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Introduction

The main object of this book is to reorient and revitalize classical geometry
in a way that will bring it closer to the mainstream of contemporary
mathematics. The postulational basis of the subject will be radically
revised in order to construct a broad-scale and conceptually unified
treatment.

The familiar figures of classical geometry—points, segments, lines,
planes, triangles, circles, and so on—stem from problems in the physical
world and seem to be conceptually unrelated. However, a natural setting
for their study is provided by the concept of convex set, which is compara-
tively new in the history of geometrical ideas. The familiar figures can then
appear as convex sets, boundaries of convex sets, or finite unions of
convex sets. Moreover, two basic types of figure in linear geometry are
special cases of convex set: linear space (point, line, and plane) and
halfspace (ray, halfplane, and halfspace). Therefore we choose convex set
to be the central type of figure in our treatment of geometry. How can the
wealth of geometric knowledge be organized around this idea? By defini-
tion, a set is convex if it contains the segment joining each pair of its
points; that is, if it is closed under the operation of joining two points to
form a segment. But this is precisely the basic operation in Euclid. OQur
point of departure is to take the operation of joining two points to form a
segment as fundamental, and to throw the burden of unifying the material
on the consistent and relentless exploitation of this operation.

The postulates then will not involve complex ideas or complicated
figures, but will state elementary properties of the join operation that can
be grasped intuitively and verified concretely in planar diagrams.

The postulates are formulated as universal properties of points. Thus,
there are no exceptional or degenerate cases to be excluded. This is in

XV



xvi Introduction

striking contrast with classical Euclidean postulates, such as: two distinct
points determine a line; three noncollinear points determine a plane. As a
result, proofs usually involve the application of the postulates as general
principles and there is little or no need to consider the special or degener-
ate cases that arise so often in conventional treatments of Euclidean
geometry.

A salient feature of the treatment is its freedom from the classical
restriction to the study of geometries that are, at most, three-dimensional.
Indeed, our postulates are dimension free—they involve no dimensionality
assumption, explicit or implicit.

Consequently a major portion of the development is dimension free and
is applicable to spaces of arbitrary dimension, finite or infinite. (This belies
a w1despread belief that the only effective way to study higher dlmenswnal
geometry is by the intervention of linear algebra.)

How does the theory compare with Euclidean geometry? The postulates
are abstracted from Euclidean propositions, and the theory may be consid-
ered a generalization of Euclidean geometry. It is, however, much broader
—the theory has been freed from constraints that arose naturally in the
historical evolution of Euclidean geometry but now impede its develop-
ment. Many familiar Euclidean propositions—in addition to the dimen-
sional restriction mentioned above—are omitted from the postulate set.
These include: (i) the Euclidean parallel postulate; (ii) the proposition that
of three distinct collinear points, one is between the other two; and (iii)
two distinct points determine a line. Moreover, the treatment is nonmetri-
cal-—no postulates for congruence have been assumed.

Can this brave new geometrical world be achieved merely by referring
to a segment as the join of two points? Of course not. A reanalysis and
reconstruction of classical geometry in terms of the join operation is
required. First of all the join operation is not to be restricted artificially, it
must apply equally well to all pairs of points, distinct or coincident. Even
more important, the operation must be generalized to apply to all pairs of
geometric figures.

In a Euclidean geometry, we define the join of points a, b, denoted by
a-b or ab, to be the open segment with endpoints ¢ and b if a #b and
define the join of a point a and itself to consist of a. The operation join is
extended to apply to any two figures 4 and B in a natural way: The join
A-B or AB, of A and B, is the union of all joins ab where point a ranges
over 4 and point b over B.

There is, in Euclidean geometry, a second important operation—that of
extending a segment indefinitely to form a ray. This can be treated as a
sort of inverse operation to join and suggests the following

Definition. Let ¢ and b be any points. Then a/ b, the extension of a from b,
is the set of points x which satisfy the condition that bx contain point a.
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This operation is extended in the same way as join to define A/ B, the
extension of A from B, for any two figures A and B.

Chapter 1 provides an introduction to the abstract theory by studying
the join and extension operations in Euclidean geometry in a concrete,
intuitive, exploratory manner.

The formal development of the theory begins in Chapter 2, and is based
on the idea of join operation. Let J be a set of elements (points) and - an
operation which assigns to each ordered pair (a, b) of elements of J a
uniquely determined subset of J, denoted by a- b or ab. Then the operation
- is a join operation (in set J) and a- b is the join of a and b. We assume
that the set J and the join operation - satisfy four postulates suggested by
elementary properties of the Euclidean join operation. Convex sets are
defined as closed under join, and their elementary properties deduced. The
concepts of geometrical or intrinsic interior and closure of a convex set are
defined. These ideas pervade the theory.

The convex hull of an arbitrary set is introduced in Chapter 3. Join
theoretic formulas for convex hulls are derived. Polytopes are treated as
convex hulls of finite sets.

In Chapter 4, the extension a/b of two elements a, b of J is defined, in
the same way as Euclidean extension, in terms of join. Three new pos-
tulates involving extension are introduced to complete the basic postulate
set for the theory. Speaking geometrically, the concept of ray (or halfline) is
now available in the abstract theory. In formal terms, we have at our
command an algebra, of strong deductive power, involving two “inverse”
operations join - and extension/.

Chapter 5 introduces the idea of join geometry, our basic object of
study. A join geometry is a model of the theory—it is a pair (J, -)
composed of a setJ and a join operation - in J, which satisfy the basic set
of postulates. The notion of isomorphism of join geometries is studied. A
collection of join geometries that are used as illustrative examples and
counterexamples is presented. Real n-space R” is converted into a join
geometry by defining join in the natural manner. An infinite dimensional
analogue of R" is shown to contain a pathological convex set—a nonempty
convex set whose interior is empty.

Chapter 6 studies linear sets (or linear spaces) defined as closed under
join and extension. Among the topics considered are generation of linear
sets, linear independence, and how /ine should be defined. It is interesting
that linear sets of a join geometry bear analogies to subgroups of an
abelian group.

Chapter 7 studies the idea of extreme set of a convex set. An extreme set
of a convex set A is loosely a convex subset of 4 which is “peripheral” to
A. The idea is suggested by, and is a generalization of, the classical notion
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of vertices, edges, and faces of a polyhedron. Two types of extreme sets,
called components and faces, play important roles in the study of the
structure of a convex set and are singled out for special study.

Chapter 8 deals with rays and halfspaces. A ray or halfline is defined as
a set p/a, where p and a are points; p is its endpoint. Similarly, let L be a
nonempty linear set, and a a point. Then L/a is a halfspace of L, or simply
a halfspace; L is its edge. A study of rays is given, concentrating on rays
with a common endpoint. This is generalized to an analogous treatment for
halfspaces with a common edge. A halfspace of a linear set in a join
geometry is analogous to a coset of a subgroup in an abelian group.

Chapter 9 presents a treatment of cones and hypercones based on the
material of Chapter 8. A cone is the union of a family of rays that have a
common endpoint. A hypercone is the union of a family of halfspaces that
have a common edge.

In Chapter 10, the family of halfspaces of a linear space is converted
into a geometrical system—called a factor geometry—by defining a join
operation in it in a natural way. Factor geometries and join geometries
share many common properties but differ markedly as algebraic systems,
since a factor geometry has an identity element and its elements have
inverses. The development has strong—though unforced—analogies with
algebraic theories of congruence relations and factor or quotient systems.

Chapter 11 is devoted to the theory of exchange geometries, which are
join geometries that satisfy a postulate equivalent to “two points determine
a line.” A theory of dimension is developed in an exchange geometry and
the familiar incidence and intersection properties of lines and planes in
Euclidean 3-space is generalized to finite-dimensional linear spaces.

Chapter 12 studies ordered geometries, which are join geometries that
satisfy the Euclidean proposition: Of three distinct collinear points, one is
between the other two. Among the results derived are basic geometric
properties of polytopes; conditions for the separation of linear spaces by
linear subspaces; the theorems of Radon, Helly, and Caratheodory on
convex sets; and a striking formula for the linear space generated by a
finite set of points.

In Chapter 13 various properties of polytopes in R” are extended to
ordered geometries. In particular, polytopes are related to intersections of
halfspaces.

Since our approach is so different from the usual one, we felt compelled
to develop the material slowly and deliberately with much concrete geo-
metric motivation. This was done because of the unfamiliarity, not the
inherent difficulty, of the treatment. The book assumes little formal
knowledge of geometry and indeed little beyond high school algebra and
some familiarity with intuitive set theory.

The book can be studied rather flexibly. Chapter 1 helps to provide a
transition from intuitive informal geometry to an axiomatic formal devel-
opment and can be read by able high school upperclassmen. The reader
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who has some degree of mathematical maturity need not begin with
Chapter 1 but can use it as a source of supplementary material for the first
few chapters. Chapters 2—6 form a basic course sequence in the abstract
theory. (Some sections may be omitted in a first reading, for example: 2.20,
2.25, 2.26, 3.12-3.15, 4.20, 4.21, 4.23-4.26, and 6.20-6.24.) Except for the
definition of join geometry, Chapter 5 can be skirted. But the reader is
advised to make some contact with the models presented, since they shed
so much light on the theory. ]

Here are some longer sequences with different emphases: Chapters 2-7;
2-6, 8; 2-6, 11; 2-6, 8, 9; 2-6, 8—10; 2-6, 8, 12; 2-8, 12, 13. A structure
chart which indicates the interrelations of the chapters appears below.
Footnotes to the titles of Chapters 7, 8, 10, and 12 provide more detail on
the interrelations of the chapters.

The text is accompanied by a large and varied collection of exercises.
They include simple exploratory exercises, verifying or testing a conjecture
in a model, proofs that require only a few steps, difficult problems (the
most difficult are indicated by an asterisk), and problems that involve
extending the theory, labelled Projects.

Although the book was written as an undergraduate text, graduate
students and mathematicians may find it of interest. There may be curios-
ity about a contemporary approach to the classical geometry which is our
heritage from the Greeks. Those for whom geometry has little intuitive
appeal may be attracted by the striking and unexpected analogies that
appear between join geometries and algebraic structures, especially abelian
groups. Specialists in the theory of convex sets may be interested both
because of the broad vistas that seem to be opened up by the join theoretic
axiomatization of the subject and the questions that arise on the extent to
which the familiar theory of convexity in R” can be extended to a join
geometry, or to special types of join geometries.
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The Join and Extension Operations
in Euclidean Geometry'

This chapter is intended to prepare the reader for the formal development
of the theory of join operations which will begin in Chapter 2. It is devoted
to the study, in concrete terms, of geometric operations which are sug-
gested by two familiar ideas in Euclidean geometry:

(1) Joining two points to form a segment (Figure 1.1).

a b
Figure 1.1
(2) Extending or prolonging a segment endlessly beyond one of its end-
points (Figure 1.2).

-
-<

a b
Figure 1.2

The operations are made precise; they are generalized to be applicable
to any two geometric figures; their elementary properties are studied.
Diagrams and examples are used to discover and to verify basic properties
of the operations. The treatment is concrete, intuitive, exploratory—it may

be described, a bit loosely, as the intuitive geometry of the operations join
and extension.

! Although Chapter 1 is not a prerequisite for the formal theory which begins in Chapter 2,
some familiarity with it may help to prepare the reader for Chapter 2.
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1.1 The Notion of Segment: Closed and Open

In order to define the join of two points it is necessary to clarify the notion
of segment. In high school geometry the term segment or line segment
stands for the portion of a (straight) line L which is bounded by two points

- » L

Figure 1.3

of L, called the endpoints of the segment (Figure 1.3). What about the
endpoints: Are they to be included in the segment? Once this question is
posed it becomes evident that there are two notions of segment: closed
segment and open segment. A closed segment contains its endpoints—an
open segment excludes its endpoints. The two notions can be characterized
in terms of the idea of betweenness. Let @ and b be distinct points. Then
the closed segment ab is the figure consisting of a, b and all points between

a and b. The open segment ab consists simply of all points between a and
b.

o AV
hay 7
a b a b

Figure 1.4

You may have encountered a similar distinction on the number line in
the use of the terms closed interval and open interval. For example, the
closed interval [0, 1] consists of 0, 1 and all real numbers that are
numerically between 0 and 1, that is, all real numbers x which are greater
than O and less than 1. The open interval (0, 1) contains just the real
numbers that are numerically between 0 and 1—it has no least or greatest
number.

A

Y

Figure 1.5

In the study of joining operations we find it preferable to join points by
open rather than closed segments.? So for the sake of convenience we shall
use the term segment without qualification to refer to open segment.

Finally let us mention that a segment will be conceived as composed of
points, that is, a segment is a class or set of points. Geometric figures in
general will be conceived as sets of points.

2 The basis for the preference will be indicated in the last section of the chapter.
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1.2 The Join of Two Distinct Points
To begin we define the idea of the join of two distinct points.

Definition. Let @ and b be distinct points. Then the join of point a and point

b stands for the segment ab and is denoted operationally by a- b or simply
ab (Figure 1.6).

ab

Figure 1.6

1.3 Two Basic Properties of the Join Operatioh

What can be said about this operation of joining two points? It has the
following simple but very basic properties:

(1) The join ab of any two distinct points @ and b is a definite nonempty
set of points.

(2) Commutative law: ab = ba for any two distinct points a and b.

Can additional properties be found? Yes. Consider, for example, the
principle that the segment joining two points of a given segment S is
contained in S (Figure 1.7). This can be restated in join terminology as
follows: If p and ¢ are distinct points of the join ab, then their join pq is
contained in ab.

Figure 1.7

It is not hard to see that any geometric principle which is expressible in
terms of the notion of segment or in terms of the notion of betweenness
can be restated as a property of the join of pairs of points.

EXERCISES

1. Restate in join terminology: If p is between a and b, and q is between a and p,
then g is between a and b.

Figure 1.8
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2. Restate in join terminology: If p is a point of segment S, then the segments that
join p to the endpoints of S have no common point.

S

p
Figure 1.9

3. Restate in join terminology: If x is between @ and a point p of segment bc, then
x is between ¢ and a point ¢ of segment ab.

p

Figure 1.10

4. Find some other properties of segments and betweenness of points and state
them in join terminology.

1.4 A Crucial Question

What has been achieved? A start has been made in the operation-centered
treatment of elementary geometry: (1) the join operation has been defined
for pairs of distinct points; and (2) two basic properties of the join
operation have been formulated. You may feel that we have not achieved
very much, that we are merely restating old ideas in a new vocabulary:
Where Euclid says segment we say join of two points.

But our object is quite different. It is to change ideas rather than
terminology. Our primary purpose is to develop a treatment of geometry in
which the join operation plays a central role. It is hard to see how this can
be done if we just stick to joins of two points. We should be able to
construct more complicated figures than segments. To do this we should be
able to join more complicated objects than points. Why shouldn’t we be
able to consider the join of a point and a segment or a point and a
circle—or the join of any two figures for that matter?

Our approach to geometry cannot hope to be effective unless the scope
of the join operation is significantly enlarged.
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1.5 The Join of Two Geometric Figures

Now we show how the join operation can be extended to apply to two

geometric figures, conceived as sets of points. Three examples are given
before the formal definition is presented.

ExamMpLE I (The join of a point and a segment). Suppose points a, b and ¢
are noncollinear (Figure 1.11). To get the join of point a and segment bc
[denoted by a(bc)], join a to each point of bc and unite all the joins
formed. The figure obtained is the interior of triangle abc. Thus the join of
a and bc is the interior of triangle abc.

a

b c
be

Figure 1.11 a(bc) = Interior (triangle abc).

ExampLE II (The join of a point and a circle). Suppose point p is not in the
plane of circle C (Figure 1.12). To get the join of point p and circle C
(denoted by pC), join p to each point of C and unite all the joins formed.
We obtain a circular cone (conical surface) with apex p and base C
excluding p and all points of C.

Figure 1.12 pC = circular cone.
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ExampLE III (The join of two segments). Let ab and cd be two segments in
a plane such that a, b, ¢ and d are the vertices of a convex (nonreentrant)
quadrilateral as indicated in Figure 1.13. The join of ab and cd, denoted by
(ab)(cd), is obtained by joining each point of ab to each point of cd and
uniting all the joins formed. The join of ab and cd is the interior of
quadrilateral abcd.

a ab / b
d ) c
Figure 1.13 (ab)(cd) = Interior (quadrilateral abcd).

- \ f—
@ Q
A : B

Figure 1.14

These examples suggest the following definition (see Figure 1.14).

Definition. Let 4 and B be two geometric figures, which we conceive as
sets of points. The join of set A and set B is the set of points obtained by
joining each point @ of A to each point b of B and uniting all joins ab
formed in this way. The join of 4 and B is denoted by 4- B or simply AB.
If A consists of a single point a, we call the join of 4 and B simply the join
of a and B and denote it by aB (Figure 1.15). Similarly, if B reduces to a
single point b, we refer to the join of 4 and b and denote it by 4b.

A
B
a b
aB Ab
Figure 1.15

In simple terms the definition says: x is a point of the join 4B of sets A
and B if and only if there exists a point a of set A and a point b of set B
such that x is a point of ab (Figure 1.16).



Figure 1.16

section and the next one the consideration of joins of two
figures is limited to the case where the figures do not intersect.

on Notation. Systematically in our study of geometry, lower case
, ¢, . .. will be used to denote points and capitals 4, B, C, . ..
reometric figures or sets of points.

tion began with the presentation of several examples of joins of
figures. The examples indicated that the join of two geometric
1d be a new and more complex figure. An important property of
reration—which will be seen to pervade the theory—is that it
rocedure for the construction of complex figures from simple
property of join as a “figure generator” appears in the following
sises, some of which you may find surprising and stimulating—
iope, challenging.

(Jons oF Two FIGURES)

exercises only joins of nonintersecting figures are considered.
zises 1-17, identify and describe the indicated joins. You may
ns or models. No proof is required.

n of point p and I, the interior of circle C, if p is not in the plane of C.
are Example II in the text above.)

n of point p and I, the interior of triangle abc, if p is not in the plane of
> abe.

1 of point p and line L, if p is not on L.
n of two parallel lines.
n of two skew lines, that is, two lines in space which do not lie in the

lane.

ion of Ray or Halfline. Suppose a and b are two distinct points.

"ay or halfline ab, denoted by the symbol ab consists of all

ine ab that lie on the same side of point a as b (Figure 1.17).
ab

=
o

A

a b
Figure 1.17
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— -
Point a is called the endpoint of ab. Note that ab does not contain its
endpoint a.

6.

10.

*11.
12.

13.

14.

15.

16.
17.

18.

19.

-
The join of point p and ray abif p is not on line ab. (Compare Exercise 3
above.)

-
. The join of ray ab and line L if @ is on L and b is not on L. (Compare

Exercise 3 above.)

—>
. The join of the distinct rays ab and ac. Try not to miss any cases.

. The join of segments ab and ac, if ab and ac do not intersect. Try not to miss

any cases.

The join of segments ab and cd, if ab and cd are coplanar and do not
intersect. Try not to miss any cases. (Compare Example III in the text above.)

The join of two noncoplanar segments ab and cd.

The join of segment ab and circle C, if ab is perpendicular to the plane of C
and a is the center of C.

- -
The join of ray ab and circle C, if ab is perpendicular to the plane of C and
a is the center of C.

The join of line L and circle C, if L is perpendicular to the plane of C at the
center of C.

In Exercise 12, the join of ab and I, the interior of C.

N
In Exercise 13, the join of ab and I, the interior of C.

The join of line L and I, the interior of circle C, if L is perpendicular to the
plane of C at a point of C.

Suppose a is not a point of segment be. Will their join a(bc) always be the
interior of a triangle as in Example I in the text above? If not, what can it be?
Try not to miss any cdses.

Suppose point p is not a point of circle C. Will their join pC always be conical
as in Example II in the text above? If not, what can it be? Have you
considered all cases?

In Exercises 20 through 25 suppose that a Euclidean plane has been
assigned a Cartesian coordinate system. Let p be the point (0, 0) and C the

graph of the given equation. Sketch the join pC and describe it as
accurately as you can.

20 y=x2+1. 2l.y=x*+1 2. y=1/x

23, y=¢”, 24. y =In x. 25. y=cos x, 0 < x < 2.

26.

Make up and solve some of your own problems on the join of two noninter-
secting figures.
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1.6 Joins of Several Points: Does the Associative
Law Hold?

The join operation, which had been defined for pairs of points (Section
1.2), was extended in the last section to pairs of sets of points. This
extension of the scope of the operation has two important consequences.
First, as appeared in the last section (particularly in the exercises), it makes
possible the construction of a wide variety of geometric figures starting
with simple ones. Second, it enables us to define joins of three or more
points and raises a host of questions about the figures formed by joining
three or more points.

on
N
ENY

Sk

o
53
o
o

(ab)e ¢
Figure 1.18

Our point of departure is quite simple. Suppose, for example, three
noncollinear points a, b and ¢ are given (Figure 1.18). Certainly ab and ¢
are definite geometric figures. Then their join (ab)c is a definite geometric
figure (definition of join of two geometric figures, Section 1.5). Similarly
a(bc), b(ac), (ab)(ac), and so on, are definite geometric figures. It makes
sense then to ask if these geometric figures are related. In particular, does
the associative law

(ab)c = a(bc) €))]
hold?

To answer the question recall that a(bc) is the interior of triangle abc
(Section 1.5, Example I). Consider (ab)c (Figure 1.19). By definition (ab)c
is gotten by joining each point of ab to ¢ and uniting all the joins formed.
The result also is the interior of triangle abc, so that (1) holds.

a(be) ab (ab)c

be
Figure 1.19
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Summary. The associative law, (ab)c = a(bc), is valid for any three
noncollinear points a, b and c.

The result suggests the following definition.

Definition. If a, b and ¢ are noncollinear points, each of the equal sets
(ab)c, a(bc) is denoted by abe, which is called the join of the points a, b
and c.

A good sample of formal properties of join which supplement the
commutative law (Section 1.3) and the associative law is presented in
concrete form in the next exercise set. Some of the exercises involve
triangles, and you may want to glance at the formal definition of the idea.
You are not obliged to use it in solving a problem: you may find your
intuitive notion of triangle sufficient. Here it is, expressed in join notation.
(See Figure 1.20.)

ab ac

be
Figure 1.20

Definition. Let a, b and ¢ be noncollinear points. Then the set consisting of
a, b, ¢ and all points of ab, ac and bc is called triangle abc (in symbols
Aabc) or simply a triangle.

The definition of a tetrahedron (or triangular pyramid), which may be

considered the analogue in 3-space of a triangle, appears below, following
Exercise 1.

EXERCISES (PROPERTIES OF THE JOIN OPERATION)®

The following exercises involve the verification or the discovery of
formal properties of join and are to be done with the aid of diagrams or
models. Although proofs are not called for, try to clarify the intuitive
geometric basis for your conclusion. In all cases only joins of nonintersect-
ing figures are considered.

® The reader is advised to examine Exercises 1 and 2.
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1. (a) If a, b and ¢ are noncollinear points, verify that
abc = bac = Interior( Aabc).
(b) How many similar equalities can you find for abc?

Definition. Let a, b, ¢ and d be noncoplanar points. Then the set consisting
of a, b, ¢, d and all points of ab, ac, ad, bc, bd, cd, abc, abd, acd, bcd is
called tetrahedron abcd or simply a tetrahedron (Figure 1.21).

abc

7

c

d

Figure 1.21

2. If a, b, ¢ and d are noncoplanar points verify that
a(bed) = (abc)d = Interior(tetrahedron abed).

3. If a, b, ¢ and d are noncoplanar points verify that

(ab)(cd) = Interior(tetrahedron abcd).
(Compare Exercise 11 at the end of Section 1.5.)

4. (a) If a, b, ¢ and d are noncoplanar points, verify that
a(bed) = c(dab) = Interior(tetrahedron abcd).
(b) How many similar equalities can you find for a(bed)?
5. Let a and b be two distinct points.
(a) Verify that a(ab) = ab.

(b) Can you find a point x distinct from ¢ which is not in ab and satisfies
x(ab) = ab?

(c) How many such points x are there?

6. Let a, b and ¢ be noncollinear points.
(a) Verify that a(abc) = abc.
(b) Can you find a point x distinct from a which is not in abc and satisfies
x(abc) = abc? 1

(c) Can you find all points x which are not in abc and satisfy (1)? Can you

describe the figure they form?

7. Try to make up and solve a problem similar to Exercises 5 and 6 for four
noncoplanar points a, b, c, d.
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8. (a) Identify the join (Aabc)(abc).
(b) Compare your result in (a) with that in Exercise 6(c).
(¢) Does the result in (a) extend to tetrahedrons?

9. Let I be the interior of a circle. Are there any points x that are not in I and
satisfy xI = I?

10. (a) Let S be a closed segment. Are there any points x that are not in S and
satisfy xS = S? Explain your answer.

(b) The same as (a) if S is a closed circular region, that is, S is the set of all
points on or interior to a circle.

11. (a) Identify pC if C is a circle and p is a point of its interior. The same if pis a
point of the exterior of C. Compare your results.
(b) Identify p(Aabc) if p is a point of the interior of Aabc. The same if p is a

point of the exterior of Aabc. Try not to miss any cases. Compare your
results.

12. Suppose B is any figure (set of points) and point a is not in B.
(a) Show that a cannot be a point of the join aB. Does this principle square
with your answers to Exercise 11?
(b) When will a(aB) = aB hold?

13. If a, b and c are noncollinear points, verify that
(ab)(ac) = (ba)(bc) = (ca)(ch).

14. Let a, b, ¢ and d be the vertices of a convex quadrilateral, as indicated in
Figure 1.22. Verify that

(ab)(cd) = (ad)(bc) = Interior(quadrilateral abcd).
(Compare Section 1.5, Example II1.)

/N

Figure 1.22

15. Does the conclusion in Exercise 14 hold if a, b, ¢ and d are the vertices of a
nonconvex (or reentrant) quadrilateral, as indicated in Figure 1.237 If not, can
part of the conclusion be saved?

Figure 1.23

16. Let a, b, ¢ and d be noncoplanar points. Verify that
((ab)(ac))(ad) = (ab)((ac)(ad)).
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1.7 The Join of Two Intersecting Geometric Figures

You may recall that a limitation was imposed in Section 1.5 (second
paragraph following Definition) to consider only joins of nonintersecting
figures, that is, figures that have no common point. Why was this done? To
answer the question suppose two figures 4 and B do have a common
point, say ¢ (Figure 1.24). Then the definition of the join AB (Section 1.5)
requires us to find the join cc. But no meaning has been assigned to the

symbol cc: the join ab has been defined (Section 1.2) only if a and b are
distinct points.

Figure 1.24

Thus consideration of the join of two intersecting figures was avoided
specifically to postpone the problem of dealing with the special case of the
join of a point and itself. We did this to focus attention on the general case
of the join of two distinct points—to exhibit its essential role in construct-
ing the join of two figures. (See Section 1.5, Examples I, II, III and
Exercises.)

However, many nontrivial cases of the join 4B arise where the figures 4
and B do intersect, for example (see Figure 1.25): the join of a segment
and one of its points; the join of two intersecting segments, of two

Figure 1.25
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intersecting lines, or of two intersecting planes; the join of a line and a
plane which intersect; and even the join of a line and itself or a plane and
itself. Each of these calls for the join of a point and itself.

1.8 A Decision Must Be Made

We are confronted by a question which no longer can be put off: Should
the join of a point and itself be assigned meaning? Should it be formally
defined? If it is not to be defined, a question still remains: How shall the
definition of the join 4B of two figures 4 and B be interpreted if they
intersect? The problem has not been manufactured artificially. It is not
comparable, for example, to the question in arithmetic of defining the sum
of an integer and itself. There, a uniform procedure exists for adding
integers a and b independently of whether a and b are distinct or the same.

In an intuitive geometric sense the question before us is this: Does there
exist a useful and reasonable special or degenerate form of the idea of
segment?

1.9 The Join of a Point and Itself

We believe strongly that there does exist a suitable definition of the join of
a point and itself, and present it with no more ado.

Definition. Let a be any point. We define the join of a and a, denoted by
aa, to consist of point a, and write aa = a.

The definition of aa is simple—it is also, we feel, quite natural. In
support of this consider the series of joins of points indicated in Figure
1.26. The first, (abc)d, is the interior of a tetrahedron (Exercise 2 at end of
Section 1.6). Thus (abc)d is a solid figure and is 3-dimensional or has
dimension number 3. The second, abc, is a triangle interior and so is
2-dimensional or has dimension number 2. The third, ab, is a segment and

d
(abc)d
abc ab aa
a b a b g .
c c

Figure 1.26
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has dimension number 1. It seems reasonable to expect that aa, the final
term in the series, should have dimension number 0—and it does, since aa
is a, a point.

The definition of aa has a few simple but nontrivial consequences. First,

the two basic properties of the join operation (Section 1.3) hold without
restriction:

(1) The join ab of any two points a and b is a definite nonempty set of
points.

(2) Commutative law: ab = ba for any two points a and b.

Second, the definition of the join AB (Section 1.5) is now perfectly
precise. It applies uniformly whether the figures 4 and B intersect or do
not intersect. For the join ab of point a of 4 and point b of B is now
precisely defined for the case a = b as well as for the case a % b. In simple
terms the definition of 4B says: x is a point of the join AB of the figures 4
and B if and only if (1) x is between some point of A and some point of B,
or (2) x is a point common to A and B (see Figure 1.27).

X
\/

A 9 B
Figure 1.27

Summary Principle. The join AB of any two geometric figures A and B
is a definite geometric figure.

EXERCISES (JOINS OF TWO INTERSECTING FIGURES)

In Exercises 1 through 12 identify and describe the indicated joins. You
may use diagrams or models. No proof is required.

1. The join of point p and circle C if p is a point of C.

2. The join of point p and triangle T if p is a point of T and not a vertex; if p is a
vertex.

3. The join of point p and line L if p lies on L.
4. The join of two distinct intersecting lines.

5. The join of two intersecting segments not necessarily distinct. Try not to miss
any cases.

6. The join of a line with itself; a plane with itself.

7. The join of a circle with itself.
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8. The join of circle C and line L if L lies in the plane of C and passes through its
center.

9. The join of line L and 7, the interior of circle C, if L is perpendicular to the
plane of C at the center of C.

10. The join of two circles each of which passes through the center of the other.
11. The join of a line and a plane which intersect. Try not to miss any cases.

12. The join of two distinct intersecting planes.

In Exercises 13 through 17 suppose that a Euclidean plane has been
assigned a Cartesian coordinate system. Let p be the point (0, 0) and C the
graph of the given equation. Sketch the join pC and describe it as
accurately as you can.

13. y = x%

14. y = x5,

15. y=sin x, 0 < x < 27.

16. y=tanx, ~7/2<x<7w/2.
17. y = xe*.

18. Make up and solve some of your own problems on the join of two intersecting
figures.

1.10 The Unrestricted Applicability of the Join
Operation

In ordinary numerical algebra exceptional cases sometimes arise in which
an operation can’t be performed. A familiar example is the application of
the division operation to the numbers 1 and 0. Now that aa has been
defined, this cannot happen for the join operation. There are no excep-
tional cases: the operation join is applicable without restriction to any
finite number of points. As an illustrative example take the case of three
points. Let a, b and ¢ be any points, and consider a(bc). The expression
a(bc) stands for the join of two geometric figures, namely, a and bc. By the
Summary Principle (Section 1.9, last-paragraph), a(bc) is a definite geomet-
ric figure. Similar considerations apply to (ab)c, (ab)(ac) and so on.

Suppose you want to see concretely what the figure a(bc) is—or better,
what it can be. Choose positions for the points a, b and ¢, find bc, and
apply the definition of the join of two figures (Section 1.5) to a and bc. An
example of this has already appeared: if @, b and ¢ are noncollinear, we
have seen (Section 1.5, Example I) that a(bc) is a triangle interior (Figure
1.28).

What happens if a, b and ¢ are collinear? First suppose they are distinct.
If a is in bc (Figure 1.29), then a(bc) involves the join aa and turns out to
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b a

Figure 1.29

be the segment bc. If a is not in be (Figure 1.30), the join a(bc) is still a
segment, either ac or ab. If a, b and ¢ are not distinct (Figure 1.31), you

will find, by examining the cases, that a(bc) will always be a segment or a
point.

L ]

.
a b c b c a

Figure 1.30

a=>» c a=b=c

Figure 1.31

Summary. The join a(bc) is a definite geometric figure for any three

points a, b and c—regardless of their relative positions and regardless of
whether or not they are distinct.

The same conclusion holds of course for (ab)c.

EXERCISES

1. Suppose the points @, b and ¢ are collinear. List the possible relations of a, b and
¢, including coincidences, and identify (ab)c in each case.

2. Suppose the points a, b, ¢ and d are distinct and coplanar, and no three of them

are collinear. List the possible relations of a, b, ¢ and d, and identify (ab)(cd) in
each case.

3. The same as Exercise 2 for ((ab)c)d.

1.11 The Unrestricted Validity of the Associative
Law for Join

Recall (Section 1.6) that the associative law for join

(ab)c = a(bc) 1
holds with the restriction that a, b and ¢ be noncollinear. In the last section
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we saw that the expressions (ab)c and a(bc) in (1) represent definite
geometric figures for all choices of points a, b and ¢. We can hardly
disregard the question: Can the restrictions be removed—does (1) hold for
all choices of a, b and ¢?

Yes, it does. To justify the answer we argue by cases—of which there
are many.

First suppose a, b and c are collinear and distinct. Then, by a basic
principle of geometry, one of the three points must be between the other
two. Consider first the case where b is between a and ¢ (Figure 1.32). Then
(ab)c is simply the segment ac. Similarly a(bc) = ac, so that (1) holds. So
far it has not been necessary to employ the definition of the join of a point
and itself.

- - .
- >

a b c

Figure 1.32

A
|

b a c

Figure 1.33

Next consider the case where a is between b and c¢. First note that
(ab)c = bc. Then to get a(bc) we must join a to each point of bc. Observe
that bc falls into three parts: The points between b and g, the points
between ¢ and a, and a itself. So we can find a(bc) by joining a to each of
these parts. The results are, in order: the points between b and a, the
points between ¢ and a, and (by definition of aa) the point g itself. Uniting
the three results, we get bc. Thus a(bc) = be, so that (ab)c = a(bc) and (1)
holds in this case also.

A

Y

a c b

Figure 1.34

The case where ¢ is between a and b (Figure 1.34) can be treated
essentially in the same way as the preceding case.

Finally there remain the cases in which @, b and ¢ are not distinct.
Suppose just two of a, b and ¢ are identical. First consider the case a = b
(Figure 1.35). Then

(ab)c = (aa)c = ac
and

a(bc) = a(ac) = ac,
so that (1) holds.

Figure 1.35
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Similar methods apply to the cases b = ¢ and a = ¢ (Figure 1.36).

a b=c¢ a=c¢c b
L ]
a=b=c¢c
Figure 1.36

At long last we have the final case a = b = ¢. Now (1) reduces to a = a,
and our proof is finished.

Summary. The associative law (ab)c = a(bc) is valid for all points a, b
and c.

As in Section 1.6, the associative law suggests a definition.

Definition. If a, » and ¢ are any points, each of the equal sets (ab)c, a(bc)
is denoted by abc, which is called the join of the points a, b and c.

Remark 1. You recall the notion of an identity in classical algebra: an
equation involving one or more variables which holds for all values of the
variables. An example is the equation (a + b)* = a? + 2ab + b?, which
holds for all numbers a and b. The associative law (ab)c = a(bc) is a
geometrical identity which holds for all points a, b and c.

Remark 2. If you examine the proof of the associative law, you will find
that it depends on the definition aa = a. Thus the associative law, which
will play a key role in our theory, is a consequence of this definition.

EXERCISES

1. Verify by means of diagrams that a(bed) = (abc)d, where a, b, ¢ and d are any
four distinct coplanar points, no three of which are collinear. Try not to miss
any cases. (Compare Exercise 2 at the end of Section 1.6.)

2. Let a, b, ¢ and d be the vertices of a convex quadrilateral as indicated in Figure
1.37. Verify that

(ac)(bd) = Interior(quadrilateral abcd).

Figure 1.37
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Did you apply the definition of join for a point and itself? Explain. (Compare
Section 1.5, Example II1.)

3. Let p be a point of segment ab. Verify that p(ab) = ab.
4. Let p be a point of triangle interior abc. Verify that p(abc) = abc.

1.12 The Universality of the Associative Law

The fact that the associative law holds universally for three points—not
merely for three points in general position—is of great importance for the
development of our theory. It indicates the possibility of constructing a
theory of geometry in which the basic principles hold uniformly: they state
universal properties of points that admit no exception. In algebra the
desirability of this is taken for granted almost without discussion. The
situation is quite different in geometry.

In the standard treatment of geometry the basic principles usually are
not universal properties but hold for points in general position; for
example: two distinct points determine a line, or three noncollinear points
determine a plane. As a result the proofs of theorems sometimes require
lengthy and involved discussion of special or degenerate cases.

c
c
[ S GAb a b
a b
d

Figure 1.38

Moreover the standard treatment is figure-oriented in a rather rigid
way. Consider the basic linear, planar and spatial figures: segment, trian-
gle, tetrahedron (Figure 1.38). If you wish to refer to a segment, you must
assign two distinct points; to a triangle, three noncollinear points; to a
tetrahedron, four noncoplanar points. Why should we not be able to study
a degenerate or squashed form of a triangle which would be determined by
three collinear points, or a degenerate form of a tetrahedron determined by
four coplanar points, as in Figure 1.39? We should be able to study four
points assigned at random, without knowing whether they are in space, in
a plane, in a line, or even coincident (Figure 1.40).

Our object in writing this book is to construct an operation-centered
treatment of geometry of a special type: one in which the basic laws are
universal properties of points. The associative law is our first nontrivial
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Figure 1.39

ea

a b c d a=b» c=d a=b=c=d
Figure 1.40

example of such a basic law. The validity of the associative law gives
strong impetus to the search for other universal laws and foreshadows in a
way the ultimate success of the project.

1.13 Alternatives to the Definition aa = a

Note to the Reader. This-section may be omitted without loss of
continuity. It is not a logical prerequisite to the remainder of the chapter
but is designed to shed light on our choice of definition for aa. It indicates
that the definition is the only one which is satisfactory for our purposes. If
the definition did not seem quite right or you are curious about the issue,
you might read the section.

The importance of the definition @z = a, and the ultimate reason for its
adoption, lie in its utility—its effectiveness in organizing the geometric
material we are studying. It has many nontrivial consequences, the most
important of which is the unrestricted validity of the associative law for
join.

Nevertheless you may feel that the definition is not quite right, and you
may object: How do we know that an alternative definition won’t work
just as well?

Consider the following alternative.
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Definition. For each point q, let aa = &, the empty set.

To define aa in this way may not seem unnatural: You may feel that the
appropriate choice for a special or degenerate case of a closed segment
should be a figure F consisting of a single point a. Then you may agree
that the natural choice for a special or degenerate case of an gpen segment
should be F with a deleted, that is, the empty set.

Whether the argument seems reasonable or not, the definition merits
consideration as an alternative to aa = a.

Let us begin by asking a question: What effect does the definition have
on the meaning of the join 4B of two figures A and B? Suppose 4 and B
do not intersect and so have no common point (Figure 1.41). Then the
definition is not employed in forming the join 4B and so has no effect on
its meaning. Thus 4B is obtained as usual, by uniting all the segments
which join a point of 4 to a point of B.

) [

Figure 1.41

Now suppose 4 and B do have a common point, say ¢ (Figure 1.42).
Then cc = &, the empty set. Thus the join cc will contribute no point in
forming the join AB. In other words, if ¢ is common to 4 and B, the join
cc can be disregarded in forming 4 B. Consequently the definition of 4B is
now equivalent to the following statement:

Figure 1.42

A point x is in AB if and only if x is in a segment which joins a point of
A to a (distinct) point of B (Figure 1.43).

Figure 1.43
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What consequences does the alternative definition have? In particular
will the associative law

(ab)c = a(bc) (1)
hold? Certainly (1) holds for the case where a, b and ¢ are three noncollin-
ear points—this was settled (Section 1.6) before the definition aa = a was

introduced (Section 1.9). But definitely (1) fails for the case where a is in bc
(Figure 1.44).

b a c

Figure 1.44

To justify this, suppose a is in bc. Then we show that a is in (ab)c but a
is not in a(bc). Since ¢ is not in ab, the join of ab to ¢ does not involve the
join of a point to itself. Hence (ab)c = bc. But a is in bc. Thus a is in (ab)c.

Is a a point of a(bc)? If this is so, then, by the principle above, @ must
be in a segment which joins a to a (distinct) point, say p, of bc (Figure
1.45). That is, ¢ must be in the (open) segment ap. This is absurd.
Consequently a is not in a(bc), and the sets (ab)c and a(bc) cannot be the
same. Thus (1) fails if a is in bc.

p? p?

b a c

Figure 1.45

Summary. If we adopt the alternative definition aa =, then the
associative law fails—that is, it is not universally valid.

Will you conclude that it is illogical, or mathematically unsound, to
adopt the alternative definition? It seems to us inconvenient rather than
illogical. If the definition is adopted, a sound mathematical theory will
result which is somewhat similar to our theory but has the disadvantage
that the associative law will not hold for all triples of points.

EXERCISES (ALTERNATIVES TO THE DEFINITION aa = a)

In Exercises 1, 2, 3 assume the definition aa = &.

1. Let p be a point of segment ab. Identify p(ab) and compare it with ab. Are they
the same? Are they different? (Compare Exercise 3 at the end of Section 1.11.)

2. Let p be a point of triangle interior abc. Identify p(abc) and compare it with abc.
Are they the same? Are they different? (Compare Exercise 4 at the end of
Section 1.11.)
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3. Let a, b, c and d be the vertices of a convex quadrilateral as indicated in Figure
1.46. Identify (ac)(bd) and compare it with the interior of quadrilateral abcd.
(Compare Exercise 2 at the end Section 1.11.)

Figure 1.46

4. Let a be a particular point. Suppose that aa has been defined to be a definite set
of points which does not contain a, for example, a circle of radius 1 centered at
a. Choose b and ¢ so that a is a point of segment bc (Figure 1.47). Show that

(ab)c = a(bc),

so that the associative law for join fails.

b a c

Figure 1.47

Remark 1. Suppose you want the associative law for join to hold.
Exercise 4 shows that if you define aa for a point a, then aa must contain
a.

5. Let a be a particular point. Suppose that aa has been defined to be a definite set
of points, but that aa contains a point p which is distinct from a. Choose b and ¢
so that a is a point of segment bc but p is not (Figure 1.48). Show that

(ab)c = a(bc),
so that the associative law for join fails.

op

b a ¢

Figure 1.48

Remark 2. Suppose you want the associative law for join to hold.
Exercise 5 shows that if you define aa for a point a, then aa cannot contain
any point other than a.

Combining Remarks 1 and 2, we have: If the associative law for join is
to hold and aa is to be defined for a given point @, then aa must inexorably
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be defined to consist of a. Moreover there is no loophole. You can’t save
the associative law by refusing to define aa. Suppose aa is not defined. Let

b be a point distinct from a (Figure 1.49). Then the special case of the
associative law

(aa)b = a(ab)
fails, since the left member is meaningless and the right member is ab.

Figure 1.49

1.14 Convex Sets

One of the most basic and important ideas in geometry is that of convex
set. All of the familiar figures in high school geometry are either (1) convex

sets:
AO®

or (2) figures formed by uniting convex sets:

A

or (3) boundaries of figures of types (1) and (2):

A () A
LN C
Intuitively, a convex set is a figure with no gaps

O

Cant

The precise definition is even easier to state.

no holes

no indentations

Definition. A set of points is convex if it contains the join of each pair
(distinct or not) of its points.

Observe that a set consisting of a single point is convex.

Figure 1.50
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EXERCISES (EXPLORATORY)

1. If A and B are convex sets, must their union be convex? Can their union be
convex? Justify your answer.

2. Let A and B be convex sets that have a common point. Must the intersection of
A and B (that is, the set of all points which are common to A and B) be
convex? Can their intersection be convex? Justify your answer.

3. (a) Is the join of two points convex?
(b) The same for a point and a segment.
(c) The same for two segments.
(d) The same for two convex sets.

4. Suppose A4 is convex and p is a point not in A. Must the union of 4 and p be
convex? Can it be convex? Explain.

5. Suppose A4 is convex and p is a point of A. Let set B be formed by deleting p
from 4. Must B be convex? Can B be convex? Explain.

6. (a) Suppose point p is not in convex set A4 but p is in g4 for some point g. Can
g bein pA?
(b) Try to prove that your answer is correct.

7. (a) If p is a point of convex set A, must p4 be contained in 4? Must p4 = A?
Justify your answers.

(b) If A is convex must 44 be contained in 4? Must A4 = A? Justify your
answers.

8. (a) Find a convex set 4 such that p4 = 4 for each point p in 4.
(b) Try to find several such sets 4 not all of the same type. Do you observe
any common property?
(c) Take your convex set A in (a) and try to find a point p not in 4 such that
pA = A. Can you describe the figure formed by all such points?
(d) The same as (c) for each of the sets in (b). )

9. Can you find a convex set 4 such that p4 = A for each point p in 4 but

PA A for each point p not in 4? Try to find several. Can you find a common
property?

Definition. Let A be a convex set and p a point. Suppose there is a join ab
which contains p such that every point of pa is in 4 but no point of pb is in
A (Figure 1.51). Then we call p a boundary point of convex set A. The set
of all boundary points of A4 is called its boundary. Any point of A which is

-t
~
|

Figure 1.51
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not a boundary point of A is called an interior point of convex set 4. The
set of all interior points of A is called its interior.

10.

11

12.

13.

14.

15.

16.

17.
18.

19.

(a) If p is a boundary point of convex set A, must p be in A? Can p be in A?
Explain.

(b) If p is a point of convex set 4, must p be a boundary point of 47 Can p be
a boundary point of 4? Explain.

Suppose p is a boundary point of convex set A.
(a) Can pA be contained in A? Must pA be contained in 4? Explain.
(b) Can p4 = A? Must p4 = A? Explain. [Compare Exercise 7(a).]

(a) Can you find a convex set whose boundary consists of a single point; two
points; three points; four points?
(b) Can you find a convex set whose boundary is a line; a plane; a segment?

(a) Try to find a convex set which contains none of its boundary points. Try to
find several such convex sets of different types. Do you observe anything of
interest?

(b) The same as (a) for a convex set that contains all of its boundary points.

Try to find a convex set which has no boundary points. Try to find several of
different types. Do you observe anything of interest?

(a) Suppose A is a convex set and p is a boundary point of 4. If you adjoin p
to A4, can the resulting set be convex? Must the resulting set be convex?
Explain.

(b) If you adjoin to a convex set 4 all of its boundary points, can the resulting
set be convex? Must it be convex? Explain.

(a) Suppose A is a convex set and p is a point of A which is one of its
boundary points. If you delete p from 4, can the resulting set be convex?
Must the resulting set be convex? Explain.

(b) If you delete from a convex set 4 all of its points which are boundary
points, can the resulting set be convex? Must it be convex? Explain.

Can the boundary of a convex set be convex? Must it be convex? Explain.

Study 1-dimensional convex sets, that is, those that are not single points but are
contained in a line. Try to classify them in terms of: (1) the nature of their
boundary sets; (2) whether they extend endlessly or not; (3) whether they
contain all, some, or none of their boundary points. Compare your results.

Mark two points a and b on a sheet of paper.

(a) Sketch a convex set 4 that contains a and b.

(b) Can you find a convex set containing a and b which is “greater than” 4,
that is, one which contains A?

(¢) Can you find a convex set containing @ and b which is “less than” 4, that
is, one which is contained in A?

(d) Can you find a convex set containing a and b which is neither “greater
than” nor “less than” A?

(e) Can you find a “greatest” convex set that contains a and b, that is, one
which contains every convex set that contains a and 5?7
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(f) Can you find a “least™ convex set that contains a and b, that is, one which
is contained in every convex set that contains a and 5?

20. (a) Find a least convex set that contains (1) three noncollinear points @, b and
¢; (2) four noncoplanar points a, b, ¢ and d; (3) three distinct collinear
points a, b and c; (4) four coplanar points a, b, ¢ and d, no three of which
are collinear.

(b) Is there a greatest convex set in each case? Is the concept interesting?

1.15 A Geometric Proof in Join Terminology

Note to the Reader. The present section is optional and may be omitted
without loss of continuity. It shows how the join operation can be used in
proving geometric theorems and discusses the nature of proofs in geome-
try. Study it if you wish for your own satisfaction.

The join operation is used not merely in systematically constructing and
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