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Preface

You are probably about to teach or take a “first course in proof
techniques,” or maybe you just want to learn more about mathemat-
ics. No matter what the reason, a student who wishes to learn the
material in this book likes mathematics, and we hope to keep it that
way. At this point, students have an intuitive sense of why things
are true, but not the exposure to the detailed and critical thinking
necessary to survive in the mathematical world. We have written
this book to bridge this gap.

In our experience, students beginning this course have little
training in rigorous mathematical reasoning; they need guidance.
At the end, they are where they should be; on their own. Our aim
is to teach the students to read, write, and do mathematics inde-
pendently, and to do it with clarity, precision, and care. If we can
maintain the enthusiasm they have for the subject, or even create
some along the way, our book has done what it was intended to do.

Reading. This book was written for a course we teach to first and
second year college students. The style is informal. A few problems
require calculus, but these are identified as such. Students will also
need to participate while reading proofs, prodded by questions (such
as, “Why?”). Many detailed examples are provided in each chapter.
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Prefaceviii

Since we encourage the students to draw pictures, we include many
illustrations as well. Exercises, designed to teach certain concepts,
are also included. These can be used as a basis for class discussion, or
preparation for the class. Students are expected to solve the exercises
before moving on to the problems. Complete solutions to almost all
of the exercises are provided at the end of each chapter. Problems of
varying degrees of difficulty appear at the end of each chapter. Some
problems are simply proofs of theorems that students are asked to
read and summarize; others supply details to statements in the text.
Though many of the remaining problems are standard, we hope that
students will solve some of the unique problems presented in each
chapter.

Writing. The bad news is that it is not easy to write a proof well.
The good news is that with proper instruction, students quickly learn
the basics of writing. We try to write in a way that we hope is worthy
of imitation, but we also provide students with “tips” on writing,
ranging from the (what should be) obvious to the insider’s preference
(“Don’t start a sentence with a symbol.”).

Proving. How can someone learn to prove mathematical results?
There are many theories on this. We believe that learning mathe-
matics is the same as learning to play an instrument or learning
to succeed at a particular sport. Someone must provide the back-
ground: the tips, information on the basic skills, and the insider’s
“know how.” Then the student has to practice. Musicians and athletes
practice hours a day, and it’s not surprising that most mathemati-
cians do, too. We will provide students with the background; the
exercises and problems are there for practice. The instructor ob-
serves, guides, teaches and, if need be, corrects. As with anything
else, the more a student practices, the better she or he will become
at solving problems.

Using this book. What should be in a book like this one? Even a
quick glance at other texts on this subject will tell you that everyone
agrees on certain topics: logic, quantifiers, basic set theoretic con-
cepts, mathematical induction, and the definition and properties of
functions. The depth of coverage is open to debate, of course. We try
to cover logic and quantifiers fairly quickly, because we believe that
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students can only fully appreciate the fundamentals of mathematics
when they are applied to interesting problems.

What is also apparent is that after these essential concepts, ev-
eryone disagrees on what should be included. Even we prefer to vary
our approach depending on our students. We have tried to provide
enough material for a flexible approach.

• The Minimal Approach. If you need only the basics, cover Chapters
1–17. (If you assume the well ordering principle, or decide to
accept the principle of mathematical induction without proof,
you can also omit Chapter 12.)

• The Usual Approach. This approach includes Chapters 1–17 and
Chapters 20–22. (This is easily doable in a standard semester, if
the class meets three hours per week.)

• The Algebra Approach. For an algebraic slant to the course, cover
Chapters 1–17 and Chapters 25 and 26.

• The Analysis Approach. For a slant towards analysis, cover Chap-
ters 1–22. (This is what we usually cover in our course.) Include as
much material from Chapters 23 and 24 as time allows. Students
usually enjoy an introduction to metric spaces.

• Projects. We have included projects intended to let students
demonstrate what they can do when they are on their own. We in-
dicate prerequisites for each project, and have tried to vary them
enough that they can be assigned throughout the semester. The
results in these projects come from different areas that we find
particularly interesting. Students can be guided to a project at
their level. Since there are open-ended parts in each project, stu-
dents can take these projects as far as they want to. We usually
encourage the students to work on these in groups.

• Notation. A word about some of our symbols is in order here. In an
attempt to make this book user-friendly, we indicate the end of a
proof with the well-known symbol . The end of an example or
exercise is designated by ©. If a problem is used later in the text,
we designate it by Problem�. We also have a fair number of “non-
proofs.” These are proofs that are questionable, and students are
asked to find the error. We conclude such proofs with the symbol
�? . Every other symbol will be defined when we introduce you to
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it. Definitions are incorporated in the text for ease of reading and
the terms defined are given in bold-face type.

Presenting. We also hope that students will make the transition
to thinking of themselves as members of a mathematical commu-
nity. We encourage the students we have in this class to attend talks,
give talks, go to conferences, read mathematical books, watch math-
ematical movies, read journal articles, and talk with their colleagues
about the things in this course that interest them. Our (incomplete,
but lengthy) list of references should serve a student well as a start-
ing point. Each of the projects works well as the basis of a talk for
students, and we have included some background material in each
section. We begin the chapter on projects with some tips on speaking
about mathematics.

We hope that through reading, writing, proving, and present-
ing mathematics, we can produce students who will make good
colleagues in every sense of the word.
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1
C H A P T E R

...........................................

The How,
When, and
Why of
Mathematics

What is mathematics? Many people think of mathematics (in-
correctly) as addition, subtraction, multiplication, and division of
numbers. Those with more mathematical training may think of it
as dealing with algorithms. But most professional mathematicians
think of it as much more than that. While we certainly hope that our
students will perform algorithms correctly, what we really want is
for them to understand three things: how you do something, why it
works, and when it works. The problems we present to you in this
book concentrate on these three goals. If this is the first time you
have been asked to prove theorems, you may find this to be quite a
challenge. Not only will you be learning how to solve the problem,
you will also be learning how to write up the solution. The neces-
sary definitions and background to understand a problem, as well as
a general plan of attack, will always be presented in the text. It’s up
to you to spend the time reading, trying various approaches, reread-
ing, and reapproaching. You will probably be spending more time on
fewer exercises than you ever have before. While you are now be-
yond the stage of being given steps to follow and practice, there are
general rules that can assist you in your transition to doing higher
mathematics. Many people have written about this subject before.

1



1. The How, When, and Why of Mathematics2

The classic text on how to approach a problem is a wonderful book
called How to Solve It by George Pólya, [66].

In his text, Pólya gives a list of guidelines for solving mathemati-
cal problems. He calls his suggestions “the list.” We have included the
original in Appendix 28.3. This list has served as a guide for several
generations of mathematicians, and we suggest that you let it guide
you as well. Here’s a closer look at “the list” with some 21st-century
modifications.

First. “Understanding the problem.” Easier said than done, of course.
What should you do? Make sure you know what all the words mean.
You may need to look something up in this book, or you may need to
use another book. Look at the statement to figure out carefully what
you are given and what you are supposed to figure out. If a picture
will help, draw it. Will you be proving something? What? Will you
have to obtain an example? Of what? Check all conditions. Will you
have to show that something is false? Once you understand what
you have to do, you can move on to the next step.

Second. “Devising a plan.” How will you attack the problem? At
this point, you understand what must be done (because you have
completed Step 1). Have you seen something like it before? If you
haven’t looked over class notes, haven’t read the text, or haven’t
done the previous homework assignments, the odds are slim that
you have seen anything that will be helpful. Do all that first. Look
over the text with the problem in mind, read over your notes with
the problem in your head, look at previous exercises and theorems
that sound similar. Maybe you can use some of the ideas in the proof
of a theorem, or maybe you can use a previous homework problem.
Mathematics builds on itself and the problems in the text will also. If
you are truly stuck, try to answer a simpler, similar question. Once
you decide on a method of approach, try it out.

Third. “Carrying out the plan.” Solve the problem. Look at your
solution. Is each sentence true? Sometimes it is difficult to catch an
error right after you have “found a solution.” Put the problem down
and come back to it a few hours later. Is each sentence still true?

Fourth. “Looking Back.” Pólya suggests checking the result and the
argument, or even looking for a different proof. If you are allowed
(check with your teacher), one really good way to check a proof
is to give it to someone else. You can present it to friends. Even if
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they don’t understand a word you are saying, sometimes saying it
out loud in a coherent manner will allow you to recognize an error
you can’t spot when you are reading. If you are permitted to work
together, switch proofs and ask your partner for criticism of your
proof.

When you are convinced that your argument is correct, it is time
to write up a correct and neat solution to the problem.

Here is an example of the Pólya method at work in mathematics;
we will decipher a message. A cipher is a system that is used to hide
the meaning of a message by replacing the letters of the alphabet by
other letters or symbols.

Exercise 1.1.
The following message is encoded by a shift of the alphabet; that
is, every letter is replaced by another one that has been shifted n

places further down the alphabet. Once we reach the end of the
alphabet, we start over. For instance, if n were 7, we would make the
replacements a → h, b → i, . . . , s → z, t → a, . . . . Now the exercise:
What does the message below say?

PDEO AJYKZEJC WHCKNEPDI EO YWHHAZ W YWAOWN
YELDAN. EP EO RANU AWOU PK XNAWG, NECDP?

Let’s use the ideas from Pólya’s list to solve this. If you have
solved problems like this before, it might be a better exercise for you
to try on your own to see how this fits Pólya’s method before you
read on.

1. “Understanding the problem.” Each sequence of letters with no
blank space between the letters represents one word. Each let-
ter is shifted by the same number of places: namely n. So n is the
unknown in this problem and it is what we need to find. Once
we know the value of n, we can decipher the whole message. In
addition, once we know the meaning of one letter, we can find
the value for n.

2. “Devising a plan.” A cipher text may have weak points. What are
these? How about the short words? Looking at the short words, in
some sense, substitutes an easier problem for the one we have.
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3. “Carrying out the plan.” The short words are:

W;
EO (which appears twice);
EP;
PK.

Try using the most common one and two letter words. For each
guess, check the beginning of the cipher text to see if it makes
sense. It shouldn’t take long for you to come up with the message.

4. “Looking Back.” If your solution makes sense, then it is highly un-
likely that a different replacement is also possible. So the solution
is (with high probability) the only one.
Would there have been other solution methods? Sure. For in-
stance, not all letters have the same frequency in the English
language. One analysis of English texts showed the letter e oc-
curring most frequently, followed by (in this order) t, a, o, i, n, s,
h, and r. (See [78, p. 19].) We could have used this information to
guess the assignment of letters.
We also could have simply tried one value of n after another until
the message made sense.

Have you now solved the problem? If you know what the mes-
sage says, then the answer to this question is yes. Are you done?
Unless you solved the problem and wrote up a clear, complete solu-
tion, the answer to this second question is no. A solution consists of a
report that tells the reader how you solved the problem and what the
answer is. This needs to be done in clear English sentences. As you
write up your solution, try to keep the reader in mind. You should
explain things clearly and logically, so that the reader doesn’t have
to spend time filling in gaps. ©

We now move on to a very different kind of example. Consider
the set of points in three-space. In case you haven’t seen this before,
these points are easily described. We take the familiar xy-plane, and
place it parallel to the floor. The z-axis is the vertical line perpendic-
ular to the xy-plane and passing through the origin of the xy-plane
(see Figure 1.1).

We’ll review the important concepts before we begin our
example.



1. The How, When, and Why of Mathematics 5

x
y

z

FIGURE 1.1

To locate a point, we will give three coordinates. The first coor-
dinate is the x-coordinate and tells us the number of units to walk
in the x-direction. The second is the y-coordinate, telling us how to
move in the y-direction and the third is the z-coordinate, telling us
how far, up or down, to move. So a point in three-space is denoted
by (x, y, z). It is important to make sure you understand this. Try to
think of how you would plot points. The point (1, 0, 0) (plotted in
Figure 1.2) would appear one unit in the positive direction on the
x-axis (since it doesn’t move in the y-direction or z-direction at all).
The point (−1, 1, 0) would appear in the xy-plane, one unit back on
the x-axis and one unit in the positive y-direction. Finally the point
(2, −1, 3) is plotted in Figure 1.2.

Let’s go a bit further here. In two-space, what was x � 0? Since y

does not appear in that equation, it is unrestricted and can be any
real number. That’s why x � 0 in two-space is the y-axis. What is
x � 3? It is a line parallel to the y-axis through the point (3, 0). So,
let’s try to generalize this to the situation in three-space. What’s the
plane z � 0? Recall that if a variable doesn’t appear, then it may
assume any value. So this means that z is fixed at 0 while x can
take any value, as can y. Thus, the plane z � 0 is the xy-plane.
Similarly, the yz-plane is the plane x � 0 and the xz-plane is the
plane y � 0. These three planes are called the coordinate planes.
What’s the plane z � 3? x � 2? y � y0? There’s plenty to think about
here, but let’s start by asking what the distance is between two points
in three-space.
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(1,0,0)

(-1,1,0)

(2,-1,3)

x

y

z

FIGURE 1.2

Example 1.2.
Given two points (x0, y0, z0) and (x1, y1, z1) in three-space, what is the
distance between the two points?

We follow Pólya’s method to find the solution.

1. “Understanding the problem.” Before we begin, we make sure we
really understand the meaning of each word and symbol above.
We spent the last few paragraphs making sure we all understand
the symbols, and all the words are familiar ones that appear in
a standard English dictionary. But, wait—has “distance between
two points” really been defined? We need to be sure that everyone
means the same thing by this. The distance between these two
arbitrary points would mean the length of the straight line seg-
ment joining the two points. That’s what we need to find. What
were we given? Two points and their coordinates.

2. “Devising a plan.” How do we solve something like this? We haven’t
covered anything yet, so what can the authors be thinking? If you
have no idea how to get started, try thinking about finding the
distance between two specific points. Of course, (and this is very
important) this won’t give us a general formula because it is much
too specific, but maybe we’ll get some ideas.
So what’s the distance between the two points (1, 0, 0) and
(−1, 0, 0)? That question is easier to answer—it’s two. What’s
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the distance between (1, 1, 0) and (−1, −2, 0)? This seems to be
just the distance between two points in the familiar xy-plane.
We saw a formula for that at some point. It was obtained using
the Pythagorean Theorem. What was it? If you can’t recall the
formula, look it up or (better, yet) try to derive it again.
Our reasoning now brings us to a simpler, similar question. As you
recall, this is precisely where Pólya suggested we look for a plan.
So far, it seems we can find the distance between two points as
long as they lie in a plane parallel to one of the coordinate planes.
But in this problem, if we look at the two points, they need not
lie in such a plane. We can try to insert a third point that helps us
to reduce the problem to one we can already solve. Which point?
A picture will help here, so we draw one in Figure 1.3.
We see that (x0, y0, z0) and (x1, y1, z0) lie in the plane z � z0, while
(x1, y1, z0) and (x1, y1, z1) lie on the same vertical line, in the inter-
section of the two planes, x � x1 and y � y1. We “devise our plan”
using these three points. Can we get the distance we are looking
for from these three points? Look at Figure 1.3 and see if you can
guess the rest before going on to Step 3. You probably noticed that
the vertical line makes a right angle with every line in the plane
z � z0. This should suggest something to you—something like the
Pythagorean Theorem.

x

y

z

(x0,y0,z0)

(x1,y1,z0)

(x1,y1,z1)

FIGURE 1.3
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3. “Carrying out the plan.” This is the only thing the reader will see.
Everything that preceded this was to assist us in obtaining this
solution. That means the reader doesn’t know what the points
are; we have to tell him or her that. We should make sure we say
why a sentence follows from the previous one and we should use
equal signs between equal objects. When we think we are done,
we should tell the reader that too.

Solution.
Let P � (x0, y0, z0) and Q � (x1, y1, z1) be two points in space. We
claim that the distance between these two points, denoted by d(P, Q ),
is

d(P, Q ) �
√

(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2.

Proof.
We introduce a third point with coordinates R � (x1, y1, z0). Since
(x0, y0, z0) and (x1, y1, z0) both lie in the plane z � z0, we can use
the distance formula for two points in a plane to find the distance
between them. Thus, the distance is given by

d(P, R) �
√

(x0 − x1)2 + (y0 − y1)2.

Now look at the distance between the two points (x1, y1, z0) and
(x1, y1, z1). Since these points lie on the same vertical line, the
distance is given by

d(R, Q ) � |z0 − z1|.
Now, the distance we are looking for is the length of the line seg-
ment PQ , which is the hypotenuse of the right triangle PQR (see
Figure 1.4).

This is a right triangle, so we can obtain the length using the
Pythagorean Theorem. So, we get

d(P, Q ) �
√

d(P, R)2 + d(R, Q )2.

Substituting in what we found above, we obtain

d(P, Q ) �
√

(x0 − x1)2 + (y0 − y1)2 + (z0 − z1)2.

This completes the proof.
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x

y

z

P

R

Q

FIGURE 1.4

4. “Looking back.” What we have presented is our version of the
proof. You may find that you need to include more details. By
all means, go ahead. If you had to stop and say, “where did that
come from?” make sure you answer yourself. Write it in the text
(you aren’t going to sell this book back anyway, right?), or keep
a notebook of “proofs with commentary.” Note that though we
used pictures to illustrate the ideas in our argument, a picture
will not, in general, substitute for a proof. However, it can really
clarify an idea. Don’t rely on a picture, but don’t be afraid to use
one either. ©

Solutions to Exercises

Solution to Exercise (1.1).
We are given that this code was created through a shift of the alpha-
bet. Thus once we determine one letter, the other letters are easily
found. Since we have a one-letter word, we’ll start with it. Thus “W”
must represent either the letter “I” or the letter “A.” Checking both
shifts of the alphabet

(W → I, X → J, Y → K, Z → L, A → M, B → N, C → O, etc.
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W → A, X → B, Y → C, Z → D, A → E, B → F, C → G, etc.)

we find that if “W” represents the letter “I”, then “E” must represent
the letter “Q.” The fact that “EO” appears as a word and “O” would
represent the letter “A” in our coded text implies that “EO” would
be the word “QA,” which is an interesting combination of letters, but
hardly a word. Thus, “W” cannot represent the letter “I” and therefore
“W” represents “A.”

Using the shift described above and replacing the corresponding
letters, we find that the code says the following.

“THIS ENCODING ALGORITHM IS CALLED A CAESAR
CIPHER. IT IS VERY EASY TO BREAK, RIGHT?”

In fact, the Caesar cipher is quite easy to break. If this interests
you, a very readable history of coding theory is presented by S. Singh
in The Code Book, [78].

Spotlight: George Pólya

György Pólya (1887–1985), referred to as George Pólya in his later
years, was born and raised in Hungary. He studied in Vienna and in
Budapest, where he received his doctorate in 1912. One of his influ-
ential teachers was Leopold Fejér. In his book [67, p. 39], Pólya refers
to Fejér as “an inspiring teacher who had a great deal of influence
on Hungarian mathematicians of the time.” The two primary places
that Pólya taught were the Eidgenössische Technische Hochschule
(ETH) in Zürich, Switzerland and Stanford University in Palo Alto,
California.

Though Pólya’s mother tongue was Hungarian, he worked in the
Swiss-German speaking part of Switzerland and he spoke French
with his wife from Neuchâtel, a city in the French speaking part
of Switzerland. In school he also learned Latin and Greek. (See
[67, p. 11].) Pólya later emigrated to the United States where he
taught and lectured in English. He published mathematical papers
in Hungarian, German, French, English, Italian, and Danish.
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Pólya contributed to original research in probability, geometry,
number theory, real and complex analysis, graph theory, combina-
torics, and mathematical physics. His name is connected to many
mathematical ideas and constructions. To name just a few of his
achievements, we mention that in probability there is a Pólya dis-
tribution and he is credited with introducing the idea and the term
of “random walk.” But Pólya was not only recognized as an excellent
scholar of mathematics, he was also an excellent teacher of math-
ematics. His heuristic approach to problem solving is outlined in
How to Solve It. This book had a profound influence on the teaching
of mathematics. It has sold over one million copies and is translated
into over 20 languages. Records kept by the ETH in Zürich show that
Pólya was the advisor of 14 thesis students there and, according to
[62], he was the advisor of 9 more students at Stanford.

The Mathematical Association of America (MAA) gives an an-
nual Pólya award. According to the MAA website, “This award,
established in 1976, is named after the renowned teacher and writer,
and is given for articles of expository excellence published in the
College Mathematics Journal.”

To learn more about George Pólya and his approach to problem
solving, we recommend reading his book How to Solve It, [66], the pic-
ture book [67] (which contains a short biography), or consulting the
more in-depth account of Pólya’s life, written by his former student
at Stanford, [3]. The article [85] is based on interviews with Pólya
and appeared in an issue of Mathematics Magazine entirely devoted
to Pólya and his work.

Problems

Problem 1.1.
Here is a problem intended to help you work through “the list.” After
this, you are on your own.

Find a word (written in standard capital letters) that is unchanged
when reflected in a horizontal line and in a vertical line. The word
must appear in a dictionary (in a language of your choice) in order
to be a valid solution.
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1. “Understanding the problem.” We need to find a word. We are given
information about the letters that make up this word. There are
two conditions: Two different reflections should not alter the
word.
Try these two reflections on a word, say on SOLUTION, to make
sure you understand the problem.

2. “Devising a plan.” We have to find the connection between what
we are given and what we have to find.
Which letters of the alphabet satisfy each of the two conditions?
Both conditions?
Find a word that is not changed if it is reflected in a horizontal
line.
Find a word that is not changed if it is reflected in a vertical line.
Formulate the exact conditions for this exercise; that is, state the
letters that can be used and how they must be arranged.

3. “Carrying out the plan.” Find a word that satisfies the conditions
given above.

4. “Looking Back.” Are there other solutions?

Problem 1.2.
Find a word (written in standard capital letters) that reads the same
forward and backward and is still the same forward and backward
when rotated around its center 180◦. Your solution needs to appear
in a standard dictionary of some language.

Problem 1.3.
Solve the following anagrams. The first three are places (in the geo-
graphical sense), and the fourth is a place you might live in. All can
be rearranged to form a single word.

(a) NOVA CURVE;
(b) NINE SLAP NAVY;
(c) I HELD A HIP PAL;
(d) DIRTY ROOM.

Note: You may have to find out exactly what an anagram is. This
is part of Pólya’s first point on the list.
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Problem 1.4.
Suppose n teams play in a single game elimination tournament. How
many games are played?

An example of such tournaments are the various categories of
the U. S. Open tennis tournament; for example, women’s singles.

Note: Pay special attention to the first entry of Pólya’s list: “Is it
possible to satisfy the condition?”

Problem 1.5.
Suppose you are all alone in a strange house. There are seven iden-
tical closed doors. The bathroom is behind exactly one of them. Is it
more likely, less likely, or equally likely that you find the bathroom
on the first try than on the third try? Why?

Problem 1.6.
The following message is encoded using a shifted alphabet just as
in Exercise 1.1. (Of course, the shift number n is not the same as in
the exercise!) What does the message say?

RDSXCVIWTDGNXHUJCLTLXAAATPGCBDGTPQDJIXIAPITG

Problem 1.7.
Give a detailed description of all points in three-space that are
equidistant from the x-axis and the yz-plane. Once you decide on
the answer, write the solution up carefully. Pay particular attention
to your notation.

Problem 1.8.
The following is a classic problem in mathematics. Though there are
many variations of this problem, the standard one is the following.

You are given 12 coins that appear to be identical. However, one
of the coins is counterfeit, and the weight of this coin is slightly
different than that of the other 11. Using only a two-pan balance,
what is the smallest number of weighings you would need to find
the counterfeit coin? (Think about a simpler, similar problem.)

(See I. Peterson’s web site [64] for a discussion of this problem.)

Problem 1.9.
Let n be an odd integer. Prove that n3 − n is divisible by 24.
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The following two problems are only appropriate if you took at least
two semesters of calculus. Though you may have worked these before, the
idea is to work them again paying close attention to the final presentation.
Make sure you define all variables. Use complete sentences, with proper
punctuation.

Problem 1.10.
Find the volume of a spherical cap if the height is 2 m and the radius
of the rim of the cap is 5 m.

Problem 1.11.
We have two circular right cylinders of radius 1 each. The axes of
the two cylinders intersect at a right angle. Find the volume of the
solid that both cylinders have in common.

Tips on Doing Homework

Your instructor will probably ask you to work many of the exercises
and problems in this text. If there is one thing mathematicians agree
on, it is that you learn mathematics by doing it. Here are some tips
on how to get started.

• Make sure you know what the rules are. Some instructors do not
want you to get help from someone else. Other instructors encour-
age working together in groups. Ask, if you are not clear about
the policy.

• If you are permitted to work together, form a study group. A small
group of two to four people usually works best. Get together on a
regular basis and discuss the assigned problems.

• Read the questions carefully. If there is a term that you do not
know, look it up.

• Before you get started, read over the text and the notes from class,
paying particular attention to definitions, theorems, and previous
exercises. It isn’t unusual to spend several hours on a single prob-
lem at this point. Doing mathematics means pondering a problem
for hours, days, weeks, even years (though we have tried not to
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pose problems that will take you years to solve). Working two
hours on one problem, thinking about it as you go through your
day and then spending another two hours on it the next day is
fairly common practice for students at this level.

• Once you have read over the text, looked over the relevant def-
initions, worked through the examples and tried to solve the
problem, you will be well on your way towards understanding
the problem. If you can’t get started, at least you will know which
questions to ask. Seek help from your instructor or other students
(if your instructor allows this).

• Once you have a solution to a problem, look at it critically. Check
that it is correct. Put it down. Come back to it later. Do you still
understand everything? Is it still correct? (As you can imagine,
this is very important.) Can you simplify it? If you work with
someone else have them read it over. Never hand in your first draft
of a solution to a problem.

• Writing a solution means convincing a reader that the result is
correct. There can be no gaps or errors. Explain each step—don’t
assume that the reader knows what you are thinking. Keep a
reader in mind as you write, and remember that the instructor
or anyone else who already knows the solution is not really your
target audience. Though that may be the person for whom the so-
lution is intended, it is your job to convince the reader that each
step in your solution is correct. Perhaps a better audience to keep
in mind is someone who knows the material from the class, but
not the solution to the problem.

• Write up your final solution very carefully and neatly. The reader
shouldn’t find him or herself proving things for you—you should
do that for him or her. Staple pages together so that the reader
may have the pleasure of reading your entire proof in the correct
order and its entirety.



2
C H A P T E R

...........................................

Logically
Speaking

Suppose your friend tells you that Mr. Hamburger is German or
Swiss. You happen to know that Mr. Hamburger is not Swiss. Using
your powers of reasoning, you decide that Mr. Hamburger is Ger-
man. Note that this argument can be generalized, because it doesn’t
really depend on Mr. Hamburger being Swiss or German. If your
friend said that “A or B is true” and you happened to know that “B is
not true,” you would conclude that “A is true.” This is an example of a
valid argument. Now suppose your friend tells you that Mr. French
eats only pickles on Wednesday, and only chocolate on Monday.
You know that Mr. French is eating chocolate that day. Now what
can you say? While you may conclude that Mr. French has odd eat-
ing habits, you would not have used a logically valid argument to do
so. In this example, there is really only one thing you can conclude.
We’ll return to this at the end of this chapter.

In order to understand an argument, we must be able to read and
comprehend the sentences that compose it. We need to be able to
tell whether the sentences in our argument are true or false, and
whether they follow logically from the previous ones. So now for a
definition. A statement is a sentence that is either true or false (but
not both). “Two is not a prime number” is an example of a (false)
statement. “Do you love me?” is not a statement. Below are some

17
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examples and some nonexamples of statements. These will be your
first examples of nonexamples.

Exercise 2.1.
Which of the sentences below are statements and which are not?

(a) It is raining outside.
(b) The professor of this class is a woman.
(c) Two plus two is five.
(d) X + 6 � 0.
(e) Seven is a prime number.
(f) All odd numbers are prime.
(g) This sentence is false. ©

Because English usage and mathematical usage may differ
slightly, we must be certain that we understand our statements be-
fore we construct arguments. We now carefully study the truth or
falsity of statements. Our treatment is brief. (See [56] for a more
detailed study of mathematical logic.)

The rules of logic that we present in this chapter should work
for all statements, and not just particular ones. For this reason, we
introduce letters such as P, Q, R, or S to represent statements. Thus P

will have two possible truth values: true, denoted T, or false, denoted
F . We can negate P or combine it with Q by saying things like:

Not P.
P and Q .
P or Q .
If P, then Q .
P if and only if Q .

Such symbolic sentences will be called statement forms. A precise
definition of statement form will be given once we have precise
definitions of the connectives “not,” “and,” “or,” “if . . ., then . . .,” and
“if and only if.”

In the English language we might say

It’s raining.
It is not raining.
If it is raining, the sky is grey.
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It is raining or it is snowing.
It is cold and it is snowing.
It is snowing if and only if it is cold.

Let’s start with the simplest case. Suppose your teacher says,
“This book has a blue cover.” Taking a quick glance at the cover, you
can decide on the truth value of that statement; namely that it is
false. In order to have a true statement, you could say, “This book
does not have a blue cover.” If we have a statement form P, the nega-
tion of P is the statement form “not P.” Under what circumstances
should the negation of P be true or false? We will always use the
notation ¬P for “not P.” If P is true, then ¬P should be false. If P is
false, then ¬P should be true. We can summarize all the possibilities
in a truth table as follows:

P ¬P
T F

F T

.

What about combining two statement forms, P and Q , into one
statement form as “P or Q ”? In this sentence, it is particularly im-
portant to distinguish between mathematical usage of the word “or”
and everyday speech. For example, if we say, “You can have cake or
ice cream,” it could be that you can have both. If we say, “The door
is open or closed,” it cannot be that the door is both open and closed.
English statements involving the word “or” are often ambiguous; in
mathematics, ambiguity is generally frowned upon. The statement
form “P or Q ” is called a disjunction and is denoted P ∨Q . In math-
ematics, a disjunction is true when P alone is true, Q alone is true,
or both P and Q are true. So in mathematics, you can always have
your cake and ice cream.

Exercise 2.2.
Complete the truth table for P ∨ Q .

P Q P ∨ Q
T T

T F

F T

F F ©
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The statement form “P and Q ” is called a conjunction and is
denoted P ∧ Q . We will have you fill in the truth table for “P and Q ”
below. It should be clear that this will be true when both P and Q

are true, and false otherwise.

Exercise 2.3.
Complete this truth table.

P Q P ∧ Q
T T

T F

F T

F F ©

Now consider the statement form “If P, then Q .” This statement
form is called an implication and is often stated as “P implies Q ”
and written P → Q . (Note that though English usage of the word
“implies” may suggest a relationship between P and Q , our analysis
of truth values has assumed no connection at all between P and Q .)
There are equivalent ways of stating an implication, and some will
require careful thinking on the reader’s part. Remember as you read
on that “If P, then Q ” may also be stated as

Q if P.
P is sufficient for Q (meaning P is enough to make Q happen).
Q is necessary for P (if P happened, then Q must have happened).
P only if Q (same as above; if P happened, then Q must have
happened).
Q whenever P.

The statement form P in each of these formulations is called the
antecedent, and Q is called the conclusion. Under what conditions
is an implication true? false? Let’s begin with an example you are all
familiar with. Suppose we say to our son,

“If you clean your room, then you can go to Henry’s house.”

Under what conditions would he feel that we had lied? In the ex-
ample, the antecedent, P, is “you clean your room.” The conclusion,
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Q , is “you can go to Henry’s house.” Well, if our son cleans his room
and we let him go to Henry’s, everybody is happy. That implication
should be true. So if P is true and Q is true, the whole statement
should be true. Also, it should be as clear to you as it will be to our
son, that if he cleans his room and we do not let him go to Henry’s,
we lied. So, if P is true, and Q is false, the implication should be false.
Now what if he doesn’t clean his room? We never discussed this pos-
sibility. So no matter what we decide here, we have not lied. In this
situation, the statement is not false; hence we consider it to be true.
So if P is false, no matter what the truth value is of the conclusion,
we will consider the implication to be true.

Summarizing this discussion, the only way that the implication
“If P, then Q ” can be false is if P is true and Q is false. In the exercise
below you will sum up this discussion in the form of a truth table.

Exercise 2.4.
Complete this truth table.

P Q P → Q
T T

T F

F T

F F ©

It is often helpful to rephrase a statement, making sure that you
maintain the same true and false values. The statement form “P
if and only if Q ” is called an equivalence, and we will write this
as P ↔ Q . This is the same statement form as “(P only if Q) and
(P if Q).” In view of the discussion above, we see that this is also
(P → Q ) ∧ (Q → P). Thus the truth table for the equivalence is

P Q P → Q Q → P P ↔ Q
T T T T T

T F F T F

F T T F F

F F T T T

.

Look down the final column and you’ll see that the equivalence
is true precisely when P and Q are both true or both false.
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The statement form “If P, then Q ” is also written as P ⇒ Q , and
“P if and only if Q ” might be written as P ⇔ Q or “P iff Q .”

Having now studied the connectives, we are ready for our defini-
tion of a statement form. A statement form is a letter representing
an unspecified statement or an expression built from such letters
using connectives.

Now consider the two statement forms ¬(P ∨ Q ) and ¬P ∧ ¬Q .
In the next exercise, you will find the truth table for each of these
expressions and compare them.

Exercise 2.5.
Write out the truth tables for ¬(P ∨ Q ), ¬P ∧ ¬Q , and (¬(P ∨ Q )) ↔
(¬P ∧ ¬Q ). What can you conclude? ©

A statement form for which the final column in the truth table
consists of all T’s is called a tautology. A statement form for which
the final column is all F ’s is called a contradiction. Two statement
forms, P and Q , are said to be (logically) equivalent if P ↔ Q is a
tautology, and two statements are equivalent if they can be obtained
from two equivalent statement forms by consistently replacing the
letters by English statements.

In view of Exercise 2.5, we see that ¬(P ∨ Q ) and ¬P ∧ ¬Q are
equivalent statement forms. Thus the statement “It is not the case
that Rachel or Leah won the race” is equivalent to “Rachel did not
win the race and Leah did not win the race.” (Why?)

While it is very important to be able to restate something in an
equivalent form, it is equally important that you be able to negate a
statement. Some useful negations appear in the exercises and prob-
lems. The negation of an implication is particularly important in
mathematics. If you think about integers and the sentence “If x

is prime, then x is odd or x � 2,” you can see that even a rela-
tively simple implication might be difficult to negate. Let’s begin
with something simpler.

Exercise 2.6.
Construct the truth table for P → Q , and the truth table for ¬P ∨ Q .
What do you notice? Now construct a truth table for (P → Q ) ↔
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(¬P∨Q ). What conclusion can you make? Finally, find an equivalent
way to write ¬(P → Q ). ©

If all went well, you noticed that P → Q is equivalent to ¬P ∨Q ,
and therefore the negation of “If P, then Q ” is “P and not Q .” Let’s
return to

“If x is prime︸ ︷︷ ︸
P

, then x is odd or x � 2︸ ︷︷ ︸
Q

.”

Negating this leads to

“ x is prime︸ ︷︷ ︸
P

and it is not the case that x is odd or x � 2︸ ︷︷ ︸
¬Q

.”

While this is the negation, it isn’t really as helpful as it might be. So
we now negate the disjunction “x is odd or x � 2” and combine it
with our previous work to obtain

“x is prime and x is not odd and x 
� 2.”

Refining this further, we would probably say something like “x is
prime, even and not equal to two.” The negation of an implication is
something you should learn well now because it arises frequently.
Here are some examples for you to try.

Exercise 2.7.
Negate the following. It’s interesting to note that you can negate a
statement even if you don’t understand what it says. It is easier to
get it right, though, if you understand the statement.

(a) If I go to the party, then he is there.
(b) If x is even, then x is divisible by 2.
(c) If a function is differentiable, then it is continuous.
(d) If x is a natural number, then x is even or x is odd. ©
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Exercise 2.8.
Which of the following are equivalent to each other? All the answers
have appeared in this chapter.

P → Q, ¬(P ∨ Q ), ¬(P ∧ Q ), P ∧ ¬Q, ¬(P → Q ),

P ∨ ¬Q, ¬P ∨ ¬Q, ¬P ∧ ¬Q, ¬P ∨ Q. ©

So let’s apply what we have learned in this chapter to Mr. French,
who eats only pickles on Wednesday and only chocolate on Monday.
One statement is that “if it is Wednesday, then Mr. French eats only
pickles.” We let W represent the statement “it is Wednesday,” and P

the statement “Mr. French eats only pickles.” Thus, we know that
W → P is true. (If you thought we should have said W ∧ P is true,
note that we do not know that the statement W is true, so we must
use the implication here.) The second is “if it is Monday, then Mr.
French eats only chocolate.” Letting M denote “it is Monday” and C

the statement that “Mr. French eats only chocolate” we may write
what we are given as M → C. Finally we are told that “Mr. French
is eating chocolate.” From this we can conclude that ¬P is true. Let’s
put this together.

1. W → P,
2. M → C, and
3. ¬P.

Now, it’s fairly clear that the second statement is irrelevant. So
let us look at the truth tables for the first and third statements (for
convenience, we combine the two tables):

W P W → P ¬P
T T T F

T F F T

F T T F

F F T T

.

We know that both W → P and ¬P are true, and from our truth table
we see that there is only one time that this happens: when both W

and P are false. So there you have it. All we can conclude is that it
is not Wednesday.
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People differ in their approaches to problems. In the example
above, you might have found it easier not to rewrite the problem.
That’s fine. On the other hand, when a problem starts to confuse
you, looking at it as we have here will often help you figure out how
to attack a problem.

Solutions to Exercises

Solution to Exercise (2.2).
The truth table for P ∨ Q is

P Q P ∨ Q
T T T

T F T

F T T

F F F

.

Solution to Exercise (2.3).
The truth table for P ∧ Q is

P Q P ∧ Q
T T T

T F F

F T F

F F F

.

Solution to Exercise (2.4).
The truth table for P → Q is

P Q P → Q
T T T

T F F

F T T

F F T

.

This is the same as the truth table for ¬P ∨ Q .
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Solution to Exercise (2.6).
In the solution to Exercise 2.4, we noted that P → Q and ¬P ∨ Q

are equivalent. Thus ¬(P → Q ) is equivalent to ¬(¬P ∨ Q ), which
is, as we have seen in Exercise 2.5, equivalent to P ∧ ¬Q . In words,
the negation of “If P, then Q ” is “P and not Q .”

Solution to Exercise (2.7).
More than one answer is possible but they must be equivalent, of
course.

(a) I go to the party and he is not there.
(b) One answer is: x is even and x is not divisible by 2.
(c) A function is differentiable and it is not continuous.
(d) One answer is: x is a natural number and x is not even and x

is not odd. Equivalently, we could say: x is a natural number,
and x is neither even nor odd.

Problems

Problem 2.1.
In the following implications, identify the antecedent and the
conclusion.

(a) If it is raining, I will stay home.
(b) I wake up if the baby cries.
(c) I wake up only if the fire alarm goes off.
(d) If x is odd, then x is prime.
(e) The number x is prime only if x is odd.
(f) You can come to the party only if you have an invitation.
(g) Whenever the bell rings, I leave the house.

Problem� 2.2.
Construct a truth table for ¬(¬P). Is this what you expect? Why?
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Problem� 2.3.
Find a statement form, S, equivalent to ¬(P ∨ Q ) and show that it is
logically equivalent by constructing the truth table for “S if and only
if ¬(P ∨ Q )” and showing that this statement form is a tautology.

Problem 2.4.
Write out the truth table for the statement form P → ¬(Q ∧ ¬P). Is
this statement form a tautology, a contradiction, or neither?

Problem 2.5.
Write out the truth table for the statement form (P → (¬R∨Q ))∧R.
Is this statement form a tautology, a contradiction, or neither?

Problem 2.6.
Negate the sentences below and express the answer in a sentence
that is as simple as possible.

(a) I will do my homework and I will pass this class.
(b) Seven is an integer and seven is even.
(c) If T is continuous, then T is bounded.
(d) I can eat dinner or go to the show.
(e) If x is odd, then x is prime.
(f) The number x is prime only if x is odd.
(g) If I am not home, then Sam will answer the phone and he will

tell you how to reach me.
(h) If the stars are green or the white horse is shining, then the

world is eleven feet wide.

Problem 2.7.
For each of the cases below, write a tautology using the given state-
ment form. For example, if you are given P ∨ ¬Q you might write
(P ∨ ¬Q ) ↔ (Q → P).

(a) ¬(¬P);
(b) ¬(P ∨ Q );
(c) ¬(P ∧ Q );
(d) P → Q .
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Problem 2.8.
When we write, we should make certain that we say what we mean. If
we write P∧Q ∨R, you may be confused, since we haven’t said what
to do when you are given a conjunction followed by a disjunction.
Put parentheses in to create a statement form with the given truth
table.

P Q R P ∧ Q ∨ R
T T T T

T T F T

T F T T

T F F F

F T T T

F T F F

F F T T

F F F F

Problem 2.9.
For each of the cases below, write a contradiction using the given
statement form. For example, if you are given ¬(¬P) you might write
¬(¬P) ↔ ¬P.

(a) P → Q ;
(b) ¬(P ∨ Q );
(c) ¬P ∨ ¬Q ;
(d) P ↔ Q .

Problem 2.10.
Consider the statement “It snows or it is not sunny.”

(a) Find a different statement that is equivalent to the given one.
(b) Find a different statement that is equivalent to the negation of

the given one.

Problem 2.11.
The following problem is well known. Many different versions of
this problem appear in [80].

On a certain island, each inhabitant is either a truth-teller or a
liar (and not both, of course). A truth-teller always tells the truth
and a liar always lies. Arnie and Barnie live on the island.
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(a) Suppose Arnie says, “If I am a truth-teller, then each person
living on this island is either a truth-teller or a liar.” Can you
say whether Arnie is a truth-teller or liar? If so, which one is
he?

(b) Suppose that Arnie had said, “If I am a truth-teller, then so is
Barnie.” Can you tell what Arnie and Barnie are? If so, what are
they?



3
C H A P T E R

...........................................

Introducing
the
Contrapositive
and Converse

In the last chapter we saw that two statement forms, P and Q , that
have the same truth table are equivalent. This was also expressed by
showing that the equivalence, P ↔ Q , is a tautology. When you are
confronted with a mathematical statement that you need to prove,
you will often find it helpful to paraphrase it. You will use tautologies
to do so, since you don’t want to change the truth value of your
statement. Some useful tautologies appear below and throughout
this chapter.

Theorem 3.1.
Let P, Q , and R denote statement forms. Then the following are
tautologies:

(DeMorgan’s laws) ¬(P ∨ Q ) ↔ (¬P ∧ ¬Q );
¬(P ∧ Q ) ↔ (¬P ∨ ¬Q );

(Distributive property) (P ∧ (Q ∨ R)) ↔ ((P ∧ Q ) ∨ (P ∧ R));
(P ∨ (Q ∧ R)) ↔ ((P ∨ Q ) ∧ (P ∨ R));

(Double negation) ¬(¬P) ↔ P;

31
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(Associative property) (P ∧ (Q ∧ R)) ↔ ((P ∧ Q ) ∧ R);
(P ∨ (Q ∨ R)) ↔ ((P ∨ Q ) ∨ R);

(Commutative property) (P ∧ Q ) ↔ (Q ∧ P);
(P ∨ Q ) ↔ (Q ∨ P).

At this point, you should be able to construct the truth tables for
everything above and you should be able to show that all of them
are tautologies.

Exercise 3.2.
Negate the following:

(a) (P ∧ Q ) ∨ (P ∧ R);
(b) P → (Q ∧ R). ©

Tautologies allow us to replace one statement by another. For
example, suppose you want to show that an integer is odd or prime.
You can show that the integer is prime or odd; that won’t change
things because these two statements are equivalent. This is a fairly
obvious change that usually won’t make much of a difference. The
same holds if you want to show x is prime and odd; you can show that
it is odd and prime if that’s easier and you will have accomplished
the same thing. Similarly, if you want to show that it is not the case
that x is prime and odd, you can show that x is not prime or not odd.

For implications, restating what you want to prove can really
make a difference. We need to make sure, however, that what
we have is equivalent to our original statement. So recall that we
showed, in the last chapter, that P → Q is equivalent to ¬P ∨ Q .

Now consider ¬Q → ¬P, which is called the contrapositive of
the implication P → Q . We need to compare the two truth tables
below:

P Q P → Q
T T T

T F F

F T T

F F T

P Q ¬Q → ¬P
T T T

T F F

F T T

F F T

.



3. Introducing the Contrapositive and Converse 33

So the fact that the truth tables are the same tells us that the
statement forms are logically equivalent. What this means to us is
that, if we are trying to prove that an implication is true and we
don’t see how to do it, we should consider the contrapositive of that
statement. Here’s how it works in practice.

Theorem 3.3.
Let x be an integer. If x2 is odd, then x is odd.

First we need to understand the problem. What does it mean for
a number x to be odd? It means that there is an integer n such that
x � 2n + 1. So we are assuming that x2 � 2n + 1 for some integer n

and trying to show x � 2m + 1 for some integer m. It’s hard to see
where to go from here, we think.

Remember that Pólya suggests restating the problem, so let’s try
that. Let P be the sentence “x2 is odd” and Q be the sentence “x is
odd.” Then we see that we wish to prove that P → Q is true. But this
is logically equivalent to ¬Q → ¬P, which translates into “If x is not
odd, then x2 is not odd.” We can do better than that, since an integer
is either odd or even. So we can show that “If x is even, then x2 is
even” and that will be equivalent. Let’s see if that’s easier.

Theorem (Contrapositive of the statement of Theorem 3.3).
Let x be an integer. If x is even, then x2 is even.

The first step is to understand the problem. The second step is
to prove it. We’ll do that here:

“Understanding the problem.” When is an integer even? When it is
of the form x � 2n, where n is an integer. So we need to show that
x2 � 2m, where m is an integer, assuming that x � 2n, where n is an
integer. We began by understanding the problem, now we are ready
to solve it.

Proof.
Let x be even. Then there is an integer n such that x � 2n. Therefore,
x2 � (2n)2 � 2(2n2). Let m � 2n2. Then x2 � 2m and m is an integer.
Therefore x2 is even.
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Of course the original theorem is now also proven since it is
equivalent to the one we proved. Thus, using the contrapositive is
one possible way to attempt to prove that an implication is true. We
will soon have a number of ways to attack a problem. Try to keep
them all in mind.

Some other related remarks: Notation is more important than it
may seem. In the theorem above, we assume that x is even and
try to show x2 is even. If we assume that x � 2n and accidentally
try to show x2 � 2n (rather than x2 � 2m), we’re stuck because we
erroneously assumed that x � x2. In other words, our notation would
force us to show that x � 0 or x � 1, which is not what we should
be doing. We introduced an error because of poor notation. So it’s
important that one symbol be an n and one be an m.

Also, note that we begin the proof by saying what we are assum-
ing, and end the proof by saying what we are concluding. That helps
the reader too. Finally, we keep checking that m and n are integers.
That’s because that is very important; if they weren’t integers, x

wouldn’t have to be even.
So the contrapositive was very helpful here. You do need to be

careful though. It must be the contrapositive and not the converse.
The converse of an implication P → Q is the statement form Q →
P. Looking at the truth tables for each of these given below,

P Q P → Q
T T T

T F F

F T T

F F T

and

P Q Q → P
T T T

T F T

F T F

F F T

,

we see that they are different. Unfortunately, though the contrapos-
itive and converse of a statement are really very different, students
often confuse them. We’ll take just a moment to convince you that
it is very important not to do this.

Suppose our statement is, “If I am a Hobbit, then I am under 5
feet tall.” This is a true statement, as every Tolkien reader knows.
The converse is “If I am under 5 feet tall, then I am a Hobbit.” This
latter statement is not true, since lots of children are under 5 feet
tall, but most of them are not Hobbits. As a mathematical example,
consider the sentence about integers “If x is seven, then x is prime,”
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and its converse “If x is prime, then x is seven.” Recall that an integer
p is prime if p > 1 and p cannot be written as a product of two
positive integers, both different from p. Thus, the original sentence
is true for all x, while the converse above is not. On the other hand,
you agree that for all x the contrapositive “If x is not prime, then x is
not seven,” is true, as it must be. But this is trickier when we don’t
really understand what we are saying as well as we understand this
statement. Remember, make sure you understand the problem.

Exercise 3.4.
Consider the sentence “If n is odd, then n2 − n − 6 is even.”

(a) State the contrapositive.
(b) State the converse. ©

Solutions to Exercises

Solution to Exercise (3.2).
The equivalences are given below.

(a) The negation may be stated as (¬P ∨ ¬Q ) ∧ (¬P ∨ ¬R), since

¬((P ∧ Q ) ∨ (P ∧ R)) ↔ (¬(P ∧ Q ) ∧ ¬(P ∧ R))

↔ ((¬P ∨ ¬Q ) ∧ (¬P ∨ ¬R)).

(b) The negation may be stated as P ∧ (¬Q ∨ ¬R), since

¬(P → (Q ∧ R)) ↔ (P ∧ ¬(Q ∧ R))

↔ (P ∧ (¬Q ∨ ¬R)).

Solution to Exercise (3.4).
(a) The contrapositive is “If n2 − n − 6 is odd, then n is even.”
(b) The converse is “If n2 − n − 6 is even, then n is odd.”
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Problems

Problem� 3.1.
(a) Let x be an integer. Prove that if x is odd, then x2 is odd.

Make sure you state your assumption as the first line and your
conclusion as the last line.

(b) State the contrapositive of what you just proved.
(c) Combining the result of part (a) with Theorem 3.3 gives a

stronger result. Say precisely what that result is.

Problem 3.2.
For each of the following, write out the contrapositive and the
converse of the sentence.

(a) If you are the President of the United States, then you live in a
white house.

(b) If you are going to bake a soufflé, then you need eggs.
(c) If x is a real number, then x is an integer.
(d) If x is a real number, then x2 < 0.

Problem 3.3.
State the contrapositive of each of the following.

(a) If it rains, then it pours.
(b) If I had a bell, I would ring the bell in the morning.
(c) The house is red, if the house is not blue.
(d) Dinner is cooked only if I make it.

Problem 3.4.
State the converse of each of the following.

(a) If it rains, then it pours.
(b) If I am young, then I am restless.
(c) I am alone if it is Saturday.
(d) I eat fish only if it is cooked.

Problem 3.5.
Let x and y be real numbers. Show that if x 
� y, then 2x+4 
� 2y+4.
(Hint: Use the contrapositive.)
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Problem 3.6.
Matilda always eats at least one of the following for breakfast: cereal,
bread, or yogurt. On Monday, she is especially picky.

If she eats cereal and bread, she also eats yogurt. If she eats bread
or yogurt, she also eats cereal. She never eats both cereal and yogurt.
She always eats bread or cereal.

Can you say what Matilda eats on Monday? If so, what does she
eat?

Problem 3.7.
Consider the following statement.

If the coat is green, then the moon is full or the cow jumps
over it.

(a) This unusual statement is composed of several substatements.
Identify each substatement, give it a letter, and write down the
original statement using these letters and logical connectives.

(b) Using the symbols introduced in (a), find the contrapositive of
the original statement. Rewrite the contrapositive as an English
sentence.

(c) Find the converse of the original statement, writing the sen-
tence and its converse in symbols, and then rewriting the
converse in words.

(d) Find the negation of the original statement, writing the sen-
tence and its converse in symbols, and then rewriting the
converse in words.

(e) Are some of the statements in this problem (either the original
or the ones you obtained) equivalent? If so, which ones?

Problem 3.8.
Consider the two statement forms P → Q and P → (Q ∨ ¬P).

(a) Make a truth table for each of these statement forms.
(b) What can you conclude from your solution to part (a)?

Problem 3.9.
Karl’s favorite brownie recipe uses semisweet chocolate, very little
flour, and less than 1/4 cup sugar. He has four recipes: one French,
one Swiss, one German, and one American. Each of the four has
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at least two of the qualities Karl wants in a brownie recipe. Exactly
three use very little flour, exactly three use semisweet chocolate,
and exactly three use less than 1/4 cup sugar.

The Swiss and the German recipes use different kinds of choco-
late. The American and the German recipes use the same amount of
flour, but different kinds of chocolate. The French and the American
recipes use the same amount of flour. The German and American
recipes do not both use less than 1/4 cup sugar.

Karl is very excited because one of these is his favorite recipe.
Which one is it?

Problem 3.10.
Let n be an integer. Prove that if 3n is odd, then n is odd.

Problem 3.11.
Prove that if x is odd, then

√
2x is not an integer.

Problem 3.12.
Let x and y be real numbers. Show that if x 
� y and x, y ≥ 0, then
x2 
� y2.
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C H A P T E R

...........................................

Set Notation
and
Quantifiers

Before we get to the heart of this chapter, it will be useful to have
notation for the things we frequently work with. A set is a collection
of objects. The objects in the set are called elements or members
of the set. We will write x ∈ X to indicate that x is an element of X.
(Some people read x ∈ X as “x belongs to X,” others read it “x is an
element of X.”) Usually we will be considering things of a particular
type. The set of all possible objects that are considered in the context
in which we work is called the universe. We will usually denote it
by X. In some cases the universe may consist of all real numbers, or
it may consist of all right triangles; it might even consist of all cows
living in France. The set may consist of all positive real numbers, all
isosceles right triangles, or all white cows living in France. And the
elements might be the real number π, the isosceles right triangle
with legs of length 1, or Farmer Boursin’s white cow Elsie, who lives
in Dijon, France.

When it is implicitly clear what the universe is, we may not
mention it specifically. But when there is any doubt at all, we will
carefully state what the universe is. Once we do that, we can denote
a set by writing S � {x ∈ X : x satisfies P}. The brackets indicate
that we are talking about a collection of objects, called elements;

39



4. Set Notation and Quantifiers40

x ∈ X tells us where these elements live, and P is a property these
elements have.

In this class, as well as others, some sets show up a lot and we
have special notation for them. Notation should always be chosen
carefully, as these have been. Most mathematicians agree on these,
so don’t make up your own notation and make sure you recognize
what these are when they are used:

The natural numbers N � {0, 1, 2, 3, . . .}.
The integers Z � {. . . , −2, −1, 0, 1, 2, . . .}.
The positive integers Z+ � {1, 2, 3, . . .}.
The real numbers R.
The plane R2 � {(x, y) : x, y ∈ R}.
For n ∈ Z+, Euclidean n-space Rn � {(x1, x2, . . . , xn) : xj ∈
R for j � 1, 2, . . . , n}.
The rational numbers Q � {p/q : p, q ∈ Z and q 
� 0}.
The complex numbers C � {a + b i : i2 � −1 and a, b ∈ R}.
Some authors include zero in N and others don’t. If you look in

another text, make sure you know what convention they follow.
For real numbers a and b with a ≤ b, the set [a, b] � {x ∈ R : a ≤

x ≤ b} is called the closed interval from a to b. The sets [a, ∞) �
{x ∈ R : a ≤ x} and (−∞, b] � {x ∈ R : x ≤ b} are called unbounded
closed intervals. For a < b, the set (a, b) � {x ∈ R : a < x < b} is
called the open interval from a to b. We shall see that (a, b) can be
interpreted several ways, and you should be able to decide which
from the way it is used. You’ve done this in the past. For example,
you have certainly had courses where (x, y) denotes a point and, in
the same course, (x, y) might denote an open interval. Unbounded
open intervals are defined, with appropriate changes, as we defined
unbounded closed intervals.

Exercise 4.1.
Find a (different) useful way to describe the following sets (your
useful way could be a sketch):

(a) {x ∈ Z : x2 � 1};
(b) {x ∈ N : x2 � 1};
(c) {(x, y) ∈ R2 : y � 0};
(d) {(x, y, z) ∈ R3 : z � 0};
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(e) {x ∈ Z : x is even};
(f) {(m, n) : m, n ∈ Z}. ©

Now we can talk about slightly more complicated sentences.
Think of the difference between the statements “In every box there
is a prize” and “In some box there is a prize.” Obviously, if you had
to choose (and if it were the same prize) you would go with the first
one. In mathematics, in order to determine the truth or falsity of a
statement, we need to know whether we are talking about a particu-
lar x or all x. What we mean should be clear from the context. Letters
like x that stand for elements of the universe are called variables.
The phrases “for all,” “for every,” “for some,” or “there exists,” quan-
tify variables. “For all,” or ∀, is the universal quantifier and “there
exists,” or ∃, is the existential quantifier.

After agreeing that the universe consists of all real numbers, con-
sider the following statement: “For all x it is the case that x2 −1 ≤ 0.”
We know that we are asking that for every x, something must hap-
pen. It just so happens that this statement is false, but it is still a
clear statement. For all x is usually written ∀x. So we could write

∀x, x2 − 1 ≤ 0.

What follows the words “For all x” in our statement is another sen-
tence that we could denote by p, but since p is a sentence involving
x we write p(x). The statement above is of the form

∀x, p(x).

One more remark about the example above. Suppose the uni-
verse is (still) the real numbers, but we want to make this a statement
about positive integers only. In that case, we can express our
statement symbolically as follows:

∀x, (x ∈ Z+ → (x2 − 1 ≤ 0)).

For a different example, suppose that our universe is the set
of integers and consider the sentence, “There is an integer x such
that x � 0.” This, too, is a statement, and happens to be true. This
statement can be expressed symbolically by

∃x, (x � 0)
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and is read as “there exists x such that x � 0.” This statement is of
the form

∃x, p(x).

One more remark about the last example. If we had chosen the set
of the real numbers as the universe, we would express our statement
symbolically as

∃x, (x ∈ Z ∧ x � 0).

This becomes very important when you are negating statements.
You can easily see why, too: if you negate x ∈ Z and Z is your uni-
verse, then there are no x left, but if you negate x ∈ Z and R is your
universe, there are still plenty of x left to worry about. So make sure
that you give careful consideration to your universe before beginning
a problem.

Exercise 4.2.
Write the statements below in symbols, assuming that the universe
is R throughout. Make sure that you clearly quantify x; is it “all x” or
“some x”?

(a) For all x, it is the case that x is an integer.
(b) There exists an integer x such that x > 0.
(c) There is a rational number x such that x2 + 1 � 0.
(d) For every real number x, there exists a real number y such that

x < y.
(e) There is a real number y such that x < y for all x.
(f) If x is a real number, then x2 + 1 
� 0.
(g) A real number x satisfies x2 > 0, if x 
� 0.
(h) If x > 0, then x > 4 or x < 6. ©

We negated conjunctions, disjunctions, and implications. Now
we will think about the negation of a quantified statement.

Suppose we have the statement “Every cow is black.” How would
we negate it? One pretty useless way is to say “Not every cow is
black.” It’s better to say “Some cow is not black.” So a useful negation
of

∀x, p(x)
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is

∃x, ¬p(x).

Similarly, if we say, “There exists a black cow” a useful negation
is “No cow is black.” So a negation of

∃x, p(x)

is

∀x, ¬p(x).

You will find that sometimes you can negate a sentence directly
and other times you need to convert to symbols. Here is another
example.

Example 4.3.
Negate the sentence “People who live in glass houses should not
throw stones.”

We will assume that the universe is the set of all people. What
does this say? First, it says something about all people who live in
glass houses. So we will use the quantifier “for all” and x will denote a
person. The notation g(x) will mean that x lives in a glass house. The
notation t(x) will mean that x should throw stones. So our sentence
becomes “For all x, if g(x), then ¬t(x).” If you can negate it now, go
ahead. If not, go through the steps below. You should provide reasons
why each step below is correct:

1. ¬(∀x, (g(x) → ¬t(x)));
2. ∃x, ¬(g(x) → ¬t(x));
3. ∃x, ¬(¬g(x) ∨ ¬t(x));
4. ∃x, (g(x) ∧ t(x)).

The last sentence says that the negation of “People who live in
glass houses should not throw stones” is “There exists a person who
lives in a glass house and should throw stones.” ©

We emphasize that while it is good to practice these symbolic
manipulations, it is also important to understand what you are do-
ing. Sometimes you will find it easier to use the symbolic notation
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and sometimes you won’t. Make sure you keep in mind what the
sentence says, and whether or not your answer seems reasonable.
Before you go off on your own, we’ll do a fairly complicated example
together.

Example 4.4.
Suppose our universe is the set of real numbers and we wish to
negate the statement “For every rational number x, there exists an
integer n that is greater than x.”

So let’s try it. First we note that “For every rational number x”
means that we are being told that “if x is a rational number” some-
thing will happen. What? There will exist an integer bigger than x. So
this is an implication of the form “For all x, if x is a rational number,
then there exists an n such that n is an integer and n > x.” Some-
times it is easier to understand a statement if we replace the various
subsentences with symbolic representations. We use

p(x) for x is a rational number,
q(n) for n is an integer, and
r(n, x) for n > x.

Using this notation, we have

∀x, (p(x) → ∃n, (q(n) ∧ r(n, x))).

Let’s try to negate this quantified statement form one step at a
time, starting from the outside.

We know that when we negate “for all” it becomes “there exists.”
In other words, we can replace ¬(∀x, · · ·) with ∃x, ¬(· · ·). So, here’s
where we are now:

¬(∀x, (p(x) → ∃n, (q(n) ∧ r(n, x))))

is equivalent to

∃x, ¬(p(x) → ∃n, (q(n) ∧ r(n, x))).

Now we negate the implication. From the last chapter we know
that ¬(P → Q ) is equivalent to P ∧ ¬Q . We’re up to

∃x, (p(x) ∧ ¬(∃n, (q(n) ∧ r(n, x)))).
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So the only thing left to do is negate Q , which is the expression
∃n, (q(n)∧ r(n, x)). At least this is simpler than what we started with!
Now ∃ will change to ∀ and so we need only worry about q(n)∧r(n, x).
But that’s a conjunction. So the final step is to negate that, and we
know the negation of the conjunction will become ¬q(n) ∨ ¬r(n, x).
So here’s where we are now:

∃x, (p(x) ∧ (∀n, (¬q(n) ∨ ¬r(n, x)))).

We’ve done what we were asked to do, in a sense, but our answer
is still in symbols. Let’s translate back:

“There exists an x such that x is a rational number and for all
n, either n is not an integer or n is not greater than x.”

And finally (you should explain how we get the following),

“There is a rational number x such that for all n, if n is an
integer, then n ≤ x.” ©

Not all negations are this complicated, but even in simpler state-
ments there are things you should be wary of. Consider the two
statements about real numbers: ∀x, ∃y, x+y � 0 and ∃y, ∀x, x+y � 0.
Assuming the universe is the set of real numbers, what’s the differ-
ence between these two statements? In the first, we say that for each
x we can find a y with x+y � 0. That’s a statement you have known
to be true for years, ever since you learned about −x. On the other
hand, the second statement says that there exists a y such that for
all x, we have x + y � 0. That statement is false, because the same
y would have to work for all x. What’s the moral of this story? That
the order of the quantifiers is very important.

Exercise 4.5.
Negate the statements (a)–(h) of Exercise 4.2. ©



4. Set Notation and Quantifiers46

Solutions to Exercises

Solution to Exercise (4.1).
There are many possible answers. We list some below:

(a) {1, −1};
(b) {1};
(c) the x-axis in R2;
(d) the xy-plane in R3;
(e) {2n : n ∈ Z} � {. . . , −2, 0, 2, . . .};
(f) the set of all points in R2 such that both the x and y coordinates

are integers.

Solution to Exercise (4.2).
Note that the universe was assumed to be R.

(a) ∀x, x ∈ Z.
(b) ∃x, ((x ∈ Z) ∧ (x > 0)).
(c) ∃x, ((x ∈ Q) ∧ (x2 + 1 � 0)).
(d) ∀x, ∃y, (x < y).
(e) ∃y, ∀x, (x < y).
(f) ∀x, ¬(x2 + 1 � 0).
(g) ∀x, (¬(x � 0) → x2 > 0).
(h) ∀x, (x > 0 → ((x > 4) ∨ (x < 6))).

Solution to Exercise (4.5).
Note that the universe was assumed to be R.

(a) There exists an x such that x is not an integer.
(b) For all x, either x is not an integer or x is nonpositive (or both).

This is equivalent to: For all x, if x is an integer, then x is
nonpositive.

(c) For all x, if x is a rational number, then x2 + 1 
� 0.
(d) There exists an x such that for all y we have x ≥ y.
(e) For all y, there exists an x such that x ≥ y.
(f) For some x, it is the case that x2 + 1 � 0.
(g) For some x, we have x 
� 0 and x2 ≤ 0.
(h) There exists a positive real number x such that x ≤ 4 and x ≥ 6.
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Problems

Tips on Quantification on page 51 summarizes many of the major points
in this chapter. You may find it helpful to read these tips before working
the problems below.

Problem 4.1.
Write the following statements symbolically.

(a) For every x, there is a y such that x � 2y.

(b) For every y, there is an x such that x � 2y.

(c) For every x and for every y, it is the case that x � 2y.
(d) There exists an x such that for some y the equality x � 2y holds.
(e) There exists an x and a y such that x � 2y.

Problem 4.2.
Which of the statements in Problem 4.1 are true if the universe for
both x and y is the set of the real numbers?

Problem 4.3.
Which of the statements in Problem 4.1 are true if the universe for
x is the set of the real numbers and the universe for y is the set of
the integers?

Problem 4.4.
Negate the statements in Problem 4.1.

Problem 4.5.
Negate the following sentences. If you don’t know how to negate it,
change it to symbols and then negate. State the universe whenever
it is not evident.

(a) For all x ∈ R, we have x2 > 0.

(b) Every odd integer is nonzero.
(c) If I am hungry, then I eat chocolate.
(d) For every girl there is a boy she doesn’t like.
(e) There exists x such that g(x) > 0.
(f) For every x there is a y such that xy � 1.
(g) There is a y such that xy � 0 for every x.
(h) If x 
� 0, then there exists y such that xy � 1.
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(i) If x > 0, then xy2 ≥ 0 for all y.
(j) For all ε > 0, there exists δ > 0 such that if x is a real number

with |x − 1| < δ, then |x2 − 1| < ε.

(k) For all real numbers M, there exists a real number N such that
|f (n)| > M for all n > N .

Problem 4.6.
Consider the following statement.

For all positive integers x, there exists a real number y

such that for all real numbers z, either y � zx or z � yx.

(a) Write this statement using symbols and appropriate quantifi-
cation. Use R for the universe of all variables.

(b) Once you have written this statement in symbols, negate the
(symbolic) statement that you obtained.

Problem 4.7.
Consider the following statement:

∀x, ((x ∈ Z ∧ ¬(∃y, (y ∈ Z ∧ x � 7y))) → (∃z, (z ∈ Z ∧ x � 2z))).

(a) Negate this statement.
(b) Write the original statement as an English sentence.
(c) Which statement is true, the original one or the negation?

Explain your answer.

Problem 4.8.
Write each of the statements below using symbolic notation. In this
problem, use R as the universe for all variables involved.

(a) There is an integer that is bigger than its square.
(b) Every rational number is the product of two irrational numbers.

(Note: A real number x is irrational if x 
∈ Q.)
(c) There are integers m and n such that for each rational number

x, either m < nx or n < mx.
(d) Every rational number is the solution of an equation ax+b � 0,

where a and b are integers.
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Problem 4.9.
Why is this joke supposed to be funny? A physicist, chemist, and a
mathematician are traveling through Switzerland. From the train
they spot a cow grazing in the field. The chemist gazes out the
window and says, “Ah, all the cows in Switzerland are brown.” The
physicist says, “No, no. You can’t conclude that. You can only say
that some of the cows in Switzerland are brown.” The mathematician
says, “No, no, no. All you can say is that there is a cow in Switzerland
that is brown on one side.”

Problem 4.10.
For each of the following, state the converse, the contrapositive,
and the negation of each (the negation of the statement, the con-
verse, and the contrapositive). State the universe, if appropriate and
quantify anything that is quantifiable.

(a) Madeleine waters the plants only if it is Tuesday.
(b) If I ski, I will fall.
(c) Windows break if you throw balls through them.
(d) If I negate a sentence, then I always do it wrong.
(e) I will come only if you invite me.
(f) For all positive real numbers x, there exists an integer n such

that 1/n < x.
(g) If x is a nonzero real number, then x2 
� 0.

(h) If x is a nonzero real number, then there exists a real number
y such that x · y � 1.

(i) If x and y are even integers, then x + y is an even integer.

Problem 4.11.
Find a different useful description of the following:

(a) {x ∈ R : x2 � 2};
(b) {(x, y) ∈ R2 : x � y};
(c) {x ∈ N : x ≤ 0};
(d) {x ∈ Z : x2 > 0}.

Problem 4.12.
Write each of the following in set notation.

(a) The set of all odd integers.
(b) The set of all points in the xy-plane above the line y � x.
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(c) The set of all points in the xy-plane that are inside the circle of
radius one.

(d) The set of all irrational numbers.

Problem 4.13.
Decide whether sentence (3) is true if sentences (1) and (2) are both
true. Give reasons for your answers.
(a) (1) Everyone who loves Bill loves Sam.

(2) I don’t love Sam.
(3) I don’t love Bill.

(b) (1) If Susie goes to the ball in the red dress, I will stay home.
(2) Susie went to the ball in the green dress.
(3) I did not stay home.

(c) (1) If l is a positive real number, then there exists a real number
m such that m > l.

(2) Every real number m is less than t.
(3) The real number t is not positive.

(d) (1) Every little breeze seems to whisper Louise or my name is
Igor.

(2) My name is Stewart.
(3) Every little breeze seems to whisper Louise.

(e) (1) There is a house on every street such that if that house is
blue, the one next to it is black.

(2) There is no blue house on my street.
(3) There is no black house on my street.

(f) Let x and y be real numbers.
(1) If x > 5, then y < 1/5.
(2) We know y � 1.
(3) So x ≤ 5.

(g) Let M and n be real numbers.
(1) If n > M, then n2 > M2.
(2) We know n < M.
(3) So n2 ≤ M2.

(h) Let x, y, and z be real numbers.
(1) If y > x and y > 0, then y > z.
(2) We know that y ≤ z.
(3) Then y ≤ x or y ≤ 0.
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Tips on Quantification

• Check the universe for each of the variables. Write it down, if it
is not self-evident.

• Suppose a statement restricts the variable x to a proper subset A

of the universe as in the statement form, “For all x ∈ A, property
p(x) holds.” Since x is universally quantified, this is an implication
of the form

∀x, (x ∈ A → p(x)).

• Suppose a statement restricts the variable x to a proper subset A of
the universe as in the statement form, “For some x ∈ A, property
p(x) holds.” Since x is existentially quantified, this is a conjunction
of the form

∃x, (x ∈ A ∧ p(x)).

• Simple statements are usually easy to negate. Just do it.
• Complicated statements will often resist a “just do.” Write them

out in symbols first. Make sure you know what the quantifier is
on every variable. Check for the various ways one can say “if...,
then...”

• Do not use logical connectives (¬, ∧, ∨, →, ↔) between quanti-
fiers. (Do not write “∀x ∨ ∀y · · ·” or “∀x ∧ ∀y · · · .”)

• Know the rules. You must know how to negate existential
quantifiers, universal quantifiers, conjunctions, disjunctions, and
implications. The most important negation is also the one
students frequently forget: the negation of an implication.

• Practice: Every time you get a definition or theorem, try negating
it. If you can’t, this might indicate that you do not fully understand
it.

If you think you need more practice, here it is. In what follows,
unless otherwise stated, all variables are real numbers, and ε and δ

represent positive real numbers. Negate all of these.

(a) For every ε, there exists δ such that δ < ε.

(b) Let a ∈ R. For every ε there exists δ such that for every x ∈ R,
if |x − a| < δ, then |x2 − a2| < ε.

(c) Let x ∈ R. Then x < x + ε for all ε > 0.
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(d) For every integer n, there exists x > n such that x2 > n2.
(e) For every ε > 0 there exists an integer N such that 1/n < ε for

all n ≥ N .
(f) For all x, either x < 0 or x > 0.
(g) For all x, there exists an integer n such that n > x.
(h) For all x, y, and z, if x < y and z < 0, then zx > zy.
(i) Let x and y be real numbers. If x < y + ε for all ε > 0, then

x ≤ y.



5
C H A P T E R

...........................................

Proof
Techniques

In this chapter, we introduce you to some of the most common proof
techniques. The three methods we will examine in this section are:

• direct proof (just get started and keep going),
• proof by contradiction (show that the negation of the statement

you wish to prove implies the impossible), and
• proof in cases (which may be used when conditions dictate that

different situations occur).

There are many more. For example, another proof technique that
you may be familiar with from the study of calculus is the method
of exhaustion, such as computing area or volume calculations by
“filling up the object” with a sequence of more familiar smaller sets.
Sometimes these techniques are used in combination. Some other
methods, such as proof of existence and uniqueness of an object
or proof using the contrapositive of the statement, will appear in
subsequent chapters.

The first example is a direct proof. We want to show that “If A,
then B is true.” So we do it in our most direct manner: We start with
A and keep going until we get to B. Before getting started, we make
sure we know the meaning of every word in the implication and we
try to make sure that the implication is true.

53
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Theorem 5.1.
If a, b, and c are integers such that a divides b and a divides c, then a

divides b + c.

“Understanding the problem.” Okay, before we get started, let’s
identify the hypothesis and conclusion. What are they? The hypoth-
esis is a, b, and c are integers such that a divides b and a divides
c. We get to start with that. What does a divides b mean? Well, we
don’t know yet, so let’s think about that. It would mean that when
we divide b by a we get an integer. So this would mean b � an,
where n ∈ Z. So we say a divides b if and only if there is an integer
n such that b � an. Since we have already defined everything here,
we understand the problem and we feel confident—raring to go, in
fact. What’s the conclusion we need to come to? The conclusion is a

divides b+ c, and we know what this means because we understand
“divides.”

“Devising a plan.” So we know that, in the notation we used above,
b � am and c � an where m and n are both integers. We need to
show that a divides b+ c, or that there is an integer j with b+ c � aj.
Looking at what we were given and what the desired conclusion is
should suggest the plan.

Proof.
Since a, b, and c are integers such that a divides b and a divides c, we
know that there exist integers m and n such that b � am and c � an.
Therefore, b + c � am + an � a(m + n). Since m + n is an integer, a

divides b + c.

“Looking back.” Let’s admire this proof for a minute. It’s so lovely.
There are complete sentences, periods, and all symbols are carefully
defined. We say where we are starting; that is, what the assumption
is, and we end by saying what the conclusion is. Just in case the
reader hasn’t noticed, though, we indicate that we are done by adding
the little box, . Other people use Q.E.D. (quod erat demonstrandum
which is Latin for which was to be demonstrated). Your proofs should
be just as appealing as the one above.

What follows is an example of a proof by contradiction, some-
times referred to as reductio ad absurdum. The idea of such a proof
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is that we suppose that what we wish to conclude is false and show
that something really silly happens (hence the absurdum). Below
is an example of this idea that goes back to the Pythagoreans. This
is one of two proofs presented by G. H. Hardy in his famous book
A Mathematician’s Apology [35], as an example of a beautiful proof.
(The first proof in Hardy’s text is in the problems. If you haven’t read
his book, it is another one that we highly recommend.)

Theorem 5.2.
The number

√
2 is not rational.

“Understanding the problem.” Before we begin, we make sure that
we know what all the words mean, what we are assuming, and what
we are trying to prove. A rational number is a number of the form
p/q where p and q are integers, and q is nonzero. So we need to
show that

√
2 is not of this form; that is, there are no integers p and

q (with q nonzero) such that
√

2 � p/q. That may seem like a tall
order, since it seems to mean we have to look through all possible
integers! This leads directly to:

“Devising a plan.” Perhaps it would be easiest to assume
√

2 � p/q

(with p and q integers and q 
� 0) and see what, if anything, happens.
This is precisely the idea behind proof by contradiction.

Proof.
Suppose, to the contrary, that

√
2 is rational. Then there exist inte-

gers p and q (with q nonzero) such that
√

2 � p/q. We may assume
that p and q have no common factor, for if they did, we would sim-
plify and begin again. Now, we have that

√
2q � p. Squaring both

sides, we obtain 2q2 � p2. Thus p2 is even. Since p2 is even, we
know from Problem 3.1 that p must be even. Therefore, p � 2m for
some integer m. This means that 2q2 � 4m2. Dividing, we see that
q2 � 2m2. But this means that q2 is even. Again we know from Prob-
lem 3.1 that q is even. So p and q have a common factor 2, which is
completely absurd, since we assumed they had no common factor.
Therefore our assumption that

√
2 is rational must be wrong and we

have completed the proof of the theorem.
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“Looking back.” Note that we slipped in a reference to Problem 3.1.
If we hadn’t, you would have read “Since p2 is even, p must be even.”
Your reaction to this could have been “Oh yeah, we did that already.”
That’s fine. But you could also have stopped, tried to think about
why it is true, tried to prove it, and so on. That’s fine too, in some
sense, but you don’t want to re-prove everything we have already
done. So if the writer tells the reader why something is true, it saves
the reader valuable time. Or, you could also have skipped right over
it, never worrying about why it is true. That’s not fine. You need to
understand each sentence in a proof!

Knowing how to split a proof into cases, which we will refer to as a
“proof in cases,” is something that will be extremely useful too. Here
is an example of something defined in cases. Once we understand
this definition, we’ll prove something using it.

For a real number x, the absolute value of x is defined in cases
by

|x| �
{

x if x ≥ 0
−x if x < 0

.

Is this what you were expecting the definition to be? If not, let’s
make sure it agrees with what you were expecting. If x � 3, then
x ≥ 0, and we conclude that |3| � 3. If x � −3, then x < 0, and we
conclude that | − 3| � −(−3) � 3. If you feel comfortable with this
definition, you are ready to move on to the theorem. If not, work
out a few more examples and then move on.

Theorem 5.3.
Let x and y be real numbers. Then |xy| � |x||y|.

We made sure that we understood the definition of absolute value
before proceeding to the theorem, so we understand the problem.
Let’s think about devising a plan.

“Devising a plan.” Absolute value was defined in cases, and there-
fore |xy| depends on whether xy ≥ 0 or xy < 0. The first, xy ≥ 0, is
actually two cases again: xy > 0 or xy � 0. What are the possibili-
ties? Well, xy > 0 would mean that both x > 0 and y > 0, or both
x < 0 and y < 0. The case xy � 0 would mean that x � 0 or y � 0.
The final possibility, xy < 0, would mean that one of the two, x or
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y, is negative and the other is positive. It seems that we have four
cases to consider: both x and y positive, both negative, at least one
of the numbers is zero and one of the two numbers negative while
the other is positive.

Proof.
First, suppose that x > 0 and y > 0. Then xy > 0 and we have
|xy| � xy, |x| � x, and |y| � y. Therefore,

|xy| � xy � |x||y|,
and we have established the result in this case.

Second, suppose that x < 0 and y < 0. Then xy > 0 and we have
|xy| � xy, |x| � −x, and |y| � −y. Therefore,

|xy| � xy � (−x)(−y) � |x||y|,
and we have the result for this case as well.

Third, suppose that either x � 0 or y � 0. Then xy � 0 and we
have |xy| � 0, and either |x| � 0 or |y| � 0. Therefore,

|xy| � 0 � |x||y|,
establishing the result in this case too.

For our final case, suppose that one number is positive and the
other is negative. Thus, we may assume that x < 0 and y > 0. Then
xy < 0 and we have |xy| � −(xy), |x| � −x, and |y| � y. Therefore,

|xy| � −(xy) � (−x)y � |x||y|.
We have now established the result for all four possible cases and
we may conclude that |xy| � |x||y| for all real numbers x and y.

Once again, look at the form of the proof. There are four cases and
we tell the reader which case we are discussing before we discuss
it. We can conclude something in each case, but it isn’t until we
cover all four possible cases that we can write “we may conclude
that |xy| � |x||y| for all real numbers x and y.”

It will also be helpful to know how to show something is not
true. A statement whose truth is anticipated, but for which we have
no proof yet is called a conjecture. There are many different ways
that one might arrive at a conjecture. It can be due to the intuition
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or insight of a great mathematician, or it can be a generalization of
observations gleaned from many examples. The latter has become
more common in recent years, in part due to the capabilities of
powerful calculators and computers. Once we find a proof, the con-
jecture turns into a theorem. The most famous example in recent
history is a proof by Andrew Wiles. In 1995, Wiles turned Fermat’s
last conjecture into Fermat’s last theorem, [86]. (Watch the excellent
Nova episode “The Proof” for the full story on the history of Fermat’s
last theorem, [7].)

It’s important to note, however, that just because you believe
something might be true, doesn’t mean that it necessarily is true.
Sometimes you will find that a conjecture someone else has made
(or even one that you have made) is, in fact, false. In these cases, you
need to find an example of something that satisfies the hypotheses
of your conjecture, but not the conclusion. An example is the fol-
lowing conjecture of Pierre de Fermat—one of the very few of his
conjectures that turned out to be wrong.

Consider numbers of the form 22m + 1, where m is a natural
number. The first number, 220 +1 � 3 is prime. The second, 221 +1 �
5 is also prime, as are the third, fourth, and fifth numbers. In fact,
Fermat conjectured that if m is a nonnegative integer, then 22m +1 is
prime. In 1732, the Swiss mathematician, Leonhard Euler, showed
that this was false by showing that the sixth number in this list,
225 + 1 � 4294967297 can be factored. In fact, our calculator tells us
that 225 + 1 � 641 · 6700417. Thus Fermat’s conjecture is false.

An example that shows that a statement is false is called a
counterexample. You only need one to show something is false!

Problems

Problem 5.1.
Below is the other proof Hardy chose to present ([35, pp. 92–94]).
This theorem and its proof were known to Euclid, and appear in the
Elements IX 20, [38]. Can you read and understand this proof? Read
the whole thing. Underline anything you don’t understand the first
time. Reread it slower this time. Underline anything you can’t figure
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out. You may need to spend 10 minutes on each sentence; you may
not. Then write the general idea of the proof in “street talk.” A bright,
interested twelve year old should be able to follow your outline of
the proof.

Before you begin, make sure you understand what will be as-
sumed and what we will try to do. Make sure you know what all the
words mean. “Infinite” has not yet been defined; prime number has.

Theorem 5.4.
There are infinitely many prime numbers.

Proof.
To prove this statement suppose, to the contrary, that there are
finitely many primes. Then we may write these finitely many
primes in ascending order as

2, 3, 5, . . . , N,

where N is the largest prime. Now consider the number M defined
by

M � (2 · 3 · 5 · · · · · N) + 1.

If M is prime, then M is a prime that is larger than the largest prime
N . Therefore, we must conclude that M is not prime, and so it is
divisible by some prime number, P. However, P must appear in the
list of primes

2, 3, 5, . . . , N,

which we gave earlier. But when we divide M by P, we obtain a
remainder of 1. Therefore, P cannot be a factor of M, and we have
contradicted our assumption that there are finitely many primes.
Thus, there exist infinitely many primes.

Problem 5.2.
Prove that if n is an integer, then 4n2 + 4n + 8 is an even integer.
What kind of proof did you use?

Problem 5.3.
Prove that if n is an integer, then n2 +3n+2 is an even integer. What
method of proof did you use?
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Problem 5.4.
Provide counterexamples to each of the following.

(a) Every odd number is prime.
(b) Every prime number is odd.
(c) For every real number x, we have x2 > 0.
(d) For every real number x 
� 0, we have 1/x > 0.

(e) Every function f : R → R is linear (of the form mx + b).

Problem 5.5.
Define two sets, A and B, by

A � {x ∈ Z : x � 2n for some n ∈ Z} and

B � {x ∈ Z : x � 2m + 1 for some m ∈ Z}.

(a) Using these definitions, give a rigorous proof that A and B have
no elements in common. Make sure you write out all details.

(b) What type of proof did you use in part (a)?

Problem 5.6.
Let n be an integer. Prove that if n2 is divisible by 3, then n is divisible
by 3.

Problem 5.7.
Show that

√
3 is not rational. (You may want to use the result of

Problem 5.6 to work this problem.)

Problem 5.8.
Prove that sin2 x ≤ | sin x| for all x ∈ R.

Problem� 5.9.
Let x be a real number.

(a) Prove that −|x| ≤ x ≤ |x|.
(b) Let a ≥ 0. Prove that |x| ≤ a if and only if −a ≤ x ≤ a.
(c) Prove the theorem below.

Theorem 5.5 (The triangle inequality).
Let x and y be real numbers. Then |x + y| ≤ |x| + |y|.
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Problem 5.10.
Prove the lower triangle inequality: Let x and y be real numbers.
Then

||x| − |y|| ≤ |x − y|.

Problem 5.11.
Find all points in the xy-plane that lie on the surface

4 � 5(x − 3)2 + 3(y − π)2 + 2(z + 2)2.

Write up your solution carefully. What method of proof did you use?

Problem 5.12.
Let n be an integer. Prove that if n2 − (n − 2)2 is not divisible by 8,
then n is even.

Problem 5.13.
Prove that if p(x) � anx

n + an−1x
n−1 + · · · + a0, where a0, . . . , an ∈ R,

is a polynomial, then p can have at most n roots. (Some remarks are
in order here. To work this problem, you must understand it. Recall
that c ∈ R is a root of a polynomial p if p(c) � 0. In order to restate
the problem, you also need to recall that if c is a root of p, then x − c

is a factor of p.)

Problem 5.14.
Consider the following statement.

∀x, (x ∈ Z+ → ∃y, ∃z,

((y ∈ Q) ∧ (z ∈ Q) ∧ (yz 
� 0) ∧ (x2 � y2 + z2))).

(a) Change this symbolic statement to an English sentence.
(b) Prove the statement you found in (a).

Tips on Definitions

In your previous courses, you may or may not have had to memo-
rize definitions. Now it becomes essential that you memorize them,
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understand them, and investigate them before venturing on to use
them. Here are some suggestions on how to do these things.

• The first step is to make sure you know the definition. This does
not mean that you highlight it with a marker and read it over a few
times. It means that you, first of all, understand it, and, second
of all, memorize it. You must know whether the quantifiers are
“for all” or “there exist,” you must know what order they come in,
you must watch the order on implications, and you must be sure
that what you write is correct. Every single itty bitty detail must
be correct or chances are that your definition is wrong.

• It’s very difficult to memorize something you don’t understand.
So once you see a definition (in bold black print in this book)
write it down and think about what it means.

• Give many examples, until you feel that you know what an
example looks like.

• Negate the definition and try to find nonexamples (that show
when things won’t satisfy the definition).

• Go back and see if you can write out the definition without looking
at it. Wait a few hours and do that again. If anything is out of place,
ask yourself if it matters. If it does, repeat the appropriate steps
here.

• Definitions are often stated as implications. This leads students
to ask if the definition is an equivalence. The answer is “yes.”
Consider the following definition: “An integer m is even if there
exists an integer n such that m � 2n.” Since this is how we defined
“even,” we also mean that “if m is even, then there exists an integer
n such that m � 2n.”

Some teachers and students find it helpful to make definition
notebooks. In such a notebook, you will do all the steps above as
often as necessary. We heartily recommend such an approach.
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...........................................

Sets

Recall from Chapter 4 that a set S is a collection of objects. The
objects that make up the set are called the elements or members of
the set. A set has a defining property, and it is used to determine
whether or not an element belongs to the set: To decide whether
or not x is in the set S, you need to see whether x satisfies this
defining property p. The empty set is the set with no elements, and
is denoted by ∅.

Once we have the defining property, there are often several ways
to describe a set. If there aren’t too many elements in the set, then we
can list all elements: B � {Benny, Betty, Billy, Bobby}. If the elements
come from a well-known larger set X and satisfy a defining property
p, we may write {x ∈ X : p(x)}. This is read “the set of all elements
of X satisfying property p.” We may think of X as the universe in this
context.

Note that a set is described by its elements—not by the order we
put the elements in the set, or whether we put an element in more
than once. Thus the set {1, 2, 3} is the same as the set {1, 1, 3, 2}.

Exercise 6.1.
For each of the following sets, say what the universe is and write
out the defining property. For example, if we wish to describe the
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set of all women, the universe might be all people, and the defining
property would be “x is a woman.” Use complete sentences.

(a) The collection A of all members of the school band.
(b) The collection B of all irrational numbers.
(c) The collection of all prime numbers greater than or equal to 4

and less than 7. ©

Exercise 6.2.
Care needs to be used when creating a defining property. What is
wrong with each of the following?

(a) The collection C of all pretty people in Luxembourg.
(b) The collection D of all collections that do not contain

themselves as an element. ©

The notation we have described so far in this chapter is not the
only acceptable notation. For example, if we know what our universe
is, there may be no reason to repeat it in the notation. Therefore,
we may write {x ∈ X : p(x)}, or we may simply write {x : p(x)}. The
next exercise introduces you to a slightly different way of describing
a set.

Exercise 6.3.
Let S � {x ∈ Z : x � 2n + 1 for some n ∈ Z} and T � {s2 : s ∈ S}.
The notation for T is different from the notation we have discussed
thus far in the chapter, yet you can still determine T. Write out a
description of T using the same notation as the one used for S. Then
write out a description of S using the same notation as the one used
for T. ©

Exercise 6.4.
Consider the set A of nonzero integers.

(a) Write this set using the notation A � {x ∈ S : p(x)}.
Use what you learned in previous chapters to answer the following
questions.

Define a new “multiplication” on A by x � y � 2xy for x, y ∈ A.
For parts (b) and (c) below, either prove the statement or give a
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counterexample to it. (If you find you cannot answer the questions
below, read the discussion following part (c).)

(b) If x, y ∈ A, then x � y ∈ A.
(c) There exists an element y ∈ A such that x � y � x for every

x ∈ A.

If you really can’t get started, then you probably didn’t under-
stand the problem. One way to begin is to pick numbers for x and
y and try them out until you get a feel for this new multiplication.
Once you understand it, try rewriting the statements so that they
make sense to you. For example, in (b), replace the conclusion x � y

by its definition to obtain “If x, y ∈ A, then 2xy ∈ A.” All this should
help. Remember, the most important thing is to get started. ©

A set A is a subset of a set B or, equivalently, A is contained in
B, if every element of A is an element of B. We will write A ⊆ B to
indicate that A is a subset of B. This is depicted in Figure 6.1.

Notice that A is always a subset of itself: A ⊆ A. However, a
subset can also be truly smaller, and we often find it necessary to
use our notation to emphasize this. We say that A is a proper subset
of B if A ⊆ B and A 
� B, and we will write A ⊂ B.

Showing that a set A is contained in another set B turns out to be
one of the most important tasks in mathematics. One way to show
that a set A is contained in a set B is to do exactly what the definition
says; take an arbitrary element of the set A and then show that this
element is in set B.

B

A

FIGURE 6.1 A ⊆ B
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Example 6.5.
In Exercise 6.3 we used two sets, S and T, where S � {2n+1 : n ∈ Z}
and T � {s2 : s ∈ S}. Show that T ⊆ S. Is T a proper subset of S?

Remember, to prove set inclusion we have to take an arbitrary
element in the set T and then show that this element is in the set
S. So, for our proof of containment, we will begin with x ∈ T, and
attempt to end our proof with x ∈ S.

As we will see in future chapters, we can often devise a plan for
a proof of this type by writing out what we know (x ∈ T) at the top
of the page, and what we want to show (x ∈ S) at the bottom. You
have probably attempted proving things this way before: you work
from the top down, and from the bottom up. So our plan might look
like

x ∈ T,

large space

x ∈ S.

But x ∈ T means that x � s2 for some s ∈ S, and x ∈ S means that
x � 2n + 1 for some n ∈ Z. So our plan (a few minutes later) might
look like

x ∈ T,

x � s2, for some s ∈ S,

smaller space

x � 2n + 1, for some n ∈ Z,

x ∈ S.

We keep filling things in, making sure that each line follows logi-
cally from the previous one, until we see how to complete the proof.
Here’s what we end up with.
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Proof.
(Inclusion) Let x ∈ T. Then x � s2 for some s ∈ S. By the definition of
S, there exists n ∈ Z such that s � 2n+1. Hence x � s2 � (2n+1)2 �
4n2 + 4n + 1 � 2(2n2 + 2n) + 1. Now let m � 2n2 + 2n. Then m ∈ Z
and x � 2m + 1. Therefore x ∈ S. Thus T ⊆ S, as desired.

(Proper subset) In fact, T is a proper subset of S. To show this we
need to exhibit an element that is in S, but not in T. Consider the
number −1. Then −1 � 2(−1) + 1 and −1 ∈ Z. Thus, −1 satisfies
the defining property for S, so −1 ∈ S. On the other hand, the ele-
ments of T are squares of real numbers. Consequently all of them
are nonnegative. Hence −1 /∈ T, and the inclusion is proper.

If you remember the result of Problem 3.1, then you know that
you already showed that s2 is odd if and only if s is odd. If you refer
the reader to this result (carefully referencing it, so the reader can
find it easily) you can significantly shorten the proof of inclusion.
Given two proofs written with equal clarity and insight, most people
will prefer the shorter of the two. If the reader remembers the result,
reading it again may detract from the proof. So, as long as you tell
the reader what you are using and where to find it if he or she needs
to, you can (and should) refer to previous results. ©

We now return to the subject of this chapter. Notice that we just
told you how to show that a set A is contained in a set B. All you need
to do is show that for all x, if x ∈ A, then x ∈ B. So we also just told
you how to show that A is not contained in B—negate the definition
of containment.

Exercise 6.6.
Negate the statement: “For all x, if x ∈ A, then x ∈ B.” ©

Two sets are equal if they have precisely the same elements. This
can be defined a bit more formally as follows. A set A is equal to B,
written A � B, if A ⊆ B and B ⊆ A. To show that two sets are equal is
therefore a two step task: First you show that one set is contained in
the other (A ⊆ B). Then you reverse the order of the sets and show
inclusion again (B ⊆ A).
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Note that when A is a subset of B we use the symbol ⊆, but when
x is an element of A we use the symbol ∈. Choose your symbols
carefully and don’t mix them up! If x is not in A, then we write
x /∈ A. If A is not a subset of B, then we write A 
⊆ B.

Exercise 6.7.
Write a definition of set equality that reverts back to membership in
a set, rather than set containment. ©

Example 6.8.
Show that {x ∈ R : x2 − 1 � 0} � {1, −1}.

According to the definition of equality above, we have to show
two separate things. The first is to show that the set on the left is
contained in the set on the right. For this part of the proof, we will
begin with an arbitrary element y ∈ {x ∈ R : x2 − 1 � 0} and we will
try to show that y � 1 or y � −1. Then we must show that the set
on the right is contained in the set on the left. So for this part, we
will begin with y � 1 or y � −1 and try to show that it is in the set
on the left.

Proof.
If y∈ {x ∈ R : x2−1 � 0}, then 0 � y2−1 � (y−1)(y+1). Hence y � 1
or y � −1, and y ∈ {1, −1}. Therefore, {x ∈ R : x2 − 1 � 0} ⊆ {1, −1}.

Now if y ∈ {1, −1}, then y � 1 or y � −1. In either case we get
y2 � 1. Hence y2 − 1 � 0 and y ∈ {x ∈ R : x2 − 1 � 0}. Therefore
{1, −1} ⊆ {x ∈ R : x2 − 1 � 0}.

By the definition of equality of sets, {x ∈ R : x2 − 1 � 0} �
{1, −1}.

Exercise 6.9.
Let A � {1, 3, 5}, B � {3, 4, 6}, C � {5}, and D � {1, 3}. Which sets
are subsets of the others? For which sets S do we have 1 ∈ S? 1 /∈ S?
Which sets are not subsets of each other? ©

Theorem 6.10.
Let A be a set. Then ∅ ⊆ A.
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Proof.
We must show that for every x, if x ∈ ∅, then x ∈ A. Since there
are no elements in the empty set, the antecedent is always false.
Therefore the implication is always true, completing the proof.

We will now present a list of very important definitions, using
two sets, A and B, to create other sets. Some examples will be pre-
sented (briefly) here, and more can be found in the exercises. In
what follows, we assume that all variables x belong to a universe, X.

The union of A and B is denoted A∪B and is defined by A∪B �
{x : x ∈ A or x ∈ B}. For example, if A is the set of even integers, and
B is the set of odd integers, then A ∪ B � Z.

The intersection of A and B is A ∩ B � {x : x ∈ A and x ∈ B}.
If A and B are two sets such that A ∩ B � ∅, then we say that A and
B are disjoint. For example, if A is the set of even integers and B is
the set of odd integers, then A and B are disjoint.

The set difference of B in A is A \ B � {x ∈ A : x /∈ B}. A
comment is in order here. We can never look for objects “not in B”
unless we know where to start looking. So we use A to tell us where
to look for elements not in B. If A is the universe, we will write Bc for
A \ B. This is referred to as the complement of B. For example, let
A be the set of integers. If B � Z+, then A \ B is the set of elements
of A (integers) that are not in B (that are not positive integers). Thus
A\B � {x ∈ Z : x ≤ 0}. On the other hand, if A � N, then A\B � {0}.

It is possible to visualize these sets using a representation called
a Venn diagram. These diagrams are often helpful in sorting out the
relationship between sets. The universe is usually indicated by a
rectangle containing the sets. The idea is illustrated in Figures 6.2
and 6.3.

But be careful—pictures can be deceiving. Use the Venn diagram
to get your intuition going, but check everything carefully using the
techniques we have developed thus far.

Exercise 6.11.
Use the sets in Exercise 6.9 to answer the following questions: What
is A\B? A\C? Which sets are disjoint? If the universe is {1, 2, 3, 4, 5, 6},
what is Ac? Find A ∪ B and A ∩ B. ©
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FIGURE 6.2 A ∪ B and A ∩ B

FIGURE 6.3 A \ B and Ac

Exercise 6.12.
Write a definition of union for three sets. Write a definition of inter-
section for three sets. Can you write a definition of set difference for
three sets? Why or why not? ©

Solutions to Exercises

Solution to Exercise (6.1).
Here is the answer to (b): The universe is the set of all real numbers.
The defining property is “x ∈ R \ Q.”

Solution to Exercise (6.2).
(a) The adjective “pretty” is subjective and it is unclear whether a

person from Luxembourg is a member of the set C or not.
(b) Consider the following question: Is the collection D an element

of D or not? If it is an element of D, then it must satisfy the
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defining property, which says that D is not an element of D;
in other words, in this case it would have to be both in the set
and not in the set. On the other hand, if D is not an element of
the collection D, then it does just what the defining property
says. Thus it must be in the set D; in other words, in this case
it would have to be both in the set and not in the set. Hence,
this property is contradictory.

Solution to Exercise (6.3).
We can write T � {x ∈ Z : x � (2n + 1)2 for some n ∈ Z} and
S � {2n + 1 : n ∈ Z}.

Solution to Exercise (6.4).
Let A be the set of nonzero integers.

(a) A � {x ∈ Z : x 
� 0}.
(b) Let x and y be elements of A. Then x � y � 2xy. Since x, y, and

2 are all integers, x � y ∈ Z. Furthermore, since x and y are
elements of A, they are nonzero. Therefore x � y � 2xy 
� 0.
Consequently x � y ∈ A, as desired.

(c) This is false. Suppose to the contrary that there were such an
element y in A. Then x �y � x for every x ∈ A. Choosing x � 1,
we see that 1 � 1 � y � 2(1)(y) � 2y. The only solution to this
equation is y � 1/2, which is not an integer and therefore not
an element of A. This contradiction shows that no such y can
exist.

Solution to Exercise (6.6).
The negation is “There exists an x such that x ∈ A and x /∈ B.”

Solution to Exercise (6.7).
Two sets A and B are equal if for all x we have x ∈ A if and only if
x ∈ B.

Solution to Exercise (6.9).
The following statements hold:

C ⊆ A and D ⊆ A;
no other sets are subsets of each other;
1 ∈ A, 1 ∈ D, 1 /∈ B, and 1 /∈ C.



6. Sets72

Solution to Exercise (6.11).
The following statements hold:

A \ B � {1, 5}, A \ C � {1, 3};
sets B and C are disjoint, and sets C and D are disjoint;
if the universe is as given, then Ac � {2, 4, 6};
A ∪ B � {1, 3, 4, 5, 6}, and A ∩ B � {3}.

Solution to Exercise (6.12).
Let A, B, and C be sets and let the universe be denoted by X. Then
A ∪ B ∪ C � {x ∈ X : x ∈ A or x ∈ B or x ∈ C} and A ∩ B ∩ C � {x ∈
X : x ∈ A and x ∈ B and x ∈ C}. While the union and intersection of
three sets makes sense, the set difference of three sets does not. In
order to answer this question, we would need to reduce it to a set
difference of two sets by including parentheses. For example, you
can define the following set differences: (A \ B) \ C and A \ (B \ C)
(try it!). Work out what these last two sets are when A, B, and C are
as in Exercise 6.9.

Spotlight: Paradoxes

You may already have seen paradoxes in mathematics. For example,
you may have seen Zeno’s paradoxes in your calculus class. Another
well-known paradox comes from the following: what is the sum of

1 − 1 + 1 − 1 + 1 − · · ·?
You might argue that this sum should be (1 − 1) + (1 − 1) + · · · � 0.
Or, you might just as well argue that this sum should be 1 + (−1 +
1)+ (−1+1)+· · · � 1. You might even argue (as Luigi Guido Grandi
did [23, p. 135]) that since the sums 0 and 1 are equally probable,
the answer should be the average of 0 and 1; in other words, 1/2.
This paradox forces us to look closely at exactly what we mean by
summing infinitely many numbers.

Betrand Russell pointed out a paradox in set theory. He also pre-
sented a popular form of this paradox, called the barber problem.
The problem is the following. Suppose there is a town with one
barber, and this barber says that he shaves those people, and only
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those, who do not shave themselves. The question is: Who shaves
the barber? (You’ll recognize the set theoretic form of this problem
in Exercise 6.2.)

Paradoxes serve a very useful purpose. They point out where
the foundations of mathematics are shaky (or even faulty!). To learn
more about them, and how they have been handled, we recommend
reading [22, Chapter 15], [46, Chapter 18], or [48, Chapter 51].

Problems

Problem 6.1.
Recall that N denotes the set of natural numbers, Z the set of integers,
and R the set of real numbers.

(a) Write the phrase “x belongs to R” in symbols.
(b) Write the phrase “Z is a proper subset of R” in symbols.
(c) Write the phrase “If x is an element of Z, then x or −x is an

element of N” in symbols.
(d) Use set notation to describe the set of squares of all multiples

of 3.

Problem 6.2.
In this problem our universe is R, the set of real numbers.

(a) Give an example of subsets A and B of R that are disjoint.
(b) Give an example of subsets A and B of R that are not disjoint

and find A \ B and B \ A.
(c) Give an example of subsets A and B of R such that A ⊆ B.
(d) Give an example of subsets A, B, and C of R such that A ∪ (B ∩

C) 
� (A ∪ B) ∪ (A ∪ C).

Problem 6.3.
The universe in this problem is R. Let A be the closed interval [0, 2]
and let B be the closed interval [−1, 1]. Find A \ B, B \ A, Ac, Bc,
Ac ∩ Bc, (A ∪ B), and (A ∪ B)c.
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A B

X

FIGURE 6.4

Problem 6.4.
Find an expression for each of the shaded sets in the Venn diagrams
of Figure 6.4

Problem 6.5.
(a) Consider the set S of nonzero real numbers. Write S in set

notation.
(b) Define a new “multiplication” on this set by x♥y � x/y. If

x, y ∈ S, is x♥y ∈ S? Is there an element y ∈ S such that
x♥y � x for all x ∈ S?

(c) Repeat parts (a) and (b), replacing the set S by the set T of
negative real numbers.

(d) Repeat parts (a) and (b), replacing the set S by the set V of
nonzero rational numbers.

Problem 6.6.
Define two sets A and B as follows: A � {(2n + 1)3 : n ∈ Z} and
B � {2n + 1 : n ∈ Z}.

(a) Prove that A ⊂ B.
(b) Suppose we redefine A and B, replacing Z by R; in other words,

A � {(2n + 1)3 : n ∈ R} and B � {2n + 1 : n ∈ R}. What is the
relation between these two sets? State and prove your answer.

Problem 6.7.
Find an expression for each of the shaded sets in the Venn diagrams
of Figure 6.5.

Problem 6.8.
Is the following statement true or false: {∅} � ∅? Why?
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FIGURE 6.5

Problem 6.9.
Let A � {x ∈ Z : 6 divides x}, B � {x ∈ Z : 21 divides x} and
C � {x ∈ Z : 42 divides x}. Prove that A ∩ B � C.

Problem 6.10.
Let A � {(x, y) ∈ R2 : x − y � 0}, B � {(x, y) ∈ R2 : x + y � 0} and
C � {(x, y) ∈ R2 : x2 − y2 � 0}. Prove that A ∪ B � C.

Problem 6.11.
Let A � Z, B � {x ∈ Z : x � 2n + 5 for some n ∈ Z} and C � {x ∈ Z :
x � −2m for some m ∈ Z}. Prove that A \ B � C.

Problem 6.12.
Let S be the set of nonzero real numbers. Define a new “addition”
on this set by x � y � x + y + 1. Suppose you add two numbers in
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S, do you end up with a number in S? (In other words, if x, y ∈ S, is
x � y ∈ S?)

Problem 6.13.
Prove that A � B in each of the following.

(a) Let A and B be the sets defined by A � {x ∈ R : sin(πx) � 0}
and B � Z.

(b) Let x ∈ R. Define the sets A and B by A � {(ax + b)/(cx + d) :
a, b, c, d ∈ Z and cx + d 
� 0} and B � {(px + q)/(rx + s) :
p, q, r, s ∈ Q and rx + s 
� 0}.

Problem 6.14.
Let A � {x ∈ R : ax2 + bx + c � 0 for some integers a, b, and c, with
at least one of a, b, c nonzero} and let B � {x ∈ R : px2 + qx + r � 0
for some rational numbers p, q, and r, with at least one of p, q, r

nonzero}.
(a) Prove that 2 ∈ A.
(b) Prove that

√
2 ∈ A.

(c) Give an example of a real number y such that y /∈ A. (You do
not need to prove that y /∈ A.)

(d) Prove that A � B.
(e) Prove that Q ⊆ A.

The following problems deal with sets of points in the plane. We
remind you of the notation introduced in Chapter 4. The set of all
points in the plane is denoted by R2 � {(x, y) : x, y ∈ R}. These types
of sets will be studied in more generality in Chapter 9.

Problem 6.15.
Define a set A by A � {(x, y) ∈ R2 : y 
� 0}.

(a) Give a geometric description of A.
(b) Suppose we tell you that if you have two elements of this set

A, you can “add” them according to the following rule:

(x, y) � (z, w) � (xw + zy, wy).

The symbol + here denotes usual addition. Show that the object
that results when we add two elements of our set A is again an
object in our set A.
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(c) Continuing, find an element (a, b) in A such that (a, b)�(x, y) �
(x, y) for every (x, y) in A.

(d) This “new” addition probably looks somewhat odd to you, but
you have seen it before. What is it?

Problem 6.16.
In each part of this problem, two sets, A and B, are defined. Prove
that A ⊆ B in each of the following:

(a) A � {x2 : x ∈ Z} and B � Z;
(b) A � R and B � {2x : x ∈ R};
(c) A � {(x, y) ∈ R2 : y � (5 − 3x)/2} and B � {(x, y) ∈ R2 :

2y + 3x � 5}.

Problem 6.17.
Prove that one set is a proper subset of the other one in each of the
following:

(a) A � {(x, y) ∈ R2 : xy > 0} and B � {(x, y) ∈ R2 : x2 + y2 > 0};
(b) A � ∅ and B � {(x, y) ∈ R2 : x2 + y2 ≤ 0}.

Problem 6.18.
Are the sets

{(x, y) ∈ R2 : x2 + y2 ≤ 1} and {(x, y) ∈ R2 : |x| + |y| ≤ 1}
equal? Justify your answer.



7
C H A P T E R

...........................................

Operations on
Sets

By an operation on sets we mean the construction of a new set from
the given ones. As we saw in the last chapter, these new sets may be
formed using unions, intersections, set differences, or complements
of given sets. In this section, we will look at many important prop-
erties of operations on sets. We end the chapter with a summarizing
list of identities. In the exercises and problems you will be given
the opportunity to prove the most important ones and then commit
them to memory, so you don’t have to re-prove them every time you
need them.

The Venn diagrams introduced in the previous chapter can be
helpful in deciding what is true and what is false, and they can be
part of understanding the problem. All we ask is that you continue
to bear in mind that a Venn diagram never constitutes a proof. When
you prove these properties you may not always need to start from
the definition. Sometimes you can use what you know, and once
you have proven everything in Theorem 7.4, you will know a lot.

The first theorem is a good example of a proof in cases. It keeps
things tidy. Now remember, if we use the definition to show two sets
A and B are equal, then we must show that if x ∈ A, then x ∈ B and
if x ∈ B, then x ∈ A.

79
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Theorem 7.1 (The distributive property).
Let A, B, and C be sets. Then A ∪ (B ∩ C) � (A ∪ B) ∩ (A ∪ C).

Before reading the proof, let’s use Pólya’s method.
“Understanding the problem.” Draw two Venn diagrams represent-

ing the left and right sides of the equality above. Each diagram will
have three sets, appropriately labeled A, B, and C. Shade in the area
described by the left side of the equation in one diagram and then
shade the right side in the other diagram. They should look the same.
While this should convince you that you are on the right track, it is
not enough to convince someone else.

“Devising a plan.” We wish to show that two sets are equal. Using
the definition of equality of sets, we know that we must show two
things. The first thing to show is that A∪ (B∩C) ⊆ (A∪B)∩ (A∪C).
So our first line will begin

If x ∈ A ∪ (B ∩ C),

and our last line (for this part of the proof) will look like

Thus x ∈ (A ∪ B) ∩ (A ∪ C).

Now we just have to figure out how to get from the first line to the
last one. Let’s fill in some things, making sure that each line follows
logically from the previous one. Working down from the top we get

x ∈ A ∪ (B ∩ C),

x ∈ A or x ∈ B ∩ C,

and working up from the bottom leads to

x ∈ A ∪ B and x ∈ A ∪ C,

x ∈ (A ∪ B) ∩ (A ∪ C).

Looking at what we are missing in our proof suggests that we use a
proof in cases; one that depends on whether x ∈ A or x ∈ B ∩ C.

Once we are done with the proof above, we must show that (A ∪
B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C). We use the same method to devise our
plan for a proof of this set containment: We write down our first line



7. Operations on Sets 81

and look to see where it takes us. Then we’ll write down our last line
and try to figure out how to get there. That leads to

x ∈ (A ∪ B) ∩ (A ∪ C),

x ∈ A ∪ B and x ∈ A ∪ C,

[stuff]

x ∈ A or x ∈ B ∩ C,

x ∈ A ∪ (B ∩ C).

It looks like if x ∈ A, we have our proof. But what if x 
∈ A? This
again suggests a proof in cases; one that depends on whether x ∈ A

or x 
∈ A. If you see what to do now, you can write up the proof. If
you still do not see what to do, continue using this method until you
see the solution.

Once you see the solution, fill in the missing steps and write the
proof up carefully using complete sentences, as we do below.

Proof.
If x ∈ A ∪ (B ∩ C), then x ∈ A or x ∈ B ∩ C. Suppose first that
x ∈ A. Then x ∈ A ∪ B and x ∈ A ∪ C. In this first case, we see that
x ∈ (A ∪ B) ∩ (A ∪ C). Now suppose that x ∈ B ∩ C. Then x ∈ B and
x ∈ C. Since x ∈ B, we see that x ∈ A ∪ B. Since we also have x ∈ C,
we see that x ∈ A ∪ C. Therefore, x ∈ (A ∪ B) ∩ (A ∪ C) in this case
as well. In either case x ∈ (A ∪ B) ∩ (A ∪ C) and we may conclude
that A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C).

To complete the proof, we must now show that (A∪B)∩(A∪C) ⊆
A ∪ (B ∩ C). So if x ∈ (A ∪ B) ∩ (A ∪ C), then x ∈ A ∪ B and x ∈ A ∪ C.
It is, once again, helpful to break this into two cases, since we know
that either x ∈ A or x /∈ A. Now if x ∈ A, then x ∈ A∪(B∩C). If x /∈ A,
then the fact that x ∈ A∪B implies that x must be in B. Similarly, the
fact that x ∈ A ∪ C implies that x must be in C. Therefore, x ∈ B ∩ C.
Hence x ∈ A ∪ (B ∩ C). In either case x ∈ A ∪ (B ∩ C) and we may
conclude that (A ∪ B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

Since we proved containment in both directions we may
conclude that the two sets are equal.
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Look at the proof above. It has complete sentences, variables are
identified, we know when we are in one case and then the other,
and we know when the proof is complete. You should use the form
as a model, but remember that each proof will be unique.

We now come to our first proof involving an “if and only if” state-
ment. Remember that an “if and only if” statement requires that you
prove both the “if” and the “only if.”

Theorem 7.2.
Let A and B be sets. Then A ∪ B � A if and only if B ⊆ A.

Proof.
First we’ll show that if A∪B � A, then B ⊆ A. So assume A∪B � A.
If x ∈ B, then x ∈ A ∪ B. Using the assumption that A ∪ B � A we
have x ∈ A. This shows that B ⊆ A.

Now we will prove that if B ⊆ A, then A ∪ B � A. So let us
assume that B ⊆ A. We must show that A∪B ⊆ A and A ⊆ A∪B. To
prove the first containment, we have that if x ∈ A ∪ B, then x ∈ A or
x ∈ B. If x ∈ A, then x is where it needs to be and we have nothing
more to prove. If x ∈ B, then we use the assumption that B ⊆ A

to conclude that x ∈ A. In either case we get x ∈ A and therefore
have A ∪ B ⊆ A. To prove the second containment, let x ∈ A. Then
x ∈ A∪B and we conclude that A ⊆ A∪B. Together we have proven
that A ∪ B � A.

The structure of the proof of Theorem 7.2 is more complicated
than the proof of the distributive property. First, as we said above,
there are two things to prove: the “if” and the “only if.” Next, both
of these statements have hypotheses and conclusions. In each case,
you must be aware of what you are assuming and what you are prov-
ing. What’s even more important, though, is that you use what you
are assuming to get to your desired conclusion. If you don’t use your
assumption, either your original statement was poorly constructed,
you proved more than you thought you did, or your proof was in
error. In fact, in the proof above, we did not use our assumption that
B ⊆ A to prove A ⊆ A ∪ B. Did we make an error, or did we prove
more than we said we did?
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Now that you have seen two examples of how to write such a
proof, it is time for you to try it by yourself. Try proving one of the
two DeMorgan’s laws below.

Exercise 7.3.
Let A and B be subsets of the set X. Then

X \ (A ∪ B) � (X \ A) ∩ (X \ B).

(a) Devise your plan. (Include a Venn diagram.)
(b) Write up your proof. ©

We now give the promised list of some of the properties of set
operations. We proved three of them above. In the problems you will
be asked to work more of the proofs.

Theorem 7.4.
Let X denote a set, and A, B, and C denote subsets of X. Then

1. ∅ ⊆ A and A ⊆ A.

2. (Ac)c � A.
3. A ∪ ∅ � A.
4. A ∩ ∅ � ∅.
5. A ∩ A � A.
6. A ∪ A � A.
7. A ∩ B � B ∩ A. (Commutative property)
8. A ∪ B � B ∪ A. (Commutative property)
9. (A ∪ B) ∪ C � A ∪ (B ∪ C). (Associative property)

10. (A ∩ B) ∩ C � A ∩ (B ∩ C). (Associative property)
11. A ∩ B ⊆ A.
12. A ⊆ A ∪ B.
13. A ∪ (B ∩ C) � (A ∪ B) ∩ (A ∪ C). (Distributive property)
14. A ∩ (B ∪ C) � (A ∩ B) ∪ (A ∩ C). (Distributive property)
15. X \ (A ∪ B) � (X \ A) ∩ (X \ B). (DeMorgan’s law)

(When X is the universe we also write (A ∪ B)c � Ac ∩ Bc.)
16. X \ (A ∩ B) � (X \ A) ∪ (X \ B). (DeMorgan’s law)

(When X is the universe we also write (A ∩ B)c � Ac ∪ Bc.)
17. A \ B � A ∩ Bc.
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18. A ⊆ B if and only if (X \ B) ⊆ (X \ A).
(When X is the universe we also write A ⊆ B if and only if Bc ⊆ Ac.)

19. A ∪ B � A if and only if B ⊆ A.
20. A ∩ B � B if and only if B ⊆ A.

Many results can be proved using the methods demonstrated
thus far in this chapter. Once you have proven these statements,
though, it is a good idea to use them in other proofs. Practice using
the results in Theorem 7.4 in the next exercise.

Exercise 7.5.
Let A, B, and C be sets. Prove the following using relevant statements
from Theorem 7.4: If Cc ⊂ B, then (A \ B) ∪ C � C. ©

Solutions to Exercises

Solution to Exercise (7.3).
First we show that

X \ (A ∪ B) ⊆ (X \ A) ∩ (X \ B).

If x ∈ X \ (A ∪ B), then x 
∈ A ∪ B. Therefore x 
∈ A and x 
∈ B.
Consequently, x ∈ X \ A and x ∈ X \ B. Thus x ∈ (X \ A) ∩ (X \ B).
We conclude that X \ (A ∪ B) ⊆ (X \ A) ∩ (X \ B).

We now show that

(X \ A) ∩ (X \ B) ⊆ X \ (A ∪ B).

If x ∈ (X \ A) ∩ (X \ B), then x ∈ X \ A and x ∈ X \ B. Thus, x ∈ X

and x 
∈ A, and x ∈ X and x 
∈ B. So, x ∈ X and x 
∈ A and x 
∈ B. This
implies that x ∈ X and x 
∈ A ∪ B. Therefore, x ∈ X \ (A ∪ B), and we
see that (X \ A) ∩ (X \ B) ⊆ X \ (A ∪ B). Thus, the two sets are equal.

Solution to Exercise (7.5).
Since Cc ⊆ B, statements 18 and 2 of Theorem 7.4 imply that Bc ⊆ C,
and thus Bc ∪ C � C by statement 19 of the same theorem. The
rest of the proof now follows from the following string of equalities
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(numbers indicate the relevant statements from Theorem 7.4):

(A \ B) ∪ C � (A ∩ Bc) ∪ C (by 17)
� (A ∪ C) ∩ (Bc ∪ C) (by 8 and 13)
� (A ∪ C) ∩ C (since Bc ∪ C � C as shown)
� C (by 8, 12, and 20).

Problems

In all the problems below, X denotes a set; A, B, and C denote subsets of
X.

Problem 7.1.
In this problem we refer to statements of Theorem 7.4.

(a) Prove statement 2.
(b) Prove statement 14.
(c) Prove statement 16.
(d) Prove statement 18.
(e) Prove statement 20.

Problem 7.2.
Prove that A ∩ B � ∅ if and only if B ⊆ (X \ A).

Problem 7.3.
Prove that A � B if and only if (X \ A) � (X \ B). Make sure you
use statements from Theorem 7.4 rather than going back to the
definition.

Problem 7.4.
Prove the following using the results stated in Theorem 7.4:

(a) (A ∪ B) ∩ B � B;
(b) (A ∩ B) ∪ B � B.

Problem 7.5.
Prove that (A ∪ B) \ (A ∩ B) � (A \ B) ∪ (B \ A).
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Problem 7.6.
Sketch Venn diagrams of the set on the left and the set on the right
side of the equation

(A \ (B ∩ C)) ∪ (B \ C) � (A ∪ B) \ (B ∩ C).

Once you have done that, prove that the equality above holds.

Problem 7.7.
Consider the following sets:

(i) A \ (A ∪ B ∪ C),
(ii) A \ A ∩ B ∩ C,

(iii) A ∩ Bc ∩ Cc,
(iv) A \ (B ∪ C), and
(v) (A \ B) ∩ (A \ C).
(a) Which of the sets above are written ambiguously, if any?
(b) Of the ones that make sense, which of the sets above agree with

the shaded set in Figure 7.1?
(c) Prove that A \ (B ∪ C) � (A \ B) ∩ (A \ C).

Problem 7.8.
Consider the following sets:

(i) (A ∩ B) \ (A ∩ B ∩ C),
(ii) A ∩ B \ (A ∩ B ∩ C),

(iii) A ∩ B ∩ Cc,
(iv) (A ∩ B) \ C, and
(v) (A \ C) ∩ (B \ C).
(a) Which of the sets above are written ambiguously, if any?

FIGURE 7.1
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FIGURE 7.2

(b) Of the sets above that make sense, which ones equal the set
sketched in Figure 7.2?

(c) Prove that (A ∩ B) \ C � (A \ C) ∩ (B \ C).

Problem� 7.9.
In this problem you will prove that the union of two sets can be
rewritten as the union of two disjoint sets.

(a) Prove that the two sets A \ B and B are disjoint.
(b) Prove that A ∪ B � (A \ B) ∪ B.

Problem 7.10.
Prove or disprove: If A ∪ B � A ∪ C, then B � C.

Problem 7.11.
Prove or give a counterexample for the following statement.

Let X be the universe and A, B ⊆ X. If A ∩ Y � B ∩ Y for all
Y ⊆ X, then A � B.
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C H A P T E R

...........................................

More on
Operations on
Sets

Most of what we did in the last two chapters was concerned with
operations on two sets. In Exercise 6.12 we defined unions and in-
tersections of three sets. In general, we may have two or three sets,
as many sets as there are integers, or even more sets than that.
We’ll need a new definition and special notation. In this chapter,
we will introduce the notation that will allow us to keep track of
these sets. Unfortunately, a rigorous definition will have to wait until
Chapter 13.

Let n be a positive integer and suppose that we have sets
A1, A2, . . . , An. How can we talk about the union of these n sets?
the intersection? For example, when we have three sets, if we write⋃3

j�1 Aj � A1 ∪ A2 ∪ A3, we would be referring to the set of x in our
universe that lie in at least one of our sets, A1, A2, or A3. Of course,
there is nothing special about three sets; that is, for every positive
integer, n, we can write

n⋃
j�1

Aj � A1 ∪ A2 ∪ · · · ∪ An and
n⋂

j�1

Aj � A1 ∩ A2 ∩ · · · ∩ An.

The first set would be the set of all x in the universe that lie in at least
one of the Aj for j � 1, 2, . . . , n, while the second would be the set

89
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of x that lie in all of the sets Aj. If we have a set Aj for each positive
integer j and we want to take the union and intersection over all
positive integers, then we write

∞⋃
j�1

Aj � A1 ∪ A2 ∪ · · · and
∞⋂
j�1

Aj � A1 ∩ A2 ∩ · · · .

This is probably a good time to look at some examples.

Example 8.1.
We can write the union in different ways. For example,

⋃10
j�1[0, j] �

[0, 1]∪[0, 2]∪· · ·∪[0, 10] � [0, 10]. Similarly,
⋂10

j�1[0, j] � [0, 1]∩[0, 2]∩
· · · ∩ [0, 10] � [0, 1]. ©

In Example 8.1, we had unions and intersections of finitely many
sets (ten, to be precise). We now take a look at what can happen when
we take unions and intersections of even more sets.

Example 8.2.
(a) For each q ∈ Z+ define the set Aq � {p/q : p ∈ Z}. These sets

can be used to define the union
⋃

q∈Z+ Aq.
(b) This time we define, for each i ∈ N, the set Bi � {p/3i, p ∈ Z}.

These sets may be used to define the intersection
⋂

i∈N Bi. ©

Exercise 8.3.
Write the sets

⋃∞
j�1[j, j+1] and

⋂∞
j�1[j, j+1] in their simplest form, by

listing the first few sets in the union or intersection until the pattern
is established, and then stating your guess. (You don’t have to prove
that your guess is correct.) ©

Sometimes we do not know how many sets we have. While this
may seem odd, it happens all the time. So suppose we have a set I,
and suppose further that for each α ∈ I there is a set Aα correspond-
ing to it. The set I is called an index set, each α ∈ I is called an
index, and the set {Aα : α ∈ I} is called an indexed family of sets.
We may also write {Aα}α∈I , and we will often refer to {Aα}α∈I as a
collection of sets or a family of sets.
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We are now ready for the general definition of a union and in-
tersection of sets. Let X denote our universe and let {Aα : α ∈ I} be
a family of sets with Aα ⊆ X for all α in an index set I. Then the
union of the family {Aα : α ∈ I} is defined by

⋃
α∈I

Aα � {x ∈ X : x ∈ Aα for some α ∈ I},

and for I 
� ∅, the intersection of the family {Aα : α ∈ I} is defined
by ⋂

α∈I

Aα � {x ∈ X : x ∈ Aα for all α ∈ I}.

Exercise 8.4.
Find the simplest way to describe the following sets (you may find
sketches helpful):

(a)
⋃

x∈R+(0, x);
(b)

⋃
n∈N[0, n];

(c)
⋂

n∈N[0, n]. ©

Note that the index notation and the general definition of union
and intersection given here include the cases in Chapter 6 and the
ones we mentioned in the beginning of this chapter. For instance, if
I � {1, 2}, then

⋂
i∈I Ai � A1 ∩ A2.

Some more practice with this notation will probably be very
helpful at this point.

Exercise 8.5.
(a) Write

⋃∞
j�0[0, j] using an appropriate index set.

(b) Write
⋃∞

j�1(0, j) using an appropriate index set. ©

Some sets are more easily described with index notation, oth-
ers without such notation. Let’s go back and look at the sets in
Example 8.2.

Example 8.6.
Consider the family of sets {Aq}q∈Z+ defined in Example 8.2 (a). Then⋃

q∈Z+ Aq � Q.
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Proof.
If x ∈ ⋃

q∈Z+ Aq, then x ∈ Aq for some q ∈ Z+. Therefore, there exist
q ∈ Z+ and p ∈ Z such that x � p/q. Consequently x ∈ Q, and we
have shown that

⋃
q∈Z+ Aq ⊆ Q.

Conversely, if x ∈ Q, then x � p/q for some p, q ∈ Z with q 
� 0.
Now (for reasons that you will explain) we may choose q so that
q > 0. For this q we have q ∈ Z+ and therefore x ∈ Aq. Hence
x ∈ ⋃

q∈Z+ Aq. So, Q ⊆ ⋃
q∈Z+ Aq, and therefore

⋃
q∈Z+ Aq � Q.

Example 8.7.
Consider the family of sets {Bi}i∈N defined in Example 8.2 (b). We
claim that

⋂
i∈N Bi � Z.

Proof.
If x ∈ ⋂

i∈N Bi, then x ∈ Bi for all i ∈ N. In particular, x ∈ B0. Hence
x � p/30 � p for some p ∈ Z. So x ∈ Z, and therefore

⋂
i∈N Bi ⊆ Z.

Now let x ∈ Z. For each i ∈ N, we may write x � (3ix)/3i. Of
course, 3ix ∈ Z, since x ∈ Z. Hence x ∈ Bi for all i ∈ N. This shows
that x ∈ ⋂

i∈N Bi and therefore Z ⊆ ⋂
i∈N Bi.

Combining the two arguments we obtain the desired equality,⋂
i∈N Bi � Z.

Exercise 8.8.
What’s the difference between “an infinite union of sets” and “a
union of infinite sets”? Give an example of each, showing how these
two phrases differ. (While we haven’t given a rigorous definition of
infinite here, your intuition should suffice to solve this problem.)©

You already know that one of DeMorgan’s laws for two sets can
be stated as

X \ (A ∪ B) � (X \ A) ∩ (X \ B).

This can be rephrased in words as “the complement of a union is the
intersection of the complements.” DeMorgan’s laws do not depend
on the number of sets that we have, and that is the point of the next
exercise.
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Exercise 8.9.
Show that the general DeMorgan’s laws hold: For every universe X,
index set I, and indexed family of sets {Aα : α ∈ I}, we have
(i) X \ ⋃α∈I Aα � ⋂

α∈I(X \ Aα) and
(ii) X \ ⋂α∈I Aα � ⋃

α∈I(X \ Aα). ©

Exercise 8.10.
Suppose Aα ⊆ B for each α ∈ I. Show that

⋃
α∈I Aα ⊆ B. ©

Solutions to Exercises

Solution to Exercise (8.3).
You can see that

⋃∞
j�1[j, j + 1] � [1, 2] ∪ [2, 3] ∪ [3, 4] ∪ · · · � [1, ∞)

and
⋂∞

j�1[j, j + 1] � [1, 2] ∩ [2, 3] ∩ [3, 4] ∩ · · · � ∅.

Solution to Exercise (8.4).
You can check the following:

(a)
⋃

x∈R+(0, x) � (0, ∞);
(b)

⋃
n∈N[0, n] � [0, ∞);

(c)
⋂

n∈N[0, n] � {0}.

Solution to Exercise (8.5).
You can check the following:

(a)
⋃∞

j�0[0, j] � ⋃
j∈N[0, j];

(b)
⋃∞

j�1(0, j) � ⋃
j∈Z+(0, j).

Solution to Exercise (8.8).
An infinite union of sets would mean that we take the union over
infinitely many sets (but the sets themselves may be finite); in other
words, the index set is infinite. For example,

⋃
n∈N{n} would be an

infinite union of (finite) sets. On the other hand, a union of infinite
sets would mean that the sets themselves must be infinite (while the
index set may be finite). For example, the union of the even integers,
2Z, with the odd integers, 2Z + 1, would be a union of two infinite
sets.
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Solution to Exercise (8.9).
We will show part (i) and will leave part (ii) for you to do. So we need
to show that

X

∖(⋃
α∈I

Aα

)
�

⋂
α∈I

(X \ Aα).

If x ∈ X \ (
⋃

α∈I Aα), then x ∈ X and x 
∈ ⋃
α∈I Aα. By the definition

of union this means that x ∈ X and x 
∈ Aα for every α ∈ I. Hence,
x ∈ X \ Aα for all α ∈ I, and therefore x ∈ ⋂

α∈I(X \ Aα). Thus,
X \ (

⋃
α∈I Aα) ⊆ ⋂

α∈I(X \ Aα).
Now if x ∈ ⋂

α∈I(X \Aα), then x ∈ X \Aα for all α ∈ I. This implies
that x ∈ X and x 
∈ Aα for every α ∈ I. Hence x ∈ X and x 
∈ ⋃

α∈I Aα.
It follows that x ∈ X\(

⋃
α∈I Aα) and thus

⋂
α∈I(X\Aα) ⊆ X\(

⋃
α∈I Aα).

The two subset relations give the desired equality between the
sets.

Solution to Exercise (8.10).
If x ∈ ⋃

α∈I Aα, then there exists α0 such that x ∈ Aα0 . Since we
suppose that Aα0 ⊆ B, we know that x ∈ B. Thus

⋃
α∈I Aα ⊆ B.

Problems

Problem 8.1.
Consider the intervals of real numbers given by An � [0, 1/n), Bn �
[0, 1/n], and Cn � (0, 1/n).

(a) Find
⋃∞

n�1 An,
⋃∞

n�1 Bn, and
⋃∞

n�1 Cn.
(b) Find

⋂∞
n�1 An,

⋂∞
n�1 Bn, and

⋂∞
n�1 Cn.

(c) Does
⋃

n∈N An make sense? Why or why not?

Problem 8.2.
If Ax � [−x, x], find

⋃
x∈R+ Ax and

⋂
x∈R+ Ax.

Problem 8.3.
Find simpler notation for the two sets

A �
∞⋃
j�0

[j, j + 1] and B �
⋂
j∈Z

(R \ (j, j + 1)).
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Problem 8.4.
Prove or give a counterexample: Let {An : n ∈ Z+} and {Bn : n ∈ Z+}
be two indexed families of sets. If An ⊂ Bn for all n ∈ Z+, then

∞⋂
n�1

An ⊂
∞⋂

n�1

Bn.

(Recall that A ⊂ B means strict inclusion; that is, A ⊆ B and A 
� B.)

Problem 8.5.
Let {Ar : r ∈ R} and {Br : r ∈ R} be two indexed families of sets.
Prove that (⋂

r∈R
Ar

)
∪
(⋂

r∈R
Br

)
⊆

⋂
r∈R

(Ar ∪ Br).

Provide an example showing that this inclusion can be proper.

Problem� 8.6.
Let {Aα : α ∈ I} be an indexed family of sets, and let B be a set.

(a) Prove the distributive property:(⋃
α∈I

Aα

)
∩ B �

⋃
α∈I

(Aα ∩ B) .

(b) State and prove a distributive property for (
⋂

α∈I Aα) ∪ B.

Problem� 8.7.
Suppose that {Aα : α ∈ I} is an indexed family of subsets of a set X,
and that B is a subset of X.

(a) If Aα � ∅ for some α ∈ I, prove that
⋂

α∈I Aα � ∅.
(b) If Aα � X for some α ∈ I, prove that

⋃
α∈I Aα � X.

(c) If B ⊆ Aα for every α ∈ I, prove that B ⊆ ⋂
α∈I Aα.

Problem 8.8.
Define

A � R \
⋂

n∈Z+
(R \ {−n, −n + 1, . . . , 0, . . . , n − 1, n}) .

The set A should be familiar to you. Guess what it is and then prove
that your guess is correct.
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Problem 8.9.
Guess a simpler way to express the set A defined as

A � Q \
⋂
n∈Z

(R \ {2n}),

and then prove that your guess is correct.

Problem 8.10.
Suppose that X is a set with more than one element. What is

⋃
x∈X{x}?

What is
⋂

x∈X{x}?

Problem� 8.11.
A collection of sets {Aα : α ∈ I} is said to be a pairwise disjoint
collection if the following is satisfied: For all α, β ∈ I, if Aα ∩Aβ 
� ∅,
then Aα � Aβ. Suppose that each set Aα is nonempty.

(a) Give an example of pairwise disjoint sets A1, A2, A3, . . . .

(b) What is the contrapositive of “if Aα ∩ Aβ 
� ∅, then Aα � Aβ”?
(c) What is the converse of “if Aα ∩ Aβ 
� ∅, then Aα � Aβ”?
(d) If {Aα : α ∈ I} is a pairwise disjoint collection, does the assertion

you found in (b) hold for all α and β in I?
(e) If the assertion that you found in (b) holds for all α and β in I,

is {Aα : α ∈ I} a pairwise disjoint collection?
(f) If {Aα : α ∈ I} is a pairwise disjoint collection of sets, does it

follow that
⋂

α∈I Aα � ∅?
(g) If

⋂
α∈I Aα � ∅, is {Aα : α ∈ I} necessarily a pairwise disjoint

collection of sets?

Problem 8.12.
Find an example of sets {Aj : j ∈ Z+} such that Aj+1 ⊂ Aj for each
j ∈ Z+, and

⋂∞
j�1 Aj 
� ∅.



9
C H A P T E R

...........................................

The Power Set
and the
Cartesian
Product

Now that we know about sets, we can construct some new ones from
old ones in even more ways than we did before. In this section we
look closely at two special sets: the first is called the power set, and
the second is called the Cartesian product of two sets.

Let S be a set. Then the power set of S is the set of all subsets
of S. We shall denote the power set by P(S). Before we begin, note
that the power set is again a set and its elements are also sets. The
power set is never empty. Why?

Example 9.1.
Consider the set S � {0, 1}. Then the power set of S is P(S) �
{∅, {0}, {1}, {0, 1}}. ©

As you probably noticed, the notation is tricky here.

Exercise 9.2.
Let A � {1, 2, 3}, B � {2, 5}, C � {0, 1}.

(a) Find P(B) and P(C). Do these two sets have elements in
common?

(b) Find P(A), P(B), P(A ∩ B), and P(A ∪ B).

97
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(c) Compute P(A) ∪ P(B) and P(A) ∩ P(B). ©

Remember to use element notation when you are thinking of
the set as an element and subset notation when you are showing
containment of sets.

In the next exercise, we will ask you to prove that two sets are
equal. We’ve done this many times in the previous chapters, and so
you know one way to begin: use an element-chasing argument. Ask
yourself if your set plays the role of a set or the role of an element,
and use the corresponding notation.

Exercise 9.3.
Let A and B be sets. Prove that P(A ∩ B) � P(A) ∩ P(B). ©

When we talk about a set, it is understood that if we discuss the set
{1, 3} we are discussing the set {3, 1} as well. A set is just a collection
of objects and there is no notion of order associated with what we
have defined so far. When there is an order, such as when we plot
points and need to know which is the x coordinate and which is the
y coordinate, we use the notion of an ordered pair. The next set we
will consider is called the Cartesian product of two sets X and Y , and
it is constructed using ordered pairs.

Here is our informal definition: An ordered pair (x, y) is a pair
of objects in which there is a first object x and a second object y. The
very important property of ordered pairs is that (x, y) � (z, w) if and
only if x � z and y � w.

We may now define the Cartesian product of X and Y , denoted
X × Y , to be the set of all ordered pairs in which the first element
comes from X and the second from Y ; that is,

X × Y � {(x, y) : x ∈ X, y ∈ Y}.
For example, if X � [0, 1] and Y � [0, 2], then

X × Y � {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2}.
This is the rectangle in R2 with base along the interval [0, 1] and
height along the interval [0, 2] sketched in Figure 9.1.
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FIGURE 9.1 [0, 1] × [0, 2]

Perhaps you are wondering why we said “informal definition”
when we presented our definition of ordered pair. Since this is prob-
ably the definition you were expecting, it most likely looks formal. It
turns out that there is a rigorous definition of ordered pair; one that
can be presented without referring to the “first” and “second” coor-
dinates. The reason we do not present it here is that, in our opinion,
a rigorous definition is mostly confusing rather than helpful at this
point. If you have a strong desire to know more about this, you can
work Problem 9.16 in this chapter.

It’s time for a few more examples of Cartesian products.

Exercise 9.4.
(a) Write out all the elements in {0, 1} × {2, 3} and {2, 3} × {0, 1}.
(b) Sketch the Cartesian products [0, 1] × [2, 3] and [2, 3] × [0, 1] as

sets of points in the plane.
(c) Recall that we defined R2 � {(x, y) : x ∈ R, y ∈ R}. Write R2

using the Cartesian product notation.
(d) Having done that, can you describe R3 as a Cartesian product

of two sets? (You might have more than one description that
seems reasonable to you.)

(e) We denote the set of even integers by 2Z � {2n : n ∈ Z}. Make
sketches that describe the sets Z × Z, Z × 2Z, and 2Z × Z. ©
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When we prove that two sets defined using Cartesian products
are equal, we can still use the method of “element-chasing.” However,
if we don’t use the special form of the element, namely that it looks
like an ordered pair, we are likely to get stuck. Notice how we use
the special form of the ordered pair in our proofs below.

Theorem 9.5.
Let A be a set. Then A × ∅ � ∅.

Proof.
Suppose, to the contrary, that A×∅ 
� ∅. Then there exists an element
(x, y) ∈ A×∅. Therefore, by our definition of Cartesian product, x ∈ A

and y ∈ ∅. But this contradicts the fact that ∅ is the empty set. Thus
A × ∅ � ∅.

Theorem 9.6.
Let A, B, C, and D be sets. Then

(A × B) ∪ (C × D) ⊆ (A ∪ C) × (B ∪ D).

Proof.
If z ∈ (A × B) ∪ (C × D), then z � (x, y) where (x, y) ∈ A × B or
(x, y) ∈ C × D. Suppose first that (x, y) ∈ A × B. Then x ∈ A and
y ∈ B. In this case x ∈ A ∪ C and y ∈ B ∪ D, so by definition (x, y) ∈
(A ∪ C) × (B ∪ D). Now suppose that (x, y) ∈ C × D. Then x ∈ C and
y ∈ D. Therefore x ∈ A∪C and y ∈ B∪D. So (x, y) ∈ (A∪C)×(B∪D).
Hence (A × B) ∪ (C × D) ⊆ (A ∪ C) × (B ∪ D), as desired.

Again, notice how quickly we changed from z to (x, y) in the
proof. That’s because we can’t do anything if we don’t realize that z

is really an ordered pair.
Now consider the following nontheorem.

Nontheorem 9.7.
Let A, B, C, and D be sets. Then (A∪C)× (B∪D) ⊆ (A×B)∪ (C ×D).

Not a proof.
If (x, y) ∈ (A∪C)×(B∪D), then x ∈ A∪C and y ∈ B∪D. Thus x ∈ A or
x ∈ C, and y ∈ B or y ∈ D. Hence x ∈ A and y ∈ B or x ∈ C and y ∈ D.
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So (x, y) ∈ A × B or (x, y) ∈ C × D. Thus (x, y) ∈ (A × B) ∪ (C × D).
�?

Exercise 9.8.
Find the error in the nonproof above and show that Nontheorem 9.7
really is not a theorem because the statement is false. (Find sets for
which the statement does not hold.) ©

In these problems and all that follow, you will begin with an
element in your set. It will be helpful to you to think about the form
of your element. Is it a set? an ordered pair? If you rush through
these proofs, as we did in Nontheorem 9.7, you will prove things
that are false. This is generally frowned upon in mathematics. Go
slowly, be careful, and check each step.

We will now define relations. We will soon see that there is a
connection between functions (something you probably feel familiar
with) and relations (something you may not feel terribly familiar
with). We begin with a definition.

Suppose that X and Y are two sets. A relation from X to Y is a
subset of X × Y . A relation from X to X is called a relation on X.

Exercise 9.9.
For the following, decide whether or not they are relations from a set
X to a set Y . If they are, say what X is and what Y is. Then describe
each set either pictorially (as a set of points in the plane) or in words:

(a) {(x, y) ∈ R2 : x ≤ y};
(b) {x/y : x, y ∈ Z and y 
� 0};
(c) {(x, y) ∈ R2 : x, y ∈ Z and x + y � 0}. ©

We will learn more about relations in Chapter 10.

Solutions to Exercises

Solution to Exercise (9.2).
(a) P(B) � {∅, {2}, {5}, {2, 5}}, P(C) � {∅, {0}, {1}, {0, 1}}, and the

empty set is an element of both sets.
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(b) P(A) � {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, P(A ∩ B) �
{∅, {2}}. We leave P(A ∪ B) to you.

(c) P(A) ∩ P(B) � {∅, {2}}. We leave P(A) ∪ P(B) to you.

Solution to Exercise (9.3).
If x ∈ P(A ∩ B), then x ⊆ A ∩ B. This implies that x ⊆ A and x ⊆ B.
Thus x ∈ P(A) and x ∈ P(B), so x ∈ P(A) ∩ P(B). Since x was
arbitrary, P(A ∩ B) ⊆ P(A) ∩P(B). Each of these steps is reversible,
so the containment P(A) ∩ P(B) ⊆ P(A ∩ B) follows as well.

Solution to Exercise (9.4).
(a) The two sets are

{0, 1} × {2, 3} � {(0, 2), (0, 3), (1, 2), (1, 3)}

and

{2, 3} × {0, 1} � {(2, 0), (3, 0), (2, 1), (3, 1)}.

(b) The two sets are sketched in Figure 9.2 below.
(c) R2 � R × R.
(d) One answer might be R2 × R.
(e) These are sketched in Figure 9.3.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

x

y

FIGURE 9.2 [0, 1] × [2, 3] and [2, 3] × [0, 1]
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FIGURE 9.3 Z × Z, Z × 2Z and 2Z × Z

Solution to Exercise (9.8).
Our nonproof claims that "x Aorx C, and y B or y D. Hence
x A and y Borx C and y D." This conclusion is not justified:
it could also be that x A and y D, or x C and y B.

Consider the following example: Let A = D = 0 and B = C = R.
Then (A C) × (B D) = R × R, while (A × B) (C × D) = 0.

Solution to Exercise (9.9).
(a) This is a relation from X = R to Y = R, consisting of the set of

points in R2 lying below the line x = y.
(b) This is not a subset o f l x 7 for any choice of X and Y.
(c) This is a relation from X = Z to Y = Z, and consists of the

points for which x is an integer and y = —x; that is, this is the
set {(x, x) : x Z}.
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Problems

Problem 9.1.
Let S � {a, b, c}. Find P(S).

Problem 9.2.
(a) Show that P(A) ∪ P(B) ⊆ P(A ∪ B).
(b) Show that P(A) ∪ P(B) 
� P(A ∪ B) by exhibiting two concrete

sets, A and B, for which the aforementioned inequality holds.

Problem 9.3.
Let 2Z denote the even integers and 2Z+ 1 denote the odd integers.
What is P(2Z) ∩ P(2Z + 1)?

Problem 9.4.
Show that A ⊆ B if and only if P(A) ⊆ P(B).

Problem 9.5.
For every set I and for every family of sets {Aα : α ∈ I}, prove that

⋃
α∈I

P(Aα) ⊆ P
(⋃

α∈I

Aα

)
.

Problem 9.6.
Let {Aα : α ∈ I} be a nonempty family of sets. Prove that

P
(⋂

α∈I

Aα

)
�

⋂
α∈I

P(Aα).

Problem 9.7.
How many elements are there in the power set of {1, 2, 3, 4}? How
many elements are in the power set of {1, 2, 3, 4, 5}? State a general
result. You’ll be able to prove it later.

Problem 9.8.
Describe the following relations pictorially (as a set of points in the
plane) or in words:

(a) {(x, y) ∈ N × Z : x ≥ y};
(b) {(x, y) ∈ R2 : x � y};
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(c) {(x, y) ∈ Z × Z : x + y ∈ 2Z};
(d) {0, 1} × N;
(e) {(x, x2) : x ∈ R};
(f) {(√x, x) : x ∈ Z+}.

Problem 9.9.
Describe the following Cartesian products:

(a) ∅ × N;
(b) Z × ∅;
(c) R × R;
(d) R × Z.

Problem 9.10.
Show that N × N ⊆ Z × Z.

Problem 9.11.
(a) In the plane, sketch the set [0, 1] × ([1, 3] ∪ [2, 4]).
(b) Sketch ([0, 1] ∪ [1, 4]) × ([0, 1] ∪ [2, 4]).

Problem 9.12.
(a) Prove the following:

Let A, B, C, and D be nonempty sets. Then A × B � C × D if
and only if A � C and B � D.

(b) Where did your proof use the fact that the sets were nonempty?

Problem 9.13.
Suppose A, B, C, and D are four sets. If A × B ⊆ C × D, must A ⊆ C

and B ⊆ D? Why or why not?

Problem 9.14.
Let A, B, and C be sets. If the statements below are true prove them.
If they are false, give a counterexample:

(a) A × (B ∪ C) � (A × B) ∪ (A × C);
(b) A × (B ∩ C) � (A × B) ∩ (A × C).

Problem 9.15.
Let A � {1, {1}, {1, {1}}}.

(a) Find A × A.
(b) Find A ∩ P(A).



9. The Power Set and the Cartesian Product106

Problem 9.16.
This problem introduces rigorous definitions of an ordered pair and
Cartesian product. Let A be a set and a, b ∈ A. We define the ordered
pair of a and b with first coordinate a and second coordinate b as

(a, b) � {{a}, {a, b}}.
Using this definition prove the following.

(a) If (a, b) � (x, y), then a � x and b � y.
(b) If a ∈ A and b ∈ B, then (a, b) ∈ P(P(A ∪ B)).

Now we are able to define the Cartesian product of the two sets A

and B as the set

A×B �{x ∈ P(P(A∪B)) : x � (a, b) for some a ∈ A and some b ∈ B}.
(c) Use the above definitions to prove that if A ⊆ C and B ⊆ D,

then A × B ⊆ C × D.
This is a pretty complicated definition. It is also not our idea, but

rather an idea that was born from axioms. P. Halmos’ book, [31], is
an excellent reference for this subject.

Tips on Writing Mathematics

Sorry this letter is so long; I didn’t have time to make it
shorter.—Mark Twain

After this point in the course the work will change. You’ll find
that you are writing more in words than in symbols. How you write
is as important as what you write. Here are some things to think
about as you write your proofs.
• In mathematics, it is always important that the reader know

what the variables stand for. This was true in algebra in high
school, geometry, and calculus, and it is true here too. If you
use symbols—any symbols—make sure the meaning is clear to
the reader before you use them.

• Think about your notation, and choose notation that is easy on
the reader.
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• A variable should only be assigned one meaning in your proof.
For example, if you used C to denote the complex numbers, don’t
use C again to denote a set.

• Try for a good blend of symbols and words. Don’t juxtapose un-
related symbols if you don’t have to. For example, consider the
sentence “So 1 ≤ p, q ≥ 2.” You might find this confusing and
(unnecessarily) difficult to read. If we say “So 1 ≤ p and q ≥ 2,”
the sentence is clear. It’s often easier to read things if you put a
word, even a little one, between symbols.

• Avoid starting a sentence with a symbol. This often confuses
the reader unnecessarily. For example, consider the following
sentence.

Thus x ∈ A. A is a subset of B.

First, the A. A just doesn’t look nice. Second, it’s hard to read.
• Every sentence should start with a capital letter and end with a

period, just like sentences are supposed to.
• All grammatical rules apply. Sentences should have nouns and

verbs. Don’t use the same word repeatedly.
• Strive for clarity. Always keep the reader in mind. If something

follows from a definition, say so. The reader will appreciate this
and will know what you are thinking and, what’s more, you will
know why what you say is true. If something follows from The-
orem 10.1, say so. It is extremely important for you to be aware
of when you are using a result. For one thing, it means that you
are more likely to notice if you are using a result that you do not
have. (This would be wrong. Don’t do it.) For another, it helps the
reader who may not fully understand what you are doing.

• Certain phrases are particularly helpful in guiding a reader
through your proof. For example, “Suppose to the contrary, . . .”
tells the reader that your proof will be done by contradiction. As
a second example, if you are proving “A if and only if B,” your
reader will understand everything better if you say, “Suppose A.
. . . Then we have B.” And then say, “Suppose B. . . . Then we have
A.” You should alert the reader to a proof that will be in cases, or a
proof that will proceed using the contrapositive. Other examples
of phrases that you may use to guide your reader will come up as
we learn new techniques.
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• If you can find a shorter, clearer solution, do so.
• Perhaps the most difficult thing about writing a proof is to find

a balance between the main ideas in the proof and the details.
You’ll often find that the more you explain, the more you hide
the main ideas. On the other hand, if you don’t explain enough,
you might overlook an important detail or confuse your reader.
It’s not easy to strike the right balance. This is why we suggest
waiting a bit, and then rereading your proof. If you can’t figure
out why you did something, it’s unlikely that someone else will.

• If you have a partner in the class, it is an excellent idea to exchange
papers and see if things are clear to each of you. (Check with your
teacher to make sure this is allowed, of course.)

Exercise 9.10.
Here’s a student’s proof of the following theorem: Let x and y be real
numbers. Show that xy ≤ x2/2 + y2/2.

Solution.

(x − y)2 ≥ 0

x2 − 2xy + y2 ≥ 0

x2 + y2 ≥ 2xy

x2/2 + y2/2 ≥ xy

Criticize the student’s solution and rewrite the proof, paying close
attention to the tips presented here. ©

For other (not necessarily independent) views on writing see [32]
and [51].
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...........................................

Relations

In the last chapter we introduced relations. We will now look at three
useful properties of relations.

Recall that “S is a relation on a set X” is one way of saying that S is
a subset of X × X, and therefore the elements of S are ordered pairs,
(x, y). Many authors write x ∼ y rather than (x, y) ∈ S. Sometimes
we will write x ∼ y and other times we will write (x, y) ∈ S, and
this is exactly the same thing. So why do it? Because sometimes one
notation is more convenient than the other. Use the next exercise to
familiarize yourself with both notations.

Exercise 10.1.
Let S � {(x, y) ∈ R × R : x > y}.

(a) Sketch the set S.
(b) With this relation is 1 ∼ 2?
(c) With this relation is 3.5 ∼ 2? ©

A relation on a set X is said to be reflexive if x ∼ x for all x ∈ X.
The relation is symmetric if for all x, y ∈ X, whenever x ∼ y, then
y ∼ x. Finally, the relation is transitive if for all x, y, z ∈ X, if x ∼ y

109
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and y ∼ z, then x ∼ z. If a relation is reflexive, symmetric, and
transitive, then the relation is said to be an equivalence relation.

For the remainder of this chapter, we will look at examples and
nonexamples of equivalence relations. There’s something to note
before we begin. To show that a relation is reflexive, we show that
x ∼ x for all x ∈ X. But to show it is symmetric, we must choose
two arbitrary elements of X, suppose that x ∼ y, and then show that
y ∼ x. If we don’t use the fact that x ∼ y, we probably haven’t done
it correctly. Finally, to show that a relation is transitive, we must
choose three arbitrary elements, suppose that x ∼ y and y ∼ z, and
then show that x ∼ z. Remember to use your assumptions to show
that a relation is symmetric or transitive.

Example 10.2.
Define a relation on the real numbers R by x ∼ y if and only if
x − y ∈ Z. Show that this relation is an equivalence relation.

Before we begin to show that this is an equivalence relation, we
will do appropriate things to understand this definition. Here are a
few examples of pairs that satisfy the relation:

3 ∼ 4, 0 ∼ −2384, 7 ∼ 7, π ∼ π + 7, −3.7 ∼ 4.3.

On the other hand, the following pairs do not satisfy the relation:

3 
∼ 3.5, 0 
∼ π, −3.7 
∼ 3.7.

If you have a sense of what the relation does, you are ready to move
on to the proof. (If you don’t have a sense of what is happening, look
for more examples and nonexamples.)

Proof.
To show that this relation is reflexive, let x ∈ R. Then x − x � 0.

Since 0 ∈ Z, we see that x − x ∈ Z. Therefore, x ∼ x for all x ∈ R and
∼ is reflexive.

To show that this relation is symmetric, let x, y ∈ R. If x ∼ y,
then x−y ∈ Z. But y− x � −(x−y) ∈ Z, and therefore y ∼ x. Hence
this relation is symmetric.

To show that this relation is transitive, let x, y, z ∈ R. If x ∼ y and
y ∼ z, then x − y ∈ Z and y − z ∈ Z. Now the sum of two integers
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is an integer and therefore x − z � (x − y) + (y − z) ∈ Z. In other
words, x ∼ z. Thus x ∼ z is transitive.

In the previous example it’s interesting to try to describe, in
words, the set of numbers that are related to 0, 1/2, π and x. As is
the case with our examples and nonexamples appearing above, we
hope that describing these sets will help us to more fully understand
this relation.

For 0, we look for {x ∈ R : x ∼ 0} � {x ∈ R : x − 0 ∈ Z}. Thus, the
set of elements related to 0 is just Z.

For 1/2, we look for {x ∈ R : x ∼ 1/2} � {x ∈ R : x − 1/2 ∈ Z}.
Thus, the set of all elements related to 1/2 is the set {1/2+k : k ∈ Z}.

For π, we look for {x ∈ R : x−π ∈ Z}. Thus, the set of all elements
related to π is the set {π + k : k ∈ Z}.

In general it appears that for every x ∈ R, the set of all elements
related to x is the set {x + k : k ∈ Z}.

Once we have an equivalence relation on a set X, we define
the equivalence class of an element x ∈ X to be the set Ex where
Ex � {y ∈ X : x ∼ y}. Using this notation, we see that the sets
of points related to 0, 1/2, π, and x following Example 10.2 were
actually descriptions of E0, E1/2, Eπ, and Ex.

Exercise 10.3.
Write each relation below using set notation. Then decide whether
or not the following relations are reflexive, symmetric, or transitive.
If they are all three, prove it and describe the equivalence classes.
If they are not, give a particular example to show why the property
fails to hold.

(a) Define a relation on Z by x ∼ y if and only if x � −y.
(b) Define a relation on Z by x ∼ y if and only if x − y is even.
(c) Define a relation on Z × (Z \ {0}) by (x, y) ∼ (w, z) if and only

if xz � yw. ©
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FIGURE 10.1 {(x, y) ∈ R × R : x > y}

Solutions to Exercises

Solution to Exercise (10.1).
The set S is represented by the shaded area of Figure 10.1. Using the
defined relation, (1, 2) /∈ S but (3.5, 2) ∈ S. Thus, the answer to (b)
is no, and the answer to (c) is yes.

Solution to Exercise (10.3).
(a) This relation is neither reflexive nor transitive (but it is sym-

metric). It is not reflexive because, for example, 1 
� −1 and
therefore 1 
∼ 1. It is not transitive because 1 ∼ −1 and −1 ∼ 1,
but 1 
∼ 1.

(b) This relation is an equivalence relation. To see this, let x ∈ Z.
Then x − x � 0 and therefore x ∼ x, which shows that ∼ is
reflexive. For symmetry, let x, y ∈ Z. If x ∼ y, then x−y is even.
Since y − x � −(x − y), it follows that y − x is even. Therefore
y ∼ x, and ∼ is symmetric. For transitivity, let x, y, z ∈ Z. If
x ∼ y and y ∼ z, then x − y and y − z are both even; in other
words, there exist integers m and n such that x − y � 2m and
x−y � 2n. Now, x−z � (x−y)+ (y−z) � 2m+2n � 2(m+n),
and m + n ∈ Z. Thus x − z is even. Therefore x ∼ z, and ∼
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is transitive. We conclude that the relation is an equivalence
relation.
What are the equivalence classes? You can check that if x is
even, then the equivalence class corresponding to x is the
set of even numbers. If x is odd, then the equivalence class
corresponding to x is the set of odd numbers.

(c) This relation is an equivalence relation. It is easy to check that
it is reflexive and symmetric. We check transitivity carefully
here. So let (x, y), (u, v), and (w, z) be elements of Z × (Z \ {0}).
By definition, y, v, and z are all nonzero. If (x, y) ∼ (u, v) and
(u, v) ∼ (w, z), then xv � yu and uz � vw. We need to show
that xz � yw. Multiplying both sides of the equation xv � yu

by z and both sides of the equation uz � vw by y, we obtain the
two equations xvz � yuz and uzy � vwy. Therefore xvz � vwy.
Now v is nonzero, so we may cancel to obtain xz � yw, which
shows that (x, y) ∼ (w, z). Therefore ∼ is transitive.
Finally, E(x,y) � {(w, z) ∈ Z × (Z \ {0}) : xz � yw}. If we think
of (x, y) as the rational number x/y, then (w, z) ∼ (x, y) if and
only if x/y � w/z. So this relation is a way of identifying all
fractions with the same value.

Problems

Problem 10.1.
Decide whether or not the following relations are reflexive, sym-
metric, or transitive. If a property holds, prove that it does. If a
property does not hold, prove that it does not hold. If the relation
is an equivalence relation, give the equivalence class of a general
point x ∈ X.

(a) On R, we define x ∼ y if and only if x < y.
(b) On R, we define x ∼ y if and only if x ≤ y.
(c) On Z, we define x ∼ y if and only if x − y is divisible by 3.
(d) On R × R we define (x, y) ∼ (u, v) if and only if x + y � u + v.
(e) If X is a nonempty set, define a relation on P(X) by A ∼ B if

and only if A ⊆ B.
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(f) If X is a nonempty set, define a relation on P(X) by A ∼ B if
and only if A \ B 
� ∅.

(g) On R × R, define (x, y) ∼ (w, z) if and only if x � w.
(h) On Z, define x ∼ y if and only if |x| � |y|.
(i) On R2 define (x, y) ∼ (w, z) if and only if x2 + y2 � w2 + z2.

(j) On R2 define (x, y) ∼ (w, z) if and only if 3x + y � 3w + z.

Problem 10.2.
Let X � {1, 2, 3, 4, 5}.

(a) If possible, define a relation on X that is an equivalence
relation.

(b) If possible, define a relation on X that is reflexive, but neither
symmetric nor transitive.

(c) If possible, define a relation on X that is symmetric, but neither
reflexive nor transitive.

(d) If possible, define a relation on X that is transitive, but neither
reflexive nor symmetric.

Problem 10.3.
Define a relation ∼ on R as follows: For x, y ∈ R, we say x ∼ y if and
only if x2 − y2 ∈ Z.

(a) Prove that ∼ as defined above is an equivalence relation on R.
(b) Give five different real numbers that are in the equivalence

class E√
2.

Problem 10.4.
Define a relation ∼ on R2 as follows: For (x1, x2), (y1, y2) ∈ R2, we
say that (x1, x2) ∼ (y1, y2) if and only if both x1 − y1 and x2 − y2 are
even integers. Is this relation an equivalence relation? Why or why
not?

Problem� 10.5.
Let X be a nonempty set with an equivalence relation ∼ on it. Prove
that for all elements x and y in X, the equality Ex � Ey holds if and
only if x ∼ y.
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Problem 10.6.
What, if anything, is wrong with the following argument? We claim
that if a relation on a set X is symmetric and transitive, then it is
reflexive. Here’s a proof of this claim:

Proof.
Let x ∈ X. Let y ∈ X with x ∼ y. By symmetry we have y ∼ x. We
now use transitivity to conclude that x ∼ x. �?

Problem 10.7.
Give an example of a relation on Z × Z that is not transitive, but is
reflexive and symmetric.

Problem 10.8.
Recall that a polynomial p over R is an expression of the form
p(x) � anx

n + an−1x
n−1 + · · · + a1x

1 + a0 where each aj ∈ R and
n ∈ N. The largest integer j such that aj 
� 0 is the degree of p. We
define the degree of the constant polynomial p � 0 to be −∞. (A
polynomial over R defines a function p : R → R.)

(a) Define a relation on the set of polynomials by p ∼ q if and only
if p(0) � q(0). Is this an equivalence relation? If so, what is the
equivalence class of the polynomial given by p(x) � x?

(b) Define a relation on the set of polynomials by p ∼ q if and
only if the degree of p is the same as the degree of q. Is this an
equivalence relation? If so, what is Er if r(x) � 3x + 5?

(c) Define a relation on the set of polynomials by p ∼ q if and only
if the degree of p is less than or equal to the degree of q. Is this
an equivalence relation? If so, what is Er , where r(x) � x2?

Tips on Reading Mathematics
Don’t just read it; fight it! Ask your own questions, look

for your own examples, discover your own proofs. Is the hy-
pothesis necessary? Is the converse true? What happens in
the classical special case? What about the degenerate cases?
Where does the proof use the hypothesis?

– Paul R. Halmos, [34]
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• Be an active reader. Open to the page you need to read, get out
some paper and a pencil.

• If notation is defined, make sure you know what it means. Your
pencil and paper should come in handy here.

• Look up the definitions of all words that you do not understand.
• Read the statement of the theorem, corollary, lemma, or example.

Can you work through the details of the proof by yourself? Try.
Even if it feels like you are making no progress, you are gaining
a better understanding of what you need to do.

• Once you truly understand the statement of what is to be proven,
you may still have trouble reading the proof—even someone’s
well-written, clear, concise proof. Try to get the overall idea of
what the author is doing, and then try (again) to prove it yourself.

• If a theorem is quoted in a proof and you don’t know what it
is, look it up. Check that the hypotheses apply, and that the
conclusion is what the author claims it is.

• Don’t expect to go quickly. You need to get the overall idea as well
as the details. This takes time.

• If you are reading a fairly long proof, try doing it in bits.
• If you can’t figure out what the author is doing, try to (if appropri-

ate) choose a more specific case and work through the argument
for that specific case.

• Draw a picture, if appropriate.
• If you really can’t get it, do what comes naturally—put the book

down and come back to it later. You might want to take this time
to read similar proofs, some examples, or something it reminds
you of.

• After reading a theorem, see if you can restate it. Make sure you
know what the theorem says, what it applies to, and what it does
not apply to.

• After you read the proof, try and outline the technique and main
idea the author used. Try to explain it to a willing listener. If you
can’t do this without looking back at the proof, you probably didn’t
fully understand the proof. Read it again.

• Can you prove anything else using a similar proof? Does the proof
remind you of something else? What are the limits of this proof?
This theorem?
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• If your teacher is following a book, read over the proofs before
you go to class. You’ll be glad you did.

As we proceed, you will have plenty of opportunities to try these
tips out and find some others of your own.
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C H A P T E R

...........................................

Partitions

It is sometimes helpful to split a nonempty set up into disjoint
smaller pieces. For example, we might have reason to split the inte-
gers into positive integers, negative integers, and the set containing
zero alone. We often split the real numbers into rational numbers and
irrational numbers, or we might want to break R2 down into distinct
vertical lines. All of these are examples of partitioning a space.

The precise definition of a partition is the following. Let X be a
set. Then a family of sets {Aα : α ∈ I} is a partition of X if three
things happen:

(i) For every α ∈ I, the set Aα is nonempty,
(ii)

⋃
α∈I Aα � X, and

(iii) for all α, β ∈ I, if Aα ∩ Aβ 
� ∅, then Aα � Aβ.

Figure 11.1 provides a diagram of a partition of X � {a, b, c, d, e, f }
into sets A1, A2, and A3, defined by

A1 � {a, b}, A2 � {c, d, e}, and A3 � {f }.
While it is often clear that the sets Aα are nonempty, you should

still check. Condition (ii) says that every element of X is in at least
one of the sets Aα. It’s a sort of existence statement: for each ele-
ment x of X, there exists a set Aα of which x is a member. The third

119
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FIGURE 11.1 A partition of {a, b, c, d, e,f}.

condition is a fancy way of saying that two of the sets in the partition
are either disjoint or equal. This is a sort of uniqueness statement:
if x belongs to two sets Aα and Aβ, then the sets must be equal. We
hope the examples below will clarify these concepts.

Example 11.1.
For each X R, define Ax = [y R

{Ax : x R} forms a partition of R.
|x = \y\). We will show that

Before we begin, note that the sets Aα are not mutually disjoint.
For example, A1 = {1, 1} andA 1 = {-1,1}, so A1 A 1 / 0. That
will not be a problem though, and it does illustrate why we stated
condition (iii) the way we did. It happens that A1 A 1 / 0, but
A1 = A 1, as required.

Proof.
We note that all the sets Aα are nonempty. So there are two things
left to show, namely conditions (ii) and (iii) of the definition of parti-
tion. We begin by showing that (ii) holds; that is {JxetL Ax = R. First,
Û gK Ax R since each Ax R. We show the reverse containment
using an element-chasing argument. Let y R. Then |z/| = |z/|, so
y Ay. Since y Ax for some x (namely x = y), we may conclude
that y e X RAX. Thus \JxeVLAx = R.

Next, suppose that Ax Ay ^ 0. Then we must show that Ax =
Ay. By our assumption, there exists z R such that z Ax Ay.
Therefore, |#| = z| and |z/| = z|. In particular, |x| = y|. So,

Ax = {W R : |x| =



11. Partitions 121

Well, we showed the two sets Ax and Ay are equal with nary an
element-chasing argument in sight. What happened? We certainly
could have started with an element from one side and showed it
was in the other, switched sides, repeated what we did and then
concluded we were done. But this is somewhat cumbersome and
doesn’t show us what is really going on. So from now on, even though
we can use element-chasing, we are going to use whatever produces
the most elegant or enlightening proof.

Exercise 11.2.
For each n ∈ N, let An � [−n, n]. Show that {An : n ∈ N} does not
form a partition of R. However, if we define Bn � [n, n + 1), then
{Bn : n ∈ Z} does partition R. ©

In Example 11.1 and Exercise 11.2, the third condition may have
reminded you of transitivity. If so, then it may not surprise you to
learn that there is a connection between equivalence relations and
partitions. As we shall see, every equivalence relation on a set X

gives rise to equivalence classes in a natural way. These equivalence
classes are sets and these sets partition our set X.

Conversely, a family of sets that partitions a set X gives rise to an
equivalence relation on X. How? Well, we say two elements in X are
related if they belong to the same set of the partition. We shall now
show that this relation is an equivalence relation. We can shorten
our proof of this theorem, if we first prove something less ambitious.
A helpful result that is used to prove a theorem is called a lemma.
Lemmas are sometimes of independent interest.

Lemma 11.3.
Let X be a set and let ∼ be an equivalence relation on X. For two arbitrary
elements x and y in X, if Ex ∩ Ey 
� ∅, then Ex � Ey.

The very first thing we should probably ask ourselves before
beginning our proof is: What is Ex? If we don’t know, we can’t un-
derstand the proof. So, before reading the proof, we write down the
definition:

Ex � {z ∈ X : x ∼ z}.
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Now the proof should be easy.

Proof.
Let z ∈ Ex. Hence x ∼ z. Since we assume that Ex ∩ Ey 
� ∅, we may
choose w ∈ Ex ∩ Ey. Thus w ∈ Ex, and therefore x ∼ w. Similarly,
w ∈ Ey and therefore y ∼ w. By symmetry, w ∼ x. So y ∼ w, w ∼ x,
and x ∼ z. By transitivity, y ∼ z. Thus, z ∈ Ey, and we may conclude
that Ex ⊆ Ey.

Exactly the same argument (�) shows that Ey ⊆ Ex. Hence Ex �
Ey.

One comment on the proof above: When we use the words “ex-
actly the same argument,” as in (�), that means nothing would be
changed except (possibly) the symbols. If you use words to that ef-
fect (like “similarly” or “exactly as above”), make sure that what you
say is true. Now that we have our lemma, we turn to the proof of our
main theorem.

Theorem 11.4.
Let ∼ be an equivalence relation on a nonempty set X. Then the family
of equivalence classes {Ex : x ∈ X} is a partition of X. Furthermore, if
{Aα : α ∈ I} is a partition of a set X and we define x ∼ y if and only if
x, y ∈ Aα for some α ∈ I, then ∼ is an equivalence relation on X.

Before beginning the proof, let’s reflect on what we need to do.
For the first assertion (“{Ex : x ∈ X} is a partition”) we need to show
that the sets are nonempty, and satisfy conditions (ii) and (iii) in the
definition of partition.

What do we expect to use? Our assumptions, of course. We are
assuming ∼ is an equivalence relation, so we should use the fact
that ∼ is reflexive, symmetric, and transitive. But that’s only one
direction—this would show that an equivalence relation gives rise
to equivalence classes and these, in turn, form a partition of our set.

For the other direction, we want to show that if we have a relation
defined by a partition, then the relation is an equivalence relation.
So that means we must show that ∼ is reflexive, symmetric, and
transitive. How will we do that? Well, probably the first thing to do
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is to make sure we know what ∼ is. Remember, x ∼ y if and only if
there exists α such that x, y ∈ Aα. Now, finally, we may begin.

Proof.
First we’ll show that given an equivalence relation on X, the family
of sets {Ex : x ∈ X} forms a partition of X. We first show that each
Ex is nonempty. Since the relation is reflexive, x ∼ x for each x ∈ X.
Thus x ∈ Ex for each x ∈ X, and Ex 
� ∅.

Now we need to check condition (ii): that
⋃

y∈X Ey � X. If x ∈ X,
then we have just seen that x ∈ Ex. This shows that x ∈ ⋃

y∈X Ey.
Thus X ⊆ ⋃

y∈X Ey. Since the opposite inclusion follows from the
fact that Ey ⊆ X for each y ∈ X, we know that X � ⋃

y∈X Ey. Thus,
condition (ii) holds.

To show that condition (iii) holds, suppose that for x, y ∈ X, we
have Ex ∩ Ey 
� ∅. By Lemma 11.3, we conclude that Ex � Ey, and
condition (iii) holds. Thus, the set of equivalence classes {Ex : x ∈ X}
satisfies conditions (i), (ii), and (iii) and therefore forms a partition
of X.

For the converse, suppose that {Aα : α ∈ I} forms a partition of
X. By condition (ii), X � ⋃

α∈I Aα. Thus, for x ∈ X, there exists α ∈ I

such that x ∈ Aα. Since x is in the same set as itself, x ∼ x. Since x

was arbitrary, ∼ is reflexive.
Suppose now that x, y ∈ X and x ∼ y. Then there exists α ∈ I

such that x, y ∈ Aα. But if x, y ∈ Aα, then y, x ∈ Aα. Consequently,
y ∼ x. Therefore ∼ is symmetric.

Finally, suppose that x, y, z ∈ X where x ∼ y and y ∼ z. We
must show that x ∼ z. By the definition of ∼ we see that there exists
α ∈ I such that x, y ∈ Aα, and there exists β ∈ I such that y, z ∈ Aβ.
Therefore, Aα ∩ Aβ 
� ∅. By property (iii) of partitions, Aα � Aβ.
Thus x, z ∈ Aα. Therefore, x ∼ z, as desired. We conclude that the
partition gives rise to an equivalence relation, since ∼ is symmetric,
transitive, and reflexive.

Exercise 11.5.
For r ∈ R, let Ar � {(x, y) ∈ R2 : x + y � r}. Show that {Ar : r ∈
R} is a partition of R2. Then describe the equivalence relation and
equivalence classes associated with this partition. ©



11. Partitions124

Solutions to Exercises

Solution to Exercise (11.2).
The family {An : n ∈ Z} does not partition R because condition (iii)
is not satisfied: A1 ∩ A2 
� ∅, but A1 
� A2. The family {Bn : n ∈ Z}
does partition R: For each n ∈ Z, the set Bn is nonempty, the union
of the sets satisfies

⋃
n∈Z

Bn �
⋃
n∈Z

[n, n + 1) � R,

and if Bn ∩ Bm 
� ∅, then [n, n + 1) ∩ [m, m + 1) 
� ∅. Since m and n

are integers, the intervals [n, n + 1) and [m, m + 1) are either equal
or disjoint. We conclude that [n, n + 1) � [m, m + 1); in other words,
Bn � Bm.

Solution to Exercise (11.5).
Note that for r ∈ R, the ordered pair (0, r) satisfies the condition
0 + r � r. Thus (0, r) ∈ Ar and Ar is nonempty. Since it is clear that⋃

r∈R Ar ⊆ R2, we check the reverse inclusion. So let (u, v) ∈ R2.
Then s � u + v ∈ R and consequently (u, v) ∈ As. Thus (u, v) ∈⋃

r∈R Ar , and
⋃

r∈R Ar � R2, completing the proof of condition (ii) in
the definition of partition. Finally, suppose that Ar ∩ As 
� ∅. Then
there exists (u, v) ∈ Ar ∩As. By the definition of Ar and As this means
that r � u + v � s. Thus, Ar � As, as desired.

The associated equivalence relation on R2 is defined as follows.
For (x, y), (u, v) ∈ R2, we will say (x, y) ∼ (u, v) if and only if x + y �
u + v. By our work above and Theorem 11.4, this is an equivalence
relation on R2. The equivalence classes are the lines with slope −1.

In the two exercises in this chapter, the third condition (of parti-
tion) is satisfied because the indices (n and m in Exercise 11.2, and
r and s in Exercise 11.5) are equal. Though this can happen, Exam-
ple 11.1 shows that the two sets can be equal without the indices
being equal. Condition (iii) in the definition of partition requires
that we show that the two sets are equal—not the two indices.
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Problems

Problem 11.1.
For each of the relations in Problem 10.1 that you determined to be
equivalence relations, describe the partition associated with it.

Problem 11.2.
Determine whether or not the following are equivalence relations
on R2. If they are, describe the partition associated with each:

(a) (x, y) ∼ (w, z) if and only if y � w;
(b) (x, y) ∼ (w, z) if and only if x2 � w2;
(c) (x, y) ∼ (w, z) if and only if xw � yz.

Problem 11.3.
(a) For each r ∈ R, let Ar � {(x, y, z) ∈ R3 : x + y + z � r}. Is

this a partition of R3? If so, give a geometric description of the
partitioning sets.

(b) For each r ∈ R, let Ar � {(x, y, z) ∈ R3 : x2 + y2 + z2 � r2}. Is
this a partition of R3? If so, give a geometric description of the
partitioning sets.

Problem 11.4.
(a) Let A � {1, 2, . . . , 10}. Describe a partition of A that gives rise

to five distinct partitioning sets.
(b) Describe a partition of Z that gives rise to five distinct

partitioning sets.
(c) Can you describe a partition of R that gives rise to five distinct

partitioning sets?

Problem 11.5.
(a) Suppose that we partition R3 into horizontal planes. What

equivalence relation is associated with this partition?
(b) Suppose that we partition R3 into concentric spheres, centered

at (0, 0, 0). What equivalence relation is associated with this
partition?
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Problem 11.6.
Suppose that we look at the set X containing all circles in the plane.
Define an equivalence relation on this set of circles by c ∼ d if
and only if the circles c and d have the same center. Describe the
partition associated with this equivalence relation.

Problem 11.7.
Consider the set P of polynomials with real coefficients. Decide
whether or not each of the following determine a partition of P.
If you decide that it does determine a partition, show it carefully. If
you decide that it does not determine a partition, justify your answer.
(See Problem 10.8 for more information about polynomials.)

(a) For m ∈ N, let Am denote the set of polynomials of degree m.
(b) For c ∈ R, let Ac denote the set of polynomials such that p(0) �

c.
(c) For a polynomial q, let Aq denote the set of all polynomials p

such that q is a factor of p; that is, there is a polynomial r such
that p � qr.

(d) For c ∈ R, let Ac denote the set of polynomials such that p(c) �
0.

Problem 11.8.
For two nonempty disjoint sets, I and J , let {Aα : α ∈ I} be a partition
of R+ and {Aα : α ∈ J} be a partition of R− ∪ {0}. Prove that {Aα : α ∈
I ∪ J} is a partition of R.

Problem 11.9.
Let X be a nonempty set and {Aα : α ∈ I} be a partition of X.

(a) Let B be a subset of X such that Aα ∩ B 
� ∅ for every α ∈ I.
Is {Aα ∩ B : α ∈ I} a partition of B? Prove it or give a
counterexample.

(b) Suppose further that Aα 
� X for every α ∈ I. Is {X \ Aα : α ∈ I}
a partition of X? Prove it or give a counterexample.

Problem 11.10.
Recall that for an integer n, the symbol 3|n means that there exists
m ∈ Z such that n � 3m. For each integer i, where i � 0, 1, 2, we
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define Ai � {x ∈ Z : 3|(x− i)}. Show that {Ai : i � 0, 1, 2} is a partition
of Z.

Tips on Putting It All Together

Now we will build upon the foundations we have created.

• In each section, work through the definitions. (Check “Tips on
Definitions.”) If you don’t know the definitions, you cannot get
started. So the first step is to make sure that you have mastered
them.

• Next, learn and understand all theorems. You don’t have to mem-
orize their number, of course, but you should know by name
each theorem that has a name. Make sure you can restate every
theorem in the text correctly.

• If you are asked to prove something, look for a proof or theorem
that reminds you of your problem. Read it over.

• If your problem is too difficult, try a simpler one first.
• Whenever you claim something is true, say why (at least to your-

self, if it is minor and to the reader, if it is major). Is it a definition?
a theorem? Are the techniques the same as in a proof everyone
has already seen? If you are writing up your homework, tell the
grader which theorem (now you should give a number) or what
definition you are using.

• If you can check your solution, do so. Is your answer reasonable?
• Does your theorem make sense? Does it agree with other the-

orems in the text? Does your proof use everything you were
given?

• Your first draft is precisely that. No one should have to read some-
one else’s first draft. Work out the solution, write it up, put it away,
read it again, and rewrite it.
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...........................................

Order in the
Reals

You’ve seen numbers ever since you’ve been in school, and you
know a lot about them. It is possible to give them a careful math-
ematical foundation. In fact, it’s possible to construct the natural
numbers (and you can do so in Project 27.3). Then, if you try to
introduce operations like addition and subtraction, you’ll find that
you are missing something: the negative numbers. So you look at the
integers, and try again. Now, trying to introduce multiplication and
division, you’ll find you are missing something again: multiplicative
inverses. So you look at the rational numbers, and you’ll find you are
missing something yet again. That brings you to the real numbers.

In this chapter, we will assume that we have the real numbers
and that they satisfy the algebraic axioms listed in the appendix.
We will also assume that R has the order relation ≤ satisfying the
other properties listed in the appendix. It is our goal here to discuss
what’s missing in Q, and show you why R has what’s missing. This
is known as completeness of R.

What do we mean by this property “completeness,” that R has, but
Q doesn’t? If we take a stroll along the real number line, we can walk
right up to any real number and it will be there waiting for us. In
contrast to this, if we walk along the real line, this time stepping on
rational numbers only, we might walk right up to where we’d expect

129
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√
2 to be, but it will be out having lunch with other irrationals. We’ll

make this precise by the end of this chapter. We now turn to the
important terminology that we need.

A nonempty subset A of R is bounded above if there is a real
number M such that x ≤ M for all x ∈ A. A real number M satisfying
x ≤ M for all x ∈ A is called an upper bound of A. The nonempty
subset A of R is bounded below if there is a real number m such that
m ≤ x for all x ∈ A. A real number m satisfying m ≤ x for all x ∈ A

is called a lower bound of A. We say a nonempty set is bounded if
it is bounded above and below. For example, the open interval (0, 1)
is bounded above, since every x ∈ (0, 1) satisfies x ≤ 1. The number
1 is an upper bound, and so is the real number 1.5. In fact, every
number greater than 1 is an upper bound. Similarly, since x ≥ 0 for
all x ∈ (0, 1), the set (0, 1) is bounded below and 0 is an example of
a lower bound of the set. Since (0, 1) is bounded above and below, it
is an example of a bounded set.

Exercise 12.1.
For each of the following sets of real numbers, decide whether it
is bounded above, bounded below, and (consequently) whether or
not it is bounded. If the set is bounded above, give three different
examples of upper bounds in R. If the set is bounded below, give
three different examples of lower bounds in R. Use your intuition;
we’ll prove things rigorously later. The sets are:

(a) {x ∈ R : x2 ≤ 5};
(b) {x ∈ R : x3 < 5};
(c) {x ∈ N : x ≤ 5};
(d) {x ∈ Q : x2 < 2}. ©

Sometimes a subset of R that is bounded above contains a largest
element, and we give this element a special name: a maximum. The
real number M is a maximum of the set A, if M ∈ A and x ≤ M for
all x ∈ A. We will write M � max A for a maximum of the set A. Note
that a maximum is an upper bound that lies in the set A. Likewise,
a real number m is a minimum of the set A, if m ∈ A and m ≤ x for
all x in A. We will write m � min A to denote a minimum of the set
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A. Again, notice that a minimum is a lower bound that lies in the
set A.

It should now be clear that if a set A has a maximum, then A

must be bounded above, and if the set has a minimum, then A must
be bounded below. What about the converse?

Example 12.2.
Give an example of a bounded set that has neither a maximum nor
a minimum.

We claim that the set (0, 2) is bounded and has neither a
maximum nor a minimum.

Proof.
For each x ∈ (0, 2), we know that 0 < x < 2. Therefore 0 is a lower
bound of the set and 2 is an upper bound. Thus, (0, 2) is bounded.
To see that it has no maximum, suppose to the contrary that s is
a maximum of the set (0, 2). Then, by definition of maximum, s

must be in the set, so 0 < s < 2. But (as you can check) 0 < s <

(2 + s)/2 < 2, and therefore (2 + s)/2 is in the set (0, 2) and larger
than s, a contradiction. In a similar fashion, you can check that there
is no minimum.

It turns out that there is an upper bound that can help us when
we don’t have a maximum (called the supremum), and a lower
bound that can help us when we don’t have a minimum (called
the infimum). We define these below.

Let A be a nonempty set of real numbers that is bounded above.
Then a real number U is said to be a supremum of A or least upper
bound of A if

(i) a ≤ U for all a ∈ A, and
(ii) if M ∈ R satisfies a ≤ M for all a ∈ A, then U ≤ M.

Note that (i) says that U is an upper bound, while (ii) says that U is
least among all upper bounds. While the phrase “least upper bound”
is more descriptive, most authors prefer the term “supremum.”

The following lemma tells us that the supremum, when it exists,
is unique.
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Lemma 12.3.
If a nonempty subset of R has a supremum, then the supremum is unique.

We first try to understand the problem. Let’s call our set S. We are
not asking whether or not a supremum of S exists. What we are trying
to do is to show that there cannot exist two different real numbers a

and b, such that both a and b fulfill the properties of supremum of
S. (We’ve seen examples of sets with more than one upper bound.
Maybe there are sets with more than one least upper bound.)

So we turn to devising a plan. Let’s suppose that there are two
such numbers a and b, and try to show that they must be equal.

Proof.
Let S be a nonempty subset of R. Suppose a and b are two real num-
bers that satisfy properties (i) and (ii) in the definition of supremum.
Then a is an upper bound. Since b is a supremum, property (ii) im-
plies that b ≤ a. On the other hand, since b is an upper bound and
a is a supremum, property (ii) implies that a ≤ b. Thus a � b, and
we conclude that there is at most one supremum.

From here on in, we will refer to “the” supremum, and we will
denote the supremum of a nonempty set A by sup A.

The last proof was your first proof of uniqueness. This particular
proof is fairly standard. You’ll frequently be able to prove uniqueness
by supposing that you have two such objects, and showing that they
must be equal.

Exercise 12.4.
Return to Exercise 12.1. Use your intuition to decide which of the
sets have a supremum in R. For the sets that you decide have a
supremum, find a real number that you believe is the supremum. ©

So we have defined two notions—supremum and maximum.
What are the differences and what are the similarities? A close look
at the definition shows that the maximum of a set A must be in A,
while the supremum of A need not. On the other hand, we also have
the following.
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Exercise 12.5.
Let A be a nonempty subset of real numbers that is bounded above.
Show that if A has a maximum M, then M is the supremum of A.
Conclude that a maximum of a set is unique and thus we can speak
of “the” maximum of a set A—if it exists. ©

In Exercise 12.6 you will define and investigate the infimum (or
greatest lower bound) of a set. This is an important exercise, and we
will refer to it frequently.

Exercise 12.6.
Let A be a nonempty subset of R that is bounded below.

(a) Define lower bound and infimum (or greatest lower bound)
of the set A.

(b) Do what you always do when confronted with a new definition:
find examples and nonexamples.

The infimum of a set A, denoted inf A, is also unique (Prob-
lem 12.14) and hence we can speak of “the” infimum. If a set A has
a minimum, then this minimum is the infimum of the set. Thus,
min A is also unique, if it exists.

Some students find the words supremum and infimum difficult
to remember. But once you get used to it, these words will sound like
what they are: If the supremum is in the set, it’s the maximum. If it’s
not in the set, the supremum (as suggested by the word “superior”)
lies above the set. Similarly, if the infimum is in the set, it’s the
minimum. If it’s not in the set, then the infimum (as suggested by
the word “inferior”) lies below the set.

The next example shows how to rigorously prove that a particular
number is the infimum (or supremum) of a set. Remember that to
show l is the infimum, we must show that it is a lower bound, and
that if y is another lower bound, then y ≤ l. We will actually show
the contrapositive of this last assertion: if y > l, then y is not a lower
bound.

Example 12.7.
Show that inf(3, 4] � 3.
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Proof.
We note that 3 ≤ x for all x ∈ (3, 4]. Therefore, 3 is a lower bound.

To see that it is the infimum, we will show that nothing larger can
be a lower bound. To this end, let y be chosen so that 3 < y. If y > 4,
then y is not a lower bound of (3, 4]. If y ≤ 4, then (3 + y)/2 is a real
number such that 3 < (3+y)/2 < y ≤ 4. Therefore (3+y)/2 ∈ (3, 4]
and (3 + y)/2 < y. Thus, y is not a lower bound of (3, 4]. Hence, 3 is
the infimum of (3, 4].

Here we have an example of a bounded set that has no minimum,
but it does have an infimum.

We saw in Example 12.2 that there are sets that are bounded, but
have no maximum or minimum. Since a maximum is a supremum,
it may seem that there exist sets that are bounded above but have no
supremum in R. It turns out that in R this is not the case; the real
numbers are constructed to guarantee the existence of a supremum
of every bounded nonempty set. This will not be proved; in a way it
is an agreement. The technical term for such a statement is axiom.

The completeness axiom of R.
Every nonempty subset of real numbers that is bounded above has a
supremum.

Exercise 12.8.
State a version of the completeness axiom of R replacing the word
“supremum” by the word “infimum.” What conditions, if any, must
be placed on the set? ©

Here’s an extremely useful consequence of the work we have
built up in this chapter:

Theorem 12.9 (Archimedean property of R).
Let a and b be two positive real numbers. Then there exists a positive
integer n such that a < nb.

Proof.
Suppose that this is not true; that is, suppose that there are two posi-
tive real numbers, a and b such that a ≥ nb for all n ∈ N. This means
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that a/b is an upper bound of N. Therefore, by the completeness ax-
iom of R, it follows that N has a supremum, which we will call u.
Now consider u − 1. Since this is less than the supremum u, it can’t
be an upper bound of N. So there exists m ∈ N with m > u − 1.
Therefore, m + 1 ∈ N and m + 1 > u. Since no element of N can be
greater than the upper bound u, this is a contradiction.

A useful special case occurs when we let b � 1 in the statement
of the Archimedean property. When we have a result that follows
from a theorem that we just proved, we call it a corollary. Thus we
have

Corollary 12.10.
For every real number a, there is an integer n such that a < n.

Proof.
If a ≤ 0, the result is obvious. If a > 0, this follows from the
Archimedean property of R.

We now turn to the well-ordering principle of N, which is con-
cerned with a fundamental property of the natural numbers. There
is another important principle, called the principle of mathematical
induction, which we will introduce in Chapter 17 and Project 27.3. If
you work the project, you will learn that induction is one of the five
Peano axioms that can be used to construct the natural numbers.
For now, we will state and use the well-ordering principle without
proof. In Chapter 17, we will show that the well-ordering principle
of N and the principle of mathematical induction are equivalent.

Well-ordering principle of N.
Every nonempty subset of the natural numbers contains a minimum.

As a consequence of the well-ordering principle, we obtain an
interesting theorem about where the rationals “live.” The next the-
orem suggests that they can really fill up space! The curious thing
about them, which we will return to in Chapter 22, is that there really
aren’t that many of them.
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Theorem 12.11.
Let a and b be two real numbers satisfying a < b. Then there is a rational
number c such that a < c < b.

The proof of this result will be much easier to follow if you un-
derstand the basic idea. It’s this: if the difference between a and b

were greater than one, then there would have to be an integer m

with a < m < b and we would be done. Of course, the difference
does not have to be greater than one, but we can sort of force it to
be: Look at b − a and multiply by an integer n so that n(b − a) > 1.
Now the difference between nb and na is greater than one, so there
has to be an integer m between them (but this needs proof). So we
will prove that there exists an integer m with na < m < nb. Divide
by n to obtain the desired rational number, m/n.

Proof.
Note that we may assume, without loss of generality, that a > 0.
(Why?) By Theorem 12.9 there is an integer n such that n(b−a) > 1.
Thus,

nb > 1 + na. (12.1)

Now consider the subset A of N defined by A � {r ∈ N : na < r}. By
Corollary 12.10, A is nonempty. The well-ordering principle implies
that A has a minimum, which we call m. Thus m ∈ A, and from the
definition of A we see that na < m; in other words, a < m/n. Let c be
the rational number m/n. Then we have the lower inequality, a < c,
and we are halfway there. For the upper inequality, note that m − 1
is not in the set A (what would happen if it were?) so na ≥ m − 1.
So, putting this together with equation 12.1 we get

nb > 1 + na ≥ 1 + (m − 1).

So nb > m, and b > m/n. Now c � m/n is a rational number between
a and b, and this completes the proof.

One interesting consequence of the completeness axiom is that
we can now give a rigorous proof that if a is a positive real number,
then a has a positive square root; that is, there exists x ∈ R+ such that
x2 � a. We’ll do the proof for a � 2, and you can easily modify it to
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hold for all other positive real numbers. In the rest of the text, we’ll
assume the usual rules for exponents and roots of real numbers.

Theorem 12.12 (Existence of square roots in R+).
There exists a positive real number a such that a2 � 2.

In order to help you better understand this proof, we’ll indicate
how we “devised a plan.” The basic idea is that the square root should
be the supremum of the set A � {x ∈ R+ : x2 < 2}. The complete-
ness axiom tells us this supremum exists, so we’ll call it a. How do
we show that a is the square root of 2? Well, we need to show that
a2 � 2. If a2 > 2, our intuition tells us that we should be able to
subtract something off of a, which we’ll call x, and come up with
something smaller than a that is still an upper bound of the set.
Thus a − x would be an upper bound smaller than the supremum,
and this would contradict the fact that a is the least upper bound. So
we now have to worry about the case in which a2 < 2. In this case,
our intuition tells us that we should be able to add just a little bit to
a, which we’ll call y, and find an element of A, namely a + y, that
is bigger than the upper bound a. This now contradicts the fact that
a is an upper bound. So, since neither of these two cases can occur,
the only other possibility, a2 � 2, must be the one that holds.

Proof.
Let A � {x ∈ R+ : x2 < 2}. Then A is a nonempty subset of R
(since 1 ∈ A), and A is bounded above (by, for example, 2). By the
completeness axiom A has a supremum, which we denote by a. What
we know so far is that a is a real number, and 1 ≤ a ≤ 2. We will
show that a2 � 2.

Before we show that a2 � 2, we claim that the following is true:

If 0 < c < a, then c2 < 2. (12.2)

To establish our claim, let c be chosen with 0 < c < a. Then c is less
than the supremum of A, so c cannot be an upper bound of A. Thus,
there exists b ∈ A with c < b. Since b ∈ A, we know that b2 < 2.
Therefore, c2 < b2 < 2, establishing the claim.

We know that one of the following three cases must occur: a2 > 2,
a2 < 2, or a2 � 2. We’ll show that the first two cases are impossible.
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Case 1. Suppose that a2 > 2. Let x � (a2 − 2)/(2a). Then, as you
can check, 0 < a−x < a. By our claim (equation 12.2), (a−x)2 < 2.
But

(a − x)2 � a2 − 2ax + x2 ≥ a2 − 2ax � 2.

So (a−x)2 < 2, and (a−x)2 ≥ 2. This is impossible and we conclude
that case 1 cannot occur.

Case 2. Suppose that a2 < 2. Let y � (2 − a2)/(3a). Then y > 0,
and therefore a + y > a. Since a is an upper bound of A, we see that
a + y /∈ A. Thus (a + y)2 ≥ 2. We will show that y < a, and then use
this to obtain our contradiction. To this end, note that because 1 ≤ a

we have

y − a � (2 − 4a2)/(3a) < 0.

Thus, y < a, as claimed. Since y < a, we also know that y2 < ay.
Thus,

(a + y)2 � a2 + 2ay + y2 < a2 + 2ay + ay � a2 + 3ay � 2.

So, (a+y)2 ≥ 2, and (a+y)2 < 2. This is impossible, and we conclude
that case 2 cannot occur.

Thus we conclude that the only remaining possibility holds, and
therefore a2 � 2.

The completeness axiom of R says that if we start with a
nonempty set that is bounded above, we can find its supremum.
In Q, this is not the case: We can find a nonempty subset of Q that
is bounded above but has no supremum in Q. In other words, there
is no completeness axiom for Q.

Example 12.13.
Show that the set Q is not complete; that is, show that there is a
nonempty set B of rational numbers that is bounded above, but no
rational number b satisfies both

(i) x ≤ b for all x ∈ B, and
(ii) if c ∈ Q and x ≤ c for all x ∈ B, then b ≤ c.
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Proof.
Let B � {x ∈ Q+ : x2 < 2}. Then B is nonempty (1 ∈ B) and
bounded above (2 is an upper bound). Suppose to the contrary that
the rational number b satisfies conditions (i) and (ii) above. If such
a rational number b exists, it must satisfy one of the following three
things: b � √

2, b >
√

2, or b <
√

2. We’ll show that no rational
number can satisfy one of these.

We know from Theorem 5.2 that
√

2 is not rational, and we know
from our assumptions that b is rational. So b 
� √

2.
Suppose that b >

√
2. By Theorem 12.11, there is a rational

number c such that
√

2 < c < b. Now the supremum of the set
A � {x ∈ R+ : x2 < 2} is, as we have just seen in Theorem 12.12,

√
2.

For every x ∈ B we know that x ∈ A and consequently x ≤ √
2 < c.

Thus c satisfies the hypotheses of (ii). But c < b, and therefore c does
not satisfy the conclusion of (ii). This implies that this case cannot
occur.

Now suppose that b <
√

2. By Theorem 12.11, there is a rational
number c with b < c <

√
2. The right side of this inequality tells us

that c2 < 2 and therefore c ∈ B. But c > b, and this contradicts the
fact that b satisfies condition (i) above. This implies that this case
cannot occur.

Thus we conclude that there is no rational number satisfying
conditions (i) and (ii) above.

By the way, there is still something “missing” in R—the square
root of −1. So you might decide to look at complex numbers . . . but
that’s another story.

Solutions to Exercises

Solution to Exercise (12.1).
We include brief answers to each part here.

(a) This set is bounded, and therefore bounded above and below.
Some possible upper bounds are

√
5, 3, and 121. Some possible

lower bounds are −√
5, −10, and −2π.
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(b) This set is bounded above, and it is not bounded below. Some
possible upper bounds are 51/3, 10, and 21.3.

(c) This set is bounded, and therefore bounded above and below.
Some possible upper bounds are 5, 121, and 1000. Some possible
lower bounds are 0, −3, and −12.

(d) This set is bounded above and below, and therefore bounded.
Every real number greater than or equal to

√
2 will work as an

upper bound, and every real number less than or equal to −√
2

will work as a lower bound.

Solution to Exercise (12.5).
Let M � max A. Then a ≤ M for all a ∈ A and property (i) of the
definition of supremum is fulfilled. Now suppose that K is a real
number satisfying a ≤ K for all a ∈ A. Since M is in A we have in
particular that M ≤ K. Thus, property (ii) holds and M � sup A.

By Lemma 12.3, the supremum of A is unique. Since max A is
the supremum of A, it is also unique.

Solution to Exercise (12.6).
Let A be a nonempty set of real numbers that is bounded below.
(a) A number m is a lower bound of A if a ≥ m for all a ∈ A.
(b) A number m is the infimum (or greatest lower bound) of A if

(i) a ≥ m for all a ∈ A, and
(ii) if y is a real number satisfying a ≥ y for all a ∈ A, then

m ≥ y.

Solution to Exercise (12.8).
Completeness axiom of R; infimum version. Every nonempty
subset of real numbers that is bounded below has an infimum.

We note that the infimum version follows from the complete-
ness axiom stated in this chapter. To see this, you would complete
the following outline of a proof: If you have a nonempty subset S

that is bounded below, the subset −S � {−x : x ∈ S} is nonempty
and bounded above. By the completeness axiom it has a supremum,
denoted by s. Then it is possible to show that −s � inf S.
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Problems

Problem 12.1.
Consider the sets below. For each one, decide whether the set is
bounded above. If it is, give the supremum in R. Then decide
whether or not the set is bounded below. If it is, give the infimum.
Finally, decide whether or not the supremum is a maximum, and
whether or not the infimum is a minimum:

(a) The closed interval [0, 4];
(b) The open interval (0, 4);
(c) The natural numbers N;
(d) The set [0,

√
2] ∩ Q;

(e) The set (0, π) ∩ Q. (You may assume that π /∈ Q.)

Problem 12.2.
Consider the interval (1, 4) in R. Show in detail

(a) that 4 is the supremum, and
(b) that 1.1 is not a lower bound.

Problem 12.3.
Show that inf {1/n : n ∈ Z+} � 0.

Problem 12.4.
Show that sup{1 − 1/n : n ∈ Z+} � 1.

Problem 12.5.
Let S be a nonempty subset of R, and x ∈ R. Suppose that there
exists y ∈ S with y < x. Let y0 � sup{y ∈ S : y < x}.

(a) Give an example of such a set S and real number x.
(b) Show that y0 ≤ x.
(c) Give an example to show that y0 may equal x.
(d) Give an example to show that y0 may be strictly less than x.

Problem 12.6.
Let x and y be two real numbers. Prove that

max{x, y} � |x − y| + x + y

2
.
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Problem� 12.7.
Let S be a nonempty subset of R. Prove that S is bounded if and only
if there exists M ∈ R such that |x| ≤ M for all x ∈ S.

Problem 12.8.
Let S be a nonempty bounded subset of R. Show that inf S ≤ sup S.
Under what conditions on S would you have inf S � sup S?

Problem 12.9.
Let S be a nonempty bounded subset of R and let u be a real number
such that u < sup S. Show that there exists s ∈ S such that u < s.

Problem 12.10.
Let S and T be nonempty bounded subsets of R.

(a) Show that sup(S ∪ T) ≥ sup S, and sup(S ∪ T) ≥ sup T.
(b) Show that sup(S ∪ T) � max{sup S, sup T}.
(c) Try to state the results of (a) and (b) in English, without using

mathematical symbols.

Problem 12.11.
Let x ∈ R and let S be a nonempty subset of R that is bounded above.
We define a new set, x + S, by x + S � {x + s : s ∈ S}

(a) Prove that x + S is bounded above.
(b) Prove that x + sup S is an upper bound of x + S. Conclude that

sup(x + S) ≤ x + sup S.
(c) Prove that x + sup S � sup(x + S).

Problem 12.12.
Let ε be a positive real number. Prove that for every real number a,
there exists a rational number b (depending on a) such that |a−b| <

ε.

Problem 12.13.
Let ∼ denote a relation on a set S. The relation ∼ is called a partial
order if the following three conditions are satisfied.

(i) (Reflexive property) For all x ∈ S, we have x ∼ x.
(ii) (Transitive property) For all x, y, z ∈ S, if x ∼ y and y ∼ z, then

x ∼ z.
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(iii) (Antisymmetric property) For all x, y ∈ S, if x ∼ y and y ∼ x,
then x � y.

The relation ∼ is a total order on the set S if, in addition, (iv) below
is satisfied.
(iv) For all x, y ∈ S, either x ∼ y or y ∼ x.
(a) Show that the relation x ∼ y if and only if x ≤ y defines a total

order on R.
(b) Let A be a set containing at least two elements. We define an

order on P(A) using the regular set inclusion ⊆. Show that
(P(A), ⊆) is a partial order, but not a total order.

(c) Consider the relation < on R. Show that this is not a total order
by exhibiting counterexamples for each total order property
that is violated.

Problem� 12.14.
Prove that if a subset A of the reals has an infimum, then the infimum
is unique.

Problem 12.15.
Prove that there exists x ∈ R+ with x2 � 3.

Problem 12.16.
You showed in Problem 12.13 that (P(Z), ⊆) is a partial order. For
every nonempty subset A of P(Z) we say that U ∈ P(Z) is an upper
set of A, if X ⊆ U for all X ∈ A. A nonempty set A ⊆ P(Z) will be
called an upper bounded set if there is an upper set of A in P(Z).
We say U0 ∈ P(Z) is a least upper set if (i) U0 is an upper set of A
and (ii) if U is another upper set of A, then U0 ⊆ U .

(a) Let B � {{1, 2, 5, 7}, {2, 8, 10}, {2, 5, 8}}. Show that B is an upper
bounded set and find a least upper set of B, if there is one.

(b) Prove that every nonempty subset of P(Z) is upper bounded.
(c) Define “lower set,” “lower bounded set,” and “greatest lower set.”
(d) Let A be a nonempty subset of P(Z). Using union and inter-

section, find an expression for least upper set of A and greatest
lower set of A.

(e) Prove that (P(Z), ⊆) has the “least upper set property” (in other
words, show every upper bounded set has a least upper set).
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Problem 12.17.
Prove that every bounded subset of N has a maximum.

Problem 12.18.
Prove that (Z, ≤) is complete in the following sense: If A is a
nonempty set of integers that is bounded above, then there is an
integer a such that a � sup A.

Problem 12.19.
Prove the following statement: For every positive irrational real
number a with

√
a < 10000, there is a positive integer n such that

10000
n

<
√

a <
10000
n − 1

.

Problem 12.20.
Suppose we define ∞ to be an object that satisfies a ≤ ∞ for all
a ∈ R. Prove that ∞ /∈ R.

Problem 12.21.
Let a ∈ Q, a 
� 0 and b ∈ R \ Q. Prove the following:

(a) a + b ∈ R \ Q;
(b) ab ∈ R \ Q;
(c) 1/b ∈ R \ Q.

Problem 12.22.
Prove that if a is a rational number, then there is an irrational number
b such that a < b.

Problem 12.23.
Prove that for two arbitrary real numbers a and b with a < b, there
is an irrational number c such that a < c < b. (Hint: Consider a/

√
2

and b/
√

2.)

Tips: You Solved It. Now What?

Let’s say we are now at the point where you solved the given problem
and wrote up your first draft.
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• Look over your solution. Does it use everything you are given?
• Is the answer reasonable?
• If there were places where you were unsure of your argument,

check over those arguments carefully. You might find it helpful
to write the solution, take a break, and then check the solution.

• Is your argument clear? Did you choose your notation well? Did
you introduce all notation before you used it?

• Is there a shorter or more intuitive argument?
• Do you fully understand what you did? Spend some time thinking

about the method and what you proved. Could you have gotten a
better result?

• When do these methods work? What are the restrictions? Where
have you seen them before?

• If the problem was hard for you to solve, what made it hard? What
were the important ideas that you were missing?

• This is a good opportunity to learn about yourself, too. Which
problems do you like best? Why?
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C H A P T E R

...........................................

Functions,
Domain, and
Range

What is a function? You’ve probably gotten a definition of this some-
where along the way. We will state the definition of function in terms
of relations, which is probably different than the way you have seen
it stated.

Let A and B be sets. A function f from A to B is a relation from
A to B satisfying

(i) for all a ∈ A, there exists b ∈ B such that (a, b) ∈ f , and
(ii) for all a ∈ A, and all b, c ∈ B, if (a, b) ∈ f and (a, c) ∈ f , then

b � c.

A function is often called a map or mapping. We usually write
f : A → B to indicate that f is a function from A to B. The two
conditions above define a function. When they are satisfied, we say
the function is well-defined. If the object we try to define does not
satisfy these properties, it isn’t a function, and we often say that f

(which we shouldn’t call a function) is not well-defined.
Condition (i) makes sure that each element in A is related to

some element of B, while condition (ii) makes sure that no element
of A is related to more than one element of B. Note that it may be
the case that an element of B has no element of A that it is related
to; or an element of B could be related to more than one element of

147
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A. The set A is called the domain, and denoted by dom(f ), and the
set B is called the codomain, and denoted cod(f ).

As a first example, consider the function that assigns to a citizen
of the United States his or her height measured on a particular day
at a particular time. This is a function because (i) each person has
a height, and (ii) each person has exactly one height on that day,
at that time. Now let’s turn to a nonexample. We still consider the
domain to be the set of citizens of the United States, but this time let
the codomain consist of all the countries in the world (on a partic-
ular day, at a particular time). Consider the relation that assigns to
each person in the domain his or her country (countries) of citizen-
ship. This is not a function because a United States citizen can be
a citizen of more than one country. Though (i) is satisfied because
each person in the domain is a U.S. citizen, (ii) is not.

Exercise 13.1.
Let A � {1, 2, 3} and B � {2, 4, 6}. Which of the following are func-
tions from A to B? If they are not functions, explain which rule is
violated.

(a) The relation f is {(1, 2), (2, 4), (3, 4)}.
(b) The relation f is {(1, 2), (1, 4), (2, 2), (3, 6)}.
(c) The relation f is {(1, 2), (3, 4)}.
(d) The relation f is {(2, 4), (1, 2), (3, 6)}. ©

Exercise 13.2.
You probably learned that a function f : R → R can be repre-
sented by a graph, and that there is a vertical line test to determine
whether or not f is a function (see Figure 13.1). Which condition in
the definition corresponds to the vertical line test? Why? ©

In Exercise 13.1, you probably recognized (d) as a function. It is
more usual to write f (1) � 2, f (2) � 4, and f (3) � 6. Since each x in
the domain is related to a unique y in the codomain, we will write
f (x) � y rather than (x, y) ∈ f .

Here are some more examples and nonexamples of functions.
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FIGURE 13.1

Exercise 13.3.
Decide which of the following are functions and which are not,
giving reasons for your answers.

(a) Let f : R → R be defined by f (x) � 3x + 2.
(b) Let f : R → R be defined by f (x) � 1/x2.
(c) Let f : R → R2 be defined by f (x) � (x, x).
(d) Let f : Q → Q be defined by f (p/q) � 1/q, where p and q are

integers and q 
� 0.
(e) Let f : R2 → R2 be defined by f (x, y) � (x, 3). ©

You have seen many examples of functions. One particular type
of example, that of a function defined in cases, allows us to explicitly
illustrate many of the ideas discussed in this section. Before you
begin working with a function that is defined in cases, make sure
that you understand the function. If you can, graph it. Remember
that the best thing to do is to work with concrete objects (like trying
x � 2 or x � −3) until you get a feel for what is happening. For
functions that are defined in cases we have to be particularly careful
to check that the cases don’t overlap; or if they do, that the function
is defined in a unique way for all the elements in the domain that
are in the overlap. Of course, we are not changing the rules here.
All you really have to do is check that conditions (i) and (ii) of the
definition hold. Here are some examples.

Example 13.4.
We will check to see whether each of the objects defined below and
graphed in Figure 13.2 is a function.
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2 3

FIGURE 13.2 The graph on the left is off, the one on the right is of g.

(a) Letf

(b) Letg

. be defined by

f(x) =

1 be defined by

x2 if x 0
2x + 1 if x > 0

0 if x 2
1/x if x 3

For (a) note that the domain is R and the codomain is also R.
From the definition of f it is easy to see that f is defined for all
x R. Hence condition (i) of the definition of a function holds.

Now let a R and suppose that there exist real numbers b and c
withf(a) = b andf(a) = c. The most orderly way to check condition
(ii) is the following: If a 0, then b = f(a) = a2 and c = f(a) = a2,
so b = c. If a < 0, then b = f(a) = 2a + 1 and c = f(a) = 2a + 1.
Hence b = c. In either case, b = c. So condition (ii) holds. Since both
(i) and (ii) are satisfied, f is well-defined.

The formula given in part (b) does not define a function for two
reasons. First note that 0 is in the domain. Since 0 3, we see
that g(0) is not defined to be an element in the codomain. Hence
condition (i) is violated, and we conclude that g is not a function.
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We mention here that there is a second problem with the defini-
tion of g: consider a real number a such that 2 ≤ a ≤ 3. For instance,
let a � 2.5. Then g(2.5) � 0 (since 2.5 ≥ 2) and g(2.5) � 2/5 (since
2.5 ≤ 3). This violates condition (ii) of the definition of a function.
Thus g does not satisfy condition (i) or (ii). Therefore, the object
defined above is not a function, for two reasons. ©

Although the example above violates both (i) and (ii), keep in
mind that it is enough that (i) or (ii) alone be violated to assure that
f is not a function.

Exercise 13.5.
For each of the two examples below decide whether or not the object
so defined is a function. Give reasons for your answers.

(a) Let f : R → R be defined by

f (x) �
{

x2 if x ≥ 0
−(x2) if x ≤ 0

.

(b) Let f : Z → Z be defined by

f (x) �
⎧⎨
⎩

1 if x ∈ 2Z
2 if x is prime
3 otherwise

.

©

One very important example of a function defined in cases is the
familiar absolute value function.

Example 13.6.
The absolute value function f : R → R is defined by f (x) � |x|. It is
easy to check that this does define a function on R.

When you define a new mathematical concept, it’s always a good
idea to think about it and pose questions. Of course, it’s also a good
idea to answer those questions, if you can. We now turn to some
questions that we find interesting. See if you can think of some
questions on your own.

What does it mean to say that two functions f and g are equal?
Since this is a very important concept that we will need again later,



13. Functions, Domain, and Range152

we provide the answer here. But try and think about how this answer
follows from the definition of a function.

Two functions f and g are equal if dom(f ) � dom(g) and
f (x) � g(x) for all x ∈ dom(f ).

Here’s a second question: What is the function’s relationship to
elements of the domain, and how does this differ from the function’s
relationship to elements of the codomain? We must be able to eval-
uate f for every element in the domain, while elements in cod(f )
may or may not be associated with elements of the domain. The
elements of the codomain that are related to elements of dom(f ) are
obviously important in understanding the function. For this reason,
we look at the set called the range of f , which consists precisely of
these points.

Given a function f : A → B, the range of f , denoted ran(f ), is
defined by

ran(f ) � {b ∈ B : there exists at least one a ∈ A such that f (a) � b}.
Sometimes it is fairly easy to determine the range, but it generally

requires a method (demonstrated below) that we think of as working
backwards. You’ll start with b ∈ B and try to find a ∈ A. Then, to
show that b ∈ ran(f ), you have two things to check: The element a

must map to b under f (that is, f (a) � b), and a must be an element
of A. This latter statement is often obvious, but don’t forget to check
it!

It’s always easier to start with small sets and see if you understand
what is happening. You can do this visually as well. For example, say
A � {1, 2, 3}, B � {2, 3, 4}, and the function f : A → B is defined by
f (1) � 3, f (2) � 3 and f (3) � 4. We can “see” the action of f by
drawing a little picture as in Figure 13.3

From this picture we can see easily that f sends two things to 3,
one thing to 4, and nothing to 2. So we can “see” that though 2 is in
the codomain, it is not in the range. If you are asked for examples or
counterexamples, remember that small sets will sometimes do the
trick!

Our next example is really a method. Once we complete the
example, we will review exactly what you must do in similar cir-
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FIGURE 13.3

cumstances. But one thing we will mention in advance: you will
always need to devise a plan as we do below.

Example 13.7.
Letf : R \ {1} Rbe defined by f(x) = (x + 1)/(x 1). Determine
the range off.

"Devising a plan." We need to figure out which y R come from
something under f. It's a bit difficult to simply gaze at f, or even
the graph of f, and see what comes out of it, so we'll try working
backwards to see what y might be. (Though the graph off provides
a good way to see if your answer is reasonable, it does not provide a
proof.) So, suppose y R did come from something in the domain.
That would mean

y = f(x), for some x R \ {1};

in other words, y = (x + 1)/(x 1). Since we need to figure out what
x is, we should solve for it. Multiplying through by x 1, we get
(x + 1) = yx y. Collecting all terms involving x yields x yx =

y 1. Factoring out x, dividing, simplifying, and ignoring potential
problems (like what?), we get x = (y + 1)/(y 1). So if y came from
some x at all, y had to come from x = (y + 1)/(y 1). That's fine, as
long as y ^ 1 (that was a potential problem). So ran(f) "appears to
b e " { # e R : z / / l } = R\{1}.

The reason for saying "appears to be" is that we started by assum-
ing y came from something called x, and then found out what x had
to be. But the definition of range really requires us to start with an x
and show thatf(x) = y. So we need to check that everything we did
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above is reversible, and that the two sets ran(f ) and R\{1} are equal.
All of this was helpful in deciding what the range is, but the actual
proof is still to come. The proof below is the form you should follow.
When we write it, we need to pretend the reader has not seen the
work we just completed.

Proof.
We will show that ran(f ) � R \ {1}. Let y ∈ ran(f ). Then, clearly,
y ∈ R. So ran(f ) ⊆ R. To show that y 
� 1, suppose that this is not the
case; so we will suppose y � 1 ∈ ran(f ) and see what happens. Since
y ∈ ran(f ), there exists a point x in the domain with f (x) � y � 1.
Using the definition of f , we find that 1 � f (x) � (x + 1)/(x − 1).
Therefore, x + 1 � x − 1. This would mean that 1 � −1, which is
not possible. So y ∈ ran(f ) implies y ∈ R and y 
� 1. Thus, ran(f ) ⊆
R \ {1}.

Now let y ∈ R \ {1}. Let x � (y + 1)/(y − 1). Since y 
� 1, we
see that x ∈ R. Remember that we need to check that x ∈ dom(f ).
We know that x ∈ R. Could we possibly have x � 1? Suppose we
do, then 1 � (y + 1)/(y − 1) which implies y − 1 � y + 1. Thus we
would have −1 � 1, which is impossible. So x ∈ dom(f ) and we can
evaluate f at x to obtain

f (x) �
y+1
y−1 + 1
y+1
y−1 − 1

� y + 1 + y − 1
y + 1 − y + 1

� y.

It follows that R\{1} ⊆ ran(f ). Therefore ran(f ) � R\{1}, completing
the proof.

Before going on, we will make two remarks. If you hadn’t read
“Devising a plan” above the proof, the definition of x � (y+1)/(y−1)
would probably look bizarre. Remember that we didn’t guess it; we
worked backwards to see what x had to be. One other thing to note is
that ran(f ) 
� R, but ran(f ) � R \ {1}. So f maps into R but it doesn’t
“hit” the value 1. We’ll come back to this in the next chapter. ©

So what must we do when we have to find the range of a function?
First, we need to take out a different sheet of paper and figure out
what the set should be. Let’s say we decide the range is a set called B.
Then we need to show the reader that the two sets are equal. There
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are often many ways to do it, but one way is to start with an element
in the range (tell the reader you are doing this) and show it is in
B. Then start with an element y in B (tell the reader you are doing
this, too) and find an x (which you found somewhere else, but the
reader doesn’t necessarily need to see that) that satisfies two things:
x is in the domain of your function and f (x) � y. Write your proof
up carefully, identifying variables before you use them, and always
checking that your variables are in the appropriate sets.

Exercise 13.8.
What is the range of each of the functions below? A picture, when ap-
propriate, is a lovely addition and is heartily encouraged. It does not,
however, substitute for the real thing. Write out everything explicitly.

(a) The function f : R \ {0} → R defined by f (x) � 1/x.
(b) The function f : Z × (Z \ {0}) → R defined by f (x, y) � x/y.
(c) The function f : R → R defined by f (x) � x2 + 4x + 5. ©

Solutions to Exercises

Solution to Exercise (13.1).
The relations in (a) and (d) are functions, those in (b) and (c) are
not.

Solution to Exercise (13.2).
Condition (ii) corresponds to the vertical line test, since it says that
if we draw the vertical line x � a, it should pass through the graph
of f at most once.

Solution to Exercise (13.3).
Parts (a), (c), and (e) define functions. The others do not. In (b),
we have not defined f (0) as an element of R. In (d) note that if,
for example, we consider a � 2/1 � 4/2, then f (2/1) � 1, while
f (4/2) � 1/2. Thus (2, 1) and (2, 1/2) are both elements of the
relation and condition (ii) is violated.



13. Functions, Domain, and Range156

Solution to Exercise (13.5).
For part (a), both conditions in the definition of function are satisfied.
Note that though x � 0 appears twice in the definition of f , in both
cases f (0) � 0. For part (b), consider x � 2. Since x � 2 ∈ 2Z, we
have f (2) � 1. On the other hand, 2 is also prime, so f (2) � 2. Thus
(2, 1) and (2, 2) are both elements of the relation, but 1 
� 2, and
condition (ii) is violated.

Solution to Exercise (13.8).
For (a) we claim that ran(f ) � R\{0}. It is clear that ran(f ) ⊆ R\{0}.
So suppose that y ∈ R\{0}. Let x � 1/y. Then x ∈ R and x 
� 0. Thus,
x ∈ dom(f ). Furthermore, f (x) � 1/(1/y) � y. Therefore, y ∈ ran(f )
and R \ {0} ⊆ ran(f ), completing the proof.

For (b), you should show that ran(f ) � Q.
For (c) we claim that ran(f ) � {z ∈ R : z ≥ 1}. (We went to

another sheet of paper to come up with this claim. A sketch (see
Figure 13.4) is also helpful here, but it is not a proof.)

Proof.
First note that if y ∈ ran(f ), then there exists x ∈ R such that y �
x2 + 4x + 5. Completing the square, we get y � (x + 2)2 + 1. Since
(x + 2)2 ≥ 0, we see that y ≥ 1. Therefore, y ∈ {z ∈ R : z ≥ 1},
and hence ran(f ) ⊆ {z ∈ R : z ≥ 1}. Now suppose that y ∈ {z ∈ R :
z ≥ 1}. Let x � √

y − 1 − 2. (We worked backwards to get this, of
course.) Since y ≥ 1, we have x ∈ R. So x ∈ dom(f ). Furthermore,
f (x) � f (

√
y − 1−2) � (

√
y − 1−2)2+4(

√
y − 1−2)+5. Thus (as the

FIGURE 13.4 f (x) � x2 + 4x + 5
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reader can check) f (x) � y − 1 − 4
√

y − 1 + 4 + 4
√

y − 1 − 8 + 5 � y.

Therefore, y ∈ ran(f ) and {z ∈ R : z ≥ 1} ⊆ ran(f ), as desired.

Spotlight: The Definition of Function

It’s probably difficult to imagine that there could be any debate about
the definition of function. In fact, the development of the definition
of function is quite interesting. For example, Leonhard Euler first
defined a function as follows [73, p. 72] “A function of a variable
quantity is an analytical expression composed in any manner from
that variable quantity and numbers or constant quantities.” Euler
later revised his definition because of work on a problem known
as the vibrating string problem. Discussion ensued, and Dirichlet is
now often credited with providing us with roughly the definition we
use today.

Once this discussion appeared to be settled, people could then
concentrate on studying various kinds of functions; including, for ex-
ample, continuous, discontinuous, differentiable, or even nowhere
differentiable functions. Dirichlet also introduced the following
example (now called the Dirichlet function):

D(x) �
{

c if x ∈ Q
d if x ∈ R \ Q ,

where c and d are distinct real numbers. This was the first exam-
ple of many things, including the first example of a function that
is discontinuous everywhere (see [47]). In a very interesting article
written around 1940 (or, rather, the English translation of this arti-
cle), Luzin points out that not everyone agreed that Dirichlet had
completely answered the question of what a function is. According
to Luzin [53, p. 263], some mathematicians found the definition per-
fect, others found it too broad, and still others found it meaningless.
Even as late as 1928, Hermann Weyl [84, p. 22] stated that no one
can explain what a function is; then Weyl finishes the paragraph by
telling us what a function is: “A function is given if by some definite
rule to each real number a there is assigned a real number b (as e.g.
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by the formula b � 2a + 1). One then says that b is the value of the
function f for the value a of the argument.”1

For an overview of the definition of the concept of function,
we recommend Rüthing’s entertaining paper [73], where definitions
(from 1718 to 1939) attributed to various authors are presented in
their original language, with translation and without comment. You
will notice that the final definition, due to N. Bourbaki and given in
1939, agrees with our definition.

The history of the vibrating string problem is described in [48, pp.
503–518]. In [46, p. 724], Katz presents the definition of function used
by Johann Bernoulli, an earlier and later definition used by Euler,
and definitions attributed to Lacroix, Fourier, Heine, and Dedekind.
For a complete and readable overview on this topic, we recommend
the papers of Luzin (both [52] and [53]), Youschkevitch [87], and
Kleiner [47]. Kleiner’s paper also has an extensive bibliography.

Problems

Problem 13.1.
Complete the following: A relation f : A → B is not a function if . . .

Problem 13.2.
Suppose that f : X → Y . Recall that the definition of ran(f ) was
stated in the text. State carefully what it means when we say y ∈ Y

is not in the range of f .

Problem 13.3.
Which of the following are functions? Give reasons for your answers.

(a) Define f on R by f � {(x, y) : x2 + y2 � 4}.
(b) Define f : R → R by f (x) � 1/(x + 1).
(c) Define f : R2 → R by f (x, y) � x + y.
(d) The domain of f is the set of all closed intervals of real numbers

of the form [a, b], where a, b ∈ R, a ≤ b, and f is defined by
f ([a, b]) � a.

1The translation is ours.
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(e) Define f : N × N → R by f (n, m) � m.
(f) Define f : R → R by

f (x) �
{

0 if x ≥ 0
x if x ≤ 0

.

(g) Define f : Q → R by

f (x) �
⎧⎨
⎩

x + 1 if x ∈ 2Z
x − 1 if x ∈ 3Z
2 otherwise

.

(h) The domain of f is the set of all circles in the plane R2 and, if
c is such a circle, define f by f (c) � the circumference of c.

(i) (For students with a background in calculus.) The domain of f is
the set of all polynomials with real coefficients, and f is defined
by f (p) � p′. (Here p′ is the derivative of p.)

(j) (For students with a background in calculus.) The domain of f is
the set of all polynomials and f is defined by f (p) � ∫ 1

0 p(x) dx.
(Here

∫ 1
0 p(x) dx is the definite integral of p.)

Problem 13.4.
Let f : P(R) → Z be defined by

f (A) �
{

min(A ∩ N) if A ∩ N 
� ∅
−1 if A ∩ N � ∅ .

Prove that f above is a well-defined function.

Problem 13.5.
Let X be a nonempty set and let A be a subset of X. We define the
characteristic function of the set A by

χA(x) �
{

1 if x ∈ A

0 if x ∈ X \ A
.

(a) Since this is called the characteristic function, it probably is a
function, but check this carefully anyway.

(b) Determine the domain and range of this function. Make sure
you look at all possibilities for A and X.
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Problem 13.6.
Let X be a bounded nonempty subset of R. If we define g : P(X) \
{∅} → R by g(S) � sup S, is g a well-defined function? Why or why
not?

Problem 13.7.
Consider the (well-defined) function f : R \ {3/2} → R defined by
f (x) � (x − 5)/(2x − 3). Carefully prove that ran(f ) � R \ {1/2}.

Problem 13.8.
(a) Give an example of a function f from R × R to R+.
(b) Give an example of a function f from Z × Z to N such that

ran(f ) � N. (Prove that f is a function and ran(f ) � N.)
(c) Give an example of a function f from Z × Z → N such that

ran(f ) 
� N. (Prove that f is a function and ran(f ) 
� N.)

Problem 13.9.
Let a, b, c, and d be real numbers with a < b and c < d. Let [a, b] and
[c, d] be two closed intervals. Find a function f such that f : [a, b] →
[c, d] and ran(f ) � [c, d]. Prove everything.

Problem 13.10.
(a) Define f : Z → N by f (x) � |x|. Is f a function? If so, determine

ran(f ).
(b) Define f : R2 → R by f (x, y) � x. Is f a function? If so,

determine ran(f ).

Problem 13.11.
Suppose that f is a function from a set A to a set B. Thus, we know
that f is a subset of A×B. Is the relation {(y, x) : (x, y) ∈ f } necessarily
a function from B to A? Why or why not? (Say as much as is possible
to say with the given information.)

Problem 13.12.
Which of the following functions equal f : Z → Z defined by f (x) �
|x|? Prove your answers (make sure you show that the functions
below either equal f or do not equal f ).

(a) The function g : Z → R defined by g(x) � |x|.
(b) The function h : Z → Z defined by h(x) � √

x2.
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(c) The function k : R → R defined by k(x) � √
x2.

(d) The function l : N → Z defined by l(x) � √
x

2.

Problem 13.13.
Let X be a nonempty set. Find all relations on X that are both
equivalence relations and functions.

Problem 13.14.
We can now define an indexed family of sets more rigorously than
we did in Chapter 8. Let I and X be sets and f : I → P(X) be a
function. Then ran(f ) is called an indexed family of subsets of X.

As a specific example, let f : Z+ → P(R) be defined by f (n) �
{x ∈ R : π − 2n ≤ x ≤ π + 2/n}.

(a) Find
⋃

n∈Z+ f (n).
(b) Find

⋂
n∈Z+ f (n).
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C H A P T E R

...........................................

Functions,
One-to-One,
and Onto

Functions can map elements from the domain to the codomain in
many ways. A function may “hit” every element in the codomain,
or it may “miss” some. It may assign more than one x to a y or it
may assign exactly one x to each y. We will understand our function
better if we know which of these things it does. Precise formulations
of these ideas will be given in a moment. It’s a mouthful, though,
and really requires practice.

To say that a function f : A → B is one-to-one means that for
all a1, a2 ∈ A, if f (a1) � f (a2), then a1 � a2. A function f : A → B

is onto if ran(f ) � B. If a function has this property, then we say
that f maps A onto B. Some authors use the word injective rather
than one-to-one and surjective rather than onto. If a function is
both one-to-one and onto (or injective and surjective), then we say
the function is bijective.

Diagrams using small sets may help illustrate the ideas involved
in these definitions. We sketch two functions that are not one-to-one
in Figure 14.1 and two functions that are not onto in Figure 14.2.
Can you make a diagram for a function that is bijective?

Before moving on, let’s think about these definitions. The defi-
nition of one-to-one is an implication with quantifiers on elements
of the domain A. It moves “forward,” in the sense that we start with

163
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FIGURE 14.1 The function f does not map onto B, but the functiong
does. Neither function is one-to-one.

FIGURE 14.2 The function h is not one-to-one, but the function i is.
Neither function maps onto B.

elements in A and see where f maps them. The definition of onto,
on the other hand, requires that we show something about every
element in the set B. It will require us to move "backward," in the
sense that we will start with something in B and see what element
of A is mapped to it underf.

If you want to show that a function is onto, we said that you
must check that ran(f) = B. Technically that would mean showing
ran(f) B and B ran(f). But if we are showing that a function
f : A > B is onto, we already know that ran(f) B; that is, we
get that half for free. So if we know we have a function f : A > B
(maybe it was given to us; maybe we showed it), to show thatf maps
A onto B, we only have to check that B ran(f). And what does this
mean? The answer is given in the lemma below.

Lemma 14.1.
Let f : A Bbe a function. Thenf maps A onto B if and only if for all
b B there exists (at least one) a A such that f (a) = b.

Since this lemma is just a reformulation of the definition of onto,
we will often use it without explicitly referencing it.
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Let’s run through some of these ideas in slow motion. We’ll begin
with a simple example, and move on to a more challenging one.

Example 14.2.
Let f : R → R be defined by f (x) � 2x + 5. Then f is one-to-one.

Proving a function is one-to-one is often easier than proving it
is onto, because one-to-one doesn’t have that backwards quality. To
prove it, we assume that (for two arbitrary points x1 and x2 in the
domain) f (x1) � f (x2), and show that x1 � x2. So now we’ll just dive in
here. Don’t forget that the definition of one-to-one is an implication
and therefore we expect to use our assumption.

Proof.
Let x1, x2 ∈ R. If f (x1) � f (x2), then 2x1 + 5 � 2x2 + 5. Simplification
yields x1 � x2, as desired. Therefore f is one-to-one.

We turn to a more interesting example. Note that even though
the functions in these two examples are quite different, the proofs
that they are one-to-one are quite similar.

Example 14.3.
In Example 13.7, we considered f : R \ {1} → R by f (x) � (x +
1)/(x − 1). We started with an element y and solved for x. We found
an x that corresponded to y, but there may be others. Is the function
one-to-one (meaning there aren’t any others)?

We claim that f : R \ {1} → R defined by f (x) � (x + 1)/(x − 1)
is one-to-one.

Proof.
Let x1, x2 ∈ R \ {1}. If f (x1) � f (x2), then

x1 + 1
x1 − 1

� x2 + 1
x2 − 1

.

Multiplying through yields x1x2 + x2 − x1 − 1 � x2x1 + x1 − x2 − 1.
Cancelling, we find that x1 � x2, as desired. Therefore f is one-to-
one.
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Exercise 14.4.
What do you need to do in order to show that a function is not one-to-
one? Use what you just decided to show that the function f : R → R
defined by f (x) � x2 is not one-to-one. ©

Exercise 14.5.
In Exercise 13.8, which of the functions are one-to-one? If they are
not one-to-one, show that carefully as well. ©

It is now time to investigate what it really means when we say
that a function maps a set A onto a set B.

Example 14.6.
Prove that the function f : R → R defined in Example 14.2 by
f (x) � 2x + 5 is onto.

We first devise our plan.
“Devising a plan.” We have checked that f : R → R is well-defined,

so (in view of Lemma 14.1) we let y ∈ R. We must show that y � f (x)
for some x ∈ R. Thus, we must show that y � 2x + 5 for some x ∈ R.
It is now easy to see that x � (y − 5)/2 will work. Remember, when
we write this up, we will act as though the reader has not seen this
work.

Proof.
Let y ∈ R and let x � (y − 5)/2. Then x ∈ R and

f (x) � 2
(

y − 5
2

)
+ 5 � y.

Therefore, y ∈ ran(f ) and we have shown that R ⊆ ran(f ). Since
f : R → R is a well-defined function, f maps R onto R.

Functions that are defined in cases will play an important role in
the rest of this course. They are also illuminating examples, because
they show just how much one-to-one depends on “what goes into
f ” and just how much onto depends on “what comes out.” Showing
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that they are one-to-one and onto is a bit tricky. We'll go through one
example carefully first.

Example 14.7.
We will show that f : Z > N as defined below and graphed in
Figure 14.3 is abijective function:

2n ifn 0

2n 1 if n < 0 .

We should mention something before we begin. We, the authors
of this text, checked that the f in this example is really a function
from Z to N. But don't trust us; check it again. Remember to check
that f assigns a value in N to each element of Z, and that f assigns
at most one value in N to each integer. We now begin our example.

"Devising aplan." Now to prove thatf is one-to-one, we must show
that if m and n are integers, andf(m) = f(n), then m = n. But it's sort
of confusing here, since we have more than one choice for f(m) and
f(n). The problem seems to be that the function is defined in cases,
and it's not immediately clear which case to use. The choice depends
on whether m and n are negative or nonnegative. So we'll break this
into all possible cases. Let's see. Both could be nonnegative (case 1),
both negative (case 2), or one nonnegative, one negative (case 3). So
let's check them all.

Proof that f is one-to-one.
Let m, n Z and suppose thatf(m) = f(n).
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Case 1. Suppose that m ≥ 0 and n ≥ 0. Then f (m) � 2m and
f (n) � 2n. Thus 2m � 2n, and therefore m � n.

Case 2. Suppose that m < 0 and n < 0. Then f (m) � −2m − 1 and
f (n) � −2n − 1. Thus, −2m − 1 � −2n − 1, and therefore
m � n.

Case 3. Suppose that one of the two, say m, is nonnegative, and the
other is negative. Then f (m) � 2m and f (n) � −2n − 1.
Thus 2m � −2n − 1. But this means that an even number,
2m, is equal to an odd number, −2n−1, which is impossible.

Therefore, if f (m) � f (n), only case 1 and case 2 can occur. In
either of these cases, we have shown that m � n. Thus f is one-to-
one.

Now we will show that f maps Z onto N.
“Devising a plan.” Recall that to show f is onto, we must show

that ran(f ) � N. We (you, actually) already checked that f is a well-
defined function from Z to N, so ran(f ) ⊆ N. So let k ∈ N. We wish to
find m such that f (m) � k and m ∈ Z. Again, because there are cases,
this is a bit confusing. So let’s try to think about this before we really
begin. We’ll try to do this for a few specific points. Though this won’t
prove anything, it may tell us how to begin our proof. So moving
along in the spirit of showing something is onto, if f (m) � 4, what’s
m? (It’s 2.) If f (m) � 3, what’s m? (It’s −2.) Now maybe you see it.
If you don’t, keep trying until you do. After a while, you should see
that our choice of m depends on whether k is even or odd.

Proof that f maps Z onto N.
Let k ∈ N. If k is even, then k � 2m for some m ∈ Z with m ≥ 0.
Thus, m ∈ Z and f (m) � 2m � k. If k is odd, then k + 1 is even.
Hence m � (k + 1)/(−2) ∈ Z. Since k ≥ 1, we have m < 0. Thus,
f (m) � −2m − 1 � −2((k + 1)/(−2)) − 1 � k. We conclude that for
all k ∈ N, there exists m ∈ Z such that f (m) � k. Since f : Z → N is
a well-defined function, f maps Z onto N.

Note that though the functions in the last two examples are quite
different, the proofs that they are onto are quite similar.
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What about an example of a function f : A → B that does not map
A onto B? Our Lemma 14.1 is quite handy here: Let f : A → B be a
function. Then f is not onto if there exists b ∈ B such that f (a) 
� b

for every a ∈ A.
For example, consider the function f : R → R defined by f (x) �

x2. Then to show that f does not map onto R, we note that −1 ∈ R,
but there exists no a ∈ R such that f (a) � −1. You should be able to
show that f does map R onto the nonnegative real numbers.

Exercise 14.8.
In Exercise 13.8, which of the functions map onto their codomain?
If they do not map onto, show that carefully as well.

Solutions to Exercises

Solution to Exercise (14.4).
Carefully negating the definition, we see that to show a function
f : A → B is not one-to-one, we must show that there exist x1 and
x2 in A with f (x1) � f (x2) and x1 
� x2. For the particular function
f (x) � x2 given above, we note that the numbers 1 and −1 are both
real numbers with f (1) � f (−1), but 1 
� −1. Therefore f is not
one-to-one.

Solution to Exercise (14.5).
Only the function defined in (a) is one-to-one.

Solution to Exercise (14.8).
None of the functions maps onto their codomain. The range of each
function was presented in the solution to Exercise 13.8.
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Problems

Problem 14.1.
For each of the following, you are asked to give an example of a
function. (You should always state the domain and codomain of your
function.)

(a) Give an example of a function that is both one-to-one and onto.
(b) Give an example of a function that is one-to-one, but not onto.
(c) Give an example of a function that is not one-to-one, but is onto.
(d) Give an example of a function that is neither one-to-one nor

onto.

Problem 14.2.
(a) Let f : R → R be defined by f (x) � x2. Show that f is not onto.
(b) Show that f , as defined above, maps R onto {x ∈ R : x ≥ 0}.
(c) Consider the function g : Z → N defined by g(x) � x2. Is g

onto?
(d) Both g and f take elements of the domain and square them.

Why did we use the letter g in the previous part of this problem,
rather than the letter f ?

Problem 14.3.
Is the absolute value function f : R → R defined by f (x) � |x|
one-to-one? Why or why not?

Problem 14.4.
(a) Is there a one-to-one function from the set {1, 2, 3} to the set

{1, 3}? Why or why not?
(b) Is there a function mapping {1, 2, 3} onto the set {1, 3}? Why or

why not?
(c) Is there a one-to-one function mapping the open interval (0, 2)

to the open interval (0, 1)?
(d) Is there a one-to-one function mapping the set {x ∈ R : x > 0}

to the open interval (0, 1)?
(e) Is there a function mapping the set {x ∈ R : x > 0} onto the

open interval (0, 1)?
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Problem 14.5.
Recall that the definition of one-to-one was stated in the text.

(a) State the contrapositive of the definition.
(b) By negating the contrapositive, complete the following defini-

tion. A function f : X → Y is not one-to-one if . . . .

Problem 14.6.
Criticize the following definition of onto. “A function f : X → Y

is onto if there exists an x ∈ X such that for each y ∈ Y we have
f (x) � y.”

Problem 14.7.
Define f : R → R by f (x) � 5 + (x − 3)2.

(a) Prove that f is not injective.
(b) Find ran(f ) and prove that your conjecture is correct.

Problem 14.8.
For each of the functions below, determine whether or not the func-
tion is one-to-one and whether or not the function is onto. If the
function is not one-to-one, give an explicit example to show what
goes wrong. If it is not onto, determine the range.

(a) Define f : R → R by f (x) � 1/(x2 + 1).
(b) Define f : R → R by f (x) � sin(x). (Assume familiar facts

about the sine function.)
(c) Define f : Z × Z → Z by f (n, m) � nm.

(d) Define f : R2 × R2 → R by f ((x, y), (u, v)) � xu + yv. (Do you
recognize this function?)

(e) Define f : R2×R2 → R by f ((x, y), (u, v))�√
(x − u)2 + (y − v)2.

(Do you recognize this function?)
(f) Let A and B be nonempty sets and let b ∈ B. Define f : A →

A × B by f (a) � (a, b).
(g) Let X be a nonempty set, and P(X) the power set of X. Define

f : P(X) → P(X) by f (A) � X \ A.
(h) Let B be a fixed proper subset of a nonempty set X. Define a

function f : P(X) → P(X) by f (A) � A ∩ B.

(i) Let f : R → R be defined by

f (x) �
{

2 − x if x < 1
1/x otherwise

.
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Problem 14.9.
Recall the definition of the characteristic function χA from Problem
13.5.

(a) Under what conditions on the set A does χA map X onto the
set {0, 1}?

(b) Find conditions on the set A and the set X that would imply
that this function is injective. Justify your answer.

Problem 14.10.
For each of the following, determine whether or not f is a function
from the set A to the set B. If it is, prove that f is one-to-one, or give
an example to show that f is not one-to-one. Then prove that f is
onto, or give an example of an element in the codomain that is not
in the range to show that f is not onto.

(a) Define f : Z × Z → Z × Z by f (x, y) � (y, x).
(b) Define f : Z × Z → Z by f (x, y) � x2 + y2.
(c) Let y ∈ R. Define f : R → R by f (x) � y · x. (Does your answer

depend on y?)
(d) Define f : P(Z) → Z by f (S) � max S.

Problem� 14.11.
Let f : R → (−1, 1) be defined by

f (x) � x

1 + |x| .

Prove that f is a bijective function, mapping R onto the open interval
(−1, 1).

Problem 14.12.
Let a, b, c, and d be real numbers with a < b and c < d. Define a
bijection from the closed interval [a, b] onto the closed interval [c, d]
and prove that your function is a bijection.

Problem 14.13.
Let F([0, 1]) denote the set of all real-valued functions defined on
the closed interval [0, 1]. Define a new function φ : F([0, 1]) → R by
φ(f ) � f (0). Is φ a function from F([0, 1]) to R? Is it one-to-one? Is it
onto? Remember to prove all claims, and to provide examples where
appropriate.
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Problem 14.14.
Find a function f : R → R+ that is one-to-one.

Problem 14.15.
Let f be a function, f : R → R. Define a new function f · f by

(f · f )(x) � f (x) · f (x).

Prove that f ·f is a function. Then do the remaining parts of the prob-
lem. (You may wish to work Problem 14.14, if you haven’t already
done so.)

(a) Does there exist a function f for which f · f is one-to-one? If
not, why not? If there is, what is an example?

(b) Does there exist a function f for which f · f maps onto R? If
not, what is ran(f · f )? Your answer will be in terms of ran(f ).
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Inverses

Given functions f : A → B and g : C → D with ran(f ) ⊆ C, we
can define a third function called the composite function from A

to D. (We will usually call this the composition, rather than the
composite function.) This composition is the function g ◦ f : A → D

defined by (g ◦ f )(x) � g(f (x)). So, for example, if f : R → R and
g : R → R are defined by f (x) � x2 and g(x) � sin(x), then (g◦f )(x) �
g(f (x)) � g(x2) � sin(x2). Note that the order really matters here.
Using f and g as above, for example, (f ◦g)(x) � f (g(x)) � f (sin(x)) �
(sin(x))2. You can check pretty easily that these two functions are
different. (Check this pretty easily.) So composition of functions is
not commutative.

Consider the two functions in Figure 15.1. Here f : A → B,
where A � {a, b, c} and B � {1, 2, 3, 4}, while g : C → D, where C �
{2, 3, 4, 5, 6} and D � {α, β, γ}. Then ran(f ) ⊂ C, so the composition
g ◦ f is defined. To determine the action of g ◦ f algebraically, use the
definition of each. For example, (g ◦ f )(a) � g(f (a)) � g(2) � β. To
determine the action visually, follow the arrows, remembering that
f goes first.

Take this opportunity to check that the composition of three func-
tions satisfies the associative property. In other words, if we have
three functions f, g, and h so that the composition makes sense (what

175
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F I G U R E 15 .1 g•f:A D

would that mean?), then

We'll use this result in this chapter.
Sometimes it is useful to "undo" the action off. Iff maps 3 to

5, we might wish to "undo" that by finding a function that takes 5
back to 3. This is most useful when we can undo the action off on
the whole range, not at just one point, because then every element
ends up back where it started. For example, iff cubes all the values
in its domain, we can "reverse" that action by taking the cube root.
Mathematically what this means is that if f : R > R is defined by
f(x) = x3, theng : R > R defined by g(x) = x1/3 satisfies two things:
(g •f)(x) = x for all x dom(f), and (f •g)(y) = y for all y dom(g).

But what happens if f : R > R is defined by f(x) = x2? If we
want g to "undo" this action, then we want g to satisfy (g •f)(x) = x
for all x R. But if x = 2, we need (g • f)(2) = g(4) = 2 and, if
x = —2, we need (g •f)( 2) = g(4) = —2 (see Figure 15.2). What's
the problem here? Well, g is not allowed to assign two different values
to the number 4. So we can't do this for all functions. When can we
do it? (Think first, read on later.)

Suppose that a function is bijective. Then, rather than looking in
the domain and asking what x gets mapped to, we can look in the
range at y and ask where it came from. Since the function is onto,
y came from some x. Since the function is one-to-one, y came from
exactly one x. So we can define an inverse function as follows.
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FIGURE 15.2 f (x) � x2

Let f : A → B be a bijective function. The inverse of f is the
function f −1 : B → A defined by

f −1(y) � x if and only if f (x) � y.

Whenever we define a function, we have to ask ourself: “Is it
well-defined?” Is it? The domain is defined to be B. By definition,
the value of an element of B under f −1 is some x ∈ A. Hence A

qualifies as a codomain of f −1. Now we check condition (i) of the
definition of a function. Let b ∈ B. Since f is onto, there exists an
element a ∈ A such that f (a) � b. Hence f −1(b) � a is defined
and property (i) holds. For property (ii) we assume that there is an
element b ∈ B, and elements a and c in A such that f −1(b) � a and
f −1(b) � c. By the definition of f −1 we have f (a) � b and f (c) � b.
Hence f (a) � f (c) and since f is one-to-one, a � c. This shows that
property (ii) holds and we conclude that f −1 is well-defined. Note
that this function is only defined in the case when f is bijective.

The discussion in the last paragraph shows that f −1 is indeed a
function. The remainder of this chapter will be spent understanding
the inverse function.

Example 15.1.
We define f : R → R by f (x) � x3 − 5. Graph the function f . Then
prove that f is one-to-one and onto. Once you have done that, decide
what f −1 is.

“Devising a plan.” Assume for the moment that we know that f

is bijective, so that we know that f −1 exists. To find f −1, we use
what we know: f −1(y) � x if and only if f (x) � y. Thus we must
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FIGURE 15.3 f (x) � x3 − 5

solve x3 − 5 � y for x. Once we solve this equation, we find that
x � (y + 5)1/3. Now we are ready to solve this problem.

Proof.
We first prove that f is one-to-one. So let x1 and x2 be real numbers.
If f (x1) � f (x2), then x3

1 − 5 � x3
2 − 5. Therefore x1 � x2 and we may

conclude that f is one-to-one.
Now we show that f is onto. Let y ∈ R. Let x � (y + 5)1/3. Then

x ∈ R, and f (x) � (
(y + 5)1/3

)3 − 5 � y. We conclude that y ∈ ran(f ).
Since f : R → R is a well-defined function, ran(f ) � R and f maps
onto R.

We claim that f −1 : R → R is defined by f −1(y) � (y + 5)1/3. To
see this, let y ∈ R. We note that f −1(y) � x if and only if f (x) � y,
which happens if and only if x3 −5 � y. Thus, f −1(y) � x if and only
if x � (y + 5)1/3 and therefore f −1(y) � (y + 5)1/3.

This example brings up an important point. Students often con-
fuse the notation f −1 with 1/f . In the example above 1/f would be
the function defined for x 
� 51/3 by 1/(x3 − 5), while we have seen
that f −1 is defined on all of R by f −1(x) � (x + 5)1/3. These two
functions are really quite different! In fact, f −1 and 1/f are rarely
the same. (See Project 27.6 for more information.)
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FIGURE 15.4 f (x) � (x + 1)/(x − 1)

Example 15.2.
Let f : R \ {1} → R \ {1} be defined by f (x) � (x + 1)/(x − 1).
(You should graph the function f , and compare it to our graph in
Figure 15.4.) We’ll find f −1.

Before you read our solution, use Example 13.7 and Example 14.3
to check that this function is bijective and that the domain and range
are also appropriate for f −1.

To find an expression for f −1, let y ∈ R \ {1}. Then there exists
(exactly one) x ∈ R \ {1} such that f (x) � y. Further, f (x) � y if
and only if (x + 1)/(x − 1) � y, and this happens if and only if
x � (y + 1)/(y − 1).

Therefore f −1(y) � x � (y + 1)/(y − 1). ©

In our examples and exercises thus far, you probably noticed us
repeating the same steps: We first check that f : A → B is bijective. If
it is, then we know f −1 exists. To find f −1, we choose y ∈ B and solve
for the unique x such that f (x) � y. Then, by definition, f −1(y) � x,
and we are done.

Now you should be ready to do a more challenging example as
an exercise.



15. Inverses180

Exercise 15.3.
Let f : Z → N be defined by

f (n) �
{

2n if n ≥ 0
−2n − 1 if n < 0

.

We showed in Example 14.7 that this function is bijective. Find a
formula for f −1. (You might find it helpful to re-examine the graph
of f in Figure 14.3.) ©

If A is a set, one very important function mapping A to itself is
the identity function. So, the identity function iA is the function
iA : A → A defined by iA(x) � x for all x ∈ A. You should check that
iA is well-defined, is both one-to-one and onto, and is its very own
inverse. In addition, this function is easy to use. For example, if A

and B are sets and f is a function such that f : A → B, then f ◦ iA � f ,
while iB ◦ f � f .

Theorem 15.4.
Let f : A → B be a bijective function. Then

(i) f ◦ f −1 � iB; that is, (f ◦ f −1)(y) � y for all y ∈ B.
(ii) f −1 ◦ f � iA; that is, (f −1 ◦ f )(x) � x for all x ∈ A.
(iii) f −1 is a bijective function.
(iv) If g : B → A is a function satisfying either f ◦ g � iB or g ◦ f � iA,

then g � f −1.

The last part of this theorem says that if we know that our func-
tion has an inverse, then f −1 is the one and only function satisfying
the identities in (iv). This can come in quite handy. Consider the
following.

Sometimes, as in Exercise 15.3, it is difficult to compute f −1. In
these cases it is nice to check your answer. Theorem 15.4 tells you
one way to do so: Suppose you know that f is bijective, and you are
claiming that g is the inverse. If you find that g ◦ f � iA or f ◦ g � iB,
you know you have the right answer!

We also remark here that (i) and (ii) above really follow from the
definition of inverse function: f (x) � y if and only if f −1(y) � x.
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Proof.
(i) If y ∈ B, let z � f −1(y). By definition f −1(y) � z if and only if
f (z) � y. Therefore

(f ◦ f −1)(y) � f (f −1(y)) � f (z) � y.

(ii) If x ∈ A, let z � f (x). By definition f (x) � z if and only if
f −1(z) � x. Therefore,

(f −1 ◦ f )(x) � f −1(f (x)) � f −1(z) � x.

(iii) We leave this for you to do in Problem 15.8.
(iv) We note first that dom(g) � dom(f −1) � B.
First suppose that g◦ f � iA. Then, using the associative property

of composition and (i) above, we have

f −1 � iA ◦ f −1 � (g ◦ f ) ◦ f −1 � g ◦ (f ◦ f −1) � g ◦ iB � g.

In exactly the same way (except we use (ii) in place of (i)), we
can show that if f ◦ g � iB, then g � f −1.

Before applying Theorem 15.4 make sure that you check that f

really is bijective. It is one of the hypotheses, after all!

Exercise 15.5.
For each of the functions and their inverses in Example 15.1, Ex-
ample 15.2, and Exercise 15.3 check that f −1 ◦ f � idom(f ) and
f ◦ f −1 � iran(f ). ©

The theorem above includes the basic facts about inverses. But
there are more theorems that will be useful as we move along.

Theorem 15.6.
Let f : A → B and g : B → C be bijective functions. Then g◦f is bijective
and (g ◦ f )−1 � f −1 ◦ g−1.

Before we begin, let’s make sure we understand the function and
think about what we need to prove. We note that g ◦ f : A → C.
To show that the composition is bijective, we must show that it is
one-to-one and onto. To find the inverse, if we have a guess for what
it should be, we can use Theorem 15.4 (iv), which (in this case) says
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that if g ◦ f is bijective and h is a function such that (h◦ (g ◦ f ))(x) � x

for all x in A or ((g ◦ f ) ◦ h)(y) � y for all y in B, then h must be
(g ◦ f )−1. So all we need to do is think of a good candidate for h (the
object we want to show is the inverse) and show it works. But the
statement of the theorem gives us a candidate for h. Now that we
have the plan, we can try to carry it out.

Proof.
First we’ll show that the composition is one-to-one. So let x1, x2 ∈ A.
If (g ◦ f )(x1) � (g ◦ f )(x2), then g(f (x1)) � g(f (x2)). Now since g

is one-to-one, f (x1) � f (x2). But f is also one-to-one, and therefore
x1 � x2, as desired.

To see that the composition is onto, let z ∈ C. Since g is onto,
there exists a y ∈ B such that g(y) � z. Since y ∈ B and f is onto,
there exists x ∈ A such that f (x) � y. Therefore, x ∈ A and

(g ◦ f )(x) � g(f (x)) � g(y) � z.

Since g ◦ f : A → C, we conclude that g ◦ f is onto.
Now we will show that f −1 ◦g−1 is the inverse of g ◦ f by applying

(iv) of Theorem 15.4 to g ◦ f . We just showed that g ◦ f is bijective.
Now we check the hypotheses of part (iv) of the theorem. First, note
that the domain is correct; that is, f −1 ◦ g−1 : C → A.

We now show that ((f −1 ◦g−1)◦ (g ◦ f ))(z) � z for all z ∈ A. By (ii)
of Theorem 15.4 applied twice (as well as the associative property
of composition), for every z ∈ A we have

((f −1 ◦ g−1) ◦ (g ◦ f ))(z) � f −1(g−1(g(f (z)))) � f −1(f (z)) � z.

Using (iv) of Theorem 15.4 we may conclude that f −1 ◦ g−1 �
(g ◦ f )−1.

Remember that Pólya suggests that after solving a problem, we
should look back and see whether we can use the result or the
method to solve a different problem. Here’s a good chance to try
that out: Use the proof above to establish the following.

Theorem 15.7.
Let f : A → B and g : B → C be functions.

(i) If f and g are one-to-one, then g ◦ f is one-to-one.
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(ii) If f and g are onto, then g ◦ f is onto.

The converses of the two statements in the theorem above are
not true. However, two corresponding weaker statements can be
made. In addition, part (iii) of Theorem 15.8 provides a useful
characterization of the inverse.

Theorem 15.8.
Let f : A → B and g : B → C be functions.

(i) If g ◦ f is onto, then g is onto.
(ii) If g ◦ f is one-to-one, then f is one-to-one.
(iii) Suppose now that f : A → B and g : B → A. If f ◦ g � iB and

g ◦ f � iA, then g � f −1.

How does (iii) in Theorem 15.8 differ from part (iv) in Theo-
rem 15.4? Well, both are implications, but the antecedent in one is
a disjunction and the antecedent in the other is a conjunction. In
addition, in Theorem 15.8, we do not assume that either of the func-
tions are bijective. You will need to show that the conditions in (iii)
imply that f and g are, in fact, bijective. If you already know that one
of your functions f and g are bijective, Theorem 15.4 will usually be
easier to use than Theorem 15.8.

Exercise 15.9.
Prove Theorem 15.8 ©

Solutions to Exercises

Solution to Exercise (15.3).
This problem only asks for a formula for f −1, which we will give
here. You need to think about how we obtained this formula. You
should check that f −1 : N → Z defined by

f −1(m) �
{

m/2 if m is even
−(m + 1)/2 if m is odd

really is the inverse of f .
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Solution to Exercise (15.9).
(i) If c ∈ C, then the fact that g ◦ f is onto implies that there exists
a ∈ A such that (g ◦ f )(a) � c. Therefore g(f (a)) � c. Since f (a) ∈ B,
we have shown that there is an element b � f (a) in B such that
g(b) � c. Since g : B → C, we conclude that g is onto.

(ii) If a1, a2 ∈ A, and f (a1) � f (a2), then g(f (a1)) � g(f (a2)).
Therefore, (g ◦ f )(a1) � (g ◦ f )(a2). Since g ◦ f is one-to-one, a1 � a2

and f is one-to-one, as desired.
(iii) Since g ◦ f is one-to-one, (ii) implies that f is one-to-one.

Since f ◦ g is onto, (i) implies that f is onto. Thus f is bijective.
Consequently, (iii) follows from Theorem 15.4 (iv). �

Problems

In all the problems below, the sets A and B are nonempty.

Problem 15.1.
Find the compositions f ◦ g and g ◦ f assuming the domain of each
is the largest set of real numbers for which the functions f , g, f ◦ g,
and g ◦ f make sense. In your solution to each of the following, give
the compositions and the corresponding domain and range:

(a) f (x) � 1/(1 + x), g(x) � x2;
(b) f (x) � x2, g(x) � √

x (simplify this one);
(c) f (x) � 1/x, g(x) � x2 + 1;
(d) f (x) � |x|, g(x) � f (x).

Problem 15.2.
Let f : R → R be defined by f (x) � x3 + 4. Use Theorem 15.8 to
show that if g : R → R is defined by g(x) � (x − 4)1/3, then g � f −1.

Problem 15.3.
Let f : R2 → R be defined by f (x, y) � x + y. Prove that there is no
function g : R → R2 such that g ◦ f � iR2 .
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Problem 15.4.
Let f : R → R2 be defined by f (x) � (x, 0). Show that there is no
function g : R2 → R such that f ◦ g � iR2 .

Problem 15.5.
For each of the following, find the range of f . If possible, find f −1 :
ran(f ) → dom(f ). If it is not possible, explain why it is not possible
for:

(a) the function f defined on the nonzero real numbers by f (x) �
1/x;

(b) the function f : R2 → R defined by f (x, y) � x + y;
(c) the function f : R2 → R2 defined by f (x, y) � (y, x);
(d) the function f : R → R defined by f (x) � sin x;
(e) the function f defined by f (x) � tan x, where −π/2 < x < π/2.

Problem 15.6.
The functions f : R \ {−2} → R \ {1} and g : R \ {1} → R \ {−2}
defined by

f (x) � x − 3
x + 2

and g(x) � 3 + 2x

1 − x

are well-defined functions (you need not check this).
(a) Calculate f ◦ g and g ◦ f .
(b) What can you conclude about f and g from your result in part

(a)? If you use a theorem, give a reference.

Problem 15.7.
(a) If possible, find examples of functions f : A → B and g : B → A

such that f ◦ g � iB when:
(i) A � {1, 2, 3}, B � {4, 5};

(ii) A � {1, 2}, B � {4, 5};
(iii) A � {1, 2, 3}, B � {4, 5, 6, 7}.

Draw diagrams of A and B in each case above.
(b) Give an example of sets A and B, and functions f : A → B and

g : B → A such that f ◦g � iB, but g ◦ f 
� iA. (Thus the existence
of a function g such that f ◦ g � iB is not enough to conclude
that f has an inverse!) Why doesn’t this contradict Theorem
15.4, part (iv)?
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(c) Give an example of sets A and B, and functions f : A → B and
g : B → A such that g ◦ f � iA, but f ◦g 
� iB. (Thus the existence
of a function g such that g ◦ f � iA is not enough to conclude
that f has an inverse!) Why doesn’t this contradict Theorem
15.4, part (iv)?

(d) Let A and B be two sets, and let f : A → B be a function. Assume
further that there exists a function g : B → A such that f ◦g � iB.
Must f be one-to-one? onto?

(e) Looking over your work above, what should be your strategy
in solving a question like (d) above? Whatever you decide, use
it to solve the following: Let f and g be as above and suppose
g ◦ f � iA. Must f be one-to-one? onto?

Problem 15.8.
Let f be a bijective function. Prove part (iii) of Theorem 15.4 and
show that (f −1)−1 � f.

Problem 15.9.
(a) Give an example of a function f : A → A such that f 
� iA, but

f ◦ f � iA. Must such a function f be one-to-one? onto?
(b) Give an example of a nonzero function f : R → R such that

(f ◦ f )(x) � 0 for all x ∈ R. Can such a function be one-to-one?
onto?

Problem 15.10.
Let f : A → A be a function. Suppose that the composition f ◦ f is a
bijection. Must such a function f be a bijection? (Prove this or give
a counterexample.)

Problem 15.11.
Suppose that f : A → B and g1 and g2 are functions from B to A

such that f ◦ g1 � f ◦ g2. Show that if f is bijective, then g1 � g2. If
g1 ◦ f � g2 ◦ f and f is bijective, must g1 � g2?

Problem 15.12.
Let f : A → A be a function. Define a relation on A by a ∼ b if and
only if f (a) � f (b). Is this an equivalence relation? If f is one-to-one,
what is the equivalence class of a point a ∈ A?
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Problem 15.13.
Let f : A → A be a function. Define a relation on A by a ∼ b if
and only if f (a) � b. Is this an equivalence relation for an arbitrary
function f ? If not, is there a function for which it is an equivalence
relation?

Problem� 15.14.
Let A, B, C, and D be nonempty sets. Let f : A → B and g : C → D

be functions.
(a) Prove that if f and g are one-to-one, then H : A × C → B × D

defined by

H(a, c) � (f (a), g(c))

is a one-to-one function. (Check that it is one-to-one and a
function.)

(b) Prove that if f and g are onto, then H is also onto.

Problem� 15.15.
Let A, B, C, and D be nonempty sets. Let f : A → B and g : C → D

be functions. Consider H defined on A ∪ C by

H(x) �
{

f (x) if x ∈ A

g(x) if x ∈ C
.

Show that there exist sets A, B, C, and D for which H is not a
function, but there also exist such sets for which H is a function.
What conditions can we place on A and C that assure us that H is a
function?

Problem 15.16.
Let a ∈ R with |a| < 1. Define f on the set {x ∈ R : |x| < 1} by

f (x) � a − x

1 − ax
.

(a) Show that the range of f is contained in the set {x ∈ R : |x| < 1}.
(b) Does f map onto the set {x ∈ R : |x| < 1}?
(c) Prove that f is one-to-one.
(d) Compute f ◦ f .
(e) Find f −1.
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Problem 15.17.
Let R[x] denote the set of all polynomials with real coefficients. (See
Problem 10.8.)

(a) Define a function f on R[x] by f (p) � p(0). What is the range
of f ? Is f one-to-one?

(b) Define a function g on the nonzero polynomials in R[x] by
g(p) � degree of p. Is g a function? Is it one-to-one? What is the
range of g?

(c) Recall that a value z is a root of a polynomial p if p(z) � 0.
Define F on R[x] by F(p) � a root of p. Is F a function? Why
or why not?

(d) Define h on R[x] by (h(p))(x) � xp(x). Is h a function? If so, is
it one-to-one? What is the range of h?

(e) Define k : R[x] → R[x] by k(p) � p ◦ p. Show that k is neither
one-to-one nor onto.

Problem 15.18.
For each part give examples of functions f : A → B and g : B → C

satisfying the stated conditions.
(a) The composition g ◦ f is onto, but f is not onto.
(b) The composition g ◦ f is one-to-one, but g is not one-to-one.

Problem 15.19.
Let f : R → R be a function such that f is onto and f ◦ f ◦ f � f .
Prove that f is bijective.

Problem 15.20.
In this problem, we look at a function called the restriction function,
which we now define.

If f : A → B is a function, and A1 ⊂ A, we define another
function F : A1 → B by F(a) � f (a) for all a ∈ A1. This function F

is called the restriction of f to A1 and is usually denoted f |A1 . We
now turn to the problem:

(a) Prove that if f is one-to-one, then f |A1 is one-to-one.
(b) Prove that if f |A1 is onto, then f is onto.
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Problem 15.21.
Suppose that A, B, C, and D are nonempty sets with B ⊆ C and D ⊆ A.
Suppose that both functions f : A → B and g : C → D are onto and
f ◦ g ◦ f � f . (Note that the compositions g ◦ f and f ◦ g are both
defined.) Refer to Problem 15.20 for the definitions of (f ◦ g) |B and
(g ◦ f ) |D .

(a) Show that (f ◦ g) |B is one-to-one.
(b) Give an example to show that (g ◦ f ) |D is not necessarily one-

to-one.
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C H A P T E R

...........................................

Images and
Inverse Images

In the last chapter, we looked at where points in the domain are
mapped to under a function f and where points in the range come
from under f . But sometimes we need to look at where f maps
a whole set, or where an entire set comes from. So here are two
definitions that are waiting to be understood.

Let f : X → Y be a function and let A ⊆ X. Then the image of A

under f is the set

f (A) � {f (a) : a ∈ A}.
Note that f (A) is the notation we use for this set, and that this set

is a subset of Y . In “street talk” the image of A under f is where the
elements of A were taken by f .

Exercise 16.1.
It’s good to start small. So let’s begin with A � {1, 2, 4} and B �
{−1, 1, −2, 3}. Find each of the requested images under the function
f : R → R defined by f (x) � x2.

(a) What is f (A)?
(b) What is f (B)?
(c) What is f (A ∩ B)?
(d) What is f (A) ∩ f (B)?

191
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We’ll solve (a) for you here, so you can see what we are asking
you to do. We claim that f (A) � {1, 4, 16}. To see this, we use the
definition:

f (A) � {f (a) : a ∈ A} � {f (1), f (2), f (4)} � {1, 4, 16}. ©

Small sets are easier because you can often list the values, just
as we did above. This won’t be possible, in general, as you will see
below.

We are also interested in where sets in the codomain come from.
This is called the inverse image of a set (because we are going back-
wards) and there is one unfortunate thing about it: the notation
involves the symbol f −1, which we have used only when f is bi-
jective. Well, here f may not be bijective, and therefore, f −1 may not
be a function. Though this may be confusing at first, this is generally
agreed upon notation and you (the reader) must check carefully on
the context. Having said all that, we now define the inverse image.

Let f : X → Y be a function and let B ⊆ Y . Then the inverse
image of B under f is the set f −1(B) defined by

f −1(B) � {x ∈ X : f (x) ∈ B}.
In other words, the inverse image of B is the subset of X consisting
of all the elements in the domain that get mapped into B. Note that
when f is not bijective, the notation f −1(y) makes no sense (why?).
If you want to talk about the inverse image of a set with just one
element, say so by writing f −1({y}). (You may find texts in which the
authors use the notation f −1(y), but we find that it often introduces
unnecessary confusion.)

Exercise 16.2.
Let f : R → R be defined by f (x) � x2. Find:

(a) f −1({4});
(b) f −1({1, 2, 4});
(c) f −1(f (A)), where A � {1, 2}.

Again, we will do (a) here, so you can see what we are asking
you to do. By definition,

f −1({4}) � {x ∈ R : f (x) ∈ {4}} � {x ∈ R : f (x) � 4}.
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Replacing f by what it equals, we have

f −1({4}) � {x ∈ R : x2 � 4} � {−2, 2}. ©

Since the sets above are small, we can list all the elements. We
ask that you now check your understanding with more challenging
sets, but still using the same function as in the previous exercises.

By carefully writing out the definitions of the sets in Exer-
cise 16.3, it is possible to guess what the answers are. We provide
rigorous proofs for several parts at the end of this chapter. If you
wish to try them yourself first (which you are certainly encouraged
to do), make sure that you work from the inside out on parts (e)–(h).
So in part (e), for example, first find f ([0, 1]) (which works just like
(a)) and call that set A. Then find f −1(A) (which works just like (d)).

Exercise 16.3.
Let f : R → R be defined by f (x) � x2. Find:

(a) f ([−1, 1]);
(b) f (Z);
(c) f −1(N);
(d) f −1([−1, 0]);
(e) f −1(f ([0, 1]));
(f) f (f −1([−1, 0]));
(g) f −1([0, 1] ∪ [2, 4]);
(h) f ([0, 1] ∩ [−1, 0]);
(i) f ([0, 1]) ∩ f ([−1, 0]). ©

Your experience with concrete sets will help you work with
abstract sets.

Exercise 16.4.
Looking back at the examples in the exercises above, decide which
of the following you think are true for all functions f : X → Y , all
subsets A and B of X, and all subsets C and D of Y :

(a) f (f −1(C)) � C;
(b) f −1(f (A)) � A;
(c) f (A ∩ B) � f (A) ∩ f (B);
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(d) f (A) � f (B) implies that A � B;
(e) f −1(C) � f −1(D) implies that C � D. ©

All of the statements above may look reasonable, yet they are all
false. Nevertheless, there are many similar statements that are true.
You can prove them all with the tools you have developed at this
point. To emphasize the accepted writing techniques, we provide an
example below.

Theorem 16.5.
Let f : X → Y and let A1 and A2 be subsets of X. Then f (A1 ∩ A2) ⊆
f (A1) ∩ f (A2).

“Understanding the problem.” Remember that you won’t get any-
where if you don’t know the definitions. So we need to figure out
what the sets in the statement are. We begin by making sure we know
what f (A1 ∩A2), f (A1), and f (A2) are. First, f (A) � {f (x) : x ∈ A}. So
that should make it pretty clear. Things in f (A1 ∩ A2) look like f (x)
where x ∈ A1 ∩ A2. Now it should occur to you that you must write
out what it means to be in f (A1) ∩ f (A2). Once you have done that,
you have done the preliminaries.

“Devising a plan.” When we worked with sets with a special form
(like the Cartesian product of two sets) we emphasized that if we
never used the special form of the elements, we would most likely
never prove the desired result. The same is true here—if we never
use the fact that the elements have the form f (x) where x ∈ A1 ∩ A2

we shouldn’t expect to be able to prove the result. The next step is
to note that what we want to do is to show that one set is contained
in another set. We know how to do that, too. So our plan is to start
with an element in the set on the left side, use the special form of
this set and show the element is in the set on the right. As we “carry
out our plan,” note how quickly we move to the special form of the
element.

Proof.
If y ∈ f (A1∩A2), then y � f (x) for some x ∈ A1∩A2. Since x ∈ A1∩A2,
we have x ∈ A1 and x ∈ A2. Since x ∈ A1 and y � f (x), we see that
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y ∈ f (A1). Similarly, since x ∈ A2 and y � f (x), we see that y ∈ f (A2).
Therefore y ∈ f (A1) ∩ f (A2). Thus f (A1 ∩ A2) ⊆ f (A1) ∩ f (A2).

Exercise 16.6.
We already have an example to show that, with the notation from
the theorem above, we need not have f (A1 ∩ A2) � f (A1) ∩ f (A2).
But what is wrong with the following proof of this “non-fact”?

Not a proof.
It follows from Theorem 16.5 that f (A1∩A2) ⊆ f (A1)∩f (A2). To show
the reverse set inclusion, we let y ∈ f (A1) ∩ f (A2). By definition of
intersection, y ∈ f (A1) and y ∈ f (A2). Therefore, y � f (x) for some x

in A1 and y � f (x) for some x ∈ A2. Since x ∈ A1 and x ∈ A2, we see
that x ∈ A1 ∩A2. Thus y � f (x) where x ∈ A1 ∩A2, so y ∈ f (A1 ∩A2).
This proves that f (A1) ∩ f (A2) ⊆ f (A1 ∩ A2), and the non-fact is
established! �?

We know there’s something wrong above since the assertion isn’t
always true. But it isn’t always false either. Find the error and see if
you can think of another hypothesis we might place on f that would
help us to determine the functions for which the assertion is true. ©

The next theorem is one you will use repeatedly. You really can
do all the proofs yourself.

Theorem 16.7.
Let f : X → Y . Let A, A1, and A2 be subsets of X and B, B1, and B2

subsets of Y . Then
1. if A1 ⊆ A2, then f (A1) ⊆ f (A2);
2. f (A1 ∪ A2) � f (A1) ∪ f (A2);
3. f (A1 ∩ A2) ⊆ f (A1) ∩ f (A2);
4. in general, f (X \ A) 
� Y \ f (A);
5. if B1 ⊆ B2, then f −1(B1) ⊆ f −1(B2);
6. f −1(B1 ∩ B2) � f −1(B1) ∩ f −1(B2);
7. f −1(B1 ∪ B2) � f −1(B1) ∪ f −1(B2);
8. f −1(Y \ B) � X \ f −1(B);
9. A ⊆ f −1(f (A));

10. f (f −1(B)) ⊆ B.
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We have already presented a proof of (3) in Theorem 16.5, and
we will provide a proof of (9) in Example 16.8. The other parts of
the theorem are left to the reader (that’s you) in the problems. Re-
member that before beginning the proof of each part you must make
sure you know what the left-hand side is, and what the right-hand
side is. We suggest that you write out the element definition of both
sides carefully (as we do in Example 16.8 below), and then show
that appropriate relations hold using acceptable mathematical and
writing techniques.

If additional conditions are placed on the function f , then some
of the conclusions in Theorem 16.7 can be strengthened. We look at
such a case in the following example. Some of the problems will ask
you to consider similar restrictions.

Example 16.8.
We will prove part 9 of Theorem 16.7. Then we will show that the in-
clusion is, in general, proper. We conclude this example by showing
that if f is required to be one-to-one, then the two sets are actually
equal.

(a) First we prove that if f : X → Y and A ⊆ X, then A⊆ f −1(f (A)).
Before we begin, we note that the right side is a bit complicated.
Let’s make sure we understand it: Since f −1(B) � {x ∈ X :
f (x) ∈ B} replacing B by f (A), we see that f −1(f (A)) � {x ∈
X : f (x) ∈ f (A)}. So we must show that if z ∈ A, then z ∈ {x ∈
X : f (x) ∈ f (A)}; in other words, we must show that z ∈ X and
f (z) ∈ f (A).

Proof.
If z ∈ A, then since A ⊆ X, we know that z ∈ X. By the definition
of f (A), we have f (z) ∈ f (A). Consequently, z ∈ f −1(f (A)), and
A ⊆ f −1(f (A)).

(b) Figure 16.1 indicates why, for an arbitrary function and an arbi-
trary set A, we cannot expect that the two sets A and f −1(f (A))
are equal.
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FIGURE 16.1 f : {1, 2} {a}

The diagram shows that if we let A = {1} and definef : {1,2}
{a}, by f(1) = f(2) = a, then A = {1} while f 1(f(A)) =
r'cfai)))=r1a«)) = u,2}- ThusA ^ / - W D -

(c) However, if the function f : X > Y is one-to-one and A X,
thenA=/-1Cf(A)).

Proof.
The inclusion A f 1 (f(A)) is proven in (a) above. For the reverse
inclusion, suppose z e /^( / (A)) . Then z X andf(z) f(A). Thus,
there exists x A such thatf(z) = f(x). Nowf is one-to-one and so
z = x. But x A, so z A. Hence f 1(f(A)) A, and we conclude
that the two sets are equal. •

Solutions to Exercises
Solution to Exercise (16.1).
You should be able to check that:

(b) f(B) = {1,4,9};
(c) f(A B) = {l};

Solution to Exercise (16.2).
You should be able to check that:

(b) f 1({1, 2, 4}) = {-1,1, 2, 2, 2, 2};
(c) f 1(f(A)) = / - ! ({ ! , 4}) = {-1,1, 2, 2}.
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Solution to Exercise (16.3).
We give complete solutions to (a), (d), (f), and (h) followed by
answers to (b), (c), (e), (g), and (i).

(a) We claim that f ([−1, 1]) � [0, 1]. To see this, let y ∈ f ([−1, 1]).
By definition of the image,

f ([−1, 1]) � {f (x) : x ∈ [−1, 1]} � {x2 : x ∈ [−1, 1]}.
So there exists x ∈ [−1, 1] such that y � x2. Since x ∈ [−1, 1],
we know that 0 ≤ x2 ≤ 1. Therefore, y ∈ [0, 1], and f ([−1, 1]) ⊆
[0, 1].
Now suppose that y ∈ [0, 1]. Let x � √

y. Then x ∈ [0, 1] ⊂
[−1, 1], and f (x) � x2 � (

√
y)2 � y. Therefore, there exists

x ∈ [−1, 1] such that y � f (x) and y ∈ f ([−1, 1]). So [0, 1] ⊆
f ([−1, 1]), and we conclude that the two sets are equal.

(d) We claim that f −1([−1, 0]) � {0}. To see this, let x ∈ f −1([−1, 0]).
By definition,

f −1([−1, 0]) � {x ∈ R : f (x) ∈ [−1, 0]} � {x ∈ R : x2 ∈ [−1, 0]}.
Therefore x ∈ f −1([−1, 0]) implies that x2 ∈ [−1, 0]. This is only
possible if x � 0. Therefore f −1([−1, 0]) ⊆ {0}. Now suppose
that x ∈ {0}. Then f (x) � f (0) � 0. Therefore, f (x) ∈ [−1, 0],
and x ∈ f −1([−1, 0]). Consequently, {0} ⊆ f −1([−1, 0]), and we
conclude that f −1([−1, 0]) � {0}.

(f) We claim that f (f −1([−1, 0])) � {0}. By (d), we know
f −1([−1, 0]) � {0}. Therefore, we need to find

f (f −1([−1, 0])) � f ({0}).
Thus

f (f −1([−1, 0])) � f ({0}) � {f (0)} � {0},
as desired.

(h) We work from the inside out. Thus,

f ([0, 1] ∩ [−1, 0]) � f ({0}) � {f (0)} � {0}.
The answer to (b) is {z2 : z ∈ N}; to (c) is {√n : n ∈ N} ∪ {−√

n : n ∈
N}; to (e) is [−1, 1]; to (g) is [−1, 1] ∪ [−2, −√

2] ∪ [
√

2, 2]; and to (i) is
[0, 1].
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There are many possible ways to solve these problems. Though
each problem seems to be different, what remains the same in ev-
ery problem is that you need to understand the notation and the
definitions.

Solution to Exercise (16.6).
In “not a proof” the conclusion “y � f (x) for some x in A1 and A2”
is not justified. From the assertion that y ∈ f (A1) and y ∈ f (A2), we
may only conclude that there exists an x1 ∈ A1 such that y � f (x1),
and there exists an x2 ∈ A2 such that y � f (x2). We may not conclude
that x1 � x2. Indeed, Exercise 16.1 shows that there are cases where
neither of the two elements is in the intersection.

However, the following is true. Let f : X → Y be an injective
function, and let A1 and A2 be subsets of X. Then f (A1 ∩ A2) �
f (A1) ∩ f (A2). Why? Well, we know that f (x1) � y � f (x2) and we
now know that f is injective. Thus, x1 � x2, so x1 ∈ A1 ∩A2. The rest
of the “not a proof” is valid.

Spotlight: Minimum or Infimum?

If you’ve ever forgotten to show that the infimum of a set was
the minimum, this historical example should show you that it can
happen to the best of us.

Suppose you know the temperature on the surface of the earth
(because people on the surface measured it) and you want the tem-
perature on the inside (but no one can get to the place to measure
it). How do you get the temperature? This kind of question in-
terested several famous mathematicians. In fact, there’s plenty of
mathematical research done today that is related to this problem.

This problem is known as the Dirichlet problem. It can be studied
in more generality, but we’ll stick to looking at functions defined on
a sphere. To understand the statement, you need to have studied
several variable calculus. At the end of this spotlight, we will state
the problem on the sphere, along with the references, for those of
you who have the background.
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The solution to this problem used something called the “Dirich-
let principle.” The idea of the principle was to look at a collection
of certain integrals with the region of integration fixed, but with
different integrands. It was first argued that the values of the in-
tegrals were bounded below (and therefore, as we have learned,
there was an infimum). From there, the mathematicians assumed
that for one of the functions, the integral was the minimum. This
principle was used by many excellent mathematicians: by George
Green, Georg Friedrich Bernhard Riemann, Sir William Thomson
(also known as Lord Kelvin), and others. In 1870, Karl Theodor
Wilhelm Weierstrass presented an important paper about the va-
lidity of this argument. Even the title of his article “Über das
sogenannte Dirichlet’sche Princip” (On the so-called Dirichlet prin-
ciple) is enough to show what Weierstrass thought of the principle
[82]. He began his paper by reconstructing Dirichlet’s argument.
He then explained that though an expression may have a lower
bound that we can get arbitrarily close to, we may never actually
reach it. Weierstrass concluded his paper with an example show-
ing how this might happen. Almost thirty years later, David Hilbert
supplied a proof of the principle for certain cases when he pre-
sented what he called the “resuscitation” of the Dirichlet principle
[68, p. 67].

It may seem odd that mathematicians of this calibre would use
an unproven principle. There are two things to remember. First, the
principle was supported on physical grounds. Second, rigor was still
being introduced to mathematics. In spite of its unusual history, the
Dirichlet principle served an important purpose. In Kline’s words
[48, p. 704] “Had the progress made with the use of the principle
awaited Hilbert’s work, a large segment of nineteenth-century work
on potential theory and function theory would have been lost.”

More information on this is available in [48], [26], and [58]. An-
other criticism of the Dirichlet principle, from a different point of
view, was published by Friedrich Prym. More information about this
can be found in [69]. The statement of the problem in R3 is the fol-
lowing: Let f be a continuous real-valued function on the sphere of
radius one (the unit sphere). A real-valued function g is called har-
monic on the open unit ball ({(x, y, z) ∈ R3 : x2 + y2 + z2 < 1}) if g
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has continuous second partial derivatives satisfying

gxx + gyy + gzz � 0

throughout the ball. The question is: Does there exist a function F

that is continuous on the closed ball of radius one, equal to f on the
unit sphere, and harmonic on the open unit ball?

Problems

Problem 16.1.
Recall that [a, b] denotes the closed interval from a to b, while (a, b)
denotes the open interval. For the function f : R → R defined by
f (x) � 3x − 1, find:

(a) f ((0, 1));
(b) f ((a, b)), where a, b ∈ R and a < b;
(c) f −1((−2, −1));
(d) f −1((a, b)), where a, b ∈ R and a < b.

Problem 16.2.
For the function f : R → R defined by f (x) � 2x2, find:

(a) f ((0, 1));
(b) f ((−1, 3));
(c) and (in general) f ((a, b)), where a, b ∈ R and a < b;
(d) f −1((−2, −1));
(e) f −1((0, 2));
(f) and (in general) f −1((a, b)), where a, b ∈ R and a < b.

Actually, we are really only interested in your answers to (c) and (f).
So why did you have to work all the other parts?

Problem 16.3.
For the function f : R → R defined by f (x) � |x|, find:

(a) f ((−1, 1));
(b) f ({−1, 1});
(c) f −1({1});
(d) f −1([−1, 0));
(e) f −1(f ([0, 1])).
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Problem 16.4.
Consider the function χ(0,1) : R → R (this is the characteristic
function as defined in Problem 13.5). Find:

(a) χ(0,1)((0, 1));
(b) χ(0,1)((−1, 3));
(c) and (in general) χ(0,1)((a, b)), where a, b ∈ R and a < b;
(d) χ−1

(0,1)((−2, −1));
(e) χ−1

(0,1)((0, 2));
(f) and (in general) χ−1

(0,1)((a, b)), where a, b ∈ R and a < b.
Actually, we are really only interested in your answers to (c) and (f).
So why did you have to work all the other parts?

Problem 16.5.
We denote the characteristic function of Z in R by χZ : R → R (see
Problem 13.5 for the definition). In each case below, start by writing
out the definition for the particular set and function. Then write the
solution to each of the following in as simple a form as possible:

(a) χZ(Z+);
(b) χ−1

Z (Z+);
(c) χZ(χ−1

Z (Z+));
(d) χ−1

Z (χZ(Z+)).

Problem 16.6.
Let f : R → R be defined by f (x) � x4 + 1.

(a) Make a careful graph of f .
(b) Using your graph, show how you can guess f ([0, 2]).
(c) Show that your guess for f ([0, 2]) is correct.
(d) Use your graph to find f −1([2, 17]).
(e) Show that your guess for f −1([2, 17]) is correct.

Problem 16.7.
Let p and q be two polynomials of degree two with real coefficients.
(See Problem 10.8 for definitions.) Suppose p−1({0}) � q−1({0}).

(a) Give an example of such p and q, with p 
� q.
(b) Suppose that p−1({0}) � {0, 1} � q−1({0}). Must p � q? Either

prove this or give a counterexample.



16. Images and Inverse Images 203

Problem 16.8.
Let f : Z → N be defined by

f (n) �
{ −2n if n ≤ 0

2n − 1 if n > 0
.

Recall that 2Z � {2n : n ∈ Z}. Find f (2Z) and prove that your answer
is correct.

Problem 16.9.
Prove Theorem 16.7, part 1.

Problem 16.10.
Using Theorem 16.7 part 1, rather than element-chasing, prove
Theorem 16.7 part 3.

Problem 16.11.
Prove Theorem 16.7, part 2.

Problem 16.12.
(a) Prove Theorem 16.7, part 4. We suggest the following strategy:

Try to prove that the two sets are equal. If you do this carefully,
you may start to wish for restrictions on f that you don’t have.
This should help you think of examples to show that the two
sets need not be equal.

(b) If f is onto, does the statement in Theorem 16.7 part 4 become
an equality? What if f is one-to-one?

(c) Show that if f is bijective, then equality holds.

Problem 16.13.
(a) Prove Theorem 16.7, part 5.
(b) In the same context, what can you conclude if B1 � B2? State

your result and prove it.

Problem 16.14.
Prove Theorem 16.7, part 6.

Problem 16.15.
Prove Theorem 16.7, part 7.
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Problem 16.16.
Prove Theorem 16.7, part 8.

Problem 16.17.
(a) Prove Theorem 16.7, part 10.
(b) Give an example to show that the two sets may not be equal.
(c) If f is onto, must the two sets be equal?
(d) If f is one-to-one, must the two sets be equal?

Problem 16.18.
Let f : X → Y be a function satisfying f (A) ∩ f (B) � ∅ whenever A

and B are sets with A ∩ B � ∅.
(a) Give an example of such a function. Prove that your example

satisfies the condition above.
(b) Prove that such a function must be one-to-one.

Problem 16.19.
Let f : A → B be a function. Prove that if f is onto, then {f −1({b}) :
b ∈ B} partitions the set A.

Problem 16.20.
Suppose that f : X → Y is a function, and let A1 and A2 be subsets
of X.

(a) If f (A1) � f (A2), must A1 � A2?
(b) Let f be a bijective function. Show that if f (A1) � f (A2), then

A1 � A2. Indicate clearly where you use one-to-one or onto.
Did you use both?

Problem 16.21.
Suppose that f : X → Y is a function, and let B1 and B2 be subsets
of Y .

(a) If f −1(B1) � f −1(B2), must B1 � B2?
(b) Let f be a bijective function. Show that if f −1(B1) � f −1(B2),

then B1 � B2. Indicate clearly where you use one-to-one or
onto. Did you use both?

Problem 16.22.
Let X be a nonempty set and let A1 and A2 be subsets of X. Recall
the notation for characteristic function, χA, defined in Problem 13.5.
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(a) If χA1 � χA2 , must A1 � A2?
(b) Show that the product χA1 · χA2 , which is defined pointwise on

X by (χA1 · χA2)(x) � χA1(x) · χA2(x), satisfies χA1 · χA2 � χA1∩A2 .
(c) Show that χA1 +χA2 −χA1∩A2 � χA1∪A2 . (In other words, for each

x ∈ X, we have χA1(x) + χA2(x) − χA1∩A2(x) � χA1∪A2(x).)
(d) Can you find a similar result for χX\A1?



17
C H A P T E R

...........................................

Mathematical
Induction

Suppose that you want to show something is true for all positive
integers. You could start by checking that the statement is true for
n � 1, n � 2, and so on, but you would have to stop somewhere.
Even if you check lots and lots of integers, you can run into problems.
Consider the following:

Let us suppose that you are asked to prove that n2 + n + 41 is
prime for every positive integer n. You might think the following
is good enough to convince someone: if f (n) � n2 + n + 41, then
f (1) � 43 (which is prime), f (2) � 47 (which is prime), f (3) � 53
(prime too), and so on. In fact checking the first thirty-nine integers
reveals that f (n) is indeed prime for n � 1, . . . , 39. Is this enough
evidence to prove that it is true for all positive integers n? Check
n � 40: f (40) � 1681, which is divisible by 41. What’s the moral
of this story? That examples, even many, many examples, are not
a method of proof. It can help us find counterexamples or it can
motivate us to formulate a conjecture, but unless we can check every
single case, it will never prove anything.

One mathematical technique to prove that a statement holds for
all positive integers is to show that the statement is true for n � 1
and that whenever it is true for a positive integer n, it is true for
the next positive integer n + 1. Then, since you have shown it is

207
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true for n � 1, it must be true for n � 2 (because it’s always true
for a successor). Now that the statement is true for n � 2, it has to
be true for n � 3, because 3 is the integer after 2, and so on. This
is called mathematical induction, and a more precise description of
this method of proof is given below.

This method is sometimes compared to lining up dominoes and
making them fall down (see H. Steinhaus [81]). What has to happen?
The first one has to fall, and every time one falls the one after it
must fall. Once this happens, all the dominoes do fall down.

Theorem 17.1 (Principle of mathematical induction).
For an integer n, let P(n) denote an assertion. Suppose that

(i) (The base step) P(1) is true, and
(ii) (The induction step) for all positive integers n, if P(n) is true, then

P(n + 1) is true.
Then P(n) holds for all positive integers n.

The principle of mathematical induction is a direct consequence
of the well-ordering principle of N we came across in Chapter 12. The
proof of Theorem 17.1 will be by contradiction: were the induction
principle false, then we could construct a nonempty subset of the
natural numbers that would not have a minimum—a contradiction
to the well-ordering principle. This is the main idea in the proof that
follows.

Proof.
Suppose the induction principle were false. Then there would exist
an assertion P that would satisfy conditions (i) and (ii) of the the-
orem, but P(n) would be false for some n ∈ Z+. So let A � {k ∈
Z+ : P(k) is false}. Our supposition implies that A is nonempty. By
the well-ordering principle [p. 135], the set A has a minimum. Let
m denote this minimum. By condition (i), m 
� 1. Since m ∈ Z+, it
follows that m ≥ 2. Consider the integer n � m−1 ≥ 1. Since n < m

and m is the minimum of A, we know that n 
∈ A. Thus P(n) is true.
By condition (ii), P(n + 1) is true too. But P(n + 1) � P(m), so P(m)
must also be true, a contradiction.
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Students often mistakenly believe condition (ii) says that P(n)
is true, and ask why we would state it again as a conclusion. Look
carefully at condition (ii). Note that it is an implication. We are not
saying that P(n) is true. We are saying that if P(n) is true, then P(n+1)
is true. The antecedent in this implication is called the induction
hypothesis.

The next example is one that is associated with Carl Friedrich
Gauss. As one version of the story goes, when Gauss was 10 years
old his teacher, Herr Büttner, asked the students to sum the integers
from 1 to 100. Gauss did it almost instantly. It is believed that he did
it by the following method.

Write the sum horizontally forwards and backwards as:

1 + 2 + 3 + · · · + 99 + 100

100 + 99 + 98 + · · · + 2 + 1

Now add vertically. When you do this, you will get 101 one hun-
dred times; in other words, you get (101)(100). This is twice the
sum that you needed, so the answer must be (101)(100)/2. There is
nothing special about the integer 100. If you try this with a general
positive integer n, you will see that 1+2+3+· · ·+n � n(n+1)/2 for
every positive integer n. What a nice formula! Is something like this
formula true for the sums of squares of the first n integers? Indeed
it is. We’ll give it a rigorous proof using mathematical induction.

Example 17.2.
Using mathematical induction, show that

12 + 22 + · · · + n2 � n(n + 1)(2n + 1)
6

for every positive integer n.

Proof.
Let P(n) be the assertion that

12 + 22 + · · · + n2 � n(n + 1)(2n + 1)
6

.

First we check the base step as follows: P(1) is the statement that
1 � (1(1 + 1)(2 + 1))/6, and this is certainly true.
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Now we verify the induction step. Suppose that P(n) holds for
n ∈ Z+. Thus we suppose that for an n ∈ Z+ we have

12 + 22 + · · · + n2 � n(n + 1)(2n + 1)
6

. (17.1)

We wish to show that P(n + 1) holds; that is, that

12 + 22 + · · · + (n + 1)2 � (n + 1)((n + 1) + 1)(2(n + 1) + 1)
2

.

We start by grouping the left side of P(n + 1) and then simplify as
follows:

12 + 22 + · · · + n2 + (n + 1)2

� (
12 + 22 + · · · + n2) + (n + 1)2

� n(n + 1)(2n + 1)
6

+(n + 1)2 (by our induction hypothesis (17.1))

� (n + 1)
(

n(2n + 1)
6

+ (n + 1)
)

(factor out n + 1)

� (n + 1)
(

2n2 + 7n + 6
6

)
� (n + 1)

(n + 2)(2n + 3)
6

� (n + 1)((n + 1) + 1)(2(n + 1) + 1)
6

.

By mathematical induction we conclude that the assertion holds for
all positive integers.

Induction proofs must contain certain steps. Look at the proof
above and see if you can find each of the steps described below.

(1) You should indicate clearly what you are trying to prove. (2)
There is always the base step, in which we check the first assertion.
(This need not always begin with n � 1; it can begin with n � 3,
n � 0, or even at a negative integer! In fact, as long as what you say
is true, it can begin at any integer you want it to begin at.) (3) Then
we have the induction step, in which we show that for each n ∈ Z
that is at least as big as the integer used in the base step, if P(n) is
true, then P(n + 1) is true.
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Of course, you still need to write using complete sentences, and
you still need to introduce every variable to the reader when the
reader meets it (not after the reader has met it for the first time!).
Finally, do tell the reader what the base step is (“First we show the
assertion holds for n � 1”), what the induction step is (“We suppose
that P(n) holds for an n ∈ Z+; that is · · · holds”), and what you will
prove (“We will show that P(n + 1) holds; that is · · · holds”). This is
as much for your benefit as it is for the reader’s. This step shows you
where you will begin and where you will have to end. Then show
what you said you will show and indicate clearly where you use the
induction hypothesis. End your proof with a concluding sentence.

Many statements proved by induction involve sums or products.
We remind you of the standard notation for this. In the following,
k ∈ Z and ak ∈ R. The notation for sum is

a1 + a2 + a3 + · · · + an �
n∑

k�1

ak ,

and the notation for product is

a1 · a2 · a3 · · · · · an �
n∏

k�1

ak .

This notation often saves space and makes a statement look neater.
For instance, the result we proved in Example 17.2 is:

For n ∈ Z+, we have
n∑

k�1

k2 � n(n + 1)(2n + 1)
6

.

If you are ever unsure about what such a statement says, you will
almost certainly find it helpful to rewrite the expression the long
way.

Exercise 17.3.
Let x1, x2, . . . , xn be real numbers. Prove that for n ∈ Z+, both of the
following hold:

(a) |∏n
k�1 xk| � ∏n

k�1 |xk| and
(b) |∑n

k�1 xk| ≤ ∑n
k�1 |xk|. ©
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The following exercise illustrates how induction can go awry.
It’s cute, but not very mathematical. A similar example, but a more
mathematical one, appears in the problems. See if you can spot the
error in that one.

Exercise 17.4.
All people at Bucknell University have the same color hair.

Not a proof.
Let P(n) be the assertion that every group of n people have the same
color hair (as each other). Then P(1) is the statement that one person
has the same color hair as herself. This is certainly true. So suppose
that P(n) is true; that is, when we have n people, they all have the
same color hair. We need to show that this implies that n + 1 people
in a group have the same color hair. So consider a group of n + 1
people. If we look at the first n of them (people 1 through n in the
group), by the induction hypothesis they all have the same color
hair, which we may as well assume is black for right now. So the
first n people all have black hair. Now consider the last n people
in this group (people 2 through n + 1 in the group). Again, by our
induction hypothesis, they all have the same color hair. Those who
are in both groups are also in the first group, and therefore have black
hair. (See Figure 17.1.) Thus, since all people in the second group
have the same color hair, everyone has black hair. By mathematical
induction we conclude that all people at Bucknell have the same
color hair. What a boring campus. �?

There must be an error! Exactly where is it? ©

Exercise 17.5.
Use induction to prove that for all natural numbers n, the expression
4n − 1 is a multiple of 3.

“Understanding the problem.” Well, once again, it’s probably a good
idea to make sure that we know what everything means here. We
need to show that 4n − 1 is a multiple of 3 for every natural number
n. That means we need to show that there exists an integer k such
that 4n − 1 � 3k.
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FIGURE 17.1 They must all have black hair.

“Devising a plan.” The outline is presented to you below and the
complete solution appears at the end of the chapter.

1. Say clearly what the assertion P(n) is. (Most mathematicians write
this out without labeling the assertion with P(n) explicitly.)

2. Check the base step (n � 0).
3. Write out the induction step in the principle of mathematical in-

duction clearly. Make sure you replace P(n) by what it says, and
replace P(n + 1) by what it says. This will help you figure out
what you are supposing (you are supposing P(n)) and what you
need to end with (you need to end with P(n + 1)).

4. Write out the induction hypothesis; that is, write out what you
are assuming to be true.

5. Having done all of the above, look at 4n+1 − 1 and show that it
is divisible by 3. Indicate clearly where you use the induction
hypothesis.

6. State your conclusion clearly. ©

Solutions to Exercises

Solution to Exercise (17.3).
We leave the proof of the first part to you.
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Proof of (b).
We will use the triangle inequality (Theorem 5.5), which has been
proven (by you) in Problem 5.9. Our proof will be by induction on n.
For n ∈ Z+, let P(n) denote the assertion that |∑n

k�1 xk| ≤ ∑n
k�1 |xk|.

The validity of the base step, n � 1, is clear.
Now assume that P(n) holds for a positive integer n; that is, as-

sume that for a positive integer n, we have |∑n
k�1 xk| ≤ ∑n

k�1 |xk|.
We must show that P(n + 1) holds; in other words, we must show
that |∑n+1

k�1 xk| ≤ ∑n+1
k�1 |xk|. But

∣∣∣∣∣
n+1∑
k�1

xk

∣∣∣∣∣ � |(x1 + · · · + xn) + xn+1|

≤ |x1 + · · · + xn| + |xn+1| (by the triangle inequality)

�
∣∣∣∣∣

n∑
k�1

xk

∣∣∣∣∣ + |xn+1|

≤
n∑

k�1

|xk| + |xn+1| (by the induction hypothesis)

�
n+1∑
k�1

|xk|,

and the result now follows from the principle of mathematical
induction.

Solution to Exercise (17.4).
If the base step is for n � 1, then the induction step, P(n) implies
P(n + 1), needs to be valid for all n ≥ 1. We made the following
argument: “Those who are in both groups are also in the first group
and therefore they have black hair.” This argument is not valid if
n � 1. In that case, the group of the first n people is disjoint from
the group of the last n people. However, our argument requires that
some person be in both groups. Hence the reasoning falls apart right
where it should: If a second person joins a black-haired person there
is no guarantee that he or she will also have black hair.
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Solution to Exercise (17.5).

Proof.
For n ∈ N, let P(n) denote the assertion that 4n − 1 is a multiple of
3; that is, there is k ∈ Z such that 4n − 1 � 3k. We will prove this by
induction on n.

We check the base step. For n � 0 the statement becomes 40−1 �
0 is divisible by 3. This is obviously true.

Now we check the induction step. We assume that for an n ∈ N,
there exists k ∈ Z such that 4n − 1 � 3k. We need to show that
there exists l ∈ Z such that 4n+1 − 1 � 3l. Consider the following
calculation:

4n+1 − 1 � 4 · 4n − 1 � 3 · 4n + (4n − 1) � 3 · 4n + 3k � 3(4n + k),

where the second to last equality is justified by the induction hy-
pothesis. Now set l � 4n + k. Then l ∈ Z and 4n+1 − 1 � 3l. Hence
the induction step is established.

By the principle of mathematical induction, 4n −1 is divisible by
3 for all n ∈ N.

Problems

Problem 17.1.
Use the principle of mathematical induction to prove that 1 + 3 +
5 + · · · + (2n − 1) � n2, for every positive integer n.

Problem 17.2.
Use the principle of mathematical induction to prove that 13 + 23 +
· · · + n3 � (1 + 2 + · · · + n)2, for every positive integer n.

Problem 17.3.
Use the principle of mathematical induction to prove that 1 + 2 +
· · · + n � n(n + 1)/2, for every positive integer n.
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Problem 17.4.
Prove that if n ∈ Z+ and r is a real number such that r 
� 1, then

n−1∑
k�0

rk � 1 − rn

1 − r
.

Problem 17.5.
Show that 2n ≤ n! for all integers with n ≥ 5.

Problem 17.6.
Use induction to prove Bernoulli’s inequality: For x ∈ R, if 1+x > 0,
then (1 + x)n ≥ 1 + nx for all n ∈ N.

Problem 17.7.
Show that for every positive integer n,

1
1

+ 1
2

+ 1
3

+ · · · + 1
2n

≥ 1 + n

2
.

(This can be used to show that the harmonic series 1 + 1
2 + 1

3 + · · ·+
1
n

+ · · · diverges.)

Problem 17.8.
Show that 2n > n2 for all integers n with n ≥ 5.

Problem 17.9.
Prove that 8 divides 52n − 1 for all n ∈ N.

Problem 17.10.
Suppose that g : N → N satisfies g(n+1) � g(n)+g(1) for all n ∈ N.

(a) Find g(0).
(b) Show that g(n + m) � g(n) + g(m) for all n, m ∈ N.

Problem 17.11.
Let g : N → R+ and let a be a positive real number. Suppose that
g has the properties that g(1) � a and g(m + n) � g(m)g(n) for all
natural numbers n and m.

(a) Prove that g(0) � 1.
(b) Prove that g(n) � an for all n ∈ N.



17. Mathematical Induction 217

Problem 17.12.
Let a1, a2, . . . , an be real numbers satisfying |aj| ≤ 1 for all j �
1, 2, . . . , n. Prove that for all n ∈ Z+ the following holds:∣∣∣∣∣

n∏
j�1

aj − 1

∣∣∣∣∣ ≤
n∑

j�1

|aj − 1|.

Problem 17.13.
Find the error in the Not a proof below. (See Problem 10.8 for the
definition of the degree of a polynomial.)

Nontheorem.
Let p be a polynomial of positive degree n such that p is a product of
degree one polynomials and p(0) � 0. If c ∈ R satisfies p(c) � 0, then
c � 0.

In other words, our claim is that if p(x) � ax(a1x+b1) · · · (an−1x+
bn−1), where a, b1, . . . , bn−1 ∈ R and a, a1, . . . , an−1 
� 0, then the only
root of p is 0.

Not a proof.
We will prove this statement by induction on the degree n of the
polynomial p.

For the base step, we let n � 1. Since p(0) � 0, we can write
p(x) � ax for some a ∈ R and a 
� 0. If p(c) � 0, then p(c) � ac � 0.
Since a 
� 0, we conclude that c � 0.

For the induction step, assume that if p is a polynomial of degree
n that is a product of degree one polynomials and satisfies p(0) � 0,
then p(c) � 0 implies that c � 0. Let p be a polynomial of degree
n + 1 that factors into n + 1 degree one polynomials and satisfies
p(0) � 0. We need to show that p(c) � 0 implies that c � 0. Write
p(x) � ax(a1x+b1) · · · (anx+bn), where a, a1, . . . , an are nonzero real
numbers and b1, . . . , bn ∈ R. Suppose that p(c) � 0. Then

0 � p(c) � ac(a1c + b1) · · · (anc + bn).

One of the factors, ac, a1c+b1, . . . , anc+bn, must vanish. Rearranging
terms if necessary, we may assume that the factor ac or the factor
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a1c + b1 vanishes. Now,

q(x) � ax(a1x + b1) · · · (an−1x + bn−1)

is a polynomial of degree n that is a product of degree one polynomi-
als and satisfies q(0) � 0. Since ac(a1c + b1) � 0, we have q(c) � 0.
Since our induction hypothesis applies to q, we conclude that c � 0.
Therefore, p(c) � 0 implies that c � 0, and the nontheorem follows
from mathematical induction. �?

There is an equivalent form of the principle of mathematical
induction, namely:

Theorem 17.6 (Second principle of mathematical induction).
For an integer n, let Q (n) denote an assertion. Suppose that

(i) Q (1) is true and
(ii) for all positive integers n, if Q (1), . . . , Q (n) are true, then Q (n+1)

is true.
Then Q (n) holds for all positive integers n.

Problem 17.14.
Prove the second principle of mathematical induction (Theo-
rem 17.6) from the first one (Theorem 17.1). To do so, let P(n) be
the assertion “Q (1), . . . , Q (n) are true.”

Problem 17.15.
Prove that every integer n, where n ≥ 2, is the product of prime
numbers. (We have used this before; this shows that every integer
n ≥ 2 can be factored as a product of primes. If you also proved the
uniqueness of this factorization, you have proved the fundamental
theorem of arithmetic.)

Problem 17.16.
A subset S of R2 is convex if for every two points x, y ∈ S, the line
segment joining x and y again lies in S. Recall that an interior angle at
a vertex of a convex polygon is the smaller of the two angles formed
by the edges at that vertex.
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FIGURE 17.2 The sum of all the interior angles in this convex polygon
is 4 · 180◦.

Prove that for an integer n, where n ≥ 3, the sum of all the
interior angles of a convex polygon with n vertices is (n − 2)180
degrees. (See Figure 17.2.)

Problem 17.17.
Let pn be a polynomial with real coefficients and of positive degree
n. (See Problem 10.8 for the definitions.)

(a) Suppose pn(x) � anx
n + an−1x

n−1 + · · · + a1x + a0. For a real
number a, what is the largest the degree of qn, defined by
qn(x) � pn(x) − (x − a)anx

n−1, can be?
(b) Let a ∈ R and n ∈ Z+. Prove that pn(a) � 0 if and only if (x−a)

is a factor of pn(x).

Problem 17.18.
A triangular number, Tn, is the number of equally spaced points
that can be used to form an equilateral triangle with sides built of n

equally spaced points (see Figure 17.3).
(a) Find a formula for the nth triangular number, and prove that

your formula is correct.
(b) Can you think of a (familiar) game that uses T4? T5?

For n ∈ N, we define n factorial, written as n!, as follows. For
n � 0, 0! � 1. For n ≥ 0, define (n + 1)! � (n + 1) · n!.
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Ti = 1 T2 = 3 T3 = 6 T4 = 10

FIGURE 17.3 Triangular numbers.

For k, n N with k n we define the binomial coefficient as
n!

k!(n k)!
Because the binomial coefficient is the number of ways that we can
choose k different elements from a set of n elements, we read (£) as
"n choose k."

Theorem 17.7 (Binomial theorem).
Let a ,b R and n Z+. Then

Problem 17.19.
This problem refers to the notation and theorem above,

(a) Compute each of the following:

(b) A "picture proof of a special case of Theorem 17.7, namely
(m + 1)2 = m2 + 2m + 1 for m N, is presented in Figure 17.4.
Explain the picture proof.

(c) Prove that for all k, n N with 1 k n, we get
+ l\ ( n \ (n

(If you write out what it means, life will be a lot easier.)
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m dots

dots m+1
dots

Y
m+l dots

FIGURE 17.4 "Proof of (m + 1)2 = m2 + 2m + 1.

(d) Use part (c) to prove Theorem 17.7. (See Project 27.7, on
Pascal's triangle.)

(e) Prove that

J2 (*)(-!)* = 0 for all n Z+.

Problem 17.20.
Deduce the well-ordering principle of N, stated in Chapter 12, from
Theorem 17.6 stated on page 218. (Recall that we used the well-
ordering principle to prove Theorem 17.1. Since Theorem 17.6 and
Theorem 17.1 are equivalent, this problem shows that the principle
of mathematical induction and the well-ordering principle of N are
equivalent.)
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C H A P T E R

...........................................

Sequences

We have all seen lists of numbers. For example, we’ve all worked
with a list of positive even integers presented in increasing order,
(2, 4, 6, . . . , 2n, . . .), where n � 1, 2, 3, . . . . The positive odd numbers
(1, 3, 5, . . . , 2n − 1, . . .) can also be presented in such a list, where
n � 1, 2, 3, . . . . What we are interested in here is a precise definition
of “infinite list.”

Here’s an example from your childhood of a problem that yields
such a list. Let n be a positive integer with n ≥ 2. Suppose that we
have n children arranged in a circle, and that rather than use their
names, we number them {1, 2, . . . , n}. Say these children want to
see who goes first in a game. They begin by eliminating the second
child, and then proceed around the circle, eliminating every other
child until there is only one child left. That happy child goes first.
The question is, where should you stand in order to be the winning
child? Let’s start small: if there are two children, you should stand in
the first spot. If there are three, you should stand in the third spot. If
there are four, you should stand in the first spot. Where should you
stand if there are n children? (This challenging problem is known as
the Josephus problem. The answer appears at the end of the chapter.
Of course, the children can count off by three or four, giving us a
new problem to solve.) In this problem, for each group of n children,

223
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we have an answer. Thus we again have a list of numbers. We now
turn to the definition of "list."

A sequence is a functionf from the natural numbers N to a set X.
In this chapter, we will concentrate on the case X = R. It is standard
to write xn = f(n), and to refer to xn as a term in the sequence. The
sequence will be denoted (Xn)^L0, or just (xn) when it is clear which
n we are referring to or when it doesn't matter where the sequence
starts. We can begin a sequence at an integer other than n = 0 when
convenient, and we will often begin the sequence at n = 1 without
much fanfare. We'll tell you where we are starting when it really
matters.

Since sequences are functions, we can graph them as functions
defined on the nonnegative (or positive) integers and then we can
see what they are doing.

Example 18.1.
The sequence (xn) is defined by xn = 1 + 1/n for n Z+. We will
write out the first few terms and graph the beginning of the sequence
in Figure 18.1.

The first four terms are: x1 = 2, x2 = §, x3 = | , x4 = 4 5 O

Exercise 18.2.
For each of the sequences given below, write out the first four terms
and graph each as a function from its domain (a subset of Z) to its
codomain.

(a) Let xn = 1 ( 1)n, for n = 0,1, 2 , . . . .

xn

2
1.5

1

-*- n
1 2 3 4 5 6 7 8 9 10

FIGURE 18.1 (xn), where xn = 1 + 1/n.
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(b) Let xn � n/(n + 1), for n � 0, 1, 2, . . . .

(c) Let xn � (n2 + 1)/(1 − n), for n � 2, 3, . . . . ©

When we look at sequences, we notice that different sequences
behave in different ways. This is illustrated by our examples in Exer-
cise 18.2. Some sequences approach some horizontal line as n → ∞.
Some seem to be shooting off to infinity, others jump around a lot.
We need to understand how these sequences differ from each other,
and the following definitions will help us do that.

You’ll notice that a lot of terms that we introduced when we
studied sets reappear here. What is really happening is that each
sequence (xn) (where order counts) gives rise to a nonempty set
S � {xn : n ∈ N} (where order doesn’t count). For example, the
sequence (zn) where zn � (−1)n gives rise to the set S � {−1, 1},
while the sequence (yn)∞n�1 where yn � n gives rise to the set T � {n :
n ∈ Z+} � Z+. So we can ask when a sequence is bounded above,
bounded below, bounded, has an infimum or supremum—and we
can use everything we learned about sets to find an answer.

For example, a sequence of real numbers (xn) is bounded if the
set S � {xn : n ∈ N} is bounded. Thus, according to our definition of
bounded set, a sequence of real numbers (xn) is bounded above, if
there is a real number M such that xn ≤ M for all n, and bounded
below, if there exists a real number m such that xn ≥ m for all n. A
sequence is bounded if it is bounded above and below. That’s how
we defined it. But you may find that the following provides a more
useful way to think about boundedness in R.

Exercise 18.3.
Let (xn) be a sequence. Prove that (xn) is bounded if and only if there
exists a real number N such that |xn| ≤ N for all n.

Just as before, a real number U satisfying xn ≤ U for all n is
called an upper bound of the sequence (xn), and a real number L

satisfying L ≤ xn for all n is a lower bound of the sequence (xn). In
our illustration above, we considered the sequence (zn), where zn �
(−1)n. We see that this sequence is bounded above (1 is an upper
bound) and bounded below (−1 is a lower bound), and therefore it
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is bounded. Alternatively, |zn| ≤ 1 for all n, and by the previous
exercise we may conclude that the sequence (zn) is bounded.

Exercise 18.4.
(a) Give an example of a real number that is not an upper bound

of the sequence given by xn � n/(n + 1).
(b) Complete the following sentence: The real number U is not an

upper bound of the sequence (xn), if . . . . ©

If (xn) is a sequence that is bounded below, the set S � {xn : n ∈ N}
is bounded below. Since S is a nonempty set of real numbers that is
bounded below, the infimum version of the completeness axiom (see
Exercise 12.8) implies that S has an infimum, and we call this the
infimum of the sequence (xn) (or greatest lower bound of (xn)).
We denote it by inf(xn). Recall that you showed (Problem 12.14) that
the infimum is unique.

Example 18.5.
Let (xn) be a sequence that is bounded below. State the two properties
that the infimum of (xn) must satisfy.

The infimum of the sequence (xn) is the real number m satisfying

(i) m ≤ xn for all n, and
(ii) if p is a real number satisfying p ≤ xn for all n, then p ≤ m.

Each of the statements (i) and (ii) can be stated in the vernacular,
and you should do so now. ©

Exercise 18.6.
Guess the infimum for each of the cases below:

(a) xn � 1/n, for n � 1, 2, 3, . . .;
(b) xn � n2, for n ∈ N;
(c) xn � n/(n + 1), for n ∈ N;
(d) xn � (−1)n/(n2 + 1), for n ∈ N. ©

When you look for the infimum, remember that it may or may
not appear in the sequence. Everything we do for the infimum can
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be done for the supremum. So the supremum of the sequence (xn)
(or least upper bound of (xn)) is the supremum of the set S � {xn :
n ∈ N}. We denote it by sup(xn). The rest is left to you in the next
exercise.

Exercise 18.7.
Let (xn) be a sequence that is bounded above. State the two properties
that the supremum of (xn) must satisfy, and say why it exists. ©

That takes care of how high and how low a sequence can go. Now
we turn to how it gets where it is going.

A sequence (xn) is increasing if xn ≤ xn+1 for all n, and de-
creasing if xn ≥ xn+1 for all n. We say the sequence (xn) is strictly
increasing if xn < xn+1 for all n. Likewise, a sequence (xn) is strictly
decreasing if xn > xn+1 for all n.

Exercise 18.8.
The object of this exercise is to make sure you understand the def-
initions above. Either explain why you cannot give an example of
the following, or give an example of

(a) a bounded sequence. Find an upper bound and a lower bound.
(b) a sequence that is bounded below, but not bounded above. Find

a lower bound. Must the sequence be increasing?
(c) a sequence that is bounded above, but not bounded below. Find

an upper bound.
(d) an increasing sequence that is neither bounded above nor

below.
(e) a strictly increasing bounded sequence.
(f) a strictly decreasing sequence that is bounded above, but not

below.
(g) a sequence that is neither strictly increasing nor strictly

decreasing. ©
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Exercise 18.9.
What is your best guess for the supremum of the sequence xn �
0.999 . . . 9︸ ︷︷ ︸

n 9′s

? In the next chapter we will carefully determine the

supremum. ©

Since sequences are functions, we can manipulate them alge-
braically. For example, to add two sequences together, we define the
sum (xn) + (yn) to be the sequence (xn + yn). In the same way, we
may subtract sequences.

Example 18.10.
Suppose (xn) and (yn) are two bounded sequences. If sup(xn) � l and
sup(yn) � m, is sup(xn + yn) � l + m?

We’ll first show that l +m is an upper bound of (xn +yn). (Thus it
makes sense to talk about the supremum of (xn + yn).) Then we will
try to show the second thing: that l + m is the least of all the upper
bounds, in the sense defined above. Remember that since we don’t
know the answer here, our attempt might fail.

So let l � sup(xn) and m � sup(yn). Then xn ≤ l for all n and
yn ≤ m for all n. Thus xn + yn ≤ l + m for all n. So far so good; we
know that l + m is an upper bound (and we know that the sequence
(xn + yn) is bounded above). But we still have to see whether or not
l + m is the least upper bound. So suppose that p is another upper
bound. We are supposed to show that p ≥ l +m. Well, p ≥ xn +yn for
every n, but that doesn’t seem to help since that doesn’t (in general)
imply anything about the relation between p and xn or p and yn. In
fact, closer inspection reveals that if one of the sequences is negative,
we can’t say anything at all. So we abandon our attempt at a proof
and search for a counterexample, using what we learned above.

Let (xn) be a bounded nonconstant sequence, say x1 � 1 and
xn � 2 for all other n. Thus l � 2. Now let yn � −xn. Then m � −1.
So xn + yn � 0, and the supremum of (xn + yn) is clearly 0, while
l + m � 1. Hence the supremum of (xn + yn) need not be l + m. ©

The lesson here is that in trying to prove something, we came
up with an example that showed it wasn’t true. This is a perfectly
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reasonable way to approach the problem as long as we are always
on the lookout for what can go wrong with a proof.

Exercise 18.11.
Let (xn) be a sequence that is bounded below. Let l � inf (xn). Show
that (−xn) is bounded above and find the supremum of the sequence.

©

Functions defined on N (or sequences) are sometimes defined by
a process called recursion, which is mathematical induction’s way
of defining such a function. To put it as simply as we can, recursion
is done by first deciding where you want to start the sequence (we’ll
call this the initial integer). We then specify the value of the sequence
at the initial integer to obtain the first term. Finally, we write out a
rule for computing the (n + 1)st term, f (n + 1), given the nth term,
f (n), for each integer n at least as big as the initial integer.

The most familiar example is probably the factorial function. Re-
call that we define the factorial function, f (n) � n!, by f (0) � 1, and
by giving the rule for finding f (n + 1): f (n + 1) � (n + 1)f (n) for all
n ∈ N. Now given a natural number, you should be able to find n! by
computing f (n). To understand such a function, it’s always a good
idea to write out the first few terms.

Exercise 18.12.
Suppose that f (0) � 1 and f (n + 1) � 2f (n) for every n ∈ N. Then f

is a familiar function. What is it? ©

One of the most famous examples of a sequence defined re-
cursively is the Fibonacci sequence. Fibonacci, whose real name
is Leonardo Pisano, was born in 1170 in Pisa. (One source you might
consult for more information about Leonardo Pisano is L. Sigler’s
book [77].) The Fibonacci sequence is often presented with pictures
of rabbits. So here is a version of Fibonacci’s original rabbit problem:
Suppose that rabbits live forever. Starting at the age of two months,
each pair produces (exactly) one baby pair, and continues to do so
every month thereafter. If we start with one brand new pair, how
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many pairs of rabbits will we have in the nth month? Now here’s the
sequence. See if you can figure out the reference to these rabbits.

Define F0 � 0, F1 � 1, and Fn � Fn−1 + Fn−2 for n ≥ 2. This
sequence is called the Fibonacci sequence and the terms of the
sequence are called the Fibonacci numbers.

Example 18.13.
Starting with n � 1, find the first 6 terms of the Fibonacci sequence.

The first six Fibonacci numbers are: F1 � 1, F2 � 1, F3 � 2, F4 �
3, F5 � 5, F6 � 8. ©

The Fibonacci sequence is extremely appealing to mathemati-
cians and nonmathematicians. In fact, there are many web sites and
books with information and problems about Fibonacci sequences,
as well as the journal The Fibonacci Quarterly.

We present one of the many interesting patterns found in Fi-
bonacci numbers below. Others can be found in the problems, as
well as some of the references given in this chapter.

Exercise 18.14.
Let (Fn) denote the Fibonacci sequence. Show that Fn+1Fn−1 − F2

n �
(−1)n for every positive integer n.

Check the equation for the first few values of n to see if this is
reasonable (but, of course, this is not a proof). The proof of Exer-
cise 18.14 will use mathematical induction, and you can read our
solution below when you are ready. ©

We now return to the solution of the Josephus problem men-
tioned at the beginning of the chapter. For each integer n ≥ 2, we
let f (n) denote the number of the winning child. Then f (2) � 1,
f (3) � 3, f (2n) � 2f (n) − 1, and f (2n + 1) � 2f (n) + 1. For more
information on the Josephus problem, we recommend the article
[76].
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Solutions to Exercises

Solution to Exercise (18.3).
If you have solved Problem 12.7, then you have solved this exercise
as well. If not, here is a solution.

First we’ll prove that if (xn) is bounded, then there exists a real
number N such that |xn| ≤ N for all n. By the definition of bounded
sequence, there exist real numbers m and M such that m ≤ xn ≤ M,
for all n. Hence −|m| ≤ m ≤ xn ≤ M ≤ |M| for all n. Letting N �
max{|m|, |M|}, we have −N ≤ xn ≤ N . Thus |xn| ≤ N for all n.

We’ll leave the proof that “(xn) is bounded if there exists an integer
N with |xn| ≤ N for all n” to you.

Solution to Exercise (18.4).
Many answers are possible for (a).

(a) Consider the number m � −1. Then m is not an upper bound
of the sequence since x1 > m.

(b) A real number U is not an upper bound of the sequence (xn)n∈N
if there exists n ∈ N such that xn > U .

Solution to Exercise (18.6).
The answers are: (a) 0, (b) 0, (c) 0, (d) −1/2.

Solution to Exercise (18.7).
A real number U is the supremum of a sequence (xn) if (i) xn ≤ U

for all n, and (ii) if V is another upper bound of (xn), then U ≤ V .

Solution to Exercise (18.8).
You should be able to find examples for all parts of this problem, ex-
cept part (d). An increasing sequence will always be bounded below,
and its first term will serve as a lower bound. For parts (a) and (g),
the sequence ((−1)n) yields such an example. For (c) and (f), you
can use the sequence (−n), which is bounded above by 0 but is not
bounded below. For (b), the sequence defined by xn � n+2(−1)n for
n ∈ N is bounded below (by, for example, −100) and this sequence
is not increasing (since x0 � 2 and x1 � −1). Finally, for (e) the
sequence (1 − 1/n) for n ∈ Z+ serves as an example.
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Solution to Exercise (18.11).
Since l � inf (xn), we know that xn ≥ l for all n. Multiplying both
sides by −1 we obtain −xn ≤ −l for all n, and consequently (−xn)
is bounded above and −l is an upper bound. We claim that −l is
the supremum, too. Suppose that m is also an upper bound. Then
−xn ≤ m for all n. Multiplying by −1, we see that xn ≥ −m for all n.
But this implies that −m is a lower bound for (xn). Since l � inf (xn),
we know that −m ≤ l. Thus m ≥ −l, and −l is the least of all the
upper bounds. So −l � sup(−xn).

Solution to Exercise (18.12).
We note that f (0) � 1, f (1) � 2, f (2) � 4 and f (3) � 8. We guess that
f (n) � 2n for all n ∈ N. This can (and should) be rigorously proved
using induction.

Solution to Exercise (18.14).
For n � 1, we easily check that F2F0 − F2

1 � −1. Similarly, for
n � 2, we can check that F3F1 − F2

2 � 1. Now suppose that for an
arbitrary n ∈ N with n ≥ 2, we have Fn+1Fn−1 −F2

n � (−1)n. In other
words, we assume that F2

n � Fn+1Fn−1 − (−1)n. We will show that
Fn+2Fn − F2

n+1 � (−1)n+1. To see this, note that Fn+2 � Fn+1 + Fn for
all n. Thus (you should fill in reasons for each of the equalities):

Fn+2Fn − F2
n+1 � (Fn+1 + Fn)Fn − F2

n+1

� Fn+1Fn + F2
n − F2

n+1.

Use the induction hypothesis to replace the middle term, F2
n , in the

summand above to conclude that

Fn+2Fn − F2
n+1 � Fn+1Fn + Fn+1Fn−1 − (−1)n − F2

n+1

� Fn+1(Fn + Fn−1) − F2
n+1 + (−1)n+1

� (−1)n+1,

and the result now follows from the principle of mathematical
induction.

The first 100 Fibonacci numbers can be found on the web [49].
From there you can get to a very cute picture of little rabbits, as
well as a set of puzzles based on these numbers. Fibonacci numbers
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also make an appearance in the popular children’s book The Number
Devil by Hans Magnus Enzensberger [21].

Problems

Problem 18.1.
Graph the following sequences and briefly describe each of the
graphs:

(a) xn � (−1)n, where n ∈ N;
(b) xn � 1/2n, where n ∈ N;
(c) xn � n/(n − 1), where n ∈ N and n ≥ 2;
(d) xn � (−1)n/2n, where n ∈ N;
(e) xn � (−1)n(n2/(n + 1)), where n ∈ N.

Problem 18.2.
(a) Find an example of each of the following:

(i) a strictly increasing sequence;
(ii) an increasing sequence that is not strictly increasing;

(iii) a bounded strictly increasing sequence;
(iv) a sequence that is not increasing.

(b) Now find four interesting examples that correspond to the ones
in part (a) but replace increasing by decreasing.

Problem 18.3.
(a) Give an example of a sequence of rational numbers that is

bounded above.
(b) Give an example of a sequence of rational numbers that has no

upper bound, but does have a lower bound.
(c) Give an example of a strictly increasing sequence of numbers

that has a supremum, but such that the supremum is not a term
in the sequence. Can you find a strictly increasing sequence
such that the supremum is equal to xn for some n? Why or why
not?
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Problem 18.4.
Give an example of a sequence of rational numbers that has an
irrational number as supremum.

Problem 18.5.
If l � sup(xn), what is inf(−xn)? (You should know by now that the
first thing to do is to try examples. Make up at least three different
examples.) State your conjecture. Prove it.

Problem 18.6.
If l � sup(xn), what is sup(k xn) where k ∈ R+? Prove your
conjecture.

Problem 18.7.
Let (xn) be a bounded sequence such that xn ≤ −2 for all n ∈ N.

(a) Prove that (x2
n) is bounded.

(b) Let l � inf (xn) and m � sup(xn). Find inf(x2
n) in terms of l or

m, or both. Prove that your result is correct.

Problem 18.8.
Suppose that (xn) and (yn) are bounded below.

(a) Show that inf(xn + yn) ≥ inf (xn) + inf (yn).
(b) Is it always true that inf(xn + yn) � inf (xn) + inf (yn)? Prove

this or give a counterexample.

Problem 18.9.
Suppose that (xn) and (yn) are bounded below. Is it always true that
inf(xn yn) � inf (xn) inf(yn)? Prove this or give a counterexample.

Problem 18.10.
Let f (0) � 2, f (1) � 2 and define f (n + 1) � f (n)f (n − 1). Find a
nonrecursive formula for f .

Problem 18.11.
Define a sequence (xn) by x0 � 1000 and for n ≥ 1, define xn �
(.05)xn−1. Find another representation for this sequence. Have you
seen this anywhere else before? If so, where?
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Problem 18.12.
Let (Fn) be the Fibonacci sequence and xn � Fn+1/Fn, for n ≥ 1.
Show that xn � 1 + 1/xn−1, for n ≥ 2.

Problem 18.13.
Let (Fn) denote the Fibonacci sequence. Define the Lucas sequence
by L0 � 2, L1 � 1, and for n ≥ 2 define Ln+1 � Ln + Ln−1. (For some
proofs you may want to use the second principle of induction stated
in the problem section of Chapter 17 as Theorem 17.6.)

(a) Calculate L1, . . . , L10.
(b) Calculate Ln − Fn−1, for n ≥ 1. Find a remarkable pattern in

this list of numbers. State it clearly and prove it by induction.
(c) Calculate Fn + Ln. Find a remarkable pattern in this list of

numbers. State it clearly and prove it using part (b).



19
C H A P T E R

...........................................

Convergence
of Sequences
of Real
Numbers

As we saw in the last chapter, when we graph several terms of a
sequence, certain behavior may appear. We may become convinced,
for whatever reason, that the sequence is unbounded. Or, we may
believe that the sequence is bounded and we may even notice the
sequence moving towards a particular horizontal line. But how do
we check that what we believe is happening really is happening?

Our efforts to explain this require that you fully understand how
to measure distance. So we remind you that distance is usually mea-
sured using the absolute value function, or |x|, and the absolute value
of a real number x measures the distance from x to 0. If we want to
measure the distance between two real numbers x and a, we would
need to look at |x − a|.

For an arbitrary positive real number ε, we know what it means
to say |x| � ε. What does it mean to say |x| < ε? The answer is, as
you can check, that |x| < ε if and only if −ε < x < ε. So how do
we determine when a sequence of real numbers approaches a real
number L? We will use the absolute value function to measure the
distance from terms in the sequence to L. We make this precise in
the following definition.

We say that a sequence (xn) converges if there exists a real num-
ber L such that for all ε > 0 there exists a real number N such

237
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that |xn L| < e for all n N. If such an L exists, we call L the
limit of the sequence (xn), we say that (xn) converges to L, and we
write xn > L or limn xn = L. If no such L exists, we say that the
sequence diverges. While we allow N to be a real number, we cau-
tion you to remember that the indices on the terms of a sequence,
xn, are natural numbers. To really understand this definition, we
must understand it visually, and we must also know how to use it to
show that a sequence converges. We first turn to the visual aspect of
convergence.

Let's think about the definition. If we believe the sequence (xn)
converges, then we need to find a real number L such that the se-
quence gets really really close to the line y = L. Mathematically,
we say that we need the sequence arbitrarily close to the horizontal
line. This, in turn, implies that the distance from the sequence to
the line y = L should be less than every positive real number e that
we can think of; that is what arbitrarily close means. But it may not
happen right away; it may only happen eventually (for each e, there
will exist N such that xn may not satisfy what we want for n < N,
but it will satisfy it for n N). That's why we defined convergence
the way we did.

We illustrate this definition in Figure 19.1. In this picture, we
first pick a value e = e\ > 0. Then we indicate a corresponding
real number N = N1 such that for all n N1 we have |xn L| < e\.

X
i

l+E2

L

L-ei

n
L

•

• *

IN

*

,

•

1 10

•

IN7 20

FIGURE 19.1 Definition of a convergent sequence; two-dimensional
illustration.
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FIGURE 19.2 Definition of a convergent sequence; one-dimensional
illustration.

Looking atthe figure, we see thatthe strip fromy = L—e\ toy = L+e\
contains all the terms of the sequence from x5 on. Generally, the
smaller the value of e, the larger the value of N. Let's think about
why this is true: Returning to Figure 19.1, we see that e = e2 is
smaller than e\, and this, in turn, forces the sequence to be closer
to the horizontal line. So we go farther out in the sequence to get
closer to the line y = L. You also probably noticed that once we find
a value of N that works, anything larger than N will work, too.

Figure 19.2 is yet another way to illustrate the same situation.
Explain this sketch to yourself.

Now let's turn to how we show a sequence converges. First we
make a conjecture as to the value of the limit, call it L. The important
thing to notice, when we make our conjecture, is that we are inter-
ested in the behavior asn . We don't really care what happens
for small n, for example. So if we ask what a sequence converges to,
you can guess by ignoring terms that don't really matter in the long
run. For example, if we ask you to guess what

4n2 3n 5
converges to, you would remember that only behavior near infinity
matters, so you would probably guess that 2n2 really dominates the
quantity in the numerator, while 4n2 really dominates the quantity
in the denominator. Thus, when you guess this limit, you'll probably
guess that it's the same as the limit of the sequence with terms
xn = 2n2/(4n2)—which it is. You probably also would guess that this
limit is 1/2, and you'd be right again. Before we move to our second
step, try practicing your guessing on some of the examples below.

Exercise 19.1.
Guess the limits of each of the following sequences:
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(a)
(

3n2 + n + 4
3 + n + 5n2

)
;

(b)
(

2n3 + n2 + 5
n4 + 6

)
;

(c)
(√

n + n√
n − n

)
. ©

Now, once you have guessed your limit, you must prove that it
is correct. To do this, assume that we are given an arbitrarily small
number, which we denote by ε. We then try to find a real number N

(depending on ε) so that for the remaining terms of the sequence,
that is, for n ≥ N , we have |xn − L| < ε. This is where things get
tricky.

Let’s see how we would use this definition, starting with a fairly
simple example.

Example 19.2.
Show that the sequence (xn) defined by xn � 1/n converges to 0.

We’ll find this easier if we follow Pólya’s list.
“Understanding the problem.” We need to show that for every ε > 0

there exists a real number N such that n ≥ N implies that |xn−0| < ε.
We fill in what we can, remembering that ε is arbitrary; that is, it is
chosen for us and we have no control over its value. So once someone
gives us ε, we are supposed to come up with N so that |1/n − 0| < ε

for n ≥ N .
“Devising a plan.” Now we’ll work backwards to see what N has

to be. We need |1/n| < ε. So we need n > 1/ε. It appears that if we
take N > 1/ε, say N � 2/ε, we’ll get exactly what we need when
n ≥ N . Since N depends on ε (there’s an ε in our definition of N),
many authors write N � N(ε).

Before we carry out the plan, note that if we knew ε, then this
would tell us exactly how big N has to be. If ε � 0.1, then N needs
to be bigger than 1/0.1 � 10; if ε � 0.01, then N needs to be bigger
than 1/0.01 � 100; and if ε just happens to be itself, then N needs
to be greater than 1/ε. We’re now ready to carry out the plan. We
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have to write this up, so that a reader who has not seen our work
will know what we are doing.

Proof.
If ε > 0 and we choose N � 2/ε, then for n ≥ N , we have |xn − 0| �
|1/n − 0| � 1/n ≤ 1/N � ε/2 < ε. Therefore, if n ≥ N , then
|xn − 0| < ε as desired.

Our second example is a bit more challenging, and requires
slightly different techniques. You’ll see more problems of this type
and more challenging limit problems when you take your first
analysis course.

Example 19.3.
Show that limn→∞ n/(n + 2) � 1.

As above, we’ll first understand our problem, and then devise a
plan.

“Understanding the problem.” We start by writing out the definition:
For all ε > 0 there exists N such that n ≥ N implies that |xn −L| < ε.

Next we’ll fill in xn and L: For all ε > 0 there exists N such that
n ≥ N implies that |n/(n + 2) − 1| < ε.

Now simplify the expression |n/(n + 2) − 1| < ε to find out how
big n must be in terms of ε: We need to find N so that n ≥ N implies
that 2/(n + 2) < ε.

“Devising a plan.” You can solve for n, as above, if you wish, but
that method only works well in simple cases. So we are going to try
to change this problem from the one we have to a simpler problem.
How will we do that? Well, we want to make 2/(n + 2) small. If we
can find something bigger and simpler than 2/(n + 2), and if we can
make that less than ε, then we will also know that 2/(n + 2) is less
than ε. What’s bigger and simpler? The previous example wasn’t
too bad. So if we just had a simple fraction, we would be in good
shape. A general strategy that often works is this: If the numerator
is complicated, we’ll try to find something simpler and larger than
the numerator. If the denominator is complicated, we’ll try to find
something simpler and smaller than the denominator. Our simpler
expression must still “act the same in the long run” as the original.
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For this exercise, the numerator is simple, so we’ll leave it alone.
For the denominator, we’ll try to somehow use the thing that dom-
inates: n. We need n + 2 greater than or equal to something simple
involving n. It’s pretty clear that n + 2 ≥ n, so we’ll use n. Putting
this together, we have found that

2
n + 2

≤ 2
n

.

Therefore, if we make 2/n < ε, we will also make 2/(n+2) < ε. But
making 2/n < ε is easy, since 2/n < ε if and only if n > 2/ε. Thus,
it appears that if N > 2/ε, then 2/n < ε and therefore 2/(n+2) < ε,
which is what we need.

“Carrying out the plan.” Write out the proof, beginning with “If
ε > 0 and . . . .” The very next phrase should identify N , unless
there are things you need to tell the reader in order for the reader
to understand your definition of the real number N . Remember that
the reader will only see your proof, not your plan.

Proof.
If ε > 0 and we choose N � 3/ε, then for n ≥ N , we have∣∣∣∣ n

n + 2
− 1

∣∣∣∣ �
∣∣∣∣ 2
n + 2

∣∣∣∣ ≤ 2
n

≤ 2
N

� 2ε

3
< ε.

Thus, limn→∞ n/(n + 2) � 1.

Here’s one more exercise on limits.

Exercise 19.4.
The sequence

(
(2n + 4)/(n2 + n + 1)

)
converges. Guess the limit

and prove that your guess is correct, using the definition of
convergence. ©

It’s time to think about negating the definition of convergence.

Exercise 19.5.
By negating the definition of convergence, explicitly state what it
means for a sequence (xn) to diverge. ©
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Exercise 19.6.
Using Exercise 19.5, show that the sequence ((−1)n) diverges. ©

We state the most basic properties of limits and convergent se-
quences here. The first theorem says that there can be one and only
one choice for the limit of a convergent sequence.

Theorem 19.7.
If a sequence converges, then the limit is unique.

We’ve done uniqueness proofs before and we’ll do this one the
same way: We suppose to the contrary that there are two different
limits L and M, and then we will show that they must be the same.
So, we need to show that L − M � 0. We also use a standard trick:
we add and subtract the same quantity to an object. Why? Well, since
all we know is that L and M get close to the terms of the sequence
(xn), we have to somehow use these terms. But there is no xn in the
equation L − M � 0. So we will have to insert an xn where none
appears.

Proof.
Let (xn) be a convergent sequence. Suppose to the contrary that
xn → L and xn → M, where L 
� M. Let ε � (1/4)|L − M|. Then
ε > 0. By the definition of convergence, since ε > 0, there exists
N1 such that |xn − L| < ε for n ≥ N1 and there exists N2 such that
|xn − M| < ε for n ≥ N2. Let N � max{N1, N2}. Then for n ≥ N we
have

|L − M| � |L − xn + xn − M|
≤ |L − xn| + |xn − M| (by the triangle inequality)
< ε + ε (since n ≥ N1 and n ≥ N2)
� 1

2 |L − M|.

But this is silly, since no positive real number is smaller than
half of itself. This contradiction establishes the result that limits of
sequences are unique.
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Here’s another important theorem. It uses Exercise 18.3, which
says that a sequence (xn) is bounded if and only if there exists a real
number M such that |xn| ≤ M for all n.

Theorem 19.8.
Every convergent sequence is bounded.

Proof.
Suppose that the sequence (xn)∞n�1 converges to the real number
L. Let ε � 1. Then there exists N such that |xn − L| < 1 for all
n ≥ N . Let K be the smallest integer satisfying K ≥ N . Thus |xn| �
|xn − L + L| ≤ |xn − L| + |L| < 1 + |L| for all n ≥ K. Consider
the numbers |x1|, |x2|, . . . , |xK−1| and 1 + |L|. Since there are finitely
many such numbers, we may choose the maximum of these. Let
M � max{|x1|, |x2|, . . . , |xK−1|, 1 + |L|}. Then |xn| ≤ M for all n, and
we conclude that the sequence (xn) is bounded.

Part (i) of the next theorem says that if we sum two convergent
sequences, the new sequence converges, too. It also says “the limit
of the sum is the sum of the limits.” What do the other parts say?

Theorem 19.9.
Let (xn) and (yn) be two sequences that converge. Let L and M be real
numbers such that xn → L and yn → M. Then

(i) xn + yn → L + M,
(ii) αxn → αL, for every real number α,

(iii) xnyn → LM, and
(iv) if M 
� 0 and yn 
� 0 for all n, then 1/yn → 1/M.

We prove part (i) here. All the proofs are similar, and this part will
illustrate the most important idea, which is that we need to choose
things carefully to make everything work out. Here’s what we mean:
For every ε > 0, we need to find N such that for n ≥ N we have
|(xn + yn) − (L + M)| < ε. We can make |xn − L| < ε for n large
enough, and we can make |yn − M| < ε for n large enough, but if
we add these together we get 2ε. You’ll now see how we handle this
problem.
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Proof of (i).
Let ε > 0. Since ε/2 > 0 and xn → L, there exists N1 such that
|xn − L| < ε/2 for n ≥ N1. Again, since ε/2 > 0 and yn → M, there
exists N2 such that |yn − M| < ε/2 for n ≥ N2. Let N � max{N1, N2}.
Then for n ≥ N , we know that n ≥ N1 and n ≥ N2, so

|(xn + yn) − (L + M)|
� |(xn − L) + (yn − M)|
≤ |xn − L| + |yn − M| (by the triangle inequality)
< ε/2 + ε/2 (since n ≥ N1 and n ≥ N2).

Therefore, for all ε > 0 there exists N such that for n ≥ N we have
|(xn + yn) − (L + M)| < ε, as desired.

Solutions to Exercises

Solution to Exercise (19.1).
The answers are (in this order): 3/5, 0, and −1.

Solution to Exercise (19.4).
Normally when we write up our solution we will include the proof
and not our work on devising a plan. But one more careful example
here will certainly be useful. So here’s our plan: We guess that this
converges to 0, so we need to show that for all ε > 0, there exists N

such that |(2n+4)/(n2+n+1)| < ε for all n ≥ N . Now both numerator
and denominator are a bit complicated. For the denominator, we
need to find something smaller and simpler than n2+n+1 involving
the highest order term n2. So for this part, we note that n2+n+1 > n2.
Now for the numerator, we need to find something larger and simpler
than 2n + 4 involving the highest-order term n. For n ≥ 1, since
4 ≤ 4n, we see that 2n + 4 ≤ 2n + 4n � 6n. Putting this together, for
n ≥ 1, we have ∣∣∣∣ 2n + 4

n2 + n + 1

∣∣∣∣ ≤ 6n

n2
� 6

n
.

So, if we make 6/n < ε, we should be able to complete the proof.
Thus, we’ll choose N � 7/ε.
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Proof.
If ε > 0, we choose N � 7/ε. Then for n ≥ N , we have∣∣∣∣ 2n + 4

n2 + n + 1
− 0

∣∣∣∣ ≤ 6n

n2
� 6

n
≤ 6

N
� 6ε

7
< ε,

where the first inequality follows since n ≥ 1 and, consequently,
2n + 4 ≤ 6n. Thus

(
(2n + 4)/(n2 + n + 1)

)
converges to 0.

Solution to Exercise (19.5).
A sequence (xn) diverges if for every real number L there exists ε > 0
such that for all N ∈ R there exists n ≥ N with |xn − L| ≥ ε.

Solution to Exercise (19.6).

Proof.
Let L be a real number, and let ε � 1/2. We break this into two
cases. First suppose that L < 0. Let N ∈ R and choose n to be an
even integer satisfying n ≥ N . Then |xn − L| � |1 − L| > 1 > ε.
Now if L ≥ 0, then for N ∈ R choose an odd integer with n ≥ N . It
follows that |xn − L| � | − 1 − L| � |1 + L| ≥ 1 > ε. Therefore (xn)
diverges.

Problems

Problem� 19.1.
We used the following several times in this chapter: Let x, y, z ∈ R.
Then |x − y| ≤ |x − z| + |y − z|. Prove this statement.

Problem 19.2.
Let a and δ be real numbers with δ > 0. Show that for all real numbers
x, we have |x − a| < δ if and only if a − δ < x < a + δ.

Problem 19.3.
For each of the following, guess the limit and then prove (using the
definition of convergence) that your guess is correct:

(a) lim
n→∞

1
3n

;
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(b) lim
n→∞

1√
n

;

(c) lim
n→∞

1√
n + 7

;

(d) lim
n→∞

n2 + 4
n2

;

(e) lim
n→∞

2n + 1
n + 2

;

(f) lim
n→∞

3
n!

;

(g) lim
n→∞

1
(n + 7)!

;

(h) lim
n→∞

3n2 + 1
4n2 + n + 2

.

Problem 19.4.
Prove Theorem 19.9, part (ii).

Problem 19.5.
(a) Suppose that (xn) and (yn) are sequences and 0 ≤ xn ≤ yn for

all positive integers n. Show that if yn → 0, then xn → 0.
(b) Suppose that (xn) and (yn) are sequences and −yn ≤ xn ≤ yn

for all positive integers n. Show that if yn → 0, then xn → 0.

(c) Find lim
n→∞

sin2 n

n
and lim

n→∞
(−1)n

n2 + 1
, and prove that your answers

are correct.

Problem 19.6.
Redo Problem 19.3, parts (a), (c), (d), (e), (g) and (h) using theorems
in this chapter or Problem 19.5.

Problem 19.7.
(a) Show that for every sequence (xn) we have 0 ≤ |xn|+xn ≤ 2|xn|.
(b) Prove that if |xn| → 0, then xn → 0. (See Problem 19.5.)
(c) If (xn) is a sequence such that |xn| → 1, must xn → 1?

Problem 19.8.
Prove Theorem 19.9, part (iii). (Hint: You may want to use
Theorem 19.8.)
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Problem 19.9.
The proof of Theorem 19.9, part (iv) is outlined below.

(a) Prove that for real numbers y and M, if |y − M| ≤ |M|/2,
then |y| ≥ |M|/2. (You might wish to use the lower triangle
inequality to establish this implication.)

(b) Let (yn) be a sequence of nonzero real numbers, and suppose
that yn → M, where M 
� 0. Prove that if 0 < ε < |M|/2,
then there exists N such that for n ≥ N if |yn − M| < ε, then
|(M − yn)/(Myn)| ≤ (2/M2)|M − yn|.

(c) Prove Theorem 19.9, part (iv).

Problem 19.10.
Let a be a real number satisfying 0 < a < 1.

(a) Show that there exists a real number x such that x > 0 and
a � 1/(1 + x).

(b) Show that an ≤ 1/(1 + nx) for all n ∈ N. (You will need to do
Problem 17.6 if you have not already done it.)

(c) Show carefully that 1/(1 + nx) → 0.
(d) Show that an → 0. (You will want to do Problem 19.5 if you

have not already done it.)
(e) Show that if xn � 0.999...9︸ ︷︷ ︸

n 9′s

, then xn → 1.

Problem 19.11.
Let xn � Fn+1/Fn, where Fn denotes the nth Fibonacci number. In
Problem 18.12 we showed that xn � 1 + 1/xn−1. Assume further that
there exists a nonzero real number L such that xn → L. Explain why
1/xn → 1/L and use these facts to compute L.

The number L is the golden ratio, which appears frequently in
architecture and in nature. The Greeks, and others, felt (and still feel)
that rectangles with sides in golden ratio are the most beautiful.

Problem 19.12.
(An exercise in reading and writing.)

(a) Read the proof below until you understand it. Mathematicians
often read proofs many times, and you may have to do so with
this one.
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Theorem 19.10.
Every increasing bounded sequence converges to its supremum.

Proof.
Let l � sup(xn), and let ε > 0. Since l − ε is not an upper bound,
there exists N such that xN > l − ε. We have assumed that (xn) is an
increasing sequence. Therefore, if n ≥ N , we know that xn ≥ xN >

l − ε. Since xn ≤ l for all n, for n ≥ N we have l − ε < xn < l + ε, and
thus |xn − l| < ε. Therefore, the sequence (xn) converges to l.

(b) Use the ideas in the proof above to prove Theorem 19.11.

Theorem 19.11.
Every decreasing bounded sequence converges to its infimum.

(c) Can you find another proof of Theorem 19.11, this time using
the statement of Theorem 19.10 rather than its proof?

Problem 19.13.
Use the theorems of Problem 19.12 for the following.

(a) Show that (n!/nn) converges.
(b) Let (xn) be a bounded sequence. For each positive integer n, let

sn � sup{xm : m ≥ n}. Prove that (sn) converges. The limit of
(sn) is called the limit superior of (xn), or simply lim sup xn.
What is the lim sup(−1)n?

(c) Let (xn) be a bounded sequence. Let tn � inf {xm : m ≥ n}.
Prove that (tn) converges. The limit of (tn) is called the limit
inferior of (xn), or simply lim inf xn.

Problem 19.14.
Sequences afford an excellent opportunity to practice everything
you have learned. That’s what you’ll do in this problem: For each of
the definitions below, do the following.
1. Read the definition.
2. Try to find an example of something that illustrates the definition.
3. Try to find an example of something that does not satisfy the

defining conditions.
4. Write the definition in symbols.
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5. Negate the definition.
(a) A sequence (xn) of real numbers is said to diverge to infinity

(written xn → ∞) if for every M ∈ R there exists a real number
N such that n ≥ N implies xn > M.

(b) A sequence is monotone if it is either increasing or
decreasing.

(c) A sequence (xn) is a Cauchy sequence if for all ε > 0 there
exists a real number N such that n, m ≥ N implies that |xn −
xm| < ε.
In addition, for this one, pretend you were talking to a high
school student who loves mathematics and just has to know
what a Cauchy sequence is but has never heard of ε and N .
What would you tell him or her?

Problem 19.15.
Consider the following definition.

Let (xn)∞n�1 be a sequence of real numbers and let nk be a se-
quence of positive integers with n1 < n2 < n3 < · · ·. The sequence
(xnk

) is called a subsequence of (xn). For this problem, do all the
things you did in Problem 19.14, plus (a), (b), and (c) below.

(a) This definition says that when you choose a subsequence, you
must do two things: you need to list all the xn in order of appear-
ance, and then you obtain the xnk

by choosing one element after
the other from your list, making sure that the term you choose
comes after the one you just chose. How does the definition
tell you that you must choose from this list? How does it tell
you that you must choose in order of increasing appearance?

(b) Let xn � 1/n. Is (xn) a subsequence of itself? If yn � x2n, give a
formula for yn in terms of n. If zn � xn+4, give a formula for zn

in terms of n.
(c) How can you tell that the sequence (wn) given by wn � (−1)n/n

is not a subsequence of (xn) as defined in (b)?

Problem 19.16.
In Problem 19.14, part (c) we defined a Cauchy sequence. Show that
every convergent sequence is a Cauchy sequence.
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C H A P T E R

...........................................

Equivalent Sets

If you were asked how many people are in your class, you would
do the natural thing and count them. Thinking about this carefully,
we see that what you are doing is assigning each person in the room
one and only one number. If we asked whether or not there are
more people in this class than were in your high school geometry
class, you could certainly answer that question by comparing the
two numbers.

Now suppose we look at the positive integers and the natural
numbers. Which set has more elements? What should that even
mean? This is a more difficult question to answer correctly than you
might think. The following mathematical folktale (often attributed
to Hilbert) illustrates the problem and a solution.

Suppose there is a hotel with infinitely many rooms. The hotel
is completely booked when the coach of a Davis Cup team arrives.
The clever manager accommodates her by moving all of the other
guests to the room numbered one higher than the room they previ-
ously occupied, which clears the first room for the coach. Then the
four members of the team arrive. Each must have his own room, of
course. The very clever manager moves everyone up four rooms,
making enough room for the four athletes. Finally, the team’s in-
finitely many fans arrive (this happens all the time at really good

251
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hotels). The very, very clever manager accommodates all guests by
moving the residents of room number n to the room with number
2n. Now all the new people can go in the odd-numbered rooms.

An interesting commentary of this problem was given by Smilla
in the book Smilla’s Sense of Snow. She says, “What delights me about
this story is that everyone involved, the guests and the owner, accept
it as perfectly natural to carry out an infinite number of operations
so that one guest can have peace and quiet in a room of his own.
That is a great tribute to solitude.”1 [42, p. 11].

What does “Hotel Infinity” really show us? It is our aim in the
next few sections to discuss and answer these questions.

To make precise what it means for two sets (even two infinite
sets) to have the same number of elements, we need a definition.
We say that a set A is equivalent to a set B if there exists a bijection
f : A → B. We write A ≈ B for A is equivalent to B. (Other authors
use the words equipotent or equinumerous.)

You actually know a lot about this concept from previous chapters
(particularly Chapter 14). The next result summarizes information
we already have.

Theorem 20.1.
Let X be a nonempty set. Equivalence between subsets of X, as defined
by A ≈ B above, is an equivalence relation on P(X).

A proof is outlined in the directions to Problem 20.5.

Example 20.2.
Show that the open interval (0, 1) is equivalent to the open interval
(0, 3).

Proof.
Define a function f : (0, 1) → (0, 3) by f (x) � 3x. We leave it to you
to show that this function is bijective. Thus (0, 1) ≈ (0, 3).

1From Smilla’s Sense of Snow by Peter Høeg, published by Farrar, Straus and Giroux,
1993. Reprinted by permission of Farrar, Straus and Giroux. Published in the UK
by Harvill Press. Reprinted by permission of The Random House Group Ltd.
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Since the relation ≈ is symmetric, we will usually say that A

and B are equivalent, rather than A is equivalent to B. This concept
allows us to give a precise definition of a finite set. We say that a set
S is finite if either S � ∅ or if S is equivalent to the set {1, 2, 3, . . . , n}
for some positive integer n. Thus, to prove that a nonempty set is
finite, we need to find a bijection between S and a set {1, 2, 3, . . . , n}
for some n ∈ Z+. Since the relation is symmetric, either set can
serve as the domain. The bijection is the mathematical analog of
what we usually describe as counting. A set is said to be infinite if
it is not finite.

Example 20.3.
By negating the definition of finite, say what it means for a set to be
infinite.

A set S is infinite if it is nonempty and for every positive integer
n there does not exist a bijection from S to the subset {1, 2, 3, . . . , n}.

©

What are some examples of finite sets? By our definition, every
set of the form {1, 2, 3 . . . , n} is a finite set. What about a set like
{2, 4, 6}? It certainly feels finite, but to prove that it is finite we would
have to construct a bijective function. It is easy here; the function
f : {1, 2, 3} → {2, 4, 6} defined by f (n) � 2n certainly works. You
could also define a function g on {1, 2, 3} by g(1) � 4, g(2) � 6, and
g(3) � 2. In fact, if our set has more than one element, then there
is more than one choice for the bijection.

Exercise 20.4.
Show that the set {6, 8, 10, 14} is finite. ©

The rest of this chapter is a paraphrasing of much of the work
we did in Chapters 13 through 16. We isolate the important ideas
below and we guide you through the proofs, but you have all the
techniques to prove everything yourself.

Theorem 20.5.
The sets Z and N are equivalent.
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This theorem is really the essence of the story behind “Hotel
Infinity.” An infinite set, Z, can have a proper subset, N, that has the
“same number of elements” in it!

Proof.
Define f : Z → N explicitly as follows:

f (x) �
{

2x if x ≥ 0
−(1 + 2x) otherwise

.

In Example 14.7, we showed that this function is bijective. From this
we conclude that Z ≈ N.

The same techniques that were used to prove Theorem 20.5 can
be used to prove the next theorem.

Theorem 20.6.
Let A, B, C, and D be nonempty sets. Suppose that A ∩ B � ∅, C ∩ D �
∅, A ≈ C, and B ≈ D. Then A ∪ B ≈ C ∪ D.

Outline of proof.
Since A ≈ C, there exists a bijective function f : A → C. Similarly,
since B ≈ D, there exists a bijective function g : B → D. We define
a function H : A ∪ B → C ∪ D in cases by

H(x) �
{

f (x) if x ∈ A

g(x) if x ∈ B
.

We leave it to you to show that H is well-defined and bijective.

Exercise 20.7.
What happens to our proof if A ∩ B 
� ∅? If we do not assume that
A ∩ B � ∅, is the theorem still true? ©

For finite sets, Theorem 20.6 has an interesting consequence.

Corollary 20.8.
Let A and B be disjoint sets. If A and B are finite, then A ∪ B is finite.

The proof of Corollary 20.8 is left to you in Problem 20.9.
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Since the definition of equivalent sets uses bijective functions,
many of the theorems you have had will come in quite handy.
We recall here the definition of restriction that we presented in
Problem 15.20.

The definition of a function includes the specification of a do-
main and codomain. So if the domains of two functions are not
the same, then the functions cannot possibly be equal. Sometimes,
though, we like our function’s definition, but we need to restrict
the elements in the domain to members with certain properties. As
soon as we change the domain, we must admit that we changed the
function. This new function is closely related to the old one, and
the notation should reflect that. That’s the essence of the following
definition: If f : A→ B is a function, and A1 ⊂ A, we define another
function F : A1 → B by F(a) � f (a) for all a ∈ A1. This function F

is called the restriction of f to A1 and is usually denoted f |A1 .

Exercise 20.9.
With the notation of the last paragraph show that if f is one-to-one,
then f |A1 is one-to-one. Conclude that if f |A1 is not one-to-one, then
f is not one-to-one. ©

We’ll use the restriction function in many of the proofs about
finite and infinite sets.

Theorem 20.10.
Let n be a positive integer. Then every subset of {1, 2, 3, . . . , n} is finite.

Proof.
The proof will be by induction on n.

If n � 1, then our set is {1}, and there are only two subsets; {1}
and ∅. Therefore, the result holds if n � 1.

Our induction hypothesis states that every subset of {1, 2, . . . , n}
is finite. We must show that every subset of {1, 2, . . . , n, n + 1} is
finite. So consider the set {1, 2, . . . , n, n + 1}, and a subset S of this
set. If S ⊆ {1, 2, . . . , n}, then S is finite by our induction hypothesis.
Otherwise, n + 1 ∈ S. In this case, notice that {n + 1} is a finite
set. Since S \ {n + 1} ⊆ {1, . . . , n} we also know from the induction
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hypothesis that S \ {n + 1} is finite. Applying Corollary 20.8 we may
conclude that S � (S \ {n + 1}) ∪ {n + 1} is finite, completing the
proof.

Corollary 20.11.
Let S be a finite set. Then every subset of S is finite.

Proof.
If S is empty, the result is clear. So suppose that S is nonempty, and
let T denote a subset of S. Again, we may assume that T is nonempty.

Now, by our assumption there exists a positive integer n and a
bijection f : S → {1, 2, . . . , n}. By Exercise 20.9 the restriction func-
tion, f |T , is a bijective mapping from T onto a nonempty subset B of
{1, 2, . . . , n}. From Theorem 20.10, the set B is finite, and therefore
there exists a positive integer m and a bijection g : B → {1, 2, . . . , m}.
By Theorem 15.6, the composition h � g ◦ (f |T) of the two bijective
functions g and f |T is a bijection of T onto {1, 2, . . . , m}. Thus T is
finite, completing the proof.

We assumed in Corollary 20.8 that the finite sets A and B were
disjoint, but our intuition tells us that the union of two finite sets
should be finite. How do we prove this? The idea is that the union
of two sets can be expressed as the union of two disjoint sets: the
intersection appears in the union twice, so to speak, so if we remove
it once (from one of the sets) we haven’t changed the union. That is
the key to the next result.

Theorem 20.12.
The union of two finite sets is finite.

Proof.
Let A and B denote the two finite sets. Now you have already shown
(in Problem 7.9) that

A ∪ B � (A \ B) ∪ B,

and it should be clear that these two sets are disjoint. By Corol-
lary 20.11, the set A \ B is finite. The set B is finite by assumption.
Since these are two disjoint sets, we have written A∪B as the disjoint
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union of two finite sets and Corollary 20.8 now implies that A ∪ B is
finite.

Note that in the theorem above, we showed that a set is finite
without exhibiting a specific bijection. We’ll be building up many
results that are useful, and we will not always go back to the defini-
tion to see how to prove things. This is a great plus—proofs become
shorter, and sometimes prettier and more interesting. Of course, to
use the theorems, you also have to know what they are!

We conclude this chapter with a useful exercise.

Exercise 20.13.
Use induction to prove the following. Let m ∈ Z+. If A1, A2, . . . , Am

are finite sets, then the union
⋃m

j�1 Aj is finite.

Solutions to Exercises

Solution to Exercise (20.7).
If A and B are not disjoint, the function H may not be well-defined.
In addition, if A and B are not disjoint, the conclusion of the theorem
may not hold. To see this, take finite sets with A � B � {1}, C � {2}
and D � {3}.

Solution to Exercise (20.9).
If x1 and x2 are elements of A1, and f |A1(x1) � f |A1(x2), then by the
definition of f |A1 we know that f (x1) � f (x2). Since we assume that
f is one-to-one, we may conclude that x1 � x2, as desired. The final
assertion is simply the contrapositive of what we just proved.

Solution to Exercise (20.13).
We will prove this statement by induction on m. For the base step
(m � 1), we get

⋃1
j�1 Aj � A1, which is finite by assumption.

Now assume that
⋃n

j�1 Aj is finite. We need to show that
⋃n+1

j�1 Aj is

finite. But
⋃n+1

j�1 Aj �
(⋃n

j�1 Aj

)
∪An+1. By the induction hypothesis,⋃n

j�1 Aj is finite, and An+1 is also assumed to be finite. By Theo-
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rem 20.12, the union of two finite sets is finite. Thus
⋃n+1

j�1 Aj is
finite. The result now follows from the principle of mathematical
induction.

Problems

Problem 20.1.
Show that the following intervals of real numbers are equivalent:

(a) [0, 1] and [0, 2];
(b) [0, 1] and [2, 5].

Problem 20.2.
Prove that {1, . . . , 10} × {1, . . . , 15} is finite using only the definition
of a finite set; that is, write down the relevant bijection explicitly.

Problem 20.3.
Explain, in words, the difference between a “finite union of sets” and
a “union of finite sets.” Give examples of each that show these really
are different.

Problem� 20.4.
(a) Show that the positive rationals Q+ and the negative rationals

Q− are equivalent.
(b) Show that the even and odd integers are equivalent.

Problem 20.5.
Prove Theorem 20.1 by doing all parts of the problem below.

(a) Write out in words what you must show to conclude that the
relation ≈ is reflexive. Then prove it.

(b) Recall that the definition of symmetric has both a hypothesis
and conclusion. Write out what the hypothesis A ≈ B means,
and what you must show. Then prove it. Remember: if you
have theorems that help you, you can use them.

(c) Recall that the definition of transitive has a hypothesis as well.
Write out what it means when we say A ≈ B and B ≈ C, and
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what you need to prove. Then prove it. Remember: if you have
theorems that help you, you can use them.

Problem 20.6.
(a) Prove that (0, 1) ≈ R. (If you choose to use Problem 14.11, make

sure you solve that problem too!)
(b) Prove that R ≈ R+.

Problem 20.7.
(a) Show that Z ≈ 2Z.
(b) Using theorems from this chapter (don’t define functions!)

show that 2Z ≈ N.

Problem 20.8.
Prove Theorem 20.6 working with the outline given in the text.

Problem 20.9.
(a) Suppose that A and B are nonempty finite sets and A ∩ B �

∅. Show that there exist integers n and m such that A ≈
{1, 2, . . . , n} and B ≈ {n + 1, . . . , n + m}.

(b) Prove Corollary 20.8.

Problem 20.10.
Prove Theorem 20.14 below. We suggest that you start by working
Problem 15.14 if you have not already done so.

Theorem 20.14.
Let A, B, C, and D be nonempty sets with A ≈ C and B ≈ D. Then
A × B ≈ C × D.

Problem 20.11.
Prove the following corollary of Theorem 20.14 above.

Corollary 20.15.
Let A and B be finite sets. Then A × B is a finite set.

Problem 20.12.
Let A � {[a, b) : a, b ∈ R and a < b} be the collection of bounded
half-open intervals of real numbers.
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(a) Prove that A ≈ R × R+.
(b) Prove that A ≈ R × R.



21
C H A P T E R

...........................................

Finite Sets and
an Infinite Set

We have proved that sets are finite, but we have not yet rigorously
shown that a set is infinite. It is not as easy as you might think to
show rigorously that something is infinite. We also do not have an
exact notion of what it means for a finite set “to have n elements.”
Our proof of the former and the definition of the latter will depend
on a principle known as the pigeonhole principle. Here is a problem
that will serve as an introduction to this principle.

Theorem 21.1.
Suppose that n people (n ≥ 2) are at a party. Then there exist at least
two people at the party who know the same number of people present.

First you need to know the rules. We will assume that no one
knows him or herself. We will also assume that if x claims to know
y, then y also knows x.

The idea behind the proof is this, and you can try it out at your
next party. You will put n boxes on the board numbered 0 through
n−1. Each person counts up the number of people he or she knows at
the party. You ask them that number and write their name in the box
with the same number. Note that each person’s answer corresponds

261
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to exactly one of the boxes 0 through n− 1. The theorem claims that
at least two people’s names will end up in the same box.

Proof.
We imagine n boxes, numbered 0 through n − 1. For an integer m

with 0 ≤ m ≤ n − 1, box m contains the names of the people who
know m people at the party.

We break this proof into two cases. First, suppose that there is
someone at the party who doesn’t know anyone. We’ll call this party
crasher Ms. X. Now if we pick some other party attendee, he doesn’t
know himself and, since Ms. X doesn’t know him, he doesn’t know
Ms. X either. This implies that he knows at most n − 2 people at the
party. The point is this: No one’s name can be in the box labeled
n − 1. This means that the names of the n people are in the n − 1
boxes labeled 0 through n − 2. Obviously then, there is a box with at
least two names in it, indicating that two of those people know the
same number of people and we are done in this case.

Now suppose that everyone knows at least one person at the
party. Then no one’s name can be in the box marked 0; everyone’s
name will be in one of the n − 1 boxes marked 1, . . . , n − 1. Once
again we have n names in n − 1 boxes, and thus at least two must be
in the same box.

This theorem and its proof illustrate the idea behind the pigeon-
hole principle. In its popular form, the principle says that if there are
more pigeons than holes, then at least one hole is the home of more than
one pigeon. There are many wonderful applications of the pigeon-
hole principle (and many can be found at the web site [10] under
algebra).

We now turn to the more precise statement of the pigeonhole
principle and its proof. The principle is attributed to Peter Gustav
Lejeune Dirichlet and is also known as the Dirichlet principle or the
Dirichlet drawer principle. (There are other Dirichlet principles; see
the Spotlight: Minimum or Infimum in Chapter 16.) Curiously, this
intuitively obvious principle has a rather intricate proof.
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Theorem 21.2 (Pigeonhole principle).
Let m and n be positive integers with m > n, and let f be a map satisfying
f : {1, . . . , m} → {1, . . . , n}. Then f is not one-to-one.

Proof.
We will prove this theorem by induction on n. The assertion that we
will prove is: For every integer m such that m > n, if f : {1, . . . , m} →
{1, . . . , n}, then f is not one-to-one.

For the base case, n � 1. Our assumption that m > n implies
that m > 1. For every map f : {1, . . . , m} → {1}, it is clear that
f (1) � 1 � f (m). Since 1 
� m, we may conclude that f is not
one-to-one, completing the base step.

For the induction step, let us assume that for an n ≥ 1, if m is an
integer greater than n and f is a function f : {1, . . . , m} → {1, . . . , n},
then f is not one-to-one. We will show that if m > n + 1 and f :
{1, . . . , m} → {1, . . . , n + 1}, then f is not one-to-one.

So let us suppose that m > n + 1 and we have a map

f : {1, . . . , m} → {1, . . . , n + 1}.
There are three cases to consider: Either f maps nothing to n + 1,
more than one element to n + 1, or exactly one element to n + 1.

For the first case, if n + 1 
∈ ran(f ), then f actually defines a map
f : {1, . . . , m} → {1, . . . , n}. Since m > n + 1 > n, our induction
hypothesis tells us that f is not one-to-one, and we are done in this
case.

For the second case, suppose there exist j, k ∈ {1, . . . , m} with
j 
� k, and f (j) � n + 1 � f (k). Then f is not one-to-one, and we are
done in this case, too.

For the last case, assume that j ∈ {1, . . . , m} is the only integer
for which f (j) � n + 1. We now define the function g : {1, . . . , m} →
{1, . . . , m} that interchanges m with j and leaves all other elements
of {1, . . . , m} fixed:

g(k) �
⎧⎨
⎩

k if k 
� j, m

j if k � m

m if k � j

.

Then g is clearly one-to-one. Furthermore, since j is the only integer
that f maps to n + 1 we know that (f ◦ g)(k) � f (g(k)) � n + 1 if
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and only if g(k) � j. Since g is one-to-one, this happens if and only if
k � m. Thus (f ◦ g)|{1,...,m−1} maps {1, . . . , m − 1} to {1, . . . , n}. Since
we assume that m > n + 1, we know that m − 1 > n. Our induction
hypothesis now applies, and we conclude that (f ◦ g)|{1,...,m−1} is not
one-to-one. By Exercise 20.9 f ◦ g is not one-to-one. Since g is one-to-
one, by Theorem 15.7 f is not one-to-one in this case either.

By the induction principle, if m, n ∈ Z+ and m > n, then no
function f : {1, . . . , m} → {1, . . . , n} is one-to-one.

The proof of the pigeonhole principle summarizes much of what
you learned: mathematical induction, proof in cases, and one-to-one
functions.

We are now in a position to prove that a set is infinite.

Theorem 21.3.
The set N is infinite.

Proof.
Suppose to the contrary that N is finite. Since N 
� ∅ there exists an
integer m and a one-to-one mapping, g, of N onto {1, 2, . . . , m}. Now
{1, 2, . . . , m+1} ⊆ N, so we may consider the restriction g|{1,2,...,m+1} :
{1, 2, . . . , m+1} → {1, 2, . . . , m}. The pigeonhole principle (Theorem
21.2) implies that g|{1,2,...,m+1} is not one-to-one. This, in turn, implies
(as you surely showed in Exercise 20.9) that g is not one-to-one,
contradicting our choice of g. Therefore, it must be the case that N
is infinite.

Exercise 21.4.
Prove that Z is infinite. ©

The next exercise is similar to the one above, but requires more
work.

Exercise 21.5.
Prove that if X is an infinite set, then the power set of X is infinite.

©
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We carefully defined what it means for a set to be finite, but so far
we have not described what it means for a set to “have n elements.”
After the following theorem, we will be ready to do that.

Theorem 21.6.
Let A be a nonempty finite set. There is a unique positive integer n such
that A ≈ {1, . . . , n}.

Before we begin, note that there are two things to show: there
exists a positive integer n with certain properties and that there is
only one such integer. One of these should be easy. Which one?

Proof.
The existence of some n ∈ Z+ such that there is a bijection f : A →
{1, . . . , n} is guaranteed by the definition of a nonempty finite set.
So all we have to do is show that there is no other m ∈ Z+ with an
associated bijection g : A → {1, . . . , m}.

Suppose to the contrary that there does exist such a positive in-
teger m with m 
� n, and bijective function g. Since m 
� n, one
of these integers must be larger than the other, so we assume that
m > n. Since g is a bijection, it has an inverse. Composing the
two bijective functions f and g−1, we obtain a bijective function
f ◦ g−1 : {1, . . . , m} → {1, . . . , n}. But this contradicts the pigeonhole
principle, and we conclude that n is unique.

The integer n in the above theorem is exactly what we mean by
the “size of A” or “number of elements in A.” We will say that the
cardinality of a finite set A is 0 if A is empty and n if A ≈ {1, . . . , n}.
In symbols, we write |A| � n, where n ∈ N. (Why couldn’t we define
the cardinality of a set before we proved the theorem?) While it
is possible to define cardinality in more generality, we have only
defined it in the case that A is finite.
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Solutions to Exercises

Solution to Exercise (21.4).

Proof.
We know that N ⊂ Z, and Theorem 21.3 tells us that N is infinite.
Since Corollary 20.11 says that every subset of a finite set is finite,
our set Z must be infinite.

Solution to Exercise (21.5).

Proof.
Define a map f : X → P(X) by f (x) � {x} for all x ∈ X. It is clear
that f is well-defined and one-to-one. Therefore, f maps X onto a
subset, A, of P(X). Since X is infinite and f is a bijection of X onto
A, we know that A must be infinite as well. Thus, P(X) contains
an infinite subset, and we may use Corollary 20.11 to conclude that
P(X) is infinite.

Problems

Problem 21.1.
Consider the story of n people at a party in Theorem 21.1. Suppose
someone else has a rival party the same evening, and no one can
attend both. Someone takes a picture of the people at the rival party
and shows it to everyone at your party. Your party isn’t that much
fun, so you each look at the picture and say how many people you
know at the other party. No one says the same number. What can
you conclude about the number of people attending the other party?

Problem 21.2.
(a) Suppose there are 15 people in a class. Show that two people

must be born in the same month.
(b) A conductor has just taken on a new job in a small town where

he has five trumpet players in his orchestra. He has a concert
every other evening for his first year. Traditionally the players
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are seated from left to right in order of decreasing musical abil-
ity. The conductor does not want to offend the players, so he
has decided to seat them differently at each performance. Can
he do it? Why or why not?

Problem 21.3.
Suppose 21 numbers are chosen from the set {1, . . . , 40}. Show that
among the chosen numbers there are (at least) two of them, n and
m, such that n − m � 1.

Problem 21.4.
Let S be a region in the plane bounded by a square with sides of
length two. Prove that if we put five points in S, there exist (at least)
two of these points that are at most a distance of

√
2 apart.

Problem 21.5.
Let n ∈ N and let f : {1, 2, . . . , 2n+1} → {1, 2, . . . , 2n+1} be a bijective
function. Prove that for some odd integer k ∈ {1, 2, . . . , 2n + 1}, the
integer f (k) is also odd.

Problem 21.6.
Prove the following alternate form of the pigeonhole principle.

Let A and B be nonempty finite sets, and suppose that |A| > |B|.
If f : A → B is a function, then f is not one-to-one.

Problem� 21.7.
Show that Q is infinite.

Problem 21.8.
Using only the definition of finite and the pigeonhole principle,
prove that R is infinite.

Problem 21.9.
Let A be a set, and suppose that B is an infinite subset of A. Show
that A must be infinite.

Problem 21.10.
Suppose that A is an infinite set, B is a finite set and f : A → B is a
function. Show that there exists b ∈ B such that f −1({b}) is infinite.



21. Finite Sets and an Infinite Set268

Problem 21.11.
Let X be an infinite set, and A and B be finite subsets of X. Answer
each of the following, giving reasons for your answers:

(a) Is A ∩ B finite or infinite?
(b) Is A \ B finite or infinite?
(c) Is X \ A finite or infinite?
(d) Is A ∪ B finite or infinite?
(e) If f : A → X is a one-to-one function, is f (A) finite or infinite?

Problem 21.12.
Let A, B, and C be finite sets.

(a) Recall that we showed that if A and B are disjoint, then A ∪
B is finite. Look over the proof outlined in Problem 20.9 and
determine |A ∪ B| in terms of |A| and |B|, assuming that A and
B are disjoint.

(b) Now suppose that A and B are not disjoint. Show that |A∪B| �
|A| + |B| − |A ∩ B|.

(c) Find a formula that works for three sets A, B, and C. (You don’t
need to prove that your formula works.)

Problem 21.13.
(a) Suppose that A and B are finite sets with |A| � m and |B| � n.

In Problem 20.11 you showed that if A and B are finite, then
A × B is finite. Look over the proof and determine |A × B| in
terms of m and n.

(b) Suppose that A1, A2, . . . , Ak are finite sets. Guess a formula for
the cardinality of A1 × A2 × · · · × Ak (in terms of |A1|, |A2|, . . .,
and |Ak|). Prove that your formula is correct.

Problem 21.14.
Each of the problems below is an application of one of the counting
principles given in Problems 21.12 and 21.13. Decide which part of
that problem applies, and use it to answer the problem.

(a) Thirty second graders, twenty-five third graders, and fifteen
fourth graders entered an art contest. Three prizes were
awarded, one for each grade. In how many ways can the prizes
be awarded to three of the children? (Don’t forget to say which
formula from Problem 21.12 or 21.13 applies.)
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(b) Suppose that there are 100 people in a room. Of these 55 are
men, 33 are Swiss, 10 are Swiss males. How many are Swiss
or male (or both)? (Don’t forget to say which formula from
Problem 21.12 or 21.13 applies.)

The rest of the problems are interrelated. If you can’t see how to do
the problem you are working on, look at the results from the previous
problems and Problem 21.12.

Problem 21.15.
Let A be a nonempty finite set with |A| � n and let a ∈ A. Prove
that A \ {a} is finite and |A \ {a}| � n − 1.

Problem 21.16.
(a) Suppose that A is a finite set and B ⊆ A. We showed that B is

finite. Show that |B| ≤ |A|.
(b) Suppose that A is a finite set and B ⊆ A. Show that if B 
� A,

then |B| < |A|.
(c) Show that if two finite sets A and B satisfy B ⊆ A and |A| ≤ |B|,

then A � B.

Problem 21.17.
Suppose that A and B are finite sets and f : A → B is one-to-one.
Show that |A| ≤ |B|.

Problem 21.18.
Let A and B be sets with A finite. Let f : A → B. Prove that | ran(f )| ≤
|A|.

Problem 21.19.
Let A be a finite set. Show that a function f : A → A is one-to-one if
and only if it is onto. Is this still true if A is infinite?
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Countable and
Uncountable
Sets

I see it but I do not believe it.—Georg Cantor[48, p. 997]

Having mastered finite sets, we now turn to understanding the
infinite. We know that N is infinite, and we know that Q is infinite
(see Problem 21.7). Are they equivalent? In some sense, we can
count N and it may feel as though we cannot count Q—that is, as
though we cannot list a first element, second element, third element,
and so on. However, we shall see that Q and N are, in fact, equivalent.

An infinite set A is said to be countably infinite if A ≈ N. In
Chapter 20 we showed that Z ≈ N and 2Z ≈ N, so these also are
countably infinite. It is also easy to show that Z+ � N \ {0} ≈ N. A
set is countable if it is either finite or countably infinite. A set is
said to be uncountable if it is not countable. Note that if we only
know that a set is countable we don’t necessarily know if it is finite
or infinite. If we have an infinite countable set, it automatically is
equivalent to N.

Exercise 22.1.
Let A and B be two countably infinite sets. Prove that there is a
bijection of A onto B.

271
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Theorem 22.2.
Every subset of N is countable.

The proof of this theorem will be presented as an exercise in
reading mathematics.

Exercise 22.3.
This is an exercise in reading a proof. We ask that as you read you
pretend that the set T (appearing in the proof) is the set of prime
numbers. Of course, you are not allowed to pick a particular subset,
call it T, and conclude that you have proved the theorem. However,
for the purpose of understanding someone else’s proof, this might
be quite helpful. We will call this set the demo, and denote it by T.
Whenever you see (?) you should figure out what happens for this
set. If at the end you remain largely unsatisfied, pick another set for
T and try again. No matter what, you’ll understand more of the proof
than if you hadn’t tried anything at all. So read the proof, think about
the question marks and then answer the set of questions provided
below.
1. What’s t1 in the demo?
2. Find f (1), . . . , f (5) in the demo. Remove these from T. What

remains in our demo? What is f (6) in the demo set T?
3. For one-to-one, we thought we had to show that if f (i) � f (j), then

i � j. What’s going on in this proof?
4. Say s � 17. What gets mapped to s? ©

The idea of the proof is the following: If T is an infinite subset of
N, we will construct a function f : Z+ → T recursively, listing the
elements of T in increasing order. Since the list is strictly increasing,
f will be one-to-one. And since the list is constructed to look at what
has been chosen and then move on to the next largest number in T,
it will also be onto. We now make these ideas precise.

Note that the (?)’s in this proof refer to Exercise 22.3. Once you
have worked through the exercise, you should be able to read through
the proof, ignoring the symbol (?) as you read.
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Proof.
Let T denote a subset of N. If T is finite, it is countable and we
are done.(?) We suppose, then, that T is infinite and show that it is
countably infinite. We now explicitly construct a bijection f : Z+ →
T. Since N ≈ Z+, as pointed out above, this will establish that T is
countable.(?)

Since T is a nonempty subset of N, the well-ordering principle
implies that T has a least element, which we will call t1.(?) Define
f (1) � t1.(?) Now suppose that we have defined f (1), . . . , f (n) and
define f (n + 1) as follows. Since T is not finite, T \ {f (1), . . . , f (n)}
is nonempty.(?) By the well-ordering principle, we may choose the
least element of this set, which we denote by tn+1.(?) Now f (n + 1)
may be defined by f (n + 1) � tn+1.

We first note that f is defined for every positive integer and there
is a unique value associated with each positive integer; in other
words, f is well-defined.

We will now show that the function f defined above is one-to-
one. So let i and j be positive integers with i 
� j. We will show that
f (i) 
� f (j). Since i 
� j, one of them must be strictly smaller than the
other, say i < j. Now f was constructed to make t1 < t2 < · · · < tn <

tn+1. It follows that ti < tj, and consequently f (i) 
� f (j). Thus f is
one-to-one.

Next we’ll show that f is onto. If s ∈ T, consider the set T1 �
{t ∈ T : t < s}.(?) Then T1 is finite (?), so there exists n ∈ Z+ such
that |T1| � n. Thus, there are n elements in T1 and these have been
enumerated by f as f (1) � t1, . . . , f (n) � tn. Now s ∈ T \ T1 and
anything that is in T and less than s is in T1, so s is also the least
element of the set T \T1 � T \{f (1), . . . , f (n)}.(?) Hence f (n+1) � s.
Therefore, f is onto. Since f is a bijection, T is countable.

As you read the theorems and corollaries below, think about
whether or not you know a corresponding result for finite sets. If
so, what was the proof? Do the ideas from those proofs help you
here? Why or why not? We leave the corollaries for you to prove in
Problems 22.6 and 22.7.

Corollary 22.4.
Every subset of a countable set is countable.
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Remember that when we say that a set is countable, we mean
that it is finite or countably infinite. The next exercise will often
allow you to handle both cases at once.

Exercise 22.5.
Prove that a nonempty set A is countable if and only if there exists
a one-to-one function f : A → N.

Theorem 22.6.
Suppose that A and B are countable. Then A ∪ B is countable.

Our proof begins with something we have used several times
before.

Proof.
If A ⊆ B or B ⊆ A, the result is clear. So suppose that A \ B and
B \ A are both nonempty. Now note that A ∪ B � A ∪ (B \ A) and
A ∩ (B \ A) � ∅. Since B \ A ⊆ B, Corollary 22.4 implies that B \ A

is countable. Further, A and B \ A are countable, so by Exercise 22.5
there exist one-to-one functions f and g such that f : A → N and
g : B \ A → N. Define H : A ∪ B → N by

H(x) �
{

2f (x) if x ∈ A

2g(x) + 1 if x ∈ B \ A
.

You can check (as you have many times before) that H is well-
defined and one-to-one. Using Exercise 22.5 once again, we conclude
that A ∪ B is countable.

Corollary 22.7.
The union of finitely many countable sets is countable.

In the next theorem, we want to show that N × N is equivalent
to N. It is oh, so tempting to go to the definition and try to define a
function that is a bijection from our set onto N; after all, that is the
definition of equivalence. But if we do everything using definitions,
we will not be taking advantage of the useful body of mathematics
we have proved thus far, and we will have to re-prove everything we
have done. Some of it was quite difficult to prove! Life will be much
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easier if we think about the theorems we have proved already and
see when and how we can use them.

Theorem 22.8.
The set N × N is countable.

Proof.
We show that N×N is countable by defining a function f : N×N → N
explicitly. So, define f (n, m) � 2n3m for all (n, m) ∈ N × N. (Note
that this function is not onto, since a number like 7 is not in the
range. Therefore, we will not try to show that f is a bijection between
N × N and N.) Since the prime factorization of a natural number
is unique, the function is one-to-one. Thus we have a one-to-one
mapping f : N × N → N. By Exercise 22.5, we conclude that N × N
is countable.

Though we did not say so explicitly, N × N is infinite. Therefore,
what we have shown is that N × N is equivalent to N.

Exercise 22.9.
Let A be a finite set and let B be a countable set. Prove that A × B is
countable. ©

Corollary 22.10.
If A and B are countable sets, then A × B is countable.

Assuming you were paying attention to all the previous results,
this will not be hard to prove (see Problem 22.8).

We are now ready for the two main theorems of this chapter. After
all this work, we can finally show that the set of rational numbers is
countably infinite.

Theorem 22.11.
The set of rational numbers, Q, is countably infinite.

What follows is a natural way to attempt to prove this. It is, unfor-
tunately, incorrect. But it’s worthwhile to present it, see what goes
wrong, and fix it.



22. Countable and Uncountable Sets276

Not a proof.
The rationals can be thought of as p/q where p and q are integers
with q 
� 0. Thus, we can define a map from Q to Z × (Z \ {0})
by f (p/q) � (p, q). Then f is bijective, so Q ≈ Z × (Z \ {0}). By
Corollary 22.10, the latter set is countable. Thus we conclude that Q
is countable. �?

As we mentioned (though not quite this dramatically) there’s a
HUGE error in this proof. Find it, fix it, and then read on and see if
you really figured it out.

The problem above was that the function was not well-defined.
So let’s try again. In the proof below, we begin by considering the
positive rationals so that we don’t have to worry about whether to
put the minus sign in the numerator or denominator.

Proof; the real thing.
We will begin by showing that Q+ is countable. We define f : Q+ →
N × N as follows. Write each member of Q+ as p/q where p, q > 0
and p/q is in reduced form; that is, p and q have no positive com-
mon factor other than 1. Now define f (p/q) � (p, q). Because p/q

is in reduced form, f is well-defined and one-to-one. Since N × N
is countable (Theorem 22.8), and f (Q+) is a subset of it, we know
from Corollary 22.4 that f (Q+) is countable. Hence Q+ is countable.
Now the set of negative rationals, Q−, is equivalent to Q+. Since
Q � Q+ ∪ Q− ∪ {0}, and we have a finite union of countable sets, we
use Corollary 22.7 to conclude that Q is countable. Since Q is infinite
we know that it is countably infinite.

Looks like we live in a countable world! Not quite—it’s time to
give an example of an uncountable set. The next theorem will show
that the set of real numbers is uncountable.

There’s one sticky point in our proof that the reals are uncount-
able. We will use the decimal representation of real numbers in (0, 1).
Thus, a word about decimal expansions is in order here. Each ele-
ment of (0, 1) has a decimal representation; that is, for x ∈ (0, 1),
there exist integers a1, a2, . . . , an, . . . with 0 ≤ an ≤ 9 such that
x � 0.a1a2 . . . an . . . . In Problem 19.10, we showed that 0.999 . . . �
1.000 . . . . This means that the number 1 has two representations.
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In fact, many numbers in (0, 1) have two decimal representations.
It can be shown, however, that the only time this can happen is
when the representations are of the form 0.a1a2a3 . . . an999 . . . for
some n ∈ Z+, or 0.a1a2a3 . . . am1000 . . . for some m ∈ Z+. When
given a choice, we will always choose the representation ending
with repeated 9’s.

Theorem 22.12.
The set of real numbers, R, is uncountable.

The idea of this proof is due to Georg Cantor and is called Cantor’s
diagonalization argument.

Proof.
We will suppose, to the contrary, that R is countable and see what
happens. Since every subset of a countable set is countable, the open
interval (0, 1) must be countable, too. Since (0, 1) is clearly infinite,
and we have shown that Z+ is countably infinite, there exists a bi-
jective function f : Z+ → (0, 1). We will list the values of f using the
decimal expansion of each element of (0, 1). So,

f (1) � 0.a11a12a13 . . .

f (2) � 0.a21a22a23 . . .

f (3) � 0.a31a32a33 . . .
...

where each aij represents an integer between 0 and 9. Since f is onto,
each number in (0, 1) appears in this list.

The odd thing is this: we can construct a number b � 0.b1b2 . . . ∈
(0, 1) not in this list (hence showing that our function cannot possibly
be onto) by describing its decimal representation as follows. Look at
f (1). If a11 � 2 let b1 � 3. If, on the other hand, a11 
� 2, define
b1 � 2. Then the first digits of f (1) and b are different, so b is not
f (1). For b2, if a22 � 2, let b2 � 3. If, on the other hand, a22 
� 2,
define b2 � 2. Then the second digits of b and f (2) are different. So
b is not f (2). Now compare the element b we have constructed with
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the list below:

f (1) � 0.a11a12a13 . . .

f (2) � 0.a21a22a23 . . .

f (3) � 0.a31a32a33 . . .
...
f (n) � 0.an1an2an3 . . . ann . . .

b � 0.b1b2b3 . . .

We constructed b so that bn 
� ann, and therefore b 
� f (n) for every
n. Then b can’t be in our list, which is a bit bizarre since we claim
to have numbered all the elements in (0, 1), and b is certainly one
of the things we numbered. This contradiction must mean that we
have assumed falsely that R is countable.

A word of caution: students often forget that some of the theo-
rems proved in previous chapters and some of the definitions only
apply to finite sets. Since the notion of finite and infinite is often
counter-intuitive, you really must make sure that you check the hy-
potheses of the theorems you wish to apply before you apply the
theorems.

Reactions to Cantor’s work in set theory were mixed (see, for
example, [48, p. 1003]). Leopold Kronecker opposed Cantor’s theory
and so did Henri Poincaré. In a discussion of Cantor’s work, Poincaré
[65] said “For my part, and I am not alone, I think that the important
thing is never to introduce objects other than those that can be com-
pletely defined in a finite number of words.”1 Hilbert and Russell
praised Cantor’s work; in fact, the first question Hilbert stated in his
address to the International Congress of Mathematicians in 1900 had
to do with Cantor’s set theory (see Spotlight: Hilbert’s Seventh Prob-
lem, Chapter 27). And, in Hilbert’s memorial speech for Hermann
Minkowski, Hilbert points out that Minkowski was the first mathe-
matician of their time who understood the importance of Cantor’s
work. He quotes Minkowski as saying, “History will call Cantor one

1The translation is ours.
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of the most profound mathematicians of our time; it is truly regret-
ful that a very prominent mathematician [here Hilbert tells us that
this mathematician is Kronecker] led an opposition not based en-
tirely upon factual grounds, which spoiled Cantor’s pleasure in his
scientific investigations.”2

Solutions to Exercises

Solution to Exercise (22.1).

Proof.
Since A and B are countably infinite, we know that A ≈ N and
B ≈ N. By the transitivity (and symmetry) of the relation ≈, we may
conclude that A ≈ B. By the definition of this equivalence relation,
there exists a bijective function f mapping A onto B.

Solution to Exercise (22.5).
First suppose that A is countable. If A is finite, then since A 
� ∅ there
exists an integer n and a bijection f : A → {1, 2, . . . , n}. In particular,
f is a one-to-one mapping of A into N. So we have found our f , if A is
finite. If A is infinite, then A is countably infinite. Therefore, there
is a bijection f : A → N. Thus, in both cases, we have a one-to-one
mapping f : A → N.

Now suppose that we have a one-to-one mapping f of A into N.
Then f maps A onto its range. Therefore A ≈ ran(f ). But ran(f ) is a
subset of N, and by Theorem 22.2 we know that it must be countable.
Thus A is countable, as desired.

Solution to Exercise (22.9).
Here’s one way to prove this:

2The translation is ours.
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Proof.
If A � ∅, then A×B is empty and we are done. Otherwise there exists
a positive integer n and a bijective function f : {1, 2, . . . , n} → A.
Thus we may write A × B as a union: A × B � ⋃n

j�1

({f (j)} × B
)
. It is

easy to check that for each j the function gj : B → {f (j)} × B defined
by gj(b) � (f (j), b) is a bijection. Therefore, {f (j)}×B is countable for
each j. Thus, we have written A × B as a finite union of countable
sets, and by Corollary 22.7 we know that a finite union of countable
sets is countable. Thus A × B is countable.

Problems

Problem 22.1.
Give an example, if possible, of each of the following:

(a) a countably infinite collection of pairwise disjoint finite sets
whose union is countably infinite; (See Problem 8.11 for the
definition of pairwise disjoint.)

(b) a countably infinite collection of nonempty sets whose union
is finite;

(c) a countably infinite collection of pairwise disjoint nonempty
sets whose union is finite.

Problem 22.2.
Which of the following sets are finite? countably infinite? uncount-
able? (Be careful—don’t apply theorems for finite sets to infinite
sets!) Give reasons for your answers for each of the following:

(a) {1/n : n ∈ Z \ {0}};
(b) R \ N;
(c) {x ∈ Z : |x − 7| < |x|};
(d) 2Z × 3Z;
(e) the set of all lines with rational slopes;
(f) Q \ {0};
(g) N \ {1, 3}.
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Problem 22.3.
Is the set of all infinite sequences of 0’s and 1’s finite, countably
infinite, or uncountable? Guess and then prove, please.

Problem 22.4.
Suppose that A ⊆ B ⊆ C, that the sets A and C are equivalent, and
that C is countable. Is A ≈ B? Prove or give a counterexample.

Problem 22.5.
(a) Give an example of two sets A and B, such that B ⊆ A and

B ≈ A, but B 
� A.
(b) Prove that if A is a countably infinite set, then there is always

a subset B of A such that B ⊂ A and B ≈ A.
(c) Prove that if A is an uncountable set, then there is always a

subset B of A such that B ⊂ A and B is also uncountable.
(d) Prove that if A is a finite set, B ⊆ A and B ≈ A, then B � A.

Problem 22.6.
Prove Corollary 22.4.

Problem 22.7.
Prove Corollary 22.7. To do this, note that the corollary can be re-
stated a bit more formally as follows. If we have sets A1, . . . , An, and
each one is countable, then

⋃n
i�1 Ai is countable.

Problem 22.8.
Prove Corollary 22.10.

Problem 22.9.
There is another way to show that Q is countable. Turn the outline
below into a proof by describing the counting process. (Don’t try to
find a formula for the function.)

Outline of proof.
The proof is simplest if we show that the positive rationals, Q+, is
a countably infinite set. You showed in the exercises (and it is easy
to see) that Q− ≈ Q+. Then Q � Q+ ∪ Q− ∪ {0} is infinite and
countable, so Q ≈ N. So we will restrict our attention to Q+. To see
that Q+ is countable, we will make a chart of all the fractions of the
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form m/n where m and n are positive integers; that is, we consider
the following array of numbers:

1 2
1

3
1

4
1 . . .

1
2

2
2

3
2

4
2 . . .

1
3

2
3

3
3

4
3 . . .

1
4

2
4

3
4

4
4 . . .

. . . . . . . . . . . . . . .

Try counting the elements in the array in an orderly fashion.
Make sure you don’t count numbers twice!

Problem 22.10.
Prove the following generalization of Corollary 22.7.

Theorem 22.13.
If Ai is countable for all i ∈ Z+, then

⋃
i∈Z+ Ai is countable.

Note that induction will not work here. We suggest that you adapt
the ideas of the alternate proof of Theorem 22.11 outlined in
Problem 22.9.
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Metric Spaces

There are many ways to measure distance in the spaces in which
we live and work. For example, if you want the shortest distance
between two geographical places (the distance “as the crow flies”),
you follow the line segment joining them. But in real life this isn’t
always possible. If you are driving your car through a city or across
your campus, you need to go around solid objects and not through
them. So how do we calculate distance in those cases? Measuring
distance in a set X is a very small (but interesting) part of a branch
of mathematics known as “point set topology,” and we will look at it
in detail in this chapter. We will now often refer to the elements of
X as points.

So let’s go back to the first time you measured distance. It was
probably in R, on a number line, and you learned that the distance
between two points x and y was the absolute value of the difference
of the two numbers. If we write d(x, y) � |x −y|, then d is a function
and d : R×R → R. That’s straightforward enough, but now we want
to generalize our concept of distance. So let’s turn to the essential
properties of a distance function.

First, distance shouldn’t be negative, so d(x, y) ≥ 0 for two points
x and y, and if the distance satisfies d(x, y) � 0, then you didn’t
move anywhere, so x � y. You also surely believe that distance from

283
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x to y should be the distance from y to x. And finally, in Theorem 5.5
(Problem 5.9) you learned the triangle inequality, which said that “if
x and y are two real numbers, then |x+y| ≤ |x|+|y|.” In Problem 19.1,
you showed how to switch the triangle inequality into a statement
about distances. We recall the result of that problem here: For real
numbers x, y, and z

|x − y| ≤ |x − z| + |z − y|.
In English, this means that our path will be shorter if we go

directly from x to y as opposed to taking a detour through z, which
is as it should be. So we would want our general distance function
to satisfy something like this too; that is, in our new “d” notation we
want d(x, y) ≤ d(x, z) + d(z, y) for arbitrary points x, y, and z. So now
we will define something that acts like a distance on an arbitrary set
X and does all the important things that a distance should do.

Let X be a nonempty set. Then a metric on X is a function
d : X × X → R satisfying (i)–(iv) below.

(i) (Nonnegativity) For all x, y ∈ X, the function d satisfies
d(x, y) ≥ 0.

(ii) (Definiteness) For all x, y ∈ X, the function d satisfies d(x, y) �
0 if and only if x � y.

(iii) (Symmetry) For all x, y ∈ X, the function d satisfies d(x, y) �
d(y, x).

(iv) (Triangle inequality) For all x, y, z ∈ X, the function d satisfies

d(x, y) ≤ d(x, z) + d(z, y).

A metric is also called a distance function. A set X together with
the metric d is called a metric space and is denoted by (X, d), or just
X when it is clear which distance function we are using. Conditions
(i) and (ii) together are usually called positive definiteness.

When you learn the definition, don’t forget to say “Let X be a
nonempty set. Then a metric on X is a function d : X × X → R . . .”
These sentences tell us something about d, and cannot be omitted.

In the introduction, we showed that a metric can be defined on
R by du(x, y) � |x − y|. Though we outlined how to show that du

is a metric, you should write out the details to complete the proof.
This metric is often called the usual metric (hence the subscript u)
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or the Euclidean metric on R, and it is the one upon which your
intuition is almost certainly based. A set can have lots of metrics.
The next example is a metric on R that is not the same as the metric
given by the absolute value.

Example 23.1.
Define a metric dd : R × R → R by

dd(x, y) �
{

0 if x � y

1 if x 
� y
.

We will show that dd is a metric on R. This metric is called the
discrete metric, and it can really challenge your intuition.

Proof.
It is clear that dd is a function from R × R → R. Now let x and
y be points of R. We begin with nonnegativity: dd(x, y) � 0 or
dd(x, y) � 1, so clearly dd(x, y) ≥ 0. Thus, the nonnegativity con-
dition holds. Furthermore, since dd(x, y) � 0 if and only if x � y,
the definiteness condition holds. For symmetry, note that if x 
� y,
then y 
� x and consequently dd(x, y) � 1 � dd(y, x). If x � y, then
dd(x, y) � 0 � dd(y, x), establishing symmetry. Finally, to establish
the triangle inequality, note that if z is a point of R, then we have two
cases to consider. In the first case, if x � y, then dd(x, y) � 0 and the
nonnegativity condition implies that dd(x, y) � 0 ≤ dd(x, z)+dd(z, y).
In the second case, x 
� y, which implies that z 
� x or z 
� y (or
both). Therefore, either dd(x, z) � 1 or dd(z, y) � 1 (or both). Thus,
dd(x, y) � 1 ≤ dd(x, z) + dd(z, y), completing the proof of the triangle
inequality.

The discrete metric can be defined on every space: the distance
between two distinct points is one, and the distance from a point to
itself is necessarily zero. The proof that this is a metric on a set X

is indistinguishable from the one above. Thus we have an example
of a metric on R2. Example 23.2 and Exercise 23.3 provide us with
some other metrics on R2.
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Example 23.2.
On R2 define a metric by

du((x1, x2), (y1, y2)) �
√

(x1 − y1)2 + (x2 − y2)2.

Using Project 27.9, it can be shown that this is actually a metric on
R2. For now, you may accept this fact. This metric is referred to as
the usual metric or the Euclidean metric on R2. In fact, one may
also define the usual metric on Rn by

du((x1, x2, . . . , xn), (y1, y2, . . . , yn)) �
√√√√ n∑

j�1

(xj − yj)2.

©

Exercise 23.3.
We now have two examples of metrics on R and two on R2. Here are
two more metrics on R2. Before you begin the exercise, familiarize
yourself with the metrics by computing various distances. For exam-
ple, try to find the distance from the point (1, 3) to the points (−3, 4)
using the various metrics below.

(a) Show that dtc((x1, x2), (y1, y2)) � |x1 − y1| + |x2 − y2| is a metric
on R2. This metric, dtc, is called the taxicab metric. Why would
it be called that?

(b) Show that dm((x1, x2), (y1, y2)) � max{|x1 − y1|, |x2 − y2|} is also
a metric on R2. The metric dm is sometimes called the max
metric. ©

The two examples introduced in Exercise 23.3 will appear again
in the near future.

A metric tells us when points are close. We studied the notion of
“closeness” in Chapter 19 when we studied convergent sequences.
You can picture convergence of a sequence to the number L in the
following way: a sequence converges to L if for every ε > 0, the
sequence eventually lies in the open interval (L − ε, L + ε); more
precisely, the definition of convergence said, “There exists a real
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number L such that for every ε > 0, there exists a real number
N such that |xn − L| < ε for all n ≥ N .” We return to the idea of
finding the limit of a sequence, but this time in a metric space. So
given a sequence (xn) of points in a metric space (X, d), then (as
we did before) we say that (xn) converges in X if there exists a
point x ∈ X such that for every ε > 0, there exists a real number N

such that d(xn, x) < ε for all n ≥ N . The value x is called the limit
of the sequence, we say that the sequence converges to x and, as
before, we write xn → x or limn→∞ xn � x. If the sequence does
not converge, we say that it diverges. If we consider X � R with
the usual metric, this is exactly the same definition that we had in
Chapter 19. Since we allow all sorts of choices for X now, we would
like to take this opportunity to point out that the point x must be in
the space X—not in some larger space that happens to contain X. If
it is clear that x belongs to X, we will often say that the sequence
converges, rather than “the sequence converges in X.” Also, note
that as the metric d changes, the distance between pairs of points
changes as well. Therefore, it is conceivable that some sequences
will converge in one metric, but not in another.

Exercise 23.4.
Complete the sentences.

(a) Let (xn) be a sequence in a metric space X with metric d. Let
x ∈ X. Then (xn) does not converge to x if . . . .

(b) Let (xn) be a sequence in a metric space (X, d). Then (xn) does
not converge if . . . .

We’ll break tradition and give you the answer to part (a) of the
above exercise here, because we need it: A sequence (xn) does not
converge to x if there exists an ε > 0 such that for every real number
N , there exists m ∈ N such that m ≥ N and d(xm, x) ≥ ε. While an
answer to (b) might read “a sequence (xn) does not converge if for
every x ∈ X, the sequence does not converge to x,” this will probably
not be the most useful formulation of the answer. We leave the more
useful version to you. ©
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Example 23.5.
We know that 1/n > 0 in R with the usual metric. Show that
(1/n, 1/n) (0, 0) in R2 with the usual metric.

Proof.
Let e > 0, and let N be a real number with N > \[2/e. If n is an
integer with n N, then

du((1/n, 1/n), (0, 0)) = (1/n 0)2 + (1/n 0)2

< 2/N (since n N)
(as N

See Figure 23.1 for a graphical illustration of this convergent
sequence. •

You may wonder where we came up with y/2/e. We did it by un-
derstanding the problem and devising a plan by working backwards.
So what you see here is what happened after we went to a separate
sheet of paper, and started with the inequality V2/n < e.

Example 23.6.
In Chapter 19, we showed that the sequence (1/n) converges to 0
in R with the usual metric. Does (1/n) converge to 0 in the discrete
metric?

R2

FIGURE 23.1 (1/n, 1/n) (0, 0)
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We claim that the sequence (in R with the discrete metric) does
not converge to 0. To see this, let ε � 1/2. For every N ∈ R, there
exists an integer n ≥ N . Since 1/n 
� 0, we know that dd(1/n, 0) � 1.
Hence for ε � 1/2, and for every N ∈ R, there exists an integer
n ≥ N such that xn � 1/n satisfies dd(xn, 0) � dd(1/n, 0) � 1 ≥ 1/2.
Thus (1/n) does not converge to 0. ©

In the discrete metric, every point is “far” from every other point.
This makes it very hard to converge.

Exercise 23.7.
Consider R with the discrete metric. Describe the convergent
sequences in this metric space. ©

Sequences have many important properties, some of which we
discuss in the problems. The proofs are often quite similar to the
proofs we did in Chapter 19. At this point, we give one example of a
theorem with such a proof.

Theorem 23.8.
If a sequence (xn) in a metric space (X, d) converges, then the limit is
unique.

The proof of this is the same as the proof of Theorem 19.7.

Solutions to Exercises

Solution to Exercise (23.3).
Parts (a) and (b) are very similar, so we will work part (a) only.

By definition dtc is a function from R × R to R. Now let (x1, x2)
and (y1, y2) be elements of R2. We will first show the nonneg-
ativity. Because |a| ≥ 0 for all real numbers a, we know that
dtc((x1, x2), (y1, y2)) � |x1 − y1| + |x2 − y2| ≥ 0, showing that
nonnegativity of dtc holds. For definiteness, we point out that
dtc((x1, x2), (y1, y2)) � 0 if and only if |x1 − y1| + |x2 − y2| � 0. This
last equality holds if and only if |x1 − y1| � 0 and |x2 − y2| � 0.
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This, in turn, holds if and only if x1 � y1 and x2 � y2; in other
words, (x1, x2) � (y1, y2). This string of equivalences establishes the
definiteness of dtc. Symmetry is shown as follows:

dtc((x1, x2), (y1, y2)) � |x1 − y1| + |x2 − y2|
� |y1 − x1| + |y2 − x2|
� dtc((y1, y2), (x1, x2)).

To prove that the triangle inequality holds for dtc, let (z1, z2) ∈ R2.
Then

dtc((x1, x2), (y1, y2)) � |x1 − y1| + |x2 − y2|
≤ |x1 − z1| + |z1 − y1| + |x2 − z2| + |z2 − y2|

(by the triangle inequality in R)

� (|x1 − z1| + |x2 − z2|) + (|z1 − y1| + |z2 − y2|)
� dtc((x1, x2), (z1, z2)) + dtc((z1, z2), (y1, y2)).

This shows that dtc is a metric on R2. The taxicab metric between
two points measures the distance you have to travel from one point
to the next in a city built with rectangular blocks, assuming you stay
on the streets, do not take detours, and don’t have to worry about
one-way streets.

Solution to Exercise (23.4).
The solution to part (a) was given earlier following the exercise, so
here is the solution to part (b).

The sequence (xn) does not converge in the metric space (X, d) if
for every x ∈ X there exists a real number ε > 0 such that for every
real number N , there exists m such that m ≥ N and d(xm, x) ≥ ε.

Solution to Exercise (23.7).
We claim that a sequence (xn) in (R, dd) converges if and only if there
exist real numbers x and M such that xn � x for all n ≥ M. (Such a
sequence is called an eventually constant sequence.)

First assume that (xn) is a sequence for which there exist real
numbers x and M satisfying xn � x for all n ≥ M. We will show that
xn → x. Let ε > 0 and let N � M. Then for n ≥ N we know that
dd(xn, x) � dd(x, x) � 0 < ε, which shows that (xn) converges.
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For the converse, assume that (xn) converges. Consider ε � 1/2.
Then there exists N such that dd(xn, x) < 1/2 for n ≥ N . By the
definition of dd, the only way that this can happen is if xn � x for
n ≥ N . Taking M � N , we have shown that there exist x and M such
that xn � x for all n ≥ M, as desired.

Problems

Unless otherwise specified, assume that you are working in a general
metric space (X, d).

Problem 23.1.
(a) Suppose a student writes the following: A metric is a function

satisfying (i)–(iv) below.
(i) (Nonnegativity) d(x, y) ≥ 0,
(ii) (Definiteness) d(x, y) � 0, if and only if x � y,
(iii) (Symmetry) d(x, y) � d(y, x), and
(iv) (Triangle inequality) if z is a point in X, then

d(x, y) ≤ d(x, z) + d(z, y).

Write this student a letter indicating what was omitted
from the definition, what must be inserted, and what else (if
anything) needs to be changed to make it a correct definition.

(b) Suppose the student had exactly the same definition as in the
text, except for the triangle inequality, where the student has “
d(x, y) ≤ d(x, z) + d(z, y) for some z ∈ X.”

Write a correct, careful, and complete response to this
student.

Problem 23.2.
(a) In R, find the distance of the number 1 to the number 3 in the

usual metric and in the discrete metric.
(b) In R2, find the distance of the point (1, 3) to the point (2, 5) in

the usual metric, the taxicab metric, the max metric, and the
discrete metric.
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Problem 23.3.
(a) Sketch the set {(x, y) ∈ R2 : du((x, y), (0, 0)) < 1}, where du is

the usual metric.
(b) Sketch the set {(x, y) ∈ R2 : dtc((x, y), (0, 0)) < 1}, where dtc is

the taxicab metric.
(c) Sketch the set {(x, y) ∈ R2 : dm((x, y), (0, 0)) < 1}, where dm is

the max metric.
(d) Sketch the set {(x, y) ∈ R2 : dd((x, y), (0, 0)) < 1}, where dd is

the discrete metric.
(e) Sketch the set {(x, y, z) ∈ R3 : du((x, y, z), (0, 0, 0)) < 1}, where

du is the usual metric. (See Example 23.2 for the definition if
you need it.)

Problem 23.4.
(a) We defined the max metric on R2. Define the max metric on

Rn and prove that it is a metric.
(b) We defined the taxicab metric on R2. Define the taxicab

metric on Rn and prove that it is a metric.

Problem 23.5.
(a) Show that d : R × R → R defined by

d((x1, x2), (y1, y2)) � |x1 − y1|
is not a metric on R2.

(b) Is d : R × R → R defined by

d((x1, x2), (y1, y2)) � (x1 − y1)2 + (x2 − y2)2

a metric on R2?

Problem 23.6.
Let (X, d) be a metric space. Let α be a real number and define a
new function dα on X × X by dα (x, y) � αd(x, y). Is dα a metric on
X? If not, what assumptions must be placed on α to assure that dα is
a metric? Prove your answer.

Problem 23.7.
A set F in a metric space (X, d) is bounded if there exists a positive
number M such that d(x, y) ≤ M for all x, y ∈ F .
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(a) Consider the following “not a definition” of a bounded set.
“A set is bounded if for each x, y ∈ F there exists a positive
number M such that d(x, y) ≤ M.”
Give a complete, clear, concise explanation of the problems
with this definition.

(b) Give an example of a metric space and an infinite set that is
bounded in that metric. Prove that it is bounded.

(c) Complete the following definition: Let X be a metric space with
metric d and let F be a subset of X. Then F is not bounded if
. . . .

(d) Give an example of a metric space and a set that is not bounded
in that metric. Prove that it is not bounded.

Problem 23.8.
Let X be a set with a metric d. Define a function db : X × X → R by

db(x, y) � min{d(x, y), 1}.

(a) Show that db is a metric on X. This metric is called the bounded
metric associated with d on X.

(b) (This part uses Problem 23.7.) Consider the metric space
(X, db). Show that in this space, every subset of X is bounded.

Problem 23.9.
Show that in a metric space (X, d) the metric satisfies

|d(x, z) − d(y, z)| ≤ d(x, y),

for all x, y, z ∈ X.

Problem 23.10.
Let X be the space of polynomials with real coefficients. Define a
function d from X × X → R by d(p, q) � |p(0) − q(0)|. Is d a metric?
If so, prove it. If not, why not?

Problem 23.11.
The following exercise is only appropriate if you have had integration in
calculus.
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Let X be the space of real-valued continuous functions defined
on the interval [0,1]. Define a function d : X × X R by

= f
Jo

for all f,g X.
(a) Show that d is a metric.
(b) Find the distance between ex and sin(πx/2).

Problem 23.12.
Choose a fixed point X0 in R2. If du denotes the usual (or Euclidean)
metric on R2, then we define d : R2 × R2 R by

I du(x, y) if x and y are on a straight

line through x0
du(x, X0) + du(x0, y) otherwise.

Figure 23.2 illustrates this function for three pairs of points in the
plane. Prove that d is a metric on R2.

This metric is sometimes called the "French railway system met-
ric." (See [39, p. 56].) Why? Think of x0 as Paris, and you'll note that
all trains pass through Paris, whether they need to or not.
Problem 23.13.
Prove each of the following.

(a) Consider R2 with the max metric. Prove that (1/n, 2/n) >
(0,0).

(b) Consider R with the usual metric. Prove that ( 1)nn/(3n+1) •
0.

x3

FIGURE 23.2 The metric: d(xi, yi) for i = 1, 2, 3
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(c) Consider R2 with the max metric. Does ((−1)n, 2/n)) converge
in this space?

Problem 23.14.
Consider Z with the usual metric.

(a) Show that a sequence that is eventually constant converges;
that is, if there exists an integer m such that xn � xk for all
n, k ≥ m, then the sequence converges.

(b) Can you give other examples of convergent sequences in
(Z, du)? Explain your answer.

Problem 23.15.
Let (X, d) be a metric space, and let (xn) be a convergent sequence
in X.

(a) Prove that there exists x ∈ X and a natural number K such that

d(xn, x) ≤ K for all n ∈ N.

(You should know a similar problem.)
(b) Prove that the set {xn : n ∈ N} is bounded, as defined in Problem

23.7; that is, prove that there exists a positive number M such
that d(xn, xm) ≤ M for all n, m ∈ N.

Problem 23.16.
In Problem 19.14, part (c), we defined the term Cauchy sequence
and proved some facts about such sequences. This problem asks you
to do the same in a general metric space.

(a) Define Cauchy sequence in a metric space (X, d).
(b) Prove that if (xn) converges in (X, d), then (xn) is Cauchy.

Problem 23.17.
(This problem uses Problem 23.16.) Let X � R \ Q with the usual
metric du. Prove that the sequence (xn), where xn � √

2/n, is a
Cauchy sequence in X, but (xn) does not converge in X.
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C H A P T E R

...........................................

Getting to
Know Open
and Closed Sets

When we work in R with the usual metric, we think of distance
as measured by absolute value. Points are close when the absolute
value of the difference is small. In other words, we might reasonably
argue that points x and y are close when they satisfy |y − x| < r,
where r is a small positive number; that is to say, y is in the open
interval (x − r, x + r). This interpretation allows us to visualize the
distance between the points. As it turns out, all metrics have this
visual interpretation.

Let x be a point in a metric space (X, d) and let r be a real number
with r > 0. Then the open ball of radius r about x is denoted
Bd(x, r) and is defined by Bd(x, r) � {y ∈ X : d(y, x) < r}. We will
call Bd(x, 1) the open unit ball about x. Note that the radius of the
open ball Bd(x, r) is always positive, and Bd(x, r) is centered at x. This
is quite an important definition, and we will be able to do a lot with
it. But remember, before you work an example, state a theorem or
write a proof, make sure that you and your intended reader are clear
on the space you are working on, the metric you are using, and what
you want to show.

297
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Example 24.1.
Consider the set R with the usual metric. What does Bdu

(1, 1/2)
mean? What is Bdu

(x, r), for an arbitrary x ∈ X and r > 0?

By definition, Bdu
(1, 1/2) � {y ∈ R : du(y, 1) < 1/2}. The notation

is preventing us from seeing something we all know pretty well, so
let’s get rid of it. Rewriting,

Bdu
(1, 1/2) � {y ∈ R : |y − 1| < 1/2}

� {y ∈ R : −1/2 < y − 1 < 1/2}
� {y ∈ R : 1/2 < y < 3/2}
� (1/2, 3/2).

Figure 24.1 shows Bdu
(1, 1/2) graphically.

Now the solution of the general case is the same (there’s also a
sketch of what’s happening in Figure 24.2): By definition, Bdu

(x, r) �
{y ∈ R : du(y, x) < r} � {y ∈ R : |y − x| < r} � {y ∈ R : −r <

y − x < r} � {y ∈ R : x − r < y < x + r} � (x − r, x + r). Therefore,
Bdu

(x, r) � (x − r, x + r). ©

FIGURE 24.1 Bdu
(1, 1/2)

x - r                   x                   x + r

FIGURE 24.2 Bdu
(x, r)
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The next example shows that the open balls depend on what the
underlying set X is.

Example 24.2.
Consider the set X � [0, 1) with the usual metric. What is
Bdu

(1/4, 2/3)?

Since the center is x � 1/4 and the radius is r � 2/3, we find

Bdu
(1/4, 2/3) � {x ∈ [0, 1) : |x − 1/4| < 2/3}

� {x ∈ [0, 1) : −2/3 < x − 1/4 < 2/3}
� {x ∈ [0, 1) : −5/12 < x < 11/12}
� [0, 11/12). ©

Now it’s your turn.

Exercise 24.3.
Consider the set R2 with the usual metric (defined in Example 23.2).
What is the set Bdu

((0, 1), 4)? Describe the set using precise set
notation and sketch it. ©

These balls can be used to describe the basic structure of met-
ric spaces. For example, for two distinct points x and y in a metric
space, we can always find two disjoint open balls, Bx and By, such
that x ∈ Bx and y ∈ By. This probably agrees with your intuition. On
the other hand, as we shall see, there exist metric spaces in which
sets consisting of a single point are open balls! In the remainder of
this chapter, we will see how these balls can be used to determine
which sequences converge. But before we can develop the connec-
tion between balls and convergence, we need to look at some of the
important sets we can make using these balls together with the set
operations we studied earlier.

In a metric space (X, d), a subset U of X is open if for every point
x ∈ U , there exists an open ball Bd(x, r) satisfying Bd(x, r) ⊆ U . Note
that r depends on x, so that as x changes, r will too. This definition
is very visual, so pictures will help you. A word of caution is in
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order before we begin our examples: Throw away any preconceived
notions you have about what an open ball should look like.

Example 24.4.
Show that the interval (2, 4) is open in R with the usual metric.

You may be thinking that there’s nothing to show; after all, it’s
an open interval. But we still need to use the definition to check
that this interval is open in the sense we have defined here, so let’s
briefly review exactly what we have to show.

We will show that for every x ∈ (2, 4), there is an open ball
Bdu

(x, r) ⊆ (2, 4). We know our metric is the usual one, so by Ex-
ample 24.1, we know we need to show that there exists a positive
number r with (x − r, x + r) ⊆ (2, 4). To find r, you should draw
pictures whenever you can. Before you read our solution, find your
own following this outline: first, draw and label an appropriate pic-
ture, which you will then use as you continue on in this proof. Next,
pick an arbitrary point x ∈ (2, 4). Now, we need to find a positive
number r with Bdu

(x, r) � (x − r, x + r) ⊆ (2, 4). Look at your picture
to find a possible value of r. Then show that it works.

Proof.
We will prove that (2, 4) is open. Let x ∈ (2, 4). Then 2 < x < 4, so
both x−2 and 4−x are positive. Let r � min{x−2, 4−x}. (See Figure
24.3.) Then r > 0. Now we’ll check that Bdu

(x, r) ⊆ (2, 4). So let y ∈
Bdu

(x, r). Then, by definition, |y− x| < r. Therefore, −r < y− x < r.
From the upper inequality we obtain y−x < 4−x, and hence y < 4.
From the lower inequality we obtain −(x − 2) < y − x, and hence
2 < y. Thus, y ∈ (2, 4), and we conclude that Bdu

(x, r) ⊆ (2, 4).

2                                    4

x - r        x       x + r

FIGURE 24.3 Bdu
(x, r) ⊆ (2, 4)
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A few questions and comments are in order. First, don’t forget to
check that r > 0. An open ball of 0 radius, or (worse yet) negative
radius, is no ball at all. Choosing r as the minimum of finitely many
real numbers is a pretty standard thing to do, so it’s a good idea to
get used to it now. And finally, there are lots of choices for r. We
picked one value that worked. Every smaller positive value would
work too.

Exercise 24.5.
Let (X, d) be a metric space and let U ⊆ X. Complete the sentence:
The set U is not open in (X, d) if . . . .

This is one of those exercises where you will want to check your
solution against ours before you go on. So here’s ours: The set U is
not open in (X, d) if there exists a point x ∈ U such that for every
open ball Bd(x, r) about x, there exists a point y ∈ Bd(x, r) ∩ Uc. ©

Exercise 24.6.
Show that the interval [2, 4] is not open in R with the usual metric.

©

Exercise 24.7.
The setting: R2 with the usual metric. Your mission: to show that the
open unit ball, Bdu

((0, 0), 1), about (0, 0) is open.

Let the following steps guide you:

(a) Sketch the open ball of radius 1 about the point (0, 0).
(b) Without thinking too much about it, choose a point in the open

ball (make sure you don’t choose (0, 0)). Make a dot at the point,
and label it (a, b).

(c) Draw as large an open ball as you can that is still contained in
Bdu

((0, 0), 1) and centered at your dot (a, b). What’s the radius
of that open ball? (Here’s a potentially helpful suggestion: draw
the radius of the open ball Bdu

((0, 0), 1) that passes through the
point (a, b).)
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(d) Now you are ready to start the problem. Find a positive real
number r such that Bdu

((a, b), r) appears to be contained in
Bdu

((0, 0), 1).
(e) Show that Bdu

((a, b), r) ⊆ Bdu
((0, 0), 1). Write out the whole

proof carefully. Include your picture; it’s very helpful for the
writer and the reader. ©

There are lots of interesting sets in a metric space, all building
on the notion of open ball. We have already introduced open sets.
We now come to closed sets. A set E in a metric space X is closed if
and only if the complement, Ec, is open. So, since the complement
of an arbitrary open set is a closed set, we can immediately write
down several closed sets. For example, in R with the usual metric,
the set (−∞, 2] ∪ [4, ∞) must be closed, since its complement is the
open set (2, 4). (See Example 24.4).

It’s important to know many ways to show that sets are open,
closed, or neither. Here’s a useful result that should have a one-line
proof.

Theorem 24.8.
Let (X, d) be a metric space. A subset U of X is open if and only if its
complement is closed.

Exercise 24.9.
Find the one- (or two-) line proof of Theorem 24.8. ©

We now have examples of open sets and of closed sets. But, as
you will see as you work the next two exercises, things often get a
bit complicated.

Exercise 24.10.
Give an example of a set that is neither open nor closed in R2 with
the usual metric. ©

Exercise 24.11.
Let (X, d) be a metric space. Is the empty set open? closed? both?
neither? ©
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You might have found yourself concluding that if a set is not open,
then it is closed. This is normal, because in ordinary English if a door
is not open, then it is closed. Unfortunately, in mathematics, that’s
false! In the two exercises above, we have seen examples of sets that
are neither open nor closed, and examples of sets that are both open
and closed. Don’t assume anything when you work the problems: if
we didn’t prove it, state it, or use it, then it may not be true.

We defined an open ball and an open set. You will show (in Prob-
lem 24.13) that every open ball is an open set, but since this is so
important, we’ll state it as a theorem. It’s interesting to note that the
proof is very much like the proof of Exercise 24.7.

Theorem 24.12.
Let (X, d) be a metric space. For every point x ∈ X, and every positive
real number r, the set Bd(x, r) is open.

Now we will get to see some ways that we can use open sets
and some more odd properties of metric spaces. The first theorem
tightens the relationship between open sets and open balls.

Theorem 24.13.
Let (X, d) be a metric space. A set U is open if and only if there is a subset
I of X and a set of radii {ry ∈ R+ : y ∈ I} such that U � ⋃

y∈I Bd(y, ry).

There are some things that might be confusing to you in this state-
ment, but it’s much easier to see what it means to be an open set if
you understand Theorem 24.13. The index set is a way of saying that
we don’t know how many y we have; there could be finitely many or
not, countably many or not, and this way we don’t have to deal with
that issue. Next, the ry might confuse you. Each ball has a (positive)
radius, and if we wrote Bd(y, r) for all y, we would be saying that all
the balls have the same radius, r. That’s not what the theorem says,
so we shouldn’t say that either. By using the notation ry, we allow
each y in I to have its own radius, ry. Having said all this, we now
begin the proof.
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Proof.
Suppose first that there is a subset I of X such that

U �
⋃
y∈I

Bd(y, ry).

By the definition of open set, we need to show that for an arbitrary
x ∈ U , there exists an open ball Bd(x, rx) contained in U . Now if
x ∈ U , then there exists an element z ∈ I such that x ∈ Bd(z, rz). By
Theorem 24.12, the ball Bd(z, rz) is an open set, and therefore there
exists a positive real number rx such that Bd(x, rx) ⊆ Bd(z, rz). Since
Bd(z, rz) ⊆ U , we know that Bd(x, rx) ⊆ U . Hence the set U is open.

Now suppose that U is open. We have to find a collection of open
balls such that U is the union of those open balls. By the defini-
tion of open set, if x ∈ U , there exists an open ball Bd(x, rx) with
Bd(x, rx) ⊆ U . Now we claim that U � ⋃

x∈U Bd(x, rx). If we establish
this claim, our proof will be complete. To see that U is contained
in the union, note that if y ∈ U , then y ∈ Bd(y, ry), and therefore
y ∈ ⋃

x∈U Bd(x, rx). Thus, U ⊆ ⋃
x∈U Bd(x, rx). To show that U con-

tains the union, note that Bd(x, rx) ⊆ U for each x. From this it is
easy to see1 that

⋃
x∈U Bd(x, rx) ⊆ U , completing the proof.

Theorem 24.13 can be restated as follows: A set U in a metric
space X is open if and only if U is a union of open balls.

The proofs of many of the theorems in this chapter provide an
excellent opportunity for you to apply all the techniques that you
have learned in this course. For this reason, we have left many as
problems. Here’s another useful theorem.

Theorem 24.14.
An arbitrary union of open sets is open.

The proof of this is left as a problem (Problem 24.11) for you, the
reader. By “arbitrary union” we mean that we don’t know how many
sets we have. So make sure that you don’t accidentally assume that
there are finitely many sets, or even countably many.

1If this isn’t easy to see, show it using an element-chasing argument. In fact, when
you worked Exercise 8.10, you already showed it.
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Theorem 24.15.
An arbitrary intersection of closed sets is closed.

The proof of this is left for you to do (Problem 24.12). If you
have been paying close attention to the theorems and definitions
presented thus far, this should follow from Theorem 24.14. What
about an intersection of open sets? a union of closed sets? The results
are given below and the proofs are outlined in the problems.

Theorem 24.16.
Let U1, . . . , Un be open sets. Then

⋂n
j�1 Uj is an open set.

Theorem 24.17.
Let F1, . . . , Fn be closed sets. Then

⋃n
j�1 Fj is a closed set.

We’ll conclude this chapter with the metric we promised would
challenge your intuition.

Example 24.18.
Consider R with the discrete metric, dd. Prove the following.

(a) For each point x ∈ R, the set {x} is an open ball.
(b) Every set in (R, dd) is open.
(c) Every set in (R, dd) is closed.

For part (a), note that for x ∈ R, the set {x} � Bdd
(x, 1/2). By

Theorem 24.12, the set Bdd
(x, r) is an open set and, consequently,

{x} is open.
For part (b), let S be a subset of R. Since S � ⋃

s∈S{s}, from part
(a) we see that S is a union of open sets. By Theorem 24.14, S is
open.

For part (c), let T be a subset of R. Then Tc is also a subset of R,
and it follows from part (b) that Tc is open. But a set is closed if and
only if its complement is open, and therefore T is closed. ©

There’s lots more that we can do here, and we will do it in the
problems.
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FIGURE 24.4 Bdu
((0, 1), 4).

Solutions to Exercises

Solution to Exercise (24.3).
We first calculate Bdu

((0, 1), 4). The graphical representation is
shown in Figure 24.4.

Bdu
((0, 1), 4) � {(x, y) ∈ R2 : du((x, y), (0, 1)) < 4}

� {(x, y) ∈ R2 :
√

x2 + (y − 1)2 < 4}
� {(x, y) ∈ R2 : x2 + (y − 1)2 < 16}.

Solution to Exercise (24.6).
We will use the solution to Exercise 24.5: Choose x � 2 and note
that 2 ∈ [2, 4]. Let Bdu

(2, r) be an open ball about 2. Then r is a
positive real number. We claim that 2 − r/2 ∈ Bdu

(2, r) ∩ [2, 4]c. Since
du(2− r/2, 2) � |(2− r/2)−2| � r/2 < r, we conclude that 2− r/2 ∈
Bdu

(2, r). Also, since 2 − r/2 < 2 we know that 2 − r/2 
∈ [2, 4]. This
establishes the claim and we have shown that [2, 4] is not open in R
with the usual metric.

Solution to Exercise (24.7).
We follow the outline provided beginning with the illustration in
Figure 24.5.
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FIGURE 24.5 Sketch to find r, the radius of the open ball centered at
(a, b).

Let (a, b) ∈ Bdu
((0, 0), 1). We claim that if we let r � 1−√

a2 + b2,
then Bdu

((a, b), r) is an open ball about (a, b) satisfying Bdu
((a, b), r) ⊆

Bdu
((0, 0), 1).
First note that since (a, b) ∈ Bdu

((0, 0), 1), we have du((a, b),
(0, 0)) � √

a2 + b2 < 1. Hence r � 1−√
a2 + b2 > 0 and Bdu

((a, b), r)
is an open ball about (a, b).

To prove the set inclusion, let (x, y) ∈ Bdu
((a, b), r). Then

du((x, y), (0, 0)) ≤ du((x, y), (a, b)) + du((a, b), (0, 0))

(by the triangle inequality for distances)

< r +
√

a2 + b2 (since (x, y) ∈ Bdu
((a, b), r))

� 1 −
√

a2 + b2 +
√

a2 + b2 � 1.

Hence (x, y) ∈ Bdu
((0, 0), 1). This establishes the second part of the

claim.
The definition of an open set implies that Bdu

((0, 0), 1) is open.

Solution to Exercise (24.9).
By the definition of closed set, the set Uc is closed in a metric space
(X, d) if and only if (Uc)c � U is open in X.

Solution to Exercise (24.10).
The set {(x, y) : 0 < x ≤ 1} is neither open nor closed in R2. We leave
the rigorous proof of this to you.
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Solution to Exercise (24.11).
The empty set is open in every metric space (X, d). The reason is that
the antecedent “x ∈ ∅” is always false. This means that the defining
implication is always true for ∅.

The whole space X is also always open: For all x ∈ X, we know
that Bd(x, r) ⊆ X for every positive real r. Since ∅c � X and X is
open, the definition of closed implies that ∅ is closed.

Thus we have two examples of sets that are both open and closed:
X and ∅.

Problems

We continue to assume that X is a metric space with metric d unless
otherwise stated.

Problem 24.1.
Show that the set (1, 3) ∪ (4, 5) is open in R with the usual metric.

Problem 24.2.
Consider R with the usual metric. In each case, give an example of
a nonempty closed set C and a nonempty open set U such that

(a) U ∩ C is open.
(b) U ∪ C is closed.
(c) U ∩ C is neither open nor closed.
(d) U ∪ C is neither open nor closed.

Problem 24.3.
Prove that in R2 with the max metric, dm, the set {(x, y) ∈ R2 : −1 <

x < 0, −1 < y < 1} is an open set. Include a sketch with your proof.

Problem 24.4.
Decide whether the statements below are true or false. If the state-
ment is true, give a brief reason why. If the statement is false, give
a counterexample.

(a) In R with the usual metric, the interval [0, ∞) is a closed set.



24. Getting to Know Open and Closed Sets 309

(b) In R with the discrete metric, the interval [0, ∞) is an open set.
(c) A finite union of open sets is an open set.
(d) An arbitrary union of closed sets is a closed set.

Problem 24.5.
Consider the set R+ with the usual metric.

(a) Show that the set (1, ∞) is an open set in (R+, du).
(b) Show that the set (0, 1] is a closed set in (R+, du).

Problem 24.6.
Let (X, d) be a metric space.

(a) Prove that for all x and y in X, if y 
� x, then there exists an
open ball centered at y, say Bd(y, r), such that x /∈ Bd(y, r).

(b) Prove that if x ∈ X, then {x} is a closed set.

Problem 24.7.
Let (X, d) be a metric space. Let Uj be a sequence of open sets.

(a) Give an example to show that
⋂∞

j�1 Uj may not be open.
(b) Is it ever true that

⋂∞
j�1 Uj is open?

Problem 24.8.
Show that in R2 with the usual metric, the set E � {(x, y) ∈ R2 : 1 <

x2 + y2 < 4} is open.

Problem 24.9.
Complete the following definition. Let X be a metric space with
metric d and let F be a subset of X. Then F is not closed if . . . .

Problem 24.10.
(a) Give three examples of sets that are both open and closed in R

with the discrete metric.
(b) Give two examples of sets that are both open and closed in R

with the usual metric.
(c) Give an example of a set that is neither open nor closed in R2

with the max metric. Prove that it is neither open nor closed!
(d) Give an example of a set that is closed and not open in R2 with

the usual metric. Prove that it is closed and not open!
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Problem 24.11.
Prove Theorem 24.14. (In other words, show that if {Oα : α ∈ I} is a
collection of open sets, then

⋃
α∈I Oα is open.)

Problem 24.12.
Prove Theorem 24.15.

Problem 24.13.
Prove Theorem 24.12.

Problem 24.14.
Let (X, d) be a metric space, x, y ∈ X, and let r1 and r2 be positive
real numbers with r1 < r2. Do not use Theorem 24.16.

(a) Show that Bd(x, r1) ⊆ Bd(x, r2).
(b) From the previous problem we know that every open ball is

open. Show that if Bd(x, r1) and Bd(y, r2) are open balls, then
Bd(x, r1) ∩ Bd(y, r2) is an open set. Is it an open ball? (Justify
your answer to this last question, please.)

Problem 24.15.
Prove Theorem 24.16 by completing both steps below. You may find
it very helpful to work Problem 24.14 first.

(a) Show that the intersection of two open sets is an open set.
(b) Show that the intersection of finitely many open sets is an open

set.

Problem 24.16.
Prove Theorem 24.17. If you did Problem 24.15, you might consider
using that result here.

Problem 24.17.
(a) Let x and y be two distinct points in X and let r � d(x, y)/2.

Show that Bd(x, r) and Bd(y, r) are disjoint sets.
(b) Show that for two distinct points x and y in a metric space, there

exist disjoint open sets Ox and Oy with x ∈ Ox and y ∈ Oy.
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Problem 24.18.
Let (X, dX) and (Y, dY ) be metric spaces. A function f : (X, dX) →
(Y, dY ) preserves distances if dY (f (x), f (x′)) � dX(x, x′) for all x, x′

in X.
(a) In R with the usual metric, the function f : (R, du) → (R, du)

defined by f (x) � x obviously preserves distances. Give an
example of another function that preserves distances.

(b) Is every function that preserves distances one-to-one? Either
prove this statement or give a counterexample.

Problem 24.19.
Let E be a subset of a set X with metric d. A point x is said to be an
interior point of E if there exists an open ball Bd(x, r) with Bd(x, r) ⊆
E. The set of all interior points is called the interior of E and is
denoted by Eo.

(a) In R with the usual metric, and E � (2, 4], show that 4 /∈ Eo.

Then show that (2, 4) � Eo.
(b) In R2 with the max metric, find Eo if E � {(x, y) : |x| ≤ 1}.

Problem 24.20.
This problem is only appropriate if you completed Problem 24.19.
Let (X, d) be a metric space, and E be a subset of X.

(a) By the definition of interior point, if x ∈ Eo, then there exists
an open ball Bd(x, r) centered at x such that Bd(x, r) ⊆ E. Show
that, in fact, for each point x ∈ Eo, there exists an open ball
Bd(x, rx) ⊆ Eo. Use this to prove that Eo is an open set.

(b) Prove that a set E is open if and only if every point of E is
an interior point. Conclude that a set E is open if and only if
E � Eo.

Problem 24.21.
Let (X, d) be a metric space. Let E ⊆ X. A point x ∈ X is a limit
point of E if every open set containing x contains a point y ∈ E with
y 
� x. Let El denote the set of all limit points of the set E.

(a) Complete the following definition. A point x ∈ X is not a limit
point of E if . . . .

(b) What are the limit points of the interval (2, 4] in R with the
usual metric? the discrete metric?
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(c) What are the limit points of Bdu
((0, 0), 1) in R2 with the usual

metric? the discrete metric?
(d) What are the limit points of {1/n : n ∈ Z+} in R with the usual

metric? the discrete metric?

Problem 24.22.
(This problem assumes that you have completed Problem 24.21.)
Let (X, d) be a metric space. Let E be a subset of X. Show that x is a
limit point of a set E if and only if every open ball Bd(x, r) about x

contains a point y ∈ E with y 
� x.

Problem 24.23.
(This problem assumes that you have completed Problem 24.21.) Let
(X, d) be a metric space. Let E be a subset of X.

(a) Prove that x is a limit point of a set E if and only if every open
set about x contains infinitely many points different from x.

(b) Prove that a finite set has no limit points.

Problem 24.24.
(This problem assumes that you have completed Problem 24.21.) Let
(X, d) be a metric space. Let E be a subset of X.

(a) Show that E is closed if and only if E contains all its limit points.
In other words, prove that E is closed if and only if El ⊆ E.

(b) Let E be a set. The closure of E is denoted by E and is defined
by E � E ∪ El. Show that if x is a limit point of E, then x is a
limit point of E.

(c) Show that if x is a limit point of E, then x ∈ E (note that you
did the hard part in (b) above). Conclude that E is closed.

Problem 24.25.
Assuming that X is a metric space with metric d, define a new
function de : X × X → R by

de(x, y) � d(x, y)
1 + d(x, y)

.

Show that de is also a metric on X.
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C H A P T E R

...........................................

Modular
Arithmetic

You are quite familiar with adding, subtracting, multiplying, and
dividing integers, rational numbers, real numbers, and complex
numbers. But this is not the only kind of arithmetic to be found
within mathematics. Although you may have never seen it explained
with mathematical precision, there’s a very different kind of arith-
metic that you use every single day. The popular name for these
calculations is clock arithmetic, and it is indeed based upon the clock.

Consider the following scenario: Suppose it is now 3:00 P.M., and
you start on a 28-hour trip. What time will it be when you return? A
quick calculation yields an answer of 7:00 P.M. How did you arrive
at this answer? You did something we all find natural—you did clock
arithmetic. We will now carefully build upon this idea, and we will
apply many of the concepts we have already covered to help us
understand it.

Clock arithmetic isn’t done on numbers, but rather on equiv-
alence classes of numbers. So we first need to find the right
equivalence relation. Recall that for two integers a and b with a 
� 0,
we say that a divides b, written a | b, if there is an integer k such that
b � ak. Now we are ready for the equivalence relation. Let n ∈ Z
such that n > 1. Two integers x and y will be related if n|(y − x). In

313
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this case we say x is congruent to y modulo n, and we will write
x ≡ y (mod n).

Exercise 25.1.
Find five different solutions to each of the problems below, and then
find five integers that are not solutions.

(a) Find x ∈ Z such that 5 ≡ x (mod 12).
(b) Find x ∈ Z such that x > 1 and −3 ≡ 39 (mod x). ©

Theorem 25.2.
Let n > 1 be an integer. The relation congruence modulo n is an
equivalence relation on Z.

The proof of this theorem is left as Problem 25.3.
For an integer n > 1, the set of all equivalence classes with

respect to the relation congruence modulo n is called the integers
modulo n and denoted by Zn. It follows from Theorem 11.4 that Zn

is a partition of Z. There will be times when we will need to refer to
the elements of Zn, and since these are equivalence classes and not
just integers, the notation must be chosen carefully. So we introduce
the following: for m ∈ Z, we write [m]n � {x ∈ Z : n|(x − m)}.

Note that we now have two ways of denoting exactly the same
thing. For integers a, b, and n with n > 1, the two statements “a ≡ b

(mod n)” and “[a]n � [b]n” are equivalent.
Let us stop and think about what this all means in the context

of time. Suppose we are told that, “in this camp, breakfast is served
at 7:00 A.M.” What does this mean? Is there exactly one instant on a
certain day and time at which breakfast is served? This can hardly be
the case, since we eat breakfast every day. What it must mean is that
breakfast is served at 7:00 A.M. today, tomorrow, yesterday, and in a
week. So 7:00 A.M. actually represents many different times, as long
as the difference between that time and 7:00 A.M. is a multiple of
24 hours. Mathematically, this idea is expressed by an equivalence
class. The class of 7 modulo 24 is the set of all integers that differ
from 7 by a multiple of 24. Thus, [7]24 � [31]24 � [−41]24 � . . . �
{. . . , −41, −17, 7, 31, 55, . . .}. The “numbers” in modular arithmetic
are sets of numbers.
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Before exploring some of the properties of the integers modulo
n, we need to learn a bit more about the integers themselves. You
are no doubt familiar with these properties of the integers, but you
may not know the rigorous definitions or the exact statements of the
theorems. The first statement is simply about division of one integer
by another.

Theorem 25.3 (Division algorithm).
Let m and n be integers with n > 0. Then there exist unique integers q

and r such that m � nq + r and 0 ≤ r < n.

In plain English, the division algorithm says that for two integers,
m and n, we can write m as a multiple of n plus what’s left over.
Of course, that’s just the statement that q is the quotient and r the
remainder when we divide m by n. You might not understand why we
need to prove this—after all, you have been using it for a long time.
But did you ever stop to think about what it really means and why it
is true? You will prove this theorem when you solve Problems 25.16
and 25.17.

Let’s move on to another old friend from the past. Given two
numbers, say 28 and 42, what is the gcd (or greatest common divi-
sor) of the two numbers? Using previous knowledge, you probably
figured out without too much trouble that the answer is l4. But now
that you have much more mathematical experience, we are able to
ask (and answer) the more complicated questions of “how do we
define gcd precisely?” and, “is there an algorithm to find its value?”

Define the greatest common divisor d (which we’ll soon see is
unique) of two integers m and n, where m and n are not both zero,
to be the positive integer d that satisfies

(i) d|m and d|n, and
(ii) if s is a positive integer such that s|m and s|n, then s|d.

We denote the greatest common divisor of m and n by gcd(m, n). We
say m and n are relatively prime if gcd(m, n) � 1.

Exercise 25.4.
(a) What does condition (i) of the definition of the greatest

common divisor really say?
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(b) What does condition (ii) really say?
(c) We mentioned that the gcd of two numbers is unique. How

would you try to prove this? ©

Exercise 25.5.
Find gcd(−16, 40), gcd(0, 45), and gcd(−30, −27). ©

The next theorem tells us that the gcd always exists and is, as we
promised, unique.

Theorem 25.6.
Let m and n be integers, not both zero. Then their greatest common divisor
exists, is unique, and there are integers k and l such that gcd(m, n) �
km + ln.

This theorem actually tells us more than the existence and
uniqueness of the greatest common divisor. It tells us that the gcd
can be expressed as the sum of multiples of the two numbers m and
n. This fact is certainly not obvious, and it will turn out to be very
useful. A sum of the form km+ ln where k and l are integers is called
a linear combination of m and n. Theorem 25.6 is usually proved
by first showing that gcd(m, n) � km + ln. The proof looks at the
set A of all the linear combinations of m and n that yield a positive
integer. Since A will be a nonempty set of positive integers, the well-
ordering principle tells us that this set has a smallest element. It
turns out that this element will satisfy both (i) and (ii) in the defini-
tion of greatest common divisor. Once we have shown this, we will
still need to present an argument that there is no other integer that
is also the gcd of m and n.

Proof.
Let m and n be two integers, not both zero. Consider the set A �
{xm + yn : x, y ∈ Z and xm + yn > 0}. First we’ll show that A 
� ∅.
We know that m, n ∈ Z, and so we may set x � m and y � n. Since
m 
� 0 or n 
� 0, we conclude that xm + yn � m2 + n2 > 0, and
hence m2 + n2 ∈ A. Thus A 
� ∅. By the well-ordering principle,
every nonempty set of positive integers has a smallest element, and
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we call this element d. Since d ∈ A, there exist x0, y0 ∈ Z such that
d � x0m + y0n. We will show that d � gcd(m, n), proving two parts
of the theorem, namely that a greatest common divisor exists, and
that this divisor can be written in the form km + ln for some k, l ∈ Z.

Since d ∈ A, we know that d > 0. By the division algorithm
(Theorem 25.3), we can write m � qd+r with q, r ∈ Z and 0 ≤ r < d.
Then r � m−dq � m− (x0m+y0n)q � (1−x0q)m+ (−y0q)n, where
1 − x0q and −y0q are integers. Now if r > 0, then r would be an
element of A. But r < d and d is the smallest element of A. This
means that r 
∈ A. Hence it must be the case that r � 0; in other
words, d|m. Exactly the same argument shows that d|n. Thus d|m
and d|n, and (i) in the definition of gcd holds.

Now suppose that s is a positive integer such that s|m and s|n.
Since d � x0m + y0n, we conclude that s|d. (You are asked to write
out the details of this last step in Problem 25.1.) Hence (ii) also holds
for d. We now know that a greatest common divisor exists and has
the right form. It remains to show that it is unique.

So suppose that d and s are both greatest common divisors of
m and n. Then, since d is a gcd, property (ii) of the definition says
that s|d. On the other hand, s is a gcd, so d|s. We conclude that
s|d and d|s. Since both s and d are positive integers it follows (see
Problem 25.2) that s � d, showing the uniqueness of the greatest
common divisor.

Incidentally, while the greatest common divisor d is unique, the
integers x0 and y0, as defined in the proof, are not. Here is a simple
example: Consider the integers m � 6 and n � 9. Then

gcd(6, 9) � 3 � 2 · 6 + (−1) · 9 � (−1) · 6 + 1 · 9.

Unfortunately, the proof of Theorem 25.6 was not constructive;
that is, it’s a nice enough proof, but it doesn’t really tell us how to
find gcd(m, n). However, there is an algorithm to do just that—one
that appeared in Euclid’s Elements 2,300 years ago. The algorithm
is appropriately called the Euclidean algorithm and you will learn to
apply it in Problem 25.18 to calculate the gcd of two integers.

We now return to modular arithmetic. To get you back into the
proper state of mind, we suggest that you reread (in the beginning of
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this chapter) what it means for two integers to be equivalent modulo
n, where n > 1. Then work the following exercise:

Exercise 25.7.
Show that for integers m and n with n > 1, there exists an integer r

satisfying 0 ≤ r < n such that m ≡ r (mod n). ©

One good thing about the integers is that we can perform basic
algebraic manipulations on them, like adding, subtracting, and mul-
tiplying. Can we do this on Zn also? The answer is yes, but we must
first carefully define how these operations work on the equivalence
classes that make up the set Zn. That’s what we will do right after we
work an example to remind you what it means for two equivalence
classes modulo n to be the same.

Example 25.8.
For integers r, s, and n with n > 1, prove that [r]n � [s]n if and only
if there exists k ∈ Z such that r − s � kn.

Proof.
By Problem 10.5, [r]n � [s]n if and only if r ∼ s. Thus [r]n � [s]n if
and only if r ≡ s (mod n). Hence [r]n � [s]n if and only if there
exists an integer k such that r − s � kn.

Be sure to keep this fact in mind as you read on in the text, and
especially as you work your way through Example 25.9, in which
we will show that multiplication on Zn, as introduced below, is well-
defined.

Fix an integer n > 1. Now Zn is closely related to Z, so we will try
to modify the operations of Z so that they apply to Zn. For r, s ∈ Z,
define

[r]n + [s]n � [r + s]n, [r]n − [s]n � [r − s]n, and [r]n · [s]n � [rs]n.

Before going on, convince yourself that

[12]5 + [7]5 � [4]5, [12]5 − [7]5 � [0]5, and [12]5 · [7]5 � [4]5.

These definitions amount to defining three functions from Zn ×
Zn to Zn, and we need to show that they are well-defined. We will
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do this here for multiplication, and leave addition and subtraction
to you in Problem 25.8.

Example 25.9.
Define f : Zn × Zn → Zn, by f ([r]n, [s]n) � [rs]n. Then f is a well-
defined function that yields a multiplication on Zn.

“Understanding the problem.” To show that a function is well-
defined, we need to prove two things. (i) We must show that f maps
Zn×Zn into Zn. In other words, we must show that for every element
x in Zn × Zn, there exists an element y in Zn such that f (x) � y. It
is important to recall that when an element of a set can be written
in a special form, as is the case with x in Zn × Zn, we should take
advantage of it. So if x is in Zn × Zn, then there exist integers r and
s such that x � ([r]n, [s]n).

(ii) We must also show that, for x in Zn × Zn, if f (x) � y and
f (x) � z, then y � z. Again, we will expect to use the special form
of x, y, and z. Now x can be written as ([r]n, [s]n) for some integers r

and s. Our function f is supposed to look at the pair of equivalence
classes, choose an integer from each (they could be r and s, but
don’t have to be), multiply these together, and produce the resulting
equivalence class.

What could possibly go wrong? Let us look at an example. We
know that [7]6 � [19]6, because 6|(19−7). By the definition of multi-
plication in Z6, we write [7]6 · [4]6 � [28]6 and [19]6 · [4]6 � [76]6. The
left sides of both equations are the same, so the right sides had better
be the same as well, or we have a fatal problem on our hands. Are
they the same? Our proof will need to show that the result of the
multiplication operation is independent of the particular integers
we used to represent the equivalence classes.

“Devising a plan.” To prove part (i), we have to show that f is
defined for every element of Zn × Zn, and yields an element in
Zn. For part (ii), we let x ∈ Zn × Zn and suppose that f (x) � y

and f (x) � z. We must show that y � z. Now, we can assume that
there exist integers r, s, u, and v such that x � ([r]n, [s]n) � ([u]n, [v]n)
and y � f ([r]n, [s]n) � [rs]n, while z � f ([u]n, [v]n) � [uv]n. So we
must show that [rs]n � [uv]n. By Example 25.8, we know that this
means that we must show that there exists an integer m such that
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rs − uv � mn. How can we show that such an integer m exists? By
using what we know, namely that ([r]n, [s]n) � ([u]n, [v]n). Looks like
we are now ready to carry out our plan.

Proof.
Let x ∈ Zn ×Zn. Then x � ([r]n, [s]n) for some r, s ∈ Z. Hence, rs ∈ Z,
and therefore [rs]n ∈ Zn. By the definition of f , we have f (x) � [rs]n.
Thus, f maps Zn × Zn to Zn.

Again let x ∈ Zn × Zn. Consider two arbitrary representations
of x, say x � ([r]n, [s]n) and x � ([u]n, [v]n). Then f (x) � [rs]n and
f (x) � [uv]n. We need to show that [rs]n � [uv]n. Since ([r]n, [s]n) �
([u]n, [v]n), the definition of ordered pair implies that [r]n � [u]n and
[s]n � [v]n. Thus

u − r � kn, for some k ∈ Z, and (25.1)

v − s � ln, for some l ∈ Z. (25.2)

To show that [rs]n � [uv]n, we calculate

uv − rs � uv − rv + rv − rs

� (u − r)v + r(v − s)
� knv + rln (using equations (25.1) and (25.2))
� (kv + rl)n.

Now kv + rl ∈ Z and, by Example 25.8, [rs]n � [uv]n. Thus f is
well-defined, as desired.

Exercise 25.10.
Define “modular exponentiation” as follows: For an integer n > 1
and a, b ∈ Z, define [a][b]n

n � [ab]n. Either prove that this oper-
ation is well-defined, or give an example to show that modular
exponentiation is not well-defined. ©

The operations defined here are commutative, associative, have
additive and multiplicative identities, satisfy the distributive prop-
erty, and every element has an additive inverse. (See Problem 25.11.)
Thus, they satisfy everything you might reasonably expect of an
operation except for one thing: not every nonzero element has a
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multiplicative inverse. The following immediate consequence of
Theorem 25.6 tells us something about reciprocals in Zn.

Corollary 25.11.
Let n be a positive integer with n > 1. Then for every integer a with
gcd(a, n) � 1, there exists an integer b such that ab ≡ 1 (mod n).

Before you read the proof of the corollary, write out what it means
to say ab ≡ 1 (mod n).

Proof.
Since gcd(a, n) � 1, Theorem 25.6 tells us that there exist b, c ∈ Z
such that ba + cn � 1. Then ba − 1 � (−c)n and −c ∈ Z. Thus,
ab ≡ 1 (mod n).

For an integer a to satisfy the hypothesis of this corollary, a needs
to be relatively prime to the modulus n. Is it possible that we have
two integers, a and b with a ≡ b (mod n), such that one of the
integers, say a, satisfies the hypothesis and the other one, b, does
not? The answer to this query is no, as we see from the following
lemma:

Lemma 25.12.
Let a, c, and n be integers with n > 1 and such that a ≡ c (mod n).
Then gcd(a, n) � 1 if and only if gcd(c, n) � 1. Further, if b and d are
integers such that ab ≡ 1 (mod n) and cd ≡ 1 (mod n), then b ≡ d

(mod n).

The proof of this lemma requires the multiplication defined
on Zn earlier in this chapter, and the (easily checked) algebraic
properties of this multiplication. (See Problem 25.11.)

Proof.
For the first part of the proof, we prove the contrapositive; that is,
we prove that if gcd(c, n) 
� 1, then gcd(a, n) 
� 1. So assume that
gcd(c, n) � k > 1. Since a ≡ c (mod n), we conclude that a−c � ln

for some l ∈ Z. Hence a � c+ ln. But k|c and k|n, so k|a. By (ii) in the
definition of gcd, we conclude that k| gcd(a, n). Thus gcd(a, n) > 1.
The converse is obtained by interchanging the roles of a and c.
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For the second part of the proof, we will use our assumptions
that [a]n[b]n � [ab]n � [1]n, [c]n[d]n � [cd]n � [1]n, and [a]n � [c]n.
Thus, we calculate

[b]n � [bcd]n � [bad]n � [abd]n � [d]n,

and we conclude that b ≡ d (mod n).

Taken together, the corollary and the lemma tell us that if an
integer a is relatively prime to n, then there exists an integer b such
that the equivalence classes satisfy [a]n · [b]n � 1. So, for a relatively
prime to n, the equivalence class has something that should remind
you of a reciprocal. This leads to the following definition: For a, b,

and n ∈ Z with n > 1, we call b a reciprocal modulo n of a if ab ≡ 1
(mod n). The notation is b ≡ a−1 (mod n).

Exercise 25.13.
(a) Find the reciprocals modulo 7 of 3, 5, and 6.
(b) Which elements of Z6 have reciprocals modulo 6 and which

ones do not? ©

The use of modular arithmetic is widespread. Every time you
are on the web, your browser is likely to make your transactions
secure using an encryption that is based on modular arithmetic.
(Work Project 27.11 on codes to see one such use.) We motivated the
ideas in the chapter using time and calculations modulo 24. If you
schedule tasks by days of the week you probably want to calculate
with modulus 7; if you are interested in a monthly schedule, the
modulus is 12. In fact, now that we’ve mentioned it, you can surely
think of many other times when you have used modular arithmetic.

Solutions to Exercises

Solution to Exercise (25.1).
(a) We defined 5 ≡ x (mod 12) by 12 | (x − 5). Some possible

values for x are: 5, 17, 125, −7, −115. Some values that do not
work are: 0, 7, 1200, −5, −12.
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(b) The equivalence −3 ≡ 39 (mod x) is defined by x|42 where
x is an integer greater than 1. The set of all positive factors
greater than 1 of 42 is the set A � {2, 3, 6, 7, 14, 21, 42}. Any
five integers from A will work. The five non-solutions must be
chosen from the integers greater than 1 that are not in A.

Solution to Exercise (25.4).
(a) Condition (i) says that the greatest common divisor divides

both integers. In other words, it is a statement about being a
common divisor.

(b) Condition (ii) says that every other positive integer that divides
both m and n also divides the gcd(m, n), and therefore is a factor
of it. In other words, it is a statement about being the greatest.

(c) We will need to prove the uniqueness of the greatest common
divisor. To do so, we will prove that if there are integers d1 and
d2, both satisfying the definition of greatest common divisor,
then d1 � d2.

Solution to Exercise (25.5).
We list the answers here: gcd(−16, 40) � 8, gcd(0, 45) � 45, and
gcd(−30, −27) � 3.

Solution to Exercise (25.7).
The integers m and n are given and n > 1. By Theorem 25.3, there
are q, r ∈ Z such that m � nq + r and 0 ≤ r < n. Hence m − r � nq

for some q ∈ Z. Thus m ≡ r (mod n) and 0 ≤ r < n.

Solution to Exercise (25.10).
This operation is not well-defined. Let n � 5. Then 2 ≡ 7 (mod 5).
Now [3][2]5

5 � [4]5 and [3][7]5
5 � [2]5, but 4 
≡ 2 (mod 5).

Solution to Exercise (25.13).
(a) It is easy to check that 3−1 ≡ 5 (mod 7), 5−1 ≡ 3 (mod 7)

and 6−1 ≡ 6 (mod 7).
(b) By Corollary 25.11, the integers 1 and 5 have reciprocals modulo

6; it is easy to check that none of the others does.
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Problems

Problem 25.1.
Let a, b, c, x, and y ∈ Z. Prove that if a|b and a|c then a|(bx + cy).

Problem 25.2.
Let a and b be positive integers such that a|b and b|a. Prove that
a � b.

Problem 25.3.
Prove Theorem 25.2. (Note that this generalizes part (c) of Prob-
lem 10.1.)

Problem 25.4.
Carefully read the definition of greatest common divisor. What
should the least common multiple of two integers be? Make up a
definition for it. The least common multiple of two integers m and
n is denoted by lcm(m, n).

Problem 25.5.
Using your definition from Problem 25.4 and the notation defined
above, prove that if m and n are positive integers, then

gcd(m, n) · lcm(m, n) � mn.

Problem 25.6.
Let m, n ∈ Z, not both zero. Suppose that a is an integer that divides
both m and n and whenever s is an integer dividing both m and n,
then s ≤ a. Prove that a � gcd(m, n).

Problem 25.7.
Let m, n ∈ Z and assume that m 
� 0. Prove the following
statements.

(a) For all positive integers k, we have gcd(mk, nk) � k gcd(m, n).
(b) If d � gcd(m, n) and k, l ∈ Z, then gcd(m, n)| gcd(m+kd, n+ld).

Problem 25.8.
Let n > 1 be an integer.
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(a) Define g : Zn × Zn → Zn by g([r]n, [s]n) � [r + s]n. Prove that g

is well-defined.
(b) Define h : Zn × Zn → Zn by h([r]n, [s]n) � [r − s]n. Prove that h

is well-defined.

Problem 25.9.
Define f : Z12 → Z24 by f ([x]12) � [3x]24. Is f well-defined? Prove
your claim.

Problem 25.10.
Let p be an odd prime and define f : Zp → Zp by f ([x]p) � [2x]p.
Prove that f is well-defined and that f is a bijection.

Problem� 25.11.
Let n > 1 be an integer. Using the addition and multiplication
defined on Zn in this chapter, prove the following statements:
(a) ([a]n + [b]n) + [c]n � [a]n + ([b]n + [c]n) for all a, b, c ∈ Z;
(b) there is an integer e ∈ Z such that

(i) [a]n + [e]n � [e]n + [a]n � [a]n for all a ∈ Z, and
(ii) for every a ∈ Z, there exists b ∈ Z such that [a]n + [b]n �

[b]n + [a]n � [e]n;
(c) [a]n + [b]n � [b]n + [a]n for all a, b ∈ Z;
(d) ([a]n · [b]n) · [c]n � [a]n · ([b]n · [c]n) for all a, b, c ∈ Z;
(e) [a]n · ([b]n + [c]n) � [a]n · [b]n + [a]n · [c]n and ([a]n + [b]n) · [c]n �

[a]n · [c]n + [b]n · [c]n for all a, b, c ∈ Z;
(f) there is u ∈ Z such that [a]n · [u]n � [u]n · [a]n � [a]n for all a ∈ Z;
(g) [a]n · [b]n � [b]n · [a]n for all a, b ∈ Z.

(A set with two well-defined operations satisfying (a)–(g) is called a
“commutative ring with identity.”)

Problem 25.12.
Let n be an integer, where n > 1. Prove that every element of Zn

has a reciprocal modulo n if and only if n is prime.
(This makes Zp, where p is prime, as good a set to do arithmetic

in as Q. As far as multiplication is concerned, Zp is better than Z,
because very few numbers (two, to be exact) in Z have reciprocals
that also lie in Z . The set, Zp, for p a prime, falls under the heading
of “fields,” and so do Q, R, and C, but Z does not.)
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Problem 25.13.
(This problem is appropriate only if you studied Chapter 21.) Use the
result of Exercise 25.7 to show that |Zn| � n.

Problem 25.14.
Find all solutions in Zn for the following equivalences:

(a) 3x ≡ 0 (mod 12);
(b) 3x ≡ 0 (mod 17);
(c) 3x ≡ 0 (mod 10).

Problem 25.15.
Find all solutions in Zn for the following equivalences:

(a) 4x ≡ 1 (mod 11);
(b) 4x ≡ 1 (mod 9);
(c) 3x ≡ 1 (mod 11);
(d) 3x ≡ 1 (mod 9).

Problem 25.16.
Let m, n ∈ Z with n > 0. Define the set A � {m−nx : x ∈ Z and m−
nx ≥ 0}.

(a) What is A, if m � 2 and n � 1?
(b) What is A, if m � 18 and n � 5? What is the smallest integer in

A?
(c) Prove that A 
� ∅.
(d) Since A is a nonempty subset of the natural numbers, it con-

tains a smallest integer. Call this integer r. Prove that 0 ≤ r <

n.
(e) Use your work in part (d) to prove that there are integers q and

r such that m � nq + r and 0 ≤ r < n.
(Note: This proves the existence part of Theorem 25.3.)

Problem 25.17.
Let m, n ∈ Z with n > 0. Suppose there are integers q1, q2, r1, and
r2 such that m � nq1 + r1 and m � nq2 + r2, where 0 ≤ r1 < n and
0 ≤ r2 < n. Prove that this implies that q1 � q2 and r1 � r2. (Note:
This proves the uniqueness part of Theorem 25.3.)
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Problem 25.18.
Here’s a brief explanation of the Euclidean algorithm, which is an
effective way to find the greatest common divisor of two integers
m and n, not both zero. This algorithm is in the seventh book of
Euclid’s Elements, but was likely known earlier.

There are two trivial cases that must be considered before moving
to the interesting one. If m � n, then the greatest common divisor is
obviously |m|. If one of the integers is zero (remember that both can’t
be zero), then the greatest common divisor is the absolute value of
the non-zero integer. Now for the main case, note that the positive
divisors of an integer m are the same as the ones of −m. For this
reason, we may assume that both m and n are positive. After possible
relabelling of the two numbers, we may further assume that m >

n > 0.
The Euclidean algorithm is a repeated application of the division

algorithm, Theorem 25.3. Each line is obtained from the previous
one by shifting the divisor to the spot previously occupied by the
dividend, and the remainder to the spot previously occupied by the
divisor. It’s easier to see than to say. Here is the way to see it:

m � q1n + r1,

n � q2r1 + r2,

r1 � q3r2 + r3,

. . .

rk−3 � qk−1rk−2 + rk−1,

rk−2 � qkrk−1 + rk,

rk−1 � qk+1rk.

By the division algorithm, the remainders satisfy the inequalities
n > r1 > . . . > ri > ri+1 > . . . > 0. This guarantees that the
algorithm comes to a halt after finitely many steps. We label the last
non-zero remainder rk and solve for rk as follows:

rk � rk−2 − qkrk−1

� rk−2 − qk(rk−3 − qk−1rk−2) � −qkrk−3 + (1 + qkqk−1)rk−2

. . .

� x0m + y0n
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It can be shown (but we won’t ask you to do it) that rk � gcd(m, n).
We’ll work out one example for you, so you can see how this

is done. We will find the greatest common divisor of 8 and 27 and
express it as a linear combination of the given integers. Now we need
m > n, so m � 27 and n � 8. We now proceed with the algorithm.
The remainders are underlined, and will be replaced with what we
obtained in the column on the left.

27 � 3 · 8 + 3 so 1 � 3 − 1 · 2
8 � 2 · 3 + 2 � 3 − 1 · (8 − 2 · 3) � −8 + 3 · 3
3 � 1 · 2 + 1 � −8 + 3(27 − 3 · 8) � 3 · 27 − 10 · 8
2 � 2 · 1

So our algorithm tells us that 1 � 3 · 27 − 10 · 8, and you can now
check that this answer is correct.

You’ll understand the algorithm better if you use it to calculate
the gcd of two numbers. Do so for the following pairs of integers
(m, n) and find the corresponding integers x0 and y0:

(a) (2745, 135);
(b) (528, 627);
(c) (4746, 894).

Problem 25.19.
Use the Euclidean algorithm of Problem 25.18 to show that 2542 and
4095 are relatively prime.

Problem 25.20.
On a calculator or a computer, program the Euclidean algorithm as
outlined in Problem 25.18. Check your program by trying it out on
parts (a) through (c) in that problem.

Problem 25.21.
In the text we defined what it means for an integer p to be prime. We
also defined what it means for two integers a and b to be relatively
prime. Give an alternate definition for an integer p to be prime by
requiring a and p to be relatively prime for certain integers a. Prove
that the original and the alternate definition of prime are equivalent.
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Problem 25.22.
Let a, b, and p be integers and p a prime. Prove that if p|ab, then p|a
or p|b.

Problem 25.23.
It is possible to define a function f that tells you the day of the week
your birthday will fall on each year. To construct such a function, you
need to find out what day of the week you were born. (Encode the
weekdays as: 0—Sunday, 1—Monday, and so on.) Letting s denote
the encoded week day of your birth, a the year you were born, and b

the year in which you want to know the week day of your birthday,
you will need to define f in terms of s, a, and b. Thus, the required
function f will be a map from Z7 × Z × Z into Z7. (The formula will
depend on whether your birthday is before, after, or on February 29
of your birth year.)

Use modular arithmetic but keep in mind that there are leap
years. (The year 2000 was a leap year. The formula becomes consid-
erably more complicated if you want to extend it past 2100, because
that year will not be a leap year.)

To find out the day of your birth and to check your formula,
access one of the perpetual calendars on the web such as [29].
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C H A P T E R

...........................................

Fermat’s Little
Theorem

We begin this chapter with a fundamental result of number theory,
discovered by Pierre de Fermat. Fermat lived from 1601 to 1665.
Many of his contemporaries were “number-lovers” rather than num-
ber theorists, [83, p. 51], and one thing that interested them was
perfect numbers (a number is perfect if it is the sum of all its proper
divisors). Bernard Frenicle de Bessy, who was also a mathematician
and physicist, first raised the question of whether there was a perfect
number of 20 digits and, if not, what the next largest perfect number
was. (See [24] and [25].) The answer to the question required deter-
mining whether certain large numbers were prime. Thus began a
correspondence between the two men. In a letter to Frenicle, dated
October 18, 1640, Fermat stated what is now known as Fermat’s the-
orem or Fermat’s little theorem (to distinguish it from Fermat’s last
theorem), but he did not include a proof. In 1736, almost a century
later, Leonhard Euler gave the first rigorous proof of the little the-
orem. Though this theorem is clearly theoretical in nature, it plays
an important role in primality testing; that is, in deciding whether
or not a certain number is prime. Fermat’s little theorem is also the
mathematical heart of the widely used RSA code that we will de-
scribe later in this chapter. In fact, Fermat’s little theorem is not
little at all.

331
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Theorem 26.1 (Fermat’s Little Theorem).
Let p be a prime and let a be an integer satisfying gcd(a, p) � 1. Then

ap−1 ≡ 1 (mod p).

Exercise 26.2.
Verify Theorem 26.1 for a few values of p and a. ©

We will state and prove Euler’s generalization of this theorem
below. Fermat’s little theorem will then follow as a special case.

In order to state Euler’s generalization of Fermat’s theorem, we
have to introduce something that is now referred to as Euler’s φ-
function: For n ∈ Z+, let φ(n) be the number of integers k, with
0 ≤ k < n, that are relatively prime to n.

Exercise 26.3.
Calculate φ(1), φ(12), φ(7), φ(13), and φ(7 · 13). ©

Exercise 26.4.
Show that if p is prime, then φ(p) � p − 1. ©

The following lemmas will assist us in our proof of Theorem
26.7 below. The first lemma requires the multiplication in Zn that
we defined in Chapter 25.

Lemma 26.5.
Let n and a be integers satisfying n > 1 and gcd(a, n) � 1. If r and s

are integers satisfying ar ≡ as (mod n), then r ≡ s (mod n).

Proof.
Since we know that gcd(a, n) � 1, we may apply Corollary 25.11 to
obtain an integer b such that ab ≡ 1 (mod n). We now multiply
the equivalence ar ≡ as (mod n) by b to get arb ≡ asb (mod n).
Using commutativity of the multiplication (see Problem 25.11) and
simplifying, we obtain r ≡ s (mod n), as desired.
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We summarize much of what we have learned below.

Lemma 26.6.
Let a and n be integers with n > 1 and gcd(a, n) � 1. Then there exist
exactly φ(n) distinct integers, m1, m2, . . . , mφ(n) such that

(i) 0 ≤ mi < n and gcd(mi, n) � 1 for i � 1, . . . , φ(n),
(ii) there exists c ∈ Z such that(

φ(n)∏
i�1

mi

)
c ≡ 1 (mod n), and

(iii) ami 
≡ amj (mod n) for i 
� j.

Proof.
By the definition of Euler’s φ-function, there exist exactly φ(n)
distinct integers satisfying (i).

Property (i) and Problem 26.1, imply that gcd(
∏φ(n)

i�1 mi, n) � 1.
Thus we may apply Corollary 25.11 to obtain an integer c such that(

φ(n)∏
i�1

mi

)
c ≡ 1 (mod n),

completing the proof of (ii).
For part (iii) recall that gcd(a, n) � 1. Now m1, . . . , mφ(n) are

distinct integers with 0 ≤ mk < n for each k. So, if i 
� j, then
mi 
≡ mj (mod n). Thus (the contrapositive of) Lemma 26.5 implies
that ami 
≡ amj (mod n) for i 
� j.

Now we are ready for Euler’s generalization of Fermat’s little
theorem.

Theorem 26.7 (Euler’s Theorem).
Let a and n be integers with n > 1. If gcd(a, n) � 1, then

aφ(n) ≡ 1 (mod n).

Proof.
Let m1, m2, . . . , mφ(n) be as in Lemma 26.6. Then the φ(n) integers
am1, am2, . . . , amφ(n) are distinct (mod n), and gcd(mi, n) � 1.
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Note that

aφ(n)
φ(n)∏
i�1

mi �
φ(n)∏
i�1

(ami). (26.1)

Thus, if we can find the product
∏φ(n)

i�1 (ami) as well as the reciprocal
of

∏φ(n)
i�1 mi (mod n), we can also compute aφ(n) (mod n).

To compute the first product, use Exercise 25.7 to obtain φ(n) in-
tegers, s1, s2, . . . , sφ(n) such that si ≡ ami (mod n) and 0 ≤ si <

n. Now, gcd(a, n) � 1 and gcd(mi, n) � 1, so by Problem 26.1,
gcd(ami, n) � 1. Thus, Lemma 25.12 implies that gcd(si, n) � 1. We
therefore have found φ(n) different integers, s1, s2, . . . , sφ(n), all rela-
tively prime to n. So s1, s2, . . . , sφ(n) is simply a (possible) reordering
of m1, m2, . . . , mφ(n). Consequently

φ(n)∏
i�1

(ami) ≡
φ(n)∏
i�1

si ≡
φ(n)∏
i�1

mi (mod n). (26.2)

Combining (26.1) and (26.2) we get

aφ(n)
φ(n)∏
i�1

mi ≡
φ(n)∏
i�1

mi (mod n). (26.3)

By Lemma 26.6, there is an integer c such that (
∏φ(n)

i�1 mi)c ≡ 1
(mod n). So, multiplying both sides of (26.3) by c, we obtain(

aφ(n)
φ(n)∏
i�1

mi

)
c ≡

(
φ(n)∏
i�1

mi

)
c (mod n).

Using associativity and simplifying, we obtain aφ(n) ≡ 1 (mod n),
as desired.

Since Fermat’s little theorem is a special case of Euler’s theorem,
with n � p for a prime p and φ(p) � p − 1, we now have a proof of
Theorem 26.1 as well.

One interesting application of Euler’s theorem is in an area of
mathematics known as coding theory. Here’s the idea: Suppose you
want to transmit a message to a receiver, whom we shall refer to
as Henry, in such a way that no one else can read it. This is done
all the time. (Just think how often you have sent your credit card
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number over the internet!) The idea is to use a code that is difficult
to decode. But of course, if it’s too difficult, Henry won’t be able to
decode it either. Applying the code to our secret message is like ap-
plying a function. Henry needs to undo the code, or mathematically
speaking, apply the inverse function. So we need something like a
function that has an inverse, but whose inverse is very difficult to
find. Such functions are called trapdoor functions. (Anyone can get
in, but only Henry can get out.) Since it is virtually impossible to find
the inverse function, the original function used to hide the message
can be made public. A method that does that is called a public key
encryption.

One particular trapdoor function leads to the following method.
Henry, the receiver of the messages, decides on a function that is
determined by the two integers, n and e, called the key of the code.
Anybody who is interested can learn about these two numbers (this
is why it is a public key encryption). If you want to send a message
to Henry, then you first turn the English text into a positive in-
teger m, called the plaintext. There are standard ways to do this,
and it does not yet hide the message. (If the translation leads to a
number m that is greater than n, the message must be divided into
several smaller messages.) The plaintext, m, must now be scram-
bled so that its meaning cannot be deciphered by anyone except
Henry. Or, mathematically speaking, we have to apply the trapdoor
function to it. A simple but very safe way to do this, is to change m

to me (mod n). It’s interesting to note that though it appears that
everyone has all the information Henry has, it turns out that Henry
knows something no one else knows. We’ll explain this once we tell
you how Henry will unscramble the message. So the question is:
How can Henry recover m from me (mod n)? It turns out that he
will use Euler’s theorem. Here’s how:

Example 26.8.
Let m, n, and e be positive integers and suppose that n > 1,
gcd(m, n) � 1, and gcd(e, φ(n)) � 1. Find a positive integer d such
that (me)d ≡ m (mod n).

Note that if Henry had d, he would have me, n, e, and d. According
to this example he could then calculate (me)d, which is equivalent to
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m modulo n. In order for the solution to this problem to be useful,
we need a constructive way to find d. We claim that (i) we can find
an integer d such that e · d ≡ 1 (mod φ(n)) and that (ii) any such
integer will fulfill the requirement (me)d ≡ m (mod n).

Now since e is a positive integer relatively prime to φ(n), The-
orem 25.6 guarantees the existence of integers k and l such that
1 � ke + lφ(n). Let d be the smallest positive integer such that d ≡ k

(mod φ(n)). Then 1 ≡ de (mod φ(n)), which is what we needed to
show.

For part (ii) of the claim, calculate (me)d � med, and recall that
mφ(n) ≡ 1 (mod n), by Euler’s theorem. We just showed that 1 �
ed + jφ(n) for some j ∈ Z, so

med � m1−jφ(n) � m · (mφ(n))−j ≡ m · 1 ≡ m (mod n).

Note that in Problem 25.18 we gave a constructive method to find
the integers k and l used above, and in Exercise 25.7, you showed
the existence of the integer d. ©

Now back to Henry. Remember that he has determined his n

and e and has given out these two integers. He also calculated the
very important integer d from Example 26.8, but kept it a secret.
Now you may well be asking the question, “Why can’t everyone with
access to n and e calculate d themselves, and then read the messages
meant for Henry?” The reason is that in order to find d, a person
needs to know the modulus that determines d, namely φ(n). Henry
knows (as you will once you work Problem 26.6) that if he chooses
n carefully, such that it is the product of two primes p1 and p2, then
φ(n) � (p1−1)(p2−1). So he lets p1 and p2 be two primes, each about
100 digits long. (He must be a little careful choosing p1 and p2, but
we will not go into that here.) Now he and everyone else knows the
product n, but not p1 and p2. This is the trapdoor. Henry knows n, p1,
and p2. So he can find φ(n). But everyone else only knows n, so they
would have to find p1 and p2. It takes no time at all to multiply two
100-digit numbers, but you cannot factor the product in a million
years, not even with supercomputers! Henry’s method to get secure
messages is called the RSA public key encryption, and Example 26.8
is the mathematical content of it. To learn more about this ingenious
and widely-used method, work Project 27.11 on Coding Theory.
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Solutions to Exercises

Solution to Exercise (26.2).
We calculate two examples.
1. Let p � 5 and a � 7. Then 74 � 2401 ≡ 1 (mod 5).
2. Let p � 13 and a � 8. Then 812 � 68719476736.

Now 812 − 1 � 68719476735 � 13 · 5286113595. Hence 812 ≡ 1
(mod 13). ©

Solution to Exercise (26.3).
φ(1) � 1.

The nonnegative integers smaller than 12 are all listed. We cross
out the ones that are not relatively prime to 12: 0/, 1, 2/, 3/, 4/, 5, 6/, 7,
8/, 9/, 10/, 11. Hence φ(12) � 4.

Similarly, φ(7) � 6, φ(13) � 12, and φ(7 · 13) � φ(91) � 72.
Notice that, in these examples, for p prime φ(p) � p − 1, and

φ(7 · 13) � φ(7) · φ(13). Are these coincidences?

Solution to Exercise (26.4).
Note that for p prime and a an integer with 0 ≤ a < p, we have
gcd(a, p) � 1 if and only if a 
� 0. Thus φ(p) � p − 1 for every prime
p.

Spotlight: Public and Secret Research

Research in mathematics today is often done by professors who work
at universities or colleges. People frequently work collaboratively,
though they also sometimes work alone. They might communicate
via e-mail, get together when they can, work together at institutes,
or they may never even meet each other. Once their work is done,
they write it up and send it to a journal. The editor of the journal
sends it to carefully selected referees who read the paper. The author
is responsible for the correctness of the mathematics in the paper,
but the referee (whose identity is generally hidden from the author)
determines the value of the work, the appropriateness of its place-
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ment in the journal, the originality of the mathematics, and often
the correctness of the results. Once the paper appears, everyone has
access to the results and proofs in the paper.

There are also other places where mathematical research is done.
In the United States, the National Security Agency (NSA) refers to it-
self as the “leading employer” of non-academic mathematicians. In
Great Britain, there is the Government Communications Headquarters
(GCHQ), the successor to the famous Bletchley Park where British
code breakers were so successful in intercepting and reading Nazi at-
tack plans. The mathematics done in a place like this might become
the government’s secret, and therefore may never be published. Pub-
lic key encryption is an example of how such secrecy may hamper
mathematical progress.

In 1976, Whitfield Diffie, Martin Hellman, and Ralph Merkle
developed the idea of the public key. In 1977, Ronald Rivest, Adi
Shamir, and Leonard Adleman gave us the RSA code. A couple
of decades later, it became known that British mathematicians at
GCHQ had worked out the encryption idea a few years earlier.
James Ellis, Clifford Cocks, and Malcolm Williamson, all employed
at GCHQ, had discovered public key encryption, but neither they
nor their supervisors realized the power and widespread applica-
bility of the method. Their results were considered top secret and
were only circulated within the agency. A few years later, the world
admired the “new” cryptosystem and celebrated the “originators” in
the United States, [78, Chapter 6].

Some private companies also restrict their employees’ pub-
lications. There are instances of researchers circumventing this
restriction by publishing under a penname. In 1908, William S.
Gosset who worked for the Guiness Brewing Company in Dublin,
published a paper under the name “Student” to avoid repercussions.
The distribution Gosset introduced is now known as Student’s t-
distribution (or the Student t-distribution) and it has had a profound
impact on statistical theory and practice.

To learn more about the interesting history of public key
encryption we recommend [78, Chapter 6] or [50].

An in-depth treatment of Fermat’s little theorem, Euler’s theorem
and Euler’s φ-function, as well as historical notes can be found in
the text [12, pp. 91-96 and 123-150]. In [46, pp. 418-420 and 556-558]
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Fermat’s theorem and Euler’s theorem are put in context. For short
biographies of Pierre de Fermat and Leonhard Euler, see the web at
[74]. For a biographical sketch of Euler and a delightful description
of Euler’s mathematics in the various fields, see [19]. A good source
to learn more about Fermat’s life and his mathematics is [54].

Problems

Problem� 26.1.
(a) Let a, b, and s be integers such that gcd(a, s) � 1 and gcd(b, s) �

1. Show that gcd(ab, s) � 1.
(b) Let n ∈ Z+ and a1, . . . , an, and s be integers such that

gcd(ak, s) � 1 for all integers k with 1 ≤ k ≤ n. Show that
gcd(

∏n
k�1 ak, s) � 1.

Problem 26.2.
Show that the conclusion of Fermat’s little theorem (Theorem 26.1)
may not hold if p is not prime.

Problem 26.3.
(a) Calculate φ(52), φ(53), and φ(54).
(b) For p a prime and n a positive integer, show that φ(pn) � pn(1−

1/p).
(c) Calculate φ(128).

Problem 26.4.
Is Euler’s φ-function additive? In other words, is φ(m + n) � φ(m) +
φ(n) for all m, n ∈ Z+? Prove it or give a counterexample.

Problem 26.5.
This problem guides you through the proof of the fact that Euler’s
φ-function is in some sense multiplicative. More precisely, you will
prove

Theorem 26.9.
Let m and n be integers such that m > 1 and n > 1. If gcd(m, n) � 1,
then φ(mn) � φ(m)φ(n).
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(a) Let k1, k2, l1, and l2 be integers satisfying 0 ≤ k1, k2 < n and
0 ≤ l1, l2 < m. Show that if k1m + l1n ≡ k2m + l2n (mod mn)
then k1 � k2 and l1 � l2.

(b) Use the result of (a) to show that for each a ∈ Z there is exactly
one element (k, l) ∈ Z × Z such that 0 ≤ k < n, 0 ≤ l < m, and
a ≡ km + ln (mod mn).

(c) From (b), conclude that φ(mn) is equal to the number of ele-
ments (k, l) ∈ Z × Z such that 0 ≤ k < n, 0 ≤ l < m, and
gcd(km + ln, mn) � 1.

(d) For integers k and l satisfying 0 ≤ k < n and 0 ≤ l < m,
show that gcd(km + ln, mn) � 1 if and only if gcd(k, n) � 1 and
gcd(l, m) � 1.

(e) Use (c) and (d) to obtain the conclusion of Theorem 26.9.

Problem 26.6.
Use the results of Problems 26.3 and 26.5 to answer the following.

(a) Let m ∈ Z and suppose m � p
a1
1 ·pa2

2 ·. . .·pak

k , where p1, p2, . . . , pk

are distinct primes and a1, a2, . . . , ak are positive integers. Prove
that

φ(m) � m

k∏
i�1

(
1 − 1

pi

)
.

(b) Calculate φ(5712200).

Problem 26.7.
Prove that for n ∈ Z+, the Euler φ-function satisfies

φ(2n) �
{

φ(n) if n is odd
2φ(n) if n is even

.

Problem 26.8.
Let a, b, and c be integers such that gcd(a, b) � 1 and a|bc. Prove
that this implies that a|c.

Problem 26.9.
Prove Theorem 26.1 directly by adapting the proof of Theorem 26.7
to this simpler situation.
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Problem 26.10.
Use the method of Example 26.8 to find an integer x satisfying the
equivalence

(a) x3 ≡ 9 (mod 33);
(b) x77 ≡ 15 (mod 143).

Problem 26.11.
Show that the conclusion of Euler’s Theorem may not hold if
gcd(a, n) > 1.

Problem 26.12.
Show that if x, y ∈ Z and p is a prime, then (x + y)p ≡ xp + yp

(mod p). (You may find the binomial theorem useful here. If so, you
may use, without proof, the fact that the binomial coefficient

(
n

k

)
is

an integer for k, n ∈ N with k ≤ n.)
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C H A P T E R

...........................................

Projects

Tips on Talking about Mathematics

It’s not easy to talk about mathematics to other people. In this sec-
tion, we present some tips that we find helpful when we present a
talk to undergraduates.

Let’s say someone has just asked you to give a talk about
mathematics to undergraduates. Here’s what you need to do:

• Thank them, and say you’d love to. Then do the rest of the things
below.

• Find out who the audience is and what they know.
• Pick an interesting topic. Find out about the history of the topic,

the main players in the field, and the main results.
• Now that you have your topic, you need to write the talk. Start with

something everyone is interested in. This could be the history of
what you plan to talk about, or it could be an interesting related
result. Then motivate the question you are interested in looking
at, build up the talk, and remember to find a good conclusion for
it.

• As you write your talk, keep the level of the audience in mind.
Do not use terms that your audience will not understand. If they

343
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haven’t heard certain words you will have to define them, which
brings us to our next point: the more terms you have to define,
the more people you will lose. Pick a topic that doesn’t require a
lot of introduction.

• You need to decide whether you will use transparencies, the
computer, or the blackboard. Each has its advantages and
disadvantages. We’ll run through each below.

1. Blackboard. If you use the blackboard, you’ll most likely move
at the right speed for the audience. It’s also livelier than the
other methods. On the other hand, you should absolutely not
rely on your notes. Therefore, if you give a talk using the black-
board, you’ll need to know what you are going to say and when
you are going to say it. You’ll need to watch where you write
things, and you shouldn’t erase something you want the audi-
ence to look at. Make sure that you move away from the board
so that everyone can see what you wrote. If your handwriting
is illegible, think about using transparencies or the computer.

2. Transparencies. Unless you are very careful, you will probably
move too quickly for the audience. You’ll probably also stand
in front of the transparency from time to time, blocking the
audience’s view. If you are aware of these potential problems,
you can correct them. For example, you can use two overheads.
You should not write too much on one transparency, and you
should always be aware of where you are standing. Find out
how big the room is, and make sure that someone in the back
of the room will be able to see what you have written. The
advantage of transparencies or the computer is that you’ll have
all your diagrams and pictures in place, and you’ll have an
outline of your talk with you. So the main disadvantages are
that your talk may become monotonous and that it’s possible to
move so quickly that your audience won’t be listening. These
are pretty big disadvantages.

3. Computer. In many ways, using the computer to give your
talk is similar to using transparencies. Many of the advantages
and disadvantages are the same. You can liven up the talk by
adding relevant photographs of places, manuscripts, or people.
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You might even add a video clip. Just make sure that these
“attention getters” are relevant and well incorporated.

4. Blackboard, Transparencies, and Computer. One thing you can
do is combine two or three of these methods of presentation. In
a talk for undergraduates, it’s nice for them to have something
to look at from time to time, other than the speaker.

Pick the method you are most comfortable with and that you like
the best. Then work around the disadvantages.

• So now you have your topic, your talk, and a method of presen-
tation. You’re done, right? Um . . . no. You still have to present
the talk. Surprisingly, the hardest part of the talk is timing. We’ve
alluded to this already in our discussion on transparencies, but
there’s more to be said.

• Find out how long the talk is. If it’s twenty minutes, talk for twenty
minutes. (No one will complain if it’s eighteen minutes, and ev-
eryone will complain if it’s thirty.) There is only one way to know
how long your talk is: practice it.

• The best way to practice a talk is to give it to yourself once. Fix
the things you realize need fixing. Then try to find an audience
of two people, one who knows what you are talking about and
one who does not. Ask them if you can present the talk to them.
Listen to their comments and use them to improve your talk.

• Write an interesting, but truthful abstract. The abstract should
indicate the level of the talk.

• Before you give your talk, ask if you can see the room that you
will speak in. Check that everything you need is there.

• Make sure that everyone in the room can hear you when you
speak. When you give the talk, look at the audience. They’ll let
you know how you are doing.

There are other articles on how to talk about mathematics ([55],
[33]), but these are primarily aimed at graduate students or profes-
sional mathematicians. Of course, many of the tips are the same,
because many of the mistakes people make—whether talking to
undergraduates, graduate students, or professors—are the same.
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27.1 Picture Proofs

Introduction
You have probably heard the saying “a picture is worth a thousand
words.” The same is true in mathematics: a good picture can help
a reader visualize what is happening, it can aid a mathematician in
finding a solution, and it can shed light on other potential results. A
bad picture, on the other hand, can be deceiving. Relying too much
on what we see might lead us to incorrect proofs, which in turn can
lead to false results. This project should help convince you of that.

One of the most influential theorems in mathematics is Pythago-
ras’ theorem. It states that in a right triangle the lengths of the sides
of the triangle satisfy a2 +b2 � c2, where c denotes the length of the
hypotenuse, and a and b denote the lengths of the other two sides
of the triangle. There are many known proofs of this theorem, some
of them based on clever figures. You will see two such proofs below.

Prerequisites
Basic geometry skills plus an understanding of what constitutes a
rigorous argument are the necessary prerequisites for this project.
We suggest that you read through Chapter 5 before attempting this
project.

Guided Project
1. The diagram of Figure 27.1 suggests a proof of Pythagoras’ theo-

rem. To make this proof rigorous, however, you will need to do
two things; you need to prove something about the diagram and
you need to do an algebraic calculation. Do both.

2. Give a second proof of Pythagoras’ theorem based on Figure 27.2.
This one does not need algebraic calculations. It is all in the
picture—or is it?

3. If you accepted the picture of Figure 27.2 as a complete proof
of Pythagoras’ theorem, then you are probably willing to believe
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a

b

c

FIGURE 27.1 a2 + b2 � c2

that Figure 27.3 provides a proof that 168 � 169. After all, both
proofs require that we shift the pieces around to form another
familiar object. What is wrong with this proof?

4. Find a picture to illustrate the statement

∞∑
k�1

1
2k

� 1.

Does your picture amount to a rigorous proof? What are its
strengths and what are its weaknesses?

b

ba

a

c

c

c

a2

b2
c2

FIGURE 27.2 a2 + b2 � c2
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13

8

8

8

5

5

5

13

8
5

8

5

FIGURE 27.3 169 � 132 � (8 + 13) · 8 � 168

Open-Ended Project
Try to find some other picture proofs. (We suggest you think back
to your geometry course.) Can you also come up with a (somewhat)
convincing picture proof of a false statement?

Notes and Sources
We first learned of the false proof presented in part 3 from our
colleague, G. Adams. For a connection between this problem and
Fibonacci sequences see the article [43], where the author indicates
that this “not a picture proof” can be traced back to the year 1868.
There are two excellent books on picture proofs by R. Nelsen, [59]
and [60]. The website by A. Bogomolny [10] contains 39 proofs of
Pythagoras’ theorem, many of them with pictures, and some of them
with applets.

27.2 The Best Number of All

Introduction
We know that positive integers can be even or odd, they can be
prime or composite, and they can be triangular or square. (Each of
these terms, with the exception of “square,” appears either below or
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in the index of this book, if you have forgotten the definition.) In this
project we’ll look at some more things that they may be: the sum of
their proper divisors, the product of their proper divisors, or both.

Prerequisites
This exercise requires an understanding of proof techniques (Chap-
ter 5).

Guided Project
Recall that an integer greater than 1 is prime if its only positive
divisors are 1 and itself. A positive integer greater than 1 that is not
prime is called composite. By a proper divisor, we mean a positive
divisor that is not equal to the integer itself. An integer is said to be
perfect if it is the sum of its proper divisors.

1. Show that 6 is a perfect number.
2. Show that 6 is the only perfect number less than 10.
3. Find another perfect number that is less than 30.

By now you should have found the first two perfect numbers. The
next is 496.

4. Check that 496 is a perfect number.
5. Find five positive integers, each one being the product of all of its

proper divisors.
6. Characterize all positive integers that are the product of their

proper divisors.

Now you are almost ready to prove the main theorem in this project:

Theorem 27.1.
There is only one positive integer that is both the product and sum of all
its proper positive divisors, and that number is 6.

7. Let p be a prime. Prove that p3 is not perfect.
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8. Prove as many of the following as you need to, until you see the
proof of the theorem.

(a) Prove that the only even number that is both the product and
sum of all its proper positive divisors is 6.

(b) Prove that the only multiple of 3 that is both the product and
sum of all its proper positive divisors is 6.

(c) Prove that there is no multiple of 5 with this property.
(d) Prove that there is no multiple of 7 with this property.

9. Prove the theorem.

Open-Ended Project
Let p be a polynomial over Z or R (see Problem 10.8). What might it
mean to say that a polynomial is prime? composite? perfect? square?
triangular? While some of these might make sense, others may not.
Once you have defined the terms that make sense, are there some
interesting theorems you can prove about them?

Notes and Sources
Euclid, in his Elements, IX.36, gave the result that if p � 2k − 1
is a prime, then 2k−1p is perfect. For k � 2, 3, 5, and 7 we note
that 2k − 1 is prime. Thus we get four perfect numbers, 6, 28,
496, and 8128. The eighth perfect number is already quite large:
2,305,843,008,139,952,128. A good source to begin learning more
about numbers is the book [17]. The problem we discussed in the
guided portion of this project appears in [12], which we recommend
to those wanting to know more about number theory.

27.3 Set Constructions

Introduction
It is amazing how much one is able to build out of almost nothing—
and by almost nothing here we mean the empty set. The guided
project will lead you through a construction of the natural numbers.
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Prerequisites
While the set theory introduced in Chapters 6–9 is sufficient, you
may find it helpful to have an understanding of mathematical
induction (Chapter 17), which is also introduced in this project.

Guided Project
Let x be a set. Define the successor of x to be the set x+ � x ∪ {x}.
1. Determine the successors, and the successors of the successors

of the sets ∅, {∅}, and {a, b, c}.
We now introduce the following notation. Let 0 � ∅, 1 � 0+, 2 � 1+,
and so on.

2. Write down 0, 1, 2, 3, and 4 as sets in two different ways; first using
the definitions made above, and then using only the symbol ∅, set
brackets, and appropriate set notation.

It may seem intuitively obvious that if we “do this forever,” then
we will have defined the natural numbers. However, as simple and
as attractive as this approach may be, it is not what we call mathe-
matically rigorous. What we need is a statement that explains that
we can do this forever. We will take this statement as an axiom, and
thus it will not be proved.

Axiom 27.2 (Axiom of infinity).
There exists a set containing ∅ and the successor of each of its elements.

3. Let I be a nonempty set and {Ak : k ∈ I} be an indexed family of
sets. Suppose that for each k ∈ I, the set Ak has the two properties
(i) ∅ ∈ Ak and (ii) if x ∈ Ak, then x+ ∈ Ak. Show that the set

⋂
k∈I Ak

also has these two properties. We will call a set with these two
properties a successor set.

4. The axiom of infinity guarantees the existence of a successor set.
So, let A be an arbitrary successor set. Define the set ωA to be
the intersection of all subsets of A that are also successor sets. In
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symbols we might write

ωA �
⋂
B∈I

B,

where I � {B : B ⊆ A, and B is a successor set}.
By part 3, ωA is a successor set. Show that ωA � ωB for all successor
sets A and B. Perhaps surprisingly, our definition does not depend
on our initial choice of successor set, and therefore we will write
ω rather than ωA.
We call ω the set of natural numbers. Thus far we know that ω is
a successor set, and it is the only successor set that is contained
in every other successor set.

5. Prove the following statement. Suppose S ⊆ ω satisfies the two
properties

(i) ∅ ∈ S, and
(ii) if x ∈ S, then x+ ∈ S.

Show that S � ω. (This is called the principle of mathematical
induction and is discussed in Chapter 17.)

6. Prove that x+ 
� 0 for all x ∈ ω.
7. Consider the set S � {x ∈ ω : ∀y ∈ ω, if y ∈ x, then y ⊆ x}. Use

part 5 to show that S � ω. Conclude that for all u and v in ω, if
u ∈ v, then u ⊆ v.

8. Use part 7 to prove that if x and y are in ω and x+ � y+, then
x � y.

The two defining properties ((i) and (ii)) of a successor set, the
principle of mathematical induction, and parts 6 and 8 of this project
are known as the five Peano axioms. They are the pillars of the
construction of the natural numbers.

Open-Ended Project
We have created new sets from old ones using element relations,
union, intersection, power sets, and Cartesian products. Use some
(or all) of these to create new sets from the empty set. Do your new
sets have some interesting properties?
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Notes and Sources
This project is guided by Chapters 11 and 12 of P. Halmos’ Naive Set
Theory [31]. For a brief presentation of the Peano axioms and some
other attempts to give the natural numbers a solid foundation see
[48, pp. 987–989].

27.4 Rational and Irrational Numbers

Introduction
We know that when we add two rational numbers, the result is a ra-
tional number. For this reason, we say that the rationals are closed
under addition. Similarly, when we multiply two rational num-
bers, the result is rational. Thus, the rationals are also closed under
multiplication. In this project, you will investigate the behavior of
the rationals and irrationals under other operations.

Prerequisites
This project relies on proofs in cases (Chapter 5), as well as familiar-
ity with rational and irrational numbers. In particular, you will need
to use the fact that

√
2 is irrational.

Guided Project
Let a and b be two irrational numbers.

1. Give an example of two irrational numbers a and b such that a+b

is irrational.
2. Give an example of two irrational numbers a and b such that a+b

is rational.

So the irrational numbers are not closed under addition and certainly
are less well behaved than the rational numbers. Now consider two
real numbers, a and b.
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3. Give an example of two rational numbers a and b such that ab is
rational.

4. Give an example of two rational numbers a and b such that ab is
irrational.

Here’s a charming little proof, based entirely upon things that
you have proved in this course, that an irrational number raised to
an irrational power can be rational.

5. Consider the following.

Theorem 27.3.
There exist irrational numbers a and b such that ab is rational.

Complete the proof of this theorem, using appropriate choices
for a and b and the two cases below:
Case 1.

√
2

√
2

is a rational number;

Case 2.
√

2
√

2
is an irrational number.

The interesting thing about your proof of Theorem 27.3 is that

you don’t need to know whether
√

2
√

2
is rational or irrational!

6. There are many other examples of irrational powers of irrational
numbers that are rationals, assuming you know lots of different
ways to express irrational numbers. See if you can come up with
another example based on the fact that the natural logarithm of
2, denoted ln 2, is irrational. Can you find other examples?

Knowing that an irrational number to an irrational power may be
rational raises the question of whether an irrational to an irrational
can be irrational. Again, we are looking for a proof that does not use
anything more than what we stated in the prerequisites. There are
some nonelementary proofs of this, but an elementary proof exists
as well [45].

7. Prove the following theorem using our suggestion (and the fact
that

√
2 is irrational).

Theorem 27.4.
There exist irrational numbers a and b such that ab is irrational.
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The proof of this theorem is also a proof in cases. We suggest that

you figure out how to use
√

2
√

2
and the number

√
2

(
√

2+1)
.

Open-Ended Project
Study the behavior of the rationals and irrationals under different
operations. Your investigations might deal with specific numbers, or
with the rationals and irrationals in general. For example, is

√
2+√

3
irrational? In another direction, can you define an operation, �,
such that a � b is irrational for all irrational a and b? Think of other
questions along these lines and try to answer them.

Notes and Sources
The connection of this problem to Hilbert’s seventh problem is dis-
cussed in the Spotlight: Hilbert’s Seventh Problem at the end of this
chapter. The proof that an irrational number to an irrational power
can be irrational appears in [45]. These authors attribute the proof
of Theorem 27.3 to D. Jarden, [44]. This problem appears as a “fun
fact” on the web at [37].

27.5 Irrationality of e and π

Introduction
The problems in this project require knowledge of calculus. More
specifically, you need to know what the number e is, what a geo-
metric series is, and what the series expansion for e is. If you have
seen all this, then you probably have also been told that e is an irra-
tional number. The first task of this project is to work through Ivan
Niven’s proof of this fact. If you have never seen the proof, it’s a
nice application of series. Everything you need to prove that e is
irrational is provided in this project.
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The proof that π is irrational, outlined in this project, is also due
to I. Niven. In his words, “In the June 1947 issue of the Bulletin of the
A. M. S., I gave a one page proof that π is irrational. I had worked on
this problem for a specific reason: in the first edition (1938) of what
is now a great classic, Introduction to the Theory of Numbers, by G.
H. Hardy and E. M. Wright, the authors made the observation that
‘There is no simple proof of the irrationality of π.’ I wondered why
this should be so.” (See [2] for the full text of Niven’s conversation.)

We have provided you with all the steps you need to recreate
Niven’s one-page proof.

Prerequisites
Since the proofs are by contradiction, you will need to have cov-
ered Chapter 5. This project also assumes that you have a basic
understanding of infinite series.

For the proof that these numbers are irrational, you will need to
recall three results from your calculus course. The first is that, for
−1 < r < 1, the geometric series satisfies

∞∑
n�0

rn � 1
1 − r

.

The second fact is that the series expansion for ex is

ex � 1 + x/1! + x2/2! + x3/3! + · · · + xk/k! + · · · .
The last result that you will need is the product rule for differentia-
tion.

Guided Project
1. Prove the following theorem, using the steps outlined below.

Theorem 27.5.
The number e is irrational.
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Step 1. Let k ∈ Z+. Show that

1
(k + 1)

+ 1
(k + 1)(k + 2)

+ 1
(k + 1)(k + 2)(k + 3)

+ · · ·

≤ 1
(k + 1)

+ 1
(k + 1)2

+ 1
(k + 1)3

+ · · · .

Step 2. Prove that if k is an integer with k ≥ 2, then

1
(k + 1)

+ 1
(k + 1)(k + 2)

+ 1
(k + 1)(k + 2)(k + 3)

+ · · · < 1.

Step 3. Suppose to the contrary that e is rational. Prove that this
implies there exists an integer k such that k!e is an integer.
Step 4. Using the series expansion for e, show that k!e is never an
integer. This step should complete the contradiction.

2. Prove the following theorem by contradiction, using the steps
below.

Theorem 27.6.
The number π is irrational.

Suppose to the contrary that there are positive integers a and b

such that π � a/b. We will write f (m) for the mth derivative of f .
For n ∈ Z+, define the two polynomials fn and Fn by

fn(x) � xn(a − bx)n

n!
, and

Fn(x) � fn(x) − f
(2)
n (x) + f

(4)
n (x) − · · · + (−1)nf

(2n)
n (x).

We will determine a value for n in the fifth step below. Until then,
assume that n is a positive integer.
Step 1. Show that for every j, each of the following are integers:
fn(0), fn(π) � fn(a/b), f

(j)
n (0) and f

(j)
n (π) � f

(j)
n (a/b).

Step 2. Prove that fn(x) sin x � d
dx

(F ′
n(x) sin x − Fn(x) cos x).

Step 3. Prove that
∫ π

0 fn(x) sin x dx � Fn(π) + Fn(0).
Step 4. Find the maximum of the function fn on the interval [0, π].
(Note that the maximum depends on n.)
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Step 5. Prove that for n sufficiently large,
∫ π

0 fn(x) sin x dx is not an
integer. This step should complete the contradiction.

Open-Ended Project
Can you prove that e2 is irrational? What else can you prove is
irrational?

Notes and Sources
In 1737, Euler showed that e is irrational. Johann Heinrich Lambert
showed, in 1761, that π is irrational. The number π has a very inter-
esting history. For a brief history of π, see [22, p. 100]. For a fuller
account, up to about 1971, see [8]. For more recent developments
see [5].

The one-page proof in the Bulletin of the A.M.S. that Niven refers
to in the quote above can be found in [61]. The reference for Hardy
and Wright’s text is given in [36]. The conversation with Niven
appears in [2].

27.6 When Does f −1 � 1/f ?

Introduction
Students often confuse the inverse of f , denoted f −1, with the mul-
tiplicative inverse of f , denoted 1/f . When are these two equal?
Surprisingly, although the mistake of assuming f −1 � 1/f is com-
mon, functions that have this seemingly intuitive property are not
common at all.

Prerequisites
This project requires an understanding of functions and their
inverses, presented in Chapters 13–15.
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Guided Project
In what follows, f will always denote a real-valued function defined
on a subset of R and satisfying f −1 � 1/f .

1. What can you say about the domain and range of such a function?
2. Find an example of such a function, where the domain of f

consists of a single point.
3. Find an example of such a function on a domain consisting of two

points.
4. Can such a function f exist on the integers? Why or why not?
5. Show that (f ◦ f )(x) � 1/x and f (1/f (x)) � x for all x ∈ X.
6. Show that f (1/x) � 1/f (x) for all x ∈ X.
7. Define a function g by

g(x) �
{−x3, if x > 0

−1/(x1/3), if x < 0.

Show that g satisfies g−1 � 1/g on its domain R \ {0}.
8. Can you find other examples of such functions?

Open-Ended Project
Here are some other common errors. Students also often confuse the
composition f ◦ f with the product f · f , where (f · f )(x) � f (x) · f (x).
What can you say about a function f that satisfies f ◦ f � f · f ?

Yet another problem arises with powers. Which functions f have
the property that f (x2) � (f (x))2 for all x ∈ dom(f )?

Notes and Sources
This project is based upon two interesting articles. The first article,
[4], has several other interesting questions and problems for stu-
dents. Some of them require knowledge of continuous functions.
The second article, [15], is rather advanced, and it presents much
more than we have here. It includes a look at complex valued
functions.
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27.7 Pascal’s Triangle

Introduction
In this project you will explore an arithmetical triangle that was the
object of study by Blaise Pascal in a treatise he wrote in 1654 (though
it was known to mathematicians before him). He used this triangle
to solve a question posed to him about gambling. You can find out
more about the history of this problem from the references at the
end of the project.

Prerequisites
This project is appropriate after Chapter 17 on induction has been
covered. You should read over Problem 17.19 before you begin.

Guided Project
Pascal’s triangle is presented below. Each line has one more entry
than the previous line. All entries along the left and right edges of
the triangle are one. Every other entry in a line is the sum of the two
numbers on the line above that lie to the immediate left and right.
The triangle is unbounded below.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

. . . . . . .

. . . . . . . .

Recall that we defined n factorial and the binomial coefficient
(
n

k

)
in the problems in Chapter 17.

The first few exercises should help familiarize you with Pascal’s
triangle.
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1. Compute each of the following:(
6
0

)
,

(
6
1

)
,

(
6
2

)
,

(
6
3

)
,

(
6
4

)
,

(
6
5

)
, and

(
6
6

)
.

2. Solve Problem 17.19 (c) if you haven’t already. In other words,
prove that for all k, n ∈ N with 1 ≤ k ≤ n, we get(

n + 1
k

)
�

(
n

k − 1

)
+
(

n

k

)
.

3. Use the definition of Pascal’s triangle given above to show that
all entries in Pascal’s triangle are binomial coefficients and find
a familiar mathematical expression for the kth entry from the left
in the nth row. (The first entry from the left is entry 0 and the first
row is row 0.) Use induction to prove that your familiar expression
is correct.

4. For each n ∈ N, consider the statement

n∑
k�0

(
n

k

)
� 2n.

(a) Check this formula for a few small values of n.
(b) Prove the statement. (You may use Theorem 17.7.)
(c) Show how you can obtain this sum using Pascal’s triangle.

5. For each n ∈ Z+, consider the statement

n∑
k�1

(
k

k − 1

)
�

(
n + 1
n − 1

)
.

(a) Do something clever for a few n (as you did in 4 (a)).
(b) Prove the statement.
(c) Show how you can obtain this sum using Pascal’s triangle.

6. How does Pascal’s triangle relate to the Binomial Theorem
(Theorem 17.7)?

Now you are ready for the main task of this project. Work it
carefully. Be as creative, imaginative, clever, and resourceful as
possible.
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Open-Ended Project
Find a pattern that appears in Pascal’s triangle, but that does not
already appear in the text. State your formula carefully, and then
prove the result. There are many different patterns!

Notes and Sources
Pascal’s original article, in Latin with a French translation, appears
in [63]. A very readable comprehensive history of Pascal’s triangle
can be found in [20].

27.8 The Cantor Set

Introduction
In this project, you’ll learn about the Cantor set—a set that is in some
ways very small, and in other ways very big.

Prerequisites
Proofs in this section are by induction. You will need the background
provided by Chapter 17, and Chapters 20–22.

Guided Project
1. (The Cantor Set) To construct the Cantor set, let I � [0, 1].

(a) (First stage.) We will remove the middle third of this set; that
is, we remove the open interval (1/3, 2/3) from [0, 1]. So two
intervals remain. (See Figure 27.4.) Let E1 � I \ (1/3, 2/3) �
[0, 1/3] ∪ [2/3, 1]. If you were to assign a length to E1, what
length would you assign?
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FIGURE 27.4 First stage: E1

FIGURE 27.5 Second stage: E2

FIGURE 27.6 Third stage: E3

(b) (Second stage.) Remove the middle open third from each
of the two remaining intervals. In other words, let E2 =
E1 \ ((1/9, 2/9) (7/9, 8/9)). So E2 is a union of four closed
intervals. (See Figure 27.5.) Write E2 as this union of four
closed intervals. If you were to assign a length to E2, what
length would you assign?

(c) (Third stage.) Remove the middle open third from each of the
remaining four intervals. Thus E3 is a union of eight intervals.
(See Figure 27.6.) Write E3 as a union of these eight closed
intervals. If you were to assign a length to E3 what length
would you assign?

(d) (nth stage.) Now consider En, obtained from En 1 by removing
the open middle thirds of each of the intervals that compose
En 1. If you were to assign a length to En what length would
you assign? State your guess for the length of En in a complete,
coherent sentence. Prove that your guess is correct.

The Cantor set is the set E defined by E = f]^=1 En.
2. If you were to assign a length to E what length would you assign?

Why?
3. Give examples of numbers that you know are in the Cantor set;

that is, give examples of numbers that are in En for every n.
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4. Another view of the Cantor set. There are far more points in the
Cantor set than you might think. To see this, it is best to revisit
the Cantor set.
Each point x in the interval [0, 1] has something called a ternary
expansion.
The first digit in the ternary expansion for x, denoted x1, is found
as follows: We divide the interval [0, 1] into thirds. If x lies in the
first third, [0, 1/3], we assign x1 the value 0. If x lies in the middle
third, [1/3, 2/3], we assign x1 the value 1, and if it lies in the last
third, [2/3, 1], we assign x1 the value 2. (We note that there is some
ambiguity about what happens at the endpoints. When working
with the Cantor set (as we discuss below), whenever we have a
choice, we will choose either 0 or 2 and not the number 1.)
We now proceed to the second digit, x2, in the ternary expansion,
which we find as follows: If x1 � 0, then x lies in the interval
[0, 1/3]. Divide this interval into thirds. If x lies in the first third,
[0, 1/9], we assign x2 the value 0. If x lies in the middle third,
[1/9, 2/9], we assign x2 the value 1. And if x lies in the final third,
[2/9, 3/9], we assign x2 the value 2. Similarly, if x1 � 1, then x

lies in the interval [1/3, 2/3], and we assign x2 a value of 0 if x

lies in the interval [3/9, 4/9], a value of 1 if x lies in the interval
[4/9, 5/9], and a value of 2 if x lies in the interval [5/9, 6/9]. Finally,
if x1 � 2, then x lies in [2/3, 1], and we divide this interval into
thirds, assigning x2 the value of 0, 1, or 2.
For x3, we use x1 and x2 to tell us which interval to look at. We
then divide that interval into thirds, and we assign a value of 0,
1, or 2 to x3. It should be clear that all endpoints will have two
possible representations, while all other points will have exactly
one representation. Comparing the procedure defined in part 1
of this project, with the procedure we have outlined to find the
ternary expansion of x, we see that the Cantor set consists of all
points for which there exists a ternary expansion consisting of
0’s and 2’s. (That’s why we never chose the number 1.) Without
going into too many details, the ternary expansion really means
that

x �
∞∑

k�1

xk

3k
, where xk � 0, 1, or 2.
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(a) There are two ternary representations for the number 1/3.
What are they?

(b) There are two ternary representations for the number 2/3.
What are they?

(c) Find the first six terms of the sequence associated with 1/4.
(d) Find the first six terms of the sequence associated with 1/8.

5. If you have studied series, then you recall that for −1 < r <

1, we have the following formula for the sum of the geometric
series:

∑∞
k�1 rk � r/(1−r). Using the first six terms of the ternary

expansion for 1/4 that you determined above, guess all the other
digits in the expansion. Then sum the series

∑∞
k�1 xk/3k to show

that you have found the representation for 1/4. Does 1/4 lie in
the Cantor set? What about 1/8?

6. We have presented the outline of a proof that there is a one-to-one
correspondence between points in the Cantor set and sequences
of 0’s and 2’s. Fill in the details, and use this to prove the theorem
below.

Theorem 27.7.
The Cantor set is uncountable.

So the Cantor set has “length” zero, but is an uncountable set.
You can learn more about the Cantor set (much more) and the idea
of length in the reference given below.

Open-Ended Project
What happens if instead of removing the middle third of the set, you
remove the middle fifth? Think about other sets you can create in
this way, and say as much as you are able to about them.

Notes and Sources
This topic is discussed in many textbooks. In particular, a summary
of many of the interesting properties of this set can be found in [6,
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pp. 352–354]. For a short article (with a card trick) relating the Cantor
set to fractals, see [9, pp. 114–121].

27.9 The Cauchy–Bunyakovsky–
Schwarz Inequality

Introduction
In this project you’ll prove two inequalities. The second of the two
is the triangle inequality in Rn, and the first is used to prove the
second.

Prerequisites
What you need for this project depends upon how you prove it. You
may need little to no background, other than an understanding of
what Rn is and how you add and subtract in that space.

Guided Project
Consider two points, x � (x1, x2, . . . , xn) and y � (y1, y2, . . . , yn), in
Rn. Recall that x+y � (x1 +y1, x2 +y2, . . . , xn +yn) and x ·y � x1y1 +
x2y2 +· · ·+xnyn. We’ll introduce some notation that will make things
neater. We’ll write x · y � ∑n

j�1 xjyj and ‖x‖ � √
x2

1 + x2
2 + · · · + x2

n.
For λ ∈ R, we write λx � (λx1, λx2, . . . , λxn).

1. Get used to this notation: Let x � (0, 1, 2) and y � (−1, 2, 3) in
R3. What is x · y? What is ‖x‖? ‖y‖? x − y? x + y? Make up some
examples in R2 and R4.

2. Keep getting used to this notation: What is {x ∈ R2 : ‖x‖ � 1}?
What is {x ∈ R3 : ‖x‖ � 1}? If you fix x ∈ R3, what is {y ∈ R3 :
‖x − y‖ ≤ 2}?

3. Let x ∈ Rn and λ ∈ R. Prove that ‖λx‖ � |λ|‖x‖.
4. Let x, y ∈ Rn. Prove that (x + y) · (x + y) � ‖x + y‖2.
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5. Let x, y ∈ Rn. Prove that (x − y) · (x − y) � ‖x‖2 − 2(x · y) + ‖y‖2.

6. Let x, y ∈ Rn. Find a similar formula for (x + y) · (x + y).
7. Suppose x and y are two points in Rn such that ‖x‖ � 1 and

‖y‖ � 1. Prove that |x · y| ≤ 1. (Problem 5 above together with
the fact that z · z ≥ 0 for all z ∈ Rn, should help to point you in
the right direction.)

8. Let x ∈ Rn. Prove that if x 
� (0, 0, . . . , 0), then ‖x/‖x‖‖ � 1.
9. Let x and y be two points in Rn. Prove that |x · y| ≤ ‖x‖ ‖y‖.

(Problems 7 and 8 should be helpful here.) In many textbooks,
this inequality is referred to as the Cauchy-Schwarz inequality;
others call it the Cauchy-Bunyakovsky-Schwarz inequality.

10. Use Problems 4 and 9 to prove that for x and y in Rn, the triangle
inequality holds; that is, ‖x + y‖ ≤ ‖x‖ + ‖y‖.

11. The Cauchy-Bunyakovsky-Schwarz inequality can be used to
prove interesting inequalities about real numbers. Use it to
prove the following: Let a1, a2, . . . , an be real numbers. Then

n∑
j�1

a2
j ≥ (

n∑
j�1

aj)2/n.

12. Bunyakovsky, Cauchy, and Schwarz all have their names at-
tached to this theorem. Who proved what, and when did they
prove it?

Open-Ended Project
For two points x and y in Rn, the line segment joining x and y is
defined by {z ∈ Rn : z � λx + (1 − λ)y, where λ ∈ R and 0 ≤ λ ≤ 1}.
For example, in R2 choose two points, say (1, 2) and (2, 4). Then the
line segment joining these two points is the set

{(λ+2(1−λ), 2λ+4(1−λ)), 0 ≤ λ ≤ 1} � {(2−λ, 4−2λ) : 0 ≤ λ ≤ 1},
which is indeed the line segment joining the two points (1, 2) and
(2, 4). Try this out on other points, and in R3, and then move on to
the next definition:

A nonempty set S ⊆ Rn is said to be convex if whenever x, y ∈
S, then the line segment joining x and y is in S. Investigate this
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definition, considering the following in your investigation. (You’ll
find the triangle inequality, as well as many of the exercises above,
quite handy.)

1. Show that {x ∈ Rn : ‖x‖ ≤ 1} is convex.
2. Give other examples of convex sets.
3. Is the union of two convex sets convex?
4. Is the intersection of two convex sets convex?
5. Now return to part 2 and see if you can come up with other

interesting examples.
6. What are some other interesting questions (and answers) about

convex sets?

Notes and Sources
For more information on the Cauchy-Bunyakovsky-Schwarz inequal-
ity, see the article by P. Schreiber [75]. There are also other (more
clever, less intuitive) ways of proving this inequality.

27.10 Algebraic Numbers

Introduction
A real number is algebraic if it is the root of a polynomial

anx
n + · · · + a1x + a0 � 0,

for some positive integer n, where a0, a1, . . . , an ∈ Z and an 
� 0. A
real number is transcendental if it is not algebraic.

It’s easy to think of examples of algebraic numbers: 0 is algebraic,
because it is a (the) root of the polynomial p(x) � x; the number 1/2
is algebraic, because it is a root of the polynomial q(x) � 2x2 − x.
It’s much more difficult to think of a number that is not algebraic.
Why? Well, suppose you have a guess that a certain real number a

is transcendental. Then to prove your guess, you must show that for
every polynomial p with integer coefficients, p(a) 
� 0. Before read-
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ing on, try to guess whether there are more transcendental numbers
or more algebraic numbers.

In an 1874 paper Georg Cantor proved:

Theorem 27.8 (Cantor).
There are countably many algebraic numbers.

In this project, you will prove this theorem.

Prerequisites
This project requires material up to and including Chapter 22.

Guided Project
1. Start by getting familiar with the definition of an algebraic num-

ber by answering the next few questions. As you do so, you
should also get an idea of what transcendental numbers are like,
and you will begin to suspect some of your old numerical friends
of being transcendentals.
Come up with examples of algebraic real numbers that have
not been presented in this project. Are some rational numbers
algebraic? are all rational numbers algebraic? What about the
irrational numbers? How would you prove that a particular num-
ber is algebraic or transcendental? Try to guess which of the
following are transcendental numbers:

√
2, 5/7, π, and e. (If you

think one of these numbers is algebraic, prove it. It’s beyond our
capabilities, at this time, to prove that the other numbers are
transcendental.)
Now you should be ready for the proof of Cantor’s theorem. The
proof is outlined below.

2. How might you attack the proof of Cantor’s theorem? Does it
remind you of anything we have done before? What?

3. Solve Problem 22.7, if you haven’t already done so.
4. Solve Problem 22.10, if you haven’t already done so.
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5. Recall that for sets A1, A2, . . . , An, the Cartesian product of these
n sets is

A1 × A2 × · · · × An � {(x1, x2, . . . , xn) : xj ∈ Aj}.
Prove the following generalization of Corollary 22.10.

Theorem 27.9.
Let n ∈ N. If Ai is countable for all i � 1, 2, . . . , n, then A1 × A2 ×
· · · × An is countable.

6. Let n ∈ N. Show that the set of polynomials of degree n with
integer coefficients is countable.

7. Prove that the set of all polynomials with integer coefficients is
countable.

8. Prove that the set of algebraic numbers is countable.
You may use (but we aren’t asking you to prove) the well-known
fact that a polynomial of degree n has at most n distinct real
roots.

9. Show that there exist transcendental numbers. (Suggestion:
Don’t try to actually find such a number; just try to show that
they exist.)

10. Are the transcendental numbers countable or uncountable?
Prove your answer.

You have now seen how the partition of the reals into the alge-
braic numbers and the transcendental numbers works. It is time to
try something on your own.

Open-Ended Project
Define a property P of real numbers that seems to be of value to you.
Let A denote the set of all reals that have property P, and let B denote
the set of all reals that do not have property P. Then decide for each
of the two sets, A and B, whether the set is countable or not. Prove
all your statements. The more creative you are in defining P, the
harder it will be to prove the countability or uncountability of your
sets. Here’s a chance to really show all your mathematical prowess!
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Notes and Sources
There is a difference between proving the existence of tran-
scendental numbers, and showing that a particular number is
transcendental. As we mention in the Spotlight: Hilbert’s Seventh
Problem, proofs that the numbers π and e are transcendental were
given around the time of Cantor’s proof. The original paper by G.
Cantor [13] is written in German. A brief summary of Cantor’s proof
can be found in M. Kline’s book [48, pp. 996–7].

27.11 The RSA Code

Introduction
Though coding theory has always been important, a giant leap for-
ward occurred in the second half of the twentieth century, with
the invention of public key cryptography. The main idea (due to
W. Diffie and M. Hellman) is the concept of a trapdoor function—
a function that has an inverse, but the inverse is very difficult to
find. In fact, it should require so long for someone who did not
invent the original function to find the inverse that, for all prac-
tical purposes, the inverse does not exist. In 1976, R. L. Rivest, A.
Shamir, and L. M. Adleman succeeded in finding such a class of func-
tions, and their idea is based upon one of the most elementary ideas
in mathematics—multiplication of two numbers. (See the Spotlight:
Public and Secret Research in Chapter 26.)

It turns out that if you take two very large numbers and multiply
them together, a machine can quickly compute the answer. But, if
you give the machine the answer and ask for two factors, the factor-
ization will not appear in a useful amount of time. The public key
system, built upon these ideas, is now known as RSA-key (after the
three men who created the system). It was described in Chapter 26,
but in this project you will learn the details.

Prerequisites
We assume that you worked Chapters 25 and 26 on modular arith-
metic and Euler’s theorem. In particular, we will refer to the
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description of the public code that was given at the end of Chap-
ter 26. The notation was introduced in the chapter. You will also need
a good calculator; one that is able to determine whether a number
is prime, can factor an integer, and can do modular arithmetic. For
some parts of this project, you will need to use Mathematica. (If
you don’t have access to Mathematica, you can skip the parts that
require it.)

Guided Project
1. Reread the paragraphs of Chapter 26 following the proof of Euler’s

theorem.
2. Let’s start with a small example to make sure we understand the

basics of the code: Suppose we choose the two primes p � 13
and q � 17 (so that n � pq � 13 · 17) and choose the encoding
exponent e � 11. Use the public key (n, e) to calculate the “secret”
values of φ(n) and d. Encode the following three plaintexts:

(a) m � 157;
(b) m � 97216;
(c) m � 91.

Decode them again to convince yourself that the method works.
3. Note that gcd(91, 13 · 17) � 13 
� 1, so the hypothesis of Exam-

ple 26.8 is not satisfied. It turns out that the method still works,
even in this case. Let’s try to see why it still works—what could go
wrong? In this code, we always assume that n is the product of two
primes: n � pq, where p and q are primes. Thus, the gcd(m, n) is
p, q, or 1. If gcd(m, n) � 1, then Example 26.8 applies. Prove that
even if gcd(m, n) � p (or q), the decoding with exponent d still
works:

Lemma 27.10.
Let gcd(m, n) � p, where n � pq, p and q are primes and 0 < m < n.
Further let e and d be integers such that ed ≡ 1 (mod φ(n)). Then
med ≡ m (mod n).
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You will need Theorem 26.9 (appearing in the problem section)
and Theorem 26.7 for this proof.

4. In practice, n must be chosen to be quite large—certainly larger
than 10. Nevertheless, it may still be the case that the plaintext
m may satisfy m ≥ n. Recall that if m ≥ n, then we have to
break the integer m into parts. Here’s how to do this: Choose pos-
itive integers m1, m2, . . . , mk such that mi < n for 1 ≤ i ≤ k and
m � m1|m2| . . . |mk, where the last expression denotes simple lin-
ing up of the integers in the decimal notation for m. (For example,
if m � 1578 and n � 16, we can take m1 � 15, m2 � 7, and m3 � 8.
Then m � 15|7|8.) We will then denote the (chopped up) plain-
text as (m1, m2, . . . , mk) and the ciphertext as (me

1 (mod n), me
2

(mod n), . . . , me
k (mod n)).

Now you are ready for the problem: Suppose you are given the
public key, n � 2881 and e � 47. The intercepted message con-
tains the criminal’s hair color. However, the message is encoded
according to the rules we described in the previous paragraph.
The ciphertext reads (12, 285, 1057) (all integers (mod 2881)).
The translation from letters to integers is done by converting
a → 01, b → 02, . . . , z → 26. Crack the code to find out the
criminal’s hair color.

5. If you cracked the message in the previous part, then it is obvi-
ous that this encryption is not safe. That’s because the function
we used in that part of the problem is not really a trapdoor func-
tion. However, it will become one if we choose our primes large
enough. The bigger the primes, the harder it is to factor n (a task
believed to be necessary to break the code). To get a feeling for
the unequal amount of time it takes to find primes and multiply
versus factoring, do the following on your calculator.

(a) By trial and error using the calculator’s prime check, find two
primes of ten digits each. (Primality testing is also an interest-
ing and important subject. Your calculator uses sophisticated
algorithms to check whether an integer is prime.)

(b) Multiply the two integers together. (Notice how quickly your
calculator can do that!)

(c) Now use the factor command to factor the number you
obtained into its two primes. How long did it take?
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6. To do safe encoding with the RSA method you need primes of
100 digits each. If you have access to Mathematica, download the
notebook RSA-Notebook.nb from the site given below. Explore
this package and use it to communicate with a classmate, creating
public keys and sending messages to each other.
http://library.wolfram.com/infocenter/MathSource/1966/

Open-Ended Project
Either create a code of your own, or find a code from another book.
Try your code out on a partner, compare it to RSA, and discuss the
strengths and weaknesses of your code.

Notes and Sources
The original paper by R.L. Rivest, A. Shamir, and L.M. Adleman ap-
pears in [70]. A more detailed treatment can be found in the general
number theory text book by K. H. Rosen [71, Chapter 7]. See [14]
for a general link to cryptography resources at the web or [72] for a
commercial site by RSA Security Inc.

To learn about primality testing, you can start with the Mathe-
matics Magazine article [57] that gives a historical treatment of the
subject up to the use of computers. A comprehensive treatment at
the undergraduate level is contained in the text by Bressoud [11].
Also, a recent breakthrough is presented in the more advanced
paper [1].

Spotlight: Hilbert’s Seventh Problem

In 1900, David Hilbert presented a speech in Paris entitled
“Mathematische Probleme” to the International Congress of Math-
ematicians. His aim was to look at the future of mathematics. His
speech began with a description of what makes a problem signifi-
cant. This introduction is followed by the statement and discussion
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of 23 problems. His speech appeared in 1900 in the Nachrichten of
the Göttingen Scientific Society (more precisely, in Nachrichten von
der Königlichen Gesellschaft der Wissenschaften zu Göttingen). It
was translated into English, and published in 1902 in the Bulletin of
the American Mathematical Society.

Information about the time leading up to and following the pre-
sentation can be found in C. Reid’s biography Hilbert [68]. We present
the English translation of the seventh problem below. Even today,
it’s exciting to hold a copy of this speech in your hands.

(You can find a definition of algebraic and transcendental
numbers in Project 27.10.)

Hermite’s arithmetical theorems on the exponential func-
tion and their extension by Lindemann are certain of the
admiration of all generations of mathematicians. Thus the
task at once presents itself to penetrate further along the path
here entered, as A. Hurwitz has already done in two inter-
esting papers,1 “Ueber arithmetische Eigenschaften gewisser
transzendenter Funktionen.” I should like, therefore, to sketch
a class of problems which, in my opinion, should be attacked
as here next in order. That certain special transcendental
functions, important in analysis, take algebraic values for
certain algebraic arguments, seems to us particularly remark-
able and worthy of thorough investigation. Indeed, we expect
transcendental functions to assume, in general, transcenden-
tal values for even algebraic arguments; and, although it is
well known that there exist integral transcendental functions
which even have rational values for all algebraic arguments,
we shall still consider it highly probable that the exponential
function eiπz, for example, which evidently has algebraic val-
ues for all rational arguments z, will on the other hand always
take transcendental values for irrational algebraic values of
the argument z. We can also give this statement a geometrical
form, as follows:

1Math. Annalen, vols. 22, 32 (1883, 1888).
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If, in an isosceles triangle, the ratio of the base angle to the
angle at the vertex be algebraic but not rational, the ratio between
base and side is always transcendental.

In spite of the simplicity of this statement and of its sim-
ilarity to the problems solved by Hermite and Lindemann, I
consider the proof of this theorem very difficult; as also the
proof that

The expression αβ, for an algebraic base α and an irrational
algebraic exponent β, e. g., the number 2

√
2 or eπ � i−2i, always

represents a transcendental or at least an irrational number.

It is certain that the solution of these and similar problems
must lead us to entirely new methods and to a new insight into
the nature of special irrational and transcendental numbers.2

Hilbert mentions Charles Hermite, who proved in 1873 that e is
transcendental, and Ferdinand Lindemann, who proved in 1882 that
π is transcendental [22, p. 466]. The answer to Hilbert’s question was
published in 1934 by Aleksandr O. Gelfond, and (independently) by
Theodor Schneider in 1935. It follows from the Gelfond-Schneider
theorem that

√
2

√
2

is irrational (see Project 27.4), but there’s an
easier example. You can find this easier solution at [37].

Hilbert’s original address can be found in [40]. The full text of the
English translation is available on the web, [41]. See also [48, Chapter
25, sec. 1] and [48, p. 980]. For another view of Hilbert’s problems
read [27], and for a recent book on this topic see [28].

In honor of the 100-year anniversary of Hilbert’s Paris address,
the new century, and the new millenium, several mathematicians
were asked to pose problems for the next century. Steve Smale pro-
posed 18 problems for your century that you can find in [79]. The
article [30] by Phillip Griffiths also contains a look at challenges
for the future. The Clay Mathematics Institute of Cambridge, Mas-
sachusetts (CMI) selected seven problems for the new millenium.
They also offer a reward of one million dollars per problem, and

2Quotation from [41, pp. 455–456], reprinted with permission from the publisher,
the American Mathematical Society.
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consequently have received a fair amount of publicity. More infor-
mation about the Institute and the problems can be found on their
website, [16], as well as in [18].



28
C H A P T E R

...........................................

Appendix

28.1 Algebraic Properties of R

We will assume that you are familiar with the following properties
of R.

If x and y are real numbers, then both x+y and x ·y are real num-
bers. Furthermore, addition and multiplication satisfy the following
axioms:

A1. (The commutative property for addition) x + y � y + x for all
real numbers x and y;

A2. (The associative property for addition) (x + y) + z � x + (y + z)
for all real numbers x, y, and z;

A3. (Existence of additive identity) There is a unique real number
0 such that 0 + x � x for all x ∈ R;

A4. (Existence of additive inverse) If x ∈ R, then there is a unique
element −x such that x + (−x) � 0;

M1. (The commutative property for multiplication) x · y � y · x for
all real numbers x and y;

M2. (The associative property for multiplication) (x ·y) ·z � x · (y ·z)
for all real numbers x, y, and z;

379
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M3. (Existence of multiplicative identity) There is a unique real
number 1, with 1 
� 0, such that 1 · x � x for all real numbers x.

M4. (Existence of multiplicative inverse) For each nonzero real
number x, there exists a unique real number x−1 such that
x · x−1 � 1;

D1. (The distributive property) (x + y) · z � x · z + y · z for all real
numbers x, y, and z.

We note that this list of properties is not minimal; for example,
the uniqueness of 0 follows from some of the other properties in the
list.

28.2 Order Properties of R

A set satisfying all of the properties above is called a field. Thus, R
is an example of a field. In addition, R has an order defined on it.
This means the following:

There is a subset R+ of R \ {0} satisfying:

O1. If x, y ∈ R+, then x · y ∈ R+;
O2. If x, y ∈ R+, then x + y ∈ R+;
O3. For every real number x, exactly one of the following three

things happens: either x ∈ R+, −x ∈ R+, or x � 0.

If x and y are two real numbers and x − y ∈ R+ we write x > y (or
y < x). The set R+ is called the positive real numbers. Thus R
is a field with an order, and we call it an ordered field. The third
property, O3, is called the trichotomy principle. It is not difficult
to show that the results below follow from the statements A1–A4,
M1–M4, D1, and O1–O3.

Theorem 28.1.
Let x, y, and z be real numbers. Then the following hold:
1. If x < y and y < z, then x < z;
2. If x < y, then x + z < y + z;
3. If x < y and z > 0, then x · z < y · z;
4. If x < y and z < 0, then x · z > y · z;
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5. If x 
� 0, then x2 > 0;
6. 1 > 0;
7. If x > 0, then x−1 > 0.

Proof.
We’ll do the first and the sixth of these; you can prove the others.

For the proof of (1), note that y − x ∈ R+ and z − y ∈ R+. By
O2 and the associative and commutative properties of addition, (y−
x) + (z − y) � z − x ∈ R+. Therefore z − x ∈ R+ and x < z.

For the proof of (6), note that 1 is the multiplicative identity, so
1 ·x � x for all x ∈ R. Taking x � 1, we get 12 � 1 ·1 � 1. Since 1 
� 0,
the result now follows from (5).
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28.3 Pólya’s List1

FIGURE 28.1

1From the inside cover of George Pólya, How to Solve it [66], Copyright ©1945, 1973
renewed by Princeton University Press. Reprinted by permission of Princeton
University Press.
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60(5):265–268, 1987.

[86] A. Wiles. Modular elliptic curves and Fermat’s last theorem. Ann. of
Math. (2), 141(3):443–551, 1995.

[87] A. P. Youschkevitch. The concept of function up to the middle of the
19th century. Arch. History Exact Sci., 16(1):37–85, 1976/77.



Index

(X, d), 284
(a, b), 40
(xn), 224
Ac, 69
Bd(x, r), 297
Ex, 111
P ↔ Q , 21
P → Q , 20
P ∨ Q , 19
P ∧ Q , 20
X × Y , 98
[a, b], 40
[m]n, 314
≈, 252(
n

k

)
, 220

∩, 69
C, 40
cod(f ), 148
∪, 69
dom(f ), 148
∅, 63
≡ (mod n), 314
∃, 41

∀, 41
gcd, 315
∈, 39, 68
inf , 133, 226
lcm, 324
limn→∞ xn, 238
max A, 130
|A |, 265
min A, 130
¬P, 19
N, 40
φ, 332
P(S), 97
Q, 40
ran(f ), 152
R, 40
R2, 40
Rn, 40
\, 69
∼, 109
⊂, 65
⊆, 65, 68
sup, 132, 227

389



Index390

Z, 40
Z+, 40
Zn, 314
a | b, 313
dm, 286
du, 286
dtc, 286
f (A), 191
f : A → B, 147
f −1, 177
f −1(B), 192
f |A, 188, 255
g ◦ f , 175
iA, 180
xn → L, 238
�, ix
�? , ix
©, ix

, ix, 54

absolute value, 56
function, 151, 237

Adleman, L. M., 338, 371
algebraic number, 368
antecedent, 20
Archimedean property, 134
associative property, 379

compound statement, 32
sets, 83

asymmetric, 143
axiom, 134
axiom of infinity, 351

ball
open, 297
unit, 297

barber problem, 72
Bernoulli’s inequality, 216
Bernoulli, Joh., 158
bijective, 163
binomial coefficient, 220

binomial theorem, 220
birthday calendar, 329
bounded sequence, 225

above, 225
below, 225

bounded set, 130
above, 130
below, 130

Caesar cipher, 10
Cantor, G., 271, 278, 369

diagonalization argument, 277
set, 362

cardinality, 265
Cartesian product, 98, 106
Cauchy sequence, 250

metric space, 295
Cauchy-Bunyakovsky-Schwarz

inequality, 367
characteristic function, 159
cipher, 3
clock arithmetic, 313
closed set, 302

closed interval, 40
not closed, 309
unbounded interval, 40

closure, 312
Cocks, C., 338
code, 334, 371
codomain, 148
commutative property, 379

compound statements, 32
sets, 83

complement, 69
completeness axiom of R, 134

infimum version, 134, 140
complex numbers, 40
composite function, 175
composite number, 349
composition, 175
conclusion, 20
congruence modulo n, 314



Index 391

conjecture, 57
conjunction, 20
connectives, 18
contained, 65
contradiction, 22
contrapositive, 32
convergent sequence, 237

metric space, 287
proving convergence, 240
theorems, 244, 249

converse, 34
convex set, 218

Rn, 367
countable set, 271
countably infinite set, 271
counterexample, 58
counterfeit coin problem, 13

decreasing sequence, 227
Dedekind, R., 158
DeMorgan’s laws, 31, 83, 93
Diffie, W., 338, 371
Dirichlet, P. G. L., 157, 262

drawer principle, 262
function, 157
pigeonhole principle, 261
principle, 200, 262
problem, 199

discrete metric, 285
disjoint, 69

pairwise, 96
disjunction, 19
distance, 237, 283
distributive property, 380

compound statements, 31
sets, 80, 83, 95

divergent sequence, 238, 242
diverges to ∞, 250

divides, 54, 313
division algorithm, 315
domain, 148
double negation, 31

element, 39, 63
Ellis, J., 338
empty set, 63, 68
equivalence of statements, 21
equivalence relation, 110–111, 122

classes, 111
equivalent

statement, 22
statement forms, 22

equivalent sets, 252
Euclid, 58

Elements, 58, 317, 327, 350
Euclidean n-space, 40
Euclidean algorithm, 317, 327–328
Euclidean metric, 285
Euler, L., 58, 157, 158, 331, 358

φ-function, 332
theorem, 333, 371

factorial, 220, 229
Fermat, P. de, 58, 331

last theorem, 58
little theorem, 332

Fibonacci, 229
sequence, 230
numbers, 230, 248

field, 380
ordered, 380

finite set, 253
Fourier, J., 158
Frenicle de Bessy, B., 331
function, 147, 157

defined in cases, 149
equality, 152
notation, 148
preserves distance, 311
recursively defined, 229
well-defined, 147

fundamental theorem of arithmetic,
218



Index392

Gauss, C. F., 209
GCHQ, 338
Gelfond, A. O., 376
Gelfond-Schneider theorem, 376
geometric series, 356, 365
golden ratio, 248
greatest common divisor, 315
greatest lower bound, 133

sequence, 226
Green, G., 200

Halmos, P. R., 106, 115
Hardy, G. H., 55, 58, 356
harmonic series, 216
Heine, H. E., 158
Hellman, M., 338, 371
Hermite, C., 376
Hilbert, D., 200, 251, 278, 374
Hotel Infinity, 251

identity, 379, 380
identity function, 180
image, 191

theorems, 195
implication, 20

negation of, 22
increasing sequence, 227
index set, 90
indexed family, 90, 161
induction, 208, 221, 352

second principle, 218
infimum, 133, 199

sequence, 226
uniqueness, 133, 143

infinite set, 253
injective, 163
integers, 40

modulo n, 314
positive, 40

interior point, 311
intersection, 69, 91

family of sets, 91
finitely many sets, 89
infinitely many sets, 90

inverse, 177, 379, 380
composition, 181
uniqueness, 180

inverse image, 192
theorems, 195

irrational number, 48, 353–358

Josephus problem, 223

Kronecker, L., 278

Lacroix, S.-F., 158
Lambert, J. H., 358
least common multiple, 324
least upper bound, 131

sequence, 227
lemma, 121
limit, 238

inferior, 249
superior, 249
uniqueness, 243

limit point, 311
Lindemann, F., 376
linear combination, 316
lower bound

sequence, 225
set, 130, 133

lower triangle inequality, 61
Lucas sequence, 235

map, 147
max metric, 286
maximum, 130
member, 39, 63
Merkle, R., 338
metric, 284



Index 393

bounded associated, 293
definiteness, 284
discrete, 285
Euclidean, 285
max, 286
nonnegativity, 284
symmetry, 284
taxicab, 286
triangle inequality, 284
usual, 284

metric space, 284
minimum, 130, 199
Minkowski, H., 278
monotone sequence, 250

natural numbers, 40
negation, 19, 22–23, 42–45
Niven, I., 355, 358
NSA, 338

one-to-one, 163
not one-to-one, 169

onto, 163
not onto, 169

open set, 299
ball, 297

unit ball, 297
not open, 301
open interval, 40
unbounded interval, 40

ordered pair, 98, 106
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