D ˛m�k . Thus, the map
is linear. Finally, if .�1; : : : ; �m/ D 0; then we clearly also have .˛1; : : : ; ˛m�k/ D 0;
so the map is one-to-one. All in all, it is a linear isomorphism.

This leads us to the following result.

Theorem 1.13.5. (Uniqueness of Dimension) Let A 2 Matn�m .F/ ; if n < m; then
ker .A/ ¤ f0g. Consequently, Fn and F

m are not isomorphic.

Proof. Using the above notation, we have k � n < m. Thus,m�k > 0. From what
we just saw, this implies ker .A/ D ker .Arref/ ¤ f0g. In particular, it is not possible
for A to be invertible. This shows that Fn and F

m cannot be isomorphic. ut
Having now shown that the dimension of a vector space is well defined, we can then
establish the dimension formula. Part of the proof of this theorem is to identify a
basis for the image of a matrix. Note that this proof does not depend on the result
that subspaces of finite-dimensional vector spaces are finite-dimensional. In fact,
for the subspaces under consideration, namely, the kernel and image, it is part of the
proof to show that they are finite-dimensional.

Theorem 1.13.6. (The Dimension Formula) Let A 2 Matn�m .F/ ; then

m D dim .ker .A//C dim .im .A// :

Proof. We use the above notation. We just saw that dim .ker .A// D m � k; so it
remains to check why dim .im .A// D k. If

A D �y1 � � � ym
�

;

then we have yi D P�1xi ; where

Arref D
�

x1 � � � xm
�

:

We know that each

xj 2 span fe1; : : : ; ekg D span
˚

xj1 ; : : : ; xjk
� I

thus, we have that
yj 2 span

˚

yj1 ; : : : ; yjk
�

:
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Moreover, as P is invertible, we see that yj1 ; : : : ; yjk must be linearly independent
as e1; : : : ; ek are linearly independent. This proves that yj1 ; : : : ; yjk form a basis for
im .A/. ut
Corollary 1.13.7. (Subspace Theorem) Let M � F

n be a subspace. Then, M is
finite-dimensional and dim .M/ � n.

Proof. Recall from Sect. 1.10 that every subspaceM � F
n has a complement. This

means that we can construct a projection as in Sect. 1.11 that has M as kernel. This
means that M is the kernel for some A 2 Matn�n .F/. Thus, the previous theorem
implies the claim. ut
It might help to see an example of how the above constructions work.

Example 1.13.8. Suppose that we have a 4 � 7 matrix

A D

2

6

6

4

0 1 4 1 0 3 �1
0 0 0 1 �2 5 �4
0 0 0 0 0 0 1

0 0 0 0 0 0 1

3

7

7

5

:

Then

Arref D

2

6

6

4

0 1 4 0 2 �2 0
0 0 0 1 �2 5 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

3

7

7

5

:

Thus, j1 D 2; j2 D 4; and j3 D 7. The complementary indices are i1 D 1; i2 D 3;
i3 D 5; and i4 D 6. Hence,

im .A/ D span

8

ˆ
ˆ
<

ˆ
ˆ
:

2

6

6

4

1

0

0

0

3

7

7

5

;

2

6

6

4

1

1

0

0

3

7

7

5

;

2

6

6

4

�1
�4
1

1

3

7

7

5

9

>
>
=

>
>
;

and

ker .A/ D

8

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
<

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
:

2

6

6

6

6

6

6

6

6

6

4

�1

�4�3 � 2�5 C 2�6
�3

2�5 � 5�6
�5
�6
0

3

7

7

7

7

7

7

7

7

7

5

W �1; �3; �5; �6 2 F

9

>
>
>
>
>
>
>
>
>
=

>
>
>
>
>
>
>
>
>
;

:



92 1 Basic Theory

Our method for finding a basis for the image of a matrix leads us to a different proof
of the rank theorem. The column rank of a matrix is simply the dimension of the
image, in other words, the maximal number of linearly independent column vectors.
Similarly, the row rank is the maximal number of linearly independent rows. In other
words, the row rank is the dimension of the image of the transposed matrix.

Theorem 1.13.9. (The Rank Theorem) Any n �m matrix has the property that the
row rank is equal to the column rank.

Proof. We just saw that the column rank for A and Arref is the same and equal to
k with the above notation. Because of the row operations we use, it is clear that
the rows of Arref are linear combinations of the rows of A. As the process can be
reversed, the rows of A are also linear combinations of the rows Arref. Hence, A and
Arref also have the same row rank. Now, Arref has k linearly independent rows and
must therefore have row rank k. ut
Using the rank theorem together with the dimension formula leads to an interesting
corollary.

Corollary 1.13.10. Let A 2 Matn�n .F/. Then,

dim .ker .A// D dim
�

ker
�

At
��

;

where At 2 Matn�n .F/ is the transpose of A.

We are now going to clarify what type of matrices P occur when we do the row
reduction to obtainPA D Arref. If we have an n�nmatrixAwith trivial kernel, then
it must follow that Arref D 1Fn . Therefore, if we perform Gauss-Jordan elimination
on the augmented matrix

Aj1Fn;
then we end up with an answer that looks like

1Fn jB:

The matrix B evidently satisfies BA D 1Fn . To be sure that this is the inverse we
must also check that AB D 1Fn . However, we know that A has an inverse A�1. If
we multiply the equation BA D 1Fn by A�1 on the right we obtain B D A�1. This
settles the uncertainty.

Definition 1.13.11. The space of all invertible n � n matrices is called the general
linear group and is denoted by

Gln .F/ D
˚

A 2 Matn�n .F/ j 9 A�1 2 Matn�n .F/ W AA�1 D A�1A D 1Fn
�

:

This space is a so-called group.

Definition 1.13.12. This means that we have a set G and a product operation G �
G ! G denoted by .g; h/! gh. This product operation must satisfy:
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1. Associativity: .g1g2/ g3 D g1 .g2g3/.
2. Existence of a unit e 2 G such that eg D ge D g.
3. Existence of inverses: For each g 2 G, there is g�1 2 G such that gg�1 D
g�1g D e.

If we use matrix multiplication in Gln .F/ and 1Fn as the unit, then it is clear that
Gln .F/ is a group. Note that we do not assume that the product operation in a group
is commutative, and indeed, it is not commutative in Gln .F/ unless n D 1.

Definition 1.13.13. If a possibly infinite subset S � G of a group has the property
that any element in G can be written as a product of elements in S , then we say that
S generates G.

We can now prove,

Theorem 1.13.14. The general linear groupGln .F/ is generated by the elementary
matrices Ikl ; Rkl .˛/ ; andMk .˛/.

Proof. We already observed that Ikl ; Rkl .˛/ ; and Mk .˛/ are invertible and hence
form a subset in Gln .F/. Let A 2 Gln .F/ ; then we know that also A�1 2 Gln .F/.
Now, observe that we can findP 2 Gln .F/ as a product of elementary matrices such
that PA�1 D 1Fn . This was the content of the Gauss-Jordan elimination process for
finding the inverse of a matrix. This means that P D A and hence A is a product of
elementary matrices. ut
The row echelon representation of a matrix tells us:

Corollary 1.13.15. Let A 2 Matn�n .F/ ; then it is possible to find P 2 Gln .F/
such that PA is upper triangular:

PA D

2

6

6

6

4

ˇ11 ˇ12 � � � ˇ1n
0 ˇ22 � � � ˇ2n
:::

:::
: : :
:::

0 0 � � � ˇnn

3

7

7

7

5

Moreover,

ker .A/ D ker .PA/

and ker .A/ ¤ f0g if and only if the product of the diagonal elements in PA is zero:

ˇ11ˇ22 � � �ˇnn D 0:

We are now ready to see how the process of calculating Arref using row operations
can be interpreted as a change of basis in the image space.

Definition 1.13.16. Two matricesA;B 2 Matn�m .F/ are said to be row equivalent
if we can find P 2 Gln .F/ such that A D PB .



94 1 Basic Theory

Thus, row equivalent matrices are the matrices that can be obtained from each other
via row operations. We can also think of row equivalent matrices as being different
matrix representations of the same linear map with respect to different bases in F

n.
To see this, consider a linear map L W Fm ! F

n that has matrix representation A
with respect to the standard bases. If we perform a change of basis in F

n from the
standard basis f1; : : : ; fn to a basis y1; : : : ; yn such that

�

y1 � � � yn
� D �f1 � � � fn

�

P;

i.e., the columns of P are regarded as a new basis for Fn; thenB D P�1A is simply
the matrix representation for L W Fm ! F

n when we have changed the basis in F
n

according to P . This information can be encoded in the diagram

F
m A�! F

n

1Fm # # 1Fn
F
m L�! F

n

1Fm " " P
F
m B�! F

n:

When we consider abstract matrices rather than systems of equations, we
could equally well have performed column operations. This is accomplished by
multiplying the elementary matrices on the right rather than the left. We can see
explicitly what happens in the 2 � 2 case:

AI12 D
�

˛11 ˛12
˛21 ˛22

� �

0 1

1 0

�

D
�

˛12 ˛11
˛22 ˛21

�

AR12 .˛/ D
�

˛11 ˛12
˛21 ˛22

� �

1 ˛

0 1

�

D
�

˛11 ˛˛11 C ˛12
˛21 ˛˛21 C ˛22

�

AR21 .˛/ D
�

˛11 ˛12
˛21 ˛22

� �

1 0

˛ 1

�

D
�

˛11 C ˛˛12 ˛12
˛21 C ˛˛22 ˛22

�

AM1 .˛/ D
�

˛11 ˛12

˛21 ˛22

� �

˛ 0

0 1

�

D
�

˛˛11 ˛12

˛˛21 ˛22

�

AM2 .˛/ D
�

˛11 ˛12
˛21 ˛22

� �

1 0

0 ˛

�

D
�

˛11 ˛˛12
˛21 ˛˛22

�

:

The only important and slightly confusing thing to be aware of is that, whileRkl .˛/
as a row operation multiplies row l by ˛ and then adds it to row k, it now multiplies
column k by ˛ and adds it to column l as a column operation. This is because AEkl
is the matrix whose l th column is the kth column of A and whose other columns
vanish.
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Definition 1.13.17. Two matrices A;B 2 Matn�m .F/ are said to be column equiv-
alent ifA D BQ for someQ 2 Glm .F/. According to the above interpretation, this
corresponds to a change of basis in the domain space F

m.

Definition 1.13.18. More generally, we say that A;B 2 Matn�m .F/ are equivalent
if A D PBQ; where P 2 Gln .F/ andQ 2 Glm .F/.
The diagram for the change of basis then looks like

F
m A�! F

n

1Fm # # 1Fn
F
m L�! F

n

Q�1 " " P
F
m B�! F

n:

In this way, we see that two matrices are equivalent if and only if they are matrix
representations for the same linear map. Recall from Sect. 1.12 that any linear map
between finite-dimensional spaces always has a matrix representation of the form

2

6

6

6

6

6

6

6

6

6

6

4

1 � � � 0 0
:::
: : :

:::
:::

0 � � � 1 ::: :::
:::

::: 0 0
:::

:::
:::
: : :
:::

0 � � � 0 0 � � � 0

3

7

7

7

7

7

7

7

7

7

7

5

;

where there are k ones in the diagonal if the linear map has rank k. This implies

Corollary 1.13.19. (Characterization of Equivalent Matrices) A;B 2 Matn�m .F/
are equivalent if and only if they have the same rank. Moreover, any matrix of rank
k is equivalent to a matrix that has k ones on the diagonal and zeros elsewhere.

Exercises

1. Find bases for kernel and image for the following matrices:

(a)
2

4

1 3 5 1

2 0 6 0

0 1 7 2

3

5
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(b)
2

4

1 2

0 3

1 4

3

5

(c)
2

4

1 0 1

0 1 0

1 0 1

3

5

(d)
2

6

6

6

4

˛11 0 � � � 0
˛21 ˛22 � � � 0
:::

:::
: : :
:::

˛n1 ˛n2 � � � ˛nn

3

7

7

7

5

:

In this case, it will be necessary to discuss whether or not ˛ii D 0 for each
i D 1; : : : ; n.

2. Find A�1 for each of the following matrices:

(a)
2

6

6

4

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

3

7

7

5

(b)
2

6

6

4

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

3

7

7

5

(c)
2

6

6

4

0 1 0 1

1 0 0 0

0 0 1 0

0 0 0 1

3

7

7

5

:

3. Let A 2 Matn�m .F/. Show that we can find P 2 Gln .F/ that is only a product
of matrices of the types Iij and Rij .˛/ such that PA is upper triangular.

4. Let A D Matn�n .F/. We say that A has an LU decomposition if A D LU ,
where L is lower triangular with 1s on the diagonal and U is upper triangular.
Show that A has an LU decomposition if all the leading principal minors are
invertible. The leading principal k�k minor is the k�k submatrix gotten from
A by eliminating the last n � k rows and columns. Hint: Do Gauss elimination
using only Rij .˛/.
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5. Assume that A D PB; where P 2 Gln .F/.
(a) Show that ker .A/ D ker .B/.
(b) Show that if the column vectors yi1 ; : : : ; yik of B form a basis for im .B/ ;

then the corresponding column vectors xi1 ; : : : ; xik for A form a basis for
im .A/.

6. Let A 2 Matn�m .F/.

(a) Show that the m � m elementary matrices Iij ; Rij .˛/ ;Mi .˛/ when
multiplied on the right correspond to column operations.

(b) Show that we can find Q 2 Glm .F/ such that AQ is lower triangular.
(c) Use this to conclude that im .A/ D im .AQ/ and describe a basis for

im .A/.
(d) Use Q to find a basis for ker .A/ given a basis for ker .AQ/ and describe

how you select a basis for ker .AQ/.

7. Let A 2 Matn�n .F/ be upper triangular.

(a) Show that dim .ker .A// � number of zero entries on the diagonal.
(b) Give an example where dim .ker .A// < number of zero entries on the

diagonal.

8. In this exercise, you are asked to show some relationships between the
elementary matrices.

(a) Show thatMi .˛/ D IijMj .˛/ Ij i .
(b) Show that Rij .˛/ D Mj

�

˛�1�Rij .1/Mj .˛/.
(c) Show that Iij D Rij .�1/Rji .1/Rij .�1/Mj .�1/.
(d) Show that Rkl .˛/ D Iki IljRij .˛/ IjlIik; where in case i D k or j D k

we interpret Ikk D Il l D 1Fn .
9. A matrix A 2 Gln .F/ is a permutation matrix (see also Example 1.7.7) if
Ae1 D e�.i/ for some bijective map (permutation)

� W f1; : : : ; ng ! f1; : : : ; ng :

(a) Show that

A D
n
X

iD1
E�.i/i :

(b) Show that A is a permutation matrix if and only if A has exactly one entry
in each row and column which is 1 and all other entries are zero.

(c) Show that A is a permutation matrix if and only if it is a product of the
elementary matrices Iij .

10. Assume that we have two fields F � L; such as R � C; and consider
A 2 Matn�m .F/. Let AL 2 Matn�m .L/ be the matrix A thought of as
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an element of Matn�m .L/. Show that dimF .ker .A// D dimL .ker .AL// and
dimF .im .A// D dimL .im .AL//. Hint: Show that A and AL have the same
reduced row echelon form.

11. Given ˛ij 2 F for i < j and i; j D 1; : : : ; n, we wish to solve

�i

�j
D ˛ij :

(a) Show that this system either has no solutions or infinitely many solutions.
Hint: Try n D 2; 3 first.

(b) Give conditions on ˛ij that guarantee an infinite number of solutions.
(c) Rearrange this system into a linear system and explain the above results.

1.14 Dual Spaces*

Definition 1.14.1. For a vector space V over F, we define the dual vector space
V 0 D Hom .V;F/ as the set of linear functions on V .

One often sees the notation V � for V 0. However, we have reserved V � for the
conjugate vector space to a complex vector space (see Exercise 6 in Sect. 1.4). When
V is finite-dimensional we know that V and V 0 have the same dimension. In this
section, we shall see how the dual vector space can be used as a substitute for an
inner product on V in case V does not come with a natural inner product (see Chap. 3
for the theory on inner product spaces).

We have a natural dual pairing V �V 0 ! F defined by .x; f / D f .x/ for x 2 V
and f 2 V 0. We are going to think of .x; f / as a sort of inner product between x
and f . Using this notation will enable us to make the theory virtually the same as for
inner product spaces. Observe that this pairing is linear in both variables. Linearity
in the first variable is a consequence of using linear functions in the second variable.
Linearity in the second variable is completely trivial:

.˛x C ˇy; f / D f .˛x C ˇy/
D f̨ .x/C f̌ .y/

D ˛ .x; f /C ˇ .y; f / ;
.x; f̨ C ˇg/ D . f̨ C ˇg/ .x/

D f̨ .x/C ˇg .x/
D ˛ .x; f /C ˇ .x; g/ :

We start with our construction of a dual basis; these are similar to orthonormal
bases. Let V have a basis x1; : : : ; xn; and define linear functions fi by fi

�

xj
� D ıij .

Thus,
�

xi ; fj
� D fj .xi / D ıij .
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Example 1.14.2. Recall that we defined dxi W Rn ! R as the linear function such
that dxi

�

ej
� D ıij ; where e1; : : : ; en is the canonical basis for Rn. Thus, dxi is the

dual basis to the canonical basis.

Proposition 1.14.3. The vectors f1; : : : ; fn 2 V 0 form a basis called the dual basis
of x1; : : : ; xn. Moreover, for x 2 V and f 2 V 0, we have the expansions

x D .x; f1/ x1 C � � � C .x; fn/ xn;
f D .x1; f / f1 C � � � C .xn; f / fn:

Proof. Consider a linear combination ˛1f1 C � � � C ˛nfn. Then,

.xi ; ˛1f1 C � � � C ˛nfn/ D ˛1 .xi ; f1/C � � � C ˛n .xi ; fn/
D ˛i :

Thus, ˛i D 0 if ˛1f1 C � � � C ˛nfn D 0. Since V and V 0 have the same dimension,
this shows that f1; : : : :fn form a basis for V 0. Moreover, if we have an expansion
f D ˛1f1 C � � � C ˛nfn; then it follows that ˛i D .xi ; f / D f .xi /.

Finally, assume that x D ˇ1x1 C � � � C ˇnxn. Then,

.x; fi / D .ˇ1x1 C � � � C ˇnxn; fi /
D ˇ1 .x1; fi /C � � � C ˇn .xn; fi /
D ˇi ;

which is what we wanted to prove. ut
Next, we define annihilators; these are counterparts to orthogonal complements.

Definition 1.14.4. Let M � V be a subspace and define the annihilator toM in V
as the subspaceMo � V 0 given by

Mo D ˚

f 2 V 0 W .x; f / D 0 for all x 2M �

D ˚

f 2 V 0 W f .x/ D 0 for all x 2 M �

D ˚

f 2 V 0 W f .M/ D f0g�

D ˚

f 2 V 0 W f jM D 0
�

:

Using dual bases, we can get a slightly better grip on these annihilators.

Proposition 1.14.5. If M � V is a subspace of a finite-dimensional space and
x1; : : : ; xn is a basis for V such that

M D span fx1; : : : ; xmg ;
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then
Mo D span ffmC1; : : : ; fng ;

where f1; : : : ; fn is the dual basis. In particular, we have

dim .M/C dim .Mo/ D dim .V / D dim
�

V 0� :

Proof. If M D span fx1; : : : ; xmg ; then fmC1; : : : ; fn 2 Mo by definition of the
annihilator as each of fmC1; : : : ; fn vanish on the vectors x1; : : : ; xm. Conversely,
take f 2Mo and expand it f D ˛1f1 C � � � C ˛nfn. If 1 � i � m; then

0 D .xi ; f / D ˛i :
So f D ˛mC1fmC1 C � � � C ˛nfn as desired. ut
We are now ready to discuss the reflexive property. This will allow us to go from
V 0 back to V itself rather than to .V 0/0 D V 00. Thus, we have to find a natural
identification V ! V 00. There is, indeed, a natural linear map

ev W V ! V 00

that takes each x 2 V to a linear function on V 0 defined by evx .f / D .x; f / D
f .x/. To see that it is linear, observe that

.˛x C ˇy; f / D f .˛x C ˇy/
D f̨ .x/C f̌ .y/

D ˛ .x; f /C ˇ .y; f / :

Evidently, we have defined evx in such a way that

.x; f / D .f; evx/ :

The map x ! evx always has trivial kernel. To prove this in the finite-
dimensional case, select a dual basis f1; : : : ; fn for V 0 and observe that since
evx .fi / D .x; fi / records the coordinates of x, it is not possible for x to be in
the kernel unless it is zero. Finally, we use that dim .V / D dim .V 0/ D dim .V 00/ to
conclude that this map is an isomorphism. Thus, any element of V 00 is of the form
evx for a unique x 2 V .

The first interesting observation we make is that if f1; : : : ; fn is dual to
x1; : : : ; xn; then evx1 ; : : : ; evxn is dual to f1; : : : ; fn as

evxi
�

fj
� D �xi ; fj

� D ıij :

If we agree to identify V 00 with V , i.e., we think of x as identified with evx , then we
can define the annihilator of a subspace N � V 0 by
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No D fx 2 V W .x; f / D 0 for all f 2 N g
D fx 2 V W f .x/ D 0 for all f 2 N g :

The claim then is, that forM � V andN � V 0, we haveMoo DM andNoo D N .
Both identities follow directly from the above proposition about the construction of
a basis for the annihilator.

We now come to an interesting relationship between annihilators and the dual
spaces of subspaces.

Proposition 1.14.6. Assume that V is finite-dimensional. If V D M ˚ N; then
V 0 D Mo ˚ No and the restriction maps V 0 ! M 0 and V 0 ! N 0 give
isomorphisms

Mo 	 N 0;

N o 	 M 0:

Proof. Select a basis x1; : : : ; xn for V such that

M D span fx1; : : : ; xmg ;
N D span fxmC1; : : : ; xng :

Let f1; : : : ; fn be the dual basis and observe that

Mo D span ffmC1; : : : ; fng ;
N o D span ff1; : : : ; fmg :

This proves that V 0 D Mo ˚No. Next, we note that

dim .Mo/ D dim .V /� dim .M/

D dim .N /

D dim
�

N 0� :

So at least Mo and N 0 have the same dimension. What is more, if we restrict
fmC1; : : : ; fn to N; then we still have that

�

xj ; fi
� D ıij for j D mC 1; : : : ; n. As

N D span fxmC1; : : : ; xng ; this means that fmC1jN ; : : : ; fnjN form a basis for N 0.
The proof that No 	 M 0 is similar. ut
The main problem with using dual spaces rather than inner products is that while
we usually have a good picture of what V is, we rarely get a good independent
description of the dual space. Thus, the constructions mentioned here should be
thought of as being theoretical and strictly auxiliary to the developments of the
theory of linear operators on a fixed vector space V .

Below, we consider a few examples of constructions of dual spaces.
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Example 1.14.7. Let V D Matn�m .F/ ; then we can identify V 0 D Matm�n .F/.
For each A 2 Matm�n .F/ ; the corresponding linear function is

fA .X/ D tr .AX/ D tr .XA/ :

Example 1.14.8. If V is a finite-dimensional inner product space, then fy .x/ D
.xjy/ defines a linear function, and we know that all linear functions are of that
form. Thus, we can identify V 0 with V . Note, however, that in the complex case,
y ! fy is not complex linear. It is in fact conjugate linear, i.e., f�y D N�fy . Thus,
V 0 is identified with V � (see Exercise 6 in Sect. 1.4). This conforms with the idea
that the inner product defines a bilinear paring on V � V � via .x; y/ ! .xjy/ that
is linear in both variables!

Example 1.14.9. If we think of V as R with Q as scalar multiplication, then it is
not at all clear that we have any linear functions f W R! Q. In fact, the axiom of
choice has to be invoked in order to show that they exist.

Example 1.14.10. Finally, we have an exceedingly interesting infinite-dimensional
example where the dual gets quite a bit bigger. Let V D F Œt � be the vector space of
polynomials. We have a natural basis 1; t; t2; : : :. Thus, a linear map f W F Œt � ! F

is determined by its values on this basis ˛n D f .tn/. Conversely, given an infinite
sequence ˛0; ˛1; ˛2; : : : 2 F, we have a linear map such that f .tn/ D ˛n. So
while V consists of finite sequences of elements from F; the dual consists of infinite
sequences of elements from F. We can evidently identify V 0 D F ŒŒt �� with power
series by recording the values on the basis as coefficients:

1
X

nD0
˛nt

n D
1
X

nD0
f .tn/ tn:

This means that V 0 inherits a product structure through taking products of power
series. There is a large literature on this whole setup under the title Umbral Calculus.
For more on this, see [Roman].

Definition 1.14.11. The dual space construction leads to a dual mapL0 W W 0 ! V 0
for a linear map L W V ! W . This dual map is a generalization of the transpose of
a matrix. The definition is quite simple:

L0 .g/ D g ı L:

Thus, if g 2 W 0, then we get a linear function g ı L W V ! F since L W V ! W .
The dual to L is often denoted L0 D Lt as with matrices. This will be justified in
the exercises to this section. Note that if we use the pairing .x; f / between V and
V 0, then the dual map satisfies

.L .x/ ; g/ D �x;L0 .g/
�
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for all x 2 V and g 2 W 0. Thus, the dual map really is defined in a manner
analogous to the adjoint.

The following properties follow almost immediately from the definition.

Proposition 1.14.12. LetL; QL W V ! W andK W W ! U be linear maps between
finite-dimensional vector spaces; then:

(1)
�

˛LC ˇ QL�0 D ˛L0 C ˇ QL0:
(2) .K ı L/0 D L0 ıK 0:
(3) L00 D .L0/0 D L if we identify V 00 D V andW 00 D W:
(4) If M � V and N � W are subspaces with L.M/ � N , then L0 .N o/ �Mo:

Proof. 1. Just note that
�

˛LC ˇ QL�0 .g/ D g ı �˛LC ˇ QL�

D ˛g ı LC ˇg ı QL
D ˛L0 .g/C ˇ QL0 .g/

as g is linear.
2. This comes from

.K ı L/0 .h/ D h ı .K ı L/
D .h ıK/ ı L
D K 0 .h/ ı L
D L0 �K 0 .h/

�

:

3. Note that L00 W V 00 ! W 00. If we take evx 2 V 00 and use .x; f / D .f; evx/, then

�

g;L00 .evx/
� D �

L0 .g/ ; evx
�

D �

x;L0 .g/
�

D .L .x/ ; g/ :

This shows that L00 .evx/ is identified with L.x/ as desired.
4. If g 2 V 0; then we have that .x; L0 .g// D .L .x/ ; g/. So if x 2 M; then

we have L.x/ 2 N , and hence, g .L .x// D 0 for g 2 No. This means that
L0 .g/ 2 Mo. ut

Just like for adjoint maps, we have a type of Fredholm alternative for dual maps.

Theorem 1.14.13. (The Generalized Fredholm Alternative) Let L W V ! W be a
linear map between finite-dimensional vector spaces. Then,

ker .L/ D im
�

L0� ;

ker
�

L0� D im .L/o ;



104 1 Basic Theory

ker .L/o D im
�

L0� ;

ker
�

L0�o D im .L/ :

Proof. We only need to prove the first statement as L00 D L andMoo D M ,

ker .L/ D fx 2 V W Lx D 0g ;
im
�

L0�o D ˚

x 2 V W �x;L0 .g/
� D 0 for all g 2 W �

:

Using that .x; L0 .g// D .L .x/ ; g/, we note first that if x 2 ker .L/ ; then it must
also belong to im .L0/o. Conversely, if 0 D .x; L0 .g// D .L .x/ ; g/ for all g 2 W ,
it must follow that L.x/ D 0 and hence x 2 ker .L/. ut
As a corollary, we obtain a new version of the rank theorem (Theorem 1.12.11).

Corollary 1.14.14. (The Rank Theorem) LetL W V ! W be a linear map between
finite-dimensional vector spaces. Then,

rank .L/ D rank
�

L0� :

Proof. The Fredholm alternative together with the dimension formula (Theo-
rem 1.11.7) immediately shows:

rank .L/ D dimV � dim ker .L/

D dimV � dim im
�

L0�o

D dimV � dimV C im
�

L0�

D rank
�

L0� :

ut

Exercises

1. Let x1; : : : ; xn be a basis for V and f1; : : : ; fn a dual basis for V 0. Show that
the inverses to the isomorphisms

�

x1 � � � xn
� W Fn ! V;

�

f1 � � � fn
� W Fn ! V 0

are given by

�

x1 � � � xn
��1

.x/ D

2

6

4

f1 .x/
:::

fn .x/

3

7

5 ;
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�

f1 � � � fn
��1

.f / D

2

6

4

f .x1/
:::

f .xn/

3

7

5 :

2. Let L W V ! W with basis x1; : : : ; xm for V; y1; : : : ; yn for W and dual basis
g1; : : : ; gn for W 0. Show that we have

L D �

x1 � � � xm
�

ŒL�
�

y1 � � � yn
��1

D �

x1 � � � xm
�

ŒL�

2

6

4

g1
:::

gn

3

7

5 ;

where ŒL� is the matrix representation for L with respect to the given bases.
3. Given the basis 1; t; t2 for P2, identify P2 with C

3 (column vectors) and .P2/
0

with Mat1�3 .C/ (row vectors).

(a) Using these identifications, find a dual basis to 1; 1C t; 1C t C t2 in .P2/
0.

(b) Using these identifications, find the matrix representation for f 2 .P2/0
defined by

f .p/ D p .t0/ :
(c) Using these identifications, find the matrix representation for f 2 .P2/0

defined by

f .p/ D
Z b

a

p .t/ dt:

(d) Are all elements in .P2/
0 represented by the types of linear functions

described in either (b) or (c)?

4. (Lagrange Multiplier Construction) Let f; g 2 V 0 and assume that g ¤ 0.
Show that f D �g for some � 2 F if and only if ker .f / 
 ker .g/.

5. Let M � V be a subspace. Show that we have linear maps

Mo i

!V 0 �
!M 0;

where � is one-to-one, � is onto, and im .i/ D ker .�/. Conclude that V 0 is
isomorphic to Mo �M 0.

6. Let V and W be finite-dimensional vector spaces. Exhibit an isomorphism
between V 0 � W 0 and .V �W /0 that does not depend on choosing bases for
V andW .



106 1 Basic Theory

7. Let M;N � V be subspaces of a finite-dimensional vector space. Show that

Mo CNo D .M \N/o ;
.M CN/o D Mo \No:

8. Let L W V ! W and assume that we have bases x1; : : : ; xm for V , y1; : : : ; yn
for W and corresponding dual bases f1; : : : ; fm, for V 0 and g1; : : : ; gn for W 0.
Show that if ŒL� is the matrix representation for L with respect to the given
bases, then ŒL�t D ŒL0� with respect to the dual bases.

9. Assume that L W V ! W is a linear map and that L.M/ � N for subspaces
M � V and N � W . Is there a relationship between .LjM/0 W N 0 ! M 0 and
L0jNo W No !Mo?

10. (The Rank Theorem) This exercise is an abstract version of what happened in
the proof of the Rank Theorem 1.12.11 in Sect. 1.12. Let L W V ! W and
x1; : : : ; xk a basis for im .L/.

(a) Show that

L.x/ D .x; f1/ x1 C � � � C .x; fk/ xk
for suitable f1; : : : ; fk 2 V 0.

(b) Show that

L0 .f / D .x1; f / f1 C � � � C .xk; f / fk
for f 2 W 0.

(c) Conclude that rank .L0/ � rank .L/.
(d) Show that rank .L0/ D rank .L/.

11. Let M � V be a finite-dimensional subspace of V and x1; : : : ; xk a basis for
M . Let

L.x/ D .x; f1/ x1 C � � � C .x; fk/ xk
for f1; : : : ; fk 2 V 0.

(a) If
�

xj ; fi
� D ıij ; then L is a projection onto M; i.e., L2 D L and

im .L/ DM .
(b) If E is a projection ontoM , then

E D .x; f1/ x1 C � � � C .x; fk/ xk;

with
�

xj ; fi
� D ıij .

12. Let M;N � V be subspaces of a finite-dimensional vector space and consider
L WM �N ! V defined by L.x; y/ D x � y.

(a) Show that L0 .f / .x; y/ D f .x/ � f .y/.
(b) Show that ker .L0/ can be identified with bothMo \No and .M CN/o.
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1.15 Quotient Spaces*

In Sect. 1.14, we saw that ifM � V is a subspace of a general vector space, then the
annihilator subspace Mo � V 0 can play the role of a canonical complement of M .
One thing missing from this setup, however, is the projection whose kernel is M .
In this section, we shall construct a different type of vector space that can substitute
as a complement to M . It is called the quotient space of V over M and is denoted
V=M . In this case, there is an onto linear map P W V ! V=M whose kernel is M .
The quotient space construction is somewhat abstract, but it is also quite general and
can be developed with a minimum of information as we shall see. It is in fact quite
fundamental and can be used to prove several of the important results mentioned in
Sect. 1.11.

Similar to addition for subspaces in Sect. 1.10, we can in fact define addition for
any subsets of a vector space.

Definition 1.15.1. If S; T � V are subsets, then we define

S C T D fx C y W x 2 S and y 2 T g :

It is immediately clear that this addition on subsets is associative and commutative.
In case one of the sets contains only one element, we simplify the notation by writing

S C fx0g D S C x0 D fx C x0 W x 2 Sg ;

and we call S C x0 a translate of S . Geometrically, all of the sets S C x0 appear
to be parallel pictures of S (see Fig. 1.4) that are translated in V as we change x0.
We also say that S and T are parallel and denote it S k T if T D S C x0 for some
x0 2 V .

It is also possible to scale subsets

˛S D f˛x W x 2 Sg :

Fig. 1.4 Parallel subspaces
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This scalar multiplication satisfies some of the usual properties of scalar
multiplication

.˛ˇ/ S D ˛ .ˇS/ ;

1S D S;

˛ .S C T / D ˛S C ˛T:
However, the other distributive law can fail

.˛ C ˇ/ S ‹D ˛S C ˇS
since it may not be true that

2S
‹D S C S:

Certainly, 2S � S CS; but elements xCy do not have to belong to 2S if x; y 2 S
are distinct. Take, e.g., S D fx;�xg ; where x ¤ 0. Then, 2S D f2x;�2xg ; while
S C S D f2x; 0;�2xg.
Definition 1.15.2. Our picture of the quotient space V=M; when M � V is a
subspace, is the set of all translatesM C x0 for x0 2 V

V=M D fM C x0 W x0 2 V g

Several of these translates are in fact equal as

x1 CM D x2 CM
precisely when x1�x2 2M . To see why this is, note that if z 2M , then zCM DM
since M is a subspace. Thus, x1 � x2 2M implies that

x1 CM D x2 C .x1 � x2/CM
D x2 CM:

Conversely, if x1CM D x2CM; then x1 D x2Cx for some x 2 M implying that
x1 � x2 2M .

We see that in the trivial case where M D f0g, the translates of f0g can be
identified with V itself. Thus, V= f0g 	 V . In the other trivial case where M D V ,
all the translates are simply V itself. So V=V is the one element set fV g whose
element is the vector space V .

We now need to see how addition and scalar multiplication works on V=M .
The important property that simplifies calculations and will turn V=M into a vector
space is the fact that M is a subspace, i.e., for all scalars ˛; ˇ 2 F,

˛M C ˇM DM:
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This implies that addition and scalar multiplication is considerably simplified.

˛ .M C x/C ˇ .M C y/ D ˛M C ˇM C ˛x C ˇy
D M C ˛x C ˇy:

With this in mind, we can show that V=M is a vector space. The zero element isM
since M C .M C x0/ DM C x0. The negative of M C x0 is the translate M � x0.
Finally, the important distributive law that was not true in general also holds because

.˛ C ˇ/ .M C x0/ D M C .˛ C ˇ/ x0
D M C ˛x0 C ˇx0
D .M C ˛x0/C .M C ˇx0/
D ˛ .M C x0/C ˇ .M C x0/ :

The “projection” P W V ! V=M is now defined by

P .x/ D M C x:
Clearly, P is onto and P .x/ D 0 if and only if x 2 M . The fact that P is linear
follows from the way we add elements in V=M ,

P .˛x C ˇy/ D M C ˛x C ˇy
D ˛ .M C x/C ˇ .M C y/
D ˛P .x/C ˇP .y/ :

This projection can be generalized to the setting where M � N � V . Here we get
V=M ! V=N by mapping x CM to x CN .

If L W V ! W and M � V , L.M/ � N � W , then we get an induced map
L W V=M ! W=N by sending x CM to L.x/ C N . We need to check that this
indeed gives a well-defined map. Assuming that x1CM D x2CM , we have to show
that L.x1/C N D L.x2/C N . The first condition is equivalent to x1 � x2 2 M ;
thus,

L.x1/� L.x2/ D L.x1 � x2/
2 L.M/ � N;

implying that L.x1/CN D L.x2/CN .
We are now going to investigate how the quotient space can be used to understand

some of the developments from Sect. 1.11. For any linear map, we have that
L.ker .L// D f0g. Thus, L induces a linear map

V= .ker .L//! W= f0g 	 W:
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Since the image of ker .L/ C x is f0g C L.x/ 	 L.x/ ; we see that the induced
map has trivial kernel. This implies that we have an isomorphism

V= .ker .L//! im .L/ :

We can put all of this into a commutative diagram:

V
L�! W

P # "
V= .ker .L//

��! im .L/

Note that, as yet, we have not used any of the facts we know about finite-
dimensional spaces. The two facts we shall use are that the dimension of a
vector space is well defined (Theorem 1.8.4) and that any subspace in a finite-
dimensional vector space has a finite-dimensional complement (Theorem 1.10.20
and Corollary 1.12.6). We start by considering subspaces.

Theorem 1.15.3. (The Subspace Theorem) Let V be a finite-dimensional vector
space. If M � V is a subspace, then both M and V=M are finite-dimensional and

dimV D dimM C dim .V=M/ :

Proof. We start by selecting a finite-dimensional subspace N � V that is comple-
mentary toM (see Corollary 1.12.6). If we restrict the projectionP W V ! V=M to
P jN W N ! V=M; then it has trivial kernel asM \N D f0g, so P jN is one-to-one.
P jN is also onto since any z 2 V can be written as z D x C y where x 2 M and
y 2 N , so it follows that

M C z D M C x C y
D M C y
D P .y/ :

Thus, P jN W N ! V=M is an isomorphism. This shows that V=M is finite-
dimensional. In the same way, we see that the projectionQ W V ! V=N restricts to
an isomorphismQjM W M ! V=N . By selecting a finite-dimensional complement
for N � V , we also get that V=N is finite-dimensional. This in turn shows that M
is finite-dimensional.

We can now use that V DM ˚N to show that

dimV D dimM C dimN

D dimM C dim .V=M/ : ut
The dimension formula now follows from our observations above.
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Corollary 1.15.4. (The Dimension Formula) Let V be a finite-dimensional vector
space. If L W V ! W is a linear map, then

dimV D dim .ker .L//C dim .im .L// :

Proof. We just saw that

dimV D dim .ker .L//C dim .V= .ker .L/// :

In addition, we have an isomorphism

V= .ker .L// �! im .L/ :

This proves the claim. ut

Exercises

1. An affine subspace A � V is a subset such that if x1; : : : ; xk 2 A; ˛1; : : : ; ˛k 2
F; and ˛1C� � �C˛k D 1; then ˛1x1C� � �C˛kxk 2 A. Show that V=M consists
of all of the affine subspaces parallel to M .

2. Find an example of a nontrivial linear operator L W V ! V and a subspace
M � V such that LjM D 0 and the induced map L W V=M ! V=M is also
zero.

3. This exercise requires knowledge of the characteristic polynomial (see
Sects. 2.3, 2.7, or 5.7). Let L W V ! V be a linear operator with an invariant
subspace M � V . Show that 
L .t/ is the product of the characteristic
polynomials of LjM and the induced map L W V=M ! V=M .

4. Let M � V be a subspace and assume that we have x1; : : : ; xn 2 V such that
x1; : : : ; xk form a basis forM and xkC1CM; : : : ; xnCM form a basis for V=M .
Show that x1; : : : ; xn is a basis for V .

5. Let L W V ! W be a linear map and assume that L.M/ � N . How does
the induced map L W V=M ! W=N compare to the dual maps constructed in
Exercise 2 in Sect. 1.14?

6. LetM � V be a subspace. Show that there is a natural or canonical isomorphism
Mo ! .V=M/0, i.e., an isomorphism that does not depend on a choice of basis
for the spaces.





Chapter 2
Linear Operators

In this chapter, we are going to present all of the results that relate to linear operators
on abstract finite-dimensional vector spaces. Aside from a section on polynomials,
we start with a section on linear differential equations in order to motivate both
some material from Chap. 1 and also give a reason for why it is desirable to
study matrix representations. Eigenvectors and eigenvalues are first introduced in
the context of differential equations where they are used to solve such equations.
It is, however, possible to start with the Sect. 2.3 and ignore the discussion on
differential equations. The material developed in Chap. 1 on Gauss elimination is
used to calculate eigenvalues and eigenvectors and to give a “weak” definition of
the characteristic polynomial. We also introduce the minimal polynomial and use it
to characterize diagonalizable maps. We then move on to cyclic subspaces leading
us to fairly simple proofs of the Cayley–Hamilton theorem and the cyclic subspace
decomposition. This in turn gives us a nice proof of the Frobenius canonical form
as well as the Jordan canonical form. We finish the chapter with the Smith normal
form. This result gives a direct method for calculating the Frobenius canonical form
as well as a complete set of similarity invariants for a matrix. It also shows how
a system of higher order differential equations (or recurrence equations) can be
decoupled and solved as independent higher order equations.

Various properties of polynomials are used quite a bit in this chapter. Most of
these properties are probably already known to the student and in any case are
certainly well known from arithmetic of integers nevertheless, we have chosen to
collect some of these facts in an optional section at the beginning of this chapter.

It is possible to simply cover Sects. 2.3 and 2.5 and then move on to the chapters
on inner product spaces. In fact, it is possible to skip this chapter entirely as it is not
absolutely necessary in the theory of inner product spaces.

P. Petersen, Linear Algebra, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-3612-6 2, © Springer Science+Business Media New York 2012
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2.1 Polynomials*

The space of polynomials with coefficients in the field F is denoted F Œt �. This space
consists of expressions of the form

˛0 C ˛1t C � � � C ˛ktk;
where ˛0; : : : ; ˛k 2 F and k is a nonnegative integer. One can think of these
expressions as functions on F, but in this section, we shall only use the formal
algebraic structure that comes from writing polynomials in the above fashion. Recall
that integers are written in a similar way if we use the standard positional base 10
system (or any other base for that matter):

ak � � �a0 D ak10k C ak�110k�1 C � � � C a110C a0:
Indeed, there are many basic number theoretic similarities between integers and
polynomials as we shall see below.

Addition is defined by adding term by term:

�

˛0 C ˛1t C ˛2t2 C � � �
�C �ˇ0 C ˇ1t C ˇ2t2 C � � �

�

D .˛0 C ˇ0/C .˛1 C ˇ1/ t C .˛2 C ˇ2/ t2 C � � �

Multiplication is a bit more complicated but still completely naturally defined by
multiplying all the different terms and then collecting according to the powers of t :

�

˛0 C ˛1t C ˛2t2 C � � �
� � �ˇ0 C ˇ1t C ˇ2t2 C � � �

�

D ˛0 � ˇ0 C .˛0ˇ1 C ˛1ˇ0/ t C .˛0ˇ2 C ˛1ˇ1 C ˛2ˇ0/ t2 C � � �

Note that in “addition,” the indices match the power of t; while in “multiplication,”
each term has the property that the sum of the indices matches the power of t .

The degree of a polynomial ˛0 C ˛1t C � � � C ˛nt
n is the largest k such that

˛k ¤ 0. In particular,

˛0 C ˛1t C � � � C ˛ktk C � � � C ˛ntn D ˛0 C ˛1t C � � � C ˛ktk;

where k is the degree of the polynomial. We also write deg .p/ D k. The degree
satisfies the following elementary properties:

deg .p C q/ � max fdeg.p/; deg .q/g ;
deg .pq/ D deg .p/C deg .q/ :

Note that if deg .p/ D 0, then p .t/ D ˛0 is simply a scalar.
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It is often convenient to work with monic polynomials. These are the polynomials
of the form

˛0 C ˛1t C � � � C 1 � tk:
Note that any polynomial can be made into a monic polynomial by diving by the
scalar that appears in front of the term of highest degree. Working with monic
polynomials is similar to working with positive integers rather than all integers.

If p; q 2 F Œt �, then we say that p divides q if q D pd for some d 2 F Œt �. Note
that if p divides q, then it must follow that deg .p/ � deg .q/. The converse is of
course not true, but polynomial long division gives us a very useful partial answer
to what might happen.

Theorem 2.1.1. (The Euclidean Algorithm) If p; q 2 F Œt � and deg .p/ � deg .q/,
then q D pd C r , where deg .r/ < deg .p/.

Proof. The proof is along the same lines as how we do long division with remainder.
The idea of the Euclidean algorithm is that whenever deg .p/ � deg .q/, it is
possible to find d1 and r1 such that

q D pd1 C r1;
deg .r1/ < deg .q/ :

To establish, this assume

q D ˛nt
n C ˛n�1tn�1 C � � � C ˛0;

p D ˇmt
m C ˇm�1tm�1 C � � � C ˇ0;

where ˛n; ˇm ¤ 0. Then, define d1 D ˛n
ˇm
tn�m and

r1 D q � pd1
D �

˛nt
n C ˛n�1tn�1 C � � � C ˛0

�

� �ˇmtm C ˇm�1tm�1 C � � � C ˇ0
� ˛n

ˇm
tn�m

D �

˛nt
n C ˛n�1tn�1 C � � � C ˛0

�

�
�

˛nt
n C ˇm�1 ˛n

ˇm
tn�1 C � � � C ˇ0 ˛n

ˇm
tn�m

�

D 0 � tn C
�

˛n�1 � ˇm�1 ˛n
ˇm

�

tn�1 C � � � :

Thus, deg .r1/ < n D deg .q/.
If deg .r1/ < deg .p/, we are finished; otherwise, we use the same construction

to get

r1 D pd2 C r2;
deg .r2/ < deg .r1/ :
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We then continue this process and construct

rk D pdkC1 C rkC1;
deg .rkC1/ < deg .rk/ :

Eventually, we must arrive at a situation where deg .rk/� deg .p/ while
deg .rkC1/< deg .p/.

Collecting each step in this process, we see that

q D pd1 C r1
D pd1 C pd2 C r2
D p .d1 C d2/C r2
:::

D p .d1 C d2 C � � � C dkC1/C rkC1:
This proves the theorem. ut
The Euclidean algorithm is the central construction that makes all of the following
results work.

Proposition 2.1.2. Let p 2 F Œt � and � 2 F. .t � �/ divides p if and only if � is a
root of p; i.e., p .�/ D 0.

Proof. If .t � �/ divides p; then p D .t � �/ q. Hence, p .�/ D 0 � q .�/ D 0.
Conversely, use the Euclidean algorithm to write

p D .t � �/ q C r;
deg .r/ < deg .t � �/ D 1:

This means that r D ˇ 2 F. Now, evaluate this at �

0 D p .�/

D .� � �/ q .�/C r
D r

D ˇ:

Thus, r D 0 and p D .t � �/ q. ut
This gives us an important corollary.

Corollary 2.1.3. Let p 2 F Œt �. If deg .p/ D k; then p has no more than k roots.

Proof. We prove this by induction. When k D 0 or 1, there is nothing to prove. If
p has a root � 2 F, then p D .t � �/ q; where deg .q/ < deg .p/. Thus, q has no
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more than deg .q/ roots. In addition, we have that � ¤ � is a root of p if and only
if it is a root of q. Thus p, cannot have more than 1C deg .q/ � deg .p/ roots. ut
In the next proposition, we show that two polynomials always have a greatest
common divisor.

Proposition 2.1.4. Let p; q 2 F Œt � ; then there is a unique monic polynomial d D
gcd fp; qg with the property that if d1 divides both p and q, then d1 divides d .
Moreover, there exist r; s 2 F Œt � such that d D pr C qs.
Proof. Let d be a monic polynomial of smallest degree such that d D ps1C qs2. It
is clear that any polynomial d1 that divides p and q must also divide d . So we must
show that d divides p and q. We show more generally that d divides all polynomials
of the form d 0 D ps01 C qs02. For such a polynomial, we have d 0 D duC r where
deg .r/ < deg .d/. This implies

r D d 0 � du

D p
�

s01 � us1
�C q �s02 � us2

�

:

It must follow that r D 0 as we could otherwise find a monic polynomial of the
form ps001 C qs002 of degree < deg .d/. Thus, d divides d 0. In particular, d must
divide p D p � 1C q � 0 and q D p � 0C q � 1.

To check uniqueness, assume d1 is a monic polynomial with the property that any
polynomial that divides p and q also divides d1. This means that d divides d1 and
also that d1 divides d . Since both polynomials are monic, this shows that d D d1.

ut
We can more generally show that for any finite collectionp1; : : : ; pn of polynomials,
there is a greatest common divisor

d D gcd fp1; : : : ; png :
As in the above proposition, the polynomial d is a monic polynomial of smallest
degree such that

d D p1s1 C � � � C pnsn:
Moreover, it has the property that any polynomial that divides p1; : : : ; pn also
divides d . The polynomials p1; : : : ; pn 2 F Œt � are said to be relatively prime or
have no common factors if the only monic polynomial that divides p1; : : : ; pn is 1.
In other words, gcd fp1; : : : ; png D 1.

We can also show that two polynomials have a least common multiple.

Proposition 2.1.5. Let p; q 2 F Œt � ; then there is a unique monic polynomial m D
lcm fp; qg with the property that if p and q divide m1, then m dividesm1.

Proof. Let m be the monic polynomial of smallest degree that is divisible by both
p and q. Note that such polynomials exist as pq is divisible by both p and q. Next,
suppose that p and q divide m1. Since deg .m1/ � deg .m/, we have that m1 D
sm C r with deg .r/ < deg .m/. Since p and q divide m1 and m; they must also
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dividem1� sm D r . Asm has the smallest degree with this property, it must follow
that r D 0. Hence,m dividesm1. ut
A monic polynomial p 2 F Œt � of degree � 1 is said to be prime or irreducible
if the only monic polynomials from F Œt � that divide p are 1 and p. The simplest
irreducible polynomials are the linear ones t � ˛. If the field F D C; then all
irreducible polynomials are linear. While if the field F D R; then the only other
irreducible polynomials are the quadratic ones t2C˛tCˇ with negative discriminant
D D ˛2 � 4ˇ < 0. These two facts are not easy to prove and depend on the
Fundamental Theorem of Algebra, which we discuss below.

In analogy with the prime factorization of integers, we also have a prime
factorization of polynomials. Before establishing this decomposition, we need to
prove a very useful property for irreducible polynomials.

Lemma 2.1.6. Let p 2 F Œt � be irreducible. If p divides q1 �q2; then p divides either
q1 or q2.

Proof. Let d1 D gcd .p; q1/. Since d1 divides p, it follows that d1 D 1 or d1 D p.
In the latter case, d1 D p divides q1 so we are finished. If d1 D 1; then we can write
1 D pr C q1s. In particular,

q2 D q2pr C q2q1s:
Here we have that p divides q2q1 and p. Thus, it also divides

q2 D q2prCq2q1s: ut

Theorem 2.1.7. (Unique Factorization of Polynomials) Let p 2 F Œt � be a monic
polynomial, then p D p1 � � �pk is a product of irreducible polynomials. Moreover,
except for rearranging these polynomials this factorization is unique.

Proof. We can prove this result by induction on deg .p/. If p is only divisible by 1
and p; then p is irreducible and we are finished. Otherwise, p D q1 � q2; where q1
and q2 are monic polynomials with deg .q1/ ; deg .q2/ < deg .p/. By assumption,
each of these two factors can be decomposed into irreducible polynomials; hence,
we also get such a decomposition for p.

For uniqueness, assume that p D p1 � � �pk D q1 � � �ql are two decompositions
of p into irreducible factors. Using induction again, we see that it suffices to show
that p1 D qi for some i . The previous lemma now shows that p1 must divide q1 or
q2 � � �ql . In the former case, it follows that p1 D q1 as q1 is irreducible. In the latter
case, we get again that p1 must divide q2 or q3 � � �ql . Continuing in this fashion, it
must follow that p1 D qi for some i . ut
If all the irreducible factors of a monic polynomial p 2 F Œt � are linear, then we say
that that p splits. Thus, p splits if and only if

p .t/ D .t � ˛1/ � � � .t � ˛k/
for ˛1; : : : ; ˛k 2 F.
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Finally, we show that all complex polynomials have a root. It is curious that while
this theorem is algebraic in nature, the proof is analytic. There are many completely
different proofs of this theorem including ones that are far more algebraic. The one
presented here, however, seems to be the most elementary.

Theorem 2.1.8. (The Fundamental Theorem of Algebra) Any complex polynomial
of degree � 1 has a root.

Proof. Let p .z/ 2 C Œz� have degree n � 1. Our first claim is that we can find
z0 2 C such that jp .z/j � jp .z0/j for all z 2 C. To see why jp .z/j has to have a
minimum, we first observe that

p .z/

zn
D anzn C an�1zn�1 C � � � C a1zC a0

zn

D an C an�1 1
z
C � � � C a1 1

zn�1
C a0 1

zn

! an as z!1:
Since an ¤ 0; we can therefore choose R > 0 so that

jp .z/j � janj
2
jzjn for jzj � R:

By possibly increasing R further, we can also assume that

janj
2
jRjn � jp .0/j :

On the compact set NB .0;R/ D fz 2 C W jzj � Rg, we can now find z0 such that
jp .z/j � jp .z0/j for all z 2 NB .0;R/. By our assumptions, this also holds when
jzj � R since in that case

jp .z/j � janj
2
jzjn

� janj
2
jRjn

� jp .0/j
� jp .z0/j :

Thus, we have found our global minimum for jp .z/j.
If jp .z0/j D 0, then z0 is a root and we are finished. Otherwise we can define a

new polynomial of degree n � 1:

q .z/ D p .zC z0/

p .z0/
:
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This polynomial satisfies

q .0/ D p .z0/

p .z0/
D 1;

jq .z/j D
ˇ

ˇ

ˇ

ˇ

p .zC z0/

p .z0/

ˇ

ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

ˇ

p .z0/

p .z0/

ˇ

ˇ

ˇ

ˇ

D 1

Thus,

q .z/ D 1C bkzk C � � � C bnzn;

where bk ¤ 0. We can now investigate what happens to q .z/ for small z. We first
note that

q .z/ D 1C bkzk C bkC1zkC1 C � � � C bnzn
D 1C bkzk C �bkC1zC � � � C bnzn�k

�

zk;

where
�

bkC1zC � � � C bnzn�k
�! 0 as z! 0:

If we write z D rei� and fix � so that

bkeik� D � jbkj ;

then

jq .z/j D ˇ

ˇ1C bkzk C �bkC1zC � � � C bnzn�k
�

zk
ˇ

ˇ

D ˇ

ˇ1 � jbkj rk C
�

bkC1zC � � � C bnzn�k
�

rkeik�
ˇ

ˇ

� 1 � jbkj rk C
ˇ

ˇ

�

bkC1zC � � � C bnzn�k
�

rkeik�
ˇ

ˇ

D 1 � jbkj rk C
ˇ

ˇbkC1zC � � � C bnzn�k
ˇ

ˇ rk

� 1 � jbkj
2
rk

as long as r is chosen so small that 1� jbkj rk > 0 and
ˇ

ˇbkC1z � � � C bnzn�k
ˇ

ˇ � jbk j
2

.
This, however, implies that

ˇ

ˇq
�

rei�
�ˇ

ˇ < 1 for small r . We have therefore arrived at
a contradiction. ut
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2.2 Linear Differential Equations*

In this section, we shall study linear differential equations. Everything we have
learned about linear independence, bases, special matrix representations, etc. will
be extremely useful when trying to solve such equations. In fact, we shall in several
sections of this text see that virtually every development in linear algebra can be used
to understand the structure of solutions to linear differential equations. It is, however,
possible to skip this section if one does not want to be bothered by differential
equations while learning linear algebra.

We start with systems of differential equations:

Px1 D a11x1 C � � � C a1mxm C b1
:::

:::

Pxm D an1x1 C � � � C anmxm C bn;

where aij ; bi 2 C1 .Œa; b� ;C/ (or just C1 .Œa; b� ;R/) and the functions xj W
Œa; b� ! C are to be determined. We can write the system in matrix form and
also rearrange it a bit to make it look like we are solving L.x/ D b. To do this,
we use

x D

2

6

4

x1
:::

xm

3

7

5 ; b D

2

6

4

b1
:::

bn

3

7

5 ; A D

2

6

4

a11 � � � a1m
:::
: : :

:::

an1 � � � anm

3

7

5

and define

L W C1 .Œa; b� ;Cm/! C1 .Œa; b� ;Cn/

L .x/ D Px � Ax:
The equation L.x/ D 0 is called the homogeneous system. We note that the
following three properties can be used as a general outline for what to do:

1. L.x/ D b can be solved if and only if b 2 im .L/.
2. If L.x0/ D b and x 2 ker .L/ ; then L.x C x0/ D b.
3. If L.x0/ D b and L.x1/ D b; then x0 � x1 2 ker .L/.

The specific implementation of actually solving the equations, however, is quite
different from what we did with systems of (algebraic) equations.

First of all, we only consider the case where n D m. This implies that for given
t0 2 Œa; b� and x0 2 C

n, the initial value problem

L.x/ D b;

x .t0/ D a0
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has a unique solution x 2 C1 .Œa; b� ;Cn/. We shall not prove this result in this
generality, but we shall eventually see why this is true when the matrix A has entries
that are constants rather than functions (see Sect. 3.7). As we learn more about linear
algebra, we shall revisit this problem and slowly try to gain a better understanding
of it. For now, let us just note an important consequence.

Theorem 2.2.1. The complete collection of solutions to

Px1 D a11x1 C � � � C a1nxn C b1
:::

:::

Pxn D an1x1 C � � � C annxn C bn
can be found by finding one solution x0 and then adding it to the solutions of the
homogeneous equation L.z/ D 0; i.e.,

x D zC x0;
L .z/ D 0I

moreover, dim .ker .L// D n.

Some particularly interesting and important linear equations are the nth order
equations

Dnx C an�1Dn�1x C � � � C a1Dx C a0x D b;

where Dkx is the kth order derivative of x. If we assume that an�1; : : : ; a0; b 2
C1 .Œa; b� ;C/ and define

L W C1 .Œa; b� ;C/! C1 .Œa; b� ;C/

L .x/ D �

Dn C an�1Dn�1 C � � � C a1D C a0
�

.x/ ;

then we have a nice linear problem just as in the previous cases of linear systems of
differential or algebraic equations. The problem of solving L.x/ D b can also be
reinterpreted as a linear system of differential equations by defining

x1 D x; x2 D Dx; : : : ; xn D Dn�1x

and then considering the system

Px1 D x2
Px2 D x3
:::

:::

Pxn D �an�1xn � � � � � a1x2 � a0x1 C bn:
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This will not help us in solving the desired equation, but it does tells us that the
initial value problem

L.x/ D b;
x .t0/ D c0;Dx .t0/ D c1; : : : ;Dn�1x .t0/ D cn�1;

has a unique solution, and hence, the above theorem can be paraphrased.

Theorem 2.2.2. The complete collection of solutions to

Dnx C an�1Dn�1x C � � � C a1Dx C a0x D b
can be found by finding one solution x0 and then adding it to the solutions of the
homogeneous equation L.z/ D 0; i.e.,

x D zC x0;
L .z/ D 0:

Moreover, dim .ker .L// D n.

It is not hard to give a complete account of how to solve the homogeneous problem
L.x/ D 0 when a0; : : : ; an�1 2 C are constants. Let us start with n D 1. Then we
are trying to solve

Dx C a0x D Px C a0x D 0:
Clearly, x D exp .�a0t/, is a solution and the complete set of solutions is

x D c exp .�a0t/ ; c 2 C:

The initial value problem

Px C a0x D 0;

x .t0/ D c0

has the solution

x D c0 exp .�a0 .t � t0// :
The trick to solving the higher order case is to note that we can rewrite L as

L D Dn C an�1Dn�1 C � � � C a1D C a0
D p .D/ :

This makes L look like a polynomial where D is the variable. The corresponding
polynomial

p .t/ D tn C an�1tn�1 C � � � C a1t C a0
is called the characteristic polynomial. The idea behind solving these equations
comes from
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Proposition 2.2.3. (The Reduction Principle) If q .t/ D tmC bm�1tm�1C � � � C b0
is a polynomial that divides p .t/ D tnCan�1tn�1C� � �Ca1tCa0, then any solution
to q .D/ .x/ D 0 is also a solution to p .D/ .x/ D 0.

Proof. This simply hinges of observing that p .t/ D r .t/ q .t/ ; then p .D/Dr .D/
q .D/. So by evaluating the latter on x, we get p .D/ .x/Dr .D/ .q .D/ .x// D 0.

ut
The simplest factors are, of course, the linear factors t � �, and we know that the
solutions to

.D � �/ .x/ D Dx � �x D 0
are given by x .t/ D C exp .�t/. This means that we should be looking for roots to
p .t/. These roots are called eigenvalues or characteristic values. The Fundamental
Theorem of Algebra asserts that any polynomial p 2 C Œt � can be factored over the
complex numbers

p .t/ D tn C an�1tn�1 C � � � C a1t C a0
D .t � �1/k1 � � � .t � �m/km :

Here the roots �1; : : : ; �m are assumed to be distinct, each occurs with multiplicity
k1; : : : ; km, and k1 C � � � C km D n.

The original equation

L D Dn C an�1Dn�1 C � � � C a1D C a0;
then factors

L D Dn C an�1Dn�1 C � � � C a1D C a0
D .D � �1/k1 � � � .D � �m/km :

Thus, the original problem has been reduced to solving the equations

.D � �1/k1 .x/ D 0;
:::

:::

.D � �m/km .x/ D 0:

Note that if we had not insisted on using the more abstract and less natural
complex numbers, we would not have been able to make the reduction so easily. If
we are in a case where the differential equation is real and there is a good physical
reason for keeping solutions real as well, then we can still solve it as if it were
complex and then take real and imaginary parts of the complex solutions to get real
ones. It would seem that the n complex solutions would then lead to 2n real ones.
This is not really the case. First, observe that each real eigenvalue � only gives
rise to a one parameter family of real solutions c exp .� .t � t0//. As for complex
eigenvalues, we know that real polynomials have the property that complex roots
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come in conjugate pairs. Then, we note that exp .� .t � t0// and exp
� N� .t � t0/

�

up
to sign have the same real and imaginary parts, and so these pairs of eigenvalues only
lead to a two-parameter family of real solutions which if � D �1 C i�2 looks like

c exp .�1 .t � t0// cos .�2 .t � t0//C d exp .�1 .t � t0// sin .�2 .t � t0// :

Let us return to the complex case again. If m D n and k1 D � � � D km D 1; we
simply get n first-order equations, and we see that the complete set of solutions to
L.x/ D 0 is given by

x D c1 exp .�1t/C � � � C cn exp .�nt/ :

It should be noted that we need to show that exp .�1t/ ; : : : ; exp .�nt/ are linearly
independent in order to show that we have found all solutions. This was discussed
in Example 1.12.15 and will also be established in Sect. 2.5.

With a view towards solving the initial value problem, we rewrite the solution as

x D d1 exp .�1 .t � t0//C � � � C dn exp .�n .t � t0// :
To solve the initial value problem requires differentiating this expression several
times and then solving

x .t0/ D d1 C � � � C dn;
Dx .t0/ D �1d1 C � � � C �ndn;

:::
:::

Dn�1x .t0/ D �n�11 d1 C � � � C �n�1n dn

for d1; : : : ; dn. In matrix form, this becomes

2

6

6

6

4

1 � � � 1

�1 � � � �n
:::

: : :
:::

�n�11 � � � �n�1n

3

7

7

7

5

2

6

4

d1
:::

dn

3

7

5 D

2

6

6

6

4

x .t0/

Px .t0/
:::

x.n�1/ .t0/

3

7

7

7

5

:

In Example 1.12.12, we saw that this matrix has rank n if �1; : : : ; �n are distinct.
Thus, we can solve for the d s in this case.

When roots have multiplicity, things get a little more complicated. We first need
to solve the equation

.D � �/k .x/ D 0:
One can check that the k functions exp .�t/ ; t exp .�t/ ; : : : ; tk�1 exp .�t/ are
solutions to this equation. One can also prove that they are linearly independent
using that 1; t; : : : ; tk�1 are linearly independent. This will lead us to a complete
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set of solutions to L.x/ D 0 even when we have multiple roots. The issue of
solving the initial value is somewhat more involved due to the problem of taking
derivatives of t l exp .�t/. This can be simplified a little by considering the solutions
exp .� .t � t0// ; .t � t0/ exp .� .t � t0// ; : : : ; .t � t0/k�1 exp .� .t � t0//.

For the sake of illustration, let us consider the simplest case of trying to solve
.D � �/2 .x/ D 0. The complete set of solutions can be parametrized as

x D d1 exp .� .t � t0//C d2 .t � t0/ exp .� .t � t0// :
Then,

Dx D �d1 exp .� .t � t0//C .1C � .t � t0// d2 exp .� .t � t0// :
Thus, we have to solve

x .t0/ D d1;
Dx .t0/ D �d1 C d2:

This leads us to the system

�

1 0

� 1

� �

d1
d2

�

D
�

x .t0/

Dx .t0/

�

:

If � D 0, we are finished. Otherwise, we can multiply the first equation by � and
subtract it from the second to obtain

�

1 0

0 1

� �

d1
d2

�

D
�

x .t0/

Dx .t0/ � �x .t0/
�

:

Thus, the solution to the initial value problem is

x D x .t0/ exp .� .t � t0//C .Dx .t0/ � �x .t0// .t � t0/ exp .� .t � t0// :

A similar method of finding a characteristic polynomial and its roots can also be
employed in solving linear systems of equations as well as homogeneous systems
of linear differential with constant coefficients. The problem lies in deciding what
the characteristic polynomial should be and what its roots mean for the system. This
will be studied in subsequent sections and chapters. In Sects. 2.6 and 2.7, we shall
also see that systems of first-order differential equations can be solved using our
knowledge of higher order equations.

For now, let us see how one can approach systems of linear differential equations
from the point of view of first trying to define the eigenvalues. We are considering
the homogeneous problem

L.x/ D Px � Ax D 0;
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where A is an n � n matrix with real or complex numbers as entries. If the system
is decoupled, i.e., Pxi , depends only on xi then we have n first-order equations that
can be solved as above. In this case, the entries that are not on the diagonal of A are
zero. A particularly simple case occurs when A D �1Cn for some �. In this case, the
general solution is given by

x D a0 exp .� .t � t0// :
We now observe that for fixed a0, this is still a solution to the general equation
Px D Ax provided only that Aa0 D �a0. Thus, we are lead to seek pairs of scalars �
and vectors a0 such that Aa0 D �a0. If we can find such pairs where a0 ¤ 0; then
we call � an eigenvalue forA and a0 and eigenvector for �. Therefore, if we can find
a basis v1; : : : ; vn for Rn or Cn of eigenvectors with Av1 D �1v1; : : : ; Avn D �nvx ,
then we have that the complete solution must be

x D v1 exp .�1 .t � t0// c1 C � � � C vn exp .�n .t � t0// cn:

The initial value problem L.x/ D 0; x .t0/ D x0 is then handled by solving

v1c1 C � � � C vncn D
�

v1 � � � vn
	

2

6

4

c1
:::

cn

3

7

5 D x0:

Since v1; : : : ; vn was assumed to be a basis, we know that this system can be solved.
Gauss elimination can then be used to find c1; : : : ; cn.

What we accomplished by this change of basis was to decouple the system in
a different coordinate system. One of the goals in the study of linear operators is
to find a basis that makes the matrix representation of the operator as simple as
possible. As we have just seen, this can then be used to great effect in solving what
might appear to be a rather complicated problem. Even so, it might not be possible to
find the desired basis of eigenvectors. This happens if we consider the second-order
equation .D � �/2 D 0 and convert it to a system

� Px1
Px2
�

D
�

0 1

��2 2�
� �

x1
x2

�

:

Here the general solution to .D � �/2 D 0 is of the form

x D x1 D c1 exp .�t/C c2t exp .�t/

so,

x2 D Px1 D c1� exp .�t/C c2 .�t C 1/ exp .�t/ :
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This means that
�

x1
x2

�

D c1
�

1

�

�

exp .�t/C c2
�

t

�t C 1
�

exp .�t/ :

Since we cannot write this in the form
�

x1
x2

�

D c1v1 exp .�1t/C c2v2 exp .�2t/ ;

there cannot be any reason to expect that a basis of eigenvectors can be found even
for the simple matrix

A D
�

0 1

0 0

�

:

In Sect. 2.3 we shall see that any square matrix and indeed any linear operator
on a finite-dimensional vector space has a characteristic polynomial whose roots are
the eigenvalues of the map. Having done that, we shall in Sect. 2.4 and especially
Sect. 2.5 try to determine exactly what properties of the linear map further guarantee
that it admits a basis of eigenvectors. In Sects. 2.6–2.8, we shall show that any
system of equations can be transformed into a new system that looks like several
uncoupled higher order equations.

There is another rather intriguing way of solving linear differential equations
by reducing them to recurrences. We will emphasize higher order equations, but it
works equally well with systems. The goal is to transform the differential equation:

Dnx C an�1Dn�1x C � � � C a1Dx C a0x D p .D/ .x/ D 0

into something that can be solved using combinatorial methods.
Assume that x is given by its MacLaurin expansion

x .t/ D
1
X

kD0

�

Dkx
�

.0/
tk

kŠ

D
1
X

kD0
ck
tk

kŠ
:

The derivative is then given by

Dx D
1
X

kD1
ck

tk�1

.k � 1/Š

D
1
X

kD0
ckC1

tk

kŠ
;
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and more generally

Dlx D
1
X

kD0
ckCl

t k

kŠ
:

Thus, the derivative of x is simply a shift in the index for the sequence .ck/. The
differential equation now gets to look like

Dnx C an�1Dn�1x C � � � C a1Dx C a0x

D
1
X

kD0
.ckCn C an�1ckCn�1 C � � � C a1ckC1 C a0ck/ t

k

kŠ
:

From this we can conclude that x is a solution if and only if the sequence ck solves
the linear nth-order recurrence

ckCn C an�1ckCn�1 C � � � C a1ckC1 C a0ck D 0

or
ckCn D � .an�1ckCn�1 C � � � C a1ckC1 C a0ck/ :

For such a sequence, it is clear that we need to know the initial values c0; : : : ; cn�1
in order to find the whole sequence. This corresponds to the initial value problem
for the corresponding differential equation as ck D

�

Dkx
�

.0/.
The correspondence between systems Px D Ax and recurrences of vectors

cnC1 D Acn comes about by assuming that the solution to the differential equation
looks like

x .t/ D
1
X

nD0
cn
tn

nŠ
;

cn 2 C
n:

Finally, we point out that in Sect. 2.9, we offer an explicit algorithm for reducing
systems of possibly higher order equations to independent higher order equations.

Exercises

1. Find the solution to the differential equations with the general initial values:
x .t0/ D x0; Px .t0/ D Px0; and Rx .t0/ D Rx0.
(a) «x � 3 Rx C 3 Px � x D 0.
(b) «x � 5 Rx C 8 Px � 4x D 0.
(c) «x C 6 Rx C 11 Px C 6x D 0.
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2. Find the complete solution to the initial value problems.

(a)

� Px
Py
�

D
�

0 2

1 3

� �

x

y

�

; where

�

x .t0/

y .t0/

�

D
�

x0

y0

�

:

(b)

� Px
Py
�

D
�

0 1

1 2

� �

x

y

�

; where

�

x .t0/

y .t0/

�

D
�

x0

y0

�

:

3. Find the real solution to the differential equations with the general initial values:
x .t0/ D x0; Px .t0/ D Px0; and Rx .t0/ D Rx0 in the third-order cases.

(a) Rx C x D 0.
(b) «x C Px D 0.
(c) Rx � 6 Px C 25x D 0.
(d) «x � 5 Rx C 19 Px C 25 D 0.

4. Consider the vector space C1 .Œa; b� ;Cn/ of infinitely differentiable curves in
C
n and let z1; : : : ; zn 2 C1 .Œa; b� ;Cn/.

(a) Show that if we can find t0 2 Œa; b� so that the vectors z1 .t0/,. . . , zn .t0/ 2
C
n are linearly independent, then the functions z1,. . . , zn 2 C1 .Œa; b� ;Cn/

are also linearly independent.
(b) Find a linearly independent pair z1; z2 2 C1

�

Œa; b� ;C2
�

so that
z1 .t/ ; z2 .t/ 2 C

2 are linearly dependent for all t 2 Œa; b�.
(c) Assume now that each z1; : : : ; zn solves the linear differential equation Px D

Ax. Show that if z1 .t0/,. . . ,zn .t0/ 2 C
n are linearly dependent for some t0;

then z1; : : : ; zn 2 C1 .Œa; b� ;Cn/ are linearly dependent as well.

5. Let p .t/ D .t � �1/ � � � .t � �n/, where we allow multiplicities among the
roots.

(a) Show that .D � �/ .x/ D f .t/ has

x D exp .�t/
Z t

0

exp .��s/ f .s/ ds

as a solution.
(b) Show that a solution x to p .D/ .x/ D f can be found by successively

solving

.D � �1/ .z1/ D f;

.D � �2/ .z2/ D z1;

:::
:::

.D � �n/ .zn/ D zn�1:
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6. Show that the initial value problem

Px D Ax;
x .t0/ D x0

can be solved “explicitly” if A is upper (or lower) triangular. This holds even in
the case where the entries of A and b are functions of t .

7. Assume that x .t/ is a solution to Px D Ax; where A 2 Matn�n .C/.

(a) Show that the phase shifts x! .t/ D x .t C !/ are also solutions.
(b) Show that if the vectors x .!1/ ; : : : ; x .!n/ form a basis for Cn; then all

solutions to Px D Ax are linear combinations of the phase-shifted solutions
x!1 ; : : : ; x!n .

8. Assume that x is a solution to p .D/ .x/ D 0, where p .D/ D Dn C � � � C
a1D C a0.
(a) Show that the phase shifts x! .t/ D x .t C !/ are also solutions.
(b) Show that, if the vectors

2

6

6

6

4

x .!1/

Dx .!1/
:::

Dn�1x .!1/

3

7

7

7

5

; : : : ;

2

6

6

6

4

x .!n/

Dx .!n/
:::

Dn�1x .!n/

3

7

7

7

5

form a basis for C
n; then all solutions to p .D/ .x/ D 0 are linear

combinations of the phase shifted solutions x!1; : : : ; x!n .

9. Let p .t/ D .t � �1/ � � � .t � �n/. Show that the higher order equation L.y/ D
p .D/ .y/ D 0 can be made into a system of equations Px �Ax D 0; where

A D

2

6

6

6

6

4

�1 1 0

0 �2
: : :

: : : 1

0 �n

3

7

7

7

7

5

by choosing

x D

2

6

6

6

4

y

.D � �1/ y
:::

.D � �1/ � � � .D � �n�1/ y

3

7

7

7

5

:
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10. Show that p .t/ exp .�t/ solves .D � �/k x D 0 if p .t/ 2 C Œt � and deg .p/ �
k � 1. Conclude that ker..D � �/k/ contains a k-dimensional subspace.

11. Let V D span fexp .�1t/ ; : : : ; exp .�nt/g ; where �1,. . . , �n 2 C are distinct.

(a) Show that exp .�1t/ ; : : : ; exp .�nt/ form a basis for V . Hint: One way of
doing this is to construct a linear isomorphism

L W V ! C
n

L .f / D .f .t1/ ; : : : ; f .tn//

by selecting suitable points t1; : : : ; tn 2 R depending on �1; : : : ; �n 2 C

such that L.exp .�i t// ; i D 1; : : : ; n form a basis.
(b) Show that if x 2 V; then Dx 2 V .
(c) Compute the matrix representation for the linear operatorD W V ! V with

respect to exp .�1t/ ; : : : ; exp .�nt/.
(d) More generally, show that p .D/ W V ! V; where p .D/ D akDk C � � � C

a1D C a01V .
(e) Show that p .D/ D 0 if and only if �1; : : : ; �n are all roots of p .t/.

12. Let p 2 C Œt � and consider ker .p .D// D fx W p .D/ .x/ D 0g ; i.e., it is the
space of solutions to p .D/ D 0.

(a) Assuming unique solutions to initial value problems, show that

dimC ker .p .D// D degp D n:

(b) Show that D W ker .p .D// ! ker .p .D// (see also Exercise 3 in
Sect. 1.11).

(c) Show that q .D/ W ker .p .D// ! ker .p .D// for any polynomial q .t/ 2
C Œt �.

(d) Show that ker .p .D// has a basis for the form x;Dx; : : : ;Dn�1x. Hint:
Let x be the solution to p .D/ .x/ D 0 with the initial values x .0/ D
Dx .0/ D � � � D Dn�2x .0/ D 0 and Dn�1x .0/ D 1.

13. Let p 2 R Œt � and consider

kerR .p .D// D fx W R! R W p .D/ .x/ D 0g ;
kerC .p .D// D fz W R! C W p .D/ .z/ D 0g

i.e., the real-valued, respectively, complex-valued solutions.

(a) Show that x 2 kerR .p .D// if and only if x D Re .z/ where z 2
kerC .p .D//.

(b) Show that dimC ker .p .D// D degp D dimR ker .p .D//.
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2.3 Eigenvalues

We are now ready to give the abstract definitions for eigenvalues and eigenvectors.

Definition 2.3.1. Consider a linear operator L W V ! V on a vector space over F.
If we have a scalar � 2 F and a vector x 2 V � f0g such that L.x/ D �x; then we
say that � is an eigenvalue of L and x is an eigenvector for �. If we add the zero
vector to the space of eigenvectors for �, then it can be identified with the subspace

ker .L � �1V / D fx 2 V W L.x/ � �x D 0g � V:

This is also called the eigenspace for �. In many texts, this space is often denoted

E� D ker .L � �1V / :

Eigenvalues are also called proper values or characteristic values in some texts.
“Eigen” is a German adjective that often is translated as “own” or “proper” (think
“property”).

For linear operators defined by n � n matrices, we can give a procedure for
computing the eigenvalues/vectors using Gauss elimination. The more standard
method that employs determinants can be found in virtually every other book on
linear algebra and will be explained in Sect. 5.7. We start by considering a matrix
A 2 Matn�n .F/. If we wish to find an eigenvalue� forA; then we need to determine
when there is a nontrivial solution to .A � �1Fn/ .x/ D 0. In other words, the
augmented system

2

6

4

˛11 � � � � � ˛1n
:::

: : :
:::

˛n1 � � � ˛nn � �

0
:::

0

3

7

5

should have a nontrivial solution. This is something we know how to deal with using
Gauss elimination. The only complication is that if � is simply an abstract number,
then it can be a bit tricky to decide when we are allowed to divide by expressions
that involve �.

Note that we do not necessarily need to carry the last column of zeros through the
calculations as row reduction will never change those entries. Thus, we only need
to do row reduction on A� �1Fn or if convenient �1Fn � A.

Example 2.3.2. Assume that F D C and let

A D

2

6

6

4

0 1 0 0

�1 0 0 0
0 0 0 1

0 0 1 0

3

7

7

5

:



134 2 Linear Operators

Row reduction tells us the augmented system ŒA� �1C4 j0� becomes

2

6

6

4

�� 1 0 0 0

�1 �� 0 0 0

0 0 �� 1 0

0 0 1 �� 0

3

7

7

5

Interchange rows 1 and 2.

Interchange rows 3 and 4.

2

6

6

4

�1 �� 0 0 0

�� 1 0 0 0

0 0 1 �� 0
0 0 �� 1 0

3

7

7

5

Use row 1 to eliminate �� in row 2.

Use row 3 to eliminate �� in row 4.

2

6

6

4

�1 �� 0 0 0

0 1C �2 0 0 0

0 0 1 �� 0

0 0 0 1 � �2 0

3

7

7

5

2

6

6

4

1 � 0 0 0

0 1C �2 0 0 0

0 0 1 �� 0

0 0 0 1 � �2 0

3

7

7

5
Multiply the first row by -1.

Thus, .A � �1C4 / .x/ D 0 has nontrivial solutions precisely when 1 C �2 D 0

or 1 � �2 D 0. Therefore, the eigenvalues, are � D ˙i and � D ˙1. Note that
the two conditions can be multiplied into one characteristic equation of degree 4:
�

1C �2� �1 � �2� D 0. Having found the eigenvalues we then need to insert them
into the augmented system and find the eigenvectors. Since the system has already
been reduced, this is quite simple. First, let � D ˙i so that the augmented system is

2

6

6

4

1 ˙i 0 0

0 0 0 0

0 0 1 �i
0 0 0 2

0

0

0

0

3

7

7

5

Thus, we get
2

6

6

4

1

i

0

0

3

7

7

5

$ � D i and

2

6

6

4

i

1

0

0

3

7

7

5

$ � D �i

Next, we let � D ˙1 and consider

2

6

6

4

1 ˙1 0 0

0 2 0 0

0 0 1 �1
0 0 0 0

0

0

0

0

3

7

7

5
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to get
2

6

6

4

0

0

1

1

3

7

7

5

$ 1 and

2

6

6

4

0

0

�1
1

3

7

7

5

$ �1

Example 2.3.3. Let

A D

2

6

4

˛11 � � � ˛1n
:::
: : :

:::

0 � � � ˛nn

3

7

5

be upper triangular, i.e., all entries below the diagonal are zero: ˛ij D 0 if i > j .
Then, we are looking at

2

6

4

˛11 � � � � � ˛1n
:::

: : :
:::

0 � � � ˛nn � �

0
:::

0

3

7

5 :

Note again that we do not perform any divisions so as to make the diagonal entries
1. This is because if they are zero, we evidently have a nontrivial solution and
that is what we are looking for. Therefore, the eigenvalues are � D ˛11; : : : ; ˛nn.
Note that the eigenvalues are precisely the roots of the polynomial that we get by
multiplying the diagonal entries. This polynomial is going to be proportional to the
characteristic polynomial of A.

The next examples show what we have to watch out for when performing the
elementary row operations.

Example 2.3.4. Let

A D
2

4

1 2 4

�1 0 2

3 �1 5

3

5 ;

and perform row operations on

2

4

1 � � 2 4

�1 �� 2

3 �1 5 � �

0

0

0

3

5

Change sign in row 2.
Interchange rows 1 and 2.

2

4

1 � �2
1 � � 2 4

3 �1 5 � �

0

0

0

3

5

Use row 1 to row reduce column 1.
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2

4

1 � �2
0 2 � �C �2 6 � 2�
0 �1 � 3� 11� �

0

0

0

3

5

Interchange rows 2 and 3.

2

4

1 � �2
0 �1 � 3� 11� �
0 2 � �C �2 6 � 2�

0

0

0

3

5

Change sign in row 2.
Use row 2 to cancel 2 � �C �2 in row 3;
this requires that we have 1C 3� ¤ 0!

2

6

4

1 � �2
0 1C 3� �11C �
0 0 6 � 2�� 2��C�2

1C3� .�11C �/

0

0

0

3

7

5

2

6

4

1 � �2
0 1C 3� �11C �
0 0 28C3�C6�2��3

1C3�

0

0

0

3

7

5

Note that we are not allowed to have 1 C 3� D 0 in this formula. If 1C 3� D 0;

then we note that 2 � �C �2 ¤ 0 and 11 � � ¤ 0 so that the third display

2

4

1 � �2
0 2 � �C �2 6 � 2�
0 �1 � 3� 11� �

0

0

0

3

5

guarantees that there are no nontrivial solutions in that case. This means that
our analysis is valid and that multiplying the diagonal entries will get us the
characteristic polynomial 28 C 3� C 6�2 � �3. First, observe that 7 is a root of
this polynomial. We can then find the other two roots by dividing

28C 3�C 6�2 � �3
� � 7 D ��2 � � � 4

and using the quadratic formula: � 1
2
C 1

2
i
p
15;� 1

2
� 1

2
i
p
15.

These examples suggest a preliminary definition of the characteristic polynomial.

Definition 2.3.5. The characteristic polynomial ofA 2 Matn�n .F/ is a polynomial
�A .�/ 2 F Œ�� of degree n such that all eigenvalues ofA are roots of �A. In addition,
we scale the polynomial so that the leading term is �n; i.e., the polynomial is monic.

To get a better understanding of the process that leads us to the characteristic
polynomial, we study the 2 � 2 and 3 � 3 cases as well as a few specialized n � n
situations.

Starting with A 2 Mat2�2 .F/, we investigate

A� �1F2 D
�

˛11 � � ˛12

˛21 ˛22 � �
�

:
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If ˛21 D 0; the matrix is in upper triangular form and the characteristic polynomial is

�A D .˛11 � �/ .˛22 � �/
D �2 � .˛11 C ˛22/ �C ˛11˛22:

If ˛21 ¤ 0; then we switch the first and second row and then eliminate the bottom
entry in the first column:

�

˛11 � � ˛12
˛21 ˛22 � �

�

�

˛21 ˛22 � �
˛11 � � ˛12

�

"

˛21 ˛22 � �
0 ˛12 � 1

˛21
.˛11 � �/ .˛22 � �/

#

:

Multiplying the diagonal entries gives

˛21˛12 � .˛11 � �/ .˛22 � �/ D ��2 C .˛11 C ˛22/ �
�˛11˛22 C ˛21˛12:

In both cases, the characteristic polynomial of a 2 � 2 matrix is given by

�A D �2 � .˛11 C ˛22/ �C .˛11˛22 � ˛21˛12/
D �2 � tr .A/ �C det .A/ :

We now make an attempt at the case where A 2 Mat3�3 .F/. Thus, we consider

A � �1F3 D
2

4

˛11 � � ˛12 ˛13

˛21 ˛22 � � ˛23
˛31 ˛32 ˛33 � �

3

5 :

When ˛21 D ˛31 D 0, there is nothing to do in the first column, and we are left with
the bottom right 2 � 2 matrix to consider. This is done as above.

If ˛21 D 0 and ˛31 ¤ 0; then we switch the first and third rows and eliminate the
last entry in the first row. This will look like

2

4

˛11 � � ˛12 ˛13
0 ˛22 � � ˛23
˛31 ˛32 ˛33 � �

3

5

2

4

˛31 ˛32 ˛33 � �
0 ˛22 � � ˛23

˛11 � � ˛12 ˛13

3

5
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2

4

˛31 ˛32 ˛33 � �
0 ˛22 � � ˛23

0 ˛�C ˇ p .�/

3

5

where p has degree 2. If ˛�Cˇ is proportional to ˛22��; then we can eliminate it to
get an upper triangular matrix. Otherwise, we can still eliminate ˛� by multiplying
the second row by ˛ and adding it to the third row. This leads us to a matrix of the
form

2

4

˛31 ˛32 ˛33 � �
0 ˛22 � � ˛23
0 ˇ0 p0 .�/

3

5 ;

where ˇ0 is a scalar and p0 a polynomial of degree 2. If ˇ0 D 0 we are finished.
Otherwise, we switch the second and third rows and eliminate ˛22 � � using ˇ0.

If ˛21 ¤ 0; then we switch the first two rows and cancel below the diagonal in
the first column. This gives us something like

2

4

˛11 � � ˛12 ˛13
˛21 ˛22 � � ˛23
˛31 ˛32 ˛33 � �

3

5

2

4

˛21 ˛22 � � ˛23
˛11 � � ˛12 ˛13
˛31 ˛32 ˛33 � �

3

5

2

4

˛21 ˛22 � � ˛23
0 p .�/ ˛013
0 q0 .�/ q .�/

3

5 ;

where p has degree 2 and q; q0 have degree 1. If q0 D 0;we are finished. Otherwise,
we switch the last two rows. If q0 divides p, we can eliminate p to get an upper
triangular matrix. If q0 does not divide p; then we can still eliminate the degree 2
term in p to reduce it to a polynomial of degree 1. This lands us in a situation similar
to what we ended up with when ˛21 D 0. So we can finish using the same procedure.

Note that we avoided making any illegal moves in the above procedure. It is
easy to formalize this procedure for n�n matrices. The idea is simply to treat � as a
variable and the entries as polynomials. To eliminate entries, we then use polynomial
division to reduce the degrees of entries until they can be eliminated. Since we wish
to treat � as a variable, we shall rename it t when doing the Gauss elimination
and only use � for the eigenvalues and roots of the characteristic polynomial. More
precisely, we claim the following:
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Theorem 2.3.6. Given A 2 Matn�n .F/, there is a row reduction procedure that
leads to a decomposition .t1Fn � A/ D PU; where

U D

2

6

6

6

4

p1 .t/ 	 � � � 	
0 p2 .t/ � � � 	
:::

:::
: : :

:::

0 0 � � � pn .t/

3

7

7

7

5

with p1; : : : ; pn 2 F Œt � being monic and unique, and P is the product of the
elementary matrices:

1. Ikl interchanging rows k and l .
2. Rkl .r .t// multiplies row l by r .t/ 2 F Œt � and adds it to row k.
3. Mk .˛/ multiplies row k by ˛ 2 F � f0g.
Proof. The procedure for obtaining the upper triangular form works as with row
reduction with the twist that we think of all entries as being polynomials.

Starting with the first column, we look at all entries at or below the diagonal. We
then select the nonzero entry with the lowest degree and make a row interchange to
place this entry on the diagonal. Using that entry, we use polynomial division and
the operation in (2) to reduce the degrees of all the entries below the diagonal. The
degrees of all the entries below the diagonal are now strictly smaller than the degree
of the diagonal entry. Moreover, if the diagonal entry actually divided a specific
entry below the diagonal, then we get a 0 in that entry. We now repeat this process
on the same column until we end up with a situation where all entries below the
diagonal are 0.

Next, we must check that we actually get nonzero polynomials on the diagonal.
This is clear for the first column as the first diagonal entry is non-zero. Should we
end up with a situation where all entries on and below the diagonal vanish, then all
values of t 2 F must be eigenvalues. However, as we shall prove in Lemma 2.5.6,
it is not possible for A to have more than n eigenvalues. So we certainly obtain a
contradiction if we assume thatF has characteristic zero as it will then have infinitely
many elements. It is possible to use a more direct argument by carefully examining
what happens in the process we described.

Next, we can multiply each row by a suitable nonzero scalar to ensure that the
polynomials on the diagonal are monic.

Finally, to see that the polynomials on the diagonal are unique, we note that
the matrix P is invertible and a multiple of elementary matrices. So if we have
PU D QV where U and V are both upper triangular, then U D RV and V D QRU
where both R and QR are matrices whose entries are polynomials. (In fact, they are
products of the elementary matrices but we will not use that.) We claim that R and
QR are also upper triangular and with all diagonal entries being 1. Clearly, this will

show that the diagonal entries in P are unique. The proof goes by induction on n.
For a general n, write RU D V more explicitly as
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2

6

6

6

4

r11 r12 � � � r1n
r21 r22
:::

: : :

rn1 rnn

3

7

7

7

5

2

6

6

6

4

p1 p12 � � � p1n
0 p2
:::

: : :

0 0 pn

3

7

7

7

5

D

2

6

6

6

4

q1 q12 � � � q1n
0 q2
:::

: : :

0 0 qn

3

7

7

7

5

and note that the entries in the first column on the right-hand side satisfy

r11p1 D q1
r21p1 D 0

:::

rn1p1 D 0:
Since p1 is nontrivial, it follows that r21 D � � � D rn1 D 0. A similar argument
shows that the entries in the first column of QR satisfy Qr21 D � � � D Qrn1 D 0. Next, we
note that r11p1 D q1 and Qr11q1 D p1 showing that r11 D Qr11 D 1. This shows that
our claim holds when n D 1. When, n > 1 we obtain

2

6

6

6

4

r22 r23 � � � r2n
r32 r33
:::

: : :

rn2 rnn

3

7

7

7

5

2

6

6

6

4

p2 p23 � � � p2n
0 p3
:::

: : :

0 0 pn

3

7

7

7

5

D

2

6

6

6

4

q2 q23 � � � q2n
0 q3
:::

: : :

0 0 qn

3

7

7

7

5

after deleting the first row and column in the matrices. This allows us to use
induction to finish the proof. ut
This gives us a solid definition of the characteristic polynomial although it is as
yet not completely clear why it has degree n. A very similar construction will be
given in Sect. 2.9. The main difference is that it also uses column operations. The
advantage of that more enhanced construction is that it calculates more invariants.
In addition, it shows that the characteristic polynomial has degree n and remains the
same for similar matrices.

Definition 2.3.7. The characteristic polynomial of A 2 Matn�n .F/ is the monic
polynomial �A .t/ 2 F Œt � we obtain by applying Gauss elimination to A � t1Fn
or t1Fn � A until it is in upper triangular form and then multiplying the monic
polynomials in the diagonal entries, i.e., �A .t/ D p1 .t/ p2 .t/ � � �pn .t/.
The next example shows how the proof of Theorem 2.3.6 works in a specific
example.

Example 2.3.8. Let

A D
2

4

1 2 3

0 2 4

2 1 �1

3

5 :
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The calculations go as follows:

A� t1F3 D
2

4

1 � t 2 3

0 2 � t 4

2 1 �1 � t

3

5

2

4

2 1 �1 � t
0 2 � t 4

1 � t 2 3

3

5

2

4

2 1 �1 � t
0 2 � t 4

0 2 � 1�t
2
3C .1�t /.1Ct /

2

3

5

2

4

2 1 �1 � t
0 2 � t 4

0 3
2
C t

2
3C .1�t /.1Ct /

2

3

5

2

4

2 1 �1 � t
0 2 � t 4

0 3
2
C 1 5C .1�t /.1Ct /

2

3

5

2

4

2 1 �1 � t
0 5

2
5C .1�t /.1Ct /

2

0 2 � t 4

3

5

2

6

4

2 1 �1 � t
0 5
2

5C .1�t /.1Ct /
2

0 0 4 � 22�t
5




5C .1�t /.1Ct /
2

�

3

7

5

2

4

1 1
2

�1�t
2

0 1 2C .1�t /.1Ct /
5

0 0 t3 � 2t2 � 11t C 2

3

5 ;

and the characteristic polynomial is

�A .t/ D t3 � 2t2 � 11t C 2

When the matrix A can be written in block triangular form, it becomes somewhat
easier to calculate the characteristic polynomial.

Lemma 2.3.9. Assume that A 2 Matn�n .F/ has the form

A D
�

A11 A12
0 A22

�

;
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where A11 2 Matk�k .F/ ; A22 2 Mat .F/ ; and A12 2 Matk�.n�k/ .F/ ; then

�A .t/ D �A11 .t/ �A22 .t/ :

Proof. To compute �A .t/, we do row operations on

t1Fn �A D
�

t1Fk � A11 �A12
0 t1Fn�k � A22

�

:

This can be done by first doing row operations on the first k rows leading to a
situation that looks like

2

6

6

6

4

q1 .t/ 	
: : :

0 qk .t/

	

0 t1Fn�k �A22

3

7

7

7

5

:

Having accomplished this, we then do row operations on the last n� k rows. to get

2

6

6

6

6

6

6

6

6

6

4

p1 .t/ 	
: : :

0 pk .t/

	

0

r1 .t/ 	
: : :

0 rn�k .t/

3

7

7

7

7

7

7

7

7

7

5

As these two sets of operations do not depend on each other, we see that

�A .t/ D q1 .t/ � � � qk .t/ r1 .t/ � � � rn�k .t/
D �A11 .t/ �A22 .t/ : ut

Finally, we need to figure out how this matrix procedure generates eigenvalues for
general linear maps L W V ! V . In case V is finite-dimensional, we can simply
pick a basis and then study the matrix representation ŒL�. The diagram

V L
�! V

" "
F
n ŒL�

�! F
n

then quickly convinces us that eigenvectors in F
n for ŒL� are mapped to eigenvectors

in V for L without changing the eigenvalue, i.e.,

ŒL� � D ��
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is equivalent to

Lx D �x
if � 2 F

n is the coordinate vector for x 2 V . Thus, we define the characteristic
polynomial of L as �L .t/ D �ŒL� .t/. While we do not have a problem with finding
eigenvalues for L by finding them for ŒL�, it is less clear that �L .t/ becomes well
defined with this definition. To see that it is well defined, we would have to show
that �ŒL� .t/ D �B�1ŒL�B .t/ where B the matrix transforming one basis into another
basis. This is best done using determinants (see Sect. 5.7). Alternately, one would
have to use the definition of the characteristic polynomial given in Sect. 2.7 which
can be computed with a more elaborate procedure that uses both row and column
operations (see Sect. 2.9). For now, we are going to take this on faith. Note, however,
that computing �ŒL� .t/ does give us a rigorous method for finding the eigenvalues
as L. In particular, all of the matrix representations for L must have the same
eigenvalues. Thus, there is nothing wrong with searching for eigenvalues using a
fixed matrix representation.

In the case where F D Q or R, we can still think of ŒL� as a complex matrix. As
such, we might get complex eigenvalues that do not lie in the field F. These roots of
�L cannot be eigenvalues for L as we are not allowed to multiply elements in V by
complex numbers.

Example 2.3.10. We now need to prove that our method for computing the char-
acteristic polynomial of a matrix gives us the expected answer for the differential
equation defined by the operator

L D Dn C ˛n�1Dn�1 C � � � C ˛1D C ˛0:

The corresponding system is

L.x/ D Px �Ax

D Px �

2

6

6

6

6

4

0 1 � � � 0

0 0
: : :

:::
:::

:::
: : : 1

�˛0 �˛1 � � � �˛n�1

3

7

7

7

7

5

x

D 0:

So we consider the matrix

A D

2

6

6

6

6

4

0 1 � � � 0

0 0
: : :

:::
:::

:::
: : : 1

�˛0 �˛1 � � � �˛n�1

3

7

7

7

7

5
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and with it

t1Fn �A D

2

6

6

6

6

4

t �1 � � � 0

0 t
: : :

:::
:::
:::
: : : �1

˛0 ˛1 � � � t C ˛n�1

3

7

7

7

7

5

:

We immediately run into a problem as we do not know if some or all of ˛0; : : : ;
˛n�1 are zero. Thus, we proceed without interchanging rows:

2

6

6

6

6

4

�t 1 � � � 0

0 �t : : : :::
:::

:::
: : : 1

�˛0 �˛1 � � � �t � ˛n�1

3

7

7

7

7

5

2

6

6

6

6

4

�t 1 � � � 0

0 �t : : :
:::

:::
:::

: : : 1

0 �˛1 � ˛0
t
� � � �˛n�1 � t

3

7

7

7

7

5

2

6

6

6

6

4

�t 1 � � � 0

0 �t 1
: : :

:::
:::

:::
: : : 1

0 0 �˛2 � ˛1
t
� ˛0

t2
� � � ˛n�1 � t

3

7

7

7

7

5

:::

2

6

6

6

6

4

t �1 � � � 0

0 t �1 : : : :::
:::
:::

: : : �1
0 0 0 � � � t C ˛n�1 C ˛n�2

t
C � � � C ˛1

tn�2 C ˛0
tn�1

3

7

7

7

7

5

Note that t D 0 is the only value that might give us trouble. In case t D 0, we note
that there cannot be a nontrivial kernel unless ˛0 D 0. Thus, � D 0 is an eigenvalue
if and only if ˛0 D 0. Fortunately, this gets build into our characteristic polynomial.
After multiplying the diagonal entries together, we have

p .t/ D tn�1



t C ˛n�1 C ˛n�2
t
C � � � C ˛1

tn�2
C ˛0

tn�1
�

D �

tn C ˛n�1tn�1 C ˛n�2tn�2 C � � � C ˛1t C ˛0
�

;
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where � D 0 is a root precisely when ˛0 D 0 as hoped for. Finally, we see
that p .t/ D 0 is up to sign our old characteristic equation for p .D/ D 0. In
Proposition 2.6.3, we shall compute the characteristic polynomial for the transpose
of A using only the techniques from Theorem 2.3.6.

There are a few useful facts that can help us find roots of polynomials.

Proposition 2.3.11. Let A 2 Matn�n .C/ and

�A .t/ D tn C ˛n�1tn�1 C � � � C ˛1t C ˛0 D .t � �1/ � � � .t � �n/ :

1. trA D �1 C � � � C �n D �˛n�1.
2. �1 � � ��n D .�1/n ˛0.
3. If �A .t/ 2 R Œt � and � 2 C is a root, then N� is also a root. In particular, the

number of real roots is even, respectively odd, if n is even, respectively odd.
4. If �A .t/ 2 R Œt � ; n is even, and ˛0 < 0; then there are at least two real roots one

negative and one positive.
5. If �A .t/ 2 R Œt � and n is odd, then there is at least one real root, whose sign is

the opposite of ˛0.
6. If �A .t/ 2 Z Œt �, then all rational roots are in fact integers that divide ˛0.

Proof. The proof of (3) follows from the fact that when the coefficients of �A are
real, then �A .t/ D �A .Nt/. The proofs of (4) and (5) follow from the intermediate
value theorem. Simply note that �A .0/ D ˛0 and that �A .t/!1 as t !1 while
.�1/n �A .t/!1 as t ! �1.

For the first two facts, note that the relationship

tn C ˛n�1tn�1 C � � � C ˛1t C ˛0 D .t � �1/ � � � .t � �n/

shows that

�1 C � � � C �n D �˛n�1;
�1 � � ��n D .�1/n ˛0:

This establishes (2) and part of (1). Finally, the relation trA D �1C � � �C�n will be
established when we can prove that complex matrices are similar to upper triangular
matrices (see also Exercise 13 in Sect. 2.7). In other words, we will show that one
can find B 2 Gln .C/ such that B�1AB is upper triangular (see Sect. 4.8 or 2.8).
We then observe that A and B�1AB have the same eigenvalues as Ax D �x if and
only if B�1AB

�

B�1x
� D �

�

B�1x
�

. However, as the eigenvalues for the upper
triangular matrix B�1AB are precisely the diagonal entries, we see that

�1 C � � � C �n D tr
�

B�1AB
�

D tr
�

ABB�1
�

D tr .A/ :
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Another proof of trA D �˛n�1 that works for all fields is presented below in the
exercises to Sect. 2.7.

For (6), let p=q be a rational root in reduced form, then
�

p

q

�n

C � � � C ˛1
�

p

q

�

C ˛0 D 0;

and

0 D pn C � � � C ˛1pqn�1 C ˛0qn
D pn C q �˛n�1pn�1 C � � � C ˛1pqn�2 C ˛0qn�1

�

D p
�

pn�1 C � � � C ˛1qn�1
�C ˛0qn:

Thus, q divides pn and p divides a0qn. Since p and q have no divisors in common,
the result follows. ut

Exercises

1. Find the characteristic polynomial and if possible the eigenvalues and eigen-
vectors for each of the following matrices:

(a)
2

4

1 0 1

0 1 0

1 0 1

3

5

(b)
2

4

0 1 2

1 0 3

2 3 0

3

5

(c)
2

4

0 1 2

�1 0 3

�2 �3 0

3

5

2. Find the characteristic polynomial and if possible eigenvalues and eigenvectors
for each of the following matrices:

(a)
�

0 i

i 0

�

(b)
�

0 i

�i 0

�
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(c)
2

4

1 i 0

i 1 0

0 2 1

3

5

3. Find the eigenvalues for the following matrices with a minimum of calculations
(try not to compute the characteristic polynomial):

(a)
2

4

1 0 1

0 0 0

1 0 1

3

5

(b)
2

4

1 0 1

0 1 0

1 0 1

3

5

(c)
2

4

0 0 1

0 1 0

1 0 0

3

5

4. Find the characteristic polynomial, eigenvalues, and eigenvectors for each of
the following linear operatorsL W P3 ! P3:

(a) L D D.
(b) L D tD D T ıD.
(c) L D D2 C 2D C 1P3 .
(d) L D t2D3 CD.

5. Let p 2 C Œt � be a monic polynomial. Show that the characteristic polynomial
for D W ker .p .D// ! ker .p .D// is p .t/. (To clarify the notation, see
Exercise 12 in Sect. 2.2.)

6. Assume that A 2 Matn�n .F/ is upper or lower triangular and let p 2 F Œt �.
Show that � is an eigenvalue for p .A/ if and only if � D p .�/ where � is an
eigenvalue for A. (Hint: See Exercise 7 in Sect. 1.6.)

7. Let L W V ! V be a linear operator on a complex vector space. Assume that
we have a polynomial p 2 C Œt � such that p .L/ D 0. Show that all eigenvalues
of L are roots of p.

8. Let L W V ! V be a linear operator and K W W ! V an isomorphism. Show
that L andK�1 ı L ıK have the same eigenvalues.

9. Let K W V ! W and L W W ! V be two linear maps.

(a) Show that K ı L and L ı K have the same nonzero eigenvalues. Hint: If
x 2 V is an eigenvector for L ı K; then K .x/ 2 W is an eigenvector for
K ı L.

(b) Give an example where 0 is an eigenvalue forLıK but not forK ıL. Hint:
Try to have different dimensions for V and W .
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(c) If dimV D dimW; then (a) also holds for the zero eigenvalue. Hint: From
Exercise 5 in Sect. 1.11, use that

dim .ker .K ı L// � max fdim .ker .L// ; dim .ker .K//g ;
dim .ker .L ıK// � max fdim .ker .L// ; dim .ker .K//g :

10. Let A 2 Matn�n .F/.

(a) Show thatA andAt have the same eigenvalues and that for each eigenvalue
�, we have

dim .ker .A � �1Fn// D dim
�

ker
�

At � �1Fn
��

:

(b) Show by example that A and At need not have the same eigenvectors.

11. Let A 2 Matn�n .F/. Consider the following two linear operators on
Matn�n .F/ W LA .X/ D AX and RA .X/ D XA (see Example 1.7.6).

(a) Show that � is an eigenvalue for A if and only if � is an eigenvalue for LA.
(b) Show that �LA .t/ D .�A .t//n.
(c) Show that � is an eigenvalue forAt if and only if � is an eigenvalue forRA.
(d) Relate �At .t/ and �RA .t/.

12. Let A 2 Matn�n .F/ and B 2 Matm�m .F/ and consider

L W Matn�m .F/! Matn�m .F/ ;

L .X/ D AX � XB:

(a) Show that if A and B have a common eigenvalue, then L has nontrivial
kernel. Hint: Use that B and Bt have the same eigenvalues.

(b) Show more generally that if � is an eigenvalue of A and � and eigenvalue
for B , then � � � is an eigenvalue for L.

13. Find the characteristic polynomial, eigenvalues, and eigenvectors for

A D
�

˛ �ˇ
ˇ ˛

�

; ˛; ˇ 2 R:

as a map A W C2 ! C
2.

14. Show directly, using the methods developed in this section, that the character-
istic polynomial for a 3 � 3 matrix has degree 3.

15. Let

A D
�

a b

c d

�

; a; b; c; d 2 R

Show that the eigenvalues are either both real or are complex conjugates of each
other.
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16. Show that the eigenvalues of

�

a b
Nb d

�

; where a; d 2 R and b 2 C; are real.

17. Show that the eigenvalues of

�

ia �b
Nb id

�

; where a; d 2 R and b 2 C; are purely

imaginary.

18. Show that the eigenvalues of

�

a �Nb
b Na

�

; where a; b 2 C and jaj2 C jbj2 D 1;

are complex numbers of unit length.
19. Let

A D

2

6

6

6

6

4

0 1 � � � 0

0 0
: : :

:::
:::

:::
: : : 1

�˛0 �˛1 � � � �˛n�1

3

7

7

7

7

5

:

(a) Show that all eigenspaces are one-dimensional.
(b) Show that ker .A/ ¤ f0g if and only if ˛0 D 0.

20. Let

p .t/ D .t � �1/ � � � .t � �n/
D tn C ˛n�1tn�1 C � � � C ˛1t C ˛0;

where �1; : : : ; �n 2 F. Show that there is a change of basis such that

2

6

6

6

6

4

0 1 � � � 0

0 0
: : :

:::
:::

:::
: : : 1

�˛0 �˛1 � � � �˛n�1

3

7

7

7

7

5

D B

2

6

6

6

6

4

�1 1 0

0 �2
: : :

: : : 1

0 �n

3

7

7

7

7

5

B�1:

Hint: Try n D 2; 3, assume that B is lower triangular with 1s on the diagonal,
or alternately use Exercise 9 in Sect. 2.2.

21. Show that

(a) The multiplication operator T W C1 .R;R/ ! C1 .R;R/ does not have
any eigenvalues. Recall that T .f / .t/ D t � f .t/.

(b) Show that the differential operator D W C Œt � ! C Œt � only has 0 as an
eigenvalue.

(c) Show that D W C1 .R;R/ ! C1 .R;R/ has all real numbers as
eigenvalues.

(d) Show that D W C1 .R;C/ ! C1 .R;C/ has all complex numbers as
eigenvalues.
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2.4 The Minimal Polynomial

The minimal polynomial of a linear operator is, unlike the characteristic polynomial,
fairly easy to define rigorously. It is, however, not as easy to calculate. The amazing
properties contained in the minimal polynomial on the other hand seem to make it
sufficiently desirable that it would be a shame to ignore it. See also Sect. 1.12 for a
preliminary discussion of the minimal polynomial.

Recall that projections are characterized by a very simple polynomial relation-
ship L2 � L D 0. The purpose of this section is to find a polynomial p .t/ for a
linear operator L W V ! V such that p .L/ D 0. This polynomial will, like the
characteristic polynomial, also have the property that its roots are the eigenvalues
of L. In subsequent sections, we shall study in more depth the properties of linear
operators based on knowledge of the minimal polynomial.

Before passing on to the abstract constructions, let us consider two examples.

Example 2.4.1. An involution is a linear operator L W V ! V such that L2 D
1V . This means that p .L/ D 0 if p .t/ D t2 � 1. Our first observation is that
this relationship implies that L is invertible and that L�1 D L. Next, note that
any eigenvalue must satisfy �2 D 1 and hence be a root of p. It is possible to
glean even more information out of this polynomial relationship. We claim that L is
diagonalizable, i.e., V has a basis of eigenvectors for L; in fact

V D ker .L � 1V /˚ ker .LC 1V / :
First, we observe that these spaces have trivial intersection as they are eigenspaces
for different eigenvalues. If x 2 ker .L � 1V /\ ker .LC 1V / ; then

�x D L.x/ D x
so x D 0. To show that

V D ker .L � 1V /C ker .LC 1V / ;
we observe that any x 2 V can be written as

x D 1

2
.x � L.x//C 1

2
.x C L .x// :

Next, we see that

L.x ˙ L.x// D L.x/˙ L2 .x/
D L.x/˙ x
D ˙ .x ˙ L.x// :

Thus, x C L.x/ 2 ker .L � 1V / and x � L.x/ 2 ker .LC 1V /. This proves the
claim.
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Example 2.4.2. Consider a linear operator L W V ! V such that .L � 1V /2 D 0.
This relationship implies that 1 is the only possible eigenvalue. Therefore, if L is
diagonalizable, then L D 1V and hence also satisfies the simpler relationship L �
1V D 0. Thus, L is not diagonalizable unless it is the identity map. By multiplying
out the polynomial relationship, we obtain

L2 � 2LC 1V D 0:

This implies that

.2 � 1V � L/L D 1V :
Hence, L is invertible with L�1 D 2 � 1V �L.

These two examples, together with our knowledge of projections, tell us that one
can get a tremendous amount of information from knowing that an operator satisfies
a polynomial relationship. To commence our more abstract developments we start
with a very simple observation.

Proposition 2.4.3. Let L W V ! V be a linear operator and

p .t/ D tk C ˛k�1tk�1 C � � � C ˛1t C ˛0 2 F Œt �

a polynomial such that

p .L/ D Lk C ˛k�1Lk�1 C � � � C ˛1LC ˛01V D 0:

(1) All eigenvalues for L are roots of p .t/.
(2) If p .0/ D ˛0 ¤ 0; then L is invertible and

L�1 D �1
˛0

�

Lk�1 C ˛k�1Lk�2 C � � � C ˛11V
�

:

To begin with it would be nice to find a polynomial p .t/ 2 F Œt � such that both of
the above properties become bi-implications. In other words � 2 F is an eigenvalues
for L if and only p .�/ D 0; and L is invertible if and only if p .0/ ¤ 0. It turns out
that the characteristic polynomial does have this property, but there is a polynomial
that has even more information as well as being much easier to define.

One defect of the characteristic polynomial can be seen by considering the two
matrices

�

1 0

0 1

�

;

�

1 1

0 1

�

They clearly have the same characteristic polynomial p .t/ D .t � 1/2, but only the
first matrix is diagonalizable.



152 2 Linear Operators

Definition 2.4.4. We define the minimal polynomial �L .t/ for a linear operator
L W V ! V on a finite-dimensional vector space in the following way. Consider
1V ; L; L

2; : : : ; Lk; :: 2 Hom .V; V /. Since Hom .V; V / is finite-dimensional we
can use Lemma 1.12.3 to find a smallest k � 1 such that Lk is a linear combination
of 1V ; L; L2; : : : ; Lk�1:

Lk D � �˛01V C ˛1LC ˛2L2 C � � � C ˛k�1Lk�1
�

; or

0 D Lk C ˛k�1Lk�1 C � � � C ˛1LC ˛01V :

The minimal polynomial of L is defined as

�L .t/ D tk C ˛k�1tk�1 C � � � C ˛1t C ˛0:

The first interesting thing to note is that the minimal polynomial for L D 1V is
given by �1V .t/ D t � 1. Hence, it is not the characteristic polynomial. The name
“minimal” is justified by the next proposition.

Proposition 2.4.5. Let L W V ! V be a linear operator on a finite-dimensional
space.

(1) If p .t/ 2 F Œt � satisfies p .L/ D 0; then deg .p/ � deg .�L/.
(2) If p .t/ 2 F Œt � satisfies p .L/ D 0 and deg .p/ D deg .�L/ ; then p .t/ D

˛ � �L .t/ for some ˛ 2 F.

Proof. (1) Assume that p ¤ 0 and p .L/ D 0; then

p .L/ D ˛mLm C ˛m�1Lm�1 C � � � C ˛1LC ˛01V
D 0:

If ˛m ¤ 0; then Lm is a linear combination of lower order terms, and hence,
m � deg .�L/.

(2) In case m D deg .�L/ D k, we have that 1V ; L; : : : ; Lk�1 are linearly
independent. Thus, there is only one way in which to make Lk into a linear
combination of 1V ; L; : : : ; Lk�1. This implies the claim.

ut
Before discussing further properties of the minimal polynomial, let us try to
compute it for some simple matrices. See also Sect. 1.12 for similar examples.

Example 2.4.6. Let

A D
�

� 1

0 �

�
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B D
2

4

� 0 0

0 � 1

0 0 �

3

5

C D
2

4

0 �1 0

1 0 0

0 0 i

3

5 :

We note that A is not proportional to 1V ; while

A2 D
�

� 1

0 �

�2

D
�

�2 2�

0 �2

�

D 2�
�

� 1

0 �

�

� �2
�

1 0

0 1

�

:

Thus,
�A .t/ D t2 � 2�t C �2 D .t � �/2 :

The calculation for B is similar and evidently yields the same minimal polynomial

�B .t/ D t2 � 2�t C �2 D .t � �/2 :
Finally, for C , we note that

C2 D
2

4

�1 0 0

0 �1 0

0 0 �1

3

5

Thus,

�C .t/ D t2 C 1:

The next proposition shows that the minimal polynomial contains much of the
information that we usually get from the characteristic polynomial. In subsequent
sections, we shall delve much deeper into the properties of the minimal polynomial
and what it tells us about possible matrix representations for L.

Proposition 2.4.7. Let L W V ! V be a linear operator on a finite-dimensional
vector space. Then, the following properties for the minimal polynomial hold:

(1) If p .L/ D 0 for some p 2 F Œt � ; then �L divides p; i.e., p .t/ D �L .t/ q .t/

for some q .t/ 2 F Œt �.
(2) Let � 2 F; then � is an eigenvalue for L if and only if �L .�/ D 0.
(3) L is invertible if and only if �L .0/ ¤ 0.
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Proof. (1) Assume that p .L/ D 0. We know that deg .p/ � deg .�L/, so if we
perform polynomial division (the Euclidean Algorithm 2.1.1), then p .t/ D
q .t/ �L .t/ C r .t/ ; where deg .r/ < deg .�L/. Substituting L for t gives
p .L/ D q .L/�L .L/ C r .L/. Since both p .L/ D 0, and �L .L/ D 0 we
also have r .L/ D 0. This will give us a contradiction with the definition of the
minimal polynomial unless r D 0. Thus, �L divides p.

(2) We already know that eigenvalues are roots. Conversely, if �L .�/ D 0; then
we can write �L .t/ D .t � �/ p .t/. Thus,

0 D �L .L/ D .L � �1V / p .L/
As deg .p/ < deg .�L/, we know that p .L/ ¤ 0; so the relationship
.L � �1V /p .L/ D 0 shows that L � �1V is not invertible.

(3) If �L .0/ ¤ 0; then we already know that L is invertible. Conversely, suppose
that �L .0/ D 0. Then, 0 is an eigenvalue by (2) and hence L cannot be
invertible.

ut
Example 2.4.8. The derivative mapD W Pn ! Pn has �D D tnC1. Certainly,DnC1
vanishes on Pn as all the polynomials in Pn have degree � n. This means that
�D .t/ D tk for some k � n C 1. On the other hand, Dn .tn/ D nŠ ¤ 0 forcing
k D nC 1.

Example 2.4.9. Let V D span fexp .�1t/ ; : : : ; exp .�nt/g ; with �1; : : : ; �n being
distinct, and consider again the derivative map D W V ! V . Then we have
D .exp .�i t// D �i exp .�i t/. In Example 1.12.15 (see also Sect. 1.13) it was shown
that exp .�1t/ ; : : : ; exp .�nt/ form a basis for V . Now observe that

.D � �11V / � � � .D � �n1V / .exp .�n/ t/ D 0:

By rearranging terms, it follows that also

.D � �11V / � � � .D � �n1V / .exp .�i / t/ D 0

and consequently

.D � �11V / � � � .D � �n1V / D 0 on V:

On the other hand,

.D � �11V / � � � .D � �n�11V / .exp .�n/ t/ ¤ 0:

This means that �D divides .t � �1/ � � � .t � �n/ and that it cannot divide
.t � �1/ � � � .t � �n�1/. Since the order of the �s is irrelevant, this shows that
�D .t/ D .t � �1/ � � � .t � �n/ as �D cannot divide
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.t � �1/ � � � .t � �n/
t � �i :

Finally, let us compute the minimal polynomials in two interesting and somewhat
tricky situations.

Proposition 2.4.10. The minimal polynomial for

A D

2

6

6

6

6

4

0 1 � � � 0

0 0
: : :

:::
:::

:::
: : : 1

�˛0 �˛1 � � � �˛n�1

3

7

7

7

7

5

is given by

�A .t/ D tn C ˛n�1tn�1 C � � � C ˛1t C ˛0:

Proof. It turns out to be easier to calculate the minimal polynomial for the transpose

B D At D

2

6

6

6

6

6

4

0 0 � � � 0 �˛0
1 0 � � � 0 �˛1
0 1 � � � 0 �˛2
:::
:::
: : :

:::
:::

0 0 � � � 1 �˛n�1

3

7

7

7

7

7

5

and it is not hard to show that a matrix and its transpose have the same minimal
polynomials by noting that, if p 2 F Œt �, then

.p .A//t D p �At �

(see Exercise 3 in this section).
Let

p .t/ D tn C ˛n�1tn�1 C � � � C ˛1t C ˛0:
We claim that�B .t/ D p .t/ D �A .t/. Recall from Example 2.3.10 that we already
know that �A .t/ D p .t/. To prove the claim for �B , first note that ek D B .ek�1/ ;
for k D 2; : : : ; n showing that ek D Bk�1 .e1/ ; for k D 2; : : : ; n. Thus, the vectors
e1; B .e1/ ; : : : ; B

n�1 .e1/ are linearly independent. This shows that 1Fn ; B; : : : ;
Bn�1 must also be linearly independent. Next, we can also show that p .B/ D 0.
This is because

p .B/ .ek/ D p .B/ ı Bk�1 .e1/

D Bk�1 ı p .B/ .e1/
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and p .B/ .e1/ D 0 since

p .B/ .e1/ D



.B/n C ˛n�1 .B/n�1 C � � � C ˛1B C ˛01Fn
�

e1

D .B/n .e1/C ˛n�1 .B/n�1 .e1/C � � � C ˛1B .e1/C ˛01Fn .e1/
D Ben C ˛n�1en C � � � C ˛1e2 C ˛0e1
D �˛0e1 � ˛1e2 � � � � � ˛n�1en
C˛n�1en C � � � C ˛1e2 C ˛0e1

D 0: ut

Next, we show

Proposition 2.4.11. The minimal polynomial for

C D

2

6

6

6

6

4

�1 1 0

0 �2
: : :

: : : 1

0 �n

3

7

7

7

7

5

is given by

�C .t/ D .t � �1/ � � � .t � �n/ :
Proof. One strategy would be to show that C has the same minimal polynomial as
A in the previous proposition (see also Exercise 20 in Sect. 2.3). But we can also
prove the claim directly. Define ˛0; : : : ; ˛n�1 by

p .t/ D tn C ˛n�1tn�1 C � � � C ˛1t C ˛0 D .t � �1/ � � � .t � �n/ :

The claim is then established directly by first showing that p .C / D 0. This will
imply that �C divides p. We then just need to show that qi .C / ¤ 0; where

qi .t/ D p .t/

t � �i :

The key observation for these facts follow from knowing how to multiply certain
upper triangular matrices:

2

6

6

6

6

4

0 1 0

0 �2 1

0 0 �3
: : :

: : :

3

7

7

7

7

5

2

6

6

6

6

4

ı1 1 0

0 0 1

0 0 ı3
: : :

: : :

3

7

7

7

7

5

D

2

6

6

6

4

0 0 1 0

0 0 	
0 0 �3ı3
:::

:::
: : :

3

7

7

7

5

;



2.4 The Minimal Polynomial 157

2

4

0 0 1 0

0 0 	
0 0 �3ı3

3

5

2

6

6

6

4

"1 1 0

0 "2 1

0 0 0 1
: : :

3

7

7

7

5

D

2

6

6

6

4

0 0 0 1

0 0 0 	
0 0 0 	
:::

:::
::: �4ı4"4

3

7

7

7

5

:

Therefore, when we do the multiplication

.C � �11Fn/ .C � �21Fn/ � � � .C � �n1Fn/
by starting from the left, we get that the first k columns are zero in

.C � �11Fn/ .C � �21Fn/ � � � .C � �k1Fn/
while the .k C 1/th column has 1 as the first entry. Clearly, this shows that p .C / D
0 as well as qn .C / ¤ 0. By rearranging the �i s, this also shows that qi .C / ¤ 0 for
all i D 1; : : : ; n. ut

Exercises

1. Find the minimal and characteristic polynomials for

A D
2

4

1 0 1

0 1 0

1 0 1

3

5 :

2. Assume that L W V ! V has an invariant subspace M � V , i.e., L.M/ �M .
Show that �LjM divides �L.

3. Show that �A .t/ D �At .t/ ; where At is the transpose of A 2 Matn�n .F/.
More abstractly, one can show that a linear operator and its dual have the same
minimal polynomials (see Sect. 1.14 for definitions related to dual spaces).

4. Let L W V ! V be a linear operator on a finite-dimensional vector space over
F and p 2 F Œt � a polynomial. Show that ker .p .L// D f0g if and only if
gcd fp;�Lg D 1.

5. LetL W V ! V be a linear operator on a finite-dimensional vector space over F
and p 2 F Œt � a polynomial. Show that if p divides �L, then �Ljker.p.L//

divides
p.

6. Let L W V ! V be a linear operator such that L2 C 1V D 0.

(a) If V is real vector space show, that 1V and L are linearly independent and
that �L .t/ D t2 C 1.

(b) If V and L are complex, show that 1V and L need not be linearly
independent.

(c) Find the possibilities for the minimal polynomial of L3C2L2CLC3 �1V .
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7. Assume that L W V ! V has minimal polynomial �L .t/ D t . Find a matrix
representation for L.

8. Assume that L W V ! V has minimal polynomial �L .t/ D t3 C 2t C 1. Find
a polynomial q .t/ of degree � 2 such that L4 D q .L/.

9. Assume that L W V ! V has minimal polynomial �L .t/ D t2 C 1. Find a
polynomial p .t/ such that L�1 D p .L/.

10. Show that if l � deg .�L/ D k; then Ll is a linear combination of
1V ; L; : : : ; L

k�1. If L is invertible, show the same for all l < 0.
11. Let L W V ! V be a linear operator on a finite-dimensional vector space over

F and p 2 F Œt � a polynomial. Show

deg�p.L/ .t/ � deg�L .t/ :

12. Let p 2 C Œt �. Show that the minimal polynomial for D W ker .p .D// !
ker .p .D// is �D D p (see also Exercise 5 in Sect. 2.3 and Example 2.3.10).

13. Let A 2 Matn�n .F/ and consider the two linear operators LA;RA W
Matn�n .F/ ! Matn�n .F/ defined by LA .X/ D AX and RA .X/ D XA

(see also Exercise 11 in Sect. 2.3). Find the minimal polynomial of LA;RA
given �A .t/.

14. Consider two matrices A and B; show that the minimal polynomial for the
block diagonal matrix

�

A 0

0 B

�

is lcm f�A;�Bg (see Proposition 2.1.5 for the definition of lcm). Generalize
this to block diagonal matrices

2

6

4

A1
: : :

Ak

3

7

5 :

2.5 Diagonalizability

In this section, we shall investigate how and when one can find a basis that puts a
linear operatorL W V ! V into the simplest possible form. In Sect. 2.2, we saw that
decoupling a system of differential equations by finding a basis of eigenvectors for
a matrix considerably simplifies the problem of solving the differential equations. It
is from that setup that we shall take our cue to the simplest form of a linear operator.

Definition 2.5.1. A linear operator L W V ! V on a finite-dimensional vector
space over a field F is said to be diagonalizable if we can find a basis for V that
consists of eigenvectors for L; i.e., a basis e1; : : : ; en for V such that L.ei / D �iei
and �i 2 F for all i D 1; : : : ; n. This is the same as saying that
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�

L.e1/ � � � L.en/
	 D � e1 � � � en

	

2

6

4

�1 � � � 0
:::
: : :

:::

0 � � � �n

3

7

5 :

In other words, the matrix representation for L is a diagonal matrix.

One advantage of having a basis that diagonalizes a linear operator L is that it
becomes much simpler to calculate the powers Lk since Lk .ei / D �ki ei . More
generally, if p .t/ 2 F Œt � ; then we have p .L/ .ei / D p .�i / ei . Thus, p .L/ is
diagonalized with respect to the same basis and with eigenvalues p .�i /.

We are now ready for a few examples and then the promised application of
diagonalizability.

Example 2.5.2. The derivative mapD W Pn ! Pn is not diagonalizable. We already
know (see Example 1.7.3) thatD has a matrix representation that is upper triangular
and with zeros on the diagonal. Thus, the characteristic polynomial is tnC1. So the
only eigenvalue is 0. Therefore, hadD been diagonalizable, it would have had to be
the zero transformation 0Pn . Since this is not true, we conclude that D W Pn ! Pn
is not diagonalizable.

Example 2.5.3. Let V D span fexp .�1t/ ; : : : ; exp .�nt/g and consider again the
derivative map D W V ! V . Then, we have D .exp .�i t// D �i exp .�i t/. So if we
extract a basis for V among the functions exp .�1t/ ; : : : ; exp .�nt/ ; then we have
found a basis of eigenvectors for D.

These two examples show that diagonalizability is not just a property of the operator.
It really matters what space the operator is restricted to live on. We can exemplify
this with matrices as well.

Example 2.5.4. Consider

A D
�

0 �1
1 0

�

:

As a map A W R2 ! R
2; this operator cannot be diagonalizable as it rotates vectors.

However, as a map A W C2 ! C
2, it has two eigenvalues˙i with eigenvectors

�

1

�i
�

:

As these eigenvectors form a basis for C
2, we conclude that A W C2 ! C

2 is
diagonalizable.

We have already seen how decoupling systems of differential equations is related to
being able to diagonalize a matrix (see Sect. 2.2). Below we give a related example
showing that diagonalizability can be used to investigate a recurrence relation.
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Example 2.5.5. Consider the Fibonacci sequence 1; 1; 2; 3; 5; 8; : : : where each
term is the sum of the previous two terms. Therefore, if 	n is the nth term in the
sequence, then 	nC2 D 	nC1 C 	n; with initial values 	0 D 1; 	1 D 1. If we record
the elements in pairs

˚n D
�

	n
	nC1

�

2 R
2;

then the relationship takes the form
�

	nC1
	nC2

�

D
�

0 1

1 1

� �

	n

	nC1

�

;

˚nC1 D A˚n:

The goal is to find a general formula for 	n and to discover what happens as n!1.
The matrix relationship tells us that

˚n D An˚0;
�

	n
	nC1

�

D
�

0 1

1 1

�n �
1

1

�

:

Thus, we must find a formula for
�

0 1

1 1

�n

:

This is where diagonalization comes in handy. The matrix A has characteristic
polynomial

t2 � t � 1 D
 

t � 1C
p
5

2

! 

t � 1 �
p
5

2

!

:

The corresponding eigenvectors for 1˙p5
2

are

"

1
1˙p5
2

#

. So

�

0 1

1 1

�
"

1 1
1Cp5
2

1�p5
2

#

D
"

1 1
1Cp5
2

1�p5
2

#"

1Cp5
2

0

0 1�p5
2

#

or

�

0 1

1 1

�

D
"

1 1
1Cp5
2

1�p5
2

#"

1Cp5
2

0

0 1�p5
2

#"

1 1
1Cp5
2

1�p5
2

#�1
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D
"

1 1

1Cp5
2

1�p5
2

#
2

4

1Cp5
2

0

0 1�p5
2

3

5

"
1
2
� 1

2
p
5

1p
5

1
2
C 1

2
p
5
� 1p

5

#

:

This means that

�

0 1

1 1

�n

D
"

1 1
1Cp5
2

1�p5
2

#"

1Cp5
2

0

0 1�p5
2

#n " 1
2
� 1

2
p
5

1p
5

1
2
C 1

2
p
5
� 1p

5

#

D
"

1 1
1Cp5
2

1�p5
2

#
2

4




1Cp5
2

�n

0

0



1�p5
2

�n

3

5

"

1
2
� 1

2
p
5

1p
5

1
2
C 1

2
p
5
� 1p

5

#

D
2

4




1Cp5
2

�n 

1
2
� 1

2
p
5

�

C



1�p5
2

�n 

1
2
C 1

2
p
5

�




1Cp5
2

�nC1 

1
2
� 1

2
p
5

�

C



1�p5
2

�nC1 

1
2
C 1

2
p
5

�

1p
5




1Cp5
2

�n � 1p
5




1�p5
2

�n

1p
5




1Cp5
2

�nC1 � 1p
5




1�p5
2

�nC1

3

5

Hence

	n D
 

1Cp5
2

!n �
1

2
� 1

2
p
5

�

C
 

1 �p5
2

!n �
1

2
C 1

2
p
5

�

C 1p
5

 

1Cp5
2

!n

� 1p
5

 

1 �p5
2

!n

D
�

1

2
C 1

2
p
5

�
 

1Cp5
2

!n

C
 

1 �p5
2

!n �
1

2
� 1

2
p
5

�

D
 

1Cp5
2
p
5

! 

1Cp5
2

!n

�
 

1 �p5
2

!n  

1 �p5
2
p
5

!

D
�

1p
5

�
 

1Cp5
2

!nC1
�
�

1p
5

�
 

1 �p5
2

!nC1
:
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The ratio of successive Fibonacci numbers satisfies

	nC1
	n
D



1p
5

� 


1Cp5
2

�nC2 �



1p
5

� 


1�p5
2

�nC2




1p
5

� 


1Cp5
2

�nC1 �



1p
5

� 


1�p5
2

�nC1

D



1Cp5
2

�nC2 �



1�p5
2

�nC2




1Cp5
2

�nC1 �



1�p5
2

�nC1

D



1Cp5
2

�

�



1�p5
2

� 


1�p5
1Cp5

�nC1

1 �



1�p5
1Cp5

�nC1 ;

where



1�p5
1Cp5

�nC1! 0 as n!1. Thus,

lim
n!1

	nC1
	n
D 1Cp5

2
;

which is the golden ratio. This ratio is usually denoted by 	. The Fibonacci sequence
is often observed in growth phenomena in nature and is also of fundamental
importance in combinatorics.

It is not easy to come up with a criterion that guarantees that a matrix is
diagonalizable and is also easy to use. It turns out that the minimal polynomial holds
the key to diagonalizability of a general linear operator. In a different context, we
shall show in Sect. 4.3 that symmetric matrices with real entries are diagonalizable.

The basic procedure for deciding diagonalizability of an operator L W V ! V

is to first compute the eigenvalues, then list them without multiplicities �1; : : : ; �k;
then calculate all the eigenspaces ker .L � �i1V / ; and, finally, check if one can find
a basis of eigenvectors. To assist us in this process, there are some useful abstract
results about the relationship between the eigenspaces.

Lemma 2.5.6. (Eigenspaces form Direct Sums) If �1; : : : ; �k are distinct eigenval-
ues for a linear operator L W V ! V; then

ker .L � �11V /C� � �C ker .L � �k1V / D ker .L � �11V /˚� � �˚ ker .L� �k1V / :
In particular, we have

k � dim .V / :

Proof. The proof uses induction on k. When k D 1, there is nothing to prove.
Assume that the result is true for any collection of k distinct eigenvalues for L
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and suppose that we have k C 1 distinct eigenvalues �1; : : : ; �kC1 for L. Since we
already know that

ker .L � �11V /C� � �C ker .L � �k1V / D ker .L � �11V /˚� � �˚ ker .L � �k1V / ;

it will be enough to prove that

.ker .L� �11V /C � � � C ker .L � �k1V // \ ker .L � �kC11V / D f0g :

In other words, we claim that if L.x/ D �kC1x and x D x1 C � � � C xk where
xi 2 ker .L � �i1V / ; then x D 0. We can prove this in two ways.

First, note that if k D 1; then x D x1 implies that x is the eigenvector for
two different eigenvalues. This is clearly not possible unless x D 0. Thus, we can
assume that k > 1. In that case,

�kC1x D L.x/
D L.x1 C � � � C xk/
D �1x1 C � � � C �kxk:

Subtracting yields

0 D .�1 � �kC1/ x1 C � � � C .�k � �kC1/ xk:

Since we assumed that

ker .L � �11V /C� � �C ker .L � �k1V / D ker .L � �11V /˚� � �˚ ker .L � �k1V / ;

it follows that .�1 � �kC1/ x1 D 0; : : : ; .�k � �kC1/ xk D 0. As .�1 � �kC1/ ¤ 0;
: : : ; .�k � �kC1/ ¤ 0, we conclude that x1 D 0; : : : ; xk D 0; implying that x D
x1 C � � � C xk D 0.

The second way of doing the induction is slightly trickier and has the advantage
that it is easy to generalize (see Exercise 20 in this section.) This proof will in
addition give us an interesting criterion for when an operator is diagonalizable.
Since �1; : : : ; �kC1 are different, the polynomials t � �1; : : : ; t � �kC1 have 1
as their greatest common divisor. Thus, also .t � �1/ � � � .t � �k/ and .t � �kC1/
have 1 as their greatest common divisor. This means that we can find polynomials
p .t/ ; q .t/ 2 F Œt � such that

1 D p .t/ .t � �1/ � � � .t � �k/C q .t/ .t � �kC1/

(see Proposition 2.1.4). If we substitute the operator L into this formula in place of
t , we obtain:

1V D p .L/ .L� �11V / � � � .L � �k1V /C q .L/ .L � �kC11V / :
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Applying this to x gives us

x D p .L/ .L � �11V / � � � .L� �k1V / .x/C q .L/ .L� �kC11V / .x/ :

If
x 2 .ker .L � �11V /C � � � C ker .L � �k1V // \ ker .L � �kC11V / ;

then

.L � �11V / � � � .L� �k1V / .x/ D 0;

.L � �kC11V / .x/ D 0;

so also x D 0. ut
As applications of this lemma, we reexamine several examples.

Example 2.5.7. First, we wish to give a new proof (see Example 1.12.15) that
exp .�1t/ ; : : : ; exp .�nt/ are linearly independent if �1; : : : ; �n are distinct. For
that, we consider V D span fexp .�1t/ ; : : : ; exp .�nt/g and D W V ! V . The
result is now obvious as each of the functions exp .�i t/ is an eigenvector with
eigenvalue �i for D W V ! V . As �1; : : : ; �n are distinct, we can conclude that
the corresponding eigenfunctions are linearly independent. Thus, exp .�1t/ ; : : : ;
exp .�nt/ form a basis for V which diagonalizesD.

Example 2.5.8. In order to solve the initial value problem for higher order differen-
tial equations, it was necessary to show that the Vandermonde matrix

2

6

6

6

4

1 � � � 1

�1 � � � �n
:::

: : :
:::

�n�11 � � � �n�1n

3

7

7

7

5

is invertible, when �1; : : : ; �n 2 F are distinct. This was done in Example 1.12.12
and will now be established using eigenvectors. Given the origins of this problem
(in this book), it is not unnatural to consider a matrix

A D

2

6

6

6

6

4

0 1 � � � 0

0 0
: : :

:::
:::

:::
: : : 1

�˛0 �˛1 � � � �˛n�1

3

7

7

7

7

5

;

where

p .t/ D tn C ˛n�1tn�1 C � � � C ˛1t C ˛0
D .t � �1/ � � � .t � �n/ :
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In Example 2.3.10, we saw that the characteristic polynomial for A is p .t/. In
particular, �1; : : : ; �n 2 F are the eigenvalues. When these eigenvalues are distinct,
we consequently know that the corresponding eigenvectors are linearly independent.
To find these eigenvectors, note that

A

2

6

6

6

4

1

�k
:::

�n�1k

3

7

7

7

5

D

2

6

6

6

6

4

0 1 � � � 0

0 0
: : :

:::
:::

:::
: : : 1

�˛0 �˛1 � � � �˛n�1

3

7

7

7

7

5

2

6

6

6

4

1

�k
:::

�n�1k

3

7

7

7

5

D

2

6

6

6

4

�k
�2k
:::

�˛0 � ˛1�k � � � � � ˛n�1�n�1k

3

7

7

7

5

D

2

6

6

6

4

�k

�2k
:::

�nk

3

7

7

7

5

, since p .�k/ D 0

D �k

2

6

6

6

4

1

�k
:::

�n�1k

3

7

7

7

5

:

This implies that the columns in the Vandermonde matrix are the eigenvectors for
a diagonalizable operator. Hence, the matrix must be invertible. Note that A is
diagonalizable if and only if �1; : : : ; �n are distinct as all eigenspaces for A are
one-dimensional (we shall also prove and use this in the next Sect. 2.6).

Example 2.5.9. An interesting special case of the previous example occurs when
p .t/ D tn�1 and we assume that F D C. Then, the roots are the nth roots of unity,
and the operator that has these numbers as eigenvalues looks like

C D

2

6

6

6

6

4

0 1 � � � 0
0 0

: : :
:::

:::
:::
: : : 1

1 0 � � � 0

3

7

7

7

7

5

:
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The powers of this matrix have the following interesting patterns:

C2 D

2

6

6

6

6

6

6

6

6

4

0 0 1 0 0

0 0
: : :

1 0

0 0 1

1 0 0 0

0 1 0 0

3

7

7

7

7

7

7

7

7

5

;

:::

C n�1 D

2

6

6

6

6

4

0 � � � � � � 1
1 0

: : :
:::

:::
: : :

: : : 0

0 � � � 1 0

3

7

7

7

7

5

;

C n D

2

6

6

6

6

4

1 0 � � � 0
0 1

: : :
:::

:::
: : :

: : : 0

0 � � � 0 1

3

7

7

7

7

5

D 1Fn :

A linear combination of these powers looks like

C˛0;:::;˛n�1 D ˛01Fn C ˛1C C � � � C ˛n�1C n�1

D

2

6

6

6

6

6

6

6

6

6

4

˛0 ˛1 ˛2 ˛3 � � � ˛n�1
˛n�1 ˛0 ˛1 ˛2 � � � ˛n�2
::: ˛n�1 ˛0

: : :
:::

˛3
::: ˛n�1

: : :

˛2 ˛3
:::

: : : ˛0 ˛1
˛1 ˛2 ˛3 � � � ˛n�1 ˛0

3

7

7

7

7

7

7

7

7

7

5

:

Since we have a basis that diagonalizes C and hence also all of its powers, we have
also found a basis that diagonalizes C˛0;:::;˛n�1 . This would probably not have been
so easy to see if we had just been handed the matrix C˛0;:::;˛n�1 .

The above lemma also helps us establish three criteria for diagonalizability.

Theorem 2.5.10. (First Criterion for Diagonalizability) LetL W V ! V be a linear
operator on an n-dimensional vector space over F. If �1; : : : ; �k 2 F are distinct
eigenvalues for L such that
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n D dim .ker .L� �11V //C � � � C dim .ker .L � �k1V // ;

then L is diagonalizable. In particular, if L has n distinct eigenvalues in F; then L
is diagonalizable.

Proof. Our assumption together with Lemma 2.5.6 shows that

n D dim .ker .L � �11V //C � � � C dim .ker .L� �k1V //
D dim .ker .L � �11V /C � � � C ker .L � �k1V // :

Thus,
ker .L � �11V /˚ � � � ˚ ker .L� �k1V / D V;

and we can find a basis of eigenvectors, by selecting a basis for each of the
eigenspaces.

For the last statement, we only need to observe that dim .ker .L � �1V // � 1 for
any eigenvalue � 2 F. ut
The next characterization offers a particularly nice condition for diagonalizability
and will also give us the minimal polynomial characterization of diagonalizability.

Theorem 2.5.11. (Second Criterion for Diagonalizability) Let L W V ! V be a
linear operator on an n-dimensional vector space over F. L is diagonalizable if
and only if we can find p 2 F Œt � such that p .L/ D 0 and

p .t/ D .t � �1/ � � � .t � �k/ ;

where �1; : : : ; �k 2 F are distinct.

Proof. Assuming that L is diagonalizable, we have

V D ker .L � �11V /˚ � � � ˚ ker .L � �k1V / :

So if we use
p .t/ D .t � �1/ � � � .t � �k/

we see that p .L/ D 0 as p .L/ vanishes on each of the eigenspaces (see also
Exercise 16 in this section).

Conversely, assume that p .L/ D 0 and

p .t/ D .t � �1/ � � � .t � �k/ ;

where �1; : : : ; �k 2 F are distinct. If any of these �i s are not eigenvalues for L,
we can eliminate the factors t � �i since L � �i1V is an isomorphism unless �i is
an eigenvalue. We then still have that L is a root of the new polynomial. The proof
now goes by induction on the number of roots in p. If there is one root, the result is
obvious. If k � 2, we can use Proposition 2.1.4 to write
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1 D r .t/ .t � �1/ � � � .t � �k�1/C s .t/ .t � �k/
D r .t/ q .t/C s .t/ .t � �k/ :

We then claim that

V D ker .q .L//˚ ker .L � �k1V /
and that

L.ker .q .L/// � ker .q .L// :

This will finish the induction step as Ljker.q.L// is a linear operator on the proper
subspace ker .q .L// with the property that q

�

Ljker.q.L//
� D 0. We can then use the

induction hypothesis to conclude that the result holds for Ljker.q.L//. As it obviously
holds for .L � �k1V / jker.L��k1V /, it follows that the result also holds for L.

To establish the decomposition observe that

x D q .L/ .r .L/ .x//C .L � �k1V / .s .L/ .x//
D y C z:

Here y 2 ker .L � �k1V / since

.L � �k1V / .y/ D .L � �k1V / .q .L/ .r .L/ .x///
D p .L/ .r .L/ .x//

D 0;

and z 2 ker .q .L// since

q .L/ ..L � �k1V / .s .L/ .x/// D p .L/ .s .L/ .x// D 0:

Thus,

V D ker .q .L//C ker .L� �k1V / :
If

x 2 ker .q .L// \ ker .L � �k1V / ;
then we have

x D r .L/ .q .L/ .x//C s .L/ ..L � �k1V / .x// D 0:
This gives the direct sum decomposition.

Finally, if x 2 ker .q .L// ; then we see that

q .L/ .L .x// D .q .L/ ı L/ .x/
D .L ı q .L// .x/
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D L.q .L/ .x//
D 0:

Thus, showing that L.x/ 2 ker .q .L//. ut
Corollary 2.5.12. (The Minimal Polynomial Characterization of Diagonalizabil-
ity) Let L W V ! V be a linear operator on an n-dimensional vector space over F.
L is diagonalizable if and only if the minimal polynomial factors

�L .t/ D .t � �1/ � � � .t � �k/ ;

and has no multiple roots, i.e., �1; : : : ; �k 2 F are distinct.

Finally we can estimate how large dim .ker .L� �1V // can be if we have factored
the characteristic polynomial.

Lemma 2.5.13. Let L W V ! V be a linear operator on an n-dimensional vector
space over F. If � 2 F is an eigenvalue and �L .t/ D .t � �/m q .t/ ; where q .�/ ¤
0; then

dim .ker .L � �1V // � m:

We call dim .ker .L � �1V // the geometric multiplicity of � and m the algebraic
multiplicity of �.

Proof. Select a complement N to ker .L� �1V / in V . Then, choose a basis where
x1; : : : ; xk 2 ker .L � �1V / and xkC1; : : : ; xn 2 N . Since L.xi / D �xi for i D
1; : : : ; k, we see that the matrix representation has a block form that looks like

ŒL� D
�

�1Fk B

0 C

�

:

This implies that

�L .t/ D �ŒL� .t/
D ��1

Fk
.t/ �C .t/

D .t � �/k �C .t/

and hence that � has algebraic multiplicity m � k. ut
Clearly, the appearance of multiple roots in the characteristic polynomial is
something that might prevent linear operators from becoming diagonalizable. The
following criterion is often useful for deciding whether or not a polynomial has
multiple roots.
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Proposition 2.5.14. A polynomial p .t/ 2 F Œt � has � 2 F as a multiple root if and
only if � is a root of both p andDp.

Proof. If � is a multiple root, then p .t/ D .t � �/m q .t/ ; where m � 2. Thus,

Dp .t/ D m.t � �/m�1 q .t/C .t � �/m Dq .t/

also has � as a root.
Conversely, if � is a root of Dp and p; then we can write p .t/ D

.t � �/ q .t/ and

0 D Dp .�/
D q .�/C .� � �/Dq .�/
D q .�/ :

Thus, also q .t/ has � as a root and hence � is a multiple root of p .t/. ut
Example 2.5.15. If p .t/ D t 2 C ˛t C ˇ; then Dp .t/ D 2t C ˛. Thus we have a
double root only if the only root t D � ˛

2
of Dp is a root of p. If we evaluate

p



�˛
2

�

D ˛2

4
� ˛

2

2
C ˇ

D �˛
2

4
C ˇ

D �˛
2 � 4ˇ
4

;

we see that this occurs precisely when the discriminant vanishes. This conforms
nicely with the quadratic formula.

Example 2.5.16. If p .t/ D t3 C 12t2 � 14; then the roots are pretty nasty. We can,
however, check for multiple roots by finding the roots of

Dp .t/ D 3t2 C 24t D 3t .t C 8/

and checking whether they are roots of p

p .0/ D �14 ¤ 0;
p .8/ D 83 C 12 � 82 � 14

D 82 .8C 12/� 14 > 0:
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Exercises

1. Decide whether or not the following matrices are diagonalizable:

(a)
2

4

1 0 1

0 1 0

1 0 1

3

5

(b)
2

4

0 1 2

1 0 3

2 3 0

3

5

(c)
2

4

0 1 2

�1 0 3

�2 �3 0

3

5

2. Decide whether or not the following matrices are diagonalizable:

(a)
�

0 i

i 0

�

(b)
�

0 i

�i 0

�

(c)
2

4

1 i 0

i 1 0

0 2 1

3

5

3. Decide whether or not the following matrices are diagonalizable:

(a)
2

4

1 0 1

0 0 0

1 0 1

3

5

(b)
2

4

1 0 1

0 1 0

1 0 1

3

5
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(c)
2

4

0 0 1

0 1 0

1 0 0

3

5

4. Find the characteristic polynomial, eigenvalues, and eigenvectors for each of
the following linear operators L W P3 ! P3. Then, decide whether they are
diagonalizable by checking whether there is a basis of eigenvectors.

(a) L D D.
(b) L D tD D T ıD.
(c) L D D2 C 2D C 1P3 .
(d) L D t2D3 CD.

5. Consider the linear operator on Matn�n .F/ defined by L.X/ D Xt . Show that
L is diagonalizable. Compute the eigenvalues and eigenspaces.

6. For which s; t 2 C is the matrix diagonalizable
�

1 1

s t

�

‹

7. For which ˛; ˇ; � 2 C is the matrix diagonalizable

2

4

0 1 0

0 0 1

�˛ �ˇ ��

3

5‹

8. Assume L W V ! V is diagonalizable. Show that V D ker .L/˚ im .L/.
9. Assume that L W V ! V is a diagonalizable real linear map on a finite-

dimensional vector space. Show that tr
�

L2
� � 0.

10. Assume that A 2 Matn�n .F/ is diagonalizable.

(a) Show that At is diagonalizable.
(b) Show that LA .X/ D AX defines a diagonalizable operator on Matn�n .F/

(see Example 1.7.6.)
(c) Show that RA .X/ D XA defines a diagonalizable operator on Matn�n .F/.

11. Show that if E W V ! V is a projection on a finite-dimensional vector space,
then tr .E/ D dim .im .E//.

12. Let A 2 Matn�n .F/ and B 2 Matm�m .F/ and consider

L W Matn�m .F/! Matn�m .F/ ;

L .X/ D AX � XB:
Show that ifB is diagonalizable, then all eigenvalues ofL are of the form ���,
where � is an eigenvalue of A and � an eigenvalue of B .
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13. (Restrictions of Diagonalizable Operators) LetL W V ! V be a linear operator
on a finite-dimensional vector space and M � V an invariant subspace, i.e.,
L.M/ �M .

(a) If xCy 2M , whereL.x/ D �x,L.y/ D �y; and � ¤ �; then x; y 2 M .
(b) If x1 C � � � C xk 2 M and L.xi / D �ixi ; where �1; : : : ; �k are distinct,

then x1; : : : ; xk 2M . Hint: Use induction on k.
(c) If L W V ! V is diagonalizable, use (a) and (b) to show that L W M !M

is diagonalizable.
(d) If L W V ! V is diagonalizable, use Theorem 2.5.11 directly to show that

L WM !M is diagonalizable.

14. Let L W V ! V be a linear operator on a finite-dimensional vector space. Show
that � is a multiple root for �L .t/ if and only if

f0g ¤ ker .L � �1V / ¤ ker



.L � �1V /2
�

:

15. Assume that L;K W V ! V are both diagonalizable, that KL D LK , and that
V is finite-dimensional. Show that we can find a basis for V that diagonalizes
both L and K . Hint: You can use Exercise 13 with M as an eigenspace for one
of the operators as well as Exercise 3 in Sect. 1.11.

16. Let L W V ! V be a linear operator on a vector space and �1; : : : ; �k distinct
eigenvalues. If x D x1 C � � � C xk; where xi 2 ker .L � �i1V / ; then

.L � �11V / � � � .L� �k1V / .x/ D 0:

17. Let L W V ! V be a linear operator on a vector space and � ¤ �. Use the
identity

1

� � � .L � �1V /�
1

� � � .L � �1V / D 1V

to show that two eigenspaces associated to distinct eigenvalues for L have
trivial intersection.

18. Consider an involution L W V ! V; i.e., L2 D 1V .

(a) Show that x ˙ L.x/ is an eigenvector for L with eigenvalue˙1.
(b) Show that V D ker .LC 1V /˚ ker .L � 1V /.
(c) Conclude that L is diagonalizable.

19. Assume L W V ! V satisfies L2 C ˛LC ˇ1V D 0 and that the roots �1; �2 of
�2 C ˛�C ˇ are distinct and lie in F.

(a) Determine �; ı so that

x D � .L .x/ � �1x/C ı .L .x/ � �2x/ :

(b) Show that L.x/ � �1x 2 ker .L � �21V / and L.x/ � �2x 2
ker .L � �11V /.
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(c) Conclude that V D ker .L � �11V /˚ ker .L � �21V /.
(d) Conclude that L is diagonalizable.

20. Let L W V ! V be a linear operator on a finite-dimensional vector space. Show
that

(a) If p; q 2 F Œt � and gcd fp; qg D 1, then V D ker .p .L// ˚ ker .q .L//.
Hint: Look at the proof of Theorem 2.5.11.

(b) If �L .t/ D p .t/ q .t/ ; where gcd fp; qg D 1, then �Ljker.p.L//
D p and

�Ljker.q.L//
D q.

2.6 Cyclic Subspaces

The goal of this section is to find a relatively simple matrix representation for
linear operators L W V ! V on finite-dimensional vector spaces that are not
necessarily diagonalizable. The way in which this is going to be achieved is by
finding a decomposition V D M1 ˚ � � � ˚Mk into L-invariant subspaces Mi with
the property that LjMi has matrix representation that can be found by only knowing
the characteristic or minimal polynomial for LjMi .

The invariant subspaces we are going to use are in fact a very natural generaliza-
tion of eigenvectors. Observe that x 2 V is an eigenvector if L.x/ 2 span fxg or in
other words L.x/ is a linear combination of x.

Definition 2.6.1. Let L W V ! V be a linear operator on a finite-dimensional
vector space. The cyclic subspace generated by x 2 V is the subspace spanned by
the vectors x; L .x/ ; : : : :; Lk .x/ ; . . . ., i.e.,

Cx D span
˚

x;L .x/ ; L2 .x/ ; : : : ; Lk .x/ ; : : :
�

:

Assuming x ¤ 0; we can use Lemma 1.12.3 to find a smallest k � 1 such that

Lk .x/ 2 span
˚

x;L .x/ ; L2 .x/ ; : : : ; Lk�1 .x/
�

:

With this definition and construction behind us, we can now prove.

Lemma 2.6.2. LetL W V ! V be a linear operator on an finite-dimensional vector
space. Then, Cx is L-invariant and we can find k � dim .V / so that x; L .x/ ;
L2 .x/ ; : : : ; Lk�1 .x/ form a basis for Cx . The matrix representation for LjCx with
respect to this basis is

2

6

6

6

6

6

4

0 0 � � � 0 ˛0
1 0 � � � 0 ˛1
0 1 � � � 0 ˛2
:::
:::
: : :

:::
:::

0 0 � � � 1 ˛k�1

3

7

7

7

7

7

5

;
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where

Lk .x/ D ˛0x C ˛1L .x/C � � � C ˛k�1Lk�1 .x/ :
Proof. The vectors x; L .x/ ; L2 .x/ ; : : : ; Lk�1 .x/ must be linearly independent if
we pick k as the smallest k such that

Lk .x/ D ˛0x C ˛1L .x/C � � � C ˛k�1Lk�1 .x/ :
To see that they span Cx, we need to show that

Lm .x/ 2 span
˚

x;L .x/ ; L2 .x/ ; : : : ; Lk�1 .x/
�

for allm � k. We are going to use induction onm to prove this. Ifm D 0; : : : k�1;
there is nothing to prove. Assuming that

Lm�1 .x/ D ˇ0x C ˇ1L .x/C � � � C ˇk�1Lk�1 .x/ ;
we get

Lm .x/ D ˇ0L .x/C ˇ1L2 .x/C � � � C ˇk�1Lk .x/ :
Since we already have that

Lk .x/ 2 span
˚

x;L .x/ ; L2 .x/ ; : : : ; Lk�1 .x/
�

;

it follows that

Lm .x/ 2 span
˚

x;L .x/ ; L2 .x/ ; : : : ; Lk�1 .x/
�

:

This completes the induction step. This also explains whyCx isL-invariant, namely,
if z 2 Cx; then we have

z D �0x C �1L .x/C � � � C �k�1Lk�1 .x/ ;
and

L.z/ D �0L .x/C �1L2 .x/C � � � C �k�1Lk .x/ :
As Lk .x/ 2 Cx we see that L.z/ 2 Cx as well.

To find the matrix representation, we note that

�

L.x/ L .L .x// � � � L �Lk�2 .x/� L �Lk�1 .x/� 	

D �L.x/ L2 .x/ � � � Lk�1 .x/ Lk .x/ 	

D �x L .x/ � � � Lk�2 .x/ Lk�1 .x/ 	

2

6

6

6

6

6

4

0 0 � � � 0 ˛0
1 0 � � � 0 ˛1

0 1 � � � 0 ˛2
:::
:::
: : :

:::
:::

0 0 � � � 1 ˛k�1

3

7

7

7

7

7

5

:

This proves the lemma. ut



176 2 Linear Operators

The matrix representation for LjCx is apparently the transpose of the type of matrix
coming from higher order differential equations that we studied in the previous
sections. Therefore, we can expect our knowledge of those matrices to carry over
without much effort. To be a little more precise, we define the companion matrix of
a monic nonconstant polynomial p .t/ 2 F Œt � as the matrix

Cp D

2

6

6

6

6

6

4

0 0 � � � 0 �˛0
1 0 � � � 0 �˛1
0 1 � � � 0 �˛2
:::
:::
: : :

:::
:::

0 0 � � � 1 �˛n�1

3

7

7

7

7

7

5

;

p .t/ D tn C ˛n�1tn�1 C � � � C ˛1t C ˛0:

It is worth mentioning that the companion matrix for p D t C ˛ is simply the 1� 1
matrix Œ�˛�.
Proposition 2.6.3. The characteristic and minimal polynomials of Cp are both
p .t/, and all eigenspaces are one-dimensional. In particular, Cp is diagonalizable
if and only if all the roots of p .t/ are distinct and lie in F.

Proof. Even though we can prove these properties from our knowledge of the
transpose of Cp, it is still worthwhile to give a complete proof. Recall that we
computed the minimal polynomial in the proof of Proposition 2.4.10.

To compute the characteristic polynomial, we consider:

t1Fn � Cp D

2

6

6

6

6

6

4

t 0 � � � 0 ˛0

�1 t � � � 0 ˛1
0 �1 � � � 0 ˛2
:::

:::
: : :

:::
:::

0 0 � � � �1 t C ˛n�1

3

7

7

7

7

7

5

:

By switching rows 1 and 2, we see that this is row equivalent to

2

6

6

6

6

6

4

�1 t � � � 0 ˛1
t 0 � � � 0 ˛0
0 �1 � � � 0 ˛2
:::

:::
: : :

:::
:::

0 0 � � � �1 t C ˛n�1

3

7

7

7

7

7

5

eliminating t then gives us
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2

6

6

6

6

6

4

�1 t � � � 0 ˛1
0 t2 � � � 0 ˛0 C ˛1t
0 �1 � � � 0 ˛2
:::

:::
: : :

:::
:::

0 0 � � � �1 t C ˛n�1

3

7

7

7

7

7

5

:

Now, switch rows 2 and 3 to get

2

6

6

6

6

6

4

�1 t � � � 0 ˛1

0 �1 � � � 0 ˛2
0 t2 � � � 0 ˛0 C ˛1t
:::

:::
: : :

:::
:::

0 0 � � � �1 t C ˛n�1

3

7

7

7

7

7

5

and eliminate t2
2

6

6

6

6

6

4

�1 t � � � 0 ˛1
0 �1 � � � 0 ˛2
0 0 � � � 0 ˛0 C ˛1t C ˛2t2
:::

:::
: : :

:::
:::

0 0 � � � �1 t C ˛n�1

3

7

7

7

7

7

5

:

Repeating this argument shows that t1Fn � Cp is row equivalent to

2

6

6

6

6

6

6

4

�1 t � � � 0 ˛1
0 �1 � � � 0 ˛2

0 0
: : :

:::
:::

:::
::: �1 t C ˛n�1

0 0 � � � 0 tn C ˛n�1tn�1 C � � � C ˛1t C ˛0

3

7

7

7

7

7

7

5

:

This implies that the characteristic polynomial is p .t/.
To see that all eigenspaces are one-dimensional we note that if � is a root of

p .t/ ; then we have just shown that �1Fn � Cp is row equivalent to the matrix

2

6

6

6

6

6

6

4

�1 � � � � 0 ˛1
0 �1 � � � 0 ˛2

0 0
: : :

:::
:::

:::
::: �1 �C ˛n�1

0 0 � � � 0 0

3

7

7

7

7

7

7

5

:
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Since all but the last diagonal entry is nonzero we see that the kernel must be
one-dimensional. ut
Cyclic subspaces lead us to a very elegant proof of the Cayley–Hamilton theorem.

Theorem 2.6.4. (The Cayley–Hamilton Theorem) Let L W V ! V be a linear
operator on a finite-dimensional vector space. Then, L is a root of its own
characteristic polynomial

�L .L/ D 0:
In particular, the minimal polynomial divides the characteristic polynomial.

Proof. Select any x ¤ 0 in V and a complement M to the cyclic subspace Cx
generated by x. This gives us a nontrivial decomposition V D Cx ˚M; where L
maps Cx to itself andM into V . If we select a basis for V that starts with the cyclic
basis for Cx; then L will have a matrix representation that looks like

ŒL� D
�

Cp B

0 D

�

;

where Cp is the companion matrix representation for L restricted to Cx. This shows
that

�L .t/ D �Cp .t/ �D .t/
D p .t/ �D .t/ :

We know that p
�

Cp
� D 0 from the previous result. This shows that p .LjCx / D 0

and in particular that p .L/ .x/ D 0. Thus,

�L .L/ .x/ D �D .L/ ı p .L/ .x/
D 0:

Since x was arbitrary, this shows that �L .L/ D 0. ut
We now have quite a good understanding of the basic building blocks in the
decomposition we are seeking.

Theorem 2.6.5. (The Cyclic Subspace Decomposition) Let L W V ! V be a
linear operator on a finite-dimensional vector space. Then, V has a cyclic subspace
decomposition

V D Cx1 ˚ � � � ˚ Cxk ;
where each Cxi is a cyclic subspace. In particular, L has a block diagonal matrix
representation where each block is a companion matrix
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ŒL� D

2

6

6

6

4

Cp1 0 0

0 Cp2
: : :

0 Cpk

3

7

7

7

5

and �L .t/ D p1 .t/ � � �pk .t/. Moreover, the geometric multiplicity satisfies

dim .ker .L � �1V // D number of pi s such that pi .�/ D 0:

Thus, L is diagonalizable if and only if all of the companion matrices Cpi have
distinct eigenvalues.

Proof. The proof uses induction on the dimension of the vector space. The theorem
clearly holds if dimV D 1, so assume that the theorem holds for all linear operators
on vector spaces of dimension < dimV . Our goal is to show that either V D Cx1
for some x1 2 V or that V D Cx1 ˚M for some L-invariant subspace M .

Let m � dimV be the largest dimension of a cyclic subspace, i.e., dimCx � m
for all x 2 V , and there is an x1 2 V such that dimCx1 D m. In other words,
Lm .x/ 2 span

˚

x;L .x/ ; : : : ; Lm�1 .x/
�

for all x 2 V , and we can find x1 2 V
such that x1; L .x1/ ; : : : ; Lm�1 .x1/ are linearly independent.

In case m D dimV , it follows that Cx1 D V and we are finished. Otherwise, we
must show that there is an L-invariant complement to

Cx1 D span
˚

x1; L .x1/ ; : : : ; L
m�1 .x1/

�

in V . To construct this complement, we consider the linear map K W V ! F
m

defined by

K .x/ D

2

6

6

6

4

f .x/

f .L .x//
:::

f
�

Lm�1 .x/
�

3

7

7

7

5

;

where f W V ! F is a linear functional chosen so that

f .x1/ D 0;
f .L .x1// D 0;

:::
:::

f
�

Lm�2 .x1/
� D 0;

f
�

Lm�1 .x1/
� D 1:

Note that it is possible to choose such an f as x1; L .x1/ ; : : : ; Lm�1 .x1/ are linearly
independent and hence part of a basis for V .
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We now claim that KjCx1 W Cx1 ! F
m is an isomorphism. To see this, we find

the matrix representation for the restriction ofK to Cx1 . Using the basis x1; L .x1/ ;
: : : ; Lm�1 .x1/ for Cx1 and the canonical basis e1; : : : ; em for Fm, we see that:

�

K .x1/ K .L .x1// � � � K
�

Lm�1 .x1/
� 	

D � e1 e2 � � � em
	

2

6

6

6

6

4

0 0 � � � 1
::: : :

: 	
0 1

:::

1 	 � � � 	

3

7

7

7

7

5

;

where 	 indicates that we do not know or care what the entry is. Since the
matrix representation is clearly invertible, we have that KjCx1 W Cx1 ! F

m is an
isomorphism.

Next, we need to show that ker .K/ is L-invariant. Let x 2 ker .K/ ; i.e.,

K .x/ D

2

6

6

6

4

f .x/

f .L .x//
:::

f
�

Lm�1 .x/
�

3

7

7

7

5

D

2

6

6

6

4

0

0
:::

0

3

7

7

7

5

:

Then,

K .L .x// D

2

6

6

6

6

6

4

f .L .x//

f
�

L2 .x/
�

:::

f
�

Lm�1 .x/
�

f .Lm .x//

3

7

7

7

7

7

5

D

2

6

6

6

6

6

4

0

0
:::

0

f .Lm .x//

3

7

7

7

7

7

5

:

Now, by the choice ofm, Lm .x/ is a linear combination of x; L .x/ ; : : : ; Lm�1 .x/
for all x. This shows that f .Lm .x// D 0 and consequently L.x/ 2 ker .K/.

Finally, we show that V D Cx1 ˚ ker .K/. We have seen that KjCx1 W Cx1 ! F
m

is an isomorphism. This implies that Cx1 \ ker .K/ D f0g. From Theorem 1.11.7
and Corollary 1.10.14, we then get that

dim .V / D dim .ker .K//C dim .im .K//

D dim .ker .K//Cm
D dim .ker .K//C dim .Cx1/

D dim .ker .K/C Cx1/ :

Thus, V D Cx1 C ker .K/ D Cx1 ˚ ker .K/.
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To find the geometric multiplicity of �; we need only observe that each of
the blocks Cpi has a one-dimensional eigenspace corresponding to � if � is an
eigenvalue for Cpi . We know in turn that � is an eigenvalue for Cpi precisely when
pi .�/ D 0. ut
It is important to understand that there can be several cyclic subspace decompo-
sitions. This fact, of course, makes our calculation of the geometric multiplicity
of eigenvalues especially intriguing. A rather interesting example comes from com-
panion matrices themselves. Clearly, they have the desired decomposition; however,
if they are diagonalizable, then the space also has a different decomposition into
cyclic subspaces given by the one-dimensional eigenspaces. The issue of obtaining
a unique decomposition is discussed in the next section.

To see that this theorem really has something to say, we should give examples of
linear maps that force the space to have a nontrivial cyclic subspace decomposition.
Since a companion matrix always has one-dimensional eigenspaces, this is of course
not hard at all.

Example 2.6.6. A very natural choice is the linear operator LA .X/ D AX on
Matn�n .C/. In Example 1.7.6, we showed that it had a block diagonal form with
As on the diagonal. This shows that any eigenvalue forA has geometric multiplicity
at least n. We can also see this more directly. Assume that Ax D �x; where x 2 C

n

and consider X D �˛1x � � � ˛nx
	

. Then,

LA .X/ D A
�

˛1x � � � ˛nx
	

D �

˛1Ax � � � ˛nAx
	

D � �˛1x � � � ˛nx
	

D �X:
Thus,

M D ˚�˛1x � � � ˛nx
	 W ˛1; : : : ; ˛n 2 C

�

forms an n-dimensional space of eigenvectors for LA.

Example 2.6.7. Another interesting example of a cyclic subspace decomposition
comes from permutation matrices. We first recall that a permutation matrix A 2
Matn�n .F/ is a matrix such that Aei D e
.i/; see also Example 1.7.7. We claim that
we can find a cyclic subspace decomposition by simply rearranging the canonical
basis e1; : : : ; en for Fn. The proof works by induction on n. When n D 1, there is
nothing to prove. For n > 1; we consider Ce1 D span

˚

e1; Ae1; A
2e1; : : :

�

. Since all
of the powers Ame1 belong to the finite set fe1; : : : ; eng ; we can find integers k >
l > 0 such that Ake1 D Ale1. Since A is invertible, this implies that Ak�l e1 D e1.
Now, select the smallest integerm > 0 such that Ame1 D e1. Then we have

Ce1 D span
˚

e1; Ae1; A
2e1; : : : ; A

m�1e1
�

:
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Moreover, all of the vectors e1; Ae1; A2e1; : : : ; Am�1e1 must be distinct as we could
otherwise find l < k < m such that Ak�l e1 D e1. This contradicts minimality ofm.
Since all of e1; Ae1; A2e1; : : : ; Am�1e1 are also vectors from the basis e1; : : : ; en;
they must form a basis for Ce1 . In this basis, A is represented by the companion
matrix to p .t/ D tm � 1 and hence takes the form

2

6

6

6

6

6

4

0 0 � � � 0 1

1 0 � � � 0 0

0 1 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � 1 0

3

7

7

7

7

7

5

:

The permutation that corresponds to A W Ce1 ! Ce1 is also called a cyclic
permutation. Evidently, it maps the elements 1; 
 .1/ ; : : : ; 
m�1 .1/ to them-
selves in a cyclic manner. One often refers to such permutations by listing the
elements as

�

1; 
 .1/ ; : : : ; 
m�1 .1/
�

. This is not a unique representation as, e.g.,
�


m�1 .1/ ; 1; 
 .1/ ; : : : ; 
m�2 .1/
�

clearly describes the same permutation.
We used m of the basis vectors e1; : : : ; en to span Ce1 . Rename and reindex the

complementary basis vectors f1; : : : ; fn�m. To get our induction to work we need to
show that Afi D f�.i/ for each i D 1; : : : ; n�m. We know that Afi 2 fe1; : : : ; eng.
If Afi 2

˚

e1; Ae1; A
2e1; : : : ; A

m�1e1
�

; then either fi D e1 or fi D Ake1.
The former is impossible since fi …

˚

e1; Ae1; A
2e1; : : : ; A

m�1e1
�

. The latter is
impossible as A leaves

˚

e1; Ae1; A
2e1; : : : ; A

m�1e1
�

invariant. Thus, it follows that
Afi 2 ff1; : : : ; fn�mg as desired. In this way, we see that it is possible to rearrange
the basis e1; : : : ; en so as to get a cyclic subspace decomposition. Furthermore, on
each cyclic subspace, A is represented by a companion matrix corresponding to
p .t/ D tk � 1 for some k � n. Recall that if F D C; then all of these companion
matrices are diagonalizable, in particular, A is itself diagonalizable.

Note that the cyclic subspace decomposition for a permutation matrix also
decomposes the permutation 
 into cyclic permutations that are disjoint. This is
a basic construction in the theory of permutations.

The cyclic subspace decomposition qualifies as a central result in linear algebra
for many reasons. While somewhat difficult and tricky to prove, it does not depend
on several of our developments in this chapter. It could in fact be established without
knowledge of eigenvalues, characteristic polynomials and minimal polynomials,
etc. Second, it gives a matrix representation that is in block diagonal form and
where we have a very good understanding of each of the blocks. Therefore,
all of our developments in this chapter could be considered consequences of
this decomposition. Finally, several important and difficult results such as the
Frobenius and Jordan canonical forms become relatively easy to prove using this
decomposition.
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Exercises

1. Find all invariant subspaces for the following two matrices and show that they
are not diagonalizable:

(a)
�

0 1

0 0

�

(b)
�

˛ 1

0 ˛

�

2. Show that the space of n � n companion matrices form an affine subspace
isomorphic to the affine subspace of monic polynomials of degree n. Affine
subspaces are defined in Exercise 8 in Sect. 1.10.

3. Given

A D

2

6

6

6

6

4

�1 1 � � � 0

0 �2
: : :

:::
:::

:::
: : : 1

0 0 � � � �n

3

7

7

7

7

5

find x 2 F
n such that Cx D F

n. Hint: Try n D 2; 3 first.
4. Given a linear operator L W V ! V on a finite-dimensional vector space and
x 2 V , show that

Cx D fp .L/ .x/ W p .t/ 2 F Œt �g :

5. Let p .t/ D tnC˛n�1tn�1C� � �C˛0 2 F Œt �. Show that Cp and C t
p are similar.

Hint: Let

B D

2

6

6

6

6

6

6

6

6

6

4

˛1 ˛2 ˛3 � � � ˛n�1 1
˛2 ˛3 � � � 1 0

˛3
:::

: : :
::: ˛n�1 0 0

˛n�1 1
:::

1 0 � � � 0 0

3

7

7

7

7

7

7

7

7

7

5

and show

CpB D BC t
p:
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6. Use the previous exercise to show that A 2 Matn�n .F/ and its transpose are
similar.

7. Show that if V D Cx for some x 2 V; then deg .�L/ D dim .V /.
8. For each n � 2, construct a matrix A 2 Matn�n .F/ such that V ¤ Cx for every
x 2 V .

9. For each n � 2, construct a matrix A 2 Matn�n .F/ such that V D Cx for some
x 2 V .

10. Let L W V ! V be a diagonalizable linear operator on a finite-dimensional
vector space. Show that V D Cx if and only if there are no multiple eigenvalues.

11. Let L W V ! V be a linear operator on a finite-dimensional vector space.
Assume that V ¤ Cx1; where Cx1 is the first cyclic subspace as constructed
in the proof of the cyclic subspace decomposition. Show that it is possible to
select another y1 2 V such that dimCy1 D dimCx1 D m; but Cx1 ¤ Cy1 .
This gives a different indication of why the cyclic subspace decomposition is
not unique.

12. Let L W V ! V be a linear operator on a finite-dimensional vector space such
that V D Cx for some x 2 V .

(a) Show that K ı L D L ı K if and only if K D p .L/ for some p 2 F Œt �.
Hint: When K ı L D L ı K define p by using that K .x/ D ˛0 C � � � C
˛n�1Ln�1 .x/.

(b) Show that all invariant subspaces forL are of the form ker .p .L// for some
polynomial p 2 F Œt �.

13. Let L W V ! V be a linear operator on a finite-dimensional vector
space. Define F ŒL� D fp .L/ W p .t/ 2 F Œt �g � Hom .V; V / as the space of
polynomials in L.

(a) Show that F ŒL� is a subspace, that is also closed under composition of
operators.

(b) Show that dim .F ŒL�/ D deg .�L/ and F ŒL� D span
˚

1V ; L; : : : ; L
k�1� ;

where k D deg .�L/.
(c) Show that the map ˚ W F Œt �! Hom .V; V / defined by ˚ .p .t// D p .L/

is linear and a ring homomorphism (preserves multiplication and sends 1 2
F Œt � to 1V 2 Hom .V; V /) with image F ŒL�.

(d) Show that ker .˚/ D fp .t/ �L .t/ W p .t/ 2 F Œt �g.
(e) Show that for any p .t/ 2 F Œt �, we have p .L/ D r .L/ for some r .t/ 2

F Œt � with deg r .t/ < deg�L .t/.
(f) Given an eigenvector x 2 V for L, show that x is an eigenvector for all

K 2 F ŒL� and that the map F ŒL� ! F that sends K to the eigenvalue
corresponding to x is a ring homomorphism.

(g) Conversely, show that any ring nontrivial homomorphism 	 W F ŒL�! F is
of the type described in (f).
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2.7 The Frobenius Canonical Form

As we have already indicated, the above proof of the cyclic subspace decomposition
actually proves quite a bit more than the result claims. It leads us to a unique
matrix representation for the operator known as the Frobenius canonical form. This
canonical form will be used in the next section to establish more refined canonical
forms for complex operators.

Theorem 2.7.1. (The Frobenius Canonical Form) Let L W V ! V be a linear
operator on a finite-dimensional vector space. Then, V has a cyclic subspace
decomposition such that the block diagonal form of L

ŒL� D

2

6

6

6

4

Cp1 0 0

0 Cp2
: : :

0 Cpk

3

7

7

7

5

has the property that pi divides pi�1 for each i D 2; : : : ; k. Moreover, the monic
polynomials p1; : : : ; pk are unique.

Proof. We first establish that the polynomials constructed in the above version of
the cyclic subspace decomposition have the desired divisibility properties.

Recall that m � dimV is the largest dimension of a cyclic subspace, i.e.,
dimCx � m for all x 2 V and there is an x1 2 V such that dimCx1 D m. In
other words, Lm .x/ 2 span

˚

x;L .x/ ; : : : ; Lm�1 .x/
�

for all x 2 V and we can
find x1 2 V such that x1; L .x1/ ; : : : ; Lm�1 .x1/ are linearly independent. With this
choice of x1, define

p1 .t/ D tm � ˛m�1tm�1 � � � � � ˛0; where

Lm .x1/ D ˛m�1Lm�1 .x1/C � � � C ˛0x1;
and recall that in the proof of Theorem 2.6.5, we also found an L-invariant
complementary subspace M � V .

With these choices we claim that p1 .L/ .z/ D 0 for all z 2 V . Note that we
already know this for z D x1; and it is easy to also verify it for z D L.x1/ ; : : : ;

Lm�1 .x1/ by using that p .L/ ıLk D Lk ı p .L/. Thus, we only need to check the
claim for z 2M . By construction of m we know that

Lm .x1 C z/ D �m�1Lm�1 .x1 C z/C � � � C �0 .x1 C z/ :

Now, we rearrange the terms as follows:

Lm .x1/C Lm .z/ D Lm .x1 C z/

D �m�1Lm�1 .x1/C � � � C �0x1
C�m�1Lm�1 .z/C � � � C �0z:
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Since

Lm .x1/ ; �m�1Lm�1 .x1/C � � � C �0x1 2 Cx1
and

Lm .z/ ; �m�1Lm�1 .z/C � � � C �0z 2M;
it follows that

�m�1Lm�1 .x1/C � � � C �0x1 D Lm .x1/ D ˛m�1Lm�1 .x1/C � � � C ˛0x1:
Since x1; L .x1/ ; : : : ; Lm�1 .x1/ are linearly independent, this shows that �i D ˛i
for i D 0; : : : ; m � 1. But then

0 D p1 .L/ .x1 C z/

D p1 .L/ .x1/C p1 .L/ .z/
D p1 .L/ .z/ ;

which is what we wanted to prove.
Next, let x2 2M and p2 .t/ be chosen in the same fashion as x1 and p1. We first

note that l D degp2 � degp1 D m; this means that we can write p1 D q1p2 C r;
where deg r < degp2. Thus,

0 D p1 .L/ .x2/

D q1 .L/ ı p2 .L/ .x2/C r .L/ .x2/
D r .L/ .x2/ :

Since deg r < l D degp2; the equation r .L/ .x2/ D 0 takes the form

0 D r .L/ .x2/
D ˇ0x2 C � � � C ˇl�1Ll�1 .x2/ :

However, p2 was chosen to that x2; L .x2/ ; : : : ; Ll�1 .x2/ are linearly indepen-
dent, so

ˇ0 D � � � D ˇl�1 D 0
and hence also r D 0. This shows that p2 divides p1.

We now show that p1 and p2 are unique, despite the fact that x1 and x2 need
not be unique. To see that p1 is unique, we simply check that it is the minimal
polynomial of L. We have already seen that p1 .L/ .z/ D 0 for all z 2 V . Thus,
p1 .L/ D 0 showing that deg�L � degp1. On the other hand, we also know that
x1; L .x1/ ; : : : ; L

m�1 .x1/ are linearly independent; in particular, 1V ; L; : : : ; Lm�1
must also be linearly independent. This shows that deg�L � m D degp1. Hence,
�L D p1 as they are both monic.
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To see that p2 is unique is a bit more tricky since the choice for Cx1 is not unique.
We select two decompositions

Cx0

1
˚M 0 D V D Cx1 ˚M:

This yields two block diagonal matrix decompositions for L
�

Cp1 0

0 ŒLjM 0 �

�

�

Cp1 0

0 ŒLjM �
�

;

where the upper left-hand block is the same for both representations as p1 is unique.
Moreover, these two matrices are similar. Therefore, we only need to show that
�A22 D �A0

22
if the two block diagonal matrices

�

A11 0

0 A22

�

and

�

A11 0

0 A022

�

are similar
�

A11 0

0 A22

�

D B�1
�

A11 0

0 A022

�

B:

If p is any polynomial, then
�

p .A11/ 0

0 p .A22/

�

D p
��

A11 0

0 A22

��

D p
�

B�1
�

A11 0

0 A022

�

B

�

D B�1
�

p

��

A11 0

0 A022

���

B

D B�1
�

p .A11/ 0

0 p
�

A022
�

�

B:

In particular, the two matrices
�

p .A11/ 0

0 p .A22/

�

and

�

p .A11/ 0

0 p
�

A022
�

�

always have the same rank. Since the upper left-hand corners are identical, this
shows that p .A22/ and p

�

A022
�

have the same rank. As a special case, it follows
that p .A22/ D 0 if and only if p

�

A022
� D 0. This shows that A22 and A022 have the

same minimal polynomials and hence that p2 is uniquely defined. ut
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In some texts, the Frobenius canonical form is also known as the rational canonical
form. The reason is that it will have rational entries if we start with an n � n
matrix with rational entries. To see why this is, simply observe that the polynomials
have rational coefficients starting with p1; the minimal polynomial. In some other
texts, the rational canonical form is refined by further factoring the characteristic
or minimal polynomials into irreducible components over the rationals. One of the
advantages of the Frobenius canonical form is that it does not depend on the scalar
field. That is, if A 2 Matn�n .F/ � Matn�n .L/, then the form does not depend on
whether we compute it using F or L.

Definition 2.7.2. The unique polynomials p1; : : : ; pk are called the similarity
invariants, elementary divisors, or invariant factors for L.

Clearly, two matrices are similar if they have the same similarity invariants as
they have the same Frobenius canonical form. Conversely, similar matrices are
both similar to the same Frobenius canonical form and hence have the same
similarity invariants. It is possible to calculate the similarity invariants using only the
elementary row and column operations (see Sect. 1.13.) The specific construction is
covered in Sect. 2.9 and is related to the Smith normal form.

The following corollary shows that several of the matrices related to companion
matrices are in fact similar. Various exercises have been devoted to establishing this
fact, but using the Frobenius canonical form we get a very elegant characterization
of when a linear map is similar to a companion matrix.

Corollary 2.7.3. If two linear operators on an n-dimensional vector space have the
same minimal polynomials of degree n; then they have the same Frobenius canonical
form and are thus similar.

Proof. If deg�L D dimV , then the first block in the Frobenius canonical form is
an n � n matrix. Thus, there is only one block in this decomposition. This proves
the claim. ut
We can redefine the characteristic polynomial using similarity invariants. However,
it is not immediately clear why it agrees with the definition given in Sect. 2.3 as we
do not know that that definition gives the same answer for similar matrices (see,
however, Sect. 5.7 for a proof that uses determinants).

Definition 2.7.4. The characteristic polynomial of a linear operatorL W V ! V on
a finite-dimensional vector space is the product of its similarity invariants:

�L .t/ D p1 .t/ � � �pk .t/ :

This gives us a way of defining the characteristic polynomial, but it does not tells
us how to compute it. For that, the row reduction technique or determinants are the
way to go. In this vein, we can also define the determinant as

detL D .�1/n �L .0/ :



2.7 The Frobenius Canonical Form 189

The problem is that one of the key properties of determinants

det .K ı L/ D det .K/ det .L/

does not follow easily from this definition. We do, however, get that similar matrices,
and linear operators have the same determinant:

det
�

K ı L ıK�1� D det .L/ :

Example 2.7.5. As a general sort of example, let us see what the Frobenius
canonical form for

A D
�

Cq1 0

0 Cq2

�

is when q1 and q2 are relatively prime. Note that if

0 D p .A/ D
�

p
�

Cq1
�

0

0 p
�

Cq2
�

�

;

then both q1 and q2 divide p. Conversely, if q1 and q2 both divide p, it also follows
that p .A/ D 0. Since the least common multiple of q1 and q2 is q1 � q2, we see that
�A D q1 � q2 D �A. Thus, p1 D q1 � q2. This shows that the Frobenius canonical
form is simply Cq1�q2 . The general case where there might be a nontrivial greatest
common divisor is relegated to the exercises.

Example 2.7.6. We now give a few examples showing that the characteristic and
minimal polynomials alone do not yield sufficient information to determine all the
similarity invariants when the dimension is � 4 (see exercises for dimensions 2 and
3). We consider all possible canonical forms in dimension 4, where the characteristic
polynomial is t4. There are four nontrivial cases given by:

2

6

6

4

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

3

7

7

5

;

2

6

6

4

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

3

7

7

5

;

2

6

6

4

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

3

7

7

5

;

2

6

6

4

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

3

7

7

5

For the first, we know that � D p1 D t4. For the second, we have two blocks where
� D p1 D t3 and p2 D t . For the third, we have � D p1 D t2 while p2 D p3 D t .
Finally, the fourth has � D p1 D p2 D t2. The last two matrices clearly do not
have the same canonical form, but they do have the same characteristic and minimal
polynomials.

Example 2.7.7. Lastly, let us compute the Frobenius canonical form for a projection
E W V ! V . As we shall see, this is clearly a situation where we should just stick to
diagonalization as the Frobenius canonical form is far less informative. Apparently,
we just need to find all possible Frobenius canonical forms that are also projections.
The simplest are of course just 0V and 1V . In all other cases the minimal polynomial
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is t2 � t . The companion matrix for that polynomial is
�

0 0

1 1

�

so we expect to have one or several of those blocks, but note that we cannot
have more than




dimV
2

˘

of such blocks. The rest of the diagonal entries must now
correspond to companion matrices for either t or t � 1. But we cannot use both as
these two polynomials do not divide each other. This gives us two types of Frobenius
canonical forms:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0

1 1
: : :

0 0

1 1

0

: : :

0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

or
2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0

1 1
: : :

0 0

1 1

1
: : :

1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

To find the correct canonical form for E, we just select the Frobenius canonical
form that gives us the correct rank. If rankE � 


dimV
2

˘

it will be of the first type
and otherwise of the second.

Exercises

1. What are the similarity invariants for a companion matrix Cp‹
2. Let A 2 Matn�n .R/ ; and n � 2.

(a) Show that when n is odd, then it is not possible to have p1 .t/ D t2 C 1.
(b) Show by example that one can have p1 .t/ D t2 C 1 for all even n.
(c) Show by example that one can have p1 .t/ D t3 C t for all odd n.
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3. If L W V ! V is an operator on a 2-dimensional space, then either p1 D �L D
�L or L D �1V .

4. If L W V ! V is an operator on a 3-dimensional space, then either p1 D �L D
�L, p1 D .t � ˛/ .t � ˇ/ and p2 D .t � ˇ/ ; or L D �1V . Note that in the
second case you know that p1 has degree 2, the key is to show that it factors as
described.

5. Let L W V ! V be a linear operator on a finite-dimensional space. Show that
V D Cx for some x 2 V if and only if �L D �L.

6. Show that the matrix
2

6

6

6

6

4

�1 1 � � � 0
0 �2

: : :
:::

:::
:::
: : : 1

0 0 � � � �n

3

7

7

7

7

5

is similar to a companion matrix.
7. Let L W V ! V be a linear operator on a finite-dimensional vector space such

that V D Cx for some x 2 V . Show that all invariant subspaces for L are of
the form Cz for some z 2 V . Hint: This relies on showing that if an invariant
subspace is not cyclic, then deg�L < dimV .

8. Consider two companion matrices Cp and CqI show that the similarity invari-
ants for the block diagonal matrix

�

Cp 0

0 Cq

�

are p1 D lcm fp; qg and p2 D gcd fp; qg. Hint: Use Propositions 2.1.4
and 2.1.5 to show that p1 � p2 D p � q.

9. Is it possible to find the similarity invariants for

2

4

Cp 0 0

0 Cq 0

0 0 Cr

3

5‹

Note that you can easily find p1 D l cm fp; q; rg, so the issue is whether it is
possible to decide what p2 should be.

10. Show that A;B 2 Matn�n .F/ are similar if and only if rank .p .A// D
rank .p .B// for all p 2 F Œt �. (Recall that two matrices have the same rank
if and only if they are equivalent and that equivalent matrices certainly need not
be similar. This is what makes the exercise interesting.)

11. The previous exercise can be made into a checkable condition: Show that
A;B 2 Matn�n .F/ are similar if and only if �A D �B and rank .p .A// D
rank .p .B// for all p that divide �A. (Note that as �A has a unique prime
factorization (see Theorem 2.1.7), this means that we only have to check a finite
number of conditions.)
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12. Show that any linear map with the property that

�L .t/ D .t � �1/ � � � .t � �n/ 2 F Œt �

for �1; : : : ; �n 2 F has an upper triangular matrix representation.
13. Let L W V ! V be a linear operator on a finite-dimensional vector space. Use

the Frobenius canonical form to show that tr .L/ D �˛n�1; where �L .t/ D
tn C ˛n�1tn�1 C � � � C ˛0. This is the result mentioned in Proposition 2.3.11.

14. Assume that L W V ! V satisfies .L � �01V /k D 0; for some k > 1; but
.L � �01V /k�1 ¤ 0. Show that ker .L � �01V / is neither f0g nor V . Show that
ker .L � �01V / does not have a complement in V that is L-invariant.

15. (The Cayley–Hamilton Theorem) Show the Cayley–Hamilton theorem using the
Frobenius canonical form.

2.8 The Jordan Canonical Form*

In this section, we present a proof of the Jordan canonical form. We start with a
somewhat more general point of view that in the end is probably the most important
feature of this special canonical form.

Theorem 2.8.1. (The Jordan–Chevalley Decomposition) Let L W V ! V be a
linear operator on an n-dimensional complex vector space. Then, L D S C N;

where S is diagonalizable,Nn D 0; and SN D NS .

Proof. First, use the Fundamental Theorem of Algebra 2.1.8 to factor the minimal
polynomial

�L .t/ D .t � �1/m1 � � � .t � �k/mk ;
where �1; : : : ; �k are distinct. If we define

Mi D ker .L � �i /mi ;

then the proof of Lemma 2.5.6 together with Exercise 20 in Sect. 2.5 shows that

V DM1 ˚ � � � ˚Mk:

We can now define

S jMi D �i1V jMi D �i1Mi

N jMi D .L � �i1V / jMi D LjMi � �i1Mi

Clearly,L D SCN , S is diagonalizable and SN D NS . Finally, since�L .L/ D 0,
it follows that Nn D 0. ut
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It is in fact possible to show that the Jordan–Chevalley decomposition is unique, i.e.,
the operators S andN are uniquely determined by L (see exercises to this chapter).

As a corollary of the above proof, we obtain:

Corollary 2.8.2. Let Cp be a companion matrix with p .t/ D .t � �/n. Then, Cp is
similar to a Jordan block:

ŒJ � D

2

6

6

6

6

6

6

6

6

6

4

� 1 0 � � � 0 0
0 � 1 � � � 0 0
0 0 �

: : :
:::
:::

0 0 0
: : : 1 0

:::
:::
::: � � � � 1

0 0 0 � � � 0 �

3

7

7

7

7

7

7

7

7

7

5

:

Moreover, the eigenspace for � is one-dimensional and is generated by the first basis
vector.

We can now give a simple proof of the so-called Jordan canonical form. Interest-
ingly, the famous analyst Weierstrass deserves equal credit as he too proved the
result at about the same time.

Theorem 2.8.3. (The Jordan–Weierstrass Canonical form) Let L W V ! V be a
linear operator on a finite-dimensional complex vector space. Then, we can find
L-invariant subspacesM1; : : : :;Ms such that

V DM1 ˚ � � � ˚Ms

and each LjMi has a matrix representation of the form

2

6

6

6

6

6

6

4

�i 1 0 � � � 0
0 �i 1 � � � 0
0 0 �i

: : :
:::

:::
:::
:::
: : : 1

0 0 0 � � � �i

3

7

7

7

7

7

7

5

;

where �i is an eigenvalue for L.

Proof. First, we invoke the Jordan–Chevalley decomposition L D S C N . Then,
we decompose V into eigenspaces for S :

V D ker .S � �11V /˚ � � � ˚ ker .S � �k1V / :
Each of these eigenspaces is invariant for N since S and N commute. Specifically,
if S .x/ D �x; then

S .N .x// D N .S .x// D N .�x/ D �N .x/ ;

showing that N .x/ is also an eigenvector for the eigenvalue �.
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This reduces the problem to showing that operators of the form �1W CN; where
Nn D 0 have the desired decomposition. Since the homothety � � 1W is always
diagonal in any basis, it then suffices to show the theorem holds for operators N
such that Nn D 0. The similarity invariants for such an operator all have to look
like tk so the blocks in the Frobenius canonical form must look like

2

6

6

6

6

4

0 0 � � � 0
1 0

: : :
:::
: : :

: : : 0

0 1 0

3

7

7

7

7

5

:

If e1; : : : ; ek is the basis yielding this matrix representation, then

N
�

e1 � � � ek
	 D �

e2 � � � ek 0
	

D �

e1 � � � ek
	

2

6

6

6

6

4

0 0 � � � 0
1 0

: : :
:::
: : :

: : : 0

0 1 0

3

7

7

7

7

5

:

Reversing the basis to ek; : : : ; e1 then gives us the desired block

N
�

ek � � � e1
	 D �

0 ek � � � e2
	

D �

ek � � � e1
	

2

6

6

6

6

4

0 1 � � � 0
0 0

: : :
:::

: : : 1

0 0

3

7

7

7

7

5

:

ut
In this decomposition, it is possible for several of the subspaces Mi to correspond
to the same eigenvalue. Given that the eigenspace for each Jordan block is one-
dimensional we see that each eigenvalue corresponds to as many blocks as the
geometric multiplicity of the eigenvalue. The job of calculating the Jordan canonical
form is in general quite hard. Here we confine ourselves to the 2- and 3-dimensional
situations.

Corollary 2.8.4. LetL W V ! V be a complex linear operator where dim .V / D 2.
Either L is diagonalizable and there is a basis where

ŒL� D
�

�1 0

0 �2

�

;



2.8 The Jordan Canonical Form 195

or L is not diagonalizable and there is a basis where

ŒL� D
�

� 1

0 �

�

:

Note that in case L is diagonalizable, we either have that L D �1V or that the
eigenvalues are distinct. In the nondiagonalizable case, there is only one eigenvalue.

Corollary 2.8.5. LetL W V ! V be a complex linear operator where dim .V / D 3.
Either L is diagonalizable and there is a basis where

ŒL� D
2

4

�1 0 0

0 �2 0

0 0 �3

3

5 ;

or L is not diagonalizable and there is a basis where one of the following two
situations occur:

ŒL� D
2

4

�1 0 0

0 �2 1

0 0 �2

3

5

or

ŒL� D
2

4

� 1 0

0 � 1

0 0 �

3

5 :

Remark 2.8.6. It is possible to check which of these situations occur by knowing the
minimal and characteristic polynomials. We note that the last case happens precisely
when there is only one eigenvalue with geometric multiplicity 1. The second case
happens if either L has two eigenvalues each with geometric multiplicity 1 or if L
has one eigenvalue with geometric multiplicity 2.

Exercises

1. Find the Jordan canonical forms for the matrices

�

1 0

1 1

�

;

�

1 1

0 2

�

;

�

2 �1
4 �2

�

:

2. Find the basis that yields the Jordan canonical form for

�

� �1
�2 ��

�

:
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3. Find the Jordan canonical form for the matrix

�

�1 1

0 �2

�

:

Hint: The answer depends on �1 and �2.
4. Find the Jordan canonical forms for the matrix

�

0 1

��1�2 �1 C �2
�

:

5. Find the Jordan canonical forms for the matrix

2

4

�2 �2� 1

�3 �2�2 �

�4 �2�3 �2

3

5 :

6. Find the Jordan canonical forms for the matrix

2

4

�1 1 0

0 �2 1

0 0 �3

3

5 :

7. Find the Jordan canonical forms for the matrix

2

4

0 1 0

0 0 1

�1�2�3 � .�1�2 C �2�3 C �1�3/ �1 C �2 C �3

3

5 :

8. Find the Jordan canonical forms for the matrices

2

4

0 1 0

0 0 1

2 �5 4

3

5 ;

2

4

0 1 0

0 0 1

1 �3 3

3

5 ;

2

4

0 1 0

0 0 1

6 �11 6

3

5 :

9. An operator L W V ! V on an n-dimensional vector space over any field is
said to be nilpotent if Lk D 0 for some k.

(a) Show that �L .t/ D tn.
(b) Show that L can be put in triangular form.
(c) Show that L is diagonalizable if and only if L D 0.
(d) Find a real matrix such that its real eigenvalues are 0 but which is not

nilpotent.
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10. Let L W V ! V be a linear operator on an n-dimensional complex vector
space. Show that for p 2 C Œt �, the operator p .L/ is nilpotent if and only if the
eigenvalues of L are roots of p. What goes wrong with this statement in the
real case when p .t/ D t2 C 1 and dimV is odd?

11. Show that if

ker



.L � �1V /k
�

¤ ker



.L � �1V /k�1
�

;

then the algebraic multiplicity of � is� k. Give an example where the algebraic
multiplicity > k and

ker



.L � �1V /kC1
�

D ker



.L � �1V /k
�

¤ ker



.L � �1V /k�1
�

:

12. Show that if L W V ! V is a linear operator such that

�L .t/ D .t � �1/n1 � � � .t � �k/nk ;
�L .t/ D .t � �1/m1 � � � .t � �k/mk ;

then mi corresponds to the largest Jordan block that has �i on the diagonal.
Using that show that mi is the first integer such that

ker ..L � �i1V /mi / D ker



.L � �i1V /miC1
�

:

13. Show that if L W V ! V is a linear operator on an n-dimensional complex
vector space with distinct eigenvalues �1; : : : ; �k; then p .L/ D 0; where

p .t/ D .t � �1/n�kC1 � � � .t � �k/n�kC1 :

Hint: Try k D 2.
14. Assume that L D S C N is a Jordan–Chevalley decompositions, i.e., SN D

NS; S is diagonalizable, and Nn D .N 0/n D 0, where n is the dimension of
the vector space.

(a) Show that S and N commute with L.
(b) Show that L and S have the same eigenvalues.
(c) Show that if � is an eigenvalue for L, then

ker ..L � �1V /n/ D ker ..S � �1V // :

(d) Show that the Jordan–Chevalley decomposition is unique.
(e) Find polynomials p; q such that S D p .L/ and N D q .L/.
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2.9 The Smith Normal Form*

In this section, we show that the row reduction method we developed in Sect. 2.3 to
compute the characteristic polynomial can be enhanced to give a direct method for
computing similarity invariants provided we also use column operations in addition
to row operations.

Let Matn�n .F Œt �/ be the set of all n � n matrices that have entries in F Œt �. The
operations we allow are those coming from multiplying by the elementary matrices:
Ikl , Rkl .r .t//, and Mk .˛/. Recall that we used these operations to compute the
characteristic polynomial in Sect. 2.3. When multiplied on the left, these matrices
have the effect of:

• Ikl interchanges rows k and l .
• Rkl .r .t// multiplies row l by r .t/ 2 F Œt � and adds it to row k.
• Mk .˛/ multiplies row k by ˛ 2 F � f0g.
While when multiplied on right:

• Ikl interchanges columns k and l .
• Rkl .r .t// multiplies column k by r .t/ 2 F Œt � and adds it to column l .
• Mk .˛/ multiplies column k by ˛ 2 F � f0g.

Define

Gln .F Œt �/ � Matn�n .F Œt �/

as the set of all matrices P such that we can find an inverseQ 2 Matn�n .F Œt �/, i.e.,
PQ D QP D 1Fn . As for regular matrices (see Theorem 1.13.14), we obtain

Proposition 2.9.1. The elementary matrices generate Gln .F Œt �/.

Proof. The elementary matrices Ikl ; Rkl .r .t// ; and Mk .˛/ all lie in Gln .F Œt �/
as they have inverses given by Ikl ; Rkl .�r .t// ; and Mk

�

˛�1
�

, respectively. Let
P 2 Gln .F Œt �/ ; then P�1 2 Gln .F Œt �/. Now perform row operations on P�1 as
in Theorem 2.3.6 until we obtain an upper triangular matrix:

U D

2

6

6

6

4

p1 .t/ 	 � � � 	
0 p2 .t/ � � � 	
:::

:::
: : :

:::

0 0 � � � pn .t/

3

7

7

7

5

2 Gln .F Œt �/

However, the upper triangular matrix U cannot be invertible unless its diagonal
entries are nonzero scalars. Thus, we can assume that pi D 1. We can then perform
row operations to eliminate all entries above the diagonal as well. This shows that
there is a matrix Q that is a product of elementary matrices and such that

QP�1 D 1Fn :
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Multiplying by P on the right on both sides then shows that

P D Q
which in turn proves our claim. ut
We can now explain how far it is possible to reduce a matrix with polynomials
as entries using row and column operations. As with regular matrices, we obtain
a diagonal form (see Corollary 1.13.19), but the diagonal entries have a more
complicated relationship between each other.

Theorem 2.9.2. (The Smith Normal Form) Let C 2 Matn�n .F Œt �/, then we can
find P;Q 2 Gln .F Œt �/ such that

PCQ D

2

6

6

6

4

q1 .t/ 0 � � � 0

0 q2 .t/ � � � 0
:::

:::
: : :

:::

0 0 � � � qn .t/

3

7

7

7

5

;

where qi .t/ 2 F Œt � divides qiC1 .t/ and q1 .t/ ; : : : ; qn .t/ are monic if they are
nonzero. Moreover, with these conditions, q1 .t/ ; : : : ; qn .t/ are unique.

Proof. Note that having found the diagonal form, we can always make the nonzero
polynomials monic so we are not going to worry about that issue.

We start by giving a construction for finding P;Q 2 Gln .F Œt �/ such that

PCQ D
�

q1 .t/ 0

0 D

�

;

whereD 2 Mat.n�1/�.n�1/ .F Œt �/ and q1 .t/ divides all of the entries in D.
If C D 0, there is nothing to prove so assume C ¤ 0.

Step 1: Use row and column interchanges until the .1; 1/ entry is the entry with the
lowest degree among all nonvanishing entries.

Step 2: For each entry p1j , j > 1 in the first row, write it as p1j D s1j p11 C r1j
where deg r1j < degp11 and apply the column operation CR1j

��s1j
�

so
that the .1; j / entry becomes r1j .

Step 3: For each entry pi1, i > 1 in the first column, write it as pi1 D si1p11 C ri1
where deg ri1 < degp11 and apply the row operation Ri1 .�si1/ C so that
the .i; 1/ entry becomes ri1.

Step 4: If some nonzero entry has degree < degp11, go back to Step 1. Otherwise,
go to Step 5.

Step 5: We know that p11 is the only nonzero entry in the first row and column and
all other nonzero entries have degree � degp11. If p11 divides all entries,
we have the desired form. Otherwise, use the column operationCRi1 .1/ for
some i > 1 to obtain a matrix where the first column has non-zero entries
of degree� degp11 and go back to Step 3.
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This process will terminate in a finite number of steps and yields

PCQ D
�

q1 .t/ 0

0 D

�

;

whereD 2 Mat.n�1/�.n�1/ .F Œt �/ and q1 .t/ divides all of the entries in D.
To obtain the desired diagonal form, we can repeat this process with D or use

induction on n.
Next, we have to check uniqueness of the diagonal entries. We concentrate on

showing uniqueness of q1 .t/ and q2 .t/.
Note that if

C D P�1
�

q1 .t/ 0

0 D

�

Q�1

and q1 .t/ divides the entries in D, then it also divides all entries in C . Conversely,
the relationship

PCQ D
�

q1 .t/ 0

0 D

�

shows that any polynomial that divides all of the entries in C must in particular
divide q1 .t/. This implies that q1 .t/ is the greatest common divisor of the entries
in C; i.e., the monic polynomial of highest degree which divides all of the entries in
C . Thus, q1 .t/ is uniquely defined.

To see that q2 .t/ is also uniquely defined, we need to show that if C is equivalent
to both

�

q1 .t/ 0

0 D

�

and

�

q1 .t/ 0

0 D0
�

;

then D and D0 have the same greatest common divisors for their entries. It suffices
to show that the greatest common divisor q for all entries in D divides all entries in
D0. To show this, first, observe that

�

q1 .t/ 0

0 D0
�

D P

�

q1 .t/ 0

0 D

�

Q

D
�

P11 P12
P21 P22

� �

q1 .t/ 0

0 D

� �

Q11 Q12

Q21 Q22

�

D
�

P11q1 .t/ P12D

P21q1 .t/ P22D

� �

Q11 Q12

Q21 Q22

�

D
�

P11q1 .t/Q11 C P12DQ21 P11q1 .t/Q12 C P12DQ22

P21q1 .t/Q11 C P22DQ21 P21q1 .t/Q12 C P22DQ22

�

:
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As q1 divides all entries of D, we have that q D pq1. Looking at the relationship

D0 D P21q1 .t/Q12 C P22DQ22;

we observe that if p divides all of the entries in, say, P21, then q will divide all
entries in P21q1 .t/Q12 and consequently also in D0. To show that p divides the
entries in P21, we use the relationship

q1 D P11q1 .t/Q11 C P12DQ21:

As every element in D is a multiple of q1, we can write it as D D q1E, where p
divides every entry in E. This gives us

1 D P11Q11 C P12EQ21:

Thus, p divides 1�P11Q11, which implies that p andQ11 are relatively prime. The
relationship

0 D P21q1 .t/Q11 C P22DQ21:

in turn shows that p divides the entries in P21Q11. As p and Q11 are relatively
prime, this shows that p divides the entries in P21. ut
Example 2.9.3. If A D �1Fn , then t1Fn � A D .t � �/ 1Fn is already in diagonal
form. Thus, we see that q1 .t/ D � � � D qn .t/ D .t � �/.
The Smith normal form can be used to give a very effective way of solving fairly
complicated systems of higher order linear differential equations. If we start with
C 2 Matn�n .F Œt �/, then we can create a system of n differential equations for
the functions x1; : : : ; xn by interpreting the variable t in the polynomials as the
derivativeD:

Cx D

2

6

6

6

4

p11 .D/ p12 .D/ � � � p1n .D/
p21 .D/ p22 .D/ � � � p2n .D/

:::
:::

: : :
:::

pn1 .D/ pn2 .D/ � � � pnn .D/

3

7

7

7

5

2

6

6

6

4

x1
x2
:::

xn

3

7

7

7

5

D

2

6

6

6

4

p11 .D/ x1 C p12 .D/ x2 C � � � C p1n .D/ xn
p21 .D/ x1 C p22 .D/ x2 C � � � C p2n .D/ xn

:::

pn1 .D/ x1 C pn2 .D/ x2 C � � � C pnn .D/ xn

3

7

7

7

5

D

2

6

6

6

4

b1
b2
:::

bn

3

7

7

7

5

;
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where b1; : : : ; bn are given functions. To solve such a system, we use the Smith
normal form

PCQ D

2

6

6

6

4

q1 .t/ 0 � � � 0

0 q2 .t/ � � � 0
:::

:::
: : :

:::

0 0 � � � qn .t/

3

7

7

7

5

and define
2

6

6

6

4

y1
y2
:::

yn

3

7

7

7

5

D Q�1

2

6

6

6

4

x1
x2
:::

xn

3

7

7

7

5

2

6

6

6

4

c1
c2
:::

cn

3

7

7

7

5

D P

2

6

6

6

4

b1
b2
:::

bn

3

7

7

7

5

:

We then start by solving the decoupled system

2

6

6

6

4

q1 .D/ 0 � � � 0

0 q2 .D/ � � � 0
:::

:::
: : :

:::

0 0 � � � qn .D/

3

7

7

7

5

2

6

6

6

4

y1

y2
:::

yn

3

7

7

7

5

D

2

6

6

6

4

c1

c2
:::

cn

3

7

7

7

5

which is really just n-independent higher order equations

q1 .D/ y1 D c1
q2 .D/ y2 D c2

:::

qn .D/ yn D cn
and then we find the original functions by

2

6

6

6

4

x1

x2
:::

xn

3

7

7

7

5

D Q

2

6

6

6

4

y1

y2
:::

yn

3

7

7

7

5

:
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This use of the Smith normal form is similarly very effective in solving systems
of linear recurrences (recurrences were discussed at the end of Sect. 2.2 in relation
to solving higher order differential equations).

Example 2.9.4. Consider the 2�2 system of differential equations that comes from

C D
�

.t � �1/ .t � �2/ .t � �3/ .t � �1/ .t � �2/
.t � �1/ .t � �3/ .t � �1/

�

;

i.e.,

�

.D � �1/ .D � �2/ .D � �3/ .D � �1/ .D � �2/
.D � �1/ .D � �3/ .D � �1/

� �

x1
x2

�

D
�

b1
b2

�

:

Here

R21 .� .t � �2// I12CI12R12 .� .t � �3// D
�

t � �1 0
0 0

�

:

So we have to start by solving

�

t � �1 0
0 0

� �

y1
y2

�

D R21 .� .t � �2// I12
�

b1
b2

�

D
�

b2
b1 � .D � �2/ b2

�

In order to solve that system, we have to require that b1; b2 are related by

.D � �2/ b2 D Db2 � �2b2 D b1:

If that is the case, then y2 can be any function and y1 is found by solving

Dy1 � �1y1 D b2:

We then find the original solutions from

�

x1
x2

�

D I12R12 .� .t � �3//
�

y1
y2

�

D
�

y2
y1 � .Dy2 � �3y2/

�

:

Definition 2.9.5. The monic polynomials q1 .t/ ; : : : ; qn .t/ are called the invariant
factors of C 2 Matn�n .F Œt �/. Note that some of these polynomials can vanish:
qkC1 .t/ D � � � D qn .t/ D 0.

In case C D t1Fn � A; where A 2 Matn�n .F/, the invariant factors are related to
the similarity invariants of A that we defined in Sect. 2.7. Before proving this, we
need to gain a better understanding of the invariant factors.
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Proposition 2.9.6. The invariant factors of t1Fn � A and t1Fn � A0 are the same if
A and A0 are similar.

Proof. Assume that A D BA0B�1, then

t1Fn � A D B
�

t1Fn � A0
�

B�1:

In particular, t1Fn �A and t1Fn �A0 are equivalent. Since the Smith normal form is
unique this shows that they have the same Smith Normal Form. ut
This proposition allows to define the invariant factors related to a linear operator
L W V ! V on a finite-dimensional vector space by computing the invariant factors
of t1Fn � ŒL� for any matrix representation ŒL� of L.

Next, we check what happens for companion matrices.

Proposition 2.9.7. The invariant factors of t1Fn �Cp , where Cp is the companion
matrix for a monic polynomial p of degree n are given by q1 D � � � D qn�1 D 1 and
qn D p.

Proof. LetCp be the companion matrix for p .t/ D tnC˛n�1tn�1C� � �C˛1tC˛0 2
F Œt �, i.e.,

Cp D

2

6

6

6

6

6

4

0 0 � � � 0 �˛0
1 0 � � � 0 �˛1
0 1 � � � 0 �˛2
:::
:::
: : :

:::
:::

0 0 � � � 1 �˛n�1

3

7

7

7

7

7

5

:

Then,

t1Fn � Cp D

2

6

6

6

6

6

4

t 0 � � � 0 ˛0
�1 t � � � 0 ˛1
0 �1 � � � 0 ˛2
:::

:::
: : :

:::
:::

0 0 � � � �1 t C ˛n�1

3

7

7

7

7

7

5

:

We know from Proposition 2.6.3 that t1Fn � Cp is row equivalent to a matrix of the
form

2

6

6

6

6

6

6

4

�1 t � � � 0 ˛1
0 �1 � � � 0 ˛2

0 0
: : :

:::
:::

:::
::: �1 t C ˛n�1

0 0 � � � 0 tn C ˛n�1tn�1 C � � � C ˛1t C ˛0

3

7

7

7

7

7

7

5

:
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We can change the �1 diagonal entries to 1. We can then use column operations to
eliminate the t entries to the right of the diagonal entries in columns 2; : : : ; n� 1 as
well as the entries in the last column that are in the rows 1; : : : ; n � 1. This results
in the equivalent diagonal matrix

2

6

6

6

6

4

1 0 � � � 0
0
: : :

:::
::: 1 0

0 � � � 0 p

3

7

7

7

7

5

:

This must be the Smith normal form. ut
We can now show how the similarity invariant of a linear operator can be computed
using the Smith normal form.

Theorem 2.9.8. Let L W V ! V be a linear operator on a finite-dimensional
vector space, p1; : : : ; pk 2 F Œt � the similarity invariants, and q1; : : : ; qn 2 F Œt � the
invariant factors of t1Fn � ŒL�. Then, qn�i D piC1 for i D 0; : : : ; k � 1 and qj D 1
for j D 1; : : : ; n � k.

Proof. We start by selecting the Frobenius canonical form

ŒL� D

2

6

6

6

4

Cp1 0 0

0 Cp2
: : :

0 Cpk

3

7

7

7

5

as the matrix representation for L. The previous proposition gives the invariant
factors of the blocks t1Fdegpi � Cpi . This tells us that if we only do row and column
operations that respect the block diagonal form, then t1Fn � ŒL� is equivalent to a
block diagonal matrix

C D

2

6

6

6

4

C1 0 0

0 C2
: : :

0 Ck

3

7

7

7

5

;

where Ci is a diagonal matrix

Ci D

2

6

6

6

4

1 0 0

0 1
: : :

0 pi

3

7

7

7

5

:
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We can now perform row and column interchanges on C to obtain the diagonal
matrix

2

6

6

6

6

6

6

6

6

6

4

1

: : :

1

pk
: : :

p1

3

7

7

7

7

7

7

7

7

7

5

:

Since the Smith normal form is unique and the Frobenius normal form has the
property that piC1 divides pi for i D 1; : : : k � 1 we have obtained the Smith
normal form for t1Fn � ŒL� and proven the claim. ut

Exercises

1. Find the Smith normal form for the matrices

(a)
�

.t � �1/ .t � �2/ .t � �3/ .t � �1/ .t � �2/
.t � �1/ .t � �2/ .t � �1/

�

(b)
2

4

t � 1 t2 C t � 2 t � 1
t3 C t2 � 4t C 2 0 t2 � t

t � 1 0 t � 1

3

5

(c)
2

6

6

4

�t 0 0 0

1 �t 0 0

0 0 �t 0
0 0 0 �t

3

7

7

5

(d)
2

6

6

4

�t 0 0 0

1 �t 0 0

0 0 �t 0
0 0 1 �t

3

7

7

5

:

2. Show that if C 2 Matn�n .F Œt �/ has a k � k minor that belongs to Glk .F Œt �/ ;
then q1 .t/ D � � � D qk .t/ D 1. A k � k minor is a k � k matrix that is obtained
form C by deleting all but k columns and k rows.
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3. Let A 2 Matn�n .F/ and consider the two linear operators LA;RA W
Matn�n .F/ ! Matn�n .F/ defined by LA .X/ D AX and RA .X/ D XA.
Are LA and RA similar?

4. Let Cp and Cq be companion matrices. Show that
�

Cp 0

0 Cq

�

has

q1 .t/ D � � � D qn�2 .t/ D 1;
qn�1 .t/ D gcd .p; q/ ;

qn .t/ D lcm .p; q/ :

5. Find the similarity invariants for
2

4

Cp 0 0

0 Cq 0

0 0 Cr

3

5

6. Find the Smith normal form of a diagonal matrix

2

6

6

6

4

p1
p2
: : :

pn

3

7

7

7

5

where p1; : : : ; pn 2 F Œt �. Hint: Start with n D 2.
7. Show that A;B 2 Matn�n .F/ are similar if .t1Fn � A/ ; .t1Fn � B/ 2

Matn�n .F Œt �/ are equivalent. Hint: Use the Smith normal form. It is interesting
to note that there is a proof which does not use the Smith normal form (see [Serre,
Theorem 6.3.2]).





Chapter 3
Inner Product Spaces

So far, we have only discussed vector spaces without adding any further structure to
the space. In this chapter, we shall study so-called inner product spaces. These are
vector spaces where in addition we know the length of each vector and the angle
between two vectors. Since this is what we are used to from the plane and space, it
would seem like a reasonable extra layer of information.

We shall cover some of the basic constructions such as Gram–Schmidt orthog-
onalization, orthogonal projections, and orthogonal complements. We also prove
the Cauchy–Schwarz and Bessel inequalities. In the last sections, we introduce the
adjoint of linear maps. The adjoint helps us understand the connections between
image and kernel and leads to a very interesting characterization of orthogonal
projections. Finally, we also explain matrix exponentials and how they can be used
to solve systems of linear differential equations.

In this and the following chapter, vector spaces always have either real or
complex scalars.

3.1 Examples of Inner Products

3.1.1 Real Inner Products

We start by considering the (real) plane R2 D f.˛1; ˛2/ W ˛1; ˛2 2 Rg. The length of
a vector is calculated via the Pythagorean theorem:

k.˛1; ˛2/k D
q

˛21 C ˛22:

The angle between two vectors x D .˛1; ˛2/ and y D .ˇ1; ˇ2/ is a little trickier to
compute. First, we normalize the vectors

P. Petersen, Linear Algebra, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-3612-6 3, © Springer Science+Business Media New York 2012
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y

x = (1,0)
cos(θ)

sin(θ)

Fig. 3.1 Definition of angle

1

kxkx;

1

kyky

so that they lie on the unit circle. We then trace the arc on the unit circle between
the vectors in order to find the angle � . If x D .1; 0/, the definitions of cosine and
sine (see Fig. 3.1) tell us that this angle can be computed via

cos � D ˇ1

kyk ;

sin � D ˇ2

kyk :

This suggests that if we define

cos �1 D ˛1

kxk ; sin �1 D ˛2

kxk ;

cos �2 D ˇ1

kyk ; sin �2 D ˇ2

kyk ;

then

cos � D cos .�2 � �1/
D cos �1 cos �2 C sin �1 sin �2

D ˛1ˇ1 C ˛2ˇ2
kxk � kyk :
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So if the inner or dot product of x and y is defined by

.xjy/ D ˛1ˇ1 C ˛2ˇ2;
then we obtain the relationship

.xjy/ D kxk kyk cos �:

The length of vectors can also be calculated via

.xjx/ D kxk2 :

The .xjy/ notation is used so as not to confuse the expression with pairs of vectors
.x; y/. One also often sees hx; yi or hxjyi used for inner products.

The key properties that we shall use to generalize the idea of an inner product
are:

1. .xjx/ D kxk2 > 0 unless x D 0.
2. .xjy/ D .yjx/.
3. x ! .xjy/ is linear.

One can immediately generalize this algebraically defined inner product to R
3 and

even R
n by

.xjy/ D

0

B

@

2

6

4

˛1
:::

˛n

3

7

5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

6

4

ˇ1
:::

ˇn

3

7

5

1

C

A

D xty

D �

˛1 � � � ˛n
�

2

6

4

ˇ1
:::

ˇn

3

7

5

D ˛1ˇ1 C � � � C ˛nˇn:

The three above-mentioned properties still remain true, but we seem to have lost
the connection with the angle. This is settled by observing that Cauchy’s inequality
holds:

.xjy/2 � .xjx/ .yjy/ ; or

.˛1ˇ1 C � � � C ˛nˇn/2 �
�

˛21 C � � � C ˛2n
� �

ˇ21 C � � � C ˇ2n
�

:

In other words,

�1 � .xjy/
kxk kyk � 1:



212 3 Inner Product Spaces

x

x

Fig. 3.2 Projection

This implies that the angle can be redefined up to sign through the equation

cos � D .xjy/
kxk kyk :

In addition, as we shall see, the three properties can be used as axioms for inner
products.

Two vectors are said to be orthogonal or perpendicular if their inner product
vanishes. With this definition, the proof of the Pythagorean theorem becomes
completely algebraic:

kxk2 C kyk2 D kx C yk2 ;
if x and y are orthogonal. To see why this is true, note that the properties of the
inner product imply:

kx C yk2 D .x C yjx C y/
D .xjx/C .yjy/C .xjy/C .yjx/
D .xjx/C .yjy/C 2 .xjy/
D kxk2 C kyk2 C 2 .xjy/ :

Thus, the relation kxk2 C kyk2 D kx C yk2 holds precisely when .xjy/ D 0.
The inner product also comes in handy in expressing several other geometric

constructions.
The projection of a vector x onto the line in the direction of y (see Fig. 3.2) is

given by

projy .x/ D
�

x

ˇ

ˇ

ˇ

ˇ

y

kyk
�

y

kyk

D .xjy/ y
.yjy/ :
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x0 xc = (x|n) = (x0|n)

n

Fig. 3.3 Plane

All planes that have normal n, i.e., are perpendicular to n, are defined by the
equation

.xjn/ D c;
where c is determined by any point x0 that lies in the plane: c D .x0jn/ (see also
Fig. 3.3).

3.1.2 Complex Inner Products

Let us now see what happens if we try to use complex scalars. Our geometric picture
seems to disappear, but we shall insist that the real part of a complex inner product
must have the (geometric) properties we have already discussed. Let us start with
the complex plane C. Recall that if z D ˛1C ˛2i , then the complex conjugate is the
reflection of z in the first coordinate axis and is defined by Nz D ˛1 � ˛2i . Note that
z! Nz is not complex linear but only linear with respect to real scalar multiplication.
Conjugation has some further important properties:

kzk D pz � Nz;
z � w D Nz � Nw;
z�1 D Nz

kzk2

Re .z/ D zC Nz
2

Im .z/ D z � Nz
2i

:
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Given that kzk2 D zNz, it seems natural to define the complex inner product by
.zjw/ D z Nw. Thus, it is not just complex multiplication. If we take the real part,
we also note that we retrieve the real inner product defined above:

Re .zjw/ D Re .z Nw/
D Re ..˛1 C ˛2i/ .ˇ1 � ˇ2i//
D ˛1ˇ1 C ˛2ˇ2:

Having established this, we should be happy and just accept the fact that complex
inner products include conjugations.

The three important properties for complex inner products are

1. .xjx/ D kxk2 > 0 unless x D 0.
2. .xjy/ D .yjx/.
3. x ! .xjy/ is complex linear.

The inner product on C
n is defined by

.xjy/ D

0

B

@

2

6

4

˛1
:::

˛n

3

7

5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

6

4

ˇ1
:::

ˇn

3

7

5

1

C

A

D xt Ny

D �

˛1 � � � ˛n
�

2

6

4

Ň
1

:::
Ň
n

3

7

5

D ˛1 Ň1 C � � � C ˛n Ňn:

If we take the real part of this inner product, we get the inner product on R
2n ' C

n.
We say that two complex vectors are orthogonal if their inner product vanishes.

This is not quite the same as in the real case, as the two vectors 1 and i in C are
not complex orthogonal even though they are orthogonal as real vectors. To spell
this out a little further, let us consider the Pythagorean theorem for complex vectors.
Note that

kx C yk2 D .x C yjx C y/
D .xjx/C .yjy/C .xjy/C .yjx/
D .xjx/C .yjy/C .xjy/C .xjy/
D kxk2 C kyk2 C 2Re .xjy/ :
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Thus, only the real part of the inner product needs to vanish for this theorem to hold.
This should not come as a surprise as we already knew the result to be true in this
case.

3.1.3 A Digression on Quaternions*

Another very interesting space that contains some new algebra as well as geometry
is C

2 ' R
4. This is the space-time of special relativity. In this short section, we

mention some of the important features of this space.
In analogy with writing C DspanR f1; ig, let us define

H D spanC f1; j g
D spanR f1; i; 1 � j; i � j g
D spanR f1; i; j; kg :

The three vectors i; j; k form the usual basis for the three-dimensional space R3. The
remaining coordinate in H is the time coordinate. In H, we also have a conjugation
that changes the sign in front of the imaginary numbers i; j; k

Nq D ˛0 C ˛1i C ˛2j C ˛3k
D ˛0 � ˛1i � ˛2j � ˛3k:

To make perfect sense of things, we need to figure out how to multiply i; j; k. In line
with i 2 D �1, we also define j 2 D �1 and k2 D �1. As for the mixed products,
we have already defined ij D k. More generally, we can decide how to compute
these products by using the cross product in R

3. Thus,

ij D k D �j i;
jk D i D �kj;
ki D j D �ik:

This enables us to multiply q1; q2 2 H. The multiplication is not commutative, but
it is associative (unlike the cross product), and nonzero elements have inverses. The
fact that the imaginary numbers i; j; k anti-commute shows that conjugation must
reverse the order of multiplication (like taking inverses of matrices and quaternions)

pq D Nq Np:

As with real and complex numbers, we have that

q Nq D jqj2 D ˛20 C ˛21 C ˛22 C ˛23:
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This shows that every nonzero quaternion has an inverse given by

q�1 D Nq
jqj2 :

The space H with usual vector addition and this multiplication is called the space of
quaternions. The name was chosen by Hamilton who invented these numbers and
wrote voluminous material on their uses.

As with complex numbers, we have a real part, namely, the part without i; j; k,
that can be calculated by

Req D q C Nq
2

:

The usual real inner product on R
4 can now be defined by

.pjq/ D Re .p � Nq/ :
If we ignore the conjugation but still take the real part, we obtain something else
entirely

.pjq/1;3 D Re .pq/

D Re .˛0 C ˛1i C ˛2j C ˛3k/ .ˇ0 C ˇ1i C ˇ2j C ˇ3k/
D ˛0ˇ0 � ˛1ˇ1 � ˛2ˇ2 � ˛3ˇ3:

We note that restricted to the time axis this is the usual inner product while if
restricted to the space part it is the negative of the usual inner product. This pseudo-
inner product is what is used in special relativity. The subscript 1,3 refers to the
signs that appear in the formula, 1 plus and 3 minuses.

Note that one can have .qjq/1;3 D 0 without q D 0. The geometry of such an
inner product is thus quite different from the usual ones we introduced above.

The purpose of this very brief encounter with quaternions and space-times is to
show that they appear quite naturally in the context of linear algebra. While we
will not use them here, they are used quite a bit in more advanced mathematics and
physics.

Exercises

1. Using the algebraic properties of inner products, show the law of cosines

c2 D a2 C b2 � 2ab cos �;

where a and b are adjacent sides in a triangle forming an angle � and c is the
opposite side.
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2. Here are some matrix constructions of both complex and quaternion numbers.

(a) Show that C is isomorphic (same addition and multiplication) to the set of
real 2 � 2 matrices of the form

�

˛ �ˇ
ˇ ˛

	

:

(b) Show that H is isomorphic to the set of complex 2 � 2 matrices of the form
�

z � Nw
w Nz

	

:

(c) Show that H is isomorphic to the set of real 4 � 4 matrices
�

A �Bt
B At

	

that consists of 2 � 2 blocks

A D
�

˛ �ˇ
ˇ ˛

	

; B D
�

� �ı
ı �

	

:

(d) Show that the quaternionic 2 � 2 matrices of the form
�

p �Nq
q Np

	

form a real vector space isomorphic to R
8 but that matrix multiplication does

not necessarily give us a matrix of this type. What goes wrong in this case?

3. If q 2 H � f0g, consider the map Adq W H! H defined by Adq .x/ D qxq�1.
(a) Show that x D 1 is an eigenvector with eigenvalue 1.
(b) Show that Adq maps spanR fi; j; kg to itself and defines an isometry on R

3.
(c) Show that Adq1 D Adq2 if and only if q1 D �q2, where � 2 R.

3.2 Inner Products

Recall that we only use real or complex vector spaces. Thus, the field F of scalars is
always R or C.

Definition 3.2.1. An inner product on a vector space V over F is an F-valued
pairing .xjy/ for x; y 2 V , i.e., a map .xjy/ W V � V ! F, that satisfies:

(1) .xjx/ � 0 and vanishes only when x D 0.
(2) .xjy/ D .yjx/.
(3) For each y 2 V , the map x ! .xjy/ is linear.
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A vector space with an inner product is called an inner product space. In the real
case, the inner product is also called a Euclidean structure, while in the complex
situation, the inner product is known as an Hermitian structure. Observe that a
complex inner product .xjy/ always defines a real inner product Re .xjy/ that is
symmetric and linear with respect to real scalar multiplication. One also uses the
term dot product for the standard inner products in R

n and C
n. The term scalar

product is also used quite often as a substitute for inner product. In fact, this
terminology seems better as it indicates that the product of two vectors becomes
a scalar.

We note that the second property really only makes sense when the inner product
is complex valued. If V is a real vector space, then the inner product is real valued
and hence symmetric in x and y, i.e., .xjy/ D .yjx/. In the complex case, property
2 implies that .xjx/ is real, thus showing that the condition in property 1 makes
sense. If we combine the second and third conditions, we get the sesqui-linearity
properties:

.˛1x1 C ˛2x2jy/ D ˛1 .x1jy/C ˛2 .x2jy/ ;

.xjˇ1y1 C ˇ2y2/ D Ň1 .xjy1/C Ň2 .xjy2/ :
In particular, we have the scaling property

.˛xj˛x/ D ˛ N̨ .xjx/
D j˛j2 .xjx/ :

We define the length or norm of a vector by

kxk D
p

.xjx/:
In case .xjy/ is complex, we see that .xjy/ and Re .xjy/ define the same norm.
Note that kxk is nonnegative and only vanishes when x D 0. We also have the
scaling property k˛xk D j˛j kxk. The triangle inequality: kx C yk � kxk C kyk
will be established later in this section after some important preparatory work (see
Corollary 3.2.11). Before studying the properties of inner products further, let us list
some important examples. In Sect. 3.1, we already introduced what we shall refer to
as the standard inner product structures on R

n and C
n.

Example 3.2.2. If we have an inner product on V , then we also get an inner product
on all of the subspaces of V .

Example 3.2.3. If we have inner products on V andW , both with respect to F, then
we get an inner product on V �W defined by

..x1; y1/ j.x2; y2/ / D .x1jx2/C .y1jy2/ :
Note that .x; 0/ and .0; y/ always have zero inner product.
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Example 3.2.4. Given that Matn�m .C/ D C
n�m, we have an inner product on this

space. As we shall see, it has an interesting alternate construction. Let A;B 2
Matn�m .C/ the adjoint B� is the transpose combined with conjugating each entry

B� D

2

6

4

Ň
11 � � � Ňn1
:::
: : :

:::
Ň
1m � � � Ňnm

3

7

5 :

The inner product .AjB/ can now be defined as

.AjB/ D tr
�

AB�
�

D tr
�

B�A
�

:

In case m D 1, we have Matn�1 .C/ D C
n, and we recover the standard inner

product from the entry in the 1 � 1 matrix B�A. In the general case, we note that it
also defines the usual inner product as

.AjB/ D tr
�

AB�
�

D
X

i;j

˛ij Ňij :

Example 3.2.5. Let V D C0 .Œa; b� ;C/ and define

.f jg/ D
Z b

a

f .t/ g .t/dt:

Then,

kf k2 D
p

.f; f /:

If V D C0 .Œa; b� ;R/, then we have the real inner product

.f jg/ D
Z b

a

f .t/ g .t/ dt:

In the above example, it is often convenient to normalize the inner product so that
the function f D 1 is of unit length. This normalized inner product is defined as

.f jg/ D 1

b � a
Z b

a

f .t/ g .t/dt:

Example 3.2.6. Another important infinite-dimensional inner product space is the
space `2 first investigated by Hilbert. It is the collection of all real or complex
sequences .˛n/ such that

P

n j˛nj2 < 1. We have not specified the index set for
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n, but we always think of it as being N, N0, or Z. Because these index sets are all
bijectively equivalent, they all the define the same space but with different indices
for the coordinates ˛n. Addition and scalar multiplication are defined by

.˛n/C .ˇn/ D .˛n C ˇn/ ;
ˇ .˛n/ D .ˇ˛n/ :

Since

X

n

jˇ˛nj2 D jˇj2
X

n

j˛nj2 ;
X

n

j˛n C ˇnj2 �
X

n




2 j˛nj2 C 2 jˇnj2
�

D 2
X

n

j˛nj2 C 2
X

n

jˇnj2 ;

it follows that `2 is a subspace of the vector space of all sequences. The inner product
..˛n/ j .ˇn// is defined by

..˛n/ j .ˇn// D
X

n

˛n Ňn:

For that to make sense, we need to know that

X

n

ˇ

ˇ˛n Ňn
ˇ

ˇ <1:

This follows from
ˇ

ˇ˛n Ňn
ˇ

ˇ D j˛nj
ˇ

ˇ Ň
n

ˇ

ˇ

D j˛nj jˇnj
� j˛nj2 C jˇnj2

and the fact that
X

n




j˛nj2 C jˇnj2
�

<1:

Definition 3.2.7. We say that two vectors x and y are orthogonal or perpendicular
if .xjy/ D 0, and we denote this by x ? y.

The proof of the Pythagorean theorem for both R
n and C

n clearly carries over to
this more abstract situation. So if .xjy/ D 0, then kx C yk2 D kxk2 C kyk2.
Definition 3.2.8. The orthogonal projection of a vector x onto a nonzero vector y
is defined by
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x x

x

y

-

Fig. 3.4 Orthogonal
projection

projy .x/ D
�

x

ˇ

ˇ

ˇ

ˇ

y

kyk
�

y

kyk

D .xjy/
.yjy/y:

This projection creates a vector in the subspace spanned by y. The fact that it
makes sense to call it the orthogonal projection is explained in the next proposition
(Fig. 3.4).

Proposition 3.2.9. Given a nonzero y, the map x ! projy .x/ is linear and a
projection with the further property that x�projy .x/ and projy .x/ are orthogonal.
In particular,

kxk2 D ��x � projy .x/
�

�
2 C ��projy .x/

�

�
2
;

and
�

�projy .x/
�

� � kxk :

Proof. The definition of projy .x/ immediately implies that it is linear from the
linearity of the inner product and that it is a projection that follows from

projy
�

projy .x/
� D projy

�

.xjy/

.yjy/y
�

D .xjy/
.yjy/projy .y/

D .xjy/
.yjy/

.yjy/

.yjy/y

D .xjy/
.yjy/y

D projy .x/ :
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To check orthogonality, simply compute

�

x � projy .x/ jprojy .x/
� D

�

x � .xjy/
.yjy/y

ˇ

ˇ

ˇ

ˇ

.xjy/

.yjy/y
�

D
�

x

ˇ

ˇ

ˇ

ˇ

.xjy/

.yjy/y
�

�
�

.xjy/

.yjy/y
ˇ

ˇ

ˇ

ˇ

.xjy/

.yjy/y
�

D .xjy/
.yjy/ .xjy/ �

j.xjy/j2
j.yjy/j2 .yjy/

D j.xjy/j
2

.yjy/ �
j.xjy/j2
.yjy/

D 0:

The Pythagorean theorem now implies the relationship

kxk2 D ��x � projy .x/
�

�
2 C ��projy .x/

�

�
2
:

Using
�

�x � projy .x/
�

�
2 � 0, we then obtain the inequality

�

�projy .x/
�

� � kxk. ut
Two important corollaries follow almost directly from this result.

Corollary 3.2.10. (The Cauchy–Schwarz Inequality)

j.xjy/j � kxk kyk :

Proof. If y D 0, the inequality is trivial. Otherwise, use

kxk � ��projy .x/
�

�

D
ˇ

ˇ

ˇ

ˇ

.xjy/

.yjy/
ˇ

ˇ

ˇ

ˇ
kyk

D j.xjy/jkyk : ut

Corollary 3.2.11. (The Triangle Inequality)

kx C yk � kxk C kyk :

Proof. We expand kx C yk and use the Cauchy–Schwarz inequality

kx C yk2 D .x C yjx C y/
D kxk2 C 2Re .xjy/C kyk2
� kxk2 C 2 j.xjy/j C kyk2
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� kxk2 C 2 kxk kyk C kyk2
D .kxk C kyk/2 : ut

Exercises

1. Show that a hyperplane H D fx 2 V W .ajx/ D ˛g in a real n-dimensional
inner product space V can be represented as an affine subspace

H D ft1x1 C � � � C tnxn W t1 C � � � C tn D 1g ;
where x1; : : : ; xn 2 H . Find conditions on x1; : : : ; xn so that they generate a
hyperplane (see Exercise 8 in Sect. 1.10 for the definition of an affine subspace).

2. Let x D .2; 1/ and y D .3; 1/ in R
2. If z 2 R

2 satisfies .zjx/ D 1 and .zjy/ D
2, then find the coordinates for z.

3. Show that it is possible to find k vectors x1; : : : ; xk 2 R
n such that kxik D 1

and
�

xi jxj
�

< 0, i ¤ j only when k � nC 1. Show that for any such choice
of k vectors, we get a linearly independent set by deleting any one of the k
vectors.

4. In a real inner product space V select y ¤ 0. For fixed ˛ 2 R, show that
H D ˚x 2 V W projy .x/ D ˛y




describes a hyperplane with normal y.
5. Let V be an inner product space and let y; z 2 V . Show that y D z if and only

if .xjy/ D .xjz/ for all x 2 V .
6. Prove the Cauchy–Schwarz inequality by expanding the right-hand side of the

inequality

0 �
�

�

�

�
x � .xjy/kyk2 y

�

�

�

�

2

:

7. Let V be an inner product space and x1; : : : ; xn, y1; : : : ; yn 2 V . Show the
following generalized Cauchy–Schwarz inequality:

 

n
X

iD1
j.xi jyi /j

!2

�
 

n
X

iD1
kxik2

! 

n
X

iD1
kyik2

!

:

8. Let Sn�1 D fx 2 R
n W kxk D 1g be the unit sphere. When n D 1, it consists of

two points, When n D 2, it is a circle, and when n D 3 a sphere. A finite subset
fx1; : : : ; xkg 2 Sn�1 is said to consist of equidistant points if ]

�

xi ; xj
� D �

for all i ¤ j .

(a) Show that this is equivalent to assuming that
�

xi jxj
� D cos � for all i ¤ j .

(b) Show that S0 contains a set of two equidistant points, S1 a set of three
equidistant points, and S2 a set of four equidistant points.

(c) Using induction on n, show that a set of equidistant points in Sn�1 contains
no more than nC 1 elements.
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9. In an inner product space, show the parallelogram rule

kx � yk2 C kx C yk2 D 2 kxk2 C 2 kyk2 :

Here x and y describe the sides in a parallelogram and x C y and x � y the
diagonals.

10. In a complex inner product space, show that

4 .xjy/ D
3
X

kD0
ik
�

�x C iky��2 :

3.3 Orthonormal Bases

Let us fix an inner product space V .

Definition 3.3.1. A possibly infinite collection e1; : : : ; en; : : : of vectors in V is said
to be orthogonal if

�

ei jej
� D 0 for i ¤ j . If in addition these vectors are of unit

length, i.e.,
�

ei jej
� D ıij , then we call the collection orthonormal.

The usual bases for Rn and C
n are evidently orthonormal collections. Since they are

also bases, we call them orthonormal bases.

Lemma 3.3.2. Let e1; : : : ; en be orthonormal. Then, e1; : : : ; en are linearly inde-
pendent and any element x 2 span fe1; : : : ; eng has the expansion

x D .xje1/ e1 C � � � .xjen/ en:

Proof. Note that if x D ˛1e1 C � � � C ˛nen, then

.xjei / D .˛1e1 C � � � C ˛nenjei /
D ˛1 .e1jei /C � � � C ˛n .enjei /
D ˛1ı1i C � � � C ˛nıni
D ˛i :

In case x D 0, this gives us linear independence, and in case x 2 span fe1; : : : ; eng,
we have computed the i th coordinate using the inner product. ut
We shall use the equation

.˛1e1 C � � � C ˛nenjei / D ˛i
from the above proof repeatedly throughout the next two chapters.

This allows us to construct a special isomorphism between span fe1; : : : ; eng
and F

n.
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Definition 3.3.3. We say that two inner product spaces V and W over F are
isometric, if we can find an isometry L W V ! W , i.e., an isomorphism such that
.L .x/ jL.y// D .xjy/.
Lemma 3.3.4. If V admits a basis that is orthonormal, then V is isometric to F

n.

Proof. Choose an orthonormal basis e1; : : : ; en for V and define the usual isomor-
phism L W Fn ! V by

L

0

B

@

2

6

4

˛1
:::

˛n

3

7

5

1

C

A D �

e1 � � � en
�

2

6

4

˛1
:::

˛n

3

7

5

D ˛1e1 C � � � C ˛nen:
Let

a D

2

6

4

˛1
:::

˛n

3

7

5 and b D

2

6

4

ˇ1
:::

ˇn

3

7

5

then

.L .a/ jL.b// D .L .a/ jˇ1e1 C � � � C ˇnen/
D Ň1 .L .a/ je1/C � � � C Ňn .L .a/ jen/
D Ň1 .˛1e1 C � � � C ˛nenje1/C � � � C Ňn .˛1e1 C � � � C ˛nenjen/
D Ň1˛1 C � � � C Ňn˛n
D .ajb/ :

which is what we wanted to prove. ut
Remark 3.3.5. Note that the inverse map that computes the coordinates of a vector
is explicitly given by

L�1 .x/ D

2

6

4

.xje1/
:::

.xjen/

3

7

5 :

We are now left with the nagging possibility that orthonormal bases might be very
special and possibly not exist.

The procedure for constructing orthonormal collections is known as the Gram–
Schmidt procedure. It is not clear who invented the process, but these two people
definitely promoted and used it to great effect.

Given a linearly independent set x1; : : : ; xm in an inner product space V , it is
possible to construct an orthonormal collection e1; : : : ; em such that

span fx1; : : : ; xmg D span fe1; : : : ; emg :
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The procedure is actually iterative and creates e1; : : : ; em in such a way that

span fx1g D span fe1g ;
span fx1; x2g D span fe1; e2g ;

:::
:::

span fx1; : : : ; xmg D span fe1; : : : ; emg :
This basically forces us to define e1 as

e1 D 1

kx1kx1:

Then, e2 is constructed by considering

z2 D x2 � projx1 .x2/

D x2 � proje1 .x2/

D x2 � .x2je1/ e1;

and defining

e2 D 1

kz2kz2:

Having constructed an orthonormal set e1; : : : ; ek , we can then define

zkC1 D xkC1 � .xkC1je1/ e1 � � � � � .xkC1jek/ ek:

As

span fx1; : : : ; xkg D span fe1; : : : ; ekg ;
xkC1 … span fx1; : : : ; xkg ;

we have that zkC1 ¤ 0. Thus, we can define

ekC1 D 1

kzkC1kzkC1:

To see that ekC1 is perpendicular to e1; : : : ; ek , we note that

.ekC1jei / D 1

kzkC1k .zkC1jei /

D 1

kzkC1k .xkC1jei / �
1

kzkC1k . .xkC1je1/ e1 C � � � C .xkC1jek/ ekj ei /
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D 1

kzkC1k .xkC1jei / �
1

kzkC1k .xkC1jei /

D 0:

Since

span fx1g D span fe1g ;
span fx1; x2g D span fe1; e2g ;

:::
:::

span fx1; : : : ; xmg D span fe1; : : : ; emg ;

we have constructed e1; : : : ; em in such a way that

�

e1 � � � em
� D �x1 � � � xm

�

B;

where B is an upper triangular m � m matrix with positive diagonal entries.
Conversely, we have

�

x1 � � � xm
� D � e1 � � � em

�

R;

where R D B�1 is also upper triangular with positive diagonal entries. Given that
we have a formula for the expansion of each xk in terms of e1; : : : ; ek , we see that

R D

2

6

6

6

6

6

4

.x1je1/ .x2je1/ .x3je1/ � � � .xmje1/
0 .x2je2/ .x3je2/ � � � .xmje2/
0 0 .x3je3/ � � � .xmje3/
:::

:::
:::

: : :
:::

0 0 0 � � � .xmjem/

:

3

7

7

7

7

7

5

We often abbreviate

A D �

x1 � � � xm
�

;

Q D �

e1 � � � em
�

and obtain the QR-factorization A D QR. In case V is R
n or Cn A is a general

n�m matrix of rankm,Q is also an n�m matrix of rankm with the added feature
that its columns are orthonormal, and R is an upper triangular m �m matrix. Note
that in this interpretation, the QR-factorization is an improved Gauss elimination:
A D PU , P 2 Gln and U upper triangular (see Sect. 1.13).

With that in mind, it is not surprising that the QR-factorization gives us a way of
inverting the linear map

�

x1 � � � xn
� W Fn ! V
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when x1; : : : ; xn is a basis. First, recall that the isometry

�

e1 � � � en
� W Fn ! V

is easily inverted and the inverse can be symbolically represented as

�

e1 � � � en
��1 D

2

6

4

.e1j�/
:::

.enj�/

3

7

5 ;

or more precisely

�

e1 � � � en
��1

.x/ D

2

6

4

.e1jx/
:::

.enjx/

3

7

5

D

2

6

4

.xje1/
:::

.xjen/
:

3

7

5

This is the great feature of orthonormal bases, namely, that one has an explicit
formula for the coordinates in such a basis. Next on the agenda is the construction of
R�1. Given that it is upper triangular, this is a reasonably easy problem in the theory
of solving linear systems. However, having found the orthonormal basis through
Gram–Schmidt, we have already found this inverse since

�

x1 � � � xn
� D � e1 � � � en

�

R

implies that
�

e1 � � � en
� D �x1 � � � xn

�

R�1

and the goal of the process was to find e1; : : : ; en as a linear combination of
x1; : : : ; xn. Thus, we obtain the formula

�

x1 � � � xn
��1 D R�1

�

e1 � � � en
��1

D R�1

2

6

4

.e1j�/
:::

.enj�/

3

7

5 :

The Gram–Schmidt process, therefore, not only gives us an orthonormal basis but
it also gives us a formula for the coordinates of a vector with respect to the original
basis.

It should also be noted that if we start out with a set x1; : : : ; xm that is not linearly
independent, then this fact will be revealed in the process of constructing e1; : : : ; em.
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We know from Lemma 1.12.3 that either x1 D 0 or there is a smallest k such that
xkC1 is a linear combination of x1; : : : ; xk . In the latter case, we get to construct
e1; : : : ; ek since x1; : : : ; xk were linearly independent. As xkC1 2 span fe1; : : : ; ekg,
we must have that

zkC1 D xkC1 � .xkC1je1/ e1 � � � � � .xkC1jek/ ek D 0
since the way in which xkC1 is expanded in terms of e1; : : : ; ek is given by

xkC1 D .xkC1je1/ e1 C � � � C .xkC1jek/ ek:
Thus, we fail to construct the unit vector ekC1.

With all this behind us, we have proved the important result.

Theorem 3.3.6. (Uniqueness of Inner Product Spaces) An n-dimensional inner
product space over R, respectively C, is isometric to R

n, respectively Cn.

Definition 3.3.7. The operator norm, for a linear map L W V ! W between inner
product spaces is defined as

kLk D sup
kxkD1

kL.x/k :

The operator norm is finite provided V is finite-dimensional.

Theorem 3.3.8. Let L W V ! W be a linear map. Then,

kL.x/k � kLk kxk
for all x 2 V . And if V is a finite-dimensional inner product space, then

kLk D sup
kxkD1

kL.x/k <1:

Proof. To establish the first claim, we only need to consider x 2 V � f0g. Then,
�

�

�

�
L

�

x

kxk
��

�

�

�
� kLk ;

and the claim follows by using linearity of L and the scaling property of the norm.
When V is finite-dimensional select an orthonormal basis e1; : : : ; en for V .

Then, by using the Cauchy–Schwarz inequality (Corollary 3.2.10) and the triangle
inequality (Corollary 3.2.11), we obtain

kL.x/k D
�

�

�

�

�

L

 

n
X

iD1
.xjei / ei

!�

�

�

�

�

D
�

�

�

�

�

n
X

iD1
.xjei / L .ei /

�

�

�

�

�
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�
n
X

iD1
j.xjei /j kL.ei/k

�
n
X

iD1
kxk kL.ei/k

D
 

n
X

iD1
kL.ei /k

!

kxk :

Thus,

kLk �
n
X

iD1
kL.ei /k : ut

To finish the section, let us try to do a few concrete examples.

Example 3.3.9. Consider the vectors x1 D .1; 1; 0/, x2 D .1; 0; 1/, and x3 D
.0; 1; 1; / in R

3. If we perform Gram–Schmidt, then the QR factorization is

2

4

1 1 0

1 0 1

0 1 1

3

5 D

2

6

4

1p
2

1p
6
� 1p

3
1p
2
� 1p

6

1p
3

0 2p
6

1p
3

3

7

5

2

6

4

p
2 1p

2

1p
2

0 3p
6

1p
6

0 0 2p
3

3

7

5 :

Example 3.3.10. The Legendre polynomials of degrees 0, 1, and 2 on Œ�1; 1� are by
definition the polynomials obtained via Gram–Schmidt from 1; t; t2 with respect to
the inner product

.f jg/ D
Z 1

�1
f .t/ g .t/dt:

We see that k1k D p2, so the first polynomial is

p0 .t/ D 1p
2
:

To find p1 .t/, we first find

z1 D t � .t jp0/ p0

D t �
�Z 1

�1
t
1p
2

dt

�

1p
2

D t:
Then,

p1 .t/ D t

ktk D
r

3

2
t:
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Finally, for p2, we find

z2 D t2 �
�

t2jp0
�

p0 �
�

t2jp1
�

p1

D t2 �
�Z 1

�1
t2
1p
2

dt

�

1p
2
�
 
Z 1

�1
t2

r

3

2
tdt

!r

3

2
t

D t2 � 1
3
:

Thus,

p2 .t/ D t2 � 1
3

�

�t2 � 1
3

�

�

D
r

45

8

�

t2 � 1
3

�

:

Example 3.3.11. A system of real equations Ax D b can be interpreted geometri-
cally as n equations

.a1jx/ D ˇ1;
:::

:::

.anjx/ D ˇn;

where ak is the kth row in A and ˇk the kth coordinate for b. The solutions will be
the intersection of the n hyperplanesHk D fz W .ak jz/ D ˇkg.

Example 3.3.12. We wish to show that the trigonometric functions

1 D cos .0 � t/ ; cos .t/ ; cos .2t/ ; : : : ; sin .t/ ; sin .2t/ ; : : :

are orthogonal in C12� .R;R/ with respect to the inner product

.f jg/ D 1

2�

Z �

��
f .t/ g .t/ dt:

First, observe that cos .mt/ sin .nt/ is an odd function. This proves that

.cos .mt/ j sin .nt// D 0:
Thus, we are reduced to showing that each of the two sequences

1; cos .t/ ; cos .2t/ ; : : :

sin .t/ ; sin .2t/ ; : : :
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are orthogonal. Using integration by parts, we see

.cos .mt/ j cos .nt//

D 1

2�

Z �

��
cos .mt/ cos .nt/ dt

D 1

2�

sin .mt/

m
cos .nt/

ˇ

ˇ

ˇ

ˇ

�

��
� 1

2�

Z �

��
sin .mt/

m
.�n/ sin .nt/ dt

D n

m

1

2�

Z �

��
sin .mt/ sin .nt/ dt

D n

m
.sin .mt/ j sin .nt//

D n

m

1

2�

� cos .mt/

m
sin .nt/

ˇ

ˇ

ˇ

ˇ

�

��
� n

m

1

2�

Z �

��
� cos .mt/

m
n cos .nt/ dt

D

 n

m

�2 1

2�

Z �

��
cos .mt/ cos .nt/ dt

D

 n

m

�2

.cos .mt/ j cos .nt// :

When n ¤ m and m > 0, this clearly proves that .cos .mt/ j cos .nt// D 0 and
in addition that .sin .mt/ j sin .nt// D 0. Finally, let us compute the norm of these
functions. Clearly, k1k D 1. We just proved that kcos .mt/k D ksin .mt/k. This
combined with the fact that

sin2 .mt/C cos2 .mt/ D 1

shows that

kcos .mt/k D ksin .mt/k D 1p
2

Example 3.3.13. Let us try to do Gram–Schmidt on 1, cos t , cos2 t using the above
inner product. We already know that the first two functions are orthogonal, so

e1 D 1;
e2 D

p
2 cos .t/ :

z2 D cos2 .t/ � �cos2 .t/ j1� 1 �



cos2 .t/ jp2 cos .t/
�p

2 cos .t/

D cos2 .t/ � 1

2�

�Z �

��
cos2 .t/ dt

�

� 2

2�

�Z �

��
cos2 .t/ cos .t/ dt

�

cos t
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D cos2 .t/ � 1
2
� 1

�

�Z �

��
cos3 .t/ dt

�

cos t

D cos2 .t/ � 1
2

Thus, the third function is

e3 D
cos2 .t/ � 1

2
�

�cos2 .t/ � 1
2

�

�

D 2
p
2 cos2 .t/ �p2:

Exercises

1. Use Gram–Schmidt on the vectors

�

x1 x2 x3 x4 x5
� D

2

6

6

6

6

6

4

p
5 �2 4 e 3

0 8 � 2 �10
0 0 1Cp2 3 �4
0 0 0 �2 6
0 0 0 0 1

3

7

7

7

7

7

5

to obtain an orthonormal basis for F5.
2. Find an orthonormal basis for R

3 where the first vector is proportional to
.1; 1; 1/.

3. Apply Gram–Schmidt to the collection x1 D .1; 0; 1; 0/, x2 D .1; 1; 1; 0/, x3 D
.0; 1; 0; 0/.

4. Apply Gram–Schmidt to the collection x1 D .1; 0; 1; 0/, x2 D .0; 1; 1; 0/, x3 D
.0; 1; 0; 1/ and complete to an orthonormal basis for R4.

5. Apply Gram–Schmidt to sin t; sin2 t; sin3 t using the inner product

.f jg/ D 1

2�

Z �

��
f .t/ g .t/ dt:

6. Given an arbitrary collection of vectors x1; : : : ; xm in an inner product space V ,
show that it is possible to find orthogonal vectors z1; : : : ; zn 2 V such that

�

x1 � � � xm
� D � z1 � � � zn

�

Aref;

whereAref is an n�mmatrix in row echelon form (see Sect. 1.13). Explain how
this can be used to solve systems of the form

�

x1 � � � xm
�

2

6

4

�1
:::

�m

3

7

5 D b:
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7. The goal of this exercise is to understand the dual basis to a basis x1; : : : ; xn
for an inner product space V . We say that x�1 ; : : : ; x�n is dual to x1; : : : ; xn if
.xi jx�j / D ıij .

(a) Show that each basis has a unique dual basis (you have to show it exists,
that it is a basis, and that there is only one such basis).

(b) Show that if x1; : : : ; xn is a basis and L W Fn ! V is the usual coordinate
isomorphism given by

L

0

B

@

2

6

4

˛1
:::

˛n

3

7

5

1

C

A D �

x1 � � � xn
�

2

6

4

˛1
:::

˛n

3

7

5

D ˛1x1 C � � � C ˛nxn;
then its inverse is given by

L�1 .x/ D

2

6

4

�

xjx�1
�

:::
�

xjx�n
�

3

7

5 :

(c) Show that a basis is orthonormal if and only if it is self-dual, i.e., it is its
own dual basis xi D x�i , i D 1; : : : ; n.

(d) Given .1; 1; 0/ ; .1; 0; 1/ ; .0; 1; 1/ 2 R
3, find the dual basis.

(e) Find the dual basis for 1; t; t2 2 P2 with respect to the inner product

.f jg/ D
Z 1

�1
f .t/ g .t/ dt

8. Using the inner product

.f jg/ D
Z 1

0

f .t/ g .t/ dt

on R Œt �, apply Gram–Schmidt to 1; t; t2 to find an orthonormal basis for P2.
9. (Legendre Polynomials) Consider the inner product

.f jg/ D
Z b

a

f .t/ g .t/ dt

on R Œt � and define

q2n .t/ D .t � a/n .t � b/n ;

pn .t/ D dn

dtn
.q2n .t// :
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(a) Show that

q2n .a/ D q2n .b/ D 0;
:::

d n�1q2n
dtn�1

.a/ D dn�1q2n
dtn�1

.b/ D 0:

(b) Show that pn has degree n.
(c) Use induction on n to show that pn .t/ is perpendicular to 1; t; : : : ; tn�1.

Hint: Use integration by parts.
(d) Show that p0; p1; : : : ; pn; : : : are orthogonal to each other.

10. (Lagrange Interpolation) Select nC1 distinct points t0; : : : ; tn 2 C and consider

.p .t/ jq .t// D
n
X

iD0
p .ti / q .ti /:

(a) Show that this defines an inner product on Pn but not on C Œt �.
(b) Consider

p0 .t/ D .t � t1/ .t � t2/ � � � .t � tn/
.t0 � t1/ .t0 � t2/ � � � .t0 � tn/ ;

p1 .t/ D .t � t0/ .t � t2/ � � � .t � tn/
.t1 � t0/ .t1 � t2/ � � � .t1 � tn/ ;

:::

pn .t/ D .t � t0/ .t � t1/ � � � .t � tn�1/
.tn � t0/ .tn � t1/ � � � .tn � tn�1/ :

Show that pi
�

tj
� D ıij and that p0; : : : ; pn form an orthonormal basis

for Pn.
(c) Use p0; : : : ; pn to solve the problem of finding a polynomial p 2 Pn such

that p .ti / D bi .
(d) Let �1; : : : ; �n 2 C (they may not be distinct) and f W C! C a

function. Show that there is a polynomial p .t/ 2 C Œt � such that p .�1/ D
f .�1/ ; : : : ; p .�n/ D f .�n/.

11. (P. Enflo) Let V be a finite-dimensional inner product space and x1; : : : ; xn,
y1; : : : ; yn 2 V . Show Enflo’s inequality

0

@

n
X

i;jD1

ˇ

ˇ

�

xi jyj
�ˇ

ˇ
2

1

A

2

�
0

@

n
X

i;jD1

ˇ

ˇ

�

xi jxj
�ˇ

ˇ
2

1

A

0

@

n
X

i;jD1

ˇ

ˇ

�

yi jyj
�ˇ

ˇ
2

1

A :

Hint: Use an orthonormal basis and start expanding on the left-hand side.
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12. Let L W V ! V be an operator on a finite-dimensional inner product space.

(a) If � is an eigenvalue for L, then

j�j � kLk :

(b) Given examples of 2 � 2 matrices where strict inequality always holds.

13. Let L W V1 ! V2 and K W V2 ! V3 be linear maps between finite-dimensional
inner product spaces. Show that

kK ı Lk � kKk kLk :
14. Let L;K W V ! V be operators on a finite-dimensional inner product space. If

K is invertible, show that

kLk D ��K ı L ıK�1�� :
15. Let L;K W V ! W be linear maps between finite-dimensional inner product

spaces. Show that

kLCKk � kLk C kKk :
16. Let A 2 Matn�m .F/. Show that

ˇ

ˇ˛ij
ˇ

ˇ � kAk ;
where kAk is the operator norm of the linear mapA W Fm ! F

n. Give examples
where

kAk ¤
p

tr .AA�/ D
p

.AjA/:

3.4 Orthogonal Complements and Projections

The goal of this section is to figure out if there is a best possible projection onto a
subspace of a vector space. In general, there are quite a lot of projections, but if we
have an inner product on the vector space, we can imagine that there should be a
projection where the image of a vector is as close as possible to the original vector.

LetM � V be a finite-dimensional subspace of an inner product space. From the
previous section, we know that it is possible to find an orthonormal basis e1; : : : ; em
forM . Using that basis, we define E W V ! V by

E .x/ D .xje1/ e1 C � � � C .xjem/ em:
Note that E .z/ 2 M for all z 2 V . Moreover, if x 2 M , then E .x/ D x. Thus
E2 .z/ D E .z/ for all z 2 V . This shows that E is a projection whose image is M .
Next, let us identify the kernel. If x 2 ker .E/, then
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0 D E .x/
D .xje1/ e1 C � � � C .xjem/ em:

Since e1; : : : ; em, is a basis this means that .xje1/ D � � � D .xjem/ D 0. This in turn
is equivalent to the condition

.xjz/ D 0 for all z 2M;
since any z 2M is a linear combination of e1; : : : ; em.

Definition 3.4.1. The set of all such vectors is denoted

M? D fx 2 V W .xjz/ D 0 for all z 2 M g
and is called the orthogonal complement to M in V .

Given that ker .E/ D M?, we have a formula for the kernel that does not depend on
E . Thus,E is simply the projection of V ontoM alongM?. The only problem with
this characterization is that we do not know from the outset that V D M ˚M?. In
case M is finite-dimensional, however, the existence of the projection E insures us
that this must be the case as

x D E .x/C .1V �E/ .x/
and .1V � E/ .x/ 2 ker .E/ DM?.

Definition 3.4.2. When there is an orthogonal direct sum decomposition: V D
M ˚M? we call the projection ontoM alongM? the orthogonal projection onto
M and denote it by projM W V ! V .

The vector projM .x/ also solves our problem of finding the vector in M that is
closest to x. To see why this is true, choose z 2M and consider the triangle that has
the three vectors x, projM .x/, and z as vertices. The sides are given by x�projM .x/,
projM .x/�z, and z�x (see Fig. 3.5). Since projM .x/�z 2M and x�projM .x/ 2
M?, these two vectors are perpendicular, and hence we have

kx � projM .x/k2 �
kx � projM .x/k2 C kprojM .x/ � zk2 D kx � zk2 ;

where equality holds only when kprojM .x/ � zk2 D 0, i.e., projM .x/ is the one
and only point closest to x among all points in M .

Let us collect the above information in a theorem.

Theorem 3.4.3. (Orthogonal Sum Decomposition) Let V be an inner product
space andM � V a finite-dimensional subspace. Then, V DM ˚M? and for any
orthonormal basis e1; : : : ; em forM , the projection ontoM alongM? is given by:

projM .x/ D .xje1/ e1 C � � � C .xjem/ em:
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Fig. 3.5 Orthogonal
projection

Corollary 3.4.4. If V is a finite-dimensional inner product space and M � V is a
subspace, then

V D M ˚M?;
�

M?
�? D M?? D M;

dimV D dimM C dimM?:

Proof. The first statement was proven in Theorem 3.4.3. The third statement
now follows from Corollary 1.10.14. To prove the second statement, select an
orthonormal basis e1; : : : ; ek for M and ekC1; : : : ; en for M?. Then, we see that
e1; : : : ; ek 2 M?? and consequently M � M??. On the other hand, note that, if
we apply the first and third statements to M?instead if M , then we obtain

dimV D dimM? C dimM??:

In particular, we have dimM D dimM?? sinceM �M??, this proves the claim.
ut

Orthogonal projections can also be characterized as follows.

Theorem 3.4.5. (Characterization of Orthogonal Projections) Assume that V is a
finite-dimensional inner product space and E W V ! V a projection onto M � V .
Then, the following conditions are equivalent:

(1) E D projM
(2) im .E/? D ker .E/
(3) kE .x/k � kxk for all x 2 V

Proof. We have already seen that the first two conditions are equivalent. These
two conditions imply the third as x D E .x/ C .1V � E/ .x/ is an orthogonal
decomposition, and thus,
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kxk2 D kE .x/k2 C k.1V �E/ .x/k2
� kE .x/k2 :

It remains to be seen that the third condition implies that E is orthogonal. To
prove this, choose x 2 ker .E/? and observe that E .x/ D x � .1V � E/ .x/ is an
orthogonal decomposition since .1V � E/ .z/ 2 ker .E/ for all z 2 V . Thus,

kxk2 � kE .x/k2
D kx � .1V �E/ .x/k2
D kxk2 C k.1V � E/ .x/k2
� kxk2

This means that .1V �E/ .x/ D 0 and hence x D E .x/ 2 im .E/. Thus,
ker .E/? � im .E/. We also know from the dimension formula (Theorem 1.11.7)
and Corollary 3.4.4 that

dim .im .E// D dim .V /� dim .ker .E//

D dim



ker .E/?
�

:

This shows that ker .E/? D im .E/. ut
Example 3.4.6. Let V D R

n and M D span f.1; : : : ; 1/g. Since k.1; : : : ; 1/k2 D n,
we see that

projM .x/ D projM

0

B

@

2

6

4

˛1
:::

˛1

3

7

5

1

C

A

D 1

n

0

B

@

2

6

4

˛1
:::

˛1

3

7

5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

6

4

1
:::

1

3

7

5

1

C

A

2

6

4

1
:::

1

3

7

5

D ˛1 C � � � C ˛n
n

2

6

4

1
:::

1

3

7

5

D N̨

2

6

4

1
:::

1

3

7

5 ;
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where N̨ is the average or mean of the values ˛1; : : : ; ˛n. Since projM .x/ is the
closest element in M to x, we get a geometric interpretation of the average of
˛1; : : : ; ˛n. If in addition we use that projM .x/ and x�projM .x/ are perpendicular,
we arrive at a nice formula that helps compute the variance:

Var .˛1; : : : ; ˛n/ D 1

n � 1
n
X

iD1
j˛i � N̨ j2 ;

where
n
X

iD1
j˛i � N̨ j2 D kx � projM .x/k2

D kxk2 � kprojM .x/k2

D
n
X

iD1
j˛i j2 �

n
X

iD1
j N̨ j2

D
 

n
X

iD1
j˛i j2

!

� n j N̨ j2

D
 

n
X

iD1
j˛i j2

!

�
�Pn

iD1 ˛i
�2

n
:

Example 3.4.7. As above, let M � V be a finite-dimensional subspace of an inner
product space and e1; : : : ; em an orthonormal basis for M . Using the formula

projM .x/ D .xje1/ e1 C � � � C .xjem/ em;
the inequality kprojM .x/k � kxk translates into the Bessel inequality

j.xje1/j2 C � � � C j.xjem/j2 � kxk2 :

Exercises

1. Consider Matn�n .C/ with the inner product .AjB/ D tr .AB�/. Describe the
orthogonal complement to the space of all diagonal matrices.

2. Show that if M D span fz1; : : : ; zmg, then

M? D fx 2 V W .xjz1/ D � � � D .xjzm/ D 0g :
3. Assume V D M ˚M?, show that

x D projM .x/C projM?

.x/ :
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4. Find the element in span f1; cos t; sin tg that is closest to sin2 t using the inner
product

.f jg/ D 1

2�

Z �

��
f .t/ g .t/ dt:

5. Assume V D M ˚M? and that L W V ! V is a linear operator. Show that
both M andM? are L-invariant if and only if projM ı L D L ı projM .

6. Let A 2 Matm�n .R/.

a. Show that the row vectors of A are in the orthogonal complement of
ker .A/.

b. Use this to show that the row rank and column rank of A are the same.

7. LetM;N � V be subspaces of a finite-dimensional inner product space. Show
that

.M CN/? D M? \N?;
.M \N/? D M? CN?:

8. Find the orthogonal projection onto span f.2;�1; 1/ ; .1;�1; 0/g by first com-
puting the orthogonal projection onto the orthogonal complement.

9. Find the polynomial p .t/ 2 P2 such that

Z 2�

0

jp .t/ � cos t j2 dt

is smallest possible.
10. Show that the decomposition into even and odd functions on C0 .Œ�a; a� ;C/ is

orthogonal if we use the inner product

.f jg/ D
Z a

�a
f .t/ g .t/dt:

11. Using the inner product

.f jg/ D
Z 1

0

f .t/ g .t/ dt;

find the orthogonal projection from C Œt � onto span f1; tg D P1. Given any p 2
C Œt �, you should express the orthogonal projection in terms of the coefficients
of p.

12. Using the inner product

.f jg/ D
Z 1

0

f .t/ g .t/ dt;

find the orthogonal projection from C Œt � onto span
˚

1; t; t2

 D P2.
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13. Compute the orthogonal projection onto the following subspaces:

(a)

span

8

ˆ
ˆ
<

ˆ
ˆ
:

2

6

6

4

1

1

1

1

3

7

7

5

9

>
>
=

>
>
;

(b)

span

8

ˆ
ˆ
<

ˆ
ˆ
:

2

6

6

4

1

�1
0

1

3

7

7

5

;

2

6

6

4

1

1

1

0

3

7

7

5

;

2

6

6

4

2

0

1

1

3

7

7

5

9

>
>
=

>
>
;

(c)

span

8

ˆ
ˆ
<

ˆ
ˆ
:

2

6

6

4

1

i

0

0

3

7

7

5

;

2

6

6

4

�i
1

0

0

3

7

7

5

;

2

6

6

4

0

1

i

0

3

7

7

5

9

>
>
=

>
>
;

14. (Selberg) Let x; y1; : : : ; yn 2 V , where V is an inner product space. Show
Selberg’s generalization of Bessel’s inequality

n
X

iD1

j.xjyi /j2
Pn

jD1
ˇ

ˇ

�

yi jyj
�ˇ

ˇ

� kxk2 :

Hint: It is a long calculation that comes from expanding the nonnegative
quantity

�

�

�

�

�

x �
n
X

iD1

.xjyi /
Pn

jD1
ˇ

ˇ

�

yi jyj
�ˇ

ˇ

yi

�

�

�

�

�

2

:

3.5 Adjoint Maps

To introduce the concept of adjoints of linear maps, we start with the construction
for matrices, i.e., linear maps A W Fm ! F

n, where F D R or C and F
m and F

n

are equipped with their standard inner products. We can write A as an n�m matrix
and define the adjoint A� D NAt , i.e., A� is the transposed and conjugate of A. In
case F D R, conjugation is irrelevant, so A� D At . Note that since A� is an m � n
matrix, it corresponds to a linear map A� W Fn ! F

m. This matrix adjoint satisfies
the crucial property

.Axjy/ D �xjA�y�
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for all x 2 V and y 2 W . To see this, we simply think of x as an m � 1 matrix, y
as an n � 1 matrix, and observe that

.Axjy/ D .Ax/t Ny
D xtAt Ny
D xt � NAty�

D �

xjA�y� :
In the general case of a linear map L W V ! W between finite-dimensional

spaces, we can try to define the adjoint through matrix representations. To this end,
select orthonormal bases for V and W so that we have a diagram

V L
�! W

l l
F
m ŒL�

�! F
n

;

where the vertical double arrows are isometries. Then, define L� W W ! V as the
linear map whose matrix representation is ŒL��. In other words, ŒL�� D ŒL�� and
the following diagram commutes:

V L�

 � W
l l
F
m ŒL��

 � F
n

:

Because the vertical arrows are isometries we also have

.Lxjy/ D �xjL�y� :

Proposition 3.5.1. Let L W V ! W be a linear map between finite-dimensional
spaces. Then, there is a unique adjoint L� W W ! V with the property that

.Lxjy/ D �xjL�y�

for all x 2 V and y 2 W .

Proof. We saw already that such an adjoint exists, but we can give a similar
construction of L� that uses only an orthonormal basis e1; : : : ; em for V . To define
L� .y/, we need to know the inner products

�

L�yjej
�

. The relationship .Lxjy/ D
.xjL�y/ indicates that

�

L�yjej
�

can be calculated as

�

L�yjej
� D �

ej jL�y
�

D �

Lej jy
�

D �

yjLej
�

:
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So let us define

L�y D
m
X

jD1

�

yjLej
�

ej :

This clearly defines a linear map L� W W ! V satisfying
�

Lej jy
� D �ej jL�y

�

:

The more general condition

.Lxjy/ D �xjL�y�

follows immediately by writing x as a linear combination of e1; : : : ; em and using
linearity in x on both sides of the equation.

Next, we address the issue of whether the adjoint is uniquely defined, i.e., could
there be two linear maps Ki W W ! V , i D 1; 2 such that

.xjK1y/ D .Lxjy/ D .xjK2y/‹

This would imply

0 D .xjK1y/ � .xjK2y/

D .xjK1y �K2y/ :

If x D K1y �K2y, then

kK1y �K2yk2 D 0;
and hence, K1y D K2y. This proves the claims. ut
The adjoint has the following useful elementary properties.

Proposition 3.5.2. Let L;K W V ! W , L1 W V1 ! V2, and L2 W V2 ! V3 be
linear maps between finite-dimensional inner product spaces. Then,

(1) .LCK/� D L� CK�.
(2) L�� D L
(3) .�1V /

� D N�1V .
(4) .L2L1/

� D L�1L�2 .
(5) If L is invertible, then

�

L�1
�� D .L�/�1.

Proof. The key to the proofs of these statements is the uniqueness statement in
Proposition 3.5.1, i.e., any L0 W W ! V such that .Lxjy/ D .xjL0y/ for all x 2 V
and y 2 W must be the adjoint L0 D L�.

To check the first property, we calculate
�

xj .LCK/� y� D ..LCK/xjy/
D .Lxjy/C .Kxjy/
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D �

xjL�y�C �xjK�y�

D �

xj �L� CK��y� :

The second is immediate from

.Lxjy/ D �

xjL�y�

D .L�yjx/
D .yjL��x/
D �

L��xjy� :
The third property follows from

.�1V .x/ jy/ D .�xjy/
D �

xj N�y�

D �

xj N�1V .y/
�

:

The fourth property
�

xj .L2L1/� y
� D ..L2L1/ .x/ jy/
D .L2 .L1 .x// jy/
D �

L1 .x/ jL�2 .y/
�

D �

xjL�1
�

L�2 .y/
��

D �

xj �L�1L�2
�

.y/
�

:

And finally 1V D L�1L implies that

1V D .1V /�
D �

L�1L
��

D L� �L�1��

as desired. ut
Example 3.5.3. As an example, let us find the adjoint to

�

e1 � � � en
� W Fn ! V;

when e1; : : : ; en is an orthonormal basis. Recall that in Sect. 3.3, we already found
a simple formula for the inverse

�

e1 � � � en
��1

.x/ D

2

6

4

.xje1/
:::

.xjen/

3

7

5
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and we proved that
�

e1 � � � en
�

preserves inner products. If we let x 2 F
n and y 2 V ,

then we can write y D �

e1 � � � en
�

.z/ for some z 2 F
n. With that in mind, we can

calculate

��

e1 � � � en
�

.x/ jy� D ��

e1 � � � en
�

.x/
ˇ

ˇ

�

e1 � � � en
�

.z/
�

D .xjz/
D



x
ˇ

ˇ

ˇ

�

e1 � � � en
��1

.y/
�

:

Thus,
�

e1 � � � en
�� D � e1 � � � en

��1
:

Below we shall generalize this relationship to all isomorphisms that preserve inner
products, i.e., isometries.

The fact that
�

e1 � � � en
�� D � e1 � � � en

��1

simplifies the job of calculating matrix representations with respect to orthonormal
bases. Assume that L W V ! W is a linear map between finite-dimensional inner
product spaces and that we have orthonormal bases e1; : : : ; em for V and f1; : : : ; fn
forW . Then,

L D �

f1 � � � fn
�

ŒL�
�

e1 � � � em
��
;

ŒL� D �

f1 � � � fn
��
L
�

e1 � � � em
�

;

or in diagram form

V L
�! W

�

e1 � � � em
�� # " �f1 � � � fn

�

F
m ŒL�

�! F
n

V L
�! W

�

e1 � � � em
� " # �f1 � � � fn

��

F
m ŒL�

�! F
n

From this, we see that the matrix definition of the adjoint is justified since the
properties of the adjoint now tell us that:

L� D


�

f1 � � � fn
�

ŒL�
�

e1 � � � em
����

D �

e1 � � � em
�

ŒL��
�

f1 � � � fn
��
:
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A linear map and its adjoint have some remarkable relationships between their
images and kernels. These properties are called the Fredholm alternatives and
named after Fredholm who first used these properties to clarify when certain linear
systems L.x/ D b can be solved (see also Sect. 4.9).

Theorem 3.5.4. (The Fredholm Alternative) Let L W V ! W be a linear map
between finite-dimensional inner product spaces. Then,

ker .L/ D im
�

L�
�?
;

ker
�

L�
� D im .L/? ;

ker .L/? D im
�

L�
�

;

ker
�

L�
�? D im .L/ :

Proof. Since L�� D L and M?? D M , we see that all of the four statements are
equivalent to each other. Thus. we need only prove the first. The two subspaces are
characterized by

ker .L/ D fx 2 V W Lx D 0g ;
im
�

L�
�? D ˚

x 2 V W �xjL�z� D 0 for all z 2 W 


:

Now, fix x 2 V and use that .Lxjz/ D .xjL�z/ for all z 2 V . This implies first that
if x 2 ker .L/, then also x 2 im .L�/?. Conversely, if 0 D .xjL�z/ D .Lxjz/ for
all z 2 W , it must follow that Lx D 0 and hence x 2 ker .L/. ut
Corollary 3.5.5. (The Rank Theorem) Let L W V ! W be a linear map between
finite-dimensional inner product spaces. Then,

rank .L/ D rank
�

L�
�

:

Proof. Using the dimension formula (Theorem 1.11.7) for linear maps and that
orthogonal complements have complementary dimension (Corollary 3.4.4) together
with the Fredholm alternative, we see

dimV D dim .ker .L//C dim .im .L//

D dim



im
�

L�
�?�C dim .im .L//

D dimV � dim
�

im
�

L�
��C dim .im .L// :

This implies the result. ut
Next, we give another proof of the rank theorem for real and complex matrices (see
Theorem 1.12.11).
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Corollary 3.5.6. For a real or complex n�m matrix A, the column rank equals the
row rank.

Proof. First, note that rank .B/ D rank
� NB� for all complex matrices B . Secondly,

we know that the column rank of A is rank .A/ is the same as the column rank,
which by Corollary 3.5.5 equals rank .A�/ which in turn is the row rank of NA. This
proves the result. ut
Corollary 3.5.7. Let L W V ! V be a linear operator on a finite-dimensional
inner product space. Then, � is an eigenvalue for L if and only if N� is an eigenvalue
for L�. Moreover, these eigenvalue pairs have the same geometric multiplicity:

dim .ker .L � �1V // D dim
�

ker
�

L� � N�1V
��

:

Proof. It suffices to prove the dimension statement. Note that .L � �1V /� D L� �N�1V . Thus, the result follows if we can show

dim .ker .K// D dim
�

ker
�

K�
��

for K W V ! V . This comes from using the dimension formula (Theorem 1.11.7)
and Corollary 3.5.5

dim .ker .K// D dimV � dim .im .K//

D dimV � dim
�

im
�

K�
��

D dim
�

ker
�

K�
��

: ut

Exercises

1. Let V and W be finite-dimensional inner product spaces.

(a) Show that we can define an inner product on HomF .V;W / by .LjK/ D
tr .LK�/ D tr .K�L/.

(b) Show that .KjL/ D .L�jK�/.
(c) If e1; : : : ; em is an orthonormal basis for V , show that

.KjL/ D .K .e1/ jL.e1//C � � � C .K .em/ jL.em// :

2. Assume that V is a complex inner product space. Recall from Exercise 6 in
Sect. 1.4 that we have a vector space V � with the same addition as in V but
scalar multiplication is altered by conjugating the scalar. Show that the map
F W V � ! Hom .V;C/ defined by F .x/ D .�jx/ is complex linear and an
isomorphism when V is finite-dimensional. Use this to give another definition
of the adjoint. Here

F .x/ D .�jx/ 2 Hom .V;C/

is the linear map such that .F .x// .z/ D .zjx/.
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3. On Matn�n .C/, use the inner product .AjB/ D tr .AB�/. For A 2 Matn�n .C/,
consider the two linear operators on Matn�n .C/ defined by LA .X/ D AX ,
RA .X/ D XA. Show that .LA/

� D LA� and .RA/
� D RA� .

4. Let x1; : : : ; xk 2 V , where V is a finite-dimensional inner product space.

(a) Show that

G .x1; : : : ; xk/ D
�

x1 � � � xk
�� �

x1 � � � xk
�

;

whereG .x1; : : : ; xk/ is a k�k matrix whose ij entry is
�

xj jxi
�

. It is called
the Gram matrix or Grammian.

(b) Show thatG D G .x1; : : : ; xk/ is nonnegative in the sense that .Gxjx/ � 0
for all x 2 F

k .
(c) Generalize part (a) to show that the composition

�

y1 � � � yk
�� �

x1 � � � xk
�

is the matrix whose ij entry is
�

xj jyi
�

.

5. Find image and kernel for A 2 Mat3�3 .R/, where the ij entry is ˛ij D
.�1/iCj .

6. Find image and kernel for A 2 Mat3�3 .C/, where the kl entry is ˛kl D .i/kCl .
7. LetA 2 Matn�n .R/ be symmetric, i.e.,A� D A, and assumeA has rank k � n.

Show that:

(a) If the first k columns are linearly independent, then the principal k � k
minor of A is invertible. The principal k� k minor of A is the k � k matrix
one obtains by deleting the last n� k columns and rows. Hint: Use a block
decomposition

A D
�

B C

C t D

	

and write
�

C

D

	

D
�

B

C t

	

X; X 2 Matk�.n�k/ .R/

i.e., the last n � k columns are linear combinations of the first k.
(b) If rows i1; : : : ; ik are linearly independent, then the k�k minor obtained by

deleting all columns and rows not indexed by i1; : : : ; ik is invertible. Hint:
Note that IklAIkl is symmetric so one can use part a.

(c) There are examples showing that (a) need not hold for n � n matrices in
general.

8. Let L W V ! V be a linear operator on a finite-dimensional inner product
space. Show that:

(a) If M � V is an L-invariant subspace, thenM? is L�-invariant.
(b) Show that there are examples where M is not L�-invariant.
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9. Consider two linear operatorsK;L W V ! V and the commutator

ŒK;L� D K ı L �L ıK

(a) Show that ŒK;L� is skew-adjoint ifK;L are both self-adjoint or both skew-
adjoint.

(b) Show that ŒK;L� is self-adjoint if one of K;L is self-adjoint and the other
skew-adjoint.

10. Let L W V ! W be a linear operator between finite-dimensional vector spaces.
Show that

(a) L is one-to-one if and only if L� is onto.
(b) L� is one-to-one if and only if L is onto.

11. Let M;N � V be subspaces of a finite-dimensional inner product space and
consider L WM �N ! V defined by L.x; y/ D x � y.

(a) Show that L� .z/ D .projM .z/ ;�projN .z//.
(b) Show that

ker
�

L�
� D M? \N?;

im .L/ D M CN:
(c) Using the Fredholm alternative, show that

.M CN/? D M? \N?:

(d) Replace M and N byM? and N? and conclude

.M \N/? DM? CN?:

12. Assume that L W V ! W is a linear map between inner product spaces.
Show that:

(a) If both vector spaces are finite-dimensional, then

dim .ker .L// � dim .im .L//? D dimV � dimW:

(b) If V D W D `2 .Z/, then for each integer n 2 Z, it is possible to find a
linear operator Ln with finite-dimensional ker .Ln/ and .im .Ln//

? so that

Ind .L/ D dim .ker .L// � dim .im .L//? D n:

Hint: Consider linear maps that take .ak/ to .akCl / for some l 2 Z.
An operator with finite-dimensional ker .L/ and .im .L//? is called a
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Fredholm operator. The integer Ind .L/ D dim .ker .L//�dim .im .L//? is
the index of the operator and is an important invariant in functional analysis.

13. Let L W V ! V be a linear operator on a finite-dimensional inner product
space. Show that

tr .L/ D tr
�

L�
�

:

14. Let L W V ! W be a linear map between inner product spaces. Show that

L W ker
�

L�L� �1V
�! ker

�

LL� � �1V
�

and

L� W ker
�

LL� � �1V
�! ker

�

L�L � �1V
�

:

15. Let L W V ! V be a linear operator on a finite-dimensional inner product
space. Show that if L.x/ D �x, L� .y/ D �y, and � ¤ N�, then x and y are
perpendicular.

16. Let V be a subspace of C0 .Œ0; 1� ;R/ and consider the linear functionals
ft0 .x/ D x .t0/ and fy .x/ D

R 1

0 x .t/ y .t/ dt . Show that:

(a) If V is finite-dimensional, then ft0 jV D fy jV for some y 2 V .
(b) If V D P2 D polynomials of degree� 2, then there is an explicit y 2 V as

in part (a).
(c) If V D C0 .Œ0; 1� ;R/, then there is no y 2 C0 .Œ0; 1� ;R/ such that ft0 D

fy . The illusory function ıt0 invented by Dirac to solve this problem is
called Dirac’s ı-function. It is defined as

ıt0 .t/ D
�

0 if t ¤ t0
1 if t D t0

Z 1

0

ıt0 .t/ dt D 1

so as to give the impression that

Z 1

0

x .t/ ıt0 .t/ dt D x .t0/ :

17. Find q .t/ 2 P2 such that

p .5/ D .pjq/ D
Z 1

0

p .t/ q .t/dt

for all p 2 P2.
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18. Find f .t/ 2 span f1; sin .t/ ; cos .t/g such that

.gjf / D 1

2�

Z 2�

0

g .t/ f .t/dt

D 1

2�

Z 2�

0

g .t/
�

1C t2� dt

for all g 2 span f1; sin .t/ ; cos .t/g.

3.6 Orthogonal Projections Revisited*

In this section, we shall give a new formula for an orthogonal projection. Instead
of using Gram–Schmidt to create an orthonormal basis for the subspace, it gives a
direct formula using an arbitrary basis for the subspace.

First, we need a new characterization of orthogonal projections using adjoints.

Lemma 3.6.1. (Characterization of Orthogonal Projections) A projectionE W V !
V is orthogonal if and only if E D E�.
Proof. The Fredholm alternative (Theorem 3.5.4) tells us that im .E/ D ker .E�/?
so if E D E�, we have shown that im .E/ D ker .E/?, which implies that E is
orthogonal (see Theorem 3.4.5).

Conversely, we can assume that im .E/ D ker .E/? since E is an orthogonal
projection (see again Theorem 3.4.5). Using the Fredholm alternative again then
tells us that

im .E/ D ker .E/? D im
�

E�
�

;

ker
�

E�
�? D im .E/ D ker .E/? :

As .E�/2 D �

E2
�� D E�, it follows that E� is a projection with the same image

and kernel as E . Hence, E D E�. ut
Using this characterization of orthogonal projections, it is possible to find a formula
for projM using a general basis forM � V . Let M � V be finite-dimensional with
a basis x1; : : : ; xm. This yields an isomorphism

�

x1 � � � xm
� W Fm !M

which can also be thought of as a one-to-one map A W Fm ! V whose image is M .
This yields a linear map

A�A W Fm ! F
m:
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Since
�

A�Ayjy� D .AyjAy/
D kAyk2 ;

the kernel satisfies

ker
�

A�A
� D ker .A/ D f0g :

In particular, A�A is an isomorphism. This means that

E D A �A�A��1 A�

defines linear operatorE W V ! V . It is easy to check that E D E�, and since

E2 D A �A�A��1 A�A �A�A��1 A�

D A �A�A��1 A�
D E;

it is a projection. Finally, we must check that im .E/ D M . Since .A�A/�1 is an
isomorphism and

im
�

A�
� D .ker .A//? D .f0g/? D F

m;

we have

im .E/ D im .A/ DM
as desired.

To better understand this construction, we note that

A� .x/ D

2

6

4

.xjx1/
:::

.xjxm/

3

7

5 :

This follows from
0

B

@

2

6

4

˛1
:::

˛m

3

7

5

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

6

4

.xjx1/
:::

.xjxm/

3

7

5

1

C

A D ˛1.xjx1/C � � � C ˛m.xjxm/

D ˛1 .x1jx/C � � � C ˛m .xmjx/
D .˛1x1 C � � � C ˛mxmjx/

D

0

B

@A

0

B

@

2

6

4

˛1
:::

˛m

3

7

5

1

C

A

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x

1

C

A
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The matrix form of A�A can now be expressed as

A�A D A� ı �x1 � � � xm
�

D �

A� .x1/ � � � A� .xm/
�

D

2

6

4

.x1jx1/ � � � .xmjx1/
:::

: : :
:::

.x1jxm/ � � � .xmjxm/

3

7

5 :

This is also called the Gram matrix of x1; : : : ; xm. This information specifies
explicitly all of the components of the formula

E D A �A�A��1 A�:
The only hard calculation is the inversion ofA�A. The calculation ofA .A�A/�1 A�
should also be compared to using the Gram–Schmidt procedure for finding the
orthogonal projection ontoM .

Exercises

1. Using the inner product
R 1

0
p .t/ Nq .t/ dt , find the orthogonal projection from

C Œt � onto span f1; tg D P1. Given any p 2 C Œt �, you should express the
orthogonal projection in terms of the coefficients of p.

2. Using the inner product
R 1

0
p .t/ Nq .t/ dt , find the orthogonal projection from

C Œt � onto span
˚

1; t; t2

 D P2.

3. Compute the orthogonal projection onto the following subspaces:

(a)

span

8

ˆ
ˆ
<

ˆ
ˆ
:

2

6

6

4

1

1

1

1

3

7

7

5

9

>
>
=

>
>
;

� R
4

(b)

span

8

ˆ
ˆ
<

ˆ
ˆ
:

2

6

6

4

1

�1
0

1

3

7

7

5

;

2

6

6

4

1

1

1

0

3

7

7

5

;

2

6

6

4

2

0

1

1

3

7

7

5

9

>
>
=

>
>
;

� R
4

(c)

span

8

ˆ
ˆ
<

ˆ
ˆ
:

2

6

6

4

1

i

0

0

3

7

7

5

;

2

6

6

4

�i
1

0

0

3

7

7

5

;

2

6

6

4

0

1

i

0

3

7

7

5

9

>
>
=

>
>
;

� C
4
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4. Given an orthonormal basis e1; : : : ; ek for the subspace M � V , show that the
orthogonal projection onto M can be computed as

projM D
�

e1 � � � ek
� �

e1 � � � ek
��
:

Hint: Show that
�

e1 � � � ek
�� �

e1 � � � ek
� D 1Fk :

5. Show that if M � V is an L-invariant subspace, then

.LjM /� D projM ı L�jM :

3.7 Matrix Exponentials*

In this section, we shall show that the initial value problem: Px D Ax, x .t0/ D x0
where A is a square matrix with real or complex scalars as entries can be solved
using matrix exponentials. More algebraic approaches are also available by using
the Frobenius canonical form (Theorem 2.7.1) and the Jordan canonical form
(Theorem 2.8.3). Later, we shall see how Schur’s Theorem (4.8.1) also gives a very
effective way of solving such systems.

Recall that in the one-dimensional situation, the solution is

x .t/ D x0 exp .A .t � t0// :

If we could make sense of this for square matrices A as well, we would have
a possible way of writing down the solutions. The concept of operator norms
introduced in Sect. 3.3 naturally leads to a norm of matrices as well. One key
observation about this norm is that if A D �

˛ij
�

, then
ˇ

ˇ˛ij
ˇ

ˇ � kAk, i.e., the entries
are bounded by the norm. Moreover, we also have that

kABk � kAk kBk ;
kAC Bk � kAk C kBk

as

kAB .x/k � kAk kB .x/k
� kAk kBk kxk

and

k.AC B/ .x/k � kA .x/k C kB .x/k :
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Now, consider the series
1
X

nD0

An

nŠ
:

Since
�

�

�

�

An

nŠ

�

�

�

�
� kAk

n

nŠ

and
1
X

nD0

kAkn
nŠ

is convergent, it follows that any given entry in

1
X

nD0

An

nŠ

is bounded by a convergent series. Thus, the matrix series also converges. This
means we can define

exp .A/ D
1
X

nD0

An

nŠ
:

It is not hard to check that if L 2 Hom .V; V /, where V is a finite-dimensional
inner product space, then we can similarly define

exp .L/ D
1
X

nD0

Ln

nŠ
:

Now, consider the matrix-valued function

exp .At/ D
1
X

nD0

Antn

nŠ

and with it the vector-valued function

x .t/ D exp .A .t � t0// x0:
It still remains to be seen that this defines a differentiable function that solves Px D
Ax. But it follows directly from the definition it has the correct initial value since
exp .0/ D 1Fn . To check differentiability, we consider the matrix function t !
exp .At/ and study exp .A .t C h//. In fact, we claim that

exp .A .t C h// D exp .At/ exp .Ah/ :

To establish this, we prove a more general version together with another useful fact.
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Proposition 3.7.1. Let L;K W V ! V be linear operators on a finite-dimensional
inner product space.

(1) If KL D LK , then exp .K C L/ D exp .K/ ı exp .L/.
(2) If K is invertible, then exp

�

K ı L ıK�1� D K ı exp .L/ ıK�1.
Proof. 1. This formula hinges on proving the binomial formula for commuting

operators:

.LCK/n D
n
X

kD0

 

n

k

!

LkKn�k;

 

n

k

!

D nŠ

.n � k/ŠkŠ :

This formula is obvious for n D 1. Suppose that the formula holds for n. Using
the conventions

 

n

nC 1

!

D 0;

 

n

�1

!

D 0;

together with the formula from Pascal’s triangle

 

n

k � 1

!

C
 

n

k

!

D
 

nC 1
k

!

;

it follows that

.LCK/nC1 D .LCK/n .LCK/

D
 

n
X

kD0

 

n

k

!

LkKn�k
!

.LCK/

D
n
X

kD0

 

n

k

!

LkKn�kLC
n
X

kD0

 

n

k

!

LkKn�kK

D
n
X

kD0

 

n

k

!

LkC1Kn�k C
n
X

kD0

 

n

k

!

LkKn�kC1

D
nC1
X

kD0

 

n

k � 1

!

LkKnC1�k C
nC1
X

kD0

 

n

k

!

LkKnC1�k
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D
nC1
X

kD0

  

n

k � 1

!

C
 

n

k

!!

LkKnC1�k

D
nC1
X

kD0

 

nC 1
k

!

LkKnC1�k:

We can then compute

N
X

nD0

.K C L/n
nŠ

D
N
X

nD0

n
X

kD0

1

nŠ

 

n

k

!

LkKn�k

D
N
X

nD0

n
X

kD0

1

.n � k/ŠkŠL
kKn�k

D
N
X

nD0

n
X

kD0

�

1

kŠ
Lk
��

1

.n � k/ŠK
n�k

�

D
N
X

k;lD0;kCl�N

�

1

kŠ
Lk
��

1

lŠ
Kl

�

:

The last term is unfortunately not quite the same as the product

N
X

k;lD0

�

1

kŠ
Lk
��

1

lŠ
Kl

�

D
 

N
X

kD0

1

kŠ
Lk

! 

N
X

lD0

1

lŠ
Kl

!

:

However, the difference between these two sums can be estimated the following
way:

�

�

�

�

�

�

N
X

k;lD0

�

1

kŠ
Lk
��

1

lŠ
Kl

�

�
N
X

k;lD0;kCl�N

�

1

kŠ
Lk
��

1

lŠ
Kl

�

�

�

�

�

�

�

D
�

�

�

�

�

�

N
X

k;lD0;kCl>N

�

1

kŠ
Lk
��

1

lŠ
Kl

�

�

�

�

�

�

�

�
N
X

k;lD0;kCl>N

�

1

kŠ
kLkk

��

1

lŠ
kKkl

�
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�
N
X

kD0;lDN=2

�

1

kŠ
kLkk

��

1

lŠ
kKkl

�

C
N
X

lD0;kDN=2

�

1

kŠ
kLkk

��

1

lŠ
kKkl

�

D
 

N
X

kD0

1

kŠ
kLkk

!
0

@

N
X

lDN=2

1

lŠ
kKkl

1

AC
0

@

N
X

kDN=2

1

kŠ
kLkk

1

A

 

N
X

lD0

1

lŠ
kKkl

!

� exp .kLk/
0

@

N
X

lDN=2

1

lŠ
kKkl

1

AC exp .kKk/
0

@

N
X

kDN=2

1

kŠ
kLkk

1

A :

Since

lim
N!1

N
X

lDN=2

1

lŠ
kKkl D 0;

lim
N!1

N
X

kDN=2

1

kŠ
kLkk D 0;

it follows that

lim
N!1

�

�

�

�

�

N
X

nD0

.K C L/n
nŠ

�
 

N
X

kD0

1

kŠ
Lk

! 

N
X

lD0

1

lŠ
Kl

!�

�

�

�

�

D 0:

Thus,
1
X

nD0

.K CL/n
nŠ

D
1
X

kD0

�

1

kŠ
Lk
� 1
X

lD0

�

1

lŠ
Kl

�

as desired.

2. This is considerably simpler and uses that

�

K ı L ıK�1�n D K ı Ln ıK�1:

This is again proven by induction. First, observe it is trivial for n D 1 and then that

�

K ı L ıK�1�nC1 D �

K ı L ıK�1�n ıK ı L ıK�1

D K ı Ln ıK�1 ıK ı L ıK�1
D K ı Ln ı L ıK�1
D K ı LnC1 ıK�1:
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Thus,

N
X

nD0

�

K ı L ıK�1�n
nŠ

D
N
X

nD0

K ı Ln ıK�1
nŠ

D K ı
 

N
X

nD0

Ln

nŠ

!

ıK�1:

By letting N !1, we get the desired formula. ut
To calculate the derivative of exp .At/, we observe that

exp .A .t C h// � exp .At/

h
D exp .Ah/ exp .At/ � exp .At/

h

D
�

exp .Ah/� 1Fn
h

�

exp .At/ :

Using the definition of exp .Ah/, it follows that

exp .Ah/� 1Fn
h

D
1
X

nD1

1

h

Anhn

nŠ

D
1
X

nD1

Anhn�1

nŠ

D AC
1
X

nD2

Anhn�1

nŠ
:

Since
�

�

�

�

�

1
X

nD2

Anhn�1

nŠ

�

�

�

�

�

�
1
X

nD2

kAkn jhjn�1
nŠ

D kAk
1
X

nD2

kAkn�1 jhjn�1
nŠ

D kAk
1
X

nD2

kAhkn�1
nŠ

� kAk
1
X

nD1
kAhkn

D kAk kAhk 1

1 � kAhk
! 0 as jhj ! 0;
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we get that

lim
jhj!0

exp .A .t C h// � exp .At/

h
D
�

lim
jhj!0

exp .Ah/ � 1Fn
h

�

exp .At/

D A exp .At/ :

Therefore, if we define

x .t/ D exp .A .t � t0// x0;
then

Px D A exp .A .t � t0// x0
D Ax:

The other problem we should solve at this point is uniqueness of solutions. To be
more precise, if we have that both x and y solve the initial value problem Px D Ax,
x .t0/ D x0, then we wish to prove that x D y. Inner products can be used quite
effectively to prove this as well. We consider the nonnegative function

	 .t/ D kx .t/ � y .t/k2
D .x1 � y1/2 C � � � C .xn � yn/2 :

In the complex situation, simply identify C
n D R

2n and use the 2n real coordinates
to define this norm. Recall that this norm comes from the usual inner product on
Euclidean space. The derivative satisfies

d	

dt
.t/ D 2 . Px1 � Py1/ .x1 � y1/C � � � C 2 . Pxn � Pyn/ .xn � yn/
D 2 .. Px � Py/ j .x � y//
D 2 .A .x � y/ j .x � y//
� 2 kA .x � y/k kx � yk
� 2 kAk kx � yk2
D 2 kAk	 .t/ :

Thus, we have

d	

dt
.t/ � 2 kAk 	 .t/ � 0:

If we multiply this by the positive integrating factor exp .�2 jjAjj .t � t0// and use
Leibniz’ rule in reverse, we obtain

d

dt
.	 .t/ exp .�2 kAk .t � t0/// � 0:
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Together with the initial condition 	 .t0/ D 0, this yields

	 .t/ exp .�2 kAk .t � t0// � 0; for t � t0:

Since the integrating factor is positive and 	 is nonnegative, it must follow that
	 .t/ D 0 for t � t0. A similar argument using � exp .�2 kAk .t � t0// can be used
to show that 	 .t/ D 0 for t � t0. Altogether, we have established that the initial
value problem Px D Ax, x .t0/ D x0 always has a unique solution for matrices A
with real (or complex) scalars as entries.

To explicitly solve these linear differential equations, it is often best to understand
higher order equations first and then use the cyclic subspace decomposition from
Sect. 2.6 to reduce systems to higher order equations. In Sect. 4.8.1, we shall give
another method for solving systems of equations that does not use higher order
equations.

Exercises

1. Let f .z/ D P1
nD0 anzn define a power series and A 2 Matn�n .F/. Show that

one can define f .A/ as long as kAk < radius of convergence.
2. Let L W V ! V be an operator on a finite-dimensional inner product space.

Show the following statements:

(a) If kLk < 1, then 1V C L has an inverse. Hint:

.1V C L/�1 D
1
X

nD1
.�1/n Ln:

(b) With L as above, show

�

�L�1
�

� � 1

1 � kLk ;
�

�

�.1V C L/�1 � 1V
�

�

� � kLk
1 � kLk :

(c) If
�

�L�1
�

� � "�1 and kL �Kk < ", then K is invertible and

�

�K�1
�

� �
�

�L�1
�

�

1 � kL�1 .K � L/k ;

�

�L�1 �K�1�� �
�

�L�1
�

�
2

.1 � kL�1k kL �Kk/2 kL �Kk :
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3. Let L W V ! V be an operator on a finite-dimensional inner product space.

(a) Show that if � is an eigenvalue for L, then

j�j � kLk :

(b) Give examples of 2 � 2 matrices where strict inequality always holds.

4. Show that

x .t/ D
�

exp .A .t � t0//
Z t

t0

exp .�A .s � t0// f .s/ ds

�

x0

solves the initial value problem Px D Ax C f .t/, x .t0/ D x0.
5. Let A D B C C 2 Matn�n .R/ where B is invertible and kCk is very small

compared to kBk.
(a) Show that B�1 � B�1CB�1 is a good approximation to A�1.
(b) Use this to approximate the inverse to

2

6

6

4

1 0 1000 1

0 �1 1 1000

2 1000 �1 0

1000 3 2 0

3

7

7

5

:





Chapter 4
Linear Operators on Inner Product Spaces

In this chapter, we are going to study linear operators on finite-dimensional inner
product spaces. In the last chapter, we introduced adjoints of linear maps between
possibly different inner product spaces. Here we shall see how the adjoint can be
used to understand linear operators on a fixed inner product space. The important
operators we study here are the self-adjoint, skew-adjoint, normal, orthogonal, and
unitary operators. We shall spend several sections on the existence of eigenval-
ues, diagonalizability, and canonical forms for these special but important linear
operators. Having done that, we go back to the study of general linear maps and
operators and establish the singular value and polar decompositions. We also show
Schur’s theorem to the effect that complex linear operators have upper triangular
matrix representations. This result does not depend on the spectral theorem. It is
also possible to give a quick proof of the spectral theorem using only the material
covered in Sect. 4.1. The chapter finishes with a section on quadratic forms and how
they tie in with the theory of self-adjoint operators.

4.1 Self-Adjoint Maps

Definition 4.1.1. A linear operator L W V ! V on a finite-dimensional vector
space is called self-adjoint ifL� D L. Note that a realm�mmatrixA is self-adjoint
precisely when it is symmetric, i.e., A D At : The opposite of being self-adjoint is
skew-adjoint: L� D �L:

When V is a real inner product space, we also say that the operator is symmetric
or skew-symmetric. In case the inner product is complex, these operators are also
called Hermitian or skew-Hermitian.

Example 4.1.2. The following 2 � 2 matrices satisfy:
�

0 �ˇ
ˇ 0

�
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is skew-adjoint if ˇ is real.
�

˛ �iˇ
iˇ ˛

�

is self-adjoint if ˛ and ˇ are real.

�

i˛ �ˇ
ˇ i˛

�

is skew-adjoint if ˛ and ˇ are real.
In general, a complex 2 � 2 self-adjoint matrix looks like

�

˛ ˇ C i�
ˇ � i� ı

�

; ˛; ˇ; �; ı 2 R:

In general, a complex 2 � 2 skew-adjoint matrix looks like

�

i˛ iˇ � �
iˇ C � iı

�

; ˛; ˇ; �; ı 2 R:

Example 4.1.3. We saw in Sect. 3.6 that self-adjoint projections are precisely the
orthogonal projections.

Example 4.1.4. If L W V ! W is a linear map we can create two self-adjoint maps
L�L W V ! V and LL� W W ! W:

Example 4.1.5. Consider the space of periodic functions C1
2� .R;C/ with the inner

product

.xjy/ D 1

2�

Z 2�

0

x .t/ y .t/dt:

The linear operator

D .x/ D dx

dt

can be seen to be skew-adjoint even though we have not defined the adjoint of maps
on infinite-dimensional spaces. In general, we say that a map is self-adjoint or skew-
adjoint if

.L .x/ jy/ D .xjL.y// or

.L .x/ jy/ D � .xjL.y//

for all x; y. Using that definition, we note that integration by parts and the fact that
the functions are periodic imply our claim:
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.D .x/ jy/ D 1

2�

Z 2�

0

�

dx

dt
.t/

�

y .t/dt

D 1

2�
x .t/ y .t/j2�0 �

1

2�

Z 2�

0

x .t/
dy

dt
.t/dt

D � 1

2�

Z 2�

0

x .t/
dy

dt
.t/dt

D � .xjD .y// :

In quantum mechanics, one often makesD self-adjoint by instead considering iD.

In analogy with the formulae

exp .x/ D exp .x/C exp .�x/
2

C exp .x/� exp .�x/
2

D cosh .x/C sinh .x/ ;

we have

L D 1

2

�

LC L��C 1

2

�

L � L�� ;

L� D 1

2

�

LC L�� � 1
2

�

L �L�� ;

where 1
2
.LCL�/ is self-adjoint and 1

2
.L� L�/ is skew-adjoint. In the complex

case, we also have

exp .ix/ D exp .ix/C exp .�ix/
2

C exp .ix/ � exp .�ix/
2

D exp .ix/C exp .�ix/
2

C i
exp .ix/ � exp .�ix/

2i

D cos .x/C i sin .x/ ;

which is a nice analogy for

L D 1

2

�

LC L��C i
1

2i

�

L � L�� ;

L� D 1

2

�

LC L��� i
1

2i

�

L �L�� ;
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where now also 1
2i
.L� L�/ is self-adjoint. The idea behind this formula is that

multiplication by i takes skew-adjoint maps to self-adjoints maps and vice versa.
Self- and skew-adjoint maps are clearly quite special by virtue of their

definitions. The above decomposition which has quite a lot in common with
dividing functions into odd and even parts or dividing complex numbers into
real and imaginary parts seems to give some sort of indication that these maps could
be central to the understanding of general linear maps. This is not quite true, but we
shall be able to get a grasp on quite a lot of different maps.

Aside from these suggestive properties, self- and skew-adjoint maps are
completely reducible.

Definition 4.1.6. A linear map L W V ! V is said to be completely reducible if
every invariant subspace has a complementary invariant subspace.

Recall that maps like

L D
�

0 1

0 0

�

W R2 ! R
2

can have invariant subspaces without having complementary subspaces that are
invariant.

Proposition 4.1.7. (Reducibility of Self- or Skew-Adjoint Operators) LetL W V !
V be a linear operator on a finite-dimensional inner product space. If L is self- or
skew-adjoint, then for each invariant subspaceM � V the orthogonal complement
is also invariant, i.e., if L.M/ �M; then L

�

M?� �M?:

Proof. Assume that L.M/ � M: Let x 2 M and z 2 M?: Since L.x/ 2 M ,
we have

0 D .zjL.x//
D �

L� .z/ jx�

D ˙ .L .z/ jx/ :
As this holds for all x 2M , it follows that L.z/ 2M?: ut
Remark 4.1.8. This property almost tells us that these operators are diagonalizable.
Certainly in the case where we have complex scalars, we can use induction on
dimension to show that such maps are diagonalizable. In the case of real scalars, the
problem is that it is not clear that self- and/or skew-adjoint maps have any invariant
subspaces whatsoever. The map which is rotation by 90ı in the plane is clearly skew-
symmetric, but it has no non-trivial invariant subspaces. Thus, we cannot make the
map any simpler. We shall see below that this is basically the worst case scenario
for such maps.
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Exercises

1. Let L W Pn ! Pn be a linear map on the space of real polynomials of degree
� n such that ŒL� with respect to the standard basis 1; t; : : : ; tn is self-adjoint.
Is L self-adjoint if we use the inner product

.pjq/ D
Z b

a

p .t/ q .t/ dt ‹

2. If V is finite-dimensional, show that the three subsets of Hom .V; V / defined by

M1 D span f1V g ;
M2 D fL W L is skew-adjointg ;
M3 D fL W trL D 0 and L is self-adjointg

are subspaces over R, are mutually orthogonal with respect to the real inner
product Re .L;K/ D Re .tr .L�K// ; and yield a direct sum decomposition of
Hom .V; V / :

3. Let E be an orthogonal projection and L a linear operator. Recall from
Exercise 11 in Sect. 1.11 and Exercise 5 in Sect. 3.4 that L leavesM D im .E/
invariant if and only if ELE D LE and that M ˚M? reduces L if and only
if EL D LE . Show that if L is skew- or self-adjoint and ELE D LE; then
EL D LE .

4. Let V be a finite-dimensional complex inner product space. Show that both the
space of self-adjoint and skew-adjoint maps form a real vector space. Show that
multiplication by i yields an R-linear isomorphism between these spaces.

5. Show that D2k W C1
2� .R;C/ ! C1

2� .R;C/ is self-adjoint and that D2kC1 W
C1
2� .R;C/! C1

2� .R;C/ is skew-adjoint.
6. Let x1; : : : ; xk be vectors in an inner product space V: Show that the k � k

matrix G .x1; : : : ; xk/ whose ij entry is
�

xj jxi
�

is self-adjoint and that all its
eigenvalues are nonnegative.

7. Let L W V ! V be a self-adjoint operator on a finite-dimensional inner product
space and p 2 R Œt � a real polynomial. Show that p .L/ is also self-adjoint.

8. Assume that L W V ! V is self-adjoint and � 2 R. Show:

(a) ker .L/ D ker
�

Lk
�

for any k � 1: Hint: Start with k D 2:
(b) im .L/ D im

�

Lk
�

for any k � 1:
(c) ker .L � �1V / D ker

�

.L � �1V /k
	

for any k � 1:
(d) Show that the eigenvalues of L are real.
(d) Show that �L .t/ has no multiple roots.

9. Let L W V ! V be a self-adjoint operator on a finite-dimensional vector space.

(a) Show that the eigenvalues of L are real.
(b) In case V is complex, show that L has an eigenvalue.



270 4 Linear Operators on Inner Product Spaces

(c) In case V is real, show that L has an eigenvalue. Hint: Choose an
orthonormal basis and observe that ŒL� 2 Matn�n .R/ � Matn�n .C/ is
also self-adjoint as a complex matrix. Thus, all roots of �ŒL� .t/ must be
real by (a).

10. Assume that L1;L2 W V ! V are both self-adjoint or skew-adjoint.

(a) Show that L1L2 is skew-adjoint if and only if L1L2 C L2L1 D 0:
(b) Show that L1L2 is self-adjoint if and only if L1L2 D L2L1:
(c) Give an example where L1L2 is neither self-adjoint nor skew-adjoint.

4.2 Polarization and Isometries

The idea of polarization is that many bilinear expressions such as .xjy/ can be
expressed as a sum of quadratic terms kzk2 D .zjz/ for suitable z:

Let us start with a real inner product on V: Then,

.x C yjx C y/ D .xjx/C 2 .xjy/C .yjy/ ;

so

.xjy/ D 1

2
..x C yjx C y/� .xjx/ � .yjy//

D 1

2

�

kx C yk2 � kxk2 � kyk2
	

:

Since complex inner products are only conjugate symmetric, we only get

.x C yjx C y/ D .xjx/C 2Re .xjy/C .yjy/ ;

which implies

Re .xjy/ D 1

2

�

kx C yk2 � kxk2 � kyk2
	

:

Nevertheless, the real part of the complex inner product determines the entire inner
product as

Re .xjiy/ D Re .�i .xjy//
D Im .xjy/ :

In particular, we have

Im .xjy/ D 1

2

�

kx C iyk2 � kxk2 � kiyk2
	

:
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We can use these ideas to check when linear operators L W V ! V are zero.
First, we note that L D 0 if and only if .L .x/ jy/ D 0 for all x; y 2 V: To check
the “if” part, just let y D L.x/ to see that kL.x/k2 D 0 for all x 2 V: When L is
self-adjoint, this can be improved.

Proposition 4.2.1. LetL W V ! V be self-adjoint on an inner product space. Then,
L D 0 if and only if .L .x/ jx/ D 0 for all x 2 V:
Proof. There is nothing to prove when L D 0:

Conversely, assume that .L .x/ jx/ D 0 for all x 2 V: The polarization trick from
above implies

0 D .L .x C y/ jx C y/
D .L .x/ jx/C .L .x/ jy/C .L .y/ jx/C .L .y/ jy/
D .L .x/ jy/C �yjL� .x/

�

D .L .x/ jy/C .yjL.x//
D 2Re .L .x/ jy/ :

Next, insert y D L.x/ to see that

0 D Re .L .x/ jL.x//
D kL.x/k2

as desired. ut
If L is not self-adjoint, there is no reason to think that such a result should hold. For
instance, when V is a real inner product space and L is skew-symmetric, then we
have

.L .x/ jx/ D � .xjL.x//
D � .L .x/ jx/

so .L .x/ jx/ D 0 for all x. Therefore, it is somewhat surprising that we can use the
complex polarization trick to prove the next result.

Proposition 4.2.2. LetL W V ! V be a linear operator on a complex inner product
space. Then, L D 0 if and only if .L .x/ jx/ D 0 for all x 2 V:
Proof. There is nothing to prove when L D 0:

Conversely, assume that .L .x/ jx/ D 0 for all x 2 V: We use the complex
polarization trick from above for fixed x; y 2 V :

0 D .L .x C y/ jx C y/
D .L .x/ jx/C .L .x/ jy/C .L .y/ jx/C .L .y/ jy/
D .L .x/ jy/C .L .y/ jx/
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0 D .L .x C iy/ jx C iy/
D .L .x/ jx/C .L .x/ jiy/C .L .iy/ jx/C .L .iy/ jiy/
D �i .L .x/ jy/C i .L .y/ jx/ :

This yields a system
�

1 1

�i i
� �

.L .x/ jy/

.L .y/ jx/
�

D
�

0

0

�

:

Since the columns of Œ 1 1�i i � are linearly independent, the only solution is the trivial
one. In particular, .L .x/ jy/ D 0. ut
Polarization can also be used to give a nice characterization of isometries (see also
Sect. 3.3). These properties tie in nicely with our observation that




e1 � � � en
�� D 
 e1 � � � en

��1

when e1; : : : ; en is an orthonormal basis.

Proposition 4.2.3. (Characterization of Isometries) Let L W V ! W be a
linear map between finite-dimensional inner product spaces, then the following are
equivalent:

(1) kL.x/k D kxk for all x 2 V:
(2) .L .x/ jL.y// D .xjy/ for all x; y 2 V:
(3) L�L D 1V
(4) L takes orthonormal sets of vectors to orthonormal sets of vectors.

Proof. .1/ ) .2/ W Depending on whether we are in the complex or real case,
simply write .L .x/ jL.y// and .xjy/ in terms of norms and use .1/ to see that both
terms are the same.
.2/ ) .3/ W Just use that .L�L.x/ jy/ D .L .x/ jL.y// D .xjy/ for all

x; y 2 V:
.3/ ) .4/ W We are assuming .xjy/ D .L�L.x/ jy/ D .L .x/ jL .y// ; which

immediately implies .4/ :
.4/ ) .1/ W Evidently, L takes unit vectors to unit vectors. So .1/ holds if

kxk D 1: Now, use the scaling property of norms to finish the argument. ut
Recall the definition of the operator norm for linear maps L W V ! W

kLk D max
kxkD1

kL.x/k :

It was shown in Theorem 3.3.8 that this norm is finite when V is finite-dimensional.
It is important to realize that this operator norm is not the same as the norm we get
from the inner product .LjK/ D tr .LK�/ defined on Hom .V;W / : To see this, it
suffices to consider 1V : Clearly, k1V k D 1; but .1V j1V / D tr .1V 1V / D dim .V / :
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Remark 4.2.4. Note that ifL W V ! W satisfies the conditions in Proposition 4.2.3,
then kLk D 1.

We also obtain

Corollary 4.2.5. (Characterization of Isometries) Let L W V ! W be an isomor-
phism between finite-dimensional inner product spaces, then L is an isometry if and
only if L� D L�1:

Proof. If L is an isometry, then it satisfies all of the above four conditions. In
particular, L�L D 1V . Since L is invertible, it must follow that L�1 D L�:

Conversely, if L�1 D L�; then L�L D 1V , and it follows from Proposition 4.2.3
that .L .x/ jL.y// D .xjy/ so L is an isometry. ut
Just as for self-adjoint and skew-adjoint operators, we have that isometries are
completely reducible.

Corollary 4.2.6. (Reducibility of Isometries) Let L W V ! V be a linear operator
on a finite-dimensional inner product space that is also an isometry. If M � V is
L-invariant, then so is M?:

Proof. If x 2M and y 2M?, then we note that

0 D .L .x/ jy/ D �xjL� .y/
�

:

Therefore, L� .y/ D L�1 .y/ 2 M? for all y 2 M?: Now observe that L�1jM? W
M? ! M? must be an isomorphism as its kernel is trivial. This implies that each
z 2 M? is of the form z D L�1 .y/ for y 2 M?: Thus, L.z/ D y 2 M?, and
hence,M? is L-invariant. ut
Definition 4.2.7. In the special case where V D W D R

n, we call the linear isome-
tries orthogonal matrices. The collection of orthogonal matrices is denoted On:

Note that these matrices are a subgroup of Gln .R/, i.e., if A;B 2 On, then AB 2
On: In particular, we see that On is itself a group. Similarly, when V D W D C

n,
we have the subgroup of unitary matrices Un � Gln .C/ consisting of complex
matrices that are also isometries.

Exercises

1. On Matn�n .R/, use the inner product .AjB/ D tr .ABt / : Consider the linear
operator L.X/ D Xt : Show that L is orthogonal. Is it skew- or self-adjoint?

2. On Matn�n .C/, use the inner product .AjB/ D tr .AB�/ : ForA 2 Matn�n .C/,
consider the two linear operators on Matn�n .C/ defined by LA .X/ D AX;

RA .X/ D XA (see also Exercise 3 in Sect. 3.5 ) Show that

(a) LA and RA are unitary if A is unitary.
(b) LA and RA are self- or skew-adjoint if A is self- or skew-adjoint.
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3. Show that the operatorD defines an isometry on both

spanC fexp .it/ ; exp .�it/g
and

spanR fcos .t/ ; sin .t/g
provided we use the inner product

.f jg/ D 1

2�

Z �

��
f .t/ g .t/ dt

inherited from C1
2� .R;C/ :

4. Let L W V ! V be a linear operator on a complex inner product space. Show
that L is self-adjoint if and only if .L .x/ jx/ is real for all x 2 V:

5. Let L W V ! V be a linear operator on a real inner product space. Show that L
is skew-adjoint if and only if .L .x/ jx/ D 0 for all x 2 V:

6. Let e1; : : : ; en be an orthonormal basis for V and assume that L W V ! W has
the property that L.e1/ ; : : : ; L .en/ is an orthonormal basis for W: Show that
L is an isometry.

7. Let L W V ! V be a linear operator on a finite-dimensional inner product
space. Show that if L ı K D K ı L for all isometries K W V ! V , then
L D �1V :

8. Let L W V ! V be a linear operator on an inner product space such that
.L .x/ jL.y// D 0 if .xjy/ D 0:
(a) Show that if kxk D kyk and .xjy/ D 0, then kL.x/k D kL.y/k : Hint:

Use and show that x C y and x � y are perpendicular.
(b) Show that L D �U; where U is an isometry.

9. Let V be a finite-dimensional real inner product space and F W V ! V be a
bijective map that preserves distances, i.e., for all x; y 2 V

kF .x/ � F .y/k D kx � yk :

(a) Show that G .x/ D F .x/ � F .0/ also preserves distances and that
G .0/ D 0:

(b) Show that kG .x/k D kxk for all x 2 V:
(c) Using polarization to show that .G .x/ jG .y// D .xjy/ for all x; y 2 V:

(See also next the exercise for what can happen in the complex case.)
(d) If e1; : : : ; en is an orthonormal basis, then show that G .e1/ ; : : : ; G .en/ is

also an orthonormal basis.
(e) Show that

G .x/ D .xje1/G .e1/C � � � C .xjen/G .en/ ;
and conclude that G is linear.

(f) Conclude that F .x/ D L.x/C F .0/ for a linear isometry L:
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10. On Matn�n .C/, use the inner product .AjB/ D tr .AB�/ : Consider the map
L.X/ D X�:

(a) Show that L is real linear but not complex linear.
(b) Show that

kL.X/� L.Y /k D kX � Y k
for all X; Y but that

.L .X/ jL.Y // ¤ .X jY /
for some choices of X; Y:

4.3 The Spectral Theorem

We are now ready to present and prove the most important theorem about when
it is possible to find a basis that diagonalizes a special class of operators. This
is the spectral theorem and it states that a self-adjoint linear operator on a finite-
dimensional inner product space is diagonalizable with respect to an orthonormal
basis. There are several reasons for why this particular result is important. Firstly,
it forms the foundation for all of our other results for linear maps between inner
product spaces, including isometries, skew-adjoint maps, and general linear maps
between inner product spaces. Secondly, it is the one result of its type that has a truly
satisfying generalization to infinite-dimensional spaces. In the infinite-dimensional
setting, it becomes a cornerstone for several developments in analysis, functional
analysis, partial differential equations, representation theory, and much more.

First, we revisit some material from Sect. 2.5. Our general goal for linear
operatorsL W V ! V is to find a basis such that the matrix representation forL is as
simple as possible. Since the simplest matrices are the diagonal matrices, one might
well ask if it is always possible to find a basis x1; : : : ; xm that diagonalizes L; i.e.,
L.x1/ D �1x1; : : : ; L .xm/ D �mxm? The central idea behind finding such a basis
is quite simple and reappears in several proofs in this chapter. Given some special
information about the linear operator L on V , we show that L� has an eigenvector
x ¤ 0 and that the orthogonal complement to x in V is L-invariant. The existence
of this invariant subspace of V then indicates that the procedure for establishing
a particular result about exhibiting a nice matrix representation for L is a simple
induction on the dimension of the vector space.

Example 4.3.1. A rotation by 90ı in R
2 does not have a basis of eigenvectors.

However, if we interpret it as a complex map on C, it is just multiplication by i
and therefore already diagonalized. We could also view the 2 � 2 matrix as a map
on C

2: As such, we can also diagonalize it by using x1 D .i; 1/ and x2 D .�i; 1/ so
that x1 is mapped to ix1 and x2 to �ix2:
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Example 4.3.2. A much worse example is the linear map represented by

A D
�

0 1

0 0

�

:

Here x1 D .1; 0/ does have the property that Ax1 D 0; but it is not possible to find
x2 linearly independent from x1 so that Ax2 D �x2: In case � D 0, we would just
have A D 0 which is not true. So � ¤ 0; but then x2 2 im .A/ D span fx1g. Note
that using complex scalars cannot alleviate this situation due to the very general
nature of the argument.

At this point, it should be more or less clear that the first goal is to show that
self-adjoint operators have eigenvalues. Recall that in Sects. 2.3 and also 2.7, we
constructed a characteristic polynomial for L with the property that any eigenvalue
must be a root of this polynomial. This is fine if we work with complex scalars as we
can then appeal to the Fundamental theorem of algebra 2.1.8 in order to find roots.
But this is less satisfactory if we use real scalars. Although it is in fact not hard to
deal with by passing to suitable matrix representations (see Exercise 9 in Sect. 4.1),
Lagrange gave a very elegant proof (and most likely the first proof) that self-adjoint
operators have real eigenvalues using Lagrange multipliers. We shall give a similar
proof here that does not require quite as much knowledge of multivariable calculus.

Theorem 4.3.3. (Existence of Eigenvalues for Self-Adjoint Operators) Let L W
V ! V be self-adjoint on a finite-dimensional inner product space. Then, L has a
real eigenvalue.

Proof. We use the compact set S D fx 2 V W .xjx/ D 1g and the real-valued
function x ! .Lxjx/ on S: Select x1 2 S so that

.Lxjx/ � .Lx1jx1/

for all x 2 S: If we define �1 D .Lx1jx1/ ; then this implies that

.Lxjx/ � �1; for all x 2 S:

Consequently,

.Lxjx/ � �1 .xjx/ D �1 kxk2 ; for all x 2 V:

This shows that the real-valued function

f .x/ D .Lxjx/
kxk2

has a maximum at x D x1 and that the value there is �1:
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This implies that for any y 2 V; the function � .t/ D f .x1 C ty/ has a
maximum at t D 0 and hence the derivative at t D 0 is zero. To be able to use
this, we need to compute the derivative of

� .t/ D .L .x1 C ty/ jx1 C ty/
kx1 C tyk2

at t D 0: We start by computing the derivative of the numerator at t D 0 using the
definition of a derivative

lim
h!0

.L .x1 C hy/ jx1 C hy/ � .L .x1/ jx1/
h

D lim
h!0

.L .hy/ jx1/C .L .x1/ jhy/C .L .hy/ jhy/
h

D lim
h!0

.hyjL.x1//C .L .x1/ jhy/C .L .hy/ jhy/
h

D .yjL.x1//C .L .x1/ jy/C lim
h!0

.L .y/ jhy/

D 2Re .L .x1/ jy/ :

The derivative of the denominator is computed the same way simply observing that
we can let L D 1V : The derivative of the quotient at t D 0 can now be calculated
using that kx1k D 1, �1 D .Lx1jx1/, and the fact that �1 2 R

�0 .0/ D 2Re .L .x1/ jy/ kx1k2 � 2Re .x1jy/ .L .x1/ jx1/
kx1k4

D 2Re .L .x1/ jy/ � 2Re .x1jy/ �1
D 2Re .L .x1/ � �1x1jy/ :

Since �0 .0/ D 0 for any choice of y, we note that by using y D L.x1/ � �1x1, we
obtain

0 D �0 .0/ D 2 kL.x1/ � �1x1k2 :
This shows that �1 and x1 form an eigenvalue/vector pair. ut
We can now prove.

Theorem 4.3.4. (The Spectral Theorem) LetL W V ! V be a self-adjoint operator
on a finite-dimensional inner product space. Then, there exists an orthonormal basis
e1; : : : ; en of eigenvectors, i.e., L.e1/ D �1e1; : : : ; L .en/ D �nen: Moreover, all
eigenvalues �1; : : : ; �n are real.

Proof. We just proved that we can find an eigenvalue/vector pair L.e1/ D �1e1:

Recall that �1 was real and we can, if necessary, multiply e1 by a suitable scalar to
make it a unit vector.
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Next, we use again that L is self-adjoint to see that L leaves the orthogonal
complement to e1 invariant (see also Proposition 4.1.7), i.e., L.M/ � M; where
M D fx 2 V W .xje1/ D 0g : To show this, let x 2 M and calculate

.L .x/ je1/ D
�

xjL� .e1/
�

D .xjL.e1//
D .xj�1e1/
D N�1 .xje1/
D 0:

Now, we have a new operator L W M ! M on a space of dimension dimM D
dimV �1:We note that this operator is also self-adjoint. Thus, we can use induction
on dimV to prove the theorem. Alternatively, we can extract an eigenvalue/vector
pair L.e2/ D �2e2, where e2 2 M is a unit vector and then pass down to the
orthogonal complement of e2 insideM: This procedure will end in dimV steps and
will also generate an orthonormal basis of eigenvectors as the vectors are chosen
successively to be orthogonal to each other. ut
In terms of matrix representations (see Sects. 1.7 and 3.5), we have proven the
following:

Corollary 4.3.5. LetL W V ! V be a self-adjoint operator on a finite-dimensional
inner product space. Then, there exists an orthonormal basis e1; : : : ; en of eigenvec-
tors and a real n � n diagonal matrix D such that

L D 


e1 � � � en
�

D



e1 � � � en
��

D 


e1 � � � en
�

2

6

4

�1 � � � 0
:::
: : :

:::

0 � � � �n

3

7

5




e1 � � � en
��
:

The same eigenvalue can apparently occur several times, just think of the operator
1V : Recall that the geometric multiplicity of an eigenvalue is dim .ker .L � �1V // :
This is clearly the same as the number of times it occurs in the above diagonal form
of the operator. Thus, the basis vectors that correspond to � in the diagonalization
yield a basis for ker .L � �1V / : With this in mind, we can rephrase the spectral
theorem. In the form stated below, it is also known as the spectral resolution of
L with respect to 1V as both of these operators are resolved according to the
eigenspaces for L.

Theorem 4.3.6. (The Spectral Resolution of Self-Adjoint Operators) Let L W V !
V be a self-adjoint operator on a finite-dimensional inner product space and
�1; : : : ; �k the distinct eigenvalues for L: Then,

1V D projker.L��11V / C � � � C projker.L��k1V /
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and

L D �1projker.L��11V / C � � � C �kprojker.L��k1V /:

Proof. The proof relies on showing that eigenspaces are mutually orthogonal to
each other. This actually follows from our constructions in the proof of the spectral
theorem. Nevertheless, it is desirable to have a direct proof of this. Let L.x/ D �x
and L.y/ D �y; then

� .xjy/ D .L .x/ jy/
D .xjL.y//
D .xj�y/
D � .xjy/ since � is real.

If � ¤ �; then we get

.� � �/ .xjy/ D 0;
which implies .xjy/ D 0:

With this in mind, we can now see that if xi 2 ker .L� �i1V / ; then

projker.L��j 1V / .xi / D
�

xj if i D j
0 if i ¤ j

as xi is perpendicular to ker
�

L � �j 1V
�

in case i ¤ j: Since we can write x D
x1 C � � � C xk; where xi 2 ker .L � �i1V /, we have

projker.L��i 1V / .x/ D xi :
This shows that

x D projker.L��11V / .x/C � � � C projker.L��k1V / .x/

as well as

L.x/ D ��1projker.L��11V / C � � � C �kprojker.L��k1V /
�

.x/ : ut

The fact that we can diagonalize self-adjoint operators has an immediate con-
sequence for complex skew-adjoint operators as they become self-adjoint after
multiplying them by i D p�1: Thus, we have

Corollary 4.3.7 (The Spectral Theorem for Complex Skew-Adjoint Operators).
Let L W V ! V be a skew-adjoint linear operator on a complex finite-dimensional
inner product space. Then, we can find an orthonormal basis such that L.e1/ D
i�1e1; : : : ; L .en/ D i�nen; where �1; : : : ; �n 2 R:

It is worth pondering this statement. Apparently, we have not said anything about
skew-adjoint real linear operators. The statement, however, does cover both real and
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complex matrices as long as we view them as maps on C
n. It just so happens that

the corresponding diagonal matrix has purely imaginary entries, unless they are 0;
and hence is forced to be complex.

Before doing some examples, it is worthwhile trying to find a way of remember-
ing the formula

L D 
 e1 � � � en
�

D



e1 � � � en
��
:

If we solve it for D instead, it reads

D D 
 e1 � � � en
��
L



e1 � � � en
�

:

This is quite natural as

L



e1 � � � en
� D 
�1e1 � � � �nen

�

and then observing that




e1 � � � en
�� 


�1e1 � � � �nen
�

is the matrix whose ij entry is
�

�j ej jei
�

as the rows



e1 � � � en
��

correspond to the

columns in



e1 � � � en
�

: This gives a quick check for whether we have the change
of basis matrices in the right places.

Example 4.3.8. Let

A D
�

0 �i
i 0

�

:

Then, A is both self-adjoint and unitary. This shows that ˙1 are the only
possible eigenvalues. We can easily find nontrivial solutions to both equations
.A� 1C2 / .x/ D 0 by observing that

.A� 1C2/
��i
1

�

D
��1 �i
i �1

� ��i
1

�

D 0

.AC 1C2 /
�

1

i

�

D
�

1 �i
i 1

� �

i
1

�

D 0

The vectors

z1 D
��i
1

�

; z2 D
�

i
1

�

form an orthogonal set that we can normalize to an orthonormal basis of
eigenvectors

x1 D
" �ip

2
1p
2

#

; x2 D
"

ip
2
1p
2

#

:
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This means that

A D 
x1 x2
�

�

1 0

0 �1
�




x1 x2
��1

or more concretely that

�

0 �i
i 0

�

D
" �ip

2

ip
2

1p
2

1p
2

#
�

1 0

0 �1
�
"

ip
2

1p
2�ip

2

1p
2

#

:

Example 4.3.9. Let

B D
�

0 �1
1 0

�

:

The corresponding self-adjoint matrix is
�

0 �i
i 0

�

:

Using the identity

�

0 �i
i 0

�

D
" �ip

2

ip
2

1p
2

1p
2

#
�

1 0

0 �1
�
"

ip
2

1p
2�ip

2

1p
2

#

and then multiplying by �i to get back to
�

0 �1
1 0

�

;

we obtain
�

0 �1
1 0

�

D
" �ip

2

ip
2

1p
2

1p
2

#
��i 0
0 i

�
"

ip
2

1p
2�ip

2

1p
2

#

:

It is often more convenient to find the eigenvalues using the characteristic polyno-
mial; to see why this is, let us consider some more complicated examples.

Example 4.3.10. We consider the real symmetric operator

A D
�

˛ ˇ

ˇ ˛

�

; ˛; ˇ 2 R:

This time, one can more or less readily see that

x1 D
�

1

1

�

; x2 D
�

1

�1
�

are eigenvectors and that the corresponding eigenvalues are .˛ ˙ ˇ/ : But if one did
not guess that, then computing the characteristic polynomial is clearly the way to go.
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Even with relatively simple examples such as

A D
�

1 1

1 2

�

things quickly get out of hand. Clearly, the method of using Gauss elimination on
the system A � �1Cn and then finding conditions on � that ensure that we have
nontrivial solutions is more useful in finding all eigenvalues/vectors.

Example 4.3.11. Let us try this with

A D
�

1 1

1 2

�

:

Thus, we consider
�

1 � � 1

1 2 � �
0

0

�

�

1 2 � �
1 � � 1

0

0

�

�

1 .2 � �/
0 � .1 � �/ .2 � �/C 1

0

0

�

Thus, there is a nontrivial solution precisely when

� .1 � �/ .2 � �/C 1 D �1C 3� � �2 D 0:
The roots of this polynomial are �1;2 D 3

2
˙ 1

2

p
5. The corresponding eigenvectors

are found by inserting the root and then finding a nontrivial solution. Thus, we are
trying to solve

�

1 .2 � �1;2/
0 0

0

0

�

which means that

x1;2 D
�

�1;2 � 2
1

�

:

We should normalize this to get a unit vector

e1;2 D 1
q

5 � 4�1;2 C .�1;2/2
�

�1;2 � 2
1

�

D 1
r
�

5
2
� 1

2

p
5
	

��1˙p5
1

�
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Exercises

1. Let L be self- or skew-adjoint on a complex finite-dimensional inner product
space.

(a) Show that L D K2 for some K W V ! V:

(b) Show by example that K need not be self-adjoint if L is self-adjoint.
(c) Show by example that K need not be skew-adjoint if L is skew-adjoint.

2. Diagonalize the matrix that is zero everywhere except for 1s on the anti-
diagonal.

2

6

6

6

6

4

0 � � � 0 1
::: 1 0

0
:::

1 0 � � � 0

3

7

7

7

7

5

3. Diagonalize the real matrix that has ˛s on the diagonal and ˇs everywhere else.

2

6

6

6

4

˛ ˇ � � � ˇ
ˇ ˛ ˇ
:::

: : :
:::

ˇ ˇ � � � ˛

3

7

7

7

5

4. Let K;L W V ! V be self-adjoint operators on a finite-dimensional vector
space. IfKL D LK; then show that there is an orthonormal basis diagonalizing
both K and L:

5. Let L W V ! V be self-adjoint. If there is a unit vector x 2 V such that

kL.x/ � �xk � ";

then L has an eigenvalue � so that j� � �j � ":
6. Let L W V ! V be self-adjoint on a finite-dimensional inner product space.

Show that either kLk or �kLk are eigenvalues for L:
7. If an operator L W V ! V on a finite-dimensional inner product space satisfies

one of the following four conditions, then it is said to be positive. Show that
these conditions are equivalent:

(a) L is self-adjoint with positive eigenvalues.
(b) L is self-adjoint and .L .x/ jx/ > 0 for all x 2 V � f0g :
(c) L D K� ı K for an injective operator K W V ! W; where W is also an

inner product space.
(d) L D K ıK for an invertible self-adjoint operatorK W V ! V:
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8. Let P;Q be two positive operators on a finite-dimensional inner product space.
If P2 D Q2; then show that P D Q:

9. Let P be a nonnegative operator on a finite-dimensional inner product space,
i.e., self-adjoint with nonnegative eigenvalues.

(a) Show that trP � 0:
(b) Show that P D 0 if and only if trP D 0:

10. Let L W V ! V be a linear operator on a finite-dimensional inner product
space.

(a) If L is self-adjoint, show that L2 is self-adjoint and has nonnegative
eigenvalues.

(b) If L is skew-adjoint, show that L2 is self-adjoint and has nonpositive
eigenvalues.

11. Consider the Killing form on Hom .V; V / ; where V is a finite-dimensional
vector space of dimension > 1, defined by

K .L;K/ D trLtrK � tr .LK/ :

(a) Show that K .L;K/ D K .K;L/ :
(b) Show that K ! K .L;K/ is linear.
(c) Assume in addition that V is an inner product space. Show that K .L;L/>0

if L is skew-adjoint and L ¤ 0:
(d) Show that K .L;L/ < 0 if L is self-adjoint and L ¤ 0:
(e) Show that K is nondegenerate, i.e., if L ¤ 0; then we can find K ¤ 0;

so that K .L;K/ ¤ 0: Hint: Let K D 1
2
.LC L�/ or K D 1

2
.L �L�/

depending on the value of tr
�

1
2
.LC L�/ 1

2
.L� L�/

�

.

4.4 Normal Operators

The concept of a normal operator is somewhat more general than the previous
special types of operators we have encountered. The definition is quite simple and
will be motivated below.

Definition 4.4.1. We say that a linear operator L W V ! V on a finite-dimensional
inner product space is normal if LL� D L�L:

With this definition, it is clear that all self-adjoint, skew-adjoint, and isometric
operators are normal.

First, let us show that any operator that is diagonalizable with respect to
an orthonormal basis must be normal. Suppose that L is diagonalized in the
orthonormal basis e1; : : : ; en and that D is the diagonal matrix representation in
this basis, then
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L D 


e1 � � � en
�

D



e1 � � � en
��

D 


e1 � � � en
�

2

6

4

�1 � � � 0
:::
: : :

:::

0 � � � �n

3

7

5




e1 � � � en
��
;

and

L� D 


e1 � � � en
�

D� 
 e1 � � � en
��

D 


e1 � � � en
�

2

6

4

N�1 � � � 0
:::
: : :

:::

0 � � � N�n

3

7

5




e1 � � � en
��
:

Thus,

LL� D 
 e1 � � � en
�

2

6

6

4

�1 � � � 0
:::
: : :

:::

0 � � � �n

3

7

7

5

2

6

4

N�1 � � � 0
:::
: : :

:::

0 � � � N�n

3

7

5




e1 � � � en
��

D 
 e1 � � � en
�

2

6

4

j�1j2 � � � 0
:::

: : :
:::

0 � � � j�nj2

3

7

5




e1 � � � en
��

D L�L

since DD� D D�D:
For real operators, the spectral theorem tells us that they must be self-adjoint

in order to be diagonalizable with respect to an orthonormal basis. For complex
operators, things are a little different as also skew-adjoint operators are diagonal-
izable with respect to an orthonormal basis. Below we shall generalize the spectral
theorem to normal operators and show that in the complex case, these are precisely
the operators that can be diagonalized with respect to an orthonormal basis. Another
very simple normal operator that is not necessarily of those three types is the
homothety �1V for all � 2 C: The canonical form for real normal operators is
somewhat more complicated and will be studied in Sect. 4.6.

Example 4.4.2. We note that
�

1 1

0 2

�
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is not normal as

�

1 1

0 2

� �

1 0

1 2

�

D
�

2 2

2 4

�

;

�

1 0

1 2

� �

1 1

0 2

�

D
�

1 1

1 5

�

:

Nevertheless, it is diagonalizable with respect to the basis

x1 D
�

1

0

�

; x2 D
�

1

1

�

as
�

1 1

0 2

� �

1

0

�

D
�

1

0

�

;

�

1 1

0 2

� �

1

1

�

D
�

2

2

�

D 2
�

1

1

�

:

While we can normalize x2 to be a unit vector, there is nothing we can do about x1
and x2 not being perpendicular.

Example 4.4.3. Let

A D
�

˛ �

ˇ ı

�

W C2 ! C
2:

Then,

AA� D
�

˛ �

ˇ ı

� � N̨ Ň
N� Nı

�

D
� j˛j2 C j� j2 ˛ Ň C � Nı
N̨ˇ C N�ı jˇj2 C jıj2

�

A�A D
� N̨ Ň
N� Nı

� �

˛ �

ˇ ı

�

D
� j˛j2 C jˇj2 N̨� C Ňı
˛ N� C ˇ Nı j� j2 C jıj2

�

:

So the conditions for A to be normal are

jˇj2 D j� j2 ;
˛ N� C ˇ Nı D N̨ˇ C N�ı:

The last equation is easier to remember if we note that it means that the columns of
A must have the same inner product as the columns of A�.

Proposition 4.4.4. (Characterization of Normal Operators) Let L W V ! V be an
operator on a finite-dimensional inner product space. Then, the following conditions
are equivalent:
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(1) LL� D L�L:
(2) kL.x/k D kL� .x/k for all x 2 V:
(3) AB D BA; where A D 1

2
.LC L�/ and B D 1

2
.L �L�/.

Proof. .1/, .2/ W Note that for all x 2 V , we have

kL.x/k D kL� .x/k, kL.x/k2 D kL� .x/k2
, .L .x/ jL.x// D .L� .x/ jL� .x//
, .xjL�L.x// D .xjLL� .x//
, .xj .L�L � LL�/ .x// D 0
, L�L � LL� D 0

The last implication is a consequence of the fact thatL�L�LL� is self-adjoint (see
Proposition 4.2.1).
.3/, .1/ WWe note that

AB D 1

2

�

LC L�� 1
2

�

L � L��

D 1

4

�

LC L�� �L �L��

D 1

4

�

L2 � �L��2 C L�L �LL�
	

;

BA D 1

4

�

L �L�� �LC L��

D 1

4

�

L2 � �L��2 � L�LC LL�	 :

So AB D BA if and only if L�L � LL� D �L�L C LL� which is the same as
saying that LL� D L�L: ut
We also need a general result about invariant subspaces.

Lemma 4.4.5. Let L W V ! V be a linear operator on a finite-dimensional inner
product space. If M � V is an L- and L�-invariant subspace, then M? is also L-
and L�-invariant. In particular,

.LjM? /
� D L�jM? :

Proof. Let x 2 M and y 2 M?: We have to show that

.xjL.y// D 0;
�

xjL� .y/
� D 0:

For the first identity, use that

.xjL.y// D �L� .x/ jy� D 0
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as L� .x/ 2M: Similarly, for the second use that

�

xjL� .y/
� D .L .x/ jy/ D 0

as L.x/ 2 M: ut
We are now ready to prove the spectral theorem for normal operators.

Theorem 4.4.6 (The Spectral Theorem for Normal Operators). LetL W V ! V

be a normal operator on a finite-dimensional complex inner product space;
then, there is an orthonormal basis e1; : : : ; en of eigenvectors, i.e., L.e1/ D
�1e1; : : : ; L .en/ D �nen:
Proof. As with the spectral theorem (see Theorem 4.3.4), the proof depends on
showing that we can find an eigenvalue and that the orthogonal complement to an
eigenvector is invariant.

Rather than appealing to the Fundamental Theorem of Algebra 2.1.8 in order to
find an eigenvalue for L, we shall use what we know about self-adjoint operators.
This has the advantage of also yielding a proof that works in the real case (see
Sect. 4.6). First, decompose L D AC iC where A D 1

2
.LC L�/ and C D 1

i
B D

1
2i
.L� L�/ are both self-adjoint (compare with Proposition 4.4.4). Then, use

Theorem 4.3.3 to find ˛ 2 R such that ker .A � ˛1V / ¤ f0g. If x 2 ker .A� ˛1V / ;
then

.A� ˛1V / .C .x// D AC .x/ � ˛C .x/
D CA .x/ � C .˛x/
D C ..A� ˛1V / .x//
D 0:

Thus, ker .A� ˛1V / is a C -invariant subspace. Using that C and hence also its
restriction to ker .A� ˛1V / is self-adjoint, we can find x 2 ker .A� ˛1V / so that
C .x/ D ˇx; with ˇ 2 R (see Theorem 4.3.3). This means that

L.x/ D A .x/C iC .x/
D ˛x C iˇx

D .˛ C iˇ/ x:

Hence, we have found an eigenvalue ˛C iˇ for L with a corresponding eigenvector
x. It follows from Proposition 3.5.2 that

L� .x/ D A .x/ � iC .x/
D .˛ � iˇ/ x:
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Thus, span fxg is both L- and L�-invariant. Lemma 4.4.5 then shows that M D
.span fxg/? is also L- and L�-invariant. Hence, .LjM/� D L�jM showing that
LjM WM !M is also normal. We can then use induction as in the spectral theorem
to finish the proof. ut
As an immediate consequence, we get a result for unitary operators.

Theorem 4.4.7 (The Spectral Theorem for Unitary Operators). Let L W V !
V be unitary; then, there is an orthonormal basis e1; : : : ; en such that L.e1/ D
ei	1e1; : : : ; L .en/ D ei	nen; where 	1; : : : ; 	n 2 R:

We also have the resolution version of the spectral theorem.

Theorem 4.4.8 (The Spectral Resolution of Normal Operators). Let L W V !
V be a normal operator on a complex finite-dimensional inner product space and
�1; : : : ; �k the distinct eigenvalues for L: Then,

1V D projker.L��11V / C � � � C projker.L��k1V /
and

L D �1projker.L��11V / C � � � C �kprojker.L��k1V /:

Let us see what happens in some examples.

Example 4.4.9. Let

L D
�

˛ ˇ

�ˇ ˛
�

; ˛; ˇ 2 RI

then L is normal. When ˛ D 0, it is skew-adjoint; when ˇ D 0, it is self-adjoint;
and when ˛2 C ˇ2 D 1, it is an orthogonal transformation. The decomposition
L D AC iC looks like

�

˛ ˇ

�ˇ ˛
�

D
�

˛ 0

0 ˛

�

C i

�

0 �iˇ
iˇ 0

�

:

Here
�

˛ 0

0 ˛

�

has ˛ as an eigenvalue and
�

0 �iˇ
iˇ 0

�

has˙ˇ as eigenvalues. Thus, L has eigenvalues .˛ ˙ iˇ/ :

Example 4.4.10. The matrix
2

4

0 1 0

�1 0 0
0 0 1

3

5



290 4 Linear Operators on Inner Product Spaces

is normal and has 1 as an eigenvalue. We are then reduced to looking at
�

0 1

�1 0
�

which has˙i as eigenvalues.

Exercises

1. ConsiderLA .X/ D AX andRA .X/ D XA as linear operators on Matn�n .C/ :
What conditions do you need on A in order for these maps to be normal (see
also Exercise 3 in Sect. 3.5)?

2. Assume that L W V ! V is normal and that p 2 F Œt � : Show that p .L/ is also
normal.

3. Assume that L W V ! V is normal. Without using the spectral theorem, show:

(a) ker .L/ D ker .L�/ :
(b) ker .L � �1V / D ker

�

L� � N�1V
�

.
(c) im .L/ D im .L�/ :
(d) .ker .L//? D im .L/.

4. Assume that L W V ! V is normal. Without using the spectral theorem, show:

(a) ker .L/ D ker
�

Lk
�

for any k � 1: Hint: Use the self-adjoint operator
K D L�L:

(b) im .L/ D im
�

Lk
�

for any k � 1:
(c) ker .L � �1V / D ker

�

.L � �1V /k
	

for any k � 1:
(d) Show that the minimal polynomial of L has no multiple roots.

5. (Characterization of Normal Operators) LetL W V ! V be a linear operator on
a finite-dimensional inner product space. Show that L is normal if and only if
.L ıEjL ıE/ D .L� ıEjL� ıE/ for all orthogonal projectionsE W V ! V:

Hint: Use the formula

.L1jL2/ D
n
X

iD1
.L1 .ei / jL2 .ei //

from Exercise 4 in Sect. 3.5 for suitable choices of orthonormal bases e1; : : : ; en
for V:

6. (Reducibility of Normal Operators) Let L W V ! V be an operator on a
finite-dimensional inner product space. Assume that M � V is an L-invariant
subspace and let E W V ! V be the orthogonal projection ontoM:
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(a) Justify all of the steps in the calculation:

�

L� ıEjL� ıE� D �

E? ı L� ıEjE? ı L� ıE�C �E ı L� ıEjE ı L� ıE�

D �

E? ı L� ıEjE? ı L� ıE�C .E ı L ıEjE ı L ıE/
D �

E? ı L� ıEjE? ı L� ıE�C .L ıEjL ıE/ :

Hint: Use the result that E� D E from Sect. 3.6 and that L.M/ � M

implies E ı L ıE D L ıE and Exercise 4 in Sect. 3.5 .
(b) IfL is normal, use the previous exercise to conclude thatM isL�-invariant

and M? is L-invariant, i.e., normal operators are completely reducible.

7. (Characterization of Normal Operators) Let L W V ! V be a linear map on a
finite-dimensional inner product space. Assume that L has the property that all
L-invariant subspaces are also L�-invariant.

(a) Show that L is completely reducible (see Proposition 4.1.7).
(b) Show that the matrix representation with respect to an orthonormal basis is

diagonalizable when viewed as complex matrix.
(c) Show that L is normal.

8. Assume that L W V ! V satisfies L�L D �1V ; for some � 2 C: Show that L
is normal.

9. Show that if a projection is normal, then it is an orthogonal projection.
10. Show that if L W V ! V is normal and p 2 F Œt � ; then p .L/ is also normal.

Moreover, if F D C, then the spectral resolution is given by

p .L/ D p .�1/ projker.L��11V / C � � � C p .�k/ projker.L��k1V /:

11. Let L;K W V ! V be normal. Show by example that neither LC K nor LK
need be normal.

12. Let A be an upper triangular matrix. Show that A is normal if and only if it is
diagonal. Hint: Compute and compare the diagonal entries in AA� and A�A.

13. (Characterization of Normal Operators) Let L W V ! V be an operator on a
finite-dimensional complex inner product space. Show that L is normal if and
only if L� D p .L/ for some polynomial p:

14. (Characterization of Normal Operators) Let L W V ! V be an operator on a
finite-dimensional complex inner product space. Show that L is normal if and
only if L� D LU for some unitary operator U W V ! V:

15. Let L W V ! V be normal on a finite-dimensional complex inner product
space. Show that L D K2 for some normal operatorK:

16. Give the canonical form for the linear operators that are both self-adjoint and
unitary.

17. Give the canonical form for the linear operators that are both skew-adjoint and
unitary.
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4.5 Unitary Equivalence

In the special case where V D F
n, the spectral theorem can be rephrased in terms of

change of basis. Recall from Sect. 1.9 that if we pick a different basis x1; : : : ; xn for
F
n; then the matrix representations for a linear map represented byA in the standard

basis and B in the new basis are related by

A D 
x1 � � � xn
�

B



x1 � � � xn
��1

:

In case x1; : : : ; xn is an orthonormal basis, this simplifies to

A D 
x1 � � � xn
�

B



x1 � � � xn
��
;

where



x1 � � � xn
�

is a unitary or orthogonal operator.

Definition 4.5.1. Two n � n matrices A and B are said to be unitarily equivalent
if A D UBU �, where U 2 Un, i.e., U is an n � n matrix such that U �U D
UU � D 1Fn : In case U 2 On � Un, we also say that the matrices are orthogonally
equivalent.

The results from the previous two sections can now be paraphrased in the following
way.

Corollary 4.5.2. Let A 2 Matn�n .C/

(1) If A is normal, then A is unitarily equivalent to a diagonal matrix.
(2) If A is self-adjoint, then A is unitarily (or orthogonally) equivalent to a real

diagonal matrix.
(3) If A is skew-adjoint, then A is unitarily equivalent to a diagonal matrix whose

entries are purely imaginary.
(4) If A is unitary, then A is unitarily equivalent to a diagonal matrix whose

diagonal entries are unit scalars.

Using the group properties of unitary matrices, one can easily show the next two
results.

Proposition 4.5.3. If A and B are unitarily equivalent, then

(1) A is normal if and only if B is normal.
(2) A is self-adjoint if and only if B is self-adjoint.
(3) A is skew-adjoint if and only if B is skew-adjoint.
(4) A is unitary if and only if B is unitary.

Corollary 4.5.4. Two normal operators are unitarily equivalent if and only if they
have the same eigenvalues (counted with multiplicities).
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Example 4.5.5. The Pauli matrices are defined by

�

0 1

1 0

�

;

�

1 0

0 �1
�

;

�

0 �i
i 0

�

:

They are all self-adjoint and unitary. Moreover, all have eigenvalues˙1, so they are
all unitarily equivalent.

If we multiply the Pauli matrices by i , we get three skew-adjoint and unitary
matrices with eigenvalues˙i W

�

0 1

�1 0
�

;

�

i 0

0 �i
�

;

�

0 i
i 0

�

that are also all unitarily equivalent. The eight matrices

˙
�

1 0

0 1

�

;˙
�

i 0

0 �i
�

;˙
�

0 1

�1 0
�

;˙
�

0 i
i 0

�

form a group that corresponds to the quaternions˙1;˙i;˙j;˙k:
Example 4.5.6. The matrices

�

1 1

0 2

�

;

�

1 0

0 2

�

are not unitarily equivalent as the first is not normal while the second is normal.
Note, however, that both are diagonalizable with the same eigenvalues.

Exercises

1. Decide which of the following matrices are unitarily equivalent:

A D
�

1 1

1 1

�

;

B D
�

2 2

0 0

�

;

C D
�

2 0

0 0

�

;

D D
�

1 �i
i 1

�

:
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2. Decide which of the following matrices are unitarily equivalent:

A D
2

4

i 0 0

0 1 0

0 0 1

3

5 ;

B D
2

4

1 �1 0
i i 1

0 1 1

3

5 ;

C D
2

4

1 0 0

1 i 1

0 0 1

3

5 ;

D D

2

6

4

1C i � 1p
2
� i 1p

2
0

1p
2
C i 1p

2
0 0

0 0 1

3

7

5 :

3. Assume that A;B 2 Matn�n .C/ are unitarily equivalent. Show that if A has a
square root, i.e., A D C2 for some C 2 Matn�n .C/ ; then B also has a square
root.

4. Assume that A;B 2 Matn�n .C/ are unitarily equivalent. Show that if A is
positive, i.e., A is self-adjoint and has positive eigenvalues, then B is also
positive.

5. Assume that A 2 Matn�n .C/ is normal. Show that A is unitarily equivalent to
A� if and only if A is self-adjoint.

4.6 Real Forms

In this section, we are going to explain the canonical forms for normal real linear
operators that are not necessarily diagonalizable.

The idea is to follow the proof of the spectral theorem for complex normal
operators. Thus, we use induction on dimension to obtain the desired canonical
forms. To get the induction going, we decompose L D A C B; where AB D
BA; A D 1

2
.LC L�/ is symmetric and B D 1

2
.L �L�/ is skew-symmetric.

The spectral theorem can be applied to A so that V has an orthonormal basis
of eigenvectors and the eigenspaces for A are B-invariant, since AB D BA: If
A ¤ ˛1V , then we can find a nontrivial orthogonal decomposition of V that reduces
L: In the case whenA D ˛1V , all subspaces of V areA-invariant. Thus, we useB to
find invariant subspaces forL. To find such subspaces, observe thatB2 is symmetric
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and select an eigenvector/value pair B2 .x/ D �x. Since B maps x to B .x/ and
B .x/ to B2 .x/ D �x the subspace span fx;B .x/g is B-invariant. If this subspace
is one dimensional, then x is also an eigenvector for B; otherwise the subspace is
two dimensional. As these subspaces are contained in the eigenspaces forA, we only
need to figure out how B acts on them. In the one-dimensional case, it is spanned
by an eigenvector of B: So the only case left to study is when B W M ! M is
skew-symmetric and M is two dimensional with no nontrivial invariant subspaces.
In this case, we just select a unit vector x 2M and note that B .x/ ¤ 0 as x would
otherwise span a one-dimensional invariant subspace. In addition, for all z 2 V , we
have that z and B .z/ are always perpendicular as

.B .z/ jz/ D � .zjB .z//
D � .B .z/ jz/ :

In particular, x and B .x/ = kB .x/k form an orthonormal basis forM: In this basis,
the matrix representation for B is

h

B .x/ B
�

B.x/

kB.x/k
	 i

D
h

x B.x/

kB.x/k
i
�

0 �

kB .x/k 0
�

as B
�

B.x/

kB.x/k
	

is perpendicular to B .x/ and hence a multiple of x: Finally, we get

that � D �kB .x/k since the matrix has to be skew-symmetric.
To complete the analysis, we use Proposition 4.1.7 to observe that the orthogonal

complement of span fx;B .x/g in ker .A � ˛1V / is also B-invariant. All in all, this
shows that V can be decomposed into one- and/or two-dimensional subspaces that
are invariant under both A and B .

This shows what the canonical form for a real normal operator looks like.

Theorem 4.6.1. (The Canonical Form for Real Normal Operators) Let L W V ! V

be a normal operator on a finite-dimensional real inner product space; then, we can
find an orthonormal basis e1; : : : ; ek; x1; y1; : : : ; xl ; yl where k C 2l D n and

L.ei / D �iei ;
L
�

xj
� D ˛j xj C ˇj yj ;

L
�

yj
� D �ˇj xj C ˛j yj ;

and �i ; ˛j ; ˇj 2 R: Thus, L has the matrix representation
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2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�1 � � � 0 0 0 � � � � � � 0 0
:::
: : :

:::
:::

:::

0 � � � �k 0 0 � � �
0 � � � 0 ˛1 �ˇ1 0 � � � :::

0 � � � 0 ˇ1 ˛1 0 � � �
0 0

: : :
:::

: : : 0 0

0 ˛l �ˇl
0 � � � 0 ˇl ˛l

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

with respect to the basis e1; : : : ; ek; x1; y1; : : : ; xl ; yl :

This yields two corollaries for skew-symmetric and orthogonal operators.

Corollary 4.6.2. (The Canonical Form for Real Skew-Adjoint Operators) Let L W
V ! V be a skew-symmetric operator on a finite-dimensional real inner product
space, then we can find an orthonormal basis e1; : : : ; ek; x1; y1; : : : ; xl ; yl where
k C 2l D n and

L.ei/ D 0;
L
�

xj
� D ˇj yj ;

L
�

yj
� D �ˇj xj ;

and ˇj 2 R: Thus, L has the matrix representation

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 � � � 0 0 0 � � � � � � 0 0
:::
: : :

:::
:::

:::

0 � � � 0 0 0 � � �
0 � � � 0 0 �ˇ1 0 � � � :::

0 � � � 0 ˇ1 0 0 � � �
0 0

: : :
:::

: : : 0 0

0 0 �ˇl
0 � � � 0 ˇl 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

with respect to the basis e1; : : : ; ek; x1; y1; : : : ; xl ; yl :

Corollary 4.6.3. (The Canonical Form for Orthogonal Operators) Let O W V ! V

be an orthogonal operator, then we can find an orthonormal basis e1; : : : ; ek; x1;
y1; : : : ; xl ; yl where k C 2l D n and
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O .ei / D ˙ei ;
O
�

xj
� D cos

�

	j
�

xj C sin
�

	j
�

yj ;

O
�

yj
� D � sin

�

	j
�

xj C cos
�

	j
�

yj ;

and �i ; ˛j ; ˇj 2 R: Thus, L has the matrix representation

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

˙1 � � � 0 0 0 � � � � � � 0 0

:::
: : :

:::
:::

:::

0 � � � ˙1 0 0 � � �
0 � � � 0 cos .	1/ � sin .	1/ 0 � � �

:::

0 � � � 0 sin .	1/ cos .	1/ 0 � � �
0 0

: : :

:::
: : : 0 0

0 cos .	l / � sin .	l /

0 � � � 0 sin .	l / cos .	l /

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

with respect to the basis e1; : : : ; ek; x1; y1; : : : ; xl ; yl :

Proof. We just need to justify the specific form of the eigenvalues. We know that
as a unitary operator, all the eigenvalues look like ei	 : If they are real, they must
therefore be ˙1: Otherwise, we use Euler’s formula ei	 D cos 	 C i sin 	 to get the
desired form since matrices of the form

�

˛ �ˇ
ˇ ˛

�

have eigenvalues ˛ ˙ iˇ by Example 4.4.9. ut
Note that we can artificially group some of the real eigenvalues in the decomposition
of the orthogonal operators by using

�

1 0

0 1

�

D
�

cos 0 � sin 0
sin 0 cos 0

�

;

��1 0

0 �1
�

D
�

cos� � sin�
sin� cos�

�

By paring off as many eigenvectors for˙1 as possible, we obtain
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Corollary 4.6.4. Let O W R2n ! R
2n be an orthogonal operator, then we can find

an orthonormal basis where L has one of the following two types of the matrix
representations:

Type I:
2

6

6

6

6

6

6

6

6

6

6

6

4

cos .	1/ � sin .	1/ 0 � � � 0 0

sin .	1/ cos .	1/ 0 � � � 0 0

0 0
: : :

:::
:::

: : : 0 0

0 0 0 cos .	n/ � sin .	n/

0 0 0 sin .	n/ cos .	n/

3

7

7

7

7

7

7

7

7

7

7

7

5

Type II:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

�1 0 0 0 � � � 0 0

0 1 0 0 � � � 0 0

0 0 cos .	1/ � sin .	1/ 0 � � �
:::

0 0 sin .	1/ cos .	1/ 0 � � �
0 0

: : :

:::
:::

: : : 0 0

0 0 0 cos .	n�1/ � sin .	n�1/
0 0 � � � 0 sin .	n�1/ cos .	n�1/

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Corollary 4.6.5. Let O W R2nC1 ! R
2nC1 be an orthogonal operator, then we

can find an orthonormal basis where L has one of the following two the matrix
representations:

Type I:
2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 0 � � � 0 0

0 cos .	1/ � sin .	1/ 0 � � �
:::

0 sin .	1/ cos .	1/ 0 � � �
0 0 0

: : :

:::
: : : 0 0

0 0 cos .	n/ � sin .	n/

0 � � � 0 sin .	n/ cos .	n/

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5
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Type II:
2

6

6

6

6

6

6

6

6

6

6

6

6

4

�1 0 0 0 � � � 0 0

0 cos .	1/ � sin .	1/ 0 � � �
:::

0 sin .	1/ cos .	1/ 0 � � �
0 0 0

: : :
:::

: : : 0 0

0 0 cos .	n/ � sin .	n/
0 � � � 0 sin .	n/ cos .	n/

3

7

7

7

7

7

7

7

7

7

7

7

7

5

:

Like with unitary equivalence (see Sect. 4.5), we also have the concept of orthogonal
equivalence. One can with the appropriate modifications prove similar results about
when matrices are orthogonally equivalent. The above results apparently give us
the simplest types of matrices that real normal, skew-symmetric, and orthogonal
operators are orthogonally equivalent to.

Note that type I operators have the property that �1 has even multiplicity, while
for type II, �1 has odd multiplicity. In particular, we note that type I is the same
as saying that the determinant is 1 while type II means that the determinant is �1.
The collection of orthogonal transformations of type I is denoted SOn. This set is
a subgroup of On; i.e., if A;B 2 SOn; then AB 2 SOn: This is not obvious given
what we know now, but the proof is quite simple using determinants.

Exercises

1. Explain what the canonical form is for real linear maps that are both orthogonal
and skew-symmetric.

2. Let L W V ! V be orthogonal on a finite-dimensional real inner product
space and assume that dim .ker .LC 1V // is even. Show that L D K2 for some
orthogonalK:

3. Use the canonical forms to show

(a) If U 2 Un; then U D exp .A/ where A is skew-adjoint.
(b) If O 2 On is of type I, then O D exp .A/ where A is skew-symmetric.

4. Let L W V ! V be skew-symmetric on a real inner product space. Show that
L D K2 for some K: Can you solve this using a skew-symmetricK‹

5. Let A 2 On. Show that the following conditions are equivalent:

(a) A has type I.
(b) The product of the real eigenvalues is 1.
(c) The product of all real and complex eigenvalues is 1.
(d) dim .ker .LC 1Rn// is even.
(e) �A .t/ D tn C � � � C ˛1t C .�1/n ; i.e., the constant term is .�1/n :
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6. Assume that A 2 Matn�n .R/ satisfies AO D OA for all O 2 SOn: Show that

(a) If n D 2; then

A D
�

˛ �ˇ
ˇ ˛

�

:

(b) If n � 3; then A D �1Rn :
7. Let L W R3 ! R

3 be skew-symmetric.

(a) Show that there is a unique vector w 2 R
3 such that L.x/ D w � x: w is

known as the Darboux vector for L:
(b) Show that the assignmentL! w gives a linear isomorphism between skew-

symmetric 3 � 3 matrices and vectors in R
3:

(c) Show that if L1 .x/ D w1 � x and L2 .x/ D w2 � x; then the commutator

ŒL1; L2� D L1 ı L2 �L2 ı L1
satisfies

ŒL1; L2� .x/ D .w1 � w2/ � x
Hint: This is equivalent to proving the so-called Jacobi identity:

.x � y/ � zC .z � x/ � y C .y � z/ � x D 0:
(d) Show that

L.x/ D w2 .w1jx/ � w1 .w2jx/
is skew-symmetric and that

.w1 � w2/ � x D w2 .w1jx/� w1 .w2jx/ :
(e) Conclude that all skew-symmetric L W R3 ! R

3 are of the form

L.x/ D w2 .w1jx/ � w1 .w2jx/ :
8. For u1; u2 2 R

n:

(a) Show that

L.x/ D .u1 ^ u2/ .x/ D .u1jx/ u2 � .u2jx/ u1

defines a skew-symmetric operator.
(b) Show that

u1 ^ u2 D �u2 ^ u1

.˛u1 C ˇv1/ ^ u2 D ˛ .u1 ^ u2/C ˇ .v1 ^ u2/

(c) Show Bianchi’s identity: For all x; y; z 2 R
n, we have

.x ^ y/ .z/C .z ^ x/ .y/C .y ^ z/ .x/ D 0:
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(d) When n � 4, show that not all skew-symmetricL W Rn ! R
n are of the form

L.x/ D u1 ^ u2: Hint: Let u1; : : : ; u4 be linearly independent and consider

L D u1 ^ u2 C u3 ^ u4:

(e) Show that the skew-symmetric operators ei ^ ej ; where i < j; form a basis
for the space of skew-symmetric operators.

4.7 Orthogonal Transformations*

In this section, we are going to try to get a better grasp on orthogonal
transformations.

We start by specializing the above canonical forms for orthogonal transforma-
tions to the two situations where things can be visualized, namely, in dimensions
two and three.

Corollary 4.7.1. Any orthogonal operator O W R2 ! R
2 has one of the following

two forms in the standard basis:
Either it is a rotation by 	 and is of the form

Type I:
�

cos .	/ � sin .	/
sin .	/ cos .	/

�

;

or it is a reflection in the line spanned by .cos˛; sin˛/ and has the form

Type II:
�

cos .2˛/ sin .2˛/
sin .2˛/ � cos .2˛/

�

:

Moreover,O is a rotation if �O .t/ D t2� .2 cos 	/ tC1, and 	 is given by cos 	 D
1
2
trO; while O is a reflection if trO D 0 and �O .t/ D t2 � 1:

Proof. We know that there is an orthonormal basis x1; x2 that putsO into one of the
two forms

�

cos .	/ � sin .	/
sin .	/ cos .	/

�

;

�

1 0

0 �1
�

:

We can write

x1 D
�

cos .˛/
sin .˛/

�

; x2 D ˙
�� sin .˛/

cos .˛/

�

:
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The sign on x2 can have an effect on the matrix representation as we shall see. In
the case of the rotation, it means a sign change in the angle; in the reflection case, it
does not change the form at all.

To find the form of the matrix in the usual basis, we use the change of basis
formula for matrix representations. Before doing this, let us note that the law of
exponents

exp .i .	 C ˛// D exp .i	/ exp .i˛/

tells us that the corresponding real 2 � 2 matrices satisfy

"

cos .˛/ � sin .˛/

sin .˛/ cos .˛/

#"

cos .	/ � sin .	/

sin .	/ cos .	/

#

D
"

cos .˛ C 	/ � sin .˛ C 	/
sin .˛ C 	/ cos .˛ C 	/

#

:

Thus,

O D
�

cos .˛/ � sin .˛/
sin .˛/ cos .˛/

� �

cos .	/ � sin .	/
sin .	/ cos .	/

� �

cos .˛/ sin .˛/
� sin .˛/ cos .˛/

�

D
�

cos .˛/ � sin .˛/
sin .˛/ cos .˛/

� �

cos .	/ � sin .	/
sin .	/ cos .	/

� �

cos .�˛/ � sin .�˛/
sin .�˛/ cos .�˛/

�

D
�

cos .	/ � sin .	/
sin .	/ cos .	/

�

as expected. If x2 is changed to �x2, we have

O D
"

cos .˛/ sin .˛/

sin .˛/ � cos .˛/

#"

cos .	/ � sin .	/

sin .	/ cos .	/

#"

cos .˛/ sin .˛/

sin .˛/ � cos .˛/

#

D
"

cos .˛/ sin .˛/

sin .˛/ � cos .˛/

#"

cos .�	/ sin .�	/
� sin .�	/ cos .�	/

#"

cos .˛/ sin .˛/

sin .˛/ � cos .˛/

#

D
"

cos .˛ � 	/ sin .˛ � 	/
sin .˛ � 	/ � cos .˛ � 	/

#"

cos .�˛/ � sin .�˛/
� sin .�˛/ � cos .�˛/

#

D
"

cos .�	/ � sin .�	/
sin .�	/ cos .�	/

#

:
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Finally, the reflection has the form

O D
�

cos .˛/ � sin .˛/
sin .˛/ cos .˛/

� �

1 0

0 �1
� �

cos .˛/ sin .˛/
� sin .˛/ cos .˛/

�

D
�

cos .˛/ sin .˛/
sin .˛/ � cos .˛/

� �

cos .˛/ sin .˛/
� sin .˛/ cos .˛/

�

D
�

cos .2˛/ sin .2˛/
sin .2˛/ � cos .2˛/

�

: ut
Note that there is clearly an ambiguity in what it should mean to be a rotation by 	
as either of the two matrices

�

cos .˙	/ � sin .˙	/
sin .˙	/ cos .˙	/

�

describe such a rotation. What is more, the same orthogonal transformation can have
different canonical forms depending on what basis we choose as we just saw in the
proof of the above theorem. Unfortunately, it is not possible to sort this out without
being very careful about the choice of basis, specifically one needs the additional
concept of orientation which in turn uses determinants.

We now turn to the three-dimensional situation.

Corollary 4.7.2. Any orthogonal operatorO W R3 ! R
3 is either

Type I: It is a rotation in the plane that is perpendicular to the line representing
theC1 eigenspace.

Type II: It is a rotation in the plane that is perpendicular to the �1 eigenspace
followed by a reflection in that plane, corresponding to multiplying by �1
in the �1 eigenspace.

As in the two-dimensional situation, we can also discover which case we are in by
calculating the characteristic polynomial. For a rotationO in an axis, we have

�O .t/ D .t � 1/
�

t2 � .2 cos 	/ t C 1�

D t3 � .1C 2 cos 	/ t2 C .1C 2 cos 	/ t � 1
D t3 � .trO/ t2 C .trO/ t � 1;

while the case involving a reflection

�O .t/ D .t C 1/
�

t2 � .2 cos 	/ t C 1�

D t3 � .�1C 2 cos 	/ t2 � .�1C 2 cos 	/ t C 1
D t3 � .trO/ t2 � .trO/ t C 1:
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Example 4.7.3. Imagine a cube that is centered at the origin and so that the
edges and sides are parallel to coordinate axes and planes. We note that all of
the orthogonal transformations that either reflect in a coordinate plane or form
90ı; 180ı; and 270ı rotations around the coordinate axes are symmetries of the
cube. Thus, the cube is mapped to itself via each of these isometries. In fact, the
collection of all isometries that preserve the cube in this fashion is a (finite) group.
It is evidently a subgroup of O3: There are more symmetries than those already
mentioned, namely, if we pick two antipodal vertices, then we can rotate the cube
into itself by 120ı and 240ı rotations around the line going through these two points.
What is even more surprising perhaps is that these rotations can be obtained by
composing the already mentioned 90ı rotations. To see this, let

Ox D
2

4

1 0 0

0 0 �1
0 1 0

3

5 ; Oy D
2

4

0 0 �1
0 1 0

1 0 0

3

5

be 90ı rotations around the x- and y-axes, respectively. Then,

OxOy D

2

6

4

1 0 0

0 0 �1
0 1 0

3

7

5

2

6

4

0 0 �1
0 1 0

1 0 0

3

7

5 D

2

6

4

0 0 �1
�1 0 0

0 1 0

3

7

5 ;

OyOx D

2

6

4

0 0 �1
0 1 0

1 0 0

3

7

5

2

6

4

1 0 0

0 0 �1
0 1 0

3

7

5 D

2

6

4

0 �1 0

0 0 �1
1 0 0

3

7

5 ;

so we see that these two rotations do not commute. We now compute the (complex)
eigenvalues via the characteristic polynomials in order to figure out what these new
isometries look like. Since both matrices have zero trace, they have characteristic
polynomial

� .t/ D t3 � 1:
Thus, they describe rotations where

tr .O/ D 1C 2 cos .	/ D 0 or

	 D ˙2�
3

around the axis that corresponds to the 1 eigenvector. For OxOy , we have that
.1;�1;�1/ is an eigenvector for 1; while for OyOx , we have .�1; 1;�1/. These
two eigenvectors describe the directions for two different diagonals in the cube.
Completing, say, .1;�1;�1/ to an orthonormal basis for R3; then tells us that
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OxOy D

2

6

4

1p
3

1p
2

1p
6�1p

3

1p
2

�1p
6�1p

3
0 2p

6

3

7

5

2

4

1 0 0

0 cos
�˙ 2�

3

� � sin
�˙ 2�

3

�

0 sin
�˙ 2�

3

�

cos
�˙ 2�

3

�

3

5

2

6

4

1p
3

�1p
3

�1p
3

1p
2

1p
2
0

1p
6

�1p
6

2p
6

3

7

5

D

2

6

4

1p
3

1p
2

1p
6�1p

3

1p
2

�1p
6�1p

3
0 2p

6

3

7

5

2

6

4

1 0 0

0 � 1
2
�

p
3
2

0 ˙
p
3
2
� 1
2

3

7

5

2

6

4

1p
3

�1p
3

�1p
3

1p
2

1p
2
0

1p
6

�1p
6

2p
6

3

7

5

D

2

6

4

1p
3

1p
2

1p
6�1p

3

1p
2

�1p
6�1p

3
0 2p

6

3

7

5

2

6

4

1 0 0

0 � 1
2
�

p
3
2

0
p
3
2
� 1
2

3

7

5

2

6

4

1p
3

�1p
3

�1p
3

1p
2

1p
2
0

1p
6

�1p
6

2p
6

3

7

5 :

The fact that we pick C rather than � depends on our orthonormal basis as we can
see by changing the basis by a sign in the last column:

OxOy D

2

6

4

1p
3

1p
2

�1p
6�1p

3

1p
2

1p
6�1p

3
0 �2p

6

3

7

5

2

6

4

1 0 0

0 � 1
2

p
3
2

0 �
p
3
2
� 1
2

3

7

5

2

6

4

1p
3

�1p
3

�1p
3

1p
2

1p
2
0

�1p
6

1p
6

�2p
6

3

7

5 :

We are now ready to discuss how the two types of orthogonal transformations
interact with each other when multiplied. Let us start with the two-dimensional
situation. One can directly verify that

�

cos 	1 � sin 	1
sin 	1 cos 	1

� �

cos 	2 � sin 	2
sin 	2 cos 	2

�

D
�

cos .	1 C 	2/ � sin .	1 C 	2/
sin .	1 C 	2/ cos .	1 C 	2/

�

;

�

cos 	 � sin 	
sin 	 cos 	

� �

cos˛ sin ˛
sin˛ � cos˛

�

D
�

cos .	 C ˛/ sin .	 C ˛/
sin .	 C ˛/ � cos .	 C ˛/

�

;

�

cos˛ sin ˛
sin ˛ � cos˛

� �

cos 	 � sin 	
sin 	 cos 	

�

D
�

cos .˛ � 	/ sin .˛ � 	/
sin .˛ � 	/ � cos .˛ � 	/

�

;

�

cos˛1 sin ˛1
sin ˛1 � cos˛1

� �

cos˛2 sin ˛2
sin ˛2 � cos˛2

�

D
�

cos .˛1 � ˛2/ � sin .˛1 � ˛2/
sin .˛1 � ˛2/ cos .˛1 � ˛2/

�

:
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Thus, we see that if the transformations are of the same type, their product has type
I, while if they have different type, their product has type II. This is analogous
to multiplying positive and negative numbers. This result actually holds in all
dimensions and has a very simple proof using determinants. Euler was the first
to observe this phenomenon in the three-dimensional case. What we are going to
look into here is the observation that any rotation (type I) in O2 is a product of two
reflections. More specifically, if 	 D ˛1 � ˛2; then the above calculation shows that

�

cos 	 � sin 	
sin 	 cos 	

�

D
�

cos˛1 sin ˛1
sin ˛1 � cos˛1

� �

cos˛2 sin˛2
sin˛2 � cos˛2

�

:

Definition 4.7.4. To pave the way for a higher dimensional analogue of this, we
define A 2 On to be a reflection if it has the canonical form

A D O

2

6

6

6

4

�1 0 0

0 1
: : :

0 1

3

7

7

7

5

O�:

This implies thatBAB� is also a reflection for all B 2 On: To get a better picture of
what A does, we note that the �1 eigenvector gives the reflection in the hyperplane
spanned by the .n � 1/-dimensional C1 eigenspace. If z is a unit eigenvector for
�1; then we can write A in the following way:

A .x/ D Rz .x/ D x � 2 .xjz/ z:

To see why this is true, first note that if x is an eigenvector for C1; then it is
perpendicular to z, and hence,

x � 2 .xjz/ z D x:
In case x D z, we have

z � 2 .zjz/ z D z � 2z

D �z

as desired. We can now prove an interesting and important lemma.

Lemma 4.7.5. (E. Cartan) Let A 2 On: If A has type I, then A is a product of an
even number of reflections, while if A has type II, then it is a product of an odd
number of reflections.

Proof. A very simple alternate proof can be found in the exercises.
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The canonical form for A can be expressed as follows:

A D OI˙R1 � � �RlO�;

whereO is the orthogonal change of basis matrix, eachRi corresponds to a rotation
on a two-dimensional subspace Mi , and

I˙ D

2

6

6

6

4

˙1 0 0

0 1
: : :

0 1

3

7

7

7

5

;

where C is used for type I and � is used for type II. The above two-dimensional
construction shows that each rotation is a product of two reflections on Mi . If
we extend these two-dimensional reflections to be the identity on M?

i ; then they
become reflections on the whole space. Thus, we have

A D OI˙ .A1B1/ � � � .AlBl /O�;

where I˙ is either the identity or a reflection and A1;B1; : : : ; Al ; Bl are all
reflections. Finally,

A D OI˙ .A1B1/ � � � .AlBl /O�

D �

OI˙O�� �OA1O�� �OB1O�� � � � �OAlO�� �OBlO�� :

This proves the claim. ut
Remark 4.7.6. The converse to this lemma is also true, namely, that any even
number of reflection compose to a type I orthogonal transformation, while an odd
number yields one of type II. This proof of this fact is very simple if one uses
determinants.

Exercises

1. Decide the type and what the rotation and/or line of reflection is for each the
matrices

"

1
2

p
3
2

�
p
3
2

1
2

#

;

"

1
2

p
3
2p

3
2
� 1
2

#

:
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2. Decide on the type, ˙1 eigenvector and possible rotation angles on the
orthogonal complement for the˙1 eigenvector for the matrices:

2

6

6

6

6

4

�1
3
�2
3
�2
3

�2
3
�1
3

2

3

�2
3

2

3
�1
3

3

7

7

7

7

5

;

2

4

0 0 1

0 �1 0
1 0 0

3

5 ;

2

6

6

6

6

4

2

3
�2
3

1

3

�2
3
�1
3

2

3
1

3

2

3

2

3

3

7

7

7

7

5

;

2

6

6

6

6

4

1

3

2

3

2

3
2

3
�2
3

1

3
2

3

1

3
�2
3

3

7

7

7

7

5

:

3. Write the matrices from Exercises 1 and 2 as products of reflections.
4. Let O 2 O3 and assume we have a Darboux vector u 2 R

3 such that for all
x 2 R

3,
1

2

�

O �Ot
�

.x/ D u � x:
(See also Exercise 7 in Sect. 4.6).

(a) Show that u determines the axis of rotation by showing that O .u/ D ˙u.
(b) Show that the rotation is determined by jsin 	 j D juj :
(c) Show that for anyO 2 O3, we can find a Darboux vector u 2 R

3 such that
the above formula holds.

5. (Euler) Define the rotations around the three coordinate axes in R
3 by

Ox .˛/ D
2

4

1 0 0

0 cos˛ � sin˛
0 sin ˛ cos˛

3

5 ;

Oy .ˇ/ D
2

4

cosˇ 0 � sinˇ
0 1 0

sinˇ 0 cosˇ

3

5 ;
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Oz .�/ D
2

4

cos � � sin � 0
sin � cos � 0

0 0 1

3

5 :

(a) Show that any O 2 SO .3/ is of the formO D Ox .˛/Oy .ˇ/Oz .�/ : The
angles ˛; ˇ; � are called the Euler angles for O: Hint:

Ox .˛/Oy .ˇ/Oz .�/ D
2

4

cosˇ cos � � cosˇ sin � � sinˇ
� sin˛ cosˇ
cos˛ sinˇ

3

5

(b) Show that Ox .˛/Oy .ˇ/Oz .�/ 2 SO .3/ for all ˛; ˇ; �:
(c) Show that if O1;O2 2 SO .3/, then also O1O2 2 SO .3/ :

6. Find the matrix representations with respect to the canonical basis for
R
3 for all of the orthogonal matrices that describe a rotation by 	 in

span f.1; 1; 0/ ; .1; 2; 1/g :
7. Show, without using canonical forms or Cartan’s lemma, that if O 2 On, then
O is a composition of at most n reflections. Hint: For x 2 R

n, select a reflection
R that takes x to Ox. Then, show that RO fixes x and conclude that RO also
fixes the orthogonal complement.

8. Let z 2 R
n be a unit vector and

Rz .x/ D x � 2 .xjz/ z

the reflection in the hyperplane perpendicular to z:

(a) Show that

Rz D R�z;

.Rz/
�1 D Rz:

(b) If y; z 2 R
n are linearly independent unit vectors, then show that RyRz 2

On is a rotation on M D span fy; zg and the identity on M?:
(c) Show that the angle 	 of rotation is given by the relationship

cos 	 D �1C 2 j.yjz/j2
D cos .2 / ;

where .yjz/ D cos . / :

9. Let Sn denote the group of permutations. These are the bijective maps from
f1; 2; : : : ; ng to itself. The group product is composition, and inverses are the
inverse maps. Show that the map defined by sending 
 2 Sn to the permutation
matrix O
 defined by O
 .ei / D e
.i/ is a group homomorphism

Sn ! On;

i.e., show O
 2 On and O
ı� D O
 ıO� . (See also Example 1.7.7.)
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10. Let A 2 O4:
(a) Show that we can find a two-dimensional subspace M � R

4 such that M
and M? are both invariant under A:

(b) Show that we can chooseM so that AjM? is rotation and AjM is a rotation
precisely when A is type I while AjM is a reflection when A has type II.

(c) Show that if A has type I, then

�A .t/ D t4 � 2 .cos .	1/C cos .	2// t3

C .2C 4 cos .	1/ cos .	2// t2 � 2 .cos .	1/C cos .	2// t C 1
D t4 � .tr .A// t3 C .2C tr .AjM/ tr .AjM?// t2 � .tr .A// t C 1;

where tr .A/ D tr .AjM/C tr .AjM?/ :

(d) Show that if A has type II, then

�A .t/ D t4 � .2 cos .	// t3 C .2 cos	/ t � 1
D t4 � .tr .A// t3 C .tr .A// t � 1
D t4 � .tr .AjM?// t3 C .tr .AjM?// t � 1:

4.8 Triangulability*

There is a result that gives a simple form for general complex linear maps in an
orthonormal basis. This is a sort of consolation prize for operators without any
special properties relating to the inner product structure. In Sects. 4.9 and 4.10 on the
singular value decomposition and the polar composition we shall encounter some
other simplified forms for general linear maps between inner product spaces.

Theorem 4.8.1. (Schur’s Theorem) Let L W V ! V be a linear operator on a
finite-dimensional complex inner product space. It is possible to find an orthonormal
basis e1; : : : ; en such that the matrix representation ŒL� is upper triangular in this
basis, i.e.,

L D 


e1 � � � en
�

ŒL�



e1 � � � en
��

D 


e1 � � � en
�

2

6

6

6

4

˛11 ˛12 � � � ˛1n
0 ˛22 � � � ˛2n
:::

:::
: : :

:::

0 0 � � � ˛nn

3

7

7

7

5




e1 � � � en
��
:

Before discussing how to prove this result, let us consider a few examples.
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Example 4.8.2. Note that
�

1 1

0 2

�

;

�

0 1

0 0

�

are both in the desired form. The former matrix is diagonalizable but not with respect
to an orthonormal basis. So within that framework, we cannot improve its canonical
form. The latter matrix is not diagonalizable so there is nothing else to discuss.

Example 4.8.3. Any 2�2matrixA can be put into upper triangular form by finding
an eigenvector e1 and then selecting e2 to be orthogonal to e1. Specifically,




Ae1 Ae2
� D 
 e1 e2

�

�

� ˇ

0 �

�

:

Proof. (of Schur’s theorem) Note that if we have the desired form




L.e1/ � � � L.en/
� D 
 e1 � � � en

�

2

6

6

6

4

˛11 ˛12 � � � ˛1n
0 ˛22 � � � ˛2n
:::

:::
: : :

:::

0 0 � � � ˛nn

3

7

7

7

5

;

then we can construct a flag of invariant subspaces

f0g � V1 � V2 � � � � � Vn�1 � V;

where dimVk D k and L.Vk/ � Vk; defined by Vk D span fe1; : : : ; ekg :
Conversely, given such a flag of subspaces, we can find the orthonormal basis by
selecting unit vectors ek 2 Vk \ V ?

k�1:
In order to exhibit such a flag, we use an induction argument along the lines

of what we did when proving the spectral theorems for self-adjoint and normal
operators (Theorems 4.3.4 and 4.4.6). In this case, the proof of Schur’s theorem
is reduced to showing that any complex linear map has an invariant subspace of
dimension dimV � 1: To see why this is true, consider the adjoint L� W V ! V

and select an eigenvalue/vector pair L� .y/ D �y (note that in order to find an
eigenvalue, we must invoke the Fundamental Theorem of Algebra 2.1.8). Then,
define Vn�1 D y? D fx 2 V W .xjy/ D 0g and note that for x 2 Vn�1, we have

.L .x/ jy/ D �

xjL� .y/
�

D .xj�y/
D � .xjy/
D 0:

Thus, Vn�1 is L-invariant. ut
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Example 4.8.4. Let

A D
2

4

0 0 1

1 0 0

1 1 0

3

5 :

To find the basis that puts A into upper triangular form, we can always use an
eigenvalue e1 for A as the first vector. To use the induction, we need one for A�
as well. Note, however, that if Ax D �x and A�y D �y, then

� .xjy/ D .�xjy/
D .Axjy/
D �

xjA�y
�

D .xj�y/
D N� .xjy/ :

So x and y are perpendicular as long as � ¤ N�. Having selected e1, we should then
select e3 as an eigenvector for A� where the eigenvalue is not conjugate to the one
for e1: Next, we note that e?

3 is invariant and contains e1: Thus, we can easily find
e2 2 e?

3 as a vector perpendicular to e1: This then gives the desired basis for A:
Now, let us implement this on the original matrix. First, note that 0 is not an

eigenvalue for either matrix as ker .A/ D f0g D ker .A�/ : This is a little unlucky of
course. Thus, we must find � such that .A� �1C3/ x D 0 has a nontrivial solution.
This means that we should study the augmented system

2

4

�� 0 1

1 �� 0

1 1 ��

0

0

0

3

5

2

4

1 1 ��
1 �� 0

�� 0 1

0

0

0

3

5

2

4

1 1 ��
0 �� � 1 �

0 � 1 � �2
0

0

0

3

5

2

4

1 1 ��
0 � 1 � �2
0 �C 1 ��

0

0

0

3

5

2

4

1 1 ��
0 � 1 � �2
0 0 �� � �C1

�

�

1 � �2�
0

0

0

3

5 :
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In order to find a nontrivial solution to the last equation, the characteristic equation

�

�

�� � �C 1
�

�

1 � �2�
�

D �3 � � � 1

must vanish. This is not a pretty equation to solve but we do know that it has a
solution which is real. We run into the same equation when considering A� and we
know that we can find yet another solution that is either complex or a different real
number. Thus, we can conclude that we can put this matrix into upper triangular
form. Despite the simple nature of the matrix, the upper triangular form is not very
pretty.

Schur’s theorem evidently does not depend on our earlier theorems such as the
spectral theorem. In fact, all of those results can be reproved using the Schur’s
theorem. The spectral theorem itself can, for instance, be proved by simply
observing that the matrix representation for a normal operator must be normal if
the basis is orthonormal. But an upper triangular matrix can only be normal if it is
diagonal.

One of the nice uses of Schur’s theorem is to linear differential equations.
Assume that we have a system L.x/ D Px � Ax D b; where A 2 Matn�n .C/,
b 2 C

n: Then, find a basis arranged as a matrix U so that U �AU is upper triangular.
If we let x D Uy; then the system can be rewritten as U Py � AUy D b; which is
equivalent to solving

K .y/ D Py � U �AUy D U �b:

Since U �AU is upper triangular, it will look like

2

6

6

6

4

Py1
:::

Pyn�1
Pyn

3

7

7

7

5

�

2

6

6

6

4

ˇ11 � � � ˇ1;n�1 ˇ1;n
:::
: : :

:::
:::

0 � � � ˇn�1;n�1 ˇn�1;n
0 � � � 0 ˇnn

3

7

7

7

5

2

6

6

6

4

y1
:::

yn�1
yn

3

7

7

7

5

D

2

6

6

6

4

�1
:::

�n�1
�n

3

7

7

7

5

:

Now, start by solving the last equation Pyn � ˇnnyn D �n and then successively
solve backwards; using that, we know how to solve linear equations of the form
Pz � ˛z D f .t/ : Finally, translate back to x D U �y to find x: Note that this also
solves any particular initial value problem x .t0/ D x0 as we know how to solve
each of the systems with a fixed initial value at t0: Specifically, Pz � ˛z D f .t/ ;

z .t0/ D z0 has the unique solution

z .t/ D z0 exp .˛ .t � t0//
Z t

t0

exp .�˛ .s � t0// f .s/ ds

D z0 exp .˛t/
Z t

t0

exp .�˛s/ f .s/ ds:
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Note that the procedure only uses that A is a matrix whose entries are complex
numbers. The constant b can in fact be allowed to have smooth functions as entries
without changing a single step in the construction.

We could, of course, have used the Jordan canonical form (Theorem 2.8.3) as an
upper triangular representative for A as well. The advantage of Schur’s theorem is
that the transition matrix is unitary and therefore easy to invert.

Exercises

1. Show that for any linear map L W V ! V on an n-dimensional vector space,
where the field of scalars F � C;we have trL D �1C� � �C�n;where �1; : : : ; �n
are the complex roots of �L .t/ counted with multiplicities. Hint: First go to
a matrix representation ŒL� ; then consider this as a linear map on C

n and
triangularize it.

2. Let L W V ! V; where V is a real finite-dimensional inner product space,
and assume that �L .t/ splits, i.e., all roots are real. Show that there is an
orthonormal basis in which the matrix representation for L is upper triangular.

3. Use Schur’s theorem to prove that if A 2 Matn�n .C/ and " > 0; then we can
find A" 2 Matn�n .C/ such that jjA� A"jj � " and the n eigenvalues for A"
are distinct. Conclude that any complex linear operator on a finite-dimensional
inner product space can be approximated by diagonalizable operators.

4. Let L W V ! V be a linear operator on a finite-dimensional complex inner
product space and let p 2 C Œt �. Show that � is an eigenvalue for p .L/ if and
only if � D p .�/ where � is an eigenvalue for L:

5. Show that a linear operator L W V ! V on an n-dimensional inner product
space is normal if and only if

tr
�

L�L
� D j�1j2 C � � � C j�nj2 ;

where �1; : : : ; �n are the complex roots of the characteristic polynomial�L .t/ :
6. Let L W V ! V be an invertible linear operator on an n-dimensional complex

inner product space. If �1; : : : ; �n are the eigenvalues for L counted with
multiplicities, then





L�1


 � Cn kLk

n�1

j�1j � � � j�nj
for some constant Cn that depends only on n: Hint: If Ax D b and A is upper
triangular, show that there are constants

1 D Cn;n � Cn;n�1 � � � � � Cn;1
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such that

j�kj � Cn;k kbk kAk
n�k

j˛nn � � �˛kkj ;

A D

2

6

6

6

4

˛11 ˛12 � � � ˛1n
0 ˛22 � � � ˛2n
:::

:::
: : :

:::

0 0 � � � ˛nn

3

7

7

7

5

;

x D

2

6

4

�1
:::

�n

3

7

5 :

Then, bound L�1 .ei / using that L
�

L�1 .ei /
� D ei :

7. Let A 2 Matn�n .C/ and � 2 C be given and assume that there is a unit vector
x such that

kAx � �xk < "n

Cn kA � �1V kn�1 :

Show that there is an eigenvalue �0 for A such that
ˇ

ˇ� � �0ˇ
ˇ < ":

Hint: Use the above exercise to conclude that if

.A � �1V / .x/ D b;

kbk < "n

Cn kA � �1V kn�1

and all eigenvalues for A� �1V have absolute value � "; then kxk < 1:
8. Let A 2 Matn�n .C/ be given and assume that kA � Bk < ı for some small ı:

(a) Show that all eigenvalues for A and B lie in the compact set K D
fz W jzj � kAk C 1g :

(b) Show that if � 2 K is no closer than " to any eigenvalue for A; then








.�1V � A/�1







 < Cn
.2 kAk C 2/n�1

"n
:

(c) Using

ı D "n

Cn .2 kAk C 2/n�1 ;

show that any eigenvalue for B is within " of some eigenvalue for A:
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(d) Show that







.�1V � B/�1







 � Cn .2 kAk C 2/
n�1

"n

and that any eigenvalue for A is within " of an eigenvalue for B:

9. Show directly that the solution to Pz � ˛z D f .t/ ; z .t0/ D z0 is unique.
Conclude that the initial value problems for systems of differential equations
with constant coefficients have unique solutions.

10. Find the general solution to the system Px �Ax D b; where

(a) A D
�

0 1

1 2

�

:

(b) A D
�

1 1

1 2

�

:

(c) A D
�� 1

2
1
2

� 1
2
1
2

�

:

4.9 The Singular Value Decomposition*

Using the results we have developed so far, it is possible to obtain some very nice
decompositions for general linear maps as well. First, we treat the so-called singular
value decomposition. Note that general linear maps L W V ! W do not have
eigenvalues. The singular values of L that we define below are a good substitute for
eigenvalues when we have a map between inner product spaces.

Theorem 4.9.1 (The Singular Value Decomposition). Let L W V ! W

be a linear map between finite-dimensional inner product spaces. There is an
orthonormal basis e1; : : : ; em for V such that

�

L.ei / jL
�

ej
�� D 0 if i ¤ j:

Moreover, we can find orthonormal bases e1; : : : ; em for V and f1; : : : ; fn for W
so that

L.e1/ D 
1f1; : : : ; L .ek/ D 
kfk;
L .ekC1/ D � � � D L.em/ D 0

for some k � m: In particular,

L D 


f1 � � � fn
�

ŒL�



e1 � � � em
��

D 


f1 � � � fn
�

2

6

6

6

6

6

6

6

4


1 0 � � �
0
: : : 0

::: 0 
k 0

0 0
: : :

3

7

7

7

7

7

7

7

5




e1 � � � em
��
:
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Proof. Use the spectral theorem (Theorem 4.3.4) on L�L W V ! V to find an
orthonormal basis e1; : : : ; em for V such that L�L.ei/ D �iei : Then,

�

L.ei/ jL
�

ej
�� D �L�L.ei / jej

� D ��iei jej
� D �iıij :

Next, reorder if necessary so that �1; : : : ; �k ¤ 0 and define

fi D L.ei /

kL.ei /k ; i D 1; : : : ; k:

Finally, select fkC1; : : : ; fn so that we get an orthonormal basis forW:
In this way, we see that 
i D kL.ei/k : Finally, note that

L.ekC1/ D � � � D L.em/ D 0
since kL.ei/k2 D �i for all i: ut
The values 
 D p� where � is an eigenvalue forL�L are called the singular values
of L: We often write the decomposition of L as follows:

L D U˙ QU �;

U D 


f1 � � � fn
�

;

QU D 


e1 � � � em
�

;

˙ D

2

6

6

6

6

6

6

6

4


1 0 � � �
0
: : : 0

::: 0 
k 0

0 0

: : :

3

7

7

7

7

7

7

7

5

and we generally order the singular values 
1 � � � � � 
k:
The singular value decomposition gives us a nice way of studying systems

Lx D b; when L is not necessarily invertible. In this case, L has a partial or
generalized inverse called the Moore-Penrose inverse. The construction is quite
simple. Take a linear map L W V ! W; then use Theorems 3.5.4 and 1.11.7 to
conclude that Lj

.ker.L//? W .ker .L//? ! im .L/ is an isomorphism. Thus, we can

define the generalized inverse L
 W W ! V in such a way that

ker
�

L

� D .im .L//? ;

im
�

L

� D .ker .L//? ;

L
jim.L/ D
�

Lj.ker.L//? W .ker .L//? ! im .L/
	�1

:
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If we have picked orthonormal bases that yield the singular value decomposition,
then

L
 .f1/ D 
�1
1 f1; : : : ; L


 .fk/ D 
�1
k fk;

L
 .fkC1/ D � � � D L
 .fn/ D 0:

Or in matrix form using L D U˙ QU �, we have

L
 D QU˙
U �;

where

˙
 D

2

6

6

6

6

6

6

6

4


�1
1 0 � � �
0
: : : 0

::: 0 
�1
k 0

0 0
: : :

3

7

7

7

7

7

7

7

5

:

This generalized inverse can now be used to try to solve Lx D b for given b 2 W:
Before explaining how that works, we list some of the important properties of the
generalized inverse.

Proposition 4.9.2. Let L W V ! W be a linear map between finite-dimensional
inner product spaces and L
 the Moore-Penrose inverse. Then:

(1) .�L/
 D ��1L
 if � ¤ 0:
(2)

�

L

�
 D L:

(3) .L�/
 D �L
�� :
(4) LL
 is an orthogonal projection with im

�

LL

� D im .L/ and ker

�

LL

� D

ker .L�/ D ker
�

L

�

.
(5) L
L is an orthogonal projection with im

�

L
L
� D im .L�/ D im

�

L

�

and
ker

�

L
L
� D ker .L/.

(6) L
LL
 D L
:
(7) LL
L D L:
Proof. All of these properties can be proven using the abstract definition. Instead,
we shall see how the matrix representation coming from the singular value decom-
position can also be used to prove the results. Conditions (1)–(3) are straightforward
to prove using that the singular value decomposition of L yields singular value
decompositions of both L
 and L�:

To prove (4) and (5), we use the matrix representation to see that
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L
L D QU˙
U �U˙ QU �

D QU

2

6

6

6

6

6

6

6

4

1 0 � � �
0
: : : 0

::: 0 1 0

0 0
: : :

3

7

7

7

7

7

7

7

5

QU �

and similarly

LL
 D U

2

6

6

6

6

6

6

6

4

1 0 � � �
0
: : : 0

::: 0 1 0

0 0
: : :

3

7

7

7

7

7

7

7

5

U �:

This proves that these maps are orthogonal projections as the bases are orthonor-
mal. It also yields the desired properties for kernels and images.

Finally, (6) and (7) now follow via a similar calculation using the matrix
representations. ut
To solve Lx D b for given b 2 W , we can now use

Corollary 4.9.3. Lx D b has a solution if and only if b D LL
b. Moreover, if b is
a solution, then all solutions are given by

x D L
b C �1V � L
L
�

z;

where z 2 V: The smallest solution is given by

x0 D L
b:

In case b ¤ LL
b; the best approximate solutions are given by

x D L
b C �1V �L
L
�

z; z 2 V

again with

x0 D L
b
being the smallest.

Proof. Since LL
 is the orthogonal projection onto im .L/, we see that b 2 im .L/
if and only if b D LL
b: This means that b D L

�

L
b
�

so that x0 D L
b is a
solution to the system. Next, we note that

�

1V � L
L
�

is the orthogonal projection
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onto .im .L�//? D ker .L/. Thus, all solutions are of the desired form. Finally, as
L
b 2 im .L�/, the Pythagorean theorem implies that





L
b C �1V �L
L
�

z





2 D 

L
b

2 C 

�1V � L
L

�

z





2

showing that




L
b





2 � 

L
b C �1V �L
L

�

z





2

for all z:
The last statement is a consequence of the fact thatLL
b is the element in im .L/

that is closest to b since LL
 is an orthogonal projection. ut

Exercises

1. Show that the singular value decomposition of a self-adjoint operator L with
nonnegative eigenvalues looks like U˙U � where the diagonal entries of ˙ are
the eigenvalues of L:

2. Find the singular value decompositions of

2

4

0 1

0 1

1 0

3

5 and

�

0 0 1

1 1 0

�

:

3. Find the generalized inverses to

�

0 1

0 0

�

and

2

4

0 0 0

1 0 0

0 1 1

3

5 :

4. Let L W V ! W be a linear operator between finite-dimensional inner product
spaces and 
1 � � � � � 
k the singular values of L: Show that the results of the
section can be rephrased as follows: There exist orthonormal bases e1; : : : ; em for
V and f1; : : : ; fn forW such that

L.x/ D 
1 .xje1/ f1 C � � � C 
k .xjek/ fk;

L� .y/ D 
1 .yjf1/ e1 C � � � C 
k .yjfk/ ek;
L
 .y/ D 
�1

1 .yjf1/ e1 C � � � C 
�1
k .yjfk/ ek:

5. Let L W V ! V be a linear operator on a finite-dimensional inner product space.
Show that L is an isometry if and only if ker .L/ D f0g and all singular values
are 1:
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6. Let L W V ! W be a linear operator between finite-dimensional inner product
spaces. Show that

kLk D 
1;
where 
1 is the largest singular value of L (see Theorem 3.3.8 for the definition
of kLk).

7. Let L W V ! W be a linear operator between finite-dimensional inner product
spaces. Show that if there are orthonormal bases e1; : : : ; em for V and f1; : : : ; fn
for W such that L.ei / D �ifi ; i � k and L.ei / D 0, i > k; then the �i s are the
singular values of L:

8. Let L W V ! W be a nontrivial linear operator between finite-dimensional inner
product spaces.

(a) If e1; : : : ; em is an orthonormal basis for V , show that

tr
�

L�L
� D kL.e1/k2 C � � � C kL.em/k2 :

(b) If 
1 � � � � � 
k are the singular values for L, show that

tr
�

L�L
� D 
21 C � � � C 
2k :

4.10 The Polar Decomposition*

In this section, we are going to study general linear operatorsL W V ! V on a finite-
dimensional inner product space. These can be decomposed in a manner similar to
the polar coordinate decomposition of complex numbers: z D ei	 jzj :
Theorem 4.10.1 (The Polar Decomposition). ; Let L W V ! V be a linear
operator on a finite-dimensional inner product space; then, L D WS; where
W is unitary (or orthogonal) and S is self-adjoint with nonnegative eigenvalues.
Moreover, if L is invertible, then W and S are uniquely determined by L:

Proof. The proof is similar to the construction of the singular value decomposition
(Theorem 4.9.1). In fact, we can use the singular value decomposition to prove the
polar decomposition:

L D U˙ QU �

D U QU � QU˙ QU �

D �

U QU �� � QU˙ QU �� :

Thus, we define

W D U QU �;

S D QU˙ QU �:
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Clearly, W is unitary as it is a composition of two isometries. And S is certainly
self-adjoint with nonnegative eigenvalues as we have diagonalized it with an
orthonormal basis, and˙ has nonnegative diagonal entries.

Finally, assume that L is invertible and

L D WS D QW T;

where W; QW are unitary and S; T are self-adjoint with positive eigenvalues. Then,
S and T must also be invertible and

ST �1 D QWW �1

D QWW �:

This implies that ST �1 is unitary. Thus,

�

ST �1��1 D �

ST �1��

D �

T ���1 S�

D T �1S;

and therefore,

1V D T �1SST �1

D T �1S2T �1:

This means that S2 D T 2: Since both operators are self-adjoint and have nonneg-
ative eigenvalues, this implies that S D T (see Exercise 8 in Sect. 4.3) and hence
QW D W as desired. ut

There is also a decompositionL D SW , where S D U˙U � andW D U QU �. From
this, it is clear that S andW need not be the same in the two decompositions unless
U D QU in the singular value decomposition. This is equivalent to L being normal
(see also exercises).

Recall from Sect. 1.13 that we have the general linear group Gln .F/ �
Matn�n .F/ of invertible n � n matrices. Further, define PSn .F/ � Matn�n .F/ as
being the self-adjoint positive matrices, i.e., the eigenvalues are positive. The polar
decomposition says that we have bijective (nonlinear) maps (i.e., one-to-one and
onto maps)

Gln .C/ 	 Un � PSn .C/ ;
Gln .R/ 	 On � PSn .R/ ;

given byA D WS  ! .W; S/ : These maps are in fact homeomorphisms, i.e., both
.W; S/ 7! WS andA D WS 7! .W; S/ are continuous. The first map only involves
matrix multiplication, so it is obviously continuous. That A D WS ! .W; S/ is
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continuous takes a little more work. Assume that Ak D WkSk and that Ak ! A D
WS 2 Gln: Then, we need to show thatWk ! W and Sk ! S: The space of unitary
or orthogonal operators is compact. So any subsequence of Wk has a convergent

subsequence. Now, assume that Wkl ! NW ; then also Skl D
�

W �
kl

	

Akl ! NW �A:
Thus,A D NW � NW �A

�

;which implies by the uniqueness of the polar decomposition
that NW D W and Skl ! S: This means that convergent subsequences ofWk always
converge to W ; this in turn implies that Wk ! W: We then conclude that also
Sk ! S .

Next, we note that PSn is a convex cone. This means that if A;B 2 PSn; then
also sAC tB 2 PSn for all t; s > 0: It is obvious that sA C tB is self-adjoint. To
see that all eigenvalues are positive, we use that .Axjx/ ; .Bxjx/ > 0 for all x ¤ 0
to see that

..sAC tB/ .x/ jx/ D s .Axjx/C t .Bxjx/ > 0:
The importance of this last observation is that we can deform any matrix A D

WS via

At D W .tI C .1 � t/ A/ 2 Gln
into a unitary or orthogonal matrix. This means that many topological properties of
Gln can be investigated by studying the compact groups Un andOn:

The simplest example of this is that Gln .C/ is path connected, i.e., for any
two matrices A;B 2 Gln .C/, there is a continuous path C W Œ0; ˛� ! Gln .C/

such that C .0/ D A and C .˛/ D B: By way of contrast, Gln .R/ has two
path connected components. We can see these two facts directly when n D 1

as Gl1 .C/ D f˛ 2 C W ˛ ¤ 0g is connected, while Gl1 .R/ D f˛ 2 R W ˛ ¤ 0g
consists of the two components corresponding the positive and negative numbers.
For general n, we can prove the claim by using the canonical form for unitary and
orthogonal matrices. In the unitary situation, we have that any U 2 Un looks like

U D BDB�

D B

2

6

4

exp .i	1/ 0
: : :

0 exp .i	n/

3

7

5B
�;

where B 2 Un: Then, define

D .t/ D

2

6

4

exp .i t	1/ 0
: : :

0 exp .i t	n/

3

7

5 :

Hence, D .t/ 2 Un and U .t/ D BD .t/ B� 2 Un defines a path that at t D 0 is
In and at t D 1 is U: Thus, any unitary transformation can be joined to the identity
matrix inside Un:



324 4 Linear Operators on Inner Product Spaces

In the orthogonal case, we see using the real canonical form that a similar
deformation using

�

cos .t	i / � sin .t	i /
sin .t	i / cos .t	i /

�

will deform any orthogonal transformation to one of the following two matrices:

2

6

6

6

4

1 0 0

0 1 0
: : :

0 0 1

3

7

7

7

5

or O

2

6

6

6

4

�1 0 0

0 1 0
: : :

0 0 1

3

7

7

7

5

Ot:

Here

O

2

6

6

6

4

�1 0 0

0 1 0
: : :

0 0 1

3

7

7

7

5

Ot

is the same as the reflection Rx where x is the first column vector in O (�1
eigenvector). We then have to show that 1Rn and Rx cannot be joined to each other
inside On: This is done by contradiction. Thus, assume that A .t/ is a continuous
path with

A .0/ D

2

6

6

6

4

1 0 0

0 1 0
: : :

0 0 1

3

7

7

7

5

;

A .1/ D O

2

6

6

6

4

�1 0 0

0 1 0
: : :

0 0 1

3

7

7

7

5

Ot ;

A .t/ 2 On; for all t 2 Œ0; 1� :
The characteristic polynomial

�A.t/ .�/ D �n C � � � C ˛0 .t/
has coefficients that vary continuously with t (the proof of this uses determinants).
However, ˛0 .0/ D .�1/n ; while ˛0 .1/ D .�1/n�1 : Thus, the intermediate value
theorem tells us that ˛0 .t0/ D 0 for some t0 2 .0; 1/ : But this implies that � D 0 is
a root of A .t0/ ; thus contradicting that A .t0/ 2 On � Gln:
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Exercises

1. Find the polar decompositions for
�

˛ �ˇ
ˇ ˛

�

;

�

˛ ˇ

�ˇ ˛
�

; and

�

˛ 1

0 ˛

�

:

2. Find the polar decompositions for

2

4

0 ˇ 0

˛ 0 0

0 0 �

3

5 and

2

4

1 �1 0
0 0 2

1 1 0

3

5 :

3. If L W V ! V is a linear operator on a finite-dimensional inner product space,
define the Cayley transform of L as .LC 1V / .L � 1V /�1 :
(a) If L is skew-adjoint, show that .LC 1/ .L � 1/�1 is an isometry that does

not have �1 as an eigenvalue.
(b) Show that U ! .U � 1V / .U C 1V /�1 takes isometries that do not have �1

as an eigenvalue to skew-adjoint operators and is an inverse to the Cayley
transform.

4. Let L W V ! V be a linear operator on a finite-dimensional inner product space.
Show that L D SW; where W is unitary (or orthogonal) and S is self-adjoint
with nonnegative eigenvalues. Moreover, if L is invertible, then W and S are
unique. Show by example that the operators in this polar decomposition do not
have to be the same as in the L D WS decomposition.

5. Let L D WS be the unique polar decomposition of an invertible operator L W
V ! V on a finite-dimensional inner product space V: Show that L is normal if
and only if WS D SW:

6. The purpose of this exercise is to check some properties of the exponential
map exp W Matn�n .F/ ! Gln .F/ : You may want to consult Sect. 3.7 for the
definition and various elementary properties.

(a) Show that exp maps normal operators to normal operators.
(b) Show that exp maps self-adjoint operators to positive self-adjoint operators

and that it is a homeomorphism, i.e., it is one-to-one, onto, continuous, and
the inverse is also continuous.

(c) Show that exp maps skew-adjoint operators to isometries but is not one-to-
one. In the complex case, show that it is onto.

7. Let L W V ! V be normal and L D S C A, where S is self-adjoint and A
skew-adjoint. Recall that since L is normal S and A commute.

(a) Show that exp .S/ exp .A/ D exp .A/ exp .S/ is the polar decomposition of
exp .L/ :

(b) Show that any invertible normal transformation can be written as exp .L/ for
some normal L:
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4.11 Quadratic Forms*

Conic sections are those figures we obtain by intersecting a cone with a plane.
Analytically, this is the problem of determining all of the intersections of a cone
given by z D x2 C y2 with a plane z D ax C by C c.

We can picture what these intersections look like by shining a flash light on
a wall. The light emanating from the flash light describes a cone which is then
intersected by the wall. The figures we get are circles, ellipses, parabolae, and
hyperbolae, depending on how we hold the flash light.

These questions naturally lead to the more general question of determining the
figures described by the equation

ax2 C bxy C cy2 C dx C ey C f D 0:

We shall see below that it is possible to make a linear change of coordinates, that
depends only on the quadratic quantities, such that the equation is transformed into
an equation of the simpler form:

a0 �x0�2 C c0 �y0�2 C d 0x0 C e0y0 C f 0 D 0:

It is now easy to see that the solutions to such an equation consist of a circle,
ellipse, parabola, hyperbola, or the degenerate cases of two lines, a point or nothing.
Moreover a; b; c together determine the type of the figure as long as it is not
degenerate.

Aside from the aesthetic virtues of this problem, it also comes up naturally
when solving the two-body problem from physics, a rather remarkable coincidence
between beauty and the real world. Another application is to the problem of deciding
when a function in two variables has a maximum, minimum, or neither at a critical
point.

The goal here is to study this problem in the more general case with n variables
and show how the spectral theorem can be brought in to help our investigations. We
shall also explain the use in multivariable calculus.

A quadratic formQ in n real variables x D .x1; : : : ; xn/ is a function of the form

Q.x/ D
X

1�i�j�n
aij xi xj :

The term xixj only appears once in this sum. We can artificially have it appear twice
so that the sum is more symmetric

Q .x/ D
n
X

i;jD1
a0
ij xixj ;
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where a0
i i D aii and a0

ij D a0
j i D aij =2: If we define A as the matrix whose entries

are a0
ij and use the inner product on R

n; then the quadratic form can be written in
the more abstract and condensed form

Q.x/ D .Axjx/ :

The important observation is that A is a symmetric real matrix and hence self-
adjoint. This means that we can find a new orthonormal basis for Rn that diago-
nalizes A: If this basis is given by the matrix B; then

A D BDB�1

D B

2

6

4


1 0
: : :

0 
n

3

7

5B
�1

D B

2

6

4


1 0
: : :

0 
n

3

7

5B
t :

If we define new coordinates by

2

6

4

y1
:::

yn

3

7

5 D B�1

2

6

4

x1
:::

xn

3

7

5 ; or

x D By;

then

Q.x/ D .Axjx/
D .AByjBy/
D �

BtAByjy�

D Q0 .y/ :

Since B is an orthogonal matrix, we have that B�1 D Bt and hence BtAB D
B�1AB D D. Thus,

Q0 .y/ D 
1y21 C � � � C 
ny2n
in the new coordinates.



328 4 Linear Operators on Inner Product Spaces

The general classification of the types of quadratic forms is given by

(1) If all of 
1; : : : ; 
n are positive or negative, then it is said to be elliptic.
(2) If all of 
1; : : : ; 
n are nonzero and there are both negative and positive values,

then it said to be hyperbolic.
(3) If at least one of 
1; : : : ; 
n is zero, then it is called parabolic.

In the case of two variables, this makes perfect sense as x2 C y2 D r2 is a circle
(special ellipse), x2�y2 D f two branches of a hyperbola, and x2 D f a parabola.
The first two cases occur when 
1 � � �
n ¤ 0: In this case, the quadratic form is
said to be nondegenerate. In the parabolic case, 
1 � � �
n D 0 and we say that the
quadratic form is degenerate.

Having obtained this simple classification it would be nice to find a way of
characterizing these types directly from the characteristic polynomial of A without
having to find the roots. This is actually not too hard to accomplish.

Lemma 4.11.1 (Descartes’ Rule of Signs). Let

p .t/ D tn C an�1tn�1 C � � � C a1t C a0 D .t � �1/ � � � .t � �n/ ;

where a0; : : : ; an�1; �1; : : : ; �n 2 R.

(1) 0 is a root of p .t/ if and only if a0 D 0:
(2) All roots of p .t/ are negative if and only if an�1; : : : ; a0 > 0:
(3) If n is odd, then all roots of p .t/ are positive if and only if an�1 < 0; an�2 >

0; : : : ; a1 > 0; a0 < 0:

(4) If n is even, then all roots of p .t/ are positive if and only if an�1 < 0; an�2 >
0; : : : ; a1 < 0; a0 > 0:

Proof. Descartes’ rule is actually more general as it relates the number of positive
roots to the number of times the coefficients change sign. The simpler version,
however, suffices for our purposes.

Part 1 is obvious as p .0/ D a0:
The relationship

tn C an�1tn�1 C � � � C a1t C a0 D .t � �1/ � � � .t � �n/

clearly shows that an�1; : : : ; a0 > 0 if �1; : : : ; �n < 0: Conversely, if
an�1; : : : ; a0 > 0; then it is obvious that p .t/ > 0 for all t � 0:

For the other two properties, consider q .t/ D p .�t/ and use .2/: ut
This lemma gives us a very quick way of deciding whether a given quadratic form
is parabolic or elliptic. If it is not one of these two types, then we know it has to be
hyperbolic.
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Example 4.11.2. The matrix
2

4

2 3 0

3 �2 4

0 4 �2

3

5

has characteristic polynomial t3C2t2�29tC6: The coefficients do not conform to
the patterns that guarantee that the roots are all positive or negative so we conclude
that the corresponding quadratic form is hyperbolic.

Example 4.11.3. Let Q be a quadratic form corresponding to the matrix

A D

2

6

6

4

6 1 2 3

1 5 0 4

2 0 2 0

3 4 0 7

3

7

7

5

:

The characteristic polynomial is given by t4 � 20t3 C 113t2 � 200t C 96: In this
case, the coefficients tell us that the roots must be positive.

Exercises

1. A bilinear form on a vector space V is a function B W V � V ! F such that
x ! B .x; y/ and y ! B .x; y/ are both linear. Show that a quadratic form Q

always looks like Q.x/ D B .x; x/ ; where B is a bilinear form.
2. A bilinear form is said to be symmetric, respectively skew-symmetric, if
B .x; y/ D B .y; x/ ; respectively B .x; y/ D �B .y; x/ for all x; y.

(a) Show that a quadratic form looks like Q.x/ D B .x; x/ where B is
symmetric.

(b) Show that B .x; x/ D 0 for all x 2 V if and only if B is skew-symmetric.

3. Let B be a bilinear form on R
n or Cn.

(a) Show that B .x; y/ D .Axjy/ for some matrix A:
(b) Show that B is symmetric if and only if A is symmetric.
(c) Show that B is skew-symmetric if and only if A is skew-symmetric.
(d) If x D Cx0 is a change of basis, show that if B corresponds to A in the

standard basis, then it corresponds to C tAC in the new basis.

4. Let Q.x/ be a quadratic form on R
n: Show that there is an orthogonal basis

where
Q.z/ D �z21 � � � � � z2k C z2kC1 C � � � C z2l ;

where 0 � k � l � n: Hint: Use the orthonormal basis that diagonalizedQ and
adjust the lengths of the basis vectors.
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5. Let B .x; y/ be a skew-symmetric form on R
n:

(a) If B .x; y/ D .Axjy/ where A D
�

0 �ˇ
ˇ 0

�

; ˇ 2 R; then show that there is

a basis for R2 where B .x0; y0/ corresponds to A0 D
�

0 �1
1 0

�

:

(b) If B .x; y/ is a skew-symmetric bilinear form on R
n; then there is a basis

where B .x0; y0/ corresponds to a matrix of the type

A0 D

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 �1 � � � 0 0 0 � � � 0
1 0 0 0 0 0

::: 0
:::
:::
: : : 0 0 0

::: 0

0 0 0 0 �1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 � � � 0
0 0 � � � 0 0

:::
: : :

:::

0 0 � � � 0 0 0 � � � 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

6. Show that for a quadratic form Q.z/ on C
n, we can always change coordinates

to make it look like
Q0 �z0� D �z0

1

�2 C � � � C �z0
n

�2
:

7. Show thatQ .x; y/ D ax2C2bxyCcy2 is elliptic when ac�b2 > 0, hyperbolic
when ac � b2 < 0, and parabolic when ac � b2 D 0:

8. IfA is a symmetric real matrix, then show that tICA defines an elliptic quadratic
form when jt j is sufficiently large.

9. Decide for each of the following matrices whether or not the corresponding
quadratic form is elliptic, hyperbolic, or parabolic:

(a)
2

6

6

4

�7 �2 �3 0

�2 �6 �4 0

�3 �4 �5 2

0 0 2 �3

3

7

7

5

:

(b)
2

6

6

4

7 3 �3 4

3 2 �1 0

�3 �1 5 �2
4 0 �2 10

3

7

7

5

:
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(c)
2

6

6

4

�8 �3 0 �2
�3 �1 �1 0

0 �1 1 3

�2 0 3 �3

3

7

7

5

:

(d)
2

6

6

4

15 2 3 4

2 4 2 0

3 2 3 �2
4 0 �2 5

3

7

7

5

:





Chapter 5
Determinants

5.1 Geometric Approach

Before plunging in to the theory of determinants, we are going to make an attempt
at defining them in a more geometric fashion. This works well in low dimensions
and will serve to motivate our more algebraic constructions in subsequent sections.

From a geometric point of view, the determinant of a linear operatorL W V ! V

is a scalar det .L/ that measures how L changes the volume of solids in V . To
understand how this works, we obviously need to figure out how volumes are
computed in V: In this section, we will study this problem in dimensions 1 and
2: In subsequent sections, we take a more axiomatic and algebraic approach, but the
ideas come from what we present here.

Let V be one-dimensional and assume that the scalar field is R so as to keep
things as geometric as possible. We already know that L W V ! V must be of
the form L.x/ D �x for some � 2 R: This � clearly describes how L changes
the length of vectors as kL.x/k D j�j kxk : The important and surprising thing to
note is that while we need an inner product to compute the length of vectors, it is
not necessary to know the norm in order to compute how L changes the length of
vectors.

Let now V be two-dimensional. If we have a real inner product, then we can talk
about areas of simple geometric configurations. We shall work with parallelograms
as they are easy to define, one can easily find their area, and linear operators map
parallelograms to parallelograms. Given x; y 2 V , the parallelogram � .x; y/ with
sides x and y is defined by

� .x; y/ D fsx C ty W s; t 2 Œ0; 1�g :

The area of � .x; y/ can be computed by the usual formula where one multiplies
the base length with the height. If we take x to be the base, then the height is the
projection of y onto to orthogonal complement of x: Thus, we get the formula (see
also Fig. 5.1)

P. Petersen, Linear Algebra, Undergraduate Texts in Mathematics,
DOI 10.1007/978-1-4614-3612-6 5, © Springer Science+Business Media New York 2012
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Fig. 5.1 Area of a parallelogram

area .� .x; y// D kxk ky � projx .y/k

D kxk
�

�

�

�
y � .yjx/ xkxk2

�

�

�

�
:

This expression does not appear to be symmetric in x and y; but if we square it,
we get

.area .� .x; y///2 D .xjx/ .y � projx .y/ jy � projx .y//

D .xjx/ ..yjy/� 2 .yjprojx .y//C .projx .y/ jprojx .y///

D .xjx/
�

.yjy/� 2
�

y

ˇ

ˇ

ˇ

ˇ

.yjx/ x
kxk2

�

C
�

.yjx/ x
kxk2

ˇ

ˇ

ˇ

ˇ

.yjx/ x
kxk2

��

D .xjx/ .yjy/� .xjy/2 ;

which is symmetric in x and y: Now assume that

x0 D ˛x C ˇy
y0 D �x C ıy

or

�

x0 y0
� D �x y �

�

˛ �

ˇ ı

�

I

then, we see that

	

area
	

�
	

x0; y0



2

D 	x0jx0
 	y0jy0
 � 	x0jy0
2

D .˛x C ˇyj˛x C ˇy/ .�x C ıyj�x C ıy/� .˛x C ˇyj�x C ıy/2



5.1 Geometric Approach 335

D 	˛2 .xjx/C 2˛ˇ .xjy/C ˇ2 .yjy/
 	�2 .xjx/C 2�ı .xjy/C ı2 .yjy/


� .˛� .xjx/C .˛ı C ˇ�/ .xjy/C ˇı .yjy//2

D 	˛2ı2 C ˇ2�2 � 2˛ˇ�ı

�

.xjx/ .yjy/� .xjy/2
�

D .˛ı � ˇ�/2 .area .� .x; y///2 :

This tells us several things. First, if we know how to compute the area of just one
parallelogram, then we can use linear algebra to compute the area of any other
parallelogram by simply expanding the base vectors for the new parallelogram
in terms of the base vectors of the given parallelogram. This has the surprising
consequence that the ratio of the areas of two parallelograms does not depend upon
the inner product! With this in mind, we can then define the determinant of a linear
operator L W V ! V so that

.det .L//2 D .area .� .L .x/ ; L .y////2

.area .� .x; y///2
:

To see that this does not depend on x and y, we chose x0 and y0 as above and
note that

�

L.x0/ L .y0/
� D �L.x/ L .y/ �

�

˛ �

ˇ ı

�

and

.area .� .L .x0/ ; L .y0////2

.area .� .x0; y0///2
D .˛ı � ˇ�/2 .area .� .L .x/ ; L .y////2

.˛ı � ˇ�/2 .area .� .x; y///2

D .area .� .L .x/ ; L .y////2

.area .� .x; y///2
:

Thus, .det .L//2 depends neither on the inner product that is used to compute the
area nor on the vectors x and y: Finally, we can refine the definition so that

det .L/ D
ˇ

ˇ

ˇ

ˇ

˛ �

ˇ ı

ˇ

ˇ

ˇ

ˇ
D ˛ı � ˇ�; where

�

L.x/ L .y/
� D �x y �

�

˛ �

ˇ ı

�

:

This introduces a sign in the definition which one can also easily check does not
depend on the choice of x and y:
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This approach generalizes to higher dimensions, but it also runs into a little
trouble. The keen observer might have noticed that the formula for the area is in
fact a determinant:

.area .� .x; y///2 D .xjx/ .yjy/ � .xjy/2

D
ˇ

ˇ

ˇ

ˇ

.xjx/ .xjy/

.xjy/ .yjy/
ˇ

ˇ

ˇ

ˇ
:

When passing to higher dimensions, it will become increasingly harder to justify
how the volume of a parallelepiped depends on the base vectors without using a
determinant. Thus, we encounter a bit of a vicious circle when trying to define
determinants in this fashion.

The other problem is that we used only real scalars. One can modify the approach
to also work for complex numbers, but beyond that, there is not much hope. The
approach we take below is mirrored on the constructions here but works for general
scalar fields.

5.2 Algebraic Approach

As was done in the previous section, we are going to separate the idea of volumes
and determinants, the latter being exclusively for linear operators and a quantity
which is independent of other structures on the vector space. Since volumes are
used to define determinants, we start by defining what a volume forms is. Unlike the
more motivational approach we took in the previous section, we will take a more
strictly axiomatic approach.

Let V be an n-dimensional vector space over F:

Definition 5.2.1. A volume form

vol W n times
‚ …„ ƒ

V � � � � � V
! F

is a multi-linear map, i.e., it is linear in each variable if the others are fixed, which
is also alternating. More precisely, if x1; : : : ; xi�1; xiC1; : : : ; xn 2 V , then

x ! vol .x1; : : : ; xi�1; x; xiC1; : : : ; xn/

is linear, and for i < j , we have the alternating property when xi and xj are
transposed:

vol
	

: : : ; xi ; : : : ; xj ; : : :

 D �vol

	

: : : ; xj ; : : : ; xi ; : : :



:
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In Sect. 5.4 below, we shall show that such volume forms always exist. In this
section, we are going to establish some important properties and also give some
methods for computing volumes.

Proposition 5.2.2. Let vol W V �� � ��V ! F be a volume form on an n-dimensional
vector space over F: Then,

(1) vol .: : : ; x; : : : ; x; : : :/ D 0:
(2) vol .x1; : : : ; xi�1; xi C y; xiC1; : : : ; xn/ D vol .x1; : : : ; xi�1; xi ; xiC1; : : : ; xn/

if y DPk¤i ˛kxk is a linear combination of x1; : : : ; xi�1; xiC1; : : : xn:
(3) vol .x1; : : : ; xn/ D 0 if x1; : : : ; xn are linearly dependent.
(4) If vol .x1; : : : ; xn/ ¤ 0; then x1; : : : ; xn form a basis for V:

Proof. (1) The alternating property tells us that

vol .: : : ; x; : : : ; x; : : :/ D �vol .: : : ; x; : : : ; x; : : :/

if we switch x and x. Thus, vol .: : : ; x; : : : ; x; : : :/ D 0:
(2) Let y DPk¤i ˛kxk and use linearity to conclude

vol .x1; : : : ; xi�1; xi C y; xiC1; : : : ; xn/
D vol .x1; : : : ; xi�1; xi ; xiC1; : : : ; xn/

C
X

k¤i
˛kvol .x1; : : : ; xi�1; xk; xiC1; : : : ; xn/ :

Since xk is always equal to one of x1; : : : ; xi�1; xiC1; : : : ; xn, we see that

˛kvol .x1; : : : ; xi�1; xk; xiC1; : : : ; xn/ D 0:

This implies the claim.
(3) If x1 D 0, we are finished. Otherwise, Lemma 1.12.3 shows that there is k � 1

such that xk DPk�1
iD1 ˛i xi . Then, (2) implies that

vol .x1; : : : ; 0C xk; : : : ; xn/ D vol .x1; : : : ; 0; : : : ; xn/

D 0:

(4) From (3), we have that x1; : : : ; xn are linearly independent. Since V has
dimension n, they must also form a basis. ut

Note that in the above proof, we had to use that 1 ¤ �1 in the scalar field. This is
certainly true for the fields we work with. When working with more general fields
such as F D f0; 1g, we need to modify the alternating property. Instead, we assume
that the volume form vol .x1; : : : ; xn/ satisfies vol .x1; : : : ; xn/ D 0 whenever xi D
xj : This in turn implies the alternating property. To prove this note that if x D
xi C xj ; then
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0 D vol

�

: : : ;
i th place

x
; : : : ;

j th place

x
; : : :

�

D vol

�

: : : ;
i th place

xi C xj ; : : : ;
j th place

xi C xj ; : : :
�

D vol

�

: : : ;
i th place

xi
; : : : ;

j th place

xi
; : : :

�

Cvol

�

: : : ;
i th place

xj
; : : : ;

j th place

xi
; : : :

�

Cvol

�

: : : ;
i th place

xi
; : : : ;

j th place

xj
; : : :

�

Cvol

�

: : : ;
i th place

xj
; : : : ;

j th place

xj
; : : :

�

D vol

�

: : : ;
i th place

xj
; : : : ;

j th place

xi
; : : :

�

Cvol

�

: : : ;
i th place

xi
; : : : ;

j th place

xj
; : : :

�

;

which shows that the form is alternating.

Theorem 5.2.3. (Uniqueness of Volume Forms) Let vol1; vol2 W V � � � � � V ! F

be two volume forms on an n-dimensional vector space over F: If vol2 is nontrivial,
then vol1 D �vol2 for some � 2 F:

Proof. If we assume that vol2 is nontrivial, then we can find x1; : : : ; xn 2 V so that
vol2 .x1; : : : ; xn/ ¤ 0: Then, define � so that

vol1 .x1; : : : ; xn/ D �vol2 .x1; : : : ; xn/ :

If z1; : : : ; zn 2 V; then we can write

�

z1 � � � zn
� D �

x1 � � � xn
�

A

D �

x1 � � � xn
�

2

6

4

˛11 � � � ˛1n
:::
: : :

:::

˛n1 � � � ˛nn

3

7

5 :

For any volume form vol, we have

vol .z1; : : : ; zn/ D vol

0

@

n
X

i1D1
xi1˛i11; : : : ;

n
X

inD1
xin˛inn

1

A
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D
n
X

i1D1
˛i11vol

0

@xi1 ; : : : ;

n
X

inD1
˛innxin

1

A

:::

D
n
X

i1;:::;inD1
˛i11 � � �˛innvol .xi1 ; : : : ; xin/ :

The first thing we should note is that vol .xi1 ; : : : ; xin / D 0 if any two of the indices
i1; : : : ; in are equal. When doing the sum

n
X

i1;:::;inD1
˛i11 � � �˛innvol .xi1 ; : : : ; xin/;

we can therefore assume that all of the indices i1; : : : ; in are different. This means
that by switching indices around, we have

vol .xi1 ; : : : ; xin/ D ˙vol .x1; : : : ; xn/;

where the sign ˙ depends on the number of switches we have to make in order to
rearrange i1; : : : ; in to get back to the standard ordering 1; : : : ; n: Since this number
of switches does not depend on vol but only on the indices, we obtain the desired
result:

vol1 .z1; : : : ; zn/ D
n
X

i1;:::;inD1
˙˛i11 � � �˛innvol1 .x1; : : : ; xn/

D
n
X

i1;:::;inD1
˙˛i11 � � �˛inn�vol2 .x1; : : : ; xn/

D �

n
X

i1;:::;inD1
˙˛i11 � � �˛innvol2 .x1; : : : ; xn/

D �vol2 .z1; : : : ; zn/ :
ut

From the proof of this theorem, we also obtain one of the crucial results about
volumes that we mentioned in the previous section.

Corollary 5.2.4. If x1; : : : ; xn 2 V is a basis for V , then any volume form vol is
completely determined by its value vol .x1; : : : ; xn/ :

This corollary could be used to create volume forms by simply defining

vol .z1; : : : ; zn/ D
X

i1;:::;in

˙˛i11 � � �˛innvol .x1; : : : ; xn/ ;
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where fi1; : : : ; ing D f1; : : : ; ng : For that to work, we would have to show that the
sign ˙ is well defined in the sense that it does not depend on the particular way
in which we reorder i1; : : : ; in to get 1; : : : ; n: While this is certainly true, we shall
not prove this combinatorial fact here. Instead, we observe that if we have a volume
form that is nonzero on x1; : : : ; xn, then the fact that vol .xi1 ; : : : ; xin/ is a multiple
of vol .x1; : : : ; xn/ tells us that this sign is well defined and so does not depend
on the way in which 1; : : : ; n was rearranged to get i1; : : : ; in: We use the notation
sign .i1; : : : ; in/ for the sign we get from

vol .xi1 ; : : : ; xin/ D sign .i1; : : : ; in/ vol .x1; : : : ; xn/ :

Finally, we need to check what happens when we restrict it to subspaces. To this
end, let vol be a nontrivial volume form on V andM � V a k-dimensional subspace
of V: If we fix vectors y1; : : : ; yn�k 2 V; then we can define a form on M by

volM .x1; : : : ; xk/ D vol .x1; : : : ; xk; y1; : : : ; yn�k/ ;

where x1; : : : ; xk 2 M: It is clear that volM is linear in each variable and also
alternating as vol has those properties. Moreover, if y1; : : : ; yn�k form a basis for
a complement to M in V; then x1; : : : ; xk; y1; : : : ; yn�k will be a basis for V as
long as x1; : : : ; xk is a basis for M: In this case, volM becomes a nontrivial volume
form as well. If, however, some linear combination of y1; : : : ; yn�k lies in M , then
it follows that volM D 0:

Exercises

1. Let V be a three-dimensional real inner product space and vol a volume form so
that vol .e1; e2; e3/ D 1 for some orthonormal basis. For x; y 2 V , define x � y
as the unique vector such that

vol .x; y; z/ D vol .z; x; y/ D .zjx � y/ :

(a) Show that x � y D �y � x and that x ! x � y is linear:
(b) Show that

.x1 � y1jx2 � y2/ D .x1jx2/ .y1jy2/� .x1jy2/ .x2jy1/ :
(c) Show that

kx � yk D kxk kyk jsin � j ;
where

cos � D .x; y/

kxk kyk :
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(d) Show that

x � .y � z/ D .xjz/ y � .xjy/ z:

(e) Show that the Jacobi identity holds

x � .y � z/C z � .x � y/C y � .z � x/ D 0:

2. Let x1; : : : ; xn 2 R
n and do a Gram–Schmidt procedure so as to obtain a QR

decomposition

�

x1 � � � xn
� D � e1 � � � en

�

2

6

4

r11 � � � r1n
: : :

:::

0 rnn

3

7

5

Show that

vol .x1; : : : ; xn/ D r11 � � � rnnvol .e1; : : : ; en/ ;

where

r11 D kx1k ;
r22 D

�

�x2 � projx1 .x2/
�

� ;

:::

rnn D
�

�xn � projMn�1
.xn/

�

� :

and explain why r11 � � � rnn gives the geometrically defined volume that comes
from the formula where one multiplies height and base “area” and in turn uses
that same principle to compute base “area”.

3. Show that

vol

��

˛

ˇ

�

;

�

�

ı

��

D ˛ı � �ˇ

defines a volume form on F
2 such that vol .e1; e2/ D 1:

4. Show that we can define a volume form on F
3 by

vol

0

@

2

4

˛11
˛21

˛31

3

5 ;

2

4

˛12
˛22

˛32

3

5 ;

2

4

˛13
˛23

˛33

3

5

1

A

D ˛11vol

��

˛22
˛32

�

;

�

˛23
˛33

��

� ˛12vol

��

˛21
˛31

�

;

�

˛23
˛33

��
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C ˛13vol

��

˛21
˛31

�

;

�

˛22
˛32

��

D ˛11˛22˛33 C ˛12˛23˛31 C ˛13˛32˛21
� ˛11˛23˛32 � ˛33˛12˛21 � ˛22˛13˛31:

5. Assume that vol .e1; : : : ; e4/ D 1 for the standard basis in R
4: Using the

permutation formula for the volume form, determine with a minimum of
calculations the sign for the volume of the columns in each of the matrices:

(a)
2

6

6

4

1000 �1 2 �1
1 1000 1 2

3 �2 1 1000

2 �1 1000 2

3

7

7

5

(b)
2

6

6

4

2 1000 2 �1
1 �1 1000 2

3 �2 1 1000

1000 �1 1 2

3

7

7

5

(c)
2

6

6

4

2 �2 2 1000

1 �1 1000 2

3 1000 1 �1
1000 �1 1 2

3

7

7

5

(d)
2

6

6

4

2 �2 1000 �1
1 1000 2 2

3 �1 1 1000

1000 �1 1 2

3

7

7

5

5.3 How to Calculate Volumes

Before establishing the existence of the volume form, we shall try to use what
we learned in the previous section in a more concrete fashion to calculate
vol .z1; : : : ; zn/. Assume that vol .z1; : : : ; zn/ is a volume form on V and that there is
a basis x1; : : : ; xn for V where vol .x1; : : : ; xn/ is known. First, observe that when

�

z1 � � � zn
� D �x1 � � � xn

�

A
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and A D �

˛ij
�

is an upper triangular matrix, then ˛i11 � � �˛inn D 0 unless i1 �
1; : : : ; in � n: Since we also need all the indices i1; : : : ; in to be distinct, this implies
that i1 D 1; : : : ; in D n: Thus, we obtain the simple relationship

vol .z1; : : : ; zn/ D ˛11 � � �˛nnvol .x1; : : : ; xn/ :

While we cannot expect this to happen too often, it is possible to change z1; : : : ; zn
to vectors y1; : : : ; yn in such a way that

vol .z1; : : : ; zn/ D ˙vol .y1; : : : ; yn/

and
�

y1 � � � yn
� D �x1 � � � xn

�

A;

where A is upper triangular.
To construct the yi s, we simply use elementary column operations (see also

Sect. 1.13 and Exercise 6 in that section). This works in almost the same way as
Gauss elimination but with the twist that we are multiplying by matrices on the
right. The allowable operations are

(1) Interchanging vectors zk and zl .
(2) Multiplying zl by ˛ 2 F and adding it to zk:

The first operation changes the volume by a sign, while the second leaves the volume
unchanged. So if

�

y1 � � � yn
�

is obtained from
�

z1 � � � zn
�

through these operations,
then we have

vol .z1; : : : ; zn/ D ˙vol .y1; : : : ; yn/ :

The minus sign occurs exactly when we have done an odd number of interchanges.
We now need to explain why we can obtain

�

y1 � � � yn
�

such that

�

y1 � � � yn
� D �x1 � � � xn

�

2

6

6

6

4

˛11 ˛12 � � � ˛1n
0 ˛22 ˛2n
:::

: : :
:::

0 0 � � � ˛nn

3

7

7

7

5

:

One issue to note is that the process might break down if z1; : : : ; zn are linearly
dependent. In that case, we have vol D 0:

Instead of describing the procedure abstractly, let us see how it works in
practice. In the case of Fn, we assume that we are using a volume form such that
vol .e1; : : : ; en/ D 1 for the canonical basis. Since that uniquely defines the volume
form, we introduce some special notation for it:

jAj D ˇˇx1 � � � xn
ˇ

ˇ D vol .x1; : : : ; xn/ ;

where A 2 Matn�n .F/ is the matrix such that
�

x1 � � � xn
� D � e1 � � � en

�

A



344 5 Determinants

Example 5.3.1. Let

�

z1 z2 z3
� D

2

4

0 1 0

0 0 3

�2 0 0

3

5 :

We can rearrange this into

�

z2 z3 z1
� D

2

4

1 0 0

0 3 0

0 0 �2

3

5 :

This takes two transpositions. Thus,

vol .z1; z2; z3/ D vol .z2; z3; z1/

D 1 � 3 � .�2/ vol .e1; e2; e3/

D �6vol .e1; e2; e3/ :

Example 5.3.2. Let

�

z1 z2 z3 z4
� D

2

6

6

4

3 0 1 3

1 �1 2 0

�1 1 0 �2
�3 1 1 �3

3

7

7

5

:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 0 1 3

1 �1 2 0

�1 1 0 �2
�3 1 1 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 2 3

1 �1 2 0

1 1
3
� 2
3
�2

0 0 0 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

after eliminating entries in row 4,

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 2 2 3

4 0 2 0

0 0 � 2
3
�2

0 0 0 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

after eliminating entries in row 3,

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 3 2 3

0 4 2 0

0 0 � 2
3
�2

0 0 0 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

after switching column 1 and 2.
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Thus, we get

vol .z1; : : : ; z4/ D �2 � 4 �
�

�2
3

�

� .�3/ vol .e1; : : : ; e4/

D �16vol .e1; : : : ; e4/ :

Example 5.3.3. Let us try to find

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 � � � 1
1 2 2 � � � 2
1 2 3 � � � 3
:::
:::
:::
: : :

:::

1 2 3 � � � n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Instead of starting with the last column vector, we are going to start with the first.
This will lead us to a lower triangular matrix, but otherwise, we are using the same
principles.

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 � � � 1
1 2 2 � � � 2
1 2 3 � � � 3
:::
:::
:::
: : :

:::

1 2 3 � � � n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0 � � � 0

1 1 1 � � � 1

1 1 2 � � � 2
:::
:::
:::
: : :

:::

1 1 2 � � � n � 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0 � � � 0

1 1 0 � � � 0

1 1 1 � � � 1
:::
:::
:::
: : :

:::

1 1 1 � � � n � 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:::

D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 0 � � � 0
1 1 0 � � � 0
1 1 1 � � � 0
:::
:::
:::
: : :

:::

1 1 1 � � � 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 1:
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Exercises

1. The following problem was first considered by Leibniz and appears to be the first
use of determinants. Let A 2 Mat.nC1/�n .F/ and b 2 F

nC1: Show that:

(a) If there is a solution to the overdetermined system Ax D b, x 2 F
n; then the

augmented matrix satisfies jAj bj D 0:
(b) Conversely, if A has rank .A/ D n and jAj bj D 0; then there is a solution to

Ax D b, x 2 F
n:

2. Compute
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 � � � 1
0 1 1 � � � 1
1 0 1 � � � 1
:::
:::
:::
: : :

:::

1 � � � 1 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3. Let x1; : : : ; xk 2 R
n and assume that vol .e1; : : : ; en/ D 1: Show that

jG .x1; : : : ; xk/j � kx1k2 � � � kxkk2 ;

where G .x1; : : : ; xk/ is the Gram matrix whose ij entries are the inner products
	

xj jxi



: Look at Exercise 4 in Sect. 3.5 for the definition of the Gram matrix and
use Exercise 2 in Sect. 5.2.

4. Let x1; : : : ; xk 2 R
n and assume that vol .e1; : : : ; en/ D 1:

(a) Show that

G .x1; : : : ; xn/ D
�

x1 � � � xn
�� �

x1 � � � xn
�

:

(b) Show that

jG .x1; : : : ; xn/j D jvol .x1; : : : ; xn/j2 :
(c) Using the previous exercise, conclude that Hadamard’s inequality holds

jvol .x1; : : : ; xn/j2 � kx1k2 � � � kxnk2 :

(d) When is

jvol .x1; : : : ; xn/j2 D kx1k2 � � � kxnk2‹
5. Assume that vol .e1; : : : ; e4/ D 1 for the standard basis in R

4: Find the volumes:

(a)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 �1 2 �1
1 0 1 2

3 �2 1 0

2 �1 0 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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(b)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 0 2 �1
1 �1 0 2

3 �2 1 1

0 �1 1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(c)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 �2 2 0

1 �1 1 2

3 0 1 �1
1 �1 1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(d)
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 �2 0 �1
1 1 2 2

3 �1 1 1

1 �1 1 2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

5.4 Existence of the Volume Form

The construction of vol .x1; : : : ; xn/ proceeds by induction on the dimension of V:
We start with a basis e1; : : : ; en 2 V that is assumed to have unit volume. Next,
we assume, by induction, that there is a volume form voln�1 on span fe2; : : : ; eng
such that e2; : : : ; en has unit volume. Finally, let E W V ! V be the projection onto
span fe2; : : : ; eng whose kernel is span fe1g : For a collection x1; : : : ; xn 2 V , we
decompose xi D ˛ie1 C E .xi / : The volume form voln on V is then defined by

voln .x1; : : : ; xn/ D
n
X

kD1
.�1/k�1 ˛kvoln�1

�

E .x1/ ; : : : ; 1E .xk/; : : : ; E .xn/
�

:

(Recall that ba means that a has been eliminated). This is essentially like defining
the volume via a Laplace expansion along the first row. As ˛k; E; and voln�1 are
linear, it is obvious that the new voln form is linear in each variable. The alternating
property follows if we can show that the form vanishes when xi D xj . This is done
as follows:

voln
	

: : : ; xi ; : : : xj ; : : :



D
X

k¤i;j
.�1/k�1 ˛kvoln�1

�

: : : ; E .xi / ; : : : ; 1E .xk/; : : : ; E
	

xj



; : : :
�

C .�1/i�1 ˛ivoln�1
�

: : : ; 1E .xi /; : : : ; E
	

xj



; : : :
�
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C .�1/j�1 ˛j voln�1

0

B

@: : : ; E .xi / ; : : : ;

3

E

�

xj

�

; : : :

1

C

A

Using that E .xi / D E
	

xj



and voln�1 is alternating on span fe2; : : : ; eng shows

voln�1
�

: : : ; E .xi / ; : : : ; 1E .xk/; : : : ; E
	

xj



; : : :
�

D 0

Hence,

voln
	

: : : ; xi ; : : : xj ; : : :



D .�1/i�1 ˛ivoln�1
�

: : : ; 1E .xi /; : : : ; E
	

xj



; : : :
�

C .�1/j�1 ˛j voln�1
�

: : : ; E.xi /; : : : ; 1E.xj /; : : :
�

D .�1/i�1 .�1/j�1�i ˛ivoln�1
 

: : : ; E .xi�1/ ;
i th place

E
	

xj

 ; E .xiC1/ : : :

!

C .�1/j�1 ˛j voln�1
�

: : : ; E .xi / ; : : : ; 1E.xj /; : : :
�

;

where moving E
	

xj



to the i th-place in the expression

voln�1
�

: : : ; 1E .xi /; : : : ; E
	

xj



; : : :
�

requires j � 1 � i moves since E
	

xj



is in the .j � 1/-place. Using that ˛i D ˛j
and E .xi / D E

	

xj



; this shows

voln
	

: : : ; xi ; : : : xj ; : : :

 D .�1/j�2 ˛ivoln�1

 

: : : ;
i th place

E
	

xj

 ; : : : ; ; : : :

!

C .�1/j�1 ˛j voln�1
�

: : : ; E .xi / ; : : : ; 1E.xj /; : : :
�

D 0:

Aside from defining the volume form, we also get a method for calculating
volumes using induction on dimension. In F, we just define vol .x/ D x: For F2, we
have

vol

��

˛

ˇ

�

;

�

�

ı

��

D ˛ı � �ˇ:
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In F
3, we get

vol

0

@

2

4

˛11

˛21
˛31

3

5 ;

2

4

˛12

˛22
˛32

3

5 ;

2

4

˛13

˛23
˛33

3

5

1

A

D ˛11vol

��

˛22

˛32

�

;

�

˛23

˛33

��

� ˛12vol

��

˛21

˛31

�

;

�

˛23

˛33

��

C ˛13vol

��

˛21
˛31

�

;

�

˛22
˛32

��

D ˛11˛22˛33 C ˛12˛23˛31 C ˛13˛21˛32
� ˛11˛32˛23 � ˛12˛21˛33 � ˛13˛31˛22
D ˛11˛22˛33 C ˛12˛23˛31 C ˛13˛32˛21
� ˛11˛23˛32 � ˛33˛12˛21 � ˛22˛13˛31:

In the above definition, there is, of course, nothing special about the choice of
basis e1; : : : ; en or the ordering of the basis. Let us refer to the specific choice of
volume form as vol1 as we are expanding along the first row. If we switch e1 and ek ,
then we are apparently expanding along the kth row instead. This defines a volume
form volk: By construction, we have

vol1 .e1; : : : ; en/ D 1;

volk

�

ek; e2; : : : ;
kth place

e1
; : : : ; en

�

D 1:

Thus,

vol1 D .�1/k�1 volk

D .�1/kC1 volk:

So if we wish to calculate vol1 by an expansion along the kth row, we need to
remember the extra sign .�1/kC1 : In the case of Fn, we define the volume form vol
to be vol1 as constructed above. In this case, we shall often just write

ˇ

ˇx1 � � � xn
ˇ

ˇ D vol .x1; : : : ; xn/

as in the previous section.
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Example 5.4.1. Let us try this with the example from the previous section:

�

z1 z2 z3 z4
� D

2

6

6

4

3 0 1 3

1 �1 2 0

�1 1 0 �2
�3 1 1 �3

3

7

7

5

:

Expansion along the first row gives

ˇ

ˇ z1 z2 z3 z4
ˇ

ˇ D 3
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�1 2 0

1 0 �2
1 1 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 2 0

�1 0 �2
�3 1 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 �1 0

�1 1 �2
�3 1 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� 3
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 �1 2
�1 1 0

�3 1 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 3 � 0 � 0C 1 � .�4/� 3 � 4
D �16:

Expansion along the second row gives

ˇ

ˇ z1 z2 z3 z4
ˇ

ˇ D �1
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 3

1 0 �2
1 1 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C .�1/
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 1 3

�1 0 �2
�3 1 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

�2
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 0 3

�1 1 �2
�3 1 �3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C 0
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3 0 1

�1 1 0
�3 1 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D �1 � 4 � 1 � 6 � 2 � 3C 0
D �16:

Definition 5.4.2. The general formula in F
n for expanding along the kth row in an

n � n matrix A D �

x1 � � � xn
�

is called the Laplace expansion along the kth row
and looks like

jAj D .�1/kC1 ˛k1 jAk1j C .�1/kC2 ˛k2 jAk2j C � � � C .�1/kCn ˛kn jAknj

D
n
X

iD1
.�1/kCi ˛ki jAki j :

Here ˛ij is the ij entry in A; i.e., the i th coordinate for xj ; andAij is the companion
.n � 1/�.n � 1/matrix for ˛ij : The matrixAij is constructed fromA by eliminating
the i th row and j th column. Note that the exponent for �1 is i C j when we are at
the ij entry ˛ij :
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Example 5.4.3. This expansion gives us a very intriguing formula for the deter-
minant that looks like we have used the chain rule for differentiation in several
variables. To explain this, let us think of jAj as a function in the entries xij : The
expansion along the kth row then looks like

jAj D .�1/kC1 xk1 jAk1j C .�1/kC2 xk2 jAk2j C � � � C .�1/kCn xkn jAknj :

From the definition of
ˇ

ˇAkj
ˇ

ˇ, it follows that it does depend on the variables xki :
Thus,

@ jAj
@xki

D .�1/kC1 @xk1
@xki
jAk1j C .�1/kC2 @xk2

@xki
jAk2j C � � � C .�1/kCn @xkn

@xki
jAknj

D .�1/kCi jAki j :

Replacing .�1/kCi jAki j by the partial derivative then gives us the formula

jAj D xk1 @ jAj
@xk1

C xk2 @ jAj
@xk2

C � � � C xkn @ jAj
@xkn

D
n
X

iD1
xki

@ jAj
@xki

:

Since we get the same answer for each k, this implies

n jAj D
n
X

i;jD1
xij
@ jAj
@xij

:

Exercises

1. Find the determinant of the following n�nmatrix where all entries are 1 except
the entries just below the diagonal which are 0:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 � � � 1
0 1 1 � � � 1
1 0 1 � � � :::
::: 1

: : :
: : : 1

1 � � � 1 0 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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2. Find the determinant of the following n � n matrix:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 � � � 1 1 1

2 � � � 2 2 1

3 � � � 3 1
:::

::: 1 � � � 1
n 1 � � � 1 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

3. (The Vandermonde Determinant)

(a) Show that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 � � � 1

�1 � � � �n
:::

:::

�n�11 � � � �n�1n

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D
Y

i<j

	

�i � �j



:

(b) When �1; : : : ; �n are the complex roots of a polynomial p .t/ D tn C
an�1tn�1 C � � � C a1t C a0; we define the discriminant of p as

� D D D
0

@

Y

i<j

	

�i � �j



1

A

2

:

When n D 2, show that this conforms with the usual definition. In general,
one can compute � from the coefficients of p: Show that � is real if p is
real.

4. Let Sn be the group of permutations, i.e., bijective maps from f1; : : : ; ng to
itself. These are generally denoted by � and correspond to a switching of
indices, � .k/ D ik , k D 1; : : : ; n. Consider the polynomial in n variables

p .x1; : : : ; xn/ D
Y

i<j

	

xi � xj



:

(a) Show that if � 2 Sn is a permutation, then

sign .�/ p .x1; : : : ; xn/ D p
	

x�.1/; : : : ; x�.n/



for some sign sign .�/ 2 f˙1g.
(b) Show that the sign function Sn ! f˙1g is a homomorphism, i.e.,

sign .�	/ D sign .�/ sign .	/ :
(c) Using the above characterization, show that sign .�/ can be determined by

the number of inversions in the permutation. An inversion in � is a pair of
consecutive integers whose order is reversed, i.e., � .i/ > � .i C 1/ :
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5. Let An D
�

˛ij
�

be a real skew-symmetric n � n matrix, i.e., ˛ij D �˛j i .

(a) Show that jA2j D ˛212:
(b) Show that jA4j D .˛12˛34 C ˛14˛23 � ˛13˛24/2.
(c) Show that jA2nj � 0:
(d) Show that jA2nC1j D 0:

6. Show that the n � n matrix satisfies

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛ ˇ ˇ � � � ˇ
ˇ ˛ ˇ � � � ˇ
ˇ ˇ ˛ � � � ˇ
:::
:::
:::
: : :
:::

ˇ ˇ ˇ � � � ˛

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .˛ C .n � 1/ ˇ/ .˛ � ˇ/n�1 :

7. Show that the n � n matrix

An D

2

6

6

6

6

6

4

˛1 1 0 � � � 0
�1 ˛2 1 � � � 0
0 �1 ˛3 � � � 0
:::

:::
:::
: : :
:::

0 0 0 � � � ˛n

3

7

7

7

7

7

5

satisfies

jA1j D ˛1
jA2j D 1C ˛1˛2;
jAnj D ˛n jAn�1j C jAn�2j :

8. Show that an n � m matrix has (column) rank � k if and only there is a
submatrix of size k � k with nonzero determinant. Use this to prove that row
and column ranks are equal.

9. Here are some problems that discuss determinants and geometry.

(a) Show that the area of the triangle whose vertices are

�

˛1
ˇ1

�

;

�

˛2
ˇ2

�

;

�

˛3
ˇ3

�

2 R
2

is given by

1

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

˛1 ˛2 ˛3
ˇ1 ˇ2 ˇ3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

:
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(b) Show that three vectors

�

˛1
ˇ1

�

;

�

˛2
ˇ2

�

;

�

˛3
ˇ3

�

2 R
2

satisfy
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

˛1 ˛2 ˛3

ˇ1 ˇ2 ˇ3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

if and only if they are collinear, i.e., lie on a line l D fat C b W t 2 Rg,
where a; b 2 R

2:

(c) Show that four vectors

2

4

˛1
ˇ1

�1

3

5 ;

2

4

˛2
ˇ2

�2

3

5 ;

2

4

˛3
ˇ3

�3

3

5 ;

2

4

˛4
ˇ4

�4

3

5 2 R
3

satisfy
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

˛1 ˛2 ˛3 ˛4
ˇ1 ˇ2 ˇ3 ˇ4
�1 �2 �3 �4

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0

if and only if they are coplanar, i.e., lie in the same plane � D ˚

x 2 R
3 W

.a; x/ D ˛g :
10. Let

�

˛1
ˇ1

�

;

�

˛2
ˇ2

�

;

�

˛3
ˇ3

�

2 R
2

be three points in the plane.

(a) If ˛1; ˛2; ˛3 are distinct, then the equation for the parabola y D ax2CbxC
c passing through the three given points is given by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

x ˛1 ˛2 ˛3
x2 ˛21 ˛

2
2 ˛

2
3

y ˇ1 ˇ2 ˇ3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

˛1 ˛2 ˛3
˛21 ˛

2
2 ˛

2
3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:
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(b) If the points are not collinear, then the equation for the circle x2 C y2 C
ax C by C c D 0 passing through the three given points is given by

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1 1

x ˛1 ˛2 ˛3
y ˇ1 ˇ2 ˇ3
x2 C y2 ˛21 C ˇ21 ˛22 C ˇ22 ˛23 C ˇ23

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 1 1

˛1 ˛2 ˛3
ˇ1 ˇ2 ˇ3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D 0:

5.5 Determinants of Linear Operators

Definition 5.5.1. To define the determinant of a linear operator L W V ! V , we
simply observe that vol .L .x1/ ; : : : ; L .xn// defines an alternating n-form that is
linear in each variable. Thus,

vol .L .x1/ ; : : : ; L .xn// D det .L/ vol .x1; : : : ; xn/

for some scalar det .L/ 2 F: This is the determinant of L:

We note that a different volume form vol1 .x1; : : : ; xn/ gives the same definition of
the determinant. To see this, we first use that vol1 D �vol and then observe that

vol1 .L .x1/ ; : : : ; L .xn// D �vol .L .x1/ ; : : : ; L .xn//

D det .L/ �vol .x1; : : : ; xn/

D det .L/ vol1 .x1; : : : ; xn/ :

If e1; : : : ; en is chosen so that vol .e1; : : : ; en/ D 1, then we get the simpler
formula

vol .L .e1/ ; : : : ; L .en// D det .L/ :

This leads us to one of the standard formulas for the determinant of a matrix. From
the properties of volume forms (see Proposition 5.2.2), we obtain

det .L/ D vol .L .e1/ ; : : : ; L .en//

D
X

˛i11 � � �˛innvol .ei1 ; : : : ; ein/

D
X

˙˛i11 � � �˛inn
D
X

sign .i1; : : : ; in/ ˛i11 � � �˛inn;
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where
�

˛ij
� D ŒL� is the matrix representation for L with respect to e1; : : : ; en: This

formula is often used as the definition of determinants. Note that it also shows that
det .L/ D det .ŒL�/ since

�

L.e1/ � � � L.en/
� D �

e1 � � � en
�

ŒL�

D �

e1 � � � en
�

2

6

4

˛11 � � � ˛1n
:::
: : :

:::

˛n1 � � � ˛nn

3

7

5 :

The next proposition contains the fundamental properties for determinants.

Proposition 5.5.2. (Determinant Characterization of Invertibility) Let V be an n-
dimensional vector space.

(1) If L;K W V ! V are linear operators, then

det .L ıK/ D det .L/ det .K/ :

(2) det .˛1V / D ˛n:
(3) If L is invertible, then

detL�1 D 1

detL
:

(4) If det .L/ ¤ 0; then L is invertible.

Proof. For any x1; : : : ; xn, we have

det .L ıK/ vol .x1; : : : ; xn/ D vol .L ıK .x1/ ; : : : ; L ıK .xn//
D det .L/ vol .K .x1/ ; : : : ; L .xn//

D det .L/ det .K/ vol .x1; : : : ; xn/ :

The second property follows from

vol .˛x1; : : : ; ˛xn/ D ˛nvol .x1; : : : ; xn/ :

For the third, we simply use that 1V D L ı L�1 so

1 D det .L/ det
	

L�1



:

For the last property, select a basis x1; : : : ; xn for V: Then,

vol .L .x1/ ; : : : ; L .xn// D det .L/ vol .x1; : : : ; xn/

¤ 0:

Thus, L.x1/ ; : : : ; L .xn/ is also a basis for V: This implies that L is invertible. ut
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One can in fact show that any map � W Hom .V; V /! F such that

�.K ı L/ D �.K/� .L/
� .1V / D 1

depends only on the determinant of the operator (see also exercises).
We have some further useful and interesting results for determinants of matrices.

Proposition 5.5.3. If A 2 Matn�n .F/ can be written in block form

A D
�

A11 A12

0 A22

�

;

where A11 2 Matn1�n1 .F/ ; A12 2 Matn1�n2 .F/, and A22 2 Matn2�n2 .F/ ; n1 C
n2D n; then

detA D detA11 detA22:

Proof. Write the canonical basis for Fn as e1; : : : ; en1 , f1; : : : ; fn2 according to the
block decomposition. Next, observe that A can be written as a composition in the
following way:

A D
�

A11 A12

0 A22

�

D
�

1 A12
0 A22

� �

A11 0

0 1

�

D BC
Thus, it suffices to show that

det

�

1 A12
0 A22

�

D detB

D det .A22/

and

det

�

A11 0

0 1

�

D detC

D det .A11/ :

To prove the last formula, note that for fixed f1; : : : ; fn2 and

x1; : : : ; xn1 2 span fe1; : : : ; en1g
the volume form

vol .x1; : : : ; xn1 ; f1; : : : ; fn2/
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defines the usual volume form on span fe1; : : : ; en1g D F
n1: Thus,

detC D vol .C .e1/ ; : : : ; C .en1/ ; C .f1/ ; : : : ; C .fn2//

D vol .A11 .e1/ ; : : : ; A11 .en1/ ; f1; : : : ; fn2/

D detA11:

For the first equation, we observe

detB D vol .B .e1/ ; : : : ; B .en1/ ; B .f1/ ; : : : ; B .fn2//

D vol .e1; : : : ; en1; A12 .f1/C A22 .f1/ ; : : : ; A12 .fn2/C A22 .fn2//
D vol .e1; : : : ; en1; A22 .f1/ ; : : : ; A22 .fn2//

since A12
	

fj

 2 span fe1; : : : ; en1g : Then, we get detB D detA22 as before. ut

Proposition 5.5.4. If A 2 Matn�n .F/ ; then detA D detAt :

Proof. First note that the result is obvious if A is upper triangular. Using row
operations, we can always find an invertible P such that PA is upper triangular
and where P is a product of the elementary matrices of the types Iij and
Rij .˛/. The row interchange matrices Iij are symmetric, i.e., I tij D Iij and have
det Iij D �1: While Rji .˛/ is upper or lower triangular with 1s on the diagonal.
Hence

	

Rij .˛/

t D Rji .˛/ and detRij .˛/ D 1: In particular, it follows that

detP D detP t D ˙1: Thus,

detA D det .PA/

detP

D det
	

.PA/t



det .P /t

D det .AtP t /

det .P /t

D det
	

At



ut
Remark 5.5.5. This last proposition tells us that the determinant map A ! jAj
defined on Matn�n .F/ is linear and alternating in both columns and rows. This can
be extremely useful when calculating determinants. It also tells us that one can do
Laplace expansions along columns as well as rows.
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Exercises

1. Find the determinant of

L W Matn�n .F/! Matn�n .F/

L .X/ D Xt :

2. Find the determinant of L W Pn ! Pn where

(a) L.p .t// D p .�t/
(b) L.p .t// D p .t/C p .�t/
(c) L.p/ D Dp D p0

3. Find the determinant ofL D p .D/ ; for p 2 C Œt � when restricted to the spaces

(a) V D Pn
(b) V D span fexp .�1t/ ; : : : ; exp .�nt/g

4. Let L W V ! V be an operator on a finite-dimensional inner product space.
Show that

det .L/ D det
	

L�



:

5. Let V be an n-dimensional inner product space and vol a volume form so that
vol .e1; : : : ; en/ D 1 for some orthonormal basis e1; : : : ; en:

(a) Show that if L W V ! V is an isometry, then jdetLj D 1:
(b) Show that the set of isometries L with detL D 1 is a group.

6. Show that O 2 On has type I if and only if det .O/ D 1: Conclude that SOn is
a group.

7. Given A 2 Matn�n .F/, consider the two linear operators LA .X/ D AX and
RA .X/ D XA on Matn�n .F/ : Compute the determinant for these operators in
terms of the determinant for A (see Example 1.7.6).

8. Show that if L W V ! V is a linear operator and vol a volume form on V; then

tr .A/ vol .x1; : : : ; xn/ D vol .L .x1/ ; : : : ; xn/

Cvol .x1; L .x2/ ; : : : ; xn/

:::

Cvol .x1; : : : ; L .xn// :

9. Show that

p .t/ D det

2

6

6

6

4

1 � � � 1 1

�1 � � � �n t
:::

:::
:::

�n1 � � � �nn tn

3

7

7

7

5



360 5 Determinants

defines a polynomial of degree n whose roots are �1; : : : ; �n: Compute k where

p .t/ D k .t � �1/ � � � .t � �n/

by doing a Laplace expansion along the last column.
10. Assume that the n � n matrix A has a block decomposition

A D
�

A11 A12
A21 A22

�

;

where A11 is an invertible matrix. Show that

det .A/ D det .A11/ det
	

A22 � A21A�111 A12



:

Hint: Select a suitable product decomposition of the form

�

A11 A12

A21 A22

�

D
�

B11 0

B21 B22

� �

C11 C12

0 C22

�

:

11. (Jacobi’s Theorem) LetA be an invertible n�n matrix. Assume thatA andA�1
have block decompositions

A D
�

A11 A12

A21 A22

�

;

A�1 D
�

A011 A012
A021 A022

�

:

Show

det .A/ det
	

A022

 D det .A11/ :

Hint: Compute the matrix product

�

A11 A12
A21 A22

� �

1 A012
0 A022

�

:

12. Let A D Matn�n .F/ : We say that A has an LU decomposition if A D LU;

where L is lower triangular with 1s on the diagonal and U is upper triangular.
Show that A has an LU decomposition if all the leading principal minors
have nonzero determinants. The leading principal k � k minor is the k � k
submatrix gotten from A by eliminating the last n � k rows and columns. (See
also Exercise 4 in Sect. 1.13.)

13. (Sylvester’s Criterion) Let A be a real and symmetric n � n matrix. Show
that A has positive eigenvalues if and only if all leading principal minors have
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positive determinant. Hint: As with theA D LU decomposition in the previous
exercise, show by induction on n that A D U �U; where U is upper triangular.
Such a decomposition is also called a Cholesky factorization.

14. (Characterization of Determinant Functions) Let � W Matn�n .F/ ! F be a
function such that

�.AB/ D �.A/� .B/ ;
� .1Fn/ D 1:

(a) Show that there is a function f W F! F satisfying

f .˛ˇ/ D f .˛/ f .ˇ/
such that �.A/ D f .det .A// : Hint: Use Exercise 8 in Sect. 1.13 to show
that

�
	

Iij

 D ˙1;

� .Mi .˛// D �.M1 .˛// ;

� .Rkl .˛// D �.Rkl .1// D �.R12 .1// ;
and define f .˛/ D �.M1 .˛// :

(b) If F D R and n is even, show that �.A/ D jdet .A/j defines a function
such that

�.AB/ D �.A/� .B/ ;
� .�1Rn/ D �n:

(c) If F D C and in addition�.�1Cn/ D �n; then show that �.A/ D det .A/ :
(d) If F D R and in addition �.�1Rn/ D �n; where n is odd, then show that

�.A/ D det .A/ :

5.6 Linear Equations

Cramer’s rule is a formula for the solution to n linear equations in n variables when
we know that only one solution exists. We will generalize this construction a bit so
as to see that it can be interpreted as an inverse to the isomorphism

�

x1 � � � xn
� W Fn ! V

when x1; : : : ; xn is a basis.

Theorem 5.6.1. Let V be an n-dimensional vector space and vol a volume form. If
x1; : : : ; xn is a basis for V and x D x1˛1 C � � � C xn˛n is the expansion of x 2 V
with respect to that basis, then
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˛1 D vol .x; x2; : : : ; xn/

vol .x1; : : : ; xn/
;

:::
:::

˛i D vol .x1; : : : ; xi�1; x; xiC1; : : : ; xn/
vol .x1; : : : ; xn/

;

:::
:::

˛n D vol .x1; : : : ; xn�1; x/
vol .x1; : : : ; xn/

:

Proof. First note that each

vol .x1; : : : ; xi�1; x; xiC1; : : : ; xn/
vol .x1; : : : ; xn/

is linear in x: Thus,

L.x/ D

2

6

6

6

6

6

6

6

6

4

vol.x;x2;:::;xn/
vol.x1;:::;xn/

:::
vol.x1;:::;xi�1;x;xiC1;:::;xn/

vol.x1;:::;xn/
:::

vol.x1;:::;xn�1;x/

vol.x1;:::;xn/

3

7

7

7

7

7

7

7

7

5

is a linear map V ! F
n: This means that we only need to check what happens when

x is one of the vectors in the basis. If x D xi ; then

0 D vol .xi ; x2; : : : ; xn/

vol .x1; : : : ; xn/
;

:::
:::

1 D vol .x1; : : : ; xi�1; xi ; xiC1; : : : ; xn/
vol .x1; : : : ; xn/

;

:::
:::

0 D vol .x1; : : : ; xn�1; xi /
vol .x1; : : : ; xn/

:

Showing that L.xi / D ei 2 F
n. But this shows that L is the inverse to

Œx1 � � �xn� W Fn ! V: ut
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Cramer’s rule is not necessarily very practical when solving equations, but it is often
a useful abstract tool. It also comes in handy, as we shall see in Sect. 5.8 when
solving inhomogeneous linear differential equations.

Cramer’s rule can also be used to solve linear equations L.x/ D b; as long as
L W V ! V is an isomorphism. In particular, it can be used to compute the inverse
of L as is done in one of the exercises. To see how we can solve L.x/ D b; we first
select a basis x1; : : : ; xn for V and then consider the problem of solving

�

L.x1/ � � � L.xn/
�

2

6

4

˛1
:::

˛n

3

7

5 D b:

Since L.x1/ ; : : : ; L .xn/ is also a basis, we know that this forces

˛1 D vol .b; L .x2/ ; : : : ; L .xn//

vol .L .x1/ ; : : : ; L .xn//
;

:::

˛i D vol .L .x1/ ; : : : ; L .xi�1/ ; b; L .xiC1/ ; : : : ; L .xn//
vol .L .x1/ ; : : : ; L .xn//

;

:::

˛n D vol .L .x1/ ; : : : ; L .xn�1/ ; b/
vol .L .x1/ ; : : : ; L .xn//

with x D x1˛1 C � � � C xn˛n being the solution. If we use b D x1; : : : ; xn, then we
get the matrix representation for L�1 by finding the coordinates to the solutions of
L.x/ D xi :
Example 5.6.2. As an example, let us see how we can solve

2

6

6

6

6

4

0 1 � � � 0
0 0

: : :
:::

:::
:::
: : : 1

1 0 � � � 0

3

7

7

7

7

5

2

6

6

6

4


1


2
:::


n

3

7

7

7

5

D

2

6

6

6

4

ˇ1

ˇ2
:::

ˇn

3

7

7

7

5

:

First, we see directly that


2 D ˇ1;

3 D ˇ2;

:::


1 D ˇn:
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From Cramer’s rule, we get that


1 D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ1 1 � � � 0
ˇ2 0

: : :
:::

:::
:::
: : : 1

ˇn 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 � � � 0
0 0

: : :
:::

:::
:::
: : : 1

1 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A Laplace expansion along the first column tells us that
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ1 1 � � � 0
ˇ2 0

: : :
:::

:::
:::
: : : 1

ˇn 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D ˇ1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 � � � 0
0 0

: : :
:::

:::
:::
: : : 1

0 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� ˇ2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 � � � 0
0 0

: : :
:::

:::
:::
: : : 1

0 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

� � � C .�1/nC1 ˇn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1 0 � � � 0
0 1

: : :
:::

:::
:::
: : : 0

0 0 � � � 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

here all of the determinants are upper triangular and all but the last has zeros on the
diagonal. Thus,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ1 1 � � � 0
ˇ2 0

: : :
:::

:::
:::
: : : 1

ˇn 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .�1/nC1 ˇn

Similarly,
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 1 � � � 0
0 0

: : :
:::

:::
:::
: : : 1

1 0 � � � 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .�1/nC1 ;

so


1 D ˇn:
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Similar calculations will confirm our answers for 
2; : : : ; 
n: By using b D
e1; : : : ; en, we can also find the inverse

2

6

6

6

6

4

0 1 � � � 0
0 0

: : :
:::

:::
:::
: : : 1

1 0 � � � 0

3

7

7

7

7

5

�1

D

2

6

6

6

6

4

0 0 � � � 1
1 0

: : :
:::

:::
: : :

: : : 0

0 � � � 1 0

3

7

7

7

7

5

:

Exercises

1. Let

An D

2

6

6

6

6

6

6

4

2 �1 0 � � � 0
�1 2 �1 � � � 0
0 �1 2

: : :
:::

:::
:::
: : :

: : : �1
0 0 � � � �1 2

3

7

7

7

7

7

7

5

:

(a) Compute detAn for n D 1; 2; 3; 4:
(b) Compute A�1n for n D 1; 2; 3; 4:
(c) Find detAn and A�1n for general n:

2. Given a nontrivial volume form vol on an n-dimensional vector space V , a linear
operator L W V ! V and a basis x1; : : : ; xn for V , define the classical adjoint
adj .L/ W V ! V by

adj .L/ .x/ D vol .x; L .x2/ ; : : : ; L .xn// x1

Cvol .L .x1/ ; x; L .x3/ ; : : : ; L .xn// x2

:::

Cvol .L .x1/ ; : : : ; L .xn�1/ ; x/ xn:

(a) Show that L ı adj .L/ D adj .L/ ı L D det .L/ 1V :
(b) Show that if L is an n � n matrix, then adj .L/ D .cofA/t ; where cofA

is the cofactor matrix whose ij entry is .�1/iCj detAij ; where Aij is the
.n � 1/ � .n � 1/ matrix obtained from A by deleting the i th row and j th
column (see Definition 5.4.2)

(c) Show that adj .L/ does not depend on the choice of basis x1; : : : ; xn or
volume form vol:
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3. (Lagrange Interpolation) Use Cramer’s rule and

p .t/ D det

2

6

6

6

4

1 � � � 1 1

�1 � � � �n t
:::

:::
:::

�n1 � � � �nn tn

3

7

7

7

5

to find p 2 Pn such that p .t0/ D b0; : : : :; p .tn/ D bn where t0; : : : ; tn 2 C are
distinct.

4. Let A 2 Matn�n .F/ ; where F is R or C: Show that there is a constant Cn
depending only on n such that if A is invertible, then

�

�A�1
�

� � Cn kAk
n�1

jdet .A/j :

5. Let A be an n � n matrix whose entries are integers. If A is invertible show that
A�1 has integer entries if and only if det .A/ D ˙1:

6. Decide when the system

�

˛ �ˇ
ˇ ˛

� �


1


2

�

D
�

ˇ1

ˇ2

�

can be solved for all ˇ1; ˇ2. Write down a formula for the solution.
7. For which ˛ is the matrix invertible

2

4

˛ ˛ 1

˛ 1 1

1 1 1

3

5‹

8. In this exercise, we will see how Cramer used his rule to study Leibniz’s problem
of when Ax D b can be solved assuming that A 2 Mat.nC1/�n .F/ and b 2 F

nC1
(see Exercise 1 in Sect. 5.3). Assume in addition that rank .A/ D n: Then, delete
one row from ŒAjb� so that the resulting system ŒA0jb0� has a unique solution.
Use Cramer’s rule to solve A0x D b0 and then insert this solution in the equation
that was deleted. Show that this equation is satisfied if and only if det ŒAjb� D 0:
Hint: The last equation is equivalent to a Laplace expansion of det ŒAjb� D 0

along the deleted row.
9. For a; b; c 2 C consider the real equation a
 C b� D c; where 
; � 2 R:

(a) Write this as a system of the real equations.
(b) Show that this system has a unique solution when Im . Nab/ ¤ 0:
(c) Use Cramer’s rule to find a formula for 
 and � that depends Im . Nab/ ;

Im . Nac/ ; Im
	 Nbc
 :
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5.7 The Characteristic Polynomial

Now that we know that the determinant of a linear operator characterizes whether
or not it is invertible, it would seem perfectly natural to define the characteristic
polynomial as follows.

Definition 5.7.1. The characteristic polynomial of L W V ! V is

�L .t/ D det .t1V � L/ :

Clearly, a zero for the function �L .t/ corresponds a value of t where t1V � L is
not invertible and thus ker .t1V � L/ ¤ f0g ; but this means that such a t is an
eigenvalue. We now need to justify why this definition yields the same polynomial
we constructed using Gauss elimination in Sect. 2.3.

Theorem 5.7.2. Let A 2 Matn�n .F/, then �A .t/ D det .t1Fn �A/ is a monic
polynomial of degree n whose roots in F are the eigenvalues for A W Fn ! F

n:

Moreover, this definition for the characteristic polynomial agrees with the one given
using Gauss elimination.

Proof. First we show that if L W V ! V is a linear operator on an n-dimensional
vector space, then �L .t/ D det .t1V � L/ defines a monic polynomial of degree n:
To see this, consider

det .t1V � L/ D vol ..t1V �L/ e1; : : : ; .t1V � L/ en/

and use linearity of vol to separate each of the terms .t1V � L/ ek D tek � L.ek/ :
When doing this, we get to factor out t several times so it is easy to see that we get
a polynomial in t: To check the degree, we group terms involving powers of t that
are lower than n in the expressionO

	

tn�1



det .t1V �A/ D vol ..t1V �L/ e1; : : : ; .t1V �L/ en/
D tvol .e1; .t1V � L/ e2; : : : ; .t1V � L/ en/
�vol .L .e1/ ; .t1V �L/ e2; : : : ; .t1V �L/ en/

D tvol .e1; .t1V � L/ e2; : : : ; .t1V � L/ en/CO
	

tn�1



D t2vol .e1; e2; : : : ; .t1V � L/ en/CO
	

tn�1



:::

D tnvol .e1; e2; : : : ; en/CO
	

tn�1



D tn CO 	tn�1
 :
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In Theorem 2.3.6, we proved that .t1Fn �A/ D PU; where

U D

2

6

6

6

4

r1 .t/ � � � � �
0 r2 .t/ � � � �
:::

:::
: : :
:::

0 0 � � � rn .t/

3

7

7

7

5

and P is the product of the elementary matrices: (1) Ikl interchanging rows, (2)
Rkl .r .t// which multiplies row l by a function r .t/ and adds it to row k; and (3)
Mk .˛/ which simply multiplies row k by ˛ 2 F � f0g. For each fixed t , we have

det .Ikl / D �1;
det .Rkl .r .t/// D 1;

det .Mk .˛// D ˛:

This means that

det .t1Fn � A/ D det .PT /

D det .P / det .T /

D det .P / r1 .t/ � � � rn .t/ ;

where det .P / is a nonzero scalar that does not depend on t and r1 .t/ � � � rn .t/ is
the function that we used to define the characteristic polynomial in Sect. 2.3. This
shows that the two definitions have to agree. ut
Remark 5.7.3. Recall that the Frobenius canonical form also lead us to a rigorous
definition of the characteristic polynomial (see Sect. 2.7). Moreover, that definition
definitely agrees with the definition from Sect. 2.3. It is also easy to see, using the
above proof, that it agrees with the definition using determinants.

With this new definition of the characteristic polynomial, we can establish some
further interesting properties.

Proposition 5.7.4. Assume that L W V ! V is a linear operator on an n-
dimensional vector space with

�L .t/ D tn C ˛n�1tn�1 C � � � C ˛1t C ˛0:

Then,

˛n�1 D �trL;

˛0 D .�1/n detL:
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Proof. To show the last property, just note that

˛0 D �L .0/

D det .�L/
D .�1/n det .L/ :

The first property takes a little more thinking. We use the calculation that lead to the
formula

det .t1V �A/ D vol ..t1V �L/ x1; : : : ; .t1V � L/ xn/
D tn CO 	tn�1


from the previous proof. Evidently, we have to calculate the coefficient in front of
tn�1: That term must look like

tn�1 .vol .�L.e1/ ; e2; : : : ; en/C � � � C vol .e1; e2; : : : ;�L.en/// :

Thus, we have to show

tr .L/ D vol .L .e1/ ; e2; : : : ; en/C � � � C vol .e1; e2; : : : ; L .en// :

To see this, expand

L.ei / D
n
X

jD1
ej ˛j i

so that
�

˛j i
� D ŒL� and tr .L/ D ˛11 C � � � C ˛nn: Next note that if we insert that

expansion in, say, vol .L .e1/ ; e2; : : : ; en/ ; then we have

vol .L .e1/ ; e2 : : : ; en/ D vol

0

@

n
X

jD1
ej ˛j1; e2; : : : ; en

1

A

D vol .e1˛11; e2; : : : ; en/

D ˛11vol .e1; e2; : : : ; en/

D ˛11:

This implies that

tr .L/ D ˛11 C � � � C ˛nn
D vol .L .e1/ ; e2; : : : ; en/C
� � � C vol .e1; e2; : : : ; L .en// : ut
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Proposition 5.7.5. Assume that L W V ! V is a linear operator on a finite-
dimensional vector space. If M � V is an L-invariant subspace, then �LjM .t/
divides �L .t/ :

Proof. Select a basis x1; : : : ; xn for V such that x1; : : : ; xk form a basis for M:
Then, the matrix representation for L in this basis looks like

ŒL� D
�

A11 A12
0 A22

�

;

where A11 2 Matk�k .F/ ; A12 2 Matk�.n�k/ .F/, and A22 2 Mat.n�k/�.n�k/ .F/ :
This means that

t1Fn � ŒL� D
�

t1Fk �A11 A12
0 t1Fn�k � A22

�

:

Thus, we have

�L .t/ D �ŒL� .t/

D det .t1Fn � ŒL�/
D det .t1Fk �A11/ det .t1Fn�k �A22/ :

Now, A11 is the matrix representation for LjM , so we have proven

�L .t/ D �LjM .t/ p .t/ ;

where p .t/ is some polynomial. ut

Exercises

1. Let K;L W V ! V be linear operators on a finite-dimensional vector space.

(a) Show that det .K � tL/ is a polynomial in t:
(b) If K or L is invertible show that det .tI �L ıK/ D det .tI �K ı L/ :
(c) Show part b in general.

2. Let V be a finite-dimensional real vector space and L W V ! V a linear
operator.

(a) Show that the number of complex roots of the characteristic polynomial is
even. Hint: They come in conjugate pairs.

(b) If dimR V is odd, then L has a real eigenvalue whose sign is the same as
that of detL:
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(c) If dimR V is even and detL < 0, then L has two real eigenvalues, one
negative and one positive.

3. Let

A D
�

˛ �

ˇ ı

�

:

Show that

�A .t/ D t2 � .trA/ t C detA

D t2 � .˛ C ı/ t C .˛ı � ˇ�/ :

4. Let A 2 Mat3�3 .F/ and A D �˛ij
�

. Show that

�A .t/ D t3 � .trA/ t2 C .jA11j C jA22j C jA33j/ t � detA;

where Aii is the companion matrix we get from eliminating the i th row and
column in A:

5. Show that if L is invertible, then

�L�1 .t/ D .�t/n
detL

�L
	

t�1



:

6. LetL W V ! V be a linear operator on a finite-dimensional inner product space
with

�L .t/ D tn C an�1tn�1 C � � � C a1t C a0:
Show that

�L� .t/ D tn C Nan�1tn�1 C � � � C Na1t C Na0:
7. Let

�L .t/ D tn C an�1tn�1 C � � � C a1t C a0
be the characteristic polynomial for L W V ! V: If vol is a volume form on V ,
show that

.�1/k an�kvol .x1; : : : ; xn/

D
X

i1<i2<���<ik
vol

	

: : : ; xi1�1; L .xi1 / ; xi1C1; : : : ; xik�1; L
	

xik



; xikC1; : : :



;

i.e., we are summing over all possible choices of i1 < i2 < � � � < ik and in each
summand replacing xij by L

	

xij



:

8. Suppose we have a sequence V1
L1!V2

L2!V3 of linear maps, where L1 is one-to-
one, L2 is onto, and im .L1/ D ker .L2/ : Show that dimV2 D dimV1 dimV3:
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Assume furthermore that we have linear operators Ki W Vi ! Vi such that the
diagram commutes

V1
L1�! V2

L2�! V3
K1 " K2 " K3 "
V1

L1�! V2
L2�! V3

Show that

�K2 .t/ D �K1 .t/ �K3 .t/ :
9. Using the definition

detA D
X

sign .i1; : : : ; in/ ˛i11 � � �˛inn

reprove the results from this section for matrices.
10. (The Newton Identities) In this exercise, we wish to generalize the formulae

˛n�1 D �trL; ˛0 D .�1/n detL; for the characteristic polynomial

tn C ˛n�1tn�1 C � � � C ˛1t C ˛0 D .t � �1/ � � � .t � �n/

of L:

(a) Prove that

˛k D .�1/n�k
X

i1<���<in�k

�i1 � � ��in�k
:

(b) Prove that

.trL/k D .�1 C � � � C �n/k ;
tr
	

Lk

 D �k1 C � � � C �kn:

(c) Prove

.trL/2 D tr
	

L2

C 2

X

i<j

�i�j

D tr
	

L2

C 2˛n�2:

(d) Prove more generally that

.trL/k D kŠ .�1/k ˛n�k

C
 

k

2

!

.trL/k�2 trL2

C
  

k

3

!

�
 

k

2

!!

.trL/k�3 trL3
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C
  

k

4

!

�
 

k

3

!

C
 

k

2

!!

.trL/n�4 trL4

:::

C
  

k

k

!

�
 

k

k � 1

!

C � � � C .�1/k
 

k

2

!!

trLk:

(e) If trL D 0; then

  

n

n

!

�
 

n

n � 1

!

C � � � C .�1/n
 

n

2

!!

trLn D nŠ detL:

(f) If trL D trL2 D � � � D trLn D 0; then �L .t/ D tn:

5.8 Differential Equations*

We are now going to apply the theory of determinants to the study of linear
differential equations. We start with the system L.x/ D Px � Ax D b; where

x .t/ 2 C
n;

b 2 C
n

A 2 Matn�n .C/

and x .t/ is the vector-valued function we need to find. We know that the homo-
geneous problem L.x/ D 0 has n linearly independent solutions x1; : : : ; xn: More
generally, we can show something quite interesting about collections of solutions.

Lemma 5.8.1. Let x1; : : : ; xn be solutions to the homogeneous problemL.x/ D 0;
then,

d

dt
.vol .x1; : : : ; xn// D tr .A/ vol .x1; : : : ; xn/ :

In particular,

vol .x1; : : : ; xn/ .t/ D vol .x1; : : : ; xn/ .t0/ exp .tr .A/ .t � t0// :

Moreover, x1; : : : ; xn are linearly independent solutions if and only if x1 .t0/ ; : : : ;
xn .t0/ 2 C

n are linearly independent. Each of these two conditions in turn imply
that x1 .t/ ; : : : ; xn .t/ 2 C

n are linearly independent for all t:
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Proof. To compute the derivative, we find the Taylor expansion for

vol .x1; : : : ; xn/ .t C h/
in terms of h and then identify the term that is linear in h. This is done along the lines
of our proof in the previous section that ˛n�1 D �trA; where ˛n�1 is the coefficient
in front of tn�1 in the characteristic polynomial.

vol .x1; : : : ; xn/ .t C h/
D vol .x1 .t C h/ ; : : : ; xn .t C h//
D vol .x1 .t/C Ax1 .t/ hC o .h/ ; : : : ; xn .t/C Axn .t/ hC o .h//
D vol .x1 .t/ ; : : : ; xn .t//

C hvol .Ax1 .t/ ; : : : ; xn .t//

:::

C hvol .x1 .t/ ; : : : ; Axn .t//

C o .h/
D vol .x1 .t/ ; : : : ; xn .t//C htr .A/ vol .x1 .t/ ; : : : ; xn .t//C o .h/ :

Thus,

v .t/ D vol .x1; : : : ; xn/ .t/

solves the differential equation

Pv D tr .A/ v

implying that

v .t/ D v .t0/ exp .tr .A/ .t � t0// :
In particular, we see that v .t/ ¤ 0 for all t provided v .t0/ ¤ 0:

It remains to prove that x1; : : : ; xn are linearly independent solutions if and only
if x1 .t0/ ; : : : ; xn .t0/ 2 C

n are linearly independent. It is obvious that x1; : : : ; xn
are linearly independent if x1 .t0/ ; : : : ; xn .t0/ 2 C

n are linearly independent.
Conversely, if we assume that x1 .t0/ ; : : : ; xn .t0/ 2 C

n are linearly dependent,
then we can find ˛1; : : : ; ˛n 2 C

n not all zero so that

˛1x1 .t0/C � � � C ˛nxn .t0/ D 0:

Uniqueness of solutions to the initial value problem L.x/ D 0; x .t0/ D 0; then
implies that

x .t/ D ˛1x1 .t/C � � � C ˛nxn .t/ 	 0
for all t: ut
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We now claim that the inhomogeneous problem can be solved provided we have
found a linearly independent set of solutions x1; : : : ; xn to the homogeneous
equation. The formula comes from Cramer’s rule but is known as the variations
of constants method. We assume that the solution x to

L.x/ D Px �Ax D b;
x .t0/ D 0

looks like

x .t/ D c1 .t/ x1 .t/C � � � C cn .t/ xn .t/ ;
where c1 .t/ ; : : : ; cn .t/ 2 C1 .R;C/ are functions rather than constants. Then,

Px D c1 Px1 C � � � C cn Pxn C Pc1x1 C � � � C Pcnxn
D c1Ax1 C � � � C cnAxn C Pc1x1 C � � � C Pcnxn
D A .x/C Pc1x1 C � � � C Pcnxn:

In other words,

L.x/ D Pc1x1 C � � � C Pcnxn:
This means that for each t , the values Pc1 .t/ ; : : : ; Pcn .t/ should solve the linear
equation

Pc1x1 C � � � C Pcnxn D b:
Cramer’s rule for solutions to linear systems (see Sect. 5.6) then tells us that

Pc1 .t/ D vol .b; : : : ; xn/ .t/

vol .x1; : : : ; xn/ .t/
;

:::
:::

Pcn .t/ D vol .x1; : : : ; b/ .t/

vol .x1; : : : ; xn/ .t/
;

implying that

c1 .t/ D
Z t

t0

vol .b; : : : ; xn/ .s/

vol .x1; : : : ; xn/ .s/
ds;

:::
:::

cn .t/ D
Z t

t0

vol .x1; : : : ; b/ .s/

vol .x1; : : : ; xn/ .s/
ds:

In practice, there are more efficient methods that can be used when we know
something about b: These methods also use linear algebra.
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Having dealt with systems, we next turn to higher order equations: L.x/ D
p .D/ .x/ D f; where

p .D/ D Dn C ˛n�1Dn�1 C � � � C ˛1D C ˛0
is a polynomial with complex or real coefficients and f .t/ 2 C1 .R;C/ : This can
be translated into a system Pz � Az D b; or

Pz �

2

6

6

6

4

0 1 � � � 0
:::
: : :

:::
:::

0 � � � 0 1

�˛0 � � � �˛n�2 �˛n�1

3

7

7

7

5

z D

2

6

6

6

4

0
:::

0

f

3

7

7

7

5

;

by using

z D

2

6

6

6

4

x

Dx
:::

Dn�1x

3

7

7

7

5

:

If we have n functions x1; : : : ; xn 2 C1 .R;C/ ; then the Wronskian is defined as

W .x1; : : : ; xn/ .t/ D vol .z1; : : : ; zn/ .t/

D det

2

6

6

6

4

x1 .t/ � � � xn .t/
.Dx1/ .t/ � � � .Dxn/ .t/
:::

: : :
:::

	

Dk�1x1



.t/ � � � 	Dk�1xn



.t/

3

7

7

7

5

:

In the case where x1; : : : ; xn solve L.x/ D p .D/ .x/ D 0, this tells us that

W .x1; : : : ; xn/ .t/ D W .x1; : : : ; xn/ .t0/ exp .�˛n�1 .t � t0// :

Finally, we can again try the variation of constants method to solve the
inhomogeneous equation. It is slightly tricky to do this directly by assuming that

x .t/ D c1 .t/ x1 .t/C � � � C cn .t/ xn .t/ :
Instead, we use the system Pz� Az D b; and guess that

z D c1 .t/ z1 .t/C � � � C cn .t/ zn .t/ :

This certainly implies that

x .t/ D c1 .t/ x1 .t/C � � � C cn .t/ xn .t/ ;
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but the converse is not true. As above, we get

c1 .t/ D
Z t

t0

vol .b; : : : ; zn/ .s/

vol .z1; : : : ; zn/ .s/
ds;

:::
:::

cn .t/ D
Z t

t0

vol .z1; : : : ; b/ .s/

vol .z1; : : : ; zn/ .s/
ds:

Here

vol .z1; : : : ; zn/ DW .x1; : : : ; xn/ :

The numerator can also be simplified by using a Laplace expansion along the
column vector b: This gives us

vol .b; z2; : : : ; zn/ D

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

0 x1 � � � xn
:::

::: � � � :::

0 Dn�2x2 � � � Dn�2xn
b Dn�1x2 � � � Dn�1xn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .�1/nC1 b

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x1 � � � xn
::: � � � :::

Dn�2x2 � � � Dn�2xn

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

D .�1/nC1 bW .x2; : : : ; xn/ :

Thus,

c1 .t/ D .�1/nC1
Z t

t0

b .s/W .x2; : : : ; xn/ .s/

W .x1; : : : ; xn/ .s/
ds;

:::
:::

cn .t/ D .�1/nCn
Z t

t0

b .s/W .x1; : : : ; xn�1/ .s/
W .x1; : : : ; xn/ .s/

ds;

and therefore, a solution to the inhomogeneous equation is given by

x .t/ D
�

.�1/nC1
Z t

t0

b .s/W .x2; : : : ; xn/ .s/

W .x1; : : : ; xn/ .s/
ds

�

x1 .t/C � � �

C
�

.�1/nCn
Z t

t0

b .s/W .x1; : : : ; xn�1/ .s/
W .x1; : : : ; xn/ .s/

ds

�

xn .t/
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D
n
X

kD1
.�1/nCk xk .t/

Z t

t0

b .s/W .x1; : : : ; Oxk; : : : ; xn/ .s/
W .x1; : : : ; xn/ .s/

ds:

Let us try to solve a concrete problem using these methods.

Example 5.8.2. Find the complete set of solutions to Rx � 2 Px C x D exp .t/ : We
see that Rx � 2 PxC x D .D � 1/2 x; thus the characteristic equation is .� � 1/2 D 1:
This means that we only get one solution x1 D exp .t/ from the eigenvalue � D 1:
The other solution is then given by x2 .t/ D t exp .t/. We now compute the
Wronskian to check that they are linearly independent:

W .x1; x2/ D
ˇ

ˇ

ˇ

ˇ

exp .t/ t exp .t/
exp .t/ .1C t/ exp .t/

ˇ

ˇ

ˇ

ˇ

D exp .2t/

ˇ

ˇ

ˇ

ˇ

1 t

1 .1C t/
ˇ

ˇ

ˇ

ˇ

D ..1C t/ � t/ exp .2t/

D exp .2t/ :

Note, we could also have found x2 from our knowledge that

W .x1; x2/ .t/ D W .x1; x2/ .t0/ exp .2 .t � t0// :
Assuming that t0 D 0 and we want W .x1; x2/ .t0/ D 1; we simply need to solve

W .x1; x2/ .t/ D x1 Px2 � Px1x2 D exp .2t/ :

Since x1 D exp .t/ ; this implies that

Px2 � x2 D exp .t/ :

Hence,

x2 .t/ D exp .t/
Z t

0

exp .�s/ exp .t/ ds

D t exp .t/

as expected.
The variation of constants formula now tells us to compute

c1 .t/ D .�1/2C1
Z t

0

f .s/ x2 .s/

W .x1; x2/ .s/
ds

D �
Z t

0

exp .s/ .s exp .s//

exp .2s/
ds
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D �
Z t

0

sds

D �1
2
t2

and

c2 .t/ D .�1/2C2
Z t

0

f .s/ x1 .s/

W .x1; x2/ .s/
ds

D
Z t

0

1ds

D t:
Thus,

x D �1
2
t2x1 .t/C tx2 .t/

D �1
2
t2 exp .t/C t .t exp .t//

D 1

2
t2 exp .t/

solves the inhomogeneous problem and x D ˛1 exp .t/C ˛2t exp .t/C 1
2
t2 exp .t/

represents the complete set of solutions.

Exercises

(1) Let p0 .t/ ; : : : ; pn .t/ 2 C Œt � and assume that t 2 R: If

pi .t/ D ˛ni tn C � � � C ˛1i t C ˛0i ;
show that

W .p0; : : : ; pn/ D det

2

6

6

6

4

p0 .t/ � � � pn .t/
.Dp0/ .t/ � � � .Dpn/ .t/
:::

:::

.Dnp0/ .t/ � � � .Dnpn/ .t/

3

7

7

7

5

D det

2

6

6

6

6

6

4

˛00 � � � ˛0n
˛10 � � � ˛1n
2˛20 � � � 2˛2n
:::

:::

nŠ˛n0 � � � nŠ˛nn

3

7

7

7

7

7

5
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D nŠ � .n � 1/Š � � � � � 2 � 1 det

2

6

6

6

6

6

4

˛00 � � � ˛0n
˛10 � � � ˛1n
˛20 � � � ˛2n
:::

:::

˛n0 � � � ˛nn

3

7

7

7

7

7

5

:

(2) Let x1; : : : ; xn be linearly independent solutions to

p .D/ .x/ D 	Dn C ˛n�1Dn�1 C � � � C ˛0



.x/ D 0:
Attempt the following questions without using what we know about existence
and uniqueness of solutions to differential equations.

(a) Show that

p .D/ .x/ D W .x1 : : : ; xn; x/

W .x1 : : : ; xn/
:

(b) Conclude that p .D/ .x/ D 0 if and only if W .x; x1 : : : ; xn/ D 0:
(c) If W .x; x1 : : : ; xn/ D 0; then x is a linear combination of x1; : : : ; xn:
(d) If x; y are solutions with the same initial values: x .0/ D y .0/ ; Dx .0/ D

Dy .0/ ; : : : ; Dn�1x .0/ D Dn�1y .0/ ; then x D y:
(3) Assume two monic polynomials p; q 2 C Œt � have the property that

p .D/ .x/ D 0 and q .D/ .x/ D 0 have the same solutions. Is it true that
p D q‹ Hint: If p .D/ .x/ D 0 D q .D/ .x/ ; then gcd .p; q/ .D/ .x/ D 0:

(4) Assume that x is a solution to p .D/ .x/ D 0; where p .D/ D Dn C � � � C
˛1D C ˛0:
(a) Show that the phase shifts x! .t/ D x .t C !/ are also solutions.
(b) If the vectors

2

6

6

6

4

x .!1/

Dx .!1/
:::

Dn�1x .!1/

3

7

7

7

5

; : : : ;

2

6

6

6

4

x .!n/

Dx .!n/
:::

Dn�1x .!n/

3

7

7

7

5

form a basis for Cn for some choice of !1; : : : ; !n 2 R, then all solutions
to p .D/ .x/ D 0 are linear combinations of the phase-shifted solutions
x!1 ; : : : ; x!n :

(c) If the vectors

2

6

6

6

4

x .!1/

Dx .!1/
:::

Dn�1x .!1/

3

7

7

7

5

; : : : ;

2

6

6

6

4

x .!n/

Dx .!n/
:::

Dn�1x .!n/

3

7

7

7

5
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never form a basis for Cn for any choice of !1; : : : ; !n 2 R, then x is a
solution to a kth equation for k < n: Hint: If x is not a solution to a lower
order equation, the x;Dx; : : : ;Dn�1x is a (cyclic) basis for the solution
space.

(5) Find a formula for the real solutions to the system

� Px1
Px2
�

�
�

a �b
b a

� �

x1
x2

�

D
�

b1
b2

�

;

where a; b 2 R and b1; b2 2 C1 .R;R/ :
(6) Find a formula for the real solutions to the equation

Rx C a Px C bx D f;

where a; b 2 R and f 2 C1 .R;R/ :
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Skew-adjoint operator, 265
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Span, 56
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Subspace, 11, 54
Subspace Theorem, 65, 91, 110
Sum of subspaces, 55
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Symmetric operator, 265

T
Trace, 27

Invariance of, 27, 46
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U
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V
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