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Introduction

This book is an introduction to higher algebra for students with a background of a
year of calculus. The first edition of this book emerged from a set of notes written
in the 1970’s for a sophomore-junior level undergraduate course at the University at
Albany entitled “Classical Algebra”.

The objective of the course, and the book, is to offer students a highly motivated
introduction to the basic concepts of abstract algebra—rings and fields, groups,
homomorphisms—by developing the algebraic theory of the familiar examples of
integers and polynomials, and introducing the abstract concepts as needed to help
illuminate the theory. By building the algebra out of numbers and polynomials, the
book takes maximal advantage of the student’s prior experience in algebra and arith-
metic from secondary school and calculus. The new concepts of abstract algebra
arise in a familiar context.

An ultimate goal of the presentation is to reach a substantial result in abstract
algebra, namely, the classification of finite fields. But while heading generally to-
wards that goal, motivation is maintained by many applications of the new concepts.
The student can see throughout that the concepts of abstract algebra help illuminate
more concrete mathematics, as well as lead to substantial theoretical results.

Thus a student who asks, “Why am I learning this?” will find answers usually
within a chapter or two.

While our course is called “Classical Algebra” and the book begins with mathe-
matics dating from Euclid (300 BC) and before, the book also includes a substantial
amount of mathematics discovered only within the past three generations. Thus this
book is explicitly offered as a counterexample to Alan Hammond’s (1980) remark
that “Mathematics is one of the few subjects that a student can study through high
school and even a few years into college without coming into contact with any re-
sults invented since 1800.”

The extent and variety of applications in the book have led to the book being
used in courses rather different than the course for which it was originally designed.
The book has been used for courses in Applied Algebra or Applicable Algebra, in
Elementary Number Theory, and in Algebra for Teachers. Possible outlines for such
courses are described below.

vii



viii Introduction

Notes on the Third Edition

The first and second editions of this book were published in 1979 and 1995, a grati-
fyingly long time ago. The second edition was an extensive revision and expansion
(160 pages) of the first edition. This third edition is an extensive revision and some-
what more modest expansion (around 85 pages) of the second edition.

The new edition is organized into seven parts, as follows:

I. Numbers. Chapters 1-5 present the elementary theory of the integers—induction,
divisibility, Euclid’s Algorithm, unique factorization into prime numbers and con-
gruence modulo m. These ideas and techniques lay the groundwork for the
mathematics and applications in the remainder of the book. Section 4D begins a
discussion of prime numbers, and Sections 5C and 5D introduce two applications
of congruence to error detection—casting out nines and Luhn’s formula.

II. Congruence classes and rings. Chapter 6 introduces the ring of congruence
classes modulom, and Chapter 7 introduces some basic concepts of abstract algebra-
rings, fields, groups, homomorphisms—that can be used to help identify properties
and features of congruence classes. Chapter 8 reviews elementary ideas of matri-
ces and linear equations needed for subsequent applications. Applications include
Karatsuba multiplication, the use of modular arithmetic to the design of tournaments
and to factoring by trial division, and the use of matrices with entries in the integers
modulom to error-correcting codes (Hamming codes) and to cryptography (the Hill
cryptosystem).

III. Congruences and groups. Chapters 9–11 focus on the multiplicative group of
units of the integers modulo m. Chapter 9 obtains Fermat’s and Euler’s Theorems,
with two distinctly different proofs; Chapter 11 develops some finite group theory,
enough to prove Lagrange’s Theorem and to introduce quotient groups. Lagrange’s
Theorem yields a third proof of Fermat’s and Euler’s Theorems. Sections 9E and
9F introduce useful techniques for computing modulo m. Chapter 12 presents the
Chinese Remainder Theorem, an important result in modular arithmetic. The CRT
yields information on the size of groups of units modulo a composite number. Appli-
cations include the connection between Euler’s Theorem and the period of repeating
decimals, and the application of Euler’s Theorem to the famous RSA cryptosystem.
The RSA cryptosystem motivates the search for methods for identifying possible
prime numbers, for factoring large numbers, and for multiplying large numbers.
Approaches to all three problems (pseudoprime testing, the Pollard p− 1 method,
using the CRT for multiplying) are presented in Sections 10B, 10C, 11D, and 12C.

IV. Polynomials. Chapters 13–18 introduce the elementary theory of polynomials
in one variable over a field, a theory that closely parallels the theory of the integers
presented in Chapters 2–12—divisibility, Euclid’s Algorithm, unique factorization,
congruence. For integers, prime numbers are the “atoms” that generate all num-
bers; in a similar way, irreducible polynomials are the atoms for all polynomials.
So Chapters 15 and 16 are devoted to studying irreducible polynomials and factor-
ization of polynomials over the rational numbers, the real numbers and the complex
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numbers (Fundamental Theorem of Algebra). Chapter 17 introduces congruence for
polynomials and the Chinese Remainder Theorem, which in turn leads to interpo-
lation and a proof that factoring polynomials over the rational numbers is a finite
process. Chapter 18 presents a fast method of multiplying polynomials, based on
the Chinese Remainder Theorem and a method for evaluating polynomials known
as the Fast Fourier Transform.

V. Primitive Roots. With the availability of D’Alembert’s Theorem in Section 14A,
Chapters 19–22 return to the study of groups of units of integers modulo m.
Chapter 19 introduces enough additional finite group theory (the exponent of an
abelian group, finite cyclic groups) to prove the Primitive Root Theorem. Chapter 21
applies the Primitive Root Theorem and quotient groups from Section 11G to deter-
mine how to decide whether a number is a square modulo m—the famous Law of
Quadratic Reciprocity. These results are applied to cryptography—Diffie-Hellman
key exchange, Blum-Goldwasser cryptography and refinements of RSA cryptog-
raphy; to pseudorandom numbers—the linear congruential and Blum-Blum-Shub
methods; and to primality testing and factorization of integers—strong pseudo-
primes, Carmichael numbers and Rabin’s Theorem, the Pollard rho factoring method.

VI. Finite Fields. Chapters 23–25 continue the theory for polynomials that paral-
lels the theory for integers in Chapters 6–7. The construction of congruence classes
for polynomials yields many new fields, fields that can be used to split polynomials
defined over subfields into linear factors. The construction yields a complete clas-
sification of finite fields in Section 24C. Applications of finite fields include Latin
squares (Section 25D) and multiple error-correcting (BCH) codes (Chapter 26).

VII. Factoring Polynomials. Chapters 26 and 27 extend the ideas of Chapters 16
and 17 on factoring polynomials over the rational numbers and integers. Chapter
26 reproves that factoring polynomials over the rationals is a finite process, and
then presents methods to make the process more efficient—Berlekamp’s factoring
algorithm and the Hensel factoring method. Chapter 27 extends the ideas of Sections
24B and C to give a count of irreducible polynomials of every degree over the field
of p elements for every prime p, then uses ideas of Section 16B and Chapter 26 to
obtain a result of Van der Waerden that in a certain sense, almost all polynomials
over the rational numbers are irreducible.

Changes in the new edition not already noted include:

• Material on solving equations in the integers and modulo m has been rewritten
and placed in separate sections (3E, 6F).

• The axioms for a field are motivated by looking at how to solve linear equations
(7A).

• There is a greater emphasis on homomorphisms of polynomial rings (starting at
13D)

• The section on congruence modulo a polynomial has been rewritten and ex-
panded (17A).

• There is more emphasis on the exponent of an abelian group (Chapter 19)
• The section on finite cyclic groups has been rewritten (19B)
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• The material on bounding the roots and factors of polynomials with integer co-
efficients has been greatly improved (26 A, B).

• There are new sections on cosets and solutions of equations (11E) and on quo-
tient groups and the “fundamental homomorphism theorem”, with applications to
groups of units (11G), quadratic reciprocity (21G), and (via Cauchy’s Theorem),
the cardinality of finite fields (24C).

• There is a new application of Eisenstein’s irreducibility criterion to Chebyshev
polynomials (16B)

• There is a new proof of a weak form of Rabin’s Theorem using subgroups and
cosets (20C), and a new proof of quadratic reciprocity (due to G. Rousseau) that
uses the Chinese Remainder Theorem and different coset representatives of a
quotient group (2lC)

In order to keep this edition from getting any larger than it already is, a few sec-
tions found in the second edition have been omitted in the third: the connection
between Euclid’s algorithm and incommensurability, Sturm’s Algorithm, knapsack
cryptosystems, a proof of Rabin’s theorem in its full strength, and Reed-Solomon
codes. This last topic was a close call, but I finally decided that to do Reed-Solomon
well would stray too far from the main objective of the book.

Prerequisites

The explicit prerequisite consists of precalculus algebra. However, long experience
suggests that three or four semesters of college-level mathematics, such as the cal-
culus sequence and a semester of linear algebra, is helpful. Only a few sections of
the book use calculus or linear algebra. Elementary row operations show up with
the extended Euclidean algorithm in Chapter 3, but otherwise a course can easily
be designed to avoid linear algebra (used in 8E, 8F, 11H, 18, and 25). On the other
hand, if linear algebra is a prerequisite, then a number of the applications can be
done more efficiently.

Designing a course

For an Introduction to Abstract Algebra course that seeks to reach the classification
of finite fields, the theoretical core of the course is found in sections 2B, 3A-E, 4A,
5A-B, E-F, 6A-F, 7A, C-D, 9A-C, 11A-C, E-G, 13, 14, 17A, 19A-B, 23, 24A-C.

For our Classical Algebra course, most instructors do chapters 2, 3A-E, 4, 5, 6A-F,
7A,C,D, 9A-D, 10A, 11A-C, most of 12A-D, 13, 14, 16A,B, 17A, 19A-B, plus other
topics as time allows.

A course in Number Theory could follows chapters 2, 3, 4, 5, 6, 7A, 9, 12, 13A,
14, 20, 21, 22B and 23ABC (plus handouts on special topics of interest to the
instructor).
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A course on Applicable Algebra could follow chapters 2, 3, 4, 5, 6, 7ACD, 8E,
9ABC, 10A, 11A-C, E-H, 12ABD, 13, 14, 17ABC, 19AB, 23, 25 (plus supplemen-
tal notes on error-correcting codes).

A course emphasizing polynomials (e.g. for future secondary teachers) could do
chapters 2, 5A-B, 6C, 7A, C, 13–18, 23–27.
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Chapter 1
Numbers

Mathematics grows through the development and study of new concepts. The his-
tory of numbers illustrates this growth.

Ancient cultures began mathematics by counting, keeping tallies. In the ancient
Near East an increasingly urban economy the need to keep records, at first by the
use of tokens, small clay objects, to correspond to quantities of goods. Sometime
around 3100 B.C. ancient accountants began abstracting quantity from the objects
being counted, and written numbers were born (see Schmandt-Besserat (1993)).

Once the natural numbers, 1,2,3, . . . were available, manipulating them and solv-
ing problems involving numbers led to positive fractions, known to the ancient
Babylonians (2000 B.C.), who also knew some square roots and cube roots. The
classical Greek geometers (400 B.C.) studied positive quantities that could be ob-
tained from natural numbers by the processes of addition, subtraction, multiplica-
tion, division, and taking square roots. The number 0 did not come into use, however,
until after 300 B.C.; negative numbers first arose around A.D. 600, but became ac-
ceptable only in the 1600’s (Descartes, in 1637, called them “false”); and complex
numbers gradually won acceptance between the early 1500’s and 1800. A precise
understanding of the real numbers was reached only in the 1870’s.

As the domain of numbers broadened, so did mathematics, and its applica-
tions. For example, with only the natural numbers available, calculus would be
unthinkable.

Since 1800 mathematics has developed many new systems of objects that can be
manipulated in the same way as these classical sets of numbers. Just as with classical
numbers, once the domain of numbers is expanded, so do the uses that can be made
of them.

This book is about these new sets of numbers and some of their uses.
In this chapter we’ll set up some notation for classical sets of numbers, and in-

troduce the idea of an equivalence relation, which will be the basis for constructing
new sets of numbers in later chapters.

First, notation.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 3
in Mathematics, c© Springer Science+Business Media LLC 2009



4 1 Numbers

N is the set of natural or counting numbers:

1,2,3,4,5, . . . ,

Z is the set of integers

. . . ,−3,−2,−1,0,1,2,3,4, . . . ,

obtained from N by including 0 (zero) and the negatives of the natural numbers.
Q is the set of rational numbers, that is, the set of all fractions a/b, where a and

b are integers, and b �= 0. We shall look at Q in more detail shortly. We think of Z

as being a subset of Q by identifying the integer a with the fraction a/1. Q is large
enough so that every nonzero integer has an inverse, or reciprocal, in Q, as does
every nonzero fraction. Thus Q is an example of a field (see Chapter 7).

R is the set of real numbers. A useful way to think of R is as the set of all infinite
decimals, or as the set of coordinates on a line (such as the x-axis used in calculus).
Any rational number is a real number–the decimal expansion of a fraction a/b is
obtained by the familiar process of dividing b into a. So is every quantity that can
be constructed by straightedge and compass from a natural number.

The real numbers form a complete Archimedean ordered field.
“Ordered” means that for any two numbers r and s, either r < s or r = s or

r > s. This property corresponds to the intuitive representation of the real numbers
as coordinates on a line, where r > s if the point with coordinate r is to the right of
the point with coordinate s.

“Archimedean” means that for every positive real number r there is a natural
number n with n> r.

“Complete” can be described by the Least Upper Bound axiom: given any non-
empty set of real numbers S, if there is an upper boundC for S, that is, a real number
C so that for every r in S, r ≤C, then there is a least upper bound B for S, that is,
an upper bound B so that any upper boundC for S satisfies B≤C. These properties
imply the existence of limits, which in turn enables the definition of continuous
functions and the Intermediate Value Theorem.

Readers who have had calculus (or even precalculus) should be comfortable
about working with the real numbers, and so we will say no more about them here.

C denotes the complex numbers, which we will describe in Chapter 15D.
The 19th century effort to formulate a satisfactory definition of real numbers led

to the idea that sets should be the primitive mathematical objects from which all
numbers should be defined.

The general procedure for the construction of new sets of “numbers” is to take a
set, call it S, consisting of mathematical objects, such as numbers you are already
familiar with, split the set S up (“partition the set S”) into a collection of subsets in a
suitable way, and then attach names, or labels, to each of the subsets. These subsets
then will be elements of a new number system: new “numbers.”

We’ll use this procedure to construct many new sets of numbers in this book.
We illustrate the idea by defining the set Q of rational numbers, or fractions.
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Rational Numbers. Rational numbers are fractions of integers, numbers like 6
9 or

72
22 . But they have the curious property, different from integers, that two fractions,
like 6

9 and 72
108 , are really equal:

6
9

=
72

108
,

even though they look different. So any definition of rational numbers must deal
with the problem that the same rational number can be expressed as a fraction of
two integers in many different ways.

This problem was solved by the ancient Greeks (500-300 B.C.) in their develop-
ment of the ratio of two numbers. For numbers a and b, the ratio of a to b is the
same as the ratio of c to d if ad = bc. Thus the ratio of 1 to 2 is the same as the ratio
of 3 to 6. The ratio of 2 to 1+

√
7 is the same as the ratio of

√
7−1 to 3.

From this idea of ratio we can give a set-theoretic definition of the rational num-
bers as follows.

Take the set S of all ordered pairs (a,b) of integers, where b �= 0. Partition the set
S into subsets, by the rule:

two pairs (a,b) and (c,d) are in the same subset if the ratio of a to b is the same
as the ratio of c to d, that is, if and only if ad = bc (or, in fractional notation, if
a/b = c/d – but using fractional notation assumes that we have defined fractions
already!)

We give the name a/b to the set of ordered pairs containing the pair (a,b). Thus
the symbol a/b is a label for the set of all ordered pairs (m,n) such that the ratio of
m to n is the same as the ratio of a to b.

For example, 6/9 is a label for the set of all pairs (m,n) with 6n = 9m: in set
notation,

6
9

= {(m,n)|6n= 9m},
and

72
108

= {(m,n)|72n= 108m},
Since the set {(m,n)|6n = 9m} = {(m,n)|72n = 108m}, it follows that 6/9 =

72/108. In fact, if (c,d) is any ordered pair in the set {(m,n)|6n= 9m}, then

{(m,n)|6n= 9m}= {(m,n)|cn= dm}

(intuitively, because if 6/9 = c/d then 6/9 = m/n if and only if c/d = m/n) and so
we can name the set {(m,n)|6n= 9m} by c/d.

Thus we define equality of fractions by:

a
b

=
c
d

if and only if {(m,n)|an= bm}= {(m,n)|cn= dm}.

So 6/9 = 72/108 because 6/9 and 72/108 are names for the same set. On the
other hand, the fractions 1/2 and 3/4 are not equal, because the sets they are names
for,

{(m,n)|n= 2m} and {(m,n)|3n= 4m},
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are different–in fact, are disjoint: if (m,n) is a pair with n= 2m, then 3m �= 4m.
To summarize, elements of Q may be defined as certain subsets of the set of

pairs (m,n) of integers with b �= 0. The subset containing the pair (a,b) we label by
the fraction a/b; then the subset containing the pair (a,b) is {(m,n)|an= bm}. Two
fractions a/b and c/d are equal if and only if {(m,n)|an= bm} = {(m,n)|cn= dm},
which is the case if and only if ad = bc.

Fractions in lowest terms and arithmetic. When we learn fractions, we develop
a bias towards using fractions a/b that are reduced, that is, such that a and b have
no common factor except 1. Thus we prefer 1/2 over 5/10, and 3/5 over 6/10. But
when adding fractions, the use of nonreduced fractions is unavoidable, because we
need to find a common denominator for the fractions we are adding. For example:

1
6

+
3
8

=
8

48
+

18
48

=
26
48

.

Thus it is often necessary to replace a fraction, for example, a reduced fraction, by
a fraction equal to it that is not reduced, in order to do arithmetic.

But there is a nice fact about the arithmetic of fractions: arithmetic operations are
not affected by replacing fractions by equal fractions. For example, 1/2 = 3/6, and
3/5 = 12/20; multiplying 1/2 and 3/5 gives 3/10; multiplying 3/6 and 12/20 gives
36/120, and the resulting fractions are equal. Similarly 1/6 + 3/8 = 8/48 +18/48 =
26/48, and also 1/6 + 3/8 = 4/24 + 9/24 = 13/24, and the results are the same.
Choosing different labels, or representatives, for the set of pairs represented by a
fraction, such as choosing 8/48 instead of 4/24 for the set

{(m,n)|n= 6m}

does not affect the result of doing arithmetic on these sets. This is an important point
that we will need to consider when we define other sets of numbers in later chapters.

Equivalence classes. The basic mathematical strategy at work in the definition just
given of the rational numbers Q is the notion of dividing a set S up into equivalence
classes.

An equivalence relation is a relation on a set S that satisfies the following three
properties:

(R) an element in S is equivalent to itself (reflexive property);
(S) if one element in S is equivalent to a second element in S then the second

element is equivalent to the first (symmetry property); and
(T) if one element in S is equivalent to a second element in S, and the second to

a third, then the first is equivalent to the third (transitivity property).
If we denote the equivalence relation by ∼, then, in symbols, we have:
(R) for all a in S, a∼ a;
(S) for all a and b in S, if a∼ b then b∼ a; and
(T) for all a, b and c in S, if a∼ b and b∼ c, then a∼ c.
When a set S has an equivalence relation on it, then the set S is partitioned

into subsets, called equivalence classes, which are defined by the property that two



1 Numbers 7

elements are in the same equivalence class if they are equivalent. The three prop-
erties of an equivalence relation listed above imply that if two equivalence classes
have any elements at all in common, then they coincide. (See Exercise 3.)

In the case of the rational numbers, we consider the set S of all ordered pairs of
numbers (a,b) with b �= 0, and say that the ordered pair (a,b) is equivalent to the
ordered pair (c,d), (a,b)∼ (c,d), if ad = bc. The relation, (a,b)∼ (c,d) if ad = bc,
is an equivalence relation on the set S of all ordered pairs of numbers with the second
number not 0. (See Exercise 1.) The set S of all ordered pairs (a,b) with b �= 0 is
split up, or partitioned, into equivalence classes by that equivalence relation. The
fraction a/b is the label for the equivalence class containing the ordered pair (a,b).

The strategy of taking a set of elements, partitioning the set up into a set of
equivalence classes by means of some equivalence relation, and then thinking of
the equivalence classes, or the labels of the equivalence classes, as new objects, in
our case new “numbers”, is fundamental in mathematics. All three of the ways of
defining the real numbers R (infinite decimals, Cauchy sequences, Dedekind cuts)
use that strategy. It is the strategy we will use to construct new sets of numbers as
we proceed in the book.

Exercises.

1. Verify that the relation, two ordered pairs (a,b) and (c,d) are equivalent if ad =
bc, is an equivalence relation on the set S of all ordered pairs (a,b) of integers with
b �= 0.

2. Consider the following relations on Z. In each case, decide if the relation is an
equivalence relation. If so, describe the corresponding partition of Z. If not, deter-
mine which properties of an equivalence relation fail:

(i) a∼ b if ab≥ 0;
(ii) a∼ b if a− b is divisible by 3;
(iii) a∼ b if ab> 0;
(iv) a∼ b if a+b is divisible by 3; and
(v) a∼ b if a≥ b.

3. Suppose a set S has an equivalence relation on it. Use the properties of an equiv-
alence relation to show that two equivalence classes of S which have any element in
common, must be equal. (Two subsets A and B of S are equal if every element of A
is an element of B and vice versa.)





Chapter 2
Induction

This chapter describes the method of proof by induction, in several versions. The
last section presents the Binomial Theorem.

A. Induction

Induction is the basic method of proof for facts involving natural numbers. It allows
us to obtain, in a finite number of steps, proofs of statements about all the numbers
in the infinite set N.

Induction comes in various formulations. Here is the best-known version.

Theorem 1 (Induction). Fix an integer n0 and let P(n) be a statement which makes
sense for every integer n≥ n0. Then P(n) is true for all n≥ n0, if the following two
statements are true:
(a) P(n0) is true; and
(b) for all k ≥ n0, if P(k) is true then P(k+ 1) is true.

When using induction to prove a theorem, proving (a) is called the base case,
and proving (b) is called the induction step.

You have almost certainly seen this principle used before, perhaps in calculus, in
evaluating sums arising in connection with the definite integral.

Here is a simple example.

Example 1. For all n≥ 1,

1 + 3 + 5 + . . .+(2n−1) = n2.

Proof. Let P(n) be the statement

1 + 3 + 5 + . . .+(2n−1) = n2,

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 9
in Mathematics, c© Springer Science+Business Media LLC 2009
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or in words, “the sum of the first n odd numbers is n2”. Thus P(1) is the statement

1 = 12,

P(2) is the statement
1 + 3 = 22,

P(5) is the statement
1 + 3 + 5 + 7 +9 = 52,

and so on. All of these are clearly true, but just looking at P(n) for many specific
values of n does not suffice to prove P(n) for every natural number n≥ 1. So we let
n0 = 1 and use induction to prove P(n) for all n≥ 1.

The base case P(1) is true, since 1 = 12.
For the induction step, let k be some unspecified number ≥1, and assume that

P(k) is true, that is,
1 + 3 + . . .+(2k−1) = k2.

We want to show that then P(k+ 1) is true, that is,

1 + 3 + . . .+(2k−1)+ (2k+ 1)= (k+ 1)2.

To do so, we can add (2k+ 1) to both sides of the equation P(k) to get

1 + 3 + . . .+(2k−1)+ (2k+ 1)= k2 +(2k+ 1). (2.1)

The left side of (2.1) is the left side of the statementP(k+1), and, since k2 +2k+1 =
(k+ 1)2, the right side of (2.1) is equal to (k+ 1)2, the right side of P(k+ 1). Thus
assuming P(k) is true, it follows that P(k+ 1) is true.

By induction, P(n) is true for all n≥ 1. ��
The rationale behind induction is that if the base case (a) and the induction step

(b) are true, then for any n> n0, one can prove, in n−n0 logical steps, that P(n) is
true. For example, if P(n) is the equation of Example 1, above and we wish to prove
that P(5) is true, we can argue logically as follows:
P(1) is true, by the base case.
Since P(1) is true, P(2) is true, by the induction step with k = 1;
Since P(2) is true, P(3) is true, by the induction step with k = 2;
Since P(3) is true, P(4) is true, by the induction step with k = 3;
Since P(4) is true, P(5) is true, by the induction step with k = 4.
This same reasoning can be used to show that P(n) is true for any given num-

ber n. We simply start with the base case, which says that P(n0) is true, and then
successively infer that P(n0 + 1),P(n0 + 2), . . . ,P(n) is true by n− n0 uses of the
induction step. The principle of induction simply asserts that given the validity of
the base case and of the induction step for all n ≥ n0, then for any n> n0, P(n) can
be shown true, and therefore is true.

Here are some more examples.

Example 2. For all n≥ 1, 2n ≥ 1 +n.



2 Induction 11

Proof. Here n0 = 1.
The statement

P(n) : 2n ≥ 1 +n

is clearly true when n= 1, so the base case is true.
For the induction step, let k be a number≥1 and assume

P(k) : 2k ≥ 1 + k

is true. Then multiplying both sides by 2 gives

2k ·2≥ (1 + k) ·2,

so
2k+1 = 2k ·2≥ (1 + k) ·2 = 2 + 2k> (1 + 1)+ k= 1 +(k+ 1).

Thus the statement
P(k+ 1) : 2k+1 ≥ 1 +(k+ 1)

is true. We’ve shown that for every k ≥ 1, the induction step is true. Hence the
inequality P(n) is true for all n≥ 1 by induction. ��
Example 3. The number 8 divides 32n− 1 for all n ≥ 0. That is, for every n ≥ 0,
32n−1 = 8m for some natural number m.

Proof. The statement P(n): 8 divides 32n−1, is true for n = 0 since 8 divides 30−
1 = 0. The induction step involves a little “trick” of subtracting and adding the same
quantity. Suppose 8 divides 32k−1. We examine 32(k+1)−1:

32(k+1)−1 = 32k ·32−1

= 32k ·32−32 + 32−1

= 32(32k−1)+ (32−1).

Since 8 divides 32k−1 and 8 divides 32−1, therefore 8 divides 32(32k−1) +
(32−1) = 32(k+1)−1. Thus the statement P(n) is true for all n≥ 0. ��
Example 4. The number 2n3−3n2 +n+ 31≥ 0 for all n≥−2.

Proof. Let us set f (n) = 2n3− 3n2 + n+ 31. Then for each n ≥ −2, the statement
P(n) is the inequality

P(n) : f (n)≥ 0.

In particular, for the base case, P(−2) is the inequality f (−2) ≥ 0, which is true
because f (−2) = 1. For the induction step, suppose that for some k≥−2, the state-
ment P(k) is true, that is, f (k) > 0. Then expanding f (k+ 1) and collecting terms,
we find
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f (k+ 1) = 2(k+ 1)3−3(k+ 1)2 +(k+ 1)+ 31

= 2(k3 + 3k2 + 3k+ 1)−3(k2 + 2k+ 1)+ (k+ 1)+31

= 2k3 + 6k2 + 6k+ 2−3k2−6k−3 + k+ 1 +31

= 2k3 + 3k2 + k+ 31

= f (k)+ 6k2 ≥ f (k) ≥ 0.

So P(k+ 1) is true. Thus P(n) is true for all n ≥ −2, that is, f (n) ≥ 0 for all
n≥−2. ��
Example 5. In calculus, after the rules for the derivative of a constant and of x, and
the product rule are presented, the rule for the derivative of xn can be proved by
induction:

dxn

dx
= nxn−1.

Proof. Let P(n) be the statement

dxn

dx
= nxn−1.

Then P(0) is the statement that the derivative of the constant function 1 is 0, and
P(1) is the statement that the derivative of x is 1. To prove P(n) by induction, sup-
pose that for some k≥ 0,

P(k) :
dxk

dx
= kxk−1

is true. Then consider dxk+1

dx . By the product rule, we have

dxk+1

dx
=
d(x · xk)
dx

=
dx
dx
· xk+ x · dx

k

dx
= xk+ x · kxk−1

since we know P(1) is true and we have assumed P(k) is true. Collecting terms, we
obtain

dxk+1

dx
= (k+ 1)xk

and so P(k+ 1) is true. Thus by induction,

P(n) :
dxn

dx
= nxn−1

is true for all n≥ 0. ��
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Exercises. In the exercises, n is always an integer.

1. Prove that 1 + 2 + 3 + . . .+n= n(n+ 1)/2 for all n≥ 1.

2. Prove that 13 + 23 + . . .+n3 = [n(n+ 1)/2]2 for all n≥ 1.

3. Prove that
1 + 2 + 22 + . . .+ 2n−1 = 2n−1

for every n> 1.

4. Prove that for all n≥ 1,

14 + 24 + . . .+n4 =
n(n+ 1)(2n+ 1)(3n2+ 3n−1)

30

5. Prove that for any real number x and for all numbers n> 1,

xn−1 = (x−1)(xn−1 + xn−2 + . . .+ xn−r+ . . .+ x+ 1).

6. Using the last exercise, prove that for all n> 1,

lim
r→1

rn−1
r−1

= n.

7. (Askey) Show that dx
n

dx = nxn−1 as follows: by the definition of the derivative,

dxn

dx
= lim
y→x

yn− xn
y− x .

Set y= rx and compute the limit using the last exercise.

8. Prove that n! > 2n for all n≥ 4.

9. Prove that 22n > n4 for all n≥ 4.
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10. Let

tn =
n(n+ 1)

2
= 1 + 2 + . . .+n

be the n-th triangular number. Define t0 = 0.
(i) Show that the odd square number (2n+ 1)2 = 8tn+ 1 for all n≥ 1.
(ii) Prove that

1
t1

+
1
t2

+ . . .+
1
tn

= 2− 2
n+ 1

.

(Hint: observe that 1
n(n+1) = 1

n − 1
n+1 . )

(iii) Prove that for all n≥ 1,

1
1

+
1
9

+
1

25
+ . . .+

1
(2n+ 1)2 ≤

5
4
− 1

4(n+ 1)

in two ways: directly by induction, and by using (i) and (ii).

11. Let a be a natural number >1. Prove that for all integers r0,r1, . . . ,rn−1 with
0≤ r j < a,

r0 + r1a+ r2a2 + . . .+ rn−1an−1 < an.

When n= 10 this says that 10n is larger than any n-digit number.

12. Let b be a number≥2. Prove that for all n≥ 1,

(bn−1)(bn−b)(bn−b2) · . . . · (bn−bn−2)≥ bn(n−1)−bn(n−1)−1.

13. Prove that for every n≥ 1, 24 divides 16n−16.

14. Prove that for every n≥ 1, 5 divides 8n−3n.

15. Prove that for every n≥ 1, 5 divides 34n−1.

16. Prove that for every odd number n≥ 1, 9 divides 4n+ 5n.

17. Prove that for every n≥ 0, 3 divides 22n+1 + 1.

18. Using the addition formulas

cos(a+b) = cos(a)cos(b)− sin(a)sin(b)

and
sin(a+b) = sin(a)cos(b)+ cos(a)sin(b),

prove that for each n> 1 there are polynomials fn(x) of degree n and gn(x) of degree
n−1 so that

cos(nx) = fn(cos(x))

and
sin(nx) = gn(cos(x))sin(x).
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19. For any real number a, define a0 = 1, and for every number k≥ 0, define ak+1 =
ak ·a. Using induction, prove that for all natural numbers m and n, am+n = am ·an.
20. Consider the puzzle called the Tower of Hanoi (attributed to the French math-
ematician Edouard Lucas, 1883). The puzzle consists of n disks of decreasing di-
ameters placed on a pole. There are two other poles. The problem is to move the
entire stack of disks to another pole by moving one disk at a time to any other pole,
except that no disk may be placed on top of a smaller disk. Find a formula for the
least number of moves needed to move a stack of n disks from one pole to another,
and prove the formula by induction.

21. (Neal Hill). Suppose in the Tower of Hanoi, the three poles are in a row, and a
disc can only be moved from a pole to an adjacent pole. All other rules apply. How
many moves does it take to move a stack of n discs from the leftmost pole to the
rightmost pole?

22. Show that for every positive integer n, one of the numbers n,n+1,n+2, . . .,2n
is the square of an integer.

23. What is wrong with the proof of the following (true) theorem?

Theorem 2. All new 1922 Ford Model T cars had the same exterior color.

Proof. The case n= 1 is obvious.
Suppose that in any set of n new Model T’s, all had the same exterior color.

Consider a set of n+ 1 new Model T’s, lined up from left to right.
We may assume by induction that in the set L of the n Model T’s to the left all

had the same exterior color, and similarly that in the set R of the n Model T’s to
the right all had the same exterior color. But then evidently all the n+ 1 Model T’s
had the same exterior color, for the leftmost and rightmost Model T’s had the same
exterior color as all the Model T’s in between.

By induction, for every number n, in every set of n new Model T’s all had the
same exterior color. Since the set of all new 1922 Model T’s was one such set, the
theorem is proved. ��

(Henry Ford was reputed to have said of the Model T, “You can paint it any color,
so long as it’s black.”)

24. Show that for n≥ 1,

1 + 7 + 13 + . . .(6n−5) = 3n2−2n.

B. Complete Induction

Complete Induction is a reformulation of induction that is often more convenient
to use.
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Theorem 3 (Complete Induction). Let n0 be a f xed integer and let P(n) be a state-
ment which makes sense for every integer n ≥ n0. Then P(n) is true for all integers
n> n0, if the following two statements are true:
(a’) (base case) P(n0) is true, and
(b’) (induction step) For all m> n0:
if P(k) is true for all k with n0 ≤ k < m, then P(m) is true.

Complete induction appears more complicated than ordinary induction, but in
fact it is easier to use. Compare the induction step (b’) with the induction step (b)
for ordinary induction:

(b) For all m> n0,
if P(m−1) is true, then P(m) is true.

In attempting to prove the induction step in a proof by induction, complete induc-
tion allows us to assume more than we can with ordinary induction. With complete
induction, in order to prove P(m), you may assume that P(k) is true for every k,
n0 ≤ k < m. In ordinary induction you are allowed only to assume that P(m−1) is
true. So complete induction is more flexible than ordinary induction.

For certain kinds of results involving multiplication, ordinary induction is awk-
ward to apply, while complete induction is quite natural. The next example is such
a result.

Recall that a natural number n is prime if n ≥ 2 and does not factor into the
product of two natural numbers each smaller than n. Also, a number q divides a
number n, or n is divisible by q, if n= qr for some natural number r. Thus 3 divides
12, but 3 does not divide 14.

Proposition 4. Every natural number n≥ 2 is divisible by a prime number.

Proof. Let P(n) be the statement, “n is divisible by a prime number.” Then the base
case P(2) is true, because 2 is prime and 2 divides itself.

We’ll use complete induction for the induction step. Thus we assume that P(k)
is true for all k where 2 ≤ k < m: that is, we assume that every natural number ≥2
and <m is divisible by a prime number. Now consider m. If m is prime, then m is
divisible by a prime number, namely itself, and P(m) is true. If m is not prime, then
m factors as m = ab, where 2 ≤ a < m and also 2 ≤ b < m. Since 2 ≤ a < m, by
assumption P(a) is true, that is, a is divisible by a prime. Since a is divisible by a
prime, and a divides m, m is divisible by the same prime. So P(m) is true.

Thus P(n) is true for all n≥ 2 by complete induction. ��
Notice that had we tried to use ordinary induction to prove P(m): “m is divisible

by a prime” for all m≥ 2, then in the induction step we would have been permitted
only to assume that m− 1 is divisible by a prime, in order to try to prove that m is
divisible by a prime. But knowing about factors of m− 1 is of little direct help in
finding factors of m, since no factor of m− 1 other than 1 can possibly be a factor
of m. (Why?) Thus if we wanted to prove Proposition 4 by ordinary induction, we
would need to change the statement P(n). See the proof of Theorem 6, below.
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If we want to prove something using induction, complete induction will work
just as well. For suppose we can prove

For all k ≥ n0, if P(k) is true, then P(k+ 1) is true.

Then we can prove

For all k ≥ n0, if P(m) is true for all m with n0 ≤ m< k, then P(k+ 1) is true.
For if we can prove P(k+ 1) assuming only P(k), then we can prove P(k+ 1)

assuming P(m) for all n0 ≤ m≤ k.

Hence:

Theorem 5. If a statement P(n) can be proved for all n≥ n0 by ordinary induction,
it can be proved by complete induction.

It turns out, however, that the two forms of induction are logically equivalent. We
prove

Theorem 6. If a statement P(n) can be proved for all n≥ n0 by complete induction,
it can be proved by ordinary induction.

Proof. Suppose we know that:
(a’) P(n0) is true, and
(b’) if P(k) is true for all k, n0 ≤ k< m, then P(m) is true.
Then P(n) is true for all n ≥ n0 by complete induction. We show how to prove

P(n) for all n by ordinary induction. To do so, we consider a new statement
Q(n): P(m) is true for all m, n0 ≤ m≤ n.
We prove Q(n) is true for all n ≥ n0 by ordinary induction. Note that if Q(n) is

true, then P(n) is true.
For the base case, we need to show:
(a) Q(n0) is true.
But because Q(n0) is the statement “P(m) is true for all m, n0 ≤ m ≤ n0,” we

have that Q(n0) is true because by (a), P(n0) is true.
For the induction step, we need to show:
(b) If Q(m−1) is true then Q(m) is true.
To see this, observe that if Q(m− 1) is true, then P(k) is true for all k with

n0 ≤ k ≤ m− 1. So since we assumed (b’) holds for all n ≥ n0, therefore P(m) is
true. But then P(k) is true for all k with n0 ≤ k≤ m, and so Q(m) is true.

Thus by ordinary induction, Q(n) is true for all n ≥ n0. But if Q(n) is true, then
P(n) is true. So P(n) is true for all n≥ n0. ��

This theorem implies that whenever we want to prove a statement about natural
numbers, we can use whichever version of induction is most convenient. Henceforth,
when we refer to “induction”, we mean either version.
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Exercises.

25. Prove “For all n ≥ 2, every number m with 1 < m ≤ n is divisible by a prime
number” by ordinary induction.

26. Prove that any natural number n≥ 2 either is prime or factors into a product of
primes.

27. Prove that the sum of the interior angles of an n-sided convex polygon is 180×
(n−2).

28. Let f : N → N be a function with the properties that f (1) = 1 and for all
numbers n > 1, f (n) < n. Prove that for every n there is some k so that the func-
tion f (k), obtained by composing f with itself k− 1 times, maps n to 1. (Thus
f (1)(n) = f (n), f (2)(n) = f ( f (n)), f (3)(n) = f ( f ( f (n))), etc.)

29. Russian peasant arithmetic. Here is a way of multiplying which has been at-
tributed to Russian peasants who could only add, and multiply and divide by 2.
In fact this method of multiplying was also used by the ancient Egyptians (2000
B.C.) (see [Gillings (1972)]) and is of interest also to computer programmers (since
computers are especially efficient in multiplying and dividing by 2).

To multiply two numbers a and b set up four columns, labeled “left”, “right”,
“sum” and “summand”. In the top row place a in the left column, b in the right
column, and 0 in the sum column. If b is odd, place a in the summand column. If b
is even, place 0 in the summand column.

Then fill in successive rows of the array. If a, b, s and d are the entries in a given
row, then fill in the next row as follows:

If b is even, set the entries in the left, right and sum columns of the next row to
be 2a, b/2 and s+d.

If b is odd, set the entries in the left, right and sum columns of the next row to be
2a, (b−1)/2 and s+d.

Then set the entry in the summand column to be 0 if the entry in the right column
(either b/2 or (b− 1)/2) in the same row is even; set the entry in the summand
column to be the entry in the left column (2a) of the new row if the entry in the right
column in the new row (either b/2 or (b−1)/2) is odd.

left right sum summand
...

a b s d
2a b/2 or (b−1)/2 s+d 2a or 0

...

Continue until you reach the row in which the entry in the right column is 0. Then
the entry in the sum column is a ·b.

Here is an example, showing that 116 ·311 = 36076:
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left right sum summand
116 311 0 116
232 155 116 232
464 77 348 464
928 38 812 0
1856 19 812 1856
3712 9 2668 3712
7424 4 6380 0

14848 2 6380 0
29696 1 6380 29696
59392 0 36076

Given two numbers a and b, prove by induction that for each row,

(the left entry) · (the right entry)+ (the sum entry) = a ·b,

and therefore a ·b is equal to the last entry in the sum column.

30. The Fibonacci sequence is defined by a1 = 1,a2 = 1 and for all n ≥ 2, an+1 =
an+an−1. Thus the sequence begins

1,1,2,3,5,8,13,21,34,55, . . ..

Prove that for all n≥ 1, an < ( 5
3 )n.

31. A composition of a natural number n is a description of n as an ordered sum of
natural numbers. For example, the compositions of 3 are:

3,2 + 1,1 + 2,1 + 1+1

and the compositions of 4 are

4,3 + 1,2 + 2,2 +1+1,1+3,1+2+1,1+1+2,1+1+1+1.

Let c(n) be the number of compositions of n. Guess a formula for c(n) for all n≥ 1
and prove your formula by induction.

C. Well-Ordering

The formulations of induction in the two previous sections were developed in the
seventeenth century by Pascal and others. However, some results about natural
numbers were obtained many centuries earlier, by the ancient Greek mathemati-
cians whose work was collected in Euclid’s Elements (300 B.C.) For example,
Proposition 4, above, is found in Euclid, Book IX, Proposition 31. Here is how
Euclid proved:

Theorem 7. Every composite number is divisible by some prime number.
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Proof. Suppose A is a composite number. Then A is divisible by some number B.
If B is prime, we’re done, so assume B is composite. Then B is divisible by some
numberC, soC is a divisor ofA. IfC is prime, we’re done, so assumeC is composite.
ThenC is divisible by some number.

“Thus, if the investigation be continued in this way, some prime number will be
found which will measure [divide] the number before it, which will also measure A.
For if it is not found, an infinite series of numbers will measure the number A, each
of which is less than the other: which is impossible in numbers.” ��

Thus Euclid proves the result by what might be called “infinite descent”: there is
no infinite descending chain of natural numbers.

The principle of infinite descent can be expressed more affirmatively as the

Theorem 8 (Well-Ordering Principle). Any nonempty set of natural numbers has
a least element.

We can rephrase Euclid’s proof in terms of the well-ordering principle. For any
number A> 2, let S be the set of numbers≥2 which divide A. Since A is a positive
divisor of itself, S is nonempty. Euclid’s argument using infinite descent is that if
we select a strictly decreasing sequence of proper divisors of A, and none is prime,
then we get an infinite descending chain of elements of S , impossible. Using well-
ordering, we can say: S has a least element C, that is, A has a least divisor C ≥ 2.
If C is not prime, then C has a smaller divisor D ≥ 2 which is then a divisor of A,
contradicting the assumption thatC is least. SoC must be prime.

Well-ordering and infinite descent are different forms of induction. We can in
fact prove the well-ordering principle using induction. To do so, we prove that if
there is a set of natural numbers with no least element, then it must be empty. (This
approach uses the standard logical strategy for proving statements of the form “if
A then B”-we prove that if B is false, then A must be false. The reason that the
strategy works is that the only situation under which the statement “if A then B” is
false occurs when A is true and B is false. If we assume B is false and are able to
show thereby that A is false, then the situation “A true and B false” cannot occur
and so “if A then B” is true.)

Proof of the Well-Ordering Principle. Let S be a set of natural numbers with no
least element. Let P(n) be the statement: “Every number in S is >n.” Observe that
if P(m) is true, then m is not in S . So by showing that P(n) is true for all n, we will
show that S is empty, which will prove the well-ordering principle.

Evidently P(1) is true, for if not, 1 is in S , and since all natural numbers are≥1,
therefore S would have a least element.

Suppose P(k) is true for some k > 1. If P(k+ 1) is false, then S contains some
number≤ k+ 1. But P(k) is true. So every number in S is > k. But then k+ 1, the
only number≤k+1 which is > k, would be in S and would be the least element of
S , impossible. Thus if P(k) is true, then P(k+1) is true. By induction, P(n) is true
for all n≥ 1, and S is empty. That finishes the proof. ��



2 Induction 21

One important use of the well-ordering principle is that it permits us to define
a number by the property that the number is the smallest number in a certain non-
empty set.

For example, consider the set S of numbers that are multiples of both 24 and 90.
That set of common multiples of 24 and 90 is non-empty, for it includes 24 · 90 =
2160. Thus by well-ordering, the set S has a smallest number, the least common
multiple of 24 and 90. Some computation verifies that the least common multiple is
360. But with no computation, well-ordering tells us immediately that

Proposition 9. Any two numbers a and b have a least common multiple, that is, a
number m which is a common multiple of a and b and which is≤ any other common
multiple of a and b.

Proof. Since the set S of common multiples of a and b contains a · b, S is non-
empty. So by well-ordering, S has a smallest element, which is the least common
multiple of a and b. ��

Exercises.

32. Show that there is no rational number b/a whose square is 2, as follows: if
b2 = 2a2, then b is even, so b = 2c, so, substituting and canceling 2, 2c2 = a2. Use
that argument and well-ordering to show that there can be no natural number a > 0
with b2 = 2a2 for some natural number b.

33. Prove that the well-ordering principle implies induction, as follows: suppose
P(n) is a statement which make sense for every n ≥ n0. Suppose (a) P(n0) is true,
and (b) for any n ≥ n0, if P(n) is true then P(n+ 1) is true. Let S be the set of
n≥ n0 for which P(n) is false. Using well-ordering, show that S must be empty.

34. Show that the well-ordering principle is equivalent to “there is no infinite de-
scending chain of natural numbers”.

35. Fix N, some integer, and suppose S is a nonempty set of integers such that
every a in S is <N. Show that S has a maximal element. (Hint: Let T =
{n in N|n≥ a for all a in S }.)

D. The Binomial Theorem

The Binomial Theorem describes the coefficients when the expression (x+ y)n is
multiplied out. Recall that n! (“n factorial”) is defined by n! = 1 · 2 · 3 · . . . · n for
n> 0. We set 0! = 1.

Theorem 10 (The Binomial Theorem). For every integer n≥ 1,

(x+ y)n =
(
n
0

)
xn+ . . .+

(
n
r

)
xn−ryr+ . . .+

(
n
n

)
yn
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where (
n
r

)
=

n!
r!(n− r)!

for 0≤ r ≤ n.
Examples:

(x+ y)2 = x2 + 2xy+ y2; (x+ y)3 = x3 + 3x2y+ 3xy2 + y3.

The proof is by induction on n. In order to carry through the argument passing
from n−1 to n (the induction step) we first set up Pascal’s triangle,

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
...

.

We number the elements c(n,r) of Pascal’s triangle by the row n and the position
r of the element within the row, both indices starting from 0. Thus Pascal’s triangle
is labeled

c(0,0)
c(1,0) c(1,1)

c(2,0) c(2,1) c(2,2)
c(3,0) c(3,1) c(3,2) c(3,3)

...

,

where
c(0,0) = c(n,0) = c(n,n) = 1

for all n, and for 1≤ r ≤ n−1,

c(n,r) = c(n−1,r−1)+ c(n−1,r).

That is, c(n,r) is the sum of the terms to the upper left and to the upper right:

c(n−1,r−1) + c(n−1,r)
= c(n,r)

The entries c(n,r) have a combinatorial interpretation.

Proposition 11. Let S be a set with n elements. Then c(n,r) is the number of
r-element subsets of S.

Proof. We do this by induction on n, the case n= 1 being obvious.
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Let S be a set with n elements. The statement is true when r = 0 or n, since there
is only one subset of S with n elements, namely S, and only one with no elements.

Assume, then, that n> 1 and 1≤ r≤ n−1. Let y be an fixed element of S. Let S0

be the set of all the elements of S except y. S0 is then a set with n−1 elements. Divide
the collection of all r-element subsets of S into two piles, one consisting of those
subsets containing y, the other consisting of those subsets not containing y. The first
pile consists of exactly those subsets of S obtained by taking an (r− 1)-element
subset of S0 and adjoining y. By induction applied to S0, there are c(n− 1,r− 1)
of these. The second pile consists exactly of the r-element subsets of S0, of which
there are c(n−1,r), again by induction. Thus the number of r-element subsets of S
is c(n−1,r−1)+ c(n−1,r)= c(n,r), which is what we wished to show. ��

The entries of Pascal’s triangle can be computed by the following:

Lemma 12.
c(n,r) =

(
n
r

)
=

n!
r!(n− r!)

Proof. Induction on n. The case n= 0 is obvious:

0!
0!0!

= 1 = c(0,0),

Given n> 0, assume that for all r with 0≤ r ≤ n−1,

c(n−1,r) =
(n−1)!

r!(n−1− r)!.

Now

c(n,0) = 1 =
n!

0!(n−0)!
, c(n,n) = 1 =

n!
n!(n−n)!

so the lemma is true for c(n,r) when r = 0 or n. For 1≤ r ≤ n−1,

c(n,r) = c(n−1,r−1)+ c(n−1,r)

=
(n−1)!

(r−1)!(n− r)! +
(n−1)!

(r)!(n−1− r)!
=

(n−1)!
(r−1)!(n−1− r)!

[
1

n− r +
1
r

]

=
(n−1)!

(r−1)!(n−1− r)! ·
n

(n− r)r
=

n!
r!(n− r)!

as was to be shown. The lemma is therefore proved by induction. ��
Corollary 13.

(n−1
r−1

)
+
(n−1
r
)

=
(n
r
)
.
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We therefore know that for each n,
(n

0

)
=
(n
n
)

= 1, and
(n
r
)

=
(n−1
r
)
+
(n−1
r−1

)
for

1 ≤ r ≤ n−1. Using these facts we can prove the Binomial Theorem by induction
on n.

Proof of the Binomial Theorem. For n = 1, (x+ y) =
(1

0

)
x+

(1
1

)
y so the binomial

theorem is true when n= 1. Assume n> 1 and the theorem is true for n−1, that is,

(x+ y)n−1 =
(
n−1

0

)
xn−1 +

(
n−1

1

)
xn−2y2 + . . .

+
(
n−1
r

)
xn−1−ryr+ . . .+

(
n−1
n−1

)
yn−1.

We compute (x+ y)n as follows:

(x+ y)n = (x+ y) · (x+ y)n−1 = x(x+ y)n−1 + y(x+ y)n−1.

Multiplying the expansion of (x+ y)n−1, above, by x and by y, and adding, we get

(x+ y)n =
(
n−1

0

)
xn+

(
n−1

1

)
xn−1y+ . . .+

(
n−1
n−1

)
xyn−1

+
(
n−1

0

)
xn−1y+ . . .+

(
n−1
n−2

)
xyn−1 +

(
n−1
n−1

)
yn.

Thus the coefficient of xn−ryr for r = 1, . . . ,n−1 is
(
n−1
r

)
+
(
n−1
r−1

)
=
(
n
r

)

by Lemma 3. Since
(
n−1

0

)
= 1 =

(
n
0

)
,

(
n−1
n−1

)
= 1 =

(
n
n

)
,

we see that

(x+ y)n =
(
n
0

)
xn+ . . .+

(
n
r

)
xn−ryr+ . . .+

(
n
n

)
yn,

which proves the Binomial Theorem by induction. ��

Exercises.

36. Prove that the sum of the elements of the nth row of Pascal’s triangle is 2n for
each n. (How many subsets of a set with n elements are there?)
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37. Prove that (
s
s

)
+
(
s+ 1
s

)
+ . . .+

(
n
s

)
=
(
n+ 1
s+ 1

)

for all s and all n≥ s.
38. Prove that for all n≥ 1,

(
n
0

)2

+
(
n
1

)2

+ . . .+
(
n
n

)2

=
(

2n
n

)
.





Chapter 3
Euclid’s Algorithm

This chapter begins with the Division Theorem, a result that describes the result
of long division of numbers. Repeated use of the Division Theorem yields the de-
scription of any number in base a (e.g. a = 2, or a = 16 or a = 60). Repeated use
also yields Euclid’s Algorithm for finding the greatest common divisor of two num-
bers. Euclid’s Algorithm dates from the 4th century B. C., but remains one of the
fastest and most useful algorithms in modern computational number theory, and has
important theoretical consequences for the set Z of integers.

A. The Division Theorem

Theorem 1 (Division Theorem). Given nonnegative integers a > 0 and b, there
exist integers q> 0 and r with 0≤ r < a such that b= aq+ r.

Based on the roles of a,b,q and r in long division, we call a the divisor, b the
dividend, q the quotient, and r the remainder.

Proof. We prove the Division Theorem by well-ordering.
Let

S = {b−ax|x is a nonnegative integer and b−ax≥ 0}.
Then S is a set of nonnegative integers and is non-empty because b = b− a · 0 is
in S . So by well-ordering, S has a least element r. Clearly r = b− aq for some
integer q≥ 0. We must show that 0≤ r < a. Since r is in S , r ≥ 0. Is r < a? If not,
then r−a≥ 0, and

r−a= b−qa−a= b− (q+ 1)a≥ 0.

So r−a is in S . This contradicts the assumption that r was the least element of the
set S . Thus r < a, and so

b= qa+ r

with 0≤ r < a, as we wished to show. ��
L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 27
in Mathematics, c© Springer Science+Business Media LLC 2009
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To complete the story, we have

Proposition 2 (Uniqueness). Let a > 0,b ≥ 0 be integers and suppose b = aq+ r
for some quotient q ≥ 0 and some remainder r with 0 ≤ r < a. Then q and r are
unique.

Proof. Suppose b = aq+ r and also b = as+ t, where q ≥ 0,s ≥ 0 and 0 ≤ r < a
and 0≤ t < a. Suppose r ≥ t. Then

0 = b−b= (aq+ r)− (as+ t)= (r− t)−a(s−q),

so
a(s−q) = r− t.

But 0≤ r− t ≤ r < a. So dividing by a gives 0≤ s−q = (r− t)/a< 1. Since s−q
is an integer, we must have s−q= 0. Hence s= q and r = t. ��

We can also use well-ordering to prove uniqueness–see Exercise 1.
Given numbers a > 0 and b, we say that a divides b if b = aq for some integer

q≥ 0. Thus a divides b if in the equation b= aq+ r given by the Division Theorem,
the remainder r = 0.

Exercises.

1. (i) Prove that if S is a non-empty set of non-negative integers, then the least
element of S is unique.

(ii) Use a) to prove Proposition 2, that the quotient and remainder in the Division
Theorem are unique.

2. Let a,b be natural numbers. For the fraction b
a , let [ ba ] be the greatest integer

< b
a , and let { ba} be the fractional part: { ba} = b

a − [ ba ]. Thus, for example, [ 22
7 ] =

3,{ 22
7 } = 1

7 , and 22
7 = 3 + 1

7 = [ 22
7 ]+{ 22

7 }. If b = aq+ r where 0 ≤ r < a as in the
Division Theorem, how do q and r relate to [ ba ] and { ba}?

3. Show that if b = aq+ r and d is a number that divides both a and b, then d
divides r.

4. Let m be the least common multiple of a and b, and let c be a common multiple
of a and b. Show that m divides c. Hint: use the division theorem on m and c, and
show that the remainder r is a common multiple of a and b, hence r = 0.

5. Let
J = {e in N|e= ar+bs for some integers r,s}

and let d be the least element of J. Show that d divides a and d divides b.
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Bases. As a first application of the Division Theorem, we look at decimal notation.
The normal way we write numbers uses powers of 10. When we take a number

b, like b= MCMLXXVI, and write it as b= 1976, we mean that

b= 1×103 + 9×102 + 7×10 + 6.

We call this way of writing b the representation of b in base 10, or radix 10. This
notation comes from India some 1500 years ago. More generally, for any number
a≥ 2, if we write a number b using powers of a (a≥ 2),

b= rnan+ rn−1an−1 + . . .+ r1a+ r0

with each of r0, . . . ,rn between 0 and a−1, this is the representation of b in base (or
radix) a.

There is no particular reason except convention, based on physiology, why we
have a bias towards a number system based on the number 10. Some cultures have
had number systems based on 20, and our culture retains remnants of the ancient
(1800 B.C.) Babylonian number system based on 60: for example, the way we mea-
sure time in hours, minutes and seconds, or the way we measure angles.

We would write b= MCMLXXVI in base 20 as follows:

b= 4×202 + 18×20 + 16

and in base 60 as
b= 32×60 + 56.

In the United States, large numbers are often written in base 1000 by inserting com-
mas. For example, the U. S. Public Debt on May 9, 2007 was

8,822,507,474,425 = 8 · (103)4 + 822 · (103)3 + 507 · (103)2 + 474 ·103 + 425

dollars.
Base 2 is commonly used in computing. At the beginning of the evolution of the

electronic computer in the mid 1940’s, von Neumann recognized that the binary, or
base 2 system, was more natural than the decimal system for computers, for sev-
eral reasons [see Goldstine (1972), p. 260]: the elementary operations of addition,
subtraction, and multiplication can be performed more rapidly in base 2, electronic
circuitry tends to be binary in character, and the control structure of a computer is
logical in nature, not arithmetical, and logic is a binary kind of system (true-false).
Our example number b= MCMLXXVI in base 2 is

b= 1×210 + 1×29 + 1×28 + 1×27 + 1×25 + 1×24 + 1×23

or b= 11110111000.
Numbers themselves have no bias in favor of one base or another, as the following

theorem shows.
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Theorem 3. Fix a natural number a≥ 2. Every integer b≥ 0 may be represented in
base a: that is, b may be written uniquely as

b= rnan+ rn−1an−1 + . . .+ r1a+ r0

with 0≤ ri < a for all i.

We denote a number b written in base a as

b= (rnrn−1 . . . r2r1r0)a.

Thus (1976)10 = (11110111000)2. We omit ( )10 in decimal notation when there
is no possibility of confusion.

Here is a proof of the theorem, using induction and the division theorem.

Proof. Suppose all numbers <b may be written in base a. To write b in base a, first
divide a into b, using the division theorem to get b = aq+ r0 for unique numbers
q,r0 with 0≤ r0 < a. By induction, the quotient q may be written in base a:

q= rnan−1 + rn−1an−2 + . . .+ r2a+ r1

for unique integers r1,r2, . . . ,rn with 0≤ ri < a. Then

b= qa+ r0 = a(rnan−1 + rn−1an−2 + . . .+ r2a+ r1)a+ r0
= rnan+ rn−1an−1 + . . .+ r1a+ r0

with all ri satisfying 0≤ ri < a. ��
Notice that the proof shows how to get b in base a. First divide b by a, then,

successively, divide the quotients by a:

b= aq+ r0,
q= aq1 + r1,
q1 = aq2 + r2,

...

qn−2 = aqn−1 + rn−1

qn−1 = a ·0 + rn.

The process stops when a quotient is reached which is 0. The digits are the remain-
ders: b= (rnrn−1 . . . r2r1r0)a.

Example 1. To get 366 in base 2:

366 = 2 ·183 + 0,

183 = 2 ·91 + 1,

91 = 2 ·45 + 1,
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45 = 2 ·22 + 1,

22 = 2 ·11 + 0,

11 = 2 ·5 + 1,

5 = 2 ·2 + 1,

2 = 2 ·1 + 0,

1 = 1 ·0 + 1,

so 366 = (101101110)2.
The conversion of a number to base 2 can be set up as a special case of Russian

Peasant Arithmetic (RPA) (Chapter 2, Exercise 29). We set up RPA to multiply 1 by
366:

le f t right sum summand
1 366 0 0
2 183 0 2
4 91 2 4
8 45 6 8

16 22 14 0
32 11 14 32
64 5 46 64

128 2 110 0
256 1 110 256
512 0 366 0

.

The last entry in the sum column is the sum of the entries in the summand column,
namely:

366 = 256 + 64 + 32+8+4+2 = (101101110)2.

(In general, to convertm to base 2, the array is constructed as follows. Start with the
row

1 m 0 0

if m is even, or
1 m 0 1

if m is odd. Proceeding down the array, suppose we have a row

b a s d.

The next row is
2b a

2 s+d 2b

if a is even and a
2 is odd;

2b a
2 s+d 0

if a is even and a
2 is even;

2b a−1
2 s+d 2b



32 3 Euclid’s Algorithm

if a is odd and a−1
2 is odd;

2b a−1
2 s+d 0

if a is odd and a−1
2 is even. Stop when the entry in the “right” column is 0.)

Operations in base a. We can add, subtract, multiply, and divide in any base, using
the same operations learned in grade school. The only change is that to multiply or
divide in base a we must know the multiplication table in base a.

It is very easy to remember multiplication tables in base 2. On the other hand,
to do multiplication in base 60 is rather more difficult. Babylonian mathematicians
kept clay tablets on hand containing base 60 multiplication tables. (See Section 12B
for an alternative approach to base 60 multiplication.)

Long division works in any base as well. In fact, in base 2 it is particularly easy,
because in determining the correct digits of the quotient, no guesswork is involved.

On the other hand, in base a where a is large it is harder to determine the digits
of the quotient. Since computers do multiple precision arithmetic in large bases,
some study has been done of long division, and it was observed by D.A. Pope and
M.L. Stein in 1960 that the closer the first digit of the divisor is to the base a, the
easier guessing the digits of the quotient is. For a more precise description of this
phenomenon, see Knuth (1998), Theorem B, p. 272. See also Section 9G.

Exercises.

6. Write 1987 in base 1000.

7. Write 1987 in base 2, and in base 8.

8. In base 2 write the numbers from 29 through 35.

9. One seventh of an hour is 514 seconds, to the nearest second. Write it in minutes
and seconds.

10. Write one eleventh of a day in hours, minutes and seconds (to the nearest
second).

11. If a runner completes a 50 mile race in 7 hours, 33 minutes and 15 seconds, and
he were to run a marathon (26 miles, 385 yards) at the same pace, how long would
it take him? (There are 1760 yards to the mile).

12. If an angle θ is one radian, how much is θ in degrees, minutes and seconds (to
the nearest second)?

13. Write 176 and 398 in base 2 and multiply them. Check the multiplication by
multiplying them in base 10 and converting the answer to base 2.

14. Multiply (253)8 and (601)8. Check the answer.
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15. If your calculator carries 8 decimal digits, and you wish to multiply two 20 digit
numbers, you have to write the numbers in base 10n for some n and write a program
to do the multiplication in base 10n. Which n would be appropriate? Can you use
n= 8?

16. Divide (110110011)2 into (1100000100101)2 using long division in base 2.

17. Divide (1,4,25,46)60 by (1,38)60, using long division in base 60. Then multi-
ply both numbers by 32 and do the division. Is it any easier?

B. Greatest Common Divisors

What do we mean by the greatest common divisor of two numbers? We deal with
the three words, “greatest”, “common”, “divisor”, in reverse order:

Let a, b be integers, with a not equal to zero. Say that a divides b, or a is a divisor
of b, if b= aq for some integer q, that is, b is equal to some integer multiple of a.

Thus, 15 divides 45, because 45 = 15 ·3, whereas 15 does not divide 42, because
there is no integer q so that 42 = 15q. (It is true that 42 = 15 · (14/5), but 14/5 is not
an integer.)

The words “divisor” and “factor” mean the same thing.
If we are looking for divisors of a natural number, once we find the positive

divisors, then the negative divisors will just be the negatives of the positive divisors.
For example, 6 has divisors 1, 2, 3, 6 and also−1,−2,−3 and−6. So when looking
for divisors of a number in this section, we’ll just write down the positive divisors.

We can find the divisors of a small number easily. For example,
the divisors of 15 are 1, 3, 5, and 15;
the divisors of 28 are 1, 2, 4, 7, 14, and 28;
the divisors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42.
Notice that 1 divides every integer (as does −1), and every integer divides 0.
We will often use the notation a | b to mean, a divides b. Thus 15 | 45.
(The notation | can be confusing. If we write 4 | 28, it is a statement, “4 divides

28.” If we write 4/28, with / rather than |, we are writing a fraction, a number, “4
over 28.” So | is a verb, “divides”, while / is a preposition, “over”.)

If a and b are integers, a common divisor of a and b is an integer e such that e
divides a and e divides b.

For example, the common divisors of 28 and 42 are 1, 2, 7 and 14 (and their
negatives), as we can see by comparing the lists of divisors of 28 and 42.

The common divisors of 15 and 42 are 1 and 3.
Note that 1 is a common divisor of any two integers.

A number d is the greatest common divisor (g.c.d.) of a and b if:
(i) d is a common divisor of a and b and
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(ii) no common divisor of a and b is larger than d.
We denote the greatest common divisor of a and b by (a,b).
To continue the examples above, the greatest common divisor of 28 and 42 is 14,

that is, (28, 42) = 14. Also, (15, 42) = 3, while (28, 15) = 1.
Since 1 is a common divisor of every number, every two numbers a and b always

have a common divisor. On the other hand, there can be only a finite number of
common divisors of a and b since every common divisor of a must divide a, hence
is <a. So there is a greatest common divisor of a and b.

One final bit of terminology. Two numbers a and b are coprime or relatively
prime if their greatest common divisor is 1. Thus 15 and 28 are coprime, but 15 and
42 are not coprime, and 28 and 42 are not coprime.

Exercises.

18. Find all positive common divisors of:
(i) 16 and 48,
(ii) 30 and 45,
(iii) 18 and 65.

19. Find the greatest common divisor of:
(i) 35 and 65,
(ii) 135 and 156,
(iii) 49 and 99.

20. Find the greatest common divisor of 17017 and 19210.

21. Find the greatest common divisor of 21331 and 43947. (You may wish to use a
calculator.)

22. Find the greatest common divisor of 210632 and 423137. (You may wish to use
a computer.)

23. Show that for any number n, n and n+ 1 are coprime.

24. Show that if a | b, then (a,b) = a.

25. Given numbers a and b, suppose there are integers r,s so that ar+bs= 1. Show
that a and b are coprime.

26. Show that the greatest common divisor of a and b is equal to the greatest com-
mon divisor of a and −b.

27. Show that (a,m)≤ (a,mn) for any integers a,m and n.

28. Show that if (a,b) = 1 and c divides a, then (c,b) = 1.
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29. Show that of any three consecutive integers, exactly one is divisible by 3.

30. Show that of any m consecutive integers, exactly one is divisible by m.

31. Show that for all numbers a > 0, b,b′,c,c′, if a | b− c and a | b′ − c′, then
a | bb′ − cc′.
32. Let m > n > 1 be natural numbers. Show that there is some t with n ≤ t < m,
such that m−n divides t.

C. Euclid’s Algorithm

If you tried to do some of the exercises above, such as finding the greatest common
divisor of 21331 and 43947, you will appreciate a method of Euclid to find the
greatest common divisor of two numbers, now known as Euclid’s Algorithm. It
works as follows. Suppose the two numbers are a and b, with a ≤ b. The next two
paragraphs are paraphrased from Euclid’s Elements, Book VII, Proposition 2.
If a divides b, a is a common divisor of b and it is manifestly also the greatest,

for no number greater than a will divide a. But if a does not divide b then, the lesser
of the numbers a,b being continually subtracted from the greater, some number will
be left which will divide the one before it.
This number which is left is the greatest common divisor of b and a, and any

common divisor of b and a divides the greatest common divisor of b and a.
We illustrate Euclid’s method with 18 and 7.

Subtract 7 from 18 to get 11, leaving 11 and 7.
Subtract 7 from 11 to get 4, leaving 4 and 7.
Subtract 4 from 7 to get 3, leaving 3 and 4.
Subtract 3 from 4 to get 1, leaving 3 and 1.
Now 1 divides 3, so 1 is the greatest common divisor of 18 and 7.

Or consider 84 and 217.
217−84 = 133,

133−84 = 49,

84−49 = 35,

49−35 = 14,

35−14 = 21,

21−14 = 7,

and 7 divides 14. So 7 is the greatest common divisor of 84 and 217.
Use of Euclid’s Algorithm is aided by division. When we divide 84 into 217 (for

example, using long division) the quotient is the number of times we subtract 84
from 217 before we end up with a number less than 84. Thus, 217 = 2 · 84 + 49,
so 217− 2 · 84 = 49: that is, after we subtract 84 two times from 217 we obtain a
number (49) less than 84.
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Thus we can describe the algorithm of Euclid more compactly by replacing the
repeated subtraction in Euclid’s original formulation by repeated uses of the Divi-
sion Theorem. For the example of 217 and 84 we have:

217 = 84 ·2 + 49

84 = 49 ·1 + 35,

49 = 35 ·1 + 14

35 = 14 ·2 + 7,

14 = 7 ·2 + 0.

and so 7 is the greatest common divisor of 217 and 84.
In words, here is Euclid’s Algorithm with division:
If a divides b, a is a common divisor of b and it is manifestly also the greatest, for

no number greater than a will divide a. But if a does not divide b then divide a into
b and get a remainder. then divide that remainder into a and get a new remainder.
Continually divide the new remainder into the previous remainder until the new
remainder is zero. The last non-zero remainder is the greatest common divisor of a
and b, and any common divisor of b and a divides the greatest common divisor of b
and a.

Here it is, in mathematical symbolism:
Euclid’s Algorithm. Given natural numbers a and b, apply the Division Theorem

successively as follows:
b= aq1 + r1,
a= r1q2 + r2,
rl = r2q3 + r3,
r2 = r3q4 + r4,

...

rn−2 = rn−1qn+ rn
rn−1 = rnqn+1 + 0.

When we reach the point where rn divides rn−1, then rn is the greatest common
divisor of a and b.

We shall prove this last statement carefully in the next section.

Exercises.

33. Try Euclid’s Algorithm on
(i) 135 and 156.
(ii) 17017 and 19210.
(iii) 21331 and 43947.
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34. Using Euclid’s Algorithm (with division), find the greatest common divisor of:
(i) 121 and 365,
(ii) 89 and 144,
(iii) 295 and 595,
(iv) 1001 and 1309.

35. Using Euclid’s Algorithm (with division), find the greatest common divisor of:
(i) 17017 and 18900,
(ii) 21063 and 43137,
(iii) 210632 and 423137,
(iv) 92263 and 159037,
(v) 112345 and 112354.

36. Show that if e divides a and e divides b, then e divides ar+bs for any integers
r, s.

37. Show that if b= aq+ r, then (b,a) = (a,r).

38. Using this last exercise, prove by induction the statement that rn is the greatest
common divisor of a and b.

D. Bezout’s Identity

Euclid’s Algorithm is more useful than simply giving an efficient way to determine
the greatest common divisor of two numbers. It also yields a relationship between
two numbers and their greatest common divisor that is of great importance, both
practically and theoretically, as we shall see. The relationship is called:

Theorem 4 (Bezout’s Identity). If the greatest common divisor of a and b is d, then
d = ar+bs for some integers r and s.

Example 2. Before we show how to find r and s, hide the rest of this page and try
the numbers 365 and 1876. It is easy to see they are relatively prime (the divisors
of 365 are 1, 5, 73 and 365 and none of 5, 73 and 365 divides 1876). Try to write
1 = 365x+ 1876y for some integers x and y.

It is not obvious how to do this!
Here is how. Do Euclid’s Algorithm:

1876 = 365 ·5 + 51,

365 = 51 ·7 + 8,

51 = 8 ·6 + 3,

8 = 3 ·2 + 2,

3 = 2 ·1 + 1;

then 1 is the greatest common divisor (as we already knew).
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Now solve for the remainders,

1 = 3−2 ·1,

2 = 8−3 ·2,

3 = 51−8 ·6,

8 = 365−51 ·7,

51 = 1876−365 ·5,

and successively substitute the remainders into the equation 1 = 3− 2 · 1, starting
with 2:

1 = 3−2

= 3− (8−3 ·2)= 3 ·3−8

= 3(51−8 ·6)−8 = 3 ·51−8 ·19

= 3 ·51−19(365−51 ·7)= 136 ·51−19 ·365

= 136(1876−5 ·365)−19 ·365 = 136 ·1876−699 ·365.

So x=−699, y= 136.

Solving Bezout’s Identity by Euclid’s Algorithm is often called the Extended
Euclidean Algorithm. But as we have just described it, the procedure is confusing,
since it is hard to keep track of the numbers that are remainders, to be substituted
for, and the numbers that are quotients, to be kept. (In the equation 1 = 3 · 3− 8 in
the example above, one 3 is kept, the other is replaced by 51−8 ·6.)

It is easier to do the computations by starting at the top of Euclid’s Algorithm,
rather than the bottom, and successively write the original two numbers and all the
remainders as linear combinations of the two original numbers. Let’s look at the
same example.

Example 3. We first have the obvious equations:

1876 = 0 ·365 + 1 ·1876,

365 = 1 ·365 + 0 ·1876.

Then the equation that gives the first remainder in Euclid’s Algorithm for 1876 and
365, namely,

51 = 1876−5 ·365,

can be obtained by multiplying the 365 equation by 5:

5 ·365 = 5(1 ·365 + 0 ·1876)= 5 ·365 + 0 ·1876;

then subtracting the equation for 5 ·365 from the equation for 1876:

51 = 1876−5 ·365

= (0 ·365 + 1 ·1876)−5(1 ·365+0 ·1876)
=−5 ·365 + 1 ·1876.
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The next remainder, 8, in Euclid’s Algorithm satisfies

8 = 365−7 ·51

so we substitute in the equations for 365 and 51 and collect coefficients:

8 = (1 ·365 + 0 ·1876)−7(−5 ·365+1 ·1876)
= (1 + 7 ·5)365 +(0−7 ·1)1876

= 36 ·365−7 ·1876.

The next remainder, 3, satisfies 3 = 51− 6 · 8, so we substitute for 51 and 8 and
collect coefficients of 365 and 1876:

3 = 51−6 ·8
= (−5 ·365 + 1 ·1876)−6(36 ·365−7 ·1876)
= (−5−6 ·36)365+(1+ 6 ·7)1876

=−221 ·365 + 43 ·1876.

Continuing,

2 = 8−2 ·3
= (36 ·365−7 ·1876)−2(−221 ·365+43 ·1876)
= (36 + 442)365 +(−7−86)1876

= 478 ·365−93 ·1876

and finally

1 = 3−2

= (−221 ·365 + 43 ·1876)− (478 ·365−93 ·1876)
= (−221−478)365+(43+93)1876

=−699 ·365 + 136 ·1876.

All of this can be done efficiently by setting up a matrix of three columns, one for
the remainders, one for the coefficients of 365 and one for the coefficients of 1876,
and just keeping track of the coefficients as we proceed down Euclid’s Algorithm as
above. In that format, to solve e= 365x+1876y for e= 1, the computations look as
follows:

e x= coeff. of 365 y= coeff. of 1876
1876 0 1
365 1 0

365 ·5 5 0
51 = 1876−365 ·5 −5 1

51 ·7 −35 7
8 = 365−51 ·7 36 −7

8 ·6 216 −42

.
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3 = 51−8 ·6 −221 43
3 ·2 −442 86

2 = 8−3 ·2 478 −93
1 = 3−2 −699 136

We call this matrix the EEA matrix. Each row (e,x,y) of the EEA matrix repre-
sents the equation

e= 365x+ 1876y.

Thus the row headed by 8 represents the equation

8 = 365 ·36 + 1876 · (−7)

and the last row represents

1 = 365 · (−699)+ 1876 ·136.

Once we write down the first two rows of the EEA matrix, the other rows are
obtained by multiplying a previous row by a constant, or subtracting one row from
another row, just as in Gaussian elimination with matrices. The EEA matrix collects
only the relevant data from the computation we did just above, without having to
write down 1876 and 365 many times. (In that computation, the original numbers
1876 and 365 act as placeholders for the coefficients. The EEA matrix eliminates
the need for the placeholders.)

To show that this procedure always yields the greatest common divisor as a linear
combination of the two original numbers, here is a proof by induction of the last
assertion of Euclid’s Algorithm and of Bezout’s Identity:

Theorem 5. Let a and b be natural numbers. If a divides b then a is the greatest
common divisor of a and b. If a does not divide b, and rn is the last nonzero remain-
der in Euclid’s Algorithm for a and b, then rn is the greatest common divisor of a
and b. If d is the greatest common divisor of a and b, then d = ax+ by for some
integers x and y.

Proof. If a divides b then a is clearly the greatest common divisor of a and b, and
a= a ·1+b ·0, so the theorem is true in that case. So assume that a does not divide
b. Then Euclid’s Algorithm for a and b involves at least two divisions. Suppose
Euclid’s Algorithm contains n+ 1 divisions (n ≥ 1) so that rn is the last nonzero
remainder in Euclid’s Algorithm for a and b. We prove the theorem by induction
on n.

If n= 1, then Euclid’s Algorithm for a and b has the form:

b= aq1 + r1,
a= r1q2 + 0.

Then r1 divides a, so (r1,a) = r1. It is easy to verify from the first equation that
(r1,a) = (a,b) (Exercise 37), so r1 is the greatest common divisor of a and b. Also
r1 = b ·1 +a · (−q1), so Bezout’s Identity holds.
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Assume the theorem is true for n= k−1, so that the theorem is true for any two
numbers whose Euclid’s Algorithm involves k divisions. Suppose Euclid’s Algo-
rithm for a and b involves k+ 1 divisions:

b= aq1 + r1,
a= r1q2 + r2,
r1 = r2q3 + r3,

...

rk−2 = rk−1qk+ rk
rk−1 = rkqk+1 + 0.

Notice that if we omit the first line of Euclid’s Algorithm for a and b, what is left
is Euclid’s Algorithm for r1 and a, and that algorithm involves k divisions. So by
the induction assumption, rk is the greatest common divisor of r1 and a, and rk =
au+ r1v for some integers u and v.

Now b = aq1 + r1, so (b,a) = (a,r1) = rk (again by Exercise 37, above). More-
over, substituting r1 = b−aq1 into the equation rk = au+ r1v gives

rk = au+(b−aq1)v
= bv+a(u−q1v).

Hence Bezout’s Identity holds for a and b. The theorem is true by induction. ��
Corollary 6. Two numbers a and b are coprime iff there are integers r and s so that
ar+bs= 1.

(Notation: “iff” means “if and only if”. An “iff” assertion, as in the corollary,
requires two proofs.)

Proof. First assume that (a,b) = 1. Then, from Theorem 5, there are integers r and
s so that 1 = ar+ bs. Conversely, if 1 = ar+ bs for some integers r and s, and d
divides a and b, then d divides ar+bs= 1, so d = 1 or−1. So the greatest common
divisor of a and b is 1. ��

Here is a useful consequence of Bezout’s Identity.

Corollary 7. If e divides a and e divides b, then e divides (a,b).

Proof. Write d = (a,b) as d = ar+bs. If e divides a and b, then a= e f ,b = eg for
some integers f ,g. Then

d = ar+bs= e f r+ egs= e( f r+gs),

so e divides d. ��
A consequence of great importance, as we shall see below and in the next

chapter, is:
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Corollary 8. If a divides bc, and a and b are coprime, then a divides c.

Proof. Bezout’s Identity is

ar+bs= 1

for some integers r,s. Multiply that equation by c:

acr+bcs= c.

Now a obviously divides acr. If a divides bc, then a divides bcs, so a divides acr+
bcs= c. ��

Another application of Bezout’s Identity is the following result, which is useful
for factoring large numbers.

Proposition 9. For every integers a,b,m, (ab,m) divides (a,m)(b,m). If a and b are
coprime, then

(a,m)(b,m) = (ab,m).

Proof. Let (a,m) = ra+ sm, (b,m) = tb+ vm. Then

(a,m)(b,m) = (ra+ sm)(tb+ vm) = rtab+ zm

for z = rav+ stb+ svm. Since (ab,m) divides ab and m, therefore (ab,m) divides
(a,m)(b,m).

For the second part, notice that (a,m) divides (ab,m). Write

(ab,m) = (a,m)e

for some integer e. Also, (b,m) divides (ab,m). Since a and b are coprime, so are
(a,m) and (b,m), and so by Corollary 8, (b,m) divides e. Thus

(ab,m) = (a,m)(b,m) f

for some integer f . Since (ab,m) divides (a,m)(b,m), we must have f = 1. ��

Exercises.

39. Using the EEA matrix, find d, the greatest common divisor, and find r,s so that
ar+bs= d, where a and b are:

(i) 270 and 114,
(ii) 242 and 1870,
(iii) 600 and 11312,
(iv) 11213 and 1001,
(v) 500 and 3000.
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40. Give six counterexamples to the assertion: if a divides bc and a does not divide
b, then a divides c.

41. Suppose a is a number >1 with the following property: for all b,c, if a divides
bc and a does not divide b, then a divides c. Show that a must be prime.

42. Observe that 982−312 = 9604−961= 8643 = 2881 ·3, so (982−312,2881)=
2881. Use Proposition 9 to factor 2881.

43. Prove that for all numbers a and b, if (a,b) = d and a = d f ,b = dg, then
( f ,g) = 1.

44. Prove that for all numbers a,b,m, if (a,m) = 1 and (b,m) = 1, then (ab,m) = 1.

45. Prove that for all numbers a,b,m,n, if am+ bn = e for some e, then (a,b)
divides e.

46. Prove that for all numbers a,b, if d = (a,b) and ra+ sb= d, then (r,s) = 1.

47. Prove the converse of Corollary 8: Suppose a and b are any numbers with
(a,b) > 1. Then there is a number c so that a divides bc and a does not divide c.

48. Prove that for every numbersm, a,b> 0,m(a,b)= (ma,mb). Do it in two parts:
m(a,b)≤ (ma,mb) and (ma,mb)≤ m(a,b). In addition to the definition of greatest
common divisor, you may find it convenient to use Bezout’s Identity.

49. Prove: for all numbers a,b,m, if (a,m) = d and (b,m) = 1, then (ab,m) = d.

50. Prove that for all numbers a,b,c, if a divides bc, then a/(a,b) divides c.

51. Prove that for all numbers a,b, there are integers r,s so that

1
ab

=
s
a

+
r
b

if and only if (a,b) = 1.

52. Prove that ifm is an integer and there is a rational number r/s so that (r/s)2 =m,
then there is an integer n so that n2 =m.

53. Define the greatest common divisor of three numbers a,b and c. Call it (a,b,c).
Show that (a,b,c) = (a,(b,c)).

54. Show that (a,b,c) = ax+by+ cz for some integers x,y,z.

55. For a,b natural numbers, consider the set J of all positive integers of the form
ar+ bs for integers r,s. Since J is a nonempty set of natural numbers, by well-
ordering J has a least element c. Show that c is the greatest common divisor of a
and b.
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E. Linear Diophantine Equations

For numbers a,b,e, Bezout’s Identity can be used to decide whether or not there are
integer solutions of equations of the form ax+by= e, and to find a solution if there
is a solution.

Proposition 10. Given integers a,b,e, there are integers m and n with am+bn= e
if and only if (a,b) divides e.

Proof. If am+bn= e for some integersm,n, then the greatest common divisor of a
and b divides e.

Conversely, if d = (a,b) divides e, then by Bezout’s Identity we can find integers
r,s so that ar+bs= d. If e= dm for some integer m, then x= rm,y= sm solves the
equation ax+by= e. ��

The proof shows how to find a solution of ax+by= e if (a,b) divides e.

Example 4. Suppose we want to find a solution to

365x+ 1876y= 24.

We know that (365,1876) = 1, and using the EEA matrix, we found in Example 3
that

1 =−699 ·365 + 136 ·1876.

Hence
24 =−(24 ·699) ·365 +(24 ·136) ·1876.

We can sometimes solve an equation like 365x+ 1876y= 24 more efficiently. If
we apply the EEA matrix as we did in Example 3 to find r,s so that ar+ bs = d,
then to solve ax+ by = e with e a multiple of d, we can stop as soon as we find a
remainder c that divides e. Multiplying the row in the EEA matrix headed by c by
the integer e/c will then give a solution to ax+by= e.

Example 5. To solve
24 = 365x+ 1876y

notice that we found that

8 = 36 ·365 +(−7) ·1876.

Multiplying that equation (or the corresponding row of the EEA matrix) by 3 gives
the equation

24 = 108 ·365 +(−21) ·1876 :

e x= coeff. of 365 y= coeff. of 1876
1876 0 1
365 1 0

365 ·5 5 0

.
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51 = 1876−365 ·5 −5 1
51 ·7 −35 7

8 = 365−51 ·7 36 −7
24 = 3 ·8 108 −21

.

Thus x= 108,y=−21 solves 24 = 365x+ 1876y.
Or if we want to solve 35 = 365 + 1876, we may notice that 35 = 51− 2 · 8, so

we can add to the EEA matrix two more rows:

...
51 = 1876−365 ·5 −5 1

51 ·7 −35 7
8 = 365−51 ·7 36 −7

16 = 2 ·8 72 −14
35 = 51−16 −77 15

,

so that 35 = 365 · (−77)+ 1876 ·15.

Once we know that there is a solution of ax+ by = c, then we can ask, can we
describe all the solutions of ax+by= c?

Suppose
ax0 +by0 = c
ax1 +by1 = c.

Then subtracting the first equation from the second yields

a(x1− x0)+b(y1− y0) = 0.

Thus any two solutions of ax+ by = c differ by a solution of ax+ by = 0.
Conversely, if

az+bw= 0

ax+by= c

then
a(x+ z)+b(y+w) = c.

In short,

Proposition 11. Let x0,y0 be a solution of ax+ by = c. Then the general solution
of ax+ by = c is of the form x = x0 + z,y = y0 +w, where z,w is any solution of
ax+by= 0.

This proposition is similar to comparable results in linear algebra and in differ-
ential equations: to find the general solution of a non-homogeneous equation (like
ax+ by = c), find some particular solution to the non-homogeneous equation and
add to it the general solution of the corresponding homogeneous equation (like
ax+by= 0).
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For the homogeneous equation we have:

Proposition 12. Let d = (a,b). Then the general solution of ax+by= 0 is

x=
b
d
k

y=−a
d
k

for k any integer.

Proof. Suppose
ax+by= 0

Divide both sides by d to get
a
d
x=−b

d
y.

Since the integers a/d and b/d are coprime (by Exercise 43), a/d divides y by
Corollary 8. Hence y= a

d k for some integer k. Then

a
d
x=−b

d
(
a
d
k),

hence

x=−b
d
k.

��
Corollary 13. If x0,y0 is a solution of ax+by= c, then the solutions of ax+by= c
are

x= x0 +
b
d
k

y= y0− a
d
k

for every k in Z.

A historical note: The French mathematician Etienne Bezout obtained “Bezout’s
Identity” for polynomials in 1779, but “Bezout’s Identity” for relatively prime inte-
gers goes back to Bachet (1621). See: Mehl: serge.mehl.free.fr/chrono/Bachet.html

Exercises.

56. Using the EEA matrix, find a solution of
(i) 83x+ 35y= 24,
(ii) 100x+ 167y= 33,
(iii) 49x+ 117y= 36,
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57. Find all solutions of
(i) 114x+ 270y= 0,
(ii) 114x+ 270y= 24.

58. Find the solution with the smallest x> 0 of
(i) 66x+ 45y= 0,
(ii) 1001x+ 143y= 0.

59. (i) Find all solutions of 34x−62y= 8 with x,y≥ 0.
(ii) Find all solutions of 62y−34x= 8 with x,y≥ 0.

60. Find all solutions:
(i) 242x+ 1870y= 66,
(ii) 327x+ 870y= 66
(iii) 327x+ 870y= 56.

61. Find d = (3731,1894) and write d = 3731r+ 1894swhere
(i) r > 0 and s< 0;
(ii) r < 0 and s> 0.

62. Decide if each of the following has a solution or not. If so, find the solution
with the smallest possible x≥ 0:

(i) 133x+ 203y= 38,
(ii) 133x+ 203y= 40,
(iii) 133x+ 203y= 42,
(iv) 133x+ 203y= 44.

63. Fahrenheit and centigrade temperatures are related by the formula

f =
9
5
c+ 32.

Thus c = 0◦ is the same as f = 32◦, and f = 40◦ is the same as c= (40/9)◦. Find
all solutions of f = 9

5c+ 32 where both f and c are integers.

64. You are given two “hour” glasses: a 6-minute hourglass and an 11-minute hour-
glass, and you wish to measure 13 minutes. How do you do it?

65. You take a 13 quart jug and a 16 quart jug to a stream and want to bring back 5
quarts of water. How do you do it?

66. You take an a quart jug and a b quart jug to the stream and want to bring back
c quarts of water. For which c can it be done? How?

67. Suppose 2 < a < b are natural numbers, (a,b) = d, and d = ar+ bs, where r
and s are obtained by Euclid’s Algorithm. Show that −b/2 < r < b/2 and −a/2 <
s< a/2.
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F. The Effic ency of Euclid’s Algorithm

Consider how we might determine the greatest common divisor of 92263 and
159037 if we did not know Euclid’s Algorithm. One way would be to search for di-
visors of 92263, and each time we found one, see if it is also a divisor of 159037. But
if we began searching for divisors of 92263 we would find that divisors, or factors,
of 92263 are not easily found. Perhaps we would write a program to divide 92263
by each odd number starting with 3 until a divisor of 92263 were found. If we do
this, we would, after 128 divisions, find that 257 divides 92263: 92263 = 257 ·359.
Then checking each factor, we would find that 359 divides 159037, and so 359 is
the greatest common divisor of 92263 and 159037.

Seeking the greatest common divisor of 92263 and 159037 in this way takes 129
divisions to find the factor 257 of 92263.

How much more efficient is Euclid’s Algorithm! If we try it with 92263 and
159037, we find that 359 is the last non-zero remainder, and hence is the greatest
common divisor of 92263 and 159037, in a total of ten divisions.

In this section, we explore how efficient Euclid’s Algorithm is on any two num-
bers a,b.

Let N(a,b) denote the number of steps needed to obtain the last non-zero remain-
der of a and b (a< b) in Euclid’s Algorithm using division and not just subtraction.
Thus, as the algorithm is laid out in section C, N(a,b) = n.

The size of N(a,b) relates to how quickly the sequence r1,r2, . . . ,rn of remain-
ders decreases, and in turn to the size of the quotients. A large decrease in a remain-
der means that the next quotient will be large. So large quotients correspond to a
rapid decrease in the remainders, and that implies that N(a,b) will be small. For
example, if a = 63725,b= 125731, then Euclid’s Algorithm includes the quotients
36 and 14, and N(a,b) = 5:

125731 = 63725 ·1 + 62006,

63725 = 62006 ·1 + 1719,

62006 = 1719 ·36 + 122,

1719 = 122 ·14 + 11,

122 = 11 ·11 + 1.

On the other hand, for a = 55, b = 89, then even though r1 = 34 is a much
smaller remainder than the first remainder (62006) in the previous example, we
have N(a,b) = 8:

89 = 55 ·1 + 34,

55 = 34 ·1 + 21,

34 = 21 ·1 + 13,

21 = 13 ·1 + 8,

13 = 8 ·1 + 5,
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8 = 5 ·1 + 3,

5 = 3 ·1 + 2,

3 = 2 ·1 + 1.

The second example is one where in Euclid’s Algorithm, none of the quotients is
greater than one.

Perhaps you recognized the remainders in Euclid’s Algorithm for 55 and 89.
They form part of the Fibonacci sequence.

The Fibonacci sequence is so named because it arose in the Liber Abaci [Sigler
(2003)] of Leonardo of Pisa, also known as Fibonacci, in connection with the fol-
lowing problem:
Suppose a man has one pair of rabbits. How many pairs of rabbits can be bred

from the initial pair in one year if each pair begins to breed in the second month
after their birth, each month producing a new pair, and no deaths occur?

It is not hard to see that in the first, second, third, etc. months there are the fol-
lowing numbers of pairs of rabbits:

1,1,2,3,5,8,13,21,34,55,89,144,233, . . ..

This sequence is the Fibonacci sequence, F1 = 1,F2 = 1,F3 = 2, etc. We can start
the sequence also with F0 = 0. Then the sequence of Fibonacci numbers is defined
by
F0 = 0,F1 = 1

and
for any n> 0, Fn+1 = Fn+Fn−1.

The next number in the Fibonacci sequence is the sum of the previous two.
If we apply Euclid’s Algorithm to Fn+1 and Fn, the first remainder r1 = Fn−1, the

next remainder is r2 = Fn−2, etc. So in Euclid’s Algorithm for any two consecutive
Fibonacci numbers, the sequence of remainders consists of all the previous numbers
in the Fibonacci sequence, until we get a remainder of 1 = F2. Thus Euclid’s Algo-
rithm for two consecutive numbers Fn and Fn+1 in the Fibonacci sequence requires
n−2 steps to find the last nonzero remainder. In notation,

N(Fn,Fn+1) = n−2.

All of the quotients in Euclid’s Algorithm for two consecutive Fibonacci numbers
are 1 until the last non-zero remainder is reached.

The examples above suggest that Euclid’s Algorithm takes fewer steps when the
quotients are large, than when the quotients are small. Thus Euclid’s Algorithm
would appear to be less efficient on Fibonacci numbers than on other numbers of
similar size.

This is in fact the case, as Lamé proved in the nineteenth century.

Theorem 14 (Lamé’s Theorem). Let a and b> a be two natural numbers. Suppose
a< Fn, where Fn is the nth term in the Fibonacci sequence. Then N(a,b)≤ n−3 <
n−2 = N(Fn,Fn+1).
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For example, if a< 8 = F6 and b is any number larger than a, then according to
Lamé’s Theorem, Euclid’s Algorithm for a and b takes at most 3 steps to find the
last nonzero remainder.

The proof of Lamé’s theorem is by induction, and we leave the proof as an exer-
cise, below. We note that the induction argument has an interesting wrinkle to it that
you may not find unless you do some examples.

In order to translate Lamé’s theorem into usable form, we need to know how
many digits the Fibonacci number Fn has. We can get some idea, by finding the
smallest Fibonacci number of a given number of digits. For example:
F1 = 1 is the smallest with 1 digit;
F7 = 13 is the smallest with 2 digits;
F12 = 144 is the smallest with 3 digits;
F17 = 1597 is the smallest with 4 digits; etc.
You might guess that every fifth Fibonacci number thereafter gains another digit,

and that is the case. We leave the verification as an exercise, below.
Now if F5d+2 has at least d+ 1 decimal digits, then any number a with d digits

satisfies a< F5d+2. So from Lamé’s theorem we get:

Corollary 15. If a< b and a has d digits, then

N(a,b)≤ (5d+ 2)−3 < 5d.

The corollary shows how efficient Euclid’s Algorithm is. Even on the worst pos-
sible examples, Euclid’s Algorithm takes less than 5d steps, where d is the number
of decimal digits of the smaller of the two numbers being computed. Thus for ex-
ample, if we want to find the greatest common divisor of a and b > a, where a has
200 digits, Euclid’s Algorithm will take at most 1000 steps. A fast computer can do
this in less than a thousandth of a second. By contrast, to factor the number a could
take weeks.

For a study of the average behavior of Euclid’s Algorithm (as opposed to the
worst-case behavior), see Knuth (1998), Section 4.5.3, where it is shown that if
a< b are randomly chosen and a has d digits, then the number of steps in of Euclid’s
Algorithm on a and b is approximately 2d.

The Fibonacci numbers are such a interesting set of numbers that a mathematics
journal, the Fibonacci Quarterly, was founded in 1963 to publish results related to
the Fibonacci series. We will simply hint at the richness of this set of numbers in the
exercises.

Exercises.

68. (i) Show that if b > a and b′ = b+ (positive multiple of) a, then N(a,b′) =
N(a,b).

(ii) Verify that if a< 8 and b> a, then N(a,b) takes at most three steps.

69. Prove Lamé’s theorem. (See the remark following Lamé’s theorem.)
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70. (i) Prove that

Fn =
[(1 +

√
5)/2]n− [(1−√5)/2]n√

5

by induction on n.
(ii) Prove that Fn+5/Fn ≥ 10 for all n≥ 5.
(iii) Prove that F5d+2 has at least d+ 1 decimal digits.

71. Verify that the Fibonacci sequence gives the size of the rabbit population each
month.

72. Prove by induction that

F2
n −Fn+1Fn−1 = (−1)n+1,

so that consecutive Fibonacci numbers are coprime.

73. (Askey). Show that

(
1 1
1 0

)n
=
(
Fn+1 Fn
Fn Fn−1

)
.

Take the determinant of both sides and reprove the last exercise.

74. The Fibonacci numbers and the golden ratio:
The golden ratio is the ratio b : a (with b > a) so that b : a = (a+ b) : b, or

b
a = a+b

b . The golden ratio was considered by the ancient Greeks to be the most
perfect proportion for the lengths of the sides of rectangles, such as portraits. Show
that if b : a is the golden ratio, then φ = b/a= (1 +

√
5)/2.

75. Show that

F2

F1
<
F4

F3
< .. . <

F2n
F2n−1

< .. . < φ < .. . <
F2n+1

F2n
< .. . <

F3

F2
.

76. Using Exercises 72 and 75, prove that

| Fn+1

Fn
−φ |≤ 1

FnFn−1
,

and hence, for all d,

| F5d+4

F5d+3
−φ |< 1

102d .

Thus the golden ratio can be approximated as closely as desired by ratios of consec-
utive Fibonacci numbers.
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77. Let Fk be the kth Fibonacci number. Prove that if d = (r,s), then Fd = (Fr,Fs),
as follows.

(i) For any m,k,m> k, Fm = FkFm−k+1 +Fk−1Fm−k (induction on k).
(ii) Fnd is divisible by Fd for all n and d (try induction on n: set m= nd, k = d in

(i)).
(iii) Fd is a common divisor of Fkd and Fld , for any k, l (use (ii)).
(iv) (Fm,Fm+1) = 1 for all m (use Exercise 72).
(v) If e divides Fr and e divides Fs and d = (r,s), then e divides Fd . (Write d =

ar−bs, r,s> 0, use (i) with m= ar,k= bs, then use (ii) and (iv)).



Chapter 4
Unique Factorization

This chapter uses Bezout’s identity and induction to prove the Fundamental Theorem
of Arithmetic, that every natural number factors uniquely into a product of prime
numbers. After exploring some initial consequences of the Fundamental Theorem,
we introduce the study of prime numbers, a deep and fascinating area of number
theory.

A. The Fundamental Theorem of Arithmetic

A natural number p > 1 is prime if the only divisor of p greater than 1 is p itself:
Note: 1 is not prime, by convention.

Primes are the building blocks of natural numbers, for

Theorem 1. Every natural number >1 factors into a product of primes.

In this theorem and the remainder of the chapter, we use the convention that a
product of primes may consist of only one factor. Thus the following are factoriza-
tions of the numbers from 4 through 11 into products of primes:

4 = 2 ·2, 5 = 5, 6 = 2 ·3, 7 = 7,
8 = 2 ·2 ·2, 9 = 3 ·3, 10 = 2 ·5, 11 = 11.

The proof of Theorem 1 is an application of complete induction that you may
have done in Chapter 2:

Proof. If n > 1 is prime, then n is a product of primes. Otherwise, n = ab with
1 < a< n and 1 < b< n. By complete induction, a= p1 . . . pr, a product of primes,
and also b= q1 . . .qs, a product of primes. So

n= ab= p1 . . . pr ·q1 . . .qs,

a product of primes. ��

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 53
in Mathematics, c© Springer Science+Business Media LLC 2009
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The Fundamental Theorem of Arithmetic says that factorization of natural
number >1 into a product of primes is unique. What does “unique” mean?

Suppose a is a natural number. If a= p1 . . . pn and also a= q1 . . .qm are factoriza-
tions of a into products of primes, we shall say that the factorizations are the same
if the set of pi’s is the same as the set of q j’s (including repetitions). That is, m= n
and each prime occurs exactly as many times among the pi’s as it occurs among
the q j’s. Thus we consider the factorizations 2 · 2 · 3 · 31 and 3 · 2 · 31 · 2 to be the
same, because each prime occurs an equal number of times in each factorization.
On the other hand, the factorizations 2 · 3 · 3 · 31 and 2 · 3 · 2 · 31 are different. The
factorization of a is unique if any two factorizations of a are the same.

Theorem 2 (Fundamental Theorem of Arithmetic). Any natural number n > 2
factors uniquely into a product of primes.

We’ve proved that there is a factorization. We need only prove uniqueness.

Proof. We use complete induction. Suppose that the result is true for all numbers
<a. Suppose a= p1 . . . pn and also a= q1 . . .qm are factorizations of a into products
of primes. We want to show that the two factorizations are the same.

If a = p1 is prime, then both m and n = 1 and p1 = q1, since a prime cannot
factor into a product of two or more primes, by definition. So the theorem is true if
a is prime.

Now assume that a is not prime. Suppose that p1, the leftmost prime in the first
factorization of a, is equal to some prime qi in the second factorization. (We’ll show
shortly that this must be so.) Then a/p1 is a natural number ≥ 2 (since a is not
prime) and, of course, a/p1 < a.

Since p1 = q j, we get two factorizations of a/p1, namely:

a
p1

= p2 · . . . · pn

and a
p1

= q1 · . . . ·q j−1 ·q j+1 · . . . ·qm

By the induction assumption, the two factorizations of a/p1 are the same. That
is, the set of primes {p2, . . . , pn} is the same as the set of primes {q1, . . . ,q j−1,
q j+1, . . . ,qm}. But since p1 = q j, the set of primes

{p1, p2, . . . , pn}

is then the same as the set of primes

{q1, . . . ,q j−1,q j,q j+1, . . . ,qm}.

But then the two factorizations of a are the same, and the result is true for the number
a. That would prove the theorem by complete induction.

We prove that if p1 · . . . · pn = q1 · . . . · qm, then p1 = q j for some j by means of
the following important lemma:
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Lemma 3. If p is prime and p divides bc, then p divides b or p divides c.

Proof. We use Corollary 8 of Chapter 3, an application of Bezout’s Identity, namely:
if a divides bc and (a,b) = 1, then a divides c.

Suppose p is a prime and p divides bc. Since p is prime then either p divides b,
or (p,b) = 1. If (p,b) = 1, then by the corollary, p divides c. ��

From Lemma 3 it follows by induction (see Exercise 2, below) that if a prime
divides a product of m numbers it must divide one of the factors.

To complete the proof of uniqueness of factorization, suppose we have p1 ·
p2 · . . . · pn = q1 · . . . ·qm. Then p1 divides q1q2 · . . . ·qm. Since p1 is prime, p1 must
divide one of the q’s, say q j. Since q j is prime, q j is divisible by only itself and 1.
Since p1 �= 1, p1 = q j.

Thus the induction argument described above for proving uniqueness of fac-
torization can always be used, and the proof of uniqueness of factorization is
complete. ��

The proof of the Fundamental Theorem of Arithmetic depends on the property
that if a prime number p divides a product bc of two numbers b,c then p divides b
or p divides c.

In turn, assuming that the Fundamental Theorem of Arithmetic is true, the state-
ment about primes follows. For if p divides bc then bc= p f for some number f . If
we factor f into a product of primes, then bc has a factorization into a product of
primes, one of which is p. On the other hand, if p does not divide b and p does not
divide c, then the prime factorizations of b and of c would not include p, so bc has
a factorization (namely, the product of the factorizations of b and of c) that does not
include p. Thus bc would have two factorizations, one including p, one excluding
p. This would violate the Fundamental Theorem.

The problem of factoring a natural number n into a product of primes is much
harder in practice than the problem of finding the greatest common divisor of two
numbers. One needs to find divisors of n, and that is often difficult. The naive ap-
proach is simply to try to find prime divisors of n by trial division.

For example, to factor 3372, we first see that 2 is a divisor of 3372: 3372 =
2 ·1686. Then we see that 2 is a divisor of 1686: 1686 = 2 ·843, so 3372 = 2 ·2 ·843.
Then we see that 3 divides 843: 843 = 3 · 281, so 3372 = 2 · 2 · 3 · 281. Finally, we
check that 281 is not divisible by 2, 3, 5, 7, 11 or 13, and observe that 17 >

√
281,

so 281 must be prime by Exercise 5, below, and we have the factorization of 3372
into a product of primes,

3372 = 2 ·2 ·3 ·281.

There are obvious tricks for testing a number n for divisibility by 2, 3, or 5.
Later we shall see tests for 7, 11, and 13. In general, however, unless n happens
to be prime it is a slow process looking for divisors. Consider, for example, trying
92263 = 257 · 359 by hand. Even with methods that are much more efficient than
trial division, it was claimed in 1977 that to factor a certain 129 digit number N
(known as RSA-129) that was the secret product of a 64-digit prime number and a
65-digit prime number, using the best methods and computers then available, would



56 4 Unique Factorization

take about 40×1015 years. By comparison, finding the greatest common divisor of
two 129-digit numbers would take under a second, as we showed in Section 3F.

The slowness of all known methods for factoring large numbers is the basis for
the effectiveness of a remarkable application of number theory to secret codes, RSA
cryptography. See Chapter 10A, below. Because of the relationship between factor-
ing large numbers and cryptography, intensive research has taken place since 1977
on the problem of factoring large numbers, involving both theory and computer
hardware. As a result of this effort, by 1994 there was enough progress in factor-
ing algorithms and computing power that A. Lenstra of Bellcore and a team of 600
volunteers were able to factor RSA-129 using hundreds of computers on six con-
tinents over a period of eight months. (For their efforts they won a $100 prize and
newspaper stories worldwide.)

We will examine some factoring methods in later chapters.

Exercises.

1. Prove (without going back to Chapter 3) that if a divides bc and (a,b) = 1, then
a divides c.

2. Prove by induction that if a prime number p divides a1 ·a2 · . . . ·an, then p must
divide one of the factors a j.

3. Prove that a and b are coprime if and only if no prime number divides both a
and b.

4. Let n,q be numbers≥2. Show that for every number r, (n,qr) = 1 if and only if
(n,q) = 1.

5. Show that if n is not prime, n has a prime divisor <
√
n.

6. Is 2021 prime?

7. Let 2N denote the even integers >0. Say that a number a in 2N is irreducible if
there are no numbers b,c in 2N so that a= bc.

(i) Show that if n is an odd number, then 2n is in 2N and is irreducible. Con-
versely, show that every irreducible number in 2N is twice an odd number.

(ii) Show that every number a in 2N factors into a product of irreducible numbers
in 2N.

(iii) Show that factorization of numbers in 2N into products of irreducibles in 2N

is not unique.
(iv) Show that the analogue of Lemma 3 fails in 2N.

8. Let 3N denote the numbers > 0 that are multiples of 3. Say that a number a in
3N is irreducible if there are no numbers b,c in 3N so that a= bc.

(i) Characterize the irreducible numbers in 3N.
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(ii) Show that every number a in 3N factors into a product of irreducible numbers
in 3N.

(iii) Show that factorization of numbers in 3N into products of irreducible num-
bers in 3N is not unique.

9. Let Z[
√−23] denote the set of complex numbers of the form a+b

√−23, where
a and b are integers.

(i) Show that every element of Z[
√−23] may be written uniquely in the form

a+b
√−23 for integers a and b.

(ii) Verify that 3 ·3 ·3 = (2 +
√−23)(2−√−23).

(iii) Verify that 2 +
√−23 and 2−√−23 are not multiples of 3 in Z[

√−23].
(iv) Show that 3 is a “prime” in Z[

√−23] in the sense that the only elements of
Z[
√−23] that divide 3 are 3, −3, 1 and −1. Thus Lemma 3 fails in Z[

√−23].

B. Exponential Notation

In writing the prime factorization of a number a it is convenient to collect together
the various prime factors in increasing order and use exponential notation. Thus
instead of writing 144 as 2 ·2 ·2 ·2 ·3 ·3, we can write it as 2432. Other examples:

975 = 3 ·52 ·13 = 20 ·31 ·52 ·70 ·110 ·131,

1000 = 23 ·53 = 23 ·30 ·53

3372 = 22 ·3 ·281.

The factorization of 975 illustrates that we can include in the factorization primes
that do not actually divide the number a, as long as we give them the exponent zero.

In general, we write the number a as

a= pe1
1 p

e2
2 · · · perr .

Uniqueness of factorization says that there is only one way to write a number a in
this way, except for the inclusion of extra primes with exponent zero.

Here are three applications of exponential notation and the uniqueness of the
exponents given by the Fundamental Theorem of Arithmetic: to irrationality, to di-
visibility, and to least common multiples.

I. Irrationality. In Chapter 2, Exercise 32, we proved that
√

2 is irrational, that
is, there is no rational number a

b so that
√

2 = a
b , using infinite descent (well-

ordering). Using the Fundamental Theorem of Arithmetic we get such results easily.
For example:
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Theorem 4.
√

3 is irrational.

Proof. If not,
√

3 = a/b, a,b natural numbers. Multiplying both sides by b and squar-
ing, we get 3b2 = a2. Let 3e be the power of 3 appearing in the factorization of a,
and 3 f the power of 3 appearing in the factorization of b. Then since 3b2 = a2, we
have 2 f + 1 = 2e. But the left side of this equation is odd, and the right side even,
impossible. ��

Exercises.

10. Prove that if p is a prime number, then
√p is irrational, using an argument like

that for
√

3.

11. Prove that if p is a prime number, then
√p is irrational, by writing

√p = a/b
for a and b integers, then writing pb2 = a2 and counting the number of primes
(including repetitions) on the left and right sides. (Would that argument work for√

22?)

12. (i) Prove that the natural number a is a cube iff the exponent of each prime
factor of a is a multiple of 3.

(ii) Prove that if the natural number a is not a cube, then a1/3 is irrational.

13. Show that (100)1/5 is irrational.

14. (i) If a,b are natural numbers, (a,b) = 1, and ab is a square, show that a and b
are squares.

(ii) If a and b are integers with (a,b) = 1 and ab is a square, is a necessarily a
square?

15. If a, b are integers with (a,b) = 1 and ab = cr where r is an odd integer ≥1,
show that both a and b are rth powers.

II. Divisibility. We can interpret notions of divisibility in terms of exponential no-
tation. Suppose

a= pe1
1 p

e2
2 · · · penn

and
b= p f11 p

f2
2 · · · p fnn

where p1, . . . , pn include all primes that divide either a or b, and some of the expo-
nents ei or fi may be zero.

Proposition 5. With a, b as above, a divides b iff ei ≤ fi for all i= 1, . . . ,r.
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Proof. If for all i= 1, . . . ,r we have ei ≤ fi, then ci = fi− ei ≥ 0. Hence

q= pc1
1 p

c2
2 · · · pcnn

is an integer and b= aq.
Conversely, if a divides b, then b = aq for some natural number q. Then every

prime that divides q also divides b. Write q as a product of primes, as above.
Then ci ≥ 0 for i = 1, . . . ,r, and aq = b means that ei + ci = fi for each i, hence
ei ≤ fi. ��

Using Proposition 5, we can see easily that the greatest common divisor of two
numbers a and b has a prime factorization in which the exponent of each prime p is
the smaller of the exponents of p in a and in b. For if e is a common divisor of a and
b, then for each prime p dividing e, the exponent of p in e must be ≤ the exponent
of p in a, and≤ the exponent of p in b. If d is the greatest common divisor, then the
exponent of p in d must be as large as possible, hence must equal the smaller of the
exponents of p in a and in b.

It is convenient to use the notation pe‖a if pe is the power of p in the prime
factorization of a. Thus, pe‖a if pe divides a but pe+1 does not. Using this notation,
a divides b if and only if for all primes p, if pe‖a and p f ‖b, then e≤ f . The greatest
common divisor (a,b) of two numbers has the property that if pe‖a and p f ‖b, then
pmin{e, f}‖(a,b).

Exercises.

16. Find the greatest common divisor of 273256 and 2435567.

17. Find the greatest common divisor of 2232455665 and 2435435367.

18. If (a,b) = p3, p a prime, what is (a2,b2)?

19. If (a,b) = 8, what are the possible values of (a4,b5)?

20. Prove that (a,b) = 1 if and only if no prime divisor of a divides b.

21. Prove that if (a,c) = 1 and (b,c) = 1 then (ab,c) = 1.

The next five exercises are exercises from earlier sections that you can now try
using the exponential description of the greatest common divisor:

22. Show that (a,m) divides (a,mn) for every a,m,n, by showing that for each
prime p, if pe‖a, ps‖m and pt‖n, then min{e,s} ≤min{e,s+ t}.

23. Show that if (a,b) = 1 and c|a, then (c,b) = 1.

24. Show if (a,m) = d and (b,m) = 1, then (ab,m) = d.
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25. Show that (ma,mb) = m(a,b) by showing that for each prime p, if pe‖a, p f ‖b
and pt‖m, then t+ min{e, f} = min{t+ e,t+ f}.

26. Show that if (a,b) = 1, then (n,ab) = (n,a)(n,b).

27. Prove that if a|bc and (a,b)|c, then a|c2.

28. Prove that if (a,b) = 1 and c is any integer, then there is some integer m so that
(a+bm,c) = 1.

29. Each of the following three statements is claimed to be true for all natural
numbers a,b,c,m. In each case, prove the statement or give an example to show it
is false:

(i) If d is the greatest common divisor of a and b, then the greatest common
divisor of a and mb is md.

(ii) If a divides bc and a doesn’t divide b, then a divides c.
(iii) If d is the greatest common divisor of a and b, then d3 is the greatest common

divisor of a3 and b3.

III. Least Common Multiples. Given natural numbers a, b, a number m > 0 is a
common multiple of a and b if m = ar for some natural number r, and also m = sb
for some natural number s. In terms of divisibility,m is a common multiple of a and
b if a divides m and b divides m. One example of a common multiple of a and b is
their product, ab. If we consider the two numbers 12 and 30, then 12 ·30 = 360 is a
common multiple, but so are 180, 240, 720, 3600, 60, 120, 2400, etc. In fact, there
are infinitely many common multiples of 12 and 30.

Any two integers a and b have infinitely many common multiples. The least
common multiple of a and b is the smallest positive number in the set of common
multiples of a and b.

It’s easy to check that the least common multiple of 12 and 30 is 60.
The least common multiple of two natural numbers a and b exists as a conse-

quence of the well-ordering principle (see Section 2C). The set S consisting of all
positive common multiples of a and b is a subset of the natural numbers, and is non-
empty because the number ab is in S. So by well-ordering, S has a least element,
namely, the least common multiple of a and b.

We denote the least common multiple of a and b by [a,b].
Some other examples: [4,6] = 12, [4,7] = 28, [15,20] = 60, [7,14] = 14.
The least common multiple of two numbers a and b arises in connection with

adding fractions. Suppose you wish to add 1/6 and 1/10. To do so, you need to find
a common denominator, for example, 60:

1
6

+
1

10
=

10
60

+
6

60
=

10 + 6
60

=
16
60

=
4

15

Any common multiple of the denominators of two fractions will be a common de-
nominator. The least common multiple of the denominators is the least common
denominator.
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In this example, if we choose the smaller common denominator 30 = [6,10],
we get:

1
6

+
1

10
=

5
30

+
3

30
=

5 + 3
30

=
8
30

=
4

15
.

Both denominators 30 and 60 can be used, but 30 keeps the numbers in the compu-
tation smaller.

Here is how to find the least common multiple.

Proposition 6. a) The least common multiple of a and b is the product divided by
the greatest common divisor. In symbols:

[a,b] =
ab

(a,b)
.

b) The least common multiple of a and b divides every common multiple of a and b.

Proof. We first show both parts if a and b are coprime. Clearly ab is a common
multiple of a and b. We now show that any common multiple of a and b is a multiple
of ab. Suppose m > 0 is a common multiple of a and b. Then m = as for some
number s > 0, and b divides m= as. But then, since a and b are coprime, b divides
s, so s= bt for some integer t > 0. Thus m= as= abt. Since t is a positive integer,
m≥ ab and m is a multiple of ab. Thus ab is the least common multiple of a and b,
and ab divides any other common multiple. The proposition is true if (a,b) = 1.

Now suppose the greatest common divisor of a and b is d. Let a = da′,
b = db′. Then a′ and b′ are coprime (since if ar+ bs = d from Bezout’s identity,
then a′r+b′s= 1). So the least common multiple of a′ and b′ is a′b′, and any com-
mon multiple of a′ and b′ is a′b′t for some positive integer t.

Now ab
d = a′b′d = ab′ = a′b, so is a common multiple of a and b. We show that

any common multiple of a and b is a multiple of a′b′d. Suppose m> 0 is a common
multiple of a and b. Then m is a multiple of d, so write m = dm′ for some number
m′. Then a divides m, so a′ divides m′; also b divides m, so b′ divides m′. Now
(a′,b′) = 1, so by the first part of the proof, a′b′ divides m′. But then

ab
d

= da′b′ divides dm′ = m.

Thus ab
d divides every common multiple of a and b, so is the least common multiple

of a and b. ��
Here is an alternate proof, only using the Division Theorem, of part b) of this

proposition.

Proposition 7. The least common multiple of a and b divides every common multi-
ple of a and b.

Proof. Let m be the least common multiple of a and b, and suppose n > 0 is any
common multiple of a and b. Write n = mq+ r with 0 ≤ r < m, using the division
theorem.
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Since a divides m and a divides n, then a divides n−mq= r.
Since b divides m and b divides n, then b divides n−mq= r.
Thus r is a common multiple of a and b. But m was the least positive integer

that is a common multiple of a and b, and r < m Thus r must be 0. That means, m
divides n. ��

Here is a proof of part a) that uses exponential notation.

Proposition 8. [a,b] = ab
(a,b) .

Proof. Let p be a prime number that divides a or b. Let pe‖a, p f ‖b. Then

pmax{e, f}‖[a,b] and pmin{e, f}‖(a,b).

The formula [a,b](a,b) = ab then follows from the easily verified relation

e+ f = max{e, f}+min{e, f}.

��
This last argument shows how to find the least common multiple of two numbers

a and b given their factorizations into products of primes. However, the formula
[a,b] = ab/(a,b) has the virtue that we don’t need to be able to factor a and b to find
[a,b]–we only need to find the greatest common divisor, using Euclid’s Algorithm.

Exercises.

30. Find the least common multiple of
(i) 96 and 240
(ii) 210 and 126
(iii) 72 and 105

31. (i) Show that if a and b are coprime and you add 1/a and 1/b by using the
common denominator ab, the resulting fraction a+b

ab is reduced.
(ii) Show that if a and b are not coprime, and you add 1/a and 1/b by using

the common denominator ab, the resulting fraction a+b
ab is not reduced. (Can you

say anything about the sum of 1/a and 1/b if (a,b) > 1 and you use the common
denominator [a,b]?)

32. Prove that r[a,b] = [ra,rb] for all positive integers r,a,b.

33. Show that [a,m] = m if and only if a divides m.

34. Show that if e divides g and f divides h, then
(i) [e, f ] divides [g,h], and
(ii) (e, f ) divides (g,h).
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35. Suppose that ar+bs= c for some integers r,s. Show that the general solution
of the equation ax+by= c is x= r+n[a,b]/a, y= s−n[a,b]/b for all integers n.

36. Find all solutions of 117x+ 1001y= 65.

37. Find the least common multiple of

62738495106 and 65768293104.

38. Find the smallest k> 0 so that
(i) 15 divides 10k;
(ii) 15 divides 11k;
(iii) 15 divides 12k.

39. Show that the smallest k> 0 so that a divides bk is k = [a,b]/b.

40. If a and b are two natural numbers so that (a,b) = 10, [a,b] = 100, what can a
and b be?

41. Given natural numbers d and m, show that there are natural numbers a and b so
that (a,b) = d and [a,b] = m, if and only if d divides m.

42. How should we define [a,b,c]? Is [a,b,c] = abc/(a,b,c)? Explain.

C. Primes

Prime numbers have been of continuing interest in mathematics since the time of
Pythagoras, 500 B.C. In the remainder of this chapter we survey some of the most
famous results about prime numbers.

I. Euclid’s Theorem. We showed in Section 4A, Theorem 1, that every natural
number (except 1) is a product of primes. Thus an obvious question to ask is, how
many primes are there?

The ancient Greeks found the answer–it is in Euclid (Book IX, Proposition 20 of
the Elements (300 B.C.)):

Theorem 9. There are infin tely many primes.

Proof. (Euclid) Suppose the set of primes is finite in number: suppose p1, p2, . . . , pr
are all the primes. Consider the number m = p1p2 · · · pr + 1. It must have a prime
divisor q. If q were one of the primes p1, p2, . . . , pr, then q would divide the product
p1p2 · · · pr =m−1, and so q would dividem−(m−1) = 1, impossible. So q cannot
be one of the primes p1, p2, . . . , pr, and so must be a new prime. This contradicts
the assumption that p1, . . . , pr were all the primes. So the number of primes cannot
be finite. ��
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One way to show that there are infinitely many primes is to define an infinite
sequence of numbers that must be prime. It is common to define an infinite se-
quence of numbers by some kind of inductive process: once you have defined the
sequence up to the nth element of the sequence, you define the (n+ 1)st element
of the sequence in terms of the elements of the sequence you have previously de-
fined. The Fibonacci sequence (Section 3F) is an example of an inductively defined
sequence of natural numbers, as is the sequence f (n) = n!, defined inductively by
f (0) = 0! = 1, f (n+ 1) = (n+ 1)! = n!(n+ 1) = f (n)(n+ 1).

Here is a general procedure to get an infinite sequence of primes:

Proposition 10. Suppose given an infin te sequence of numbers

a1,a2, . . . ,an, . . .

with the property that for each m �= n, an and am are coprime. For each n≥ 1, let pn
be the smallest prime factor of an. Then the sequence

p1, p2, . . .

is an infin te sequence of distinct prime numbers.

Proof. If m �= n, pn �= pm, for otherwise am and an would not be coprime. ��
Example 1. Related to the idea of Euclid’s proof, let a1 = 2 and for all n > 1, let
an = a1a2 · . . . ·an−1 + 1. Then for all m �= n, am and an are coprime.

Fermat numbers. Some mathematicians have tried to improve on the strategy of
the last proposition: they wished to find a simple function on the natural numbers
whose values were distinct primes. This idea goes back at least to Fermat (1630’s),
who proposed

F(n) = 22n + 1

as such a function. The numbers F(n) are called Fermat numbers. Here are the first
five. They are all prime:

F(0) = 2 + 1 = 3,

F(1) = 22 + 1 = 5,

F(2) = 24 + 1 = 17,

F(3) = 28 + 1 = 257,

F(4) = 216 + 1 = 65537.

Based on the evidence that the first five Fermat numbers are prime, and other evi-
dence, Fermat conjectured that F(n) was prime for all n. This conjecture turned out
to be one of the least accurate famous conjectures in the history of mathematics. It
was first disproved by Euler in 1732, who showed that
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F(5) = 232 + 1 = 4294967297

factors as 641 · 6700417. (See Section 10B.) Then in 1880 the otherwise obscure
mathematician Landry factored

F(6) = 264 + 1 = 274177 ·67280421310721,

a remarkable feat without a computer.
It was known as of April, 2007, that F(n) is composite at least for 5 ≤ n ≤ 32.

No Fermat number >F(4) has been found to be prime. (See Wilfrid Keller’s web
page, www.prothsearch.net/fermat.html, for recent information on the factoring of
Fermat numbers.)

Beyond Fermat’s conjecture, Fermat numbers are interesting for at least three
reasons.

(a) Fermat numbers relate to geometric constructions by straightedge and com-
pass. Gauss, around 1800, proved that a regular polygon of n sides can be con-
structed with straightedge and compass if and only if n = 2r.p1p2 · · · pn where
p1, p2, . . . , pn are distinct prime Fermat numbers. Thus knowing if F(n) is prime
is of (at least theoretical) geometric interest.

(b) Fermat numbers grow large very quickly with n. The Fermat number F(n)
has approximately 3 ·2n/10 decimal digits. Thus F(7) has 39 digits, F(8) 78 digits,
F(9) 155 digits. They have no obvious small prime factors, so showing they are not
prime, and finding factors of them, is a substantial challenge. This challenge has led
to the discovery and application of new factoring methods during the past 30 years.

Here are some references:
Morrison and Brillhart (1975) developed a new factoring algorithm and used it

to factor F(7).
Brent and Pollard (1981) developed an improved factoring algorithm that they

used to find the smallest prime factor of F(7) in just under 7 hours on a UNIVAC,
and the smallest prime factor of F(8) in 2 hours.

Lenstra, Lenstra, Manasse, and Pollard (1993) applied a new algorithm, the num-
ber field sieve, to find the three factors of F(9).

Young and Buell (1988) proved that the Fermat number F(20) is composite.
F(20) has just over one million binary digits, or 315,653 decimal digits. The compu-
tation was done on a Cray-2 supercomputer and took about 10 days. It was verified
on another Cray in 82 hours. Both computations were done via single-processor
computer programs. (In fact, as the authors state, “The program itself was very
simple and only about 200 lines long, much of which was used for checkpoint-
ing and restarting the program.”) One objective of the computation was to verify the
hardware reliability of the computer used. The authors conclude their report, “We
remark that this 10-day computation on a supercomputer may well be the largest
computation ever performed whose result is a single bit answer. Never have so many
circuits labored for so many cycles to produce so few output bits.”
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The Young-Buell computation, which was listed in the 1993 Guinness Book of
Records, may remain one of the longest single-processor computations in the history
of number theory. Recent approaches to factoring large numbers, and in particular,
Fermat numbers, use parallel processing, so doing large scale computations by sin-
gle processor is fast becoming obsolete.

As of 2008, the largest known prime factor of a Fermat number was

3 ·22478785 + 1,

a 746190-digit factor of F(2478782).
(c) The Fermat numbers, although not always prime, are nonetheless pairwise

coprime. This property was observed by G. Polya, and yields another proof that
there are infinitely many primes, by Proposition 10, above. We simply let pn, be the
smallest prime factor of F(n), for each n. Then the sequence p1, p2, . . . is an infinite
sequence of primes, and so there are infinitely many primes.

Here is a proof of Polya’s observation:

Proposition 11. If m �= n, then F(m) and F(n) are coprime.

Proof. Let m < n. We’ll start Euclid’s algorithm with F(m) and F(n). Write r =
n−m, then 2n = 2m ·2r. Let a= 22m , so that a+ 1 = F(m). Now

F(n)−2 = 22n−1 = (22m)2r −1 = a2r −1

= (a−1)(1 +a+a2+a3 + . . .+a2r−2 +a2r−1).

Pair off the terms in the right factor as follows:

= (a−1)[(1 +a)+ (a2+a3)+ . . .+(a2r−2 +a2r−1)]

= (a−1)[(1 +a)+a2(1 +a)+ . . .+a2r−2(1 +a)],

which is a multiple of 1 + a= F(m). Thus F(n)− 2 = F(m)q for some number q,
so dividing F(n) by F(m) leaves a remainder of 2. Since F(m) and F(n) are odd,
therefore the greatest common divisor of F(m) and F(n) is 1. ��

Taking pn to be the smallest prime factor of F(n) for each n, the first 14 terms of
the sequence {pn} (taken from Brent and Pollard (1981)) are:

p0 = 3 p7 = 59649589127497217

p1 = 5 p8 = 1238926361552897

p2 = 17 p9 = 2424833,

p3 = 257 p10 = 45592577

p4 = 65537 p11 = 319489

p5 = 641 p12 = 114689

p6 = 274177 p13 = 2710954639361
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As of 2008, F14 is known to be composite, but no factors are known. Thus p14 is
unknown.

We will consider other large primes later in the book.

Exercises.

43. Use the ideas of Euclid’s proof to prove that there are infinitely many primes of
the form 4n−1. (Hint: Consider 4p1 · · · pr−1.)

44. Try the same for numbers of the form 6n−1.

45. Define a sequence of numbers inductively, as follows: Let a1 = 2, and for each
n> 1, define an+1 = an(an−1)+ 1. Prove that

an = a1 ·a2 · · ·an−1 + 1.

Prove that for all m �= n, am and an are coprime.

46. Here is another proof of Polya’s theorem.
(i) Show that F(m+ 1) = F(m)(F(m)−2)+ 2 for all m≥ 0.
(ii) Show that

F(m+ 1) = F(0)F(1) · · ·F(m)+ 2.

(iii) Use (ii) to show that F(m) and F(n) are coprime if m �= n.

47. Let a1 ≥ 2, and for every n > 1, define an by an = an−1(an−1 + 1). Show that
for all n, an is divisible by at least n distinct primes. [Saidak (2006)]

48. Prove by induction that F(n)− 2 = 22n − 1 is divisible by at least n distinct
primes, thereby giving another proof that there are infinitely many primes.

II. Primes in an interval. How many primes are less than some given number n?
This question was studied throughout the nineteenth century by some of the greatest
mathematicians of the century, including Gauss and Riemann.

Defini ion. Let π(x) be the function defined for all real numbers x> 0 by π(x)= the
number of prime numbers≤ x.

The sequence of primes begins

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47, . . .

so π(3) = 2,π(10) = 4,π(
√

200) = 6,π(19) = 8,π(50) = 15.
The Prime Number Theorem, proved in 1896 by Hadamard and de la Vallee

Poussin, is

lim
x→∞

π(x)
x/ ln(x)

= 1.

Here ln(x) is the natural logarithm of x.
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For estimating how many primes there are of a given size, fairly precise numeri-
cal results have been found: Chebyshev in 1850 proved that π(x) < 1.10555(x/ lnx)
for all x, and in 1962 Rosser and Schoenfeld proved that x/ ln(x) ≤ π(x) for all
x> 17. Thus the number of primes < x is squeezed between two computable quan-
tities: for all x> 17,

x
ln(x)

≤ π(x)≤ (1 + ε)
x

ln(x)
where 1 + ε < 1.10555 for all x and ε approaches 0 as x goes to infinity.

Dividing these inequalities by x yields

1
ln(x)

≤ π(x)
x

≤ (1 + ε)
1

ln(x)

This says that on average, one of every lnx numbers less than x is prime. If x= 10r,
then on average, one of every ln10r = r ln10 numbers is prime.

For example, if we let x= 1010, then since ln10 = 2.3026, among all the numbers
less than 1010, one of every 10ln(10) = 23 numbers is prime. Setting x = 1080,
among numbers of 80 digits or less, one of every 80ln10 = 184 numbers is prime.
Setting x= 10100, among numbers of 100 digits or less, one of every 100ln10 = 230
numbers is prime.

These results (whose proofs are well beyond the scope of this book) are much
stronger than simply indicating that there are infinitely many primes. They show
that large primes are not at all scarce. Thus if we need to have some prime numbers
of around 80 digits (we’ll show later that such primes are of practical value) and
have a method for quickly checking whether a given large number is prime or not
(we’ll show later that such a method exists), then if we randomly select numbers of
80 digits or less, we should expect that about 1 of every 184 numbers we select will
in fact be prime.

Suppose however that instead of looking for primes of 80 digits or less, we want
to find primes of exactly 80 digits. Primes are not uniformly distributed among
numbers–primes are more dense among small numbers than among large numbers.
For example, there are more primes between 0 and 100 (25 primes) than there are
between 5000 and 5100 (12 primes). (A list of the first 1000 primes may be found
at primes.utm.edu ) So we need to ask if the ratio π(10r)/10r is reasonably close to
the ratio of primes of exactly r digits among numbers of exactly r digits.

As an example, we look at r = 10. How much more dense are primes among
the 1010 numbers of 10 or fewer digits than among the 9 · 109 numbers of exactly
10 digits?

We can answer this precisely, because π(109) and π(1010) are known:

π(109) = 50,847,534,

while
π(1010) = 455,052,511,

and so
π(1010)/1010 = .0455
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while
π(109)/109 = .0508.

The number of 10 digit primes, divided by the number of 10 digit numbers, is

π(1010)−π(109)
9 ·109 = .0449,

Thus at least among 10 digit numbers, the density of primes for numbers of 10
digits or less (namely, .0455) is very close to the density of primes of exactly 10
digits (namely .0449).

We can use the Chebyshev and Rosser-Schonfeld results to get a lower bound on
the proportion of primes among all numbers of exactly r digits. There are 9 ·10r−1

numbers of exactly r digits. We have

π(10r) >
10r

ln10r
for r > 2

(Rosser-Schonfeld), and

π(10r−1) < (1 + ε)
10r−1

ln10r−1 for all r

(Chebyshev). So

π(10r)−π(10r−1)
9 ·10r−1 ≥ 1

9 ·10r−1

(
10r

r ln 10
− (1 + ε)10r−1

(r−1) ln10

)

=
1

r ln10

(
10
9
− (1 + ε)r

9(r−1)

)

=
1

r ln10
C

where

C =
10
9
− (1 + ε)(r−1)

9(r−1)

=
10
9
− (1 + ε)(r−1)

9(r−1)
− (1 + ε)

9(r−1)

=
(

9− ε
9

− 1 + ε
9(r−1)

)
.

Using Chebyshev’s upper bound ε ≤ .10555, we have

1 >C >
9− .10555

9
− 1.10555

9
1

r−1

= .9883− .1228
1
r−1

.
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From this we see that we should be able to find primes with a given large number of
digits without too much work. For example, we find thatC≥ .987 for r≥ 100, and so
the proportion of primes among 100 digit numbers is at least .987

100 ln10 = .00429> 1
234 .

On average, at least 1 of every 234 numbers of exactly 100 digits is prime.
There are accessible proofs that there exist constants A and B with Ax/ lnx <

π(x) < Bx/ lnx. See Zagier (1977).

Exercises.

49. Prove that for every n there exist n consecutive natural numbers none of which
are prime. (Hint: Start with (n+ 1)! + 2.)

50. Prove that for every n there exists a prime p with n< p ≤ n! + 1.

51. Use the Chebyshev and Rosser-Schonfeld estimates to prove that for all n> 17,

π(2n)−π(n) > 1.

Then prove Bertrand’s Postulate: for every n> 1, there is a prime pwith n< p< 2n.



Chapter 5
Congruence

This chapter is devoted to defining and studying Gauss’s useful notion of congruence
for integers.

A. Congruence Modulo m

Congruence is related to the notion of divisibility.

Defini ion. Two integers a and b are congruent modulo m, written

a≡ b (mod m)

if m divides a−b, or equivalently, if b= a+ some multiple of m.

A special case is that a number a is congruent to 0 (mod m), written a ≡ 0
(mod m), if and only if m divides a. But the value of the congruence notation is
not in providing an alternate for the notation m|a, but in providing a highly sugges-
tive notation to use in place of m|(a−b).

Here are some examples of congruences that you may verify:

143≡ 0 (mod 13)
143≡ 13 (mod 10)

−114≡ 7 (mod 11)
4726≡ 1 (mod 9)
−35≡−335 (mod 6).

In a congruence mod m, the number m is called the modulus (plural: “moduli”).
Any two integers are congruent modulo 1, so the modulus 1 is not of much interest.
For this reason the modulus will normally be ≥2.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 71
in Mathematics, c© Springer Science+Business Media LLC 2009
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The set of integers to which the integer a is congruent modulo m is the set
{a+mk | k any integer}. For example, the integers congruent to 5 modulo 11 are
the integers of the form

5 + 11k,k= . . . ,−3,−2,−1,0,1,2,3, . . .;

that is, the integers

. . . ,−28,−17,−6,5,16,27,38,49,60, . . ..

We can visualize the numbers congruent to a number a modulo m by taking a
circle of circumference m and wrapping the real line around it. The figure on the
front cover shows this for m = 6. Two integers are congruent modulo m if they lie
on the same spoke. Thus the integers . . . ,−7,−1,5,11, . . . are all congruent to each
other modulo 6, and none are congruent to an integer on any other spoke, such as
−5 or 2 or 10.

The Division Theorem for two numbers a and m asserts that a = mq+ r, with
0 ≤ r < m. In terms of congruences, this last equation says that a ≡ r (mod m):
modulo the divisor, the dividend is congruent to the remainder. Since the remainder
in the Division Theorem is unique, we have:

Proposition 1. Let m be a natural number >1. Every natural number is congruent
modulo m to exactly one number in the set {0,1, . . . ,m−1}.

The smallest number≥0 that is congruent to a given integer amodulom is called
the least non-negative residue of a (mod m). Thus the least non-negative residue of
234047 modulo 10 is 7. The least non-negative residue of −27 modulo 8 is −27 +
32 = 5.

The Division Theorem also gives a criterion for two numbers to be congruent
modulo m:

Proposition 2. Let a and b be two natural numbers, and suppose the remainder on
dividing a by m is r, and the remainder on dividing b by m is s. Then a≡ b (mod m)
if and only if r = s.

Proof. We have a= mq+ r and b= mt+ s for some natural numbers q,t.
If r = s, then a−mq= b−mt, so a−b= m(q− t), and so a≡ b (mod m).
Conversely, if a ≡ b (mod m), then b = a+mk for some k, so if a = mq+ r is

the result of dividing a by m, then b= a+mk =mk+mq+ r =m(k+q)+ r. Since
0 < r<m, this expression for b is what is obtained from the Division Theorem when
b is divided by m. By the uniqueness of the quotient and remainder in the Division
Theorem, s= r. ��

To express Proposition 2 another way, two numbers are congruent modulo m iff
their least non-negative residues are equal.
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Often the notation “a mod m” is used to denote the least non-negative residue of
the integer a. For example, the command

>−38284 mod 37;

in MAPLE gives the least non-negative residue of −38284 modulo 37, namely 11.
Using that notation, the Division Theorem reads,

there is some number q so that

a= mq+(amod m),

and Proposition 2 reads:
a≡ b (mod m) if and only if (a mod m) = (b mod m).

There should be no problem using the notation “amodm” as long as one remem-
bers:

“a≡ b (mod m)”

is a sentence, while
“a mod m”

is a number.

Exercises.

1. Show that every integer is congruent modulo m to exactly one of the numbers in
the set {0,1, . . . ,m−1}.

2. Find
(i) 3412 mod 5;
(ii) 177 mod 11;
(iii) 31 mod 9;
(iv) 31 mod 35.

3. Find:
(i) 365 mod 5;
(ii) −4124 mod 3;
(iii) 3122182546 mod 10;
(iv) −2345678 mod 10.

4. New Years Day fell on a Sunday in the year 2006. On what day of the week did
New Years Day fall on in the year 2007? (Think modulo 7.)

5. Find all numbers b with 1900 < b < 2000 that are congruent to a modulo m
where

(i) a= 1,m= 13;
(ii) a= 1776,m= 25;
(iii) a= 1914,m= 27.
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6. Find a number a which satisfies a ≡ 5 (mod 8) and a ≡ 3 (mod 7) simul-
taneously.

7. Show that if m> 4 is not prime, then (m−1)!≡ 0 (mod m).

8. The first theorem in Gauss’s Disquisitiones Arithmeticae (1801) is the following:
“Let m successive integers a,a+ 1,a+ 2, . . . ,a+m− 1 and another integer A be
given. Then one and only one of these integers will be congruent to A modulo m.”
Prove this theorem.

B. Basic Properties

The congruence symbol looks like an “equals” symbol. This is not an accident. We
can view congruence as a kind of equality. Most of the manipulations we can do
with equality we can do with congruence modulo m. In particular, congruence is an
equivalence relation:

Proposition 3. Congruence modulo m is:
Refl xive: a≡ a (mod m) for all integers a;
Symmetric: for all integers a,b, if a≡ b (mod m), then b≡ a (mod m);
Transitive: for all integers a,b,c, if a≡ b (mod m) and b≡ c (mod m), then a≡ c
(mod m).

All of these are familiar properties of equality. We prove transitivity:

Proof. If a≡ b (mod m), then a= b+sm for some integer s. If b≡ c (mod m), then
b= c+ tm for some integer t. Substituting, we get a= (c+ tm)+ sm= c+(t+ s)m,
so a≡ c (mod m). ��

Also, congruence respects addition and multiplication:

Proposition 4. For all integers a,b,c,a′,b′,k and m:
(i) if a≡ b (mod m) then ka≡ kb (mod m);

if a≡ b (mod m) and a′ ≡ b′ (mod m) then:
(ii-a) a+a′ ≡ b+b′ (mod m), and
(ii-m) aa′ ≡ bb′ (mod m) .

These follow easily from the condition that a ≡ b (mod m) iff a = b+mq for
some integer q. We prove (ii-m).

Proof of (ii-m). If a ≡ b (mod m) and a′ ≡ b′ (mod m), then a = b+ sm and
a′ = b′+ tm for some integers s and t. Then

aa′ = bb′+msb′+ tbm+ stmz= bb′+(multiple of m).

So aa′ ≡ bb′ (mod m). ��
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The proof of (ii-m) can also be done using (i) and transitivity. If a≡ b (mod m)
then aa′ ≡ ba′ (mod m); if a′ ≡ b′ (mod m) then ba′ ≡ bb′ (mod m). Hence, by
transitivity, aa′ ≡ bb′ (mod m).

Property (ii-m) shows an advantage of the congruence notation. The statement
(ii-m) seems natural in congruence notation because the analogous result for equal
quantities:
“if a= b and a′ = b′ then aa′ = bb′”,
is so familiar. By comparison, the divisibility version of (ii-m): “if m | a− b and
m | a′ −b′ then m | aa′ −bb′”, is not familiar.

The main property of ordinary equality which is lacking in general for congru-
ences mod m is cancellation. If ab ≡ ac (mod m), the congruence b ≡ c (mod m)
does not necessarily follow. For example, 2 ·1≡ 2 ·3 (mod 4), but 1 �≡ 3 (mod 4).
Similarly, 6 ·1≡ 6 ·4 (mod 9), but 1 �≡ 4 (mod 9).

We shall postpone for now the rules which replace the usual rule of cancellation.
Without looking ahead, see if you can find a useful rule of your own. Look at some
examples.

We also have

Proposition 5. If a≡ b (mod m) and d divides m, then a≡ b (mod d)

Proof. If m divides a−b and d divides m, then d divides a−b. ��
A consequence of (ii-m) is

Proposition 6. For all natural numbers e and all integers a,b:
if a≡ b (mod m), then ae ≡ be (mod m)

The proof is an easy induction argument. See Exercise 11.
We can use Proposition 6 to help us find the least non-negative residue of some

very large numbers. When finding least non-negative residues of high powers of
numbers, the main idea is to keep the intermediate computations as close to zero as
possible by reducing modulo the modulus after each addition or multiplication.

Example 1. 1239 mod 13: 1239 is a 42 digit number. But since 12≡−1 (mod 13),

1239 ≡ (−1)39 ≡−1≡ 12 (mod 13).

Example 2. 637 mod 13: 637 is a 29 digit number. We find

62 ≡ 36≡−3 (mod 13)

66 = (62)3 ≡ (−3)3 ≡−27≡−1 (mod 13)

612 = (66)2 ≡ (−1)2 ≡ 1 (mod 13)

636 = (612)3 ≡ (1)3 ≡ 1 (mod 13)

637 = 6 ·636 ≡ 6 ·1 = 6 (mod 13)
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Example 3. 8585 mod 19: 8585 is a 164 digit number. We find

85≡−10 (mod 19)

852 ≡ (−10)2 = 100≡ 5 (mod 19)

854 = (852)2 ≡ (5)2 ≡ 25≡ 6 (mod 19)

858 = (854)2 ≡ 62 = 36≡−2 (mod 19)

8516 = (858)2 ≡ (−2)2 = 4 (mod 19)

8518 = 8516852 ≡ 4 ·5≡ 1 (mod 19)

8572 ≡ (8518)4 ≡ 14 = 1 (mod 19)

8585 = 8572 ·858 ·854 ·85

≡ 1 · (−2) ·6 · (−10)= 120 = 19 ·6 + 6≡ 6 (mod 19)

Notice in this last example, we usually chose not the least non-negative residue at
each stage, but the integer that is smallest in absolute value: thus when we reached
36 in the fourth line, we used 36 ≡ −2 (mod 19) instead of 36 ≡ 17 (mod 19),
because −2 is closer to 0.

Also, after finding 8516 ≡ 4 (mod 17), we noticed that 4 ·5 = 20≡ 1 (mod 19)
and 852 ≡ 5 (mod 19), so we determined 8518 ≡ 1 at that point. Once we found
that 8518 ≡ 1, we can then divide the exponent 85 by 18 to get a remainder of 13;
then 8585 ≡ 8513 (mod 19). The last line computed 8513 by writing 13 = 8 + 4 + 1
and multiplying the residues of the corresponding powers of 85.

Example 4. 835 mod 20: we find

82 ≡ 64≡ 4 (mod 20)

84 ≡ 42 = 16≡−4 (mod 20)

88 ≡ (−4)2 = 16≡−4 (mod 20)

816 ≡−4 (mod 20)

832 ≡−4 (mod 20)

and so

835 = 832 ·82 ·8≡ (−4) ·4 ·8≡−16 ·8≡ 4 ·8≡ 12 (mod 20).

In the last step, we continued the idea of keeping the numbers as small as pos-
sible. Rather than multiplying −4,4 and 8 together (to get −128) and then finding
the least non-negative residue of−128 modulo 20, we multiplied−4 and 4 together
first to get −16, found the least non-negative residue of −16, namely 4, and then
multiplied 4 by 8 to get 32, whose least non-negative residue is 12.
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Here is an unusual example:

Example 5. 9100 mod 24: we find

92 = 81≡ 9 (mod 24)

93 ≡ 92 ≡ 9≡ 9 (mod 24);

at which point one can see by a very easy induction argument using transitivity of
congruence that

9e ≡ 9 (mod 24)

for every positive exponent e.

Exercises.

9. Prove (i) and (ii-a).

10. Prove that for all integers a

a≡ a (mod m) for all a,

and for all a and b,

if a≡ b (mod m), then b≡ a (mod m).

11. Use (ii-m) of Proposition 4 to prove that if a ≡ b (mod m), then ae ≡ be
(mod m) for every number e> 0.

12. Suppose a is an odd number. Is it true that if ab ≡ ac (mod 12) then b ≡ c
(mod 12)?

13. For which numbers a is it true that if 15a ≡ ca (mod 25), then 15 ≡ c
(mod 25)?

14. Compute the least non-negative residue of 4n (mod 9) for n = 1,2,3,4,5, . . ..
Prove that 6 ·4n ≡ 6 (mod 9) for every n> 0.

15. Show that 716 ≡ 1 (mod 17) and use that congruence to find the least non-
negative residue of 7546 modulo 17.

16. Find (the least nonnegative residue of):
(i) 518 mod 11;
(ii) 68105 mod 7;
(iii) 447 mod 12;
(iv) 6675 mod 19.

17. Show that 1 is the least nonnegative residue of a6 (mod 7) for each number a,
1≤ a≤ 6.



78 5 Congruence

18. Show that 5e + 6e ≡ 0 (mod 11) for all odd numbers e, but not for any even
number e.

19. (i) Show that (a+b)2 ≡ a2 +b2 (mod 2) for all two integers a,b.
(ii) Show that for all integers a1, . . . ,an,

(a1 +a2 + . . .+an)2 ≡ a2
1 +a2

2 + . . .+a2
n (mod 2).

20. Show that a2 ≡ a (mod 2) for every integer a .

21. Find all numbers b, 1 < b≤ 15 for which b2 ≡ b (mod 15).

22. Show that for 0≤ a≤ 6, the least non-negative residue of a67 modulo 7 is a.

C. Divisibility Tricks

Congruence can illuminate an old trick, called “casting out nines,” used to detect
errors in addition and multiplication: sum the digits and do the operation on the sum
of the digits.

Example 6. Suppose we multiplied 3589 and 4363 and obtained 15256397. We
check the multiplication as follows:

We sum the digits of 3589 to obtain 3+4+8+9= 24, then sum the digits of 24:
2 + 4, to obtain 6.

Then we sum the digits of 4373 to obtain 4 + 3 + 7 + 3 = 17, then find 1 + 7 to
obtain 8.

We multiply 6 and 8 to obtain 48, then sum the digits of 48, 4+8 = 12, then sum
the digits of 12, 1 + 2 = 3 to obtain 3.

Then we sum the digits of our result of multiplying 3589 and 4373, namely
15256397: 1+5+2+5+6+3+9+7= 38, then sum the digits of 38: 3+8 = 11,
then sum the digits of 11 to obtain 2.

We see if 3 = 2. Since that is false, we conclude that the correct result of multi-
plying 3589 and 4373 is not 15256397 .

Casting out nines as a device for checking errors in computations was known
to the medieval Arabs, and brought to Europe along with Hindu-Arabic numerals
by Leonardo of Pisa (also known as Fibonacci) in his book, Liber Abaci [Sigler
(2003)].

Here is why casting out nines works.

10≡ 1 (mod 9),

so by Proposition 6, for every n> 0,

10n ≡ 1 (mod 9).



5 Congruence 79

So for every number a, we have by Proposition 4 that

a ·10n ≡ a (mod 9).

If a is a number that in ordinary base 10 notation is written as

rnrn−1 . . . r2r1r0,

so that
a= rn10n+ rn−110n−1 + . . .+ r2102 + r110 + r0,

then by Proposition 4,

a≡ rn+ rn−1 + . . .+ r2 + r1 + r0 (mod 9).

Thus every number is congruent to the sum of its digits modulo 9.
Thus, for example,

3589 = 3 ·103 + 5 ·102 + 8 ·10 + 9

≡ 3 + 5 + 8 + 9 = 24 (mod 9)

and
24 = 2 ·10 + 4≡ 2 + 4 = 6 (mod 9).

and so by transitivity of congruence, 3589 ≡ 6 (mod 9). Replacing 3589 by 6 in-
volves subtracting, or “casting out”, many nines. In fact, 6 is the remainder when
you divide 3589 by 9. Similarly,

4373≡ 8 (mod 9)

and
15256397≡ 3 (mod 9)

by the same “sum the digits modulo 9” computation. Now if 3589 ≡ 6 (mod 9),
and 4373≡ 8 (mod 9), then by Proposition 4,

3589 ·4373≡ 6 ·8 = 48≡ 3 (mod 9).

So if we compute 3589 · 43732 and get a number that is congruent to 2 modulo 9,
then we must have made a mistake in the computation. (Note that casting out nines
does not detect all erroneous computations. For example, it won’t uncover errors
caused by transposing digits, such as 21 ·38 = 978.)

To sum up the results we showed about numbers modulo 9:

Proposition 7. Any number a is congruent to the sum of its digits modulo 9.

In particular,

Corollary 8. A number a is divisible by 9 if and only if 9 divides the sum of the
digits of a.
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Proof. (Recall that “iff” means “if and only if”–see Section 3D, Corollary 6.) The
number a is divisible by m iff a is congruent to 0 modulo m. Thus 9 divides a iff
a≡ 0 (mod 9), iff the sum of the digits of a is congruent to 0 (mod 9), iff 9 divides
the sum of the digits of a. ��

Here are some other divisibility criteria:

Proposition 9. 3 divides a iff 3 divides the sum of the digits of a.

Proof. Since 9 divides 10e − 1 for all e, so does 3. The proof is the same as
for 9. ��
Proposition 10. 2 divides a iff 2 divides the units digit r0 of a.

Proof. Since 2 divides 10, 10e ≡ 0 (mod 2) for all e≥ 1. So a≡ r0 (mod 2). ��
Proposition 11. 5 divides a iff 5 divides the units digit of a.

Proof. The same as for 2. ��
Proposition 12. 11 divides a iff 11 divides the alternating sum of the digits of a.

Proof. Since 10≡−1 (mod 11), 10e ≡ (−1)n (mod 11) for all e. Then

a= rn10n+ rn−110n−1 + . . .+a2102 +a110 +a0

≡ an(−1)n+an−1(−1)n−1 + . . .+a2(−1)2 +a1(−1)+a0 (mod 11).

��
Proposition 13. 7 (respectively, 11, 13) divides a iff 7 (respectively, 11, 13) divides
the alternating sum of the “digits” of a in base 1000.

Proof. Suppose

a= bm1000m+bm−11000m−1 + . . .+b11000 +b0

(where 0≤ bk < 1000 for all 0≤ k≤m). Now 1000 = 1001−1, and 1001 = 7 ·11 ·
13. So

1000≡−1 (mod 7) and also mod 11 and mod 13.

Thus 1000e ≡ (−1)e (mod 1001) for all e≥ 1, and we have

a≡ bm(−1)m+bm−1(−1)m−1 + . . .+b1(−1)+b0 (mod 1001).

Since 7 divides 1001, it follows by Proposition 5 that

a≡ bm(−1)m+bm−1(−1)m−1 + . . .+b1(−1)+b0 (mod 7).

(and also mod 11 and mod 13). Then 7 divides a iff 7 divides b0− b1 + b2 + . . .+
(−1)mbm. ��

Reviewing the results in this section, we have divisibility tests of large numbers
by 2, 3, 5, 7, 9, 10, 11 and 13. What about divisibility by other small numbers? See
the exercises.
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Exercises.

23. Find a test for divisibility by 4.

24. Find a test for divisibility by 6.

25. Show that every number a is congruent modulo 8 to its units digit in base 1000.

26. (i) Show that 7 divides 10a+b if and only if 7 divides a−2b.
(ii) Use (i) to show that 7 divides 821528 = 82152 ·10+8 if and only if 7 divides

82152− 16 = 82136. Use (i) three more times to decide whether or not 7 divides
821528.

(iii) Use (i) to decide whether or not 7 divides
(a) 904589
(b) 1036673 .

27. (i) Show that 19 divides 10a+b iff 19 divides a+ 2b.
(ii) Use (i) as in the last exercise to decide whether or not 19 divides
(a) 821534
(b) 1165726.

28. Show that 11 divides 10a+ b iff 11 divides a− b. Use this to show that 11
divides 232595.

29. Come up with a strategy like that in the last three exercises to decide whether a
number is divisible by 13.

30. Find the least non-negative residues mod 7, 11 and 13 of:
(i) 11233456;
(ii) 58473625; and
(iii) 100, 000, 000, 000, 000, 001.

The next exercises assume you are comfortable with numbers in bases other than 10
(see Section 3A).

31. If we are doing base 12 arithmetic can we check it by casting out 11’s? Explain.

32. Find nice tests for divisibility of numbers in base 34 by each of 2, 3, 5, 7, 11,
and 17.

33. Prove: if x≡ y (mod m), then (m,x) = (m,y).

34. (i) Use the last exercise to prove the following result, due to Graham (1984):
Suppose a,b and ci, i= 0,1, . . . ,n, are integers and (a,b) = 1. Then

(a−b,c0an+ c1an−1b+ . . .+ cn−1abn−1 + cnbn)
= (a−b,c0 + c1 + . . .+ cn).

(ii) Set a= 10,b= 1, and derive the test for divisibility by 9 from this formula.
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35. Explain this “pick a number” puzzle:
Pick a number from 1 to 9;
Add it to 4;
Multiply the result by 9;
Add 6 to the result;
Sum the digits of the result;
Multiply the result by 2;
Divide the result by 3;
Add 4 to the result to get a number, call it α;
Pick the largest (in area) European country whose name starts with the α-th letter

of the alphabet (for example, France starts with F, the sixth letter of the alphabet);
Pick a popular website with first letter equal to the last letter of the country;
Pick a fruit with first letter equal to the last letter of the website (omit the “.com”).
Then the last letter of the fruit is E.

D. Luhn’s Formula

The detecting or correcting of errors is an important application of algebra and num-
ber theory in the present “information age”. Casting out nines may be the oldest
known example of an error detection scheme. In this section we look at a much
newer example, a method of checking the validity of credit card numbers and other
identification numbers, proposed in the 1960’s by H. P. Luhn of IBM and known as
Luhn’s formula.

To begin with an example, suppose we consider the following number:

M = 5678 9012 4567 8901.

This looks like it might be a credit card number. But not every sixteen digit number
beginning with 56 can be a valid credit card number. The digits of the number must
satisfy Luhn’s formula. Here is how it works.

First, define a function p(x) on the digits 0,1,2, . . . ,8,9 by

p(0) = 0

p(9) = 9

p(n) = 2n mod 9 for 1≤ n≤ 8.

Thus for 1≤ n≤ 8, p(n) is the least non-negative residue of 2n modulo 9.
Here is the table of values of p(x):

n 0 1 2 3 4 5 6 7 8 9
p(n) 0 2 4 6 8 1 3 5 7 9

Given a credit card number of n digits, number the digits starting from the right:

anan−1an−2 . . .a3a2a1.
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Beginning with a2, the second digit from the right, apply the function p(x) to every
second digit, that is, to a2,a4,a6, . . .. Then sum all of the modified and unmodified
digits:

S = a1 + p(a2)+a3 + p(a4)+a5 + . . . .

Then M is an invalid credit card number if S �≡ 0 (mod 10).
For our 16 digit example M = 5678 9012 4567 8901, we apply p(x) to every

other digit, then sum the resulting digits:

S= p(5)+ 6 + p(7)+ 8 + p(9)+0+ p(1)+2

+ p(4)+ 5 + p(6)+ 7+ p(8)+9+ p(0)+1

= 1 + 6 + 5 + 8 +9+0+2+2+8+5+3+7+7+9+0+1

Then S≡ 3 (mod 10), so M is not a valid credit card number.
Luhn’s formula is a quick computation that retailers can perform before submit-

ting a credit card number to a central agency for validation. A Luhn formula check is
particularly useful for internet purchases, where customers type in their own credit
card numbers. The retailer can instantly detect if the customer made a simple error
when keying in the card number, and ask the customer to reenter the number imme-
diately, rather than waiting for validation and perhaps losing the sale because of the
delay.

Luhn’s formula detects a single instance of two of the most common errors in
typing numbers, mistyping a digit, or (with one exception) transposing two adjacent
digits. See Exercises 37 and 38.

Exercises.

36. Check the validity of the following numbers by Luhn’s formula. If any of them
is invalid, change the rightmost digit so that the resulting number satisfies Luhn’s
formula.

(i) 4356 2678 9889 6473
(ii) 346 8965 1938 7647
(iii) 6011 8665 5575 1270

37. Show that if you try to type in a valid 16 digit credit card number, but mistype
one of the 16 digits, the resulting number will be shown invalid by Luhn’s formula.

38. Show that if you try to type in a valid 16 digit credit card number, but trans-
pose two adjacent digits, then the resulting number will be shown invalid by Luhn’s
formula unless the two transposed adjacent digits are 0 and 9.
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E. More Properties of Congruence

The equivalence properties of Proposition 3, Section B, show that congruence to a
fixed modulus m is much like equality, except for canceling. In this section we list
properties which relate congruences to different moduli, and describe how to cancel.

First we look at different moduli.
We already know Proposition 5:

If a≡ b (mod m) and d divides m, then a≡ b (mod d).
We used this property in discussing the divisibility test for 7, 11, and 13, for we

observed that if a≡ b (mod 1001), then a≡ b (mod 7) since 7 divides 1001.

Proposition 14. If a≡ b (mod r) and a≡ b (mod s) then a≡ b (mod [r,s]).

Proof. We know that the least common multiple [r,s] of two numbers r and s divides
every common multiple of r and s. Thus if r divides a−b, and s divides a−b, then
[r,s] divides a− b. ��
Example 7. if a ≡ b (mod 7) and a ≡ b (mod 11) then a ≡ b (mod 77). If also
a≡ b (mod 13) then a≡ b (mod [77,13]), that is, a≡ b (mod 1001).

Example 8. We show:
2340 ≡ 1 (mod 341). (1)

To see this, we observe that 341 = 11 ·31 = [11,31], so by Proposition 14, to show
(1) we only need to show:

2340 ≡ 1 (mod 11) and 2340 ≡ 1 (mod 31).

Now
25 = 32≡−1 (mod 11)

so
2340 = (25)68 ≡ (−1)68 ≡ 1 (mod 11);

also
25 = 32≡ 1 (mod 31)

so
2340 = (25)68 ≡ 168 ≡ 1 (mod 31).

Thus (1) follows.

The cancellation properties of congruences are summed up by the following.
Here r �= 0.

Proposition 15. If ra≡ rb (mod m), then a≡ b (mod m
(r,m) ).

For example, 12 = 4 ·3≡ 4 ·8 = 32 (mod 10), so since 10/(10,4) = 5, we may
conclude that 3≡ 8 (mod 5).
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Two special cases of Proposition 15 are when r divides the modulus m or when
(r,m) = 1:

Proposition 16. If ra≡ rb (mod rm) then a≡ b (mod m).

Proof. If ra≡ rb (mod rm) then ra−rb= rmc for some c; canceling r gives a−b=
mc, so a≡ b (mod m). ��
Proposition 17. If ra≡ rb (mod m) and (r,m) = 1, then a≡ b (mod m).

Proof. If m divides ra− rb = r(a− b), then, since m and r are coprime, we can
conclude that m divides a−b. ��

For example, since 12 = 4 ·3≡ 4 ·8 = 32 (mod 5) and (4,5) = 1, it follows that
3≡ 8 (mod 5).

Exercises.

39. Show that 2560 ≡ 1 (mod 561).

40. Show that 31728 ≡ 1 (mod 1729).

41. Find all numbers a≤ 20 so that 6a≡ 16 (mod 20).

42. Find all numbers a≤ 36 so that 16a≡ 0 (mod 36).

43. Prove Proposition 15.

F. Linear Congruences and Bezout’s Identity

In secondary school algebra you learn to solve equations involving an unknown
quantity. Here we begin considering the problem of solving congruences containing
unknowns.

The simplest such congruence is

(i) x+ c≡ d (mod m),

which is easy to solve: simply add −c to both sides to get x≡ d− c (mod m).
The next simplest is

(ii) ax≡ b (mod m).

If this were an equality, ax = b, and x,a and b were required to be integers, we
would be able to solve this if and only if a divides b. But (ii) is a congruence, and
so we need to find an integer x so that b= ax+ (multiple of m), or equivalently, find
integers x and y so that b= ax+my.
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We know how to handle such equations, from Section 3E:
If the greatest common divisor (a,m) of a and m does not divide b, then there are

no integers x and y with ax+my= b, and so ax≡ b (mod m) has no solution.
If (a,m) divides b, then we can solve b = ax+my for x and y using Bezout’s

Identity. Thus:

Proposition 18. The congruence ax≡ b (mod m) is solvable iff (a,m) divides b.

Example 9. We solve
10x≡ 14 (mod 15).

Here (10,15) = 5, which does not divide 14. So there is no solution. (For if there
were integers x,y with 10x+15y= 14, then 5 would divide the left side, so 5 would
divide 14.)

10x≡ 14 (mod 18).

Here (10,18) = 2 divides 14. So there is a solution of 10x+ 18y= 14. We can find
a solution by the extended Euclidean algorithm. We set up the EEA matrix as in
Chapter 3:

e x= coeff. of 10 y= coeff. of 18
18 0 1
10 1 0

...

except that since we just want x, the coefficient of 10, we may omit the y-column:

e x= coeff. of 10
18 0
10 1
20 2

2 = 20−18 2
4 4

14 = 10 + 4 5

Hence 10 ·5≡ 14 (mod 18).

A particularly interesting case is the congruence ax≡ 1 (mod m).

Proposition 19. If (a,m) = 1, then ax ≡ 1 (mod m) has a unique solution
modulo m.

Proof. The congruence ax≡ 1 (mod m) is equivalent to the equation ax+my= 1.
If (a,m) = 1, then there are integers r, s so that ar+ms= 1, and so x= r is a solution
to the congruence ax≡ 1 (mod m).

If also ar′ ≡ 1 (mod m), then

a(r− r′)≡ 0 (mod m)
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and som | a(r−r′). Sincem and a are coprime, it follows by Corollary 8 of Chapter 3
that m divides r− r′, and so

r ≡ r′ (mod m).

Thus the solution of ax= 1 (mod m) is unique modulo m. ��
The solution r of ar ≡ 1 (mod m) is the inverse of a modulo m. For example,
27x≡1 (mod 31) has a unique solution since (27,31) = 1. By Bezout’s identity,
−8 ·27+7 ·31 = 1, so x≡−8 (mod 31) (or x≡ 23 (mod 31)) is the inverse of 27
modulo 31.

Corollary 20. If (a,m) = 1, then ax≡ b (mod m) has a solution for all b.

Proof. Find the inverse r of a mod m and set x= rb. ��
Just as with linear diophantine equations (Section 3E), to find the general solution

of ax≡ b (mod m), we need to find any solution, then add to it the general solution
of the homogeneous congruence

ax≡ 0 (mod m).

Then x is a solution of the homogeneous congruence iff m divides ax, iff

m
d

divides
a
d
x,

where d = (a,m). Since m
d and a

d are coprime, that last statement is equivalent to

m
d

divides x,

hence
x≡ m

d
k for some integer k.

Modulom, we then have d= (a,m) solutions to the homogeneous congruence ax≡0
(mod m), namely,

x=
m
d
k for k = 0, . . . ,d−1.

Example 10. Consider
18x≡ 12 (mod 20).

We cancel 2 from everything to get

9x≡ 6 (mod 10).

Then the inverse of 9 modulo 10 is 9, so

x≡ 9 ·6≡ 4 (mod 10).

So x≡ 4 or 14 (mod 20).



88 5 Congruence

Or, we can observe that 12≡72 (mod 20), so one solution of 18x≡12 (mod 20)
is x = 4. Then the general solution is found by finding all solutions of 18z ≡ 0
(mod 20):

18z≡ 0 (mod 20)
9z≡ 0 (mod 10)
z≡ 0 (mod 10),

so z≡ 0 or 10 (mod 20), and then x≡ 4 + 0 or 4 + 10 (mod 20).

Exercises.

44. Decide whether each of the following congruences has a solution. If so, find
the least nonnegative solution:

(i) 12x≡ 5 (mod 29);
(ii) 12x≡ 5 (mod 38);
(iii) 12x≡ 5 (mod 47);
(iv) 12x≡ 5 (mod 56);
(v) 12x≡ 5 (mod 65).

45. Same question with 12x≡ 42 mod
(i) 21; (ii) 22; (iii) 23; (iv) 24; (v) 25.

46. Same question with 9x≡ 1 mod
(i) 20; (ii) 21; (iii) 22.

47. Find a solution of 9x≡ 24 (mod 21).

48. Solve 313x≡ 1 (mod 463).

49. Solve 7x≡ 1 (mod 218).

50. Solve 7x≡ 13 (mod 218).

When trying to solve quadratic congruences, that is, congruences of the form

ax2 +bx+ c≡ 0 (mod m) (5.2)

the theory becomes very subtle. Even the simplest case:

x2 ≡ a (mod m) (5.3)

is very interesting: how do you decide whether a is a square modulo m? Gauss
(1801) was the first to give a complete treatment of the solution of (2) by means of
the famous law of quadratic reciprocity. See Chapter 21.

51. Suppose m is odd and (a,m) = 1. Show that

ax2 +bx+ c≡ 0 (mod m)

has an integer solution x≡ r (mod m) if and only if b2−4ac is a square modulo m.
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52. Find all solutions a,b,c≥ 1 of the following set of congruences:

a≡ b (mod c),
b≡ c (mod a),
c≡ a (mod b).

53. Show that a number n is the difference of two squares, n = a2−b2 with a,b in
Z, if and only if n is not congruent to 2 modulo 4.

54. Suppose a,b,c are positive integers and a2 +b2 = c2. If a is not a multiple of 4,
show that b is a multiple of 4 and c is not a multiple of 4.





II. Congruence classes and rings 





Chapter 6
Congruence Classes

The idea in this chapter is to use congruence to split up the set Z of integers into a
finite collection of disjoint subsets, think of the subsets as objects, and then see if the
arithmetic operations on Z can induce arithmetic operations on the new objects in a
way that makes sense. To see how this might work, we first look at two examples.

A. Two Examples

Z/2Z. The notion of even and odd integers goes back at least to the Pythagoreans
(500 B.C.). A number is even if it is a multiple of 2. A number is odd if when divided
by 2, it leaves a remainder of 1. Every number is either even or odd, and no number
is both even and odd. So the set Z splits into two disjoint sets, even, the set of even
numbers, and odd, the set of odd numbers. Let us call the set {even,odd} by Z/2Z.
The reason for this notation will become clear in the next section.

We want to think of the two sets even and odd as objects to add or multiply. In
fact, Euclid (300 B.C.) showed us how to do this. In the Elements, Book IX, Euclid
proves such facts as: an even number plus an odd number is odd, an odd number plus
an odd number is even, an odd number times an even number is even, and so on.
Book IX of Euclid can be viewed as a treatise on doing arithmetic with the objects
of the set Z/2Z.

We may collect Euclid’s rules into two tables, one for addition, one for multipli-
cation:

+ even odd
even even odd
odd odd even

· even odd
even even even
odd even odd

.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 93
in Mathematics, c© Springer Science+Business Media LLC 2009
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Once we reinterpret the sets even and odd in terms of congruence, we can generalize
this example, and will do so in the next section.

S. Another way to classify integers is by where they lie on the real line: positive
integers, negative integers and {0}. So let us define the three classes:

pos= {1,2,3, . . .}
zero = {0}
neg= {−1,−2,−3, . . .}

and let S = {pos,zero,neg}. Again we want to think of pos, zero and neg as objects
and define addition and multiplication on these objects. Let us start with multi-
plication.
Multiplication. To define multiplication, we recall the well-known facts about

multiplying integers:

positive× positive= positive,
positive×negative= negative,
negative×negative= positive,
zero× any integer = zero.

So multiplication in S makes sense. We can collect these facts into a multiplication
table for S:

· neg zero pos
neg pos zero neg
zero zero zero zero
pos neg zero pos

Addition. Now let us set up an addition table for S. Most of it is easy:
+ neg zero pos

neg neg neg ?
zero neg zero pos
pos ? pos pos

.

The entries we have filled in correspond to

positive+ positive= positive
positive+ zero= zero+ positive= positive

negative+negative= negative
negative+ zero= zero+negative= negative

zero+ zero= zero.

But what about the entries marked ?: positive + negative = ?
A moment’s thought tells us that every integer can be expressed as a positive in-

teger plus a negative integer. So in contrast to even+odd, which equals odd because
any even integer + any odd integer is an odd integer, pos+neg does not give us one
of the sets pos, zero or neg. If we choose different elements in the sets pos and neg,
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we can end up in any of the three sets. (For example, 2 +(−1) is in pos, 3 +(−3)
is in zero and 4 +(−6) is in neg.) So we are stuck. There is no way to define pos +
neg as a single object in S so that

(*) the sum of any integer in pos and any integer in neg is in the object we define
pos + neg to be.

Because this ambiguity occurs in trying to define addition, we say that addition
in S is not well-define .

This ambiguity did not occur with Z/2Z above. One of the things we will need to
show below is that when we define Z/mZ, as a generalization of Z/2Z, addition and
multiplication will be well-defined: that is, will satisfy the analogues of property (*).

B. Congruence Classes and Z/mZ

Now we use congruence modulo m to split up the integers into sets, analogous to
even and odd, on which we can do arithmetic.

We proved in Section 5B, Proposition 3, that congruence modulo m is an equiv-
alence relation: for any integers a, b and c, we showed that ≡ (mod m) is

Reflexive: a≡ a (mod m)
Symmetric: if a≡ b (mod m), then b≡ a (mod m)
Transitive: if a≡ b (mod m), and b≡ c (mod m),

then a≡ c (mod m).

When a set S has an equivalence relation on it, then the equivalence relation splits
up, or partitions, the set S into subsets, called equivalence classes, defined by the
property that two elements are in the same equivalence class if they are equivalent.

In particular, if S is the set of integers Z and m is a positive integer, then congru-
ence modulo m partitions Z into equivalence classes. The equivalence class of the
integer a is called the congruence class of a (mod m), written [a]m. Thus [a]m is the
set of all integers that are congruent to a modulo m, that is, all integers of the form

a+ (multiple of m).

The set of congruence classes modulo m is denoted by Z/mZ.
A congruence class may described by any element in the class:

Proposition 1. For a,a′ in Z, a′ ≡ a (mod m) if and only if [a]m = [a′]m.

Proof. If [a′]m = [a]m, then since a′ is in [a′]m (by reflexivity), a′ is in [a]m, so a′≡a
(mod m). Conversely, if a′ ≡ a (mod m), then a≡ a′ (mod m) by symmetry. Then
[a′]m ⊆ [a]m: for if d is in [a′]m, then d ≡ a′ (mod m), hence by transitivity, d ≡
a (mod m), so d is in [a]m. The same argument shows that [a]m ⊆ [a′]m. Hence
[a]m = [a′]m. ��
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To restate Proposition 1, congruence (mod m) is the same as equality of congruence
classes: that is why the notation

≡ (mod m)

shares so many properties of equality.
As described in Chapter 1, the three properties of an equivalence relation im-

ply that if two equivalence classes have any elements at all in common, then they
coincide.

Proposition 2. Suppose [a]m and [b]m are two congruence classes and c in Z is in
both [a]m and [b]m. Then [a]m = [b]m.

Proof. If c is in [a]m, then c ≡ a (mod m), so by Proposition 1, [c]m = [a]m. If c is
in [b], then c≡ b (mod m), so [c]m = [b]m. Hence [a]m = [b]m. ��

There are exactly m congruence classes in Z/mZ. To see this, recall that every
integer a is congruent modulo m to exactly one of the numbers 0,1,2, . . . ,m−1. If
a≡ r (mod m) with 0≤ r≤m−1, then [a]m = [r]m, and so every congruence class
mod m is equal to one of [0]m, [1]m, . . . , [m− 1]m. These classes are all different, so
there are exactly m congruence classes modulo m.

Thus
Z/mZ = {[0]m, [1]m, . . . , [m−1]m}.

In particular, when m = 2, Z/2Z = {[0]2, [1]2}. The congruence class [1]2 is the
set of all integers congruent to 1 modulo 2. Thus [1]2 is the set odd. Similarly, the
congruence class [0]2 is the set of all even integers: [0]2 = even.

Any element b of a congruence class mod m is called a representative of that
class. By Proposition 1, we may label a congruence class by any representative of
the class. Thus in Z/6Z, [−7]6 = [−1]6 = [5]6 = [11]6, etc.

It is often convenient to label a congruence class by the least nonnegative, or
least positive element of the class, but on occasion other sets of labels are more
convenient.

Now that we understand Z/mZ as a set, we want to define arithmetic on Z/mZ.
We do so by:

[a]m+[b]m = [a+b]m,
−[a]m = [−a]m ,

[a]m · [b]m = [ab]m .

Thus, with m= 12,

[7]12 +[9]12 = [7 + 9]12 = [16]12,
−[3]12 = [−3]12,

[7]12 · [9]12 = [7 ·9]12 = [63]12.

In defining [a]m + [b]m = [a+ b]m, we must make sure that the addition is well-
defined. This means, if we take any integer in the set [a]m, and add to it any integer
in the set [b]m, the sum should be in the set [a+b]m. For example,−3 is in [9]12 and
31 is in [7]12: is −3 + 31 = 28 in [9 + 7]12? Yes: because 16≡ 28 (mod 12).
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In general, we must show:
if [a]m = [a′]m and [b]m = [b′]m, then

[a+b]m = [a′+b′]m,

[−a]m = [−a′]m,

and
[ab]m = [a′b′]m.

To prove these facts, we translate into congruence notation, using Proposition 1.
The first becomes

if a≡ a′ (mod m) and b≡ b′ (mod m), then a+b≡ a′+b′ (mod m).

Similarly, the fact about negatives translates into

if a≡ a′ (mod m), then −a≡−a′ (mod m),

The fact about multiplication becomes:

if a≡ a′ (mod m) and b≡ b′ (mod m), then ab≡ a′b′ (mod m).

All of these statements about congruence are true–see Section 5B, Proposition 4.
The congruence classes [0]m and [1]m are special, in that

[0]m+[b]m = [b]m for all b,
[0]m[b]m = [0]m, for all b,
[1]m[b]m = [b]m for all b.

Thus [0]m and [1]m act just like 0 and 1 do in Z, which is hardly surprising since
[0]m contains 0, [1]m contains 1 and addition and multiplication in Z/mZ are defined
by means of representatives of the congruence classes in Z.

We look at three examples.

Z/2Z–even and odd. The set Z/2Z consists of two congruence classes, [0]2 and
[1]2, where

[0]2 = {. . . ,−4,−2,0,2,4,6, . . .}= even

and
[1]2 = {. . . ,5,−3,−1,1,3,5,7, . . .}= odd.

The tables for addition and multiplication that we found for Z/2Z in the previous
section become, in the new notation,

+ [0]2 [1]2
[0]2 [0]2 [1]2
[1]2 [1]2 [0]2
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· [0]2 [1]2
[0]2 [0]2 [0]2
[1]2 [0]2 [1]2

.

All we did was substitute [0]2 = even and [1]2 = odd in the earlier tables.

Z/12Z–“clock arithmetic”. The set Z/12Z of congruence classes mod 12 con-
tains twelve congruence classes. The congruence class [a]12 consists of all integers
which are congruent to a (mod 12). Thus, for example, the congruence class modulo
12 containing 5 is

[5]12 = {. . . ,−31,−19,−7,5,17,29,41, . . .},

the congruence class containing 2 is

[2]12 = {. . . ,−34,−22,−10,2,14,26,38, . . .},

the congruence class containing 12 is

[12]12 = {. . . ,−36,−24,−12,0,12,24,36,48, . . .},

the set of all multiples of 12.
Each integer is congruent modulo 12 to exactly one of the numbers 1, . . . ,11,12,

and so Z/12Z consists of the 12 distinct congruence classes:

Z/12Z = {[1]12, [2]12, . . . , [11]12, [12]12}.

We can use a clock to describe Z/12Z visually. Take the real number line and wrap
it around a circle of circumference 12, so that the numbers 1 through 12 are located
as usual on a clock. Since the real line is infinitely long, it will wrap infinitely often
around the circle, and so each “hour” point on the clock will coincide with infinitely
many integers:

–1 –11

–10

–1222

23
24 25

10
–2

–321

20

9

8

7
19

–4

–5
–6

–7

–8

–9

0

6
5

4

3

2

1
12 13

11

14

15

16

17
18
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The collection of integers corresponding to a given hour on the clock is the con-
gruence class (mod 12) of the given hour. Thus for example, the integers located at
the hour 5 consist of the numbers

{..−31,−19,−7,5,17, . . .}= [5]12

and the integers located at the hour 12 are all those congruent to 12 (mod 12), that
is, [12]12, all multiples of 12.

We add congruence classes in Z/12Z by

[a]12 +[b]12 = [a+b]12.

For example,
[9]12 +[8]12 = [9 + 8]12 = [17]12 = [5]12.

Multiplication of congruence classes is similar:

[a]12.[b]12 = [ab]12.

For example,
[7]12 · [5]12 = [7 ·5]12 = [35]12 = [11]12.

Addition and multiplication of congruence classes modulo 12 is sometimes called
“clock arithmetic”, because addition modulo 12 relates to adding time in hours :
6 hours after 11 o’clock is 5 o’clock, and [11]12 + [6]12 = [11 + 6]12 = [17]12 =
[5]12. Those accustomed to U. S. military time or European or Canadian train times
should work in Z/24Z. Then 14 hours past 17:00 is 7:00, which corresponds to
[17]24 +[14]24 = [17 + 14]24 = [31]24 = [7]24.

Z/9Z–“casting out nines”. We can reinterpret casting out nines in terms of oper-
ations in Z/9Z.

Let a= rn10n+ rn−110n−1 + . . .r110 + r0. Then, using that [a+b]9 = [a]9 +[b]9
and [ab]9 = [a]9 · [b]9, we have

[a]9 = [rn]9[10n]9 +[rn−1]9[10n−1]9 + . . .+[r1]9[10]9 +[r0]9.

Now since 10k = 1 (mod 9) for all k ≥ 0, we have [10k]9 = [1]9 for all k, and so

[a]9 = [rn]9[1]9 +[rn−1]9[1]9 + . . .+[r1]9[1]9 +[r0]9.
= [rn]9 +[rn−1]9 + . . .+[r1]9 +[r0]9.
= [rn+ rn−1 + . . .+ r1 + r0]9.

That says that the congruence class of a (mod 9) is equal to the congruence class of
the sum of the digits of a (mod 9). In particular, 9 divides a if and only if [a]9 = [0]9,
if and only if the congruence class mod 9 of the sum of the digits of a is equal to
[0]9, iff 9 divides the sum of the digits of a.
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Coda. Given integers a,b and a natural number m > 1, all of these notations de-
scribe the same relationship:

a= b+(multiple of m),

m divides b−a : notation: m | (b−a),
a≡ b (mod m).

The notion of congruence classes gives us another way to express the same relation-
ship:

[a]m = [b]m.

The main point of congruence classes is not to just come up with yet another way
to express that relationship, but rather that the set of congruence classes modulo m,
Z/mZ is a set on which we can do arithmetic operations in a natural manner. The
usefulness of Z/mZ will, we hope, be made clear by the applications to be presented
later.

Exercises.

1. What is the hour:
(i) 8 hours after 11 A.M.?
(ii) 15 hours after 11 P.M.?
(iii) 21 hours after 6 A.M.?

2. If you leave San Antonio at 7 A.M. CST by rail on the “Texas Eagle”, at what
hour will you arrive at your destination if it is:

(i) Chicago and the trip takes 31 hours?
(ii) St. Paul and the trip takes 63 hours?
(iii) Winnipeg and the trip takes 106 hours?
(iv) Churchill and the trip takes 146 hours?
(All destinations are in the same time zone as San Antonio.)

C. Arithmetic Modulo m

Recall from Section 5A that the least non-negative residue of an integer a modulo
m is the unique number r with 0≤ r < m so that a≡ r (mod m). If a≥ 0, then r is
the remainder when a is divided by m. The least non-negative residue of a modulo
m is so useful that most computer languages have a special command for it.

In Maple, it is a mod m.
In Mathematica and Excel, it is mod(a,m).
In C, C++, Java and related programming languages, it is a%m.
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Thus
35 mod 13 = 9; mod (35,13) = 9; 35%13 = 9.

We’ll use the Maple notation a mod m.
Then by Section 5A, a mod m = b mod m iff a ≡ b (mod m) iff [a]m = [b]m.

Thus the function ( ) mod m yields a one-to-one correspondence between Z/mZ

and the set {0,1,2, . . . ,m−1}.
The operations of addition, negation, and multiplication on Z/mZ induce opera-

tions on the set {0,1,2, . . . ,m−1}, as follows:
If a,b are integers, then

(a mod m)+ (b mod m) = (a+b) mod m;

−(a mod m) = (−a) mod m= m−a;

(a mod m) · (b mod m) = a ·b mod m.

Thus the operations on {0,1,2, . . . ,m−1} work by doing the operation in Z and
then, if the result of the operation is outside the set {0,1, . . . ,m− 1}, we find the
least non-negative residue modulo m of the result.

These operations define what we may call arithmetic mod m.
To illustrate it, here are tables of addition and multiplication for m= 3:

+ mod 3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· mod 3 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

Only a few entries are different from ordinary addition and multiplication:
(1+2) mod 3 = 0 because the remainder on dividing 1 + 2 = 3 by 3 is 0. Similarly,
(2 ·2) mod 3 = 1.

Here are the addition and multiplication tables for arithmetic mod 6:

+ mod 6 0 1 2 3 4 5
0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1̄ 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4
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· mod 6 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4̄
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

For example, the barred entry 1 in the addition table means that (3+4) mod 6=1.
In the multiplication table the barred entry 4 means that (2 · 5) mod 6 = 4. These
correspond to the results in Z/6Z because [3]6 +[4]6 = [7]6 = [1]6, and [2]6 · [5]6 =
[10]6 = [4]6. From the addition table one also reads that (−2) mod 6 = 4, because
(2 + 4) mod 6 = 0.

Or consider arithmetic mod 13: here are some examples of sums and products
mod 13:

(12 + 8) mod 13 = 7 because [20]13 = [7]13,

(6+5) mod 13 = 11 (when a sum is <13, addition mod 13 is ordinary addition),

(10 + 5) mod 13 = 2 because [15]13 = [2]13,

(12 ·8) mod 13 = 5 because [96]13 = [5]13,

(6 ·5) mod 13 = 4 because [30]13 = [4]13,

(10 ·5) mod 13 = 11 because [50]13 = [11]13.

If Z/mZ looks just like arithmetic on {0,1, . . . ,m−1} mod m, then why should
we define Z/mZ at all? An analogy with fractions may help to explain why.

The relationship between the set {0,1, . . . ,m−1} with operations mod m and

Z/mZ = {[0]m, [1]m, . . . , [m−1]m}

with operations +, ·,−, is similar to the relationship between fractions that are re-
duced, that is, have relatively prime numerator and denominator, and arbitrary frac-
tions.

To multiply two reduced fractions, such as 5/12 and 3/10, we multiply numerators
and denominators together, to get

5
12
· 3

10
=

5 ·3
12 ·10

=
15

120
.

Often, as in this case, the fraction is not reduced, so we reduce it: 15/120 = 1/8.
Reducing is analogous to taking the least nonnegative residue modulo m, as for
example with m= 12: we set 9 ·7 mod 12 to be the remainder upon dividing 9 ·7 =
63 by 12, namely 3.

However, adding fractions is usually impossible without using nonreduced frac-
tions. For example, to add 5/12 and 3/10, we find a common denominator, e.g. 60,
then add as follows:
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5
12

+
3
10

=
25
60

+
18
60

=
25 + 18

60
=

43
60

:

we replace 5/12 by 25/60 and 3/10 by 18/60, then add the numerators of the nonre-
duced fractions with equal denominators: 25/60 + 18/60 = 43/60.

Similarly, in working with Z/mZ, it is often desirable to use numbers other than
{0,1, . . . ,m− 1} to represent the elements of Z/mZ. For example, if we want to
solve the equation

[x]231 = [2]31,

a solution becomes obvious if we observe that [2]31 = [64]31. To solve

[3]5[x]5 = [2]5,

the problem becomes easy once we note that [2]5 = [12]5. To solve

[8]13[x]13 = [6]13,

observe that [6]13 = [32]13.
Or if we want to describe multiplication in Z/mZ, it becomes easy if we discover

that
Z/13Z = {[0], [2], [22], [23], . . . , [211], [212] = [1]},

for then [2r] · [2s] = [2r+s]–multiplication is transformed into addition of exponents
modulo 12.

Thus viewing Z/mZ as congruence classes allows us the freedom, as with frac-
tions, to pick any element of an equivalence class to represent that class. Often the
least nonnegative representative may not be the representative of choice.

Round robin tournaments. Addition modulom can be used to design round robin
tournaments.

A round robin tournament is a competition involving m players (or teams) in
which each player plays every other player exactly once. For example, with four
players A, B, C and D, the tournament would consist of six matches–A vs. B,
A vs. C, A vs. D, B vs. C, B vs. D, and C vs. D. In a round robin tournament
matches are scheduled into “rounds”, time periods in which several matches occur
simultaneously. An objective of scheduling is to minimize the number of rounds.

For example, a four player tournament can be run in three rounds, where every
player competes in each round, as follows:

Round 1: A vs. B, C vs. D
Round 2: A vs. C, B vs. D
Round 3: A vs. D, B vs. C.

There cannot be fewer than three rounds, because each player must play all three
opponents, and (excepting chess?) each player cannot play more than one opponent
at a time.

For m odd, the addition table mod m can be used to design a round robin tourna-
ment for m or m+ 1 players. To illustrate, consider a tournament with five players,
numbered 1, 2, 3, 4 and 5. Write down the addition table for addition modulo 5
(except we use 5 instead of 0):
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+ 1 2 3 4 5
1 2 3 4 5 1
2 3 4 5 1 2
3 4 5 1 2 3
4 5 1 2 3 4
5 1 2 3 4 5

Interpret the entries of this addition table as follows: if a is a player listed in the
leftmost column, and b is a player listed in the top row, then Player a plays Player b
in round a+b.

Each column of the table describes the round in which the player at the top of the
column plays each of the players in the leftmost column. For example, the column
for player 3 is:

+ 3
1 4
2 5
3 1
4 2
5 3

Thus player 3 plays player 1 in round 4, player 2 in round 5, player 3 in round 1,
player 4 in round 2 and player 5 in round 3.

But, you say, how can player 3 play player 3 in round 1? Obviously, she can’t.
So player 3 sits out in round 1. With an odd number of players, one player must sit
out in each round, or, as they say, receives a bye. So in round 1 the matches are 1
vs. 5, 2 vs. 4, and 3 gets a bye. In round 4, the matches are 1 vs. 3, 4 vs. 5 and 2 vs.
2–that is, 2 gets a bye.

In this tournament design, there are m rounds. Each column of the table for ad-
dition modulo m contains all the numbers between 1 and m exactly once, so each
player plays each other player in a different round, and each round has m−1

2 matches.
Now suppose there is an even number 2n of players. Then the design is even more

efficient. Pick one player and call him “Bye”. Number the remaining m = 2n− 1
players by 1,2, . . . ,m. Write down the addition table for addition modulo m and use
it to assign matches to rounds for the players 1,2, . . . ,m. In any round, if a player b
is assigned to play himself, then instead of sitting out that round, b plays Bye. It’s
easy to see from the table when Bye plays each opponent–just read the round from
the diagonal of the table. For example, with 2n= 6:

+ 1 2 3 4 5
1 2
2 4
3 1
4 3
5 5
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Bye plays player 1 in round 2, player 2 in round 4, player 3 in round 1, player 4
in round 3, and player 5 in round 5.

With an even number 2n of players, there are 2n− 1 rounds, and each player
plays in each round.

Exercises.

3. Compute 13 + 19 mod 23.

4. Compute 13 ·19 mod 23.

5. Write down the addition and multiplication tables for arithmetic modulo 4.

6. Write down the addition and multiplication tables for arithmetic modulo 5.

7. Write down the addition and multiplication tables for arithmetic modulo 8.

8. Solve the equation [a]m[x]m = [b]m by finding convenient representatives for [a]
and [b]:

(i) [6]10[x]10 = [4]10,
(ii) [5]7[x]7 = [3]7,
(iii) [4]7[x]7 = [2]7,
(iv) [4]17[x]17 = [2]17,
(v) [13]19[x]19 = [16]19.

9. Solve
[3]11[x]211 = [4]11

10. Solve
[11]13[x]213 = [7]13

11. Solve
[x]211 = [3]11

12. Describe the fourth round of a round robin tournament with 10 players.

13. Describe the fifth round of a round robin tournament with 12 players.

14. Describe Bye’s opponent in each round of a 10 player tournament.

15. Show that in a round robin tournament with an even number 2n of players,
player a plays Bye in round 2a mod 2n−1.

16. Let m be even. Try to use the addition table mod m to design a round robin
tournament. What (if anything) goes wrong?
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D. Complete Sets of Representatives

Defini ion. A complete set of representatives for Z/mZ (or “modulo m”) is a set of
integers {r1, . . . ,rm} so that every integer is congruent modulo m to exactly one of
the numbers in the set.

If {r1, . . . ,rm} is a complete set of representatives for Z/mZ, then

Z/mZ = {[r1]m, [r2]m, . . . , [rm]m}.

Thus {0,1,2, . . . ,m− 1} is a complete set of representatives for Z/mZ. So is
{1,2, . . . ,m−1,m}, or any set ofm consecutive integers (see Chapter 5, Exercise 8).
But there are many others.

For example, we will prove later in the book the following:

Theorem 3 (Primitive Root Theorem). Let p be a prime number. There exists some
integer b so that

{0,b,b2,b3, . . . ,bp−1}
is a complete set of representatives for Z/pZ.

An integer b satisfying the Primitive Root Theorem is called a primitive root
modulo p. Here are some examples:

Modulo 5, the numbers 2 and 3 are primitive roots. In particular, modulo 5,

0 = 0,1≡ 34,2≡ 33,3 ≡ 31,4≡ 32,

so {0,3,32,33,34} is a complete set of representatives modulo 5.
Modulo 7, the numbers 3 and 5 are primitive roots, but 1, 2, 4 and 6 are not.
Modulo 17, the numbers 3, 5, 6, and 7 are some of the primitive roots.
Other examples are in the exercises.
When we represent the non-zero congruence classes modulo p by the powers

of a primitive root, then multiplication of congruence classes turns into addition of
exponents modulo p−1. For example, 3 is a primitive root modulo 17, and we can
show that

[12]17 = [313]17

and
[11]17 = [37]17.

So
[12]17 · [11]17 = [313]17 · [37]17 = [320]17.

Now it turns out that [316]17 = [1]17 and [34]17 = [13]17. So

[320]17 = [316]17[34]17 = [1]17[34]17 = [13]17.

In doing multiplication in this way, a “logarithm to the base 3” table is very conve-
nient, where log3 n= r means 3r ≡ n (mod 17):
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3r = n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
r = log3n 16 14 1 12 5 15 11 10 2 3 7 13 4 9 6 8

.

Such a log table is especially convenient for evaluating polynomials.

Example 1. Suppose f (x) = x4 +5x3 +8x2 +x+15 and we wish to compute f (12)
modulo 17. So we want

124 + 5 ·123 + 8 ·122 + 12 + 15 (mod 17).

Since 12≡ 313,5≡ 35 and 8≡ 310, this is

352 + 35339 + 310326 + 12 + 15.

Since 316 ≡ 1 (mod 17), we find (again from the log table),

352 ≡ 34834 ≡ 34 ≡ 13,

35339 = 344 ≡ 312 ≡ 4,

and

310326 = 336 ≡ 34 ≡ 13 (mod 17).

Hence
f (12)≡ 13 + 4 + 13 +12+15≡ 6 (mod 17),

The following is helpful for deciding if a set of numbers is a complete set of
representatives.

Proposition 4. Given a set R = {r1,r2, . . . ,rm} of m integers, the following condi-
tions are equivalent:
a) Every integer is congruent modulo m to some ri inR,
b) For every i, j with 1≤ i< j ≤ m, ri �≡ r j (mod m).

A complete set of representatives modm is a set R ofm integers satisfying either
a) or b).

Proof. Given a set R = {r1,r2, . . . ,rm} of m integers, the map r→ [r]m defines a
function f from R to Z/mZ. Then a) says that f is onto, and b) says that f is
one-to-one. Let f (R) = { f (r)|r in R}, the image of the function f .

Now if m = |R|, | f (R)| and |Z/mZ| = m denote the cardinalities of the sets
R, f (R) and Z/mZ, then

|R| ≥ | f (R)| ≤ |Z/mZ|.

Also, f is one-to-one if |R| = | f (R)|, and f is onto if | f (R)| = |Z/mZ|. Since
|R|= m= |Z/mZ|, it follows that |R|= | f (R)| iff | f (R)| = |Z/mZ|, that is, f is
one-to-one iff f is onto. So a) and b) are equivalent. ��
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Exercises.

17. Which of the following sets is a complete set of representatives modulo 7?
(i) {1,3,5,7,9,11,13}
(ii) {1,4,7,10,13,16,19}
(iii) {1,8,27,64,125,216,343}
(iv) {1,−3,9,−27,81,−243,0}
(v) {0,1,−2,4,−8,16,−32}.

18. Find a complete set of representatives for Z/9Z consisting of numbers≥2008.

19. Show that there is no complete set of representatives for Z/71Z that includes
two of the numbers 1066, 1492 and 1776.

20. Which of the following sets is a complete set of representatives for Z/9Z?
(i) {1234,4567,8901,−1234,−5677,2534,8654,−1500,−33331}
(ii) {−1111,−111,−11,−1,0,1,11,111,1111}).

21. For which exponents k is {1k,2k,3k,4k,5k,6k,7k,8k,9k,10k,11k} a complete set
of representatives modulo 11? (Can you generalize your answer to other moduli?)

22. Show that {0,2,22,23, . . . ,211,212} is a complete set of representatives for
Z/13Z.

23. Show that 3 and 5 are primitive roots modulo 7, but 1, 2, 4 and 6 are not.

24. Show that 5 is a primitive root mod 17.

25. Find a primitive root modulo 17 other than 3, 5, 6 or 7.

26. Show that if b is a primitive root modulo 17, then so is −b.

27. Let f (x) = x4 + 5x3 + 8x2 + x+ 15. Compute
(i) f (6) mod 17,
(ii) f (14) mod 17,
(iii) f (9) mod 17.

28. Let f (x) = x4 + 6x3 + 13x2 + 8x+ 7.
(i) Find f (5) (mod 17),
(ii) Find f (15) (mod 17).

29. Set up a “logarithm to the base 5” table modulo 7, let f (x) = 3x8 +5x4−2x3 +6,
and, using your table, compute

(i) f (4) mod 7,
(ii) f (3) mod 7.

30. Show that if {a1, . . . ,am} is a complete set of representatives modulo m, and
b1 ≡ a1 (mod m),b2 ≡ a2 (mod m), . . . ,bm ≡ am (mod m), then {b1, . . . ,bm} is a
complete set of representatives modulo m.
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31. Show that if b is a primitive root modulo p and c ≡ b (mod p), then c is a
primitive root modulo p.

32. Find all primitive roots b modulo 11 with 1≤ b≤ 11.

33. Show that if b is a primitive root modulo p, then the smallest exponent e> 0 so
that be ≡ 1 (mod p) is e= p−1.

34. Show that anym consecutive integers form a complete set of representatives for
Z/mZ.

35. Given 0 < n < m, show that there exists some t, n ≤ t < m, so that m− n
divides t.

36. Suppose {a1, . . . ,am} is a complete set of representatives for Z/mZ. Show that
for any integer b,

{a1 +b,a2 +b, . . . ,am+b}
is a complete set of representatives for Z/mZ.

37. Suppose {a1, . . . ,am} is a complete set of representatives for Z/mZ. Show:
(i) If (b,m) = 1, then {ba1, . . . ,bam} is a complete set of representatives.
(ii) If (b,m) > 1, then {ba1, . . . ,bam} is not a complete set of representatives.

38. Let a,b be relatively prime integers with a > b > 0. Define the sequence of
numbers s1,s2, . . . ,sk by

s1 = a,
s2 = a−b,

sk+1 = sk+a if sk < b, or

= sk−b if sk ≥ b.
Show that the numbers s1,s2, . . . ,sa+b form a complete set of representatives (mod
a+b) (see Chapter 3, exercise 66.)

What if (a,b) > 1?

39. Call a set S = {a1,a2, . . . ,an} of distinct integers admissible if S does not in-
clude a complete set of representatives modulo any prime.

(i) Show that {0,2} and {1,3} are admissible, but {1,2} is not.
(ii) Show that {1,3,5} is not admissible, but {1,3,7} is admissible.
(iii) Show that {1,3,7,13} is admissible.
(iv) Find an admissible set containing ten integers.
(v)) What is the largest subset of the primes pwith 3≤ p≤ 43 that is admissible?
(vi) Find an admissible set with n integers for any n.

40. Given a,b,c with (a,b) = 1, show that there is some m so that (a+bm,c) = 1,
as follows:

(i) Show that c= f g where f divides bk for some k> 0 and (b,g) = 1.
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(ii) Show that {a+ bn | n = 1,2, . . . ,g} is a complete set of representatives
modulo g.

(iii) Show that if (a+bm,g) = 1, then (a+bm,c) = 1.

41. If (a,b) = 1, show that for all m ≥ (a− 1)(b− 1), there are integers r,s, both
≥0, so that m= ar+bs.

E. Units

Given a number a, is there a number b so that ab = ba = 1? Whenever there is
such a number b, we call a a unit and call the number b the inverse of a. “The,”
because there can be at most one inverse. For suppose b and c are two inverses of
a, so that ab= ac= 1 and also ba= 1. Then since ab= ac, multiplying by b gives
b(ab) = b(ac), then (ba)b= (ba)c, then 1 ·b= 1 · c, then b= c.

In Z, very few numbers have inverses: in fact, 1 and −1 are the only units in Z:
1 ·1 = 1, so 1 has an inverse, namely itself; and −1 ·−1 = 1, so −1 has an inverse,
also itself. In order to talk about the inverse of a number such as 2, we have to
introduce fractions. The inverse of 2 is 1/2, but 1/2 is not an integer. Seeking inverses
of natural numbers led to the first expansion of the concept of number beyond the
counting numbers in the history of mathematics. Fractions of the form 1/n for n a
natural number were used by the ancient Egyptians 4000 years ago.

Every fraction except 0 has an inverse: if a/b is any fraction with a,b �= 0, then
the inverse of a/b is b/a. So every non-zero element of the rational numbers Q is a
unit of Q.

What about units in Z/mZ?
To pose the question, we first must decide that [1]m will play the role of 1 in the

definition of unit. This is a reasonable choice. The number 1 is the multiplicative
identity of Z, in the sense that for any integer a, 1 · a = a. Because 1 is the multi-
plicative identity of Z, [1]m is a multiplicative identity of Z/mZ: for any integer a,

[1]m · [a]m = [1 ·a]m = [a]m.

Moreover, [1]m is the only multiplicative identity of Z/mZ. To see this, assume that
[e]m were also a multiplicative identity, then

[e]m · [a]m = [a]m

for all integers a, so in particular,

[e]m · [1]m = [1]m.

But since [1]m is a multiplicative identity,

[e]m · [1]m = [1]m · [e]m = [e]m.

So [e]m = [1]m.
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A unit of Z/mZ, then, is an element [a]m for which there is some element [b]m
with [a]m[b]m = [1]m.

What are the units of Z/mZ? LetUm denote the set of units of Z/mZ.
Consider some examples:

In Z/3Z = {[0], [1], [2]}, the elements with inverses are [1] and [2] = [−1]. Each
is the inverse of itself. So

U3 = {[1], [2]}.
In Z/5Z = {[0], [1], [2], [3], [4]}, all elements except [0] are units: [2] and [3] are

inverses of each other, because [2] · [3] = [6] = [1], while [1] and [4] = [−1] are their
own inverses. Thus

U5 = {[1], [2], [3], [4]}.
In Z/9Z = {[0], [1], [2], [3], [4], [5], [6], [7], [8]}, we have, besides [1] and [8] =

[−1], also the units [2] and [5], which are inverses of each other, and [4] and [7],
which are inverses of each other, a total of six units. [3] and [6] are not units. Thus

U9 = {[1], [2], [4], [5], [7], [8]}.

One (very inefficient!) way to find the units of Z/mZ is to write down the multi-
plication table for Z/mZ. Then [a]m is a unit if [1]m is somewhere in the row of [a]m.
But there are better ways to find the units modulo m.

For any modulusm, [a]m is a unit of Z/mZ if and only if there is some number b
so that [a]m[b]m = [1]m. Translating into congruence notation, [a] is a unit if there is
some integer b so that ab≡ 1 (mod m).

We know for which a such a b can be found:

Theorem 5. In Z/mZ, [a] is a unit iff a and m are coprime.

Proof. (Review). Suppose (a,m) = 1. Then by Bezout’s identity, there are integers
r,s with ar+ms = 1. (The integers r and s can be found by Euclid’s algorithm.)
Then [ar+ms]m = [1]m. But [ar+ms]m = [ar]m = [a]m[r]m. So [r]m is the inverse of
[a]m in Z/mZ.

Conversely, if [a]m[r]m = [1]m, then ar ≡ 1 (mod m), so there exists an integer s
so that ar+ms= 1, which implies that a and m are coprime. ��
Corollary 6. The number of units of Z/mZ is equal to the number of numbers a
with 1≤ a≤m that are coprime to m.
Defini ion. For eachm≥ 2, φ(m) denotes the number of numbers a with 1≤ a≤m
that are coprime to m. The function φ is called Euler’s phi function (or sometimes
“Euler’s totient”).

Thus the number of elements ofUm is φ(m).
Notice that if [a] and [a′] are units, then [aa′] is also a unit, because if

[a][b] = [1] and [a′][b′] = [1], then [aa′][bb′] = [1]. So the set of units Um is closed
under multiplication.
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The Primitive Root Theorem, stated in Section D, asserts that if p is prime, then
there is some number b so that {0,b,b2, . . . ,bp−1} is a complete set of representa-
tives for Z/pZ. Then [b] must be a unit, because [1] = [br] for some r. Hence all
powers of [b] are also units. It follows that the converse of the Primitive Root the-
orem holds: if there is a number b so that {0,b,b2, . . . ,bm−1} is a complete set of
representatives for Z/mZ, then m must be prime. This is because every congruence
class other than [0] is of the form [br] for some r, hence is a unit of Z/mZ, and so
every number <m is coprime to m.

Inverses are helpful for solving equations. If we can find the inverse of [a]m in
Z/mZ, say [r]m, then we can solve the equation [a]mX = [c]m for any c: simply let
X = [r]m[c]m = [rc]m.

For example, in Z/17Z, the inverse of [3]17 is [6]17, so we may solve [3]17X =
[11]17 by multiplying both sides by [6]17. Since [6]17[3]17X = [18]17X = [1]17X = X ,
we have:

[3]17X = [11]17

[6]17[3]17X = [6]17[11]17

X = [6]17[11]17 = [6 ·11]17 = [66]17 = [15]17.

Exercises.

42. (i) In Z/13Z, find the inverses of [4], of [5], of [7].
(ii) In Z/13Z, solve
(a) [4]X = [7],
(b) [5]X = [12],
(c) [7]X = [8].

43. (i) In Z/25Z, find the inverse of [3], of [11], of [23].
(ii) In Z/25Z, solve
(a) [11]X = [7],
(b) [23]X = [12],
(c) [3]X = [8].

44. In Z/12Z, decide which elements have inverses, and for each element that has
an inverse, find the inverse.

45. Same question for Z/14Z.

46. Same question for Z/20Z.

47. Show that if [a]m = [a′]m, and a and m are coprime, then a′ and m are coprime.

48. Prove that [a]mn is a unit of Z/mnZ iff [a]m is a unit of Z/mZ and [a]n is a unit
of Z/nZ .

Defini ion. A complete set of units modulo m is a set of integers {a1,a2, . . . ,am},
so that every unit of Z/mZ is represented by exactly one integer in the set.
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49. (i) If p > 2 is prime, show that {1,2, . . . , p− 1} is a complete set of units
modulo p.

(ii) Show that {1,3,−1,−3} is a complete set of units modulo 10.
(iii) Find a complete set of units modulo 24.

50. Show that if p is prime, then

{1,−1,2,−2, . . . ,
p−1

2
,− p−1

2
}

is a complete set of units modulo p.

51. Decide whether {2,22,23, . . . ,2p−1} is a complete set of units modulo p, where
(i) p= 11
(ii) p= 23
(iii) p= 31

52. Show that if b is a primitive root modulo p, then

{b,b2,b3, . . . ,bp−1}

is a complete set of units modulo p.

53. (i) Suppose [b] is a unit of Z/mZ. Show that for all [a] and [a′] in Z/mZ, if
[a] �= [a′] then [ba] �= [ba′].

(ii) Show that if {a1,a2, . . . ,am} is a complete set of units modulo m, and b is
an integer with (b,m) = 1, then {ba1,ba2, . . . ,bam} is also a complete set of units
modulo m.

54. Let b be any integer. Define the function fb :Um → Z/mZ by “multiplication
by [b]m”:

fb([a]m) = [b]m[a]m.

Show that fb is a one-to-one function if and only if [b]m is a unit of Z/mZ.

55. Show that if d divides m, then any complete set of units mod m includes a
complete set of units mod d.

F. Solving Equations in Zm

Consider the equation
[6]X = [14]

in Z/16Z. We can’t solve this by finding the inverse of [6]16 because [6]16 is not a
unit. But we can still find a solution, in fact two solutions. One solution comes from
observing that [14]16 = [30]16, so the equation becomes

[6]X = [30]
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which has the obvious solution [5]16. On the other hand,

[14] = [14−32] = [−18],

so the equation becomes
[6]X = [−18]

which has the obvious solution X = [−3] = [13].
So if the coefficient of X is not a unit of Z/mZ, then the solution we found may

not be unique.
To completely solve linear equations of the form aX = b in Z/mZ, we have the

following general result:

Proposition 7. Suppose X = x0 is a solution of the equation aX = b. Let N be the
set of all solutions to the equation aX = 0. Then every solution to aX = b has the
form X = x0 + t for t inN .

Proof. First notice that if ax0 = b and t is a solution of aX = 0, then

a(x0 + t) = ax0 +at = b+ 0 = b,

so any number of the form x0 + t for t in N is a solution of aX = b.
Conversely, suppose ax0 = b and also az= b for some z. Then

a(z− x0) = az−ax0 = b−b= 0,

and so t = z− x0 is in N , the set of all solutions of aX = 0, and, of course, z =
x0 + t = x0 + (an element of N ), as claimed. ��

This proposition applies to linear equations in various contexts, such as in linear
algebra and differential equations, as well as in modular arithmetic. The equation
aX = b is called nonhomogeneous if b �= 0, and homogeneous if b= 0.

To see how it applies here, consider our example above.

Example 2. We saw that one solution of

[6]16X = [14]16

in Z/16Z was X = [5]16. To find all solutions of [6]16X = [14]16, we need to find all
solutions of the homogeneous equation

[6]16X = [0]16.

Translating this equation into a congruence gives

6x≡ 0 (mod 16)

or
6x= 16y.
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To solve this, divide both sides by 2, the greatest common divisor of 6 and 16, to get

3x= 8y.

Since 3 and 8 are coprime, 8 must divide x, and so the only solutions of this are
x = 8k, y = 3k for any integer k. Thus the solutions of the homogeneous equation
[6]16X = [0]16 are X = [8k]16 for any integer k. There are two different congru-
ence classes in Z/16Z of that form, X = [8]16 and X = [0]16. So in the notation of
Proposition 7, N = {[0]16, [8]16}.

Then the solutions of the original nonhomogeneous equation

[6]16X = [14]16

are X = [5]16 and X = [5]16 +[8]16 = [13]16 = [−3]16.

To sum up, then, solving a non-homogeneous equation aX = b in Z/mZ involves
two separate tasks:

(i) Find some solution (if one exists) of the nonhomogeneous equation aX = b;
(ii) Find all solutions of the corresponding homogeneous equation aX = 0.
For the second task, we have the following generalization of Example 2:

Proposition 8. If d = (a,m), then the general solution in Z/mZ of [a]X = [0] is

X = [
m
d
k]

for k = 0,1,2, . . . ,d−1

Proof. Since d = (a,m), we have

a
m
d

= m
a
d
≡ 0 (mod m).

So

[a][
m
d
k] = [

amk
d

] = [m
ak
d

] = [0].

Thus every congruence class of the form X = [md k] is a solution of [a]X = [0].
Conversely, if [a][x] = [0], then ax≡ 0 (mod m), so ax = mt for some integer t.

Let d = (a,m) and write a= da0,m= dm0. Then a0 and m0 are coprime, and divid-
ing ax= mt by d yields

a0x= m0t.

Thus m0 divides a0x, and since a0 and m0 are coprime, it follows that m0 must
divide x. Thus x=m0k for any k, and so the solutions of [a][x] = [0] are [x] = [m0k]m.

To see how many different solutions we obtain, notice that since m = m0d we
have

m0k ≡ m0l (mod m)

iff
m0k≡ m0l (mod m0d)
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iff
k ≡ l (mod d)

(using a cancellation property of Section 5E). Since 0,1, . . . ,d−1 is a complete set
of representatives modulo d, the solutions of [a][x] = [0] are [x] = [0], [m0], [2m0], . . .
[(d−1)m0]. Recalling that m0 = m

d completes the proof. ��
Example 3. Once we find that X = [4]90 is a solution in Z/90Z of

[36]90X = [54]90,

then to find all solutions, we find all solutions to the corresponding homogeneous
equation

[36]90X = [0]90.

Now (36,90) = 18, so there are 18 solutions of [36]90X = [54]90, namely,

X = [4]90 +[5k]90 = [4 + 5k]90

for k = 0,1,2, . . . ,17.

Example 4. To find all solutions in Z/90Z of

[7]90X = [54]90

we first find some solution. Now [7]90 is a unit of Z/90Z, with inverse [13]90 since
13 ·7 = 91, so we have a solution X = [13]90[54]90 = [702]90 = [−18]90. To find all
solutions we find all solutions to the corresponding homogeneous equation

[7]90X = [0]90.

But since [7] is a unit in Z/90Z, we may multiply both sides by [7]−1 = [13] to get
X = [0]90. Hence X = [−18]90 = [72]90 is the only solution of [7]90X = [54]90.

Example 5. Let [a]m be a unit of Z/mZ. If we apply the proposition to find all
solutions in Z/mZ of

[a]mX = [1]m

we find that since (a,m) = 1, the equation has a unique solution. Thus the inverse
of [a]m in Zm is unique.

Section 8A, Exercise 4 has a more general version of this result.

Exercises.

56. In Z/20Z,
(i) find some solution to [12]X = [28];
(ii) find all solutions to the corresponding homogeneous equation [12]X = [0];
(iii) find all solutions to [12]X = [28].
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57. In Z/12Z,
(i) find some solution to [14]X = [18];
(ii) find all solutions to the corresponding homogeneous equation [14]X = [0];
(iii) find all solutions to [14]X = [18].

58. Explain why [36]X = [6] has no solution in Z/45Z.

59. Show that if [a] is a unit of Z/mZ, then
(i) for any [b], there is a solution of the equation [a]X = [b];
(ii) the only solution of the homogeneous equation [a]X = [0] is X = [0];
(iii) the equation [a]X = [b] has a unique solution for every [b].

60. In Z/11Z, find all solutions of
(i) [6]X = [3]
(ii) [8]X = [9]
(iii) [5]X = [9].

61. In Z/15Z, find all solutions of:
(i) [36]X = [78]
(ii) [42]X = [57]
(iii) [25]X = [36].

62. In Z/30Z, find all solutions of:
(i) [4]X = [18]
(ii) [9]X = [48]
(iii) [10]X = [100]
(iv) [12]X = [8]
(v) [6]X = [2].

G. Trial Division

Congruence classes are helpful in thinking about how to factor numbers or to find
prime numbers.

Factoring. How do we factor a large number?
If N is the number we wish to factor, the most naive method is to divide N by

2, 3, 4, 5, . . . , until we find a number that divides N. If we don’t find any number
<
√
N which divides N, then N must be prime, for if N = ab, then at least one of a

or b must be <
√
N.

This factoring method is called trial division.
Trial division is an algorithm that always works: it either finds a factor of N, or

proves that N is prime.
However, trial division is slow. As just described, trial division would take p−1

divisions to find the smallest prime divisor p of N, and that makes trial division
totally unfeasible on even the fastest computers for numbersN used in cryptography
(see Section 10A).
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Nonetheless, trial division is useful as a first step in a factoring procedure. Before
applying a sophisticated factoring algorithm, it makes sense to use trial division to
find and divide out the small prime factors of the number to be factored.

Since trial division is a useful tool, it is worth looking at ways to make the tool a
bit more efficient.

Suppose we want to use trial division on N to look for prime divisors <109. The
least efficient way to apply trial division is to start dividing the number N by all
numbers from 2 to 109. For once we find that 2 does not divide N, then clearly no
multiple of 2 will divide N, so it is wasted effort to divide N by any even number
>2. Similarly, once we find that 3 does not divide N, then neither will any multiple
of 3.

To minimize the number of trial divisions, we could divide only by primes <109.
For if N has a factor m < 109, then m, hence N, has a prime factor <109. Thus
instead of doing 109 − 1 divisions, we could just divide N by the approximately
50.8 million primes less than 109.

However, in order to reduce the number of divisions to 50.8 million, we either
have to store the 50.8 million primes, or somehow test each number <109 for prime-
ness before dividing. The former method is costly in preparation and memory; the
latter is costly in time.

A useful compromise for improving the efficiency of trial division without having
(or creating) large lists of prime numbers is to divide not by all numbers, but only
by numbers that are not obviously composite.

For example, once we know 2 is not a factor of N, we don’t need to divide N
by even numbers. Once we know 5 is not a factor of N, we don’t need to divide N
by multiples of 5. Thus we could divide the number N only by 2, 5, and numbers
that are coprime to 10 = 2 ·5. In terms of congruence classes, we could restrict trial
division to 2, 5 and numbers in the congruence classes of 1, 3, 7, and 9 (mod 10).

Or we could restrict trial division of N to division by 2, 3, 5 and numbers in the
congruence classes modulo 30 = 2 ·3 ·5 that are coprime to 30, namely, numbers in
the congruence classes of 1, 7, 11, 13, 17, 19, 23, and 29 (mod 30). Restricting to
division by numbers in those eight congruence classes reduces the number of trial
divisions to 8/15 the number needed if we were to trial divide by all odd numbers.

Trial division only by divisors in the congruence classes that are units modulo
m is called a wheel. The congruence classes from which the trial divisors come are
called the spokes. In the case of the mod 30 wheel, the wheel has 8 spokes.

It is worth recalling the facts which make the wheel method appropriate for trial
division.

Let m be the modulus of the wheel. Modulo m, any two numbers in a given
congruence class have the same greatest common divisor with m. (For example, 54
= 144 (mod 30), and (54, 30) = (144, 30) = 6.) Thus in a given congruence class
modulo m, either all the numbers are coprime to m, hence units modulo m, hence
are not multiples of any prime divisor of m, or all the numbers are not coprime to m.

So if we are searching for prime divisors of N that are coprime to m, then, it
suffices to divide N only by numbers in those congruence classes modulo m that
consist of units modulo m.
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Thus in any wheel modulo m, the number of spokes needed for trial division is
φ(m), the number of units in Z/mZ.

One suggestion [Wunderlich and Selfridge (1974)] was to use a wheel modulo
30030 = 2 ·3 ·5 ·7 ·11 ·13. This wheel has φ(30030) = 5760 spokes and does trial
division only by the prime divisors of 30030 and by numbers not divisible by 2, 3, 5,
7, 11 or 13. With the wheel modulo 30030, trial division is done by only 19 percent
(5760/30030) of all numbers below a given bound, rather than by 50 percent of all
numbers if trial division is done by all odd numbers, or 40 percent using the wheel
modulo 10.

Exercises.

63. For each of the following numbers, use trial division to find a factor or show
that the number is prime:

(i) 433;
(ii) 1247;
(iii) 1261;
(iv) 2413;

64. Compute the percentage of congruence classes modulo 210 = 2 · 3 · 5 · 7 that
consist of numbers which are not coprime to 210.

65. If n is a number not in the congruence class of 1, 7, 11, 13, 17, 19, 23, and 29
mod 30, show that n must be a multiple of 2, 3, or 5.

66. (Review). Show that if a≡ b (mod m), then (a,m) = (b,m).

67. Write a program to do trial division up to 1000 by the mod 30 wheel with 8
spokes.

68. Suppose your computer had ready access to a table of the 78,498 primes below
1,000,000. Compare the number of divisions needed to test a large number N for
division by a number <1,000,000 by the wheel modulo 30030, and by trial division
by the 78,498 primes <1,000,000.

Sieves. Trial division is useful as the first step in finding large prime numbers. The
idea, in fact, goes back to Eratosthenes (200 B.C.).

To find possible prime numbers in some interval, we discard all the numbers in
the interval that are divisible by small primes. Then most of the numbers will be
eliminated, and the remaining numbers will be potential primes.

If we seek the prime numbers less than 100, for example, this method works
perfectly.

We know the primes <10. For the others <100, write down all the numbers from
1 to 100. If we first cross out all multiples of 2 and 5, we are left with numbers
ending in 1, 3, 7, and 9:
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1 3 7 9
11 13 17 19
21 23 27 29
31 33 37 39
41 43 47 49
51 53 57 59
61 63 67 69
71 73 77 79
81 83 87 89
91 93 97 99

Then we cross out all multiples of 3 and 7.

11 13 17 19
23 29

31 37
41 43 47

53 59
61 67
71 73 79

83 89
97

What remains are the numbers <100 that are not multiples of 2, 3, 5, or 7. But
these are all prime. This is because any composite number <100 must be divisible
by some prime <

√
100.

The same strategy will work, albeit not so perfectly, for much larger numbers. For
example, suppose we wish to find primes in the set of numbers between 1194601 and
1194700. By a result in Section 4C, we should expect that the chance that a given
randomly chosen number in that interval is prime is around 1/ ln(1194600)∼ 1/13,
hence we should expect something like 7 or 8 primes in that interval.

To find the primes, we trial divide to discard all numbers that are divisible by
small primes. To start, we discard the numbers divisible by 2 or 5. We are left with
the following set of numbers.

1194601 1194603 1194607 1194609
1194611 1194613 1194617 1194619
1194621 1194623 1194627 1194629
1194631 1194633 1194637 1194639
1194641 1194643 1194647 1194649
1194651 1194653 1194657 1194659
1194661 1194663 1194667 1194669
1194671 1194673 1194677 1194679
1194681 1194683 1194687 1194689
1194691 1194693 1194697 1194699
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Next, we discard all multiples of 3: since 1194600 is a multiple of 3, multiples
of 3 are those ending in 03, 09, 21, 27, 33, 39, 51, 57, 63, 69, 81, 87, 93, and 99.
Then we discard multiples of 7, starting with 1194613: 13, 27, 41, 55, 69, 83, 97;
then multiples of 11, starting with 1194600: 11, 77; and multiples of 13, starting
with 1194609: 09, 35, 61, 87. This leaves nineteen numbers out of the original 100
that are not multiples of 2, 3, 5, 7, 11, or 13:

1194601 1194607
1194617 1194619

1194623 1194629
1194631 1194637

1194643 1194647 1194649
1194653 1194659

1194667
1194671 1194673 1194679

1194689
1194691

If we continue trial division by the primes between 17 and 53, we find that
1194607 is a multiple of 17, 1194617 is a multiple of 41, 1194619 is a multiple
of 37, 1194643 is a multiple of 23, 1194647 is a multiple of 31, 1194673 is a multi-
ple of 53, 1104689 is a multiple of 23, and 1194691 is a multiple of 31. This leaves
eleven numbers:

1194601
1194623 1194629

1194631 1194637
1194649

1194653 1194659
1194667

1194671 1194679

Continuing to trial divide by primes <100 does not allow us to discard any more of
these numbers.

In Chapter 20 we will give a method, not trial division, that will efficiently decide
with almost perfect certainty whether a number is prime. For now, if you are really
curious about which six of the numbers above are prime, and which five are not, you
could continue trial division: for if one of those numbers does not have a divisor less
than the square root of 1194699, that is, less than 1094, it must be prime.

Exercises.

69. Find all primes between 200 and 250.

70. Find all primes between 700 and 800.

71. Find the smallest number >120120 which is divisible by no prime <20.





Chapter 7
Rings and Fields

In this chapter we introduce and apply to Z/mZ some of the most basic concepts of
“abstract” algebra: the concepts of group, ring, field, and ring homomorphism.

A. Axioms

Suppose we wish to find an integer x that solves the equation

(3 + x)+ 4 = 9.

To solve the equation, we need to use various properties of equality: symmetry
(if a = b then b = a), transitivity (if a = b and b = c, then a = c), and “al-jabr” (if
a= b, then a+ c= b+ c). We also use properties of Z. We’ll keep track of these as
we solve the equation, one step at a time.

First, we simplify the left hand side. We have

3 + x= x+ 3 (commutativity)

we may add 4 to both sides (al-jabr) to get

(3 + x)+ 4 = (x+ 3)+ 4.

Now
(x+ 3)+ 4 = x+(3 + 4) (associativity) = x+ 7.

By transitivity of equality, we get

(3 + x)+ 4 = x+ 7,

and then, by symmetry and transitivity of equality,

x+ 7 = 9.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 123
in Mathematics, c© Springer Science+Business Media LLC 2009



124 7 Rings and Fields

Now we add −7 to both sides:

(x+ 7)+ (−7) = 9 +(−7) = 2.

The left side becomes

(x+ 7)+ (−7) = x+(7 +(−7)) (associativity)

and we know
7 +(−7) = 0 (property of negatives)

so adding x to both sides,

x+(7 +(−7)) = x+ 0.

By transitivity of equality,

(x+ 7)+−7 = x+ 0.

Now x+ 0 = x (property of zero), so by transitivity and symmetry of equality, we
finally get

x= 2.

In this (painful) solution of the equation, we used these properties of the integers:

• closure of addition: the sum of two integers is an integer: if a,b are integers, so
is a+b: thus, if 3 + x is an integer, so is (3 + x)+ 4;

• commutativity of addition: a+ b = b+ a for all integers a and b: thus, 3 + x =
x+ 3;

• associativity of addition: (a+ b)+ c = a+ (b+ c) for all integers a,b,c: thus,
(x+ 3)+ 4 = x+(3 + 4);

• 0 is an additive identity: for all integers b, b+ 0 = b: thus x+ 0 = x; and
• any integer has a negative: for any integer b there is an integer −b so that b+

(−b) = 0: thus, 7 +(−7) = 0.

These five properties mean that the set Z of integers with the operation of addition
(+), is an abelian group. The term “abelian” refers to the condition that addition is
commutative.

Now, in the rational numbers Q, let’s solve this equation:

(3x+ 1) · 2
5

= 7.

We’ll use the three properties of equality listed above, and also:
if a= b then ac= bc.
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For the left side, we see that

(3x+ 1) · 2
5

= (3x) · 2
5

+ 1 · 2
5

(distributivity)

= (3x) · 2
5

+
2
5

(1 is a multiplicative identity)

= 3 ·
(
x · 2

5

)
+

2
5

(associativity)

= 3 ·
(

2
5
· x
)

+
2
5

(commutativity)

=
(

3 · 2
5

)
· x+

2
5

(associativity)

=
6
5
· x+

2
5
.

So by symmetry and transitivity of equality, the original equation yields

6
5
· x+

2
5

= 7.

Now we add (− 2
5) to both sides. The right side becomes 7 +(− 2

5) = 33
5 . Working

with the left side, we get
(

6
5
· x+

2
5

)
+
(
−2

5

)
=

6
5
· x+

(
2
5

+
(
−2

5

))
(associativity)

=
6
5
· x+ 0 (negatives)

=
6
5
· x (property of 0).

So the equation becomes
6
5
· x=

33
5

.

Multiplying both sides by 5
6 gives

5
6
·
(

6
5
· x
)

=
5
6
· 33

5
.

By associativity and the property of the identity element 1, the left side becomes
(

5
6
· 6

5

)
· x= 1 · x= x,

so the original equation becomes

x=
5
6
· 33

5
=

33
6

.
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Here, in addition to the abelian group properties of addition used to solve the first
equation, we used:

• closure of multiplication, which means, the product of two rational numbers is a
rational number: if a and b are rational numbers, then so is a ·b: thus, (3x) · 2

5 is
a rational number;

• distributivity of multiplication over addition: for all a,b,c in Q, (a+ b) · c =
a · c+b · c: thus, (3x+ 1) · 2

5 = (3x) · 2
5 + 1 · 2

5 ;
• associativity of multiplication: for all a,b,c in Q, (a · b) · c = a · (b · c); thus,

(3x) · 2
5 = 3 · (x · 2

5);
• commutativity of multiplication: for all a,b in Q, a ·b= b ·a; thus, (x · 2

5 )= ( 2
5 ·x);

• 1 is a multiplicative identity: for all a in Q, 1 ·a= a; thus, 1 · 2
5 = 2

5 ;
• every rational number except 0 has an inverse: for all a �= 0 in Q, there exists a

rational number a−1 so that a ·a−1 = 1; thus, 5
6 · 6

5 = 1.

These properties mean that the set Q of rational numbers with the operations of
addition (+) and multiplication (· ), is a fie d.

The set Z of integers with addition and multiplication satisfies all of the proper-
ties of Q listed above except the existence of multiplicative inverses. Such a set is
called a commutative ring.

These properties of numbers seem so natural that you probably lost patience with
how tediously we solved those two equations.

But if you have seen calculus in 3-space, consider the set R3 of vectors in space.
There are two operations on R3, vector addition and the cross product. The three unit
vectors in R3 are i= (1,0,0), j = (0,1,0) and k= (0,0,1), and the cross product of
these vectors is given by:

i× i= j× j = k× k= 0,

i× j=− j× i= k, j× k =−k× j= i,k× i=−i× k= j.

Every vector (a,b,c) in R3 is a linear combination of i, j and k: (a,b,c) = ai+b j+
ck, so we extend the cross product to all vectors in R3 by distributivity.

Example 1. Using the same steps we used in solving (3 · x+ 1) · 2 = 7 in Q, let us
try to solve the equation

((i× v)+ j)× j= k

where v = (x,y,z) = xi+ y j+ zk is a vector with unknown components x,y,z to be
found.

Distributivity works, to give

(i× v)× j+ j× j= k,

and j× j = 0, the zero vector. But then, to work with

(i× v)× j= k,

we can’t use commutativity and associativity as we did in Q, because both fail
(for example, (i× j)× j �= i× ( j× j)). What to do? In fact, none of the properties
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pertaining purely to multiplication work with the cross product except closure: no
associativity, no commutativity, no identity element, hence, of course, no multiplica-
tive inverses. (Since v = xi+ y j+ zk, we can try to solve for the components of v.
Using distributivity, we find that (i× v) = −z j+ yk, then (−z j+ yk)× j = −yi, so
the equation becomes

−yi= k,

which is impossible.)
So if we have a set of objects on which the operations of addition and multipli-

cation are defined, and we want to solve equations in that set, it is very helpful that
the operations satisfy the properties we are accustomed to using with numbers.

Now we codify the definitions we gave above.
To define a group, we start with a set G with an operation ∗. The operation ∗ may

be thought of as a function whose domain is all of G×G (ordered pairs of elements
of G) and whose range is G. That means that for every ordered pair (a,b) in G×G,
a∗b is an element of G. The property that ∗ is defined for all pairs of elements of G
is often described by saying that G is closed under the operation ∗.

Defini ion. A set G with an operation ∗ is a group if:
(associativity) For all a,b,c in G, (a∗b)∗ c= a∗ (b∗ c).
(identity) There exists a special element e in G, called the identity, so that for all

a in G, e∗ a= a ∗ e= a.
(inverse) For every a in G, there is an element b in G so that a∗b= b∗a= e.

The group G is called abelian if in addition:
(commutativity) For all a,b in G, a∗b= b∗a.

With the operation +, Z and Q are abelian groups.

Defini ion. A ring (with identity) is a set R with two operations, + and ·, and two
special elements, 0 and 1, that satisfy:
R with the operation + (addition) is an abelian group with identity 0, called the

zero element of R. The element b so that a+b= b+a= 0 is the negative of a.
R with the operation · (multiplication) satisfies the associative property, and the

element 1 is the identity element under multiplication.
R with + and · satisfies the distributive laws: for every a,b,c in R, a(b+ c) =

(ab)+ (ac), and (a+b)c= (ac)+ (bc).
If in addition, the multiplication · on R satisfies the commutative law: for all a,b

in R, a ·b= b ·a, then R is called a commutative ring.

Examples: Z, Q, R,C, and the sets Z/mZ of congruence classes of integers mod
m are all commutative rings.

Some examples of sets that are not rings are:
the set N of natural numbers, with the usual operations of + and ·;
the set R+ of all nonnegative real numbers with the usual operations of + and ·;
the set Z−{3} of all integers except 3 with the usual operations of + and ·; and
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the set R3 of all vectors in real three-space, with vector addition, and cross prod-
uct as multiplication, as we observed above.

The set Z−{3} is not a ring with respect to the usual addition and multiplication
in Z for the reason that Z−{3} is not closed under addition: if a,b are in Z−{3},
then a+b need not be in Z−{3}. For example, 1 + 2 = 3: 1 and 2 are in Z−{3},
but 3 is not.

If R is a ring, and S is a subset of R that is closed under addition, multiplication,
taking negatives, and has 0 and 1, then S is also a ring. To see this, one has to check
the properties, associativity of addition, distributivity, etc. But all of them hold in S
because S is a subset of R, and all of the operations on S are the same as those on R.
So the axioms are valid for S because they are valid for R. When R is a ring and S is
a subset of R which is a ring with the operations those of R, we call S a subring of R.

Example 2. Z can be thought of as a subset of Q by identifying the integer a with
the rational number a/1. Then Z is a subring of Q. Similarly, R is a subring of C.
But Z/mZ is not a subring of Z, since Z/mZ is not a subset of Z. Rather, it is a set
of subsets of Z, the congruence classes of Z modulo m.

We now verify that Z/mZ is a commutative ring. We shall write [a]m as [a] if the
modulus m is clear from the context.

Theorem 1. Z/mZ is a commutative ring with identity for every m≥ 2.

Proof (Sketch). We defined addition, multiplication, and subtraction in Z/mZ by
[a] + [b] = [a+ b], −[a] = [−a], [a] · [b] = [a · b]. Set 1 = [1],0 = [0]. With these
definitions, it is easy to show that since Z is a commutative ring with identity, then
so is Z/mZ. For example, to verify the associative law for multiplication, let a,b,c
be any elements of Z, then

[a] · ([b] · [c]) = [a] · [b · c]
= [a · (b · c)]
= [(a ·b) · c] (since associativity holds in Z)
= [a ·b] · [c]
= ([a] · [b]) · [c].

The other properties are equally easy to verify. ��
Units. To define a field, it is helpful to look at the set of invertible elements of a
commutative ring:

Defini ion. An element a of a commutative ring R is called a unit of R if there exists
some b in R so that a ·b= b ·a= 1.

Example 3. In Z only 1 and −1 are units. In Q every nonzero rational number is
a unit.
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The statements “a is a unit” and “a has an inverse” mean the same thing.
We explored the units of Z/mZ in Chapter 6E, and found that [a]m in Z/mZ is a

unit iff there is an integer b so that ab≡ 1 (mod m), if and only if (a,m) = 1.
A useful fact about units is that units are closed under multiplication; that is, if

a and b are units of R, so is ab. For if a,b are units of a ring R, and a−1,b−1 are
their inverses, then ab has an inverse also, namely, b−1a−1. Thus the units of a ring
R form a group under multiplication.

We will denote the group of units of R byUR.
Now we define a field.

Defini ion. A fie d F is a commutative ring (hence is a set with addition, multiplica-
tion, 0, and 1 satisfying all the properties of a commutative ring) with two additional
properties:

(inverses) Each a �= 0 in F is a unit.
(non-triviality) F has at least two elements.

Thus F is a field if F is a commutative ring and the group of units UF contains
all elements of F except the zero element 0.

Examples of fields include Q,R,C, but not Z. We will determine them for which
Z/mZ is a field in Section 7C.

Here are some basic properties of groups and rings:

Proposition 2. A group has only one identity element.

Proof. Suppose e and e′ are both identity elements. Then e ∗ e′ = e′ since e is an
identity element, and e∗ e′ = e since e′ is an identity element. So e= e′. ��
Proposition 3. A ring with identity contains only one zero element and only one
identity element.

Proof. If R is a ring, then R is a group under addition, so has only one zero element
by the last proposition. If 1 and 1′ are two identity elements, then 1 = 1 ·1′ = 1′ as
in the proof of the last proposition. ��
Proposition 4. In a group, an element has only one inverse.

Proof. Given g in the group, let h and k be inverses for g. Then h ∗ g = g ∗ h = e,
and g ∗ k= e. Then

g∗h= g∗ k.
Multiplying by h on the left gives:

h ∗ (g ∗h) = h∗ (g∗ k)
(h∗ g)∗h= (h∗g)∗ k by associativity

e∗ h= e∗ k since h∗g= e,
h= k

��
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This proposition implies that in a ring, an element a has only one negative, de-
noted −a, and if b is a unit of a ring with identity, then b has only one inverse,
denoted b−1.

Exercises.

1. In a ring with identity, prove that (−1) · (−1) = 1.

2. In a ring R with identity, prove that −(−a) = a for all a in R.

3. Show that in a ring R, if a+b= d and a+ c= d, then b= c.

4. Show that in a ring R, if a ·b= b ·a= 1 and a · c= 1, then b= c.

5. Show that in a ring R, if a has an inverse in R, then there is a unique solution in
R to the equation ax= d.

6. Prove that for all a,b in a ring R, (−a)b=−(ab) = a(−b)
7. Show that if R is a ring, then for every b in R, b ·0 = 0.

8. LetG be a group, with operation ∗ and identity element e. Prove left cancellation
in G: for all a,b,c in G, if a∗ b= a∗ c, then b= c.

9. Let G be a group, with operation ∗. Prove left solvability in G: for every a and b
in G, there is some x in G so that a∗ x= b.

10. Prove: A field F is a commutative ring with identity and with at least two
elements, such that for all a �= 0 and b in F , the equation ax = b has a unique
solution in F .

11. Suppose F is a field, and a is a nonzero element of F . Show that if r, s are in F
and ar = as, then r = s.

12. Determine which of the axioms for a commutative ring hold and which fail for
(i) N;
(ii) R+.

13. For a/b and c/d rational numbers, say a/b≡ c/d (mod 1) if (a/b)− (c/d) is
an integer. Call the set of congruence classes mod 1, Q/Z.

(i) Show that every rational number is congruent (mod 1) to a rational number
a/b with 0≤ a/b< 1.

(ii) Define addition and multiplication in Q/Z by working with representatives
between 0 and 1 as follows. If 0 < a

b < 1 and 0 < c
d < 1 then a

b · cd = ac
bd and a

b + c
d =

the fractional part of ad+bc
bd .

Is Q/Z a commutative ring? a field? Check the axioms.
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14. In R3 with the operations of vector addition and crossed product:
(i) can you find two vectors v and w so that

v×w = w×v

and v×w is not the zero vector?
(ii) can you find three vectors v, w and y so that

(v×w)×y = v× (w×y)

and (v×w)×y is not the zero vector?

15. Find the units of Z/6Z; of Z/7Z; of Z/8Z.

16. If m is odd, find the inverse of [2]m in Z/mZ.

17. Find the units of Z/21Z and verify that they are closed under multiplication.

B. FOIL

In this section we look at some ancient and modern consequences of the axioms of
a commutative ring.

Let’s start with an ancient property. Proposition 1 of Book II of Euclid’sElements
is the distributive law in the generalized form:

A(B+C+D+ . . .) = AB+AC+AD+ . . . .

Proposition II-5 of Euclid’s Elements is the property,

A2−B2 = (A+B)(A−B).

Perhaps it is worthwhile, if tedious, to prove this from the properties of a commuta-
tive ring:

(A+B)(A−B) = (A+B)(A+(−B))
= A(A+(−B))+B(A+(−B)) (distributive law)

= (A2 +A(−B))+ (BA+B(−B)) (distributive law)

= (A2 +(−(AB)))+ (BA+(−(B2))) (by Exercise 6, above)

= (A2 +(−AB)))+ (AB+(−(B2))) (commutativity of multiplication)

= (A2 +(−AB+AB))+ (−(B2)) (associativity of addition)

= (A2−0)−B2 (definition of negatives)

= A2−B2 (definition of zero)
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Table 7.1 Ordinary multiplication

a1 a0
b1 b0

a1b0 a0b0
a1b1 a0b1

a1b1 a0b1 +a1b0 a0b0

The three applications of the distributive law in the first two lines of the proof are
equivalent to an application of the mnemonic, “FOIL”. To multiply (a+b)(c+d),
multiply the First terms, then the Outside terms, then the Inside terms, then the Last
terms, and then add them, to get ac+ad+bc+bd.

Here is an easy consequence of FOIL:

Proposition 5. For all a0,a1,b0,b1 in a commutative ring,

a1b0 +a0b1 = (a1b1 +a0b0)− (a1−a0)(b1−b0).

This proposition may seem routine, but in fact it has a rather interesting conse-
quence discovered only in 1962, known as:

Karatsuba multiplication. Consider the usual algorithm for multiplying two 2-
digit numbers a1r+a0 and b1r+b0 in base r, as laid out in Table 7.1.

Ordinary multiplication uses the distributive law, associativity of addition and
commutativity of addition and multiplication:

(a1r+a0)(b1r+b0) = (a1b1r2 +a1b0r)+ (a0b1r+a0b0)

= a1b1r2 +a1b0r+a0b1r+a0b0

= a1b1r2 +(a1b0 +a0b1)r+a0b0

and involves four multiplications of digits: a1b1, a0b1, a1b0, and a0b0.
Proposition 5 shows that we can replace the middle term a0b1 +a1b0 by (a1b1 +

a0b0)− (a1−a0)(b1−b0), in which case the algorithm is

(a1r+a0)(b1r+b0) = a1b1r2 +(a1b0 +a0b1)r+a0b0

= a1b1r2 +(a1b1r+a0b0r− (a1−a0)(b1−b0)r)+a0b0

= (a0b0r+a0b0)+ (a1b1r2 +a1b1r)− (a1−a0)(b1−b0)r,

which may be laid out as in Table 7.2.
This way of multiplying is called Karatsuba multiplication. Multiplying takes

more time than adding (why were logarithms invented in 1614?), so Karatsuba
multiplication has an advantage over the usual algorithm for multiplying two two-
digit numbers–we only need to do three multiplications of digits:
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Table 7.2 Karatsuba multiplication

a1 a0
b1 b0

a0b0 a0b0
a1b1 a1b1

−(a1−a0)(b1−b0)

a1b1 a0b1 +a1b0 a0b0

a0b0

a1b1

(a1−a0)(b1−b0)

rather than four multiplications:
a0b0

a1b1

a1b0

a0b1

The strength of Karatsuba multiplication lies in extending the method to large
numbers.

To multiply two numbers of four digits each in base 10, write them as a1 ·102+a0

and b1 ·102 +b0. Then using Karatsuba,

(a1 ·102 +a0)(b1 ·102 +b0)

= (a1b1 ·104 +(a1b1 +a0b0− (a1−a0)(b1−b0))102 +a0b0.

This involves three multiplications of two-digit numbers:

a0b0

a1b1

(a1−a0)(b1−b0).

Each of these multiplications requires three multiplications of single digit numbers,
for a total of nine multiplications of single digit numbers. The usual method requires
16 single digit multiplications.

In general, we can show

Proposition 6. Multiplying two numbers of 2n digits each in any base r requires
4n digit multiplications with the usual algorithm, and 3n digit multiplications with
Karatsuba.

Thus for multiplying two 32 = 25-digit numbers, Karatsuba requires 35 = 243
digit multiplications, rather than 45 = 1024 digit multiplications for the usual
algorithm.
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Proof. For n= 1 we showed that the usual algorithm requires 4 digit multiplications,
and Karatsuba requires 3. Suppose the result is true for numbers of 2k digits. If we
have two numbers of 2k+1 digits each, write them as a= a12k+a0 and b= b12k+b0

where a1,a0,b1,b0 have at most 2k digits. Karatsuba computes the product ab using
three multiplications of numbers with 2k digits, instead of four multiplications. If
we assume, by induction, that multiplying two numbers of 2k digits takes 3k digit
multiplications via Karatsuba, and 4k via the usual algorithm, then to multiply a
and b by the usual algorithm requires 4 ·4k = 4k+1 digit multiplications, and and by
Karatsuba requires 3 · 3k = 3k+1 digit multiplications. That proves the proposition
by induction. ��

Karatsuba multiplication is an example where the desire for fast algorithms for
computing led to a fresh look at one of the most basic algorithms in mathematics.

Exercises.

18. Prove Euclid’s Proposition 1 in the form

A · (B1 +B2 + . . .+Bn) = A ·B1 +A ·B2 + . . .A ·Bn
for all A,B1, . . . ,Bn in a ring, by induction on n.

19. Try Karatsuba multiplication on
(i) 37 ·56
(ii) 3456 ·4528

20. Try Karatsuba multiplication on (56,45)60 ·(37,34)60 (two numbers in base 60,
as used by the ancient Babylonians).

C. Zero divisors and Z/mZ

In R= Z or any field, the following property holds:

(nzd) For all a,b in R, if ab= 0, then a= 0 or b= 0.

A nonzero element a of a ring R for which there is some b, also not zero, with
ab = 0, is called a zero divisor. The terminology is reasonable, for if a,b,c are
numbers and ab= c, then a is a divisor of c, or a “c-divisor.”

A commutative ring, such as Z, which satisfies (nzd) is said to have no zero
divisors. Thus the ring Z has no zero divisors.

But there are rings that do have zero divisors, and we have begun to encounter
them. To take the smallest example, consider Z/4Z:

[2]4 · [2]4 = [4]4 = [0]4,
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the zero element of Z/4Z. Thus [2]4 is a zero divisor in Z/4Z, so Z/4Z has zero
divisors. Or in Z/6Z,

[3]6 · [4]6 = [12]6 = [0]6,

so both [3]6 and [4]6 are zero divisors in Z/6Z.
If you have encountered matrices, then you probably know that the setM of 2×2

matrices with real entries has an addition and a multiplication on it, and if we set

I =
(

1 0
0 1

)
,0 =

(
0 0
0 0

)

then I and 0 act as the identity and zero elements, respectively. Then the set M is a
ring. But M is not commutative, for

(
0 1
0 0

)(
2 3
0 0

)
=
(

0 0
0 0

)
,

while (
2 3
0 0

)(
0 1
0 0

)
=
(

0 2
0 0

)
,

and M also has zero divisors, as you can see.
In a commutative ring R, if a and b are not 0 and ab= 0, then we’ll call b a com-

plementary zero divisor for a, or say that a and b are complementary zero divisors.
If a is a zero divisor, then a may have many complementary zero divisors. For

example, in Z/12Z, [6] has complementary zero divisors [2], [4], [6], [8] and [10].
Any non-zero solution of [6]12X = [0]12 is a complementary zero divisor for [6]12.

Non-zero divisors can be canceled:

Proposition 7 (Cancellation). Let R be a commutative ring and suppose a �= 0 in R
is not a zero divisor. Then if b,c are in R and ab= ac, then b= c.

Proof. From ab= ac we obtain ab−ac= 0, hence

a(b− c) = 0.

Since a is not a zero divisor and a(b− c) = 0, we must have b− c= 0, and so

b= c.

��
Corollary 8. If a is a non-zero divisor of a commutative ring R, then for all b in R,
the equation ax= b has at most one solution.

Proof. If ax1 = b and ax2 = b, then ax1 = ax2. By cancellation, x1 = x2. ��
If the commutative ring R has no zero divisors, Corollary 8 applies to all equations
ax= b for a �= 0.
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A similar result is true for polynomial equations of higher degree, as we’ll see in
general in a later chapter. But we can do degree 2 here.

Recall that a quadratic equation x2− rx+ s = 0 with r,s in the real numbers R

has at most two roots in R, namely, the two roots given by the quadratic formula:
x= r±b

2 where b is a number whose square is r2−4s, if such a number b exists. But
in general we have:

Proposition 9. Let R be a commutative ring. If R has no zero divisors, then for every
r,s in R, the equation x2− rx+ s = 0 has at most two solutions in R. On the other
hand, if R has non-zero elements a and b such that ab= 0 and at least three of 0,a,b
and a+ b are distinct, then the equation x2− (a+ b)x = 0 has at least three roots
in R.

Proof. Suppose a and b are complementary zero divisors in R, so that a,b �= 0 and
ab= 0. Then it’s easy to check that

x2− (a+b)x= 0

has four solutions: a,b,a+b, and 0. So if at least three of these are distinct, then the
equation has at least three distinct roots.

Conversely, suppose R has no zero divisors, and suppose x2− rx+ s= 0 has two
solutions a,b: thus,

a2− ra+ s= 0,

b2− rb+ s= 0.

Suppose also c is a solution, so that

c2− rc+ s= 0.

Subtracting this last equation from each of the previous two, we get

r(a− c) = a2− c2 = (a+ c)(a− c),

r(b− c) = b2− c2 = (b+ c)(b− c).
Since R has no zero divisors, if c �= a and c �= b, we can cancel a− c from the first
equation and b− c from the second, to get

r = a+ c,
r = b+ c,

which implies that a= b. Thus if a �= b, then cmust equal a or b, and so there cannot
be more than two solutions of x2− rx+ s= 0. ��

Our experience with numbers might suggest that a ring having zero divisors is
not as “natural” as a ring that does not, because the rings we encounter in courses
through calculus: Z, Q, R, C, all have no zero divisors. In fact, Q, R and C are
fields, Z is a subring of a field, and:
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Proposition 10. A f eld has no zero divisors.

The converse of this proposition is not true: Z is not a field, and Z has no zero
divisors.

Proposition 10 follows immediately from

Proposition 11. In a commutative ring R, a unit cannot be a zero divisor.

Proof. Suppose a is a unit in R. To show that a is not a zero divisor in R, we will
show that if ab = 0 in F , then b must be 0. Suppose ab = 0. Multiply both sides
on the left by a−1, to get a−1(ab) = a−10 = 0. Reassociating the left side, we have
(a−1a)b= 0, hence 1 ·b= 0, hence b= 0. ��

Now we consider Z/mZ. Is it a field? Does it have zero divisors? If you check
back to the multiplication tables for Z/3Z and Z/4Z, you will observe that Z/3Z

is in fact a field–every non-zero element has an inverse–whereas in Z/4Z property
(nzd) (no zero divisors) fails, because [2] · [2] = 0, and also the property that all the
non-zero elements have inverses fails, because [2] has no inverse.

Whether or not Z/mZ is a field is easily decided once we recall which elements
are units in Z/mZ.

Theorem 12. In Z/mZ,
(i) [a] is a unit, if (a,m) = 1;
(ii) [a] is a zero divisor, if 1 < (a,m) < m; and
(iii) [a] = 0, if m divides a.

Proof. If m divides a, then a≡ 0 (mod m), so [a] = [0]. Thus (iii) holds.
To prove (ii): suppose (m,a) = d and 1 < d <m. Then a is not a multiple ofm, so

[a] �= [0]. But since d divides m, there is a number e with 1 < e< m so that de= m.
Then [e] �= [0], while ae is a multiple of de= m, so [a][e] = [ae] = [0]. Thus [a] is a
zero divisor.

We proved (i) in Chapter 6. (Can you recall the proof?) ��
Corollary 13. Z/mZ is a f eld iff m is prime.

Proof. If [a] is any nonzero element of Z/mZ, thenm doesn’t divide a. Ifm is prime,
it follows that (a,m) = 1, hence [a] is a unit. Thus every nonzero element of Z/mZ

is a unit, so Z/mZ is a field.
If m is not prime, then m= a ·b with 1 < a,b< m; then [a][b] = [m] = [0], while

[a] and [b] are not zero. Thus Z/mZ has zero divisors, and so cannot be a field. ��
Let p be a prime number. The field Z/pZ is so often used in mathematics that

it has been given its own Special Roman symbol, just like the integers (Z), ratio-
nals (Q), real numbers (R), and complex numbers (C), namely, Fp, “the field of p
elements.”

We will use Z/pZ and Fp interchangeably. Note, however, that if m is not prime,
then Z/mZ is not a field, so we do not use the notation Fm to refer to Z/mZ unless
m is prime. (In fact, if q is a prime power, like 9 or 16, then there is a field with q
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elements, which is essentially unique. The notation Fq then denotes that field with
q elements. Fq will, of course, not be Z/qZ if q is not prime, because Z/qZ is not
a field.)

We can prove a version of Theorem 6 that is valid for any ring with a finite
number of elements.

Theorem 14. If R is a finit commutative ring with identity, and a is any non-zero
element of R, then a is either a unit or a zero divisor.

Proof. Suppose R has n elements (it does not follow that R = Z/nZ). Letting as =
a · a · . . . · a (s factors) for any natural number s, and a0 = 1, consider the set of
elements

1 = a0,a,a2,a3, . . . ,an

This is a set of n+ 1 elements in R, a set of n elements. So two of them must be
equal. Suppose ar = ar+d for some r ≥ 0,d > 0. Then

ar+d−ar = 0,

so
ar(ad−1) = 0.

Choose r minimal so that ar(ad−1) = 0. If r = 0, then ad−1 = 0, so a(ad−1) = 1
and a is a unit of R. If r > 0, then

ar−1(ad−1) �= 0

by minimality of r,while
a(ar−1(ad−1)) = 0

Thus a is a zero divisor of R. ��
The proof shows that if a is a unit of R, then there is some d > 0 with ad = 1. The

minimal such d > 0 is called the order of a. We will study the orders of elements of
Z/mZ in Chapter 9.

Example 4. In Z/5Z the order of [2]5 is 4: [2] �= 1, [2]2 �= 1, [2]3 �= 1, while [2]4 =
[16]= 1. In Z/7Z, the order of [2]7 is 3, because [2] �= 1, [2]2 �= 1, while [2]3 =[8]=1.

Exercises.

21. For each m with 6≤ m≤ 13, how many zero divisors does Z/mZ have?

22. Suppose R is a ring with no zero divisors, and S is a subring of R. Show that S
has no zero divisors.

23. Suppose R is a ring, and a is a zero divisor in R. Show that the “homogeneous”
equation ax= 0 in R has more than one solution for x.
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24. In a ring R, show that for any b in R, if the “non-homogeneous” equation ax= b
has some solution x = x0 in R, then every solution of the equation ax = b is of the
form x= x0 + t where t is a solution of the homogeneous equation ax= 0.

25. (For those who have had a course in linear algebra). Let R be the ring of n×n
matrices with real coefficients. SupposeM is a n×nmatrix. Show that the following
conditions are equivalent:

(i) M �= 0 and the rank of M is <n.
(ii) M is a zero divisor in R (on both sides).
(iii) M �= 0 and for any column vector B, the equation MX = B has either no

solutions or infinitely many solutions.

26. In Z/18Z, show that [6]18 is a zero divisor. Find all solutions of the equation
[6]18X = [12]18.

27. Show that if [a] in Z/mZ is a zero divisor, it cannot have an inverse in Z/mZ.

28. In Z/15Z, identify the zero divisors, and for each, find all of the complementary
zero divisors.

29. In Z/16Z, identify the zero divisors, and for each, find all of the complementary
zero divisors.

30. In Z/18Z, identify the zero divisors, and for each, find all of the complementary
zero divisors.

31. In Z/26Z, find the inverses of [9], [11], [17], and [22].

32. In Z/365Z, find, if possible, the inverses of [53], [73], [93], and [113].

33. Let R be a commutative ring with no zero divisors. Suppose z is an element of
R satisfying z2 = 1. Show that z= 1 or z=−1.

34. Find the order of [3] in Z/7Z.

Here are some new examples of rings:

35. In F3 = Z/3Z, there is no solution of the equation x2 = −1, just as in R. So
“invent” a solution, call it i. Then i is a new “number” that satisfies i2 =−1. Consider
the set F3[i] consisting of all numbers a+bi, with a,b in F3. Add and multiply these
numbers as though they were polynomials in i, except whenever you get i2 replace
it by −1.

(i) Write down the nine elements of F3[i] .
(ii) Show that every nonzero element of F3[i] has an inverse, so that F3[i] is a

field.
(iii) Find the order of 1 + i.

36. Consider, as in the last exercise, the set F2[i] of numbers of the form a+ bi
where a and b are elements of F2 = Z/2Z. Again, i2 =−1, which in F2 is the same
as 1. Write down the four elements of F2[i]. Which elements have inverses?

37. Consider the set Q[i] of numbers a+bi where a and b are in Q. Show that Q[i]
is a field.
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D. Homomorphisms

Functions from one set to another are ubiquitous in higher mathematics. Calculus,
for example, is almost entirely devoted to the study of functions from the real num-
bers to the real numbers. Linear algebra is the study of vector spaces and certain
kinds of functions (linear transformations) from one vector space to another. So it
is not surprising that mathematicians studying algebra should be interested in func-
tions as well. But just as in linear algebra, the functions of interest in algebra have
special properties.

We begin with some terminology. Let R,S be two rings. Let f be a function from
R to S. Thus R is the domain of f , and S is the range of f : for each r in R, f (r) is
an element of S. To state concisely the domain and range of f , we often write the
function as

f : R→ S.

Related to the range is the image of f : R→ S, namely, the set of elements s in S
such that s = f (r) for some r in R. The image of f : R→ S may or may not be all
of S. If the image is all of S, we say that the function f is onto S, or is surjective.

Among all possible functions f : R→ S, we are interested in those functions
which “respect” the fact that R,S, as rings, have algebraic operations: +, ·,− and
special elements 0,1. Thus we call f : R→ S a ring homomorphism, or, for short, a
homomorphism, if f satisfies the following properties:

(i) f (r+ r′) = f (r)+ f (r′) for all r,r′ in R.

Here the addition of f (r) and f (r′) is the addition in S.

(ii) f (r · r′) = f (r) · f (r′) for all r,r′ in R.

Again, the multiplication on the right-hand side of the equation is in S.

(iii) f (1) = 1.

Here the 1 in f (1) is in R, and the 1 on the right side of the equation is in S. To
be perfectly precise, we might better label the identity element of R by 1R and the
identity element of S by 1S, and write f (1R) = 1S. But if you recall that f is a
function from R to S, then the 1 in the expression “ f (1)” can only be an element of
R, and the 1 on the right side of the equation f (1) = 1 can only be in S. So there
should be no confusion arising from leaving out the subscripts.

If f satisfies the conditions (i)-(iii), then

(iv) f (0) = 0.

Here again the left 0 is in R, and the right 0 is in S. This property follows from (i).
For given any b in R,

f (b) = f (0 +b) = f (0)+ f (b);
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adding − f (b) to both sides gives

0 = f (0)+ 0 = f (0).

Also
(v) f (−r) =− f (r) for any r in R.

To see this, notice that by definition of the negative in S, we have

0 = f (0) = f (r+(−r)) = f (r)+ f (−r).

Since the negative of any element of S is unique, f (−r) =− f (r).
If f is a homomorphism then f also satisfies:

(vi) If a has an inverse a−1 in R,

then f (a) has an inverse in S, namely, f (a−1).

Thus, if f : R→ S is a ring homomorphism, then f mapsUR, the group of units of R,
intoUS, the group of units of S. (The proof is left as an exercise.)

A ring homomorphism f is one-to-one, or injective, if f is one-to-one as a func-
tion, that is, for all a, b in R, if f (a) = f (b) then a= b.

Here is a convenient test:

Proposition 15. A ring homomorphism f is one-to-one if and only if 0 is the only
element r of R with f (r) = 0.

Proof. If r �= 0 and f (r) = 0, then since f (0) = 0, f is not one-to-one; on the other
hand, if f is not one-to-one, then there are two different elements a and b of R so
that f (a) = f (b). But then f (a−b) = 0, and a−b is not the zero element of R. ��
Defini ion. Let f : R→ S be a homomorphism. The kernel of f , written ker( f ), is
the set of elements r of R so that f (r) = 0. Concisely,

ker( f ) = {r in R | f (r) = 0}.

The size of the kernel of a homomorphism f describes how far f : R→ S is from
being one-to-one. If ker( f ) = {0}, then f is one-to-one. In general, we have:

Proposition 16. Let f : R→ S be a ring homomorphism and let s be in the image
of f . Then {r in R | f (r) = s} is in one-to-one correspondence with ker( f )

Proof. It is easy to see that if f (r0) = s, then

{r in R | f (r) = s}= {r0 + k | k in ker f}. ��
Thus if ker f has m elements, then f is an m-to-one function.
Here is a useful property of fields:

Proposition 17. Let f :R→ S be a homomorphism where R is a f eld and 1 �= 0 in S.
Then f is one-to-one.
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Proof. Suppose a �= 0 in R. We show f (a) �= 0. Since R is a field, a has an inverse,
a−1. Then 1 = f (1) = f (a ·a−1) = f (a) · f (a−1). If f (a) = 0. then 1 = 0 ·(a−1) = 0.
This is a contradiction, since 1 �= 0 in S. Thus the kernel of f contains no element
of R except 0, and f is one-to-one. ��
Here are two very simple examples of ring homomorphisms.

Example 5. The most trivial examples are the identity homomorphisms. Let R be
any commutative ring, and let i : R→ R be the function defined by i(r) = r for any
r in R. Then i is obviously a ring homomorphism and is one-to-one and onto.

Example 6. Let S be a commutative ring and let R be a subset of S which is also a
commutative ring with the same addition and multiplication that S has, and such that
the identity and zero elements of S are in R. For example, let S be the real numbers
and R be the rational numbers. We can then define a homomorphism i : R→ S, the
inclusion map, by i(r) = r.

The only difference between the two examples are the ranges. In the first example
the range is R, while in the second example the range is the ring S. If S is truly larger
than R, then the function in the second example is not onto.

These two examples illustrate a difference between functions in algebra and
functions in beginning calculus. In calculus, all the functions have the same range,
namely, the real numbers (depicted geometrically as the y-axis); in algebra there are
many different rings, and hence many different possible ranges. When we introduce
a function it is important to specify both the domain and the range of the function
as part of the definition of the function.

Homomorphisms with Domain Z. In the rest of this section we find all ring ho-
momorphisms with domain Z .

Example 7. Let R be a commutative ring with identity 1R. Define a homomorphism
f : Z→ R as follows:
f (0) = 0R, the zero element of R. This is required by property (v).
f (1) = 1R. This is required by property (iii).
For k> 1, define f (k+1) = f (k)+ f (1) = f (k)+1R. This definition of f (k+1)

is required by property (i). Then by induction, for any n> 0,

f (n) = 1R+ 1R+ . . .+ 1R (n summands)

which we shall write as n ·1R.
If n> 0, then f (−n) =− f (n) =−(n ·1R), which we’ll write as (−n) ·1R.
Thus for any n in Z, f (n) = n · 1R, and this definition of f (n) is forced by the

condition that f be a homomorphism.

Proposition 18. The function f : Z → R define by f (n) = n · 1R, is a homomor-
phism, and is the only ring homomorphism from Z to R.
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Proof. In the proof write 1R = 1. We just showed that if f is a homomorphism from
Z to R, then f (n) = n ·1R, so f is unique if in fact f is a homomorphism. To see that
f is a homomorphism, we need to check properties (i)-(iii).

Property (iii) is true by definition.
Property (i) is that for any m,n in Z, f (m+n) = f (m)+ f (n), that is,

m ·1 +n ·1 = (m+n) ·1.

This follows by associativity of addition in R.
Property (ii) is that f (mn) = f (m) f (n), that is,

(m ·1) · (n ·1) = (mn) ·1.

This is a consequence of the distributive law: if n> 0, then

n ·1 = (1 + 1 + . . .+ 1) (n summands),

and so
(m ·1)(n ·1) = (m ·1)(1 + 1 + . . .+ 1)

= (m ·1)1 + . . .+(m ·1)1
= (m ·1)+ . . .+(m ·1) (n summands)

= 1 + 1 + . . .+ 1 (mn times )
= (mn)1,

If n< 0, write n ·1 = (−n) · (−1) =−(−n) ·1 and again use distributivity. ��
Here are some examples of the homomorphisms defined by Proposition 18.
(1) Let R= Z, then the homomorphism f : Z→ Z is defined by f (n) = n ·1 = n.

So in this case f is the identity function on Z.
(2) Let R = Q, then f : Z→ Q : is defined by f (n) = n · 1

1 = n
1 , and is the usual

embedding of the integers inside the rationals. That is, f is the inclusion map from
Z to Q, and is one-to-one.

(3) Let fm : Z → Z/mZ be the function defined by fm(a) = [a]m. We check the
properties (i)-(iii):

(i) fm(a+ b) = fm(a)+ fm(b)? This is the same as [a+ b]m = [a]m + [b]m. But
this is the way we add congruence classes, So (i) holds for fm.

(ii) fm(a ·b) = fm(a) · fm(b)? This is the same as [a ·b]m = [a]m · [b]m. This is the
way congruence classes multiply. So (ii) holds for fm.

(iii) fm(1) = 1? The “1” on the right side is the congruence class of the integer 1,
that is, [1]m. Since fm(1) = [1]m by definition, (iii) holds. Thus fm is a homomor-
phism.

Notice that for n> 0, fm(n) = [n] = [1]+ [1]+ . . .+[1] = n · [1], so fm is the map
defined in Proposition 18.

The functions fm : Z→ Z/mZ are all onto, that is, for any congruence class [a]
in Z/mZ, there is some integer, namely a, so that fm(a) = [a]. However, fm is not
one-to-one. In fact, any two integers that are congruent (mod m) are mapped to the



144 7 Rings and Fields

same class in Z/mZ by fm. The kernel of fm is the set of integers that are multiples
of m. That is, ker( fm) = [0]m thought of as a set of integers, rather than an element
of Z/mZ.

The characteristic of a ring.
Defini ion. Let f : Z→ R be the homomorphism defined in Proposition 18. If f is
one-to-one then R is said to have characteristic zero.

If f is not one-to-one then there is some nonzero integer c in the kernel of f . If
f (c) = 0, then f (−c) = − f (c) = −0 = 0, so there is a natural number in ker( f ).
Let m be the smallest natural number (>0) in ker( f ).
Proposition 19. If f : Z → R is a homomorphism and m is the smallest natural
number in ker( f ), then ker( f ) is the set of integers that are multiples of m.
Proof. If b is in ker( f ), then divide b by m:

b= mq+ r,

where 0≤ r < m. Applying f to that equation, we have

0 = f (b) = f (m) f (q)+ f (r) = 0 · f (q)+ f (r) = f (r),

so r is in ker( f ). But since m is the smallest natural number in ker( f ), r must = 0.
So m divides b. ��

Let mZ denote the set of all multiples of the natural number m.

Proposition 20. Let R be a commutative ring with no zero divisors, and f : Z→ R,
f (n) = n ·1. If ker( f ) = mZ and m �= 0, then m is prime.
Proof. If m is not prime, then m = a · b for some a, b with 0 < a < m,0<b<m.
Then f (a) �= 0, f (b) �= 0, but 0 = f (m) = f (ab) = f (a) f (b), so R has zero
divisors. ��
Defini ion. If R has no zero divisors, and f : Z → R by f (n) = n · 1 is not one-to-
one, then ker( f ) = pZ where p is a prime number. In that case we say that R has
characteristic p.

The last proposition implies that any field has either characteristic zero or char-
acteristic p for some prime p.

To rephrase our definition of the characteristic of a field F: add the identity ele-
ment 1 of F to itself repeatedly, that is, look at n ·1 for n= 1,2,3, . . . . If n ·1 is never
= 0, then the field has characteristic zero. Otherwise, the smallest positive number
n so that n ·1 = 0 is prime, and is the characteristic of the field.

Example 8. F9 has characteristic 3.

More generally, we have

Proposition 21. If F is a fie d with a fin te number of elements, then F has charac-
teristic p for some prime number p.

The proof is left as an exercise.
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Isomorphisms.

Defini ion. A ring homomorphism f : R→ S is an isomorphism if f is one-to-one
and onto. Two rings R and S are isomorphic if there is an isomorphism between
them.

As a first set of examples of isomorphisms, we have

Proposition 22. Let R be a commutative ring and let f : Z → R be the homomor-
phism define by f (n) = n · 1R for all n in Z. If f is one-to-one, so that R has
characteristic zero, then f define an isomorphism from Z onto {n ·1R|n in Z} ⊆ R.
Proof. If R has characteristic zero, then f is one-to-one. A function maps onto its
image. Thus if f is a one-to-one homomorphism, then f is an isomorphism from its
domain to its image. ��
Proposition 23 (Homomorphism Theorem). Let R be a commutative ring and let
f : Z → R be the homomorphism define by f (n) = n · 1R for all n in Z. If f is not
one-to-one and ker( f )⊇mZ for some m �= 0 in Z, then f induces a homomorphism
f from Z/mZ onto {n ·1R|n in Z} ⊆ R, define by f ([a]m) = f (a) = a ·1R.
If ker( f ) = mZ then f is an isomorphism from Z/mZ onto

{n ·1R|n in Z} ⊆ R.

Proof. If ker( f ) contains mZ, then we must show that f is a well-defined homo-
morphism. “Well-defined” relates to the fact that while f has as its domain the ring
Z/mZ of congruence classes of integers, the definition of f is given in terms of rep-
resentatives of congruence classes. So we have to show that if we choose different
representatives, the value of f is the same.

We defined f ([a]m) = f (a). Suppose [a]m = [b]m. Then f (b) = f (a). For if [a]m =
[b]m, then a= b+mk for some integer k, so f (a) = f (b+mk) = f (b)+ f (mk). Since
mk is in the kernel of f , f (b)+ f (mk) = f (b). So f (a) = f (b) and f is well defined.

Then f is a homomorphism, because for any a,b in Z,

f ([a]+ [b]) = f ([a+b]) = f (a+b) = f (a)+ f (b) = f ([a])+ f ([b]).

Now suppose ker( f ) = mZ. Then f ([a]) = 0 iff f (a) = 0, iff a is in mZ, iff
[a]m = [0]m. Thus the kernel of f is {[0]m} and so f is one-to-one. Since the image
of f is the same as the image of f , f maps onto {n ·1R|n in Z} ⊆ R. ��

The following consequences of Propositions 22 and 23 will be useful in later
chapters.

Corollary 24. Let R be a commutative ring with no zero divisors. If R has charac-
teristic zero, then R contains a subring isomorphic to Z. If R has characteristic p, a
prime, then R contains a subring isomorphic to Z/pZ.

Corollary 25. If d,m are integers and d divides m, then the homomorphism f : Z→
Z/dZ define by f (n) = n · 1 induces a homomorphism f : Z/mZ→ Z/dZ, and a
map fromUm, the group of units of Z/mZ, onto Ud.
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The proof of Corollary 25 is left as an exercise.

Example 9. Corollary 25 implies that there is a homomorphism from Z//6Z to
Z/3Z by [a]6 �→ [a]3. Thus:

[1]6 �→ [1]3
[2]6 �→ [2]3
[3]6 �→]3]3 = [0]3
[4]6 �→ [4]3 = [1]3
[5]6 �→ [5]3 = [2]3
[0]6 �→ [6]3 = [0]3

The group of units {[1]6, [5]6} of Z/6Z maps onto the group of units {[1]3, [2]3} of
Z/3Z.

Exercises.

38. Show that if f : R→ S is a homomorphism, and if a is a unit of R, then f (a) is
a unit of S. Show, in fact, that f (a−1) = f (a)−1 for any unit a of R.

39. Using the previous exercise, show that the identity function is the only homo-
morphism from Q to Q.

40. Let f : R→ S, g : S→ T be functions. Let g◦ f : R→ T be the composite of f
and g, that is, (g ◦ f )(r) = g( f (r)). Show that if f and g are homomorphisms, then
so is g ◦ f .
41. Prove Corollary 25 that if d dividesm and f : Z/mZ→Z/dZ is the map defined
by f ([a]m) = [a]d , then f maps the group of unitsUm onto the group of unitsUd .

42. Show that if R is a ring, the function f from R toM2(R), the set of 2×2 matrices
with entries in R, given by

f (r) =
(
r 0
0 r

)

for any r in R, is a homomorphism.

43. Show that if F is a field of characteristic p for some prime p> 0, then for every
a in F , a+a+ . . .+a (p times ) = 0.

44. Show that if F is a field of characteristic 2, then:
(i) −a= a for any a in F ;
(ii) for any a,b in F , (a+b)2 = a2 +b2.

45. Prove Proposition 21 .



Chapter 8
Matrices and Codes

Many applications of the mathematics developed so far are most conveniently de-
scribed in terms of matrices and linear algebra. So in this chapter we present a
summary of matrix notation and its relationship to systems of linear equations.

Readers with some background in matrix theory will need at most to skim the
first four sections of this chapter for notation. Readers for whom matrix theory is
new will find our treatment rather terse, and are urged to refer, as needed, to any of
the numerous textbooks available on linear algebra and matrices.

One point of this chapter is that the formalism of vectors and matrices makes
sense over any commutative ring with identity, and nearly all of the theorems of
elementary linear algebra are valid over any field, not just over the real numbers.
Thus as soon as a set R is identified as a commutative ring with identity, we can
work with matrices and vectors with entries in R, and if we find that R is a field, then
the theory of vector spaces and linear transformations will be applicable over R.

The last two sections illustrate the use of matrices over commutative rings in two
applications: error-correcting codes, which uses matrices over Z/2Z, and cryptog-
raphy, which uses matrices over Z/26Z. Both applications are historically among
the earliest examples of the use of mathematics in their respective areas.

We assume in the first four sections that R is a commutative ring with identity.

A. Matrix Multiplication

This section covers the most basic properties of matrices.
A column vector is a column of elements of R, viz.,

⎛
⎜⎜⎜⎝
a1

a2
...
an

⎞
⎟⎟⎟⎠ .

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 147
in Mathematics, c© Springer Science+Business Media LLC 2009
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A row vector is a row of elements of R, viz.,
(
a1 a2 · · · an

)
.

An m×n matrix is a rectangular array of mn elements of R, viz.,
⎛
⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎞
⎟⎟⎟⎠ ,

which can be thought of as a collection of row vectors placed in a column, or a
collection of column vectors laid out in a row. When we say that a matrix is m×n,
the first number m is always the number of rows, and the second number n is the
number of columns.

Given a row vector with n elements (placed on the left) and a column vector with
the same number of elements (placed on the right), we may multiply them to get an
element of the ring R:

(
a1 a2 · · · an

)
⎛
⎜⎜⎜⎝
b1

b2
...
bn

⎞
⎟⎟⎟⎠= a1b1 +a2b2 + . . .+anbn.

All we need to know about R for this to make sense is that R has addition and
multiplication and addition is associative, so that we can be casual about the order
in which we add the terms in the right side of this last equation.

Examples where R= Z are:

(
3 2 5

)⎛⎝ 1
2
−1

⎞
⎠= 2,

(
1 2 3

)⎛⎝ 2
2
−2

⎞
⎠= 0,

(−3 2
)(1

2

)
= 1.

Given an m× n matrix A, we can multiply the matrix (placed on the left) with
an n-element column vector X (placed on the right) by thinking of the matrix as a
collection ofm row vectors, each containing n elements, and doingmmultiplications
of the row vectors of A with X. The result, AX, is a column of m elements:

⎛
⎝1 2

2 4
2 3

⎞
⎠(−1

2

)
=

⎛
⎝3

6
4

⎞
⎠ ,

(
1 2 3
0 0 1

)⎛⎝2
0
1

⎞
⎠=

(
5
1

)
.

Given an m× n matrix A (on the left) and an n× p matrix B (on the right), we
can multiply them by thinking of A as a collection of n-element rows and B as a
collection of n-element columns. The result, AB, is an m× p matrix whose element
in the ith row and jth column is obtained by multiplying the ith row of A and the
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jth column of B. Thus in the example

(
1 2 1
2 3 0

)⎛
⎝2 1

0 1
1 3

⎞
⎠=

(
3 6
4 5

)
,

the 3 comes from multiplying

(
1 2 1

)⎛⎝2
0
1

⎞
⎠ ,

the 6 from
(
1 2 1

)⎛⎝1
1
3

⎞
⎠ ,

etc. Other examples: ⎛
⎝0

1
3

⎞
⎠(

1 2 5
)

=

⎛
⎝0 0 0

1 2 5
3 6 15

⎞
⎠ ;

⎛
⎝2 1

0 1
1 3

⎞
⎠(

0 1
4 5

)
=

⎛
⎝ 4 7

4 5
12 16

⎞
⎠ .

Notice that the order in which the matrices are multiplied (i.e., which matrix is on
the left and which is on the right) is very important. In the last example,

(
0 1
4 5

)⎛
⎝2 1

0 1
1 3

⎞
⎠

makes no sense, because it requires multiplying row vectors and column vectors
with different numbers of elements. Even when it makes sense to multiply in either
order, the results are usually different: compare

⎛
⎝0

1
3

⎞
⎠(

1 2 5
)

=

⎛
⎝0 0 0

1 2 5
3 6 15

⎞
⎠ ,

a 3×3 matrix, with

(
1 2 5

)⎛⎝0
1
3

⎞
⎠= (17),

a 1×1 matrix; or compare the two products
(

1 0
0 0

)(
0 1
0 0

)
=
(

0 1
0 0

)
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and (
0 1
0 0

)(
1 0
0 0

)
=
(

0 0
0 0

)
.

One special matrix is the n× n identity matrix I , whose entries are 1 along the
main diagonal (from upper left to lower right) and 0 elsewhere. The matrix I has
the property that for any n-rowed column vector B, hence for any n× p matrix B,
IB = B. This is easily verified for n= 2:

(
1 0
0 1

)(
a
b

)
=
(
a
b

)
.

We can also define addition of vectors and matrices, first for column vectors with
equal numbers of components:

⎛
⎜⎜⎜⎝
a1

a2
...
an

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝
b1

b2
...
bn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
a1 +b1

a2 +b2
...

an+bn

⎞
⎟⎟⎟⎠ ,

then for matrices of the same size, by thinking of them as rows of column vectors:

⎛
⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎜⎝
b11 b12 · · · b1n
b21 b22 · · · b2n

...
...

...
bm1 bm2 · · · bmn

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
a11 +b11 a12 +b12 · · · a1n+b1n
a21 +b21 a22 +b22 · · · a2n+b2n

...
...

...
am1 +bm1 am2 +bm2 · · · amn+bmn

⎞
⎟⎟⎟⎠ .

Note that A+ B makes sense only if A and B have the same size.
Addition of matrices or vectors is associative because addition in R is associative.
If A is a matrix of any size (in particular, a row or column vector) and s is an

element of R, that is, a scalar, then define the matrix sA to be the element in which
each element of A is multiplied by s. That is,

sA = s

⎛
⎜⎜⎜⎝
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎞
⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎝
sa11 sa12 · · · sa1n
sa21 sa22 · · · sa2n

...
...

...
sam1 sam2 · · · samn

⎞
⎟⎟⎟⎠ .

For example,

3

⎛
⎝0

1
3

⎞
⎠=

⎛
⎝0

3
9

⎞
⎠ ,

−2

⎛
⎝0 0 0

1 2 5
3 −1 15

⎞
⎠=

⎛
⎝ 0 0 0
−2 −4 −10
−6 2 −30

⎞
⎠ .

B. Linear Equations

Matrices and vectors are a convenient way to describe systems of linear equations.
Suppose given a system of m equations in n unknowns:

a11x1 +a12x2+ · · ·+a1nxn = b1,

a21x1 +a22x2+ · · ·+a2nxn = b2,

...

am1x1 +am2x2+ · · ·+amnxn = bm,

where the elements a11 . . . ,amn and b1, . . . , . . .bm are elements of the commutative
ring R. We call such a system homogeneous if b1 = b2 = . . . = bm = 0, and nonho-
mogeneous otherwise.

We can make the two sides into column vectors and write the system as an equal-
ity of column vectors,⎛

⎜⎜⎜⎝
a11x1 +a12x2+ · · ·+a1nxn
a21x1 +a22x2+ · · ·+a2nxn

...
am1x1 +am2x2+ · · ·+amnxn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
b1

b2
...
bm

⎞
⎟⎟⎟⎠ (8.1)

because two column vectors are equal precisely when their respective components
are equal. We can rewrite (8.1) in either of two ways. On the one hand we can use the
definition of addition and scalar multiplication of column vectors (= m×1 matrices)
to write equation (8.1) as

x1

⎛
⎜⎜⎜⎝
a11

a21
...
am1

⎞
⎟⎟⎟⎠+ x2

⎛
⎜⎜⎜⎝
a12

a22
...
am2

⎞
⎟⎟⎟⎠+ . . .+ xn

⎛
⎜⎜⎜⎝
a1n
a2n

...
amn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
b1

b2
...
bm

⎞
⎟⎟⎟⎠ .
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This says that to solve the original system is the same as to write the vector
⎛
⎜⎜⎜⎝
b1

b2
...
bm

⎞
⎟⎟⎟⎠

as a linear combination (i.e., a sum of scalar multiples) of the column vectors

⎛
⎜⎜⎜⎝
a11

a21
...
am1

⎞
⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
a12

a22
...
am2

⎞
⎟⎟⎟⎠ , . . . ,

⎛
⎜⎜⎜⎝
a1n
a2n

...
amn

⎞
⎟⎟⎟⎠ .

On the other hand, we can write down the m× n matrix whose columns are the
vectors we just wrote down, and observe that the left side of (8.1) is the product of
that matrix, called the matrix of coefficients of the original system, with a column
vector of the xi’s:

⎛
⎜⎜⎜⎝
a11x1 +a12x2 + . . .+a1nxn
a21x1 +a22x2 + . . .+a2nxn

...
am1x1 +am2x2 + . . .+amnxn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝
x1

x2
...
xn

⎞
⎟⎟⎟⎠ .

If we set

A =

⎛
⎜⎜⎜⎝
a11 a12 . . . a1n
a21 a22 . . . a2n

...
am1 am2 . . . amn

⎞
⎟⎟⎟⎠ , X =

⎛
⎜⎜⎜⎝
x1

x2
...
xn

⎞
⎟⎟⎟⎠ , B =

⎛
⎜⎜⎜⎝
b1

b2
...
bm

⎞
⎟⎟⎟⎠ ,

then the set of equations can be written in the form AX = B.

Example 1. The set of equations

3x1−2x2 + x3 = 4,

x1 + x2− x3 = 2,

x1 + 3x3 = 1

may be written

x1

⎛
⎝3

1
1

⎞
⎠+ x2

⎛
⎝−2

1
0

⎞
⎠+ x3

⎛
⎝ 1
−1
3

⎞
⎠=

⎛
⎝4

2
1

⎞
⎠ ,
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or as ⎛
⎝3 −2 1

1 1 −1
1 0 3

⎞
⎠
⎛
⎝x1

x2

x3

⎞
⎠=

⎛
⎝4

2
1

⎞
⎠ . (8.2)

Suppose there were an n×m matrix C such that CA = I. If we could find such a
C , then CB = CAX = IX = X would be a solution of the equations. Thus solving
equations is closely related to finding inverses of matrices. For example,⎛

⎝3 −2 1
1 1 −1
1 0 3

⎞
⎠

turns out to have the inverse⎛
⎝ 3/16 6/16 1/16
−1/4 1/2 1/4
−1/16 −1/8 5/16

⎞
⎠ ,

so equation (8.2) has the solution⎛
⎝x1

x2

x3

⎞
⎠=

⎛
⎝ 3/16 6/16 1/16
−1/4 1/2 1/4
−1/16 −1/8 5/16

⎞
⎠
⎛
⎝4

2
1

⎞
⎠ =

⎛
⎝25/16

1/4
−3/16

⎞
⎠ .

C. Determinants and Inverses

If A is an n× n (square) matrix with entries in the commutative ring R, then the
determinant of A is defined and is an element of R. For 1× 1, 2× 2 and 3× 3
matrices, the determinant of A is defined as follows:

det(a) = a;

det

(
a b
c d

)
= ad−bc;

det

⎛
⎝a1 b1 c1

a2 b2 c2

a3 b3 c3

⎞
⎠= a1b2c3 +b1c2a3 + c1a2b3

−a1c2b3−b1a2c3− c1b2a3.

If A is a triangular matrix, that is, a square matrix of the form
⎛
⎜⎜⎜⎝
a11 0 · · · 0
a21 a22 · · · 0

...
... · · · ...

an1 an2 · · · ann

⎞
⎟⎟⎟⎠
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with all entries above the main (upper left to lower right) diagonal equal to zero,
then

det(A) = a11a22 · · ·ann.
For nontriangular 4×4 or larger matrices the explicit formula for the determinant is
too complicated to write down here and will not be needed in this book.

If A is an n× n matrix with entries in R, sometimes A has an inverse, an n× n
matrix B such that AB = BA = I, the n×n identity matrix. If A has an inverse, the
inverse is unique and is usually denoted by A−1.

In elementary linear algebra over the real numbers, there is a theorem that states
that an n× n matrix A has an inverse if and only if det(A) is not zero. The corre-
sponding theorem for a square matrix over a commutative ring R is: An n×nmatrix
A is invertible if and only if det(A) is a unit of R. For 2× 2 matrices part of this
theorem can be seen explicitly, as follows. Suppose

A =
(
a b
c d

)

then det(A) = ad− bc. If det(A) is a unit of R, with inverse 1/(ad− bc), then the
inverse B of A may be written down explicitly as

A−1 =
( d
ad−bc

−b
ad−bc−c

ad−bc
a

ad−bc

)

as is easily checked. Analogous formulas (involving cofactors and the classical ad-
joint of A) are available for n× n matrices A for n > 2, again with entries in any
commutative ring with identity R, but the formulas are complicated and of limited
practical value, and we will not present them here.

To solve the matrix equation AX = D for X where A has an inverse A−1, we can
multiply both sides on the left by A−1 to get

A−1AX = A−1D,

hence X = A−1D.
The matrix theory thus far presented is sufficient for the applications to codes in

Sections E and F.

D. Mn(R). We observed that if A is an m× n matrix and B is an n× p matrix,
then AB is defined and is an m× p matrix. If A and B are both m× n matrices,
then A + B is defined and is an m× n matrix. Thus if we consider the set Mn(R)
of all n×n (square) matrices with entries in the commutative ring R, then Mn(R) is
equipped with both addition and multiplication. In fact:

Theorem 1. If R is a commutative ring with identity, then Mn(R) is a ring with
identity.

Proof. We sketch the ideas but omit most details.
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The axioms for addition follow almost immediately from the fact that R satisfies
the same axioms, because addition of matrices is done component by component–an
m×n matrix is just a vector with mn components.

Much harder is associativity of multiplication: A(BC) = (AB)C. Perhaps the
cleanest way to show associativity is to view a matrix as representing a linear trans-
formation with respect to some bases of vector spaces of appropriate dimensions
and show that matrix multiplication corresponds to composition of linear transfor-
mations. Then associativity of multiplication follows from the associativity of the
composition of three functions, which is obvious. See a linear algebra textbook for
details.

For the multiplicative identity, let

I =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · 0
...

...
0 0 · · · 1

⎞
⎟⎟⎟⎠ .

Then I is the multiplicative identity: AI = IA = A for any n× n matrix A, as we
already observed.

To show the two distributivity laws: A(B+ C) = AB+ AC ; (A+ B)C = AC+
BC , observe that for the first law, the i- j-th component of the left side is

ai1(b1 j+ c1 j)+ . . .+an1(bn j+ cn j)

and the i- j-th component of the right side is

(ai1b1 j+ . . .+an1bn j)+ (ai1c1 j+ . . .+an1cn j);

the respective components are equal because associativity and commutativity of ad-
dition and the distributive law holds in R. The same argument works for the second
distributive law.

Thus Mn(R) is a ring with identity. ��
Note thatMn(R) is not a commutative ring if n≥ 2 . As we indicated earlier, even

for square matrices matrix multiplication is rarely commutative.
Our point in introducing Mn(R) is to exhibit a natural collection of examples of

noncommutative rings. We will hardly ever use these rings later in the book, but
they are of considerable importance in modern algebra.

Exercises.

1. Check associativity of addition for Mn(R).

2. Check commutativity of addition for Mn(R).

3. Check associativity of multiplication for 2×2 matrices.
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4. Check distributivity for 2×2 matrices.

5. Show that Mn(R) has zero divisors for each n≥ 2 , even if R is a field.

6. For each n≥ 2 , find a nonzero n×nmatrix without an inverse.

7. Show that if R is a field, then each nonzero n×n matrix is either a unit or a zero
divisor. (This requires some matrix theory not presented in this chapter.)

8. The ring M2(F2) has 16 elements. Find all the units of M2(F2). Show that the
units are closed under multiplication. Write down the multiplication table for the
units. (You can check your answer in Section 11H.)

E. Error-Correcting Codes, I

Error-correcting codes are an application of F2 and other finite fields that was dis-
covered only around 1948. Our exposition will assume some acquaintance with ma-
trices and vectors.

The problem is the following. Suppose a message consisting of words, that is,
blocks of digits, is to be transmitted through a channel to a receiver. If he channel is
“noisy” and tends to introduce random errors into what was sent, i.e., change digits,
how can the receiver determine what was sent?

The basic idea for the solution is to send messages with redundant data, that
is, messages with digits which are repeated, partially repeated, or presented in a
certain special format. The receiver can detect or even correct errors in the digits of
the message received, by seeing how what was received varies from the format in
which the message was known to be originally sent.

Two examples of schemes that detect errors are “casting out 9’s”, for checking
arithmetic operations such as multiplication, and the Luhn formula for checking
credit card numbers, both discussed in Chapter 5. These schemes cannot correct
errors. For example, if the Luhn formula applied to a 16 digit credit card number
shows that there is an error in the number, that error could have arisen with any of
the 16 digits, and so there is no way to know which digit to change.

On the other hand, here is a simple example of a scheme that corrects errors.
Sandra wishes to send one of the numbers 0 or 1 through a noisy channel to

Rob. Suppose Sandra wishes to send a. She encodes a as follows: she sends out the
five-digit word aaaaa. Rob’s decoding rule is that he thinks the bit A was sent if he
receives a word with at least three A’s in it. He would be misled only if during the
transmission from Sandra to Rob, at least three of the a’s sent had been erroneously
changed to A’s, where A �= a. Thus, for example, if Sandra sends 00000, Rob would
assume that 0 was sent unless he receives a five-bit word with three or more 1’s in
it, such as 10011 or 01111. If two or fewer errors occurred in the transmission of
00000, Rob would correctly determine what Sandra sent.

Error correcting capability is very desirable for data in certain situations.
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One situation is where data is coming from a measuring device (such as a space
probe) that is continuously transmitting measurements (such as of Jupiter’s mag-
netic field as it travels rapidly through space) and cannot retransmit data, even if the
receiver knows they are erroneous. (The channel in this situation would be the space
through which the radio waves pass, and the noise would be radio noise, or static).

Another situation is where the transmitting consists of the placing of data into
the memory of a computer. The channel here is the memory, which may contain
imperfectly manufactured components, and the receiving is the retrieval of the data.

In the two situations just described, the information sent is numerical, and might
naturally be in numbers expressed in base 2. Since all of the mathematics tends to be
easiest in base 2 also, we shall henceforth assume that we are sending words written
in base 2, that is, sequences of 0’s and 1’s.

Here are two examples in base 2 similar to the examples described above.

Example 2. The parity check code. Sandra wishes to transmit n information digits
abcd · · ·e. Let

f ≡ a+b+ c+d+ . . .+ e (mod 2).

She sends (a,b,c,d, . . . ,e, f ).
Rob, the receiver, receives (A,B,C,D, . . . ,E,F). If

A+B+C+D+ . . .+E ≡ F (mod 2),

then Rob decides that no error occurred and (A,B,C,D, . . . ,E,F) = (a,b,c,
d, . . . ,e, f ). Otherwise, Rob decides that an error occurred, but doesn’t know where
it occurred.

If A+B+C+D+ . . . +E �≡ F (mod 2), then in fact an odd number of errors
occurred, while if ≡, then there is an even number of errors: none, or two or more.
Rob would be misled if two or more errors occurred in the transmission. If more
than one error is extremely unlikely, Rob would have confidence that he decided
correctly.

This code, like the Luhn check, detects but does not correct a single error. It is a
very efficient code, since n/(n+ 1) of each code word is information, and only one
digit in each word is redundant.

Example 3. The repetition code. Given one information digit a (a= 0 or 1), Sandra
sends the word of odd length n, aaa · · ·a. Rob receives ABCD · · ·E , where each of
A,B, . . . ,E is 0 or 1. If the number of 1’s among AB · · ·E exceeds the number of 0’s,
Rob decides that a= 1; otherwise he decides that a= 0. Rob will decode incorrectly
only if there are more than n/2 errors in AB · · ·E .

This code then corrects up to n/2 errors, in the sense that if there are fewer than
n/2 errors then Rob can determine correctly the transmitted word. This code is,
however, quite inefficient, for only 1/n of each code word is information, and n−1
of the n digits in each word are redundant.

The development of codes has tended to proceed from the assumption that errors
are uncommon, so that a desirable code is one that is efficient (that is, the ratio of
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information digits per word to word length is “large”) and capable of correcting
errors in a small proportion of the digits of each word.

In the rest of this section we describe two examples of efficient codes constructed
using matrices with entries in F2. These codes are examples of codes described by
R.W. Hamming of Bell Telephone Laboratories [Hamming (1950)]. In Chapter 25
we shall describe other codes.

Code I This is an example of a code which corrects one error in words of length
7, where each word has 4 information bits.

We work with elements of F2 = Z/2Z, integers mod 2. We write [0]2 = 0, [1]2 =
1, so F2 = {0,1}. Our words are 7-tuples with entries in F2. Let

H =

⎛
⎝1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎠

This matrix H has the pleasant property that for r,s,t in F2 not all zero,

⎛
⎝rs
t

⎞
⎠

is the (tsr)2-th column of H. Thus the sixth column is

⎛
⎝0

1
1

⎞
⎠, and reading the digits

from bottom to top, (110)2 = 6. In particular, all columns of H are different, an
essential fact.

Suppose Sandra wishes to send the word W =

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠, where a,b,c,d are in F2.

Call W the information word. Sandra forms the vector

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
a
z
b
c
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with x,y,z chosen so that HC = 0, that is, so that (in F2)

x+a+b+d= 0,

y+a+ c+d= 0,

z+b+ c+d= 0.
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Here (x,y,z) is the redundant part of the word. Sandra can find the numbers x,y,z
from a,b,c,d quickly using the equation HC = 0, or she can find C by multiplying
W by a 7×4 matrix G obtained by solving for x,y,z,a,b,c,d in terms of a,b,c,d:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x
y
a
z
b
c
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝
a
b
c
d

⎞
⎟⎟⎠ .

The vector C, made up of the information word W = (a,b,c,d) and the redundancy
(x,y,z), is the coded word. Sandra transmits the vector C to Rob over a possibly
noisy channel.

Suppose Rob receives

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x′
y′
a′
z′
b′
c′
d′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Case 0. Suppose R = C. Then HR = 0, because HC = 0.

Case 1. Suppose one component of C was changed in the transmission, so that R
differs from C in at most one component. Then R−C = E is a column vector with
all entries 0 except for a 1 in the component where the error occurred. Then HE is
the column of H corresponding to the location of the 1 in the vector E. When Rob
computes HR, he gets:

HR = HC+ HE
= 0 + HE
= (the column of H corresponding to where the 1 is in E).

Thus, if there is one error, Rob can determine where the error is by examining HR;
once he knows E, he knows R−E = C, the word that Sandra transmitted.

Case 2. If R differs from C in two or more entries, then

HR = HC+ HE
= 0 + (sum of two or more columns of H).
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Since the sum of two or more columns of H is either 0 or a column of H, Rob will
decode inaccurately because he is assuming that no errors or one error occurred.

Thus with this code, Rob is capable of correcting exactly one error. If Rob can
confidently assume that at most one error occurred in the transmission of a word,
then he will be able to confidently determine what was sent. He will be misled
whenever more than one error occurs in a given word. (If p, the probability of an
error in any given digit, is p = .1, and the probability of an error in some digit is
independent of the probability of an error in any other digit, then the probability of
at most one error in a word is e = (1− .1)7 + 7(1− .1)6(.1) = .85, so there is a 15
percent chance that Rob will be misled on each word. If p = .01,e= .998, so there
is a 0.2 percent chance that he will be misled).

To illustrate the decoding of Code I with some examples, suppose Rob receives

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. Then HR =

⎛
⎝1 0 1 0 1 0 1

0 1 1 0 0 1 1
0 0 0 1 1 1 1

⎞
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎝1

1
1

⎞
⎠ ,

so assuming one error, it must be the last digit, and so Rob will assume that Sandra
sent

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, then HR =

⎛
⎝0

1
1

⎞
⎠ , so C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, then HR =

⎛
⎝1

1
0

⎞
⎠ , so C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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If R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

then HR =

⎛
⎝0

0
0

⎞
⎠ , so C = R.

Code II A modification of Code I will enable Rob to detect the presence of two
errors, as well as to correct one error. Let

H =

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

⎞
⎟⎟⎠ ,

the matrix of Code I with an additional column of zeros on the left and then a row
of 1’s on the top. Sandra wishes to send Rob the information word W = (a,b,c,d).
To add redundancy, she constructs

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w
x
y
a
z
b
c
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with HC = 0. Then x,y,z satisfy equations (1) of Code I, and w satisfies

0 = w+ x+ y+ z+a+b+ c+d.

Adding this equation to equations (1) of Code I yields the simpler equation
defining w:

w+a+b+ c= 0.

Sandra transmits the vector C. (She can derive C from W by multiplying W by
an 8×4 matrix G as in Code I).

Suppose Rob receives R. He computes HR.
Case 0. If no errors occurred, then R = C and HR = 0.
Case 1. If one error occurred, then R−C = E has one nonzero entry, one error.

Then HR = HE since HC = 0, and HE is the column of H corresponding to where
the error occurred. Since all columns of H are distinct, Rob can locate and correct
the error by identifying HR with a column of H and correcting the corresponding
entry of R.
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Case 2. If two errors occurred, then R−C = E has two nonzero entries. Then
HR = HE is the sum of two columns of H. Rob cannot determine which two
columns of H make up the sum. For example, here are two sums of columns of H:

⎛
⎜⎜⎝

1
1
1
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1
1
0
1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

0
0
1
1

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠ .

But what he knows is that HE is not a column of H, since the sum of two columns
of H is non-zero but always has top entry = 0, while every column of H has top
entry = 1. So Rob knows that at least two errors occurred.

Code II, then, is a code that corrects one error and detects two errors in words of
length 8 with 4 information digits. Rob will be misled only if there are 3 or more
errors.

Exercises.

9. Here is a collection of received words which were transmitted after being en-
coded with Code II. For each word assume there are 0, 1, or 2 errors. Decode each
word. ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
0
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
1
1
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
1
1
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

10. What is the maximum allowable probability of error is a typical digit in order
that Code II can be used with probability .999 that the receiver will not be misled
(i.e., 3 or more errors occur) in a single word?

11. Define a code, analogous to Code II, that uses a 5×16 matrix H, and sends out
binary words of length 16 (of which 11 are information digits) such that the receiver
can correct one error and detect two errors.

12. In Code II, do there exist received words which the receiver can determine with
certainty have at least 3 errors?

13. In Code I, we found C by multiplying the information word W by the 7× 4
matrix G.

Suppose instead of using H, we used

H0 =

⎛
⎝1 0 0 1 1 0 1

0 1 0 1 0 1 1
0 0 1 0 1 1 1

⎞
⎠ = (I,P).
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where I is the 3×3 identity matrix. Describe the corresponding encoding matrix G0
in terms of P.

14. Find the encoding matrix G for Code II.

15. If C1 and C2 are two 8-tuples, let d(C1−C2), the distance between C1 and C2,
be the number of 1’s in C1−C2. Can you determine the minimum distance between
two coded words in Code II? Do you see any relationship between the minimum
distance and the error correcting ability of the code?

F. Hill Cryptosystems

Cryptography is the study of techniques to ensure secure communication in the pres-
ence of a malicious adversary.

The problem is that two parties, say Alice and Bob, wish to communicate over an
insecure channel, such as via radio, a cell phone or the internet, and want to ensure
that messages between them are private and authentic. Private means that no third
party, say Eve (an eavesdropper), can comprehend their messages; authentic means
that when Bob receives a message purportedly from Alice, he can be confident that
only Alice could have sent the message.

To try to achieve the desired security, Alice encrypts her message m, called the
plaintext, by transforming it into a encrypted message or ciphertext, c, by some
function f : that is, c = f (m). The encrypted message c is transmitted to Bob, who
decrypts it via the inverse g of the function f to get the original message: m= g(c).
The function f and its inverse g are known only to Alice and Bob. If Eve wished
to impersonate Alice, Eve would need to know the encrypting function f . If Eve
intercepts a message from Alice to Bob, Eve would have c, the ciphertext, but in
order to obtain the plaintext, Eve would need to know the decrypting function g.

Cryptography seeks to find encrypting and decrypting functions that are suffi-
ciently secure, and, at the same time, studies ways to crack proposed cryptosystems
with given encrypting and decrypting functions. It looks at the problem from both
Alice and Bob’s point of view, and from Eve’s.

Historically, the problem of security of communication was most acute in
wartime. However, in the present day, the need for secure information goes far be-
yond uses in warfare. The rapid growth of electronic commerce depends on the
integrity of communication over the internet. For this reason, cryptosystems are im-
portant tools for business, and cryptography has become an important research area
of computer science and applied mathematics.

In this book we will look at several cryptosystems, all based on modular arith-
metic and related algebra and number theory.

For our first example, in this section we look at a cryptographic protocol pub-
lished by Lester Hill (1931). While never widely used, and known to be insecure,
the Hill scheme is historically significant because it represented the first public sys-
tematic use of mathematics in the design of a cryptosystem.
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The encrypting and decrypting functions work on numbers. So we need to trans-
late English messages into sequences of numbers. One way to do so is to count the
letters A to Z to make a correspondence between the letters and the numbers from 1
to 26:

A B C D · · · J · · · O · · · T · · · Y Z,
1 2 3 4 · · · 10 · · · 15 · · · 20 · · · 25 26.

In the Hill cryptosystem, plaintext messages are vectors of congruence classes in
Z/26Z. We view Z/26Z as the numbers from 1 to 26 with arithmetic modulo 26.

For encrypting n-tuples of numbers, we choose an encrypting matrix, an invert-
ible n× n matrix A with entries in Z/26Z. To encrypt, we take a plaintext word
w, that is, an n-tuple of elements of Z/26Z, write w as a column vector, and en-
crypt w by multiplying it by the n× n matrix A (on the left) to get the ciphertext,
c = Aw, another n-tuple of elements of Z/26Z. In short, the encrypting function is
multiplication by the matrix A.

If A is an invertible matrix, that is, if there exists a matrix B with entries in
Z/26Z so that BA = I, the n× n identity matrix, then multiplying an n-tuple by B
is the inverse of the function that multiplies an n-tuple by A. As noted earlier in this
chapter, A will have such an inverse B if and only if the determinant of A is a unit
of Z/26Z. So the decrypting function is multiplication by B, the inverse of A. If
c = Aw is a ciphertext, then w = Bc is the plaintext.

Suppose Alice wants to send Bob the plaintext message:

BUYXENRON

where X replaces the space between words.
Alice writes the message as a sequence of elements of Z/26Z using the counting

correspondence above, to get:

2,21,25,24,5,14,18,15,14.

To communicate, Alice and Bob need to agree in advance on a private encrypting
key: an invertible n× n matrix A. Alice will use A to encrypt, and Bob will use
B = A−1, the inverse of A, to decrypt. The matrix A must be kept secret, because
if Eve knew A, she could easily find the inverse of A and decrypt any encrypted
message Alice sent to Bob.

We illustrate the Hill codes by encrypting and decrypting this message using
matrices A of various sizes.

Codes of Size 1× 1. A 1× 1 invertible matrix is just a unit of Z/26Z. For an
example, take the element 5 of Z/26Z: its inverse in Z/26Z is 21, since 5 · 21 =
105≡ 1 (mod 26).

To encrypt the plaintext, Alice multiplies each number in the message by 5 (mod
26) to get

10,1,21,16,25,18,12,23,18.

She sends the ciphertext either as that sequence of numbers or as the corresponding
sequence of letters, JAUPYRLWR.
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Bob receives the ciphertext, puts it into a sequence of numbers if needed, and de-
crypts by multiplying each of the resulting numbers by 21 (mod 26). Since 21 is the
inverse of 5 modulo 26, , Bob ends up with the sequence of numbers corresponding
to the plaintext, the original message.

For example, Bob would multiply the first number, 10, in the encrypted message,
by 21, then find 2 = 10 ·21 mod 26. So the first letter of the original message is B.
Bob would then do the same for the other numbers in the encrypted message.

In this 1× 1 code, each letter corresponds to a single number or letter. Thus
wherever it occurs in the original message, N is always replaced by 18 or R in the
encrypted message. Also, different letters in the original message become different
numbers or letters in the encrypted message. Codes with those properties are easy
enough to crack that they show up as cryptogram puzzles in daily newspapers.

But for n> 1 these codes become somewhat more difficult to crack.

Codes of Size 2×2. Alice breaks up the enumerated plaintext

2,21,25,24,5,14,18,15,14

into a sequence of 2-tuples that she puts into vectors with two components:
(

2
21

)
,

(
25
24

)
,

(
5

14

)
,

(
18
15

)
,

(
14
24

)
,

where to finish the last vector, she adds X = 24 to the end of the message.
Alice and Bob agree on a secret invertible 2× 2 matrix A. To encrypt, Alice

multiplies each vector by A.

Example 4. Suppose

A =
(

9 1
1 3

)
.

Then detA = 1, and

A−1 =
(

3 −1
−1 9

)
.

The encrypted message Alice constructs by multiplying each vector by A is the
sequence of vectors: (

9 1
1 3

)(
2

21

)
=
(

13
13

)
,

(
9 1
1 3

)(
25
24

)
=
(

15
19

)
,

(
9 1
1 3

)(
5

14

)
=
(

7
21

)
,

(
9 1
1 3

)(
18
15

)
=
(

21
11

)
,

(
9 1
1 3

)(
24
14

)
=
(

20
8

)
,
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The resulting sequence of numbers is

13,13,15,19,7,21,21,11,20,8.

If we replace the numbers by the corresponding letters, we get

MMOSGUUKTH

Notice that, for example, X in the plaintext is replaced by S or H in the ciphertext
depending on its location in the plaintext, and the two letters U in the ciphertext
correspond to E and N in the plaintext. In this code, only pairs of letters are set
to the same thing, and then only if they both begin at an odd, or both at an even
location in the message. So this encryption is apparently much more difficult for
Eve to decrypt.

Bob would take the encrypted message, put it back into a sequence of vectors,
and multiply each vector by A−1. Since A−1 ·A = I, he will end up with the original
set of 2-tuples and finally, the original plaintext, using the counting correspondence.

Example 5. If we use the matrix

A =
(

2 −3
3 1

)

whose determinant is 11, an invertible element of Z/26Z, then (see Section C,
above)

A−1 =
(−7 5
−5 12

)

Applying this matrix A to the 2-tuples (4), Alice would send Bob the encrypted
message

19,1,4,21,20,3,17,17,8,14 = SADUTCQQHN,

which Bob can decipher using A−1.

If higher security is needed we can use larger matrices.

Codes of Size 3×3.

Example 6. Alice breaks up the message into words of length 3
⎛
⎝ 2

21
25

⎞
⎠ ,

⎛
⎝24

5
14

⎞
⎠ ,

⎛
⎝18

15
14

⎞
⎠ .

Alice and Bob agree on a 3×3 matrix with invertible determinant, such as

C =

⎛
⎝2 3 5

5 11 2
1 2 2

⎞
⎠ .
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The determinant of C is 7, a unit modulo 26, and so C is invertible. Its inverse turns
out to be

C−1 =

⎛
⎝10 8 −7

10 11 3
11 11 1

⎞
⎠ .

Encrypting the original message BUYXENRON with the matrix C, Alice gets the
ciphertext

10,5, 16, 3, 21, 10, 21, 23, 24 = JEPCUJUWX ,

which Bob can decrypt using C−1.

It is evident how one could increase security by using larger matrices.

There is nothing special about Z/26Z in all we have done. We might prefer to
add three symbols and work in Z/29Z, a field. Then we could use the counting
correspondence as before to translate from letters to elements of Z/29Z , and let 27,
28, 29 denote “.”, “?”, and “ ” (space). Then

BUY ENRON??

becomes
2,21,25,29,5,14,18,15,14,28,28

The Hill codes have been thoroughly analyzed by cryptanalysts. Konheim (1981)
describes how one might recover the coding matrix A assuming one has enough
pairs of plaintext and corresponding ciphertext. It turns out that if A is n× n then
not many more than n pairs of plain- and ciphertext will usually suffice to determine
A and crack the code. In “real life” situations, one often finds that such pairs can be
obtained. (They certainly were during World War II, and having such pairs available
aided cryptanalysts immensely . See Kahn (1967) and Hodges (1983)).

Exercises.

16. Encrypt and decrypt HAPPYXBIRTHDAY using the 1× 1 code, multiplying
by 7 modulo 26.

17. Encrypt and decrypt HAPPYXBIRTHDAY using the 2×2 code of Example 4.

18. Decrypt MXGWGCCCUKMQNGRC using the code of Example 5.

19. (i) In Example 6, verify that C−1 is as claimed.
(ii) encrypt and decrypt HAPPYXBIRTHDAY using the 3×3 code of Example 6.

20. Do Example 5 (2×2 case) with the same matrix A, except think of A as having
entries in Z/29Z, and illustrate the example by encoding and decoding the message

BUY ENRON??

Note: A−1 will be different.





III. Congruences and Groups 





Chapter 9
Fermat’s and Euler’s Theorems

Pierre de Fermat (1601–1665) was a public official in the French city of Toulouse,
and in his spare time was one of the greatest mathematicians of the seventeenth cen-
tury. Fermat’s “little theorem”, as generalized by Euler a century later, is perhaps
the first theorem in what is now known as group theory. It also has some remark-
ably interesting applications. We present Fermat’s theorem and related theory in this
chapter and some applications in the next.

A. Orders of Elements

The mathematics in this chapter starts from the observation that if we take powers of
a number a: 1 = a0,a,a2,a3, . . . , then eventually two of the powers will be congruent
modulo m. For example, modulo 7, the powers of 2:

1,2,4,8,16,32,64, . . .,

are congruent to
1,2,4,1,2,4,1, . . . .

Modulo 10, the powers of 2 are congruent to

1,2,4,8,6,2,4, . . . .

Modulo 12, the powers of 2 are congruent to

1,2,4,8,4,8,4, . . . .

The explanation for what is happening is simple. There are exactlym congruence
classes modulom. If we look at the powers of a: 1,a,a2,a3, . . . ,am, then since there
are m+ 1 powers and m congruence classes, at least two of the powers must be
in the same congruence class. (We used this idea in the proof of Theorem 14 of
Section 7C).

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 171
in Mathematics, c© Springer Science+Business Media LLC 2009
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Suppose ar ≡ as (mod m) for some r ≥ 0,s> r. Then ar+k ≡ as+k (mod m) for
every k≥ 0. So from as on the powers of a modulo m repeat earlier powers of a.

For example, 25 ≡ 2 (mod 10). So 26 ≡ 22, 27 ≡ 23, etc. Pictorially, we have

2 → 4
↑ ↓
6 ← 8

where the arrows mean “multiply by 2 (mod 10).”
Sometimes there is a positive power of a congruent to 1 (mod m), sometimes

not. In the examples above 23 ≡ 1 (mod 7), while 2s �≡ 1 (mod 10) for all s> 0. If
as ≡ 1 (mod m) for some s> 0, then a must be a unit modulo m, which means that
a and m must be coprime. The converse is also true:

Proposition 1. If a and m are coprime, then at ≡ 1 (mod m) for some t, 1≤ t <m.

Proof. To get t < m instead of t ≤m, we refine the above discussion slightly.
Since a and m are coprime, m does not divide as for any s, and so the m numbers

1,a,a2, . . . ,am−1 all belong to the m− 1 congruence classes other than the congru-
ence class of 0. So two of the numbers must be in the same congruence class: that is,
there exist numbers s and t with s≥ 0 and 0 < t <m−1 so that as ≡ as+t (mod m).
Now since a and m are coprime, we can cancel the common factor as from both
sides of the congruence to get 1≡ at (mod m). ��

In the notation of congruence classes, Proposition 1 states that if [a] is a unit of
Z/mZ, then [a]t = 1 for some t with 0 < t < m.

Defini ion. Let m ≥ 2 and a be any integer coprime to m. The order of a modulo
m is the smallest positive integer e so that ae ≡ 1 (mod m). In terms of congruence
classes, the order of [a] in Z/mZ is the smallest e > 0 so that [a]e = 1. In terms of
divisibility, the order of a mod m is the smallest e> 0 so that m divides ae−1.

Example 1. The order of 2 modulo 7 is 3, because 23 ≡ 1 (mod 7), while 21 �≡ 1
and 22 �≡ 1 (mod 7).

Notice that in showing that e is the order of a modulo m, two things must be
checked:

(i) ae ≡ 1 (mod m); and
(ii) for 1≤ s< e, as �≡ 1 (mod m).

Thus the notion of order is similar to that of least common multiple. Recall that m
is the least common multiple of a and b if:

(i) m is a common multiple of a and b; and
(ii) no number <m is a common multiple of a and b.

Since ab is a common multiple of a and b, there is a least common multiple of a and
b by well ordering.

Similarly, we know by Proposition 1 that if a is a unit modulo m, then there is
some positive exponent t so that at ≡ 1 (mod m), hence by well ordering there is a
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least positive exponent so that at ≡ 1 (mod m). That least positive exponent is the
order of a modulo m.

We found the order of [2] in Z/7Z; let us find the orders of the other nonzero
elements of Z/7Z, by direct computation.

The order of [1] is 1.
The order of [2] is 3, for [2]1 = [2], [2]2 = [4], [2]3 = [1].
The order of [3] is 6, for [3]1 = [3], [3]2 = [2], [3]3 = [6], [3]4 = [4], [3]5 =

[5], [3]6 = [1].
The order of [4] is 3, for [4]1 = [4], [4]2 = [2], [4]3 = [1].
The order of [5] is 6, for [5]1 = [5], [5]2 = [4], [5]3 = [6], [5]4 = [2], [5]5 =

[3], [5]6 = [1].
The order of [6] is 2, for [6]1 = [6], [6]2 = [1].

In tabular form, here are the results:

element order
[1] 1
[2] 3
[3] 6
[4] 3
[5] 6
[6] 2

We found that the least common multiple of a and b not only is ≤ any pos-
itive common multiple, but in fact divides any common multiple (Chapter 4,
Proposition 7). The same is true for the order of a modulo m.

Proposition 2. If e is the order of a modulo m, and a f ≡ 1 (mod m), then e
divides f .

Proof. We have ae ≡ 1 (mod m) and a f ≡ 1 (mod m). Divide e into f : f = eq+ r,
with 0≤ r< e. Then a f = (ae)q ·ar. Modulom, this becomes 1≡ (1)q ·ar, so ar ≡ 1
(mod m). But r < e and e is the least positive number with ae ≡ 1 (mod m). So
r = 0, and e divides f . ��

The next result would have saved us some effort in computing the orders of the
elements of Z/7Z.

Proposition 3. If a has order e modulo m and d > 0, then the order of ad modulo m
is e/(d,e), where (d,e) is the greatest common divisor of d and e.

Proof. Recall that for numbers d,e, the least common multiple [d,e] satisfies

[d,e]
d

=
e

(d,e)
.
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Since e divides [d,e] and ae ≡ 1 (mod m), we have

a[d,e] ≡ 1 (mod m).

It follows that
(ad)

[d,e]
d ≡ (ad)

e
(d,e) ≡ 1 (mod m).

To show that [d,e]
d is the order of ad , suppose (ad)s ≡ 1 (mod m) for s> 0. Then

ads ≡ 1 (mod m), so by Proposition 2, e divides ds. So ds is a common multiple of

e and d, so ds≥ [d,e], hence s≥ [d,e]
d . So the order of ad is [d,e]/d. ��

To apply Proposition 3 to the orders of elements of Z/7Z, suppose we find that
the order of [5] is 6. Then:

Since [4] = [5]2, the order of [4] is 6/(6, 2) = 6/2 = 3.
Since [6] = [5]3, the order of [6] is 6/(6, 3) = 6/3 = 2.
Since [2] = [5]4, the order of [2] is 6/(6, 4) = 6/2 = 3.
Since [3] = [5]5, the order of [3] is 6/(6, 5) = 6/1 = 6.
Since [1] = [5]6, the order of [1] is 6/(6, 6) = 6/6 = 1.

Exercises.

1. Find the orders of the nonzero elements of Z/5Z.

2. Find the orders of the units of Z/9Z.

3. Find the order of [2] in Z/mZ where:
(i) m= 11;
(ii) m= 17;
(iii) m= 31;
(iv) m= 9;
(v) m= 14.

4. Find the orders of the nonzero elements of Z/11Z. (Hint: Start with [2].)

5. Find the orders of the nonzero elements of Z/13Z.

6. Find the orders of the nonzero elements of Z/17Z.

7. Find the orders of the invertible elements of Z/24Z.

8. Let r and s be coprime numbers >2, and suppose the order of a modulo r is d,
and the order of a modulo s is e. Let m = rs. Show that the order of a modulo m is
the least common multiple of d and e.

9. Using the last exercise, find the order of 2 (mod 77).

10. Find the order of 210 (mod 77).
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11. Find the order of [32] in Z/17Z.

12. Prove Proposition 2 from Proposition 3.

13. Modulo 163, 3 has order 162. What is the order of 326? Of 327?

14. Find the order of [224] in Z/mZ, where:
(i) m= 11;
(ii) m= 17;
(iii) m= 31.

15. Modulo 83, 241 ≡ 82. Find the order of 2 (mod 83).

16. (i) Find the order of 3 (mod 14).
(ii) Find the least nonnegative integer in the congruence class [59110]14.

B. Fermat’s Theorem

From the exercises you may have noticed that if p is a prime, and a is any number
not divisible by p, then the order of a modulo p divides p−1. (Or notice the table
of orders for Z/7Z.) If so, you have recognized a theorem which was discovered by
Fermat in 1640. Fermat never made public a proof of the theorem, and the first proof
was given by Euler, a century later. We will give three different proofs of Fermat’s
theorem in this book.

Fermat’s theorem may be expressed in various ways. In terms of congruence:

Theorem 4 (Fermat’s Theorem). If p is a prime and a is an integer not divisible
by p, then

ap−1 ≡ 1 (mod p).

In terms of congruence classes, Fermat’s Theorem reads:

If p is prime and [a]p is a unit of Z/pZ, then [a]p−1
p = [1]p.

In terms of divisibility:

If p is prime and a is coprime to p, then p divides ap−1−1.

This last version was the one that Fermat stated. The concept of congruence did
not arise until 160 years after Fermat’s discovery.

A useful way to visualize the first proof we will give for Fermat’s theorem is to
look at that portion of the multiplication table for multiplication modulo p that does
not involve the number 0. We illustrate with p= 7:
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· 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

For each a, 1≤ a≤ 6, the row starting with a contains the entries

a ·1,a ·2, . . . ,a ·6 (mod 7)

from left to right.
Denote by a ·U the set of entries in the row associated to multiplication by a.

Then
U = 1 ·U = {1,2,3,4,5,6},

while, for example, 3 ·U is the set

3 ·U = {3 ·1,3 ·2,3 ·3,3 ·4,3 ·5,3 ·6} (mod 7)
= {3,6,2,5,1,4} (mod 7)

Now when we multiply the elements of the set 3 ·U together, on the one hand we
get

(3 ·1) · (3 ·2) · (3 ·3) · (3 ·4) · (3 ·5) · (3 ·6)= 36 ·1 ·2 ·3 ·4 ·5 ·6,

while on the other hand, the elements of 3 ·U are congruent modulo 7 to the numbers
3, 6, 2, 5, 1, 4, which is just a rearrangement of the numbers 1, 2, 3, 4, 5, 6. So the
product of the elements of 3 ·U is congruent modulo 7 to 1 ·2 ·3 ·4 ·5 ·6. Thus

36 ·1 ·2 ·3 ·4 ·5 ·6≡ 1 ·2 ·3 ·4 ·5 ·6 (mod 7).

Cancelling 1 ·2 ·3 ·4 ·5 ·6 from both sides, we get 36 ≡ 1 (mod 7), which is Fermat’s
theorem.

To prove Fermat’s theorem in general uses the same idea. We prove the congru-
ence class version.

Proof. Write down the multiplication table for Z/pZ (we omit brackets [ ]p in the
table):

· 1 2 3 · · · p−1
1 1 2 3 · · · p−1
2 2 2· 2 2 · 3 · · · 2(p−1)
3 3 3· 2 3 · 3 · · · 3(p−1)
...

...
...

...
...

a a a· 2 a· 3 · · · a(p−1)
...

...
...

...
...

p−1 p−1 (p−1)· 2 (p−1)· 3 · · · (p−1)(p−1)
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For any [a] �= [0], let a ·U denote the set of nonzero elements in the row correspond-
ing to multiplication by [a], that is, the congruence classes

[a ·1], [a ·2], . . ., [a · (p−1)].

The set a ·U is then the same as the set 1 ·U =U , except for the ordering of the
elements. To see this, let [a] �= [0], then [a] is a unit of Z/pZ. Let [b] be the inverse of
[a]. If [m] is any nonzero element of Z/pZ, then [m] = [1][m] = [a][b][m] = [a][(bm)],
so [m] is in the set a ·U . Thus the set U , consisting of all the nonzero elements of
Z/pZ, is a subset of a ·U . ButU and a ·U both contain p−1 elements. SoU = a ·U .

Now the product of the elements of a ·U is

[a ·1][a ·2][a ·3] . . .[a(p−1)] = [ap−1][1 ·2 ·3 · . . . · (p−1)]

while the product of the elements ofU is

[1][2][3] . . . [p−1] = [1 ·2 ·3 · . . .· (p−1)].

SinceU = a ·U , the products of the elements inU and in a ·U are equal:

[1 ·2 ·3 · . . . · (p−1)] = [ap−1][1 ·2 ·3 · . . .· (p−1)].

Canceling the element [1 ·2 ·3 · . . . · (p−1)], a unit of Z/pZ, gives [ap−1] = [1]. ��
Proposition 5. If p is prime and a is not divisible by p, then the order of a modulo
p divides p−1.

This follows immediately from Fermat’s theorem and Proposition 2 (Section A).
Applying Proposition 5 shortens the process of finding the order of [a] in Z/pZ.

For example, consider the order of [7] in Z/11Z. By Proposition 5 , the order divides
10, so the order can only be 1, 2, 5 or 10. We find that [7]1 = [7], [7]2 = [5] and
[7]5 = [7][5][5] = [7][3] = [21] �= [1]. So the order of [7] must be 10.

Fermat’s theorem also gives a way of describing the inverse of an invertible el-
ement of Z/pZ, p prime. If a is any integer with (a, p) = 1, then [a]p−1 = 1, so
[a] · [a]p−2 = 1. Thus [a]p−2 is the inverse of [a]. For example, the inverse of [4] in
Z/7Z is [4]5 = [1024]. (Since 1024≡ 2 (mod 7), [1024] = [2]).

Exercises.

17. Verify Fermat’s theorem for [5]11 in Z/11Z.

18. Verify Fermat’s theorem for [2]13 in Z/13Z. Then verify Fermat’s theorem for
all [a]13 with (a,13) = 1 (use Proposition 3).

19. Find 29 mod 11 and verify that 29 is the inverse of 2 modulo 11.

20. Find the order of [3] in Z/23Z. (Hint: Use Proposition 5).
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21. Without any significant computations, explain why the order of 7 modulo 167
is at least 80.

22. Show that the order of 10 (mod 83) is at least 30.

23. Is there an element of order 15 in Z/97Z? If so, find it.

24. Find the order of every nonzero element of Z/19Z.

25. Find the least nonnegative residue of 247 (mod 23).

26. Prove that if p is prime, then for every number a, divisible by p or not, ap ≡ a
(mod p).

27. Show that n5/5 +n3/3 + 7n/15 is an integer for every n.

28. Show that for every integer n, n9 + 2n7 + 3n3 + 4n is divisible by 5.

29. Show that if 7 does not divide n, then 7 divides n12−1.

30. Show that n13−n is divisible by 2, 3, 5, 7, and 13 for all n.

31. Show that for every n, n111 ≡ n (mod 11).

32. Show that 23560 ≡ 1 (mod 561).

33. Show that for every prime p, the product of the elements ofU(1) is [(p−1)!] =
[−1].

34. Find the least nonnegative residue of 3255 (mod 29).

35. Let m= 215−1 = 32767. Show that
(i) The order of 2 modulo m is 15.
(ii) 15 does not divide m−1.
Why does that imply that m is not prime?

36. (i) Show that 9 is the order of 2 (mod 511).
(ii) Show that if 511 were prime, then 9 would have to divide 510; since that is

not so, 511 must be composite.

37. Let p be a prime ≥7. Show that p divides at least one of the numbers in the set

{1,11,111,1111,11111, . . .}.

(These numbers are called repunits.)

38. Let n be any number of at most e digits. Let p be a prime ≥7. Show that there
is some number r so that p divides

n+n ·10e+n ·102e+ . . .+n ·10re
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39. Let m= 22e + 1, the e-th Fermat number.
(i) Show that 2 has order 2e+1 (mod m).
(ii) Let p be a prime divisor of m. Show that 22e ≡−1 (mod p), hence the order

of 2 modulo p is 2e+1.
(iii) Using Fermat’s theorem, show that any prime divisor p ofm satisfies p−1 =

k ·2e+1 for some k, hence p= 1 + k ·2e+1.
(This result of Euler is helpful in looking for prime factors of Fermat numbers.

Lucas subsequently showed that any prime factor of m must be of the form p =
1 + k ·2e+2).

C. Euler’s Theorem

Proposition 1 of Section A showed that if m is a modulus and a any integer with
(a,m) = 1, then there is some t with at = 1 (mod m). If m is prime, Fermat’s the-
orem asserts that we can choose t = m−1. When m is composite, Euler’s theorem
gives an appropriate t.

Recall from Section 6E that for m ≥ 2, we defined φ(m) to be the number of
units of Z/mZ. The function φ is called Euler’s phi-function. The number of units
of Z/mZ is equal to the number of numbers r with 1≤ r ≤m that are coprime to m.

Here is Euler’s theorem expressed in the language of congruence classes:

Theorem 6 (Euler’s Theorem). For every unit [a] of Z/mZ,

[a]φ(m) = [1].

Here is the theorem expressed in terms of congruences:

For every integer a coprime to m, aφ(m) ≡ 1 (mod m).

Example 2. In Z/14Z , the units are the classes of 1, 3, 5, 9, 11, and 13. So φ(14) =
6, and for every integer a coprime to 14, a6 ≡ 1 (mod 14). For example, 36 = 272 ≡
(−1)2 = 1 (mod 14).

Euler’s theorem can be proved in the same way Fermat’s theorem was proved.
The only refinement is to let U be the set of units modulo m, and a ·U denote the
setU of units each multiplied by a for [a] a unit of Z/mZ. Then a ·U consists of the
entries in the row of the multiplication table for the units of Z/mZ corresponding to
multiplication by a. For example, consider the units in the multiplication table for
Z/8Z. (We omit [ ]8 in the table).

· 1 3 5 7
1 1 · 1 1 · 3 1 · 5 1 · 7
3 3 · 1 3 · 3 3 · 5 3 · 7
5 5 · 1 5 · 3 5 · 5 5 · 7
7 7 · 1 7 · 3 7 · 5 7 · 7

=

· 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

.
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Then
3 ·U = {[3] · [1], [3] · [3], [3] · [5], [3] · [7]}

= {[3], [1], [7], [5]}
= {[1], [3], [5], [7]}=U

and so the products of the elements of 3 ·U and ofU are equal:

[3]4 · [1] · [3] · [5] · [7]= [1] · [3] · [5] · [7].

Canceling [1] · [3] · [5] · [7] from both sides gives

[3]4 = [1].

Having an appropriate set a ·U , the proof of Euler’s theorem is exactly the same
as that of Fermat’s theorem.

Proof. LetU = {u1,u2, . . . ,uφ(m)} be the units of Z/mZ and a be any unit of Z/mZ.
SinceU is closed under multiplication, aui is inU for every i. Let a ·U be the set

a ·U = {au1,au2, . . . ,auφ(m)}.

Then the sets a ·U andU are equal, for the function fa :U→ a ·U defined by fa(u) =
au is a one-to-one function with inverse fa−1 : a ·U →U defined by multiplication
by a−1. Thus au1,au2, . . . ,auφ(m) are φ(m) different units of Z/mZ, hence a ·U =U .

Since U = a ·U , the product of all the elements of a ·U and ofU are equal, that
is,

au1 ·au2 · · ·auφ(m) = u1 ·u2 · · ·uφ(m).

Since u1, . . . ,uφ(m) are units, we can cancel them from the two sides of the equation,
leaving

aφ(m) = 1. ��
Notice that Fermat’s theorem is a special case of Euler’s theorem. If m is prime,

then φ(m) = m− 1. Even the proofs are the same, for if m is prime, then the a ·U
used in the proof of Euler’s theorem is the same as the a ·U used in the proof of
Fermat’s theorem.

One question remaining with Euler’s theorem is the number φ(m), Euler’s phi
function. In order to use Euler’s theorem, we need to know φ(m). Even for fairly
small numbersm, the description of φ(m) as the number of units of Z/mZ, or as the
number of numbers r with 1 ≤ r ≤ m that are coprime to m, is not all that helpful
for computing φ(m). For example, what is φ(60)?

Understanding φ(m), given m, is a problem of some current interest, as will be-
come clear in Section 10A. But φ(m) is easy to compute if we can factor m into
products of prime powers:

Proposition 7. a) If p is prime, then φ(p) = p−1;
b) If p is prime, then for all e> 0, φ(pe) = pe−1(p−1);
c) If a and b are coprime, then φ(ab) = φ(a)φ(b).
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Proofs are sketched in the exercises. We will also give a proof of part c) in Section
12D using the Chinese Remainder Theorem.

Exercises.

40. Verify Euler’s theorem for [1], [3], [7], and [9] in Z/10Z .

41. Find a5 (mod 7) for a= 1,2,3,4,5,6, and verify that a5 ·a≡ 1 (mod 7).

42. Verify that 2φ(21) ≡ 1 (mod 21).

43. Find 48322 mod 25.

44. Find 40322 mod 21.

45. Prove that for any n, 33 divides n101−n.

46. Find the order of 7 modulo 172.

47. Observe that 210 = 1024≡−1 mod 25. Find the order of 2 modulo 25.

As with Fermat’s theorem, Euler’s theorem can be used to find the inverse of a unit
modulo m. Since

a ·aφ(m)−1 ≡ 1 (mod m),

the inverse of a modulo m is congruent to aφ(m)−1.

48. Verify that 511 mod 26 = 21, the inverse of 5 modulo 26.

49. Describe the inverse of 5 modulo 18 as a positive power of 5 mod 18.

50. Prove that if a and m are coprime and f ≡ 1 (mod φ(m)), then

a f ≡ a (mod m).

51. Prove that (i) φ(p) = p−1 if p is prime;
(ii) φ(pn) = pn− pn−1 if p is prime.

52. Verify that φ(ab) = φ(a)φ(b) for a and b=
(i) 3 and 5;
(ii) 4 and 7;
(iii) 5 and 6.

53. Prove that φ(15) = φ(3)φ(5) as follows:
(i) Write down the numbers <15 in 5 columns of 3 numbers, as follows:

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

.
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Show that the numbers coprime to 15 lie only in the rows of numbers all of which
are coprime to 3. Show that each row is a complete set of representatives modulo 5,
hence each row has φ(5) numbers coprime to 5.

(ii) Conclude that φ(15) = φ(3)φ(5).

54. Generalize the last exercise to prove that φ(ab) = φ(a)φ(b) for any a and b
with (a,b) = 1.

We will give an alternate proof of this last exercise in Chapter 12.

55. Verify that φ(4)φ(6) < φ(24).

56. Prove that for every prime p and for every r,s≥ 1,

φ(pr)φ(ps) < φ(pr+s).

57. Prove that for all numbers a,b≥ 1, if (a,b) > 1, then φ(a)φ(b) < φ(ab). (Hint:
try induction on the number of primes dividing (a,b)).

58. Define φ(1) = 1 and compute ∑d|n φ(d) for:
(i) n= 16;
(ii) n= 15;
(iii) n= 45;

59. Show that for every n ≥ 1 and every divisor d of n, the number of elements [a]
of Z/nZ so that (a,n) = d is φ(n/d).

60. Prove that ∑d|n φ(d) = n for every n> 0.

61. We can prove Euler’s theorem in terms of congruence, rather than congruence
classes, as follows. Given a modulus m, we say that a set of integers a1,a2, . . . ,ar is
a complete set of units mod m if every integer a coprime to m is congruent to exactly
one of the numbers a1,a2, . . . ,ar (see Section 6E). Otherwise stated, a1,a2, . . . ,ar is
a complete set of units mod m if {[a1], [a2], . . . , [ar]} is the set of units of Z/mZ.

(i) Show that r = φ(m).
(ii) Show that if a1,a2, . . . ,ar is a complete set of units modm, and b is any integer

coprime to m, then ba1,ba2, . . . ,bar is a compete set of units mod m. Illustrate with
m= 12 and b= 17.

(iii) Show that if a1,a2, . . . ,ar and c1,c2, . . . ,cr are both complete sets of units
mod m, then a1 ·a2 · . . . ·ar ≡ c1 ·c2 · . . . ·cr (mod m). Illustrate with m = 12 and the
two complete sets of units of the previous exercise.

(iv) Use parts (i) - (iii) to prove that bφ(m) ≡ 1 (mod m) for any number b co-
prime to m.

62. Prove that if q > 2 is odd and the order of 2 (mod q) is q−1, then q is prime.
Why is this not contradicted by the fact that 2340 ≡ 1 (mod 341)?
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D. Repeating Decimals

This section describes a connection between the decimal expansion of a fraction and
the order of 10 modulo the denominator.

Everyone learns how to find the decimal expansion of a fraction. For example, to
expand 1/7 into a decimal fraction, divide 7 into 10, (with quotient 1), multiply the
remainder (3) by 10, divide the result (30) by 7 (with quotient 4 and remainder 2),
etc.:

10 = 7 ·1 + 3

30 = 7 ·4 + 2

20 = 7 ·2 + 6

60 = 7 ·8 + 4

40 = 7 ·5 + 5

50 = 7 ·7 + 1

....

Then divide each equation by 7 and 10 to get

1
7

=
1

10
+

3
70

3
7

=
4

10
+

2
70

2
7

=
2

10
+

6
70

6
7

=
8

10
+

4
70

4
7

=
5

10
+

5
70

5
7

=
7

10
+

1
70

....

Successively substituting, we find that

1
7

=
1

10
+

4
102 +

2
103 +

8
104 +

5
105 + . . . = 0.14285714 . . ..

The quotients become the numerators, or the digits in the decimal expansion of 1/7.
This process is laid out efficiently by long division of 1.00000. . . by 7.

Here are some other examples:

1
3

= 0.3333 . . .

1
5

= 0.20000 . . .
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3
7

= 0.4285714285714 . . .

4
13

= 0.3076923076923 . . .

7
24

= 0.291666 . . .

59
148

= 0.398648648 . . ..

All of these examples are eventually repeating decimal expansions–after a few ini-
tial digits, the digits cycle. To describe such expansions efficiently, we can put a bar
over the repeating digits, as follows:

1
3

= 0.3

1
5

= 0.20 = 0.2

3
7

= 0.428571

4
13

= 0.307692

7
24

= 0.2916

59
148

= 0.39864.

A decimal expansion is terminating if every digit from some point on is equal to
zero. A terminating expansion is a special case of an eventually repeating expansion.

If the decimal expansion of a/b is not terminating, then the period of the fraction
a/b, or of its decimal expansion, is the number of digits under the bar, that is, the
least number d > 0 so that the decimal expansion of a/b eventually repeats every d
digits. For example, the period of 1

3 is 1; the period of 3
7 is 6; the period of 59

148 is 3.
The period of a fraction relates to Euler’s theorem. In fact, we have

Theorem 8. Let t be a number coprime to 10, and let ut be a reduced fraction (that
is, u and t are coprime). Then the period of ut is equal to the order of 10 modulo t.

To see that this result is plausible, we observe that:
10 has order 1 modulo 3 (since 10≡ 1 (mod 3)) and the period of 1

3 = 0.3 is 1;
10 has order 6 modulo 7 (since 10≡ 3 (mod 7) and 3 is a primitive root modulo

7) and the period of 5
7 = 0.714285 is 6;

10 has order 2 modulo 11 (since 10≡−1 (mod 11)) and the period of 3
11 = 0.27

is 2;
10 has order 6 modulo 13 (since 10 ≡ −3 (mod 13) and (−3)3 = −27 ≡ −1

(mod 13)) and the period of 4
13 = 0.307692 is 6.

Proof. Assume u< t and (u,t) = 1, so that u/t is a reduced proper fraction.
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Let e be the order of 10 modulo t. Then

10e ≡ 1 (mod t)

and so
10e−1 = tk> uk.

This means that uk has at most e decimal digits. Now using the geometric series

1
1− x = 1 + x+ x2 + . . . ,

which converges for every real number x with |x| < 1, and setting x = 1/10e, we
have

u
t

=
uk
tk

=
uk

10e−1

=
uk
10e

(
1

1− 1
10e

)

=
uk
10e

(1 +
1

10e
+

1
102e +

1
103e + . . .)

=
uk
10e

+
uk

102e +
uk

103e + . . . ,

a decimal expansion that repeats every e digits. If we write uk as usual in base 10 as

uk= ae−1ae−2 . . .a1a0,

then u
t

= 0.ae−1ae−2 . . .a1a0.

Conversely, suppose u
t repeats every d digits. Then there is some number s of at

most d digits so that
u
t

=
s

10d
+

s
102d +

s
103d + . . .

=
s

10d
(1 +

1
10d

+
1

102d + . . .)

=
s

10d
(

1

1− 1
10d

)

=
s

10d−1

Multiplying by both denominators gives

u(10d−1) = ts.

Since (u,t) = 1 it follows that t divides 10d− 1, hence 10d ≡ 1 (mod t). Thus the
order e of 10 modulo t divides d.
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We showed above that if e is the order of 10 modulo t, then u/t repeats every
e digits. Since the period of u

t is the least number d > 0 so that u
t repeats every d

digits, it follows that the period of u
t is equal to e. ��

Observe that the period of a reduced fraction u
t with (t,10) = 1 doesn’t depend

on the numerator u at all. For example, all proper fractions with denominator 37
have period 3, such as

5
37

= 0.135

14
37

= 0.378

22
37

= 0.594

36
37

= 0.972

because the order of 10 modulo 37 is 3: 103 = 1 + 999 = 1 + 27 ·37.
Theorem 8 explains the expansions of fractions where the denominator is co-

prime to 10. The situation for general fractions, such as 59
148 , reduces to that for

fractions with denominators coprime to 10 by the following result.

Proposition 9. For any reduced fraction a
b there is some g≥ 0 and integers q,u and

t so that
10ga
b

= q+
u
t

where u < t,(t,u) = 1 and (t,10) = 1. Hence a
b is eventually periodic with period

equal to the order of 10 modulo t.

For example, 7
24 may be multipliplied by 103 to yield

7000
24

= 291 +
16
24

= 291 +
2
3
,

hence
7

24
=

291
1000

+
(

1
1000

)
2
3
.

Proof. Given a
b with (a,b) = 1, factor the highest powers possible of 2 and 5 from

b, to get b = 2e5 f t where t is coprime to 2, 5, and a. Let g be the larger of the two
exponents e and f , and multiply a

b by 10g. Then divide 10ga by b to get the integer
and fractional part of 10ga

b . If
10ga= bq+ r

with 0≤ r ≤ b, then
10ga
b

= q+
r
b
.

Reducing r
b to lowest terms, we obtain a fraction with denominator t. For

r = 10ga−bq= 10ga−2e5 f tq,
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so
r
b

=
10ga−2e5 f tq

2e5 f t
.

Since g≥ e and ≥ f , we can cancel 2e and 5 f to get

r
b

=
2g−e5g− f a− tq

t
=
u
t
.

Then t is coprime to u = 2g−e5g− f a− tq since t is coprime to 2g−e5g− f a, so u
t is

reduced. Then
10ga
b

= q+
u
t
,

so
a
b

=
q

10g
+

1
10g

(
u
t
).

Expanding u
t and substuting gives the decimal expansion of a

b , and the period of a
b

is the same as the period of ut .
��

Corollary 10. If ab is a reduced fraction and b = 2e5 f t with (t,10) = 1, then the
period of ab divides φ(t), the order of the group of units of Z/tZ.

Proof. The period of ab is the order of 10 (mod t) by Theorem 8. We know 10φ(t) ≡
1 (mod t) by Euler’s Theorem, and so the period of a

b divides φ(t). ��
Theorem 8 may be applied either to find orders or to find periods.
We can use Theorem 8 to find the order of 10 modulo 21, by finding the period

of 1/21.
We can find the period of 1/21 by computing the decimal expansion of 1/21 by

long division. If we do so, we find that 1/21 = 0.047619, and so the order of 10
modulo 21 is 6.

Long division also yields the least non-negative residues modulo 21 of the powers
of 10. For spreading out the long division,

10 = 21 ·0 + 10, so 10≡ 10 (mod 21)

10 ·10 = 100 = 21 ·4 + 16, so 102 ≡ 16 (mod 21)

103 ≡ 10 ·16 = 160 = 21 ·7 + 13, so 103 ≡ 13 (mod 21)

104 ≡ 10 ·13 = 130 = 21 ·6 + 4, so 104 ≡ 4 (mod 21)

105 ≡ 10 ·4 = 40 = 21 ·1 + 19, so 105 ≡ 19 (mod 21)

106 ≡ 10 ·19 = 190 = 21 ·9 + 1, so 106 ≡ 1 (mod 21)

The powers of 10 modulo 21 are the remainders at each stage of the long division.
We can also use Theorem 8 to find the periods of fractions without actually com-

puting the decimal expansion. For example, to find the period of 33/83, we can
instead find the order of 10 modulo 83, a prime number. That order must be 1, 2,
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41 or 82 by Proposition 5. The order of 10 is not 1 or 2. To check 41, we use the
technique of Section F, below:

102 ≡ 17 (mod 83)

104 ≡ 172 = 289≡ 40 (mod 83)

108 ≡ 402 = 1600≡−60≡ 23 (mod 83)

1016 ≡ 232 = 529≡ 31 (mod 83)

1032 ≡ 312 = 961≡ 48 (mod 83)

and so

1041 = 1032 ·108 ·10≡ 48 ·23 ·10≡ 25 ·10 = 250≡ 1 (mod 83).

Therefore the order of 10 modulo 83 is 41. So the period of 33/83 is also 41.
All of this works in any base (radix) b. In that more general setting, Theorem 8

becomes

Let b be a base and let (t,b) = 1. Then the period of 1
t in base b equals the order

of b modulo t, and divides φ(t).

Exercises.

63. Find the period of 1
17 .

64. Find the period of 11
47 .

65. Find the period of 17
143 .

66. Find all prime numbers t so that the expansion of 1/t in base 10 has period 3.

67. (i) Show that 10 has order 5 modulo 11111.
(ii) Show that if a prime p divides 11111, then 5 must divide p− 1, hence p =

1 + 5k for some k, and k must be even.
(iii) Show that if 11111 is composite, then 11111 must be divisible by a prime

<110.
(iv) Factor 11111 or show that 11111 is prime.

68. Find all prime numbers t so that the expansion of 1/t in base 10 has period 5.

69. Find all numbers t so that the expansion of 1/t in base 10 has period 4.

70. Find all numbers t so that φ(t) divides 100. Then show that for every b coprime
to t, the period of 1/t in base b divides 100.
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E. The Binomial Theorem and Fermat’s Theorem

In this section we give a proof of Fermat’s theorem that uses the Binomial Theorem
modulo a prime number p. Recall from Section 2D that the Binomial Theorem is:

(x+ y)n = xn+
(
n
1

)
xn−1y+ . . .+

(
n
r

)
xryn−r+ . . .+ yn,

where the coefficients are integers and satisfy
(
n
r

)
=

n!
r!(n− r)! .

In preparation for the proof, we observe:

Proposition 11. If p is prime, then p divides
(p
r
)
for all r, 0 < r < p.

Proof. For p prime,
(p
r
)

= p!
r!(p−r)! . Since

(p
r
)

is an integer, r!(p− r)! divides p!.

For 1≤ r ≤ p−1, the prime p does not divide r! and does not divide (p− r)!, so p
and r!(p− r)! are coprime. So r!(p− r)! divides (p−1)! and

(p
r
)
= p[ (p−1)!

r!(p−r)! ] is an
integer multiple of p. ��
Proposition 12. If p is prime, then (x+ y)p ≡ xp + yp (mod p) for all integers x
and y.

Proof. Expand (x+ y)p by the Binomial Theorem. By Proposition 11, the prime
p divides

(p
r
)

for 1 ≤ r ≤ p− 1, and so modulo p, the only terms with non-zero
coefficients are the first and last:

(x+ y)p ≡ xp+ yp (mod p).

��
Using Proposition 12, we can prove Fermat’s Theorem by induction.

Theorem 13 (Fermat’s Theorem). If p is a prime, then every integer a satisfie the
congruence ap ≡ a (mod p).

If a is coprime to p, then canceling a gives Fermat’s Theorem in its original form:
ap−1 ≡ 1 (mod p).

Proof. We prove the theorem for all a > 0 by induction on a. For a = 1 it is clear.
Suppose a is an integer ≥1 and ap ≡ a (mod p). Then

(a+ 1)p ≡ ap+ 1p (mod p)

by Proposition 12, and this
≡ a+ 1 (mod p)
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by the induction assumption. So Fermat’s Theorem is true for all a ≥ 0. If b is any
integer, then b ≡ a (mod p) for some positive integer a. Then bp ≡ ap ≡ a ≡ b
(mod p). ��

The proof of Fermat’s Theorem in Section B extended easily to a proof of Euler’s
theorem. With a bit more effort we can also extend the new proof:

Theorem 14 (Euler’s Theorem). If a and m are coprime integers, m ≥ 2, then
aφ(m) ≡ 1 (mod m).

Proof. Write m = pe1
1 p

e2
2 . . . pegg , a product of powers of distinct primes. It suffices

to show that
aφ(m) ≡ 1 (mod peii )

for each i. Now by Proposition 7 of Section C, above,

φ(m) = φ(pe1
1 )φ(pe2

2 ) . . .φ(pegg ).

If we show that
aφ(peii ) ≡ 1 (mod peii )

for each i, then
aφ(m) ≡ 1 (mod peii )

for all i, and so aφ(m)− 1 is a common multiple of pe1
1 , . . . , pegg . Then aφ(m)− 1 is

divisible by m, the least common multiple of pe1
1 , . . . , pegg . Hence

aφ(m) ≡ 1 (mod m).

So let p be any of the pi’s. We will show that for every a coprime to p,

aφ(pe) ≡ 1 (mod pe)

that is,
ap

e−1(p−1) ≡ 1 (mod pe),

which we will prove by induction on e.
The case e= 1 is Fermat’s Theorem, and gives us that

ap−1 = 1 + ps1

for some integer s1. To do the case e= 2, we have

ap(p−1) = (1 + ps)p

= 1 +
(
p
1

)
ps+

(
p
2

)
p2s2 + . . .+ ppsp

= 1 + p2s2
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for some integer s2 by Proposition 12. So

ap(p−1) ≡ 1 (mod p2).

and the case e= 2 is true. Similarly, if e> 2 and we assume by induction that

ap
e−2(p−1) ≡ 1 (mod pe−1),

then
ap

e−2(p−1) = 1 + pe−1se−1

for some integer se−1. So

ap
e−1(p−1) = (1 + pe−1se−1)p

= 1 + pese

for some integer se, just as in the case e = 2. So the prime power case is done by
induction on e, completing the proof. ��

This last proof of Euler’s Theorem yields

Proposition 15. Let m = p1p2 · · · pg be a product of distinct prime numbers (m is
“squarefree”). Let

λ (m) = lcm(p1−1, p2−1, . . . , pg−1).

Then for every integer a and every number k,

aλ (m)k+1 ≡ a (mod m).

Proof. As in the proof of Theorem 14, it suffices to show that aλ (m)k+1 ≡ a
(mod pi) for each prime pi dividing m. If pi divides a, this is clear. Otherwise, a
is a unit modulo pi. Now λ (m) is a multiple of pi− 1, so λ (m)k = (pi− 1)li for
some number li. Hence by Fermat’s Theorem,

aλ (m)k+1 ≡ (api−1)lia≡ a (mod pi).

��
Since φ(m) is a multiple of λ (m), we have

Corollary 16. If m is a squarefree integer, then for every integer a and every
number k,

aφ(m)k+1 ≡ a (mod m).

These last two results will be useful in Section 10A.
The exponent λ (m) will reappear in Section 19A as the exponent of the abelian

groupUm of units of Z/mZ.
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The Frobenius map. Proposition 12 has useful applications to finite fields. We
first extend Proposition 12 from integers modulo p, a prime number, to elements of
arbitrary rings of characteristic p (defined in Section 7D):

Theorem 17. If R is a commutative ring of characteristic p and a,b are elements of
R, then (a+b)p = ap+bp.

Proof. By the Binomial Theorem,

(y+ z)p = yp+
(
p
1

)
yp−1z+

(
p
2

)
yp−2z2 + . . .+ zp

for any indeterminates y and z. Set y = a,z = b with a,b in R. Now if r �= 0 or p,(p
r
)

= pq for some integer q by Proposition 11, so

(
p
r

)
ap−rbr = pqap−rbr = 0.

Thus in R, (a+b)p = ap+bp. ��
Let R be a ring of characteristic p. Then the pth power map fp, which takes a in

R to ap, is a ring homomorphism from R to R (see Section 7D) because

fp(a+b) = (a+b)p = ap+bp = fp(a)+ fp(b)

by Theorem 17, and

fp(ab) = (ab)p = apbp = fp(a) fp(b);

fp(0) = 0; fp(1) = 1.

The map fp is called the Frobenius map.

Proposition 18. If F is a fin te fie d of characteristic p, then fp is a one-to-one
function from F onto F.

A homomorphism from a ring R to itself which is one-to-one and onto is called an
automorphism of R.

Proof. To show that fp is an automorphism of F we need to show that fp is one-to-
one and onto. Since F has a finite number of elements, if fp is one-to-one, then fp
must be onto. But fp is one-to-one because it is a nonzero homomorphism whose
domain is a field–see Proposition 17 of Section 7D. ��
Corollary 19. If R is a ring of characteristic p, then for all a,b in R and every n> 0,

(a+b)p
n
= ap

n
+bp

n
.

Proof. Let fpn : R→ R be the function defined by fpn(a) = apn for any a in R. Then
fpn is the composition of fp with itself n times:
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fpn(a) = fp( fp(· · ·(a) · · · )).

Since the composition of homomorphisms is a homomorphism (an easy exercise),
we have that

(a+b)p
n
= fpn(a+b) = fpn(a)+ fpn(b) = ap

n
+bp

n
.

��

Exercises.

71. Let m= 15, then λ (m) = 4. Verify that for every number a,

a5 ≡ a (mod m).

72. Let m= 41 ·11 = 451. Verify that

11λ (m)+1 ≡ 11 (mod m).

73. Show that λ (m) < φ(m) for every odd composite number m.

74. Find examples of p,q primes >10 so that λ (pq) = p−1.

75. Let a,b,c be integers and p a prime. Show that

(a+b+ c)p≡ ap+bp+ cp (mod p).

Generalize.

76. Find integers a,b so that

(a+b)4 �≡ a4 +b4 (mod 4).

77. Show that for all integers a,b and every n> 0,

(a+b)n ≡ an+bn (mod 2).

F. Finding High Powers Modulo m

For finding inverses by Euler’s theorem and for other applications, we often need to
find the least nonnegative residue of a high power of a number modulo m.

For example, one way to find the inverse of 87 modulo 179 is as 87177 mod 179.
But if we put 87177 into a calculator, it will either choke or give us something

like “1.972 E+ 343”, which is useless for discovering that 107 is the inverse of 87
modulo 179.
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To find 87177 modulo 179, it is helpful to write the exponent in base 2 and then
find the result using a sequence of squarings modulo 179. We first find that 179 =
128 + 32 + 16+1. Then we compute

87

872 ≡ 51 (mod 179),

874 ≡ 512 ≡ 95 (mod 179),

878 ≡ 952 ≡ 75 (mod 179),

8716 ≡ 752 ≡ 76 (mod 179),

8732 ≡ 762 ≡ 48 (mod 179),

8764 ≡ 482 ≡ 156 (mod 179),

87128 ≡ 1562 ≡ 171 (mod 179).

Since 179 = 128 + 32 + 16+1, we have

87179 = 87128+32+16+1

= 87128 ·8732 ·8716 ·87

≡ (171)(48)(76)(87)
≡ 107 (mod 179).

An efficient way to do the computations is as follows: write the exponent, 177, in
base 2: 177 = (10110001)2. Then write down that base 2 number with an S inserted
in the spaces between adjacent digits:

1S0S1S1S0S0S0S1.

Now replace each 1 by X and erase each 0, to get

XSSXSXSSSSX .

Beginning with the number 1, view X and S, from left to right, as operations to
compute a177 (mod m), as follows: X means, multiply the result by a and reduce
modulom; and Smeans, square the result and reduce modulom. If we do not reduce
modulo m, we would get:

X S S X S
1 → a → a2 → a4 → a5 → a10

X S S S S X
→ a11 → a22 → a44 → a88 → a176 → a177

If we reduce modulo m at each step, we get the least nonnegative residue of a101

(mod m) at the end. Thus
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X : 1 ·87≡ 87 (mod 179)
S : 87 ·87≡ 51 (mod 179)
S : 51 ·51≡ 95 (mod 179)
X : 95 ·87≡ 31 (mod 179)
S : 31 ·31≡ 66 (mod 179)
X : 66 ·87≡ 14 (mod 179)
S : 14 ·14≡ 17 (mod 179)
S : 17 ·17≡ 110 (mod 179)

S : 110 ·110≡ 107 (mod 179)
S : 107 ·107≡ 172 (mod 179)
X : 172 ·87≡ 107 (mod 179).

So
87177 ≡ 107 (mod 179).

Exercises.

78. Find the least nonnegative residue (mod 34) of 1287.

79. Find the least nonnegative number a congruent to 269 (mod 71). Verify that
2a≡ 1 (mod 71).

80. Find the least nonnegative number a congruent to 569 (mod 71). Verify that
5a≡ 1 (mod 71).

81. Find the least nonnegative number a congruent to 3340 (mod 341).

82. Find the least nonnegative number a congruent to 51728 (mod 1729).

83. Find the least nonnegative residue (mod 101) of 1877.

84. (i) Find the least nonnegative number a congruent to 21194648 (mod 1194649)
Could 1194649 be prime?

(ii) Find the least nonnegative number a congruent to 31194648 (mod 1194649)
Is 1194649 prime?

85. Let m= 252601. Suppose we discover that

3126300 ≡ 67772 (mod 252601)

3252600 ≡ 1 (mod 252601)

Is then 252601 prime? composite? Or can we not decide for sure from the informa-
tion given?

86. Show how to adapt Russian Peasant Arithmetic (Chapter 2, Exercise 29 ) with
multiplication replacing addition and squaring replacing multiplying by 2, to effi-
ciently find ae and ae mod m for any numbers a,e and m.
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G. Modular Multiplication

When we find ae mod m as in Section F, every time we perform an operation (multi-
plication, squaring), we immediately reduce the result modulo m to bring the result
back to a number <m. (If we don’t, the size of the numbers can become unmanage-
ably large.)

For example, suppose the modulus m = 179 and we square 107 to get 1072 =
11449. To find its least non-negative residue modulo m, we divide 179 into 11449
and take the remainder.

But long division is the only algorithm in classical arithmetic that is not automatic.
Consider dividing 179 into 11449. We look for the first digit of the quotient.

Since 17 is bigger than 11, we can’t guess the first digit by dividing the first digit of
the divisor into the first digit or two of the dividend. So we start guessing with 9:

179 ·9 = 1611;

179 ·8 = 1432;

179 ·7 = 1253;

179 ·6 = 1074

and 1074 is less than 1144. So the first digit is 6.
We subtract 10740 from 11449 and get 709. Now we guess the next digit. How

many times does 179 go into 709? We try the first digit idea: since 1 goes into 7, 7
times, we start with 7:

179 ·7 = 1253,

179 ·6 = 1074,

179 ·5 = 895,

179 ·4 = 716,

179 ·3 = 537,

and 537 is less than 709. So the second digit is 3, and the remainder is 709−537 =
172.

Hence 11449 mod 179 = 172, and so 107 ·107 mod 179 is 172.
To find the digits of the quotient, we needed to guess, and trial divide, nine times.
Evidently, we can learn how to do long division by guessing. But for program-

ming a computer, it could be helpful to find a systematic way to find the least non-
negative residue of a number without the trial dividing that is part of the long divi-
sion algorithm.

We present a method, due to P. Montgomery in 1985, which replaces the long
division by several multiplications. Here is how it works.

Given the modulus m, we choose a base, or radix r > m such that m is coprime
to r, and such that finding the least non-negative residue of any number modulo r
is easy. For example, if we are working with numbers written in the usual decimal
notation and the modulusm is coprime to 10, then we can choose r to be a power of
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10. For then the least non-negative residue of a number is just the rightmost digits
of the number.

For example, if r = 1000 then 324,554,217 modulo 1000 is 217, while 11449
modulo 1000 is 449.

In our example, if m= 179, then we can choose r = 1000.
For many applications, such as cryptography, the assumption that the modulusm

is coprime to 10 will always hold.

Precomputation. Given the modulus m and the base r > m, we first precompute
some constants for the algorithm. Since m and r are coprime, we can find numbers
r′ and m′ so that r′r−m′m= 1, or

r′r = 1 +m′m,

where 0 < r′ < m and 0 < m′ < r. Note that r′ is the inverse of r modulo m.
We also find the least non-negative residue w of r2 mod m. The constants r′,m′

and w are used in the algorithm.

The algorithm. Now let b be a number <mr. We want to find b mod m.
We do it in two parts.

For the first part we find br′ mod m, as follows.
First, let s = bm′ mod r. (That, recall, is easy to do.) Then, multiplying by m

yields
sm= bm′m (mod mr),

and since s < r, then sm < rm and sm is the least non-negative residue of b′bm
modulo mr. Then

b+ sm≡ b+bm′m= b(1 +m′m) = br′r (mod mr),

so b+ sm is a multiple of r. Divide the congruence

b+ sm≡ br′r (mod mr)

by r (again, easy to do), to get z= (b+ sm)/r. Then

z≡ br′ mod m.

We also have that
z< 2m.

To see this, recall that b< mr by assumption, and sm< mr. So rz = b+ sm< 2mr,
hence z< 2m.

The least non-negative residue c of br′ mod m is then either z, if z< m, or z−m,
if m≤ z< 2m.
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For the second part of the algorithm, multiply c and w, where w is the least non-
negative residue of r2 modulo m that we precomputed earlier. Then wc< m2 < mr,
and

wc≡ r2br′ ≡ br (mod m).

If we then repeat the first part on wc instead of b, we will end up with a number
d < m so that

d ≡ wcr′ ≡ brr′ ≡ b (mod m),

and so d is the least non-negative residue of b modulo m.
In outline, to find b mod m for b< mr:

• find s= bm′ mod r,
• compute z= (b+ sm)/r. Then z< 2m.
• determine c where c= z if z< m and c= z−m if z≥ m.
• find s′ = wcm′ mod r,
• compute z′ = (wc+ s′m)/r. Then z′ < 2m.
• determine d where d = z′ if z′ < m and d = z′ −m if z′ ≥ m.

Then d = b mod m.

Example 3. Let m = 179 and choose the radix r = 1000. For the precomputation,
we find that 179 ·581 + 1 = 1000 ·104, and r2 = 10002 ≡ 106 (mod 179). So

r′ = 104,

m′ = 581,

w= 106.

For the algorithm itself, let b = 107 · 107 = 11449. We want to find b modulo
m= 179.

First, we find
s≡ bm′ = 11449 ·581 mod 1000.

We can find s efficiently by first reducing b = 11449 mod 1000 to get 449, then
multiplying 449 by m′ = 581 to get 260869, then reducing 260869 modulo 1000 to
get

s= 869.

Then sm= 869 ·179 = 155551, the least non-negative residue of bm′m modulo mr.
So

b+ sm= 11449 + 155551 = 167000

≡ b+bm′m= b(1 +m′m) = br′r (mod rm)

is a multiple of r = 1000. So

z= (b+ sm)/r= 167000/1000 = 167.

Then z= 167 satisfies

167≡ 11449 ·104 = br′ mod 179.
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Since 167 < 179, we have
c= 167.

Now we multiply c= 167 by the least non-negative residue w= 106 of r2 to get

wc= 167 ·106 = 17702≡ br (mod m).

We find wc ·m′ = 17702 ·581 = 10284862, then

s′ = wcm′ mod 1000 = 862.

Then s′m= 862 ·179 = 154298, and

wc+ s′m= 17702 + 154298 = 172000

≡ wc+wcm′m= wc(1 +m′m) = wcr′r (mod rm),

a multiple of r = 1000. So
z′ = 172.

Since 172 < 179, we have
d = 172,

the least non-negative residue of b= 11449 modulo 179.

To sum up, once we set up Montgomery’s algorithm for a particular modulus m
and radix r by precomputingm′,r′ and w, the algorithm finds the least non-negative
residue of any number b<mr, replacing long division bymwith five multiplications
of numbers <m and five divisions by r. The guessing or trial division that can arise
in long division is eliminated.

The Montgomery algorithm has been called the most efficient algorithm available
for modular multiplication. It is being built into circuitry designed to do fast modular
multiplication of numbers of sizes up to 22048 (numbers of up to 616 digits). We’ll
see some applications of modular multiplication of large numbers in later chapters.

The original algorithm appeared in Montgomery (1985).

Exercises.

87. Use Montgomery’s algorithm to find
(i) 132 ·89 mod 179,
(ii) 167 ·148 mod 179.

88. Set up Montgomery’s algorithm for m= 267. Use it to find 167 ·239 mod 267.

89. Try this “pick a number” puzzle on a friend:
Pick something you know your friend does at least one day per week. Ask her:
“Write down how many days last week you did [that thing]? Don’t show it to me.”

Call the secret number m. (m should be a number with 1≤ m≤ 7).



200 9 Fermat’s and Euler’s Theorems

Tell her to do the following:

• Take her secret number, add it to 42, call the result t.
• Take the units digit of t, multiply it by 7, take the units digit of the result, multiply

that by 7, add the result to t, then divide by 5. Call the result u.
• Then take the units digit of u, multiply it by 7, take the units digit of the result,

multiply that by 7, add the result to u, then divide by 10.

Then tell her that the number she computed was the number of days last week she
did [that thing].

(i) If she says you’re wrong, can you accuse her of making an error in her com-
putations?

(ii) Try to explain to her why it works (if it does!).
(iii) Write up the result of your trial.

90. Make up your own “pick a number” puzzle based on Montgomery’s algorithm.



Chapter 10
Applications of Euler’s Theorem

The applications of Fermat’s and Euler’s Theorems in this chapter are to cryptogra-
phy and to the study of large numbers.

A. RSA cryptography

Euler’s theorem is the key result behind the widely used RSA cryptosystem, devel-
oped by R.L. Rivest, A. Shamir, and L. Adleman (1977).

Suppose two parties, call them Alice and Bob, wish to send messages back and
forth to each other, and want them to be incomprehensible to a third party, say
Eve. The idea is to encrypt each message, to transform the plaintext message into
a message that would be unreadable except to the intended receiver. Even if the
encrypted message is broadcast publicly, or sent over the internet, Eve, reading the
encrypted message, should not be able to determine in a reasonable amount of time
what the original message is.

Any message in words can be translated into a sequence of numbers by replac-
ing the letters of the message by numbers in some agreed-upon way. For example,
we could count the alphabet and replace each letter by the corresponding two-digit
number:

A↔ 01;B↔ 02; ...;M↔ 13; ...;Z↔ 26; (space) ↔ 00.

Thus the word I LOVE YOU would become 10001215220500251521 (Or we could
use the ASCII numbering of characters.) In this way a message is translated into a
sequence of decimal digits. We’ll assume hereafter that every message is a sequence
of numbers.

We first describe how the method works, and then explain why it is effective.

How RSA works. For Alice to send Bob a message, Bob chooses two different
large primes p and q that he keeps secret, and setsm= pq. He chooses an encrypting
exponent e coprime to φ(m) = (p−1)(q−1). Then Bob finds a number d so that

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 201
in Mathematics, c© Springer Science+Business Media LLC 2009
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ed ≡ 1 (mod φ(m)).

Then d is the inverse of e modulo φ(m). Bob can find d by solving the equation

ex+ φ(m)y= 1

for x. Since e and φ(m) are coprime, Bob can solve this equation efficiently by the
extended Euclidean Algorithm (Bezout’s Identity, Section 3D). Thus

ed = 1 + φ(m)k

for some k.
Bob keeps d secret but broadcasts m and e to Alice.
Alice has a message that consists of a sequence of numerical words. Each word

is a number w that is smaller than m. To encrypt the word w, Alice computes

c= we mod m.

That is, Alice finds the number c<m that is congruent to we modulo m. She broad-
casts the encrypted word c to Bob.

Bob computes
w′ = cd mod m.

Then w′ will be the original word w of Alice. For since ed ≡ 1 (mod φ(m)), we
have

w′ ≡ cd ≡ (we)d = w1+kφ(m) ≡ w (mod m)

for some integer k, where the last congruence follows from Corollary 16 of Chapter
9. Since both w and w′ are numbers less than m, then w= w′.

We illustrate the computations with some small unrealistic examples where the
modulus is prime, rather than a product of two primes.

Example 1. Let the modulus m= 101, a prime. Then φ(101) = 100. Suppose Bob
chooses the encrypting exponent e= 13. Then

13 ·77≡ 1 (mod 100)),

so 77 is the decrypting exponent. Bob broadcasts m= 101 and e= 13 to Alice.
Suppose Alice wants to send the message HELLO, which she translates into five

two-digit words (the plaintext) as 08, 05, 12, 12, 15. Then she encrypts the message
by raising each word to the exponent 13 modulo 101 as follows:

813 ≡ 18 (mod 101)

513 ≡ 56 (mod 101)

1213 ≡ 53 (mod 101)

1513 ≡ 7 (mod 101).
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Then the coded message, or ciphertext, is 18, 56, 53, 53, 07. Alice sends those
five encrypted words to Bob. Bob decodes the words by raising each word to the
exponent 77 modulo 101:

1877 ≡ 8 (mod 101),

5677 ≡ 5 (mod 101),

5377 ≡ 12 (mod 101),

777 ≡ 15 (mod 101),

By doing so, Bob recovers the sequence 08, 05, 12, 12, 15, the plaintext message.

Example 2. Letm= 2803, a prime. Let e= 113. Since φ(2803)= 2802 = 2 ·3 ·467,
e is coprime to φ(m). Using Bezout’s identity, we find that

113 ·1463≡ 1 (mod 2802),

and so the decoding exponent d = 1463. Bob chooses e, computes d, and broadcasts
m and e to Alice.

Alice wishes to send the message GO, or 0715. (Note that 2803 is larger than
any numerical word corresponding to a two-letter message.) To encode the plain-
text message 0715, Alice finds the least nonnegative residue of 715113 (mod 2803).
(This can be done efficiently by writing the exponent in base 2: 113 = 64 + 32 +
16 + 1 and successively squaring 715 modulo 2803, organizing the computation as
shown in Section 9F.) She finds that

715113 ≡ 708 (mod 2803).

Thus the encrypted message, or ciphertext, is 708.
Alice broadcasts c= 708 to Bob.
Bob takes the ciphertext 708, and finds the least nonnegative residue mod 2803

of 7081463. The resulting calculation yields 715, which translates back into the mes-
sage GO.

In practice, the modulus is much larger. To set up the cryptosystem, Bob finds
two large primes p and q of approximately the same number of digits. Suppose the
modulus m = pq has r+ 1 digits for some r. Bob chooses e, the encrypting expo-
nent, coprime to φ(m) = (p− 1)(q− 1), and determines d, his private decrypting
exponent, to satisfy de≡ 1 (mod φ(m)).

Bob broadcasts m and e, but keeps p,q,φ(m) and d secret.
Alice splits up her (numerical) message for Bob into words consisting of r digit

numbers. She encrypts by raising each word w to the eth power mod m. The result-
ing sequence of numbers is the ciphertext. Alice broadcasts the ciphertext to Bob.

Bob knows d and m, so can decrypt the ciphertext by taking each encrypted
word c from Alice, and computing cd mod m. The resulting sequence of words will
be Alice’s original numerical message.
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Why is RSA effective? Suppose Eve eavesdrops on the messages between Alice
and Bob. Then she knowsm and e and each encrypted word c. To read each word w,
all Eve needs to do is to find the e-th root of c modulo m. This is easily done if she
can find d, the decrypting exponent. But that is the problem. To find d, Eve would
need to solve the congruence ed ≡ 1 (mod φ(m)) for d. But to do so, she needs to
know what φ(m) is.

Now φ(m) is the number of numbers <m that are coprime to m. To find φ(m) by
counting is out of the question if m is sufficiently large. To find φ(m), Eve would
need to know how to factor m. But factoring large numbers into products of primes
is a hard problem.

Thus the key to the effectiveness of the RSA cryptosystem is that if Bob chooses
m to be a product of two large primes, then someone like Eve, who knows m, but
not its factorization, will be unable to determine the factorization (and hence φ(m),
and hence the decrypting exponent d) in a reasonable amount of time.

How large should m be? The standard changes over time with improvements in
computer power and in factoring algorithms. For example, in 1999, a modulus of
155 decimal digits would have been fairly secure. That year, a number m of 155
digits, offered as a challenge by RSA Laboratories, was successfully factored into a
product of two 77 digit primes in seven months.

In 2006, a modulus of 230 digits was considered secure.
RSA Laboratories (2004), which markets software with RSA cryptography com-

mercially, recommended moduli of 1024 binary bits for use through 2010, but
for longer term security (through 2030) recommends moduli of 2048 binary bits.
For 1024 binary bits, the modulus should be a product of two 154 digit primes
[http://www.rsa.com/rsalabs/node.asp?id=2004]. (For current information, their
website, www.rsa.com/rsalabs/ is a useful source of information. It also offers
challenge moduli of increasing size with cash prizes for their factorization).

On the other hand, if the factorization of m is known then φ(m) can be found
instantly and the decoding exponent d can be found by Euclid’s algorithm in a few
seconds.

Thus the effectiveness of the RSA cryptosystem ultimately lies in the fact that
factoring large numbers into products of primes is an inefficient computational
process.

Even if factoring becomes more efficient, or in fact is more efficient than is pub-
licly known, code users can (presumably) always stay ahead of the state of the art
of factoring by choosing m to be a product of two primes that are sufficiently large.

Signatures. RSA codes have a “signature” feature that makes them particularly
useful.

To illustrate how the feature works, suppose Bob is a stock broker on Wall Street,
and Alice is a wealthy client, reclining with her wireless laptop on a beach in the
Caribbean. Alice wants to send buy and sell orders to Bob. Bob wants to be certain
that when he receives an order from Alice, it is authentic.

One way to handle these problems is for Alice to set up an RSA cryptosys-
tem (mA,eA), and Bob to set up a different RSA system (mB,eB). Both could be
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published. But only Bob would know the secret decrypting exponent dB for his sys-
tem, and only Alice would know the secret decrypting exponent dA for her system.

To send an order to broker Bob, client Alice would encrypt her order twice: first
by using the pair (mA,dA), then using the pair (mB,eB). Bob would receive the en-
crypted order, and first decrypt it using the secret dB, then using the public eA. Since
Alice encrypted the message using the secret exponent dA, which broker Bob was
able to decrypt, Bob would know that only client Alice could have sent the mes-
sage. Since only Bob knows the secret exponent dB, Alice would know that only
Bob could decrypt the message. Thus both Alice and Bob are assured of the au-
thenticity and secrecy of the message, and communication between them is secure.
(But see Sections 12C and 20D for potential pitfalls of a careless application of this
scheme).

Exercises.

1. Encode the message BUY using the code of Example 1.

2. Encode the message SELL using the code of Example 2.

3. Let m= 29,e= 5. Encode the message HOLD.

4. Let m = 29. Suppose you choose e = 4, encode SELL and send it to Merrill.
How would Merrill decode the message?

5. Let m= 3337,e= 11,d = 1171. Encode and decode the message NO.

6. Let m = 3501697,e= 17,d = 1440269. Encode and decode (not by hand!) the
message 5552 0307 4562 1587.

7. We observed above that if the factorization of the modulus m is known, then
φ(m) is easy to compute. The converse is also true. Suppose m is a product of two
unknown prime numbers p and q, and suppose m and φ(m) are known. Show that p
and q can be found as the roots of an appropriate quadratic equation.

8. Let p,q be distinct odd primes and let λ (m) = [p− 1,q− 1], the least common
multiple of p−1 and q−1. Suppose we set up an RSA cryptosystem with a modulus
m= pq and an encrypting exponent e coprime to p−1 and q−1. Show that we can
use d′ for the decrypting exponent, where d′ is a solution of ex≡ 1 (mod λ (m)).

B. Pseudoprimes

It is often of interest to know whether a given number is prime. For example, in
Chapter 7 we observed that Z/nZ is a field iff n is prime. In the last section we saw
how large primes are used in the construction of cryptographic codes.
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Given a number n, how can we decide if n is prime?
The most naive approach to this question is to treat it as a special case of the

problem of factoring n. Namely, try to factor n, for example, by trial division. If we
succeed, n is not prime; otherwise, n is prime.

But this naive approach has its drawbacks: as we saw in Section 6G, trial division
is hopelessly inefficient for large numbers n. Furthermore, if n happens in fact to be
prime, trial division is a particularly inefficient method to demonstrate the primeness
of n, as we have already observed, because we would have to verify that n is not
divisible by each prime <

√
n.

For this reason, mathematicians have sought other ways to try to show that a
number n is prime, or to test n for primeness, without having to use trial division.

One of the simplest tests involves Fermat’s theorem.
Fermat’s theorem says that if n is a prime number, then for any integer a rela-

tively prime to n, n divides an−1−1. The contrapositive of Fermat’s theorem is the
following:
If a is some number coprime to n so that an−1−1 is not divisible by n, then n is

not prime.
A special case is

The 2-pseudoprime test. If 2m−1 �≡ 1 (mod m), then m is composite.

The 2-pseudoprime test is a compositeness test. We can show, for example, that
9 is not prime, by observing that 28 ≡ 4 �= 1 (mod 9) and using Fermat’s theorem:
if 9 were prime, then 28 would be congruent to 1 (mod 9): since it isn’t, 9 can’t be
prime.

But we can’t conclude that 561 is prime by determining that 2560 ≡ 1 (mod 561)
(which is true), because in fact 561 is not prime–it is clearly divisible by 3.

But as a test for compositeness of a number m, seeing if 2m−1 ≡ 1 (mod m)
can be done rather quickly, using the technique of section 9F, and is surprisingly
effective.

Example 3. Let us look for primes in the set of numbers between 1194601 and
1194700 (inclusive).

In Section 6G, we eliminated 89 of the 100 numbers in this set by showing they
were divisible by some prime <53. The remaining numbers are:

1194601
1194623 1194629

1194631 1194637
1194649

1194653 1194659
1194667

1194671 1194679

Every prime between 1194600 and 1194700 must be among these eleven num-
bers. To test these numbers, we try the 2-pseudoprime test. We find that 2m−1 ≡ 1
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(mod m) for m = 1194601, 1194631, 1194649, 1194659, 1194667, 1194671, and
1194679. However:

21194622 ≡ 965745 (mod 1194623)

21194628 ≡ 506389 (mod 1194629)

21194636 ≡ 1031720 (mod 1194637)

21194652 ≡ 553181 (mod 1194653).

Thus 1194623, 1194629, 1194637, and 1194653 are composite. This leaves seven
potential primes out of the original 100 numbers.

It turns out that of those seven numbers, six are prime. The only one which is
not is 1194649 = 1093 · 1093. (The factorizations of the candidates that failed the
2-pseudoprime test are:

1194623 = 509 ·2347

1194629 = 269 ·4441,

1194637 = 241 ·4957,

1194653 = 521 ·2293).

If a numberm is prime, thenm passes the 2-pseudoprime test, but as we saw with
1194649, some composite numbers m also pass the 2-pseudoprime test. They are
called 2-pseudoprimes:

Defini ion. A number m is a 2-pseudoprime if:
(i) m is composite; and
(ii) 2m−1 ≡ 1 (mod m).

It turns out that 2-pseudoprimes are much less common than primes. How scarce
are they? Here are some counts:

There are 168 primes <1000, but only three 2-pseudoprimes: 341 = 11 · 31,
561 = 3 ·11 ·17, and 645 = 3 ·5 ·43.

There are 5,761,455 primes under 100,000,000, but only 2057 2-pseudoprimes.
There are 882,206,716 primes less than 2 · 1010, compared with 19,685
2-pseudoprimes less than 2 ·1010. [Pomerance, Selfridge, and Wagstaff (1980)].

Based on these counts and a comparison of the number of 2-pseudoprimes <m
with the number of primes <m for large numbers m, it is evident that if you pick
randomly a large number n and verify that n divides 2n−1 ≡ 1 (mod n), then it is
highly probable that n is prime. For this reason, the mathematician Henri Cohen has
called a number n with 2n−1 ≡ 1 (mod n) an “industrial grade prime.”

However, even if a randomly chosen number that satisfies the 2-pseudoprime test
is likely to be prime, that conclusion does not necessarily apply to special types
of numbers. In the rest of this section we will look at two famous special sets of
numbers, both of which are sets of 2-pseudoprimes.

I. Mersenne Numbers. Marin Mersenne (1588–1648) was a French cleric and
mathematician who corresponded with Descartes, Fermat, and other mathematicians
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of the time. Like most mathematicians in the 17th century, he was very familiar with
Euclid’s Elements and other ancient Greek mathematics, so he knew of Euclid’s in-
terest in primes of the form 2p− 1. Mersenne conjectured in 1644 that 2p− 1 was
prime for the following p: 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, and 257, and composite
for the other primes p≤ 257. This conjecture turned out to be quite inaccurate above
31 (2p−1 is prime for p= 61,89,107, and 127, and composite for the other primes
p with 31 < p≤ 257).

However, other Mersenne numbers, numbers of the form 2p−1 for p prime and
p> 257 have been found that are prime. This set of Mersenne primes includes some
very large primes. In fact, for 75 years (from 1876 to 1950) the largest known prime
was the Mersenne prime

2127−1 = 170141183460469231731687303715884105727.

[Zagier (1977)]. In 1951 a larger prime was found that was not a Mersenne prime,
but by 1952 a larger Mersenne prime was found, and ever since, the largest known
prime has been a Mersenne prime. In the summer of 2008, the 45th and 46th
Mersenne primes were found, the first known primes with more than ten million
digits [GIMPS (2008)].

There are several reasons why Mersenne numbers have been singled out for pri-
mality testing. One is because if we seek a prime number that is “almost” a power,
then we are forced to look only at Mersenne numbers:

Proposition 1. If a number of the form an−1 is prime, then a= 2 and n is prime.

The proof is an easy exercise, below.
Another reason for inquiring about Mersenne numbers goes back to the ancient

Greeks. The Pythagoreans (c. 500 BC), who were fascinated by numbers, discovered
that the number 6 has the property that 6 is the sum of its proper divisors:

6 = 1 + 2 + 3.

They called such a number perfect, and sought other numbers with the same prop-
erty. They found 28: 28 = 1+2+4+7+14. By the time of Euclid, they had learned,
and Euclid proved, the following theorem:

Proposition 2. If 2n − 1 is a prime number, then m = 2n−1(2n − 1) is a perfect
number.

The proof is left as an exercise, below.
This theorem, known to Mersenne and his correspondents, made the quest for

Mersenne primes of particular interest to any mathematician with an interest in clas-
sical Greek mathematics.

The full story on perfect numbers is not known.
Euler, a century after Mersenne, proved a partial converse of Euclid’s theorem,

namely, that if m is an even perfect number, then m= 2p−1(2p−1) where 2p−1 is
a Mersenne prime.



10 Applications of Euler’s Theorem 209

Euler’s theorem left open the question of whether or not there exist any odd per-
fect numbers. None are known, and knowledgeable number theorists tend to believe
that no odd perfect numbers can exist. But no one has yet (as of 2008) proved that
none exist. Among the known facts are that any odd perfect number must be divis-
ible by at least 9 distinct primes, have at least 75 prime factors, and be greater than
10300. For references, see http://mathworld.wolfram.com/OddPerfectNumber.html.

Mersenne numbers are at least plausible candidates for being primes, because
they are always 2-pseudoprimes:

Proposition 3. If n passes the 2-pseudoprime test, then 2n− 1 does also. Thus if n
is prime, 2n−1 is either prime or a 2-pseudoprime.

The proof is left as an exercise, below.

Fermat’s theorem is of assistance in finding non-trivial factors of Mersenne num-
bers if they exist.

For example, consider trying to factor 237− 1. Suppose p is a prime divisor of
237− 1. Then 237 ≡ 1 (mod p), and since 37 is prime, 37 must be the order of 2
modulo p. Thus by Fermat’s theorem, 37 divides p− 1, that is, p− 1 = 37k for
some k. It follows that any prime divisor of 237−1 must be of the form p= 1+37k.
Evidently we can assume that k is even, that is, p is a prime of the form p= 1+74h,
for h= 1,2,3, . . ..

Such an analysis drastically reduces the number of trial divisions needed to de-
cide whether or not 237−1 is prime. So we try:
h= 1, p= 75–not prime;
h= 2, p= 149–prime, but not a divisor of 237−1;
h= 3, p= 223–prime, and a divisor of 237−1.
This computation was in fact performed by Fermat, as an application of his the-

orem [Weil (1984), p. 57].
For another factorization of a Mersenne number, see section C below.

II. Fermat Numbers. Another interesting collection of 2-pseudoprimes is the Fer-
mat numbers. The nth Fermat number is Fn = 22n + 1. The Fermat numbers for
n= 0,1,2,3,4 are 3, 5, 17, 257, and 66537, all primes.

As with Mersenne numbers, the focus on Fermat numbers is partly based on the
fact that if a number of the form 2a+ 1 is prime, then a must be of the form a = 2n

for some n.
We showed in section 4C that for m �= n, Fm and Fn are coprime, hence yield

infinitely many primes as factors of Fermat numbers.
Fermat conjectured that all Fermat numbers are prime. This conjecture may have

been suggested by:

Proposition 4. For any n, Fn passes the 2-pseudoprime test.

The proof is an exercise.
Euler observed (see Weil (1984), p. 58) that, as with the Mersenne numbers,

Fermat’s theorem considerably restricts the form of the primes p that may divide
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a Fermat number. Euler’s example was F5 = 232 + 1, the fifth Fermat number. If
p divides F5, then, since 232 ≡ −1 (mod p), we have 264 ≡ 1 (mod p) but 2r �≡ 1
(mod p) for r dividing 64 and r< 64. So the order of 2 mod p is 64. Thus 64 divides
p−1, that is,

p= 1 + 64k

for some k.
Euler then proceeded to test F5 by trial division by primes of the form p = 1 +

64k, k= 1,2,3..., and found that with k= 10, p= 641 divides F5. In this way, Euler
refuted Fermat’s conjecture.

This same idea has been used to help factor larger Fermat numbers [Brent and
Pollard (1981), p. 629, line 8].

The state of Fermat’s conjecture as of 2007 is that there is no number n > 4
for which Fn is known to be prime. A website that keeps track of current work on
factoring Fermat numbers is W. Keller’s website, www.prothsearch.net/fermat.html.

III. Carmichael numbers. If we want to see if a number m is prime using trial
division, we would not test m by just dividing by 2–we would try dividing m by
many primes.

Similarly, there is no reason to test a number n for primeness by using just the
2-pseudoprime test. Fermat’s theorem states that if a is any number not a multiple
of m, and m is prime, then am−1−1 is divisible by m.

Thus instead of checking to see if 2m−1 ≡ 1 (mod m), we could pick any number
a< m and see if am−1 ≡ 1 (mod m). Call this the a-pseudoprime test.

If m fails an a-pseudoprime test, that is, if

am−1 �≡ 1 (mod m),

for a single number a< m, then m is composite.

Defini ion. A number m is an a-pseudoprime if m is composite and am−1 ≡ 1
(mod m).

We observed that 2-pseudoprimes are fairly rare, and the same is true of a-
pseudoprimes for any a. So it is plausible that numbers that are simultaneously 2-
and 3-pseudoprimes are rarer still.

For example, neither of the 2-pseudoprimes 341 and 645 is a 3-pseudoprime:
the latter because 3 divides 645. Neither is 1194649, the 2-pseudoprime we found
between 1194601 and 1194700. In fact,

3194648 ≡ 341017 (mod 1194649)

so 1194649 is not prime because it fails the 3-pseudoprime test.
More systematically, we could treat Fermat’s theorem like trial division: take a

number m, and check to see if

am−1 ≡ 1 (mod m)

for many numbers a.
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Very few numbers would pass these a-pseudoprime tests and not be prime. For
example, here are the a-pseudoprimes between 50 and 999 for various prime num-
bers a:

2-pseudoprimes: 341, 561, 645.
3-pseudoprimes: 91, 121, 286, 671, 703, 949.
5-pseudoprimes: 124, 217, 561, 781.
7-pseudoprimes: 325, 561, 703, 817.
11-pseudoprimes: 133, 190, 259, 305, 481, 645, 703, 793.
13-pseudoprimes: 105, 231, 244, 276, 357, 427, 561.
17-pseudoprimes: 145, 261, 781.
19-pseudoprimes: 153, 169, 343, 561, 637, 889, 905, 906.
23-pseudoprimes: 154, 165, 169, 265, 341, 385, 451, 481, 553, 561, 638, 956.
29-pseudoprimes: 105, 231, 268, 341, 364, 469, 481, 561, 651, 793, 871.

Evidently, numbers that are a-pseudoprimes for more than one number a in this
list are uncommon. However, looking over this list, you will perhaps notice that
561 = 3 ·11 ·17 appears on all the lists except for 3, 11, and 17, the three factors of
561. That is, for all primes a≤ 29 that are coprime to 561, 561 is an a-pseudoprime.

It happens that 561 is an example of a composite number m with the property
that for every number a coprime to m,

am−1 ≡ 1 (mod m).

Such a number is called a Carmichael number.

Defini ion. A composite odd number m is a Carmichael number if m is an a-
pseudoprime for every a coprime to m.

To confirm what we observed with n= 561:

Proposition 5. 561 = 3 ·11 ·17 is a Carmichael number.

Proof. First note that 561 = 3 ·11 ·17 is composite. We want to show that for any a
coprime to 561, a560 ≡ 1 (mod 561). To do so, it suffices to show that

a560 ≡ 1 (mod 3),

a560 ≡ 1 (mod 11),

and
a560 ≡ 1 (mod 17).

Now by Fermat’s theorem, a2 ≡ 1 (mod 3), a10 ≡ 1 (mod 11) and a16 ≡ 1
(mod 17) for every number a coprime to 3, 11, and 17. Since 560 is a multiple
of 2, 10 and 16, it follows that each of the displayed congruences is true. ��
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Carmichael numbers are quite rare. The twelve Carmichael numbers less than
50,000 are 561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041,
and 46657. Among the 2051 2-pseudoprimes less than 100,000,000, only 252 are
Carmichael numbers. It was proved only in 1992 that there are infinitely many
Carmichael numbers.

The existence of Carmichael numbers dashes the hope that Fermat’s Theorem
alone can be used as a primality test. Ifm is a Carmichael number, then no amount of
a-pseudoprime testing will reveal that m is composite (unless we are lucky enough
to pick a not coprime to m).

Chapter 20 has much more on Carmichael numbers and presents an extension of
the a-pseudoprime test that is effective on Carmichael numbers.

Exercises.

9. C.P. Snow describes a meeting between the English mathematician G.H. Hardy
and the Indian genius Ramanujan, when the latter was terminally ill with tuberculo-
sis. Hardy started the conversation with, “I thought the number of my taxicab was
1729. It seemed to me rather a dull number.” To which Ramanujan replied, “No,
Hardy! It is a very interesting number. It is the smallest number expressible as the
sum of two cubes in two different ways.” (Hardy (1969), page 37). (Reprinted with
Permission of Cambridge University Press).

(i) Find two pairs (a,b) of integers with 0 < a< b so that 1729 = a3 +b3.
(ii) Verify that 1729 is a Carmichael number.

10. Verify that 341 is a 2-pseudoprime.

11. Verify that 91 is a 3-pseudoprime.

12. Verify that 645 is a 2-pseudoprime.

13. Prove Proposition 1, that if an−1 is prime, then a= 2 and n is prime.

14. Prove Proposition 5, Euclid’s Theorem on even perfect numbers.

15. Prove Proposition 3, that if n passes the 2-pseudoprime test, then so does 2n−1.

16. Show that there are infinitely many 2-pseudoprimes.

17. (i) Show that every prime factor of the Mersenne number 211−1 is congruent
to 1 modulo 22.

(ii) Find a prime factor of the Mersenne number 211−1.

18. Using a computer, find a prime factor of the Mersenne number 223−1.

19. Prove that if a number of the form 2a+ 1 is prime, then a= 2n for some n.

20. Prove Proposition 4, that every Fermat number passes the 2-pseudoprime test.
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21. Let p be an odd prime and b a primitive root modulo p.
(i) Show that b has order p−1 or order p(p−1) modulo p2.
(ii) Show that there is a unique k with 0 ≤ k ≤ p− 1 such that b+ kp has order

p−1 modulo p2.
(iii) Conclude that if p is any odd prime, then there is a number b so that every

unit modulo p2 is congruent modulo p2 to a power of b.

22. Let p= 2q−1 be a Mersenne prime. Show that 2p �≡ 1 (mod p2).

23. Show that 207 ≡ 1 (mod 551). Conclude that 551 is not a 20-pseudoprime,
hence is composite.

24. (i) Show that if m is an a-pseudoprime for a = 2 and a = 3, then m is an a-
pseudoprime for a= 6.

(ii) Find a number m so that m is a 6-pseudoprime but not a 2-pseudoprime or a
3-pseudoprime.

25. Show that for each m, the set

{[a]m in Z/mZ|am−1 ≡ 1 (mod m)}

is an abelian group under multiplication of congruence classes (see Section 8B).

26. Let n≡ 5 (mod 6). Show that n is not a perfect number, as follows:
(i) Show that n is not a square.
(ii) Let σ(n) be the sum of the divisors of n (including 1 and n). Show that

σ(n) = ∑
d<

√
n,d|n

d+
n
d

.

(iii) Show that for each divisor d <
√
n,

d · n
d

= n≡−1 (mod 3),

hence
d+

n
d
≡ 0 (mod 3).

(iv) Show that σ(n)≡ 0 (mod 3). Hence σ(n) �= 2n and n is not a perfect num-
ber. [Holdener (2002)].

C. The Pollard p−1 Factoring Algorithm

Fermat’s theorem is the basis of the Pollard p− 1 factoring algorithm, discovered
by J. M. Pollard (1974). The algorithm is effective for finding a prime factor p of a
number N when p−1 is a product of small primes.

To make more precise the idea that p−1 is a product of small primes, we use the
following terminology:
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Defini ion. Let k be a number ≥2. A number m is k-smooth if every prime divisor
of m is <k.

Some examples:
The only 2-smooth numbers are powers of 2;
If we factor the numbers from 180 to 190, we find:

180 = 22 ·32 ·5
181 is prime

182 = 2 ·7 ·13

183 = 3 ·61

184 = 23 ·23

185 = 5 ·37

186 = 2 ·3 ·31

187 = 11 ·17

188 = 22 ·47

189 = 33 ·7
190 = 2 ·5 ·19.

Thus 180 is 5-smooth, 180 and 189 are 7-smooth, while 180, 182, 187, 189 and 190
are 19-smooth. Evidently, the larger k is, the more k-smooth numbers there are.

Here is the idea behind the Pollard p−1 algorithm.
We wish to factor the number N.
Suppose p is a prime factor of N. If we take some base a, Fermat’s Theorem

says that ap−1 ≡ 1 (mod p), or equivalently, p divides ap−1−1. Then, since p also
divides N, it follows that the greatest common divisor of N and ap−1− 1 is a non-
trivial divisor of N.

But of course, we don’t know p, so we can’t compute ap−1.
But if ap−1 ≡ 1 (mod p), then aB ≡ 1 (mod p) for every number B that is a

multiple of p−1. If we find a number B that is divisible by p−1 for many primes
p, then aB ≡ 1 (mod p) for many primes. If one of those primes also divides N,
then

(aB−1,N) > 1.

In the Pollard p−1 algorithm the exponent B is chosen sufficiently large, so that
if p is a prime divisor of N and p−1 is k-smooth for small k, then p−1 divides B.

Pollard p−1 algorithm. Pick some base number a, and some smoothness bound k.
For each prime q≤ k, let e be the exponent such that

Eq = qe ≤ N < qe+1,
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and set
Bk = ∏

q prime, q≤k
Eq.

Then Bk is the product of all prime powers qe where q≤ k and qe ≤ N < qe+1.
For example, let N = 323 and k = 7. Then E2 = 28,E3 = 35,E5 = 53,E7 = 72,

and B7 = 28355372.
If p is a prime so that p− 1 is k-smooth, then p− 1 will divide Bk, and so by

Fermat’s Theorem,
aBk ≡ 1 (mod p)

and p divides aBk −1.
We compute the greatest common divisor of aBk −1 and N. If p also divides N,

then p divides (N,aBk −1), so (N,aBk −1) > 1 and is a factor of N.

Note that both parts of the procedure, raising to a high power modulo N and find-
ing the greatest common divisor of two numbers, can be done by fast algorithms–
Euclid’s algorithm for the latter, and the squaring algorithm of Section 9F for the
former.

Let’s try this algorithm out on a couple of numbers that didn’t factor by trial
division in Chapter 6.

Example 4. Let N = 1194653. Let a= 2, let B= B13 and compute aB. Here,

B= 220 ·312 ·58 ·77 ·115 ·135,

the product of all prime powers of primes q≤ 13 where the exponent of q is defined
by

qe ≤ N < qe+1.

(For example, 58 ≤ N < 59.) We compute the least non-negative residue:

2B ≡ 56790 (mod N),

and find that

(2B−1,N) = (56790−1,N) = (56789,1194653)= 521,

a prime divisor of N. The reason we found the divisor 521 of N is that

520 = 23 ·5 ·13

so that 521−1 = 520 is 13-smooth, hence 520 divides B and so

2B ≡ 1 (mod 521).

Example 5. Let N = 1194637. With the same B= B13 as in the last example,

2B ≡ 1010514 (mod N)
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and
(2B−1,N) = (1010514−1,N)= (1010513,1194637)= 241,

a prime divisor of N. Here
240 = 24 ·3 ·5

so that 241 is a prime divisor of N such that 241− 1 = 240 is 13-smooth, hence
divides B.

For this last example, we could have found 241 by using k = 5. In that case,
B5 = 220 ·312 ·58. Setting B= B5, we find that

2B ≡ 301733 (mod N)

and
(2B−1,N) = (301732,N) = 241.

But k= 5 is too small for the number in the previous example:

Example 6. Again let N = 1194653. Let k = 5 and B = B5 = 220 ·312 ·58. We find
that

2B ≡ 43666 (mod N)

and
(2B−1,N) = (43666−1,N) = (43665,1194653)= 1.

The algorithm fails here because N = 1194653 has no prime divisor p so that p−1
is 5-smooth.

In practice, we don’t need to specify in advance a particular smoothness bound.
If a given bound k fails and there is more time, just choose a larger bound k′. Then
Bk′ = BkF where F is a product of powers of primes q with k< q≤ k′, and

2Bk′ =
(
2Bk

)F
.

So to change from k to k′ we just continue the computation we did for 2Bk to get
2Bk′ .

For example, with N = 1194653,

2B13 = 2(2203125877115135) = (2(22031258))(7
7115135) = (2B5)F

where F = 77115135.

Given a large number N, is it reasonable to hope that N has a prime divisor p so
that p−1 is k-smooth for small k?

For example, suppose we have a six-digit number N which is known to be com-
posite. How large must k be to give a reasonable chance of factoring N?

If N < 106, then N will be divisible by at least one prime p < 1000. There are
167 odd primes under 1000. Of these,



10 Applications of Euler’s Theorem 217

There are 4 primes p so that p−1 is 2-smooth (3, 5, 17 and 257);
There are 17 primes p so that p− 1 is 3-smooth (the above, and 7, 13, 97, 193,

769, 19, 37, 73, 577, 109, 433, 163, 487);
There are 33 primes p so that p−1 is 5-smooth (the above, and also 11, 31, 41,

61, 101, 151, 181, 241, 251, 271, 401, 541, 601, 641, 751 and 811).
So suppose we do the Pollard p− 1 algorithm with k = 5, and suppose we just

want to find prime divisors of N that are <1000. We can use B = 29 · 36 · 54, the
product of the highest powers of 2, 3, and 5 that are less than 1000. Then for every
prime p < 1000 so that p− 1 is 5-smooth, p− 1 will divide B. If any of those 33
primes divides our number N, then for any base a, aB− 1 and N will be divisible
by p. Thus just one computation checks to see if any of those 33 primes <1000 are
factors of N. One computation checks 20 percent of the primes <1000 all at once.

Increasing the smoothness bound k will capture more primes. We find:
For 75 of the 167 odd primes p < 1000, p−1 is 13-smooth,
For 107 of the 167, p−1 is 31-smooth. Thus if we are doing Pollard p−1 on a

random six-digit number N and we choose k = 31, then if N is divisible by any of
the 107 primes p so that p−1 is 31-smooth, then (aB−1,N) > 1.

On the other hand, the worst possible prime p < 1000 for the algorithm is 983.
Since 983−1 = 2 ·491 and 491 is prime, 983−1 is not k-smooth for any k< 491.

The next example illustrates a phenomenon that can occur with the Pollard p−1
algorithm:

Example 7. Let N = 125561. Suppose we compute 2Bq (mod N) for q= 13, where
B= B13 = 216 ·310 ·57 ·76 ·114 ·134 (B is divisible by all prime powers <N where
each prime is <13.) We find that

2B ≡ 1 (mod N)

hence N = 125561 divides 2B−1 and

(2B−1,N) = N.

The algorithm appears to fail in this example because the greatest common divisor
of 2B13−1 andN is N itself. When this happens, it implies that the order of 2 divides
B13 modulo every prime divisor of N.

If we were to compute the greatest common divisor with k= 7 rather than waiting
until k = 13, then we would not have reached the point we did in the last example.

Example 8. For the same N, B7 = 216 ·310 ·57 ·76, and

2B ≡ 124839 (mod N).

Computing the greatest common divisor at this point yields

(2B−1,N) = (124838,125561)= 241,
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a prime divisor ofN. We found the prime divisor p= 241 of 125561 because p−1 =
240 is 7-smooth. But 125561= 241 ·521 and for p= 521, the other factor of 125561,
p−1 = 520 = 8 ·5 ·13 is 13-smooth but not 7-smooth.

An alternative way to deal with the phenomenon that aB ≡ 1 (mod N) is to view
N as like an a-pseudoprime. See Chapter 20 or Exercise 31 below.

Remark. Note that in most of our examples, the exponents of the primes q in the
prime factorization of Bk were much larger than needed. We assumed that Bk was
the least common multiple of all prime powers le where l< k and le <N. Alternative
suggestions for Bk are

(i) let Bk be the smallest number divisible by le for all primes l < k, but where
le <M with M much less than N (in the last example, we choseM =

√
N), or

(ii) let Bk = k!, or
(iii) let Bk be the least common multiple of 2,3,4, . . . ,k.

Each alternative gives a much smaller exponent Bk for a given N and k, but leaves
open the possibility that a factor p of N has the property that p−1 is k-smooth but
p− 1 does not divide Bk. For an example of the use of a smaller exponent, see the
subsection, “Factoring Mersenne numbers”, below. Thus the implementation of the
Pollard p−1 algorithm raises issues of balancing the size of Bk for a given k against
the size of k in order to obtain the greatest likelihood of success in the time available.
These issues go beyond the scope of this book.

A great deal of work has been done studying smoothness of numbers. A result of
Dickman (1930) implies that for large N, the number of

√
N-smooth numbers <N

is approximately N/4, while the number of N1/4-smooth numbers <N is around
N/200. Thus for a number N of around 1012, roughly 1/4 of the numbers less than
N are 106-smooth, but only around 1/200 of the numbers less than N are 1000-
smooth. See Granville (2004) for an extended discussion of smooth numbers and
their uses.

RSA security. A situation where the issue of success or failure of the Pollard p−1
algorithm is of importance is in connection with RSA cryptography.

Recall from Section A above that in an RSA code, the modulus m = p1p2 is a
product of two large primes, p1 and p2, whose secrecy is essential for the code to
be secure. Since m is typically made public, m should be impossible to factor in a
reasonable amount of time.

In view of the Pollard p− 1 factoring algorithm, it is important that if p is any
prime dividing m, then p−1 should not be k-smooth for any small k.

One way to insure that the Pollard p− 1 algorithm is maximally ineffective for
factoring the modulusm is to choose the prime divisors p ofm so that p−1 = 2q for
q a prime number. Then the smallest k so that p−1 is k-smooth is k = q, a number
nearly as large as p. It would take much less time to trial dividem by numbers <

√
m

than to do the Pollard p−1 algorithm to find a q-smooth prime factor of m.
A prime number p with the property that p−1 = 2q with q prime is sometimes

called a safeprime.
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Of the 167 odd primes <1000, 25 are safeprimes. The largest safeprime <1000
is 983. See Section 12C, Exercise 29 on finding small safeprimes.

A prime number q so that 2q+ 1 = p is also prime is called a Sophie Germain
prime, after the early 19th century French mathematician Sophie Germain. Around
1825 she proved that if q is a prime so that 2q+1 is also prime, then xq+yq = zq has
no solutions with x,y and z natural numbers all not ≡ 0 modulo q (the “First Case”
of Fermat’s Last Theorem).

At this writing, it is unknown whether or not there are infinitely many Sophie
Germain primes, although there is a conjectured estimate that the number of Sophie
Germain primes <m is approximately

1.32m
(lnm)2 .

See Ribenboim (1980), p. 328.

Factoring Mersenne numbers. For p a prime number, N = 2p−1 is a Mersenne
number. As we saw in section B, among the Mersenne numbers are the largest
known prime numbers. However, most Mersenne numbers are composite.

To find a prime factor of a Mersenne number, it is helpful to apply Fermat’s
theorem in the following way. Recall that if q is a prime divisor of N = 2p−1, then

2p ≡ 1 (mod N),

therefore
2p ≡ 1 (mod q),

and so, since p is prime, p must be the order of 2 modulo q. Now

2q−1 ≡ 1 (mod q).

and therefore p must divide q−1. This means that q has the form

q= 1 +mp

for some m.
Using this fact, we can adapt the Pollard p− 1 method to try to factor N as

follows. Suppose there is a prime divisor q of N, necessarily of the form q= 1+ pm,
wherem is k-smooth for some small k. Let B= Bk be the exponent corresponding to
m and k in the Pollard p−1 algorithm. That is, B is the smallest number divisible by
all primes le where l ≤ k and le ≤ m. Then m divides B, and so q−1 = pm divides
pB. Thus, by Fermat’s Theorem, for every a< q,

apB ≡ 1 (mod q)

and so
(apB−1,N)≥ q.
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(We need to choose a �= 2, for

2pB = (2p)B ≡ 1 (mod N)

since N = 2p−1, and so the Pollard p−1 algorithm will fail).

Example 9. Let N = 2163− 1, a number of 50 digits. We look for a prime factor
q = 1 + 163m where m is 9-smooth. Rather than choosing B to guarantee picking
up any prime factor p so that p− 1 is 9-smooth, we choose one of the alternative
smaller exponents noted in the remark following Example 8, above.

For the second alternative, we set B= 9! and find that

(5163B−1,N) = 704161,

a factor of N. The reason 704161 showed up was that 704161 is prime and

704161−1 = 704160 = 163m

where
m= 25 ·33 ·5

is 9-smooth and divides B.
For the first alternative choice of B, we set B= 23 ·3 ·5 ·7, but then m= 25 ·33 ·5

is not a divisor of B, and
(3163B−1,N) = 1,

so the algorithm would fail.
It turns out that N = 2163 − 1 is a product of five primes. For the other four

primes, the corresponding m’s are k-smooth for minimal k = 461, 6037, 10061 and
22392890561.

The GIMPS website gives a 27 digit prime factor q of

N = 22944999−1,

found using the Pollard p−1 algorithm. The Pollard p−1 algorithm was successful
in this case because q−1 = 2944999mwhere m is 69061-smooth.

Exercises.

27. Try factoring the following numbers by the Pollard p−1 algorithm with k= 3:
(i) 1679;
(ii) 1739;
(iii) 2231.

28. Try factoring the following numbers by the Pollard p−1 algorithm with k= 3:
(i) 44329;
(ii) 42919;
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29. Try factoring the following numbers by the Pollard p−1 algorithm with k= 3:
(i) 202211
(ii) 218663
(iii) 222559

30. Suppose you apply the Pollard p− 1 algorithm to a number N. You pick a
smoothness bound k and a base a, and find that for the a you chose,

aB ≡ 1 (mod N).

Does that imply that every prime factor p of N has the property that p− 1 is k-
smooth? If so, explain why; if not, give an example.

31. If you try to factor 7081 by the Pollard p− 1 algorithm with k = 3, you will
find that B= 212 ·38 = 26873856, and (choosing a= 5)

5B ≡ 1 (mod 7081).

This means that 7081 divides 5B−1. What to do? One strategy is to let s= 38 and
find 5s (mod 7081). We find that

5s ≡ 5704 (mod 7081).

Then we proceed by repeatedly squaring 5s modulo 7081:

5s ≡ 5704;

52s ≡ 5502;

54s ≡ 729;

58s ≡ 366;

516s ≡ 6498;

532s ≡ 1.

(We must get 52rs ≡ 1 for some r ≤ 12).
(i) Show that then 7081 cannot be prime because

7081 divides (64982−1) = (6498 + 1)(6498−1).

but doesn’t divide 6498 + 1 or 6498−1.
(ii) Show that the greatest common divisor of 6498−1 and 7081 is a non-trivial

divisor of 7081.

32. The number 220459 is a product of two primes p and q such that p−1 and q−1
are both 7-smooth. Factor 220459 by a strategy similar to that of the last problem.





Chapter 11
Groups

In this chapter we reintroduce groups, and show that the mathematics involving
orders, Fermat’s and Euler’s Theorems is part of elementary group theory.

A. Groups of Units and Euler’s Theorem

Let us begin by reviewing the proof of Euler’s theorem from Chapter 9.
LetU =Um be the set of units of Z/mZ, and let φ(m) be the number of elements

ofU . In proving that for a inU , aφ(m) = 1, we took the setU ,

U = {u1,u2, . . . ,uφ(m)}

and multiplied each of the elements ofU by the unit a to get the set

aU = {au1,au2, . . . ,auφ(m)}.

We found that the sets aU and U were the same, except for the ordering of the
elements. Hence the product of the elements ofU :

u1u2 · · ·uφ(m)

and of aU :
au1au2 · · ·auφ(m).

are the same:
u1u2 · · ·uφ(m) = au1au2 · · ·auφ(m).

Canceling the common factor u1u2 · · ·uφ(m) from both sides gives Euler’s theorem:

aφ(m) = 1.
How did we show that the set aU and the setU are the same? We needed to show

for every a inU :
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(1) The set aU is a subset ofU : that is, for any units a and u, au is a unit; this is
the property thatU is closed under multiplication.

(2) All the elements of aU are different: that is, for any units u,v and a, if au= av,
then u= v; call this the cancellation property forU .

(3) Every element of U is in aU : that is, for any unit u, there is a unit v so that
u= av; call this the solvability property forU .

These properties, together with the property that multiplication of elements of
U is associative, mean that U , a set with multiplication, is a group. We recall the
definition from Section 7A:

Defini ion. A group is a set G together with an operation

∗ : G×G→ G

(this means that for any two elements a,b of G, a ∗ b is in G) that satisfies the
following properties:
associativity: for any three elements a,b,c of G, a∗ (b∗ c) = (a∗b)c;
cancellation: for any three elements a,b,c of G, if a∗b= a∗ c or if b∗a= c∗a,

then b= c;
solvability: for any elements a,b of G, there is an element c in G with a∗ c= b,

and an element d in G with d ∗ a= b;
existence of identity: there is an element e of G so that for all a in G, e ∗ a =

a ∗ e= a;
and
existence of inverses: for any a in G, there is an element b in G so that a ∗ b =

b ∗ a= e.

It is easy to see that the setUm of units of Z/mZ is a group, where the operation
∗ is multiplication; in factUm also satisfies the property
commutativity: for all a,b inUm, a∗b= b∗a.
A group satisfying the commutative law is called an abelian group, after the

Norwegian mathematician N. H. Abel (1802–1829).
The properties just listed which characterize a group are redundant: a set G with

an associative multiplication is a group if it either has the identity and inverse prop-
erties, or has the cancellation and solvability properties.

Nowadays a group is customarily defined as a set with an associative operation
that has the identity and inverse properties, as in Section 7A. In 1893, the standard
definition of a group was that of a set with an associative operation that satisfies the
solvability and cancellation properties (see Van der Waerden (1985), p. 154). The
two definitions are equivalent. The proof of equivalence is not difficult and is left as
an exercise.

Among the many examples of groups are two collections of examples arising
from rings:

A ring R itself is an abelian group under addition. The identity element e is 0.
When we refer to R as just a group under addition, rather than as a ring, we some-
times call it “the additive group of R”.
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The set of units of a ring R is a group under (i.e., with the operation of) multi-
plication. If R is a commutative ring, then the set of units of R is an abelian group.
Here the identity element e is 1.

Euler’s Theorem is a theorem about the group of units of Z/mZ. The proof of
Euler’s theorem above is really the proof of a theorem about abelian groups with a
finite number of elements. To see this, we reprove Euler’s theorem in that setting. In
what follows we will write the operation on the group as multiplication, and often
omit the · , so that ba means b ·a.

Theorem 1 (Abstract Fermat Theorem). Let G be an abelian group with n ele-
ments. Then for any a in G, an = e, the identity element of G.

Here an denotes a multiplied by itself n times: a ·a · . . . ·a.

Proof. Let u1,u2, . . . ,un be the elements of G, and let a be any element of G. Con-
sider the set

aG= {au1,au2, . . . ,aun}.
Then aG is exactly the same as the set G: all the elements of G are distinct, by the
cancellation property, and every element of G is in aG by the solvability property.
Thus aG=G.

To finish the proof, we simply multiply all the elements of aG together, and all
the elements ofG together, equate the two products, and cancel the common factors.
We’ll be left with an = e.

But if we are to be careful, we need to know that these manipulations of the
elements of G work. For this, we need two consequences of the axioms:

Generalized Associativity. If G is a group, so that a(bc) = (ab)c for all a,b,c
in G, then for every n > 3 all possible ways of associating the product of every n
elements of G are equal.

For example, with n= 5,(a(bc))(de) = ((ab)(cd))e= a(b(c(de))) = . . . .
Generalized associativity means that when we see a product abcdewe are free to

associate it in any way we want. The resulting product will not depend on how we
did it. For this reason we can without confusion omit parentheses entirely.

Generalized Commutativity. If G is an abelian group, so that ab= ba for all a,b
in G, then for every n> 2, all possible ways of multiplying n elements a1, . . . ,an of
G, regardless of order, give the same element of G.

For example, abcde= edcba= acedb= . . . (where we have omitted parentheses
by generalized associativity).

The proofs of Generalized Associativity and Generalized Commutativity can be
done by induction: see exercises 4 and 5, below.

The properties of Generalized Associativity and Generalized Commutativity per-
mit the manipulations in the remainder of the proof of the abstract Fermat theorem.
Since the set
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G= {u1, . . . ,un}
is the same as the set

aG= {au1, . . . ,aun},
the products of all the elements in each of the two sets are the same (by Generalized
Commutativity):

u1u2 · . . . ·un = au1au2 · . . . ·aun
(where we can omit parentheses by Generalized Associativity). We rearrange the
right side, using Generalized Commutativity:

au1au2 · . . . ·aun = (aa · . . . ·a)(u1u2 · . . . ·un)

so
u1u2 · . . . ·un = (aa · . . . ·a)(u1u2 · . . . ·un)

By cancellation,
e= aa · · ·a= an,

which was to be proved. ��
This abstract Fermat theorem is an abstraction of Euler’s, and in turn, Fermat’s

theorem. If G is the group Um of units of Z/mZ for m any number ≥2, we have
Euler’s theorem. If G is the groupUp of units of Z/pZ for p a prime, we have the
original Fermat theorem.

The abstract Fermat theorem also holds for any finite group of units of any com-
mutative ring. Other than Z/mZ the only example we’ve seen so far is F9, the set
of elements of the form a+ bi, where a,b are in Z/3Z and i2 = −1 (see Section
7C, Exercise 35). Later in the book we will introduce many more examples of finite
commutative rings–see Chapter 23.

Exercises.

1. Prove that if G is a set with an associative operation that has the identity and
inverse properties, then it has the cancellation and solvability properties.

2. Prove that if G is a set with an associative operation that has the solvability and
cancellation properties, than it has the identity and inverse properties.

3. Write down all possible ways of associating the product abcd, where a,b,c,d
are elements of a groupG, and show, using the associative law, that the products are
all equal.

4. Let a1,a2, . . . ,an be elements of a group G. Prove generalized associativity for
a1,a2, . . . ,an by showing that every product u of a1,a2, . . . ,an, associated in any way
equals
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a1(a2(a3(. . . (an−1an) . . .))).

(Hint: Assume by induction that the result is true for any product of n−1 elements
of G).

5. LetG be an abelian group, assuming generalized associativity, prove generalized
commutativity for G by induction on n, by showing that for every set of n elements
{a1,a2, . . . ,an} of G, every product of a1, . . . ,an in any order is equal to a1 ·a2 · · ·an.
6. Prove that in a group, the identity element is unique.

7. Using cancellation, prove that in a group, every element has a unique inverse.

8. Define an operation on the set N of natural numbers (>0) by a ∗ b = [a,b], the
least common multiple of a and b.

(i) Show that this operation is associative and commutative.
(ii) Find an identity element for N under this operation.
(iii) Which elements of N have inverses?
(iv) When is it possible to solve the equation a∗ x= b?
(v) If a ∗ b= a ∗ c, does it follow that b= c?

9. In F9, show that (1− i) has order 8, and so every unit of F9 is a power of (1− i).
Why does this imply that every unit has order dividing 8?

B. Subgroups

Let G be a group with operation ∗ and identity element e, and where the inverse of
an element a is denoted a′. A subgroup H of G is a nonempty subset of G with two
properties:

(i) if a,b are in H, then a ∗b is in H; and
(ii) if a is in H, so is a′.
In other words, H is a subset of G which is closed under products and inverses.
Here are some examples of groups and subgroups that you have perhaps already

seen:
1. Let G= Z, the integers, where the operation ∗ is +, the identity element is 0,

and the inverse of an element is its negation. Let m be any nonnegative integer, and
let H = mZ, the set of all multiples of m. Then H is a subgroup of G. For it is easy
to see that if a,b are two multiples of m, then so is a+b, and if a is a multiple of m,
so is −a. (Note that H is the congruence class (mod m) of zero).

2. Let G = Z again, and let H = N, the set of natural numbers. Then H is not a
subgroup of G. For while the sum of two natural numbers is a natural number, the
negation of a natural number is not a natural number, so is not in N. Since N is not
closed under negations, N is not a subgroup of G.
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3. LetG be the group under multiplication of the non-zero complex numbers. For
each number k, letU(k) be the group

U(k) = {α ∈ C|αk = 1}.

The subgroupU(k) is the group of kth roots of unity in C, and is a subgroup of G.
For example,

U(2) = {1,−1};

U(4) = {1, i,−1,−i};

U(3) = {−1 +
√−3

2
,
−1 +

√−3
2

,1};

U(8) = {1, i,−1,−i, 1 + i√
2

,
−1 + i√

2
,

1− i√
2

,
−1− i√

2
}.

ThenU(2) is a subgroup ofU(4), which in turn is a subgroup ofU(8).

4. Let G be set of nonzero real numbers with the operation being multiplication.
Let H =U(2) be the subset consisting of 1 and −1. Then H is a subgroup of G.

5. Let G=Um, the group of units of Z/mZ under multiplication. For any k, let

Um(k) = {α ∈Um|αk = 1}.

Then Um(k) is a subgroup of Um, the group of kth roots of unity in Um. By Euler’s
Theorem,Um(φ(m)) =Um: every unit is a φ(m)th root of unity inUm.

6. If G is a vector space over some field, then G is an abelian group under +. Any
subspace H of G is a subgroup of G.

7. Two “trivial” subgroups of any group G are the group G itself, and the sub-
group consisting only of the identity element of G. So a “non-trivial” subgroup
means a subgroup other than the trivial subgroups.

Defini ion. Let G be a group with operation ∗, identity e and inverse −1. Fix an
element a of G. The cyclic subgroup generated by a is the set H of elements of G of
the form an for all integers n. Here a0 denotes the identity element e, an for n > 0
denotes a ∗ a ∗ · · · ∗ a (n factors), and a−n for n > 0 denotes a−1 ∗ a−1 ∗ . . .a−1 (n
factors).

The cyclic subgroup of G generated by a is denoted by 〈a〉.
A group G is cyclic if G= 〈b〉 for some b in G.

It is easy to see that for a in G, the set 〈a〉 is closed under products and inverses and
is a subgroup of G.
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For example, if G = Z, with ∗ being +, then the cyclic subgroup 〈m〉 generated
by the integer m is mZ, the set of all integers rm, where r is any element of Z. This
is because any integer in 〈m〉 is obtained by adding either m to itself or−m to itself.
For example, if s> 0, then sm=m+m+ . . .+m (s terms). This example is the same
as example 1, above.

The cyclic subgroup 〈1〉 of Z generated by 1 is all of Z. So Z is a cyclic group.

For G a finite group (with operation * and identity e), the cyclic subgroup gener-
ated by an element a is just the set of all positive powers of a.

To see this, recall that the order of an element a of G, if it exists, is the smallest
exponent n> 0 so that an = e, the identity of G.

Proposition 2. Suppose G is a fin te group with n elements. Every element a of G
has an order, and the order d of a is ≤ n. If a has order d, then the cyclic subgroup
〈a〉 of G generated by a has d elements:

〈a〉= {a,a2, . . . ,ad}.

Hence the order of a is equal to the number of elements in 〈a〉.
Proof. The proof that the order of a is ≤ n is an argument that we gave in Section
9A. In brief, the elements a,a2, . . . ,an+1 cannot all be different since G has only n
elements. Hence ar = ar+t for some r,t with 1 ≤ r < r+ t ≤ n+ 1, hence t ≤ n.
Cancelling ar yields at = e. Since t ≤ n, the order d of a must be ≤ n.

Let d be the order of a, and let

A= {a,a2, . . . ,ad−1,ad},

where ad = a0 = e. For every l > 0, l = dq+ r with 0≤ r < d. Then

al = adqar = eqar = ar.

So A contains every positive power of a. In particular, A is closed under multiplica-
tion. Also, for each r with 1 ≤ r < d, arad−r = ad = e. So A is closed under taking
inverses. So A is a subgroup of G containing a.

Since A is closed under products and inverses, A contains every positive or neg-
ative power of a, so 〈a〉= A= {a,a2, . . . ,ad}.

Since d is the order of a, we are left only with showing that the elements
a,a2,a3, . . . ,ad of 〈a〉 are all different. So suppose as = as+k where 1≤ s< s+k≤ d.
Then, cancelling as, we have e= ak. But 1≤ k< d. Hence this last equation violates
the assumption that d is the order of a. Thus all the elements in the set 〈a〉 are dif-
ferent. That is, the number of elements in the subgroup 〈a〉 generated by a is equal
to the order of a, as we wished to show. ��
Example 1. If G=U13, the group of units of Z/13Z, then the cyclic subgroup 〈[3]〉
generated by [3] has three elements: [3], [9] and [27] = [1]. The cyclic subgroup 〈[5]〉
generated by [5] has four elements: [5], [25] = [−1], [−5] = [8] and [1].
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If 〈a〉 is a cyclic subgroup of G of order m= rs, then

〈ar〉= {ar,a2r, . . . ,asr}

is a cyclic subgroup of 〈a〉, hence a cyclic subgroup of G, of order s.
Example 2. If G=U13, then 〈[2]〉 has order 12, so is all ofU13. Then, for example,

〈[23]〉= {[23] = [8], [26] = [64] = [−1], [29] = [−8], [212] = [1]},

and
〈[24]〉= 〈[3]〉.

Most groups have subgroups other than the trivial subgroups:

Proposition 3. If G is an abelian group then G has a non-trivial subgroup unless
the order n of G is 1 or a prime p.
Proof. For each a �= e in G, consider the cyclic subgroup 〈a〉 generated by a. If
〈a〉 �=G, then 〈a〉 is a non-trivial subgroup of G. If 〈a〉=G and n= rs with r,s> 1,
then 〈ar〉 has order s, so is a proper subgroup of G. Thus if G has no non-trivial
proper subgroups, then the order of G is 1 or a prime. ��

We defined a subgroup of a group G to be a subset of G that is closed under the
operation and also under inverses. In case G is a finite group, we may omit this last
condition:

Proposition 4. Let G be a group with operation ∗. If G is fin te, then a non-empty
subset H of G is a subgroup of G if and only if H is closed under ∗.

The proof is essentially included in the proof of Proposition 2 so is left as an
exercise.

Exercises.

10. Prove Proposition 4.

11. Let G=U19.
(i) Find the cyclic subgroup of G generated by [7];
(ii) Find the cyclic subgroup of G generated by [12];
(iii) Find the cyclic subgroup of G generated by [8].

12. Let G=U21.
(i) Find the cyclic subgroup of G generated by [10];
(ii) Find the cyclic subgroup of G generated by [2];
(iii) Find the cyclic subgroup of G generated by [8].

13. In G =U16 find a subgroup H with 4 elements that is not the cyclic subgroup
generated by some element of G.

14. Let G = Z/nZ with operation +. Show that the cyclic subgroup H generated
by [b]n in Z/nZ is all of G if and only if (b,n) = 1.
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C. Cosets and Lagrange’s Theorem

In Section A we proved the abstract Fermat theorem: if G is an abelian group with
n elements, then for any element a of G, the order of a divides n. In Proposition
2 of the last section, we showed that if a is any element of G, then the number of
elements in the subgroup 〈a〉 generated by a is equal to the order of a, and hence the
number of elements of 〈a〉 divides n.

In this section we will generalize this result to show that if G is a finite group
and H is any subgroup of G, then the number of elements of H is a divisor of the
number of elements of G. This famous result is called Lagrange’s theorem. Euler’s
and Fermat’s theorems are easy consequences of Lagrange’s theorem.

The proof we will give will work for any finite group, abelian or not. (The final
section of this chapter gives some examples of nonabelian groups.)

In order to prove Lagrange’s theorem, we need to generalize the notion of con-
gruence classes.

Defini ion. Let G be a group with operation ∗, and H a subgroup. For any b in G,
the left coset of b, denoted b∗H, is the set of elements b∗h, where h runs through
all elements of H. In symbols,

b∗H = {b∗h | h in H}.

Example 3. LetG= Z (the operation is +),H = 2Z. Then the coset 1+2Z is the set
of integers of the form 1+2k where k runs through all elements of Z. Thus 1+2Z is
the set of all integers congruent to 1 (mod 2) (the odd integers). We have called that
set the congruence class of 1 (mod 2) and called it [1]2. Similarly, the coset 0 + 2Z

is just the set of elements in the subgroup 2Z, that is, the set of multiples of 2 (the
even integers), which we called [0]2 .

Any integer is either even or odd, so is either in 0 +2Z or in 1+2Z. So there are
two cosets of the subgroup 2Z in Z, every integer is in one of the two cosets, and
the cosets have no elements in common (no integer is both even and odd).

Example 4. More generally, let G= Z, H = mZ for some m> 1, the modulus. If a
is any integer, then a+mZ, the coset of a, is the set of integers of the form a+mk for
k any integer, that is, the set of integers congruent to a (modm), i.e., the congruence
class [a]m. Then the coset a+mZ is equal to the coset b+mZ iff a is congruent to
b (mod m). There are m cosets, namely, 0+mZ,1+mZ,2+mZ, . . . ,(m−1)+mZ.
This is because any integer is congruent (mod m) to (exactly) one of the numbers
0,1,2, . . . ,m−1.

Just as with congruence classes, we can prove, quite generally, that

Proposition 5. Let H be a subgroup of a group G. Two left cosets are either disjoint
or equal.

Proof. (See also Exercise 17.) Write the group operation as ∗. Suppose a ∗H and
b∗H have some element in common. Let c be such an element. Then c= a∗h= b∗k
for some h,k in H.
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We show a ∗H is contained in b∗H. We know a∗h= b∗ k is in b∗H. Let a∗h′
be any element of a∗H. Then we can find some t in H so that h∗ t = h′, since H is
a group. But then a∗ h′ = a∗ h∗ t = b∗ k ∗ t, an element of b∗H. So every element
of a ∗H is in b ∗H.

The same argument shows that b∗H is contained in a∗H. Thus if a∗H and b∗H
have an element in common, they are equal. ��

For counting, the following proposition is quite useful:

Proposition 6. If a ∗H is any coset of H, then the number of elements in a ∗H is
equal to the number of elements in H.

Proof. To show that two sets have the same number of elements (“the same cardi-
nality”), the idea is to define a one-to-one, onto function (“a one-to-one correspon-
dence”) from one set to the other.

To prove the proposition, define a function T fromH to a∗H by the rule, T (h) =
a ∗ h. Thus T is the function, “operate on the left by a.” Then T is a one-to-one
correspondence between H and a ∗H. To see this most easily, observe that we can
define an inverse function S from a∗H to H, namely, “operate on the left by a−1”.
Then

S(a∗ h) = a−1 ∗ (a∗h) = (a−1 ∗a)∗h= e∗h= h.

So the composition S◦T is the identity function onH. Similarly, T ◦S is the identity
function on a ∗H. So T and S define a one-to-one correspondence between H and
a ∗H. That proves the proposition. ��

Now we can prove Lagrange’s theorem.

Theorem 7 (Lagrange’s Theorem). Let G be a fin te group, H a subgroup of G.
Then the number of elements of H divides the number of elements of G.

Proof. Let G have n elements, and H have r elements. Write G as a disjoint union
of left cosets:

G= (a1 ∗H)∪ (a2 ∗H)∪ . . .∪ (as ∗H).

We can do this as follows: every b in G is in the left coset b ∗H. So we let
b1,b2, . . . ,bg be the elements of G, then

G= (b1 ∗H)∪ (b2 ∗H)∪ . . .∪ (bg ∗H).

Unless H contains only one element, there will be cosets in this union that are
equal. So starting with the coset b2 ∗H, look at each coset bk+1 ∗H to see if it has
an element in common with one of the earlier cosets b1 ∗H, . . . ,bk ∗H. If so, then
bk+1 ∗H is equal to the coset it has an element in common with. So toss bk+1 ∗H
out. Once we toss out all the duplicates, we’re left with G as the disjoint union of
the remaining cosets. Call the non-duplicative cosets a1 ∗H,a2 ∗H, . . . ,as ∗H. Then

G= (a1 ∗H)∪ (a2 ∗H)∪ . . .∪ (as ∗H).
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Now we count the elements of G.
We see that n, the number of elements of G, is equal to the number of elements

in the coset a1 ∗H plus the number of elements of a2 ∗H plus . . . plus the number of
elements of as ∗H. But Proposition 6 tells us that every coset in the disjoint union
has the same number of elements, namely m, the number of elements in H. Thus
if G has n elements and s cosets, then n = ms. To state this formula in words, the
number of elements in G is equal to the number of elements in H times the number
of left cosets of H in G.

That completes the proof of Lagrange’s theorem. ��
Corollary 8. For every element b of a f nite group G, the order of b divides the
number of elements of G.

Proof. Let H = 〈b〉 be the subgroup of G generated by b. Then the order of b is the
number of elements of H by Proposition 2. The corollary then follows immediately
from Lagrange’s theorem. ��
Corollary 9. Euler’s theorem.

Proof. Let G = Um, the group (under multiplication) of units of Z/mZ, and let a
be any number coprime to m. Then the order d of [a]m is the number of elements
of the subgroup 〈a〉 ofUm. Hence d divides the number of elements of Um, namely
φ(m). If φ(m) = ds for some number s, then [a]φ(m) = [a]ds = [1]s = [1]; hence, in
congruence notation, aφ(m) ≡ 1 (mod m). ��

The usual terminology is that the number of elements in a finite groupG is called
the order of G. Lagrange’s theorem says that if H is a subgroup of a finite group G,
then the order of H divides the order of G. The number of cosets of H in G is called
the index of H in G. Thus:

(order of H)× (index of H in G) = (order of G).

If a is an element of G, then the order of a = the order of the subgroup 〈a〉 generated
by a, by Proposition 2, Section B. Thus the two notions of order, for an element and
for a group, are compatible.

Exercises.

15. Let G=U19. For each of the following subgroups, write down the cosets of the
subgroup, and verify Lagrange’s theorem in each case.

(i) 〈[7]〉;
(ii) 〈[12]〉;
(iii) 〈[5]〉.

16. Let G=U21. Does it make sense to write down the coset of the subgroup of G
generated by [7]?
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17. Prove that if H is a subgroup of G, then the relation,

a∼ b if a∗H = b∗H

is an equivalence relation. Why does this imply Proposition 5?

18. (i) Let U be the group of units of Z/mZ. Then U is a subgroup of itself. For
every unit [a] ofU , show that the coset [a]U is equal toU .

(ii) Show that (when m is prime) the first half of the proof of Fermat’s Theorem
in Section 9B consists of verifying the statement of part i).

D. A Probabilistic Primality Test

The proof of Lagrange’s theorem yields information on Fermat’s theorem as a pri-
mality test.

Let m be a natural number >2, and letUm be the group of units of Z/mZ. Then
Um is an abelian group containing φ(m) elements. Let

Um(m−1) = {[a] inUm | [a]m−1 = [1]},

the group of (m−1)-st roots of unity in Z/mZ. Then

Um(m−1) = {[a] inUm | m passes the a-pseudoprime test}.

Proposition 10. Um(m−1) is a subgroup of Um.

Proof. By Proposition 3 it suffices to show that if [a] and [b] are inUm(m−1), so is
[a][b] = [ab]. But if [a]m−1 = [1] and [b]m−1 = [1], then

[ab]m−1 = ([a][b])m−1 = [a]m−1[b]m−1 = [1].

��
Since Um(m− 1) is a subgroup of Um either Um(m− 1) =Um or Um(m− 1) �=Um
(obviously). The case Um(m− 1) = Um always occurs if m is prime, by Fermat’s
theorem. A Carmichael number is a composite numberm for whichUm(m−1)=Um
(see Section 10B).

IfUm(m−1) �=Um and f is the number of elements ofUm(m−1), then among the
s= φ(m)/ f cosets ofUm(m−1) in Um only the f elements in the cosetUm(m−1)
itself satisfy [a]m−1 = [1], while (s−1) f elements [a] ofUm do not satisfy [a]m−1 =
[1]. SinceUm(m−1) �=Um, there are at least two cosets, so s≥ 2 and (s−1) f ≥ f .
Thus we have

Proposition 11. If m is not prime and not a Carmichael number, then m will pass
the a-pseudoprime test for at most half of the numbers a, 1≤ a≤ m.
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This fact has practical significance for testing a number for primeness. Suppose
we have a number m which we wish to test for primeness. Pick, say, 20 numbers a,
1 < a< m, at random, and subject m to the a-pseudoprime test for each a.

• If m is prime, m will pass all of the a-pseudoprime tests.
• If m is Carmichael and all a are chosen coprime to m, then m will pass all of the
a-pseudoprime tests.

• If m is composite and not Carmichael, then the chance that m passes the a-
pseudoprime test for any single randomly chosen a is at most 1/2. So the chance
that m passes the a-pseudoprime test for all 20 randomly chosen numbers a is
less than 1/220, or less than one in a million.

So, provided we are not so unlucky to have selected a Carmichael number (or the
use we have form requires only thatm be prime or Carmichael), this is a good prob-
abilistic primality test, in the sense that we have less than one chance in a million of
being wrong if a number passes our 20 a-pseudoprime tests and we conclude that m
is prime or Carmichael.

In fact, for most composite numbers, the index s of Um(m− 1) in Um is much
greater than 2. To see this, we have

Proposition 12. If d = (m−1,φ(m)), then Um(m−1) =Um(d).

The proof is an application of Bezout’s Identity and is left as an exercise.

Example 5. Let m= 51. Then φ(51) = φ(17)φ(3) = 16 ·2 = 32, and (50,32) = 2.
SoU51(50) =U51(2): every unit mod 51 whose 50-th power equals 1 has its square
equal to 1. The only elements of order <2 in U51 are [1], [−1], [16] and [−16]. So
U51(50) has order 4 and the index ofU51(50) inU51 is 8.

In Chapter 20 we will give a strengthened version of the a-pseudoprime test that
with high probability will distinguish between primes and all composite numbers,
even Carmichael numbers.

Exercises.

19. Show thatU21(20) =U21(2) = {[1], [−1], [8], [−8]}.

20. Determine the order f ofUm(m−1) and compare it with φ(m) if
(i) m = 9;
(ii) m = 20;
(iii) m = 25;
(iv) m = 75.

21. In Um, suppose [b]m−1 = [c]. Show that every element [a] in the coset [b]Um
satisfies [a]m−1 = [c].
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22. (i) Show that (50,32) = 2 and that 50 ·41 = 2 + 32 ·64.
(ii) Show that if a50 ≡ 1 (mod 51), then a2 ≡ 1 (mod 51), and conversely.
(iii) Show thatU51(50) =U51(2) (c.f. Example 5).

23. Prove Proposition 12.

24. Suppose n is a number so that n−1 is prime (e.g., n = 30, 60, 48). Show that n
is an a-pseudoprime for a coprime to n, iff a= 1 (mod n).

25. Let p be an odd prime so that m= 2p+ 1 is the product of two primes (e.g., p
= 19, 43, 47). Show that

Um(m−1) = {[a] inUm | [a]2 = 1}=Um(2).

It follows thatUm(m−1) has four elements (see Section 12A, Exercise 33).

E. Cosets and Equations

In this section we look at cosets that arise in solving equations.
In Section 6F we studied the question of finding all solutions of the equation

[a]mX = [b]m

in Z/mZ. If the greatest common divisor of a and m divides b, then we can find
a solution X = [x0]m (a “particular solution”), for example, by reformulating the
problem to that of finding an integer solution of ax+my = b, solvable by the ex-
tended Euclidean algorithm. Then all other solutions are obtained by adding to that
particular solution the solutions of the corresponding homogeneous equation

[a]mX = [0]m.

The general solution to the homogeneous equation is

X = [
m

(a,m)
k]m

for k= 1, . . . ,(a,m). So the general solution to the original, non-homogeneous equa-
tion is

X = [x0 +
m

(a,m)
k]m, k = 1, . . . ,(a,m).

Here is a generalization of this result for any abelian group:

Proposition 13. Let G be an abelian group with operation multiplication and iden-
tity 1. Let

G(n) = {h ∈ G|hn = 1},
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the set of solutions in G of the equation xn = 1. Let c be in G. If there is some b in G
so that bn = c, then the set of solutions to the equation xn = c is the coset

bG(n) = {bh|h in G(n)}.

Since 1 is the identity element of G, the equation xn = 1 is “homogeneous”.
If c �= 1, then xn = c is “non-homogeneous”. The notion of homogeneous can be
characterized by the idea that the set of solutions of a homogeneous equation is a
subgroup of G.

Proof. If bn = c, then for all h in G(n), (bh)n = bnhn = c ·1 = c. So every element
of bG(n) is a solution of the equation xn = c. Conversely, if sn = c for some s in G,
then

(b−1s)n = b−nsn = c−1c= 1,

so b−1s= h is in G(n). Thus s= bh is in bG(n). ��
Example 6. Let G=U29, let

G(7) = {a ∈U29|a7 = 1}.

Since 67 ≡−1 (mod 29), we have

{b ∈U29|b7 =−1}= [6]29G(7).

Example 7. LetG= R2, real vectors in the plane, a group under addition of vectors,
and let

L= {(x,y) in R2|3x+ 2y= 8}.
Let

N = {(x,y) in R2|3x+ 2y= 0},
the set of solutions of the corresponding homogeneous equation. Then N is a
subspace of R2, hence is a subgroup of R2. Let r = (2,1), then r is in L since
3 · 2 + 2 · 1 = 8. The set of all solutions to 3x+ 2y= 8 is then the coset L = r+N.
For if (u,v) is in N, then 3u+ 2v= 0, so

r+(u,v) = (2 +u,1 + v)

satisfies
3(2 +u)+ 2(1 + v)= (6 + 2)+ (3u+ 2v)= 8 + 0 = 8.

Geometrically, L is the line through the point (2,1) with slope m= −3/2, and N is
the line through the origin with slope −3/2, hence is parallel to L.

This example generalizes greatly:

Example 8. Let A be any m×n matrix, then the set of vectors v with Av= 0 is the
null space N of A, a subgroup of Rn. For any vector b in Rm, if u is some vector in
Rn such that Au= b, then the set of all solutions of Ax= b is the coset u+N.
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This last example is why we chose the letter N for the solutions to the homoge-
neous equation in the examples above.

Example 9. InU17, the group of units of Z/17Z, let

U17(8) = {[a] ∈U17|[a]8 = [1]}
= {[1], [2], [4], [8], [9], [13], [15], [16]}
= 〈[2]〉.

Then [3]8 = [81]2 = [13]2 = [169] = [−1], so

{[a] ∈U17|[a]8 = [−1]}

is the coset
[3]U17(8) = {[3], [5], [6], [7], [10], [11], [12], [14]}.

Note that
U17 =U17(8)∪ [3]U17(8),

the disjoint union of the cyclic subgroup 〈2〉 generated by [2] and the coset [3]〈[2]〉.
So every [a] inU17 satisfies either x8 = [1] or x8 = [−1].

Example 10. InU21, the group of square roots of 1 is

U21(2) = {[1], [−1], [8], [−8]}.

Now 22 = 4, so the solutions inU21 of x2 = 4 is the coset

[2]U21(2) = {[2], [−2], [5], [−5]}.

Similarly, 42 = 16, and so

{[a] ∈U21|[a]2 = [16]}= [4]U21(2) = {[4].[−4], [10].[−10]}.

Note that the cosets U21(2), [2]U21(2) and [4]U21(2) are disjoint and their union
is all ofU21. Thus the only squares inU21 are [1], [4] and [16].

Exercises.

26. The group of unitsU91 is the disjoint union ofU91(90) and [2]U91(90), where

[2]U91(90) = {[a] ∈U91|[a]90 = [64]}.

Assuming that fact, how many elements are there inU91(90)?

27. (i) Find the four elements ofU35(2).
(ii) Find the set of solutions of x2 ≡ 14 (mod 35). Identify the set as a coset.
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28. Let p> 10 and q= p+ 2 be primes, and let m= pq.
(i) Show that 1, p+1,−1 and−(p+1) are the four solutions of x2 ≡ 1 (mod m).
(ii) Find the coset ofUm(2) consisting of solutions to x2 ≡ 9 (mod m).

29. (i) Find the three 10th powers inU31.
(ii) Show thatU31(10) = 〈−2〉.
(iii) Show how the three cosets of U31(10) correspond to the three 10th powers

inU31.

30. Consider the error-correcting Code I from Section 8E. The set C of code words
is the set of vectorsC in F7

2 so that HC = 0. Let

W =

⎛
⎝1

1
0

⎞
⎠

Show that if HR =W , then the set of vectors X in F7
2 so that HX =W is the coset

R+C in F7
2.

F. Homomorphisms

Let G and H be groups, where we denote the operation on G by ∗ and the identity
by eG, and similarly for H.

Defini ion. A function f : G→ H with domain G and range H is called a group
homomorphism if

f (g1 ∗g2) = f (g1)∗ f (g2) for all g1,g2 in G,

and
f (eG) = eH .

If f :G→ H is a homomorphism, and if g in G has inverse g−1 so that g∗g−1 =
eG, then f (g−1) = f (g)−1, the inverse of f (g). This follows because

eH = f (eG) = f (g∗g−1) = f (g)∗ f (g−1),

and the inverse of f (g) is unique.
We have implicitly seen many examples of group homomorphisms.

Example 11. If R is a ring and we forget that R has a multiplication, then with the
operation + and the identity element 0, R is an abelian group, which we call the
additive group of R.

If f : R→ S is a ring homomorphism, then f is a group homomorphism from the
additive group of R to the additive group of S.
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Example 12. Also associated with a ring R isU(R), the group of units, or invertible
elements, of R. If f : R→ S is a ring homomorphism, then restricting f to the subset
U(R) of R yields a group homomorphism from U(R) to U(S), because f takes the
identity element 1 of R to the identity element of S, and f (ab) = f (a) f (b).

Other examples of group homomorphisms:

Example 13. Let H be a subgroup of a group G, then the inclusion map i : H→ G,
which takes an element of H and views it as in G, is a group homomorphism.

Example 14. If {e} is the group with one element, then the only possible function
from a group G to {e} is a homomorphism, called the zero homomorphism. More
generally, if G′ is any group, and f : G→ G′ is the function which takes every
element of G to the identity element of G′, then f is a homomorphism, also called
the zero homomorphism.

Example 15. Let G be the additive group of Z/mZ, and let α be an element of
Z/mZ. Define a function Lα : Z/mZ→ Z/mZ by Lα(β ) = αβ . Then Lα is a group
homomorphism, for Lα(0) = 0, and Lα(β +γ) = Lα (β )+Lα(γ), by the distributive
law. Note that Lα is not a ring homomorphism unless α = 1, because Lα (β γ) is not
equal to Lα(β )Lα(γ). If α = 0, then L0 is the zero homomorphism.

Example 16. Let G =Um, the group of units of Z/mZ. Then for every number r,
the function

fr :Um→Um

defined by fr([a]) = [a]r is a group homomorphism.

Example 17. A vector space is an abelian group under addition, and linear transfor-
mations are group homomorphisms.

A group homomorphism f :G→G′ is one-to-one if it is one-to-one as a function.
That is, for g,h in G, if f (g) = f (h), then g = h. As with ring homomorphisms we
can test for a homomorphism f to be one-to-one by looking at the kernel of f ,

ker f = {g in G | f (g) = e}.

Proposition 14. Let f :G→G′ be a group homomorphism. Then ker f is a subgroup
of G. The map f is one-to-one iff ker f = {e}, the subgroup of G consisting of just
the identity element of G.

The proof is an exercise.

Example 18. Let G = Um, the group of units of Z/mZ. Let fr : Um → Um be the
homomorphism defined by fr(α) = αr, as in Example 14. Then the kernel of fr,

ker fr = {α inUm | αr = 1}=Um(r),

is the subgroup of r-th roots of unity inUm. See Example 5 of Section B.
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Defini ion. Let f : G→ H be a group homomorphism. The image of f is the set
f (G) of elements of H that have the form f (g) for some g in G.

The image of a group homomorphism f :G→H is a subgroup ofH (an exercise).

Example 19. Let f : R→ S be a ring homomorphism. If we view f as a group
homomorphism of additive groups, the kernel of f is the same as the kernel of f
viewed as a ring homomorphism. Thus, for example, if f : Z → Z/mZ is the ring
homomorphism defined by f (a) = [a]m, then, viewed as a group homomorphism of
additive groups, ker f = mZ, the set of multiples of m.

Example 20. Let Lα : Z/mZ→ Z/mZ be the homomorphism, “multiply by α ,” of
Example 14. Then kerLα = {β in Z/mZ | αβ = 0}. Thus kerLα = 0 if and only if
α is not a zero divisor in Z/mZ.

Defini ion. A group homomorphism f : G→ G′ is an isomorphism if f is one-to-
one and onto.

Proposition 15. If f : R→ S is an isomorphism of rings, then f restricts to an iso-
morphism f :U(R)→U(S) from the group of units of R to the group of units of S.

Proof. If u is a unit of R, then f (u) is a unit of S. Suppose t is a unit of S. Let r be
the unique element in R so that f (r) = t, (r is unique because f is one-to-one) and
let r′ in R be so that f (r′) = t−1. Then f (rr′) = f (r) f (r′) = t · t−1 = 1. But f (1) = 1
and f , being an isomorphism, is one-to-one. Thus rr′ = 1, and r is a unit of R. Thus
f is a one-to-one, onto function between the set of units of R and the set of units
of S. ��

We shall see some examples of isomorphisms of groups in the next section, and
an application of Proposition 14 in Section 12D.

Exercises.

31. Verify that a ring homomorphism f : R→ S yields a group homomorphism
fromU(R) toU(S).

32. Prove Proposition 14.

33. Find kerLα (Example 19) if Lα : Z/mZ→ Z/mZ , where
(i) m= 10 and α = [2];
(ii) m= 11 and α = [3]; and
(iii) m= 12 and α = [4].

34. Show that if r and φ(m) are coprime then fr :Um→Um (Example 15) is one-
to-one.
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35. The image of a group homomorphism f :G→ H is

f (G) = {h in H | h= f (g) for some g in G}.

Show that the image of a group homomorphism f : G→ H is a subgroup of H.

36. Show that if f1 : G→ H and f2 : H → K are group homomorphisms, then the
composition f2 ◦ f1 : G→ K, defined by f2 ◦ f1(g) = f2( f1(g)), is a group homo-
morphism.

37. Show that if f : G→ H is an isomorphism of groups, then the inverse function
f−1 :H→ G, defined by f−1( f (g)) = g, is a group homomorphism.

G. Quotient Groups

Let G be a group and H a subgroup of G. We’ve observed in earlier sections of
this chapter the role that the left cosets of H in G play in proving Lagrange’s Theo-
rem, in providing information about primality testing via Fermat’s Theorem, and in
interpreting solutions of equations in groups.

But the most familiar example of cosets, namely the cosets of mZ in Z, are more
than just sets. Those cosets, the congruence classes modulom, form the elements of
the commutative ring Z/mZ. Hence, in particular, they form a group under addition,
where the addition of congruence classes is induced from the addition on Z.

In this section we observe that if G is any abelian group (with operation ∗) and H
any subgroup, then the left cosets of H in G also form an abelian group, where the
operation ∗ on cosets is induced from the operation on G. By analogy with Z/mZ,
we denote the group of left cosets of H in G by G/H.

To show that the set G/H of left cosets is a group, we need to explain the group
operation on G/H.

Recall how we defined addition on Z/mZ.
Let [a]m and [b]m be two congruence classes. Then

[a]m+[b]m = [a+b]m.

In words, the sum of the congruence class of a and the congruence class of b is the
congruence class of a+b.

When we defined addition of congruence classes in this way in Chapter 6, we
were concerned that the addition was “well-defined”. By this, we meant that in
defining the addition of [a]m and [b]m, we were using particular representatives of
the congruence classes, namely a and b, to determine the sum [a+ b]m of the two
congruence classes. What if we chose different representatives?

What we found was that

If a≡ a′ (mod m) and b≡ b′ (mod m) then a+b≡ a′+b′ (mod m).
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Thus if a′ is in the congruence class [a]m, and b′ is in the congruence class [b]m,
then a′+b′ is in the congruence class [a+b]m.

To look at it another way, if we interpret [a]m+ [b]m to be the set of all integers
of the form a′+b′ where a′ is in [a]m and b′ is in [b]m, then that set [a]m+[b]m is the
same set as the congruence class [a+b]m.

Now the congruence class [a]m is the left coset a+mZ, and [b]m = b+mZ. In
fact, the notation a+mZ is really a more suggestive notation for the congruence
class of a modulo m than [a]m is, because [a]m is the set of all integers of the form
a+mk for all k in Z. The notation a+mZ describes this set well.

Using the notation a+mZ for [a]m, what we showed in Chapter 6 is that if G is
the group Z under addition, and H is the subgroup mZ of all multiples of m in Z,
then the operation on G/H = Z/mZ defined by

(a+mZ)+ (b+mZ)= (a+b)+mZ

is well-defined.
Having done so, then it is clear that addition in Z/mZ is associative and commu-

tative because addition in Z is associative and commutative. Also, 0+mZ, the coset
consisting of the subgroup mZ itself, is the identity element of the group Z/mZ,
and every element of Z/mZ has an inverse (negative), namely, for any integer a, the
inverse of a+mZ is −a+mZ.

Hence the set Z/mZ of left cosets of mZ in Z is an abelian group, where the
addition on left cosets is induced from that on Z. “Induced” means that we can
determine how cosets add by adding representatives in Z.

Now let G be any abelian group, with operation ∗ and identity e and let H be a
subgroup. Denote by a∗H the left coset of the element a of G. Let G/H be the set
of left cosets of H in G. We define an operation on G/H, induced by ∗ on G, as
follows: For every a and b in G, define the product of a∗H and b∗H by

(a ∗H)∗ (b∗H)= (a∗b)∗H.

We want to show this product is well defined.

Proposition 16. Let G be an abelian group and H a subgroup of G. Suppose a∗H =
a1 ∗H and b ∗H = b1 ∗H. Then (a∗b)∗H = (a1 ∗b1)∗H.
Proof. It suffices to show that if we pick any element out of the coset a ∗H, and
any element out of the coset b ∗H, and multiply them in G, we get an element of
the coset (a ∗ b)∗H. We show this. Let a1 = a∗h for some h in H, and b1 = b∗h1

for some h1 in H. If we take the product a1 ∗b1 = (a∗h)∗ (b∗h1), then, since G is
abelian, we can rearrange the product:

(a ∗h)∗ (b∗h1) = (a∗b)∗ (h∗h1).

Since h ∗ h1 is in H, the result is in (a∗b)∗H. ��
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Here is an application of Proposition 16.

Example 21. We show that if p is an odd prime, then

((
p−1

2
)!)2 ≡ 1 or −1 (mod p).

To do this, we let G =Up and N = {1,−1} (where we write [a]p as a for conve-
nience). Then

(p− r)N = (−r)N = rN.

Repeatedly using Proposition 16, we have

(p−1)!N = (1 ·2 · · · p−1
2

) · ((p−1) · (p−2) · · ·(p− p−1
2

))N

= (1N ·2N · · · p−1
2

N) · ((p−1)N · (p−2)N · · ·(p− p−1
2

)N)

= (1N ·2N · · · p−1
2

N) · (1)N · (2)N · · · ( p−1
2

)N)

= (
p−1

2
)!N · ( p−1

2
)!N = ((

p−1
2

)!)2N.

But (p− 1)! is in N by Wilson’s Theorem (Exercises 12 and 13 of Chapter 14, or
Exercise 47, below), so (( p−1

2 )!)2 is in N, and hence

((
p−1

2
)!)2 ≡ 1 or −1 (mod p),

as claimed.

Once we see that the operation ∗ on cosets is well-defined, associativity and
commutativity follow easily since they hold in G, the coset e ∗H is the identity
element of G/H, and the inverse of a∗H is a′ ∗H where a′ is the inverse of a in G.
Thus:

Theorem 17. If G is an abelian group and H is a subgroup of G, then the set of
left cosets G/H is an abelian group, with the operation on cosets induced by the
operation on G.

The group G/H is called a quotient group.
Here are some examples.

Example 22. Let G=U21, the group of units modulo 21, a group of order φ(21) =
12. Let N =U21(2) be the subgroup consisting of the square roots of 1 in Z/21Z,
that is, the units modulo 21 whose square is [1]21. Then

N = {[1], [−1], [8], [−8]}.

Then G/N consists of three cosets. From Example 8 we found that
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G/N = {N, [2]N, [4]N}.

Since ([2]N)3 = [8]N =N, the groupG/N consists of all multiples of the coset [2]N.
Thus G/N is a cyclic group of order 3.

Example 23. LetG be a finite abelian group (written multiplicatively) of even order
2m. Let f2 : G→ G be the squaring function, f2(g) = g2. Let H be the image of G.
Then G/H is an abelian group, and every coset of H in G has order 1 or 2. For if
aH is a coset, then (aH)2 = (aH)(aH) = a2H is the identity coset H because a2 is
in H.

Here is an example. Let G =U20. Then G has order φ(20) = 8. Let H = f2(G),
the set of squares inU20. Then H = {[1], [9]}, and

G/H = {H, [3]H, [11]H, [13]H}.

It’s easy to verify that the square of each element of G/H is the identity element of
G/H. For example, the coset [3]H = {[3], [7]}, and

[3]H · [3]H = H

(as can be verified by multiplying [3] or [7] by [3] or [7] and verifying that the product
is in H = {[1], [9]}).

As a nice application of quotient groups, we can prove

Theorem 18 (Cauchy). If G is a fin te abelian group of order n, and p is a prime
divisor of n, then G has an element of order p.

Proof. We do it by induction on n. Assume the group operation is multiplication,
with identity e. The result is true if n = p is prime, because if G has order p and
a �= e, then a must have order p.

If n is not prime, then by Proposition 3, G has a proper subgroup H of order
m> 1, a divisor of n. If p divides m, then by induction, H, and therefore G, has an
element of order p. If p does not divide m, then let G/H be the quotient group, of
order s. By Lagrange’s Theorem, ms= n, so if p doesn’t divide m, p must divide s,
and so, by induction, G/H has an element aH of order p.

Then a is not in H, but (aH)p = H, the identity element of G/H. Thus ap = b
in H. Since b is in H and H has order m, we have bm = (ap)m = (am)p = e. If we
show that am �= e, then am is an element of order p in G, and the proof is done.

But if am = e, then (aH)m = eH =H, and also (aH)p =H. Since p doesn’t divide
m, pr+ms= 1 for some integers r,s, so

aH = (aH)pr+ms = (aH)pr(aH)ms = H

and so aH is the identity element of G/H, contradicting the assumption that aH had
order p in G/H. Hence am �= e and am is an element of order p in G. ��

Once we have quotient groups, we can give the Fundamental Homomorphism
Theorem for abelian groups:
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Theorem 19. Let G,H be abelian groups and f :G→H be a group homomorphism
with kernel K ⊆ G and image f (G) ⊆ H. Then f induces an isomorphism

f : G/K→ f (G)

by f (g ∗K) = f (g).

Proof. We want to show that f is well-defined, which means that if g∗K = g1 ∗K,
then f (g) = f (g1). But if g ∗K = g1 ∗K, then g = g1 ∗ k for some k in K = ker( f ).
So

f (g) = f (g1 ∗ k) = f (g1)∗ f (k) = f (g′)

since f (k) = e, the identity of H. So f is well-defined.
Then f is a group homomorphism because f is, and f is onto f (G) because f

is. To show that f is one-to-one, suppose f (g ∗K) = e, then f (g) = e, so g is in
ker( f ) = K. So g∗K =K is the identity element of G/K. Thus f is an isomorphism
from G/K onto f (G). ��

Here is an application of these ideas.

Example 24. Let p be an odd prime,Up the units of Z/pZ, and let f :Up→Up be
the squaring function, f ([a]) = [a]2 = [a2]. Let Q be the image of f . Then

Q= {[a2] : [a] inUp}

is the set of squares inUp. The kernel of f is

N = {[a] inUp : [a]2 = [1]}= {[a] inUp : a2 ≡ 1 (mod p)}.

Since p is prime, N = {[1], [−1]}. The Fundamental Homomorphism Theorem says
that

Up/N ∼=Q.

The order ofUp/N is the number of cosets of N inUp. By Lagrange’s Theorem, this
is equal to the order ofUp divided by the order of N. So the order of Q is (p−1)/2.

We can now show that the product of any two non-squares in Up is a square. To
do so, considerUp/Q. By Lagrange’s Theorem,Up/Q has order 2. So there are two
cosets, namely Q, the set of squares in Up, and the other coset, which consists of
non-squares inUp. For every non-square a inUp, aQ is that other coset.

Now if a is any non-square, then aQ · aQ = a2Q = Q, since a2 is in Q. If b
is any other non-square, then aQ = bQ, so Q = aQ · aQ = aQ · bQ = abQ since
multiplication of cosets is well-defined, by Proposition 16. Thus ab is in Q, that is,
ab is a square in Up. Thus the product of every two non-squares in Up is a square
inUp.

We’ll give a different proof of this fact in Chapter 21, using the existence of a
primitive root.

We remark that Proposition 16 and Theorem 17 are often not true if the group G
is not abelian. The equation
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(a ∗h)∗ (b∗h1) = (a∗b)∗ (h∗h1)

that showed that the ∗ operation on cosets is well-defined, used the assumption that
∗ is commutative. For a general group G and a subgroup H, the condition that the
operation on the cosets of H in G is well-defined is equivalent to the condition that
for every a in G, the left coset a∗G and the right coset G∗a are equal. A subgroup
H of G with that property is called a normal subgroup of G. Every subgroup of an
abelian group is normal, but nearly every non-abelian group has subgroups that are
not normal. (The only finite exceptions are groups Q×A where Q is the quaternion
group of order 8 and A is abelian, as Rotman ((2000), p. 153) points out.)

Exercises.

38. Let G = U16 be the group of units modulo 16, a group of order 8, and let
J= {[1], [−1]}, a subgroup. ThenG/J is a group of order 4. Show that every element
of G/J is a power of the coset [3]H.

39. Let G =U16 be the group of units modulo 16. Let H = {[1], [9]}, a subgroup.
Then G/H is a group of order 4. Show that the square of every element of G/H is
equal to the identity.

40. Let G = U45 be the group of units modulo 45, a group of order φ(45) = 24.
Then [4]45 has order 6. Let H be the subgroup generated by [4]45. Find the orders of
the four elements of G/H.

41. Let G = U45 be the group of units modulo 45, a group of order φ(45) = 24.
Then [11]45 has order 6. Let H be the subgroup generated by [11]45. Find the orders
of the four elements of G/H.

42. Let G =Up2 be the group of units modulo p2, where p is an odd prime. Then
G is a group of order φ(p2) = p(p− 1). The element [1 + p]p2 has order p. Let H
be the subgroup generated by [1 + p]. Show that G/H is a cyclic group, generated
by the coset of any primitive root modulo p.

43. Let G=Up be the group of units modulo p, where p is an odd prime. Let H be
the subgroup generated by [−1]p. Show that G/H is generated by the coset of any
primitive element modulo p.

44. Let G =Up be the group of units modulo p, where p is an odd prime. Let H
be the subgroup generated by [−1]p. Show that G/H consists of the cosets of the
congruence classes of 1,2, . . . , p−1

2 .

45. Show that the product of the elements ofU7/{[1], [−1]} is equal to the identity
element.

46. Show that the square of the product of the elements ofU13/{[1], [−1]} is equal
to the identity element.
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47. Prove that if p is prime, G = Up and N = {1,−1}, then (p− 1)! is in N, as
follows.

(i) Show that every number r with 1≤ r ≤ p−1 has a unique inverse r′ modulo
p with 1≤ r′ ≤ p−1.

(ii) Show that

1 ·2 ·3 · · ·p−1≡ 1′ ·2′ ·3′ · · · (p−1)′ (mod p).

(iii) (Gauss’s 2nd grade trick) Show that

1≡ (1 ·2 ·3 · · ·p−1)(1′ ·2′ ·3′ · · ·(p−1)′)
≡ (1 ·2 ·3 · · ·p−1)(1 ·2 ·3 · · ·p−1)

≡ ((p−1)!)2 (mod p).

(iv) To finish the proof, recall that x2 ≡ 1 (mod p), p prime, has only the solu-
tions x≡ 1 or −1.

48. Find ( p−1
2 )! and its square modulo p when p = 5,7,11,17,23, . . .. Can you

guess any pattern for the values modulo p?

H. Some Nonabelian Groups

In this section we give an example of a group which is not abelian. This is a group
with 6 elements, and we shall present it in three guises, as S3, as GL2(F2) and as
D3, each of which suggests a generalization to a large class of nonabelian groups.

The symmetric group. The group S3 is the group of permutations on three sym-
bols. If we denote the symbols by {a,b,c}, then a permutation is a one-to-one func-
tion from the set {a,b,c} to itself. The group operation is composition of functions.
There are six permutations of {a,b,c}, namely:

ι : (a,b,c)→ (a,b,c), the identity permutation,
ρ : (a,b,c)→ (b,c,a).
(The notation means that ρ(a) = b,ρ(b) = c, and ρ(c) = a.)
ρ2 : (a,b,c) → (c,a,b), (i.e., ρ2(a) = ρ(b) = c,ρ2(b) = ρ(c) = a,ρ2(c) =

ρ(a) = b),
τ : (a,b,c)→ (b,a,c),
τρ : (a,b,c)→ (a,c,b) (i.e., τρ(a) = τ(b) = a, etc.),
τρ2 : (a,b,c)→ (c,b,a).
It is easy to verify that ρ3 = ι,τ2 = ι,ρτ = τρ2 and ρ2τ = τρ .
Here is the group table for S3:
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ι ρ ρ2 τ τρ τρ2

ι ι ρ ρ2 τ τρ τρ2

ρ ρ ρ2 ι τρ2 τ τρ
ρ2 ρ2 ι ρ τρ τρ2 τ
τ τ τρ τρ2 ι ρ ρ2

τρ τρ τρ2 τ ρ2 ι ρ
τρ2 τρ2 τ τρ ρ ρ2 ι

The group S3 is called the symmetric group on three symbols.

The general linear group. Denote by GL2(F2) the group of units of the ring of
2× 2 matrices with entries in F2 = {0,1}. The group operation is multiplication.
(See Chapter 8 for a review of matrices.) Thus GL2(F2) consists of all matrices(
a b
c d

)
such that

det

(
a b
c d

)
= ad−bc �= 0.

Since ad−bc= 0 or 1, we may find all elements of GL2(F2) by finding all a,b,c,d
in F2 with ad−bc= 1. But ad−bc= 1 iff ad = 1 and bc= 0, or ad = 0 and bc= 1.
So we get six solutions, three with a = d = 1, three with b = c= 1. Thus GL2(F2)
has the elements

I =
(

1 0
0 1

)
, T =

(
0 1
1 0

)

R=
(

0 1
1 1

)
, TR=

(
1 1
0 1

)

R2 =
(

1 1
1 0

)
, TR2 =

(
1 0
1 1

)
.

Then R3 = I,T 2 = I,RT = TR2,R2T = TR, and GL2(F2) has the following mul-
tiplication table:

I R R2 T TR TR2

I I R R2 T TR TR2

R R R2 I TR2 T TR
R2 R2 I R TR TR2 T
T T TR TR2 I R R2

TR TR TR2 T R2 I R
TR2 TR2 T TR R R2 I

This table looks just like the table for S3 (replacing ι by I, ρ by R, τ by T ). The
resemblance is not an accident. Set

a=
(

1
0

)
,b =

(
0
1

)
,c=

(
1
1

)
,
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then the elements of GL2(F2) act on {a,b,c} by left multiplication. For example,

Ra=
(

0 1
1 1

)(
1
0

)
=
(

0
1

)
= b;

Rb=
(

0 1
1 1

)(
0
1

)
=
(

1
1

)
= c;

Rc=
(

0 1
1 1

)(
1
1

)
=
(

1
0

)
= a;

So R acts like ρ . Similarly, we can see how each of the other elements of GL2(F2)
acts as a permutation of the set {a,b,c}. By identifying the permutation, we obtain
an isomorphism of groups

f :GL2(F2)→S3

where the map f takes a matrix and determines the permutation of {a,b,c} that the
matrix yields. It’s not hard to see that f (1) = ι , f (R) = ρ , f (R2) = ρ2, f (T ) = τ ,
f (TR) = τρ , and f (TR2) = τρ2.

The dihedral group. Consider an equilateral triangle cut out of a flat board of
uniform thickness. We label the vertices of the triangle by a,b,c, as follows:

a b

c

A rigid motion of the triangle consists of removing the triangle from its hole in
the board, and placing it back in the hole, either right side up or upside down, in
some fashion. The group D3 consists of all rigid motions of the triangle. A rigid
motion followed by another rigid is a rigid motion. Thus iteration of rigid motions
defines the group operation. There are six rigid motions:
i, the identity;
r, obtained by rotating the triangle 120◦ counterclockwise;
r2, obtained by rotating the triangle 240◦ counterclockwise;
t, obtained by flipping the triangle across the axis through the vertex c and the

midpoint of the edge ab;
tr, obtained by first doing r, then t, and
tr2, obtained by first doing r2, then t.
If we let D3 denote this set of rigid motions, then

D3 = {i,r,r2,t,tr,tr2}.
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Notice that the six rigid motions give all of the six distinct permutations of the three
vertices {a,b,c}. For example, tr is the permutation (a,b,c) → (a,c,b). Thus D3

can also be viewed as the set of permutations of the vertices a,b,c. More explicitly,
we can define an isomorphism of groups

g :D3 →S3

by g(i) = ι,g(r) = ρ ,g(r2) = ρ2,g(t) = τ,g(tr) = τρ ,g(tr2) = τρ2.
Each of the three versions of this non-abelian group of six elements can be gen-

eralized in a distinctive way:

I. If {a1,a2, . . . ,an} is a set of n symbols, then the set Sn of all permutations of
a1,a2, . . . ,an is a (nonabelian) group with n! elements, called the symmetric group.
The group operation is composition of permutations. This infinite collection of finite
groups is of particular importance, since, as we shall see shortly, every finite group
may be viewed as a subgroup of some Sn.

II. If Fp is the field of p elements, p any prime, then GLn(Fp) denotes the group
of invertible n× n matrices with entries in the field Fp, called the general linear

group. The set of n×n matrices with entries in Fp has pn2
elements, so GLn(Fp) is

somewhat smaller. This is a doubly infinite collection of finite groups, since both n
and p can vary over infinite sets.

III. Let Dk be the group of rigid motions of the regular k-gon. Then any element
of Dk can be obtained by iterating in some order two particular motions: a rotation
of 360/k degrees, and a reflection, or flip, across an axis passing through the center
of the k-gon and a vertex. Dk is a non-abelian group with 2k elements, called the
dihedral group.

We can see that GLn(Fp) may be viewed as a subgroup of Sk, where k= pn−1.
Each element of GLn(Fp) is an n× n matrix which acts as a function from the set
V of non-zero n-entry column vectors to V . An invertible matrix is a one-to-one
function fromV to itself, that is, a permutation ofV . So GLn(Fp) may be viewed as
a subgroup of the group of permutations of V . V is a set with pn−1 vectors.

Conversely, Sn may be viewed as a subgroup of GLn(Fp) for every prime p,
by viewing an element π of Sn as a permutation of the standard basis of Fnp, and
associating to π the matrix of π relative to the standard basis.

Also, Dk may be viewed as a subgroup of the group of permutations of the ver-
tices of the k-gon, because any element of Dk is completely determined by where
the vertices of the k-gon end up. So Dk may be viewed as a subgroup of Sk.

More generally, we have:

Theorem 20. Cayley’s Theorem. Let G be a group with n elements. There is a one-
to-one homomorphism L from G toSn.
Proof. Let G = {a1,a2, . . . ,an}, and for b in G, let Lb be the function from G to G
defined by Lb(ai) = b∗ai. Then by cancellation and solvability, Lb is a permutation
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of the set G. If e is the identity element of G, then Le is the identity permutation.
The function L is a group homomorphism, that is, for any a,b,c in G,

Lb∗c(a) = (b∗ c)∗ a= b∗ (c∗a) = Lb(Lc(a)) = (Lb ◦Lc)(a),

so Lb∗c = Lb ◦Lc. Finally, if Lb = Lc, then for every a in G, b∗a= c∗a; by cancel-
lation, we get b= c. So the function L is a one-to-one homomorphism. ��

Notice that if G has n elements, Sn has n! elements. So Sn is larger than G for
all n> 2, and the image of G is a proper subgroup of Sk (that is, is not all of Sn).

The theory of groups has become an extremely rich and deep subject with impor-
tant applications to molecular chemistry and quantum physics, as well as to many
areas of advanced mathematics. If you browse in almost any college or university li-
brary you will find numerous books on group theory. One particularly nice treatment
of group theory is in Herstein (1975), the source of the proof of Cauchy’s Theorem,
Theorem 18.

We will not pursue the theory of non-abelian groups further in this book. See
Chapter 19 for more on cyclic groups.

Exercises.

49. Describe a group homomorphism fromU8 to S4.

50. Describe a group homomorphism fromU5 to S4.

51. How many elements are there in GL2(F3)?

52. Describe a group homomorphism from U4 to S4. (Hint: One way is to let U4

act via multiplication on all of Z/4Z, not just onU4.)

53. In D3, show that if H is the subgroup generated by the reflection t, then there is
an element g of D3 so that the left coset gH is not a right coset of H in D3. Hence
multiplication of left cosets by aH ·bH = abH is not well-defined.



Chapter 12
The Chinese Remainder Theorem

In this chapter we study systems of two or more linear congruences. When the mod-
uli are pairwise coprime, the main theorem is known as the Chinese Remainder
Theorem, because special cases of the theorem were known to the ancient Chinese.
In modern algebra the Chinese Remainder Theorem is a powerful tool in a variety
of applications, as we shall see.

A. The Chinese Remainder Theorem

Two congruences. Here is the result for two linear congruences.

Theorem 1. Let m and n be natural numbers > 1 (the moduli) and a,b be any inte-
gers. Then there is a solution x= x0 of

x≡ a (mod m)
x≡ b (mod n),

if and only if the greatest common divisor of m and n divides b− a. If x = x0 is a
solution, then the set of integers x that satisfy the two congruences is the same as
the set of x that satisfy

x≡ x0 (mod [m,n])

where [m,n] is the least common multiple of m and n.

Before proving the theorem, we look at three examples.

Example 1. Consider the pair of congruences

x≡ 11 (mod 74)
x≡ 13 (mod 63).

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 253
in Mathematics, c© Springer Science+Business Media LLC 2009
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If x is a solution, then
x= 11 + 74r

for some integer r, and
x= 13 + 63s

for some integer s. Setting the two expressions for x equal to each other, we obtain

11 + 74r= 13 + 63s

or, collecting the constants,
74r−63s= 2.

This equation is solvable using the extended Euclidean algorithm, since the greatest
common divisor of 74 and 63, namely 1, divides 2. In fact, Euclid’s algorithm for
74 and 63 is:

74 = 63 + 11

63 = 11 ·6−3

11 = 3 ·3 + 2

Using the row operation approach we have

coeff. coeff.
of 74 of 63

74 1 0
63 0 1
11 1 −1
66 6 6
3 6 −7
9 18 −21
2 −17 20.

The last line says that
2 = 74 · (−17)+ 63 ·20.

Since we wish to find r,s so that 74r− 63s = 2, we set r = −17,s = −20. Since
x = 13 + 63s, we find x = 13− 63 · 20 = 13− 1260 = −1247 is a solution of the
congruences.

As with a single linear congruence, once we find a particular solution x=−1247
of

x≡ 11 (mod 74)
x≡ 13 (mod 63).

we can find the general solution by taking the particular solution x = −1247 and
adding to it the general solution to the homogeneous system of congruences,

x≡ 0 (mod 74)
x≡ 0 (mod 63).
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Any integer x that solves this homogeneous system must be a multiple of 74 and a
multiple of 63, hence a common multiple of 74 and 63. Since 74 and 63 are coprime,
the least common multiple [74,63] of 74 and 63 is 74 · 63 = 4662. To a particular
solution of the original (non-homogeneous) congruences, like x=−1247, then, we
can add any multiple of 4662 and get another solution. Expressed concisely, the set
of all solutions to the set of congruences

x≡ 11 (mod 74)
x≡ 13 (mod 63).

is the set of all integers x so that

x=−1247 + 4662k

for some integer k. This is the same as the set of integers x that satisfy the congruence

x≡−1247 (mod 4662).

Example 2. We seek the smallest non-negative solution of

x≡ 2 (mod 24)
x≡ 8 (mod 39)

We set x= 2+24r= 8+39s, hence 24r−39s= 6. Since (24,39) = 3 and 3 divides
6, there is a solution. After some calculations we find that 39 ·2− 24 ·3 = 6, and so
x= 2+24(−3)=−70. The general solution is x=−70+[24,39]k for k any integer.
Since [24,39] = 312, we can write the solutions as x=−70+312k for every integer
k, or as

x≡−70 (mod 312).

In particular, x=−70 + 312 = 242 is the smallest positive solution.

Example 3. Consider
x≡ 5 (mod 20)
x≡ 15 (mod 16).

We set x= 5 + 20r= 15 + 16s and collect the constant terms to one side:

20r−16s= 10.

But in this example, the greatest common divisor of 20 and 16 is 4, and 4 does not
divide 10. So there are no integers r and s that solve the equation 5+20r= 15+16s,
and so there is no solution of the pair of congruences.

The proof of Theorem 1 follows the method of the examples.

Proof. We suppose x is a solution to the two congruences

x≡ a (mod m)
x≡ b (mod n).
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Since x is a solution to the first congruence, x = a+my for some integer y. Since x
is a solution to the second congruence, x = b+nz for some integer z. Equating the
two expressions for x yields the following equation in y and z:

a+my= b+nz

or
my−nz= b−a.

Now we follow the method of Section 3D for these equations. The result we ob-
tained there was:

• if the greatest common divisor of m and n doesn’t divide b−a, then there are no
integers y,z so that my−nz= b−a (for if d is the greatest common divisor of m
and n, then d divides my−nz, hence must divide b−a). Thus there is no integer
x that solves the original pair of congruences.

• if d = (m,n) divides b−a, so that b−a= qd, then we can use Bezout’s identity
to solve the equation as follows: we find integers t and w so that mt+ nw = d,
then m(tq)+n(wq) = b−a. Hence, setting y= tq, we find that x= a+mtq is a
solution of the original pair of congruences.

These results prove the first part of the Proposition.
For the second part, suppose x0 and x1 are solutions of the pair of congruences.

Then x1− x0 is a solution of the “homogeneous” pair of congruences

x≡ 0 (mod m)
x≡ 0 (mod n).

That means x1− x0 is a common multiple of m and n, and hence is a multiple of the
least common multiple [m,n]. Hence x1− x0 = [m,n]k for some k, and so

x1 = x0 +[m,n]k

for some k.
Conversely, if x0 is a solution to the pair of congruences and x satisfies x ≡ x0

(mod [m,n]) for some integer k, then x ≡ x0 (mod m) and x ≡ x0 (mod n), and so
x is also a solution to the original pair of congruences.

The set of integers x of the form x = x0 + [m,n]k may be described as the set of
integers such that

x≡ x0 (mod [m,n]).

��
As an immediate corollary of the theorem, we obtain the Chinese Remainder

Theorem for two congruences:

Corollary 2 (The Chinese Remainder Theorem). Let m and n be coprime nat-
ural numbers > 1 (the moduli) and a,b be any integers. Then there is a solution
x= x0 of
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x≡ a (mod m)
x≡ b (mod n).

The set of integers x that satisfy the two congruences is the same as the set of x that
satisfy

x≡ x0 (mod mn).
If we have a pair of congruences where one of the moduli is small, we can reduce

the Bezout’s identity calculations by solving a single congruence modulo the smaller
of the two moduli.

Example 4. Consider
x≡ 38 (mod 60)
x≡ 7 (mod 11).

Then x = 38 + 60r = 7 + 11s for some integers r,s. To find x we don’t need to find
both r and s in the equation

38 + 60r= 7 + 11s,

rather, just one of them. So instead of approaching the equation as a Bezout type
problem, we look at the equation as a congruence modulo the smaller of the original
moduli:

38 + 60r≡ 7 (mod 11).

Reducing 38 and 60 modulo 11 yields

5 + 5r≡ 7 (mod 11)

or
5r ≡ 2 (mod 11).

Since the inverse of 5 modulo 11 is 9, we multiply the last congruence by 9 to obtain

r ≡ 9 ·5r≡ 9 ·2≡ 7 (mod 11).

Then x= 38 + 7 ·60 = 458 is a solution to the original congruences. Since the least
common multiple of 11 and 60 is 660, the general solution is

x≡ 458 (mod 660).

Three or more congruences. The key to solving systems of more than two si-
multaneous congruences is the observation that we can express the set of inte-
gers that solve two simultaneous congruences as the set of integers that satisfy one
congruence.

Example 5. We find all solutions to

x≡ 2 (mod 12)
x≡ 8 (mod 10)
x≡ 9 (mod 13).
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We first solve the first two: we find x of the form x = 2 + 12r = 8 + 10s. It’s easy
enough to see that x = 38 is a solution. Since [12,10] = 60, the general solution of
the first two congruences is x = 38 + 60k for k any integer. Thus to solve the three
congruences is the same as to solve

x≡ 38 (mod 60)
x≡ 9 (mod 13).

This pair of congruences has the property that the modulus 13 in the third of the
original congruences is smaller than the modulus 60 arising from the first two origi-
nal congruences. Hence the congruence method of the previous example is helpful.

So to find a t so that x= 38+60t = 9+13u for some u, we set up the congruence

38 + 60t ≡ 9 (mod 13)

which reduces modulo 13 to

−1−5t ≡ 9 (mod 13)

or
−5t ≡ 10 (mod 13).

Thus
t ≡−2≡ 11 (mod 13),

hence x= 38+60(11)= 698. The general solution to the original three congruences
is then

x≡ 698 (mod 780)

since [10,12,13] = 60 ·13 = 780.

If we have a system of n congruences in which the moduli are pairwise coprime
(not as in this last example), there is always a solution and the solution is unique
modulo the product of the moduli. Thus we have:

Theorem 3 (Chinese Remainder Theorem). Let m1,m2, . . . ,mn be pairwise co-
prime natural numbers > 1 (the moduli), and a1,a2, . . .an be any integers. Then
there is a solution of the set of simultaneous congruences

x≡ a1 (mod m1)
x≡ a2 (mod m2)
...
x≡ an (mod mn).

If x0 is a solution, then the set of all solutions is the set of integers congruent to x0

modulo M = m1m2 · . . . ·mn.
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Proof. The proof is by induction on n. The case for two congruences is the corollary
above.

For n> 2 we assume that any set of n−1 congruences whose moduli are pairwise
coprime has a solution. Suppose we have a set of n congruences as in the statement
of the theorem. We use the theorem for two congruences to replace the first two
congruences by a single congruence, of the form

x≡ x0 (mod m1m2).

Then to show that there is a solution of the original set of n congruences, we need
to show that there is a solution for the set of n−1 congruences consisting of all but
the first two of the n original congruences, together with the congruence

x≡ x0 (mod m1m2).

To apply the induction hypothesis, the only thing we need to observe is that the new
last modulus,m1m2, has the property that m1m2 andmj are coprime for j= 3, . . . ,n.
But we saw in Chapter 4 that if (mj,m1) = 1 and (mj,m2) = 1 then (mj,m1m2) = 1.
Thus the set of n− 1 congruences has a solution by the induction hypothesis, and
that solution will be a solution of the original n congruences.

The last statement of the theorem is left as an exercise. ��
For a first application of the Chinese Remainder Theorem, we look at single

linear congruences to composite moduli.

Example 6. Suppose we wish to solve

36x≡ 29 (mod 85).

Now 85 = 17 · 5 and 17 and 5 are coprime, so this congruence is equivalent to the
two congruences

36x≡ 29 (mod 5)
36x≡ 29 (mod 17).

To solve the original congruence, we’ll solve this new system.
Now the first congruence, 36x≡ 29 (mod 5), is equivalent to

x≡ 4 (mod 5),

while the second, 36x≡ 29 (mod 17), is equivalent to

2x≡ 12 (mod 17)

or
x≡ 6 (mod 17)

So we need to solve the pair of congruences

x≡ 4 (mod 5)
x≡ 6 (mod 17).
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These yield
x= 4 + 5r= 6 + 17s.

Setting this up as a congruence modulo 5 gives

17s≡−2 (mod 5)

or
2s≡−2≡ 8 (mod 5)

which has a solution s= 4, hence x= 6 + 17 ·4 = 74.
Since 36 · 74 ≡ 29 (mod 5) and 36 · 74 ≡ 29 (mod 17), we obtain the solution

x= 74 of the original congruence

36x≡ 29 (mod 85).

See Section 12C for a nontrivial extension of this strategy.
The strategy of Example 6 can be applied to systems of the form

ax≡ b (mod m)
cx≡ d (mod n).

Example 7. To solve
11x≡ 13 (mod 20)
9x≡ 17 (mod 25),

we first solve 11x≡ 13 (mod 20), for example, by observing that 11 ·11 = 121≡ 1
(mod 20), so

x= 13 ·11≡ 143≡ 3 (mod 20).

Then we solve 9x ≡ 17 (mod 25), for example, by observing that 9 · 11 ≡ −1
(mod 25), so

x≡−17 ·11≡ 8 ·11≡ 88≡ 13 (mod 25).

So the original system is equivalent to

x≡ 3 (mod 20)
x≡ 13 (mod 25).

Or, having found that the first congruence is equivalent to x ≡ 3 (mod 20), we
can substitute x= 3 + 20k into the second congruence to get

9(3 + 20k)≡ 17 (mod 25)

and simplify to get
5k≡−10 (mod 25),

which has a solution k = 3, x = 3 + 20 · 3 = 63. Once we find one solution, then,
since [25,20] = 100, the general solution is

x≡ 63 (mod 100).
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Exercises.

1. Find the smallest positive solution, if any, of

x≡ 9 (mod 16)
x≡ 17 (mod 28).

2. Find the smallest positive solution, if any, of

x≡ 24 (mod 66)
x≡ 9 (mod 48).

3. Find the smallest positive solution, if any, of

x≡ 10 (mod 15)
x≡ 17 (mod 28).

4. Write the set of solutions of

x≡ 5 (mod 24)
x≡ 17 (mod 18),

if any, as the solutions to a single congruence.

5. Write the set of solutions of

x≡ 23 (mod 36)
x≡ 3 (mod 8),

if any, as the solutions to a single congruence.

6. Write the set of solutions of

x≡ 17 (mod 30)
x≡ 7 (mod 40),

if any, as the solutions to a single congruence.

7. Find all solutions of
x≡ 2 (mod 12)
x≡ 8 (mod 10)
x≡ 10 (mod 14).

Write the set of solutions, if any, as the solutions to a single congruence.

8. Find all solutions of
x≡ 5 (mod 14)
x≡ 7 (mod 8)
x≡ 13 (mod 18).

Write the set of solutions, if any, as the solutions to a single congruence.
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9. Find all solutions of
x≡ 2 (mod 12)
x≡ 16 (mod 25)
x≡ 16 (mod 35).

Write the set of solutions, if any, as the solutions to a single congruence.

10. Show that the system
x≡ 1 (mod m)
x≡ 0 (mod n)
x≡ 0 (mod q),

has a solution if and only if m and nq are coprime.

11. Find the solution closest to 0 of

x≡ 1 (mod 11)
x≡ 0 (mod 25)
x≡ 0 (mod 32).

12. A battalion of 208 men went off to a tough battle, and when the unwounded
survivors regrouped after the encounter, their commanding officer was so shaken
by the battle and the casualties that he could not count them. So he had them form
groups of three, and found that there was one left over. He had them form groups of
ten, and there were six left over. He had them form groups of seven, and there were
three left over. How many unwounded survivors were there?

13. The West End Athletic Club has around 60 members. Many of the members
volunteered to participate in all three events in the club’s three-day annual compe-
tition with the East End A.C. across town. The competition involved soccer on one
day, softball the next day, and volleyball on the final day. When the participating
West Enders grouped themselves into 11 person soccer teams, there were 2 partic-
ipants left over. When they grouped themselves into 9 person softball teams, there
was one left over. When they grouped themselves into 6 person volleyball teams,
there were 4 left over. How many West End participants were there?

14. A 19 person youth group sold boxes of cookies, at a profit of one dollar per
box, and agreed to share the profits equally. When the boxes were sold out, their
advisor collected the money, paid the supplier and planned to distribute the profits
among the 19 members at the next meeting. She found that after dividing the dollar
bills into 19 piles, there were 3 dollars left over. Then she was informed that one
member had quit the group. So she redivided the dollar bills into 18 piles and found
that there were 10 left over. Just before the next meeting, another member quit. So
she redivided the dollar bills into 17 piles and found that there were no bills left
over. If no member sold more than 15 boxes of cookies, how many boxes of cookies
did the group sell?

15. Find numbers t,u,v so that 33t+ 2 = 20u+ 13 = 29v+ 1.
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16. Find the smallest positive solution to the classical Chinese problem (Yih-hing,
707 A. D.),

x≡ 1 (mod 2)
x≡ 2 (mod 3)
x≡ 5 (mod 6)
x≡ 5 (mod 12)

17. (from Su Shu Chiu Chang, 1247 AD [Joseph (2000)]: Three thieves, A, B, C,
entered a rice shop and stole three vessels, X, Y and Z, of equal size filled to the
brim with rice, but whose exact capacity was not known. When the thieves were
caught and the vessels recovered, it was found that all that was left in Vessels X, Y
and Z were 1 ko, 14 ko and 1 ko, respectively. The captured thieves confessed that
they did not know the exact quantities that they had stolen. But A said he had used
a “horse ladle” (capacity 19 ko) and taken the rice from Vessel X. B confesses to
using his wooden shoe (capacity 17 ko) to take rice from Vessel Y. C admitted he
had used a bowl (capacity 12 ko) to take the rice from Vessel Z. What was the total
amount of rice stolen?

18. From Brahmagupta (c. 625 AD) [Van der Waerden (1983)]: What number, di-
vided by 6, has a remainder of 5, and by 5, a remainder of 4, and by 4, a remainder
of 3, and by 3, a remainder of 2?

19. (from Sun Tsu Suan Ching, 4th century AD) [Van der Waerden (1983)]: There
is an unknown number of objects. When counted by threes, the remainder is 2; when
counted by fives, the remainder is 3; and when counted by sevens, the remainder is 2.
How many objects are there?

20. Find the smallest number a > 0 that is congruent to 1 modulo 2, 3, 4, 5 and 6
and is a multiple of 7.

21. Use the method of Example 6 to solve 81x≡ 11 (mod 100).

22. Use the method of Example 6 to solve 83x ≡ 100 (mod 143). Also solve the
problem by setting up the equation 83x+ 143y= 100 and solving it using Bezout’s
identity methods. Which method do you prefer?

23. Use the method of Example 6 to solve 23x ≡ 1 (mod 504). Also solve the
problem by Bezout’s identity methods.

24. From the Aryabhatiya (498 AD): Find the smallest number x if 8x divided by
29 gives a remainder of 4, and 17x divided by 45 gives a remainder of 7.

25. Find all solutions of
8x≡ 2 (mod 18)

9x≡ 28 (mod 30)

26. Find all solutions of
7x≡ 2 (mod 17)

13x≡ 21 (mod 22)
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27. Find all solutions of
11x≡ 13 (mod 16)

13x≡ 9 (mod 28)

28. Show that there are 12 pairs of numbers (a1,a2) with

0≤ a1 < 4,0≤ a2 < 6

so that
x≡ a1 (mod 4)
x≡ a2 (mod 6)

has a solution.

29. Show that there are [m1,m2] pairs of numbers (a1,a2) with

0≤ a1 < m1,0≤ a2 < m2

so that
x≡ a1 (mod m1)
x≡ a2 (mod m2)

has a solution.

30. Generalize the last exercise to more than two congruences.

31. Let (a,m) = 1 and (b,n) = 1. Show that if

c≡ a (mod m)
c≡ b (mod n),

then (c,mn) = 1.

32. A famous theorem of Dirichlet states that a and m are coprime, then there are
infinitely many prime numbers p so that p≡ a (mod m). Show that if a1 andm1 are
coprime, a2 and m2 are coprime, and the pair of congruences

x≡ a1 (mod m1)
x≡ a2 (mod m2)

has a solution, then there are infinitely many primes p so that x= p is a solution of
the pair of congruences.

33. (i) Prove that if m= rs with r, s coprime, then x2 ≡ 1 (mod m) has at least four
solutions.

(ii) If r and s are primes, r �= s, then x2 ≡ 1 (mod m) has exactly four solutions.
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B. Another Solution Method

In this section we give an alternate method for solving a system of n congruences
when the moduli are pairwise coprime. The method is useful for solving several
systems of congruences all involving the same moduli.

The idea of this method is that we solve a collection of special systems and then
obtain a solution of the original congruence as a linear combination of the solutions
of the special systems. Here are some examples.

Example 8. Consider the pair of congruences

x≡ 15 (mod 20)
x≡ 3 (mod 17).

We know there is a solution, since 20 and 17 are coprime. To solve this system we
first solve the two systems

x≡ 1 (mod 20)
x≡ 0 (mod 17)

and
x≡ 0 (mod 20)
x≡ 1 (mod 17).

In the first system, x= e1 is a solution if

e1 = 1 + 20r= 17s.

Making this a congruence modulo 20, we obtain

17s≡ 1 (mod 20).

Since
17≡−3 (mod 20)

and the inverse of 3 modulo 20 is 7, we can set s=−7, hence e1 =−119. Similarly,
in the second system, x= e2 is a solution if

e2 = 20t = 1 + 17u.

Making this a congruence modulo 20, we obtain

17u≡−1 (mod 20).

Multiplying this congruence by −1 yields

3u≡ 1 (mod 20),

so we can set u= 7 and e2 = 120.
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Having found e1 and e2, we may find a solution x0 of the original system by
setting

x0 = 15e1 + 3e2 = 15 · (−119)+ 3 ·120 =−1425.

(Check: modulo 20, x0 ≡ 15 · (−119)≡ 15 ·1 = 15, and modulo 17, x0 ≡ 3 ·120≡
3 ·1 = 3, as desired.)

As before, since [20,17] = 20 · 17 = 340, the general solution is x ≡ −1425
(mod 340) and the smallest positive solution is x=−1425 + 340 ·5 = 275.

Note that the strategy of finding e1 and e2 first will not work if the moduli are not
coprime. For example, if we tried to solve the system

x≡ 1 (mod 20)
x≡ 0 (mod 18)

we would get that x= 1+20r= 18s. But the equation 20r−18s= 1 has no solution
since 20 and 18 are not coprime.

Example 9. Suppose now we wish to solve

x≡ 8 (mod 20)
x≡ 11 (mod 17).

We’ve done all the work: knowing e1 and e2 for these moduli from the previous
example, we simply set

x0 = 8e1 + 11e2 = 8 ·−119 + 11 ·120 = 368.

The general solution is then

x≡ 368 (mod 340)

and the smallest positive solution is x= 28.
If we wish to solve

x≡ 9 (mod 20)
x≡ 13 (mod 17),

we obtain x0 = 9e1 +13e2 = 9 ·(−119)+13 ·120=−1071+1560= 489; the small-
est positive solution is then x= 489−340 = 149.

Example 10. We solve
x≡ 2 (mod 13)
x≡ 8 (mod 10)
x≡ 7 (mod 11).

To do this, we solve the three systems with the same moduli:

e1 ≡ 1 (mod 13)
e1 ≡ 0 (mod 10)
e1 ≡ 0 (mod 11),
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and
e2 ≡ 0 (mod 13)
e2 ≡ 1 (mod 10)
e2 ≡ 0 (mod 11),

and
e3 ≡ 0 (mod 13)
e3 ≡ 0 (mod 10)
e3 ≡ 1 (mod 11).

These systems are not as onerous as they might seem at first sight, because they all
reduce immediately to systems of two congruences, namely

e1 ≡ 1 (mod 13)
e1 ≡ 0 (mod 110),

and
e2 ≡ 0 (mod 143)
e2 ≡ 1 (mod 10),

and
e3 ≡ 0 (mod 130)
e3 ≡ 1 (mod 11).

For the first, e1 = 1 + 13r = 110s, hence s is the inverse of 110 modulo 13. Since
110≡ 6 (mod 13), s=−2 and e1 =−220.

For the second, e2 = 1 + 10t = 143u, hence u is the inverse of 143 modulo 10,
hence u=−3 and e2 =−429.

For the third, e3 = 1 + 11v = 130w, hence w is the inverse of 130 modulo 11.
Since 130≡−2 (mod 11), w= 5 and e3 = 650.

Having found e1,e2 and e3, a solution of the original congruences

x≡ 2 (mod 13)
x≡ 8 (mod 10)
x≡ 7 (mod 11).

is
x0 = 2e1 + 8e2 + 7e3 = 2 · (−220)+ 8 · (−429)+ 7 ·650 = 678.

The general solution to the original congruences is

x≡ 678 (mod 1430)

since 10 ·11 ·13 = 1430.
If we wish now to solve

x≡ 5 (mod 13)
x≡ 3 (mod 10)
x≡ 6 (mod 11),
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a solution is

x0 = 5e1 + 3e2 + 6e3 = 5 · (−220)+ 3 · (−429)+6 ·650

=−1100−1287 +3900 = 1513,

and the smallest positive solution is x= 1513−1430 = 83.

If we are interested in solving only a single system of n congruences to pair-
wise prime moduli, the method of section 12A involves solving n− 1 systems of
two congruences, while the method of this section involves solving n systems of
two congruences. An additional advantage of the method of 12A is that it deals
with systems in which the moduli are not pairwise coprime. The advantage of the
method of this section is that it is much faster for solving more than one system of
n congruences to the same moduli.

Babylonian multiplication. Here is a fanciful application of the method of this
section.

Imagine that you have been transported to a society like ancient Babylonia, where
“paper” consists of heavy clay tablets, and numbers are in base 60. To multiply
numbers like

(35,43,52) = 35 ·602 + 43 ·60 + 52

and
(14,2,47) = 14 ·602 + 2 ·60 + 47,

by the usual multiplication algorithm, it would appear that you need to either mem-
orize the base 60 multiplication table, containing 59·60

2 = 1770 products, or write the
table on a clay tablet that is much too heavy to carry. So what do you do? Use the
Chinese Remainder Theorem.

First observe that 5 · 8 · 9 · 11 = 3960 > 59 · 59, and 5, 8, 9 and 11 are pairwise
coprime. So we find e5 satisfying

e5 ≡ 1 (mod 5)
e5 ≡ 0 (mod 8 ·9 ·11);

e8 satisfying
e8 ≡ 1 (mod 8)
e8 ≡ 0 (mod 5 ·9 ·11);

e9 satisfying
e9 ≡ 1 (mod 9)
e9 ≡ 0 (mod 5 ·8 ·11);

and e11 satisfying
e11 ≡ 1 (mod 11)
e11 ≡ 0 (mod 5 ·8 ·9).

We find that e5 =−1584, e8 =−495, e9 =−440 and e11 =−1440.
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To multiply 52 ·47, we find that

52 ·47≡ 2 ·2≡−1 (mod 5)
52 ·47≡ 4 ·−1≡ 4 (mod 8)
52 ·47≡−2 ·2≡−4 (mod 9)
52 ·47≡−3 ·3≡ 2 (mod 11).

Then modulo 3960,

52 ·47≡ (−1)e5 + 4e8 +(−4)e9 + 2e11

≡ 1584−1980 +1760−2880≡−1516≡ 2444 (mod 3960).

Since 52 ·47 < 3960 and 52 ·47≡ 2444 (mod 3960), we must have 52 ·47 = 2444.
We can set up a table of all the products that can arise in computations like this.
Since every number modulo 5 is congruent to 0, 1 or 2 or their negatives, our

table only needs e5 and 2e5. Similarly, for modulo 8, 9 and 11 our table only needs
e8,2e8,3e8 and 4e8; e9,2e9,3e9 and 4e9; and e11,2e11,3e11,4e11 and 5e11, all mod-
ulo 3960:

· e5 e8 e9 e11

1 −1584 −495 −440 −1440
2 792 −990 −880 1080
3 −1485 −1320 −360
4 −1980 −1760 −1800
5 720

For example, 3e9 is congruent modulo 3960 to −1320; while 4e11 is congruent
modulo 3960 to −1800.

Example 11. We use the table to find 43 ·47.
We observe that

43 ·47≡ 1 (mod 5)
≡−3 (mod 8)
≡−4 (mod 9)
≡−3 (mod 11),

so
43 ·47≡ 1 · e5−3 · e8−4 · e9−3 · e11 (mod 3960)

and we read these terms off the table to get

43 ·47≡−1584 + 1485 +1760+360≡ 2021 (mod 3960).

Since 43 ·47 < 3960, 43 ·47 = 2021.

In this way we can solve our Babylonian “memory” problem by creating a clay
tablet with just that small table of 15 numbers on it. With that table we can multiply
any two numbers <60 using congruences to the moduli 5, 8, 9 and 11, and addition.
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Exercises.

34. (i) Find e1 so that
e1 ≡ 1 (mod 21)
e1 ≡ 0 (mod 25).

and e2 so that
e2 ≡ 0 (mod 21)
e2 ≡ 1 (mod 25).

(ii) Find the smallest positive solution of

x≡ 3 (mod 21)
x≡ 17 (mod 25).

(iii) Find the smallest positive solution of

x≡ 17 (mod 21)
x≡−8 (mod 25).

35. (i) Find e1 so that
e1 ≡ 1 (mod 11)
e1 ≡ 0 (mod 13)
e1 ≡ 0 (mod 15),

find e2 so that
e2 ≡ 0 (mod 11)
e2 ≡ 1 (mod 13)
e2 ≡ 0 (mod 15),

and e3 so that
e3 ≡ 0 (mod 11)
e3 ≡ 0 (mod 13)
e3x≡ 1 (mod 15).

(ii) Find the smallest positive solution of

x≡ 3 (mod 11)
x≡ 5 (mod 13)
x≡ 8 (mod 15).

(iii) Find all solutions of

x≡ 9 (mod 11)
x≡ 2 (mod 13)
x≡−7 (mod 15).
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36. Multiply the base 60 numbers (39, 26) and (56, 44) using the table as in
Example 11 to multiply digits.

37. Verify that e9 =−440 is a solution of

e9 ≡ 1 (mod 9)
e9 ≡ 0 (mod 5 ·8 ·11).

38. Design an adaptation of Example 11 to multiply numbers in base 1000. Which
moduli will give the smallest possible number of table entries?

C. Some Applications to RSA Cryptography

RSA Decrypting. This application refers to the RSA cryptosystem described in
section 10A.

Suppose Bob develops an RSA cryptosystem for Alice to use to send messages
to Bob. Recall that Bob does this as follows: he finds two large primes p and q
and sets m= pq (the modulus). He picks an encoding exponent e that is coprime to
φ(m) = (p−1)(q−1), finds a decoding exponent d satisfying ed ≡ 1 (mod φ(m)),
and sends m and e to Alice. To make computations easy for Alice, he chooses e to
be a small number (such as e= 3, or 7).

To send the message w to Bob, Alice computes c = we modulo m and sends
Bob c. To determine w, Bob must compute cd modulo m. But c is going to be a
number of almost the same number of digits as m, and since e is small, d will have
almost the same number of digits as m. Thus determining cd modulo m takes a bit
of effort.

But Bob has the advantage that he knows that m = pq. So he can proceed as
follows:

(i) Compute c1 ≡ cd (mod p) and c2 ≡ cd (mod q) where c1 and c2 are as small
as possible.

(ii) Find y so that
y≡ c1 (mod p)
y≡ c2 (mod q).

Then
y≡ cd (mod p)

y≡ cd (mod q),
so

y≡ cd (mod pq).

and pq= m. If we choose 0 < y< m, then since Alice’s original word w satisfies

w≡ cd (mod m).

and 0 < w< m, we must have y= w.
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Example 12. To illustrate how this works, suppose the modulus m= 187 = 11 ·17,
the encoding exponent is e = 3 and Alice wants to send w = 127 to Bob. Alice
encodes w to get c = 1273 ≡ 172 (mod 187), and sends c to Bob. The decoding
exponent is d = 107, so Bob needs to find cd = 172107 (mod 187). So he computes

172107 (mod 11)

and
172107 (mod 17).

Now 172≡ 7 (mod 11), so 172107 ≡ 7107, and this is congruent to 77, since 710 ≡ 1
(mod 11) by Fermat’s Theorem. One can check easily that 77 ≡ 6 (mod 11).

Also, 172 ≡ 2 (mod 17), so again using Fermat’s Theorem, 172107 ≡ 2107 ≡
211 (mod 17). But 24 ≡−1 (mod 17), so 211 ≡ 23 = 8 (mod 17). Thus w≡ cd =
172107 (mod 187) satisfies

w≡ 6 (mod 11)
w≡ 8 (mod 17).

One checks that w= 127 as follows:

w= 8 + 17r= 6 + 11s,

so
17r ≡−2 (mod 11),

hence
r ≡−4 (mod 11)

and so w ≡ 8 + 17(−4) = −60 (mod 187). Since 0 < w < 187, w = −60 + 187 =
127.

It has been estimated that decrypting using the Chinese Remainder Theorem in
this way takes somewhere between 1/4 and 1/3 of the time needed to compute cd
modulo m directly. Note however, that only someone who knows the factorization
of the modulus m can use this method. That’s why, if Bob designed the code, then
the exponent used by Alice should be small to minimize her computations, since she
cannot use the Chinese Remainder Theorem.

Common encoding exponents. Suppose Alice, a financial advisor, has three clients,
Bill, Bob and Brian, each of whom has his own modulus,m1,m2 andm3 respectively.
Alice wants to send privileged information about a particular stock to each of them.
For convenience, Alice always uses the encoding exponent e = 3. So Alice sends
the message w to each of them, as follows: To Bill she sends c1 ≡ w3 (mod m1).
To Bob she sends c2 ≡ w3 (mod m2). To Brian she sends c3 ≡ w3 (mod m3). Eve
(perhaps an agent looking for violations of insider trading laws) intercepts c1,c2,c3

and knows m1,m2,m3 and e= 3. She doesn’t know w or w3, but she knows that
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w3 ≡ c1 (mod m1)

w3 ≡ c2 (mod m2)

w3 ≡ c3 (mod m3).

So she solves
t ≡ c1 (mod m1)
t ≡ c2 (mod m2)
t ≡ c3 (mod m3)

for some number t < m1m2m3. Then

t ≡ w3 (mod m1m2m3).

But w< mi for i= 1,2,3, so w3 < m1m2m3. Thus t = w3.
Once Eve finds t, she can simply compute the cube root of t to find the messagew.
The moral of this example is that one should not send the same message with the

same small encoding exponent to many different recipients.

Safeprimes. A prime number p is called a safeprime if p= 2q+ 1 where q is also
prime. Examples: p = 5, 7, 11, 23, . . . .

Safeprimes are useful primes for constructing moduli for RSA codes, because
there are some factoring algorithms, such as the Pollard p−1 algorithm, that factor
large numbersmmore efficiently when one of the prime factors p ofm has the prop-
erty that p−1 is a product of only small primes. Any odd prime p has the property
that the largest possible prime factor of p− 1 is (p− 1)/2. Hence a safeprime is a
prime p so that p−1 has a prime factor that is as large as possible. An RSA modu-
lus that is a product of safeprimes will be maximally effective in thwarting factoring
algorithms such as the Pollard p−1 algorithm (Section 10C).

Safeprimes must satisfy certain congruences, as notes in the following exercises.

Exercises.

39. Show that if p> 20 is a safeprime, then
(i) p≡ 2 (mod 3)
(ii) p≡ 3 (mod 4)
(iii) p≡ 2,3 or 4 (mod 5)
(iv) List the three congruence classes modulo 60 that can contain safeprimes.
(v) Find six safeprimes >60.

40. Show that for every odd prime l, a safeprime p> l must satisfy

p �≡ 0 or 1 (mod l).

41. List the congruence classes modulo 84 that can contain safeprimes.
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42. A prime p is special if p = 2p1 + 1 is a safeprime and also p1 = 2p2 + 1 is a
safeprime.

(i) Show that a special prime must be congruent to 7 modulo 8;
(ii) Show that for each odd prime l, a special prime p with p2 > l cannot be

congruent to 0, 1 or 3 modulo l. What are the corresponding conditions on p2?

43. Find the least non-negative residue of

951002 (mod 217).

44. Find the least non-negative residue of

100246 (mod 247).

(Note: 247 = 13 ·19.)

45. Suppose you know m= 17 ·23 = 391, Alice’s exponent is 3, and she sends you
the encrypted word c= 21. The decrypting exponent is 235. Find w.

46. Eve knows that Alice sent the same plaintext message w to Bob with m =
17,e = 3, to Bill with m = 23 and e = 3, and to Brent with m = 31,e = 3. She
intercepts the encrypted messages:

c1 ≡ 11 (mod 17)
c2 ≡ 3 (mod 23)
c3 ≡ 23 (mod 31).

What is w?

D. Homomorphisms and Euler’s φ -Function

Recall from Section 7D that if R, S are rings, a function f : R→ S is a ring homo-
morphism if

f (r1 + r2) = f (r1)+ f (r2)
f (r1r2) = f (r1) f (r2)
f (1) = 1.

The kernel of a ring homomorphism f : R→ S is the set

ker f = {r in R| f (r) = 0}.

We showed that a ring homomorphism f : Z → S is uniquely determined by f (1),
for then f (n) = f (1)+ . . .+ f (1) (n summands) in S if n> 0, and f (−n) =− f (n).

What about ring homomorphisms from Z/mZ to S?
It turns out that every such ring homomorphism arises from a homomorphism

from Z to S.
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To see this, suppose
g : Z/mZ→ S

is a ring homomorphism. Let

γm : Z→ Z/mZ

be the homomorphism that takes r in Z to the congruence class [r]m in Z/mZ.
Then the composition of γm followed by g is a homomorphism f from Z to S: f is
defined by

f (r) = gγm(r) = g([r]m).

Moreover, if r = mk, then f (mk) = g([mk]m) = g([0]m) = 0. So the kernel of f
contains mZ.

To sum up:

Proposition 4. Every ring homomorphism g : Z/mZ → S lifts to a ring homomor-
phism f : Z→ S so that mZ⊆ ker( f ) .

The converse is useful.

Proposition 5 (Homomorphism Theorem). Let S be a commutative ring and let
f : Z → S be the homomorphism define by f (n) = n · 1S for all n in Z. If f is not
one-to-one and ker( f )⊇mZ for some m �= 0 in Z, then f induces a homomorphism
f from Z/mZ onto {n ·1S|n in Z}, define by f ([a]m) = f (a) = a ·1S.
If ker( f ) = mZ then f is an isomorphism from Z/mZ onto

{n ·1S in Z} ⊆ S.

We proved this as Proposition 23 of Section 7D.
For a useful application of the Homomorphism Theorem, we introduce products

of rings.

Products of rings. Let R,S be two sets. The product of R and S, written R× S, is
the set of ordered pairs (r,s) where r is in R, s in S. The notion of a set of ordered
pairs should be familiar from analytic geometry. Assigning coordinates to points in
the plane gives a one-to-one correspondence between points in the plane and the set
R×R of ordered pairs of real numbers.

Suppose R and S are not just sets, but are commutative rings. Then the prod-
uct R× S can be made into a commutative ring via coordinatewise operations, as
follows:

(r,s)+ (r′,s′) = (r+ r′,s+ s′),

(r,s) · (r′,s′) = (rr′,ss′),

−(r,s) = (−r,−s).
The operations on R× S are defined by using the operations of R and S in the re-
spective coordinates.
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The zero and multiplicative identity elements are

0 = (0,0),
1 = (1,1).

With these definitions it is easy to see that if R and S are commutative rings, then
R×S is a commutative ring.

If R and S are rings with a finite number of elements, say R has m elements and
S has n elements, then R×S has mn elements.

Example 13. Z/2Z×Z/3Z has six elements. Here is its multiplication table:

· (0,0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(1, 1) (0, 0) (1, 1) (0, 2) (1, 0) (0, 1) (1, 2)
(0, 2) (0, 0) (0, 2) (0, 1) (0, 0) (0, 2) (0, 1)
(1, 0) (0, 0) (1, 0) (0, 0) (1, 0) (0, 0) (1, 0)
(0, 1) (0, 0) (0, 1) (0, 2) (0, 0) (0, 1) (0, 2)
(1, 2) (0, 0) (1, 2) (0, 1) (1, 0) (0, 2) (1, 1)

Evidently, (0,0) acts as the zero element, and (1,1) as the identity element.

We can find the units and zero divisors of a product of rings:

Proposition 6. (i) (a,b) is a unit of R×S iff a is a unit of R and b is a unit of S.
(ii) (a,b) in R×S is a zero divisor iff (a,b) �= (0,0) and either a is zero or a zero

divisor of R, or b is zero or a zero divisor of S.

Proof. Part (i) is easy. To prove (ii), suppose (a,b) �= (0,0). If a is a zero divisor,
and a′ is non-zero in R with aa′ = 0, then for every b in S, (a,b)(a′,0) = (0,0), so
(a,b) is a zero divisor. If a = 0, then (0,b)(1,0) = (0,0), so (0,b) is a zero divisor.
Similarly if b is either a zero divisor or zero.

Conversely, if (a,b) is a zero divisor, then (a,b)(a′,b′)= (0,0) for some (a′,b′) �=
(0,0) in R×S. Then aa′ = 0 in R, and bb′ = 0 in S. Either a′ �= 0 or b′ �= 0.If a′ �= 0,
then a = 0 or is a zero divisor; if b′ �= 0 then b = 0 or is zero divisor. That proves
(ii). ��

The Homomorphism Theorem yields the following description of Z/mZ when
m is a product of two coprime numbers r,s

Theorem 7. Let m= rs where r and s are coprime natural numbers ≥2. Then there
is an isomorphism of rings

ψ : Z/mZ→ Z/rZ×Z/sZ

given by ψ([a]m) = ([a]r, [a]s).
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For example, this theorem says that the ring Z/2Z×Z/3Z looks just like the
ring Z/6Z. In fact, the map ψ in this case works as follows: here [a] means [a]6, and
(a,b) means ([a]2, [b]3).

ψ([0]) = (0,0),
ψ([1]) = (1,1),
ψ([2]) = (2,2) = (0,2),
ψ([3]) = (3,3) = (1,0),
ψ([4]) = (4,4) = (0,1),
ψ([5]) = (5,5) = (1,2).

Thus the two units, [1] and [5], of Z/6Z correspond under the isomorphism ψ to
the two units (1,1) and (1,2) of Z/2Z×Z/3Z; the zero divisors [2], [3] and [4] of
Z/6Z correspond to the zero divisors (0,2),(1,0) and (0,1) of Z/2Z×Z/3Z.

The proof of Theorem 2 relates to the Chinese Remainder Theorem.

Proof. Let m= rs and let

φ : Z→ Z/rZ×Z/sZ

by φ(a) = ([a]r, [a]s) = a([1]r, [1]s). If a=mk, then ([mk]r, [mk]s) = 0, since m= rs.
So mk is in the kernel of φ for every k.

By the Homomorphism Theorem we get an induced homomorphism

ψ : Z/mZ→ Z/rZ×Z/sZ

by ψ([a]m) = ([a]r, [a]s). To show that ψ is one-to-one, we look at the kernel of ψ ,
namely, the set of [a]m so that ψ([a]m) = 0 in Z/rZ×Z/sZ. Now ψ([a]m) = 0 if and
only if [a]r = 0 and [a]s = 0; that is, r divides a and s divides a. But since r and s are
coprime, that implies that m divides a, so [a]m = 0. That means that the kernel of ψ
consists of only the zero element of Z/mZ, namely [0]m. Hence ψ is one-to-one.

To show that ψ is an isomorphism, we only need to show that ψ is onto. For
that, we have two possible arguments. One uses the Chinese RemainderTheorem;
the other reproves the Chinese Remainder Theorem.

Here is the argument that uses the Chinese Remainder Theorem:
Let ([b]r, [c]s) be an arbitrary element of Z/rZ×Z/sZ. To show that ([b]r, [c]s) =

([a]r, [a]s) = ψ(a) for some integer a mod m, we must find an integer a so that

a≡ b (mod r),
a≡ c (mod s).

But since r and s are coprime, an integer a solving this pair of simultaneous congru-
ences can always be found. Thus ψ is onto.

Conversely, if we can show that ψ is onto without using the Chinese Remainder
Theorem, then for r,s coprime, the pair of congruences

x≡ b (mod r),
x≡ c (mod s),
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has a solution for every b,c, and so the Chinese Remainder Theorem holds for sets
of two congruences to coprime moduli.

Why is ψ onto? The argument that doesn’t use the Chinese Remainder Theorem
is a counting argument. We know that ψ is a one-to-one function from a set with
m elements, namely, Z/mZ, to another set with m elements, namely, Z/rZ×Z/sZ.
A one-to-one function from a set R of m elements to another set S of m elements
must be onto, because if ψ is one-to-one, then ψ(R) must have the same number
of elements as R does. Thus ψ(R) is an m-element subset of the m-element set S.
Hence ψ(R) = S. ��

For m = rs with (r,s) = 1, the isomorphism ψ : Z/mZ→ Z/rZ×Z/sZ relates
to the alternate method of solving the pair of congruences

x≡ b (mod r)
x≡ c (mod s)

presented in Section 12B. For if e1 satisfies

x≡ 1 (mod r)
x≡ 0 (mod s),

then (dropping the bracket notation), ψ(e1) = (1,0). Similarly, if e2 satisfies

x≡ 0 (mod r)
x≡ 1 (mod s),

then ψ(e2) = (0,1). To solve

x≡ b (mod r)
x≡ c (mod s)

means to find the unique amodulom so that ψ(a) = (a,a) = (b,c) in Z/rZ×Z/sZ.
But

ψ(be1 + ce2) = ψ(be1)+ ψ(ce2)
= ψ(b)ψ(e1)+ ψ(c)ψ(e2)
= (b,b)(1,0)+ (c,c)(0,1)
= (b,0)+ (0,c) = (b,c).

Since ψ is one-to-one, be1 +ce2 is the unique amodulom that maps to (b,c), hence
is the unique solution modulo m of the original congruences

x≡ b (mod r)
x≡ c (mod s).

As we observed with the example of Z/6Z above, units of Z/6Z correspond to
the units of Z/2Z×Z/3Z. This is always the case. We have
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Proposition 8. If m= rs with r and s coprime, and

ψ : Z/mZ−→ Z/rZ×Z/sZ

is the isomorphism of the theorem, then ψ restricts to an isomorphism of groups
from Um to Ur×Us.

This is a special case of Proposition 14, Section 11F. Here is a direct proof.

Proof. Observe that

Ur×Us = {([b], [c]) ∈ Z/rZ×Z/sZ|(b,r) = 1 and (c,s) = 1}.

If a is a unit of Z/mZ, then (a,m) = 1, hence (a,r) = 1 and (a,s) = 1. So ψ([a]) =
([a], [a]), and ψ maps the unit [a] of Um to the pair ([a], [a]) in Ur ×Us. Thus ψ
defines a function ψu fromUm toUr×Us.

Since ψ is a ring homomorphism, ψu is a group homomorphism.
ψu is one-to-one because ψ is one-to-one.
To show that ψu is onto, suppose ([b], [c]) is in Ur×Us. Then there is some [a]

in Um so that ψu([a]) = ([a], [a]) = ([b], [c]). Hence [a] = [b] in Z/rZ and [a] = [c]
in Z/sZ. But then a is coprime to r, and a is coprime to s, and so a is coprime to
rs= m. Thus a is a unit modulo m, hence [a] is inUm. This shows that ψu mapsUm
ontoUr×Us. ��

This theorem yields a formula for Euler’s phi function:

Corollary 9. If m= rs, r and s coprime, then φ(m) = φ(r)φ(s).

Proof. φ(m) is the number of units of Z/mZ, and φ(r)φ(s) is the number of
pairs ([b]r, [c]s) where [b]r is a unit of Z/rZ and [c]s is a unit of Z/sZ. Since
ψu : Um → Ur ×Us is an isomorphism, hence a bijection, the result follows from
Proposition 8. ��
Corollary 10. Let m= pe1

1 p
e2
2 · · · p

eg
g be a product of prime powers. Then

Z/mZ∼=
g

∏
i=1

Z/peii Z,

Um ∼=
g

∏
i=1
Upeii

and

φ(m) =
g

∏
i=1

φ(peii ).

The proof of this is a routine induction from the previous corollary.
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Exercises.

47. Write down addition and multiplication tables for Z/2Z×Z/2Z.

48. Write down the elements of Z/12Z and of Z/3Z×Z/4Z, and identify which
elements correspond under the map ψ from Z/12Z to Z/3Z×Z/4Z.

49. Write down the elements of Z/10Z and of Z/2Z×Z/5Z, and identify which
elements correspond under the map ψ from Z/10Z to Z/2Z×Z/5Z.

50. Show that if R,S are non-zero commutative rings then R× S always has zero
divisors, and hence is never an integral domain or a field.

51. Extend the proof of Theorem 7 to show that if m= q1q2 · · ·qg is a factorization
of m into pairwise coprime factors, then Z/mZ is isomorphic to Z/q1Z×Z/q2Z×
. . .×Z/qgZ.

52. Examine the map ψ : Z/24Z→ Z/6Z×Z/4Z given by ψ([a]24) = ([a]6, [a]4).
What is the kernel of ψ? That is, which elements of Z/24Z get mapped by ψ to the
zero element of Z/6Z×Z/4Z?

Which elements of Z/6Z×Z/4Z are in the image of ψ?

53. Suppose
x≡ a (mod 8)
x≡ b (mod 12)

has a solution x = x0. How many solutions to this system of congruences are there
modulo 24?

54. Find a number x0 whose order modulo p is (p−1)/2 and whose order modulo
q is (q−1)/2, where

(i) p= 7,q= 11;
(ii) p= 11,q= 19.
(See Section 7B, E3).

The next exercises relate to determining the number of numbers a<m for which
m is an a-pseudoprime–see Section 11D.

Recall that
Um(r) = {[a]m inUm|ar ≡ 1 (mod m)},

the group of r-th roots of unity in Z/mZ. Then m is an a-pseudoprime if am−1 ≡ 1
(mod m), which is the case if [a] is inUm(m−1).

55. Show that if at ≡ 1 (mod p), where p is prime, then a(t,p−1) ≡ 1 (mod p).

56. Let m= pq with p,q distinct primes.
(i) Show that (m−1, p−1) = (m−1,q−1)= (p−1,q−1).
(ii) Show that for a any integer, ar ≡ 1 (mod m) if and only if ar ≡ 1 (mod p)

and ar ≡ 1 (mod q).
(iii) Show thatUm(m−1) =Um(d) where d = (p−1,q−1).
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57. Suppose p and q are primes with p ≡ 3 (mod 4) and ( p−1
2 , q−1

2 ) = 1. Let m=
pq, Use the last exercise to show thatUm(m−1)=Um(2). Show thatUm(2) has four
elements.

58. Use the last exercise to show that if m = pq with p and q twin primes (that
means: q= p+ 2), thenUm(m−1) has four elements.

59. Show that if m= pq with p≡ 3 (mod 4) and q= 17, thenUm(m−1) has four
elements.

60. Show that if m= 2501 = 61 ·41, thenUm(m−1) =Um(20).

61. Show thatU65(64) =U65(4) and has order 16.
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Chapter 13
Polynomials

Beginning with this chapter we turn attention to polynomials with coefficients in a
field. In broad outline the theory follows that for integers: we prove the analogue of
the Fundamental Theorem of Arithmetic (Chapter 4), study irreducible polynomials
(the analogue of primes), and develop the concepts of congruences and congruence
classes, and analogues of Fermat’s theorem and the Chinese remainder theorem.
When the theory for polynomials is combined wih the theory for integers, what
comes out in Chapters 23 and 24 is the theory of finite fields.

A. Polynomials and Functions

A polynomial with coefficients in a commutative ring R is an expression of the form

p(x) = anxn+an−1xn−1 + . . .+a1x+a0,

where the coefficients an,an−1, . . . ,a0 are elements of R, a commutative ring, x is a
symbol, called an indeterminate, and n is some integer ≥0. The symbols x2, . . . ,xn
are powers of the indeterminate x: that is, x2 = x ·x,x3 = x ·x ·x, etc. By convention,
x0 = 1.

Some examples (with R= R, the real numbers):

p(x) = x2−3x+ 2,

p(x) =−1
3
x3 + x,

p(x) = π (here a0 = π , and 0 = a1 = a2 = . . .),
p(x) = 0 (here all the coefficients are 0).

We wrote p(x) starting with the constant term on the right and writing decreasing
powers of x from left to right. We could just as well reverse the order, and write

p(x) = a0 +a1x+a2x2 + . . .+anxn.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 285
in Mathematics, c© Springer Science+Business Media LLC 2009
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The order in which the terms are written doesn’t matter (as long as we include the
powers of x as placeholders–see Section C, below).

The notation p(x) is suggestive of functional notation.
In calculus, a function such as f (x) = x3 + sinx is presented by giving a de-

scription of what the value of the function f is on a “typical” or “indeterminate”
real number x. Thus to find the value of the function f at the number 2, we simply
replace x by 2, to get the real number f (2) = 23 + sin2.

So also with a polynomial: any polynomial p(x) with coefficients in the ring R
defines a function from R to R by sending r in R to p(r), the element of R obtained
by replacing the “indeterminate” element x in the expression p(x) by the element r
of R. Thus if p(x) = 3x2−2x+ 5 in Q[x], then p(−3) = 3(−3)2−2(−3)+ 5 = 38.
If p(x) = [3]x+[4]x3 in Z/6Z, then replacing x by [2] in Z/6Z yields

p([2]) = [3][2]+ [4][2]3 = [6 + 32] = [2]

in Z/6Z.
However, a polynomial with coefficients in a commutative ring R should not be

thought of as a function described by its value at an indeterminate element of R, but
rather as just a formal expression involving the symbol x and its powers.

The reason for making this distinction between polynomials and functions has
to do with when two polynomials are equal, compared with when two functions are
equal.

Two polynomials
p(x) = a0 +a1x+ . . .+anxn

and
q(x) = b0 +b1x+ . . .+bmxm,

are equal if and only if the coefficients of each power of x are equal:

a0 = b0,a1 = b1, . . . ,an = bn, . . . ,am = bm.

In particular, if n<m, then

bn+1 = bn+2 = . . . = bm = 0.

Thus as polynomials with coefficients in Z/2Z, the polynomial

p(x) = a3x3 +a2x2 +a1x+a0

is equal to
q(x) = x3 + 1

if and only if a0 = a3 = 1 and a1 = a2 = 0.
On the other hand, two functions f (x) and g(x) defined on the set R are equal if

and only if for all a in R, the numbers f (a) and g(a) are equal.
Any polynomial with coefficients in the commutative ring R defines a function

on R, as we’ve seen. Thus two polynomials that are equal as polynomials are equal



13 Polynomials 287

as functions. However, it is possible for two polynomials with coefficients in a ring R
to be different as polynomials but be equal as functions. For example: in R= Z/2Z,
let p(x) = x+ 1, q(x) = x3 + 1. Then p(0) = 1 = q(0), and p(1) = 0 = q(1). Thus
as functions on Z/2Z, p(x) = q(x). However, as polynomials, p(x) and q(x) are
obviously different, since, for example, the coefficient of x3 in p(x) is 0 and in
q(x) is 1.

We will prove in the next chapter that if R is an infinite field, such as the real
numbers, then two polynomials which are equal as functions on R must be equal as
polynomials. The example above with R= Z/2Z illustrates that the two notions of
equality need not be the same if R is a finite field.

Exercises.

1. Using Fermat’s theorem, for each prime number p find two different polynomials
with coefficients in Z/pZ which agree as functions on Z/pZ.

2. Find a polynomial q(x) with coefficients in Z/6Z such that q(x) is equal to
p(x) = [3]x+[4]x3 as functions on Z/6Z but q(x) and p(x) are not equal as polyno-
mials.

B. The Commutative Ring R[x]

The set of all polynomials with coefficients in the commutative ring R is denoted
by R[x].

Earlier we observed that when p is prime, Z/pZ is a field with p elements, and
introduced the notation Fp for that field. When considering polynomials with coef-
ficients in Z/pZ , we will generally use the notation Fp instead of Z/pZ and write
the set of polynomials as Fp[x], rather than (Z/pZ)[x].

The polynomial p(x) = a0 + a1x+ . . . + anxn has degree n if xn is the highest
power of x appearing in p(x) with its coefficient an not zero. Then the coefficient
an of xn is called the leading coeffic ent of p(x). The polynomial with a0 = a1 =
. . . = 0 is called the zero polynomial and is denoted by 0. By convention, the zero
polynomial has degree −∞. Every other polynomial p(x) has a degree ≥0. The
degree of a polynomial p(x) is denoted by deg p(x). The ring R can be thought of as
a subset of R[x] by viewing an element a of R as a polynomial of degree 0 (if a �= 0
or −∞ (if a= 0).

Polynomials may be added and multiplied. The operations are defined just as for
functions. If

p(x) = a0 +a1x+ . . .+anxn

and
q(x) = b0 +b1x+ . . .+bmxm

then
p(x)+q(x) = (a0 +a1x+ . . .+anxn)+ (b0 +b1x+ . . .+bmxm);
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if, say, m> n, we can collect terms and get

p(x)+q(x) = (a0 +b0)+ (a1 +b1)x+ . . .+(an+bn)xn+bn+1xn+1 + . . .+bmxm.
(13.1)

Similarly, using the distributive law and collecting the coefficients of each power
of x, multiplication of p(x) and q(x) is

p(x) ·q(x)
= (a0 +a1x+ . . .+anxn)(b0 +b1x+ . . .+bmxm)

= a0b0 +(a0b1 +a1b0)x+ . . .+[ ∑
i+ j=k

aib j]xk+ . . .+anbmxn+m
(13.2)

Thus if anbm �= 0 then the leading coefficient of p(x)q(x) is the product of the leading
coefficients of p(x) and q(x).

With these definitions of addition and multiplication, with 0 the zero polynomial,
and with 1 the polynomial with a0 = 1 and all other coefficients = 0, it is easy to
see that R[x] is a commutative ring.

Proposition 1. Let R be a commutative ring. For every non-zero polynomials p and
q in R[x], if the leading coeffic ent of p is a non-zero divisor in R, then

deg(pq) = deg(p)+ deg(q).

The formula holds for all non-zero polynomials p, q in R[x] if R has no zero divisors.

Proof. Suppose p(x),q(x) in R[x] have degrees n and m, respectively. Let an be the
leading coefficient of p(x) and bm the leading coefficient of q(x). If an is not a zero
divisor in R, then anbm �= 0, so is the leading coefficient of p(x)q(x). Thus p(x)q(x)
has degree n+m= deg(p(x))+ deg(q(x)). ��

The convention that the zero polynomial has degree −∞ together with the rea-
sonable assumption that −∞ +m = −∞ for m any integer or m = −∞, allows the
formula deg( f g) = deg( f )+ deg(g) to extend to the case where one or both of f
and g is the zero polynomial.

In the rest of the book, we will usually consider only polynomials with coeffi-
cients in a field F , rather than in a general commutative ring R. However, occasion-
ally it is convenient to allow polynomials with coefficients in a commutative ring
which is not a field. One example is R= Z/nZ, congruence classes of integers mod-
ulo n. Of course Z/nZ is a field only when n is prime. Another example is S= R[y],
polynomials in the indeterminate y with coefficients in the the commutative ring R.
Then S[x] will be polynomials in x with coefficients in R[y], that is, polynomials in
two variables with coefficients in R. Then S[x] is usually denoted by R[y,x] or R[x,y].
An expression such as x2 + 3xy+ y2−2 is a polynomial in R[x,y]. In a similar way
we can define polynomials in three variables over R as polynomials with coefficients
in the ring of polynomials in two variables with coefficients in R, etc.
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Exercises.

3. Show that if R has no zero divisors, then R[x] also has no zero divisors.

4. Show that if R has zero divisors, there exist polynomials f ,g in R[x] so that
deg( f g) < deg( f )+ deg(g).

5. Let F be a field. Using Proposition 1, show that for p(x) in F [x], there is some
q(x) with p(x)q(x) = 1, iff p(x) has degree 0. Thus the units of F [x] are precisely
the polynomials of degree 0.

6. Let R= Z/4Z = {0,1,2,3}.
(i) Show that 1 + 2x is a unit of R[x].
(ii) Show that every unit of R[x] has the form 1 + 2 f (x) for some f (x) in R[x].
(iii) Find all of the zero divisors of R[x].
(iv) Find elements of R[x] which are neither units nor zero divisors.

C. Detaching the Coefficient

We have defined polynomials in terms of an indeterminate, or formal symbol x, but
it is possible, and sometimes more convenient, to define a polynomial strictly by its
coefficients, without using x. The relevant information about the polynomial is its
coefficients. Thus we can associate to

p(x) = 3x4 + 2x3−5x−1,

the 5-tuple (3,2,0,−5,−1), where the middle 0 is the coefficient of x2. Here we
must agree on the order in which the coefficients appear, so as not to think of that
5-tuple as representing the polynomial

q(x) = 3 + 2x−5x3− x4.

So our convention is that when describing polynomials by tuples of numbers, the
tuples will always describe a polynomial written with decreasing powers of x from
left to right.

With that convention, we can define a polynomial with coefficients in R as a
sequence

(an,an−1, . . . ,a1,a0)

of elements of R. Two sequences

(an,an−1, . . . ,a1,a0)

and
(bm,bm−1, . . . ,b1,b0)
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are equal if (say) m≤ n and

a0 = b0,a1 = b1, . . . ,am = bm,

and am+1,am+2, . . . ,an are all zero. Thus two sequences are equal if one sequence is
the rightmost part of the other, and all other entries in the longer sequence are zero.

Doing arithmetic operations on polynomials is easier when the polynomials are
written as sequences. To see this, consider the way we work with natural numbers.

Suppose we want to multiply 7 ·10 + 9 and 3 ·10 + 6. We don’t compute

(7 ·10+ 9)(3 ·10 + 6)= (7 ·3) ·102 +((7 ·6)+ (9 ·3)) ·10)+9 ·6
= (2 ·10 + 1) ·102+(4 ·10 + 2 + 2 ·10+7) ·10+5 ·10+ 4

= (2 ·103 + 102)+ (6 ·102 + 9 ·10)+ (5 ·10+4)

= 2 ·103 + 7 ·102 +(10 + 4) ·10 +4

= 2 ·103 + 7 ·102 + 102 + 4 ·10 + 4

= 2 ·103 + 8 ·102 + 4 ·10 + 4;

instead, we write 7 ·10 + 9 as 79, 3 ·10 + 6 as 36 and multiply 79 and 36 using the
well-known multiplication algorithm.

Similarly for polynomials.
Addition of two sequences is “componentwise”, as follows:

(an,an−1, . . . ,a1,a0)+ (bm,bm−1, . . . ,b1,b0)
= (an+bn,an−1 +bn−1, . . . ,a1 +b1,a0 +b0),

where we have assumed here that n> m and bm+1 = . . . = bn = 0.
For example, to add 4x2 + 2x − 3 and x3 − x + 8, we add (0,4,2,−3) +

(1,0,−1,8) = (1,4,1,5):
0 4 2 −3

+ 1 0 −1 8

= 1 4 1 5

Addition of polynomials is similar to addition of numbers, except that with polyno-
mials there is no carrying.

Multiplication is not componentwise multiplication. The product of two polyno-
mials (an,an−1, . . . ,a1,a0) and (bm,bm−1, . . . ,b1,b0) is the tuple whose entries are
the coefficients (in the appropriate order) of the polynomial p(x) · q(x) in formula
(2) above. To illustrate, consider multiplying the two polynomials

p(x) = x4 + 3x3− x2−4x−6 = (1,3,−1,−4,−6)

and
q(x) = 3x4 + x2 + 5 = (3,0,1,0,5).
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We set up the multiplication of five-tuples just like multiplication of decimal inte-
gers, and perform the algorithm in the same way, except with no carrying:

1 3 −1 −4 −6
· 3 0 1 0 5

5 15 −5 −20 −30
0 0 0 0 0

1 3 −1 −4 6
0 0 0 0 0

3 9 −3 −12 −18

= 3 9 −2 −9 −14 11 −11 −20 −30

.

Thus,

p(x)q(x) = 3x8 + 9x7−2x6−9x5−14x4 + 11x3−11x2−20x−30.

(In the array, the top two lines are the coefficients of the two polynomials, the
next five lines are the coefficients of the polynomial obtained by multiplying p(x)
by 5, 0 · x, x2, 0 · x3 and 3x4, respectively, and the bottom line sums the coefficients
of each power of x in the previous five lines.)

Just as with numbers, multiplying polynomials as above is efficient because the
powers of x are never written down. Only the coefficients are in play. (Once you try
a few examples, you should find multiplication of polynomials easier than multipli-
cation of numbers. In particular, when the polynomials have entries in F2 = {0,1},
multiplication is extremely easy!)

If you have had some linear algebra, the identification of a polynomial with its
sequence of coefficients is what we do when we write down the coordinates of a
vector with respect to a basis. In fact, here the scalars are from R, the vector space is
R[x] (assuming R is a field), the basis is an infinite one: . . . ,xn,xn−1, . . . ,x,1, and the
tuple (an,an−1 . . . ,a1,a0) includes all the non-zero coordinates of the polynomial

p(x) = anxn+an−1xn1 + · · ·+a1 +a0

with respect to the basis . . .xn,xn−1, . . . ,x,1.

Exercises.

7. Detach the coefficients and multiply in F2[x]:
(i) (x3 + x+ 1)(x4 + x2 + 1);
(ii) (x2 + x+ 1)2;
(iii) (x2 + x)(x2 + x+ 1);
(iv) (x2 + x)(x3 + x2 + 1)(x3 + x+ 1).
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8. Detach the coefficients and multiply in F3[x]:
(i) (x2 + 2x+ 2)(2x2 + 1);
(ii) (x3 + 1)(2x2 + 2).

9. Detach the coefficients and multiply (x4 + x3 + x2 + x+ 1)(x−1) in Q[x]. Then
generalize the result to the case where the left factor has degree n.

D. Homomorphisms

Recall from Section 7D that a ring homomorphism from a ring S to a ring T is a
function or “map” η : S→ T , so that for any s,s′ in S, η(s+ s′) = η(s) + η(s′),
η(s · s′) = η(s) · η(s′), and η(1) = 1. There are several important ring homo-
morphisms whose domain is R[x], the ring of polynomials with coefficients in a
commutative ring R.

Example 1. Let Funct(R,R) be the ring of functions from R to R, where addition
and multiplication of functions are the usual operations as described above, and the
function 1 is the constant function 1(s) = 1 for all s in R.

Let ϕ : R[x]→ Func(R,R) be the map given as follows: if p(x) is a polynomial,
ϕ(p(x)) is p(x) thought of as a function on R. Then ϕ is a homomorphism, because
addition and multiplication of polynomials as defined above, coincides with addition
and multiplication of polynomial functions. This homomorphism ϕ , which tells us
to view a polynomial with coefficients in R as a function on R, will often be applied
implicitly, that is, without specific mention, as in statements like “think of p(x)
as a function on R.” No confusion should arise. But it is useful to be explicit that
polynomials and functions are different, and the identification of a polynomial as
a polynomial function in fact defines a homomorphism that we have denoted by
ϕ here. As we noted earlier (see Exercise 1), the homomorphism ϕ from R[x] to
Func(R,R) need not be one-to-one. In fact ϕ is never one-to-one if R is a finite ring.
This can be seen by counting: if R has n elements, then Func(R,R) has nn elements
(why?), while R[x] is an infinite set (why?).

Example 2. Related to ϕ is a collection of functions ϕa : R[x]→ R, one for each a in
R: φa is “evaluation at a.” For any p(x) in R[x], ϕa(p(x)) is defined to be the element
p(a) of R obtained by thinking of p(x) as a function on R and evaluating the function
at a. Then ϕa is a homomorphism; in fact it is the composite of the homomorphism
ϕ of Example 1 and the map from Func(R,R) to R given by taking a function f (x)
and evaluating it at a to get f (a). The latter is a homomorphism because of the way
we define addition and multiplication in Func(R,R).

Example 3. Let ψ : R→ S be a homomorphism. Then we get an induced homomor-
phism, which we’ll also call ψ , from R[x] to S[x], defined by

ψ(anxn+ . . .+a1x+a0) = ψ(an)xn+ . . .+ ψ(a1)x+ ψ(a0),
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that is, replace the coefficients of a polynomial p(x) by their images under the func-
tion ψ . This new function ψ is also a homomorphism, as is easily checked.

One particularly useful example of such a function ψ is the “reduce mod m”
function that takes a polynomial p(x) with coefficients in Z and yields the poly-
nomial ψ(p(x)) with coefficients in Z/mZ whose coefficients are the congruence
classes modm of the coefficients of p(x). For example, if p(x) = 5x4 +2x3−7x+3,
m= 2, and ψ is the homomorphism from Z to F2 = Z/2Z given by taking a number
n to its congruence class mod 2, then ψ(p(x)) = [5]2x4 +[2]2x3− [7]2x+[3]2, or if
we, as usual, identify F2 as {0,1}, then

ψ(p(x)) = x4 + 0x3 + x+ 1 = x4 + x+ 1.

Another example is the homomorphism ψ : Z[x]→Q[x] given by taking a poly-
nomial with coefficients in the ring of integers Z and thinking of it as having coeffi-
cients in the field of rational numbers Q. Similar examples arise from thinking of Z

(or Q) as a subring of R, the real numbers, or C, the complex numbers.

Exercises.

10. Explain why if R is a finite ring, then ϕ : R[x]→ Func(R,R) is not one-to-one.

11. For which, if any primes p, do x6 + 2x2 + x and x9 + 8x3 + x agree as functions
on Z/pZ?





Chapter 14
Unique Factorization

In this chapter we show that every polynomial of degree >1 with coefficients in a
field factors uniquely (in a sense to be defined) into a product of irreducible polyno-
mials. To reach this result, we follow the same development as for natural numbers:
the division theorem, Euclid’s Algorithm and Bezout’s Identity.

A. Division Theorem

Let p(x)= adxd+ . . .+a1x+a0 be a polynomial with coefficients in a field F . Recall
that if ad �= 0, then d is the degree of p(x), and ad is called the leading coefficient
of p(x). If p(x) has degree <0, then p(x) = a0, so can be considered as an element
of the field F , or a constant, or a scalar.

If d is the degree of p(x) and the leading coefficient ad = 1, then p(x) is monic.
The main theme of this chapter is that the entire sequence of arguments in

Chapters 3 and 4 which led to the Fundamental Theorem of Arithmetic is valid for
polynomials with coefficients in any field. The fact that we can associate to a non-
zero polynomial an integer≥0, its degree, enables us to use induction to prove facts
about polynomials, like the Division Theorem, Euclid’s Algorithm and uniqueness
of factorization, just as we did for numbers.

You may wish to review the definitions and results for Z in Chapters 3 and 4 at
this point so you can anticipate what will happen in this chapter.

We will often let f ,g, p,q,r, etc., denote polynomials, omitting the “(x)” in
“ f (x).”

Just as with the theory for natural numbers, the first step is:

Theorem 1 (Division Theorem for Polynomials). Let R be a commutative ring.
Let f ,g be two polynomials in R[x] with f �= 0, and suppose that the leading co-
effic ent of f is a unit of R. Then there are polynomials q (the quotient) and r (the
remainder), with degr< deg f , such that g= f q+r. If also g= f q1 +r1, then q= q1

and r = r1 (i.e., the quotient and the remainder are unique).

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 295
in Mathematics, c© Springer Science+Business Media LLC 2009
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Proof. We fix f �= 0 and prove that for any g, there exists some q and r satisfying
the statement of the theorem, using complete induction on the degree of g.

If degg < deg f , then set q = 0,r = g: then obviously g = f q+ r with degr <
deg f .

Suppose degg≥ deg f . Let f = f (x) = adxd + . . .+a0 have degree d and that ad
is a unit of R. Let g= g(x) = bd+sxd+s+ . . .+b0 have degree d+s, where s≥ 0. Let
g1 = g− (bd+s/ad)xs f . Then degg1 < degg, since the coefficient of xd+s in g1 is
zero. By induction, g1 = f q1 + r for some polynomials q1 and r, with degr < deg f .
But then

g= g1 +bd+sa−1
d xs f

= f q1 + r+bd+sa−1
d xs f

= f (q1 +bd+sa−1
d xs)+ r

proving the existence of a quotient and remainder for f and g. By induction, the
existence of q and r is proven.

For uniqueness, suppose g= f q+ r = f q1 + r1, with degr < deg f and degr1 <
deg f . Then

f (q−q1) = r1− r.
If q−q1 �= 0, let s≥ 0 be the degree of q−q1. Since the leading coefficient of f is
a unit, f (q−q1) has degree deg( f )+ s by Proposition 1 of Chapter 13, while r1− r
has degree <deg( f ), which is impossible. Thus q−q1 = 0 and r1− r = 0. ��

The argument which obtains g1 from g in the first part of the proof is the first step
in the familiar process of long division of polynomials, a process which computes q
and r.

Corollary 2. If F is a fie d, then the Division Theorem holds for all f �= 0 and g in
F [x].

A polynomial f divides a polynomial g if g = f q for some polynomial q. For
example, in Q[x], x2−1 divides x4−1 because (x2−1)(x2−1) = x4−1. Similarly,
x2 + x+ 1 divides x6−1 (verify this), while x−1 does not divide x3−2, as follows
immediately from the following useful criterion:

Theorem 3 (Remainder Theorem). If f (x) is a polynomial with coeffic ents in a
fie d F, and a is in F, then f (a) is the remainder when dividing f (x) by x−a.
Proof. Write f (x) = (x−a)q(x)+ r(x), by the Division Theorem. Then degr(x) <
deg(x−a), so r(x) is a constant, call it r, in F . That is,

f (x) = (x−a)q(x)+ r.

Evaluating both sides at x= a, we have

f (a) = (a−a)q(a)+ r= r.

Hence f (a) is the remainder when f (x) is divided by x−a. ��
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The Remainder Theorem yields as a special case:

Proposition 4 (Root Theorem). If f (x) is a polynomial with coeffic ents in a f eld
F, and a is in F, then f (a) = 0 if and only if x−a divides f (x).

The Root Theorem has the following useful consequence.

Theorem 5 (D’Alembert’s Theorem). A nonzero polynomial f (x) of degree n in
F [x], F a f eld, has at most n distinct roots in F.

Proof. Induction on n, the degree of f .
If deg f = 0, then f is a nonzero constant polynomial, so has no roots in F .
Now suppose f is a polynomial of degree n> 0, and suppose it has r distinct roots

a1, . . . ,ar. in F . We must show r < n. We have f (ar) = 0, so by the Root Theorem,
f (x) = (x− ar)g(x), where g(x) has degree n− 1. Now for each i, 1 ≤ i ≤ r− 1,
f (ai) = (ai−ar)g(ai) in F , so since f (ai) = 0, ai �= ar and F has no zero divisors,
we must have g(ai) = 0. Hence g(x) has roots a1, . . . ,ar−1. But degg = n− 1. By
induction, r−1≤ n−1 = degg. Hence r < n= deg f . ��
Corollary 6. If F is a f eld with inf nitely many elements and f (x) and g(x) are two
polynomials with coeffic ents in F, then f (x) and g(x) are equal as polynomials
with coeffic ents in F if and only if f (x) = g(x) as functions on F. That is, if F is
an infin te fie d, then the homomorphism from F[x] to Func(F,F) given by viewing
a polynomial as a function, is one-to-one.

This result implies that no confusion can arise if over the real numbers, we think
of polynomials as real valued functions, or view x as an “indeterminate real num-
ber”. On the other hand, the assumption that F have infinitely many elements is
necessary, as we observed in the last chapter.

Proof of Corollary. If f (x) = g(x) as polynomials, then for any element a of F ,
f (a) = g(a), as we observed in the last chapter. That is, f (x) and g(x) are equal as
functions on F .

Conversely, suppose f (x) and g(x) are two polynomials, and f (a) = g(a) for
all a in F . Then h(x) = f (x)− g(x) is a polynomial in F[x] with the property that
h(a) = 0 for every a in F . If h(x) has degree n for some finite number n and F has
infinitely many elements, then h(x) has more than n roots in F . So h(x) must be the
zero polynomial, by D’Alembert’s Theorem. Hence f (x) = g(x) as polynomials,
completing the proof. ��

D’Alembert’s Theorem will enable us to prove the Primitive Root Theorem in
Section 19A.

Exercises.

1. Find the quotient and remainder when the first polynomial is divided by the
second (in Q[x]):
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(i) x3−7x−1;x−2;
(ii) x4−2x2−1;x2 + 3x−1;
(iii) 2x3−3x2 + 1;x;
(iv) x2 + x+ 1;2;
(v) 3x2− x−1;x3−2.

2. Does the Division Theorem always work for polynomials f and g in Z[x] if the
leading coefficient of f is not a unit of Z but divides the leading coefficient of g?
Explain.

3. Find an example of an f whose leading coefficient is a zero divisor, such that f
divides some polynomial g but the quotient and remainder are not unique. (I found
such an example with R= Z/8Z)

4. Without using long division of polynomials, find the remainder
(
in Q[x]

)
when:

(i) x3−2x+ 4 is divided by x−2;
(ii) x4−7x2 + 3 is divided by x+ 1;
(iii) x40−8x12 + 3 is divided by x4−1.

5. (i) Does x−3 divide x4 + x3 + x+ 4 in Q[x]? in Z[x]?
(ii) Since both x− 3 and x4 + x3 + x+ 4 have coefficients in Z, we can look at

their images in (Z/mZ)[x] for any m. Find all m ≥ 2 for which the image of x− 3
divides the image of x4 + x3 + x+ 4 in (Z/mZ)[x].

6. Find all m so that the image of x3 + 3 divides the image of x5 + x3 + x2− 9 in
(Z/mZ)[x].

7. In Q[x], when f is divided by (x2−3)(x+1), the remainder is x2 +2x+5. What
is the remainder when f is divided by x2−3?

8. For which values of k in Q does x− k divide x3− kx2−2x+ k+ 3?

9. Show that if a,b, and a+b are distinct nonzero elements of a commutative ring R,
and ab= 0, then f (x) = x2−(a+b)x has four distinct roots in R, namely, a,b,a+b,
and 0. Give an example with R= Z/6Z.

10. Find all roots in R[x] of f (x) = x2−2x when:
(i) R= Z/15Z;
(ii) R= Z/30Z

11. For every n > 2, can you find a commutative ring R and a polynomial f (x) of
degree 2 with at least n roots in R? (Try choosing R = Z/mZ with m a product of
many distinct primes.)

12. Let Fp = Z/pZ be the field of p elements, where p is an odd prime. Label the
elements of Fp as 0,1,2, . . . , p−1 modulo p. Prove Wilson’s Theorem:

(p−1)!≡−1 (mod p)
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as follows: observe that, by Fermat’s Theorem, the polynomial f (x) = xp−1 − 1
in Fp[x] has 1,2, . . . , p− 1 as roots. Apply the Root Theorem to get a complete
factorization of xp−1−1 into linear factors, and then compare the constant term of
the product of the factors with the constant term of f (x).

13. Let Fp be the field of p elements with p an odd prime, as in the last exercise.
Explain why the polynomial x2− 1 in Fp[x] has only the roots 1 and p− 1. Show
then that every number a with 1 < a < p− 1 has an inverse modulo p that is not
congruent to a modulo p. Using that observation, prove Wilson’s Theorem.

B. Greatest Common Divisors

With the Division Theorem in hand, we can obtain Euclid’s Algorithm and Bezout’s
Identity for polynomials, just as we did for natural numbers in Chapter 3.

Let f ,g be in F [x] where F is a field. A polynomial p in F [x] is a greatest common
divisor (g.c.d.) of f and g if p divides f and p divides g, and any q in F [x] that divides
f and g has a degree that is not larger than the degree of p. That is, p is a common
divisor of f and g of largest degree.

We can find a greatest common divisor of two polynomials by using the Division
Theorem repeatedly, just as for numbers. The process, called Euclid’s Algorithm for
polynomials, goes back at least to Simon Stevin, 1585, and works as follows:

Euclid’s Algorithm. Given two polynomials f ,g in F [x] with f �= 0, divide f into
g, then the remainder into f , then that remainder into the previous remainder, etc.,
or symbolically,

g= f q1 + r1
f = r1g2 + r2
r1 = r2q3 + r3

...

rn−2 = rn−1qn+ rn
rn−1 = rnqn+1 + 0

Since degr1 < deg f ,degr2 < degr1, etc., the sequence of divisions ends after at
most deg f steps. Then, just as with natural numbers, we have

Theorem 7. In Euclid’s Algorithm for f and g, the last nonzero remainder rn is a
greatest common divisor of f and g.

Note that we have carefully said “a greatest common divisor,” rather than “the
greatest common divisor.” Two polynomials have as many greatest common divi-
sors as there are non-zero elements of the field of coefficients, and Euclid’s Algo-
rithm may in fact produce more than one of them (see Exercise 16). The reason this



300 14 Unique Factorization

phenomenon didn’t show up when we were finding greatest common divisors for
numbers was that we looked only at natural numbers, that is, positive integers. If we
were to have defined “greatest” for integers as “greatest in absolute value,” then the
greatest common divisor of two integers wouldn’t be unique either: for example,−8
and 6 have two greatest common divisors in the absolute sense, namely 2 and −2.

Similarly for polynomials: x2−1 and 5x2 +10x+5 have many greatest common
divisors in Q[x]: x+ 1,2x+ 2,(x/17)+ 1/17, etc. But with integers, it is obvious
(is it?) that all greatest common divisors divide each other, and the same is true for
polynomials.

Two greatest common divisors e and d of f and g must differ by a scalar multiple:
d = ae for some a in F . For let d be the greatest common divisor of f and g obtained
by Euclid’s Algorithm, and suppose d has degree r. If e is a common divisor of f
and g, then e divides d by Exercise 17. If e is a greatest common divisor of f and g,
then dege= degd, from which it follows that d = ae where a has degree 0, that is, a
is a nonzero element of the field F . But then e= a−1d, so e and d divide each other.

Defini ion. Two polynomials d and e, such that each is a nonzero scalar multiple of
the other, are associates.

For example, x2 + 2 and −5x2−10 are associates in Q[x].
Any polynomial with coefficients in a field is an associate of exactly one monic

polynomial, namely, the polynomial obtained by dividing each coefficient by the
leading coefficient. Thus,in Q[x], 3x2 +2x+5 is an associate of x2 + 2

3x+
5
3 , a monic

polynomial.
Monic polynomials play a role similar to natural numbers: just as there is a

unique natural number that is a greatest common divisor (in the sense of greatest
in absolute value) of two integers, similarly there is a unique monic polynomial that
is a greatest common divisor of two polynomials with coefficients in a field.

Thus if we refer to the greatest common divisor of two polynomials, we will
mean the unique greatest common divisor that is monic.

As with numbers, we denote the greatest common divisor of two polynomials f
and g by ( f ,g).

Returning to Euclid’s Algorithm, we showed in Chapter 3 that if d is the greatest
common divisor of two numbers a and b, then there are integers r and s so that
d = ra+ sb. So also with polynomials:

Theorem 8 (Bezout’s Identity). Every greatest common divisor d of two polyno-
mials f and g in F [x], F a f eld, can be written as d = r f + sb for some polynomials
r and s in F [x].

The proof of this is virtually identical to the proof for numbers, and is left as an
exercise.

Say f and g are coprime, or relatively prime, if any greatest common divisor of
f and g is a constant. In that case, 1 is a greatest common divisor (since 1 is an
associate of any nonzero constant polynomial). So we can write 1 = r f + sg for
some polynomials r and s.
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Recall that Euclid’s Algorithm gave a computational procedure for not only find-
ing the greatest common divisor d of numbers a and b, but also writing that greatest
common divisor d as ra+ sb. So also with polynomials.

For example, consider x5 + 1 and x3 + 1 in F2[x]. Euclid’s Algorithm is

x5 + 1 = (x3 + 1)x2 +(x2 + 1),

x3 + 1 = (x2 + 1)x+(x+ 1),

x2 + 1 = (x+ 1)(x+ 1)+ 0.

Hence x+ 1 is the greatest common divisor of x5 + 1 and x3 + 1. Then

x+ 1 = (x3 + 1)+ (x2 + 1)x

= (x3 + 1)+ ((x5 + 1)+ (x3 + 1)x2)x

= (x5 + 1)(x)+ (x3 + 1)(x3 + 1).

Thus the greatest common divisor is written according to Bezout’s Identity, by suc-
cessively substituting for remainders in the equation for the last nonzero remainder
in Euclid’s Algorithm.

We can also adapt the extended Euclidean algorithm matrix method that we used
for numbers in Chapter 3.

Exercises.

14. Using Euclid’s Algorithm, find a greatest common divisor in F3[x] of x2 +1 and
x5 + 1.

15. Using Euclid’s Algorithm, find a greatest common divisor in F3[x] of x2−x+4
and x3 + 2x2 + 3x+ 2.

16. In F5[x], find a greatest common divisor of

3x3 + 4x2 + 3 and 3x3 + 4x2 + 3x+ 4

in two ways, first dividing the left polynomial into the right one, then dividing the
right one into the left one. Verify that the two greatest common divisors are asso-
ciates but not equal.

17. (i) Prove that in Euclid’s Algorithm for f and g, the last nonzero remainder is a
common divisor of f and g.

(ii) Prove that if e is any common divisor of f and g, then e divides the last
nonzero remainder in Euclid’s Algorithm for f and g. Hence the last nonzero re-
mainder is a greatest common divisor of f and g.

18. Prove Bezout’s Identity for polynomials.
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19. In F3[x], write, if possible, the polynomial 1 in the form f (x)p(x)+ g(x)q(x),
where p(x) = x3 + 1 and q(x) = x3 + x+ 1.

20. In F3[x], write, if possible, the polynomial 1 in the form f (x)p(x)+ g(x)q(x),
where p(x) = x3 + x2 + x+ 2 and q(x) = x3 + 2x2 + 2.

21. In Q[x], find the greatest common divisor of x6−1 and x4−1. Write the greatest
common divisor as in Bezout’s Identity.

22. In F2[x], find some r(x),s(x) so that r(x) f (x) + s(x)g(x) = 1, where f (x) =
x2 + x+ 1, and g(x) = x3;

23. In F2[x], find some r(x),s(x) so that r(x) f (x) + s(x)g(x) = 1, where f (x) =
x6 + x5 + x3 + x and g(x) = x8 + x7 + x6 + x4 + x3 + x+ 1;

24. In F2[x], find some r(x),s(x) so that r(x) f (x) + s(x)g(x) = 1, where f (x) =
x15−1 and g(x) = x4 + x2 + x.

25. (i) Find the greatest common divisor in F3[x] of x5 + 2x3 + x2 + x+ 1 and x4 +
2x3 + x+ 1.

(ii) Find the least common multiple in F3[x] of x5 + 2x3 + x2 + x+ 1 and x4 +
2x3 + x+ 1.

26. Find the greatest common divisor d(x) in Q[x] of f (x) and g(x) and find poly-
nomials r(x) and s(x) with f (x)r(x) + g(x)s(x) = d(x), where f (x) = x2 − 3x+ 2
and g(x) = x2 + x+ 1;

27. (i) For every m,n> 0, show that the greatest common divisor in Q[x] of xm−1
and xn−1 is xd−1 where d = (m,n).

(ii) Find polynomials r(x) and s(x) with f (x)(xm−1)+g(x)(xn−1) = xd−1.

28. Show that in R[x], x4 + x2 + r2 and x2− x+ r are coprime for all r �= 0,1.

29. Find the monic polynomial k(x) of smallest degree in Q[x] so that (x3−1)k(x)
is a multiple of x2−1.

30. Show that for f ,g,h in F [x], F a field, if ( f ,g) = 1 and h divides f , then
(h,g)=1.

31. Show that for f ,g,h in F[x], F a field, if ( f ,g) = 1, then ( f h,g) = (h,g).

32. For f ,g,h in F [x], F a field, show that if f divides gh, then f divides ( f ,g)( f ,h).

33. Show that for f ,g in F [x], F a field, if ( f ,g) = d, then d = r f + sg where r,s in
F [x] may be chosen so that degr < degg and degs< deg f .
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C. Factorization into Irreducible Polynomials

Recall that a unit of a ring R is an element f for which there is some element g
in R with f g = 1. If F is a field, then in the ring F [x], the only units are non-zero
constants, that is, polynomials of degree zero.

Defini ion. A polynomial p in F[x] is irreducible if p is not a unit, and if p = f g,
then f or g must be a unit, that is, a constant polynomial.

Irreducible polynomials are like prime numbers. In particular:

Proposition 9. If p is irreducible, and f is a polynomial which is not divisible by p,
then the greatest common divisor of p and f is 1.

Proof. Suppose d = ( f , p). Since p is irreducible and d divides p, either d is a unit,
that is, a non-zero constant, or d is an associate of p. In the latter case, p divides f .
In the former case, p and f are coprime, and the greatest common divisor of f and
p is 1, an associate of d. ��

Here are some examples of irreducible polynomials:
x+a is irreducible in F [x] for F any field;
x2 + 1 is irreducible in R[x], but not in C[x];
x3−2 is irreducible in Q[x], but not in R[x];
x2 + 1 is irreducible in Z/3Z[x], but not in Z/5Z[x]; and
x2 + x+ 1 is irreducible in Z/2Z[x].
We will study the question of which polynomials are irreducible in several later

chapters.
Irreducible polynomials in F [x], F a field, are the multiplicative building blocks

of nonconstant polynomials, just as primes are the building blocks of natural num-
bers >1:

Theorem 10. Every polynomial of degree ≥1 in F [x], F a f eld, is irreducible or
factors into a product of irreducible polynomials.

The proof is virtually identical to that for numbers, an induction argument on the
degree of the polynomial, and is left as an exercise, below.

It is also easy to prove that factorization of a polynomial into a product of irre-
ducible polynomials is unique. The key lemma in the proof, as with numbers, is the
following consequence of Bezout’s Identity:

Theorem 11. Let p be an irreducible polynomial in F [x], F a f eld. For every two
polynomials f ,g in F [x], if p divides f g, then p divides f or p divides g.

This result is also proved in the same way as for integers, so is left as an exercise.
Here is the theorem on uniqueness of factorization:
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Theorem 12. In F [x], F a f eld, if

f = p1p2 · . . . · ps = q1q2 · . . . ·qt
are two factorizations of the polynomial f into a product of irreducible polynomials
in F [x], then s = t and there is a one-to-one correspondence between the factors
p1, p2, . . . , ps and q1,q2, . . . ,qt , where if pi corresponds with q j, then pi and q j are
associates.

Every factorization of an associate of f will have factors that are associates of a
factorization of f . For example, in F5[x],

x2 + x+ 3 = (x+ 2)(x−1),

and
3x2 + 3x+ 4 = (2x+ 3)(4x+ 3) :

the two polynomials are associates of each other, and the factors x+2 and x−1 are
associates of 4x+ 3 and 2x+ 3, respectively.

Since any polynomial is an associate of a unique monic polynomial, and the
product of monic polynomials is monic, we can rephrase the theorem on unique
factorization to require that f and all pi and q j be monic polynomials. In that case,
the theorem becomes:

Theorem 13. In F [x], F a f eld, if

f = p1p2 · . . . · ps = q1q2 · . . . ·qt
are two factorizations of the monic polynomial f into a product of monic irreducible
polynomials in F[x], then s= t and the sets {p1, p2, . . . , ps} and {q1,q2, . . . ,qt} are
equal.

We have left the proofs in this section as exercises because the theorems and the
proofs are so similar to those in Chapter 4.

Just as with integers, we can write the factorization of a polynomial f in F [x] in
exponential notation, as

f = pe1
1 p

e2
2 · . . . · p

eg
g

where p1, p2 . . . , pg are distinct irreducible polynomials. If any ei is bigger than 1,
we shall say that f has a multiple factor: thus f (x) = (x2 + 2)3(x+ 1) in R[x] has
a multiple factor, while f (x) = (x2 + 2)(x+ 1) does not. If f (x) has a multiple lin-
ear factor, then f (x) is said to have a multiple root in F. An example is f (x) =
(x+ 2)3(x2 + 1), which has the multiple root −2.

Just as with numbers, if the factorizations of f and g into products of irreducible
polynomials are given in exponential notation, then it is easy to write down the
greatest common divisor of f and g, and the least common multiple of f and g. If it
is not clear how to do this, refer back to Section 4B.



14 Unique Factorization 305

Exercises.

34. Prove Theorem 10 using induction on the degree of the polynomial.

35. Prove Theorem 11.

36. Prove Theorem 13 by induction on s, just as with numbers.

37. Show that in F2[x], two polynomials are associates if and only if they are equal.

38. In F [x], F any field, show that if p,q are irreducible and monic, and p divides
q, then p= q.

39. Let f (x) = x2 + bx+ 4 in R[x]. For each b in R, factor f (x) into a product of
irreducible polynomials in R[x].

40. (i) Show that in R[x], no polynomial of odd degree >1 is irreducible.
(ii) Show that if f (x) in R[x] has a multiple factor, then its derivative f ′(x) is not

relatively prime to f (x).
(iii) Suppose a in R is a root of f (x) in R[x]. Show that a is a multiple root of

f (x), iff f ′(a) = 0, iff the graph of y= f (x) is tangent to the x-axis at x= a.
(iv) Show that if f (x) in R[x] has no multiple roots, and has odd degree, then f (x)

must have an odd number of real roots.

41. Find the greatest common divisor in Q[x] of
(x2 + 3x+ 6)2(x+ 1)3(x−3)2 and (x2 + 3x+ 6)(x+ 1)4(x−2)2;

42. Find the greatest common divisor in Q[x] of (x2 − 3x− 4)3(x− 3)2 and
(x−4)3(x2−3x−4)2

43. Factor x5− x into a product of irreducible polynomials in F5[x]. (Hint: Recall
Fermat’s theorem.)

44. For any prime p, show that in Fp[x], xp− x factors into

x(x−1)(x−2) · . . . · (x− (p−1)).

One way to factor a small number into a product of primes is by trial division.
For example, to factor 60060, we factor out obvious small factors, namely 2, 2, 3,
and 5 to get 60060 = 2 · 2 · 3 · 5 · 1001, and then find by trial division that 1001 =
7 ·13 ·19, so that 60060 = 2 ·2 ·3 ·5 ·7 ·13 ·19. Similarly, this strategy is feasible for
polynomials of low degree in F2[x].

45. Prove that if f (x) in F [x], F any field, has degree n > 1 and is not irreducible,
then f (x) has an irreducible factor of degree <n/2.

46. Find all irreducible polynomials in F2[x] of degree≤4. There are eight of them.
(The Root Theorem will be helpful.)
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47. Using trial division in F2[x], factor into a product of irreducible polynomials:
(i) x6 + x4 + x;
(ii) x8 + x7 + x6 + x4 + 1;
(iii) x7 + x6 + x4 + 1;

48. Using trial division in F2[x], factor into a product of irreducible polynomials:
(i) x8− x;
(ii) x10−1;
(iii) x15−1.

49. Let e be any natural number. Show that in Fp, p prime, there are at most e units
whose orders divide e.

50. Let R be a commutative ring and suppose a,b are nonzero elements of R such
that a ·b= 0 (i.e., a and b are zero divisors).

(i) Show that unique factorization in R[x] is false by finding two different factor-
izations of f (x) = x2− (a+b)x into irreducible polynomials in R[x].

(ii) Show that in R[x] there exists an irreducible polynomial p that divides a prod-
uct f g of two polynomials but divides neither f nor g.

(iii) Give explicit examples of (i) and (ii) when R= Z/21Z[x].

51. Show that if F is an infinite field and p(x) is an irreducible polynomial of degree
d in F [x], then F [x] has infinitely many irreducible polynomials of degree d. (Hint:
Try p(x−a).)



Chapter 15
The Fundamental Theorem of Algebra

In Chapter 14 we showed that every nonconstant polynomial in F[x], F a field,
factors uniquely (up to associates and the order of the factors) into the product of
irreducible polynomials. Irreducible polynomials therefore relate to all polynomials
in the same way that primes do to all natural numbers. Thus one naturally asks:
Which polynomials are irreducible? and, How does one factor a given polynomial
into a product of irreducible polynomials?

When looking for irreducible polynomials over a field, we can restrict our atten-
tion to monic polynomials. Every polynomial is an associate of a monic polynomial.

The question, which polynomials are irreducible, depends on the field F of coef-
ficients.

For example, consider the polynomial x3 − 2. This is a polynomial with coef-
ficients in Q, and Q ⊂ R ⊂ C, so we can ask how x3 − 2 factors in Q, in R, and
in C.

In Q[x],x3−2 is irreducible.
In R[x],x3−2 = (x−21/3)(x2 + 21/3x+ 41/3).
In C[x],x3 − 2 = (x − 21/3)(x − ω21/3)(x − ω221/3) where ω = e2π i/3 =

−(1/2)+ (i
√

3/2) is a complex root of x3−1.
Thus the answer to the question, which polynomials are irreducible, clearly de-

pends on the field of coefficients.
When the field F is the real numbers, an additional reason to study irreducible

polynomials was the discovery of the fundamental theorem of calculus by Newton
and Leibniz in the last third of the seventeenth century. The fundamental theorem of
calculus meant that previously intractable problems of finding areas, volumes, arc
lengths, centroids, etc., could be solved by finding antiderivatives of functions. So
attention turned to the problem of finding antiderivatives of all kinds of functions.

Antiderivatives of polynomial functions were easy.
The next natural class of functions to consider were rational functions, functions

of the form f (x)/g(x), where f (x) and g(x) are polynomials with real coefficients.
For these functions, the method of partial fractions showed the need to know which
polynomials with real coefficients were irreducible.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 307
in Mathematics, c© Springer Science+Business Media LLC 2009
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In this chapter we will begin by looking at rational functions and their partial
fraction decompositions, then examine the Fundamental Theorem of Algebra and
its antecedents.

A. Rational Functions

In the same way that the field of rational numbers is formed from the ring of inte-
gers, the field of rational functions may be constructed from the set of polynomials
with coefficients in a field. A rational function with coefficients in the field F is an
expression of the form f (x)/g(x) where f (x) and g(x) are in F [x] and g(x) �= 0. Two
rational functions are equal,

f (x)
g(x)

=
h(x)
k(x)

if k(x) f (x) = g(x)h(x) in F[x]. Call the set of rational functions with coefficients in F
by F(x) (as opposed to F[x], which denotes the set of polynomials with coefficients
in F).

Addition and multiplication of rational functions is defined by the usual rules for
fractions (we drop “(x)”):

f
g

+
h
k

=
f k+hg
gk

;
f
g
h
k

=
f h
gk

.

It is very easy to verify that F(x) is a field. A polynomial f may be viewed as a
rational function by thinking of it as f

1 .
The terminology “rational function” is somewhat misleading. The elements of

F(x) are not functions on the field F , but formal expressions in the same sense as
polynomials are. One can evaluate a rational function f (x)/g(x) at any element a of
F at which g(a) �= 0, but two rational functions may agree when evaluated at every
element of F and yet be different elements of F(x), such as x and x3/(x2 + x+ 1)
in F2(x); and there may exist rational functions in F(x) which cannot be defined
as functions on F at all, such as (x3− x+ 1)/(x3− x) in F3(x), whose denominator
gives zero when evaluated at each element of F3.

However, as with polynomials, it can be proved that if F is an infinite field, then
two rational functions which have the same values when evaluated on infinitely
many elements of F must be equal.

Exercises.

1. Prove this last assertion.

2. Show that every rational function in F(x) can be written uniquely as h(x)
k(x) where

h(x) and k(x) are coprime and k(x) is monic.
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B. Partial Fractions

The method of partial fractions is a way of decomposing a rational function f/g into
a sum of terms with denominators of degrees smaller than deg gwhen a factorization
of g is known. In case f/g is a rational function with real coefficients, viewed as
a real-valued function, then partial fractions becomes an important technique of
integration. In this section we shall describe the general method.

We assume f (x) and g(x) are in F [x], where F is an arbitrary field.
Given f/g, we first use the division theorem, if necessary, to write f = gq+ r,

with degr < degg. Then f/g= q+ r/g. The basic problem, to write f/g as a sum of
terms with “nice” denominators, remains for r/g. So we shall assume that we started
out with f/g, where deg f < deg g.

Here is the general description of partial fractions.

Theorem 1. Let g = pe1
1 p

e2
2 . . . perr be a factorization of g into a product of powers

of coprime polynomials pi, and suppose that deg f < degg. Then there are unique
polynomials hi, i= 1, . . . ,r, with deghi < deg peii , such that

f
g

=
h1

pe1
1

+
h2

pe2
2

+ . . .+
hr
perr

.

Proof. Induction on r, r = 1 being trivial.
In order to pass from r − 1 to r, and thus prove the theorem, we let a =

pe1
1 p

e2
2 . . . per−1

r−1 ,b= perr and prove the following, which is the induction step.

Lemma 2. Let g= ab where a and b are coprime, and suppose deg f < degg. Then
there are unique polynomials r,s with deg r < deg a, degs< degb, so that

f
g

=
r
a

+
s
b
.

The theorem follows. For using the lemma, we may write

f
g

=
r

pe1
1 p

e2
2 . . . per−1

r−1

+
s
perr

,

use induction to write

r
pe1

1 p
e2
2 . . . per−1

r−1

=
h1

pe1
1

+
h2

pe2
2

+ . . .+
hr−1

per−1
r−1

and set hr = s. ��
Proof of lemma. To prove the lemma, we use Bezout’s Identity: since a and b are
coprime, there are polynomials s,r such that

as+br= f ,
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where we can choose degs < degb, degr < dega by Exercise 33 of Section 14B.
Then divide by g= ab:

f
g

=
r
a

+
s
b
.

To show r,s are unique is easy. ��
Example 1. We decompose

5x+ 2
x2−4

into partial fractions. To do so, we factor x2−4 = (x+ 2)(x−2), then we know we
can write

5x+ 2
x2−4

=
5x+ 2

(x+ 2)(x−2)
=

a
x+ 2

+
b

x−2

where a, b are constants (polynomials of degree <0). We can find a and b by putting
the right side over the common denominator (x−2)(x+ 2),

a
x+ 2

+
b

x−2
=
a(x−2)+b(x+ 2)

(x+ 2)(x−2)
,

and then solving the equation arising from setting the numerators equal:

5x+ 2 = a(x−2)+b(x+ 2)

to get a= 2,b= 3.

Example 2. In F2[x], x3 + x2 + 1 and x+ 1 are coprime, and hence

x2

x4 + x2 + x+ 1
=

x2

(x3 + x2 + 1)(x+ 1)

=
a

x+ 1
+

b(x)
x3 + x2 + 1

where b(x) has degree at most 2 and a is a constant. So we solve

x2 = a(x3 + x2 + 1)+b(x)(x+ 1)

for a and b(x): we find that

x2 = (x3 + x2 + 1)+ (x2 + x+ 1)(x+ 1);

thus a= 1, b(x) = x2 + x+ 1 and

x2

x4 + x2 + x+ 1
=

1
x+ 1

+
x2 + x+ 1
x3 + x2 + 1

.

Once we have a rational function written as a sum of terms of the form f/pe, we
can further decompose f/g by representing the numerator in base p.
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To write f in base p for any polynomial p means to write f = r0 + r1p+ r2p2 +
. . . + rk pk, where degri < deg p for all i. In case p(x) = x, writing the polynomial
f (x) in base x is the way we usually write f (x). If we can write f in base p, then
f/pe decomposes as

f
pe

=
r0 + r1p+ r2p2 ++rkpk

pe

=
r0
pe

+
r1
pe−1 + . . .+

rk
pe−k

with degri < deg p for all i. In case p(x) = x− r has degree 1, then all of the ri are
constants.

We write f in base p just as with integers, as follows. Divide p into f ,

f = pq0 + r0

with degr0 < deg p; then divide p into the quotients, successively:

q0 = pq1 + r1 with degr1 < deg p
q1 = pq2 + r2 with degr2 < deg p

...

qk−1 = pqk+ rk with degrk < deg p.

Then for all i≥ 0, degqi+1 = degqi−deg p, so for some k, degqk−1 < deg p. Then
qk = 0 and qk−1 = rk. Successively substituting then gives

f = rk pk+ rk−1pk−1 + . . .+ r1p+ r0.

as can be seen by substituting each successive equation into the first equation. Since
the quotient and remainder in the division algorithm are unique, the representation
of f in base p is unique.

Representation in base p for polynomials is thus essentially the same as for
integers.

The complete decomposition of f/g is then achieved by partial fractions followed
by writing the numerator in base p and reducing to lowest terms.

Example 3. Let
f (x)
g(x)

=
3x4 + 5

(x2 + 1)2x

in R(x).
Following the method as described above, we know that there is a polynomial

a(x) of degree <3 and a constant b so that

3x4 + 5
(x2 + 1)2x

=
a(x)

(x2 + 1)2 +
b
x
.
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Putting everything over the common denominator (x2 +1)2x and comparing numer-
ators gives

xa(x)+b(x4 + 2x2 + 1) = 3x4 + 5.

We find that
x(−2x3−10x)+ 5(x4 + 2x2 + 1) = 3x4 + 5,

and so a(x) =−2x3−10x, b= 5 and

3x4 + 5
(x2 + 1)2x

=
−2x3−10x
(x2 + 1)2 +

5
x
.

To expand−2x3−10x in base x2 + 1 we divide −2x3−10x by x2 + 1:

−2x3−10x= (x2 + 1)(−2x)−8x,

then
−2x3−10x
(x2 + 1)2 =

(x2 + 1)(−2x)−8x
(x2 + 1)2 =

−2x
x2 + 1

+
−8x

(x2 + 1)2

and so
3x4 + 5

(x2 + 1)2x
=

−2x
x2 + 1

+
−8x

(x2 + 1)2 +
5
x
.

Knowing the degrees of the numerators, we can find the coefficients of the nu-
merators by setting up a system of linear equations: by the general theory, we know
that the decomposition should be

3x4 + 5
(x2 + 1)2x

=
ax+b
x2 + 1

+
cx+d

(x2 + 1)2 +
e
x

for some real numbers a,b,c,d,e. We put the right side over a common denominator,
collect coefficients, equate them to the coefficients on the left side, and solve the
resulting system of linear equations:

3x4 + 5
(x2 + 1)2x

=
(a+ e)x4 +bx3 +(a+ c+ 2e)x2 +(b+ c)x+ e

(x2 + 1)2x
,

so
a+ e= 3

b= 0

a+ c+ 2e= 0

b+d = 0

e= 5

with solution a=−2,b= d = 0,c=−8,e= 5.
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Exercises.

3. Write x3 in base x+ 1.

4. Write (x2 + 3x+ 1)4

(i) in base x+ 2;
(ii) in base x2 + x+ 1.

5. Decompose into partial fractions:
(i) t+1

(t−1)(t+2)

(ii) 1
(t+1)(t2+2)

(iii) x2+4
(x+1)2(x−2)(x+3) .

6. What is the analogue of partial fractions in Z? Illustrate it with 17/180.

7. Let x0 a real number, and f (x) be a polynomial in R[x] of degree n. The Taylor
expansion of f (x) about x= x0 is

Tf (x) = f (x0)+ f ′(x0)(x− x0)+
f ′′(x0)

2!
(x− x0)2 + . . .+

f (n)(x0)
n!

(x− x0)n

since them-th derivative f (m)(x) = 0 form> n. Show that Tf (x) = f (x), hence Tf (x)
is the expansion of f in base p(x) = (x− x0).

C. Irreducible Polynomials over R

The theorem on partial fractions shows that any rational function f (x) is a sum of
rational functions r(x)/p(x)e, where p(x) is irreducible and deg r(x) < deg p(x). In
particular, this is true when f (x),g(x) are polynomials with real coefficients. The
antiderivative of a sum of functions is the sum of the antiderivatives, so partial frac-
tions reduces the problem of finding the antiderivative of a complicated rational
function to finding the antiderivatives of r(x)

p(x)e where p(x) is an irreducible polyno-

mial in R[x]. The discoverers and early students of calculus in the seventeenth and
eighteenth centuries knew partial fractions. Thus it was natural for them to want to
know, which polynomials in R[x] are irreducible?

For F any field, if r is in F then the polynomial f (x) = x− r is irreducible over
any field, so, in particular, if F is the field of real numbers.

With only a bit more effort, we can find out which monic polynomials of degree
2 with real coefficients are irreducible.

Let f (x) = x2 +bx+ c. Then f (x) is irreducible iff f (x) has no real roots, by the
Root Theorem. This occurs iff the graph of y= f (x) doesn’t cross the x-axis. To see
what this means algebraically, we complete the square:
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y= f (x) = x2 +bx+ c

= x2 +bx+b2/4 + c−b2/4

= (x+b/2)2− (b2−4c)/4.

Thus when x= −b/2, y takes on its minimum value, y=−(b2−4c)/4. Of course,
for x a large positive or a large negative real number, y is positive. So f (x) crosses
the x-axis iff b2−4c≥ 0. To sum up:

Proposition 3. If f (x) = x2 + bx+ c is a polynomial of degree 2 in R[x], then f (x)
is irreducible iff b2−4c< 0.

What about polynomials of degree >2?
If we think about the graph of y= f (x) where f (x) is a polynomial of odd degree,

then it becomes clear that every polynomial of odd degree has a real root, and there-
fore by the Root Theorem is not irreducible. If f (x) = xn+an−1xn−1 + · · ·+a1x+a0

with n odd, then for x large and positive, f (x) > 0, while for x large and negative,
f (x) < 0. Since f (x) is a continuous function of x, the Intermediate Value Theorem
implies that there is some x for which f (x) = 0, that is, f (x) has a root.

Thus if there is an irreducible polynomial f (x) of degree >2 in R[x], then the
degree of f (x) must be even.

It turns out that

There are no irreducible polynomials in R[x] of degree>2.

Several of the greatest mathematicians of the eighteenth century tried to prove
this statement, notably Euler and Lagrange, but not until Gauss, in 1801, using com-
plex numbers, was there a reasonably satisfactory proof of the result, which came to
be known as the Fundamental Theorem of Algebra.

Integrating. Assuming that the only irreducible polynomials in R[x] have degree
<2, then by partial fractions, we know that any rational function f (x)/g(x) may be
written as a polynomial q(x), plus a sum of terms of the form

a
(x−d)r (15.1)

and
px+q

(x2 +bx+ c)s
, (15.2)

where x2 +bx+ c is irreducible in R[x]. Thus to find the indefinite integral (or anti-
derivative) of a rational function f (x)/g(x), that is, to find a function H(x) so that
H ′(x) = f (x)/g(x), it suffices to find the integrals of expressions of the forms (15.1)
and (15.2).
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By completing the square and setting e2 = (4c−b2)/4, we can write the expres-
sion (15.2) as

px+q
((x+b/2)2 + e2)s

which, after the change of variables y= x+b/2, becomes

my
(y2 + e2)s

+
n

(y2 + e2)s
. (15.3)

Thus assuming that the factorization of g(x) into irreducible polynomials of degrees
1 and 2 can be found, the integral

∫ f (x)
g(x)

dx

reduces to a sum of integrals of the forms

∫
p(x)dx

where p(x) is a polynomial; ∫ a
(x−d)r dx (15.4)

∫ bx
(x2 + e2)s

dx (15.5)

and ∫ c
(x2 + e2)s

dx, (15.6)

The integral of a polynomial is very easy.
If r �= 1 the integral (15.4) equals

a
(1− r)(x−d)r−1 +C;

if r = 1 it equals a log |x−d|+C.
If we substitute x2 = u in integral (15.5), it becomes

∫ bx
(x2 + e2)s

dx=
b
2

∫ du
(u+ e2)s

,

which is of the form (15.4).
The remaining integral, integral (15.6), is somewhat more difficult. In calculus

textbooks an integral of type (15.6) is usually done by setting x = e tan(t) to trans-
form it into ∫ cesec2(t)dt

(e2 sec2(t))s
=

c
e2s−1

∫
cos2s−2(t)dt,
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which is then done by a recurrence formula, derived by using integration by parts.

D. The Complex Numbers

Before proceeding further, we pause to review the complex numbers.
A complex number is an expression of the form α = a+bi, where a and b are real

numbers and i=
√−1. If α = a+bi, a is called the real part of α , b the imaginary

part of α , and α = a+bi is the normal form of α . The set of all complex numbers
is denoted by C. The set C is a field, with addition:

(a+bi)+ (c+di)= (a+ c)+ (b+d)i

and multiplication as forced by the distributive law:

(a+bi)(c+di) = ac+(ad+bc)i+bdi2.

Using the property that i2 =−1, this becomes

= (ac−bd)+ (ad+bc)i.

Also,
0 = 0 + 0i is the zero element; and

1 = 1 + 0i is the identity.

If α = a+bi is in C, then its complex conjugate, denoted α , is α = a−bi, and we
have

αα = (a+bi)(a−bi) = a2 +b2,

which = 0 if a = b = 0 and otherwise is always a positive real number. So if α =
a+bi �= 0, then α has an inverse whose normal form is

a
a2 +b2 −

b
a2 +b2 i.

So C is a field.
We may visualize C geometrically as the set of vectors (= directed line segments)

in the plane, with α = a+ bi corresponding to the vector from the origin to the
point with coordinates (a,b). The horizonal axis is called the real axis, because
vectors on the horizontal axis correspond to real numbers, complex numbers with
imaginary part equal to zero. Similarly, the vertical axis is called the imaginary axis.
The complex conjugate α of α is the reflection of the vector α across the real axis.

The real number |α|=√
αα =

√
a2 +b2 is the length of the vector α .

A convenient way to represent elements of C is in terms of polar coordinates.
If α = a+ bi is a complex number, |α| = r is the distance from the origin to
the point (a,b) (i.e., r =

√
a2 +b2) and θ is the angle (measured counterclock-
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wise) from the positive real axis to the vector α , then a = rcosθ ,b = r sinθ , so
α = a+bi= rcosθ + ir sin θ . The angle θ is called the argument of α , and is some-
times denoted arg α . Multiplication of complex numbers when described in polar
coordinates works rather neatly, thanks to some trigonometric formulas:

(rcosθ + ir sinθ )(scosφ + issinφ)
= rs((cosθ cosφ − sinθ sinφ)+ i(cosθ sinφ + sinθ cosφ))
= rs(cos(θ + φ)+ isin(θ + φ)).

(15.7)

That is, when multiplying two complex numbers, lengths multiply and arguments
add.

If you have had some acquaintance with infinite series, then you probably know
the Taylor series for the exponential function ex = exp(x):

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .

as well as for sinx and cosx:

sinx= x− x3

3!
+
x5

5!
− x7

7!
+ . . .

and

cosx= 1− x2

2!
+
x4

4!
− x6

6!
+ . . .

all three of which converge for all real numbers x. Then cosx+ isinx has a Taylor
series

1 + ix− x2

2!
− ix3

3!
+
x4

4!
+
ix5

5!
− x6

6!
+ . . .

which would be the same as the Taylor series for the complex function eix if we
knew what eix was. So we define eix for x real by setting eix = cosx+ isinx: that
is, we define eix by replacing x by ix in the Taylor series for ex. Then an arbitrary
complex number α can be written in polar form as

α = r(cosθ + isinθ ) = reiθ .

If β is another complex number, β = seiφ , then the multiplication of formula (15.7)
above becomes

αβ = reiθ seiφ = rsei(θ+φ),

which is exactly what one would expect from the laws of exponents.
Thus, we have two ways to represent complex numbers α . There is normal form:

α = a+bi,

and polar form:
α = reiθ .
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Normal form is convenient for addition. Polar form is convenient for multiplication.
An interesting special case of multiplication is de Moivre’s formula

(cosθ + isinθ )n = (eiθ )n = ei(nθ) = cosnθ + isinnθ .

This formula is useful for understanding the roots of unity in C. If we set ζ = e2π i/n,
then ζ n = e2π i = cos2π + isin2π = 1. So ζ and all of its powers are roots of the
polynomial xn−1, hence are called n-th roots of unity. The n-th roots of unity may
be drawn as follows: take the circle of radius one with center at the origin (the “unit
circle”) and starting with the point (1, 0), mark along the circumference n equally
spaced points, each separated from the next by an arc of the circle of length 2π/n.
The vectors from the origin to these points are the n-th roots of unity in the complex
plane.

For example, the cube roots of unity in C are 1 and

e
2πi
3 = cos

2π
3

+ isin
2π
3

=−1
2

+
√

3
2
i

e
4πi
3 = cos

4π
3

+ isin
4π
3

=−1
2
−
√

3
2
i.

The fourth roots of unity are 1,eπ i/2 = i,eπ i =−1 and e3π i/2 =−i.
We note that roots of unity occur in fields and rings other than subrings of C, and

can look much different than roots of unity in C. as we observed in Section 11B.
For example, in Z/13Z, the congruence class of 5 is a fourth root of unity since
(denoting [ ]13 by [ ]):

[5]2 = [25] = [−1], [5]4 = [1],

and the congruence class of 3 is a cube root of unity:

[3]3 = [27] = [1]

in Z/13Z.

Exercises.

8. Solve αx= β in C, where:
(i) α = 3 + 2i and β = 1− i;
(ii) α = 1− i and β = 3 + 2i;
(iii) α = 3−2i and β = 3 + 2i.

9. Find the inverses in normal form of
(i) 1 + i,
(ii) 1 +

√
2i,

(iii) 1 + 6i.

10. Write in polar form:
(i) (1 + i)/2,
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(ii) 4−4i,
(iii) 8i,
(iv) −1.

11. Let b,c be real numbers with b2−4c< 0.
(i) Write down the two roots α and β of x2 + bx+ c. Show that α and β are

complex conjugates of each other.
(ii) Find a formula for the length of α in terms of the coefficients b and c.

12. Use de Moivre’s Theorem for n= 3 to write cos(3x) as a polynomial in cos(x).

13. Find all of the roots in C of:
(i) x3−1;
(ii) x8−1;
(iii) x12−1;
(iv) x3 + 1.

14. Show that complex conjugation is a one-to-one ring homomorphism from C

onto C.

15. (i) What is the complex conjugate of reiθ ?
(ii) What is the inverse of reiθ ?

16. Show that α = α if and only if α is in R.

17. Show that if f (x) is a polynomial with real coefficients and α = r+ is in C is a
root of f (x), then so is α = r− is, the complex conjugate of z.

18. Given that f (x) = x4−4x3 + 3x2 + 14x+ 26 has the root 3 + 2i, factor f into a
product of irreducible polynomials in R[x].

19. Find all roots in C of:
(i) x3−2;
(ii) x4 + 2;
(iii) x5−2i.

20. If
f (x) = xn+ α1xn−1 + α2xn−2 + . . .+ αn−1x+ αn

is a polynomial with coefficients α1, . . . ,αn in C, let

f (x) = xn+ α1xn−1 + α2xn−2 + . . .+ αn−1x+ αn.

(i) Show that g(x) = f (x) f (x) is a polynomial with real coefficients.
(ii) Show that if γ is a root of g(x), then either γ or γ is a root of f (x).

21. Let f (x) = x2−(3−2i)x+(5− i). Find a polynomial g(x) with real coefficients
such that every root of f (x) is a root of g(x).
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E. Root Formulas

Quadratic equations. The problem of finding roots of polynomials has its origins
in work of the ancient Babylonians (before 1500 B.C.), who began the study of
finding roots of quadratic and cubic polynomials, or equivalently solving quadratic
and cubic equations. “Roots” to all mathematicians before the sixteenth century
A.D. meant positive real roots, and negative coefficients were not permitted, so even
the study of quadratic equations was complicated by the need to look at several
different cases:

ax2 +bx= c,

ax2 + c= bx,

and
ax2 = bx+ c,

where a,b,c are all positive integers.
By the time of Euclid (300 B.C.) mathematicians knew how to complete the

square to solve these equations. For example, given

ax2 +bx= c,

add b2

4a to both sides to give

a(x+
b

2a
)2 = c+

b2

4a
,

from which x can be found as soon as one finds the square root of a and of
c+ b2/4a= (b2 + 4ac)/4a. The question of imaginary numbers never really arose
in this context, because a,b, and c were all chosen to be nonnegative, and all square
roots involved positive numbers. The fact that the square roots were often not natural
numbers was avoided by thinking of the problem geometrically, as the problem of
constructing a line segment whose length was x. Since square roots of positive num-
bers can be constructed by straightedge and compass techniques, and the problem
of solving the equation was reduced to that of constructing square roots of positive
quantities, the problem was solved.

Long before the Greeks, the Babylonians knew how to find square roots of posi-
tive quantities, and also knew how to solve problems such as the following:

Given the area a and the perimeter 2q of a rectangle, fin the lengths of the sides.

If we denote the sides by x and y, then we need to solve

x+ y= q
xy= a.
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This pair of equations is called the Babylonian normal equations. Here is how the
Babylonians solved them. Introduce a new unknown, z, so that

x=
q
2

+ z,y=
q
2
− z.

Then x+ y= q, clearly. Substituting into the second equation, we obtain

(
q
2

+ z)(
q
2
− z) = a,

or

z2 =
q2

4
−a.

Take the square root of the right side to find

z=

√
q2

4
−a=

√
q2−4a

2
,

then substitute to find x and y.
We can use the Babylonian normal equations to obtain the quadratic formula, as

follows:
Suppose f = x2 +bx+ c has roots r and s. Then

x2 +bx+ c= (x− r)(x− s) = x2− (r+ s)x+ rs.

Thus the roots r and s satisfy the Babylonian normal equations

r+ s=−b
rs= c

The Babylonian method then finds r and s:

r =−b
2

+ z,s=−b
2
− z

with

z=

√
b2−4c

2
.

Cubic equations. For many centuries, from the time of the Babylonians to the
sixteenth century A.D., mathematicians sought a method to find a root of the cubic
polynomial. The problem had particular import because of its close relationship with
the classical geometrical problem of trisecting an angle by ruler and compass. For
example, to trisect the angle of 60 degrees is equivalent to constructing the cosine
of 20 degrees, and since cos3θ = 4cos3 θ − 3cosθ , cos20◦ is a root of the cubic
polynomial 4x3−3x= 1/2.
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Unfortunately, the geometrical methods of the ancient Greeks were doomed to
be unsuccessful, for it turns out to be impossible to find the root of a general cubic
by straightedge and compass methods.

Some ancient Greek mathematicians, and Arabic mathematicians of the ninth
and tenth centuries, including Omar Khayyam (the poet), discovered that a root of a
cubic could be obtained geometrically as the intersection of two conics. For exam-
ple, the equation x3 + px= q (with p,q> 0) can be rewritten as x3 +a2x= a2b; then
the positive real solution x of the equation is then the x that solves the two equations
x2 = ya,y2 = x(b−x), equations of a parabola and a circle, respectively. (Of course,
a parabola cannot be constructed with straightedge and compass.) [Berggren (1986),
p. 126ff.]

But it wasn’t until the assimilation of the methods of algebra, introduced into
western Europe in the middle ages via Latin translations of Al-Khwarismi’s The
Compendious Book on Calculation by Al-jabr and Al-muqabala, written in Baghdad
around A.D. 825, that a general method was discovered for solving the cubic, by the
Italian mathematician del Ferro sometime prior to his death in 1526, and later by
Tartaglia in 1535. The method was first published by Cardano in his Ars Magna in
1545.

The solution of the cubic equation

x3 +ax= b (a,b> 0), (15.8)

by del Ferro was perhaps the first major new discovery in mathematics since 212
B.C., the time of the death of Archimedes.

The solution of (15.8) was as follows:
Set x= u+ v, and substitute into (15.8), to get

u3 + v3 + 3uv(u+ v)+a(u+ v)= b.

This can be solved if we set

u3 + v3 = b and 3uv=−a.

Cubing the second equation yields

u3 + v3 = b u3v3 =−(a3/27). (15.9)

Equations (15.9) are Babylon normal equations for u3 and v3. The solutions of (15.9)
are

u3 =
b
2

+
1
2

√
b2 +

4a3

27

and

v3 =
b
2
− 1

2

√
b2 +

4a3

27
.
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Taking the real cube roots of u3 and v3 to find u and v, we obtain x= u+v, a positive
solution to (15.8). Notice that for a,b> 0, (15.8) has a unique real root, and that root
is positive, since the function

f (x) = x3 +ax−b

has f (0) =−b< 0 and f ′(x) = 3x2 +a> 0 for all x.
Example 4. (from Cardano’s Ars Magna.) Consider

x3 + 6x= 20.

Set x= u+ v, to get

u3 + v3 + 3uv(u+ v)+ 6(u+ v)= 20.

Set u3 + v3 = 20,3uv=−6, and solve for u3 and v3 to get

u3 = 10 +
√

108,v3 = 10−
√

108.

To get the obvious solution x= 2, we note that

10 +
√

108 = 10 + 6
√

3 = (1 +
√

3)3,

so u= 1 +
√

3, and similarly, v= 1−√3, so x= u+ v= 2.

Example 5. Consider the equation

x3 + 3x= 14. (15.10)

Setting x= u+ v, as above, we obtain

u3 + v3 = 14,uv=−1,

then
u3 = 7 +

√
50

v3 = 7−
√

50.

If we choose for u and v the real cube roots of u3 and v3, then uv is a positive real
number whose cube is u3v3 =−1, hence uv=−1. Then

x= u+ v= (7 +
√

50)1/3 +(7−
√

50)1/3

is the desired solution to (15.10). (See Exercise 23, below.)

Del Ferro solved one particular case of the cubic, namely the case (15.8) above,
x3 + ax= b. The sixteenth century Italians, not recognizing negative numbers, had
to consider three different cases of the cubic:

x3 +ax= b,

x3 +b= ax,
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and
x3 = ax+b,

where in each case, a and b are >0. (The case x3 +ax+b= 0,a,b> 0, did not arise
because that equation has a unique real solution which is negative, so, from their
point of view, had no solution of interest.) Each of the three cases involved slightly
different methods of solution. Cardano, in the Ars Magna (1545) was the first to
publish solutions to all three cases.

The general cubic equation has the form

t3 +at2 +bt+ c= 0.

Cardano showed how to reduce this general equation to one of the three cases above:
eliminate the t2 term by making an appropriate substitution, namely, x = t + a/3;
then f (t) is transformed into a polynomial of the form

p(x) = x3 +qx+ r

for some q and r. Which case this represents depends on the signs of q and r.

The “casus irreducibilis”. One of the cases solved by Cardano was particularly
mysterious, namely the case where the cubic polynomial has three real roots. For
those polynomials, the solution of Cardano involves imaginary numbers.

We illustrate this situation with the equation

x3 = 7x+ 6.

We set x= u+ v in this case, to get

u3 + 3u2v+ 3uv2 + v3 = 7u+ 7v+ 6,

which is solved if we can solve

u3 + v3 = 6,3uv= 7.

We set u3 = 3 + z,v3 = 3− z, then clearly u3 + v3 = 6, while

343/27 = u3v3 = 9− z2,

hence
z2 = 9−343/27 =−100/27,

so

z=±10
√−3
9

.

Thus

u3 = 3 +
10
√−3
9

,v3 = 3− 10
√−3
9

.
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If we observe that

u3 = [
9 +

√−3
6

]3,v3 = [
9 +

√−3
6

]3,

then we can set

u=
9 +

√−3
6

,v=
9−√−3

6

and
x= u+ v= (9 +

√−3)/6 +(9−√−3)/6] = 3.

Now let

ω =
−1 +

√−3
2

,

a cube root of unity in C. Then u3 is also the cube of

(
9 +

√−3
6

)ω =
−3 + 2

√−3
3

and of

(
9 +

√−3
6

)ω2 =
−3−5

√−3
6

.

So we can let

x=
−3 + 2

√−3
3

+
−3−2

√−3
3

=−2.

or

x=
−3 + 5

√−3
6

+
−3−5

√−3
6

=−1.

Thus x=−1,2 and 3 are the solutions of the equation

x3−7x−6 = (x−3)(x+ 1)(x+ 2).

In this example, Cardano’s method finds the three real roots of the polynomial x3−
7x−6, but expresses all three as the sums of complex numbers.

Cardano’s solution of the cubic in this case is the first situation in the history of
mathematics in which complex numbers appeared in an essential way in the solution
of a “real” problem.

We can show that for an equation such as x3 = 7x+ 6, Cardano’s method must
always express the real roots as differences of non-real complex numbers. To do so,
we first obtain a criterion for a cubic to have three real roots.

Proposition 4. Let f (x) = x3 − px+ q have distinct complex roots. Then f (x) has
three real roots if and only if 27q2 < 4p3.

Proof. The derivative f ′(x) = 3x2− p. If p< 0, then 27q2 > 4p3, and also f ′(x) > 0
for all x, so f (x) has exactly one real root. If p > 0, write p = s2 with s > 0. Then
f ′(x) = 0 for x= s/

√
3 and x=−s/√3, and f has three real roots iff f (−s/√3) > 0

and f (s/
√

3) < 0. Now
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f
(−s√

3

)
=
−s3
3
√

3
+ s2

s√
3

+q=
2s3

3
√

3
+q> 0

iff

q>
−2s3

3
√

3
,

and similarly, f ( s√
3
) < 0 iff

q<
2s3

3
√

3
.

Thus f has three real roots iff

|q|< | 2s3

3
√

3
|,

which is equivalent to

q2 <
4s6

27
=

4p3

27
,

the desired inequality. ��
Proposition 5. Let f (x) = x3 − px+ q have distinct complex roots. Then f (x) has
three real roots iff Cardano’s method gives roots that are sums of non-real complex
numbers.

Proof. In Cardano’s method we set x= u+ v, then set

u3 + v3 =−q
3uv= p;

we introduce z so that
u3 =−q

2
+ z,v3 =−q

2
− z

from which it follows that

z2 =
q2

4
− p3

27
.

Cardano’s method will yield u and v non-real complex numbers if and only if z2 < 0.
As shown above, f (x) has three real roots if and only if

q2 <
4p3

27
,

exactly the condition that z2 < 0. ��
Vieta’s method. Later in the 16th century, Vieta (1593) discovered a way to use
trigonometry to find the three real roots of the polynomial

f (x) = x3− px−q
when 27q2 < 4p3. The method uses the trigonometric identity

(∗) 4cos3 θ = 3cosθ + cos3θ .
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Multiply (*) by 2m3 for any real number m to get

8m3 cos3 θ = 6m3 cosθ + 2m3 cos3θ .

If we set x= 2mcosθ , then this equation becomes

x3−3m2x−2m3 cos3θ = 0.

If we can solve the equations

p= 3m2, q= 2m3 cos3θ

for m and 3θ in terms of p and q, then f (x) will have the solutions x = 2mcosθ ,
x= 2mcos(θ +2π/3) and x= 2mcos(θ−2π/3). Now the equation q= 2m3 cos3θ
is solvable iff −1≤ q

2m3 ≤ 1, or equivalently,

q2 ≤ 4m6.

When p= 3m2, this becomes

q2 ≤ 4
p3

27
.

But f (x) has three real roots iff 27q2 < 4p3. Thus whenever f (x) has three real
roots we can solve for 3θ and find the three roots of f (x) by Vieta’s trigonometric
method. [see Hartshorne, http://math.berkeley.edu/robin/Viete/construction.html]

Quartic equations. Once having learned how to solve a cubic, it was only a short
time before Cardano’s student Ferrari (born 1522) discovered how to solve a quartic,
sometime before 1541. Here is how it is done.

Given the polynomial equation

y4 +ay3 +by2 + cy+d = 0,

we first make the substitution y = z− a/4 to get a new equation in z in which the
coefficient of z3 is 0. Thus we reduce to an equation of the form

z4 + pz2 +qz+ r= 0.

Now isolate the term z4 and put the other terms on the right side, then add to both
sides t2z2 + t4/4, to get

z4 + t2z2 + t4/4 = t2z2 + t4/4− pz2−qz− r.

The left side is a perfect square, namely (z2 + t2/2)2, and we can solve the equation
easily if we can choose t so that the right side is also a perfect square. We write the
right side as

(t2− p)z2−qz+(t4/4− r) = αz2 + β z+ γ.
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The right hand side is a perfect square if β 2 − 4αγ = 0: for if we complete the
square:

αz2 + β z+ γ = α(z2 + β z/a)+ γ

= α(z2 + β z/α + β 2/4α2)+ γ−β 2/4α

= α
(
z+

β
2α

)2

+
(

4αγ−β 2

4α

)
,

we will obtain a perfect square if we can find some t so that 4αγ−β 2 = 0.
Now the condition

4αγ−β 2 = 0

becomes
4(t2− p)(−r+ t4/4)− (−q)2 = 0

or
t6− pt4−4rt2 +(4pr−q2) = 0.

Setting t2 = x yields

x3− px2−4rx+(4pr−q2) = 0,

a cubic that we already know how to solve!
It is interesting that there is no formula to find the roots of a polynomial of de-

gree ≥5; that is, there is a polynomial of degree 5 whose roots cannot be described
by taking the coefficients and manipulating them by the usual algebraic operations
together with the operation of taking n-th roots (forming radicals) in the way we
did for polynomials of degree 2 or 3. This famous theorem is due to N.H. Abel
(1802-1829), the Norwegian mathematician for whom the term “abelian” (“abelian
group”) was named.

Exercises.

22. A man walks 6 miles in time t hours. If he walked 6 miles in time t−2 hours,
the rate would be 2 miles per hour more. Put this problem into Babylonian normal
form, then find t and the rate r = 6/t.

23. In Example 3, show that (7 +
√

50)1/3 +(7−√50)1/3 = 2 by showing that

7 +
√

50 = 7 + 5
√

2 = (1 +
√

2)3.

24. Find a solution of x3 + 3x= 5.

25. (i) Verify that x3−49x+ 120 has three real roots.
(ii) Find the three roots by Cardano’s method.
(iii) Find the three roots by Vieta’s method.
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26. Find a solution of x3 + 6x+ 8 = 6x2.

27. The equation y4 + 5y= 6 has the obvious solution y= 1. Use Ferrari’s method
to show that y= 1 is a solution.

F. The Fundamental Theorem

The Fundamental Theorem of Algebra was finally given a proof by Gauss in 1801.
By the time of Gauss it was natural to express the theorem as a result over the

complex numbers, namely:

Theorem 6 (Fundamental Theorem of Algebra). Every polynomial p(x) in C[x]
of degree≥1 has a root in C.

Of course this implies that the only irreducible polynomials in C[x] are of degree
one.

From the complex version of the fundamental theorem we can easily obtain
Euler’s conjectured real version:

Corollary 7. No polynomial f (x) in R[x] of degree>2 is irreducible in R[x].

We prove Euler’s version from Gauss’s version.

Proof of Corollary. Let f (x) in R[x] have degree >2. We will show that f (x) is not
irreducible. We can assume that f (x) has no real roots, by the Root Theorem.

Suppose α is a nonreal complex root of f (x). Let

p(x) = (x−α)(x−α),

where, if α = a+bi, then α = a−bi is the complex conjugate of α . Then

p(x) = x2−2αx+(a2 +b2)

is in R[x] (and is irreducible in R[x] since its two roots are nonreal). Now divide
f (x) by p(x) in R[x],

f (x) = p(x)q(x)+ r(x), (15.11)

with deg r(x) ≤ 1. Let r(x) = r+ sx. Evaluate equation (15.11) at x = α . We get
r(α) = 0, since α is a root of both f (x) and p(x). But then r+ sα = 0, and so unless
r = s = 0, we conclude that α is real, a contradiction. Thus p(x) divides f (x), and
since deg p(x) = 2 < deg f (x), f (x) is not irreducible. ��

Proof of the Fundamental Theorem of Algebra. The rest of this section is de-
voted to one of the half-dozen or more distinctly different proofs of the Fundamental
Theorem of Algebra. The proof we present is essentially a proof of Argand, 1814.
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It involves a minimal acquaintance with functions of two (real) variables. and may
be omitted without loss of continuity.

In the proof we shall assume that p(z) is monic, that is, has leading coefficient = 1.
Before beginning the proof we describe some facts we need which go into the

proof. Let z= x+ iy. We think of a complex number as represented in the real (x, y)-
plane by corresponding z= x+ iy with (x,y).

A polynomial p(z) in C[z] may be written as

p(z) = p(x+ iy) = p1(x,y)+ ip2(x,y),

where p1(x,y) and p2(x,y) are real polynomials in the real variables x,y. Then |p(z)|
may be written as

|p(z|=
√
p1(x,y)2 + p2(x,y)2.

Since p1(x,y) and p2(x,y) are real polynomials in x,y, p1(x,y)2 + p2(x,y)2 is a
nonnegative real-valued continuous function of x and y, and since the positive square
root

√
t of t is a continuous function of t for t > 0, |p(z)| = √

p1(x,y)2 + p2(x,y)2

is continuous as a function of x and y.
A basic fact from calculus is that a function continuous on a closed disk

D= {(x,y)|x2 + y2 ≤ R}

in the x-y-plane has a minimum value in D.
Before beginning the proof, we prove a result that yields an upper bound on the

size of the roots of a polynomial.

Proposition 8. Let f (z) = zn +an−1zn−1 + . . .+a1z+a0 in C[x]. For every M ≥ 0,
if

|z| ≥M+ 1 + |an−1|+ . . .+ |a1|+ |a0|,
then | f (z)|>M .

Proof. From the triangle inequality:

|a+b| ≤ |a|+ |b|

we obtain
|a|= |a+b−b| ≤ |a+b|+ |b|

so
|a+b| ≥ |a|− |b|. (∗)

We prove that if |z| ≥ 1, then

| f (z)| ≥ |z|− (|an−1|+ . . .+ |a1|+ |a0|)

by induction on n= deg f (z).
If deg f = 1, then f (z) = z+a0, so | f (z)| ≥ |z|− |a0| by (∗).
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If deg f = n> 1, let f (z) = z f1(z)+a0 with

f1(z) = zn−1 +an−1zn−2 + . . .+a2z+a1.

We assume by induction that if |z| ≥ 1, then

| f1(z)| ≥ |z|− (|an−1|+ . . .+ |a1|).

Then
| f (z)| = |z f1(z)+a0|

≥ |z|| f1(z)|− |a0| by (∗)
≥ | f1(z)|− |a0|
≥ |z|− |(an−1|+ . . .+ |a1|+ |a0|).

If we assume that

|z| ≥M+(1 + |an−1|+ . . .+ |a1|+ |a0|),

then
| f (z)| ≥M+ 1.

��
Corollary 9. If r is a root of f (z), then

|r|< 1 + |an−1|+ . . .+ |a1|+ |a0|.

See Section 26B for other bounds on the roots of a polynomial.
Our proof that p(z) in C[z] has a root in C has two parts.
(I) There is a point z0 in the complex plane such that |p(z0)|< |p(z)| for all z in

C (not just in some disk).
(II) If z0 is the point found in (1), where |p(z0)| is a minimum, then p(z0) = 0.

Part I. For the first part of the proof, let

p(z) = zn+an−1zn−1 + . . .+a1z+a0

in C[x]. Using Proposition 8, chooseM = 1+ |a0|. Then there is some R≥ 1 so that
for |z| > R, |p(z)| ≥M. Let D = {z : |z| < R}. From calculus it is known that there
is some z0 in D such that |p(z0)| ≤ |p(z)| for all z in D. Now, by the way that we
have chosen D, |p(z0)| ≤ |p(z)| for all z. For if z is not in D, |z| > R, so |p(z)| ≥
1 + |a0|> |a0| = |p(0)|. Since 0 is in D, |p(0)| ≥ |p(z0)|. Thus |p(z0)| < |p(z)| for
all z, in D or not. That completes the first part of the proof.

Part II. Let z0 be the point found in Part I such that |p(z0)| ≤ |p(z)| for all z. We
are going to make two changes of variables to put z0 at the origin and make our
polynomial easy to work with.
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First make a change of variables w= z− z0. Then p(z) = p(w+ z0) = q1(w) is a
polynomial in w and |q1(0)|= |p(z0)|< |p(z)|= |q1(w)| for all w: thus |q1(w)| has
its minimum at w= 0.

We want to show that q1(0) = p(z0) = 0. If that is the case, we are done. So for
the rest of the proof we assume that q1(0) = a0 �= 0; from that assumption we shall
reach a contradiction.

Assuming a0 �= 0, let q2(w) = (1/a0)q1(w). Then |q2(w)| has a minimum at
w= 0 iff q1(w) does. Now q2(w) has the form

q2(w) = 1 +bwm+b1wm+1 + . . .+bkwm+k

for somem≥ 1, where b �= 0 in C and m+k= n= the degree of q2(w) = the degree
of p(z).

Let r be an m-th root of −1/b in C. Then rmb= −1. Let w= ru, and set q(u) =
q2(ru) = q2(w). Then |q(u)| has a minimum at u = 0 iff |q2(w)| has a minimum at
w= 0. Now q(u) has the form

q(u) = 1 +b(ru)m+b1(ru)m+1 + . . .+bk(ru)m+k

= 1−um+um+1Q(u) (since rmb=−1),

where
Q(u) = c1 + c2u+ . . .+ ckuk−1

is in C[u], with c j = b jrm+ j for each j, 1≤ j ≤ k.
Note that q(0) = 1, so 1 is the minimum value of |q(u)|.
Let t be a real number >0. Setting u= t,

|Q(t)|= |c1 + c2t+ . . .+ cktk−1|
≤ |c1|+ |c2|t+ . . .+ |ck|tk−1 = Q0(t)

by the triangle inequality. This last polynomial Q0(t) is a polynomial with real co-
efficients, and is >0 when t is real and ≥0.

As t→ 0, tQ0(t)→ 0. Choose t with 0 < t < 1 so that tQ0(t) < 1.
We show that for this choice of t, setting u = t gives |q(t)|< 1 = |q(0)|, contra-

dicting the assumption that |q(u)| had its minimum at u= 0. Here is why |q(t)|< 1:

|q(t)|= |1− tm+ tm+1Q(t)|
≤ |1− tm|+ |tm+1Q(t)| (by the triangle inequality)

= (1− tm)+ tmt|Q(t)| (since 0 < t < 1)

≤ (1− tm)+ tm(tQ0(t)).

Since t is chosen so that tQ0(t) < 1, this last number is

< (1− tm)+ tm = 1 = |q(0)|.
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Since t �= 0, |q(u)| does not have its minimum at u = 0. We have reached a contra-
diction, and the proof is complete.

The above proof is given in articles by C. Fefferman (1967) and F. Terkelson
(1976), and is essentially in Chrystal (1904, Chapter XII).

While we know which polynomials in R[x] or C[x] are irreducible, it is substan-
tially harder to see how to factor or to find the roots of a polynomial we know is not
irreducible. In general, the roots must be obtained by approximation. Such problems
form an important part of the subject of numerical analysis.

Exercises.

28. Give an example where p(z) = zn +an−1zn−1 + . . .+a2z2 +a1z+a0 and |z|>
|an−1|+ . . .+ |a1|+ |a0|, but p(z) = 0.

29. Where in the proof of the fundamental theorem did we write a polynomial in a
new base?

30. Let p(z) = (1 + i)z3 +(2− i)z2 + 4z+ 2i. Write p(z) = p1(x,y)+ ip2(x,y) and
determine |p(z)|, as in the proof.

31. Let f (z) = z3 + iz2 + 8z+ 3. Find some R > 0 so that for all z with |z| > R,
| f (z)| > 20.

G. The Derivative and Multiple Roots

If you have seen any calculus at all, you have learned to find the derivative of a poly-
nomial function. If not, it doesn’t matter, because finding the derivative of a poly-
nomial is really an algebraic process that can be performed without limits, slopes of
tangent lines, or other interpretations that arise in calculus.

We are interested in finding derivatives of polynomials because the derivative of
a polynomial, together with Euclid’s algorithm, helps determine if a polynomial has
a multiple factor.

Let F be a field (not necessarily the real numbers). The differentiation operator

D : F [x]→ F[x]

is defined by the following properties:
(1) D(xn) = nxn−1 for all n≥ 0. In particular, D(1) = D(x0) = 0.
(2) D is a linear transformation. Thus for all f (x),g(x) in F [x] and a in F ,

(a) D(a f (x)) = aD( f (x)) and
(b) D( f (x)+g(x)) = D( f (x))+D(g(x)).
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Since every polynomial f (x) of degree n,

f (x) = anxn+an−1xn−1 + . . .a1x+a0,

is a unique linear combination of 1,x,x2, . . . ,xn, it follows thatD is uniquely defined
on F [x] by the two rules (1) and (2). In the language of linear algebra, {1,x, . . . ,xn}
is a basis of the F-vector space of polynomials of degree <n, and so the linear
transformationD is uniquely determined by rule (1).

For f (x) in F[x], let f ′(x) = D( f (x)) and call f ′(x) the derivative of f (x).
For example, if f (x) = x3 + 6x2−5x−10, rule (2) gives:

D(x3 + 6x2−5x−10) = D(x3)+ 6D(x2)+ (−5)D(x)+ (−10)D(1);

then applying rule (1) we get

= 3x2 + 12x−5.

There is a subtlety in rule (1), D(xn) = nxn−1. The “n” in xn is a natural number:
xn means n copies of x multiplied together. However, the coefficient “n” in nxn−1

means the image in F of the natural number n under the map from Z to F given by
n �→ 1 + 1 + . . .+ 1 (n summands) in F . Recall that if R is a commutative ring with
unity (denoted by 1), then R has characteristic zero if

n ·1 = 1 + 1 + . . .+ 1(n summands ) �= 0 for every n> 0,

and has characteristic p if

1 + 1 + . . .+ 1 (p summands) = 0.

If R has characteristic p, then nxn−1 = 0 if p divides n. For example, if F = F3, then

D(x6) = 6x5 = 0,

since the coefficient 6 really means [6]3 = 0, the zero element of F3.
From rules (1) and (2) follow the Product Rule:

D( f (x)g(x)) = f ′(x)g(x)+ f (x)g′(x)

and the Power Rule:
D( f (x)e) = e f (x)e−1 f ′(x).

Their derivations are left as exercises.
Here is our main reason for introducing the derivative of a polynomial:

Theorem 10. Let F be a f eld, f (x) be in F [x].
(a) If f (x) has a multiple factor, then f (x) and f ′(x) are not coprime.
(b) If the fie d F has characteristic zero or is a fin te fie d of characteristic p �= 0,

and f (x) and f ′(x) are not coprime, then f (x) has a multiple factor.
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Proof. By unique factorization, f (x) and f ′(x) are not coprime if and only if there
is an irreducible polynomial q(x) that is a common divisor of f (x) and f ′(x).

To prove (a), suppose f (x) has a multiple factor: f (x) = q(x)eh(x) with e > 1.
Then using the product and power rules,

f ′(x) = eq(x)e−1q′(x)h(x)+q(x)eh′(x)

= q(x)e−1[eq′(x)h(x)+q(x)h′(x)],

so that if e> 1, then q(x) is a common factor of f (x) and f ′(x), and f (x) and f ′(x)
are not coprime.

For (b), we need:

Lemma 11. If q(x) is a polynomial of degree ≥1, and q(x) divides q′(x), then
q′(x)=0.

Proof. Since degq′(x) < degq(x), the Division Theorem gives

q′(x) = 0 ·q(x)+q′(x).

Thus in order for q(x) to divide q′(x), the remainder q′(x) = 0. ��
Now suppose q(x) is an irreducible common divisor of f (x) and f ′(x). Then

f (x) = q(x)h(x) for some polynomial h(x). So by the product rule,

f ′(x) = q′(x)h(x)+q(x)h′(x).

Now q(x) divides f ′(x), so q(x) must divide q′(x)h(x). Since q(x) is irreducible,
q(x) must therefore divide q′(x) or h(x).

If q(x) divides h(x), then h(x)= q(x)k(x) for some k(x), and so f (x)= q(x)h(x)=
q(x)q(x)k(x), and q(x) is a multiple factor of f (x), proving the theorem.

We show that if q(x) is irreducible and F is as in (b), then the case, q(x) divides
q′(x), cannot occur.

If q(x) divides q′(x), then q′(x) = 0, by Lemma 11.
Suppose the polynomial q(x) has degree n≥ 1,

q(x) = anxn+an−1xn−1 + . . .+a1x+a0,

where n �= 0. Then

q′(x) = nanxn−1 +(n−1)an−1xn−2 + . . .+a1.

If F has characteristic zero, n ·an is not equal to 0 in F , and so nanxn−1 is not zero
in F[x]. Hence q′(x) is a nonzero polynomial of degree <n. Therefore q(x) cannot
divide q′(x) by Lemma 11.

If F has characteristic p for some prime p, and q(x) divides q′(x), then q′(x) = 0,
so rar = 0 in F for r = 0,1, . . . ,n. This implies that the only non-zero coefficients
of q(x) are the ar where p, the characteristic of F , divides r. Thus
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q(x) = ampxmp+a(m−1)px(m−1)p+ . . .+a2px2p+apxp+a0

for some m.
To see that such a polynomial q(x) cannot be irreducible, we observe that since

F is a finite field, each element of F is a pth power (since the Frobenius map a �→ ap
is a one-to-one ring homomorphism from F to F , hence maps onto F–see Section
12E). So in particular, each non-zero coefficient akp of q(x) can be written as akp =
cpk for some ck in F . Hence

q(x) = cpmxmp+ cpm−1x
(m−1)p+ . . .+ cp2x

2p+ cp1x
p+ cp0 .

Since (a+b)p = ap+bp for all a,b in F , we can write this as

q(x) = (cmxm+ cm−1xm−1 + . . .+ c2x2 + c1x+ c0)p.

But then q(x) is not irreducible. Thus if q(x) is an irreducible polynomial in F [x]
where F is a finite field, then q(x) does not divide q′(x). That completes the proof
of the theorem. ��
Example 6. Let f (x) = x3 + x2−8x−12 in Q[x]. Then f ′(x) = 3x2 +2x−8; doing
Euclid’s algorithm on f and f ′ gives:

f (x) = f ′(x)q(x)+ r(x)

where q(x) = 1
3x+ 1

9 and

r(x) =−50
9
x− 100

9
=
−50

9
(x+ 2).

Then r(x) divides f ′(x), in fact,

3x2 + 2x−8 = (x+ 2)(3x−4).

So x+ 2 is a greatest common divisor of f and f ′. Hence r(x) is a multiple factor
of f (x). If we divide f (x) by (x+ 2)2, we find that the quotient is x− 3, so f (x)
factors as

f (x) = (x+ 2)2(x−3).

Example 7. In F3[x], x+1 is a common factor of f (x) = x5 +2x4 +2x2 + x+1 and
f ′(x) = 2x4 + 2x3 + x+ 1. We find that f (x) = (x+ 1)2(x3 + 2x+ 1).

Using the derivative helps to simplify a polynomial f (x) over a field of character-
istic zero (like Q or R) when we wish to understand the roots of f (x). For suppose
f (x) is a polynomial of the form:

f (x) = p1(x)e1 p2(x)e2 . . . pg(x)eg ,

a product of powers of distinct irreducible polynomials. Then for each i, the highest
power of pi(x) that divides f ′(x) is pei−1

i , and so the greatest common divisor of
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f (x) and f ′(x) is

( f (x), f ′(x)) = p1(x)e1−1p2(x)e2−1 . . . pg(x)eg−1.

Hence
f (x)

( f (x), f ′(x))
= p1(x)p2(x) . . . pg(x),

the squarefree part of f (x). It is obvious that f (x) and f (x)
( f (x), f ′(x)) have the same

irreducible factors in F[x], except that in f (x)
( f (x), f ′(x)) all the irreducible factors have

multiplicity 1. In particular, if we are interested in just finding the distinct roots
of f (x), then the squarefree part of f (x) has the same roots and, if not equal to
f (x), will have lower degree than f (x). For some root-finding algorithms over the
real numbers, such as Sturm’s Theorem, knowing that a polynomial has no multiple
roots is necessary for locating the roots.

Exercises.

32. Prove the product rule: D( f · g) = fD(g) + gD( f ), as follows: First show it
in case both f (x) and g(x) are monomials, that is, when f (x) = axn,g(x) = bxm
for some a,b in F , and some natural numbers m,n. Then using that D is a linear
transformation, reduce D( f · g) for any two polynomials f and g to the case of a
product of monomials.

33. From the product rule, prove the power rule: for every natural number e≥ 1,

D( f (x)e) = e f (x)e−1 f ′(x).

34. Let f (x) = x4−3x3 + x2 + 3x−2 in Q[x]. Find the greatest common divisor of
f (x) and f ′(x). Find the squarefree part of f (x).

35. Let f (x) = x4−2x3 +3x2−2x+1 in Q[x]. Show that a greatest common divisor
of f (x) and f ′(x) is x2− x+ 1. Then factor f (x).

36. If f (x) is in Q[x], then f (x) can also be thought of as having coefficients in the
larger field C. Show that f (x) has a multiple factor in Q[x] if and only if f (x) has a
multiple factor in C[x].

37. Let f (x) = x4 + x2 + x+ 1 in F2[x]. Show that f (x) has no multiple factor.

38. Let f (x) = x4 + x2 + 1 in F2[x]. Show that f ′(x) = 0. Factor f (x).

39. In F2[x] test the following polynomials for multiple factors:
(i) x5 + x4 + x2 + x;
(ii) x7 + x6 + x5 + x3 + 1.
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40. In F2[x] test the following polynomials for multiple factors:
(i) x7 + x4 + x2 + x+ 1;
(ii) x7 + x6 + x5 + x4 + x3 + x2 + x+ 1;
(iii) x7 + x6 + x4 + x2 + x.

41. In Q[x] test f (x) = x4 +5x3 +9x2 +7x+2 for a multiple factor. Find the square-
free part of f (x).

42. Suppose f (x) is in F[x], F a field, and the characteristic of F does not divide
the degree of f (x). Show that if f (x) and f ′(x) are not coprime, f (x) must have a
multiple factor.

43. Factor x15 + 3x10 + 2x5 + 4 in F5[x].

44. Factor x5 + x4 + x3 + x2 + x+ 1 in F2[x].

45. Factor x4 + 2x3 + 2x2 + x+ 4 in F5[x].

46. Prove that f n = gn+hn has no solutions in R[x] with n> 2, f ,g,h each of degree
at least 1, and f ,g, and h pairwise coprime. (This is the analogue for polynomials of
Fermat’s Last Theorem for natural numbers. The problem can be done by looking
at the possible degrees of f ,g, and h; it may help to start out by taking the derivative
of both sides of the equation.)



Chapter 16
Polynomials in Q[x]

In this chapter we begin considering the question of how to factor polynomials with
coefficients in Q, the field of rational numbers.

Here the situation is much different from the situation over R or C. Over Q there
are many irreducible polynomials of every degree, and determining which polyno-
mials are irreducible is difficult, compared to the real or complex case. On the other
hand, finding roots (and therefore irreducible factors of degree 1) of a polynomial
in Q[x] is easy, and we will eventually give two different explicit procedures for
determining the complete factorization of any polynomial with rational coefficients
in a finite number of steps.

The starting point for all the results on Q[x] is the fact that factoring in Q[x] is
“the same” as factoring in Z[x]. The first part of this chapter is devoted to showing
that fact.

A. Gauss’s Lemma

Recall that if f (x) and g(x) are two polynomials with coefficients in a field F , and
there is some non-zero element c of F so that f (x) = cg(x), then f (x) and g(x)
are associates, or g(x) is an associate of f (x). Polynomials that are associates have
essentially the same factorizations into products of irreducible polynomials.

If f (x) = anxn + . . . + a1x+ a0 is a polynomial with rational coefficients (i.e.,
an, . . . ,a1,a0 are in Q), then we can multiply f (x) by the least common multiple of
the denominators of the coefficients, call it s, to get a polynomial g(x) = s f (x) with
integer coefficients that is an associate of f (x) in Q[x]. If we have a factorization of
f (x), multiplying one of the factors of f (x) by swill then give a factorization of g(x).
Hence the factorizations of g(x) and f (x) into products of irreducible polynomials in
Q[x] will be the same, up to associates. So in studying factorization of a polynomial
in Q[x], we can always assume that the polynomial has integer coefficients.

We can ask for more.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 339
in Mathematics, c© Springer Science+Business Media LLC 2009
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Defini ion. A polynomial f (x) with rational coefficients is primitive if f (x) has
integer coefficients and the greatest common divisor of those coefficients is 1.

Every polynomial f (x) with integer coefficients is an associate of a primitive
polynomial: simply divide f (x) by the greatest common divisor of its coefficients.
The resulting polynomial is an associate of f (x) and is primitive. Hence any poly-
nomial in Q[x] is an associate of a primitive polynomial. For example, a primitive
associate of 8x3 +( 10

3 )x+ 6
5 is

60x3 + 25x+ 9 =
(

15
2

)(
8x3 +

(
10
3

)
x+

6
5

)
.

A convenient way to characterize primitive polynomials is by looking at them
modulo p.

Let p be a prime number. Given a polynomial f (x) with integer coefficients, we
can obtain a polynomial with coefficients in Z/pZ by replacing the coefficients of
f (x) by the congruence classes of those coefficients modulo p. Let us denote by γp
the map that does this. Thus if

anxn+ . . .+a1x+a0

has integer coefficients, then

γp(anxn+ . . .+a1x+a0) = [an]xn+ . . .+[a1]x+[a0].

Then f (x) in Z[x] is primitive if and only if no prime number divides all the coeffi-
cients of f (x), if and only if for every prime p, γp( f (x)) �= 0. For example,

γ2(60x3 + 25x+ 9) = x+[1]2.

Notice that the map γp : Z[x]−→ (Z/pZ)[x] is a homomorphism: in particular,

γp( f (x)) · γp(g(x)) = γp( f (x)g(x))

for all polynomials f (x), g(x) in Z[x].
Using the map γp we can easily prove:

Proposition 1. The product of two primitive polynomials is again a primitive poly-
nomial.

Proof. Suppose f (x) and g(x) are primitive. Then for every prime p, γp( f (x)) �= 0,
and γp(g(x)) �= 0 in (Z/pZ)[x]. But (Z/pZ)[x] has no zero divisors since Z/pZ is
a field. So γp( f (x)g(x)) = γp( f (x)) · γp(g(x)) �= 0. Since this is true for every prime
p, therefore f (x)g(x) is primitive. ��

We also need:

Lemma 2. If g(x) is primitive, f (x) is in Z[x], and f (x) = ag(x) for some rational
number a, then a is in Z. If f (x) is also primitive, then a= 1 or −1.
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Proof. Write a= r/s with r,s coprime integers. Then

s f (x) = rg(x).

Since r and s are coprime, s must divide all the coefficients of g(x). But g(x) is
primitive, so s = 1 or −1. If also f (x) is primitive, then by the same argument, r
must be 1 or −1. Hence a= 1 or −1. ��

The main result of this section is the very useful

Theorem 3 (Gauss’s Lemma). Let f (x) be a polynomial with integer coeff cients.
Suppose f (x) = a(x)b(x) with a(x) and b(x) in Q[x]. Then there are polynomials
a1(x) and b1(x) in Z[x], associates of a(x) and b(x), respectively, so that f (x) =
a1(x)b1(x).

Gauss’s Lemma means that if we wish to find a factorization of a polynomial with
integer coefficients, we need only look for factors that have integer coefficients.

Example 1. Consider the polynomial

x4−3x2 + x+ 5.

Suppose we seek a factorization into the product of two polynomials of degree 2:

x4−3x2 + x+ 5 = (x2 +ax+b)(x2 + cx+d).

If there is such a factorization in Q[x], there is one in which the coefficients a,b,c,d
are integers, according to Gauss’s Lemma. We multiply out the right side and equate
coefficients of the various powers of x. Comparing coefficients of x3, we see that
c=−a; then comparing coefficients of x2,x and 1 yields

−3 = b+d−a2,

1 = ad−ab= a(d−b),
5 = bd.

Since a,b and d are integers, the second equation yields d−b= 1 or −1, so b and d
differ by 1; while the third equation yields b =±1, d = ±5 or b= ±5,d = ±1. So
there is no factorization of the desired form.

If we had been unable to assume that a,b and d were integers, we would have
had infinitely many possibilities for a,b and d, and showing that the equations had
no solution for every possible choice of a,b and d would have been more difficult.

Proof of Gauss’s Lemma. Let f (x) be in Z[x], and suppose f (x) = a(x)b(x), where
a(x) and b(x) are in Q[x] . Let a1(x) and b1(x) be primitive polynomials in Z[x] that
are associates of a(x) and b(x), respectively, so that

a(x) = ca1(x), b(x) = db1(x)
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with c,d some rational numbers. Then

f (x) = cda1(x)b1(x).

Now a1(x)b1(x) is primitive, by Proposition 1, and so cd is in Z, by Lemma 2.
Hence

f (x) = (cda1(x))b1(x),

a factorization in Z[x] where cda1(x) and b1(x) are associates of a(x) and b(x),
respectively. That completes the proof. ��

Corollary 4. If f (x) is in Z[x] and f (x) = g(x)h(x) in Q[x] with g(x) primitive, then
h(x) is in Z[x].

Proof. By Gauss’s Lemma, f (x) = cg(x) ·dh(x) for some c,d in Q with cd = 1 and
cg(x),dh(x) in Z[x]. But since cg(x) is in Z[x] and g(x) is primitive, c must be in Z

by Lemma 2. Hence h(x) = cdh(x) = c(dh(x)) is in Z[x]. ��
Applications of Gauss’s Lemma. Here is a well-known criterion, due to Descartes
(1637), for finding roots of a polynomial with integer coefficients:

Theorem 5 (Descartes’ Rational Root Theorem). Let

f (x) = anxn+an−1xn−1 + . . .+a1x+a0

be in Z[x]. Suppose r/s is a rational root of f (x) where r,s are in Z with (r,s) = 1.
Then s divides an and r divides a0.

Proof. Since r/s is a root of f (x), we can write f (x) = (sx− r)g(x) for some poly-
nomial

g(x) = bn−1xn−1 + . . .+b1x+b0

in Q[x]. By Corollary 4, since sx− r is primitive, g(x) is in Z[x], and clearly bn−1s=
an,b0r = a0. ��
Here is an alternate proof:

Proof. Suppose

0 = f (
r
s
) = an(

r
s
)n+an−1

r
s
+ · · ·+a1

r
s
+a0.

Multiply through by sn, to get

0 = sn f (
r
s
) = anrn+an−1rn−1s+ · · ·+a1(rsn−1)+a0sn.

Then s must divide anrn, and since r and s are coprime, s must therefore divide an.
Similarly, r must divide a0sn; since r and s are coprime, r must divide a0. ��
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Since an and a0 each have only a finite number of divisors, the theorem implies
that finding the roots of a polynomial with integer coefficients is reduced to testing
a finite collection of rational numbers r/s depending on an and a0 (see Exercise 12).

Example 2. The only possible roots of the polynomial

x4 + 8x3 + 15x2−6x−9

are x= 1,−1,3,−3,9, and −9, the six divisors of 9.

Example 3. Consider finding a root of the polynomial

p(x) = x5−141x4 + 142x3−281x2 + 176x−5040

Since 5040 = 24 ·32 ·5 ·7, it has 120 (positive or negative) divisors, and hence, using
Descartes’ criterion, there are 120 candidates for a possible root of p(x). It would
be helpful to find a way to reduce the number of possibilities. One way is to get
a bound B on the size of the roots of p(x) that is smaller than B = 5040. We will
consider that question in Chapter 26. (It turns out that 140 is a root of p(x).)

Here is an example that illustrates a way to improve the effectiveness of Descartes’
criterion.

Example 4. Consider finding roots of

f (x) = x4 + 5x3−9x2−14x+ 24.

Since 24 has 16 divisors we would need to check as many as 16 numbers as possible
roots of f (x). But notice that f (1) = 7, which has only four divisors. If b is a root of
f (x), then since f (x) is monic, b must be in Z, and so x−b is primitive. Therefore
x−b divides f (x) in Z[x], and so

1−b divides f (1) = 7.

Thus the possible roots b of f (x) must satisfy

1−b= 1, or

1−b=−1, or

1−b= 7, or

1−b=−7.

That is, b= 0,2,−6 or 8. Testing those four possibilities, we find that f (−6) = 0.

Before leaving this section we note that, if we wish, we can restrict our factor-
izations of polynomials in Q[x] to monic polynomials with integer coefficients. For
suppose given a polynomial

f (x) = anxn+ . . .+a1x+a0
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with integer coefficients. If we set x= y/an, we get

g(y) = an
yn

ann
+an−1

yn−1

an−1
n

+ . . .+a1
y
an

+a0.

Multiplying g(y) by an−1
n yields

h(y) = yn+an−1yn−1 +an−2anyn−2 + . . .+a1an−2
n y+a0an−1

n ,

a monic polynomial with integer coefficients. Any factorization of f (x) would cor-
respond to a factorization of g(y), and hence of h(y), and conversely. In particular,
if y= r is a root of h(y), then x= r/an is a root of f (x).

Exercises.

1. Find a primitive polynomial which is an associate of
(i) f (x) = (4/3)x4 + 6x3 +(2/9)x2 +(9/2)x+ 18
(ii) f (x) = 36

35x
3 + 24

5 x
2 + 180

7 x+ 12.

2. Try to find a factorization of x4− 3x2 + 9 into a product of two polynomials of
degree 2 in Z[x].

3. (i) Show: if f (x) in Z[x] is monic, it is primitive.
(ii) Show that if f (x) in Z[x] is monic and factors as f (x) = g(x)h(x) where g(x)

and h(x) are in Q[x], then g(x) and h(x) are associates of monic polynomials g1(x)
and h1(x) in Z[x] such that f (x) = g1(x)h1(x).

4. Show the converse of Proposition 1: if f (x) and g(x) are in Z[x] and f (x)g(x) is
primitive, then f (x) and g(x) are both primitive.

5. Show that if f (x) and g(x) are primitive in Z[x] and f (x) divides g(x) in Q[x],
then the quotient is primitive in Z[x]. (Use the previous exercise.)

6. (i) Show that if f (x) is monic in Z[x] and f (x) = g(x)h(x) in Q[x] where g(x)
and h(x) are monic, then g(x) and h(x) are in Z[x].

(ii) Show that if f (x) is monic in Z[x] and f factors into a product of monic
irreducible polynomials in Q[x], then all of the monic irreducible factors of f are in
Z[x].

7. Show that if the greatest common divisor of an, . . . ,a1,a0 is d, then the greatest
common divisor of an/d, . . . ,a1/d,a0/d is 1.

8. If f and g are monic polynomials in Z[x], does their (monic) greatest common
divisor in Q[x] necessarily have coefficients in Z?
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9. Find all rational roots of:
(i) x3− x+ 1;
(ii) x3 + x2 + x+ 1;
(iii) x3− x2−3x+ 6;
(iv) x4 + 7x3 + 11x2 + 6x+ 5;
(v) x4− x3 + 5x2 + x−6.

10. Find all rational roots of:
(i) 6x3 + x2−5x−2;
(ii) 2x2−3x−4;
(iii) 3x3 + 7x2−7x−3.

11. (i) For the polynomial f (x) = 6x3 + x2 − 5x− 2, find the roots of the monic
polynomial h(y) = 62 f ( y6 ), then find the roots of f (x).

(ii) Repeat with f (x) = 2x2−3x−4;
(iii) Repeat with f (x) = 3x3 + 7x2−7x−3.

12. Observe that if f (x) = x4 +15x3 +72x2 +137x+174, then f (−7) =−1. What
are the possible roots of f (x)?

13. Let d(n) be the number of positive divisors of n≥ 1 (including 1 and n).
(i) Show that d(a)d(b) = d(ab) if a and b are coprime.
(ii) Find d(pm) for p prime. Find d(n) for any n.
(iii) Show that if f (x) is a monic polynomial in Z[x] and f (0) = n, then there are

2d(n) potential roots of f (x) according to Theorem 5.
(iv) Find the comparable number if f (x) is not monic, but has leading coefficient

a0 and f (0) = an.

14. Find a polynomial f (x) whose constant term f (0) has at least 12 divisors, but
such that f (a) = 1 for some a �= 0.

B. Testing for Irreducibility

How do we decide if a polynomial f (x) in Q[x] is irreducible? Suppose f (x) has
degree d > 1.

One way is to reduce modulo m for some number m> 1.
Let γm : Z[x]→ (Z/mZ)[x] be the homomorphism which replaces each coefficient

of f (x) by its congruence class modulo m. Then if the leading coefficient of f (x) is
a unit modulo m, then γm( f (x)) will also have degree d.

Suppose f (x) = a(x)b(x) where a(x) and b(x) have degrees r and s, respectively,
where r+ s = d, and the leading coefficient of f (x) is a unit modulo m. Then the
leading coefficients of a(x) and b(x) must also be units modulo m, and so

γm( f (x)) = γm(a(x)b(x)) = γm(a(x))γm(b(x)).
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is a factorization of f (x) modulo m into polynomials of the same degrees r and s.
This observation implies.

Proposition 6. Let f (x) be in Z[x]. If for some number m≥ 2, the leading coeffic ent
of f (x) is a unit modulo m and γm( f (x)) is irreducible for some m, then f (x) is
irreducible.

In particular, this last result is true when f is monic.

Example 5. Let f (x) = x5−4x4 +2x3 + x2 +18x+3. Then γ2( f (x)) = x5 + x2 +1,
which is easily shown to be irreducible in F2[x]. So f (x) is irreducible in Q[x].

Example 6. Let f (x) = x5 +4x4+2x3+3x2−x+5. Then γ2( f (x)) = x5 +x2+x+1,
which is reducible since 1 is a root in F2; however, γ3( f (x)) = x5 +x4 +2x3 +2x+2
is irreducible in F3[x](see Exercise 19), and so f (x) is irreducible in Q[x].

This last example shows that a polynomial in Q[x] can be irreducible but factor
modulo m for some modulus m. In fact, there are monic irreducible polynomials in
Z[x] that factor modulo p for every prime p–see Section C, below.

Example 7. Let f (x) = 3x4 + 6x3 + 12x2 + 13x+ 31. Modulo 3, f (x) = x+ 1, a
polynomial of degree <4, so reducing f (x) modulo 3 is not helpful. But γ2( f (x)) =
x4 + x+ 1, an irreducible polynomial of degree 4 in F2[x]. So f (x) is irreducible in
Q[x].

Example 8. Let f (x) = (2x+ 1)(x2− x+ 1) = 2x3− x2 + x+ 1, obviously not irre-
ducible in Q[x]. But γ2( f (x)) = x2 +x+1 is irreducible in Z/2Z[x]. This shows that
the condition on the leading coefficient of f (x) is necessary for Proposition 6 to be
valid.

Proposition 6 implies that if for some degree d and somem there is an irreducible
polynomial h(x) of degree d with coefficients in Z/mZ, then there are infinitely
many primitive polynomials of degree d with coefficients in Z that are irreducible
in Q[x], namely, all polynomials of degree d in Z[x] that reduce modulo m to h(x).

It is known (see Chapter 27, Proposition 8) that there are irreducible polynomials
of every degree >0 in Z/pZ[x] for every prime p, and hence there are infinitely
many irreducible polynomials of every degree >0 in Q[x]. But we can also show
that fact directly, using:

Theorem 7 (Eisenstein’s Irreducibility Criterion). Suppose f (x) = anxn + . . . +
a1x+ a0 is in Z[x] and there exists a prime p such that p does not divide an, p
does divide an−1,an−2, . . . ,a1,a0, but p2 does not divide a0. Then f (x) is irreducible
in Q[x].

Proof. Given the hypotheses on f (x), if γp : Z[x] → Z/pZ[x] is the “reduce the
coefficients mod p” map, then γp( f (x)) = [an]xn, where [an] �= [0] in Z/pZ. Assume
n≥ 2.

Suppose f (x) = g(x)h(x), where degg(x) = r≥ 1, degh(x)= s≥ 1, and r+s= n.
Then γp( f (x)) = γp(g(x))γp(h(x)) in Z/pZ[x]. By unique factorization in Z/pZ[x],
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we must have γp(g(x)) = [b]xr and γp(h(x)) = [c]xs, where bc≡ an (mod p). Hence
γp(g(0)) = γp(h(0)) = 0; that is, g(0)≡ 0 (mod p) and h(0)≡ 0 (mod p). Then p
divides g(0) and p divides h(0). But then p2 divides g(0)h(0) = f (0) = a0, contra-
dicting the hypothesis on a0. Thus f (x) must be irreducible. ��
Example 9. It is easy to construct examples where Eisenstein’s criterion applies.
The simplest are radical polynomials

xn−b

where b has a prime factor p such that p2 does not divide b, such as

x7−12

or
x4−45.

Example 10. Let p be an odd prime, and let

Φ(x) = xp1 + xp−2 + . . .+ x+ 1 =
xp−1
x−1

.

Then setting x= y+ 1,

q(y) = φ(x+ 1) =
(y+ 1)p−1

y

= yp−1 +
(
p
1

)
yp−2 +

(
p
2

)
yp−3 + . . .+

(
p

p−2

)
y+

(
p

p−1

)
.

Then q(y) is irreducible by Eisenstein’s criterion, since p divides
(p
k
)

for 1 ≤ k ≤
p−1, and

( p
p−1

)
= p is not divisible by p2. Hence Φ(x) is irreducible.

We observe that Φ(x) has as roots all of the p-th roots of unity in the complex
numbers other than 1. Since Φ(x) is irreducible, Φ(x) is the polynomial of smallest
degree whose roots are the p-th roots of unity.

Chebyshev polynomials. For each n ≥ 1, the Chebyshev polynomial of the first
kind Tn(x) is defined by Tn(cosθ ) = cos(nθ ). For example,

T1(x) = x since cos(θ ) = cos(θ );

T2(x) = 2x2−1 since 2cos2(θ )−1 = cos(2θ );

T3(x) = 4x3−3x since 4cos3(θ )−3cos(θ ) = cos(3θ );

etc. The Chebyshev polynomials are polynomials in Z[x].
Vieta used the formula T3(cos(θ )) = cos(3θ ) to help solve cubic polynomials

with three real roots (see Section 15E).
For p prime, we can show that Tp(x) = xQ(x) where Q(x) is irreducible in Q[x],

using Eisenstein’s criterion with the prime p.
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To do so, we first obtain a formula for Tn(x) by using DeMoivre’s formula for θ :

(cos(θ )+ isin(θ ))n = cos(nθ )+ isin(nθ )

and for −θ :

(cos(−θ )+ isin(−θ ))n = cos(−nθ )+ isin(−nθ ),

which becomes

(cos(θ )− isin(θ ))n = cos(nθ )− isin(nθ ).

Adding the DeMoivre equations for θ and −θ gives

2cos(nθ ) = (cos(θ )+ isin(θ ))n+(cos(θ )− isin(θ ))n.

If we set x= cos(θ ) and

isin(θ ) =
√

cos2(θ )−1 =
√
x2−1

for −1≤ x≤ 1, we have

Tn(x) =
(x+

√
x2−1)n+(x−√x2−1)n

2
.

This formula for Tn(x) yields

Theorem 8. Assume n is odd. Then
(i) Tn(0) = 0;
(ii) The leading coeffic ent of Tn(x) is 2n−1;
(iii) The coeff cient of x in Tn(x) is (−1)

n−1
2 n;

(iv) If p is an odd prime, then Tp(x)≡ xp (mod p)

Proof. For n odd, expanding the expression for Tn(x) using the Binomial Theorem
gives

Tn(x) =
(x+

√
x2−1)n+(x−√x2−1)n

2

=
1
2

(
n

∑
k=0

(
n
k

)
xn−k(

√
x2−1)k +

n

∑
k=0

(
n
k

)
xn−k(−1)k(

√
x2−1)k

)
.

The terms for k odd cancel, and the k even terms are equal, so we have

Tn(x) =
(n−1)/2

∑
l=0

(
n
2l

)
xn−2l(x2−1)l.

Since n−2l is odd for all l, Tn(0) = 0, proving (i).
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The coefficient of xn is then
n−1

2

∑
l=0

(
n
2l

)
.

Since n is odd,

2

n−1
2

∑
l=0

(
n
2l

)
=

n−1
2

∑
l=0

(
n
2l

)
+

n−1
2

∑
l=0

(
n

n−2l

)

=
n

∑
k=0

(
n
k

)
= (1 + 1)n = 2n.

So the coefficient of xn in Tn(x) is 2n−1, proving (ii).
In the expression for Tn(x), the coefficient of x only arises for l = n−1

2 , with
coefficient (

n
n−1

)
(−1)

n−1
2 = (−1)

n−1
2 n,

proving (iii).
Finally, if n= p, an odd prime, then

( p
2l
)≡ 0 (mod p) for all l > 0, so

Tp(x) =
(n−1)/2

∑
l=0

(
p
2l

)
xp−2l(x2−1)l

≡ xp (mod p),

proving (iv). ��
Now we get our claimed result:

Theorem 9. For each odd prime p, Tp(x) = xQp(x) where Qp(x) is irreducible.

Proof. Tp(x) = xQp(x) by the Root Theorem, since Tp(0) = 0. Since Tp(x) ≡ xp
(mod p), it is clear that Qp(x) ≡ xp−1 (mod p), and so the prime p divides every
coefficient of Qp(x) except the leading coefficient. But the constant term of Qp(x)
is (−1)(p−1)/2p by part (iii) of the Theorem. So Qp(x) satisfies the conditions of
Eisenstein’s Irreducibility Criterion. ��

In Chapters 17 and 26 we shall describe two different techniques for systemat-
ically factoring a polynomial f (x) in Q[x]. One uses an analogue of the Chinese
remainder theorem for polynomials. The other involves the idea of factoring f (x)
modulo m and then seeing if any such factorization lifts to a possible factorization
in Q[x].

Exercises.

15. Prove that for any f (x) in Z[x] and any c in Z, evaluating f (x) at x= c and then
reducing modulo p, is the same as evaluating γp( f (x)) at x = [c] in Z/pZ. Where
was this fact implicitly used in the proof of Eisenstein’s criterion?
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16. Give an example of a monic polynomial f (x) in Z[x] that is irreducible in Q[x]
but factors modulo 2 and modulo 3.

17. Adapt Eisenstein’s criterion to prove that 2x4−8x2 + 3 is irreducible in Q[x].

18. Show that f (x) = x5 + x2 + 1 is irreducible in F2[x] as follows:
(i) Show that if f (x) is not irreducible, then it has an irreducible factor of degree

1 or degree 2.
(ii) Show that f (x) has no factors of degree 1 (check roots).
(iii) Show that f (x) is not divisible by x2 +x+1, hence has no irreducible factors

of degree 2.

19. Show that f (x) = x5 + x4 + 2x3 + 2x+ 2 is irreducible in F3[x] as follows:
(i) Show that f (x) has no roots in F3.
(ii) Suppose f (x) = (ax2 + bx+ c)(dx3 + ex2 + f x+ g), then you can assume

a= d = 1 (why); multiply the right side together, collect coefficients of x4,x3,x2,x,1
together and equate them to the coefficients of f (x) to get five equations in the five
unknowns b,c,e, f ,g. Show that the system of five equations has no solution in F3.

20. (i) Suppose f (x), monic in Z[x], factors modulo 3 into the product of two ir-
reducible polynomials of degree 2, and factors modulo 2 into the product of an
irreducible polynomial of degree 3 and a polynomial of degree 1. Show that f (x) is
irreducible in Q[x].

(ii) Illustrate part (i) with f (x) = x4 + 5x3 + 3x2 + 2x+ 5.

C. Polynomials that Factor Modulo Every Prime

In the last section, it was claimed that there are polynomials in Z[x] that factor
modulo p for every prime p but are irreducible in Q[x]. In this section we describe
a class of such examples. Their existence will be of interest in Section 27B.

Our examples are polynomials of the form x4 +ax2 +b2 for integers a and b.
We first show that these polynomials factor modulo any prime. Then we will find

conditions on a and b so that the polynomials are irreducible in Q[x].

Proposition 10. For all integers a, b and all primes p, the polynomial f (x) = x4 +
ax2 +b2 factors modulo p.

Proof. First suppose p= 2. Then f (x) is congruent modulo 2 to one of the following
polynomials:

x4 + x2 + 1 = (x2 + x+ 1)2

x4 + 1 = (x2 + 1)2

x4 + x2 = x2(x2 + 1) = (x2 + x)2

x4.

Each of these is reducible modulo 2.



16 Polynomials in Q[x] 351

Now suppose p is an odd prime. Choose s so that a≡ 2s (mod p). Then

f (x) ≡ x4 + 2sx2 +b2 (mod p),

and we may write this polynomial in three different ways:

x4 + 2sx2 +b2 = (x2 + s)2− (s2−b2)

= (x2 +b)2− (2b−2s)x2

= (x2−b)2− (−2b−2s)x2

Then f (x) will be the difference of two squares modulo p, and will therefore factor
modulo p, if one of s2−b2,2b−2s, or −2b−2s is a square modulo p.

From Example 24 of Section 11G, we know that in the groupUp of units modulo
p, the product of two non-squares is a square. Thus, suppose 2b−2s and −2b−2s
are nonsquares modulo p. Then their product (2s)2− (2b)2 = 4(s2−b2) is a square.
Since 4 is a square, therefore s2−b2 is a square modulo p. ��

Now we prove:

Proposition 11. For a,b in Z,

f (x) = x4 +ax2 +b2

factors in Q[x] if and only if at least one of a2−4b2, 2b−a and−2b−a is a square
in Z.

Proof. If a2−4b= c2 is a square, then f (x) factors as

f (x) = (x2− a
2
)2− (

c
2
)2 = (x2− (

a
2
− c

2
))(x2− (

a
2

+
c
2
)).

If 2b−a= r2 is a square, then f (x) factors as

f (x) = (x2 + rx+b)(x2− rx+b).

If −2b−a= r2 is a square, then f (x) factors as

f (x) = (x2 + rx−b)(x2− rx−b).

Conversely, we will show that if f (x) factors, then one of a2 − 4b, 2b− a and
−2b−a is a square in Z.

If f (x) factors, then it has a factor of degree 1 or degree 2. If f (x) has a factor of
degree 1, then f (x) has a root, m.

If m= 0 then b= 0 and a2−4b is a square.
Ifm �= 0 and f (m) = 0, then f (−m) = 0. Thus x−m and x+m divide f (x), hence

x2−m2 divides f (x). Thus if f (x) has a factor of degree 1 other than x, then f (x)
has a factor of degree 2.
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Suppose, then, that f (x) has a factor of degree 2. Then f (x) factors in Z[x] as

f (x) = (x2 + rx+ s)(x2 + tx+u)

for some integers r,s,t,u. Equating coefficients of x3 yields t = −r. Then equating
coefficients of 1,x,x2 yields the equations:

us= b2

r(u− s) = 0

s+u= r2 +a.

If r = 0, then a2−4b2 = (s+u)2−4su= (s−u)2, a square.
If r �= 0, then u= s, hence s2 = b2. Hence if u= s= b, then 2b−a= r2, a square,

while if u= s=−b, then −2b−a= r2, a square.
Thus any factorization of f (x) implies that one of a2−4b, 2b−a and −2b−a is

a square. ��
Corollary 12. Suppose 2b> a> 0. Then f (x) = x4 +ax2 +b2 is irreducible inQ[x]
if and only if 2b−a is not a square in Z.

Proof. If 2b > a > 0, then a2− 4b2 < 0 and −2b− a< 0, so cannot be squares in
Z. The corollary then follows immediately from the last theorem. ��

Letting 2b−a= c we can rephrase the last corollary as:

Corollary 13. Suppose 0 < c< 2b. Then f (x) = x4 +(2b−c)x2 +b2 factors inQ[x]
if and only if c is a square in Z.

This makes finding examples especially easy. For example, if we let b= 20, then

f (x) = x4 +(40− c)x2 + 400

is irreducible in Q[x] for all c with 0 < c< 40 except for c= 1,4,9,16,25 and 36.
For an interesting article on irreducibility and factorization modulo m of bi-

quadratic polynomials such as these, see Driver, Leonard and Williams [Monthly
112 (2005), 876-890].

Exercises.

21. Show that x4− x2 + 1 is irreducible in Q[x].

22. Show that x4 + 1 is irreducible in Q[x].

23. Show that x4 + 2x2 + 4 is irreducible in Q[x].

24. Show that if s,b are numbers such that 0 < b < s and s2−b2 is not a square in
Z, then x4 + 2sx2 +b2 is irreducible in Q[x].
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25. Show that if s,b are numbers such that 0 < s< b and 2b−2s is not a square in
Z, then x4 + 2sx2 +b2 is irreducible in Q[x].

26. Can Eisenstein’s irreducibility criterion be applied to any of the examples of
Proposition 10?

27. Show that x4−15x2 +1 factors into two coprime polynomials of degree 2 mod-
ulo every odd prime, and also factors modulo 16. What about modulo 32?





Chapter 17
Congruences and the Chinese
Remainder Theorem

We develop the idea of congruence for polynomials with coefficients in a field. The
properties of congruence for polynomials are very similar to those for congruence
for integers, as presented in Chapter 5.

A. Congruence Modulo a Polynomial

Here is the basic definition:

Defini ion. Let F be a field, m a polynomial with coefficients in F . For f and g in
F [x], say that f is congruent to g modulo m, written

f ≡ g (mod m)

if p divides f −g, or equivalently, if f = g+hm for some polynomial h in F [x].

Basic properties. Congruence modulo m in F [x] has identical properties to con-
gruence modulo m in the integers, where m is any natural number. In particular, the
arithmetic properties of congruence hold:

Proposition 1. For f , f1, f2,g,g1,g2,k in F [x],
If f ≡ g (mod m), then k f ≡ kg (mod m);
If f1 ≡ g1 (mod m) and f2 ≡ g2 (mod m), then f1 + f2 ≡ g1 +g2 (mod m), and

f1 f2 ≡ g1g2 (mod m);
If f ≡ g (mod m) then f n ≡ gn (mod m) for every number n≥ 0.

Proof. All of the proofs are straightforward and essentially identical to those for
integers. We illustrate this by proving the multiplication property.

If f1 ≡ g1 (mod m), there is a polynomial h1 so that f1 = g1 +mh1. Similarly, if
f2 ≡ g2 (mod m), there is a polynomial h2 so that f2 = g2 +mh2. Then

f1 f2 = (g1 +mh1)(g2 +mh2)
= g1g2 +m(h1g2 +g1h2 +mh1h2).

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 355
in Mathematics, c© Springer Science+Business Media LLC 2009
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Hence
f1 f2 ≡ g1g2 (mod m).

��
As with congruence in Z, congruence modulo a polynomial m is an equivalence

relation: for all f ,g,h in F [x],

(R) (reflexive) f ≡ f (mod m),

(S) (symmetric) If f ≡ g (mod m) then g≡ f (mod m),

(T) (transitive) If f ≡ g (mod m) and g≡ h (mod m), then f ≡ h (mod m).

These properties make congruence modulo m much like equality.
As with congruence in Z, the only property of equality that requires some care is

cancellation. The cancellation property of equality:

if ra= rb and r �= 0, then a= b

becomes, for congruence in Z:

if ra≡ rb (mod m) and r and m are coprime, then a≡ b (mod m).

The same result is true for congruence with polynomials:

Proposition 2. Let f ,g,h,m be polynomials with coeffic ents in a fie d, and assume
m �= 0. If

h f ≡ hg (mod m)

and h and m are coprime, then

f ≡ g (mod m)

Proof. The hypothesis is equivalent to

m divides h( f −g).

Since (m,h) = 1, it follows from Bezout’s Identity (Section 14B) that m divides
f −g, and hence

f ≡ g (mod m).

��
Least degree residues. The first proposition in Chapter 5 showed that every num-
ber is congruent modulo m to a number in the set {0,1, . . . ,m− 1}. Here is the
corresponding result for polynomials:
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Proposition 3. Let m be a polynomial of degree ≥0. If f is any polynomial in F [x],
then f is congruent modulo m to a unique polynomial of degree <deg(m), called
the residue of least degree modulo m.

Proof. Apply the Division Theorem: write f =mq+ r with deg(r) < deg(m). Then
f ≡ r (mod m).

The residue of least degree r is unique by the uniqueness of the remainder in the
Division Theorem. ��
Proposition 4. Two polynomials a and b are congruent modulo m if and only if their
residues of least degree modulo m are equal.

Proof. Using the Division Theorem, let a=mq+ r, b=ms+ t, where r,t both have
degree less than the degree of m.

If r = t, then a≡ b (mod m) by transitivity and symmetry.
Conversely, if a≡ b (mod m), then r≡ t (mod m), again by symmetry and tran-

sitivity of congruence. But if r ≡ t (mod m), then m divides r− t. The polynomial
r− t has degree less than the degree of m, so if m divides r− t, then r− t = 0. Hence
r = t. ��
Proposition 5. For any fie d F, any element r of F and any f (x) in F[x],

f (x) ≡ f (r) (mod x− r).
Proof. Apply the Remainder Theorem: if we divide f (x by x− r, the remainder is
f (r):

f (x) = (x− r)q(x)+ f (r)
where q(x) is the quotient. Hence f (x) ≡ f (r) (mod x− r). ��
Example 1. Letm(x) = x2 +x+1 in F3[x]. When we divide f (x) = x5 +2x3 +x2 +1
by m(x), we find that

f (x) = m(x)(x2 + 2x+ 2)+ (x+ 1).

So x+ 1 is the residue of least degree of f (x) modulo m(x).

An alternative way to see Proposition 5 is to observe that x− r ≡ 0 (mod x− r),
so that

x≡ r (mod x− r).
Then

xk ≡ rk (mod x− r)
for all k > 1. Thus we may replace xk by rk everywhere in f (x) and get an element
of F that is congruent to f (x) modulo x− r: if

f (x) = anxn+an−1xn−1 + . . .+a1x+a0,

then
f (x) ≡ anrn+an−1rn−1 + . . .+a1r+a0 (mod x− r)
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and the right side of this last congruence is f (r). This method is analogous to “cast-
ing out 9’s” or “casting out 11’s” with numbers: think of a number such as 365 as a
polynomial evaluated at 10:

365 = 3 ·102 + 6 ·10 + 5,

then since 10≡−1 (mod 11), we can replace 10r by (−1)r modulo 11 to get

365≡ (−1)23 +(−1)6 + 5≡ 3−6 + 5≡ 2 (mod 11).

This idea extends well to moduli of degree >1.

Example 2. In F2[x], let m(x) = x3 + x+ 1. Then every polynomial f (x) in F2[x] is
congruent modulo m(x) to a polynomial of degree <2 by Proposition 3. We find the
least degree residues of xn for every n≥ 3. Since

x3 + x+ 1≡ 0 (mod m(x)),

and −1 = 1 in F2, we have

x3 ≡−x−1≡ x+ 1 (mod m(x)),

x4 ≡ x(x+ 1)≡ x2 + x (mod m(x)),

x5 ≡ x(x2 + x)≡ x3 + x2 ≡ x2 + x+ 1 (mod m(x)),

x6 ≡ (x+ 1)2 ≡ x2 + 1 (mod m(x)),

x7 ≡ x(x2 + 1)≡ x3 + x≡ 1 (mod m(x)).

Thus for any n, if n= 7q+ r, then

xn ≡ x7qxr ≡ xr (mod m(x)).

Example 3. Let m(x) = x2 + x+ 1 in F3[x]. For any n we find the residue of least
degree in F3[x] modulo m(x) of xn. To do so, we note that

x3−1 = (x−1)(x2 + x+ 1),

so
x3 ≡ 1 (mod m(x)).

Hence for any n, if n= 3q+ r with r < 3, then

xn = x3qxr ≡ xr (mod m(x)).

Then, to find the least degree residue of f (x) = x5 + 2x3 + x2 + 1, we substitute for
the powers of x:

x5 + 2x3 + x2 + 1≡ x2 + 2 + x2 + 1

≡ 2x2

≡ 2(−x−1) = x+ 1 (mod m(x)).
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Linear congruences. We can solve linear congruences modulo a polynomial in the
same way we do for numbers. To solve

au≡ b (mod m),

for some polynomial u in F [x], we find the greatest common divisor of a and m, call
it d. If d doesn’t divide b, then there will be no solution of the congruence, because
if u were a solution, then

au+mv= b
for some polynomial v. But then the greatest common divisor d of a and m would
divide au+mv= b.

On the other hand, if d does divide b, say b = d f , then by Bezout’s Identity, we
can find polynomials s,t so that

as+mt = d.

Multiplying both sides by f gives

as f +mt f = d f = b

and so u= s f is a solution of the congruence

au≡ b (mod m).

Note that the theory is identical to that for congruence in Z.
As with integers, if we can find one solution u1 of

au≡ b (mod m)

then the general solution is found by finding all solutions of the corresponding ho-
mogeneous congruence

au≡ 0 (mod m);

if u0 is a solution of the homogeneous congruence, then u= u0 +u1 is a solution of
the original non-homogeneous congruence au≡ b (mod m), and conversely, every
solution of the non-homogeneous congruence has that form for some solution u0 of
the homogeneous congruence.

In particular, the congruence

au≡ 1 (mod m)

has a solution if and only if a and m are coprime.

Example 4. In F3[x], let m(x) = x3 + x+ 2 and f (x) = x2 + 2x. We try to find z(x)
so that

f (x)z(x) ≡ 1 (mod m(x)).

That is the same as finding z(x),w(x) so that

f (x)z(x)+m(x)w(x) = 1
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To solve this, we do Euclid’s algorithm with m(x) and f (x):

x3 + x+ 2 = (x2 + 2x)(x+ 1)+ (2x+ 2);

x2 + 2x= (2x+ 2)(2x+ 2)+ 2.

Solving for 1 =−2 in terms of f (x) and m(x):

1 = (2x+ 2)(2x+ 2)− (x2+ 2x)

= 2(x2 + 2x)+ (2x+ 2)((x3 + x+ 2)− (x2 + 2x)(x+ 1))

= (x3 + x+ 2)(2x+ 2)+ (x2+ 2x)((2x+ 2)(2x+ 2)+ 2)

= (x3 + x+ 2)(2x+ 2)+ (x2+ 2x)(x2 + 2x).

So z(x) = x2 + 2x.
The Extended Euclidean Algorithm (row operations) of Chapter 3 works well

here also.

Complete set of representatives. Just as with numbers (mod m), a complete set of
representatives modulo m in F [x] is defined to be a set of polynomials with the prop-
erty that every polynomial in F [x] is congruent modulom to exactly one polynomial
in the set.

If the field F is infinite (such as Q or R), then for any modulusm of degree >0, a
complete set of representatives will be an infinite set. But for F finite (such as Fp for
p prime), any complete set of representatives will be a finite set. Here is an example.

Example 5. Continuing Example 2, we find a complete set of representatives mod-
ulo m(x) = x3 + x+ 1 in F2[x].

One complete set of representatives consists of the eight polynomials of degree
<2 in F2[x],

0,1,x,x+ 1,x2,x2 + 1,x2 + x,x2 + x+ 1.

In Example 2 we found the residues of least degree of the powers of x, and found
that

1≡ x7 (mod m(x))
x≡ x (mod m(x))

x+ 1≡ x3 (mod m(x))

x2 ≡ x2 (mod m(x))

x2 + 1≡ x6 (mod m(x))

x2 + x≡ x4 (mod m(x))

x2 + x+ 1≡ x5 (mod m(x)).

So instead of using the residues of least degree as a complete set of representatives,
we could use

{0,1,x,x2,x3,x4,x5,x6}
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with x7 ≡ 1 (mod m). This latter set is convenient for multiplying. For example,

(x2 + x)(x2 + x+ 1)≡ x4 · x5 ≡ x9 ≡ x7 · x2 ≡ x2,

or
(x2 + x)(x2 + 1)≡ x4 · x6 ≡ x10 ≡ x3 ≡ x+ 1.

The polynomial x is a primitive root modulo x3 + x+ 1 in F2[x].

Example 6. We find a complete set of representatives modulo m(x) = x2 + x+ 1 in
F3[x], and find the product of two representatives as another representative.

By the Division Theorem, a complete set of representatives modulom(x) consists
of polynomials of degree <1, that is, polynomials of the form ax+b, for a,b running
through the elements of F3 = {0,1,−1}. There are nine such polynomials:

0,1,−1,x,x+ 1,x−1,−x,−x+1,−x−1.

To multiply these polynomials is easy when one of the polynomials has
degree <0:

0 · (ax+b) = 0; 1 · (ax+b) = ax+b; −1 · (ax+b) =−ax−b.

If both polynomials have degree 1, their product will have degree 2, and we want to
replace the polynomial of degree 2 by the polynomial of degree <1 to which it is
congruent.

A convenient way to do this is to notice that since m(x) = x2 + x+ 1, we have
x2 ≡−x−1 (mod m(x)), which we can use to substitute. So, for example,

x(x−1) = x2− x≡ (−x−1)− x
≡−2x−1≡ x−1 (mod m(x)).

Here is the table of multiplications for polynomials of degree 1 modulo m(x) =
x2 + x+ 1:

· x x+ 1 x−1 −x −x−1 −x+ 1
x −x−1 −1 x−1 x+ 1 1 −x+ 1

x+ 1 −1 x −x+ 1 1 −x x−1
x−1 x−1 −x+ 1 0 −x+ 1 x−1 0
−x x+ 1 1 −x+ 1 x−1 −1 x−1

−x−1 1 −x x−1 −1 x −x+ 1
−x+ 1 −x+ 1 x−1 0 x−1 −x+ 1 0

Note that the entries below the diagonal are the reflection of those above (since
multiplication is commutative).

In this example, multiplication modulo x2 + x+ 1 in F3[x], certain polynomials
(x,x+ 1,−x,−x− 1,1,−1) were units modulo m(x), and the others (x− 1,−x+ 1)
were zero divisors. (Note that (x−1)2 = x2 + x+ 1.)
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If f (x) is a unit modulom(x), then we can always solve a congruence of the form

f (x)z(x) ≡ h(x) (mod m(x))

for z(x): simply multiply both sides of the congruence by the inverse (modulom(x))
of f (x). For example, in F3[x], to solve

z(x)x ≡ x+ 1 (mod x2 + x+ 1)

in F3[x], we find the inverse of x, namely −x−1, from the table, and multiply both
sides of the congruence by −x−1, to get

z(x)≡ (x+ 1)(−x−1)≡−x (mod x2 + x+ 1).

On the other hand, if f (x) is not a unit, we may not be able to solve (*) at all: for
example,

(x−1)z(x)≡ x (mod x2 + x+ 1)

has no solution, as can be seen either by looking at the table we constructed above
or by setting up the congruence with an unknown z(x) = ax+b, and trying to find a
and b.

The general result about units and zero divisors modulo m(x) is:

Proposition 6. Let F be a f eld and let m(x) in F [x] have degree >0. For f (x)
in F [x],
a) f (x) ≡ 0 (mod m(x)) iff m(x) divides f (x);
b) f (x) is a unit modulo m(x) iff the greatest common divisor (m(x), f (x)) = 1;
c) f (x) is a zero divisor modulo m(x) iff f (x) is not divisible by m(x) and

(m(x), f (x)) has degree≥1.

The proof is just the same as for integers modulo m and is left as an exercise.

Exercises.

1. Find the residue of least degree modulo m(x) of f (x) in F[x], where F = F3,
m(x) = x2 + x, and

(i) f (x) = x3 + 2;
(ii) f (x) = x4 + 2x2 + 1;
(iii) f (x) = xr for r = 6,7,8, etc.

2. Identify the units and the zero divisors in F3[x] modulo m(x) = x2 + x.

3. Find the residue of least degree modulo m(x) of f (x) in F[x], where F = F5,
m(x) = x4−2, and

(i) f (x) = x5;
(ii) f (x) = x4 + 2x2 + 1;
(iii) f (x) = xr for r = 4,5,6, etc.
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4. Write down the multiplication table for the polynomials of degree <1 in F2[x]
modulo x2 + x+ 1 .

5. Write down the multiplication table for the polynomials of degree <2 in F2[x]
modulo x3 + 1.

6. Write down the multiplication table for the polynomials of degree <2 in F2[x]
modulo x3 + x2 + 1.

7. In F3[x], find a complete set of representatives modulo x2−1. For each element
of the set, decide whether it is a unit, a zero divisor, or zero modulo x2−1.

8. In F5[x], decide whether or not there is a complete set of representatives consist-
ing of 0 and powers of x modulo

(i) x2 + 3x+ 4;
(ii) x2 + 3x+ 3;
(iii) x2 + x+ 4.

9. Show that there is no complete set of representatives consisting of 0 and powers
of x modulo x4 + x3 + x2 + x+ 1 in F2[x].

10. Find the residue of least degree in F2[x] modulo x4 + x+ 1 of:
(i) x5;
(ii) x9;
(iii) x13.

11. In F2[x] modulo x4 + x+ 1,
(i) Find the inverse of x3 + x;
(ii) Find the inverse of x2 + x+ 1;
(iii) Find the inverse of x2 + x.

12. Let m(x) = x3 + 4x+ 1 in F5[x]. Find polynomials f (x),g(x) in F5[x] so that

(x−3) f (x)≡ (x−3)g(x) (mod m(x))

but
f (x) �≡ g(x) (mod m(x)).

13. Let p be a prime, m(x) a polynomial in Fp[x] of degree d. How many elements
does a complete set of representatives for Fp[x] modulo m(x) have?

14. Solve, if possible:
(i) (x3 + x+ 1) f (x)≡ 1 (mod x4 + x+ 1) in F2[x];
(ii) (2x+ 1) f (x)≡ x3 (mod x2 + 1) in F3[x];
(iii) x9 f (x)≡ 1 (mod x2 + 2) in Q[x].

15. Prove Proposition 6.
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16. (i) Let m be a number >1. Euler’s theorem says that for certain integers a and
some number φ(m),

aφ(m) ≡ 1 (mod m).

For which integers a does Euler’s theorem apply? Describe the number φ(m).
(ii) Let p be a prime number, and m(x) be in Fp[x]. The analogue of Euler’s

theorem is that for certain polynomials a(x) in Fp[x], and some number φp(m),

a(x)φp(m) ≡ 1 (mod m(x)).

For which polynomials a(x) does this theorem apply? What is the number φp(m)?
(iii) Let p= 3, m(x) = x2 + x+ 1 and a(x) = x+ 1. Find φp(m) and verify that

a(x)φp(m) ≡ 1 (mod m(x)).

17. Let p(x) be a polynomial in F [x] of degree 0, F a field. Show that every two
polynomials f (x) and g(x) in F [x] are congruent modulo p(x).

18. Let f (x),g(x) be monic polynomials with integer coefficients. Show that f (x)
and g(x) agree as functions on Fp, p a prime, iff f (x) ≡ g(x) (mod xp− x).

B. The Chinese Remainder Theorem

Since nearly all of the properties of congruence for integers are also valid for poly-
nomials, it should be hardly surprising that the Chinese Remainder Theorem is
also valid for polynomials. After we present the theorem for polynomials, we show
how the Chinese Remainder Theorem relates to interpolation. Interpolation, in turn,
yields the theorem, dating from 1793, that every polynomial with integer coefficients
can be factored in a finite number of steps.

Here is the general theorem for congruences modulo a collection of pairwise
coprime polynomials.

Theorem 7 (The Chinese Remainder Theorem). Let F be a f eld. Let a1(x), . . . ,
ad(x) be arbitrary polynomials, and m1(x), . . . ,md(x) be pairwise coprime polyno-
mials in F [x]. Then there exists a polynomial f (x) in F[x] such that

f (x) ≡ a1(x) (mod m1(x)),
... (17.1)

f (x) ≡ ad(x) (mod md(x)).

If f1(x) and f2(x) are two solutions, then

f1(x)≡ f2(x) (mod m1(x) · . . . ·md(x)).
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This theorem may be proved in any of the ways we proved the Chinese Remain-
der Theorem for integers. Here is one proof.

Proof. We first find hi(x) so that

hi(x)≡ 0 (mod mj(x)) for j �= i
hi(x)≡ 1 (mod mi(x)).

To find hi(x), observe that since mi(x) is coprime to mj(x) for every j �= i, mi(x) is
coprime to the product

li(x) = m1(x)m2(x) · . . . ·mi−1(x)mi+1(x) · . . . ·md−1(x)md(x).

Thus we can solve the equation

1 = gi(x)mi(x)+ ki(x)li(x)

for ki(x) and gi(x) by Bezout’s Lemma. Then ki(x)li(x) = hi(x) satisfies

hi(x)≡ 1 (mod mi(x)) ,

hi(x)≡ 0 (mod mj(x)) for all j �= i

Once we have the polynomials h1(x),h2(x), . . . ,hd(x), we can solve (17.1) by setting
f (x) = f0(x) where

f0(x) = a1(x)h1(x)+a2(x)h2(x)+ . . .+ad(x)hd(x).

As with numbers, if f0(x) is one solution of (17.1) then any solution f (x) of (17.1)
will satisfy

f (x)≡ f0(x) (mod m(x)),

where m(x) =m1(x) · . . . ·md(x), since the mi(x) are pairwise coprime. In particular,
there is a unique solution of (17.1) whose degree is less than the degree of m(x). ��

As noted in Section 12B, this method of solving (17.1) is particularly useful if
there is a need to solve several systems (17.1) with the same moduli m1, . . . ,md but
with different choices of a1, . . . ,ad .

The Chinese remainder theorem has a different interpretation if we apply the
Remainder Theorem (Chapter 14) in the following form:

Proposition 8 (Remainder Theorem). Let g(x) be a polynomial with coeffic ents
in a f eld F. Then g(x)≡ b (mod x−a) if and only if g(a) = b.

If we choose d + 1 distinct elements n0,n1, . . . ,nd of F and any elements s0,
s1, . . . ,sd of F , the Chinese Remainder Theorem implies that there exists a polyno-
mial q(x) such that

q(x)≡ si (mod x−ni)
for i= 0, . . . ,d. Applying the Remainder Theorem yields immediately.

)
)
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Corollary 9 (Interpolation Theorem). If n0, . . . ,nd are distinct elements of F and
s0, . . . ,sd are arbitrary elements of F, there exists a unique polynomial q(x) in F [x]
of degree≤ d such that q(ri) = si for each i= 0, . . . ,d.

We shall show how to write down such a q(x) explicitly in the next section.

Exercises.

19. Solve for f (x) in F2[x]:
(i)

f (x)≡ x (mod x2 + x),

f (x)≡ 1 (mod x2 + x+ 1);

(ii)
f (x) ≡ x2 (mod x4 + x2 + x),

f (x) ≡ x (mod x4 + x3 + 1);

(iii)
f (x) ≡ x (mod x2 + 1),

f (x)≡ 1 (mod x).

20. Find a polynomial q(x) of degree <2 in Q[x] so that q(1) = 3 and q(−1) = 2.

21. Find a polynomial q(x) of minimal degree in F3[x] so that

q(x)≡ x (mod x2 + 2)
q(x)≡ 1 (mod x)

q(x)≡ x+ 1 (mod x2 + 2x+ 2)

22. (Euler’s Function for Polynomials). For m(x) in Fp[x], let φp(m) denote the
number of polynomials f (x) in Fp[x] so that the degree of deg f (x) < degm(x) and
f (x) is coprime to m(x).

(i) Find φp(m) if m(x) is irreducible.
(ii) Find φp(m) if m(x) = q(x)e is the power of an irreducible polynomial.
(iii) Suppose m(x) and n(x) are coprime. Use the Chinese Remainder Theorem

for polynomials to show that φp(mn) = φp(m)φp(n).

23. Prove the Chinese Remainder Theorem for polynomials by one of the other
proofs given for the Chinese Remainder Theorem for integers in Chapter 12.

C. The Method of Lagrange Interpolation

Corollary 9 of the last section showed that there is a unique polynomial f (x) with
real coefficients of degree≤ d whose graph y= f (x) passes through any d+1 spec-
ified points with distinct x-coordinates. Finding a polynomial whose graph passes
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through a given set of points is called interpolation. In this section we show how to
use the proof of the Chinese Remainder Theorem to construct such a polynomial.
The method is called Lagrange interpolation.

Choose d+ 1 distinct points n0, . . . ,nd . For each i between 0 and d, we want to
find a polynomial hi(x) with the property that

hi(ni) = 1

hi(n j) = 0

for j �= i. Here is how to construct hi(x): Let

g(x) = (x−n0)(x−n1) · . . . · (x−nd).
Let

gi(x) =
g(x)

(x−ni) .

Then gi(n j) = 0 for j �= i. We set

hi(x) =
gi(x)
g′(ni)

=
g(x)

(x−ni)g′(ni)
where g′(x) is the derivative of g(x). Then for all j �= i, hi(n j) = 0. As for hi(ni),
note that by the product rule,

g′(x) = (x−n1)(x−n2) · · · (x−nd)
+ (x−n0)(x−n2) · · · (x−nd)
+ . . .

+(x−n0)(x−n1) · · · (x−ni−1)(x−ni+1) · · · (x−nd)
+ . . .

+(x−n0)(x−n1) · · · (x−nd−1),

and so

g′(ni) = (ni−n0)(ni−n1) · · · (ni−ni−1)(ni−ni+1) · · · (ni−nd) = gi(ni).

Thus hi(ni) = 1.
The polynomials hi(x) all have degree d.

Example 7. For d = 2, let n0,n1 and n2 be three distinct real numbers. Then

h0(x) =
(x−n1)(x−n2)

(n0−n1)(n0−n2)

so h0(n0) = 1,h0(n1) = h0(n2) = 0;

h1(x) =
(x−n0)(x−n2)

(n1−n0)(n1−n2)
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so h1(n1) = 1,h1(n0) = h1(n2) = 0;

h2(x) =
(x−n0)(x−n1)

(n2−n0)(n2−n1)

so h2(n2) = 1,h2(n0) = h2(n1) = 0.

Once the polynomials h0(x), . . . ,hd(x) have been found, then for any vector
s = (s0,s1, . . . ,sd) of numbers, we can find a polynomial as(x) of degree ≤d with
as(n0) = s0,as(n1) = s1, . . . ,as(nd) = sd , by simply setting

as(x) = s0h0(x)+ s1h1(x)+ . . .+ sdhd(x).

Then as(x) is a polynomial of degree ≤ d that interpolates (whose graph passes
through) the points (n0,s0), . . . (nd ,sd). We call such a polynomial a Lagrange inter-
polator.

Example 8. Let n0 = 1,n1 = 3,n2 = 7, then

h0(x) =
(x−3)(x−7)
(1−3)(1−7)

=
1

12
(x−3)(x−7) =

1
12

(x2−10x+ 21)

h1(x) =
(x−1)(x−7)
(3−1)(3−7)

=−1
8
(x−1)(x−7) =

−1
8

(x2−8x+ 7)

h2(x) =
(x−1)(x−3)
(7−1)(7−3)

=
1

24
(x−1)(x−3) =

1
24

(x2−4x+ 3).

If s0 = 5,s1 = 17,s2 =−11, we let s = (5,17,−11). To find as(x) of degree ≤ 2 so
that

as(1) = 5,as(3) = 17,as(7) =−11,

we set

as(x) = 5h0(x)+ 17h1(x)−11h2(x)

=
5
12

(x2−10x+ 21)− 17
8

(x2−8x+ 7)− 11
24

(x2−4x+ 3)

=−13
6
x2 +

88
6
x− 45

6
.

Then as(x) satisfies as(1) = 5,as(3) = 17,as(7) =−11.

The polynomial as(x) is the unique polynomial of degree≤ d such that as(n0) =
s0,as(n1) = s1,as(n2) = s2, . . . ,as(nd) = sd . This follows by the Chinese Remainder
Theorem, or we can argue as follows:

Suppose two polynomials a(x) and b(x) of degrees ≤ d both have the values
s0,s1, . . . ,sd at n0,n1, . . . ,nd . Then c(x) = a(x)−b(x) is a polynomial of degree≤ d
with the property that n0,n1, . . . ,nd are roots of c(x). By D’Alembert’s Theorem
(Section 14A), a polynomial of degree≤ d cannot have d+1 roots in a field unless
the polynomial is the zero polynomial. Thus c(x) = 0, and a(x) = b(x).
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Exercises.

24. Find a polynomial f (x) of degree ≤ 2 so that f (1) = 1, f (3) = 2, f (7) =−1.

25. Find a polynomial f (x) of degree ≤ 2 so that f (−1) = 1, f (0) = 0, f (1) = 2.

D. Factoring Polynomials in Z[x] is a Finite Process

In Chapter 16 we showed that when factoring a polynomial with integer coefficients,
we can always assume that the factors have integer coefficients. In this section we
use that information to describe a procedure for factoring any polynomial in Z[x]
in a finite number of steps. The method is traditionally attributed to Kronecker,
around 1883, but is apparently due originally to Schubert, 1793. Schubert’s method
obviously predates the computer era, and in recent years other methods have been
found that are much faster. But the fact that there is a finite algorithm, however slow,
for completely factoring a polynomial in Z[x] is of at least theoretical interest.

Shubert’s method generalizes the idea that there can be only a finite set of pos-
sible roots of a polynomial with integer coefficients. Recall from Chapter 16 that if
f (x) in Z[x] has leading coefficient ad and constant term a0, then any root of f (x)
must be of the form x= r/s where s is a divisor of ad and r is a divisor of a0. Since
ad and a0 both have only a finite number of divisors, there are only a finite number
of fractions r/s where the denominator divides ad and the numerator divides a0. By
checking the possibilities, one either finds a root or proves that none exists.

Finding roots is equivalent to finding factors of f (x) of degree 1, by the Root
Theorem.

To generalize this idea, Schubert’s method uses interpolation to find possible
factors of a polynomial.

Let p(x) in Z[x] be a polynomial that we wish to factor. Since p(x) has integer
coefficients, then for every integer r, p(r) is an integer.

If p(x) has degree m and is not irreducible it has a factor of degree≤m/2. So let
d = m/2 if m is even, d = (m−1)/2 if m is odd.

Let n0, . . . ,nd be distinct integers, and let p(n0) = r0, . . . , p(nd) = rd . Then
r0, . . . ,rd are integers. For each vector s = (s0, . . . ,sd) of integers so that si divides
ri for i = 0, . . . ,d, we find the unique polynomial as(x) in Q[x] of degree ≤ d with
ai(ni) = si for all i. Since each ri has only a finite number of (positive or negative)
divisors si, there is only a finite number of possible vectors s = (s0, . . . ,sd) and hence
only a finite number of polynomials as(x), one for each of the possible vectors s.

It turns out that any divisor a(x) of p(x) in Z[x] of degree ≤ d must be an
as(x) for some s. For suppose a(x)b(x) = p(x) for some b(x) in Z[x]. Then for
each ni, a(ni)b(ni) = p(ni) in Z, so a(ni) divides p(ni) = ri. Thus the vector
s = (a(n0), . . . ,a(nd)) is a vector of divisors of (r0,r1, . . . ,rd). Lagrange interpo-
lation gives a unique polynomial as(x) of degree ≤ d with as(n0) = a(n0),as(n1) =
a(n1), . . . ,as(nd) = a(nd). Thus, since a(x) and as(x) both have degree≤ d and have
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the same value on d+ 1 elements of Q, they must be equal. We conclude that any
divisor a(x) of p(x) of degree≤ d must be among the finite number of polynomials
as(x) constructed from the finite number of vectors s of divisors of (r0,r1, . . . ,rd).

Call as(x) a Lagrange interpolator for f (x). (The Lagrange interpolators also
depend on the set of abscissas n0,n1, . . . ,nd .)

Having found all possible Lagrange interpolators as(x) for p(x), to determine
whether p(x) is irreducible or not in Z[x], we divide p(x) by each of the polynomials
as(x) to see whether as(x) is a divisor of p(x). If some as(x) of degree ≥1 and
≤ deg(p(x))/2 divides p(x), then an explicit factorization of p(x) has been found.
Otherwise, p(x) must be irreducible.

From this procedure, we can obtain easily, by induction:

Theorem 10. The complete factorization of any polynomial in Z[x] can be achieved
in a fin te number of steps.

Example 9. Here is an illustration of how the factoring method works. Let p(x) =
x4 + x+ 1 in Z[x]. If p(x) factors it must have a factor of degree ≤ 2. (Of course
reducing mod 2 we already know it is irreducible!) Now p(−1) = 1, p(0) = 1,
p(1) = 3. Thus for each s = (s−1,s0,s1) dividing (1,1,3), the corresponding La-
grange interpolator as(x) is

as(x) =
s−1

2
x(x−1)− s0(x−1)(x+ 1)+

s1
2
x(x+ 1).

Collecting the coefficients of the powers of x gives

as(x) = (
s1
2

+
s−1

2
− s0)x2 +(

s1
2
− s−1

2
)x+ s0.

The following table gives all possible vectors s = (s−1,s0,s1), and the corre-
sponding polynomials as(k):

s = (s1,s0,s1) as(x)
(1,1,3) x2 + x+ 1
(1,1,1) 1

(1,1,−3) −2x2−2x+ 1
(1,1,−1) −x2− x+ 1
(−1,1,3) 2x+ 1
(−1,1,1) −x2 + x+ 1

(−1,1,−3) −3x2− x+ 1
(−1,1,−1) −2x2 + 1

(1,−1,3) 3x2 + x−1
(1,−1,1) 2x2−1

(1,−1,−3) −2x−1
(1,−1,−1) x2− x−1
(−1,−1,3) 2x2 + 2x−1
(−1,−1,1) x2 + x−1

(−1,−1,−3) −x2− x−1
(−1,−1,−1) −1
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If x4 + x+ 1 factors we can assume all factors have integer coefficients and are
primitive. Since x4 + x+ 1 is monic, the leading coefficients of any such factors
must be ±1. Now eight of the as(x) are primitive but do not have leading coefficient
±1, so cannot be factors. Two more as(x) are uninteresting since they have degree
0. So only six of the as(x) must be checked as possible factors of x4 + x+ 1:

x2 + x+ 1; −x2− x−1;

x2 + x−1; −x2− x+ 1;

x2− x−1; −x2 + x+ 1.

Since the three on the right are associates of the three on the left, we need only check
the three on the left. Three divisions show that none are factors.

Notice that the number of possible factors as(x) of p(x) depends on d
(≤ 1

2 deg(p)) but, more significantly, also depends on the number of divisors of
p(ni). The number of possible factors in the example we just did was kept small by
the fact that p(1) = p(0) = 1, which has only two factors in Z. In general one is not
so fortunate, and the number of as(x) can become unpleasantly large (see Exercise
30, below).

In recent years a more efficient method of factoring has been developed based on
factoring modulo M for an appropriate numberM. See Chapter 26.

Exercises.

26. Let f (x) = x4 − 7x2 + 1. Then f (−1) = f (1) = −5, f (0) = 1. Show that the
Lagrange interpolator as(x) divides f (x) for s= (5,1,−1) and s= (−1,1,5).

27. Let f (x) = x6 + 2x5 − x4 + 2x2 − x + 1. Then f (−2) = −5, f (−1) = 2,
f (0) = 1, f (1) = 4. Find the Lagrange interpolator as(x) for s = (−5,1,1,1) and
verify that as(x)b(x) = f (x) for some b(x). To which s does b(x) correspond?

28. Why is it that of the sixteen polynomials as(x) arising as Lagrange interpolators
for x4 + x+ 1, eight are associates of the other eight?

29. For every polynomial f (x) in Z[x] and every n0, . . . ,nd , show that as(x) = 1 and
as(x) = −1 always arise as Lagrange interpolators. Under what circumstances can
a constant polynomial as(x) = c with c �= 1 or −1 arise as a Lagrange interpolator?

30. If f (x) has degree 2d, and n1, . . . ,nd are distinct integers such that f (ni) = pi is
prime for each i, 1 ≤ i ≤ d, how many polynomials as(x) arise as possible divisors
of f (x) using Lagrange interpolation? Do they all pair off as associates?

31. Construct a proof of Theorem 10 by complete induction on the degree of the
polynomial to be factored.





Chapter 18
Fast Polynomial Multiplication

The development of computers since 1940 has led to new advancements in very old
mathematics. In Section 7B we looked at Karatsuba multiplication, a faster way of
multiplying numbers. In Section 9F we described a more efficient way to raise a
number to a power modulo m. and in Section 9G we presented Montgomery multi-
plication, a way of avoiding long division modulo m.

In this chapter we look at multiplication of polynomials.

The efficienc of multiplication. Given

f (x) = a0 +a1x+a2x2 + . . .+adxd ,

and
g(x) = b0 +b1x+b2x2 + . . .+bdxd ,

two polynomials of degree d. The standard way to multiply

f (x)g(x) = (a0 +a1x+a2x2 + . . .+adxd) · (b0 +b1x+b2x2 + . . .+bdxd)

is to multiply each aixi by each b jx j, and then collect the coefficients of each power
of x, to get

f (x)g(x) = c0 + c1x+ c2x2 + . . .+ c2dx2d ,

where
c0 = a0b0,

c1 = a0b1 +a1b0,

c2 = a0b2 +a1b1 +a2b0,

...

cd = a0bd +a1bd−1 + . . .+ad−1b1 +adb0,

cd+1 = a1bd +a2bd−1 + . . .+ad−1b2 +adb1,

...

c2d = adbd.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 373
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A measure of efficiency of this method is to count the number of coefficient
multiplications required. If f and g both have degree d, then both have d+ 1 co-
efficients, and each coefficient of f (x) is multiplied by every coefficient of g(x).
So multiplying two polynomials of degree d in the standard way requires (d+ 1)2

number multiplications.
We used digit multiplication as a measure of efficiency for multiplication of in-

tegers, and by that measure found that Karatsuba multiplication was significantly
more efficient than ordinary multiplication. Presumably we could use Karatsuba for
polynomials as well. But in this section we present another method that for large
degree polynomials is more efficient than either method.

Multiplying using the Chinese Remainder Theorem. In Section 12B we sug-
gested a way to multiply numbers using the Chinese Remainder Theorem as follows.

To multiply a and b, find a set q1,q2, . . . ,qs of pairwise coprime moduli whose
product is >ab. Then

Step I. find a mod qi and b mod qi for i= 1, . . . ,s;

Step II. Multiply (a mod qi) and (b mod qi) to get (ab mod qi) for i= 1, . . . ,s;

Step III. Solve the Chinese Remainder Theorem problem: given ab mod qi for
i= 1, . . . ,s, find ab mod q1q2 · · ·qs.

This same strategy works for polynomials in C[x].
To multiply f (x) and g(x), pick 2d+1 different complex numbers a1, . . . ,a2d+1.

Then,

Step I. For i= 1, . . . ,2d+ 1, find f (x) and g(x) mod (x−ai). By the Remainder
Theorem, f (x) ≡ f (ai) (mod x− ai), so finding f (x) mod (x− ai) is the same as
evaluating f (x) at ai, and also for g(x).

Step II. Multiply f (ai) and g(ai) for i= 1, . . . ,2d+ 1.

Step III. Find a polynomial h(x) such that for i= 1, . . . ,2d+ 1,

h(x)≡ f (x)g(x) (mod x−ai).

This is the same as finding a polynomial h(x) of degree ≤2d so that

h(ai) = f (ai)g(ai)

for i= 1, . . . ,2d+ 1. This is an interpolation problem.

To sum up, using the Chinese Remainder Theorem to multiply two polynomials
f (x) and g(x) of degree d with coefficients in the complex numbers C, we have
three steps: I. Evaluate, II. Multiply, and III. Interpolate.
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This seems more complicated than ordinary multiplication. But note that in Step
II, we do 2d+ 1 number multiplications, rather than the (d+ 1)2 number multipli-
cations when we multiply f (x) and g(x) by the standard method.

Thus if there is an efficient way to do Step I, evaluation, and Step III, interpola-
tion, then it is possible that that this strategy will be more efficient than the standard
method.

Before looking at the efficiency of I and III, we need to be certain that the
h(x) which comes out in III is really f (x)g(x). This follows from Corollary 9 of
Section 17B:

Theorem 1. Let a1, . . . ,ae be distinct complex numbers and h1,h2, . . . ,he be any
complex numbers. Then there exists a unique polynomial h(x) of degree ≤e so that
h(ai) = hi for all i, i= 1, . . . ,e.

Thus if we find a polynomial h(x) of degree ≤2d so that h(ai) = f (ai)g(ai) for
i = 1,2, . . . ,2d + 1, then since f (x)g(x) is a polynomial of degree ≤2d with the
same values at a1, . . . ,a2d+1 as h(x), then the polynomials h(x) and f (x)g(x) must
be equal. That is, the three-step strategy for finding f (x)g(x) really will work.

Example 1. Let f (x) = x+1, g(x) = x−2. We find f (x)g(x) by the three-step strat-
egy. Choose a1 = 0,a2 = 3,a3 =−1. Then Steps I and II are quick:

f (0) = 1, g(0) =−2, so f (0)g(0) =−2;
f (3) = 4, g(3) = 1 so f (3)g(3) = 4;
f (−1) = 0, g(−1) =−3 so f (−1)g(−1) = 0;

For Step III we need to interpolate a polynomial h(x) of degree ≤2 with

h(0) =−2, h(3) = 4, and h(−1) = 0.

We can accomplish this the same way we finished the process of multiplying
numbers–we use Lagrange interpolators. We find

h0(x) =
(x−3)(x+ 1)

−3
,

so that h0(0) = 1,h0(3) = h0(−1) = 0;

h3(x) =
x(x+ 1)

12
,

so that h3(0) = 0 = h3(−1),h3(3) = 1;

h−1(x) =
x(x−3)

4
,

so that h−1(0) = 0 = h−1(3) and h−1(−1) = 1. Then

h(x) =−2h0(x)+ 4h3(x)+ 0h−1(x) = x2− x−2

satisfies h(0) =−2,h(3) = 4 and h(−1) = 0, so must be f (x)g(x).
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Returning to the general situation, let f (x) and g(x) each have degree ≤d. The
key to making the three-step strategy work efficiently is to choose a good set of
points a1, . . . ,a2d+1.

Roots of unity. We recall a definition from Section 15D.

Defini ion. For an integer f > 0, an f -th root of unity in a field F is an element ω
of F so that ω f = 1.

Example 2. 1 and −1 are 2nd roots of unity in R.
If p is a prime number, then any unit [a] of Fp is a p− 1-st root of unity, since

[a]p−1 = [1] (by Fermat’s theorem).
By the Fundamental Theorem of Algebra, the polynomial x f − 1 has f roots in

C. Every root of x f −1 is an f -th root of unity in C.

If a is a root of unity in F , the order of a is the smallest exponent e > 0 so that
ae = 1. If the order of a is e, then a is called a primitive e-th root of unity.

Example 3. In Z, −1 is a primitive 2nd root of unity.
In C, i is a primitive 4-th root of unity.
In F7, [2] is a primitive 3rd root of unity.
In C, ω = cos(2π/m)+ isin(2π/m) is a primitive m-th root of unity in C.
In any ring, if ω is a primitive m-th root of unity, and (r,m) = 1, then ωr is also

a primitive m-th root of unity.

Proposition 2. In C, for any n, there exists a primitive n-th root of unity. In Fp, for
any divisor d of p−1, there exists a primitive d-th root of unity.

Proof. The statement about C follows from the fact that

ω = cos(2π/n)+ isin(2π/n)

is a primitive nth root of unity. The statement about Fp follows from the fact that Fp
has a primitive element, that is, an element α of order exactly p−1; if de= p−1,
then αe has order d. ��
Evaluation and the Fast Fourier Transform. Let f (x) and g(x) each have degree
≤ d. Let 2r−1 < 2d+ 1 ≤ 2r, and let ω be a primitive 2rth root of unity in C. In
the three-step strategy, we will evaluate f (x) and g(x) at the powers of ω . Here is a
crucial fact that makes the strategy efficient:

Theorem 3. Let ω be a primitive 2rth root of unity in the f eld F, and let f (x) be a
polynomial in F[x]of degree d < 2r−1. Then evaluating f (x) at 1,ω ,ω2, . . . ,ω2r−1

requires at most 2r(r−1) multiplications of elements of F.

The proof of Theorem 3 describes the algorithm known as the “Fast Fourier
Transform.” Evaluating the polynomial f (x) at 1, ω ,ω2, . . . ,ω2r−1 is the same as ap-
plying a discrete Fourier transform to f (x) (we’ll give a matrix version in the proof
of Theorem 6, below) and the proof shows how to obtain the evaluation quickly.
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Proof. We proceed by induction. First, let r= 2. Then 2r−1 = 2 and f (x) has degree
d = 1.

Write f (x) = a0 +a1x, with a0 and a1 in F , and assume ω is a primitive 4th root
of unity. To compute

f (1) = a0 +a1,

f (ω) = a0 +a1ω ,

f (ω2) = a0 +a1ω2, and

f (ω3) = a0 +a1ω3,

requires at most four multiplications (in fact, three multiplications: a1ω ,a1ω2, and
a1ω3).

Now consider r = 3, then ω is now a primitive 8th root of unity, and f (x) has
degree ≤3 < 4 = 23−1:

f (x) = a0 +a1x+a2x2 +a3x3.

To evaluate f (x) at the eight powers 1, ω ,ω2, . . . ,ω7, we let y= x2 and write

f (x) = (a0 +a2x2)+ x(a1 +a3x2)
= (a0 +a2y)+ x(a1 +a3y),
= g0(y)+ xg1(y),

where g0(y) = a0 +a2y and g1(y) = a1 +a3y.
Evaluating f (x) at 1,ω ,ω2, . . . ,ω7 is the same as evaluating g0(y) = g0(x2) and

g1(y) = g1(x2) at y = 1,ω2,ω4, and ω6, and then multiplying g1(x2) by x for x =
1,ω ,ω2, . . . ,ω7.

To evaluate g0(y) = g0(x2) at y= 1,ω2,ω4, and ω6 requires at most four multi-
plications in F , by the case r = 2.

To evaluate g1(y) = g1(x2) at y= 1,ω2,ω4, and ω6 requires at most four multi-
plications in F , also by the case r = 2.

To multiply g1(x2), once evaluated, by x for x= 1,ω ,ω2, . . . ,ω7 requires at most
8 multiplications in F (actually at most 7, since multiplying a number by 1 is the
same as not multiplying at all).

Thus to evaluate f (x) of degree 3 < 22 at the 23 = 8 powers of a primitive 8th
root of unity takes at most 4 + 4 + 8 = 16 = 23 ·2 multiplications in F .

The case for general r > 2 is just like the case for r = 3.
Suppose by induction that to evaluate a polynomial g(y) of degree ≤2r−1 at all

of the powers of a primitive 2rth root of unity requires at most Mr−1 = 2r(r− 1)
multiplications in F .

Let f (x) be a polynomial of degree ≤2r. We wish to evaluate it at all of the
powers 1,ω ,ω2, . . . ,ω2r+1−1 of a primitive 2r+1 th root of unity. As in the case of a
polynomial of degree 3, we write f (x) as the sum of its even powers of x, which is
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a polynomial g0(x2), plus the sum of its odd powers of x, which can be written as x
times a polynomial g1(x2). That is,

f (x) = g0(x2)+ xg1(x2).

Set y= x2.
To evaluate g0(x2) at x= 1,ω ,ω2, . . . ,ω2r+1−1 is the same as to evaluate g0(y) at

y= 1,ω2,ω4, . . . ,ω2(2r−1). But ω2 is a primitive 2rth root of unity, and we are eval-
uating g0(y), a polynomial of degree ≤2r−1, at the powers of ω2. By the induction
hypothesis, this requires at most Mr−1 multiplications in the field F .

Similarly, at most Mr−1 multiplications in F are needed to evaluate g1(y) at y=
1,ω2, . . . ,ω2(2r−1).

Finally, we need at most 2r+1 multiplications in F to multiply g1(y) = g1(x2) by
x for x= 1,ω ,ω2, . . . ,ω2r+1−1.

Thus the total number of multiplications needed in the field F is at most Mr,
where

Mr =Mr−1 +Mr−1 + 2r+1

= 2r(r−1)+ 2r(r−1)+ 2r+1 = 2r+1r

completing the proof by induction. ��
Let us return to our three-step strategy for finding the product f (x)g(x) of two

polynomials of degree d.
For Step I, we suppose 2r−2 ≤ d < 2r−1, and we evaluate f (x) and g(x) at all

the powers of a primitive 2rth root of unity ω . By the last theorem this takes at
most 2 · 2r(r− 1) multiplications in F . Now observe that 2r−1 ≤ 2d < 2r ≤ 4d, so
r−1≤ log2 2d, and we have

2 ·2r(r−1)≤ 8d log2 2d.

That is,

Corollary 4. Step I of our strategy for find ng the product of two polynomials of
degree d requires at most 8d log2 2d multiplications in F.

This number is much less than (d+ 1)2 for large d.
We previously observed that Step II of the polynomial multiplication strategy

takes only 2d+1 multiplications in F , which is much less than (d+1)2 for large d.

Interpolation. We are left with Step III, interpolation.
Before dealing with interpolation, we note a most useful fact about roots of unity.

Proposition 5. Let ζ be an e-th root of unity. Then

1 + ζ + ζ 2 + . . .+ ζ e−1 = 0 if ζ �= 1,

and
1 + ζ + ζ 2 + . . .+ ζ e−1 = e if ζ = 1.
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Proof. The second equality is obvious. For the first, notice that ζ is a root of the
polynomial

xe−1 = (x−1)(1 + x+ . . .+ xe−1)

but is not a root of x−1 if ζ �= 1. Hence ζ must be a root of the polynomial 1+ x+
x2 + . . .+ xe−1. That is,

1 + ζ + ζ 2 + . . .+ ζ e−1 = 0.

��
Here is the main result about interpolation.

Theorem 6. Let e= 2r. Let ω be a primitive e-th root of unity in F. Suppose h(x) is
a polynomial with coeffic ents in F of degree<e and let

h(1) = c0,h(ω) = c1,h(ω2) = c2, . . . ,h(ωe−1) = ce−1.

Let c(x) be the polynomial

c(x) = c0 + c1x+ c2x2 + . . .+ ce−1xe−1.

Then we can fin the coeff cients of h(x) by evaluating c(x), namely:

h(x) =
c(1)
e

+
c(ωe−1)

e
x+ . . .+

c(ωe−(e−1))
e

xe−1.

In short, we can interpolate a polynomial h(x) such that h(1) = c0,h(ω) =
c1, . . . ,h(ωe−1) = ce1 for given c0,c1, . . . ,ce1 , by evaluating the polynomial c(x)
at 1,ωe−1,ωe−2, . . . ,ω .

Thus, interpolation is as efficient as evaluation.

Proof. It is convenient to use vector and matrix notation. If

h(x) = h0 +h1x+h2x2 + . . .+he−1xe−1,

then
ci = h(ω i) = h0 +h1ω i+h2ω2i+ . . .+he−1ω(e−1)i

for all i. Thus the row vector

C = (c0,c1, . . . ,ce−1) = (h(1),h(ω),h(ω2), . . . ,h(ωe−1)

can be written as C = HF where

H = (h0,h1,h2, . . . ,he−1)

is the row vector of coefficients of h and F is the e× ematrix
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F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ω ω2 ωe−1

1 ω2 ω4 ω2(e−1)

...
...

1 ωk ω2k . . . ωk(e−1)

...
...

1 ωe−1 ω2(e−1) ω(e−1)(e−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

called the discrete Fourier transform. (Note that since ω is an eth root of unity,
ω(e−1)(e−1) = ω .)

The inverse of the matrix F turns out to be the matrix 1
e F̂, where the entries of F̂

are the inverses of the entries of F.
The matrix F̂ is called the inverse discrete Fourier transform of F.
To see that 1

e F̂ is the inverse of F, notice that the ith row of F̂ is

(1,ω−i,ω−2i, . . . ,ω−(e−1)i)

and the jth column of F is the transpose of the row vector

(1,ω j,ω2 j, . . . ,ω(e−1) j).

Multiplying the ith row of F̂ with the jth column of F gives

qi j = 1 + ω−iω j+ ω−2iω2 j + . . .+ ω−(e−1)iω(e−1) j

= 1 + ω j−i+ ω2 j−2i+ . . .+ ω(e−1) j−(e−1)i

= 1 + ω( j−i) + ω2( j−i) + . . .+ ω(e−1)( j−i).

If we let ζ = ω j−i, then ζ is an eth root of unity, and so by Proposition 5,

qi j = 1 + ζ + ζ 2 + . . .+ ζ e−1 = 0

for i �= j, while qii = e. Thus F̂F = eI (where I is the e× e identity matrix), and so
the inverse of F is 1

e F̂.
Now since C = HF, we have CF̂ = eH. But this says that:

c(1) = eh0,

c(ωe−1) = eh1,

c(ωe−2) = eh2,

...

c(ω) = ehe−1,

and so the coefficients of h are obtained by evaluating c(x) at powers of ω . ��
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Because we use Theorem 3 in Steps I and III of the algorithm, the entire three-
step procedure will be called “FFT polynomial multiplication”.

Counting multiplications. We summarize how many multiplications in the field F
the three-step FFT multiplication needs:

Theorem 7. Let f (x) and g(x) have degree d < 2r−1. The FFT polynomial multipli-
cation algorithm to f nd f (x)g(x) requires at most 2r(3r−1) multiplications in the
fie d F.

Proof. We count the number of multiplications needed for each step.
Step I. Evaluate f (x) and g(x) at the powers of ω , a primitive 2rth root of unity.
Evaluating f (x) takes 2r(r−1) multiplications, as does also evaluating g(x).

Step II. Multiply f (ω i)g(ω i) = h(ω i) for i= 0,1,2, . . . ,2r−1.
This consists of 2r multiplications.

Step III. Interpolate h(x) from the h(ω i), for i= 0,1, . . . ,2r−1.
This is the same as to evaluate

c(x) = h(1)+h(ω)x+h(ω2)x2 + . . .+h(ω2r−1)x2r−1

at x= 1,ωe−1,ωe−2, . . . ,ω where e= 2r. By Exercise 1 below, this takes 2rr multi-
plications.

Thus the entire FFT strategy involves at most

2r(r−1)+ 2r(r−1)+ 2r+ 2rr = 2r(3r−1)

multiplications in the field F . ��
Suppose f (x) and g(x) have degree 63 = 26−1. Then r = 7, and the FFT algo-

rithm requires 27(20) = 2560 multiplications. By comparison, the usual algorithm
requires 642 = 212 = 4096 multiplications. For r ≥ 7,

2r(3r−1) < (d+ 1)2 = (2r+1)2 = 4r−1

so for polynomials of 2r−1− 1 digits, the FFT algorithm is more efficient than the
usual algorithm for r ≥ 7.

More generally, if 2r−2 < d < 2r−1, then 2r < 4d and

2r(3r−1) < 2r3r < 4d(3log2 4d).

For d ≥ 103, 4d(3log2 4d) is smaller than (d+ 1)2, and as d increases, the ratio
4d(3log2 4d)/(d+ 1)2 goes to zero.

We note that all of this works over C; but if we start with f ,g in Z[x] and choose
M to be a prime so large that all coefficients of f (x)g(x) are in absolute value less
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than M/2 and so that Z/MZ has a primitive 2rth root of unity for 2r > d, then we
can do all this in (Z/MZ)[x] and the result will translate immediately to Z[x].

The process of going from the vector H of coefficients of the polynomial h(x) to
the vector C = (h(1),h(ω), . . . ,h(ωe−1) by multiplying by F, the discrete Fourier
transform, can be done by the Fast Fourier Transform method of Theorem 3. That
method was published in 1965 by J.W. Cooley of IBM and J.W. Tukey of Princeton
University [see Cochran (1967)]. The fast Fourier transform has been called “the
most valuable numerical algorithm in our lifetime.” See Cipra (May, 1993).

Exercises.

1. Let ω be a primitive 2r-th root of unity. Show by induction that to evaluate a
polynomial of degree <2r at x = 1,ω ,ω2, . . . ,ω2r−1 by the method of Theorem 3
requires at most 2r · r multiplications in the field F .

2. Suppose f (x) and g(x) in C[x] have degree ≤d, every coefficient of f (x) is in
absolute value <B and every coefficient of g(x) is in absolute value <C. Show that
every coefficient of f (x)g(x) is in absolute value ≤ (d+ 1)BC.

3. Verify that d0 = 103 is the smallest d0 such that 4d(3log2 4d) is smaller than
(d+ 1)2 for all d > d0.

4. Let F = F5. Then 2 is a primitive 4th root of unity in F . Let h(x) = 3 + 2x+ x3

in F [x]. Using the method of Theorem 3:
(i) Evaluate h(x) at 1,2,22,23 in F .
(ii) Let c(x) = h(1)+h(2)x+h(22)x2 +h(23)x3. Evaluate c(x) at x= 1,2,22,23.

5. Repeat the last exercise with h(x) = 4 + 4x+ 2x2 + x3.

6. In F17, 2 is a primitive 8th root of unity. Using the method of Theorem 3, evaluate

f (x) = 7x3 + 8x2 + 3x+ 5

at the eight powers of 2 in F17. Verify that the method requires at most 16 multipli-
cations in F17.

7. (i) Verify that 5 is a primitive 4th root of unity in F13.
(ii) Let F be the 4×4 matrix whose (i, j)th entry is 5i j in F13 for i, j = 0,1,2,3.

Compute F̂ and verify that FF̂ = I.

8. If we wish to multiply two polynomials f and g in Z[x], we could work in Z/pZ
where p is a prime so large that all coefficients of f ·g are ≤p/2, and so that Z/pZ
has a primitive 2rth root of unity for large r. For example, if the Fermat number
F(r) = 22r +1 were prime, then Z/F(r)Z would have a primitive 22r th root of unity
by the Primitive Root Theorem. (Of course no Fermat numbers are known to be
prime for r > 5: see Section 10B.) Almost as good would be prime numbers of the
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form p= a ·2b+1, where b is large, such as 3 ·26 +1 = 193: Z/193Z has a primitive
64th root of unity.

Can you find a prime number of the form a · 2b+ 1 with b > 16? For how large
an exponent b can you find a prime number of that form?

9. Use Dirichlet’s Theorem on primes in an arithmetic progression to show that for
every r, there is a prime p so that Fp contains a primitive 2r-th root of unity.

10. For polynomials f (x),g(x) of degree d = 2r−1−1, check that multiplying f (x)
and g(x) by the Karatsuba method (Section 7B) requires 3r−1 multiplications in the
field F .

11. What is the smallest r so that for polynomials f (x),g(x) of degree d = 2r−1−1
the FFT method uses fewer multiplications than the Karatsuba method?





v. Primitive Roots 





Chapter 19
Cyclic Groups and Cryptography

In this chapter we prove the Primitive Root Theorem, which says that if p is prime,
there is a unit b of order p− 1 modulo p. This is equivalent to the statement that
the group Up of units of Z/pZ is a cyclic group. Then we determine all numbers
m for which Um is a cyclic group, and conclude with a look at discrete logarithm
cryptography.

A. The Exponent of an Abelian Group

Recall (from Section 11C) that for G a finite group, the order of G is defined to be
the number of elements of G.

Let G be a finite abelian group of order g, with operation multiplication and with
identity element e. Then for every a in G, ag = e, by Lagrange’s theorem. The order
of a is the smallest number d > 0 so that ad = e. Then, just as with units modulo m,
we have:

Proposition 1. In a fin te abelian group G,
(i) Every a in G has an order.
(ii) If d is the order of a, and m is any number with am = e, then d divides m.
(iii) The order of a divides g, the order of G;
(iv) If d is the order of a, then ar has order d/(r,d), where (r,d) is the greatest

common divisor of r and d.

The proofs are the same as for units modulom in Chapter 9, and are left as exercises.
Since the order of every element ofG divides g, the set of numbers that are orders

of elements of G is a finite set of numbers.

Defini ion. The exponent λ of a finite abelian group G is the number that is maxi-
mal among all orders of elements of G.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 387
in Mathematics, c© Springer Science+Business Media LLC 2009
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To rephrase the definition of λ :
The exponent λ is the order of some element of G; and for every element b of G,

if h is the order of b, then h≤ λ .

Example 1. Let G=U15, the group of units of Z/15Z. Then

G= {[1], [2], [4], [7], [8], [11], [13], [14]}

has order 8, so for every [a] in U15, [a]8 = [1]. But no element of U15 has order 8.
The orders of the elements of G are as follows:

element order
[1] 1
[2] 4
[4] 2
[7] 4

[8] = [−7] 4
[11] = [−4] 2
[13] =[−2] 4
[14] =[−1] 2

Therefore, the exponent of G is 4.

The main theorem of this section is:

Theorem 2. Let λ be the exponent of a fin te abelian group G. Then the order of
every element b of G divides λ .

To prove this theorem we need one more fact about orders, beyond facts (i)-(iv)
above:

Proposition 3. Let a,b be elements of a fin te abelian group. If a has order r, and b
has order s, and (r,s) = 1, then ab has order rs.

Proof of Proposition 3. First note that (ab)rs = arsbrs = e, so the order of ab is≤ rs.
Now, let d > 0 so that (ab)d = e. Then

e= (ab)dr = adrbdr = edbdr = bdr

since ar = e. Since the order of b is s, therefore, by (ii) of Proposition 1 , s divides
dr. But (r,s) = 1, so s divides d. Similarly,

e= (ab)ds = adsbds = adsed = ads

since bs = e. But r is the order of a, and so r divides ds. Since (r,s) = 1, it follows
that r divides d. Hence d is a common multiple of r and s, hence is a multiple of
[r,s] = rs.
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Since (ab)rs = e, and every d > 0 with (ab)d = e is a multiple of rs, therefore the
order of ab is rs. ��

Now for the proof of Theorem 2:

Proof. Let b be an element of G, and let m be the order of b. We know that m≤ λ .
We must show that m divides λ . By definition, λ is the order of some element a
of G.

If m does not divide λ , there must be some prime number p so that a higher
power of p divides m than divides λ . We’ll use this assumption to find an element
of G whose order is greater than λ , contradicting the definition of λ .

Suppose pr is the highest power of p that divides m, and ps is the highest power
of p which divides λ , where r > s.

Since b in G has order m, then

d = bm/pr

has order pr by property (iv) of Proposition 1. Since a in G has order λ , then

c= ap
s

has order λ/ps, again by property (iv).
But pr and λ/ps are coprime, since ps is the highest power of p dividing λ . So

by Proposition 3, the element cd of G has order (λ/ps)pr = λ pr−s, which is larger
than λ . This violates the assumption that λ is the exponent of G.

Hence the order m of b must divide λ . We have therefore shown that the order of
every element of G divides the exponent λ , and the proof is complete. ��
Corollary 4. If λ is the exponent of a fin te abelian group G, then aλ = e for every
a in G.

This follows immediately from property (ii) of Proposition 1 and from Theorem 2.
This result yields

Theorem 5 (The Primitive Root Theorem). For every prime p there exists a prim-
itive root modulo p.

Proof. We know that Z/pZ is a field, and the group of unitsUp of Z/pZ has order
p− 1. By D’Alembert’s Theorem (Chapter 14), a polynomial of degree d cannot
have more than d roots in a field. If the exponent of Up is λ , then λ divides p− 1
by Proposition 1, (iii). Also, by the last corollary, every element of Up is a root of
the polynomial xλ −1. SinceUp has p−1 elements, therefore λ ≥ p−1. Therefore
λ = p−1. Hence there is an element [b]p ofUp of order p−1, and b is a primitive
root modulo p. ��

Proposition 3 can help in finding a primitive root modulo p.



390 19 Cyclic Groups and Cryptography

For example, modulo 13, it is easy to see that 33 = 27 ≡ 1 (mod 13), and 52 =
25≡−1 (mod 13), hence 3 has order 3, and 5 has order 4 modulo 13. Hence 3 ·5 =
15≡ 2 has order 12 modulo 13.

The exercises have some other examples.
Theorem 5 generalizes easily:

Theorem 6. Every finit subgroup of the multiplicative group of non-zero elements
of a f eld is cyclic.

Proof. LetU be a finite subgroup of the units of a field F . SupposeU has n elements
and exponent λ . Then λ ≤ n by Proposition 1, (iii), and aλ = 1 for all a in U .
Thus the polynomial xλ − 1 has n roots in F . By D’Alembert’s Theorem, n ≤ λ .
Thus n= λ , soU has an element of order n, hence is cyclic. ��
Corollary 7. The multiplicative group of units of a f nite f eld is cyclic.

This generalizes the Primitive Root Theorem from Z/pZ to every finite field.
We’ll see many examples of new finite fields later in the book.

Exercises.

1. Find the exponent of:
(i)U8;
(ii)U9;
(iii)U10.

2. Find the exponent λ of G and verify that aλ = 1 for all a in G, where G=
(i)U14;
(ii)U16;
(iii)U20.

3. Prove (i) of Proposition 1, that if G is a finite group of order n, then every a in G
has an order that is ≤ n.

4. Let a be an element of of order d in a finite abelian group. Show (ii) of Proposi-
tion 1, that if m is any number with am = e, then d divides m.

5. Prove (iii) of Proposition 1, that for every finite abelian group G and every ele-
ment a of G, the order of a divides g, the order of G.

6. LetG be a finite abelian group. Prove (iv) of Proposition 1, that if a is an element
of G and d is the order of a, then ar has order d/(r,d), where (r,d) is the greatest
common divisor of r and d.

7. What is the exponent of the group (under addition) Z/mZ?

8. Recall that [r,s] = rs if and only if (r,s) = 1. Suppose you wish to generalize
Proposition 3 to:

If a has order r and b has order s, then ab has order [r,s].
Show that this proposed generalization is false.
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9. In Z/31Z,
(i) find an element of order 5;
(ii) find an element of order 10;
(iii) show that 5 has order 3 modulo 31;
(iv) then, using Proposition 3, find a primitive root modulo 31.

10. Modulo 61, show that
(i) 112 ≡−1;
(ii) 35 ≡−1;
(iii) 133 ≡ 1.
Then find a primitive root modulo 61.

11. It is true that 5 has order 25 modulo 401, and 30 has order 16 modulo 401.
Without computing anything, show that 6 has order 400 = 25 ·16 modulo 401.

12. Observe that 332 = 1089≡−1 (mod 109). It is a fact that 3 has order 27 mod-
ulo 109. Show that 11 is a primitive root modulo 109 with no further computations.

13. Let m= p1p2 · · · pr be a product of distinct primes, and letUm be the group of
units of Z/mZ. Let e be the least common multiple of p1−1, p2−1, . . . , pr−1.

(i) Show that the order of every element a ofUm divides e.
(ii) Explain how to use the Chinese Remainder Theorem to find an element of

Um of order e.

B. Finite Cyclic Groups

We recall the definition of cyclic group from Section 11B.
Suppose G is a group with operation ∗ and identity e, and let a be an element

of G of order d. If G is finite, then the subset of G consisting of all non-negative
powers of a,

〈a〉= {e,a,a2,a3, . . . ,ar, . . . ,}
is the cyclic subgroup of G generated by a.

The word “cyclic” comes from the idea that if a has order d, then ad = e, so

〈a〉= {e,a,a2,a3, . . . ,ad−1},
and the powers of a repeatedly cycle through the elements of 〈a〉 as follows:

e a . . . ad−1

ad ad+1 . . . a2d−1

a2d a2d+1 a3d−1

...
...

where the elements in each column are all equal to each other.
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If a group G is generated by a, then a is called a generator of G. The same group
may have several generators, as we’ll see.

Some examples of cyclic subgroups:

Example 2. In U14, the group of units of Z/14Z, let’s look at the cyclic subgroups
generated by each of the elements ofU14 (we denote [a]14 by a):

〈1〉= {1}
〈3〉= {3,9,13,11,5,1}
〈5〉= {5,11,13,9,3,1}
〈9〉= {9,11,1}
〈11〉= {11,9,1}
〈13〉= {13,1}.

Thus U14 has four cyclic subgroups, 〈1〉,〈13〉,〈9〉 = 〈11〉, and 〈3〉 = 〈5〉 =U14.
In particular,U14 is a cyclic group and [3] and [5] are generators ofU14.

Defini ion. A finite groupG of order n is cyclic if there is an element a of G so that
the cyclic subgroup of G generated by a is all of G.

It follows from Theorem 2 that a finite group G of order n is cyclic if and only if
there is an element a of G of order n, if and only if the exponent of G is equal to the
order of G.

Many of the groups we have seen thus far in the book are cyclic groups. For
example:

For everym, Z/mZ with the operation + and identity element 0 is a cyclic group,
generated by [1]m, the congruence class of the number 1.

If p is prime and b is a primitive root modulo p, then 〈[b]p〉 = Up, so Up is a
cyclic group.
U8 is not a cyclic group, since U8 = {[1], [3], [−3], [−1]}, and all four elements

have order 1 or 2.

Here is a useful characterization of a cyclic group. Assume G has operation ∗
and identity e, and let ar denote a∗a∗ . . .∗a (r factors).

Proposition 8. A fin te abelian group G is cyclic if and only if for every integer
r > 0, the equation xr = e has at most r solutions in G.

Here is a proof that if G is not cyclic, then there is some r> 0 so that the equation
xr = e has more than r solutions in G:

Proof. We proved in Theorem 2, Section A above, that if λ is the exponent of G,
then gλ = e for every element g ofG. Suppose thatG is not cyclic. ThenG has order
n and has no element of order n. So the exponent λ < n. Since every element g of G
satisfies gλ = e, it follows that xλ = e has more than λ solutions in G. ��
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The converse follows from the more precise result:

Proposition 9. If G = 〈b〉 is a cyclic group of order n, then for every r > 0, the
equation xr = e has exactly d = (n,rd) solutions.

Proof. For 1≤ s≤ n, (bs)r = e if and only if n divides sr, if and only if n/d divides
sr/d Since ( nd , rd ) = 1, (bs)r = e if and only if s is a multiple of n/d. Thus the
solutions of xr = e are x= b

n
d k for 1≤ k ≤ d. ��

As an immediate corollary, we have

Corollary 10. If G is a cyclic group, then every subgroup of G is cyclic.

Proof. For every r > 0, the equation xr = e has at most r solutions in G, and hence
has at most r solutions in each subgroup of G. Hence every subgroup of G must be
cyclic. ��

We can determine all of the subgroups of a finite cyclic groupG by the following
result:

Proposition 11. Let G be a cyclic group of order n and let b be a generator of G.
For every divisor d of n, the cyclic subgroup 〈bd〉 generated by bd is a subgroup of
G of order n/d. Let H be a subgroup of G. If d is the least number≥ 1 so that bd is
in H, then H = 〈bd〉.
Proof. Let n= dq. Then

〈bd〉= {bd,b2d , . . . ,bqd = bn = e}

is a cyclic subgroup of G of order n/d = q. Now let H be a subgroup of G, and let d
be the least positive exponent so that bd is in H. Since G is cyclic, every element of
H is a power of b. Let bs be inH. We show d divides s. For by the Division Theorem,
s = dq+ r for some numbers q and r with 0 ≤ r < d. Then br = bs ∗ (bdq)−1 is in
H. If r > 0, then bd would not be the least power of b in H. So r = 0 and d divides
s. Hence H = 〈bd〉. ��

An easy consequence of this proposition is that if G is cyclic of order n, then
there is a one-to-one correspondence between subgroups of G and divisors of n. If b
is a generator of G, then corresponding to the divisor d of n is the subgroup of order
d generated by bn/d .

Example 3. The group of units modulo 19 is a cyclic group of order 18, generated
by 2 mod 19. The divisors of 18 are 1, 2, 3, 6, 9 and 18. The cyclic subgroups of
orders 18, 9, 6, 3, 2, and 1, respectively, are generated by 2,22 = 4,23 = 8,26 ≡
7,29 ≡−1 and 218 ≡ 1 (mod 19).
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Exercises.

14. Show that a finite abelian group G is cyclic if and only if the exponent of G =
the order of G.

15. Show that the groupU10 of units of Z/10Z is cyclic. Find a generator ofU10.

16. Show that the groupU25 of units of Z/25Z is cyclic. Find a generator ofU25.

17. Show that the groupU49 of units of Z/49Z is cyclic. Find a generator ofU49.

18. Find the order and the exponent ofU15.

19. Find the order and the exponent ofU28.

20. Find the order and the exponent ofU24. Find all the cyclic subgroups ofU24.

21. Find all possible generators of the cyclic group Z/nZ under addition.

22. If p is prime, thenUp is a cyclic group because there is a primitive root modulo
p. Show thatUp has φ(p−1) primitive roots.

23. Show that F9 = {a+bi|a,b in Z/3Z, i2 = −1} is not a cyclic group under ad-
dition.

24. Let M2(Z/2Z) denote the ring of 2× 2 matrices with entries in Z/2Z. Is
M2(Z/2Z) a cyclic group under addition? Is the group of invertible elements of
M2(Z/2Z) cyclic?

C. Primitive Roots Modulo pe

Here is the main result of this section

Theorem 12. For every odd prime p and every e > 1, there is a primitive root
modulo pe.

This means: there is some number b so that every number coprime to p is con-
gruent modulo pe to a power of b.

In other terminology,

Corollary 13. For every odd prime p and every exponent e > 0, Upe is a cyclic
group.

Example 4. We see that 2 is a primitive root modulo 9: 2 has order 6 (mod 9), and

U9 = {[1], [2], [4], [5], [7], [8]}= {[1], [2], [22], [25], [24], [23]}.

For the proof of the theorem, we need a consequence of the Binomial Theorem.
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Lemma 14. Let p be an odd prime and r be coprime to p. Then for each k ≥ 0,
(1 + pr)pk = 1 + pk+1s for some number s coprime to p.

Proof of Lemma. The lemma is obvious if k = 0. For k = 1 we have

(1 + pr)p = 1 +
(
p
1

)
pr+

(
p
2

)
p2r2 + . . .

by the Binomial Theorem, where, since p ≥ 3, all of the terms not written out are
multiples of p3. Since

(p
1

)
= p, and

(p
2

)
= p(p−1)

2 , a multiple of p, we have (1 +
pr)p = 1 + p2r (mod p3), and so

(1 + pr)p = 1 + p2r+ p3t = 1 + p2(r+ pt)

for some integer t. Then r+ pt is coprime to p because r is. Thus the lemma is true
for k = 1.

Suppose for some k ≥ 1, we have (1 + pr)pk = 1 + pk+1s for some s coprime to
p. Then

(1 + pr)p
k+1

= (1 + pk+1s)p

= 1 +
(
p
1

)
pk+1s+

(
p
2

)
(pk+1s)2 (mod pk+3)

since (pk+1)m is a multiple of pk+3 for m ≥ 3. Now
(p

2

)
(pk+1s)2 is a multiple of

p2(k+1)+1 and 2(k+ 1)+ 1≥ k+ 3, so

(1 + pr)p
k+1 ≡ 1 +

(
p
1

)
pk+1s= 1 + pk+2s (mod pk+3).

Thus
(1 + pr)p

k+1
= 1 + pk+2t

where t ≡ s (mod p), and hence t is coprime to p.
The lemma is therefore proved by induction. ��

Proof of Theorem 12. Let b be a primitive root modulo p. Let d be the order of b
modulo pe. The group of unitsUpe has order pe−1(p−1), so d divides pe−1(p−1).
Now bd ≡ 1 (mod pe), so bd ≡ 1 (mod p). Since b is a primitive root modulo p,
the order of b modulo p is p−1, and so p−1 must divide d. Thus the order modulo
pe of b must be pl(p−1) for some l, 0≤ l ≤ e−1.

We first do the case e= 2.
Let b be a primitive root modulo p. If b has order p(p−1), then b is a primitive

root modulo p2. Otherwise, b has order p− 1 modulo p2. In that case, consider
b+ p, which also has order p−1 modulo p. We compute (b+ p)p−1 by the Binomial
Theorem and look at the result modulo p2:

(b+ p)p−1 ≡ bp−1 +(p−1)bp−2p

≡ 1− pbp−2 (mod p2).
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Thus (b+ p)p−1 �≡ 1 (mod p2), and hence must have order p(p−1) modulo p2. So
if b is not a primitive root modulo p2, then b+ p is a primitive root modulo p2. In
either case, Z/p2Z has a primitive root.

Now assume b is a primitive root modulo p2, that is, the order of b modulo p2 is
p(p−1). We show that b is then a primitive root modulo pe for all e> 2.

We know that b has order (p−1) modulo p, so bp−1 = 1 + pr for some number
r. Since b has order p(p−1) modulo p2, bp−1 �≡ 1 (mod p2), and so r is coprime to
p. We showed that b has order (p−1)pl modulo pe, for some 1 ≤ l < e. We claim
l = e−1. For by Lemma 14, since (r, p) = 1,

(b(p−1))p
e−2

= (1 + rp)p
e−2

= 1 + spe−1 �≡ 1 (mod pe),

and therefore the order of b cannot be less than (p−1)pe−1. Hence b is a primitive
root modulo pr for all r > 2. ��

Exercises.

25. Find a primitive root modulo 27.

26. Find a primitive root modulo 625.

27. Find a primitive root modulo 49.

28. Let p be an odd prime and e > 1. Show that if b is a primitive root (mod pe),
then b is a primitive root (mod p).

29. Let p be an odd prime, and a be a number < p. Show that among the p numbers
b with 0 < b< p2 and b≡ a (mod p), exactly one satisfies bp−1 ≡ 1 (mod p2).

D. The Exponent of Um

In this section we find all moduli m for which there is a primitive root modulo m.
There is a primitive root modulo m if and only if the group of unitsUm modulo m is
cyclic.

Recall that the exponent of a finite abelian group G is the largest number λ so
that λ is the order of some element of G. If G has order n, then G is cyclic if and
only if there is an element a of G of order n, if and only if the order n of G is also
the exponent of G. Thus given a modulus m, to decide if Um, the group of units of
Z/mZ, is cyclic, we can compare the exponent λ (m) ofUm with φ(m), the order of
Um. ThenUm is cyclic if and only if λ (m) = φ(m).

To compute λ (m), we have

Proposition 15. Let m = rs with r,s coprime. Then λ (m) is the least common mul-
tiple of λ (r) and λ (s).
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Compare this result to that for φ(m): if m = rs with r,s coprime, then φ(m) =
φ(r)φ(s).

To prove the proposition, we need

Lemma 16. Let b be a unit modulo m. If m= rs with r,s coprime, then the order of
b modulo m is the least common multiple of the order of b modulo r and the order
of b modulo s.

Proof of lemma. Suppose the integer b has order e (mod r) and has order f
(mod s). If d = [e, f ] is the least common multiple of e and f , then e and f divide
d, so

bd ≡ 1 (mod r)

and
bd ≡ 1 (mod s),

hence
bd ≡ 1 (mod m).

On the other hand, if bg ≡ 1 (mod m) for some g, then

bg ≡ 1 (mod r)

so e divides g, and
bg ≡ 1 (mod s)

so f divides g. Hence g is a common multiple of e and f , hence is divisible by
d = [e, f ]. Thus d is the minimal exponent g > 0 so that bg ≡ 1 (mod m), so d is
the order of b modulo m. ��

Proof of Proposition 15. Let b and c be integers so that b has order λ (r) (mod r),
and c has order λ (s) (mod s). By the Chinese Remainder Theorem we can find an
integer a so that

a≡ b (mod r)
a≡ c (mod s).

Then a is a unit modulo m and the order of a modulo m is [λ (r),λ (s)]. So
[λ (r),λ (s)] divides the exponent λ (m) ofUm by Theorem 2 of Section A.

Conversely, let a have order λ (m) modulo m. If a has order e modulo r, then e
divides λ (r). If a has order f modulo s, then f divides λ (s). By Lemma 16, the
order of amodulom= rs is the least common multiple of e and f . So λ (m) = [e, f ].
Since e divides λ (r) and f divides λ (s), [e, f ] = λ (m) divides [λ (r),λ (s)]. Hence
λ (m) = [λ (r),λ (s)]. ��

An easy induction argument on the number of prime power factors ofm describes
the exponent ofm as the least common multiple of the exponents of the prime power
factors of m:
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Corollary 17. Let m= 2r pe1
1 p

e2
2 · . . . · p

eg
g . Then

λ (m) = [λ (2r),φ(pe1
1 ),φ(pe2

2 ), . . . ,φ(pegg )],

To complete the results needed to compute λ (m), we need to deal with the
prime 2.

Proposition 18. For r ≥ 3, λ (2r) = 2r−2

Proof. First observe that 5 has order 2 modulo 8 = 23, and has order 4 = 22 modulo
16 = 24, because 52 ≡ 9 (mod 16) while

522
= 625 = 1 + 39 ·24 (mod 16).

In general, for k ≥ 4, if

52k−2
= 1 + 2kr

with r odd, then
52k+1

= (1 + 2kr)2

= 1 + 2(2kr)+ (2kr)2

= 1 + 2k+1(r+ 2k−1r2)

= 1 + 2k+1s

with s an odd number. Hence, by induction, 5 has order 2r−2 mod 2r for all r ≥ 4.
Since the order ofU2r is φ(2r) = 2r−1, the exponent λ (2r) ofU2r must be either

2r−2 or 2r−1. If λ (2r) = 2r−1, thenU2r would be a cyclic group. But notice that the
polynomial x2 − 1 has four roots in U2r , namely, 1, −1, 1 + 2r−1 and −1 + 2r−1,
and if r ≥ 3, these are all different modulo 2r. Thus by Proposition 8,U2r cannot be
cyclic, and so λ (2r) = 2r−2 for r ≥ 3. ��

To decide for which m there is a primitive root modulo m, the following result is
helpful:

Corollary 19. For all m> 2, λ (m) is an even number.

Proof. The result is true for m= 2r when r ≥ 2.
If m is divisible by an odd prime p, write m= peq with (p,q) = 1. Then λ (m) =

[λ (pe),λ (q)] is a multiple of λ (pe) = φ(pe) = pe(p−1), an even number. So λ (m)
is even. ��
Theorem 20. The group Um of units of Z/mZ is cyclic if and only if m= 2 or 4, or
m= pe or 2pe for some odd prime p.

Proof. Um is a cyclic group iff λ (m) = φ(m). We know that λ (m) = φ(m) ifm= 2,4
or pe for p an odd prime. Since for p an odd prime,
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λ (2pe) = [λ (2),λ (pe)] = [1,λ (pe)] = λ (pe),

φ(2pe) = φ(2)φ(pe) = φ(pe)

and λ (pe) = φ(pe), we have λ (2pe) = φ(2pe).
Now we consider all other possible values of m.
We showed above that for r ≥ 3, λ (2r) < φ(2r).
If m is divisible by an odd prime p, let m = qpe with (p,q) = 1. If q > 2, then

λ (q) is divisible by 2, and λ (pe) is even, so the greatest common divisor of λ (q)
and λ (pe) is a multiple of 2. Hence

λ (m) = [λ (q),λ (pe)] =
λ (q)λ (pe)

(λ (q),λ (pe))
< λ (q)λ (pe)≤ φ(q)φ(pe) = φ(m).

Thus in all cases except whenm= 2 or 4 orm= qpe with p an odd prime and q≤ 2,
λ (m) < φ(m) andUm is not cyclic. That completes the proof. ��
Corollary 21. There is a primitive root modulo m iff m= 4, pe or 2pe for p an odd
prime.

For b is a primitive root modulo m iff the group of units Um is cyclic with
generator [b]m.

Exercises.

30. Let m= rs with r,s> 2 and r and s coprime.
(i) Show that there are at least four roots of the polynomial x2 − 1 modulo m.

[Hint: use the Chinese Remainder Theorem.]
(ii) Show thatUm is not cyclic.

31. (i) Show that if G = 〈b〉 is a finite cyclic group (written multiplicatively) of
even order 2m, then the product of all the elements of G is bm.

(ii) Use part a) with G=Up to derive Wilson’s Theorem:
if p is prime, then (p−1)!≡−1 (mod p).

32. Let e be some exponent > 0 so that ae ≡ 1 (mod m) for all numbers a coprime
to m. Show that if λ (m) is the exponent of the group Um of units modulo m, then
λ (m) divides e.

33. (i) Show that for every r and s, the exponent of Ur×Us is the least common
multiple of λ (r) and λ (s).

(ii) Suppose m= rs and r and s are coprime. Then by Section 12D,

Um ∼=Ur×Us.

Use this fact and part (i) to prove Proposition 15, that

λ (m) = [λ (r),λ (s)].
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E. Pseudoprimes

Let m be an odd number. Recall from Section 10B that m is an a-pseudoprime if
am−1 ≡ 1 (mod m), if [a]m−1 = [1] in Z/mZ.

In this section we ask: for how many numbers a with 1 ≤ a ≤ m is m an a-
pseudoprime.

If a is not a unit modulo m, then am−1 �≡ 1 (mod m), so we need only look for
numbers a that are units modulo m.

Let Um be the group of units modulo m, and let Um(e) be the subgroup of Um
consisting of units [a] with [a]e = [1], the group of e-th roots of unity in Z/mZ.

The answer to our question is the size ofUm(m−1).

Proposition 22. For every m and every e> 0,

Um(e) =Um(d)

where d = (e,φ(m)), the greatest common divisor of e and the order φ(m) of Um.

Proof. If d = (e,φ(m)), then there are integers r,s so that

d = re+ sφ(m).

For [a] inUm,
[a]d = [aer+φ(m)s] = [a]er[a]φ(m)s = [a]er.

Thus if [a] is inUm(e), then [a] is inUm(d).
Conversely, since d divides e,Um(d)⊆Um(e). ��

Proposition 23. Let m= rs with (r,s) = 1. Then for every e≥ 1,

Um(e)∼=Ur(e)×Us(e).

Proof. We know that the homomorphism θ fromUm toUr×Us defined by θ ([a]m)=
([a]r, [a]s) defines an isomorphism

Um ∼=Ur×Us.

If ae ≡ 1 (mod m), then ae ≡ 1 (mod r) and also (mod s), so θ mapsUm(e) into
Ur(e)×Us(e). To show that θ is onto Ur(e)×Us(e), let b,c satisfy [b]er = [1]r and
[c]es = [1]s. We find an integer a satisfying

a≡ b (mod r)
a≡ c (mod s).

Then ae ≡ 1 (mod r) and ae ≡ 1 (mod s). Since r and s are coprime, then ae ≡ 1
(mod m). Then θ ([a]m) = ([b]r, [c]s) in Ur(e)×Us(e). Hence θ yields an isomor-
phism

Um(e)∼=Ur(e)×Us(e). ��
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Corollary 24. If m= q1q2 · · ·qg with qi = peii with p1, . . . , pg distinct primes, then

Um(e) =Uq1(gcd(e,φ(q1))× . . .×Uqg(gcd(e,φ(qg)).

We also have:

Proposition 25. If Uq is cyclic and d divides φ(q), then Uq(d) has d elements.

Proof. Since Uq is cyclic, if Uq = 〈[b]〉, then Uq(d) = 〈[bφ(q)/d]〉 is cyclic of
order d. ��

Using these results, for every m we can count the number of elements in
Um(m−1). (Recall that (r,s) is the greatest common divisor of r and s.)

Proposition 26. Let m be odd, m= q1q2 · · ·qg with qi = peii with p1, . . . , pg distinct
primes. Then

|Um(m−1)|= (m−1,φ(q1)) · · · (m−1,φ(qg)).

Proof. For each i, sinceUqi is a cyclic group,Uqi(m−1) has (m−1,φ(qi)) elements,
by Proposition 9. The result then follows from Corollary 24. ��
Example 5. Let m= 225 = 53 ·32. Then

U225(224) =U25(224)×U9(224)

has (224,20) · (224,6) = 4 ·2 = 8 elements. Hence

|U225(224)|
φ(225)

=
8

120
=

1
15

.

This means that 225 is an a-pseudoprime for 1/15 of the units modulo 225.

Example 6. Let m= 187 = 11 ·17. Then

U187(186) =U11(186)×U17(186)

has 2 ·2 = 4 elements. Thus

|U187(186)|
φ(187)

=
4

160
=

1
40

,

and so 187 is an a-pseudoprime for only 1/40 of the units modulo 187.

Example 7. Let m= 561 = 3 ·11 ·17. Then

U561(560) =U3(560)×U11(560)×U17(560)

has
(560,2) · (560,10) · (560,16)= 2 ·10 ·16 = 320 = φ(561)

elements. Thus 561 is an a-pseudoprime for every a coprime to 561, hence is a
Carmichael number (as we knew from before).
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Exercises.

34. Find |Um(m−1)| and |Um(m−1)|/φ(m) for:
(i) m= 91
(ii) m= 105
(iii) m= 1001.

35. Find m so that |Um(m−1)|/φ(m) < 1/100.

36. For the 2-pseudoprime m = 1194649 = 10932 of Section 10B, find |Um
(m−1)|/φ(m).

37. Show that for p an odd prime, |Upe(pe−1)|= p−1.

F. Discrete Logarithms

Let G be a cyclic group of order n with generator g. Every element b of G may be
written as

b= gr

for some integer r with 0 ≤ r < n. The number r is called the logarithm of b to the
base g, written

r = logg(b)

or just r = log(b) if the generator g is understood.
The logarithm relative to a generator of a finite cyclic group is called a discrete

logarithm, to contrast it with the functions ln(x) or log10(x), which are continuous
functions of x for x > 0. The discrete logarithm is an integer defined modulo the
order n of g, since

gr = gr+kn

for every k.
The classical logarithm was invented by Napier and Briggs in the early part of

the 17th century for computational purposes. The key property of the base 10 log-
arithm of Briggs (1624) was that log(ab) = log(a)+ log(b). This property enables
users to transform multiplications of many-digit numbers into addition by the use
of logarithm tables. To multiply a and b, they would look up log(a) and log(b), add
the logarithms, and then find the number c with

log(c) = log(a)+ log(b).

Logarithms “revolutionized the art of numerical computation” [Edwards (1979),
p. 154].

In a similar way, if b= gr,a = gs, then ab= gr+s, so

logg(ab)≡ logg(a)+ logg(b) (mod n).
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Thus with a table of discrete logarithms for a finite cyclic group, multiplying in the
group can be transformed into addition modulo n, the order of the group.

Example 8. Let G=U11. ThenU11 is generated by [2]11, which we will abbreviate
as 2 in this example. Here is a logarithm table forU11:

a = 2b b= log2(a)
1 10
2 1
3 8
4 2
5 4
6 9
7 7
8 3
9 6

10 5

Thus if we want to multiply 5 ·8, we have

log2(5) = 4,

log2(8) = 3,

4 + 3≡ 7 (mod 10), and

27 ≡ 7.

Thus
5 ·8≡ 24 ·23 = 27 ≡ 7 (mod 11).

The discrete logarithm is helpful when evaluating a polynomial with coefficients
modulo 11.

Example 9. Let
p(x) = x6 + 3x5 + 8x3 + 7x2 + 5,

and suppose we want to find p(6) modulo 11. Then, modulo 11 (and recalling that
the exponents of 2 are modulo 10),

p(6) = 66 + 3 ·65 + 8 ·63 + 7 ·62 + 5

≡ (29)6 + 28 · (29)5 + 23 · (29)3 + 27 · (29)2 + 5

≡ 254 + 253 + 230 + 225 + 5

≡ 24 + 23 + 1 + 25 + 5

≡ 5 + 8 + 1 + 10+5

≡ 7 (mod 11).

Observe that we did no multiplications, rather just additions, reduction of exponents
modulo 10 and reduction of numbers modulo 11.



404 19 Cyclic Groups and Cryptography

We’ll see in Chapter 25 that a discrete logarithm table is very helpful for evalu-
ating polynomials in a field of 16 elements.

Suppose we let G =Up for p a large prime number (e.g. of 100 digits), let g be
a generator of G, that is, a primitive root modulo p, and we wish to find gm = a. for
somem. That is computationally easy–we just writem in base 2 and use the squaring
modulo p method of section 9F. But now suppose we are given the generator g and
the number a. How do we find m = logg(a)? That is much harder. The problem is
an example of

The Discrete Logarithm Problem. Let G be a finite cyclic group with generator
g. Given an element a in G, then a= gx for some number x. Find x= logg(a).

The problem of finding efficient ways to produce logg(a) has been an intense
area of research ever since Diffie and Hellman (1976) introduced public key cryp-
tography with a scheme whose security depended on the difficulty of the discrete
logarithm problem. We present their scheme in the next section.

Exercises.

38. In Example 9,
(i) compute p(7) modulo 11;
(ii) compute p(3) modulo 11.

39. Set up a discrete logarithm table for integers modulo 13, using the primitive
root 2.

40. Let f (x) = x8 + 7x6 + 3x5 + 4x4 + x2 + 9x+ 1. Use the log table of the last
exercise to find

(i) f (3) modulo 13;
(ii) f (9) modulo 13;
(iii) f (10) modulo 13.

G. Discrete Logarithm Cryptography

We reintroduce Alice, Bob and Eve.
Alice and Bob wish to communicate privately. Eve can see everything sent be-

tween Alice and Bob. Alice and Bob don’t want Eve to be able to read messages
from Alice to Bob, so need to encrypt the messages so that Eve cannot read them.

In their celebrated paper, W. Diffie and M. Hellman (1976) introduced the idea
of a public key cryptosystem. They presented a method by which Alice and Bob
can obtain a common private key, and in order for Eve to know the key, Eve would
apparently have to solve the discrete logarithm problem.



19 Cyclic Groups and Cryptography 405

A common private key was a fundamental part of all cryptosystems prior to Diffie
and Hellman’s paper. For example, during World War II, the German Enigma ma-
chines were used to encrypt and decrypt messages between the German Admiralty
and the North Atlantic submarine fleet, and both sender and receiver had to share a
common private key in order to configure the machines to encrypt and decrypt com-
patibly. But how to communicate a common private key by radio between Berlin
and the North Atlantic while the British are listening?

Diffie and Hellman’s scheme solves the problem of communicating a private key
through a public channel. The scheme works as follows.

Alice and Bob agree on a finite cyclic group G of large order, and a generator g
of G. The shared key will be an element of G.

Alice chooses a random number a between 0 and the order ofG, computes ga =A
in G and sends the resulting group element A to Bob, while keeping the exponent a
secret.

Bob chooses a random number b between 0 and the order of G, computes gb = B
in G and sends the resulting group element B to Allice, while keeping the exponent
b secret.

Alice and Bob’s shared private key is then K = gab in G.
Alice can compute K by computing Ba = (gb)a, which she can do because she

knows a and she received B from Bob. Bob can compute K by computing Ab =
(ga)b, which he can do because he knows b and he received A from Alice.

Assume that Eve can eavesdrop on the transmissions between Alice and Bob.
Then Eve knows G, g, A and B. She wants to learn the key K. Since K = Ab = Ba =
gab, she can determine K if she can learn a or b or ab. We can state Eve’s problem
as follows:

Diff e-Hellman problem: Given a groupG, an element g in G, and elements A and
B in 〈g〉 where A= ga for some unknown number a and B= gb for some unknown
number b, determine K = gab in G.

We can restate the problem.

Defini ion. Given a cyclic group G and a generator g of G, define the function

DHg :G×G→ G

by DHg(ga,gb) = gab.

The Diffie-Hellman problem is then to compute K = DHg(A,B) for every pair
(A,B) of elements of G= 〈g〉.

In the Diffie-Hellman cryptographic scheme, the eavesdropper Eve will know G,
g, A and B, so to find the secret key K and crack the code, Eve needs to compute
DHg(A,B).
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Evidently, one way to determine DH on a pair of elements of G is to solve the
discrete logarithm problem: find a= logg(A) and b= logg(B); then

DHg(A,B) = gab = glogg(A) logg(B).

Since DH(A,B) = Blogg(A) = Alogg(B), it suffices only to know either logg(A) or
logg(B).

It is an open question whether it is possible to compute DH(A,B) directly, with-
out knowing the value of logg(A) or logg(B). It is widely thought that the two prob-
lems, the Diffie-Hellman problem and the discrete logarithm problem are of the
same order of difficulty.

A nice feature of the Diffie-Hellman scheme is that it can be used with any cyclic
group G of large order for which there is an efficient procedure for multiplying
elements in G. Some examples:

• G =Up, the group of units modulo a large prime p. The group Up is cyclic of
order p−1.

• G is the group of non-zero elements of any finite field E . For examples, see
Chapter 23.

• G is a cyclic subgroup of large order inside the group of points of an elliptic
curve over a finite field. Cryptosystems based on elliptic curves have been widely
studied during the past 20 years, but are a bit beyond the scope of this book. See
Koblitz (1994) for a description.

DSA. The Digital Signature Standard of the National Institute of Standards and
Technology, U. S. Department of Commerce, was issued in 1994 and is applicable
for the implementation of public-key based signature systems for use by Federal
agencies. The Digital Signature Algorithm (DSA) is based on the discrete logarithm.

Suppose Alice regularly sends messages to Bob. To apply a signature to those
messages, Alice makes public a large prime p, and a number g of prime order q
modulo p, where q is a large prime divisor of p−1. As in the Diffie-Hellman cryp-
tosystem, the group G used is the cyclic group 〈g〉 of order q generated by g.

Alice chooses a random private key a and makes public A= ga, her public key.
For each message m Alice sends to Bob, Alice picks a random number k mod q.

To sign the message m, she computes H(m), where H is a public hash function that
creates a “digest” of the message m in Z/qZ. There is a federal standard for such
hash functions, the Secure Hash Algorithm. Then she computes her signature (r,s)
where

• r = gk mod q
• s= k−1(H(m)+ar) mod q.

She sends Bob the triple (m,r,s) consisting of the message m and the signature
(r,s). The signature depends on Alice’s private key a, on the message-specific infor-
mation H(m), and on the random number k generated specifically for the message
m. Since k is random, r = gk will be a random element of G.
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Bob receives (m′,r′,s′) and wants to be sure that that the message m′ is the same
as the messagem that Alice sent, and that (r′,s′) is Alice’s signature (r,s). He knows
the modulus p, the group generator g, the order q of g, and Alice’s public key A. To
verify Alice’s signature he computes H(m′), computes w, the inverse of s′ modulo
q, and then computes

v= gH(m′)wAr
′w.

If v≡ r (mod q), then Bob decides to accept as authentic the message from Alice.
To see why, we first observe that if (m′,r′,s′) = (m,r,s), then

v= gH(m)wArw

= gH(m)wgarw

= gH(m)w+arw

= g(H(m)+ar)w.

Since s≡ k−1(H(m)+ar) (mod q) and w≡ s−1 (mod q), we have

k ≡ (H(m)+ar)w (mod q)

and so v= gk ≡ r (mod q).

Suppose Eve wished to impersonate Alice. Eve would construct a message m,
pick a random k, compute r = gk, H(m) and k−1, and try to determine the correct s.
But s= k−1(H(m)+ar) depends on Alice’s secret key a. In order for Eve to succeed
in misleading Bob, Eve would need to find s so that v = r. But if Eve found such
an s, then

gk = r = v= gH(m)wArw

with w≡ s−1 (mod q), so
gks = gH(m)Ar;

letting z be the inverse of r modulo q, this becomes

g(ks−H(m))z = A.

But ga = A, so this equation yields Alice’s secret key a:

(ks−H(m))z≡ a (mod q).

Thus for Eve, finding s is equivalent in difficulty to solving the discrete logarithm
problem for Alice’s secret key:

Given g and A= ga, find a.
In the implementation of DSA (as specified in 1994), the prime q (and hence the

order of g) should satisfy 2159 < q< 2160, and the prime p should lie between 2L−1

and 2L where 512≤ L≤ 1024 and L is a multiple of 64.
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For the full National Institute of Standards and Technology description of
DSA, see www.itl.nist.gov/fipspubs/fip186.htm.

Exercises.

41. Let G = 〈3〉 ⊂U83. Then 3 has order 41 modulo 83. Suppose m is a message
with H(m) = 24. Alice’s secret exponent is a = 23, and she publishes A = 49. For
the message m she selects the random number k = 17. Compute Alice’s signature
for the message m.

42. With G= 〈3〉 ⊂U83, suppose you receive (H(m),r,s) = (33,20,27) from Alice
and know that A= 49. Verify Alice’s signature.

H. Pseudorandom Numbers

A sequence of (uniformly distributed) random numbers, chosen from the interval
between 1 and some fixed integer M, is a sequence of numbers x0,x1, . . . such that
for each i, the value of xi has a 1/M chance of being any given number between 1
and M, independent of what values x0,x1, . . . ,xi−1 took on.

For example,M could be 6 and xi could be the number of dots showing on the ith
toss of a fair die. Or M could be equal to 13 and xi could be the value of the ith card
drawn from a well-shuffled deck of 52 standard playing cards (with J = 11, Q = 12,
K = 13), where before drawing the next card the last card drawn is shuffled back
into the deck. Or M could be 38 and (with 0 = 37, 00 = 38) xi could be the result of
the ith spin of a roulette wheel.

Random numbers are useful in many contexts related to computing. Here are
some examples.

(1) In order to provide individualized web-based quizzes for calculus students,
web designers can provide variations of given problems by randomly changing pa-
rameters in the problem. For example, suppose the problem is to find the derivative
of a function of the form sin(ax2 +bx+c). The parameters a, b and c for each prob-
lem could be randomly chosen triples of integers from the set {−4,−3,−2,−1,1,2,
3,4,5}. There are 729 possible triples. If we number them, then when a student
selects that problem, a random number between 1 and 729 would determine the
parameters for that student.

The random selection of parameters would insure that the student cannot know
in advance exactly which problem will be asked.

Similar uses of random numbers create unpredictability and variety in many com-
puter games.

(2) Suppose f is a positive real function, such as

f (x) =
1

1 + x2 + x3
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or
f (x) = e−x

2
,

and we wish to determine

f (x) =
∫ 1

0
f (x)dx,

the area under the curve y= f (x) between x = 0 and x = 1. For many functions f ,
such as these two examples, there is no formula for the antiderivative, and so the
integral cannot be explicitly determined and must be approximated. If f happens
to have a number of jump discontinuities, or is not differentiable, even some of the
standard calculus methods, such as Simpson’s rule, or expansion into an infinite
series (Newton’s favorite method), don’t work well.

Suppose 0≤ f (x)≤ 1 for 0≤ x≤ 1. We can use random numbers to estimate the
value of

∫ 1
0 f (x)dx as follows: generate N pairs of random numbers,

(z1,w1),(z2,w2), . . . ,(zn,wn),

with 0≤ zi ≤M,0≤ wi ≤M and M is large. Let xi = zi/M,yi = wi/M. Then xi and
yi lie between 0 and 1, so (xi,yi) are the coordinates of a point in the square with
corners (0, 0), (0, 1), (1, 0), (1, 1).

Some of those N points (xi,yi) will lie on or beneath the curve y= f (x), namely,
those for which yi ≤ f (xi); the others will lie above the curve. We can estimate the
area A under the curve y= f (x) by

A=
∫ 1

0
f (x)dx≈ #{(xi,yi)|yi ≤ f (xi)}/N.

If we choose the N points randomly, rather than systematically, then for any
function f (x), there is a high probability that the resulting estimate for the area will
not differ greatly from the true area. By contrast, any particular systematic choice of
the N points may be quite good for estimating the area for most functions, but can
be extremely poor for estimating the area under certain functions. It is desirable to
have a method which we can confidently apply to any function. The random point
method is such a method.

(3) As we shall see in Section 20C, random numbers are useful in testing a large
number to see whether it is composite or “probably prime.”

In such applications, computations are efficiently done if sequences of random
numbers can be generated as needed by the computer.

But a computer is a deterministic machine. It cannot compute random numbers,
for there is no chance built into its computations.

To circumvent this problem, and to be able to replicate computations, a strat-
egy adopted by computer scientists is to have the computer generate sequences of
numbers that look random, even though in fact they are not.

Such numbers are called pseudorandom numbers.
In this section we will look at a classic strategy for generating sequences of

pseudorandom numbers.



410 19 Cyclic Groups and Cryptography

Lehmer’s multiplicative congruential method. The first widely used and under-
stood method for computing pseudorandom numbers is the multiplicative congru-
ential method developed by D.H. Lehmer in 1949.

Lehmer’s method constructs sequences of pseudorandom numbers by the simple
process of computing successive powers of some number A mod m.

To illustrate the construction for an unreasonably small value of M, let M = 41,
and A= 23. Then the powers of A mod M, starting from A0 = 1, are

1,23,37,31,16,40,18,4,10,25,1,23, . . ..

This is a sequence of numbers ranging between 1 and 40. The numbers don’t appear
to have much of a pattern to them except that they repeat with a period of 10. This
is because 23 has order 10 modulo 41.

In implementing Lehmer’s method, one objective is that if the numbers are nat-
ural numbers < M, then as many as possible of the numbers < M should be part
of the sequence. This was clearly not the case with M = 41, A = 23. If we choose
A= 13, rather than A= 23, the powers of A mod M are

13,5,24,25,38,2,26,10,7,9,35,4,

11,20,14,18,29,8,22,40,28,36,17,16,

3,39,15,31,34,32,6,37,30,21,27,23,

12,33,19,1,13,5,24,25,38,2, . . .,

which includes all numbers between 1 and 40 and appears not to have much of a
pattern to it. Since we obtain all 40 numbers mod 41, we see that 13 is a primitive
root modulo 41. Choosing A to be a primitive root modulo M gives the longest
possible period before the sequence cycles.

The general method of Lehmer is the following:
Pick a number M, the modulus.
Pick a starting number X0.
Pick a multiplier A.
Generate the sequence as follows:
X1 is the remainder on dividing AX0 by M; that is, X1 is AX0 mod M.
X2 is the remainder on dividing AX1 by M; that is, X2 is AX1 mod M.

...

Xn+1 is the remainder on dividing AXn by M; Xn+1 is AXn mod M ....
Thus each of X0,X1,X2, . . . is a number between 0 and M, and each Xn satisfies

Xn+1 = AXn mod M.

In the example above, X0 = 1,M = 41 and A= 13. Notice that Xn ≡ AnX0 (mod M)
for all n>0. Thus for everyX0, the sequence always starts repeating itself eventually:
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Proposition 27. For every A,M,X0, the sequence X0,X1, . . . ,Xn, . . . begins repeating
after at most M terms.

Proof. There are only M remainders modulo M, so if we consider the sequence of
numbersX0,X1, . . . ,XM , two of them must be equal. SupposeXr =Xs for some s> r.
Then

Xr+1 ≡ AXr ≡ AXs = Xs+1 (mod M).

Since Xr+1 and Xs+1 are both between 0 and M− 1, they must be equal. The same
argument shows that Xr+k = Xs+k for all k> 0. ��

We can be more precise about the period of the sequence:

Proposition 28. In the multiplicative congruential method, if A and X0 are both
coprime to M, then the length of the sequence

{X0,X1, . . . ,Xk, . . .}

before repetition is equal to the order of A modulo M.

Proof. This follows because Xn ≡ AnX0 (mod M). If Xn = AnX0 ≡ X0 (mod M),
then, since (X0,M) = 1, we have An ≡ 1 (mod M). The smallest such n> 0 is both
the order of A (mod M) and the smallest n so that the sequence begins repeating
at Xn. ��

To implement Lehmer’s method in practice to get a good sequence of pseudoran-
dom numbers, one should use a large modulusM, and then a multiplier A so that the
order of A modulo M is large.

From Sections 19A and C, we know that if M is prime, there are numbers A of
orderM−1 moduloM; ifM= pe with p an odd prime, there are numbers A of order
pe−1(p−1) moduloM, and ifM= 2e, there are numbers A of order 2e−2 moduloM.

A large modulus M commonly used in practice is M = 2147483647 = 231− 1.
This modulusM is prime, so that there are elements of order M−1 (mod M). This
M also has an advantage that taking remainders by M can be done very quickly on
a computer.

(In fact, finding remainders is like “casting out 9’s”. With M = 231−1, if A and
X are < 231−1, then AX < (231)2, so

W = AX = Q ·231 +R

for some Q,R≤ 231−1. But since 231 ≡ 1 (mod M),

AX ≡ Q+R (mod M).

Then Q+R< 2M, and so either Q+R or Q+R−M is the remainder on dividing
W by M. This means that finding the remainder on dividing AX by 231−1 does not
require the division algorithm, but simply an addition and perhaps one subtraction.)

Park and Miller (1988) suggested three criteria for judging the suitability of a
pseudorandom number generator. The sequence generated should:
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• have a period as long as possible;
• behave as much like a random sequence of numbers from the interval between 1

and M−1 as possible; and
• be able to be generated efficiently with 32-bit arithmetic.

Based on all three criteria, they recommended M = 231 − 1 and A = 48271, a
primitive root modulo M.

Knowing that a sequence {X0,X1, . . .} has maximal or near-maximal period is
no guarantee of its suitability as a sequence of pseudorandom numbers. For a
number of years, IBM computers used a pseudorandom number generator called
RANDU, using the modulus M = 231 and the multiplier A = 65539 = 216 + 3, a
number of order 229 modulo M. The RANDU generator has been called “truly hor-
rible” [Knuth (1998), p. 188] for its lack of random behavior. If one plots points
pi = (x3i+1,x3i+2,x3i+3) for i= 1,2, . . . in the cube of side 1, where x j = Xj/231, it
turns out that all the points lie in one of fifteen planes. For a beautiful demonstration,
see http://etsuodt.tamu-commerce.edu/AcademicOrganizations/sigmaxi/hopftorii/
testap6.html.

For a comprehensive study of the random behavior of these sequences of pseudo-
random numbers from a statistical viewpoint, see Knuth (1998), Chapter 3.

For cryptographic use, Lehmer-type pseudorandom number generators are not
considered acceptable. We will look at the newer Blum-Blum-Shub generator in
Section 22C.

Exercises.

43. (i) Find a primitive root b modulo 29 and a primitive root c modulo 31.
(ii) Let er = br (mod 29) and fr = cr (mod 31), where 0 < er < 29,0 < fr < 31,

and let xr = er/29, and yr = fr/31. Plot the points (xr,yr) for r = 3 to 13. Do they
look like randomly chosen points in the unit square?

44. Show that if a,b< 100 and ab=Q ·100+R, then ab (mod 99) is either Q+R
or Q+R−99. Illustrate with a= 67,b= 83.

45. Let M = 957,A= 15. Then (A,M) = 3. Without computing A,A2,A3, . . . , can
you identify the period of the sequence A,A2,A3, . . . , as the order of some number
to some appropriate modulus?



Chapter 20
Carmichael Numbers

This chapter returns to the question of deciding whether a given odd number m is
prime. The a-pseudoprime test of Chapter 10B will not work on Carmichael num-
bers. We first describe an idea of Alford that shows that there are many Carmichael
numbers. Then we develop the strong a-pseudoprime test and prove that every com-
posite number m fails the strong a-pseudoprime test for at least half of the numbers
a<m. Thus there are no composite numbers that are “strong Carmichael numbers”.

A. Lots of Carmichael Numbers

Recall (from Section 10B) that a number m passes the a-pseudoprime test if

am−1 ≡ 1 (mod m).

Any prime number p passes the a-pseudoprime test for all a coprime to p, by Fer-
mat’s Theorem. Most composite numbers m fail some a-pseudoprime tests, as we
observed in Section 10B. If m fails an a-pseudoprime test for some a coprime to
m, then m fails a-pseudoprime tests for at least half of the numbers a < m, as we
showed in Sections 11D and 19E.

If m is composite and passes the a-pseudoprime test, then m is called an a-
pseudoprime.

A number m is Carmichael if m is an a-pseudoprime for all a coprime to m.
Carmichael numbers exist, as we observed in Chapter 10: the first three are

561, 1105, and 1729. The existence of Carmichael numbers means that trial
a-pseudoprime testing can be unreliable as a primality test. A Carmichael number
m passes a-pseudoprime tests for all a coprime to m but is not prime.

In this section we study odd Carmichael numbers and show that there are many
of them.

Assume for the remainder of this section that m is odd.
We begin with a characterization of Carmichael numbers dating from 1899.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 413
in Mathematics, c© Springer Science+Business Media LLC 2009
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Theorem 1 (Korselt’s Criterion). A number m is Carmichael if and only if m is
squarefree and for all primes p dividing m, p−1 divides m−1.

Proof. Suppose m is squarefree and p− 1 divides m− 1 for all primes p dividing
m. Let b be coprime to m. Then for all p dividing m, b is coprime to p, so bp−1 ≡ 1
(mod p) by Fermat’s theorem. Since p−1 divides m−1, bm−1 ≡ 1 (mod p). Now
since m is squarefree, m is the least common multiple of the primes which divide
m. So if bm−1 ≡ 1 (mod p) for all p dividing m, then bm−1 ≡ 1 (mod m) So m is
Carmichael.

Conversely, suppose m is Carmichael, and suppose p is any (odd) prime divisor
of m. Let m= peq, where (p,q) = 1. Let b be a primitive root modulo pe, and let a
be a number such that

a≡ b (mod pe)
a≡ 1 (mod q)

Then a is coprime to m. If m is Carmichael, then

am−1 ≡ 1 (mod m)

so
am−1 ≡ 1 (mod pe)

But the order of a modulo pe is pe−1(p− 1). So pe−1(p− 1) divides m− 1, and
hence p−1 divides m−1. Also, if e> 1, then p divides m−1. But since p divides
m, p cannot divide m−1. Thus e= 1.

Since this is true for all primes p dividing m, therefore m must be squarefree. ��
Korselt’s criterion is quite useful for identifying Carmichael numbers.

Example 1. By Korselt’s criterion, 2821 is Carmichael: 2821 factors as 7 · 13 · 31,
and 2820 is divisible by 6, 12 and 30: in fact, 2820 = 12 ·235 = 30 ·94 = 6 ·470.

Here is a simple consequence of Korselt’s criterion:

Corollary 2. If m is Carmichael, then m must be a product of at least three primes.

Proof. Note that m must be square-free, so, since m is composite, m must be a
product of at least two distinct primes.

If m= pq with p< q, primes, then q−1 divides m−1, so q−1 divides m−1−
p(q−1) = pq−1− pq+ p= p−1, impossible since p< q. ��

Korselt’s criterion has been used to find many Carmichael numbers.
An early use of Korselt’s criterion by Chernick (1939) was a strategy for finding

Carmichael numbers that are products of three primes.

Proposition 3. Let m= (6k+1)(12k+1)(18k+1). Then m is Carmichael for all k
for which all three factors of m are prime.
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Proof. Observe that

m= (6k+ 1)(12k+ 1)(18k+ 1)= 1296k3 + 396k2 + 36k+ 1

= 36k(36k2 + 11k+ 1)+ 1,

so m−1 is divisible by 6k,12k and 18k. ��
Some examples wherem is Carmichael are for k= 1,6,35,45,51,55,56 and 100.

See Exercises 3, 4 and 5 below.
If it were known that there are infinitely many values of k for which all three

factors of m in Proposition 3 are prime, then it would follow that there are infinitely
many Carmichael numbers. However, while it is known by a famous theorem of
Dirichlet that each factor is prime for infinitely many k, it is not known if there are
infinitely many k for which all three factors are simultaneously prime. Thus it is
apparently an open question whether or not there exist infinitely many Carmichael
numbers that are products of exactly three primes. See Ribenboim (1980), p. 298.

In 1956, Erdos proposed a different way to use Korselt’s criterion to produce
Carmichael numbers.

Theorem 4 (Erdos’ Criterion).Given a number L, letP be the set of all primes p
coprime to L so that p−1 divides L. If C is a product of distinct primes from P so
that C ≡ 1 (mod L), then C is Carmichael.

Proof. This follows quickly from Korselt’s criterion. For if C ≡ 1 (mod L), then L
divides C− 1. Each prime p dividing C is in P , so p− 1 divides L, hence p− 1
dividesC−1 . ��

Erdos’ criterion works well if L has many divisors, so is divisible by p− 1 for
many primes p. Here is a small example.

Example 2. Let L = 23 · 3 · 5 = 120. The primes p > 5 so that p− 1 divides 120
are 7, 11, 13, 31, 41, and 61. To find a Carmichael number by Erdos’ criterion we
must find some product C of some of these six primes so that C is congruent to 1
modulo 120.

A simple counting argument suggests that this should be possible. There are
φ(120) = 32 units modulo 120, and 26− 1 = 63 different products of one or more
of the six primes. So we should expect perhaps two different products of the primes
which are congruent to 1 modulo 120 and hence are Carmichael.

Since such a product C must be congruent to 1 (mod 10), we can see easily that
if 7 is a factor of C, so is 13.

So we need to check all products involving three or more of the primes 11, 31,
41, and 61; and all products involving 91 = 7 ·13 and one or more of 11, 31, 41, and
61. This is a total of nineteen products. After some computation, we find that

11 ·31 ·41 ·61≡ 1 (mod 120)
11 ·41 ·91≡ 1 (mod 120)
31 ·61 ·91≡ 1 (mod 120)
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We have found three Carmichael numbers.

In 1992, W. R. Alford strengthened Erdos’ criterion using the following idea.
Pick L so that p−1 divides L for a large set

P = {p1, p2, . . . , pN}

of primes. Suppose that we can find a subset, say

P0 = {p1, . . . , ps}

where s<N, so that every unit modulo L can be represented by a product of distinct
primes from P0. Then take any product q of zero or more distinct primes from the
remaining N− s primes

P1 = {ps+1, . . . , pN}.
That product q is a unit modulo L. The inverse of that unit is represented by some
product q′ of primes from P0. But thenC= qq′ is a product of distinct primes from
P , andC ≡ 1 (mod L). So C is Carmichael, by Erdos’ criterion.

An idea like could only be utilized effectively with a computer. To see if every
unit mod L can be represented by a product of distinct primes from a given set P0

is not easy to do by hand, even if L= 120. And 120 is too small.

Example 3. Let L = 26 · 35 · 5 · 7 · 11. Then there are 77 primes p > 11 such that
p−1 divides L. Since φ(L) = 25 ·34 ·2 ·4 ·6 ·10 = 1244160, while 221 = 2097152,
one would expect that if we take P0 to be the set of the first 21 primes that divide L,
then distinct products of these primes would yield all units modulo L. If so, then
the set P1 would contain 56 primes. Each product q of distinct primes in P1,
when multiplied by a suitable product q′ of primes in P0, would give a Carmichael
number C. But there are 256 possible products of distinct primes in P1. So this
strategy should give us 256 Carmichael numbers!

Alford in fact did better than that. He let L = 26 · 33 · 52 · 72 · 11, and found a
set P of 155 primes p ≥ 13 so that p− 1 divides L. Now φ(L) = 4,838,400 and
227 = 134,217,728. So it seems very likely, and Alford in fact showed (not by
hand!), that products of the first 27 primes of P give all possible units modulo L.
That leaves 128 primes in P . Thus Alford found 2128 Carmichael numbers, one for
each product of distinct primes from the last 128 primes of P .

In particular, he found a Carmichael number divisible by at least 128 primes.
Goaded by this discovery, Alford, Granville, and Pomerance (1994) proved that

for every n sufficiently large, there are at least n2/7 Carmichael numbers < n. In
particular, the number of Carmichael numbers is infinite, thereby settling a question
raised by Carmichael in 1912.

An exposition of the Alford, Granville, Pomerance result may be found in
Granville (1992).
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Exercises.

1. Using Korselt’s criterion, show that 1105 is Carmichael.

2. Show that 2465 is Carmichael.

3. Show that 6k+1,12k+1, and 18k+1 cannot all be prime if k is congruent to 2,
3 or 4 (mod 5).

4. Show that if m is a Carmichael number of the form in Proposition 3, then m is
either of the form

m= (30r+ 1)(60r+ 1)(90r+ 1)

or of the form
m= (30r+ 7)(60r+ 13)(90r+ 19).

5. (i) Show that if m = (30r+ 1)(60r+ 1)(90r+ 1) is a product of three primes,
then r cannot be congruent to 1, 3, or 5 (mod 7).

(ii) Find the analogous result for m= (30r+ 7)(60r+ 13)(90r+ 19).

6. (i) Let s be a number which is a sum

s= a1 +a2 + . . .+ag

of some of its proper divisors (where a1 < a2 < .. . < ag). Show that

n= (a1sk+ 1)(a2sk+ 1) · · ·(agsk+ 1)

is Carmichael for every k for which each factor a jsk+ 1 is prime.
(ii) Show that if s= 2eq, where e≥ 1 and q is an odd number < 2e+1, then s is a

sum of some of its proper divisors.
(iii) Suppose s is a number that is a sum

s= a1 +a2 + . . .+ag

of some of its proper divisors (as in (i)), and let di = s/ai. Show that then we can
write 1 as a sum of distinct reciprocals:

1 =
1
d1

+
1
d2

+ · · ·+ 1
dg

and, conversely, if 1 is a sum of distinct reciprocals, then the least common multiple
of the d’s is a sum of some of its proper divisors.

(iv) In (iii) can you find such an s so that d1, . . . ,dg are pairwise relatively prime?

7. (i) Show that the eight numbers, 1, 11, 31, 41, 61, 71, 91, and 101 form a sub-
group G of the units of Z/120Z.

(ii) Show that the homomorphism from Z/120Z to Z/24Z defined by [a]120 �→
[a]24 induces an isomorphism of groups from G ontoU24.
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8. Define an isomorphism of groups,

U24 →U8×U3

→ 〈3〉× 〈5〉× 〈2〉
→ Z2×Z2×Z2

by
(a mod 24) �→ (a mod 8,a mod 3)

�→ (3r5s mod 8,2t mod 3)
�→ (r,s,t).

Then the composite of this map with the map of Exercise 7 (ii) yields an isomor-
phism from G to Z2×Z2×Z2.

(i) Show that 91 �→ 19 mod 24 �→ (3 mod 8,1 mod 3) �→ (1,0,0). Find the images
in Z2×Z2×Z2 of the other elements of G.

(ii) In Z2 ×Z2 ×Z2, write (0,0,0) as a sum of distinct elements (excluding
(1,1,1) and (0,1,1)). For each such sum, identify the corresponding Carmichael
number as in Example 2.

9. Let L = 360. In addition to the six primes p > 5 so that p− 1 divides 120, the
set P of primes with p− 1 dividing 360 includes 19, 37, 73, and 181. Find some
Carmichael numbers other than those found in Example 1.

10. Show that no unit in Z/120Z that is congruent to 4 modulo 5 is a product of
distinct primes p> 5 so that p−1 divides 120.

11. Write a computer program to show that every unit modulo 360 is a product of
one or more distinct primes from the set P of primes p so that p− 1 divides 360.
Or, if you want to try this by hand, first try to show that each of the 24 units that are
congruent to 1 modulo 5 is a product of distinct primes from P .

12. Show that there are no even composite numbers m so that

am−1 ≡ 1 (mod m)

for all a with (a,m) = 1.

B. Strong a-Pseudoprimes

Because of Carmichael numbers, the “trial a-pseudoprime test” is not completely
effective as a probabilistic primality test. So we would like a new test that is stronger
than the pseudoprime test, in the sense that every prime would pass the new test, but
every composite number, no matter how cleverly chosen, would fail the new test
most of the times the test is applied.

Here is such a test.
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The Strong a-Pseudoprime Test. Suppose m is an odd number we wish to test for
primeness. Write m− 1 = 2eq where q is odd and e > 0. Suppose a is a number
coprime to m such that either
aq = 1 (mod m)

or
there is some k < e so that a2kq ≡−1 (mod m).

Then m passes the strong a-pseudoprime test.

Defini ion. A composite number m that passes the strong a-pseudoprime test is
called a strong a-pseudoprime.

The test is called the strong a-pseudoprime test because a number that passes the
strong a-pseudoprime tests will certainly pass the a-pseudoprime test. For if either
aq = 1 (mod m) or a2kq ≡−1 (mod m) for some k < e, then a2eq ≡ 1 (mod m).

We’ll see shortly that any prime number m passes the strong a-pseudoprime test
for all a, 1≤ a< m.

On the other hand, since a number m is a strong a-pseudoprime if it is an
a-pseudoprime and also satisfies additional conditions, it is plausible that there are
composite numbersm that are a-pseudoprimes but not strong a-pseudoprimes. We’ll
see that in fact this is so.

Here is another way of looking at the strong a-pseudoprime test. Letm−1 = 2eq,
with q odd, and consider the set of numbers mod m,

(aq,a2q, . . . ,a2eq),

that we obtain, starting from aq modulo m, by successively squaring modulo m.
We’ll call this sequence of numbers the “strong a-pseudoprime sequence.”

Suppose a2eq ≡ 1 (mod m), so that m passes the a-pseudoprime test. Suppose
also that either:

all numbers in the sequence are ≡ 1 (mod m)
or

the rightmost number not ≡ 1 (mod m) is ≡−1 (mod m).
Then m passes the strong a-pseudoprime test. The strong a-pseudoprime sequence
in that case looks like

(1,1, . . . ,1) or (. . . ,−1,1, . . . ,1).

On the other hand, if m is an a-pseudoprime but the strong a-pseudoprime se-
quence for m looks like

(. . . ,b,1, . . . ,1)

with b �≡ 1 or−1 (mod m), thenm fails the strong a-pseudoprime test, sommust be
composite. The number m cannot be prime because b is a square root of 1 modulo
m, and so 1 has at least three square roots, 1,−1 and b (mod m) (See Proposition 5,
below).
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We illustrate the strong a-pseudoprime test with some examples.

Example 4. Let m = 91. We ignore the fact that 91 is easily factored. Since m−1 =
90 = 2 ·45, the strong a-pseudoprime sequence is short:

(a45,a90).

We try a = 3. Then 345 ≡ 27 while 390 ≡ 1 (mod 91). So while 91 is a 3-
pseudoprime, the strong 3-pseudoprime sequence is (27, 1), so 91 fails the strong
3-pseudoprime test, and 91 is not prime. (In particular, 27, 1 and−1 are three square
roots of 1 modulo 91).

If we try a = 2, then 245 ≡ 57, while 290 ≡ 64 (mod 91): the strong
2-pseudoprime sequence is (57,64). So 91 is not a 2-pseudoprime, hence is not
a strong 2-pseudoprime.

Example 5. Letm = 97, a prime. Thenm−1 = 96 = 25 ·3, so modulo 97, the strong
a-pseudoprime sequence is

(a3,a6,a12a24,a48,a96).

Once we find a3 (mod 97), the rest of the sequence is determined by squaring
modulo 97, so the sequence is easy to compute for any a. Here is a table of some
examples:

For a = the sequence is
2 (8,64,22,−1,1,1)
3 (27,50,−22,−1,1,1)
5 (28,8,64,22,−1,1)

13 (63,89,64,22,−1,1,1)
17 (63,89,64,22,−1,1)
61 (1,1,1,1,1,1)

Thus 97 passes the strong a-pseudoprime test for all of these a’s.

Here is the proof that any prime p passes the strong a-pseudoprime test for any
number a not divisible by p.

Proposition 5. If m fails the strong a-pseudoprime test for some a not divisible by
m, then m is composite. If m is an a-pseudoprime but not a strong a-pseudoprime,
then a yields a factorization of m.

Proof. Writem−1 = 2eq, where q is odd. If a2eq �≡ 1 (mod m). thenm is composite
by Fermat’s theorem. Suppose a2eq ≡ 1 (mod m) and suppose the sequence

(aq,a2q, . . . ,a2eq)

is congruent modulo m to
(. . . ,b,1, . . . ,1)
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where b ≡ a2kq is the rightmost element of the sequence that is not congruent to 1
(mod m). If m fails the strong a-pseudoprime test, b �≡ 1 or −1 (mod m). Now b2

is congruent modulo m to the element of the sequence immediately to the right of
b, so b2 ≡ 1 (mod m). Hence m divides b2 − 1 = (b− 1)(b+ 1). Since b �≡ 1 or
−1 (mod m), m does not divide b−1 or b+ 1. So m cannot be prime, and, in fact,
m= (m,b−1)(m,b+ 1) is a non-trivial factorization of m. ��

Here are some more examples.

Example 6. Let m= 341, a known 2-pseudoprime. The sequence for 341 is

(a85,a170,a340).

We try a = 2. Then 285 ≡ 32 (mod 341), while 2170 ≡ 1 (mod 341), so the se-
quence is

(32,1,1)

and 341 is not a strong 2-pseudoprime.

Example 7. Let m= 561, the smallest Carmichael number. Then the sequence is

(a35,a70,a140,a280,a560).

Here is how the sequence looks for various numbers a:

If a= the sequence becomes (mod 561)
2 (263, 166, 67, 1, 1)
5 (23, 529, 463, 67, 1)
7 (241, 298, 166, 67,1)

13 (208, 67, 1, 1, 1)
19 (76, 166, 67, 1, 1)

101 (−1,1,1,1,1)
103 (1, 1, 1, 1, 1)

For all but the last two numbers a, 561 fails the strong a-pseudoprime test. Since
561 fails the strong a-pseudoprime test for at least one a, 561 cannot be prime.

Finally, note that computing the strong a-pseudoprime sequence is essentially no
more work than computing am−1 (mod m), because an efficient way to compute
am−1 (mod m) is to write m−1 = 2eq, write q in base 2 and compute aq (mod m)
using the method in chapter 9F, then square the result e times (mod m). The strong
a-pseudoprime sequence is just the sequence of the last e partial results in that com-
putation.

Exercises.

13. Show that 1729 is not prime because it is not a strong 2-pseudoprime.

14. Find some number a �≡ 1 or −1 (mod 91) so that 91 is a strong a-pseudoprime.
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15. Find all numbers a< 21 for which 21 is:
(i) an a-pseudoprime;
(ii) a strong a-pseudoprime.

16. Find all numbers a< 35 for which 35 is:
(i) an a-pseudoprime;
(ii) a strong a-pseudoprime.

17. Find all numbers a< 65 for which 65 is:
(i) an a-pseudoprime;
(ii) a strong a-pseudoprime.

C. Strong Carmichael Numbers

In this section we show that there are no “strong” Carmichael numbers. In other
words, every odd composite number m fails the strong a-pseudoprime test for some
number a coprime to m.

First, some alternate terminology. If for some number a, the number m fails the
strong a-pseudoprime test, then m is necessarily a composite number: in that case
the number a is called a witness to the compositeness of m, or, for short, a witness
for m. If m is composite but is a strong a-pseudoprime, the number a is called a
false witness for m.

In this section we prove:

Theorem 6. If m is an odd composite number, then at most half of the numbers
a< m are false witnesses for m.

M. O. Rabin (1980) proved a stronger version of Theorem 6. He showed that for
m odd and composite, at most one fourth of the numbers a < m are false witnesses.
His result leads to the following probabilistic primality test:

For m odd, pick N random numbers a with 1 < a < m− 1 and do the strong
a-pseudoprime test on m.

If m fails any test, then m is composite.
If m passes all N tests, then m is probably prime, in the sense that if m were com-

posite, the chance that m passed all N tests for randomly chosen a is at most 1/4N.
Before beginning the proof of Theorem 6, we recall from Chapter 11 the sub-

groups of roots of unity of the multiplicative groupU =Um of units of Z/mZ. Let

U(k) = {[a] inU |[a]k = [1]},

the group of k-th roots of unity in U , for any number k. Then U(k) is a subgroup
ofU . A numberm is Carmichael if and only if am−1 ≡ 1 (mod m) for all a coprime
to m, hence if and only ifU(m−1) =U .
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Proof. We consider three cases:
1) If a number m is not a Carmichael number, then U(m− 1), the set of [a] in

U for which m is an a-pseudoprime, is a proper subgroup of U . As we showed in
Section 11D, if q≥ 2 is the number of cosets ofU(m−1) inU , that is, the index of
U(m−1) inU , then at most 1/q of the units inU are not witnesses for m.

Write m− 1 = 2et for t odd, and assume that m is Carmichael. Then U =
U(m−1) =U(2et). Let s be the least number so thatU =U(2st). Then s> 0 since
[−1]t = [−1] is not inU(20t). Then

U(2s−1t) = {[a] ∈U |[a]2s−1t = 1}

is a proper subgroup ofU . So the index ofU(2s−1t) inU is q≥ 2.
2) Suppose there is no [b] so that [b]2s−1t =−1. Then every [a] not inU(2s−1t) is

a witness to the compositeness of m, and so at most 1/q of the units in U are false
witnesses for m.

3) Suppose [b] in U satisfies [b]2s−1t = [−1]. Then every element [b′] of [b]U
(2s−1t) satisfies [b′]2s−1t = [−1]. Moreover, if [b′′]2s−1t = [−1], then [a] = [b′′][b]−1

is inU(2s−1t). Hence every false witness for m is inU(2s−1t) or in [b]U(2s−1t).
We construct two other cosets ofU(ss−1t).
Since m is Carmichael,m is divisible by at least two odd primes. So writem= f g

with f ,g coprime. Since b2s−1t ≡ −1 (mod m), we have b2s−1t ≡ −1 (mod f ) and
also mod g.

Let c satisfy c ≡ b (mod f ),c ≡ 1 (mod g), and let d satisfy d ≡ 1 (mod f ),
d ≡ b (mod g). Then

c2s−1t ≡−1 (mod f ),c2s−1t ≡ 1 (mod g),

while
d2s−1t ≡ 1 (mod f ),d2s−1t ≡−1 (mod g).

Thus 1,b2s−1t ,c2s−1t and d2s−1t are different square roots of 1 inU , and so

U(2s−1t), [[b]2
s−1t ]U(2s−1t), [[c]2

s−1t ]U(2s−1t) and [[d]2
s−1t ]U(2s−1t)

are distinct cosets. All the false witnesses for m lie in the first two of these cosets.
Thus there are at least as many witnesses for m as there are false witnesses. ��
Example 8. Consider 1729 = 13 ·7 ·19, a Carmichael number because

1728 = 26 ·33,

and 13−1 = 12 = 22 ·3, 7−1 = 6 = 2 ·3, and 19−1 = 18 = 2 ·32 all divide 1728.
As an application of the Chinese Remainder Theorem, we have

U =U1729
∼=U13×U7×U19
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so the order of U is 12 · 6 · 18 = 1296 and the exponent of U is the least common
multiple of 6, 12 and 18, [6,12,18] = 36. Hence if U(k) denotes the kth roots of
unity inU , then

U =U(36).

Thus
U =U(1728) =U(26 ·9) =U(22 ·9) =U(36),

whileU(18) �=U . In the notation of the proof of Theorem 6, s= 2,t = 9.
Now every number b coprime to 1729 satisfies b6 ≡ 1 (mod 7), and so b18 ≡ 1

(mod 7). Hence no b can satisfy b18 ≡ −1 (mod 1729), and we are in case 2) of
the proof of Theorem 6. Thus any coset bU(18) �=U(18) will consist of witnesses
for 1729. To find such a coset, we just need to find a number b so that b18 �≡ 1
(mod 1729).

We note that

218 ≡ 1 (mod 19),

218 ≡ 212+6 ≡ 26 ≡−1 (mod 13), and

218 ≡ (26)3 ≡ 1 (mod 7).

So
218 �≡ 1 or −1 (mod 1729).

In fact, 218 ≡ 1065 (mod 1729). So the coset [2]U(18) consists of witnesses for
the compositeness of 1729, because every [c] in [2]U(18) satisfies c18 ≡ 1065
(mod 1729) while (c18)2 ≡ 1 (mod 1729).

Example 9. Consider 8911 = 7 · 19 · 67, a Carmichael number because 8910 = 2 ·
34 ·5 ·11, while

7−1 = 6 = 2 ·3,

19−1 = 18 = 2 ·32,

67−1 = 66 = 2 ·3 ·11,

all of which divide 8910.
The strong a-pseudoprime sequence for any [a] inU8911 looks like (a4455,a8910).
Since (−1)4455 =−1, we are in case 3) of the proof of Theorem 6.
Using the Chinese Remainder Theorem, we can find numbers c that satisfy

c≡±1 (mod 7)
c≡±1 (mod 19)
c≡±1 (mod 67)

for each of the eight choices of + and −. For all +, c = 1; for all −, c = −1. For
the other six choices, we get c = ±267,±6364 and ±2813. Each of those satisfies
c4455 ≡ c (mod 8911) and c2 ≡ 1 (mod 8911). SoU8911 partitions into the follow-
ing eight cosets:
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U(4455) = {[a] ∈U8911|[a]4455 = [1]}
[−1]U(4455) = {[a] ∈U8911|[a]4455 = [−1]}
[267]U(4455) = {[a] ∈U8911|[a]4455 = [267]}

[−267]U(4455) = {[a] ∈U8911|[a]4455 = [−267]}
[6364]U(4455) = {[a] ∈U8911|[a]4455 = [6364]}

[−6364]U(4455)= {[a] ∈U8911|[a]4455 = [−6364]}
[2813]U(4455) = {[a] ∈U8911|[a]4455 = [2813]}

[−2813]U(4455)= {[a] ∈U8911|[a]4455 = [−2813]}
The elements of the last six cosets are all witnesses to the compositeness of 8911,
because their strong pseudoprime sequences exhibit a non-trivial square root of 1
modulo 8911, namely,±267,±6364, or ±2813.

Trial strong a-pseudoprime testing is used in practice. An example that ap-
peared in the mathematics research literature involves the eighth Fermat number,
F8 = 228

+1. Brent and Pollard (1981) found the smallest prime factor of F8, namely
p8 = 1,238,926,361,552,897. The other factor, q8 = F8/p8, is a 62-digit number.
Brent and Pollard applied Rabin’s test to q8, and concluded: “the application of more
than 100 trials of Rabin’s probabilistic algorithm led us to suspect that the cofactor
q8 was prime”. (H.C. Williams subsequently gave a nonprobabilistic proof that q8

is in fact prime.)
The strong a-pseudoprime test has been used to test for primeness in several

standard computer algebra systems, such as MAPLE and Mathematica [see Pinch
(1993)].

Rabin’s test is a probabilistic version of a primality test proposed by Miller in
1975. Miller’s test assumes the validity of a certain unsolved conjecture in num-
ber theory known as the Generalized Riemann Hypothesis (GRH). As improved by
Bach in 1990, Miller’s test is the following:

Suppose the GRH is true. If m is a composite number, then m will fail the strong
a-pseudoprime test for some a< 4(logm)2.

Thus if the GRH is true, then a d digit number m will be prime if it passes
the strong a-pseudoprime test for all a,1 < a < 4(log10d)2 < (21.4)d2. If m has
100 digits, (21.4)d2 = 214,000. So even if GRH is true, going from a conclusion
that m is probably prime, using 20 or 100 a’s, to a conclusion that m is certainly
prime, using all the numbers a < 4(logm)2, would involve considerable additional
computation, even for numbers of under 100 digits. See also the comments by Knuth
(1998, p. 395).

A final note. Alford, Granville, and Pomerance, as a byproduct of their proof
that there are infinitely many Carmichael numbers, also proved that given any fixed
set B of numbers a, there are infinitely many Carmichael numbers which are strong
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a-pseudoprimes for all a in the set B: “strong B-pseudoprimes.” This means that if
you fix the set B in advance, rather than choosing potential witnesses a at random,
then the analogue of Rabin’s theorem is false (see Granville (1992)).

Exercises.

18. Verify the theorem for the Carmichael number m= 1105.

19. Verify the theorem for the Carmichael number m= 1729.

20. Verify the theorem for the Carmichael number m= 41041.

D. RSA Codes and Carmichael Numbers

In this section we apply ideas of this chapter to make some observations about RSA
codes and Carmichael numbers.

(i) Carmichael Numbers in RSA Codes. In Chapter l0A we examined the RSA
cryptosystem, which encrypts a message word a by replacing a by ae (mod m)
where the modulusm is the product of two large prime numbers p and q.

To find a large prime p we could proceed as follows: first pick an interval of
numbers of the desired size and sieve out all the composite numbers with small
prime numbers as factors, as in section 6G. Then we use the a-pseudoprime test or
the strong a-pseudoprime test to test the remaining unsieved numbers for primeness,
as in section 10B.

Suppose, after sieving, we found a potential prime number q, and we used the
a-pseudoprime test repeatedly, checking aq−1 ≡ 1 (mod q) for a collection of num-
bers a.

If q is prime, q will pass this test for any a.
If q is composite and Carmichael, qwill also pass this test for any a not relatively

prime to q.
If q is composite and not Carmichael, then the set of a (mod q) for which aq−1 ≡

1 (mod q) is a proper subgroup of the group of units of Z/qZ, so the probability
that q passes the a-pseudoprime test for a randomly selected number a is at most 1/2.
For such numbers q, repeated testing with randomly chosen numbers a will almost
surely reveal that q is composite.

Carmichael numbers are very much rarer than primes. So if we had a number q
which passed repeated a-pseudoprime tests, it would be reasonable for us to assume
that q is prime, not Carmichael.

But suppose we were wrong? Suppose q were Carmichael?
Suppose p and q are coprime Carmichael numbers. Let m = pq and set up an

RSA code with modulus m. Believing that p and q are primes, we would assume
that φ(m) = (p−1)(q−1). As in section 10A, we would pick an encoding exponent
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e by choosing any number e coprime to (p−1)(q−1). We would find the decoding
exponent via Bezout’s identity: since (e,(p− 1)(q− 1)) = 1, there is some d,k so
that ed− k(p−1)(q−1)= 1. Then for any integer a,

aed = a1+k(p−1)(q−1).

If p,q are primes, we know by Euler’s Theorem that

a1+k(p−1)(q−1) ≡ a (mod m).

But what happens if p and q are not primes, but are Carmichael numbers? Then
the construction still works:

Proposition 7. If p and q are primes or Carmichael numbers, then for any a < m,
a1+k(p−1)(q−1) ≡ a (mod m).

Proof. First note that since p and q are each assumed to be either prime or
Carmichael, each is squarefree. Since p and q are coprime, it follows that m is
squarefree. Hence

a1+k(p−1)(q−1) ≡ a (mod m)

iff
a1+k(p−1)(q−1) ≡ a (mod c)

where c is any prime divisor of m.
If c is a prime divisor of m, then c divides p or c divides q. Suppose c divides

p. If c= p, then c−1 = p−1; if p is Carmichael, c−1 divides p−1 by Korselt’s
criterion.

Now by Fermat’s theorem, for any a coprime to c,

ac−1 ≡ 1 (mod c),

so
ah(c−1)+1 ≡ a (mod c)

for every h, and in particular if h = k(q− 1)(p− 1)/(c− 1), an integer since c− 1
divides p−1.

But this last congruence is also true if a is divisible by c, and so it is true for
every a.

Thus for any prime c dividing m,

a(p−1)(q−1)+1 ≡ a (mod c).

Since m is squarefree, it follows that

a(p−1)(q−1)+1 ≡ a (mod m),

for every a< m, as we wished to show. ��
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Thus for setting up RSA codes, Carmichael numbers work as well as primes. Of
course, if m = pq is a product of Carmichael numbers then the prime factors of m
will be much smaller than m, so will be easier to find than if p and q were prime. So
the security of the RSA code will be less than it would be if p and q are primes.

(ii) Factoring Carmichael Numbers. A Carmichael number m is an
a-pseudoprime for all a coprime to m, but as we saw in the last section, m is not
a strong a-pseudoprime for most numbers a coprime to m. This fact leads to the
following perhaps surprising fact:

Proposition 8. An odd Carmichael number is easy to factor.

Proof. Letm be an odd Carmichael number. Then for any number a relatively prime
to m,am−1 ≡ 1 (mod m). By Rabin’s theorem, m is a strong a-pseudoprime for at
most 1/4 of all numbers a<m. So barring exceptionally bad luck, it should be easy
to find a number a for which m is not a strong a-pseudoprime. Such a number a
yields a factorization of m by Proposition 5. ��
Example 10. To illustrate with a small example, 561 is a 2-pseudoprime but not
a strong 2-pseudoprime: 2140 ≡ 67 (mod 561), while 2280 ≡ 672 ≡ 1 (mod 561).
Thus setting b= 67, we have

561 = (561,66) · (561,68).

Here (561,66) = 33, while (561,68) = 17.

It is ironic that numbers whose compositeness is the most difficult to verify by
pseudoprime tests are at the same time so easy to factor.

Exercises.

21. It is a fact that 254 ≡ 1065 (mod 1729), while 2108 ≡ 1 (mod 1729). Factor
1729.

22. It is a fact that b= 273602≡ 262144 (mod 294409), while b2≡1 (mod 294409).
Factor 294409.

23. Factor the Carmichael number 29341.

24. Factor the Carmichael number 252601.

25. Factor the Carmichael number 3215031751.

26. Suppose m is odd, m divides b2−1 and m does not divide b−1 or b+ 1 Show
that m = (m,b+ 1)(m,b− 1). (Since m = (m,b2− 1), this follows from a result in
Chapter 4 if b+ 1 and b−1 are coprime. What if they are not?)
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27. We showed that Fermat numbers, numbers of the form Fn = 22n + 1, are 2-
pseudoprimes. Show that the factorization idea used for Carmichael numbers will
not work for Fermat numbers, because a composite Fermat number is not only a
2-pseudoprime but a strong 2-pseudoprime.

28. We showed that Mersenne numbers, numbers of the form Mp = 2p− 1 with
p prime, are 2-pseudoprimes. Show that the factorization idea used for Carmichael
numbers will not work for Mersenne numbers, because a composite Mersenne num-
ber is not only a 2-pseudoprime but a strong 2-pseudoprime.

(iii) Choosing the Primes for an RSA Modulus. The idea that a composite
number m is easy to factor whenever it is an a-pseudoprime but not a strong a-
pseudoprime is a consideration in choosing primes p and q for a modulus in an
RSA code.

We want the modulus m to be hard to factor by anyone who does not already
know the prime factors p and q of m. Thus we want m to be an a-pseudoprime for
as few numbers a as possible.

If we use in an RSA code a modulus m = pq where p and q are primes and
(p−1)/2 and (q−1)/2 are coprime, then m will be an a-pseudoprime for only four
numbers a (mod m), and a strong a-pseudoprime for half of those, namely a = 1
and −1. Thus the chance of coming up with some number a which will lead to a
factorization of m is 2/m, a chance which is smaller than that of finding a number
< m that is not coprime to m.

In particular, if (p−1)/2 and (q−1)/2 are primes, thenm= pqwill be safe from
this kind of attack. Thus a prime p so that (p−1)/2 is prime is called a safeprime.

Exercises.

29. Factorm= 2741311 by finding some number a for whichm is an a-pseudoprime
but not a strong a-pseudoprime.

30. Verify that if p and q are safeprimes with p,q,(p− 1)/2 and (q− 1)/2 all
distinct primes, thenm= pq is an a-pseudoprime for only four numbers a (mod m),
and a strong a-pseudoprime only for a= 1 and −1 (mod m).

31. Let m = pq where p, q are primes with p > 2q, and suppose p is a safeprime
(that is, p−1

2 is prime). Show that m is an a-pseudoprime but not a strong a-
pseudoprime for only two numbers a< m.

32. Let p≡ 3 (mod 4) and suppose p and 2p−1 = q are primes (e.g. p,q= 31,61).
Let m= pq. Then m−1 = 2t for t odd

(i) Show thatUm(m−1) has order (p−1)2, hence has index 2 inUm.
(ii) Show thatUm(t) has order ( p−1

2 )2, hence has index 4 inUm.
(iii) Show that all false witnesses for m lie inUm(t) or in [1]Um(t).
(iv) Show that one-fourth of the elements of Um will yield a factorization of m

via Proposition 5.
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33. Find an analogous result for m = pq where p and q = 2p− 1 are prime and
p≡ 1 (mod 4).

(iv) A User of an RSA Code Can Factor the Modulus. When the RSA code
was first publicized, one idea was that a user of RSA codes who received coded
messages from a number of different sources could use the same modulus for all of
the messages.

For example, suppose a stock broker receives orders from various clients around
the world, by phone or wire. The broker would like to be certain that the orders it
receives are authentic. The RSA code could be used as a kind of verified signature
on the order. It would work as follows:

The client and broker have an RSA code with modulus m. The client is given
a secret encoding exponent e, and the broker assigns for the client’s account, and
makes public as appropriate (e.g., for audits) the decoding exponent d. The client
places an order by taking the order message a, encoding it by his secret exponent
e to get c ≡ ae (mod m), and sends the encoded order c to the broker. The broker
decodes it by replacing c by cd (mod m), which will yield the original order a.

Since only the client knows the exponent e, the broker will know that the order
is authentic. The encoding of the order using e is like adding the client’s signature
to the order.

The broker might find some technical advantage in using the same modulusm for
every client. For example, equipment that computes modulo the common modulus
m could be used for all the broker’s clients.

However, DeLaurentis (1984) pointed out that a client who knows the modulus
m and both the encoding exponent e and the decoding exponent d would, with high
probability, be able to factor m, and thereby be able to compromise the authenticity
of all other clients’ signatures.

The idea is the same as that noted above for Carmichael numbers.
Suppose m is the modulus, m = pq, p, q unknown primes, and e, d are the en-

coding and decoding exponents known to the client. Then ed− 1 is a multiple of
(p−1)(q−1)= φ(m). Write ed−1 = 2hr, where r is odd. Since φ(m) is a product
of two even numbers, h≥ 2.

Suppose p−1 = 2uv and q−1 = 2tw, with v,w odd, and suppose u≤ t. Note that
u≥ 1, and h≥ u.

For every a coprime to m, a2hr ≡ 1 (mod m). We consider the sequence:

{ar,a2r, . . . ,a2hr} (mod m)

just as in the strong a-pseudoprime test. Then the proof of Theorem 6 applies with-
out change to show that at least half of the units modulom yield a non-trivial square
root of 1 in the sequence

{ar,a2r,a22
r, . . . ,a2hr} (mod m)

Thus at least half of all numbers a modulo m will yield a factorization of m.
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Repeatedly choosing randomly numbers a will therefore yield with arbitrarily
high probability a factorization of m.

Exercises.

34. For a relatively prime to 8509, a374220 ≡ 1 (mod 8509). Factor 8509.

35. Letm= 77123,e= 79,d= 33919 be the components of an RSA code. Factorm.

36. Let m be as in the last exercise, and suppose you are assigned the e and d of the
last exercise. Suppose a business rival has the same m, and you know her encoding
exponent e= 133. Crack her code by finding a decoding exponent d.





Chapter 21
Quadratic Reciprocity

In this chapter we describe a procedure for deciding efficiently whether or not a
given number is a square modulom. The main result, known as the law of quadratic
reciprocity, was first proved by Gauss (1801) and is a cornerstone of number theory.
The last section gives some applications of quadratic reciprocity to primality testing.
In the next chapter we give a variety of other applications of the ideas in this chapter.

A curious aspect of the main result of this chapter is that while quadratic reci-
procity makes it easy to determine whether or not the congruence x2 ≡ a (mod m)
has a solution, the method provides very little help in determining what number is a
solution if there is one. (See Section 22C for some implications of this fact.)

A. Reduction to the Odd Prime Case

If a andm are coprime, then the number a is a squaremodulom, or, in number theory
terminology, a is a quadratic residue modulo m, if the congruence x2 ≡ a (mod m)
has a solution, and a is a non-square modulo m, or a is a quadratic nonresidue
modulo m, if the congruence has no solution.

This section will show that to decide whether a number a coprime tom is a square
modulo m for any m, it suffices to be able to decide whether a is a square modulo p
when p is an odd prime.

First, we use the Chinese Remainder Theorem to reduce to the case that m is a
prime power.

Theorem 1. Let m = pe1
1 p

e2
2 · · · perr . Then the number a is a quadratic residue mod

m iff a is a square modulo each prime power divisor peii of m.

Proof. If there is some number b so that b2 ≡ a (mod m), then b2 ≡ a (mod d) for
every divisor d of m. Conversely, suppose we can find numbers b1, . . . ,br so that

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 433
in Mathematics, c© Springer Science+Business Media LLC 2009
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b2
1 ≡ a (mod pe1

1 ),

b2
2 ≡ a (mod pe2

2 ),
...

b2
r ≡ a (mod perr ).

By the Chinese Remainder Theorem there is a unique number b modulo m =
pe1

1 · · · perr such that
b≡ b1 (mod pe1

1 ),
...

b≡ br (mod perr ).

The number b then satisfies b2 ≡ a (mod peii ) for each i, and hence,

b2 ≡ a (mod m).
��

Thus to decide whether a number a is a square modulo m, it suffices to decide if
a is a square modulo the prime power divisors of m. To do that we must consider
separately the case where the prime is odd, and the case where the prime is 2.

For the odd prime case, we recall some information about the group of unitsUpe
of Z/peZ.

First, for p an odd prime and all e≥ 1, the groupUpe is a cyclic group, generated
by some element b. In other words, there is a primitive root b modulo pe (Section
19C). Thus every number a coprime to p has the form a ≡ bs (mod pe) for some
exponent s. Since the order of b modulo pe is φ(pe) = pe−1(p−1), the exponent s
is uniquely determined modulo pe−1(p−1). That is, if

a≡ bs ≡ bt (mod pe)

then
s≡ t (mod pe−1(p−1)).

Since p−1 is even, this implies that

s≡ t (mod 2).

Thus every number a coprime to p is either an odd power of b or an even power of
b modulo pe, never both.

With that observation, we can prove

Theorem 2. Let p be an odd prime, and (a, p) = 1. Then there is a solution of x2 ≡ a
(mod pe), e> 1, if and only if there is a solution of x2 ≡ a (mod p).

Proof. If c2 ≡ a (mod pe), then c2 ≡ a (mod p).
Conversely, suppose a is a square modulo p, so that for some c, a≡ c2 (mod p).
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Let b be a primitive root modulo pe. Then a ≡ br (mod pe) for some r. We will
show that r is even.

We know that b is also a primitive root modulo p by Exercise 27 of Section 19C.
If a ≡ br (mod pe), then a ≡ br (mod p). Let c ≡ bt (mod p). Since a ≡ c2

(mod p), therefore a ≡ b2t (mod p). Hence r is even. Thus r = 2s for some s, and
so a≡ br = b2s = (bs)2 (mod pe). Hence a is a square modulo pe. ��
Example 1. We can see that 61 is a square modulo 125, because 61 is obviously a
square modulo 5:

61≡ 1 (mod 5)

and 1 = 12 is a square modulo 5.
On the other hand, 62 is not a square modulo 343 = 73 because modulo 7, 62≡ 5,

and 5 is not a square modulo 7 (the squares modulo 7 are 1, 2 and 4).

The case where the modulus is a power of 2 is somewhat different.

Theorem 3. Suppose a is odd. Then:
(i) a is always a square modulo 2.
(ii) a is a square modulo 4 iff a≡ 1 (mod 4).
(iii) a is a square modulo 2e, e≥ 3, iff a≡ 1 (mod 8).

Proof. (i) and (ii) are easy. For (iii), suppose first that b2 ≡ a (mod 2e) for some
e ≥ 3. Then b2 ≡ a (mod 8), so a must be ≡ 1 (mod 8), since 1 is the only odd
square modulo 8.

Conversely, suppose a = 1 + 8n for some fixed integer n. We show that for any
e≥ 3 there is some x with

x2 ≡ a (mod 2e)

by induction on e.
If a= 1 + 8n, then a is obviously a square modulo 8.
Assume e> 3 and suppose

y2 ≡ a (mod 2e−1)

for some (necessarily odd) number y. Then y2 = a+ 2e−1u for some integer u. Set

w= y+ 2e−2u.

Then, since e≥ 4, 2(e−2) > e, and so

w2 ≡ y2 + 2e−1yu+ 22(e−2)u2

≡ a+ 2e−1u+ 2e−1yu

≡ a+ 2e−1u(1 + y) (mod 2e).

Since y is odd, w2 ≡ a (mod 2e). Thus if a≡ 1 (mod 8), then for any e≥ 3 we can
find some number w so that w2 ≡ a (mod 2e). ��
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Example 2. Since 17 ≡ 1 (mod 8), 17 is a square modulo 210 = 1024. In fact, we
can determine a number w with w2 ≡ 17 (mod 1024) by following the induction
step in the proof, as follows:

17≡ 1 = 12 (mod 16)

Hence
12 = 17 + 16(−1) : y= 1,u=−1.

Then for a number whose square is 17 modulo 32, we set

w= y+ 8u= 1 + 8(−1) =−7.

Then
(−7)2 = 49≡ 17 (mod 32).

We can replace −7 by 7 since squaring each yields the same result. Then

72 = 17 + 32 : y= 7,u= 1.

For a number whose square is 17 modulo 64, we set

w= y+ 16u= 7 + 16 = 23.

Then it turns out that

w2 = 232 = 529 = 29 + 17≡ 17 (mod 29).

For a number whose square is 17 modulo 210 = 1024, we set

y= 23 + 28 = 273.

Then
2732 = 17 + 210 ·63.

So
2732 ≡ 17 (mod 1024).

We can continue this process indefinitely to find a square root of 17 modulo any
power of 2.

Exercises.

1. Find some w so that w2 ≡ 33 (mod 128).

2. Find some number w so that w2 ≡ 65 (mod 512).

3. In Example 1, find some w so that 61 ≡ w2 (mod 125), following the approach
of Example 2.

4. Let tn = n(n+1)
2 be the nth triangular number, for n ≥ 0. Show that the square of

every odd integer has the form 8tn+ 1 for some n.
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B. The Legendre Symbol

Theorems 2 and 3 of the last section imply that to decide when x2 ≡ a (mod m)
is solvable, it is enough to find criteria to decide when x2 ≡ a (mod p) is solvable
when p is an odd prime.

To help decide whether or not a given number is a square, that is, a quadratic
residue, modulo p, we introduce the Legendre symbol.

Defini ion. Let p be an odd prime, and a any number not divisible by p. Then the
Legendre symbol (a/p) is defined by

(
a
p

)
= 1 if a is a quadratic residue mod p,

(
a
p

)
=−1 if a is quadratic nonresidue mod p.

To decide whether a is a square modulo p, we can manipulate Legendre symbols.
Here are the rules.

Theorem 4. Assume p, q are distinct odd primes and a and b are integers coprime
to p. Then

(1)
(
a2

p

)
= 1;

(2) if a≡ b (mod p), then
(
a
p

)
=
(
b
p

)
;

(3)
(
ab
p

)
=
(
a
p

)(
b
p

)
;

(4)
(−1
p

)
= (−1)

p−1
2 ;

(5)
(

2
p

)
= (−1)

p2−1
8 ;

(6)
(
p
q

)(
q
p

)
= (−1)(

p−1
2 )( q−1

2 ).

These are the condensed versions of the formulas. They become easier to under-
stand when we translate the exponents of −1 in Rules (4), (5) and (6) into congru-
ence conditions. As before, p and q are odd primes:

(4)

(−1
p

)
= 1 if p≡ 1 (mod 4);

=−1 if p≡ 3 (mod 4)

(5)

(
2
p

)
= 1 if p≡ 1 or 7 (mod 8);

=−1 if p≡ 3 or 5 (mod 8)
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(6)

(
q
p

)
=
(
p
q

)
if p or q is ≡ 1 (mod 4);

=−
(
p
q

)
if both p and q are ≡ 3 (mod 4).

Rule (6) is the famous Law of Quadratic Reciprocity.
Using rules (1)-(6), and especially quadratic reciprocity (rule (6)), we can rather

easily determine for a prime p whether a number a is a square modulo p.

Example 3. Is−42 a square mod 103? We ask, is (−42/103)= 1 or−1? Using the
six rules, we manipulate as follows:

(−42
103

)
=
(−1

103

)(
2

103

)(
3

103

)(
7

103

)
by rule (3) .

Rule (6) gives (
3

103

)
=−

(
103

3

)

and Rule (2) gives (
103
3

)
=
(

1
3

)
= 1, so

(
103
3

)
=−1.

Similarly, Rule (6) gives (
7

103

)
=−

(
103

7

)
.

and Rule (2) and a quick review of squares modulo 7 give(
103
7

)
=
(

5
7

)
=−1,

hence (
7

103

)
= 1.

Also (−1
103

)
=−1

by Rule (4) and (
2

103

)
= 1

by Rule (5). So
(−42

103

)
=
(−1

103

)(
2

103

)(
3

103

)(
7

103

)

= (−1)(1)(1)(−1) = 1.

Thus −42 is a square modulo 103. (In fact, −42≡ (24)2 (mod 103).)
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It is apparent that the law of quadratic reciprocity, rule (6), is the rule that gives
the most striking results. It permits us, for example, to decide whether 3 is a square
mod 103 by seeing whether 103 is a square mod 3. The former question is not so
easy to decide directly, but the latter is very easy.

The rest of this section and the next are devoted to proofs of the various properties
of the Legendre symbol collected as Theorem 1. The proofs range from trivial to
very clever. The section following the proofs has several applications of these ideas.

Proof of Rule (1). Rule (1) restates the definition of the Legendre symbol.

Proof of Rule (2). (a/p) = 1 if and only if there is some number c with c2 ≡ a
(mod p). If a≡ b (mod p) then c2 ≡ a (mod p) iff c2 ≡ b (mod p). So (a/p) = 1
if and only if (b/p) = 1.

The proofs of Rules (3)-(6) are facilitated by

Theorem 5 (Euler’s Lemma). Let p be an odd prime. If (a, p) = 1, then
(
a
p

)
≡ a(p−1)/2 (mod p).

Proof. Let b be a primitive root modulo p. Then b has order p− 1 modulo p. If
a≡ br (mod p), then the congruence class of r (mod 2) is uniquely determined by
a, as noted above Theorem 2. So every a coprime to p is either congruent to an even
power of b mod p, and hence is a square mod p, or is congruent to an odd power
of b, hence cannot be congruent to an even power of b, hence cannot be a square
mod p.

Thus the squares modulo p are the numbers congruent to even powers of b.

Now b
p−1

2 ≡ −1 (mod p) since (b
p−1

2 )2 ≡ 1 (mod p) and b has order p− 1
mod p. Let a≡ br (mod p). Then

a
p−1

2 ≡ br p−1
2 ≡ (b

p−1
2 )r ≡ (−1)r (mod p).

If
(
a
p

)
= 1 then r is even, so

a
p−1

2 ≡ (−1)r = 1 (mod p),

while if
(
a
p

)
=−1 then r is odd, so

a
p−1

2 ≡ (−1)r =−1 (mod p).

Thus in either case, (
a
p

)
≡ a p−1

2 (mod p).

��
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Returning to the proof of the rules for the Legendre symbol collected in
Theorem 1:

Proof of Rule (4). This is Euler’s lemma with a=−1.

Proof of Rule (3). This follows from the identity (ab)(p−1)/2 = a(p−1)/2 ·b(p−1)2

and Euler’s lemma.

The proofs of Rules (5) and (6) are more difficult. We’ll do Rule (5) in this section
and do Rule (6) in the next.

Proof of Rule (5). Our proof of Rule (5) starts from the same idea used for the
proof in Section 9B of Fermat’s Theorem: if p is an odd prime and a is coprime to
p, then ap−1 ≡ 1 (mod p).

To prove Fermat’s Theorem, we observed that the set

{a,2a,3a, . . . ,(p−1)a}
and the set

{1,2,3, . . . , p−1}
are both complete sets of representatives for the non-zero elements of Z/pZ. Hence
multiplying the elements of each of the sets together gives the congruence

a ·2a ·3a · · ·(p−1)a≡ 1 ·2 ·3 · · ·(p−1) (mod p).

Cancelling 1,2, . . . , p−1 from both sides yields ap−1 ≡ 1 (mod p).
For Rule (5), we consider the product D modulo p of the even numbers between

1 and p:

2 ·1,2 ·2,2 ·3, . . .,2 · ( p−1
2

)).

We look at D modulo p in two ways.
Before doing so in general, we first illustrate the idea with an example.

Example 4. We determine
(

2
19

)
, by looking at

D= 2 ·4 ·6 ·8 ·10 ·12 ·14 ·16 ·18.

On the one hand, the product is

D= 29 · (1 ·2 ·3 ·4 ·5 ·6 ·7 ·8 ·9)

= 29 ·9!

≡
(

2
19

)
·9! (mod 19),

the last congruence by Euler’s Lemma. On the other hand, if we replace all the
even numbers > 19

2 by their residues closest to zero by subtracting 19 from each, we
obtain
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D= 2 ·4 ·6 ·8 ·10 ·12 ·14 ·16 ·18

≡ 2 ·4 ·6 ·8 · (−9) · (−7) · (−5) · (−3) · (−1)

≡ (−1)5 · (1 ·2 ·3 ·4 ·5 ·6 ·7 ·8 ·9)

≡ (−1)5 ·9! (mod 19).

Canceling 9! gives (
2

19

)
≡ (−1)5 (mod 19),

hence (
2

19

)
= (−1)5,

where the exponent 5 on the right hand side is the number of odd numbers < 19/2.

We follow the same idea as in the example, to prove:

Proposition 6. For p an odd prime,
(

2
p

)
= (−1)t ,

where t is the number of odd numbers < p
2 .

Proof. Let D be the product of the (p−1)/2 even numbers between 1 and p.
On the one hand, the product

D= 2 ·4 ·6 · . . . · p−1

= 2
p−1

2 (
p−1

2
)!,

and so by Euler’s Lemma,

D=
(

2
p

)
(
p−1

2
)!.

On the other hand, if we subtract p from all the even numbers between p/2 and
p, we get the negatives of the odd numbers < p/2. Thus D is congruent modulo
p to the product of the even numbers < p/2 and the negatives of the odd numbers
< p/2. Hence

D≡ (1 ·2 · . . . · p−1
2

) · (−1)t (mod p)≡ (
p−1

2
)!(−1)t (mod p)

where t is the number of odd numbers < p/2.
Putting together the two descriptions of D gives

(
2
p

)
(
p−1

2
)!≡ (

p−1
2

)!(−1)t (mod p).
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Canceling ( p−1
2 )! gives (

2
p

)
≡ (−1)t (mod p).

Since both sides equal 1 or −1, we have
(

2
p

)
= (−1)t .

��
It is easy to check that

t =
p−1

4
iff

p−1
2

is even, iff p ≡ 1 (mod 4),

t =
p+ 1

4
iff

p−1
2

is odd, iff p ≡ 3 (mod 4).

To obtain Rule 5, we have four cases. If p≡ 1 (mod 4), then

(
2
p

)
= (−1)

p−1
4 .

Thus if p≡ 1 (mod 8), then (
2
p

)
= 1

while if p≡ 5 (mod 8), then (
2
p

)
=−1

If p≡ 3 (mod 4), then (
2
p

)
= (−1)

p+1
4 .

Thus if p≡ 3 (mod 8), then (
2
p

)
=−1

while if p≡ 7 (mod 8), then (
2
p

)
= 1.

That proves Rule (5).
We’ll prove Rule (6), the Law of Quadratic Reciprocity, in the next section.

Exercises.

5. Is 45 a square mod 47?

6. Is −13 a square mod 37?
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7. Is 48 a square mod 37?

8. Is 14 a square mod 65? (Hint: Use Theorem 1 of Section A).

9. Is 31 a square mod 200?

10. Is 311 a square mod 1001?

11. Show that if p is an odd prime and a,b,c are integers with (a, p) = 1, then
ax2 +bx+ c factors modulo p iff

(
b2−4ac

p

)
= 1.

12. Prove that if p is an odd prime, then

p−1

∑
r=1

(
r
p

)
= 0.

13. (i) Suppose p≡ 1 (mod 6). Using the strategy of proof of Rule (5), prove that
(

3
p

)
≡ (−1)(p−1)/6.

(ii) Find an analogous rule when p= 5 (mod 6). Check your rule using Rule (6).

C. Proof of Quadratic Reciprocity

In this section we give a proof of Rule (6), the Law of Quadratic Reciprocity:

Theorem 7. Let p and q be odd primes. Then
(
p
q

)
=
(
q
p

)
· (−1)

p−1
2

q−1
2 .

In words, p is a square modulo q if and only if q is a square modulo p, unless p and
q are both congruent to 3 modulo 4, in which case p is a square modulo q if and
only if q is not a square modulo p.

The Law of Quadratic Reciprocity is one of the most subtle results in all of math-
ematics. Legendre first formulated the law in 1788, but was unable to prove it. Gauss
was the first to prove the law–he found a proof in April of 1796. But he evidently
decided that he had not captured the essence of the result, because he gave three
other proofs that same year, and four additional proofs during the next 12 years.
After Gauss, many of the giants of 19th century mathematics studied the result and
published their own proofs, including Jacobi, Eisenstein (five proofs), Liouville,
Kummer, Dedekind, Dirichlet, Kronecker (eight proofs), de la Vallee Poussin, and
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Hilbert. By 1900 some 93 proofs had been published. According to Franz Lemmer-
meyer, by 2005 there were 221 published proofs of Quadratic Reciprocity. See his
website, http://www.rzuser.uni-heidelberg.de/∼hb3/rchrono.html for a list.

The proof we give here is proof No. 193, published by G. Rousseau (1991),
which is based on the fifth of Gauss’s eight proofs. It uses the Chinese Remainder
Theorem, Euler’s Lemma and multiplication on cosets.

The proof consists of comparing the products of two different sets of representa-
tives of the same quotient group (Section 11G).

Before beginning the proof of Rule (6), we need the following formula:

Lemma 8. If q is an odd prime, then

(q−1)!(−1)
q−1

2 ≡
(
q−1

2

)
!2 (mod q).

Proof. As in the proof of Rule (5), we take the product (q− 1)! modulo q and
subtract q from each of the factors >q/2: That is, we replace the numbers

q+ 1
2

,
q+ 3

2
, . . . ,q−1

by the negative numbers
(
q+ 1

2
−q

)
,

(
q+ 3

2
−q

)
, . . . ,(q−1)−q.

Then, modulo q, we have

(q−1)!≡ 1 ·2 · · · q−1
2

· q+ 1
2

· q+ 3
2

· · ·q−1

≡ 1 ·2 · · · q−1
2

·
(
q+ 1

2
−q

)
·
(
q+ 3

2
−q

)
· · · (q−1−q)

≡ 1 ·2 · · · q−1
2

·
(
−q−1

2

)
·
(
−q−3

2

)
· · · (−1)

≡
(
q−1

2

)
!2(−1)

(
q−1

2

)
(mod q).

��
Multiplying both sides by (−1)(

q−1
2 ) and raising both sides to the p−1

2 power for any
odd prime p yields

Corollary 9.
(
q−1

2

)
!(p−1) ≡ (q−1)!(

p−1
2 )(−1)(

q−1
2 )( p−1

2 ) (mod q).

(Compare the exponent on the−1 with the exponent on−1 in the Law of Quadratic
Reciprocity.)
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With that, we proceed to the proof of Rule (6), the Law of Quadratic Reciprocity.

Proof. Recall that Um is the group of units of Z/mZ. For ease of notation, we will
identify congruence classes [k]m of integers k relatively prime to m with the integers
k themselves, as long as the modulus is clear.

Let p and q be distinct odd primes. Related to the Chinese Remainder Theorem,
we showed in Chapter 12 thatUpq, the group of units of Z/pqZ, has order φ(pq) =
φ(p)φ(q) = (p−1)(q−1). We proved this by showing that the map:

ψ :Upq→Up×Uq
defined by ψ(k) = (k,k), or more precisely, ψ([k]pq) = ([k]p, [k]q), is an isomor-
phism betweenUpq andUp×Uq. (Hence there are as many elements inUpq, namely
φ(pq), as there are inUp×Uq, namely, φ(p)φ(q).)

Observe that the subset M = {−1,1} ofUpq is a subgroup ofUpq, and, under ψ ,
M is mapped to the subgroup N = {(−1,−1),(1,1)} of Up×Uq. Thus ψ induces
an isomorphism from the quotient groupUpq/M to the quotient group (Up×Uq)/N
(c.f. Section 11G):

Upq/M ∼= (Up×Uq)/N
given by sending the coset kM to (k,k)N,for k any unit modulo pq.

Note that (Up×Uq)/N has order (p−1)(q−1)
2 by Lagrange’s Theorem.

Our proof of quadratic reciprocity consists of finding, then multiplying together,
two different sets of elements ofUp×Uq that represent the (p−1)(q−1)

2 cosets of N in
Up×Uq. Comparing the two products will give us the result.

The f rst set of representatives. For the first set, observe that for each element
(i, j) of Up ×Uq, the coset (i, j)N contains also the element (i, j)(−1,−1) ≡
(p− i,q− j) (and no other element). Thus to find a set of elements in Up×Uq that
represent all the cosets of N, we choose in each coset the element (i, j) for which
1≤ j ≤ q−1

2 . Doing so, we may describe (Up×Uq)/N as

(Up×Uq)/N =
{

(i, j)N : 1≤ i≤ p−1,1≤ j ≤ q−1
2

}
.

Thus the set

A=
{

(i, j) : 1≤ i≤ p−1,1≤ j ≤ q−1
2

}

is a set of representatives for the cosets of N inUp×Uq.

The second set of representatives. For the second set of representatives of the
cosets of N inUp×Uq, we first look atUpq/M.

Since M is the subset {−1,1}, then for each k coprime to pq, the coset kM con-
sists of the two numbers k and −k modulo pq. Then

kM = {k, pq− k}.
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We choose to represent each coset of M in Upq by the smaller of k and pq− k, that
is, by a number in the range 1≤ k ≤ pq−1

2 . That is,

Upq/M =
{
kM : 1≤ k ≤ pq−1

2
and (k, pq) = 1

}
.

Under the isomorphism fromUpq/M to (Up×Uq)/N induced by ψ , the image in
(Up×Uq)/N of that set of coset representatives gives a second set of representatives
for the cosets of N inUp×Uq. Thus,

(Up×Uq)/N =
{

(k,k)N : 1≤ k ≤ pq−1
2

and (k, pq) = 1

}
.

The sets

A=
{

(i, j) : 1≤ i≤ p−1,1≤ j ≤ q−1
2

}

and

B=
{

(k,k) : 1≤ k≤ pq−1
2

and (k, pq) = 1

}

then each represent all the cosets of N inUp×Uq.
Now multiplication of cosets using representatives of the cosets is well-defined,

independent of the choice of representatives (see Section 11G). This means here that
the product inUp×Uq of the elements in the set A will be in the same coset modulo
N as the product of the elements in the set B. Computing and comparing those two
products will yield the Law of Quadratic Reciprocity.

The product of the elements in A. Computing the product of the elements in A is
fairly routine.

We first compute the product of the pairs (i, j), where i is fixed and j varies
between 1 and q−1

2 . We get

(
i
q−1

2 ,

(
q−1

2

)
!

)
.

Then taking the product of these as i goes from 1 to p−1, we get the product of the
elements in A: (

(p−1)!
q−1

2 ,

((
q−1

2

)
!

)p−1
)

.

Now we apply Corollary 9 above to the second term. We find that the product of the
elements in the set A is

((p−1)!
q−1

2 ,((q−1)!)
p−1

2 (−1)(
p−1

2 )( q−1
2 )).
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The product of the elements in B. Computing the product of the elements in B is
a bit more subtle. We do it one component at a time.

The first component of the product of the elements in B is the product modulo p
of the numbers k with 1≤ k ≤ pq−1

2 that are coprime to p and q. Note that

pq−1
2

= p
(
q−1

2

)
+
p−1

2
= q

(
p−1

2

)
+
q−1

2
.

We first write down the product of all the k’s from 1 to pq−1
2 that are relatively

prime to p, laying out the products in rows:

1 ·2 · · · (p−1)
·(p+ 1) · (p+ 2)· · · (p+(p−1))

·(2p+ 1) · (2p+ 2)· · · (2p+(p−1))
...

·
((

q−1
2

−1

)
p+ 1

)
·
((

q−1
2

−1

)
p+ 2

)
· · ·

((
q−1

2
−1

)
p+(p−1)

)

·
((

q−1
2

)
p+ 1

)
·
((

q−1
2

)
p+ 2

)
· · ·

((
q−1

2

)
p+

(
p−1

2

))
.

Each line but the last is congruent modulo p to (p− 1)!. So the entire product is
congruent modulo p to

((p−1)!)(
q−1

2 ) ·
(
p−1

2

)
!,

where the last factor comes from the last line of the product above.
To get the product of all k with 1 ≤ k ≤ pq−1

2 that are coprime to p and also
coprime to q, we must divide the above product by all the multiples of q in the
interval between 1 and pq−1

2 = ( p−1
2 )q+ q−1

2 . That set of multiples of q multiply
together to give

q ·2q · · ·
(
p−1

2

)
q= q( p−1

2 )
(
p−1

2

)
!,

a unit modulo p. So multiplying the entire product modulo p by the inverse of this
last product, and then canceling the common factor ( p−1

2 )!, we see that the first
component of the product of the elements of B is congruent modulo p to

(p−1)!(
q−1

2 )

q( p−1
2 )

.

Now recall that Euler’s Lemma gives
(
q
p

)
≡ q p−1

2 (mod p),
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Substituting the Legendre symbol ( qp) into this last product, and noting that the
Legendre symbol is either 1 or −1, hence can be placed either in the denominator
or the numerator, we see that the first component of the product of the elements in
B is congruent modulo p to

(p−1)!(
q−1

2 )
(
q
p

)
.

The same computation with the roles of p and q interchanged yields that the
second component of the product B is congruent modulo q to

(q−1)!(
p−1

2 )
(
p
q

)
.

Thus the product of the elements of the set B inUp×Uq is the ordered pair
(

(p−1)!(
q−1

2 )
(
q
p

)
,(q−1)!(

p−1
2 )

(
p
q

))
.

Equating the two descriptions of the product of the elements of (Up×Uq)/N.
We’ve seen that the product of all the elements of (Up×Uq)/N may be represented
by the product of the elements of A and also by the product of the elements of B.
Thus the two products represent the same coset:

(
(p−1)!(

q−1
2 )

(
q
p

)
,(q−1)!(

p−1
2 )

(
p
q

))
N

= ((p−1)!(
q−1

2 ),(q−1)!(
p−1

2 )(−1)(
p−1

2 )( q−1
2 ))N.

Since N = {(1,1),(−1,−1)}, this means that inUp×Uq, either

(
(p−1)!(

q−1
2 )

(
q
p

)
,(q−1)!(

p−1
2 )

(
p
q

))

= ((p−1)!(
q−1

2 ),(q−1)!(
p−1

2 )(−1)(
p−1

2 )( q−1
2 ))(1,1),

or (
(p−1)!(

q−1
2 )

(
q
p

)
,(q−1)!(

p−1
2 )

(
p
q

))

= ((p−1)!(
q−1

2 ),(q−1)!(
p−1

2 )(−1)(
p−1

2 )( q−1
2 ))(−1,−1).

The two possibilities give two cases.
In the first case, we have

((p−1)!(
q−1

2 )
(
q
p

)
≡ (p−1)!(

q−1
2 ) (mod p)

and
(q−1)!(

p−1
2 )

(
p
q

)
≡ (q−1)!(

p−1
2 )(−1)(

p−1
2 )( q−1

2 ) (mod q).
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Simplifying these congruences gives
(
q
p

)
≡ 1 (mod p)

and (
p
q

)
≡ (−1)(

p−1
2 )( q−1

2 ) (mod q).

Putting these together gives
(
p
q

)
=
(
q
p

)
· (−1)(

p−1
2 )( q−1

2 ),

which is the law of quadratic reciprocity if ( qp) = 1.

In the second case, we have

(p−1)!(
q−1

2 )
(
q
p

)
≡ (−1)(p−1)!(

q−1
2 ) (mod p)

and

(q−1)!(
p−1

2 )
(
p
q

)
≡ (−1)(q−1)!(

p−1
2 )(−1)(

p−1
2 )( q−1

2 ) (mod q).

Simplifying these congruences gives(
q
p

)
=−1

and (
p
q

)
= (−1)(−1)(

p−1
2 )( q−1

2 ).

Putting these together gives(
p
q

)
=
(
q
p

)
· (−1)(

p−1
2 )( q−1

2 ),

which is the law of quadratic reciprocity if
(
q
p

)
=−1.

The two cases complete the proof of Theorem 7. ��

Exercises.

14. Let p = 5,q= 7 and consider the group (U5×U7)/{(1,1),(−1,−1)}. Explic-
itly write down the sets A and B for this group. Show that the product of the elements
in the set A is

(4!3,3!4) = (4!3,6!4(−1)2·3),
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while the product of the elements in the set B is

(
(4!)3 ·2!

7 ·14
,
(6!)2 ·3!
5 ·10 ·15

) = (
(4!)3

72 ,
(6!)2

53 )

where the first components are modulo 5, and the second components are mod 7.
Use this and Euler’s Lemma to verify that

(
5
7

)
=
(

7
5

)
.

15. Determine whether or not there is a solution of

x4 ≡ 36 (mod 1009)

(1009 is prime.)

16. Decide whether or not there is a solution of

x2−43x+ 55≡ 0 (mod 73)

17. Decide whether or not there is a solution of

x2−21x−17≡ 0 (mod 37)

18. Using Rules (1)–(6) as appropriate, prove that for all odd primes p,
(−3
p

)
=
( p

3

)
.

19. Prove that if p and q are odd primes with q≡ 3 (mod 4), then
(−q
p

)
=
(
p
q

)
.

20. For which odd primes p is there a number m coprime to p so that both m and
−m are squares modulo p?

21. Use Wilson’s Theorem (Section 14A, Exercises) that for p an odd prime,
(p−1)!≡−1 (mod p), to show (c.f Lemma 8) that

(
p−1

2
)2!≡ (−1)

p+1
2 (mod p).

D. The Jacobi Symbol

It is important for both computations and applications to extend the Legendre sym-
bol to cover denominators that are not prime.
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Defini ion. For an odd number m > 1 and a number a coprime to m, the Ja-
cobi symbol (a/m) is defined in terms of the Legendre symbol as follows. If
m= pe1

1 p
e2
2 · · · p

eg
g is the factorization of m into a product of primes, then

( a
m

)
=
(
a
p1

)e1
(
a
p2

)e2
(
a
pg

)eg
.

Thus (a/m) = 1 or −1 for any a coprime to m.
If (a/m) = 1, it does not follow that a is a square (mod m). For example, 2 is

not a square mod 15 because 2 is not a square mod 3 or mod 5. But
(

2
15

)
=
(

2
5

)(
2
3

)
= (−1)(−1) = 1.

On the other hand, if (a/m) = −1, then necessarily (a/p) = −1 for some prime p
dividing m. So a is not a square modulo p, from which it follows that a cannot be a
square modulo m.

From the definition of the Jacobi symbol it follows immediately that if m = rs
is odd and a is coprime to m, then (a/m) = (a/r)(a/s). From that fact it is fairly
easy to show that the Jacobi symbol satisfies Rules (1)–(6) that we proved for the
Legendre symbol. For example:

Rule (3).
(
ab
m

)
=
( a
m

)( b
m

)
.

Proof. This is true if m is prime, since we proved Rule (3) for the Legendre symbol.
Suppose m = rs, with r,s < m. Assume by induction that Rule (3) is true for r

and s. Then (
ab
r

)
=
(a
r

)(b
r

)

and (
ab
s

)
=
(a
s

)(b
s

)
.

So (
ab
m

)
=
(
ab
r

)(
ab
s

)
=
(a
r

)(b
r

)(a
s

)(b
s

)

=
(a
r

)(a
s

)(b
r

)(
b
s

)
=
( a
m

)( b
m

)
.

��
For Rules (4) and (6) we set m′ = m−1

2 and observe:

Lemma 10. If m is odd and m= rs, then m′ = r′+ s′ (mod 2).
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Proof.
m′ =

m−1
2

=
rs−1

2

=
rs− s+ s−1

2
= sr′+ s′ ≡ r′+ s′ (mod 2).

��
Rule (4). (−1

m

)
= (−1)m

′
.

Proof. We prove Rule (4) by induction as with Rule (3):
Rule (4) was proved for the Legendre symbol, so if m is prime then Rule (4) is

true. Assuming m= rs, we have by induction and Lemma 10:
(−1
m

)
=
(−1
r

)(−1
s

)
= (−1)r

′
(−1)s

′
= (−1)r

′s+s′ = (−1)m
′
.

��
Rule (6).
For m,n positive odd numbers,

( n
m

)
= (−1)m

′n′
(m
n

)
.

Proof. For a,r,s odd with a and rs coprime, we have
( a
rs

)
=
(a
r

)(a
s

)

by definition, and ( rs
a

)
=
( r
a

)( s
a

)

by Rule (3). Using Lemma 10 we can prove Rule (6), first for
( p
m
)

with p prime,
by induction on the number of prime divisors of m, and then for

( n
m
)

by induction
on the number of prime divisors of n. We prove the first and leave the second as an
exercise.

We have (
p
q

)
= (−1)q

′p′
(
q
p

)

if q and p are distinct primes, by Quadratic Reciprocity. Suppose
(
p
m1

)
= (−1)m

′
1p
′
(
m1

p

)

if m is a product of r primes. Let m= m1q with q a prime �= p. Then

( p
m

)
=
(
p
m1

)(
p
q

)
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and by Quadratic Reciprocity and induction,
(
p
m1

)(
p
q

)
=
(
m1

p

)(
q
p

)
(−1)m

′
1p
′
(−1)q

′p′ .

Since
m′1p′+q′p′ = p′(m′1 +q′)≡ p′m′ (mod 2)

by Lemma 10, we have ( p
m

)
=
(
m
p

)
(−1)p

′m′ .

This completes rule (6). ��
These rules allow us to compute the Jacobi symbol (a/m) for every a coprime to

m in exactly the same way we compute the Legendre symbol.

Example 5. Since 217 and 41 are ≡ 1 (mod 4), we have

(
217
475

)
=
(

475
217

)
=
(

41
217

)

=
(

217
41

)
=
(

12
41

)
=
(

4
41

)(
3

41

)

=
(

3
41

)
=
(

41
3

)
=
(

2
3

)
=−1.

Thus 217 is not a square modulo 475. (If we found that
( 217

475

)
= 1, we wouldn’t

know whether or not 217 is a square modulo 475.)

For m prime, the symbol
( n
m
)

is the Legendre symbol. If we compute
( n
m
)

either
as a Jacobi symbol, or as a Legendre symbol, the outcome will be the same. The
significance of this is that we can manipulate Jacobi symbols without knowing how
to factor either m or n.

Example 6. Consider
( 1501

3739

)
. The denominator 3739 is prime, but not the numer-

ator. As a Jacobi symbol, we compute as follows, noting that 1501 and 737 are
congruent to 1 modulo 4:

(
1501
3739

)
=
(

3739
1501

)
=
(

737
1501

)

=
(

1501
737

)
=
(

27
737

)
=
(

3
737

)(
9

737

)

=
(

3
737

)
=
(

737
3

)
=
(

2
3

)
=−1,

and so 1501 is not a square modulo 3739.
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If we did this as a Legendre symbol, we would need to know how to factor 1501
as 1501 = 19 ·79. Then

(
1501
3739

)
=
(

19
3739

)(
79

3739

)
= (−1)

(
3739
19

)
(−1)

(
3739
79

)

=
(−4

19

)(
26
79

)
=
(−1

19

)(
4
19

)(
2

79

)(
13
79

)

= (−1)(1)(1)
(

79
13

)
= (−1)

(
1

13

)
=−1

Using Rule (6), the amount of time to compute the Jacobi symbol is similar to
the time needed to compute Euclid’s algorithm. In the example, Euclid’s algorithm
for 1501 and 3739 is

3739 = 1501 ·2 + 737

1501 = 737 ·2 + 27

737 = 27 ·27 + 8

27 = 8 ·3 + 3

8 = 3 ·2 + 2

3 = 2 ·1 + 1.

The number of steps needed to compute the Jacobi symbol is approximately twice
the number of steps in Euclid’s algorithm–one reduction of the top number in the
Jacobi symbol plus one use of reciprocity for each step of Euclid’s algorithm, plus
computing the symbol for any power of 2 that may arise in the numerator. Since
Euclid’s Algorithm is a fast algorithm, while factoring numbers into products of
primes is slow and hard, there is great benefit from being able to determine a Legen-
dre symble by viewing it as a Jacobi symbol.

E. Euler a-Pseudoprimes

Now that the Jacobi symbol is defined, we can use Euler’s Lemma as a composite-
ness test, much as we used Fermat’s Theorem.

We know that if m is prime (and m′ = (m−1)/2), then for all a coprime to m, by
Euler’s Lemma, ( a

m

)
≡ am′ (mod m).

So if
( a
m
) �≡ am′ (mod m) for some a< m, then m is composite.

What about a converse? For an odd number m that we suspect may be prime, we
may ask:

If a> 1 is coprime to m and (a/m′)≡ am′ (mod m), is m necessarily prime?
The answer is “no”, but examples are not so common. So we give them a name:
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Defini ion. An odd numberm> 1 is an Euler a-pseudoprime if m is composite and
( a
m

)
≡ am′ (mod m).

If m is an Euler a-pseudoprime, then squaring this last congruence gives

1 =
( a
m

)2 ≡ (am
′
)2 ≡ am−1 (mod m).

so m is an a-pseudoprime.
On the other hand, m may be an a-pseudoprime but not an Euler a-pseudoprime.

Example 7. The Carmichael number 1729 is an 11-pseudoprime but not an Euler
11-pseudoprime. To see the latter, we have

(
11

1729

)
=
(

1729
11

)
=
(

2
11

)
=−1

since 11≡ 3 (mod 8); on the other hand, observing that 1729 = 7 ·13 ·19, we have

11864 ≡ (116)144 ≡ 1 (mod 7)

11864 ≡ (1112)72 ≡ 1 (mod 13)

11864 ≡ (1118)48 ≡ 1 (mod 19)

by Fermat’s Theorem. Thus

11864 ≡ 1 (mod 1729).

We now prove that no composite number m is resistant to trial a-Euler pseudo-
prime testing, in the same way that no composite numberm is resistant to trial strong
a-pseudoprime testing.

For m an odd integer > 1, let

Em = {[a]m inUm|
( a
m

)
≡ am′ (mod m)}.

Since (a/m) only depends on the congruence class of a in Z/mZ (Rule (2)) and
(ab/m) = (a/m)(b/m) (Rule (3)), it is easy to see that Em is a subgroup of Um.
Using this fact, we have:

Proposition 11. If m is an composite odd number >1, then m is an Euler a-
pseudoprime for less than half of all numbers a< m.
Proof. Since Em is a subgroup of Um, by Lagrange’s theorem, the number of ele-
ments of Em dividesUm. So it is enough to show that Em �=Um, that is, to show that
m is not an Euler a-pseudoprime for some a coprime to m.

If m is not a Carmichael number, then for some a, m is not an a-pseudoprime,
and therefore not an Euler a-pseudoprime. So we can assume that m is a Carmichael
number. This implies that m is a product of distinct odd prime numbers.
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We consider two cases.
Case 1, am′ ≡ 1 (mod m) for all a coprime to m. We will find some a so that

(a/m) =−1.
Let m = pq where p is an odd prime. Then Um ∼=Up×Uq. Let b be a primitive

root modulo p. Let [a]m inUm correspond to the pair ([b]p, [1]q) inUp×Uq. In other
words, let x= a be a solution of the congruences

x≡ b (mod p),
x≡ 1 (mod q).

Since b is a primitive root modulo p, b is not a square modulo p, and so (b/p) =−1.
However, (1/q) = 1, and so

( a
m

)
=
(
a
p

)(
a
q

)
=
(
b
p

)(
1
q

)
=−1

Hence m is not an Euler a-pseudoprime.

Case 2, am′ �≡ 1 (mod m) for some a coprime to m. Since m is a product of
distinct primes, by the Chinese remainder theorem, there is some prime p dividing
m so that am′ �≡ 1 (mod p). Let m= pq with p and q coprime, thenUm ∼=Up×Uq.
Let [c]m inUm correspond to the pair ([a]p, [1]q) inUp×Uq. Then [c]m′ corresponds
to ([a]m′ , [1]m

′
) = ([a]m′ , [1]). Since [a]m′p �= [1], it follows that [c]m′ can be neither

[1]m nor [−1]m. Thus m cannot be an Euler c-pseudoprime. ��
The Euler a-pseudoprime test as a probabilistic primality test has been re-

placed by the strong a-pseudoprime test. It can be shown that if m is a strong
a-pseudoprime, then m is an Euler a-pseudoprime. (see Crandall and Pomerance
(2005), p. 166, Exercise 3.21). Moreover, while it is possible for a Carmichael num-
berm to be an Euler a-pseudoprime for half of the elements ofUm (see Exercise 24),
Rabin’s theorem shows that m can be a strong a-pseudoprime for at most 1/4 of the
elements of Um. Thus if m is composite, finding an a for which m fails the strong
a-pseudoprime test is never harder, and often easier, than finding an a for which m
fails the Euler a-pseudoprime test. Since the computation times for the Euler and
strong a-pseudoprime tests are similar, the strong a-pseudoprime test is the test of
choice.

Exercises.

22. Prove that if m is any odd number >1, then the other rules of Theorem 1 of
Section B hold for the Jacobi symbol, namely:

(1) (a2/m) = 1 for any integer a;
(2) if a= b (mod m), then (a/m) = (b/m);
(5) (2/m)≡ (−1)(m

2−1)/8; and
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23. Complete the proof of Rule (6) for the Jacobi symbol.

24. (i) Show that for every odd number m, there exists an odd number a so that
(a/m) =−1.

(ii) Show that the set {[a] inUm|(a/m) = 1} is a subgroup ofUm of index 2 (that
is, of order φ(m)/2).

(iii) Show that if am′ ≡ 1 (mod m) for all a coprime to m, then Em has index 2
inUm. (Hence this is true for m= 1729–see Example 7.)

25. Form= 1729, how many elements of Em are false witnesses form? (see Section
20B).

26. Show that if m= ck = (6k+1)(12k+1)(18k+1) is a Carmichael number (thus
the three factors are simultaneously prime) and k is odd, then Em is a subgroup of
Um of index 2.

27. Find the index of Em inUm for m=
(i) 697;
(ii) 1333;
(iii) 65;
(iv)) 1001.





Chapter 22
Quadratic Applications

In this chapter we consider several ideas related to quadratic residues, random num-
ber generation and factoring.

A. Safeprimes

Safeprimes are prime numbers p of the form p = 2q+ 1 with q prime. They are so
called because composite numbers whose prime factors are safeprimes are resistant
to some factoring algorithms, such as the Pollard p− 1 algorithm, and hence are
considered particularly appropriate as factors of moduli in RSA cryptosystems. It is
conjectured but not proven that there are infinitely many safeprimes. The first few
safeprimes are 5, 7, 11, 23, 47, 59, 83, 107, 167, . . . . The On-Line Encyclopedia
of Integer Sequences [Sloane] has a much longer list of safeprimes. MAPLE has a
command, “safeprime(m)” that will return the smallest safeprime ≥ m.

In this section we collect some results related to safeprimes and primitive roots.
We begin with

Proposition 1. If p= 2p′+1 is a safeprime, then for every number a coprime to p,
a is a primitive root modulo p if and only if a �≡ 1 or − 1 (mod p) and a is not a
quadratic residue modulo p.

Proof. A primitive root is not a quadratic residue modulo p. So if
(
a
p

)
= 1, then a

cannot be a primitive root.
Suppose p is a safeprime, p= 2p′+1, where p′ is also prime. Let β be a primitive

root in Z/pZ, that is, a generator of the groupUp of units of Z/pZ. Then β has order
2p′. For every exponent e,

e is odd, if and only if β e is not a square,

e is even, if and only if β e is a square.

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 459
in Mathematics, c© Springer Science+Business Media LLC 2009
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Now the order of β e is 2p′/(e,2p′). Thus for any e with 1 ≤ e ≤ 2p′ other than
e= p′ and e= 2p′ (β p′ = [−1] and β 2p′ = [1]), β e is not a square if and only if the
order of β e is 2p′, that is, β e is a primitive root. ��

To apply this proposition we recall from an exercise in Chapter 10 some congru-
ence properties of safeprimes.

Proposition 2. If p is a safeprime > 11, then

p≡ 2 (mod 3),
p≡ 3 (mod 4),
p≡ 2,3, or 4 (mod 5).

Hence p≡ 23,47 or 59 (mod 60)

Using these congruences and properties of the Legendre symbol, we can check
various numbers to see if they are primitive roots modulo safeprimes. For example,

Proposition 3. If p = 2p′+ 1 is a safeprime > 11, then (3/p) = 1, and hence 3 is
not a primitive root modulo p.

Proof. By quadratic reciprocity, (3/p) = (p/3)(−1)p
′
. Now p′ is odd, so (−1)p

′
=

−1; and p ≡ 2 (mod 3), so (p/3) = (2/3) =−1. So (3/p) = 1. ��
This result has a partial converse, due to McCurley (1989):

Proposition 4. Let q > 3 be prime. Then 2q+ 1 = m is prime if and only if 3q ≡ 1
(mod m).

Proof. If m is prime, then by Proposition 3 and Euler’s Lemma,

1 =
(

3
m

)
≡ 3q (mod m).

Conversely, suppose q > 3 is prime, m = 2q+ 1 and 3q ≡ 1 (mod m). Since q is
prime, the order of 3 modulo m is q. So q divides φ(m) by Euler’s Theorem.

Let p be the largest prime dividingm. Then φ(m) is divisible only by primes≤ p.
If m is not prime, then m= pt with t ≥ 3, so

p≤ m
3

<
m−1

2
= q.

Hence q cannot divide φ(m), a contradiction. So m must be prime. ��
Gauss’s conjecture is that 10 is a primitive root for infinitely many primes. The

next result relates Gauss’s conjecture to the question of whether there are infinitely
many safeprimes.

Proposition 5. 10 is a primitive root modulo a safeprime p if p ≡ 23,47 or 59
(mod 120). 10 is not a primitive root if p ≡ 83,107 or 119 (mod 120).
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Proof. Again, we compute (10/p) = (5/p)(2/p). Now

(
2
p

)
=

{
1 if p≡ 1 or 7 (mod 8),
−1 if p ≡ 3 or 5 (mod 8),

and (
5
p

)
=
( p

5

)
=

{
1 if p≡ 1 or 4 (mod 5),
−1 if p ≡ 2 or 3 (mod 5).

So 10 is a primitive root modulo p iff (10/p) = −1, which will be true if p ≡
3 or 5 (mod 8) and p ≡ 1 or 4 (mod 5), or if p ≡ 1 or 7 (mod 8) and p ≡ 2 or 3
(mod 5). Since a safeprime p cannot be congruent to 1 modulo 5, and cannot be
congruent to 1 or 5 modulo 8, we are left with three possible cases:

p ≡ 3 (mod 8), p≡ 4 (mod 5), or

p ≡ 7 (mod 8), p≡ 2 (mod 5), or

p ≡ 7 (mod 8), p≡ 3 (mod 5).

Since p ≡ 2 (mod 3), we have three congruence classes modulo 120 (here, 120
is the least common multiple of 8, 5, and 3) where (10/p) = −1: they are easily
seen to be the classes of 59, 47, and 23, respectively. ��

For general results of this kind, see [Ribenboim, (1996), pp. 379ff]

Sophie Germain primes. If p is a safeprime, so that p = 2q+ 1 and q is prime,
then q is called a Sophie Germain prime, after the early 19th century French math-
ematician Sophie Germain. Her name is attached to those primes because of the
following theorem, related to Fermat’s Last Theorem:

Theorem 6. (Germain). If q is a Sophie Germain prime, then Fermat’s equation
xq+ yq = zq has no nontrivial solutions modulo q.

This shows that the “first case” of Fermat’s last theorem holds for primes q =
(p−1)/2 where p is a safeprime. For a proof, see [Ribenboim (1979)].

Here is a nice factorization result for Mersenne numbers involving Sophie Ger-
main primes, first proved by Euler.

Proposition 7. Let q be a Sophie Germain prime ≡ 3 (mod 4) with q> 3. Let p=
2q+ 1. Then p divides the Mersenne number Mq = 2q−1.

Thus Mq is composite for the Sophie Germain primes

q= 11,23,83,131,179,191,239,251, . . ..

Proof. Since q≡ 3 (mod 4), we have p≡ 7 (mod 8), and so
(

2
p

)
= 1,
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which means that there is a number m so that 2≡ m2 (mod p). Then

2q = 2
p−1

2 ≡ mp−1 ≡ 1 (mod p),

by Fermat’s Theorem. Thus

Mq = 2q−1≡ 0 (mod p).

Thus p divides Mq. Since p <Mq for q> 3, this means that Mq is composite. ��

Exercises.

1. Let p be a Mersenne prime, p = 2q−1 where q is prime. Show that 10 is not a
primitive root modulo p if q= 1 (mod 4).

2. Let p ≥ 5 be a Fermat prime, p= 22n + 1 for some n≥ 1.
(i) Show that b is a primitive root modulo p iff b is not a square modulo p.
(ii) Show that 7 is a primitive root modulo every Fermat prime ≥ 5.

3. Show that −10 is a primitive root for every safeprime congruent to 83, 107 or
119 (modulo 120). Conclude that if there are infinitely many safeprimes, then 10 is
a primitive root for infinitely many primes, or −10 is a primitive root for infinitely
many primes.

B. Primes in Congruence Classes

In Section 4C we gave Euclid’s proof that there are infinitely many primes. Us-
ing properties of the Legendre symbol we can obtain several results, generalizing
Euclid’s method, that show that there are infinitely many primes in a particular con-
gruence class. Here is one example.

Proposition 8. There are infin tely many primes congruent to 4 modulo 5.

Proof. Let p1, p2, . . . , pr be primes congruent to 4 modulo 5. We will produce an-
other one. Suppose p1, p2, . . . , pr are each ≤ n. Let

A= 5(n!)2−1.

Then A is a product of primes > n. Let p> n be a prime dividing A. Then

5(n!)2 ≡ 1 (mod p).

Since n! is a unit modulo p, 5 is then a square modulo p, and so

1 =
(

5
p

)
=
( p

5

)
.
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Thus p ≡ 1 or 4 (mod 5). This is true for all primes dividing A. If all the prime
dividing A were congruent to 1 modulo 5, then A would be congrent to 1 modulo 5.
Hence at least one prime dividing A must be congruent to 4 modulo 5.

Thus there cannot be a finite number of primes congruent to 4 modulo 5. ��
The exercises have more examples of proofs of this kind. Keith Conrad, www.

math.uconn.edu/ kconrad/blurbs/gradnumthy/dirichleteuclid.pdf , has described all
congruence classes for which proofs like Euclid’s may be obtained.

Exercises.

4. Show that there are infinitely many primes congruent to 1 modulo 4, as follows:
suppose pl, . . . , pn are all such primes. Let M = (p1 · · · pn)2 +1. If a prime p divides
M then −1 is a square modulo p, so p= 1 (mod 4) . . . .

5. Show that there are infinitely many primes congruent to 7 (mod 12), as follows.
Suppose to the contrary that pl, . . . , pn are all such primes. Let

t = (2p1 · · · pn)2 + 3.

(i) Show that t is divisible by at least one prime≡ 3 (mod 4) with p �= p1, . . . , pn.
(ii) Show that if p divides t, then (−3/p) = 1.
(iii) Show that if (−3/p) = 1, then p= 1 (mod 3).
(iv) Use (i) and (iii) to conclude that there is a prime p dividing t with p ≡ 7

(mod 12).

C. Blum, Blum and Shub’s Pseudorandom Number Generator

In Section 19H we presented Lehmer’s multiplicative congruential method for gen-
erating sequences of numbers that “look” random. The sequence {x0,x1,x2, . . .}was
defined by xi+1 = Axi modM, where A is some multiplier coprime to M. For appro-
priate choices of M (large) and A (of large order moduloM) the resulting sequences
(usually) pass various statistical tests for randomness. However, a Lehmer sequence
has the property that with knowledge ofM and A, then starting at any number xk one
can go either forward or backward equally easily–to go backward, simply multiply
xk by the inverse of A modulo M, which is easily found by the extended Euclidean
algorithm (Bezout’s identity).

Of course, for really random sequences, such as a sequence of numbers arising
from tossing a fair die, knowing xk, the result of the kth toss, would give no idea of
what xk−1 or xk+1 is.

To generate a sequence of pseudorandom numbers, the next number in the se-
quence is necessarily a known function of the previous numbers in the sequence, as
with Lehmer’s method: xk+1 = Axk mod M. But L. Blum, M. Blum, and M. Shub
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(1986) proposed a pseudorandom number generator that has the following intriguing
property: given a number xk in the sequence, it is easy to find the next number xk+1

in the sequence, but essentially impossible to find the previous number xk−1 in the
sequence without special knowledge. As they put it, their sequence is polynomial-
time unpredictable to the left, in the sense that given a piece xk,xk+1, . . . ,xl of the
sequence (with k > 0), one can do no better in polynomial time at guessing xk−1

than by a truly random guess.
Work of A. Yao implies that such sequences will pass every statistical test for

randomness that can run in polynomial time.
The Blum, Blum, Shub (BBS) generator works as follows: pick a modulus M

and a starting number y, let x0 = y2 mod M, and generate the sequence x1,x2, . . .
by xk+1 = x2

k mod M. BBS then yields a sequence of bits (0’s and 1’s) by defining
bk = xk mod 2, that is, bk = 0 if xk is even, bk = 1 if xk is odd.

Here is an example:
Let M = 143 and let y= 74. Then 42 = 742 mod 143, so is a quadratic residue.

The sequence x0,x1,x2, . . . is then

42,48,16,113,42,48,16,113,42, . . ..

The corresponding sequence of bits bi is

0,0,0,1,0,0,0,1,0, . . . .

Of course this sequence has a very short period. Suitable sequences should be
much longer.

We first discuss the unpredictability to the left, and then describe how to obtain
sequences with long periods.

To begin, we restrict the modulus M to be the product of two primes each ≡ 3
(mod 4). The reason for doing so is based on the following considerations.

For p a prime, letUp be the group of units modulo p, and letQRp denote the set of
quadratic residues modulo p. Then QRp is a subgroup ofUp because it is the image
of the squaring map θ fromUp toUp defined by θ (a) = a2, a group homomorphism.
Evidently θ restricts to a group homomorphism on QRp. Notice that the squaring
map θ :Up→Up is not one-to-one; in fact, the kernel consists of 1 and −1 mod p,
so θ is a 2 to 1 map onUp: if x is in Up and x= y2, then also x = (−y)2. However,
we have

Proposition 9. If p is a prime≡ 3 (mod 4), then the squaring map θ :QRp→QRp
is an isomorphism (that is, one-to-one and onto).

In less technical language, every quadratic residue modulo p has a unique square
root that is also a quadratic residue.

Proof. Since the image of the squaring map θ onUp is QRp, θ induces a homomor-
phism from QRp to QRp. We will show that the inverse of θ : QRp → QRp is the
map ω defined onUp by

ω(x) = x(
p+1

4 ).
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For x in QRp,

θ (ω(x)) = (x(
p+1

4 ))2 = x(
p+1

2 ) = x(
p−1

2 ) · x.

By Euler’s Lemma, since x is a quadratic residue,

x(
p−1

2 ) ≡
(
x
p

)
= 1 (mod p).

Hence θ (ω(x)) = x. Similarly, ω(θ (y)) = y for y inQRp, and so θ and ω are inverse
isomorphisms. ��

Now let M = pq where p and q are primes congruent to 3 modulo 4. Then the
squaring map θ :UM→UM is a homomorphism. The map j :Um→Up×Uq defined
by

j(x modM) = (x mod p,x modq),

is an isomorphism of groups and induces by restriction an isomorphism from QRm
onto QRp×QRq. Since the squaring map is one-to-one and onto on both QRp and
QRq, then the squaring map is one-to-one and onto QRM . (On the other hand, the
squaring map is a 4 to 1 map onUM , because it is 2 to 1 on each ofUp andUq.)

Expressed more concretely, if x is a quadratic residue modulo M, then among
the four square roots of x modulo M, exactly one is itself a quadratic residue. That
quadratic residue is easy to find if we know the factorization of M = pq. In fact:

Lemma 10. If M= pq with p= 2p1 +1,q= 2q1 +1 and p1,q1 odd, then the inverse
of the squaring function θ :Um→Um is the function ω :Um→Um define by

ω(z)≡ z p1q1+1
2 .

Proof. To show that θω and ωθ are the identity maps on Um, it suffices to show
that

(z2)
p1q1+1

2 ≡ zp1q1+1 ≡ z (mod m).

But z is inQRm, so z mod p is inQRp and z mod q is inQRq, so zp1 ≡ 1 (mod p) and
zq1 ≡ 1 (mod q) by Euler’s Lemma. Thus zp1q1+1 ≡ z (mod p) and also modulo q,
hence modulo m. ��

A modulus M = pq with p,q ≡ 3 (mod 4) then has the following remarkable
property:

Theorem 11. Let M = pq with p,q ≡ 3 (mod 4), and let θ : QRM → QRM be the
squaring function. Then computing the inverse function of θ is equivalent in diff -
culty to factoring M.

Proof. If we know the factorization of M as M = pq, we just showed how to take
a quadratic residue x modulo M and find its unique square root that is a quadratic
residue modulo M.
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Conversely, suppose we know how to take any quadratic residue modulo M and
find its unique square root that is a quadratic residue moduloM. Let z be any number
whose Jacobi symbol

( z
M
)

= −1. Since half of all the numbers modulo M have
Jacobi symbol =−1, such a number z is easy to find. Then also

(−z
M
)
=−1 because(−1

M
)

=
(
−1
p

)(
−1
q

)
= (−1)(−1) = 1. Let x ≡ z2 (mod M). Let y be the unique

square root of x that is a quadratic residue modulo M. Then y2 ≡ x ≡ z2 (mod M).
Also,

( y
M
)
= 1, so y �≡ z or − z (mod M). So M divides y2− z2 = (y− z)(y+ z) and

M doesn’t divide (y− z) or (y+ z). Thus gcd(M,y− z) is a non-trivial factor of M,
hence must be p or q, and M has been factored. ��

Since factoring a number M that is a product M = pq of two large primes is
known to be a hard problem, it follows that finding the unique quadratic residue y
that is the square root of a given quadratic residue x modulo M is then an equally
hard problem. In particular, if xk is a number in the BBS sequence x0,x1, . . . ob-
tained by starting from a quadratic residue x0 and successively squaring moduloM,
then unless we can factor M, we do not know how to find the number xk−1 that
immediately precedes xk.

Thus, under the assumption that factoring M is impractically difficult, the BBS
sequence is then unpredictable to the left. This means that given the bit bk (which is
the parity of xk), we can do no better than toss a coin to guess what the bit bk−1 is.

In that sense, the BBS sequence behaves just like a random sequence.
The other property that the BBS sequence should have is a long period.
To see how to achieve a long period, we need to understand how to find the

period.
The BBS sequence is obtained by successive squaring modulo M. So starting

from an arbitrary number y coprime to M, the sequence is

y,y2,y22
,y23

,y24
,y25

, . . . (mod M).

If y has order d moduloM, then the exponents 2,22,23, . . . of y are all modulo d. We
find:

Proposition 12. Let M be a modulus, y a number coprime to M, and d = 2k f be the
order of y modulo M, with f odd. Then the period of the sequence

y,y2,y22
,y23

,y24
,y25

, . . . (mod M)

is equal to the order of 2 modulo f .

Proof. To see when the sequence

y,y2,y22
,y23

,y24
,y25

, . . . ,

modulo d starts to repeat, we look for r and e> 0 so that

2r+e ≡ 2r (mod d),
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that is,
2r+e ≡ 2r (mod 2k f ).

Once this congruence holds for some r, it holds for r+1,r+2, . . .. So we can assume
r ≥ k. Then we can cancel 2k from both sides and the modulus; we get

2(r−k)+e ≡ 2r−k (mod f ).

Since f is odd, we may cancel 2r−k from both sides, to get

2e ≡ 1 (mod f ).

The least e> 0 for which this holds is the order of 2 modulo f . ��
To achieve a large order for 2 modulo d, the strategy of Blum, Blum and Shub is

to use a modulusM = pq where p and q are “special” primes.

Defini ion. A prime p is special if p= 2p1 +1 and p1 = 2p2 +1 where all of p, p1

and p2 are prime. Thus both p and p1 are safeprimes.

Suppose p and q are special primes. (Examples: 23, 47, 167.)
Assume y is not ±1 mod p and y is not ±1 mod q. Then y has order p1 or 2p1

modulo p, and order q1 or 2q1 modulo q. Hence x= y2 has order p1 mod p and order
q1 mod q. So the order of x mod M is d = p1q1. Thus (Exercise 12) (p−3)(q−3)
of the (p−1)(q−1) units y mod M yield x= y2 of order d mod M.

For x = y2 of order d = p1q1, the period of the BBS sequence generated by y is
the order of 2 modulo f , the odd part of d, that is, the order of 2 modulo p1q1. The
order of 2 modulo p1q1 is the least common multiple of the orders of 2 modulo p1

and modulo q1. The order of 2 modulo p1 divides p1−1 = 2p2, and the order of 2
modulo q1 divides q1−1 = 2q2. Thus the order of 2 modulo f , and hence the period
of the BBS sequence starting from almost every y coprime to M, is at least p2q2.
For large M with M = pq and p and q special primes, then, the period of the BBS
sequence is asymptotic to M/16.

The question arises whether or not large special primes can be found. Blum,
Blum and Shub cite a heuristic estimate by Shanks that the proportion of numbers
p between 2n and 2n+1 that are special primes is asymptotically 1/(n3 ln3 2). If we
seek a 90-digit special prime, then n= 300, so by that estimate, perhaps one of every
107 numbers of 90 digits is a special prime. If one is looking for smaller special
primes, one can find them quickly using the “safeprime” command in MAPLE. For
example, I found

(p2, p1, p) = (5130431863961,10260863727923,20521727455847)

and

(q2,q1,q) = (6553710049871,13107420099743,26214840199487)

in almost no time. For these p and q, if M = pq, then the period of a BBS sequence
starting from almost every random y will be at least p2 ·q2 ≥ 1025.
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Blum-Goldwasser cryptography. A BBS sequence can be used for cryptography.
The cryptosystem is known as the Blum-Goldwasser cryptosystem [Blum and Gold-
wasser (1985)].

Suppose Manuel wants to send a g-bit message to Shafi. Shafi secretly finds two
large special primes p and q, sets M = pq and broadcastsM to Manuel.

Manuel selects a random number y coprime to M and generates the BBS se-
quence x0 ≡ y2,x1, . . . ,xg moduloM. Let b= (b0,b1, . . . ,bg−1) be the vector of bits
defined by b j = x j mod 2. If m = (m0,m1, . . . ,mg−1) is Manuel’s message (where
each mj = 0 or 1), then Manuel encrypts his message by

c= m+b,

the addition taking place in the vector space F
g
2 of g-tuples with entries in the field

F2 of two elements, 0 and 1. Then Manuel sends Shafi the pair (c,z) where z= xg.
Shafi takes the number xg and reconstructs the BBS sequence from xg by succes-

sively computing xg−1,xg−2, . . . ,x0 modulo M. She can do this because she knows
the factorization M = pq, so can compute xg−1,xg−2, . . . ,x0 moduloM by using the
inverse ω of the squaring function θ modulo M, as in Lemma 10, above. From
x0, . . . ,xg−1 she obtains the parity vector

b= (b0,b1, . . . ,bg−1)

where b j = x j mod 2, and using b she can recover Manuel’s message by

m= c+b

in F
g
2.

By Theorem 11, an eavesdropper, Lenore, would need to know how to factor M
into its prime factorization M = pq in order to obtain the sequence b and read the
message m.

Thus the Blum-Goldwasser cryptosystem is secure as long as the factorization of
M is unknown. Thus it is at least as secure as an RSA cryptosystem using the same
modulusM. However, decryption appears to be slower than RSA decryption.

Exercises.

6. Find a prime p and a number x so that the BBS sequence x2 = y,y2,y4,y8, . . .
modulo p has period between 50 and 100.

7. Let p= 223, a prime. Find the period of the BBS sequence starting with y= 47.

8. Let m = 8693, a prime. Then 132 is a primitive root modulo m, and m− 1 =
4 ·41 ·53. The order of 2 mod 41 is 20, and the order of 2 mod 53 is 52.

(i) What is the period of the BBS sequence starting with y= 1322≡ 38 (mod m)?
(ii) What is the period of the BBS sequence if we start with y = 1444 ≡ 382

(mod m)?
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(iii) Find a quadratic residue y with 1 < y< m−1 so that the period of the BBS
sequence starting with y is less than 200.

9. Shafi sends Manuel M = 253 (= 11 · 23). Manuel wants to send the message
(1,0,1) to Shafi. He starts the BBS sequence with y= 49. What does Manuel send
Shafi?

10. Suppose Shafi knows that M = 253 = 11 · 23 and she receives ((1,1,0),141)
from Manuel. What message did Manuel send?

11. Let M = 83 ·107 = 8881, a product of two safeprimes. Let y = 5183≡ 33752

(mod M). Find the unique square root of y modulo 8881 that is a quadratic residue
moduloM.

12. Show that if M = pq is the product of two safeprimes, then (p− 3)(q− 3) of
the units y moduloM yield y2 = x of order p1q1 moduloM.

13. If p2 > 5, p1 = 2p2 +1, p= 2p1 +1 are all primes (so that p is a special prime),
show that p2 ≡ 11 or 29 (mod 30).

14. (i) Show that if m = pq with p,q distinct odd primes, then the isomorphism
j :Um→Up×Uq defined by j(a mod m) = (a mod p,a mod q) restricts to a homo-
morphism j0 from QRm to QRp×QRq.

(ii) Show that j0 is one-to-one.
(iii) Show that j0 is onto.

15. Show that if p= 2p1 +1,q= 2q1 +1 are safeprimes > 5 and M = pq, then the

map from QRp to QRp by y �→ y
p1q1+1

2 is the same as the map y �→ y
p+1

4 .

D. Factoring by the Pollard Rho Method

Trial division on a composite number N takes at least p/ ln p steps, where p is the
smallest prime divisor of N, as we showed in Section 6G. The slowness of trial
division has led to a search for more efficient factoring algorithms. One such is the
Pollard p−1 algorithm, described in Section 10C.

Among the factoring algorithms proposed since the rise of computers, one of the
most elegant is the Pollard rho method, also discovered by J.M. Pollard (1975). It is
based on three ideas.

The first is that squaring moduloN can be used to generate sequences of numbers
that look random, as we described in the last section.

The second is that Euclid’s algorithm for finding the greatest common divisor of
two numbers is very efficient, as we showed in Section 3F.

The third is the fact from probability that if you roll an n-sided die until a face
previously rolled is observed again, then the expected number of rolls is < 1.3

√
n

for n ≥ 100. (This fact is sometimes exploited at parties in the following guise: if
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you have a group of 25 or more people, the chance is better than even that two of
them will have the same birthday. Think of people as rolls of a die with 366 faces,
one face for each day of the year. Then 1.3×√366∼ 25.)

The Pollard rho method works as follows.
Assume that N is the number to be factored. Start with any number x0 < N.
Compute a sequence of numbers as follows:

xn+1 = x2
n+ 1 mod N for n= 0,1,2, . . . .

Suppose p is the smallest prime divisor of N. Think of the sequence {x0,x1, . . . ,
xn, . . .} as a sequence of pseudorandom numbers modulo p. Then, after generating
approximately 1.3

√p numbers of the sequence, it is likely that two of them will be
congruent modulo p. For if the numbers xn were truly random, then obtaining them
mod p would be like throwing a p-sided die.

Suppose xn ≡ xm (mod p), where n > m. Then p divides xn− xm. Since also p
divides N, p will divide the greatest common divisor of xn− xm and N, so (N,xn−
xm) > 1. If also xn �≡ xm (mod N), then (N,xn− xm) < N, hence (N,xn− xm) is a
nontrivial proper factor of N, which we can find explicitly by Euclid’s algorithm.

So within the sequence {x0,x1, . . . ,xn, . . .} we search for two numbers xn and
xm whose greatest common divisor with N is is greater than 1. There should be two
such numbers between x1 and xm wherem is some small multiple of

√p. In practice,
m= 2

√p seems to suffice in almost every case.
The main subtlety of the algorithm is to efficiently find two numbers xn and xm

whose greatest common divisor (xn− xm,N) is greater than 1. For if we were to test
the difference xn−xm for everym< n between 1 and 2

√p to see if it has a nontrivial
common divisor with N, we would end up doing Euclid’s algorithm approximately
2p times, and then the Pollard rho method would be less efficient than trial division.

To resolve this difficulty we look only at the greatest common divisor of N and
x2t − xt for t = 1,2, . . . ,2

√p. Doing so is just as effective as looking at (xn− xm,N)
for all n,m < 2

√p. To see this, suppose xn ≡ xm (mod p) for some m,n with 1 <
m< n< 2

√p. Let m+d = n, so d ≥ 1 and xm ≡ xm+d (mod p). Then

xm+1 ≡ x2
m+ 1≡ x2

m+d + 1≡ x(m+1)+d (mod p),

and in the same way, one sees easily that

xm+r ≡ x(m+r)+d (mod p)

for all r > 0. Now among the numbers m,m+ 1,m+ 2, . . . ,m+ d− 1, exactly one
is a multiple of d. Suppose k is the number with 0 < k < d so that m+ k = ed is a
multiple of d. Then

xed ≡ xm+k ≡ x(m+k)+d ≡ xed+d (mod p),

and also
xed+d ≡ x(ed+d)+d ≡ xed+2d , (mod p),
xed+2d ≡ x(ed+2d)+d ≡ xed+3d, (mod p),



22 Quadratic Applications 471

etc. So
xed ≡ xed+ed = x2ed (mod p).

Since ed = m+ k< m+d = n< 2
√p, we conclude that

Proposition 13. If xm ≡ xn (mod p) for some m and n with 1≤m< n< 2
√p, then

there is some t < 2
√p so that

xt ≡ x2t (mod p).

Thus, if xm ≡ xn (mod p) for some m �= n < 2
√p, then computing (x2t − xt ,N)

for 1≤ t < 2
√p will yield some t so that p divides the greatest common divisor of

N and x2t − xt . Unless we are unlucky and N divides x2t − xt , we will have found a
factor of N.

If p is the smallest prime factor of N, then to test the greatest common divisor of
x2t− xt and N for 1≤ t ≤ 2

√p requires at most 2
√p applications of Euclid’s Algo-

rithm, rather than 2p applications with the naive approach. Since Euclid’s Algorithm
requires at most 5 log10(N) divisions (and on average requires around 2log10(N) di-
visions), the Pollard rho algorithm would require at most 10

√p log10(N) divisions
to find p.

If N is a product of two primes of similar size, then the running time would be at
most

(2
√
p)(5log10(p

2)) = 20
√
p log10(p),

which for large p is less than p/ ln p, the number of trial divisions of N by primes
≤ p.

Of course, we do not know in advance the size of any prime p that divides N, so
we don’t know how long to run the procedure. So we proceed as follows:

Pollard Rho Procedure. Given N, a number we wish to factor:

• Pick x0.
• For each n> 0, compute xn ≡ x2

n−1 + 1 (mod N), xn < N.
• If n is even, compute (xn− xn/2,N).
• Repeat until either:

(xn− xn/2,N) > 1 but N does not divide xn− xn/2 (success), or
we run out of time (failure).
The procedure will fail if N has no sufficiently small prime factors.
We illustrate the algorithm with two examples.

Example 1. Let N = 2771 = 17 ·163. We let x0 = 6 and for each n > 0, set xn+1 ≡
x2
n+ 1 (mod N). Thus

x1 = 37,

x2 = 1370, x2− x1,= 1333, (1333,2771) = 1,

x3 = 934,

x4 = 2263, x4− x2 = 893 (893,2771) = 1,

x5 = 362,
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x6 = 808, x6− x3 =−126 (−126,2771) = 1,

x7 = 1680,

x8 = 1523, x8− x4 =−740 (−740,2771) = 1,

x9 = 203,

x10 = 2416, x10− x5 = 2054 (2054,2771) = 1,

x11 = 1331,

x12 = 893, x12− x6 = 85 (85,2771) = 17.

At this point we can stop. If we were to continue, we would reach

x20 = 1438, x20− x10 =−978, (−978,2771) = 163.

The probability assumption of the algorithm predicted that we should find the prime
17 dividing x2t − xt for t < 2

√
17 < 9, and the prime 163 for t < 2

√
163 < 26.

Example 2. Let N = 47783 = 71 · 673, x0 = 6. Then the sequence {xn}, xn+1 =
x2
n+ 1 (mod N), becomes:

37, 1370, 13364, 31426, 14433, 25393, 20648, 19979, 29043, 30334, 42109, 36318,
42976, 28061, 3665, 5203, 26032, 6519, 182751 20239, 21246, 34299,

and we find that

x20− x10 = 20239−30334 =−10095 and (−10095,47783)= 673;

x22− x11 = 34299−42109 =−7810 and (−7810,47783)= 71.

Here the theory would predict a discovery of 71 for t ≤ 2
√

71 < 18 and a discovery
of 673 for t < 2

√
673 < 52.

At least for these examples, the Pollard rho algorithm works at least as well as
the assumption of randomness of the sequence {xn} would imply.

The reason for the name “rho” in “Pollard rho” is illustrated by reviewing Ex-
ample 1. If we take the sequence x0,x1,x2 . . . where xn ≡ x2

n−1 + 1 (mod 2771),
xn < 2771, and look at the sequence modulo 17, starting with x0 = 6, we get

6,3,10,16,2,5,9,14,10,16,2,5, . . .. (∗)
This is the same as the sequence we would obtain by starting with y0 = 6 and com-
puting yn ≡ yn−1 + 1 (mod 17),yn < 17: then for all n, yn ≡ xn (mod 17). Now if
we diagram the sequence (*) appropriately, we get a diagram that has the shape of
the Greek letter “rho”, ρ :

16 → 2
↗ ↘

10 5
↗ ↖ ↙

3 14 ← 9
↗

6
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The loop of the “rho” contains six numbers. So the sequence (*) repeats with
period six. In particular, y8 = y2 = 10,y9 = y3 = 16, . . . ,y12 = y6 = 9, and so x12 ≡
x6 (mod 17). Hence (x12 − x6,2771) = 17. In fact, x12 = 893 and x6 = 808 are
both congruent to y6 = 9 modulo 17, and so 17 divides 893− 808, as we found in
Example 1.

The same analysis is valid for any number N having 17 as a factor, not just
N = 2771: starting from x0 = 6 and obtaining xr + 1 = x2

r + 1 (mod N) we will
always find that 17 divides (x12− x6,N).

Suppose N has 100 digits. How good is the Pollard rho method?
If we assume that the sequence {x0,x1, . . . ,xn, . . .} begins repeating for some

n < 2
√p modulo p, the smallest prime divisor of N, then the number of steps this

algorithm takes to find a nontrivial factor of N is at most 2
√p times 5 log10(N), as

observed above. Thus the Pollard rho algorithm on a number N of 100 digits takes
at most 1000

√p steps.
Hence the Pollard rho method is substantially more effective than trial division.

Suppose we wish to factor a number N of 100 digits, and we have time for 109

divisions. Since each greatest common divisor computation can take 500 divisions,
we would have time to do 2× 106 greatest common divisor tests, that is, compute
(N,x2t−xt) for t < 2×106. We would be likely to find any prime factor p of N with
2
√p < 2×106, that is, any prime factor p< 1012, and, if we were fortunate, larger

prime factors.
By comparison, trial division 109 times using the wheel mod 30300 would find

any prime factor under 5×109, as noted in Section 6G.
If we have time for 1010 divisions, then with Pollard rho we would be likely to

find any prime factor < 1014, while with trial division we would find any prime
factors < 5×1010.

The efficiency of the Pollard rho method has made it a successful algorithm in
practice. R.P. Brent and J.M. Pollard (1981) used it to find the least prime factor of
all the Fermat numbers Fn = 22n +1 for 5≤ n≤ 13. The number F8 has 78 decimal
digits, and had not previously been factored; the smallest prime factor of F8 was
found to be the 16-digit prime number 1,238,926,361,552,897, and took 2 hours on
a UNIVAC 1100/42. Penk, in 1979, used the Pollard rho algorithm to find a 15 digit
factor of the 78 digit Mersenne number 2257−1, namely 535,006,138,814,359 (see
also Crandall and Penk (1979)).

Exercises.

16. Draw the rho diagram for the sequence (mod p) starting with x0 where:
(i) p= 23,x0 = 4;
(ii) p= 31,x0 = 3;
(iii) p= 41,x0 = 1;
(iv) p= 37,x0 = 3;
(v) p= 73,x0 = 6.
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17. Verify (assuming you did (iii) of the last exercise) that starting from x0 = 1 and
computing the sequence modulo 1763 = 41 ·43, that 41 divides (x14− x7,N).

18. The Pollard rho method can fail if the first t such that (x2t − xt ,N) > 1 has
x2t − xt a multiple of N. For example, let N = 17 ·73 = 1241, let x0 = 6.

(i) Show that x8− x2 ≡ 0 (mod 17).
(ii) Show that x8− x2 ≡ 0 (mod 73).
(iii) Show that N divides x12− x6.
(iv) Find other values of x0 for which which N divides x12− x6. and values of x0

for which N doesn’t divide x12− x6.

19. Factor, using the Pollard rho algorithm with x0 of your choosing:
(i) 77;
(ii) 143;
(iii) 341;
(iv) 851;
(v) 2047;
(vi) 3337.

20. Factor, using the Pollard rho algorithm with x0 of your choosing:
(i) 1194637;
(ii) 8388607;
(iii) 10266001.

To test the accuracy of the estimate t < 2
√p for finding t so that p divides

x2t−xt , we can look, at least for small p, at the entire diagram of the map y≡ x2 +1
(mod p). We write m→ n if n≡ m2 + 1 (mod p). Here is the diagram for p= 13:

↪→ 10 ← 3 ↪→ 4 ← 9

1
↗ ↘

8 → 0 2 ← 12
↖ ↙

5
↑

7 → 11 ← 6

Using the diagram, we can compute a table: in the table, x0 is the starting value,
n and n+d are the least values with xn = xn+d , and t is the least t with x2t = xt :
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x0 n n+d t
0 0 4 4
1 0 4 4
2 0 4 4
3 1 2 1
4 0 1 1
5 0 4 4
6 2 6 4
7 2 6 4
8 1 5 4
9 1 2 1

10 0 1 1
11 1 5 4
12 1 5 4

From the last column of the table we can determine the maximum value of t,
tmax = 4, and also the expected value of t, E(t), which is defined to be the av-
erage value in the last column. With p = 13, the last column sums to 40, so
E(t) = 40/13=3.1.

Note that E(t) <
√

13 and tmax = 4 = 1.1
√

13, both of which are less than the
estimate 2 that we used in analyzing the effectiveness of the Pollard rho algorithm.

21. Draw the diagram and compute tmax and E(t) for:
(i) p= 7;
(ii) p= 17;
(iii) p= 19.

22. For p= 29, find tmax and show that tmax ≥ 11 > 2
√

29. If you pick x0 at random,
0 < x0 < 28, what is the chance that the resulting t will be ≥ 11?

23. Find the smallest m so that m/ lnm> 20
√
m log10m.

24. Let 1+QRp denote the image of the map α : Z/pZ→Z/pZ defined by α(x) =
x2 +1 (mod p). Show that α is not one-to-one on 1+QRp. (I found it convenient to
know two facts from number theory: the Sum of Two Squares Theorem, that every
prime number≡ 1 (mod 4) is the sum of two squares, and Dirichlet’s Theorem, that
in every congruence class a modm where a and m are coprime, there are infinitely
many primes).
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Chapter 23
Congruence Classes Modulo a Polynomial

In this chapter we extend the notion of congruence classes from numbers to polyno-
mials. Using congruence classes, we show how to find a root of any polynomial.

A. New Numbers

This section is devoted to several examples, some familiar, one unfamiliar, of “in-
vented” numbers.

Example 1. Our first example is i.
The complex numbers arose because certain polynomials in R[x] had no roots in

R. In particular, the polynomial x2 +1 has no root in R, so the “imaginary” number
i=

√−1 was invented as a root of x2 +1. The defining property of i is that i2 =−1.
Having invented i, 16th century algebraists such as Cardano (1545) found that

roots of polynomials of degree ≤ 4 could be written in terms of i (see Section
15E). (The most striking example of this was Cardano’s “casus irreducibilis”, Sec-
tion 15E) Bombelli, around 1574, showed how to manipulate numbers of the form
a+bi (a,b real) and showed, in effect, that the set C of complex numbers is a field.

We review the basic operations for complex numbers from section 15D. To add
or multiply complex numbers, we view a complex number a+ bi as the result of
evaluating the polynomial a+ bx in R[x] at x = i. We add two complex numbers
a+bi and a′+b′i by adding the corresponding polynomials:

(a+bx)+ (a′+b′x) = (a+a′)+ (b+b′)x,

and then evaluating at x= i:

(a+bi)+ (a′+b′i) = (a+a′)+ (b+b′)i.

To multiply two complex numbers, we multiply the corresponding polynomials:

(a+bx)(a′+b′x) = aa′+(ab′+ba′)x+bb′x2;

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 479
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evaluate this at i:

(a+bi)(a′+b′i) = aa′+(ab′+ba′)i+bb′i2.

then use the defining property of i that i2 =−1 to reduce the result:

(a+bi)(a′+b′i) = aa′+(ab′+ba′)i+bb′i2

= aa′+(ab′+ba′)i+bb′(−1)
= (aa′ −bb′)+ (ab′+ba′)i.

Thus we may think of C as R[i], polynomials with real coefficients evaluated at i.

Of course i =
√−1 is not the only new number invented in the course of trying

to solve equations. All kinds of radicals arise as roots of equations.

Example 2. The polynomial x3 − 2, viewed as a polynomial with rational coeffi-
cients, has no roots–there is no rational number whose cube is 2. So the notation 3

√
2

was invented to describe the real root of x3−2. Its fundamental algebraic property
is that ( 3

√
2)3 = 2.

Analogous to C = R[i], we let Q[ 3
√

2] denote the set of all real numbers obtained
by taking polynomials with rational coefficients and evaluating them at x= 3

√
2.

Since 3
√

2 is a root of x3 − 2, we can see that if f (x) is any polynomial with
coefficients in Q, and we divide f (x) by x3−2:

f (x) = (x3−2)q(x)+ r(x)

with degr(x)≤ 2, then

f ( 3
√

2) = ( 3
√

2
3−2)q( 3

√
2)+ r( 3

√
2) = r( 3

√
2).

Thus we may identify Q[ 3
√

2] as the set of polynomials of degree≤ 2 in Q[x] evalu-
ated at 3

√
2.

We add and multiply in Q[ 3
√

2] as follows: If f ( 3
√

2) and g( 3
√

2) are polynomials
evaluated at 3

√
2, then f ( 3

√
2)+ g( 3

√
2) is the polynomial f (x) + g(x) evaluated at

x = 3
√

2, and f ( 3
√

2) · g( 3
√

2) is the polynomial f (x)g(x) evaluated at x = 3
√

2. Thus
addition is:

(a+b 3
√

2+ c 3
√

2
2
)+ (a′+b′ 3

√
2+ c′ 3

√
2

2
)

= ((a+a′)+ (b+b′) 3
√

2+(c+ c′) 3
√

2
2

and multiplication is:

(a+b 3
√

2+ c 3
√

2
2
)(a′+b′ 3

√
2+ c′ 3

√
2

2
)

= aa′+(ab′+ba′) 3
√

2+(ac′+bb′+ ca′) 3
√

2
2
+(bc′+ cb′) 3

√
2

3
+ cc′ 3

√
2

4
.
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If we want the result to be a polynomial of degree ≤ 2 evaluated at 3
√

2, then we

substitute, using the defining property that 3
√

2
3
= 2:

= aa′+(ab′+ba′) 3
√

2+(ac′+bb′+ ca′) 3
√

2
2
+(bc′+ cb′)2 + cc′2 3

√
2

= (aa′+ 2bc′+ 2cb′)+ (ab′+ba′+ 2cc′) 3
√

2+(ac′+bb′+ ca′) 3
√

2
2
.

Thus, as with complex numbers, addition and multiplication of polynomials of de-
gree ≤ 2 evaluated at 3

√
2 can be viewed as a three-step process:

• first, view the elements of Q[ 3
√

2] as polynomials evaluated at 3
√

2, and add or
multiply the polynomials;

• second, replace the resulting polynomial expression by the remainder when di-
vided by x3−2.

• third, evaluate the remainder at x= 3
√

2.

Example 3. Let

f (x) = 5x2−3x+ 6, g(x) = 3x2− x−1,

then
f (x)g(x) = 15x4−14x3−16x2−3x−6.

Dividing f (x)g(x) by x3−2 gives

15x4−14x3−16x2−3x−6 = (x3−2)(15x−14)+ (−16x2+ 27x+ 34),

so r(x) =−16x2 + 27x+ 34. Thus

(5 3
√

2
2−3 3

√
2+ 6)(3 3

√
2

2− 3
√

2−1)

= r( 3
√

2) =−16 3
√

2
2
+ 27 3

√
2+ 34.

Alternatively, one can multiply the polynomials, evaluate the result at x = 3
√

2
3
,

and, starting with the highest power of 3
√

2 in f ( 3
√

2)g( 3
√

2), successively replace

that highest power by a linear combination of lower powers of 3
√

2. Thus 3
√

2
3

=
2, 3
√

2
4
= 2 3

√
2, so

f ( 3
√

2)g( 3
√

2) = 15 3
√

2
4−14 3

√
2

3−16 3
√

2
2−3 3

√
2−6

= 15 ·2 3
√

2−14 ·2−16 3
√

2
2−3 3

√
2−6

=−16 3
√

2
2
+ 27 3

√
2−34.

We’ll verify below that Q[ 3
√

2] is a field. Assuming so, then every non-zero ele-
ment of Q[ 3

√
2] has an inverse, and we can find the inverse by either of two methods.

One method involves solving a set of linear equations. For example, to find the

inverse of 1−2 3
√

2, we look for an inverse of the form a+b 3
√

2+ c 3
√

2
2
. So we set

up the equation
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(1−2 3
√

2)(a+b 3
√

2+ c 3
√

2
2
) = 1.

and try to find rational solutions a,b,c. If we multiply the left side out, reduce it to
a polynomial of degree ≤ 2 in 3

√
2 and then collect the coefficients of 1, of 3

√
2 and

of 3
√

2
2
, we get three equations in a,b and c, namely,

−4c+a= 1,

−2b+ c= 0,

−2a+b= 0,

which has a solution a=− 1
15 ,b=− 2

15 ,c=− 4
15 .

Another method for finding inverses uses Bezout’s Identity. We’ll illustrate that
method in Section C.

We can construct roots of polynomials in situations where the roots cannot be
thought of as complex numbers.

Example 4. Let F be the field F2 of two elements, denoted 0 and 1. Let p(x) =
x3 + x+ 1. Then p(x) is irreducible in F2[x] (because it has degree 3 and had no
roots in F2).

Let’s invent a root of p(x), call it α . For the moment, let’s not worry about what
α is, just that α is some “number” satisfying the equation p(α) = α3 + α + 1 = 0.
Let F2[α] be the set of all polynomials in F2[x] evaluated at α .

Since p(x) has degree 3, any polynomial f (x) in F2[x] satisfies

f (x) = p(x)q(x)+ r(x)

where r(x) has degree ≤ 2, by the Division Theorem. Then since p(α) = 0, evalu-
ating this last equation at x= α yields f (α) = r(α), and so every element of F2[α]
is a polynomial in α of degree ≤ 2. There are then eight elements of F2[α]:

F2[α] = {0,1,α,α + 1,α2,α2 + 1,α2 + α,α2 + α + 1}.

Using the defining property, α3 + α + 1 = 0, or α3 = α + 1 (recall that the field of
coefficients is F2), here are some examples of multiplication of elements of F2[α]:

α2 ·α2 = α4 = α3α = (α + 1)α = α2 + α;

(α + α2)(1 + α) = α + α2 + α2 + α3 = α + 2α2 + α + 1 = 1;

(α + α2)α2 = α3 + α4 = α + 1 + α2 + α = α2 + 1.

Table 23.1 is the multiplication table for F2[α]. Note that in the table, every
row but the first contains 1, hence every non-zero element of F2[α] has an inverse.
Thus F2[α] is a field. As we’ll see, F2[α] is a field because the polynomial p(x) =
x3 + x+ 1 is irreducible in F2[x].
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Table 23.1
0 1 α α +1 α2 α2 +1 α2 +α α2 +α +1

0 0 0 0 0 0 0 0 0
1 0 1 α α +1 α2 α2 +1 α2 +α α2 +α +1
α 0 α α2 α2 +α α +1 1 α2 +α +1 α2 +1

α +1 0 α +1 α2 +α α2 +1 α2 +α +1 α2 1 α
α2 0 α2 α +1 α2 +α +1 α2 +α α α2 +1 1

α2 +1 0 α2 +1 1 α2 α α2 +α +1 α +1 α2 +α
α2 +α 0 α2 +α α2 +α +1 1 α2 +1 α +1 α α2

α2 +α +1 0 α2 +α +1 α2 +1 α 1 α2 +α α2 α +1

Exercises.

1. In Table 23.1, verify that the column headed by α2 + 1 is correct.

2. Let i be a root of x2 + 1 in F3[x]. Write down the multiplication table for F3[i].

3. In Example 4, find αn as a polynomial in α of degree ≤ 2 for every n≥ 3.

4. Let α be a root of p(x) = x2 + x+ 2 in F3[x]. Find:
(i) (α + 1)(α + 2);
(ii) The inverse of 2α + 1;
(iii) α6 as a polynomial in α of degree ≤ 1.
(iv) The inverse of α7.

5. Let α be a root of p(x) = x2 + 2x+ 2 in F3[x]. Find the units of F3[α] and for
each unit, determine its inverse.

6. In Example 4, show that x3 + x+ 1 has roots α,α2 and α4.

7. Let F = F3[α], where α3 + 2α + 2 = 0. Using the Root Theorem (Chapter 15),
factor x3 + 2x+ 2 in F[x].

B. Congruence Classes and F[x]/(m(x))

In Section 17A we extended the idea of congruence from numbers to polynomials.
In this section we use the idea of congruence for polynomials to construct new rings
and fields made up of congruence classes, just as we did with numbers in Section
6B. Doing so will give meaning to the new roots we worked with in the last section.

Let F be a field. Let m(x) be a polynomial (of degree≥ 1) with coefficients in F .
Recall that two polynomials a(x) and b(x) in F [x] are congruent modulo m(x):

a(x)≡ b(x) (mod m(x))

if a(x) = b(x)+m(x)q(x) for some polynomial q(x) in F [x].
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As we observed in Section 17A, congruence modulo m(x) is an equivalence re-
lation:

Proposition 1. For m(x) �= 0 in F [x], congruence modulo m(x) is:
Refl xive: for all a(x) in F [x], a(x)≡ a(x) (mod m(x));
Symmetric: for all a(x),b(x) in F [x], if a(x) ≡ b(x) (mod m(x)), then b(x) ≡ a(x)
(mod m(x))
Transitive: for all a(x),b(x),c(x) in F[x], if a(x)≡ b(x) (mod m(x)) and b(x)≡ c(x)
(mod m(x)) then a(x)≡ c(x) (mod m(x))

(The proofs are very easy, using the definition of congruence.)
Since congruence modulo m(x) is an equivalence relation, the relation a(x) ≡

b(x) (mod m(x)) partitions the set F[x] into equivalence classes, called congruence
classes. The congruence class of a(x) modulo m(x), written [a(x)]m(x), is the set of
all polynomials b(x) in F [x] that are congruent to a(x) modulo m(x). In symbols,

[a(x)]m(x) = {b(x) in F [x]|b(x)≡ a(x) (mod m(x))}.

Often we will write [a(x)] rather than [a(x)]m(x) if the modulus polynomial m(x)
is clear from the context, as in:

Proposition 2. Two congruence classes [a(x)] and [b(x)] modulo m(x) are equal,
[a(x)] = [b(x)], if and only if a(x)≡ b(x) (mod m(x)).

In words, a(x) is congruent to b(x) modulom(x), if and only if the set of polyno-
mials which are congruent to a(x) is the same as the set of polynomials which are
congruent to b(x).

The proof of this follows easily from symmetry and transitivity of congruence.

Defini ion. The set of congruence classes of polynomials in F[x] modulo m(x) is
denoted by F [x]/(m(x)).

Any polynomial b(x) in [a(x)]m(x) is a representative of the congruence class
[a(x)]m(x). Thus a(x) is a representative of [a(x)]m(x), but so is any polynomial b(x)
congruent to a(x) modulo m(x). Then b(x) is a representative of [a(x)]m(x) if and
only if [b(x)]m(x) = [a(x)]m(x).

By the Division Theorem, any polynomial f (x) in F [x] may be divided by m(x):

f (x) = m(x)q(x)+ r(x),

where the remainder r(x) has degree < d = deg(m(x)), and is unique. Then f (x) ≡
r(x) (mod m(x)) , and so [ f (x)]m(x) = [r(x)]m(x). Since the remainder r(x) is unique,
every congruence class modulo m(x) is represented by a unique polynomial r(x) of
degree < deg(m(x)). In other terminology, the set of polynomials r(x) of degree
< deg(m(x)) is a complete set of representatives for F [x]/(m(x)). This property is
analogous to the property that the numbers 0,1,2, . . . ,m−1 form a complete set of
representatives for Z/mZ.
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We can therefore describe the set F [x]/(m(x)) of all congruence classes modulo
m(x) as the the set of classes [r(x)]m(x) of the polynomials r(x) in F [x] of degree
< deg(m(x)). Thus

Proposition 3. If F has q elements and m(x) has degree d, then the set F [x]/(m(x))
has qd elements.

Proof. The set of polynomials

r(x) = r0 + r1x+ . . .+ rd−1xd−1

of degree < d is a complete set of representatives for F[x]/(m(x)). Since there are q
choices for each of the d coefficients r0, . . . ,rd−1, the total number of such polyno-
mials is qd . ��
Example 5. Let F = Z/3Z = F3 = {0,1,2 (mod 3)}, and letm(x) = x3 +1. Then the
polynomials of degree ≤ 2 form a complete set of representatives for F3[x]/(m(x)).
To find a representative of degree≤ 2 for the congruence class of [ f (x)] we take the
remainder on dividing f (x) by x3 + 1. For example, dividing x5 + x4 + 2x by x3 + 1
gives

x5 + x4 + 2x= (x3 + 1)(x2 + x)+ 2x2 + x,

and so

[x5 + x4 + 2x] = [2x2 + x].

The set F3[x]/(x3 + 1) has 27 elements, since there are 27 = 33 polynomials of
degree ≤ 2 with coefficients in F3.

Example 6. In Q[x] consider congruence modulo the polynomial x2− 5. Each ele-
ment of Q[x]/(x2−5) has a representative of degree ≤ 1. In particular, the congru-
ence class of xn has a representative of degree≤ 1 for each n: since

x2 ≡ 5 (mod x2−5),

we have [x2] = [5]; similarly, since

x3 ≡ 5x (mod x2−5),

we have [x3] = [5x]. Continuing, we have

[x4] = [5x2] = [25], [x5] = [25x]

etc. It’s easy to see that

[x2n] = [5n], and [x2n+1] = [5nx]

for every n> 1.
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Using this information allows us to take the congruence class of any polynomial
and find its representative of degree≤ 1 by substitution. For example,

[x6−3x5 + 5x3−2x+ 1] = [x6]− [3x5]+ [5x3]− [2x]+ [1]

= [x6]− [3][x5]+ [5][x3]− [2][x]+ [1]

= [53]− [3][52x]+ [5][5x]− [2x]+ [1]
= [(−75 + 25−2)x]+ [125+1]
= [−52x+ 126].

Example 7. Let F = F2, let m(x) = x4 +x+1. Then the congruence classes modulo
x4 + x+ 1 are the classes of all polynomials in F [x] of degree ≤ 3, namely, the
24 = 16 classes

[0], [1], [x], [x+ 1],

[x2], [x2 + 1], [x2 + x], [x2 + x+ 1],

[x3], [x3 + 1], [x3 + x], [x3 + x+ 1],

[x3 + x2], [x3 + x2 + 1], [x3 + x2 + x], [x3 + x2 + x+ 1].

Example 8. Let R[x]/(x2 + 1) denote the set of congruence classes of polynomials
with real coefficients modulo x2 + 1.

As with Example 6, every polynomial f (x) is congruent modulo x2 +1 to a poly-
nomial of degree≤ 1, so a typical element of R[x]/(x2 +1) has the form [a+bx]x2+1
for a,b in R; that is, every congruence class is represented by a polynomial a+ bx
in R[x] of degree≤ 1. In particular, [x2] = [−1]. Thus the elements of R[x]/(x2 +1)
are in one-to-one correspondence (by [a+ bx] �→ (a,b)) with vectors in the two-
dimensional vector space R2, or with the complex numbers C by the one-to-one
correspondence [a+bx] �→ a+bi.

Exercises.

8. Show that if [a(x)] and b[x] are two congruence classes modulom(x), then either
[a(x)] = [b(x)] or [a(x)]∩ [b(x)] is the empty set.

C. Algebraic Operations

We define addition of congruence classes by

[a(x)]m(x) + [b(x)]m(x) = [a(x)+b(x)]m(x),

Thus we add congruence classes modulo m(x) by adding representatives. This op-
eration on congruence classes is well-define , that is, doesn’t depend on the choice
of representatives, because of the result:
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if a(x) ≡ a′(x) (mod m(x)), and b(x) ≡ b′(x) (mod m(x)), then a(x)+ b(x) ≡
a′(x)+b′(x) (mod m(x)),

whose proof is easy and just like the proof for congruence of numbers. Similarly,
we multiply congruence classes using representatives:

[a(x)]m(x)[b(x)]m(x) = [a(x)b(x)]m(x),

which is a well-defined operation because of the result:

if a(x) ≡ a′(x) (mod m(x)), and b(x) ≡ b′(x) (mod m(x)), then a(x)b(x) ≡
a′(x)b′(x) (mod m(x)),

which we proved in Proposition 1 of Section 17A.
Since F [x] is a commutative ring, and addition and multiplication on F [x]/(m(x))

are defined by using representatives, that is, by using the addition and multiplication
on F [x], all of the properties of a commutative ring hold for F[x]/(m(x)), because
they hold for F [x]. For example, commutativity of multiplication is proved as fol-
lows:

[a(x)][b(x)] = [a(x)b(x)] = [b(x)a(x)] = [b(x)][a(x)],

where the second equality follows from commutativity of multiplication in F [x]. Or
distributivity:

[a(x)][b(x)+ c(x)] = [a(x)(b(x)+ c(x))] = [a(x)b(x)+a(x)c(x)]

= [a(x)b(x)]+ [a(x)c(x)]

= [a(x)][b(x)]+ [a(x)][c(x)],

where the second equality follows from distributivity in F [x].
The zero element of F [x]/(m(x)) is 0 = [0]m(x), the negative of an element [a(x)]

is [−a(x)], and the multiplicative identity element is 1 = [1]m(x).
With integers, we found that Z/mZ is a field if and only if m is prime. Here is

the corresponding result for polynomials:

Proposition 4. Let F be a f eld, m(x) a polynomial of degree ≥ 1 with coeff cients
in F. Then F [x]/(m(x)) is a f eld if and only if m(x) is irreducible.

Proof. Suppose m(x) is not irreducible, say, m(x) = r(x)s(x) where r(x) and s(x)
are polynomials of degree < deg(m(x)). Then r(x) and s(x) represent nonzero con-
gruence classes in F [x]/(m(x)), but their product, m(x), represents the zero class in
F [x]/(m(x)). So F [x]/(m(x)) has zero divisors, and therefore cannot be a field. (A
zero divisor cannot have an inverse.)

Conversely, suppose a(x) is any nonzero polynomial coprime to m(x). Then
by Bezout’s Identity, there are polynomials r(x),s(x) in F [x] so that a(x)r(x) +
m(x)s(x) = 1. But then
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1 = [1] = [a(x)r(x)+m(x)s(x)]
= [a(x)r(x)]
= [a(x)][r(x)].

Thus [a(x)] is invertible, and [r(x)] is its inverse. If m(x) is irreducible, then every
nonzero polynomial of degree < deg(m(x)) is coprime to m(x), so every non-zero
congruence class in F[x]/(m(x)) has an inverse. So F [x]/(m(x)) is a field. ��

Proposition 4 shows how to construct many new fields. Start with a field F and
find an irreducible polynomial m(x) of degree > 1 in F [x]. Then F [x]/(m(x)) is a
field.

Example 9. In Q[x],x2− 5 is irreducible. So Q[x]/(x2− 5) is a field. If [a+ bx] is
not zero, then the inverse of [a+bx] is [(a/d)− (b/d)x], where d = a2−5b2. (You
should check that if a or b is not zero, then d is not zero.)

Example 10. F3[x]/(x3 +1) is not a field because x3 +1 is not irreducible: x3 +1 =
(x+ 1)3 in F3[x]. Because x3 + 1 factors, F3[x]/(x3 + 1) has zero divisors:

0 = [x3 + 1] = [x+ 1][x2− x+ 1].

Example 11. In F5[x], x3 +3x+3 is irreducible (because otherwise it would have to
have a factor of degree 1, hence a root in F5). So E = F5[x]/(x3 + 3x+ 3) is a field.
Since every element of E is represented by a unique polynomial in F5[x] of degree
≤ 2, E has 53 = 125 elements.

Generalizing this last example, if F = Fp, the field of p elements, and m(x) in
Fp[x] has degree d, then Fp[x]/(m(x)) has pd elements. Thus whenever we can find
an irreducible polynomial of degree d with coefficients in Fp, we can construct a
field containing pd elements.

Defini ion. A field of the form F [x]/(m(x)), where m(x) is an irreducible polyno-
mial with coefficients in F , is called a simple f eld extension of F .

For example, Q[x]/(x2− 5) is a simple field extension of Q, as are the fields of
Examples 7 and 11.

Proposition 4 described the Bezout’s identity method for finding the inverse of a
unit that we promised earlier.

Example 12. In F3[x]/(x3 + 2x+ 1), find the inverse of x5:
First do Euclid’s algorithm with x5 and the modulus x3 + 2x+ 1:

x5 = (x3 + 2x+ 1)(x2 + 1)+ (2x2 + x+ 2)

x3 + 2x+ 1 = (2x2 + x+ 2)(2x+ 2)+ 2x

2x2 + x+ 2 = 2x(x+ 2)+ 2.
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Then
x5 ≡ 2x2 + x+ 2 (mod x3 + 2x+ 1)

and

2x≡−(2x2 + x+ 2)(2x+ 2)≡ (2x2 + x+ 2)(x+ 1) (mod x3 + 2x+ 1)

So
1≡ 2x(x+ 2)− (2x2 + x+ 2)

≡ [(2x2 + x+ 2)(x+ 1)](x+ 2)− (2x2+ x+ 2)

≡ (2x2 + x+ 2)(x2 + 1)≡ x5(x2 + 1),

and hence
x5(x2 + 1)≡ 1 (mod x3 + 2x+ 1).

Example 13. In F2[x]/(x5 + x2 + 1), we find the inverse of [x4 + x3 + 1]. To do so,
we do Euclid’s algorithm in F2[x] with x4 + x3 + 1 and the modulus x5 + x2 + 1:

x5 + x2 + 1 = (x4 + x3 + 1)(x+ 1)+ (x3 + x2 + 1)

x4 + x3 + 1 = (x3 + x2 + 1)(x)+ (x2 + 1)

x3 + x2 + 1 = (x2 + 1)(x+ 1)+ 1.

Then we use these to obtain Bezout’s identity; after substituting for x2 + 1, then
x3 + x2 + 1 in the last equation, we obtain

1 = (x5 + x2 + 1)(x2 + x+ 1)+ (x4 + x3 + 1)(x3 + x).

Modulo x5 + x2 + 1 this becomes

1≡ (x4 + x3 + 1)(x3 + x) (mod x5 + x2 + 1),

or in terms of congruence classes,

[1] = [x4 + x3 + 1][x3 + x)]

in F2[x]/(x5 + x2 + 1).

Exercises. We proved in Chapter 8 that if R is a commutative ring with a finite
number of elements, then every non-zero element of R is either a unit or a zero
divisor.

9. In F3[x]/(x3 + 1), find the units and the zero divisors.

10. In F2[x]/(x3 + x2 + x+ 1), find the units and the zero divisors.

11. In F5[x]/(x2 + 1), find the units and the zero divisors.
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12. Find a simple field extension of F2 with
(i) 4 elements;
(ii) 8 elements;
(iii) 16 elements;
(iv) 32 elements;
(v) 64 elements.

13. Find a simple field extension of F7 with 73 = 343 elements.

14. In F3[x]/(x3 + 2x+ 1), find the inverses of the congruence classes of
(i) x2 + x+ 1 ;
(ii) x4 + 2x3;
(iii) x6 + x4 + 2x.

15. Find the inverse of [1−2x] in Q[x]/(x3−2) using Euclid’s algorithm.

16. In F2[x]/(x5 + x2 + 1), find the inverse of [x3]; of [x4 + 1]; of [x2].

D. Finding a Root of m(x) in F[x]/(m(x))

Let F be a field and m(x) a polynomial of degree d ≥ 1. Elements of F [x]/(m(x))
are congruence classes [ f (x)]m(x) for polynomials f (x) with coefficients in F .

We may use the algebraic operations in F [x]/(m(x)) to simplify the description
of elements of F[x]/(m(x)).

If f (x) = a0 + a1x+ . . .+ anxn with a0,a1, . . .an in F , then, denoting [ ]m(x) by
[ ], we have

= [a0 +a1x+ . . .+anxn]
= [a0]+ [a1x]+ . . .+[anxn]
= [a0]+ [a1][x]+ . . .+[an][x]n

by the definition of addition and multiplication of congruence classes. Now the map
from F to F[x], defined by viewing an element of F as a polynomial of degree ≤ 0
in F [x], induces a homomorphism ι : F → F [x]/(m(x)) given by ι(r) = [r]m(x) for r
in F . In words, ι is the function: take the element r of F , view it as a polynomial,
and take its congruence class modulo m(x).

Since the modulus polynomial m(x) has degree 1 or greater, ι is a one-to-one
function. So we may identify F with its image in F[x]/(m(x)) under the map ι , and
for r in F , write the congruence class [r]m(x) as r.

After that identification, then a typical element of F [x]/(m(x)) is

[ f (x)]m(x) = a0 +a1[x]+ . . .+an[x]n

where [x] = [x]m(x) is the congruence class of x. This description has the interpreta-
tion: for f (x) in F [x], the congruence class of f (x) in F [x]/(m(x)) is the polynomial
f ([x]m(x)), that is, the polynomial f evaluated at [x]m(x).
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Example 14. A typical element of F3[x]/(x3 + 2x+ 1) is represented by f (x) =
ax2 +bx+ c for some a,b,c in F3. Thus identifying elements r of F3 with the con-
gruence classes [r] = [r]x3+2x+1, we can write the congruence class [ f (x)] as

= [ax2 +bx+ c]

= [a][x]2 +[b][x]+ [c],

= a[x]2 +b[x]+ c
= f ([x]).

Finally, let us abbreviate [x]m(x) by α . Then [ f (x)]m(x) = f ([x]m(x)) = f (α): the
congruence class of the polynomial f (x) is f (x) evaluated at the congruence class
α = [x]m(x).

In this way, we may think of F [x]/(m(x)) as F [α], the set of polynomials with
coefficients in F evaluated at the congruence class α = [x]m(x). Thus when α =
[x]m(x), the following statements are all equivalent:

f (α) = g(α)
[ f (x)]m(x) = [g(x)]m(x)

f (x)≡ g(x) (mod m(x))
f (x) = g(x)+m(x)q(x) for some q(x) in F [x].

If m(x) is irreducible, then F[x]/(m(x)) is a field by Proposition 4.
Having identified [ f (x)]m(x) = f (α) where α = [x]m(x), a key observation is that

0 = [m(x)]m(x) = m([x]m(x)) = m(α),

so that α = [x]m(x) is a root in F [x]/(m(x)) of the polynomial m(x) in F [x].
The construction of the field F[x]/(m(x)) and the observation that [x]m(x) = α is

a root of m(x) in F [x]/(m(x)) yields an important theorem.

Theorem 5 (Cauchy-Kronecker-Steinitz Theorem). Let F be a f eld, and m(x) an
irreducible polynomial with coeffic ents in F. Then there is a f eld containing F in
which m(x) has a root.

We can now resolve the mystery of Section A. The roots of polynomials we
invented in Section A now have a concrete meaning as congruence classes. To find
a root of an irreducible polynomial m(x), simply take the congruence class of x in
F [x]/(m(x)).

Thus the “imaginary” number i can be identified as i = [x]x2+1 in the field
R[x]/(x2 + 1), and with that definition, the fields R[x]/(x2 + 1) and C look iden-
tical. We’ll be more precise about this identification in the next chapter.

In Example 4, above, the invented root α of x3 +x+1 in F2[x] is just the congru-
ence class [x]x3+x+1 in F2[x]/(x3 + x+ 1).

The Cauchy-Kronecker-Steinitz Theorem has the following important
consequence.
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Corollary 6 (Splitting Field Theorem). Let F be a f eld, f (x) a polynomial of de-
gree≥ 1 in F[x]. Then there exists a f eld K containing F such that f (x) factors into
a product of linear factors in K[x].

Proof. We proceed by induction on d, the degree of f (x). If deg( f (x)) = 1 the result
is trivial.

Let f (x) have degree d. In F [x], suppose f (x) = p1(x) · . . . · ps(x), a product of
irreducible polynomials. If deg(pi(x)) = 1 for all i = 1, . . . ,s, then the field K we
seek is F itself. Otherwise, renumbering if necessary, suppose that p1(x) has degree
> 1. Let L= F [y]/(p1(y)), and let α = [y]p1(y). Then L is a field containingF (where
we identify F as the congruence classes of polynomials of degree ≤ 0 in L), and α
is a root in L of p1(x). So in L[x], p1(x) factors as (x−α)q1(x) by the Root Theorem
(Chapter 14). Thus in L[x],

f (x) = (x−α)q1(x)p2(x) · . . . · ps(x).

Let
g(x) = q1(x)p2(x) · . . . · ps(x)

in L[x]. Then deg(g(x)) = deg( f (x))−1. By induction, there is a field K containing
L so that in K[x], g(x) factors into a product of linear factors. But then so does
f (x) = (x−α)g(x). Since K contains F , we’re done. ��

A field K is called a splitting f eld for f (x) if f (x) factors into linear factors in
K[x].

Example 15. In Q[x], f (x) = x3 − 2 is irreducible. It has a root in R, namely 21/3,
but R is not a splitting field because f (x) has only one real root. If we let ω be a
cube root of unity in C, then the other two roots of f (x) are ω ·21/3 and ω2 ·21/3, so
x3−2 splits into a product of three linear factors in C[x]. Thus C is a splitting field
for x3−2.

By the Fundamental Theorem of Algebra, C is a splitting field for every polyno-
mial in Q[x].

The Cauchy-Kronecker-Steinitz Theorem and its corollary, the Splitting Field
Theorem, are basic ingredients in several proofs of the Fundamental Theorem of
Algebra, for example, Lagrange’s 1772 proof [Suzuki (2006)] and Gauss’s second
proof [Dobbs and Hanks (1992)].

Exercises.

17. The real number α = cos20◦ is a root of the irreducible polynomial

f (x) = 4x3−3x− 1
2

in Q[x]. Let E = Q[cos20◦]. Show that f (x) splits in E .
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18. Show that if E = F2[x]/(x4 +x+1], then E is a splitting field for x4 +x+1 and
also for x2 + x+ 1.

19. Show that for p prime, Fp is a splitting field for f (x) = xp− x in Fp[x].

20. Show that R is a splitting field for the polynomial f (x) = xn−5 if and only if
n= 2.

21. Show that if F is a field and m(x) in F[x] has degree ≥ 1, then the map

ι : F → F[x]/(m(x))

given by ι(r) = [r]m(x) is a one-to-one homomorphism.





Chapter 24
Homomorphisms and Finite Fields

In this chapter we describe all finite fields.

A. Homomorphisms and Kernels

The aim of this section is to prove the Isomorphism Theorem, a fundamental result
in algebra.

One of the applications of the Isomorphism Theorem will be to resolve the fol-
lowing question.

Consider the polynomial x3− 2 over the rational numbers Q. On the one hand,
there is a well-known real number, 3

√
2, whose cube is 2 and thus is a root of x3−2.

On the other hand, from the Cauchy-Kronecker-Steinitz Theorem, we know that the
congruence class [x](x3−2) is a root of x3 − 2. Is there a relation between the two

roots of x3−2?
Recall that we completely characterized ring homomorphisms with domain the

ring of integers in Chapter 8. Here we recall from Section 13D how to define ring
homomorphisms whose domain is a ring of polynomials.

Proposition 1. Let F be a f eld, R a commutative ring. A homomorphism ϕ : F [x]→
R is completely determined by the set {ϕ(a)|a in F} of values of ϕ on F, and
by ϕ(x).

Proof. If R and S are rings, a function ϕ : R→ S is a ring homomorphism if for all
r1,r2 in R, ϕ(r1 + r2) = ϕ(r1)+ϕ(r2), ϕ(r1 · r2) = ϕ(r1) ·ϕ(r2), and ϕ(1) = 1. Let
R= F [x] and let p(x) = a0 +a1x+ . . .+anxn be an element of F[x]. Then

ϕ(p(x)) = ϕ(a0 +a1x+ . . .+anxn)
= ϕ(a0)+ ϕ(a1)ϕ(x)+ . . .+ ϕ(an)ϕ(x)n.

So ϕ(p(x)) is determined by the values of ϕ on the coefficients and by ϕ(x). ��

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 495
in Mathematics, c© Springer Science+Business Media LLC 2009
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A useful special case of Proposition 1 occurs when F ⊂ R and ϕ acts as the
identity map on F , i.e., ϕ(a) = a for a in F . In that case, if ϕ(x) = α in R, then
ϕ = ϕα , the evaluation map, defined by ϕ(p(x)) = p(α), or in words, evaluate the
polynomial p(x) at x= α in R.

For example, the evaluation map

φ√2 : Q[x]→ R

takes the polynomial 3x2 + 4x+ 1 to

φ√2(3x
2 + 4x+ 1) = 3

√
2

2
+ 4

√
2+ 1 = 7 + 4

√
2.

If f : R→ S is a ring homomorphism, then the kernel of f is the set of elements
r in R so that f (r) = 0:

ker f = {r in R| f (r) = 0}
We showed in Chapter 8 that f is one-to-one if and only if the kernel of f consists
of only the zero element of R. The next result describes the kernel of the evaluation
homomorphism ϕa when ϕa is not one-to-one.

Theorem 2 (Minimal Polynomial Theorem). Let F ⊂ E be f elds and let α be an
element of E. Let ϕα : F[x] → E be the evaluation map. Suppose ϕα is not one-
to-one, so that there is some polynomial f (x) of degree ≥ 1 such that ϕα( f (x)) =
f (α) = 0. Then
(i) there exists a unique monic polynomial p(x) of minimal degree > 0 in F [x]

with ϕα(p(x)) = p(a) = 0;
(ii) p(x) is irreducible; and
(iii) kerϕα consists of all multiples of p(x).

If α is in E and ϕα is not one-to-one, so that f (α) = 0 for some polynomial f (x)
with coefficients in F , then α is called algebraic over F . Some examples of numbers
in C that are algebraic over Q are elements of Q itself (if a is in Q, then a is a root
of the polynomial x−a),

√
a for any a in Q, and the nth root of any element of Q.

There are many more.
If α in E is algebraic overF , then the unique monic polynomial p(x) with p(α)=

0 is called the minimal polynomial of α over F .
Here is a proof of the Minimal Polynomial Theorem.

Proof. The kernel of ϕα is the set of polynomials f (x) in F [x] so that ϕα( f (x)) =
0, that is, f (α) = 0. If ker(ϕα ) contains a nonzero polynomial, then by well-
ordering, ker(ϕα ) contains a polynomial p(x) of minimal degree > 0. If p(x) is in
ker(ϕα), so is any associate of p(x), so we can assume that p(x) is a monic polyno-
mial of minimal degree in ker(ϕα).

We first prove (ii). Suppose f (x) is a polynomial in ker(ϕα). Dividing f (x) by
p(x) gives

f (x) = p(x)s(x)+ r(x),
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where r(x) has degree < deg(p(x)). Applying ϕα to that equation yields ϕα(r(x)) =
0, hence r(x) is in ker(ϕα). Unless r(x)= 0, this contradicts the assumption that p(x)
had minimal degree. So r(x) = 0 and p(x) divides f (x). This proves (iii).

To show (i), that p(x) is unique, suppose q(x) is also a monic polynomial of
minimal degree in ker(ϕα), then, since p(x) divides q(x), the two polynomials must
be associates, and since they are both monic, they are equal.

To prove (ii), let p(x) be the monic polynomial of minimal degree in ker(ϕα). If
p(x) factors, p(x)= f (x)g(x) with deg f (x) < deg p(x) and degg(x) < deg p(x), then
applying the homomorphism ϕα to the factorization of p(x) gives 0 = f (α)g(α).
This is an equation in E , a field. Since E has no zero divisors, either f (α) = 0 or
g(α) = 0, hence either f (x) or g(x) is in ker(ϕα), contradicting the minimality of
the degree of p(x). So p(x) is irreducible. ��

Here is the fundamental theorem about homomorphisms.
Recall that a ring homomorphism ϕ : R→ S is an isomorphism if ϕ is one-to-one

and maps onto S. That is, the kernel of ϕ is {0} and the image of ϕ is S.

Theorem 3 (Isomorphism Theorem). Let F ⊂ E be f elds and let α be a non-zero
element of E that is algebraic over F . Let ϕα : F [x]→ E be the “evaluation at α”
map and let p(x) be the minimal polynomial of α over F. Then ϕα induces a one-
to-one homomorphism ϕ̄α : F [x]/(p(x)) → E. Let F [α] be the image of ϕα , then
ϕ̄α : F [x]/(p(x))→ F [α] is an isomorphism, hence F [α] is a f eld.

We write R∼= S if there is an isomorphism between the two rings R and S. Thus
in the theorem,

F [x]/p(x)∼= F [α].

Before proceeding to the proof of this theorem, here are some examples.

Example 1. Let ϕi : R[x]→ C be the “evaluation at i” homomorphism, where i2 =
−1. Then ϕi maps onto C because any complex number a+ bi = ϕi(a+ bx). The
minimal polynomial of i is p(x)= x2 +1, so ϕi induces a one-to-one homomorphism

ϕ̄i : R[x]/(x2 + 1)→ C,

which is an isomorphism because ϕi, hence ϕ̄i maps onto C. So

R[x]/(x2 + 1)∼= C.

Example 2. Let ϕ : R[x]→ C be the “evaluation at
√−2” homomorphism. Then ϕ

is onto and induces an isomorphism, R[x]/(x2 + 2)∼= C.

Here is the proof of the Isomorphism Theorem.

Proof. Define ϕ̄α : F [x]/(p(x))→ E by ϕ̄α([ f (x)]) = ϕα( f (x)) = f (α). We must
show that ϕ̄α is well defined, in the sense that if [ f (x)] = [g(x)] in F [x]/(p(x)), then
f (α) = g(α). (That is, the value of ϕ̄α on a congruence class does not depend on
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the choice of representative of the congruence class.) But if [ f (x)] = [g(x)], then
f (x) = g(x) + t(x)p(x) for some polynomial t(x). Since p(α) = 0, evaluating at
x= α yields f (α) = g(α)+ t(α)p(α) = g(α).

Since ϕ is a homomorphism and ϕ̄ is defined via ϕ , it’s easy to see that ϕ̄ is a
homomorphism. The image of ϕ̄α is the set of all elements of E of the form f (α)
for f in F[x]. So the image of ϕ̄α is F[α]. To show that ϕ̄α is one-to-one follows
from the fact that since p(x) is irreducible, F [x]/p(x) is a field, and any nonzero
ring homomorphism from a field must be one-to-one (Section 7D, Proposition 17).
(Note that ϕ̄α acts like the inclusion function from F to E on polynomials of degree
≤ 0, so ϕα is not the zero homomorphism.) ��
Example 3. Let ϕ−i : R[x]→C be the “evaluation at −i” homomorphism. Then the
monic irreducible polynomial which generates the kernel of ϕ−i is p(x) = x2 + 1,
and so ϕ−i induces a homomorphism

ϕ̄−i : R[x]/(x2 + 1)→ C,

which is one-to-one and onto, hence an isomorphism between R[x]/(x2 +1) and C.
This isomorphism is different from that defined in Example 1. The composite func-
tion ϕ̄−i ◦ ϕ̄−1

i takes a+bi to a−bi, so is the complex conjugation homomorphism.

Example 4. Let Q[ζ ] be the set of all complex numbers of the form f (ζ ) where

ζ = e
2πi
p is a pth root of 1 in C, where p is a prime number. Let ϕζ be the evaluation

homomorphism
ϕζ : Q[x]→ C.

Then the image of ϕζ is Q[ζ ]. Since ζ p = 1, ζ is a root of the polynomial

xp−1 = (x−1)(xp−1 + xp−2 + . . .+ x+ 1)

and is not a root of x−1. Hence ζ is a root of xp−1 +xp−2 + . . .+x+1, which is irre-
ducible (see Section 18B). Thus xp−1 +xp−2 + . . .+x+1 is the minimal polynomial
over Q of ζ , and ϕζ induces an isomorphism

Q[x]/(xp−1 + xp−2 + . . .+ x+ 1)∼= Q[ζ ].

For example, with p= 3, ζ = −1+
√−3
2 , and this last isomorphism becomes

Q[x]/(x2 + x+ 1)∼= Q[
−1 +

√−3
2

].

Exercises.

1. Find the minimal polynomial of 1 + i over Q.

2. Find the minimal polynomial of 1 +
√

2 over Q.
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3. Find the minimal polynomial of a+b
√

2 over Q for all a,b in Q.

4. Find the minimal polynomial of
√

2+
√

3 over Q.

5. Find the minimal polynomial of cos15◦ over Q. (Use that cos60◦ = 1/2.)

6. Show that if p(x) is an irreducible polynomial in Q[x], then the only one-to-one
homomorphisms from Q[x]/(p(x)) into C are evaluation maps φα where α is a root
of p(x) in C.

7. Let F ⊂ E be fields and let ϕα be the “evaluation at α” map. Show that if p(x)
is a monic irreducible polynomial in kerϕα , then p(x) is the minimal polynomial of
α over F .

B. Finite Fields Are Simple

In Section 23C we constructed a collection of simple f eld extensions, that is, fields
of the form K = F[x]/(p(x)), by starting with a field F and an irreducible polyno-
mial p(x) in F [x], and letting K be the set of congruence classes of polynomials
modulo p(x). We observed that we could also think of K as K = F[α], polynomials
with coefficients in F evaluated at α , where α = [x]p(x) .

In particular, we can construct such extensions when F = Fp, the field of p el-
ements, p a prime number. If q(x) is an irreducible polynomial of degree d with
coefficients in Fp, then Fp[x]/q(x) is a field with pd elements. We can construct in
this way many finite fields (i.e., fields with finitely many elements) as simple field
extensions of Fp.

Are there finite fields which are not simple field extensions of Fp for some p?
Perhaps surprisingly, the answer is no.

Theorem 4. Every fin te fie d is isomorphic to a simple f eld extension of Fp for
some prime p.

Proof. We need to show that if K is a finite field with m elements, then there
is a prime p, an irreducible polynomial q(x) in Fp[x] and an isomorphism φ :
Fp[x]/q(x)→ K.

Since K is a finite field of characteristic p for some prime p, K contains a subfield
isomorphic to Fp, namely {n ·1 | n in Z}. (Section 7D).

Also, K has a primitive root, namely, an element α such that every nonzero ele-
ment of K is a power of α . There are m− 1 non-zero elements in K, and so α has
order m−1. In particular, αm−1 = 1 (Section 19A).

Define ϕ : Fp[x] → K as follows: Let ϕ([n]p) = n · 1 in K for any n in Z. Let
ϕ send the indeterminate x to the primitive root α . Thus for any f (x) in Fp[x],
ϕ( f (x)) = f (α), so ϕ is evaluation at α once the coefficients of f (x) in Fp are
replaced by their images in K.
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The homomorphism ϕ is clearly onto, since every nonzero element of K is a
power of α . The kernel of ϕ is the set of polynomials in Fp[x] with α as a root.
Then ker(ϕ) is nonzero; in fact, as we observed, xm−1− 1 is in ker(ϕ) . Therefore
the set of polynomials in Fp[x] with α as a root contains a nonzero monic polynomial
q(x) of minimal degree ≥ 1, namely, the minimal polynomial of α over Fp[x]. By
Proposition 2 of Section A, the homomorphism ϕ : Fp[x]→ K induces a one-to-one
homomorphism ϕ̄ : Fp[x]/q(x)→ K defined by ϕ̄([ f (x)]) = f (α).

Since ϕ maps onto K, so does ϕ̄ . Thus ϕ̄ is an isomorphism, and hence K is
simple. ��

One important consequence of Theorem 4 is that there are severe restrictions on
the cardinality of a finite field:

Theorem 5. If K is a fin te fie d, then K has pd elements for some prime p. Thus if
n is not a prime power, there is no fie d with n elements.

Proof. We can prove this in two ways. The first proof uses Theorem 4:
If K is a finite field, then K is isomorphic to Fp[x]/q(x) for some prime p and

some irreducible polynomial q(x) in Fp[x]. If q(x) has degree d, then Fp[x]/q(x) has
pd elements, hence so does K.

The second proof uses Cauchy’s Theorem (Section 11G, Theorem 18):
Suppose K hasm elements, and let q be a prime dividingm. View K as an abelian

group under addition. By Cauchy’s Theorem, K has an element α of order q. But K
has characteristic p, so pα = 0. So the order q of α divides p. Since p is a prime,
therefore q= p. So no prime other than p divides m, hence m= pd for some d. ��

Table 24.1 gives a list of fields with n elements for small n .
In the next section we shall prove the converse of the corollary, namely, if n= pd ,

p prime, is a prime power, then there is a field with n elements.
Table 24.1. A list of fields with n elements for small n.

n = Fields
2 F2

3 F3

4 F2[x]/(x2 + x+ 1)
5 F5

6 none
7 F7

8 F2[x]/(x3 + x+ 1) and F2[x]/(x3 + x2 + 1) (which are isomorphic)
9 F3[x]/(x2 + 1) (are there others?)

10 none
11 F11

12 none
13 F13

14 none
15 none
16 F2[x]/(x4 + x+ 1) (others??)
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Exercises.

8. (i) Find a primitive root β of F2[x]/(x4 + x3 + x2 + x+ 1).
(ii) Find the minimal polynomial q(x) in F2[x] of β .
(iii) Show that F2[x]/(x4 + x3 + x2 + x+ 1) is isomorphic to F2[x]/(q(x)).

9. (i) Find a primitive root β of F3[x]/(x2 + 1).
(ii) Find the minimal polynomial q(x) in F3[x] of β .
(iii) Show that F3[x]/(x2 + 1) is isomorphic to F3[x]/q(x).

10. (i) Find a root in K = F2[x]/(x4 + x+ 1) of x2 + x+ 1.
(ii) Describe a homomorphism from F2[x]/(x2 + x+ 1) into K.

11. Let K = F2[x]/(x3 + x+ 1) and L= F2[x]/(x3 + x2 + 1).
(i) Find a root β of x3 + x+ 1 in L.
(ii) Show that the evaluation map ϕβ : F2[x]→ L yields an isomorphism (a one-

to-one homomorphism) ϕ̄β from K onto L.

C. Constructing and Classifying Finite Fields

We showed in the last section that if K is a field with q elements, then q must be a
power of a prime. In this section we begin by showing the converse:

Theorem 6. Given any prime p and any n > 0, there is a f eld with exactly pn ele-
ments.

Proof. Consider f (x) = xpn − x in Fp[x]. By the Splitting Field Theorem (Section
23D), there is a splitting field K for f (x), that is, some field K containing Fp[x] such
that in K[x], f (x) factors into a product of linear factors.

Let F be the subset of K consisting of all the roots of xpn−x in K. We shall show
F is a field with pn elements. First we show:
F contains pn distinct elements of K.
To prove this claim, recall (Section 15G) that the derivative f ′(x) of a polynomial

f (x) has the property that if f (x) and f ′(x) are coprime in K[x], then f (x) has no
multiple roots in K. Computing the derivative of xpn− x , we get (d/dx)(xpn− x) =
pnxpn−1−1 =−1 since p= 0 in K. Thus xpn− x has no multiple roots. That means
that when xpn−x factors in K[x] into a product of linear factors, there are pn distinct
linear factors. So xpn− x has pn distinct roots in K, as claimed.

Now we show:
F is a f eld.
Recall that F is the set of elements α of K that satisfy α pn = α . Thus, if α,β

are in F , then:
(i) so is α + β : for (α + β )p

n
= α pn + β pn = α + β (the first equality is by

Corollary 17 of Section 9E);
(ii) so is αβ : for (αβ )p

n
= α pnβ pn = αβ ;



502 24 Homomorphisms and Finite Fields

(iii) so is −α : for (−α)p
n
= (−1)p

nα pn =−α ; and
(iv) so is α−1: for (α−1)p

n
= (α pn)−1 = α−1.

Since 0 and 1 are in F , and addition and multiplication in F is the same as that
in K, therefore F is a field. That completes the proof. ��
Corollary 7. There is an irreducible polynomial in Fp[x] of degree n for each n.

Proof. Let F be a field with pn elements. By the theorem of the last section, F is
a simple field extension of Fp, that is, F is isomorphic to Fp[x]/(q(x)) for some
irreducible polynomial q(x) in Fp[x]. Since F has pn elements, Fp[x]/(q(x)) must
have pn elements, so q(x) must have degree n, and is the desired polynomial. ��

Now we show that, up to isomorphism, there is only one field with pd elements.
We know that every field with pn elements is a simple field extension of Fp for

some irreducible polynomial q(x) of degree n.
Suppose we have two different irreducible polynomials of degree n in Fp[x]. Each

defines a simple field extension of Fp[x] with pn elements.
For example, in F2[x] there are three different polynomials of degree 4: x4 +x+1,

x4 + x3 + 1, and x4 + x3 + x2 + x+ 1. Each defines a simple field extension of F2.
Each has 16 elements. Are they really different?

The remarkable fact is that if F1 and F2 are any two fields with pn elements, then
F1 and F2 are isomorphic. Thus, rather than a different field for each irreducible
polynomial of degree n over Fp, there is, up to isomorphism, only one, which can
be presented as a simple field extension of Fp in different ways.

The following theorem was proved by E.H. Moore in 1893 (see Dickson (1901)).

Theorem 8. Any two f elds with pn elements are isomorphic.

Proof. We prove this theorem by showing that any field with pn elements is isomor-
phic to the field F consisting of all roots of xpn−x that we constructed in Theorem 6.

Let K be a field with pn elements. Then K is a simple field extension of Fp, so
K= Fp[x]/(q(x)) for some irreducible polynomial q(x) of degree n. Then α = [x]q(x)
is a root of q(x) in Fp[x]/(q(x)).

Since K is a field with pn elements, the group of units of K has pn−1 elements
(all the elements of K except 0). So the element α of K satisfies α pn−1 = 1, and
hence is a root of xpn − x in Fp[x].

By the Division Theorem in Fp[x],

xp
n− x= q(x)g(x)+h(x)

with quotient g(x) and remainder h(x) of degree < degq(x). Evaluating this equation
at α in K, we find that h(α) = 0. But since α = [x]q(x), the polynomial q(x) is the
polynomial of smallest degree≥ 0 in Fp[x] with α as a root. Thus h(x) = 0 and q(x)
divides xpn − x:

xp
n− x= q(x)g(x).
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Since xpn − x has pn roots in F , at least one of them must also be a root of q(x) (for
otherwise all roots would be roots of g(x), and g(x) would have degree < pn with
pn roots in F , contradicting D’Alembert’s Theorem). Let β be a root of q(x) in F .

Let ϕβ be the evaluation homomorphism from Fp[x] to F , defined by ϕβ ( f (x)) =
f (β ). Since q(x) is irreducible and q(β ) = 0, ϕβ induces a one-to-one homomor-
phism ϕ̄β from Fp[x]/q(x) to F , by the Isomorphism Theorem (Theorem 3 of
Section A). Since both Fp[x]/(q(x)) and F have pn elements, ϕ̄β is an isomorphism
from Fp[x]/(q(x)) onto F .

Such an isomorphism to F may be found for every simple field extension of Fp
defined by a polynomial q(x) of degree n. But since two fields that are isomorphic
to F must be isomorphic to each other, the proof is complete. ��

Since there is essentially only one field with � = pn elements, it is customary to
denote it by a special symbol, namely F�.

Corollary 9. Every irreducible polynomial of degree n in Fp[x] has a root in every
f eld with pn elements.

Proof. If q(x) is the polynomial, and F� is the field, where � = pn, then F�
∼=

Fp[x]/(q(x)) by Theorem 8. Since q(x) has a root in Fp[x]/(q(x)), namely [x]q(x), it
has a root in F� . ��

The last theorem of this section completes a development which is quite remark-
able. Starting from nothing but the natural numbers, we have given a complete de-
scription of all finite fields, up to isomorphism. For a mathematician who studies
“algebra” this is a very satisfying outcome. To ask analogous questions, such as,
“Describe all commutative rings with unity, up to isomorphism,” or, “Describe all fi-
nite groups, up to isomorphism” is to raise unsolved questions which have motivated
the mathematical research of hundreds of mathematicians over the past century or
more.

Exercises.

12. Let F = F2[x]/(x4 + x+ 1). In F:
(i) find a root of x4 + x3 + 1;
(ii) find a root of x4 + x3 + x2 + x+ 1.

13. Show that every irreducible polynomial of degree 4 in F2[x] divides x16− x.
14. Show that every irreducible polynomial of degree 1 or 2 in F3[x] divides x9−x.
15. (i) Find an element of F3[x]/(x2 + 1) that is a root of x2 + x+ 2.

(ii) Construct an isomorphism from F3[x]/(x2 + x+ 2) to F3[x]/(x2 + 1).

16. Find an isomorphism from F3[x]/(x2 + 2x+ 2) to F3[x]/(x2 + 1).

17. Construct an isomorphism from F7[x]/(x2− x+ 3) to F7[x]/(x2 + 1).

18. For every field F and every a in F , find an isomorphism from F [x]/(x−a) to F .
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D. Latin Squares

In this section we give an application of the classification of finite fields to a combi-
natorial question that arises in the design of experiments in statistics.

An n×n Latin square is a square matrix in which each of the numbers from 1 to
n occurs once in each row and once in each column. Here is an example:

4 1 2 3

1 2 3 4

2 3 4 1

3 4 1 2

You may recognize this example as the table for addition in Z/4Z = {1,2,3,4}.
Similarly, the addition table for Z/nZ is an n×n Latin square for any n ≥ 2. More
generally, if G is any group with operation ∗ and elements a1,a2, . . . ,an, then the
multiplication table for G is a table whose subscripts form a Latin square. For ex-
ample, if we let G be the set of invertible elements of Z/8Z , namelyG= {1,3,5,7}
under multiplication, then the multiplication table is

1 3 5 7
1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

if we now replace 1, 3, 5, 7 by 1, 2, 3, 4 we get the Latin square:

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

Latin squares are of interest in agricultural experiments (see Fisher (1935)). Here
are two examples.

Example 5. Suppose five strains of wheat are to be tested for yield on a field =
rectangular plot of land. The yield depends not only on the strain of wheat but also
on the fertility of the soil, which may vary around the field. Suppose, for example,
that the north side of the field happens to be more fertile than the south side. Suppose
the experimenters did not know how the fertility varied around the field, and planted
the five strains of wheat (labeled 1 – 5) as follows.
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North side of field

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4
5 5 5 5 5

South side of field

If the yield of strain 1 were higher than that of strain 5 the experimenters would
not know whether the result was caused by the fertility of the soil or the difference
in the strains.

Fertility tends to be more uniform along strips parallel to the edges of the field,
because of the mixing effect of plowing parallel to the edges. So in doing the wheat
yield experiment, the problem is to plant the wheat in such a way that variations in
fertility of the soil along strips parallel to the edges can be neglected. A useful way
to do this is to plant the strains of wheat in a Latin square arrangement, like so:

1 2 3 4 5
2 4 5 3 1
4 3 1 5 2
5 1 4 2 3
3 5 2 1 4

Example 6. Three diets–all hay, half hay and half corn, all corn–are to be tested
on three dairy cows, to see the effect of diet on milk yield. Different cows have
different milk yields, and the same cow’s milk yield varies over time. To try to test
diet independent of these variations, a Latin square is a useful design.

Week\ Cow 1 2 3
1 Corn 1/2 Hay
2 1/2 Hay Corn
3 Hay Corn 1/2

.

Returning to Example 1, suppose in addition to testing five strains of wheat,
five kinds of fertilizer are also to be tested. We would like to use a Latin square
arrangement for the fertilizer in such a way that each kind of fertilizer is used with
each strain of wheat. What is needed, therefore, are two orthogonal Latin squares,
that is, two 5×5 Latin squares such that each ordered pair (r,s) of (wheat, fertilizer)
occurs exactly once on a plot. Here is such a pair.

I :

1 2 3 4 5
2 4 5 3 1
4 3 1 5 2
5 1 4 2 3
3 5 2 1 4

(wheat)
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and

II :

1 2 3 4 5
4 3 1 5 2
5 1 4 2 3
3 5 2 1 4
2 4 5 3 1
( f ertilizer)

Suppose in addition we wish simultaneously to test the effect on yield of five
kinds of fungicides. For that we would like to test each fungicide with each fertilizer,
and with each strain of wheat, so we need to find another Latin square orthogonal to
each of the two above. Here is one.

III :

1 2 3 4 5
5 1 4 2 3
3 5 2 1 4
2 4 5 3 1
4 3 1 5 2

.

( f ungicide)

Suppose we wish also to test five kinds of herbicides; we would like yet another
Latin square orthogonal to the previous three. Here is one.

IV :

1 2 3 4 5
3 5 2 1 4
2 4 5 3 1
4 3 1 5 2
5 1 4 2 3

(herbicide)

Suppose we wished also to test five levels of soil acidity; we would like one more
Latin square orthogonal to the previous four. But there is none. For if we had such a
square, we could number the five levels of acidity appearing on the top row by 1 2
3 4 5 and then the new square would start

V :
1 2 3 4 5
a

But ifV is to be orthogonal to all of the other squares, then the number a �= 1 can-
not coincide with the corresponding number in any other square. For example, a �= 2,
for otherwise the pair (2,2) would occur twice in the pair of squares (V, I), once at
the second entry of the top row, and once in the first entry of the second row, so V
and I would not be orthogonal. The same argument prevents a from being 3 or 4 or
5; a �= 1, since 1 already occurs in the first column ofV .

This leads to the following problem: Given m, how many pairwise orthogonal
m×m Latin squares can be constructed?
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Here are two facts:

Theorem 10. (a) There cannot be more than m−1 pairwise orthogonal m×m Latin
squares.
(b) If there is a f eld with m elements then there are m− 1 pairwise orthogonal

m×m Latin squares.
Proof. Given the soil acidity example above, we leave the proof of the first statement
of the theorem as an exercise, below.

To prove part (b), suppose we have a field F withm elements. Let α be a primitive
root of F . Then αm−1 = 1 and every nonzero element of F is a power of α . Consider
the addition table for F set up as follows:

+ α · · · αs · · · αm−1 0
0 α · · · αs · · · αm−1 0
α i α i+ α · · · α i+ αs · · · α i+ αm−1 α i

α i+1 α i+1 + α · · · α i+1 + αs · · · α i+1 + αm−1 α i+1

...
...

...
α i+r α i+r+ α · · · α i+r+ αs · · · α i+r+ αm−1 α i+r

...
...

...
α i+(m−2) α i+(m−2) + α · · · α i+(m−2) + αs · · · α i+(m−2) + αm−1 α i+(m−2)

Examining the entries of the table, we see that each element of F occurs once
in each row and once in each column (Exercise 22). If we write the nonzero entries
of the table as powers of α (possible because α is a primitive root of F) and then
replace the elements of F by the numbers 1 to m, using the correspondence

α α2 α3 · · · αm−1 0
1 2 3 · · · m−1 m

we get a Latin square; call it Li.
If i, j are two different integers between 1 andm−1, then Li and Lj are orthogonal

Latin squares. For example, with m= 5,α = 2, i= 1, we get L1:

+ 2 22 23 24 0
0 2 22 23 24 0
2 22 24 0 23 2
22 24 23 2 0 22

23 0 2 24 22 23

24 23 0 22 2 24
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or
1 2 3 4 5
2 4 5 3 1
4 3 1 5 2
5 1 4 2 3
3 5 2 1 4

This is Latin Square I we gave in the wheat example above. With i= 3 we get L3:

+ 2 22 23 24 0
0 2 22 23 24 0
23 0 2 24 22 23

24 23 0 22 2 24

2 22 24 0 23 2
22 24 23 2 0 22

or
1 2 3 4 5
5 1 4 2 3
3 5 2 1 4
2 4 5 3 1
4 3 1 5 2

This was Square III above.
This construction gives m−1 pairwise orthogonal Latin squares. For the pair of

entries in Li and Lj at the (r,s)th position is (α i+r+αs,α j+r+αs). Suppose i �= j. If
the pair of entries at the (r,s)th position is equal to the pair of entries at the (p,q)th
position, then the pairs

(α i+r+ αs,α j+r+ αs) and (α i+p+ αq,α j+p+ αq)

are the same, so
α i+r+ αs = α i+p+ αq

and
α j+r+ αs = α j+p+ αq.

Hence
α i+r−α i+p = αq−αs = α j+r−α j+p.

So
α i(αr−α p) = α j(αr−α p).

Since i �= j, we must have αr−α p = 0, so r= p, hence αq = αs and q= s. Thus
Li and Lj are orthogonal if i �= j. That completes the proof. ��

We know that if n is any number which is a power of a prime, n= pe, then there
is a field with n elements. For such numbers n the theorem says that there are n−1
pairwise orthogonal n× n Latin squares, but not n pairwise orthogonal n× n Latin
squares.
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When n is not a prime power, the question remains, how many pairwise orthog-
onal n×n Latin squares can there be? For many n the answer is unknown.

The smallest nonprime power is n = 6, and that question was the content of a
famous problem of Euler, called the problem of 36 officers. It goes as follows. 36
officers are to be placed in review in a square, 6 rows deep with 6 men in each row.
The officers come from 6 different regiments, and each regiment is represented by
6 officers, each of different ranks. For reasons of protocol it is desired that each row
and column is to have one officer from each regiment and one officer of each rank.
Can this be done? If it could be done, then one would have a pair of orthogonal 6×6
Latin squares.

Euler believed that it could not be done, but it was not proved impossible for well
over 100 years after Euler–a proof was finally achieved by M.G. Tarry in 1901.

Thus the situation for nonprime powers is apparently much different than for
prime powers. There are 4 pairwise orthogonal 5× 5 Latin squares and 6 pairwise
orthogonal 7×7 Latin squares, but no two 6×6 Latin squares are orthogonal.

Bose, Shrikhande, and Parker (1960) proved that for every n > 6, there are at
least two orthogonal n×n Latin squares.

The construction of orthogonal Latin squares described here is due to R.C. Bose
in 1938. See Mann (1949).

Exercises.

19. Solve the 16 officers problem. Take the aces, kings, queens and jacks out of an
ordinary deck of playing cards, and lay them in a 4×4 square array so that each row
and each column has all four suits and all four ranks.

20. Find three pairwise orthogonal 4×4 Latin squares.

21. Use the construction in the proof of part (2) of Theorem 10 with α = 3, to find
4 pairwise orthogonal 5×5 Latin squares.

22. In the proof of part (2) of Theorem 10, verify that each Li is a Latin square.

23. Prove part (1) of Theorem 10: that is, show that there cannot be m pairwise
orthogonalm×m Latin squares.

24. Find three pairwise orthogonal 8×8 Latin squares.

25. Show that if G is a group under multiplication, with n elements, then the mul-
tiplication table for G yields a Latin square.

26. Find a Latin square which cannot be viewed as the multiplication table for a
group.

27. Prove that there is no field with 6 elements.
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28. Let F be a field with q elements,

F = {a1,a2, . . . ,aq−1,aq = 0}.

Let Ap be the Latin square whose entry in the ith row, jth, column, is apai + a j.
Show that Aq is not a Latin square, but A1, . . . ,Aq−1 are pairwise orthogonal Latin
squares.

29. (i) If A= (ai, j) is an m×m Latin square, and B= (bk,l) is an n×n Latin square,
define A×B to be the mn×mn square which consists of an m×m array of n× n
squares, such that the (i – j)-th square is (ai, j,B). Show that A×B is an mn×mn
Latin square.

(ii) Show that if A and A′ are orthogonal, and B and B′ are orthogonal, then A×B
and A′ ×B′ are orthogonal.

(iii) Show that if n is odd, or a multiple of 4, then there are at least two orthogonal
n×n Latin squares.



Chapter 25
BCH Codes

This chapter describes a collection of multiple error correcting codes. The codes are
constructed using simple field extensions of F2.

A. Error Correcting Codes

In Section 8E we looked at ways of encoding messages so that if an error occurs
in the transmission of the message, we can correct the error. Those codes, called
Hamming codes, were based on describing encoded words as vectors of solutions
in F2 to sets of linear equations.

In this chapter we use finite fields to describe codes that correct multiple er-
rors. These codes were discovered in 1960 by Bose, Chaudhuri, and Hocquenghem,
hence are called BCH codes.

The encoded words of BCH codes are vectors of coefficients of polynomials in
F2[x]. The polynomials have as roots certain powers of a primitive root of some
appropriate field extension of F2.

To illustrate the idea we start with a single-error correcting example. We begin
by describing the field that we need for the code.

Let m(x) = x3 + x+ 1 in F2[x]. Then m(x) is irreducible in F2[x], and so
F2[x]/m(x) is a field with 8 elements. Denote the congruence class of x, [x]m(x),
by α . Then F2[x]/m(x) can be viewed as polynomials in α , where α3 + α + 1 = 0,
and so we shall denote F2[x]/m(x) by F2[α]. Then α is a primitive root of F2[α], so
the elements of F2[α] may be described as powers of α as in Table 25.1.

The first code, like one in Section 8E, sends out coded words of length 7 with 4
information digits.

Code III. (Codes I and II were the Hamming codes of Section 8E).

Encoding. We want to send the word w = (a,b,c,d), where a,b,c,d are in
F2 = {0,1}. To encode w, we form the polynomial

w(x) = ax6 +bx5 + cx4 +dx3,

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 511
in Mathematics, c© Springer Science+Business Media LLC 2009
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Table 25.1

F8 = F2[x]/(x3 + x+1) = F2[α ]

0 0
1 1
α α
α2 α +1 = α3

α3 = α +1 α2

α4 = α2 +α α2 +1 = α6

α5 = α2 +α +1 α2 +α = α4

α6 = α2 +1 α2 +α +1 = α5

α7 = 1

and divide w(x) by m(x) = x3 + x+ 1 in F2[x]:

w(x) = m(x)q(x)+ z(x),

where the remainder z(x) has degree <3 = deg(m(x)). Then

z(x) = rx2 + sx+ t

for some r,s,t in F2. We set C(x) = w(x)+ z(x). Since −1 = 1 in F2, we get

C(x) = w(x)+ z(x)

= ax6 +bx5 + cx4 +dx3 + rx2 + sx+ t
= m(x)q(x),

and so the polynomial C(x) has the important property that when evaluated at the
root α of m(x),

C(α) = m(α)q(α) = 0.

The encoded word isC= (a,b,c,d,r,s,t), the vector of coefficients of the polyno-
mialC(x). ThenC is characterized by the property that it corresponds to the unique
polynomial of degree 6 with given top degree coefficients a,b,c,d and having α as
a root.

We transmitC.

Decoding. Suppose we receive (a′,b′,c′,d′,r′,s′,t ′). We form the polynomial

R(x) = a′x6 +b′x5 + c′x4 +d′x3 + r′x2 + s′x+ t ′,

and assume that at most one error occurred in the transmission. Under that assump-
tion, C(x)−R(x) = E(x) is either the zero polynomial or consists of a single term,
xe, whose coefficient in R(x) was erroneous. To decide, we look at R(α):

Case 0. If R(α) = 0, then, sinceC(α) = 0,E(α) = 0 and we decide that no errors
occurred.
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Case 1. If R(α) = αe, then, since C(α) = 0,E(α) = αe and we decide that one
error occurred, at the coefficient of xe.

Thus by evaluating R(x) at x= α , we can decide whether an error occurred and,
if so, where, so that the error can be corrected.

If two or more errors occurred, and we think at most one error occurred, we
would be misled. But if more than one error is very unlikely to occur, this is an
effective code.

Example 1. To encode (1,1,0,1), we take w(x) = x6 +x5 +x3 and divide it by x3 +
x+ 1. The remainder is z(x) = 1. So C(x) = w(x)+ z(x) = x6 + x5 + x3 + 1.

(Using Table I, we can confirm thatC(α) = α6 +α5 +α3 +1 = (α2 +1)+(α2 +
α + 1)− (α + 1)+ 1 = 0.)

We sendC = (1,1,0,1,0,0,1).
Suppose we receive R= (1,0,0,1,0,0,1). We form the polynomial

R(x) = x6 + x3 + 1.

We use Table 25.1 to evaluate R(x) at α: We find that R(α) is the sum of the follow-
ing terms:

α6 = α2 +1

α3 = α+1

1 = 1.

Thus
R(α) = α6 + α3 + 1 = α2 + α + 1 = α5.

So we change the coefficient of x5 in R(x), and correct R to (1,1,0,1,0,0,1). Since
only one error occurred in the transmission, we correctly determinedC.

The next code corrects two errors, using a field of 16 elements. For decoding it
is convenient to use matrices.

First, we describe the field.
Let m(x) = x4 + x+ 1 in F2[x]. Then m(x) is irreducible, and so F2[x]/(x4 +

x+ 1) is a field. Setting [x]m(x) = α , we may describe F2[x]/(x4 + x+ 1) as F2[α],
polynomials in α with coefficients in F2, where α4 +α +1 = 0. Since F2[α] has 16
elements, and every field with 16 elements is isomorphic to F2[α], we can also refer
to the field F2[α] as F16.

It turns out that α is a primitive root of F2[α]. Thus every nonzero element of
F2[α] is a power of α . This is exhibited in Table 25.2, which will be convenient for
computing in F2[α].

We use F16 to construct a code that corrects two errors. The idea is that code
words are vectors of coefficients of polynomials of degree 14 in F2[x] having α and
α3 as roots.

We know that the minimal polynomial of α , that is, the polynomial of smallest
degree in F2[x] with α as a root, is m(x) = x4 + x+ 1.
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Table 25.2

F16 = F2[x]/(x4 + x+1) = F2[α ]

0 0
1 1
α α
α2 α +1 = α3

α3 α2

α4 = α +1 α2 +1 = α6

α5 = α2 +α α2 +α = α8

α6 = α3 +α2 α2 +α +1 = α10

α7 = α3 +α +1 α3

α8 = α2 +1 α3 +1 = α14

α9 = α3 +α α3 +α = α9

α10 = α2 +α +1 α3 +α +1 = α7

α11 = α3 +α2 +α α3 +α2 = α6

α12 = α3 +α2 +α +1 α3 +α2 +1 = α13

α13 = α3 +α2 +1 α3 +α2 +α = α11

α14 = α3 +1 α3 +α2 +α +1 = α12

α15 = 1

Lemma 1. The minimal polynomial over F2 of α3 is

m3(x) = x4 + x3 + x2 + x+ 1.

Proof. If we evaluate the polynomial m3(x) at x= α3 we get

m3(α3) = α12 + α9 + α6 + α3 + 1.

Using Table 25.2 to replace the powers of α by polynomials in α of degree < 3, we
find that m3(α3) = 0.

We can verify that m3(x) is irreducible in F2[x] by observing that since 0 and 1
are not roots of m3(x), m3(x) has no irreducible factors of degree 1; and also m3(x)
is not divisible by x2 + x+ 1, the only irreducible polynomial in F2[x] of degree 2.

Since m3(x) has α3 as a root and is irreducible,m3(x) must be the minimal poly-
nomial of α3. ��

The polynomial of smallest degree with both α and α3 as roots is the least com-
mon multiple of m(x) and m3(x); but since they are both irreducible in F2[x], their
least common multiple is their product

m(x)m3(x) = x8 + x7 + x6 + x4 + 1.

We recall the useful fact (see Theorem 15 of Section 9E) that if p(x) is a poly-
nomial in F2[x], then p(x2) = (p(x))2. Thus since α is a root of m(x), so are α2 and
α4. So we set

m4(x) = m(x)m3(x) = x8 + x7 + x6 + x4 + 1,
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since it is the polynomial of smallest degree in F2[x] with with α,α2,α3 and α4

as roots.

Code IV.

Encoding. Since m4(x) has degree 8, encoded words will have length 15 with 7
information digits.

We encode as follows. Let

w= (a14,a13, . . . ,a8)

be the seven-bit information word, with corresponding polynomial

w(x) = a14x14 +a13x13 + . . .+a8x8.

Divide w(x) by m4(x):
w(x) = m4(x)q(x)+ z(x),

where z(x), the remainder, has degree≤7,

z(x) = a7x7 + . . .+a1x+a0.

Then
C(x) = a14x14 + . . .+a1x+a0 = w(x)+ z(x) = m4(x)q(x).

Since the remainder z(x) in the division algorithm is unique, C(x) is the unique
polynomial of degree ≤14 with given coefficients a14, . . . ,a8 and with α,α2,α3

and α4 as roots.
The encoded wordC = (a14,a13, . . . ,a0) is the vector of coefficients ofC(x). We

transmitC.
Decoding. Suppose we receive R. Set R = C+ E , where E is the error vector.
We view R,C,E as coefficient vectors of polynomials R(x),C(x),E(x), all of de-
gree ≤14. Since m4(x) dividesC(x), C(α) =C(α2) =C(α3) =C(α4) = 0, and so
R(α) = E(α),R(α2) = E(α2),R(α3) = E(α3) and R(α4) = E(α4).

Let R(α i) = Si for i= 1,2,3,4, and let

S =
(
S1 S2

S2 S3

)
.

Using this 2×2 matrix with entries in F16 we can correct 0, 1, or 2 errors as follows:

Case 0. No errors. Then E(x) = 0, so S = 0 (and in particular, the row rank of S
is 0).

Case 1. One error. Then E(x) = xi for some i, 0≤ i≤ 14; thus the matrix S is

S =
(

α i α2i

α2i α3i

)
.
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The second row of S is α i times the first row. So S has (row) rank 1. (We can also
verify that S has row rank 1 by taking the determinant of S. If S is non-zero but has
determinant 0, then it must have rank 1.)

Once we know that S has rank 1, we can correct the received vector R as follows.
We know that R(α) = α i for some exponent i. We find α i using Table 25.2, and then
change the coefficient of xi in R(x) to findC(x).

Case 2. Two errors. Then E(x) = xi + x j where i and j are the locations of the
errors. So

S =
(
S1 S2

S2 S3

)
=
(

α i+ α j α2i+ α2 j

α2i+ α2 j α3i+ α3 j

)
.

Then

S =
(

1 1
α i α j

)(
α i 0
0 α j

)(
1 α i

1 α j

)
,

a product of three invertible matrices. Thus det(S) �= 0, and S has row rank 2.
For this code, we see that the rank of S = the number of errors.
We find i and j in two slightly mysterious steps, as follows.
(a) Solve (

S1 S2

S2 S3

)(
σ2

σ1

)
=
(
S3

S4

)
.

in F16 for σ1 and σ2.
(b) Find the roots in F16 of p2(x) = x2 + σ1x+ σ2.
We can solve (a) because S is invertible, and we can use the inverse of S, which

for 2×2 matrices is easy to write down. There will be a unique solution.
The reason we want to solve (b) is that

Proposition 2. The roots in F16 of x2 + σ1x+ σ2 = 0 are α i and α j , the powers of
α corresponding to where the errors occur in R(x).

Proof. To see this, we examine the coefficients τ1 and τ2 of

g(x) = (x−α i)(x−α j) = x2 + τ1x+ τ2

in F16. Since α i and α j are the roots of g(x), we have

0 = g(α i) = α2i+ τ1α i+ τ2,

0 = g(α j) = α2 j + τ1α j + τ2.

Multiplying these equations by α i and α j , respectively, gives

0 = α ig(α i) = α3i+ τ1α2i+ τ2α i,

0 = α jg(α j) = α3 j+ τ1α2 j+ τ2α j.

Adding, we get

0 = α ig(α i)+ α jg(α j) = S3 + τ1S2 + τ2S1.
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Similarly, multiplying the equations by α2i and α2 j , respectively, and adding,
we get

0 = α2ig(α i)+ α2 jg(α j) = S4 + τ1S3 + τ2S2.

Writing these last two equations in matrix form (noting + =− in F2) gives

(
S1 S2

S2 S3

)(
τ2

τ1

)
=
(
S3

S4

)
.

Thus if we solve the equation in Step (a), we will find the coefficients of the poly-
nomial with α i and α j as roots. ��

The way to find the roots α i and α j of p2(x) = x2 + σ1x+ σ2 is by trial and
error, as before. There are two roots and only 15 candidates, so we evaluate p2(x) at
x= 1,α,α2,α3, . . . ,α14 until one of them, say α i, is found to give 0. Then x−α i is
a factor of p2(x). Dividing p2(x) by x−α i gives a quotient x−α j for some j; then
the other root of p2(x) is α j.

We can set up a table to systematically search for a root of p(x), starting from
x= α0 = 1:

x x2 σ1x σ2 sum
1 1 σ1 σ2

α α2 σ1α σ2

α2 α4 σ1α2 σ2
...

αk λ2 λ1 λ0 = σ2

αk+1 λ2α2 λ1α λ0 = σ2
...

continuing until we find a line where the sum of the x2,σ1x and σ2 entries is 0. This
approach to the search for a root is called a Chien search.

To sum up: in this code we send words of length 15, of which 7 are information
digits. If we receive a word in this code, we can decide whether 0, 1, or 2 errors
occurred, and correct them. We will be misled in case three or more errors occur in
a word.

Our next example is a code that corrects three errors in words of length 15. This
code also uses F16 as in our last example, and some more matrix theory.

We find the polynomial in F2[x] of smallest degree with α,α3, and α5 as roots.
Since (α5)3 = 1, the minimal polynomial of α5 is the irreducible polynomial
m5(x) = x2 + x+ 1. So the polynomial of smallest degree with α,α3, and α5 as
roots is m6(x) = m4(x)m5(x), a polynomial of degree 10. So in each word we are
allowed five information digits, w = (a14, . . . ,a10). Note that m6(x) has α2,α4 and
α6 as roots also, since the square of a root is also a root.
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Code V.

Encoding. For encoding, let w= (a14,a13,a12,a11,a10). We let w be the coefficients
of the polynomial

w(x) = a14x14 + . . .+a10x10.

Dividew(x) bym6(x) to get a remainder z(x) of degree≤9. ThenC(x) =w(x)+z(x)
is a multiple of m6(x) the unique polynomial of degree ≤ 14 with given a14, . . . ,a10

and having α,α2,α3,α4,α5 and α6 as roots.
We sendC, the vector of coefficients ofC(x).

Decoding. Suppose we receive the vector R. Let E(x) = R(x)−C(x). We assume
E(x) is a sum of at most three powers of x, the powers corresponding to the errors
in R.

For i = 1, . . .6, we compute R(α i). Since C(α i) = 0, R(α i) = E(α i). Set Si =
R(α i) for i= 1, . . . ,6 and consider the matrix

S =

⎛
⎝S1 S2 S3

S2 S3 S4

S3 S4 S5

⎞
⎠ .

We can determine the rank of S in a couple of ways.
One way is to do row operations on S to reduce it to echelon form. Then the

number of non-zero rows is the rank of S.
Another method, which works because of the special form of the matrix S, is to

look at the matrices

U1 = (S1),U2 =
(
S1 S2

S2 S3

)
,U3 = S,

the square submatrices of S in the upper left corner of S.
If S = 0, then S has rank 0;
If det(U1) �= 0 but det(U2) = 0, then S has rank 1;
If det(U2) �= 0 but det(U3) = det(S) = 0, then S has rank 2;
If det(U3) = det(S) �= 0, then S has rank 3.
Once the rank is determined, then the number of errors = the rank of S, and we

may find the error locations as follows.

Case 0. No errors. E(x) = 0. Then S = 0.

Case 1. One error. E(x) = xk. We look at R(α) = αk and decide that the single
error is at the coefficient of xi in R(x). We correct that coefficient to find the original
code wordC.

Case 2. Two errors. E(x) = x j + xk. We look at U2 =
(
S1 S2

S2 S3

)
and correct the

received word R(x) as in Code IV.
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Case 3. Three errors. E(x) = xi+ x j+ xk. Then

S =

⎛
⎝S1 S2 S3

S2 S3 S4

S3 S4 S5

⎞
⎠ =

⎛
⎝ α i+ α j+ αk α2i+ α2 j+ α2k α3i+ α3 j+ α3k

α2i+ α2 j+ α2k α3i+ α3 j+ α3k α4i+ α4 j+ α4k

α3i+ α3 j+ α3k α4i+ α4 j+ α4k α5i+ α5 j+ α5k

⎞
⎠

has rank 3, so is invertible.
Since S is invertible, we can solve uniquely the equation

S

⎛
⎝σ3

σ2

σ1

⎞
⎠=

⎛
⎝S4

S5

S6

⎞
⎠

for σ1,σ2,σ3, and then find the roots in F16 of

p(x) = x3 + σ1x2 + σ2x+ σ3 = 0.

As we showed above for Code IV, the three roots of this equation will be the three
powers α i,α j,αk of α corresponding to where the three errors are.

Example 2. Let p(x) = x3 + α6x2 + α8x+ α7. We find a root of p(x) by a Chien
search, using Table 25.2:

x x3 α6x2 α8x α7 sum
1 1 α6 α8 α7

= 1 α3 + α2 α2 + 1 α3 + α + 1 = α + 1 �= 0
α α3 α8 α9 α7

= α3 α2 + 1 α3 + α α3 + α + 1 = α3 + α2 �= 0
α2 α6 α10 α10 α7

= α3 + α2 α2 + α + 1 α2 + α + 1 α3 + α + 1 = α2 + α + 1 �= 0
α3 α9 α12 α11 α7

= α3 + α α3 + α2 + α + 1 α3 + α2 + α α3 + α + 1 = 0 .

So α3 is a root. Dividing x3 + α6x2 + α8x+ α7 by x−α3 yields a quotient q(x) =
x2 + α2x+ α4. Looking for roots of q(x) starting with x = α4 yields α7 as a root.
Then dividing q(x) by x−α7 yields a quotient of x−α12. So α3,α7 and α12 are the
three roots of p(x).

To sum up, we can decode in Code V by
(1) finding the row rank of the matrix S, which tells the number of errors (up to 3);

and
(2) finding where the errors are by the techniques described above.
We will be misled if four or more errors occurred in the transmission of an en-

coded wordC.
In the next section we will generalize these examples.
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Exercises.

1. Using Code III, encode the messages:
(i) (1,0,0,0);
(ii) (0,1,1,0);
(iii) (1,1,1,0).

2. Using Code III, decode the received words:
(i) (1,1,1,0,0,0,1);
(ii) (1,0,1,1,0,1,1);
(iii) (0,1,0,1,0,1,0).

3. Prove (using Theorem 15 of Section 9E) that any polynomial p(x) with coeffi-
cients in F2 has the property that (p(x))2 = p(x2).

4. Using Code IV, encode
(i) (1,1,1,0,0,1,1);
(ii) (0,0,1,1,0,1,1);
(iii) (1,0,1,0,1,0,1).

5. In Code IV, use the matrix S to decode:
(i) (110,001,110,010,110);
(ii) (101,011,110,010,110);
(iii) (110,010,111,110,110).

6. Using Code IV, decode:
(i) (011,001,011,101,100);
(ii) (011,110,101,110,110);
(iii) (100,100,100,100,100).

7. In F2[x]/(x4 + x+ 1) = F2[α] = F16, solve

(
α7 α14

α14 α8

)(
σ2

σ1

)
=
(

α8

α13

)

for σ1,σ2. Find the roots in F2[α] of x2 + σ1x+ σ2 = 0.

8. In Code IV, show that if p2(x) = x2 + σ1x+ σ2 is the polynomial whose coeffi-
cients come from the matrix equation

S
(

σ2

σ1

)
=
(
S3

S4

)
.

then
R(α)p2(x) = R(α)x2 +R(α2)x+(R(α3)+R(α)Rα2)).

Thus we may decode in Code IV by finding the roots in F16 of P(x) = R(α)p2(x).
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9. Define, by analogy to Code IV, a double error-correcting code using F8. How
many information digits will it have?

10. In Code IV, you receive R(x) = x14 +x11 +x9 +x8 +x4 +x2 +x+1, and assume
that at most two errors were made. What was C(x)?

11. In Code IV, let
R= (011,011,110,010,000).

Show that the corresponding polynomial p2(x) has no roots in F16. Hence R must
have resulted from at least three errors inC.

12. Solve in F16, ⎛
⎝α8 α α6

α α6 α2

α6 α2 α5

⎞
⎠
⎛
⎝σ3

σ2

σ1

⎞
⎠=

⎛
⎝α2

α5

α12

⎞
⎠

for σ3,σ2,σ1. Verify that

x3 + σ1x2 + σ2x+ σ3 = (x−α2)(x−α5)(x−α10).

13. Using Code V:
(i) encode (10111);
(ii) decode (101100110011100);
(iii) decode (101000010011110).

14. In Code V, show that if α i,α j and αk are all distinct then the matrix S is
nonsingular. Generalize to the n×n case where ai11 ,ai22 , . . . ,ainn are all distinct.

15. i) Show that in F8, every element other than 0 and 1 is a primitive root.
ii) For which n > 3 is it true that every element of F2n other than 0 and 1 is a

primitive root?

16. Does there exist an example of an irreducible polynomial p(x) in F2[x] such
that in Z2[x]/p(x) = F2[α], α is not a primitive element?

B. General BCH Codes

In this section we describe the general strategy for encoding and decoding in t-error-
correcting BCH codes.

Encoding. We begin with the field F = F2d . Let α be a primitive root of F. Then

α2d−1 = 1 and
F2d = {0,1,α,α2, . . . ,α2d−2}.

For a t-error correcting BCH code, we let m2t(x) be the polynomial of smallest
degree in F2[x] with α,α2, . . . ,α2t−1,α2t as roots. Suppose m2t(x) has degree e. As
long as e< 2d−2, we will have a non-trivial code.
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Message words are vectors w with (2d−1)− e components

w= (a2d−2,a2d−3, . . . ,ae).

To encode, we divide the corresponding polynomial

w(x) = a2d−2x
2d−2 +a2d−3x

2d−3 + . . .+aexe

by m2t(x):
w(x) = m2t(x)q(x)+ z(x)

Then z(x) has degree <e− 1, so no power of x occurs as a monomial in both w(x)
and z(x). We let C(x) = w(x)+ z(x). Then C, the vector of coefficients of C(x), is
the encoded message.

The polynomialC(x) is a multiple ofm2t(x), hence has the property thatC(αr) =
0 for r = 1,2, . . . ,2t.

Decoding. Suppose the encoded messageC(x) is sent through a noisy channel and
we receive R(x). We assume that R(x)−C(x) = E(x), the error polynomial, is a
polynomial

E(x) = xe1 + xe2 + . . .+ xer (r ≤ t)
in x with at most t nonzero coefficients.

To find m2t(x), we need to find

• r, the number of errors; and
• e1,e2, . . . ,er, the locations of the errors.

Once E(x) is found, thenC(x) = R(x)−E(x) is the encoded polynomial, and we
can recover the original message.

Determining r, the Number of Errors. Let

E(x) = xe1 + xe2 + . . .+ xer

be the error polynomial, with r ≤ t. Since the code is designed to correct up to t
errors, we set

S =

⎛
⎜⎜⎜⎝
S1 S2 . . . St
S2 S3 . . . St+1
...

...
St St+1 . . . S2t−1

⎞
⎟⎟⎟⎠

where S1 = R(α),S2 = R(α2), . . . ,S2t−1 = R(α2t−1),S2t = R(α2t).
Since E(x) = R(x)−C(x) andC(α i) = 0 for i= 1, . . . ,2t, it follows that

S1 = E(α) = αe1 + αe2 + . . .+ αer ,

S2 = E(α2) = α2e1 + α2e2 + . . .+ α2er ,

...

S2t = E(α2t) = α2te1 + α2te2 + . . .+ α2ter .
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We can determine the number of errors by determining the rank of S:

Proposition 3. If r is the number of errors, then S has rank r, and

Ur =

⎛
⎜⎜⎜⎝
S1 S2 . . . Sr
S2 S3 . . . Sr+1
...

...
Sr Sr+1 . . . S2r−1

⎞
⎟⎟⎟⎠ ,

the r× r matrix in the upper left corner of S (= the r× r principal minor of S) is
invertible.
Proof. For k = 1, . . . ,r, the k-th row of S is

(
Sk Sk+1 . . . Sk+(t−1)

)

where
Sl = α le1 + α le2 + . . .+ α ler .

If we set
v1 = (αe1 ,α2e1 , . . . ,αte1 )

v2 = (αe2 ,α2e2 , . . . ,αte2 )
...

vr = (αer ,α2er , . . . ,αter ),

then for each l, 1≤ l ≤ t, the l-th component of

α(k−1)e1v1 + . . .+ α(k−1)ervr

is
α(k−1)e1α le1 + . . .+ α(k−1)erα ler

= α(k−1+l)e1 + . . .+ α(k−1+l)er

= Sk+(l−1).

Thus the vector

(Sk Sk+1 . . . Sk+(t−1))

= α(k−1)e1v1 + α(k−1)e2v2 + . . .+ α(k−1)ervr.

Hence the row space of S is spanned by v1,v2, . . . ,vr, hence has dimension <r. Thus
the rank of S is <r.

To show that the rank of S = r, it suffices to show that Ur is invertible. For that
implies that the r rows of Ur are linearly independent, and hence that the first r rows
of S are linearly independent, which in turn implies that the rank of S is ≥r.

Now Ur may be written as the product

Ur = ADAt ,
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where

A =

⎛
⎜⎜⎜⎜⎜⎝

1 1 . . . 1
αe1 αe2 . . . αer

α2e1 α2e2 . . . α2er

...
α(r−1)e1 α(r−1)e2 . . . α(r−1)er

⎞
⎟⎟⎟⎟⎟⎠

,

is an r× r matrix, At is the transpose of A, and

D =

⎛
⎜⎝

αe1 · · · 0
...

. . .
...

0 . . . αer

⎞
⎟⎠

is an r× r diagonal matrix with nonzero diagonal entries. We illustrated the 2× 2
case in Code IV.

Since αe1 , . . . ,αer are distinct elements of F, the matrix A is invertible: in fact, it
is a Vandermonde matrix, whose determinant is

det(A) =± ∏
1≤i< j≤r

(αe j −αei).

��
Determining the Error Locations. Suppose r is the number of errors, and

E(x) = xe1 + . . .+ xer

is the error polynomial. For i = 1, . . . ,2r, let Si = R(α i), as before; then since
C(α i) = 0, Si = E(α i). So

S1 = αe1 + . . .+ αer ,

S2 = α2e1 + . . .+ α2er

...

S2r = α2re1 + . . .+ α2rer .

To find the locations e1, . . . ,er, of the errors, we solve the matrix equation
⎛
⎜⎜⎜⎝
S1 S2 · · · Sr
S2 S3 · · · Sr+1

...
Sr Sr+1 · · · S2r−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

σr
σr−1

...
σ1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
Sr+1

Sr+2
...
S2r

⎞
⎟⎟⎟⎠ . (25.1)

Then the polynomial zr+σ1zr−1 + . . .+σr has as its roots, αe1 , . . .αer , the powers of
α corresponding to the locations of the errors. To see this, consider the polynomial

σ(z) = (z−αe1) · . . . · (z−αer)

= zr + τ1zr−1 + . . .+ τr.
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Evaluate the last line at z= αei to get

0 = αrei + τ1α(r−1)ei + . . .+ τr−1αei + τr

Multiplying by αei yields

0 = α(r+1)ei + τ1αrei + . . .+ τr−1α2ei + τrαei

Doing this for i= 1, . . . ,t and adding the equations yields

0 = Sr+1 + τ1Sr+ . . .+ τr−1S2 + τrS1.

In the same way, multiplying by αkei for k ≥ 2 yields

0 = Sr+k+ τ1Sr+k−1 + . . .+ τrSk.

These equations, in matrix form, mean that⎛
⎜⎜⎜⎝
S1 S2 · · · Sr
S2 S3 · · · Sr+1

...
Sr Sr+1 · · · S2r−1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

τr
τr−1

...
τ1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝
Sr+1

Sr+2
...
S2r

⎞
⎟⎟⎟⎠ .

Comparing this last equation with equation (25.1) shows that
⎛
⎜⎜⎜⎝

σr
σr−1

...
σ1

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

τr
τr−1

...
τ1

⎞
⎟⎟⎟⎠

is a solution of the matrix equation above. Since Ur is invertible, we have found the
unique solution of (25.1).

Thus solving that matrix equation and then finding the roots of the polynomial

σ(z) = zr+ σ1zr−1 + . . .+ σr

finds the locations of the errors.
These methods enable the construction of BCH codes that correct any desired

number of errors.

Example 3. Suppose we wish to construct a four-error correcting BCH code using
F16. Then code words have 15 bits, c14, . . . ,c1,c0), and the corresponding polyno-
mialC(x) has α,α3,α5 and α7 as roots. The minimal polynomials of these elements
are as follows:

The minimal polynomial of α over F2 is x4 + x+ 1;
The minimal polynomial of α3 over F2 is x4 + x3 + x2 + x+ 1;
The minimal polynomial of α5 over F2 is x2 + x+ 1;
The minimal polynomial of α7 over F2 is x4 + x3 + 1.
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Since these four polynomials are irreducible over F2, the polynomial of smallest
degree with α,α3,α5 and α7 as roots is the product of these polynomials, namely

m(x) = x14 + x13 + x12 + . . .+ x+ 1 =
x15−1
x−1

.

Thus in encoding, we are allowed only one message bit. If the bit is a 1, then the
word polynomial is w(x) = x14, the encoded polynomialC(x) is m(x), and the code
word is C = (1,1,1, . . . ,1,1), while if the bit is a 0, then the encoded polynomial is
C(x) = 0 and the code word is C = (0,0,0, . . . ,0,0). This code is just the repetition
code described in Section 8E.

Thus for a code that corrects four errors, we need to use a larger field.

Example 4. We set up a 4-error correcting code using F32.
Since F32 has 31 non-zero elements, every element of F32 except 0 and 1 is

a primitive element. So if we take any irreducible polynomial m(x) in F2[x] of
degree 5, then the congruence class [x]m(x) will be a primitive root of F32. Let’s
use

m(x) = x5 + x2 + 1,

and let α = [x]m(x). Then α5 = α2 + 1, and α31 = 1. Using that relation, we can set
up a log table for F32.

Log table for F32

1 1 1 1
α α α α
α2 α2 α18 α +1
α3 α3 α2 α2

α4 α4 α5 α2 +1
α5 α2 +1 α19 α2 +α
α6 α3 +α α11 α2 +α +1
α7 α4 +α2 α3 α3

α8 α3 +α2 +1 α29 α3 +1
α9 α4 +α3 +α α6 α3 +α
α10 α4 +1 α27 α3 +α +1
α11 α2 +α +1 α20 α3 +α2

α12 α3 +α2 +α α8 α3 +α2 +1
α13 α4 +α3 +α2 α12 α3 +α2 +α
α14 α4 +α3 +α2 +1 α23 α3 +α2 +α +1
α15 α4 +α3 +α2 +α +1 α4 α4

α16 α4 +α3 +α +1 α10 α4 +1
α17 α4 +α +1 α30 α4 +α
α18 α +1 α17 α4 +α +1
α19 α2 +α α7 α4 +α2

α20 α3 +α2 α22 α4 +α2 +1
α21 α4 +α3 α28 α4 +α2 +α
α22 α4 +α2 +1 α26 α4 +α2 +α +1
α23 α3 +α2 +α +1 α21 α4 +α3

α24 α4 +α3 +α2 +α α25 α4 +α3 +1
α25 α4 +α3 +1 α9 α4 +α3 +α
α26 α4 +α2 +α +1 α16 α4 +α3 +α +1
α27 α3 +α +1 α13 α4 +α3 +α2

α28 α4 +α2 +α α14 α4 +α3 +α2 +1
α29 α3 +1 α24 α4 +α3 +α2 +α
α30 α4 +α α15 α4 +α3 +α2 +α +1
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To set up a four-error correcting code, we need to find the polynomial of smallest
degree with α,α3,α5 and α7 as roots. Using the table, we find that

the minimal polynomial of α is x5 + x2 + 1;
the minimal polynomial of α3 is x5 + x4 + x3 + x2 + 1;
the minimal polynomial of α5 is x5 + x4 + x2 + x+ 1;
the minimal polynomial of α7 is x5 + x3 + x2 + x+ 1.
The polynomial m(x) of smallest degree in F2[x] with α,α3,α5 and α7 as roots

is the product of these four minimal polynomials, and hence has degree 20. Since
encoded words based on F32 have 31 bits, we are allowed 11 bit information words,
w= (c30,c29, . . . ,c20). We encode by dividing the corresponding polynomial

w(x) = c30x30 + c29x29 + . . .+ c20x20

by m(x) to get the remainder polynomial z(x), then the encoded polynomial,C(x) =
w(x)+ z(x), will have α, . . . ,α8 as roots.

We note that α9 = α40 = (α5)8, so α9 is a root of the minimal polynomial of α5.
Thus the polynomial of smallest degree in F2[x] with α,α3,α5 and α7 as roots also
has α9 as a root. Thus this code, designed to correct four errors, in fact will correct
five errors.

In the same way, using F32 we can construct a BCH code with encoded words of
length 31 with 6 information bits and with up to 7 errors correctable. Or using F64,
BCH codes that send out encoded words of length 63 can contain:

30 information bits with up to 6 errors correctable;
24 information bits with up to 7 errors correctable;
18 information bits with up to 10 errors correctable;
16 information bits with up to 11 errors correctable;
10 information bits with up to 13 errors correctable; and
7 information bits with up to 15 errors correctable.
In each, encoding and decoding is as described in this section. The main variation

is the product of the minimal polynomials needed for encoding.
Finally, we note that there is a variant of BCH codes, known as Reed-Solomon

codes, that take messages that are elements of a finite field Fq, where q is usually a
power of 2, and transform the messages into encoded messages, polynomials with
coefficients in Fq that have powers of a primitive root of Fq as roots. Decoding is
similar to BCH codes except that we need to find not only the number and location of
the errors, but also the values of the errors, since the coefficients of the polynomials
are not just 0 or 1, but can be any element of the field Fq.

For q = 2n, an element of Fq corresponds to an n-tuple of elements of F2, so
correcting an error in Fq is the same as correcting a set of n consecutive binary bits.

This ability to correct errors in consecutive binary bits is particularly useful in
situations where most errors tend to arise in “bursts”, that is, when errors involve
a set of consecutive binary bits. Thus Reed-Solomon codes are commonly used in
satellite transmissions and in hard disk drives in computers. For compact disks, an
additional step of distributing the data around the disk improves the effectiveness of
the Reed-Solomon code against imperfections in the disk. The encoding is called a
cross-interleaved Reed-Solomon code (CIRC).
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Chapter 26
Factoring in Z[x]

In Section 17D we showed that if f (x) is a polynomial with coefficients in Z, then
one can determine in a finite number of steps the complete factorization of f (x) into
a product of irreducible polynomials in Q[x]. The method, Lagrange interpolation,
is quite slow in practice.

In this chapter, we’ll give another proof of the finiteness of the process of factor-
ing, and then describe some refinements of the proof that speed up the process.

A. Factoring Polynomials in Z[x]

We showed in Section 15F that given a polynomial f (x) in C[x], there is some real
number B> 0 so that for every complex number zwith |z|> B, then | f (z)|> 0. This
implies that if r is a root of f (x), then |r| ≤ B; that is, there is a bound on the size of
the roots of the polynomial f (x).

From a bound on the roots of f (x), we obtain a bound on the coefficients of any
polynomial in C[x] that divides f (x):

Proposition 1. Let f (x) in C[x] be a monic polynomial of degree n, and suppose
B> 0 is some real number so that every root r in C of f (x) satisf es |r| ≤ B. Let

g(x) = xd +b1xd−1 + . . .+bd−1x+bd

be a degree d factor of f (x). Then for each k with 1≤ k≤ d,

|bk| ≤
(
d
k

)
Bk.

Proof. If r1, . . . ,rd are the complex roots of g(x), then

g(x) = (x− r1)(x− r2) · · · (x− rn).

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 531
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When we multiply out the right hand side and collect coefficients of the powers of
x, we see that up to a sign, the coefficient bk is the sum of all products of k of the
roots r1, . . . ,rd . For example,

−b1 = r1 + r2 + . . .+ rd,
b2 = r1r2 + r1r3 + r2r3 + r1r4 + r2r4 + · · ·+ rd−1rd

...

(−1)dbd = r1r2r3 · . . . · rd .
In general, for each k with 1≤ k ≤ d,

(−1)kbk = ∑
1≤i1<i2<...<ik≤d

ri1ri2 · . . . · rik .

Taking absolute values of both sides and applying the Triangle Inequality,

|bk| ≤ ∑
1≤i1<i2<...<ik≤d

|ri1ri2 · . . . · rik |.

Each root has absolute value ≤B, hence each product in this last sum is ≤Bk. There
are

(d
k
)

products in the sum, since there are
(d
k
)

ways to choose k roots out of the set
of d roots r1,r2, . . . ,rd . Thus

|bk| ≤
(
d
k

)
Bk

for all k. ��
Since there is a bound on the coefficients of any factor of degree d of f (x),

we have

Theorem 2. Finding a factorization in Q[x] of a monic polynomial f (x) of degree n
in Z[x], or showing that f (x) is irreducible in Q[x], takes fin tely many steps.

Proof. Let f (x) be a monic polynomial of degree n in Z[x], and let B be a bound on
the roots of f (x).

If f (x) factors in Q[x], then f (x) has as a factor a monic irreducible polynomial
g(x) of degree d for some d ≤ n/2 in Z[x] (an easy exercise in Chapter 14). Now
for each d with 1 ≤ d ≤ n/2 and each k with 1 ≤ k ≤ d, there is a finite number of
integers bk that satisfy

|bk| ≤
(
d
k

)
Bk,

hence for each d, there is a finite number of monic polynomials

g(x) = xd +b1xd−1 + . . .+bd−1x+bd
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in Z[x] such that for k = 0,1, . . . ,d−1,

|bk| ≤
(
d
k

)
Bk.

Thus for each d with 1≤ d ≤ n/2, only finitely many monic polynomials of degree
d are eligible to be factors of f (x). If any one of them, call it g(x), divides f (x), then
f (x) = g(x)h(x) and we have factored f (x). If none of the eligible polynomials of
degree d divides f (x) for every d ≤ n/2, then f (x) is irreducible, and we’ve found
that out by finitely many trial divisions. That completes the proof. ��

Note: we assumed that our polynomial was a monic polynomial with integer
coefficients. We observed in Section 16A that given an arbitrary polynomial in Q[x],
we can multiply the polynomial by some rational number to make it a polynomial
in Z[x] that is primitive (the greatest common divisor of its coefficients is 1), but it
need not be monic. But if

h(x) = a0xn+a1xn−1 + . . .+an−1x+an

is a polynomial with integer coefficients, then, as noted in Section 16A, the
polynomial

g(y) = an−1
0 h(

y
a0

) = yn+a1yn−1 +a2a0yn−2 + . . .+an−2
0 an−1y+an−1

0 an

is a monic polynomial with integer coefficients, and h(x) will factor exactly the same
way g(y) will. So if we can factor every monic polynomial in Z[x] in finitely many
steps, the same will be true for every polynomial in Q[x].

Theorem 2 shows that factoring in Z[x] is a f nite process. That does not mean it
is a feasible process. And in fact, the argument in Theorem 2 gives a process that
in its naive application is almost impossibly long, because there will be so many
polynomials eligible to be factors.

In the remainder of this chapter we present results that refine these ideas to make
the factoring process more feasible. The refinements involve two ideas.

One is to find a better bound for the coefficients of polynomial divisors of a given
polynomial.

The other is to find an efficient way to factor a polynomial modulo M for M a
suitably large modulus.

In particular, suppose we are trying to find an irreducible factor g(x) of degree
d of a monic polynomial f (x) of degree n. If we know that the coefficients of g(x)
are all bounded in absolute value by B, and if h1(x),h2(x), . . . ,hk(x) are all the ir-
reducible degree d factors of f (x) modulo M where M ≥ 2B, then the number of
eligible polynomials g(x) of degree d that might divide f (x) is k, rather than some
power of B.

Example 1. To see how these ideas might apply, suppose we consider

f (x) = x6−7x5 + 16x4 + 143x3−939x2 + 786x−144,
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and we find that for this polynomial, B = 339 is a bound on the coefficients of any
degree 3 factor of f (x).

It turns out that

f (x)≡ (x3 + 2x+ 1)(x3 + 3x2 + 4x+ 1) (mod 5),

a product of two polynomials that are irreducible modulo 5. Thus we know that if
f (x) factors in Z[x], it must factor into the product of two irreducible polynomials
of degree 3.

If g(x) = x3 + ax2 + bx+ c is a factor of f (x) in Z[x], and g(x) ≡ x3 + 2x+ 1
(mod 5), then we know only that |a| ≤ 339, |b| ≤ 339 and |c| ≤ 339. Since 335/5 =
67, there are 135 numbers awith a≡ 0 (mod 5) and−339≤ a≤ 339, and a similar
number of possibilities for b and c, and so there are approximately 1353 = 2460375
eligible polynomial factors of f (x) in Z[x]. So finding a factor of f (x), or showing
that f (x) has no factor, would be rather time-consuming.

On the other hand, suppose we find that

f (x) ≡ (x3 + 660x+ 6)(x3 + 676x2 + 399x+ 659) (mod 683),

a product of irreducible polynomials mod 683, a prime number larger than 2 ·339. If
f (x) factors in Z[x], then we know that f (x) must be the product of two irreducible
polynomials of degree 3, and one of them, call it g(x), must be congruent modulo
683 to the polynomial x3 + 660x+ 6. But if g(x) = x3 +ax2 +bx+ c, we also know
that |a| ≤ 339, |b| ≤ 339 and |c| ≤ 339. The only polynomial g(x) in Z[x] that satis-
fies those bounds on a,b and c and is congruent modulo 683 to x3 + 660x+ 6 is the
polynomial

g(x) = x3 +(660−683)x+ 6 = x3−23x+ 6.

A single trial division shows that g(x) does divide f (x):

f (x) = (x3−23x+ 6)(x3−7x2 + 39x−24).

Example 2. Now consider

f (x) = x6−31x5−105x4 + 757x3 + 790x2−176x+ 97.

Now f (x) factors as

f (x)≡ (x2 + x+ 1)(x4 + x+ 1) (mod 2),

a product of polynomials that are irreducible modulo 2. (It factors in a similar way
modulo 3, 5, 7, 11 and 13.) Thus if f (x) factors in Z[x], it must factor into the product
of an irreducible polynomial g(x) of degree 2 times an irreducible polynomial of
degree 4. It happens that a bound on the coefficients of a degree 2 factor of f (x) is
B= 2236.

We factor f (x) modulo 4513, a prime number > 2 ·2236, and find that

f (x) ≡ (x4 + 671x3 + 559x2 + 516x+ 706)(x2+ 1608x+ 1285) (mod 4513),
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a product of polynomials that are irreducible modulo 4513. Thus if g(x) is an ir-
reducible factor in Z[x] of f (x) of degree 2, then g(x) must be congruent modulo
4513 to

x2 + 1608x+ 1285.

Since the coefficients of g(x) are bounded by 2236, the only possibility for g(x) in
Z[x] is g(x) = x2 + 1608x+ 1285.

But a single trial division shows that g(x) doesn’t divide f (x).
Thus f (x) has no irreducible factor of degree 2, and therefore must be irreducible

in Z[x].
(It turns out that f (x) is irreducible modulo 29, hence had to be irreducible

in Z[x].)

Exercises.

1. Show that a monic polynomial in Z[x] can be factored completely into irreducible
polynomials in Q[x] in finitely many steps.

B. Bounding Roots and Coeffic ents of Factors

Let
f (x) = xn+a1xn−1 + . . .+an−1x+an

be a monic polynomial with integer coefficients. In this section we show how to
obtain an upper bound on the coefficients of any monic factor g(x) of f (x) in Z[x].

Given Proposition 1 in Section A, one way to find such an upper bound is to find
an upper bound on the norms of the complex roots of f (x) (where for a complex
number α = a+bi, the norm |α|=√

a2 +b2).
In Section 15F we found that

B0 = 1 + |a1|+ . . .+ |an|
is an upper bound on the roots of f . In this section, following Polya and Szego
(1972), p, 106, we will find a bound on the roots that is almost always smaller than
B0. We will also state (but not prove) a bound on the coefficients, due to Mignotte
(1974), and compare Mignotte’s bound with the coefficient bound obtained from the
root bound.

We begin with an auxiliary result.

Proposition 3. Let

p(x) = xn− (p1xn−1 + . . .+ pn−1x+ pn)

in R[x] where p1, p2, . . . , pn ≥ 0 with at least one p j > 0. Then p(x) has a unique
positive real root r. Moreover, p(x) < 0 for 0 < x< r and p(x) > 0 for x> r.
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Proof. Write

h(x) =
p(x)
xn

= 1−q(x)
where

q(x) =
p1

x
+
p2

x2 + . . .+
pn−1

xn−1 +
pn
xn

Since all of p1, . . . , pn are non-negative and q(x) �= 0, it is clear that for x close to 0,
q(x) is close to +∞, while for x sufficiently large, q(x) is close to 0. Moreover, for
x> 0, the derivative of q(x),

q′(x) =−
( p1

x2 + 2
p2

x3 + . . .+(n−1)
pn−1

xn
+n

pn
xn+1

)
,

is the negative of a sum of terms ≥0, so is always negative for x > 0. Thus q(x) is
monotone decreasing as x increases from 0 to +∞.

Then h(x) = 1− q(x) is monotone increasing, is negative for x near 0, and ap-
proaches 1 as x goes to infinity. Hence h(x) has a unique positive real root, c. Then
c is the unique positive real root of p(x) = xnh(x). Moreover, h(x), hence also p(x),
is <0 for 0 < x< r, and is >0 for x> r. ��

From this result, we obtain a bound on the roots of any polynomial in C[x]:

Proposition 4. Let

f (x) = xn+a1xn−1 + . . .+an−1x+an

be a polynomial in C[x]. Let p1 = |a1|, p2 = |a2|, . . . , pn = |an| and let

p(x) = xn− (p1xn−1 + . . .+ pn−1x+ pn).

If c is the unique positive real root of p(x), then for every complex root α of f (x),
|α| ≤ c.
Proof. Suppose f (α) = 0. Then

αn =−(a1αn−1 + . . .+an−1α +an),

so by the triangle inequality,

|α|n = |αn|= |a1αn−1 + . . .+an−1α +an|,
≤ |a1||αn−1|+ . . .+ |an−1||α|+ |an|,
= p1|α|n−1 + . . .+ pn−1|α|+ pn.

Setting |α|= r, this gives

rn ≤ p1rn−1 + . . .+ pn−1r+ pn,

hence p(r)≤ 0. Thus |α|= r ≤ c by the last proposition. ��
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From these last two propositions we can get several bounds on the norms of the
complex roots of

f (x) = xn+a1xn−1 + . . .+an−1x+an,

such as

B1 = max
1≤k≤n

{
(

2n−1(n
k
) |ak|

)1/k

,

or
B2 = max

1≤k≤n
{2(|ak|)1/k},

or
B3 = max

1≤k≤n
{(n|ak|)1/k}.

All of these may be shown to be bounds by showing that they are larger than the
unique positive root c of the related real polynomial p(x) in Proposition 4. For ex-
ample,

Proposition 5. Given f (x), p(x) as in Proposition 4 and B2 as above, then B2 ≥ c
where c is the unique positive root of p(x).

Proof. Letting B2 = b, we have b≥ 2|ak|1/k for all k, so

|ak| ≤ bk

2k
.

Hence

p(b) = bn− (|a1|bn−1 + |a2|bn−2 + . . .+ |ak|bn−k+ . . .+ |an|)

≥ bn− (
b
2
bn−1 + . . .+

bk

2k
bn−k+ . . .+

bn

2n
)

= bn(1− (
1
2

+
1
22 + . . .+

1
2n

)) > 0.

So B2 = b> c by Proposition 3. ��
For any particular polynomial f (x), we can use the unique positive root c of p(x)

as a bound on the norms of the roots of f (x).
To find c, we could use the method of bisection on p(x) or Newton’s method on

the function h(x) = p(x)/xn. For bisection, find a0,b0 with p(a0) < 0, p(b0) > 0,
then look at p((a0 +b0)/2). If p((a0 +b0)/2) > 0, let a1 = a0 and b1 = (a0 +b0)/2
and repeat. If p((a0 + b0)/2) < 0, let a1 = (a0 + b0)/2 and b1 = b0 and repeat.
Bisection is slow but reliable.

For Newton’s method, start with x0 with h(x0) = p(x0)/xn0 < 0, let x1 = x0 −
h(x0)/h′(x0) and repeat. One can show that starting Newton’s method at any x0 with
0 < x0 ≤ c will yield a sequence of approximations {xn} that converges to c. (The
proof is a calculus exercise that we omit).
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Example 3. Let

f (x) = x6−7x5 + 16x4 + 143x3−939x2 + 786x−144.

Then

h(x) = 1−
(

7
x

+
16
x2 +

143
x3 +

939
x4 +

786
x5 +

144
x6

)

and h(1) < 0. After 14 iterations of Newton’s method, starting with x0 = 1, we find
that

c= 10.62080617.

By comparison, the coefficients of f (x) satisfy

|a1|= 7,

|a2|1/2 = |16|1/2 = 4,

|a3|1/3 = |143|1/3 = 5.22,

|a4|1/4 = |939|1/4 = 5.54,

|a5|1/5 = |786|1/5 = 3.79,

|a6|1/6 = |144|1/6 = 2.29,

so the three bounds B1,B2,B3 are

B1 = max
1≤k≤n

{
(

2n−1(n
k
) |ak|

)1/k

= 73.5,

B2 = max
1≤k≤n

{2(|ak|)1/k}= 14;

B3 = max
1≤k≤n

{(n|ak|)1/k}= 42.

The bound B0 we found in Chapter 15F is

B0 = 1 + 7 + 16 + 143+939+786+144 = 2036.

In Example 3, the boundB2 = 2max1≤k≤n{|a1/k
k |}was the best of the four bounds

B0,B1,B2,B3. It is worth observing that B2 is a reasonably good bound for every
polynomial.

Proposition 6. Let

f (x) = xn+a1xn−1 + . . .+an−1x+an

be a polynomial in C[x]. Let p1 = |a1|, p2 = |a2|, . . . , pn = |an| and let

p(x) = xn− (p1xn−1 + . . .+ pn−1x+ pn).
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Let c be the unique positive real root of p(x). Then

B2 = 2 max
1≤k≤n

{|a1/k
k |} ≤ 2c.

For Example 3, c= 10.62... and B2 = 14 < 2c.

Proof. Let B2 = 2|al|1/l = 2p1/l
l . Then pl = Bl2/2l. We have

0 = p(c) = cn− p1cn−1− p2cn−2− . . .− plcn−l− . . . pn
≤ cn− plcn−l
= cn−l(cl− pl)

= cn−l(cl− Bl2
2l

).

So 2lcl−Bl2 ≥ 0, hence B2 ≤ 2c, as we wished to show. ��
Bounding roots. The bound B2 or the bound c can complement Descartes’ Ratio-
nal Root Theorem to limit the number of possibilities for integer roots of a monic
polynomial with integer coefficients.

Example 4. Let

f (x) = x6−7x5 + 16x4 + 143x3−939x2 + 786x−144,

the polynomial of Example 3. Descartes’ Theorem shows that any integer root of
f (x) must divide 144. But every root of f (x) must have norm≤c where c= 10.62....
Thus the possible integer roots of f (x) are 1, 2, 3, 4, 6, 8, 9 and their negatives, a total
of 14 possibilities, rather than the 30 possibilities given by Descartes’ Theorem.

Example 5. For a more extreme example, let

f (x) = x18 + 5x10 + 293959.

For the bound B2, we have

B2 = 2(293959)1/18 = 2
√

30 < 11.

Thus among the 2000 divisors of 293959 that are possible roots by Descartes’ The-
orem, only 18 of them (1, 2, 3, 4, 5, 6, 8, 9, 10 and their negatives) have absolute
value < 11.

Bounds on coefficien s. From a bound B on the roots of f (x), we obtained a bound
on the coefficients of any polynomial that divides f (x) in C[x] in Proposition 1,
section A, namely, if

g(x) = xd +b1xd−1 + . . .+bd−1x+bd
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is a monic degree d factor of f (x), then for each k with 1≤ k ≤ d,

|bk| ≤
(
d
k

)
Bk.

Mignotte (1974) obtained a bound on the coefficients of a polynomial factor of
f (x) that does not use a root bound as in Proposition 1.

For a polynomial

f (x) = a0xn+a1xn−1 + . . .+an−1x+an

with integer coefficients, define the norm of f to be

‖ f‖= (|a0|2 + |a1|2 + . . .+ |an|2)1/2,

the length of the vector of coefficients (a0,a1, . . . ,an) in Cd+1. Mignotte shows
that if

g(x) = b0xd +b1xd−1 + . . .+bd−1x+bd
in Z[x] is a factor of f (x), so that g(x)g1(x) = f (x) for g1(x) in Z[x], then for each k
with 0≤ k ≤ e,

|bk| ≤
(
d
k

)
‖ f‖.

Example 6. Let f (x) = x10 + 4x7−2x3 + 5x−1. Then

‖ f‖= (1 + 16 + 4 + 25+1)1/2 =
√

47.

If f (x) = g(x)g1(x) in Z[x] where

g(x) = b0x5 +b1x4 +b2x3 +b3x2 +b4x+b5

in Z[x], then we can assume g(x), g1(x) are monic (so that b0 = 1), and b5 = 1 or−1.
Then Mignotte’s bound implies that the other coefficients of g(x) must satisfy

|b1| ≤
(

5
1

)√
47 < 35;

|b2| ≤
(

5
2

)√
47 < 69;

|b3| ≤
(

5
3

)√
47 < 69;

|b4| ≤
(

5
4

)√
47 < 35

By comparison, the unique positive root c of the corresponding polynomial h(x)
is c= 1.7966. So for a monic factor of degree 5 of f (x) we have
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|b1| ≤
(

5
1

)
c< 9;

|b2| ≤
(

5
2

)
c2 < 33;

|b3| ≤
(

5
3

)
c3 < 58;

|b4| ≤
(

5
4

)
c4 < 52.

Example 7. Let

f (x) = x6−7x5 + 16x4 + 143x3−939x2 + 786x−144.

Then

‖ f‖= (1 + 72 + 162 + 1432 + 9392 + 7862 + 1442)1/2 =
√

15410087 = 1241.4.

In Example 1 we found that a bound on the absolute values of the roots of f is
c= 10.62.

Suppose we seek a factor of f (x) of the form

g(x) = x3 +b1x2 +b2x+b3.

Then comparing the coefficient bounds from the root bound and from the Mignotte
norm, we have (rounding up to the next integer),

|bk|<
(3
k
)‖ f‖ (3

k
)
ck

|b1|< 3725 32
|b2|< 3725 339
|b3|< 1242 1198

(Note that in fact, |b3| ≤ 144 since b3 is an integer that divides 144).

These examples suggest that the root bound approach may be better for bounding
coefficients of high powers of x in a factor g(x) of a polynomial f (x), while the
Mignotte norm bound may be better for bounding coefficients of low powers of x.

The Mignotte bound gives a quickly computed uniform bound on all of the coef-
ficients of a factor g(x) of degree d. The largest binomial coefficient

(d
k
)

occurs with
k = d/2 or k = (d−1)/2. Then for g(x) of even degree, Mignotte’s bound yields a
uniform bound on all the coefficients of g(x), namely,

|bk|<
(
d
d/2

)
‖ f‖

for all k = 1 · · ·d. Using Stirling’s formula from calculus, one can replace
( d
d/2

)
by

the slightly larger approximation (2d)/
√

(d/2)π . Thus we may use
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Bu =
2d√

(d/2)π
‖ f‖

as a uniform bound on the coefficients of a degree d factor of the polynomial f (x)
in Z[x] when d is even. The same bound also works for d odd.

Exercises.

2. For
f (x) = x6−7x5 + 16x4 + 143x3−939x2 + 786x−144,

find the uniform bound Bu on coefficients of a possible factor of degree 3, and com-
pare it to the coefficient bound in Example 7.

3. Let
f (x) = x6 + 3342x5 + 1.

Suppose we look for a factor g(x) of f (x) of degree 3,

g(x) = x3 +b1x2 +b2x+b3.

(i) Estimate the root bound c on f , and find the bound B2.
(ii) What is the Mignotte bound ‖ f‖?
(iii) Compare the bounds on b1,b2 and b3 given by the root bound c, the root

bound B2 and the Mignotte bound.

4. Let
f (x) = x6 + x5 + 5x+ 3342.

Suppose we look for a factor g(x) of f (x) of degree 3,

g(x) = x3 +b1x2 +b2x+b3.

(i) Estimate the root bound c on f and the bound B2.
(ii) What is the Mignotte bound ‖ f‖?
(iii) Compare the bounds on b1,b2 and b3 given by the root bounds c and B2 and

by the Mignotte bound.

5. If we seek a monic degree 1 factor x−b of a monic polynomial f (x) in Z[x], then
the Mignotte bound gives a bound on |b|, but we also have a bound on |b| given by
the constant term | f (0)| of f . How do the two bounds compare?

6. Let n= 2d and f (x) = xn+a1xn−1 + . . .+a+n, and suppose

max{|ak|1/k}= |a1| ≥ 2.

Then |ak| ≤ |a1|k.
(i) Show that ‖ f‖ ≤ |a1|d+1.
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(ii) Show that if B= 2max{|ak|1/k|= 2|a1|, then
(
d
k

)
Bk ≥

(
d
k

)
‖ f‖

for all k ≤ d for which
|a1| ≤ 2

k
d+1−k .

(iii) Show that if |a1|= 2 and |ak| ≤ 2k for k> 1, then for B= 2max{|ak|1/k|,
(
d
k

)
Bk ≥

(
d
k

)
‖ f‖

for d+1
2 ≤ k ≤ d, and hence the Mignotte bound is better than the bound obtained

from B for almost half of the coefficients of a degree d factor of f (x).

C. Berlekamp’s Factoring Algorithm

We showed in Section A that we can factor any monic polynomial f in Z[x], or
show that f is irreducible, by choosing a large enough modulus M and factoring f
modulo M. In section B we found a bound B on the coefficients of a factor of f , so
that if we factor f modulo M where M > 2B, then a factorization modulo M yields
at most one possible factorization of f in Z[x]. So the factoring problem is reduced
to factoring the polynomial f modulo M.

In this section we show how to factor a polynomial modulo p for p a prime. The
clever algorithm was published by E. R. Berlekamp in 1967. It combines Fermat’s
Theorem and elementary linear algebra.

First, a word on notation. Let p be a prime number, and denote the field of p
elements, that is, the set of congruence classes of integers modulo p, by Fp. As
usual, we’ll use the integers 0,1,2, . . . , p− 1 to denote the elements of Fp–that is,
we’ll denote the elements of Fp by integers that represent the congruence classes of
Fp, rather using the congruence classes themselves. Thus the polynomial x2 +2x+2
in F3[x] really means [1]3x2 +[2]3x+[2]3. As long as we recall that all coefficients
of polynomials are meant “mod p”, there should be no confusion.

Suppose we want to factor a polynomial f (x) of degree d in Fp[x]. Just as with
numbers, we can factor f (x) by trial division, because there are only finitely many
polynomials of degree≤d/2 in Fp[x], and we can simply check them all as possible
factors of f (x), using the division theorem.

However, as with trial division of natural numbers, trial division as a factoring
method for polynomials in Fp[x] is impractical except when p is small and the poly-
nomial to be factored has small degree. To get an idea of practicality, if we have
a possibly irreducible polynomial f of degree 16 in F7[x], then we would need to
divide f by all of the 861580 irreducible polynomials of degree ≤8 in F7[x] to be
sure that f is irreducible.
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Thus we need a better idea. Berlekamp’s algorithm answers that need.
The idea behind Berlekamp’s algorithm for factoring f (x) of degree d in Fp[x]

is that if we can find some nonconstant polynomial h(x) of degree ≤d so that f (x)
divides h(x)p−h(x), then we will obtain a factorization of f (x). More precisely,

Theorem 7. Given f (x) in Fp[x] of degree d > 1, let h(x) in Fp[x] be a polynomial
of degree≥1 and ≤d such that f (x) divides h(x)p−h(x). Then

f (x) = gcd( f (x),h(x)) ·gcd( f (x),h(x)−1) · · ·gcd( f (x),h(x)− (p−1))

is a nontrivial factorization of f (x) in Fp[x].

Proof. Suppose f (x) divides h(x)p−h(x). We use two facts.
First, by Fermat’s Theorem, the polynomial up− u has p roots in Fp, namely

u= 0,1,2, . . . , p−1. Thus by the Root Theorem, up−u factors in Fp into

up−u= u(u−1)(u−2) · · ·(u− (p−1)).

Setting u= h(x) yields

h(x)p−h(x) = h(x)(h(x)−1)(h(x)−2) · · ·(h(x)− (p−1))

in Fp[x]. This is a factorization of h(x)p− h(x) into a product of pairwise coprime
polynomials in Fp[x].

Second, if a and b are coprime polynomials in F[x], F a field, then for every
polynomial f in F[x],

gcd( f ,ab) = gcd( f ,a) ·gcd( f ,b).

By induction, this fact generalizes to the case of the greatest common divisor of f
and more than two pairwise coprime factors. Now since f (x) divides h(x)p−h(x),
we have that

f (x) = gcd( f (x),h(x)p−h(x)).
Since h(x)− r and h(x)− s are coprime for r �= s, we have:

f (x) = gcd( f (x),h(x)p−h(x))
= gcd( f (x),(h(x)(h(x)−1) · · ·(h(x)− (p−1)))
= gcd( f (x),h(x)) ·gcd( f (x),h(x)−1) · · ·gcd( f (x),h(x)− (p−1)).

Since deg(h(x)− s) < deg f (x), the greatest common divisor of f (x) and h(x)− s
cannot be f (x) for any s. So the factorization

f (x) = gcd( f (x),h(x)) ·gcd( f (x),h(x)−1) · · ·gcd( f (x),h(x)− (p−1))

must involve only polynomials of degree ≤d = deg f (x), and hence is a nontrivial
factorization of f (x). ��
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In the factorization of Theorem 7, the greatest common divisors may be found
very efficiently by Euclid’s algorithm in Fp[x].

Example 8. In F2[x], let f (x) = x5 +x+1. It turns out, as we shall see below, that for
h(x) = x4 + x3 + x, then f (x) divides h(x)2−h(x) = x8 + x6 + x4 + x3 + x2. (In fact,
x8 + x6 + x4 + x3 + x2 = (x5 + x+ 1)(x3 + x).) So f (x) = gcd( f (x),h(x))gcd( f (x),
h(x)−1).

To find the two greatest common divisors, we use Euclid’s algorithm:
First, we find that gcd( f (x),h(x)−1) = x2 + x+ 1:

x5 + x+ 1 = (x4 + x3 + x+ 1)(x+ 1)+ (x3+ x2 + x);

x4 + x3 + x+ 1 = (x3 + x2 + x)x+(x2 + x+ 1);

x3 + x2 + x= (x2 + x+ 1)x.

So
gcd(x5 + x+ 1,x4 + x3 + x+ 1) = x2 + x+ 1.

Similarly, we find that

gcd( f (x),h(x)) = gcd(x5 + x+ 1,x4 + x3 + x) = x3 + x2 + 1.

Then the factorization of f (x) is

x5 + x+ 1 = (x3 + x2 + 1)(x2 + x+ 1).

To factor f (x) in Fp[x] by the strategy of Theorem 7, then, we seek a polynomial
h(x) of degree e, where 1≤ e< d, such that f (x) divides h(x)p−h(x). This is done
by setting up and solving a set of linear equations for the coefficients of h(x), in the
following way.

Let
h(x) = b0 +b1x+b2x2 ++bd−1xd−1,

where b0,b1, . . . ,bd−1 in Fp are coefficients to be determined. By Proposition 12 of
Section 9E, we have

h(x)p = bp0 +bp1x
p+bp2x

2p+ . . .+bpd−1x
p(d−1)

By Fermat’s Theorem, bp = b for all b in Fp, and so

h(x)p = b0 +b1xp+ . . .+bd−1x(d−1)p = g(xp). (26.1)

To find the remainder when we divide h(x)p by f (x), we find xip mod f (x) for
i= 0,1, . . . ,d−1:

xip = f (x)qi(x)+ ri(x),

with degri(x) < d = deg f (x). Hence

xip = ri(x) (mod f (x)),
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and so (26.1) yields

h(x)p = b0r0(x)+b1r1(x)+ . . .+bd−1rd−1(x) (mod f (x)).

Then f (x) divides h(x)p−h(x) if and only if f (x) divides the polynomial

b0r0(x)+b1r1(x)+ . . .+bd−1rd−1(x)− [b0 +b1x+ . . .+bd−1xd−1].

But this polynomial has degree ≤d− 1, and so is divisible by f (x) (which has de-
gree d) if and only if it is the zero polynomial in Fp[x]. This last condition is the
condition we will use to determine the coefficients b0,b1, . . . ,bd−1 of h(x). Namely,
b0,b1, . . . ,bd−1 must satisfy

b0r0(x)+b1r1(x)+ . . .+bd−1rd−1(x)− [b0 +b1x+ . . .+bd−1xd−1] = 0. (26.2)

If we collect the coefficients of 1,x,x2, . . . ,xd−1 in equation (26.2), we get d
simultaneous linear equations in the d unknowns b0,b1, . . . ,bd−1 where the coeffi-
cients in Fp of the b j’s in the equations are the coefficients of the (known) remainder
polynomials r j(x).

Solving this set of equations gives elements b0, . . . ,bd−1 which are coefficients
of a polynomial h(x) such that f (x) divides h(x)p−h(x).
Example 9. Let f (x) = x5 + x+ 1 in F2[x]. We find the remainder polynomials
ri(x) = x2i mod f (x), obtained by dividing x2i by f (x), i= 0, . . . ,4, as follows:

r0(x) = 1,

r1(x) = x2,

r2(x) = x4

For r3(x) : x6 = x f (x)+ (x2 + x), so r3(x) = x2 + x.

For r4(x) : x8 = x3 f (x)+ (x4 + x3), so r4(x) = x4 + x3.

The equation (26.2) becomes

0 = b0 +b1x2 +b2x4 +b3(x2 + x)+b4(x4 + x3)− (b0 +b1x+b2x2 +b3x3 +b4x4).

Collecting coefficients of 1,x,x2,x3 and x4, we have:

power coefficients
1 0 = b0−b0

x 0 = b3−b1

x2 0 = b1 +b3−b2

x3 0 = b4−b3

x4 0 = b2 +b4−b4.
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These reduce to b2 = 0,b1 = b3 = b4, b0 arbitrary. In order that h(x) have degree≥1,
we must choose b1 = b3 = b4 = 1. We then have two choices for h(x), corresponding
to b0 = 0 and b0 = 1:

g0(x) = x4 + x3 + x

and
g1(x) = x4 + x3 + x+ 1 = g0(x)+ 1.

Then, as we showed in Example 6,

f (x) = gcd( f (x),g0(x)) ·gcd( f (x),g1(x))

= (x3 + x2 + 1)(x2 + x+ 1).

It is convenient to put equation (26.2) into matrix form. Let I denote the d × d
identity matrix,

I =

⎛
⎜⎜⎜⎝

1 0 · · · 0
0 1 · · · 0
...

...
0 0 . . . 1

⎞
⎟⎟⎟⎠ ,

let
ri(x) = ri,0 + ri,1x+ ri,2x2 + . . .+ ri,d−1xd−1

for each i, and let

Q =

⎛
⎜⎜⎜⎝

r0,0 r0,1 · · · r0,d−1

r1,0 r1,1 · · · r1,d−1
...

...
...

rd−1,0 rd−1,1 · · · rd−1,d−1

⎞
⎟⎟⎟⎠

be the matrix whose rows are the coefficients of the remainder polynomials
r0(x), . . . ,rd−1(x). Then it is easily verified that the components of the vector
b = (b0,b1, . . . ,bd−1) give a solution of equation (26.2) if and only if

b(Q− I) = 0 = (0, . . . ,0). (26.3)

Combining all this with Theorem 1, we get

Theorem 8. (Berlekamp’s Factoring Algorithm). Let f (x) in Fp[x] have degree d.
LetQ be the d×d matrix whose ith row is the vector of coefficient of the remainder
polynomial ri(x) = xpi mod f (x) for i= 0,1, . . . ,d−1. Let b = (b0,b1, . . . ,bd−1) be
a solution of

b(Q− I) = 0

(i.e., of equation (26.3) ), and let h(x) = b0 +b1x+ . . .+bd−1xd−1. If h(x) has degree
≥ 1, then for some s in Fp, h(x)− s and f (x) have a common factor of degree≥1.

Example 10. Let f (x) = x6 + x5 + x4 + x3 + x2 + x+ 1, a polynomial in F2[x] of
degree 6. To find the matrix Q, we divide f (x) into x2i for i= 0, . . . ,5, to get ri(x):
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x0 = f (x) ·0 + 1, so r0(x) = 1,

x2 = f (x) ·0 + x2, so r1(x) = x2,

x4 = f (x) ·0 + x4, so r2(x) = x4,

x6 = f (x) ·1 +(x5 + x4 + x3 + x2 + x+ 1),

so r3(x) = 1 + x+ x2 + x3 + x4 + x5,

x8 = f (x)(x2 + x)+ x, so r4(x) = x,

x10 = f (x) · (x4 + x3)+ x3, so r5(x) = x3.

The coefficients of r0(x), . . . ,r5(x) form the rows of the matrix Q:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 1 1 1 1 1
0 1 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

To find h(x) = b0 +b1x+b2x2 +b3x3 +b4x4 +b5x5, we solve

b · (Q− I) =
(
b0 b1 b2 b3 b4 b5

)

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 1 1 0 0 0
0 0 1 0 1 0
1 1 1 0 1 1
0 1 0 0 1 0
0 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0

or
b3 = 0,

b1 +b3 +b4 = 0,

b1 +b2 +b3 = 0,

b5 = 0,

b2 +b3 +b4 = 0,

b3 +b5 = 0.

This reduces quickly to b3 = b5 = 0, and b1 = b2 = b4. The only solutions with
deg(h(x))≥ 1 are h(x) = x4 + x2 + x+b0 with b0 = 0 or 1. For either choice of b0,

h(x)2−h(x) = x8 + x= f (x) · (x2 + x).

Thus
f (x) = gcd( f (x),x4 + x2 + x) ·gcd( f (x),x4 + x2 + x+ 1).

By Euclid’s algorithm, the left factor is x3 +x+1, and the right factor is x3 +x2 +1.
Both are irreducible polynomials, so the factorization of f (x) in F2[x] is

x6 + x5 + x4 + x3 + x2 + x+ 1 = (x3 + x+ 1) · (x3 + x2 + 1).
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Counting irreducible factors. Using some ideas of linear algebra, we can deter-
mine the number of distinct irreducible factors of f (x) where deg( f ) = d.

Let V = Fdp denote the vector space over the field Fp consisting of d-tuples of
elements of Fp (row vectors). Let N be the set of vectors b = (b0,b1, . . . ,bd−1) in
Fdp with b ·(Q−I) = 0. Then N is the null space of the matrix Q−I; N is a subspace
ofV . Let {v1,v2, . . . ,vg} be a basis of N, that is, a set of vectors in N of minimal car-
dinality such that every vector in N is a linear combination of v1,v2, . . . ,vg: that is,
every b in N may be written as b= c1v1 + c2v2 + . . .+ cgvg, for some c1,c2, . . . ,cg,
in Fp. The smallest g for which such a set {v1,v2, . . . ,vg} exists is called the dimen-
sion of the space N.

The space N always contains the vectors (a,0,0, . . . ,0) for any a in Fp, because
such a vector corresponds to the constant polynomial h(x) = a, and h(x)p−h(x) =
ap−a= 0 for any a in Fp by Fermat’s theorem. Thus the dimension of N is at least
one. To factor f (x), we need to find some polynomial h(x) of degree ≥ 1, and that
means we need to find a vector b = (b0,b1, . . . ,bd−1) in N where at least one of
the components b1,b2, . . . ,bd−1 is not zero. If such a vector b exists, then there are
vectors in N which are not of the form (a,0, . . . ,0), and so the dimension of N is at
least 2. This suggests the following result, which is slightly easier to describe if we
assume that f is squarefree, that is, f is a product of distinct irreducible polynomials.
(Recall from Section 15G that f is squarefree iff gcd( f , f ′) = 1, a condition that
is easily checked. If f is not squarefree and f ′ �= 0, then we can replace f by its
squarefree part f/( f , f ′). )

Theorem 9. Let f (x) in Fp[x] be squarefree. Then:
(a) The dimension of the null space ofQ− I is equal to the number of irreducible

factors of f (x).
(b) f (x) is irreducible in Fp[x] if and only if the null space N ofQ− I has dimen-

sion one.

The dimension of the null space of Q− I can be computed in the following way.
Since Q− I is a d× d matrix, the dimension of the null space of Q− I is equal to
d minus the row or column rank of Q− I. The column rank of Q− I is equal to the
number of nonzero columns after performing column operations on Q− I to reduce
it to echelon form. This is the same as doing row operations on the transpose of
Q− I to reduce it to row echelon form.

To illustrate with Q− I as in Example 10, a series of column operations trans-
forms Q− I into the echelon form

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since the matrix E has four nonzero columns, the null space has dimension
6−4 = 2. In fact, the null space can be obtained by solving bE = 0, since doing
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column operations to Q− I does not change the space of solutions to b(Q− I) = 0.
The solutions b of bE = 0 are the solutions of the equations

b1 +b4 = 0,

b2 +b4 = 0,

b3 = 0,

b5 = 0.

Hence a vector b satisfying bE = 0 may be written as follows, where b0 and b4 may
be chosen arbitrarily:

b = (b0,b1,b2,b3,b4,b5) = (b0,b4,b4,0,b4,0)
= b0(1,0,0,0,0,0)+b4(0,1,1,0,1,0).

We chose b4 = 1, above.

Proof (Proof of Theorem 9). Suppose f (x) has degree d and factors into the product
of g distinct irreducible factors,

f (x) = p1(x)p2(x) · · · pg(x),

where each pi(x) is irreducible.
Here is how to construct polynomials h(x) so that f (x) divides h(x)p−h(x).
For each vector s = (s1,s2, . . . sg) of elements of Fp, use the Interpolation Theo-

rem (Corollary 9 of Section 17B) to construct a unique polynomial hs(x) of degree
≤d so that

hs(x)≡ si (mod pi(x))

for i= 1,2, . . . ,g.
Since hs(x)≡ si (mod pi(x)), it follows that pi(x) divides hs(x)−si, and so pi(x)

divides
hs(x) · (hs(x)−1) · . . . · (hs(x)− (p−1))

=
g

∏
r=1

(hs(x)− r) = hs(x)p−hs(x).

So f (x) divides hs(x)p−hs(x). The map that sends s to the interpolation polynomial
hs(x) defines a one-to-one function γ from F

g
p to the set P of polynomials h(x) so

that f (x) divides h(x)p−h(x).
Now we show that γ is onto.
Given a polynomial h(x) in P , then f (x) divides h(x)p−h(x), and so for each i

from 1 to g, the irreducible factor pi(x) of f (x) divides

h(x)p−h(x) = h(x) · (h(x)−1) · . . . · (h(x)− (p−1)).
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Since the polynomials h(x),h(x)− 1, . . . ,h(x)− (p− 1) are pairwise coprime, and
each pi(x) is irreducible, each pi(x) divides h(x)− si for a unique si, 1≤ si ≤ p−1.
Then the vector

s = (s1,s2, . . . ,sg)
is in F

g
p and for all i= 1, . . . ,g,

h(x)≡ si (mod pi(x)).

Thus h(x) = hs(x) and the map γ is onto.
Thus γ is a one-to-one correspondence between F

g
p and the set P of polynomials

h(x) so that f (x) divides h(x)p−h(x).
Now if h(x) = b0 + b1x+ . . . + bd−1xd−1, then h(x) is in P if and only if the

vector of coefficients (b0,b1, . . . ,bd−1) is in the null space N of Q− I. Hence the
cardinality of N = the cardinality of P = the cardinality of F

g
p = pg, where g is the

number of distinct irreducible factors of f (x). Hence the dimension of N is g.
Part (b) follows immediately. From (a), the null space N of Q− I is one- dimen-

sional if and only if f (x) = p(x), an irreducible polynomial. ��
Example 11. In F3[x], how many irreducible factors divide

f (x) = x5 + 2x4 + x3 + x2 + 2?

We compute Q− I:

1 = f (x) ·0 + 1,

x3 = f (x) ·0 + x3,

x6 = f (x) · (x+ 1)+ (1 + x+ 2x2+ x3),

x9 = f (x) · (x4 + x3 + x)+ x,

x12 = f (x) · (x7 + x6 + x4)+ x4.

So, noting that the rows of Q are the coefficients of the remainders arranged, from
left to right, by increasing powers of x, we have

Q =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 1 0
1 1 2 1 0
0 1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ , Q− I =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 2 0 1 0
1 1 1 1 0
0 1 0 2 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

which, after column operations, becomes the echelon form

E =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
2 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ .
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So Q−I = E has rank 2, the null space of E has dimension 3, f (x) has three distinct
irreducible factors, and the vectors b satisfying bE = 0 have the form

b = (b0,b1,b2,b3,b4) = (b0,b3,0,b3,b4),

where b0,b3 and b4 are arbitrary. Thus f (x) divides h(x)3 − h(x) where we can
choose h(x) = x4, or h(x) = x+ x3, or h(x) = 1, or any F3-linear combination of
those three choices.

Exercises.

7. Find the three irreducible factors of f (x) in Example 11.

8. Factor x10 + x9 + x7 + x3 + x2 + 1 in F2[x].

9. Factor x8 + x7 + x6 + x4 + 1 in F2[x].

10. Show that x5 + x2 + 1 is irreducible in F2[x].

11. Show that x7 + x3 + 1 is irreducible in F2[x].

12. Show that 7x7 + 6x6 + 4x4 + 3x3 + 2x2 + 2x+ 1 is irreducible in Q[x] (use the
last exercise).

13. Use Berlekamp’s algorithm to factor x2−q in Fp[x], where q and p are coprime,
and prove Euler’s Lemma (Section 21B) that q is a quadratic residue mod p, that is,
x2−q≡ 0 (mod p) has a root, iff q(p−1)/2 ≡ 1 (mod p).

D. The Hensel Factorization Method

Given a bound B on the coefficients of factors of a polynomial f (x) in Z[x], we can
look for factorizations of f (x) modulo M for M ≥ 2B. Any factor of f modulo M
corresponds to at most one possible factor of f in Z[x], because there will be only
one polynomial in Z[x] that will satisfy the bound on coefficients and reduce to the
given factor of f moduloM.

Thus we wish to find factorizations of f moduloM, where M may be large.
There are two choices on how to proceed.
One is to find primes p > 2B and use Berlekamp’s algorithm to factor f modulo

p. If we’re lucky, f will have few irreducible factors modulo p, so there will be few
choices for factorizations of f in Z[x].

An alternative is to find a small prime p so that f factors modulo p into few
distinct irreducible factors, and then lift the factorization modulo p to a unique fac-
torization modulo p2e for e so large so that p2e > 2B.

This method, called the Hensel factorization method [Zassenhaus (1978)], uses
an extension of coprimeness to polynomials with coefficients not in a field.
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Defini ion. Let R be a commutative ring, and f ,g be polynomials of degrees ≥1
with coefficients in R. Then f and g are coprime if there exist polynomials r,s with
coefficients in R so that

r f + sg= 1.

If R= Z/mZ and f , g are polynomials with integer coefficients, we’ll say that f
and g are coprime modulo m, if the images of f and g in Z/mZ[x] are coprime, that
is, if there exist polynomials r, s in Z[x] so that f r+gs≡ 1 (mod m).

In short, we extend the definition of coprime by using the Bezout Identity crite-
rion.

Before presenting the main result, we need an auxiliary result about coprime
polynomials.

Proposition 10. Let g,h be monic and coprime in R[x]. Then for all k in R[x] there
exist polynomials a,b in R[x] with ag+ bh = k. If degk < deg( f g), then we can
choose a, b with deg(a) < deg(h),deg(b) < deg(g).

Proof. Since g and h are coprime, there exist polynomials r,s so that gr+hs= 1. It
follows that grk+hsk= k.

Suppose deg(k) < deg( f g) and there exist a,b in R[x] so that ag+ bh = k with
deg(b)≥ deg(g). Then b= gq+ s with deg(s) < deg(g), and

ag+(gq+ s)h= k.

Hence (a+qh)g+ sh= k, or, letting r = a+qh, then

rg+ sh= k.

Since deg(s) < deg(g), we have deg(sh) < deg(gh), and also deg(k) < deg(gh). So
deg(rg) < deg(gh). Since g is monic, it follows that deg(r) < deg(h). ��

Here is the main result.

Theorem 11. Let f be a monic polynomial in Z[x]. Suppose there are monic polyno-
mials g1, h1 in Z[x] so that g1 and h1 are coprime modulo m and f = g1h1 (mod m).
Then there exist unique monic polynomials g2 and f2 so that

g2 ≡ g1 (mod m)
h2 ≡ h1 (mod m),

g2 and h2 are coprime modulo m2, and

f ≡ g2h2 (mod m2).

Proof. The proof shows how to construct g2 and h2.
We write

g2 = g1 +mb
h2 = h1 +mc
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for polynomials b,c in Z[x] with deg(b) < deg(g1),deg(c) < deg(h1) that we need
to find. To find them, we note that since f ≡ g1h1 (mod m), we have

f = g1h1 +mk

for some polynomial k in Z[x]. Since f ,g1 and h1 are monic, deg(k) < deg(g1h1).
Then

g2h2− f = (g1 +mb)(h1 +mc)− (g1h1 +mk)

= g1h1 +mg1c+mh1b+m2bc−g1h1−mk.
For the left side to be congruent to 0 modulo m2, we need

m(g1c+h1b− k)≡ 0 (mod m2),

or
g1c+h1b− k≡ 0 (mod m).

But since g1 and h1 are coprime modulo m, there exist polynomials c and b so that

g1c+h1b≡ k (mod m),

and since deg(k) < deg(g1h1), we may choose the polynomials c and b so that
degc < degh1 and degb < degg1. Then by the way we chose c and b, the poly-
nomials g2 = g1 +mb and h2 = h1 +mc are monic and satisfy

f ≡ g2h2 (mod m2).

To finish the proof we need to show that g2 and h2 are coprime modulo m2. So
we seek polynomials r2 and s2 so that

r2g2 + s2h2 ≡ 1 (mod m2).

Since g1 and h1 are coprime, there exist polynomials r1 and s1 so that r1g1 + s1h1 =
1 +mz for some polynomial z. We write

r2 = r1 +mw, s2 = s1 +my

for unknown polynomials w,y in Z[x], and substitute for r2,g2,s2 and h2 in the de-
sired congruence

r2g2 + s2h2 ≡ 1 (mod m2).

to obtain

(r1 +mw)(g1 +mb)+ (s1 +my)(h1 +mc)

≡ r1g1 +mwg1 +mr1b+ s1h1 +ms1c+myh1 (mod m2)

≡ 1 +mz+m(wg1 + r1b+ s1c+ yh1) (mod m2).
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For this last expression to be congruent to 1 modulom2, we need to find polynomials
w,y so that

wg1 + yh1 ≡−z− r1b− s1c (mod m).

But since g1 and h1 are coprime modulom, it follows that we can find w,y satisfying
this last congruence. That means there exist r2 = r1 +mw,s2 = s1 +my so that

r2g2 + s2h2 ≡ 1 (mod m2).

Thus g2 and h2 are coprime modulo m2, and that completes the proof. ��
Example 12. Let f (x) = x4 + 23x3−15x2 + 17x−7. We find that

f (x)≡ x4 + 2x3 + 3x2 + 2x+ 2 = (x2 + 1)(x2 + 2x+ 2) (mod 3),

so f (x) factors modulo 3 into the product of two distinct polynomials that are irre-
ducible modulo 3, and hence coprime modulo 3.

Now we want to factor f (x) modulo 9. So let g1 = x2 +1, h1 = x2 +2x+2, and let

g2 = g1 + 3b= (x2 + 1)+ 3b

h2 = h1 + 3c= (x2 + 2x+ 2)+ 3c

for some polynomials b,c with degc< degh1,degb< degg1. Then

g2h2 ≡ (x2 + 1)(x2 + 2x+ 2)+ 3c(x2 + 1)+ 3b(x2 + 2x+ 2) (mod 9).

To find b,c we set up the congruence

f ≡ g2h2 (mod 9)

and substitute:

x4 + 23x3−15x2 + 17x−7≡ (x4 + 2x3 + 3x2 + 2x+ 2)

+ 3c(x2 + 1)+ 3b(x2 + 2x+ 2) (mod 9);

or
21x3−18x2 + 15x−9≡ 3c(x2 + 1)+ 3b(x2 + 2x+ 2) (mod 9).

Factoring 3 out of everything yields

7x3−6x2 + 5x−3≡ c(x2 + 1)+b(x2 + 2x+ 2) (mod 3),

which we know we can solve for polynomials b,c of degree ≤2 since x2 + 1 and
x2 + 2x+ 2 are coprime modulo 3.

To solve the congruence for b and c, we set up some linear equations: write
b= rx+ s, c= tx+ v, then

7x3−6x2 + 5x−3≡ (tx+ v)(x2 + 1)+ (rx+ s)(x2 + 2x+ 2) (mod 3).
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Equating the coefficients of 1,x,x2,x3 on both sides yields

−3≡ v+ 2s
5≡ t+ 2r+ 2s

−6≡ v+ 2r+ s
7≡ t+ r (mod 3).

One sees easily that r = t = 2,s= v= 1 is the unique solution, so

b= 2x+ 1,c= 2x+ 1.

Thus
g2 = g1 + 3b≡ (x2 + 1)+ 3(2x+ 1)≡ x2 + 6x+ 4,

h2 = h1 + 3c= (x2 + 2x+ 2)+ 3(2x+1)≡ x2 + 8x+ 5,

and it is easily checked that

(x2 + 6x+ 4)(x2 + 8x+ 5) = x4 + 14x3 + 57x2 + 62x+ 20

≡ x4 + 23x3−15x2 + 17x−7 = f (x) (mod 9).

In a similar way we can lift the factorization modulo 9 to one modulo 92 = 81, then
to 812 = 6561 and beyond, until we get past the bound on the coefficients of any
degree 2 factor of f (x), at which point we either find a factorization of f in Z[x] or
show that none exists that reduces to f = g1h1 modulo 3. In the latter case, f must
be irreducible in Q[x].

Note that ‖ f‖ = (12 + 232 + 152 + 172 + 72)1/2 =
√

1093 = 33.06, so using the
Mignotte bound we would need only to look at a factorization of f modulo 81 to
either find a factorization of f or show that f is irreducible.

It turns out that f (x) is irreducible modulo 5, so must be irreducible in Q[x].

Exercises.

14. Factor x4− x3−84x2 + 125x−13 modulo 5, then modulo 25, then in Z.

15. Factor x4 + 2x3−38x2−69x−28 modulo 3, then modulo 9, then in Z.

16. Factor x4 + x2 + 2 modulo 2, then modulo 4, then modulo 16, then in Z.



Chapter 27
Irreducible Polynomials

We find a formula for the number of irreducible polynomials of degree n in Fp[x]
for any p and n, and use it to show that in some sense, almost every polynomial in
Z[x] is irreducible in Q[x].

A. Irreducible Polynomials in Fp[x]

We begin by showing

Theorem 1. xpn − x is the product of all monic irreducible polynomials in Fp[x] of
degree d, for all d dividing n.

We prove this in two parts.

Theorem 2. If q(x) is an irreducible polynomial of degree d and d divides n, then
q(x) divides xpn− x.
Proof. Let F = Fp[x]/(q(x)) = Fp[α], where α = [x]q(x). Then q(x) is the mini-
mal polynomial over Fp of α . Now F is a field with pd elements. So by Fermat’s

theorem, α pd = α . Since de= n for some integer e,

α pn = α pde = α,

so α is a root of xpn− x.
Now q(x) is irreducible in Fp[x], so either q(x) divides xpn − x or (by Bezout’s

identity),
s(x)q(x)+ t(x)(xp

n− x) = 1

for some polynomials s(x), t(x) in Fp[x]. But if the second condition held, then
setting x = α would yield 0 = 1, impossible. Hence q(x) divides xpn − x, as
claimed. ��

L.N. Childs, A Concrete Introduction to Higher Algebra, Undergraduate Texts 557
in Mathematics, c© Springer Science+Business Media LLC 2009
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Theorem 3. If q(x) is an irreducible factor of xpn − x and has degree d, then d
divides n.

Proof. This proof uses the Isomorphism Theorem of Section 24A.
Let K be a splitting field over Fp of xpn − x, and let F be the subfield consisting

of all of the pn roots of xpn − x described in Theorem 6 of Section 24C. Since q(x)
divides xpn − x, there is a root β of q(x) in F . Since q(x) is irreducible, q(x) is the
minimal polynomial of β over Fp.

Let φβ : Fp[x] → F be the “evaluation at β ” homomorphism. Since q(x) is the
minimal polynomial of β , the homomorphism φβ induces a 1-1 homomorphism φ
from E = Fp[x]/(q(x)) to F by sending [x] to β .

Let L be the image of E in F ; L is then a subfield of F isomorphic to E .
Let α be a primitive element of F . Let s(x) be the minimal polynomial of α over

L. Then the evaluation homomorphism φα from L[x] to F sending x to α induces a
1-1 homomorphism φ ′ from L[x]/s(x) to F , which is onto because every non-zero
element of F is a power of α . So φ ′ is an isomorphism from L[x]/(s(x)) onto F . So
L[x]/(s(x)) and F have the same number of elements.

How many elements are in L[x]/(s(x))? If s(x) has degree e, and L has q elements,
then L[x]/(s(x)) has qe elements. But q= pd and F has pn elements. So (pd)e = pn.
So de= n, and d, the degree of q(x), divides n. That completes the proof. ��

Let Nn(p) be the number of irreducible polynomials of degree n in Fp[x]. We’ll
write Nn if the prime p is understood.

Using Theorem 1, we will find an explicit formula for Nn(p).
To obtain such a formula, we use the Mobius function, a classical tool in number

theory and combinatorics.

Defini ion. The Mobius function µ(n) is defined for n≥ 1 by

µ(n) =

⎧⎪⎨
⎪⎩

1 if n= 1,

0 if n is not squarefree

(−1)r if n is the product of r distinct primes.

The formula we want is

Nn =
1
n∑
d|n

µ
(n
d

)
pd.

This formula is a special case of the Mobius inversion formula, which we now de-
rive. We begin with two facts about the Mobius function.

Proposition 4. If (m,n) = 1, then µ(mn) = µ(m)µ(n).

This is easy to verify.
A function such as µ that satisfies Proposition 4 is called multiplicative. Another

example of a multiplicative function is Euler’s φ function.

Proposition 5. ∑d|n µ(d) = 0 unless n= 1.
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The proof of this is an exercise in manipulating sums. Before doing the proof in
general we illustrate with n= 36 = 2232: then the divisors of n are 1, 2, 4, 3, 6, 12,
9, 18 and 36, and we have

∑
d|36

µ(d) = [µ(1)+ µ(2)+ µ(22)]

+ [µ(3)+ µ(2 ·3)+ µ(22 ·3)]

+ [µ(32)+ µ(2 ·32)+ µ(22 ·32)]

= µ(1)[1 + µ(2)+ µ(22)]

+ µ(3)[1 + µ(2)+ µ(22)]

+ µ(32)[1 + µ(2)+ µ(22)].

Now µ(d) = 0 if d is divisible by the square of a prime, and µ(1) = 1, so this sum
reduces to

= µ(1)[µ(1)+ µ(2)]+ µ(3)[µ(1)+ µ(2)]
= [µ(1)+ µ(3)][µ(1)+ µ(2)].

Now µ(1) = 1, µ(3) =−1, so µ(1)+ µ(3) = 0. Hence ∑d|36 µ(d) = 0.
The proof in general works in a similar way.

Proof. Write n= peq with (p,q) = 1. Then

∑
d|n

µ(d) =
e

∑
r=0

∑
b|q

µ(prb)

=
e

∑
r=0

∑
b|q

µ(pr)µ(b).

Since µ(pr) = 0 for r ≥ 2, this reduces to

= ∑
b|q

µ(1)µ(b)+∑
b|q

µ(p)µ(b)

= µ(1)∑
b|q

µ(b)+ µ(p)∑
b|q

µ(b)

= [µ(1)+ µ(p)]∑
b|q

µ(b) = 0

since µ(1)+ µ(p) = 0. ��
With Proposition 5 we can prove the useful

Proposition 6 (Mobius Inversion Formula). Let f be a function define on the
natural numbers. If we set

F(n) = ∑
d|n
f (d) for every n≥ 1,
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then
f (n) = ∑

d|n
µ(
n
d
)F(d) = ∑

e|n
µ(e)F(

n
e
).

Proof. If we substitute e= n/d,d = n/e, then as d runs through all divisors of n, so
does e. Hence the last two sums are equal.

Now by definition of F ,

∑
e|n

µ(e)F(
n
e
) = ∑

e|n
µ(e)( ∑

d|(n/e)
f (d)) = ∑

e|n
∑

d|(n/e)
(µ(e) f (d).

Interchanging the order of summation (if d|(n/e), then de|n so e|(n/d)), we get

∑
e|n

µ(e)F(
n
e
) = ∑

d|n

(
∑

e|(n/d)
µ(e)

)
f (d). (27.1)

Now by Proposition 5, for each m> 1,

∑
e|m

µ(e) = 0.

So the coefficient of f (d) is 0 unless n/d = 1, that is, d = n. Hence the sum (1)
reduces to the single term f (n), as was to be shown. ��

With these generalities out of the way, we can get the desired formula for Npn . We
shall write Npn as Nn if p is understood.

Theorem 7. Let Nn be the number of irreducible polynomials of degree n in Fp[x].
Then

Nn =
1
n∑
d|n

µ
(n
d

)
pd.

Proof. Theorem 1 describes the complete factorization of xpn − x in Fp for any n.
Since xpn− x is the product of all the Nd irreducible polynomials of degree d for all
d dividing n, we obtain the formula

pn = ∑
d|n
dNd

by summing the degrees of all the irreducible factors of xpn − x. Now apply the
Mobius inversion formula with F(n) = pn, f (d) = dNd . We get

nNn = ∑
d|n

µ
(n
d

)
pd .

Dividing both sides by n yields the desired formula. ��



27 Irreducible Polynomials 561

With that formula we can give another proof of Corollary 7 of Chapter 24, that
for every prime p and every n > 0 there is an irreducible polynomial in Fp[x] of
degree n.

Proposition 8. For every prime p and every n> 0, Nn > 0.

Proof. Since µ(n/n) = 1 and µ(n/d)≥−1 for all d|n, d < n, we have that

Nn =
1
n
pn+

1
n ∑
d|n,d<n

µ(
n
d

)pd

≥ 1
n
pn− 1

n ∑
d|n,d<n

pd

≥ 1
n

(
pn−

n−1

∑
d=0

pd
)

Now
n−1

∑
d=0

pd =
pn−1
p−1

< pn,

so
1
n

(
pn−

n−1

∑
d=0

pd
)

> 0.

Hence Nn > 0. ��
The number Nn(p) of irreducible monic polynomials over Fp of degree n for n =
1, . . . ,10 is given by the following formulas

n Nn(p) Nn(2) Nn(3) Nn(5) Nn(7)
1 p 2 3 5 7
2 (p2− p)/2 1 3 10 21
3 (p3− p)/3 2 8 40 112
4 (p4− p2)/4 3 18 150 588
5 (p5− p)/5 6 48 624 3360
6 (p6− p2− p3 + p)/6 9 116 2580 19544
7 (p7− p)/7 18 312 11160 117648
8 (p8− p4)/8 30 810 48750 720300
9 (p9− p3)/9 56 2184 217000 4483696

10 (p10− p5− p2 + p)/10 99 5880 976248 28245840

Every irreducible polynomial in F7[x] of degree n gives rise to infinitely many
different irreducible polynomials of degree n in Q[x]. So there are many irreducible
polynomials in Q[x]. We’ll get an idea of how many in the next section.

For more discussion on Mobius inversion, see Bender and Goldman (1975).
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Exercises.

1. If F is a function defined on natural numbers and f is defined by

f (n) = ∑
d|n

µ(d)F(n/d),

prove that
F(n) = ∑

d|n
f (d).

2. If f is a multiplicative function defined on natural numbers and F(n)= ∑d|n f (d),
prove that F is multiplicative.

3. Prove Proposition 4.

4. What are the 8 monic irreducible polynomials of degree 3 in F3[x]?

5. Find the formula for N12(p). Find N12(2).

6. Find the formula for N30(p).

7. If n is divisible by g distinct primes, how many different powers of p appear in
the formula for Nn(p)?

8. Show that (
pn

n

)
(1− ε) < Nn <

pn

n

for some quantity ε = ε(n) where ε → 0 as n→ ∞. Conclude that for n large, ap-
proximately one of every n monic polynomials in Fp[x] of degree n is irreducible.
(Asking about the size ofNn for n large is the analogue in Fp[x] of the Prime Number
Theorem discussed in Section 4C.)

9. If d divides n, prove that every irreducible polynomial of degree d in Fp[x] has a
root in every field F with pn elements.

10. Show that if q(x) in Fp[x] is irreducible and has degree d, and F is a field with
pn elements, where d|n, then F is a splitting field of q(x).

11. Factor x16− x in F2[x].

12. Factor x9− x in F3[x].

13. Factor x25− x in F5[x].

14. Show that if p,q are primes, then xpq− x= (xp− x)h(x) in Fp[x], where h(x) is
the product of all monic irreducible polynomials in Fp[x] of degree q.

15. Show that F16 is a splitting field for x4 − x in F2[x]. If F16 = F2[α] where
α4 + α + 1 = 0 (as in Table 2 of Chapter 25A), what are the roots in F16 of x4− x?
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16. Prove Rabin’s irreducibility test [Rabin (1980b)] for polynomials m(x) of de-
gree n in Fp[x]: m(x) is irreducible if

(i) m(x) divides xpn − x; and

(ii) for any prime divisor d of n, the greatest common divisor ofm(x) and xpn/d−x
is 1.

17. Supposem(x) in Fp[x] has degree d. Callm(x) Carmichael ifm(x) is composite,
and for every polynomial a(x) in Fp[x], coprime to m(x),

a(x)p
d
= a(x) (mod m(x)).

(i) Show that if m(x) is irreducible, then for every a(x) coprime to m(x),

a(x)p
d
= a(x) (mod m(x)).

(ii) Prove that the following are equivalent:
(a) m(x) is Carmichael;

(b) m(x) divides xpd − x;
(c) m(x) = q1(x) · · ·qg(x), a product of distinct irreducible polynomials, where

for each i, if di is the degree of qi(x), then pdi−1 divides pd−1;
(d) m(x) = q1(x) · · ·qg(x), a product of distinct irreducible polynomials, where

for each i, if di is the degree of qi(x), then di divides d.

B. Most Polynomials in Z[x] are Irreducible

In the last section, we computed the numberNn(p) of monic irreducible polynomials
of degree n in Zp[x] for any n and p. We showed that

Nn(p) =
1
n∑
d|n

µ
(n
d

)
pd ,

where µ(e) is the Mobius function. Thus we have

Lemma 9.
Nn(p) >

pn

2n
.

Proof. Since µ(n/d) is either 1, −1 or 0, and µ(1) = 1, the formula

Nn(p) =
1
n∑
d|n

µ
(n
d

)
pd ,

yields
nNn(p) = pn− ∑

d|n,d<n
pd .
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Since every proper divisor of n is <n/2, we have

∑
d|n,d<n

pd ≤ ∑
d≤n/2

pd < p!n/2"+1

where !a" denotes the greatest integer <a. Hence

nNn(p) > (pn− p!n/2"+1).

If n> 2, then !n/2"+ 1≤ n−1, so

Nn(p) >
1
n
(pn− pn−1) =

pn

n

(
1− 1

p

)
≥ pn

n

(
1
2

)
.

For n= 2,

N2(p) =
1
2
(p2− p) =

p2

2

(
1− 1

p

)
≥ p2

2

(
1
2

)
.

��
Using this lower bound for Npn we will show that almost all monic polynomials

in Z[x] of degree n≥ 1 are irreducible. The main idea of the argument is that if f (x)
is a monic polynomial in Z[x] whose image in Fp[x] is irreducible for some prime
p, then f (x) is irreducible in Z[x].

What do we mean by “almost all”?
The way we will interpret this is as follows.
Pick a bound M. Consider the set Pn(M) of all monic polynomials f (x) in Z[x],

f (x) = xn+an−1xn−1 + . . .+a2x2 +a1x+a0,

so that each coefficient ak satisfies−M< ak ≤M. This is a finite set of polynomials:
the number of such polynomials is (2M)n, since there are 2M possibilities for each
of the n coefficients an−1, . . . ,a0.

We will find a lower bound on the number of irreducible polynomials in the set
Pn(M), and show that for a suitable increasing sequence of numbers M, the propor-
tion of irreducible polynomials goes to 1. More precisely,

Theorem 10. For every n ≥ 2 and every g ≥ 1 let Mg be the product of the fi st g
odd primes. Let

In(Mg) = { f (x) in Pn(Mg)| f (x) is irreducible}.

Then
lim
g→∞

|In(Mg)|
|Pn(Mg)| = 1.

Proof. For every M ≥ 2, if

f (x) = xn+an−1xn−1 + . . .+a2x2 +a1x+a0,



27 Irreducible Polynomials 565

is in Pn(M), then each coefficient ak satisfies −M< ak ≤M for 0≤ k≤ n−1. Since
the integers a with −M < a ≤M is a complete set of representatives for Z/(2M)Z,
we have a one-to-one correspondence between Pn(M) and monic polynomials of
degree n with coefficients in the ring Z/(2M)Z.

Now assume M =Mg = 3 ·5 · · · pg is the product of the first g odd primes.
By the Chinese remainder theorem, there is an isomorphism

Z/(2M)Z) ∼= Z/2Z×Z/3Z×·· ·×Z/pgZ

given by mapping [a]2M to the (g+ 1)-tuple ([a]2, [a]3, . . . , [a]pg). This map induces
a one-to-one correspondence between polynomials in Pn(M) and (g+ 1)-tuples
([ f (x)]2, [ f (x)]3, . . . , [ f (x)]pg) of monic polynomials of degree n in

Z/2Z[x]×Z/3Z[x]×·· ·×Z/pgZ[x].

Here if f (x) is in Pn(M), then [ f (x)]p denotes the image of f (x) in Z/pZ[x] obtained
by replacing the coefficients of f (x) by their congruence classes modulo p.

Under this correspondence between Pn(M) and

Z/2Z[x]×Z/3Z[x]×·· ·×Z/pgZ[x].

a polynomial f (x) is irreducible in Z[x] if for some prime p among 2,3, . . . , pg, the
image [ f (x)]p of f (x) in Z/pZ[x] is irreducible.

Thus |In(M)| ≥ the number of (g+ 1)-tuples of monic polynomials of degree
n, (h0(x),h1(x), . . . ,hg(x)), with h0(x) in Z/2Z[x], h1(x) in Z/3Z[x], . . . , hg(x) in
Z/pgZ[x], such that at least one of h0(x), . . . ,hg(x) is irreducible.

How many (g+ 1)-tuples of polynomials

(h0(x),h1(x), . . . ,hg(x)) in Z/2Z[x]×Z/3Z[x]×·· ·×Z/pgZ[x]

have the property that none of them is irreducible?
By Lemma 9 above, the numberNn of monic irreducible polynomials of degree n

in Z/pZ[x] satisfies Npn > pn/2n. Thus the number of monic polynomials of degree
n in Z/pZ[x] that are not irreducible is less than

pn− pn

2n
= pn

(
1− 1

2n

)
.

Hence the number of (g+ 1)-tuples of monic degree n polynomials in Z/2Z[x]×
Z/3Z[x]×·· ·×Z/pgZ[x] such that none of the (g+ 1)-polynomials is irreducible,
is at most

2n
(

1− 1
2n

)
3n
(

1− 1
2n

)
· · · png

(
1− 1

2n

)

= (2M)n
(

1− 1
2n

)g+1

.
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Thus the number of (g+ 1)-tuples of monic degree n polynomials such that at least
one of the g+ 1 polynomials is irreducible is at least

(2M)n− (2M)n
(

1− 1
2n

)g+1

= (2M)n
(

1−
(

1− 1
2n

)g+1
)

.

But then, since |Pn(M)|= (2M)n, we have

|In(M)|
|Pn(M)| ≥ 1−

(
1− 1

2n

)g+1

.

Letting the number g of primes p1, p2, . . . , pg increase (recall that M =Mg = p1p2 ·
. . . · pg), we have

1≥ lim
g→∞

|In(M)|
|Pn(M)|

≥ 1− lim
g→∞

(
1− 1

2n

)g+1

.

Since the degree n is fixed while g (hence M) goes off to infinity,

lim
g→∞

(
1− 1

2n

)g+1

= 0.

Hence

lim
g→∞

1−
(

1− 1
2n

)g+1

= 1.

and so

lim
g→∞

|In(M)|
|Pn(M)| = 1,

as we wished to show. ��
As a numerical example, if we consider monic polynomials of degree 5 and letM

be the product of the first 30 odd primes, then among the (2M)5 such polynomials
with coefficients ak satisfying−M< ak ≤M, at least 95.7% of them are irreducible.
Here M is slightly larger than 3×1052.

We noted in Section 16C that there are monic irreducible polynomials in Z[x]
that factor modulo every prime. Thus

|In(M)|
|Pn(M)|

is closer to 1 than the estimate of Theorem 2 indicates.
Theorem 2 is a special case of a theorem of Van der Waerden (1934).
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Exercises.

18. LetM= 3 ·5 = 15 and n= 2. Let S be the set consisting of the 900 = 302 monic
polynomials x2 + bx+ c in Z[x] with coefficients satisfying −14 ≤ b,c ≤ 15. How
many polynomials in S are irreducible? (A polynomial of degree 2 is irreducible
if and only if it has no roots, so count the number of polynomials in S that have a
root in Z.)

19. Same question with n= 3.
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Chapter 1

2 a) transitivity fails; b) the three equivalence classes are 3Z,1 + 3Z,2 + 3Z; c)
reflexivity fails for 0; d) transitivity fails; e) symmetry fails.

Chapter 2

2. Add (k+ 1)3 to both sides of P(k), then show that

(
k(k+ 1)

2
)2 +(k+q)3 = (

(k+ 1)(k+ 2)
2

)2.

5. Write
xk+1−1 = (xk+1− x)+ (x−1) = x(xk−1)+ (x−1)

and substitute for xk−1 using P(k)
8.

(k+ 1)! = (k+ 1)k! > (k+ 1)2k > 2 ·2k = 2k+1.

9. First show that for k≥ 4,

(k+ 1)4 = k4 + 4k3 + 6k2 +(4k+ 1)≤ 4k4.

10. For c) use that
1

(2n+ 1)2 =
1

8tn+ 1
<

1
8tn

.

11. Use Exercise 5 with x= a.
13. 16n−16 = 16(16n−1−1): can use Exercise 5 with x= 16.
14. Can use Exercise 5 with x= 8/3.
15. Can use Exercise 5 with x= 34.

569
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16. Write 4k+2 = 4k(52−9).
17. Write 22k+3 = 22k+1 · (3 + 1).
20. First observe a1 = a (why?). Then for each m, prove P(n) : am+n = aman for
n≥ 1 by induction on n.
21. If N(n) is the number of moves needed to move n disks from one pole to another,
show N(n+ 1) = N(n)+ 1 +N(n).
22. For 4 disks, the answer is 80.
23. If r2 < n≤ (r+ 1)2, then (r+ 1)2 < 2n?
24. Check the argument for n= 1.
26. See the proof of Theorem 6.
27. Adapt the proof of Proposition 4.
28. Divide the polygon into two polygons by an edge connecting two non-adjacent
vertices.
29. Let P(n) be “For some k ≥ 1, f (k)(n) = 1,” and prove that P(n) is true for all
n≥ 1.
30. See Section 3A, Example 1.
31. Show that 1 + 5

3 < ( 5
3)2.

32. Try observing that c(n+ 1) = 1 + c(1)+ c(2)+ . . .+ c(n).
33. Let S be the set of numbers a> 0 for which there is a number b with 2a2 = b2.
35. Given a non-empty descending chain of natural numbers, let S be the set of
numbers in the chain.
37. Set x= y= 1 in the Binomial Theorem.
38. Fix s and do it by induction on n≥ s, using Corollary 13.
39. Write (x+y)2n = (x+y)n(x+y)n, expand (x+y)n and (x+y)2n by the Binomial
Theorem and collect the coefficients of xnyn.

Chapter 3

1. a) If a is a least element of S, then a≤ s for all s in S; if b is a least element of S,
then b≤ s for all s in S, so b≤ a. But since b is in S, a≤ b.

b) r is the least element of S = {b−aq | q in N}. So r is unique.
2. q=

[ b
a
]
, ra =

{ b
a
}

.
3. a= ds,b= dt implies r = b−aq= dt−qds= d(t−qs).
4. Use Exercise 3.
5. Let d = ay+bz. Divide d into a: if a = dq+ t, then a = (ay+bz)q+ t, so t is in
J. If t > 0, then d is not the least element of J. Then repeat, dividing d into b.
7. (11111000011)2 = (3,7,0,3)8 .
10. 7855 seconds = 2 hrs, 10 mins, 55 seconds.
11. This problem involves distance in base 1760 and time in base 60.
15. With n = 4, adding the five products of “digits” <104 can exceed 108. So 10n

with n= 3 is the largest possible base if you do both addition and multiplication on
the calculator.
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19. a): 5; c): 1 .
20. 17, but see Exercise 33.
22. See Exercise 35.
23. Use (or redo) Exercise 3.
25. If d divides a and b, then d divides ar+ bs, so.... (See also Corollary 6 of
Section D.)
30. Let the m consecutive integers be a,a+ 1, . . . ,a+ (m− 1). If a ≥ 0, then a =
mq+ r, and if r = 0, then m divides q. If r > 0 then a+(m− r)≤ a+(m−1) and is
divisible by m. If a< 0 write−a=mq+ swith 0≤ s<m. If s= 0 thenm divides a.
If s> 0, then a+ s< b and a+ s is divisible by m. (See also Section 6D.)
31. See Section 5B, Proposition 4.
32. Let m − n = d. Then n,n + 1, . . . ,n + d are d consecutive integers–apply
Exercise 30.
35. e) 1.
37. Show that every common divisor of a and b is a divisor of r, hence a common
divisor of a and r. Then show that every common divisor of a and r is a common
divisor of a and b.
38. Try induction on the number of divisions in Euclid’s Algorithm.
40. One example is: 6 divides 2 ·3.
41. Generalize the examples in Exercise 40.
44. If ar+ms = 1 and bt+mw = 1, then 1 = (ar+ms)(bt+mw) = aby+mz for
y= rt and z= ....
46. Factor d from ra+ sb and use Corollary 6.
48. Let d = (a,b). Then md divides ma and mb, so md ≤ (ma,mb). Also, let d =
ar+bs, then md = mar+mbs, so (ma,mb) divides md.
49. If e= (ab,m), then e dividesm and (m,b) = 1, so (e,b) = 1. Since e divides ab,
Corollary 7 yields that e divides a. Thus e≤ (a,m). Also, (a,m)≤ (ab,m) = e.
51. Use Corollary 6.
52. Can assume r,s are integers with (r,s) = 1. Try to show that s= 1.
57. b) x= 19 + 45k,y=−8−19k.
59. a) x= 13 + 31k,y= 7 + 17k with k ≥ 0

b) x= 18 + 31k,y= 10 + 17k with k ≥ 0.
61. d = 1, r = 731 + 1894k,s=−1440−3731k for all k in Z.
63. Find integer solutions of 5 f = 9c+ 160.
65. Observe that 5 = 16 ·6−13 ·7.
69. Let b = aq1 + r1,a = r1q2 + r2 with r1 < a and q2 ≥ 1, and assume a < Fn. If
r1 < Fn−1, then by induction, N(r,a)≤ n−4. If r1 ≥ Fn−1, then

Fn−1 +Fn−2 = Fn > a≥ r1 + r2 ≥ Fn−1 + r2,

so r2 < Fn−2, hence by induction, N(r2,r1)≤ n−5. In either case, N(a,b)≤ n−3.
70. a) Do n = 0,1, then check that if the formula is true for n = k− 2 and for
n= k−1, then it is true for n= k.
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Chapter 4

2. For the induction step, let c = a1a2 · . . . · an−1 and d = an and apply Lemma 3
to cd.
4. Since (n,q) ≤ (n,qr) in general, it suffices to show that if (n,q) = 1 then
(n,qr)=1, or equivalently, if (n,qr) > 1 then (n,q) > 1. If (n,qr) > 1, let p be a
prime divisor of (n,qr). Then p divides qr, so by Exercise 2, p divides q. Since p
also divides n, p≤ (n,q) so (n,q) �= 1.
5. Show that n cannot factor into n= ab where both a and b are >

√
n

6. Use Exercise 5 and note that 2021 < 452.
8. a) m in 3N is irreducible iff n= 3q with q not a multiple of 3.

c) 30 ·3 = 6 ·15.
9 a) If a+ b

√−23 = c+ d
√−23 with b �= d, then

√−23 = a−c
d−b would be a ratio-

nal number. But then the negative number −23 would be the square of a rational
number, impossible.

d) If a+b
√−23 divides 3, then there are integers c and d so that

(a+b
√−23)(c+d

√−23) = 3.

This is true iff ac+ 23bd = 3 and ad+bc= 0 by part a), and this in turn is true iff

(a−b√−23)(c−d√−23) = 3.

Multiplying the two equations together yields

(a2 + 23b2)(c2 + 23d2) = 9.

The only solutions of this equation must have b= d = 0.
13. If 1001/5 = a/b, then b5 · 22 · 52 = a5. If 2e‖a and 2 f ‖b, then 5e+ 2 = 5 f ,
impossible.
14 b) “integers” can be negative.
15. First show that for each prime p dividing c, if pe‖c then per‖cr. If pg‖a, then p
does not divide b, so g = er. So if a > 0, then a is an r-th power. Similarly for b.
Finally, if a=−a0 where a0 > 0 and a0 = dr, then a= (−d)r because r is odd.
17. Be sure to check your answer!
19. Write a= 2r f ,b = 2sg where f ,g are odd and coprime. Then check the various
possibilities for min{4r,5s} given that min{r,s}= 3.
21. Use Lemma 3 or Chapter 3, Corollary 6.
27. Write ar+bs= c and review the proof of Chapter 3, Corollary 8.
28. Let q be the product of all primes p dividing c such that (p,a) = 1. Show that
(a+bq,c) = 1.
35. See Section 3E.
37. See Exercise 17.
39. Observe that if a divides bk then bk is a common multiple of a and b.
42. Look for examples where [a,b,c] < abc/(a,b,c).
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43. Note that if p1 = 4k1 + 1, p2 = 4k2 + 1, then p1p2 = 4l+ 1 for some l.
44. Every odd prime has the form p= 6k+ 1 or p= 6k−1.
50. Show that every prime that divides n! + 1 must be >n.

Chapter 5

1. For a > 0 use Proposition 1. For a < 0 show there is a smallest k > 0 so that
r = a+ km≥ 0, then show that 0≤ r < m.
4. New Years Day 2007 was 365 days after New Years Day 2006. Find 365
(mod 7).
8. If a ≡ r mod m with 0 ≤ r ≤ m− 1, then a,a+ 1, . . . ,a+(m− 1) are congruent
modulo m to r,r+ 1, . . . ,m−1,0,1,2, . . . ,r−1, respectively. Then use Exercise 1.
12. No. Try a= 15.
13. Write (15− c)a = 25k, then find all a so that if 25 divides (15− c)a, then 25
divides 15− c.
14. Use that 4,42,43 ≡ 4,7,1 (mod 9), respectively.
15. 7546 ≡−2 (mod 17).
16 b) Use 68≡−2 (mod 7). d) Use 66≡ 9 (mod 19).
18. Use that 6≡−5 (mod 11).
19. a) Use (a+b)2 = a2 +ab+ab+b2. b) Use induction on n.
20. Do it for a= 0 and 1 first.
21. If b(b−1)≡ 0 (mod 15), then 3 divides b or b−1 and 5 divides b or b−1.
22. First show that for a> 0, a6 ≡ 1 (mod 7).
23. Write the number as 100a+ 10a1+a0.
24. Use that 6 = 2 ·3.
26. a) 10a+b≡ 0 (mod 7) iff −2(10a+b)≡ 0 (mod 7) iff a−2b≡ 0 (mod 7)
29. One idea: 13 divides 10a+b iff 13 divides 4(10a+b)≡ a+ 4b.
31. Yes: 12≡ 1 (mod 11).
32. 2 and 7 are like Proposition 11; 3 and 11 are like Proposition 9; 5 and 7 are like
Proposition 12.
33. One strategy: show that the divisors of m and y are the same as the divisors of m
and x.
35. α should = 8 (Hungary) or 14 (Norway), the website, YAHOO, and the fruit,
ORANGE.
36. a) change 3 to 4.
38. Observe that n− p(n) �= m− p(m) unless n= m or n= 0,m= 9.
39. Note that 561 = 3 ·11 ·17 and follow Example 8.
41. 6a≡ 16 (mod 20) iff 3a≡ 8 (mod 10) iff a≡ 56 (mod 10).
43. For the proof, apply first Proposition 16, then Proposition 17.
45. There is no solution to d). For b), the smallest positive solution is x= 9.
47. Cancel 3.
49. Note that 7 ·31 = 217≡−1 (mod 218).
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51. Show that for all x, ax2 + bx+ c ≡ 0 (mod m) iff (2ax+ b)2 ≡ b2 − 4ac
(mod m).
52. If a= b= c the congruence holds, so assume a≤ b≤ c and a< c.
53. For one direction, observe that squares are congruent to 0 or 1 modulo 4. For the
other, experiment to look for patterns, first with odd numbers, then with multiples
of 4.
54. Look at squares modulo 16.

Chapter 6

2. b) (This includes a 24 hour layover in Chicago.) c) (This includes a 7 hour layover
in Chicago, a five hour layover in Buffalo and a 13 hour layover in Toronto.) d) (This
includes a four hour layover in Winnipeg.)
4. It is the same as to find ((−10)(−4)) mod 23, namely 17.
8. b) To solve [5]7[x]7 = [3]7. observe that [3]7 = [10]7.
9. Multiply both sides by [4]11.
10. Multiply both sides by the inverse of 1113.
12. 1 plays 3, 4 plays 9, 5 plays 8, 6 plays 7, 2 plays Bye.
14. Bye plays player a in round r if a+a≡ r (mod 9). Thus in round 4, Bye plays 2.
16. If we ignore cases where the addition table modulo 2n has a player playing
herself, then the table will describe a tournament just like the tournament in the text,
except that it takes 2n rounds and during the even-numbered rounds, two opponents
sit out.
17. a) and b) can be done by using Exercises 36 and 37. To do d) and e) is the same
as to decide if −3 and −2 are primitive roots modulo 7, respectively.
18. Any set of nine consecutive integers will do.
20. Try casting out nines.
21. It’s true for k satisfying (k,10) = 1.
25. Try −3.
31. A special case of Exercise 30.
34. Se Chapter 5, Exercise 8.
35. Use Exercise 34.
36. Use Proposition 4 b).
37. Use Proposition 4 b).
38. Note that −b≡ a (mod a+b).
41. This is a special case of the “Problem of Frobenius”.
42. a) The inverse in Z/13Z of [4] is [10]. b) i): X = [70] = [5].
45. In Z/14Z the inverses of [1], [3], [5], [9], [11], [13] are [1], [5], [3], [11], [9],
[13], resp.
47. a′ = a+mk, so (a,m) = (a′,m).
48. If (a,m) = 1 and (a,n) = 1 then (a,mn) = 1.
51. c) Observe that 25 = 32.
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52. If {0,b,b2, . . . ,bp−1} is a complete set of representatives modulo p, then b is a
unit, so p is prime and {b,b2, . . . ,bp−1} represent all the p−1 units of Z/pZ.
53. a) If [ba] = [ba′], multiply by the inverse of [b].

b) Show that bai is a unit modulo m for all i, and then use a) and Proposition 4.
54. If [b] is a unit of Z/mZ with inverse [c], then fc is the inverse function to fb. If [b]
is not a unit, then (b,m) = d > 1, so b ·(m/d)≡ 0 (mod m). Then fb([md ]) = fb([0])
and fb is not one-to-one.
55. Every unit mod m is a unit mod d. Conversely, suppose [b]d is a unit of
Z/dZ. Then (b+ dk,m) = 1 for some k (use Chapter 4, Exercise 28 or Chapter 6,
Exercise 40), so [b+dk]m is a unit of Z/mZ and [b+dk]d = [b]d .
56. X = [4 + 5k]20 for k = 0,1,2,3.
58. (36,45) = 9.
60. b) The inverse of [8] in Z/11Z is [7].
62. b) 9x ≡ 48 (mod 30) iff 3x ≡ 16 (mod 10) iff x ≡ 2 (mod 10); the general
solution is X = [2 + 10k]30, k,= 0,1,2.
64. One way to do this is to count the number of multiples of 2 that are ≤ 210,
then the multiples of 3 that are ≤ 210, then adjust the sum because you counted the
common multiples of 2 and 3 twice, etc.
65. Any number a not a unit modulo 30 must satisfy (a,30) > 1, hence must be a
multiple of 2, 3 or 5.
69. There are seven primes between 200 and 250.
70. There are 14 primes between 700 and 800.
71. The number is <120130.

Chapter 7

1. Multiply 1 +(−1) = 0 by (−1) and use Proposition 4.
2. Show that a is the inverse of −a.
3. Add −a to both sides of the equation.
5. Multiply ax= d by a−1 to find a solution, then use Exercise 4 to show uniqueness.
6. Multiply a+(−a) = 0 by b and use Proposition 4.
7. Start with 1 + 0 = 1.
8. Multiply on the left by the inverse of a.
9. See the suggestion for Exercise 8.
10. Use Exercises 8 and 9.
11. Use Exercise 8.
12. Neither have negatives.
13. (ii) Try distributivity.
14. (i) No. (ii) Yes.
16. [(m+ 1)/2]m.
17. There are 12 units.
21. Z/11Z has none, Z/12Z has seven.
24. If x0 and x1 are solutions of ax= b, then t = x1− x0 is a solution of ax= 0.
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26. X = [2 + 3k]18 for k = 0, . . . ,5.
27. One way: look at (a,m).
28. The zero divisors are congruence classes of 3, 5, 6, 9, 10 and 12. The comple-
mentary zero divisors of 12 are 5 and 10.
31. Note that (22,26) > 1.
32. For [113], do Euclid’s Algorithm on 365 and 113.
33. Note that 0 = z2−1 = (z+ 1)(z−1).
34. 6.
37. The inverse of a+bi is a

a2+b2 − b
a2+b2 i.

38. Use that f (a) f (a−1) = f (aa−1) = f (1) = 1.
39. If f : Q →Q, then f ( 1

1 ) = 1
1 , so f ( n1 ) = n

1 for all n in Z. Then by Exercise 38,
f ( 1
n ) = 1

f (n) = 1
n , hence for integers a,b, f ( ab ) = f (a) f ( 1

b ) = a · 1
b = a

b .

41. By Exercise 38, f (Um) ⊂Ud . If [a]d is a unit of Z/dZ, then there is some unit
[a′]m of Z/mZ so that [a′]d = [a]d by Chapter 6, Exercise 55.
43. a+a+ . . .+a= a(1 + 1 + . . .+ 1).
44. (i) a+a= a(1 + 1) = 0.

(ii) (a+b)2 = a2 +ab+ab+b2 = a2 +ab(1 + 1)+b2.
45. Use the additive analogue of the proof of Theorem 14 to show that 0 = 1 + 1 +
. . .+ 1 (n summands) for some n > 0, so if f : Z→ F is defined by f (1) = 1, then
ker( f ) �= 0. Then use Proposition 20.

Chapter 8

5. See an example in Section A.
6. See Exercise 5.
7. Try to solve the equation AX = 0. There will be a non-zero solution iff A doesn’t
have an inverse.
8. There are six units.
9. The first received vector has two errors; the third vector has a single error in the
last component.
10. The probability of at most two errors is

(1− .001)8 +
(

8
1

)
(1− .001)7(.001)+

(
8
2

)
(1− .001)6(.001)2.

12. The sum of three columns of H is a column of H.
14. The G for Code II is the G for Code I with an additional row (1 1 1 0) corre-
sponding to the equation w+a+b+ c= 0.
15. A coded word is a sum of columns of the matrix G of Exercise 14. Some ob-
servations: i) there are 16 coded words. ii) The difference of two coded words is
the same as the sum of two coded words, hence is a sum of columns of G. Thus
the problem comes down to counting the number of 1’s in each of the 15 non-zero
coded words. iii) Since the sum of all four columns is a column of 1’s, to count the
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number of 1’s in a sum of three columns is the same as to count the number of 0’s
in a single column.
17. The encrypted message starts with UKDL....
18. The plaintext message starts with CONG....

Chapter 9

1. [4] has order 2, [2] and [3] have order 4, [1] has order 1.
5. [6]13 has order 12.
8. Use that if at −1 is a common multiple of r and s, then at −1 is a multiple of m.
10. Use Exercise 9.
11. Use Proposition 3.
12. If e/(e, f ) = 1 then e divides f ?
14. b): 1; c), 5.
15. Use Proposition 2.
21. The order of 7 modulo 167 must be a divisor of 166.
24. This is easier once you find a primitive root modulo 19 (Section 6D).
25. 8.
26. Consider two cases, p divides a and (p,a) = 1.
27. Use Fermat’s Theorem.
30. Use Fermat’s Theorem.
32. Show it modulo 3, 11 and 17.
33. Try showing that the only units of Z/pZ that are their own inverses are [1] and
[−1], hence that [2] · [3] · · · [p−2] = [1].
35. Use Proposition 5.
37. A repunit has the form un = 10n−1

9 . Use Fermat’s Theorem.
38. Generalize Exercise 37.
39. a) Use Proposition 2. b) Use Proposition 5.
42. φ(21) = φ(7)φ(3) = 12.
44. Use that 40≡−2 (mod 21).
46. Observe that 73 ≡−1 (mod 43).
47. Use Proposition 2, section A.
51. b) Count the number of multiples of p in the set {1,2, . . . , pn}.
55. 4 < 8.
56. Use Proposition 7 b).
60. Use Exercise 59.
62. What is the order of 2 modulo 341? (Note that 341 = 11 ·31.)
63. The order of 10 modulo 17 must be a divisor of 16.
65. Observe that 103 ≡ −33 ≡ −1 (mod 13). Or observe that 103 ≡ −1
(mod 1001).
66. Find all primes p so that p divides 103−1 but not 10−1.
68. Use Exercise 67.
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70. If a prime p divides t, then p−1 divides φ(t). So if φ(t) divides 100 and a prime
p divides t, then p−1 divides 100. So write down the divisors of 100, then identify
which primes p have the property that p−1 is a divisor of 100. Any possible t then
must be a product of some of those primes....
71. The case (a1 +a2)p ≡ ap1 +ap2 (mod p) is Proposition 12. Use that to show the
analogous result for (a1 +a2 + . . .+an)p by induction on n.
73. a mod 2 and b mod 2 are 0 or 1. So there are three cases.
76. 69 = 64 + 4 + 1.
80. 1728 = 1024 + 512 + 128 + 64.
82. Use the following property of primes: if p is prime, then x2 ≡ 1 (mod p) has
only two solutions, because if p divides x2−1 = (x−1)(x+ 1), then p must divide
x−1 or x+ 1.
85. Here, m= 267,r= 1000. For precomputations, solve 267m′+1 = 1000r′ for m′
and find w= 10002 mod 267.
86. Here, m= m′ = 7,w= 2,r = 10.

Chapter 10

1. With m= 101, the words 02, 21, 25 are encrypted as 11, 22, 5.
3. The words 8, 15, 12, 4 are encrypted as 27, 10, 12, 9.
5. 141511 ≡ 2551 (mod 3337).
7. Use that φ(m) = φ(pq) = m− p−q+ 1.
10. Use that 33 = 27 ≡ 1 (mod 13) and 36 ≡ 1 (mod 7), the latter by Fermat’s
Theorem.
13. The divisors of m= 2p−1(2p−1) are 2r and 2r(2p−1) for r = 0,1,2, . . . , p−1.
Add these up (omitting m).
14. If 2n−1−1 = nq, then

22n−1)−1−1 = 22n−2−1 = (2n)2q−1,

which has 2n−1 as a factor.
15. Use Proposition 3.
18. Use that a2r+1 + 1 has a+ 1 as a factor for every r. (Proving this is a routine
induction on r.)
19. Use that 2(2n) ≡−1 (mod 22n−1) and that 22n is a multiple of 2n+1.
20. This is done in Section 19C.
21. Note that 2 has order q modulo p. If 2p ≡ 1 (mod p2), then 2p ≡ 1 (mod p),
so q divides p. Since p and q are both primes, p = q. But that is impossible since
p= 2q−1.
23 ii). Try m= 35.
24. This example is discussed in Section 11D.
25. (iii) If a,b are integers with ab≡−1 (mod 3), then either a≡ 1,b≡−1 mod 3
or a≡−1,b≡ 1 mod 3. Hence a+b≡ 0 mod 3.
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29. Let N = 13 · 7 = 91. Then 13 and 7 are both 3-smooth. Let k = 2 and a = 27.
Then B= 26 = 64, and

2764 ≡ (272)32 ≡ 132 ≡ 1 (mod 91).

30. i) Observe that

1≡ 532s ≡ (516s)2 ≡ (6498)2 (mod 7081).

ii) (6498−1,7081) < 7081 because 7081 doesn’t divide 6498−1, and (6498−
1,7081) > 1 because 7081 doesn’t divide 6498+ 1.
31. The approach of Exercise 30 is essentially the strong pseudoprime test of
Section 20B.

Chapter 11

1. For solvability: to solve ax= b, multiply both sides by a−1 (on the left).
2. To find a left identity for G, pick some a in G and let x = e solve xa = a. To
show that eb = b for every b in G, find some c so that ac= b, then ea = a implies
eac= ac, so eb= b. Solving xb= e then shows that every element b of G has a left
inverse.
4. Let u be some product of a1, . . . ,an. Somewhere in u is an expression (arar+1).
Let b= arar+1. Then u is a product of n−1 elements of G. Then by induction,

u= a1(. . . (b(. . . (an−1an) . . .) = uv

or, if r = 1,
u= b(. . .(an−1an) . . .) = bv

If r > 1 then replacing b by arar+1 in v and applying the induction assumption to v
completes the proof. If r = 1,

u= (a1a2)v= a1(a2v)

so applying induction to a2v completes the proof.
5. Call the product u. If u= a1v, apply induction to v. If u= ca1b, use commutativity
to get u= a1cb and apply induction to cb.
8. i) If [[a,b],c] = m and [a, [b,c]] = n, show that m divides n and n divides m.

iii) Only one element of N has an inverse.
iv) Only when a divides b.
v) No.

9. See Proposition 2, Chapter 9.
11. ii) Having done i), note that [12] = [−7].
12. i) 〈[10]21〉 has six elements.

iii) Note that [8] = [23].
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14.H contains 1 if and only ifH =G. If (b,n)= 1 then there is some positive integer
r so that br ≡ 1 (mod n), hence b+ b+ . . .b(r summands ) = 1. If (b,n) > 1 then
H doesn’t contain 1.
15. See Exercise 11.
16. No. Which elements are inU21.
17. For equivalence relations, see Chapter 1.
20. i) Use that (φ(m),m−1) = (6,8) = 2.

iv) By Proposition 11 it suffices to findU75(2). There are four classes [a]75 whose
square is [1].
22. Use Proposition 11.
24. Show that (n−1,φ(n)) = 1.
25. Show that (m−1,φ(m)) = 2.
26. 36.
27. i) The cosets of 1, 6, −1,−6.

ii) The cosets of 9,−9,19,−19.
29. i) It may help to show that 3 is a primitive root modulo 31.
33. i) ker(L[2]) = {[a]10|[2a] = [0]}= {[0], [5]}.
34. Use Proposition 11.
37. Need to check that f−1 sends the identity to the identity and products to prod-
ucts. For products, let f (a) = a′, f (b) = b′. Since f (a∗b) = f (a)∗ f (b),

f−1(a′ ∗ b′) = f−1( f (a)∗ f (b)) = f−1( f (a∗b)) = a∗b= f−1(a′)∗ f−1(b)′.

40. The four elements of G/H are [2]H, [11]H, [22]H and [1]H. All have order 2.
41. [28]H has order 4.
43. If b is a primitive root, then br ≡ 1 or − 1 (mod p) if and only if (p− 1)/2
divides r.
45. If N = {[1], [−1]}, the cosets are N, [2]N, [3]N.
47. iii) The story is that Gauss’s 2nd grade teacher, for busywork, asked the students
to add up the numbers from 1 to 100. Gauss wrote the numbers out twice:

1,2,3, . . . ,98,99,100

100,99,98 . . . ,3,2,1

and observed that twice the sum is 100 times 101.
49. Use the function L of the proof of Cayley’s Theorem (Theorem 18).
51. 48 elements.

Chapter 12

1. x= 73.
2. None.
6. x≡ 47 (mod 120).
9. x≡−334 (mod 2100).
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10. The system is solvable iff there is an integer solution of 1 = mx+nqy.
12. There are 136 unwounded survivors.
13. There are 46 participants.
17. Each vessel holds 3193 ko, and the total amount of rice stolen was 9563 ko.
21. x≡ 31 (mod 100).
26. This system reduces to x≡ 10 (mod 17),x≡ 5 (mod 22).
29. Let (m,n) = d. For each a1 with 0 ≤ a1 < m1, for a solution we must have
a2 = a1 + kd for some integer k. Modulo m2 there are m2/d choices for a2.
32. Use Exercise 31.
33. (i) The solutions to the four systems of congruences: x ≡ ±1 (mod r),x ≡ ±1
(mod s) all satisfy x2 ≡ 1 (mod m).
34 (i) e1 = 400,e2 = 126; b) x= 192.
38. If we use 1,113,840 = 5 ·7 ·9 ·13 ·16 ·17, then the table needs 31 entries.
39. (i) If p= 2q+ 1 with p,q primes >10, then q �≡ 0 (mod 3) because q is prime,
and q �≡ 1 (mod 3) because p is prime.
41. p ≡ 11,23,47,59, or 83 (mod 84).
42. For p2, consider separately l ≡ 1 (mod 4) and l ≡ 3 (mod 4).
43. 951002 ≡ 4 (mod 31) and ≡ 1 (mod 7), so ≡ 190 (mod 217).
45. 21235 ≡ 30 (mod 391).
48. For example, 7 maps to (1,3) and 10 to (1,2).
50. (1,0) · (0,1) = (0,0).
52. The kernel is {[0], [12]}. The image has 12 pairs, all pairs (b,c) where b ≡ c
(mod 2). See Exercise 28.
53. Exactly one solution.
54. (i) x0 = 4.
55. 30030 = 2 ·3 ·5 ·7 ·11 ·13, so λ (30030) = [1,2,4,6,10,12] = 60.
56. Write (t, p−1) = tr+(p−1)s, then a(t,p−1) = (at)r · (ap−1)s ≡ 1 (mod p).
57. (i) Use that m−1 = pq−1 = pq− p+ p−1 = p(q−1)+ (p−1).

(iii) If am−1 ≡ 1 (mod p), then ap(q−1)ap−1≡ 1 (mod p), so aq−1 ≡ 1 (mod p).
Hence a(p−1,q−1) ≡ 1 (mod p). Similarly modulo q.
58. To show thatUm(2) has four elements, observe that a2 ≡ 1 (mod m) iff (a+1) ·
(a−1)≡ 0 (mod p) and also modulo q.
59. Use Exercise 57.
61. Use Exercise 57.
62. To show thatU65(4) has order 16, show that x4 ≡ 1 (mod 13) has exactly four
solutions, and the same is true modulo 5.

Chapter 13

1. For example, xp and x.
3. Apply Proposition 1.
4. Choose two polynomials whose leading coefficients are complementary zero
divisors.



582 Answers and Hints to the Exercises

6 (iii) 2R[x]
(iv) f (x) = x is an example.

9. A generalization is (xn+ xn−1 + . . .+ x+ 1)(x−1) = xn+1−1.
10. R[x] is an infinite set, while Func(R,R) is a subset of R×R (think of a function
defined as a set of ordered pairs), which is a finite set if R is.
11. Let h(x) = (x9 + 8x3 + x)− (x6 + 2x2 + x). If h(x) is the zero function, then
h(1) = 0. But h(1) = 6, so p can only be 2 or 3. To check 3, look at h(2) modulo 3.

Chapter 14

1. (i) −7 ; (iv) 0 ; (v) 3x2− x−1.
2. No.
3. Try dividing 2x2 + 1 into 6x2 = 14x2.
4. (i) Use the Remainder Theorem.

(iii) Let y− x4 and use the Remainder Theorem in Q[y].
5. Use the Remainder Theorem, and in part (ii) see for which m the remainder is 0
modulo m.
7. How do you know that the remainder when you divide x2 +2x+5 by x2−3 is the
same as when you divide f (x) by x2−3?
10 (i) x2− 2x≡ 0 (mod 15) iff x2− 2x≡ 0 (mod 5) and (mod 3), iff x ≡ 0 or 2
(mod 5), and also (mod 3). So there are four roots of x2−2xmodulo 15.
11. See Exercise 10.
14. d = 2.
17. Try induction on the length of Euclid’s Algorithm for f and g. Observe that if
Euclid’s Algorithm for g and f starts with g = f q1 + r1, then the rest of Euclid’s
algorithm for g and f is Euclid’s Algorithm for f and r1.
18. See the suggestion for Exercise 17.
21. The greatest common divisor is x2−1.
22. 1 = x3 +(x2 + x+ 1)(x+ 1).
25. (i) x2 + 1. (ii) (x5 + 2x3 + x2 + x+ 1)(x4 + 2x3 + x+ 1)/(x2 + 1).
27. Use that if n= mq+ r, then

xn−1 = xmq+r− xr+ xr−1 = xr(xmq−1)+ (xr−1).

29. k(x) = x2−1
(x3−1,x2−1) .

32. Use Bezout’s Identity on ( f ,g) and ( f ,h).
33. If d = t f +wg, write t = gq+ r with degr < degg. Then d = r f + (q f +w)g
and s= q f +w must have degree < deg f .
35. If p doesn’t divide f , then for some polynomials r,s, prt+ f s = 1. Multiply by
g and observe that then p divides the left side.
38. If p and q are monic, then the leading coefficients of p and aq are 1 and a,
respectively. So a= 1.
40. (i) Use the Intermediate Value Theorem from calculus.



Answers and Hints to the Exercises 583

(ii) and (iii): See Section 15G.
(iv) Prove this by induction on the degree of f (x), using the Root Theorem.

42. Is x2−3x−4 irreducible?
45. Use Proposition 1 of Chapter 13.
48. (i). Try dividing by irreducible polynomials of degree 3.

(iii) Try dividing by irreducible polynomials of degree 4.
49. Use D’Alembert’s Theorem.
50. (ii) Try x−a dividing x(x− (a+b)).

Chapter 15

1. Let

l(x) =
f (x)
g(x)

− h(x)
k(x)

=
m(x)

g(x)k(x)

wherem(x) = k(x) f (x)−h(x)g(x), and assume l(a)= 0 for infinitely many elements
a of F . Then m(a) = 0 for infinitely many elements a of F , so m(x) = 0. Hence

f (x)
g(x)

=
h(x)
k(x)

.

3. x3 = (x+ 1)3 = 3(x+ 1)2 + 3(x+ 1)−1.
5. (i)

t+ 1
(t−1)(t+ 2)

=
2/3
t−1

+
1/3
t+ 2

.

(ii):
1

(t+ 1)(t2 + 2)
=

1/3
t+ 1

+
−t/3 + 1/3
t2 + 2

.

6. One solution is 17
180 = −5

9 + 1
4 + 2

5 .
7. Let p(x) = x− x0 and let

f (x) = a0 +a1p(x)+a2p(x)2 + . . .+anp(x)n

be the expansion of f (x) in base p(x). By repeatedly differentiating f (x), show that

a0 = f (x0), a1 = f ′(x0), a2 = f ”(x0)
2! , . . . ,an = f (n)(x0)

n! , and hence f (x) = Tf (x).
8. (ii) (1− i)( 1

2 + 5
2 i) = 3 + 2i.

9. (iii) 1
37 − 6

37 i.
10. (ii) 4

√
2e−iπ/4.

11. (ii) |α|=√
c.

13. (iv) Use x3 + 1 = (x6−1)(x3−1).
17. If j is the complex conjugation map from C[x] to C[x] defined by: j( f (x))
is the polynomial f (x) whose coefficients are the complex conjugates of those
of f (x), then j is a ring homomorphism, and, if f (x) has real coefficients, then
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j( f (x)) = f (x). If α = r+ is is a root of f (x), use the Root Theorem, then apply the
homomorphism j.
18. Use Exercise 17.
19. (ii) Write −2 = 2eiπ = 2ei(π+2kπ), then x= 21/4ei(π+2kπ)/4 for k = 0,1,2,3.
20. (i) See the discussion about Exercise 17, then apply complex conjugation to
g(x).

(ii) C has no zero divisors.
21. Use Exercise 20.
22. t =

√
7+ 1.

24. x= ( 5
2 +

√
29
2 )1/3 +( 5

2 −
√

29
2 )1/3.

26. x= 4,1 +
√

3,1−√3.
28. Choose |a0|< 1.
30. p(z) = (z3 + 2z2 + 4z)+ i(z3− z2 + 2), so

|p(z)|2 = 2z6 + 2z5 + 13z4 + 20z3 + 12z2 + 4.

31. Apply Proposition 6.
33. Write f (x)e = f (x)e−1 f (x) and use induction on e.
34. x−1; x3−2x2− x+ 2.
36. ( f , f ′) is the same in C[x] or in Q[x].
37. f ′ = 1.
39. (i) x+ 1 is a multiple factor; (ii) x2 + x+ 1 is a multiple factor.
42. f ′(x) �= 0, so the proof of Theorem 8 for characteristic zero applies.
44. (x+ 1)(x2 + x+ 1)2.
46. There is a solution in the “Hints” in the Second Edition.

Chapter 16

1. (i) Multiply f (x) by 18.
2. The polynomial factors into the product of two polynomials of degree 2 in Z[x].
3. (ii) Let g1,h1 be primitive associates of g,h. Then g1h1 = a f for some rational
number a. Use Proposition 1 and Lemma 2 to show that a= 1 or−1. So the leading
coefficients of g1 and h1 are 1 or −1. Since f is monic we can multiply g1 or h1 by
−1 as needed to make a= 1 and g1,h1 monic.
4. Reduce modulo p for every prime p.
6. (i) Let g1 = rg,h1 = sh with g1,h1 primitive. Then r,s are in Z and rs f = g1h1.
Since f is monic and g1h1 is primitive, rs �≡ 0 (mod p) for every prime p. So rs= 1
or −1, hence g,h are in Z[x].
8. Use Exercise 6 (ii).
9. (ii) x=−1 is the only rational root.
10. (i) Any root is x= r/s where r divides 2 and s divides 6. One root is x=−2/3.
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11. Let x= y−7, then f (x) = f (y−7) = g(y) and f (−7) = g(0) =−1. So the only
possible roots of g(x) are y = 1 or −1, and so the only possible roots of f (x) are
x= 1−7 or −1−7.
12. The polynomial of Exercise 9 (ii) becomes y3 + y2−30y−72, which has roots
6, −4 and −3.
13. (i) This follows from the observation that if c is a divisor of ab then c factors
uniquely as c= de where d is a factor of a and e is a factor of b.

(iv) Note that d
−e = −d

e , so you can assume the denominator of any root is
positive.
17. If f (x) = 2x4 − 8x2 + 3, then g(y) = y4 f (1/y) = 3y4− 8y2 + 2, which is irre-
ducible by Eisenstein. Show that any factorization of f (x) yields a factorization of
g(y) and conversely.
20. Suppose f (x) = g(x)h(x) in Z[x]. We can assume that g,h are monic. Then this
factorization would hold modulo 2 and modulo 3. But modulo 3, g and h must have
degree 2, hence also in Z[x], hence also modulo 2. But modulo 2, f is not divisible
by a polynomial of degree 2.
21. Use Corollary 12.
24. Use Proposition 11.
26. No.
27. Try factoring f (x) = x4−15x2+1 = (x2 +cx+1)((x2−cx+1) as in the proof of
Proposition 11. Then we must have−c2 +2 =−15, or c2 = 17. Modulo 32, 17≡ 92,
so f (x) factors modulo 32. In fact, 17 is a square, hence f (x) factors, modulo every
power of 2: see Section 21A.

Chapter 17

1. (i) f (x) ≡ x+ 2
(iii) x9 ≡ x

2. The units modulo m(x) are 1,2,x+ 2,2x+ 1.
8. In order to have a complete set of representatives, x must have order 24. For (i), x
has order 12; for (ii), x has order 24; for (iii) x cannot have order 24 because there
are fewer than 24 units modulo x2 + x+ 4.
9. x5 ≡ 1.
10. See Table 2, Chapter 25.
12. Try choosing f (x) to be a divisor of m(x).
13. pd elements.
14. (i) and (iii) are possible; (ii) is not.
15. For part (b), if (m, f ) = 1 then there are polynomials r,s so thatmr+ f s= 1, then
f s ≡ 1 (mod m). For part (c), Let (m, f ) = d, let ds = m, then f s ≡ 0 but f ,s �≡ 0
(mod m).
16. (i) a must be coprime to m. φ(m) is the number of units modulo m = the number
of numbers <m that are coprime to m.
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(ii) φp(m) is the number of polynomials in Fp[x] of degree <degm that are co-
prime to m.

(iii) φp(m) = 6.
17. If p(x) = b is a non-zero element of F , then b divides every f (x), hence every
difference f (x)−g(x).
18. If f (a) = g(a) for all a in Fp, then h(x) = f (x)−g(x) is a multiple of x−a for
every a, by the Root Theorem. Thus x(x−1)(x−2) · · ·(x−(p−1)) = xp−x divides
f (x)−g(x).
19. (i) f (x) = x3.
21. q(x) = x3 + 2x2 + 1.
22. (iii) For each c of degree <degmn, let a= c mod m,b= c mod n. If (c,mn) = 1,
then (a,m) = 1 and (b,n) = 1. Conversely, let (a,m) = 1 and dega < degm, let
(b,n) = 1 and degb< degn. Then there is a unique c with degc< degmn and c≡ a
(mod m),c≡ b (mod n), and (c,mn) = 1. So there is a one-to-one correspondence
between c with degc< degmn and (c,mn) = 1, and pairs (a,b) with (a,m) = 1 and
dega< degm, and (b,n) = 1 and degb< degn.
24. f (x) = (−5/24)x2 +(4/3)x− (1/8)
26. a(−1,1,5)(x) = x2 + 3x+ 1
28. If as(x) divides f (x), then so does −as(x) = a−s(x).
29. The polynomial as(x) = 1 corresponds to s = {1,1,1, . . .1}.
30. For each i,1≤ i≤ d, si has four possibilities. So there are 4d possible vectors s.
By the comment on Exercise 28, there are 4d/2 = 22d−1 possible polynomials as(x)
up to associates.

Chapter 18

2. The k-th coefficient ck of f (x)g(x) is a0bk+ . . .akb0 if k ≤ d, and is arbd + . . .+
adbr if k= d+ r. The result follows from the triangle inequality.
8. The MAPLE command “isprime(m)” is very helpful: I found 7 ·220 +1 and 177 ·
2100 + 1 in a few minutes.
9. Dirichlet’s Theorem says that if (a,m) = 1 then there are infinitely many primes
in the congruence class a modm. To find a prime p so that p− 1 is a multiple of
2r, find a prime p congruent to 1 modulo 2r.
11. 3r−1 > 2r(3r−1) for r = 12: 311 = 177147 > 143360 = 212 ·35.

Chapter 19

1. (i) 2; (ii) 6, (iii) 4.
7. Z/mZ is cyclic, so the exponent is λ = m.
8. One way to produce examples is to observe that the order of a is the same as the
order of a−1.
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9. (i) 2, (ii) −2, (iv) 21.
11. See the remark for Exercise 8.
13. (ii) For i= 1, . . . ,r pick a primitive root bi modulo pi, and let a≡ bi modulo pi.
15. One generator is [3]10.
17. Most classes [a]49 where a is a number congruent to 3 or 5 modulo 49 will
generateU49.
19. φ(28) = 12,λ (28) = 6.
21. All [a] with (a,n) = 1 will generate Z/nZ.

22. Observe that if b is a primitive root, then br has order (p−1)
(r,p−1) .

23. The exponent is 3.
24. No; no.
28. Let c be any number <p. Then (c, pe) = 1, so c ≡ bs (mod pe), hence c ≡ bs
(mod p).
29. Given a number a< p, ap−1 = 1 + ps for some s. If b= a+ rp, then

bp−1 ≡ 1 + p(s−ap−2r) (mod p2),

so bp−1 ≡ 1 (mod p2) for a unique number r modulo p.
30. (i) Solve the four systems x≡±1 (mod r),x≡±1 (mod s).
31. (i) The product of all elements of G is (bm)2m+1 = bm.
32. Use that there is some unit of order λ (m).
33 (i) Observe that if a in Ur has order d and b in Us has order e, then (a,b) in
Ur×Us has order [d,e].
34. (ii) |U105|= (104,2)(104,4)(104,6)= 16, while φ(105) = 48.
35. I found m= 1767 = 3 ·19 ·31.
36. (ii) p(3)≡ 2 (mod 11).
39. (r,s) = (3,32).
40. w= 19,v= 333·194931·19 (mod 83).
43. Show that since (A,M/3) = 1, the order of A modulo M/3 will be the period of
A modulo M.

Chapter 20

1. 1105 = 5 ·13 ·17 and 1104 = 16 ·69 = 12 ·92 = 4 ·276.
3. If k ≡ 2(mod 5) then 12k+ 1 is a multiple of 5, etc.
4. Use Example 3.
5. (i) If r ≡ 1 (mod 7) then 90r+ 1 is a multiple of 7, etc.
6. (i) Use Korselt’s criterion.

(iv) No. Put the right side over the common denominator d1d2 · · ·dn. If a prime p
divides d1, then it must divide d2 · · ·dn.
7. (i) It suffices to show that G is closed under multiplication.
9. One example is 37 ·73 ·181.
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10. The only relevant primes p not congruent to 1 modulo 5 so that p− 1 divides
120 are 7 and 13. Consider the four cases where a product contains: neither 7 nor
13; just 7; just 13; both 7 and 13.
12. There is an obvious number a with (a,m) = 1 and am−1 �≡ 1 (mod m).
14. Find a so that a45 ≡ 1 (mod 91) by finding a so that a45 ≡ 1 (mod 7) and mod
13. If a45 ≡ 1 (mod 7), then a3 ≡ 1 (mod 3), so a ≡ 1,2,4. Similarly modulo 13.
So there are at least eight non-trivial awith a45 ≡ 1 (mod 91). (Then there are some
a with a45 ≡−1 (mod 91).)
16. 35 is an a-pseudoprime for all a for which a2 ≡ 1 (mod 35), namely a =
1,−1,6,−6.
19. Since λ (1729) = 36 and 36 divides 1728, 1729 is Carmichael. Now 1728 =
26 ·27, and since a36≡ 1, a27·4 ≡ 1 for all a. Also, a27·2 ≡ 1 modulo 7 and modulo
19, and ≡ 1 or −1 modulo 13. So

{a|a54 ≡ 1 (mod 1729)}

has index 2 inU1729. The other coset is

{a|a54 ≡ 1 mod 7 and mod 19, and ≡−1 (mod 13)}
= {a|a54 ≡ 1065 (mod 1729)}.

Thus 1729 is not a strong a-pseudoprime for those a with a54 ≡ 1065, and that set
includes half of the elements ofU1729.
21. (10651,1729) = 13.
26. Let b−1 = c,b+1 = d. Now (m,cd) divides (m,c)(m,d) (apply Bezout’s iden-
tity to the two factors). For the other direction, show that (m,c) and (m,d) are co-
prime. Since (m,c) and (m,d) divide (m,cd), then (m,c)(m,d) divides (m,cd).
28. Use that 2p ≡ 1 (mod Mp) and that 2p−1−1 is odd and a multiple of p.
29. Try a= 3.
30. Show that the exponent λ (m) = (p− 1((q− 1)/2 satisfies (m− 1,λ (m)) = 2,
henceUm(m−1) =Um(2).
31. Show thatUm(m−1) =Um(2), as in Exercise 30.
34. From Exercise 33 you can factor m = pq, find φ(m), and solve 133d ≡ 1
(mod φ(m)).

Chapter 21

3. First show that w ≡ 6 (or 19) modulo 25. Let w = 6 + 25k and find k so that
w2 ≡ 61 modulo 125.
5. No. To compute the Legendre symbol one can start either by observing that
45≡ −2 (mod 47) or by noticing that 45 = 32 ·5.
8. 14 is a square modulo 65 iff 14 is a square modulo 5 and modulo 13.
11. Apply the Quadratic Formula.
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12. One way to do this is to use the fact that every r �≡ 0 modulo p is (mod p) the
power of a primitive root.
15. There is a solution.
16. See Exercise 11.
20. p must be ≡ 1 modulo 4.
24. (i) Let m = prq with p prime and (p,q) = 1. Let b be a primitive root modulo
pr, and let a≡ b (mod pr),a≡ 1 (mod q).

(ii) Use that
(−
m
)

:Um→{±1} is a homomorphism of groups that is onto by (i);
then apply the Fundamental Homomorphism Theorem (Theorem 17) of Chapter 11
and Lagrange’s Theorem.
25. 3/4 of (1/2 of φ(1729)).
26. Show that if k is odd, then a(m−1)/2 ≡ 1 (mod m) for all a coprime to m, by
showing that the exponent λ (m) = 36k ofUm divides m−1

2 .

Chapter 22

1. Compute a Legendre symbol by showing that p≡ 1 (mod 5) and p≡ 7 (mod 8).
2. (ii) Show that p≡ 1 (mod 4) and p≡ 3 or 5 (mod 7), hence

(
7
p

)
=−1.

3. Follow the proof of Proposition 5.
6. One approach: find a special prime p= 2p1 +1 with p1 = 2p2 +1 so that modulo
p1, 2 has order p2 and 50 < p2 < 100, or 2 has order 2p2 and 50≤ 2p2 ≤ 100.
8. (i) [52,20] = 260. (iii) Try y= 13282 or y= 132106.
9. (c,z) = (1,0,0,82).
10. m= (1,0,1).
11. See Lemma 10.
12, Let p= 2p1 + 1 with p, p1 prime. Observe that if a has order p1 or 2p1 modulo
p, then a2 has order p1. Thus all but two of the p− 1 units y modulo p have y2 of
order p1. Then apply the Chinese Remainder Theorem.
13. Look at p2 modulo 2, 3, and 5, remembering that, for example, none of p2, p1

and p can be congruent to zero.
15. Write y= z2 modulo p and show that both maps yield z modulo p.
20. (i) 241 is a factor; (ii) 47 is a factor; (iii) 401 is a factor.
21. (i) tmax = 3;E(t) = 1.57.
22. There are two numbers, 13 and 16, for which t = 12. Thus the chance is 2/29.
24. One way to do this is as follows. Since α(x) = α(−x), it suffices to find a
number x so that both x and −x are in 1 +QRp. Let α(a) = x,α(b) = −x, then
1 + a2 ≡ −1− b2 (mod p), or a2 + b2 ≡ −2 (mod p). We can find a prime q so
that q ≡ −2 (mod p) and q ≡ 1 (mod 4), for by the Chinese Remainder Theorem
those two congruences are equivalent to a single congruence for which Dirichlet’s
Theorem applies. Since that prime q= a2 +b2 for some a,b, that solves the problem.
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Chapter 23

3. See Section 25A, Table 1.
4 iii) α6 = α + 2.
5. The units can all be written as powers of α , where α8 = 1. So the inverse of αr

is α8−r.
6. One way to do this is to observe that

0 = (α3 + α + 1)2 = α6 + α2 + 1 = (α2)3 + α2 + 1.

7. The roots of x3 + 2x+ 2 in F3[α] are α,α3 and α9.
8. See Chapter 1.
9. The zero divisors are all the non-zero multiples of [x+ 1]
11. The units are the congruence classes of 1,2,3,4 and c(x+1) and d(x−1) where
c,d = 1,2,3,4..
12 iv) One answer is F2[x]/(x5 + x2 + 1), since x5 + x2 + 1 is irreducible in F2[x].
13. F7[x]/(p(x)) where p(x) is any of the 112 irreducible polynomials in F7[x] of
degree 3. (See Section 27A.)
14 i) The inverse of x2 + x+ 1 mod x3 + 2x+ 1 is 2x2 + x+ 1.
16. The inverse of x2 is x3 + 1. The inverse of x3 is x4 + x2 + x.
17. Use that cos3x= 4cos3 x−3cosx, and that cos60◦ = cos(60±360)◦.
18. In E[x], if α = [x], then x4 + x2 + 1 has roots α,α2 and α4, and Since (x−1) ·
(x2 + x+ 1) = x3−1 has roots the cube roots of 1 = α15, the roots of x2 + x+ 1 are
α5 and α10.
19. Use Fermat’s Theorem to find p roots of f (x) in Fp.
20. The roots of xn− 5 in C are ζ k(5)1/n for k = 1, . . . ,n, where ζ = e2iπ/n. These
roots are not all real if n> 2.
21. If [r] = [s], then m(x) divides r− s, impossible if r �= s and degm(x)≥ 1.

Chapter 24

3. (x− (a+b
√

2)((x− (a−b√2) = x2−2ax+(a2−2b2).
4. (x2−1)2−8x2 = x4−10x2 + 1.
5. cos(4θ ) = 2cos2(2θ )−1 = 2(2cos2 θ −1)2−1. Let θ = 15◦.
6. Let β be in C and let φ([x]) = β . Then φ([ f (x)]) = φ( f ([x])) = f (β ). In order that
φ is well-defined on [ f (x)], we must have that if g(x) = f (x)+ p(x), then g(β ) =
f (β ). But that’s true only when p(β ) = 0. So β must be a root of p(x).
7. Let m(x) be the minimal polynomial of α in F[x]. Then m(x) divides p(x). Since
p(x) is irreducible and both m(x) and p(x) are monic, they must be equal.
8. i) [x] = α doesn’t work because α5 = 1. There are eight choices for β .

iii) Let φβ : F2[x] → F2[x]/(x4 + x3 + x2 + x+ 1) be the evaluation homomor-
phism, and apply the Isomorphism Theorem.
10. Note that if β is a root of x2 + x+ 1, then β 3 = 1.
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12. See Section 25B, Example 3.
13. Given an irreducible polynomial in F2[x] of degree 4, construct with it a field of
16 elements using Chapter 23, Proposition 4, then follow the proof of Theorem 8.
14. See the suggestion for 13.
15 i) Try i+ 1.
17. Find a root β = ai+b of x2− x+ 3 in F7[x]/(x2 + 1).
18. Use the Isomorphism Theorem.
20. Use F2[x]/(x2 + x+ 1).
24. Use F8 = F2[x]/(x3 + x+ 1)–see Section 25A for a description.
27. See Section 24B, Theorem 4.
28. First show that Ap is a Latin square for each p. Then show that if p �= p′ and

(apai+a j,ap′ai+a j) = (apak+al,ap′ak+al),

then i= k and j = l.
29. For notation, let A = (ai, j) for i, j = 1, . . . ,m and B = (bk,l) for k, l = 1, . . . ,n.
Then the (r−1)n+ s-th row of A×B is

(ar,1,bs,1),(ar,1,bs,2), . . . ,(ar,1,bs,n),(ar,2,bs,1), . . .
(ar,2,bs,n), . . . ,(ar,m,bs,1), (ar,m,bs,2), . . . ,(ar,m,bs,n)

Chapter 25

1. (i) (1,0,0,0,1,0,1).
2. (i)C = (0,1,1,0,0,0,1);w= (0,1,1,0).
4. (i) (111,001,100,000,100).
5. (i) The errors correspond to α6 and α14; w= (0,1,0,0,0,1,1).
8. It is helpful to observe that S2

1 = S2,S2
2 = S4.

9. One digit–m4(x) has degree 6.
14. See Proposition 3 of Section B.
15. Use that all units of F8 have order dividing 7.
16. There is one of degree 4.

Chapter 26

1. Do an induction argument on n, the degree of f (x). The case n = 1 is obvious,
and the induction step is Theorem 2.
5. If f (x) = xn+a1xn−1 + . . .+an, then Mignotte gives

|b| ≤ ‖ f‖= (1 + |a1|2 + . . .+ |an|2)1/2,
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while Descartes gives

|b| ≤ |an|=
√
|an|2 < ‖ f‖

for every f .
6. i) If |ak| ≤ |a1|k, then

‖ f‖ ≤ (|a1|2 + |a1|2·2 + . . .+ |a1|2·2d)1/2

≤ |a1|
( |a1|2d−1
|a1|−1

)
≤ |a1|d+1.

8. Observe that the squarefree part of f , namely f/( f , f ′), = x7 + 1, hence divides
x8 − x, which in turn is the product of all the irreducible polynomials in F2[x] of
degree 1 or 3. (Or use Berlekamp!)
9. See Chapter 25, Code IV.
10. Show that Q− I has rank 4.
12. Reduce the polynomial modulo 2.
13. Show that

Q =

(
1 0

0 q
p−1

2

)
.

So x2−q factors over (hence has a root in) Fp iff Q−I = 0 iff q(p−1)/2≡ 1 (mod p).
15. Modulo 3, the polynomial factors as (x2 − 2x+ 1)(x2 + x+ 2). Modulo 9, it
factors as

(x2−2x+ 4)(x2 + 4x+ 2).

Chapter 27

1. The proof is similar to that of Theorem 6, with an summation interchange.
3. Do induction on the number of prime factors of n.
4. There are 18 monic polynomials of degree 2 with a non-zero constant term. De-
termine which of these has a root of 1 or −1 and toss them out. The remaining
polynomials will be irreducible.
5. N12 = 1

12 (p12− p6− p4 + p2).
7. There are 2g terms.
8. For the right hand inequality, observe that if q is the smallest prime that divides
n, then

nNn = ∑
d|n

µ(d)pn/d = pn− pn/q+ ∑
d|n,d>q

µ(d)pn/d

and

∑
d|n,d>q

µ(d)pn/d < ∑
k<n/q

pk < pn/q.
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For the left inequality,

nNn > pn− ∑
d|n,d<n

pd > pn−
n/2

∑
k=1

pk;

summing the geometric series, show that

nNn ≥ pn

n
(1− 2

pn/2
)

and ε = 2
pn/2 goes to 0 as n goes to infinity.

10. If F has pn elements, then F is a splitting field for xpn−x, and since q(x) divides
xpn− x, q(x) splits in F .
12. x9− x= x(x−1)(x+ 1)(x2 + 1)(x2 + x+ 2)(x2 + 2x+ 2).
13. It is the product of the five monic irreducible polynomials of degree 1 and the
ten monic irreducible polynomials of degree 2 in F5[x].
15. The roots are 0, α5,α10,1.
16. If m(x) divides xpn − x, then m(x) is a product of irreducible polynomials of
degrees d dividing n. If q(x) is an irreducible factor of m(x) of degree d < n, then

q(x) divides (m(x),xpd − x), so if (m(x),xpd − x) = 1, then m(x) cannot be divisible
by an irreducible polynomial of degree d < n.
17. The equivalence of iii) and iv) follows from the identity

(xa−1,xb−1) = (x(a,b)−1),

which follows from the identity: if b= aq+ r, then

xb−1 = (xb−qa)(xqa−1)+ (xr−1).

The equivalence of iv) and i) is from Theorem 1.
ii) implies i) follows from the congruence

xp
d ≡ x (mod m(x)).

For i) implies ii): first show that if m(x) is Carmichael, then m(x) is squarefree.
To do that, let m= f eq with f irreducible, ( f ,q) = 1 and e> 1. Then defining a by
the conditions:

a≡ 1 + f (mod f e)
a≡ 1 (mod q),

Then a is coprime to m and has order a power of p modulo m, contradicting the
Carmichael assumption.

Then show that if m = q1q2 . . .qr of degrees d1,d2, . . . ,dr, then pdi − 1 divides
pd−1, by constructing an element a by

a≡ bi (mod qi)
a≡ 1 (mod m/qi),
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where bi is a primitive root of Fp[x]/(qi). Then a has order pdi−1 modulo m. Since

a is coprime to m and apd−1 ≡ 1 (mod m), pdi − 1 divides pd − 1. (These results
were obtained by H. H. Smith III in his 1991 undergraduate thesis at the Univ. at
Albany.)
18. One way to proceed is to count the reducible polynomials: write x2 + ax+ b=
(x+ r)(x+ s) with r,s in Z and find the resulting pairs (a,b) with −14≤ a,b ≤ 15
so that there exist r,s solving

a= r+ s,b= rs.

There are 119 pairs (a,b) so that x2 +ax+b is reducible. That leaves 900−119 =
781 irreducible polynomials.

By comparison, there are 3 reducible polynomials of degree 2 modulo 2, 6 re-
ducible polynomials of degree 2 modulo 3 and 15 reducible polynomials of degree 2
modulo 5. Each triple of reducible polynomials modulo 2, 3 and 5 defines a unique
polynomial modulo 30 that is not provably irreducible. Thus 900 - 270 = 630 of the
900 polynomials in Z[x] with coefficients bounded between -14 and 15 are provably
irreducible by looking at them modulo 2, 3 or 5, and 151 of the polynomials are
irreducible in Q[x] but are reducible modulo 2, 3 and 5.
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