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Preface

You are probably about to teach or take a “first course in proof
techniques,” or maybe you just want to learn more about mathemat-
ics. No matter what the reason, a student who wishes to learn the
material in this book likes mathematics, and we hope to keep it that
way. At this point, students have an intuitive sense of why things
are true, but not the exposure to the detailed and critical thinking
necessary to survive in the mathematical world. We have written
this book to bridge this gap.

In our experience, students beginning this course have little
training in rigorous mathematical reasoning; they need guidance.
At the end, they are where they should be; on their own. Our aim
is to teach the students to read, write, and do mathematics inde-
pendently, and to do it with clarity, precision, and care. If we can
maintain the enthusiasm they have for the subject, or even create
some along the way, our book has done what it was intended to do.

Reading. This book was written for a course we teach to first and
second year college students. The style is informal. A few problems
require calculus, but these are identified as such. Students will also
need to participate while reading proofs, prodded by questions (such
as, “Why?"). Many detailed examples are provided in each chapter.

vii



V111 Preface

Since we encourage the students to draw pictures, we include many
illustrations as well. Exercises, designed to teach certain concepts,
are also included. These can be used as a basis for class discussion, or
preparation for the class. Students are expected to solve the exercises
before moving on to the problems. Complete solutions to almost all
of the exercises are provided at the end of each chapter. Problems of
varying degrees of difficulty appear at the end of each chapter. Some
problems are simply proofs of theorems that students are asked to
read and summarize; others supply details to statements in the text.
Though many of the remaining problems are standard, we hope that
students will solve some of the unique problems presented in each
chapter.

Writing. The bad news is that it is not easy to write a proof well.
The good news is that with proper instruction, students quickly learn
the basics of writing. We try to write in a way that we hope is worthy
of imitation, but we also provide students with “tips” on writing,
ranging from the (what should be) obvious to the insider’s preference
(“Don't start a sentence with a symbol.).

Proving. How can someone learn to prove mathematical results?
There are many theories on this. We believe that learning mathe-
matics is the same as learning to play an instrument or learning
to succeed at a particular sport. Someone must provide the back-
ground: the tips, information on the basic skills, and the insider’s
“know how” Then the student has to practice. Musicians and athletes
practice hours a day, and it’s not surprising that most mathemati-
cians do, too. We will provide students with the background; the
exercises and problems are there for practice. The instructor ob-
serves, guides, teaches and, if need be, corrects. As with anything
else, the more a student practices, the better she or he will become
at solving problems.

Using this book. What should be in a book like this one? Even a
quick glance at other texts on this subject will tell you that everyone
agrees on certain topics: logic, quantifiers, basic set theoretic con-
cepts, mathematical induction, and the definition and properties of
functions. The depth of coverage is open to debate, of course. We try
to cover logic and quantifiers fairly quickly, because we believe that
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students can only fully appreciate the fundamentals of mathematics
when they are applied to interesting problems.

What is also apparent is that after these essential concepts, ev-

eryone disagrees on what should be included. Even we prefer to vary
our approach depending on our students. We have tried to provide
enough material for a flexible approach.

The Minimal Approach. If you need only the basics, cover Chapters
1-17. (If you assume the well ordering principle, or decide to
accept the principle of mathematical induction without proof,
you can also omit Chapter 12.)

The Usual Approach. This approach includes Chapters 1-17 and
Chapters 20-22. (This is easily doable in a standard semester, if
the class meets three hours per week.)

The Algebra Approach. For an algebraic slant to the course, cover
Chapters 1-17 and Chapters 25 and 26.

The Analysis Approach. For a slant towards analysis, cover Chap-
ters 1-22. (This is what we usually cover in our course.) Include as
much material from Chapters 23 and 24 as time allows. Students
usually enjoy an introduction to metric spaces.

Projects. We have included projects intended to let students
demonstrate what they can do when they are on their own. We in-
dicate prerequisites for each project, and have tried to vary them
enough that they can be assigned throughout the semester. The
results in these projects come from different areas that we find
particularly interesting. Students can be guided to a project at
their level. Since there are open-ended parts in each project, stu-
dents can take these projects as far as they want to. We usually
encourage the students to work on these in groups.

Notation. A word about some of our symbols is in order here. In an
attempt to make this book user-friendly, we indicate the end of a
proof with the well-known symbol B. The end of an example or
exercise is designated by O. If a problem is used later in the text,
we designate it by Problem®. We also have a fair number of “non-
proofs” These are proofs that are questionable, and students are
asked to find the error. We conclude such proofs with the symbol
[2l. Every other symbol will be defined when we introduce you to
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it. Definitions are incorporated in the text for ease of reading and
the terms defined are given in bold-face type.

Presenting. We also hope that students will make the transition
to thinking of themselves as members of a mathematical commu-
nity. We encourage the students we have in this class to attend talks,
give talks, go to conferences, read mathematical books, watch math-
ematical movies, read journal articles, and talk with their colleagues
about the things in this course that interest them. Our (incomplete,
but lengthy) list of references should serve a student well as a start-
ing point. Each of the projects works well as the basis of a talk for
students, and we have included some background material in each
section. We begin the chapter on projects with some tips on speaking
about mathematics.

We hope that through reading, writing, proving, and present-
ing mathematics, we can produce students who will make good
colleagues in every sense of the word.

k %k k
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The How,

When, and

~ Why of
cmarrer - Mathematics

What is mathematics? Many people think of mathematics (in-
correctly) as addition, subtraction, multiplication, and division of
numbers. Those with more mathematical training may think of it
as dealing with algorithms. But most professional mathematicians
think of it as much more than that. While we certainly hope that our
students will perform algorithms correctly, what we really want is
for them to understand three things: how you do something, why it
works, and when it works. The problems we present to you in this
book concentrate on these three goals. If this is the first time you
have been asked to prove theorems, you may find this to be quite a
challenge. Not only will you be learning how to solve the problem,
you will also be learning how to write up the solution. The neces-
sary definitions and background to understand a problem, as well as
a general plan of attack, will always be presented in the text. It's up
to you to spend the time reading, trying various approaches, reread-
ing, and reapproaching. You will probably be spending more time on
fewer exercises than you ever have before. While you are now be-
yond the stage of being given steps to follow and practice, there are
general rules that can assist you in your transition to doing higher
mathematics. Many people have written about this subject before.
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The classic text on how to approach a problem is a wonderful book
called How to Solve It by George Polya, [66].

In his text, Polya gives a list of guidelines for solving mathemati-
cal problems. He calls his suggestions “the list” We have included the
original in Appendix 28.3. This list has served as a guide for several
generations of mathematicians, and we suggest that you let it guide
you as well. Here’s a closer look at “the list” with some 21st-century
modifications.

First. “Understanding the problem.” Easier said than done, of course.
What should you do? Make sure you know what all the words mean.
You may need to look something up in this book, or you may need to
use another book. Look at the statement to figure out carefully what
you are given and what you are supposed to figure out. If a picture
will help, draw it. Will you be proving something? What? Will you
have to obtain an example? Of what? Check all conditions. Will you
have to show that something is false? Once you understand what
you have to do, you can move on to the next step.

Second. “Devising a plan” How will you attack the problem? At
this point, you understand what must be done (because you have
completed Step 1). Have you seen something like it before? If you
haven't looked over class notes, haven't read the text, or haven't
done the previous homework assignments, the odds are slim that
you have seen anything that will be helpful. Do all that first. Look
over the text with the problem in mind, read over your notes with
the problem in your head, look at previous exercises and theorems
that sound similar. Maybe you can use some of the ideas in the proof
of a theorem, or maybe you can use a previous homework problem.
Mathematics builds on itself and the problems in the text will also. If
you are truly stuck, try to answer a simpler, similar question. Once
you decide on a method of approach, try it out.

Third. “Carrying out the plan” Solve the problem. Look at your
solution. Is each sentence true? Sometimes it is difficult to catch an
error right after you have “found a solution” Put the problem down
and come back to it a few hours later. Is each sentence still true?

Fourth. “Looking Back. Polya suggests checking the result and the
argument, or even looking for a different proof. If you are allowed
(check with your teacher), one really good way to check a proof
is to give it to someone else. You can present it to friends. Even if
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they don't understand a word you are saying, sometimes saying it
out loud in a coherent manner will allow you to recognize an error
you can't spot when you are reading. If you are permitted to work
together, switch proofs and ask your partner for criticism of your
proof.

When you are convinced that your argument is correct, it is time
to write up a correct and neat solution to the problem.

Here is an example of the Pélya method at work in mathematics;
we will decipher a message. A cipher is a system that is used to hide
the meaning of a message by replacing the letters of the alphabet by
other letters or symbols.

Exercise 1.1.
The following message is encoded by a shift of the alphabet; that
is, every letter is replaced by another one that has been shifted n
places further down the alphabet. Once we reach the end of the
alphabet, we start over. For instance, if n were 7, we would make the
replacementsa — h,b —1i,...,8s —> 7z t — a, .... Now the exercise:
What does the message below say?

PDEO AJYKZEJC WHCKNEPDI EO YWHHAZ W YWAOWN
YELDAN. EP EO RANU AWOU PK XNAWG, NECDP?

Let's use the ideas from Polya’s list to solve this. If you have
solved problems like this before, it might be a better exercise for you
to try on your own to see how this fits Polya’s method before you
read on.

1. “Understanding the problem” Each sequence of letters with no
blank space between the letters represents one word. Each let-
ter is shifted by the same number of places: namely n. So n is the
unknown in this problem and it is what we need to find. Once
we know the value of n, we can decipher the whole message. In
addition, once we know the meaning of one letter, we can find
the value for n.

2. “Devising a plan” A cipher text may have weak points. What are
these? How about the short words? Looking at the short words, in
some sense, substitutes an easier problem for the one we have.
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3. “Carrying out the plan! The short words are:

W
EO (which appears twice);
EP;

’

PK.

Try using the most common one and two letter words. For each
guess, check the beginning of the cipher text to see if it makes
sense. It shouldn’t take long for you to come up with the message.
4. “Looking Back! If your solution makes sense, then it is highly un-
likely that a different replacement is also possible. So the solution
is (with high probability) the only one.
Would there have been other solution methods? Sure. For in-
stance, not all letters have the same frequency in the English
language. One analysis of English texts showed the letter e oc-
curring most frequently, followed by (in this order) t, a, o, i, 1, s,
h, and r. (See [78, p. 19].) We could have used this information to
guess the assignment of letters.
We also could have simply tried one value of n after another until
the message made sense.

Have you now solved the problem? If you know what the mes-
sage says, then the answer to this question is yes. Are you done?
Unless you solved the problem and wrote up a clear, complete solu-
tion, the answer to this second question is no. A solution consists of a
report that tells the reader how you solved the problem and what the
answer is. This needs to be done in clear English sentences. As you
write up your solution, try to keep the reader in mind. You should
explain things clearly and logically, so that the reader doesn’t have
to spend time filling in gaps. O

We now move on to a very different kind of example. Consider
the set of points in three-space. In case you haven't seen this before,
these points are easily described. We take the familiar xy-plane, and
place it parallel to the floor. The z-axis is the vertical line perpendic-
ular to the xy-plane and passing through the origin of the xy-plane
(see Figure 1.1).

We'll review the important concepts before we begin our
example.
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FIGURE 1.1

To locate a point, we will give three coordinates. The first coor-
dinate is the x-coordinate and tells us the number of units to walk
in the x-direction. The second is the y-coordinate, telling us how to
move in the y-direction and the third is the z-coordinate, telling us
how far, up or down, to move. So a point in three-space is denoted
by (x,y, 2). It is important to make sure you understand this. Try to
think of how you would plot points. The point (1, 0, 0) (plotted in
Figure 1.2) would appear one unit in the positive direction on the
x-axis (since it doesn’t move in the y-direction or z-direction at all).
The point (—1, 1, 0) would appear in the xy-plane, one unit back on
the x-axis and one unit in the positive y-direction. Finally the point
(2, —1, 3) is plotted in Figure 1.2.

Let's go a bit further here. In two-space, what was x = 0? Since y
does not appear in that equation, it is unrestricted and can be any
real number. That’'s why x = 0 in two-space is the y-axis. What is
x = 3? It is a line parallel to the y-axis through the point (3, 0). So,
let’s try to generalize this to the situation in three-space. What'’s the
plane z = 0? Recall that if a variable doesn’t appear, then it may
assume any value. So this means that z is fixed at 0 while x can
take any value, as can y. Thus, the plane z = 0 is the xy-plane.
Similarly, the yz-plane is the plane x = 0 and the xz-plane is the
plane y = 0. These three planes are called the coordinate planes.
What's the plane z = 3? x = 2? y = yo? There's plenty to think about
here, but let’s start by asking what the distance is between two points
in three-space.
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FIGURE 1.2

Example 1.2.
Given two points (X, Yo, Zo) and (x1, y1, z1) in three-space, what is the
distance between the two points?

We follow Pélya’s method to find the solution.

1. “Understanding the problem! Before we begin, we make sure we
really understand the meaning of each word and symbol above.
We spent the last few paragraphs making sure we all understand
the symbols, and all the words are familiar ones that appear in
a standard English dictionary. But, wait—has “distance between
two points” really been defined? We need to be sure that everyone
means the same thing by this. The distance between these two
arbitrary points would mean the length of the straight line seg-
ment joining the two points. That's what we need to find. What
were we given? Two points and their coordinates.

2. “Devising a plan” How do we solve something like this? We haven’t
covered anything yet, so what can the authors be thinking? If you
have no idea how to get started, try thinking about finding the
distance between two specific points. Of course, (and this is very
important) this won't give us a general formula because it is much
too specific, but maybe we'll get some ideas.

So what's the distance between the two points (1,0,0) and
(—1,0,0)? That question is easier to answer—it's two. What's
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the distance between (1,1, 0) and (—1, —2,0)? This seems to be
just the distance between two points in the familiar xy-plane.
We saw a formula for that at some point. It was obtained using
the Pythagorean Theorem. What was it? If you can’t recall the
formula, look it up or (better, yet) try to derive it again.

Our reasoning now brings us to a simpler, similar question. As you
recall, this is precisely where Pélya suggested we look for a plan.
So far, it seems we can find the distance between two points as
long as they lie in a plane parallel to one of the coordinate planes.
But in this problem, if we look at the two points, they need not
lie in such a plane. We can try to insert a third point that helps us
to reduce the problem to one we can already solve. Which point?
A picture will help here, so we draw one in Figure 1.3.

We see that (¥, Yo, 20) and (x1, Y1, 2o) lie in the plane z = z,, while
(x1,41, 20) and (x1, Y1, 1) lie on the same vertical line, in the inter-
section of the two planes, x = x; and y = y;. We “devise our plan”
using these three points. Can we get the distance we are looking
for from these three points? Look at Figure 1.3 and see if you can
guess the rest before going on to Step 3. You probably noticed that
the vertical line makes a right angle with every line in the plane
7z = zg. This should suggest something to you—something like the
Pythagorean Theorem.

(X1,¥1/2Z0)

(X0,Y0/20)

FIGURE 1.3
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3. “Carrying out the plan! This is the only thing the reader will see.
Everything that preceded this was to assist us in obtaining this
solution. That means the reader doesn’'t know what the points
are; we have to tell him or her that. We should make sure we say
why a sentence follows from the previous one and we should use
equal signs between equal objects. When we think we are done,
we should tell the reader that too.

Solution.

Let P = (X0, Yo, 20) and Q = (x1,y1,21) be two points in space. We
claim that the distance between these two points, denoted by d(P, Q),
is

d(P, Q) = /(xo — x> + (o — y1)* + (20 — 21)*.

Proof.

We introduce a third point with coordinates R = (x1, y1, 2). Since
(*0, Yo, 20) and (x1,y1, 20) both lie in the plane z = z,, we can use
the distance formula for two points in a plane to find the distance
between them. Thus, the distance is given by

d(P,R) = /(xo — 21)* + (Yo — y1)*

Now look at the distance between the two points (x1,y:,2¢) and
(x1,Y1,21). Since these points lie on the same vertical line, the
distance is given by

d(R, Q) = |zo — z1].

Now, the distance we are looking for is the length of the line seg-
ment PQ, which is the hypotenuse of the right triangle PQR (see
Figure 1.4).

This is a right triangle, so we can obtain the length using the
Pythagorean Theorem. So, we get

d(P,Q) = {d(P, R} + d(R, Q).
Substituting in what we found above, we obtain
(P, Q) = /(%0 — %12 + (yo — y1)* + (20 — 21)°.

This completes the proof. |
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4. “Looking back! What we have presented is our version of the
proof. You may find that you need to include more details. By
all means, go ahead. If you had to stop and say, “where did that
come from?” make sure you answer yourself. Write it in the text
(you aren'’t going to sell this book back anyway, right?), or keep
a notebook of “proofs with commentary” Note that though we
used pictures to illustrate the ideas in our argument, a picture
will not, in general, substitute for a proof. However, it can really
clarify an idea. Don't rely on a picture, but don'’t be afraid to use
one either. @)

Solutions to Exercises

Solution to Exercise (1.1).

We are given that this code was created through a shift of the alpha-
bet. Thus once we determine one letter, the other letters are easily
found. Since we have a one-letter word, we'll start with it. Thus “W”
must represent either the letter “I” or the letter “A” Checking both
shifts of the alphabet

W—->I1X—->]Y—->KZ—->LA—MB—NC— O, etc.
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W—-AX—>BY—~CZ—DA—EB—FC-— G, etc.)

we find that if “W” represents the letter “I”, then “E” must represent
the letter “Q.” The fact that “EQ” appears as a word and “O” would
represent the letter “A” in our coded text implies that “EO” would
be the word “QA,” which is an interesting combination of letters, but
hardly a word. Thus, “W” cannot represent the letter “I” and therefore
“W” represents ‘A’

Using the shift described above and replacing the corresponding
letters, we find that the code says the following.

“THIS ENCODING ALGORITHM IS CALLED A CAESAR
CIPHER. IT IS VERY EASY TO BREAK, RIGHT?”

In fact, the Caesar cipher is quite easy to break. If this interests
you, a very readable history of coding theory is presented by S. Singh
in The Code Book, [78].

Spotlight: George Polya

Gyorgy Polya (1887-1985), referred to as George Polya in his later
years, was born and raised in Hungary. He studied in Vienna and in
Budapest, where he received his doctorate in 1912. One of his influ-
ential teachers was Leopold Fejér. In his book [67, p. 39], Polya refers
to Fejér as “an inspiring teacher who had a great deal of influence
on Hungarian mathematicians of the time” The two primary places
that Pélya taught were the Eidgenossische Technische Hochschule
(ETH) in Zirich, Switzerland and Stanford University in Palo Alto,
California.

Though Pélya’s mother tongue was Hungarian, he worked in the
Swiss-German speaking part of Switzerland and he spoke French
with his wife from Neuchatel, a city in the French speaking part
of Switzerland. In school he also learned Latin and Greek. (See
[67, p. 11].) Polya later emigrated to the United States where he
taught and lectured in English. He published mathematical papers
in Hungarian, German, French, English, Italian, and Danish.
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Polya contributed to original research in probability, geometry,
number theory, real and complex analysis, graph theory, combina-
torics, and mathematical physics. His name is connected to many
mathematical ideas and constructions. To name just a few of his
achievements, we mention that in probability there is a Pélya dis-
tribution and he is credited with introducing the idea and the term
of “random walk. But Polya was not only recognized as an excellent
scholar of mathematics, he was also an excellent teacher of math-
ematics. His heuristic approach to problem solving is outlined in
How to Solve It. This book had a profound influence on the teaching
of mathematics. It has sold over one million copies and is translated
into over 20 languages. Records kept by the ETH in Ziirich show that
Po6lya was the advisor of 14 thesis students there and, according to
[62], he was the advisor of 9 more students at Stanford.

The Mathematical Association of America (MAA) gives an an-
nual Polya award. According to the MAA website, “This award,
established in 1976, is named after the renowned teacher and writer,
and is given for articles of expository excellence published in the
College Mathematics Journal!

To learn more about George Polya and his approach to problem
solving, we recommend reading his book How to Solve It, [66], the pic-
ture book [67] (which contains a short biography), or consulting the
more in-depth account of Pélya’s life, written by his former student
at Stanford, [3]. The article [85] is based on interviews with Polya
and appeared in an issue of Mathematics Magazine entirely devoted
to Pélya and his work.

Problems

Problem 1.1.
Here is a problem intended to help you work through “the list” After
this, you are on your own.

Find a word (written in standard capital letters) that is unchanged
when reflected in a horizontal line and in a vertical line. The word
must appear in a dictionary (in a language of your choice) in order
to be a valid solution.
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1. “Understanding the problem” We need to find a word. We are given
information about the letters that make up this word. There are
two conditions: Two different reflections should not alter the
word.

Try these two reflections on a word, say on SOLUTION, to make
sure you understand the problem.

2. “Devising a plan” We have to find the connection between what
we are given and what we have to find.

Which letters of the alphabet satisfy each of the two conditions?
Both conditions?

Find a word that is not changed if it is reflected in a horizontal
line.

Find a word that is not changed if it is reflected in a vertical line.
Formulate the exact conditions for this exercise; that is, state the
letters that can be used and how they must be arranged.

3. “Carrying out the plan! Find a word that satisfies the conditions
given above.

4. “Looking Back! Are there other solutions?

Problem 1.2.

Find a word (written in standard capital letters) that reads the same
forward and backward and is still the same forward and backward
when rotated around its center 180°. Your solution needs to appear
in a standard dictionary of some language.

Problem 1.3.
Solve the following anagrams. The first three are places (in the geo-
graphical sense), and the fourth is a place you might live in. All can
be rearranged to form a single word.

(a) NOVA CURVE;

(b) NINE SLAP NAVY;

(¢) I HELD A HIP PAL;

(d) DIRTY ROOM.

Note: You may have to find out exactly what an anagram is. This

is part of Polya’s first point on the list.
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Problem 1.4.
Suppose n teams play in a single game elimination tournament. How
many games are played?
An example of such tournaments are the various categories of
the U. S. Open tennis tournament; for example, women'’s singles.
Note: Pay special attention to the first entry of Pélya’s list: “Is it
possible to satisfy the condition?”

Problem 1.5.

Suppose you are all alone in a strange house. There are seven iden-
tical closed doors. The bathroom is behind exactly one of them. Is it
more likely, less likely, or equally likely that you find the bathroom
on the first try than on the third try? Why?

Problem 1.6.

The following message is encoded using a shifted alphabet just as
in Exercise 1.1. (Of course, the shift number » is not the same as in
the exercise!) What does the message say?

RDSXCVIWTDGNXHUJCLTLXAAATPGCBDGTPQDJIXIAPITG

Problem 1.7.

Give a detailed description of all points in three-space that are
equidistant from the x-axis and the yz-plane. Once you decide on
the answer, write the solution up carefully. Pay particular attention
to your notation.

Problem 1.8.
The following is a classic problem in mathematics. Though there are
many variations of this problem, the standard one is the following.
You are given 12 coins that appear to be identical. However, one
of the coins is counterfeit, and the weight of this coin is slightly
different than that of the other 11. Using only a two-pan balance,
what is the smallest number of weighings you would need to find
the counterfeit coin? (Think about a simpler, similar problem.)
(See I. Peterson’s web site [64] for a discussion of this problem.)

Problem 1.9.
Let n be an odd integer. Prove that n® — n is divisible by 24.
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The following two problems are only appropriate if you took at least
two semesters of calculus. Though you may have worked these before, the
idea is to work them again paying close attention to the final presentation.
Make sure you define all variables. Use complete sentences, with proper
punctuation.

Problem 1.10.
Find the volume of a spherical cap if the height is 2 m and the radius
of the rim of the cap is 5 m.

Problem 1.11.

We have two circular right cylinders of radius 1 each. The axes of
the two cylinders intersect at a right angle. Find the volume of the
solid that both cylinders have in common.

Tips on Doing Homework

Your instructor will probably ask you to work many of the exercises
and problems in this text. If there is one thing mathematicians agree
on, it is that you learn mathematics by doing it. Here are some tips
on how to get started.

e Make sure you know what the rules are. Some instructors do not
want you to get help from someone else. Other instructors encour-
age working together in groups. Ask, if you are not clear about
the policy.

e If'you are permitted to work together, form a study group. A small
group of two to four people usually works best. Get together on a
regular basis and discuss the assigned problems.

e Read the questions carefully. If there is a term that you do not
know, look it up.

e Before you get started, read over the text and the notes from class,
paying particular attention to definitions, theorems, and previous
exercises. It isn't unusual to spend several hours on a single prob-
lem at this point. Doing mathematics means pondering a problem
for hours, days, weeks, even years (though we have tried not to
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pose problems that will take you years to solve). Working two
hours on one problem, thinking about it as you go through your
day and then spending another two hours on it the next day is
fairly common practice for students at this level.

Once you have read over the text, looked over the relevant def-
initions, worked through the examples and tried to solve the
problem, you will be well on your way towards understanding
the problem. If you can'’t get started, at least you will know which
questions to ask. Seek help from your instructor or other students
(if your instructor allows this).

Once you have a solution to a problem, look at it critically. Check
that it is correct. Put it down. Come back to it later. Do you still
understand everything? Is it still correct? (As you can imagine,
this is very important.) Can you simplify it? If you work with
someone else have them read it over. Never hand in your first draft
of a solution to a problem.

Writing a solution means convincing a reader that the result is
correct. There can be no gaps or errors. Explain each step—don’t
assume that the reader knows what you are thinking. Keep a
reader in mind as you write, and remember that the instructor
or anyone else who already knows the solution is not really your
target audience. Though that may be the person for whom the so-
lution is intended, it is your job to convince the reader that each
step in your solution is correct. Perhaps a better audience to keep
in mind is someone who knows the material from the class, but
not the solution to the problem.

Write up your final solution very carefully and neatly. The reader
shouldn’t find him or herself proving things for you—you should
do that for him or her. Staple pages together so that the reader
may have the pleasure of reading your entire proof in the correct
order and its entirety.
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~ Speaking

CHAPTER

Suppose your friend tells you that Mr. Hamburger is German or
Swiss. You happen to know that Mr. Hamburger is not Swiss. Using
your powers of reasoning, you decide that Mr. Hamburger is Ger-
man. Note that this argument can be generalized, because it doesn’t
really depend on Mr. Hamburger being Swiss or German. If your
friend said that “A or B is true” and you happened to know that “B is
not true,” you would conclude that “A is true” This is an example of a
valid argument. Now suppose your friend tells you that Mr. French
eats only pickles on Wednesday, and only chocolate on Monday.
You know that Mr. French is eating chocolate that day. Now what
can you say? While you may conclude that Mr. French has odd eat-
ing habits, you would not have used a logically valid argument to do
so. In this example, there is really only one thing you can conclude.
We'll return to this at the end of this chapter.

In order to understand an argument, we must be able to read and
comprehend the sentences that compose it. We need to be able to
tell whether the sentences in our argument are true or false, and
whether they follow logically from the previous ones. So now for a
definition. A statement is a sentence that is either true or false (but
not both). “Two is not a prime number” is an example of a (false)
statement. “Do you love me?” is not a statement. Below are some

17
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examples and some nonexamples of statements. These will be your
first examples of nonexamples.

Exercise 2.1.
Which of the sentences below are statements and which are not?
(a) Itis raining outside.
(b) The professor of this class is a woman.
(c) Two plus two is five.
(d) X +6=0.
(e) Seven is a prime number.
(f) All odd numbers are prime.
(g) This sentence is false. O

Because English usage and mathematical usage may differ
slightly, we must be certain that we understand our statements be-
fore we construct arguments. We now carefully study the truth or
falsity of statements. Our treatment is brief. (See [56] for a more
detailed study of mathematical logic.)

The rules of logic that we present in this chapter should work
for all statements, and not just particular ones. For this reason, we
introduce letters such as P, Q, R, or S to represent statements. Thus P
will have two possible truth values: true, denoted T, or false, denoted
F. We can negate P or combine it with Q by saying things like:

Not P.

Pand Q .

PorQ.

If P, then Q.
Pifand only if Q.

Such symbolic sentences will be called statement forms. A precise
definition of statement form will be given once we have precise
definitions of the connectives “not,” “and,” “or” “if ..., then ... and
“if and only if”

In the English language we might say

It's raining.
It is not raining.
If it is raining, the sky is grey.
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It is raining or it is snowing.
It is cold and it is snowing.
It is snowing if and only if it is cold.

Let’s start with the simplest case. Suppose your teacher says,
“This book has a blue cover” Taking a quick glance at the cover, you
can decide on the truth value of that statement; namely that it is
false. In order to have a true statement, you could say, “This book
does not have a blue cover” If we have a statement form P, the nega-
tion of P is the statement form “not P’ Under what circumstances
should the negation of P be true or false? We will always use the
notation —P for “not P’ If P is true, then —P should be false. If P is
false, then —P should be true. We can summarize all the possibilities
in a truth table as follows:

P|—P
T| F
F| T

What about combining two statement forms, P and Q, into one
statement form as “P or Q"? In this sentence, it is particularly im-
portant to distinguish between mathematical usage of the word “or”
and everyday speech. For example, if we say, “You can have cake or
ice cream,’ it could be that you can have both. If we say, “The door
is open or closed,” it cannot be that the door is both open and closed.
English statements involving the word “or” are often ambiguous; in
mathematics, ambiguity is generally frowned upon. The statement
form “P or Q" is called a disjunction and is denoted PV Q. In math-
ematics, a disjunction is true when P alone is true, Q alone is true,
or both P and Q are true. So in mathematics, you can always have
your cake and ice cream.

Exercise 2.2.
Complete the truth table for P v Q.

PlQ|PvQ
T[T
T|F
F|T
F|F
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The statement form “P and Q” is called a conjunction and is
denoted P A Q. We will have you fill in the truth table for “P and Q"
below. It should be clear that this will be true when both P and Q
are true, and false otherwise.

Exercise 2.3.
Complete this truth table.

O

Now consider the statement form “If P, then Q” This statement
form is called an implication and is often stated as “P implies Q"
and written P — Q. (Note that though English usage of the word
“implies” may suggest a relationship between P and Q, our analysis
of truth values has assumed no connection at all between P and Q.)
There are equivalent ways of stating an implication, and some will
require careful thinking on the reader’s part. Remember as you read
on that “If P, then Q" may also be stated as

Q if P.

P is sufficient for Q (meaning P is enough to make Q happen).
Q isnecessary for P (if P happened, then Q must have happened).
P only if Q (same as above; if P happened, then Q must have
happened).

Q whenever P.

The statement form P in each of these formulations is called the
antecedent, and Q is called the conclusion. Under what conditions
is an implication true? false? Let's begin with an example you are all
familiar with. Suppose we say to our son,

“If you clean your room, then you can go to Henry’s house”

Under what conditions would he feel that we had lied? In the ex-
ample, the antecedent, P, is “you clean your room. The conclusion,
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Q, is “you can go to Henry’s house.” Well, if our son cleans his room
and we let him go to Henry'’s, everybody is happy. That implication
should be true. So if P is true and Q is true, the whole statement
should be true. Also, it should be as clear to you as it will be to our
son, that if he cleans his room and we do not let him go to Henry'’s,
we lied. So, if P is true, and Q is false, the implication should be false.
Now what if he doesn't clean his room? We never discussed this pos-
sibility. So no matter what we decide here, we have not lied. In this
situation, the statement is not false; hence we consider it to be true.
So if P is false, no matter what the truth value is of the conclusion,
we will consider the implication to be true.

Summarizing this discussion, the only way that the implication
“If P, then Q" can be false is if P is true and Q is false. In the exercise
below you will sum up this discussion in the form of a truth table.

Exercise 2.4.
Complete this truth table.

‘P—)Q

Q
T
F
T
F

9 R

O

It is often helpful to rephrase a statement, making sure that you
maintain the same true and false values. The statement form “P
if and only if Q" is called an equivalence, and we will write this
as P <> Q. This is the same statement form as “(P only if Q) and
(P if Q) In view of the discussion above, we see that this is also
(P — Q) A (Q — P). Thus the truth table for the equivalence is

P|Q[P>Q[Q—>P|P-Q
T|T T T T
T|F F T F
F|T T F F
F|F T T T

Look down the final column and you'll see that the equivalence
is true precisely when P and Q are both true or both false.
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The statement form “If P, then Q" is also written as P = Q, and
“P if and only if Q” might be written as P < Q or “P iff Q”

Having now studied the connectives, we are ready for our defini-
tion of a statement form. A statement form is a letter representing
an unspecified statement or an expression built from such letters
using connectives.

Now consider the two statement forms =(P vV Q) and =P A =Q.
In the next exercise, you will find the truth table for each of these
expressions and compare them.

Exercise 2.5.
Write out the truth tables for =(P Vv Q), =P A—Q, and (—(PV Q)) <
(=P A —=Q). What can you conclude? O

A statement form for which the final column in the truth table
consists of all T's is called a tautology. A statement form for which
the final column is all F’s is called a contradiction. Two statement
forms, P and Q, are said to be (logically) equivalent if P <> Q is a
tautology, and two statements are equivalent if they can be obtained
from two equivalent statement forms by consistently replacing the
letters by English statements.

In view of Exercise 2.5, we see that =(P Vv Q) and =P A —=Q are
equivalent statement forms. Thus the statement “It is not the case
that Rachel or Leah won the race” is equivalent to “Rachel did not
win the race and Leah did not win the race” (Why?)

While it is very important to be able to restate something in an
equivalent form, it is equally important that you be able to negate a
statement. Some useful negations appear in the exercises and prob-
lems. The negation of an implication is particularly important in
mathematics. If you think about integers and the sentence “If x
is prime, then x is odd or x = 2 you can see that even a rela-
tively simple implication might be difficult to negate. Let’s begin
with something simpler.

Exercise 2.6.
Construct the truth table for P — Q, and the truth table for =P Vv Q.
What do you notice? Now construct a truth table for (P — Q) <
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(—=PVvQ). What conclusion can you make? Finally, find an equivalent
way to write =(P — Q). O

If all went well, you noticed that P — Q is equivalentto =PV Q,
and therefore the negation of “If P, then Q” is “P and not Q” Let’s
return to

“If x is prime, then xisoddorx=2"
Q
P

Negating this leads to

“x is prime and it is not the case that x isodd or x =2
Q
S -

While this is the negation, it isn't really as helpful as it might be. So
we now negate the disjunction “x is odd or x = 2” and combine it
with our previous work to obtain

“x is prime and x is not odd and x # 2’

Refining this further, we would probably say something like “x is
prime, even and not equal to two!” The negation of an implication is
something you should learn well now because it arises frequently.
Here are some examples for you to try.

Exercise 2.7.
Negate the following. It's interesting to note that you can negate a
statement even if you don’t understand what it says. It is easier to
get it right, though, if you understand the statement.

(a) IfI go to the party, then he is there.

(b) If x is even, then x is divisible by 2.

(c) If a function is differentiable, then it is continuous.

(d) If x is a natural number, then x is even or x is odd. O
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Exercise 2.8.
Which of the following are equivalent to each other? All the answers
have appeared in this chapter.

P— Q—(PVQ),~(PAQ),PA-Q —(P — Q)
PV —=Q =PV -Q —-PA-Q-PVQ. o

So let’s apply what we have learned in this chapter to Mr. French,
who eats only pickles on Wednesday and only chocolate on Monday.
One statement is that “if it is Wednesday, then Mr. French eats only
pickles” We let W represent the statement “it is Wednesday,” and P
the statement “Mr. French eats only pickles” Thus, we know that
W — P is true. (If you thought we should have said W A P is true,
note that we do not know that the statement W is true, so we must
use the implication here.) The second is “if it is Monday, then Mr.
French eats only chocolate” Letting M denote “it is Monday” and C
the statement that “Mr. French eats only chocolate” we may write
what we are given as M — C. Finally we are told that “Mr. French
is eating chocolate” From this we can conclude that —P is true. Let’s
put this together.

1. W = P,
2. M — C, and
3. —P.

Now, it’s fairly clear that the second statement is irrelevant. So
let us look at the truth tables for the first and third statements (for
convenience, we combine the two tables):

W|P|Wo>P|-P

T|T T F
T|F F T
F | T T F
F |F T T

We know that both W — P and —P are true, and from our truth table
we see that there is only one time that this happens: when both W
and P are false. So there you have it. All we can conclude is that it
is not Wednesday.
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People differ in their approaches to problems. In the example
above, you might have found it easier not to rewrite the problem.
That’s fine. On the other hand, when a problem starts to confuse
you, looking at it as we have here will often help you figure out how
to attack a problem.

Solutions to Exercises

Solution to Exercise (2.2).
The truth table for P v Q is

PlQ|PvQ
T| T T
T| F T
F| T T
F | F F
Solution to Exercise (2.3).
The truth table for P A Q is
P|Q|PAQ
T| T T
T| F F
F | T F
F | F F
Solution to Exercise (2.4).
The truth table for P — Q is
PlQ|P—>Q
T|T T
T| F F
F | T T
F | F T

This is the same as the truth table for =P Vv Q.
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Solution to Exercise (2.6).

In the solution to Exercise 2.4, we noted that P — Q and =P v Q
are equivalent. Thus —(P — Q) is equivalent to —=(—P V Q), which
is, as we have seen in Exercise 2.5, equivalent to P A —=Q. In words,
the negation of “If P, then Q” is “P and not Q”

Solution to Exercise (2.7).
More than one answer is possible but they must be equivalent, of
course.
(a) Igo to the party and he is not there.
(b) One answer is: x is even and x is not divisible by 2.
(c) A function is differentiable and it is not continuous.
(d) One answer is: x is a natural number and x is not even and x
is not odd. Equivalently, we could say: x is a natural number,
and x is neither even nor odd.

Problems

Problem 2.1.
In the following implications, identify the antecedent and the
conclusion.

(a) If it is raining, I will stay home.

(b) I wake up if the baby cries.

(c) Iwake up only if the fire alarm goes off.

(d) If x is odd, then x is prime.

(e) The number x is prime only if x is odd.

(f) You can come to the party only if you have an invitation.

(g) Whenever the bell rings, I leave the house.

Problem’ 2.2.
Construct a truth table for =(—P). Is this what you expect? Why?
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Problem® 2.3.

Find a statement form, S, equivalent to —=(P Vv Q) and show that it is
logically equivalent by constructing the truth table for “S if and only
if =(P v Q)" and showing that this statement form is a tautology.

Problem 2.4.
Write out the truth table for the statement form P — —(Q A —=P). Is
this statement form a tautology, a contradiction, or neither?

Problem 2.5.
Write out the truth table for the statement form (P — (=RV Q))AR.
Is this statement form a tautology, a contradiction, or neither?

Problem 2.6.
Negate the sentences below and express the answer in a sentence
that is as simple as possible.
(a) I will do my homework and I will pass this class.
(b) Seven is an integer and seven is even.
(c) If T is continuous, then T is bounded.
(d) I can eat dinner or go to the show.
(e) If x is odd, then x is prime.
(f) The number x is prime only if x is odd.
(g) IfI am not home, then Sam will answer the phone and he will
tell you how to reach me.
(h) If the stars are green or the white horse is shining, then the
world is eleven feet wide.

Problem 2.7.
For each of the cases below, write a tautology using the given state-
ment form. For example, if you are given P vV —Q you might write
(PV—=Q)<« (Q—P).

(@) =(=P);

(b) —~(PV Q);

(c) ~(PAQ);

(d) P— Q.
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Problem 2.8.

When we write, we should make certain that we say what we mean. If
we write P A Q VR, you may be confused, since we haven't said what
to do when you are given a conjunction followed by a disjunction.
Put parentheses in to create a statement form with the given truth
table.

P/Q|R|PAQVR
T|T|T T
T|T|F T
T|F|T T
T|F|F F
F|T|T T
F|T|F F
F|F|T T
F|F|F F

Problem 2.9.
For each of the cases below, write a contradiction using the given
statement form. For example, if you are given —(—P) you might write
—(—P) < —P.

(a) P— Q;

(b) ~(P Vv Q);

(c) =PV —Q;

(d) P+ Q.

Problem 2.10.
Consider the statement “It snows or it is not sunny”
(a) Find a different statement that is equivalent to the given one.
(b) Find a different statement that is equivalent to the negation of
the given one.

Problem 2.11.
The following problem is well known. Many different versions of
this problem appear in [80].

On a certain island, each inhabitant is either a truth-teller or a
liar (and not both, of course). A truth-teller always tells the truth
and a liar always lies. Arnie and Barnie live on the island.
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(a) Suppose Arnie says, “If I am a truth-teller, then each person
living on this island is either a truth-teller or a liar” Can you
say whether Arnie is a truth-teller or liar? If so, which one is
he?

(b) Suppose that Arnie had said, “If I am a truth-teller, then so is
Barnie! Can you tell what Arnie and Barnie are? If so, what are
they?



Introducing
the

- Contrapositive
cwarrer - and Converse

In the last chapter we saw that two statement forms, P and Q, that
have the same truth table are equivalent. This was also expressed by
showing that the equivalence, P <> Q, is a tautology. When you are
confronted with a mathematical statement that you need to prove,
you will often find it helpful to paraphrase it. You will use tautologies
to do so, since you don’t want to change the truth value of your
statement. Some useful tautologies appear below and throughout
this chapter.

Theorem 3.1.
Let P,Q, and R denote statement forms. Then the following are
tautologies:

(DeMorgan’s laws) —=(PV Q)< (—PA—Q)
—“(PAQ) < (mPV—Q)

(Distributive property) (P A (Q V R)) < (PAQ)V (P AR));
(PV (QAR)) < ((PVQ)A(PVR));

(Double negation) —(—P) < P;

31
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(Associative property) (PA(QAR)) < ((PAQ)AR);
(PV(QVR)< ((PVvQ)VR)

(Commutative property) (PAQ) < (Q AP);
(PV Q)< (QVP).

At this point, you should be able to construct the truth tables for
everything above and you should be able to show that all of them
are tautologies.

Exercise 3.2.
Negate the following:
(@) (PAQ)V (P AR);
(b) P - (Q AR). O

Tautologies allow us to replace one statement by another. For
example, suppose you want to show that an integer is odd or prime.
You can show that the integer is prime or odd; that won't change
things because these two statements are equivalent. This is a fairly
obvious change that usually won’'t make much of a difference. The
same holds if you want to show x is prime and odd; you can show that
it is odd and prime if that’s easier and you will have accomplished
the same thing. Similarly, if you want to show that it is not the case
that x is prime and odd, you can show that x is not prime or not odd.

For implications, restating what you want to prove can really
make a difference. We need to make sure, however, that what
we have is equivalent to our original statement. So recall that we
showed, in the last chapter, that P — Q is equivalent to =P Vv Q.

Now consider =Q — —P, which is called the contrapositive of
the implication P — Q. We need to compare the two truth tables
below:

PlQ[P—>Q P|Q|-Q— —P
T T T T T T
T|F F T|F F
F|T T F|T T
F|F T F|F T
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So the fact that the truth tables are the same tells us that the
statement forms are logically equivalent. What this means to us is
that, if we are trying to prove that an implication is true and we
don’t see how to do it, we should consider the contrapositive of that
statement. Here'’s how it works in practice.

Theorem 3.3.
Let x be an integer. If x* is odd, then x is odd.

First we need to understand the problem. What does it mean for
a number x to be odd? It means that there is an integer n such that
x = 2n + 1. So we are assuming that x> = 2n + 1 for some integer n
and trying to show x = 2m + 1 for some integer m. It's hard to see
where to go from here, we think.

Remember that Polya suggests restating the problem, so let’s try
that. Let P be the sentence “x* is odd” and Q be the sentence “x is
odd” Then we see that we wish to prove that P — Q is true. But this
is logically equivalent to =Q — —P, which translates into “If x is not
odd, then x? is not odd” We can do better than that, since an integer
is either odd or even. So we can show that “If x is even, then x? is
even” and that will be equivalent. Let’s see if that's easier.

Theorem (Contrapositive of the statement of Theorem 3.3).
Let x be an integer. If x is even, then x* is even.

The first step is to understand the problem. The second step is
to prove it. We'll do that here:

“Understanding the problem!” When is an integer even? When it is
of the form x = 2n, where n is an integer. So we need to show that
x> = 2m, where m is an integer, assuming that x = 2n, where n is an
integer. We began by understanding the problem, now we are ready
to solve it.

Proof.

Let x be even. Then there is an integer n such that x = 2n. Therefore,
x* = (2n)* = 2(2n*). Let m = 2n*. Then x* = 2m and m is an integer.
Therefore x? is even. [ |
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Of course the original theorem is now also proven since it is
equivalent to the one we proved. Thus, using the contrapositive is
one possible way to attempt to prove that an implication is true. We
will soon have a number of ways to attack a problem. Try to keep
them all in mind.

Some other velated remarks: Notation is more important than it
may seem. In the theorem above, we assume that x is even and
try to show x* is even. If we assume that x = 2n and accidentally
try to show x* = 2n (rather than x* = 2m), we're stuck because we
erroneously assumed that x = x?. In other words, our notation would
force us to show that x = 0 or x = 1, which is not what we should
be doing. We introduced an error because of poor notation. So it's
important that one symbol be an n and one be an m.

Also, note that we begin the proof by saying what we are assum-
ing, and end the proofby saying what we are concluding. That helps
the reader too. Finally, we keep checking that m and n are integers.
That's because that is very important; if they weren't integers, x
wouldn’t have to be even.

So the contrapositive was very helpful here. You do need to be
careful though. It must be the contrapositive and not the converse.
The converse of an implication P — Q is the statement form Q —
P. Looking at the truth tables for each of these given below,

PlQ[P—>Q PlQ(Q—rP
T|T T T|T T
T|F F and T|F T
F|T T F|T F
F|F T F|F T

we see that they are different. Unfortunately, though the contrapos-
itive and converse of a statement are really very different, students
often confuse them. We'll take just a moment to convince you that
it is very important not to do this.

Suppose our statement is, “If I am a Hobbit, then T am under 5
feet tall” This is a true statement, as every Tolkien reader knows.
The converse is “If I am under 5 feet tall, then I am a Hobbit” This
latter statement is not true, since lots of children are under 5 feet
tall, but most of them are not Hobbits. As a mathematical example,
consider the sentence about integers “If x is seven, then x is prime,”
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and its converse “If x is prime, then x is seven. Recall that an integer
p is prime if p > 1 and p cannot be written as a product of two
positive integers, both different from p. Thus, the original sentence
is true for all x, while the converse above is not. On the other hand,
you agree that for all x the contrapositive “If x is not prime, then x is
not seven,’ is true, as it must be. But this is trickier when we don't
really understand what we are saying as well as we understand this
statement. Remember, make sure you understand the problem.

Exercise 3.4.
Consider the sentence “If n is odd, then n> — n — 6 is even”
(a) State the contrapositive.
(b) State the converse. O

Solutions to Exercises

Solution to Exercise (3.2).
The equivalences are given below.
(a) The negation may be stated as (—P V —Q) A (=P V —R), since

—(PAQ)V (PAR)) < (=(PAQ)A—(PAR))
< (=P VvV =Q) A (=P V =R)).

(b) The negation may be stated as P A (—Q V —R), since

—(P — (Q AR)) < (P A—=(Q AR))
< (P A(—Q V —R)).

Solution to Exercise (3.4).
(a) The contrapositive is “If n — n — 6 is odd, then n is even”
(b) The converse is “If n”* — n — 6 is even, then n is odd”
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Problems

Problem® 3.1.

(a) Let x be an integer. Prove that if x is odd, then x* is odd.
Make sure you state your assumption as the first line and your
conclusion as the last line.

(b) State the contrapositive of what you just proved.

(¢) Combining the result of part (a) with Theorem 3.3 gives a
stronger result. Say precisely what that result is.

Problem 3.2.
For each of the following, write out the contrapositive and the
converse of the sentence.

(a) If you are the President of the United States, then you live in a

white house.

(b) If you are going to bake a souffl¢, then you need eggs.

(c) If x is a real number, then x is an integer.

(d) If x is a real number, then x* < 0.

Problem 3.3.
State the contrapositive of each of the following.
(a) If it rains, then it pours.
(b) IfI had a bell, I would ring the bell in the morning.
(c) The house is red, if the house is not blue.
(d) Dinner is cooked only if I make it.

Problem 3.4.
State the converse of each of the following.
(a) If it rains, then it pours.
(b) If I am young, then I am restless.
(c) I am alone if it is Saturday.
(d) I eat fish only if'it is cooked.

Problem 3.5.
Let x and y be real numbers. Show that if x # y, then 2x+4 # 2y +4.
(Hint: Use the contrapositive.)
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Problem 3.6.
Matilda always eats at least one of the following for breakfast: cereal,
bread, or yogurt. On Monday, she is especially picky.

If she eats cereal and bread, she also eats yogurt. If she eats bread
or yogurt, she also eats cereal. She never eats both cereal and yogurt.
She always eats bread or cereal.

Can you say what Matilda eats on Monday? If so, what does she
eat?

Problem 3.7.
Consider the following statement.

If the coat is green, then the moon is full or the cow jumps
over it.

(a) This unusual statement is composed of several substatements.
Identify each substatement, give it a letter, and write down the
original statement using these letters and logical connectives.

(b) Using the symbols introduced in (a), find the contrapositive of
the original statement. Rewrite the contrapositive as an English
sentence.

(c) Find the converse of the original statement, writing the sen-
tence and its converse in symbols, and then rewriting the
converse in words.

(d) Find the negation of the original statement, writing the sen-
tence and its converse in symbols, and then rewriting the
converse in words.

(e) Are some of the statements in this problem (either the original
or the ones you obtained) equivalent? If so, which ones?

Problem 3.8.

Consider the two statement forms P — Q and P — (Q Vv —P).
(a) Make a truth table for each of these statement forms.
(b) What can you conclude from your solution to part (a)?

Problem 3.9.

Karl's favorite brownie recipe uses semisweet chocolate, very little
flour, and less than 1/4 cup sugar. He has four recipes: one French,
one Swiss, one German, and one American. Each of the four has
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at least two of the qualities Karl wants in a brownie recipe. Exactly
three use very little flour, exactly three use semisweet chocolate,
and exactly three use less than 1/4 cup sugar.

The Swiss and the German recipes use different kinds of choco-
late. The American and the German recipes use the same amount of
flour, but different kinds of chocolate. The French and the American
recipes use the same amount of flour. The German and American
recipes do not both use less than 1/4 cup sugar.

Karl is very excited because one of these is his favorite recipe.
Which one is it?

Problem 3.10.
Let n be an integer. Prove that if 3n is odd, then n is odd.

Problem 3.11.
Prove that if x is odd, then +/2x is not an integer.

Problem 3.12.
Let x and y be real numbers. Show that if x # y and x,y > 0, then

X% £y
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Before we get to the heart of this chapter, it will be useful to have
notation for the things we frequently work with. A set is a collection
of objects. The objects in the set are called elements or members
of the set. We will write x € X to indicate that x is an element of X.
(Some people read x € X as “x belongs to X, others read it “x is an
element of X) Usually we will be considering things of a particular
type. The set of all possible objects that are considered in the context
in which we work is called the universe. We will usually denote it
by X. In some cases the universe may consist of all real numbers, or
it may consist of all right triangles; it might even consist of all cows
living in France. The set may consist of all positive real numbers, all
isosceles right triangles, or all white cows living in France. And the
elements might be the real number 7, the isosceles right triangle
with legs of length 1, or Farmer Boursin’s white cow Elsie, who lives
in Dijon, France.

When it is implicitly clear what the universe is, we may not
mention it specifically. But when there is any doubt at all, we will
carefully state what the universe is. Once we do that, we can denote
a set by writing § = {x € X : x satisfies P}. The brackets indicate
that we are talking about a collection of objects, called elements;

39
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x € X tells us where these elements live, and P is a property these
elements have.

In this class, as well as others, some sets show up a lot and we
have special notation for them. Notation should always be chosen
carefully, as these have been. Most mathematicians agree on these,
so don’t make up your own notation and make sure you recognize
what these are when they are used:

The natural numbers N ={0,1,2,3,...}.

The integers Z ={...,—2,—1,0,1,2,...}.

The positive integers Z+ = {1,2,3, .. }.

The real numbers R.

The plane R? = {(x,y) : x, y € R}.

For n € Z*, Euclidean n-space R" = {(x1,x2,...,%,) : % €
Rforj=1,2,...,n}L

The rational numbers Q = {p/q : p,q € Z and q # 0}.

The complex numbers C = {a + bi:i* = —1 and a, b € R}.

Some authors include zero in N and others don’t. If you look in
another text, make sure you know what convention they follow.

For real numbers a and b witha < b, the set[a,b]={x e R:a <
x < b} is called the closed interval from a to b. The sets [a, 00) =
{xeR:a <x}and (—oo,b] = {x € R : x < b} are called unbounded
closed intervals. For a < b, the set (a,b) ={x e R:a < x < b} is
called the open interval from a to b. We shall see that (a, b) can be
interpreted several ways, and you should be able to decide which
from the way it is used. You've done this in the past. For example,
you have certainly had courses where (¥, y) denotes a point and, in
the same course, (¥, y) might denote an open interval. Unbounded
open intervals are defined, with appropriate changes, as we defined
unbounded closed intervals.

Exercise 4.1.
Find a (different) useful way to describe the following sets (your
useful way could be a sketch):

(@) xe€Z:x* =1}

() {xe N:x*=1};

(© {(xy) €R?:y=0);

) ((xy,2) €R®:z=0}
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(e) {x € Z: xis even};

() {(m,n):m,n eZ}. o

Now we can talk about slightly more complicated sentences.
Think of the difference between the statements “In every box there
is a prize” and “In some box there is a prize” Obviously, if you had
to choose (and if it were the same prize) you would go with the first
one. In mathematics, in order to determine the truth or falsity of a
statement, we need to know whether we are talking about a particu-
lar x or all x. What we mean should be clear from the context. Letters
like x that stand for elements of the universe are called variables.
The phrases “for all” “for every, “for some, or “there exists quan-
tify variables. “For all” or V, is the universal quantifier and “there
exists” or 3, is the existential quantifier.

After agreeing that the universe consists of all real numbers, con-
sider the following statement: “For all x it is the case that x> —1 < 0.
We know that we are asking that for every x, something must hap-
pen. It just so happens that this statement is false, but it is still a
clear statement. For all x is usually written Yx. So we could write

Vx, x> —1<0.

What follows the words “For all x” in our statement is another sen-
tence that we could denote by p, but since p is a sentence involving
x we write p(x). The statement above is of the form

Vx, p(x).

One more remark about the example above. Suppose the uni-
verse is (still) the real numbers, but we want to make this a statement
about positive integers only. In that case, we can express our
statement symbolically as follows:

Vx, (x € ZT — (x* —1 < 0)).
For a different example, suppose that our universe is the set
of integers and consider the sentence, “There is an integer x such

that x = 0” This, too, is a statement, and happens to be true. This
statement can be expressed symbolically by

dx, (x = 0)
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and is read as “there exists x such that x = 0 This statement is of
the form

Ix, p(x).

One more remark about the last example. If we had chosen the set
of'the real numbers as the universe, we would express our statement
symbolically as

Iy, (x e ZAx=0).

This becomes very important when you are negating statements.
You can easily see why, too: if you negate x € Z and Z is your uni-
verse, then there are no x left, but if you negate x € Z and R is your
universe, there are still plenty of x left to worry about. So make sure
that you give careful consideration to your universe before beginning
a problem.

Exercise 4.2.
Write the statements below in symbols, assuming that the universe
is R throughout. Make sure that you clearly quantify x; is it “all x” or
“some x"?

(a) For all %, it is the case that x is an integer.

(b) There exists an integer x such that x > 0.

(c) There is a rational number x such that x* +1 = 0.

(d) For every real number x, there exists a real number y such that

X < y.

(e) There is a real number y such that x < y for all x.

(f) If x is a real number, then x* + 1 # 0.

(g) A real number x satisfies ¥* > 0, if x # 0.

(h) Ifx > 0, thenx > 4 or x < 6. O

We negated conjunctions, disjunctions, and implications. Now
we will think about the negation of a quantified statement.

Suppose we have the statement “Every cow is black” How would
we negate it? One pretty useless way is to say “Not every cow is
black” It's better to say “Some cow is not black” So a useful negation
of

Vx, p(x)
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is
Ax, =p(x).

Similarly, if we say, “There exists a black cow” a useful negation
is “No cow is black” So a negation of

3, p(x)
is
Vx, =p(x).

You will find that sometimes you can negate a sentence directly
and other times you need to convert to symbols. Here is another
example.

Example 4.3.
Negate the sentence “People who live in glass houses should not
throw stones.

We will assume that the universe is the set of all people. What
does this say? First, it says something about all people who live in
glass houses. So we will use the quantifier “for all” and x will denote a
person. The notation g(x) will mean that x lives in a glass house. The
notation t(x) will mean that x should throw stones. So our sentence
becomes “For all x, if g(x), then —t(x)” If you can negate it now, go
ahead. If not, go through the steps below. You should provide reasons
why each step below is correct:

—=(Vx, (8(x) = —t(x)));

-3, =(g(x) = (X))

-3, =(mg(X) v (X)),

-3, (800 A ().

The last sentence says that the negation of “People who live in

glass houses should not throw stones” is “There exists a person who
lives in a glass house and should throw stones. O

We emphasize that while it is good to practice these symbolic
manipulations, it is also important to understand what you are do-
ing. Sometimes you will find it easier to use the symbolic notation
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and sometimes you won't. Make sure you keep in mind what the
sentence says, and whether or not your answer seems reasonable.
Before you go off on your own, we'll do a fairly complicated example
together.

Example 4.4.

Suppose our universe is the set of real numbers and we wish to
negate the statement “For every rational number x, there exists an
integer n that is greater than x”

So let’s try it. First we note that “For every rational number x”
means that we are being told that “if x is a rational number” some-
thing will happen. What? There will exist an integer bigger than x. So
this is an implication of the form “For all x, if x is a rational number,
then there exists an n such that n is an integer and n > x” Some-
times it is easier to understand a statement if we replace the various
subsentences with symbolic representations. We use

p(x) for x is a rational number,
q(n) for n is an integer, and
r(n, x) forn > x.

Using this notation, we have

Vx, (p(x) — In, (q(n) A r(n, X))).

Let's try to negate this quantified statement form one step at a
time, starting from the outside.

We know that when we negate “for all” it becomes “there exists.”
In other words, we can replace —(Vx, - --) with 3x, =(- - -). So, here’s
where we are now:

—(Vx, (p(x) = 3In, (q(n) A r(n, x))))
is equivalent to
Ix, =(p(x) — In, (q(n) A r(n, x))).

Now we negate the implication. From the last chapter we know
that =(P — Q) is equivalent to P A =Q. We're up to

Fx, (p(*) A =(3n, (q() A (1, X))
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So the only thing left to do is negate Q, which is the expression
dn, (q(n) Ar(n, x)). At least this is simpler than what we started with!
Now 3 will change to V and so we need only worry about g(n)Ar(n, x).
But that's a conjunction. So the final step is to negate that, and we
know the negation of the conjunction will become —g(n) v —r(n, x).
So here’s where we are now:

Fx, (p(x) A (Yn, (mg(n) v =r(n, X))

We've done what we were asked to do, in a sense, but our answer
is still in symbols. Let’s translate back:

“There exists an x such that x is a rational number and for all
n, either n is not an integer or n is not greater than x.

And finally (you should explain how we get the following),

“There is a rational number x such that for all n, if n is an
integer, then n < x” @)

Not all negations are this complicated, but even in simpler state-
ments there are things you should be wary of. Consider the two
statements about real numbers: Vx, 3y, x+y = 0 and Jy, Vx, x+y = 0.
Assuming the universe is the set of real numbers, what's the differ-
ence between these two statements? In the first, we say that for each
x we can find a y with x +y = 0. That's a statement you have known
to be true for years, ever since you learned about —x. On the other
hand, the second statement says that there exists a y such that for
all x, we have x + y = 0. That statement is false, because the same
y would have to work for all x. What's the moral of this story? That
the order of the quantifiers is very important.

Exercise 4.5.
Negate the statements (a)-(h) of Exercise 4.2. @)
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Solutions to Exercises

Solution to Exercise (4.1).
There are many possible answers. We list some below:
(a) {1r _1}1
() {1}
(c) the x-axis in R?;
(d) the xy-plane in R?;
e) 2n:neZ}y={...,-2,0,2,...}
(f) the set of all points in R? such that both the x and y coordinates
are integers.

Solution to Exercise (4.2).
Note that the universe was assumed to be R.
(a) Vx,x € Z.
(b) Ix, ((x € Z) A (x > 0)).
(c) 3x, (x € QA K* +1=0)).
(d) Vx, 3y, (x < y).
(e) Jy, Vx, (x < y).
() Vx,—(x*+1=0).
(g) Vx, (—(x =0) = x* > 0).
(h) Vx,(x >0 — ((x > 4)V (x < 6))).

Solution to Exercise (4.5).
Note that the universe was assumed to be R.

(a) There exists an x such that x is not an integer.

(b) For all x, either x is not an integer or x is nonpositive (or both).
This is equivalent to: For all x, if x is an integer, then x is
nonpositive.

(c) For all ¥, if x is a rational number, then x* + 1 # 0.

(d) There exists an x such that for all y we have x > y.

(e) For all y, there exists an x such that x > y.

(f) For some y, it is the case that x* +1 = 0.

(g) For some x, we have x # 0 and x* < 0.

(h) There exists a positive real number x such that x < 4 and x > 6.
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Problems

Tips on Quantification on page 51 summarizes many of the major points
in this chapter. You may find it helpful to read these tips before working
the problems below.

Problem 4.1.
Write the following statements symbolically.
(a) For every x, there is a y such that x = 2y.
(b) For every y, there is an x such that x = 2y.
(c) For every x and for every y, it is the case that x = 2y.
(d) There exists an x such that for some y the equality x = 2y holds.
(e) There exists an x and a y such that x = 2y.

Problem 4.2.
Which of the statements in Problem 4.1 are true if the universe for
both x and y is the set of the real numbers?

Problem 4.3.

Which of the statements in Problem 4.1 are true if the universe for
x is the set of the real numbers and the universe for y is the set of
the integers?

Problem 4.4.
Negate the statements in Problem 4.1.

Problem 4.5.
Negate the following sentences. If you don’t know how to negate it,
change it to symbols and then negate. State the universe whenever
it is not evident.

(a) For all x € R, we have x* > 0.

(b) Every odd integer is nonzero.

(c) IfI am hungry, then I eat chocolate.

(d) For every girl there is a boy she doesn't like.

(e) There exists x such that g(x) > 0.

(f) For every x there is a y such that xy = 1.

(g) There is a y such that xy = 0 for every x.

(h) If x # 0, then there exists y such that xy = 1.
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(i) Ifx > 0, then xy* > 0 for all y.

() For all € > 0, there exists § > 0 such that if x is a real number
with |x — 1| < §, then [x* — 1| < e.

(k) For all real numbers M, there exists a real number N such that
If(n)] > M foralln > N.

Problem 4.6.
Consider the following statement.

For all positive integers x, there exists a real number y
such that for all real numbers z, either y = z* or z = y*.

(a) Write this statement using symbols and appropriate quantifi-
cation. Use R for the universe of all variables.

(b) Once you have written this statement in symbols, negate the
(symbolic) statement that you obtained.

Problem 4.7.
Consider the following statement:

Vx,(x € ZAN—-Fy, y € ZAx="TY))) = (Fz, (z € Z Nx = 22))).

(a) Negate this statement.

(b) Write the original statement as an English sentence.

(c) Which statement is true, the original one or the negation?
Explain your answer.

Problem 4.8.
Write each of the statements below using symbolic notation. In this
problem, use R as the universe for all variables involved.
(a) There is an integer that is bigger than its square.
(b) Every rational number is the product of two irrational numbers.
(Note: A real number x is irrational if x & Q.)
(c) There are integers m and »n such that for each rational number
x, either m < nx orn < mx.
(d) Every rational number is the solution of an equation ax+b = 0,
where a and b are integers.
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Problem 4.9.

Why is this joke supposed to be funny? A physicist, chemist, and a
mathematician are traveling through Switzerland. From the train
they spot a cow grazing in the field. The chemist gazes out the
window and says, “Ah, all the cows in Switzerland are brown. The
physicist says, “No, no. You can’t conclude that. You can only say
that some of the cows in Switzerland are brown.” The mathematician
says, “No, no, no. All you can say is that there is a cow in Switzerland
that is brown on one side”

Problem 4.10.
For each of the following, state the converse, the contrapositive,
and the negation of each (the negation of the statement, the con-
verse, and the contrapositive). State the universe, if appropriate and
quantify anything that is quantifiable.
(a) Madeleine waters the plants only if' it is Tuesday.
(b) IfIski, I will fall.
(c¢) Windows break if you throw balls through them.
(d) IfInegate a sentence, then I always do it wrong.
(e) Iwill come only if you invite me.
(f) For all positive real numbers x, there exists an integer n such
that 1/n < x.
(g) If x is a nonzero real number, then x* # 0.
(h) If x is a nonzero real number, then there exists a real number
ysuch thatx -y =1.
(i) If x and y are even integers, then x + y is an even integer.

Problem 4.11.
Find a different useful description of the following:
(a) {x e R:x*=2};
) {(xy) eR*:x =y}
() (xeN:x <0}
(d) {xeZ:x* > 0}.

Problem 4.12.
Write each of the following in set notation.
(a) The set of all odd integers.
(b) The set of all points in the xy-plane above the line y = x.



5( 4. Set Notation and Quantifiers

(c) The set of all points in the xy-plane that are inside the circle of

radius one.

(d) The set of all irrational numbers.

Problem 4.13.
Decide whether sentence (3) is true if sentences (1) and (2) are both
true. Give reasons for your answers.

(a)

(b)

©

(d)

O)

(1) Everyone who loves Bill loves Sam.

(2) T don't love Sam.

(3) I don't love Bill.

(1) If Susie goes to the ball in the red dress, I will stay home.

(2) Susie went to the ball in the green dress.

(3) Idid not stay home.

(1) Iflisa positive real number, then there exists a real number
m such that m > [.

(2) Every real number m is less than ¢.

(3) The real number t is not positive.

(1) Every little breeze seems to whisper Louise or my name is
Igor.

(2) My name is Stewart.

(3) Every little breeze seems to whisper Louise.

(1) There is a house on every street such that if that house is
blue, the one next to it is black.

(2) There is no blue house on my street.

(3) There is no black house on my street.

(f) Let x and y be real numbers.

(1) Ifx > 5, theny < 1/5.
(2) We know y = 1.
(3) Sox < 5.

(¢) Let M and n be real numbers.

(1) If n > M, then n* > M?%.
(2) We know n < M.
(3) So n* < M?%,

(h) Let %, y, and z be real numbers.

() Ify >xandy > 0, theny > z.
(2) We know thaty < z.
(3) Theny <xory <0.
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Tips on Quantification

e Check the universe for each of the variables. Write it down, if it
is not self-evident.

e Suppose a statement restricts the variable x to a proper subset A
of the universe as in the statement form, “For all x € A, property
p(x) holds” Since «x is universally quantified, this is an implication
of the form

Vx, (x € A — p(x)).

e Suppose a statement restricts the variable x to a proper subset A of
the universe as in the statement form, “For some x € A, property
p(¥) holds” Since x is existentially quantified, this is a conjunction
of the form

Ix, (x € A A p(x)).

e Simple statements are usually easy to negate. Just do it.

e Complicated statements will often resist a “just do” Write them
out in symbols first. Make sure you know what the quantifier is
on every variable. Check for the various ways one can say “if...,
then..”

e Do not use logical connectives (—, A, V, =, <>) between quanti-
fiers. (Do not write “Vx VVy---" or “Vx AVy---.")

e Know the rules. You must know how to negate existential
quantifiers, universal quantifiers, conjunctions, disjunctions, and
implications. The most important negation is also the one
students frequently forget: the negation of an implication.

e Practice: Every time you get a definition or theorem, try negating
it. If you can't, this might indicate that you do not fully understand
it.

If you think you need more practice, here it is. In what follows,
unless otherwise stated, all variables are real numbers, and € and 8
represent positive real numbers. Negate all of these.

(a) For every €, there exists § such that § < e.

(b) Let a € R. For every € there exists § such that for every x € R,
if |x —al < 8, then |x> —a?| < e.

(c) Letx e R. Thenx < x4 e forall e > 0.
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(d) For every integer n, there exists x > n such that x* > n%.

(e) For every e > 0 there exists an integer N such that 1/n < € for
alln > N.

(f) For all x, either x < O orx > 0.

(g) For all x, there exists an integer n such that n > x.

(h) Forall x,y, and z, it x < y and z < 0, then zx > zy.

(i) Let x and y be real numbers. If x < y + € for all ¢ > 0, then
x <y.



Proot
~ Techniques

CHAPTER

In this chapter, we introduce you to some of the most common proof
techniques. The three methods we will examine in this section are:

e direct proof (just get started and keep going),

e proof by contradiction (show that the negation of the statement
you wish to prove implies the impossible), and

e proof in cases (which may be used when conditions dictate that
different situations occur).

There are many more. For example, another proof technique that
you may be familiar with from the study of calculus is the method
of exhaustion, such as computing area or volume calculations by
“filling up the object” with a sequence of more familiar smaller sets.
Sometimes these techniques are used in combination. Some other
methods, such as proof of existence and uniqueness of an object
or proof using the contrapositive of the statement, will appear in
subsequent chapters.

The first example is a direct proof. We want to show that “If A,
then B is true.” So we do it in our most direct manner: We start with
A and keep going until we get to B. Before getting started, we make
sure we know the meaning of every word in the implication and we
try to make sure that the implication is true.

53
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Theorem 5.1.
If a, b, and c are integers such that a divides b and a divides c, then a
divides b + c.

“Understanding the problem! Okay, before we get started, let's
identify the hypothesis and conclusion. What are they? The hypoth-
esis is a, b, and ¢ are integers such that a divides b and a divides
c. We get to start with that. What does a divides b mean? Well, we
don’t know yet, so let’s think about that. It would mean that when
we divide b by a we get an integer. So this would mean b = an,
where n € Z. So we say a divides b if and only if there is an integer
n such that b = an. Since we have already defined everything here,
we understand the problem and we feel confident—raring to go, in
fact. What's the conclusion we need to come to? The conclusion is a
divides b+ ¢, and we know what this means because we understand
“divides.”

“Devising a plan! So we know that, in the notation we used above,
b = am and ¢ = an where m and n are both integers. We need to
show that a divides b+ ¢, or that there is an integer j with b+c = gj.
Looking at what we were given and what the desired conclusion is
should suggest the plan.

Proof.

Since a, b, and ¢ are integers such that a divides b and a divides ¢, we
know that there exist integers m and n such that b = am and ¢ = an.
Therefore, b + ¢ = am 4+ an = a(m + n). Since m + n is an integer, a
divides b + c. |

“Looking back! Let's admire this proof for a minute. It’s so lovely.
There are complete sentences, periods, and all symbols are carefully
defined. We say where we are starting; that is, what the assumption
is, and we end by saying what the conclusion is. Just in case the
reader hasn't noticed, though, we indicate that we are done by adding
the little box, B. Other people use Q.E.D. (quod erat demonstrandum
which is Latin for which was to be demonstrated). Your proofs should
be just as appealing as the one above.

What follows is an example of a proof by contradiction, some-
times referred to as reductio ad absurdum. The idea of such a proof



5. Proof Techniques 55

is that we suppose that what we wish to conclude is false and show
that something really silly happens (hence the absurdum). Below
is an example of this idea that goes back to the Pythagoreans. This
is one of two proofs presented by G. H. Hardy in his famous book
A Mathematician's Apology [35], as an example of a beautiful proof.
(The first proof'in Hardy'’s text is in the problems. If you haven’t read
his book, it is another one that we highly recommend.)

Theorem 5.2.
The number /2 is not rational.

“Understanding the problem” Before we begin, we make sure that
we know what all the words mean, what we are assuming, and what
we are trying to prove. A rational number is a number of the form
p/q where p and g are integers, and g is nonzero. So we need to
show that +/2 is not of this form; that is, there are no integers p and
g (with g nonzero) such that ~/2 = p/g. That may seem like a tall
order, since it seems to mean we have to look through all possible
integers! This leads directly to:

“Devising a plan” Perhaps it would be easiest to assume /2 = p/g
(with p and g integers and g # 0) and see what, if anything, happens.
This is precisely the idea behind proof by contradiction.

Proof.

Suppose, to the contrary, that /2 is rational. Then there exist inte-
gers p and g (with g nonzero) such that +/2 = p/q. We may assume
that p and g have no common factor, for if they did, we would sim-
plify and begin again. Now, we have that v/2g = p. Squaring both
sides, we obtain 2¢q> = p?. Thus p? is even. Since p? is even, we
know from Problem 3.1 that p must be even. Therefore, p = 2m for
some integer m. This means that 2¢g> = 4m?. Dividing, we see that
q* = 2m?. But this means that g° is even. Again we know from Prob-
lem 3.1 that g is even. So p and g have a common factor 2, which is
completely absurd, since we assumed they had no common factor.
Therefore our assumption that 4/2 is rational must be wrong and we
have completed the proof of the theorem. |
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“Looking back! Note that we slipped in a reference to Problem 3.1.
If we hadn't, you would have read “Since p? is even, p must be even”
Your reaction to this could have been “Oh yeah, we did that already.
That's fine. But you could also have stopped, tried to think about
why it is true, tried to prove it, and so on. That's fine too, in some
sense, but you don’t want to re-prove everything we have already
done. So if the writer tells the reader why something is true, it saves
the reader valuable time. Or, you could also have skipped right over
it, never worrying about why it is true. That’s not fine. You need to
understand each sentence in a proof!

Knowing how to split a proofinto cases, which we will referto as a
“proof'in cases,” is something that will be extremely useful too. Here
is an example of something defined in cases. Once we understand
this definition, we'll prove something using it.

For a real number x, the absolute value of x is defined in cases
by

| = X ifx>0
Tl —x ifx<0

Is this what you were expecting the definition to be? If not, let's
make sure it agrees with what you were expecting. If x = 3, then
x > 0, and we conclude that |3] = 3. If x = —3, then x < 0, and we
conclude that | — 3| = —(—=3) = 3. If you feel comfortable with this
definition, you are ready to move on to the theorem. If not, work
out a few more examples and then move on.

Theorem 5.3.
Let x and y be real numbers. Then |xy| = |x||yl.

We made sure that we understood the definition of absolute value
before proceeding to the theorem, so we understand the problem.
Let’s think about devising a plan.

“Devising a plan” Absolute value was defined in cases, and there-
fore |xy| depends on whether xy > 0 or xy < 0. The first, xy > 0, is
actually two cases again: xy > 0 or xy = 0. What are the possibili-
ties? Well, xy > 0 would mean that both x > 0 and y > 0, or both
x < 0and y < 0. The case xy = 0 would mean that x = 0 or y = 0.
The final possibility, xy < 0, would mean that one of the two, x or
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y, is negative and the other is positive. It seems that we have four
cases to consider: both x and y positive, both negative, at least one
of the numbers is zero and one of the two numbers negative while
the other is positive.

Proof.
First, suppose that x > 0 and y > 0. Then xy > 0 and we have
|xy| = xy, |x| = x, and |y| = y. Therefore,

lxy| = xy = [x]|yl,

and we have established the result in this case.
Second, suppose that x < 0 andy < 0. Then xy > 0 and we have
|xy| = xy, |x| = —x, and |y| = —y. Therefore,

Iyl = xy = (=2)(=y) = Ixllyl,

and we have the result for this case as well.
Third, suppose that either x = 0 or y = 0. Then xy = 0 and we
have |xy| = 0, and either |x| = 0 or |y| = 0. Therefore,

Xyl =0 = [x]lyl,

establishing the result in this case too.

For our final case, suppose that one number is positive and the
other is negative. Thus, we may assume that x < 0 andy > 0. Then
xy < 0 and we have |xy| = —(xy), |x| = —x, and |y| = y. Therefore,

Iyl = —(xy) = (=)y = I[*[lyl.

We have now established the result for all four possible cases and
we may conclude that |xy| = |x||y| for all real numbersx andy. M

Once again, look at the form of the proof. There are four cases and
we tell the reader which case we are discussing before we discuss
it. We can conclude something in each case, but it isn't until we
cover all four possible cases that we can write “we may conclude
that |xy| = |x||y| for all real numbers x and y.

It will also be helpful to know how to show something is not
true. A statement whose truth is anticipated, but for which we have
no proof yet is called a conjecture. There are many different ways
that one might arrive at a conjecture. It can be due to the intuition
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or insight of a great mathematician, or it can be a generalization of
observations gleaned from many examples. The latter has become
more common in recent years, in part due to the capabilities of
powerful calculators and computers. Once we find a proof, the con-
jecture turns into a theorem. The most famous example in recent
history is a proof by Andrew Wiles. In 1995, Wiles turned Fermat's
last conjecture into Fermat'’s last theorem, [86]. (Watch the excellent
Nova episode “The Proof” for the full story on the history of Fermat’s
last theorem, [7].)

It's important to note, however, that just because you believe
something might be true, doesn’t mean that it necessarily is true.
Sometimes you will find that a conjecture someone else has made
(or even one that you have made) is, in fact, false. In these cases, you
need to find an example of something that satisfies the hypotheses
of your conjecture, but not the conclusion. An example is the fol-
lowing conjecture of Pierre de Fermat—one of the very few of his
conjectures that turned out to be wrong.

Consider numbers of the form 22" 4+ 1, where m is a natural
number. The first number, 2241 =3is prime. The second, 22 41 =
5 is also prime, as are the third, fourth, and fifth numbers. In fact,
Fermat conjectured that if m is a nonnegative integer, then 22" +1 is
prime. In 1732, the Swiss mathematician, Leonhard Euler, showed
that this was false by showing that the sixth number in this list,
22 41 = 4294967297 can be factored. In fact, our calculator tells us
that 22" 4+ 1 = 641 - 6700417. Thus Fermat's conjecture is false.

An example that shows that a statement is false is called a
counterexample. You only need one to show something is false!

Problems

Problem 5.1.

Below is the other proof Hardy chose to present ([35, pp. 92-94]).
This theorem and its proof were known to Euclid, and appear in the
Elements 1X 20, [38]. Can you read and understand this proof? Read
the whole thing. Underline anything you don’t understand the first
time. Reread it slower this time. Underline anything you can’t figure
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out. You may need to spend 10 minutes on each sentence; you may
not. Then write the general idea of the proofin “street talk” A bright,
interested twelve year old should be able to follow your outline of
the proof.

Before you begin, make sure you understand what will be as-
sumed and what we will try to do. Make sure you know what all the
words mean. “Infinite” has not yet been defined; prime number has.

Theorem 5.4.
There are infinitely many prime numbers.

Proof.

To prove this statement suppose, to the contrary, that there are
finitely many primes. Then we may write these finitely many
primes in ascending order as

2,3,5..., N

)

where N is the largest prime. Now consider the number M defined
by

M=(2:3:5--- N)+1.

If M is prime, then M is a prime that is larger than the largest prime
N. Therefore, we must conclude that M is not prime, and so it is
divisible by some prime number, P. However, P must appear in the
list of primes

2,3,5

’ ) LA

N

)

which we gave earlier. But when we divide M by P, we obtain a
remainder of 1. Therefore, P cannot be a factor of M, and we have
contradicted our assumption that there are finitely many primes.
Thus, there exist infinitely many primes. |

Problem 5.2.
Prove that if n is an integer, then 4n? + 4n + 8 is an even integer.
What kind of proof did you use?

Problem 5.3.
Prove that if n is an integer, then n +3n+ 2 is an even integer. What
method of proof did you use?
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Problem 5.4.
Provide counterexamples to each of the following.
(a) Every odd number is prime.
(b) Every prime number is odd.
(c) For every real number x, we have x* > 0.
(d) For every real number x # 0, we have 1/x > 0.
(e) Every function f : R — R is linear (of the form mx + b).

Problem 5.5.
Define two sets, A and B, by

A={xeZ:x=2nforsomen € Z} and
B={xeZ:x=2m+ 1 for some m € Z}.

(a) Using these definitions, give a rigorous proof'that A and B have
no elements in common. Make sure you write out all details.
(b) What type of proof did you use in part (a)?

Problem 5.6.
Let nbe an integer. Prove that if n? is divisible by 3, then n is divisible
by 3.

Problem 5.7.
Show that +/3 is not rational. (You may want to use the result of
Problem 5.6 to work this problem.)

Problem 5.8.
Prove that sin? x < | sin x| for all x € R.

Problem’ 5.9.

Let x be a real number.
(a) Prove that —|x| < x < |x|.
(b) Leta > 0. Prove that |x| <aifand only if —a <x < a.
(c) Prove the theorem below.

Theorem 5.5 (The triangle inequality).
Let x and y be real numbers. Then |x + y| < |x| + |y|.
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Problem 5.10.
Prove the lower triangle inequality: Let x and y be real numbers.
Then

1x] = Iyl < |x —yl.

Problem 5.11.
Find all points in the xy-plane that lie on the surface

4=5x—-3"%+3y—m)*+2z+2)>~
Write up your solution carefully. What method of proof did you use?

Problem 5.12.
Let n be an integer. Prove that if n> — (n — 2)? is not divisible by 8,
then » is even.

Problem 5.13.

Prove that if p(x) = a,x" + a,1¥* ' +-- - +ag, where ay, ..., a, € R,
is a polynomial, then p can have at most n roots. (Some remarks are
in order here. To work this problem, you must understand it. Recall
that ¢ € R is a root of a polynomial p if p(¢) = 0. In order to restate
the problem, you also need to recall that if ¢ is a root of p, then x — ¢
is a factor of p.)

Problem 5.14.

Consider the following statement.
Vx, (x € ZT — Fy, 3z,
(YEQAEeWAz#0) AR =y’ +29).

(a) Change this symbolic statement to an English sentence.
(b) Prove the statement you found in (a).

Tips on Definitions

In your previous courses, you may or may not have had to memo-
rize definitions. Now it becomes essential that you memorize them,



62 5. Proof Techniques

understand them, and investigate them before venturing on to use
them. Here are some suggestions on how to do these things.

The first step is to make sure you know the definition. This does
not mean that you highlight it with a marker and read it over a few
times. It means that you, first of all, understand it, and, second
of all, memorize it. You must know whether the quantifiers are
“for all” or “there exist,” you must know what order they come in,
you must watch the order on implications, and you must be sure
that what you write is correct. Every single itty bitty detail must
be correct or chances are that your definition is wrong.

It's very difficult to memorize something you don’t understand.
So once you see a definition (in bold black print in this book)
write it down and think about what it means.

Give many examples, until you feel that you know what an
example looks like.

Negate the definition and try to find nonexamples (that show
when things won't satisfy the definition).

Goback and see if you can write out the definition without looking
at it. Wait a few hours and do that again. If anything is out of place,
ask yourself if it matters. If it does, repeat the appropriate steps
here.

Definitions are often stated as implications. This leads students
to ask if the definition is an equivalence. The answer is “yes.
Consider the following definition: “An integer m is even if there
exists an integer n such that m = 2n.” Since this is how we defined
“even, we also mean that “if m is even, then there exists an integer
n such that m = 2n”

Some teachers and students find it helpful to make definition

notebooks. In such a notebook, you will do all the steps above as
often as necessary. We heartily recommend such an approach.
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CHAPTER

Recall from Chapter 4 that a set S is a collection of objects. The
objects that make up the set are called the elements or members of
the set. A set has a defining property, and it is used to determine
whether or not an element belongs to the set: To decide whether
or not x is in the set S, you need to see whether x satisfies this
defining property p. The empty set is the set with no elements, and
is denoted by @.

Once we have the defining property, there are often several ways
to describe a set. If there aren’t too many elements in the set, then we
can list all elements: B = {Benny, Betty, Billy, Bobby}. If the elements
come from a well-known larger set X and satisfy a defining property
p, we may write {x € X : p(x)}. This is read “the set of all elements
of X satisfying property p” We may think of X as the universe in this
context.

Note that a set is described by its elements—not by the order we
put the elements in the set, or whether we put an element in more
than once. Thus the set {1, 2, 3} is the same as the set {1, 1, 3, 2}.

Exercise 6.1.
For each of the following sets, say what the universe is and write
out the defining property. For example, if we wish to describe the
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set of all women, the universe might be all people, and the defining
property would be “x is a woman” Use complete sentences.
(a) The collection A of all members of the school band.
(b) The collection B of all irrational numbers.
(c) The collection of all prime numbers greater than or equal to 4
and less than 7. @)

Exercise 6.2.
Care needs to be used when creating a defining property. What is
wrong with each of the following?
(a) The collection C of all pretty people in Luxembourg.
(b) The collection D of all collections that do not contain
themselves as an element. O

The notation we have described so far in this chapter is not the
only acceptable notation. For example, if we know what our universe
is, there may be no reason to repeat it in the notation. Therefore,
we may write {x € X : p(x)}, or we may simply write {x : p(x)}. The
next exercise introduces you to a slightly different way of describing
a set.

Exercise 6.3.

letS={xeZ:x=2n+1forsomen € Z} and T = {s*> : s € S}.
The notation for T is different from the notation we have discussed
thus far in the chapter, yet you can still determine T. Write out a
description of T using the same notation as the one used for S. Then
write out a description of § using the same notation as the one used
for T. O

Exercise 6.4.
Consider the set A of nonzero integers.
(a) Write this set using the notation A = {x € S : p(x)}.
Use what you learned in previous chapters to answer the following
questions.
Define a new “multiplication” on A by x xy = 2xy for x,y € A.
For parts (b) and (c) below, either prove the statement or give a
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counterexample to it. (If you find you cannot answer the questions
below, read the discussion following part (c).)
(b) If x,y € A, thenx*y € A.
(c) There exists an element y € A such that x x y = x for every
x e A.

If you really can’t get started, then you probably didn’t under-
stand the problem. One way to begin is to pick numbers for x and
y and try them out until you get a feel for this new multiplication.
Once you understand it, try rewriting the statements so that they
make sense to you. For example, in (b), replace the conclusion x x y
by its definition to obtain “If x,y € A, then 2xy € A All this should
help. Remember, the most important thing is to get started. O

A set A is a subset of a set B or, equivalently, A is contained in
B, if every element of A is an element of B. We will write A C B to
indicate that A is a subset of B. This is depicted in Figure 6.1.

Notice that A is always a subset of itself: A C A. However, a
subset can also be truly smaller, and we often find it necessary to
use our notation to emphasize this. We say that A is a proper subset
of Bif A € Band A # B, and we will write A C B.

Showing that a set A is contained in another set B turns out to be
one of the most important tasks in mathematics. One way to show
that a set A is contained in a set B is to do exactly what the definition
says; take an arbitrary element of the set A and then show that this
element is in set B.

FIGURE 6.1 A CB
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Example 6.5.
In Exercise 6.3 we used two sets, Sand T, where S = {2n+1 : n € Z}
and T = {s? : s € S}. Show that T C 8. Is T a proper subset of S?

Remember, to prove set inclusion we have to take an arbitrary
element in the set T and then show that this element is in the set
S. So, for our proof of containment, we will begin with x € T, and
attempt to end our proof with x € 8.

As we will see in future chapters, we can often devise a plan for
a proof of this type by writing out what we know (x € T) at the top
of the page, and what we want to show (x € §) at the bottom. You
have probably attempted proving things this way before: you work
from the top down, and from the bottom up. So our plan might look
like

xeT,
large space

x € 8S.

But x € T means that x = s> for some s € S, and x € S means that
x = 2n + 1 for some n € Z. So our plan (a few minutes later) might
look like

xeT,
x =s*, for some s € S,
smaller space
x=2n+1, forsomen € Z,

x e S.

We keep filling things in, making sure that each line follows logi-
cally from the previous one, until we see how to complete the proof.
Here's what we end up with.
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Proof.

(Inclusion) Letx € T. Thenx = s* for some s € S. By the definition of
S, there exists n € Z such thats = 2n+1. Hence x = s* = (2n+1)* =
an* 4+ 4n+1=22n*+2n)+ 1. Now let m = 2n* + 2n. Then m € Z
and x = 2m + 1. Therefore x € S. Thus T C S, as desired.

(Proper subset) In fact, T is a proper subset of S. To show this we
need to exhibit an element that is in S, but not in T. Consider the
number —1. Then —1 = 2(—1) 4+ 1 and —1 € Z. Thus, —1 satisfies
the defining property for S, so —1 € S. On the other hand, the ele-
ments of T are squares of real numbers. Consequently all of them
are nonnegative. Hence —1 ¢ T, and the inclusion is proper. |

If you remember the result of Problem 3.1, then you know that
you already showed that s? is odd if and only if s is odd. If you refer
the reader to this result (carefully referencing it, so the reader can
find it easily) you can significantly shorten the proof of inclusion.
Given two proofs written with equal clarity and insight, most people
will prefer the shorter of the two. If the reader remembers the result,
reading it again may detract from the proof. So, as long as you tell
the reader what you are using and where to find it if he or she needs
to, you can (and should) refer to previous results. @)

We now return to the subject of this chapter. Notice that we just
told you how to show that a set A is contained in a set B. All you need
to do is show that for all x, if x € A, then x € B. So we also just told
you how to show that A is not contained in B—negate the definition
of containment.

Exercise 6.6.
Negate the statement: “For all x, if x € A, then x € B” O

Two sets are equal if they have precisely the same elements. This
can be defined a bit more formally as follows. A set A is equal to B,
written A = B, if A C Band B C A. To show that two sets are equal is
therefore a two step task: First you show that one set is contained in
the other (A C B). Then you reverse the order of the sets and show
inclusion again (B C A).



68 6. Sets

Note that when A is a subset of B we use the symbol €, but when
x is an element of A we use the symbol €. Choose your symbols
carefully and don’t mix them up! If x is not in A, then we write
x ¢ A.If A is not a subset of B, then we write A  B.

Exercise 6.7.
Write a definition of set equality that reverts back to membership in
a set, rather than set containment. O

Example 6.8.
Show that {x e R: x> —1 =0} = {1, —1}.

According to the definition of equality above, we have to show
two separate things. The first is to show that the set on the left is
contained in the set on the right. For this part of the proof, we will
begin with an arbitrary elementy € {x € R : ¥ — 1 = 0} and we will
try to show that y = 1 or y = —1. Then we must show that the set
on the right is contained in the set on the left. So for this part, we
will begin with y = 1 or y = —1 and try to show that it is in the set
on the left.

Proof.
Ifye {x e R:x*~1=0},then0 = y*—1 = (y—1)(y+1). Hencey = 1
ory=—1,andy € {1, —1}. Therefore, {x € R: x> —1 =0} C {1, —1}.
Now if y € {1, —1}, theny = 1 or y = —1. In either case we get
y>»=1 Hencey’ —1=0andy € {x € R: x> —1 = 0}. Therefore
{1,-1}C{xeR:x*—1=0}.
By the definition of equality of sets, {x € R : x> — 1 = 0} =
{1,-1). n

Exercise 6.9.

Let A = {1,3,5},B = {3,4,6},C = {5}, and D = {1, 3}. Which sets
are subsets of the others? For which sets S do we have 1 € §? 1 € S?
Which sets are not subsets of each other? @)

Theorem 6.10.
Let A be a set. Then ) C A.
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Proof.

We must show that for every x, if x € J, then x € A. Since there
are no elements in the empty set, the antecedent is always false.
Therefore the implication is always true, completing the proof. M

We will now present a list of very important definitions, using
two sets, A and B, to create other sets. Some examples will be pre-
sented (briefly) here, and more can be found in the exercises. In
what follows, we assume that all variables x belong to a universe, X.

The union of A and B is denoted A U B and is defined by AUB =
{x : x € A orx € B}. For example, if A is the set of even integers, and
B is the set of odd integers, then A UB = Z.

The intersection of A and BisANB = {x: x € A and x € B}.
If A and B are two sets such that A N B = J, then we say that A and
B are disjoint. For example, if A is the set of even integers and B is
the set of odd integers, then A and B are disjoint.

The set difference of Bin Ais A\B={x € A :x & B}, A
comment is in order here. We can never look for objects “not in B”
unless we know where to start looking. So we use A to tell us where
to look for elements not in B. If A is the universe, we will write B° for
A\ B. This is referred to as the complement of B. For example, let
A be the set of integers. If B = Z", then A \ B is the set of elements
of A (integers) that are not in B (that are not positive integers). Thus
A\B = {x € Z : x < 0}. On the other hand, if A = N, then A\ B = {0}.

It is possible to visualize these sets using a representation called
a Venn diagram. These diagrams are often helpful in sorting out the
relationship between sets. The universe is usually indicated by a
rectangle containing the sets. The idea is illustrated in Figures 6.2
and 6.3.

But be careful—pictures can be deceiving. Use the Venn diagram
to get your intuition going, but check everything carefully using the
techniques we have developed thus far.

Exercise 6.11.

Use the sets in Exercise 6.9 to answer the following questions: What
is A\B? A\C? Which sets are disjoint? If the universe is {1, 2, 3, 4, 5, 6},
what is A°? Find A U B and A N B. @)
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FIGURE 6.2 AUBand ANB

FIGURE 6.3 A\ B and A°

Exercise 6.12.

Write a definition of union for three sets. Write a definition of inter-
section for three sets. Can you write a definition of set difference for
three sets? Why or why not? O

Solutions to Exercises

Solution to Exercise (6.1).
Here is the answer to (b): The universe is the set of all real numbers.
The defining property is “x € R\ Q”

Solution to Exercise (6.2).
(a) The adjective “pretty” is subjective and it is unclear whether a
person from Luxembourg is a member of the set C or not.
(b) Consider the following question: Is the collection D an element
of D or not? If it is an element of D, then it must satisfy the
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defining property, which says that D is not an element of D;
in other words, in this case it would have to be both in the set
and not in the set. On the other hand, if D is not an element of
the collection D, then it does just what the defining property
says. Thus it must be in the set D; in other words, in this case
it would have to be both in the set and not in the set. Hence,
this property is contradictory.

Solution to Exercise (6.3).
We can write T' = {x € Z : x = (2n + 1)* forsome n € Z} and
S={2n+1:neZ}.

Solution to Exercise (6.4).
Let A be the set of nonzero integers.

(a) A={xeZ:x#0}

(b) Let x and y be elements of A. Then x x y = 2xy. Since x, y, and
2 are all integers, x x y € Z. Furthermore, since x and y are
elements of A, they are nonzero. Therefore x x y = 2xy # 0.
Consequently x xy € A, as desired.

(c) This is false. Suppose to the contrary that there were such an
elementyin A. Then xxy = x for every x € A. Choosingx =1,
we see that 1 = 1 xy = 2(1)(y) = 2y. The only solution to this
equation is y = 1/2, which is not an integer and therefore not
an element of A. This contradiction shows that no such y can
exist.

Solution to Exercise (6.6).
The negation is “There exists an x such that x € A and x ¢ B’

Solution to Exercise (6.7).
Two sets A and B are equal if for all x we have x € A if and only if
X € B.

Solution to Exercise (6.9).

The following statements hold:
CCAand D C A;
no other sets are subsets of each other;
le A,1eD,1¢B,and1 € C.
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Solution to Exercise (6.11).

The following statements hold:
A\B={1,5}, A\ C=1{1,3});
sets B and C are disjoint, and sets C and D are disjoint;
if the universe is as given, then A° = {2, 4, 6};
AUB=1{1,3,4,5,6}, and ANB = {3}.

Solution to Exercise (6.12).

Let A, B, and C be sets and let the universe be denoted by X. Then
AUBUC={xeX:x€eAorxeBorxeClandANBNC ={x €
X :x € A and x € B and x € C}. While the union and intersection of
three sets makes sense, the set difference of three sets does not. In
order to answer this question, we would need to reduce it to a set
difference of two sets by including parentheses. For example, you
can define the following set differences: (A \ B) \ C and A \ (B \ C)
(try it!). Work out what these last two sets are when A, B, and C are
as in Exercise 6.9.

Spotlight: Paradoxes

You may already have seen paradoxes in mathematics. For example,
you may have seen Zeno'’s paradoxes in your calculus class. Another
well-known paradox comes from the following: what is the sum of

1—1+1—141—---?

You might argue that this sum should be (1 —=1)4+ (1 —-1)+---=0.
Or, you might just as well argue that this sum should be 1 4 (=1 +
D+ (—1+1)+--- = 1. You might even argue (as Luigi Guido Grandi
did [23, p. 135]) that since the sums 0 and 1 are equally probable,
the answer should be the average of 0 and 1; in other words, 1/2.
This paradox forces us to look closely at exactly what we mean by
summing infinitely many numbers.

Betrand Russell pointed out a paradox in set theory. He also pre-
sented a popular form of this paradox, called the barber problem.
The problem is the following. Suppose there is a town with one
barber, and this barber says that he shaves those people, and only
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those, who do not shave themselves. The question is: Who shaves
the barber? (You'll recognize the set theoretic form of this problem
in Exercise 6.2.)

Paradoxes serve a very useful purpose. They point out where
the foundations of mathematics are shaky (or even faulty!). To learn
more about them, and how they have been handled, we recommend
reading [22, Chapter 15], [46, Chapter 18], or [48, Chapter 51].

Problems

Problem 6.1.
Recall that N denotes the set of natural numbers, Z the set of integers,
and R the set of real numbers.
(a) Write the phrase “x belongs to R” in symbols.
(b) Write the phrase “Z is a proper subset of R” in symbols.
(c) Write the phrase “If x is an element of Z, then x or —x is an
element of N” in symbols.
(d) Use set notation to describe the set of squares of all multiples
of 3.

Problem 6.2.
In this problem our universe is R, the set of real numbers.
(a) Give an example of subsets A and B of R that are disjoint.
(b) Give an example of subsets A and B of R that are not disjoint
and find A\ Band B\ A.
(c) Give an example of subsets A and B of R such that A C B.
(d) Give an example of subsets A, B, and C of R such that AU (BN
C)# (AUB)U(AUQ).

Problem 6.3.

The universe in this problem is R. Let A be the closed interval [0, 2]
and let B be the closed interval [—1,1]. Find A \ B, B\ A, A¢, B,
A°NB° (AUB), and (A UB).
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FIGURE 6.4

Problem 6.4.
Find an expression for each of the shaded sets in the Venn diagrams
of Figure 6.4

Problem 6.5.

(a) Comnsider the set S of nonzero real numbers. Write S in set
notation.

(b) Define a new “multiplication” on this set by xQy = x/y. If
x,y € 8§, is xQy € 8? Is there an element y € S such that
xQy = x forall x € §?

(c) Repeat parts (a) and (b), replacing the set S by the set T of
negative real numbers.

(d) Repeat parts (a) and (b), replacing the set S by the set V' of
nonzero rational numbers.

Problem 6.6.
Define two sets A and B as follows: A = {2n + 1)* : n € Z} and
B={2n+1:n¢€Zj.
(a) Prove that A C B.
(b) Suppose we redefine A and B, replacing Z by R; in other words,
A={2n+1)P®:neR}and B= {2n+ 1 : n € R}. What is the
relation between these two sets? State and prove your answer.

Problem 6.7.
Find an expression for each of the shaded sets in the Venn diagrams
of Figure 6.5.

Problem 6.8.
Is the following statement true or false: {#} = #? Why?
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FIGURE 6.5

Problem 6.9.
Let A = {x € Z : 6 divides x}, B = {x € Z : 21 divides x} and
C = {x € Z : 42 divides x}. Prove that AN B = C.

Problem 6.10.
Let A={xy) eR*:x—y =0}, B={(xy) € R*: x+y =0} and
C={xy) € R?:x* —y* = 0}. Prove that AUB = C.

Problem 6.11.
LetA=Z,B={xeZ:x=2n+5forsomeneZ}andC={x€Z:
x = —2m for some m € Z}. Prove that A \ B = C.

Problem 6.12.
Let S be the set of nonzero real numbers. Define a new “addition”
on this set by x f y = x + y + 1. Suppose you add two numbers in
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S, do you end up with a number in S? (In other words, if x,y € §, is
xgyes?

Problem 6.13.
Prove that A = B in each of the following.
(a) Let A and B be the sets defined by A = {x € R : sin(wx) = 0}
and B=7Z.
(b) Letx € R. Define the sets A and Bby A = {(ax + D)/(cx + 4d) :
a,b,c,d € Zandcx +d # 0} and B = {(px + q)/(rx + s)
p,q,7,8 € Qand rx 4+ s # 0}.

Problem 6.14.
Let A = {x € R : ax? + bx + ¢ = 0 for some integers a, b, and ¢, with
at least one of a, b, c nonzero} andlet B={x e R: px* +gx+7r =0
for some rational numbers p, q, and r, with at least one of p,q,r
nonzero}.

(a) Prove that 2 € A.

(b) Prove that v/2 € A.

(c) Give an example of a real number y such that y € A. (You do

not need to prove thaty ¢ A.)
(d) Prove that A = B.
(e) Prove that Q C A.

The following problems deal with sets of points in the plane. We
remind you of the notation introduced in Chapter 4. The set of all
points in the plane is denoted by R? = {(¥,y) : x,y € R}. These types
of sets will be studied in more generality in Chapter 9.

Problem 6.15.
Define a set A by A = {(x,y) € R* : y # 0}.
(a) Give a geometric description of A.
(b) Suppose we tell you that if you have two elements of this set
A, you can “add” them according to the following rule:

(%Y ©(z,w) = (xw + zy, wy).

The symbol 4+ here denotes usual addition. Show that the object
that results when we add two elements of our set A is again an
object in our set A.
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(c) Continuing, find an element (a, b) in A such that (a, b)o(x,y) =
(x,y) for every (x,y) in A.

(d) This “new” addition probably looks somewhat odd to you, but
you have seen it before. What is it?

Problem 6.16.
In each part of this problem, two sets, A and B, are defined. Prove
that A € B in each of the following:
(a) A={x* :x€Z})and B=7;
(b) A=Rand B={2x : x € R};
(©) A={xy € R* :y=(5-23x/2}and B = {(»,y) € R?
2y + 3x = 5}.

Problem 6.17.
Prove that one set is a proper subset of the other one in each of the
following:
(@) A={(xy) €R? :xy > 0}and B = {(x,y) € R* : ¥* +y* > 0};
(b) A=@and B={(x,y) € R* : ¥* +y* < 0}.

Problem 6.18.
Are the sets
{(x,y) € R? . x* +y2 <1} and {(x,y) € R? . x| + |y <1}

equal? Justify your answer.



Operations on
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CHAPTER

By an operation on sets we mean the construction of a new set from
the given ones. As we saw in the last chapter, these new sets may be
formed using unions, intersections, set differences, or complements
of given sets. In this section, we will look at many important prop-
erties of operations on sets. We end the chapter with a summarizing
list of identities. In the exercises and problems you will be given
the opportunity to prove the most important ones and then commit
them to memory, so you don’t have to re-prove them every time you
need them.

The Venn diagrams introduced in the previous chapter can be
helpful in deciding what is true and what is false, and they can be
part of understanding the problem. All we ask is that you continue
to bear in mind that a Venn diagram never constitutes a proof. When
you prove these properties you may not always need to start from
the definition. Sometimes you can use what you know, and once
you have proven everything in Theorem 7.4, you will know a lot.

The first theorem is a good example of a proof in cases. It keeps
things tidy. Now remember, if we use the definition to show two sets
A and B are equal, then we must show that if x € A, then x € B and
ifx € B, then x € A.

79
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Theorem 7.1 (The distributive property).
Let A, B, and C be sets. Then AU (BN C)=(AUB)N(AUDQ).

Before reading the proof, let’s use Pélya’s method.

“Understanding the problem. Draw two Venn diagrams represent-
ing the left and right sides of the equality above. Each diagram will
have three sets, appropriately labeled A, B, and C. Shade in the area
described by the left side of the equation in one diagram and then
shade the right side in the other diagram. They should look the same.
While this should convince you that you are on the right track, it is
not enough to convince someone else.

“Devising a plan! We wish to show that two sets are equal. Using
the definition of equality of sets, we know that we must show two
things. The first thing to show is that AU(BNC) S (AUB)N(AUC).
So our first line will begin

Ifxe AU(BNC),
and our last line (for this part of the proof) will look like
Thusx € (AUB)N (A UC).

Now we just have to figure out how to get from the first line to the
last one. Let’s fill in some things, making sure that each line follows
logically from the previous one. Working down from the top we get

x€AU(BNC),

xeAorxe BNC,
and working up from the bottom leads to

xe AUBandxe AUC,

x€(AUB)N(AUC).

Looking at what we are missing in our proof suggests that we use a
proof in cases; one that depends on whether x € A orx € BN C.
Once we are done with the proof above, we must show that (A U
B)N(AUCQC) € AU (BNC). We use the same method to devise our
plan for a proof of this set containment: We write down our first line
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and look to see where it takes us. Then we'’ll write down our last line
and try to figure out how to get there. That leads to

xe(AUB)N(AUCQ),
xe AUBandx € AUC,
[stuff]
xe Aorxe BNC,

x€AU(BNC).

It looks like if x € A, we have our proof. But what if x & A? This
again suggests a proof in cases; one that depends on whether x € A
or x € A. If you see what to do now, you can write up the proof. If
you still do not see what to do, continue using this method until you
see the solution.

Once you see the solution, fill in the missing steps and write the
proof up carefully using complete sentences, as we do below.

Proof.

Ifx e AUBNC), thenx € A or x € BN C. Suppose first that
x€ A. Thenx € AUBand x € A UC. In this first case, we see that
x € (AUB)N (A UQC). Now suppose that x € BN C. Then x € B and
x € C. Since x € B, we see that x € A U B. Since we also have x € C,
we see that x € A U C. Therefore, x € (A U B)N (A U Q) in this case
as well. In either case x € (A U B) N (A U C) and we may conclude
that AU (BN C) C (AUB)N(AUC).

To complete the proof, we must now show that (AUB)N(AUC) C
AU(BNC).Soifx € (AUB)N(AUC), thenx € AUBandx € AUC.
It is, once again, helpful to break this into two cases, since we know
that eitherx € Aorx € A. Nowifx € A, thenx € AUBNC). Ifx € A,
then the fact that x € AU B implies that x must be in B. Similarly, the
fact that x € A U C implies that x must be in C. Therefore, x € BN C.
Hence x € AU (BN C). In either case x € A U (BN C) and we may
conclude that ( AUB)N(AUC) S AU (BNC).

Since we proved containment in both directions we may
conclude that the two sets are equal. |
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Look at the proof above. It has complete sentences, variables are
identified, we know when we are in one case and then the other,
and we know when the proof is complete. You should use the form
as a model, but remember that each proof will be unique.

We now come to our first proofinvolving an “if and only if” state-
ment. Remember that an “if and only if” statement requires that you
prove both the “if” and the “only if”

Theorem 7.2.
Let A and B be sets. Then AUB = A ifandonly if BC A.

Proof.

First we'll show thatif AUB = A, then B C A. So assume AUB = A.
If x € B, then x € A U B. Using the assumption that AUB = A we
have x € A. This shows that B C A.

Now we will prove that if B € A, then A UB = A. So let us
assume that B € A. We must show that AUB C Aand A € AUB. To
prove the first containment, we have that ifx € AUB, then x € A or
x € B. If x € A, then x is where it needs to be and we have nothing
more to prove. If x € B, then we use the assumption that B € A
to conclude that x € A. In either case we get x € A and therefore
have A U B C A. To prove the second containment, let x € A. Then
x € AUB and we conclude that A € A U B. Together we have proven
that AUB = A. |

The structure of the proof of Theorem 7.2 is more complicated
than the proof of the distributive property. First, as we said above,
there are two things to prove: the “if” and the “only if” Next, both
of these statements have hypotheses and conclusions. In each case,
you must be aware of what you are assuming and what you are prov-
ing. What's even more important, though, is that you use what you
are assuming to get to your desired conclusion. If you don’t use your
assumption, either your original statement was poorly constructed,
you proved more than you thought you did, or your proof was in
error. In fact, in the proof above, we did not use our assumption that
B C A to prove A € A U B. Did we make an error, or did we prove
more than we said we did?
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Now that you have seen two examples of how to write such a
proof, it is time for you to try it by yourself. Try proving one of the
two DeMorgan's laws below.

Exercise 7.3.
Let A and B be subsets of the set X. Then

X\ (AUB)=(X\A)N(X\B).

(a) Devise your plan. (Include a Venn diagram.)
(b) Write up your proof. O

We now give the promised list of some of the properties of set
operations. We proved three of them above. In the problems you will
be asked to work more of the proofs.

Theorem 7.4.
Let X denote a set, and A, B, and C denote subsets of X. Then
1. WCAandA C A.

(A9)F = A.
AUG=A,
ANP=0.
ANA=A.
AUA=A.

A NB = BNA. (Commutative property)
A UB = BUA. (Commutative property)
(AUB)UC = AU (BU Q). (Associative property)
(ANB)NC = AN (BN C). (Associative property)
. ANBCA.
12. AC AUB.
13. AU(BNC) = (AUB)N (AU Q). (Distributive property)
14. AN(BUC) = (ANB)U(ANQC). (Distributive property)
15. X\ (AUB) = (X \A)N (X \ B). (DeMorgan’s law)

(When X is the universe we also write (A U B)® = A° N B.)
16. X\ (ANB) = (X \A)U (X \ B). (DeMorgan’s law)

(When X is the universe we also write (A N B)° = A° U B°.)
17. A\B=ANB°.

© NSOk W
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18. A C Bifandonly if (X \ B) C (X \ A).

(When X is the universe we also write A C Bif and only if B C A°.)
19. AUB=Aifandonlyif BC A.
20. ANB=Bifandonlyif BC A.

Many results can be proved using the methods demonstrated
thus far in this chapter. Once you have proven these statements,
though, it is a good idea to use them in other proofs. Practice using
the results in Theorem 7.4 in the next exercise.

Exercise 7.5.
Let A, B, and C be sets. Prove the following using relevant statements
from Theorem 7.4: If C° C B, then (A\ B)UC = C. O

Solutions to Exercises

Solution to Exercise (7.3).
First we show that

X\ (AUB)C (X\A)N(X\ B).

Ifx €e X\ (AUB), then x ¢ AU B. Therefore x ¢ A and x ¢ B.
Consequently, x € X\ Aandx € X \ B. Thusx € (X \ A) N (X \ B).
We conclude that X \ (AUB) € (X \ A)N (X \ B).

We now show that

(X\A)N(X\B)C X\ (AUB).

Ifxe (X\A)N(X\B), thenx € X\ Aandx € X\ B. Thus, x € X
andx € A, andxe Xandx ¢ B.So, x € X and x € A and x &€ B. This
implies that x € X and x € A U B. Therefore, x € X \ (A U B), and we
see that (X \ A)N (X \ B) € X \ (A UB). Thus, the two sets are equal.

Solution to Exercise (7.5).

Since C° C B, statements 18 and 2 of Theorem 7.4 imply that B¢ C C,
and thus B U C = C by statement 19 of the same theorem. The
rest of the proof now follows from the following string of equalities
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(numbers indicate the relevant statements from Theorem 7.4):

(A\B)UC = (ANB)UC (by 17)
= (AUC)N(B°UC) (by 8 and 13)
= (AUuC)NC (since B° U C = C as shown)
= C (by 8, 12, and 20).
Problems

In all the problems below, X denotes a set; A, B, and C denote subsets of
X.

Problem 7.1.
In this problem we refer to statements of Theorem 7.4.
(a) Prove statement 2.
(b) Prove statement 14.
(c) Prove statement 16.
(d) Prove statement 18.
(e) Prove statement 20.

Problem 7.2.
Prove that ANB =@ ifand only if B C (X \ A).

Problem 7.3.

Prove that A = B if and only if (X \ A) = (X \ B). Make sure you
use statements from Theorem 7.4 rather than going back to the
definition.

Problem 7.4.

Prove the following using the results stated in Theorem 7.4:
(a) (AUB)NB =B;
(b) (ANB)UB = B.

Problem 7.5.
Prove that (A UB)\ (A NB) = (A \ B)U(B\ A).
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Problem 7.6.
Sketch Venn diagrams of the set on the left and the set on the right
side of the equation

(A\(BNC)U(B\C)=(AUB)\ (BNC).

Once you have done that, prove that the equality above holds.

Problem 7.7.
Consider the following sets:
(i) A\ (AUBUOC),
(i) A\ANBNC,
(iii) ANB° NC,
(iv) A\ (BUC), and
(V) (A\B)N(A\O).
(a) Which of the sets above are written ambiguously, if any?
(b) Ofthe ones that make sense, which of the sets above agree with
the shaded set in Figure 7.1?
(c) Prove that A\ (BUC)=(A\B)N(A\C).

Problem 7.8.

Consider the following sets:
(i) (ANB)\ (ANBNC),
(i) ANB\ (ANBNOQ),

(iii) ANBNC,

(iv) (ANB)\ C, and
() (A\C)N(B\ C).

(a) Which of the sets above are written ambiguously, if any?

./
\/

FIGURE 7.1
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VaV
\/

FIGURE 7.2

(b) Of the sets above that make sense, which ones equal the set
sketched in Figure 7.2?
(c) Prove that (ANB)\C=(A\C)N(B\ ).

Problem" 7.9.
In this problem you will prove that the union of two sets can be
rewritten as the union of two disjoint sets.

(a) Prove that the two sets A \ B and B are disjoint.

(b) Prove that AUB = (A \ B)UB.

Problem 7.10.
Prove or disprove: f AUB = A UC, then B=C.

Problem 7.11.
Prove or give a counterexample for the following statement.

Let X be the universe and A, BC X. If ANY = BN Y for all
Y € X, then A = B.
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CHAPTER

Most of what we did in the last two chapters was concerned with
operations on two sets. In Exercise 6.12 we defined unions and in-
tersections of three sets. In general, we may have two or three sets,
as many sets as there are integers, or even more sets than that.
We'll need a new definition and special notation. In this chapter,
we will introduce the notation that will allow us to keep track of
these sets. Unfortunately, a rigorous definition will have to wait until

Chapter 13.
Let n be a positive integer and suppose that we have sets
Aq,Ay, ..., A,. How can we talk about the union of these n sets?

the intersection? For example, when we have three sets, if we write
Ule Aj = Ay UAy; U A3 we would be referring to the set of x in our
universe that lie in at least one of our sets, A;, A,, or As. Of course,
there is nothing special about three sets; that is, for every positive
integer, n, we can write

n n
UA]-:AIUAZU---UAH and ﬂAjzAmAzﬂ---ﬂAn-
j=1 j=1

The first set would be the set of all x in the universe that lie in at least
one of the A; forj = 1,2,...,n, while the second would be the set

89
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of x that lie in all of the sets A;. If we have a set A; for each positive
integer j and we want to take the union and intersection over all
positive integers, then we write

00 [e.¢]
UAj=A1 UA,U--- and mAj=A1ﬂAzﬂ”'-
j=1 j=1

This is probably a good time to look at some examples.

Example 8.1.

We can write the union in different ways. For example, Ujlil[O, jl=
[0, 1]U[0, 2]U- - -U[0, 10] = [0, 10]. Similarly, ():2,[0, 7] = [0, 1]N[0, 2]
...N[0,10] = [0, 1]. O

In Example 8.1, we had unions and intersections of finitely many
sets (ten, to be precise). We now take alook at what can happen when
we take unions and intersections of even more sets.

Example 8.2.
(a) For each g € Z* define the set A, = {p/q : p € Z}. These sets
can be used to define the union quZ+ Ay.
(b) This time we define, for each i € N, the set B; = {p/3',p € Z}.
These sets may be used to define the intersection ),y Bi. O

Exercise 8.3.

Write the sets Ufil[j,j +1]and ﬂ]oil [/,7+1]in their simplest form, by
listing the first few sets in the union or intersection until the pattern
is established, and then stating your guess. (You don't have to prove
that your guess is correct.) O

Sometimes we do not know how many sets we have. While this
may seem odd, it happens all the time. So suppose we have a set I,
and suppose further that for each « € I there is a set A, correspond-
ing to it. The set I is called an index set, each o € I is called an
index, and the set {A, : « € I} is called an indexed family of sets.
We may also write {Ay}eer, and we will often refer to {Ay}eer as a
collection of sets or a family of sets.
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We are now ready for the general definition of a union and in-
tersection of sets. Let X denote our universe and let {A, : « € I} be
a family of sets with A, € X for all @ in an index set I. Then the
union of the family {A, : « € I} is defined by

UAO,Z{XEX:XEAW for some « € I},

a€el
and for I # @, the intersection of the family {A, : « € I} is defined
by

ﬂAaz{xeX:xeAaforallael}.

ael

Exercise 8.4.
Find the simplest way to describe the following sets (you may find
sketches helpful):

@) Uler+(0,%);

Cb) UneN[OV Vl];

(C) mnGN[OV Vl]. O

Note that the index notation and the general definition of union
and intersection given here include the cases in Chapter 6 and the
ones we mentioned in the beginning of this chapter. For instance, if
I=1{1,2}, then (., A; = A} N A,.

Some more practice with this notation will probably be very
helpful at this point.

Exercise 8.5.
(a) Write Ujoi 0[0,7] using an appropriate index set.
(b) Write Uj’jl(o, j) using an appropriate index set. O

Some sets are more easily described with index notation, oth-
ers without such notation. Let's go back and look at the sets in
Example 8.2.

Example 8.6.
Consider the family of sets {A,},ez+ defined in Example 8.2 (a). Then

LquZJr Aq = Q
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Proof.

Ifx € J,ez+ Ag, then x € A, for some g € Z*. Therefore, there exist
q € Z* and p € Z such that x = p/q. Consequently x € Q, and we
have shown that |+ A4 € Q.

Conversely, if x € Q, then x = p/q for some p, q € Z with q # 0.
Now (for reasons that you will explain) we may choose g so that
g > 0. For this ¢ we have g € Z" and therefore x € A,. Hence
X € quZ+ Ay.S0,Q C quz+ Ay, and therefore quZ* A, =Q. [ |

Example 8.7.
Consider the family of sets {B;}ieny defined in Example 8.2 (b). We
claim that (,.y Bi = Z.

Proof.
If x € (),ey Bi, then x € B; for all i € N. In particular, x € By. Hence
x =p/3" = p for some p € Z. So x € Z, and therefore (). Bi € Z.
Now let x € Z. For each i € N, we may write x = (3'x)/3". Of
course, 3'x € Z, since x € Z. Hence x € B; for all i € N. This shows
that x € [,y B: and therefore Z C ();cy Bi-
Combining the two arguments we obtain the desired equality,
mieN B =Z. u

Exercise 8.8.

What's the difference between “an infinite union of sets” and “a
union of infinite sets”? Give an example of each, showing how these
two phrases differ. (While we haven't given a rigorous definition of
infinite here, your intuition should suffice to solve this problem.)O

You already know that one of DeMorgan’s laws for two sets can
be stated as

X\ (AUB)=(X\A)N(X\B).

This can be rephrased in words as “the complement of a union is the
intersection of the complements” DeMorgan’s laws do not depend
on the number of sets that we have, and that is the point of the next
exercise.
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Exercise 8.9.

Show that the general DeMorgan’s laws hold: For every universe X,
index set I, and indexed family of sets {A, : « € I}, we have

(H X\ UaEI Ag = maeI(X \ Ay) and

(i) X'\ mael Ag = UaeI(X \ Ag). O

Exercise 8.10.
Suppose A, C B for each « € I. Show that | J,.; Ae € B. O

Solutions to Exercises

Solution to Exercise (8.3).
YoucanseethatU U+ 1]=1[1,2]U[2,3]U[3,4]U--- =[1,00)
and 2,7,/ +1]=[1,2]N[2,3]N[3,4]N--- =¥

Solution to Exercise (8.4).
You can check the following:
(@) Uxe]R*(Or x) = (0, 00);
(0) Upenl0, 1] = [0, 0);
(©) (Mnenl0, ] = {0},

Solution to Exercise (8.5).
You can check the following:
@) UZol0,7] = Ujenl0, 71;
(b) UJ21(O;j) = U)’EZ‘*‘(Orj)'

Solution to Exercise (8.8).

An infinite union of sets would mean that we take the union over
infinitely many sets (but the sets themselves may be finite); in other
words, the index set is infinite. For example, |, cx{n} would be an
infinite union of (finite) sets. On the other hand, a union of infinite
sets would mean that the sets themselves must be infinite (while the
index set may be finite). For example, the union of the even integers,
27, with the odd integers, 2Z + 1, would be a union of two infinite
sets.
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Solution to Exercise (8.9).
We will show part (i) and will leave part (ii) for you to do. So we need

to show that
X\<UAW) =X\ Ax).

o€l a€El

Ifx € X\ (Uyes Aa), thenx € X and x € |J,.; Aq. By the definition
of union this means that x € X and x ¢ A, for every o € I. Hence,
x € X\ A, for all @ € I, and therefore x € (),;(X \ Ay). Thus,
X\ User Aa) € Naer (X \ A).

Now if x € (,;(X\Aq), then x € X\ A, forall « € I. This implies
thatx € X and x & A, forevery @ € I. Hence x € X and x & | J,.; Aa.
It follows that x € X\ (U,¢; Ao) and thus [),c;(X\Aa) € X\(Uyes Aa)-

The two subset relations give the desired equality between the
sets.

Solution to Exercise (8.10).
If x € U, Aq, then there exists ag such that x € A,,. Since we
suppose that A,, € B, we know that x € B. Thus | J,., A¢ € B.

Problems

Problem 8.1.
Consider the intervals of real numbers given by A, =[0,1/n), B, =
[0,1/n], and C, = (0, 1/n).

(a) Find 52, An, Un, By, and (52, Ch.

(b) Find (72, An, (ol Bry and (2, Cu.

(c) Does |,y Arn make sense? Why or why not?

Problem 8.2.
If Ay = [—%, %], find ,cp+ Ax and [),cp+ Ax

Problem 8.3.
Find simpler notation for the two sets

a=Jij+11  and  B=[R\Gj+D).
j=0

JEZL
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Problem 8.4.
Prove or give a counterexample: Let {A,, : n € Z*} and {B,, : n € Z}
be two indexed families of sets. If A, C B, for all n € Z*, then

o.¢] o.¢]
() 4n C[)Bn.
n=1 n=1
(Recall that A C B means strict inclusion; thatis, A € Band A # B.)

Problem 8.5.
Let {A, : r € R} and {B, : r € R} be two indexed families of sets.
Prove that

<ﬂAr> U (ﬂ Br> C ﬂ(AV U B,).

reR reR reR

Provide an example showing that this inclusion can be proper.

Problem" 8.6.
Let {Ay : @ € I} be an indexed family of sets, and let B be a set.
(a) Prove the distributive property:

(UAD,) ﬂB:U(AaﬂB).
ael ael

(b) State and prove a distributive property for ([ ,o; A«) U B.

ael
Problem" 8.7.
Suppose that {A, : @ € I} is an indexed family of subsets of a set X,
and that B is a subset of X.

(a) If A, = ¥ for some « € I, prove that [),.; A« = 9.

(b) If A, = X for some « € I, prove that | J,.; Ae = X.

(c) If BC A, for every a € I, prove that B C (),; Aa-

Problem 8.8.
Define

A=R\ [ ®R\{-n,-n+1,...,0,...,n—1,n)).
neZt

The set A should be familiar to you. Guess what it is and then prove
that your guess is correct.
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Problem 8.9.
Guess a simpler way to express the set A defined as

A=Q\[ R\ {2n},

nez

and then prove that your guess is correct.

Problem 8.10.
Suppose that X is a set with more than one element. Wha