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Preface

ἀγεωμέτρητος μηδεὶς εἰσίτω

(literally: “non-geometers don’t enter.” Inscription at the entrance

to Plato’s Academy 387 B.C. (perhaps only a legend), and on the

frontispiece of Copernicus’ De revolutionibus 1543 A.D.)

Geometry, so named at least since Plato’s times, is the oldest branch of math-
ematics. It contains many beautiful results, elegant ideas and surprising con-
nections, to which many great thinkers have contributed through the cen-
turies. Among these are Thales, Pythagoras, Euclid, Apollonius, Archimedes,
Ptolemy, Pappus, the Arabs, Regiomontanus, Copernicus, Viète, Kepler,
Descartes, Newton, the Bernoullis, Euler, Monge, Poncelet and Steiner. In
this book, we study geometry from the texts of these masters as closely as
we judge useful and roughly in historic order, in accordance with the famous
maxim of Niels Henrik Abel, “I learned from the masters and not from the
pupils”. This explains “by Its History” in the title, without aiming at a com-
plete history of the subject.1

Geometry arose in the dawn of science and later became one of the septem
artes liberales as part of the quadrivium. We start from the beginning of geo-
metry, motivated by practical problems of measurement (μετρέω), then follow
its development into a rigorous abstract science by the Greek philosophers,
until the rich period with more and more sophisticated problems and methods
in the later Greek and Arab period. The second part of the book then describes
the victory of the methods of algebra and linear algebra, the growing audacity
in dealing with infinite processes and we see how all other branches of science
grew out of geometry: algebra, calculus, mechanics (in particular celestial
mechanics). So we hope that the book not only constitutes a good introduction
to the study of higher geometry, but also to the study of other branches of
science, especially for those students who intend to become teachers.

However, due to the rapid success of algebraic methods, synthetic geometry
slowly lost its place in university education, a development already deplored
by Newton, more than three centuries ago (first sentence of his Treatise of the
Methods of Series and Fluxions, 1671, p. 33) ...

“Observing that the majority of geometers, with an almost complete
neglect of the ancients’ synthetical method, now for the most part apply

1Michel Chasles’ Aperçu historique has 800 pages and weighs five pounds.
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themselves to the cultivation of analysis [...] I found it not amiss, for
the satisfaction of learners, to draw up the following short tract ...”

... a development which accelerated during the twentieth century (Coxeter,
Introduction to Geometry, 1961, p. iv):

“For the last thirty or forty years, most Americans have somehow lost
interest in geometry. The present book constitutes an attempt to revi-
talize this sadly neglected subject.”

What is not honoured at the university also disappears, a generation later,
from the high-school. We quote from A. Connes (Newsletter of the EMS, March
2008, p. 32):

“We must absolutely train very young people to do mathematical ex-
ercises, in particular geometry exercises— this is very good training.
I find it awful when I see that, in school, kids are taught recipes, just
recipes, and aren’t encouraged to think. When I was at school, I re-
member that we were given problems of [...] geometry. We went to a lot
of trouble to solve them. It wasn’t baby geometry. [...] It’s a shame we
don’t do it anymore.”

We have made all efforts to produce an interesting and enjoyable book,
intended mainly for students of science (at the beginning) and teachers
(throughout their career), by including many illustrations, figures, exer-
cises and references to the literature, so that we suggest with Copernicus’
De revolutionibus

Igitur eme, lege, fruere [Therefore buy, read and enjoy].

Acknowledgements. It is our duty — and pleasure — to thank many peo-
ple for their help, beginning with Ernst and Martin Hairer, the assistants
P. Henry, W. Pietsch, A. Musitelli, M. Baillif, C. Extermann and the librarians
A.-S. Crippa, B. Dudez and T. Dubois at the University of Geneva. A long
discussion with J.-C. Pont, expert in the history of mathematics and science,
helped to reshape the first two chapters. Our colleagues and friends J. Cash,
B. Gisin, H. Herdlinger and C. Lubich read the entire book and gave numerous
suggestions. Further we thank our wives Barbara and Myriam.

Our special thanks, however, go to J. Steinig, who read the entire book
four times (!!) and suggested thousands of corrections and grammatical im-
provements. He pointed out errors and sloppy arguments, and supplied us
with many references and better proofs. And if ever “eme, lege, fruere” is
really justified, it is also his merit.

Innsbruck and Geneva, Alexander Ostermann
December 2011 Gerhard Wanner
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Part I

Classical Geometry

γῆ, earth (including land and sea) ...
μετρέω, measure out ...

(Liddel and Scott, Greek-English Lexicon, Oxford)

“In the tomb of Khaemhet at Thebes we see a number of men
equipped with ropes and writing material measuring a field, ...”

(T.E. Peet, Rhind mathematical papyrus, 1923, p. 32)

“The Mathematick Lecturer to read first some easy & usefull prac-
tical things, then Euclid, Sphericks, the Projections of the Sphere,
the Construction of Mapps, Trigonometry, Astronomy, Opticks,
Musick, Algebra, &c.” (I. Newton, Of Educating Youth
in the Universities, MS. Add. 4005, fol. 14–15, Cambridge 1690)

“Development of Western science is based on two great achieve-
ments: the invention of the formal logical system (in Euclidean
geometry) by the Greek philosophers, and the discovery of the
possibility to find out causal relationships by systematic experi-
ment (during the Renaissance).”

(A. Einstein in a letter to J.S. Switzer, 23 Apr. 1953)

“Quoique la Géométrie soit par elle-même abstraite, il faut avoüer
cependant que les difficultés qu’éprouvent ceux qui commencent
à s’y appliquer, viennent le plus souvent de la maniére dont elle
est enseignée dans les Elémens ordinaires. On y débute toûjours
par un grand nombre de définitions, de demandes, d’axiomes, &
de principes préliminaires, qui semblent ne promettre rien que de
sec au lecteur”. (A.-C. Clairaut, Elémens de Géométrie, 1741)

We see in the chronology below that Euclid, who lived around 300 B.C., was
not the first great geometer, despite the fact that his famous Elements “with
all its definitions, postulates, axioms & preliminary principles, which seem to
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promise nothing but arid reading” (see the above quotation from Clairaut)
usually serve as a model for the beginning of a course on geometry. But
mathematical results had already been obtained in the preceding centuries,
in order to measure (μετρέω) land (γῆ), to survey fields after the regular
floods of the Nile, to compute the quantity of corn in a cylindrical container,
and to construct spectacular temples and pyramids. We therefore start in
Chap. 1 with “some easy & usefull practical things”, the theorems of Thales
and Pythagoras, which are the oldest theorems of humanity and fundamental
tools for geometry. They allow one to deal with most practical applications.

A first flaw in this paradise was revealed by the discovery of irrational
numbers, which showed that the concept and the proof of Thales’ theorem
were not as simple as had been thought. In parallel with this were the efforts,
influenced by the Greek philosophers, from the Pythagoreans to Plato, to
separate geometry from its practical applications, to raise it to an abstract
science studying unchangeable objects and to lift the soul towards eternal
truth. The nails, ropes and walls used by the temple builders were replaced
by mathematical points, lines, rectangles etc., objects of pure reasoning, which
require a list of definitions, axioms and postulates (see Chap. 2). This is the
origin of the style of nearly all mathematical thought and exposition since
then.

In Chaps. 3 and 4 we describe the achievements of the post-Euclidean
period, the new curves and theorems invented by Apollonius, Nicomedes,
Archimedes and Pappus, often in order to solve one of the three great prob-
lems of Greek geometry: squaring the circle, trisecting any angle or duplicating
the cube. Chap. 4 also contains many more recent beautiful results, which the
Greeks could have found with their methods.

Chap. 5 is devoted to the last great creation of the Greek period, plane and
spherical trigonometry by Hipparchus and Ptolemy and their application to
one of the dreams of mankind, understanding the movements of the heavenly
bodies. This gave rise to modern astronomy and the physical sciences.

Classical Geometry
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Thales and Pythagoras

“... la théorie des lignes proportionnelles et la proposition de
Pythagore, qui sont les bases de la Géométrie ... [the theory of
proportional lines and the theorem of Pythagoras, which form the
basis of geometry]” (J.-V. Poncelet, 1822, p. xxix)

“... the original works of the forerunners of Euclid, Archimedes and
Apollonius are lost, having probably been discarded and forgotten
almost immediately after the appearance of the masterpieces of
that great trio.” (T.L. Heath, 1926, vol. I, p. 29)

The most beautiful discoveries of this period concern relations between lengths
(Thales’ intercept theorem), angles (the central angle theorem or Eucl. III.20)
and areas (the Pythagorean theorem). A quick look at the index shows that
these three theorems are by far the most basic and frequently used results of
geometry.

The only original documents which have survived from the pre-Euclidean
period are some cuneiform Babylonian tablets (from approximately 1900 B.C.),
the Egyptian Rhind papyrus and the Moscow papyrus from approximately
the same period. The achievements of Thales, Pythagoras and his pupils
the Pythagoreans are only documented in commentaries, often contradictory,
written many centuries later.

1.1 Thales’ Theorem

“I tried (unsuccessfully) to get each high school in which my chil-
dren were enrolled to go outside during geometry and find out how
tall the oak in the yard really is.”

(D. Mumford, President IMU; Preface in H.
M. Enzensberger, Zugbrücke außer Betrieb [Drawbridge Up], 1999)

Thales was born in Miletus (Asia Minor, nowadays Turkey). He travelled to
Babylon and to Egypt, calculated the height of the pyramids by measuring

A. Ostermann and G. Wanner, Geometry by Its History,
Undergraduate Texts in Mathematics, DOI: 10.1007/978-3-642-29163-0_1,
� Springer-Verlag Berlin Heidelberg 2012
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Fig. 1.1. The “oak” in Mumford’s school yard and Thales’ theorem for ratio 2

the length of their shadow, calculated the distance of ships from the shore,
and predicted a solar eclipse in 585 B.C.

Thales is certainly the man to tell us how to measure the height of a tree
B′C′, without having to climb it (see Fig. 1.1, left). Let AB′ be the shadow of
the tree; we erect a vertical stick BC in such a manner that AB is the shadow
of the stick.1 We then measure the distance AB, say 4 metres, the distance
AB′, say 8 metres, and the stick BC, say 5 metres. By parallel displacements
of the triangle ABC we see that, since AB′ measures twice AB, the height
B′C′ will measure twice BC (see the middle picture), hence B′C′ = 2 ·5 = 10

c

b
a

α

γ

β
3c

3a

3b

A B

C

B′

C′

5c′′

5a′′

5b′′

8c′′

8a′′

8b′′

A B′′

C′′
B

C

B′

C′

Fig. 1.2. The proof of Thales’ theorem; right: Neolithic stele, Sion 2500 B.C. (cour-
tesy Prof. A. Gallay)

1As recorded by Plutarch; see Heath (1921, p. 129)

1 Thales and Pythagoras
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Fig. 1.3. Thales’ intercept theorem

metres. The same argument can be applied to translations of any triangle
ABC (see Fig. 1.1, right). We see that if a side of a triangle is doubled and
the angles are preserved, then the other two sides are also doubled.

If our tree were still taller, we might have to displace our triangle three
times and would arrive at the situation of Fig. 1.2 (upper left) where the sides
of AB′C′ are three times as long as the sides of ABC.

By using still finer subdivisions, we arrive at the lower left picture of
Fig. 1.2 where the ratios of these lengths are 8:5. We have thus discovered
that the following theorem is valid for any rational fraction. We call this
proof, which could have been inspired by the Neolithic stele from 2500 B.C.,
and which will be severely criticised later, the Stone Age proof.

Theorem 1.1 (Thales’ intercept theorem). Consider an arbitrary triangle
ABC (see Fig. 1.3, left) and let AC be extended to C′ and AB to B′, so
that B′C′ is parallel to BC. Then the lengths of the sides satisfy the relations

a′

a
=
b′

b
=
c′

c
and hence

a′

c′
=
a

c
,

c′

b′
=
c

b
,

b′

a′
=
b

a
.

These proportions are also preserved when the triangle is displaced and ro-
tated, see Fig. 1.3 (right). As a consequence we get the following result. If
corresponding angles of two triangles are equal, then corresponding sides are
proportional. Triangles having these properties are called similar.

1.2 Similar Figures

A more general view of Thales’ theorem appeared in the works of Clavius,
Viète and others: figures are said to be similar with similarity centre O when
corresponding points Ai, Bi, Ci lie on lines through O, and the corresponding
lines AiAj , BiBj , CiCj are parallel (see Fig. 1.4). Applying Thales’ theorem
to selected pairs of triangles with a vertex in O shows that all correspond-
ing lengths of similar figures are proportional. Such similar figures were an
important source of inspiration for many of the great masters (see Fig. 1.5).
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A1

A2

A3

A5

B1

B2

B3

B5

C1

C2

C3

C4

C5

O

Fig. 1.4. Similar figures: illustration inspired by Clavius and Viète, improved by
modern computer technology

(Clavius’ ed. of Euclid 1574)

(Fermat, 1629a)

(Steiner, 1826a)

(Viète, 1600)

(Apollonius; Simson, 1749)

Fig. 1.5. Similar figures in the publications of several masters

Constructing rational lengths. Consider two distinct points 0 and 1 on
a line. We call the length of the segment joining these two points the unit
length. By carrying this unit forward on the line, we easily construct the
integer points 2, 3, etc. But how can we construct points corresponding to
rational values? For this we draw an arbitrary ray, not parallel to the line,
through the point 0. We then carry forward several times (five times, say)
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Fig. 1.6. Constructing rational lengths

an arbitrary length a. This construction yields a point C, see Fig. 1.6 (left).
If we now draw the corresponding parallels to the line joining C with 1 (see
Fig. 1.6, right), we obtain by Thales’ theorem the required points 1

5 , 2
5 , etc.

(this procedure will later be called Eucl. VI.9).

1.3 Properties of Angles

Emil Artin (1898–1962) was famous for the extremely clear and
extraordinarily well presented lectures that he always gave without
any notes. One day, midway in a proof, he suddenly hesitated and
said: “this conclusion is trivial”. After a few seconds, he repeated:
“it is trivial, but I no longer know why”. He then thought about
the question for another minute and said: “I know that it is trivial,
but I no longer understand it”. He reflected on it a few moments
more and finally said: “excuse me, I have to look at my lecture
notes”. He then left the room and came back ten minutes later
saying: “it really is trivial”.

(Witnessed by Prof. Josef Schmid, Fribourg)

“I still remember a guy sitting on the couch, thinking very hard,
and another guy standing in front of him, saying, ‘And therefore
such-and-such is true.’ ‘Why is that?’ the guy on the couch asks.
‘It’s trivial! It’s trivial!’ the standing guy says ...”

(R.P. Feynman,
souvenir from the math-physics common lounge at Princeton;
quoted from Surely You’re Joking, Mr. Feynman, 1985, p. 69)

α

β

parallel angles
α = β

α

β

parallel angles
α = β

α

β

orthogonal angles
α = β

Fig. 1.7. Parallel and orthogonal angles
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Pythagorean proof
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Euclid’s proof

(b)

α

γ

β δ

A
B

C

Exterior angle δ = α+ γ

(c)

Fig. 1.8. Angles in a triangle (Eucl. I.32)

Angles in a triangle. Some basic equality properties of angles (parallel
and orthogonal angles) are shown in Fig. 1.7. As in pre-Euclidean times, we
consider (for the moment) these properties to be “trivial”. A more thorough
treatment will follow in Chap. 2.

“Die Winkelsumme im Dreieck kann nicht nach den Bedürfnissen
der Kurie abgeändert werden. [The sum of the angles of a triangle
can not be modified according to the requirements of the Curia.]”

(B. Brecht, Leben des Galilei, 1939, scene 8)

Theorem 1.2 (Eucl. I.32). The sum of the three angles of an arbitrary trian-
gle ABC is equal to two right angles: 2

α + β + γ = 2 = 180◦. (1.1)

For its proof, the Pythagoreans draw a line p through C parallel to the opposite
side AB, see Fig. 1.8 (a). Euclid extends the side AB, draws a parallel to AC
through B (Fig. 1.8 (b)) and uses the parallel angles α and γ.

Euclid’s method yields the following corollary.

Corollary 1.3. Each exterior angle is the sum of the non-adjacent interior
angles, see Fig. 1.8 (c):

δ = α+ γ . (1.2)

Angles in a circle. On a circle with centre O and diameter AB, we choose
an arbitrary point C (other than A or B) and join it to A and to O, see
Fig. 1.9 (a). Since the triangle AOC is isosceles, we have the same angle β at
A as at C (see Eucl. I.5 in Sect. 2.1). Hence, by (1.2), the angle BOC is twice
the angle BAC. We shall call BOC the central angle on the arc BC, and
BAC an inscribed angle on this arc. More generally, in Fig. 1.9 (b), we call
CAD an inscribed angle on the arc CD and COD the central angle on this
arc. We next choose an arbitrary point D on the circle, such that C and D are
on opposite sides of the diameter AB, see Fig. 1.9 (b). Deleting this diameter,
we obtain in Fig. 1.9 (c) an important relation for α = β + γ :

2Inspired by Euclid (cf. Euclid’s Postulate 4 in Sect. 2.1), we use a specific symbol
for a right angle; similarly, Steiner (1826c) used the symbol R, and Miquel (1838a)

the symbol d (angle droit), so we are in good company.
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Fig. 1.9. Central angle and inscribed angle

Theorem 1.4 (Eucl. III.20). A central angle of a circle is twice any inscribed
angle on the same arc, see Fig. 1.9 (c).

Theorem 1.5 (Eucl. III.31). If AB is a diameter and C a point (other than
A or B) on the circle, then ACB is a right angle, see Fig. 1.9 (d).

Proof. This follows from the equality of the two angles denoted by α and β and
Eucl. I.32, because 2α+2β = 2 implies α+β = . It can also be considered
as a special case of Eucl. III.20 by taking 2α = 2 in Fig. 1.9 (c).

The Thales circle. The circle with a given segment AB as diameter is called
the Thales circle of the segment, see also Fig. 2.1, Def. 21. Any triangle ABC
with C on this circle is right-angled. For the converse to Theorem 1.5, see
Exercise 4 of Chap. 2, page 54.

1.4 The Regular Pentagon

Regular polygons have fascinated geometers since
the dawn of science. The Babylonians had under-
stood the equilateral triangle and the square (see
Sect. 1.6 below), therefore the Greeks directed
their attention to the regular pentagon, a polygon
with five vertices.

Length of the diagonal. By drawing all the
diagonals of a regular pentagon, we obtain a star as shown in Fig. 1.10 (b).
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This beautiful star was for the Pythagoreans a symbol of recognition between
members, a tradition which has survived until today in revolutionary move-
ments and luxury hotels.

We will determine the length, say Φ, of the diagonal of a regular pentagon
of side length 1, see Fig. 1.10 (a). Since the central angles on the arcs AB, BC,
etc. are 72◦ by construction, the inscribed angles on these arcs are α = 36◦

(Eucl. III.20). We consider the triangle ACD, see Fig. 1.10 (c). It contains the
smaller triangle CDF which is similar to ACD. Hence, we get

Thales: s =
1

Φ
isosceles: Φ = 1 + s (1.3)

which leads to
Φ2 = Φ+ 1 and s2 + s = 1 . (1.4)

A geometrical construction for these values, showing that Φ =
√
5
2 + 1

2 and

s =
√
5
2
− 1

2
, was probably known to the Pythagoreans, and is numbered II.11

in Euclid’s Elements (see Exercise 15 on page 57).

1

1
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1
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Φ
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1

1

1

1

1

A

B

C D

E

F

(b)

Φ

1

s

1

C D

A

F

α

α
α

2α

(c)

Fig. 1.10. The regular pentagon

The number Φ is called the golden ratio. The fact that many beautiful ancient
buildings, in particular the Parthenon on the Acropolis, fit so perfectly into a
“golden rectangle” (a rectangle with sides length 1 and Φ) led to the notation
Φ in honour of Φειδίας, its architect.

The discovery of irrational numbers. All is number, claimed Pythagoras,
who apparently had only rational numbers in mind. However, it was soon
discovered that

√
2 and Φ are not rational.

To give a proof for Φ, we assume that the rational number m
n is a solution

of (1.3). We further assume that this fraction is reduced, i.e. that m and n
are relatively prime. Hence, by (1.3), we have

m

n
= 1 +

1
m
n

= 1 +
n

m
=
m+ n

m
. (1.5)

But if m and n are relatively prime, so are m and m + n (for more details,
see Eucl. VII.2 in Sect. 2.4, in particular Fig. 2.19). Hence, the fractions m/n
and (m + n)/m cannot be equal and Φ cannot be a rational number.
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The fact that the regular pentagon, considered holy by the Pythagoreans,
has a non-measurable diagonal was a real shock. A legend says that Hippasus,
having discovered this fact and talked too much, was drowned at sea.

This discovery was also a major upset to the theory: the proof given above
for Thales’ theorem is not valid for irrational proportions. This considerably
complicated Euclid’s Elements, see Chap. 2.

1.5 The Computation of Areas

A study for the Department of Education ... found nearly one in
three adults (29%) in England could not calculate the floor area
of a room in feet or metres — with or without calculators or paper
and pens.

(BBC News Online [Education], Sunday, May 5, 2002)

The calculation of areas will lead us to the Pythagorean theorem, the third
pillar of this chapter, after Thales’ theorem and Eucl. III.20. We start with
the area of a rectangle, which is a · b. This is the number of wine bottles (28)
that can be stored in a bin holding 4 layers, each of 7 bottles, see Fig. 1.11,
left.

a

b

a

b

A B

CD

area rect. = ab

− +

a

h

A B

CD

area parall. = ah

c

h

A B

C

area tri. = ch
2

a

b

h

A B

C
D

area trap. = a+b
2

· h

Fig. 1.11. Areas of rectangle, parallelogram, triangle and trapezium

The area of a parallelogram is a · h, where h is the altitude of the parallel-
ogram (Eucl. I.35). There are two ways to see this: (a) We cut off the triangle
on the left and add it on the right to obtain a rectangle (Euclid’s proof, see the
second figure in Fig. 1.11); (b) We cut the parallelogram parallel to AB into
a large number of very slim rectangles (“method of exhaustion” of Eudoxus
and Archimedes, in this form in the commentaries of Legendre (1794); see also
Fig. 2.34, right).

The area of a triangle is half the area of the parallelogram,

A = area of triangle = base × altitude divided by 2 =
c · h

2
(1.6)

(Eucl. I.41), see third picture of Fig. 1.11.
Finally the area of a trapezium (see Fig. 1.11, right) is found by cutting

the trapezium into a parallelogram and a triangle, which gives by combining
the two previous results A = bh+ a−b

2
· h = a+b

2
· h.
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Fig. 1.12. Area calculations in Rhind papyrus; rectangle 10 · 2 = 20 (No. 49, left);
triangle 4·10

2
= 20 (No. 51, middle); trapezium 4+6

2
· 20 = 100 (No. 52, right); repro-

ductions of transcriptions by Peet (1923)

The Rhind papyrus. In 1858, the Scottish egyptologist A.H. Rhind bought
in a market place at Luxor two pieces of a papyrus roll (now papyri 10057
and 10058 of the British Museum) which was written around 1650 B.C. and
claimed to be a copy of a still older document from the 19th century B.C. The
first extensive analysis and translation was made by A. Eisenlohr (1877), who
numbered the examples of the papyrus from 1 to 84. In 1898 a facsimile was
published by the British Museum. A very careful treatment with transcrip-
tions directly from the papyrus was given by T.E. Peet (1923). The Egyptians
noted numbers in a decimal system, using the symbols 1 = , 10 = , 100 = ,

1000 = , so that, for example, the number

4678 =

requires a great deal of writing. In the Rhind papyrus, the area of a rect-
angle is treated in No. 49 (see Fig. 1.12, left). The result for the rectangle of
sides and khet , which should be setat , is unfortunately buried under
“scribe’s errors of the worst description” (Peet 1923, p. 90). However, in No. 51
(Fig. 1.12, middle) the area of a triangle of base and altitude is correctly
computed as , but the discussion of whether the Egyptian scribe correctly
understood the meaning of the altitude, fills four pages in Peet (1923), pp. 91–
94). In No. 52 we find the correct computation of the area of a trapezium
with sides and and altitude . Again the meaning of the altitude
is not completely clear (Fig. 1.12, right).

Areas of similar triangles. Take the triangle ABC of Fig. 1.2 (Stone Age
proof of Thales’ theorem) with sides that are 5 times longer than those of the
triangle AB′′C′′. It is composed of

1 + 3 + 5 + 7 + 9 = = 52 (1.7)

copies of the small triangle (this was one of the favourite arguments of
Pythagoras). In the same way, the triangle AB′C′ contains 82 copies. Hence,

the area of AB′C′ is 82

52 times that of ABC.
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We thus obtain the following result.3

Theorem 1.6 (Eucl. VI.19). A similar triangle with q times longer sides has
q2 times larger area.

1.6 A Remarkable Babylonian Document

Figure 1.13 displays a Babylonian tablet dating from 1900 B.C., hence much
older than Nebuchadnezzar or Tutankhamun. This tablet shows a square with
sides of length 30. On its diagonal the sexagesimal digits 1, 24 51 10 and
42, 25 35 are engraved (in Babylonian notation ‘ ’ stands for 1, ‘ ’ stands for
10).

30

1,24 51 10

42 25 35

Fig. 1.13. Babylonian cuneiform tablet YBC7289 from 1900 B.C. (image enhanced
by S. Cirilli)

30

30

c =?

a

a

c2 =2a2

Fig. 1.14. Length of the diagonal of a square (left); ornamental tessellation seen in
an old chapel in Crete (right)

3Another way of obtaining this result is based on (1.6).
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Explanation. If we have a square of side length a = 30 and diagonal c
(Fig. 1.14, left), the square on its diagonal is twice as large (composed of
8 triangles instead of 4; Fig. 1.14, middle). Thus, c2 = 2a2 and c = a

√
2.

Another way of obtaining this result would be to meditate on one of the or-
namental tessellations (Fig. 1.14, right) which were so frequent in antiquity.
The above numbers, written in base 60, are

√
2 = 1, 24 51 10 7 46 6 4 . . . , 30 ·

√
2 = 42, 25 35 3 53 3 2 . . .

and we see that the digits shown on the tablet are all correct (see Exercise 7
below for the computation).

The tablet thus gives evidence that Pythagoras’ theorem (for the case of
an isosceles triangle) was already known to the Babylonians, as were the rules
of proportions. This knowledge was combined with an admirable ability for
calculation.

1.7 The Pythagorean Theorem

“This great theorem is universally associated with the name of
Pythagoras. Proclus says ‘If we listen to those who wish to recount
ancient history, we find some of them referring this theorem to
Pythagoras and saying that he sacrificed an ox in celebration of
his discovery.’ ” (T.L. Heath, Euclid in Greek, 1920, p. 219)

Millions of pupils around the world have had to learn the formula

a2 + b2 = c2

c

a b
(1.8)

relating the three sides of a right-angled triangle; fewer by far know a proof,
or even its precise meaning. This theorem, often considered the first great
theorem of mankind, is attributed to Pythagoras (see the quotation), but it
is not known how the original discovery was achieved.

Classical proofs. Figure 1.15 spans three civilisations: Chinese, Indian and
Arabic. We start with the square of area c2, slightly tilted as in Fig. 1.15 (a).

The Chinese proof. Adding four right-angled triangles with sides a and b, we
arrive at Fig. 1.15 (b) and get the large square of area (a+ b)2 = a2 +2ab+ b2.
Since the areas of the four triangles add up to 2ab, the square of area c2 also
has area a2 + b2. This is the proof of Chou-pei Suan-ching (China, 250 B.C.;
see van der Waerden, 1983, p. 27). In the pictures of Fig. 1.15 (right), this
transformation is obtained by translating the three triangles 2, 3 and 4. The
fact that the lower picture is precisely the picture of Eucl. II.4 on page 38
gives strong evidence that this was also Pythagoras’ original proof.
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1

2
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4
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Fig. 1.15. Left: three classical proofs (Chou-pei Suan-ching (b), Bhāskara (c),
Thābit ibn Qurra (d)); right: transforming Chou-pei’s figure by translating triangles
into Eucl. II.4

c2

a2

b2

Fig. 1.16. Manuscript by Nas.ı̄r al-Dı̄n al-T. ūs̄ı 1201–1274 with Thābit ibn Qurra’s
proof of Pythagoras’ theorem (left); explanation (right)

The Indian proof. Bhāskara (born in 1114 A.D. in India) removes these four
triangles to get (a − b)2 and concludes the proof by saying simply “Look!”,
see Fig. 1.15 (c).

The Arabic proof. But why not remove two triangles and add them on the
opposite sides, see Fig. 1.15 (d) and Fig. 1.16? By this construction, the square
of area c2 is transformed directly, without any additional triangle calculation,
into two squares of total area a2 + b2. This elegant proof is attributed to
Thābit ibn Qurra (826–901).

Proofs using tessellations. A legend says that Pythagoras discovered his
theorem by observing a tiled floor in the palace of Polycrates, the tyrant of
Samos. Since the legend does not describe the floor he considered, we have
to rely on conjectures. Some possible patterns are displayed in Fig. 1.17. The
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Fig. 1.17. Various patterns which could have tesselated Polycrates’ palace

first picture shows a tessellation of a hypothetic hall in this palace by squares
of two different areas, say a2 and b2, the two kinds in equal number. Looking
at the dotted lines, we can also imagine this floor tiled by the same number of
squares of area, say, c2. It is thus intuitively clear that a2 + b2 should be equal
to c2 (see also Penrose, 2005, pp. 26–27). In order to convert this intuition
into a more convincing proof, we isolate one square of area c2 and transform
it by parallel translations of the quadrilaterals 2, 3 and 4 as in Fig. 1.18 into
two squares of areas a2 and b2. The truth of Pythagoras’ theorem is now
immediately obvious. If we place the stars at one of the vertices of the squares
c2 (and not at their centres), we obtain in a similar way the Arabic proof (see
also Exercise 11 below).

c

1

2
3

4

a b

1

2
3

4

Fig. 1.18. Displacing tiles in Polycrates’ tessellations for Pythagoras’ theorem

The second pattern in Fig. 1.17 (proposed by Antje Kessler) might give the
idea for the Chinese proof. Finally, the third pattern, with the Swiss crosses
of area 5, indicates the truth of Pythagoras’ theorem for a particular triangle,
with sides 1, 2 and

√
5.

Euclid’s proof. This brilliant proof was much admired by Proclus (see
Heath, 1926, vol. I, p. 349). The idea is to attach the three squares of areas
a2, b2 and c2 to the right-angled triangle ABΓ as in Fig. 1.19. The two grey
triangles BA∆ and BZΓ are identical and just rotated by 90◦. The triangle
BZΓ has the same base and altitude as the square BAHZ; the triangle BA∆
has the same base and altitude as the rectangle B∆Λ. These two quadrilater-
als thus have the same area. The same proof applies to the quadrilaterals on
the right. The Pythagorean theorem now follows by adding the two results.
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Fig. 1.19. Left: Euclid’s proof; middle: Greek manuscript; right: Arabic manuscript
(Thābit ibn Qurra, Baghdad 870)

Leonardo Pisano’s proof. Leonardo Pisano (Fibonacci) proved Pythago-
ras’ theorem in his Practica Geometriae (1220) by using Thales’ theorem (“ut
Euclides in sexto libro demonstravit”) as follows (see Fig. 1.20).

Drawing the altitude through C gives two pairs of similar triangles: DBC,
CBA and DAC, CAB; see Fig. 1.20. We thus get

a

p
=
c

a
=⇒ a2 = pc

b

q
=
c

b
=⇒ b2 = qc





=⇒ a2 + b2 = (p+ q)c = c2 . (1.9)

Note for later use that we also have

p

h
=
h

q
=⇒ h2 = pq (the altitude theorem). (1.10)

Naber’s proof. B.L. van der Waerden (1983, p. 30) attributes this proof to
H.A. Naber (Haarlem 1908); Heath (1921, p. 148) presents it as one of the
most probable original proofs of Pythagoras.

Without doubt, this proof is the most elegant of all. The four triangles in
Fig. 1.21 are similar. If the area of the first, with hypotenuse 1, is denoted by
k, the areas of the others are, by Theorem 1.6, equal to ka2, kb2, and kc2,

c

q p

b a

h

α

α

β

β

A
B

C

D

Fig. 1.20. A proof using Thales’ theorem
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kb2 ka2

b a

kc2

c

k
1

Fig. 1.21. Naber’s proof

respectively. By comparing the figures, we see that, obviously, ka2+kb2 = kc2,
and it only remains to divide this formula by k.

For more proofs of the Pythagorean theorem, we recommend some exer-
cises below and the book by Loomis (1940), which enumerates 370 proofs.
One of these proofs is even due to a president of the United States (James
Garfield), from those beautiful times when mathematics was more fascinating
than oil.

Application to regular polygons. The above pre-Euclidean results allow
us to demystify many regular polygons and to compute the radii ρ of their
incircle and R of their circumcircle. The results are collected in Table 1.1.

Table 1.1. Radius of incircle (ρ) and radius of circumcircle (R) for regular polygons
with side length 1

n R ρ

3 R =

√
3

3
ρ =

√
3

6

4 R =

√
2

2
ρ =

1

2

5 R =
1√

3 − Φ
=

√
2 + Φ√

5
ρ =

√
3 + 4Φ

2
√

5

6 R = 1 ρ =

√
3

2

10 R = Φ ρ =

√
3 + 4Φ

2

Proofs. One always has ρ =
√
R2 − 1

4
by Pythagoras. For n = 3 and 5, the

quantities h and ℓ (defined in Fig. 1.22) are calculated with Pythagoras; ℓ
simplifies by using Φ2 = Φ+ 1. This gives

h =

√
1− 1

4
=

√
3

2
, ℓ =

√
1− Φ2

4
=

√
3− Φ
2

.
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1 1

R

h

1

2

1

2

ρ

30◦ 60◦

30◦

1

Φ
2

ℓ 1

2

ρ

R

A

O

36◦

72◦

Fig. 1.22. Equilateral triangle and pentagon

The values for R are obtained by applying Thales’ theorem to the grey tri-
angles in Fig. 1.22. For n = 10, see Fig. 1.10 (c) ; since α = 36◦, ten of these
triangles arranged as in a cake form a regular decagon.

1.8 Three Famous Problems of Greek Geometry

The following three problems appeared during the pre-Euclidean period and
occupied the Greek geometers for at least three centuries. The new curves and
algebraic tools which were needed to solve them contributed for another two
millennia to the development of geometry, algebra and analysis.

Squaring the circle. Finding a square whose area is equal to that of a given
rectangle was an easy exercise after the altitude theorem (1.10) was discovered.
The next challenge was then to find areas of certain regions bounded by
curves. In particular, the squaring of a given circle exercised great fascination
throughout the centuries. The earliest known result is given in the examples
No. 48 and 50 of the Rhind papyrus, see the pictures of Fig. 1.23 (left): a circle
in a square of 9×9 = 81 units is squared by cutting off corners with two sides
of length 3 units. This creates a surface of 81−18 = 63 units. Since 63 is close
to 64 = 82 = (9− 1)2, we obtain the “Egyptian algorithm”

subtract one ninth of the diameter, then square .

This is demonstrated in No. 50, where (reproductions from Peet, 1923)

the area of a circle of diameter 9 is 64
.

In Rhind No. 42, while computing the volume of a cylindrical container, the

area for diameter 10 is given as 79 1
108

+ 1
324

or , which

is 79 1
81 , the correct value. In modern notation these values correspond to the

approximation π ≈ 256
81

= 3.1605. Only during the Greek period were rigorous
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results obtained. Archimedes showed is his celebrissimo work (Measurement
of a circle, Heath, 1897, p. 91), with virtuoso estimates from above and below
that

3
10

71
< π < 3

1

7
. (1.11)

The details are given in Exercise 22 on page 58. In Chap. 8 we will see why all
the efforts of the Greek geometers to obtain an exact solution were doomed
to failure.

d
3

d
3

d
3

d

F

Fa

Fb

Fig. 1.23. Squaring the circle in Rhind papyrus (left pictures, reproduced from
Rhind No. 48 in Peet, 1923); the quadrature of the lunes of Hippocrates (right)

The lunes of Hippocrates. However, one precise result in this direction
was found during the Greek period, the squaring of the lunes by Hippocrates
of Chios.4 Let two lunes be cut out by three semicircles drawn on the sides
of a right-angled triangle (see Fig. 1.23, right). Then their areas satisfy the
relation

Fa + Fb = F (area of the triangle). (1.12)

To see this, let F ′
a, F

′
b and F ′

c be the areas of the semicircles with diameters a, b
and c. Then we see from the figure that F ′

a+F ′
b +F = Fa +Fb+F ′

c. We have
to know that Theorem 1.6, i.e. the fact that the areas of the semicircles are
proportional to the squares of the diameters, remains valid here (this result
will later be Eucl. XII.2). Then the terms F ′

a+F ′
b and F ′

c cancel by Pythagoras’
theorem.

Doubling the cube. The problem is: find a cube whose volume is twice that
of a given cube (see Fig. 1.24, left). Ancient sources give two different versions
for the origin of the problem: according to one source, King Minos of Crete
wanted Glaucus’ tomb to be doubled (see Heath, 1921, p. 245); according to
the other source, the oracle of Delos ordered the altar to be doubled in order
to stop a plague epidemic. When the people went to Plato asking for help with
the solution, he replied that the oracle did not mean that the actual doubling
of the altar would heal the people, but that the advances in mathematics
required for this construction would do so. For the geometers, who already
knew how to double a square (see Section 1.6), this problem, which consists in

4who lived in the 5th century B.C., not to be mistaken with his contemporary
Hippocrates of Kos, the famous physician.
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α
A

B

Fig. 1.24. Doubling the cube (left; the picture is a stereogram, if you stare at it by
merging the two images with the left and right eye, you’ll see it in 3d); trisecting an
angle (right)

constructing 3
√

2, was an interesting challenge. We will see how this problem
led to the discovery of the first conic sections (Chap. 3) and many other new
curves, one of which is the conchoid (see Chap. 4). Today’s science would not
be the same without the theory of conics (Chap. 5).

Trisecting an angle. The regular polygons with their divine beauty have
fascinated geometers since time immemorial. The square and the equilateral
triangle were known to the Babylonians, the regular pentagon was demys-
tified by the Greeks (see above). Since it is easy to bisect an angle (e.g.
with Eucl. III.20), we have no difficulty in constructing a hexagon, octagon,
decagon, dodecagon or any 2k-gon. The next challenges are thus the regular
heptagon (7-gon) and the regular enneagon (nonagon, 9-gon). This last prob-
lem would require one to trisect the angle of 120◦. From this question arose
(probably) the challenge of trisecting any given angle (see Fig. 1.24, right).
The solution of these problems contributed considerably to the development
of algebra (see Chap. 6).

1.9 Exercises

1. Ptolemy gives the approximation

√
3 ≈ 1, 43 55 23

in base 60 (see Heath, 1926, vol. II, p. 119). Check whether he is accurate.

2. Modify the proof of Theorem 1.4 for the case in which the points C and
D are not on opposite sides of AB, see Fig. 1.25 (left). This time, α will
be the difference of two angles β and γ.

3. Let ABC be a triangle inscribed in a circle, as in Fig. 1.25 (right). Show
that the size of α is independent of the position of A on the circle
(Eucl. III.21).

4. In order to approximate the golden ratio we consider the sequence of
rational numbers given recursively by
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O
A B

α 2α

D
C

α

α

C

B

A

Fig. 1.25. Eucl. III.20 modified (left); Eucl. III.21 (right)

rk+1 = 1 +
1

rk
, k ≥ 0

with r0 = 1. Find a relation to (1.3) and discover, by considering the
denominators of the fractions rk, an interesting sequence, the Fibonacci
numbers.

5. Let a “golden” rectangle with sides Φ and 1 be given. Show that cutting
off a square from this golden rectangle produces another golden rectangle
with sides smaller by the factor 1/Φ (see Fig. 1.26). The procedure can be
repeated and produces an embedded sequence of golden rectangles. If we
draw a quarter of a circle in each of these squares, we obtain a beautiful
spiral which is said to possess great mystical power ...

Φ

1
1

Φ

1

Fig. 1.26. A golden rectangle and its subdivisions

6. Find the error in the “proof” presented in Fig. 1.27, where different ar-
rangements of identical pieces suggest that 273 = 272.

Fig. 1.27. A curious proof that 273 = 272
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7. The Ancients were skilled at extracting square roots as this was neces-
sary for applying Pythagoras’ theorem (see also Exercise 22 of Chap. 2).
Rediscover the method which (probably) allowed the Babylonians, nearly
4000 years ago, to find the excellent value 1, 24 51 10 in base 60 for

√
2.

Hint. On another Babylonian tablet, which lists squares of numbers, you
will discover that a square of sides 1, 25 has an area very close to 2, because
(1, 25)2 = 2, 00 25 in base 60. Cut two strips of width δ from this square
in order to reduce the area to 2.

8. Triangular arrangements of dots of the form

= 1, = 3, = 6, = 10, = 15, . . .

were sacred figures for the Pythagoreans, especially the holy tetractys
with 10 dots, by which the Pythagoreans used to swear. Find a general
expression for tn, the number of dots of the n-th figure.

9. Find a general formula for the pentagonal numbers

= 1, = 5, = 12, = 22, . . . .

10. (Inspired by a picture of Eugen Jost, 2010.) Guess a formula for the num-
ber of dots forming an equilateral triangle on a hexagonal grid

= 1, = 4, = 9, = 16, = 25, . . .

and explain the result.

11. Glue the drawings of Fig. 1.28 onto some cardboard (or make a Xerox
copy if you want to preserve this beautiful book undamaged). Carefully
cut out the pieces to obtain two jig-saw puzzles that allow one to grasp
(literally) a 2500-year-old theorem. Which theorem is this?

12. Explain another version of Euclid’s proof of Pythagoras’ theorem (see
Fig. 1.29, left and middle pictures): Produce ZH and KΘ to find a point
Π such that Π,A,Λ are collinear and ΠA = B∆ (why?). Move the area
a2 first upwards parallel to ZH and then downwards parallel to ΠA.

13. (A discovery of Heron.) Show that in Euclid’s figure for the proof of
the Pythagorean theorem the lines ΓZ , BK and AΛ are concurrent, see
Fig. 1.29 (right).
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c
2

a2

b2

1

2

3

4

Fig. 1.28. Two jig-saw puzzles of high educational value

Β

Α

Γ

∆ Λ Ε

Ζ

Η
Θ

Π

Σ

Κ

Β

Α

Γ

∆ Λ Ε

Ζ

Η
Θ

Π

Σ

Κ

Β

Α

Γ

∆ Λ Ε

Ζ

Η
Θ

Π

Κ

Fig. 1.29. Another proof of Pythagoras’ theorem (left); Heron’s discovery about
Euclid’s figure (right)

14. Given an angle AOB with vertex O and a point P inside the angle, con-
struct perpendiculars PA, PB, and OC, PD, see Fig. 1.30 (left). Then
show that AC = BD (Hartshorne, 2000, p. 62).

A

B

C

D

O

P

Fig. 1.30. Diagonal in a particular quadrilateral (left); Archimedes’ Lemma (right;
copied from Peyrard’s edition of Archimedes’ Opera, vol. 2, Paris 1808)
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15. Prove one of Archimedes’ Lemmata (see Fig. 1.30, right): The area of the
moon-like region bounded by the semicircles AC, CD and DA is equal to
the area of the circle with diameter BD.

16. A young couple, to celebrate their golden wedding, set up a tent whose
base is a square of side length the golden ratio Φ (what else), held up by
5 tubes of length 1, see Fig. 1.31. Show that the polygons AEB, BEFC,
CFD and DFEA are parts of a regular pentagon. Further, show that
the angles of the faces AEB and BCEF with the base add up to a right
angle . With these two results we at once understand the construction
of the dodecahedron (Eucl. XIII.17) by attaching six of these tents to a
golden cube, see Fig. 2.37 in Sect. 2.6.

Φ
Φ

Φ

1 1

1

1

1

A

B

C

D

E

F

golden tent

Fig. 1.31. The golden tent

17. (Pythagorean triples.) Find (all)
right-angled triangles with all sides
of integer length.

5

3 4

18. Show that

x =
1− u2
1 + u2

, y =
2u

1 + u2
, u ∈ Q (1.13)

represent all points with rational coordinates on the unit circle, except
(−1, 0) (which corresponds to u =∞).

P

(a)
(b) (c)

Fig. 1.32. Geneva duck theorem (a); ornamental figure (b); ornament from a reli-
quary casket, 8th century, Abbey church of Saint Ludger, Essen-Werden (c)
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19. Prove the famous “Geneva duck theorem”: A duck moves on the Lake
of Geneva at constant speed towards a point P and creates circles at a
constant rate (see Fig. 1.32 (a)). Prove (with Thales) that any half-line
through P is cut by the circles into intervals of the same length (the
situation is slightly more complicated if the movement is “supersonic”).

20. An ancient ornamental figure (see Figs. 1.32 (b) and (c)) consists of a circle
(which we take of radius 1) from which a cross is cut out. The cross is
bordered by eight circular arcs which are either tangent to each other or
cut orthogonally at the centre. Find the area of the part shaded in grey.

(a)

r

r

a

b

r−aA B

C(b)
a2 c2

b2
d2

(c)

Fig. 1.33. Leonardo’s proof (a); altitude theorem (b); four squares (c)

21. Explain Leonardo da Vinci’s proof (see Fig. 1.33 (a)) of Pythagoras’ the-
orem, which is striking by — its beauty!

22. Use Fig. 1.33 (b) to deduce the altitude theorem (1.10) for triangle ABC
from Pythagoras’ theorem for the small dark triangle, and conversely.
(This will be Eucl. II.14 in the next chapter.)

23. Solve a “beau problème de géométrie”, inspired by a serigraph of Max
Bill (1908–1994) and communicated to the authors by P. Zabey, Geneva:
Let ABCD be a square whose side length is taken as 1. Let E be the
midpoint of BC. Construct a square EFGH such that D is the midpoint
of FG. This creates six triangles whose angles and areas are requested.

24. The oldest theorems of humanity in this chapter provide nice discov-
eries even now in the 21st century. Prove the following result, due to
Nelsen (2004): If two chords of a circle intersect at right angles forming
four segments a, b, c, d, then a2+b2+c2+d2 = D2, where D is the diameter
of the circle (see Fig. 1.33 (c)).

25. Analyse Dürer’s
circling of the square
(Underweysung, book 2)
and its error for π.

 1 1

 2 2

 3 3

 4 4

 5 5

 6 6

 7 7

 8 8

 9 9

1010

⇒
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The Elements of Euclid

“At age eleven, I began Euclid, with my brother as my tutor. This
was one of the greatest events of my life, as dazzling as first love.
I had not imagined that there was anything as delicious in the
world.” (B. Russell, quoted from K. Hoechsmann,
Editorial, π in the Sky, Issue 9, Dec. 2005. A few paragraphs later
K. H. added: An innocent look at a page of contemporary the-
orems is no doubt less likely to evoke feelings of “first love”.)

“At the age of 16, Abel’s genius suddenly became apparent.
Mr. Holmboë, then professor in his school, gave him private lessons.
Having quickly absorbed the Elements, he went through the In-
troductio and the Institutiones calculi differentialis and integralis
of Euler. From here on, he progressed alone.”

(Obituary for Abel by Crelle,
J. Reine Angew.Math. 4 (1829) p. 402; transl. from the French)

“The year 1868 must be characterised as [Sophus Lie’s] break-
through year. ... as early as January, he borrowed [from the Uni-
versity Library] Euclid’s major work, The Elements ...” (The
Mathematician Sophus Lie by A. Stubhaug, Springer 2002, p. 102)

“There never has been, and till we see it we never shall believe that
there can be, a system of geometry worthy of the name, which has
any material departures ... from the plan laid down by Euclid.”

(A. De Morgan 1848; copied from the Preface of Heath, 1926)

“Die Lehrart, die man schon in dem ältesten auf unsere Zeit
gekommenen Lehrbuche der Mathematik (den Elementen des Eu-
klides) antrifft, hat einen so hohen Grad der Vollkommenheit, dass
sie von jeher ein Gegenstand der Bewunderung [war] ... [The style
of teaching, which we already encounter in the oldest mathemati-
cal textbook that has survived (the Elements of Euclid), has such
a high degree of perfection that it has always been the object of
great admiration ...]” (B. Bolzano, Grössenlehre, p. 18r, 1848)

27
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Euclid’s Elements are considered by far the most famous mathematical oeuvre.
Comprising about 500 pages organised in 13 books, they were written around
300 B.C. All the mathematical knowledge of the period is collected there
and presented with a rigour which remained unequalled for the following two
thousand years.

Over the years, the Elements have been copied, recopied, modified, com-
mented upon and interpreted unceasingly. Only the painstaking comparison
of all available sources allowed Heiberg in 1888 to essentially reconstruct the
original version. The most important source (M.S. 190 ; this manuscript dates
from the 10th century) was discovered in the treasury1 of the Vatican, when
Napoleon’s troops invaded Rome in 1809. Heiberg’s text has been translated
into all scientific languages. The English translation by Sir Thomas L.Heath
in 1908 (second enlarged edition 1926) is completed by copious comments.

A

a

Def. 1 and 4.

point A

straight line a

Def. 10.

right angle

α

Def. 11.

obtuse angle

α

Def. 12.

acute angle

rr

Def. 15.

circle

O

Def. 16 and 17.

centre of circle
diameter of circle

Def. 18.

semicircle

c

b
a

α

γ

β

A

B

CDef. 19.

triangle

A

B

CD
Def. 19.

quadrilateral

c

b a

α

γ

β
A B

C
Def. 20.

equilateral triangle
a = b = c

c

b a

α

γ

β
A B

C
Def. 20.

isosceles triangle
a = b

c

b a

α β
A B

C

Def. 21.

right-angled
triangle

a

a

a

a

A B

CD

Def. 22.

square

a

a

a

a

A
B

CD

Def. 22.

rhombus

a

b

a

b

α β

αβ

A
B

CD
Def. 22.

rhomboid
= parallelogram

a

b
Def. 23.

parallel
straight lines

Fig. 2.1. Euclid’s definitions from Book I

1That’s where invading troops go first ...
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2.1 Book I

The definitions. The Elements start with a long list of 23 definitions, which
begins with

Σημε
︷︷
ιόν ἐστιν, ο

︷︷

ὑ μέρος οὐθέν (A point is that which has no part)

and goes on until the definition of parallel lines (see the quotation on p. 36).
Euclid’s definitions avoid figures; in Fig. 2.1 we give an overview of the

most interesting definitions in the form of pictures. Euclid does not distinguish
between straight lines and segments. For him, two segments are apparently
“equal to one another” if their lengths are the same. So, for example, a circle
is defined to be a plane figure for which all radius lines are “equal to one
another”.

The postulates.2 Let the following be postulated:

1. To draw a straight line from any point to any point.

A
BPost. 1. A

B⇒

2. To produce a finite straight line continuously in a straight line.

Post. 2. ⇒

3. To describe a circle with any centre and distance.

A

B

Post. 3.
A

B

⇒

4. That all right angles are equal to one another.

α
αPost. 4.

β

β ⇒ α = β =

5. That, if a straight line falling on two straight lines make the interior
angles on the same side less than two right angles, the two straight lines,
if produced indefinitely, meet on that side on which are the angles less
than two right angles.

2English translation from Heath (1926).
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α

β

Post. 5. α + β < 2

α

β
E

⇒

Remark. The first three postulates raise the usual constructions with ruler3

(Post. 1 and 2) and compass (Post. 3) to an intellectual level. The fourth pos-
tulate expresses the homogeneity of space in all directions by using the right
angle as a universal measure for angles; the fifth postulate, finally, is the cele-
brated parallel postulate. Over the centuries, it gave rise to many discussions.

The postulates are followed by common notions (also called axioms in some
translations) which comprise the usual rules for equations and inequalities.

The propositions. Then starts the sequence of propositions which develops
the entire geometry from the definitions, the five postulates, the axioms and
from propositions already proved. Among others, the trivialities of Chap. 1
now become real propositions. A characteristic of Euclid’s approach is that the
alphabetic order of the points indicates the order in which they are constructed
during the proof.

In order to give the flavour of the old text, we present the first two proposi-
tions in full and with the original Greek letters; but we will soon abandon this
cumbersome style4 and turn to a more concise form with lower case letters
for side lengths (Latin alphabet) and angles (Greek alphabet), as has become
standard, for good reason, in the meantime.

Eucl. I.1. On a given finite straight line AB to construct an equilateral
triangle.

A B

Γ

∆ E

The construction is performed by describing
a circle ∆ centred at A and passing through
B (Post. 3) and another circle E centred at B
and passing through A (Post. 3). Their point
of intersection Γ is then joined to A and to B
(Post. 1). The distance AΓ is equal to BΓ and
to AB, which makes the triangle equilateral.

Remark. The fact that Euclid assumes without hesitating the existence of
the intersection point Γ of two circles has repeatedly been criticised (Zeno,
Proclus, ...). Obviously, a postulate of continuity is required. For a detailed
discussion we refer the reader to Heath (1926, vol. I, p. 242).

3In order to emphasise that this ruler has no markings on it, some authors prefer
to use the expression straightedge instead.

4“... statt der grässlichen Euklidischen Art, nur die Ecken mit Buchstaben zu
markieren; [... instead of the horrible Euclidean manner of denoting only the vertices
by letters;]” (F. Klein, Elementarmathematik, Teil II, 1908, p. 507; in the third ed.,
1925, p. 259 the adjective horrible is omitted).
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Eucl. I.2. To place at a given point A a straight line AE equal to a given
straight line BΓ .

A

B

Γ

∆
H

E

For the construction, one erects an equilateral tri-
angle AB∆ on the segment AB (Eucl. I.1), produces
the lines ∆B and ∆A (Post. 2) and describes the cir-
cle with centre B passing through Γ (Post. 3) to find
the point H on the line ∆B. Then one draws the cir-
cle with centre ∆ passing through H (Post. 3). The
intersection point E of this circle with the line ∆A
has the required property. Indeed, the distance BΓ
equals the distance BH , and the distance ∆H equals
the distance ∆E. Hence, the distance AE equals the
distance BH , since the distance ∆B equals ∆A.

Remark. Post. 3 only allows one to draw a circle with given centre A and pass-
ing through a given point B. The aim of this proposition is to show that one
is now allowed to draw a circle with a compass-carried radius. This proof also
was criticised by Proclus. Depending on different positions of the points A, B
and Γ , various cases must be distinguished, with a slightly different argument
in each case. To prove all particular cases separately already here becomes
cumbersome. Therefore, Euclid’s method will henceforth be our model: as
soon as one case is understood, the others are left to the intelligent reader.

Eucl. I.4. Given two triangles with a = a′, b = b′, γ = γ′, then all sides and
angles are equal.

b
a

γ

A

B

C

b′
a′

γ′

D

E

FThis result is a cornerstone for all
that follows. In its proof, Euclid speaks
vaguely of applying the triangle ACB
onto the triangle DFE, of placing the
point C on the point F , of placing the
line a on the line a′, etc. Of course, this
lack of precision attracted much criti-
cism.5 Note that in Hilbert’s axiomatic formulation of geometry, see Sect. 2.7,
this proposition becomes an axiom.

Eucl. I.5 (commonly known as Pons Asinorum, i.e. asses’ bridge). If in a
triangle a = b, then α = β.

One of the trivialities of the previous section thus becomes a real theorem.
Let us see how Euclid proved this proposition. One produces (see Fig. 2.2,

5“Betrachten wir aber andererseits - das scheint noch die einzig mögliche Lösung
in diesem Wirrwarr - diese Nr. 4 als ein späteres Einschiebsel ... [If we consider on
the other hand — and this seems to be the only possible solution in this chaos — this
No. 4 as a later insertion ...]” (F. Klein, Elementarmathematik, Teil II, 1908, p. 416;
third ed., 1925, p. 217 with a modified wording).
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left) CA and CB (Post. 2) to the points F and G with AF = BG (Eucl. I.2),
and joins F to B and A to G (Post. 1). Thus the triangles FCB and GCA
are equal by Eucl. I.4, i.e. α + δ = β + ε, η = ζ and FB = GA. Now, by
Eucl. I.4, the triangles AFB and BGA are equal and thus δ = ε. Using the
above identity, one has α = β. This seems to be a brilliant proof, but is in
fact needlessly complicated. Pappus remarked 600 years later that it would
be sufficient to apply Eucl. I.4 to the triangles ACB and BCA with A and B
interchanged, see Fig. 2.2, centre and right.

a a

F G

δ

η

ε

ζ

α β

γ

(a)

A B

C

a a

α β

γ

(b)

A B

C

a a

β α

γ

(c)

B A

C

Fig. 2.2. Angles in an isosceles triangle

This proposition is immediately followed by Eucl. I.6, where the converse im-
plication is proved: α = β implies a = b.

The next two propositions treat the problem of uniquely determining a trian-
gle by prescribing the length of the three sides.

Eucl. I.7. Consider the two triangles of Fig. 2.3 (a), erected on the same base
AB and on the same side of it. If a = a′ and b = b′, then C = D.

c

bb′ aa′

α β γ
δ

A
B

C
D(a) A

B

C

(b) D

E

F

G

α

β

γ

δ

(c)

Fig. 2.3. Triangles with equal sides

Proof by Euclid . Suppose that C 6= D. Since DAC is isosceles by hypothesis,
α + β = γ (Eucl. I.5). Since DBC is isosceles, β = γ + δ (Eucl. I.5). Thus
we have on the one hand γ > β, and on the other hand γ < β, which is
impossible.



2.1 Book I 33

This is our first indirect proof . More than two thousand years later, a school
of mathematics rejected this kind of reasoning, because “one can not prove
something true with the help of something false” (L.E.J. Brouwer, 1881–1966).

Eucl. I.8. If two triangles ABC and DEF have the same sides, they also
have the same angles.

The proof of Philo of Byzantium, which is given here, is more elegant than
Euclid’s. We apply the triangle ABC (see Fig. 2.3 (b)) onto the triangle DEF
in such a manner that the line BC is placed on EF and the point A which
becomes G lies on the opposite side of EF to D (see Fig. 2.3 (c)). By hypoth-
esis, DEG is isosceles and thus α = β (Eucl. I.5). But DFG is also isosceles
and hence γ = δ (Eucl. I.5). Thus the angle at A (= β + δ) is equal to the
angle at D (= α + γ). For the other angles, one repeats the same reasoning,
placing first AC on DF , then AB on DE.

a a

A

B C

D E

F

Eucl. I.9.

A B

C

D

αα

Eucl. I.10.

a aA BCD E

F

Eucl. I.11.

a aA B

C

D EF

Eucl. I.12.

Fig. 2.4. Propositions I.9–I.12

Eucl. I.9–I.12. These propositions treat the bisection of an angle BAC (see
Fig. 2.4.I.9), the bisection of a lineAB (see Fig. 2.4.I.10) and the erection of the
perpendicular to a line AB at a point C on it (see Fig. 2.4.I.11). The common
tool for solving these three problems is the equilateral triangle (Eucl. I.1).
Finally, the construction of a perpendicular to a line AB from a point C
outside of it (see Fig. 2.4.I.12) is achieved with the help of a circle (Post. 3)
and the midpoint of DE (Eucl. I.10).

The entrance of Postulate 4.

“When a straight line set up on a straight line makes the adjacent
angles equal to one another, each of the equal angles is right, and
the straight line standing on the other is called a perpendicular to
that on which it stands”.

(Def. 10 of Euclid’s first book in the transl. of Heath, 1926).

The fourth postulate expresses the homogeneity of the plane, the absence of
any privileged direction, and allows one to compare, add and subtract the
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angles around a point. It does this by defining the right angle as a universal
unit. We denote this angle (90◦) by the symbol .

Eucl. I.13. Let the line AB cut the line CD (Fig. 2.5). Then α+ β = 2 .

Proof. Draw the perpendicular BE, which divides the angle β into + η.
Thus

β = + η

α + η =

}
⇒ α+ β + η = 2 + η

which proves the assertion.

αβ

A

B CD

αβ

η
A

B CD

E

Fig. 2.5. Eucl. I.13 (left) and its proof (right)

Eucl. I.14. In the situation of Fig. 2.6 (left), let α + β = 2 . Then C lies
on the line DB.

αβ

A

B CD

αβ
γ

A

B CD

E

Fig. 2.6. Eucl. I.14 (left) and its proof (right)

Proof. Let E lie on the line DB, i.e. by Eucl. I.13, let γ + β = 2 . By
hypothesis, α + β = 2 . These angles are equal by the fourth postulate,
hence γ = α. Therefore, E and C lie on the same line.

Eucl. I.15. If two straight lines cut one another, they make the opposite angles
equal to one another, i.e. α = β in Fig. 2.7 (left).

α

β

α

β

γ

Fig. 2.7. Eucl. I.15 (left) and its proof (right)

Proof. By Eucl. I.13, we have α + γ = 2 and also γ + β = 2 . By Post. 4,
α+ γ = γ + β. The result then follows from subtracting γ from each side.
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Eucl. I.16. If one side of a triangle is produced at C (see Fig. 2.8), the exterior
angle δ satisfies δ > α and δ > β.

α

β

δ

A

B

C

α

β

δ

δ

A

B
C

E

F

Fig. 2.8. Eucl. I.16 (left) and its proof (right)

Proof. Let E be the midpoint of AC (Eucl. I.10). We produce BE (Post. 2)
and cut off the distance EF such that EF = BE (Post. 3). The grey angles at
E are equal (Eucl. I.15), hence the two grey triangles are identical (Eucl. I.4).
Thus the grey angle at C is α, which is obviously smaller than δ. For the
second inequality, one proceeds similarly with the angle on the other side of
C (which is equal to δ by Eucl. I.15).

Remark. In the geometry on the sphere, which we will discuss in more detail
in Section 5.6, Eucl. I.16 is the first of Euclid’s propositions which does not
remain valid. Suppose, for example, that B is at the North Pole and A, E
and C lie on the Equator. Then α = and δ = , hence the inequality
δ > α is false. The reason is that the point F , which in our example becomes
the South Pole, is no longer certain to remain in the open sector between the
produced lines CA and BC.

Eucl. I.17–I.26. Various theorems of Euclid on the congruence of triangles
determined by certain side lengths or angles (see Fig. 2.9). The ambiguous case
ASS (last picture) is not mentioned by Euclid. For an inequality involving the
angles and sides of a triangle (Eucl. I.18), see Exercise 11 below.

c

b

α

SAS
Eucl. I.4

c

b
a

SSS
Eucl. I.8, I.22

cα

β

ASA
Eucl. I.26

cα

γ

AAS
Eucl. I.26

c

a

a
α

ASS

no prop.

Fig. 2.9. Congruence theorems for triangles

Eucl. I.20 states the famous triangle inequality

a < b+ c, b < c+ a, c < a+ b (2.1)
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(see Exercise 12 below). This result has been ridiculed as being evident even
to an ass. For if one puts the ass at one vertex of the triangle and hay at
another, the ass will follow the side that joins the two vertices and will not
make the detour through the third vertex (digni ipsi, qui cum Asino foenum
essent, Heath, 1926, vol. I, p. 287). Proclus gave a long logical-philosophical
answer. Instead, he could have said briefly: “The Elements were not written
for asses”.

“Parallel straight lines are straight lines which, being in the same
plane and being produced indefinitely in both directions, do not
meet one another in either direction”.

(Def. 23 of Euclid’s first book in the transl. of Heath, 1926).

a

b

α

β

E

F

a

b

α

β

E

F

G

Fig. 2.10. Eucl. I.27 (left) and its proof (right)

Eucl. I.27. If some line cuts two lines a and b under angles α and β (see
Fig. 2.10), then α = β implies that the lines are parallel. In this case, we
write a ‖ b for short.

Proof. If a and b were not parallel, they would meet in a point G, see Fig. 2.10.
Then EGF would be a triangle having α as exterior angle. Therefore, α would
be greater than β (Eucl. I.16), which contradicts the assumption.

The entrance of Postulate 5. Eucl. I.27, which ensures the existence of
parallels (simply take α = β and you have a parallel), is the last of the
propositions, carefully collected by Euclid at the beginning of his treatise,
which do not require the fifth postulate for its proof. This part of geometry
is called absolute geometry. For all that follows we need the uniqueness of
parallels, which requires the fifth postulate.

Eucl. I.29. If a ‖ b (see Fig. 2.11), then α = β.

a

b

α

β

a

b

α

β

γ

Fig. 2.11. Eucl. I.29 (left) and its proof (right)
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Proof. Suppose α > β. By Eucl. I.13, α+ γ = 2 , hence β + γ < 2 . By the
fifth postulate, these lines have to meet, which is a contradiction. A similar
reasoning shows that α < β is also impossible.

Remark. Combined with Eucl. I.15, the propositions Eucl. I.27 and Eucl. I.29
give variants, one of which formulates the trivial properties of parallel angles
of Fig. 1.7 (Eucl. I.28).

Remark. For more than 2000 years, geometers conjectured that Eucl. I.29
could be established without appealing to the fifth postulate. Many attempts
were made to prove this conjecture, without success. We shall return to this
question in Section 2.7.

Eucl. I.30. For any three lines a, b, c with a ‖ b and b ‖ c, we have a ‖ c.

a

b

c

a

b

c

α

β

γ

Fig. 2.12. Eucl. I.30 (left) and its proof (right)

Proof. By Eucl. I.27 and Eucl. I.29, the lines a and b are parallel if and only if
the angles α and β are equal.

Eucl. I.31. Drawing a parallel to a given line through a given point A.

a

A

a

A

Fig. 2.13. Eucl. I.31 (left) and the proposed construction (right)

Proof. Euclid’s proof makes use of Eucl. I.23 which is itself a consequence
of Eucl. I.22. One can also use two orthogonal lines (Eucl. I.12 followed by
Eucl. I.11).

Remark. Proclus made the following statement in his commentary: There
exists at most one line through a given point A which is parallel to a given
line. This statement turns out to be equivalent to the fifth postulate. In the
form just given, it is called Playfair’s axiom (1795).

2.1 Book I
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Eucl. I.32 gives the formula α+ β+ γ = 2 for the three angles of an arbi-
trary triangle, see (1.1) and the proof in Fig. 1.8. This is a very old theorem,
certainly known to Thales. It comes quite late in Euclid’s list, since its proof
requires the fifth postulate.

The remainder of Book I. Eucl. I.33–34 treat parallelograms; Eucl. I.35–
41 the areas of parallelograms and triangles; Eucl. I.42–45 the construction
of parallelograms with a prescribed area; Eucl. I.46 treats the construction of
a square. The highlight of the first book, however, is Pythagoras’ theorem
(Eucl. I.47, see the proof on page 16 and Fig. 1.19) and its converse: if a, b, c
are the sides of a triangle and a2 + b2 = c2, then the triangle is right-angled.

Book II. This book contains geometrical algebra, i.e. algebra expressed in
geometric terms. For instance, the product of two numbers a, b is represented
geometrically by the area of a rectangle with sides a and b. We have for
example the following relations, Eucl. II.1 and Eucl. II.4:

a

b c d

⇔ a(b+ c+ d) = ab+ ac+ ad

(a + b)2 = a2 + 2ab+ b2 ⇔ a

b

a b

a2

ab

ab

b2

Eucl. II.5 concerns the identity

a2 − b2 = (a + b)(a− b)
(see Fig. 2.14 left). The two light grey rectangles are the same. If one adds the
dark rectangle to each, one obtains on the left the rectangle (a+ b)× (a− b),
and on the right an L-shaped “gnomon”, which is the difference of a2 and b2.

Eucl. II.8. The identity (a+ b)2 − (a − b)2 = 4ab (see Exercise 14 below).

Eucl. II.13. The identity6

2uc = b2 + c2 − a2 (2.2)

for the segment u cut off from the side of a triangle by the altitude (see
Fig. 2.14, middle). Euclid obtains this result from c2 + u2 = 2cu + (c − u)2

(which is Eucl. II.7, a variant of Eucl. II.4), by adding h2 on both sides and
applying Eucl. I.47 twice.

6The original text, in Heath’s translation, is as follows: “In acute-angled triangles
the square of the side subtending the acute angle is less than the squares on the
sides containing the acute angle by twice the rectangle contained by one of the
sides about the acute angle, namely that on which the perpendicular falls, and the
straight line cut off within by the perpendicular towards the acute angle.” We see
how complicated life was before the invention of good algebraic notation; and the
case of an obtuse angle, where u becomes negative, required another proposition
(Eucl. II.12).
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a b a−b

a
a−b

b2

u c−u

ab h

a b

√
ab

Fig. 2.14. Eucl. II.5 (left), Eucl. II.13 (middle), and Eucl. II.14 (right)

Remark. For a direct proof of (2.2), without using Pythagoras’ theorem, see
Exercise 18 below. With the advance of algebra, the above propositions can
all be obtained from Eucl. II.1 by simple calculations. However, Euclid’s fig-
ures remain beautiful illustrations for these algebraic identities and, moreover,
pictures such as that in Fig. 2.14 (left) appeared at the very beginning of this
algebra (see Fig. II.1 below).

Eucl. II.14 proves the altitude theorem (1.10), by using Eucl. II.8 in the same
way7 as in Exercise 22 of Chap. 1. It allows the quadrature of a rectangle,
i.e. the construction of a square with an area equal to that of a given rectangle
(see Fig. 2.14 right).

2.2 Book III. Properties of Circles and Angles

The third book is devoted to circles and angles. For instance, Eucl. III.20 is the
central angle theorem, see Theorem 1.4 and Fig. 1.9; Eucl. III.21 is a variant
of this theorem, see Exercise 3 of Chap. 1.

α

δ α

A

B

C
D

(a)

α

δγ

β

γ

β

A

B

C
D

(b)

α

δ

O 2α

2δ
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(c)

Fig. 2.15. Angles of a quadrilateral inscribed in a circle (Eucl. III.22)

Eucl. III.22. Let ABDC be a quadrilateral inscribed in a circle, as shown in
Fig. 2.15 (a). Then the sum of two opposite angles equals two right angles:

α + δ = 2 . (2.3)

7It also follows from Eucl. III.35 below, for the particular case where AB is a
diameter and CD is orthogonal to AB.
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Proof by Euclid. We consider the triangleABC in Fig. 2.15 (b). By Eucl. III.21,
we have the two angles β and γ at the point D. This shows that δ = β + γ.
The result is thus a consequence of Eucl. I.32.

Another proof of Eucl. III.22. It is clear from Fig. 2.15 (c) that the central
angles cover the four right angles around O, i.e., by applying Eucl. III.20, we
have 2α+ 2δ = 4 . (Euclid did not consider angles greater than 2 ; hence
he would not have presented such a proof.)

Eucl. III.35. If two chords AB and CD of a circle intersect in a point E
inside the circle (see Fig. 2.16 (a)), then

AE ·EB = CE · ED . (2.4)
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γ

γ

ε ε
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C

D

E

(b)

Fig. 2.16. Eucl. III.35 (a) and its proof by Thales’ theorem

Proof. Concerned by rigour, Euclid persistently refuses to use Thales’ theorem.
Hence his proof, repeatedly using Pythagoras’ theorem (Eucl. I.47), requires
1 1
2 pages. Being less scrupulous, we see by Eucl. III.21 that the triangles AEC

and DEB are similar, see Fig. 2.16 (b). Hence (2.4) follows from Thales’ the-
orem.
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Fig. 2.17. Eucl. III.36 (a); Clavius’ corollary (b); relation with Pythagoras’ theorem
and Steiner’s power of a point with respect to a circle (c).
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Eucl. III.36. Let E be a point outside a circle and consider a line through
E that cuts the circle in two points A and B. Further let T be the point of
tangency of a tangent through E (see Fig. 2.17 (a)). Then

AE · BE = (TE)2 . (2.5)

Proof. The two angles marked α in Fig. 2.17 (a) are equal by Eucl. III.21,
because they are inscribed angles on the arc BT (the second one is a limiting
case as in Eucl. III.32, cf. Exercise 17 on page 57). Hence ATE is similar to
TBE and the result follows from Thales’ theorem. This, again, is not Euclid’s
original proof.

Corollary (Clavius 1574). Let A, B, C and D denote four points on a
circle. If the line AB meets the line CD in a point E outside the circle (see
Fig. 2.17 (b)), then

AE ·BE = CE ·DE . (2.6)

Proof. This is clear from Eucl. III.36, because AE ·BE and CE ·DE are both
equal to (TE)2.

We can also prove this corollary directly by Eucl. III.22, because the tri-
angles AEC and DEB are similar. Then Eucl. III.36, as well as the picture
Fig. 2.17 (a), would be limiting cases where C and D coincide.

Remark. The particular case of Eucl. III.36, in which AB is a diameter of
the circle (see Fig. 2.17 (c)), leads to t2 = (d + r)(d − r) = d2 − r2. This
is in accordance with Pythagoras’ theorem since the angle at T is right by
Eucl. III.18 (see Exercise 16). The quantity d2 − r2 is called the power of the
point E with respect to the circle, an important concept introduced by Steiner
(1826a, §9).

Book IV. This book treats circles, inscribed in or circumscribed to triangles,
squares, regular pentagons (Eucl. IV.11), hexagons (Eucl. IV.15). Without
Thales’ theorem, the treatment of the pentagon is still unwieldy. The more
elegant proof that we gave in Chap. 1 appears much later in the Elements
(Eucl. XIII.9). The book ends with the construction of the regular 15-sided
polygon (Eucl. IV.16, see Fig. 2.18).

A

B

E

C D

Fig. 2.18. Eucl. IV.16 (left); application to modern car technology (right).
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2.3 Books V and VI. Real Numbers and Thales’

Theorem

“There is nothing in the whole body of the Elements of a more
subtile invention, nothing more solidly established, and more ac-
curately handled than the doctrine of proportionals.”

(I. Barrow; see Heath, 1926, vol. II, p. 186)

Book V. The theory of proportions. This theory is due to Eudoxus
and has been greatly admired. It concerns ratios of irrational quantities and
their properties. One constantly works with inequalities that are multiplied
by integers. One thereby squeezes irrational quantities between rational ones,
somewhat in the style of Dedekind cuts 2200 years later.

Book VI. Thales-like theorems. Once the theory of proportions is estab-
lished, one can finally give a rigorous proof of Thales’ theorem.

Eucl. VI.2. If BC is parallel to DE, then
a

c
=
b

d
(see the figure on the left).

c
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b

d
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E

c
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F0

Fb

c
a

b

d Fa
F0

Proof. One joins B to E and C to D. This gives two triangles with the same
base CB and the same altitude, hence with the same area Fa = Fb, see the
second figure. Thus, if F0 denotes the area of ABC,

Fa = Fb ⇒ Fa
F0

=
Fb
F0

⇒ a

c
=
b

d

since
Fa

F0

=
a

c
. (We use here the fact that both triangles have the same altitude

on AD, see the figure on the right.)

Eucl. VI.3 (Theorem of the angle bisector). Let CD be the bisector of the

angle γ. Then
a

b
=
p

q
(see the figure on the left).
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Proof. Euclid proves this theorem as an application of Eucl. VI.2. We, however,
use the spirit of the above proof and consider the areas Fa and Fb of the
triangles DBC and ADC, respectively. These triangles have the same altitude
on AB (see second figure). As the points on the angle bisector have the same
distance from both sides (a consequence of Eucl. I.26), the triangles have the
same altitude on AC and BC, respectively, see the figure on the right. Thus
we have on the one hand

Fa
Fb

=
p

q
, and on the other hand

Fa
Fb

=
a

b
.

The subsequent propositions are variants of Thales’ theorem and their
converses; Eucl. VI.9 explains how to cut off a rational length from a line, see
Fig. 1.6; Eucl. VI.19 proves Theorem 1.6 on the areas of similar triangles. It is
only now that Euclid is fully prepared for Naber’s proof of the Pythagorean
theorem, see Fig. 1.21.

2.4 Books VII and IX. Number Theory

These books introduce a completely different subject, the theory of num-
bers (divisibility, prime numbers, composite numbers, even and odd numbers,
square numbers, perfect numbers). The later development of this theory, now
called number theory, with results that are simple to enunciate, but whose
proofs require the deepest thought and the most difficult considerations, be-
came the favourite subject of the greatest among the mathematicians (Fermat,
Euler, Gauss8) and is still full of mysteries and open problems.

The results are not geometrical, but the way of thinking is, at least for
Euclid.
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(d) (s)

Fig. 2.19. Measure of difference (d) and sum (s) of two numbers

The book starts with propositions about the divisibility of numbers. The
main tool is the observation, already known from Book V (in particular
Eucl. V.1 and V.5), that if a number divides (Euclid says “measures”) two
quantities, it also divides their difference (see Fig. 2.19, (d)), and their sum
(Fig. 2.19, (s)). This leads to Eucl. VII.2, better known as the Euclidean algo-
rithm.

8“Die schönsten Lehrsätze der höheren Arithmetik ... haben das Eigne, dass
... ihre Beweise ... äusserst versteckt liegen, und nur durch sehr tief eindringende
Untersuchungen aufgespürt werden können. Gerade diess ist es, was der höheren
Arithmetik jenen zauberischen Reiz gibt, der sie zur Lieblingswissenschaft der ersten
Geometer gemacht hat.” (Gauss, 1809; Werke , vol. 2, p. 152)



44 2 The Elements of Euclid

Eucl. VII.2. Given two numbers not relatively prime, to find their greatest
common measure.

The Euclidean algorithm.9 Given a pair of distinct positive integers, say
a, b with a > b, subtract the smaller from the larger. Then repeat this with
the new pair a − b, b. Any common divisor of a and b also divides a − b and
b, and conversely. Therefore, the last non-zero difference is divisible by the
greatest common divisor of a and b, and divides it. Hence it is their greatest
common divisor .
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(d) (d)

(s) (s) (s)

Fig. 2.20. Euclidean algorithm for the greatest common measure of two numbers

Other highlights of these books are Eucl. VII.34 on the least common multiple
of two numbers and Eucl. IX.20 on the fact that the number of primes is
infinite.

Book X. A classification of irrational numbers

This book is the culmination of the mathematical theory of the Elements,
using the tools from analysis (Books V and VI) and number theory (Books
VII–IX) in order to set up an immense classification of irrationals (with 115
propositions in all).

Eucl. X.1. This is the first convergence result in history, telling us that for n
sufficiently large, a ·2−n becomes smaller than any number ε > 0.10 The main
advantage of this proposition is to terminate proofs which otherwise would go
on indefinitely (see e.g. Eucl. X.2 and Eucl. XII.2 below).

Eucl. X.2 applies the algorithm of Eucl. VII.2 to real numbers. If the algo-
rithm never terminates, the ratio of the two initial numbers a > b is irra-
tional .11 Two thousand years later, this led to the theory of continued frac-
tions (see e.g. Hairer and Wanner, 1997, p. 67).

Example. In Fig. 2.21 we see the Euclidean algorithm applied to a = Φ (resp.
a =

√
2) and b = 1. We see that we obtain an infinite sequence of similar

triangles (resp. squares) and an unending sequence of remainders c = a − b,

9The Arabic word “algorithm” only appeared some thousand years later.
10The ε, though a Greek letter, came into use for this purpose only with Weier-

strass many many centuries later. If you want to know, Euclid used a capital Γ at
this place.

11In Euclid’s words: a and b are incommensurable.
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Φ

√
Φ 1

1

1√
Φ

1

Φ

ab

c

c

c

d

Fig. 2.21. Euclidean algorithm for Φ and
√

2

d = b− c, e = c− d (resp. c = a− b, d = b− 2c, e = c− 2d), etc. Hence, both
Φ and

√
2 must be irrational. The second picture is inspired by a drawing

in Chrystal (1886, vol. I, p. 270), the first by a result of Viète (1600), who
discovered that Φ,

√
Φ and 1 form a Pythagorean triple.

Other highlights of this book are Eucl. X.9, which shows that numbers
like
√

2,
√

3,
√

5,
√

6, etc. are irrational, and Eucl. X.28, which contains the
construction of Pythagorean triples.

2.5 Book XI. Spatial Geometry and Solids

Book XI introduces solids (στερεός). Euclid gives the definition of a pyramid
(πῡρᾰμίς; a solid formed by a polygon, an apex and triangles; see Fig. 2.22),

Fig. 2.22. Pyramids over a rectangle and over a pentagon, respectively

a prism (πρ
︷︷
ισμα; a solid formed by a polygon, a second identical polygon

parallel to the first one, and parallelograms; see Fig. 2.23, left),

Fig. 2.23. Prism over a pentagon (left) and sphere (right)

2.5 Book XI. Spatial Geometry and Solids
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a sphere (σφα
︷︷
ιρᾰ; a solid obtained by rotating a semicircle around the di-

ameter; see Fig. 2.23, right), a cone (κω̂νός; a solid formed by rotating a
right-angled triangle around a leg; see Fig. 2.24, left), a cylinder (κύλινδρος,
rotation of a rectangle around a side; see Fig. 2.24, right),

Fig. 2.24. Cone and cylinder

a cube (κῠβος; see Fig. 2.25, left), an octahedron (ὀκτάεδρον from ὀκτάεδρος
– eight-sided; see Fig. 2.25, right)

Fig. 2.25. Cube and octahedron

an icosahedron (εἰκοσάεδρον; see Fig. 2.26, left), and finally a dodecahedron
(δωδεκάεδρον; see Fig. 2.26, right).

Fig. 2.26. Icosahedron and dodecahedron

The four last ones, together with the tetrahedron (τετράεδρον, with four faces)
which Euclid does not define, form the class of regular polyhedra. This class
is identical to that of the Platonic solids or cosmic figures; Plato described
them in his Timæus and associated them to the five elements (cube ↔ earth,
icosahedron ↔ water, octahedron ↔ air, tetrahedron ↔ fire, dodecahedron
↔ ether). An illustration by Kepler is reproduced in Fig. 2.27.
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Fig. 2.27. Platonic solids (drawings by Kepler, Harmonices mundi, p. 79, 1619)

We further note the interesting fact that tetrahedron↔ tetrahedron, octahe-
dron↔ cube, and dodecahedron↔ icosahedron are seen to be dual by joining
the centres of the faces of the regular polyhedra, see Figs. 2.28–2.30.

Fig. 2.28. Self-duality of tetrahedron

Fig. 2.29. Duality between cube and octahedron

Fig. 2.30. Duality between icosahedron and dodecahedron
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Euclid omitted the definition of the parallelepiped (παραλληλεπίπεδον, a solid
with parallel surfaces) and of the right-angled parallelepiped (where all angles
are right), see Fig. 2.31.

Fig. 2.31. Parallelepiped and right-angled parallelepiped

Eucl. XI.1–XI.26. Properties of planes, lines and angles in space. We post-
pone these questions to Part II where we will discuss them using tools from
linear algebra.

Eucl. XI.27 ff. Volume of prisms and parallelepipeds. We have

V = A · h where A = area of the base; h = altitude. (2.7)

The proofs are in the style of the second figure of Fig. 1.11 (cut off a piece
and add it onto the other side). An alternative proof — in the spirit of
Archimedes — can be given by cutting the solid into thin slices (exhaustion
method); for an illustration, see Fig. 2.32).

oblique prism → right prism

Fig. 2.32. Transformation of an oblique prism into a right prism

2.6 Book XII. Areas and Volumes of Circles, Pyramids,

Cones and Spheres

Areas and volumes of more complicated figures are the topic of Book XII.
Euclid starts with circles.

Eucl. XII.2. The areas A1 and A2 of two circles C1 and C2 of radii r1 and
r2, respectively, satisfy

r2
r1

= q ⇒ A2

A1
= q2. (2.8)
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Proof. The proof is based upon Eucl. VI.19, see Theorem 1.6. Its rigour is
impressive.

A1

C1

1
qP A2

C2

P

Fig. 2.33. Proof of Eucl. XII.2

Suppose that A2

A1

> q2, i.e.

q2A1 < A2 . (2.9)

We now apply an idea, called
the method of exhaustion and at-
tributed by Archimedes to Eu-
doxus: we inscribe in the circle C2

a polygon P whose area fits in the
gap given by (2.9). In order to see
that this is possible, one shows that by doubling the number of points of P ,
the difference of the areas diminishes by at least the factor 1

2 (see the small
rectangle in Fig. 2.33, right). One then applies Eucl. X.1 and obtains for the
area of P

q2A1 < P < A2 . (2.10)

The polygon P is then divided by q and transferred into C1. Then, by
Eucl. VI.19, and because 1

q
P is contained in C1,

1

q2
P < A1 .

If this inequality is multiplied by q2, we obtain a contradiction with (2.10).
For the assumption A2

A1

< q2 one exchanges the roles of C1 and C2 and

arrives at a similar contradiction. Thus, the only possibility is A2

A1

= q2.

Euclid, with his disdain for all practical applications, says not a word about
the actual value of the similarity factor, which is today denoted by π. With
the famous estimate (1.11) we obtain

A = r2π where π is a number satisfying 3
10

71
< π < 3

1

7
(2.11)

(see Exercise 22 below).

Eucl. XII.3–XII.9. Volumes of pyramids. The result is

V =
A · h

3
where A = area of the base, h = altitude. (2.12)

We again prefer to give a proof by using thin slices, see Fig. 2.34. To make
the factor 1/3 convincing, Euclid decomposes a triangular prism into three
pyramids which have — two by two — the same base and altitude. Thus, all
three have the same volume (see upper picture of Fig. 2.35). A simpler proof
(Clairaut, 1741) is obtained by cutting a cube into six pyramids of altitude
h
2 (see lower left picture of Fig. 2.35). Cavalieri (1647, Exercitatio Prima,
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Fig. 2.34. Volume of a pyramid; on the right: drawing by Legendre (1794), p. 203

Prop. 24) shows by calculus that, in modern notation,
∫ 1

0
x2 dx = 1

3
. This

is illustrated by a skew quadratic pyramid which, when assembled as in the
lower right picture of Fig. 2.35, shows once again that the volumes of the solids
“erunt in ratione tripla”.

Eucl. XII.10–XII.15. (Volumes of cylinders and cones.) We have:

Vcylinder = r2πh, Vcone =
r2πh

3
. (2.13)

Eucl. XII.17. The volumes V1 and V2 of two spheres with radius r1 and r2,
respectively, satisfy

r2
r1

= q ⇒ V2
V1

= q3. (2.14)

The proof is similar to that of Eucl. XII.2, but more involved.

Later, Archimedes (see On conoids and spheroids, Prop. XXVII) found that

Fig. 2.35. Proof of Eucl. XII.7 (above); proof by Clairaut (below left), Cavalieri
(below right)
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Vsphere =
4πr3

3

and the beautiful relation

Vcone : Vsphere : Vcylinder = 1 : 2 : 3 (2.15)

for a cylinder circumscribing the sphere, and a double-cone with the same
radius and altitude as the cylinder.

Archimedes’ proof uses slim slices by observing that, slice by slice, the
area A of the cross-section of the sphere

Asphere = ρ2π = r2π − x2π = Acylinder −Acone

equals that of the cylinder minus that of the cone. This is obvious from
Fig. 2.36, which shows that ρ =

√
r2 − x2.

x r−r 0

ρ
x

r

vol. sphere = vol. cyl. − vol. cone

Fig. 2.36. Volume of sphere, cylinder and cone

Book XIII. Construction and properties of the Platonic solids

Eucl. XIII.1–12 are concerned with the golden ratio, the regular pentagon
and isosceles triangles, see Chap. 1.

Eucl. XIII.13–18. Euclid constructs the tetrahedron, octahedron, cube,
icosahedron and dodecahedron. For the dodecahedron, he starts from a cube
by adding hipped roofs on each face, as shown in Fig. 2.37, see also Exercise 16
in Sect. 1.9.

Fig. 2.37. The dodecahedron built on a cube



52 2 The Elements of Euclid

2.7 Epilogue

“Some time ago in Berlin, a brilliant young man from a respected
family was dining with an elderly man, to whom he explained
enthusiastically all the research he was carrying out in geometry,
which is so easy at the beginning and becomes difficult only later.
‘For me’, said the elderly man, ‘the first principles are very difficult
and contain complications which I cannot resolve’. The young man
smiled sarcastically, until someone whispered in his ear: ‘Do you
know to whom you are talking? To Euler!’ ”
(Testimony of L. Hoffmann 1786; quoted from Pont, 1986, p. 467)

“Die vorliegende Untersuchung ist ein neuer Versuch, für die Geo-
metrie ein vollständiges und möglichst einfaches System von Ax-
iomen aufzustellen und aus denselben die wichtigsten geometri-
schen Sätze ... abzuleiten, ... [The following investigation is a new
attempt to choose for geometry a simple and complete set of in-
dependent axioms and to deduce from them the most important
geometrical theorems ...]”

(D. Hilbert, 1899, p. 1; Engl. trans. by E.J. Townsend, 1902)

“Studying the foundations is not an easy task. If the reader en-
counters difficulties when reading the first chapter ... he may skip
the proofs ... ”

(M. Troyanov, 2009, p. 3; transl. from the French)

“Ich habe noch einen kurzen Schlusssatz hinzugefügt – für ungläu-
bige und formale Gemüther. [I have also added a short closing
sentence — for unbelieving and formal minds.]”

(D. Hilbert, letter to F. Klein, 4. 3. 1891)

For more than 2000 years, the Elements of Euclid have served as a basic
text in geometry. Their austere beauty has fascinated readers throughout the
ages. However, the Elements have also received much critical attention from
the very beginning, examples of which we have already seen in our discussions
following Eucl. I.1 and Eucl. I.4. Authors have repeatedly tried to improve on
Euclid’s axioms. A particularly thorough contribution was Legendre’s book
(1794), which was reprinted in many editions during more than a century. But
only during the 19th century were final breakthroughs made in two directions:
(a) in relaxing one of Euclid’s postulates, creating non-Euclidean geometry;
(b) in laying firmer foundations for classical geometry by a complete reorgan-
isation and strengthening of the axioms (Hilbert).

Non-Euclidean geometry. During all these 2000 years, Euclid’s Postulate 5
on parallel lines was suspected of being superfluous; this caused an enduring
discussion with innumerable attempts to deduce it from the other postulates.
The continued failure of all these efforts finally aroused the suspicion that
such a proof is impossible. Gauss expressed in several letters to his friends,
but not in print, the idea that one could create an entirely new geometry
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which does not satisfy Postulate 5. The construction of this so-called hyper-
bolic geometry was carried out and published independently by Bolyai (1832)
and Lobachevsky (1829/30) and was the origin of non-Euclidean geometry.
The originally very complicated theory was later simplified by the models of
Beltrami (see Fig. 7.25 on page 213), Klein and Poincaré. For more details we
refer to the textbooks by Gray (2007, Chaps. 9, 10, 11), Hartshorne (2000) and
the article Milnor (1982). Many interesting details are given in Klein (1926,
pp. 151–155). Very careful historical notes accompany the advanced text Rat-
cliff (1994) and a complete epistemological account of all the actors of this
long development is given in Pont (1986).

Hilbert’s axioms. The ongoing formalisation of mathematics in the second
half of the 19th century also called for firmer foundations of classical geome-
try. In 1899, Hilbert came up with a new and “simple” system of 21 axioms,
later reduced to 20, because the axiom II.4 was seen to be redundant. This
system of axioms characterises plane and solid Euclidean geometry. Many
of Euclid’s vague definitions for the principal objects of Euclidean geometry,
namely points, straight lines and planes, are simply omitted12 and Hilbert
characterises them by their mutual relations, such as situated, between, paral-
lel, and congruent. The actual calculations are based on a so-called segment
arithmetic, leading first to Pappus’ theorem (see Thm. 11.3 on page 325), and
then to Thales’ theorem as a consequence.

During the 20th century, attempts were made to reduce the large number
of Hilbert’s axioms. The main idea for this was to assume the real numbers to
be known, which allowed, for example in Birkhoff (1932), the introduction of
a set of four postulates to axiomatically describe plane Euclidean geometry.
His postulates are based on the use of a (scaled) ruler and a protractor; this is
made possible by accepting the fundamental properties of the real numbers.
In this approach, Thales’ theorem is simply postulated.

Despite the great importance of axiomatic systems, their austere charac-
ter often discourages beginners (see the quotation above). We will therefore
abandon at this point the axiomatic bones and turn our attention to a meatier
fare. It is interesting to note that Hilbert himself, in his later book written
with Cohn-Vossen, Geometry and the Imagination (1932), did not mention
his own system of axioms at all.

12In Hilbert’s own words, such basic objects may be replaced by tables, chairs
and beer mugs, as long as they meet the required relations.
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2.8 Exercises

1. Prove the extension by Proclus of Eucl. I.32 (cf.
Heath, 1926, vol. I, p. 322): for any polygon with
n vertices the sum of the interior angles satisfies

α+ β + γ + . . .+ ν = 2 (n− 2) . (2.16)
α

β

γ
δ

ν

A B

C
D

N

2. The assertion of the first two pictures of Fig. 1.7 (see Chap. 1) for paral-
lel angles are Eucl. I.29 together with I.15. Prove the last assertion, for
orthogonal angles.

3. (Golden ratio with ruler and rusty
compass; Hofstetter, 2005.) Extend
the construction of Eucl. I.1 and
Eucl. I.10, by adding another circle
of the same radius centred at the
midpoint M (see figure at right),
to obtain the point F which divides
the segment AB in the golden ra-
tio.

A B

C

D

M

E

F

G

4. Let ABC be a triangle with right angle at C. Show that the vertex C lies
on the Thales circle of the hypotenuse AB.

5. Close a gap in the “Stone Age
proof” of Thales’s theorem in
Chap. 1 (see Fig. 1.2) : It is
not evident that the points D
and E, after the parallel trans-
lations of the triangle ABC,
must really coincide.

c

b
a

α

γ

β

A
B

C
D
E

“Figures don’t lie, but liars figure.”
(Mark Twain [from an e-mail by Jerry Becker])

6. Criticise the “proof” by W.W. Rouse Ball (see Hartshorne, 2000, p. 36)
of a wrong variant of Eucl. I.5: Every triangle is isosceles, which goes
as follows: Let E be the intersection of the angle bisector at A and the
perpendicular bisector of BC, see Fig. 2.38, left. Drop the perpendiculars
EF and EG. Then use all the valid propositions of Euclid to show that
AF = AG and FB = GC. From this the “result” follows.

A clever student might object that the intersection point E could be out-
side the triangle. However, this situation is not much better, see Fig. 2.38,
right.
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α
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α
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α
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A

B CD

E

F

G

Fig. 2.38. The proof that every triangle is isosceles

7. Let ABC be an isosceles triangle and D the midpoint between B and C
(see Fig. 2.39 (a)). Use judiciously chosen propositions of Euclid to prove
that the line AD is perpendicular to BC. In the language of Chap. 4 below,
we say that the median through A, the bisector of the angle BAC, the
perpendicular bisector of BC and the altitude through A coincide.

a a

A

B C
D

(a)

P

Q

C1

C2

(b)
3 t

d
r

9

T

N

S

(c)

Fig. 2.39. Median of an isosceles triangle (a); radical axis of two circles (b); the
problem of Qin Jiushao (c)

8. Use the result of the previous exercise to show that the radical axis QP of
two circles (see Fig. 2.39 (b)) is perpendicular to the line joining the two
centres.

9. Solve a problem by Qin Jiushao, China 1247:13 Given a circular walled
city of unknown diameter with four gates, one at each of the four cardinal
points. A tree T lies 3 li14 north of the northern gate N . If one turns
and walks eastwards for 9 li immediately on leaving the southern gate
S, the tree just comes into view. Find the diameter of the city wall (see
Fig. 2.39 (c) and Dörrie, 1943, §262).

13English wording by J.J. O’Connor and E.F. Robertson, The MacTutor History
of Mathematics Archive, http://www-history.mcs.st-andrews.ac.uk/index.html

14A li is a traditional Chinese unit of length, nowadays 500 m.



56 2 The Elements of Euclid

10. Prove that the diagonals of a parallelogram
bisect each other and that, in addition, the
diagonals of a rhombus are perpendicular
to each other (see the figure to the right,
and Def. 22 of Fig. 2.1).

a

b

a

b

A
B

CD

E

11. Reconstruct Euclid’s proof for Eucl. I.18: In any triangle the greater side
subtends the greater angle, i.e. show that if in a triangle AC is greater
than AB, then β is greater than γ.
Hint. Insert a point D such that AB = AD; see Fig. 2.40 (a).

γ

β
C

B

D

A (a) D

A

B

C

(b)

A

B

C

D

E

(c)

Fig. 2.40. Eucl. I.18; Eucl. I.20 and Eucl. IV.15

12. Give Euclid’s proof of the triangle inequality (Eucl. I.20) with the help of
Fig. 2.40 (b); i.e. show that AB + AC is greater than BC. The auxiliary
point D is found by producing line AB so that AD = AC.

13. The following exercise is the basis for understanding the regular hexagon
(Eucl. IV.15): if three equal equilateral triangles are as in Fig. 2.40 (c),
then ACE is a straight line.

14. Find a geometric proof for Eucl. II.8, which expresses the algebraic identity

(a + b)2 − (a − b)2 = 4ab

and was a key relation in the search for Pythagorean triples. (Hint. A look
at Fig. 12.1 might help.)

1

1
1

2

1

2

s

Φ

s2

(a)

C

F

(b)

α

G C

F

(c)

Fig. 2.41. Proof of Eucl. II.11 (a); property of the tangent to a circle (b); Euclid’s
proof of Eucl. III.18 (c)
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15. Explain the solution of Eucl. II.11 in Fig. 2.41 (a) for the computation of
the golden ratio Φ determined by equation (1.4).

16. Discover Euclid’s proof for Eucl. III.18: If a straight line touches a circle
with centre F at a point C, then FC is perpendicular to this line (see
Fig. 2.41 (b)). (Hint. A look at Fig. 2.41 (c) might help.)

17. Find a proof of Eucl. III.32, which states that if a line EF touches a circle
at B, and if C and D are points on this circle, then the angle DCB is
equal to the angle DBE (see Fig. 2.42, left).

α

α

D

C

E F
B

v

a−v

c

b

A
B

C

P

Fig. 2.42. Eucl. III.32 (left); Eucl. II.13 (right)

18. Eucl. II.13, i.e. formula (2.2), written for the situation of Fig. 2.42 (right),
reads as

a2 + b2 − 2av = c2 , (2.17)

and is a direct extension of Pythagoras’ theorem (1.8). Question: can you,
inspired by Euclid’s proof of Fig. 1.19, find a direct proof of (2.17)?

19. Let two circles intersect in two points P and Q (see Fig. 2.43 (a)). From a
point T on one of the circles, produce TP and TQ to cut the other circle
at A and B. Show that the tangent at T is parallel to AB.

P

Q

A

B T

(a)

P

Q

A

B

S

T

(b)

Fig. 2.43. Property of the tangent to a circle (left); two secants to two circles (right)

20. Prove a beautiful result, generally attributed to Jacob Steiner, the four-
circles theorem: Suppose that four circles intersect in points A,A′, B,B′,
C,C′ and D,D′ as shown in Fig. 2.44 (a). Show then that A,B,C,D are
concyclic (i.e. lie on a circle) if and only if A′, B′, C ′, D′ are.
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A

B

C D

A′

B′

C′

D′

(a)

α

α

β

β

γ

γ

δ

δ

A

B

C D

A′

B′

C′

D′

(b)

Fig. 2.44. The four-circles theorem (left); its proof (right)
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(a)
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b
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5
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b

a

a
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A C

B
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D

(b)

60◦ 60◦

b 2b

a 2a

A C

B

F

(c)

Fig. 2.45. Pappus’ hexagon problem

21. Solve “Pappus’ last mathematical problem” (from Collection , Book VIII,
Prop. 16, see Fig. 2.45 (a)): Inscribe in a given circle with radius AF seven
identical regular hexagons of maximal size. The problem reduces to the
question: Given a segment AF , find a point B such that BF = 2 ·AB and
the angle ABF is 120◦.
(a) Verify Pappus’ construction (Fig. 2.45 (b)): Insert on the segment AF
points C and E such that AC = 1

3 ·AF and CE = 4
5 ·AC. Draw on AC a

circle containing an angle of 60◦ (by Eucl. III.21), and draw EB, tangent
to the circle at B. Then B is the required point.
(b) Is there an easier solution?

22. (Archimedes’ calculation of π.) Compute the perimeters of the regular
inscribed and circumscribed 96-gons of a circle of radius 1 to show that
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1

a y
b

x
b
y

x2

y

α
2

α
2

Fig. 2.46. Archimedes’ computation of the regular inscribed 96-gon

1

s

√
1+s2

t
α
2

α
2

Fig. 2.47. Archimedes’ computation of the regular circumscribed 96-gon

3
10

71
< π < 3

1

7
.

(a) Apply Pythagoras, Thales and Eucl. III.20 to find x = HΓ if a = BΓ
is known (see Fig. 2.46) and H is the midpoint of the arc BΓ . This allows
one to compute successively, starting from the hexagon, the perimeters of
the regular dodecagon, 24-gon, 48-gon and 96-gon.
Hint. The triangles ABZ, AHΓ and ΓHZ are similar.

(b) Apply Eucl. VI.3 to find t = HΓ if s = ZΓ is known (see Fig. 2.47).
This will lead similarly to the perimeters of the circumscribed regular
n-gons.

23. (Another of the divine discoveries of Euler.) Count, for each of the poly-
hedra from Euclid’s Book XI drawn above,

s0 . . . the number of vertices,

s1 . . . the number of edges,

s2 . . . the number of faces.

Make a list of these values and discover Euler’s famous relation (Euler,
1758).
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3

Conic Sections

“The cream of the classical period’s contributions are Euclid’s
Elements and Apollonius’ Conica.” (M. Kline, 1972, p. 27)

“Quotusquisque Mathematicorum est, qui tolerat laborem per-
legendi Appollonii Pergaei Conica? [How few mathematicians
would endure the effort of reading the entire Conics of Apollo-
nius of Perga?]” (J. Kepler, 1609, from the introduction)

“... i libri di Apollonio, ... delle quali sole siamo bisogni nel presente
trattato [the books of Apollonius, the only tools which we require
in the present treatise]” (Galilei, Discorsi 1638, fourth day)

“A peine la Géométrie sortoit-elle de l’enfance, qu’elle s’occupa
des Sections coniques, ... [Barely out of infancy, geometry devoted
itself to conic sections ...]” (G. Cramer, 1750, p. vi)

We now turn our attention to another of the great treatises of the classi-
cal period, the Conics of Apollonius of Perga. Apollonius wrote eight books
on conic sections; the first four have survived in the original Greek text (a
critical edition was published by Heiberg 1893), books V, VI and VII were
reconstructed from arabic texts by E. Halley (1710), the last volume is lost.
We base our quotations on the French translation by Ver Eecke (1923). An au-
thoritative English edition, slightly arranged and adapted to modern notation,
was published by Heath (1896).

The theory of conics was taken up again by Kepler (1604), who included a
short section on conics in his book on astronomy and optics. He emphasised
the two particularly important points of a conic and called them foci (”Nos
lucis causâ, et oculis in Mechanicam intensis ea puncta Focos appellabimus”).
Many of Apollonius’ proofs were later simplified with the use of analytic meth-
ods, see Chap. 7. Even the most elegant geometric idea in this field, Dandelin
spheres , had to wait another 2000 years before being discovered by a Belgian
army engineer (G.P. Dandelin, 1794–1847). This discovery turned the presen-
tation of conics upside down.
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2 30

1

2

3

x · y = 2

y = x2

3
√

2

Origin of the conics. Hippocrates of Chios
solved the problem of doubling the cube, i.e.
of finding x = 3

√
2 (see Section 1.8) or solving

x · x · x = 2, in the following way: separate two
of these factors x · x = y to obtain the equations

x · y = 2 , y = x2 . (3.1)

Menaechmus, a pupil of Eudoxus and Plato, dis-
covered that the two curves defined by these equations are generated by the
intersection of a plane with a cone. This is how the theory of conics was
born (see Viète, 1593b, Caput II, Historia duplicationis cubi, for details). It
was further developed in (lost) works of Euclid and the famous treatise of
Apollonius.

3.1 The Parabola

“And Jesus answered and spoke unto them again by parables, ...”
(The Holy Bible, Matthew 22.1)

παραβολή , comparison, illustration, juxtaposition, analogy ...
(Liddel and Scott, Greek-English Lexicon, Oxford)

Definition of a parabola (Pappus, Collection , Book VII, Prop. 238). Let d
be a line, called the directrix , and F be a point, called the focus , at distance p
from the directrix. The locus of all points P that have the same given distance
ℓ from F as from d (see first picture in Fig. 3.1) is called a parabola. A parabola
is symmetric with respect to the normal to d through the focus. This line of
symmetry is called the axis of the parabola. It intersects the parabola at its
vertex .
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ℓ
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Fig. 3.1. Definition and tangent of a parabola
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Theorem 3.1 (Apoll. I.11). If a cone is cut by a plane that has the same slope
as the generators of the cone, then the intersection is a parabola.

Proof (Dandelin 1822). We use the fact that the tangents from a point P to
a sphere all have the same length. They form a cone and touch the sphere
along a circle, see Fig. 3.2 (left).

The crucial idea is now to choose a sphere (Dandelin’s) that touches both
the cone (along a circle AA . . .) and the plane π (at a point F that will turn
out to be the focus; see the two pictures on the right of Fig. 3.2). Let P be
an arbitrary point on the intersection of the cone with the plane, and let A
be the intersection point of the circle AA . . . with the generator of the cone
through P . The intersection of the plane containing the circle AA . . . with π
defines a line, the directrix. Let B denote the point on the directrix above P .

We have PF = PA, since both segments are tangent to the sphere. But
since the plane has the same slope as the cone, we also have PA = PB. This
concludes the proof.

Tangents to a parabola. Let P be an arbitrary point on the parabola, and
t the bisector of the angle BPF ; see the second picture of Fig. 3.1. For any
other point Q of t, we have BQ = QF , since the triangles BPQ and FPQ
are congruent.1 But QF is longer than the distance of Q from the directrix
d, as BQ is not orthogonal to d. Thus all points of the line t other than P lie
outside the parabola and t is the tangent at P .

One of the consequences (use Eucl. I.15, if you like) is that each ray which
is parallel to the axis is reflected by a parabolic mirror through the focus
of the parabola, see the third picture of Fig. 3.1. The parabolic antennas on
our balconies, the parabolic mirrors used in headlights and for astronomical
telescopes are all based on this principle.

Defining equation. Denote by x and y the coordinates of the point P
on a parabola with respect to the vertex, see the first picture of Fig. 3.1.

P
π

F

A B

P

ℓ

π

F

A B

P

ℓ

ℓ

ℓ

Fig. 3.2. A parabola as the intersection of a cone with a plane

1Two figures in geometry are called congruent if they can be transformed into
another by a combination of translations, reflections and rotations.
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Pythagoras’ theorem shows that

(
x− p

2

)2
+ y2 =

(
x+

p

2

)2
whence y2 = 2xp , (3.2)

i.e. the area of the square y · y equals the area of the rectangle x · 2p. This
“comparison, analogy ...” is the origin of the name parabola (given by Apollo-
nius, see the quotation). The value 2p is called the latus rectum, i.e. the length
of the vertical segment through the focus.

3.2 The Ellipse

ἐλλ̆ιπής , leaving out, omitting, lack ...
(Liddel and Scott, Greek-English Lexicon, Oxford)

We perform a construction similar to the preceding one, but suppose now
that the intersecting plane π is less steep than the generators of the cone, see
Fig. 3.3. Consequently, the segment PB is longer than PA by a factor that
we denote by 1

e . Here e is a number satisfying 0 ≤ e < 1. It is called the
eccentricity.

π
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F ′
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B

P

ℓ

ℓ′

π

F

F ′

A

A′

B

P

ℓ

ℓ′

ℓ

ℓ′

ℓ/e

Fig. 3.3. An ellipse as the intersection of a cone with a plane

First definition of an ellipse (Pappus). Consider the focus F at distance
p/e from a line d, with 0 ≤ e < 1. The locus of all points P for which the ratio
of the distances to the point F and to the line d equals e is called an ellipse,
see Fig. 3.4 (left). The line d is called the directrix .

Defining equation. In the same way as for the parabola, Pythagoras’ the-
orem gives us (we now denote the coordinate from the vertex V by u, see
Fig. 3.4, left),

(
u− p

1 + e

)2
+ y2 = e2

(
u+

p/e

1 + e

)2
=
(
eu+

p

1 + e

)2
,
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Fig. 3.4. Definition of an ellipse and construction of a tangent

whence

y2 = 2up− (1− e2)u2 or (1− e2)u2 − 2up+ y2 = 0 , (3.3)

i.e. the area of the square y ·y is smaller than that of the rectangle u ·2p. This
“omission” or “lack” motivated Apollonius (Apoll. I.13) to call such a curve
an ellipse, see the above quotation.

Second definition of an ellipse. We now place a second Dandelin sphere
on the other side of the plane π (see Fig. 3.3), which touches the plane at a
second focus F ′. The two spheres touch the cone along two parallel circles.
Consequently, the sum of the two distances PA and PA′ is a constant. By
the same reasoning as before we get that

the sum of the distances PF and PF ′ is constant. (3.4)

For Apollonius, this is Prop. 52 of Book III (Apoll. III.52).

Tangents to an ellipse (Apoll. III.48). We find the tangents to an ellipse
by an idea very similar to that used for the parabola: let P be a point on the
ellipse (see Fig. 3.4, right), join P to F and F ′ at distance ℓ and ℓ′, respectively.
Then produce F ′P by the distance ℓ to obtain B, so that the distance F ′B,
by (3.4), is the same for all points of the ellipse. We draw the bisector t of the
angle BPF . Consequently, we have BQ = QF = m for any other point Q on
t since the triangle BQF is isosceles. But m+m′ is longer than F ′B, because
the line BQF ′ is not straight (Eucl. I.20). Thus all points of the line t other
than P lie outside the ellipse and t must be the tangent at P .

The mirror property of parabolas is thus modi-
fied as follows: all rays emitted by one focus are
reflected into the other focus (see the figure on
the right).

Second defining equation. We choose several
particular locations for the point P on the ellipse
(see the pictures on the left of Fig. 3.5):
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ℓ ℓ′ ℓ′

ℓ ℓ′

P (a)

F F ′
ℓ
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c

b
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(c)

F F ′

p 2a−p

c c

P
(d)

F F ′

Fig. 3.5. An ellipse and its foci; right: drawing from van Schooten (1657, above),
drawing by R. Feynman (conference on Newton’s law of gravitation, 1965, below)

(a) The ellipse is symmetric, firstly with respect to the symmetry axis FF ′,
secondly with respect to the symmetry axis which is the perpendicular
bisector of FF ′.

(b) If we place P at the left vertex on the first symmetry axis, the line FPF ′

extends from F to P and back to F ′. By symmetry, this distance (i.e. the
constant of (3.4)) is the longest diameter of the ellipse. We denote this
constant by 2a, and call it the major axis , so that

ℓ+ ℓ′ = 2a. (3.5)

The constant a is the distance of a vertex from the centre and is called the
semi-major axis .

(c) By placing P on the second symmetry axis, we see by Pythagoras that

b2 = a2 − c2 , or c2 = a2 − b2 , (3.6)

where b is the semi-minor axis and c is the distance of a focus from the
centre.

(d) We place P vertically above F (see Fig. 3.5 (d)). The quantity p = PF is
called the semi-latus rectum. We have by Pythagoras (2a−p)2 = p2+(2c)2,
which simplifies to

a2 − ap = c2 , or b2 = ap , p =
b2

a
. (3.7)

(e) Finally, we place P at the right vertex, where u = 2a. This is the point
where y2 in (3.3) vanishes for the second time, i.e. where 2p−(1−e2)u = 0.
This leads to the relations

1− e2 =
b2

a2
and c = ea . (3.8)
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The last formula, which is obtained from (3.6), motivated the name eccen-
tricity for e.

By inserting the relations (3.7) and (3.8) into (3.3) we get b2

a2
u2−2u b2

a
+y2 =

0. For more symmetry between u and y we divide this equation by b2 and

obtain u2

a2 − 2ua + y2

b2 = 0. Adding 1 on both sides in order to transform the

first two terms into a “complete square” we obtain (ua − 1)2 + y2

b2 = 1. If we
now set u− a = x or u = x+ a, which means that the coordinate x measures
the horizontal distance from the centre of the ellipse (see Fig. 3.6, left), we
finally obtain the equation

x2

a2
+
y2

b2
= 1 , (3.9)

which is as wonderfully symmetric as the curve itself.

x

y
z = a

b
ya

b

a

P

P ′

Fig. 3.6. Construction of an ellipse from a circle by a similarity transformation;
right: drawing by Archimedes (On conoids and spheroids)

Relation with a circle. Those readers still not satisfied by the simplicity
of formula (3.9) can set z = a

b
y, so that this equation becomes

x2

a2
+
z2

a2
= 1, or x2 + z2 = a2,

the equation of a circle with radius a. Thus, each slim slice of the ellipse is
shorter by a factor b

a than the corresponding one of the circle. This prop-
erty was used by Archimedes in one of his first theorems in On conoids and
spheroids to conclude that (see the pictures in Fig. 3.6)

A ellipse =
b

a
· A circle =

b

a
· a2π = abπ. (3.10)

Proclus’ construction of an ellipse. We carry out the similarity transfor-
mation y 7→ a

b y with the help of Thales’ theorem. The ellipse is thus generated
by two circles of radius a and b, respectively. Rotating the ray OBA around
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Fig. 3.7. Construction of an ellipse by Proclus (a) and conjugate diameters (b)
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Fig. 3.8. Rytz’ construction of an ellipse from two conjugate diameters (left); con-
struction with the help of a gliding stick (right, together with illustration from van
Schooten 1657)

the centre, one obtains the point P of the ellipse by a horizontal projection
of B and a vertical projection of A, see Fig. 3.7 (a).

Conjugate diameters. The two diameters in Proclus’ construction, coming
from the two orthogonal rays OA and OA′, are called conjugate diameters ,
see Fig. 3.7 (a). Each diameter is parallel to the tangents at the endpoints
of its conjugate diameter and cuts its conjugate diameter in the midpoint
(Apoll. II.6; see Fig. 3.7 (b)). These properties follow from the corresponding
properties of orthogonal diameters of a circle by using again and once more
Thales’ theorem.
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Rytz’ construction of the semi-axes of an ellipse from two conju-
gate diameters. We now treat the problem of finding the semi-axes of an
ellipse from a given pair of conjugate diameters. A first construction is due to
Pappus (Collection , Book VIII, §XVII, see Exercise 19 below). Step by step,
starting with Frézier (1737, p. 132)2 and Euler (1753), simpler and simpler
constructions were found. The crucial idea, independently found by Frézier
and Euler (cf. his last construction in E192), was to rotate one of the diame-
ters by . Consequently, we rotate by in Fig. 3.7 (left) the semi-diameters
OP ′ together with the triangle attached at P ′. We so obtain the segment OQ
and the triangle QBA, see Fig. 3.8 (left). This triangle joins the supporting
triangle of P to form a rectangle which is parallel to the axes. Since the dis-
tances AO = QE = PD = a and BO = PE = QD = b, the midpoint M
between P and Q has the same distance a+b

2 from O, from E and from D.
This leads to the following construction:

Let OP and OP ′ be a given pair of conjugate semi-diameters. Rotate OP ′

by towards OP to obtain the segment OQ. Let M denote the midpoint
between P and Q. Draw the circle with centre M passing through O. This
circle will cut the line PQ at the points D and E. Then the lines OE and
OD point in directions of the axes; the distances DP = a and PE = b are the
semi-axes of the ellipse.

Since 1845 this construction has been attributed in books on descriptive
geometry to Daniel Rytz, “Professor der Mathematik an der Gewerbeschule
zu Aarau [professor of mathematics at the vocational school at Aarau]”.

Fig. 3.9. Woodcuts by A. Dürer, Underweysung der messung, 1525 (left); Kepler,
Harmonices mundi, 1619 (right)

2see also Baier (1967)
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Proclus’ construction with a stick. Figure 3.8 (right) indicates the fol-
lowing method for constructing an ellipse. Imagine that the stick DE of length
a+b glides with its extremities on the axes, see Fig. 3.8, right). Then the point
P on the stick, at distance a from D and b from E, will describe an arc of the
ellipse with semi-axes a and b, respectively.

Remark. We illustrate in Fig. 3.9 the growing importance that the conic sec-
tions gained for art and science during the Renaissance with two woodcuts,
one by Dürer (1525) and one by Kepler (1619).

3.3 The Hyperbola

ὑπερβολή , a throwing beyond others, overshooting, excess ...
(Liddel and Scott, Greek-English Lexicon, Oxford)
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Fig. 3.10. A hyperbola as the intersection of a cone with a plane

This time, we take the plane π steeper than the generators of the cone, see
Fig. 3.10, i.e. the eccentricity satisfies e > 1. Thus, (3.3) becomes

y2 = 2up+ (e2 − 1)u2, (3.11)

and we have excess in the area of the square. As the prefix hyper is present in
many words like hypersensitive, hypertension (students are much too young
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α
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Fig. 3.11. A hyperbola and its tangent

for this), hypermarket, hyperactive, etc., we easily understand why this curve
is called a hyperbola (Apoll. I.12).

The theory of the hyperbola is very similar to that of the ellipse. We have,
see Fig. 3.10,

ℓ− ℓ′ = ±2a (3.12)

instead of (3.5), and
x2

a2
− y2

b2
= 1 (3.13)

for the coordinates measured from the centre, instead of (3.9). The foci are
at distance c from the centre with

c2 = a2 + b2 . (3.14)

The tangent is the bisector of the angle FPF ′, see Fig. 3.11.

Asymptotes of the hyperbola.

σύυμπτωσις , falling together, collapsing, meeting ...
(Liddel and Scott, Greek-English Lexicon, Oxford)

With the hyperbola we encounter a new object — the asymptotes (symptosis
means a meeting, see the quotation, the prefix a- is the negation as in atom,
atypical, asocial, anonymous). An asymptote is thus a line that, although
approaching the curve, never meets it (Apoll. II.1). We write (3.13) in the
form (x

a
+
y

b

)
·
(x
a
− y

b

)
= 1. (3.15)

If the values of x and y become large, the 1 on the right-hand side becomes
negligible and the equation factors to

y =
b

a
· x and y = − b

a
· x . (3.16)
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These are the two lines that the hyperbola approaches as x and y tend to
infinity. One further sees that the equation of the hyperbola becomes very
simple by taking the asymptotes as axes for the coordinates. Thus, the first
curve of (3.1) is a hyperbola.

3.4 The Area of a Parabola

“Sed illum (Archimedem) plures laudant quam legant; admiran-
tur plures quam intelligant [more people praise him (Archimedes)
than read him; and more people admire him than understand
him]”

(A. Taquet, Antwerpen 1672; copied from Ver Eecke, 1923)

“Qui Archimedem et Apollonium intelligit, recentiorum summo-
rum virorum inventa parcius mirabitur. [Those who perceive the
works of Archimedes and Apollonius will marvel less at the dis-
coveries of the greatest modern scholars.]”

(G.W. Leibniz; copied from Ver Eecke 1923)

Another very famous result of Archimedes concerns the area of the parabola:

P =
4

3
· T where

{
P = area of the parabola,

T = area of the inscribed triangle.
(3.17)
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a
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a
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a
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4
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16

...
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Fig. 3.12. The quadrature of the parabola

Proof. One fills the parabola by first inserting the light-grey triangle T , then
by adding the two medium-grey triangles of area T

8 each (same area as the
triangles with dotted sides; use (3.2) and Eucl. I.41), then by adding four
dark-grey triangles of area T

64
etc., see first picture in Fig. 3.12. Thus

P = T + 2 · T
8

+ 4 · T
64

+ . . . = T +
T
4

+
T
16

+
T
64

+ . . . .
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The second picture in Fig. 3.12 (and Fig. 3.13) is particularly ingenious. It
shows that the above sum equals 4

3
·T , since T (or A in Fig. 3.13) covers three

quarters of the square.

Fig. 3.13. Drawings by Archimedes (quadrature of the parabola)

Remarks. (a) Nowadays, one usually considers the reversed parabola. Thus,
the area B of the white part is one third of the area of the square.

(b) The area of a hyperbola had to wait for another 19 centuries; its compu-
tation is related to the calculus of logarithms (see e.g. Hairer and Wanner,
1997, Sect. I.3).

3.5 Exercises

1. Prove a result of Euler (1748), vol. II, §119: If OP and OP ′ are two con-
jugate semi-diameters of an ellipse (see Fig. 3.8, left), then OP 2 +OP ′2 =
a2 + b2 is a constant. This result, which Euler obtained by a long trigono-
metric calculation, is also one of the last propositions of Apollonius,
Apoll. VII.12.

2. Prove a theorem of Newton (Principia 1687, Liber I, Lemma XII), saying
that Parallelogramma omnia circa datam Ellipsin descripta esse inter se
æqualia. [All parallelograms circumscribed about any conjugate diame-
ters of a given ellipse are equal.] (See also Newton, Math. Papers vol. IV,
p. 9, note (24) and vol. VI, p. 35). This theorem earned Newton the ad-
miration of many of his contemporaries, because “in Mathematicks” this
universal genius “could sometimes see almost by Intuition, even without
Demonstration” (William Whiston, 1749).

3. Show that the locus of points P which have the same distance from a
given circle and a given line is a parabola (see Fig. 3.14, left).

4. Find the locus of points P which have the same distance from two given
circles.
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P
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V

Fig. 3.14. Same distance from circle and line (left); confocal conics (right)

5. Guess a nice property of the tangents to two confocal conics (i.e. an ellipse
and a hyperbola with the same foci) at the intersection points, and prove
it (see Fig. 3.14, right).
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Fig. 3.15. Van Schooten’s ellipse-drawing triangle machine

Fig. 3.16. Facsimile of van Schooten’s ellipse-drawing triangle machine (left) and
parallelogram machine (right)
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6. Van Schooten, in his book Exercitationum mathematicorum (1657) dedi-
cated an entire chapter to mechanisms for drawing ellipses, parabolas or
hyperbolas. One of these, which we shall call his triangle machine, is rep-
resented in Fig. 3.15 (a), facsimile reproduction in Fig. 3.16 (left): two ver-
tices A and B of a fixed triangle ABC glide on two fixed orthogonal lines.
Show that the third vertex C then moves on an ellipse. Van Schooten’s
original machine of Fig. 3.16 is equivalent, because the midpoint between
A and B moves on a circle.

7. Explain why van Schooten’s parallelogram machine in Fig. 3.16 (right)
produces an ellipse.

8. Prove Apoll. III.50, which states that the orthogonal projections R, R′ of
the foci F , F ′ onto a tangent of an ellipse lie on the circle with centre O
and radius a (see Fig. 3.17, left).

a

a

t

F F ′

R

R′

P

O

d

F

P

R

Fig. 3.17. Orthogonal projections of foci onto tangents

9. Prove a result analogous to that of the previous exercise for parabolas,
i.e. prove that the orthogonal projection R of the focus F onto a tangent
to a parabola lies on the tangent through the vertex of the parabola (see
Fig. 3.17, right), so that the ordinate of R is half that of P .
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D

MF

Fig. 3.18. A square rotating in a fixed square (left); Evi’s carpet (right)
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10. A square ABCD rotates with its vertices gliding on the sides of a fixed
square (see Fig. 3.18, left). Analyse the nature of the beautiful curves
created by the four sides. Similar curves appear in certain masterpieces of
modern art (Fig. 3.18, right).

The following six exercises retrace Apollonius’ original approach to the im-
portant properties of the conics, two centuries B.C. They allow one to admire
repeatedly this genius and to apply repeatedly Thales’ theorem and Eucl. III.21.

11. Let AB be the major axis of an ellipse and ∆Γ be the tangent at Γ (see
Fig. 3.19 (a)). Prove the following identities:

Apoll. I.34:
BE

EA
=
B∆

∆A
or by Thales

u′

u
=
h′

h
,

Apoll. I.36:
ZE

ZA
=
ZA

Z∆
,

Apoll. III.42: h · h′ = b2 , where b is the semi-minor axis.

We will later say that the points B,A,E,∆ form a “harmonic set” (see
Chap. 11; in particular, the formulas (11.10) of that chapter show the
passage from Apoll. I.34 to Apoll. I.36).

Hint. Stretch the ellipse into a circle by the transformation y 7→ a
b
y.
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Fig. 3.19. Theorems Apoll. I.34 and I.36, Apoll. III.42 (a); Apoll. III.45 (b)

12. Apoll. III.45: Let HΓH ′ be the tangent to the ellipse at Γ . Prove, with the
results of the previous exercise, that there exist two points F and F ′ on
the major axis, such that the angles H ′FH and H ′F ′H are right angles
(see Fig. 3.19 (b)). These points have the same distance c from the centre
of the ellipse and c is the same for all tangents (we now call these points
the foci of the ellipse; Apollonius denoted them by Z and H).

13. Apoll. III.46: Prove, with the results of the previous exercise, that the
angles called α in Fig. 3.20 (a) are all equal, as are the angles called β,
and those called γ.
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Fig. 3.20. Theorems Apoll. III.46 (a); Apoll. III.47 (b)

14. Apoll. III.47: Let Θ be the intersection of the lines F ′H and FH ′ (see
Fig. 3.20 (b)). Prove, with the results of the previous exercises, that the
line ΘΓ is perpendicular to the tangent HΓH ′.

15. We are now in a position to prove a first great result, Apoll. III.48: the
angle between F ′Γ and the tangent is the same as the angle between FΓ
and the tangent. Because of Apoll. III.47 this is equivalent to: the angles
F ′ΓΘ and ΘΓF are equal. Prove this.

16. Prove Apoll. III.49: Consider a situation as in Fig. 3.20 (a), and let Θ be
the orthogonal projection of F ′ onto the tangent HH ′. Then AΘB is a
right angle.

Remark. With Thales’ circle for this right angle with diameter AB, we
then obtain Apoll. III.50 (see Exercise 8 above) and by an argument recip-
rocal to the one for that exercise, we finally get Apoll. III.52 as originally
proved more than 2200 years ago.
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Fig. 3.21. Poncelet’s first theorem (left) and its corollary (right)
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17. Prove, following the preceding proofs of Apollonius, the so-called “first
theorem of Poncelet” (which is “Théorème I” of Poncelet, 1817/18 to-
gether with “Théorème II”): Let the two tangents be drawn to an ellipse
from a fixed point P (see Fig. 3.21 left) and let a moving tangent cut these
tangents at the points S and S′. Let F be the focus of the ellipse. Then, the
angle S′FS = γ is the same for all such tangents. As a corollary deduce
that the two tangents PT and PT ′ are seen from a focus under the same
angle γ (Fig. 3.21 right).
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QO P
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Z

H

∆

(b)

Fig. 3.22. Statement of the exercise of the Math. Assoc. of America (a); Pappus’
construction of the axes of an ellipse (b)

18. (An exercise from an envelope of the Math. Assoc. of America): Prove for
an ellipse that OP ·OQ = a2 − b2 (see Fig. 3.22 (a)).

19. Show: If EA and E∆ are conjugate and ZAH is tangent to an ellipse,
where Z and H are on the axes (see Fig. 3.22 (b)), then ZA ·AH = E∆2.
This result (together with Eucl. III.35) is the main ingredient of Pappus’
construction of the directions EH and EZ of the axes of an ellipse from
two conjugate diameters (see Pappus, Collection , Book VIII, §XVII and
Fig. 5 of Euler’s E192, 1753).

20. Prove the following corollary to
Apoll. III.42: if d and d′ are the
distances of the foci of an ellipse
from a tangent, then

d · d′ = b2 . (3.18)
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Further Results in Euclidean Geometry

“With Archimedes and Apollonius Greek geometry reached its cul-
minating point.” (T. Heath, 1921, p. 197)

Euclidean geometry is the oldest field of mathematics. The great thinkers
during all these centuries accumulated an enormous treasure of beautiful ideas
and results. We take pleasure in presenting some of them in this section.

4.1 The Conchoid of Nicomedes, the Trisection of an

Angle

Let A be a fixed point, DDD . . . a fixed line at distance c from A, and b a
given positive value. The curve CCC . . . such that the distance DC equals b
for each line through A is called the conchoid of the line DDD . . . with respect
to A and with distance b, see Fig. 4.1. Taking b negative creates curves which
may contain a cusp or a loop. Nicomedes originally invented this curve for
doubling the cube (see Exercise 2 on page 178).

c

b b b b

−b

A

D

C

D

C

D

C

D

C

D

C

Fig. 4.1. Conchoid of Nicomedes

Trisection of an angle. Pappus discovered (see Collection , Prop. IV.32) that
the conchoid can also be used to trisect a given angle α at A (see Fig. 4.2,

79
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left), i.e. to find an angle β satisfying β = α
3

. The construction is described
in Fig. 4.2, right. Denote the length of AB by a. Draw the perpendicular BE
and the parallel to AE through B. Find the points C on this parallel and
D on BE by requiring that A, D, C be collinear and that the length of DC
equals 2a. In other words, C is found with the help of the conchoid of the line
EB with respect to A and with distance b = 2a (drawn as a dashed curve).
The angle EAD is then α

3
.

α
A

B

α
3

a 2a

B

A

D

E

C

Fig. 4.2. Pappus’ trisection of an angle with the help of the conchoid

Proof. Let β be the angle EAD in Fig. 4.3, and let G be the midpoint of the
segment DC with DG = GC = a. Since G is at half height between D and
B, the triangle DGB is isosceles and GB = a. Hence the triangles BGC and
GBA are also isosceles. Consequently, we have β at C (parallel angle), β at
B (isosceles triangle), 2β at G (exterior angle), and finally 2β + β = 3β at A
(isosceles triangle).

β

β β

2β

2β
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y
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F
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G

H

Fig. 4.3. Proof for Pappus’ constructions

Pappus’ variant. An elegant variant of the above construction, which
avoids the conchoid and uses a hyperbola instead, was also found by Pappus
(Collection , Book IV, Prop. 31). We draw in Fig. 4.3 the segment EH parallel
to DC, whose length 2a is known. By applying Thales’ theorem twice, we get

x

c
=
CA

DA
=
BE

DE
=
d

y
⇒ xy = cd . (4.1)
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This means that we can find the point H by intersecting the circle of radius
2a centred at E with the hyperbola passing through E with asymptotes FA
and FB.

Remark. Both of the above constructions do not use only ruler and compass
(i.e. Post. 1–3 of Euclid). Two thousand years later, it was actually proved (see
Chap. 8) that the trisection of an angle with ruler and compass is in general
a mission impossible!

4.2 The Archimedean Spiral
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Fig. 4.4. Archimedean spiral for the trisection of an angle (middle), and its tangent
(right)

Consider a ray that rotates at constant angular velocity around the origin. Let
P be a point on the ray, that moves away from the origin at constant speed.
Then the locus of P is a curve called an Archimedean spiral , see Fig. 4.4,
left. This spiral is obviously a trisectrix (and even an n-sectrix, see Fig. 4.4,
middle). If a denotes the quotient of the velocity of the point on the ray and
the angular velocity of the ray itself, the spiral is characterised by the formula

r = aϕ . (4.2)

Archimedes (in On spirals , see Heath, 1897, p. 151) was mainly interested in
finding its tangents and its area. It is precisely here that modern differential
and integral calculus had its origin.

Prop. XX. The tangent at a point ∆ cuts the line through A orthogonal to
A∆ at the point Z such that AZ = arc∆K (see Fig. 4.4 (c)).
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Fig. 4.5. Drawing by Archimedes for the area of the spiral (left); an Archimedean
spiral on a larnax, Minoan period (right, Archaeological Museum of Rethymno,
Crete)

Idea of the proof. If from a given point ∆ we increase the angle ϕ by a
small amount dϕ,1 we create a small right-angled triangle ∆PE with sides
P∆ = rdϕ and PE = adϕ (because of (4.2)). If we choose dϕ small enough,
the triangle∆AZ is similar to the triangle EP∆. Thus by Thales AZ

r = r
a = ϕ,

so that AZ = rϕ = arc∆K is the length of the arc ∆K.

Prop. XXIV. The area between the spiral and the ray A∆ (see Fig. 4.4(c))
equals one third of the area of the circular sector A∆K.

Idea of the proof. Archimedes simply uses the so-called Riemann sums, see
Fig. 4.5, left. The factor 1

3 is related to the area of the parabola (because the
area of such a small slice is 1

2
r2dϕ, see the remark at the end of Sect. 3.4), or

to the volume of the pyramid.

4.3 The Four Classical Centres of the Triangle

“Ànno i Trianguli rettilinei s̀ı belle Affezioni, che meritano di esser
considerate dai Geometri più di quello abbian fatto sinora. [Trian-
gles have such beautiful properties, which deserve more consider-
ation from geometers than they have so far received.]”

(Conte Giulio Carlo di Fagnano, 1750, vol. II, p. 1)

“Es ist in der That bewundernswürdig, dass eine so einfache Figur,
wie das Dreieck, so unerschöpflich an Eigenschaften ist. [It is in-
deed remarkable that such a simple figure as a triangle has inex-
haustibly many properties.]” (A.L. Crelle, 1821/22, p. 176)

“Down with Euclid! Death to triangles!” (J. Dieudonné, 1959)

1Here we express Archimedes’ argument from 250 B.C. using Leibniz’ symbols
from 1684 A.D.
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Following Euclid’s propositions IV.4 and IV.5, an
enormous treasury of properties of the triangle was
discovered through the centuries (see the first two
quotations), not to everybody’s delight (see the last
quotation). It has become common to denote ver-
tices, side lengths and angles of a triangle in a nicely
symmetric way (see the figure).
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γ
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The incentre I of a triangle. Let a triangle ABC be given. The centre of
any circle which touches both sides AB and AC lies on the angle bisector of
α (see Fig. 4.6, left). Suppose that such a circle grows and finally touches the
third side. Then its centre has the same distance ρ from all three sides, hence
it lies on all three angle bisectors (Fig. 4.6, right). We have thus proved the
following result.

Eucl. IV.4. The three angle bisectors of a triangle are concurrent in a point
I, called the incentre.
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Fig. 4.6. Genesis of the inscribed circle

Remark. If we denote by D, E and F the points of contact of the incircle with
the triangle, we have

AE = AF, BF = BD, CD = CE .

The sum of these three quantities is equal to the semi-perimeter , usually
denoted by s:

s =
a+ b+ c

2
. (4.3)

Since AF + FB + DC = s and AF + FB = c, we see that DC = s − c and
we obtain similarly all the other quantities indicated in Fig. 4.6 (right).

The circumcentre O of a triangle. The centre of any circle that passes
through two vertices A and B of a triangle lies on the perpendicular bisector
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of AB (Fig. 4.7 (a)). If this centre moves and the circle finally passes through
the third point C, its centre has the same distance R from all three vertices
and thus lies on each of the perpendicular side bisectors (Fig. 4.7 (b)). This
gives the following proposition.

Eucl. IV.5. The three perpendicular side bisectors of a triangle are concurrent
in a point O, called the circumcentre.
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Fig. 4.7. Genesis of the circumscribed circle (a); the circumcentre O and the
surrounding angles

We have the interesting additional information that the segments AO and BO
both make the angle γ with the perpendicular side bisector OF (and similarly
for α and β). This follows from Eucl. III.20, because the central angle 2γ is
cut into halves by OF (see Fig. 4.7 (b)).

The medians and the centroid G.

βάρος, weight, burden, load, heaviness, ...
(Liddel and Scott, Greek-English Lexicon, Oxford)

Although Euclid discovered the first two remarkable points of a triangle, it
was reserved to Archimedes, a genius not only in mathematics, but also in
mechanics, to discover the third one, the centroid . It was a by-product of his
efforts to find the centre of gravity2 of a triangle. Archimedes proved that this
centre of gravity must lie on each of the lines (called medians) connecting a
vertex of the triangle to the midpoint of the opposite side (see Fig. 4.8 (a)).
This is “Proposition 13” of Archimedes’ text On the equilibrium of planes , see
Heath (1897), p. 198. Archimedes’ first proof involved parallel (we would say

2In mechanics, the centre of gravity of a body is usually called barycentre from
βάρος, still in use today, see . On a box with Obesity
Management food one can read, among languages from all rich countries of the
world, Geometers from all over the world understand both words.



4.3 The Four Classical Centres of the Triangle 85

c
2

c
2

a
2

a
2b

2

b
2

A

B

C

F

D

E
G

(a)

c
2

c
2

A

B

C

F

c
3

c
3

G

(d)

A

B

C

F

D

E
G

(b)

A

B

C

F

D

E
G

(c)

Fig. 4.8. Centroid of a triangle

today: infinitely small) strips. He then gave a second proof, which uses the
subdivision of the triangle into four similar triangles by the so-called medial
triangle DEF , whose vertices are the midpoints of the sides of ABC, as shown
in Fig. 4.8 (b).

Theorem 4.1. The three medians of a triangle are concurrent in a point G,
called the centroid. The centroid divides the medians in the ratio 2 : 1.

Proof. By Thales, the medial triangle (see Fig. 4.8 (b)) has the same medians
as the original triangle. We now apply this medial reduction repeatedly (see
Fig. 4.8 (c)). Then the triangles shrink to a point called G, which must lie on
all three medians.

For a second proof, where the result is seen immediately, not only after an
infinity of steps, we divide each side into three equal parts (see Fig. 4.8 (d)),
as in the Stone Age proof for Thales’ theorem of Chap. 1. Then we see by
Thales’ theorem that the median CF passes through G, and similarly for the
other medians.

The altitudes and the orthocentre H.

ὄρθιος, straight up, upright, steep, uphill, ...
(Liddel and Scott, Greek-English Lexicon, Oxford)

An altitude is a line through a vertex of a triangle, orthogonal to the opposite
side. We again have a remarkable result:

Theorem 4.2. The three altitudes of a triangle are concurrent in a point H,
called the orthocentre.



86 4 Further Results in Euclidean Geometry

A

B

DE

F

C

W

U

V
H

(a)

γ γ

γ

β

β

β

α

α

α

A

B

C

D
E

F

(b)

Fig. 4.9. Gauss’ proof of Thm. 4.3 for the orthocentre (a); the orthic triangle (b)

Proof. This theorem is contained in a lost manuscript of Archimedes and reap-
pears several times in the work of Pappus, Proclus, Regiomontanus, Ludolph
van Ceulen, but either without a proof or with an incorrect one (see the foot-
notes in Newton’s Mathematical Papers, ed. by D.T. Whiteside, vol. 4, p. 454).
The first known proofs are from the 17th century and use Thales’ theorem (see
Exercise 4 on page 108). The apparently most elegant of all possible proofs
was found by Gauss (Werke , vol. IV, p. 396): We apply the medial reduction of
Fig. 4.8 (b) backwards, i.e. we look for a triangle UVW whose medial triangle
is ABC. This is done by drawing through each of the points A, B and C a
line parallel to the opposite side (Fig. 4.9 (a)). This yields the parallelograms
ACBW , ABCV and ABUC and shows that A, B and C are the midpoints of
VW , WU and UV , respectively. Hence the new triangle UVW has the alti-
tudes of ABC as perpendicular side bisectors. By Eucl. IV.5, these lines must
meet at the circumcentre of the triangle UVW , which is thus the orthocentre
of the triangle ABC.

The orthic triangle. The feet of the altitudes of a given triangle ABC (i.e.
the points DEF of Fig. 4.9 (a)) form a new triangle which is worth studying.
It is called the orthic triangle of ABC (see Fig.4.9 (b)). The discovery of this
triangle (and its properties) by Giov. Fagnano (1770, 1779) was related to the
minimisation problem discussed in Exercise 14 on page 236.

Theorem 4.3. (a) The orthic triangle DEF of ABC determines three tri-
angles AEF , DBF and DEC which are all similar to ABC, but inversely
oriented.

(b) The altitudes AD, BE and CF of ABC are the angle bisectors of the
orthic triangle.
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(c) The segments AO, BO and CO, connecting the vertices of ABC to its
circumcentre O in Fig. 4.7 (b), are perpendicular to the sides EF , FD and
DE, respectively, of the orthic triangle.

Proof. The proof is displayed in Fig.4.9 (b).

(a) We draw the circle with diameter BC, on which the points E and F
are located by orthogonality. Thus CEFB is a cyclic quadrilateral, i.e. a
quadrilateral inscribed in a circle. By Eucl. III.22 the angle BFE is 2 − γ,
hence the complementary angle EFA is γ. The same argument applies to all
other angles.

(b) Since the segments EF and DF make the same angle γ with AB at F ,
they make the same angle − γ with CF .

(c) The angle γ = EFA in Fig. 4.9 (b) is an orthogonal angle to the angle
AOF in Fig. 4.7 (b).

Remark. Since by property (b) the altitudes ofABC pass through the incentre
of DEF , we have, using this time Eucl. IV.4, another proof of Theorem 4.2.

4.4 The Theorems of Menelaus and Ceva

Menelaus of Alexandria lived around 100 A.D. and was, with Hipparchus and
Ptolemy, one of the founders of spherical trigonometry. The following theorem
was used in the third volume of his Sphaerica to solve spherical triangles. It
had been used by Ptolemy in his Almagest and became famous through this
work. For details see Chasles (1837, Chap. I, §22 and “Note VI”). It reappeared
in Carnot (1803), where its fundamental importance for the foundation of
geometry was recognised.

We are interested in answering the following question. Suppose that a given
triangle ABC is cut by a line EDK (see Fig. 4.10, left). What can be said
about the lengths a1, a2, b1, b2, d1, d2?
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Fig. 4.10. Menelaus’ theorem (left) and its proof (right)



88 4 Further Results in Euclidean Geometry

Theorem 4.4 (Menelaus). The points E, D, K in Fig. 4.10 are collinear if
and only if

a1
a2
· b1
b2
· d1
d2

= 1 .

Proof. Since we have a famous theorem to prove, just looking at the picture on
the left side of Fig. 4.10 doesn’t help very much. In order to be able to apply
Thales, we must draw a line somewhere, parallel to some other line. We choose
the point B and draw BJ parallel to AEC. This creates two pairs of similar
triangles (in grey in Fig. 4.10, right). The dark grey triangles give usBJ = b1a1

a2

and the light grey triangles BJK and AEK give us d2
d1

= BJ
AE = b1a1

b2a2
.

The converse implication follows from the uniqueness of the point D for a
given ratio of a1

a2
.

Ceva’s theorem. Select three points, one on each side of a triangle, and
connect each one with the opposite vertex. Under which conditions will these
three lines meet in a single point? The theorem which answers this question
was for a long time attributed to Joh. Bernoulli (Opera, 1742, vol. 4, p. 33)3

and was rediscovered by Crelle in 1816. Finally, Chasles (1837, “note VII”)
discovered that the result was already known to Giovanni Ceva (1648–1734).
Ceva’s insight came from mechanics by placing mass points of different weights
at the vertices of the triangle and considering the lines of equilibrium and the
barycentre of this configuration.
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Fig. 4.11. Ceva’s theorem and its Stone Age proof

Theorem 4.5 (Ceva). In a triangle the lines AD, BE and CF (see Fig. 4.11,
left) are concurrent if and only if

a1
a2
· b1
b2
· c1
c2

= 1 .

Proof. Joh. Bernoulli’s proof uses Thales’ theorem (see Exercise 6 on page
108) as in the proof above; Crelle’s proof is in the style of Eucl. VI.2 (areas of
the triangles, see Exercise 7).

3“Qui continentur ANEKΔOTA.”
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For readers who like to see the result by looking at a nice picture, we
present a Stone Age proof , by supposing that P is a vertex of one of the small
triangles of a subdivision, see Fig. 1.2 and Fig. 4.11, right.4 Thales’ theorem
now shows that

a1
a2

=
3

2
,

b1
b2

=
1

3
,

c1
c2

=
2

1
.

Here the numbers 1, 2 and 3 count the layers of small triangles which separate
P from the three sides of the given triangle; they appear in pairs, one above
and one below the division bar. So the product of all three quotients is 1.

Remark. The apparent similarity of the conditions in Theorems 4.4 and 4.5
calls for an explanation. The reason will become clear in Chap. 11: if Figs. 4.10
and 4.11 are superimposed, one obtains a figure which is a complete quadri-
lateral. Hence by Theorem 11.10 on page 335 the points A,B, F,K are in
harmonic position, with cross ratio −1. For this reason, it is somewhat nicer
to write the condition of Menelaus’ theorem with a minus sign, i.e. to take
the distance BK in the negative sense.

The Gergonne point (Joseph Diaz Gergonne, 1771–1859).

“... during the July Revolution [of 1830], when rebellious students
began to whistle in his class, he regained their sympathy by be-
ginning to lecture on the acoustics of the whistle.”
(Struik, quoted from MacTutor History of Mathematics archive5)

Theorem 4.6. In a triangle ABC, let D, E, F be the points where the in-
scribed circle touches the triangle, see Fig. 4.6, right. Then the lines AD,BE
and CF are concurrent (in a point called the Gergonne point of the triangle).

Proof. The lengths indicated in Fig. 4.6 (right) clearly satisfy the condition of
Ceva’s theorem.

Remark. IfD, E and F are the midpoints of the sides of ABC, so that a1 = a2,
b1 = b2 and c1 = c2, Ceva’s condition is again satisfied and P becomes the
centroid G. In the case where D, E and F are the feet of the altitudes, the
triangles AFC and AEB are similar triangles and we have by Thales c1

b2
= hc

hb

,

and similarly a1
c2

= ha

hc
and b1

a2
= hb

ha
, where ha, hb, hc are the lengths of the

altitudes. The hypothesis of Ceva’s theorem is satisfied and we obtain another
proof of Theorem 4.2.

4.5 The Theorems of Apollonius–Pappus–Stewart

A segment connecting a vertex of a triangle to a point on the opposite side is
called a cevian, because of Ceva’s theorem. We want to find its length.

4In other words, we suppose that P has rational barycentric coordinates.
5http://www-history.mcs.st-and.ac.uk/Biographies/Gergonne.html
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Solution. We use Eucl. II.13 and Eucl. II.12 for the triangles FBC and AFC
of Fig. 4.12 (a) (see formula (2.2) on page 38 and the footnote):

2un = w2 + n2 − a2 and − 2um = w2 +m2 − b2 . (4.4)

In the case where m = n, the unknown u disappears if we add the two equa-
tions. We thus get for the length of a median:

Theorem 4.7 (Pappus, Collection ,6 Book VII, Prop. 122). The length CF =
w of the median of a triangle with sides a, b and c = 2n satisfies

w2 + n2 =
1

2
a2 +

1

2
b2 . (4.5)

By extending the triangle ABC to a parallelogram ADBC (see Fig. 4.12 (b))
with sides a and b and diagonals d1 = 2n and d2 = 2w, we obtain from (4.5)
the relation

d21 + d22 = 2a2 + 2b2 . (4.6)

This last formula is called the parallelogram law . Pappus’ theorem is, ac-
cording to Simson’s restoration (1749, p. 152), part of the lost work De locis
planis of Apollonius. It is also given in Giul. Fagnano (1750, vol. II, Appen-
dice: Nuova et generale proprietà de’ Poligoni, Lemma I), the same year when
Euler published his generalisation to arbitrary quadrilaterals (see Exercise 3
on page 233).

Theorem 4.8 (M. Stewart, 1746, Proposition II). For the length CF = w of
the cevian in Fig. 4.12 (a) we have the following generalisation7 of (4.5)

w2 + nm =
m

n+m
a2 +

n

n+m
b2 . (4.7)
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Fig. 4.12. Stewart’s theorem for the length of a cevian (a); the parallelogram law
(b), length of an angle bisector (c)

6The authors are grateful to Philippe Henry for this reference.
7Stewart wrote the result in the form CA2 · FB + CB2 · AF − CF 2 · AB =

AB ·AF · FB, which may be nicer.
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Proof. We multiply the first formula of (4.4) by m and the second one by n.
By adding the resulting formulas, the unknown u disappears again and (4.7)
is obtained.

Corollary 4.9. For the length CF = w of the angle bisector in Fig. 4.12 (c)
we have

w2 = ab
(

1−
( c

a+ b

)2)
=
ab(a+ b + c)(a+ b− c)

(a+ b)2
. (4.8)

Proof. If CF is the angle bisector, we have m = cb
a+b and n = ca

a+b as a
consequence of Eucl. VI.3 and m+ n = c. This inserted into (4.7) leads after
some simplifications to the stated result (the last identity by Eucl. II.5).

4.6 The Euler Line and the Nine-Point Circle

“Some of his [Euler’s] simplest discoveries are of such a nature that
one can well imagine the ghost of Euclid saying, ‘Why on earth
didn’t I think of that?’ ” (H.S.M. Coxeter, 1961, p. 17)

The Euler line. Euler (1767a) discovered a remarkable property of four re-
markable points of a triangle by analytical calculations (see Chap. 7). We note
here with satisfaction that the combination of Gauss’ proof of Theorem 4.2
with the medial reduction leads to an elegant proof in a few lines.

Theorem 4.10. In any triangle the points H, G and O lie on a line (called
the Euler line), and G divides the segment HO in the ratio HG : GO = 2 : 1.

Proof. We follow Gauss’ proof backwards, i.e. we exploit the similarity of a
triangle ABC with its medial triangle A′B′C′ (see Fig. 4.13, left). As we know,
the orthocentre H ′ of A′B′C′ coincides with the circumcentre O of ABC.

The triangle A′B′C′ is similar and parallel to the triangle ABC, shrunken
by a factor 1

2
with reversed directions. We thus have figures similar to those in

Fig. 1.4, and see that all lines connecting corresponding points AA′, BB′, CC′

(these are the medians) and HH ′ (this is the Euler line) must pass through
the same point G. Further, G divides all these lines in the same ratio, which
is 2 : 1.

The nine-point circle. The circumcircle of the triangle A′B′C′ is called
the nine-point circle of the triangle ABC and has many interesting properties
(see Fig. 4.13, right).

Theorem 4.11. (a) The centre O′ = N of the nine-point circle is the mid-
point between H and O and its radius is half of the radius of the circumcircle
of ABC. Thus the circumcircle and the nine-point circle are in similarity po-
sition with ratio 2 : 1 and similarity centre H (as in the Geneva duck theorem
of Exercise 19 on page 26).
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Fig. 4.13. The Euler line (left) and the nine-point (or Feuerbach) circle (right)

(b) The nine-point circle, which passes through A′B′C′ by definition, also
passes through the feet of the altitudes AH, BH and CH.

(c) The nine-point circle further passes through the midpoints of the segments
AH, BH and CH.

(d) The reflections K, L and M of the orthocentre H at the three sides of the
triangle, which lie on the extended altitudes, lie on the circumcircle of ABC.

Proof. (a) This follows from the proof of Theorem 4.10, because by similarity
the segment ON = H ′O′ is half as long as HO.

(b) Because of (a), N is equidistant from H and O, hence also from the normal
projections of these points onto the sides of the triangle.

(c) This follows from (a) because A, B and C lie on the circumcircle.

(d) This follows from (a) and (b) in a similar way.

There is still another remarkable property: the nine-point circle is tangent to
the incircle of ABC, a result discovered by K.W. Feuerbach (see Theorem 7.23
below). This led to the name Feuerbach circle.
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Fig. 4.14. Excircles and the orthic triangle

4.7 Excircles and the Nagel Point

The following results are among those discovered at the beginning of the 19th
century by Simon Lhuilier (1810/11), A.L. Crelle8 (in 1816), K.W. Feuerbach
(in 1822) and C.H. von Nagel (in 1835). For a complete bibliography (with
more than 300 references) we refer to P. Baptist (1992).

Excircles. Let a triangle ABC be given and produce its sides in both di-
rections. Form a new triangle IaIbIc by drawing the lines through A, B, C
orthogonal to the angle bisectors AI, BI, CI respectively (see Fig. 4.14). By
Eucl. I.14 these lines are the angle bisectors of the exterior angles of the trian-
gle. Precisely as in the proof of Eucl. IV.4, we conclude that, say, Ia, which is
equidistant from AB and BC, and also from BC and CA, must be equidistant
from AC and AB, hence must also lie on the interior angle bisector of BAC.
We call Ia the centre of the excircle of radius ρa, touching the triangle from

8Today mostly remembered as the founder of J. Reine Angew. Math.
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outside at the point Da. Similarly there are two other excircles centred at Ib
and Ic of radius ρb and ρc, respectively.

Remark. The original triangle ABC is the orthic triangle of IaIbIc; this gives
another proof of Theorem 4.3. Also, from Eucl. IV.4 applied to ABC, we
obtain another proof of Theorem 4.2 for the triangle IaIbIc.

Theorem 4.12 (Nagel). The lines ADa, BEb and CFc, joining the vertices
of a triangle with the points of contact of the opposite excircles, intersect in a
point, the Nagel point.

Proof. By Eucl. III.36, AFa = AEa, CDa = CEa and BFa = BDa. Therefore
the broken lines ACDa and ABDa have the same length. This length must
be s, the semi-perimeter, because together they form the entire perimeter.
Subtracting AB = c we obtain BDa = s − c. Similarly,

CDa = AFc = s− b , AEb = BDa = s− c , BFc = CEb = s− a . (4.9)

These values satisfy the condition of Ceva’s theorem (Thm. 4.5).

By Thales’ theorem applied to the similar triangles AFI and AFaIa, and by
remembering the values of Fig. 4.6, we obtain the following formulas, which
will be of use later:

ρa =
s · ρ
s− a , ρb =

s · ρ
s− b , ρc =

s · ρ
s − c . (4.10)

Kimberling’s centre catalogue. In addition to I, O, G, H, the Gergonne
point, the nine-point centre N and the Nagel point, more and more such
“centres”, i.e. points of a triangle defined in a certain natural way respect-
ing symmetric exchanges of the vertices, have been discovered together with
their interesting properties. The letters of the alphabet were quickly used up.
Therefore, Kimberling (1994) started labelling these points as X1, X2, . . . by
compiling a list of 100 such points. In particular, I = X1, O = X3, G = X2,
H = X4, the nine-point centre N = X5, the Gergonne point is X7, the Nagel
point is X8, the Fermat–Torricelli point to be discussed in Chapter 7 is X13,
and so on. This list, together with supporting theory and hundreds of “cen-
tral lines” (such as Euler’s), was extended later in Kimberling (1998) to 400
centres. Now accessible on the internet, the list is even 10 times longer.

4.8 Miquel’s Theorems

Auguste Miquel was a high school teacher in the French countryside (Nan-
tua), which snobs in Paris call la province. And from this province the newly
founded journal of Liouville9 suddenly started receiving beautiful geometric

9Journal de mathématiques pures et appliquées
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Fig. 4.15. Miquel’s triangle theorem (left) and its proof (right)

discoveries (see Miquel, 1838a and 1838b). The first of these, concerning the
Miquel point , became the most famous (Theorem 4.13 below). But for Miquel
this was just an auxiliary result for the proof of his marvellous pentagon
theorem which will follow.

Theorem 4.13 (Miquel’s triangle theorem). Let D,E, F be arbitrary points
chosen on the sides BC, CA, AB, respectively, of a triangle (see Fig. 4.15,
left). Then the circumcircles of the triangles AEF , BDF and CDE are con-
current, in a point M called the Miquel point.

Proof. Let M be the second intersection point (other than E) of the cir-
cle through A with the circle through C (see Fig. 4.15, right). Then, by
Eucl. III.22, the two angles denoted by α are equal, as are those denoted
by γ. By Eucl. I.32 we have α + γ + β = 2 , which tells us, by the converse
of Eucl. III.22 applied to the quadrilateral FMDB, that M also lies on the
third circle.

ω

ω

ω

A
B

C

V

(a) first

ω
ω

ω

A
B

C

W

(b) second

Fig. 4.16. Brocard points

An application: the Brocard points. If we move the points D, E and
F in Miquel’s triangle theorem towards B, C and A, respectively, the circles
tend to circles which pass through one vertex of the triangle and are tangent
to the opposite side at a second vertex (see Fig. 4.16 (a)). The Miquel point
then tends to a point V which is called the first Brocard point . By applying
Eucl. III.32 (a variant of Eucl. III.21, see Exercise 17 on page 57), we find that
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all three angles marked ω in this picture are equal. If we push the three points
D, E and F to the other end of their respective sides, we obtain analogously
the second Brocard point (Fig. 4.16 (b)), again with all three angles ω equal.
It is more difficult to see that ω is the same in both cases. The Brocard points
V and W are not centres in Kimberling’s sense, because they lack symmetry
with respect to the exchange of two vertices. The midpoint between them,
however, is symmetric and has the number X39 in Kimberling’s list.

Definition 4.14. Let ABDE be a convex quadrilateral (see Fig. 4.17). Pro-
duce the opposite sides until they meet in two points F and C. The figure
obtained in this manner consists of four triangles and is called a complete
quadrilateral.

A B

C

D

E

F

M

Fig. 4.17. Miquel’s quadrilateral theorem

Theorem 4.15 (The quadrilateral theorem of Steiner and Miquel). The cir-
cumcircles of all four triangles of a complete quadrilateral are concurrent in
a point M .

Proof. This result had already been announced earlier in two lines by Steiner
(1827/1828, number 1◦), but Miquel gave a detailed proof, which applied
Euclid’s theorems from Book III as in the preceding proof. However, we can
easily see this theorem by using an idea which Poncelet called the continuity
principle (see Chap. 11): in Theorem 4.13 we move the point F outside the
interval AB and believe that this theorem still remains valid. We further move
the point D of that theorem until E,D, F are collinear. Then the circumcircles
of AFE, FBD and EDC meet in one point. By symmetry of the figure
(exchange F ↔ C and E ↔ B), the fourth circumcircle must also pass through
the same point.

Theorem 4.16 (Miquel’s pentagon theorem). Let ABCDE be a convex pen-
tagon (see the upper picture of Fig. 4.18). Produce all sides until they meet
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Fig. 4.18. Miquel’s pentagon theorem (above; together with Miquel’s original draw-
ing); its proof (below)

in five points F,G,H, I,K and draw the circumcircles of the five triangles
CFD, DGE, EHA, AIB and BKC. Then the second intersection points of
these circles (other than A,B,C,D,E), namely the points M,N,R, P,Q, are
concyclic.

Proof. Miquel proved this by using an auxiliary result, namely that the points
I, P, C,M,G are concyclic, by repeated applications of Theorems 4.13 and
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4.15. But we can also, as in A. Gutierrez’ beautiful web-site,10 reduce this
proof exclusively to Euclid’s Book III (see the lower picture of Fig. 4.18).

Using Eucl. III.22 once and Eucl. III.21 twice, we see that the four angles
denoted by α are equal. Similarly, the three angles denoted by γ are equal.
Applying the converse of Eucl. III.22 to the quadrilateral IPCG, we see that
these four points are concyclic.

By symmetry of the configuration (exchange A ↔ E, B ↔ D, etc.) the
fifth point M also lies on the same circle. Then by Eucl. III.22, applied to the
quadrilateral IPMG, the angle denoted by α̃ is equal to α.

Finally we apply the converse of Eucl. III.22 to the quadrilateral RPMN
and see, because α̃ + γ = α + γ, that these four points are concyclic. Again,
the fifth point Q lies on the same circle by symmetry of the configuration. A
wonderful proof of a wonderful result.

4.9 Steiner’s Circle Theorems

“Gefunden Samstag den 10. Christmonat 1814, 3+3+4 St. daran
gesucht, des Nachts um 1 Uhr gefunden. [Found on Saturday Dec.
10th, 1814, after 3 + 3 + 4 hours of efforts, at 1 o’clock in the
night].” (From Steiner’s notes during his first month
as a pupil in Yverdon’s Pestalozzi school; quoted from J.-P. Syd-
ler, L’Enseignement Mathématique 2e sér. vol. 11 (1965), p. 241.)

Jakob Steiner (1796–1863) has one of the most incredible biographies of a
great mathematician: he was born in a small Swiss village (Utzenstorf close
to Bern, see picture). His father forbade him to read, the village priest refused
to let him write — he was not good enough in Catechism. At the age of 18
he entered, as the oldest pupil, the Pestalozzi school at Yverdon, where he
began his education eagerly and with great energy (see the quotation). Later
in Berlin, he was not allowed to teach higher mathematics at the Werden
Gymnasium — he had not understood Hegel’s philosophy well enough. So he
survived as “Privatlehrer” [private teacher] and contributed five articles (No.
5, 18, 25, 31 and 32) to the first volume of the newly founded Crelle Journal .
These articles include Steiner’s first published long work (1826c), which we
follow below. The book project Steiner (1826a), containing the same results,
was published only in 1931.

Power of a point with respect to a circle. We recall from Eucl. III.36,
with the notation of Fig. 2.17 (b) and (c) on page 40, that

EA ·EB = t2 = (d + r)(d− r) = d2 − r2 (4.11)

is independent of the position of the points A and B on the circle, as long as
they are aligned with E, and depends only on the radius r of the circle and

10Geometry step by step from the land of the Incas
http://agutie.homestead.com/
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Fig. 4.19. Steiner’s portrait from his Gesammelte Werke 1881 (left); Steiner’s birth-
place in Utzenstorf (right); photographs by Barbara Kummer (before the house was
destroyed)
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Fig. 4.20. Radical axis as line of equal powers (left); line of equal powers for non-
intersecting circles (right)

the distance d of the point E from its centre. This quantity is called, since
Steiner, the power of the point E with respect to the circle.

Line of equal powers for two circles. Let two circles be given with centres
C1, C2 and radii r1, r2 (see Fig. 4.20). We look for the set of points E which
have the same power with respect to both circles.

The answer is easiest if the two circles intersect (left picture): in this case
we choose E on the line connecting A and B (the radical axis) and see that
its power EA ·EB is the same with respect to both circles. The tangents from
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E to both circles have the same length t =
√
EA · EB and the circle centred

at E with this radius intersects both circles at right angles.
Now let the distance of the centres be a > r1 + r2 (right picture). We first

look for a point D on the line C1C2 having the same powers:

d21 − r21 = d22 − r22 and d1 + d2 = a . (4.12)

We write this as r21 − r22 = d21 − d22 = (d1 + d2)(d1 − d2) = a(2d1 − a) and
obtain

d1 =
a2 + r21 − r22

2a
=
a

2
+
r21 − r22

2a
and d2 =

a

2
+
r22 − r21

2a
. (4.13)

If we now place E on the line through D perpendicular to C1C2 at distance
h from D and add h2 to both sides of (4.12), we obtain by Pythagoras

h2 + d21 − r21 = h2 + d22 − r22 hence e21 − r21 = e22 − r22 (4.14)

and E also has the same power with respect to each circle. That the converse
is also true, i.e. that every point which has the same power for both circles, and
is the centre of a circle intersecting both circles at right angles, lies on DE,
the “line of equal powers”, was to trivial for Steiner to prove separately. It cor-
responds to the previous statement in the same way as Eucl. I.48 corresponds
to Eucl. I.47.

Fig. 4.21. Line of equal powers for one circle moving into the other

Remark. If the smaller circle moves into the larger, the line of equal powers
first becomes the common tangent, then the radical axis, the common tangent
again, and finally moves outside both circles (see Fig. 4.21).

C1 C2

C3
E

Fig. 4.22. Equal powers for three circles (left); the radical axes of three circles
(right)
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Point of equal powers for three circles. In the case of three circles,
there are three lines of equal powers for the circles taken in pairs. These
three lines are concurrent in one point E, the “point of equal powers for the
three circles” (see Fig. 4.22, left). Furthermore, this point E is the centre of
the circle intersecting all three circles at right angles. In particular, the three
radical axes of three mutually intersecting circles are concurrent (Fig. 4.22,
right).

The proofs of these statements rely on the fact that if among three powers
any two are equal, then all three must be equal, a conclusion similar to that
in the proofs of Eucl. IV.4 and IV.5.

Common power of two circles with respect to their similarity centre.
Let two circles centred in C1 and C2 be given with E as similarity centre (see
Fig. 4.23). Suppose EC2 = θ · EC1, i.e. the second circle is larger than the
first by a factor θ. If a line through E intersects the circles in the points X ′,
X , Y , Y ′ (in this order) then by Thales EY = θ · EX ′ and EY ′ = θ · EX . If
now q = EX ′ ·EX is the power of E with respect to the first circle, then the
power of E with respect to the second circle is θ2q. In addition, we have that
the “mixed products”

EX ·EY = EX ′ ·EY ′ = θq = p (4.15)

have the same value for all lines through E. In particular EC ·ED = p. Steiner
calls this constant p the common power of both circles with respect to their
similarity centre.

C1

C2

C3

E

C

D

F

X ′
X

Y

Y ′

A′ A B B′

Fig. 4.23. Common power of two circles with respect to E (left); original illustration
from Steiner 1826c (right)

Then let a third circle centred in C3 be tangent to both circles at the
points A and B, so that C1, A, C3 and C3, B, C2 are aligned. We define A′ on
the first circle such that C1A

′ is parallel to C3B and B′ on the second one
such that C2B

′ is parallel to AC3. We thus obtain three isosceles triangles
A′C1A, BC3A and BC2B

′ which are similar and whose corresponding sides
are parallel. Therefore, by Thales, A and B are aligned with E and we have
from (4.15)
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EA ·EB = EF 2 = p . (4.16)

This means that the common power of the two circles with respect to E is the
(ordinary) power of E with respect to a circle tangent to both circles.

Steiner’s proof of Pappus’ “ancient theorem”. We can now present
Steiner’s elegant proof of a result, which already Pappus called an “ancient
theorem”:11
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Fig. 4.24. The “ancient theorem” of Pappus (left); Steiner’s proof (right)

Theorem 4.17 (Pappus Collection , Book IV, Props. 15, 16 and 18). Let two
semi-circles C1 and C2 be tangent at B (see Fig. 4.24, left) and two circles
with centres mi and radii ri be tangent to C1, C2 and tangent to each other.
Then

h2
r2

=
h1
r1

+ 2 (4.17)

where hi is the distance of mi from the common diameter P1P2B. In particular
(Pappus’ Prop. 16, right picture), if we fill the space between C1 and C2 with
an infinity of circles m1, m2, m3, . . . with m1 on the common diameter, we
have

h1
r1

= 0,
h2
r2

= 2,
h3
r3

= 4,
h4
r4

= 6, . . . (4.18)

If the initial circle is tangent to the common diameter (Pappus’ Prop. 18),
then the corresponding sequence of ratios is 1, 3, 5, 7, . . .

Proof. For the proof of (4.17), of which (4.18) is a trivial consequence, we
follow precisely the steps of Steiner’s proof in (1826c):

(a) AB is the line of equal powers for the circles C1 and C2 (see Fig. 4.21);

(b) the similarity centre A for the circles m1 and m2 has the same power with
respect to C1 and C2 (see (4.16)), hence lies on the common tangent at B;

(c) by Thales P1B : P2B = r1 : r2 ;

(d)AB2 is the common power of m1 and m2 with respect to A (again by
(4.16));

11“Circumfertur in quibusdam libris antiqua propositio huiusmodi.”
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(e) Ab2 = AB2 (by (4.15), b represents two points X and Y which collapse),
hence Ab = AB;

(f) D, b, C are aligned; b, C,B are also aligned by Thales (because bm2C and
bAB are both isosceles and thus similar), hence D, b, C,B are aligned;

(g) by Thales and (c) we obtain

h1 + r1
r1

=
h2 − r2
r2

from which (4.17) follows.

Once a simple proof has been found for a famous result, the way is open for
numerous extensions and generalisations, which Steiner then pursued with
considerable energy.

Steiner’s Porism.

“A porism is a mathematical ‘proposition affirming the possibility
of finding such conditions as will render a certain problem inde-
terminate or capable of innumerable solutions’.”

(J. Playfair, 1792)
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Fig. 4.25. Steiner’s porism
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Theorem 4.18 (Steiner, 1826c, second part, §22). Let C1 and C2 be two
circles, C2 inside C1. Suppose that one fills the space between the two circles
by a chain of circles Γ1, Γ2, Γ3 etc., each tangent to its neighbours and to
C1 and C2. Then, if Γn = Γ1 for some integer n (see the second picture of
Fig. 4.25), the same property holds for the same n for any choice of Γ1 (see
the third picture).

Steiner obtained this result after a long struggle. Fig. 4.26 gives some idea of
his original thoughts. We will see in the next chapter (Section 5.5) that this
result can be obtained in a very elegant manner by using the stereographic
projection.

C1

C2

C1

C2

Fig. 4.26. Connecting the circle centres in Steiner’s porism

4.10 Morley’s Theorem

“Morley’s theorem is startling, difficult to prove, and utterly beau-
tiful.”
(W. Dunham, Euler, the master of us all. Math. Ass. Amer. 1999)

“... on s’empressa ... de rechercher une démonstration aussi courte
et aussi élégante que l’énoncé ... A mon avis, de tels désirs ne
sauraient être satisfaits. [... one eagerly sought a proof as simple
and elegant as the statement ... In my opinion such desires cannot
be satisfied.]”

(H. Lebesgue, L’Enseignement Mathématique 38 (1939), p. 39)

“Much trouble is experienced if we try a direct approach, but the
difficulties disappear if we work backwards, ...”

(H.S.M. Coxeter, 1961, p. 24)

Theorem 4.19. For a given triangle ABC, let PQR be the triangle formed
by the intersections of the angle trisectors of ABC, see Fig. 4.27. Then, PQR
is equilateral.
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Fig. 4.27. Morley’s triangle

Remark. Despite the simplicity and elegance of its statement, this theorem,
discovered in 1904, escaped the attention of even the most ingenious geometers
for more than two thousand years. At first sight it seems very difficult to prove
(see the quotations; for a detailed historical account, see Loria (1939, p. 367),
Coxeter (1961, p. 24), Coxeter and Greitzer (1967, p. 47) and the particularly
rich bibliography of Oakley and Baker (1978). Surprisingly, the proof becomes
simple if one proceeds backwards (see the last quotation). The proof given
below, as elaborated in Wanner (2004), uses only Euclid’s Books I, III and VI.

Proof. We forget about the triangle ABC in Fig. 4.27 and keep in mind only
the values of the angles α, β and γ with

α + β + γ =
2

3
(4.19)

(Eucl. I.32). We start from an equilateral triangle PQR, say of side length
1 and fixed in Fig. 4.28. We then try to reconstruct a triangle similar to
ABC (again denoted by the same letters) satisfying Morley’s theorem. By
the uniqueness of the construction of P,Q,R, the original triangle must then
also satisfy Morley’s theorem.

With Eucl. III.20 in mind, we draw the three circles with centres K, L,
M and central angles 2α, 2β, 2γ, respectively, that have the sides of the
triangle PQR as chords. We then add four additional chords QD, QE, RF
and RG, all of length 1. This creates several isosceles triangles with vertices at
K,L,M,Q and R respectively. We next compute all angles of these triangles
using Eucl. I.5 and Eucl. I.32. The angles aroundQ must sum to 4 ,12 whence

δ = 2α+ 2γ − 2

3
, and at D, ε = − δ

2
=

4

3
− α − γ . (4.20)

12The authors are grateful to Christian Aebi for a suggestion concerning this part
of the proof.
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Fig. 4.28. Proof of Morley’s theorem

Similarly, for the angle ζ at F (exchange β and γ) we obtain

ζ =
4

3
− α− β whence, with (4.19) and (4.20), α+ ε+ ζ = 2 .

This means that by constructing the triangle QAR on RQ using the angles ε
and ζ (version ASA of Eucl. I.26), we find a point A which lies on the circle
centred at K (Eucl. I.32 and converse of Eucl. III.20). Then the quadrilaterals
ARQD and AQRF are inscribed in the same circle and A,D,E and A,F,G
are collinear (Eucl. III.22).

The proof is concluded by constructing B and C in the same way.

Another backwards proof (see the last quotation) due to R. Penrose (1953) is
given in Exercise 12 below.

4.11 Exercises

1. (The cissoid of Diocles) Prove the following result of Pappus (Collection ,
Book III, Chap. 10): Let ABΓ be a semicircle with centre ∆ and let ∆E
be a given distance (see Fig. 4.29, left). Produce ΓE to Z on the circle.
Determine a line AHΘK where K is on the arc BΓ , H on ΓZ and Θ
on ∆B in such a way that HΘ = ΘK. Then E∆ is to B∆ as the cube
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y

u
a

a

zv

x

w

H

(b)

Fig. 4.29. The doubling of the cube by Diocles and Pappus; reproduced from Ver
Eecke’s translation (1933, left); in modern notation (right)

of Θ∆ is to the cube of B∆. In other words, the quantity Θ∆ solves the
problem of multiplying the cube by any given ratio E∆/B∆.

Hint. Pappus suggests to complete the semicircle to a full circle and to
draw the diameter K∆Λ so that AKΓΛ is a rectangle. By hypothesis and
Thales, HMΛ is parallel to Θ∆. Pappus’ proof then requires an entire
page of prose. In modern notation (see Fig. 4.29 (b)), supposing that the
circle has radius 1, the required result becomes z = u3, or u = 3

√
z, which

can be proved in one line.

Remark. In Pappus’ version, the line throughAmust be placed by trial and
error, until the segments HΘ and ΘK are equal. Another possibility is to
determine for all lines through A the point H as the point of distance ΘK
from Θ. This curve is called the cissoid of Diocles (drawn in Fig. 4.29 (b)).
Once found, it solves the problem of multiplying the cube by drawing two
lines, first ΓEH , then AHΘ.

x

1−x

x(1−x)

x

x(1−x)

1

4T

P

1

3 1

Fig. 4.30. How Archimedes “weighed” the parabola

4.11 Exercises
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2. Explain the beautiful idea of Archimedes, displayed in Fig. 4.30, of placing
the parabola

y =
1

4
−
(
x− 1

2

)2
= x(1− x)

“on a balance” in order to determine its area.13 This was Archimedes’
first approach to the formula P = 4

3T .

3. Let D, E, F of Fig. 4.15 be the feet of the altitudes of the triangle ABC.
Show that the Miquel point of the corresponding circumcircles then co-
incides with the orthocentre. Therefore Miquel’s result provides another
proof of Theorem 4.2.

4. Reconstruct Newton’s proof of Theorem 4.2 (see Fig. 4.31 (a)) by using
Thales’ theorem to compute y twice: by considering first the intersection
of FC and AD, and then the intersection of FC and BE (see the, at that
time, unpublished manuscript Newton 1680, p. 454).

a

c

y

b
δ

δ

A B

C

H

D

E

F

(a)

c1

c2

a1

a2b1

b2

A

B

C

P

F

V

U

(b)

Fig. 4.31. Newton’s proof for the orthocentre (a); Joh. Bernoulli’s proof of Ceva’s
theorem (b)

5. Show: If H is the orthocentre of the triangle ABC, then C is the orthocen-
tre of the triangle ABH . A map which is its own inverse (such as H 7→ C)
is called an involution.

6. Reconstruct Joh. Bernoulli’s proof of Ceva’s theorem by producing the
line CPF and drawing AU parallel to PB and BV parallel to AP (see
Fig. 4.31 (b)). You obtain several pairs of similar triangles for which you
can play around with Thales’ theorem. Readers familiar with Bernoulli’s
work will not be surprised by the elegance of his proof.

7. Give a proof of Ceva’s theorem based on the areas of the six triangles in
Fig. 4.11 (left) on page 88, similar to Euclid’s proof of Eucl. VI.2.

13The authors owe this exercise to a suggestion of Martin Cuénod, Geneva.
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8. (a) Consider a triangle ABC (see Fig. 4.32 (a)), whose area we denote by
∆. The two medians AD and CF determine four polygons of areas A,B, C
and D. How do these areas depend on ∆?

(b) The segments AD, BE and CF divide the opposite sides in the ratio
1 : 2 and create a triangle of area T (see Fig. 4.32 (b) and Fig. 4.33 from
Steiner (1828b)). How does T depend on ∆?

Remarks. Exercise (a) is among the first problems of the very first ge-
ometry lessons given by Mr. Maurer to the young Jakob Steiner in 1814
at Yverdon’s Pestalozzi School. Throughout his life Steiner kept these
lessons in high esteem. Exercise (b) was solved by Clausen (1828) using
complicated trigonometric formulas. Steiner answered in Steiner (1828a)
that such problems were treated extensively in Pestalozzi’s School “we-
gen mancherlei pädagogischer Vorzüge [due to several pedagogical advan-
tages]” and led to very elegant solutions. These results were later redis-
covered and are called the Dudeney–Steinhaus theorem or also Routh’s
theorem (see Elem. Math. 22 (1967), p. 49).

9. (The Torricelli–Fermat point and Napoleon’s theorem) Consider a triangle
ABC with all angles less or equal 120◦. Construct an equilateral triangle
outwards on each side of ABC, and call the outside vertices D, E and F .
Then prove (see Fig. 4.34 (a) and (b)) that

(a) the three lines AD, BE, CF meet in one point P ;

(b) the circumcircles of these three triangles meet in the same point P ;

(c) all six angles at P are 60◦;

(d) the centres of these three circumcircles form an equilateral triangle;

(e) the segments AD, BE and CF are all equal to PA+ PB + PC.

The origin of these results was a challenge of Fermat (see Sect. 7.4 be-
low), which Father Mersenne, on his way to Rome in 1644, presented to
E. Torricelli14 during a stop-over in Florence (“Questi tre Problemi ... sono

c
2

c
2

a
2

a
2
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H
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c
3

a
3

b
3
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B
T

A
B

C

D

F

G
H

E

K
L

(b)

Fig. 4.32. Pestalozzi problems

14Evangelista Torricelli (1608–1647), famous for inventing the barometer.
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Fig. 4.33. Jakob Steiner’s original picture in Steiner (1828b)

di Monsù de Fermat, Senatore di Tolosa [these three problems ... are by
Monsieur de Fermat, senator from Toulouse]”). Torricelli included his so-
lution in his manuscript De Maximis et Minimis (1646), Opere vol. I, parte
sec., pp. 90–97. Today the point P = X13 is called the Torricelli–Fermat
point . Result (a), usually called Napoleon’s theorem, was first published
by Thomas Simpson, The Doctrine and Application of Fluxions, London
1750. Result (b) was Mersenne’s tool for solving the problem, result (c)
is the main reason for the minimality property, and result (e) is due to
F. Heinen, 1834. For bibliographic details and generalisations, see Encyk-
lopädie der Math. Wiss., vol. III.1.2, p. 1129.

10. Reflection of the circumcentre O in the sides of ABC. Given a trian-
gle ABC, define a new triangle A′B′C′ by reflecting the point O in the
sides BC, CA and AB respectively (see Fig. 4.35). Prove the following
properties, which were discovered by Odehnal (2006) using analytical cal-
culations:

A
B

C
D

E

F

P

(a)

A
B

C
D

E

F

P

(b)

Fig. 4.34. Napoleon’s theorem and the Torricelli–Fermat point
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A

B

C

H

O

N

D
E

F

G

A′

B′

C′

K

L

Fig. 4.35. Reflection of the circumcentre O in the sides of ABC

(a) One obtains the triangleA′B′C′ by rotating the triangle ABC through
180◦ around the nine-point centre.

(b) The points A′, B′ and C′ are the circumcentres of the triangles HBC,
HCA and HAB, respectively.

(c) The lines A′B, A′C, and A′H are perpendicular to the sides ED, DF ,
and FE, respectively, of the orthic triangle DEF ; and similarly for
B′ and C′.

11. Inspired by a drawing of Dürer, see Fig. 4.36, we ask to fill the lens-shaped
space between two circles having the same radius R, and whose centres
have distance 2a, by an infinity of circles which touch each other and which
touch the two circles. Compute the positions of the intersection points of
these circles with the radical axis.
Dürer did not explain how these points, i.e. given d find e, can be con-
structed with ruler and compass, although he had “mit dem zirckel vnd

richtscheyt” [with ruler and compass] in the title of his book. Repair this
omission.

12. Elaborate Roger Penrose’s backwards proof of Morley’s theorem, as given
in Coxeter (1961),15 using the following idea: Assume that the triangle
PQR is equilateral; then, since the point R in Fig. 4.37 (a) is the incentre of
the triangle ABW , the triangle QPW must be isosceles. Therefore, start
from an equilateral triangle and attach three isosceles triangles; produce
their sides to obtain the points A, B and C. Determine all the angles
correctly.

15Coxeter presents Penrose, who was at that time 22 years old, as follows: “Roger
Penrose is a son of Professor Lionel Penrose the geneticist, and a brother of Jonathan
Penrose the chess champion”. In the meantime, Sir Roger Penrose has become
famous in his own right.
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a
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e

e
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C

O

Fig. 4.36. Filling the intersection of two discs with circles (A. Dürer, Underweysung
der messung, 1525, book 2)
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Fig. 4.37. Roger Penrose’s backwards proof of Morley’s theorem (a); the Olympiad
problem (b)

13. (A problem from the Int. Math. Olympiad, Hanoi 2007) In triangle ABC
the bisector of angle BCA intersects the circumcircle again at R, the
perpendicular bisector of BC at P , and the perpendicular bisector of
AC at Q. The midpoint of BC is K and the midpoint of AC is L (see
Fig. 4.37 (b)). Prove that the trianglesRPK and RQL have the same area.

14. (From a note by Indika Shameera Amarasinghe, Math. Spectrum, 2011)
Extend the cevian CF in Fig. 4.12 (a) to a point D on the circumcircle of
the triangle ABC and deduce Stewart’s theorem from Ptolemy’s lemma
(see page 114 below), Thales and Eucl. III.35.
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Trigonometry

τρε
︷︷
ις, τρ́ια , three, ...

(Liddel and Scott, Greek-English Lexicon, Oxford)

γων́ια , corner, angle, ...
(Liddel and Scott, Greek-English Lexicon, Oxford)

“I have concentrated on trigonometry.”
(Mister Bean in The Exam, 1989)

5.1 Ptolemy and the Chord Function

The next giant of Greek science was Ptolemy, who lived around 150 A.D. and
was famous both as a great astronomer and as the author of his Geographia.
Ptolemy’s astronomical achievements are collected in his masterpiece μαθη-
ματική σvύνταξις, later called μεγάλη σvύνταξις,1 the great treatise. Arabic as-
tronomers gave it the Arabic-Greek title al-μεγ́ιστη, and so the book became
the Almagest , translated into Latin by Regiomontanus. It was the second sci-
entific book to be printed (in 1496), after Euclid’s Elements (in 1482); see
Fig. 5.1, left.

All of Ptolemy’s measurements were based on the chord function, cordα
(see Fig. 5.1, right),2 which measures the length of a chord in a circle of radius 1
(or 60) as a function of the corresponding central angle α. A table of chords is
given in Ptolemy’s Almagest for angles between 1

2

◦
and 180◦ in steps of 1

2

◦
(see

Fig. 5.2). The chords are given for radius 60, using the Babylonian sexagesimal
system, refined by adding two sexagesimal digits after the sexagesimal point
(usually all correct, with an error of at most 1 sec). He called these digits partes
minutae primae (first small parts) and partes minutae secondae (second small
parts), which is the origin of our minutes and seconds.

1Megabyte, megaflops, megawatt, megalith, megalomania, ...; a work starting
with mega is certainly not a bagatelle ...

2Ptolemy used εὐτε
︷︷
ια (straight, direct); “chord” comes from χορδή (bowel, string

of gut), Latin “chorda”, which was used to produce strings of musical instruments.

113
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α

60
60

cordα

Fig. 5.1. Frontispiece of Almagest printed in 1496 (Ptolemy and Regiomontanus
seated facing each other, left); Ptolemy’s chord function (top right); Tycho Brahe’s
instrument from 1586 for measuring angles (bottom right)

How did Ptolemy compute his table? For particular angles like 36◦ or 60◦,
the lengths of the corresponding chords can easily be determined from the
regular hexagon or the regular decagon (we see from Table 1.1 on page 18
that cord 60◦ = 1 and cord 36◦ = 1

Φ
). Once cordα was known, he obtained

cord α
2 in the same way as Archimedes (see Exercise 22 on page 58). For sums

and differences of angles, he used the following identity for the chord function:

2 cord(α+ β) = cordα cord(180◦ − β) + cord(180◦ − α) cordβ . (5.1)

Ptolemy thus arrived successively at cord 3◦, cord 1.5◦ and cord 0.75◦. How-
ever, cord 1◦ was inaccessible (trisection of an angle). Therefore, Ptolemy cal-
culated cord 1◦ by brute interpolation, correctly to the given precision.

The original proof of (5.1) by Ptolemy (see Fig. 5.3) is based on the fol-
lowing lemma.

Lemma 5.1 (Ptolemy). Let a quadrilateral with sides a, b, c, d be inscribed
in a circle. Then the diagonals δ1, δ2 satisfy ac+ bd = δ1δ2.
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0 30 0 31 25
1 0 1 2 50
1 30 1 34 15
2 0 2 5 39
2 30 2 37 4
3 0 3 8 28
3 30 3 39 53
4 0 4 11 17
4 30 4 42 40
5 0 5 14 4
5 30 5 45 27
6 0 6 16 49

Fig. 5.2. Beginning of Ptolemy’s chord table (left as published in Paris 1813);
correct values (right)

Fig. 5.3. Proof of (5.1) using Ptolemy’s lemma in the Almagest, 1496

a

b

c

d

δ1

δ2

α
β

β
γ

γ

α

u

v

A

B
C

D

E

Fig. 5.4. Proof of Ptolemy’s lemma; right: from Copernicus’ De revolutionibus

Proof. Let E be the (unique) point on AC such that the angle EDA equals
the angle CDB, see Fig. 5.4. By Eucl. III.21, the two angles denoted by β are
equal (as well as those denoted by γ). Therefore, the triangles EDA and CDB
(as well as DCE and DBA) are similar, whence

b

δ1
=
u

d
and

a

δ1
=
v

c
⇒ bd+ ac = δ1(u+ v) = δ1δ2 .
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5.2 Regiomontanus and Euler’s Trigonometric Functions

During the Greek period, only the chord function was used. Later (Brah-
magupta circa 630 A.D., Regiomontanus 1464, printed in 1533) it became
clear that sines and cosines are better adapted to calculations with triangles
(see Fig. 5.5).

0 1

1

cosα

sinα

tanα

1

cotα

α

Fig. 5.5. The “trigonometric circle” and definitions of the trigonometric functions.
Left: First publication by Regiomontanus, 1464, printed in 1533

J.J. Stampioen
(Leyden 1632)

cosinum anguli ad A fore =
rq − Cc

Ss
r ,

sinu cruris AB = S, cosinus eiusdem = C,
sinu cruris AC = s et cosinu = c,
cosinu baseos BC = q, et radio = r;

F.C. Maier
(St. Petersburg, 1727)

cos :anguli A =
cos :BC−cos :AB · cos :AC

sAB · sAC ,

posito radio vel sinu toto 1.

L. Euler
(E14, 1735)

A
B

C

c

ab
cosA =

cos a− cos b · cos c

sin b · sin c

L. Euler
(E214, 1755)

Fig. 5.6. Development of the notation for the trigonometric functions; Stampioen’s
notation is taken from A. v. Braunmühl, Bibliotheca Mathematica 1 (1900), p. 73

However, another two centuries of effort were needed to turn all this Latin
text into satisfactory mathematical notation. We show in Fig. 5.6 the devel-
opment of the notation, each time for the same theorem, the cosine rule of
spherical trigonometry, see Formula (5.35) below. The major steps of this de-
velopment were taken by Euler, who established the sines and cosines, not
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only as some numbers in a table, but as true functions, allowing all algebraic
operations, differentiations, integrations without obstacles. Euler contributed
throughout his life in establishing more and more properties and formulas
of these functions. A classical treatise on trigonometric functions is Hobson
(1891).

To define the trigonometric functions, we consider a right-angled triangle
placed in a circle of radius 1 as shown in Fig. 5.5. Then the length of the
leg opposite the angle α is called sinα, whereas the length of the adjacent
(horizontal) leg is cosα. One further defines

tanα =
sinα

cosα
and cotα =

cosα

sinα
. (5.2)

By Pythagoras’ theorem,

sin2 α+ cos2 α = 1 . (5.3)

The sine function is related to the chord function by

sinα =
1

2
cord 2α . (5.4)

With the help of Thales, these definitions apply immediately to right-angled
triangles of arbitrary size:

a = c · sinα , b = c · cosα , a = b · tanα ,

sinα =
a

c
, cosα =

b

c
, tanα =

a

b
.

b

ac

α

(5.5)

Theorem 5.2 (addition formulas). The following identities hold:

sin(α + β) = sinα cosβ + cosα sinβ ,

cos(α + β) = cosα cosβ − sinα sinβ ,

tan(α + β) =
tanα+ tanβ

1− tanα tan β
.

(5.6)

Proof. The first formula is the same as (5.1) together with (5.4). A geometric
proof (by Viète, based on Eucl. III.21) for the first two identities is given in
Exercise 3 below. Fig. 5.7 (left) shows today’s standard geometric proof of
these equations based on the relations (5.5). The third formula is obtained on
dividing the first by the second.

However, for this last formula connecting three values of tan, one might
also like to see a direct geometric proof. This is given in Fig. 5.7 (right). We
see from (5.5), applied to the triangle ABE, that AB = tanα tan β, hence
OA = 1− tanα tanβ. Thales’ theorem shows that
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0 1
α
β

α

1

cos βcos β

sin βsin β

cos β cos α

cos β sin αcos β sin α

sin β sin αsin β sin α

sin β cos αsin β cos α

0 1

1

tanα

tanβ

tan(α+β)

α

α

β
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C

D

E

F

Fig. 5.7. Proof of addition formulas for sin and cos (left), for tan (right)

tan(α+ β) =
ED

OA
·OC and

OC

1
=
EF

ED
⇒ tan(α + β) =

EF

OA
,

which is the stated result.3

Later, one also accepted negative angles and defined

cos(−α) = cosα , sin(−α) = − sinα .

With this, we at once derive from (5.6) the identities

sin(α− β) = sinα cosβ − cosα sinβ ,

cos(α− β) = cosα cosβ + sinα sinβ .
(5.7)

Relations for double and half angles. Putting α = β in (5.6) gives

sin 2α = 2 sinα cosα ,

cos 2α = cos2 α− sin2 α = 1− 2 sin2 α = 2 cos2 α− 1 .
(5.8)

Finally, replacing in the last formula α by α/2 we obtain

sin
α

2
= ±

√
1− cosα

2
, cos

α

2
= ±

√
1 + cosα

2
, (5.9)

(for a geometric proof see Fig. 5.8, left).

Some values of sine and cosine. The proportions of the equilateral trian-
gle, the square, the pentagon and the decagon provide sine and cosine for the

3Another geometrical proof of this formula, not based on Thales, but on
Eucl. III.21 and III.35, is given in Hobson (1891, Art. 54) and attributed to “Mr
Hart in the Messenger of Mathematics, vol. IV”.
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1

sinα

cosα

√ 2(1
+ cosα

)

1

α
α
2

v

a−v

c

b

h

β

γ

A
B

C

P

Fig. 5.8. Half angles (left); the law of cosines and the law of sines (right)

angles 60◦, 45◦, 36◦, 30◦ and 18◦, respectively. Once the sine is known, one
finds the cosine by Pythagoras (5.3). Then, taking half angles gives the result
for 15◦, and with the help of differences, we arrive at 3◦. Using the identi-
ties (5.6) we can finally calculate sine and cosine for α = 3◦, 6◦, 9◦, 12◦, . . . ,
see Table 5.2 in Exercise 4 below. The complete list of algebraic expressions
was given by Lambert (1770). See also Hobson (1891, Art. 66).

5.3 Arbitrary Triangles

The trigonometric functions have been defined for right-angled triangles. We
will now derive trigonometric relations for arbitrary triangles.

The law of cosines. When ACB is not a right angle, we consider the point P
on BC such that APB is a right angle (see Fig. 5.8, right).4 The law of cosines
(cosine rule) is the same as Eucl. II.13, because if we insert into formula (2.17)
on page 57 the value v = b cosγ, which is (5.5) applied to the triangle CPA,
we obtain

c2 = a2 + b2 − 2ab cosγ or cos γ =
a2 + b2 − c2

2ab
. (5.10)

Cyclic permutations of sides and angles a → b, b → c, c → a give four
additional formulas. They all reduce to Pythagoras’ theorem if the cosine is
zero, i.e. if the angle is right.

The first formula allows one to compute the third side of a triangle in the
SAS-case of Fig. 2.9; the second formula allows one to find the three angles in
the SSS-case.

The law of sines. Computing h in Fig. 5.8 (right) with the help of (5.5), we
find h = b sin γ and also h = c sinβ. Dividing one formula by the other (and
applying cyclic permutations), we find the law of sines (sine rule)

4The reader might see a problem if γ is an obtuse angle. In this case the point
P moves outside the triangle and u becomes negative; in contrast to the Ancients,
we are no longer afraid of such quantities.
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Fig. 5.9. Proof of the law of sines (left) and length of a cevian (right)

sinα

a
=

sinβ

b
=

sin γ

c
. (5.11)

This rule is useful if one knows one side and two angles (and hence all three
angles).

Relations involving the circumcircle. We see from Fig. 5.9 (a), which
is the same as Fig. 4.7 (b) on page 84 and is justified by Eucl. III.20, that
a
2

= R sinα and similarly for the other angles. This proves the sine rule once
again, but also gives more information:

sinα

a
=

sinβ

b
=

sin γ

c
=

1

2R
or

a = 2R sinα ,
b = 2R sinβ ,
c = 2R sin γ ,

(5.12)

where R is the radius of the circumcircle. These last expressions transform
the law of cosines (5.10) into the following identity involving the three angles
of a triangle (Sturm, 1823/24):

sin2 α+ sin2 β − sin2 γ = 2 sinα sinβ cos γ . (5.13)

Relations involving the area of the triangle. Inserting h = c sinβ into
Eucl. I.41 we obtain a formula for the area of the triangle in Fig. 5.8,

A =
ac

2
sinβ . (5.14)

This formula divided by abc yields a symmetric expression which allows one
to conclude that

2A
abc

=
sinα

a
=

sin β

b
=

sin γ

c
, (5.15)

a third proof of the law of sines. Comparing this with (5.12) leads to two
interesting formulas,
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A =
abc

4R
and A = 2R2 sinα sin β sin γ . (5.16)

This area is also the sum of the areas of three triangles. One of these, BOC, is
drawn in Fig. 5.9 (left); its area is R2 cosα sinα. Comparing this with (5.16),
we obtain another identity for the three angles of a triangle:

sinα cosα+ sin β cosβ + sin γ cos γ = 2 sinα sinβ sin γ . (5.17)

Since the area of our triangle is the sum of the areas of the triangles BCI,
CAI and ABI of Fig. 4.6 on page 83, we have

A =
a + b+ c

2
· ρ , (ρ radius of the incircle). (5.18)

We finally insert (5.12) for a, b, c and compare with (5.16) to obtain

sinα + sin β + sin γ =
2R

ρ
· sinα sinβ sin γ . (5.19)

Length of a cevian and of an angle bisector. In addition to the results of
Section 4.5, we here derive trigonometric formulas for the length of a cevian.
Choose the vertex C, call the cevian CD, and denote the angles ACD and
DCB by ψ and ϕ respectively (see Fig. 5.9 (b)). Then for the length w of CD
we have the formula

sin(ϕ+ ψ)

w
=

sinψ

a
+

sinϕ

b
, (5.20)

which in a certain sense extends the sine rule. To prove this formula, we
multiply it by abw, which gives ab sin(ϕ+ψ) = bw sinψ+aw sinϕ and reduces
with (5.14) to the relation A = A1 + A2 for the areas of the three triangles
in Fig. 5.9.

The length w of the angle bisector through C satisfies

2 cos γ
2

w
=

1

a
+

1

b
. (5.21)

This follows from formula (5.20) by choosing ϕ = ψ = γ
2 and using (5.8). Apart

from the factor cos γ2 , w is the harmonic mean between a and b (see equation
(7.59) on page 223), a result discovered by Pappus (Collection , Book III,
Prop. 9). We will return to this mysterious resemblance in Chap. 11 (Exercise
5 on page 342).

5.4 Trigonometric Solution of Malfatti’s Problem

Problem. Inscribe in a given triangle ABC three circles, each tangent to the
other two and to two sides of the triangle (see Fig. 5.10 (b)).
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Fig. 5.10. Malfatti’s problem and Schellbach’s solution (b); auxiliary triangle (a)

This problem appeared in several places towards the beginning of the 19th
century and had for a long time the reputation of being very difficult. Since the
centres Ca, Cb and Cc of the Malfatti circles must lie on the angle bisectors,
we have solved the problem once we have found the points of contact E, F
and H with sides of the triangle.

Malfatti’s solution. After the problem had been published in the Gergonne
Journal vol. 10 (1810/11), the “rédacteurs des Annales” were informed by
a letter from Italy that “M. Malfatti, géomètre italien très-distingué” had
obtained a solution already in 1803, after analytic calculations which were to
long for a letter to be reproduced, as (in the notations of Fig. 5.10 (b))

2AE = AB +KC +AL− CI −BI .

Steiner’s construction. Steiner, in (1826c), then gave the elegant geomet-
ric construction which is given in Fig. 5.11. It is based on the incircles of the
triangles IAB, IBC and ICA. Steiner claims, without proof, that the tan-
gents from D, the point of contact of one of these circles with the side AB, to
the other two circles is one and the same line, which determines the points E
and F . He then claims, again without proof, that the incircles of the triangles
ADE and DBF touch the line DEF at the same point. Later reconstruc-
tions of Steiner’s proofs (for example in Carrega 1981, pp. 101–106) are long,
complicated and without any insight into Steiner’s way of discovery.

Schellbach’s solution. For the elegant solution by K. Schellbach (1853) it
will turn out to be preferable to denote the unknown distances AE, BF and
CH by u2, v2 and w2 respectively (instead of u, v and w). It will also be
useful to normalise the semi-perimeter s = a+b+c

2 to s = 1.
We denote by D (see Fig. 5.10 (b)) the intersection of the common tangent

of two of the Malfatti circles with the side AB. The tangents DE, DG and



5.4 Trigonometric Solution of Malfatti’s Problem 123

A

B

C

D

E

I

F

Fig. 5.11. Steiner’s construction for Malfatti’s problem

DF are equal and we write DE = DG = DF = d. The quadrilaterals CaGDE
and DGCbF are similar, hence p

d = d
q or

d =
√
pq =

√
tan α

2
· tan β

2
· uv because p = u2 tan α

2
, q = v2 tan β

2
.

We simplify this expression by using a formula from (5.60) in Exercise 5 below
and obtain

tan α
2 · tan β

2 =
√

(1−c)(1−b)
1−a

(1−a)(1−c)
1−b = 1− c hence d =

√
1− c · uv .

Adding up the segments on the side AB in our triangle, we get finally

c = u2 + 2d+ v2 = u2 + 2
√

1− c · uv + v2 (5.22)

and similar equations for the sides b and a. The solution of this system of three
quadratic equations is the main difficulty of the problem. The elegant idea of
Schellbach is the following: determine an angle ϕc such that c = sin2 ϕc (we
know that c < 1 because s = 1). Then

√
1− c = cosϕc and (5.22) becomes

sin2 ϕc = u2 + 2uv cosϕc + v2

which has a striking similarity with the law of cosines in (5.10). Thus the
triangle with sides u, v, sinϕc, sketched in Fig. 5.10 (a), has exterior angle of
ϕc (because of the +-sign at the cos-term). Then from the three formulas of
the law of sines in (5.12) we obtain first 2R = 1, and then u = sinϕu and
v = sinϕv. Therefore we have from (1.2)
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Fig. 5.12. Ptolemy’s map; the line reproduced from Ptolemy’s Geographia gives
the coordinates of “polis Parision Loukotekia” as 23 1

2

◦
and 48 1

2

◦

ϕc = ϕu + ϕv, and similarly ϕb = ϕw + ϕu, ϕa = ϕv + ϕw .

As in the remark to Eucl. IV.4 on page 83 we obtain

ϕu = σ − ϕa , ϕv = σ − ϕb , ϕw = σ − ϕc , where σ =
ϕa + ϕb + ϕc

2
,

which determine the positions (and radii) of the three circles. All operations
can be turned into constructions by ruler and compass, so that finally no sine
tables or calculators are required.

5.5 The Stereographic Projection

Ptolemy was also the architect of spherical trigonometry, which he developed
mainly for applications in astronomy and geography. This will be our subject
in the next sections. Ptolemy’s monumental work Geographia (eight books)
contained longitudes and latitudes of eight thousand locations of the known
world (see Fig. 5.12). One location, that of “Parision”, is reproduced in the
second picture of Fig. 5.12 with latitude 481

2
degrees, a value which is correct
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α4

Fig. 5.13. Stereographic projection (left); preservation of angles (right)

to within one third of a degree. Longitudes, however, were difficult to measure
with the instruments of that time. The errors near India are more than 30◦.
The resulting map spans half of the globe and remained the standard reference
until the 16th century.

In order to map the sphere onto a flat sheet, Hipparchus and Ptolemy
invented the projection from the antipodal point N onto a plane tangent to
the sphere, see Fig. 5.13, left. Since 1613 this projection is called a stereographic
projection (see Cantor, 1894, vol. I, p. 395). For his terrestrial maps, however,
Ptolemy used instead conic-like projections.

Theorem 5.3 (Halley 1696). The stereographic projection is conformal, i.e.
preserves all angles.

γ

γ′

A

B

E

F

N

A′

Fig. 5.14. The stereographic projection preserves angles and circles (illustration
on the right taken from “Darstellende Geometrie” by E. Ludwig and J. Laub, Wien
1956)
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Proof. In the picture on the right of Fig. 5.13 one verifies that α1 = α2 (isosce-
les triangle), α2 = α3 (opposite angles), and α1 = α4 (parallel angles). Thus
α3 = α4, so AB = A′B and the triangle ABA′ is isosceles. An angle at A,
formed by two lines in the tangent plane, is mapped onto the same angle at
A′, since the intersection points E and F of these two lines with the horizontal
plane form identical triangles with A and A′, see the picture on the left of
Fig. 5.14.

Theorem 5.4 (Ptolemy, rediscovered by Miquel (1838b, Thm. IV)). The
stereographic projection maps circles onto circles.

Proof. Let a circle be given on the sphere. An elegant idea consists in adding
to this circle the cone formed by all tangents to the sphere that are orthogonal
to the circle, see the picture on the right of Fig. 5.14. Mapping everything by
the stereographic projection gives the image kc of the circle together with a
bundle of lines. The lines all pass through the same point (which is the image
of the vertex of the cone) and, by Theorem 5.3, are orthogonal to the curve
kc. Therefore, kc must be a circle.

2α

α
α

A B C D

N

Fig. 5.15. Proof of Steiner’s porism

Proof of Steiner’s porism. As we have seen in Section 4.9, Steiner obtained
Theorem 4.18 after a long struggle. He never mentioned with a word — either
he did not know, or he wanted to keep it as his secret — that this result be-
comes nearly evident with the use of the stereographic projection. Firstly, the
statement is trivial if C1 and C2 are concentric (see Fig. 5.15, left). Otherwise
we look for a stereographic projection which transforms C1 and C2 into con-
centric circles on the sphere. For this we remember Eucl. III.20, draw the line
of symmetry in the first picture of Fig. 4.25, cutting the circles in four points
A, B, C and D, and construct on each of the segments AB and CD (similar)
isosceles triangles with the same angle 2α at the vertex (see Fig. 5.15, right).5

We then choose for N one of the intersection points of the two circles drawn
around these vertices as centres. The inscribed angles ANB and CND are

5This angle should be chosen not too large.
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equal to α and the (inverse) stereographic projection from this point trans-
forms the original circles C1 and C2 into concentric ones. All the small circles
are transformed into circles with the same radius, and the porism is also clear
in the second case.

5.6 The Spherical Trigonometry of Right-Angled

Triangles

On the sphere, the analogue of a straight line becomes a circle whose centre
coincides with that of the sphere (geodesic line). A circle on the sphere with
this property is called a great circle. A segment on the sphere is a connected
part of a great circle. The length of a segment is measured in radians by its
angle at the centre.

Thus, a spherical triangle is composed of three great circles, whose side
lengths a, b, c are the corresponding angles at the centre, and three angles α,
β, γ, which express the inclination of the three great circles taken two at a
time. If one of the angles, say γ, is a right angle, then the spherical triangle
is called right-angled .

Spherical trigonometry consists in finding all possible relations between
these quantities. The first ones were found by Ptolemy in his Almagest (Book I,
Chap. 11). He considered right-angled triangles and used a complicated theory
that goes back to Menelaus. Spherical trigonometry was further developed by
mathematicians of the Islamic world,6 and taken up again by Napier and later
by Euler. The latter developed the general case in a straightforward way, “ex
primis principiis breviter et dilucide derivata” (see Euler, 1782).7 We start
by applying Euler’s ideas to right-angled triangles in an even more brevis et
dilucidus way.

Idea. Take a spherical triangle ABC with a right angle at C and the angle
β at B and project it from the centre O onto the tangent plane at B. In this
way we obtain a right-angled triangle A′BC′ which again has the angle β at
B, see Fig. 5.16.
We assume that OB = 1 and find from the right-angled triangle OBC′ the
quantities BC ′ = tan a and OC′ = 1

cosa , similarly from the right-angled trian-
gle OBA′ the quantities BA′ = tan c and OA′ = 1

cos c , and from the triangle

6In the 10th century Abū’l-Wafā’ Būz̄an̄ı discovered the law of sines for spher-
ical triangles, see Berggren (1986), p. 175. In the 11th century al-Jayyān̄ı wrote an
influential treatise on spherical trigonometry with the title The book of unknown
arcs of a sphere.

7The same idea had been used in a short note by Francis Blake in 1752. It
was later discovered that Newton had also used the same figures in an unpublished
manuscript from 1684 (see Newton, Mathematical Papers, vol. IV, p. 174, note (9)
for more details).
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Fig. 5.16. A right-angled spherical triangle

OC′A′ the quantities C′A′ = tan b
cos a

and OA′ = 1
cosa cos b

. The two values ob-
tained for OA′, which must be equal, provide a first interesting formula, the
right-angled law of cosines (cosine rule for sides):

cos c = cos a · cos b .

c
α

ba

β
(5.23)

A right-angled spherical triangle has five unknowns a, b, c, α and β. Formula
(5.23) relates the three side lengths a, b, c in such a way that one can be found
if the other two are known. This is symbolised by the small forget-me-not.

Remark. If the angles a, b, c become small, i.e. if the triangle tends to a planar
triangle, then we may neglect the terms a4, b4, c4 and a2b2, and their products,

in the series for cos c = 1− c2

2 + c4

24 − . . . The law of cosines then becomes

1− c2

2
≈ cos c = cosa · cos b ≈ (1− a2

2
)(1 − b2

2
) ≈ 1− a2

2
− b2

2
(5.24)

which, on subtracting 1 from both sides and multiplying by −2, reduces to
Pythagoras’ theorem.

Formulas for the angles. Consider now the plane triangle A′BC ′. We find
here the following three relations (and analogous ones by exchanging a ↔ b,
α↔ β):

sinβ =
tan b

cos a · tan c

(5.23)
=

sin b

sin c

c
α

ba

β
c
α

ba

β
sinα =

sin a

sin c

(5.25)
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cosβ =
tan a

tan c

c
α

ba

β
c
α

ba

β
cosα =

tan b

tan c
(5.26)

and

tan β =
tan b

cos a · tan a
=

tan b

sin a

c
α

ba

β
c
α

ba

β
tanα =

tan a

sin b
.

(5.27)
Dividing a formula on one side of (5.26) by that on the other side of (5.25)
gives

cosβ

sinα
=

tan a · sin c
tan c · sina

(5.23)
= cos b

c
α

ba

β
c
α

ba

β cosα

sinβ
= cos a .

(5.28)
Inserting the last expressions into (5.23) then yields

cos c =
1

tanα · tan β
.

c
α

ba

β
(5.29)

Finally, we have a nice harvest — without too much calculational effort. In
order to memorise this long list, clever rules have been devised (e.g. Napier’s
rules). Instead, we suggest that you memorise the proof rather than the par-
ticular formulas.

Example 1. The shortest day in Wroc law. Hugo Steinhaus (1887–1972),
one of Poland’s most distinguished mathematicians, felt that “a few years
after the [second world] war the inadequacy of mathematical education in our
high schools became evident (...) and a closer collaboration between math-
ematicians and school teachers could no longer be postponed”. In order to
“stimulate interest in mathematics”, Steinhaus published the booklet Stein-
haus (1958). Problem number 76 asks for the length of the shortest day in
Wroc law, Steinhaus’ hometown, situated at the latitude ϕ = 51◦07′. On the
shortest day (tropic of Capricorn), the sun is at the latitude δ = −23◦27′. We
are asked to find the length of this day.

to Sun
β β

O

A

B
C

N

a

b

Fig. 5.17. Shortest day in Wroc law
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Solution. On the 21st of December, the limit between shadow and light is
formed by a great circle making a constant angle of β = 90◦−δ = 66◦33′ with
the Equator and rotating from east to west. This circle crosses the intersection
of the “meridian of Wroc law” with the Equator (the point C in Fig. 5.17 (a))
at precisely 6 a.m. “local Wroc law time”. The circle then moves on along the
Equator through a certain angle a, until its intersection with the meridian of
Wroc law reaches the point A at latitude b = ϕ. We have to solve a right-angled
triangle with known β, b and unknown a. The solution is given by (5.27) and
yields

sin a =
tan b

tanβ
=

tan 51◦07′

tan 66◦33′ = 0.5379034896 ⇒ a = 32.541034◦ . (5.30)

For the corresponding quantity measured in hours we divide this value by
360
24 = 15 and obtain 2.169402268 = 2h 10min 10sec, so that sunrise occurs

at 8h 10min 10sec. The same amount of time is lost in the evening, so that
7h 39min 40sec remain for the the total length of the day. Needless to say
that this wonderfully precise value does not take into account that the data
for ϕ and δ are not so precise, that the sun is not a perfect point, that the
earth is not a perfect sphere and that the light is refracted.

Example 2. Platonic solids. Following in Euler’s footprints (1781), we now
want to use the above formulas to discover some secrets of the Platonic solids.

Problem. Under which angle do adjacent faces of a Platonic solid meet?

Solution. Let the solid be composed of regular k-gons, of which ℓ meet at
each vertex. One places the centre of a small sphere at one vertex of the solid
(Fig. 5.18 (a) illustrates this idea for the octahedron). The edges then cross
this sphere perpendicularly and the faces create a regular ℓ-gon, which we cut
into 2ℓ right spherical triangles such as EAN in this figure. Since 2ℓα = 360◦,
we have α = 180◦

ℓ . The sides 2a of this ℓ-gon are equal to the angles formed

by regular plane k-gons, i.e. 180◦ · k−2
k . Thus we have for each Platonic solid

αα

β
β

O

A
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C

D

E

N

a

60◦

60◦(a)
αα

β
β

O

A

B
C

D
E

N

M
J

a
a

c

(b)

Fig. 5.18. Angles between adjacent faces of an octahedron (a); angles of the edges
of a cube seen from the centre (b)
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the values of α and a, while the angle 2β is the required answer. A discreet
glance at our forget-me-nots above shows that we must use the formula on
the right of (5.28), i.e.

sinβ =
cosα

cos a
, (5.31)

which allows the calculations of β and 2β. The results are:

solid k ℓ α a 2β

tetrahedron 3 3 60◦ 30◦ 70◦31′43′′36′′′20′′′′35′′′′′

cube 4 3 60◦ 45◦ 90◦00′00′′00′′′00′′′′00′′′′′

octahedron 3 4 45◦ 30◦ 109◦28′16′′23′′′39′′′′25′′′′′

dodecahedron 5 3 60◦ 54◦ 116◦33′54′′11′′′03′′′′15′′′′′

icosahedron 3 5 36◦ 30◦ 138◦11′22′′51′′′58′′′′57′′′′′

(5.32)

Euler computed the division in (5.31) with logarithms and obtained the values
of β with correct degrees, minutes and seconds, to which we proudly add the
terces, quartes and quintes. The result of 90◦ for the cube (“scilicet hic angulus
ipse est rectus”) is no surprise.

Problem. Under which angle do the edges of a Platonic solid appear when seen
from the centre?

Solution. Let again the solid be composed of regular k-gons, with ℓ at each
vertex. Projecting these k-gons from the centre onto the circumscribed sphere
produces spherical k-gons (see Fig. 5.18 (b) for the example of the cube). We
decompose these k-gons into 2k right spherical triangles such as NEA in this
figure. This time we know the angles α = π

k and β = π
ℓ , while the arc a is

requested (because 2a is the answer of our problem). We obtain a directly from
the formula on the right of (5.28). This angle also allows one to compute the
radius R of the circumscribed sphere of the Platonic solid. If we normalise the
edges to 1, the required value is just the chord of 2a, since we have 1 = 2R sin a.
The results are:

solid k ℓ 2a R ρ/R

tetrahedron 3 3 109◦28′16′′24′′′ 0.612372436 0.333333333
cube 4 3 70◦31′43′′36′′′ 0.866025404 0.577350269

octahedron 3 4 90◦00′00′′00′′′ 0.707106781 0.577350269
dodecahedron 5 3 41◦48′37′′08′′′ 1.401258538 0.794654472
icosahedron 3 5 63◦26′05′′49′′′ 0.951056516 0.794654472

(5.33)

For most of these results, we don’t really need spherical trigonometry. We

have from Pythagoras that R =
√
6
4 for the tetrahedron, R =

√
2
2 for the

octahedron and R =
√
3
2

for the cube. We also know from Eucl. XIII.17 (see

Fig. 2.37) that R = Φ
√
3

2 for the dodecahedron. This serves as a control for
our formulas.

Problem. Find the radius of the inscribed spheres of the Platonic solids.
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Solution. The inscribed spheres touch a face of the solid in its midpoint. For
example the plane through ABCD in Fig. 5.18 (b) is touched in the orthogonal
projection of A onto ON . Hence ρ = R ·cos c, where c is the arc AN . Inserting
formula (5.29) we obtain

ρ =
R

tanα · tanβ
(5.34)

which leads to the last column in the table of (5.33). The symmetry of this
formula shows that the dual solids cube and octahedron as well as icosahedron
and dodecahedron have the same radius for the inscribed sphere.

Kepler’s first cosmological model. From the similitude of the ratios in the above
table with the ratios of the semi-major axes of the planet’s orbits known at
that time

aJupiter/aSaturn = 0.545 aMars/aJupiter = 0.293

aEarth/aMars = 0.657 aVenus/aEarth = 0.723

aMercury/aVenus = 0.536

Kepler was convinced (Mysterium cosmographicum 1596) that the Creator
of the best of all Universes wanted his planets to move on inscribed and
superscribed spheres of Platonic solids (see Fig. 5.19). Throughout his live,
Kepler considered this to be the greatest of all his discoveries.

Fig. 5.19. Kepler’s cosmological model
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5.7 The Spherical Trigonometry of General Triangles

In the case of arbitrary triangles we can proceed in two ways: either we divide
the spherical triangle ABC into two right-angled spherical triangles and apply,
as in Sect. 5.3, the above formulas for right-angled triangles. This will be
done in Exercise 16 below. Euler’s original proof, however, leads directly to
the general cosine and sine rules and to many additional results. It uses a
decomposition of the projected planar triangle. We now follow precisely this
proof of Euler (1782), full of admiration for this 74-year-old man and what he
“saw” in the dark night of total blindness.

γ

α

c

b

b
a

1

1

cos b

1

cos a

tan b

tan aO

C

B

A

A′

B′

P

Q

Fig. 5.20. Euler’s proof for the general spherical triangle

Idea. We project the spherical triangle ABC from the centre O onto the
tangent plane at one of the vertices, which we choose to be C. In this way we
obtain a planar triangle A′B′C which again has the angle γ at C, see Fig. 5.20.
Then, as in Sect. 5.3, we let P be the orthogonal projection of B′ onto the
plane OAC. This yields the right-angled planar triangle CPB′. Finally, we
let Q be the orthogonal projection of P onto the line OA. This produces the
right-angled planar triangles OQB′ and B′PQ, where the angle α is preserved,
because OA is orthogonal to the plane B′PQ. Furthermore, the angle A′PQ
is equal to b (angle orthogonal to the angle b at the centre). Now we are in
the position to compute the required distances in Fig. 5.20. The results are
collected in Table 5.1.

The law of cosines. We see from Fig. 5.20 that OA′ − QA′ = OQ. By in-
serting the values of Table 5.1, we obtain after simplification our first formula,

cos c = cos b cosa+ sin b sina cos γ or cos γ =
cos c− cos b cos a

sin b sina
, (5.35)

the law of cosines for arbitrary spherical triangles. For another proof, see
Exercise 16 below.
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Table 5.1. Lengths of the edges of the triangles in Fig. 5.20

length justification

OC = 1 by definition

OA′ =
1

cos b
OC = OA′ · cos b

CA′ = tan b CA′ = OC · tan b

OB′ =
1

cos a
OC = OB′ · cos a

CB′ = tan a CB′ = OC · tan a

CP = tan a cos γ CP = CB′ · cos γ

B′P = tan a sin γ B′P = CB′ · sin γ

B′Q =
sin c

cos a
B′Q = OB′ · sin c

OQ =
cos c

cos a
OQ = OB′ · cos c

PA′ = tan b− tan a cos γ PA′ = CA′ − CP

PQ = sin b− tan a cos b cos γ PQ = PA′ · cos b

QA′ =
sin2 b

cos b
− tan a sin b cos γ QA′ = PA′ · sin b

Remark. As in (5.24), if a, b, c become small, the above cosine theorem tends
to the planar cosine rule (5.10).

The law of sines. We next compute sinα from the right-angled triangle
B′PQ and obtain with the values of Table 5.1

sinα =
B′P

B′Q
=

sin a sin γ

sin c
⇒ sinα

sin a
=

sinβ

sin b
=

sin γ

sin c
, (5.36)

the law of sines for arbitrary spherical triangles. These identities were already
discovered by Abū’l-Wafā’ Būz̄an̄ı in the 10th century.

Cotangent theorems. We finally compute cosα = PQ
B′Q and obtain with the

values of Table 5.1

cosα =
cos a sin b− sin a cos b cosγ

sin c
. (5.37)

If this is divided by sinα = sin γ sin a
sin c

(see (5.36)), we obtain a first interesting
formula,

cotα =
cos a sin b− sin a cos b cosγ

sin a sin γ
. (5.38)

This is used to compute the remaining angles in the SAS-case.
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Incessantly, Euler continued to transform the formulas in all possible man-
ners: we write (5.37) in the form

cosα sin c = cosa sin b− sina cos b cos γ

and multiply the three terms by sin γ
sin c , sinβ

sin b , sinα
sin a respectively; this leads to an

“aequatio memorabilis”, which, after division by sinβ and the permutations
b↔ c , β ↔ γ becomes

cos a =
cosα sinβ + sinα cosβ cos c

sin γ
, (5.39)

a formula curiously similar to (5.37). We finally divide, as above, by sina =
sinα sin c

sin γ
and obtain the formula

cot a =
cosα sinβ + sinα cosβ cos c

sinα sin c
, (5.40)

analogous to (5.38). This formula is useful in the ASA-case to compute the
remaining sides “ex datis duobus angulis α, β cum latere intercepto c”.

ab

c

α

180◦−α
BA

C

Bp

Ap

Cp

Fig. 5.21. Formation of the polar triangle; in order to make the values of the
opposite angles more visible, the projection point is chosen vertically above the
point A

Duality. After another half page of calculations, Euler finally managed to
master the “casus alias difficillimus”, to calculate a side from “datis tribus
angulis”. The result is

cos γ = − cosβ cosα+ sin β sinα cos c or cos c =
cos γ + cosβ cosα

sinβ sinα
.

(5.41)
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All this beautiful duality between (5.35) and (5.41), between (5.37) and (5.39),
between (5.38) and (5.40), calls for an elegant explanation. The explanation
is the following THEOREMA: if a spherical triangle ABC with sides a, b, c
and angles α, β, γ is replaced by the triangle with vertices Ap, Bp, Cp, which
are the poles of the great circles on which the sides a, b, c lie,8 then the roles of
the angles and of the sides are interchanged and become the opposite angles

αp = 180◦ − a, βp = 180◦ − b, γp = 180◦ − c,
ap = 180◦ − α, bp = 180◦ − β, cp = 180◦ − γ,

see Fig. 5.21. Replacing the angles by the opposite angles changes the signs of
the cosines, but not those of the sines. This explains the sign changes in the
above dual formulas.

Example 1. Cardan joint. We are interested in solving the following prob-
lem: Find the relation between the rotation angles of the shafts (which we call
a and b) of a Cardan joint, when the bend angle γ is given (see Fig. 5.22, left).

γ

N

O

A

BA′

B′

a

b+90◦

90◦

Fig. 5.22. A high-tech Cardan joint (left), and its spherical triangle (right)

Solution. We place a sphere at the centre of the joint. Then the endpoints
of the cross shaft, say A and its opposite A′, as well as B and its opposite
B′, rotate on two great circles which intersect at an angle γ. The cross shaft
always keeps AA′ and BB′ at right angles to each other. We express the
required rotation angles by prescribing the angles at A and B with the North
Pole N to be respectively a and b + 90◦ (see Fig. 5.22, right). This produces
a spherical triangle BNA to which we apply the law of cosines (5.35), and
require that cos c = cos 90◦ = 0. This gives

0 = cos(90◦+b) cosa+sin(90◦+b) sina cos γ or tan b = cos γ ·tan a , (5.42)

8“... formari ex Polis trium laterum ...”; there are always two poles to choose
from, we respect the orientation and choose the one which points outside the triangle.
The triangle ApBpCp is called the polar triangle of ABC.
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which is the desired relation. We see that the more the bend angle γ differs
from zero, the smaller cos γ becomes, the more the angle b deviates from a,
and the more the joint suffers from jerky rotation.

Example 2. The spherical distance of two points. The admirers of
Goscinny are familiar with “the most prestigious cities in the universe”, Rome
(Asterix and the Laurel Wreath, p. 1) and Lutetia (p. 2); the admirers of
Ptolemy can find in his Geographia the following longitudes and latitudes:
362

3

◦
, 41 2

3

◦
for the one, and 23 1

2

◦
, 481

2

◦
(see Fig. 5.12) for the other. He estab-

lished his zero meridian at the Fortunate Islands (now roughly the Canaries),
the western-most point of the world known to him, see Brown (1949, p. 75);
the admirers of Eratosthenes know that the radius of the Earth is about 6360
km. We want to calculate the shortest distance (measured along the corre-
sponding great circle) between these two famous cities.

γ
N

O

L

R

a b

c

Solution. The idea is to make the great cir-
cle LR a side of the spherical triangle LNR
where N is the North Pole (see figure).
Thus, one knows a = 90 − 48 1

2
= 41.5◦

and b = 90 − 41 2
3

= 48.33◦. The angle
γ is the difference of the longitudes γ =
362

3
− 23 1

2
= 13.17◦. Hence, the third side

can be calculated by the cosine rule (5.35).
One obtains cos c = 0.979885, c = 11.5◦,
and finally d = 1275.8 km. Note, however,
that the error of one third of a degree in latitude corresponds to 37 km on
the meridian. One should therefore not put too much faith in the precision
obtained.
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O
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Fig. 5.23. A sundial for Geneva

Example 3. Sundials. Good bye, Wroc law, welcome Geneva at the latitude
ϕ = 46◦12′. We want to create a sundial on a wall, whose normal deviates from
the south in direction of the east by an angle of σ = 30◦45′. The sundial should
measure the apparent solar time, without any of the corrections required by
modern life (compensation for the nonuniform Kepler motion, time zones).
We plant at a point O on the wall a gnomon OA parallel to the Earth’s axis
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(see Fig. 5.23, left). The sun, together with its shadow, rotates around this
gnomon OA at the constant angular speed of 15◦ per hour. At noon, the sun
is precisely in the south and the shadow is in the vertical position OB. We
want to determine the position of the shadow, i.e. the angle a, at any other
time h.

Solution. We imagine half of a sphere of radius 1 fastened to the wall, with its
centre at O. The point A of the gnomon makes an arc of c = 90◦−ϕ = 43◦48′

with B on the wall. The great circle AB makes an angle of β = 90◦ + σ =
120◦45′ with the wall (see again Fig. 5.23, left). The great circle AC represents
the shadow of the gnomon; the angle α = 0 at noon and increases by 15◦ every
hour, hence we have α = (h− 12) · 15◦. ABC is a spherical triangle with one
side c and two adjacent angles α and β known. We are clearly in the ASA-
case, and formula (5.40) can readily be applied to obtain the required side a.
Rewritten for the above data this formula becomes

cota =
cosα cosσ − sinα sinσ sinϕ

sinα cosϕ
. (5.43)

This formula gives for the above sundial the values

VII VIII IX X XI XII I II III IV

− 49◦7′ −38◦40′ −29◦24′ −20◦26′ −10◦57′ 0◦0′ 13◦42′ 31◦44′ 54◦41′ 79◦35′

(see Fig. 5.23, right). Alsatian painters, of course, make sundials much more
poetically (see Fig. 5.24).

Fig. 5.24. A sundial at Bergheim, Alsace; photo by J.P. Kauthen
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Fig. 5.25. Area of the sphere (left) and of a spherical triangle (Girard, right)

5.8 The Area of a Spherical Triangle

The following theorem is due to Archimedes (On the sphere and cylinder I ,
Props. 25 and 30).

Theorem 5.5. The area of a sphere is four times that of its great circle, i.e.

A = 4R2π , where R is the radius of the sphere. (5.44)

We will prove, in fact, the following extension of this theorem.

Theorem 5.6 (Lambert 1772). The cylindrical projection, which projects
points of the sphere horizontally from the axis onto the circumscribed cylinder
(see Fig. 5.25, left) is area preserving. In particular, the area of a sector cut
from a sphere by two great circles under the angle α (measured in radians) is

AS = 2R2α . (5.45)

Proof. We consider the two pictures on the left of Fig. 5.25. By Thales, we
have rH = Rh. This implies that the two grey ribbons in the upper picture
have the same area. Thus the sphere has the same area (slice by slice and
piece by piece) as the circumscribing cylinder.

Theorem 5.7 (A. Girard 1626, see also Euler (E514, 1781), Opera 26, p. 205).
The area of a spherical triangle with angles α, β and γ (measured in radians)
is

T = R2 · (α + β + γ − π) . (5.46)
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r/e

r

x

ϕu
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ae

p

p/e

a

a/e

F

P

P ′

O

B

Fig. 5.26. A point P on an ellipse, F the focus (Sun), ϕ the true anomaly, u the
eccentric anomaly, a the semi-major axis, and e the eccentricity (left); illustration
from Newton’s Principia (right)

Proof. The three great circles obtained by producing the three sides of the
triangle divide the surface of the sphere into eight spherical triangles: T , Ta,
Tb, Tc and four antipodal triangles having the same respective areas, see the
picture on the right in Fig. 5.25. By (5.44), their areas satisfy

T + Ta + Tb + Tc = 2π ·R2 . (5.47)

But T ∪Ta, T ∪Tb and T ∪Tc are sectors with angles α, β and γ, respectively.
Hence, by (5.45)

T + Ta = 2α ·R2 , T + Tb = 2β ·R2 , T + Tc = 2γ ·R2 .

Adding the three identities and subtracting (5.47) gives the desired result.

5.9 Trigonometric Formulas for the Conics

The trigonometric functions allow one to derive distance and area formulas
for the conics, which will soon be very important.

Distances from the focus. Given a point P on an ellipse (see Fig. 5.26),
we want to derive formulas for its distance PF to a focus F . We denote this
distance by r. Astronomers call the angle ϕ the true anomaly and the angle
u, after embedding the ellipse in the circle of radius a, the eccentric anomaly.9

We then have the formulas

r =
p

1 + e cosϕ
(formula for the true anomaly),

r = a− ex = a− ae cosu (formula for the eccentric anomaly).
(5.48)

9To readers, who are surprised to see the angle at the centre of the ellipse called
eccentric (“away from the centre”), we recall that the real centre of the solar system
is the Sun, i.e. the focus.
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Proof. The distance BF is equal to a by (3.5). The lengths r/e, p/e and a/e
are determined by our first definition of the ellipse (see Fig. 3.4). Then we see
in Fig. 5.26 the relations r cosϕ+ r

e = p
e and a cosu+ r

e = a
e . These equations,

when solved for r, lead to the formulas (5.48).

0 0

A
u ϕ

aF

B

x

b

P

r
B

T
u

a

a
Pc

a sinu

ae

Fig. 5.27. Computation of the area A swept out by the radius vector

Formula for the area. The area A swept out by the line joining F and P
(see Fig. 5.27, left) plays an important role in astronomy, as we will soon see.
We stretch the ellipse into a circle (see Fig. 5.27, right) to get B = a

b
A. Since

B is the difference of a circular sector (of area a2

2 · u) and a triangle (whose
area T we get from Eucl. I.41 and from the fact that OF is equal to ae),10 we
obtain

B =
a2

2
(u− e sinu) and A =

ab

2
(u− e sinu) . (5.49)

5.10 The Great Discoveries of Kepler and Newton

“Astronomy is older than physics. In fact, it got physics started
by showing the beautiful simplicity of the motion of the stars and
planets, the understanding of which was the beginning of physics.”

(R. Feynman, 1964, Chap. 3.4)

“ ... i libri di Apollonio, ... delle quali sole siamo bisogni nel pre-
sente trattato. [The books of Apollonius, the only ones which we
require in the present treatise.]”

(Galilei 1638, giornata quarta)

Three great works marked the emergence of modern science (see the first quo-
tation): Kepler’s Astronomia Nova (1609), Galilei’s Discorsi (1638) and New-
ton’s Principia (1687). The discoveries of all three works were based mainly
on tools from elementary geometry (Thales, Euclid and Apollonius, see the
second quotation), however in a highly ingenious way. So they fit well into our
book, but don’t expect easy bedtime reading here.

10This can be seen either from a2− b2 = a2e2 (see (3.8)) and Pythagoras, or from
the second formula in (5.48) with u = 0.
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Kepler’s laws.
“... itaque futilum fuisse meum de Marte triumphum; forte fortuito
incido in secantem anguli 5◦.18′. quæ est mensura æquationis Op-
ticæ maximæ. Quem cum viderem esse 100429, hic quasi e somno
expergefactus, & novam lucem intuitus ... [When my triumph over
Mars appeared to be futile, I fell by chance on the observation that
the secant of the angle 5◦18′ is 1.00429, which was the error of the
measure of the maximal point. I awoke as if from sleep, & a new
light broke on me.]” (J. Kepler 1609, Cap. LVI, p. 267)

Before Kepler, the knowledge in astronomy was, after thousands of years of
measurements and calculations (by the Babylonian priests, Greek philoso-
phers, Ptolemy, Copernicus’ De revolutionibus and Tycho Brahe) as follows:
The planets move around the Sun on eccentric circles, i.e. the Sun is not pre-
cisely at the centre of these circles. This model was quite compatible with the
innumerable measurements made with unequalled precision by Tycho Brahe
for all the planets known at that time, with the exception of the planet Mars.

After years of “pertinaci studio elaborata Pragæ”, Kepler finally discovered
the following laws (the first two in Kepler 1609, the last one in Kepler 1619):

Kepler 1. Planets move on elliptic orbits with the Sun at one of the foci.

Kepler 2. The planets orbiting the Sun sweep out equal areas in equal time.

Kepler 3. The squares of the periods of revolution are proportional to the
cubes of the semi-major axes.

1.00429

1

1

5◦18′

u

S

B
R

O

P

C

P ′

B′

Fig. 5.28. The discovery of Kepler’s first law (Astronomia Nova, Chap. 56); Kepler’s
drawing (left), modern drawing (right).

Kepler’s calculations and meditations, which led to the discovery of his laws,
fill hundreds of pages in his Astronomia Nova (1609). The decisive break-



5.10 The Great Discoveries of Kepler and Newton 143

through occurs in Chap. 56 11 and is explained in Fig. 5.28: The best possible
circle for the orbit of Mars, which we take of radius 1, would have an eccen-
tricity e = OS such that the angle SBO is 5◦18′, where B is the point with
the greatest distance from the axis SOC. But the true distance BS for Mars
measured by Brahe was smaller by a factor 1/1.00429 than the distance BS
for the point on that circle. Luckily, Kepler remarked that this value is pre-
cisely cos 5◦18′ and “a new light broke on him” (see the quotation): we should
move the point B to the point B′, whose distance B′S is the same as that of
BO; in other words, we have to replace the hypotenuse (which is BS) by the
leg (BO). Kepler tried the same recipe at other points: move the point P to
the position P ′, such that the length P ′S is equal to that of the leg PR. This
becomes

P ′S = PR = 1 + e cosu , (5.50)

because the angle u, called the eccentric anomaly, reappears as angle SOR,
so that OR = e cosu. These distances (5.50), which “are confirmed by very
numerous and very sure measurements” (end of Chap. 56), are precisely those
of the second formula of (5.48) and thus the points describe an ellipse.

Newton’s proof of Kepler 2. Once Kepler’s laws were discovered, one
wanted to understand them in the light of the foundations of mechanics,
which Galilei (1638, Giornata terza) had laid down and which Newton had
turned into the following two crystal clear laws:

Lex 1. Without force a body remains in uniform motion on a straight line.

Lex 2. The change of motion is proportional to the motive force impressed.

S

A

B

c

C

V

Fig. 5.29. Newton’s proof for Kepler 2; reproduction from Newton’s Principia (left);
the triangles ABS, BcS and BCS having the same area (right)

11For more details on the first parts of the book, which culminate in the discovery
of Kepler 2 (Chap. 40), we refer to Wilson (1968), Thorvaldsen (2010) and Wanner
(2010).
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Theorem 5.8 (Theorem 1 of the Principia, Engl. transl. 1729). “The areas,
which revolving bodies describe by radii drawn to an immoveable centre of
force, do lie in the same immoveable planes, and are proportional to the times
in which they are described.”

Proof. We imagine a celestial body moving on an orbit ABCDE . . . under the
influence of a force f acting from the Sun (see Fig. 5.29). The crucial idea is to
let it advance for a certain time interval ∆t without force from A to B (under
Lex 1 uniformly on a straight line) and to compensate the missing force by
one giant kick with force

f ·∆t (5.51)

at the point B. Without this kick, the body would continue during the second
time step ∆t in uniform motion to the point c. The two triangles ABS and
BcS, having the same base and the same altitude, have the same area by
Eucl. I.41. Now the kick at B is in direction of the Sun, hence the velocity
vector AB is transformed into a velocity AV such that BV S are aligned (by
Lex 2). As a consequence, the movement for the second time interval leads
from B to C in such a way that cC is parallel to BS. We conclude, again by
Eucl. I.41, that the triangles BcS and BCS also have the same area.

Continuing in the same way, we find that all triangles ABS, BCS, CDS,
etc., which correspond to equal time steps ∆t, have equal areas. Thus Kepler’s
second law is proved, at least for discrete force impulses. For the case that
we “now let the numbers of those triangles be augmented, and their breadth
diminished in infinitum”, Newton had prepared a “cor. 4. lem. 3.” to conclude
that the law will also be true in the case of a force acting “continually”.12

This “Theorema 1” of the Principia did away with the first 40 chapters of
Kepler’s Astronomia Nova and its proof, more than 300 years later, has lost
none of its beauty and elegance.

The discovery of the law of gravitation from Kepler 1 & 2

“And it is the glory of Geometry that from those few principles,
fetched from without, it is able to produce so many things.”
(I. Newton, from the Preface of the Principia, Engl. transl. 1729)

“... one of the most dramatic moments of the real beginnings was
when Newton suddenly understood so much from so little ...”

(R. Feynman, lecture of March 13, 1964)

Theorem 5.9 (Prop. 11 of Newton’s Principia). A body P , orbiting according
to Kepler 1 and 2,13 moves under the effect of a centripetal force, directed to
the centre S, satisfying the law

12Today we would interpret the above procedure as a numerical method for differ-
ential equations (more precisely, the symplectic Euler method, cf. e.g. Hairer, Lubich
and Wanner, 2006, p. 3), and rely on convergence results for such methods. The
same argumentation applies to all subsequent proofs of this chapter.

13Not the original wording; Newton did not mention Kepler in the Principia.
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f =
Const

r2
, where r is the distance SP. (5.52)

For the proof, we first establish a relation between the physical force and a
geometrical quantity. For this we look at Newton’s drawing in his manuscript
from 1684 reproduced in Fig. 5.30, left: We imagine a body moving with initial
velocity in direction AB attracted by a centre of force situated far away in
direction AC. This force will deviate the body during a certain time interval
∆t to a curved orbit AD. If there were no initial velocity, the body would
move to C, so that ACDB would be a parallelogram. But the distance AC,
for a fixed time interval ∆t, is proportional to the force (Lex 2). We conclude
that

the acting force is proportional to the distance BD
between the point on the tangent and the point on the orbit.

(5.53)

For this distance, denoted by RQ in the sequel, Newton discovered a nice
property:

Fig. 5.30. Reproductions from Newton’s autograph (1684), manuscript Cambridge
Univ. Lib. Add. 39656; the force acting on a moving body (left); picture for New-
ton’s lemma (right). Reproduced by kind permission of the Syndics of Cambridge
University Library

Newton’s lemma. Let APQ be an ellipse with focus S and suppose P to be
the position of the planet moving towards Q, while the point R moves on the
tangent with S,Q,R collinear. Let T be the orthogonal projection of Q onto
PS (see Fig. 5.30, right). Then, if the distance PQ tends to zero, we have

RQ ≈ Const ·QT 2 , (5.54)

where the constant is independent of the position of P on the ellipse.

Proof. The proof is displayed in Fig. 5.31. We begin by collecting what we
know from Apollonius (see Chap. 3): we know that the tangent PR is parallel
to the diameter DCK, conjugate to GCP (Apoll. II.6). We denote the lengths
of these diameters by 2d and 2c respectively. Through H, the other focus, and
Q we draw parallels to DK which yield the points I and X on SP and V on
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CP .14 We further know that the normal PF of length h is the angle bisector
of SPH (Apoll. III.48), i.e. the triangle IPH is isosceles, hence IP = PH
(Eucl. I.6). We next have SE = EI by Thales since SC = CH (Apoll. III.45).
Therefore, since SE+EI + IP +PH = 2a (Apoll. III.52), we obtain our first
interesting result,

EP = EI + IP = a . (5.55)

The key idea of the proof is now the following one: if our ellipse were a circle,
we would know by Eucl. III.35 (or Eucl. II.14) that GV · V P = QV 2. But in
the case of the ellipse, we have to divide these values by the lengths of the
corresponding conjugate diameters and obtain

GV · V P
c2

=
QV 2

d2
i.e. (3) : V P =

c2

GV
· QV

2

d2
.

To complete the proof, we have to express V P in terms of RQ and QV in
terms of QT . Note that the triangle XV P is similar to ECP and QTX is
similar to PFE (orthogonal angles), whence by (5.55)

(2) : XP = V P · a
c
, (6) : QX = QT · a

h
.

In order to make more progress, we now leave the path of exemplary Greek
rigour and suppose PQ very (infinitely) small, i.e. we identify

(1) : RQ ≈ XP , (4) : GV ≈ GP = 2c , (5) : QV ≈ QX .

A simple calculation now gives by using, in this order, (1), (2), (3), (4), (5),
(6),

a

b a
c
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h

d

d
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zoom

Fig. 5.31. Newton’s proof of his lemma

14All upper case letters of this proof are the original ones of Newton, but not the
lower case letters a, b, c, d and h, which we use to simplify the formulas.
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RQ ≈ a3

2h2d2
·QT 2 .

From Apoll. VII.31 (Exercise 2 on page 73) we finally have hd = ab (14 area
of the circumscribed parallelogram), which turns the above formula into

RQ ≈ a

2b2
·QT 2 (5.56)

where, as stated, the constant15 is independent of the position of P .

Proof of Theorem 5.9. The main theorem is finally obtained by combining the
above three results:

(a) The force f is proportional to RQ (equation (5.53));

(b)RQ is proportional to QT 2 (Newton’s lemma (5.54));

(c) QT is inversely proportional to SP , because QT ·SP
2

(the area of the triangle
SPQ) is constant (∆t fixed, Kepler 2);

hence f is inversely proportional to SP 2.

R. Feynman and the reciprocal problem

“Pour voir présentement que cette courbe ABC . . . est toûjours
une Section Conique, ainsi que Mr. Newton l’a supposé, pag. 55.
Coroll. I. sans le démontrer; il y faut bien plus d’adresse. [To
see now that this curve ABC . . . is always a conic section, as
Mr. Newton has assumed without proof on p. 55, Coroll. I, requires
considerably more ability.]” (Joh. Bernoulli, 1710)

“... no calculus required, no differential equations, no conservation
laws, no dynamics, no angular momentum, no constants of inte-
gration. This is Feynman at his best: reducing something seem-
ingly big, complicated, and difficult to something small, simple,
and easy.” (B. Beckman, 2006)

The reciprocal result, that a body orbiting under the influence of a central
force obeying the inverse-square law always follows an elliptic, parabolic or
hyperbolic arc, was much harder to prove. Joh. Bernoulli, who gave a proof for
the problem in 1710 using differential calculus, stated proudly that answering
this question “requires considerably more ability” (see the quotation). A ge-
ometric explanation, as elegant as the proofs above, had to wait for another
three centuries and was presented by R. Feynman in his lecture of March 13,
1964 at Caltech (see Feynman, Goodstein and Goodstein 1996, also Beckman
2006).16

15Newton remarked that this constant is the reciprocal of the latus rectum.
16The authors are grateful to Christian Aebi and Bernard Gisin, Geneva, for

valuable references to the literature.
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⇒ areas of triangles prop. to r2

(Eucl. I.41);

⇒ ∆t prop. to r2 (Kepler 2);

centripetal force prop. to 1

r2

(hypothesis);

⇒ force impulses const. length;
(see (5.51))

directions of force impulses
vary regularly by constant ∆ϕ;

⇒ hodograph regular n-gon.

Fig. 5.32. Feynman’s variant with equal angles instead of equal time steps

Equal angles instead of equal time steps. We suppose that we have
a force acting according to the inverse-square law. As we observed in (5.51)
and (5.52), the force impulses, for constant time steps, decrease like 1

r2 with
increasing r. We now choose equal angles at the Sun. By Eucl. VI.19, the areas
of the triangles SPiPi+1 are proportional to r2. Therefore, by Kepler 2, the
time steps ∆t (which multiply the force) are proportional to r2 as well and

the force impulses will all have the same length.
Moreover, their directions form a regular star.

(5.57)

The situation is summarised in Fig. 5.32.

The hodograph. We now draw the velocities as points in a space with origin
O (see Fig. 5.33, left). The velocity Ṗ0 at the perihelion P0 is fastest and
directed upwards. Then the impulses f push the velocities Ṗ1, Ṗ2, . . . first to
the left, then downwards, until at the aphelion (here P9) the velocity is slowest
and directed exactly downwards. All impulses f have, by (5.57), constant
length and their directions increase regularly by the same amount ∆ϕ. We
therefore get a regular n-gon and, for ∆ϕ→ 0, we obtain the surprising result:

The velocity Ṗ of a planet orbiting under the effect of
a central force inversely proportional to r2 describes a circle.

(5.58)

The centre C of the circle is not at the origin O, except for circular motion
with constant speed. If the origin O were on or outside the circle, we would
have parabolic or hyperbolic motion.

It is interesting that such an elegant result escaped the attention of Eu-
ler, Lagrange and Laplace. Only in the work of Hamilton did the velocities
(momenta) acquire the same importance as the positions.

Conclusion. Now comes the most difficult step (Feynman: “I took a long
time to find that”). We have to find a connection between the orbit in Fig. 5.32
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Ṗ1

f

Ṗ2
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Fig. 5.33. The hodograph of Kepler motion, producing a circle (left); synthesis of
the two pictures (right)

and the hodograph in Fig. 5.33. After some time for thought, we draw in the
second picture the curve of points P having the same distance from O as
from the circle and obtain Fig. 5.33 (right). We know from Chap. 3 (see in
particular Fig. 12.8 (b)) that this curve is an ellipse with O and C as foci. We

denote by P̃i the points of this ellipse situated on the rays CṖi. These points
are located under the same angles with respect to C as are the corresponding
points Pi with respect to S in Figure 5.32.

We next consider Fig. 3.4 (right): the tangent at P is orthogonal to FB (in
the notation of that figure). Applied to Fig. 5.33, this means that the tangent

at P̃i to the ellipse is orthogonal to OṖi. On the other hand, the tangent at
Pi to the orbit in Fig. 5.32 (left) is parallel to OṖi. We conclude that the two
ovals are identical, just rotated by 90◦ and, perhaps, scaled differently. Since
we know that the “oval” in Fig. 5.33 is an ellipse, with C as focus, we have
that the orbit in Fig. 5.32 is also an ellipse with S as focus.

This was “Feynman at his unique best” (see the quotation); later D.L. and
J.R. Goodstein discovered that precisely the same proof had been published
in 1877 by another great physicist, James Clerk Maxwell.

“It is not easy to use the geometric method to discover things,
it is very difficult, but the elegance of the demonstrations after
the discoveries are made, is really very great. The power of the
analytic method is that it is much easier to discover and to prove
things, but not in any degree of elegance. There is a lot of dirty
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paper with x-es and y-s and crossed out cancellations and so on ...
(laughter).”

(R. Feynman, lecture of March 13, 1964, 35th minute)

This “dirty paper with x-es and y-s” leads us to the next chapters ...

5.11 Exercises

1. Prove, for the circular quadrilateral with sides a, b, c, d of Ptolemy’s
Lemma 5.1 and Fig. 5.4, the formulas

δ1 : δ2 = (ab+ cd) : (ad+ bc) , δ21 = (ac+ bd)(ab+ cd) : (ad+ bc) (5.59)

which can be found in Förstemann (1835).

2. Multiply the values of cosα for α = 0, π6 ,
2π
6 ,

3π
6 ,

4π
6 ,

5π
6 ,

6π
6 by 6 and design

a simple rule for French fisherman to find the tidal height as the sea level
falls, hour per hour, during approximately 6 hours from high water to low
water.

3. (Exercise suggested by P. Henry (2009)) Reconstruct Viète’s proof of the
addition formulas (5.6) — which in Viète were not “formulas”, but half a
page of Latin text — by supposing BC = sinα, AC = cosα, BD = sin β,
AD = cosβ to be known (see Fig. 5.34) and by computing, using Thales,
Pythagoras and Eucl. III.20, BE = sin(α + β) and AE = cos(α + β).

1

α

α

β

β β

A B

C

D
E

I

Fig. 5.34. Proof of Viète; right: illustration from van Schooten’s edition 1646

4. Verify the values of sine, cosine and tangent given in Table 5.2.

5. Consider an arbitrary triangle with sides a, b, c. Prove the following beau-
tiful expressions for the half-angles:

sin
α

2
=

√
(s − c)(s − b)

bc
, cos

α

2
=

√
(s− a)s

bc
,

tan
α

2
=

√
(s− c)(s− b)

(s − a)s
, where s =

a+ b+ c

2

(5.60)
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Table 5.2. Values of sine, cosine and tangent obtained from regular polygons

α radians sinα cosα tanα

0◦ 0 0 1 0

15◦ π

12

√
2

4

(√
3 − 1

) √
2

4

(√
3 + 1

)
2 −

√
3

18◦ π

10

√
5 − 1

4

1

2

√
5 +

√
5

2

√
1 − 2

5

√
5

30◦ π

6

1

2

√
3

2

√
3

3

36◦ π

5

1

2

√
5 −

√
5

2

√
5 + 1

4

√
5 − 2

√
5

45◦ π

4

√
2

2

√
2

2
1

60◦ π

3

√
3

2

1

2

√
3

75◦ 5π

12

√
2

4

(√
3 + 1

) √
2

4

(√
3 − 1

)
2 +

√
3

90◦ π

2
1 0 ∞

is the semi-perimeter of the triangle.

6. Use Exercise 5 to derive the identity

sin2 α

2
+ sin2 β

2
+ sin2 γ

2
+ 2 sin

α

2
sin

β

2
sin

γ

2
= 1 (5.61)

for the angles α, β, γ of a triangle.

7. Derive the product formulas

2 · sin u+ v

2
· cos

u− v

2
= sinu+ sin v ,

2 · cos
u+ v

2
· cos

u− v

2
= cosu+ cos v ,

2 · sin u + v

2
· sin u− v

2
= cos v − cosu .

(5.62)

8. Derive, once by analytic calculations and once by a geometric argument,
the law of tangents due to Viète (1593b) for two angles α, β and the
opposite sides a, b of a triangle:

a− b
a+ b

=
tan α−β

2

tan α+β
2

. (5.63)

5.11 Exercises
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9. Extend the formulas (5.8) by proving the following product formulas for
the sine function (Euler E562, 1783, §8)

sin 1α = 1 · sinα ,
sin 2α = 2 · sinα · sin

(
π
2 + α

)
,

sin 3α = 4 · sinα · sin
(
π
3 + α

)
· sin

(
2π
3 + α

)
,

sin 4α = 8 · sinα · sin
(
π
4 + α

)
· sin

(
2π
4 + α

)
· sin

(
3π
4 + α

)
,

(5.64)

and for the cosine function (Euler, 1783, §5)

cos 1α = 1 · sin
(
π
2

+ α
)
,

cos 2α = 2 · sin
(
π
4

+ α
)
· sin

(
3π
4

+ α
)
,

cos 3α = 4 · sin
(
π
6 + α

)
· sin

(
3π
6 + α

)
· sin

(
5π
6 + α

)
,

cos 4α = 8 · sin
(
π
8 + α

)
· sin

(
3π
8 + α

)
· sin

(
5π
8 + α

)
· sin

(
7π
8 + α

)
.

(5.65)

10. Discover, by iterating the formulas (5.8) and (5.9), the beautiful ana-
lytic expressions of Viète (1593b) for the perimeters of the square, regular
octagon, regular 16-gon, regular 32-gon etc., inscribed in the circle of ra-
dius 1. This will finally lead to the famous product

2

π
=

√
1

2
·

√
1

2
+

1

2

√
1

2
·

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
· . . . (5.66)

11. Check the sine values of van Schooten (1683) in Fig. 5.35 (left) for the
angles 38◦20′ and 51◦40′ and check if they are really “accuratissimo”.

Fig. 5.35. Left: van Schooten’s sine values; right: measuring the altitude of a famous
mountain (photo by Marco Borello, Milano)

12. (An exercise from practical geodesy.) To measure the height of an oak tree
by Thales’ theorem as at the beginning of Chap. 1, one must have access
to the base of the tree. But this is not always possible if one wants, for
example, to determine the altitude of mountain (see Fig. 5.35 (right)). In
this case, one measures two angles α and β from two points A and B with
distance a. Compute the height h from these data.
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13. Prove that if the Euler line of a triangle is parallel to a side, say to AB,
then tanα · tan β = 3.

14. Find the side lengths of the orthic triangle in Fig. 4.9 (b), page 86, as

EF = a cosα , FD = b cosβ , DE = c cos γ . (5.67)

15. Give a trigonometric proof of Morley’s theorem in Sect. 4.10, i.e. suppose
that the radius r of the circumcircle is given and, with the notation of
Fig. 4.27, the angles α, β, γ. Then compute the distances AB, AR, and
finally QR, which will lead to a symmetric formula.

16. Prove the cosine rule and the sine rule for arbitrary spherical triangles by
adapting the ideas of Sect. 5.3, i.e. suppose that the triangle of Fig. 5.8
(right) is a spherical triangle and apply the formulas of Sect. 5.6 in pre-
cisely the same way as was done in Sect. 5.3 for planar triangles. In particu-
lar replace Pythagoras’ theorem by the cosine rule (5.23) and the formulas
used from (5.5) by (5.26) (respectively (5.25) in case of the sine rule).

17. Let A and B be points on the unit sphere lying on the same circle of
latitude ϕ, with γ as difference of their longitudes. Let N be the North
Pole.

(a) Find the area of the triangle ABN bounded by the great circles NA
and NB and the circle of latitude AB.

(b) Find the area of the spherical triangle ABN bounded by three great
circles.

(c) Compare the results, in particular in the case where A approaches B.

18. In 1932, the International Astronomical Union defined the regions in the
sky belonging to the various stellar constellations. Among the easy ones,
Corvus was defined by the following boundary:

circle of latitude −11◦ from 12h 50m to 11h 50m;
meridian 11h 50m from −11◦ to −24◦ 30′;
circle of latitude −24◦ 30′ from 11h 50m to 12h 35m;
meridian 12h 35m from −24◦ 30′ to −22◦;
circle of latitude −22◦ from 12h 35m to 12h 50m;
meridian 12h 50m from −22◦ to −11◦.

Find the area of this region for the sphere of radius 1, i.e. with steradians
(sr) as unit.

19. The shortest connection between two points on a sphere is along a great
circle. For an airplane, flying from Paris (49◦ northern latitude, 3◦ eastern
longitude) to Vancouver (49◦ northern latitude, 123◦ western longitude),
determine the angle β between this great circle and the east-west direction
at the point of departure.

20. A Norwegian fishing boat sends an SOS distress call from an unknown
position in the Norwegian Sea. The signal is received in Trondheim
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(63◦ 26′ N, 10◦ 24′ E) from the direction N 74◦ 13′ W (i.e. 74◦ 13′ to the
west of north) and in Tromsø (69◦ 39′ N, 18◦ 59′ E) from the direction
N 107◦ 17′ W. Where should the rescue team be sent?

Fig. 5.36. A sundial at the Cistercian monastery Stams; photo by K. Galehr-Nadler

21. Construct a sundial for the Cistercian monastery at Stams, Tyrol. The
monastery has the coordinates 47◦ 17′ N and 10◦ 59′ E, the wall is directed
roughly to the west (its normal is 11◦ to the south of west). The large de-
viation from the east-west direction results in big distortions. The sundial
should eventually look like that in Fig. 5.36.

22. Prove the following half-angle formulas, which nicely extend the formulas
of Exercise 5 to a spherical triangle with sides a, b, c :

sin
α

2
=

√
sin(s − b) sin(s − c)

sin b sin c
, cos

α

2
=

√
sin(s− a) sin s

sin b sin c
,

tan
α

2
=

√
sin(s− b) sin(s − c)

sin(s− a) sin s
, where s =

a+ b + c

2

(5.68)

is the semi-perimeter (arclength) of the triangle.
Show also the dual formulas for the side lengths (half-side formulas):

sin
a

2
=

√

−cos(σ − α) cosσ

sinβ sin γ
, cos

a

2
=

√
cos(σ − β) cos(σ − γ)

sinβ sin γ
,

tan
a

2
=

√
− cos(σ − α) cosσ

cos(σ − β) cos(σ − γ)
, where σ =

α + β + γ

2
.

(5.69)

Hint. In complete analogy to the solution of Exercise 5, insert the spherical
law of cosines (5.35) into (5.9). You’ll also need the last formula of (5.62).
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23. Show that the three angle bisectors (i.e. great circles that bisect the angles)
of a spherical triangle meet at a single point, the incentre I. Further show
that the radius ρ of the incircle is given by

tan ρ =

√
sin(s− a) sin(s− b) sin(s− c)

sin s
, where s =

a+ b+ c

2
.

24. The perpendicular bisector of a spherical segment is the great circle that
bisects the segment and is perpendicular to it. Show that the three perpen-
dicular bisectors of the sides of a spherical triangle meet at a single point,
the circumcentre O. Further show that the radius r of the circumcircle is
given by

cot r =

√
−cos(σ − α) cos(σ − β) cos(σ − γ)

cosσ
, where σ =

α+ β + γ

2
.

25. Prove the altitude theorem (Eucl. II.14) for a right-angled spherical trian-
gle

εδ

A
B

C

F

ab
h

p q

sin2 h = tan p · tan q . (5.70)

26. Derive, for circular planetary motion, the
inverse-square law of gravitation from Ke-
pler’s third law; i.e. from T 2 = Const · a3,
where T is the period of revolution. Choose a
fixed time interval∆t during which the planet
moves from P to Q (see the figure). Use the
fact that, similarly to (5.53) and for mass 1,

f ≈ RQ

∆t2
. (5.71)

Sa a P

R
Q

U





Part II

Analytic Geometry

“Ce que les Anciens avoient démontré sur les courbes, quelque
important, quelque subtil qu’il fut, n’étoit pourtant qu’un amas
de Propositions particulières ... jusq’à l’invention de l’Algébre ;
moyen ingénieux de réduire les Problèmes au Calcul le plus sim-
ple & le plus facile que la Question proposée puisse admettre.
Cette clef universelle des Mathématiques ... a produit une véritable
révolution dans les Sciences ... [What the Ancients had proved
about curves, however important or subtle it might have been,
was nevertheless just a collection of particular propositions ... un-
til the invention of algebra; an ingenious means of reducing the
problems to the simplest and easiest calculations which the pro-
posed question will allow. This universal key to mathematics ...
caused a genuine revolution in science ...]” (G. Cramer, 1750)

Algebra,1 with its identities and equations, grew out of geometrical figures in
Euclid’s Book II and al-Khwārizmı̄’s book (see the first row of Fig. II.1 and
the explanations in Hairer and Wanner, 1997, pp. 2–4). During the following
centuries, mainly at the hands of Stifel, Cardano, Viète (see Fig. II.2 below)
and Descartes, this science became an ever more powerful instrument in its
own right. The stages of this development, at first only figures and Arabic
text, then better and better symbols for algebraic operations, finally the in-
troduction of letters for known and unknown numerical values, is documented
in Fig. II.1. The use of this tool by Viète and Descartes to solve geometrical
problems then led to a great revolution in geometry. This resulted, under the
influence of Euler’s Introductio in analysin infinitorum, vol. II, in the creation
of what is today called analytic geometry.

1From H. ı̄sāb al-jabr w’al-muqābala [The compendious book on calculation by
completion and balancing], Muh. ammad ibn Mūsā al-Khwārizmı̄, Baghdad (830)
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The first victories of this new science are described in Chaps. 6 and 7.
Gauss’ role in renewing interest for one of the problems of ancient Euclidean
geometry, the question of constructibility with ruler and compass, is treated
in Chap. 8. Analytic geometry in higher dimensions, vector spaces and linear
maps are discussed in Chaps. 9 and 10.

In these chapters, we will frequently touch on neighbouring subjects, such
as calculus or linear algebra, from a geometric point of view. The “European
Mathematics Subject Area Group” has ensured that students are offered com-
plementary courses on these subjects for more profound discussions.

3 2

2

3

5 5

3

3
2

3

5

2 2

3 3

al-Khwārizmı̄ (830)
solution of

x2 + 21 = 10x

Cardano (1545)
solution of
x3 + 6x = 20

Viète (1591)
solution for A of
A2 + 2BA = Z

Descartes (1637)
equation (6.1) below

Fig. II.1. The genesis of algebraic notation

Fig. II.2. Wallis on the algebra of Viète (reproduced from Wallis (1685))

Analytic Geometry
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6

Descartes’ Geometry

6.1 The Principles of Descartes’ Geometry

“... affin de faire voir qu’on peut construire tous les Problesmes
de la Geometrie ordinaire, sans faire autre chose que le peu qui
est compris dans les quatre figures que i’ay expliquées. Ce que
ie ne croy pas que les anciens ayent remarqué, car autrement ils
n’eussent pas pris la peine d’en escrire tant de gros liures, ou le
seul ordre de leurs propositions nous fait connoistre qu’ils n’ont
point eu la vraye methode pour les trouuer toutes, mais qu’ils ont
seulement ramassé celles qu’ils ont rencontrées. [... to show that
it is possible to construct all the problems of ordinary geometry
by doing no more than the little covered in the four figures that I
have explained. This is one thing which I believe the ancients did
not observe, for otherwise they would not have put so much labor
into writing so many thick books in which the very sequence of the
propositions shows that they did not have a sure method for find-
ing all, but rather gathered together those propositions on which
they had happened by accident.]” (R. Descartes, La Geome-
trie, 1637, p. 304; English translation by Smith and Latham, 1925)

Descartes’ Geometrie, published in 1637 as an appendix to his Discours de la
méthode (from p. 297 onwards; first separate publication Paris 1664), is one
of the most influential scientific works of the 17th century. For example, it
was one of the only two books1 that the young Isaac Newton owned – he read
them very carefully.

Descartes begins by noting that for “tous les Problesmes de Geometrie” it
is sufficient to “connoistre la longeur de quelques lignes droites” [Any problem
in geometry can easily be reduced to such terms that a knowledge of the
lengths of certain straight lines is sufficient for its construction2] and that
“souuent on n’a pas besoin de tracer ainsi ces lignes sur le papier, & il suffist

1The second was John Wallis’ Arithmetica Infinitorum.
2This and the following English translations by Smith and Latham (1925).

159
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de les designer par quelques lettres, chascune par vne seule. Comme pour
adiouster la ligne BD a GH, ie nomme l’vne a & l’autre b, & escris a + b”
[often it is not necessary thus to draw the lines on paper, but it is sufficient
to designate each by a single letter. Thus, to add the lines BD and GH, I call
one a and the other b, and write a+b ]. From this historical moment dates the
use of lower case letters to denote (geometric) magnitudes. Two pages further
Descartes writes “C’est a dire, z, que ie prens pour la quantité inconnuë ...”
[That is, z, which I take for the unknown quantity ...] which is the origin of
using the last letters of the alphabet to denote unknowns.

Geometry Algebra

c
a b sum c = a+ b

a
c b

difference c = a− b

a
1

b

c
product c = a · b

a
1

b
c quotient c =

b

a

a b

h root h =
√
a · b (Eucl. II.14)

Fig. 6.1. Descartes’ dictionary between geometric figures and algebraic identities

What Descartes describes is a dictionary between geometric and algebraic
operations, see Figs. 6.1 and 6.2. This dictionary allows one to translate a
geometric problem into an algebraic one and vice-versa. By passing from one
formulation to the other, the solution may become simpler. We shall demon-

Fig. 6.2. Facsimile of Descartes’ drawings from the 1664 edition
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Fig. 6.3. Descartes’ example; reproduced from the 1664 edition

strate below by a couple of examples the advantages of this new method and
discuss a number of new theorems which it allows one to obtain.

Example. We start with an example of Descartes himself (see Fig. 6.3): Let
a square AD be given and a segment BN . We want to find a point E on the
produced side AC with the property that the segment EF on the line EB
has the same length as BN . The problem is treated in Pappus (Collection
Book VII, Prop. 72, see also Heath, 1921, vol. II, p. 412) and is attributed
by Pappus to Heraclitus. Descartes admits that Pappus gave a geometric
solution by producing BD to G so that DG = DN and then drawing the
circle with diameter BG. However, says Descartes, “those not familiar with
this construction would not be likely to discover it”. On the other hand, the
algebraic method is straightforward: We denote the given lengths AB = BD
and BN by a and c respectively, and by x one of the unknown lengths, say
DF = x, so that BF =

√
a2 + x2. Thales’ theorem for the similar triangles

BDF and ECF gives
x√

a2 + x2
=
a− x
c

,

since EF is required to have length c. Multiplying out we obtain3

x4 − 2ax3 + (2a2 − c2)x2 − 2a3x+ a4 = 0 . (6.1)

For such an equation, Euler devised an elegant idea which uses its symmetry :
divide the equation by a2x2 and set

x

a
+
a

x
= y to obtain y2 − 2y − c2

a2
= 0 . (6.2)

We thus have to solve successively two quadratic equations, which correspond
to the two circles of Pappus’ construction (see Exercise 1).

3The same equation as in Fig. II.1; we see that the notation has not changed much
since Descartes’ work. Descartes’ habit of writing xx for x2 remained standard until
the times of Gauss.
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6.2 The Regular Heptagon and Enneagon

The theory of regular polygons with a large number of vertices, left in a
somewhat chaotic state by the Greeks (see Chap. 4), finally became accessi-
ble in a satisfactory way through progress in algebra. Abū’l-Jūd Muh.ammad
ibn al-Layth, 11th century and François Viète, see Viète (1593a), found the
equations for solving the regular heptagon (7-gon) and the regular enneagon
(9-gon). Kepler saw in the regular polygons the principal reason for the har-
monies in the world and dedicated the entire first book of his Harmonices
Mundi (1619) to these figures, quæ proportiones harmonicas pariunt.

1

1 1
1

α

α

2α
2α

3α
3α

4α

A

B

C

D

E

Fig. 6.4. Illustration from Viète (1593a, left); the “Viète ladder” (right)

Idea for the solution. We apply an idea which an Arabic text attributes to
Archimedes (see Heath, 1921, p. 240), and which was rediscovered by Abū’l-
Jūd (see Fig. 6.7) and Viète (see Fig. 6.4, left). We modify Fig. 1.9 (a) on page 9
by moving the point A outside the circle (see Fig. 6.4, left) so that AB = BC.
We thus obtain a broken line ABCDE . . . with segments all of the same
length (see Fig. 6.4, right). We conclude that the angle to the left of C is α
(by Eucl. I.5), the angle at B is 2α (exterior angle, see (1.2) on page 8), which
repeats at D (again Eucl. I.5), the angle to the right of C is 3α (exterior angle
of ACD), then at D we find 4α, and so on. We call this figure, which can be
inscribed in any angle α, a Viète ladder .

The regular heptagon. We want to compute the diagonals x and y of the
regular heptagon with side length 1 (see Fig.6.5, left).

Solution. The angles at A are all π
7

by Eucl. III.20. We take α = π
7

in the
Viète ladder and obtain Fig. 6.5, right. The triangles ABC, BCD and CDE
are then respectively similar to the triangles BAG, CAF and DAE of the
figure on the left. Thus Thales determines the distances AC = x, BD = y

x
and CE = 1

y in the ladder. But this figure can also be interpreted as the
heptagon of the left figure folded together as a Geisha fan along the dashed
lines through A. Therefore AC = x (once again) and AD = AE = y. So we
obtain

1 +
y

x
= y and x+

1

y
= y . (6.3)
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Fig. 6.5. The regular heptagon as a Geisha fan (left) and folded (right)

Fig. 6.6. The regular heptagon; on the left: drawing of the heptagon from Viète
(1593a); on the right: the value of y − 1 to 9 digits (with one misprint, above); the
equation for z = y − 1, which is z3 + z2 − 2z = 1, in the notation of Viète: C =
Cubos, Q = Quadrato, N = Numero (below)

We can eliminate x, or y, between the two equations. This gives

y3 − 2y2 − y + 1 = 0 and x3 − x2 − 2x+ 1 = 0 , (6.4)

two equations of degree 3. We will see in Chap. 8 that the (positive) solution
of these equations cannot be constructed with Euclid’s instruments, but we
can compute it numerically to any desired precision:

y = 2.24697960371746706105 . . .
x = 1.80193773580483825247 . . .

(6.5)

The regular enneagon. We denote the lengths of the diagonals which we
require by x, y, z and now take α = π

9 in the Viète ladder. This time, after
folding, Thales’ theorem gives us AC = x, BD = z

x
, CE = 1, DF = 1

z
. The

distances AD = y, AE = AF = z are unchanged under folding, thus

1 +
z

x
= y, x+ 1 = z, y +

1

z
= z . (6.6)
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Fig. 6.7. The regular enneagon as a Geisha fan (left) and folded (right)

Algebraic manipulations (express y in terms of z from the last equation, x
from the second, and insert everything into the first) yield

z3 − 3z2 + 1 = 0 . (6.7)

This equation, found by Abū’l-Jūd in the 11th century (see e.g. M. Cantor,
1894, p. 715), was one of the reasons for the eager search for a closed-form
solution of cubic equations, a dream which became reality only some five
centuries later (Tartaglia, Cardano, Viète; see below). As for the heptagon,
the equations allow one to compute the solution numerically:

z = 2.87938524157181676810821855 . . .
y = 2.53208888623795607040478530 . . .
x = 1.87938524157181676810821855 . . .

6.3 The Trisection of an Angle and Cubic Equations

“Quid igitur quærit à Geometris Adrianus Romanus? Datum an-
gulum trifariam secare ... Quid ab Analystis? Datum solidum sub
latere & dato coëfficiente plano adfectum, multa cubi, resolvere ...
Quare quærenti Adriano licet sive in Geometricis sive in Arith-
metricis satisfacere. [What does Adrianus Romanus therefore ask
the geometers? To trisect a given angle ... And what the analysts?
Given a solid figure obtained by multiplying one side and a coeffi-
cient assigned base, to find the value of the cube ... Therefore one
has the choice to satisfy the inquiring Adrianus either in geometry
or analysis.]” (F. Viète, 1595, pp. 312/313)
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Fig. 6.8. The trisection of an angle (left: as sine; right: as chords)

Problem. Trisect an angle with given sine d (see Fig. 6.8), i.e. find α or x =
sinα such that sin 3α = d.

Solution (Viète, 1593a). Using the formulas (5.6), we have

sin 3α = sin(2α+ α) = 3 sinα cos2 α− sin3 α = 3 sinα − 4 sin3 α (6.8)

hence

sin3 α− 3

4
sinα +

sin 3α

4
= 0 or x3 − 3

4
x+

d

4
= 0 . (6.9)

Any method for solving all such equations thus allows one to trisect any
angle. One can also use a similar formula for the cosine (see Viète’s example
in Fig. 6.9).

Fig. 6.9. Trisection of the 60◦ angle by Viète (1593a) with the help of the equation
y3 − 3y = 1 for y = 2 cos 20◦; all given digits correct

Solving cubic equations. Algebra helps geometry, but geometry can also
help algebra. If we assume that we are able to trisect any angle, say with
the help of trigonometric and inverse trigonometric functions, then we can
use this tool the other way round to solve certain cubic equations. This idea,
discovered by Viète (1595, see the quotation) works as follows.

Let a cubic equation

z3 + az2 + bz + c = 0 (6.10)
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be given. It has been known since Cardano that the substitution z + a
3

= y
leads to an equation without the term y2:

y3 − py + q = 0 , where p =
a2

3
− b, q =

2a3

27
− ab

3
+ c . (6.11)

This equation is quite similar to (6.9). In order to make the two equations
identical, we set y = µ sinα and insert x = y

µ into (6.9). Comparing the
equations we get

p =
3µ2

4
and q =

µ3 sin 3α

4
. (6.12)

The first condition determines µ (this is possible if p ≥ 0), and the second

then determines α (this is possible if | 27q2
4p3
| ≤ 1). We finally obtain

z = −a
3

+ 2

√
p

3
sin

(
1

3
arcsin

(
q

2

(3

p

) 3

2

)
+

2kπ

3

)
, k = 0, 1, 2 (6.13)

for the solutions of (6.10).

6.4 Regular Polygons in the Unit Circle

Problem. Construct regular polygons inscribed in a given circle, which we take
to be the unit circle.

Solution. In order to extend formula (6.8) to an expression for sin(nα) for
arbitrary (odd) values of n, we start from

sin((n + 2)α) + sin((n− 2)α) = 2 sin(nα) cos(2α) , (6.14)

obtained by adding the expressions given by (5.6) for sin((n ± 2)α). Here we
insert cos(2α) = cos2 α− sin2 α = 1− 2 sin2 α and find

sin((n + 2)α) = (2− 4 sin2 α) sin(nα) − sin((n− 2)α) . (6.15)

Since we are interested in polygons inscribed in the unit circle, we go over to
the chords (5.4)

x = cordα = 2 sin
α

2
, dn = cord(nα) = 2 sin

nα

2
, (6.16)

and obtain from (6.15) an even simpler formula,

dn+2 = (2− x2) · dn − dn−2 (n = 1, 3, 5, . . .) . (6.17)

This equation allows us, starting from d−1 = −x, d1 = x, to compute the
chords dn = cord(nα) recursively for all odd positive values of n, with the
result:
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d1 = +x1

d3 = −x3 +3x1

d5 = +x5 −5x3 +5x1

d7 = −x7 +7x5 −14x3 +7x1

d9 = +x9 −9x7 +27x5 −30x3 +9x1

d11=−x11 +11x9 −44x7 +77x5 −55x3 +11x1

d13=+x13−13x11 +65x9 −156x7+182x5 −91x3 +13x1

d15=−x15+15x13 −90x11 +275x9−450x7 +378x5−140x3 +15x1

d17=+x17−17x15+119x13−442x11+935x9−1122x7+714x5−204x3+17x1

(6.18)
et eo infinitum continuando ordine (see Fig. 6.10).

Fig. 6.10. Table of chords for multiple angles from Viète’s Responsum (1595),
reproduced from van Schooten’s edition (1646), p. 319; Viète also gives chords for
even n; these contain the cosine, i.e. “Perp.” is replaced by “Basi”

Remark. If n is not a prime number, say n = m · k, then dn can also be
obtained by inserting dk into dm, i.e. the angle α is multiplied first by k then
by m. For example, d9 = −(d3)3 + 3d3 = −(−x3 + 3x)3 + 3(−x3 + 3x).

n = 3. If α = 2π
3

, then d3 = 0, hence x3 − 3x = 0. We divide this equation
by x and set x2 = y, so that y = 3; thus the sides of the equilateral triangle
inscribed in the unit circle have length

√
3, a result in accordance with the

formula R =
√
3
3 of Table 1.1 on page 18.

x1

x2

B

A EDZ G W

Fig. 6.11. Ptolemy’s construction of inscribed pentagon; right: reproduced from
Ptolemy–Regiomontanus (1496)
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E F

D
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A

Fig. 6.12. Diagonals of the heptagon inscribed in the unit circle; right: facsimile of
Kepler’s drawing and equation (Kepler 1619)

n = 5. Here, we solve d5 = x5 − 5x3 + 5x = 0 and obtain for the squares
y = x2 of the diagonals the equation y2 − 5y + 5 = 0. Hence, the squares of
the lengths of the diagonals of the regular pentagon inscribed in the unit circle

are (5 ±
√

5)/2. In particular, the side length is
√

5−
√
5

2
=
√

3− Φ, again in
accordance with Table 1.1. This result can be turned into the construction
displayed in Fig. 6.11, which was already known to Ptolemy: let ADG be a
diameter, E the midpoint between D and G and B vertically above D. Draw
the circle with centre E passing through B, cutting the diameter AG in the
points Z and W . Then BZ and BW are the diagonals. We also see, from the
formula R = Φ in Table 1.1, that ZD is the side of the inscribed decagon.

n = 7. The equation d7 = −x7 + 7x5 − 14x3 + 7x = 0 for the lengths of
the three diagonals of the regular heptagon inscribed in the unit circle was,
independently of Viète, also published by Kepler (1619) and is attributed by
him to Jost Bürgi.4 See Fig. 6.12. The squares of the lengths of the diagonals
thus are the three roots of y3 − 7y2 + 14y − 7 = 0.

6.5 Van Roomen’s Famous Challenge

In his book Methodus polygonorum (1593), the Flemish mathematician Adri-
aan van Roomen (in Latin, Adrianus Romanus) challenged “all mathemati-
cians from all over the world” to solve the equation

x45 − 45x43 + 945x41 − 12300x39 + 111150x37 − 740259x35 + 3764565x33

− 14945040x31 + 46955700x29− 117679100x27 + 236030652x25

− 378658800x23 + 483841800x21− 488494125x19 + 384942375x17

− 232676280x15 + 105306075x13− 34512075x11 + 7811375x9

− 1138500x7 + 95634x5 − 3795x3 + 45x =

√
7
4 −

√
5
16 −

√
15
8 −

√
45
64

(6.19)

4“... sic procedit Justus Byrgius, Mechanicus Caesaris et Landgravij Hassiae; qui
in hoc genere ingeniosissima et inopinabilia multa est commentus.”
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Fig. 6.13. Van Roomen’s challenge; reproduced from van Schooten’s edition of
Viète’s Opera (1646), p. 305

(see also Fig. 6.13). He even added a list of ten outstanding scientists who could
be considered capable of solving the problem — three Germans, two Italians,
three Dutch, one Danish, one Flemish, but no French mathematician (see the
paper by Henry (2009) for an detailed account of this problem). The French
king (Henri IV) was not pleased to hear this and ordered Viète to come and
solve the problem. Three hours later Viète presented a first solution to the
king.

Those among us who can barely solve equations of the second or third
degree are left speechless by Viète’s audacity in attacking such a problem.
The above equation, however, is not just any equation of degree 45, but a
very particular one:

(a) the left hand side of (6.19) is d45 from (6.18);

(b) the right hand side is cord(24◦); this can be verified by computing
sin(12◦) = sin(30◦ − 18◦) from the values of Table 5.2.

C
G
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υ
τ

σρ
π

o
ξ

ν
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ι

θ η
ζ

ε
δ

γ

β

α

Fig. 6.14. Viète’s 23 positive solutions of van Roomen’s problem. Left: Viète’s
drawing from van Schooten’s edition (p. 313); right: a modern computer plot. The
points C and G, which are distant by only 32′, cannot be distinguished



170 6 Descartes’ Geometry

So the first solution presented to King Henri IV was x = cord( 24
45

◦
) =

cord(32′), “quæsita fit 930,839
100,000,000”, see Viète (1595), p. 213. To find the re-

maining 22 positive solutions of the problem, Viète required some additional
hours of thought: if we increase α = 32′ by 2·360

45

◦
= 16◦, then sin 45α

2 , and
with it the corresponding chord, will again have the same value. Therefore a
second solution will be x = cord(32′ + 16◦), a third one x = cord(32′ + 32◦)
and so on, until x = cord(32′ + 352◦), every other vertex of a regular 45-gon
(see Fig. 6.14).

6.6 A Geometric Theorem of Fermat

The following theorem was included, as usual without proof, in a letter of
Fermat (June 1658) to Digby and addressed to the “Illustrissimos Viros Vice-
comitum Brouncker et Johannem Wallisium” in order to demonstrate proudly
to these Englishmen (“quae Angliam invisere non erubescent”) his ability, not
only in “numeros integros”, but also in “Geometria”.5

Theorem 6.1. Let AMB be a semicircle of radius 1 drawn on the horizontal
side of a rectangle EFBA of height

√
2. For an arbitrary point M on this

semicircle, let R and S be the intersection points of the lines ME and MF
with the diameter AB (see Fig. 6.15, left). Then

AS2 +RB2 = AB2 . (6.20)

2

√
2

√
2

A B

M

R S

E F a 2 b

√
2

√
2

A B

M

R S

P E F Q

Fig. 6.15. A theorem of Fermat (left); and Euler’s proof (right)

Proof. We do not know how Fermat found his result. An elegant idea of Euler
(see Euler, 1750) is as follows: we produce the segments MA, MB and EF
(Eucl. Post. 2; we have not forgotten) and obtain two trianglesEAP and FQB,
both similar to MBA (see Fig. 6.15, right). Hence by Thales

a√
2

=

√
2

b
or ab = 2 . (6.21)

5He could not have guessed that at the same time, a 15-year-old English boy was
preparing to become, some years later, the greatest scientist since Archimedes.
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Since, again by Thales, the ratios AS/PF , RB/EQ and AB/PQ are equal,
formula (6.20) is equivalent6 to PF 2 +EQ2 = PQ2, or, by Descartes’ dictio-
nary, to

(a+ 2)2 + (2 + b)2 = (a+ 2 + b)2 ,

which, when multiplied out, is the same as (6.21).

6.7 Heron’s Formula for the Area of a Triangle

Problem. Given the three sides a, b, c of a triangle, find its area A. The answer
is given by the famous formula of Heron of Alexandria (approx. A.D. 10–70).

u c−u

ab
h

(a)

5 9
14

1513
12

(b)

Fig. 6.16. Medieval solution of Heron’s problem; right: reproduced from Tartaglia
1560

Theorem 6.2 (Heron’s formula). The area A of a triangle with sides a, b, c
is given by

A =
√
s(s− a)(s− b)(s − c) , (6.22)

where s =
a+ b+ c

2
is the semi-perimeter. Equivalently,

4A =
√

(a+ b+ c)(−a+ b+ c)(a− b+ c)(a + b− c) . (6.23)

Proof. We will give Heron’s original proof below. A much easier approach
was discovered by Arab mathematicians, and in Europe during the Renais-
sance; see in particular Leonardo Pisano’s Practica geometriae (1220, p. 35)
or Tartaglia’s huge treatise on “numbers and measurements” (1560, in the
“quarta parte”).

By Eucl. I.41, we can obtain the area if we know the altitude h (see
Fig. 6.16 (a)). It is easier to begin by calculating the quantity u, which is
given by Eucl. II.13 (formula (2.2) on page 38) as 2uc = b2 + c2−a2. Then we
find h by Pythagoras as h2 = b2 − u2.

6The authors are grateful to Bernard Gisin for suggesting this simplification of
Euler’s proof.
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The standard example treated by all ancient writers is the triangle with
sides 13, 14, 15 (see Fig.6.16 (b)). We choose 14 for c (which leads to the easiest
calculations) and obtain (compare with the reproduction from Tartaglia)

u = 169+196−225
28

= 365−225
28

= 140
28

= 5

(6.24)

and by Pythagoras h = 12. Our triangle consists of two right-angled triangles
juxtaposed along their sides of length 12. It has area A = 14 · 6 = 84.

The same algorithm, written in “modern” algebraic notation, reduces to
a sequence of propositions from the first two books of Euclid:7

16A2 = 4h2c2 (Eucl. I.41)

= 4b2c2 − 4u2c2 (Eucl. I.47)

= 4b2c2 − (b2 + c2 − a2)2 (Eucl. II.13)

= (2bc+ a2 − b2 − c2)(2bc− a2 + b2 + c2) (Eucl. II.5)

= (a2 − (b − c)2)((b + c)2 − a2) (Eucl. II.4)

= (a− b+ c)(a + b− c)(b + c− a)(b + c+ a) . (Eucl. II.5)

(6.25)
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Fig. 6.17. Heron’s proof of his formula

7The authors wish to acknowledge helpful discussions with Christian Aebi about
this presentation of the proof.
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Heron’s original proof. This proof, as given by Heath (1926, vol. II, pp. 87–88),
is as follows.

Using (5.18) we see that (6.22) is proved, once we know that

ρ =

√
(s− a)(s− b)(s − c)

s
(6.26)

for the radius of the incircle. Let x, y and z be the respective distances of
A, B and C from the points of tangency of the incircle (see Fig. 6.17). Since
y+ z = a, x+ z = b and x+ y = c, we have x+y+ z = s and hence x = s−a,
y = s − b, z = s− c, cf. Fig. 4.6 on page 83.

The main idea is now to draw at C the perpendicular to CB and at I the
perpendicular to BI. Let L be the intersection of these two perpendiculars.
We then draw the circle with centre M and diameter BL; it passes through
I and C.

We see that β
2

and γ
2

are inscribed angles, hence the corresponding central
angles at M are β and γ (Eucl. III.20). By Eucl. I.32, the third angle at the
centre is α. Again by Eucl. III.20, the corresponding inscribed angle at B is
α
2

. Hence the triangles BCL and ADI are similar. The triangles IEK and
LCK are also similar. Applying Thales twice, we have

y + z

x
=
ℓ

ρ
=
z −m
m

.

Adding 1 to each side gives

x+ y + z

x
=
s

x
=

z

m
⇒ m =

xz

s
.

Finally, ρ is the altitude of the right-angled triangle BIK. By (1.10), we have

ρ2 = ym =
xyz

s
,

which is the required relation (6.26).

Corollary 6.3 (Lhuilier, 1810/11). The area of a triangle is given by

A =
√
ρ · ρa · ρb · ρc , (6.27)

where ρa, ρb, ρc are the radii of the excircles.

Proof. By using the formulas (4.10) for ρa ·ρb ·ρc, (6.26) for ρ and multiplying
out, we get the expression under the root of (6.22).

Remarks. (i) A similar proof of Heron’s formula, with a different auxiliary
triangle, was given by Euler (E135, 1750, §8).

(ii) For a proof based on trigonometric identities, use
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ρ = x · tan
α

2
= (s − a) · tan

α

2

(see Fig. 6.17) and insert the third formula of (5.60) in Exercise 5 of Chap. 5,
page 150. Another possibility is to multiply the first two formulas of (5.60)
and obtain, with (5.8),

√
s(s− a)(s − b)(s − c) = bc sin

α

2
cos

α

2
=
bc

2
sinα =

hc

2
.

(iii) For a proof using matrices (“Gram’s matrix”) see (10.15) on page 297.

(iv) Two elegant proofs of Thébault for enthusiasts of Euclid and Apollonius
are given in Exercises 10 and 11 of this chapter, page 181.

6.8 The Euler–Brahmagupta Formula for a Cyclic

Quadrilateral

A quadrilateral that is inscribed in a circle is called cyclic. Heron’s formula
has a beautiful analogue for cyclic quadrilaterals.

Theorem 6.4 (Euler E135, 1750, §12; Brahmagupta). The area Aq of a cyclic
quadrilateral ABCD with sides a, b, c and d is given by

Aq =
√

(s − a)(s− b)(s − c)(s− d) , (6.28)

where s =
a+ b+ c+ d

2
is the semi-perimeter.

b

c

d

a

e

f

α

α

Aq At

A

B

C

D

E

Fig. 6.18. Area of a cyclic quadrilateral

Proof. The proof given here follows the ideas of Euler’s paper. For another
proof, which does not use Heron’s formula, see Exercise 13 below.

We produce AB and DC to obtain the point E (see Fig. 6.18).8 By
Eucl. III.22, see Fig. 2.15 (a) on page 39, the triangles ADE and CBE are
similar, hence

8If AB is parallel to DC, and AD to BC, then a point such as E does not
exist. In this case, however, the theorem is trivial since the quadrilateral is then a
rectangle.
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e

c
=
f + d

a
,

f

c
=
e+ b

a
.

This is a linear system for e and f . If we subtract, respectively add the two
equations, they yield simple formulas for e− f and e+ f . The result is, after
simplification,

e− f
c

=
d− b
a+ c

,
e+ f

c
=
d+ b

a− c . (6.29)

The union of our quadrilateral with the triangle CBE is the triangle ADE,
similar to CBE with similarity factor a

c . By Eucl. VI.19, we thus have

Aq +At = At ·
a2

c2
⇒ Aq = At ·

(a2 − c2
c2

)
= At ·

a+ c

c
· a− c

c
, (6.30)

where At is the area of the triangle CBE. For the area of this triangle with
sides c, e and f , we insert the penultimate expression of (6.25) and obtain

16A2
q = 16A2

t ·
(a+ c)2

c2
· (a− c)2

c2
(from (6.30))

=
(a + c)2

c2
· (c2 − (e− f)2) · (a− c)2

c2
· ((e+ f)2 − c2) (from (6.25))

= ((a + c)2 − (d− b)2) · ((d + b)2 − (a − c)2) . (from (6.29))

The last formula simplifies with Eucl. II.5 to

16A2
q = (a+ c+ d− b)(a + c− d+ b)(d+ b+ a− c)(d + b− a+ c) ,

which is (6.28). Already the penultimate formula is a nice result.

6.9 The Cramer–Castillon Problem

“Dans ma jeunesse ... un vieux Géometre, pour essayer mes forces
en ce genre, me proposa le Problème que je vous proposai, tentez
de le résoudre et vous verrez, combien il est difficile.”

(G. Cramer in 1742; cited in Euler’s Opera, vol. 26, p. xxv)

“Sur un problème de géométrie plane qu’on regarde comme fort
difficile” (J. Castillon, 1776; title of his publication)

“Le lendemain du jour dans lequel je lus à l’Académie ma solution
du Problème concernant le cercle et le triangle à inscrire dans ce
cercle, en sorte que chaque côté passe par un de trois points donnés,
M. de la Grange m’en envoya la solution algébrique suivante.”

(J. Castillon, 1776; see Oeuvres de Lagrange, vol. 4, p. 335)

Given a circle and n points A1, A2, . . . , An in its plane (see Fig. 6.19, left), the
problem consists in finding a polygon with n vertices B1, B2, . . . , Bn inscribed
in the circle, and such that for each i, the side BiBi+1, possibly produced,
and with Bn+1 = B1, passes through Ai (see Fig. 6.19, right).
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Fig. 6.19. The Cramer–Castillon problem (left) and a solution (right)

This problem has a long history. For a detailed account, see Wanner (2006).
For n = 3, a special case goes back to Pappus (Collection , Prop. VII.117).
The general case was proposed to Cramer by an unknown “vieux Géometre
[old geometer]”. Cramer himself showed the problem to the young Castillon
in 1742 (“you’ll see how difficult it is”, see the first quotation). It took more
than 30 years before Castillon found a geometric solution in 1776, and the
problem kept the reputation of being very difficult (second quotation).

After Castillon’s presentation to the Berlin Academy, Lagrange found an
analytic solution in one evening (last quotation). This is a really striking
example of the power of the analytic method. Lagrange’s solution was later
simplified and generalised to arbitrary n by Carnot (1803).

The Möbius transformation

“Wenn man den schlichten, stillen Mann [Möbius] vor Augen hat,
muss es einen einigermassen in Erstaunen setzen, dass sein Vater ...
den Beruf eines Tanzlehrers ausübte. Um die Verschiedenheit der
Generationen vollends vor Augen zu führen, erwähne ich, dass ein
Sohn des Mathematikers der bekannte Neurologe ist, der Verfasser
des vielbesprochenen Buches ‘Vom physiologischen Schwachsinn
des Weibes’. [If we imagine this quiet and modest man [Möbius],
we might be somewhat surprised to hear that his father was a
dance teacher. But in order to show even more strikingly the con-
trast between generations, I mention that one of the sons of the
mathematician is the well-known neurologist, author of the much
discussed book ‘On the physiological imbecility of woman’.]”

(F. Klein, 1926, p. 117)

The main tool for Carnot’s solution of the Cramer–Castillon problem is the
so-called Möbius transformation

u 7→ v =
pu+ q

ru + s
, (6.31)

where p, q, r, s are given quantities.
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Carnot discovered that the composition of two such transformations

u2 =
p1u1 + q1
r1u1 + s1

, u3 =
p2u2 + q2
r2u2 + s2

(6.32a)

is again a Möbius transformation:

u3 =
pu1 + q

ru1 + s
, (6.32b)

where
p = p2p1 + q2r1 , q = p2q1 + q2s1 ,

r = r2p1 + s2r1 , s = r2q1 + s2s1 .
(6.32c)

In the language of matrices (see Chap.10), these relations can be expressed
by [

p q
r s

]
=

[
p2 q2
r2 s2

] [
p1 q1
r1 s1

]
, (6.33)

which is the product of the two coefficient matrices. Similarly, the inverse
map is again a Möbius transformation with the inverse matrix as coefficient
scheme. Therefore, the transformations with ps − qr 6= 0 form a group with
respect to composition.

An analytic solution of the Cramer–Castillon problem. By a scaling
argument, the radius of the given circle may be taken as 1. We slightly sim-
plify Carnot’s proof by using a suggestion of Gauss (see Werke, vol. 4, p. 393,
“Zusatz V”).

Auxiliary Problem. We consider a point A given by its distance a from the
centre and an angle α above the horizontal line (see Fig. 6.20). Then, for a
given point B1 on the circle, determined by an angle ϕ above the horizontal,
let B2 denote the (other) intersection of the circle and the line through A and
B1. We want to determine ψ, the angle which corresponds to B2.

a

1

αϕψ

ϕ−αψ−α

β

β

γ A

B1

B2

O

Fig. 6.20. Geometric proof of (6.34)

Solution. The two angles marked β are equal by Eucl. I.5. We apply the law
of tangents (5.63) to the triangle AB2O to obtain



178 6 Descartes’ Geometry

a − 1

a + 1
=

tan
β − γ

2

tan
β + γ

2

.

From (1.2) (β is an exterior angle of AB1O) and Eucl. I.32 applied to OAB2,
we have

β − γ

2
=
ϕ− α

2
and

β + γ

2
= 90◦ − ψ − α

2
.

Finally, since tan(90◦ − δ) = 1/tan δ, the above formula becomes

1

tan
ψ − α

2

· a− 1

a+ 1
= tan

ϕ− α

2
, (6.34)

where a−1
a+1

is a given constant. We now apply the addition theorem (5.6) for
tan to each side of (6.34). For α fixed, both sides represent Möbius transfor-
mations for u1 = tan ϕ

2
and u2 = tan ψ

2
. Thus, by the group property, there

exists a relation (6.32a) with given constants p1, q1, r1, s1.

Solution of the Cramer–Castillon problem. We start from an arbitrary point
B1 with an unknown u1 = tan ϕ1

2
and determine the point B2 as explained

above. We then compute B3, B4, . . . in a similar manner and finally have to
satisfy the condition Bn+1 = B1. Applying (6.32c) repeatedly we will have

un+1 = u1 =
pu1 + q

ru1 + s
(6.35)

with the new coefficient matrix
[
p q
r s

]
=

[
pn qn
rn sn

]
· · ·
[
p2 q2
r2 s2

] [
p1 q1
r1 s1

]
. (6.36)

Relation (6.35) is a quadratic equation for u1 with two solutions, in general.
Another method for obtaining the above Möbius transformation is given

in Exercise 14 below, and a particular example in Exercise 15.

6.10 Exercises

1. Verify Pappus’ solution in Fig. 6.3 by showing the equivalence of his con-
struction with the equations in (6.2).

2. Nicomedes’ construction for doubling the cube in the form of Pappus’
Prop. IV.24 of his Collection states the following: Let ABΓΛ be a rect-
angle, let ∆ bisect AB and E bisect BΓ . Draw the line Λ∆H and the
perpendicular EZ such that ΓZ = A∆. Then construct Θ and K such
that ΓΘ is parallel to HZ and ΘK = A∆ (see Fig. 6.21 (a); this last
construction requires the use of the conchoid). Then



6.10 Exercises 179
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2

u
2

α α

(b)

Fig. 6.21. Nicomedes’ construction for doubling the cube: Pappus’ Proposition
IV.24 (a) and it’s proof (b)

MA3 : AΛ3 = ΛΓ : AΛ . (6.37)

In Ver Eecke’s French edition, the proof consists of three pages of text
and explanations in footnotes. Find, using modern algebraic notations
(see Fig. 6.21 (b)), a proof in five lines.

3. 1000 years after Abū’l-Jūd, it is time
to apply the Geisha fan method to
a new challenge, the computation of
the diagonals w, x, y, z of the regu-
lar 11-gon (or hendecagon) of side
length 1 (see the picture).

1

1

1

1

1
1

1

1

1

1

1

w

x

y
z

w

x

y
z

← w

← y

← z

← x

4. Prove the following identity from Ra-
manujan’s notebooks (see Ramanujan,
1957, vol. II, p. 263): If ABC is a right-
angled triangle and if we draw a circle with
centre A and radius AC and another with
centre B and radius BC (see the picture),
then

RS2 = 2 ·AR · SB .
A

C

BR S

5. Solve the following problem from Einstein’s Maturitätsexamen of Sept.
1896 at the Aargauische Kantonsschule (see Hunziker, 2001): Given the
distances AI = 1, BI = 1

2
and CI = 1

3
of the vertices of a triangle from

the incentre I, find the radius ρ of the incircle.
Hint. Use formula (5.61).
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DE

F

3

2

1

Fig. 6.22. The identities of Euler (left) and their Stone Age proof (right)

6. Prove the following “Porisma tertium”
of Fermat (1629c, Oeuvres, vol. I, p. 79)
(see the picture): Let AB be a fixed
diameter of a circle and NM a fixed
parallel secant. Then the ratio (AR ·
SB)/(AS · RB) is the same for every
choice of C on the semicircle above AB
(see the figure).

A B

C

R S

N M

7. Prove three identities in Euler’s last paper on Euclidean geometry (pub-
lished in 1815, written in 1780): in a triangle ABC let the lines AD, BE
and CF intersect in point P (see Fig. 6.22, left); then

PD

AD
+
PE

BE
+
PF

CF
= 1 ,

1

α+ 1
+

1

β + 1
+

1

γ + 1
= 1 ,

AP

AD
+
BP

BE
+
CP

CF
= 2 ,

α

α+ 1
+

β

β + 1
+

γ

γ + 1
= 2 ,

PA

PD

PB

PE

PC

PF
=

PA

PD
+
PB

PE
+
PC

PF
+ 2 , αβγ = α+ β + γ + 2 .

(6.38)
Hint. Begin by proving the first relation. Then set α = PA

PD
, β = PB

PE
, γ =

PC
PF and transform the formulas in the left column into the algebraic ex-
pressions involving α, β, γ in the right column and show that these are
equivalent.

8. Solve a problem from the famous Liber Abaci (1202) of Leonardo Pisano,
called Fibonacci, and three variants by C. Aebi:9 Two towers, AC and
BD, of respective height 30 and 40 feet, are 50 feet apart (see Fig. 6.23).
There is a fountain F between these towers. Two birds start flying at the
same time, one from the top of each tower, on a straight line and at the

9Private communication
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a

x ℓ−x

b

A B

C

D

F

Fig. 6.23. The problem of Leonardo Pisano; right: facsimile from Liber Abaci, 1857
edition

same speed, and reach the fountain simultaneously. How far is the centre
of the fountain from each tower? 10

Var. 1. The birds fly from the towers to the fountain and, always at the
same speed, back to the foot of their corresponding tower. They arrive
there at the same time. Where is the fountain now?

Var. 2. The birds fly from the towers to the fountain, back to the foot
of their corresponding tower, and finally back to the top, arriving there
at the same time. In other words: the triangles CFA and DFB have the
same perimeter. Where is the fountain now?

Var. 3. Where is the fountain if the triangles CFA and DFB have the
same area?

9. Inspired by Fig. 6.16, find a small obtuse-angled triangle with integer side
lengths and integer area.

10. Victor Thébault (1882–1960), the inventor of thousands of original prob-
lems in number theory and geometry, one of which became particularly
famous (see Sect. 7.11 below), also found two very elegant proofs of Heron’s
formula. His first proof from Thébault (1931) is illustrated in Fig. 6.24,
left: draw the circles with diameters AB and AC, with respective centres
C1 and B1, radii c

2 and b
2 , and radical axis AKA′. Then use Eucl. I.41 to

get A = AK · 2C1B1 and square the formula. The key of the proof is the
use of Eucl. III.35 and the computation of the power of D with respect to
the right circle.

11. Reconstruct Thébault’s second proof (1945) of Heron’s formula (Fig. 6.24,
right), which is for admirers of Apollonius: project the points B and C
orthogonally onto the inner and outer angle bisectors at A (which are or-
thogonal). Then show thatA is equal to the area of the rectangle with sides

10“In quodam plano sunt due turres, quarum una est alta passibus 30, altera 40,
et distant in solo passibus 50; infra quas est fons, ad cuius centrum uolitant due aues
pari uolatu, descendentes pariter ex altitudine ipsarum; queritur distantia centri ab
utraque turri.” (Liber Abaci, 1857 edition, vol. 1, p. 398)
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Fig. 6.24. Thébault’s proofs of Heron’s formula

AB′′ and AC ′, and also to the area of the rectangle with sides AB′ and
AC′′. The key of the proof is then the use of the corollary to Apoll. III.42
(formula (3.18)).

12. Show that the three angle bisectors of a spherical triangle meet in a single
point, the incentre I. Show that the radius ρ of the incircle is given by

tan ρ =

√
sin(s− a) sin(s− b) sin(s− c)

sin s
, where s =

a + b+ c

2
.

13. Give a direct proof of the Euler–Brahmagupta formula (6.28) without
using Heron’s formula.
Hint. Draw the diagonal AC in Fig. 6.18 and compute its length twice by
applying the law of cosines to the triangles ACB and ACD. Express the
area of the quadrilateral by that of the two triangles.

14. Derive a second method of obtaining the Möbius transformation for the
map B1 7→ B2 of Fig. 6.20 by using Cartesian coordinates: suppose that
the point A has Cartesian coordinates (a1, b1) and insert for B1 and B2

the coordinates of (1.13), i.e. (
1−u2

1

1+u2

1

, 2u1

1+u2

1

) and (
1−u2

2

1+u2

2

, 2u2

1+u2

2

). Express the

collinearity of A, B1 and B2 by Thales’ theorem and show that

u2 =
b1u1 + a1 − 1

(a1 + 1)u1 − b1
with matrix

[
b1 a1 − 1

a1 + 1 −b1

]
. (6.39)

15. Given the four points A1, . . . , A4 with coordinates

(1.8, 0.8), (−1.4, 1.7), (−0.4,−0.2), (−1.8,−0.4),

find the solutions of the corresponding Cramer–Castillon problem.11

11Example suggested by F. Sigrist (Neuchâtel).
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16. Problem proposed by Armenia/Australia for the 35th Int. Math. Olympiad
(held in Hong Kong, July 12–19, 1994). ABC is an isosceles triangle with
AB = AC. Suppose that (i) M is the midpoint of BC and O is the point
on the line AM such thatOB is perpendicular to AB; (ii) Q is an arbitrary
point on the segment BC, different from B and C; and (iii) E lies on the
line AB and F on the line AC in such a manner that E, Q and F are
distinct and collinear. Prove that OQ is perpendicular to EF if and only
if EQ = QF .

17. This exercise is one of the Math Challenges
from π in the Sky, Issue 9, Dec. 2005 (Pa-
cific Inst. Math. Sciences): Let AA′, BB′,
CC′ be the angle bisectors of the triangle
ABC. If the angle B′A′C′ = 90◦, find the
angle BAC.

A

C

B
I

A′

C′

B′

r1 r2

r3

C1

C2

C3

M

L

K

Fig. 6.25. A theorem of Monge (right: original illustration from Monge 1795)

18. (A theorem of Monge 1795.) Let three circles be given and let K, L and
M be the intersections of the common tangents of these circles, taken in
pairs. Then these points are collinear (see Fig. 6.25). Prove this result.

Remark. Puissant gave an analytical proof in his book (1801), consisting of
several pages of formula-jungle. Monge found the theorem by considering
a sphere in space. A simple proof was given by Steiner (1826c).

The following eight exercises are enjoyable geometric problems concerning
the circle (“problematum ad circulum pertinentium”). They were invented by
Euler for Caput XXII of his Introductio (1748, vol. II). All these questions are
very natural, but lead to equations that are difficult to solve. Of course, there
is no hope of a geometric treatment.
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Fig. 6.26. Euler’s problems

19. Find the point B on a quarter-circle, such that the arc AB has the same
length s as BD (see Fig. 6.26 (I)).

20. Find a sector ACBE of a circle which is divided by the chord AB into
two pieces of equal area (see Fig. 6.26 (II)).

21. Divide the quarter-circle ABC by a vertical line ED into two pieces of
equal area (see Fig. 6.26 (III)).

22. Divide the semicircle ABDA by a line AD into two pieces of equal area
(see Fig. 6.26 (IV)).

23. Divide a circle by two lines AB and AC (where A is on the circle) into
three pieces of equal area (see Fig. 6.26 (V)).

24. Find for a semicircle the arc s, such that the arc AE has the same length
as the broken line ADE (see Fig. 6.26 (VI)).

25. Find a right-angled triangle CAE which the circle CDA divides into two
pieces of equal area (see Fig. 6.26 (VII)).

26. Find for a quarter-circle the arcAE, whose length s is equal to the distance
AF (see Fig. 6.26 (VIII)).
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Cartesian Coordinates

“C’est à l’aide de ce secret que Descartes, à l’âge de vingt ans,
parcourant l’Europe dans le simple appareil d’un jeune soldat
volontaire, résolvait d’un coup d’œil, et comme en se jouant, tous
les problèmes géométriques que les mathématiciens de divers pays
s’envoyaient mutuellement ... [It was with this secret method that
20-year-old Descartes, travelling through Europe dressed simply
as a young volunteer soldier, solved at a glance, as if playing a
game, all the geometrical problems with which mathematicians of
various countries challenged one another ...]”

(J.-B. Biot, Essai de Géométrie analytique, 1823, p. 75)

The so-called Cartesian coordinates,1 used to determine the position of a point
in the plane (see Fig. 7.1, left), first appeared (in a somewhat hidden form) in
Descartes’ solution of a problem of Pappus (see below). They came into general
use only a few decades later. We owe important simplifications to Newton
(1668), who freely used negative values for coefficients and coordinates. A
clear exposition is given in Euler’s Introductio (1748), vol. II, §1–4.

7.1 Equations of Lines and Circles

The equation of a circle. Euclid’s Postulate 3 has the following algebraic
counterpart: the coordinates x, y of a point P on the circle with centre C =
(x0, y0), passing through a given point P1 = (x1, y1) satisfy, by Pythagoras’
theorem (see Fig. 7.1, right),

(x− x0)2 + (y − y0)2 = r2 , where r2 = (x1 − x0)2 + (y1 − y0)2 . (7.1)

Equations of lines. The equations of a line are an algebraic incarnation of
Thales’s theorem. We call p the slope of the line. The four useful relations are
(see Fig. 7.2):

1The Latinised name of René Descartes is Renatus Cartesius.

185
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Fig. 7.1. Cartesian coordinates and the equation of a circle; below: first publication
of a coordinate axis (Euler 1748; A is the origin, R, S are the endpoints of the line,
P is a point with a positive coordinate, p is a point with a negative one)

y = px+ q (given ordinate q at origin and slope p), (7.2a)

y = y0 + p(x− x0) (given point P0 and slope p), (7.2b)

y = y0 − 1

p
(x− x0) (perpendicular to slope p through P0), (7.2c)

y = y0 +
y1−y0
x1−x0

(x− x0) (two given points P0, P1). (7.2d)

0 1 2

1

2

0 1 2

1

2

0 1 2

1

2

0 1 2

1

2

x

y

1

p

q

y−q

P(a)

x0 x

y0
1

p
y−y0

P
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Fig. 7.2. Equations of a line in Cartesian coordinates
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0 1 2

1

p

q

d

x0

y0

px0+q

y0−px0−q

√
1 + p2

P0

A

The distance of a point from a
line. Let P0 be a point with coordinates
x0, y0. We wish to calculate the distance
d from this point to the line y = px+ q.
Since the two grey triangles in the fig-
ure are similar (orthogonal angles), we
get by Thales

d =
|px0 + q − y0|√

1 + p2
. (7.3)

Constructions with ruler and compass. We can now characterise con-
structions with ruler and compass.

Lemma 7.1. Every construction with ruler and compass in Euclidean geom-
etry corresponds to a composition of rational operations and square roots in
Cartesian geometry, and vice versa.

Proof. Any such construction can provide only

1. The line through two points (Eucl. Post. 1):

y = y0 +
y1 − y0
x1 − x0

(x− x0) ⇒ y = px+ q .

2. The intersection of two lines:

y = p1x+ q1

y = p2x+ q2
⇒ x =

q2 − q1
p1 − p2

, y = p1x+ q1 .

3. The intersection of a line with a circle:

P

Q

C1

(x− x0)2 + (y − y0)2 = r2

y = px+ q

⇒ (x− x0)2 + (px+ q − y0)2 = r2

⇒ Ax2 + 2Bx+ C = 0 ,

⇒ x =
−B ±

√
B2 − AC
A

.

4. The intersection of two circles:

P

Q

C1

C2

(x− x0)2 + (y − y0)2 = r20
(x− x1)2 + (y − y1)2 = r21
(subtract to get)

−2x(x0−x1) + (x20−x21)
−2y(y0−y1) + (y20−y21) = r20−r21

(equation of a line, return to 3).



188 7 Cartesian Coordinates

Conversely, the above algebraic operations correspond to constructions with
ruler and compass, as can be seen by referring to Descartes’ dictionary (see
Fig. 6.1) from right to left.

Remark. The line obtained in point 4 of the above proof is the radical axis of
the two circles (see Exercise 8 on page 55).

Briefly, Euclidean geometry, in the strict sense, corresponds to all calculations
that involve linear or quadratic equations. On the other hand, all curves of
higher degree or algebraic curves belong to a new type of geometry of which
Descartes was very proud (in the introduction of his “second book” De la
nature des lignes courbes).

7.2 The Problem of Pappus

Here is the historical problem that absorbed Descartes’ interest for five or
six weeks; it is the origin of his geometry: “La question donc qui auoit esté
commencée a resoudre par Euclide, & poursuiuie par Apollonius, sans auoir
esté acheuée par personne, estoit telle” (R. Descartes, 1637, p. 306):

Statement of the problem.2 Let three (or four) lines a, b, c (and d) be
given. For a point P , we denote by PA, PB, PC (and PD) the distances of
P to these lines. We wish to determine the locus of all points P for which

PA · PB = (PC)2 or PA · PB = PC · PD . (7.4)

One can generalise this problem to five, six, seven or more lines. Pappus (in
the introduction to Book VII of his Collection) claimed that for three or four
lines the curve “est unam ex tribus conicis sectionibus”; for more than four
lines, however, the curves were “non adhuc cognitos”.

In order to solve the problem of Pappus, Descartes proposes to fix the position
of the point P by two values,3 choosing one as x = OA, and the other as

a

b cy

xO A

P

B C

a

b c
d

y

xO A

P

B C

D

Fig. 7.3. Pappus’ problem for three lines (at left) and four lines (at right)

2The original problem has been slightly modified without changing its essence.
3Since we are dealing with unknowns, we take letters from the end of the alpha-

bet; the letter z has already been used above, so we take x and y.
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y = AP (“Que le segment de la ligne AB, qui est entre les poins A & B, soit
nommé x. & que BC soit nommé y”). This is how Cartesian coordinates were
born.

With (7.3), each of the factors PA, PB, PC, etc. in (7.4) is of the form
aix+ biy + ci. Multiplying out the products, condition (7.4) becomes, in the
case of three or four lines, an equation of the form

ax2 + 2bxy + cy2 + 2dx+ 2ey + f = 0 (7.5)

where a, b, c, d, e and f are known constants. Descartes now proceeds as
follows: for any fixed value of y he obtains a quadratic equation

αx2 + 2βx+ γ = 0 ⇒ x =
−β ±

√
β2 − αγ
α

(7.6)

that determines two points (or one point, or none) on the curve. In this way,
by separating innumerable different cases, Descartes claims to show that the
curves are indeed conics. The proofs were reconsidered by Cramer (1750)4 and
by Euler (1748, vol. II, Caput V).

The last and most important simplification of the theory dates back to the
18th and 19th centuries with the systematic use of eigenvalues and eigenvec-
tors (Lagrange, Cayley). We will return to this problem in Chap. 10.

7.3 Conic Sections: Poles, Polars and Tangents

We have already used Cartesian coordinates in Chap. 3 in our treatment of
the conic sections (parabola, ellipse and hyperbola):

y2 = 2px ,
x2

a2
+
y2

b2
= 1 ,

x2

a2
− y2

b2
= 1 , (7.7)

see equations (3.2), (3.9) and (3.13), respectively. We will obtain here new
proofs and results with this method. We start with an analytic proof of
Apoll. III.52, i.e. ℓ1 + ℓ2 = 2a with

ℓ1 =
√

(x+ c)2 + y2 , ℓ2 =
√

(x− c)2 + y2 , c2 = a2 − b2 .

A direct verification is cumbersome. However, Euler (1748, vol. II, §128) dis-
covered the existence of the simple formulas5

ℓ1 = a + ex , ℓ2 = a− ex , e2 = 1− b2

a2
, (7.8)

4Cramer desperately admits, after some 20 pages of calculation: “On voit par
cet échantillon, quelle varieté de Cas se présenteroit dans les Lignes des Ordres
supérieurs ...”

5Which we already encountered in Chap. 5, formula (5.48) on page 140.
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where e is the eccentricity from (3.8) on page 66. The verification of these
formulas, for instance (x+c)2+y2 = (a+ex)2, is a straightforward calculation
using c = ae from (3.8).

Poles and polars. The concept of poles and polars is developed in the second
book of Apollonius. This theory becomes particularly elegant in an analytical
setting.

Definition 7.2. Let P0 = (x0, y0) be a given point. Replace the three equa-
tions of a conic in (7.7) by

y0 · y = px0 + px ,
x0 · x
a2

+
y0 · y
b2

= 1 ,
x0 · x
a2

− y0 · y
b2

= 1 , (7.9)

respectively, according to the following rule: each quadratic term is split into
two factors, one for P and one for P0; each linear term is divided into two
halves, one for P and one for P0. The resulting equations define straight lines.
These lines are called polars of the given pole P0, with respect to the given
conic.

Theorem 7.3. If the point P0 lies on the conic, i.e. if

y20 = 2px0 or
x20
a2

+
y20
b2

= 1 or
x20
a2
− y20

b2
= 1 , (7.10)

then the corresponding polar is the tangent to the conic at P0.

Proof. Let P = (x, y) be another point on the polar of P0 (see Fig. 7.4, left).
Then, in the case of the parabola, we compute y2 − 2px by using (y − y0)2 =
y2 − 2yy0 + y20 , insert (7.9) and (7.10), and obtain after simplification

y2 − 2px = (y − y0)2 .

Since this square is positive for y 6= y0, all other points of the polar lie on the
same side of the curve, hence the polar must be a tangent. In the case of the
ellipse, a similar calculation gives

x2

a2
+
y2

b2
− 1 =

(x− x0)2

a2
+

(y − y0)2

b2
> 0 ,

with the same conclusion. The argument for the hyperbola is slightly more
complicated, because here we obtain

x2

a2
− y2

b2
−1 =

(x−x0)2

a2
− (y−y0)2

b2
=
(x−x0

a
− y−y0

b

)
·
(x−x0

a
+
y − y0
b

)
.

This last expression is always negative, because a polar of a point on the
hyperbola is steeper than both asymptotes. Therefore the two factors in the
last expression have different signs.
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P0

P P0

P

Q

polar P0

polar

Fig. 7.4. Pole and polar

Theorem 7.4. If a point P1 lies on the polar of P0, then the point P0 lies on
the polar of P1.

Proof. Both properties are equivalent to one of the conditions

y0 · y1 = px0 + px1 ,
x0 · x1
a2

+
y0 · y1
b2

= 1 ,
x0 · x1
a2

− y0 · y1
b2

= 1

which are perfectly symmetric.

This result, together with Theorem 7.3, leads to the next two theorems (see
Fig. 7.4, middle and right):

Theorem 7.5. If the point P0 lies outside the conic, then the polar of P0 is
the line through the two points of contact of the tangents to the conic from P0.

Theorem 7.6. If the point P0 lies inside the conic, then the polar of P0 is
the set of all points whose polar passes through P0.

Condition of contact for a line. The problem is to find a condition for
a line y = px + q to be a tangent to the ellipse (7.7). In order to solve this
problem, we write the equation in the form − p

q
x+ 1

q
y = 1 and compare it to

(7.9). We see that we must have

x0

a2
= −p

q
and

y0
b2

=
1

q
.

Taking squares we get
x2

0

a2
= p2

q2
· a2 and

y2
0

b2
= 1

q2
· b2. The point (x0, y0) lies on

the ellipse, if the sum of these two terms is 1 (see (7.10)) and we have:

Theorem 7.7. The line with equation y = px + q is tangent to the ellipse
(7.7) if and only if

a2p2 + b2 = q2 . (7.11)

If we denote by h = q − pa and h′ = q + pa the values of y = px + q above
the endpoints of the major axis, then condition (7.11) becomes the elegant
formula

h · h′ = b2 ; (7.12)
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Fig. 7.5. Monge’s circle (left); Poncelet’s “second theorem” (right)

this is an analytic proof of Apoll. III.42 (see Exercise 11 of Chap. 3, page 76).
Euler, who rediscovered this result in (1748, vol. II, §121), called it an “egregia
proprietas”.

Tangents from a given point. Let P0 with coordinates x0, y0 be a fixed
point located outside the ellipse. When a line through P0 is tangent to the
ellipse, what is its slope? By (7.2b), this line has an equation of the form
y = y0 + p(x−x0), i.e. y = px+ q with q = y0− px0. Inserting this into (7.11)
leads to the next theorem.

Theorem 7.8. The slopes p1 and p2 of the two tangents to the ellipse through
a given point P0 = (x0, y0) are the solutions of the quadratic equation

(a2 − x20) p2 + 2x0y0 p+ (b2 − y20) = 0 ; (7.13)

hence, by a result in algebra called “Viète’s formulas”, they satisfy

p1 + p2 = − 2x0y0
a2 − x20

, p1p2 =
b2 − y20
a2 − x20

. (7.14)

Monge’s circle.6 The set of points, from which an ellipse is seen under a
right angle, is the circle with radius

R =
√
a2 + b2 (7.15)

and with the same centre as the ellipse, called “Monge’s circle” (see Fig. 7.5,
left).

Proof. The tangents are orthogonal if p1p2 = −1 (see Fig. 7.2 (c)). Inserting
this into the second expression of (7.14) leads to x20 + y20 = a2 + b2.

6G. Monge 1746–1818, famous French “géomètre”, with L. Carnot founder of the
École Polytechnique in Paris (1794).
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Poncelet’s “second theorem”. We let α1 and α2 with tanα1 = p1 and
tanα2 = p2 be the angles which the two tangents through P0 make with the
y-axis. The angle α1+α2

2 gives the direction orthogonal to the angle bisector of
TP0T

′ (see Fig. 7.5, right). We compute tan(α1 + α2) using (5.6) and obtain
with (7.14)

tan(α1 + α2) =
p1 + p2
1− p1p2

=
− 2x0y0
a2−x2

0

1− b2−y2
0

a2−x2

0

=
−2x0y0

a2 − b2 − x20 + y20
, (7.16)

an expression which depends only on c2 = a2 − b2, i.e. on the position of
the foci, and not on the individual values of a and b. We conclude that the
tangents from a given point P0 to two confocal ellipses have the same angle
bisector. In the limiting case, when the eccentricity tends to zero, the ellipse
tends to the segment FF ′ and we have:

Theorem 7.9 (Poncelet’s second theorem). The angles between two tangents
from a point P0 to an ellipse and between the lines joining P0 to the foci have
the same bisector.

Remark. Some authors call this “Poncelet’s first theorem”. It is not only a
beautiful theorem of geometry, but was recently used in an elegant proof in
operator theory (see Crouzeix, 2004, p. 473, after formula (4.2)).

7.4 Problems of Minimum and Maximum

The principal initiators of problems, in which the minimum or maximum of a
quantity is required, were Apollonius (see the solution of Exercise 4 in Chap. 8)
and Pierre de Fermat (1601–1665).7 Fermat’s own writings were published
only posthumously by his son in 1679; others (Newton and Leibniz) had in the
meantime developed the same ideas into a powerful calculus. This is another
subject in mathematics which evolved from geometric problems. Later, in the
hands of the Bernoulli brothers, Euler and Lagrange, this calculus turned into
one of the pillars of modern science. Jakob Steiner devoted an entire course
1838–1839 in Berlin to Maxima u. Minima8 and two long articles in Crelle
Journal (1842), claiming that complicated analytical calculations should not
hide the original geometric ideas and the immediate insight which they provide
into the true nature of the problem.

Triangles between fixed and moving lines (attributed to Fermat in Elem.
Math. 11 (1956), p. 114). Given a point P at distance c from O, a line parallel

7M. Cantor (see Cantor, 1900, p. 239, or Probl. 94 of the English edition of Dörrie,
1933) discovered in the correspondence of Regiomontanus (letter to Christian Roder
from 1471) the statement of the probably oldest maximum problem of the post-Greek
era. A variant of this problem is treated in Exercise 5 on page 233.

8A copy of this course is preserved in the Burgerbibliothek in Bern.
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Fig. 7.6. Solution of Fermat’s area problem

to OP at distance a and line of slope m through O (see Fig. 7.6), find for
which distance u the sum of the areas A1 +A2 is smallest.

Solution. We increase u by a small amount du.9 When u is small (Fig. 7.6 (1)),
a relatively large area − is removed from A1 and a small area + is added to
A2. So the total area decreases. On the other hand, if u is large (Fig. 7.6 (3)),
the area + is larger than − and the total area increases. The smallest value
for the sum of the areas is thus obtained precisely where gain and loss, + and
− , are equal (Fig. 7.6 (2)). We replace this by the condition that the sum of
the areas + and − be twice the area − . These are two similar triangles and
by Eucl. VI.19 we conclude that RP = RQ+QP =

√
2 ·QP , hence by Thales,

u+ c =
√

2 · c or u = (
√

2− 1) · c . (7.17)

Remark. We were slightly sloppy in the above proof. In fact we neglected
the little black triangle. The secret in understanding calculus lies in knowing
which quantities may be neglected (“Elisis deinde superfluis ...”) and which
may not. After a long dispute, Fermat explains this in a letter to Mersenne
and Descartes (June 1638, Fermat, Oeuvres, vol. 2, p. 157): “Divisons le reste
par E et ôtons ensuite tout ce qui se trouvera mêlé avec E; ... [divide the rest
by E and then neglect everything which is connected to E; ...]”, after which
Descartes replied: “que si vous l’eussiez expliqué au commancement en cette
façon, je n’y eusse point du tout contredit, ... [if you had explained it in this
manner from the beginning, I would not have contested it at all, ...]”. The
following examples should help to understand better and better these ideas;
we hope that we need not “alia exempla addere”, but that “hæc sufficiunt”.

Fermat’s Principle of Refraction
“... et trouver la raison de la réfraction dans notre principe com-
mun, qui est que la nature agit toujours par les voies les plus
courtes et les plus aisées.”

(Fermat to Cureau de la Chambre, 1657)

The law of refraction of light was discovered independently by Willebrord Snel
van Royen, latinised Snellius, and Descartes, latinised Cartesius, but only in

9This is Leibniz’ ingenious notation; Fermat used E or e to denote a small
quantity.
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Fig. 7.7. Explanation of Fermat’s principle of refraction

“rationem experientiæ”; Fermat thus proposed in several articles (numbers
VIII and IX in “Methodus ad Disquirendam Maximam et Minimam” in Fer-
mat, Oeuvres, vol. I, pp. 170 and 173; sent to Cureau de la Chambre in 1662)
to find a mathematical “Synthesis” from “naturam operari per modos et vias
faciliores et expeditiores” (nature acts in the simplest and most direct man-
ner).

Let two fixed points A and B be given and two media, with speed of light
v1 in the medium above the x-axis, and v2 below it. We wish to determine the
point P , for which the time taken for light to travel from A to B is shortest
(see Fig. 7.7, left). If we move the point P to P ′ by a small distance dx,
this creates two small right-angled triangles (see Fig. 7.7, right) in which the
angles α1 and α2 reappear as orthogonal angles. The distance ℓ1 increases by
dℓ1 = sinα1 · dx, while ℓ2 decreases by dℓ2 = sinα2 · dx. So the time we lose
in the upper region is dx · sinα1/v1, and the time we gain in the lower region
is dx · sinα2/v2. As in the above example, P is in the optimal position if gain
and loss are balanced, i.e. if

sinα1

v1
=

sinα2

v2
, (7.18)

which is precisely the law observed experimentally.
Fermat’s original proof, in manuscript IX mentioned above, is similar but,

lacking elegant notation, extends over some 5 pages; the analytical calculation
was proudly performed “in tribus lineis” (in three lines) by Leibniz in 1684
(see Hairer and Wanner, 1997, p. 93).

Cylinder with maximal surface area in a sphere. In more difficult ex-
amples Fermat explains the use of “triplicatas” variables. In this case Leibniz’
notation exhibits all its power. We demonstrate this on the following prob-
lem, sent by Fermat to Mersenne on Nov. 10, 1642 (article VII, Oeuvres, vol. I,
p. 167).

Problem. Inscribe in a given sphere of radius 1 a cylinder with radius y and
height 2x, of maximal surface area (see Fig. 7.8, left). In other words, dividing
the surface area 2y2π + 2x · 2yπ (see (2.11)) by 2π, we have to
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maximize y2 + 2xy ,

condition x2 + y2 = 1 .
Solution.

2y dy + 2y dx+ 2x dy = 0 ,

2x dx+ 2y dy = 0 .
(7.19)

The solution was found by replacing x and y by x+dx and y+dy respectively,
using the principle that the maximised quantity, as well as the quantity defin-
ing the condition, must neither increase nor decrease, expanding and neglect-
ing “negligiblios” small terms. In the equations thus obtained we eliminate dx
from the first with the help of the second, divide by 2x dy and get

(y
x

)2
− y

x
− 1 = 0 , (7.20)

which is equation (1.3) for the golden ratio.

x

y

P

O αa αb

αb

ℓa

ℓb

A

B

B′

P
C D

Fig. 7.8. Cylinder in sphere with maximal surface area (left); minimal sum of
distances from two points (right)

Minimal sum of distances from two points. This is the problem with
which Steiner began his course in 1838: let two fixed points A and B be given,
on the same side of a fixed line CD. Find the point P on this line for which
the sum of the distances ℓa + ℓb = min (see Fig. 7.8, right). We can answer
the question in the same way as we derived the principle of refraction above
(with v1 = v2 = 1). This gives, as for (7.18), the condition

sinαa = sinαb , i.e. αa = αb . (7.21)

The optimal solution behaves like a reflected light ray; we admire once again
the “intelligence” of light in obeying Fermat’s principle about the action of
nature. A second idea for treating the problem is to reflect the point B in
CD to obtain B′; the shortest path is then a straight line (Eucl. I.20), and the
angles are equal by Eucl. I.15.

The Fermat point of a triangle. “Datis tribus punctis, quartum reperire,
a quo si ducantur tres rectæ ad data puncta, summa trium harum rectarum
sit minima quantitas”; or in translation: “Given three points A,B,C, find a
fourth one F , such that for the three lines drawn from F to the given points,
the sum of their lengths

ℓa + ℓb + ℓc = min (7.22)
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Fig. 7.9. The Fermat point of a triangle; left: drawing from Fagnano (1779)

is as small as possible”. This is all that Fermat ever wrote about the “Fermat
point” of a triangle, in the last two lines of a long article addressed around
1640 to Mersenne (number IV in Oeuvres, vol. I, p. 147–153). It was intended
as a challenge for E. Torricelli, whose solution was the subject of Exercise 9 in
Chap. 4. The first (lengthy) proof using the new principles was published by
Fagnano (1779, see Fig. 7.9, left). The shorter version below was presented in
Steiner’s 1838 course.

The difficulty here is that the point we require can move with two degrees
of freedom, and that we must minimise a sum of three terms.

Idea. We move F in a direction orthogonal to one of the lines, say to FB (see
Fig. 7.9, right); then only two terms of the sum change (for small movements)
and we are back in the previous situation. We thus obtain from (7.21) the
condition ωab = ωbc. If we choose another movement, orthogonal either to FA
or to FC (all other movements are compositions of two of these) we conclude
finally that all three angles must be equal: ωab = ωbc = ωca .10 We thus have:

Theorem 7.10. The Fermat point F minimising the sum of the distances
ℓa + ℓb + ℓc is characterised by ωab = ωbc = ωca = 120◦.

Since we know that the angles AFB and BFC are both 120◦, we find the
position of F at the intersection of two circles with angle 240◦ at the centre
(see Fig. 7.9, right, and Eucl. III.20).

Steiner’s challenge. If q is any exponent, we now try to minimise ℓqa+ℓqb+ℓ
q
c .

From (ℓ+dℓ)q = ℓq+qℓq−1 dℓ+ . . . (binomial theorem), we obtain in the same
way: ℓq−1

a sinωab = ℓq−1
c sinωbc and ℓq−1

b sinωbc = ℓq−1
a sinωca. Hence:

Theorem 7.11 (J. Steiner, 1835a). The point P minimising the sum of the
powers ℓqa + ℓqb + ℓqc is characterised by

sinωbc

ℓq−1
a

=
sinωca

ℓq−1
b

=
sinωab

ℓq−1
c

. (7.23)

10Note that the argument fails if one angle of the triangle is 120◦ or larger. In
that case the minimising point lies at the obtuse angle vertex.



198 7 Cartesian Coordinates

Corollary 7.12 (Fagnano, 1779). The point P minimising ℓ2a + ℓ2b + ℓ2c is the
barycentre G.

Proof. This result follows from the above theorem (putting q = 2) by the law
of sines (5.11) applied to the six small triangles of Fig. 4.8 (a), using the fact
that the angles left and right of the feet of the medians have the same sine
value, and the sides left and right of these feet have the same length.

In the next item (5.) of Steiner (1835a) we find the challenge: determine what
happens to the point P solving (7.23), if the exponent q varies continuously
from q = 1 to q = 2 and then q → ∞, leading to a curve connecting the
Fermat point F via the barycentre G to the circumcentre O. Steiner gave
no indication of what he meant by the “eigenthümliche Beziehung (peculiar
relation)” of this curve. We have computed it numerically for the triangle of
Fig. 7.10.

A

B

C

F =X13

G O

Fig. 7.10. Steiner’s challenge for q = 1

1−λ
with 0 < λ < 1 in steps of 1

20

Minimal sum of distances from four points. Given four points A, B,
C and D forming a convex quadrilateral, find a point F such that the sum
ℓa + ℓb + ℓc + ℓd of its distances to the vertices is minimal. The answer is
surprisingly simple.

Theorem 7.13 (Fagnano, 1779). The point F which minimises the sum of
the distances ℓa + ℓb + ℓc + ℓd is the intersection point of the two diagonals
AC and BD (see Fig. 7.11, left).

Proof. We write the sum to be minimised as (ℓa + ℓc) + (ℓb + ℓd). The first
term is as small as possible if A,F,C are collinear, and the second term is
minimal if B,F,D are collinear.

Minimal connecting graph. Gauss, in a letter to Schumacher dated March
21, 1836 (see Werke, vol. 10, p. 461), suggested a more interesting question
(“kürzestes Verbindungssystem, ... eine ganz schickliche Preisfrage für unsere
Studenten”): find an itinerary of minimal total length, connecting a given
set of points. Gauss was led to this question by thinking about the shortest
railway connection between Harburg, Bremen, Hannover and Braunschweig.
The solution of a particular problem is drawn in Fig. 7.11, right. There are
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Fig. 7.11. The Fagnano problem for 4 points (left, with an original drawing of
Fagnano 1779); the Schumacher–Gauss problem (right)

two branching points E and F which can move freely. Each of these, by
Theorem 7.10, is in an optimal position if connected to the rest of the graph
by three segments making angles of 120◦. Several circles help to construct the
solution by Eucl. III.20.

However, the solution is not always of this form: if you take a map of
Germany and find the four towns mentioned above, the optimal solution con-
sists of a straight line between Braunschweig and Hannover, together with the
Fermat point for Hannover, Bremen and Harburg.
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Fig. 7.12. The Schumacher–Gauss problem for the regular pentagon (a) and
hexagon (b, only local minimum), (c, global minimum)

Pentagon and hexagon. The same algorithm leads to a nice solution for
five points arranged to form a regular pentagon (see Fig. 7.12 (a)), but the
“nice” solution for the hexagon (Fig. 7.12 (b)) of total length 3

√
3 = 5.196 . . .

is not the shortest connection, which has length 5 (Fig. 7.12 (c)).

7.5 Some Famous Curves and Their Tangents

“L’un des plus féconds rapprochements que l’on ait faits dans les
sciences est l’application de l’algèbre à la théorie des courbes ...
La recherche de ces propriétés a conduit à l’analyse infinitésimale
dont la découverte a changé la face des mathématiques.”

(Laplace, “Programme” à l’École Normale, 1er pluviôse, an III)
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“Differentials are as slippery as ever.”
(From a book review, Amer. Math. Monthly 65 (1958), p. 641)

Descartes, in his introduction to the second “Livre” of his Geometry, proudly
discusses the wide field of new curves, which his method allows one to study
and which the “Anciens” had been reticent to consider, by limiting themselves
to ruler and compass and possibly to the conics. We now present the properties
of some curves which owe their fame to their importance or their beauty.
Comprehensive catalogues of interesting curves were published by G. Loria
(1910/11) and by F.G. Teixeira (1905). The properties of some important
plane curves can also be found in Lawrence (1972).

Folium of Descartes. The first concrete example was the curve defined by
the equation

x3 + y3 − 3xy = 0 . (7.24)

In a letter (dated Jan. 18, 1638) addressed to Fermat, but sent to Father
Mersenne, Descartes challenged Fermat to find the tangents to this curve.
Fermat, who already had his manuscript (Fermat, 1629b) in a drawer, re-
marked that what Descartes judged to be difficult could in fact be done easily
and elegantly.11 These calculations of Fermat differed from the differential
calculus of Newton and Leibniz essentially only in notation and attempt at
generality.

−1 0 1
0

1

xx

yy

− 1

00

00

1

1

2
3

In Leibniz’ notation, the solution
“elegantissima” is as follows: we
suppose that a point (x, y) satis-
fies (7.24) and ask under which con-
dition a neighbouring point (x +
dx, y + dy), with dx and dy very
small, also satisfies (7.24). We in-
sert, multiply out, neglect terms
dx2, dx dy, dy2, . . . of higher order,
subtract, and obtain

(x2 − y) dx+ (y2 − x) dy = 0 . (7.25)

The slope of the tangent is thus dy
dx

= −x
2−y
y2−x . The points at which the curves

x3 +y3−3xy = C are horizontal (dy = 0) lie on the parabola x2 = y, and the
points at which these curves are vertical (dx = 0) lie on the parabola x = y2

(see the figure).

The conchoid. The conchoid was one of the first curves which Fermat con-
sidered. If we place the origin at the point A (see Fig. 7.13) and give the point
C the coordinates (x, y), we have by Thales’ theorem

11“quem difficilem judicabat D. DesCartes, cui nihil difficile, elegantissima ...”
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y − c
c

=
b√

x2 + y2 − b
,

which leads to

(y − c)
√
x2 + y2 = by or (y − c)2(x2 + y2) = b2y2 . (7.26)

The curve is now “algebraised” and can be treated by the above method. The
result, stated in the version of Joh. Bernoulli (1691), is as follows:

Theorem 7.14. LetM be the intersection of the perpendicular to AC through
A with the line through C parallel to the fixed line through D. Then the tangent
at C to the conchoid of Nicomedes is parallel to MD.

c

b b

D

CM

A

D′
D′′

C′
C′′
C′′′

Fig. 7.13. The tangent to Nicomedes’ conchoid

Proof. We give a geometrical proof, based on the idea of composed movements
due to Roberval and Torricelli (1644): first rotate the line DC around A by a
small angle, to the positionD′C′ (see Fig. 7.13). But nowD′ does not lie on the
horizontal line, where it should be. So by a second movement, we push the line
upwards to become D′′C′′ so that D′D′′ = C′C′′. Then the triangles DD′D′′,
CC′C′′′ and CAM are similar. Further, since C′′′C′/C ′′C′ = C′′′C′/D′′D′ =
CA/DA, the trianglesDAM and C′′C′C are also similar, which is the required
result.

The cycloid. This curve was invented by Galileo Galilei, and its geometri-
cal properties were one of the major challenges in the disputes between the
most eminent scientists of the early 17th century, Descartes, Fermat, Pascal,
Roberval, Wallis and Torricelli, with Father Mersenne as go-between. In 1645
a 16-year-old Dutch boy with brilliant ideas, Christiaan Huygens, joined this
circle.

Definition 7.15. Suppose that a circle (which we take of radius 1) rolls on a
line DAE (see Fig. 7.14), and that P is a fixed point on this circle. The curve
DGPE described by P is called a cycloid . If we denote the distance AB by t,
which is also the angle PCH (measured in radians), and if we take the point
A as origin, we have for the coordinates of P

x = t+ sin t
y = 1 + cos t

− π ≤ t ≤ π . (7.27)
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Fig. 7.14. The tangent to the cycloid

Equations (7.27) constitute a parametric representation of the curve, with t as
parameter, and allow its geometrical properties to be established by analytic
methods (see e.g. Hairer and Wanner, 1997, pp. 104, 117, 138, 142). C. Huygens
(1673),12 however, deduced these properties from geometrical results many
years before the first publications of the differential calculus.

Theorem 7.16. With the notation of Fig. 7.14 we have
(a) the tangent to the cycloid at P is orthogonal to BP , i.e. passes through

H and
dy

dx
= − tan

t

2
; (7.28)

(b) the infinitesimal length of the arc PP ′′ is

ds = 2 cos
t

2
dt ; (7.29)

(c) the area DAEGD is 3π, i.e. three times the area of the circle;

(d) the two neighbouring normals PB and P ′′B′′ of the curve intersect at the
point Q such that QB = BP . This is thus the centre of curvature and lies
on a second cycloid FE;

(e) the arc length QE is equal to the distance QP (we say that the cycloid
FE is the “evolute” of the curve GE);

(f) the total arc length DGE is 8.

12The historical importance of this book can hardly be exaggerated, since a year
later the young Leibniz, during his stay in Paris, received his initiation to modern
mathematics from Huygens. Two more years later Leibniz’ differential calculus was
born.
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Proof.

(a) We again apply the idea of composed movements (see the previous proof):
for a small increment dt, we move the point P to P ′ by rotating the circle
through the angle dt, followed by a horizontal translation of P ′ to P ′′ and
B to B′′ of distance dt. Then the sides PP ′ and P ′P ′′ are of equal length
and orthogonal to PC and CB. The triangle PP ′P ′′ is thus isosceles,
smaller by the factor dt and orthogonal to PCB. Hence PP ′′ is orthogonal
to PB.

(b) By Eucl. III.20, the angle PBC is t
2

and BPH is a right angled triangle.
Hence BP = 2 cos t2 and we have (7.29).

(c) If dt tends to zero, the line BP ′ tends to the altitude of PP ′P ′′ and
bisects PP ′′, therefore the area BB′P ′′P is composed of a triangle and
a rectangle, both of base ds

2
and altitude 2 cos t

2
. Therefore, by (1.6), the

cycloid has an area three times that of the circle, which is composed only
of the triangles.

(d) Since BB′ is half of PP ′′, we also see that the two normals PB and
P ′′B′′ intersect at Q where QB = BP = 2 cos t

2
. Because QI = 2 sin t

2
=

2 cos t−π2 , we see that Q moves on a cycloid which is “dephased” by π.
This cycloid has QP , which is orthogonal to QI, as tangent. This property
means that Q is the centre of curvature, as we will see in Sect. 7.6 below.

(e) C. Huygens convinced himself of this by a picture as in Fig. 7.15 (left).
Using integral calculus, you can simply integrate 2 sin t

2 dt (see (7.29))
and obtain the same result.

(f) This follows because the arc length DGE is twice the arc length FE,
which is FG = 4.

With the above results, we can now verify directly the isochronal property
(see e.g. Hairer and Wanner, 1997, equation (7.29), p. 142), which allowed
Huygens to use the cycloid to design the most accurate pendulum clock of

P

Q

P

Q

P

Q

P

Q

P

Q

P

Q

P

Q

P

Q

P

Q

Fig. 7.15. Determination of arc length (left); autograph drawing of Huygens
(1692/93, right)
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Fig. 7.16. The tangent to the cycloid

his time (see Fig. 7.15 right). One also obtains the brachistochrone property
(Hairer and Wanner, 1997, p. 138), which initiated the development of the
calculus of variations.

Theorem 7.17. The cycloid can also be obtained as the envelope of a diam-
eter of a circle of radius 2, rolling on a line with half the rotational speed, i.e.
with the same horizontal speed, as the circle of Thm. 7.16 (see Fig. 7.16).

Proof. The line PH of Fig. 7.14, if produced, is the diameter of a circle of
radius 2, rotated through an angle of t

2
. If this circle rolls along the line DE,

it rotates at this moment around the base point B. This diameter touches the
curve at the point where the diameter has no vertical speed, i.e. where the
diameter is perpendicular to B. This is precisely the point P . The curve of
Fig. 7.16 is thus the same as that of Fig. 7.14.

τ

t

Q

S

Steiner’s deltoid. We will explain below the
original motivation of Jacob Steiner’s discovery
(see Theorem 7.26). Let a point Q rotate on
a circle and let a line be attached to it, which
rotates with half the speed in the opposite direc-
tion, i.e. such that τ = t

2 . Thus, if this line
is orthogonal to the circle for, say t = 0, it
will again be orthogonal for t = 120◦, and a
third time for t = 240◦. If these lines are ex-
tended, they produce a beautiful curve, which
is Steiner’s deltoid (1857).13

If we let a circle of radius 2 roll inside a circle of radius 3, then a diameter
of the rolling circle will produce precisely the required movement and the
deltoid will be the envelope of the family of these diameters (see Fig. 7.17
below and Fig. 7.28). Further, as for the cycloid (Theorem 7.17), we obtain
the same curve from the movement of a point on the circumference of a circle

13Most references give the date 1856; this was the year of the presentation to the
Academy, but the paper was published in the Crelle Journal of 1857.
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of radius 1 rolling inside the big circle (see Fig. 7.17 above). The argument
is the same as for the cycloid (see Fig. 7.17 left). Given the angle t, all the
other angles are determined by the requirement that the arcs DP , DU and
DA must be the same, i.e. the circles are rolling.

There is another surprise, also noted by Steiner: we observe that the end-
points U and V of the rolling tangents, which are at constant distance 4, also
both stay on the deltoid and move at half the speed in the opposite direction.
To see this, we complete the broken line SQV to a parallelogram, i.e. inter-
change the relative position of V with respect to Q, and of Q with respect to
S. Then we have the same construction as for the point P , with t replaced
by − t

2 .

Equations. By looking at the positions of the points C and P in Fig. 7.17 (left)
we obtain, as for (7.27),

x = 2 cos t+ cos 2t
y = 2 sin t− sin 2t

0 ≤ t ≤ 2π (7.30)

t

t

t

t/2

2t

S A

Q

C

D

P
U

V

S

S

Fig. 7.17. Steiner’s deltoid generated by rolling circles; as the trace of a point on
the circumference (above); as the envelope of diagonals (below)
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for the parametric representation of the deltoid in Cartesian coordinates.
Steiner claims in the title of his paper that the curve is “of the fourth de-
gree”, without explaining why. Indeed, we obtain from (7.30) by squaring,
adding and simplifying with (5.6) the relation

x2 + y2 = 5 + 4 cos 3t (7.31)

which already shows the 120◦ symmetry of the curve. By setting u = cos t,
the first equation of (7.30) becomes

u2 + u− x+ 1

2
= 0 .

This is a quadratic equation for u = cos t and yields u as an algebraic expres-
sion in x:

u = −1

2

(
1∓
√

2x+ 3
)
.

Using cos 3t = cos3 t− 3 cos t, the right-hand side of (7.31) can be written as

5 + 4u(4u2 − 3) = −9− 12x± 2(2x+ 3)
√

2x+ 3 .

By inserting this into (7.31) we see that

(x2 + y2 + 9 + 12x)2 = 4(2x+ 3)3 , (7.32)

which is, indeed, an algebraic equation of degree 4. By expanding (the first
term with Eucl. II.4), we can transform this equation into

(x2 + y2 + 9)2 = 8x3 − 24xy2 + 108 , (7.33)

where the 120◦ symmetry of the curve is easier to see.

“A l’egard des lignes de Mr. Bernoulli, vous avés raison, Mon-
sieur, de ne pas approuver qu’on s’amuse à rechercher des lignes
forgées à plaisir. [You are quite right, Monsieur, about the lines of
Mr. Bernoulli, in not approving this investigation of lines created
arbitrarily.]”

(Letter of Leibniz to Huygens, Bronsvic 11

21
Sept. 1691)

The lemniscate and the Cassini curves. Jac. Bernoulli introduced the
lemniscate by giving the formula

x2 + y2 = a
√
x2 − y2 , (7.34)

where a is a (positive) parameter. Written in polar coordinates

x = r cosϕ y = r sinϕ , (7.35)

this equation becomes
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ℓ2

−dℓ2

ℓ1 dℓ1

ℓ1ℓ2

Fig. 7.18. Drawing of the lemniscate (together with other interesting curves) by
Jac. Bernoulli 1695 (left); constant area of a rectangle (right)

r2 = ar

√
cos2 ϕ− sin2 ϕ or r = a

√
cos 2ϕ (7.36)

with (5.8).
The original motivation for this curve was not geometrical at all, but its

arc length was used by Bernoulli (“Curvam Accessus & Recessus ...”) to com-
pute difficult integrals and solve differential equations for elastic curves, the
Isocrona Paracentrica etc. (“... hujus Problematis omnium facillimam per rec-
tificationem curvæ algebraicæ, quam Lemniscatam voco ...”, see Exercise 22
below, Fig. 7.18, left, Jac. Bernoulli (1694) and (1695); see also J.E. Hofmann
(1956) for more details).

Singularity. Squaring both sides in (7.34), we obtain

(x2 + y2)2 + a2y2 − a2x2 = 0 . (7.37)

If x, y tend to zero, the fourth-power term is negligible and the equation tends
to y2 − x2 = (y − x)(y + x) ≈ 0. This explains why the curve at the origin
is asymptotically equal to the lines y = ±x (see the bold curve in Fig. 7.20).
The shape of the curve thus “refert jacentis notæ octonarii∞, ... sive lemnisci,
d’un noeud de ruban Gallis”.

Tangents to the lemniscate. The following remarkable property is at-
tributed by Loria (1910/11, p. 217) to the mathematician Vechtmann (Diss.
inaug. phil. de curvis lemniscatae, Göttingen 1843):

Theorem 7.18. The perpendicular to the tangent to the lemniscate at a point
P makes the angle

3ϕ (7.38)

with the x-axis, where ϕ is the angle of the line PO with the x-axis (see
Fig. 7.19 (a)).
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Fig. 7.19. Tangents to the lemniscate

Proof. We prove that the angle OPR is 2ϕ, hence the exterior angle of the
triangle ORP is, by (1.2), equal to ϕ + 2ϕ = 3ϕ. By orthogonal angles (see
Fig. 1.7 and Fig. 7.19 (b)), this means that tan 2ϕ = dr

r dϕ
= r dr

r2dϕ
. But this

follows from r2 = a2 cos 2ϕ and, after differentiation, r dr = a2 sin 2ϕdϕ.

Cassini curves. We now choose a2 = 2 in (7.37), add 1 to each side, and
write −2x2 = 2x2−4x2. This gives (x2+y2+1)2−4x2 = 1, or, with Eucl. II.5,

((x+ 1)2 + y2)((x− 1)2 + y2) = 1 , i.e. ℓ1 · ℓ2 = 1 , (7.39)

where ℓ1 and ℓ2 are the respective distances from the point (x, y) to the
points F1 = (−1, 0) and F2 = (1, 0). This very nice property of the lemniscate
was noticed neither by Jac. Bernoulli nor by Euler (1748, vol. II, Chap. XXI),
despite the fact that a calculation such as the one above would have taken
Euler not more than half a second. Generalising this characterisation of the
lemniscate, we obtain, for an arbitrary positive constant C, the equation

ℓ1 · ℓ2 = C or (x2 + y2 + 1)2 − 4x2 = C2 (7.40)

−1 1

Fig. 7.20. Lemniscate and Cassini curves ℓ1 · ℓ2 = C, drawn for the values C =
0.2, 0.4, 0.6, 0.8, 1, 1.2, 1.4, . . .
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for the so-called Cassini curves14 (the other curves in Fig. 7.20).
In polar coordinates, the right-hand equation in (7.40) is (r2 + 1)2 −

4r2 cos2 ϕ = C2, or

r4−2r2·cos 2ϕ+(1−C2) = 0 , r =

√
cos 2ϕ±

√
cos2 2ϕ+ C2 − 1 . (7.41)

This quadratic equation for r2 has, depending on C and ϕ, either two, one,
or no positive solutions.

α1

α2

α1

α2

ℓ1 ℓ2

P

F1 F2

G1

G2

Fig. 7.21. Tangents to the Cassini curves

Theorem 7.19 (Steiner, 1835b). The tangents to the Cassini curves have the
following property: let α1 and α2 be the angles between the normal to the
tangent at P and the lines joining P to F1 and F2 respectively (see Fig. 7.21);
then

sinα1

sinα2
=
ℓ1
ℓ2
, (7.42)

which is a sort of Snellius–Descartes’ law for refraction with “speeds of light”
ℓ1 and ℓ2. If G1 is the point on the tangent such that G1F1 is orthogonal to
F1P (and similarly for G2), then G1P = PG2.

Proof. We move the point P along the tangent by a small amount ds ; then,
precisely as in Fig. 7.7, ℓ1 increases by dℓ1 = ds sinα1 and ℓ2 decreases by
dℓ2 = ds sinα2. However, since the area of the rectangle ℓ1, ℓ2 must remain
constant (see Fig. 7.18, right), the two shaded rectangles have the same area,
which means that dℓ1

dℓ2
= ℓ1

ℓ2
. This leads to (7.42).

The last statement follows from the fact that α1 and α2 repeat as or-
thogonal angles at G1 and G2 respectively, so that G1P = ℓ1/ sinα1 and
PG2 = ℓ2/ sinα2.

Remark. If we let α1 = α + γ and α2 = α − γ (i.e. 2α is the angle between
the lines PF1 and PF2, while γ is the deviation of the normal from the angle
bisector), formula (7.42) becomes, after inserting (5.6) and (5.7), the relation

14The famous astronomer Giovanni Domenico (or Jean-Dominique) Cassini
(1625–1712) thought for a while that planets move on such curves. Thus the discov-
ery of these beautiful curves is due to a false astronomical conjecture.
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tan γ = tanα · κ− 1

κ+ 1
, where κ =

ℓ1
ℓ2
. (7.43)

In the case of the ellipse (see (3.5)) we have κ = 1 and we obtain γ = 0;
another proof of Apoll. III.48.

7.6 Curvature

“There are few Problems concerning Curves more elegant than
this, or that give a greater Insight into their nature.”

(I. Newton 1671, Engl. pub. 1736, p. 59)

We agree with Newton (see the quotation) that the question of finding a mea-
sure for the curvature of a given curve at a given point P is very interesting.
Newton treated this question in Problems V and VI of Newton (1671).

Solution. We draw the perpendicular through P to the tangent (see Fig. 7.22).
Then we move P to a neighbouring point Q and again draw the perpendicular
to the tangent. The point C where these perpendiculars meet will be, for a
small displacement, the centre of the osculating circle, whose radius r = PC
is the radius of curvature at P . Its inverse κ = 1

r is the curvature at P .

Example: the ellipse. We write the coordinates of a point P on the ellipse
with semi-axes a and b as (ac, bs) where c = cosu and s = sinu. Then by (7.9)
the tangent at P has slope − bc

as , so that by (7.2c) the perpendicular at P has
the equation y = bs + as

bc (x − ac). To simplify the calculations, we multiply

this equation by the constant b
a to obtain

A

B

C1

C2

P

Q

C

Fig. 7.22. Curvature of the ellipse; left: Newton’s 1671 manuscript, reproduced
from the 1740 French publication
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b

a
y =

(b2
a
− a
)
s+ tx , where s = sinu, t = tanu . (7.44)

If u now increases by a small quantity δ, then s will increase by δc (see formula
(5.6) on page 117) and t will increase by δ

c2 (see formula (7.65) of Exercise 18
on page 237). The second perpendicular (at Q) is thus given by

b

a
y =

(b2
a
− a
)

(s+ δc) +
(
t+

δ

c2

)
x . (7.45)

Subtracting (7.44) from (7.45) we obtain for the abscissa xC of the intersection
point C:

0 =
(b2
a
− a
)
δc+

δ

c2
xC ⇒ xC = c3

(
a− b2

a

)
, yC = s3

(
b− a2

b

)
(7.46)

(the result for yC is found by symmetry). These formulas were discovered by
Newton, in a different notation, with his calculus of “fluxions”. If we allow u
to vary in the range 0 ≤ u ≤ 2π, then the point C describes a diamond-like
curve with four cusps, drawn in Fig. 7.22. This curve is a (stretched) astroid .

The smallest and largest radii, r1 = b2

a
and r2 = a2

b
for the points A and B

respectively, can be constructed by Thales’ theorem using the perpendicular
from the point (−a, b) to AB (see Fig. 7.22, right). Notice the coincidence that
r1 = p, the latus rectum.

The tractrix and its curvature. Towards the
end of the 17th century, mathematicians started to
study a completely new type of curve. In contrast to
Descartes and his followers who defined curves by al-
gebraic formulas and investigated their properties, for
example their tangents, we now assume that we know certain properties of the
tangents, and conversely try to find the equations of curves. Greater familiarity
in dealing with moving points (“fluxions”) or “infinitely small” quantities al-
lowed mathematicians to master these new curves, which acquired the name
“transcendental”.15 The tractrix was proposed around 1670 by the famous
French architect and medicus Claude Perrault to many mathematicians in
Paris and Toulouse as the solution of the following problem (see Fig. 7.23 (b)):
Find the curve such that on each tangent, the segment between the point of
tangency and the intersection with the x-axis has the same length. To illus-
trate this problem, he would take out a silver fob watch (horologio portabili
suae thecae argenteae) and drag it across the table by pulling at the watch-
chain. The first published solutions were given in Huygens (1692) and Leibniz
(1693). For more details about the analytical treatment, see Hairer and Wan-
ner (1997, p. 135) and for a very rich and complete account of the whole
theory, see Tournès (2009). We will obtain here many properties of this curve
by simple geometric arguments.

15Unde triplices habemus quantitates: rationales, Algebraicas, & transcendentes.
(Leibniz, 1693, p. 385)
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Fig. 7.23. The tractrix and its curvature; left: δ = 0.22a, right: δ = 10−3a

Suppose that the watch-chain of length a is initially perpendicular to the
x-axis, between P1 and A1 (see Fig. 7.23 (a)). We then pull A1 to B1 in the
direction of the chain by a small distance δ, so that the watch moves by the
same distance from P1 to P2. Then the point B1 is brought back to the point
A2 on the x-axis along an arc centred at P2. From here we continue to pull
in the direction of the chain by another δ, return to the x-axis and so on.
Thus the watch describes a broken line P1, P2, P3, . . . If δ becomes smaller
and smaller, this line tends to a curve, which is our tractrix (Fig. 7.23 (b)).
See also Leibniz’ original drawing in Fig. 7.24 (left). After this figure appeared
in the September 1693 issue of the Acta Eruditorum, Leibniz was not satisfied
and inserted in the November issue some Corrigenda which explained the
above procedure more clearly.

Curvature of the tractrix. To find the radius of curvature r at a given point P ,
we draw two consecutive perpendiculars to the broken line (see Fig. 7.23 (a)).
If we also add the perpendicular PN of length h, with N on the x-axis, we
obtain two pairs of similar triangles (in grey), and have by Thales

r

a
=
δ

ε
and

δ

ε
=
a

h
⇒ r =

a2

h
. (7.47)

Thus the tractrix has the remarkable property that the product rh has a
constant value along the curve.

Area under the tractrix. We see from Thales applied to the two triangles in
Fig. 7.24 (right) that

dy

dx
= − y√

a2 − y2
or, neglecting the sign,

√
a2 − y2 · dy = y · dx , (7.48)

i.e. the two dark rectangles in this figure have the same area. Since this is true
for all points x, y on the curve, we obtain that both surfaces have the same

area, i.e. the area under the tractrix is equal to a2π
4

(Huygens, 1692, §IV).



7.6 Curvature 213

ay

√
a2 − y2

√
a2 − y2

dy
dx

Fig. 7.24. Leibniz’ drawing of the tractrix (left); area under the tractrix (right)

The tractroid. The next idea of Huygens was to rotate the picture on the
right of Fig. 7.24 around the x-axis. The tractrix then generates a surface of
revolution called the tractroid, while the circle on the left generates half of a
sphere. The grey rectangle to the right yields a disc of thickness dx on a circle
of radius y, i.e. a cylinder of volume y2π dx. The rectangle to the left yields an
annulus, which we can, for dy small, straighten to a prism of base

√
a2 − y2 dy

and height 2πy. By (7.48) this volume is precisely twice the volume of the disc.

We conclude that the volume of the tractroid is a3π
3

, one fourth of the volume
of the sphere of radius a (also found by Huygens, 1692, §V).

Curvature of the tractroid. The theory of curvature of surfaces, initiated by
the classical papers Euler (E333, 1767b), Meusnier (1785) and Gauss (1828),
requires much more calculus. The result is that, for a given point P , there is
a different curvature in each direction, but there are two principal directions,
perpendicular to each other, with a minimal and a maximal curvature κ1
and κ2. These determine the curvatures in all other directions. The so-called

P

Fig. 7.25. Left: the tractroid, three geodesics and triangles without Eucl. I.32;
right: drawing of Meusnier (1785) explaining the curvature of a surface of revo-
lution (above), drawing of the tractroid (without calling it thus) by Minding (1839,
below)
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Gaussian curvature is defined by κ = κ1 ·κ2 and plays an important role in the
study of surfaces which can be deformed into each other. Despite the fact that
these theories are far beyond the scope of this book, we can see in Fig. 7.25
that for the tractroid κ2 = 1

r
(for the curvature of the generating tractrix) and

κ1 = − 1
h of the opposite sign (h is the radius of the sphere tangent at P and

centred in N). We conclude from (7.47) that κ = − 1
a2

independently of the po-
sition of P , i.e. the tractroid has constant negative curvature (Minding, 1839).
We finally mention the discovery of Beltrami (1868) that the “geodesics” on
the tractroid (i.e. the curves of shortest distance, which correspond to straight
lines in Euclidean geometry) can be used to create a non-Euclidean geome-
try.16 This is demonstrated in Fig. 7.25, where three geodesics are drawn which
form two triangles for which Eucl. I.32 is not satisfied.

7.7 The Euler Line by Euler

Euler (1767a) describes his remarkable discovery of the “Euler line”, which we
have already met in Chap. 4 (see page 91), in the paper Solutio facilis prob-
lematum quorundam geometricorum difficillimorum. The curious title “Easy
solution of certain very difficult geometrical problems” expresses Euler’s en-
thusiasm for the power of the analytical method. We now follow these calcu-
lations, which will lead to some further surprises.

Theorem 7.20. Let a triangle ABC with sides a, b and c be placed in such a
way that A is at the origin and B at distance c from A on the positive x-axis.
Then the coordinates of the four remarkable points of the triangle are

O (circumcentre): xO =
c

2
yO =

c

8A (a2 + b2 − c2)

I (incentre): xI =
c+ b− a

2
yI =

2A
a+ b+ c

G (barycentre): xG =
b2 + 3c2 − a2

6c
yG =

2A
3c

H (orthocentre): xH =
b2 + c2 − a2

2c
yH =

(b2 + c2 − a2)(a2 + c2 − b2)

8Ac

where A is the area of the triangle, which can be computed by Heron’s formula
(6.22) on page 171.

Proof. Orthocentre H: We use the notation of Fig. 4.9. We obtain the formula
for xH = AF = b cosα with the law of cosines (5.10). We have a similar
formula for BD and obtain from the area formula (1.6) that

16“... nous appellerons pseudospheriques les surfaces de courbure constante
négative [... we call pseudospheres the surfaces of constant negative curvature]”,
Beltrami, French transl., p. 259.
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AD =
2A
a
. (7.49)

Finally, Thales’ theorem gives yH = FH = AF ·BD
AD

, which leads to the stated
expression.

Barycentre G: As for (7.49) we compute the coordinates of C as xC = xH
and yC = 2A

c . The coordinates of B are (c, 0) and those of A are (0, 0). The
coordinates of G are the corresponding arithmetic means.

Circumcentre O: We recall the two important formulas (5.16) and (5.18) for
the radii of the circumcircle and the incircle,

R =
abc

4A , ρ =
2A

a+ b+ c
. (7.50)

Inspired by Fig. 5.8 (right), we then have xO = c
2 and yO = R cos γ. The

stated result follows by inserting R and using the cosine rule.

Incentre I: The value xI = s− a is given in Fig. 4.6, and yI = ρ.

Distances. Once Euler had the coordinates of these points, he was able to
compute their distances in a straightforward way by Pythagoras’ theorem, as
in (7.1). For example, the distance between I and O is obtained as

IO2 = (xI −xO)2 + (yI − yO)2 =
(
b− a

2

)2
+
(

2A
a+ b+ c

− c

8A (a2 + b2− c2)
)2
.

This must now be multiplied out and simplified with considerable compu-
tational skill. In all these calculations, A appears only as A2, therefore the
square roots don’t appear and all the algebra we need involves rational ex-
pressions in a, b, c. Without the use of a modern computer algebra system,
Euler arrived, in §19, after six pages of “facilis” calculations, at the following
results, which we adapt to our notation.

Theorem 7.21. In the triangle ABC of Theorem 7.20 we have the distances

IO2 = R2 − 2Rρ ,

IH2 = 4R2 − 1
4
P + 4Rρ+ 3ρ2,

HO2 = 9R2 − 1
2
P + 8Rρ+ 2ρ2,

(7.51)

where P = (a + b+ c)2, and also HG = 2
3
HO and GO = 1

3
HO.

The last two results led Euler to the conclusion that H,G,O are collinear.

We shall give here two other consequences of the above formulas. Firstly,
we observe that the first formula of (7.51), which was found independently
by W. Chapple (1746), depends only on R and ρ, but is independent of the
individual values of a, b, c. This has as interesting consequence the following
porism, first noticed by Lhuilier (1810/11), which is a special case of Poncelet’s
closure theorem (1822), see Theorem 11.7.
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Theorem 7.22. Let two circles C1, C2 be
given, C2 inside C1, of radius R and ρ re-
spectively. Let the distance d of their cen-
tres satisfy d2 = R2 − 2Rρ. Then, if we
construct, starting from any point A on C1,
the points B, C and D on C1 by drawing
successive tangents to C2, we will always
have D = A.

d
C1

A

B

C

A′

B′

C′

Our next application is a discovery of Feuerbach (1822), which we have already
noted in Fig. 4.13:

Theorem 7.23. The incircle and the Feuerbach circle (nine-point circle) of
a triangle are tangent to each other.

Proof. The nine-point centre N of the Feuerbach circle is the midpoint of the
segment HO (see Fig. 4.13) and its radius is R/2. We compute the distance
IN by using Pappus’ formula (4.5) on page 90, which gives IN2 = 1

2IO
2 +

1
2
IH2 − 1

4
HO2. By inserting the values of (7.51) and multiplying out, we

obtain IN = R
2 − ρ. This proves the result.

Remark. In fact Feuerbach proved much more: The nine-point circle is also
tangent to all three excircles.

The Nagel line. Euler’s formulas of Theorem 7.20 provide us with an easy
proof of an interesting discovery of Nagel (see Baptist, 1992, p. 77 ff.). We
recall that the Nagel point X8 is the intersection of the lines joining the
vertices to the points of contact of the excircles with the opposite sides (see
Thm. 4.12). Let Fc on AB be one of these points and F the midpoint of AB.
We compute the slope of the line connecting the incentre I with F and that
of the line connecting C with Fc:

yI
xI − c

2

=
yC

xC − xFc

=
4A

(a+ b+ c)(b − a)
.

yI

A B

C

F

I

xIFc

(a)

A B

C

F

D
G

I

Da

Fc

X8

(b)

Fig. 7.26. Existence of the Nagel line
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Here we have used xFc
= s − b = c−b+a

2
from (4.9), inserted all other values

from Theorem 7.20 and simplified the formulas. We see that these lines are
parallel (see Fig. 7.26 (a)). If we now draw two of these pairs of lines (see
Fig. 7.26 (b)), we see that the triangles AX8C and DIF are similar, with ratio
2 : 1, and with the centroid G as centre of similarity. We have thus proved:

Theorem 7.24 (Nagel 1836). The Nagel point X8, the barycentre G and the
incentre I are collinear; G divides the segment X8I in the ratio 2 : 1.

7.8 The Simson Line and Sturm’s Circles

The Simson Line was discovered by William Wallace in 1797 (see Coxeter and
Greitzer, 1967, p. 41). It reappeared in an article on “Practical Geometry” by
F.-J. Servois (1813/14), who wrongly attributed it to Robert Simson (1687–
1768) (“le théorème suivant, qui est, je crois, de Simson”). Servois was one
of the many brilliant mathematicians of that period enrolled in the French
military. The “practical” problem was to locate the position of a straight line
(perhaps the trajectory of a cannon ball) behind an inaccessible obstacle.

Theorem 7.25. Let P be a point on the circumcircle of a triangle ABC, and
let D,E, F be the feet of the perpendiculars from P to the (possibly produced)
sides of the triangle (see Fig. 7.27 (a)). Then these three points are collinear.
The line through these three points is called the Simson line of P with respect
to ABC. Furthermore, if one of these perpendiculars, say PF (perpendicular
to AB), is produced to meet the circumcircle in the point R, then the Simson
line of P is parallel to CR.

Proof. Draw circles with diameters PA, PB and PC; two of the right angles
at D, E and F will lie on each of these circles (see Fig. 7.27 (b)). The two
angles δ at P are equal by Eucl. III.22, since they are opposite to the same

R
A

B

C

P

F

D

E

(a)

δ
δ

α
R

A

B

C

P

F

D

E

(b)

Fig. 7.27. The Simson line: theorem and proof
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angle α at A, once in the cyclic quadrilateral PEAF , and once in PCAB. By
subtracting the angle FPC, the two grey angles at P are also equal. Applying
Eucl. III.21 twice, the two grey angles appear at D (and are equal there as
well). Since CDB is a straight line by assumption, EDF is also a straight line
(by the converse of Eucl. I.15).17

Finally, by Eucl. III.20, the grey angle BPR reappears a fifth time as BCR
at C. Hence, by Eucl. I.27, the line CR is parallel to the Simson line.

Theorem 7.26 (J. Steiner, 1857). If the point P describes the circumcircle
of ABC, the corresponding Simson lines create a Steiner deltoid, which is
tangent to the nine-point circle. The points of contact trisect those arcs of
this circle which are outside the triangle (see Fig. 7.28).

Remark. The directions of the Steiner deltoid of ABC are related to those of
Morley’s triangle of the same triangle.

P

Q

R

A

B

C

Fig. 7.28. The Simson lines of a point P rotating on the circumcircle together with
Morley’s triangle of ABC

17This is precisely the elegant proof of Servois. A simpler proof for this first
part of the theorem is as follows (private communication of John Steinig): Show
by three applications of Eucl. III.21 that anglePED = anglePCD = anglePCB =
anglePAB = anglePAF = anglePEF .
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A
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C

P P ′

F

F ′
D

E

H

O

N

Q Q′

R

R′

G

Fig. 7.29. Proof of Steiner’s theorem about the Simson line and the deltoid

Proof. Steiner’s original paper consists of 7 pages, nearly all in boldface, of
detailed descriptions of this curve, without any hint of a proof. Only a few
words let us guess what he intended. The nine-point circle and the circum-
circle are in similarity position with ratio 1 : 2 and with the orthocentre H as
similarity centre (see Fig. 4.13). In particular, the nine-point circle bisects the
segments HA, HB and HC.

The crucial fact is that the midpoint Q between H and P , which by simi-
larity lies on the nine-point circle, also lies on the Simson line. This is true in
the case where P is one of the vertices A, B or C of the triangle, because then
the Simson line coincides with one of the altitudes (the property is also true
when P is a point opposite one of the vertices, when the Simson line coincides
with one of the sides of the triangle). For an arbitrary point P , we choose any
of the three directions of the altitudes, for example HC and its parallel PF .
Then what we wish to prove is that PF = HG (see Fig. 7.29 and Exercise 10
of Chap. 2, page 55). By the last assertion of Theorem 7.25, FR = GC. We
now move P to P ′. Then P ′F ′ is parallel to PF , because both are orthogonal
to AB. Consequently, R′F ′ decreases by the same amount as P ′F ′. Since CH
remains fixed, P ′F ′ is again equal to HG′ = HC + F ′R′.

The result now follows very quickly: the angle POP ′ is equal to QNQ′

and also to ROR′ (but oriented inversely). Thus, by Eucl. III.20, the inscribed
angle RCR′ is half the size of QS′Q′. This means that when Q rotates around
the centre N of the nine-point circle, the Simson line, which is attached to Q
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and always parallel to CR, rotates with half the angular speed in the opposite
direction. This is precisely the property defining the deltoid.

Remark. Because of the succinct presentation by Steiner, many other proofs
have been published in the meantime. We refer to M. de Guzmán (2001) for
a particularly elementary, but not short proof and for additional references.

Steiner’s ortholine of the complete quadrilateral. The above results
provide an elegant proof of another surprising discovery of Steiner.

Theorem 7.27 (J. Steiner, 1827/1828). The orthocentres of the four triangles
of a complete quadrilateral are collinear (see Fig. 7.30).

A
B

C

D

E

F

HEAD

HEBC

HFBA

HFCD

Fig. 7.30. Steiner’s ortholine of the complete quadrilateral

Proof. We know from Theorem 4.15 that the circumcircles of the four triangles
have a common point M (see Fig. 4.17). This point, lying on all four circum-
circles, possesses a Simson line for each of these triangles. But any two of these
lines have two points in common, hence all these Simson lines coincide. From
the proof of Theorem 7.26 we know that the midpoints between M and the
four orthocentres all lie on this line. Hence by Thales, the four orthocentres
are also collinear, on a line parallel to the first line and located twice as far
from M .

Remark. For an excellent account of this important paper by Steiner, with a
translation and complete proofs, we refer to Ehrmann (2004).
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Fig. 7.31. Proof of Steiner’s formula (a); Sturm’s theorem (b)

Sturm’s circles. Charles-François Sturm (1803–1855), before becoming fa-
mous for Sturm sequences in algebra and Sturm–Liouville theory in analysis,
wrote very neat articles on elementary geometry in the Gergonne Journal.
The following result of Sturm (1823/24) was inspired by Servois’ paper on the
Simson line.

Let ABC be a triangle and P a point arbitrarily chosen inside or outside
of ABC. We draw the perpendiculars PD, PE and PF to the (possibly ex-
tended) sides of ABC and call DEF the pedal triangle of P . We want to find
its area (see Fig. 7.31 (b)).

Theorem 7.28. The area A′ of the pedal triangle DEF remains constant if
P moves on circles concentric to the circumcircle of ABC. More precisely,
this area is given by

A′ =
A
4

(
1− d2

R2

)
, (7.52)

where R is the radius of the circumcircle, d the distance PO and A the area
of ABC.

Proof. Sturm’s original proof was simplified (and generalised to n-gons) by
Steiner (1826b) as follows: consider only one vertex A with angle α and per-
pendiculars PF and PE, see Fig. 7.31 (a). Then

�− 2△ = PA2 sin 2α

4
, (7.53)

where � is the area of the quadrilateral AFPE and △ the area of the trian-
gle FPE. We show Steiner’s formula by extending the triangle FPE to the
parallelogram FPEP ′ of area 2△. Then � − 2△ is the area of the two grey
triangles AFE′ and P ′EE′, whose areas are AF 2 sinα cosα

2
and FP 2 sinα cosα

2
,

respectively. Formula (7.53) now follows from Pythagoras and (5.8). Adding
up (7.53) for all three vertices gives

A− 2A′ = PA2 sin 2α

4
+ PB2 sin 2β

4
+ PC2 sin 2γ

4
. (7.54)
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We now consider the triangle ABC together with its angles and area as fixed
and the point P = (x, y) together with the area A′ as variable. Inserting
PA2 = (x − xa)2 + (y − ya)2 and similar expressions for PB2 and PC2, we
obtain after simplification

A′ = −T (x2 + y2) + 2xox+ 2yoy + U = −T ((x− xo)2 + (y − yo)2) + V,

where T , xo, yo, U and V are constants. The level curves are thus concentric
circles with centre (xo, yo). If P moves to one of the vertices, the pedal triangle
shrinks to a segment with area 0. We conclude that the level curve through a
vertex must be the circumcircle and (xo, yo) = O, the circumcentre. Thus we
obtain

A′ = V − Td2. (7.55)

We finally set d = 0, where DEF becomes the triangle of the medial reduction
of Fig. 4.8 (b) whose area is one quarter of A. This, together with A′ = 0 for
d = R, finally leads to formula (7.52).

Remarks. (a) This also gives a second, analytic proof for the existence of
the Simson line.

(b) Soon after his discovery, Sturm sent an “Addition” to the Gergonne Jour-
nal. By placing the point P at the incentre I, the parallelogram FPEP ′ be-

comes a rhomboid and A′ = ρ2

2 (sinα+sinβ+sin γ). This, together with (7.52)
and (5.19), leads to 2Rρ = R2 − d2, an elegant proof of the Chapple–Euler
formula (7.51) for the distance between the incentre and the circumcentre.

7.9 The Erdős–Mordell Inequality and the

Steiner–Lehmus Theorem

nce upon a time, mathematicians like P. Erdős would submit prob-
lems in elementary geometry to the American Mathematical Monthly
and mathematicians like L.J. Mordell would propose their solutions.
Problem 3740 then became the following famous theorem. A sharper

result was contributed as a second solution by David F. Barrow; it implies
Erdős’ inequality and we prove it below. Many modifications and generalisa-
tions of these theorems were published later (see e.g. Oppenheim (1961) and
Satnoianu (2003)).

Theorem 7.29 (Erdős–Mordell, 1937). Let P be any interior point of a trian-
gle ABC, let p, q, r be the distances of P from the vertices A,B,C and x, y, z
the distances of P from the three sides (see Fig. 7.32 (a)). Then

2(x+ y + z) ≤ p+ q + r . (7.56)
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Fig. 7.32. Inequality of Erdős–Mordell (a); Barrow (b)

Theorem 7.30 (Barrow, 1937). Let p, q, r be the distances of P from the
vertices of a triangle ABC, and let u, v, w be the lengths of the bisectors of
the angles BPC, CPA and APB, respectively (see Fig. 7.32 (b)). Then

2(u+ v + w) ≤ p+ q + r . (7.57)

Proof (of Theorem 7.30). If θ denotes the angle between the segments p, w
and between w, q, we have from formula (5.21) on page 121

w =
2

1
p

+ 1
q

· cos θ ≤ √pq · cos θ . (7.58)

The last inequality is part of the familiar inequality h ≤ g ≤ a between h the
harmonic, g the geometric and a the arithmetic mean of two numbers p, q > 0

h =
2

1
p + 1

q

, g =
√
pq , a =

p+ q

2
.

p q

a h g (7.59)

The inequality between the means is visible in the picture to the right, which
goes back to Pappus (Collection , Book III, Chap. XI). We draw a semicircle
above the segment of length p+ q. Since its diameter is p+ q, the radius is a.
The altitude is g by Eucl. II.14 (Fig. 2.14, right, page 39), and since ah = g2

by Thales’ theorem applied to the two right-angled triangles, one inside the
other, we have the stated value for h.

Our aim is to prove that p + q + r − 2u − 2v − 2w ≥ 0. If we use (7.58),
and similar estimates for u and v, it suffices to show that

p+ q + r − 2
√
rq cosϕ− 2

√
rp cosψ − 2

√
pq cos θ ≥ 0 . (7.60)

We have to use somewhere that ϕ+ψ+ θ = π. We do this by writing cosϕ =
− cos(π − ϕ) = − cos(ψ + θ) = − cosψ cos θ + sinψ sin θ. Inserting this into
the left side of (7.60) and simplifying, we get
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Fig. 7.33. Steiner–Lehmus theorem; Thébault’s proof (a); Steiner’s proof (b);
Hesse’s proof (c)

(
√
p−√q cos θ −

√
r cosψ)2 + (

√
q sin θ −

√
r sinψ)2 (7.61)

which, being the sum of two squares, is indeed nonnegative.

Remarks. (a) If you find this proof tricky, then you are right; the original
proofs of Mordell and Barrow are much longer. The above proof was found
by simplifying Lu’s proof (Lu, 2008).

(b) Another proof of the “harmonic-geometric” inequality can be obtained
from the hyperbola (see Apoll. III.43 in Fig. 10.18 on page 314): the inter-
section point of the tangents to the hyperbola, for which the product pq is
constant, with the angle bisector, has greatest distance from the origin P if
p = q =

√
pq are equal. For still another proof see Exercise 6 of Chap. 11 on

page 343.

The Steiner–Lehmus theorem. In 1840 Lehmus asked for an elementary
proof of the following result:

Theorem 7.31 (Steiner–Lehmus). If two angle bisectors of a triangle have
the same length, then the triangle is isosceles.

The fact that such a simple geometric result, which could have been a propo-
sition of Euclid’s Book I, was apparently so difficult to prove by geometric
means challenged mathematicians for many decades. Steiner, who had con-
structed such a proof, did not find it worth publishing. Many other proofs,
which appeared in the meantime, finally convinced him to publish the paper
Steiner (1844), where he declared his proof to be the simplest one.

Algebraic proof. Stewart’s theorem (4.8) on page 91 gives us a quick algebraic
proof of this theorem. If the bisectors of the angles α and β are of the same
length, we obtain by applying (4.8) to both of these
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a : b =
(

1−
( a

b+ c

)2)
:
(

1−
( b

a+ c

)2)
.

This algebraic equation only allows the solution a = b. If a > b, say, the left
hand side would be greater than 1 and the right hand side less than 1.

Thébault’s proof. The proof by Victor Thébault (1930), see also Coxeter and
Greitzer (1967), uses Euclid’s Book III. In this and the subsequent proofs we
denote the angles BAC and CBA by 2α and 2β respectively. We suppose that
α > β. We first draw the circle through ADB (see Fig. 7.33 (a)) and define E′

to be the intersection of this circle with EB. Then, the angle E′AD is equal
to E′BD, i.e. to β. Because of β < α this point lies between E and B and, by
Eucl. III.20, its position on the circle ADB is such that the arc AE′ is equal
to the arc E′D and shorter than the arc DB. Hence the arc AD is shorter
than the arc E′B. Thus, by Eucl. III.20 and Eucl. I.18, E′B > AD, a fortiori
EB > AD or v > u.

Steiner’s proof. This proof assumes that u = v and α > β and only uses
results of Euclid’s Book I. Then “zur bequemeren Übersicht” (for a more
convenient visualisation) we attach the triangle AEB in a reversed position
as A′E′B′ along the common side c of equal length to the triangle ABD (see
Fig. 7.33 (b)). By Eucl. I.5 the two angles ϕ are equal, e < d by Eucl. I.24
(which we have not discussed in detail) and ε < δ by Eucl. I.18. Now we write
Eucl. I.32 for the two triangles:

α+ ϕ+ ε+ 2β = β + ϕ+ δ + 2α ⇒ ε+ β = δ + α ,

which contradicts the above inequalities.

Hesse’s proof. This proof, attributed by Dörrie (1943, §43) to O. Hesse, ap-
pears to be more direct. This time we attach the triangle AEB as A′E′B′

along the angle bisector of equal length u to ABD (see Fig. 7.33 (c)). We de-
note the angle ADB by ϕ and the angle AEB, which is equal to A′E′B′, by
ψ. By Eucl. I.15 the two angles ε at F are equal. From Eucl. I.32 applied to
both triangles AFE and BFD, we conclude that α + ϕ = β + ψ. Hence the
quadrilateral ABB′A′, which has two opposite sides of the same length c, has
also two opposite equal angles. Consequently, it is a parallelogram and we
conclude that the second pair of opposite angles must be equal, i.e. 2α = 2β
or α = β.

7.10 The Butterfly

According to Coxeter and Greitzer (1967, p. 45), this theorem of geometry
“has been around for quite a while ...”. The formula for the length of a cevian,
given in Sect. 5.3, provides a nice trigonometric proof.

Theorem 7.32. If, in the configuration of Fig. 7.34, FF ′ is perpendicular to
CO, then C bisects FF ′.
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A′

B′

C
F F ′
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P

P ′

A B

Fig. 7.34. Left: the butterfly; right: Thébault’s theorem

Proof. We denote the angles ACF and FCB by ϕ and ψ, respectively. We use
formula (5.20) on page 121 for w = CF and w′ = CF ′, and subtract, to get

w − w′ =
sin(ϕ+ ψ)
sinψ
p

+ sinϕ
q

− sin(ϕ+ ψ)
sinψ
p′

+ sinϕ
q′

. (7.62)

We factor out sin(ϕ + ψ) and expand the remaining difference of fractions.
This leads to a fraction with numerator

sinψ
p− p′
pp′

+ sinϕ
q − q′
qq′

.

This expression is zero because pp′ = qq′ (Eucl. III.35) and p′ − p = 2CH =
2CO sinϕ (see Fig. 7.34;H bisects AA′ and the angleHOC is the angle ACF )
and q − q′ = 2CO sinψ.

Remark. A particularly elementary proof, using only Eucl. III.21, Eucl. III.35
and Thales, is given in Coxeter and Greitzer (1967, p. 46). Another proof is
possible by applying property (6.32c) of the Möbius transformation to the
map A 7→ B 7→ B′ 7→ A′ 7→ A. If we choose the Cartesian coordinates (d, w),
(d, 0) and (d,−w) for the points F , C and F ′ respectively, then according to
(6.39) on page 182, we have to multiply the matrices

[
w d − 1

d+ 1 −w

] [
0 d− 1

d+ 1 0

] [
−w d− 1
d+ 1 w

] [
0 d− 1

d + 1 0

]
= Const ·

[
1 0
0 1

]

(start by multiplying the first two and the last two matrices) so that this map
returns to A for any initial point.
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7.11 Thébault’s Theorem

“This computer proof took some 44 hours of CPU on a symbolic
3600 machine (...). The theorem almost has the status of a bench-
mark problem in Groebner theory.” (R. Shail, 2001)

Thébault’s theorem, conjectured in 1938 (see Thébault, 1938), has the re-
markable property that it required three decades to obtain a first proof, which
needed 24 pages of calculations. Shorter, but not easier proofs were later pub-
lished, mainly in Elemente der Mathematik (see Stärk, 1989 and Turnwald,
1986) and in Dutch journals. We refer to Ayme (2003) and Kulanin and Fayn-
shteyn (2007) for complete accounts of these and other proofs.

Theorem 7.33. Let ABC be a triangle with incentre I and let D be an ar-
bitrary point on the line AB. Then the centres P and P ′ of the circles which
touch (a) the line CD, (b) the line AB and (c) the circumcircle of ABC are
collinear with I (see Fig. 7.34, right).

The proof presented below (due to Ostermann and Wanner, 2010) was difficult
to find (see the remarks above) but once found it is, we hope, a pleasure to
follow. It is based on the following “machine”:

yI

yC

y

y′

θ
θ

θ

ψ
ψ

2θ −

C

I

Dx′ xC xI x

P

P ′

Fig. 7.35. The TTT-machine
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Definition 7.34 (The TTT-machine).18 Suppose we have, in the plane, a
fixed x-axis, and two fixed points C and I such that yC > 2yI . We let a point
D move on this axis, and cause the line CD to rotate around C. Our machine
should produce the two (mutually orthogonal) bisectors of the angles between
CD and the x-axis. The point I is projected onto the x-axis, orthogonally
to these bisectors, giving the points x and x′. The points P and P ′ then lie
above these points, on the respective angle bisectors.

For more inspiration, you can construct such a machine from rusty pieces of
iron and let it rotate noisily, or, more quietly, write a Java applet (Bernard
Gisin, www.juggling.ch/gisin/geogebra/Thebault_theorem.html).

Lemma 7.35. When DC rotates around C, the points P and P ′ of the TTT-
machine describe the same parabola, which has a vertical axis and is open
downwards. The points P ′IP are always collinear and p ·P ′I = 1

p
· IP , where

p = tan θ.

Proof (of the lemma). We denote the coordinates of I by (xI , yI), those of C
by (xC , yC) and take the slope of DP , p = tan θ, as parameter. The angle θ at
D reappears three more times as an orthogonal or parallel angle to produce
the four similar white triangles of Fig. 7.36 (a). If we denote by a and b the
sides of the rectangle with diagonal DI and apply Thales’ theorem to these
four triangles, we obtain the lengths indicated in that figure, and see that the
two grey triangles are similar with similarity factor p2. Since PI and IP ′ are
parallel, this proves the second statement.

The same angle θ also reappears as orthogonal angle at I (see Fig. 7.35).
We thus have by Thales’ theorem

θ
θ

θ

θ

a

a
b

b

pa

p2a

b
p

b
p2

P

P ′

I

D

(a)

yI

yC

y′

ψ
ψ

C

I

P

P ′

Dx′xC

θ
θ

A BxI

(b)

Fig. 7.36. Why P ′IP are collinear (a); why I is the incentre (b)

18The first T stands for Thébault, the second for Turnwald, whose corrected
version of a formula of Thébault was our main motivation, the third T stands for
Jean Tinguely and emphasises the dynamic thinking of our proof.



7.11 Thébault’s Theorem 229
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O
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D

P ′
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Fig. 7.37. The enveloping circle (a) and the circumcircle (b)

(I) x = xI + p yI , y = p (x− xD) ,

(II) x′ = xI −
1

p
yI , y′ = −1

p
(x′ − xD) .

We compute the abscissa of D from the right-angled triangle below CD as

xD = xC + yC tan(2θ − ) = xC + yC
p2 − 1

2p
= xC +

yC
2

(
p− 1

p

)

(because tan 2θ = 2p
1−p2 ; see the third formula of (5.6)). We insert the formula

for xD into (I) to obtain

y = px− pxD = px− pxC −
yC
2

(p2 − 1) .

Elimination of p with p = x−xI

yI
then yields an expression for y which is

quadratic in x ; as we know by (3.2), this represents a parabola. Exchanging
p and − 1

p leaves xD invariant and replaces equations (I) by equations (II).

Therefore, we obtain the same quadratic expression in x′ for y′ as in x for y,
and the same parabola. Since yC > 2yI , our parabola is open downwards.

Proof (of the theorem). We have to show that the points I, P and P ′ of the
lemma are the points with the properties required in the theorem. We do this
in three steps by cleverly running our machine.

First step. Denote by A and B the intersection points of the parabola with
the x-axis (see Fig. 7.36 (b)). We first let the point D move towards B. We
see that the point P ′, and hence also the point I, lie on the bisector of the
angle ABC. Then moving D to A, we arrive at the conclusion that the points
A and B have the property that I is the incentre of the triangle ABC.

Second step. We now consider the family of circles centred at points P on
the parabola and tangent to the x-axis, i.e. of radius PQ = PU = y (see
Fig. 7.37 (a)). The enveloping curve of these circles is a circle centred at O,
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the focus of the parabola. This is the converse of a result that has been known
since Pappus (see the explanations for Exercise 3 of Chap. 3). Each of these
circles touches the enveloping circle at the point Q, which is on OP produced.

Third step. Since, by construction, the points P and P ′ lie on the bisectors of
the angles between CD and the x-axis, the circles centred at P and P ′ and
tangent to the x-axis are also tangent to CD. We now run our machine until
the tangent CD, which rotates around C, becomes orthogonal to CO (see
Fig. 7.37 (b)). In this case, the circle centred at P can only touch the line CD
at the point Q = C and the enveloping circle must therefore pass through C.
Since it also passes through A and B (here all distances are equal to 0), we
conclude that this circle is identical with the circumcircle of triangle ABC.

Remark. For nice particular cases of this proof see Exercises 27 and 28 below.

7.12 Billiards in an Ellipse

Consider a billiard table of elliptical form (see Fig. 7.38). We know from
Sect. 3.2 that a ball passing through a focus is reflected into the other fo-
cus. Given the angle ϕ1 under which the ball leaves F (or F ′), we wish to find
the angle ϕ2 under which it arrives at F ′ (or F ).

In order to solve this problem, we may assume that the foci of the ellipse
have abscissas −1 and 1. The semi-major axis is then a = 1

e
, where e denotes

the eccentricity. Then formulas (7.8) become

ℓ1,2 =
1

e
± ex ,

where x is the abscissa of P . The idea is now to set ci = cosϕi. By definition
of the cosine, we have

c1 =
x+ 1

ex+ 1
e

, c2 =
x− 1

−ex+ 1
e

,

F

F ′

P

ℓ1

Q

ℓ2
R

ϕ1
ϕ2

ϕ2ϕ3

Fig. 7.38. Billiards in an ellipse
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which are Möbius transformations. To express c2 as a function of c1, we in-
vert the first Möbius transformation and insert it into the second one. Using
matrices, we obtain

[
1 −1
−e 1

e

] [
1 1
e 1

e

]−1

=
1 + e2

1− e2 ·
[

1 −θ
−θ 1

]
, θ =

2e

e2 + 1
,

which results, by ignoring the constant factor, in

c2 =
c1 − θ
−θ c1 + 1

with matrix A =

[
1 −θ
−θ 1

]
. (7.63)

The following angles ϕ3, ϕ4, etc. are determined by the powers of A. This
matrix has eigenvectors [1, 1]T and [−1, 1]T with eigenvalues 1 ∓ θ. In non
trivial situations (i.e. when the ellipse is not a circle and ϕ1 6= 0) the vector
[cn, 1]T will converge to the eigenvector with maximal eigenvalue, i.e. cn → −1
for n→∞, and the angles ϕn converge to π.

7.13 Urquhart’s ‘Most Elementary Theorem of

Euclidean Geometry’

“Urquhart considered this to be the ‘most elementary theorem’,
since it involves only the concepts of straight line and distance.
The proof of this theorem by purely geometrical methods is not
elementary. Urquhart discovered this result when considering some
of the fundamental concepts of the theory of special relativity.”

(D. Elliott, J. Australian Math. Soc. 1968, p. 129)

−1

0

1

A

B

P

Q

S
R

A B

P

Q

S
R

Fig. 7.39. Urquhart’s theorem

M.L. Urquhart (1902–1966) was a highly appreciated lecturer in mathematics
and physics at several Australian universities; he communicated his mathe-
matical discoveries only to some of his friends. The following theorem became
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known by his obituary notice through Elliott (1968) and gained wider popu-
larity through Tabachnikov’s book (1995)19 on billiards.

Theorem 7.36 (Urquhart). Let the points A,B,P ,Q,R,S be disposed as in
Fig. 7.39 (left). Then,

AP + PB = BR+RA implies AQ +QB = BS + SA . (7.64)

Proof. We give a backwards proof, i.e. we suppose that both relations in (7.64)
are satisfied and conclude that S,R,A are aligned. These relations mean
that the points P ,R and Q,S lie on two confocal ellipses with foci A and
B (Fig. 7.39, right). The “billiards” of these ellipses are determined by for-
mula (7.63) with two different constants θ1 and θ2, originating from the two
eccentricities of these ellipses. Nevertheless, the trajectories

A 7→ P 7→ B 7→ S 7→ A and A 7→ Q 7→ B 7→ R 7→ A

return to A under the same angle ϕ3, because the matrices

[
1 −θ1
−θ1 1

]
and

[
1 −θ2
−θ2 1

]

commute.

7.14 Exercises

1. Give another analytical proof of
the property of the altitudes (The-
orem 4.2 of Chap. 4) and of
the Euler line (Theorem 4.10 of
Chap. 4) by placing the side AB
on the x-axis and the vertex C
on the y-axis. Denote the coordi-
nates of A by (−a, 0), those of B
by (b, 0), and those of C by (0, c). a

c

bA B

C

H

G
O

2. (The three-circle problem of Apollonius). Find circles which are tangent
to three given circles (see Fig. 7.40).

Remark. This is one of the famous classical problems, attributed by Pap-
pus (Collection , introduction to Book VII) to Apollonius’ lost books On
Contacts. It fascinated the mathematicians for centuries. At the end of his
Responsum (1593b), after having brilliantly solved Adriaan van Roomen’s

19The authors are grateful to Pierre de la Harpe for drawing their attention to
Urquhart’s theorem and to Tabachnikov’s book.
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r1
r2

r3

r

−r

Fig. 7.40. The three-circle problem of Apollonius; right: Viète’s illustration from
van Schooten’s edition 1646

problem (see Section 6.5), Viète challenged van Roomen with this prob-
lem of Apollonius. Adrianus Romanus fell into the trap and presented in
1596 a solution using the hyperbolas of Exercise 4 of Chap. 3. Viète (1600)
objected that this was not a solution with ruler and compass and would
have been refused by Euclid and all his school (“vero nemo pronuncia-
bit Geometra. Reclamaret Euclides, & tota Euclideorum schola”). Viète
then gave a geometrical solution which relied on Thales’ theorem (Viète’s
picture of Fig. 1.5 is part of this solution). This led to the first work of
J. Steiner (1826a), where this problem and similar ones are solved geo-
metrically in great detail (Aufg. II, p. 175). Euler (E648, 1790) and Gauss
(Werke , vol. 4, p. 400, remark VI) gave solutions with the help of identities
for trigonometric functions. Find an easy algebraic version.

3. (An identity of Euler, 1750, §30) Prove
that for any convex quadrilateral in the
plane (or in space),

a2 + b2 + c2 + d2 = ℓ21 + ℓ22 + 4e2 ,

where ℓ1 and ℓ2 are the lengths of the
diagonals and e is the distance of the
midpoints of the diagonals (see the pic-
ture).

a

b

c

d
ℓ1

ℓ2

e

4. Give an analytic proof of Proclus’ construction of the ellipse “with a stick”
in Fig. 3.8 on page 68 (a) by Thales’ and Pythagoras’ theorems, (b) by
a trigonometric calculation (see Fig. 7.41). Also verify the “trammel con-
struction” (c), which I. Newton discovered at the very beginning of his
mathematical studies, where the point P lies outside the interval GF
whose endpoints glide along the axes.
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Fig. 7.41. Analytic proof of Proclus’ construction

5. (Regiomontanus’ maximum problem in the version attributed to Napoleon
Bonaparte.) A statue of height h of an emperor stands on a socle of height
s above eye-level. At which distance d from the socle is the emperor seen
under the greatest angle? Also find a property of the bisector of the angle
under which the emperor is seen.

6. Solve another of the problems from Einstein’s Maturitätsexamen in 1896
(see Hunziker, 2001): Cut a circle of radius 1 by parallel segments (the
dashed lines in Fig. 7.42 (a)), and draw the family of circles with these
segments as diameters. Show that these circles possess an ellipse with
semi-axes

√
2 and 1 as common envelope.

7. Find a proof of the 13-wine-bottles theorem:20 If 13 wine-bottles of di-
ameter d are placed in a box of rectangular shape of arbitrary width w
satisfying 3d ≤ w ≤ (2 +

√
3)d, then the topmost three bottles all lie on

the same level (see Fig.7.43 left).

8. (Fermat, third problem of article V, Oeuvres, vol. I, pp. 157–158; also by
Joh. Bernoulli, see Hairer and Wanner, 1997, p. 97). Determine the rect-
angle of maximal area in Fig. 7.44 (I), where the point (x, y) lies on the
circle of radius 1.

−1

0

1

−1

0

1(a)

√
2

(b)

ax
a

r y
r

axλx

P

Fig. 7.42. Circles tangent to an ellipse, from Einstein’s examination

20The authors are grateful to J.M. Sanz-Serna, Valladolid, for suggesting this
problem.
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Fig. 7.43. The 13-wine-bottles theorem

9. (Fermat, auxiliary problem for solving the problem of the cylinder of max-
imal surface, in article VII, Oeuvres, vol. I, p. 167). Find the “H” of max-
imal total length inscribed in a circle (Fig. 7.44 (II)).

10. (D. Laugwitz, Aufg. 815, Elem. Math. 33, 1978). The golden ratio is still
good for a surprise: find the “Swiss cross” of maximal area inscribed in a
circle (Fig. 7.44 (III)).

11. Find the cylinder of maximal volume inscribed in a given sphere (Fig. 7.44
(IV)).

x

y

1

(I)

x

y

(II)

x

y

(III)

x

y

(IV)

x

y

1

(V)

ys v

1

(VI)

Fig. 7.44. Min-max problems; (I): rectangle of maximal area; (II): “H” of maximal
length; (III): Swiss cross of maximal area inscribed in a fixed circle; (IV): cylinder
of maximal volume; (V): cone of maximal volume; (VI): cone of maximal surface
inscribed in a fixed sphere
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12. Find the cone of maximal volume inscribed in a given sphere (Fig. 7.44
(V)).

13. (Fermat, second problem of article V, Oeuvres, vol. I, pp. 155–157). Find
the cone of maximal surface area inscribed in a given sphere (Fig. 7.44
(VI)).
Hint. This is the most difficult of the problems solved by Fermat, because
the surface area of a cone depends on s, which is related to x and y by
a square root. Without particular care you will run into messy compu-
tations. Fermat found an elegant manner of avoiding this trap: use the
distance v of the figure as the unknown quantity.

A B

C

DE

F

ζζ

δ
δε

ε

(a)

δ
δ
ε
ε

A
B

C

D
E

F

F ′

F ′′

(b)

Fig. 7.45. The fourth Fagnano problem, triangle with minimal perimeter (a); and
its solution by Fejér (b)

14. Solve the fourth of the problems invented by Fagnano (1779, see Fig. 7.45
(a)): Given a triangle ABC, find points D,E, F on its sides such that the
perimeter of DEF is minimal, i.e. such that the angles marked δ, ε and ζ
are equal.
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B

C

G

H

P

(a)

−

+
A

B

C

G

H

J

K

O

R
P

Q

(b)

Fig. 7.46. Maximal area of a quadrilateral in a triangle

15. (A problem proposed by M. Hajja and P. Krasopoulos, Elem. Math. 65
(2010), p. 37.) A triangle ABC is given (see Fig. 7.46 (a)). Let P be a
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point on BC, and let H and G be its orthogonal projections onto AB
and AC, respectively. Find the position of P for which the quadrilateral
AHPG has maximal area.

16. Find for the Cardan joint of Fig. 5.22, with given bend angle γ, the values
of a and b (which must satisfy (5.42)), for which the deviation |a − b| is
maximal. Express this maximal deviation |a − b|max as a function of γ.

17. Although the folium of Descartes can be defined by the simple algebraic
equation x3 + y3 = 3xy (see page 200), calculating its area remained a
challenge for a very long time. Even the calculations of Jac. Bernoulli were
incorrect (see J.E. Hofmann, 1956, p. 20). Equipped with some knowledge
of integral formulas, find the area inside the curve in the first quadrant
(x > 0 and y > 0).

Hint. You could simplify the computations, following C. Huygens (see the
autograph drawing in Fig. 7.47, left), by expressing v as a function of θ
(solution (b)). The most elegant solution (c) is obtained by cutting the
folium by a family of lines passing through the origin.

1

√
1 + y2

cos x

y=tanx

dx

dz

dy

x

1

Fig. 7.47. Huygens’ drawing of Descartes’ folium (1691, left); differentiation of tan
and arctan (right)

18. In calculus you learn the differentiation formulas

y = tanx ⇒ y′ =
1

cos2 x
= 1 + tan2 x

y = arctanx ⇒ y′ =
1

1 + x2
.

(7.65)

Give a geometric explanation of these formulas.

19. For two given points F1 and F2 and with ℓ1 = PF1, ℓ2 = PF2, the
condition ℓ1 + ℓ2 = C leads to ellipses, the condition ℓ1 − ℓ2 = C to
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hyperbolas, the condition ℓ1 · ℓ2 = C to Cassini curves; to which terribly
exotic curves will the condition ℓ1/ℓ2 = C lead?

20. Find the area inside a loop of the lemniscate (7.34) or, better, (7.36).

21. (a) Express the points of the “equilat-
eral” hyperbola x2 − y2 = 1 in polar
coordinates (ρ, ϕ). Then replace ρ by
r = 1

ρ , i.e. map the point P of the hy-
perbola to the point Q in harmonic
position w.r. to the unit circle. Show
that all these points Q lie on a lem-
niscate. (b) Let R be the orthogonal
projection of the origin onto the tan-
gent at P . Show that all these points
R lie on a lemniscate (the same one).

PQ

O
R

22. (The original motivation of Jac. Bernoulli) Parametrise the lemniscate
(7.34) by r, the distance from the origin, satisfying x2 + y2 = r2. Show
that the (infinitesimal) arc length of the lemniscate then satisfies

ds =
a2√

a4 − r4
dr . (7.66)

This was the first example of what later became famous under the name
elliptic integrals .

23. The object of this exercise is to prove the nice formula

OH2 = R2(1− 8 cosα cosβ cos γ) (7.67)

for the distance OH on the Euler line.

Hint. An elegant solution is due to R. Müller (1905) (see Fig. 7.48, left):
(a) Show that HC = 2R cos γ, (b) HF = 2R cosα cosβ, (c) HF = FM
(where M is the intersection of the extended altitude with the circumcir-
cle). Then apply Eucl. III.35.

24. To generalise the nice result of Exercise 24 of Chap. 1, we ask whether for
every regular n-star, rotating around a fixed point C in a circle, the sum
of the squares of the ray lengths is always constant, independent of the
position of C and the angle of rotation. For example, for n = 6 this would
mean that

p2 + p′2 + q2 + q′2 + r2 + r′2 = 6R2 (7.68)

(see Fig. 7.48, right). A numerical computer simulation indicated that this
is true for n = 4, 6, 8, 10, 12, 14, . . . , but wrong for n = 2 and for odd n.
Give an analytical proof.
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Fig. 7.48. Proof of Müller’s formula (left); Nelsen’s generalised result (right)

25. Prove the following identity of Giulio Fagnano (1750, vol. II, Appendice:
Nuova et generale proprietà de’ Poligoni, Corollario II): let G be the
barycentre of the triangle ABC, then

GA2 +GB2 +GC2 =
1

3
(AB2 +BC2 + CA2) .

26. (A challenging problem from the Int. Math. Olympiad, Hanoi 2007, sub-
mitted by Luxembourg.) Consider five points A, B, C, D and E such
that ABCD is a parallelogram and BCED is a cyclic quadrilateral. Let ℓ
be a line passing through A. Suppose that ℓ intersects the interior of the
segment DC at F and the line BC at G so that EF = EG = EC. Prove
that ℓ is the bisector of angle DAB.

27. (The h/2-circle.) Show, by cleverly running the TTT-machine, that: If the
incentre of a triangle is moved upwards to the midpoint of the altitude, and
the radius of the incircle is increased accordingly, then the resulting circle
is tangent to the circumcircle.

28. Find the circle which is tangent to two sides and the circumcircle of a
given triangle.

Hint. Use the TTT-machine.

F F ′

P

Q
R

ST

F F ′

P

Q
R

ST

Fig. 7.49. More chaotic billiards in an ellipse
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29. If we play billiards in an ellipse and the “ball”, starting from P , reflected
at Q, R, S etc., does not pass through a focus, then its behaviour is more
chaotic (see Fig. 7.49, left). However, if we draw one hundred reflections
(Fig. 7.49, right), then the trajectories show a mysterious curve as their
envelope. Guess the shape of this curve and prove your conjecture.
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To be Constructible, or not to be

“Magnopere sane est mirandum, quod, quum iam Euclidis tempo-
ribus circuli divisibilitas geometrica in tres et quinque partes nota
fuerit, nihil his inventis intervallo 2000 annorum adiectum sit, ...
[It is greatly to be wondered at that although the geometric divisi-
bility of the circle into 3 and 5 parts was known already in Euclid’s
time, nothing was added for 2000 years after these discoveries ...]”

(C.F. Gauss, Disquisitiones Arithmeticae, 1801, Art. 365)1

“Die Geschichte dieser Entdeckung ist bisher nirgends von mir
öffentlich erwähnt, ich kann es aber sehr genau angeben. Es war
der 29. März 1796, ... [I have not yet communicated the story of
this discovery, but I can do it very precisely. It was on March 29,
1796 ...]” (C.F. Gauss, 1819, in a letter to his
former student C.L. Gerling, Gauss’ Werke, vol. X, pp. 121–126)

According to Descartes, his new geometry should have replaced all the “thick
books” of the Greeks (including Euclid, Apollonius, Pappus, and the efforts
to find constructions with ruler and compass; see the quotations in Chap. 6),
with the only exception of the theorems of Thales and Pythagoras.

Quite unexpectedly, it was precisely the revival by the young Gauss of
questions concerning constructions with ruler and compass that led to remark-
able results in algebra and geometry. On 29 March 1796, Gauss discovered
that the regular 17-gon can be constructed with ruler and compass. Deeply
moved by his discovery, the first new result in that field for 2000 years (see
the quotations above), he decided to become a mathematician. He started his
Notizenjournal (a sort of mathematical diary) the day after his discovery.2

There he made short notes of many of his discoveries and lonely studies. The

1Engl. translation by Waterhouse and Clarke, Springer-Verlag, 1986
2First published by F. Klein, Math. Annalen 57 (1903), pp. 1–34
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“Principia quibus innititur sectio circuli, ac divisibilitas eiusdem geometrica
in septemdecim partes &c.” is the very first of his notes (see Fig. 8.1).

Fig. 8.1. Reproduction of the beginning of Gauss’ Notizenjournal concerning the
construction of the regular 17-gon

8.1 The Complex Plane and the Logarithmic Spiral

“Les imaginaires, en Géométrie pure, présentent de graves diffi-
cultés ... [The imaginary numbers cause serious difficulties in pure
Geometry ...]”
(M. Chasles, Traité de Géométrie supérieure, 2e éd., 1880, p. xiii)

We start by extending the previous constructions with ruler and compass (see
Lemma 7.1) to the complex plane.

The complex plane. The main idea is to identify the real plane

R2 =
{

(x, y) | x, y ∈ R
}
≃ C =

{
x+ iy | x, y ∈ R

}
(8.1)

with the complex plane (Wessel 1799, Gauss 1799, Argand 1806). The symbol
i slowly came into use to denote the “number”

√
−1 (first by Euler in 1777),

with the property
i =
√
−1 i.e. i2 = −1, (8.2)

see Fig. 8.2 (left). For a given complex number z = x+ iy, the real numbers x
and y are called the real and imaginary part of z, respectively. The complex
number z = x− iy is called the complex conjugate of z. Further, let ϕ denote
the angle (taken with a sign) between the positive x-axis and the ray from
the origin through the point (x, y). This angle, normalised by −π < ϕ ≤ π,
is denoted by arg z and called the argument of z. Finally, the non-negative
number |z| = r =

√
x2 + y2, which is the distance from z to the origin, is

called the modulus (or absolute value) of z. With this notation, we have

z = r
(
cosϕ+ i sinϕ

)
(8.3)

in polar coordinates.
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0 1−i

i

ϕ
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z = x+ iy

x

y

z = x− iy

1

z

eiϕ

i

α

α

z=x+iy

c=a+ib

w = z · c

Fig. 8.2. The complex plane

Multiplication. Taking (8.2) into account, the product of two complex num-
bers is seen to be

c = a + ib
z = x+ iy

⇒ cz = ax− by + i(bx+ ay) . (8.4)

Division. Division is based on the fact that by (8.4) the product

z · z = (x+ iy)(x− iy) = x2 + y2 = r2 (8.5)

is real. So we simply multiply the numerator and the denominator of a fraction
by the complex conjugate of the denominator. For example,

1

6 + 2i
=

6− 2i

(6 + 2i)(6− 2i)
=

6− 2i

62 + 22
=

3

20
− i

20
.

In this manner, every complex number can be divided by any complex number
6= 0 and, with the above addition and multiplication, C becomes a field .

The logarithmic spiral. This beautiful curve originates from one of Jacob
Bernoulli’s “meditations” (Meditatio LI, Werke, vol. 2, p. 289; written around
1684; Linea curva infinitarum dimensionum). Motivated by the question of
trisecting a given angle (“bi-tri-quadrisectum”), Jacob Bernoulli considered a
sequence of similar triangles, having each a side in common with the preceding
one (“triangula inter se similia & proportionalia”, see Fig. 8.3, left).

Algebraic formulas. In order to determine recursively the coordinates of the
points D,E, F, . . . , we suppose triangle ABC to be given, with side AB =
1 along the x-axis, and denote the coordinates of C by (a, b). Then, if D
with coordinates (x, y) is the lower vertex of one of these triangles, we want
to compute the coordinates (x̃, ỹ) of the next point E. The answer to this
question is explained in Fig. 8.4 and leads to the formulas

x̃ = ax− by ,
ỹ = bx+ ay ,

x = 1
a2+b2 (ax̃+ bỹ) ,

y = 1
a2+b2 (−bx̃+ aỹ) ,

(8.6)
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A B

C

D

E

F

O
1

Fig. 8.3. Jac. Bernoulli’s similar triangles (left); the logarithmic spiral z = ect with
c = 0.5 + 17.5i , − 2

3
≤ t ≤ 1

3
(right)

a
1

x
ax

b

y
ay

by

bx

A B

C

D

F G

K

E

H

(x̃, ỹ)

Triangles AFD and AGH similar;

AH/AD = a,

⇒ AG = ax, GH = ay;

Triangles AFD and EKH similar;

EH/AD = b,

⇒ EK = bx, KH = by.

Fig. 8.4. Derivation of a transformation formula

(the formulas in the column on the right bring us “down” the spiral, from E
to D). We observe a wonderful relation of these formulas to the formulas (8.4)
for complex multiplication and division. We thus understand the geometric
significance of complex multiplication (multiply the absolute values and add
the arguments) explained in Fig. 8.2 (right). These formulas are closely con-
nected to the addition theorems for trigonometric functions (5.6). This is no
miracle, since Figs. 8.4 and 5.7 (left), on page 118, are almost identical.

Analytic formulas. If one decreases more and more the angles at the vertex A,
by increasing the number of triangles, the broken line B,C,D,E, . . . tends to
a curve (“... in curvam degenerabunt”, see Fig. 8.3, right), which extends to
infinity in both directions and reproduces its form over and over again (“quae
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Fig. 8.5. Ammonite Dactylioceras, 165 million years old (left); 34 logarithmic spirals
of slope Φ and 55 logarithmic spirals of slope −1/Φ (right)

infinitarum erit dimensionum, utpote cui describendae infinitae reperiendae
mediae proportionales”). In particular this curve intersects each of the rays to
the origin under the same angle. For the deeply religious Jacob Bernoulli, this
curve had great mystical importance, symbolising eternal life, and he asked
that it be engraved on his tombstone with the inscription “eadem mutata
resurgo”.

For many species of ammonites (Fig. 8.5, left), life in the form of a log-
arithmic spiral — if not eternal — lasted at least for many millions of years.
Fig. 8.5 (right) offers the pure pleasure of looking at a picture in which this
marvellous curve is combined with the beauty of the golden ratio and the
Fibonacci numbers.

In order to derive analytic formulas, we replace in (8.6) a 7→ 1 + a
N and

b 7→ b
N , with a and b fixed and N a large number. Then by (8.6), the J-th

point on the spiral becomes

(
1 +

a+ ib

N

)J
=
(

1 +
c

N

)J
, where c = a+ ib .

Letting both N and J tend to infinity in such a way that J = N · t with t
fixed, this becomes

(
1 +

c

N

)N ·t
=

((
1 +

c

N

)N)t
→ ect . (8.7)

Any good book on analysis tells you that

ec = lim
N→∞

(
1 +

c

N

)N
= 1 + c+

c2

1 · 2 +
c3

1 · 2 · 3 + . . . (8.8)
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Fig. 8.6. Exponential function for purely imaginary iϕ

is the famous exponential function; the last identity is obtained from the bi-
nomial expansion (Euler, 1748; see also Hairer and Wanner, 1997, pp. 25–27).

Euler’s formula. The idea is to replace c in (8.7) by a purely imaginary value
iϕ. The triangle ABC becomes right angled at B and the logarithmic “spiral”
tends to the unit circle where ϕ represents the arc length (see Fig. 8.6). This
figure exhibits at once Euler’s famous formula

eiϕ = cosϕ+ i sinϕ . (8.9)

With it the polar representation (8.3) can be written as

z = x+ iy = r · eiϕ (8.10)

and the product of z = r · eiϕ with c = s · eiα becomes

cz = rs · ei(α+ϕ) , (8.11)

where once again, we see the geometric meaning of complex multiplication.
Particular cases of Euler’s formula are

e
iπ

2 = i , eiπ = −1 , e2iπ = 1 . (8.12)

8.2 Constructions with Ruler and Compass

Complex roots. Let z be a complex number with modulus r and argument
ϕ. From the properties of the product, it is obvious that a complex root
w =

√
z of z (i.e. a solution of w2 = z) has modulus |w| = √r and argument

argw = ϕ
2

(see Fig. 8.7, left). However, we must be careful since e2iπ = 1.
Therefore, a second square root of z exists with argument ϕ

2 + π.
Since a complex square root is obtained from a real square root and the

bisection of an angle, it can be constructed with ruler and compass (Eucl. I.9).
Together with Fig. 6.1 we get the following result.
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Fig. 8.7. Complex square roots (on the left); roots of unity for n=5 and n=7 (on
the right)

Lemma 8.1. Each composition of rational operations and square roots in the
complex plane corresponds to a construction with ruler and compass.

n-th roots. Let z be a complex number with modulus r and argument ϕ. As
before, the n-th root of z has the modulus n

√
r and any one of the arguments

ϕ
n + 2kπ

n , k = 0, 1, . . . , n−1. In particular, for z = 1 we have

n
√

1 = εk = e
2kiπ

n , k = 0, 1, . . . , n− 1 . (8.13)

These values are called the nth roots of unity, see Fig. 8.7 on the right. The
points εk thus represent the vertices of a regular n-gon inscribed in the unit
circle, and any geometric construction for solving the equation

zn − 1 = 0 (8.14)

provides us with a construction of this regular polygon.

8.3 The Method of Gauss and Vandermonde

Before attacking the famous 17-gon, we will explain the method of Gauss
and Vandermonde for computing 5th roots. The same ideas will be useful for
n = 17.

The long tradition of solving algebraic equations (Tartaglia and Cardano
1545, Lagrange 1770) motivates us to look for certain combinations of roots
that satisfy an equation of lower degree. For the roots of unity, a good choice
are sums of the following type (Vandermonde 1771)

ε+ εk + εk
2

+ . . . (8.15)

Gauss used the same method a quarter of a century later, but made no mention
of Vandermonde.
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0
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1 1− 1
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η1η2

0
-1.80194-1.80194 -0.44504-0.44504  1.24698 1.24698

1 1 1

Fig. 8.8. Construction of the regular pentagon inscribed in the unit circle (left),
and of the regular heptagon (right)

The regular pentagon. Here we want to solve ε5 = 1. Try k = 4 in (8.15).
Then the powers kj are

1→ 4→ 16→ 64→ 256→ . . .

Since ε5 = 1, we can take the residues modulo 5 of these powers (i.e. their
remainders on division by 5); we obtain

1→ 4→ 1→ 4→ 1→ . . .

The theory of such “power residues” was established by Euler (1761) in [E262].
But 4 is not a good choice, since not all (non-zero) residues modulo 5 appear
in this list. However, by choosing k = 2, we obtain the complete sequence of
(non-zero) residues modulo 5:

1→ 2→ 4→ 3→ 1 . (8.16)

Such values of k were called primitive roots by Euler (1774) in [E449]: 2 is
a primitive root modulo 5. These are the good choices for our method. We
group the terms by pairs and set

η1 = ε+ ε4, η2 = ε2 + ε3. (8.17)

Since the sum of all the roots of the polynomial ε5 − 1 is 0, we obtain

η1 + η2 = ε+ ε2 + ε3 + ε4 = −1 ,

η1 · η2 = ε3 + ε4 + ε+ ε2 = −1 .
(8.18)

By Viète, η1 and η2 are the roots of the quadratic polynomial

η2 + η − 1 = 0 ⇒ η1,2 =
−1±

√
5

2
, (8.19)

and we have managed to reduce the problem of finding the roots of a polyno-
mial of degree 5 to that of finding those of a polynomial of degree 2.



8.4 The Regular 17-Sided Polygon 249

In our case, ε4 and ε3 are complex conjugate to ε and ε2, respectively. Be-
cause of (8.17), η1 and η2 are just twice the real parts of ε and ε2, respectively.
This leads to the construction of the regular pentagon indicated in Fig. 8.8
(left).3

The regular heptagon. Relying on the same ideas as before, we now cal-
culate the 7th roots of unity. The powers of 2 modulo 7 are

1→ 2→ 4→ 1 . (8.20)

As this sequence is too short, we try k = 3 and find

1→ 3→ 2→ 6→ 4→ 5→ 1 . (8.21)

We thus have a primitive root modulo 7. Unfortunately, it turns out that there
exists no partition, like e.g. η1 = ε + ε2 + ε4 and η2 = ε3 + ε6 + ε5, which
would make the product of η1 and η2 independent of ε.

Therefore, one has to define three quantities

η1 = ε+ ε6, η2 = ε3 + ε4, η3 = ε2 + ε5. (8.22)

A straightforward calculation shows that

η1 + η2 + η3 = −1 , η1η2 + η2η3 + η3η1 = −2 , η1η2η3 = 1 , (8.23)

which means that η1, η2, η3 are the roots of

η3 + η2 − 2η − 1 = 0 . (8.24)

We will see later that the roots of this equation cannot be constructed with
ruler and compass. Hence we used a numerical calculation to produce the
drawing on the right of Fig. 8.8.

8.4 The Regular 17-Sided Polygon

We now come to Gauss’ great discovery, the construction of the regular 17-gon,
i.e. the solution of the equation

ε17 − 1 = 0 , (8.25)

by solving a sequence of equations of the second degree. We start with powers
of 2, and reduce them modulo 17:

1→ 2→ 4→ 8→ 16→ 15→ 13→ 9→ 1 .

This sequence is too short. The next choice, however, works:

1→ 3→ 9→ 10→ 13→ 5→ 15→ 11→ 16→
→ 14→ 8→ 7→ 4→ 12→ 2→ 6→ 1 .

(8.26)

We take every other exponent for η1 (the black points in Fig. 8.9, left) and
the remaining ones for η2 (the grey points). This leads to

3This construction is similar to Ptolemy’s construction in Fig. 6.11, but is not
exactly the same.
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η1 = ε1 + ε9 + ε13 + ε15 + ε16 + ε8 + ε4 + ε2 ,

η2 = ε3 + ε10 + ε5 + ε11 + ε14 + ε7 + ε12 + ε6 .
(8.27)

It is easy to see that η1 + η2 = −1, since the sum of all the roots is zero. The
product η1 · η2 contains 64 terms (see the right picture of Fig. 8.9), and each
power “miraculously” appears exactly four times. Thus

η2 + η − 4 = 0 ⇒ η1 =
−1 +

√
17

2
, η2 =

−1−
√

17

2
(8.28)

(the grey points tend to be more to the left; this determines the sign).
One continues with

µ1 = ε1 + ε13 + ε16 + ε4 , µ3 = ε3 + ε5 + ε14 + ε12 ,

µ2 = ε9 + ε15 + ε8 + ε2 , µ4 = ε10 + ε11 + ε7 + ε6 ,
(8.29)

and finds

µ1 + µ2 = η1, µ1µ2 = −1 , ⇒ µ1 =
η1 +

√
η21 + 4

2
, (8.30)

µ3 + µ4 = η2, µ3µ4 = −1 , ⇒ µ3 =
η2 +

√
η22 + 4

2
. (8.31)

In the next step, we set

β1 = ε1 + ε16 , β2 = ε13 + ε4 (8.32)

to get

β1 + β2 = µ1 , β1β2 = µ3 ⇒ β1 =
µ1 +

√
µ2
1 − 4µ3

2
, (8.33)
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Fig. 8.9. Roots of unity ε3
k

modulo 17 (quadratic residues in black, quadratic
non-residues in grey, left); product η1 · η2 = −4 (right)
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and finally we obtain

ε1 + ε16 = β1 , ε1ε16 = 1, ⇒ ε =
β1 +

√
β2
1 − 4

2
, (8.34)

which is the desired result.

Theorem 8.2 (Gauss 1796). The regular 17-gon can be constructed with ruler
and compass.

Gauss also knew that the same method works for any number of the form

Fk = 2(2
k) + 1 , (8.35)

if it is a prime number. This is the case for the first five:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537 . (8.36)

Fermat’s conjecture (“tous ces nombres sont des nombres premiers [all these
numbers are primes]”) was disproved by the genius Euler, who found the

counterexample F5 = 2(2
5) + 1 = 4294967297 = 641 · 6700417 . The five

numbers given in (8.36) are today still the only known prime numbers of the
form (8.35).

Remark. The explicit calculations for the 257-gon were carried out by Richelot
and fill 84 pages, see Richelot (1832). Hermes dedicated ten years of his life to
the 65537-gon. His solution is kept in a big box in the mathematical seminar
at Göttingen, see Hermes (1895).

Remark. By combining these considerations with Eucl. IV.16 (see Exercise 3
below) and Eucl. I.9, it is evident that all regular n-gons with n of the form

n = 2ℓp1 · · · pk , (8.37)

where ℓ ≥ 0, and the pi are pairwise different primes of the form (8.36), can
be constructed with ruler and compass.

8.5 Constructions Impossible with Ruler and Compass

“Ce principe est annoncé par M. Gauss à la fin de son ouvrage, mais
il n’en a pas donné la démonstration. [This principle is announced
by Gauss at the end of his book, but he has not given a proof.]”

(P.L. Wantzel, J. de Math., vol. 2 (1837), pp. 366–372)

“... will ich Ihnen hier einen Fall vorführen – um so lieber, als
im grossen Publikum so wenig Verständnis für Beweise dieser Art
vorhanden ist. [I shall put before you here an example of this
important proof of impossibiliy — the more willingly because there
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is such a lack of understanding for proofs of this sort by the great
public.]”

(F. Klein, Elementarmathematik vom höheren Standpunkte
aus, 1924, p. 55; Engl. transl. by Hedrick and Noble, 1932, p. 51)

Towards the end of his Disquisitiones Arithmeticae, Gauss states in capitals
(“OMNIQUE RIGORE DEMONSTRARE POSSUMUS ...”) that no regular n-
gon with n not of the form (8.37) can be constructed with ruler and compass.
However, he did not give a rigorous proof; this was done by P.L. Wantzel
(1837, see the quotation). We will prove here only one particular case.

Theorem 8.3. The regular heptagon cannot be constructed with ruler and
compass.

Proof. Our proof is an adaption of that given by F. Klein in 1908.
First step. One shows that equation (8.24) cannot have a rational root: as-
suming η = n

m to be a root, with n and m relatively prime, gives

n3 +m
(
n2 − 2nm−m2

)
= 0 . (8.38)

Thus, any prime factor of m divides n, and conversely. Since m and n are
relatively prime, this implies that η = ±1. This gives a contradiction since ±1
are certainly not roots of (8.24).

Second step. Suppose that (8.24) has a root of the form

η1 =
α+ β

√
R

γ + δ
√
R
, (8.39)

where α, β, γ, δ and R are rational numbers. We must have γ − δ
√
R 6= 0, for

otherwise
√
R would be rational and with it η1; this is excluded by the first

step. We multiply the numerator and denominator of (8.39) by γ − δ
√
R to

get

η1 =
(α+ β

√
R)(γ − δ

√
R)

γ2 − δ2 ·R = P +Q
√
R , (8.40)

where P and Q are again rational numbers. Inserting this into (8.24) gives

η31 +η21−2η1−1 = (P +Q
√
R)3+(P +Q

√
R)2−2(P +Q

√
R)−1 = 0 . (8.41)

Multiplying out, we obtain a relation of the form

M +N
√
R = 0 , (8.42)

where M and N are again rational numbers. If N 6= 0, we have
√
R = −MN

and once more, this square root is rational. Hence M = N = 0 and thus
M −N

√
R = 0. Consequently (doing the same calculations with

√
R replaced

by −
√
R)

η2 = P −Q
√
R (8.43)
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is also a root of (8.24). However, by Viète

η1 + η2 + η3 = −1 ⇒ η3 = −1− η1 − η2 = −1− 2P (8.44)

is a rational root of (8.24). This is impossible by the first step of our proof.

General step. The rest is now easy. If η1 contains several square roots (iterated
or not), one eliminates one root after another by repeatedly applying the
second step of this proof. After each step, the roles of η1 and η3 must be
interchanged.

Doubling the cube. We now return to the classical Greek problems of
Sect. 1.8. The problem of doubling the cube consists in constructing the real
root of x3 − 2 = 0. This equation does not have a rational root: if m,n are
relatively prime and n3 − 2m3 = 0 then n must be even; setting n = 2ℓ gives
m3 = 4ℓ3, so m must be even, a contradiction. The rest of the above proof
applies almost without any changes, so we conclude that doubling the cube
with ruler and compass is impossible.

Trisecting an angle. We have seen in Sect. 6.3 that this problem leads to
the cubic equation (6.9) x3 − 3

4
x + d

4
= 0. Here, for some values of d there

exist constructible solutions (for instance 3α = 90◦ gives d = 1 with solution
x = 1

2 , or 3α = 180◦ gives d = 0 and the equation becomes quadratic).
There are, however, angles for which no construction is possible with ruler and
compass. Despite of this fact, the trisection with ruler and compass has always
been a flourishing field for mathematical amateurs. An impressive collection
of fruitless attempts is given by Dudley (1987).

Squaring the circle.

“Ich kann mit einigem Grunde zweifeln, ob gegenwärtige Abhand-
lung von denjenigen werde gelesen, oder auch verstanden werden,
die den meisten Antheil davon nehmen sollten, ich meyne von de-
nen, die Zeit und Mühe aufwenden, die Quadratur des Circuls zu
suchen. Es wird sicher genug immer solche geben ... die von der
Geometrie wenig verstehen ... [I have good reasons to doubt that
the present article will be read, or even understood, by those who
should profit most by it, namely those who spend time and efforts
in trying to square the circle. There will always be enough such
persons ... who understand very little of geometry ...]”

(J.H. Lambert, 1770)

The proof of the impossibility of squaring the circle with ruler and compass
is more difficult. The problem consists in finding a construction for π or

√
π

and gave rise to innumerable fruitless attempts. Finally, the opinion prevailed
that the problem is impossible (Lambert 1770, see the quotation). Lambert
himself found that π is irrational. A rigorous proof of irrationality is due to
Legendre 1794 (see also Hairer and Wanner, 1997, Sect. I.6).

Irrationality is not sufficient, since certain irrational numbers can be con-
structed with ruler and compass (for example

√
2). The proof of impossibility
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was finally achieved by F. Lindemann in 1882. He showed that π is transcen-
dental , i.e. is not the root of any polynomial with rational coefficients (not all
zero). His proof is involved.

8.6 Exercises

1. Use complex arithmetic to prove
a theorem, somewhat similar to
Napoleon’s theorem, which is at-
tributed to either H.H. van Aubel
(1878) or E. Collignon (see Kri-
tikos, 1961): Let A1, A2, A3, A4

be the vertices of an arbitrary
quadrilateral and let B1, B2, B3,
B4 be the centres of the four
squares constructed on its sides.
Then the segments B1B3 and
B2B4 have the same length and
are perpendicular.
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2. Show that the length of the side of the regular 17-gon inscribed in the
unit circle is
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3. Show that the regular 51-gon is constructible with ruler and compass.

4. Very simple geometric questions can lead to prob-
lems whose solutions are not constructible with ruler
and compass (D. Laugwitz, Elem. Math. 26 (1971),
p. 135): Find the point P1 = (x1, y1) on the hyper-
bola x2 − y2 = 1 which has shortest distance from
a given point P0 = (x0, y0). Tackle the question (a)
by using the formula for the tangent at P1 and (b)
by using the Fermat–Leibniz method to minimise
(x−x0)2 +(y−y0)2 under the condition x2−y2 = 1.
Show that the solution is not constructible with ruler
and compass.

P0

P1

5. Verify a discovery of C. Huygens (1724, vol. 2, p. 391): Let AB be a di-
ameter of a circle of radius 1, the angle BAD be 45◦, the angle ABF be
60◦ and let E be the intersection of AD and BF (see Fig. 8.10). Then the
distance AE solves the problem of doubling the cube with an error less
than 1

2000 .
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Fig. 8.10. Huygens’ approximate doubling of the cube; left: facsimile from Huygens
(1724)
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Fig. 8.11. Finsler’s construction for the doubling of the cube

6. Verify the approximate construction for the doubling of the cube given in
Finsler (1937/38). Let A,B,C,D in Fig. 8.11 be a unit square, a face of
the cube which we want to double in volume. Let M and N be at distance
4 and 8 from A, respectively. Construct E by drawing two circles; the first
centred at A with radius AC, the second centred at M with radius AM .
Then construct F by drawing the circle centred at N with radius NE.
Show that the distance 10 ·AF is an excellent approximation to 3
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Fig. 8.12. π-approximations; left: Kochanski and his original construction, arranged
slightly differently; right: Finsler and Cordilha
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7. This exercise spans four centuries and three continents. It is inspired by
A. Steiner and G. Arrigo (2008, “... è un bell’ esercizio ... [it’s a beautiful
exercise]”). In Fig. 8.12 three approximate constructions using the unit
circle are sketched: (a) by A.A. Kochanski (1685, a Polish priest) BC for
π; (b) by P. Finsler (1937/38, Zürich) AE+ED for 2π; (c) J. Cordilha (Rio
de Janeiro 1932; in a letter to P. Finsler) AB +CD for 2π. Determine for
each of these constructions the error of the corresponding approximation
to π = 3.141592653589793238462643383279 . . . Add to this comparison
(d) the approximation π ≈ 355

113
(Adrianus Metius 1571–1635); finally the

approximations

(e) π ≈ 4

√
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Fig. 8.13. Constructions of Ramanujan for π-approximations; below: Drawings from
Ramanujan’s Notebooks (vol. 1, p. 66 and vol. 2, p. 225; facsimile publication Tata
Institute, Bombay)



8.6 Exercises 257

both found by the Indian mathematician Ramanujan (1914). The approx-
imations (d) and (e) are the basis for the constructions of Exercises 8 and
9 below.

8. Verify the following construction for the approximate quadrature of the
circle, found by S. Ramanujan (1913): Let a circle be given, with radius 1,
centre O and diameter PR (see Fig. 8.13, left). Then construct H and T
on PR such that OH = 1

2
and OT = 2

3
, Q on the circle vertically above

T , S on the circle such that RS = TQ, N and M on PS such that TNP
and OMP are right angles, L vertically below P such that PL = MN , K
on the circle such that PK = PM , C on KR such that CR = HR, D on

LR such that DC ‖LK. Show that then RD =
√

355
113 , which is Metius’

approximation for
√
π from Exercise 7 above. Ramanujan apparently liked

his construction, as we can see from his note-books (see Fig. 8.13).

9. The tireless Ramanujan also found a relatively simple construction for the
even better approximation (e) in (8.45) (see Fig. 8.13, upper right): Let
AB be a diameter of the unit circle and C the “North Pole”. Draw points
T,M,N such that 1

3 = AT = CM = MN as indicated in the figure.
Then determine P on AN such that AP = AM and Q on AM such that
PQ ‖NM . Finally determine R on AM such that TR ‖OQ, and S on the
perpendicular to AO such that AR = AS. Then

√
SO is an approximation

to π/3 corresponding to (8.45 (e)).
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9

Spatial Geometry and Vector Algebra

vector, a quantity having direction as well as magnitude (from
Latin vector, carrier; stems from vehere, to carry)

(Hoad, The Concise Oxford Dictionary of English Etymology)

Spatial geometry starts in Book XI of Euclid’s Elements with a long list of
definitions and boring propositions. It is here that analytic geometry shows its
full power: one simply adds a third coordinate z. If you know how to calculate
with two variables, you can also calculate with three.

Just as easily, one then adds a fourth coordinate, then a fifth one, etc. The
only constraint is the limited supply of letters. It is thus judicious to write

x1, x2, . . . , xn (9.1)

for the coordinates.

Vector notation. A second revolution, comparable to that of Descartes, took
place towards the end of the 19th century with the introduction of vectors.

At that time, one began to consider n-tuples of coordinates as new math-
ematical objects1

x = (x1, x2, . . . , xn) or a = (a1, a2, . . . , an) . (9.2)

With these objects, one can perform algebraic operations, such as calculating
their sum and their product with a scalar, by performing them componentwise:

a+ b = (a1 + b1, a2 + b2, . . . , an + bn) , λa = (λa1, λa2, . . . , λan) . (9.3)

The vector notation results in much shorter and clearer proofs. Moreover, the
proofs are the same for any dimension.

1Many authors distinguish vectors from scalars by a special notation. For exam-
ple, vectors are often denoted as a,x or

→
a , x

→
or

⇀
a , x

⇀
or a, x or a, x. Like Banach

(see Fig. 9.2) we use ordinary letters in the following.

259
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Historical development of vectors. The introduction of vectors can be
traced back to several origins.

(a) Grassmann (extensive Größen [extensive quantities]).

“... il est très utile d’introduire la considération des nombres com-
plexes, ou nombres formés avec plusieurs unités, ... [it is very use-
ful to introduce the consideration of complex numbers, or numbers
composed of several quantities]”

(Peano, Math. Ann. 32 (1888), p. 450)

“... e il lavoro più profondo che abbiasi su questo soggetto è senza
dubbio l’Ausdehnungslehre pubblicato dal Grassmann ... [and the
profoundest work which we have on this subject is without doubt
the Ausdehnungslehre published by Grassmann]”

(Peano 1894, Opere Scelte III, p. 340)

The German theologian and linguist Hermann Grassmann (1809–1877), self-
taught in mathematics, published in 1844 his work Die lineale Ausdehnungs-
lehre, an unreadable book, interspersed with mystic and abstract considera-
tions. In 1862, a revised edition appeared, which did not attract more atten-
tion. Grassmann’s ideas became more widely known in mathematics only 20
to 30 years later (see the quotations from Peano).

(b) Hamilton (quaternions).

“At the age of five Hamilton could read Latin, Greek, and Hebrew.
At eight he added Italian and French; at ten he could read Arabic
and Sanskrit and at fourteen, Persian.”

(M. Kline, 1972, p. 777)

“Tomorrow will be the fifteenth birthday of the Quaternions. They
started into life, or light, full grown, on the 16th of October, 1843,
as I was walking with Lady Hamilton to Dublin, and came up to
Brougham Bridge. That is to say, I then and there felt the galvanic
circuit of thought closed ... I felt a problem to have been at that
moment solved, an intellectual want relieved, which had haunted
me for at least fifteen years before.”

(Hamilton; quoted by M. Kline, 1972, p. 779)

In 1837, William R. Hamilton (1805–1865), a celebrated Irish physicist (optics,
mechanics) and mathematician, introduced the complex numbers

a + ib ↔ (a, b)

as pairs of real numbers. This definition is still used today. Later, he struggled
mightily but unsuccessfully (see the quotation) to generalise these numbers,
which can be multiplied and divided, to three dimensions. Finally, in 1843 he
found a generalisation to four dimensions

a+ ib+ jc + kd ,

the quaternions . With the noncommutative multiplication rules
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i2 = j2 = k2 = −1 ,
ij = k , jk = i , ki = j ,

ji = −k , kj = −i , ik = −j ,
(9.4)

the product of two quaternions e · f (written in matrix notation) is

(x0 + ix1 + jx2 + kx3)
· (y0 + iy1 + jy2 + ky3)

=




x0 −x1 −x2 −x3
x1 x0 −x3 x2
x2 x3 x0 −x1
x3 −x2 x1 x0







y0
y1
y2
y3


 (9.5)

and is again a quaternion. The fact that the product with the “conjugate”

(a + ib+ jc+ kd) · (a− ib− jc− kd) = a2 + b2 + c2 + d2

turns out to be real, allows the definition of a division of quaternions in a way
similar to that in (8.5) for complex numbers.

Towards vectors. We see in (9.5) (in grey) that a skew-symmetric matrix
appears in dimensions 1, 2, 3 whose structure will soon become familiar to
us. This part of the matrix changes sign if the two factors are exchanged.
Hamilton called this three-dimensional part of a quaternion

ix1 + jx2 + kx3 ↔ (x1, x2, x3)

a vector (1845, an object transporting something).
Hamilton (and his successors) were very proud of the invention of quater-

nions. It may be a surprise for many mathematicians to see that quaternion
multiplication had already been published in 1760 by Euler in a work on the
representation of integers as a sum of four squares (E242, see Fig. 9.1).

Fig. 9.1. Publication from 1760 of quaternion multiplication in Euler E242. The
correspondence with formula 9.5 is obtained by setting a = y0, b = −y1, c =
−y2, d = −y3, p = x0 , q = x1 , r = x2 , s = x3 and taking the upper signs.

(c) Heaviside, Gibbs (vectors in physics).

“In mathematics and especially in physics two very different kinds
of quantity present themselves. Consider, for example, mass, time,
density, temperature, force, displacement of a point, velocity, and
acceleration. Of these quantities some can be represented ade-
quately by a single number ... A vector is a quantity which is
considered as possessing direction as well as magnitude. A scalar
is a quantity which is considered as possessing magnitude but no
direction.” (Gibbs and Wilson, Vector Analysis, 1901, p. 1)
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Certain quantities in physics such as velocity, force, electric and magnetic fields
have not only a certain value but also a certain direction. Inspired by the work
of Hamilton, physicists started to apply these ideas to mechanics, electricity
and magnetism (Clifford, Heaviside, Gibbs). They discovered, however, that
is is better to remove all traces of quaternions from the theory of vectors. In
this respect, they are much closer to Grassmann’s ideas than to Hamilton’s.

(d) Banach, Wiener (axioms of a “general” vector space).

“Fréchet était très excité par le fait que Banach avait donné plu-
sieurs mois avant Wiener un système d’axiomes de l’espace vecto-
riel ... [Fréchet was very excited by the fact that Banach had given
a system of axioms for vector spaces several months before Wiener
...]” (H. Steinhaus, Oeuvres de Banach, p. 15)

During the first half of the 20th century, vector spaces were finally defined in
an axiomatic way independently by Stefan Banach (in the second chapter of
his Théorie des opérateurs linéaires, Lwów 1932; see Fig. 9.2) and by Norbert
Wiener (see the quotation).

Fig. 9.2. First publication of vector space axioms in Banach (1932)

Geometric meaning of vectors. By choosing the canonical basis2 e1 =
(1, 0), e2 = (0, 1), we have the equivalence (for n = 2)

a = (a1, a2) ⇔ a = a1e1 + a2e2 ⇔
a1

a2
a

(9.6)

between the ‘algebraic’ objects of Grassmann and the ‘geometric’ objects of
the physicists. For n = 3, see Fig. 9.4 (a).

The meaning of algebraic operations. Multiplication by a scalar λ in
(9.3) lengthens (or shortens) the vector a (and reverses its direction if λ < 0),
see Fig. 9.3 (a) and Fig. 9.4 (b). The sum a + b of two vectors completes a
parallelogram, see Fig. 9.3 (b) and Fig. 9.4 (c). Equivalently, this sum can be

2In this and the following chapter we tacitly assume that the reader is familiar
with some basic notions of linear algebra.
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Fig. 9.3. Vectors in R2: multiplication by a scalar (a), addition of two vectors (b),
difference (c)
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Fig. 9.4. Vectors in R3: coordinates (a), multiplication by a scalar (b), addition (c)
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Fig. 9.5. Difference of vectors (a), representation of a straight line (b), Varignon’s
theorem (c)

seen as putting the two vectors a and b together in a head and tail fashion
by parallel translation of one of them. In this way, it is convenient to identify
two parallel vectors that have the same length and the same direction.3 The
difference b − a is the vector that connects the point a with the point b, see
Fig. 9.3 (c) and Fig. 9.5 (a).

3In the literature, one finds several definitions that take these distinctions into
account (“vector”, “free vector”, “bound vector”, “position vector”, etc.). We simply
call a vector “a point” if it starts at the origin O.
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9.1 First Applications of Vectors

Straight line through two points; parametric form. In order to find
the straight line that passes through distinct points a and b, one proceeds as
follows. Starting from a, one walks in direction b− a to get

x = a+ λ(b − a) , (9.7)

where λ is a parameter that determines the position of the point x on the
line: for λ = 0 we have x = a, for λ = 1 we recover x = b. The midpoint of
the segment [a, b] is obtained by taking λ = 1

2 , which gives

x =
a+ b

2
, (9.8)

see Fig. 9.5 (b).

Remark. In two dimensions, by writing formula (9.7) componentwise and
eliminating λ from the second equation with the help of the first, one re-
trieves the usual parameter-free form for the equation of a straight line (see
the last formula of (7.2)).

Varignon’s theorem
culus in France, obtained in the course of his work in statics the following
result: the midpoints of the four sides of an arbitrary quadrilateral in R3 form
a plane parallelogram, see Fig. 9.5 (c).

For its proof we observe that one pair of midpoints is given by

a+ b

2
,

b+ d

2
, the other by

a+ c

2
,

c+ d

2
.

The difference of these pairs is the same vector d−a
2

.

Plane through three points; parametric form. Generalising the idea in
(9.7) to three given points a, b and c forming a triangle, we start from a and
walk in two directions, b − a and c − a. Using two parameters λ and µ, we
reach with

x = a+ λ(b − a) + µ(c− a) (9.9)

all points in the required plane, see Fig. 9.6 (a).

Barycentric coordinates. In order to make equation (9.9) more symmetric,
we write it as

x = (1 − λ− µ)a + λb + µc

= m1a+m2b+m3c ,
m1 +m2 +m3 = 1 . (9.10)

The coordinates m1,m2,m3 are called barycentric coordinates; they were in-
troduced by Möbius (Der barycentrische Calcul , 1827; see Fig. 9.7). Imag-
ine three masses m1, m2, m3 located at the vertices of the triangle abc. If
m1 +m2 +m3 = 1, then the point x is their barycentre.

. Pierre Varignon (1654–1722), great connoisseur of cal-
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Fig. 9.6. Creation of a plane (a), medians and centroid of a triangle (b)
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Fig. 9.7. Barycentric coordinates

Nonnegative barycentric coordinates (i.e. m1,m2,m3 ≥ 0) have the following
interpretation: let x be a point as in (9.10); if

(a) m1 = 1 or m2 = 1 or m3 = 1, then x is a vertex of the triangle;
(b) m1 = 0 or m2 = 0 or m3 = 0, then x is on a side;
(c) m1 > 0 and m2 > 0 and m3 > 0, then x is inside the triangle;
(d) m1 = m2 or m2 = m3 or m3 = m1, then x is on one of the medians;
(e) m1 = m2 = m3 = 1

3 , then x is the centroid (see Fig. 9.6 (b)).

It is difficult to prove the theorem of Archimedes (Theorem 4.1 on page 85)
in a more elegant way.

9.2 Gaussian Elimination, Volume and Determinant

Given three vectors a, b, c in R3 (or n vectors in Rn), we want to determine
the volume of the parallelepiped which they span.
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Gaussian elimination. We solve this problem by considering these vectors
as the row vectors of a matrix, and carrying out Gaussian elimination. This
“algorithmus expeditissimus”, used for many centuries to solve systems of
linear equations, was described systematically by Gauss (1809) when consid-
ering the method of least squares. The matrix is simplified in several steps
“per eliminationem vulgarem”. The first step consists in subtracting multiples
of the first row from the lower rows so that their first coefficients become zero:


a1 a2 a3
b1 b2 b3
c1 c2 c3


⇒



a1 a2 a3
0 b2 − b1

a1
a2 b3 − b1

a1
a3

c1 c2 c3


⇒



a1 a2 a3
0 b2 − b1

a1
a2 b3 − b1

a1
a3

0 c2 − c1
a1
a2 c3 − c1

a1
a3




The coefficient a1, which allowed this elimination and which must be different4

from 0, is called the first pivot . In the second step we use the second pivot
b2− b1

a1
a2 in the second row and eliminate the second coefficients of the lower

row(s):

⇒




a1 a2 a3
0 b2 − b1

a1
a2 b3 − b1

a1
a3

0 0 c3 − c1
a1
a3 −

c2− c1

a1
a2

b2− b1

a1
a2

(b3 − b1
a1
a3)


 (9.11)

If n > 3 the algorithm continues with the complicated expression in position
(3, 3) of (9.11) as third pivot, and the algebraic expressions of the results soon
become unmanageable. But the numerical versions of the algorithm are the
basis for countless scientific calculations with thousands of variables.

Volume of a parallelepiped. The geometric meaning of Gaussian elimi-
nation is illustrated in Fig. 9.8 for n = 2 and in Fig. 9.9 for n = 3. In each
of these operations, one of the vectors is moved in the direction of one of
the others, and by Eucl. I.35 (or Eucl. XI.29), the volume does not change.
After having eliminated the coefficients below the diagonal as in (9.11), we
continue to eliminate the coefficients above the diagonal by eliminating from
below (last picture in Fig. 9.8; second row in Fig. 9.9). For n = 3, we arrive at
a rectangular cuboid, whose sides are the three pivots.

a1

a2a

b1

b2b

e1

e2

⇒

a1

a2a

b2− a2b1
a1

e1

e2

⇒

a1

b2− a2b1
a1

e1

e2

[
a1 a2
b1 b2

]
⇒

[
a1 a2
0 b2 − a2b1

a1

]
⇒

[
a1 0

0 b2 − a2b1
a1

]

Fig. 9.8. Gaussian elimination preserves volume in dimension 2

4Otherwise, we exchange rows.
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Fig. 9.9. Gaussian elimination preserves volume in dimension 3

Theorem 9.1. The volume of a parallelepiped is equal (apart from the sign)
to the product of the pivots of Gaussian elimination applied to the coefficient
matrix of the generating vectors. This product is called the determinant of the
matrix.5

“Je crois avoir trouvé pour cela une Règle assez commode &
générale, ... On la trouvera dans l’Appendice, No. 1. [I believe that
I have discovered a quite convenient and general rule for this ... It
is given in the Appendix, No. 1.]” (G. Cramer, 1750, p. 60)

Examples. For n = 2, the product of the first two pivots in (9.11) gives

A = a1b2 − a2b1 = det

[
a1 a2
b1 b2

]
(9.12)

for the area of a parallelogram, and for n = 3 the product simplifies to

5The theory of determinants is older than that of matrices. The first moti-
vations came from algebra (Maclaurin, 1748, G. Cramer, 1750 (see Fig. 9.10) and
Bézout, 1764); the principal architects of determinants were Vandermonde (1772)
and Laplace (1772); the geometric significance as a volume was discovered by Eu-
ler, Lagrange and Jacobi (1769, 1773 and 1841, for transforming multiple integrals).
A classical introduction to the theory of determinants is the book by A.C. Aitken
(1964).
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Fig. 9.10. Cramer’s rule and first determinants as denominators of solutions of
linear equations; above: from Maclaurin (1748); below: from Cramer (1750)

V = a1b2c3 + a2b3c1 + a3b1c2 − a3b2c1 − a2b1c3 − a1b3c2

= det



a1 a2 a3
b1 b2 b3
c1 c2 c3


 .

(9.13)

See Fig. 9.10 for reproductions of the first appearance of determinants in print.
For n = 4 the corresponding formula has 24 terms, for n = 5 there are 120
terms.

9.3 Norm and Scalar Product

It can be seen from Fig. 9.4 (a) that the length of a vector a, denoted by |a|
and called its norm,6 is given by

|a|2 = r2 + a23 = a21 + a22 + a23 =
∑

i a
2
i (9.14)

(apply Pythagoras’ theorem twice). With this norm, the space R3 becomes a
normed space and consequently a metric space with distance

d(a, b) = |b− a| =
√∑

i(bi − ai)2 .

Scalar product. We set c = b − a, so that a, b, c form a triangle as in
Fig. 9.5 (a), and expand:

|c|2 = |b− a|2 =
∑
i(bi − ai)2 =

∑
i b

2
i − 2

∑
i aibi +

∑
i a

2
i . (9.15)

Definition 9.2. The quantity
∑

i aibi in the preceding equation is called the
scalar product of the vectors a and b:

〈a, b〉 = 〈a |b〉 = a · b =
∑
i aibi with 〈a, a〉 = a · a = |a|2 . (9.16)

The notation a · b is due to Gibbs and explains the name dot product.

6also very commonly denoted by ‖a‖.
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We see that the scalar product is symmetric, and linear in both arguments:

〈a, b〉 = 〈b, a〉 and 〈λ1a1 + λ2a2, b〉 = λ1〈a1, b〉+ λ2〈a2, b〉 . (9.17)

With this notation, equation (9.15) becomes

|c|2 = |a|2 + |b|2 − 2〈a, b〉 or 〈a, b〉 =
|a|2 + |b|2 − |c|2

2
. (9.18)

Comparing these equations with Pythagoras’ theorem, its converse and the
law of cosines (formula (5.10) on page 119), we read off three important con-
sequences:

Theorem 9.3. Two non-zero vectors are orthogonal if and only if their scalar
product vanishes.

Theorem 9.4. Let γ be the angle between two non-zero vectors a and b. Then

〈a, b〉 = |a| |b| cos γ or cos γ =
〈a, b〉
|a| |b| . (9.19)

Theorem 9.5. Let e be a unit vector (|e| = 1). Then the scalar product a ·e =
|a| cos γ gives the length of the orthogonal projection of a onto e (see the
figure), where γ is the angle between a and e.

e

a

γ

a · e

This is in agreement with the fact that ai = a · ei
for the canonical basis vector ei. We further find the
representation

a =
∑

i

〈a, ei〉 ei

with respect to any orthonormal basis.7

Cartesian equation of a plane. Let a be a given point and n be a vector
of norm 1. Then the point x lies in the plane passing through a and orthogonal
to n if and only if (see Fig. 9.11 (a))

(x− a) · n = 0 i.e. n1x1 + n2x2 + n3x3 = q , (9.20)

where q = n1a1 + n2a2 + n3a3. On the other hand, given an equation

α1x1 + α2x2 + α3x3 = r ,

one knows that (α1, α2, α3)/
√
α2
1 + α2

2 + α2
3 is a unit vector orthogonal to the

plane defined by this equation.

7A set of vectors is called orthonormal if its elements are mutually orthogonal
and of unit length.
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Fig. 9.11. Equation of a plane and distance of a point (a); mixed triple product (b)

Distance of a point to a plane. Let y denote an arbitrary point. Its
distance to a plane, determined by (9.20), is given by

d = (y − a) · n
= (y1 − a1) cos ε1 + (y2 − a2) cos ε2 + (y3 − a3) cos ε3 ,

(9.21)

see Fig. 9.11 (a) and Theorem 9.5. The second expression is obtained from
Theorem 9.4 by inserting ni = 〈n, ei〉 = cos εi, where εi are the angles between
n and the coordinate axes. In this form the equation was stated by Hesse (1861,
pp. 15–18); the analogue for lines was given in Hesse (1865, pp. 14–17).

Angle between two planes. One calculates a normal vector to each plane
and determines the angle between these two vectors.

Angle between a straight line and a plane. Knowing the parametric
form (9.7) of the line, one calculates the desired angle from the angle between
the direction vector b − a of the line and a normal vector of the plane.

It is remarkable for how many geometric questions the scalar product turns
out to be useful.

9.4 The Outer Product

Given two vectors a and b, we wish to find a vector x perpendicular to the
plane spanned by a and b. In three dimensions, the orthogonal complement
of two non collinear vectors is a line through O and hence is determined by a
unique direction vector. This vector was studied by Grassmann as a certain
product of a and b. The product exists, as a vector of the same dimension,
only in three dimensions. It is of great importance for various applications in
spatial geometry and in physics.

The two orthogonality conditions (see Theorem 9.3) give us a system of two
linear equations:
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a1x1 + a2x2 + a3x3 = 0 ,

b1x1 + b2x2 + b3x3 = 0 ,

which can be transformed by Gaussian elimination into

a1x1 + a2x2 + a3x3 = 0 ,
(
b2 − b1a2

a1

)
x2 +

(
b3 − b1a3

a1

)
x3 = 0 .

In this last equation x3 can be freely chosen. The choice x3 = a1b2 − a2b1
results in particularly nice formulas for x2 and x1, namely

x1 = a2b3 − a3b2 , x2 = a3b1 − a1b3 , x3 = a1b2 − a2b1 . (9.22)

The product

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

=

(
det

[
a2 a3
b2 b3

]
,det

[
a3 a1
b3 b1

]
,det

[
a1 a2
b1 b2

])
(9.23)

is called the outer product (or cross product or vector product) of a and b, see
Fig. 9.11 (b). The symbol × is due to Gibbs and has been in use for about
one century. Certain similar structures in modern algebra later motivated its
replacement by the symbol ∧ .

Mixed triple product. Take the outer product a × b, and compute its
scalar product with a third vector c. To our great surprise, the result is the
determinant (9.13):

(a× b) · c = det



a1 a2 a3
b1 b2 b3
c1 c2 c3


 = V . (9.24)

The mixed triple product, also called scalar triple product or box product,
is thus the volume of the parallelepiped spanned by a, b and c. The mixed
product is invariant under cyclic permutations

(a× b) · c = (b× c) · a = (c× a) · b . (9.25)

Norm of the outer product. Employing the relation (9.19) for the scalar
product in (9.24), we obtain

V = (a× b) · c = |a × b| · |c| · cos θ = |a× b| · h , (9.26)

where h is the distance of the point c from the plane spanned by a and b (see
Fig. 9.11 (b)). Comparing this with Eucl. XI.27 ff., i.e. the formula V = A · h
in (2.7), we conclude that the norm of the outer product is equal to the area
of the parallelogram spanned by a and b, namely

9.4 The Outer Product
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Fig. 9.12. Distance of two skew lines in space (a); volume of a parallelepiped (b);
triangular prism (c); tetrahedron between two vectors (d)

|a × b| = A = |a| · |b| · sin γ . (9.27)

Plane passing through three points. The outer product allows one to
transform the parametric form of a plane into the parameter-free (Cartesian)
form. One obtains the interesting result that the plane passing through three
points a, b and c can be written in the form (see (9.20), (9.24) and (9.25))

0 = (x− a) ·
(

(b− a) × (c− a)
)

=
(

(x− a)× (b − a)
)
· (c− a) = det



x1 − a1 x2 − a2 x3 − a3
b1 − a1 b2 − a2 b3 − a3
c1 − a1 c2 − a2 c3 − a3




= det




x1 − a1 x2 − a2 x3 − a3 0
b1 − a1 b2 − a2 b3 − a3 0
c1 − a1 c2 − a2 c3 − a3 0
a1 a2 a3 1


 = det




x1 x2 x3 1
a1 a2 a3 1
b1 b2 b3 1
c1 c2 c3 1


 .

(9.28)

Distance of two skew lines in space. Let a and b be two points in R3 and
let p and q be two given direction vectors. We wish to determine the shortest
distance h between the lines a+ λp and b+ µq (see Fig. 9.12 (a)).

Solution. By parallel translations of the vectors p and q we obtain a paral-
lelepiped spanned by the vectors b− a, p and q (see Fig. 9.12 (b)). By (9.13),
the volume V of this parallelepiped is
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V = det



b1 − a1 b2 − a2 b3 − a3
p1 p2 p3
q1 q2 q3


 . (9.29)

By (9.27), the parallelepiped has a base of areaA = |p×q|, while its altitude is
precisely the distance h which we are looking for. Hence, by comparing (9.29)
with V = A · h (Eucl. XI.27 ff.), we obtain

h =
1

|p× q| det



b1 − a1 b2 − a2 b3 − a3
p1 p2 p3
q1 q2 q3


 . (9.30)

Volume of the tetrahedron between two vectors in space. If we replace
the base parallelogram by a triangle to obtain a triangular prism, the volume
will be divided by 2 (Fig. 9.12 (c)). Finally, as in Euclid’s figure (upper picture
of Fig. 2.35 on page 50), we decompose this prism into three tetrahedra of
equal volume. One of these will be the tetrahedron whose opposite edges are
the vectors p and q (see Fig. 9.12 (d)). The volume VTet of this tetrahedron is
thus

VTet =
1

6
det



b1 − a1 b2 − a2 b3 − a3
p1 p2 p3
q1 q2 q3


 =

h · |p× q|
6

. (9.31)

This last formula, which is attributed to J. Steiner (see Dörrie, 1943, §198),
allows the interesting conclusion that the volume of a tetrahedron between two
vectors in space is independent of the particular choice of a and b on the lines.

Position of the shortest connection between two skew lines. For the
shortest connection between the two lines in Fig. 9.12 (a), the vector connect-
ing the points a+λp and b+µq must be perpendicular to both p and q, hence
the scalar product of (a + λp) − (b + µq) with p and q must be zero. This
gives

(p · p)λ− (q · p)µ = (b− a) · p ,
(p · q)λ− (q · q)µ = (b− a) · q ,

(9.32)

a linear system for the unknowns λ and µ to solve.

Orientation. By definition, a triple of vectors a, b and c has positive orien-
tation, if the sign of det(a, b, c) is positive. Consequently, these vectors have
the same orientation as the three basis vectors e1, e2 and e3. We deduce from
(9.26) that the sign of the outer product is chosen so that the triple a, b and
a× b has positive orientation (since e1 × e2 = e3).

In dependence of the orientation of the vectors, the above formulas for
volumes and distances can give negative values. Many authors therefore take
absolute values. However, it is often preferable not to destroy the additional
information about the orientation of the involved vectors.
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9.5 Spherical Trigonometry Revisited
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Fig. 9.13. Spherical coordinates (a); the spherical law of cosines (b)

Spherical coordinates. Spherical coordinates, used in many branches of
science (geography, astronomy, analysis on the sphere) measure the position
of a point P on a sphere of radius 1 by measuring along the equator the
longitude ψ from a point A to a point B, and from there along the meridian
the latitude ϕ to reach P . If we place the origin of our Cartesian coordinates
at the centre of the sphere, the x-axis in direction of A and the z-axis in the
direction of the north pole, we ask for the Cartesian coordinates of P (see
Fig. 9.13 (a)).

Solution. If we let C be the point of latitude ϕ on the meridian of A, we have
the coordinates

B = (cosψ, sinψ, 0) and C = (cosϕ, 0, sinϕ) . (9.33)

Since the triangles OAB and O′CP are similar with similarity factor O′C =
cosϕ, the x, y-coordinates of P are by Thales’ theorem those of B multiplied
by this factor, while its z-coordinate is that of C. Hence we have found the
spherical coordinates

P = (cosϕ cosψ, cosϕ sinψ, sinϕ) . (9.34)

The spherical law of cosines. We place a spherical triangle with given
arc lengths a and b and a given angle γ as indicated in Fig. 9.13 (b) with
C at the North Pole and the side b on the Greenwich meridian. Then we
have by (9.33) and (9.34) the coordinates A = (sin b, 0, cos b) and B =
(sin a cos γ, sina sin γ, cosa) (the angles a and b are measured from the North
Pole, which exchanges sines and cosines). By (9.19) the scalar product of these
unit vectors once again gives the formula cos c = sin b sin a cosγ + cos b cos a.

Remark. Proofs of the spherical law of cosines and of sines for triangles in
arbitrary position using more difficult vector algebra are indicated in Exercises
5 and 6 on page 288.
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Fig. 9.14. Spherical triangle with vector algebra

Spherical trigonometry using Euler angles. Another possibility is to use
skew spherical coordinates. Because of their similarity with Euler’s method of
describing the movement of rigid bodies, we call them Euler angles. We move
from the point A along the equator on an arc of length c and arrive at B =
(cos c, sin c, 0). From there we describe an arc of length a on a great circle which
makes an angle β with the equator, and arrive at the point C (see Fig. 9.14). To
compute the coordinates of C, we first look for a unit vector nB perpendicular
to the plane of this great circle, i.e. nB must be perpendicular to B and make
an angle β with N . Thus the scalar product of nB with N = (0, 0, 1) must be
cosβ and its scalar product with B = (cos c, sin c, 0) must be zero. This leads
to nB = (− sin c sinβ, cos c sinβ, cos β), a vector already of length 1. We then
construct a vector tB lying in the desired plane and orthogonal to B. This
means that tB = B × nB = (sin c cosβ,− cos c cosβ, sinβ). Finally, the point
C is a linear combination of B and tB with cosa and sin a as coefficients:

C = B cos a + tB sina (9.35)

= (cos a cos c+sina sin c cosβ, cos a sin c−sina cos c cosβ, sina sinβ) .

We now repeat the same procedure starting directly from the point A and
moving on an arc of length b under an angle α on the great circle through
A and C. This gives similarly nA = (0,− sinα, cosα) and tA = nA × A =
(0, cosα, sinα), so that

C = A cos b+ tA sin b = (cos b, cosα sin b, sinα sin b) . (9.36)

If we compare, coordinate by coordinate, the results for C in (9.36) and (9.35),
we obtain at one stroke the law of cosines (5.35) on page 133, formula (5.37)
which leads to the law of cotangents, and the law of sines (5.36).

9.5 Spherical Trigonometry Revisited
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Fig. 9.15. Vector computation of the sundial (the x-coordinate OA is perpendicular
to the wall and seen from below, the coordinates y, z span the wall, OB points
horizontally to south, OG is the gnomon pointing south parallel to the Earth’s axis,
the shadow ℓ rotates around G, S is the shadow of G on the wall on March 21 at
1.30 p.m.)

The sundial again. We return to the sundial described in Example 3 on
page 137 and find the required angles with vector algebra.

The computations are explained in Fig. 9.15. We choose the coordinate
system as indicated there. We retain the notations ϕ for the latitude and σ
for the declination of the wall from the south direction (measured from south
to east). The coordinates of G are obtained from (9.34) and become in our
situation

g = (cosϕ cosσ,− cosϕ sinσ,− sinϕ) . (9.37)

We choose the orthonormal basis m,n in the plane perpendicular to the
gnomon, where we find m from the conditions m3 = 0 (i.e. m is horizon-
tal) and m · g = 0, and n as n = m× g. This gives

m = (sinσ, cosσ, 0) and n = (− sinϕ cosσ, sinϕ sinσ,− cosϕ) . (9.38)

Then the direction of the shadow ℓ = (ℓ1, ℓ2, ℓ3) which rotates around G is
given by

ℓ = n cosα +m sinα , (9.39)

where α has the same meaning as before. The shadow S on the wall is of the
form S = g + λℓ, where λ is determined by s1 = 0, hence λ = − g1

ℓ1
. Thus

S =
(

0, g2 −
g1
ℓ1
· ℓ2, g3 −

g1
ℓ1
· ℓ3
)
. (9.40)

At the equinox (March 21 or Sept. 23) this point moves on a straight line. If
we want to compute the beautiful hyperbolas on which S moves during the
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rest of the year, we replace the ℓ above by a linear combination of ℓ and g. If
we are interested only in the angle a, we compute from (9.40)

cota = −s3
s2

= −g3ℓ1 − g1ℓ3
g2ℓ1 − g1ℓ2

=
(g × ℓ)2
(g × ℓ)3

. (9.41)

We simplify this by using (9.39) and obtain g×ℓ = (g×n) cosα+(g×m) sinα =
m cosα−n sinα (the relation g×n = m has been used above, g×m must be
perpendicular to g and m, hence is either n or −n; you can also use Exercise
4). So we finally obtain

cota =
m2 cosα − n2 sinα

m3 cosα − n3 sinα
. (9.42)

Inserting the coordinates for n and m from (9.38), we obtain precisely formula
(5.43) on page 138 and, indirectly, a new proof of Euler’s cotangent formula
(5.40).

9.6 Pick’s Theorem

We now apply formula (9.12) for the area of parallelograms and if divided by
2, of triangles to the special case of lattice polygons , i.e. polygons all of whose
vertices have integer coordinates. This condition will lead to a surprisingly
beautiful result, discovered by G. Pick (1899). His paper remained unnoticed
for more than half a century, until it was revived by Steinhaus’ growing in-
terest in mathematical education. An excellent list of references is given in
Grünbaum and Shephard (1993). In order to discover this result, we have
drawn in Fig. 9.16 several lattice triangles and a polygon.

1 2
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5

6

7

8

9

10

Fig. 9.16. Discovering Pick’s theorem

9.6 Pick’s Theorem
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The crucial observation is that the triangles numbered 1 through 8 all have
the same area, 1

2
. This is evident from Eucl. I.41 for triangles 1, 2, 3, 4 and 5.

For triangle 6 we have with (9.12)

2A = det

[
7 2
3 1

]
= 7− 6 = 1 (9.43)

and similarly for triangles 7 and 8. All these triangles are characterised by
the fact that the only lattice points on or inside them are the three vertices.
Therefore they cannot be divided into smaller lattice triangles and we call
them, what else, ἄτομος.

In a second step we join atoms to form molecules. Triangles 9 and 10 are
both composed of three atoms and both have area 3

2
. This results from one

additional interior lattice point for triangle 9, and two additional boundary
lattice points for triangle 10. We see that an interior lattice point is worth two
boundary lattice points and we conjecture the following theorem.

Theorem 9.6 (Pick’s theorem). Let a simple closed lattice polygon (i.e. one
without self-intersections) have i interior lattice points and b boundary lattice
points. Then its area is

A = i+
b− 2

2
. (9.44)

For example the spider in Fig. 9.16 has area A = 3 + 14−2
2 = 9.
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Fig. 9.17. Additivity of A and W

Proof. Probably the most elegant proof was found by Varberg (1985). It does
not require number theory nor chemistry but relies on the following idea:
consider for each interior or boundary lattice point the “visibility angle” w
measuring the view from the lattice point into the polygon. This angle is nor-
malised as follows: a 360◦ panoramic view counts for 1, a view of 180◦ counts
for 1

2
, a right angle for 1

4
and so on (see Fig. 9.17). Then add up all these

angles to obtain the number W = w1 + w2 + . . . . For example, the polygon
on the right of Fig. 9.17 has W = 2 · 1 + 3

4 + 4 · 12 + 3
8 + 3 · 14 + 1

8 = 6. The
quantity W is additive, that is, if West and East Germany are united, then
(see Fig. 9.17 again)
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W =W1 +W2 . (9.45)

In order to see this, we need only add up the visibility angles along the Iron
Curtain 3

8
+ 3

8
= 3

4
, 1
4

+ 3
4

= 1, 3
8

+ 1
8

= 1
2
. The area A shares the same property

and we will see that
A =W . (9.46)

After dividing the polygon into triangles (in precisely the same way as Pro-
clus’ result (2.16) on page 54 was found), it suffices to prove formula (9.46)
for lattice triangles. This last verification is carried out in three steps (see
Fig. 9.18). Firstly it is immediately seen to hold for rectangles with horizontal
and vertical sides (a). Each lattice point sits in a dotted region of exactly
the same area as the indicated w. Secondly, upon division by 2, it holds for
right-angled triangles with legs parallel to the lattice (b). The only calcula-
tion needed here is that 1

4
−w+w = 1

4
. Finally, since W is additive, it is also

subtractive, so we can represent an arbitrary triangle in (c) as the difference of
a parallel triangle with two parallel triangles and one parallel rectangle. This
concludes the proof of Pick’s theorem, because the sum in W over the inte-
rior lattice points equals i, and the sum over the boundary points, by using
Proclus’ formula (2.16), equals b−2

2 .
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Fig. 9.18. Validity of A = W for lattice rectangles (a); right-angled lattice triangles
with legs parallel to the lattice (b); arbitrary lattice triangles (c)

Remark. The above theorem can be extended to a lattice annulus. Consider
two lattice polygons, one inside the other, as the borders of an annulus, with
b1 lattice points on the outer border, b2 on the inner border, i1 interior lattice
points in the annulus, and i2 interior points in the inner polygon. We consider
the annulus as the difference between the outer and the inner polygons. By
subtracting the corresponding formulas (9.44) we get for its area

A = i1 + b2 + i2 +
b1 − 2

2
−
(
i2 +

b2 − 2

2

)
= i1 +

b1 + b2
2

. (9.47)
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This last result can also be obtained from (9.46) and the fact that the sum
of the outer angles of a b-gon is b+2

2
, a result that according to Heath (1926),

p. 322, was already known to Aristotle.

9.7 A Theorem on Pentagons in Space

“Pólya disclaimed any previous knowledge of the theorem and
added ‘if van der Waerden didn’t know about it then it wasn’t
known to mathematics’.”

(footnote in Dunitz and Waser, 1972)

Van der Waerden (1970) published the following surprising theorem:

Theorem 9.7. A pentagon in R3 with all side lengths and all angles equal
(see Fig. 9.19) must be planar.
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Fig. 9.19. Van der Waerden’s pentagon theorem

Remark. The theorem is not true for isogonal equilateral n-gons with n = 4
or n ≥ 6 (see Fig. 9.20). Van der Waerden mentioned in his paper that he had
been led to this theorem by discussions with a chemist at the University of
Zürich, J.D. Dunitz. Van der Waerden’s proof was elegant, but not elemen-
tary. Soon after van der Waerden’s publication, many more elementary proofs
were found (H. Irminger (1970), S. Šmakal (1972), J.D. Dunitz and J. Waser
(1972)). Dunitz and Waser explain that the theorem had been discovered in
chemistry 25 years earlier “in the course of an electron-diffraction study of
gaseous arsenomethane (AsCH3)n” and present several of the classical proofs

Fig. 9.20. Equilateral and isogonal, but not planar, polygons for n = 4 (left) and
n = 7 (right)
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by J. Waser. S. Šmakal gives a proof using vector calculus (see page 299) and
remarks that the theorem, which was thought to be unknown to mathemati-
cians (see the quotation) had been published in 1961 in the Russian journal
Prosveshchenie, inspired by a problem proposed in 1957 by V.I. Arnol’d.

Proof. (a) In order to help our geometric intuition, we start with some calcula-
tions: we take all distances AB, BC, CD, DE and EA equal to 1. If all angles
α are fixed, then by Eucl. I.4 all diagonals AC = BD = CD = CE = DA = d
are determined. They satisfy d = 2 sin α

2
or, by (5.9) on page 118, d2 = 2− 2c

where c = cosα. Thus the shape of the triangle ABC with sides 1, d, 1 is fixed;
we choose the coordinate system so that

A = (− d2 , 0, 0) , B = (0,−r, 0) , C = (d2 , 0, 0) with r =
√

1− d2

4 .

The point D is determined by the conditions CD = 1, AD = d and BD = d.
Using (9.14), this gives three equations for the coordinates x, y, z of this point:

(x− d
2 )2 + y2 + z2 = 1 ,

(x+ d
2 )2 + y2 + z2 = d2 ,

x2 + (y + r)2 + z2 = d2 .

Subtracting the second equation from the first, then the third from the sec-
ond, and finally inserting x and y into the first equation, we obtain, after
simplification,

x =
d

2
− 1

2d
, y =

d2 − 3/2

2r
, z2 = − (d2 + d− 1)(d2 − d− 1)(d2 + 1)

d2(4− d2)
.

(9.48)
The results for the fifth point E are precisely the same, except that x is
replaced by −x. We see that x and y are uniquely determined for all d with
0 < d < 2. The variable z appears as z2 with a formula containing the
expressions (1.3) from the golden ratio. Thus for d = Φ and d = 1

Φ we obtain
z = 0. In this case our pentagon is planar, once the ordinary regular pentagon,
once the “Soviet style” pentagon of page 9. For d between these two values,
we have z2 > 0 and there are two solutions for D, one above the xy-plane and
one symmetrically below this plane. The same two possibilities hold for the
z-coordinates of the point E. We conclude, in particular, that

if four points of our pentagon lie in one plane (i.e. z is zero),
then the fifth point also lies in this plane.

(9.49)

(b) We now calculate analytically the distance DE: if the sign of z is the
same for D and E, we have DE = d − 1

d , twice the value of x in (9.48).
Clearly DE 6= 1 if d is not the golden ratio or its inverse. If the sign of z
is different for D and E, we compute DE2 − 1 = (d − 1

d )2 + 4z2 − 1 which

9.7 A Theorem on Pentagons in Space
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simplifies to 5(−d4+3d2−1)
4−d2 , so that again DE 6= 1 away from the golden ratio.

This concludes the proof in all cases.

(c) But all the calculations of step (b), and all the details of the calculations
of step (a), become superfluous if we follow the elegant reasoning of Irminger
(1970): suppose that the z-coordinates of D and E are the same: then the
points ACDE lie in one plane. By (9.49), the fifth vertex must also lie in the
same plane. Suppose, secondly, that D lies below and E lies above the plane
x, y spanned by ABC. Then both points A and E lie above the plane spanned
by BCD. So if we start our calculations with this triangle, we are back at the
first situation.

9.8 Archimedean Solids

The description of the five regular, or Platonic, solids was the culmination of
Euclid’s last Book XIII (see Chap. 2). What can we do better than conclude
this chapter with the solids whose faces are regular polygons of more than
one kind. More precisely, we look for convex solids such that each vertex is
surrounded by regular polygons arranged in the same way. Pappus, in his
Collection, Book V,8 briefly described 13 such solids which he attributed to
Archimedes. However, the work of Archimedes to which Pappus refers has not
been found.

The slow rediscovery of these semiregular, or Archimedean solids required
considerable effort by scientists and artists (for example Piero della Francesca,
Luca Pacioli, Leonardo da Vinci, and Albrecht Dürer). Only Kepler finally
published the complete collection of these “Archimedêa Corpora” in his Har-
monices mundi (1619, Liber II, Propositio XXVIII). He also gave them names,
whose English translations have become standard (see Fig. 9.21 and Table 9.1).

A detailed account of this rediscovery is given in Field (1996). A recent
discovery of printing blocks for woodcuts by an unknown artist dating from
about 1550 is described in Schreiber, Fischer and Sternath (2008).

To construct these solids, we can start from one of the Platonic solids and
cut off vertices and/or truncate edges in five different ways, as follows:

1. The easiest method is to cut off the vertices in a symmetric way. Take
for example a cube of side length 1 (see Fig. 9.22, left) and shorten each edge
around a vertex by an undetermined length u; then the vertices are replaced
by equilateral triangles of side length

√
2u, while the square faces become

octagons with sides of length
√

2 u and 1−2u. If 1−2u =
√

2 u, i.e. if u = 1
2+

√
2
,

these octagons are regular and we obtain our (and Kepler’s) first Archimedean
solid, the truncated cube (“Cubus truncus”), whose beauty can be admired
in three dimensions in Fig. 9.22, right. For the truncated dodecahedron we
have u = 1

2+Φ (number 3 in Fig. 9.21), and for the truncated tetrahedron,

8in the 1660 edition on page 129 without title; in Hultsch’s edition on page 351
under the title Libri quinti pars secunda, In Archimedis solidorum doctrinam
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Fig. 9.21. Archimedean solids (drawings by Kepler, Harmonices mundi 1619)

Table 9.1. Kepler’s list of the Archimedean solids

n name composed of faces edg. vert.

1 trunc. cube 8 triang., 6 octog. 14 36 24

2 trunc. tetrahedron 4 triang., 4 hexag. 8 18 12

3 trunc. dodecahedron 20 triang., 12 decag. 32 90 60

4 trunc. icosahedron 12 pent., 20 hexag. 32 90 60

5 trunc. octahedron 6 squares, 8 hexag. 14 36 24

6 trunc. cuboctahedron 12 squares, 8 hexag., 6 octog. 26 72 48

7 trunc. icosidodecahedron 30 squares, 20 hexag., 12 decag. 62 180 120

8 cuboctahedron 8 triang., 6 squares 14 24 12

9 icosidodecahedron 20 triang., 12 pent. 32 60 30

10 rhombicuboctahedron 8 triang., 18 squares 26 48 24

11 rhombicosidodecahedron 20 triang., 30 squares, 12 pent. 62 120 60

12 snub cube 32 triang., 6 squares 38 60 24

13 snub dodecahedron 80 triang., 12 pent. 92 150 60

9.8 Archimedean Solids
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u u

u

u

√
2u

√
2u

1−2u

Fig. 9.22. First method of truncation (left); truncated cube (right)

Fig. 9.23. truncated tetrahedron (left), truncated icosahedron (right)

icosahedron and octahedron (numbers 2, 4 and 5 respectively) we have u = 1
3

(two of them in Fig. 9.23).

2. If we cut off the vertices up to the midpoints of the edges (i.e. if we set u =
1
2), we again obtain regular faces. If we start from the cube or the octahedron,
this leads to the same solid shown in Fig. 9.24 (left), called a cuboctahedron.
Starting from the dodecahedron or the icosahedron this procedure gives the
icosidodecahedron (Fig. 9.24, right). In Kepler’s catalogue (Fig. 9.21) the two
solids are numbered 8 and 9. The cuboctahedron was probably the very first of
the Archimedean solids to be discovered (“according to Heron, [...] Archimedes
[...] said that Plato also knew one of them”; Heath (1921), vol. I, p. 295). In a
famous engraving of Dürer from 1514, a lady, after having cut off two of the
eight vertices from a cube, gave up, threw saw and plane away and fell into
Melencolia (Fig. 9.25).

Fig. 9.24. Truncating up to the midpoint of the edges; cuboctahedron from the
cube and the octahedron (left); icosidodecahedron (drawing from A. Abdulle and
G. Wanner, Elem. Math. 57 (2002), right)
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Fig. 9.25. Dürer’s Melencolia and its interpretation based on serious geometry

u u

u u
u

√
2u

1−2u

Fig. 9.26. Truncating the edges; the rhombicuboctahedron (right)

3. The third possibility is to truncate the edges, as shown in Fig. 9.26 for
the cube. The edges are then replaced by rectangles of side lengths

√
2u

and 1 − 2u. These are squares if u = 1
2+

√
2
. The solid corresponding to this

choice of u can be admired in Fig. 9.26 (right) and has the complicated name
rhombicuboctahedron. The solid obtained similarly from the dodecahedron
bears the name rhombicosidodecahedron (number 11 in Fig. 9.21).

4. We now truncate the edges and the vertices of the cube by two undeter-
mined lengths u and v (see Fig. 9.27, left). The vertices, which earlier became
triangles, now become hexagons with side lengths

√
2u and

√
2 v. The rect-

angles which replace the edges have sides of length
√

2 u and 1− 2u− 2v. The
faces become octagons with sides of length

√
2 v and 1 − 2u − 2v. All these

polygons are regular if u = v = 1
4+

√
2
. The solid thus obtained, shown in

u u

v v

1−2u−2v

√
2u

√
2v

Fig. 9.27. Truncating edges and vertices; the truncated cuboctahedron (right)
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Fig. 9.28. Skew truncations (left); the snub cube (right)

Fig. 9.27 (right), is the truncated cuboctahedron9 (number 6 in Kepler’s list).
The solid obtained analogously from the dodecahedron is called the truncated
icosidodecahedron (number 7 in Fig. 9.21).

5. The last two Archimedean solids were the most difficult to find. We shrink
the faces by an undetermined factor and rotate them by an undetermined
angle. We demonstrate the calculations for the cube. Suppose that its sides
have length 1 and choose an orientation on the cube. For two unknown lengths
x and y we then place points P,Q,R, S, . . . on each face at distance (x, y) from
the vertices by respecting the chosen orientation (see Fig. 9.28, left). For any
x and y the polygon QPNM (and all others around the cube constructed
similarly) are squares and the triangles PRS etc. are equilateral. We then
calculate the distances RQ, PQ and PR using Pythagoras or (9.14) and obtain

RQ2 = y2 + (1− 2x)2 + y2

PQ2 = (1− x− y)2 + (x− y)2

PR2 = x2 + (x− y)2 + y2

which must all be equal. We subtract the last equation from the other two
and obtain

PQ2 − PR2 = 1− 2x− 2y(1− x) = 0 ⇒ 2y =
1− 2x

1− x
⇓

RQ2 − PR2 = 1− 4x+ 2x2 + x · 2y = 0 ⇒ 1− 4x+ 4x2 − 2x3 = 0 .

This last equation has one real solution, not constructible with ruler and
compass, for which we obtain numerically x = 0.352201128739, whence y =
0.228155493654. With these values, PQR and all other triangles around the
cube constructed similarly will be equilateral and the construction of the snub
cube (“Cubus simus”; see Fig. 9.28, right; number 12 in Fig. 9.21) is complete.
The shrinking factor of the squares is 0.43759 and the rotation angle is 16◦28′.

9The name is slightly misleading; if you simply truncate the corners of a cuboc-
tahedron without further care, you obtain rectangles and not squares.
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The same procedure, just with much more complicated formulas, applied
to the dodecahedron leads to the shrinking factor 0.56212 and the rotation
angle 13◦6′ for Kepler’s snub dodecahedron (see Fig. 9.29, left; number 13 in
Fig. 9.21, also the last one in Pappus’ list).

Fig. 9.29. The snub dodecahedron (left); the pseudorhombicuboctahedron (right)

A last surprise. This was the state of the art concerning Archimedean solids
after Kepler until the 20th century, when several mathematicians discovered
independently that another body also satisfies the condition concerning the
arrangement of the faces around each vertex: if we look at the rhombicuboc-
tahedron in Fig. 9.26, we see that its central part consists of an octagonal wall
of squares, which allows us to twist the “roof” by 45◦, without rotating the
“basement”. The solid obtained in this manner is called — the longest name
in this book — a pseudorhombicuboctahedron and is drawn in Fig. 9.29. It has
however lost the beautiful global symmetry of the previous solids under rota-
tions. An account of the very slow process by which this discovery eventually
became better known is given in Grünbaum (2009), with many references to
the literature.

9.9 Exercises

1. On the occasion of the publication of an excellent book on geometry,
a reception is organised at the Hofburg in Vienna, in the presence of
high-ranking representatives of politics, academia and the media. The
illustrious guests are served Dom Pérignon in champagne glasses that have
the shape of a paraboloid of revolution. They are allowed to drink until
the vertex of the paraboloid becomes visible (see Fig. 9.30 (a)). Then they
are asked by Albert Stadler (see Elem. Math. 64 (2009), p. 129): “What
percentage of the champagne is left in the glass?”

2. (An exercise from Elem. Math. 12 (1957), p. 47) Let ABC be a fixed tri-
angle. For a point P inside ABC let A′, B′ and C′ be the centroids of the
triangles PBC, APC and ABP respectively. Show that the shape of the
triangle A′B′C′ is independent of the position of P .
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(a) (b)

Fig. 9.30. The question in Wiener Hofburg (a); its solution (b)

3. The outer product is distributive over addition of vectors:

a × (b+ c) = a× b+ a × c . (9.50)

The algebraic proof of (9.50) is a straightforward application of the defin-
ing relations (9.23). Give a geometric proof of (9.50).

4. Verify algebraically the formulas

(a× b) × c = b (a · c)− a (b · c) , (9.51)

(a× b) · (c× d) = (a · c)(b · d) − (b · c)(a · d) = det

[
a · c b · c
a · d b · d

]
. (9.52)

5. Consider the spherical triangle ABC shown in Fig. 9.31. By Theorem 9.4
we have

(u× v) · (u× w) = |u× v| |u× w| cosα .

Deduce the spherical law of cosines from this identity.
Hint. Use (9.52).

u

v

w

α

βO

A

B

C

a

b

c

Fig. 9.31. Vector proof of the spherical law of cosines and sines
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Fig. 9.32. Surface and volume of a truncated cone (a,b); Bernoulli’s Novum Theo-
rema (c); the Maltese cross and Pick’s theorem for multiple boundary points (d)

6. In the situation of the previous exercise apply (9.27) to get

|(u× v)× (u× w)| = |u× v| |u× w| sinα .

Deduce the spherical law of sines from this identity.
Hint. Start from the identity

(u × v)× (u× w) = −〈v, u× w〉 u ,

which is a consequence of (9.51).

7. Suppose that a cone with apex C and given angle α between the surface
and the axis of rotation is truncated by an oblique plane from A to B.
Denote by v and w the lengths of the shortest and longest generatrix
(Fig. 9.32 (a,b)).

(a) Show that the remaining lateral surface of the cone is given by

S = π
v + w

2

√
vw sinα (9.53)

(G. Pólya, Elem. Math. 26 (1971), p. 115).

(b) Show that the volume of the truncated cone above the plane AB is
given by
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V =
π

3
(vw)

3

2 sin2 α cosα . (9.54)

(c) Prove the Novum Theorema per Jacobum Bernoulli , announced in
the Acta Eruditorum 1689, p. 586: if the cone is truncated horizontally at
height h, where h is the distance of the cone’s apex from the plane AB,
then the intersection is a circle whose diameter is 2p, the latus rectum
Coni-Sectionis (see Fig. 9.32 (a,b) and (c)), i.e.

p = h · tanα . (9.55)

8. Extend Pick’s theorem to a lattice domain where the boundary poly-
gon returns several times (say m times) to the same lattice point (see
Fig. 9.32 (d)).

Remark. It has apparently been overlooked for the past 250 years that the
Maltese cross represents a nice geometric proof of Euler’s famous discovery

arctan 1
2 + arctan 1

3 = arctan 1 = π
4 ;

indeed, for the two angles denoted by α and β in Fig. 9.32 (d) we see that
tanα = 1

2 , tanβ = 1
3 and α+ β = π

4 .

9. Show that the vertices of an Archimedean solid lie on a sphere; or in the
words of A. Dürer’s Underweysung from 1525: rüren in einer holen kugel
mit all iren ecken an [touch a hollow sphere with all their vertices; quoted
from Schreiber, Fischer and Sternath, 2008].

10. Compute the angles under which the edges of the Archimedean solids are
seen from the centre. (The related results for the Platonic bodies are given
in (5.33) on page 131.) The problem is again related to the computation
of the radius of the circumscribed sphere.

11. For the Archimedean solids, compute the radius ρ of the inscribed sphere
and find out which of the solids is the “roundest”, i.e. for which the ratio
ρ/R is maximal.
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10

Matrices and Linear Mappings

“I certainly did not get the notion of a matrix in any way through
quaternions; it was either directly from that of a determinant or
as a convenient way of expressing the equations

x′ = ax+ by

y′ = cx+ dy ”

(Cayley 1855; quotation from M. Kline, 1972, p. 805)

“Über der hartnäckigen Verfolgung des vorgesetzten Weges haben
aber die Quaternionisten tiefer liegende Probleme von wahrhaftem
Interesse übersehen; ... Diese tiefere Einsicht in die Verhältnisse
verdanken wir Cayley. In A Memoir on the Theory of Matrices
(Phil. Trans. 1858) entwickelt er einen Matrixkalkül ... [In persis-
tently pursuing the preset way the quaternionists have overlooked
deeper problems of real interest; ... We owe this deeper insight into
the relations to Cayley. In A Memoir on the Theory of Matrices
(Phil. Trans. 1858) he developed a matrix calculus ...]”

(F. Klein, 1926, p. 189)

The controversy between “Grassmannians” and “Quaternionists” finally ended
in the victory of a third “competitor”, A. Cayley and his theory of matrices
(see the quotations). This theory turned mathematics upside down to such
an extent that some books on “geometry” from the beginning of the 20th
century (for example that of Schreier and Sperner) were written entirely in
the language of vectors and matrices.

10.1 Changes of Coordinates

“Cette recherche peut être presque toujours rendue plus facile par
des transformations analytiques qui simplifient les équations, en
faisant évanouir quelques-uns de leurs termes ... [This investiga-
tion can almost always be made easier through analytic transfor-
mations, which simplify the equations by eliminating some of their
terms ...]”

(J.-B. Biot, Essai de Géométrie analytique, Paris 1823, p. 145)

291
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e1 x1

e2

x2 x

s1

y1s1

s2

y2s2

x

Fig. 10.1. Change of coordinates

The systematic use of changes of coordinates (G. Cramer, 1750, Chap. II,
Lacroix, Biot; see the quotation) dates back to the 18th and the beginning of
the 19th century.

Let1

x =

[
x1
x2

]
= x1e1 + x2e2 with e1 =

[
1
0

]
, e2 =

[
0
1

]
,

and let

s1 =

[
b11
b21

]
, s2 =

[
b12
b22

]

be two linearly independent2 vectors (see Fig. 10.1). Expressing the vector
x in the new basis s1, s2 as x = y1s1 + y2s2 (see Fig. 10.1, right) gives the
relations

x1 = b11y1 + b12y2

x2 = b21y1 + b22y2
⇔

[
x1
x2

]

︸ ︷︷ ︸
x

=

[
b11 b12
b21 b22

]

︸ ︷︷ ︸
B

[
y1
y2

]

︸︷︷︸
y

. (10.1)

These formulas mark the beginning of matrix notation (see the quotation).

Theorem 10.1. The coordinates y of a point x with respect to the basis s1, s2
satisfy x = By, where the elements of the ith column of the matrix B are the
coordinates of the vector si with respect to the basis e1, e2.

Example. In the new coordinate system based on two conjugate diameters,
the ellipse in Fig. 10.1 is described by y21 + y22 = 1, the equation of a circle.

10.2 Linear Mappings

There is another interpretation of matrix-vector multiplication. Let A be a
given matrix

A =

[
a11 a12
a21 a22

]
, so that Ae1 =

[
a11
a21

]
, Ae2 =

[
a12
a22

]
. (10.2)

1In linear algebra, it is preferable to write a vector as a column vector.
2Being linearly independent means that the vectors span a parallelepiped of non-

zero area (volume).
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x=2e1+3e2

O

Ae1

2Ae1
Ae2

3Ae2

y=2Ae1+3Ae2

O

Fig. 10.2. A linear mapping

Define a map α : x 7→ y = Ax by

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2
or

[
y1
y2

]

︸︷︷︸
y

=

[
a11 a12
a21 a22

]

︸ ︷︷ ︸
A

[
x1
x2

]

︸ ︷︷ ︸
x

. (10.3)

Instead of considering y as in (10.1) as the coordinates of the same point x
with respect to another basis, one now considers y = Ax as the coordinates
of another point with respect to the original basis e1, e2.

Example. The action of the linear mapping y = Ax for the matrix

A =

[
1.1 0.2
0.4 0.8

]
(10.4)

is illustrated in Fig. 10.2. One observes that α(2e1 + 3e2) = 2α(e1) + 3α(e2).
This property, when valid for arbitrary coefficients, characterises a linear map-
ping.3 Once the images of the basis vectors are known, all other values of y
are obtained by linear combinations. The circles of the face of Mona Lisa in
Fig. 10.2 are transformed to ellipses, all with the same eccentricity.

Theorem 10.2. The formula y = Ax defines a linear mapping y = α(x),
where the columns of the matrix A are the coordinates of the images Aei =
α(ei) of the basis vectors ei (with respect to this basis).

Rotations in two dimensions. Suppose that the coordinates x1, x2 are
replaced by new coordinates y1, y2, by rotating the axes through an angle
α (see Fig. 10.3, left). The similarity of this drawing with Fig. 5.7 (left) on
page 118 is not accidental but intended. Indeed, in the same way as we proved
there the formulas (5.6), we now obtain

3The notion of a linear mapping is due to S. Banach 1922, Oeuvres II, p. 321;
Banach’s “opérateurs linéaires” did certainly not transform two dimensional faces
or cats; they transformed Lebesgue integrable functions in higher analysis.
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y1 cosα
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y1 sinα

y2 sinα
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P ′

e1

e2

O

Fig. 10.3. Rotation of a coordinate system; (left) the coordinate axes turn left,
(right) the cat turns right

x1 = y1 cosα− y2 sinα

x2 = y1 sinα+ y2 cosα
or

[
x1
x2

]
=

[
c −s
s c

] [
y1
y2

]
(10.5a)

with c = cosα and s = sinα.
Another interpretation of the same situation would be to rotate the cat

through an angle α in the opposite direction by keeping the basis (Fig. 10.3,
right). This yields

y1 = x1 cosα+ x2 sinα

y2 = −x1 sinα+ x2 cosα
or

[
y1
y2

]
=

[
c s
−s c

] [
x1
x2

]
. (10.5b)

These formulas are obtained either from (10.5a) (multiply the equations alter-
natively by sinα and cosα and add or subtract them) or from Theorem 10.2
(the columns of the matrix in (10.5b) are the images of e1 and e2).

Affine maps and translations. One also considers coordinate changes in
which the origin moves. A typical example for this situation is a translation:
for a chosen point C = (c1, c2), consider

c1

c2

x1

x2
y1

y2

e1

e2

s1

s2

C

O

P

c1

c2

x1y1

x2

y2

e1

e2
C

P

P ′

O

Fig. 10.4. Translation of a coordinate system; the coordinate system moves up
(left), the cat moves down (right)
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x1 = c1 + y1

x2 = c2 + y2
or

[
x1
x2

]
=

[
c1
c2

]
+

[
y1
y2

]
. (10.6)

These formulas can be interpreted in two different ways: either as a translation
of the coordinate system (see Fig. 10.4, left) or as a translation of the points
in the plane in the opposite direction (Fig. 10.4, right). Compositions of linear
mappings with translations are called affine mappings .

Composition of linear mappings. Consider two linear mappings

yk =
∑
i akixi and zℓ =

∑
k bℓkyk

with matrices y = Ax and z = By. Their composition

zℓ =
∑

k bℓk
∑

i akixi =
∑

i

(∑
k bℓkaki

)
xi =

∑
i cℓixi (10.7)

is again a linear mapping, with matrix C given by

cℓi =
∑
k bℓkaki . (10.8)

This famous formula for the product of two matrices C = BA is symbolised
by 



 ·





 =





 .

An example for the product of two matrices is

A =

[
1.1 0.2
0.4 0.8

]
, B =

[
0.8 −0.4
−0.1 1.3

]
which gives BA =

[
0.72 −0.16
0.41 1.02

]
.

Inverse mapping. We next try to determine x from its image y = Ax for a
given y. For this we have to solve a linear system:

1.1 x1 + 0.2 x2 = y1

0.4 x1 + 0.8 x2 = y2

Gaussian
⇒

elimination

1.1 x1 + 0.200 x2 = y1

+ 0.727 x2 = −0.364 y1 + y2

Gaussian
⇒

elimination

1.1 x1 = 1.100 y1 − 0.275 y2

+ 0.727 x2 = −0.364 y1 + y2 .
(10.9)

After performing the divisions, we arrive at

x1 = 1.000 y1 − 0.25 y2

x2 = −0.5 y1 + 1.376 y2
⇔ x = A−1y . (10.10)

We see that Gaussian elimination can be used to compute the inverse matrix.
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0 1
0

1

0 1
0

1

0 1
0

1

A =

[
1.1 0.2
0.4 0.8

]

y = Ax

B =

[
1.100 0.200
0.000 0.727

]

z = Bx

C =

[
1.100 0.000
0.000 0.727

]

w = Cx

Fig. 10.5. A linear mapping under Gaussian elimination

Areas and volumes. The geometric significance of the above procedure
is illustrated in Fig. 10.5: a parallelepiped generated by the columns of A is
reshaped by shear transformations parallel to the axes. This changes neither
area nor volume. In contrast to the preceding reasoning, this fact is not derived
here from Eucl. XI.27 ff., but follows directly from the ideas of Archimedes,
see Fig. 1.11. At the end, the area (volume) of the image of the unit square
(cube) equals the product of the pivots, i.e. the determinant of A.

Theorem 10.3. The determinant of the matrix A, whose columns are the
images of the basis vectors ei, represents the factor by which the area or volume
of a figure is increased by the linear transformation y = Ax. Its sign indicates
whether the columns of A have the same orientation as the basic vectors ei
(positive sign) or not (negative sign).

Comparing this with Theorem 9.1, we obtain a geometric proof of the inter-
esting formula

det(AT) = detA , (10.11)

which is known from algebra. By the composition of two linear mappings BA,
the volume is enlarged first by the factor detA and then by the factor detB.
We thus get another important formula

det(BA) = detB · detA . (10.12)

10.3 Gram’s Determinant

Let a and b denote two vectors in R3. We want to find a formula for the area
of the parallelogram generated by the two vectors.

Inspired once again by the determinant (9.24) we choose the vector c orthog-
onal to both a and b, with length 1. Thus, the area A of the parallelogram
generated by a and b is
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A = det



a1 a2 a3
b1 b2 b3
c1 c2 c3


 .

After multiplying by the transposed matrix and using (10.11) and (10.12), we
get

A2 = det




a1 a2 a3
b1 b2 b3
c1 c2 c3



 · det




a1 b1 c1
a2 b2 c2
a3 b3 c3



 = det




a · a a · b 0
b · a b · b 0

0 0 1



 . (10.13)

The area A of the parallelogram generated by two vectors a and b is thus given
by

A2 = det

[
a · a a · b
b · a b · b

]
=: G(a, b) . (10.14)

This determinant is called Gram’s determinant of a and b. The importance
of (10.14), which has its origin in the method of least squares,4 lies in the
fact that it is independent of the dimension. It is also easily generalised to
an arbitrary number of vectors. One only needs to know that there exist
orthogonal vectors c, d, . . .

Area of a triangle. The area of the triangle spanned by a and b is half of the
area given by (10.14). If we insert the formula (9.18) for the scalar products
and multiply each line by 2, we obtain for the area of this triangle

16A2 = det

[
2|a|2 −|c|2 + |a|2 + |b|2

−|c|2 + |a|2 + |b|2 2|b|2
]
. (10.15)

By expanding this determinant we obtain the third formula of (6.25), and
thus another proof of Heron’s formula.

Volume of a tetrahedron. This fundamental problem asks for the volume
V of a tetrahedron if the lengths of the six edges are given. For the solution, we
place one of the vertices at the origin and denote the three edges emanating
from it by the vectors a, b and c (see Fig. 10.6). The three other edges of the
tetrahedron are the differences, which we denote by d = b − a, e = a − c,
f = c− b. We know from Theorem 9.1 that the volume of the parallelepiped
generated by the vectors a, b, c is the determinant (9.24). As in (9.31), this
determinant is thus equal to 6V. In order to get rid of the particular coefficients
of these vectors, we compute the corresponding Gram determinant:

36V2 = det




a1 a2 a3
b1 b2 b3
c1 c2 c3



 · det




a1 b1 c1
a2 b2 c2
a3 b3 c3



 = det




a · a a · b a · c
b · a b · b b · c
c · a c · b c · c



 . (10.16)

To obtain our final result, we again insert the formula (9.18) for the scalar

4J.P. Gram, Om Räkkeudviklinger, bestemte ved Hjälp af de mindste Kvadraters
Methode, København 1879; see Ueber die Entwickelung reeller Functionen in Rei-
hen mittelst der Methode der kleinsten Quadrate, J. Reine Angew. Math. (Crelle) 94
(1883) 41–73.
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e1

e3

a
b

c f

d

e

O

Fig. 10.6. The six edges of a tetrahedron (left); Tartaglia’s example with his value
for “la perpendicolare” h and the “aria corporale” V (right)

products and multiply each line by 2, so that

288V2 = det




2|a|2 |a|2 + |b|2 − |d|2 |a|2 + |c|2 − |e|2
|b|2 + |a|2 − |d|2 2|b|2 |b|2 + |c|2 − |f |2
|c|2 + |a|2 − |e|2 |c|2 + |b|2 − |f |2 2|c|2


 . (10.17)

We will see in Exercise 2 below that this same formula can be written in an
elegant way as the so-called “Cayley–Menger determinant”

288V2 = det




0 |a|2 |b|2 |c|2 1
|a|2 0 |d|2 |e|2 1
|b|2 |d|2 0 |f |2 1
|c|2 |e|2 |f |2 0 1
1 1 1 1 0



. (10.18)

A clear derivation of these expressions, written in trigonometric and algebraic
form, not as determinants, was given by Euler (E601, 1786, §8 and 9). Euler
only considers the case V = 0, as a condition for four points to lie in a plane.

Example. Niccolò Tartaglia (1560, General trattato, secondo libro della quarta
parte, p. 34) explained an algorithm for the volume of a tetrahedron, based
on the repeated use of Pythagoras’ and Thales’ theorems, in an entire page
of Italian text. He demonstrated it on the example with edge lengths

|a| = 20 , |b| = 18 , |c| = 16 , |d| = 14 , |e| = 15 , |f | = 13 , (10.19)

whose base triangle with sides 13 , 14 , 15 has the area A = 84 already known

to him. He then mistakenly5 arrived at the altitude h =
√

240 2886
1382976

(see

Fig. 10.6, right). The volume is given by V = hA/3 = h · 28. Tartaglia appar-

ently made another mistake6 and stated that V =
√

6721 880432
1382976 . Many texts

5The correct value is h =
√

240 615

3136
.

6The correct value, obtained from formula (10.17), is V =
√

188313 3

4
.
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or internet sites call (10.16) or (10.17), or even (10.18) “Tartaglia’s formula”,
which seems exaggerated.

Šmakal’s proof of the pentagon theorem. As another application of
Gram’s determinant we present Šmakal’s proof of Theorem 9.7: we denote
by a1, a2, a3, a4 and a5 the unit vectors joining A to B, B to C, etc. Since
the pentagon is closed, since all side lengths are 1 and all angles are α, they
satisfy

a1 + a2 + a3 + a4 + a5 = 0 , ai · ai = 1 and ai · ai+1 = c , (10.20)

where c = − cosα and the indices are taken modulo 5. We multiply the sum
in (10.20) in turn by a1, a2, a3, a4 and a5 (scalar product) and obtain

a1 · a3 = a2 · a4 = a3 · a5 = a4 · a1 = a5 · a2 = −c− 1

2
. (10.21)

With these vectors, we compute the Gram determinantsG4 = G(a1, a2, a3, a4)
and G3 = G(ai, ai+1, ai+2) and obtain, as Šmakal writes, “after an easy cal-
culation”

G4 = det




1 c −c− 1
2 −c− 1

2

c 1 c −c− 1
2

−c− 1
2 c 1 c

−c− 1
2 −c− 1

2 c 1




=
5

16

(
4 c2 + 2 c− 1

)2

and

G3 = det




1 c −c− 1
2

c 1 c

−c− 1
2
c 1


 = −1

4
(2 c+ 3)

(
4 c2 + 2 c− 1

)
.

We know that G4 = 0, because four vectors in R3 have (four dimensional)
volume zero. This implies that cmust be one of the solutions of 4c2+2c−1 = 0,
which means that all the Gram determinants G3 = 0. All triples of vectors
ai, ai+1, ai+2 are planar, hence the entire pentagon is planar. The two roots
of 4c2 + 2c− 1 correspond to the two types of planar regular pentagons, as in
the earlier proof.

Remark. The proof presented in Dunitz and Waser (1972), and attributed to
L. Oosterhoff, is similar, but is based on the 5×5 Gram determinant of all five
a’s. The corresponding matrix is what is called a circulant matrix. This proof
requires one to think in an even higher dimension, but is computationally
more elegant, because one knows a closed formula for the determinant of a
circulant matrix.
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Fig. 10.7. The beginning of Euler’s classical article E292 on the movement of rigid
bodies, presented in 1758, published in 1765; Euler tells us in elegant French that
he had struggled for a long time to discover the laws of movement of a rigid body,
and that the discovery of the principal axes of the quadratic form of inertia finally
allowed him to overcome all these difficulties

10.4 Orthogonal Mappings and Isometries

“... the problem of the linear transformation of a quadratic func-
tion into itself has an elegant solution ...”

(Cayley 1880, Papers, vol. 11, p. 140)

Orthogonal mappings have their origin in Euler’s work E292 on rigid bodies,
1765, (see Fig. 10.7) and Cayley’s paper from 1858 (see Theorem 10.9 be-
low). The aim is to characterise linear mappings α : Rn → Rn that preserve
distances. We first note the following property.

Lemma 10.4. If a linear mapping preserves distances, then it also preserves
angles.

Proof. This result is in fact Eucl. I.8. An algebraic proof uses the identity
(9.18), that allows one to express scalar products, and consequently angles
(see (9.19)) by distances.
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Let y = α(x) and w = α(v). We denote by Q the matrix of α, so that y = Qx
and w = Qv. If α preserves distances we get from the lemma

yTw = xTQTQv = xTv .

Choosing x = ei and v = ej leads to the condition

QTQ = I . (10.22)

A matrix Q with this property is called orthogonal.

Theorem 10.5. For a square matrix Q, the following properties are equiva-
lent:

(a) The columns of Q form an orthonormal basis;

(b) The rows of Q form an orthonormal basis;

(c) QTQ = I, i.e. Q is orthogonal;

(d) QQT = I;

(e) Q is invertible and Q−1 = QT.

Proof. As in Gram’s matrix (10.13), the elements of the matrix QTQ = I are
the scalar products of pairs of columns of Q. Thus, conditions (a) and (c) are
equivalent. In the same way, (b) and (d) are seen to be equivalent. Since the
volume of an orthonormal parallelepiped is 1, each of the conditions (a) and
(b) implies that detQ = detQT = ±1, and hence that Q is invertible. The
other equivalences now follow easily by multiplying formulas (e) and (c) by Q
and formula (d) by Q−1.

Orientation. We distinguish two types of orthogonal matrices, those with
detQ = 1 (here the row and column vectors of Q are oriented positively; see
page 273), and those with detQ = −1 (here the row and column vectors of Q
are oriented negatively).

Example 10.6. The rotations in R2 (see Fig. 10.3) are orthogonal with
detQ = 1. For n = 3, the identities 22 + 22 + 12 = 32 and 2 · 2 − 2 − 2 = 0
allow one to create orthogonal matrices. One member of this family is

Q =
1

3




2 −2 1
2 1 −2
1 2 2



 , for which detQ = 1 . (10.23)

Example 10.7. Reflections. Let n = (n1, n2, n3) be a unit vector and con-
sider the plane that is orthogonal to n and passes through the origin. For
arbitrary x, the scalar product 〈n | x〉 = nTx gives the distance to this plane.
Therefore, x− nnTx is the orthogonal projection of x onto the plane. Taking
twice the distance (see Fig. 10.8, left) gives the reflection of the point x in the
plane
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n
O

x

y=Qx

O

x

y=−x

Fig. 10.8. Reflection in a plane in R3 (above), and in a point (below)

y = x− 2nnTx , i.e. y = Qx with Q = I − 2nnT (10.24a)

or in detail



y1
y2
y3



 =




1− 2n1n1 −2n1n2 −2n1n3

−2n2n1 1− 2n2n2 −2n2n3

−2n3n1 −2n3n2 1− 2n3n3








x1
x2
x3



 . (10.24b)

We can verify that QTQ = (I−2nnT)(I−2nnT) = I−4nnT+4n(nTn)nT = I,
and from (9.13) that detQ = 1−2(n2

1+n2
2+n2

3) = −1, hence this transforma-
tion is orthogonal and changes the orientation. The corresponding mapping
in two dimensions is a reflection in a line and also changes the orientation.
On the other hand, the reflection in the origin

y = −x (10.25)

changes the orientation in three dimensions (see Fig. 10.8), but preserves it in
two dimensions, since it is then just a rotation through the angle π.

β
βγγ

α
O

x

yz
Composition. The set of orthogonal trans-
formations form a group, because if QT

1Q1 =
I andQT

2Q2 = I, then also (Q2Q1)T(Q2Q1) =
QT

1Q
T

2Q2Q1 = I and similarly for Q−1. This
group is called the orthogonal group and is
denoted by O(3); the orthogonal transforma-
tions with detQ = 1 form the subgroup de-
noted by SO(3). In contrast, the orthogonal
transformations with detQ = −1 do not form
a group: the composition of two reflections with angle α between the two mir-
rors is a rotation through the angle 2α (since α = β + γ, see the figure).
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Fig. 10.9. Existence of orthogonal transformations

Existence of orthogonal transformations. If we are given two sets of
points, such that all pairs of corresponding points have the same distance,
we want to know if there exists a (unique) orthogonal transformation which
maps one set of points into the other.

Lemma 10.8. Let a, b, c be the coordinates of a non-degenerate triangle in
R3 and let d, e, f be those of another with the same side lengths. Then one
can construct an orthogonal matrix S, which is unique up to reflection, and a
vector s such that the transformation

α(x) = y = s+ Sx satisfies α(a) = d, α(b) = e and α(c) = f . (10.26)

Proof. The proof is displayed in Fig. 10.9. We use an auxiliary triangle with
coordinates 0, p, q, again of the same side lengths, which we place in the e1e2
plane in “Euler position” (i.e. as in the proof of Theorem 7.20, with 0 at the
origin and p on the e1-axis).

Let u1 = b− a, u2 = c− a, and set

v1 =
u1
|u1|

,

v2 =
ṽ2
|ṽ2|

, where ṽ2 = u2 − αv1 with α = u2 · v1 ,

v3 = v1 × v2 ,

(10.27)

which are a set of orthogonal unit vectors by construction.7 We similarly define
w1, w2 and w3 for the triangle d, e, f . We then take these two sets as columns
of the matrices

Q =
[
v1 | v2 | v3

]
, R =

[
w1 | w2 | w3

]
, (10.28)

which are both orthogonal by Theorem 10.5. By Theorem 10.2 and the hy-
pothesis on the side lengths of the triangles, the mappings

7The first two lines of equation (10.27) are the beginning of what is called the
Gram–Schmidt orthogonalisation algorithm.
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x = a+Qz and y = d+Rz (10.29)

map 0, p, q to a, b, c and d, e, f respectively. We solve the first equation for
z = QT(x− a) and insert it into the second to obtain

y = d+RQT(x− a) = (d−RQTa) +RQTx , (10.30)

which, with s = d − RQTa and S = RQT, is the desired transformation. We
could replace w3 by −w3, which would change the orientation of the image
vectors.

The Bol–Coxeter proof of the pentagon theorem. A few days after
sending out off-prints of his article (1970), van der Waerden received letters
from G. Bol and H.S.M. Coxeter, who had independently discovered a really
elegant proof (see the “Nachtrag” from 1972) of Theorem 9.7. Their proof is
as follows:

Let a, b, c, d, e be the coordinates of the vertices of the pentagon ABCDE.
By hypothesis, all distances between these points are fixed. (They are either
1 or

√
2− 2 cosα.) We now consider the pentagon b, c, d, e, a, which has the

same property. By Lemma 10.8 there exists a map y = s + Sx such that
b = s + Sa, c = s + Sb and d = s + Sc. We next look at the image of d.
Since S is orthogonal, the image of d has the same distances from b, c and d
as the point e. There are in general two points in R3 which have this property
(as the intersection of three spheres). Hence for one of the two possibilities
in the above proof we will have e = s + Sd. For the other point, under the
hypothesis that a, b, c, d are not planar, there is only one possibility left and
we have automatically a = s+ Se. If we add up all five equations, we obtain
for the centre of gravity of the pentagon a+b+c+d+e

5
= s+ S a+b+c+d+e

5
. If we

move the centre of gravity of the pentagon to the origin, we will have s = 0
and

b = Sa , c = Sb , d = Sc , e = Sd , a = Se . (10.31)

Thus five applications of S move the pentagon into itself. If the pentagon were
not planar, we would have S5 = I. Hence it is impossible that detS = −1.
Therefore S preserves orientation and by Euler’s theorem 10.11, which we will
soon see, S must be a planar rotation of a planar pentagon.

10.5 Skew-Symmetric Matrices, the Cayley Transform

A matrix A is called skew-symmetric, if AT = −A. Such matrices have zeros
in the main diagonal, and the entries not on this diagonal, say the aij with
i 6= j, are such that aij = −aji.

For n = 2, a skew-symmetric matrix has the form

A =

[
0 a
−a 0

]
. (10.32)
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For n = 3, we have

Ax =




0 −a3 a2
a3 0 −a1
−a2 a1 0








x1
x2
x3



 =




a2x3 − a3x2
a3x1 − a1x3
a1x2 − a2x1



 = a× x , (10.33)

by (9.23). Thus, a linear mapping x 7→ Ax with skew-symmetric matrix A
corresponds to the outer product a× x (where the first factor a is fixed), and
vice versa. Consequently,8 Ax is perpendicular to x and

(I ± A)x = x± Ax = 0 implies x = 0 .

This means that for a skew-symmetric matrix A, the matrices I±A are always
invertible.

The study of orthogonal matrices was greatly simplified by the following
discovery.

Theorem 10.9 (Cayley, 1846). If a matrix A is skew-symmetric, then

Q = (I +A)(I −A)−1 = (I − A)−1(I + A) (10.34)

is orthogonal. Conversely, if Q is orthogonal and det(Q+ I) 6= 0, then Q can
be written as in (10.34) with

A = (Q− I)(Q + I)−1 = (Q + I)−1(Q− I) , (10.35)

where A is skew-symmetric.

Proof. One must first understand why I + A and (I − A)−1 commute, as in
(10.34). This follows from a result in linear algebra which shows that any two
rational expressions formed with the same matrix (here A) commute. For a
direct proof, multiply (I+A)(I−A)−1 from the left by I = (I−A)−1(I−A),
use (I − A)(I + A) = I − A2 = (I + A)(I − A), and simplify. The identity
involving Q in (10.35), as well as AQ = QA, can be established similarly.

The main key to the proof is the equation

AQ+A−Q+ I = 0 , (10.36)

which is linear in A as well as in Q, and which can easily be solved for each
of them. If we solve for Q, and if I −A is invertible, we obtain (10.34); if we
solve for A, and if Q+ I is invertible, we obtain (10.35). Thus, whenever the
inverse matrices exist, either by the above discussion concerning I ±A, or by
hypothesis, the equations (10.34), (10.35) and (10.36) are equivalent.

We transpose the matrix in (10.36) (note that A and Q commute) and
multiply by Q. This gives ATQTQ+ATQ−QTQ+Q = 0. If this is added to
(10.36) we obtain an equation which can be brought to the form

8This is true for all dimensions and just as simple to prove.
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Fig. 10.10. Orthogonal transformation of R3 (right: seen in direction of a)

(A+AT)(Q+ I) = (AT − I)(I −QTQ) . (10.37)

Here A + AT = 0 means that A is skew-symmetric, and I −QTQ = 0 means
that Q is orthogonal. Since the matrices multiplying these expressions are
invertible, we see that the two statements are equivalent.

Example 10.10. For n = 2, formula (10.34) applied to the matrix in (10.32)
gives

Q =

[
1 a
−a 1

] [
1 −a
a 1

]−1

=
1

1 + a2

[
1 a
−a 1

] [
1 a
−a 1

]

=
1

1 + a2

[
1− a2 2a
−2a 1− a2

]
=

[
cosα sinα
− sinα cosα

] (10.38)

with tan(α/2) = a, see Fig. 12.1 on page 347. The resulting mapping is the
rotation encountered in (10.5).

Theorem 10.11 (Euler, when studying the movement of a solid). An or-
thogonal mapping in three dimensions that preserves orientation (detQ = 1)
corresponds to a rotation around a vector a, through an angle ϕ. The compo-
nents of a are the entries of A, the Cayley transform of Q, as given in (10.33).
The angle of rotation is determined by tan(ϕ/2) = |a|.
Proof. In order to study the mapping x 7→ y = Qx in three dimensions, we
use (10.34) and (10.33):

(I − A)y = (I + A)x ⇒ y − x = A(y + x) ⇒ y − x = a× (y + x) .

The vector y− x connecting x with its image y is thus orthogonal to a and to
y + x = x− (−y), the vector which connects x with −y (see Fig. 10.10, left).
As the area of the grey parallelogram is |a|ℓ, we obtain from Fig. 10.10 (right)
the stated formula for the angle of rotation.
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Fig. 10.11. A linear mapping as vector field (left); the same mapping in a basis of
eigenvectors (right)

Remark. The above argument does not work if −1 is a (double) eigenvalue of
Q. In that case we obtain a “switch”, a rotation through π.

10.6 Eigenvalues and Eigenvectors

In the left part of Fig. 10.11, we recognise the linear mapping

y = Ax with A =

[
0.3 2
1.8 0.5

]
, (10.39)

represented as a vector field , i.e. the vector y = Ax is attached to each point
x as a small arrow.9 Two directions attract our attention: those such that the
vector Av has the same direction as the vector v, i.e. such that

Av = λv or (λI − A)v = 0, v 6= 0 (10.40)

(see the dashed lines). Such a vector is called an eigenvector of the matrix
A and λ is the corresponding eigenvalue. Obviously λ must be a root of the
characteristic polynomial

det(λI − A) = λn − (a11 + . . .+ ann)λn−1 ± . . .+ (−1)n detA . (10.41)

If this polynomial has n distinct roots, we obtain n linearly independent eigen-
vectors that may be chosen as a basis.10 In this basis, the mapping is simply

9The first occurrence of eigenvalues and eigenvectors was in the context of dif-
ferential equations (Lagrange 1759, Théorie du son; Lagrange 1781; 6 × 6 matrices
with the aim of calculating secular perturbations of the orbits of the six planets then
known, Oeuvres V, pp. 125–490).

10If the roots are not distinct, some complications might arise (Jordan blocs).
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the multiplication of the coordinates by λi, i.e. the matrix is transformed to
a diagonal matrix, see the right picture of Fig. 10.11.

To derive formulas, we observe on the one hand that, by (10.1)

x = T x̃ , y = T ỹ ⇒ T ỹ = AT x̃ ⇒ ỹ = T−1AT x̃ ,

where x̃ are the new coordinates and the columns of the matrix T are the
eigenvectors vi. On the other hand, we have

Avi = λivi ⇒ A(v1, v2) = (v1λ1, v2λ2) . (10.42)

In matrix notation, we thus have

AT = TΛ or T−1AT = Λ , (10.43)

where Λ is the diagonal matrix with the λi on its main diagonal.

Example 10.12. For the matrix (10.39), the characteristic polynomial has
the form λ2 − 0.8λ− 3.45. We get

λ1 = 2.3, λ2 = −1.5, v1 =

[
1
1

]
, v2 =

[
−2
1.8

]
.

10.7 Quadratic Forms

At the end of this chapter, we return to the beginning of our treatment of
Cartesian coordinates, the problem of Pappus in Sect. 7.2. We are interested
in discovering the nature of the curves defined by quadratic equations

Fig. 10.12. Eigenvalue problem transforming a quadratic form (moments of inertia
of a rigid body) in Lagrange 1788 (left); Joseph-Louis Lagrange 1736–1813 (right)
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ax21 + 2bx1x2 + cx22 + 2dx1 + 2ex2 + g = 0 (10.44)

and in the generalisation of this problem to higher dimensions. The first clear
treatment of this question was given by Euler (1748; vol. II for n = 2, in an
appendix for n = 3) by brute rotations. The elegant relation with eigenvalue
problems was discovered by Lagrange (see Fig. 10.12).

Example 10.13. The solutions of the equation

x21 + 2bx1x2 + x22 − 5x1 − 4x2 + g = 0 , (10.45)

drawn in Fig. 10.13 for various values of b and g, seem to lie on conics of
different kinds. How can this be verified using the tools of this chapter?

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

b = 0.5 b = 1.5b = 1

Fig. 10.13. The conics corresponding to equation (10.45) for the stated values of b
and various values of g

To analyse (10.44), we write the equation in matrix form11

[
x1 x2 1

]



a b d
b c e
d e g








x1
x2
1



 = 0 (10.46)

and start by eliminating the linear terms 2dx1 + 2ex2 by using a translation.
For this purpose, we use equation (10.6) in the form



x1
x2
1


 =



y1
y2
0


+



c1
c2
1


 . (10.47)

Substituting (10.47) into (10.46), the symmetry of the involved matrix gives
us the identity

[
y1 y2 0

]



a b d
b c e
d e g








y1
y2
0



+ 2
[
y1 y2 0

]



a b d
b c e
d e g








c1
c2
1





+
[
c1 c2 1

]



a b d
b c e
d e g








c1
c2
1



 = 0.

(10.48)

11The beauty becomes perfect with homogeneous coordinates, see Chap. 11
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In order to eliminate the second term, we require that

[
a b
b c

] [
c1
c2

]
=

[
−d
−e

]
. (10.49)

This is a linear equation that determines c1, c2, if ac − b2 6= 0. Denoting the
third term in (10.48), which is a constant, by −γ, we arrive at

yTAy =
[
y1 y2

] [a b
b c

] [
y1
y2

]
= γ. (10.50)

We now calculate the eigenvectors of the matrix in (10.50). The characteristic
equation has the form

λ2 − (a+ c)λ+ (ac− b2) = 0 ⇒ λ1,2 =
a+ c

2
±
√

(a− c)2
4

+ b2 .

Obviously, the eigenvalues are always real. Setting

d =
c− a

2
and R =

√
d2 + b2

we get

λ1,2I −A =

[
d±R −b
−b −d±R

]
⇒ v1 =

[
b

d+R

]
, v2 =

[
d+R
−b

]
.

The two vectors are orthogonal to each other and, after a normalisation, the
matrix T of (10.43) is orthogonal. This yields

T−1AT = T TAT = Λ .

In the new variables y = Tz and yT = zTT T, equation (10.50) finally becomes

yTAy = zTTTATz = zTΛz = λ1z
2
1 + λ2z

2
2 = γ . (10.51)

In conclusion, we obtain the equation of a conic with centre (c1, c2), see (10.47).
Its type12 depends on the signs of λ1, λ2 and γ. If one of the two eigenvalues
is zero, which is the case if ac− b2 = 0, we have a parabola and (10.49) does
not have a unique solution. We then proceed in a different way, as explained
in (10.57) below.

Example 10.14. The conic defined by the equation

36x21 − 24x1x2 + 29x22 + 120x1 − 290x2 + 545 = 0 (10.52)

12This conic is either an ellipse, a hyperbola or the empty set, e.g. z21 + z22 = −1.
In the latter case, the quadratic equation (10.44) does not have (real) solutions.
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−3 −2 −1 0 1 2 32

3

4

5

6

7

8

−1 0 1 2 3 4 5 6
−1

0

1

2

3

4

5

Fig. 10.14. Two examples of conics transformed to diagonal form

has the centre c1 = 0, c2 = 5. After a translation, one obtains

[
y1 y2

] [ 36 −12
−12 29

] [
y1
y2

]
= 180 . (10.53)

The eigenvalues satisfy

λ2 − 65λ+ 900 = 0 ⇒ λ1 = 20 , λ2 = 45 . (10.54)

Thus, the final result is

20z21 + 45z22 = 180 ⇒ z21
9

+
z22
4

= 1 . (10.55)

This is the equation of an ellipse with semi-axes a = 3, b = 2. The direction
of the semi-major axis is that of the eigenvector corresponding to the smallest
eigenvalue λ1 = 20:

[
16 −12
−12 9

] [
c
s

]
= 0 ⇒ c =

3

5
, s =

4

5
. (10.56)

Our ellipse is thus inclined by the angle arctan 4
3 , see Fig. 10.14, left.

The case of a parabola. In the equation

16x21 − 24x1x2 + 9x22 − 130x1 − 90x2 + 50 = 0 (10.57)

the sum of the first three terms can be written as a square:

(4x1 − 3x2)2 − 130x1 − 90x2 + 50 = 0 . (10.58)

We substitute 4x1−3x2 = 5y1, complete to an orthonormal basis 3x1 +4x2 =
5y2, and perform a rotation. This gives

25y21 − 50y1 − 150y2 + 50 = 0 . (10.59)

Dividing by 25 and again completing the square, we find after a translation
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z21 = 6z2 .

The result is a parabola (see Fig. 10.14 right).

Several variables. Since every real symmetric matrix has real eigenvalues
and a basis of orthogonal eigenvectors, we can proceed in the same way. As
an example, we consider n = 3. Disregarding all degenerate cases, we obtain
the surfaces displayed in Fig. 10.15.

(A)
x2

a2
+
y2

b2
+
z2

c2
− 1 = 0

(ellipsoid)

(B)
x2

a2
+
y2

b2
− z2

c2
+ 1 = 0

(two-sheeted hyperboloid)

(C)
x2

a2
+
y2

b2
− z2

c2
− 1 = 0

(one-sheeted hyperboloid)

(D)
x2

a2
+
y2

b2
− z2

c2
= 0

(cone)

(E)
x2

a2
+
y2

b2
− 2pz = 0

(elliptic paraboloid)

(F)
x2

a2
− y2

b2
− 2pz = 0

(hyperbolic paraboloid)

(A)

(B)

(C) (D)

(E) (F)

Fig. 10.15. Classification of quadratic equations in three dimensions (degenerate
cases are disregarded)

Example 10.15. We encourage the reader to calculate the eigenvalues and
eigenvectors (principal axes) of the corresponding matrix for the ellipsoid

25x21 − 20x1x2 + 4x1x3 + 22x22 − 16x2x3 + 16x23 = 9 (10.60)

and to verify their mutual orthogonality, see Fig. 10.16.
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x

y

z

x

y

z

Fig. 10.16. The ellipsoid of (10.60) with semi-axes 1,
√

2

2
and 1

2
. The figure on the

left shows the ellipsoid in arbitrary position, that on the right displays the same
ellipsoid transformed to principal axes

10.8 Exercises

1. Deduce from (10.16) the formula

36V2 = |a|2|b|2|c|2
(

1+2 cosα cosβ cos γ−cos2 α−cos2 β−cos2 γ
)

(10.61)

for the volume of a tetrahedron, where α, β, γ are the angles of the three
faces at the vertex O of Fig. 10.6. This expression was the starting point
of the developments in Euler’s E601 (1786).

2. Prove the equivalence of formulas (10.17) and (10.18) by showing that
each is equivalent to

det




0 0 0 0 1
0 −2|a|2 −|a|2 − |b|2 + |d|2 −|a|2 − |c|2 + |e|2 1
0 −|b|2 − |a|2 + |d|2 −2|b|2 −|b|2 − |c|2 + |f |2 1
0 −|c|2 − |a|2 + |e|2 −|c|2 − |b|2 + |f |2 −2|c|2 1
1 1 1 1 0



.

(10.62)

pq

r

O

zp

zq

zr

O′

zp

zq zr

z2p

z2q

z2r

O′

Fig. 10.17. Axonometric projection of an orthonormal basis

10.8 Exercises
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3. After Gauss’ death hundreds of results and discoveries which he had never
published or shown to anybody were found in his desk. One of these re-
sults, published posthumously in four lines without proof in Gauss’ Werke,
vol. 2, p. 309, is as follows: if three orthonormal vectors p, q, r in R3 are
projected by an “axonometric projection” (i.e. a parallel perspective) onto
a plane (see Fig. 10.17), the image vectors zp, zq, zr cannot be arbitrary,
but must satisfy the relation

z2p + z2q + z2r = 0 , (10.63)

where zp, zq, zr are considered as numbers in C. Prove this.

4. Fig. 10.18 presents six propositions of Apollonius concerning hyperbolas,
their asymptotes, their tangents and segments parallel to these asymp-
totes — denoted by the original letters. Prove these propositions by a suit-
able affine transformation of the coordinates.

5. A hyperbola is called equilateral if its asymptotes are mutually perpen-
dicular, i.e. a = b in (3.13). Prove a nice discovery of Dörrie (1943, §134):
If the three vertices of a triangle lie on an equilateral hyperbola, then its
orthocentre lies on this hyperbola as well.

E

B

H

Z

Apoll. II.3.

ZB = BH

A

∆

B

Γ

Z

Apoll. II.4.

AZ = ZΓ

∆

E

A

M

Γ

Z

Apoll. II.8.

EA = ΓZ

A

K

∆

Λ

M

Ξ

E

Apoll. II.13.

EM ·MΞ = ΛK ·K∆
∆

B

Γ

A

H

Apoll. III.34.

HA = AΓ

∆

B

H

Z
A

Θ

ΓApoll. III.43.

Γ∆ ·∆Θ = Z∆ ·∆H

Fig. 10.18. Six propositions from Books II and III of Apollonius
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C

A

B

C

A

B

Fig. 10.19. Steinhaus’ lines

6. An exercise proposed by Steinhaus (1958): In Fig. 10.19 a fixed triangle
creates a family of lines which (a) divide the perimeter of the triangle into
two equal parts (left), (b) divide the area of the triangle into two equal
parts (right). Determine, in each case, the nature of the curves which are
the envelopes of this family.

7. Isaac Barrow, the teacher and mentor of Isaac Newton, gave Geometrical
Lectures at Cambridge University which were finally published in 1735
“Translated from the Latin Edition, revised, corrected and amended by
the late Sir Isaac Newton” by Edmund Stone. In “Lecture VI, §2” Barrow
solves the following problem (see Fig. 10.20, left): Let ABC be a right-
lin’d Angle, D a given point. The points N and M move on AB and BC
respectively and determine a point O such that DOMN are aligned and
DO = MN . Which curve does the point O describe? Solve this problem
in two lines by a suitable affine transformation.

Fig. 10.20. Barrow’s first (No. 38) and second problem (No. 39); reproduced by
kind permission of the Syndics of Cambridge Univ. Library (classmark 7350.d.56)
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α
β

O

A

B

N

W

S

E

(a)
A

B

(b)

α

α

α

α

2α
O

A A′

B

N
(c)

α1 α4

α2

α3

O

A1

A2

A3

A4

N

(d)

Fig. 10.21. “Wanner’s first theorem” (a)–(c); generalisation (d)

8. Solve Barrow’s second problem (Lecture VI, §4; see Fig. 10.20, right): in
the same setting as for the previous exercise, determine the curve described
by O satisfying the condition MO = q ·MN , where q is a given constant.

9. Show that a plane and an ellipsoid, determined by the equations

n1x1 + n2x2 + n3x3 = d and
x21
a21

+
x22
a22

+
x23
a23

= 1 , (10.64)

are tangent if and only if

n2
1a

2
1 + n2

2a
2
2 + n2

3a
2
3 = d2 . (10.65)

This is an extension of condition (7.11). An elegant version of this condi-
tion using matrix notation will be given in (11.24).

10. Solve the problem stated by Gergonne and Bret in the Gergonne Journal
vol. 5, p. 172, which generalises the result of Monge in Fig. 7.5 on page 192:
If a vertex formed by three mutually perpendicular planes moves in such a
way that all three planes remain tangent to the ellipsoid given in (10.64),
then the vertex moves on a sphere of radius

√
a21 + a22 + a23 centred at the

origin.

11. Prove “Wanner’s first theorem”. A boy at an Austrian secondary school
plays with a stone attached to a string rotating in a vertical circle (see



10.8 Exercises 317

A

B

C

D

A

B

C

D

Fig. 10.22. Steiner’s challenge concerning osculating circles of an ellipse

Fig. 10.21, (a)). If the speed of the stone is too small, the stone will leave
the circle at a certain point A, located somewhere between W and N , and
move along a parabola (Galilei dixit). At a second point B, located on the
arc WSEN , the stone will return to circular movement. Determine how
the position of this point B depends on that of A.

Hint. Since the arc WSEN is three times as long as the arc WN , the
simplest and most beautiful relation between the angles BON and NOA
would be

β = 3α . (10.66)

12. Generalise Exercise 11 as follows: let A1, A2, A3, A4 be the intersections of
a conic with a circle centred at O, and let αi be the angle, counted with
sign, between OAi and ON (i = 1, . . . , 4), where ON is the direction of
an axis of the conic (see Fig. 10.21, (d)). Then formula (10.66) becomes

α1 + α2 + α3 + α4 = 0 or ±2π . (10.67)

13. In the first three lines of Steiner (1846b) the following theorem is stated
without further justification: If D is a point on an ellipse (other than a
vertex), there exist three points A, B and C on the same ellipse such that
the three osculating circles at these points pass through D (see Fig. 10.22,
left). Furthermore, the four points A, B, C and D are concyclic. Give an
elegant justification of Steiner’s result by using ideas from the solution of
Exercise 11.





A. Ostermann and G. Wanner, Geometry by Its History,
Undergraduate Texts in Mathematics, DOI: 10.1007/978-3-642-29163-0_11,
� Springer-Verlag Berlin Heidelberg 2012

11

Projective Geometry

“Unter den Leistungen der letzten fünfzig Jahre auf dem Gebiete
der Geometrie nimmt die Ausbildung der projectivischen Geome-
trie die erste Stelle ein. [Among the advances of the last fifty years
in the field of geometry, the development of projective geometry
occupies the first place; transl. by M.W. Haskell]”

(F. Klein, first sentence of Erlanger Programm, 1872)

Fig. 11.1. Study of perspective; engraving by A. Dürer (two engravings of this kind
by Dürer are known, one with a lute, the other with a naked woman; for obvious
reasons, the authors have chosen the lute)

Scientific life in France changed notably in 1794 with the foundation of the
École Normale and the École Polytechnique, “pour tirer la Nation Française
de la dépendance où elle a été jusqu’à présent de l’industrie étrangère ...”,
where teachers like Lagrange, Laplace and Monge formed an entire genera-
tion of first-class mathematicians. Among others, we mention Fourier, Poisson,
Cauchy, Liouville, Poncelet and Gergonne. The success of analytic methods

319
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was then at its zenith, and for Lagrange and Laplace mathematics comprised
only algebra and analysis. Only Monge lectured on descriptive geometry, lec-
tures which were completely, and even proudly, ignored by the other two. But
as is often the case, the future developed otherwise than had been expected,
and many students of Monge, in particular Poncelet, Brianchon and Chasles
started to develop projective geometry as a new field of geometric research,
which was enthusiastically adopted by the German mathematicians Steiner
and von Staudt, to such an extent that the subject, in the words of Felix
Klein half a century later, “occupies the first place among the advances of the
last fifty years in the field of geometry” (see the quotation).

11.1 Perspective and Central Projection

perspective (from the Latin perspicere, to see through)

Perspective is concerned with the problem of representing a three dimen-
sional object, for example the box in Fig. 11.2 (left), on a two dimensional
canvas. This problem was one of the major challenges for the artists of the
Italian Renaissance, beginning in the 15th Century (Brunelleschi, Piero della
Francesca, Luca Pacioli, Leonardo da Vinci). The first artist from a northern
country seriously interested in perspective was Albrecht Dürer (see Fig. 11.1).

Central projection. The idea indicated in Dürer’s picture is the following
one (see Fig. 11.2, left): we place a canvas (the projection plane) between the
box and the artist, and draw the images of the points A′, B′, and so on, at

A′

B′

A

B

V

Fig. 11.2. Principle of perspective (left); (right) a woodcut of A. Dürer from 1502
(courtesy of Stift Stams, Tyrol). The added white lines should meet at the vanishing
point
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the intersections of the canvas with the rays of light joining these points (the
projection lines) to the artist’s eye (the projection centre). Since the projection
lines all meet at the projection centre, this type of projection is also called a
central projection. If the object behind the canvas is then removed, one has
the impression that the box is still there.

Vanishing point. We observe in Fig. 11.2 an important result of perspective:
imagine that the point A′ moves towards B′ and continues on a straight line
until infinity; the corresponding projection line then tends more and more
to the direction parallel to the segment A′B′. The intersection point of this
parallel with the canvas is called the vanishing point V of this direction. We
see that the images of all lines parallel to a given segment pass through the
same vanishing point. A modern computer check in Fig. 11.2 (right) shows
that 30-year-old Dürer slightly violated this principle.

Fig. 11.3. Perspectives; on the left: a photo by C. Gressly; on the right: a modern
camera seen on the outside and inside (Larousse 1929)

Remark. Since the invention of photography, modern cameras operate on the
same principle, the difference is just that the screen now lies behind the “eye”.
As a consequence, the image is rotated by 180◦, as demonstrated by Fig. 11.3
(right). This is why we observe the same phenomenon in photographs (see
Fig. 11.3, left).

Analytic formulas. Given a point x̃ (representing the eye of an artist or the
focal point of a camera), a vector a (representing the projection line and the
distance from x̃ to the projection plane), and a spatial object x, we wish to
determine the coordinates u1, u2 of the central projection of x onto the plane,
see Fig. 11.4.

In order to fix the plane, we choose two vectors h and g that are mutually
orthogonal and orthogonal to a: we first take h = a × (0, 0, 1)T, which is
horizontal, and then g = h × a, both normalised. The vector w, joining the
focus x̃ to the projection of x, must be a multiple of x− x̃:

w = λ(x− x̃) . (11.1)

11.
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x̃

x

a

w

h

g(u1, u2)

h =
1√

a21 + a22



a2
−a1

0


 ,

g =
1√

(a21 + a22)(a21 + a22 + a23)




−a1a3
−a2a3
a21 + a22



 .

Fig. 11.4. Analytic formulas for central projection

The parameter λ is determined by the fact that w − a is orthogonal to a:

〈w − a, a〉 = 0 ⇒ λ =
〈a, a〉
〈x− x̃, a〉 . (11.2)

Finally, the scalar products u1 = w ·h and u2 = w ·g (see Theorem 9.5) are the
desired coordinates. If the camera is not held horizontally, one can perform
a rotation (10.5) through the angle α. In this way, a perspective image is
determined by seven parameters: three for a, three for x̃ and one for α.

Stereograms. The beautiful stereograms in this book were calculated with
the same formulas, simply by replacing x̃ once by x̃− 3h (left eye) and once
by x̃ + 3h (right eye). The number 3, measured in cm, is the half-distance
between the eyes of the observer. This procedure gives two images, one for
the left eye and one for the right.

 1

 2

 3  4

 5

 6

 7

 8 9

10

11

12
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14

1516

17

18

19

20

Fig. 11.5. Left: drawing by Leonardo da Vinci (1510) in grey, corrected vertices in
black inserted by B. Gisin (2009), private communication; right: Leonardo’s vertices
in black, the corrected drawing in grey (Abdulle and Wanner, 2002)



11.2 Poncelet’s Principle of Central Projection 323

‘Correcting’ Leonardo da Vinci. Renaissance artists made a great effort
to study perspective. In contrast to today, errors in perspective were true
errors ... We have taken the liberty of submitting a drawing of Leonardo to
a rigorous scientific verification, for the first time in almost 500 years. As an
example, we chose the drawing of an icosidodecahedron (Abdulle and Wanner,
2002). In order to perform the calculations, we measured the 20 visible vertices
of the drawing and calculated their correct position in space. Then, by a
numerical method called the “least squares method”, we determined the best
values for the above seven parameters. Once found, these values allow us to
compare Leonardo da Vinci’s drawing with the vertices of the closest possible
true icosidodecahedron (see Fig. 11.3, left) and the drawing of the closest
icosidodecahedron with the vertices of the original drawing (see Fig. 11.3,
right). These calculations reveal several errors in the original drawing.

11.2 Poncelet’s Principle of Central Projection

“La doctrine est neuve, piquante et d’une vérité incontestable [the
doctrine is new, surprising and of unquestionable truth]”

(M. Brianchon 1819, quoted by Poncelet, 1862, vol. 2, p. 541)

After studying at the École Polytechnique, where he especially appreciated
the lectures of Monge, Poncelet started on a military career. As lieutenant
du génie he took part in Napoleon’s disastrous invasion of Russia, where he
survived several battles before being captured and imprisoned for two years in
a camp on the river Volga. During this period, without access to any books or
literature, he benefited from his recollection of Monge’s lectures, and started
to lay the foundations of projective geometry. This led to the Traité des pro-
priétés projectives des figures in 1822. The original “cahiers” from Russia were
finally published in 1862 (Applications d’analyse et de géométrie).

O

U

PQ R

O′

U ′

Fig. 11.6. Trying to transform a triangle into a quarter-plane
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Poncelet’s principle consists in transforming the figure of a theorem by a
well-chosen central projection into an almost trivial form. With this method,
Poncelet proved in a surprising and elegant manner a number of old and
new theorems. We start with two lemmas followed by four theorems which
demonstrate the power and elegance of this approach.

Poncelet’s principal lemma. Given a perspective image in a Cartesian
plane, we look for a central projection that maps the plane to the given image.

Lemma 11.1 (principal lemma on perspective). Let OPQ be an arbitrary
triangle and U be an arbitrary “unit point” inside OPQ (see Fig. 11.6, left).
Then there exists a central projection which maps the line PQ to infinity and
for which P and Q are the vanishing points of a pair of orthogonal axes centred
at O′, the image of O. The image U ′ of U is a unit point, i.e. O′U ′ is the
diagonal of a square with sides on the axes O′P ′ and O′Q′ (see Fig. 11.6,
right).

Proof. We produce the segment OU to find the point R on the line PQ. This
point will be the vanishing point of the diagonal O′U ′. We then place the
triangle OPQ in a vertical plane so that PQ is horizontal, and choose the

P ′

R′

Q′

C

P

R

Q

O

U

O′

U ′

45◦45◦

Q R P

C
D

Fig. 11.7. Construction of a central perspective, see also Fig. 11.6
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centre of projection C in the horizontal plane through P and Q. If we now
project the figure OPQR from C onto a plane parallel to CPQ (see Fig. 11.7),
then the projected points P ′, Q′ and R′ will move to infinity. The projected
region P ′O′Q′ will be a quarter-plane, if the angle PCQ between the centre
of projection and the vanishing points is a right angle. The projected point U ′

will have the same distance from each axis, i.e. be a unit point in an orthogonal
Cartesian grid, if the angle PCR is 45◦. These two conditions allow us, by
Eucl. III.20, to find the point C at the intersection of two circles, with central
angles 180◦ and 90◦ respectively (see the inserted picture in Fig. 11.7).

Lemma 11.2 (second principal lemma, Poncelet 1814, IIIe Cahier, Princ. IV).
Consider a quadratic curve and a straight line d, both in the same plane (see
Fig. 11.8, left). Then there exists a central projection that maps the curve onto
a circle and the line d to infinity (see Fig. 11.8, right).

Proof. We choose an arbitrary point P on d (see Fig. 11.8, middle). The polar
of P cuts d at a point Q. The polar of Q meets that of P at the point O, and
the respective tangents meet at U . It is thus sufficient to apply Lemma 11.1.
The image of the curve under this central projection has tangents orthogonal
to the axes at the points x = ±1, y = 0 and y = ±1, x = 0. It is therefore a
circle.

d d

O

U

PQ

O′

U ′

Fig. 11.8. Central projection transforming an ellipse into a circle

Remark. The light rays from the centre of projection C to a circle form a
cone, if C is precisely above the circle’s centre. So we understand immediately
from the definitions of Chap. 3 that a central projection of this circle will
become a conic section. In extension of this, Poncelet accepted in the above
proof, without any further discussion, that the central projection of any conic
is again a conic. Only the analytic treatment in Sect. 11.6 will confirm this
intuition.

Theorem 11.3 (Pappus, Collection , Book VII, Props. 139, 143). Let A, B
and C be three points on a line, and let A′, B′ and C′ be three points on
another line in the same plane (see Fig. 11.9, left). Then the intersection
points N , M , L of the pairs of lines AB′ and BA′, AC′ and CA′, BC′ and
CB′ are collinear.
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L

Fig. 11.9. Pappus’ theorem and its proof by the “principle of central projection”

Proof. (Poncelet 1814, Cahier VII, 2e Partie, art. V.) We apply Lemma 11.1
to the triangle BC ′A′ with unit point M . We obtain as image a square BM ,
whose side length we take to be 1 (see Fig. 11.9, right), and two parallel lines
AN and CL. Thus the grey triangles are similar in pairs and we have c = 1

b

and d
c = b

a by Thales’ theorem. This leads to d = 1
a , which means that the

two white triangles are also similar. Therefore N,M,L are collinear.

Theorem 11.4 (Desargues 1636). For two given triangles ABC and A′B′C′,
assume that the lines AA′, BB′, CC′ are concurrent (see Fig. 11.10, left).
Then the intersections N = AB ∩A′B′, M = AC ∩A′C′ and L = BC ∩B′C′

are collinear.

In other words: If two triangles are perspective from a point, then they are
perspective from a line.

Proof. By a central projection, we map two of these points, say N and L, to
infinity (see Fig. 11.10, right). Consequently, the lines AB,A′B′ and BC,B′C′

become parallel. By Thales and Euclid I.4, the images of the triangles ABC
and A′B′C′ are similar. Hence AC and A′C′ are also parallel. Therefore, the
point M is collinear with N and L.

A

B

C

A′

B′

C′

N M
L

F

M

L

N

A
B

C

F

A′

B′

C′

Fig. 11.10. Desargues’s theorem and its proof
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P1
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P3

P4

P5

P6

γ

γ

Fig. 11.11. Pascal’s theorem and its proof

Theorem 11.5 (Pascal 16401). Let P1P2P3P4P5P6 be a hexagon inscribed in
a conic (see Fig. 11.11, left; see also Fig. 11.13). Then the intersection points
K = P1P2∩P4P5, L = P2P3∩P5P6 and M = P3P4∩P6P1 of pairs of opposite
sides are collinear.

The line through the points K, L and M is called the Pascal line (of the
hexagon, with respect to the conic).

Proof. We apply Lemma 11.2 by mapping the line through two of these points,
sayK and L, to infinity (see Fig. 11.11, right). After this projection, the ellipse
becomes a circle and two pairs of opposite sides are parallel. Therefore the
arcs P2P3P4 and P5P6P1 have the same length. By Eucl. III.21, the two angles
denoted by γ are thus equal and consequently, the third pair of opposite sides
is also parallel. Therefore, the image of M lies on the line at infinity.

Theorem 11.6 (Brianchon 1806). Let Q1Q2Q3Q4Q5Q6 be a hexagon circum-
scribing a conic (see Fig. 11.12, left). Then the three diagonals joining pairs
of opposite vertices are concurrent.

The intersection point O is called the Brianchon point (of the hexagon, with
respect to the conic).

Proof. The points P1, . . . , P6 at which the hexagon touches the conic are the
vertices of an inscribed hexagon. We apply to this hexagon the same projection
as in the proof of Pascal’s theorem. The images of the triangles PiQiPi+1 are
isosceles, and the bases of opposite triangles are parallel. Consequently, their
altitudes are concurrent, and all pass through the centre of the circle.

1Pascal discovered this theorem at the age of 16.

11.2
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Q1Q2

Q3
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Q5
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Q5
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O

Fig. 11.12. Brianchon’s theorem and its proof

Fig. 11.13. Drawings by Poncelet (1814, publ. 1862) illustrating the theorems of
Pascal and Brianchon

Poncelet’s continuity principle. Certain proofs are not always valid, for
example that of Pascal’s theorem for the case when the line containing K, L
and M passes through the conic. Poncelet therefore formulated his continuity
principle which states that such a theorem persists. Poncelet’s principle was
strongly criticised, in particular by Cauchy. The “principle of analytic contin-
uation” delivers us from all these problems and supports Poncelet’s point of
view.

Poncelet’s porism. One of the most spectacular visions of Poncelet was
his “Grand Théorème”, also called Poncelet’s porism or Poncelet’s closure
theorem. Its rigorous proof challenged famous mathematicians, like Jacobi,
Cayley and Lebesgue for one century. For modern proofs of this result, we
refer to Griffiths and Harris (1978) and Tabachnikov (1993).
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Fig. 11.14. Poncelet’s porism and its proof

Theorem 11.7 (Poncelet 1813, VIe Cahier, Sect. III; Poncelet, 1822, Pl. XII,
Fig. 97). Let C and C′ be two conics, C′ lying inside C, and let P0 be a point
on C. We construct a polygonal line P0P1P2 . . . that is both inscribed in C
and circumscribed to C′ (see Fig. 11.14 (a)). If the polygonal line closes for a
certain integer n with Pn = P0, then it closes independently of the choice of
the point P0 on C (see Fig. 11.14 (b)).

A
B

C
D

P Q

C

Fig. 11.15. Simultaneous transforma-
tion of two ellipses to a simpler form

Proof. The material that we devel-
oped in Chap. 7 allows elegant proofs
for the particular cases n = 3 and
n = 4. In the spirit of Poncelet,
we start by reducing the theorem
to a simpler configuration. Let P
be a point whose polars with re-
spect to the two conics coincide, see
Fig. 11.15. (Algebraically, this leads
to a generalised eigenvalue problem
for a 3 × 3 matrix, see Exercise 14
below.) Next we choose a point Q on
this polar and apply Lemma 11.2, so that after projection the line PQ is at
infinity and C is a circle.

For a good choice of Q on the polar we have two possibilities: (a) we move
it in such a way that after projection AB = CD is satisfied.2 In this case the
inner ellipse will be concentric with the circle (see Fig. 11.14 (c)). This is the
situation of Monge’s circle (see Fig. 7.5 on page 192). If (7.15) is satisfied, the
polygonal line forms a rectangle for any initial point and Poncelet’s theorem
is proved for n = 4.

2This means, in virtue of (11.11) below, that the fourth harmonic points of
ADQ and BCQ must be the same. Applying (11.12) twice, this leads to a quadratic
equation for the coordinate of Q.
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(b) We move Q such that the inner ellipse also becomes a circle, which
however has another centre. In this case Poncelet’s theorem is, for n = 3, a
consequence of the Chapple–Euler–Lhuilier theorem (Theorem 7.22).

11.3 The Projective Line

“Die durch den Ponceletschen Traité eingeleitete Bewegung pflanz-
te sich nach Deutschland fort und ward einerseits von den Ana-
lytikern Moebius (1790–1868) und Plücker (1801–1868) und ander-
erseits von den Synthetikern Steiner (1796–1863) und von Staudt
(1798–1867) weitergeführt. [The movement initiated by Poncelet’s
Traité spread to Germany and was continued, on the one hand, by
the analysts Moebius and Plücker and, on the other hand, by the
geometers Steiner and von Staudt.]” (F. Klein, 1928, p. 11)

Projective transformations. Following on Poncelet’s treatise, the analytic
theory of projective geometry was founded in Germany by Möbius and Plücker
(see the quotation). The theory starts with analytic expressions for projective
transformations in one dimension.

Consider two lines with origins O and O′, respectively, and a central pro-
jection between them with centre C, see the figure below. According to Thales,
we have

h

x+ g
=
x′ + f

x+ e
,

x′ =
hx+ he

x+ g
− f ,

which is of the form

x′ =
ax+ b

cx+ d
. g

h

e

f

x

x′

O

O′

C

P

P ′
(11.3)

Consequently, we call the map (for ad− bc 6= 0)

x 7→ x′ =
ax+ b

cx+ d
⇔ x′ 7→ x =

dx′ − b
−cx′ + a

(11.4)

a projective transformation or a Möbius transformation. We have already
encountered this transformation when discussing Carnot’s solution of the
Cramer–Castillon problem (6.31). Recall that the Möbius transformations
form a group (the composition of Möbius transformations and the inverse
of a Möbius transformation are again Möbius transformations).

The projective line. A projective transformation maps a “point at infinity”
to an ordinary point (the point x′ = a

c ), and an ordinary one (the point

x = − dc ) “to infinity”. In order to include these particular cases, we declare
that the projective line P consists of the real line R plus one point at infinity.
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Homogeneous coordinates. In order to capture the point at infinity in a
clear way, and to simplify several other concepts of analytic geometry, Plücker
introduced homogeneous coordinates in 1830, see Plücker (1830a) and (1830b):
each point x on the line is represented by a pair of numbers (x1, x2) by setting

x =
x1
x2

=
ρx1
ρx2

. (11.5)

These coordinates are far from being unique, since one can multiply both by
an arbitrary factor ρ. By setting x2 = 0, one obtains the point at infinity. The
formula (11.4) for projective transformations

x′1
x′2

=
ax1

x2
+ b

cx1

x2
+ d

becomes particularly elegant on multiplying numerator and denominator by
x2; this gives

[
x′1
x′2

]
=

[
a b
c d

] [
x1
x2

]
and

[
x1
x2

]
=

[
d −b
−c a

] [
x′1
x′2

]
. (11.6)

Note that for the inverse map, the usual division by the determinant is un-
necessary since we are dealing with homogeneous coordinates.

There are several ways of interpreting the projective line P (see Fig. 11.16).
We can consider it as

(a) the set of all straight lines in the plane that pass through the origin (i.e. all
one dimensional subspaces of the Euclidean plane). The homogeneous co-
ordinates are interpreted as a direction vector;

(b) the circle S1 where antipodal points x′ are −x′ are identified;

(c) the circle S1 of points x̃ under a stereographic projection (see Chap. 5). In
topology this is called a one-point compactification of R.

The cross-ratio. In the preceding chapters, we saw that Thales’s theorem
is the central pillar of Euclidean geometry: the ratio of the lengths of two seg-
ments is unchanged by a parallel projection. Unfortunately, this nice property
is destroyed by perspective projections. However, there will be a substitute in
projective geometry: the cross-ratio.

Definition 11.8. Let P1, P2, P3, P4 be four points on a line with (affine)
coordinates x1, x2, x3, x4. Then, the number

XR(P1, P2, P3, P4) =
P1P3

P2P3
:
P1P4

P2P4
=
x3 − x1
x3 − x2

:
x4 − x1
x4 − x2

(11.7)

is called the cross-ratio of the four points.
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S1/{x′ = −x′}

P

Fig. 11.16. Various interpretations of the projective line

Theorem 11.9 (Pappus, Collection , Book VII, Prop. 129). The cross-ratio of
four points is invariant under projective transformations, i.e.

XR(P ′
1, P

′
2, P

′
3, P

′
4) = XR(P1, P2, P3, P4).

Algebraic proof (from lecture notes by W. Gröbner 1962). We compute the
difference of two points after projection (11.4):

x′i − x′k =
axi + b

cxi + d
− axk + b

cxk + d
=

∆ · (xi − xk)

(cxi + d)(cxk + d)
,

where ∆ = ad − bc. Inserting this four times into (11.7), all ∆’s and all
denominators (cxi + d) drop out and we obtain

x′3 − x′1
x′3 − x′2

:
x′4 − x′1
x′4 − x′2

= . . . =
x3 − x1
x3 − x2

:
x4 − x1
x4 − x2

.

Geometric proof (from Steiner, 1832). From the law of sines (see Chap. 5),
applied to the triangles P1P3C and P2P3C (see Fig. 11.17 (a)), we get

a1 a2 a3 a4

C

P1 P2 P3 P4

P ′
1

P ′
2 P ′

3

P ′
4

α β

(a)

b

a

c

C

K

L

P1 =P ′
1

P2 P3

P4

(b)

Fig. 11.17. Invariance of the cross-ratio under a projective transformation; proof
by sine rule (a), Pappus’ proof (b)



11.3 The Projective Line 333

P1P3

CP3
=

sin a1a3
sinα

P2P3

CP3
=

sin a2a3
sin β





⇒ P1P3

P2P3
=

sin a1a3
sin a2a3

· sinβ

sinα
,

where a1a3 denotes the angle between the lines a1 and a3, etc.
Similarly we get for the triangles P1P4C and P2P4C

P1P4

P2P4
=

sina1a4
sina2a4

· sinβ

sinα
.

By taking the ratio of these expressions, the common factor sin β
sinα cancels and

the cross-ratio becomes

XR(P1, P2, P3, P4) =
sin a1a3
sin a2a3

:
sina1a4
sina2a4

. (11.8)

This expression depends only on the four concurrent lines a1, a2, a3, a4 and
is therefore also called the cross-ratio of four lines .

Pappus’ proof. Pappus’ original proof extends over 11
2 pages with 8 figures.

Since we are no longer afraid of negative quantities, we can present it, by
keeping the same idea, in a much shorter way (see also Heath, 1921, vol. II,
p. 420). The first idea is to suppose that P1 and P ′

1 coincide. This can be
achieved by a parallel displacement of the line P ′

1P
′
2P

′
3P

′
4, which preserves

ratios, hence also the cross-ratio. Then we place the remaining points in the
order P1 → P4 → P2 → P3 on a line through P1. The crucial idea is to draw a
line parallel to CP2 through P1 = P ′

1 whose intersections with CP3 and CP4

determine the points K and L, respectively (see Fig. 11.17 (b)). This creates
two pairs of similar triangles: P1LP4 is similar to P2CP4 and P1KP3 is similar
to P2CP3. Thales’ theorem gives

x3 − x1
x3 − x2

:
x4 − x1
x4 − x2

=
b

c
:
a

−c = − b
a
.

This last ratio is independent of the position of the line P4P2P3 through P1,
as long as the lines CP3, CP2 and CP4 are fixed.

Harmonic points. The four points P1, P2, P3, P4 are called harmonic, if

XR(P1, P2, P3, P4) = −1 . (11.9)

By putting P1 and P2 at ∓1 (see Fig. 11.18 (a)), this condition becomes

XR =
x3 + 1

x3 − 1
:
x4 + 1

x4 − 1
= −1

⇔ (x3 + 1)(x4 − 1) = (1− x3)(x4 + 1) ⇔ x3x4 = 1 ,

(11.10)
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Fig. 11.18. Harmonic points

a particularly simple relation. If we set x3 = 0, we see that

the points and the lines

a aP1 P2P3 P4 →∞
a1

a2a3

a4
α α (11.11)

are harmonic. Formula (11.10) expresses the fact that (see Fig. 11.18)

(a) P3 lies on the polar of P4;

(b) the segment CD passing through P3 (with C = (0,−1) and D on the
circle) is orthogonal to DP4. This is seen as follows: by Eucl. III.20 the
segment CD, which has slope 1

x3

, is orthogonal to C′D, which by (11.10)

has slope − 1
x4

. Since C′P4 has the same slope, the points C′, D, P4 are
collinear and DP4 also is orthogonal to CD;

(c) the distance P1P2 is the harmonic mean3 of the distances P1P3 and P1P4,

1

P1P2
=

1

2

( 1

P1P3
+

1

P1P4

)
since

1

2
=

1

2

( 1

1 + x3
+

1

1 + x4

)
; (11.12)

(d) the circles with diameters P1P2 and P3P4 intersect at right angles (see
Fig. 11.18 (b)), because (by Eucl. III.36)

x3x4 = (d− r)(d + r) = 1 . (11.13)

The complete quadrilateral. A complete quadrilateral consists of four lines
in general position (i.e. no three are concurrent). Taken in pairs, these four
lines intersect in six points A, B, C, D, E, F . The three additional lines AC,
DB and EF are called the diagonals of the quadrilateral . Each diagonal cuts
the other two, see Fig. 11.19 (left).

3The expression comes from music. The wave lengths λ
2

, λ
3

, λ
4
, . . . are the “har-

monics” of the fundamental wave λ; each is the harmonic mean of its neighbours.
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Fig. 11.19. Harmonic points from the complete quadrilateral

Theorem 11.10. The four intersection points on each diagonal of a complete
quadrilateral are harmonic.

Proof. We apply Lemma 11.1 to the triangle AEF with C as unit point (see
Fig. 11.19, right). Then the quadrilateral ABCD becomes a square and the
diagonal FE together with two intersection points move to infinity. The as-
sertion is now clear from (11.11).

11.4 The Projective Plane

Plücker coordinates. We begin with the equation y = px + q of a line in
R2 (see Fig. 7.2). The values of p and q are considered as fixed. By varying x
and y according to this equation, one obtains the set of points lying on this
line (see Fig. 11.20, left).

1

p

q

y = px+ q
x

y

1

x
y

q = y − xp
p

q

Fig. 11.20. Coordinates of points lying on the line (p, q) (left); coordinates of lines
passing through the point (x, y) (right)
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The idea of Plücker (1830b) consists in reversing the roles of the variables by
considering (p, q) as coordinates of this line.4 If we now choose (x, y) to be
fixed and solve y = px+ q for q, we obtain q = y − xp as equation for the set
of lines passing through this point (see Fig. 11.20, right).

This equation becomes neater if one replaces (p, q) by a triple (u1, u2, u3)
satisfying

p = −u1
u2
, q = −u3

u2
,

which results in
u1x+ u2y + u3 = 0 . (11.14)

The numbers (u1, u2, u3) are called the Plücker coordinates of the line. The
last step towards perfect harmony is achieved by using, in a similar way as
in (11.5), two-dimensional homogeneous coordinates (x1, x2, x3) for the point
(x, y):

x =
x1
x3
, y =

x2
x3

.

Then equation (11.14) finally obtains the symmetric form

u1x1 + u2x2 + u3x3 = 0 . (11.15)

A point thus lies on the line (11.15) if its homogeneous coordinates (x1, x2, x3)
are (formally) orthogonal to the Plücker coordinates of this line.

The feet of the altitudes of a triangle. Gut and Waldvogel (2008) gave
a simple algorithm to construct the feet of the altitudes of an n-simplex with
the help of Plücker coordinates. We illustrate here their idea for n = 2, i.e.
for triangles.

Let A1A2A3 be a triangle in R2 with homogeneous coordinates Ak =
(a1k, a2k, 1) and let

A =



a11 a12 a13
a21 a22 a23
1 1 1


 .

By construction, the columns of S = (A−1)T are orthogonal to those of A.
Therefore, the k-th column Sk = (s1k, s2k, s3k) of S contains the Plücker
coordinates of the line through the points Aℓ for ℓ 6= k.

The foot Fk of the altitude through Ak is thus given by

Fk = Ak + λS0
k

with S0
k = (s1k, s2k, 0) and λ determined by ST

k Fk = 0. This finally yields

[
f1k
f2k

]
=

[
a1k
a2k

]
− 1

s2
1k + s2

2k

[
s1k
s2k

]
.

4This was the first time in history that “coordinates” were something else than
coordinates of a point.
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Fig. 11.21. Projective plane, drawing by F. Klein (1928), p. 15

It is worth noting that the same approach works in any dimension, see Gut
and Waldvogel (2008). For tetrahedra, we refer to Exercise 12 below.

The projective plane. One “line” is particular among all those of (11.15),
namely the line

x3 = 0 , i.e. the coordinates u1 and u2 are zero, (11.16)

since it represents the points at infinity. Thus, we can state that the projective
plane P2 consists of the plane R2 and the projective line P at infinity.

We can consider the projective plane P2 as (see Fig. 11.21, left)

(a) the set of all lines in R3 passing through the origin (that is, all one dimen-
sional subspaces of the Euclidean space);

(b) the sphere S2 where antipodal points x′ and −x′ are identified;

(c) the half-sphere bordered by a circle representing P1, the line at infinity.

On the other hand, the interpretation as a stereographic projection is no longer
possible, since infinity would then be represented by a point and not by a line.

Theorem 11.11 (F. Klein, Math. Ann. vol. 7, 1874, p. 550, and L. Schläfli5).
The projective plane P2 is a non-orientable manifold.

Proof. We choose a figure drawn by the discoverer himself (see Fig. 11.21,
right). Let a small circle in position “1” cross the line at infinity. By moving
it to the positions “2”, “3”, and finally “4”, we see that its orientation has
changed.

5Ludwig Schläfli (1812–1895) taught mathematics in a school at Thun (Switzer-
land) and trained himself in higher mathematics. In 1843, when Steiner went to
Rome with Jacobi, Dirichlet and Borchardt, Schläfli was chosen as their interpreter.
Dirichlet gave him daily lessons (Dieudonné, Abrégé d’histoire des mathématiques II,
p. 453).
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Projective transformations of the plane. In homogeneous coordinates
the analogue of the transformation (11.6) for the plane becomes (Chasles 1837,
von Staudt 1847)



x′1
x′2
x′3


 =



a11 a12 a13
a21 a22 a23
a31 a32 a33





x1
x2
x3


 or simply x′ = Ax , (11.17)

with detA 6= 0. The set of projective transformations (in terms of homoge-
neous coordinates) is hence given by the general linear group (the invertible
matrices) modulo invertible multiples of the identity. It was Klein (1872) who,
in his Erlanger Programm, emphasised the role of group theory in geometry.

Contragredient transformation. In order to understand how the coordinates of
a line are transformed by a projective transformation (11.17) of points, we set
u′ = Bu. The condition uTx = 0 (the point x lies on the line u) is equivalent
to (u′)Tx′ = 0. Since

(u′)Tx′ = uTBTAx ,

we obtain
u′ = (AT)−1u = (A−1)Tu . (11.18)

Such a transformation is called contragredient with respect to (11.17).

11.5 The Principle of Duality

“The principle of duality may properly be ascribed to Gergonne
(1771–1859). Poncelet protested that it was nothing but his method
of reciprocation with respect to a conic (polarity), and Gergonne
replied that the conic is irrelevant ... It is sad that such a beauti-
ful discovery was marred by bitter controversy over the question
of priority.”

(H.S.M. Coxeter, The real projective plane (1949), pp. 13–14)

“Die Auffindung des Dualitätsprinzips, das von unserem heuti-
gen Standpunkt aus nicht allzu tiefliegend erscheint, stellte eine
wesentliche wissenschaftliche Leistung dar. Man erkennt dies am
besten daran, dass rund 150 Jahre nach der Auffindung des Pas-
calschen Satzes vergangen sind, ehe der Satz des Brianchon gefun-
den wurde ...” (F. Klein, 1928, p. 38)

Polar reciprocation (Poncelet, 1817). On comparing Figs. 11.11 and 11.12
we observe that the sides PiPi+1 are the polars of the points Qi. By Theo-
rem 7.3, the intersections K, L and M are the poles of the diagonals QiQi+3.
The fact that K, L and M are collinear (Pascal’s theorem) is equivalent to the
fact that the polars pass through one point, the corresponding pole. In this
way, Brianchon’s theorem can be seen as a “dual” version of Pascal’s theorem.
It took 150 years for this “triviality” to be discovered (see the quotation).
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Axiomatic duality (Gergonne, 1824/27). Gergonne discovered that the
above duality follows directly from the axioms characterising lines and points,
on which he based projective geometry. His concept of duality relies on the
observation that points and lines are interchangeable objects, and that conics
are no longer required. For more details on this axiomatic approach, we refer
to the book by Coxeter (1961).

Duality by coordinates (Plücker, 1830b). A third approach to duality re-
lies on the perfect symmetry of the expressions (11.15). In fact, there is a
symmetry between the two problems:

A point x is the intersection
of two lines u and v

u1x1 + u2x2 + u3x3 = 0

v1x1 + v2x2 + v3x3 = 0

A line u connects
two points x and y

x1u1 + x2u2 + x3u3 = 0

y1u1 + y2u2 + y3u3 = 0

The solution is each time given by the cross product (9.23), in one case by
x = u×v, and in the other by u = x×y. In contrast to Euclidean geometry, two
lines always meet. The intersection point, however, sometimes lies at infinity.

The principle of duality. To each theorem in projective geometry, there
corresponds a “dual theorem” in which each expression in one column

line ↔ point
pass through ↔ lie on

intersection point of two lines ↔ line connecting two points
concurrent ↔ collinear

polar ↔ pole

is replaced by the corresponding expression in the other column.

Having stated this principle, we must add a small caveat: The hope of ef-
fortlessly finding many new theorems by applying this principle turns out
to be illusory. For example, the theorems of Pappus and Desargues simply
reproduce each other under duality (see Fig. 11.22).

c

n

c′

m

ℓ

b′

a
b

a′

f

m

n

ℓ

a

a′

b
b′

cc′

Fig. 11.22. The theorems of Pappus and Desargues are self-dual
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C

P

Q

O

O′

Fig. 11.23. Ten concentric circles, mapped to six ellipses, one parabola, and three
hyperbolas

11.6 The Projective Theory of Conics

Here again, homogeneous coordinates show their strength. Consider a general
conic (7.5) in the Euclidean plane. We introduce homogeneous coordinates
(11.15) and multiply by x23 to obtain

ax21 + 2bx1x2 + cx22 + 2dx1x3 + 2ex2x3 + fx23 =
[
x1 x2 x3

]


a b d
b c e
d e f





x1
x2
x3


 = 0

or in matrix notation
xTAx = 0 , (11.19)

where A is a symmetric 3 × 3 matrix. A projective transformation (11.17)
x = Tx′ transforms this equation into

(x′)TA′x′ = 0 , where A′ = TTAT . (11.20)

Such a transformation no longer preserves ellipses, parabolas and hyperbolas
(see Fig. 11.23). The curves differ only by their position with respect to the
line at infinity x3 = 0. A parabola possesses this line as tangent (the seventh
circle in Fig. 11.23), the hyperbolas meet it in two points, and ellipses do not
meet it at all.

The projective classification of conics. Any real symmetric matrix A
has real eigenvalues and a basis of orthogonal eigenvectors. Therefore, there
exists a non-singular matrix T such that
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T TAT = diag (λ1, λ2, λ3) , λi ∈ {0,±1} , (11.21)

see Exercise 13 below. From the projective point of view, conics can be clas-
sified as follows:

(λ1, λ2, λ3) equation conic

(0, 0, 0) 0 = 0 projective plane

(1, 0, 0) x21 = 0 (double)line

(1, 1, 0) x21 + x22 = 0 point

(1,−1, 0) x21 − x22 = 0 two crossing lines

(1, 1, 1) x21 + x22 + x23 = 0 empty set

(1, 1,−1) x21 + x22 − x23 = 0 circle

From this table we see once again that ellipses, parabolas and hyperbolas can
not be distinguished from a projective point of view.

Polars. Let x1 be a point on the conic defined by A, i.e. xT1Ax1 = 0, and let
x be a second point satisfying

xT1Ax = 0 or equivalently xTAx1 = 0 . (11.22)

If x were also on the conic, then for each real λ, we would have
(
x1 + λ(x − x1)

)T
A
(
x1 + λ(x− x1)

)
= 0 ,

i.e. the entire line connecting x1 and x would lie on the conic. If the conic is
not degenerate, this is impossible and we obtain the following result.

If xT1Ax1 = 0, then formula (11.22) is the equation of the tangent at x1.

For an arbitrary point x0 in the projective plane, as in Section 7.3,

uT0x = 0 with uT0 = xT0A (11.23)

is the equation of the polar of x0. All the beautiful properties that we know
from Section 7.3 remain valid. In particular, we have the following:

(a) A polar, given by (11.23), is tangent if

xT0Ax0 = 0 ⇔ uT0A
−1u0 = 0 . (11.24)

The latter is the condition on the coordinates u0 of a line for it to be
tangent.

(b) The centre of the conic is the pole of the line at infinity.

(c) A diameter of the conic is the polar of a pole at infinity.

(d) Two diameters are conjugate if the pole of the first lies on the polar of the
second, and conversely.

(e) Let a point P3 lie on the polar of a point P4. If the line connecting P4 with
P3 cuts the conic in two points P2 and P1, then the points P1, P2, P3, P4

are harmonic (see Fig. 11.18).
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11.7 Exercises

1. Give an alternative proof of Pappus’ theorem 11.3 by moving the line ML
to infinity. The points A′, B′ and C′ then exchange their positions and
we obtain the picture of Fig. 11.24 (left). It remains to prove that if A′C
is parallel to AC′ and B′C to BC′, then A′B is parallel to AB′.

A
B

C

O

A′

B′

C′
α

α

z1

z2 z3

z4
Fig. 11.24. Alternative proof of Pappus’ theorem (left); solution for the relation
between a circle and the cross-ratio (right)

2. Let five points of a conic be given. Construct other points on the conic
with the help of Pascal’s theorem. An additional challenge is to find, in the
case of an ellipse, from these five points the centre of the ellipse, a pair of
conjugate diameters and finally its axes (Pappus, Collection , Book VIII,
Prop. 13, “Cum autem quæ situm sit circa quinque data puncta HKLMN
ellipsim describere”).

3. (see Hurwitz and Courant 1922, p. 274) Let z1, z2, z3, z4 be four numbers
in the complex plane (see Fig. 11.24, right). Show that they lie on a circle
if and only if their cross ratio XR(z1, z2, z3, z4) is a real number. Use
this result to show that the map z 7→ 1

z
(or more generally any Möbius

transformation) transforms circles to circles (if lines are considered as
degenerate circles).

4. Given three collinear points P1, P2 and P3, show that there exists a unique
harmonic point P4. Construct this point using only a ruler.

a

b

c

c

α α

P1 P2P3P4

B

C

D

E

a

b
c′

β β

P1 P2P ′
3

P4

C

D

E′

Fig. 11.25. Two cableways in the Alps (left); the geometric mean (right)

5. (Professor Stewart’s Mathematical Curiosity no. 94, see Stewart (2008))
In a mountain village called Après-le-Ski, located between two mountain
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peaks of height a and b respectively, two cableways run, one from the
foot of each mountain to the opposite peak. At which height c do the two
cables meet? You are first allowed to use Thales in order to show that

(a)
1

c
=

1

a
+

1

b
;

(b) P3B is the bisector of angle CP3D.

(11.25)

Then use higher projective education to clarify the apparent similarity of
the first formula with the harmonic mean and to give an elegant explana-
tion of the second result. In formula (5.21), we have already seen result
(a) in a slightly different form.

6. Compare the two pictures in Fig. 11.25: while in the picture on the left
P3P4 is the harmonic mean of P1P4 and P2P4, in the picture on the right
P ′
3P4 is their geometric mean (by similar figures b

c′
= c′

a
, hence c′ =

√
ab).

Conclude that the harmonic mean is smaller than the geometric mean
(for a 6= b), i.e. give another geometric proof of the inequality in (7.59) on
page 223.

7. Show, (a) by an analytic calculation, (b) purely geometrically, that the cir-
cumcentre O, the nine-point centre N , the centroid G and the orthocentre
H of a triangle on the Euler line are harmonic.

v

u

v′

u′A

B

C

D

E

F

G

H

Fig. 11.26. Bisecting a side of a triangle

8. Given a triangle ABC (see Fig. 11.26), draw a segment DE parallel to
BC, intersect CD and BE to find F , draw AF to find H on BC. Show,
first using Thales, then using projectivity, that H is the midpoint of BC.

9. As an extension of (11.13), show that the four intersection points P1, P2,
P3, P4 of a line with two circles intersecting at right angles lie in harmonic
position, if the line P1P2P3P4 is diameter of at least one of the circles (see
Fig. 11.27 (a)).

10. Prove the following result of Steiner (1846a) (see Fig. 11.27 (b)): Draw the
circle of curvature of an ellipse at a point B. Then produce the diameter
through B of this circle to the point A outside the ellipse, such that AB =
r, the radius of curvature. The circle with diameter AB intersects Monge’s
circle of radius

√
a2 + b2 at right angles.
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1
h

P1
P2P3

P4O D

E

(a)

r

r

B

A

O

C

D

(b)

Fig. 11.27. Harmonic points and orthogonal circles (a); Steiner’s theorem on the
radius of curvature of a ellipse and its relation to harmonic points (b)

Together with the previous Exercise 9 this means that the points A,B,C,D
are harmonic. Steiner found this result sufficiently interesting for a sep-
arate publication, but nevertheless did not include any indication about
its discovery or any hint of a proof. Find an elegant proof.

11. Formulate the dual version of Theorem 11.10. The resulting configuration
is called a complete quadrangle.

12. Plücker coordinates can also be defined in higher dimensions. For example,
the plane ax + by + cz + d = 0 in R3 is determined by the homogeneous
coordinates (a, b, c, d).

Let A1A2A3A4 be a given tetrahedron in R3 with homogeneous coordi-
nates Ak = (a1k, a2k, a3k, 1), and consider the matrix A with columns Ak.
Show that the ℓ-th column of S = (A−1)T contains the Plücker coordi-
nates of the face opposite to Aℓ. Find an explicit formula for the feet of
the altitudes of the tetrahedron.

13. Find an explicit formula for the transformation T in (11.21).

14. Given two conics, find a point P for which its polars with respect to the
conics coincide.
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Solutions to the Exercises

At the age of thirteen or fourteen, L. Euler used to work alone on difficult
mathematical problems. Every Saturday afternoon he was admitted at the
home of Johann Bernoulli, then the world-leading mathematician, to be fos-
tered with unsolved problems and questions. Later in his life, Euler mentioned
frequently1 that throughout the week he worked hard to solve as many prob-
lems as he could and to have to ask Johann Bernoulli as few questions as
possible. For Euler this was the best method for making rapid progress in
mathematics.

Now also, 300 years later, the efforts for solving exercises without looking
up a solution are of extreme importance. For those of our readers, however,
who don’t have — in case of difficulties — a Johann Bernoulli at hand, we
present below our solutions to the exercises. This allows the readers to compare
with their own solutions and to find the one or other idea for improvements.
Whenever a reader finds a shorter or more elegant solution, the authors will
be glad to include it in a future edition of this book.

12.1 Solutions for Chapter 1

1. He is. A modern computer gives the value 1, 43 55 22 58 27 57 56 . . . ,
because √

3 = 1.73205080756888
remainder = 0.73205080756888 × 60 = 43.92304845413
remainder = 0.92304845413 × 60 = 55.382907248
remainder = 0.382907248 × 60 = 22.9744349
remainder = 0.9744349 × 60 = 58.46609
remainder = 0.46609 × 60 = 27.9656 etc.

1reported by Nicolaus Fuss 1783 in his Lobrede auf Herrn Leonhard Euler,
Opera Omnia, vol. I, p. LII

345
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2. Call the angle DAB = β, so that DOB = 2β. Further call the angle
DAC = γ, so that DOC = 2γ. The result follows by subtracting β,
respectively 2β.

3. Because both inscribed angles correspond to the same central angle.

4. One obtains the Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . , where each
is the sum of its two immediate predecessors. The fractions rk tend to the
golden ratio. If one does not simplify these fractions, one obtains them in
the form

1 +
1

1 + 1
, 1 +

1

1 +
1

1 + 1

, 1 +
1

1 +
1

1 +
1

1 + 1

, . . .

as continued fractions.

5. Since Φ = 1 + 1
Φ , the rectangles are similar.

6. Observe that all dimensions of these pieces are Fibonacci numbers. Their
slopes are close, but not equal, to Φ. Therefore the diagonal in the picture
on the left is not a straight line.

7. The two shaded rectangles have area
2 · (1, 25) · δ and, if we neglect the tiny
square in the upper right corner, this
must be 0, 00 25. Hence we have to sub-
tract from 1, 25 the value of

2, 00 25

1, 25

2, 00 00

1, 25− δ δ

δ =
0, 00 25

2, 50
= 8.823529411765/602 = 0, 00 08 49 24 . . .

which leads to 1, 24 51 10 35 . . .

8. Inspired by an idea which Gauss had as schoolboy, we add a second tri-
angle upside down:

⇒ ⇒ 2tn = n(n + 1) or tn =
n(n+ 1)

2
.

9. We cut the pentagon into three triangles and correct with one column of
n dots

⇒ pn = 3tn−1 + n = 3
n(n− 1)

2
+ n =

n(3n− 1)

2
.

The same proof also applies to higher “polygonal numbers” (see Heath,
1921, p. 79).
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10. Adding up the dots along the zig-zag lines in any of the three directions,
we obtain 1 + 3 + 5 + . . . , so the result is the same as in (1.7).

11. The theorem of Pythagoras, what else?

12. Just use the formula for the area of a parallelogram.

13. If you want to do this in an elegant way, apply Theorem 4.2 of Chap. 4
to the triangle BΓΠ. One can also apply Thales’ theorem. For Heron’s
original proof, which relies only on the principles of Euclid’s first book,
see Heath (1926, vol. I, p. 366).

14. Draw the circle with diameter OP , and rotate the picture so that OC and
PD are vertical. Then look .

15. This is the identity (p + q)2 − p2 − q2 = 2pq = 2h2 (using the altitude
theorem in (1.10) and the notations of Fig. 1.20), multiplied by π

8
.

16. Denote by h the altitude of the tent, and by ℓ the length of the projection
of EB onto the base. Then we have two right-angled triangles with sides
h, ℓ, 1 and Φ

2 ,
Φ−1
2 , ℓ respectively. Applying Pythagoras’ theorem to both

and eliminating ℓ2 leads to h = 1
2

by using Φ2 − Φ = 1. The slopes of the

triangles are 2h
Φ−1

and the slopes of the quadrilaterals are 2h
Φ

. The product
of these slopes is 1, so one is the inverse of the other.

17. (Pythagorean triples.) There are many such triples on the Babylonian
tablet “Plimpton 322”, which O. Neugebauer and A. Sachs deciphered
(see R.C. Buck, 1980, for an excellent account). But no tablet is known
which explains how these triples were actually discovered. A student whose
childhood was spent learning algebraic identities would see at once that

a = u2 − v2 , b = 2uv , c = u2 + v2 (12.1)

are, for u and v arbitrary integers with u > v > 0, Pythagorean triples. We
will see in the next exercise that in fact all such triples have this form. But
someone who instead spent his youth playing with marbles might prefer
to represent square numbers by arranging marbles in a square array (see
Fig.12.1, left). He would then see that the difference of the two square
numbers (n+1)2−(n−1)2 is 4n. Since 4 is itself a square, it simply suffices

n
1−u2

1+u2

2u
1+u2

α

u
α/2

1

(x, y)

Fig. 12.1. Pythagorean triples and rational points on the unit circle
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to put n = u2 to make the third number a square. This gives (12.1) for
v = 1. (This last solution is attributed to Plato, the general procedure is
given in Eucl. X.28 ; see Heath, 1926, vol. I, p. 356, and vol. III, p. 63.)

18. We see in Fig.12.1 (right) two similar triangles with sides 1, u and 1+x, y.
Thus y = λu and x = λ−1. From x2+y2 = 1 we have λ = 2

1+u2 . This gives
for x and y the values indicated in Fig. 12.1. These are rational values, if
u is rational. These values are clearly related to the above Pythagorean
triples. Conversely, if x and y are rational, so are λ and u.

19. Connect the centres of the circles to the intersection points of the line
through P with the respective circle. You obtain a sequence of similar
triangles. Prof. Michel Mayor, explaining his discovery of the first Exo-
planet, once called this effect the “Doppler dragon-fly”.

20. Each quarter of this set has the same area as the triangle with the same
vertices. This is seen in the same way as in Hippocrates’ squaring of the
lunes (1.12). Thus the total area A is the area of the square with side
length

√
2, hence A = 2.

21. The two grey quadrilaterals have the same angles and sides, hence have
the same area. One represents 1

2
(a2 + b2) plus the area of the triangle; the

other represents 1
2 c

2 plus the area of the triangle.

22. Because of the identities (r + a)(r − a) = r2 − a2 (Eucl. II.5 in the next
chapter) and r2 − a2 = b2 (Pythagoras).2

1

2

1

2

3λ

4λ

5λ

3µ

5µ

4ν

4µ

ϕ ϕ

αα

α

A

B

C

D

K

H

G

F

E

(a)

1

ϕ α
3

5

4

5
1

2

1

E

D C

(b)

Fig. 12.2. Solution of the “Max-Bill-problem”

23. We denote by ϕ the angle by which the square ABCD is rotated to the
left (with respect to the line DE) and the square EFGH is rotated to the
right (see Fig. 12.2 (a)). The angle EKC is an exterior angle of DEK and
by (1.2) equal to α = 2ϕ. We place the triangle DEC into the unit circle

2The 20-year-old Gauss wrote this proof as Nova theorematis Pythagoraei demon-
stratio in his diary on Oct. 16, 1797 (see Gauss’ Werke, vol. 10, p. 524).
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as in Fig. 12.2 (b), which is the same as in Fig. 12.1 (right) for u = 1
2
. By

Eucl. III.20 we again find α = 2ϕ and conclude that all six triangles in
Fig. 12.2 (a), two-by-two of the same size, are similar to the triangle with
sides 3, 4, 5. Hence there are three constants λ, µ and ν such the sides are
as indicated in this figure. From the condition FD = 1

2 we obtain λ = 1
8 ,

from DG = 1
2

we obtain µ = 1
6
, and from DA = 1 we get 5µ+ 4ν = 1 or

ν = 1
24

. Thus the three areas are 6λ2 = 3
32

, 6µ2 = 1
6

and 6ν2 = 1
144

. The
value of the angle α = arctan 4

3 is not particularly interesting; a numerical
calculation gives α = 53◦7′48′′22′′′6′′′′31′′′′′.

b2+c2

a2+d2

α

β

2α

2β
b2+c2

a2+d2

a2+b2+c2+d2

2α
2β

Fig. 12.3. Proof “without words” of the four-squares problem

24. The proof “without words” is given in Fig. 12.3. If words are allowed, we
would say that Pythagoras’ theorem and Eucl. III.20 are used repeatedly,
and that α+ β = by Eucl. I.32, hence 2α+ 2β = 2 .

25. A square with diagonal 10d, i.e. area 50d2, is replaced by a circle of di-
ameter 8d, i.e. area 16d2π. If both areas were the same, we would have
π = 25

8 = 3.125, slightly better than the Egyptian value of π = 3.1605.

12.2 Solutions for Chapter 2

1. Cut the polygon, say by the lines NB and NC, into n− 2 triangles and
apply Eucl. I.32 to each of these. If the polygon is convex, i.e. if all angles
are < 2 , this dissection requires no precautions. In the case of the above
drawing, however, one could not cut along the line DA.

2. Denote by γ the two angles in the “X”, which are equal by Eucl. I.15.
Then by Eucl. I.32 we have α+ γ+ = β+ γ+ and the result follows
by subtracting γ + .
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3. Let AB = 1, so that AF must be 1
Φ

and MF = 1
Φ
− 1

2
= Φ− 3

2
. Then, since

ME = 1 and GE = 1
4
, we have MG =

√
15
4

. Thus by Thales applied to

the similar triangles FMD and EGD we obtain MF = 1
4+2

√
5

= 2
√
5−4
4

=

Φ− 3
2 .

4. Suppose, instead, that C is not on the
circle, for example outside it (see the
picture). Then let D be the point of
intersection of line AC with the cir-
cle. Now the angle ADB is right by
Eucl. III.20, the angle ACB is right
by hypothesis; a contradiction with
Eucl. I.16.

A
B

C

D

5. The angles BCE and CBD are parallel angles to β and γ respectively
(Eucl. I.29). Also by construction BD = b and CE = c. Hence, by
Eucl. I.4, the triangles CBD and CEB have the same sides. The result
follows from Eucl. I.7 (what we have actually proved here, is the converse
of Eucl. I.33).

6. A still more clever student will discover that one foot of the perpendiculars
through E lies inside the triangle and one lies outside.

7. The triangles BDA and CDA have the same sides, thus by Eucl. I.22 the
angles BDA and CDA are the same. By Post. 4, they are right angles.

8. The triangles PC1Q and PC2Q are isosceles. Thus the result follows from
Exercise 7.

9. We have t =
√

3(d+ 3) by Eucl. III.36 and d+3
9

= t
r

by Thales. Inserting
t from the first equation and using d = 2r leads to

(d + 3) · d2 = 12 · 92 = (9 + 3) · 92 .

Comparing the first and last expression we see that d = 9 li.

10. By Eucl. I.29, the angles α and β
in the picture are the same, re-
spectively. Since the sides a are the
same too, we have by Eucl. I.26 that
AE = CE and BE = DE. The
result for the rhombus then follows
from Exercise 7.

a

a

α

α

β

β

A
B

CD

E

11. By Eucl. I.16 we have γ < δ and by Eucl. I.5 we have δ = ε < β (see
Fig. 12.4 (a)); thus, as Euclid says, β “is much greater” than γ.

12. By Eucl. I.5 we have δ = ε (see Fig. 12.4 (b)), which itself is smaller than
η. Hence, by Eucl. I.19 (which is the converse of Eucl. I.18 of the previous
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δ
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D

A (a)

ε
η

δ
D

A

B

C

(b)

γ β α

A

B

C

D

E

(c)

Fig. 12.4. Proofs for Eucl. I.18, Eucl. I.20 and Eucl. IV.15.

exercise and can be proved by contradiction), BD (which is BA+AC) is
greater than BC.

13. By Eucl. I.5 all angles of an equilateral triangle are the same; by Eucl. I.32
they are all 2 /3. Therefore α+ β + γ = 2 (see Fig. 12.4 (c)), and the
result follows from Eucl. I.14.

b

b

a−b b b

(a−b)2
a

b

(a−b)2

Fig. 12.5. Proofs for Eucl. II.8; Euclid’s proof (left), Clavius’ proof (right).

14. Euclid’s original proof (picture on the left in Fig. 12.5) represents the
difference of the two squares of sides a + b and a − b as four rectangles
b× (a− b) and four squares b× b, which together fill four rectangles b× a.
The picture on the right, attributed by Heath to “Clavius and others”,
shows the result immediately without any calculation.

15. By construction and Pythagoras we obtain (s+ 1
2
)2 = 1 + 1

4
, which on the

one hand gives s2 + s = 1 using Eucl. II.4, the desired equation, and on

the other hand by taking square roots s+ 1
2

=
√
5
2

.

16. If C is not the orthogonal projection (Eucl. I.12) of F onto this line, let
another point G be this projection and denote the angle FCG by α. Both
angles at G, the exterior and the interior, are right angles. By Eucl. I.16,
α < . Then, by Eucl. I.18 (see Exercise 11), FG is shorter than FC. On
the other hand, G is outside the circle and hence FG is longer than FC.
This is a contradiction.

17. Euclid’s original proof is very long and based on Eucl. III.18 (see Exercise
16). Today, we are less scrupulous about passing to the limit, and simply
let the point C move towards B, always making the same angle α, and in
the limit the line CB will become the tangent.

12.2 Solutions for Chapter 2



352 12 Solutions to the Exercises

18. We attach the three squares a2, b2 and c2 to the three sides of the triangle
ABC (see Fig. 12.6, left). By producing the three altitudes of this triangle
we cut each of these squares into two rectangles. For precisely the same
reason as in Euclid’s proof, pairs of these rectangles have the same area.
The square c2 is A1+A2, which is the same as a2+b2, if the two rectangles
of area A3 = av are subtracted.
This elegant proof, found by Grégoire de Saint-Vincent in 1647, has since
then been rediscovered again and again (see Heath, 1926, vol. 1, p. 404 and
Steiner and Arrigo, 2010, p. 109).

A1

A1 A2

A2

A3

A3

v

c

c

b

b

a
a

a

A B

C

α

β
γ

δ

ε

P

Q

A

B

S

T

Fig. 12.6. Direct proof of Eucl. II.13 (left); proof of the two-circles problem (right)

19. As with Clavius’ corollary of Eucl. III.36, a more general result is easier
to prove: the two lines TS and AB in Fig. 2.43 (b) are parallel. This result
follows from Eucl. III.22 applied to the two circles. The remainder of the
proof is displayed in Fig. 12.6 (right): Subtract, add, and subtract α+β =
2 , β + γ = 2 , γ + δ = 2 , δ + ε = 2 and you obtain α = ε.

20. The authors were unable to find a precise reference to work of J. Steiner
for this theorem. However, a clear proof was given by A. Miquel (1838b)
as follows : apply Eucl. III.22 (as drawn in Fig. 2.17 (c)) to the four quadri-
laterals inscribed in the four circles, to conclude that the angles denoted
by α, β, γ and δ in Fig. 2.44 (right) are the same, respectively. Then, again
by Eucl. III.22 (and its converse) the points A,B,C,D and A′, B′, C ′, D′

are concyclic if and only if α + β + γ + δ = 2 .

21. (a) We compute, using Eucl. III.36, BE2 = AE · CE = 9b
5

4b
5 , so that

BE = 6b
5 . By Eucl. III.32 (see Exercise 17), the two angles marked α are

the same. Together with the common angle β, we see that BCE is similar
to ABE, thus by Thales BC

BE
= AB

AE
, which gives BC = 2a

3
. If we extend
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BC to D such that BD = BA, i.e. ADB is an equilateral triangle, we see
that BC

CD
= 2 = FC

CA
. Hence the triangles FCB and ACD are similar with

similarity factor 2. As a consequence BF = 2 · AD = 2a and the angle
CBF is the angle CDA = 60◦, which gives the desired result.

(b) With C as before, draw a second 60◦-circle based on CF and let B
be the intersection of the two circles (Fig. 2.45 (c)). Then BC is the angle
bisector of the triangle ABF and BF = 2 · BA follows from Eucl. VI.3.

22. (a) We take AΓ = 1. By Pythagoras, b =
√

1− a2 (see Fig. 2.46, right).
We see by Eucl. III.20 that the triangles in question are similar. Hence, by

Thales, ZA = b
y

and HZ = x2

y
. This shows that y = HA = HZ + ZA =

x2

y + b
y . We obtain y2 − x2 = b or, by Pythagoras, 1 − 2x2 = b and

2y2− 1 = b. This gives the two formulas (which will be encountered later,
see (5.9))

y =

√
1 + b

2
, x =

√
1− b

2
.

Archimedes obtained in this way the estimates

BΓ >
780

1560
, HΓ >

780

3013 3
4

, ΘΓ >
240

1838 9
11

, KΓ >
66

1009 1
6

, ΛΓ >
66

2017 1
4

.

Try to do this without a computer and without floating point calculations,
computing all the roots by rational approximations.

(b) Again we set ΓE = 1. By Eucl. VI.3 we have (see Fig. 2.47, right)

s− t√
1 + s2

=
t

1
or t =

s√
1 + s2 + 1

.

With this Archimedes obtained the estimates

ΓZ <
153

256
, ΓH <

153

571
, ΓΘ <

153

1162 1
8

, ΓK <
153

2334 1
4

, ΓΛ <
153

4673 1
2

.

For more details, see the footnotes of Ver Eecke in Archimedes’ Opera
(1921), or the article of Miel (1983).

23. We discover that for all these polyhedra the relation

s0 − s1 + s2 = 2 (in Euler’s notation E + F = K + 2)

is true. As simple as this relation is, if you want a general proof, Euler
will tell you about the demonstrationis difficultatem ... and, in fact, sim-
ple proofs were only given a century later (Cauchy, Steiner (1826d), von
Staudt (1847); see Pont (1974) for details).

Solutions for Chapter 212.2



354 12 Solutions to the Exercises

12.3 Solutions for Chapter 3

1. Denote by x1 and x2 the abscissae of B,Q and P,A (see Fig. 3.8, left); by
y1 and y2 the ordinates of B,P and Q,A. Then by Pythagoras

OP 2+OP ′2 = OP 2+OQ2 = x22+y21+x21+y22 = x22+y22+x21+y21 = a2+b2 ,

which means, of course, that “summa quadratorum binarum diametrorum
coniugatorum semper est constans”.

(a) (b)

Fig. 12.7. Parallelograms about the conjugate diameters of an ellipse

2. Well, if we stretch the ellipse of Fig. 12.7 (a) into a circle (Fig. 12.7 (b)),
the conjugate diameters become orthogonal and the parallelograms turn
into squares rotating about this circle. The theorem can thus really be
seen “almost by Intuition, even without Demonstration”. Newton himself
just says that the result “Constat ex Conicis”. It is actually Apoll. VII.31,
Apollonius’ proof, however, extends over four pages.

3. This is equivalent to Pappus’ definition of the parabola (see the first pic-
ture in Fig. 3.1 and also Exercise 4 below): we have PS = PV exactly if
PU = PQ, under the condition that V U = SQ, the radius of the circle.
The centre of the circle is the focus of the parabola. If the line intersects
the circle, the parabola passes through the intersection points, because
here both distances are zero.

(a)

ℓ

ℓ

P

(b)

ℓ

ℓ

P

(c)

Fig. 12.8. Points with same distance from two circles
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4. If the two circles intersect, the answer is quite tricky (see Fig. 12.8 (a)).
The question is easier if the two circles are disjoint, either one inside the
other, or one next to the other. One can then reduce the smaller of the
two circles to a point by subtracting (or adding) a constant to both radii.
We thus arrive at the problem: Given a circle and a point, find the set of
points at the same distance from the circle and the point . The answer is an
easy consequence of (3.5) or (3.12) and leads to a third characterisation of
the conics (see Fig. 12.8 (b) and (c)). The centres of the circles are located
at the foci and the radius of the remaining circle is 2a.

5. They are perpendicular. For a proof, look at the angles denoted by α in
Fig. 3.4 and denote the corresponding angles of Fig. 3.11 by β. One then
sees that 2α + 2β = 2 and that the angle between the two tangents is
α + β, which must therefore be . Another way of seeing this result is
Fig. 12.8 (a), because the points on the two confocal conics have the same
distance from the two circles, hence the tangents to the conics are the
angle bisectors of the tangents to the circles.

6. Draw the circle with diameter AB. Call its centre M and its radius r. Then
draw the diameter PQ passing through C. Think of all three objects as
being fixed to the triangle during its movement (see Fig. 3.15 (b)). Draw
the circle ED with centre O and radius 2r. Because the angle AMD is
twice the angle EOD, while the radii are inversely proportional, the arc
lengths AD and ED are the same. Hence we can imagine that the circle
PAQB rolls inside the circle DE while the diameter AB moves on the
rectangular axes. By Proclus’ construction of Fig. 3.8 (page 68) any point
on this diameter moves on an ellipse. But PQ, which carries the point C,
is just another diameter which will touch the outer circle somewhere else.
Therefore by the same result, C will move on an ellipse which is rotated
by half the angle AMQ.
Remark. If we replace 2r by 3r, the point A moves on a much more
interesting curve, Steiner’s deltoid (see Fig. 7.17 on page 205).

7. Since the point E stays on the diagonal of the parallelogram OIPG, we
have IE = EG. The point G moves on a circle centred at H, hence E has
the same distance from this circle and from H, i.e. it moves on an ellipse
by the third characterisation mentioned in the solution to Exercise 4.

8. Draw the line F ′P and produce it to the point B as in the picture on the
right of Fig. 3.4. Then the point R lies halfway between the points B and
F (the triangle BPF is isosceles). Since O is halfway between F ′ and F ,
the triangles FOR and FF ′B are similar with ratio 1 : 2. Since F ′B = 2a
by (3.5), we have OR = a.

9. Since the tangent at the vertex is halfway between F and the directrix d,
the result follows, with the same argument as in the previous exercise (see
Fig. 3.1), from Thales’ theorem.
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10. They are parabolas with the midpoint F as focus. In order to see this,
note that the midpoint M between A and B, which is the orthogonal
projection of F onto AB, moves on a straight 45◦ line. The result thus
follows from the previous exercise (see Fig. 3.17, right).

g

g′
g

g′

a

α

α

β
β γ

γ

A B

Γ

∆

H

H ′

E Z

(a)

cc

α

α

α

γ

γ
β

β

B

Γ

ZF F ′

H

H ′

H ′′

(b)

Fig. 12.9. Proofs of Apoll. I.34, I.36 and III.42 (a); Proof of Apoll. III.46 (b)

11. As suggested, we stretch the ellipse into a circle (see Fig. 12.9 (a)). Then
the triangles ΓH ′B and ΓHA are isosceles, since the sides g′ and g are
tangents to the circle from the same point and thus have the same length.

So by Thales for the “horizontal” g, g′ we have g′

g = u′

u (see Fig. 3.19 (a)),

and for the the “vertical” g, g′ we have g′

g
= h′

h
. This proves Apoll. I.34.

The angles α are right angles. By Thales’ theorem ZE/ZΓ = ZΓ/Z∆,
which proves Apoll. I.36. Since 2β + 2γ = 2 , the angle H ′ZH is a
right angle and gg′ = a2 is the altitude theorem (Eucl. II.14). This proves
Apoll. III.42, because g = a

b
h and g′ = a

b
h′.

We have kept the same names for the points as in Apollonius’ drawing for
I.36, but his proofs are much longer.

12. See 13.

13. We draw the Thales circle with diameter HH ′ (see Fig. 12.9 (b)). Since its
centre lies directly above Z, this circle cuts the axis AB in two points F
and F ′ which have the same distance c from Z. Applying Clavius’ corollary
of Eucl. III.36 (see (2.6)) to the point B, we obtain hh′ = (a − c)(a + c),
hence by Apoll. III.42 and Eucl. II.5, a2 − c2 = b2 or c2 = a2 − b2 (you
might argue that perhaps this Thales circle does not intersect AB; we
would then raise AB upwards until it becomes tangent and Eucl. III.36
would lead to the contradiction a2 < b2). Since the arc HF is equal to
the arc F ′H ′′, all three angles marked α are equal by Eucl. III.21 (and
similarly for the others).

14. If ΘΓ were perpendicular, then from the triangles ΘΓH and ΘΓH ′ we
would have tanα/ tan γ = u/u′ (anticipating a notation from Chap. 5; see
Fig. 3.19 (a)). On the other hand, from the triangles F ′BH ′ and FAH we
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Fig. 12.10. Proof of Apoll. III.48 (a); Proof of Apoll. III.49 (b)

have tanα/ tan γ = h/h′, since F ′B = AF . This is in accordance with
Apoll. I.34. Since this “backwards” argument does not meet the rigour
established by Euclid, Apollonius turns this into a lengthy proof showing
that the opposite hypothesis leads to a contradiction.

15. The quadrilateral ΓH ′F ′Θ of Fig. 3.20 (b) has two opposite angles which
are right. Hence Thales’ circle with diameter ΘH ′ will pass through Γ
and F ′. By Eucl. III.21 we see that the angles F ′ΓΘ and F ′H ′Θ are equal
to β (see Fig. 12.10 (a)). Similarly we prove that the angle ΘΓF is β.

16. As in the previous exercise we draw circles with diameters F ′H ′ and F ′H.
Two applications of Eucl. III.21 (see Fig. 12.10 (b)) then show that the
angle AΘB is α + β + γ. But we see, from Fig. 3.20 (a) and Euclid’s Pos-
tulate 5, that 2α+ 2β + 2γ = 2 .

17. The proof is contained in Fig. 3.21, left: by applying Eucl. I.32 to the
triangle SFS′, we see that γ = β−α. We then project F orthogonally onto
the three tangents, to obtain N ′, n and N , which lie on the circumcircle of
the ellipse (this is Apoll. III.50, which Poncelet attributes to Maclaurin).
We also draw M and M ′ as the points on that circle, opposite to N and
N ′ with respect to F . Because of the right angles, the points S ′, N ′, n
and F are concyclic. By Eucl. III.21 applied to this circle, we move α to
N ′, and then, by Eucl. III.20 applied to the circumcircle, we see that the
angle nOM ′ is 2α. Similarly, the angle nOM is 2β. Thus 2γ is the angle
M ′OM , which is independent of the position of the third tangent. If we
move either S or S ′ to P , we obtain the second result as an easy corollary.

18. By Apoll. I.36 (see Exercise 11) we have xw = a2 in the notation of
Fig. 12.11 (a). By stretching (see the “Hint” for that same exercise) we
also have the analogous formula yv = b2 and by Thales z

y
= v

w
, i.e.

zw = yv = b2. Hence, PO ·QO = (x− z)w = xw − zw = a2 − b2.

19. If we stretch the ellipse to a circle (see Fig. 12.11 (b)), then ZAE and
EAH are similar, hence u

w = w
v or uv = w2. Because ∆E and ZH are

parallel, the stretching preserves the ratios on these lines.
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Fig. 12.11. Solutions of Exercises 18 (a) and 19 (b)

20. By Apoll. III.50 the points R and R′ lie on the Thales circle with diameter
AB. The triangles H ′BD, F ′R′D, FRD and HAD are all similar. Hence
by Thales there is a constant k (which is the cotangent of the angle ADH)
such that

d · d′ = k2 ·RD ·R′D = k2 · AD ·BD = h · h′ = b2 .

The second relation is Clavius’ corollary to Eucl. III.36, the last one is
Apoll. III.42.

12.4 Solutions for Chapter 4

1. Indeed, we have with the notation of Fig. 4.29 (b),

z =
v

y
=
vw

x2
=
vwv2

w4
=
v3

w3
= u3 .

Here, the first and last identity follows from Thales’ theorem, the second
and third identities follow from Eucl. II.14 applied to the right triangles
ΓΛA and ΛAH, which gives yw = x2 and xv = w2 respectively.

2. We weigh the parabola strip by strip and compare these weights to those
of a triangle. A strip of length x placed on a lever arm of length 1−x is in
equilibrium with a strip of the parabola of length x(1−x) placed on a lever
arm of length 1. We sum up all areas and concentrate the entire triangle
(which has area 4T ) at its centre of gravity. Since its distance is 1

3
(by

Theorem 4.1), we have equilibrium with the entire parabola concentrated
on the lever arm of length 1 if P = 4

3T .

3. We have to show that the Miquel point M lies on all three altitudes;
by symmetry it suffices to show this for one altitude, say for AD. The
angles EBA and ACF in Fig. 4.15 on page 95 are then orthogonal, hence
equal. Thus AE

AF
= AB

AC
or AF · AB = AE · AC, which means that the

point A has the same power with respect to both circles FDB and EDC.
Consequently, A lies on the radical axis of these two circles, i.e. the points
A,M,D are collinear.

4. The angles marked δ in Fig. 4.31 (a) are orthogonal, hence equal. Therefore
CFB and AFH are similar triangles. Hence b

c = y
a or y = ab

c . The second
computation exchanges a↔ b and leads to exactly the same result.
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5. If y = ab
c

from the solution of the preceding Exercise 4, then also c = ab
y

.

One can also see the result geometrically from Fig. 4.31 (a): If C and H are
exchanged, then the sides AC, BC and the altitudes BE, AD exchange
their roles by remaining mutually perpendicular. See also Fig. 12.25 on
page 394.

6. The triangles APF and BV F are similar, as are APU and BV P . Thus
PU
PV = PA

BV = c1
c2

. Now insert into this PU
PC = b2

b1
divided by PV

PC = a1
a2

, which
is precisely Eucl. VI.2, and conclude.

7. Denote by C1, C2,A1,A2,B1,B2 the
areas of these triangles and let h1
resp. h2 be the distance of A resp.
B from the line CP . These are the
altitudes of the triangles APC and
BPC respectively. Hence

c2
c1

=
h2
h1

=
A1 +A2

B1 + B2
. c1

c2

a1

a2b1

b2

A

B

C

P

DE

F

C1
C2
A1

A2B1

B2

Multiplying all three corresponding factors a2
a1
· b2
b1
· c2
c1

clearly gives 1. This
proof (from 1816) is due to A.L. Crelle, see Baptist (1992, p. 61).

8. (a) We learned from Joh. Bernoulli (see Exercise 6) that, when everything
is oblique, we have to draw some parallel line, in order to be able to apply
other theorems. We choose to draw DG parallel to BF . This creates two
pairs of similar triangles: CGD is similar to CFB and GDH is similar
to FAH. From the first pair we obtain by Thales DG = BF

2
= c

4
and

CG = GF , and then from the second pair GH = HF
2

. This leads to
CH = 2 · HF , another proof for the position of the barycentre known
since Archimedes. Now Eucl. I.41 gives D = 2 · A and also A + D = ∆

2 .

Thus A = ∆
6

and D = ∆
3

. Similarly, AH = 2 ·HD, so that also, again by
Eucl. I.41, D = 2 · B, i.e. B = A and C = D.

(b) We follow precisely the proof of Jakob Steiner, who solved the anal-
ogous problem for more general ratios. We draw EG parallel to BF ,
which again gives us two pairs of similar triangles: EGC is similar to
AFC and EGH is similar to BFH . Thales gives EG = AF

3
= c

9
and

HB = EH · FB
EG

= 6 ·EH, i.e. by Eucl. I.41, B = 6A. Again by Eucl. I.41,

B + A = ∆
3 , hence A = ∆

21 and B = 6∆
21 . By a symmetric argument, the

triangles ABL and CAK have area 6∆
21

; all three, together with T , make

up the entire triangle. Hence T = (1− 3·6
21

)∆ = ∆
7

.

9. Let P be the intersection of the circles, say BCD and ACE, inside the
triangle. Then, by Eucl. III.22, the angles BPC and CPA are 120◦, be-
cause they are inscribed angles corresponding to central angles of 240◦.
Hence the angle APB is also 120◦, and, again by Eucl. III.22, P must
lie on the third circle, which proves (b). Statement (c) then follows from
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Eucl. III.21, because, for example, the anglesDBC andDPC are inscribed
angles on the same arc. Consequently, A,P,D are collinear, as are B,P,E
and C,P, F , which proves (a). For (d) use a property of the radical axis
of two circles (see Exercise 8 in Chap. 2). For (e), define a point H on the
arc between B and F such that the arc AP is equal to the arc BH . Join
AP , AH, PF and HF and obtain two equilateral triangles, which lead to
the desired conclusion.

10. (a) Since O and H lie symmetrically with respect to the circle centre N ,
and since A′O and HA are parallel, we have LO = HK (see Fig. 4.35).
From the third property of the nine-point circle, we know that K is the
midpoint between H and A. By definition of A′, L is the midpoint between
O and A′. Therefore A′OAH is a parallelogram with N as midpoint and
ANA′ a diagonal.

(b) By construction, A′COB is also a parallelogram, more precisely a
rhombus (Eucl. Def. 22) with side length R, the circumradius. From part
(a) we already know that OA and A′H have the same length. All men-
tioned circumcircles have the same radius R.

(c) The lines A′B, A′C and A′H are parallel to BO, CO and OA, respec-
tively; thus the result is the same as statement (c) of Theorem 4.3.

11. An elegant solution (see the right picture of Fig. 4.36) is obtained by
increasing the radius of this circle by d, which gives the dashed circle
tangent to the axis CO in O. Then

by Eucl. III.36

a2 = (R+ d)(R − e)
and by Eucl. II.14

the construction
a

+R

+R

C

D

E

12. Motivation: Since R should be on the bisector of BAW , and on that
of WBA, it must be the incentre of the triangle ABW and also lie on
the angle bisector of AWB, i.e. also of QWP (Eucl. IV.4). If we assume,

α
α

ψ ψ

β
β

η

A

B

W

R

P
Q

R

δ δ
ψ ψ

60◦ 60◦

60◦

ε

ε ζ

ζ

η

U V

W

Fig. 12.12. Roger Penrose’s backwards proof of Morley’s theorem
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proceeding backwards, that QPR is an equilateral triangle, QWP must
therefore be an isosceles triangle.
So we choose, first arbitrarily, three angles δ, ε and ζ and attach to PQR
three isosceles triangles with δ, ε and ζ as basis angles (see Fig. 12.12,
right). We then produce their sides which will eventually meet in three
points A, B and C (outside the figure).
Let ψ and η be as in Fig. 12.12. We have by Eucl. I.32 and Eucl. I.15,
respectively,

ψ = 90◦ − δ and η = ε+ ζ + 60◦ . (12.2)

By construction, R lies on the angle bisector AWB. Under one additional
condition, R will be the incentre of the triangle ABW . Applying Eucl. I.32
to the triangles ARB and AWB of the picture on the left of Fig. 12.12,
this condition becomes

η+α+β = 180◦ and 2ψ+ 2α+ 2β = 180◦ ; i.e. η−ψ = 90◦ . (12.3)

Inserting ψ and η from (12.2), this becomes

δ + ε+ ζ = 120◦ . (12.4)

With this condition, the two lower angles α and β at A and B are equal.
The perfect symmetry of this condition allows one to apply the same
argument around the triangle and finally all three angles α, β and γ at
all three points A, B and C will be equal.
We further have from (12.3)

α+ β = δ , and similarly β + γ = ε , γ + α = ζ (12.5)

which allows us, with α, β and γ given and satisfying (4.19), to determine
δ, ε and ζ in accordance with (12.4).

13. The triangles CLQ and CKP are similar. Hence (by Eucl. I.15 and
Eucl. I.5) the triangle QPO is isoceles, where, by Eucl. IV.5, O is the
centre of the circumcircle. Hence P and Q have the same power with re-
spect to this circle, and by Eucl. III.35 we have RQ ·QC = RP ·PC. This
proves the result by Thales and Eucl. I.41, because QC and PC are in the
same ratio as QL and PK , hence in the same ratio as the altitudes of the
triangles LQR and KPR.

14. With the notations of Fig. 12.13 we have from Lemma 5.1

(w + v)(m + n) = ac+ bd .

Inserting v = mn
w (from Eucl. III.35), c = am

w (from Eucl. III.21 and

Thales) and d = bn
w gives the desired result after multiplication by w.

12.4 Solutions for Chapter 4
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c d

ab w

m n

v

α

α

A B

C

D

F

Fig. 12.13. Another proof of Stewart’s theorem

12.5 Solutions for Chapter 5

1.

a

b

c

d

δ1 δ2

a

c

b

d

δ1
δ3

a

b

d

c

δ3 δ2

Permute the sides, apply three times Ptolemy, divide — and conquer.

2. Simplifying 6 cos π6 = 3
√

3 =
√

27 to
√

25 = 5, we obtain the numbers 6, 5,
3, 0, −3, −5, −6 and get la règle des douzièmes [the rule of twelfths]: hour
per hour the sea level falls by 1

12
, 2
12
, 3
12
, 3
12
, 2
12
, 1
12

of the total difference.

3. By Eucl. III.20, ICB is similar to BDA, hence IC = sinα tan β, IB =
sinα
cosβ

. So AI = cosα − sinα tanβ. Also IEA is similar to BDA, hence
AE = AI · cosβ which leads directly to the second of our formulas. The
first one is slightly trickier: by Thales we compute EI = AI · sinβ =

cosα sinβ−sinα sin2 β
cosβ

and obtain EB as EI+IB = sinα( 1
cosβ
− sin2 β

cosβ
)+

cosα sinβ, which gives the desired result by using Pythagoras, 1−sin2 β =
cos2 β.

4. The value sin 18◦ = 1
2Φ

is seen in Fig. 1.10 by drawing the altitude of the

isosceles triangle DCF ; from Fig. 1.22 (right) we see that cos 36◦ = Φ
2

. The
values for 30◦, 45◦ and 60◦ follow from the equilateral triangle (Fig. 1.22,
left) and the square. The remaining values are obtained by the addition
formulas (5.6) and (5.7) and Pythagoras’ theorem (5.2).

5. This follows at once by inserting (5.10) into (5.9). The only additional
idea you need for this exercise is to replace expressions like u2 − v2 by
(u+ v)(u − v).
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6. Insert the formula for sin α
2

of Exercise 5 and the analogous relations for

sin β
2 , sin γ

2 and use s = a+b+c
2 . All square roots disappear and the identity

drops out by straightforward algebraic simplifications.

7. The result is obtained by adding and subtracting the formulas (5.6) and
(5.7) to or from each other.

8. For the analytic proof, simply replace a and b on the left by 2R sinα and
2R sinβ respectively (the law of sines (5.12)) and simplify with the help
of the addition formulas (5.62). Then the result drops out.

a

b

β

α

α+β

α+β
2

α−β
2

A

B

C

D

E

F

Fig. 12.14. Viète’s proof of the law of tangents

Viète himself deduced this identity by geometric arguments (cf. Fig. 12.14):
Draw the circle with centre C and radius b, which intersects the line BC
at the points D and E with BE = a+ b and BD = a− b. Then the angles
marked α+ β, α+β

2 and α−β
2 are determined, in this order, by Eucl. I.32,

Eucl. III.20, and again Eucl. I.32. By Thales’ circle, DAE is a right angle.
We draw FD perpendicular to DA and have FD = AD · tan α−β

2
and

AE = AD · tan α+β
2

. But FD
AE

= a−b
a+b

by Thales, which gives the stated
result.

9. The tireless Euler arrived at these results several times in his work (in
particular, see Euler (1748), Caput XIV, §237, and Euler (1783)). One
can, of course, verify them by simply repeatedly applying the formulas
(5.6) and (5.62). Euler himself used complex analysis (his formula (8.9)
in Chap. 8 below). Experts in Numerical Analysis will recognise in (5.65)
the factorisation of the Chebyshev polynomials based on their roots.

10. Applying three times the first formula of (5.8) in the form

2 sinα =
sin 2α

cosα

we obtain for the quarter of the perimeter of the 16-gon

8 sin
π

16
=

4 sin
π

8

cos
π

16

=
2 sin

π

4

cos
π

16
cos

π

8

=
1

cos
π

16
cos

π

8
cos

π

4

,
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since sin π
2

= 1. We now iterate the second formula of (5.9) to obtain
successively

cos
π

4
=

√
1

2
, cos

π

8
=

√
1

2
+

1

2

√
1

2
, cos

π

16
=

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
,

and so on.

11. They are. The correct values are sin 38◦20′ = 0.620235491268260 and
sin 51◦40′ = 0.784415664919576.

12. We denote the unknown distance BC by x. We then have x = h
tan β and

a+ x = h
tanα

. This leads to

h =
a

cotα − cotβ
,

a famous formula in practical geodesy.

13. We know that the barycen-
tre G divides the median in
the ratio 2 : 1. If the Eu-
ler line, which contains HG,
is parallel to AB, then by
Thales the orthocentre H di-
vides the altitude in the same
ratio. Since the angle BAD
is 90◦ − β, this means that
tanα = 3 · tan(90◦ − β). We
conclude with tan(90◦− β) =
1/ tanβ.

βα
90◦−β

A B

C

D

H
G

14. The similarity factor between the similar triangles AEF and ABC is
AF
AC

= cosα; analogously for the other triangles.

15. Apply the law of sines (formula (5.12)) to the triangle ABC of Fig. 4.27
to obtain AB = 2r sin 3γ, and then again the law of sines to the triangle
ABR, by using the fact that by Eucl. I.32 the angle ARB = 180◦−α−β =
120◦ + γ and using Euler’s formula (5.64) for sin 3γ. This gives

AR = 8r sin(60◦ + γ) sinβ sin γ, and similarly

AQ = 8r sin(60◦ + β) sin β sin γ .

Now the triangle ARQ is determined by Eucl. I.4 (SAS), and one could
compute QR by the law of cosines. But, more elegantly, we see that (60◦+
γ) + (60◦ + β) + α = 180◦. Hence, since the angle QAR = α, the only
possibility to verify all three equations of the law of sines for this triangle
is to have the angles AQR = 60◦ +γ, ARQ = 60◦ +β, and the side length
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QR = 8r sinα sinβ sin γ

(a formula first given in Taylor and Marr 1913). The symmetry of this
formula with respect to α, β and γ shows that the triangle PQR is equi-
lateral.

16. Imagine the sides of the triangle in Fig. 5.8 (right) to be slightly rounded.

Law of cosines. We apply (5.23) to the two right-angled triangles of the
picture:

cos b = cosu · cosh , cos c = cosh · cos(a− u) =
cos b

cosu
· cos(a− u) .

We then use the addition theorem (5.6) for cos(a − u) and (5.26) in the
form tanu = cos γ · tan b. This at once gives the equation (5.35).

Law of sines. We apply (5.25) to the two right-angled triangles of Fig. 5.8
and have sin γ = sinh

sin b and sin β = sin h
sin c . Dividing one equation by the

other gives the sine theorem.

17. (a) We project the triangle horizontally onto the circumscribed cylinder,
which replaces the latitudes by the sine values, and apply Theorem 5.6.
This produces a rectangle of height 1− sinϕ and width γ, with area

A1 = γ(1− sinϕ) .

(b) We compute the angle α at A of the spherical triangle by dividing it
into two right-angled triangles with hypotenuse 90◦ − ϕ and angle γ

2
at

N . Then the angle α at A is determined by (5.29), which gives

tanα =
1

tan γ
2 · cos(90◦ − ϕ)

or tan(90◦ − α) = tan
γ

2
· sinϕ .

With Girard’s formula (5.46) we get

A2 = γ + 2α− π .

(c) We set β = 90◦ − α and obtain for the difference

A1 −A2 = 2β − γ sinϕ where β = arctan
(
tan γ

2 · sinϕ
)
. (12.6)

For small values of γ we are allowed to use series expansions (e.g. Hairer
and Wanner, 1997, pp. 47 and 51) to obtain

A1 −A2 ≈ γ3

12
(sinϕ− sin3 ϕ) .

18. As in the preceding exercise, we use Theorem 5.6 and replace the latitudes
by the sine values. This gives a region which is the sum of two rectangles,
with area ab+cd where a = (12 50

60
−11 50

60
)· π

12
= π

12
, c = (12 35

60
−1150

60
)· π

12
=

π
16 , b = sin 22◦ − sin 11◦, d = sin 24◦30′ − sin 22◦. The result is 0.1782π
steradians or approximately 0.45% of the total area of the sky.
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19. The required angle β is given by (12.6), where γ is the difference in lon-
gitude and ϕ is the latitude. For our example, we get β = 55◦58′32′′. So
don’t be astonished to see a lot of ice.

20. We denote Trondheim by A, Tromsø by B, the unknown position of the
ship by C and the North Pole by N . We then consider the spherical
triangles ABN , ABC and CAN . We use standard notation for the sides
and angles of ABC. The sides and angles of ABN , in contrast, are denoted
by a′, b′, c and α′, β′, ν′. From the data we know the angles a′ = 90◦ −
69◦39′, b′ = 90◦ − 63◦26′, ν′ = 18◦59′ − 10◦24′ = 8◦35′ and the angles
NBC = ϕ = 107◦17′ and NAC = ψ = 74◦13′. To find the ship, we have
to compute d and ε. The algorithm for their computation is displayed in
Fig. 12.15. The numerical values obtained by this sequence of formulas are

ψ α′

α

ϕ

β
β′

ν ′
ε

c

a′

b′

b

d

A

B

C

N

compute by for triangle

c cos law (5.35) ABN

α′, β′ sin law (5.36) ABN

α, β add ψ, subtr. ϕ

b cot law (5.40) ABC

d cos law (5.35) ACN

ε sin law (5.36) ACN

Fig. 12.15. Solution of the Norway ship rescue problem (caution: the drawing does
not correspond to the actual data)

c = 0.12354876086763 α′ = 0.434723616997564 β′ = 2.5692006160581
α = 1.7300488101860 β = 0.69675321687682 b = 0.11993261707074
d = 0.44515373520827 ε = 0.27067640710951

The only “dangerous bend” was the value for β′, which is greater than
90◦, and for which a careless use of arcsin would have given a wrong
value. If we transform the last results to degrees, subtract the first from
90◦, subtract the second from the longitude of Trondheim, we find that
the ship’s position is

64◦29′40′′27′′′4′′′′N , 5◦6′31′′1′′′0′′′′W .

Since the original data are precise only to a minute, all these sexagesimal
fractions are totally useless, but they help you to check your (and our)
computer.
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21. As in Example 3 on page 137, we compute the angles of the sundial by

cot z =
cosσ cotα− sinσ sinϕ

cosϕ
,

where ϕ denotes the latitude, σ the angle by which the wall deviates from
the east-west direction, and α the reduced time (α = 0 at noon). With
the values ϕ = 47◦ 17′ and σ = −79◦, we obtain the following result:

XII I II III IV V

0◦0′ 25◦20′ 32◦49′ 36◦39′ 39◦13′ 41◦18′

22. Following the hints, the computations for sin α
2

and cos α
2

are really

straightforward, the only thing to use are identities like b−c+a
2

= s − c
or a−b+c

2
= s− b. The result for tan α

2
is obtained by dividing the formula

for sin by that for cos. The second set of formulas is obtained by inserting
(5.41) instead of (5.35).

23. The first statement is seen in the same way as in the proof of Eucl. IV.4
on page 83. Let F be the intersection of the side a with the perpendicular
great circle through I. To prove the second statement, we apply (5.27) to
the right-angled triangle formed by the sides AF (with length s− a), FI
(with length ρ) and IA as hypotenuse. This gives

tan ρ = tan
α

2
· sin(s− a) ,

and the stated result follows after inserting (5.68) for tan α
2

.

24. The first statement is seen in the same way as in the proof of Eucl. IV.5.
For the computation of r we observe that the angles which the great
circles AO, BO and CO (which are all of length r) make with the sides
a, b and c of the triangle are given by σ − α, σ − β and σ − γ (similar to
the calculations in the remark on page 83). We apply (5.26) to the right-
angled triangle formed by the first half of the side BC, the perpendicular
side bisector and the side BO as hypotenuse:

cos(σ − α) =
tan a

2

tan r
or cot r =

cos(σ − α)

tan a
2

.

This gives the stated result after inserting (5.69) for tan a
2 .

25. This follows at once by applying (5.27) to the right-angled triangles ACF
and BCF , which gives

tan p = sinh tan δ , tan q = sinh tan ε .

Since δ + ε = π
2 , the product tan δ tan ε is 1.
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26. Since the movement of rotation is uniform, we have the ratios

QP

2aπ
=
∆t

T
⇒ QU ≈ 2aπ∆t

T
.

As in Newton’s proof, we use Eucl. II.14:

RQ ≈ UP ≈ QU2

2a
.

Inserting these last two relations into (5.71) leads to

f =
2aπ2

T 2
=

Const

a2

(the last identity by Kepler 3). Unfortunately for Newton, this simple
access to the inverse-square law had also been found independently by his
archenemy Robert Hooke. Edmund Halley, who paid for the publication
of the Principia, urged him to include a kind acknowledgment, without
success. In Newton’s manuscript (1684) this result on the “circumferentiis
circulorum”, with precisely the same proof, is called “Theorem 2”.

12.6 Solutions for Chapter 6

1. By solving the second equation of (6.2) we obtain y = 1+
√

1 + c2/a2, i.e.

ay = a+
√
a2 + c2, which, by construction, is the length of BG in Fig. 6.3.

If we multiply the first equation of (6.2) by a, we have x+ a2

x = ay = BG.

By Thales, a2

x
= AE. If we project the point E vertically down to a

point H on the line BG, we obtain a right-angled triangle EHG which is
similar to BDF . Because EH = BD we have HG = DF = x. Hence this
first equation corresponds to BH + HG = BG and the circle in Pappus’
construction leads to its solution.

Pappus’ original solution is based on his Prop. VII.71: If in Fig. 12.16 (a)
AB∆Γ is a square and BEZ a right angle, then

∆Z2 = Γ∆2 + HE2 . (12.7)

A

B

Γ

∆

E

Θ Z

H

(a)

a
u x

c

ua

a y
α

α

(b)

Fig. 12.16. Pappus’ Proposition VII.71 (a) and it’s proof (b)
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Pappus’ proof of (12.7) fills, together with Ver Eecke’s explanations in
footnotes, two pages. After having seen by orthogonal angles that the
triangles B∆H and EΘZ are identical, you get the result in one line by
computing twice the distance HZ2 by Pythagoras as (see Fig. 12.16 (b))

c2 + u2 = x2 + y2 ⇒ c2 + a2 = y2 (because u2 = a2 + x2).

2. We set AΛ = 1, MA = w, ΛΓ = u, ΓK = v so that by Thales u = vw
and by construction A∆ = ΓZ = ΘK = u

2
. Since HZ is parallel to ΓΘ,

we have ZΘ : 2 = u
2 : v which gives ZΘ = u

v = w. We finally apply
Eucl. II.12 to the triangle KΓZ which gives

v + v2 = (w + u
2 )2 − (u2 )2 = w2 + wu = w2(1 + v) ⇒ v = w2, u = w3 .

3. Folding the Geisha fan as before, we obtain the relations

x = 1 +
y

w
, y = w +

z

x
, z = x+

x

y
, z = y +

1

z
.

Since we are mainly interested in the longest diagonal, we turn this into
an equation for z by solving y = z − 1

z , then x = yz
y+1 , and w = y − z

x .

Inserting everything into the first equation then leads to an equation in z
which, after simplification, becomes

z5 − 3z4 − 3z3 + 4z2 + z − 1 = 0 ,

an equation of degree 5 with no hope for a closed-form solution. We can,
however, obtain numerical solutions to any desired precision:

z = 3.513337091666135188782171596297981842 . . .

y = 3.228707415119564907894586259065242504 . . .

x = 2.682507065662362337723623297838735435 . . .

w = 1.918985947228994779780736114132655398 . . .

4. This is precisely the identity (6.21) of the proof of Fermat’s result, which
here relates Ramanujan’s formula to Pythagoras’ theorem. The next entry
in Ramanujan’s notebook is the formula

(
a+ b−

√
a2 + b2

)2
= 2
(√

a2 + b2 − a
)(√

a2 + b2 − b
)

which is an algebraic counterpart to the above geometric result.

5. The right-angled triangles in Fig. 6.17 yield the relations sin α
2

= ρ, sin β
2

=
2ρ, sin γ

2 = 3ρ. This, inserted into (5.61), leads to the cubic equation
12ρ3+14ρ2−1 = 0. For x = 1

ρ we obtain x3−14x−12 = 0. This polynomial
is negative for x = 0 and for x → −∞, and positive for x = −1 and for
x → ∞. Therefore, it has one positive and two negative roots. Einstein,
computing with pen, paper and a four-digit table of logarithms, obtained
with formula (6.13) the result ρ = 0.243 for the positive root.
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6. Fermat presented these porisms
with much high-flown Latin and
Greek as a sort of substitute for
lost porisms of Euclid, but with no
hint of a proof. We apply an idea
similar to that in Euler’s proof of
(6.20), i.e. project the four points
onto the line connecting N and M .

c c

s

a b

s s

A B

C

R S

P N M Q

We choose the radius equal to 1. The assertion then follows from

PN ·MQ

PM ·NQ =
(a + 1− c)(b+ 1− c)
(a + 1 + c)(b+ 1 + c)

=
(1− c)(2 + a+ b)

(1 + c)(2 + a+ b)
=

(1− c)
(1 + c)

,

where the fraction has been simplified using Pythagoras, s2 + c2 = 1, and
Thales, a/s = s/b, i.e. ab = s2.

7. The simplest proof is a Stone Age one (see Fig. 6.22, right): The first
equation is, for the values of this figure and by Thales, equivalent to
1
6 + 2

6 + 3
6 = 1, which is evidently true. We also see from the bold segments

in this figure that the sum of the numerators, here 1 + 2 + 3 = 6, is always
equal to the number of subdivisions.
The proof via areas is just as easy, using the picture for the solution of
Exercise 7 of Chap. 4, page 359: the triangles BPC and BAC have the
same base, and their altitudes are in the ratio PD

AD
. Hence the ratio of

their areas, i.e. A1+A2

A1+A2+B1+B2+C1+C2
, is equal to PD

AD . If we add up the

corresponding ratios for all three sides, we clearly obtain 1.
For the identities of the second and third lines we go over to the column
on the right: if we add the first two, we obtain (“orietur ista aequatio
identica”) 1 + 1 + 1 = 3 and see that they are equivalent; if we multiply
the first equation by the common denominator and simplify, we obtain
the third relation.

Remark. It is interesting to see Euler’s original approach (1815) to these
discoveries by obscure and complicated trigonometric calculations (“quod
initio calculos satis abstrusos et molestos ...”), which he afterwards ob-
tained so simply (“ad solutionem simplicissimam aeque ac elegantissimam
...”). For explanations in English see Sandifer (2006).

8. As good pupils of Descartes, we name the known distances: AC = a,
BD = b, AB = ℓ, and the unknown distance: AF = x, so that FB =
ℓ − x. We must have CF = FD, or CF 2 = FD2, thus by Pythagoras

x2 + a2 = (ℓ− x)2 + b2, which is, after simplification, x = ℓ2+b2−a2
2ℓ

= 32.
Leonardo himself applied Thales’ theorem (see Fig. 12.17, left): The point
F must lie on the perpendicular bisector of CD. We have two similar

triangles and obtain δ =
(b−a)(a+b)

2ℓ = b2−a2
2ℓ = 7, the same result.

Var. 1. Here we have to add another distance to CF respectively FD,
therefore the square roots are more difficult to eliminate. We look for a
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a

ℓ
2

δ

b−a

a+b
2

A B

C

D

F

2c1

p1 p2

2c2

A B

C

D

F

Fig. 12.17. Solution of Leonardo Pisano’s problem using Thales (left); of the first
variant (right)

more elegant solution. The theorems of Apollonius in Chap. 3 will help.
We consider an ellipse with foci A and C, at distance 2c1 = a, with semi-
major axis a1, semi-minor axis b1 and latus rectum p1 (see Fig. 12.17,
right). Then for F on this ellipse we have CF + FA = 2a1 and AF = p1

(see Apoll. III.52 and Fig. 3.4, left). We further have p1 =
b2
1

a1
(equation

(3.7)) and b21 = a21 − c21 (either Pythagoras or solution of Exercise 13
of Chap. 3). We place an analogous ellipse with foci B and D and with
corresponding lengths a2, b2, c2 and p2. The equations to satisfy are thus

a1 = a2 =: u , p1 + p2 = ℓ . (12.8)

We insert the formulas we have into this and obtain

u2 − c21
u

+
u2 − c22
u

= ℓ ⇒ u =
ℓ

4
+

√
ℓ2

16
+
c21 + c22

2
.

Var. 2. For the perimeters to be equal, we must have

a1 + c1 = a2 + c2 =: u ⇒ a1 = u− c1, a2 = u− c2 (12.9)

and a calculation as above leads to the condition

2u = ℓ+ c1
u

u− c1
+ c2

u

u− c2
.

When multiplied out, this yields an equation of degree 3 for u, whose
largest root gives positive values for a1 and a2. We find

u = 51.83621385758 , p1 = 30.72809425360 , p2 = 19.27190574640 .

Var. 3. At last something easier. The areas are equal if ax = b(ℓ− x), i.e.
if x = bℓ

a+b
.

9. Flip the Pythagorean triangle with sides 5, 12 and 13 over to the right
and obtain the triangle with sides 9−5 = 4, 15 and 13 and area 4 ·6 = 24.
There are only a finite number of oblique triangles with integer sides and
smaller area, none with integer area. In size, the next oblique triangles
with integer sides and area have sides 9, 10 and 17, and 3, 25 and 26, both
of area 36.
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10. AK2 = AK ·A′K = DK ·EK by Eucl. III.35, hence A2 = (2B1C1 ·DK) ·
(2B1C1 ·EK). We now use for a moment the notations of Fig. 4.20 (right)
and formula (4.13) and obtain for the product 2B1C1·DK = 2a·(r1+d1) =
2ar1 + a2 + r21 − r22 = (r1 + a)2 − r22 = DF ·DL, i.e. the power of D with
respect to the right circle. The point E lies on the same circle, so we have
similarly 2B1C1 · EK = EF · EL and both factors of the above formula
give together A2 = DF ·DL ·EF ·EL. Since DC1 = C1E = c

2
, C1B1 = a

2
,

and LB1 = B1F = b
2
, each of these four factors is one of the factors in

(6.22).

11. One way of proving the first assertion is by trigonometry: A = bc 12 sinα =
c sin α

2
· b cos α

2
= b sin α

2
· c cos α

2
. Thébault divides the triangle into two

parts by drawing the horizontal line through B; the first part has area
AB′′ ·AB′, the second has area BB′ ·B′C′. The square of the area is then
A2 = CC′′ · BB′ · BB′′ · CC′, which we cleverly group as (BB′′ · CC′′) ·
(BB′·CC′). The first pair of factors can be considered as the product of the
distances of the foci of an ellipse with foci B and C, passing through A, to
the tangent at this point A. The second pair of factors is the same quantity
for the corresponding hyperbola. The reason for this is that the tangents
at A are known to be the angle bisectors (see Fig. 3.4 and Fig. 3.11).
By (3.18) — and a similar formula for the hyperbola — these products are
equal to the squares of the semi-minor axes of these two conics. Since we
know for both conics the values of ℓ and ℓ′ (here b and c respectively) as
well as the distance of the foci (here a), we can find these semi-minor axes
from (3.6) and (3.14) (with another meaning of the letters a, b, c). The
result for the above product will then be 1

16
((b+ c)2 − a2)(a2 − (b− c)2).

As in the last line of (6.25), one application of Eucl. II.5 will lead to the
desired result.

12. Imagine that the lines in Fig. 4.6 on page 83 are slightly rounded and think
of it as if it were a drawing of spherical triangles. The points which have the
same distance from two great circles again lie on a great circle, the angle
bisector. Indeed, these two great circles are the intersection of the sphere
with two planes through the origin, and the angle-bisecting plane also
passes through the origin. The same argument as in the proof of Eucl. IV.4
applies and the segments ID, IE and IF enclose right angles with the
respective sides. We thus obtain two right-angled spherical triangles AIF
and AEI which have the common side AI, and EI = FI of the same
length. Thus by (5.23) the third sides AF = AE also have the same
length. Applying the same argument to the other triangles, we obtain
AF = AE = s − a as before. Now, as in Remark (ii) on page 173, we
consider the right-angled triangle AFI and obtain from (5.27) tan ρ =
tan α

2
· sin(s−α). This gives the desired result by inserting the expression

for tan α
2 into (5.68).
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13. Denote the length of the diagonal AC in Fig. 6.18 by g and compute g2

twice by the law of cosines (5.10), applied once to the triangle ACD, and
once to ACB. Subtract one formula from the other to obtain

2(ad+ bc) cosα = a2 + d2 − b2 − c2 . (12.10)

Express the area of the quadrilateral by that of the two triangles as

Aq = (ad + bc)
sinα

2
. (12.11)

One thus obtains from (12.11) and (12.10):

16A2
q = 4(ad+ bc)2(1− cos2 α) = 4(ad+ bc)2 − (a2 + d2 − b2 − c2)2 .

This can be compared to the third formula of (6.25). Proceeding exactly as
in this formula, applying Eucl. II.5, then Eucl. II.4, and finally Eucl. II.5,
leads to the desired result. The last step is the same as the last step in
the above proof of Theorem 6.4.

14. Thales’ theorem requires that

2u1

1+u2

1

− b1
1−u2

1

1+u2

1

− a1
−

2u2

1+u2

2

− b1
1−u2

2

1+u2

2

− a1
= 0 .

A
B1

B2

After simplification, and factoring by (u2 − u1), this leads to

−(1 + a1)u1u2 + b1u2 + b1u1 + a1 − 1 = 0 .

From this u2 can be computed, and this gives formula (6.39).

A1

A2

A3

A4

B1

B2

B3

B4

A1

A2

A3

A4

B1
B2

B3

B4

Fig. 12.18. Two solutions for the Cramer–Castillon problem

15. By multiplying the four matrices corresponding to (6.39), we obtain for
(6.35)

u1 =
8.576u1 − 5.248

−8.24u1 + 2.56
, or 8.24u21 + 6.016u1 − 5.248 = 0 ,

with solutions u1 = −1.2426325 and u1 = 0.51253545 (see Fig. 12.18).
The second solution does not have the shape one might expect.
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(b)

Fig. 12.19. Solution of the Armenian-Australian problem

16. We set AM = 1 and BM = MC = a, a given constant, so that by Thales
MO = a2 (see Fig. 12.19 (a)). Suppose first that EQ = QF . Then by
Thales EG = HF ; as good pupils of Descartes, we denote this length
by c. Again by Thales GQ = QH and BG = CH = ac and hence, by
Descartes’ dictionary, GH = 2a, GQ = a and MQ = ac. Therefore, QGE
and OMQ are similar triangles and the angle GEQ is equal to the angle
MQO. This shows that OQ is perpendicular to EQ. If, conversely, we
suppose that these two lines are perpendicular, the steps of the above
proof, taken in reverse order, lead to EQ = QF .
The following purely geometric argument is, however, much more elegant
(see Fig. 12.19 (b)): we draw the circle with centre O passing through E.
By orthogonality of OB to BA, EB = BJ . Because O is on the angle
bisector, JF is parallel to BC. Thus EQ = QF by Thales.

17. The answer is 120◦. This is easily seen in the case where BAC is isosceles.
In this case B′A′C′ is also isosceles and by hypothesis half of a square.
Further, C,B′, C′, B lie on a circle and CB′ = B′C′ = C′B by Eucl. III.21.
We conclude that the angles B′CA′ and A′BC ′ are 30◦.

The general case requires algebraic calculations. Let a, b, c be the side
lengths of our triangle. By Eucl. VI.3, the point B′ divides the side AC
in the ratio a : c. Therefore we have B′A = bc

a+c
and similar expressions

for the five other segments. We next apply the law of cosines (5.10) to the
triangles A′BC′ and CBA and eliminate cosβ. This gives for the square
of the side C′A′ the expression

C′A′2 =
c2a2

(a+ b)2
+

a2c2

(b+ c)2
+

ac

(a+ b)(b+ c)
(b2 − a2 − c2) .

By cyclic permutation we obtain A′B′2 and B′C′2. By hypothesis we know
that B′C′2−A′B′2−C′A′2 = 0. After inserting the above values, we obtain
a rational expression in a, b, c which, when simplified, contains the non-
trivial factor a2 − b2 − c2 − bc = 0. But this means, again by the law of
cosines, that cosα = − 1

2 .
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18. Thales’ theorem tells us that C1M/C2M = r1/r2. Another appeal to
Thales then shows that the distances of C1 and C2 from the line KM
must be in the same ratio. But if two pairs of circles satisfy this property,
then so does the third one. Steiner also obtained similar statements for
the inner similarity points (see Fig. 6.25, right).

19. One is required to find an s for which s = cos s. For such an equation
we need numerical methods. If we try, for example, s = 40◦, we find
40π
180
−cos 40◦ < 0, while 45π

180
−cos 45◦ > 0. The solution, which by geometric

intuition we know is unique, must therefore lie in the interval [40◦, 45◦].
Much in the spirit of Eucl. X.1, we next test the midpoint 42.5◦ and find
the difference to be greater than 0. Thus, the solution is contained in
[40◦, 42.5◦]. We continue this “bisection algorithm” and after every ten
iterations obtain three additional decimal digits. After some 50 iterations,
we have

s = 0.7390851332151606 = 42◦20′47′′15′′′6′′′′29′′′′′ .

Euler himself, who did all calculations by hand, used a more sophisti-
cated method. Firstly, the use of logarithms turned the conversion fac-
tor π

180
into an addition. Secondly, the difference of the logarithms for

s = 40◦ was −0.0403166, while this difference for s = 45◦ was 0.0456049.
Hence the use of Thales’ theorem allows one to find as a better value
40◦+5◦ 0.0403166

0.0403166+0.0456049
. Repeating this “regula falsi” twice, first for the

interval [42◦, 43◦], then for [42◦20′, 42◦21′], allowed him to obtain three
correct sexagesimal digits 42◦20′47′′15′′′ (see Euler’s work (1748), §531 for
details).

20. If we take AC as the base of the triangle, its altitude is sin 2s and its
area 1

2
sin 2s. The area of the sector CBEA is s. Thus we have to solve

s = sin 2s. Using any of the above algorithms, we get the solution

s = 0.9477471335169904 = 54◦18′6′′52′′′43′′′′55′′′′′ .

Euler gave the value to this precision with a slight error in the last sexa-
gesimal digit.

21. The piece of cake DAE has half the area of the segment above the line
AD of Fig. 6.26 (IV) where s is replaced by 2s. Therefore the solution is
half the arc length of Exercise 22, i.e.

s = 1.154940730005029 = 66◦10′23′′37′′′33′′′′15′′′′′ .

22. As in Exercise 20 the triangle ACD has area 1
2

sin s. The moon ADs hence
has area s

2
− 1

2
sin s, which is required to be π

4
. We obtain s− π

2
= sin s =

cos(s − π
2 ) which is the equation of Exercise 19, to whose answer we add

90◦:
s = 2.309881460010057 = 132◦20′47′′15′′′6′′′′29′′′′′ .
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23. The moon BAs with area s
2
− 1

2
sin s (see Exercise 22) must now be π

3
.

This time we set u = s − 120◦ and obtain the equation u = sin(60◦ − u)
with solution u = 29◦16′26′′59′′′43′′′′44′′′′′ and

s = 2.605325674600903 = 149◦16′26′′59′′′43′′′′44′′′′′ .

24. Here one is required to solve 180◦− s = 1 + coss+ sin s, with the solution

s = 0.7295815096762676 = 41◦48′6′′59′′′19′′′′27′′′′′ .

Since the above equation with its sums is not practical for logarithmic
calculations, Euler transformed it, with the help of (5.9), (5.8) and (5.7)
to the equivalent form 180◦ − s = 2

√
2 cos s2 cos(45◦ − s

2 ).

25. Since the area of the triangle CAE is 1
2

tan s and the area of the sector s
2
,

we have to solve 2s = tan s, with the solution

s = 1.165561185207211 = 66◦46′54′′15′′′7′′′′20′′′′′ .

26. Let G be the midpoint of the segment AE. Then triangles CGA and FCA
are similar (because of the two right angles). Then by Thales FA

1 = 1
CG =

1
sin s

2

. Thus our problem requires the solution of s · sin s
2 = 1, with the

result
s = 1.481681910190981 = 84◦53′38′′49′′′55′′′′39′′′′′ .

12.7 Solutions for Chapter 7

1. By (7.2c), the altitude through A is given by y = b
c(x+a). Its intersection

with the altitude x = 0 is yH = ab
c , the same symmetric result as in

Exercise 4 of Chap. 4.

For the perpendicular bisector of BC we have the equation y = c
2 +

b
c (x − b

c). Its intersection with the perpendicular bisector of AB gives

xO = b−a
2 , yO = (c − ab

c ) 1
2 . The medians are obtained by (7.2 (d)) and

lead to xG = b−a
3 , yG = c

3 . The property G = 2
3O+ 1

3H can now be seen.

2. If the centre of the unknown circle is (x, y) and its radius is r, then the
tangency condition with the three given circles is

(x− xi)2 + (y − yi)2 = (r − ri)2 , i = 1, 2, 3.

If we take these equations by pairs, and subtract one equation from the
other, we obtain two linear relations of the type

a11x+ a12y = b11r + b12

a21x+ a22y = b21r + b22
solve ⇒

x = c11r + c12

y = c21r + c22 .
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This, inserted into one of the above equations, leads to a quadratic equa-
tion for r. Other sign combinations in the above formulas as (r± ri)2 lead
to other solutions, with some circles touching from inside and others from
outside (see Fig. 7.40, right).

3. If (xi, yi) are the coordinates of the vertices, then the left-hand expression
is

(x1 − x2)2 + (x2 − x3)2 + (x3 − x4)2 + (x4 − x1)2 ,

plus analogous terms for the y-values. The right-hand side is, by 4 · 122 = 1,

(x1 − x3)2 + (x2 − x4)2 + ((x1 + x3) − (x2 + x4))2 ,

etc. Multiplying out, the two expressions are seen to be identical. The
verification of this result, which generalises the parallelogram law (4.6) to
arbitrary quadrilaterals, may seem a trivial task, but it’s another story
to actually discover such a nice relation (“Why on earth didn’t I think of
that?”).

Remark. J. Steiner gave in Steiner (1827), “64. Lehrsatz”, without proof
the following generalisation to spherical quadrilaterals :

cos a+ cos b+ cos c+ cos d = 2 · cos
ℓ1
2
· cos

ℓ2
2
· cos e .

4. (a) By Pythagoras we have u2 + v2 = (a + b)2 and by Thales u
a+b = x

a

and v
a+b = y

b . This leads to x2

a2 + y2

b2 = 1. For (b) use x
a = cosα, yb = sinα

and (5.2). The computations for (c) are similar to those for (a), with a+ b
replaced by a − b.

5. We apply Eucl. III.21: The points from
which one sees the emperor under the same
angle lie on circles passing through A and
B (see the picture). The smaller the radius,
the larger the angle α. Hence the largest α
is obtained with the smallest circle which
touches the eye-level line. We then have, by
Eucl. III.36, d2 = s(s+h) and use Eucl. II.14
for a construction. The angle bisector is DF
by Eucl. III.21 (arc AF = arc FB) and has
a slope of 45◦ (FC = CD).

s

h

r

d

r

α45◦

A

B

C

D

F

E

6. Here is a splendid opportunity for those who want to be cleverer than
17-year-old Einstein: let the major axis of the ellipse be 2a, choose a
point P with abscissa ax and ordinate y =

√
1− x2 (see Fig. 7.42 (b)).

Since the slope of the tangent at P is − x
ay

(a-times smaller than the

slope of the corresponding circle), the normal at P cuts the x-axis at the
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point (a− 1
a
)x = λx. By Pythagoras we can compute r and the condition

r =
√

1− λ2x2 leads to a =
√

2.

Remark. This result was stated without proof as “12. Lehrsatz” in Steiner
(1828b).

7. We denote by xA, yA, xB , yB, . . . the coordinates of the bottle centres
A,B, . . . The triangles FDA, ADB, BEC and CEH are isosceles with
either vertical or horizontal base (see Fig. 7.43, right). Consequently

yD =
yA + yF

2
, yE =

yC + yH
2

, xD =
xA + xB

2
, xE =

xB + xC
2

.

The quadrilateral BEGD is a parallelogram (more precisely, a rhombus),
hence xG = xE + xD − xB (and similarly for the y’s), which gives, after
inserting the above formulas and xA = xF , xC = xH , yA = yB = yC ,

xG =
xF + xH

2
, yG =

yF + yH
2

.

We see that F,G,H are collinear and equidistant. The positions of the
following centres I, J,K, L,M are thus, by symmetry, just the centres
E,D,C,B,A reflected through G. Since the first three bottles are on the
same level, so are the last three. If w increases beyond (2 +

√
3)d and

bottle B touches C, then bottle F will touch A, the symmetry will be lost
and the result is no longer true.

8. Here and in the following four exercises we look for (x, y) such that

x2 + y2 = 1 hence x dx = −y dy , (12.12)

which allows one to replace either dx or dy by the other. Here we have to
solve (x+1)y = max which by inserting x+dx and y+dy and subtracting,

leads to (x+ 1) dy+ y dx = 0 and, using (12.12), x+ 1− y2

x = 0 and, with
the first equation of (12.12), 2x2 + x− 1 = 0 with solution x = 1

2
.

9. Here we have x + 2y = max which gives as before dx + 2dy = 0 and
1− 2x

y
= 0, i.e. y = 2x or x = 1√

5
, y = 2√

5
.

10. Adding the areas of a square and four rectangles, we obtain 4x2 + 4 ·
2x(y−x) = max or 2xy−x2 = max. If we add to this x2 + y2 = 1 we find
precisely the same maximum problem as in (7.19) with the same solution.

11. By dividing the volume formula by 2π, we obtain the problem xy2 = max,
which leads to the condition y2 dx+2yx dy = 0. Together with (12.12) this

gives y2 − 2x2 = 0. Adding and subtracting y2 + x2 = 1 we find x =
√
3
3 ,

y =
√
6
3

.

12. By dividing the volume formula by π
3

, we obtain the problem (x+ 1)y2 =
max, and, as above, 3x2 + 2x− 1 = 0 with the solution x = 1

3 .
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13. The surface area of the cone is, following Archimedes (Prop. XV of On the
sphere and cylinder, Ver Eecke (1921), vol. I, p. 35) A = y2π+ 2yπ · s

2
(the

factor 1
2 comes from Eucl. I.41), which leads to the problem y2 + ys =

max. With our choice of the unknown, we have by Thales y = vs and
by Pythagoras s2 = 1 − v2, where we have chosen the diameter of the
sphere to be 1. This gives the problem (1− v2)(v2 + v) = max leading to
4v3 + 3v2− 2v− 1 = 0. Fermat, who had carefully studied Viète, saw that
v = −1 is a solution, so that the equation can be divided by v + 1 and

gives 4v2 − v − 1 = 0 with solution v = 1+
√
17

8 .

14. Theorem 4.3 and Fig. 4.9 (b) on page 86 immediately tell us that the orthic
triangle solves this problem. But the solution might not be unique and we
might not have the idea of looking at this theorem. Here is another idea:

Fejér’s solution. When H.A. Schwarz lectured on geometry at the Uni-
versity of Berlin towards 1900 and had just laboriously proved the above
result, a young Hungarian student came up and said: “Sir, I have an easier
solution.” The student was Lipót Fejér, who was going to become famous
for his ingeniously “simple” proofs of difficult results in analysis.3 Fejér’s
solution is as follows (see Fig. 7.45 (b)): Choose the point F arbitrarily on
AB. Then reflect F in AC to obtain F ′ and in BC to obtain F ′′. The
perimeter of DEF is equal to the length of the line F ′EDF ′′. This is as
short as possible if F ′, E,D, F ′′ are collinear. If this is the case, the trian-
gle F ′F ′′C is isosceles with angle at C equal to 2δ + 2ε = 2(δ + ε) = 2γ.
This angle is independent of the choice of F . So all these triangles are
similar and the distance F ′F ′′ is minimal if the distance F ′C = FC is
minimal, i.e. if F is the foot of the altitude from C. By symmetry, the
same property holds for E and D. The uniqueness of the solution also
becomes obvious, and together with the minimal sum property (7.21), we
have another proof of Theorem 4.3 (b).

15. (Solution by H. Egli, Zürich) If the point P moves along CB to Q, the
area of AHPG increases by that of the strip + and decreases by the area
of the strip − (see Fig. 7.46 (b)). We have maximality if the areas of both
strips are the same. By neglecting tiny triangles on both ends, − and +
become parallelograms with common base PQ. Their respective altitudes
are the distances of G and H from the line CB. Thus the line GH must
be parallel to CB, i.e. the quadrilaterals AHPG and ABRC are similar
with similarity centre A. Because of the right angles at B and C, AR is
a diameter of the circumcircle of ABC (Thales circle). The point P lies
thus at the intersection of AO and BC.

16. We see in Fig. 5.22 that a = b if B is at the north pole, or A is at the
south pole. It seems obvious (if not, use differentiation) that the maximal
deviation |a− b|max, which we denote by δ, occurs if the “equator” bisects

3Ask one of your Hungarian friends to translate Fejér’s motto “A tegnap bo-
nyolult problémáját a holnap trivialitásává tenni.”
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the circular segment AB. The point B is then lower by δ/2 than the
position π/4, where it should be without error. The “meridian” through
B, the equator and half of the segment AB then form a right spherical
triangle with legs π

4
− δ

2
, γ

2
, and hypotenuse π

4
. The cosine theorem (5.23)

on page 128 then gives

cos2(
π

4
− δ

2
) · cos2

γ

2
=

1

2
or

1 + cos(π2 − δ)
2

· cos2
γ

2
=

1

2
,

where (5.9) has been used. This leads, using cos(π2 − δ) = sin δ, to

sin δ =
1

cos2 γ
2

− 1 =
sin2 γ

2

cos2 γ
2

= tan2 γ

2
,

which is the required relation between γ and δ.

17. (a) If we express y as a function of x, i.e. if we cut the folium by parallel
vertical lines, then the equation x3 + y3 = 3xy, for the unknown y with
a given x, is of the third degree with a complicated solution. The inte-
gration requires ingenious substitutions, as for example the calculations
of C. Huygens in manuscript XV of Huygens (1833, pp. 154/155), which
fill one and a half pages. Another, very elegant substitution is due to
Joh. Bernoulli (Opera, vol. 3, p. 403, Lectio Quarta, 1691/92): Introduce a
new variable u by setting

y =
3x2

u2
; the equation of the folium becomes x3 =

1

3
u4 − 1

27
u6 .

If this is differentiated and the result divided by u2 one obtains

3x2

u2
dx =

(
4

3
u− 2

9
u3
)
du .

The left hand side is y dx and the whole expression, when integrated, gives
the required area.

(b) If, inspired by Huygens’ drawing, we compute v of Fig. 12.20 (b) as a
function of u, we set

x =
u+ v√

2
, y =

u− v√
2

and expect only two intersection points. Indeed, when inserted into x3 +
y3 = 3xy, the terms containing v and v3 cancel and the equation of the

folium becomes v = u ·
√

3 −
√

2u

3 + 3
√

2u
. This function can be integrated, from

0 to 3
√
2

2
, the value of u for the point E, by a standard substitution of

Euler (see Hairer and Wanner 1997, Exercise II.5.2).

(c) We can do even better. If we cut the folium by a family of lines AM
passing through A with various slopes, say by setting x = t · y with
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Fig. 12.20. Computing the area of Descartes’ folium

0 ≤ t ≤ 1, these lines will cut the folium into small triangles whose areas
fill its upper half (see Fig. 12.20 (c)). Inserted into x3 +y3 = 3xy this gives
y3(1 + t3) = 3ty2, which can be divided by y2 and yields a simple formula
for the altitude of one of these triangles,

y =
3t

1 + t3
, and for the base ℓ = y dt

by Thales. By Eucl. I.41, the area of this slim triangle is yℓ
2

, and adding
up two of these gives an easy integral for the area of the entire folium:

A =

∫ 1

0

y · ℓ =

∫ 1

0

y2 dt = 3

∫ 1

0

3t2 dt

(1 + t3)2
= 3

∫ 2

1

dv

v2
=

3

2
. (12.13)

18. The two grey triangles in Fig.7.47 (right) are similar; one angle is right,
the other is equal by orthogonality (see Fig.1.7). Hence by Thales dz

dx
=

1
cosx

. Also by Thales dy
dz

= 1
cosx

. Again by Pythagoras and Thales 1
cosx

=√
1 + y2. All this leads to the formulas

dy

dx
=

1

cos2 x
= 1 + y2 . (12.14)

The second term gives the derivative of arctan by interchanging x↔ y.

Remark. With similar figures, Newton discovered in his manuscript De
Analysi of 1669 the series expansions of many functions, his first great
success, after which he was offered the Lucasian Chair at Cambridge (see
Hairer and Wanner 1997, p. 52, Fig. 4.13).

19. If we give F1 and F2 the abscissa −1 and 1 respectively, our condition
becomes ((x+ 1)2 + y2) = C2((x− 1)2 + y2), which is

x2 + y2 + 2
1 + C2

1 − C2
x+ 1 = 0 or

(
x+

1 + C2

1 − C2

)2
+ y2 =

(
1 + C2

1 − C2

)2
− 1 ,

the equation of a circle! The equation on the left exhibits a nice property:
setting y = 0, we see that this circle intersects the x-axis at two points x1

12.7 Solutions for Chapter 7
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and x2 with x1x2 = 1 (Viète’s identity), i.e. F1, F2, x1, x2 are “harmonic
points” (see (11.10) of Chap. 11 and Apoll. I.36).

20. As in Exercise 17, the area is given by (here an easy integral)

A =

∫ π

4

−π

4

r2

2
dϕ =

a2

2

∫ π

4

−π

4

cos 2ϕ dϕ =
a2

2
.

This result, which today appears so simple, was a great challenge for half
a century, until G.C. Fagnano (1750) discovered it.

21. (a) The relation x2−y2 = 1 becomes ρ2 cos2 ϕ−ρ2 sin2 ϕ = 1 or ρ2 cos 2ϕ =
1. Thus 1

ρ
is (7.36) with a = 1. (b) Let the point P have coordinates xP =

cosϕ/
√

cos 2ϕ and yP = sinϕ/
√

cos 2ϕ. Then we obtain the equation of
the tangent from (7.9) and the equation of the perpendicular through the
origin from (7.2c). This gives

x cosϕ− y sinϕ =
√

cos 2ϕ ,

x sinϕ+ y cosϕ = 0 .

This linear system (with orthogonal matrix) has the solution xR = xQ,
yR = −yQ.

22. By Pythagoras’ theorem and the expressions from the proof of Thm. 7.18
(see Fig. 7.19 (b)), we have

ds2 = dr2 + r2dϕ2 =
(

1 +
a4 cos2 2ϕ

a4 sin2 2ϕ

)
dr2

=
a4

a4 sin2 2ϕ
dr2 =

a4

a4 − a4 cos2 2ϕ
dr2 =

a4

a4 − r4
dr2 .

23. R. Müller simply calls (a) and (b) “bekannte Formeln” [known formulas];
100 years later, we have some difficulty in understanding them. Formula
(b) is equivalent to yH from Theorem 7.20, and (a) can be seen likewise by
considering the similar triangles CHD and CBF . But it is simpler to use
the extended triangle UVW of Gauss’ proof in Fig. 4.9 (a), page 86, whose
circumradius is 2R and whose circumcentre is H, then to apply Eucl. III.20
as in Fig. 5.9 (a) on page 120. The result (c) is Theorem 4.11 (d) on page 92.
Finally, Eucl. III.35 tells us that CH ·HM = R2 −HO2, which leads to
(7.67).
Hobson (1891, Art. 158) obtained this from the law of cosines (5.10)
applied to the triangle OHC by using OC = R, HC = 2R cos γ and
angleOCH = β−α. After some formula manipulations, involving in par-
ticular (5.62), this leads to the same result.4

4We thank John Steinig for this reference.
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24. If we denote the distance OC by d and the angle ACF of Fig. 7.48 (right)
by ϕ we have, as in the proof of Theorem 7.32, pp′ = 1− d2 (Eucl. III.35)
and p′ − p = 2d sinϕ. From this we obtain

p′2 + p2 = (p′ − p)2 + 2pp′ = 4d2 sin2 ϕ+ 2− 2d2 = 2− 2d2 cos 2ϕ

with (5.8). If we add up all three of these terms, we obtain 6, because

cos 2ϕ+ cos(2ϕ+
2π

3
) + cos(2ϕ+

4π

3
) = 0

(this is the real part of the barycentre of a rotating Mercedes star).

25. One possibility is to obtain, with Euler’s formulas (cf. Theorem 7.20),
after some simplifications,

AG2 = x2G + y2G =
1

9
(2c2 + 2b2 − a2) . (12.15)

Adding to this the similar expressions for BG2 and CG2 gives 1
3 (a2 +

b2 + c2), the desired result. More elegantly, one can obtain (12.15) from
Pappus’ formula (4.5) and the fact that AG = 2

3
AD (see Fig. 4.8 (a)).

a

bb

b c

c
d d

d

ℓ

A B

CD

E

F

G

Fig. 12.21. The Luxembourg problem of the 2007 Int. Math. Olympiad

26. Once we are convinced that the stated conditions determine, for a given
parallelogram ABCD, the point E uniquely5, we give a backwards proof,
i.e., we suppose that the line ℓ is the angle bisector and show that E must
lie on the circumcircle. Under this assumption ADF is half of a rhombus,
i.e. DF = BC = b (see Fig. 12.21). Similarly, FCG is isosceles and the
triangles FEC and CEG have the same exterior angles. Therefore the two
shaded triangles are identical (by Eucl. I.4), which means that D and B

5If we move the point F from C to D, the intersection E of the perpendicular
bisectors of FC and CG moves on a hyperbola through C (this can be checked by
an analytical computation). Therefore there is at most one second intersection of
this hyperbola with the circumcircle of BCD.
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have the same inscribed angle on the arc EC. By the inverse application
of Eucl. III.21, all four points DBCE are concyclic.

Remark. The “official” IMO solution, which is direct, is more cumbersome.

h

h
2

C

I

P

A B

O

(a) C

A B

O I P

(b)

Fig. 12.22. The h/2 circle (a); the biggest chocolate egg (b)

27. We see this result by letting p → 0; in this case D tends to −∞ and
the angle bisector tends to the horizontal line of ordinate yC/2 (see
Fig. 12.22 (a)). The projection I 7→ P becomes vertical.

28. We obtain the answer by running our machine so that D coincides with
A (see Fig. 12.22 (b)). One obtains the centre P of the required circle by
projecting the incentre I orthogonally to AI onto the side AB, and then
orthogonally to AB back onto the angle bisector. The circle is thus by the
factor 1 : cos2 α2 larger than the incircle.

29. The curves are conics with the same foci as the reflecting ellipse. They
are ellipses or hyperbolas, depending on the initial position and direction.
The result follows from Poncelet’s “second theorem” (Fig. 7.5, right, on
page 192).

12.8 Solutions for Chapter 8

1. Denote by z1, z2, z3, z4 the complex numbers representing A1, A2, A3, A4

and by w1, w2, w3, w4 those representing B1, B2, B3, B4. Then we can go
from A1 to, say, B1 by going half way along the segment A1A2, turning
90◦ to the right (i.e. multiplying by −i) and going the same distance again.
We thus have

w1 = z1 + 1−i
2 (z2 − z1)

w2 = z2 + 1−i
2

(z3 − z2)

w3 = z3 + 1−i
2 (z4 − z3)

w4 = z4 + 1−i
2

(z1 − z4)

⇒
w3 − w1 = 1−i

2
(z4 − z2) + 1+i

2
(z3 − z1) ,

w4 − w2 = 1−i
2 (z1 − z3) + 1+i

2 (z4 − z2) .
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We see that w4 − w2 = i(w3 − w1).

2. The side we want is

s17 = 2 · sin π

17
=
√

(ε− 1)(ε− 1) =
√
ε1ε16 − ε1 − ε16 + 1 =

√
2− β1

from (8.34). If you insert all the further results from Gauss’ proof, you
obtain a square root containing square roots of square roots of ... of

√
17.

To this you then apply algebraic simplifications as far as possible. When-
ever you are afraid of making an error, check the results numerically to
see whether both expressions give the value s17 = 0.367499035633141.

3. Be inspired by Eucl. IV.16 and construct a regular 17-gon and an equilat-
eral triangle, both inscribed in the same circle with one common vertex.
You will then find two vertices which have distance s51.

4. (a) Book V of Apollonius’ Conica is entirely devoted to such problems
of minimal distances. Apoll. V.30 tells us that the segment P0P1 must be
orthogonal to the tangent at (x1, y1). The polar of this point is xx1−yy1 =
1 and has slope x1

y1
; the segment P0P1 must thus have slope − y1

x1
, hence

we have

− y1
x1

=
y1 − y0
x1 − x0

⇒ y0
y1
− 1 = 1− x0

x1
, (12.16)

i.e. the point P1 is obtained as the intersection of the given hyperbola
with another hyperbola (Apoll. V.59).

(b) Fermat’s method for

(x− x0)2 + (y − y0)2 = min with x2 − y2 = 1

leads in Leibniz’ notation to

(x− x0) dx+ (y − y0) dy = 0 and x dx − y dy = 0 .

Computing dy
dx

from both equations leads to the same equations as in
(12.16). In what follows we set (x0, y0) = (1, 1) and denote the expression
on the right of (12.16) by λ. This gives x1 = 1

1−λ , y1 = 1
1+λ

, which is on
the hyperbola if

x21 − y21 =
1

(1− λ)2
− 1

(1 + λ)2
= 1 ⇒ λ4 − 2λ2 − 4λ+ 1 = 0 .

This equation of degree 4 might hide two factors of degree 2 and thus might
have roots which are constructible with ruler and compass. We thus set
(with Euler, 1751, E170)

λ4 − 2λ2 − 4λ+ 1 = (λ2 + uλ+ α)(λ2 − uλ+ β) ,

where u, α and β are to be determined. Multiplying out we obtain



386 12 Solutions to the Exercises

α+ β = −2 + u2, α− β =
4

u
, αβ = 1 .

Adding and subtracting the first two equations gives 2α and 2β, whose
product must be 4 from the last equation. This leads to

u6 − 4u4 − 16 = 0

or, with u2 = v,
v3 − 4v2 − 16 = 0 .

This equation now fits the proof we have seen and we conclude that nei-
ther v nor u =

√
v nor λ are constructible with Euclid’s instruments. A

numerical calculation gives λ = 0.22527042609892.

5. By (7.2b) and Table 5.2, the segments AD resp. BF are

y = (x+ 1)

√
2

2 +
√

2
, resp. y = (x− 1)

−
√

3

3
.

We write (x − 1) = (x + 1) − 2 in the second equation, subtract and
obtain (x+1) in a straightforward way. Then, by Pythagoras and the first

equation, AE = (x+ 1) ·
√

1 + (
√
2

2+
√
2
)2, which when simplified gives

AE =
4
√

2 +
√

2√
6 +

√
2 + 2

= 1.2604724 . . . instead of
3
√

2 = 1.25992 . . .

6. If we denote the coordinates of E by x, y and the distance EN by z, the
three circles give by Pythagoras the equations

x2 + y2 = 2

(4− x)2 + y2 = 42

(8− x)2 + y2 = z2
⇒ x =

1

4
, z2 = 62 .

This leads to AF = 8−
√

62 and the approximation 10 ·AF = 1.25992126
whereas 3

√
2 = 1.25992104989487. The approximation thus has an error

smaller than 2 · 10−7, which Finsler considers “sufficiently precise for con-
structional purposes”.

7. All these approximations are easy to verify, but difficult to find!
(a) Because ADO is half of an equilateral triangle, we have by Thales
AD = 1√

3
. By Pythagoras,

BC =

√
(3 −

√
3
3 )2 + 22 =

√
40−6

√
3

3 .

(b) The triangles DOC and CFB are similar, hence OD = 1
3 by Thales.

By Pythagoras,
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AE + ED = 3 +
√

32 + (43)2 which gives π ≈ 9+
√
97

6 .

(c) We compute DC by Pythagoras, add AB = 5
2 , divide by 2, and ob-

tain π ≈
√
229+10

4
. The precision of each of these values is displayed in

Fig. 12.23. The precision of Ramanujan’s approximations is extraordinary.
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an

uja
n (e

)
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an

uja
n (f

)

Fig. 12.23. Errors of the π-approximations

8. Ramanujan did not explain how he found this construction. He probably
played around with numbers and saw that

355 = 4 · 81 + 31 , 113 = 4 · 36− 31 , 31 = 4 · 9− 5 .

So we start by finding a construction for
√

5 and do the rest with
Pythagoras’ theorem using triangles for which the square of one side

is 4. Eucl. II.14: QT = SR =
√
5
3

; Pyth.: PS =
√

4− 5
9

=
√
31
3

;

Thales: MN =
√
31
3
· 2

3
· 1
2

=
√
31
9

= PL; Thales: PM =
√
31
6

= PK;

Pyth.: KR =
√

4− 31
36

=
√
113
6

; Pyth.: LR =
√

4 + 31
36

=
√
355
9

; Thales:

RD = RC·RL
RK

= 3
2
·
√
355
9
· 6√

113
=
√

355
113

.

9. Once again, the verification is easy, but our admiration is great for the man
who found the construction: Since CB is the diagonal of a unit square,
we have

AM =
√

(1 + 1
3
√
2
)2 + (1− 1

3
√
2
)2 =

√
2 + 1

9 ,

AN =

√
(1 +

√
2
3

)2 + (1−
√
2
3

)2 =
√

2 + 4
9
.

We then have by Thales and by construction

AQ =
AM ·AP
AN

=
AM2

AN
=

2 + 1
9√

22
9

⇒ AS = AR =
AQ

3
=

19

9 ·
√

22
.

We compute SO by Pythagoras and obtain

SO =
√

1 + AS2 =

√
1 +

192

92 · 22
=

√(
92 +

192

22

)
1

34
.

Taking square root of SO and dividing out the factor 4

√
1
34

= 1
3

leads to

the stated approximation.
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12.9 Solutions for Chapter 9

1. We scale the coordinates (without changing ratios of volumes) so that the
paraboloid has the equation

z = x2 + y2, 0 ≤ z ≤ 1, 0 ≤ x2 + y2 ≤ 1 .

Then the surface of the liquid lies in the plane z = −x and is bounded
by −x = x2 + y2, hence (x + 1

2
)2 + y2 = 1

4
(see Fig. 9.30 (b)). If a guest

has the kindness to look vertically into the glass, she will see the liquid
as a circle with centre − 1

2
and radius 1

2
. She is then asked to drink the

rest with a straw, without tilting the glass any more. The surface would
then sink to z = x− d, and she sees (x+ 1

2)2 + y2 = 1
4 − d, a circle which

diminishes in form of a parabola and disappears, together with the last
drops of Dom Pérignon, for d = 1

4 . Thus the remaining champagne fills
a paraboloid of revolution whose radius is one half of the original radius,
and whose height is one fourth of the height of the glass. Its volume is
thus

1

4
· 1

2
· 1

2
=

1

16
, i.e. 6.25%

of the volume of the full glass.

2. Let a, b, c, p be the vector positions of the points A,B,C, P . Then the
point A′ is p+b+c

3
= q − a

3
, where q = a+b+c+p

3
. Similarly B′ is q − b

3
and

C′ is q − c
3 . Thus the triangle A′B′C′ is similar to ABC with similarity

factor − 1
3
. The same proof can easily be extended to, say, tetrahedra in

space, where we would have the similarity factor − 1
4 .

a

b

b+c

c
a×b

a×(b+c)

a×c

(a)

a

b

b+c

c
a×b

a×(b+c)
a×c

(b)

Fig. 12.24. Proof of a × (b + c) = a × b + a × c (left); projection onto plane
perpendicular to a (right)

3. All three vectors a× (b+ c), a× b and a× c lie in the plane perpendicular
to a, their lengths being the areas of the indicated parallelograms (see
Fig. 12.24 (a)). If we look at the picture in the direction of the vector
a (Fig. 12.24 (b)), these lengths are the lengths of the projected vectors
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multiplied by |a|. The formula is expressed by two similar triangles with
similarity factor |a|, one rotated by 90◦ with respect to the other.

4. Proof of (9.51). The first factor a×b is perpendicular to a and b, therefore
the exterior product by c, which is perpendicular to a× b, must be of the
form λa+ µb. Using the definition (9.23), we compute the first coefficient
of (a×b)×c and find c3a3b1−c3a1b3−c2a1b2 +c2a2b1. If we try to collect
the coefficients which multiply the coordinates a1 and b1, we must find
a symmetric expression. For this, we cleverly add −a1b1c1 + a1b1c1 and
arrive at the stated expression, valid for all coefficients.

Proof of (9.52). If we write for the moment u = a×b, we see that u ·(c×d)
is a determinant (9.24), where we can permute the rows. So we obtain
(a×b) ·(c×d) = ((a×b)×c) ·d. Here we use (9.51) and the scalar product
by d.

5. Note that u, v, w are unit vectors. With (9.52) we obtain

(v · w)− (u · v)(u · w) = |u× v| |u× w| cosα .

The required relations

|u× v| = sin c, |u× w| = sin b, v · w = cos a, u · w = cos b, u · v = cos c

follow at once from (9.27) and Theorem 9.4.

6. Following the hint, we obtain

sin c sin b sinα = |(u × v)× (u× w)| = |〈v, u× w〉| ,

and in the same way

sin c sin a sinβ = |(v × u)× (v × w)| = |〈u, v × w〉| .

We then conclude with (9.24).

7. (a) We imagine the lateral surface of the truncated cone to be composed of
narrow isosceles triangles with C as vertex. They all have the same slope,
determined by α. If we project them down onto the base AD (the lower
part of Fig. 9.32 (a,b)), they fill an ellipse whose area is the lateral area S
multiplied by s = sinα. We see from the figure that the major axis of this
ellipse satisfies 2a = (v + w) · s. The semi-minor axis b is determined by
the dashed circle, which is located midway between the levels of A and B,
because the centre of the ellipse is at the midpoint between the projections
of A and B. From Thales we have DE = vs (half of the diameter of the
circle at level B) and EF = ws (half of the diameter of the circle at level
A). By Eucl. II.14 we obtain

b = sinα ·
√
vw . (12.17)
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The desired result finally follows by inserting this into Archimedes’ for-
mula (3.10) on page 67 and then dividing the result by s = sinα.

(b) By Eucl. XII.10 (formula (2.13) on page 50) the desired volume is one
third of the area of the ellipse in the plane AB, multiplied by the altitude
h. Together with Archimedes, we obtain V = h

3
· AB

2
· b ·π. Comparing two

formulas for the area of the triangle ABC we have

AB

2
· h = vw

sin 2α

2
= vw sinα cosα . (12.18)

Inserting this and (12.17) into the expression for V gives the required
formula (9.54).

(c) From Apollonius’ (3.7) on page 66 we obtain Bernoulli’s formula by
inserting first (12.17), then (12.18); a straightforward calculation yields

p =
b2

AB/2
=

sin2 α · vw
AB/2

=
sinα

cosα
· h .

This elegant proof by Johann Bernoulli (in a different notation) of his
brother’s discovery led to the very first mathematical article in Johann’s
Opera (vol. I, pp. 45–46).

Remark. The fact that the volume in formula (9.54), for a fixed cone,
depends only on the product vw, and not on the individual values of v
and w, leads, together with Apoll. III.43 of Fig. 10.18 on page 314, to the
interesting conclusion that all planes, which cut a fixed volume from a
cone, are the planes tangent to a hyperboloid of rotation for which the
generatrices of the cone are asymptotes.

8. We follow the boundary, and count each boundary point as often as we
meet it. For the Maltese cross of Fig. 9.32 (d) we thus have b = 24 and
i = 16. Since the figure decomposes into m simple polygons, we have to
subtract m times the correction −2 from b. Thus

A = i+
b− 2m

2
= (in our case) = 16 +

24− 2 · 4
2

= 24 .

One can, of course, apply Pick’s theorem four times, once to each of the
four simple polygons or, for the Maltese cross, by just adding 8 times a
triangle of base 3 and height 2 (Eucl. I.41).

9. We start by proving this property for a Platonic solid. In fact, any two
adjacent faces of such a solid meet under the same angle, which can be
determined by spherical trigonometry and was calculated earlier (see for-
mulas (5.32) on page 131). Thus the perpendiculars through the centres
of two adjacent faces meet in a point O which is at the same distance
from both faces and, repeating the argument around the body, at the
same distance from all faces. The distances between O and the vertices
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are then determined by Pythagoras’ theorem and all have the same value.
The same argument extends to all Archimedean solids, because they all
have vertices arranged symmetrically around the centres of the faces of
the Platonic solids from which they have been constructed by one of the
procedures described in Figures 9.22 through 9.28.

10. Suppose first that the solid is composed of k-gons of two types, say, of
k1-gons and k2-gons, where ℓ1 respectively ℓ2 of these k-gons meet at
each vertex. Projecting the body onto the sphere produces spherical k1-
gons and k2-gons, whose isosceles triangles above each side again have as
vertex angles α1 = 2π

k1
, respectively α2 = 2π

k2
. The angles βi at the bases,

however, are more difficult to compute. We write the cosine rule (5.41) for
both triangles

cos a =
cosαi + cos2 βi

sin2 βi
,

which must be equal for i = 1, 2. Writing cos2 βi = 1 − sin2 βi in this
formula and simplifying leads to the condition

sinβ1√
cosα1 + 1

=
sinβ2√

cosα2 + 1
.

This, together with ℓ1β1 + ℓ2β2 = π, is a system of two equations, one
nonlinear, one linear, for the computation of β1 and β2. We solve this
system numerically and obtain the following values:

KepNo. k1 k2 ℓ1 ℓ2 β1 β2 a R ρ/R

1 3 8 1 2 0.5480 1.2968 32◦38′59′′ 1.778824 0.678598
2 3 6 1 2 0.5857 1.2780 50◦28′43′′ 1.172604 0.522233
3 3 10 1 2 0.5320 1.3048 19◦23′14′′ 2.969449 0.838505
4 5 6 1 2 0.9720 1.0848 23◦16′53′′ 2.478019 0.914958
5 4 6 1 2 0.8411 1.1503 36◦52′11′′ 1.581139 0.774597
8 3 4 2 2 0.6155 0.9553 60◦0′0′′ 1.000000 0.707107
9 3 5 2 2 0.5536 1.0172 36◦0′0′′ 1.618034 0.850651
10 3 4 1 3 0.5649 0.8589 41◦52′55′′ 1.398966 0.862856
12 3 4 4 1 0.5689 0.8661 43◦41′26′′ 1.343713 0.850340
13 3 5 4 1 0.5399 0.9822 26◦49′16′′ 2.155837 0.918861

Only the solids No. 8 and 9 have simple expressions: indeed, for both
the edges form “geodesic lines” which are regular hexagons and regular
decagons, respectively.
For the solids No. 6, 7 and 11, there are three different types of faces and
we obtain a system of three equations to solve, with the following results:

Kep. k1 k2 k3 ℓ1 ℓ2 ℓ3 β1 β2 β3 a R ρ/R

6 4 6 8 1 1 1 0.810 1.091 1.241 24◦55′4′′ 2.317611 0.825943
7 4 6 10 1 1 1 0.794 1.063 1.285 15◦6′44′′ 3.802394 0.904944
11 3 4 5 1 2 1 0.539 0.812 0.979 25◦52′43′′ 2.232951 0.924594
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11. The inscribed sphere touches the faces with the largest k-value. Therefore,
we use formula (5.34) with the largest values of β from the above tables.
This leads to the values of ρ/R of the last columns. We see that the
rhombicosidodecahedron (No. 11) is the “roundest”, followed by the snub
dodecahedron (No. 13), while the FIFA-ball (No. 4) only occupies rank
three, however, with a much smaller number of pieces of leather.

12.10 Solutions for Chapter 10

1. One gets this formula from (10.16) by inserting (9.19) for the scalar prod-
ucts, then factoring out from each column and each row the common
factors |a|, |b| and |c|, respectively, and finally expanding the remaining
determinant according to formula (9.13).

2. One obtains (10.17) from (10.62) by expanding the determinant (10.62)
with respect to its first column, then with respect to its first row. The
sign changes are required, because in the second expansion the nonzero
coefficient 1 is in the position (1, 4).

One obtains (10.18) from (10.62) by adding the last row multiplied by
|a|2, |b|2, |c|2, respectively, to the second, third, and fourth row; and then
by adding the last column, again multiplied by |a|2, |b|2, |c|2, respectively,
to the second, third, and fourth column.

3. We rotate the coordinate system until the projection plane becomes the
plane x3 = 0, and the axonometric projection just removes the third
coordinate from a vector. Then let our orthonormal vectors be the columns
of the orthogonal matrix

Q =



p1 q1 r1
p2 q2 r2
p3 q3 r3


 (12.19)

so that
zp = p1 + ip2 , zq = q1 + iq2 , zr = r1 + ir2 .

We use the characterisation (b) of Theorem 10.5, i.e. the first two rows of
the above matrix must be orthonormal. Then z2p + z2q + z2r becomes

(p21 + q21 + r21)+2i(p1p2 + q1q2 + r1r2)+ i2(p22 + q22 + r22) = 1+2i ·0−1 = 0 .

Conversely, if (10.63) is satisfied, then the first two rows of (12.19) are
orthonormal. We extend them to an orthonormal basis and, after trans-
position, see that any triple of vectors satisfying (10.63) is the axonometric
pre-image of an orthonormal basis in R3.
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4. Any non-degenerate hyperbola can be trans-
formed, by a translation and a rotation, to

the equation
z2
1

a2
− z2

2

b2
= 1 as in (10.51). We

remove the denominators a2 and b2 by simi-
larity transformations in the same way as we
simplified the equation (3.9) for ellipses. Then
the asymptotes will have slope ±1. After a
rotation through 45◦ the asymptotes coincide
with the axes, and the equation of the hyper-
bola simplifies to xy = 1

2 as in (3.1) (see the
picture).

x x

y

y

y

u

u

A

B

C

D

Proof of

Apollonius’

theorems

The key to Apoll. II.3 and Apoll. II.4 is the fact that the slope of the
tangent at B is minus the slope of AB. This follows either from (x +
dx)(y + dy) = xy, hence x dy = −y dx, or from the equation of the polar
(7.9) at a given point (x0, y0), which here becomes x0y + xy0 = 1. Then
all four triangles in this picture are congruent and these results are true,
since affine transformations preserve ratios of lengths of parallel segments.

Apoll. II.13 follows from xy = Const, Apoll. III.43 from 2x · 2y = Const,
and Apoll. III.34 means that 2x · y

2
= xy. A nice interpretation of

Apoll. III.43 is the fact that all triangles formed by a tangent to a fixed
hyperbola and its asymptotes have the same area.

Apollonius obtained Apoll. II.8 by drawing the tangent parallel to EZ and
applying Apoll. II.3 and Thales’ theorem to obtain EM = MZ. The result
then follows from the fact that the conjugate diameter ∆M bisects AΓ .

5. Similarly to the preceding exercise we transform the hyperbola to y = 1
x .

Let the coordinates of the vertices of the triangle ABC be (a, 1
a
), (b, 1

b
) and

(c, 1c ). Then the slope of, say BC, is
1

b
− 1

c

b−c = − 1
bc . We now choose a point

H on the hyperbola with coordinates (h, 1
h

). Then AH is perpendicular
to BC if

− 1

bc
= ah , i.e. abch = −1 . (12.20)

The symmetry of this condition shows that the line connecting any two
of the four points A, B, C and H is perpendicular to the line connecting
the remaining two. Thus H is the orthocentre of ABC (see Fig. 12.25).

6. For each of these lines, in general, one of the vertices of the triangle lies
on one side of the line, and the two other vertices lie on the other side. We
look at the side on which there is only one vertex. On this side, for the
case (a), the perimeter cut off from the triangle must have constant value
s, which is half of the total perimeter. Thus one point of intersection of
these lines approaches the vertex on one side with the same speed as the
second point departs on the other side. We have precisely the situation
already encountered in Exercise 10 of Chap. 3 (see Fig. 3.18) for the case
of a right angle. After an affine transformation we see that the envelopes
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C
B

A

H

C

B

A

H

Fig. 12.25. Equilateral hyperbola and orthocentre

are parabolas. When the line crosses one of the vertices, the envelope
will jump from one parabola to another. For the case (b) we are in the
situation of constant areas cut off by a line from a fixed angle. This, by
Apoll. III.43 seen in the preceding exercise, produces hyperbolas.

7. Barrow’s solution extends over two pages. We transform the angle ABC
to a right angle by an affine transformation, rotate, shift and scale the
axes until ABC lies on the lines x = 1, y = 1 and the point D is at the
origin (see Fig. 12.26). We let (x, y) be the coordinates of O, so that by
Thales the coordinates of N and M become (x

y
, 1) and (1, y

x
), respectively.

For the condition DO = MN we can use either the value of the abscissa
or of the ordinate, which lead to

x = 1− x

y
or y =

y

x
− 1 .

x

y

1

y
x

x
y

C
B

A

D

N

M

O

1
x

y

1

y
x

x
y

C
B

A

D

N

M

O

1

Fig. 12.26. Solution of Barrow’s first problem (left) and Barrow’s second problem
(for q = 0.4; right)
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Both equations are equivalent to

xy + x− y = 0 or (x− 1)(y + 1) = −1 .

The curve is thus a hyperbola, with reversed orientation and the lines
x = 1 and y = −1 as asymptotes.

8. Proceeding as before, the condition MO = q ·MN becomes

x− x

y
= q ·

(
1− x

y

)
or y − 1 = q ·

(y
x
− 1
)
.

Again, both equations are equivalent to

xy − (1 − q)x− qy = 0 or (x− q)(y − (1− q)) = q(1 − q) .

This is a hyperbola with asymptotes x = q and y = 1− q.
9. The proof is a straightforward extension of the proof of Theorem 7.7 on

page 191, by extending the definition of a polar (which is here a plane)
in Definition 7.2 and comparing this equation with the equation of the
plane in (10.64) together with the condition that the pole x0 lies on the
ellipsoid.

10. If we suppose ni1x1 + ni2x2 + ni3x3 = di (with i = 1, 2, 3) to be the
equations of the three planes, where (ni1, ni2, ni3) are three mutually per-
pendicular unit vectors, then d1, d2, , d3 are the distances of these planes
from the origin. Conditions (10.65) for these three planes read:

n2
11a

2
1 + n2

12a
2
2 + n2

13a
2
3 = d21

n2
21a

2
1 + n2

22a
2
2 + n2

23a
2
3 = d22

n2
31a

2
1 + n2

32a
2
2 + n2

33a
2
3 = d23 .

(12.21)

By hypothesis, the rows of the matrix [nij ] in (12.21) form an orthonor-
mal basis. By Theorem 10.5, its columns must also be orthonormal. Con-
sequently, the sum of the three equations in (12.21) simplifies to

d21 + d22 + d23 = a21 + a22 + a23 ,

which, by Pythagoras’ theorem, is the distance of the intersection point
of the three planes from the origin.

11. The original derivation used differential calculus, based on the fact that
the parabola and the circle have the same tangent and the same curvature
at the point A, i.e. the same first and second derivatives (a consequence
of (5.53)). We can also say that the circle and the parabola coincide at
three infinitely close points around A and at the point B. Many decades
later, two school teachers from the Canton de Vaud, Sylvie Conod (Gym-
nase de La Tour-de-Peilz) and Christoph Soland (Gymnase du Bugnon),
independently discovered a more elegant geometric proof.

12.10 Solutions for Chapter 10
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As often in mathematics, a problem becomes easier, if one makes it more
complicated, i.e. if instead of looking at the two separate curves

y − a− bx− cx2 = 0 (the parabola) x2 + y2 − 1 = 0 (the circle)

we consider the family of curves

µ · (y−a−bx−cx2)+(1−µ)(x2 +y2−1) = 0 (µ a parameter). (12.22)

If µ varies from 0 to 1, these curves represent ellipses which transform the
circle into the parabola; for µ > 1 we obtain hyperbolas. All these conics
pass through the same four points as the two “generators”, i.e. the triple
point at A and the point B (see Fig. 10.21 (b)). For a particular value of µ,
this hyperbola will degenerate into its asymptotes, a pair of straight lines.
Since they must recover the triple point at A as well as the point B, one
of these asymptotes will be the tangent at A, the other one will join A to
B. The crucial observation is that none of the equations (12.22) for these
conics contains an xy-term, i.e. the value b in equation (10.50) is zero and
the matrix T in (10.51) effects no rotation. Therefore all these conics have
axes parallel or orthogonal to ON . As a consequence, the asymptotes of
the degenerate hyperbola will have symmetric slopes with respect to ON
(see Fig. 10.21 (c)). This means that the angle α to the left of A, which
is an angle orthogonal to NOA, will reappear to the right of A, and, by
Eucl. III.20, produces the angle 2α for BOA′. Hence β = α + 2α = 3α.

12. The proof is precisely the same as for the preceding exercise. The de-
generate hyperbola will, in the configuration of the figure, consist of two
lines, one joining A1 to A2, the second joining A3 to A4. Then the vector
OA1 + OA2, which makes an angle α1+α2

2
with ON , will be orthogonal

to the first asymptote, and the vector OA3 + OA4, which makes an an-
gle α3+α4

2
, will be orthogonal to the second. Since both asymptotes are

equally steep, the result is clear.

ε
εA

D

W

N

E

S

Fig. 12.27. Construction of the osculating circle for a point on an ellipse

13. We start by establishing the construction of an osculating circle for any
point A on an ellipse displayed in Fig. 12.27. The point D, at which this
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circle again cuts the ellipse, is obtained by drawing the segment AD whose
slope is symmetric to that of the tangent. This is seen from Fig. 10.21 (b),
because the circle drawn there is the osculating circle at the point A for
all conics of the family (12.22).

We then forget the osculating circle and transform the ellipse into a circle
by multiplying the abscissa by a

b
. The two angles ε will become two equal

angles, called α in Fig. 10.21 (c). Therefore, exactly as in (10.66), when A
moves from W to N , the point D will move three times as fast through
the arc WSEN . So for a fixed point D on this arc there will be a first
solution A to Steiner’s question (see Fig. 10.22, right). If our point moves
into the next quadrant, the point D will travel through another three
quadrants and we will have a second solution B, 120◦ behind the solution
A. Another 120◦ later we will find the third solution C.

When transformed into the circle, ABC is an equilateral triangle, hence
the tangent at B is parallel to AC. This property remains valid under the
affine transformation back to the ellipse and we conclude by the above
construction that the slope BD is symmetric to the slope AC. This allows
us to show that A,B,C,D are concyclic by a modification of the idea
employed in (12.22): the lines connecting AC and DB are of the form
x + cy + d = 0 and x − cy + e = 0, hence these four points lie on the
degenerate conic defined by (x+ cy+ d)(x− cy+ e) = x2− c2y2 + . . . = 0.
By combining this with the equation of the ellipse, these four points lie
on each conic of the family

µ · (x2 − c2y2 + . . .) + (1− µ)

(
x2

a2
+
y2

b2
− 1

)
= 0 (12.23)

one of which is, by a judicious choice of µ, the equation of a circle.

12.11 Solutions for Chapter 11

1. By Thales, the hypothesis implies that OA′

OC = OC′

OA and OB′

OC = OC′

OB .

Dividing one equation by the other, we obtain OA′

OB′ = OB
OA

or OA′

OB
= OB′

OA
,

the desired result.

Remark. The theorem in this form is a cornerstone of Hilbert’s develop-
ment of geometry from his system of axioms (see Sect. 2.7 and Hilbert,
1899). He proves it as his “Theorem 21” and deduces, the other way round,
the validity of Thales’ theorem as “Theorem 22”.

2. Call the given points P1, . . . , P5, construct the intersection point K =
P1P2 ∩ P4P5, and draw an arbitrary line ℓ through P5 which will contain
the required point P6. This line cuts P2P3 at the point L. Next draw
the Pascal line KL and denote its intersection with P3P4 by M . The
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AB

C D

EF RS O

P1

P2

P5

P6

P7

(b)

AB

C D

EF RS O

T
P1

P2

P5

P6

P7

(a)

Fig. 12.28. Pappus’ construction of an ellipse from 5 points (a); proof (b)

intersection of ℓ and MP1 is then the required point P6 on the conic.
More points of the conic can be obtained by repeating the procedure.
Pappus’ construction (Collection , Book VIII, Prop. 13). As above, we
draw a line through P5 in order to find a new point P6. The main idea is
to choose the line ℓ parallel to another known segment, say P1P2. Let A
and B be the midpoints of the segments P1P2 and P5P6. Then the line
d through A and B determines the position of a diameter of the ellipse
(see Fig. 12.28 (a)). If we then choose ℓ, again through P5, parallel to d,
we obtain a segment P5P7 whose midpoint D determines the position of
the second conjugate diameter (which is parallel to P1P2). We thus have
found the centre O of the ellipse.

We next determine r = EO = OF , where E and F denote the endpoints
of the diameter through AB. Pappus’ idea is to cut the (extended) lines
P2P7 and P1P5 with d to find the points R and S, respectively. In order
to apply Euclid’s propositions directly (instead of using the cross-ratio, as
Pappus did), we transform the ellipse into a circle, by keeping all points on
the line d fixed (see Fig. 12.28 (b)). Then, by applying Eucl. III.35 twice,
followed by Thales’ theorem for the similar triangles P1CP5 and P1AS,
as well as for CP7P2 and ARP2, we obtain

FA ·AE
P2A ·AP1

= 1 =
P5C · CP7

CP1 · P2C
=

SA · AR
AP1 · P2A

⇒ FA · AE = SA ·AR .

This last equation relates only to points on the line d and is thus valid
for both figures. From here on, Pappus’ argumentation is cumbersome (see
also Heath, 1921, vol. II, p. 436). Taking square roots in the last expression
of the above formula, we see by Eucl. II.14 that the circles with diameters
SR and FE must meet in a point T on the perpendicular through A (see
Fig. 12.28 (a)). Since S,R and A are known, we can construct T and have
r = OT .

For the last step, after having found the second conjugate diameter in
the same way, Pappus states without proof a construction based on Exer-
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cise 19 on page 78. The elegant construction of Rytz, given in Fig. 3.7 (a)
on page 68, is simpler.

3. This is probably our last application of Eucl. III.21. Since the angles at z3
and z4 are both equal to α, we have by the property of complex division
(see Fig. 8.2, right) that z3−z1

z3−z2 = C1 · eiα and z4−z1
z4−z2 = C2 · eiα, so that

their ratio is real. The invariance of this cross-ratio, and hence of circles
under a Möbius transformation was shown in Theorem 11.9.

P1 P2P3P4

A

B

C

D

Fig. 12.29. Construction of fourth harmonic point

4. Apply Theorem 11.10 (see Fig. 12.29): Choose A arbitrarily not on the
line P1P2; join A to P1, P2, P3; choose B arbitrarily on AP3; then find C,
D and P4 as indicated in the figure.

5. (a) Set P1P2 = λ. Then the two pairs of similar triangles give P1P3 = λc
b

and P3P2 = λc
a

. The sum of these must be λ, whence c · (1
b

+ 1
a

) = 1.

(b) The angles marked α both have tangent ab
λc

. Higher education: com-
plete the figure by drawing DECP4 and obtain a figure which is precisely
that in Fig. 12.29, where the point A has been moved to infinity orthog-
onally to P4P2. Hence 2c is the harmonic mean of a and b, because the
distances of P3, P1 and P2 from P4 have this property. The lines CP3,
DP3, EP3 and P4P3 are also harmonic, so that the two angles marked α
must be equal.

6. If the point P3 is in the position of the harmonic mean (left picture), the
angle P3P1E is larger than α, because EP3 > CP3. Therefore, P3 must
be moved to the right in order to make the two angles marked β equal.

7. (a) If we place O at x1 = −1 and N at x2 = 1, then, because N is the
midpoint between O and H, we have H at x4 = 3. Since OG is one third
of OH = 4 (see Theorem 4.10 on page 91), we have x3 = −1 + 4

3
= 1

3
and

(11.10) is satisfied.
(b) We see in Fig. 4.35 on page 111 that the points O,A′, L,∞ are har-
monic by (11.11). The points O,N,G,H are the central projections from
A of these points onto the Euler line HO and hence are also harmonic.

8. (a) If we set GF
FH

= p, then u′ = pu and v′ = pv, by similarity with centre

F . Next, with AH
AG = q, we have u = qv′ and v = qu′ by similarity with
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centre A. This gives u = pqv = (pq)2u. Because p and q are both > 0, we
obtain pq = 1 and u = v.

(b) If we compare Fig. 11.26 with Fig. 12.29, we see that B,C,H together
with the intersection point of DE with BC, which is at infinity, are har-
monic. We also observe that pq of the foregoing proof, except for the sign,
is a cross-ratio. The result uv = 1 is thus related to the fact that A,F,G,H
are harmonic.

9. We consider the point P4 as a circle of radius 0. Any circle intersecting
this “circle” at right angles must pass through P4. Moreover, the point
D has equal powers with respect to the circles centred in O and P4, and
the perpendicular DE is the line of equal powers. Fig. 11.27 (a) is then a
particular case of the right picture of Fig. 4.20 on page 99.

r

r

r′ ρ

r′

h

B

A

O

D

C′

D′

S

A′

F

Fig. 12.30. Proof of Steiner’s challenge concerning the curvature of an ellipse

10. The idea is to benefit from Exercise 9 and choose the line A′BC ′D′, which
is a diameter of Monge’s circle (see Fig. 12.30). By Thales’ circle, A′ is the
orthogonal projection of A onto this line, so if we project F orthogonally
to S, the distances SB = BA′ = r′ will be the same. We have simple

expressions for the coordinates of F =
(
c3(a − b2

a
), s3(b − a2

b
)
)

and B =
(ca, sb) (see equation (7.46) on page 211) and continue to use the same
notation. By Pythagoras ρ2 = c2a2 + s2b2. We use r′ = ρ+ h, where −ρh
is the scalar product of OB with OF , thus ρh = −(c4 − s4)(a2 − b2).
Condition (11.10) becomes for our situation ρ(ρ+r′) = 2ρ2+ρh = a2+b2,
whose verification is now a simple calculation using trigonometric identi-
ties.

11. A complete quadrangle consists of four points in general position (i.e. no
three are collinear). These four points are joined pairwise by six lines that
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intersect in three additional points. The dual version of Theorem 11.10
can be stated as follows. The four lines, concurrent in one of these three
points and joining the remaining points, are harmonic.

12. By construction, the columns of S are orthogonal to those of A. The foot
of the altitude through Ak is thus given by



f1k
f2k
f3k


 =



a1k
a2k
a3k


− 1

s2
1k + s2

2k + s2
3k



s1k
s2k
s3k


 .

13. Let Q be an orthogonal matrix, whose columns are a basis of eigenvectors
of A. Then QTAQ = D is diagonal. We set

si =

{
0 if dii = 0 ,

|dii|−1/2 else ,

S = diag (s1, s2, s3) and T = QS.

14. In homogeneous coordinates, the conics are given by xTAx = 0 and
xTBx = 0 with some real symmetric 3 × 3 matrices A and B. Let x0
be the homogeneous coordinates of the point P . Then its polars have the
form xT0Ax = 0 and xT0Bx = 0. These two lines coincide, if there exists
a real number λ 6= 0 with Ax0 = λBx0. Such a condition is called a
generalised eigenvalue problem. In geometrically relevant situations, both
matrices A and B are invertible and thus x0 is the solution of the standard
eigenvalue problem B−1Ax0 = λx0.
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J. Hoüel) Ann. Sci. École Norm. Sup. 6 (1869) 251–288. [p. 214]

J.L. Berggren (1986), Episodes in the Mathematics of Medieval Islam, Springer-
Verlag, New York 1986. [p. 127]

Jac. Bernoulli (1694), Constructio Curvæ Accessus & Recessus æquabilis, ope rec-
tificationis Curvæ cujusdam Algebraicæ, addenda numeræ Solutioni mensis
Junii, Acta Erud. (Sept. 1694) 336–338. [p. 207]

Jac. Bernoulli (1695), Explicationes, Annotationes et Additiones ad ea, quæ in Actis
superiorum annorum de Curva Elastica, Isochrona Paracentrica, & Velaria,
hinc inde memorata, & partim controversa leguntur; ubi de Linea mediarum
directionum, aliisque novis, Acta Erud. (Dec. 1695) 537–553; in Opera, vol. 1,
pp. 639–663. [p. 207]

Jac. Bernoulli (Opera), Jacobi Bernoulli, Basileensis, Opera, 2 vols., Genevæ 1744.
Jac. Bernoulli (Werke), Die Werke von Jakob Bernoulli, 4 vols., Birkhäuser, Basel
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78]

L. Euler (1755), Principes de la trigonométrie sphérique tirés de la méthode des
plus grands et plus petits [E214], Histoire de l’Académie Royale des Sciences
et Belles-Lettres 9, Berlin 1753 (1755) 233–257; reprinted in Opera Omnia,
series prima, vol. 27, 277–308, Orell Füssli, Zürich 1954. [p. 116]
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Impériale des Sciences de St.-Pétersbourg 5, 1812 (1815) 96–114; reprinted
in Opera Omnia, series prima, vol. 26, 344–358, Orell Füssli, Zürich 1953.
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hannes Kepler, Arch. Hist. Exact Sci. 50 (1996) 241–289. [p. 282]

P. Finsler (1937/38), Einige elementargeometrische Näherungskonstruktionen,
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L’Enseignement Mathématique 2 (1956) 61–171. [p. 207, 237]

K. Hofstetter (2005), Division of a segment in the golden section with ruler and rusty
compass, Forum Geometricorum 5 (2005) 135–136. [p. 54]

H. Hunziker (2001), Albert Einstein, Maturitätsprüfung in Mathematik 1896, Elem.
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lection sciences dans l’histoire, Blanchard, Paris 2009. [p. 211]
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11–13. [p. 227]

B.L. van der Waerden (1970), Ein Satz über räumliche Fünfecke, Elem. Math. 25
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Thébault, V., 174, 181, 182, 224–227,
372, 384

Thorvaldsen, S., 143
tidal height, 150
Timæus, 46
Tinguely, J., 228
Torricelli, E., 109, 197, 201
Torricelli–Fermat point, 94, 109, 110,

196, 197
Tournès, D., 211
Townsend, E.J., 52
tractrix, 211–213

area, 212
tractroid, 213
transformation

contragredient, 338
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