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Preface

Biology is a source of fascination for most scientists, whether their training is in the
life sciences or not. In particular, there is a special satisfaction in discovering an
understanding of biology in the context of another science like mathematics. Fortu-
nately there are plenty of interesting problems (and fun) in biology, and virtually all
scientific disciplines have become the richer for it. For example, two major journals,
Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size
since their inceptions 20-25 years ago.

More recently, the advent of genomics has spawned whole new fields of study in
the biosciences, fields such as proteomics, comparative genomics, genomic medicine,
pharmacogenomics, and structural genomics among them. These new disciplines are
as much mathematical as biological.

The various sciences have a great deal to give to one another, but there are still too
many fences separating them. In writing this book we have adopted the philosophy
that mathematical biology is not merely the intrusion of one science into another, but
that it has a unity of its own, in which both biology and mathematics should be equal,
complete, and flow smoothly into and out of one another. There is a timeliness in
calculating a protocol for administering a drug. Likewise, the significance of bones
being “sinks” for lead accumulation while bonemeal is being sold as a dietary cal-
cium supplement adds new meaning to mathematics as a life science. The dynamics
of a compartmentalized system are classical; applications to biology can be novel.
Exponential and logistic population growths are standard studies; the delay in the
increase of AIDS cases behind the increase in the HIV-positive population is provoca-
tive.

With these ideas in mind we decided that our book would have to possess several
important features. For example, it would have to be understandable to students
of either biology or mathematics, the latter referring to any science students who
normally take more than two years of calculus, i.e., majors in mathematics, physics,
chemistry, and engineering.

A prime objective of this text is to introduce students of mathematics to the
interesting mathematical problems and future challenges in biology.
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No prior study of biology would be necessary.

Mathematics students rarely take biology as part of their degree programs, but our ex-
perience has been that very rapid progress is possible once a foundation has been laid.
Thus the coverage of biology would be extensive, considerably more than actually
needed to put the mathematics of the book into context. This would permit mathe-
matics students to have much greater latitude in subsequent studies, especially in the
“what-if”” applications of a computer algebra system. It would also help to satisfy
the intense intellectual interest that mathematics students have in the life sciences, as
has been manifested in our classes.

Genomics is proving that mathematics is as much a part of biology as it is of
physics. We urge biology students to equip themselves with two years’ study of
mathematics that includes calculus with linear algebra, differential equations, and
some discrete mathematics. For the student with one year’s study of calculus with
linear algebra, we can say that our exposition of mathematics beyond that level is
complete and self-contained. Thus we offer a focused expansion of your mathematical
knowledge. Our biology students have had no problems with this approach.

We have divided the book into three parts:

Part I: Cells, Signals, Growth, and Populations;
Part II: Systems and Diseases;
Part III: Genomics.

One reason for this is that the mathematics of genomics is more abstract and advanced.
Moreover, an objective of this text is to introduce both biology and mathematics
students to the new field of algebraic statistics.

To help ease the burden of coping with the mathematics of the book we offer a
chapter, Mathtools, dedicated as a refresher or an introduction to the mathematics
needed for Parts I and II. At the same time, this chapter serves as a tutorial for the two
computer systems, MAPLE and MATLAB that we use to accompany the mathematical
derivations. All the computer syntax for the remainder of the text is illustrated here.
In order to make this more useful, we construct a “code index,” preceding the usual
term index, that shows on which page of the text various code techniques are used.

Every chapter should have “mathematical laboratory biology experiments.”

This is another important goal of the text. It is the computer algebra system that
makes the mathematics accessible to nonmathematicians. More than that, powerful
mathematical software essentially allows for interactive experimentation with bio-
logical models. These systems incorporate hundreds of mathematical techniques and
algorithms and perform all the laborious and time-consuming calculations in seconds.

Once a biological system has been modeled, one can then perform “biology”
experiments on the model using the computer algebra system. Often these are
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experiments that could not be done easily on the real system, such as ascertaining
the long-term effects of lead ingestion or the effect of reduced sodium conductance
to an action potential. Of course one should always be aware that the real biology
is the final arbiter of any such experiment. This hands-on approach provides a rich
source of information through the use of “what-if”” input and thus allows students to
grasp important biological and mathematical concepts in a way that is not possible
otherwise.

A note about these exercises/experiments. We start out at the beginning in Chap-
ter 2 with very simple and basic computer algebra commands and progress to more
elaborate ones later in the book. By means of line-by-line comments we encourage
the student to learn how to master the software and use it as a powerful tool. In this
spirit, we also provide a “code index’” as mentioned above. Even so, this book is
not about programming. At the end of each modeling section, we may ask that the
student perform computational experiments on the mathematical models developed
in the section. The computer syntax provided there can be downloaded and used for
this purpose. The websites are

www.springer.com/978-0-387-70983-3,
www.math.gatech.edu/ " herod,
www.math.gatech.edu/" shenk.

At other times, we ask the student to construct, investigate, and report on a model
similar to or an extension of one in the section. Generally, we provide the necessary
computer code. It might seem that it is only necessary to download the code from our
webpage and press the return key a few times. But in fact, the science is in observing
and interpreting the computed results, and in going beyond that by posing questions
about the phenomenon that may or may not be answerable by the model.

Most importantly, the biology and mathematics would be integrated.

Each chapter deals with a major topic, such as lead poisoning, and we begin by pre-
senting a thorough foundation of fundamental biology. This leads into a discussion of
arelated mathematical concept and its elucidation with the computer algebra system.
Thus for each major topic, the biology and the mathematics are combined into an
integrated whole.

To summarize, we hope that mathematics students will look at this book as a
way to learn enough biology to make good models and that biology students will
see it as an opportunity to understand the dynamics of a biological system. For both
these students and their engineering classmates, perhaps this book can present a new
perspective for a life’s work.

In teaching the material ourselves, we usually spend a week (three class periods)
per chapter. On the first day we discuss the biology of the chapter, and on the second
we talk about the mathematics and derivations. The third day is “lab’’ day, in which
the students attempt the assigned exercises/experiments. This may be performed in
an actual computer laboratory where help with MAPLE or MATLAB is available. Also,
students can break up into small groups and work together; preferably the group



viii Preface

memberships should change every week. Some of the derivations in the text are
involved. We include them for completeness and for the interested student. The one
day we spend in class on the derivations is tailored to the level of mathematical depth
we think is appropriate.
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1

Biology, Mathematics, and a Mathematical Biology
Laboratory

1.1 The Natural Linkage Between Mathematics and Biology

Mathematics and biology have a synergistic relationship. Biology produces interest-
ing problems, mathematics provides models to understand them, and biology returns
to test the mathematical models. Recent advances in computer algebra systems have
facilitated the manipulation of complicated mathematical systems. This has made it
possible for scientists to focus on understanding mathematical biology, rather than
on the formalities of obtaining solutions to equations.

What is the function of mathematical biology?

Our answer to this question, and the guiding philosophy of this book, is simple: The
function of mathematical biology is to exploit the natural relationship between biol-
ogy and mathematics. The linkage between the two sciences is embodied in these
reciprocal contributions that they make to each other: Biology generates complex
problems and mathematics can provide ways to understand them. In turn, mathemat-
ical models suggest new lines of inquiry that can only be tested on real biological
systems.

We believe that an understanding of the relationship between two subjects must
be preceded by a thorough understanding of the subjects themselves. Indeed, the
excitement of mathematical biology begins with the discovery of an interesting and
uniquely biological problem. The excitement grows when we realize that mathe-
matical tools at our disposal can profitably be applied to the problem. The interplay
between mathematical tools and biological problems constitutes mathematical biol-

ogy.

The time is right for integrating mathematics and biology.

Biology is a rapidly expanding science; research advances in the life sciences leave
virtually no aspects of our public and private lives untouched. Newspapers bombard
us with information about in vitro fertilization, bioengineering, DNA testing, genetic
manipulation, environmental degradation, AIDS, and forensics.

R.W. Shonkwiler and J. Herod, Mathematical Biology: An Introduction with Maple 1
and Matlab, Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-70984-0 1,
© Springer Science + Business Media, LLC 2009



2 1 Biology, Mathematics, and a Mathematical Biology Laboratory

Quite separately from the news pouring onto us from the outside world, we have
an innate interest in biology. We have a natural curiosity about ourselves. Every day
we ask ourselves a nonstop series of questions: What happens to our bodies as we
get older? Where does our food go? How do poisons work? Why do I look like my
mother? What does it mean to “think’*? Why are HIV infections spreading so rapidly
in certain population groups?

Professional biologists have traditionally made their livings by trying to answer
these kinds of questions. But scientists with other kinds of training have also seen
ways that they could enter the fray. As a result, chemists, physicists, engineers, and
mathematicians have all made important contributions to the life sciences. These
contributions often have been of a sort that required specialized training or a novel
insight that only specialized training could generate.

In this book we present some mathematical approaches to understanding biolog-
ical systems. This approach has the hazard that an in-depth analysis could quickly
lead to unmanageably complex numerical and symbolic calculations. However, tech-
nical advances in the computer hardware and software industries have put powerful
computational tools into the hands of anyone who is interested. Computer algebra
systems allow scientists to bypass some of the details of solving mathematical prob-
lems. This then allows them to spend more time on the interpretation of biological
phenomena, as revealed by the mathematical analysis.!

1.2 The Use of Models in Biology

Scientists must represent real systems by models. Real systems are too complicated,
and besides, observation may change the real system. A good model should be simple
and it should exhibit the behaviors of the real system that interest us. Further, it should
suggest experimental tests of itself that are so revealing that we must eventually
discard the model in favor of a better one. We therefore measure scientific progress
by the production of better and better models, not by whether we find some absolute
truth.

A model is a representation of a real system.

The driving force behind the creation of models is this admission: Truth is elusive,
but we can gradually approximate it by creating better and better representations.
There are at least two reasons why the truth is so elusive in real systems. The
first reason is obvious: The universe is extremely complicated. People have tried
unsuccessfully to understand it for millennia, running up countless blind alleys and
only occasionally finding enlightenment. Claims of great success abound, usually
followed by their demise. Physicists in the late nineteenth century advised their stu-
dents that Maxwell’s equations had summed up everything important about physics,
and that further research was useless. Einstein then developed the theory of general

I References [1]-[4] at the end of this chapter are some articles that describe the importance
of mathematical biology.
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relativity, which contained Maxwell’s equations as a mere subcategory. The uni-
fied field theory (“The Theory of Everything”) will contain Einstein’s theory as a
subcategory. Where will it end?

The second reason for the elusivity of the truth is a bit more complicated: It is that
we tend to change reality when we examine any system too closely. This concept,
which originates in quantum mechanics, suggests that the disturbances that inevitably
accompany all observations will change the thing being observed. Thus “truth” will be
changed by the very act of looking for it.> At the energy scale of atoms and molecules
the disturbances induced by the observer are especially severe. This has the effect of
rendering it impossible to observe a single such particle without completely changing
some of the particle’s fundamental properties. There are macroscopic analogues to
this effect. For example, what is the “true” color of the paper in this book? The
answer depends on the color of the light used to illuminate the paper, white light
being merely a convenience; most other colors would also do. Thus you could be
said to have chosen the color of the paper by your choice of observation method.

Do these considerations make a search for ultimate explanations hopeless? The
answer is, “No, because what is really important is the progress of the search, rather
than some ultimate explanation that is probably unattainable anyway.”

Science is a rational, continuing search for better models.

Once we accept the facts that a perfect understanding of very complex systems is out
of reach and that the notion of “ultimate explanations’ is merely a dream, we will have
freed ourselves to make scientific progress. We are then able to take a reductionist
approach, fragmenting big systems into small ones that are individually amenable
to understanding. When enough small parts are understood, we can take a holistic
approach, trying to understand the relationships among the parts, thus reassembling
the entire system.

In this book we reduce complicated biological systems to relatively simple math-
ematical models, usually of one to several equations. We then solve the equations for
variables of interest and ask whether the functional dependencies of those variables
predict salient features of the real system.

There are several things we expect from a good model of a real system:

(a) It must exhibit properties that are similar to those of the real system, and those
properties must be the ones in which we are interested.> A six-inch replica of
a 747 airliner, after adjusting for Reynolds’ number, may have the exact fluid-
dynamical properties of the real plane, but would be useless in determining the
comfort of the seats of a real 747.

2 This situation is demonstrated by the following exchange: Question: How would you decide
which of two gemstones is a real ruby and which is a cheap imitation? Answer: Tap each
sharply with a hammer. The one that shatters used to be the real ruby.

3 One characteristic of the real system that we definitely do not want is its response to the
observation process, described earlier. In keeping with the concept of a model as an ideal-
ization, we want the model to represent the real system in a “native state,”” divorced from
the observer.
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(b) It must self-destruct. A good model must suggest tests of itself and predict their
outcomes. Eventually a good model will suggest a very clever experiment whose
outcome will not be what the model predicted. The model must then be discarded
in favor of a new one.

The search for better and better models thus involves the continual testing and
replacement of existing models. This search must have a rational foundation, being
based on phenomena that can be directly observed. A model that cannot be tested by
the direct collection of data, and which therefore must be accepted on the basis of
faith, has no place in science.

Many kinds of models are important in understanding biological phenomena.

Models are especially useful in biology. The most immediate reason is that living
systems are much too complicated to be truly understood as whole entities. Thus
to design a useful model, we must strip away irrelevant, confounding behaviors,
leaving only those that directly interest us. We must walk a fine line here: In our
zeal to simplify, we may strip away important features of the living system, and at
the other extreme, a too-complicated model is intractable and useless.

Models in biology span a wide spectrum of types. Here are some that are com-
monly used:

Model What the model represents

aa x Aa Gene behavior in a genetic cross.

dA

— = —kA Rate of elimination of a drug from the blood.

dt
@—) —> Reflex arc involving a stimulus Receptor, the

Central nervous system, and an Effector muscle.

a camera The eye of a vertebrate or of an octopus.

Why is there so much biological information in this book?

It is possible to write a mathematical biology book that contains only a page or two
of biological information at the beginning of each chapter. We see that format as
the source of two problems: First, it is intellectually limiting. A student cannot
apply the powerful tools of mathematics to biological problems he or she does not
understand. This limitation can be removed by a thorough discussion of the underlying
biological systems, which can suggest further applications of mathematics. Thus a
strong grounding in biology helps students to move further into mathematical biology.

Second, giving short shrift to biology reinforces the misconception that each of
the various sciences sits in a vacuum. In fact, it has been our experience that many
students of mathematics, physics, and engineering have a genuine interest in biology,
but little opportunity to study it. Taking our biological discussions well beyond the
barest facts can help these students to understand the richness of biology, and thereby
encourage interdisciplinary thinking.
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1.3 What Can Be Derived from a Model and How Is It Analyzed?

A model is more than the sum of its parts. Its success lies in its ability to discover
new results, results that transcend the individual facts built into it. One result of a
model can be the observation that seemingly dissimilar processes are in fact related.
In an abstract form, the mathematical equations of the process might be identical to
those of other phenomena. In this case the two disciplines reinforce: A conclusion
difficult to see in one might be an easy consequence in the other.

To analyze the mathematical equations that arise, we draw on the fundamen-
tals of matrix calculations, counting principles for permutations and combinations,
the calculus, and fundamentals of differential equations. However, we will make
extensive use of the power of numerical and symbolic computational software—a
computer algebra system. The calculations and graphs in this text are done using
such software.

Syntax for both MAPLE and MATLAB accompanies the mathematical derivations
in the text. This code should be treated something like a displayed equation. Like
an equation, code is precise and technical. On first reading, it is often best to work
through a line of reasoning, with only a glance at any included code, to understand
the points being made. Then a critical examination of an equation or piece of code
will make more sense, having the benefit of context and intended goal. The computer
algebra syntax is displayed and set off in a distinctive font in order for the reader to
be able to quickly find its beginning and ending. Where possible, equivalent syntax
for MAPLE and MATLAB are presented together in tandem. It should be noted that
the basic MATLAB system is numerical and does not perform symbolic computations.
Thus equivalent MATLAB code is omitted in this case. An accessory package is
available for MATLAB that can perform symbolic manipulation. And conveniently,
this package is created by the same people who created MAPLE.

Deriving consequences: The other side of modeling.

Once a model has been formulated and the mathematical problems defined, then they
must be solved. In this symbolic form, the problem takes on a life of its own, no longer
necessarily tied to its physical origins. In symbolic form, the system may even apply
to other, totally unexpected, phenomena. What do the seven bridges at Kénigsberg
have to do with discoveries about DNA? The mathematician Euler formed an abstract
model of the bridges and their adjoining land masses and founded the principles of
Eulerian graphs on this model. Today, Eulerian graphs are used, among other ways,
to investigate the ancestry of living things by calculating the probability of matches
of DNA base pair sequences (see Kandel [5]). We take up the subject of phylogeny
in Chapter 15. The differential equations describing spring—mass systems and engi-
neering vibrations are identical to those governing electrical circuits with capacitors,
inductors, and resistors. And again these very same equations pertain to the interplay
between glucose and insulin in humans. The abstract and symbolic treatment of these
systems through mathematics allows the transfer of intuition between them. Through
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mathematics, discoveries in any one of these areas can lead to a breakthrough in the
others. But mathematics and applications are mutually reinforcing: The abstraction
can uncover truths about the application, suggesting questions to ask and experi-
ments to try; the application can foster mathematical intuition and form the basis of
the results from which mathematical theorems are distilled.

In symbolic form, a biological problem is amendable to powerful mathemati-
cal processing techniques, such as differentiation or integration, and is governed by
mathematical assertions known as theorems. Theorems furnish the conclusions that
may be drawn about a model so long as their hypotheses are fulfilled. Assumptions
built into a model are there to allow its equations to be posed and its conclusions to be
mathematically sound. The validity of a model is closely associated with its assump-
tions, but experimentation is the final arbiter of its worth. The assumption underlying
the exponential growth model, namely, % = ky (see Section 2.4 and Chapter 3), is
unlikely to be precisely fulfilled in any case, yet exponential growth is widely ob-
served for biological populations. However, exponential growth ultimately predicts
unlimited population size, which never materializes precisely due to a breakdown
in the modeling assumption. A model is robust if it is widely applicable. In every
case, the assumptions of a model must be spelled out and thoroughly understood.
The validity of a model’s conclusions must be experimentally confirmed. Limits of
applicability, robustness, and regions of failure need to be determined by carefully
designed experiments.

Some biological systems involve only a small number of entities or are greatly
influenced by a few of them, maybe even one. Consider the possible DNA sequences
100 base pairs long. Among the possibilities, one or two base pairs might be critical
to life. (It is known that tRNA molecules can have as few as 73 nucleotide residues
(Lehninger [6]).) Or consider the survival prospects of a clutch of Canadian geese
blown off migratory course to the Hawaiian islands. Their survival analysis must keep
track of detailed events for each goose and possibly even details of their individual
genetic makeups, for the loss of a single goose or the birth of defective goslings could
spell extinction for the small colony. (The nene, indiginous to Hawaii, is thought to
be related to the Canadian geese.) This is the mathematics of discrete systems, i.e.,
the mathematics of a finite number of states. The main tools we will need here are
knowledge of matrices and their arithmetic, counting principles for permutations and
combinations, and some basics of probability calculations.

Other biological systems or processes involve thousands, even millions, of enti-
ties, and the fate of a few of them has little influence on the entire system. Examples
are the diffusion process of oxygen molecules or the reproduction of a bacterial colony.
In these systems, individual analysis gives way to group averages. An average sur-
vival rate of 25% among goslings of a large flock of Canadian geese still ensures
exponential growth of the flock in the absence of other effects; but this survival prob-
ability sustained by exactly four offspring of an isolated clutch might not result in
exponential growth at all but rather total loss instead. When there are large numbers
involved, the mathematics of the continuum may be brought to bear, principally cal-
culus and differential equations. This greatly simplifies the analysis. The techniques
are powerful and mature, and a great many are known.
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Computer algebra systems make the mathematics accessible.

It is a dilemma: Students in biology and allied fields such as immunology, epidemi-
ology, or pharmacology need to know how to quantify concepts and to make models.
Yet, these students typically have only one year of undergraduate study in math-
ematics. (Hopefully this will change is our postgenomics world.) This one year
may be very general and not involve any examples from biology. When the need
arises, they are likely to accept the models and results of others, perhaps without deep
understanding.

On the other side of campus, students in mathematics read in the popular technical
press of biological phenomena, and wish they could see how to use their flair for
mathematics to get them into biology. The examples they typically see in mathematics
classes have their roots in physics. Applications of mathematics to biology seem
far away.

How can this dilemma be resolved? Should the biology students be asked to take
a minor in mathematics in order to be ready to use the power of differential equations
for modeling? And what of algebraic models, discrete models, probabilistic models,
or statistics? Must the mathematics students take a course in botany, and then zoology,
before they can make a model for the level to which the small vertebrate population
must be immunized in a geographic region in order to reduce the size of the population
of ticks carrying Lyme disease? Such a model is suggested by Kantor [7].

There is an alternative. Computer algebra systems create a new paradigm for de-
signing, analyzing, and drawing conclusions from models in science and engineering.
The technology in the computer algebra systems allows the concepts to be paramount
while computations and details become less important. With such a computational
engine it is possible to read about models that are being actively explored in the
current literature and do a computer analysis of these new models.

The theorems from which our conclusions are derived often result from carefully
tracking evolving system behavior over many iterations in discrete systems or infi-
nite time in continuous ones. Where possible, the mathematical equations are solved
and the solutions exhibited. Predictions of the model are made under a range of
starting conditions and possibly unusual parameter regimes. These are the bases of
“what if” experiments. For example, given a satisfactory model for a fishery, what
if one imposes various levels of harvesting? To answer this and related questions,
the computer algebra system can carry out the technical computations: calculate
roots, differentiate symbolically or numerically, integrate and solve differential equa-
tions, perform matrix arithmetic, track system evolution, and graphically display
results.

In this book we will use computational packages to do the “heavy lifting.”
MATLAB is a very powerful system for general numerical computation. In addition,
accessory “toolboxes’’ are available providing the specialized computations used in
several disciplines. MAPLE is a system for both numerical and symbolic calculations.
MAPLE is quite complete in its mathematical coverage and especially strong in sym-
bolic computations. In addition to these two, recently created software packages are
available to perform the computations of the emerging field of algebraic statistics.
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These packages are for the most part available free of charge. We will encounter
BLAST and SINGULAR in the genomics sections of the book.
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Some Mathematical Tools

Introduction

This book is about biological modeling—the construction of mathematical abstrac-
tions intended to characterize biological phenomena and the derivation of predictions
from these abstractions under real or hypothesized conditions. A model must capture
the essence of an event or process but at the same time not be so complicated as to be
intractable or to otherwise dilute its most important features. In this regard, differ-
ential equations have been widely invoked across the broad spectrum of biological
modeling. Future values of the variables that describe a process depend on their rates
of growth or decay. These in turn depend on present, or past, values of these same
variables through simple linear or power relationships. These are the ingredients of a
differential equation. We discuss linear and power laws between variables and their
derivatives in Section 2.1 and differential equations in Section 2.4.

Sometimes a differential equation model is inappropriate because the phenomenon
being studied is quantified in discrete units such as population size. If such sizes are
very large, differential equations may still give correct results. Otherwise, difference
equations may be more appropriate. We take up the basic principles of difference
equations in Section 2.5.

Once formulated, a model contains parameters that must be specialized to the
particular instance of the process being modeled. This requires gathering and treating
experimental data. It requires determining values of the parameters of a model so
as to agree with, or fit, the data. The universal technique for this is the method of
least squares, which is the subject of Sections 2.2 and 2.3. Even though experimental
data is subject to small random variations, or noise, and imprecision, least squares is
designed to deal with this problem.

Describing noisy data and other manifestations of variation is the province of
statistics. Distributions of values can be graphically portrayed as histograms or dis-
tilled to a single number, the average or mean. The most widely occurring distribution
in the natural world is the normal, or Gaussian, distribution. These topics are taken
up in Section 2.7.

R.W. Shonkwiler and J. Herod, Mathematical Biology: An Introduction with Maple 9
and Matlab, Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-70984-0 2,
© Springer Science + Business Media, LLC 2009
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Finally, to a greater extent in biological phenomena than in other fields of science
and engineering, random processes play a significant role in shaping the course of
events. This is true at all scales from diffusion at the atomic level to random combi-
nations of genes to the behavior of whole organisms. Being in the wrong place at the
wrong time can mean being a victim (or finding a meal). In Section 2.8 we discuss
the basics of probabilities.

Fortunately, while an understanding of these mathematical tools is required for
this book, deep knowledge of mathematical techniques is not. This is a consequence
of the fruition of mathematical software. We will use the power of this software
to execute calculations, invoke special functions, simplify algebra, solve differential
equations, and generally perform the technical work. Above all, the software can
make pictures of what is happening within the phenomenon in detail. Thereby, the
curious are free to let their imaginations roam and focus on perfecting and exercising
the models themselves.

As noted in the preface, you will be executing a lot of mathematical software
code. As an aid to entering code, all the code in this book is posted on our webpages.
Springer maintains the webpage

www.springer.com/978-0-387-70983-3,
Professor Herod’s webpage is

www.math.gatech.edu/" herod,
and Professor Shonkwiler’s webpage is

www.math.gatech.edu/" shenk.

In addition, as an aid to creating your own code, we provide a “code index’’ at the
back of the book referencing the place in the text for syntax performing various
mathematical and computer housekeeping tasks.

2.1 Linear Dependence

The simplest, nonconstant, relationship between two variables is a linear one. The
simplest linear relationship is one of proportionality: if one of the variables doubles or
triples or halves in value, the other does likewise. Proportionality between variables
x and y is expressed as y = kx for some constant k. Proportionality can apply to
derivatives of variables as well as to variables themselves, since they are just rates
of change. Historically, one of the major impacts of calculus is the improved ability
to model by the use of derivatives in just this way.

Relationships among variables can be graphically visualized.

In studying almost any phenomenon, among the first observations to be made about
it are its changing attributes. A tropical storm gains in wind speed as it develops;
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the intensity of sound decreases with distance from its source; living things increase
in weight in their early period of life. The measurable quantities associated with a
given phenomenon are referred to as constants, variables, or parameters. Constants
are unchanging quantities such as the mathematical constant w7 = 3.14159... or
the physical constant named after Boltzmann: k = 1.38 x 107!6 ergs per degree.
Variables are quantitative attributes of a phenomenon that can change in value, such
as the wind speed of a tropical storm or the intensity of sound or the weight of an
organism.

Parameters are quantities that are constant for a particular instance of a phe-
nomenon, but can be different in another instance. For example, the strength of hair
fibers is greater for thicker fibers and the same holds for spider web filaments, but
the latter has a much higher strength per unit cross-section.! Strength per unit cross-
section is a property of material that tends to be constant for a given type of material
but varies over different materials.

Often two variables of a phenomenon are linearly related, that is, a graphical
representation of their relationship is a straight line. Temperature as measured on the
Fahrenheit scale, F, and on the Celsius scale, C, are related in this way; see Fig-
ure 2.1.1. Knowing that the temperatures C = 0 and C = 100 correspond to F = 32
and F = 212, respectively, allows one to derive their linear relationship, namely,

9

F = §C + 32. (2.1.1)
In this, both C and F have power or degree one, that is, their exponent is 1. (Being
understood, the 1 is not explicitly written.) When two variables are algebraically
related and all terms in the equation are of degree one (or constant), then the graph of
the equation will be a straight line. The multiplier, or coefficient, % of Cin (2.1.1)is
the slope of the straight line, or the constant of proportionality between the variables.
The constant term 32 in the equation is the intercept of the straight line, or translational
term of the equation. These parameters are shown graphically in Figure 2.1.1.

We can isolate the constant of proportionality by appropriate translation. Absolute
zero on the Celsius scale is —273.15C, which is usually expressed in degrees Kelvin
K. Translation from degrees K to degrees C involves subtracting the fixed amount
273.15:

C =K —273.15. (2.1.2)

From (2.1.1), we calculate absolute zero on the Fahrenheit scale as
9
F = g(—273.15) + 32 = —459.67,
or about —460 degrees Rankine R. That is,

F = R —459.67. (2.1.3)

Hence, substituting equations (2.1.2) and (2.1.3) into (2.1.1), we find that R is related
to K by

I The strength of a material per unit cross-section is known as Young'’s modulus.
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MaPLE

#number sign # introduces a comment

#statements must be ended by a semicolon or by a colon (suppresses printing) but can span multiple lines
> plot([C,9/5*C+32,C=0..100],-10..100,-30..220,tickmarks=[5,2]);

MarLaB
% percent sign introduces a comment in Matlab
% an end of line completes a command, or semicolon ends a command and suppresses printing results
> C=(0:1:100); % C=vector of values from 0 to 100 by ones
> F=(9/5)*C+32; % F=vector, this arithmetic to each C value
> plot(C,F); % plot the Fs vs. the Cs
> xlabel('Temperature degrees C’); %label horizontal axis
> ylabel('Temperature degrees F’); %label vertical axis
> axis([-10,110,-30,220]); % x scale from -10 to 110, y from -30 to 220

212

Temp F

32

0 20 40 60 80 100
Temp C

Fig. 2.1.1. Temperature conversion.

9
R =-K.
5

Thus R is proportional to K and both are zero at the same time, so there is no
translational term.

One often observes that the relationship between two variables is one of propor-
tionality but the constant is not yet known. Thus if variables x and y are linearly
related (and both are zero at the same time), we write

y =kx

with the constant of proportionality & to be subsequently determined (see Section 2.2
on least squares).

Power laws can be converted to linear form.

The area of a circle does not vary linearly with radius but rather quadratically, A =
7r2; the power, or degree, of r is two. Heat radiates in proportion to the fourth power
of absolute temperature, gravitational force varies in proportion to the inverse square
power of distance, and diffusivity varies with the one-third power of density (see
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Chapter 6). These are examples in which the relationship between variables is by a
power law with the power different from one. There are many more.
In general, a power law is of the form

y = AxF (2.1.4)

for some constants A and k. Due to the particular ease of graphing linear relationships,
it would be advantageous if this equation could be put into linear form. This can be
done by taking the logarithm of both sides of the equation. Two popular bases for
logarithms are 10 and e = 2.718281828459. . .; the former is often denoted by log
and the latter by In. (MATLAB uses log for logarithm to the base e.) Either will work:

logy = klogx 4+ log A; (2.1.5)

the relationship between log y and log x is linear. Plotting pairs of (x, y) data values
on special log-log paper will result in a straight line with slope k. Of course, on a
log-log plot there is no point corresponding to x = 0 or y = 0. However, if A = 1
then log y is proportional to log x and the graph goes through the point (1, 1). In
general, A appears on the graph of (2.1.4) as the value of y when x = 1.
Another frequently encountered relationship between variables is an exponential
one given by
y = Ca®. (2.1.6)

Note that the variable x is now in the exponent. Exponential functions grow (or decay)
much faster than polynomial functions; that is, if a > 1, then as an easy consequence
of L'Hopital’s rule, for any power k,

lim — =0, 2.1.7)

or in MAPLE,

MapLE
> assume(a>1); assume(k>0);
> limit(x"k/a"x,x=infinity);

Figure 2.1.2 demonstrates this with k = 3 and a = 2. We have drawn graphs of

y=x3y=2%andy=100- ’Z‘—j The graphs of the first two cross twice, the last
time about x & 10:

MarLE
> sol:=solve(x"3=2"x,Xx);
> evalf({sol[1],s0l[2]});

MarLaB
% make a file named fig212.m with the following two lines (without the % signs);
% MartLAB requires functions be defined in external files and finds them via the MATLAB PATH
% function y=fig212(x);
% y=x."3-2."x;
% resume this calculation
> fzero('fig212’,10) %no semicolon to print ans.

1.3734, 9.939.

Taking logarithms of (2.1.6) to base e gives
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MaPLE
> plot({[x,x"3,x=0..12],[x,2"x,x=0..12],[x,100*x"3/2"x,x=0..14]},x=0..14,y=0..4000);

MarLaB
> x=linspace(0,14); % 100 equally spaced values 0 to 14
>y=100"x."3./2.”x; % ."means term by term power, ./ and .* mean term by term div. and mult.
> plot(x,y)
> hold on % keep axis, scale, etc., of the graph fixed
> x=linspace(0,12);
> plot(x,x."3); % plot overlaid on the previous plot
> plot(x,2.°x); % ditto

4000+
(b)
30001
20001
(a)
10004
(c)
07 2 4 6 8 10 12 14

. . . . 3 3
Fig. 2.1.2. Exponential vs. polynomial rate of growth graphs of (a) x~, (b) 2%, and (c) 100%.

Iny=xIna+InC. (2.1.8)

If the constant a is e, then Ina = Ine = 1. Also note that any positive number
can be written as some exponent of ¢, namely, Ina. Thus a = "¢ = ¢ if we put
r = Ina. In the form of (2.1.8), it is In y that is proportional to x. A semilog plot
of exponentially related variables, as in (2.1.8), produces a straight line whose slope
islna.

By defining » = In a and exponentiating both sides of (2.1.8), we get

y=Ce”*, wherer =Ina. (2.1.9)

This is an alternative form of the relationship given in equation (2.1.6) and shows
that an exponential relationship can be expressed in base e if desired.

Proportionality can pertain to derivatives, too.

A natural and simplifying assumption about the growth of a population is that the
number of offspring born at any given time is proportional to the number of adults
at that time (see Chapter 3). This expresses a linear relationship between the number
of offspring and the number of adults. Let y(#) (or just y in brief) denote the number
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of adults at time #. In any given small interval of time A¢, the number of offspring
in that time represents the change in the population Ay. The ratio % is the average

rate of growth of the population over the time period A¢. The derivative % is the
instantaneous rate of growth at time #, or just the rate of growth at time #, instantaneous
being understood. Making the questionable, but simplifying, assumption that new
offspring are immediately adults leads to a mathematical expression of the italicized
statement above:
dy
dr
for some constant of proportionality k. That is, the derivative or rate of growth is
proportional to the number present.
This particular differential equation is easily solved by integration,

ky

d
—yzkdt or Iny=kt+InA,
y

with constant of integration In A. Exponentiating both sides gives
y = A

This situation is typical, and we will encounter similar ones throughout the book.

Exercises

1. Proportionality constants associated with changes in units are often used in mak-
ing conversions after measurements have been made. Convert from the specified
units to the indicated units.

(a) Convert the following: x inches to centimeters, y pounds per gallon to kilo-
grams per liter, z miles per hour to kilometers per hour.

MarLE

#Change of units is built-in

#type: ?convert.
> convert(x*inches,metric);
> convert(y*pounds/gallon,metric,US);
> convert(z*miles/hour,metric);

MarLaB
% some US to metric conversions
% Length: 1 inch = 2.54 cm (exactly), 39.3700 inch = 1 meter
% Mass: 1 Ib = .45359237 kg (avoirdupois pound)
% Volume: 1 gallon = 3.785411784 liter (US gallon)
> x=0:10; y=2.54"x; plot(x,y) % plot cm vs. inch
% to plot kg/liter vs. pounds/gallon one finds the number of the former per 1 of the latter;
% use this 1 Ib/gal = (1 Ib/gal)*(1 gal/3.78 lit)*(.453 kg/Ib)
% cancel units so that 1 Ib/gal = .45359237/3.785411784 kg/lit.

(b) Sketch three graphs similar to Figure 2.1.1 that show the changes in units
indicated above. Syntax similar to that which generated Figure 2.1.1 can be
used here.

2. In this exercise, we compare graphs of exponential and power law relations with
standard graphs, log graphs, and log-log graphs. For this exercise, please type
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the commands manually (rather than executing pretyped commands downloaded
from the Web) and view the results of each command one by one. This will help
internalize the commands and aid in connecting each with its action.

(a) Sketch the graphs of 772 and %an on the same graph. Then sketch both of
these as log-log plots.

(b) Sketch the graphs of 3x> and 5x3 on the same graph. Then sketch both these

as log plots.

MaPLE
> plot({Pi*r'2,4/3*Pi*r"3},r=0..1);
> plots[loglogplot]({Pi*r"2,4/3*Pi*r"3},r=0.1..1);
> plot({3*x"5,5*x"3},x=0..1);
> plots[logplot]({3*x"5,5*x"3},x=0..1);

MarLaB
>r=0:.1:1; % create vector of r values
> plot(r,pi*r."2)
% plot pi r squared vs. r, use ."(dot hat, not %)
% to get term by term r squared, no need for .* (dot star) since pi is a constant
> hold on % to overlay this graph
> plot(r,pi*(4/3)*r."3);
> hold off % begin new plot
> loglog(r,pi*r."2) % MAaTLAB automatically avoided r=0
> hold on
> loglog(r,(4/3)*pi*r."3)
> hold off
> x=linspace(0,1); % divide 0 to 1 into 100 subdivisions
> plot(x,3*x.”5); hold on
> plot(x,5*x."3)

This exercise examines limits of quotients of polynomials and exponentials.
Sketch the graphs of 3x% + 5x + 7 and 2% on the same axis. Also, sketch the
graph of their quotients. Evaluate the limit of this quotient.

MapLE
> plot({3*x"2+5*x+7,2"x},x=0..7);
> plot((3*x"2+5*x+7)/2"x,x=0..10,y=0..10);
> limit((3*X"2+5*x+7)/2"x,x=infinity);

MaTLAB
> x=linspace(0,7); % vector of 100 x values
> plot(x,3*x."2+5*x+7); hold on
> plot(x,2."x)
% or make a matrix whose first row=polynomial and second row=exponential
> M=[3"x."2+5*x+7; 2."X]; % note the semicolon in M
> hold off; plot(x,M) % and plot both at once
> plot(x,M(1,:)./M(2,:))
% quotient of first row/second row term by term
% observe the limit is 0 graphically

4. This exercise solves differential equations such as we encounter in Section 2.1.

Give the solution and plot the graph of the solution for each of these differential
equations:

d_y = 3y(1) 0) =2
dt - y ) y - )
d

d—f = 2y(1). (0) =3,
d

2 Z a2y, (0) = -3,

dt



2.2 Linear Regression, the Method of Least Squares 17

Y 0 0) =3
a2 Y=

Here is syntax that will do the first problem and will undo the definition of y to
prepare for the remaining problems.

MaPLE
> eq:=diff(y(t),t)=3"y(t);
> sol:=dsolve({eq,y(0)=2},y(t));
> y:=unapply(rhs(sol),t); plot(y(t),t=0..1);
> Y=Yy

MaTLAB
% for the 1st DE make an m-file, ex214a.m, say, containing
% function yprime=ex214a(t,y); yprime=3*y;

> [t,y]=ode23('ex214a’,[0 1],2);

> plot(t,y)

2.2 Linear Regression, the Method of Least Squares

In this section we introduce the method of least squares for fitting straight lines to
experimental data. By transformation, the method can be made to work for data
related by power laws and exponential laws as well as for linearly related data.

The method is illustrated with two examples.

The method of least squares calculates a linear fit to experimental data.

Imagine performing the following simple experiment: Record the temperature of
a bath as shown on two different thermometers, one calibrated in Fahrenheit and
the other in Celsius, as the bath is heated. We plot the temperature F against the
temperature C. Surprisingly, if there are three or more data points observed to high
precision, they will not fall on a single straight line because the mathematical line
established by two of the points will dictate infinitely many digits of precision for
the others—no measuring device is capable of infinite precision. This is one source
of error, and there are others. Thus experimental data, even data for linearly related
variables, are not expected to fall perfectly on a straight line.

How then can we conclude experimentally that two variables are linearly related,
and if they are, how can the slope and intercept of the correspondence be determined?
The answer to the latter question is by the method of least squares fit and is the
subject of this section; the answer to the first involves theoretical considerations and
the collective judgment of scientists familiar with the phenomenon.

Assume that the variables x and y are suspected to be linearly related and we have
three experimental points for them, for example C and F in the example above. For
the three data points (x1, y1), (x2, ¥2), and (x3, y3) shown in Figure 2.2.1, consider a
possible straight line fit, £(x). Let ey, e, and e3 be the errors

e =y —Lx), i=1....3,
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41 o

1t

Fig. 2.2.1. The differences ¢; = y; — £(x;).

defined as the difference between the data value y; and the linear value £(x;) for each
point. Note that we assume that all x-data values are exact and that the errors are
in the y-values only. This is reasonable because x is the independent variable; the
x-values are the ones determined by the experimenter.

We want to choose a line £ that minimizes all of the errors at the same time; thus
a first attempt might be to minimize the sum e; + e> 4 e3. The difficulty with this
idea is that these errors can cancel because they are signed values. Their sum could
even be zero. But squaring each error eliminates this problem. And we choose the
line £ so as to minimize

3 3
E=) ¢ =) i~ tol

i=1 i=1

that is, the least of the squared errors.

A line is determined by two parameters, slope m and intercept b, £(x) = mx + b.
Therefore the mathematical problem becomes, find 7 and b to minimize

E(m,b) = [yi — (mx; + b)]? (2.2.1)

i=1

for n equal to the number of data points, three in this example. We emphasize that
this error E is a function of m and b (not x and y; the x; and y; are specified numbers
at the outset). Solving such a minimization problem is standard practice: Set the
derivatives of E with respect to its variables m and b equal to zero and solve for
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m and b,2

oOF "
=—=-2 le[yi — (mx; + b)]x;,
1=

oE

0= =2 ;[yi — (mx; + b)].

These equations simplify to

O—Zx,yl —mZx —be,,

i=1 i=1

(2.2.2)
0= Zy,- —min —nb,
i=1 i=1
which may be easily solved.? The least squares solution is
e Doy — (2 ) (2 )
nZlod - (S (2.2.3)
b= (i) (i y,') - (i x) §Z?:1 xiyi)' B

ny iy x (Z?_l x,-)

The expression for b simplifies to*

b=y—mx, wherey=— Zy, and x_—Zx,
1—1 i

We will illustrate the least squares method with two examples.
Example 2.2.1. Juvenile height vs. age is only approximately linear.

In Table 2.2.1, we show age and average height data for children.

With n = 7, age and height interpreted as x and y, respectively, in (2.2.1), and
using the data of the table, parameters m and b can be evaluated from the equations
in (2.2.3):

2 Since E is a function of two independent variables m and b, it can vary with m while b
is held constant or vice versa. To calculate its derivatives, we do just that: Pretend b is
a constant and differentiate with respect to m as usual; this is called the partial derivative

with respect to m and is written % in deference to the Variables held fixed. Similarly,

hold m constant and differentiate with respect to b to get . At a minimum point of E,
both derivatives must be zero, since E will be momentarlly statlonary with respect to each
variable.

3 Verify this solution by substituting m = ”f; gg and b = ”;‘ : I;g intomA +bB = E and
mC +nb=F

4 Starting from y — mx with m from (2.2.3), make a common denominator and cancel the
terms —(3x;)%5 + X Y. x; 3. y;, and the expression for b emerges.
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Table 2.2.1. Average height vs. age for children. (Source: D. N. Holvey, ed., The Merck Manual
of Diagnosis and Therapy, 15th ed., Merck, Sharp, and Dohme Research Laboratories, Rahway,

NJ, 1987.)

Height (cm)|75(92(108(121{130{142

155

Age 1| 3| 5 7/ 9| 11

13

MaPrLE
> ht:=[75,92,108,121,130,142,155]; age:=[1,3,5,7,9,11,13];
> sumy:=sum(ht[n],n=1..7); sumx:=sum(age[n],n=1..7);
> sumx2:=sum(age[n]’2,n=1..7);
> sumxy:=sum(age[n]*ht[n],n=1..7);
> m:=evalf((7*sumxy-sumx*sumy)/(7*sumx2-sumx"2));
> b:=evalf((sumx2*sumy-sumx*sumxy)/(7*sumx2-sumx"2));

MarLaB
> ht=[75 92 108 121 130 142 155];
>age=[135791113];
> sumy=sum(ht);
> sumx=sum(age);
> age2=age.*age;
> sumx2=sum(age2);
> ageht=age.*ht;
> sumxy=sum(ageht);
> m=(7*sumxy-sumx*sumy)/(7*sumx2-sumx"2)
> b=(sumx2*sumy-sumx*sumxy)/(7*sumx2-sumx"2)

m =646 and b =723.

These data are plotted in Figure 2.2.2 along with the least squares fit for an assumed

linear relationship ht = m - age + b between height and age.

160 1

140 1

height (cm)

120 1

100 T

80T

age

10

Fig. 2.2.2. Height vs. age among children.
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Finding a least square fit is so important that it has its own routine in MAPLE called
fit[leastsquare]. In MATLAB aleast square fit is performed by a simple matrix
statement. The mathematics of the matrix approach is the subject of the next section.
Here then is the shortcut syntax for accomplishing what was done above.

MaPLE
>m:="m’; b:="b’; # clears m and b (single quotes/apostrophy)
# next create an array of (age,ht) pairs;
> pts:=[seq([ageli],ht[i]],i=1..7)]:
> with(plots): with(stats):
> Data:=plot(pts,style=POINT,symbol=CIRCLE):
> fit[leastsquare[[x,y],y=m*x+b]]([age,ht]);
# result in y=m*x+b form, m*x is the first operand on the right-hand side
> m:=op(1,0p(1,rhs(%))); # strip off x too
> b:=op(2,rhs(%%)); # use %% to get second statement back
> Fit:=plot(m*x+b,x=0..14):
> display({Data,Fit});

MarLaB

% Now the matrix solution

% matrix of independent variable

% experimental values as columns
>MT=[135791113;1111111]; % two rows
> M=MT’; % transpose to columns

% M = transpose of MT

% dependent variable data next, as col. vec.
>Y=[75;92; 108; 121; 130; 142; 155];
>s=M\Y % MaTLAB syntax for leastsquare
> m=s(1); b=s(2); % plot data and fit for comparison, Figure 2.2.2
> plot(age,ht,0’) % point plot ht vs. age with circles
> hold on
> fit=m*age+b;
> plot(age,fit); xlabel('age’); ylabel('Height (cm)’);

This demonstrates the mechanics of the least squares method. But it must be kept
in mind that the method is merely statistical; it can demonstrate that data are consistent
or not with a linear assumption, but it cannot prove linearity. In this example, a linear
fit to the data is reasonably good, but no rationale for a linear relationship has been
provided.

Example 2.2.2. The number of AIDS cases increases cubically.

As we saw in the first part of this section, when the data are obviously not linear,
we can try to fit a power law of the form y = Ax*. Consider the following data
as reported in the HIV/AIDS Surveillance Report published by the U.S. Department
of Health and Human Services concerning the reported cases of AIDS by half-year
shown in Table 2.2.2. The third column is the sum of all the cases reported to that
time, i.e., the Cumulative AIDS Cases (CAC).

This cumulative AIDS cases data is shown later in Figure 2.2.4. The circle symbols
of the figure give the CAC data vs. year; the solid curve is the least squares fit, which
we discuss next. In this figure, CAC is measured in thousands and # is decades from
1980, that is, 1 = Y2280,

We begin by first reading in the data:

MaPLE
> restart:
> AIDS:=([97, 206, 406, 700, 1289, 1654, 2576, 3392, 4922, 6343, 8359, 9968, 12990, 14397, 16604,
17124, 19585, 19707, 21392, 20846, 23690, 24610, 26228, 22768, 4903));
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Table 2.2.2. Total and reported cases of AIDS in the U.S.

Year |Reported cases of AIDS|Cumulative AIDS cases (thousands)
1981 97 0.097
1981.5 206 0.303
1982 406 0.709
1982.5 700 1.409
1983 1289 2.698
1983.5 1654 4.352
1984 2576 6.928
1984.5 3392 10.320
1985 4922 15.242
1985.5 6343 21.585
1986 8359 29.944
1986.5 9968 39.912
1987 12990 52.902
1987.5 14397 67.299
1988 16604 83.903
1988.5 17124 101.027
1989 19585 12.0612
1989.5 19707 140.319
1990 21392 161.711
1990.5 20846 181.557
1991 23690 206.247
1991.5 24610 230.857
1992 26228 257.085
1992.5 22768 279.853

> CAC:=[seq(sum(AIDS[j}/1000.0, j=1..i),i=1..24)];
> Time:=[seq(1981+(i-1)/2,i=1..24)]:

MarLaB
% year by year cases; note that ellipses continue the line
> AIDS=[97 206 406 700 1289 1654 2576 3392 4922 6343 8359 9968 12990 14397 16604 17124 19585 ...
19707 21392 20846 23690 24610 26228 22768];
> CAC=cumsum(AIDS)/1000; % cumulative sum (scaled down 1000)
% housekeeping to get the sequence 0,0.5,1,1.5,...
> s=size(AIDS); % number of half-years
> count=[0:s(2)-1];
> time =1981+count/2;

To produce the fit we proceed as before using (2.2.1), but this time performing
least squares on y = In(CAC) vs. x =Int:

In(CAC) =k *Int +1nA. (2.2.4)

Here we rescale time to be decades after 1980 and calculate the logarithm of the data:

MaPLE
> LnCAC:=map(In,CAC);
> Lntime:=map(In,[seq((i+1)/2/10,i=1..24)]);

MarLaB
% shifted and scaled time
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> scaledTime=(time-1980)/10

% log the data to do a log-log plot
> InCAC=log(CAC)
> InTime=log(scaledTime)

It remains to calculate the coefficients:

MaPLE
> with(stats):
> fit[leastsquarel[[x,y],y=k*x+LnA]]([Lntime,LnCAC]);
> k:=op(1,0p(1,rhs(%))); LnA:=(op(2,rhs(%%))); A:=exp(LnA);

MarLaB
% form the coefficient matrix for INCAC = k*InTime + b fit
> MT=[InTime; ones(1,24)] % second row is ones
> M=MT’;
> params=M\(InNCAC’) % do the leastsquares
> k=params(1)
> A=exp(params(2))

k=329, and InA =15.04,

A =155.

23

We draw the graph of Ln(CAC) vs. Ln(time) to emphasize that their relationship is
nearly a straight line. The log-log plot of best fit is shown in Figure 2.2.3 and is drawn

as follows:

MaPLE

> Lndata:=plot([seq([Lntime[i],LnCACIi]],i=1..24)],style=POINT,symbol=CIRCLE):

> Lnfit:=plot(k*x+In(A),x=-2.5..0.5):
> plots[display]({Lndata,Lnfit});

MarLaB

% now compare the fit to the data in log-log space
> plot(InTime,InCAC, 0’)
> InFit= params(1).*InTime+params(2)
> plot(InTime,InFit)

The curve of best fit is, from (2.2.4),

CAC = 155:3%.

-

Ln(CAC)
12
0
-2.5 -2 1.5 -1 -0.5 0 0.5
Ln(year-1980)
12

Fig. 2.2.3. Log-log plot of cumulative AIDS cases and its fit.
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But we want an integer exponent; hence the exponent for the comparative graph to
the data will be taken as

MaPLE
> n:=trunc(k);

n=73,

year — 1980)3

CAC = 155 = 155 (
10

Figure 2.2.4 is drawn as an overlay of the data and this fit.

MaPLE
> pts:=[seq([Time[i], CACIi]], i=1..24)];
> Fit:=plot(A*((t-1980)/10)"n,t=1980..1993):
> Data:=plot(pts,style=POINT,symbol=CIRCLE):
> plots[display](Fit,Data);

MaTLAB

% and compare in regular space
> hold off; plot(time,CAC)
> CACFit=exp(params(2)).*scaledTime."params(1)
> plot(time,CACFit)

300 T

o

200 T

CAC

100 1

01980 1985 1990

year

Fig. 2.2.4. Cumulative AIDS cases.

Again, we see that the fit is good. Turning from the mechanical problem of fitting
the data to the scientific problem of explaining the fit, why should a cubic fit so well?

In the studies of populations and infectious diseases, it is common to ask at what
rate an infected population is growing. Quite often, populations grow exponentially
in their early stages, that is, according to (2.1.6). We will investigate this idea in
Chapters 3 and 4.

In the first decade after the appearance of AIDS and the associated HIV, an analysis
of the data for the total number of reported cases of AIDS led to the announcement
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that the population was growing cubically as a function of time. This was a relief of
sorts because the growth was not exponential as expected, since exponential growth
is much faster than polynomial growth; see (2.1.7).

Colgate et al. [2] constructed a model for HIV infection that led to the result that
the growth rate should be cubic in the early stages. A central idea in the model is the
recognition that the disease spreads at different rates in different “risk groups,” and
that there is a statistically predictable rate at which the disease crosses risk groups.

In the exercises, we attempt an exponential fit to these data.

Exercises

1. Ideal weights for medium-build males are listed in Table 2.2.3 from [3].

Table 2.2.3. Ideal weights for medium-build males.

Height (in) |[Weight (Ib)
62 128
63 131
64 135
65 139
66 142
67 146
68 150
69 154
70 158
71 162
72 167
73 172

(a) Show that a linear fit for these data is

wt =4.04 - ht 4 124.14.

(b) In many geometric solids, volume changes with the cube of the height. Give
a cubic fit for these data.
(c) Using the techniques of Example 2.2.2, find n and A such that

wt = A - (ht — 60)".

The following code can be used for Exercise 1(b). A modification of one line
can be used for 1(a). For 1(c), modify the code for Example 2.2.2.
MarLE
> ht:=[62,63,64,65,66,67,68,69,70,71,72,73,74];
> wt:=[128,131,135,139,142,146,150,154,158,162,167,172,177];
> with(stats): fit[leastsquare[[x,y], y=a*x"3+b*x"2+c*x+d]]([ht,wt]);
> y:=unapply(rhs(%),x);
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> pts:=[seq([ht[i],wi[i]],i=1..13)];

> J:=plot(pts,style=POINT,symbol=CROSS):K:=plot(y(x),x=62..74):
> with(plots): display({J,K});

> errorLinear:=sum(’(4.04*ht[i]-124.14- wi[i])"2",i’=1..13);

> errorcubic:=sum(’(y(ht[i])-wt[i])"2",=1..13);

> evalf(%);

MarLaB
> ht=[62,63,64,65,66,67,68,69,70,71,72,73,74];
> wt=[128,131,135,139,142,146,150,154,158,162,167,172,177];
> MT=[ht."3; ht."2; ht; ones(1,13)];
> params=MT"\wt’; % MT prime, wt prime
> plot(ht,wt,x’); hold on
> fit=params(1)*ht."3+params(2)*ht."2+params(3)*ht+params(4);
> plot(ht,fit)
> errorLinear=sum((4.04*ht-124.14-wt)."2)
> errorcubic=sum((fit-wt)."2)

2. Changes in the human life span are illustrated graphically on p. 110 of the October

1994 issue of Scientific American. These data appear in Table 2.2.4 in three rows:
The first row indicates the age category. The next two rows indicate the percentage
of people who survived to that age in the United States in the years 1900 and
1960. The last row is the percentage of people who survived to that age in ancient
Rome. Get a least squares fit for these data sets. Syntax that provides such a fit
is given for the 1960 data.

Table 2.2.4. Survival rates for recent U.S. and ancient Rome.

Age 0|10 {20{30 |40(50 |60|80|{100
1900 |100(82 78|75 |74|60 [43({19| 3
1960 |100(98.5|98|96.5195(92.5|79|34| 4
Rome| 90|73 |50{40 |30(22 |15] 5| 0.5

MAPLE
> restart:
> age60:=[0,10,20,30,40,50,60,80,100]:
> percent60:=[100,98.5,98,96.5,95,92.5,79,34,4]:
> with(stats):
> fitleastsquare[[x,y],y=a*x"4+b*x"3+c*x"2+d*x+€]]([age60,percent60]);
> yfit60:=unapply(rhs(%),x):
> pts60:=[seq([age60[i],percent60[i]],i=1..9)]:
> J6:=plot(pts60,style=POINT,symbol=CROSS):
> K6:=plot(yfit60(x),x=0..100):
> with(plots): display({J6,K6});

MaTLAB
> age60=[0,10,20,30,40,50,60,80,100];
> percent60=[100,98.5,98,96.5,95,92.5,79,34,4];
> MT=[age60.°4; age60."3;age60."2; age60; ones(size(age60))];
> parms=MT"\percent60’ % note the primes
> fit=parms(1)*age60."4+parms(2)*age60."3+parms(3)*age60."2+parms(4)“age60+parms(5);
> plot(age60,percent60,age60,fit)

. We have found a fit for the cumulative U.S. AIDS data as a cubic polynomial.

We saw that, in a sense, a cubic polynomial is the appropriate choice. On first
looking at the data as shown in Figure 2.2.4, one might guess that the growth is
exponential. Find an exponential fit for those data. Such a fit would use (2.1.8).
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Computer code to perform the calculations is only slightly different from that for
the cubic fit:

MapLE
> restart:
> AIDS:=([97, 206, 406, 700, 1289, 1654, 2576, 3392, 4922, 6343, 8359, 9968, 12990, 14397, 16604,
17124, 19585, 19707, 21392, 20846, 23690, 24610, 26228, 22768, 4903]);
> CAC:=[seq(sum(AIDSJj}/1000.0,j=1..i),i=1..24)];
> Time:=[seq(1981+(i-1)/2,i=1..24)]:
> pts:=[seq([Time[i], CACIi]],i=1..24)]:
> LnCAC:=map(In,CAC);
> Times:=[seq((i+1)/2/10,i=1..24)];
> with(stats):
> fit[leastsquare[[x,y],y=m*x+b]]([Times,LnCAC]);
> k:=op(1,0p(1,rhs(%)));A:=0p(2,rhs(%%));
> y:=t—>exp(A)*exp(k*t);
> J:=plot(y((t-1980)/10),t=1980..1992):
> K:=plot(pts,style=POINT,symbol=CIRCLE):
> plots[display]({J,K});

MaTLAB
> AIDS=[97, 206, 406, 700, 1289, 1654, 2576, 3392, 4922, 6343, 8359, 9968, 12990, 14397, 16604,...
17124, 19585, 19707, 21392, 20846, 23690, 24610, 26228, 22768];
> CAC=cumsum(AIDS)/1000;
> s=size(AIDS); % number of half-years
> count=[0:s(2)-1];
> Time =1981+count/2;
> pts=[Time’ CAC’];
> plot(pts(:,1),pts(:,2)); hold on
> Times=(Time-1980)/10; LnCAC=Ilog(CAC);
> MT=[Times; ones(1,s(2))]; % note the space
> params=MT’\LnCAC’
> k=params(1); A=params(2);
> y=exp(A)*exp(k.*Times);
> plot(10*Times+1980,y)

4. Table 2.2.5 presents unpublished data that was gathered by Dr. Melinda Millard-
Stafford at the Exercise Science Laboratory in the Department of Health and
Performance Sciences at Georgia Tech. Itrelates the circumference of the forearm
with grip strength. The first two columns are for a group of college women, and
the following two columns are for college men. Find regression lines (that is,
least square fits) for both sets of data:

MaPLE
> CW:=[24.2,22.9,27.,21.5,23.5,22.4, 23.8, 25.5, 24.5,25.5,22.,24.5];
> GSW:=[38.5,26.,34.,25.5,37.,30.,34.,43.5,30.5, 36.,29.,32];
> with(stats):
> fit[leastsquare[[x,y],y=m*x+b]]([CW,GSW]);
> pts:=[seq([CWIi], GSWI[i]],i=1..12)];
> J:=plot(pts,style=POINT,symbol=CROSS):
> K:=plot(2.107*x-17.447 x=21..28):
> CM:=[28.5,24.5,26.5,28.25,28.2,29.5,24.5,26.9,28.2,25.6,28.1,27.8,29.5,29.5,29];
> GSM:=[45.8,47.5,50.8,51.5,55.0,51.,47.5,45.,56.0,49.5,57.5,51.,59.5, 58.,68.25];
> fit[leastsquare[[x,y],y=m*x+b]]([CM,GSM]);
> pts:=[seq([CM[i], GSM[i]],i=1..15)];
> L:=plot(pts,style=POINT,symbol=CIRCLE):
> M:=plot(2.153*x-6.567,x=24..30):
> with(plots): display({J,K,L,M});

MarLAB
> CW=[24.2,22.9,27.,21.5,23.5,22.4,23.8,25.5,24.5,25.5,22.,24.5];
> GSW=[38.5,26.,34.,25.5,37.,30.,34.,43.5,30.5,36.,29.,32];
> MT=[CW; ones(size(CW))];
> parmsW=MT"\GSW’;
> plot(CW,GSW,x’); hold on
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Table 2.2.5. Forearm and grip strength, males/females.

Females Males
Circumference (cm) Grip (kg)|Circumference (cm) Grip (kg)
24.2 38.5 28.5 45.8
22.9 26.0 24.5 47.5
27.0 34.0 26.5 50.8
21.5 25.5 28.25 51.5
23.5 37.0 28.2 55.0
22.4 30.0 29.5 51.0
23.8 34.0 24.5 47.5
25.5 43.5 26.9 45.0
24.5 30.5 28.2 56.0
25.5 36.0 25.6 49.5
22.0 29.0 28.1 57.5
24.5 32.0 27.8 51.0
29.5 59.5
29.5 58.0
29.0 68.25

> x=21:28; plot(x,parmsW(1)*x+parmsW(2))

% %%

> CM=[28.5,24.5,26.5,28.25,28.2,29.5,24.5,26.9,28.2,25.6,28.1,27.8,29.5,29.5,29];
> GSM=[45.8,47.5,50.8,51.5,55.0,51.,47.5,45.,56.0,49.5,57.5,51.,59.5,58.,68.25];

> MT=[CM; ones(size(CM))];
> parmsM=MT\GSM’

> plot(CM,GSM,0’)

> x=24:30;

> plot(x,parmsM(1)*x+parmsM(2))

2.3 Multiple Regression

The least squares method extends to experimental models with arbitrarily many pa-
rameters. However, the model must be linear in the parameters. The mathematical
problem of their calculation can be cast in matrix form, and as such, the parameters
emerge as the solution of a linear system. The method is again illustrated with two

examples.

Least squares can be extended to more than two parameters

In the previous section, we learned how to perform linear regression, or least squares,
on two parameters, to get the slope m and intercept b of a straight-line fit to data.
We also saw that the method applies to other models for the data than just the linear
model. By a model here we mean a mathematical formula of a given form involving

unknown parameters. Thus the exponential model for (x, y) data is

y = Ae™.
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And to apply linear regression, we transform it to the form
Iny=rx+1InA,

by taking the logarithm of both sides (cf. (2.1.8)). Here the transformed data is
Y = Iny and X = x, while the transformed parameters are M = r and B = In A.
The key requirement of a regression model is that it be linear in the parameters.

Regression principle. The method of least squares can be adapted to calculate the
parameters of a model if there is some transformation of the model that is linear in
the transformed parameters.

Consider the Michaelis—Menten equation for the initial reaction rate vy of the
enzyme-catalyzed reaction of a substrate having a concentration denoted by [S] (see
Section 8.6),

Umax[S]

Vo= i
K + [S]
the parameters are vpax and K,,. By taking the reciprocal of both sides of this
equation, we get the Lineweaver—Burk equation:

S R (2.3.1)
vo - Umax [S] Umax' o

Now the transformed model is linear in its parameters M = Ku and B = 1, and

b
Umax Umax

the transformed data are ¥ = U—lo and X = ﬁ After determining the slope M and

intercept B of a double reciprocal plot of v]_o Vs. [IT] by least squares, then calculate

1 M
VUmax = B and Km =%

So far we have looked only at two-parameter models; but the principles apply to
models of any number of parameters. For example, the Merck Manual (R. Berkow,
ed., The Merck Manual of Diagnosis and Therapy, 14th ed., Merck, Sharp, and
Dohme Research Laboratories, Rahway, NJ, 1982) gives a relationship between the
outer surface area of a person as a function of height and weight as follows:

surface area = ¢ - wt® - ht?,

with parameters a, b, and ¢ (a and b have been determined to be 0.425 and 0.725,
respectively). A transformed model, linear in parameters, for this is

In(surface area) = a In(wt) + bIn(ht) + Inc.

The transformed data are triples of values (X1, X5, Y), where X1 = In(wt), Xo =
In(ht), and Y = In(surface area).

We now extend the method of least squares to linear models of r generalized inde-
pendent variables X1, ..., X, and one generalized dependent or response variable Y,

Y=a X +aX+ --4+aX,.
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Note that we can recover the two variable case of Section 2.2 by taking » = 2 and
X, = 1. Assume that there are n data points (X1, ..., X,;, Y;),i =1,...,n. As
before, let e¢; denote the error between the experimental value Y; and the predicted
value,

ei =Y —(mX1;+ -+aX,), i=1...,n

And as before, we choose parameter values ay, . . ., a, to minimize the squared error,

n n
E(ay,...,a) = ZE? = Z[Yi — (@ X1+ +a X )

i=1 i=1

To minimize E, differentiate it with respect to each parameter a; and set the
derivative to zero,

oE " ’
0=3a = =2 XjilYi —@Xpi+-4a X ), j=1...r
/ i=1
The resulting linear system for the unknowns ay, ..., a, can be rearranged to the

following form (compare with equations (2.2.2)):

n n n
ap le,iX],i +‘~+ar2X1,in,i = le,iYi,
i i i

n n n
ai ZXr,in,i +-tar ZXr,in,i = ZXr,iYi-
i i i

It is possible to write this system in a very compact way using matrix notation. Let
M7 be the matrix of data values of the independent variables,

(2.3.2)

X110 X2 ... Xig
v X201 X022 ... Xog
Xr,l Xr,2 cee Xr,n
The ith row of the matrix is the vector of data values of X;. Represent the data values
of the dependent variable Y as a column vector and denote the whole column by Y,

Y
6}
Y =
Yy,
Denoting by M the transpose of M, the system of equations (2.3.2) can be written

in matrix form as
M"Ma=M"Y, (2.3.3)

where a is the column vector of regression parameters.
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Example 2.3.1. Can body mass and skin fold predict body fat?

Sparling et al. [4] investigate the possibility of predicting body fat from height,
weight, and skin fold measurements for women. Percentage body fat can be estimated
by two methods: hydrostatic weighing and bioelectric impedance analysis. As in
standard practice, height and weight enter the prediction as the fixed combination of
weight divided by height squared to form a factor called body-mass index,

weight
height”’

body-mass index =

The assumed relationship is taken as
percent body fat = a * body-mass index + b * skin fold + ¢

for some constants a, b, and c.

Table 2.3.1 gives a subset of data of Sparling [4] that we will use for this example
to find these constants. The weight and height measurements were made in pounds
and inches respectively; body-mass index is to be in kilograms per square meter, so
the conversions 0.0254 meter = 1 inch and 2.2046 pounds = 1 kilogram have been
done to calculate the body-mass index column of the table.

Table 2.3.1. Height, weight, skin fold, and % body fat for women.

Height (in) [ Weight (Ibs) Body mass (kg/mz) Skin fold| % Body fat
63.0 109.3 19.36 86.0 19.3
65.0 115.6 19.24 94.5 22.2
61.7 1124 20.76 105.3 24.3
65.2 129.6 21.43 91.5 17.1
66.2 116.7 18.72 75.2 19.6
65.2 114.0 18.85 93.2 239
70.0 152.2 21.84 156.0 29.5
63.9 115.6 19.90 75.1 24.1
63.2 121.3 21.35 119.8 26.2
68.7 167.7 24.98 169.3 33.7
68.0 160.9 24.46 170.0 36.2
66.0 149.9 24.19 148.2 31.0

We compute the third column of Table 2.3.1 from the first two:

MaPLE
> ht:=[63,65,61.7,65.2,66.2,65.2,70.0,63.9,63.2,68.7,68,66];
wt:=[109.3,115.6,112.4,129.6,116.7,114.0,152.2,115.6,121.3,167.7,160.9,149.9];
> convert([seq(wt[i]*Ibs/(ht[i]/12*feet)"2,i=1..12)],metric);

MarLaB

% (1 kg/2.2046 1b)/(0.0254 m/1 in)"2 = 703.076 kg-in"2/lb-m"2
ht=[63,65,61.7,65.2,66.2,65.2,70.0,63.9,63.2,68.7,68,66];
wit=[109.3,115.6,112.4,129.6,116.7,114.0,152.2,115.6,121.3,167.7,160.9,149.9];
bodymass=(wt./(ht.*ht))*703.076;

% this is the M1 in the next step
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To apply (2.3.3), we take X to be body-mass index, X» to be skin fold, and
X3 = 1 identically. From the table, M T s

19.36 19.24 20.76 21.43 18.72 ... 24.19
MT =| 86.0 94.5 1053 91.5 75.2 ... 1482,
1 1 1 1 | T |

and the response vector is
Y' =[19.322.224.317.119.6 ... 31.0].

Solving the system of equations (2.3.3) gives the values of the parameters. We
continue the present example:

MaPLE
> BMI:=[19.36,19.24, 20.76, 21.43, 18.72, 18.85, 21.84, 19.90, 21.35, 24.98, 24.46, 24.19];
> SF:=[86.0, 94.5,105.3, 91.5, 75.2, 93.2, 156.0, 75.1, 119.8, 69.3, 170.0, 148.2];
> PBF:=[19.3, 22.2, 24.3, 17.1, 19.6, 23.9, 29.5, 24.1, 26.2, 33.7, 36.2, 31.0];
> with(stats):
> fit[leastsquare[[bdymass,sfld,c]]]([BMI,SF,PBF]);
> bdft:=unapply(rhs(%),(bdymass,sfld));

MarLaB
% matrix of X values (metric)
> M1=[19.36 19.24 20.76 21.43 18.72 18.85 21.84 19.9 21.35 24.98 24.46 24.19];
> M2=[86.0 94.5 105.3 91.5 75.2 93.2 156.0 75.1 119.8 169.3 170 148.2];
> MT=[M1; M2; ones(1,12)];
% now vector of corresponding Y values
>Y=[19.3;22.2;24.3; 17.1; 19.6; 23.9; 29.5; 24.1; 26.2; 33.7; 36.2; 31.0];
% do min. norm inversion (i.e., least squares)
> params=MT\Y

a = .00656, b = .1507, ¢ = 8.074.
Thus we find that

percent body fat

234
~ .00656 x body-mass index + .1507 x skin fold + 8.074. ( )

To test the calculations, here is a data sample not used in the calculation. The
subject is 64.5 inches tall, weighs 135 pounds, and has skin fold that measures 159.9
millimeters. Her body-fat percentage is 30.8 as compared to the predicted value
of 32.3:

MaPLE
> convert(135*Ibs/((64.5/12*t)"2), metric);
> bdft(22.815,159.9);

MarLaB
% predict percent body fat for subject 64.5 inches tall, weight of 135 Ibs, and skin fold of 159.9 mm
% 2.2046 Ibs per kilogram and 39.37 inches per meter
> bmi= (135/2.2046)/(64.5/39.37)"2
% so percent body fat is predicted as
> pbf=params(1)*bmi+params(2)*159.9+params(3)

bdft = 32.3.
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Example 2.3.2. Can thigh circumference and leg strength predict vertical jumping
ability?

Unpublished data gathered by Dr. Millard-Stafford in the Exercise Science Lab-
oratory at Georgia Tech relates men’s ability to jump vertically to the circumference
of the thigh and leg strength as measured by leg press. The correlation was to find a,
b, and ¢ such that

jump height = a * (thigh circumference) + b * (bench press) + c.

Hence the generalized variable X is thigh circumference, X, is bench press, and
X3 =1.
Data from a sample of college-age men is shown in Table 2.3.2. From the table,

58.5 50 59.5 58 ... 56.25
MT = | 220 150 165 270 ... 200
1 1 1 1 ... 1

and

Y' =[195182219... 29].

Solutions for (2.3.3) for these data are approximately found:

MapPLE
> thigh:=[58.5, 50, 59.5, 58, 60.5, 57.5, 49.3, 53.6, 58.3, 51, 54.2, 54, 59.5, 57.5, 56.25];
> press:=[220,150,165,270,200,250,210,130,220,165,190,165,280,190,200];
> jump:=[19.5,18,22,19,21,22,29.5,18,20,20,25,17,26.5,23,29];

Table 2.3.2. Leg size, strength, and jumping ability for men.

Thigh average

circumference |Leg press| Vertical jump
(cm) (Ibs) (in)
58.5 220 19.5
50.0 150 18.0
59.5 165 22.0
58.0 270 19.0
60.5 200 21.0
57.5 250 22.0
49.3 210 29.5
53.6 130 18.0
58.3 220 20.0
51.0 165 20.0
54.2 190 25.0
54.0 165 17.0
59.5 280 26.5
57.5 190 23.0
56.25 200 29.0
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> with(stats):
> fit[leastsquarel[x,y,z], z=a*x+b*y+c, {a,b,c}]]([thigh,press,jump]);

MarLaB
> M1=[58.5 50.0 59.5 58.0 60.5 57.5 49.3 53.6 58.3 51.0 54.2 54.0 59.5 57.5 56.25];
> M2=[220 150 165 270 200 250 210 130 220 165 190 165 280 190 200];
> MT=[M1; M2; ones(1,15)];
% now vector of corresponding Y values
>YT=[19.5 18.0 22.0 19.0 21.0 22.0 29.5 18.0 20.0 20.0 25.0 17.0 26.5 23.0 29.0];
% min norm inversion
> params=MT"\(YT’)

a=-.29, b = .044, c=295.

Hence multilinear regression predicts that the height a male can jump is given by the
formula

jump height

2.3.5
~ —.029 x (thigh circumference) 4+ 0.044 x (bench press) + 29.5. ( )

Surprisingly, the coefficient of the thigh circumference term is negative, which sug-
gests that thick thighs hinder vertical jumping ability.

Exercises

1. This exercise will review some of the arithmetic for matrices and vectors:

MapPLE
> with(LinearAlgebra);
> A:=Matrix([[a,b],[c,d],[ef]]); C:=Vector([c1,c2]);

MaTLAB
> a=1; b=2; c=3; d=4; e=5; {=6; c1=7; c2=8;
> A=[a,b; c,d; e,f]
> C=[c1; c2]

Multiplication of the matrix A and the vector ¢ produces a vector:

MAPLE
>A.C;

MaTLAB
>A*C
An interchange of rows and columns of A produces the transpose of A. A matrix
can be multiplied by its transpose:

MAPLE
> Transpose(A).A;

MaTLAB
> A™A

N

Compute the solution for Example 2.3.1 using the matrix structure. The following
syntax will accomplish this:

MAPLE
> with(LinearAlgebra):
> M:=Matrix([[19.36, 86, 1], [19.24, 94.5, 1], [20.76, 105.3, 1], [21.43, 91.5, 1], [18.72, 75.2, 1],
[18.85, 93.2, 1], [21.84, 156.0, 1], [19.9, 75.1, 1], [21.35, 119.8, 1], [24.98, 169.3, 1],
[24.46, 170., 1], [24.19, 148.2, 1]]);
> evalm(transpose(M)); # or Transpose(M)
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> A:=evalm(transpose(M).M);

> z:=vector([19.3, 22.2, 24.3, 17.1, 19.6, 23.9, 29.5, 24.1, 26.2, 33.7, 36.2, 31.0]);
> y:=evalm(transpose(M).z);

> evalm(A™(-1).y);

MaTLAB
>M1=[19.36 19.24 20.76 21.43 18.72 18.85 21.84 19.9 21.35 24.98 24.46 24.19];
> M2=[86.0 94.5 105.3 91.5 75.2 93.2 156.0 75.1 119.8 169.3 170 148.2];
> MT=[M1; M2; ones(1,12)];
% each row = multiplier of a parameter
> M=MT % transpose of MT
> A= MT*M % square 3x3 matrix
>2z=[19.3;22.2; 24.3; 17.1; 19.6; 23.9; 29.5; 24.1; 26.2; 33.7; 36.2; 31.0]; % 12x1 vector
> y=MT*z % 3x1 vector
> params=inv(A)*y
> MT\z % same thing
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. (a) In this exercise, we get a linear regression fit for some hypothetical data
relating age, percentage body fat, and maximum heart rate. (See Table 2.3.3.)
Maximum heart rate is determined by having an individual exercise until near

complete exhaustion.

Table 2.3.3. Data for age, % body fat, and maximum heart rate.

Age (years)| % Body fat|Maximum heart rate
30 21.3 186
38 24.1 183
41 26.7 172
38 253 177
29 18.5 191
39 25.2 175
46 25.6 175
41 20.4 176
42 27.3 171
24 15.8 201

The syntax that follows will get a linear regression fit for these data. This
syntax will also produce a plot of the regression plane. Observe that it shows
a steep decline in maximum heart rate as a function of age and a lesser decline
with increased percentage body fat.

(b) As an example of the use of this regression formula, compare the predicted

maximum heart rate for two persons at age 40 where one has maintained 15%
body fat and the other has gained weight to 25% body fat. Also, compare
two people with 20% body fat where one is age 40 and the other is age 50:

MarLE
> age:=[30,38,41,38,29,39,46,41,42,24];
> BF:=[21.3,24.1,26.7,25.3,18.5,25.2,25.6,20.4,27.3,15.8];
> hr:=[186,183,172,177,191,175,175,176,171,201];
> with(stats):
> fit[leastsquarel[a,b,c]]]([age,BF;hr]);
> h:=unapply(rhs(%),(a,b));
> plot3d(h(a,b),a=30..60,b=10..20,axes=NORMAL);
> h(40,15); h(40,25); h(40,20); h(50,20);
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MarLaB
> age=[30,38,41,38,29,39,46,41,42,24];
> BF=[21.2,24.1,36.7,25.3,18.5,25.2,25.6,20.4,27.3,15.8];
> hrt=[186,183,172,177,191,175,175,176,171,201];
> MT=[age;BF; ones(size(age))];
> parms=MT'\hrt
> [Xage YBF]=meshgrid(age,BF);
> R=parms(1)*Xage+parms(2)*YBF+parms(3);
> C=ones(size(R)); % for a uniform color
> surf(age,BF,R,C) % surface graph
> h=[40 15 1]*parms
> h=[40 25 1]*parms
> h=[40 20 1]*parms
> h=[50 20 1]*parms

4. Table 2.3.4 contains further data to relate leg size, strength, and the ability to
jump. These data were gathered for college women.

Table 2.3.4. Leg size, strength, and jumping ability for women.

Thigh
circumference|Leg press| Vertical jump
(cm) (Ibs) (in)
52.0 140 13.0
54.2 110 8.5
64.5 150 13.0
523 120 13.0
54.5 130 13.0
58.0 120 13.0
48.0 95 8.5
58.4 180 19.0
58.5 125 14.0
60.0 125 18.5
49.2 95 16.5
55.5 115 10.5

Find a least squares data fit for these data, which are from unpublished work
by Dr. Millard-Stafford in the Health and Performance Science Department at
Georgia Tech.

2.4 Modeling with Differential Equations

Understanding a natural process quantitatively often leads to a differential equation
model. Consequently, a great deal of effort has gone into the study of differential
equations. The theory of linear differential equations, in particular, is well known,
and not without reason, since this type occurs widely.

Besides their exact solution in terms of functions, numerical and asymptotic so-
lutions are also possible when exact solutions are not available.
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In differential equations, as with organisms, there is need of a nomenclature.

In Section 2.1, we proposed a simple differential equation for mimicking the growth
of a biological population, namely,
dy
dr
A differential equation refers to any equation involving derivatives. Other exam-
ples are

= ky. (2.4.1)

d*>y  dy
a4 a4y =t 242
a2 ta e 24.2)
and
dy y?

= — 243
dr ~ " 2%sint (24.3)
and many others. If only first-order derivatives appear in a differential equation, then
it is called a first-order equation. Both equations (2.4.1) and (2.4.3) are of first order,
but (2.4.2) is a second-order equation. Every first-order differential equation can be
written in the form

Yy
I f@y (24.4)
for some function f of two variables. Thus f (¢, y) = ky in the first equation above

and f(t,y) =y — 2+Smt in the third.

A solution of a differential equation means a function y = y(¢) that satisfies the
equation for all values of # (over some specified range of ¢ values). Thus y = Aek!
is a solution of (2.4.1) because then 4 dt = kAl and substitution into (2.4.1) gives

kA = k(AeM),

true for all 7. Note that A is a parameter of the solution and can be any value, so
it is called an arbitrary constant. Recalling Section 2.1, A arose as the constant
of integration in the solution of (2.4.1). In general, the solution of a first-order
differential equation will incorporate such a parameter. This is because a first-order
differential equation is making a statement about the slope of its solution rather than
the solution itself.

To fix the value of the inevitable arbitrary constant arising in the solution of a
differential equation, a point in the plane through which the solution must pass is
also specified, for example at r = 0. A differential equation along with such a side
condition is called an initial value problem,

= f@y ad 30 = . (245)

It is not required to specify the point for which ¢+ = 0. It could be any other value
of ¢ for which y(¢) is known. The domain of definition, or simply domain, of the
differential equation is the set of points (¢, y) for which the right-hand side of (2.4.4)
is defined. Often this is the entire (¢, y)-plane.
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Initial value problems can be solved analytically.

Exact solutions are known for many differential equations; cf. Kamke [5]. For the
most part, solutions derive from a handful of principles. Although we will not study
solution techniques here to any extent, we make two exceptions and discuss methods
for linear systems below and the method of separation of variables next.

Actually we have already seen variables separable at work in Section 2.1: The idea
is to algebraically modify the differential equation in such a way that all instances of
the independent variable are on one side of the equation and all those of the dependent
variable are on the other. Then the solution results as the integral of the two sides.
For example, consider

2
yri ay — by~.
Dividing by the terms on the right-hand side and multiplying by dt separates the
variables, leaving only the integration to be done:

d
[
y(a — by)
Instead of delving into solution methods further, our focus in this text is deciding
what solutions mean and which equations should constitute a model in the first place.
Happily, some of the solution techniques, such as separation of variables, are suffi-

ciently mechanical that computers can handle the job, relieving us for higher-level
tasks. Here then are (symbolic) solutions to equations (2.4.2) and (2.4.3):

MaPLE
> restart:
> dsolve(diff(y(t),t,t)-4*diff(y(t),1)+4 "y (t)=exp(-1),y(1));

1
y(t) = 5+ Cie* + Cote®

and

MaPLE
> dsolve(diff(y(t),t)=y(t)-y(t)"2/(2+sin(1)), y(t));

1 ~ e _
— = —dt+ e 'Cy.
y(t) 2 + sin(t)

Initial value problems can be solved numerically.

As mentioned above, (2.4.4) specifies the slope of the solution required by the dif-
ferential equation at every point (¢, y) in the domain. This may be visualized by
plotting a short line segment having that slope at each point. This has been done
in Figure 2.4.1 for (2.4.3). Such a plot is called a direction field. Solutions to the
equation must follow the field and cannot cross slopes. With such a direction field
it is possible to sketch solutions manually. Just start at the initial point (0, y(0)) and
follow the direction field. Keep in mind that a figure such as Figure 2.4.1 is only a
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MaPLE
> with(DEtools):
> dfieldplot(diff(y(t),t)=y(t)-y(t)"2/(2+sin(t)),y(t), t=0..5,y=-1..5);
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Fig. 2.4.1. Direction field for (2.4.3).

representation of the true direction field, that is to say, it shows only a small subset
of the slope segments.

The mathematician Euler realized three centuries ago that the direction field could
be used to numerically approximate solutions of an initial value problem in a precise
way. Since Euler’s time, techniques have improved—Runge—Kutta methods are used
today—but the spirit of Euler’s method is common to most of them; namely, the
solution takes a small step At to the right and Ay up, where

Ay = f(t;, yi) - At.

Ay dy

The idea is that 37 approximates 7. These increments are stepped off one after

another,

Yi+1 = yi + Ay, tiqi=t+At, i=0,1,2,...,

with starting values yo = y(0) and #9p = 0. Figure 2.4.2 shows some numerical
solutions of (2.4.3).
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Fig. 2.4.2. Solutions and direction field for (2.4.3).

Code 2.4.1.
MaPLE
> with(DEtools):
> DEplot(diff(y(t),t)=y(t)-y(t)"2/(2+sin(t)),y(t), t=0..5,{[0,1],[0,3],[0,5]}, linecolor=BLACK);

MarLaB
% make up an m-file, ode243.m, as follows
% function yprim=ode243(t,y)
% yprim =y - (y."2./(2+sin(t)));
% now for the solution with initial value=1
> tspan=[0 5];
> [t1,y1]=0de23('0ode243’,tspan,1);
% and for initial value=3
> [t3,y3]=0de23('0de243’,tspan,3);
% and for initial value=5
> [t5,y5]=0de23('0de243’,tspan,5);
% plot them all
> plot(t1,y1,t3,y3,t5,y5);

Linear differential equations are among the simplest kind.

A differential equation that can be put into the form

d"y d?y dy
an(I)W +--+ az(l)ﬁ + al(t)a +ao®)y =r(t) (2.4.6)
is linear. The coefficients a;(t), i = 0, ..., n, can be functions of 7, as can the

right-hand side r (t). Equations (2.4.1) and (2.4.2) are linear but (2.4.3) is not. When
there are multiplications among the derivatives or the dependent variable y, such as
y2, the differential equation will not be linear. If y;(¢) and y>(¢) are both solutions
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to a linear differential equation with right-hand side O, then so is Ay (¢) + Byx(¢) for
any constants A and B. Consider the first-order linear differential equation

dy
— =my+ R(), (2.4.7)
dt
where we have taken m = —% and R(t) = Lf in (2.4.6). Its solution is
y = Ae8D + ®(r), where g(r) = / mdt. (2.4.8)

In this, A is the arbitrary constant and ® is given below. To see this, first assume that
R is 0, and write the differential equation as
dy

— = mdt.
y

Now integrate both sides, letting g(r) = [ mdt and C be the constant of integration,
Iny=g(@t)+C, or y=Aet®,

where A = ¢€. By direct substitution, it can be seen that

O = 2 / e 2D R(1)dt (2.4.9)

is a solution.” But it has no arbitrary constant, so add the two solutions, linearity

allows this, to get (2.4.8). If m is a constant, then f mdt = mt.
To see that finding this solution is mechanical enough that a computer can handle
the job, try these commands:

MaPLE
> dsolve(diff(y(t),t)=m(t)*y(t)+R(t),y(1));

> dsolve(diff(y(t),t)=m*y(t)+R(t),y(t));
Systems of differential equations generalize their scalar counterparts.

Quite often, modeling projects involve many more variables than two. Consequently
it may require several differential equations to adequately describe the phenomenon.
Consider the following model for small deviations about steady-state levels of a
glucose/insulin system; g denotes the concentration of glucose and i the same for
insulin,

dg .

o =—ag = pi+ p),

di_ (2.4.10)
e i

5 =g

5 Acleverideais to try a solution of the form y = v(t)e® ® with v(t) unknown and substitute
this into (2.4.7) to get ve8® = R(z), since the term vg’eg(t) = vme8® drops out. Now
solve for v.



42 2 Some Mathematical Tools

As discussed in Section 2.1, the second equation expresses a proportionality relation-
ship, namely, the rate of secretion of insulin increases in proportion to the concentra-
tion of glucose but decreases in proportion to the concentration of insulin. (Modeling
coefficients are assumed to be positive unless stated otherwise.) The first equation
makes a similar statement about the rate of removal of glucose, except that there is
an additional term, p(t), which is meant to account for ingestion of glucose. Because
glucose and insulin levels are interrelated, each equation involves both variables. The
equations define a system; the differential equations have to be solved simultaneously.

A system of differential equations can be written in vector form by defining a
vector, say Y, whose components are the dependent variables of the system. In
vector notation, (2.4.10) becomes

dY

— =MY+P, 24.11
7 + ( )

where the matrix M and vector P are

_|—a B _ | p@®
e[z )

Since the system (2.4.10) is linear, its vector expression takes on the simple matrix
form of (2.4.11). Furthermore, this matrix system can be solved in the same way as
the scalar differential equation (2.4.7). We have

t
Y = MYy + M f e MSP(s)ds. (2.4.12)
0
Just as the exponential of the scalar product mt is
m— ey 24.13
e = +mr+T+T+"', (2.4.13)
so the exponential of the matrix product Mt is
M M?? M3
e _I+Mt+T+ 3 + e (2.4.14)

Since many properties of the exponential function stem from its power series
expansion equation (2.4.13), the matrix exponential enjoys the same properties, in
particular, the property that makes for the same form of solution,

d i me 4 Mt
dte Vi) =e dtV(t) +e""MV(t).

As in the case of a scalar differential equation, the system solutions can be plotted
against 7 to help us understand how the variables behave. For example, we could plot
g(t)and i () using (2.4.12) (see Figure 2.4.3). But for a system there is an alternative;
we can suppress ¢ and plot i (¢) against g(¢). This is done, conceptually, by making a
table of values of ¢ and calculating the corresponding values of g and i. But we only
plot (i, g) pairs. The coordinate plane of i and g is called the phase plane and the
graph is called a phase portrait of the solution (see Figure 2.4.4).
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MaPLE
> Gldeq:= diff(g(t),t)=-g(t)-i(t), diff(i(t),t)=-i(t)+g(t);
> sol:=dsolve({Gldeq, g(0)=1, i(0)=0},{g(t),i(t)}):
> g:= unapply(subs(sol,g(t)),t); i:= unapply(subs(sol,i(t)),t);
> plot({g(t),i(t)},t=0..5);

MarLaB

% Make up an m-file, fig243.m, as follows

% function Yprime=fig243(t,x)

% Yprime = [-x(1) - x(2); x(1) - x(2)];

% for the solution with initial value g=1 and i=0
> [t,Y]=0de23(’fig243',[0 5],[1;0]); % semicolon for column vector
> plot(t,Y) % plot both columns of Y vs. t

1T

0.81

0.61

041

0.2+

L0241

Fig. 2.4.3. Plot of solutions g(z), i(¢) of (2.4.10).

Asymptotics predict the ultimate course of the model.

Often in science and engineering, we are interested in forecasting the future behavior
of an observed process, y(t). Ast becomes large there are several possibilities; among
them are the following: y can tend to a finite limit y»,, known as an asymptotic limit,

lim y(1) = yoo;
—00
y can tend to plus or minus infinity,
lim y(t) = £o0;
—>00
y can oscillate periodically; y can oscillate unboundedly,

lim |y(#)| = oo;
—o0
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MaPLE
> restart:
> with(DEtools):
> Gldeq:= diff(g(t),t)=-g(t)-i(t), diff(i(t),t)=-i(t)+g(t);
> inits:={[0,1,0],[0,2,0],[0,3,0],[0,4,01};
> phaseportrait([Gldeq],[g,i],t=0..4,inits, stepsize=.1,9=-1..4,i=-1..1.3);

MarLaB
> [t,Y4]=0de23(fig243’,[0 5],[4;0]);
> [t,Y3]=0de23('fig243’,[0 5],[3;0]);
> [t,Y2]=0de23('fig243’,[0 5],[2;0]);
> [t,Y1]=0de23(fig243’,[0 5],[1;0]);
> plot(Y4(:,1),Y4(:,2)) % plot the first component of Y4 against the second
> hold on
> plot(Y3(:,1),Y3(:,2)) %ditto for Y3
> plot(Y2(:,1),Y2(:,2)) %ditto for Y2
> plot(Y1(:,1),Y1(:,2)) %ditto for Y1

1t

Fig. 2.4.4. Phase portrait for (2.4.10).

or y can oscillate chaotically. If y is part of a system, its fate will be linked to that of
the other variables; in this case, we inquire about the vector solution Y.

In the simplest case, Y has asymptotic limits. If the system is autonomous,
meaning ¢ appears nowhere in the system (except, of course, in the form [‘f—t), then to
find the asymptotic limits, set all the derivatives of the system to zero. Solutions of
the resulting algebraic system are called critical points or stationary points.® In the
glucose/insulin example, suppose the glucose ingestion term, p(t), were constant at
p; then setting the derivatives to zero leads to the algebraic system

0=—ag—pi+p,
0=yg—di.

6 These are also called equilibrium points by some authors.



2.4 Modeling with Differential Equations 45

MaPLE
> solve({-alpha*g-beta*i+p=0,gamma*g-delta*i=0},{g,i});

Its one critical pointis g = — If this point is taken as the initial

op - _
yB+as’ " T yﬂ+a8
point of the system, then for all time, g will be —— VB+as + 5 and i will be —=— ” /3 +a 5 o

It is not necessarily the case that a stationary point is also an asymptotic limit.
Exponential growth, Z—f =y, is an example, since y = 0 is a stationary point, but if
y(0) # 0, then y — oo ast — oo. On the other hand, when it can be shown that
the solution of a system tends to an asymptotic limit, a giant step has been taken in
understanding the system. For example, exponential decay, Z—{ = —y, has asymptotic
limit O for any starting point y(0), forif y > 0, then % is negative, so y will decrease.
Similmly, if y < 0, then % > 0, so y will increase. Either way, O is the asymptotic
limit.

A complication here is that the existence or the value of the asymptotic limit can
often depend on the starting point Y (0). Given that there is an asymptotic limit, Yo,
the set of all starting points for which the solution tends to Yo is called its basin of
attraction, By __,

By, = {YO : lim Y(1) = Yo when Y(0) = YO}.

If the basin of attraction of a system is essentially the entire domain of definition, the
asymptotic limit is said to be global. By way of example, the differential equation
‘% = —y(1—y)hasasymptoticlimit y = 0 for solutions starting from —oco < yp < 1;
but when the starting point is beyond 1, solutions tend to infinity.

Periodicity is a more complicated asymptotic behavior. Further, just as in the
asymptotic limit case, the solution can start out periodic, or can asymptotically tend

to periodicity. An example of the former is % = cost, while the latter behavior is
demonstrated by % = —y + cost. This second differential equation is solved by

24.8), y = Ae™! + %(cost + sint); A depends on the initial condition, but the
whole term tends to zero. A well-known periodic system is the one due to Lotka and
Volterra modeling predator—prey interaction. We study this in Section 4.4.

Exercises

1. Here are four differential equations with the same initial conditions:

2

3 Y 46y(1) =0, y(O0)=1, y(0)=0;

d2y /

T —6y@®) =0, yO) =1, y(0) =0;
d’y _dy ,
ﬁ+2d—+6y(t)—0 y©0)y=1, y(©0)=0;

&y L) +6y(t) =0, y©0) =1, y(©0) =0
T2 T2, Tem =0 y0 =1 y0=0
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While these differential equations have a similar appearance, they have radically
different behaviors. Sketch the graphs of all four equations with the same initial
values. Here is syntax that will draw the graphs:

MAPLE
> dsolve({diff(y(t),t,t)+6"y(t)=0, y(0)=1, D(y)(0)=0}Ly(1));
> y1:=unapply(rhs(%),1);
> dsolve({diff(y(t).t,t)-6"y(t)=0, y(0)=1, D(y)(0)=0}Ly(t));
> y2:=unapply(rhs(%),t);
> dsolve({diff(y(t),t,t)+2*diff(y(t),t)+6*y(t)=0, y(0)=1,D(y)(0)=0},y(t));
> y3:=unapply(rhs(%),1);
> dsolve({diff(y(t),t,t)-2*diff(y(t),t)+6*y(t)=0, y(0) = 1,D(y)(0)= 0O},y(t));
> y4:=unapply(rhs(%),1);
> plot([y1(t),y2(t),y3(t),y4(1)],t=0..4,y=-5..5, color=[black,blue,green,red)]);

MaTLAB
% to deal with a second-order differential equation, it has to be made into a vector-valued first-order
% DE as follows: the first component Y1 is y and the second Y2 is dy/dt. Then d"2y/dt"2+6y=0
% becomes the vector system dY1/dt=Y2; dY2/dt = -6Y1;
% so make an m-file, exer241a.m, as follows:
%  function Yprime=exer241a(t,Y); Yprime = [Y(2); -6*Y(1)];
> [t,Y]=ode23('exer241a’,[0 4],[1; 0]);
> plot(t,Y(:,1))
%% %
% DE (b) converts to first-order vector system dY1/dt=Y2; dY2/dt=6*Y1;
% DE (c) converts to first-order vector system dY1/dt=Y2; dY2/dt=-6*Y1-2*Y2;
% DE (d) converts to first-order vector system dY1/dt=Y2; dY2/dt=-6*Y1+2*Y2;
% We leave it to the reader to obtain the numerical solutions and plot as above.

2. We illustrate four ways to visualize solutions to a single second-order differen-

tial equation in order to emphasize that different perspectives provide different
insights. We use the same equation in all four visualizations:

d*y | y(@)
2 + = = cos(?).

(a) Find and graph an analytic solution that starts at y(0) = 0.

MaprLE
> dsolve({diff(y(t),t,t)+y(t)/5=cos(t), y(0)=0,D(y)(0)=0},y(t));
> y:=unapply(rhs(%),t);
> plot(y(t),t=0..4*Pi);

MarLaB
% make an m-file, exer242.m, with
% function Yprime=exer242(t,Y); Yprime=[Y(2); -Y(1)/5+cos(1)];
% then solve and plot with
> [t,Y]=0de23('exer242’,[0 4*pi],[0;0]);
> plot(t,Y(:,1))

(b) Give a direction field for the equation.

MaPLE
> restart: with(DEtools):
> dfieldplot(diff(y(t),t)+y(t)/5=cos(t),y(t),t=0..4*Pi,y=-1..5);

MarLaB
% No built-in direction field in Matlab; see DFIELD from http://math.rice.edu/dfield.
(c) Give several trajectories overlaid in the direction field.

MarpLE (direction field)
> restart:
> with(DEtools):
> DEplot(diff(y(t),t)+y(t)/5=cos(t),y(t),t=0..4*Pi,{[0,1],[0,3],[0,5]});

(d) Give an animation to show the effect of the coefficient of y(#) changing.
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MaPLE (animation)

> restart: with(plots):

> for n from 1 to 8 do
a:=n/10:
dsolve({diff(y(t),t,t)+a*y(t)/5=cos(t),y(0)=0},y(t)):
y:=unapply(rhs(%),t):
P[n]:=plot([t,y(t),t=0..10*Pi],t=0..10*Pi):
y:=y
od:

> display([seq(P[n],n=1..8)],insequence=true);

3. Find the critical points for each of the following equations. Plot a few trajectories
to confirm where the basins of attractions are.

(a)

(b)

D — 1)1 - y(0)).

MaPLE
> solve(y*(1-y)=0,y);
> with(DEtools):
> de:=diff(y(t),t)=-y ()" (1-y(t));
> DEplot(de,y(t),t=0..5,{[0,-1],[0,-1/2],[0,1/2]},y=-1..2);

MarLaB
% make an m-file, exer243a.m, with
% function yprime=exer243a(t,y); yprime=-y.*(1-y);
> p=[1 -1 0]; % coefficients of p(y)=-y(1-y)
> roots(p)
> [t,y]=0de23('exer243a’,[0 5],-1);
> plot(t,y); hold on
> [t,y]=0de23('exer243a’,[0 5],-1/2);
> plot(t,y)
> [t,y]=0de23('exer243a’,[0 5],1/2);
> plot(t,y)
x'=4x(t) = x2(1) —x@)y(0); y' = 5y() — 2y"2(t) — x()y(?).
MAPLE
> solve({4*x-x"2-x*y=0, 5*y-2*y"2-y*x=0}, {X,y});
> with(DEtools):
> deq1:=diff(x(t),t)=4*x(t)-x(t)"2-x(t) *y(t);
> deq2:=diff(y(t),t)= 5*y(t)-2*y(t)"2-y(t)*x(t);
> inits:={[0,1,11,[0,1,4],[0,4,11,[0,4,4]};
> DEplot([deq1,deq2],[x,y],t=0..4,inits,x=-1..5,y=-1..5,stepsize=.05);

MarLaB
% contents of m-file, exer243b.m:
% function Yprime=exer243b(t,Y);
% Yprime=[4*Y(1)-Y(1).*Y(1)-Y(1).*Y(2); 5*Y(2)-2*Y(2)."2-Y(1).*Y(2)];
> [t,Y]=0de23('exer243b’,[0 4],[1;1]);
> hold off; plot3(t,Y(:,1),Y(:,2))
> grid
> xlabel(’x axis’); ylabel('y axis’);
> zlabel('z axis’); hold on
> [t,Y]=0de23('exer243b’,[0 4],[1;4]);
> plot3(t,Y(:,1),Y(:,2))
> [t,Y]=ode23('exer243b’,[0 4],[4;1]);
> plot3(t,Y(:,1),Y(:,2))
> [t,Y]=0de23('exer243b’,[0 4],[4;4]);
> plot3(t,Y(:,1),Y(:,2))
> view(30,30) % 30 deg CCW from negative y-axis, 30 deg elevation
> view(-100,30) % 100 deg CW from negative y-axis, 30 deg elevation

4. The solution for Z' = AZ(t), Z(0) = C, with A a constant square matrix and C
a vector is exp(Ar)C. Compute this exponential in the case

a=(3'20)
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Evaluate exp(At)C, where C is the vector
(o)
C = .

0

MAPLE
> with(LinearAlgebra):
> A:=Matrix([[-1,-1],[1,-11]);
> MatrixExponential(A,t);
> evalm(%.[1,0]);

MaTLAB
> A=[-1,-1;1, -1]
> t=2; At=A*t; expm(At)
> t=5; At=A*t; expm(At)
> expm(At)*[1;0] % exp(At)*C, where C is a 2x1 column vector

2.5 Modeling with Difference Equations

Biological systems are not always continuous. Considering population growth, indi-
viduals come in discrete units, so a differential equation model for population growth
is only an approximation. When population size is large, the approximation is suf-
ficiently accurate to describe the model’s behavior and asymptotics. But there are
many biological phenomena whose analysis requires a treatment in terms of discrete
units.

Difference equations are similar to differential equations except that the inde-
pendent variable, time or space, is taken in discrete, indivisible units. Although
difference equation analysis is often more difficult than its continuous counterpart,
there is a striking analogy between the two theories.

Difference equations are one example of what is more generally known as recur-
rence relations. This refers to some quantity that is defined in terms of itself.

Just as numerical and asymptotic analyses are available for differential equations,
the same holds for difference equations as well.

A differential equation has a natural difference equation counterpart.
In Section 2.1 we mentioned a differential equation model for population growth,

dy_

= ky. 2.5.1
i y ( )

This model postulates that infinitesimal units of population, dy, are added to the
general population over infinitesimal units of time, d¢. Of course this can only be
an approximation. And indeed it is an adequate one in many cases, for example, for
describing a bacterial colony.

However, for a more accurate description, an approach respecting that biological
units are discrete and reproductive intervals are also discrete is called for. We are led
to the discrete version of (2.5.1),
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Ye+1 — Yt = Tt

Here the variable 7 proceeds in discrete units # = 0, 1,2, .... As in the differential
equation, a starting value yy is required to complete the description.

To solve the difference equation we recast it as a recurrence relation together with
a starting value (denote this by yp),

yie1 = (1 4+ 1)y, yo = starting value.
The solution is easy to obtain by stepping through the generations recurrently,
y1 = (1+r)yo,

y2 = (1+r)y =1+,
y3 = (1+ry = (1473,

and so on. Itis easy to see that there is a closed (nonrecurrent) form for the y;, namely,
yi=0+r'y, t=012,....
Comparing this with the solution of the differential equation,
y=eMyo = () y0,

shows that e¥ corresponds to 1 + 7. The relationship between the per period growth
rate r and the instantaneous growth rate k is

r=e—1 Lor k=Ilog(l+r). (2.5.2)
A second-order differential equation such as

d’y 4 +4y =0 (2.5.3)
dt? dt o

can be written as a difference equation by noting how the second derivative converts.
Since fh{ =4 =( dt) we may write

d’y dy

—_— S —

dr? dt

= (V42 = Yet1) = Oeg1 — Vi) = Ye42 = 2Yi41 + i

_dy
t+1 dt

Then (2.5.3) becomes

Ye42 = 2Yr41 + Ve — 4(Ve41 — yi) +4y: = 0.

This may be written as the linear recurrence relation

Y42 — 6yr41 + 9y, = 0.
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Just as a second-order differential equation requires two initial values for a com-
plete solution, so also a second-order recurrence relation requires two initial values
for a complete solution.

The general second-order (homogeneous) recurrence relation is

Y42 +c1yip1 +coyr =0 (2.5.4)

for some constants ¢, c1, and cg. On the strength of what we saw above, we expect
a solution of the form y; = Ar! for some r. Substitute this into (2.5.4):

AT 4 ArtT o Art = 0.
Factoring out Ar’ gives
Art(Cgr2 +cir +cg) =0.
This is satisfied trivially if A = 0 or if r solves the quadratic equation
czr2 +cir +¢c9=0. (2.5.5)

This is called the auxiliary equation.
Suppose (2.5.5) has two distinct real roots, r = r and r = r,, then the homoge-
neous equation has the solution

y: = Ar} + Br} (2.5.6)

for some constants A and B. These will be determined by the initial conditions.

Consider the equation due to Fibonacci for the growth of a rabbit population. He
stated that the size of the population in terms of reproducing pairs at generation 7 is
the sum of the sizes of the last two generations, that is,

V=Y 1+ yi2, t=34,..., (2.5.7)

or equivalently,

Vi+2 = Yi+1 + Vs t=1,2,....

Starting with one (juvenile) pair, after one breeding period these become adults, so
there is still one pair. But in the next breeding period they produce one new juvenile
pair, so now there are two pairs of rabbits. In general, the population sequence
according to (2.5.7) is

1,1,2,3,5,8,13,21,34,....

To find a closed-form solution, we use the method above. Transpose the terms
on the right side of the equal sign to the left. That leads us to solve the quadratic
equation

rP—r—1=0.
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From the quadratic formula, the roots are

1
:5(1i 1 —(—4)),

t t
v =A (1 +2“/§) +B (1 _2*/5> . (2.5.8)

Using the starting values y; = y, = 1 as above, substitute into (2.5.8), first with
t = 1 and then with t = 2:

1=A<1+\/§>+B(1—\/§>’

2 2

1=B(1+\/§)2+B<1—\/§)2.
2 2

Finally, solve this system of two equations in two unknowns (using Code 2.5.1, for

example) to get A = %fs and B = —\%.

and so the solution is

Code 2.5.1.

MAPLE
> eql:=1=A*((1+sqrt(5))/2)+B*((1-sqrt(5))/2);
> eq2:=1=A*((1+sqrt(5))/2)"2+B*((1-sqrt(5))/2)"2;
> solve({eq1,eq2},{A,B});

MarLaB
M=[(1+sqrt(5))/2 (1-sqrt(5))/2; ((1+sqrt(5))/2)"2 ((1-sqrt(5))/2)"2]

> b=[1;1]
1 14+45
w5 ((557) - ( )) 259

> sol=M\b
What happens to y; as t — 00? Since = —0.618... is less than 1 in
absolute value, this quantity raised to the zth power tends to 0 as t — oo. Therefore,

NENAEAY
J’t’\'ﬁ )

for large t. In fact, rounding this approximation to the nearest integer is exact for
all 7.

If the roots of the auxiliary equation are repeated, say r = ry with multiplicity 2,
then one must use a solution of the form

Hence

&'

Vi = Ari + Btr{

instead of (2.5.6). As before, use the starting values to find the constants A and B.
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Systems of equations lead to a higher-order single-variable equation.

Consider the following system of two recurrence relations:

Xt41 = ClLIX: + C12)1, (2.5.10a)
Vi1 = €21X% + €221 (2.5.10b)

The first may be written as

Xi42 = Cl1X1+1 + CL2Yi+1-

Now the second may be substituted into this to give

Xi42 = c11Xr41 + c12(c21xr + c22yr).

Finally, use (2.5.10a) to eliminate y; from this equation:

Xt42 = Cl1Xi41 + €12€21 % + €22(Xp 1 — C11X;)
= (c11 + c22)xr41 — (c11€22 — C12021) %1

Chaos

Consider the logistic recurrence relation

Yet1 = Ay (L = yr), (2.5.11)

where A is a constant. This equation arises in the study of population growth. For
values of A less than 3, this equation converges to a unique asymptotic value. But if
A is greater than 3, strange behavior is exhibited. For example, if X is 4 or greater,
the y;s are seemingly random values. More precisely, this is called chaos rather than
random because the values are correlated; truly random values must be uncorrelated.
For 3 < & < 1 4 /6, the y;s asymptotically oscillate between two values, called
a 2-cycle. For values of A between 1 + +/6 and 4, cycles of various periods are
encountered. The following code produces fully chaotic behavior:

MaPLE
> lam:=4:
> chaos:=proc() global y;
>y:= lam*y*(1-y);
> RETURN(y);
> end:
> y:=.05:
> for i from 1 to 24 do chaos();
> od;

MarLaB

> lam=4; y=0.05; for i=1:24 y=lam*y*(1-y)
>end

2.6 Matrix Analysis

The easiest kind of matrix to understand and with which to calculate is a diagonal
matrix J, that is, one whose ikth term is zero, jir = 0, unless i = k. The product of
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two diagonal matrices is again diagonal. The diagonal terms of the product are just
the products of the diagonal terms of the factors. This pattern extends to all powers,
J", as well. As a consequence, the exponential of a diagonal matrix is just the matrix
of exponentials of the diagonal terms.

It might seem that diagonal matrices are rare, but the truth is quite to the contrary.
For most problems involving a matrix, say A, there is a change of basis matrix P such
that PAP~" is diagonal. We exploit this simplification to make predictions about the
asymptotic behavior of solutions of differential equations.

Eigenvalues predict the asymptotic behavior of matrix models.

Every n x n matrix A has associated with it a unique set of n complex numbers,
Ay A2, ..., Ay, called eigenvalues. Repetitions are possible, so the eigenvalues for A
might not be distinct, but even with repetitions, there are always exactly » in number.
In turn, each eigenvalue A has associated with it a nonunique vector e called an
eigenvector. An eigenvalue—eigenvector pair A, e is defined by the matrix equation

Ae = he. 2.6.1)

An eigenvector for A such as e is not unique, because for every number a, the
vector € = ae is also an eigenvector, as is easily seen from (2.6.1).

4=lo )

has eigenvalues 11 = 1 and A» = —2 with corresponding eigenvectors e; = () and
e> = (!)). Before invoking the computer on this one (see Exercise 1 in this section),
work through it by hand.

Example 2.6.1. The matrix

Eigenvalues and eigenvectors play a central role in every mathematical model em-
bracing matrices.

This statement cannot be overemphasized. The reason is largely a consequence of
the following theorem.

Theorem 1. Let the n x n matrix A have n distinct eigenvalues; then there exists a
nonsingular matrix P such that the matrix

J=PAP! (2.6.2)

is the diagonal matrix of the eigenvalues of A,

A 0...0
0Xx... 0
J=1. . .
00 ... Ay

The columns of P are the eigenvectors of A taken in the same order as the list of
eigenvalues.



54 2 Some Mathematical Tools

If the eigenvalues are not distinct, then we are not guaranteed that there will be a
completely diagonal form; it can happen that there is not one. But even if not, there
is an almost diagonal form, called the Jordan canonical form (or just Jordan form),
which has a pattern of 1s above the main diagonal. By calculating the Jordan form of
a matrix, we get the diagonal form if the matrix has one. We will not need to discuss
Jordan form here, except to say that the computer algebra system can compute it.

The matrix product of this theorem, PAP ! isa change of basis modification of
A; in other words, by using the eigenvectors as the reference system, the matrix A
becomes the diagonal matrix J. Note that if / = PAP~!, then the kth power of J
and A are related as the k-fold product of PAPL,

JK=@AP HYPAPY...(PAPTY) = pAkPTT, (2.6.3)
since the interior multiplications cancel.

Diagonal matrices are especially easy to work with; for example, to raise J to a
power J* becomes raising the diagonal entries to that power:

Ao...0

k
o 0x...0
0 0 ... A

n

As a result, the exponential of J is just the exponential of the diagonal entries.
From (2.4.14),

I ; ; 2t2 J3t3
e =1+ I+T+T+
_ s .
L+t + e+ 0 0
222
B 0 L+t + 5+ 0
: : L
] 0 0 (B )|
Mt 0
0 ... 0
= . . - (2.6.4)
| 0 0 ..Mt

We illustrate the way in which these results are used.

The age structure of a population can be modeled so that it evolves as dictated by
a matrix L, such as the following (see Chapter 5):



2.6 Matrix Analysis 55

0 0 0 0 0.080.280.42]
6570 0 0 0 0 0
0 9300 0 0 0 0
L= 0 093 0 0 0 0
0 0 093 0 0 0
0 0 0 0 9350 0

L0 0 0 0 0 935 0 |

After k generations, the pertinent matrix is the kth power of L. From the theorem,
there exists a matrix P such that J = PLP~! and according to (2.6.3),

Lk =p-ljkp.

Letting A1 be the largest eigenvalue of L in absolute value, it is easy to see that

1 0 ... O
k
A
i 0 (%) 0
N : :
1 oo .k
An
0 0 (ﬂ)
10...0
00...0
— as k — oo.
00...0

In other words, for large k, L* is approximately )Jf times a fairly simple fixed matrix
related to its eigenvectors; thus it grows or decays like )‘]f‘

In another example, consider the matrix form of the linear differential equation
(2.4.11) of Section 2.4. From above, the matrix exponential ¥’ can be written as

eMt — P*le.][P’

where e/’ consists of exponential functions of the eigenvalues. If all those eigenvalues
are negative, then no matter what P is, every solution will tend to 0 as t — oo. Butif
one or more eigenvalues are positive, then at least one component of a solution will
tend to infinity.

In Chapter 9, we will consider compartment models. A compartment matrix C is
defined as one whose terms ¢;; satisfy the following conditions:

1. All diagonal terms c;; are negative or zero.
2. All other terms are positive or zero.
3. All column sums ) _; ¢;; are negative or zero.

Under these conditions, it can be shown that the eigenvalues of C have negative or
zero real parts and so the asymptotic result above applies.

The fact that the eigenvalues have negative real parts under the conditions of a
compartment matrix derives from Gershgorin’s circle theorem.
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Theorem 2. If A is a matrix and S is the following union of circles in the complex
plane,

S:U complex z : |amm — z| < Z|ajm| )
m Jj#m
then every eigenvalue of A lies in S.

Notice that the mth circle above has center a,,;,, and radius equal to the sum of
the absolute values of the other terms of the mth column.

Exercises

1. For both the following matrices A, find the eigenvalues and eigenvectors. Then
find the Jordan form. Plot solutions [Z;, Z», Z3] for Z' = AZ. Note that the
Jordan structure for the two is different:

00-2 311
Ar=112 1 and Ay =|—-12 1
10 3 210

Here is the syntax for Aj. Define the following matrix:

MaPLE
> restart;
> with(LinearAlgebra):
> A:=Matrix([[0,0,-2],[1,2,1],[1,0,3]]);

MaTLAB
>A=[00-2;121;103]

(a) Find the eigenvalues and eigenvectors of A. (Note that bothx; = (—1, 0, 1)’
and x; = (0, 1,0)" are eigenvectors for the eigenvalue 2; therefore, so is

every linear combination ax; + bx;.)

MarLE
> ev:=Eigenvectors(A);
# first column = eigenvalues, second “column” = matrix whose columns are eigenvectors
> evals:=ev[1]; evects:=ev[2];
# evects[1] is a row, we want the column; transpose
> whattype(Transpose(evects)[1]); # a row vector, needs to be a colmn vector
> x1:=convert(Transpose(evects)[1],Vector[column]);
> x2:=convert(Transpose(evects)[2],Vector[column]);
> x3:=convert(Transpose(evects)[3],Vector[column]);

MarLaB
> [evect, evall=eig(A)
% evect is P inverse and eval is J

(b) Find the Jordan form and verify that the associated matrix P has the prop-
erty that
PAPT =

MapLE (symbolic derivative)
> J:=JordanForm(A);
> Q:=JordanForm(A, output="Q’);
>Q(-1).A.Q;
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MarLaB
> P=inv(evect)
> J=P*A*inv(P)

In order to get (2.6.2), take P tobe Q.

MaPLE
> P:=Q"(-1); PA.P"(-1);

2. In a compartment matrix, one or more of the column sums may be zero. In this
case, one eigenvalue can be zero and solutions for the differential equations

7' =CZ@)

may have a limit different from zero.

If all the column sums are negative in a compartment matrix, the eigenvalues
will have negative real part. All solutions for the differential equations

Z'=CZ()

will have limit zero in this case.
The following matrices contrast these two cases:

-1 1 0 —1
Ci=11-10 and
0 0 -1

(e

[«X SIS
8=

Let C be the matrix defined below:

MapPLE
> with(LinearAlgebra):
C:=Matrix([[-1,1,0],[1,-1,0],[0,0,-11]);

MaTLAB
>C=[-110;1-10;00-1]

(a) Find the eigenvalues and eigenvectors for C.

MaPLE
> Eigenvectors(C);

MarLaB
> [evects, evals] = eig(C)

(b) Graph each component of z with z(0) = [1, 1, 1].

MaPLE
> exptC:=MatrixExponential(C,t);
> U:=evalm( exptC.[1,0,1]);
> u:=unapply(U[1],t); vi=unapply(U[2],t); w:=unapply(U[3],t);
> plot({u(t),v(t),w(t)},t=0..2, color=[black,blue,green]);

MarLaB

% contents of the m-file exer252.m

% function Zprime=exer252(t,Z);

% Zprime=[-1*Z(1)+1*2(2); 1*Z(1)-1*2(2); -1*2(3)];
> [t,Z]=0de23('exer252’,[0 10],[1; O; 1]);
> plot(t,Z)
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2.7 Statistical Data

Variation impacts almost everything. Variation can be quantified by describing its
distribution. A distribution is the set of the fractions of observations having particular
values with respect to the number of the possible values. For example, the distribution
of word lengths of the previous sentence is 3 of length 1, 4 of length 2, 2 of length
3, and so on (all divided by 18, the number of words in the sentence). The graph of
a distribution with the observations grouped or made discrete to some resolution is
a histogram. Distributions are approximately described by their mean, or average,
value and the degree to which the observations deviate from the mean, their standard
deviation. A widely occurring distribution is the normal, or Gaussian. This bell-
shaped distribution is completely determined by its mean and standard deviation.

Histograms portray statistical data.

Given that the natural world is rife with variables, it is not surprising to find that
variation is widespread. Trees have different heights, ocean temperatures change
from place to place and from top to bottom, the individuals of a population have
different ages, and so on. Natural selection thrives on variation. Variation is often
due to chance events; thus the height of a tree depends on its genetic makeup, the soil
in which it grows, rainfall, and sunlight among other things. Describing variation is
a science all to its own.

Since pictures are worth many words, we start with histograms. Corresponding to
the phenomenon under study, any variation observed occurs within a specific range of
possibilities, a sample space. This range of possibilities is then partitioned or divided
up into a number of subranges, or classes. A histogram is a graph of the fraction of
observations falling within the various subranges plotted against those subranges.

Consider the recent age distribution data for the U.S. population, shown in Ta-
ble 2.7.1. The possible range of ages, O to infinity, is partitioned into subranges or
intervals of every five years from birth to age 84; a last interval, 85+, could be added
if necessary for completeness. The table lists the percentage of the total population
falling within the given interval; each percentage is also refined by sex. The cumula-
tive percentage is also given, that is, the sum of the percentages up to and including
the given interval. A histogram is a graph of these data; on each partition interval is
placed a rectangle, or bar, whose width is that of the interval and whose height is the
corresponding percentage (see Figure 2.7.1).

The resolution of a histogram is determined by the choice of subranges: Smaller
and more numerous intervals mean better resolution and more accurate determination
of the distribution; larger and fewer intervals entail less data storage and processing.

The cumulative values are plotted in Figure 2.7.2. Since the percentage values
have a resolution of five years, a decision has to be made about where the increments
should appear in the cumulative plot. For example, 7.2% of the population is in the
first age interval counting those who have not yet reached their fifth birthday. Should
this increment be placed at age 0, at age 5, or maybe at age 2.5 in the cumulative
graph?
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Table 2.7.1. Age distribution for the U.S. population.

Age |% Female| % Male| % Population| Cumulative
04 3.6 3.6 7.2 7.2
5-9 3.9 3.7 7.6 14.8
10-14 4.1 39 8.0 22.8
15-19 4.7 43 9.0 31.8
20-24 5.0 42 9.2 41.0
25-29 43 4.0 8.3 493
30-34 4.0 35 7.5 56.8
35-39 3.6 2.9 6.5 63.3
40-44 2.7 22 4.9 68.2
45-49 2.8 2.0 4.8 73.0
50-54 3.0 22 52 78.2
55-59 3.1 2.1 52 83.4
60-64 2.8 1.9 4.7 88.1
65-69 2.3 1.8 4.1 922
70-74 2.0 1.4 34 95.6
75-79 1.7 0.8 2.5 98.1
80-84 1.6 0.3 1.9 100

We have chosen to do something different, namely, to indicate this information as
a line segment that is 0 at age 0 and is 7.2 at age 5. In like fashion, we indicate in the
cumulative graph the second bar of the histogram of height 7.6% as a line segment
joining the points 7.2 at age 5 with 14.8 (= 7.2+ 7.6) at age 10. Continuing this idea
for the balance of the data produces the figure. Our rationale here is the assumption
that the people within any age group are approximately evenly distributed by age in
this group. A graph that consists of joined line segments is called a polygonal graph
or a linear spline.

This graph of accumulated percentages is called the cumulative distribution func-
tion, or cdf for short. No matter what decision is made about placing the cumulative
percentages, the cdf satisfies these properties:

1. it starts at O,
2. it never decreases, and
3. it eventually reaches 1 (or, as a percentage, 100%).

The mean and median approximately locate the center of the distribution.

Sometimes it is convenient to summarize the information in a histogram. Of course,
no single number or pair of numbers can convey all the information; such a summary
is therefore a compromise, but nevertheless a useful one. First, some information
about where the data lie is given by the mean, or average; it is frequently denoted by
. Given the n values x1, xo, ..., x,, their mean is
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MaPLE
> mcent:=[3.6, 3.7, 3.9, 4.3, 4.2, 4.0, 3.5,2.9,2.2,2.0,2.2,2.1,1.9, 1.8,1.4, 0.8, 0.3]:
fcent:=[3.6, 3.9, 4.1, 4.7, 5.0, 4.3, 4.0, 3.6, 2.7, 2.8, 3.0, 3.1, 2.8, 2.3, 2.0, 1.7, 1.6]:

tot:=[seq(mcent[i]+fcent[i],i=1..17)]:
> ranges:=[0..5, 5..10, 10..15, 15..20, 20..25, 25..30, 30..35, 35..40, 40..45, 45..50, 50..55, 55..60, 60..65,
65..70, 70..75, 75..80, 80..85]:
> with(stats): with(plots):
> mpop:=[seq(Weight(rangesl[i], 5*mcent[i]),i=1..17)]:
> fpop:=[seq(Weight(rangesi], 5*fcent]i]),i=1..17)]:
> pop:=[seq(Weight(rangesli], 5*tot[i]),i=1..17)]:
> statplots[histogram](pop);

MarLaB
>mcent=[3.6 3.73.94.3424.03.52.92.22.02.22.11.91.81.40.80.3];
> fcent=[3.6 3.94.14.75.04.34.03.62.72.83.03.12.82.32.01.7 1.6];
> total=mcent+fcent;
> x=[5:5:85]; % 5, 10, 15, ..., 85
> bar(x,total) % bars centered on the x values
> xlabel(’Age(years)’)
> ylabel(’Percent in age bracket’);

10

% in age 4
bracket

40

age (years)

== x. 2.7.1)
n n

Another popular notation for this quotient is x. It is necessarily true that some values
x; are smaller than the mean and some are larger. (Either that or all xs are equal.)
In fact, one understands the mean to be in the center of the x values in a sense made
precise by (2.7.1). Given x and n, the sum of the xs is easily computed:



MaPLE

>age:=[2.5,7.5,12.5,17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5, 52.5, 57.5, 62.5, 67.5, 72.5, 77.5, 82.5];

> cummale:=[seq(sum(’mcent[i]’,i’=1..n),n=1..17)]:
> cumfale:=[seq(sum(’fcent[i]’,i’=1..n),n=1..17)]:

> cumtot:=[seq(sum(tot[i]’,i’=1..n),n=1..17)]:

> ptsm:=[seq([age[i],cummale[i]],i=1..17)];

> ptsf:=[seq([age]i],cumfaleli]],i=1..17)]:

> ptsT:=[seq([ageli],cumtot[i]],i=1..17)]:

> plot({ptsm,ptsf,ptsT},color=BLACK);

MarLaB
> cumM=cumsum(mcent);
> cumF=cumsum(fcent);
> cumTot=cumsum(total)
> plot(x,cumTot,x,cumM,x,cumF)
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Fig. 2.7.2. Cumulative populations (% of the total vs. age).
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Computing the mean of a histogram goes somewhat differently. Suppose the total
number of people referred to by Table 2.7.1 to be 100 million. (Itno doubt corresponds
to many more than that, but it will be more convenient to calculate percentages using
100 million, and we will see that in the end, this choice is irrelevant.) Then the 7.2%
in the first group translates into 7.2 million people. We do not know their individual
ages, but as above, if they were evenly distributed over ages 0 to 4.999..., then
counting all 7.2 million as 2.5 gives the same result. Hence in (2.7.1) these people

contribute a value of 2.5 for 7.2 million such people, or

0+5

contribution of “0 to 5 group =2.5-7.2 = — 7.2

in millions. Similarly the second group contributes
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5+10
2

Continuing in this way we get, where we are counting in millions,

contribution of “5 to 10” group =7.5-7.8 = 7.8.

n
Y % =2572+75-7.6+125-80+- +825 1.9 =3431.0 (million).
i=1

Divide the result by 100 (million) to obtain the mean. But dividing by 100 million
means a quotient such as % is just the fraction .072 (or 7.2%). In other words,
we do not need to know the total population size; instead, we just use the fractions,
such as .072, as multipliers or weights for their corresponding interval. Completing

the calculation, then, we have
x=25-0.0724+7.5-0.076 + --- + 82.5-0.019 = 34.31. 2.7.2)

Equation (2.7.2) illustrates a general principle for calculating the mean. It applies
to (2.7.1) as well:

w= Z x - fraction of values equal to x. (2.7.3)

over possible
values x

In (2.7.2) the possible xs are 2.5, 7.5, and so on, while the fractions are .072, .076,
and so on. In (2.7.1) the possible xs are x1, x2, and so on, while the fraction of values
that are x| is just 1 out of n, that is, %, and similarly for the other x;s.

The median is an alternative to the mean for characterizing the center of a dis-
tribution. The median, x, of a set of values x1, x2, ..., x, is such that one-half the
values are less than or equal to X and one-half are greater than or equal to it. If n is
odd, x will be one of the xs. If n is even, then x should be taken as the average of
the middle two x values. For example, the median of the values 1, 3, 6, 7, and 15 is
x = 6, while the median of 1, 3, 6, and 7 is 3%6 =4.5.

The median is sometimes preferable to the mean because it is a more typical
value. For example, for the values 3, 3, 3, 3, and 1000, the mean is 506, while the
median is 3.

In the population data, the median age for men and women is between 29 and 30.
This can be seen from an examination of the last column of Table (2.7.1). Contrast
this median age with the average age; thus for men,

2,117:1 [percentage men at age n] - [age [n]]

average age for men =
total percentage of men

= 32.17.

In a similar manner, the average age for women in this data set is about 35.5, and the
average age for the total population is about 33.8. The averages for these three sets of
data—male population age distribution, female population age distribution, and total
population age distribution—can be found with simple computer algebra commands
and agree with our paper-and-pen calculations.
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MaPLE
> Sum(’agelj]'tot[j]’,j=1..17)=sum(age[j]*tot[j],j=1..17);
> Sum(’'mcent[n]*age[n]’;n’=1..17)/Sum(’mcent[n]’;n’=1..17)
=sum(’mcent[n]*age[n]’;n’=1..17)/sum(’mcent[n]’/n’=1..17);
> with(describe): mean(pop); median(pop);

MarLaB
> xmid=[2.5:5:82.5];
> pop=xmid.*total; % term by term mult. = percentage weighted ranges
> muTotal=sum(pop)/100 % divide by 100 as data is in percent
> muM=sum(xmid.*mcent)/sum(mcent)
> muF=sum(xmid.*fcent)/sum(fcent)

Variance and standard deviation measure dispersion.

As mentioned above, a single number will not be able to capture all the information
in a histogram. The data set 60, 60, 60, 60 has a mean of 60, as does the data set 30,
0, 120, 90. If these data referred to possible speeds in miles per hour for a trip across
Nevada by bus for two different bus companies, then we might prefer our chances
with the first company. The variance of a data set measures how widely the data is
dispersed from the mean; for n values x1, x2, ..., x,, their variance v, or sometimes
o2, is defined as

I o
v = nZ(x, )2, (2.7.4)

i=1

where * is the mean as before.” Thus the speed variance for bus company 1 is 0 and
that for bus company 2 is

1
Z[(30 —60)% + (0 — 60)% + (120 — 60)° + (90 — 60)*] = 2,250.

As before, a more general equation for variance, one suitable for histograms, for
example, is the following:

v = Z (x — )E)2 - fraction of values equal to x. (2.7.5)
over possible
values x

A problem with variance is that it corresponds to squared data values, making
it hard to interpret its meaning in terms of the original data. If the data has units,
like miles per hour, then variance is in the square of those units. Closely related to
variance is standard deviation, denoted by o. Standard deviation is defined as the

square root of variance,

standard deviation = +/variance.

7 For data representing a sample drawn from some distribution, x is only an estimate of the
distribution’s mean, and for that reason, this definition of variance is a biased estimator
of the distribution’s variance. Divide by n — 1 in place of n for an unbiased estimator.
Our definition is, however, the maximum likelihood estimator of the variance for normal
distributions. Furthermore, this definition is consistent with the definition of variance for
probability distributions (see Section 2.8), and for that reason we prefer it.
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Standard deviation is a measure of the dispersion of data on the same scale as the data
itself. The standard deviation of bus speeds for company 2 is 47.4 miles per hour.
This is not saying that the average (unsigned) deviation of the data from the mean is
47.4 (for that would be % Y1 lxi — X| = 45), but this is, in spirit, what the standard
deviation measures. For the bus companies, we make these calculations:

MaPLE
> bus1:=[60,60,60,60]; bus2:=[30,0,120,90];
> range(bus1), range(bus?2);
> median(bus1), median(bus2);
> mean(bus1), mean(bus2);
> variance(bus1), variance(bus2);
> standarddeviation(bus1), standarddeviation(bus?2);

MarLaB
> bus1=[60 60 60 60]; bus2=[30 0 120 90];
> max(bus1), min(bus1)
> max(bus2), min(bus2)
> median(bus1), median(bus2)
> mean(bus1), mean(bus2)
> cov(bus1), cov(bus2)
> std(bus1), std(bus2)

We can perform similar calculations for the U.S. census data of Table 2.7.1. The
results are given in Table 2.7.2.

MaPrLE
> range(mpop), range(fpop), range(pop);
> median(mpop), median(fpop), median(pop);
> mean(mpop), mean(fpop), mean(pop);
> variance(mpop), variance(fpop), variance(pop);
> standarddeviation(mpop), standarddeviation(fpop),
> standarddeviation(pop);

MarLaB
> v=(xmid-muTotal)."2 % unweighted vector of deviations squared
> var=sum(v.*total)/100 % variance of total population
> sqrt(var) % std dev of the total population

Table 2.7.2. Summary for the U.S. age distribution

Standard
Range(Median|Mean |deviation

Male | 0-84 29 31.7 | 21.16
Female| 0-84 30 356 | 22.68
Total | 0-84 29 33.8 | 22.10

The normal distribution is everywhere.

It is well known that histograms are often bell-shaped. This is especially true in
the biological sciences. The mathematician Carl Friedrich Gauss discovered the
explanation for this, and it is now known as the central limit theorem (see Hogg and
Craig [6]).
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Central limit theorem. The accumulated result of many independent random out-
comes, in the limit, tends to a Gaussian, or normal, distribution given by
1,x—p

1
Gx) = > eI oo < x < 00,
o

where u and o are the mean and standard deviation of the distribution.

The normal distribution is a continuous distribution, meaning that its resolution
is infinitely fine; its histogram, given by G (x), is smooth (see Figure 2.7.3). The two
parameters mean p and standard deviation o completely determine the normal dis-
tribution. Likewise, even though a given histogram is not Gaussian, nevertheless its
description is often given in terms of just its mean and variance or standard deviation.

In Figure 2.7.3(a), we show three curves with the same mean but different standard
deviations. In Figure 2.7.3(b), the three curves have the same standard deviation but
different means.

MaPLE
> y:=(sigma,mu,x)—>exp(-(x-mu)"2/(2*sigma"2))/(sqrt(2*Pi)*sigma);
> plot({y(1,0,x),y(2,0,x),y(3,0,x)},x=-10..10);
> plot({y(1,-4,x),y(1,0,x),y(1,4,x)},x=-10..10);

MarLaB
% make up an m-file, gaussian.m:
% function y=gaussian(x,m,s);
%% m=mean, s=stddev
%% note 1/sqrt(2*pi)=.3989422803
% y=(.3989422803/s)*exp(-0.5*((x-m)./s)."2);
> x=[-10:.1:10];
> y=gaussian(x,0,1); plot(x,y);hold on;
> y=gaussian(x,0,2); plot(x,y);
> y=gaussian(x,0,4); plot(x,y);
> hold off
> y=gaussian(x,0,1); plot(x,y);hold on
> y=gaussian(x,-5,1); plot(x,y);
> y=gaussian(x,5,1); plot(x,y);

0.

(b) Various pu.



66

2 Some Mathematical Tools

Exercises

1.

In the February 1994 Epidemiology Report published by the Alabama Department
of Public Health, the data in Table 2.7.3 were provided as Age-Specific Mortality.
Make a histogram for these data. While the data are given over age ranges, get
a fit for the data so that one could predict the death rate for intermediate years.
Find the median, mean, and standard deviation for the data.

Table 2.7.3.

0-1 [1122.4|40-45| 287.8
1-5 55.1|45-50| 487.2

5-10f 27.5|50-55| 711.2
10-15| 33.4|55-60| 1116.9
15-20| 118.4|60-65| 1685.1
20-25| 139.6|65-70| 2435.5
25-30| 158.0{70-75| 3632.4
30-35| 196.4|75-80| 5300.0
35-40| 231.0{80-85| 8142.0
85+ [15279.0

MAPLE
> with(stats): with (plots): with(describe):
> Mort:=[1122.4, 55.1, 27.5, 33.4, 118.4, 139.6, 158.0, 196.4, 231.0, 287.8, 487.2, 711.2, 1116.9,
1685.1, 2435.5, 3632.4, 5300.0, 8142.0, 15278.0]:
> MortRate:=[seq(Mort[i]/100000,i=1..19)];
> ranges:=[seq(5%i..5*(i+1),i=1..17)];
> mortdata:=[Weight(0..1,MortRate[1]), Weight(1..5,4*MortRate[2]),
seq(Weight(rangesi],5*MortRate[2+i]), i=1..17)]:
> statplots[histogram](mortdata);

MaTLAB
> Mort=[1122.4, 55.1, 27.5, 33.4, 118.4, 139.6, 158.0, 196.4, 231.0, 287.8, 487.2, 711.2, 1116.9, ...
1685.1, 2435.5, 3632.4, 5300.0, 8142.0, 15278.0];
> MortRate=Mort/1000;
> x=[.5,2.5:5:87.5];
> bar(x,MortRate)
> x=x(2:19) % first point an outlier
> MortRate=MortRate(2:19) % ditto

(a) A polynomial fit:
MarLE
> xcord:=[seq(3+5%(i-1),i=1..18)];
> mortrate:=[seq(MortRate[i+1], i=1..18)];
> plot([seq([xcord[i],mortrate[i]],i=1..18)], style=POINT, symbol=CROSS);
> fit[leastsquare[[x,y],y=a+b*x+c*x"2+d*x"3]]([xcord,mortrate]);
> approx:=unapply(rhs(%),x);approx(30)*100000;
> plot(approx(x),x=0..90);

MarLaB
% cubic fit rate = d*x"3+c*x"2+b*x+a
> p=polyfit(x,MortRate,3) % use built-in polynomial fitter, third order
> y=polyval(p,x); % fit evaluated at the xs
> plot(x,MortRate,'x’); hold on
> plot(x,y)
% or use the general leastsquares model
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> MT=[x."3; x."2; x; ones(size(x))];
> cubic=MT"\MortRate’
> y=polyval(cubic,x); plot(x,y)

(b) An exponential fit:

MaAPLE

> Lnmortrate:=map(In,mortrate);

> fit[leastsquare[[x,y],y=m*x+b]]([xcord,Lnmortrate]);

> k:=op(1,0p(1,rhs(%))); A:=op(2,rhs(%%));

> expfit:=t—>exp(A)*exp(k*t); expfit(30)*100000;

> J:=plot(expfit(t),t=0..85):
K:=plot([seq([xcord[i],MortRate[i+1]],i=1..18)],style=POINT,symbol=CROSS):

> display({J,K});

MarLaB
% exponential fit log(MortRate)=a+b*x or MortRate=exp(a)*exp(bx)
> Lnmortrate=log(MortRate);
> MT=[ones(size(x)); x];
> expon=MT"\Lnmortrate’
> hold off
> plot(x,MortRate,'x’); hold on
> plot(x,exp(expon(1))“exp(expon(2)*x))

(c) Alinear spline for the data (see the discussion in this section):

MaprLE
> readlib(spline):
> linefit:=spline(xcord,mortrate,x,linear):
> y:=unapply(linefit.x): y(30)*100000;
> J:=plot(y(t), t=0..85):
> display({J,K});

MarLaB

% linear spline fit = straight line between points, usual MatLAB method
> hold off
> plot(x,MortRate,x,MortRate, x’)

Give the range, median, mean, and standard deviation of the mortality rates.
Note that the first entry is applicable to humans in an age group of width one
year and the second is in a group of width four years. Each of the others
applies to spans of five years. Thus we set up a weighted sum:

MaprLE
> summary:=[Weight(Mort[1],1),Weight(Mort[2],4),seq(Weight(Mort[i],5),i=3..19)];
> range(summary); median(summary); mean(summary);
> standarddeviation(summary);

MarLaB
% to interpolate any desired value, use interp1, e.g., rate=interp1(x,MortRate,70)
% interpolated value at x=70
% mean, median, and standard deviation (of Mortality weighted by age)
> size(Mort)
> wt=[1,4,5"ones(1,17)]
> wtSum = Mort*wt’ % dot product
> mu=wtSum/sum(wt)
> median(Mort) % picks out the middle value, no duplicates here
> v=(Mort-mu)."2; % vector of squared differences
> var=sum(v.*wt)/sum(wt);
> std=sqrt(var)

2. What follows in Table 2.7.4 are data for the heights of a group of males. De-
termine a histogram for these data. Find the range, median, mean, and standard
deviation for the data. Give a normal distribution with the same mean and stan-
dard deviation as the data. Plot the data and the distribution on the same graph.
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Table 2.7.4.
Number of students| 2 1 2 71014 7 5 2 1
Height (in) 66 67 68 69 70 71 72 73 74 75

MAPLE

> with(stats): with(plots): with(describe):

> htinches:=[seq(60+i,i=1..15)];

> numMales:=[0,0,0,0,0,2,1,2,7,10,14,7,5,2,1];

> ranges:=[seq(htinchesi]..htinches[i]+1, i=1..15)];

> maledata:=[seq(Weight(ranges[i],numMales][i]), i=1..15)];

> statplots[histogram](maledata);

> range(maledata); median(maledata); mean(maledata); standarddeviation(maledata);
# note the use of back quotes in the next for formatted printing

> ‘The average height is’,floor(%%/12), ‘feet and’,floor(frac(%%%/12)*12), ‘inches’;

> ‘The standard deviation is’,floor(frac(%%%/12)*12), ‘inches’;

MaTLAB

> htinches=61:75;

> numMales=[0,0,0,0,0,2,1,2,7,10,14,7,5,2,1];

> bar(htinches,numMales)

> min(htinches)

> max(htinches) % range = from min to max

> unrolled=[]; % dup. each height by its #cases

> s=size(htinches);

> for k=1:5(2)

> j=numMales(k);

> while j>0

> unrolled=[unrolled, htinches(k)];

> =

> end

>end

> median(unrolled)

> mu=mean(unrolled+.5) % e.g., height 66 counts as 66.5
% alternatively

> mu=dot((htinches+.5),numMales)/sum(numMales)

> v=(htinches+.5-mu)."2;

> var=sum(v.*numMales)/sum(numMales)

> std=sqrt(var)

In what follows, we give anormal distribution that has the same mean and standard
deviation as the height data:

MAPLE
> mu:=mean(maledata);
> sigma:=standarddeviation(maledata);
> ND:=x—>exp(-(Xx-mu)"2/(2*sigma"2))/(sigma*sqrt(2*Pi));
> J:=plot(mu*ND(x),x=60..76):
> K:=statplots[histogram](maledata):
> plots[display]({J,K});

MarLAB
> x=60:.1:76;
> y=exp(-((x-mu)/std)."2/2)/(std*sqrt(2*pi));
> bar(htinches,numMales/sum(numMales))
> hold on; plot(x,y)

To the extent that the graph K is an approximation for the graph J, the heights
are normally distributed about the mean.
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3. Table 2.7.5 contains population data estimates for the United States (in thousands)
as published by the U.S. Bureau of the Census, Population Division, release PPL-
21 (1995).

Table 2.7.5.

Five-year Five-year
age groups| 1990 | 1995 |age groups| 1990 | 1995
0-5 18,849(19,662| 50-55 11,368(13,525
5-10 [18,062{19,081| 55-60 [10,473|11,020
10-15 |17,189|18,863| 60-65 [10,619(10,065
15-20 |17,749|17,883| 65-70 [10,077| 9,929
20-25 [19,133]18,043| 70-75 8,022| 8,816
25-30 |21,232{18,990| 75-80 6,145| 6,637
30-35 |21,907|22,012| 80-85 3,934| 4,424
35-40 [19,975|22,166| 85-90 2,049 2,300

40-45 |17,790|20,072| 90-95 764 982
45-50 [13,820(17,190| 95-100 207 257
100+ 37 52

Find the median and mean ages. Estimate the number of people at ages 21, 22,
23,24, and 25 in 1990 and in 1995. Make a histogram for the percentages of the
population in each age category for both population estimates.

4. In (2.7.3), we stated that the mean u is defined as

w= Z x - f(x),

all possible xs

where f(x) is the fraction of all values that are equal to x. If these values are
spread continuously over all numbers, i can be conceived as an integral. In this
sense, this integral of the normal distribution given by (2.7.3) yields

ot (2))
= x——exp|—= X.
o —o 02T P72 o

In a similar manner,

SN PN U | 1 x—p)’
o _/_Oo(x Ww) Umexp( 2( > >)dx.

Here is a way to evaluate the integrals:

MaPLE
> sigma:='sigma’: mu=mu’:
> fi=x—>exp(-(x-mu)"2/(2*sigma"2))/(sigma*sqrt(2*Pi));
> assume(sigma > 0);
> int(x*f(x),x=-infinity..infinity);
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> int((x-mu)"2*f(x),x=-infinity..infinity);

MaTLAB
% to integrate with MaTLAB one can use trapz(x,y) on x and y vectors or use Simpson’s rule, quad(), ...
% but this requires an m-file.
% Here we will use the trapzoidal rule.
> x=linspace(-3,3); % simulates -infinity to +infinity here
> y=exp(-X."2/2)/sqrt(2*pi);
> trapz(x,y) % approximately 1

2.8 Probability

The biosphere is a complicated place. One complication is its unpredictable events,
such as when a tree will fall or exactly what the genome of an offspring will be. Prob-
ability theory deals with unpredictable events by making predictions in the form of
relative frequency of outcomes. Histograms portray the distribution of these relative
frequencies and serve to characterize the underlying phenomenon.

Statistics deals with the construction and subsequent analysis of histograms
retroactively, that is, from observed data. Probability deals with the prediction of
histograms by calculation. In this regard, important properties to look for in calcu-
lating probabilities are independence, disjointness, and equal likelihood.

Probabilities and their distributions.

Probability theory applies mathematical principles to random phenomena in order
to make precise statements and accurate predictions about seemingly unpredictable
events. The probability of an event E, written Pr(E), is the fraction of times E
occurs in an infinitely long sequence of trials. (Defining probability is difficult to do
without being circular and without requiring experimentation. A definition requiring
the outcome of infinitely many trials is obviously undesirable. The situation is similar
to that in geometry, where the term “point” is necessarily left undefined; despite this,
geometry has enjoyed great success.) For example, let an “experiment” consist in
rolling a single die for which each of the six faces has equal chance of landing facing
up. Take event E to mean a 3 or a 5 lands facing up. Evidently, the probability of E
is then %, Pr(E) = %, that is, rolling a 3 or 5 will happen approximately one-third of
the time in a large number of rolls.

More generally, by an event E in a probabilistic experiment, we mean some des-
ignated set of outcomes of the experiment. The number of outcomes, or cardinality,
of E is denoted by |E|. The set of all possible outcomes of an experiment is its
universe, and is denoted by U. Here are some fundamental laws.

Principle of universality. One of the possible outcomes of an experiment will occur
with certainty:
Pr(U) = 1. (2.8.1)

Principle of disjoint events. If events E and F are disjoint, EN F = (J, that is, they
have no outcomes in common, then the probability that £ or F' will occur (sometimes
written £ U F) is the sum
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Pr(E or F) = Pr(E) + Pr(F). (2.8.2)

Principle of equal likelihood. Suppose each outcome in U has the same chance of
occurring, i.e., is equally likely. Then the probability of an event E is the ratio of the
number of outcomes making up E to the total number of outcomes,

Pr(E) = @ (2.8.3)
Ul

To illustrate, consider the experiment of rolling a pair of dice, one red and one
green. Any one of six numbers can come up on each die equally likely, so the total
number of possibilities is 36; the first possibility could be 1 on red and 1 on green,
the second: 1 onred and 2 on green and so on. In this scheme, the last would be 6 on
red and 6 on green. So |U| = 36. There are two ways toroll an 11, a 5 on red and 6
on green or the other way around. So letting E be the event that an 11 is rolled, we
have Pr(E) = % = %. Let S be the event that a 7 is rolled; this can happen in six
different ways, so Pr(S) = % = %. Now the probability that a 7 or 11 is rolled is

their sum
246 2
36 9

Since probabilities are frequencies of occurrence, they share properties with sta-
tistical distributions. Probability distributions can be visualized by histograms and
their mean and variance calculated. For example, let the variable X denote the out-
come of the roll of a pair of dice. Table 2.8.1 gives the possible outcomes of X along
with their probabilities. Figure 2.8.1 graphically portrays the table as a histogram.
Just as in the previous section, the rectangle on x represents the fraction of times a
dice roll will be x.

Pr(SUE) =Pr(S) +Pr(E) =

Table 2.8.1. Probabilities for a dice roll.
Roll 23 45 6 7 8 91011 12

1 1 2 3 4 5 6 5 4 3 2 1
Probability| 3¢ 55 35 36 35 36 36 36 36 36 36

MapLE
> with(stats): with(plots): with(describe):
> roll:=[seq(n,n=2..12)];
> prob:=[1/36,2/36,3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36];
> wtroll:=[seq(Weight(roll[i]-1/2..roll[i]+1/2, probli]),i=1..11)];
> statplots[histogram](wtroll);

MarLaB
> roll=ones(1,11);
> roll=cumsum(roll);
> roll=roll+1;
>prob=[12345654321]/36;
> bar(roll,prob)

Equation (2.7.3) can be used to calculate the mean value X of the random variable
X, also known as its expected value, E(X),
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0.16
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Fig. 2.8.1. Histogram for Table 2.8.1.

X = Z x - Pr(X = x). (2.8.4)

over all possible
values x of X

From Table 2.8.1,

E(X)=2 1+3 +4 5 +5 4 +6 > +7 0
736 36 36 36 36 36
+85+94+103+11 2+12 l—7
36 36 36 36 36

MaPLE
> Sum(’roll[i]*probli]’;i’=1..11)=sum(roll[i]*prob[il’,i=1..11);

MarLaB
> weightedRoll=prob.*roll;

Similarly, the variance is defined as

VX)=EX-X)P?= Y (x-X)7 Pr(X=r). (2.8.5)

over all possible
values x of X

For a dice roll,
1

_ 72
ViX)y=@2-17) 36

2 3 4

3 -7+ @G -1=+5-7*—

+( )36+( )36+( )36
+ (6 7)25+(7 7)26+(8 7)25+(9 7)24
36 36 36 36
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3 2 1 35
0-—72=—+Ul ==+ (12=-7)>— = —.
+( )36+( )36+( )36 6

MaPLE
> Sum(’(roll[i]-7)"2*probli]’,i’=1..11)=sum(’(roll[i]-7)"2*probl[i]’,i’'=1..11);
> mean(wtroll);variance(wtroll);

MarLaB
> m=sum(weightedRoll)
> v=(roll-m)."2;

% sum of squared deviations
> var=sum(v.*prob)

Probability calculations can be simplified by decomposition and independence.

Consider the experiment of tossing a fair coin in the air four times and observing the
side landing up. Suppose we want to calculate the probability that heads will come
up three of the four times. This grand experiment consists of four subexperiments,
namely, the four individual coin tosses. Decomposing a probability experiment into
subexperiments can often simplify making probability calculations. This is especially
true if the subexperiments, and therefore their events, are independent. Two events
E and F are independent when the fact that one of them has or has not occurred has
no bearing on the other.

Principle of independence. If two events E and F' are independent, then the prob-
ability that both will occur is the product of their individual probabilities,

Pr(E and F) = Pr(E) - Pr(F).

One way three heads in four tosses can occur is by getting a head on the first
three tosses and a tail on the last one; we will denote this by H H HT . Since the four
tosses are independent, to calculate the probability of this outcome, we just multiply
the individual probabilities of an H the first time, an H the second and also the third,
and on the fourth, a 7'; each of these has probability %; hence

Nt 1
Pr(HHHT)=|=-) = —.
(5) =7
There are three other ways that three of the four tosses will be H; they are HHT H,
HTHH,and T HH H. Each of these is also 11_6 probable; therefore, by the principle
of disjoint events,

1 1
Pr(three heads out of four tosses) = 4 - =1

Permutations and combinations are at the core of probability calculations.

The previous example raises a question: By direct enumeration, we found that there
are four ways to get three heads (or, equivalently, one tail) in four tosses of a coin,
but how can we conveniently calculate, for example, the number of ways to get eight
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heads in 14 coin tosses or, in general, k heads in n coin tosses? This is the problem
of counting combinations.

To answer, consider the following experiment: Place balls labeled 1, 2, and so
on to n in a hat and select k of them at random to decide where to place the Hs. For
instance, if » = 4 and k = 3, the selected balls might be 3, then 4, then 1, signifying
the sequence HT HH.

As a subquestion, in how many ways can balls 1, 3, and 4 be selected—this is the
problem of counting permutations, the various ways to order a set of objects. Actu-
ally, there are six permutations here; they are (1, 3,4), (1,4, 3), (3, 1,4), (3,4, 1),
(4,1, 3), and (4, 3, 1). The reasoning goes like this: There are three choices for the
first ball from the possibilities 1, 3, 4. This choice having been made, there are two
remaining choices for the second, and finally, only one possibility for the last. Hence
the number of permutations of three objects =3 -2 -1 = 6.

MaPLE
> with(combinat):
> permute([1,3,4]);
> numbperm(3);

More generally, the number of permutations of n objects is
number of permutations of n objects =n-(n —1)-(n —2)---2-1 =n!.

As indicated, this product is written n! and called n factorial.
So, in similar fashion, the number of ways to select k balls from a hat holding n
balls is
n-m—1)-n—2)----- n—k+1).

As we said above, the labels on the selected balls signify when the heads occur in the
n tosses. But each such choice has k! permutations, all of which also give k heads.
Therefore, the number of ways of getting k heads in n tosses is

nn—1)n-2)---(n—k+1)
k(k—1)---2-1

(2.8.6)

MapLE
> with(combinat):
> numbcomb(6,3);
> binomial(6,3);
The value calculated by (2.8.6) is known as the number of combinations of n objects
taken k at a time. This ratio occurs so frequently that there is a shorthand notation
forit, (7), or sometimes C (n, k), called n choose k. An alternative form of (}) is

(n)_n(n—l)-~(n—k+1)_ n!
k) kk—=1---2-1  kln—=k!

(2.8.7)

where the third member follows from the second by multiplying numerator and de-
nominator by (n — k)!.

Some elementary facts about n choose k follow. For consistency in these formulas,
zero factorial is defined to be 1,
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=1

The first three combination numbers are

RNGEGES

There is a symmetry:

" = " forallk =0,1,...,n.
k n—=k

These numbers n choose k occur in the binomial theorem, which states that for any
pandg,

k
k=0

> <n>pkan =(p+q". (2.8.8)

Finally, the probability of realizing k heads in n tosses of a fair coin is, denoting

itby H,(k),
n 1\"
H,(k) = (k) (5) , k=0,1,...,n. (2.8.9)

The distribution H,, (k) is shown in Figure 2.8.2 for n = 60. If the coin is not fair, say
the probability of a heads is p and that of a tails is ¢ = 1 — p, then H, (k) becomes

Hn(k)=<’]:)pkq”k, k=0.1,....n (2.8.10)
0.1}
0.081
0.061
0.041
0.02}
AU,
00 01 02 03x 04 05 06

Fig. 2.8.2.
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Continuous variations require continuous distributions.

In Figure 2.8.2, we show the heads distribution histogram Hgg (k) for 60 coin tosses.
Notice that the distribution takes on the characteristic bell shape of the Gaussian
distribution, as predicted by the central limit theorem, discussed in the previous
section:

Lex—py2
e_f( )

Gx) =

—00 < X < 00, (2.8.11)

V2no

where @ and o are the mean and standard deviation. In the figure, we have su-
perimposed the Gaussian distribution on top of the histogram. In order to get the
approximation right, we must match the means and variances of the two distribu-
tions. The mean of H,, (k) for a biased coin, (2.8.10), is given by8

w =np. (2.8.12)
And the variance of H,, (k) is (see [8])
vV =npq. (2.8.13)

With p = ¢ = 1 and n = 60, we get & = 30 and 0% = 15.

MapLE
> n:=60;
> flip:=[seq(binomial(n,i)*(1/2)"i*(1-1/2)"(n-i),i=0..n)]:
> wiflip:=[seq(Weight(i-1,flip[i]),i=1..n+1)]:
> with(stats); with(describe):
> mu:=evalf(mean(witflip)); sigma:=standarddeviation(wtflip);
> sigma“2;

MarLaB

% use the previous m-file, gaussian.m:

% function y=gaussian(x,m,s);

% m=mean, s=stddev

% note 1/sqrt(2*pi)=.3989422803

% y=(.3989422803/s)*exp(-0.5*((x-m)./s)."2);
> x=[-10:.1:10];
> y=gaussian(x,30,sqrt(15)); plot(x,y)

Hence Figure 2.8.2 shows the graph of

G(x) ! _jas?
X)) = ———e 5.
V215 -7

MarLE
> G:=x—>exp(-(x-mu)"2/(2*sigma"2))/(sigma*sqrt(2*Pi));
> J:=plot(G(x),x=0..n):
> K:=statplots[histogram](wtflip):
> plots[display]({J,K});

8 Using the fact that k(?) = n(%~1) and the binomial theorem, we have

n
n _
="y k<k>pkq" b=
k=0

n—1

n—1 _
Zn< . >pr+1qn " = np.

r=0
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The normal or Gaussian distribution is an example of a continuous distribution. Any
nonnegative function f(x) > 0 with total integral 1,

/Oo fx)dx =1,

can define a probability distribution. The condition that the total integral be 1 is
dictated by the universality principle, equation (2.8.1). In this role, such a function
f is called a probability density function. Probabilities are given as integrals of f.
For example, let X denote the outcome of the probabilistic experiment governed by
f; then the probability that X lies between 3 and 5, say, is exactly

5
Pr3<X <5 = / f(x)dx.
3

Similarly, the probability that an outcome will lie in a very small interval of width dx
at the point x is’

Pr(X falls in an interval of width dx at x) = f(x)dx. (2.8.14)

This shows that outcomes are more likely to occur where f is large and less likely to
occur where f is small.
The simplest continuous distribution is the uniform distribution,

u(x) = constant.

Evidently, for an experiment governed by the uniform distribution, an outcome is
just as likely to be at one place as another. For example, butterflies fly in a kind of
random flight path that confounds their predators. As a first approximation, we might
hypothesize that a butterfly makes its new direction somewhere within 45 degrees of
its present heading uniformly. Let ® denote the butterfly’s directional change; ® is
governed by the uniform probability law

tant if —45 < © < 45,
u(©) = {Cons ant =°= (2.8.15)

0 otherwise.

By the universality principle,

45
/ u(®)doe =1;

—45
therefore the constant must be 9]—0 in (2.8.15).

9 This equation is interpreted in the same spirit as the concept “velocity ata point” in dynamics,
which is the ratio of infinitesimals %
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Exercises

1.

An undergraduate student in mathematics wants to apply to three of six graduate
programs in mathematical biology. She will make a list of three programs in
the order of her preferences. Since the order is important, this is a problem of
permutations. How many such choices can she make?

MAPLE
> restart;
> with(combinat):
#list the permutations and count
> permute([a,b,c,d,e,f],3);nops(%);
#calculate directly
> numbperm(6,3);
#use the formula
> 6/3;

MaTLAB
% No built-in combinatorics in MarLas but it is easy to do factorials and hence permutations and
% combination calculations
% permutations of six things taken three at a time
>n6=1:6; n3=1:3;
> perm6t3=prod(n6)/prod(n3)

The student must send a list of three references to any school to which she applies.
There are six professors who know her abilities well, of whom she must choose
three. Since the order is not important, this is a problem of combinations. How
many such lists can she make?

MapLE
> with(combinat):
> choose([a,b,c,d,e,f],3);nops(%);

> numbcomb(6,3);
> 6/(3!*(6-3)!);

MaTLAB
% combinations of six things taken three at a time
> comb6t3=perm6t3/prod(n3)

Five patients need heart transplants and three hearts for transplant surgery are
available. How many ways are there to make a list of recipients? How many
ways are there to make a list of the two of the five who must wait for further
donors? (The answer to the previous two questions should be the same.) How
many lists can be made for the possible recipients in the order in which the surgery
will be performed?
MapLE
> with(combinat):

> numbcomb(5,3); numbcomb(5,2);
> numbperm(5,3);

MaTLAB

% combinations of five things taken two at a time
> comb5t2=prod(1:5)/(prod(1:2)*prod(1:3))
> comb5t3=prod(1:5)/(prod(1:3)*prod(1:2))
> perm5t3=prod(1:5)/prod(1:2)

Choose an integer in the interval [1, 6]. If a single die is thrown 300 times, one
would expect to get the number chosen about 50 times. Do this experiment and
record how often each face of the die appears.
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MAPLE

> with(stats): with(describe):

> die:=rand(1..6);

> for i from 1 to 6 do
count[i]:=0
od:

> for i from 1 to 300 do
n:=die():
count[n]:=count[n]+1:
od:

> for i from 1 to 6 do
print(count]i]);
od;

> Q="

MaTLAB
% rand(1,300) is a random vector with components between 0 and up to but not including 1; then 6
% times this gives numbers from 0 up to 6; add 1 and get numbers 1 up to 7; finally, fix() truncates
% the fractional part

> die=fix(6*rand(1,300)+1);
% now count the number of 3s

> count3s=1./(die-3); % gives infinity at every 3

> count3s=isinf(count3s); % 1 for infinity, 0 otherwise

> number3s=sum(count3s)

Simulate throwing a pair of dice for 360 times using a random number generator
and complete Table 2.8.2 using the sums of the top faces.

Table 2.8.2.
Sums|Predicted Simulated
2 10
3 20
4 30
5 40
6 50
7 60
8 50
9 40
10 30
11 20
12 10

Calculate the mean and standard deviation for your sample using the appropriate
equations of Section 2.7 and compare this with the outcome probabilities. Draw
a histogram for the simulated throws on the same graph as the normal distribution
defined by (2.8.11); use the mean and the standard deviation you just calculated.
The following syntax may help:

MAPLE
> with(stats): with(describe):
> red:=rand(1..6):
blue:=rand(1..6):
> for i from 2 to 12 do
count[i]:=0:
od:
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> for i from 1 to 360 do
n:=red()+blue():
count[n]:=count[n]+1;
od:
> for i from 2 to 12 do
print(count(i]);
od;
> inter:=seq(n-1/2..n+1/2,n=2..12);
> throws:=[seq(Weight(inter[i-1],count[i]),i=2..12)];
> mean(throws)=evalf(mean(throws));
> standarddeviation(throws)=evalf(standarddeviation(throws));
> theory:=[Weight(inter{1],10), Weight(inter[2],20), Weight(inter[3],30), Weight(inter{4],40),
Weight(inter[5],50), Weight(inter[6],60), Weight(inter[7],50), Weight(inter[8],40),
Weight(inter[9],30), Weight(inter[10],20), Weight(inter[11],10)];
> mu:=mean(theory);
> sigma:=standarddeviation(theory);evalf(sigma);
> y:=x—>360"exp(-(x-mu)"2/(2*sigma"2))/(sigma*sqrt(2*Pi));
> J:=statplots[histogram](throws):
> K:=plot([x,y(x),x=0..14]):
> plots[display]({J,K});

MaTLAB
> red=fix(6*rand(1,360)+1);
> blue=fix(6*rand(1,360)+1);
> pairDice=red+blue;
> x=2:12;
> hist(pairDice,x)
> hold on
> h=hist(pairDice,x)
> mu=dot(x,h)/sum(h)
% weight each int by its fraction of outcomes, add
> v=(x-mu)."2; % vector of diffs squared
> var = dot(v,h)/sum(h); % variance
> sigma=sqrt(var)
> t=linspace(2,12);
> y=360*exp(-(t-mu)."2/(2*sigma"2))/(sigma*sqrt(2*pi));
> plot(t,y)
% the theoretical probability for seeing 2 is 1/36, same for 12, for seeing 3 is 2/36, same for 11, etc.,
% for seeing 7 is 6/36.
% compare with h above
> theory=[10 20 30 40 50 60 50 40 30 20 10J;
> mu=dot(x,theory)/sum(theory)
> v=(x-mu)."2;var=dot(v,theory)/sum(theory);
> sigma=sqrt(var)
> y=360*exp(-(t-mu)."2/(2*sigma"2))/(sigma*sqrt(2*pi));
> hold off
> plot(t,y); hold on
> hist(pairDice,x)

5. This exercise is a study of independent events. Suppose a couple’s genetic
makeup makes the probability that a child they conceive will have brown eyes
equal to %. Assume that the eye color for two children is a pair of independent
events.

(a) What is the probability that the couple will have two blue-eyed children?
One blue-eyed and one brown-eyed? Two brown-eyed children? What is

the sum of these probabilities?
MapLE

> binomial(2,0)*1/4*1/4;

> binomial(2,1)*3/4*1/4;

> binomial(2,2)*3/4*3/4;

> sum(binomial(2,j)*(3/4) *(1/4)"(2)),j=0..2);

MarLaB
% #ways for two blue eyed is C(2,2)
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% (2 choose 2)=2!/(2!*0!) so the probability is that times (1/4)"2, etc.
> blublu=prod(1:2)/(prod(1:2)*1)*(1/4)"2 % blu/blu children
> Bwnblu=prod(1:2)/(prod(1:1)*prod(1:1))*(3/4)*(1/4) % Bwn/Blu
> BwnBwn=prod(1:2)/(1*prod(1:2))*(3/4)"2 % Bwn/Bwn children
> blublu+Bwnblu+BwnBwn

(b) Suppose that the couple have five children. What is the probability that

among the five, exactly two will have brown eyes?

MaprLE
> binomial(5,2)*(3/4)"2*(1/4)"3;

MarLaB
% exactly two are brown eyed is (5 choose 2)*(3/4)"2*(1/4)"3
> exact2=prod(1:5)/(prod(1:2)*prod(1:3))*(3/4)"2*(1/4)"3

(c) What is the probability that among the five children, there are at least two
with brown eyes?

MarLE
> sum(binomial(5,j)*(3/4)"j*(1/4)"(5-)),j=2..5);

MarLaB
> exact3=prod(1:5)/(prod(1:3)*prod(1:2))*(3/4)"3*(1/4)"2
> exactd=prod(1:5)/(prod(1:4)*prod(1:1))*(3/4)"4*(1/4)™1
> exactb5=prod(1:5)/(prod(1:5)*1)*(3/4)"5
> atleast2=exact2+exact3+exact4+exactd
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Reproduction and the Drive for Survival

Introduction

This chapter is an introduction to cell structure and biological reproduction and the
effects that these have on the survival of species according to the Darwinian model
of evolution. The Darwinian model of evolution postulates that all living systems
must compete for resources that are too limited to sustain all the organisms that are
born. Those organisms possessing properties that are best suited to the environment
can survive and may pass the favored properties to their offspring.

A system is said to be alive if it has certain properties. These life properties,
e.g., metabolism, reproduction, and response to stimuli, interact with each other, and
indeed, the interactions themselves must be part of the list of life properties.

Cells contain organelles, which are subcellular inclusions dedicated to performing
specific tasks such as photosynthesis and protein synthesis. Membranes are organelles
that are components of other organelles and are functional in their own right—they
regulate material transport into and out of cells. Prokaryotic organisms (bacteria
and blue-green algae) lack most organelles. Eukaryotic organisms (protozoa, fungi,
plants, and animals) have cells with a wide range of organelles.

A cell’s genetic information is contained along the length of certain organelles
called chromosomes. In asexual reproduction, genetic material of one cell is exactly
replicated and the identical copies are partitioned among two daughter cells. Thus
the daughter cells end up with genetic information identical to that of the parent
cell, a decided advantage if the environment is one in which the parent cell thrived.
In multicellular organisms, certain genes may be “turned off”” in mitosis; the result
will be cells with different behaviors, which leads to the various tissues found in
multicellular organisms. Genetic information is not lost in this way; it is merely
inactivated, often reversibly. Mitosis also decreases the surface-to-volume ratio of
cells, which allows the cell to take up food and release waste more easily.

Sexual reproduction, the combining of genetic information from two parents into
one or more offspring, leads to variations among the offspring. This is achieved by the
production of novel combinations of genetic information and by complex interactions
between genetic materials affecting the same property. The result is the possibility

R.W. Shonkwiler and J. Herod, Mathematical Biology: An Introduction with Maple 85
and Matlab, Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-70984-0 3,
© Springer Science + Business Media, LLC 2009
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for immense variation, which is one of the empirical observations at the heart of the
Darwinian model.

Left unchecked, populations would grow exponentially, but factors in the envi-
ronment always control the sizes of populations.

3.1 The Darwinian Model of Evolution

We introduce the Darwinian model of evolution, a model that ties all biology together.
Finite resources of all kinds place limits on the reproduction and growth of organisms.
All must compete for these resources and most will not get enough. Those that survive
may pass their favorable properties to their offspring.

The diversity of organisms is represented by taxonomic categories.

A group of organisms is said to represent a species if there is real or potential exchange
of genetic material among its members and they are reproductively isolated from all
other such groups. Thus members of a single species are capable of interbreeding
and producing fertile offspring. By inference, if individuals are very similar but
reproductively isolated from one another, they are in different species. The definition
above makes good sense in most cases: Horses and cows, different species, live in
the same area but never mate; horses and donkeys, different species, may live in the
same area and interbreed, but their offspring are sterile mules; lions and tigers, also
different species, do not live in the same area, but have interbred in zoos to give
sterile offspring. The definition also produces some odd results: St. Bernard dogs
and chihuahuas would be in different species by the reproductive-isolation criterion,
although both might be in the same species as, say, a fox terrier. English sparrows
in the United States and in England would have to be put into different species, even
though they are essentially identical. There are other, somewhat different definitions
of species. For an in-depth discussion, see [5].

A group of species is a genus and a group of genera is a family. Higher levels
are orders, classes, phyla (called divisions in plants), and kingdoms. To identify an
organism, its generic and specific names are usually given in the following format:
Homo sapiens (humans) or Acer rubrum (red maple trees).

Living systems operate under a set of powerful constraints.

1. Available space is finite. Some organisms can survive a few kilometers into
the air or under water and others live a few meters under the ground, but that
does not change the basic premise: Our planet is a sphere of fixed surface area
and everything alive must share that area for all its needs, including nutrient
procurement and waste disposal.

2. The temperature range for life is very restricted. Most living systems cannot
function if their internal temperature is outside a range of about 0° to 50°C,
the lower limitation being imposed by the destructive effect of ice crystals on
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cell membranes, and the upper limit being imposed by heat inactivation of large
molecules. Some organisms can extend this range a bit with special mechanisms,
e.g., antifreeze-like substances in their bodies, but this temperature limitation is
generally not too flexible.

3. Energetic resources are limited. The only energy sources originating on earth
are geothermal, radioactive, and that which is available in some inorganic com-
pounds. Some organisms, said to be chemoautotrophic, can use the latter com-
pounds, but these organisms are exceptional. By far, the majority of the en-
ergy available for life comes from the sun. While the sun’s energy is virtu-
ally inexhaustible, it tends not to accumulate in any long-term biological form
on earth. This limitation lies in an empirical observation—the second law of
thermodynamics—that energy becomes less useful as it undergoes transforma-
tion from one form to another. The transformations that solar energy undergoes
are described by a food chain: the sun’s energy is captured and used by photo-
synthetic plants, which are eaten by herbivores, which are eaten by carnivores,
which die and are broken down by decomposing organisms. At each step, much
of the useful energy is lost irreversibly to the immediate creation of disorder
and/or to heat, which radiates away and creates disorder elsewhere. Thus the
sun’s radiant energy does not accumulate in living systems for longer than a sin-
gle organism’s lifetime, and must be constantly replenished. (See Yeargers [1]
for further discussion.)

4. Physical resources are finite. Obviously, there is more mass to the inorganic world
than to the organic one. The problem is that most of the earth’s nonorganic mass
is not available to the organisms that inhabit the earth’s surface. For example,
only tiny fractions of our planet’s inventory of such critical materials as carbon,
oxygen, and nitrogen are actually available to life. The rest is either underground
or tied up in the form of compounds not chemically accessible to life.

The Darwinian model of evolution correlates biological diversity and the survival of
species.

The four constraints listed above would not be so serious if living organisms were
different from what they are. We might picture a world in which every organism was
nonreproducing, had a constant size, and was immortal. Perhaps the organisms would
be photosynthetic and would have unlimited supplies of oxygen, carbon dioxide,
nitrogen, and other important inorganic substances. They would have infinite sinks
for waste materials or would produce little waste in the first place.

The biological world just described is, of course, just the opposite of the real
one, where there is rapid reproduction and a resultant competition for space and
resources. Charles Darwin formulated a model to describe the nature and effect of
this competition on living systems. This model may be presented as two empirical
observations and two conclusions.
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Observation 1. More organisms are born than can survive to reproductive maturity.

The high death toll among the young, from primitive plants to humans, is plain
to see. There simply are not enough resources or space to go around, and the young
are among the first to be affected.

Observation 2. All organisms exhibit innate variability.

While we are easily able to spot differences between humans or even other mam-
mals, it is not easy for us to identify differences between members of a group of
daffodils or coral snakes. The differences are there nonetheless, and if we observe
the plants and snakes carefully, we will see that, because of the differences, some will
thrive and others will not.

Conclusion 1. The only organisms that will survive and reproduce are those whose
individual innate variations make them well suited to the environment.

Note the importance of context here: an organism suited to one environment may
be totally unsuited to another. Note also the importance of reproduction; it is not
enough to live—one must pass one’s genes to subsequent generations. The ability to
produce fertile offspring is called fitness. This combines the ability to attract a mate
with the fertility of offspring. If Tarzan were sterile, he would have zero fitness in
spite of mate attraction.

Conclusion 2. Properties favored by selection can be passed on to offspring.

Selection winnows out the unfit, i.e., those individuals whose innate properties
make them less competitive in a given environmental context. The survivors can pass
on favored characteristics to their progeny.

Reproductive isolation can generate new species.

Suppose that a population, or large, freely interbreeding group, of a species becomes
divided in half, such that members of one half can no longer breed with the other
half. Genetic mutations and selection in one half may be independent of that in
the other half, leading to a divergence of properties between the two halves. After
enough time passes, the two groups may accumulate enough differences to become
different species, as defined in the previous section. This is the usual method for
species creation (see also Section 15.1). An example is found at the Grand Canyon;
the squirrels at the north and south rims of the canyon have evolved into different
species by virtue of their geographical separation.

The idea of reproductive isolation may suggest geographical separation, but many
other forms of separation will work as well. For example, one part of the population
may mate at night and the other during the day, even if they occupy the same geo-
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graphical area. As a second example, we return to dogs: St. Bernards and chihuahuas
are reproductively isolated from each other.

3.2 Cells

A cell is not just a bag of sap. It is a mass of convoluted membranes that separate the
inside of a cell from the outside world. These membranes also form internal structures
that perform specialized tasks in support of the entire cell. Certain primitive cells,
e.g., bacteria and some algae, have not developed most of these internal structures.

Organelles are cellular inclusions that perform particular tasks.

A cell is not a bag of homogeneous material. High-resolution electron microscopy
shows that the interiors of cells contain numerous simple and complex structures,
each functionally dedicated to one or more of the tasks that a cell needs carried out.
The cell is thus analogous to a society, each different organelle contributing to the
welfare of the whole. The sizes of organelles can range from about one-thousandth
of a cell diameter to half a cell diameter, and the number of each kind can range from
one to many thousands. The kinds of organelles that cells contain provide the basis
for one of the most fundamental taxonomic dichotomies in biology: prokaryotes vs.
eukaryotes.

Eukaryotes have many well-defined organelles and an extensive membrane system.

The group called the eukaryotes' include virtually all the kinds of organisms in our
everyday world. Mammals, fish, worms, sponges, amoebas, trees, fungi, and most
algae are in this group. As the name implies, they have obvious, membrane-limited
nuclei. Among their many other organelles, all formed from membranes, one finds an
endoplasmic reticulum for partitioning off internal compartments of the cell, chloro-
plasts for photosynthesis, mitochondria to get energy from food, ribosomes for protein
synthesis, and an external membrane to regulate the movement of materials into and
out of the cell.

Prokaryotic cells have a very limited set of organelles.

The organisms called the prokaryotes* include only two groups, the bacteria and the
blue-green algae. They lack a matrix of internal membranes and most other organelles
found in eukaryotes. They have genetic material in a more-or-less localized region,
but it is not bounded by a membrane; thus prokaryotes lack true nuclei. Prokaryotes
have ribosomes for protein synthesis, but they are much simpler than those of eu-
karyotes. The function of prokaryotic mitochondria—getting energy from foods—is
performed in specialized regions of the plasma membrane, and the chlorophyll of
photosynthetic prokaryotes is not confined to chloroplasts.

! The word means “with true nuclei.”
2 Prokaryotes lack true nuclei.
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3.3 Replication of Living Systems

Living systems can be understood only in terms of the integration of elemental pro-
cesses into a unified whole. Itis the organic whole that defines life, not the components.

Asexual reproduction can replace those members of a species that die. The new
organisms will be genetically identical to the parent organism. To the extent that the
environment does not change, the newly generated organisms should be well suited
to that environment.

Sexual reproduction results in offspring containing genetic material from two
parents. It not only replaces organisms that die, but provides the new members with
properties different from those of their parents. Thus Darwinian selection will maxi-
mize the chance that some of the new organisms will fit better into their environment
than did their parents.

What do we mean by a “living system”?

To deal with this question we need to back up conceptually and ask how we know
whether something is alive in the first place. This question causes at least mild
embarrassment to every thinking biologist. All scientists know that the solution
of any problem must begin with clear definitions of fundamental terms and yet a
definition of “life” is as elusive as quicksilver.

If we start with the notion that a definition of a “living system’” must come before
anything else in biology, then that definition should use only nonbiological terms.
However, one virtually always sees living systems defined by taking a group of things
everyone has already agreed to be living things, and then listing properties they have
in common. Examples of these life properties are organization, response to stimuli,
metabolism, growth, evolution, and, of course, reproduction. A system is said to be
alive if it has these properties (and/or others) because other systems that have these
properties are, by consensus, alive. Thus living systems end up being defined in terms
of living systems. This definition is a recursive one: The first case is simply given,
and all subsequent cases are defined in terms of one or more preceding ones.

The list of life properties against which a putative living system would be com-
pared is an interesting one because no one property is sufficient. For example, a
building is organized, dynamite responds to stimuli, many metabolic reactions can
be carried out in a test tube, salt crystals grow, mountain ranges evolve, and many
chemical reactions are autocatalytic, spawning like reactions. Of course, we could
always insist that the putative system should exhibit two or more of the properties,
but clever people will find a nonliving exception.

In spite of these objections, definition by precedent, applied to living systems,
has an appealing practicality and simplicity—most six-year-olds are quite expert at
creating such definitions. At a more intellectual level, however, recursion always
leaves us with the bothersome matter of the first case, which must be accepted as
axiomatic—an idea foreign to biology—or accepted as a matter of faith, an idea that
makes most scientists cringe.

One way out of this dilemma is to drop the pretense of objectivity. After all,
almost everyone, scientist or lay person, will agree with each other that something is
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or isn’t alive. One wag has said, “It’s like my wife—I can’t define her, but I always
know her when I see her.”” There is, however, a more satisfying way to handle this
problem, and that is to note the unity of the life properties list: The listed properties
are related to each other. For instance, only a highly organized system could contain
enough information to metabolize and therefore to respond to stimuli. A group of
organisms evolves and/or grows when some of its members respond to stimuli in
certain ways, leading some to thrive and some not. Reproduction, which requires
metabolism and growth, can produce variation upon which selection acts. Selection,
in turn, requires reproduction to replace those organisms that were weeded out by
selection.

We see then that living systems perform numerous elemental processes, none of
which is unique to living systems. What is unique to living systems is the integration
of all these processes into a unified, smoothly functioning whole. Any attempt to limit
our focus to one process in isolation will miss the point; for example, we must view
reproduction as one part of a highly interacting system of processes. This does not
preclude discussion of the individual processes—but it is their mutual interactions that
characterize life. In Chapter 8, we will further discuss the importance of organization
to biological systems by considering biomolecular structure.

Why do living systems reproduce?

To try to answer this question we must first lay some groundwork by stating something
that is obvious: Every organism is capable of dying. If an organism were incapable
of any kind of reproduction, it would surely die at some point and would not be here
for us to observe.> Reproduction is therefore required as part of any lifestyle that
includes the possibility of death, i.e., it includes all living things.

The cause of an organism’s death may be built-in, i.e., its life span may be genet-
ically preprogrammed. Alternatively, the organism may wear out, a notion called the
“wear-and-tear” theory, suggesting that we collect chemical and physical injuries un-
til something critical in us stops working. Finally, some other organism, ranging from
a virus to a grizzly bear, may kill the organism in the course of disease or predation.

A number of reproductive modes have evolved since life began, but they may
be collected into two broad categories—asexual and sexual. Asexual reproduction
itself is associated with three phenomena: First, there is the matter of a cell’s surface-
to-volume ratio, which affects the cell’s ability to take up food and to produce and
release waste. Second, asexual reproduction allows the formation of daughter cells
identical to the parent cell, thus providing for metabolic continuity under nonvarying
environmental conditions. Third, asexual reproduction allows multicellular organ-
isms to develop physiologically different tissues by allowing genetic information to
be switched on and off. This provides for organ formation.

Sexual reproduction, on the other hand, rearranges genetic information by com-
bining genetic contributions from two parents in novel ways; this provides a range

3 This reasoning is analogous to the “anthropic principle” of cosmology, in response to the
question “Why does our universe exist?”” The principle says that if any otherkind of universe
existed, we would not be here to observe it. (We do not wish to get too metaphysical here.)
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of variations in offspring upon which selection can act. In Chapter 13, we will de-
scribe the details of asexual and sexual reproduction in cells. Here we will restrict
our discussion to general principles.

Simple cell division changes the surface-to-volume ratio % of a cell.

An interesting model connects asexual cell division to waste management. Consider
a metabolizing spherical cell of radius R: The amount of waste the cell produces
ought to be roughly proportional to the mass, and therefore to the volume, of the cell.
The volume V of a sphere is proportional to R3. On the other hand, the ability of
the cell to get rid of waste ought to be proportional to the surface area of the cell,
because waste remains in the cell until it crosses the outer cell membrane on the way
out. The surface area S is proportional to R?. As a result, the ratio %, a measure of
the cell’s ability to get rid of its waste to the cell’s production of waste, is proportional
to R~!. For each kind of cell there must be some minimum value permitted for the
ratio % = %, a value at which waste collects faster than the cell can get rid of it. This
requires that the cell divide, thus decreasing R and increasing % A similar model,
describing the ability of a cell to take up and utilize food, should be obvious.

Asexual reproduction maintains the genetic material of a single parent in its offspring.

In general, asexual reproduction leads to offspring that are genetically identical to the
parent cell. This will be especially useful if the environment is relatively constant;
the offspring will thrive in the same environment in which the parent thrived.

Most eukaryotic cells replicate asexually by a process called mitosis.* In mitosis,
a cell’s genetic material is copied and each of two daughter cells gets one of the
identical copies. At the same time, the cytoplasm and its organelles are divided
equally among the daughter cells. Single-celled organisms, such as amoebas, divide
asexually by mitosis, as do the individual cells of multicellular organisms like daisies
and humans. The details of mitosis are spelled out in Chapter 13, where we also
describe how the various cells of a multicellular organism get to be different, in spite
of their generation by mitosis.

Entire multicellular organisms can reproduce asexually. A cut-up starfish can
yield a complete starfish from each piece. Colonies of trees are generated by the
spreading root system of a single tree. These and similar processes create offspring
that are genetically identical to the parent.

The various tissues of multicellular organisms are created by turning genes on and off.

A human has dozens of physiologically and anatomically different kinds of cell types.
Virtually all of them result from mitosis in a fertilized egg. Thus we might expect
them all to be identical because they have the same genes.

The differences between the cells is attributable to different active gene sets. The
active genes in a liver cell are not the same ones active in a skin cell. Nevertheless,

4 Bacteria reproduce asexually by a somewhat different process, called binary fission. We
will not go into it.
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the liver cell and the skin cell contain the same genes, but each cell type has turned
off those not appropriate to that cell’s function.

Sexual reproduction provides for variation in offspring.

Sexual reproduction is characterized by offspring whose genetic material is con-
tributed by two different parents. The interesting thing about the two contributions is
that they do not simply add to one another. Rather, they combine in unexpected ways
to yield offspring that are often quite different from either parent. Further, each off-
spring will generally be different from the other offspring. We have only to compare
ourselves to our parents and siblings to verify this.

The variations induced by sexual reproduction maximize the chance that at least
a few progeny will find a given environment to be hospitable. Of course, this also
means that many will die, but in nature that is no problem because those that die
will serve as food for some other organism. Note the lack of mercy here—many
variants are tried by sexual reproduction and most die. The few survivors perpetuate
the species.

Sexual reproduction is found in a very wide variety of organisms, ranging from
humans to single-celled organisms such as amoebas and bacteria. In fact, organisms
whose life cycles exclude sexual reproduction are so unusual that they are generally
put into special taxonomic categories based solely on that fact. In simple organisms,
sexual reproduction may not result in increased numbers, but the offspring will be
different from the parent cells. Chapter 13 and references [2] and [3] contain detailed
discussions of sexual reproduction and genetics.

3.4 Population Growth and Its Limitations

The size of a population, and its trend, has vital significance for that population, for
interacting populations, and for the environment. It is believed that the Polynesian
population of Easter Island grew too large to be supported by the island’s resources,
with disastrous consequences for most of the flora and fauna of the island. A large
seagull population living near a puffin rookery spells high chick losses for the puffins.
And in another example, at the height of a disease, the pathogen load on the victim
can reach 10° organisms per milliliter.

We now combine the topics of the two previous sections of this chapter, namely,
the increase in an organism’s numbers and the struggle among them for survival. The
result is that in a real situation, population growth is limited.

Unchecked growth of a population is exponential.

One of the observations of the Darwinian model of evolution is that more organisms

S As always, there are notable exceptions. Mammalian red blood cells have nuclei when
they are first formed, but lose them and spend most of their lives anucleate, therefore
without genes.
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are born than can possibly survive. (We use the word “born” here in a very broad
sense to include all instances of sexual and asexual reproduction.) Let us suppose
for a moment that some organism is capable of unchecked reproduction, doubling its
numbers at each reproductive cycle. One would become two, then two would become
four, four would become eight, etc. After N reproductive cycles, there would be 2N
organisms. If the organism’s numbers increased M-fold at each reproductive cycle,
there would be M" organisms after N reproductive cycles. This kind of growth is
exponential, and it can rapidly lead to huge numbers. Table 3.4.1 shows the numbers
generated by an organism that doubles at each cycle.

Table 3.4.1.
N:[0[1]2] 10] 25 40 72
Number of organisms:|1|2|4[1024|3.4 x 107|1.1 x 1012{4.7 x 102!

Many bacteria can double their numbers every 20 minutes. Each cell could
therefore potentially generate 4.7 x 102! cells per day. To put this number into
perspective, a typical bacterium has a mass on the order of 10~!% grams, and a day
of reproduction could then produce a mass of 4.7 x 10 grams of bacteria from each
original cell. Assuming that the cells have the density of water, 1 gm/cm?, 10° grams
is the mass of a solid block of bacteria about 1.6 meters on a side. Obviously, no such
thing actually happens.

Real life: Population growth meets environmental resistance.

Every population has births (in the broad sense described above) and it has deaths.
The net growth in numbers is (births — deaths). The per capita growth rate, r, is
defined by®

birth rate — death rate

population size

The maximum value that 7 can have for an organism is rpax, called the biotic potential.
Estimates of rmax have been made by Brewer [4]. They range from about 0.03 per
year for large mammals to about 10 per year for insects and about 10,000 per year
for bacteria. These numbers are all positive, and we therefore expect organisms
growing at their biotic potential to increase in numbers over time, not so dramatically
as described by Table 3.4.1, but constantly increasing nevertheless.

We must remember that rp,y is the rate of natural increase under optimal condi-
tions, which seldom exist. Under suboptimal conditions, the birth rate will be low
and the death rate high, and these conditions may even lead the value of r to be neg-
ative. In any case, the value of r will drop as inimical environmental factors make

6 The units of birth rate are (numbers of births per time) and those of death rate are (number
of deaths per time). The units of population are (numbers of individuals) and 7 is in units
of (time) 1.
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themselves felt. These factors are collectively called environmental resistance, and
they are responsible for the fact that we are not waist-deep in bacteria or, for that
matter, dogs or crabgrass.

From our discussion of evolution, we now understand that some organisms have a
higher tolerance for environmental resistance than do others. Those with the highest
tolerance will prosper at the expense of those with low tolerance. Our experience,
however, is that every species is ultimately controlled at some level by environmental
resistance.

3.5 The Exponential Model for Growth and Decay

Despite its simplicity, most populations do in fact increase exponentially at some
time over their existence. There are two parameters governing the process, initial
population size and the per capita growth rate. Both or either may be easily determined
from experimental data by least squares.

If the growth rate parameter is negative, then the process is exponential decay.
Although populations sometimes collapse catastrophically, they can also decline ex-
ponentially. Moreover, exponential decay pertains to other phenomena as well, such
as radioactive decay. In conjunction with decay processes, it is customary to recast
the growth rate as a half-life.

A constant per capita growth rate leads to exponential growth.

By a population we mean an interbreeding subpopulation of a species. Often this
implies geographical localization, for example, the Easter Island community, or a
bacterial colony within a petri dish. The first published model for predicting popu-
lation size was by Thomas Malthus in 1798, who assumed that the growth rate of a
population is proportional to their numbers y, that is,

dy

i ry, (3.5.1)
where r is the constant of proportionality. By dividing (3.5.1) by y, we see that r is
the per capita grow rate,

1dy

—-—— =

y dt

with units of per time, e.g., per second. Hence Malthus’s law assumes the per capita
growth rate to be constant. For a no-growth, replacement-only colony, r will be zero.

Malthus’s model is a vast oversimplification of survival and reproduction. Al-
though population size can only be integer-valued in reality, by incorporating the
derivative %, y is necessarily a continuous variable in this model; it can take on
any nonnegative value. Further, the parameter r must be taken as an average value
over all population members. Therefore, (3.5.1) is a continuum model and does not

apply to extremely small populations. Nevertheless, it captures a germ of truth about
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population dynamics and is mathematically tractable. It is a significant first step from
which better models emerge and to which other models are compared.

If these approximations are a concern, one can opt for a discrete model. The
differential equation is replaced by a difference equation instead:

Vel = Yt = PY1s t=0,1,2,.... (3.5.2)

This model provides for increments to the population at the discrete times indicated
in (3.5.2). The size of the population at time ¢ is y;. The relationship between the
instantaneous growth rate r of the continuous model and that, p, of this one was
worked out in Section 2.5; we repeat it here:

¢ =1+p. (3.5.3)

InTable 3.5.1, we see that the two models agree closely for growth rates up to 6% or so.

Table 3.5.1. Discrete vs. continuous growth rates.

r |[1+4r| e
0 1 1
0.01] 1.01 {1.010
0.02] 1.02 {1.020
0.03] 1.03 {1.030
0.04| 1.04 [1.041
0.05] 1.05 |1.051
0.06| 1.06 [1.062

From Section 2.5, the solution of the discrete model is given by

ye = (14 p)'yo.

where yy is the initial population size. For the solution of the continuous model, we
must solve its differential equation.
Equation (3.5.1) can be solved by separating the y and ¢ variables and integrating,

d d
—yzrdt or /—yzfrdt.
y y

These integrals evaluate to
Iny =rt+c,

where c is the constant of integration. Exponentiate both sides to obtain

=" or y =y, (3.5.4)
y Yy =>

where yy = €. In this, the parameter yy is the value of y when r = 0; cf. Section 2.4.
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Under Malthus’s law (3.5.4), a population increases exponentially, ash shown by
the solid curve in Figure 3.5.5. While exponential growth cannot continue indefinitely,
it is observed for populations when resources are abundant and population density
is low; compare the data designated by the circles in Figure 3.5.5. Under these
conditions, populations approximate their biotic potential, ry,yx; cf. Section 3.4.

The per capita growth rate parameter r is often given in terms of doubling time.
Denote by 75 the time when the population size reaches twice its initial value; from
(3.5.4), we get

2y0 = yoe' ™.

Divide out yy and solve for 73 by first taking the logarithm of both sides,
In2=r1>,

and then dividing by r; the doubling time works out to be

In2 0.7
h=—=~—. (3.5.5)
r r
Thus the per capita growth rate and doubling time are inversely related, a higher per
capita growth rate makes for a shorter doubling time and conversely. Rearranging
(3.5.5) gives the per capita growth rate in terms of doubling time,

_ln2

= —. 3.5.6
=7 (3.5.6)

Growth rate parameters are not always positive. In the presence of serious adver-
sity, a population can die off exponentially. To make it explicit that the parameter is
negative, the sign is usually written out,

y = yoe M, (3.5.7)

where ;# > 0. Such an exponential decay process is characterized by its half-life
T2, given by

1
v — —uTip
2)’0 Yoe )
or
In2 0.7
Typ=—=~—. (3.5.8)
12 12

Exponential growth and decay apply to other natural phenomena as well as biolog-
ical processes. One of these is radioactive decay, where emissions occur in proportion
to the amount of radioactive material remaining. The activity of a material in this
regard is measured in terms of half-life; for example, the half-life of 14C is about
5700 years. Radioactive decay is the scientific basis behind various artifact dating
methods using different isotopes. Figure 3.5.1 is a chart for carbon-14.
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Fig. 3.5.1. Decay of carbon-14.

As observed above, Malthus’s assumption of immediate reproduction embodied in
(3.5.1) hardly seems accurate. Mammals, for instance, undergo a lengthy maturation
period. Further, since no real population grows unboundedly, the assumption of
constant per capita growth breaks down eventually for all organisms. Nevertheless,
there is often a phase in the growth of populations, even populations of organisms
with structured life cycles, during which exponential grow is in fact observed. This
is referred to as the exponential growth phase of the population.

It is possible to mathematically account for a maturation period and hence more
accurately model population growth. This is done by the incorporation of a delay,
7, between the time offspring are born and the time they reproduce. In differential

equation form, we have

dy
—| =r-y(—1); 3.5.9
I |, rey(t—1) ( )

in words, the growth rate at the present time is proportional to the population size t
time units ago (births within the last t period of time do not contribute offspring).
Equation (3.5.9) is an example of a delay differential equation. An initial condition
for the equation must prescribe y(¢) for —7 < ¢t < 0. As an illustration, letr = 1,
= 1,and y(r) = ¢'/!0 for —1 <t < 0 as an initial condition. Begin by setting
Jo(?) to this initial function and solving

dy _ B
e Sot = 1)

for y on the interval [0, 1], that is, for 0 < ¢ < 1. In this, solving means integrating,
since the right-hand side is a given function of 7. Define this solution to be fi () and
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repeat the procedure with it to get a solution on [1, 2]. Continue in this way, moving
ahead by steps of length 1.

Code 3.5.1 is a computational procedure that produces the graph of a solution
for (3.5.9).

Code 3.5.1.

MapLE
> f0:=t—>exp(t/10);dsolve({diff(y(t),t)=fO(t-1),y(0)=f0(0)},y(t));
> f1:=unapply(rhs(%),t);dsolve({diff(y(t),t)=f1(t-1),y(1)=F1(1)},y(1));
> f2:=unapply(rhs(%),t);dsolve({diff(y(t),t)=f2(t-1),y(2)=f2(2)},y(1));
> f3:=unapply(rhs(%),1);
> plot({[t,fO(t),t=-1..0],[t,f1(t),t=0..1],[t,f2(t),t=1..2],[t,f3(t),t=2..3]},t=-1..3,y=-1..6,color=black);

MarLaB
% make an m-file, delayFcn0.m:
% function y=delayFcn0(t)
% 'y =exp(t/10);
> N=10; % # steps per unit interval
> delT=1/N; % so delta t=0.1
% t is now linked to index i by t=-1+(i-1)*delT
% set initial values via delay fcn fO
> for i=1:N+1
> t=-1+(i-1)*delT; f(i)=delayFcnO(t);
>end
% work from t=0 in steps of delT
% ending time tfinal = 2, ending index is n
% solve tfinal=-1+(n-1)*delT for n
> n=(2+1)*N+1;
> for i=N+1:n-1
> t=-1+(i-1)*delT;
> delY=f(i-N)*delT; % N back = delay of 1
> f(i+1)=f(i)+delY; % Euler's method
>end
> t=-1:delT:2; plot(t,f);

Delay can also be incorporated into the discrete model in the same way. Equa-
tion (3.5.2) is modified to

Vitel — YVt = pYVi—z, t=0,1,2,....

Just as for the continuous model, the values y_;, y_;11, ..., yo must be prescribed.

A comparison of delay vs. no delay for both the continuous and discrete models is
presented in Figure 3.5.2. Although the increase in population size is reduced under
grow with delay, the population still follows an exponential-like growth law. The
extent to which this is “exponential”’ is examined in the exercises.

Growth parameters can be determined from experimental data.

Exponential growth entails two parameters, initial population size yo and growth rate
r. Given n experimental data values, (¢1, y1), (2, ¥2), . . ., (tn, Yn), we would like to
find the specific parameter values for the experiment. As discussed in Section 2.2,
this is done by the method of least squares. We first put the equation into a form linear
with respect to the parameters; take the logarithm of both sides of (3.5.4):

Iny =Inyg+rt. (3.5.10)
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(a) Growth with no delay. (b) Growth with delay.

Fig. 3.5.2. The solid curves show the continuous model; circles show growth for the discrete
model.

Now use equations (2.2.3) with In y playing the role of y and ¢ playing the role of x;
in turn, the parameters are In yq playing the role of b and r standing in for m. We get

S Y Iny =Y Y tiny;
2
ny i ti2 - (Xiin)

In Yo =

and

_ondyatiny = 3 iy Iy
= > )
n i1 = (i n)
A slightly different problem presents itself when we are sure of the initial popula-

tion size, yo, and only want to determine r by fit. If there were no experimental error,
only one data value (¢, y;), besides the starting one, would be needed for this; thus

r

yi = yoe'",
SO

In y; — In yo
r=—
41

Unfortunately, however, experimental error invariably affects data, and performing
this calculation using two data values will likely result in two different (but close) val-
ues of r. Given n data values (beyond the starting one), (¢1, y1), (t2, ¥2), - - ., (tu, Yn),
there will be n corresponding calculations of 7. Which is the right one?

To solve this, we use a specialization of the least squares method. As above, we
use the logarithm form of Malthus’s equation, (3.5.10); squared error is then given by

E = [Iny; — (Inyo +rt;)]*. (3.5.11)

i=1
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As before, differentiate £ with respect to r and set the derivative to zero:

2> [y — (Inyo + r1;)1(—t;) = 0.

i=1
Now solve this for » and get

Y ti(ny; —1
p = Zizt 100y —Inyo) (3.5.12)

Z?: 1 liz

Alternatively, we can let the computer algebra system derive (3.5.12) as follows:
Suppose the starting value is known, y(0) = A, and we have data given symbol-
ically as

{lal1], b[11], [a[2], b[21]], [al3], DI3]1}-

We find the value of r given in (3.5.12) for this general problem in the following
manner:

MaPLE
> xval:=[seq(a[i],i=1..3)];
> yval:=[seq(b[i],i=1..3)];
> Iny:=map(In,yval);
> with(stats);
> fit[leastsquare[[x,y],y=r*x+In(A),{r}]]([xval,Iny]);
> coeff(rhs(%),x);
> combine(simplify(%));

MarLaB
% least squares for r in y=A*exp(rt)
> A=2;
> t=[1 2 3]; % time data
> y=[3 5 9]; % corresponding y data
> Iny=log(y)-log(A); % map to log and subtract bias
> M=t’; % set up independent variables M matrix
> r=M\(Iny’) % and solve

Example 3.5.1 (the U.S. census data). To illustrate these ideas, we determine the
per capita growth rate for the U.S. over the years 1790-1990. In Table 3.5.2, we give
the U.S. census for every 10 years, the period required by the U.S. Constitution.

Table 3.5.2. U.S. population census. (Source: Statistical Abstracts of the United States, 113th
ed., Bureau of the Census, U.S. Department of Commerce, Washington, DC, 1993.)

1790 3929214 | 1860 314333211930 122775046
1800 5308483 | 1870 398184491940 131669275
1810 7239881 | 1880 501557831950 151325798
1820 9638453 | 1890 629477141960 179323175
1830 12866020 | 1900 7599457511970 203302031
1840 17069453 | 1910 919722661980 226545805
1850 231918761920 105710620 | 1990 248709873
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First, we plot the data to note that it does seem to grow exponentially. We read
in population data as millions of people and plot the data in order to see that the
population apparently is growing exponentially.

MaPLE

> restart;

> tt:=[seq(1790+i*10,i=0..20)];

> pop:=[3.929214, 5.308483, 7.239881, 9.638453, 12.866020, 17.069453, 23.191876, 31.433321,
39.818449, 50.155783, 62.947714, 75.994575, 91.972266, 105.710620, 122.775046,
131.669275, 151.325798,179.323175, 203.302031, 226.545805, 248.709873];

> data:=[seq([tt[i],popl[i]],i=1..21)];

> plot(data,style=POINT,symbol=CROSS, tickmarks=[4,5]);

MarLaB
> tt=[1790:10:1990];
> pop=[3.929214 5.308483 7.239881 9.638453 12.866020 17.069453 23.191876 31.433321 39.818449 ...
50.155783 62.947714 75.994575 91.972266 105.710620 122.775046 131.669275 151.325798 ...
179.323175 203.302031 226.545805 248.709873];
> plot(tt,pop,0’);
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Fig. 3.5.3. Population data for the U.S.: years vs. millions of people.

In order to make the data manageable, we rescale the time data by taking 1790 as
year zero. A plot of the rescaled data should look exactly the same:

MaPLE
> tzeroed=seq[((i-1)*10,i=1..21)];

MarLaB
> stt=0:10:200; % translated time

It appears that the growth of the U.S. population is exponential until about 1940.
We will try to get an exponential fit between 1790 and 1930. We take the logarithm
of the data. The plot of the logarithm of the data should be approximately a straight
line (see Figure 3.5.4):

MapLE

> Inpop:=[seq(In(pop[i]),i=1..21)];
> plot([seq([tzeroed][i],Inpop[i]],i=1..21)],style=POINT,symbol=CIRCLE);
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Fig. 3.5.5. Exponential growth data fit between 1790 and 1930.

MarLaB
> InPop=log(pop);
> plot(stt,InPop,'0’)
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The exponential of this linear fit will approximate the data. (See Figure 3.5.5.)
Recall that these techniques were used in Chapter 2.

MaPLE
> with(stats):

> fit[leastsquarel[t,y],y=m*t+b]]([tzeroed,Inpop]);

> y:=unapply(rhs(%),t);

> J:=plot(exp(y(t-1790)),t=1790..1930,tickmarks=[4,5]):
> K:=plot(data,style=POINT,symbol=CROSS, tickmarks=[4,5]):

> plots[display]({J,K});
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MarLaB
> MT=[stt; ones(1,21)];
> params=MT"\(InPop’)
> InFit=params(2)+params(1)*stt
> plot(stt,exp(InFit))
> hold on
> plot(stt,pop,0’)

To the degree that this graph fits the data, the U.S. population prior to 1930 was
growing exponentially.

Exercises/Experiments

1. Repeat Example 3.5.1 with just 15 points of the U.S. population data instead of
all of them. Which fit is better for the data up to 1930, the partial fit or the total
fit? Using an error similar to the one in (2.2.1) give a quantitative response (i.e.,
compute the squared errors). (If this fit for the U.S. population data interests you,
note that we will return to it again in the exercises for Section 4.3.)

2. We present below the expected number of deaths per 1000 people as a function
of increasing age. Surprisingly, an exponential fit approximates this data well.
Find an exponential fit for the data. The sequence DR is the death rate at the ages
in the sequence yrs.

MAPLE
> yrs:=([9,19,29,39,49,59,69,79,89));
>DR:=([.3,1.5, 1.9, 2.9, 6.5, 16.5, 37.0, 83.5, 181.9]);
> pts:=[seq([yrs[i],DR{i]],i=1..9)];
> plot(pts,style=POINT, symbol=CROSS);
> Inpts:=[seq([yrs[i],In(DR{i]) 1, i=1..9)];
> plot(Inpts,style=POINT,symbol=CIRCLE);
> with(stats): INDR:=map(In,DRY);
> fit[leastsquare[[t,y],y=a*t+b]]([yrs,InDR]);
> a:=op(1,0p(1,rhs(%)));
> b:=0p(2,rhs(%%));
> death:=t—>exp(a*t+b);
> J:=plot(pts,style=POINT, symbol=CROSS): K:=plot(death(t),t=0..90): plots[display]({J,K});

MarLAB
> yrs=[9,19,29,39,49,59,69,79,89];
>DR=[.3,1.5, 1.9, 2.9, 6.5, 16.5, 37, 83.5, 181.9];
> plot(yrs,DRY); % so data exp. like
> InDR= log(DR);
> MT=[yrs;ones(size(yrs))];

% matrix of independent variable data
> params=MT\InDR’;
> a=params(1); b=params(2);
> fit=exp(b)*exp(a*yrs);
> plot(yrs,DR,yrs,fit);

3. Using the least squares methods of this section, and by sampling nine data points
on the interval [0, 3], determine whether the growth of the solution for the delay
(3.5.12) depicted in Figure 3.5.2(b) is exponential.

4. In Section 2.2 we gave a cubic polynomial fit for the cumulative number of AIDS
cases in the U.S. Find an exponential fit for those data. Determine which fit has
the smaller error—the cubic polynomial fit or the exponential fit.

5. What would the U.S. population be today if the growth rate from 1790 were
(a) 2% higher? (b) 5% higher? (c) 2% lower? (d) 5% lower?
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Questions for Thought and Discussion

1.

What is the surface-to-volume (%) ratio of a spherical cell with a radius of 27
What is the radius of a spherical cell with % = 47 A spherical cell with % =3
divides exactly in two. What is the % ratio of each of the daughter cells?

Name some factors that might prevent a population from reaching its biotic
potential.

Variations induced by sexual reproduction generally lead to the early deaths of
many, if not most, of the organisms. What could be advantageous about such a
ruthless system?
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4

Interactions Between Organisms and
Their Environment

Introduction

This chapter is a discussion of the factors that control the growth of populations of
organisms.

Evolutionary fitness is measured by the ability to have fertile offspring. Selection
pressure is due to both biotic and abiotic factors and is usually very subtle, expressing
itself over long time periods. In the absence of constraints, the growth of populations
would be exponential, rapidly leading to very large population numbers. The collec-
tion of environmental factors that keep populations in check is called environmen-
tal resistance, which consists of density-independent and density-dependent factors.
Some organisms, called r-strategists, have short reproductive cycles marked by small
prenatal and postnatal investments in their young and by the ability to capitalize on
transient environmental opportunities. Their numbers usually increase very rapidly at
first, but then decrease very rapidly when the environmental opportunity disappears.
Their deaths are due to climatic factors that act independently of population numbers.

A different lifestyle is exhibited by K -strategists, who spend a lot of energy caring
for their relatively infrequent young, under relatively stable environmental conditions.
As the population grows, density-dependent factors such as disease, predation, and
competition act to maintain the population at a stable level. A moderate degree of
crowding is often beneficial, however, allowing mates and prey to be located. From
a practical standpoint, most organisms exhibit a combination of r- and K -strategic
properties.

The composition of plant and animal communities often changes over periods of
many years, as the members make the area unsuitable for themselves. This process of
succession continues until a stable community, called a climax community, appears.

4.1 How Population Growth Is Controlled

In Chapter 3, we saw that uncontrolled growth of a biological population is expo-
nential. In natural populations, however, external factors control growth. We can
distinguish two extremes of population growth kinetics, depending on the nature of
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these external factors, although most organisms are a blend of the two. First, r-
strategists exploit unstable environments and make a small investment in the raising
of their young. They produce many offspring, which often are killed off in large num-
bers by climatic factors. Second, K -strategists have few offspring, and invest heavily
in raising them. Their numbers are held at some equilibrium value by factors that
are dependent on the density of the population.

An organism’s environment includes biotic and abiotic factors.

An ecosystem is a group of interacting living and nonliving elements. Every real
organism sits in such a mixture of living and nonliving elements, interacting with
them all at once. A famous biologist, Barry Commoner, has summed this up with the
observation that “Everything is connected to everything else.”” Living components of
an organism’s environment include those organisms that it eats, those that eat it, those
that exchange diseases and parasites with it, and those that try to occupy its space.
The nonliving elements include the many compounds and structures that provide the
organism with shelter, that fall on it, that it breathes, and that poison it. (See[1,2, 3, 4]
for discussions of environmental resistance, ecology, and population biology.)

Density-independent factors regulate r-strategists’ populations.

Figure 4.1.1 shows two kinds of population growth curves, in which an initial increase
in numbers is followed by either a precipitous drop (curve (a)) or a period of zero
growth (curve (b)). The two kinds of growth curves are generated by different kinds
of environmental resistance.'

(b)

Numbers

(a)

Time

Fig. 4.1.1. A graph of the number of individuals in a population vs. time for (a) an idealized
r-strategist and (b) an idealized K -strategist. r-strategists suffer rapid losses when density-
independent factors like the weather change. K-strategists’ numbers tend to reach a stable
value over time because density-dependent environmental resistance balances birth rate.

! Note that the vertical axis in Figure 4.1.1 is the total number of individuals in a population;
thus it allows for births, deaths, and migration.



4.1 How Population Growth Is Controlled 109

Survivors

Time
Fig. 4.1.2. An idealized survivorship curve for a group of r-strategists. The graph shows the
number of individuals surviving as a function of time, beginning with a fixed number at time

t = 0. Lack of parental investment and an opportunistic lifestyle lead to a high mortality rate
among the young.

Organisms whose growth kinetics resemble curve (a) of Figure 4.1.1 are called
r-strategists, and the environmental resistance that controls their numbers is said to be
density-independent.? This means that the organism’s numbers are limited by factors
that do not depend upon the organism’s population density. Climatic factors, such
as storms or bitter winters, and earthquakes and volcanoes are density-independent
factors in that they exert their effects on dense and sparse populations alike.

Two characteristics are helpful in identifying r-strategists:

1. Small parental investment in their young. The concept of “parental investment”
combines the energy and time dedicated by the parent to the young in both the pre-
natal and the postnatal periods. Abbreviation of the prenatal period leads to the birth
of physiologically vulnerable young, while abbreviation of postnatal care leaves the
young unprotected. As a result, an r-strategist must generate large numbers of off-
spring, most of whom will not survive long enough to reproduce themselves. Enough,
however, will survive to continue the population. Figure 4.1.2 is a survivorship curve
for an r-strategist; it shows the number of survivors from a group as a function of
time.> Note the high death rate during early life.

Because of high mortality among its young, an r-strategist must produce many
offspring, which makes death by disease and predation numerically unimportant,
inasmuch as the dead ones are quickly replaced. On the other hand, the organism’s
short life span ensures that the availability of food and water do not become lim-
iting factors either. Thus density-dependent factors such as predation and resource
availability do not affect the population growth rates of r-strategists.

2 The symbol r indicates the importance of the rate of growth, which is also symbolized by r.
3 Note that the vertical axes in Figures 4.1.2 and 4.1.4 are the numbers of individuals surviving
from an initial, fixed group; thus they allow only for deaths.
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2. The ability to exploit unpredictable environmental opportunities rapidly. Itis com-
mon to find r-strategists capitalizing on transient environmental opportunities. The
mosquitoes that emerge from one discarded, rain-filled beer can are capable of mak-
ing human lives in a neighborhood miserable for months. Dandelions can quickly fill
up a small patch of disturbed soil. These mosquitoes and dandelions have exploited
situations that may not last long; therefore, a short, vigorous reproductive effort is
required. Both organisms, in common with all r-strategists, excel in that regard.

We can now interpret curve (a) of Figure 4.1.1 by noting the effect of environmen-
tal resistance, i.e., density-independent factors. Initial growth is rapid and it results
in a large population increase in a short time, but a population “crash” follows. This
crash is usually the result of the loss of the transient environmental opportunity be-
cause of changes in the weather: drought, cold weather, or storms can bring the
growth of the mosquito or dandelion population to a sudden halt. By this time,
however, enough offspring have reached maturity to propagate the population.

Density-dependent factors regulate the populations of K -strategists.

Organisms whose growth curve resembles that of curve (b) of Figure 4.1.1 are called
K -strategists, and their population growth rate is regulated by population density-
dependent factors. As with r-strategists, the initial growth rate is rapid, but as the
density of the population increases, certain resources such as food and space become
scarce, predation and disease increase, and waste begins to accumulate. These neg-
ative conditions generate a feedback effect: Increasing population density produces
conditions that slow down population growth. An equilibrium situation results in
which the population growth curve levels out; this long-term, steady-state population
is the carrying capacity of the environment.

The carrying capacity of a particular environment is symbolized by K; hence
the name “K -strategist” refers to an organism that lives in the equilibrium situation
described in the previous paragraph. The growth curve of a K -strategist, shown as
(b) in Figure 4.1.1, is called a logistic curve. Figure 4.1.3 is a logistic curve for a
more realistic situation.

Numbers

(a)

Time

Fig. 4.1.3. Amore realistic growth curve of a population of K -strategists. The numbers fluctuate
around an idealized curve, as shown. Compare this with Figure 4.1.1(b).
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Two characteristics are helpful in identifying K -strategists:

1. Large parental investment in their young. K -strategists reproduce slowly, with
long gestation periods, to increase physiological and anatomical development of the
young, who therefore must be born in small broods. After birth, the young are tended
until they can reasonably be expected to fend for themselves. One could say that K -
strategists put all their eggs in one basket and then watch that basket very carefully.

Figure 4.1.4 is an idealized survivorship curve for a K -strategist. Note that infant
mortality is low (compared to r-strategists—see Figure 4.1.2).

Survivors

Time

Fig. 4.1.4. An idealized survivorship curve for a group of K -strategists. The graph shows the
number of individuals surviving as a function of time, beginning with a fixed number at time
t = 0. High parental investment leads to a low infant mortality rate.

2. The ability to exploit stable environmental situations. Once the population of a
K -strategist has reached the carrying capacity of its environment, the population size
stays relatively constant. This is nicely demonstrated by the work of H. N. Southern,
who studied mating pairs of tawny owls in England [5]. The owl pairs had adjacent
territories, with each individual pair occupying a territory that was its own and which
was the right size to provide it with nesting space and food (mainly rodents). Every
year some adults in the area died, leaving one or more territories that could be occupied
by new mating pairs. Southern found that while the remaining adults could have more
than replaced those who died, only enough owlets survived in each season to keep the
overall numbers of adults constant. The population control measures at work were
failure to breed, reduced clutch size, death of eggs and chicks, and emigration. These
measures ensured that the total number of adult owls was about the same at the start
of each new breeding season.

Aslong as environmental resistance remains the same, so will population numbers.
But if the environmental resistance changes, the carrying capacity of the environment
will, too. For example, if the amount of food is the limiting factor, a new value of K
is attained when the amount of food increases. This is shown in Figure 4.1.5.

The density-dependent factors that, in conjunction with the organism’s reproduc-
tive drive, maintain a stabilized population are discussed in the next section. In a later
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Numbers

Time

Fig. 4.1.5. The growth of a population of animals, with an increase in food availability midway
along the horizontal axis. The extra food generates a new carrying capacity for the environment.

section, we will discuss some ways that a population changes its own environment,
and thereby changes that environment’s carrying capacity.

Some density-dependent factors exert a negative effect on populations and can thus
help control K -strategists.

Environmental factors that change with the density of populations are of many kinds.
This section is a discussion of several of them.

Predation. The density of predators, free-living organisms that feed on the bodies of
other organisms, would be expected to increase or decrease with the density of prey
populations. Figure 4.1.6 shows some famous data, the number of hare and lynx pelts
brought to the Hudson Bay Company in Canada over a period of approximately 90
years. Over most of this period, changes in the number of hare pelts led to changes in
the number of lynx pelts, as anticipated. After all, if the density of hares increased we
would expect the lynx density to follow suit. A detailed study of the data, however,
reveals that things were not quite that simple, because in the cycles beginning in 1880
and 1900 the lynxes led the hares. Analysis of this observation can provide us with
some enlightening information.

Most importantly, prey population density may depend more strongly on its own
food supplies than on predator numbers. Plant matter, the food of many prey species,
varies in availability over periods of a year or more. For example, Figure 4.1.7 shows
how a tree might partition its reproductive effort (represented by nut production) and
its vegetative effort (represented by the size of its annual tree rings). Note the cycles
of abundant nut production (called mast years) alternating with periods of vigorous
vegetative growth; these alternations are common among plants. We should expect
that the densities of populations of prey, which frequently are herbivores, would
increase during mast years and decrease in other years, independently of predator
density (see [2]).

There are some other reasons why we should be cautious about the Hudson Bay
data: First, in the absence of hares, lynxes might be easier to catch because, being
hungry, they would be more willing to approach baited traps. Second, the naive
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Fig. 4.1.6. The Hudson’s Bay Company data. The curve shows the number of predator (lynx)
and prey (hare) pelts brought to the company by trappers over a 90-year period. Note that
from 1875 to 1905, changes in the lynxes sometimes precede changes in the hares. (Redrawn
from D. A. McLulich, Sunspots and abundance of animals, J. Roy. Astronom. Soc. Canada,
30 (1936), 233. Used with permission.)

interpretation of Figure 4.1.6 assumes equal trapping efficiencies of prey and predator.
Third, for the data to be interpreted accurately, the hares whose pelts are enumerated
in Figure 4.1.6 should consist solely of a subset of all the hares that could be killed by
lynxes, and the lynxes whose pelts are enumerated in the figure should consist solely
of a subset of all the lynxes that could kill hares. The problem here is that very young
and very old lynxes, many of whom would have contributed pelts to the study, may
not kill hares at all (e.g., because of infirmity they may subsist on carrion).

Parasitism. Parasitism is a form of interaction in which one of two organisms ben-
efits and the other is harmed but not generally killed. A high population density
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Reproductive effort
(number of nuts)

______ Vegetative effort
(ring width)

Time

Fig. 4.1.7. This idealized graph shows the amount of sexual (reproductive) effort and asexual
(vegetative) effort expended by many trees as a function of time. Sexual effort is measured
by nut (seed) production and asexual effort is measured by tree ring growth. Note that the
tree periodically switches its emphasis from sexual to asexual and back again. Some related
original data can be found in the reference by Harper [2].

would be unfavorable for a parasite’s host. For example, many parasites, e.g., hook-
worms and roundworms, are passed directly from one human host to another. Waste
accumulation is implicated in both cases because these parasites are transmitted in
fecal contamination. Other mammalian and avian parasites must go through inter-
mediate hosts between their primary hosts, but crowding is still required for effective
transmission.

Disease. The ease with which diseases are spread will go up with increasing popu-
lation density. The spread of colds through school populations is a good example.

An important aggravating factor in the spread of disease is the accumulation of
waste. For example, typhoid fever and cholera are easily carried between victims by
fecal contamination of drinking water.

Interspecific competition. Every kind of organism occupies an ecological niche,
which is the functional role that organism plays in its community. An organism’s
niche includes a consideration of all of its behaviors, their effects on the other mem-
bers of the community, and the effects of the behaviors of other members of the
community on the organism in question.

An empirical rule in biology, Gause’s law, states that no two species can long
occupy the same ecological niche. What will happen is that differences in fitness,
even very subtle ones, will eventually cause one of the two species to fill the niche,
eliminating the other species. This concept is demonstrated by Figure 4.1.8. When
two organisms compete in a uniform habitat, one of the two species always becomes
extinct. The “winner” is usually the species having a numerical advantage at the outset
of the experiment. (Note the role of luck here—a common and decisive variable in
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Fig. 4.1.8. Graphs showing the effect of environmental complexity on interspecies relation-
ships. The data for (a) are obtained by counting the individuals of two species in a pure
growth medium. The data for (b) are obtained by counting the individuals of the two species
in a mechanically complex medium where, for example, pieces of broken glass tubing provide
habitats for species 2. The more complex environment supports both species, while the simpler
environment supports only one species.

Darwinian evolution.) On the other hand, when the environment is more complex,
both organisms can thrive because each can fit into its own special niche.

Intraspecific competition. As individuals die, they are replaced by new individuals
who are presumably better suited to the environment than their predecessors. The
general fitness of the population thus improves because it becomes composed of fitter
individuals.

The use of antibiotics to control bacterial diseases has contributed immeasurably
to the welfare of the human species. Once in a while, however, a mutation occurs in a
bacterium that confers on it resistance to that antibiotic. The surviving bacterium can
then exploit its greater fitness to the antibiotic environment by reproducing rapidly,
making use of the space and nutritional resources provided by the deaths of the
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antibiotic-sensitive majority. Strains of the bacteria that cause tuberculosis and sev-
eral sexually transmitted diseases have been created that are resistant to most of the
available arsenal of antibiotics. Not unexpectedly, a good place to find such strains is
in the sewage from hospitals, from which they can be dispersed to surface and ground
water in sewage treatment plant effluent.

This discussion of intraspecific competition is not complete without including
an interesting extension of the notion of biocides, as suggested by Garrett Hardin.
Suppose the whole human race practices contraception to the point that there is zero
population growth. Now suppose that some subset decides to abandon all practices
that contribute to zero population growth. Soon that subset will be reproducing more
rapidly than everyone else, and will eventually replace the others. This situation is
analogous to that of the creation of an antibiotic-resistant bacterium in an otherwise
sensitive culture. The important difference is that antibiotic resistance is genetically
transmitted and a desire for population growth is not. But—as long as each generation
continues to teach the next to ignore population control—the result will be the same.

Some density-dependent factors exert positive effects on populations.

The effect of increasing population density is not always negative. Within limits,
increasing density may be beneficial, a phenomenon referred to as the Allee effect.*
For example, if a population is distributed too sparsely, it may be difficult for mates
to meet; a moderate density, or at least regions in which the individuals are clumped
into small groups, can promote mating interactions (think “singles bars”).

An intimate long-term relationship between two organisms is said to be symbiotic.
Symbiotic relationships require at least moderate population densities to be effective.
Parasitism, discussed earlier, is a form of symbiosis in which one participant benefits
and the other is hurt, although it would be contrary to the parasite’s interests to kill
the host. The closeness of the association between parasite and host is reflected in
the high degree of parasite—host specificity. For instance, the feline tapeworm does
not often infect dogs, nor does the canine tapeworm often infect cats.

Another form of symbiosis is commensalism, in which one participant benefits
and the other is unaffected. An example is the nesting of birds in trees: The birds
profit from the association, but the trees are not affected.

The third form of symbiosis recognized by biologists is mutualism, in which both
participants benefit. An example is that of termites and certain microorganisms that
inhabit their digestive systems. Very few organisms can digest the cellulose that
makes up wood; the symbionts in termite digestive systems are rare exceptions. The
termites provide access to wood and the microorganisms provide digestion. Both
can use the digestive products for food, so both organisms profit from the symbiotic
association.

It would be unexpected to find a pure K -strategist or a pure r-strategist.

The discussions above, in conjunction with Figure 4.1.1, apply to idealized K- or

4 Named for a prominent population biologist.
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r-strategists. Virtually all organisms are somewhere in between the two, being
controlled by a mixture of density-independent and density-dependent factors. For
example, a prolonged drought is nondiscriminatory, reducing the numbers of both
mosquitoes and rabbits. The density of mosquitoes might be reduced more than
that of rabbits, but both will be reduced to some degree. On the other hand, both
mosquitoes and rabbits serve as prey for other animals. There are more mosquitoes
in a mosquito population than rabbits in a rabbit population, and the mosquitoes re-
produce faster, so predation will affect the rabbits more. Still, both animals suffer
from predation to some extent.

Density-independent factors may control a population in one context and density-
dependent factors may control it in another context. A bitter winter could reduce
rodent numbers for a while and then, as the weather warms up, predators, arriving
by migration or arousing from hibernation, might assume control of the numbers
of rodents. Even the growth of human populations can have variable outcomes,
depending on the assumption of the model (see [6]).

The highest sustainable yield of an organism is obtained during the period of most
rapid growth.

Industries like lumbering or fishing have, or should have, a vested interest in sustain-
able maintenance of their product sources. The key word here is “sustainable.” It is
possible to obtain a very high initial yield of lumber by clear-cutting a mature forest or
by seining out all the fish in a lake. Of course, this is a one-time event and is therefore
self-defeating. A far better strategy is to keep the forest or fish population at its point
of maximal growth, i.e., the steepest part of the growth curve (b) in Figure 4.1.1. The
population, growing rapidly, is then able to replace the harvested individuals. Any
particular harvest may be small, but the forest or lake will continue to yield products
for a long time, giving a high long-term yield. The imposition of bag limits on duck
hunters, for instance, has resulted in the stable availability of wild ducks, season after
season. Well-managed hunting can be viewed as a density-dependent population-
limiting factor that replaces predation, disease, and competition, all of which would
kill many ducks anyway.

4.2 Community Ecology

There is a natural progression of plant and animal communities over time in a par-
ticular region. This progression occurs because each community makes the area less
hospitable to itself and more hospitable to the succeeding community. This succession
of communities will eventually stabilize into a climax community that is predictable
for the geography and climate of that area.

Continued occupation of an area by a population may make that region less hospitable
to them and more hospitable to others.

Suppose that there is a community (several interacting populations) of plants in and
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around a small lake in north Georgia. Starting from the center of the lake and moving
outward, we might find algae and other aquatic plants in the water, marsh plants
and low shrubs along the bank, pine trees farther inland, and finally, hardwoods well
removed from the lake. If one could observe this community for a hundred or so
years, the pattern of populations would be seen to change in a predictable way.

As the algae and other aquatic plants died, their mass would fill up the lake,
making it hostile to those very plants whose litter filled it. Marsh plants would start
growing in the center of the lake, which would now be boggy. The area that once
rimmed the lake would start to dry out as the lake disappeared, and small shrubs and
pine trees would take up residence on its margins. Hardwoods would move into the
area formerly occupied by the pine trees. This progressive change, called succession,
would continue until the entire area was covered by hardwoods, after which no further
change would be seen. The final, stable, population of hardwoods is called the climax
community for that area. Climax communities differ from one part of the world to
another, e.g., they may be rain forests in parts of Brazil and tundra in Alaska, but they
are predictable.

If the hardwood forest described above is destroyed by lumbering or fire, a process
called secondary succession ensues: Grasses take over, followed by shrubs, then
pines, and then hardwoods again. Thus both primary and secondary succession lead
to the same climax community.

Succession applies to both plant and animal populations, and as the above example
demonstrates, it is due to changes made in the environment by its inhabitants. The
drying of the lake is only one possible cause of succession; for instance, the leaf litter
deposited by trees could change the pH of the soil beneath the trees, thus reducing
mineral uptake by the very trees that deposited the litter. A new population of trees
might then find the soil more hospitable, and move in. Alternatively, insects might
drive away certain of their prey, making the area less desirable for the insects and
more desirable for other animals.

4.3 Environmentally Limited Population Growth

Real populations do not realize constant per capita growth rates. By engineering
the growth rate as a function of the population size, finely structured population
models can be constructed. Thus if the growth rate is taken to decrease to zero with
increasing population size, then a finite limit, the carrying capacity, is imposed on
the population. On the other hand, if the growth rate is assigned to be negative at
small population sizes, then small populations are driven to extinction.

Along with the power to tailor the population model in this way comes the problem
of its solution and the problem of estimating parameters. However, for one-variable
models, simple sign considerations predict the asymptotic behavior and numerical
methods can easily display solutions.

Logistic growth stabilizes a population at the environmental carrying capacity.

As discussed in Sections 3.1 and 4.1, when a biological population becomes too large,
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the per capita growth rate diminishes. This is because the individuals interfere with
each other and are forced to compete for limited resources. Consider the model, due
to Pierre Verhulst in 1845, wherein the per capita growth rate decreases linearly with

population size y:
1d
__yzr(l_l), (4.3.1)
K

The profile of the right-hand side is depicted in Figure 4.3.1.

y'ly

Fig. 4.3.1. Linearly decreasing per capita growth rate (r = 1, K = 3).

This differential equation is known as the logistic (differential) equation; two of
its solutions are graphed later in Figure 4.3.2. Multiplying (4.3.1) by y yields the

alternative form
Yy (1 _ 1). 43.2)
dt K

From this equation we see that the derivative fl—“lv is zerowheny = 0ory = K.
These are the stationary points of the equation (see Section 2.4). The stationary point
y = K, at which the per capita growth rate becomes zero, is called the carrying
capacity (of the environment).

When the population size y is small, the term % is nearly zero and the per capita
growth rate is approximately r as in exponential growth. Thus for small population
size (but not so small that the continuum model breaks down), the population increases
exponentially. Hence solutions are repelled from the stationary point y = 0. But as
the population size approaches the carrying capacity K, the per capita growth rate
decreases to zero and the population ceases to change in size. Further, if the population
size ever exceeds the carrying capacity for some reason, then the per capita growth
rate will be negative and the population size will decrease to K. Hence solutions are
globally attracted to the stationary point y = K.
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From the form (4.3.2) of the logistic equation we see that it is nonlinear, with a
quadratic nonlinearity in y. Nevertheless, it can be solved by separation of variables
(see Section 2.4). Rewrite (4.3.1) as

d
Y — = rdt.

v(1-%)
The fraction on the left-hand side can be expanded by partial fraction decomposition
and written as the sum of two simpler fractions (check this by reversing the step)

1L
—+ —=—\dy =rdt.
(y (1—%))y '

The solution is now found by integration. Since the left-hand side integrates to
1 . y
K
-4+ —=— dy:lny—ln(l——),
/ (y (1- %)) K

my—m(y—%)zrr+a (4.3.3)

we get

where c is the constant of integration. Combining the logarithms and exponentiating

both sides, we get
y

1 = Ae", (4.3.4)

X<

where A = ¢, and A is not the + = 0 value of y. Finally, we solve (4.3.4) for y.
First, divide numerator and denominator of the left-hand side by y and reciprocate
both sides; this gives

1 11
y K = Ae’
or, isolating y,
1 1 1
; = o + e (4.3.5)
Now reciprocate both sides of this and get
1
Y= i
Ae't + K
or equivalently,
Aerl
= — (4.3.6)
Y 1+ %e’ !

Equation (4.3.6) is the solution of the logistic equation (4.3.1). To emphasize that it is
the concept of “logistic growth” that is important here, not these solution techniques,
we show how a solution for (4.3.1) can be found (symbolically) by the computer
algebra system. The initial value is taken as y(0) = yo in the following:
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MarLE
> dsolve({diff(y(t),t) = r"y(t)*(1-y(t)/k),y(0)=y0}y(1));
The output of this computation is

k

e (k—=yo) *
1+ Yo

y() =

Clearing the compound denominator easily reduces this computer solution to

rt

ke yo
)= —F——.
YO STk
Three members of the family of solutions (4.3.6) are shown in Figure 4.3.2 for
different starting values yg. We take r = 1 and K = 3 and find solutions for (4.3.2)
with yp = 1, or 2, or 4.

Logistic parameters can sometimes be estimated by least squares.

Unfortunately, the logistic solution (4.3.6) is not linear in its parameters A, r, and K.
Therefore, there is no straightforward way to implement least squares. However, if
the data values are separated by fixed time periods, 7, then it is possible to remap the
equations so least squares will work.

Suppose the data points are (¢1, y1), (2, ¥2), ..., (ty, yo) With t; = t;_1 + 7,
i=2,...,n.Thent; =t + (i — 1)t and the predicted value of )171_, from (4.3.5), is

given by
1 . 1 1 _ 1 1 et 437
; - Ae'tieli=Drr + E - 6? Ae'teli=2)rt + ? : (4.3.7)

But by rewriting the term involving K as

1 et —1

A
and using (4.3.5) again, (4.3.7) becomes

1_ 1 |: 1 +e”—1j|
yi e Lyio K '

Now put z = %, and we have

rr I —e™T 1
zi=e ""zi.1+ ———, wherey = —. (4.3.8)
K V4
Aleast squares calculation is performed on the points (z1, 22), (z2, 23), - - ., (Zn—1, Zn)

to determine r and K. With r and K known, least squares can be performed on, say
(4.3.5), to determine A.

In the exercises we will illustrate this method and suggest another for U.S. pop-
ulation data.
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MaPLE

> r:=1;k:=3;

> dsolve({diff(y(t),h=r*y(t)*(1-y(t/k).y(0)=1},y(1);
y1:=unapply(rhs(%),t);

> dsolve({diff(y(t) =r"y(®) (1-y(t)/k),y(0)=2},y(t));
y2:=unapply(rhs(s),1);

> dsolve({diff(y(t), h=r*y(t)*(1-y(t/k).y(0)=4},y(});
y4:=unapply(rhs(%),t);

> plot(fy1(1),y2(t),y4(1)},t=0..5,y=0..5);

MarLaB
% solve the logistic eqn for starting values y0=1, y0=2, y0=4
% Make up an m-file, fig432.m, as follows:
% function yprime = fig432(t,y) % with r=1 and K=3
% r=1; K=3; yprime=y.«r.«x(1-y./K);
> tspan=[0 5];
> [t1,y1]=0de23(’fig432’,tspan,1);
> [t2,y2]=0de23(’fig432’,tspan,2);
> [t4,y4]=0de23(’fig432’,tspan,4);
> plot(t1,y1,t2,y2,t4,y4)
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Fig. 4.3.2. Solutions for (4.3.1).

The logistic equation has a discrete analogue.

The corresponding discrete population model to (4.3.2) is

Vidl = Yi = pYi (1 - %) (4.3.9)

By transposing y;, we get an equivalent form,

v =y (140 = 25) =+ o)y, (1 - pr—) (4.3.10)

Recall that we encountered a similar recurrence relation, (2.5.11), in Section 2.5.
From that discussion, we suspect that some values of p may lead to chaos. In fact,
with K = 1 and p = 3, we get the population behavior shown in Figure 4.3.3.
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MaPLE
> Ki=1;
> rho:=3.0;
> c:= (rho/K)/(1+rho):
> y[0]:=1/48.0;
> for i from 1 to 60 do y[i]:=(1+rho)*y[i-1]*(1-c*y[i-1]);
> od;
> pts:=[seq([i,y[i]],i=0..60)];
> plot(pts);

MarLaB
> K=1; rho=3; c=(rho/K)/(1+rho); y(1)=0.05; t=[1:60];
> for i = 2:60 y(i)=(1+rho)*y(i-1)*(1-c*y(i-1));

end
> plot(t,y)

10 20 30 40 50 60,
t

Fig. 4.3.3. Logistic growth, discrete model, p large.

Does the chaos phenomenon extend to the continuous model too? Not strictly,
according to the Verhulst equation (4.3.2). Thisis because as y increases continuously,
% will increase to 1 without overshooting. Then continued population growth will

stop, since % will then be 0. However, if population increases are based not on the
present population size but on the population size in the previous generation, say,
then instability and chaos is possible.

In fact, real populations are sometimes chaotic. An unwelcome example is in the
sardine population off the coast of California. In this case, the cause appears to be
the practice of harvesting too many big fish. For details, see [12].

Nonlinear per capita growth rates allow more complicated population behavior.

Real populations are in danger of extinction if their size falls to a low level. Predation
might eliminate the last few members completely, finding mates becomes more dif-
ficult, and lack of genetic diversity renders the population susceptible to epidemics.
By constructing a per capita growth rate that is actually negative below some critical
value 0, there results a population model that tends to extinction if population size
falls too low. Such a per capita growth rate is given as the right-hand side of the
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following modification of the logistic equation:

%%=r<§_l> (1_%), (43.11)

where 0 < 8 < K. This form of the per capita growth rate is pictured in Figure 4.3.4
using the specific parameters r = 1, 60 = %, and K = 1. It is sometimes referred to
as the predator pit.

We draw the graph in Figure 4.3.4 with these parameters:

MaprLE
> restart
> r:=1; theta:=1/5; K:=1;
> plot([y,r*(y/theta-1)*(1-y/K),y=0..1],-.2..1,-1..1);

MarLaB
> r=1; theta=0.2; K=1; y=0:0.05:1; f=r.*(y/theta - 1).*(1-y/K);
> plot(y,f); hold on
> xaxis = zeros(size(y));
> plot(y,xaxis)

1..
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Fig. 4.3.4. The predator pit per capita growth rate function.

The stationary points of (4.3.11) are y = 0, y = 6, and y = K. Unlike before,
now y = 0 is asymptotically stable; that is, if the starting value y of a solution is
near enough to 0, then the solution will tend to O as 7 increases. This follows because
the sign of the right-hand side of (4.3.11) is negative for 0 < y < 0, causing % < 0.
Hence y will decrease. On the other hand, a solution starting with yy > 6 tends to
K as t increases. This follows because when § < y < K, the right-hand side of
(4.3.11) is positive, so Z—f > 0 also and hence y will increase even more. As before,
solutions starting above K decrease asymptotically to K.

Some solutions to (4.3.11) are shown in Figure 4.3.5 with the following syntax:
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1.51

0.57

Olo 1 ' 2 3

Fig. 4.3.5. Some solutions to the predator pit equation.

MaPLE
> r:=1; theta:=1/5; K:=1;
> inits:={[0,.05],[0,.1],[0,0.3],[0,.5],[0,1],[0,0.71,[0,1.5]};
> with(DEtools): DEplot(diff(y(t),t)=r"y(t)*(y(t)/theta-1)*(1-y(t)/K),y(t),t=0..3,inits, arrows=NONE,stepsize=0.1);

MarLaB
% Make up an m-file, fig434.m:
b function yprime = figd34(t,y)
o with r=1, theta=.2, and K=1.
o r=1;theta=0.2; K=1;
% yprime = y.*r.*(1-y./K).*(y/theta-1);
> tspan=[0 3];
> [t05,y05]=0de23('fig434’ ,tspan,.05);
> [t1,y1]=0de23(’fig434’,tspan,.1);
> [t3,y3]=0de23(’fig434 ,tspan,.3);
> [t5,y5]=0de23(’fig434’,tspan,.5);
> [t7,y7]=0de23(’fig434’ tspan,.7);
> [t15,y15]=0de23('fig434’,tspan,1.5);
> plot(t05,y05,t1,y1,t3,y3,t5,y5,t7,y7,t15,y15)

X2 R

As our last illustration, we construct a population model that engenders little
population growth for small populations, rapid growth for intermediate sized ones,
and low growth again for large populations. This is achieved by the quadratic per
capita growth rate and given as the right-hand side of the differential equation

ldy y
= = 1—=). 4.3.12

y dt " ( K ) ( )
Exercises/Experiments

1. At the meeting of the Southeastern Section of the Mathematics Association of
America, Terry Anderson presented a MAPLE program that determined a logistic
fit for the U.S. population data. His fit is given by

o
U.S. population * ————,
populiati 1+ ﬂe—Bt
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where o« = 387.9802, f = 54.0812, and § = 0.0270347. Here population is
measured in millions and ¢ = time since 1790. (Recall the population data of
Example 3.5.1.)

(a) Show that the function given by the Anderson fit satisfies a logistic equation

of the form J ®
y y
— =48y(t)|1 - —),
7 y()( a)

with

YWETTE

(b) Plot the graphs of the U.S. population data and this graph superimposed.
Compare the exponential fits from Chapter 3.

(c) If population trends continue, what is the long-range fit for the U.S. popula-
tion level?

MapLE

> Anderfit:=t—>alpha/(1+beta*exp(-delta*t));

> dsolve({diff(y(t),t)-delta*y(t)*(1-y(t)/alpha)=0, y(0)=alpha/(1+beta)},y(t));

> alpha:=387.980205; beta:=54.0812024; delta:=0.02270347337;

> J:=plot(Anderfit(t),t=0..200):

> tt:=[seq(i*10,i=0..20)];

> pop:=[3.929214, 5.308483, 7.239881, 9.638453, 12.866020, 17.069453, 23.191876,
31.433321, 39.818449, 50.155783, 62.947714, 75.994575, 91.972266, 105.710620,
122.775046, 131.669275, 151.325798, 179.323175, 203.302031, 226.545805,
248.709873];

> data:= [seq([tt[i],popli]],i=1..21)];

> K:=plot(data,style=POINT):

> plots[display]({J,K});

> expfit:= t—>exp(0.02075384393*t+1.766257672);

> L:=plot(expfit(t),t=0..200):

> plots[display]({J,K,L});

> plot(Anderfit(t-1790),t=1790..2150);

MarLaB

> tt=0:10:200;

> pop=[3.929214, 5.308483, 7.239881, 9.638453, 12.866020, 17.069453, 23.191876,...
31.433321, 39.818449, 50.155783, 62.947714, 75.994575, 91.972266, 105.710620,...
122.775046, 131.669275, 151.325798, 179.323175, 203.302031, 226.545805, ...
248.709873];

> plot(tt,pop,x’); hold on;

> alpha=387.980205; beta=54.0812024; delta=0.02270347337;

> Anderfit=alpha./(1+beta*exp(-delta*tt));

> plot(tt,Anderfit)

2. Using the method of (4.3.8), get a logistic fit for the U.S. population. Use the
data in Example3.5.1.

3. Suppose that the spruce budworm, in the absence of predation by birds, will grow
according to a simple logistic equation of the form

Budworms feed on the foliage of trees. The size of the carrying capacity, K, will
therefore depend on the amount of foliage on the trees; we take it to be constant
for this model.



(a)
(b)
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Draw graphs for how the population might grow if » were 0.48 and K were
15. Use several initial values.

Introduce predation by birds into this model in the following manner: Sup-
pose that for small levels of worm population there is almost no predation,
but for larger levels, birds are attracted to this food source. Allow for a limit
to the number of worms that each bird can eat. A model for predation by
birds might have the form

B2
2
where a and b are positive (see [7]). Sketch the graph for level of predation
of the budworms as a function of the size of the population. Take a and b
to be 2.

(c) A model for the budworm population size in the presence of predation could

(d)

be modeled as

dB B B2
— =rBl1l-=)—a——.
dt K b? + B2

To understand the delicacy of this model and the implications for the care
that needs to be taken in modeling, investigate graphs of solutions for this
model with parameters r = 0.48,a =b =2,and K = 150r K = 17.

Verify that in one case, there is a positive steady-state solution and in the
other, the limit of the budworm population is zero.

The significance of the graph with K = 17 is that the worm population
can rise to a high level. With K = 15, only a low level for the size of the
budworms is possible. The birds will eat enough of the budworms to save
the trees!

Here is the syntax for making this study with K = 15:

MaPLE
> K:=15;
> h:=(t,B)—>.48"B*(1-B/K)-2*B"2/(4+B"2);
> plot(h(0,B),B=0..20);
> inits:={[0,1], [0,2], [0,4], [0,5], [0,6], [0,8], [0,10], [0,12], [0,14], [0,16]};
> with(DEtools);
> DEplot(diff(y(t),t)=h(t,y(t)),y(t),t=0..30,inits,arrows=NONE,stepsize=0.1);

MarLaB
% make an m-file, exer43.m
% function Bprime=exer43(t,B); r=.48; K=15; a=2; b=2; Bprime=r*B.*(1-B/K)-a*B."2./(b"2+B."2);
> K=15; a=2; b=2; r=.48;
> B=0:.1:20; Bprime=exer43(0,B); plot(B,Bprime)
> [t,y1]=0de23(’exer43’,[0 30],1);plot(t,y1)
> hold on
> [t,y2]=0de23(’exer43’,[0 30],2);plot(t,y2)
> [t,y4]=0de23('exer43’,[0 30],4);plot(t,y4)
> [t,y5]=0de23(’exer43’,[0 30],5);plot(t,y5)
> [t,y6]=0de23(’exer43’,[0 30],6);plot(t,y6)
> [t,y8]=0de23(’exer43’,[0 30],8);plot(t,y8)
> [t,y10]=0de23('exer43’,[0 30],10);plot(t,y10)
> [t,y12]=0de23("exer43’,[0 30],12);plot(t,y12)
> [t,y14]=0de23('exer43’,[0 30],14);plot(t,y14)
> [t,y16]=0de23('exer43’,[0 30],16);plot(t,y16)
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4. The following is a logistic adaptation of Code 3.5.1. Experiment with the pa-
rameter r and observe the behavior of the population size. Is the size chaotic for
some values of r? It might be necessary to decrease delT (by increasing N to,
say, 20) to get valid results.

MAPLE
> N:=10: delT:=1/N:
#t is now linked to index i by t=-1+(i-1)*delT
> for i from 1 to N+1 do f[i]:=1:
od:
> #work from t=0 in steps of delT
> tfinal:=10: #end time tfinal, end index is n
> ni=(tfinal+1)*N+1:
> K:=3;r:=1.2;
> for i from N+1 to n-1 do t:=-1+(i-1)*delT:
delY:=r*f[i-N]*(1-f[i-N]/K)*delT: #N back=delay of 1
fli+1]:=f[i]+delY: #Eulers method
> od;
> pts:=[seq([i,f[i]],i=0..n)];
> plot(pts);

MaTLAB
% make an m-file, delayFcn0.m:
% function y=delayFcnO(t)
% y=1;
> N=10; % steps per unit interval
> delT=1/N; % so delta t=0.1
% t is now linked to index i by t=-1+(i-1)*delT
% set initial values via delay fcn fO
> for i=1:N+1
> t=-1+(i-1)*delT; f(i)=delayFcnO(t);
>end
% work from t=0 in steps of delT
tfinal=10; % end time tfinal, end index is n
% solve ffinal=-1+(n-1)*delT for n
> n=(tfinal+1)*N+1;
> K=3;r=1.2;
> for i=N+1:n-1
> t=-1+(i-1)*delT;
> delY=r*f(i-N)*(1-f(i-N)/K)*delT; % N back=delay of 1
> f(i+1)=f(i)+delY; % Eulers method
> end
> t=-1:delT:tfinal; plot(t,f);

4.4 A Brief Look at Multiple Species Systems

Without exception, biological populations interact with populations of other species.
Indeed, the web of interactions is so pervasive that the entire field of Ecology is
devotedto it. Mathematically, the subject began about 70 years ago with a simple two-
species, predator—prey differential equation model. The central premise of this Lotka—
Volterra model is a mass action—interaction term. While community differential
equation models are difficult to solve exactly, they can nonetheless be analyzed by
qualitative methods. One tool for this is to linearize the system of equations about
their stationary solution points and to determine the eigenvalues of the resulting
interaction, or community, matrix. The eigenvalues in turn predict the stability of
the web. The Lotka—Volterra system has neutral stability at its nontrivial stationary
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point, which, like Malthus’s unbounded population growth, is a shortcoming that
indicates the need for a better model.

Interacting population models utilize a mass action—interaction term.

Alfred Lotka (1925) and, independently, Vito Volterra (1926) proposed a simple
model for the population dynamics of two interacting species (see [8]). The central
assumption of the model is that the degree of interaction is proportional to the numbers,
x and y, of each species and hence to their product, that is,

degree of interaction = (constant)xy.

The Lotka—Volterra system is less than satisfactory as a serious model because it
entails neutral stability (see below). However, it does illustrate the basic principles of
multispecies models and the techniques for their analysis. Further, like the Malthusian
model, it serves as a point of departure for better models. The central assumption
stated above is also used as the interaction term between reactants in the description
of chemical reactions. In that context it is called the mass action principle. The
principle implies that encounters occur more frequently in direct proportion to their
concentrations.
The original Lotka—Volterra equations are

dx

— =rx —axy,

dt (4.4.1)
dy + bx

a__. ,

- y +bxy

where the positive constants r, m, a, and b are parameters. The model was meant to
treat predator—prey interactions. In this, x denotes the population size of the prey, and
y the same for the predators. In the absence of predators, the equation for the prey
reduces to ‘é—f = rx. Hence the prey population increases exponentially with rate r
in this case; see Section 3.5. Similarly, in the absence of prey, the predator equation
becomes ‘gll—t = —my, dictating an exponential decline with rate m.

The sign of the interaction term for the prey, —a, is negative, indicating that
interaction is detrimental to them. The parameter a measures the average degree of
the effect of one predator in depressing the per capita growth rate of the prey. Thus a
is likely to be large in a model for butterflies and birds but much smaller in a model
for caribou and wolves. In contrast, the sign of the interaction term for the predators,
+b, is positive, indicating that they are benefited by the interaction. As above, the
magnitude of b is indicative of the average effect of one prey on the per capita predator
growth rate.

Besides describing predator—prey dynamics, the Lotka—Volterra system describes
to a host—parasite interaction as well. Furthermore, by changing the signs of the
interaction terms, or allowing them to be zero, the same basic system applies to
other kinds of biological interactions as discussed in Section 4.1, such as mutualism,
competition, commensalism, and amensalism.
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Mathematically, the Lotka—Volterra system is not easily solved. Nevertheless,
solutions may be numerically approximated and qualitatively described. Since the
system has two dependent variables, a solution consists of a pair of functions x () and
y(t) whose derivatives satisfy (4.4.1). Figure 4.4.1 is the plot of the solution to these
equations with r = @ = m = b = 1 and initial values x(0) = 1.5 and y(0) = 0.5.
The figure is drawn with the following syntax:

MaPLE
> predprey:=diff(x(t),t)=r*x(t)-a*x(t)*y(t), diff(y(t),t)=-m*y(t)+b*x(t)*y(t);
>r:i=1;a:=1; m:=1; b:=1;
> sol:=dsolve({predprey,x(0)=3/2,y(0)=1/2}, {x(t),y(t)},type=numeric, output=listprocedure);
> xsol:=subs(sol,x(t)); ysol:=subs(sol,y(t));
> plot([xsol,ysol],0..10,-1..3);

MarLaB

% make an m-file named predPrey44.m with:

% function Yprime=predPrey44(t,x)

% r=1;a=1; m=1; b=1;

% Yprime=[rxx(1)-a*x(1).*x(2); -m*x(2)+b*x(1).*x(2)];
> [t,Y]=0de23(’predPrey44’,[0 10],[1.5;0.5]); % ; for column vector
> plot(t,Y) % both curves as the columns of Y vs. t

x(1)

y(0)

1t

Fig. 4.4.1. Graphs of x(¢) and of y(z), solutions for (4.4.1).

Notice that the prey curve leads the predator curve.> We discuss this next.
Although there are three variables in a Lotka—Volterra system, ¢ is easily elimi-
nated by dividing % by fl—’t‘; thus

5 In Section 4.1, we have discussed a number of biological reasons why in a real situation,
this model is inadequate.



4.4 A Brief Look at Multiple Species Systems 131

MaPLE
> with(plots): with(DEtools):
> inits:={[0,3/2,1/2],[0,4/5,3/2]};
> phaseportrait({predprey},[x,y],t=0..10,inits,stepsize=.1);

MarLaB
> x=Y(:,1); y=Y(:,2); plot(x,y)

2..

1.51

051

0.5 1 X 1.5 2

Fig. 4.4.2. A plot of two solutions of (4.4.1) in the (x, y)-plane.

dy  —my+bxy

dx rx —axy

This equation does not contain ¢ and can be solved exactly as an implicit relation
between x and y:©

MaPLE
> dsolve(diff(y(x),x)=(-y(X)+x*y(x))/(x-x*y(x)),y(x),implicit);

—In(y(x)) + y(x) —In(x) +x = C.

This solution gives rise to a system of closed curves in the (x, y)-plane called the
phase plane of the system. These same curves, or phase portraits, can be generated
from a solution pair x (¢) and y(#) as above by treating ¢ as a parameter. In Figure 4.4.2,
we show the phase portrait of the solution pictured in Figure 4.4.1.

Let us now trace this phase portrait. Start at the bottom of the curve, region A,
with only a small number of prey and predators. With few predators, the population
size of the prey grows almost exponentially. But as the prey size becomes large, the
interaction term for the predators, bxy, becomes large and their numbers y begin to
grow. Eventually, the product ay first equals and then exceeds r, in the first equation
of (4.4.1), at which time the population size of the prey must decrease. This takes us
to region B in the figure.

6 Implicit means that neither variable x nor y is solved for in terms of the other.



132 4 Interactions Between Organisms and Their Environment

However, the number of prey is still large, so predator size y continues to grow,
forcing prey size x to continue declining. This is the upward and leftward section
of the portrait. Eventually, the product bx first equals and then falls below m in the
second equation of (4.4.1), whereupon the predator size now begins to decrease. This
is point C in the figure.

At first, the predator size is still at a high level, so the prey size will continue
to decrease until it reaches its smallest value. But with few prey around, predator
numbers y rapidly decrease until finally the product ay falls below r. Then the prey
size starts to increase again. This is region D in the figure. But the prey size is still at
a low level, so the predator numbers continue to decrease, bringing us back to region
A and completing one cycle.

Thus the phase portrait is traversed counterclockwise, and as we have seen in the
above narration, the predator population cycle qualitatively follows that of the prey
population cycle but lags behind it.

Of course the populations won’t change at all if the derivatives ”Z]—’t‘ and ‘% are
both zero in the Lotka—Volterra equations (4.4.1). Setting them to zero and solving
the resulting algebraic system locates the stationary points,

0=x-(r —ay),
0=y (—m+bx).

Thus if x = % and y = g, the populations remain fixed. Of course, x = y = 0 is
also a stationary point.

Stability determinations are made from an eigenanalysis of the community matrix.

Consider the stationary point (0, 0). What if the system starts close to this point,
that is, yp and xq are both very nearly 0? We assume that these values are so small
that the quadratic terms in (4.4.1) are negligible, and we discard them. This is called
linearizing the system about the stationary point. Then the equations become

dx

E =rxXx,

dy 4.4.2)
— = —my.

dt Y

Hence x will increase and y will further decrease (but not to zero) and a phase portrait
will be initiated as discussed above. The system will not, however, return to (0, 0).
Therefore, this stationary point is unstable.

We can come to the same conclusion by rewriting the system (4.4.2) in matrix form
and examining the eigenvalues of the matrix on the right-hand side. This matrix is

r 0
o) e
and its eigenvalues are A = r and A = —m. Since one of these is real and positive,

the conclusion is that the stationary point (0, 0) is unstable.
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Now consider the stationary point x = 7 and y = - and linearize about it as
follows. Let & = x — % and n = y — 7. In these new variables, the first equation of
the system (4.4.1) becomes

%=r<§+%)—a<§+%><ﬂ+£>=_%’7_a‘§’7'

Again discard the quadratic term; this yields

The second equation of the system becomes

(e D)o+ 5) (04 )

dn _ br$+b§
dt ~ a T

And discarding the quadratic term gives

d br
n_br,

dt a

Thus the equations in (4.4.1) become

d& am

—=——n,

dt b

dn brg 4.4.4)
dt — a’’

The right-hand side of (4.4.4) can be written in matrix form:

[ br _OT} [i] (4.4.5)

This time the eigenvalues of the matrix are imaginary, A = =i\/mr. This implies
that the stationary point is neutrally stable.

Determining the stability at stationary points is an important problem. Linearizing
about these points is acommon tool for studying this stability, and has been formalized
into a computational procedure. In the exercises, we give more applications that
utilize the above analysis and that use a computer algebra system. Also, we give an
example in which the procedure incorrectly predicts the behavior at a stationary point.
The text by Steven H. Strogatz [9] explains conditions under which the procedure is
guaranteed to work.

To illustrate a computational procedure for this predator—prey model, first create
the vector function V:
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MaPLE
> restart:
> with(LinearAlgebra):with(VectorCalculus):
> V:=Vector([rxx-ax*y,-m=*y+bsxsy]);

MarLaB

% We must compute derivates numerically

% make an m-file predPrey44.m with:

% function Yprime=predPrey44(t,x);

% r=1;a=1; m=1; b=1;

% Yprime=[r*x(1)-a*x(1).*x(2); -m*x(2)+b*x(1).*x(2)];

Find the critical points of (4.4.1) by asking where this vector-valued function is zero
(symbolically):

MaPLE
> solve({V[1]=0,V[2]=0}, {x,y});

This investigation provides the solutions {0, 0} and {7, ~}, as we stated above. We
r

now make the linearization of V about {0, 0} and about {%, b

MaPLE
> Jacobian(V,[x,y]);
> subs({x=0,y=0},%);
> subs({x=m/b,y=r/a},$$%);

MarLaB
% eps is matlab’s smallest value; by divided difference
% find the derivatives numerically; first at (0,0)
> M1=(predPrey44(0,[eps 0]) - predPrey44(0,[0 0]))/eps;
% this is the first column of the Jacobian at x=y=0, i.e., derivatives with respect to x
> M2=(predPrey44(0,[0 eps]) - predPrey44(0,[0 0]))/eps;
% the derivatives with respect to y
> M=[M1 M2]; % the Jacobian
% calculate its eigenvalues
> eig(M) % get 1 and -1, +1 means unstable at (0,0)

Note that in matrix form,

dx

@ r 0 x—0 —a

()= () () ()a-voo
dt

for linearization about (0, 0) and

(0)-(HD-C)e-9e-5)

for linearization about (7, Z). Finally, we compute the eigenvalues for the lineariza-
tion about each of the critical points:

MapLE
> Eigenvalues(%%); Eigenvalues(%%);

MarLaB

% now linearize at x=m/b=1, y=r/a=1
> M1=(predPrey44(0,[1+eps 1])-predPrey44(0,[1 1]))/eps;
> M2=(predPrey44(0,[1 1+eps])-predPrey44(0,[1 1]))/eps;
> M=[M1 M2];
> eig(M) % get +/-1 (I=sqrt(-1)), so neutrally stable

The result is the same as that from (4.4.5).
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Exercises/Experiments

1. The following competition model is provided in [9]. Imagine rabbits and sheep
competing for the same limited amount of grass. Assume a logistic growth for
the two populations, that rabbits reproduce rapidly, and that the sheep will crowd
out the rabbits. Assume that these conflicts occur at a rate proportional to the size
of each population. Further, assume that the conflicts reduce the growth rate for
each species, but make the effect more severe for the rabbits by increasing the
coefficient for that term. A model that incorporates these assumptions is

dx 3 2y)
— =x3—x - s
dt Y

dy

_——= 2— b s
o y2—x—y)

where x (¢) is the rabbit population and y is the sheep population. (Of course, the
coefficients are not realistic but are chosen to illustrate the possibilities.) Find
four stationary points and investigate the stability of each. Show that one of the
two populations is driven to extinction.

2. Imagine athree-species predator—prey problem that we identify with grass, sheep,
and wolves. The grass grows according to a logistic equation in the absence of
sheep. The sheep eat the grass and the wolves eat the sheep. (See McLaren
[10] for a three-species population under observation.) We model this with the
equations that follow. Here x represents the wolf population, y represents the
sheep population, and z represents the area in grass:

dx n

— = —Xx + XV,

dt Y

d
—y=—y+2yz—xy,
dz

dZ 2

= =27-72—yz
yr 7—27"—yz

What would be the steady state of grass with no sheep or wolves present? What
would be the steady state of sheep and grass with no wolves present? What is
the revised steady state with wolves present? Does the introduction of wolves
benefit the grass? This study can be done as follows:

MaPLE
> restart:
> rsx:=-X(t)+x(t)*y(t);
> rsy:=-y(t)+2"y(t)"z(t)-x(t) "y (t);
> rsz:= 2*z(1)-z(t)"2-y(t)*z(t);

MaTLAB

% make an m-file, exer442.m

% function Yprime=exer442(t,Y); % Y(1)=x, Y(2)=y, Y(3)=z;

% Yprime=[-Y(1)+Y(1).*Y(2); -Y(2)+2*Y(2).*Y(3)-Y(1).*Y(2); 2*Y(3)-Y(3).*Y(3)-Y(2).*Y(3)];

For just grass:
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MAPLE
> sol:=dsolve({diff(x(t),t)=rsx,diff(y(t),t)=rsy,diff(z(t),t)=rsz,x(0)=0,y(0)=0,z(0)=1.5},{x(t),y(t),z(t)},
type=numeric,output=listprocedure);
> zsol:=subs(sol,z(t)); zsol(1);
> plot(zsol,0..20,color=green);

MaTLAB

% grass
> [t,Y]=0de23(’exer442’,[0 200],[0; 0; 1.5]);
> plot(t,Y(:,3))

For grass and sheep:

MaPLE
> sol:=dsolve({diff(x(t),t)=rsx,diff(y(t),t)=rsy,diff(z(t),t)=rsz,x(0)=0,y(0)=.5,z(0)=1.5},{x(t),y(1),z(t)},
type=numeric,output=listprocedure);
> ysol:=subs(sol,y(t));zsol:=subs(sol,z(t));
> plot([ysol,zsol],0..20,color=[green,black]);

MaTLAB

% grass and sheep
> [t,Y]=o0de23('exer442’,[0 200],[0; .5; 1.5]);
> plot(t,Y)

For grass, sheep, and wolves:

MaPLE
> sol:=dsolve({diff(x(t),t)=rsx,diff(y(t),t)=rsy,diff(z(t),t)=rsz,x(0)=.2,y(0)=.5,2(0)=1.5},{x(t),y(t),z(t)},
type=numeric,output=listprocedure);
> xsol:=subs(sol,x(t));
> ysol:=subs(sol,y(t));
> zsol:=subs(sol,z(t));
> plot([xsol,ysol,zsol],0..20,color=[green,black,red]);

MaTLAB
% all three
> [t,Y]=0de23('exer442’,[0 200],[.2; .5; 1.5]);
> plot(t,Y(:,3),9’) % grass behavior
> hold on
> plot(t,Y(:,2),b’) % sheep behavior
> plot(t,Y(:,1),r') % wolf behavior

. J. M. A. Danby [11] has a collection of interesting population models in his

delightful text. The following predator—prey model with child care is included.
Suppose that the prey x(¢) is divided into two classes, x1(¢) and x2(¢), of young
and adults. Suppose that the young are protected from predators y(¢). Assume
that the young increase in proportion to the number of adults and decrease due
to death or to moving into the adult class. Then

dx 1 b

— =axy — bx; —cxy.

dt 2 1 1

The number of adults is increased by the young growing up and decreased by
natural death and predation, so that we model

dxy

—— =bxy —dxpy —expy.
i 1 2 2y

Finally, for the predators, we take

dy

i —fy+gxay.
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Investigate the structure for the solutions of this model. Parameters that might
be used are

1
a=2, b:c:d:i, and e=f=g=1.

. Show that the linearization of the system

—_ = ax(x ,
dt y y
dy 2 2
— =x+ -
o= ay(x”+y°)

predicts that the origin is a center for all values of a, whereas, in fact, the origin
is a stable spiral if @ < 0 and an unstable spiral if a > 0. Draw phase portraits
fora =1anda = —1.

. Suppose there is a small group of individuals who are infected with a contagious
disease and who have come into a larger population. If the population is divided
into three groups—the susceptible, the infected, and the recovered—we have
what is known as a classical S-I-R problem. (We take up such problems again
in Section 11.4.) The susceptible class consists of those who are not infected,
but who are capable of catching the disease and becoming infected. The infected
class consists of the individuals who are capable of transmitting the disease to
others. The recovered class consists of those who have had the disease, but are
no longer infectious.

A system of equations that is used to model such a situation is often described as
follows:

das

I =—rS)I1(t),
a_ S@It) —al(@)
dr art.
dR _ali

7 ¢ (1)

for positive constants r and a. The proportionality constant r is called the infec-
tion rate and the proportionality constant a is called the removal rate.

(a) Rewrite this model as a matrix model and recognize that the problem forms
a closed compartment model. Conclude that the total population remains
constant.

(b) Draw graphs for solutions. Observe that the susceptible class decreases in
size and that the infected size increases in size and later decreases.

MaPLE
>r=1;a:=1;
> sol:=dsolve({diff(SU(t),t)=-r*SU(t)*IN(t),diffIN(t),t)=r"SU(t) *IN(t)-a*IN(t),diff (R(t),t)=a*IN(t),
SU(0)=2.8,IN(0)=0.2,R(0)=0},{SU(t),IN(t),R(t)},type=numeric,output=listprocedure):
> f:i=subs(sol,SU(t)): g:=subs(sol,IN(t)): h:=subs(sol,R(t));
> plot({f,g,h},0..20,color=[green,red,black]);
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MarLaB
% contents of the m-file exer445a.m:
% function SIRprime=exer445a(t,SIR); % S=SIR(1), I=SIR(2), R=SIR(3);
% r=1;a=1;
% SIRprime=[-r*SIR(1).*SIR(2); r*SIR(1).*SIR(2)-a*SIR(2);a*SIR(2)];
>r=1;a=1;
> [t,SIR]=0de45('exer445a’,[0 20], [2.8; .2; 0]);
> plot(t,SIR)

(c) Suppose now that the recovered do not receive permanent immunity. Rather,

we suppose that after a delay of one unit of time, those who have recovered
lose immunity and move into the susceptible class. The system of equations
changes to the following:

S SOOI + R — 1),

dr

dl— S 1
=7 OI@) —al (),
AR I — Rt —1)
dar '

Draw graphs for solutions to this system. Observe the possibility of oscil-
lating solutions. How do you explain these oscillations from the perspective
of an epidemiologist? (Note: The following has a long run time.)

MaPLE
> restart:with(plots):
> N:=5;
> f[0]:=t—>2.8; g[0]:=t—>0.2*exp(-t"2); h[0]:=t—>0;
> P[0]:=plot([[t,f[0](t),t=-1..0],[t,g[0](t),t=-1..0],[t,h[0](t),t=-1..0]],color=[green,red,black]):
> for n from 1 to N do
> sol:=dsolve({diff(SU(t),t)=-SU(t)*IN(t)+h[n-1](t-1),diff (IN(t),t)=SU(t) “IN(t)-IN(t),
diff(R(t),t)=IN(t)-h[n-1](t-1),SU(n-1)=f[n-1](n-1),IN(n-1)=g[n-1](n-1),
R(n-1)=h[n-1](n-1)},{SU(t),IN(t),R(t)},numeric,output=listprocedure,known=h[n-1]):
> f[n]:=subs(sol,SU(t)); g[n]:=subs(sol,IN(t));
> h[n]:=subs(sol,R(t)):
> P[n]:=plot([[t,f[n](t),t=n-1..n],[t,g[n](t),t=n-1..n],[t,h[n](t),t=n-1..n]],color=[green,red,black]):
> od:
>n:="n’;
> J:=plot([t,1,t=0..N],color=blue):
> display([J,seq(P[n],n=0..N)]);
> for n from 1 to N do
> Q[n]:=spacecurve([f[n](t),g[n](t),h[n](t)],t=n-1..n,axes=normal,color=black):
> od:
> PP:=pointplot3d([1,1,1],axes=normal,symbol=diamond,color=green):
> display([PP,seq(Q[n],n=1..N)]);

MarLaB
> N=100; % number steps per unit interval
> delT=1/N; % so delta t=0.01
% t is now linked to index i by t=-1+(i-1)*delT, where i=1,2,...,nFinal
% and the final index nFinal is given by solving tFinal = -1+(nFinal-1)*delT.
> tFinal=5; nFinal=(tFinal+1)*N+1;
% set up the initial values of R on -1 to 0
> for i=1:N
> R(i)=0; S(i)=0; I(i)=0;
> end
% work from t=0 in steps of delT
> S(N+1)=2.8; I(N+1)=0.2; R(N+1)=0;
> for i=N+1:nFinal-1
> delY=delT*[-r*S(i)*I(i)+R(i-N); r*S(i)*I(i)-a*I(i); a*I(i)-R(i-N)]; S(i+1)=S(i)+delY(1);...
I(i+1)=I(i)+delY(2); R(i+1) = R(i)+delY(3);
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>end
% graph it
> t=-1:delT:tFinal;
> plot(t,S,t,1,t,R) % S blue, | green, R red

Questions for Thought and Discussion

1.

Name and discuss four factors that affect the carrying capacity of an environment
for a given species.

Draw and explain the shape of survivorship and population growth curves for an
r-strategist.

Draw and explain the shape of survivorship and population growth curves for a
K -strategist.

Define carrying capacity and environmental resistance.

Discuss the concept of parental investment and its role in - and K -strategies.
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5

Age-Dependent Population Structures

Introduction

This chapter presents an analysis of the distribution of ages in a population. We begin
with a discussion of the aging process itself and then present some data on the age
structures of actual populations. We finish with a mathematical description of age
structures. Our primary interest is in humans, but the principles we present will apply
to practically any mammal and perhaps to other animals as well.

5.1 Aging and Death

The notion of aging is not simple. One must consider that oak trees, and perhaps
some animals like tortoises, seem to have unlimited growth potential, that a Pacific
salmon mates only once and then ages rapidly, and that humans can reproduce for
many years. In each case a different concept of aging may apply.

The reason that aging occurs, at least in mammals, is uncertain. The idea that
the old must die to make room for the new gene combinations of the young is in
considerable doubt. An alternative hypothesis is that organisms must partition their
resources between the maintenance of their own bodies and reproduction, and that
the optimal partitioning for evolutionary fitness leaves much damage unrepaired.
Eventually, the unrepaired damage kills the organism. We present several hypotheses
about how and why damage can occur.

What is meant by “aging” in an organism?

We will use a simple definition of aging, or senescence:! it is a series of changes

that accelerate with age and eventually result in the death of an organism. This
definition is a loose one because it does not specify the source of the changes—the

! There is much argument about definitions in the study of aging, and we wish to avoid being
part of the dispute. Our simplification may have the opposite effect!

R.W. Shonkwiler and J. Herod, Mathematical Biology: An Introduction with Maple
and Matlab, Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-70984-0 5,
© Springer Science + Business Media, LLC 2009
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only requirement is that they accelerate. We will adopt a common approach and not
regard predation, injury, and disease caused by parasites, e.g., microorganisms, as
causes of aging, even though their incidence may increase with age.

The effect of aging on survival is demonstrated in Figure 5.1.1 for a simple model
system of test tubes. Suppose that a laboratory technician buys 1000 test tubes and
that 70% of all surviving test tubes are broken each month. Curve (a) of Figure 5.1.1
shows the specific rate of breakage of the tubes—a constant 70% per month.> Note
that a test tube surviving for three months would have the same chance of breakage
in the fourth month as would one at the outset of the experiment (because aging has
not occurred). Alternatively, suppose that the test tubes broke more easily as time
passed. A tube surviving for three months would have a much greater chance of
breakage during the fourth month than would one at the outset of the experiment
(because the older one has aged). Curve (b) shows the rate of breakage for these
tubes (doubling each month in this example).

(a) Constant specific death rate

% (= 70%/month)
g
=
5]
g
5 50% -
a,
5]
&n
<
2
B
8
B 25%
2
<
=2
<— (b) Increasing specific death rate

(starts at 1% and doubles monthly)

0% | | | | J

1 2 3 4 5 6 7 8

Time (months)

Fig. 5.1.1. Death rate, modeled on the breakage of test tubes. Curve (a) is obtained by assuming
a specific death (breakage) rate of 70% of survivors per month of test tubes surviving to that
point. This is equivalent to assuming that there is no aging, because the probability of death
(breakage) is independent of time. The data of curve (b) is obtained by assuming that the
specific death rate is 1% of the survivors in the first month and then doubles each month
thereafter. This is equivalent to assuming that the test tubes age, because the probability of
death (breakage) increases with time.

2 The specific death (= breakage) rate is the number dying per unit time among those of a
specific age. This is to be distinguished from the simple death rate, which is the death rate
irrespective of age. In this experiment, of course, all the test tubes are of the same age.
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Figure 5.1.2 shows survivorship curves for the two cases whose specific death rates
are described by Figure 5.1.1. You should compare them to Figures 4.1.2 and 4.1.4,
which are survivorship curves for r-strategists and K -strategists, respectively. It
should be clear that r-strategists do not show aging (because they are held in check
by climatic factors, which should kill a constant fraction of them, regardless of their
ages).? The situation with regard to K -strategists is a bit more complex: Mammals,
for instance, are held in check by density-dependent factors. If they live long enough,
aging will also reduce their numbers. Both density-dependent factors and aging
become more important as time passes. Thus the survivorship curve for a mammalian
K -strategist should look somewhat like that shown in Figures 4.1.4 and 5.1.2(a).

1000
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0 1 2 3 4 5 6 7

Time (months)

(a) Increasing specific death rate
(starts at 1% and doubles monthly)

Survivors

(b) Constant specific death rate
(= 70%/month)

Fig. 5.1.2. (a) A survivorship curve for a nonaging system, using the data of Figure 5.1.1(b).
(b) A survivorship curve for a system that exhibits aging, using the data of Figure 5.1.1(a).
Both curves assume an initial cohort of 1000 test tubes at time t = 0. Note the similarity of
curves (a) and (b) to Figures 4.1.2 and 4.1.4, which are survivorship curves for r-strategists
and K -strategists, respectively.

Why do organisms age and die?

When asking “why”’ of any biological process as profound as senescence, we should
immediately look to the Darwinian model of evolution for enlightenment and seek a
positive selective value of aging to a species. A characteristic conferring a positive
advantage is called an adaptation, and as we shall see, the adaptation we seek may
not exist.

A simple adaptive explanation for senescence is that the Darwinian struggle for
survival creates new organisms to fit into a changing environment. Thus the previous

3 This is admittedly an approximation.
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generation must die to make space and nutrients available for the new generation.
Thomas Kirkwood has made two objections to this hypothesis [1]. The first objection
is posed in the question, “How can aging have a positive selective value for a species
when it can kill all the members of the species?” Besides, many organisms show the
most evident aging only after their reproductive lives have ended. If the organism
should show genetically programmed deterioration in its old age, that would have
minimal (or no) selective value because the organism’s reproductive life would have
already ended anyway.

Kirkwood’s second objection is that most organisms live in the wild and almost
always die from disease and predation. Thus there is no need for selection based on
aging in most organisms—they die too soon from other causes.

There is another way to answer the question, “Why do organisms age?”’—one that
is nonadaptive in that aging does not have a positive selective value. First, recall that
in Section 4.1 we discussed how trees can partition each year’s energetic resources
and physical resources between asexual and sexual reproduction. For a year or two
a tree would add thick trunk rings (asexual growth) at the expense of reduced nut
production (sexual reproduction). Then for a year or two, the tree would reverse the
situation and produce lots of nuts at the expense of vegetative growth. There is a
hypothesis about aging that generalizes this situation; it is called the disposable soma
model *

Kirkwood assumes that the organisms whose aging is of interest to us must par-
tition their finite resources between reproduction and the maintenance of the soma,
i.e., the body. In particular, somatic maintenance means the repair of the many insults
and injuries that are inflicted on the body by factors like ordinary wear and tear, toxin
production, radiation damage, and errors in gene replication and expression. The
two needs, reproduction and somatic maintenance, thus compete with one another. If
excessive resources are put into somatic maintenance, there will be no reproduction,
and the species will die out. If excessive resources are devoted to reproduction, there
will be insufficient somatic maintenance, and the species will die out. We thus assume
that there is an optimal partitioning of resources between somatic maintenance and
reproduction. The disposable soma model postulates that this optimal partitioning is
such that some somatic damage must go unrepaired and that the organism eventually
dies because of it. Thus the organism has a finite lifetime, one marked by increasing
rate of deterioration, i.e., aging.

The disposable soma model is nonadaptive in that aging is a harmful process. It
is, however, an essential process because it is a measure of the resources diverted
into reproduction. In a way, aging is a side effect, but, of course, it has powerful
consequences to the organism.

Aging of cells can provide insight into organismal aging.

The death of the only cell comprising an amoeba has consequences that are quite
different from those associated with the death of a single skin cell of a person; thus we
will have to distinguish between aging in single-celled and multicellular organisms.

4 «“Soma” means “body.”
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It is fine to study the processes that lead to the death of a cell, but what if that
cell is only one of many in an organ of a multicellular organism? To answer this
question, we must first understand that cell death is a natural part of the life and
development of organisms. Our hands are initially formed with interdigital webbing,
perhaps suggesting our aquatic ancestry. This webbing is removed in utero by the
death of the cells that comprise it in a process called apoptosis. There are many
other examples of cell death as a natural consequence of living: our red blood cells
live only about three months and our skin cells peel off constantly. Both are quickly
replaced, of course.

We can now return to the question of what happens if one, or even a small fraction,
of the cells in an organ die. Usually, nothing—we see that it happens all the time.
But if that cell dies for a reason connected to the possible deaths of other cells, then
the study of the one cell becomes very important. Thus the study of aging in cells
can contribute greatly to our knowledge of aging in multicellular organisms.

How do organisms become damaged?

Whether we accept Kirkwood’s disposable soma model or not, it is clear that our
cells age, and we must suggest ways that the relevant damage occurs. Numerous
mechanisms have been proposed, but no single one has been adequate, and in the end
it may be that several will have to be accepted in concert. Some examples of damage
mechanisms that have been proposed are the following:

(a) Wear and tear: A cell accumulates “insults,” until it dies. Typical insults are
the accumulation of wastes and toxins, as well as physical injuries like radiation
damage and mechanical injury. These are all well known to cause cell death.
Cells have several mechanisms by which insults can be repaired, but it may be
that these repair systems themselves are subject to damage by insults.

(b) Rate of living: This is the “live fast, die young” hypothesis. In general, the
higher a mammal’s basal metabolic rate, the shorter its life span is. Perhaps some
internal cellular resource is used up, or wastes accumulate, resulting in cell death.

(c) Preprogrammed aging: Our maximum life span is fixed by our genes. While
the average life span of humans has increased over the past few decades, the
maximum life span seems fixed at 100—110 years. Noncancerous mammalian
cell lines in test tube culture seem capable of only a fixed number of divisions.
If halfway through that fixed number of divisions, the cells are frozen in liquid
nitrogen for ten years and then thawed, they will complete only the remaining
half of their allotted divisions.

Cell reproduction seems to have a rejuvenating effect on cells.

It is a common observation that cells that reproduce often tend to age more slowly
than cells that divide infrequently. This effect is seen in both asexual and sexual
reproduction. Cancer cells divide rapidly and will do so in culture forever. Cells
of our pancreas divide at a moderate rate, and our pancreas seems to maintain its
function well into old age. Brain cells never divide and brain function deteriorates
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noticeably in old age. Even single-celled organisms can exhibit this effect: they may
show obvious signs of senescence until they reproduce, at which point those signs
disappear.

5.2 The Age Structure of Populations

Age-structure diagrams show the frequency distribution of ages in a population. The
data for males and females are shown separately. The shape of these diagrams can
tell us about the future course of population changes: The existence of a large pro-
portion of young people at any given time implies that there will be large proportions
of individuals of childbearing age 20 years later and of retirees 60 years later. The
shapes of age-structure diagrams are also dependent on migration into and out of a
population. Comparison of data for males and females can tell us about the inher-
ent differences between the genders and about the society’s attitude toward the two
genders.

Age-structure diagrams are determined by age-specific rates of birth, death, and
migration.

Figure 5.2.1 is a set of age-structure diagrams for the United States for 1955, 1985,
2015 (projected), and 2035 (projected) (see also [2]). They show how the population
is, or will be, distributed into age groups. Data are included for males and females.

O Male
[]Female

1955 1985 2015 2035

24168 0 81624 24168 0 81624 24168 0 81624 24168 0 8 1624
Millions Millions Millions Millions

Fig. 5.2.1. Past and future (projected) age-structure diagrams for the United States. Note the
growing proportion of elderly, compared to young, people. The cohort of “baby boomers™ is
evident at the base of the 1955 data. That group moves up in the 1985 and 2015 diagrams. (Re-
drawn from “Age and Sex Composition of the U.S. Population,” in U.S. Population: Charting
the Change: Student Chart Book, Population Reference Bureau, Washington, DC, 1988. Used
with permission.)
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[ Male
[[]Female |
Rapid Growth Slow Growth 51—3;?;;1}:;;
Age Kenya, 1990 China, 1990 beginning at

————————————————————— <1910

4 3 1 4
Percent of population Percent of population

Slow Growth Negative Growth  Birth year

; : 5-yr. ranges
United States, 1990 Russia, 1990 beginning at

<1910

4 6 4 2 0 2 4 6

Percent of population Percent of population

Fig. 5.2.2. Age-structure diagram for four countries for 1990. Each is labeled according to its
expected future growth rate. For instance, Kenya has a high proportion of young people, so
we expect its future growth rate to be high. (Redrawn from “Patterns of Population Change,”
in World Population: Toward the Next Century, Population Reference Bureau, Washington,
DC, 1994, p. 5. Used with permission.)

These diagrams can convey a great deal of information. For example, look at the
data for 1955 and note the 20-30-year-old cohort.> There are relatively fewer people

5 A cohort is a group of people with a common characteristic. Here the characteristic they
share is that they were born in the same decade.
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in this group because the birth rate went down during the Great Depression. On the
other hand, the birth rate went up dramatically after the Second World War, as the
20-40-year-old cohort in 1985 (the “baby boomers’’) shows clearly. Both of these
cohorts can be followed in the projected data. Note also how the population of elderly
people, especially women, is growing.

Figure 5.2.2 shows recent data for four countries—Kenya, China, the United
States, and Russia. Future population growth can be estimated by looking at the
cohort of young people, i.e., the numbers of people represented by the bottom part of
each diagram. In a few decades, these people will be represented by the middle part
of age-structure diagrams and will be having babies. Thus we can conclude that the
population of Russia will remain steady or even decrease, those of the United States
and China will grow slowly to moderately, and that of Kenya will grow rapidly.

Another factor besides births and deaths can change an age-structure diagram:
migration into and out of a population may change the relative numbers of people in
one age group. Figure 5.2.3 shows data for Sheridan and Durham Counties, North
Carolina, for 1990. Rural areas of the Great Plains have suffered a loss of young
people due to emigration, and the data for Sheridan County demonstrate it clearly.
On the other hand, Durham County is in the North Carolina Research Triangle, the site

[0 Male
[]Female
Population Population
A Durham County, 1990 Sheridan county, 1990
ge

0 2 ; 2 2

Percent of population Percent of population

Fig. 5.2.3. An age-structure diagram showing the effects of migration. Many young people
in the 20-45-year-old age group have moved into Durham County, North Carolina, and many
young people in the 20-30-year-old age group have moved out of Sheridan County, North
Carolina. (Redrawn from “Age and Sex Profiles of Sheridan and Durham Counties, 1990,”
in “Americans on the Move,” Population Bull., 48-3 (1993), 25 (published by Population
Reference Bureau, Washington, DC). Used with permission.)
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of several major universities and many research industries. It is therefore a magnet
for younger people, and its age-structure diagram reflects that fact.

Some populations have more men than women.

We are accustomed to the idea that there are more women than men in our country.
That (true) fact can be misleading, however. While the sex ratio at conception is
not known, there is evidence that a disproportionate number of female fetuses are
spontaneously aborted in the first trimester of pregnancy. On the other hand, in the
second and third trimesters, more male than female fetuses are lost. The ratio of sexes
at birth in the United States is about 106 males to every 100 females. The specific
death rate for males is higher than for women, and by early adolescence the sex ratio
is 100:100. You can refer back to Figure 5.2.1 to see the effect of males” higher death
rate on the relative numbers of males and females in later life.

O Male
[]Female

Unbalanced Sex Ratio
United Arab Emirates

0 100 200

Thousands

Fig. 5.2.4. Age-structure diagram from the United Arab Emirates showing an unbalanced sex
ratio. The gender imbalance, males outnumbering females, is due to the importation of males
to work in the oil fields: these males are not accompanied by their families. (Redrawn from
“Unbalanced Sex Ratio: United Arab Emirates, 1985, in “Population: A Lively Introduction,”
Population Bull, 46-2 (1991), 25 (published by Population Reference Bureau, Washington,
DC). Used with permission.)
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The fact that there are more females than males in the United States might lead
us to be surprised by the data of Figure 5.2.4, an age-structure diagram for the United
Arab Emirates. The unbalanced sex ratio, heavily tilted toward males, arises from
immigration: U.A.E. has brought in many men from other countries to work in its oil
fields, and the men seldom bring their families.

Another feature of gender ratios can be noted in age-structure diagrams of certain
countries. In the late 1980s, the ratio of men to women in advanced countries was
about 94:100; in developing countries, it was about 104:100.

5.3 Predicting the Age Structure of a Population

A graph of population size P as a function of age y visually documents the age struc-
ture, or profile, of a population. Over time, a population profile can change due to
periodic environmental conditions that may be favorable or unfavorable to the popu-
lation, and to occasional events such as natural diasters and epidemics. For human
populations, medical improvements have gradually increased the representation in
the higher age brackets.

But much greater use can be made of the population density function P. With a
knowledge of survival rates by age, £(y), the trend in P can be predicted. It can be
shown that if survival rates are relatively constant over time, then the age structure
of a population tends to a fixed profile within which the overall size of the population
may nonetheless increase or decrease.

Age structure is the distribution of a population by age.

The age structure of a population can be described by means of a function P(y)
giving the size of the population in the yth age group for a set of groups covering
all possible ages. Table 5.3.1 shows the age distribution of the U.S. population in
1990 refined to 20-year age brackets. Mathematically, it is more common to use one-
year age brackets, so that P (0) is the number of newborns less than one year of age,
P(1) counts the one-year-olds, and so on. We shall refer to P(y) as the age density
function. The total size of a population is calculated from its density by summing,

Table 5.3.1. U.S. population, 1990.

Age bracket| Number bracket
(in millions)

0-20 71.8
20-40 103.4
40-60 60.3
60-80 20.9
80-100 .209

100 .001
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o

P=>"P. (5.3.1)
n=0

The use of infinity as the upper limit of this sum is a simplifying measure; for some
age, maybe ymax = 115, P(y) = 0 for y > ymax, so the indicated infinite sum is in
reality only from O to 115.

The age structure of the United States has gradually evolved over the last half
of the twentieth century, as seen in Figure 5.2.1. On the other hand, any of several
catastrophes can bring about rapid change to an age structure. We account for these
possibilities by regarding the age-density function as dependent on calendar time ¢
as well as age y, and in deference to these dual dependencies we write P(y, t). In
addition, including the reference to time provides a mechanism for describing births
year by year, namely, P (0, ). This is the birth rate of a population in year ¢. If the
birth rate is down in some year, say, t = fo, this affects the population in subsequent
years as well, as we have seen above. To begin with, the population of one-year-olds
cannot exceed the population of newborns in the previous year,

P(l, 10+ 1) = P(0, 1),

assuming no immigration into the population, of course. This is generally true for
any age bracket; thus under the condition of no immigration,

P(y+1,t+1) < P(y,t) fory > 0and forall z. (5.3.2)

While the population in an age bracket cannot increase in the following year, it can
decrease due to deaths that occur during the year. Let ;(y) denote the death rate, or
mortality, experienced by the population of age y. The death rate is dimensionless,
being the fraction of deaths per individual, or since it is usually a number in the
thousandths, it is frequently given as deaths per 1000 individuals. The actual number
of deaths that occur among the segment of the population of age y in year ¢ is the
product of the death rate and the number of individuals at risk,

)Py, 1)

(o must be deaths per individual here or P must be population in thousands).

Virtually all natural populations experience very high preadult mortality rates. In-
sect populations and other unnurtured species (r-strategists; cf. Chapter 4) experience
death rates similar to that shown in Figure 5.1.1(a). Notice that the newly hatched
young suffer the highest mortality rates, with improvement as the animal ages. By
contrast, nurtured species (K -strategists), such as mammals, experience much lower
preadult mortality rates, as seen in Figure 5.1.1(b).

A mortality table for the United States is given in Table 5.3.2. In most species,
mortality rates are lowest during the middle adult years.

Returning to (5.3.2), taking deaths into account yields the equality

P(y+1Lt+1)= Py, 1) —u(y)P(y,1), (5.3.3)
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Table 5.3.2. U.S. mortality table for 1991. (Source: U.S. Department of Health and Human
Services, Hyattsville, MD.)

Age |Deaths (%)

0-10 1.2
10-20 .57
20-30 1.2
30-40 1.8
40-50 3.1
50-60 7.2
60-70 16.4

70+ 100

Table 5.3.3. U.S. mortality rates; rates per 1,000 population. (Source: U.S. Department of
Health and Human Services, Hyattsville, MD.)

Year |Average mortality
1920 13.0
1930 11.3
1940 10.6
1950 9.6
1960 9.5
1970 9.5
1980 8.6
1990 8.6

provided there is no immigration or emigration. But this equation ignores the effect
of external events that may play havoc with death rates. For example, due to a catas-
trophic epidemic, death rates in the youth age groups may be high during the calendar
year in which it strikes. On the other hand, the U.S. population has experienced a
gradually decreasing death rate over this century as a result of improved medical care
(see Table 5.3.3). To account for these and other factors unrelated to age, we must
regard p as a function of time as well as age. Thus (5.3.3) becomes

P(y+1Lt+1) =Py, 1) —uly,. )Py, 1) =Ly, 0Py, 1), (5.3.4)

where €(y,t) = 1 — u(y, t) is the fraction of the population of age y that will live
through year ¢. These factors £(-, -) are called survival rates.

In the absence of external events, populations evolve to a stable age distribution.

While survival rates depend on calendar time in general, here we are interested in
predicting the population structure in the absence of external events. Consequently,
we will regard u (and £) as a function of age only.

If we know yearly birth rates P (0, ¢) and age-specific survival rates £(y), (5.3.4)
allows us to calculate the course of the population through time, including its age
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distribution and size. We also need to know the present age distribution, P(y, 0),
where we may regard the present time as ¢+ = 0. Usually the calculation is done for
the female population of the species, since birth rates depend largely on the number
of females while being somewhat independent of the number of males. The birth
rates given will therefore pertain to the birth of females.

We illustrate this calculation for a K-strategist, specifically, for the gray seal,
whose (female) fecundity and survival rates are given in Table 5.3.4.

Table 5.3.4. Gray seal fecundity and survival rates. (Source: D. Brown and P. Rothery, Models
in Biology: Mathematics, Statistics, and Computing, Wiley, Chirchester, UK, 1993.)

Agel0 [T 2 [3 4 5 |5+
Fecundity[0 [0 |0 [0 [0.08 [0.28 [0.42
Survival|0.657]0.930/0.930[0.930[0.935]0.935]0

To get it started, we make the assumption that the present population has uniform
age density. Actually, this assumption about the starting population is not important
in the long term, as we will see in the exercises. The key values are the birth and
survival rates in the table. Since the survival rate for age 0 is 0.657, from (5.3.4)
we have

P(,t+1)=0.657P(0,t) forallz > 0.
Similarly, fory =1, 2, 3,
P(y+1,t+1)=0.930P(y,t) forallt >0.
And for y =4, 5,

P(y+1,t+1)=0.935P(y,t) forallt >0.

In this we take 5 + 1 to be 5+. Since there is no category beyond “5+,” the survival
rate £(5+) is 0. The birth-rate calculation uses the fecundity entries and is only
slightly more complicated,

PO,t+1)=0.08P(4,t)+0.28P(5,1) + 0.42P(5+, ).

It is convenient to write the calculation in matrix form. Let p(¢) be the vector
whose components are P (y, t),

P, 1)
P(1,1)
PQ2,1)
p()=| P@3.1)

P, 1)

P(5,1)
| P(5+,1) |
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Then p(1) is given as the matrix product

0 0 0 0 008 0280427 P(0,0)
0657 0 0 0 O 0 O P(1,0)
0 0930 0 0 O 0 0 P(2,0)
0 0 0930 0 0 0 0 P(3,0) | = Lp(0).
0 0 0 0930 0 0 O P(4,0)
0 0
0 0 |

p(l) =

0 0 0 095 0 P(5,0)
0 0 0 0 0935 | P(5+,0) |

(5.3.5)
Denote by L the 7 x 7 matrix indicated. The first row reflects the births coming from
various age groups and has nonzero terms indicated by them. Except for the first row,
the only nonzero terms are the principal subdiagonal entries and those are the survival
rates £(y). This matrix is called the Leslie matrix, and it always has the same form:

ar ax az --- a

by 0 0 ---0

L=|0 by 0 ---0

0 0 0---0

To be specific, assume a starting density p(0). The new density p(1) in (5.3.5) can
be computed by inspection, or by using the computer:

MapLE (symbolic calculation)
> with(LinearAlgebra):
> el:=Matrix(7,7); # Maple initializes the entries to 0
# symbolic maple calculations require rational numbers,
#.08 = 2/25, .28 = 7/25, and so on
> el[1,5]:=2/25: el[1,6]:=7/25: el[1,7]:=21/50: el[2,1]:=657/1000: el[3,2]:=93/100:
> el[4,3]:=93/100: el[5,4]:=93/100: el[6,5]:=935/1000: el[7,6]:=935/1000:
> el;
> evalm(el & [PO,P1,P2,P3,P4,P5,P6]);

Either way, we get

0.08P(4,0) + 0.28P(5,0) + 0.42P(5+, 0),
0.657P(0, 0)
0.930P(1,0)
p(l) = 0.930P (2, 0)
0.930P (3, 0)
0.935P (4, 0)
0.935P(5, 0)

Furthermore, the population size after one time period is simply the sum of the
components of p(1).

The beauty of this formulation is that advancing to the next year is just another
multiplication by L. Thus

p(2) = Lp(1) = L*p(0), p(3) = Lp(2) = L’p(0), etc.

The powers of a Leslie matrix have a special property, which we illustrate. For
example, compute L'0:
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MapLE
> el10:=evalf(evalm(el*10)):
> Digits:=2; evalf(evalm(el10)); Digits:=10;

MarLaB
>L=[0000.08.28.42;.657000000;0.93000000;00.9300000;000.930000;...
0000.93500;00000.9350]
>L"(10)

The result, accurate to three places, is

0.0018 0.018 0.058 0.094 0.71 0 0
0 0.0018 0.013 0.041 0.067 0.050 0
0 0 0.0018 0.013 0.041 0.066 0.050
L%=1 o011 0 0 0.0018 0.013 0.031 0.033 |. (5.3.6)
0073 0.16 0 0 0.0018 0.0063 0.0094
0.021 0.10 016 0 0 0 0
0 0030 010 016 0 0 0

Remarkably, the power L" can be easily approximated, as predicted by the Perron—
Frobenius theorem [3], as we now describe. Letting A be the largest eigenvalue of
L (see Section 2.6) and letting V be the corresponding normalized eigenvector, so
LV = AV, then

L"p(0) ~ cA"V,

where c is a constant determined by the choice of normalization; see (5.3.7). This
approximation improves with increasing n. The importance of this result is that
the long-range forecast for the population is predictable in form. That is, the ratios
between the age classes are independent of the initial distribution and scale as powers
of A.

The number A is a real, positive eigenvalue of L. It can be found rather easily
by a computer algebra system. The eigenvector can also be found numerically. It is
shown in [4] that the eigenvector has the following simple form:

v=| k2 | (5.3.7)

To illustrate this property of Leslie matrices, we will find A, V, and L' for the gray
seal example. Other models are explored in the exercises.

MaPLE

> vel:=Eigenvectors(fel);

> vals:=vel[1]; lambda:=vals[1] # only one real e-value, should be the first
# grab the first e-vector and normalize it

> vects:=(Transpose(vel[2]): V:=vects[1]; V:=[seq(V[i]/V[1],i=1..7)]:

> V:=convert(V,Vector[column]);

MarLaB
> [evect,eval]=eig(L)
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> lambda=eval(1)

> pf=evect(;,1)
% get pf=0.8586 and eigenvector=[-0.3930 -0.3007 ... -0.4532],
% multiply by a constant so leading term is 1

> pf=pf/pf(1)

The eigenvalue and eigenvector are given as

1.0
0.765
0.829
A~ 0.85806 and V ~ [0.898], (5.3.8)
0.972
1.06
1.15

which is normalized to have first component equal to 1. The alternative formula
(5.3.7) for computing V can be used to check this result:

MaPLE
> chk:=[1,el[2,1)/lambda, el[2,1]*el[3,2])/lambda"2, el[2,1]*el[3,2]*el[4,3])/lambda"3,
el[2,1]*el[3,2]*el[4,3]*el[5,4])/lambda"4, el[2,1]*el[3,2]*el[4,3]*el[5,4]*el[6,5)/lambda5,
el[2,1]*el[3,2]*el[4,3]*el[5,4]"el[6,5]*el[7,6])/lambda6];

MarLaB
>V=[1; L(2,1)/lambda; L(2,1)*L(3,2)/lambda"2; L(2,1)*L(3,2)*L(4,3)/lambda"3;...
L(2,1)*L(3,2)*L(4,3)*L(5,4)/lambda"4; L(2,1)*L(3,2)*L(4,3)*L(5,4)*L(6,5)/lambda"5;...
L(2,1)*L(3,2)*L(4,3)*L(5,4)*L(6,5)*L(7,6)/lambda"6]

Evidently, we get the same vector V as (5.3.8). Next, we illustrate the approximation
of the iterates for this example. Take the intial value to be uniform, say, 1; then make
the following calculations:

MaPLE
> evalf(evalm(el10 &* [1,1,1,1,1,1,1]));
> evalm(lambda“10*V);

MarLaB

> p=ones(7,1) % column vector of 1s

> (L™10)*p

> lambda10*V
1 .24 22
1 17 17
1 17 .18

pOy=|1]. LY =«19|xe0V=C].19

1 .25 21
1 28 23
1 .29 25

One implication of this structure is that the total population is stable if A = 1, and
it increases or decreases depending on the comparative size of A to 1.

Continuous population densities provide exact population calculations.

Any table of population densities, such as P(y, t) forn = 0, 1, ... asabove, will have
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limited resolution, in this case one-year brackets. Alternatively, an age distribution
can be described with unlimited resolution by a continuous age-density function,
which we also denote by P(y, t), such as we have shown in Figures 4.1.2 and 4.1.4.

Given a continuous age density P(y, ), to find the population size in any age
group, just integrate. For instance, the number in the group 17.6 to 21.25 is

21.25

number between age 17.6 and 21.25 = / P(y,t)dy.
17.6

This is the area under the density curve between y = 17.6 and y = 21.25. The total
population at time ¢ is

o0
P = / P(y,t)dy,
0

which is the analogue of (5.3.1). For a narrow range of ages at age y, for example, y
to y+ Ay with Ay small, there is a simpler formula: Population size is approximately
given by the product

P(y,1)- Ay

because density is approximately constant over a narrow age bracket.

The variable y in an age density function is a continuous variable. The period of
time an individual is exactly 20, for instance, is infinitesimal; so what does P (20, t)
mean? In general, P(y, t) is the limit as Ay — 0 of the number of individuals in an
age bracket of size Ay that includes y, divided by Ay,

. population size between y and y + Ay
P(y,t) = lim .
Ay—0 Ay

As above, the density is generally a function of time as well as age, and it is written
P(y,t) to reflect this dependence.

Table 2.7.3 gives the mortality rate for Alabama in 1990. From the table, the death
rate for 70-year-olds, i.e., someone between 70.0 and 70.999. .., is approximately
40 per 1000 individuals over the course of the year. Over one-half of the year it
is approximately 20 per 1000, and over At fraction of the year the death rate is
approximately (70, 1990) - At in deaths per 1000, where (70, 1990) is 40. To
calculate the actual number of deaths, we must multiply by the population size of
the 70-year-olds in thousands. On January 1, 1990, the number of such individuals
was f7701 P(y, 1990)dy/1000. Thus the number of deaths among 70-year-olds over a
small fraction Az of time at the beginning of the year 1990 is given by

71

(70, 1990) At / P(y, 1990)dy/1000. (5.3.9)
70

A calculation such as (5.3.9) works, provided the death rate is constant over the
year and the time interval At is less than one year. But in general, death rates vary
continuously with age. In Figure 5.3.1, we show an exponential fit to the data of
Table 2.7.3. The approximate continuously varying death rate is
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u(y, 1) = Ae”,

which is drawn using the methods of Exercise 1 in Section 2.7. This equation assumes
that the death rate is independent of time; but as we have seen, it can depend on time
as well as age.

80T
60T
deaths :

per
1000 40T

201

0]o
age

Fig. 5.3.1. Least squares fit to the death rate table, Table 2.7.3.

To calculate a number of deaths accurately, we must account for the changing
death rate as well as the changing density. The term that calculates the number of
deaths to individuals of exact age y at time ¢ over the interval of time At is

P(y, iy, 1) At. (5.3.10)

The number of deaths among those individuals who are between y and y + Ay years
old over this same period of time is

[Py, HAYlu(y, 1) At.

Suppose we want to do the calculation for those between the ages of a; to a> over
the calendar time #, to ;. The approximate answer is given by the double sum of
such terms,

ZZM(}’J)P(y,I)AyAt,

over a grid of small rectangles Ay Ar covering the range of ages and times desired. In
the limit as the grid becomes finer, this double sum converges to the double integral

%) ap
/ / w(y, )P(y, t)dydt. (5.3.11)
1 al

Return to (5.3.10), which calculates the loss of population, A P, in the exact age
group y over the time interval At,
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AP = —u(y,t)P(y,t)At.
But by definition, the change in population is
AP =P(y+ Ay,t + At) — P(y,1).

Equate these two expressions for A P, incorporating the fact that as time passes, the
population ages at the same rate, thatis, Ay = At. Therefore, we have the continuous
analogue of (5.3.3),

P(y + At,t + A1) — P(y, 1) = —p(y, 1) P(y, 1) At.
Subtract the term P(y, t + At) from both sides, transpose P(y, t), and divide by At:

P(y+ At t + At) — P(y, t + A1) N P(y,t+ A1) — P(y, 1)

=— ,HP.
AL A n(y, 1)
Finally, take the limit as At — 0 to get
9P + P _ (y, 0P (5.3.12)
oy ar  MPE ~

This is referred to as the Von Foerster equation. Its solution for y > ¢ is
P(y, 1) = P(y — 1, 0)e™ Jo wOy—t+uwdu

as can be verified by direct substitution.

MapLE (symbolic, no MaTLAB)
> P:=(n,t)—>h(n-t)*exp(-int(mu(n-t+u,u),u=0..1));
> diff(P(n,t),t)+diff(P(n,t),n)+mu(n,t)«P(n,t);
> simplify(%);
This solution does not incorporate new births, however. Just as in the discrete case,
we must use experimental data to determine P (0, #) as a function of P(y, t), y > 0.

Exercises/Experiments

1. Consider the following discrete population model based on (5.3.1). Suppose the
initial population distribution (year t = 0) is given by

Pn,0)=(100—-n)-(25+4+n), n=0,...,100.

Take the birth rate to be 1.9 children per couple per 10 years in the ten-year age
bracket from 21 to 30 years of age. Thus over the year ¢, the number of births
(number of people aged 0 in year # + 1) is

30

1.9 & PG.1)
PO t+1)=—=)" :
2 &0
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(Assume that this formulation accounts for the complication of a %—year gestation
period.) Take the death rate for people of age n to be given by the exponential

w(n) = 0.0524(exp(0.03n) — 1), n > 0.

The problem is to advance the population for three years, keeping track of the

total population:
100

Total(t) = Y P(n.1).
n=0
Does the total population increase? (One can use the Leslie matrix approach or
(5.3.3) directly.)

MAPLE

> restart;

> for n from 0 to 100 do
P[n,0]:=(100-n)*(25+n); mu[n]:=.0524*(exp(.03*n)-1);
od:

> plot([seq([i,P[i,0]],i=0..100)]);

> plot([seq([i,mul[i]],i=0..100)]);

> for t from 1 to 3 do
P[0,t]:=(1.9/20)*sum(Pl[i,t-1],i=21..30);
for k from 1 to 100 do

Pk, t]:=(1-mu[k-1])*P[k-1,t-1];

od: od:

> for t from 0 to 3 do
total[t]:=sum(P[i,t],i=0..100);

> od;

MaTLAB
>n=0:1:100;
> P0=(100-n).*(25+n);
> plot(n,PO0);
> P=P0’; % rows=age, columns=time
% no base 0 indexing so P(n,t) = number aged n-1 in year t-1
> mu=.0524*(exp(.03.*n)-1); % mu(n) applies to age n-1
> plot(n,mu);
> for t=1:3
total(t)=sum(P(:,t));
P(1,t+1)=(1.9/20)*sum(P(22:31,1));
for n=2:101
P(n,t+1)=(1-mu(n-1))xP(n-1,t);
end; end;
> total(1) %starting year
> total(4)=sum(P(:,4)) % 3 years later

2. For the following two Leslie matrices find A and V as given in (5.3.4). What is
the ratio of the ages of associated populations?

L3
L1=(1 ) Ly =
50

Questions for Thought and Discussion
1. Draw age-structure diagrams for the three cases of populations whose maximum
numbers are young, middle-aged, and elderly people. In each case, draw the
age-structure diagram to be expected 30 years later if birth and death rates are
equal and constant and if there is no migration.

o= O
Bl— O N
S O W
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2. Repeat Question 1 for the situation in which the birth rate is larger than the death
rate and there is no migration.

3. Repeat Question 1 for the situation in which the birth and death rates are constant,
but there is a short but extensive incoming migration of middle-aged women at
the outset.
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6

Random Movements in Space and Time

Introduction

Many biological phenomena, at all levels of organization, can be modeled by treating
them as random processes, behaving much like the diffusion of ink in a container
of water. In this chapter, we discuss some biological aspects of random processes,
namely, the movement of oxygen across a human placenta. While these processes
might seem to be quite different at first glance, they actually act according to very
similar models.

We begin with a description of biological membranes, structures that regulate
the movement of material into, out of, and within the functional compartments of
a cell. At the core of a membrane is a layer of water-repelling molecules. This
layer has the effect of restricting the free transmembrane movement of any substance
that is water soluble, although water itself can get past the layer. The transmembrane
movement of the normal water-soluble compounds of cellular metabolism is regulated
by large biochemical molecules that span the membrane. They are called permeases,
or transport proteins. Permeases have the ability to select the materials that cross
a membrane. Other membranes anchor critical cellular components that promote
chemical reactions through catalysis.

A human fetus requires oxygen for its metabolic needs. This oxygen is obtained
from its mother, who breathes it and transfers it via her blood to the placenta, an
organ that serves as the maternal—fetal interface. Because the blood of mother and
child do not mix, material exchange between them must take place across a group
of membranes. The chemical that transports the oxygen is hemoglobin, of which
there are at least two kinds, each exhibiting a different strength of attachment to
oxygen molecules. Further, chemical conditions around the hemoglobin also affect
its attachment to oxygen. The conditions at the placenta are such that there is a net
transmembrane movement of oxygen from maternal hemoglobin to fetal hemoglobin.

This chapter also serves as an introduction to the discussions of the blood vascular
system of Chapter 9, of biomolecular structure of Chapter 8, and of HIV in Chapter 10.

R.W. Shonkwiler and J. Herod, Mathematical Biology: An Introduction with Maple 163
and Matlab, Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-70984-0 6,
© Springer Science + Business Media, LLC 2009
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6.1 Biological Membranes

Biological membranes do much more than physically separate the interior of cells
from the outside world. They provide organisms with control over the substances
that enter, leave, and move around their cells. This is accomplished by selective
molecules that can recognize certain smaller molecules whose transmembrane move-
ment is required by the cell. A waterproof layer in the membrane otherwise restricts
the movement of these smaller compounds. In addition, membranes maintain com-
partments inside a cell, allowing the formation of specific chemical environments in
which specialized reactions can take place.

The molecular structure of a substance determines its solubility in water.

Distinctions between oil and water are everywhere. We have all seen how salad oil
forms spherical globules when it is mixed with watery vinegar. Likewise, we say that
two hostile people “get along like oil and water.”” On the other hand, a drop of ink or
food coloring dissolves immediately in a glass of water. These experiences seem to
suggest that all materials are either water soluble or not. This is an oversimplification:
ethyl alcohol is infinitely soluble in water (gin is about half alcohol, half water), but
isopropanol (rubbing alcohol), table salt, and table sugar all have moderate water-
solubility. Salt and sugar have very low solubility in gasoline and benzene (erstwhile
dry-cleaning fluid). On the other hand, benzene will easily dissolve in gasoline and
in fatty substances.

The electronic basis for water-solubility will be described in Chapter 8, but for
now it is sufficient that we recognize that the ability of a substance to dissolve in
water is determined by its electronic structure. Further, an appropriate structure is
found in ions (like sodium and chlorine from salt) and in molecules with oxygen and
nitrogen atoms (like sugars and ammonia). Such substances are said to be hydrophilic,
or polar. Hydrophilic structures are not found in electrically neutral atoms, nor in
most molecules lacking oxygen and nitrogen. This is especially true when the latter
molecules have a very high proportion of carbon and hydrogen (e.g., benzene, gasoline
and fatty substances). These latter materials are said to be hydrophobic, or nonpolar.

Both faces of a membrane are attracted to water, but the interior of the membrane
repels water.

The biological world is water based.! Therefore, cells face a bit of a problem in
that water is a major component of the external world, which could lead to too much
interaction between a cell’s contents and its environment. To deal with this problem,
cells are surrounded by a water-proofing, or hydrophobic, membrane layer. We should
be glad for this structural feature of our bodies—it keeps us from dissolving in the
shower!

! Our bodies must resort to special tricks to solubilize fats that we eat. Our livers produce
a detergent-like substance, called bile, that allows water to get close to the fats. The
hydrocarbon-metabolizing microorganisms that are useful in dealing with oil spills often
use similar methods.



6.1 Biological Membranes 165

Hydrophilic
(water-soluble)

exterior of Phospholipids
cell membane /

Exterior of cell

7 Proteins

Interior of cell

Hydrophobic
(water-insoluble)
interior of
cell membrane

Fig. 6.1.1. A model of a cell membrane, showing the hydrocarbon (hydrophobic, water-
insoluble) interior and hydrophilic (water-soluble) exterior of the membrane. This dual nature
of the membrane is the result of the orientation of many phospholipid molecules, only four of
which are actually shown in the figure. Figure 8.2.5 will show how the chemical nature of a
phospholipid leads to hydrophobic and hydrophilic parts of the membrane. Two proteins in
the figure are also shown to demonstrate that some span the membrane completely and others
only pierce the outside halfway through (on either side of the membrane).

Figure 6.1.1 shows a model of a cell membrane. The side facing the cellular in-
terior is hydrophilic because it must interact with the cell’s internal environment; the
outside is also hydrophilic because it interacts with the external world.> The interior
of the membrane, however, is strongly hydrophobic, being a kind of hydrocarbon
(constructed from hydrogen and carbon only). This arrangement is thermodynam-
ically favorable because there are no direct interactions between hydrophilic and
hydrophobic groups.? Attached to, and sometimes piercing, the membrane are com-
plicated biological molecules called proteins, which will be described in more detail
in Chapter 8.

No material can enter or leave the cell unless it negotiates its way past this mem-
brane, because the membrane completely envelope the cell. Clearly, the efficiency

21t might be easiest here to picture a single-celled organism in a pond.
3 The arrangement of molecules in the membrane of Figure 6.1.1 is called a bilayer because
it consists of two leaflets of molecules, arranged back to back.
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of transmembrane movement of a substance will be determined by the ability of
the substance to interact with the membrane’s components, especially the interior,
hydrophobic, layer of the membrane.

Only a few kinds of substances can diffuse freely across the hydrophobic layer of a
membrane.

The substances that can move across the hydrophobic layer in response to a concen-
tration gradient fall into two groups. The first group, surprisingly, contains water
and carbon dioxide, a fact that seems contrary to our earlier discussion. What seems
to happen is that water and CO, molecules are small enough that they can slip past
the large hydrocarbon fragments in the membrane. A nice demonstration of this is
seen by placing human red blood cells into distilled water. The interior of the cell
contains materials that cannot go through the membrane, so the water there is at a
lower concentration than in the surroundings. Thus water moves into the cell and
eventually bursts it like a balloon. This movement of water (or any other solvent) is
called osmosis.

The second kind of material that easily passes through the membrane hydrocarbon
layer is a hydrocarbon. Of course, our cells are almost never exposed to hydrocarbons,
so this material is of little interest. We will, however, point out in Chapter 9 that
one route of lead into our bodies is through our skin: if we spill leaded gasoline
on ourselves, the hydrocarbons of the gasoline can carry the lead right across our
hydrophobic membrane barriers and into our bloodstream.

Selective channels control the passive and active movements of ions and large
molecules across membranes.

Many relatively large hydrophilic particles, such as ions and sugars, can pass through
membranes—after all, these particles are essential components of cellular systems.
They do not move directly through the bulk of the membrane. Rather, their move-
ment is regulated by large proteins that completely penetrate the membrane and act
like specialized channels, choosing which substances get past the membrane (see
Figure 6.1.1). These proteins are called permeases, or transport proteins, and they
are very selective: The substitution of a single atom in a transportable molecule with
molecular weight of several hundred can cause the molecule to be excluded by its
normal permease. Permeases thus act like selective gates to control material transport
into and out of a cell.

Materials can move across membranes via permeases by two different mech-
anisms, both often called facilitated transport. First, the passive movement of a
material in response to a concentration gradient (diffusion) is usually facilitated by
permeases. The point is that only those substances recognized by a permease will
behave in this way. Any other substances will diffuse up to the membrane and then
be stopped by the hydrophobic layer of the membrane.

Second, many materials are pumped against a concentration gradient past a mem-
brane. This process, called active transport, requires energy because it is in the oppo-
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site direction to the usual spontaneous movement of particles. Active transport also
requires a facilitating permease.

Facilitated transport is discussed further in Chapter 8, in the text by Beck et al.
[1], and in the reference by Yeargers [2].

Some cellular membranes face the outside world and regulate intercellular material
movement.

The day-to-day processes that a cell must perform require that nutrients and oxygen
move into the cell and that wastes and carbon dioxide move out. In other words, the
cell must maintain constant, intimate communication with its external environment.
The cell membrane provides the interface between the cell and the outside world,
and membrane permeases, because of their selectivity, control the transmembrane
movement of most of the substances whose intercellular transport is required.

What about water? It moves across membranes irrespective of permeases and
would therefore seem to be uncontrollable. In fact, cells can regulate water movement,
albeit by indirect means. They accomplish this by regulating other substances and
that, in turn, affects water. For example, a cell might pump sodium ions across a
membrane to a high concentration. Water molecules will then follow the sodium ions
across the membrane by simple osmosis, to dilute the sodium.

Some cellular membranes are inside the cell and regulate intracellular material move-
ments.

Students are sometimes surprised to learn that the interior of a cell, exclusive of the
nucleus, is a labyrinth of membranes. A mechanical analogue can be obtained by
combining some confetti and a sheet of paper, crumpling up the whole mess into a
wad, and then stuffing it into a paper bag. The analogy cannot be pushed too far;
membranes inside the cell often have very regular structures, lying in parallel sheets
or forming globular structures (like the nucleus). In short, the interior of a cell is a
very complicated place.

Many thousands of different biochemical reactions occur in a mammalian cell.
If these reactions were not coordinated in space and time the result would be chaos.
Membranes provide coordinating mechanisms in several ways: First, large biochem-
ical molecules are always assembled stepwise, beginning with small structures and
ending up with large ones. Each of the fragments to be added must be close to the
nascent biomolecule so that it can be added at the right time. Intracellular mem-
branes provide compartmentalization to keep the reactants and products of related
reactions in close proximity to one another. Second, the efficiencies of different cel-
lular biochemical reactions are dependent on environmental conditions, e.g., pH and
salt concentration. The specialized environmental needs of each reaction, or set of
reactions, are maintained by membrane compartmentalization. Thus a cell is parti-
tioned into many small chambers, each with a special set of chemical conditions. A
third point, related to the first two, is that virtually all chemical reactions in a cell
are catalyzed by special proteins, and these catalysts often work only when they are
attached to a membrane. Refer back to Figure 6.1.1 and note that many of the proteins
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do not pierce the membrane, but rather are attached to one side or the other. These
proteins represent several of the membrane-bound protein catalysts of a cell. You
will read more about these catalysts in Chapter 8.

Large objects move into and out of a cell by special means.

Neither simple diffusion nor facilitated transport can move particulate objects such as
cellular debris, food, bacteria, and viruses into or out of a cell; those require completely
differentroutes. If acell is capable of amoeboid movement, it can surround the particle
with pseudopods and draw it in by phagocytosis. If the cell is not amoeboid, it can
form small pockets in its surface to enclose the particle; this process is pinocytosis,
as shown in Figure 6.1.2. Both phagocytosis and pinocytosis can be reversed to rid
the cell of particulate waste matter.

Food particle
— P

O

Cell

Fig. 6.1.2. A schematic diagram showing the process of pinocytosis. A small indentation forms
at the particle’s point of contact, and the particle is then drawn into the cell’s interior.

6.2 The Mathematics of Diffusion

In this section, we derive Fick’s laws of diffusion by studying a random walk model.
Using the normal approximation to the binomial distribution, we obtain the Gaussian
solution of the diffusion equation for a point-source concentration. It is seen that
particles disperse on average in proportion to the square root of time.

Fick’s laws are applied to investigate one aspect of diffusion through biological
membranes. It is shown that the rate of mass transport is proportional to the concen-
tration difference across the membrane and inversely proportional to the thickness
of the membrane.
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Random processes in the biosphere play a major role in life.

In Section 6.1, we described the membrane system that surrounds and pervades a cell.
In this section, we show how the random motion of substances can carry materials
across these membranes and through the bulk of a cell.

Chance plays a major role in the processes of life. On the microscopic scale,
molecules are in constant random motion corresponding to their temperature. Con-
sequently, chance guides the fundamental chemistry of life. On a larger scale, genes
mutate and recombine by random processes. Thus chance is a fundamental component
of evolution. Macroscopically, unpredictable events such as intraspecies encounter
lead to matings or maybe the transmission of disease, which interspecies encounter
claims many a prey victim, but not with certainty. The weather can affect living
things throughout an entire region and even an entire continent. And on a truly grand
scale, random astronomical impacts can cause mass extinction.

Diffusion can be modeled as a random walk.

Molecules are in a constant state of motion as a consequence of their temperature.
According to the kinetic theory of matter, there is a fundamental relationship between
molecular motion and temperature, which is simplified by measuring the latter on an
absolute scale, degrees Kelvin. Zero degrees Kelvin, or absolute zero, is —273.15°C.
Moreover, Albert Einstein showed in 1905 that the principle extends to particles of
any size, for instance, to pollen grains suspended in water. FEinstein’s revelation
explained an observation made in 1828 by the Scottish botanist Robert Brown, who
reported on seeing a jittery, undirected motion of pollen grains in the water of his
microscope plate. We now refer to this phenomenon as Brownian motion. It is a
visible form of diffusion.

The relationship between temperature and particle motion can be precisely stated:
The average kinetic energy of a particle along a given axis is 1% , where T isin degrees
Kelvin and k is the universal Boltzmann’s constant, k = 1.38 x 1071© ergs per degree
[4]. The principle is stated in terms of the time average of a single particle, but we
will assume that it applies equally well to the average of an ensemble or collection of
identical particles taken at the same time, the ensemble average.

The kinetic energy of an object of mass m and velocity v is %m v2. And so the
average kinetic energy of N particles of the same mass m but possibly different
velocities is v

muv? M m muv?
2 TN Twet T
In this we have used an overline to denote average ensemble value.
Therefore, for a collection of particles of mass m, the kinetic theory gives

or
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Table 6.2.1. Root mean square (RMS) velocities at body temperature.

Molecular RMS speed at

Molecule weight Mass (g) |36°C (m/sec)
H,0 18] 3 x 10720] 652
0, 32|5.4 x 10726 487
glucose 180| 3 x 1073|200
lysozyme 1,400[2.4 x 10723| 23
hemoglobin 65,0000 1x10722| 11
bacteriophage 6.2 x 109 1 x 10720 1.1
E. coli ~29x 10| 2x 10713 0.0025

v2 = ]i. (6.2.1)
m

Table 6.2.1 gives the average thermal velocity of some biological molecules at body
temperature predicted by this equation.

A particle does not go very far at these speeds before undergoing a collision with
another particle or the walls of its container and careers off in some new direction.
With a new direction and velocity, the process begins anew, destined to undergo the
same fate. With all the collisions and rebounds, the particle executes what can be
described as a random walk through space. To analyze this process, we model it by
stripping away as much unnecessary complication as possible while still retaining the
essence of the phenomenon.

For simplicity, assume that time is divided into discrete periods Af and in each
such period a particle moves one step Ax to the left or right along a line, the choice
being random. After n time periods the particle lies somewhere in the interval from
—n(Ax) to n(Ax) relative to its starting point, taken as the origin 0.

For example, suppose that n = 4. If all four choices are to the left, the particle
will be at —4; if three are left and one right, it will be at —2. The other possible
outcomes are 0, 2, and 4. Notice the outcomes are separated by two steps. Also
notice that there are several ways most of the outcomes can arise, the outcome 2, for
instance. We can see this as follows. Let R denote a step right and L a step left. Then
a path of four steps can be coded as a string of four choices of the symbols R or L.
For example, L RRR means that the first step is to the left and the next three are to
the right. For an outcome of four steps to be a net two to the right, three steps must
be taken to the right and one to the left, but the order does not matter. There are four
possibilities that do it; they are LRRR, RLRR, RRLR, and RRRL.

In general, let p(m, n) denote the probability that the particle is at position x =
m(Ax), m steps right of the origin, after n time periods, ¢t = n(At). We wish to
calculate p(m,n). It will help to recognize that our random walk with n steps is
something like tossing n coins. For every coin that shows heads, we step right,
and for tails we step left. Let r be the number of steps taken to the right and / the
number of steps taken to the left; then to be at position m(Ax), it must be that their
difference is m:
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m=r—1, wheren=r-+1.

Thus r can be given in terms of m and n by adding these two equations, and / is given
by subtracting:

r= %(n +m) and [ = %(n —m). (6.2.2)

As in a coin toss experiment, the number of ways of selecting » moves to the right
out of n possibilities is the problem of counting combinations and is given by (see

Section 2.8)
n!
Cn,r)y=———.
ri(n —r)!
For example, three moves right out of four possible moves can happen in % =4
ways, in agreement with the explicitly written-out L R possibilities noted above.
Therefore, if the probabilities of going left and going right are equal, then

C(n,r)
2n

p(m, n) = probability of r steps right = , = %(n + m). (6.2.3)
This is the binomial distribution with p = g = % The solid curve in Figure 6.2.1 is a
graph of p(m, 40). If the random walk experiment with n = 40 steps is conducted a
large number of times, then a histogram of the resulting particle positions will closely
approximate this figure. This histogram is also shown in Figure 6.2.1. Equivalently,
the same picture pertains to the fate of a large number of particles randomly walking
at the same time, each taking 40 steps, provided they may slide right past each other
without collisions.

Farticles disperse in proportion to the square root of time.

The average, or mean, position, 772, of a large number of particles after a random walk

U

100

11

—40 —20 00 20 40

Fig. 6.2.1. Graph of p(m, 40).
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of n steps with equal probabilities of stepping left or right is 0. To show this, start
with (6.2.2) to get m = 2r — n. Then since r has a binomial distribution, we can
write down its mean and variance from Section 2.8. Equations (2.8.12) and (2.8.13)
withp:%andq:l—p:%give

F=np=

s

NS

_ ) (6.2.4)
var(r) = (r —7)? =npq = T

Hence

m:zr—n=27—ﬁ=2g—n=o,

since the average value of the constant n is n. Unfortunately, knowing that the average
displacement of particles is 0 does not help in expressing how quickly particles are
moving away from the origin. The negative values of those that have moved to the
left cancel the positive values of those that have gone right.

We can avoid the left vs. right cancellation by using the squares of displacements;
we will get thereby the mean square displacement, m?. Since the mean position is 0,
the mean square displacement is equal to the variance here; hence from (6.2.4),

W=(m—m)2=(2r—n)2=4(r—g)2=41=n.

Since m = ﬁ andn = ﬁ, we can convert this into statements about x and ¢:

Ax?

x2=——t.
At

(6.2.5)

But mean square displacement is not a position, a distance from 0. For one
thing, it is measured in square units, cm”. To rectify this, the square root of mean
square displacement, or root mean square (RMS) displacement, is used to quantify
dispersion; taking the square root of the above, we get

V= Vi

and

—_ Ax?2
Jo= A2 (626

Hence particles disperse in proportion to the square root of time. Thus there is no
concept of velocity for diffusion. For the average particle to traverse a distance twice
as far requires four times as much time.

The exact equation for p(m, n), (6.2.3), has a simple approximation. There is a
real need for such an approximation because it is difficult to compute the combinatorial
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factor C(n, r) for large values of n. Moreover, the approximation improves with
an error that tends to 0 as n — oo. The binomial distribution (see (6.2.3) and
Figure 6.2.1) looks very much like that of a normal distribution, as discussed in
Chapter 2. Although Stirling’s formula for approximating n!,

n! ~ 2ann"e™",

may be used to prove it, we will not do this. Instead, we will match the means and
standard deviations of the two distributions. First, recall that the probability that a
normally distributed observation will fall within an interval of width dm centered at
m is approximately (see Section 2.8)

1 ~ (m=w?
e 22 dm,
V2ro?

where p is the mean and o is the standard deviation of the distribution. On the other
hand, p(m, n) is the probability the walk will end between m — 1 and m + 1, an interval
of width 2, and from above, its mean is 0 and standard deviation is /7. Hence

1 m? 2
p(m,n) ~ e m(2Q)x,[—e . (6.2.7)
2n mn

Our last refinement is to let Ax and At tend to O to obtain a continuous version
of p(m,n). Of course, without care, p(m,n) will approach zero too because the
probability will spread out over more and more values of m. But since each value of
m corresponds to a probability over a width of 2Ax, we take the quotient of p(m, n)
by this width. That is, let u(x, ) denote the probability that the particle lies in an
interval of width 2(Ax) centered at x at time ¢. Then

u(x t):P(ﬁ’ﬁ)z 1 2 e_g( )
, 2(Ax) 2080\ 7 (ALt) .

And upon simplification,*

‘
=
S

B
N |

Now keeping the ratio
Ax?
~2(an
4 For more on this and an alternative derivation, see C. W. Gardiner, Handbook of Stochastic
Methods, Springer-Verlag, Berlin, 1983.

(6.2.8)
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fixed as Ax and At tend to 0, we obtain the Gaussian distribution

X 2

e 4Dr
Var Dt
The parameter D is called the diffusion coefficient or diffusivity and has units of area

divided by time. Diffusivity depends on the solute, the solvent, and the temperature,
among other things. See Table 6.2.2 for some pertinent values.

u(x,t) = (6.2.9)

Table 6.2.2. Diffusion coefficients in solution.

Seconds to cross

Molecule |Solvent|T, °C|D (10‘6 cmzlsec) 0.01 mm| 1 mm
0, blood | 20 10.0 0.05 500
acetic acid | water | 25 12.9 0.04 387
ethanol water | 25 12.4 0.04 403
glucose water | 25 6.7 0.07 746
glycine water | 25 10.5 0.05 476
sucrose water | 25 5.2 0.10 961
urea water | 25 13.8 0.04 362
ribonuclease| water | 20 1.07 0.46 4671
fibrinogen | water | 20 2.0 0.25 2500
myosin water | 20 1.1 0.45 4545

Diffusivity quantifies how rapidly particles diffuse through a medium. In fact,
from (6.2.6), the rate at which particles wander through the medium in terms of root
mean square distance is

A 2
RMS distance = A—xtr — V2Du. (6.2.10)

In Table 6.2.2, we give some times required for particles to diffuse the given
distances. As seen, the times involved become prohibitively long for distances over
1 mm. This explains why organisms whose oxygen transport is limited to diffusion
cannot grow very large in size.

The function « has been derived as the probability for the ending point, after time
t, of the random walk for a single particle. But as noted above, it applies equally
well to an ensemble of particles if we assume that they “walk” independently of
each other. In terms of a large number of particles, u describes their concentration
as a function of time and position. Starting them all at the origin corresponds to an
infinite concentration at that point, for which (6.2.9) does not apply. However, for
any positive time, u(x, ¢) describes the concentration profile (in number of particles
per unit length); see Figure 6.2.2 for the times 1, 2, 4. Evidently, diffusion transports
particles from regions of high concentration to places of low concentration. Fick’s
first law, derived below, makes this precise.
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MaPLE
> plot({exp(-x"2/4)/sqrt(4*Pi), exp(-x"2/(4*2))/sqrt(4*Pi*2), exp(-x"2/(4*4))/sqrt(4*Pi*4)},
x=-10..10,color=BLACK);

MarLaB
% make an m-file, gaussian.m containing
% function y=gaussian(x,m,s); % m=mean, s=stddev
% note 1/sqrt(2*pi) = .3989422803
% y=(.3989422803/s)*exp(-0.5*((x-m)./s)."2);
> x=[-10:.1:10]; y=gaussian(x,0,1);
> plot(x,y); hold on;
> y=gaussian(x,0,2); plot(x,y);
> y=gaussian(x,0,4); plot(x,y);

—-10 =5

Fig. 6.2.2. Dispersion of a unit mass after time 1, 2, and 4.

To treat diffusion in three dimensions, it is postulated that the random walk pro-
ceeds independently in each dimension. Hence the mean transport in the x, y, and z
directions is each given by (6.2.10), x2 = 2Dt, y2 = 2Dt, and z2 = 2Dt. In two
dimensions, if 72 = x2 + yz, then

r2 =4D1,

and in three dimensions, if 72 = x2 + y2 + 72, we get
r2 =6D1.

Fick’s laws describe diffusion quantitatively.

Again consider a one-dimensional random walk, but now in three-dimensional space,
for example, along a channel of cross-sectional area A; see Figure 6.2.3.

Let N(x) denote the number of particles at position x. We calculate the net
movement of particles across an imaginary plane perpendicular to the channel between
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o C

x+ Ax

Fig. 6.2.3. One-dimensional diffusion along a channel.

x and x + Ax. In fact, half the particles at x will step to the right and cross the plane,
and half the particles at x + Ax will step to the left and cross the plane in the reverse
direction. The net movement of particles from left to right is

—%(N(x + Ax) — N(x)). (6.2.11)

At this point, we introduce the notion of the flux of particles, denoted by J. This is
the net number of particles crossing a unit area in a unit time and is measured in units
of moles per square centimeter per second for instance. Hence dividing (6.2.11) by
A At gives the flux in the x direction,

1
Jy =———(N(x+ Ax) — N(x)).
x 7a At( ( ) (x))
Let c¢(x) denote the concentration of particles at x in units of number of particles
per unit volume such as moles per liter. Since c(x) = IXXQ , the previous equation
becomes

Ax? c(x + Ax) — c(x)

Ax
Jo= - Ax) — -
x = o HAD —e) = = Ax

Now let Ax — 0andrecall the definition of diffusivity, (6.2.8); we get Fick's first law:

ac
J=—-D—. (6.2.12)
ox
A partial derivative is used here because ¢ can vary with time as well as location. The
sign is negative because the flow of particles is from high concentration to low, i.e.,
if the concentration increases from left to right, then the flow is from right to left.
Multiply (6.2.12) by A. and we have

net number of particles crossing area A per unit time = —DA—C. (6.2.13)

To obtain Fick’s second law, consider the channel again. The number of particles
N (x) in the section running from x to x + Ax is c¢(x, 1) AAx. If concentration is not
constant, then particles will diffuse into (or out of) this section according to Fick’s
first law:
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the decrease in the number of particles in the section
= (the flux out at x + Ax — the flux in at x)A.

More precisely,
0
—E(c(x, HAAx) = (J(x + Ax,t) — J(x,1))A.

Dividing by Ax and letting Ax — 0 gives
ac aJ

o ax’

Canceling the A on each side, we obtain the continuity equation,

dc aJ
— = (6.2.14)
at ax

Differentiating J in Fick’s first law and substituting into this gives Fick’s second law

of diffusion, also known as the diffusion equation,

dc 9%c

— =D—. 6.2.15

ot dx2 ( )
Direct substitution shows that the Gaussian distribution u, (6.2.9), satisfies the diffu-
sion equation.

Oxygen transfer by diffusion alone limits organisms in size to about one-half millime-
ter.

As an application of Fick’s laws, we may calculate how large an organism can be
if it has no circulatory system. Measurements taken for many organisms show that
the rate of oxygen consumption by biological tissues is on the order of Rp, = 0.3
microliters of O per gram of tissue per second. Also note that the concentration of
oxygen in water at physiological temperatures is 7 microliters of O, per cm> of wa-
ter. Assuming an organism of spherical shape, balancing the rate of oxygen diffusion
through the surface with that consumed by interior tissue, we get, using Fick’s first
law, (6.2.12),

Al =pa% _vr
o dr 02>
Daxr) = 2R
dr 3 Oz

Isolate fl—f and integrate; use the boundary condition that at the center of the sphere
the oxygen concentration is zero, and at the surface of the sphere, where r = ry,, the
concentration is Cp,. We get

dc Ro,
=2y
dr 3D
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Using the values for Co, and Ro, above and the value 2 x 10~> cm/sec for a
typical value of D, we get
2 6DCo,
Py =—
Ro,

_6x2x 107 (cm?/sec) x 7(ul/cm?)
- 0.3(u1/(gm x sec)
= 0.0028(cm?),

where we have assumed that one gram of tissue is about 1 cm® water. Taking the
square root gives the result
rm = 0.53 mm.

We will use this value in Chapter 9 as a limitation on the size of certain organisms.

Resistance to fluid flow is inversely proportional to the fourth power of the radius of
the vessel.

From the discussion above, it is clear that large organisms must actively move oxygen
to the site of its use, possibly dissolved in a fluid. In this section, we derive the equation
governing resistance to flow imposed by the walls of the vessel through which the fluid
passes. In Chapter 9, we will discuss the anatomical and physiological consequences
of this resistance to flow.

As a fluid flows through a circular vessel, say of radius a, resistance to the flow
originates at the walls of the vessel. In fact, at the wall itself, the fluid velocity u(a)
is barely perceptible; thus u(a) = 0. A little further in from the wall the velocity
picks up, and at the center of the vessel the velocity is largest. By radial symmetry,
we need only one parameter to describe the velocity profile, namely, the radius r
from the center of the vessel. The fluid travels downstream in the form of concentric
cylinders, the cylinders nearer the center moving fastest. This results in a shearing
effect between the fluid at radius r and the fluid just a little farther out, at radius » +dr.
Shear stress, 7, is defined as the force required to make two sheets of fluid slide past
each other, divided by their contact area. It is easy to imagine that the shear stress
depends on the difference in velocity of the two sheets, and, in fact, the two quantities
are proportional.

Consider a portion of the vessel of length £ and let Ap denote the difference in
fluid pressure over this length. This pressure, acting on the cylinder of fluid of radius
r, is opposed by the shear stress mentioned above. The force on the cylinder is being
applied by the difference in pressure acting on its end; thus

force = Apﬂrz,
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while the equal opposing force is due to the shear stress acting on the circular side of
the cylinder,

d
force = t2nare) = ud—u(anﬁ).
r

Since these forces are equal and opposite,
) du
Aprr® = —u—Q2nri).
dr

This simple differential equation can be solved by integrating to obtain

2

A
u:_r p+Ca
40

where C is the constant of integration. Using the zero velocity condition at the vessel
walls gives the value of C to be
a’Ap
4ep

Hence for any radius, the velocity is given by
A
u(r) = —p(a2 — r2).
4

We see that the velocity profile is parabolic (see Figure 6.2.4).

Fig. 6.2.4. Parabolic velocity profile of flow in a tube.

Now we can calculate the total flow rate, Q, of a volume of fluid through a cross-
section of the vessel per unit time. Since a thin ring of fluid all of whose molecules are
at the same distance r from the axis of the vessel moves as a unit (see Figure 6.2.5), we
consider all these molecules together. The volume of fluid per unit time that passes
through a given cross-section of the vessel arising from such a ring, d Q, is given as
the product of its velocity u(r) and its area d S,

dQ =u(r)dS = u(r)2mr)dr.
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e

Fig. 6.2.5. Circular sheet of fluid all of whose molecules are moving together.

Substituting the velocity profile from above and integrating gives

a
A
0 =/ 2P (@® — r2nrdr
0

4¢n
_mAp |:a2r2 r4i|a 62.16)
20 2 4 |, -
_ 7 Apa*
8wl

This expression is known as Poiseuille’s equation. It shows that the flow rate
increases as the fourth power of the vessel radius. It means that a vessel of twice the
radius can carry 16 times the fluid volume for the same pressure drop per unit length.

It is natural to think of the shear stress in the moving fluid due to its contact with
Ap

the walls as a resistance to flow. Fluid resistance R is defined as R = o and hence
is given by
Sul
R=X (6.2.17)
mTa

It is seen that the fluid resistance is inversely proportional to the fourth power of the
radius. We will note in Chapter 9 that this dependence affects the size of vertebrates’
hearts.

A biological membrane is a complicated structure, as explained in Section 6.1,
and we will take account of some of the details of the structure in the next section.
In this section, we want to illustrate the decay of transient phenomena, in the form
of startup effects, in diffusion. Further, while crude, this slab approximation shares
with real membrane diffusion its dependence on the concentration difference to the
first power as the driving force behind the transport of solute particles.

By aslab we mean a solid homogeneous material throughout which the diffusivity
of solute particles is D. The slab has thickness 4 but is infinite in its other two
dimensions, and so diffusion through it takes place one-dimensionally.

To complete the statement of the problem, additional information, referred to as
boundary conditions or initial conditions, must be specified. We will assume that the
concentrations of solute on the sides of the slab are maintained at the constant values
of Cp at x = 0 and Cj, at x = h; assume that Cy > Cy,:

c(0,1) = Cy, c(h,t) =Cjy forallt > 0.
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This could happen if the solvent reservoirs on either side of the slab were so large that
the transport of solute is negligible. Or it could happen if solute particles are whisked
away as soon as they appear at x = h or are immediately replenished at x = 0 as they
plunge into the slab. Or, of course, any combination of these. Further, we assume
the startup condition that the concentration in the slab is 0:

c(x,00=0, 0<x<h.

We begin by assuming that the solution, c(x, t), can be written in the form of a
product of a function of x only with a function of ¢ only:

c(x, 1) = X ()T ().

Then % = X(x)T'(t) and % = X”(x)T (¢). Substituting into the diffusion equa-
tion, (6.2.15), and dividing, we get

! dTd DdX 6.2.18
T = X dx?’ (62.18)
Now the left-hand side of this equation is a function of # only and the right-hand side
is a function of x only, and the equality is maintained over all values of x and ¢. This
is possible only if both are equal to a constant, which we may write as —A%D. Then
(6.2.18) yields the two equations

1dT
T —A’D (6.2.19)
and
1 d*X
T = —A2 (6.2.20)

It is easy to verify that the solution of (6.2.19) is
T = Ae~ VDt
and the solution of (6.2.20) is

X — ax +b ifA =0,
" |esinAx + d cos Ax if A #0,

where A, a, b, ¢, and d are constants.

The solution so far is

ax +b ifA =0,
clx, 1) = . 2pr
(csin Ax +d cos Ax)e if A # 0.
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The constant A has been absorbed into the other constants, all of which have yet to
be determined using the boundary conditions. For A = 0, the conditions on either
side of the slab give

a0+b=Cy and ah+b=Cy.

Hence it must be that b = Cp anda = — CO;C" . But this solution cannot satisfy the
initial condition, we will use the A # 0 case for that.
First, note that if two functions ¢y (x, t) and c2(x, t) both satisfy the diffusion

equation, then so does their sum, as follows:

a(c1 + c2) _ dcy dco

ar ot ot
and
92 92 92
_pdlata) pda o
dx2 9x2 9x2
And so

d(c1 +c2) 3%(c1 + c2)
carsy _ pt Ty
ot dx2

In particular, the sum of the A = 0 and A # 0 solutions,

Co—C
20 T 1 Co+ (csindx + d cos Ax)e* P (6.2.21)

c(x,t) = — A

will satisfy the diffusion equation. It remains to satisfy the boundary conditions.
Atx = 0in (6.2.21),

Co—C
Co = —%0 + Co + (csin M0 4 d cos kO)e*ﬂDt.

Upon simplifying, this becomes
0=de*'Dt

which must be valid for all #; thus d = 0. Continuing with the x = & boundary
condition in (6.2.21), we have

Co—C
Ch = —%h + Co + (¢ sin Ah)e Dt

or

0 = (csin Ah)e D1,
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As before, this must hold for all + > 0. We cannot take ¢ = 0, for then the initial
condition cannot be satisfied. Instead, we solve sin Ah = 0 for A, which is as yet
unspecified. The permissible values of A are

+nm
A= P n=12,..., (6.2.22)

known as the eigenvalues of the problem. The negative values of n may be absorbed
into the positive ones, since sin A_,x = — sin A,x. Remembering that solutions of
the diffusion equation may be added, we can form an infinite series solution with a
term for each eigenvalue, and, possibly, each with a different coefficient, c,,,

Co—C > >
c(x, 1) = —%x +Co+ Y (cusin dyx)e P, (6.2.23)

n=1

Finally, in order to fulfill the initial condition, the coefficients ¢, must be chosen
to satisfy the initial condition

Co—C >
¢(x,0) = 0= —=——Lx £ Co+ ) (¢ sin Apx)e P,

n=1

or upon simplifying,

o Co — Ci

ch sind,x = Tx — Cop.

n=1
We will not show how to calculate the ¢, s; we note only that it can be done [7]. The
infinite series is referred to as the Fourier series representation of the function on
the right.

Thus the solution occurs in two parts; in one part, every term contains the decaying

exponential e**P! for constants A, given above. These terms tend to zero and, in
time, become negligible. That leaves the steady-state part of the solution,

Co—C

c(x,t) = —Thx + Co,

a linear concentration gradient. The amount of solute delivered in the steady state is
the flux given by Fick’s first law,

dc D
J=-DX =Z(co-cp). (6.2.24)
0x h

In summary, the rate of material crossing a membrane is directly proportional to the
concentration difference and inversely proportional to the thickness of the membrane.
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Membrane diffusion decays exponentially as particles accumulate.

The structure of cell membranes was described in Section 6.1. It consists of a double
layer of lipid molecules studded with proteins. Some of the latter penetrate entirely
through the lipid bilayer and serve to mediate the movement of various substances
into and out of the cell’s interior. This section is not about the transport of such
substances. Rather, we describe the transport of those molecules that pass through
the lipid bilayer itself by diffusion. These are mainly lipid-soluble molecules.’
However, the membrane molecules themselves have two ends: a hydrophilic
head and lipid tail. Functionally, the head end of one layer faces outward in contact
with the aqueous environment of the cell, while the head end of the other layer faces
inward in contact with the aqueous interior of the cell. The lipid tails of both layers
face together and constitute the interior of the membrane. Thus the concentration of
solute just under the head of the membrane molecule is not necessarily the same as in
the aqueous phase. Denote by C’ the solute concentration just inside the membrane
on the environmental side, and by ¢’ the concentration just inside the membrane on
the cell interior side. As we saw in the derivation of Fick’s first law, (6.2.12), the flux
of solute through the lipid part of the membrane is proportional to the concentration
difference and inversely proportional to the separation distance, so we have

J= B(C/ —c)
- )

‘We next assume a linear relation between the concentrations across the molecular
head of the membrane molecule; thus

C'=TC and ¢ =T¢,

where C is the environmental concentration of the solute and c is the concentration
inside the cell. The constant I' is called the partition coefficient. With this model, the
partition coefficient acts as a diffusivity divided by thickness ratio for the diffusion
of solute across the head of the membrane molecule. The partition coefficient is less
than 1 for most substances, but can be greater than 1 if the solute is more soluble in
lipid than in water.

Combining the development above, we calculate flux in terms of exterior and

interior concentrations as
D

J = T(C —0); (6.2.25)
this is in moles/cmz/sec, for instance.

As solute molecules accumulate inside the cell, the concentration difference in
(6.2.25) diminishes, eventually shutting off the transport. Denote the volume of the
cell by V and the surface area by S. The quantity SJ is the rate of mass transport

across the membrane in moles/sec, that is,

5 In Section 6.1, we noted that water and carbon dioxide, although polar molecules, can move
through the lipid part of a membrane.
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B dm dc

S]=—=V—
dt dt

’

since concentration is mass per unit volume. Therefore, multiplying (6.2.25) by S
and using this relation, we get

Vdc_SFD(C )
di - h )
or

dc k(C )

ec — o),

dt

where k = S‘l;—;? is a constant. The solution, given by integration, is

c=C—cpe ™,

where cq is the initial concentration inside the membrane. In summary, the interior
concentration becomes exponentially asymptotic to that of the environment.

Exercises/Experiments

1. Instead of presenting a theoretical distribution of the position of particles after
40 steps, we simulate the random movement using the built-in random number
generator of the computer system. Simulate a random walk of 40 steps for each
of 500 particles and histogram the place they end up.

MaPLE
> with(stats): with(plots):
> for i from 1 to 100 do
count[i]:=0; od: # initialize a counter
> N:=rand(0..1): #random integer 0/1
> particles:=500; steps:=40;
> for m from 1 to particles do
place:=sum(2*N(p)-1’,p’=1..steps)+steps:
count[place]:=count[place]+1: # record endpt
od:
# histogram the endpoints
> ranges:=[seq(-steps/2+2*(i-1)..-steps/2+2*i,i=1..steps/2)];
> movement:=[seq(count[20+2%]],j=1..20)];
> diffusion:=[seq(Weight(ranges]i],movement]i]),i=1..20)];
> statplots[histogram](diffusion);

MarLAB
> particles=500; steps=40;
> for k=1:particles
steplog=fix(2*rand(1,steps)); % random vectors of 0s/1s
steplog = 2*steplog-1; % random vectors of -1/+1
place(k) = sum(steplog); % endpt for this 40 step walk
end
> x=-20:2:20;
> hist(place,x)

(a) Plot the Gaussian distribution of (6.2.9) with D = 1 and fort = 1, 2, and 3.
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(b)

()

(d)

6 Random Movements in Space and Time

MaPLE
> plot({exp(-x"2/4)/sqrt(4*Pi), exp(-x"2/(4*2))/sqrt(4*Pi*2), exp(-x"2/(4*3))/sqrt(4*Pi*3)},x=-10..10);

MarLaB
% Equation (6.2.9) is the gaussian with mean = 0 and stddev = sqrt(2Dt).
% Therefore make an m-file gaussian.m (already done in Section 2.6, repeated here):
% function y=gaussian(x,m,s); y=(.3989422803/s)*exp(-0.5*((x-m)./s)."2);
% Part (a)

> D=1; t=1; s=sqrt(2*D*t);

> x=[-10:.1:10]; y=gaussian(x,0,s);

> plot(x,y); hold on;

> D=1; t=2; s=sqrt(2*D*t);

> y=gaussian(x,0,s); plot(x,y);

> D=1; t=3; s=sqrt(2*D*t);

> y=gaussian(x,0,s); plot(x,y);

Verify that (6.2.9) satisfies the partial differential equation (6.2.15) with
D =1.
MapLE (symbolic)
> ui=(t,x)—>exp(-x"2/(4*t))/sqrt(4*Pi*t);
> diff(u(t,x),)-diff(u(t,x),x,x);
> simplify(%);
The analogue of (6.2.15) for diffusion in a plane is

MapLE (symbolic)
> diff(U(t,x,y),t) = diff(U(t,x,y),x,x)+diff(U(t,x,y).,y);
Show that the function U given below satisfies this two-dimensional diffusion
equation:
MapLE (symbolic)
> U:=(t,x,y)—>exp(-(X"2+y"2)/(4*t))/t;
> diff(U(tx,y),1) - diff(U(t,x,y),xx)-diff(U(t.x,y),v.y);
> simplify(%);
Give visualization to these two diffusions by animation of (6.2.9) and of the
two-dimensional diffusion.
MaPLE (animation)
> plot({exp(-x"2/4)/sqrt(4*Pi),exp(-x"2 /(4*2))/sqrt(4*Pi*2), exp(-x"2/(4*3))/sqrt(4*Pi*3)},x=-10..10);
> with(plots):
> animate(exp(-x"2/(4*t))/sqrt(4*Pi*t),x=-10..10,t=0.1..5);
> animate3d(exp(-(x"2+y"2)/ (4*))/t,x=-1..1,y=-1..1,t=0.1..0.5);

. A moment’s reflection on the form of (6.2.15) suggests a geometric understand-

ing. The left side is the rate of change in time of c(¢, x). The equation asserts
that this rate of change is proportional to the curvature of the function c(z, x) as
a graph in x and as measured by the second derivative. That is, if the second
derivative in x is positive and the curve is concave up, expect c(, x) to increase
in time. If the second derivative is negative and the curve is concave down,
expect c(t, x) to decrease in time. We illustrate this with a single function. Note
that the function sin(x) is concave down on [0, ] and concave up on [7, 27].
We produce a function such that with ¢ = 0, ¢(0, x) = sin(x), and for arbitrary
t, c(t, x) satisfies (6.2.15).

> MaprLE (symbolic)
> c:=(t,x)—>exp(-t)*sin(x);

Here we verify that this is a solution of (6.2.15).

> MaprLE (symbolic)
> diff(c(t,x),t)-diff(c(t,x),x,X);
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Now we animate the graph. Observe where c(z, x) is increasing and where it is
decreasing.

> MaPLE (animation)
> with(plots): animate(c(t,x),x=0..2*Pi,t=0..2);

6.3 Transplacental Transfer of Oxygen: Biological and
Biochemical Considerations

A fetus must obtain oxygen from its mother. Oxygen in the mother’s blood is attached
to a blood pigment called hemoglobin and is carried to the placenta, where it diffuses
across a system of membranes to the fetus’s hemoglobin. A number of physical factors
cause the fetal hemoglobin to bind the Oy more securely than does the maternal, or
adult, hemoglobin, thus ensuring a net Oy movement from mother to fetus.

The blood of a mother and her unborn child do not normally mix.

The circulatory systems of a mother and her unborn child face one another across a
platelike organ called the placenta. The placenta has a maternal side and a fetal side,
each side being fed by an artery and drained by a large vein, the two vessels being
connected by a dense network of fine capillaries. The two sides of the placenta are
separated by membranes, and the blood of the mother and that of the child do not
mix. All material exchange between mother and child is regulated by these placental
membranes, which can pass ions and small-to-medium biochemical molecules. Large
molecules, however, do not usually transit the placental membranes.

Hemoglobin carries oxygen in blood.

The chemical hemoglobin is found in anucleate cells called red blood cells or ery-
throcytes. Hemoglobin picks up O, at the mother’s lungs and takes it to the placenta,
where the O, crosses the placenta to the hemoglobin of fetal red blood cells for
distribution to metabolizing fetal tissues.

Oxygen affinity measures the strength with which hemoglobin binds oxygen.

A fixed amount of hemoglobin can hold a fixed maximum amount of oxygen, at which
point the hemoglobin is said to be saturated. Figure 6.3.1 is an oxygen dissociation
curve; it shows the extent to which saturation is approached as determined by the
partial pressure of the oxygen.® The partial pressure of O, at which the hemoglobin is
half-saturated is a measure of the oxygen affinity of the hemoglobin. Thus hemoglobin
that reaches half-saturation at low O partial pressure has a high oxygen affinity (see
[1] and [3] for further discussion).

6 The partial pressure of a gas is the pressure exerted by that specific gas in a mixture of gases.
The partial pressure is proportional to the concentration of the gas. The total pressure exerted
by the gaseous mixture is the sum of the partial pressures of the various constituent gases.
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Fetus

Fraction of Adult
Hb bound
to 02

Partial pressure of O,

Fig. 6.3.1. Oxygen dissociation curves for adult and fetal hemoglobin. Note that for a given
partial pressure (concentration) of oxygen, the fetal hemoglobin has a greater fraction of its
hemoglobin bound to oxygen than does the adult hemoglobin.

The reversible attachment of O; to hemoglobin is represented by

Hb+ 0, — O,-Hb

hemoglobin oxyhemoglobin

At equilibrium the relative amounts of hemoglobin and oxyhemoglobin are fixed, the
reaction going to the right as often as it goes to the left. The relative amounts of oxy-
hemoglobin, hemoglobin, and oxygen at equilibrium are determined by the oxygen
affinity of the hemoglobin. The greater the oxygen affinity, the more oxyhemoglobin
there will be relative to the amounts of hemoglobin and oxygen, i.e., the more the
equilibrium will move toward the right in the above reaction scheme.

Oxygen affinity depends on a variety of factors.

In practice, the oxygen affinity is determined by multiple factors: First, we would
surely expect that the structure of hemoglobin would be important, and that will be
discussed below. Second, oxygen affinity is affected by the extent to which oxy-
gen molecules are already attached. Hemoglobin can bind to as many as four O;
molecules. The second, third, and fourth are progressively easier to attach because
the oxygen affinity of the hemoglobin increases as more O, molecules are added.
Third, blood pH affects its oxygen affinity. The pH of the blood and the presence of
CO; are related; this will be discussed in Section 9.6. Finally, a chemical constituent
of red blood cells, called D-2, 3-biphosphoglycerate (BPG), plays an important role
in the oxygen-binding properties of hemoglobin by binding to it and thereby decreas-
ing its O affinity. The role of BPG is a crucial one because the more BPG is bound
to hemoglobin, the less tightly the hemoglobin binds oxygen. Therefore, the oxygen
will be released more easily and will be provided to metabolizing tissues in higher
concentration. In terms of the chemical reaction above, BPG moves the equilibrium
toward the left.
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Fetal hemoglobin has a greater affinity for oxygen than does adult hemoglobin.

Adult and fetal hemoglobins have somewhat different structures. The result is that
fetal hemoglobin binds less BPG than does adult hemoglobin, and therefore fetal
hemoglobin has the higher oxygen affinity of the two. Figure 6.3.1 shows oxygen
dissociation curves for the hemoglobin of an adult and for that of a fetus. Note that
at a given partial pressure of O, the fetal hemoglobin has a greater O, affinity than
does maternal hemoglobin. Thus there is a net movement of oxygen from the mother
to the fetus.

We must be very careful here: We must not think that the fetal hemoglobin
somehow drags O, away from that of the mother. This would require some sort of
“magnetism’ on the part of the fetal hemoglobin, and such “magnetism” does not
exist. What does happen is represented by the following diagram:

Or-Hbuqut <= O3 + Hbuqure

.................. w ... placena

O3 + Hbferas <~ Oz—Hbyeqa.

Both kinds of hemoglobin are constantly attaching to, and detaching from, oxygen—
consistent with their oxygen affinities. The mother’s breathing gives her blood a high
concentration of oxyhemoglobin, and that leads to a high concentration of free oxygen
on her side of the placenta. On the fetal side of the placenta, the fetus, which does
not breathe, has a low O, concentration. Therefore, O;, once released from maternal
oxyhemoglobin, moves by simple diffusion across the placenta, in response to the
concentration gradient. On the fetal side, fetal hemoglobin attaches to the oxygen
and holds it tightly because of its high oxygen affinity. Some oxygen will dissociate
from the fetal hemoglobin, but little will diffuse back to the maternal side because
the concentration gradient of the oxygen across the placenta is in the other direction.”
In summary, oxygen diffuses across the placenta from mother to fetus, where it tends
to stay because of its concentration gradient and the high oxygen affinity of fetal
hemoglobin compared with that of adult hemoglobin.

6.4 Oxygen Diffusion Across the Placenta: Physical
Considerations

The delivery of fetal oxygen typifies the function of the placenta. In this organ, fetal
blood flow approaches maternal blood flow, but the two are separated by membranes.
Possible mechanisms for oxygen transfer are simple diffusion, diffusion facilitated by
some carrier substance, or active transport requiring metabolic energy. No evidence
for facilitated diffusion or active transport has been found. We will see that simple
diffusion can account for the required fetal oxygen consumption.

7In Chapter 9, we will see that the concentration of CO; in the blood also affects the oxygen
affinity of hemoglobin.
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The oxygen dissociation curve is sigmoid in shape.

Oxygen in blood exists in one of two forms, either dissolved in the plasma or bound to
hemoglobin as oxyhemoglobin. Only the dissolved oxygen diffuses; oxyhemoglobin
is carried by the moving red blood cells. The binding of oxygen to hemoglobin
depends mostly on O, partial pressure but also on blood acidity. The relationship,
given by a dissociation curve, possesses a characteristic sigmoid shape as a function
of partial pressure (see Figure 6.4.1 and Table 6.4.1).

fetal blood 100% saturation
20

fetal pH 7.4 ]
maternal blood fetal pH 7.2

100% saturation
15+
/ maternal

pH7.
Oxygen
co‘ncentratlon1 ol maternal pH 7.2
in ml per
100 ml blood
5+
= 0 % g ] £ 10

Oxygen partial pressure, mm Hg

Fig. 6.4.1. O; concentration in ml per 100 ml blood.

Table 6.4.1. O, concentration in ml per 100 ml blood (see [16]).

pO, mm Hg — 10| 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100
fetal (pH 7.4) 3.5(10.5(15.2{17.4{18.6(19.2|19.5|19.7{19.8|19.9
fetal (pH 7.2) 2.2| 7.3|12.0/15.2]16.9(18.0|18.6{19.1{19.5{19.8
maternal (pH 7.4)|1.3| 4.6/ 8.7|/11.5{13.2{14.2|14.7(14.9]15.0|15.1
maternal (pH 7.2)|1.0| 4.0| 7.8/10.6{12.5{13.7|14.4(14.7{14.9|15.1

The effect of increasing acidity is to shift the curve rightward. (The dissociation
curves can be constructed using the data in Table 6.4.1.)

MaPLE
> with(plots):
> ppo:=[seq(10*(i-1),i=1..11)]:
> fetal74:=array([0,3.5,10.5,15.2,17.4,18.6,19.2,19.5,19.7,19.8,19.9]):
> fetal72:=array([0,2.2,7.3,12.0,15.2,16.9,18.0,18.6,19.1,19.5,19.9]):
> maternal74:=array([0,1.3,4.6,8.7,11.5,13.2,14.2,14.7,15.0,15.0,15.1]):
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> maternal72:=array([0,1.0,4.0,7.8,10.6,12.5,13.7,14.4,14.7,14.9,15.1]):
> f74plot:=plot([seq([ppoli],fetal74[i]],i=1..11)]):

> f72plot:=plot([seq([ppoli],fetal72[i]],i=1..11)]):

> m74plot:=plot([seq([ppoli],maternal74[i]],i=1..11)]):

> m72plot:=plot([seq([ppoli], maternal72[i]],i=1..11)]):

> with(plots):

> display({f74plot,f72plot,m74plot,m72plot});

MarLaB
> ppo=[0:10:100];
> fetal74=[0 3.5 10.5 15.2 17.4 18.6 19.2 19.5 19.7 19.8 19.9];
> plot(ppo,fetal74); hold on
> fetal72=[0 2.2 7.3 12.0 15.2 16.9 18.0 18.6 19.1 19.5 19.9];
> plot(ppo,fetal72)
> maternal74=[0 1.3 4.6 8.7 11.5 13.2 14.2 14.7 15.0 15.0 15.1];
> plot(ppo,maternal74)
> maternal72=[0 1.0 4.0 7.8 10.6 12.5 13.7 14.4 14.7 14.9 15.1];
> plot(ppo,maternal72)

When maximally saturated, hemoglobin (Hb) holds about 1.34 ml O, per gm.
Fetal blood contains about 15 gm Hb per 100 ml, while maternal blood has 12 gm per
100 ml. Therefore, maternal blood is 100% saturated at a concentration of 1.34 x 12 ~
16 ml of O3 per 100 ml of blood, and fetal blood is 100% saturated at 20 ml per 100 ml
blood.

Although only the dissolved oxygen diffuses, hemoglobin acts like a moving
reservoir on both the maternal and fetal sides of the placenta. On the maternal side,
O, diffuses across the placental membrane from the maternal blood plasma, causing
a decrease in the partial pressure of O, symbolized pO;. But a lower oxygen partial
pressure dissociates oxygen out of the hemoglobin to replace what was lost. This
chemical reaction is very fast. Consequently, hemoglobin acts to preserve the partial
pressure while its oxygen, in effect, is delivered to the fetal side. Of course as more
and more oxygen dissociates, pO, gradually decreases.

On the fetal side, the opposite occurs. The incoming oxygen raises the partial
pressure, with the result that oxygen associates with fetal hemoglobin with gradual
increase of pO».

Fetal oxygen consumption rate at term is 23 ml per minute.

The first step in showing that simple diffusion suffices for oxygen delivery is to
determine how much oxygen is consumed by the fetus. By direct measurement,
oxygen partial pressure and blood pH at the umbilical cord are as shown in Table 6.4.2.

It follows from Figure 6.4.1 that each 100 ml of venous blood in the fetus contains
approximately 13.5 ml O,, while for arterial blood it is about 4.5 ml.

Evidently an O, balance for fetal circulation measured at the umbilical cord is
given by

O3 in — O out = O3 consumed.

For each minute, this gives

1 blood 10
rate O, consumed = ZSOM x (13.5 — 4.5)L
min 100 ml blood

= 22.5 ml Oy/min.
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Table 6.4.2. Placental oxygen and flow rate data.

umbilical artery pO7: 15 mm Hg, pH: 7.24 [15]

umbilical vein pO>: 28 mm Hg, pH: 7.32 [15]

umbilical flowrate 250 ml per minute [15]

maternal artery pO7: 40 mm Hg [15]

maternal vein pO2: 33 mm Hg [15]

maternal flowrate 400 ml per minute [15]

placental membrane surface |12 square meters [16]

placental membrane thickness|3.5 x 1074 cm [16]

pO, diffusivity (see text) 3.09 x 10~8 cm?/min/mm Hg [15, Figure 5]

Maximal oxygen diffusion rate is 160 ml per minute.

Next, we estimate the maximum diffusion possible across the placenta. Recall the
membrane transport (6.2.25),

D
J =——Ac, (6.4.1)
w

where we have taken the partition coefficient I' = 1 and the membrane thickness to be
w. This holds for those sections of the membrane that happen to have thickness w and
concentration difference Ac. Normally, both these attributes will vary throughout the
placenta. However, since we are interested in the maximal diffusion rate, we assume
them constant for this calculation. Placental membrane thickness has been measured
to be about 3.5 microns (3.5 x 10~% cm). Since flux is the diffusion rate per unit area,
we must multiply it by the surface area, S, of the membrane. Careful measurements
show this to be about 12 square meters at term [15].

Actually, taking a constant average value for w is a reasonable assumption. But
taking O, concentrations to be constant is somewhat questionable. Mainly, doing so
ignores the effect of the blood flow. We will treat this topic below in connection with
the countercurrent flow model. For this derivation, we assume that O, dissociates out
of maternal blood in response to diffusion, all the while maintaining the concentration
constant on the maternal side. On the fetal side, O, associates with fetal blood and
likewise maintains a constant concentration there. In the countercurrent flow these
assumptions tend to be realized.

A lesser difficulty in applying Fick’s law has to do with the way an oxygen
concentration is normally measured, namely, in terms of partial pressure. By Henry’s
law [15, p. 1714], there is a simple relationship between them: The concentration of
a dissolved gas is proportional to its partial pressure, in this case pO,. Hence

¢ =46(p0,),

for some constant §. Incorporating surface area and Henry’s law, (6.4.1) takes the form

S
SJ = —8D=A(p0,).
w
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The product § D has been calculated to be about 3.09 x 10~8 cm?/min/mm Hg (derived
from data in [15] and investigated in the problems).

For the constant fetal partial pressure, we take the average of the range 15 to
28 mm Hg noted in Table 6.4.2, so about 21.5 mm Hg. Maternal arterial pO; is
40 mm Hg, while venous pO, is 33 mm Hg for an average of 36.5 mm Hg. Hence
using the values in Table 6.4.2,

cm?

0, diffusion rate = 3.09 - 1078 ——
min-mm Hg
12 m2 - 10% e

m2
W 36521 H
3510 4 m 0~ 21:5) mm He

3
=159
min
Recalling that only 22.5 ml of oxygen per minute are required, the placenta, in its

role of transferring oxygen, need only be about 2125—'95 = 14% efficient.

The fetal flow rate limits placental transport efficiency.

The placenta as an exchanger is not 100% efficient (it only needs to be 14% efficient)
due to (1) maternal and fetal shunts, (2) imperfect mixing, and, (3) most importantly,
flow of the working material, which we have not taken into consideration. Let F'
be the maternal flow rate, f the fetal flow rate, C maternal O, concentration, and
¢ fetal O concentration. Use the subscript i for in and o for out (of the placenta).
Let r denote the transfer rate across the placenta (r = SJ). From the mass balance
equation,
Oy/min in = O, gained or lost per min = O»/min out,

we get
fei+r = fco; FCi —r =FC,, (6.4.2)

since the oxygen rates in or out of the placenta are the product of conentration times
flow rate. From the membrane equation (6.2.25),

. DS
r = K (Aconcentration across membrane), where K = ——.
w

For the fetal and maternal concentrations, we use C, and c,. From (6.4.2),

ror
r:K(Co—co)=K<Ci ————— ci>.
F
Solve this for r and get
C. —
r=—— (6.4.3)

Now consider the magnitude of the three terms in the denominator. If F and f
are infinite, then the denominator reduces to % and the transfer rate becomes
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r=K(Ci—c¢)

as before. In this case, diffusion is the limiting factor.
Since the flow terms are not infinite, their effect is to increase the denominator
and consequently reduce the transfer coefficient, that is,
1 1 K
— < — =K.
1 1,1 1
xTFT7 %
Moreover, depending on the relative size of the three terms in the denominator
of (6.4.3), diffusion may not be the limiting factor. In particular, the smallest of the

quantities K, F, and f, corresponds to the largest of the reciprocals %, %, and %

Using the values of S and w from Table 6.4.2, and taking I'D = 4 x 1077 cm?/sec
(see [15]), gives
=137—.
351074 sec

Compare this with a maternal flow rate F' of 400 ml/min, or 6.7 ml/sec, and a fetal
flow rate f of 250 ml/min, or 4.2 ml/sec. Thus fetal flow rate is the smallest term
and so is the limiting factor. Furthermore, from (6.4.3) we can see that diffusion is a
relatively minor factor compared to the maternal and fetal flow rates. That is,

_ 4107712100 o oem?

1
1 1 — =253,
7 te7 Tz
while .
— =2.58.
57 taz

Countercurent flow is more efficient than concurrent flow.

In this section, we will compare the diffusion properties of the placenta depending
on whether the maternal and fetal blood flow in the same or the opposite directions
through the placenta. For this we assume the placenta to be a channel separated by
the placental membrane. Assume first that fetal and maternal blood flow in the same
direction. As shown in Figure 6.4.2, on the maternal side we take the channel height
to be H and the velocity to be v,,, while these will be /& and v respectively on the
fetal side. Let the channel width be b. Assume that steady state has been reached and
take the oxygen concentrations at position x along the maternal and fetal sides to be
C(x) and c(x), respectively.

On the fetal side, a block AV of blood at position x gains in concentration in
moving distance Ax due to the flux J(x) at x. Let AS denote the area of contact of
the block with the placental membrane. Since the time required to move this distance
is At = 2% we have

vy

c()AV + J(x)AS (A—;)

c(x + Ax) = AV
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maternal side

Fig. 6.4.2. Diffusion of oxygen into a moving incremental volume.

But from the membrane (6.2.25) (with I" = 1),

D
J(x) = (—) (C(x) — c(x)),
w

and so (x4 A) ) D AS
c(x x) —c(x
A = —(C(x) — c(x)).
X wvy AV
Now ﬁ—\“j = h, and so in the limit we have
de _ (9)
— = 22(C — o). 6.4.4
=y €O (6.4.4)

A similar calculation on the maternal side gives

ac _ (3)
o= —H—vm(c - o). (6.4.5)

Denote by T the fension or concentration difference C(x) — c(x). By subtracting the
first equation from the second, we get

dT D 1 1
ar _ b + )\ (6.4.6)
dx w \ Hvy,  hvy

For this parallel flow, denote by &, the constant coefficient,

=2 (s L)=2(2l (64.7)
P w\Hvy hvp)  w\F  f) o
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where we have replaced the velocities v, and v by the maternal and fetal flow rates
F and f, respectively, using the fact that a flow rate is the product of velocity with
cross-sectional area,

F = (bH)v, and f = (bh)vy.
Now the solution of the differential (6.4.6) is
T = Tye k¥, (6.4.8)

with Tp the initial tension, 40 — 15 = 25 mm Hg. Assuming that the channel has
length L and the final tension is 33 — 28 = 5 mm Hg (see Table 6.4.2), (6.4.8) with
x = L becomes

1
5= 2Se_k1’1‘; therefore, k,L = —log (5) (6.4.9)

Next, we calculate the average tension T over the run of the channel. The average
of (6.4.8) is given by the integral

_ 1 [t T L
T = —/ Toe *r*dx = 20 ke
L Jo kpL 0
To — Toe *vL  25-5
= = = 12.4 mm Hg,
kpL log(5)

where (6.4.9) was used to substitute for k), L.

Next, consider countercurrent flow. Arguing in the same manner as above, we
see that the differential equations for countercurrent flow are similar to (6.4.4) and
(6.4.5); the sign of the second is reversed because the flow is reversed here:

d D

ac _ M(C —0)
dx hvy

on the fetal side and b
dC =
dx Hv,,

on the maternal side. Subtracting, we get

dT_ D 1 1 T
dx ~  w hvy  Huy

ke = _b (2 — 2) (6.4.10)

As before, the solution is
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T = Tye k. (6.4.11)

Now, however, that Tp = 33 — 15 = 18 mm Hg. And forx = L, T = 40 — 28 =
12 mm Hg; therefore, 12 = 18e %L from which it follows that k.L = log(1.5).
Hence the average tension in this case is

To — T()e_k“L _
k.L "~ log(1.5)

T = = 14.8 mm Hg.

Therefore, countercurrent flow is somewhat more efficient than concurrent flow, by

these calculations, % = 1.2 times more efficient. Note that the average tension for

countercurrent flow is approximately equal to the numerical average, 18'512 =15.

Exercises/Experiments

1. Suppose the placenta becomes injured or impaired. How much of it is necessary
in order to deliver adequate amounts of oxygen?

2. From Table 6.4.2, maternal pO; falls from 40 mm Hg to 33 mm Hg in its course
through the placenta traveling at 400 ml/min. How much O, is delivered? (Com-
pare with the text calculation.) If the flow rate falls to 300 ml/min, what must be
the corresponding pO; difference to maintain this rate?

3. For fetal blood at 28 mm Hg pO», what is the amount of dissolved oxygen for a
pH of 7.4? If the pH shifts to 7.2, what must be pO; so that the blood contains
the same amount? Extrapolate to a pH of 7.0.

4. For maternal blood at 40 mm Hg pO,, what is the amount of dissolved oxygen for
a pH of 7.4? If the pH shifts to 7.2, what must be pO; so that the blood contains
the same amount? Extrapolate to a pH of 7.0.

5. Modify the calculation to account for the diffusion of O; through 1 micron of
plasma before reaching the placental membrane on the maternal side and 1 micron
of plasma upon leaving the placental membrane on the fetal side before entering
an erythrocyte.

6. Assume that carbon monoxide, CO, in the maternal blood reaches 5% (as is
typical for smokers). Also assume that CO binds 220 times more readily than O,
to hemoglobin. Recalculate diffusion across the placenta under these conditions.

Questions for Thought and Discussion

1. Discuss why the evolution of small animals into large animals required the evo-
lution of a closed circulatory system and a concomitant coelom.

2. Starting with the number 2, number the following events in the order in which
they occur:
blood enters right atrium 1
fluid from blood enters lymphatic system
blood gives up CO; at alveoli
blood enters systemic capillaries
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blood enters pulmonary artery
blood enters aorta

What factors determine how large the placenta has to be? By weight (including
its blood supply), how large is the placenta relative to its fetus? Does this change
over gestation?
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Neurophysiology

Introduction

This chapter presents a discussion of the means, primarily electrical, by which the parts
of an organism communicate with each other. We will see that this communication
is not like that of a conducting wire; rather, it involves a self-propagating change in
the ionic conductance of the cell membrane.

The nerve cell, or neuron, has an energy-requiring, steady-state condition in which
the interior of the cell is at a negative potential relative to the exterior. Information
transfer takes the form of a disruption of this steady-state condition, in which the
polarity of a local region of the membrane is transiently reversed. This reversal is
self-propagating, and is called an action potential. It is an all-or-none phenomenon:
Either it occurs in full form or it doesn’t occur at all.

Neurons are separated by a synaptic cleft, and interneuronal transmission of infor-
mation is chemically mediated. An action potential in a presynaptic neuron triggers
the release of a neurotransmitter chemical that diffuses to the postsynaptic cell. The
sum of all the excitatory and inhibitory neurotransmitters that reach a postsynaptic
cell in a short period of time determines whether a new action potential is generated.

7.1 Communication Between Parts of an Organism

Specialization of structure and function in all organisms necessitates some means of
communication among the various parts. Diffusive or convective flow of chemicals
provides methods of communication, but they are very slow compared to the speed with
which many intraorganismal needs must be conveyed. The high-speed alternative is
electrical communication, for which complex nervous systems have evolved.

Communication is necessary at all levels of biological organization.

The wide variety of molecular structures available in living systems is necessitated
by the wide variety of physicochemical tasks required. Each kind of molecule,

R.W. Shonkwiler and J. Herod, Mathematical Biology: An Introduction with Maple 201
and Matlab, Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-70984-0 7,
© Springer Science + Business Media, LLC 2009



202 7 Neurophysiology

supramolecular structure, organelle, cell, tissue, and organ is usually suited to just
one or a few tasks. This kind of specialization ensures that each task is performed
by the structure best adapted to it, one that Darwinian selection has favored above
all others. The down side to such specialization is that the resultant structures are
often localized into one region, well isolated from all others. If important parts are
separated, clustered, there must be some means of communication between them to
allow the entire organism to behave as a single integrated unit.

We find such specialization at all biological levels of organization. For example,
there are many microscopic organisms that seem to be single cells, but close examina-
tion reveals that they possess special anatomical structures dedicated to quite different
functions. Because of these differentiated structures, these organisms are often said
to be “acellular,” which is a simple admission that they do not fit into classical de-
scriptive categories. Good examples are found in the organisms called protozoans:
many have light-sensitive spots to help them orient. Others have elementary digestive
tracts, with an opening to the outside and a tube leading into the body of the “cell.”
Of special interest are the primitive neural structures of the protozoan ciliates. These
one-celled (or acellular) organisms move from place to place via the rapid beating of
many small hairlike cilia. If these cilia were to beat at random there would be as many
pushing in one direction as in the other, and the ciliate would not move. Observation
of the cilia shows that they beat in synchronized waves, pushing the organism in a par-
ticular direction. If a small needle is inserted into the ciliate and then moved around
to cause mechanical damage, the cilia will continue to beat—but not synchronously.
Evidently there is some kind of primitive neural system to coordinate the movements
of the cilia, and the needle damages that system, thus desynchronizing the cilia.

In multicellular animals, the need for a quick coordination between the perception
of stimuli and consequent responses has led to the evolution of an endocrine system
and a specialized nervous system. The endocrine system, facilitated by blood flow,
provides chemical communication. The nervous system, the most complicated system
in our bodies, provides the high-speed network that allows the other organs to work
in harmony with each other.

Communication in multicellular organisms can be chemical or electrical.

Hormones are chemicals secreted by one kind of tissue in a multicellular organism
and transported by the circulatory system to target organs. At its target organ a
hormone exerts powerful chemical effects that change the basic physiology of cells.
For example, sex hormones manufactured in the reproductive system cause changes
in the skeletal and muscular structures of mammals, preparing them for the physical
processes of mate attraction and reproduction. Insulin, a pancreatic hormone, affects
the way cells in various tissues metabolize sugars.

The target organs of hormones are specifically prepared for hormone recognition.
Protein receptors on the surfaces of cells in those organs can recognize certain hor-
mones and not others. For instance, both men and women produce the hormone called
follicle stimulating hormone (FSH), but it stimulates sperm production in males and
egg production in females. The different effects are attributable to the target organs,
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not to the hormone, which is the same in both sexes. On the other hand, FSH has
no effect on the voluntary muscles, which evidently have no FSH receptors. In the
unusual phenomenon called testicular feminization, a person with both a man’s chro-
mosomal complement and festosterone levels has a woman’s body, including external
genitalia. The reason is that the person has no testosterone receptors on their target
organ cells; thus the testosterone in the blood is not recognized by the organs that
manifest secondary sexual characteristics. In humans, the default gender is evidently
female, the generation of male characteristics requiring the interaction of testosterone
and its appropriate receptors.

A second form of communication in an animal is electrical. We have a highly
developed nervous system that provides us with a means of perceiving the outside
world and then reacting to it. Indeed, the elaborate nervous system of primates and
the complex behaviors it supports are defining characteristics.

Stimuli such as light, salt, pressure, and heat generate electrical signals in re-
ceptors. These signals are relayed to the central nervous system, consisting of the
brain and spinal cord, where they are processed and where an appropriate response
is formulated. The information for the response is then sent out to muscles or other
organs where the response actually takes place. Examples of responses are muscular
recoil, glandular secretion, and sensations of pleasure. There are special cells along
which the electrical signals are passed. They are called neurons.

7.2 The Neuron

Neurons, and other cells as well, are electrically polarized, the interior being negative
with respect to the exterior. This polarization is due to the differential permeability
of the neuron’s plasma membrane to various ions, of which potassium is the most
important. Active transport by sodium/potassium pumps maintains the interior con-
centration of sodium low and potassium high.

Neurons are highly specialized cells for conveying electrical information.

Figure 7.2.1 shows a model of a typical mammalian neuron. The cell’s long, narrow
shape suggests its role: it is specifically adapted to the task of conveying information
from one location in the body to another. The direction of information flow is from
the dendrites, through the cell body, to the axon and on to other neurons, muscles,
and glands. Neurons also exhibit unusual electrical behavior, variations of which
permit these cells to pass information from dendrite to axon. These two properties
of neurons, shape and electrical behavior, suggest an analogy with the conduction of
electric signals by a copper wire. That analogy is incorrect, however, and we will
spend part of this chapter discussing how that is so.

A membrane can achieve electrical polarization passively.

Under certain conditions a voltage, or potential difference, can be maintained across
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Fig. 7.2.1. A model of a neuron. The direction of information transfer is from left to right.

a membrane without the expenditure of energy.! We will use Figures 7.2.2(a)—(c) to
show how this can happen in a model system of two water-filled compartments that
are separated by a membrane. In each case, we begin by dissolving a compound KQ
in the water on the left of the membrane, where K is a positive ion, perhaps potassium,
and Q is any large organic group. This compound will immediately dissociate into K™
and Q, such that [K™] = [Q ], the braces indicating concentrations. (We assume
that KQ dissociates completely.)

In Figure 7.2.2(a), we imagine that the membrane is completely permeable to
both ions. They will both move to the right by passive diffusion, eventually reaching
an equilibrium state in which the concentrations of each of the two ions will be the
same on both sides of the membrane. The net change will be zero on each side of the
membrane, and therefore no potential difference will exist across the membrane.

In Figure 7.2.2(b), we imagine that the membrane is completely impermeable
to both ions. Neither will therefore move across the membrane, and the electrical
charges on each side of the membrane will total zero. Thus there will again be no
transmembrane potential difference.

In Figure7.2.2(c) we will finally see how a potential difference can be generated.
We imagine that the membrane is permeable to K+, but is impermeable to Q ™, perhaps
because Q™ is too big to pass through the membrane. K+ will then move across the
membrane in response to its own concentration gradient. Very quickly, however, the
movement of K™ away from the Q~ will establish a transmembrane electrical charge
gradient that opposes the concentration gradient. The concentration gradient pushes
potassium to the right and the electrical gradient pushes it to the left. The system will
then quickly reach electrochemical equilibrium, because there will be no further net
change in [K™"] on either side of the membrane. Note that all of Q™ is on the left,
but the K is divided between the right and left sides. The right side thus will be at
a positive electrical potential with respect to the left.

Note that the potential difference in the system of Figure 7.2.2(c) is achieved
spontaneously, i.e., without the expenditure of energy. Real biological systems can

! This voltage difference across the neuron’s plasma membrane is called a potential difference
because it represents a form of potential energy, or energy conferred by virtue of the positions
of electrical charges.
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(a) Membrane completely permeable to K* and Q™. L =Left
i Therefore, [K*L] = [K*Rr] R =Right
K*]>0"! [K*R] >0
L= 0 TRl Q1= QI K* = Positive ion
! _ .
[Q1]>0 | [QR]>0 Q™= Negative ion
1 1
! | = Membrane

(b) Membrane completely impermeable to K* and Q™.

Therefore, [KtL] > [K*R]
[QL]>[QR]
[K*L] = [Q7L]

[K*L]>0 | [K'R]=0

[QL]>0 [QRI=0

(c) Membrane permeable to K* and impermeable to Q.
Therefore, [K*L] > [KTR] #0

[K*L]>0 [QL]>0and [QRrR]=0

[K*r] >0

[QL]>0 [QRI=0

Fig. 7.2.2. This figure shows how a potential difference can be generated across a selectively
permeable membrane without the expenditure of energy. See the text for a detailed discussion.
Parts (a) and (b) depict extreme situations, in which no potential difference is generated across
the membrane: In (a), the membrane is equally permeable to both the positive and the negative
ions. In (b), the membrane is impermeable to both ions. In (c), however, the membrane
is permeable to the positive ion and impermeable to the negative ion. This generates an
equilibrium that is a compromise between electrical and mechanical diffusion properties, and
results in an imbalance of charges across the membrane.

establish potential differences in much the same way: They possess membranes that
are permeable to some materials and not to others, a feature that Figures 7.2.2(a)-
(c) show to be essential to the establishment of a potential difference. Our model
system, however, lacks some realistic features: For example, real systems have many
other ions, such as Cl~ and Nat, that must be considered. Further, consideration
of Figure 7.2.2 suggests that the degree of permeability will be important in the
establishment of transmembrane potentials (see [1] and [2]).

The membrane of a “resting” neuron is electrically polarized.

If one probe of a voltmeter is inserted into a neuron and the other probe is placed on
the outside, the voltmeter will show a potential difference of about —70 millivolts.>
In other words, the interior of the cell is 70 mv more negative than the outside, and a
positive charge would tend to be attracted from the outside to the inside.

2 For various kinds of cells, the potential may vary from about —40 mv to more than —100 mv.
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In the absence of strong stimuli, the neuronal transmembrane potential difference
does not change over time, and it is therefore referred to as the cell’s resting potential.
This term has wide usage, but can be misleading because it implies an equilibrium
situation. The problem is that real equilibria are maintained without the expenditure
of energy, and maintenance of the resting potential requires a great deal of energy (see
the next paragraph). Thus we should expect that the brain, being rich in nervous tissue,
would require considerable energy. This suspicion is confirmed by the observation
that the blood supply to the brain is far out of proportion to the brain’s volume.

The resting potential across a neuronal membrane is maintained by two competing
processes, the principal one of which is passive, and the other of which is active, or
energy-requiring. The passive process is the leakage diffusion of KT from the inside to
the outside, leaving behind large organic ions, to which the membrane is impermeable.
This process was shown earlier (in Figure 7.2.2) to generate a transmembrane potential
difference.’

The problem with leakage diffusion is that many other ions, of both charges,
also leak across real biological membranes. After a while, this would lead to the
destruction of the electrochemical equilibrium. The cell, however, has a means of
reestablishing the various gradients. This active, energy-requiring process is under
the control of molecular sodium/potassium pumps, which repeatedly push three Na™
ions out of the cell, against a concentration gradient, for every two K™ ions that it
pushes into the cell, also against a concentration gradient.* Thus the Na/K pump
and diffusion work against each other in a nonequilibrium, steady-state way. Such
nonequilibrium, steady-state processes are very common in living cells.

Consideration of Figure 7.2.2 suggests that the low permeability of a membrane
to sodium eliminates that ion as a contributor to the resting potential, and that the high
permeability to potassium implicates that ion in the resting potential. This suspicion
is confirmed by experiment: The neuronal resting potential is relatively insensitive to
changes in the extracellular concentration of sodium, but highly sensitive to changes
in the extracellular potassium concentration.

The concentrations of Na™, K™, and C1~ inside and outside a typical neuron are
given later, in Table 7.5.1. The asymmetric ionic concentrations are maintained by
the two factors mentioned above: the Na/K pump and the differential permeabilities
of the cell’s plasma membrane to the different ions. In particular, we note that Na™,
to which the membrane is poorly permeable, might rush across the membrane if that
permeability increased.

7.3 The Action Potential

The neuronal plasma membrane contains voltage-controlled gates for sodium and
for potassium. The gates are closed at the usual resting potential. When a stimulus

3 The fraction of potassium ions that must leak out of a neuron to establish a potential differ-
ence of 100 mv is estimated to be only about 1073,

4 The molecular basis for the Na/K pump is not known. What is known is its effect—pumping
Na™ outward and K inward.
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depolarizes the membrane beyond a threshold value, the sodium gates open and
sodium rushes into the cell. Shortly thereafter, potassium rushes out. The Na/K
pump then restores the resting concentrations and potential. The change in potential
associated with the stimulus is called an action potential, and it propagates itself
without attenuation down the neuronal axon.

The resting potential can be changed.

The usual resting potential of a neuron is about —70 mv, but this value can be changed
either by changing the permeability of the membrane to any ion or by changing the
external concentration of various ions. If the potential is increased, say to —100 mv,
the neuron is said to be hyperpolarized. If the potential is decreased, say to —40 myv,
the neuron is said to be depolarized (see [1, 2, 3, 4]).

The membranes of neurons contain gated ion channels.

In Sections 6.1 and 7.2, we described several ways that materials could move across
membranes. They were the following:

(a) Simple passive diffusion: Material moves directly through the bulk part of the
membrane, including the hydrophobic layer. Water, carbon dioxide, and hydro-
carbons move in this fashion.

(b) Facilitated passive diffusion: Ions and neutral materials move through special
selective channels in the membrane. The selectivity of these channels resides in
the recognition of the moving material by transport proteins, or permeases, in the
membrane. Nevertheless, the process is spontaneous in that the material moves
from regions of high concentration to regions of low concentration, and no energy
is expended.

(c) Facilitated active transport: Ions and neutral materials move through selective
channels (determined by transport proteins) but they move from regions of low
concentration to regions of high concentration. Thus energy is expended in the
process.

Here we are interested in certain aspects of facilitated, passive diffusion. Some
channels through which facilitated, passive diffusion occurs seem to function all the
time. Others, however, are controlled by the electrical or chemical properties of the
membrane in the area near the channel. Such channels can open and close, analo-
gously to fence gates, and are therefore called voltage-gated channels and chemically
gated channels, respectively.

We now look more closely at voltage-gated channels; we will return to chemi-
cally gated channels a bit later. The following narrative corresponds to Figure 7.3.1.
Voltage-gated sodium channels and potassium channels are closed when the potential
across the membrane is —70 mv, i.e., the usual resting potential. If a small region of
the axonal membrane is depolarized with an electrode to about —50 mv, the voltage-
gated sodium channels in that area will open. Sodium ions will then rush into the cell
(because the Na™ concentration outside the cell is so much higher than it is inside the
cell, as shown in Table 7.5.1).
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Fig. 7.3.1. The generation and movement of an action potential. This figure shows how an
action potential is generated by an initial, localized depolarization of a neuron. This depolar-
ization causes a depolarization at a neighboring site. Thus the disturbance, or action potential,
propagates itself down the neuron.
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The inward rush of sodium will further depolarize the membrane, opening even
more sodium channels, suggesting an avalanche. This is prevented at the site of the
original depolarization, however, by the spontaneous closing of the sodium gates
about a millisecond after they open. During that millisecond the membrane potential
difference not only goes to zero, but becomes positive. At that time, the potassium
gates open, and potassium rushes out of the neuron in response to the positive charges
that have accumulated in the interior. This makes the transmembrane potential drop
rapidly, even hyperpolarizing to below —70 mv. The Na/K pump now restores Na™
and K to resting levels inside and outside the neuron.

The entire process of action potential generation, from initiation to complete re-
covery, takes about two milliseconds. The neuron can be restimulated before it has
recovered completely, i.e., during the period of hyperpolarization, but such stimu-
lation naturally takes a greater depolarizing stimulus than the original one. Finally,
note the “all-or-none” nature of action potential generation: No action potential is
generated until the threshold degree of depolarization is reached, and then the same-
size action potential is generated, no matter how far past the threshold the stimulatory
depolarization is carried.

The action potential propagates itself down the neuron.

We saw just above how sufficient depolarization of the axonal membrane at a localized
point can cause the voltage-controlled sodium gates to open, permitting sodium ions
to rush into the cell at that point. These sodium ions further depolarize the membrane
at that point and permit even more sodium to enter the cell. Figure 7.3.1 shows that
the inrushing sodium ions now spread laterally along the inside of the membrane,
attracting negative ions from the extracellular fluid to the outside of the membrane. As
the numbers of these ions increase, they will eventually depolarize the neighborhood
of the site of the original stimulus and thus open the sodium gates there. Meanwhile,
the site of the original stimulus cannot be restimulated during a several millisecond
latent period. The temporary latency at the site of the original stimulus and the
depolarization of the membrane in the neighborhood of that site combine to cause the
action potential to spread away from the site of the original stimulus.’

The decay of the action potential at its original site and its lateral spread from
that site causes the disturbance to move along the neuron. The movement of the
action potential is often compared to the burning of a fuse: Action at one site triggers
action at the adjacent site and then the original action is extinguished. The size of the
disturbance is the same as it passes any point on the fuse.

In closing this section, we bring up a point made at the beginning of this sec-
tion: The electrical propagation of an action potential is not like the propagation of
an electrical current down a copper wire. The latter involves the lengthwise mo-
tion of electrons in the wire; the former involves radial and lengthwise motions of
atomic ions.

5 The effect of some anaesthetics, e.g., ether and ethyl alcohol, is to reduce the electrical
resistance of the neuronal membrane. This causes the action potential to be extinguished.
The effect of membrane resistance on action potential velocity is discussed in Section 7.5.
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7.4 Synapses: Interneuronal Connections

When an action potential reaches the junction, or synaptic gap, between two neurons,
it triggers the release of a neurotransmitter chemical from the presynaptic cell. The
neurotransmitter then diffuses across the synaptic gap and, combining with other
incoming signals, may depolarize the postsynaptic cell enough to trigger a new action
potential there.

Besides the excitatory neurotransmitters, there are inhibitory neurotransmitters.
The latter hyperpolarize the postsynaptic neuron, making it more difficult for a new
action potential to be generated. Thus whether an action potential is generated is
determined by the sum of all incoming signals, both excitatory and inhibitory, over a
short time period. The nervous system can use this summation to integrate the signals
induced by a complex environment, and thereby generate complex responses.

In some cases, accessory cells wrap around neuronal axons to increase the elec-
trical resistance between the cell’s interior and its exterior. The action potential seems
to jump between gaps in this sheath, thus greatly increasing the velocity with which
the action potential is propagated.

Most communication between neurons is chemical.

The simplest “loop” from stimulus to response involves three neurons: one to detect
the stimulus and carry the message to the central nervous system, one in the central
nervous system, and one to carry the message to the responding organ. Most neural
processing is much more complicated than that, however. In any case, some means of
cell-to-cell communication is necessary. It surprises many biology students to learn
that the mode of communication between such neurons is almost always chemical,
not electrical.

Figure 7.4.1 shows the junction of two typical neurons, There is a gap of about
30 nm between the axon of the neuron carrying the incoming action potential and the
dendrite of the neuron in which a new action potential will be generated.® The gap is
call a synapse. The arriving action potential opens certain voltage-gated ion channels,
which causes small packets of a neurotransmitter chemical to be released from the
presynaptic membrane of the presynaptic neuron. This neurotransmitter then diffuses
to the postsynaptic membrane of the postsynaptic neuron, where it opens chemically
gated ion channels. The opening of these chemically gated channels causes a local
depolarization of the dendrites and cell body of the postsynaptic neuron. If the
depolarization is intense enough, a new action potential will be created in the area
between the postsynaptic cell body and its axon.

More than a hundred neurotransmitters have been identified, but acetylcholine is a
very common one, especially in the part of our nervous system that controls voluntary
movement. If acetylcholine were to remain at the postsynaptic membrane, it would
continue to trigger action potentials, resulting in neuronal chaos. There is, however,
a protein catalyst called acetylcholine esterase that breaks down acetylcholine soon
after it performs its work. Most nerve gases, including many insecticides, work

6 1 nm = 1 nanometer = 10~ meter.
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Fig. 7.4.1. Synaptic information transfer between neurons. The incoming action potential
causes the presynaptic neuron to release a neurotransmitter chemical, which diffuses across
the synaptic space, or cleft. At the postsynaptic neuron the neurotransmitter causes a new
action potential to be generated.

by inactivating acetylcholine esterase, leading to uncontrolled noise in the animal’s
nervous system, and therefore death.

Note that synaptic transmission causes information flow to be one-way, because
only the end of an axon can release a neurotransmitter and only the end of a dendrite
can be stimulated by a neurotransmitter.

Occasionally, synaptic transmission is electrical.

At times, chemical transmission by synapses is too slow because diffusion may result
in a delay of more than a millisecond. For these situations, there are direct cytoplasmic
connections that allow electrical communication between cells. For example, parts of
the central nervous system controlling jerky eye movements have electric synapses,
as do parts of the heart muscle (which, of course, is not nervous tissue).

Summation of incoming signals occurs at the postsynaptic neuron.

Whether or not a new action potential is generated depends on the degree to which the
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postsynaptic neuron is depolarized. Generally, no one presynaptic neuron will cause
enough depolarization to trigger a new action potential. Rather, many presynaptic
neurons working together have an additive effect, and the totality of their effects may
be enough to depolarize the postsynaptic neuron. The various signals are simply
summed together.

Summation can be spatial or temporal. Spatial summation occurs when many
presynaptic neurons simultaneously stimulate a single postsynaptic neuron. Temporal
summation is a little more complicated. To understand it, we need to recall the all-
or-none nature of the action potential—every stimulus that depolarizes a neuron past
its threshold generates the same size action potential. So, we ask, how does a neuron
code for stimulus infensity if all action potentials are the same size? The answer is
that stimulus intensity is coded by the frequency of action potentials, more intense
stimuli generating more frequent spikes. Temporal summation occurs when many
signals from one, or a few, presynaptic neurons arrive at a postsynaptic neuron in
a short time period. Before one depolarizing pulse of neurotransmitter can decay
away, many more pulses arrive, finally summing sufficiently to generate a new action
potential.

Synaptic transmission may be excitatory or inhibitory.

As pointed out earlier, there are many known neurotransmitters. Some depolarize
the postsynaptic neuron, leading to the generation of a new action potential. Other
neurotransmitters, however, can hyperpolarize the postsynaptic neuron, making the
subsequent generation of a new action potential harder. These latter neurotransmitters
are therefore inhibitory. In general, therefore, the information reaching a postsynaptic
cell will be a mixture of excitatory and inhibitory signals. These signals are summed,
and the resultant degree of depolarization determines whether a new action potential
is generated.

We can now see an important way that the nervous system integrates signals.
The actual response to a stimulus will depend on the pattern of excitatory and in-
hibitory signals that pass through the network of neurons. At each synapse, spatial
and temporal summation of excitatory and inhibitory signals determines the path of
information flow.

Mpyelinated neurons transmit information very rapidly.

As will be demonstrated in the next section, the velocity of conduction of an action
potential down an axon depends on the diameter of the axon and on the electrical
resistance of its outer membrane. Figure 7.4.2 shows how special accessory cells,
called Schwann cells, repeatedly wrap around neuronal axons, thus greatly increasing
the electrical resistance between the axon and the extracellular fluid. This resistance is
so high, and the density of voltage-gated sodium channels so low, that no ions enter or
leave the cell in these regions. On the other hand, there is a very high sodium channel
density in the unwrapped regions, or nodes, between neighboring Schwann cells. The
action potential exists only at the nodes, internodal information flow occurring by ion
flow under the myelinated sections. Thus the action potential seems to skip from one
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Schwann cell

<

Fig. 7.4.2. This picture shows how a Schwann cell wraps around a neuron, resulting in many
layers of membrane between the neuron and the outside world. This many-layered structure
has a very high electrical resistance, which radically alters the action-potential-transmitting
properties of the neuron.

node to another, in a process called saltatory conduction. Saltatory conduction in a
myelinated nerve is about one hundred times faster than the movement of an action
potential in a nonmyelinated neuron. We would (correctly) expect to see it in neurons
that control rapid-response behavior.
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7.5 A Model for the Conduction of Action Potentials

Through a series of meticulously conceived and executed experiments, Alan Hodgkin
and Andrew Huxley elucidated the physiology underlying the generation and con-
duction of nervous impulses. They discovered and charted the key roles played by
sodium and potassium ions and the change in membrane conductance to those ions
as a function of membrane potential. By empirically fitting mathematical equations
to their graphs, they formulated a four-variable system of differential equations that
accurately models action potentials and their propagation. The equations show that
propagation velocity is proportional to the square root of axon diameter for an un-
myelinated nerve.

The Hodgkin—Huxley model is a triumph in neurophysiology.

We present here the mathematical model of nerve physiology as reported by Hodgkin
and Huxley. Their experiments were carried out on the giant axon of a squid, the
largest axon known in the animal kingdom, which achieves a size sufficient for the
implantation of electrodes. Early experiments in the series determined that results at
different temperatures could be mathematically transformed to any other (physiolog-
ical) temperature. Consequently, most of their results are reported for a temperature
of 6.3°C. Temperatures from 5°C to 11°C are environmental for the animal, and help
maintain the nerve fiber in good condition. Note that 6.3°C is approximately 300°
Kelvin.

In the resting state a (nonmyelinated) axon is bathed in an interstitial fluid contain-
ing, among other things, sodium, potassium, and chloride ions. The interior material
of the axon, the axoplasm, is separated from the external fluid by a thin lipid mem-
brane, and the concentrations of these ions differ across it. The concentration of
sodium ions, Nat, is 10 times greater outside than inside; that of potassium ions,
K™, is 30 times greater inside than out; and chloride ions, C1™, are 15 times more
prevalent outside than in (see Table 7.5.1).

Table 7.5.1. Intra- and extracellular ion concentrations.

Inside axon|Extracellular fluid % Nernst equivalent
Nat 15 Na®™ 145 0.10 —55mv
KT 150 K+ 5 130 82 mv
Cl™ 75 ClI— 110 0.068 —68 mv

Diffusion normally takes place down a concentration gradient, but when the par-
ticles are electrically charged, electrical potential becomes a factor as well. In par-
ticular, if the interior of the axon is electrically negative relative to the exterior, then
the electrically negative chloride ions will tend to be driven out against its own con-
centration gradient until a balance between the electrical pressure and concentration
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gradient is reached (see Section 7.2). The balancing voltage difference, V, is given

by the Nernst equation,

RT C;
V=—In—*, (7.5.1)
F  C,

where R is the gas constant, R = 8.314 joules/°C/mole, T is absolute temperature,
and F is Faraday’s constant, 96,485 coulombs, the product of Avogadro’s number
with the charge on an electron. The concentrations inside and out are denoted by C;
and C,, respectively.

For C17, this potential difference is —68 mv. But in the resting state (see Sec-
tion 7.2), the interior of an axon is at —70 mv relative to the exterior (see Figure 7.5.1).
Thus there is little tendency for chloride ions to migrate. The same holds for potas-
sium ions, which are electrically positive. Their Nernst equivalent is 82 mv, that is,
the outside needs to be 82 mv more positive than the inside for a balance of the two
effects. Since the outside is 70 mv more positive, the tendency for K™ to migrate
outward, expressed in potential, is only 12 mv.

Fig. 7.5.1. Charges inside and outside an axon.

The situation is completely different for sodium ions, however. Their Nernst
equivalent is —55 mv, but since sodium ions are positive, the interior would have to
be 55 mv electrically positive to balance the inward flow due to the concentration
gradient. Since it is —70 mv instead, there is an equivalent of 125 mv (= 70 4+ 55)
of electrical potential for sodium ions to migrate inward. But in fact, there is no such
inward flow; we must therefore conclude that the membrane is relatively impermeable
to sodium ions. In electrical terms, the conductance of the membrane to sodium ions,
8Na, 18 small.

Electrical conductance is defined as the reciprocal of electrical resistance,

g=;~
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The familiar Ohm’s law,
V =iR,

then takes the form
i=gV. (7.5.2)

In discrete-component electronics, resistance is measured in ohms and conductance
in mhos. However, for an axon, conductance and current will depend on surface area.
Therefore, conductance here is measured in mhos per square centimeter. Letting
Ena = 55 mv denote the equilibrium potential given by the Nernst equation for
sodium ions, the current per square centimeter of those ions can be calculated as

iNa = gNa(V — ENa),  ENa = 55 mv, (7.5.3)

where V is the voltage inside the axon. A negative current corresponds to inward
flow. Similarly, for potassium ions,

ixk =gk(V —Ex), Ex=-82mv. (7.5.4)

Finally, grouping chlorine and all other ionic currents together as leakage currents
gives us
ip =g(V—Ep, E¢=-59mv. (7.5.5)

One of the landmark discoveries of the Hodgkin—Huxley study is that membrane
permeability to Na™ and K™ ions varies with voltage and with time as an action
potential occurs.” Figure 7.5.2(a) plots potassium conductance against time with
the interior axon voltage “clamped’” at —45 mv. Hodgkin and Huxley’s apparatus
maintained a fixed voltage in these conductance experiments by controlling the cur-
rent fed to the implanted electrodes. The large increase in membrane conductance
shown is referred to as depolarization. By contrast, Figure 7.5.2(b) depicts membrane
repolarization with the voltage now clamped at its resting value. In these voltage
clamp experiments, the electrodes run the entire length of the axon, so the entire axon
membrane acts in unison; there are no spatial effects. Figure 7.5.3 shows a Na™
conduction response. Somewhat significant in the potassium depolarization curve is
its sigmoid shape. On the other hand, the sodium curve shows an immediate rise in
conductance. We conclude that the first event in a depolarization is the inflow of Na™
ions. An outflow of K* ions follows shortly thereafter. The leakage conductance is
0.3 m-mhos/cm? and, unlike the sodium and potassium conductances, is constant.

Potassium conductance is interpolated by a quartic.

Hodgkin and Huxley went beyond just measuring these conductance variations; they
modeled them mathematically. To capture the inflexion in the potassium conductance
curve, it was empirically modeled as the fourth power of an exponential rise; thus
_ s 4
8K = 8KN', (7.5.6)

7 The biological aspects of this variation were discussed in Section 7.3.
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Fig. 7.5.2. Potassium conductance vs. time.
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Fig. 7.5.3. Sodium conductance vs. time.

where gx is a constant with the same units as gg and n is a dimensionless exponential

variable,
t

n=ne — (oo —ngle ™,
increasing from ng to the asymptote no; see Figure 7.5.4. If ng = 0, then for small
t, n behaves like t* as seen from a Taylor expansion,

4 3
n4 = (noo — l’l<>()€7‘t't7)4 = n;.o t4 — 4 n;.o n;.o ts +
Tn n 2!‘[,%

Therefore, the n* curve has a horizontal tangent at 0, as desired.

In order that n become no larger than 1 in the fit to the experimental data, gk is
taken as the maximum conductance attainable over all depolarization voltages. This
value is

gk = 24.34 m-mhos/cm?.

The function n may also be cast as the solution of a differential equation; thus

dn

Tl an(l —n) — Bun, (7.5.7)
where the coefficients «, and S, are related to the rising and falling slopes of n,
respectively; see Figure 7.5.5. Their relationship with the parameters of the functional
form is



218 7 Neurophysiology

L)

Fig. 7.5.4. Dimensionless variable n vs. time.

Fig. 7.5.5. Slope of the differential form of dimensionless variable n.

1 273
= and 71y = .
an + Bn an + Bu
Experimentally, these coefficients vary with voltage. Hodgkin and Huxley fit the
experimental relationship by the functions

0.01(10— (V — V)
Un = T 1000v=v) _q

Tn

(7.5.8)

and

Vi

B, = 0.125¢= 50", (7.5.9)

where V, = —70 mv is resting potential. Note that (7.5.8) is singular at V = —60;
however, the singularity is removable with limiting value 0.1.
Substituting (7.5.6) into (7.5.4) gives

ix = ggn*(V — Ex). (7.5.10)
Sodium conductance is interpolated by a cubic.
Sodium conductance is modeled as
gNa = gnam’h, (7.5.11)

where gna = 70.7 m-mhos/cm? is a fixed parameter carrying the units and m and & are
dimensionless. The use of two dimensionless variables helps smooth the transition
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between the ascending portion of the curve and the descending portion. As above, m
and & are exponential and satisfy similar differential equations,

M (1l —m) — B (7.5.12)
7 = om m 1, S.
dh

T =l =) = fuh. (7.5.13)

Further, the coefficients are functions of V interpolated as follows:

0125 (V — V,)

Um = " 01@5—(V—V,) _ 1" (7.5.14a)

V—Vy
m =de T, (7.5.14b)
ap = 0.07¢ 00V =V0), (7.5.14c)

1

P = 0 1G0=(V=V)) + 1" (7.5.14d)

Substituting (7.5.11) into (7.5.3) gives
iNa = gNamh(V — Ena). (7.5.15)

The Hodgkin—Huxley space-clamped-axon equations produce action potentials.

In another series of experiments, Hodgkin and Huxley fixed electrodes along the
entire length of the axon as before, but now the electrodes were used to measure
the voltage as it varied during a depolarization event. These are called the space
clamp experiments. In addition to its role as a variable conductor of electrically
charged particles, the axon membrane also functions as the dielectric of an electrical
capacitor in that charged particles accumulate on either side of it. The capacitance of
the membrane was determined by Hodgkin and Huxley to be about 1 microfarad per
square centimeter:
m=1Xx 10° farad/cm?.

Electrically, the membrane may be depicted as in Figure 7.5.6. When space
clamped, the sum of the membrane ionic currents serves to deposit charge on or
remove charge from this membrane capacitor. Said differently, the effective cur-
rent “through” the capacitor balances the membrane current made up of the sodium,
potassium, and leakage components; the sum of these currents must be 0 by Kirch-
hoff’s law,

ic+iNna+ix +ir=0. (7.5.16)
The effective current through a capacitor is given by
ic = Y
dt
dv

where membrane capacitance Cr, is measured in farads per square centimeter, <7
is in volts/second, and i is in amperes per square centimeter. Substituting from
(7.5.16) gives
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dv . . :
sz = —(iNna + i +ip).

outside
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8Na 8k 8¢
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Fig. 7.5.6. Axon membrane circuit equivalent.

(7.5.17)

‘We now collect the various equations to give the Hodgkin—Huxley space-clamped
equations. Substituting (7.5.5), (7.5.10), and (7.5.15) into (7.5.17) and recalling

(7.5.7), (1.5.12), and (7.5.13) gives

dV —1 - 3 - 4

— = —(gnam h(V — ENa) + gxn (V — Ex) + ge(V — Ey)),
dt Cn

dn

Ezan(l_n)_ﬂnn,

D (1 —m) —

T = oy m 10,

dh

2 (1 = h) — Buh,

T ap( ) — B

(7.5.18a)
(7.5.18b)
(7.5.18¢)

(7.5.18d)

where the alphas and betas are given functions of V according to (7.5.8), (7.5.9),

and (7.5.14).

The following code solves this system of differential equations and produces an
action potential. The action potential is initiated by a pulse of current lasting 0.001

second. Figure 7.5.7 shows the result.

MarLE
> Ena:=55: Ek:=-82: El:=-59: gkbar:=24.34: gnabar:=70.7:
> gl:=0.3: vrest:= -70: Cm:=0.001:
> alphan:=v—>0.01*(10-(v-vrest))/(exp(0.1*(10-(v-vrest)))-1);
> betan:=v—>0.125*exp(-(v-vrest)/80);
> alpham:=v—>0.1*(25-(v-vrest))/(exp(0.1*(25-(v-vrest)))-1);
> betam:=v—>4*exp(-(v-vrest)/18);
> alphah:=v—>0.07*exp(-0.05*(v-vrest));
> betah:=v—>1/(exp(0.1*(30-(v-vrest)))+1);
> pulse:=t—>-20*(Heaviside(t-0.001)-Heaviside(t-0.002));
> rhsV:=(t,V,n,m,h)—>-(gnabar*'m"3*h*(V - Ena)+gkbar*n"4*(V - Ek)+gl*(V - El)+pulse(t))/Cm;
> rhsn:=(t,V,n,m,h)—>1000*(alphan(V)*(1-n)-betan(V)*n);
> rhsm:=(t,V,n,m,h)—>1000*(alpham(V)*(1-m)-betam(V)*m);
> rhsh:=(t,V,n,m,h)—>1000*(alphah(V)*(1-h)-betah(V)*h);
> inits:=V(0)=vrest,n(0)=0.315,m(0)=0.042, h(0)=0.608;
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> sol:=dsolve({diff(V(t),t)=rhsV(t, V(t),n(t),m(t),h(t)), diff(n(t),t)=rhsn(t,V(t),n(t),m(t),h(1),

diff(m(t),t)=rhsm(t,V(t),n(t),m(t),h(t)), diff(h(t),t)=rhsh(t,V(t),n(t),m(t),h(t)),inits},
{V(t),n(t),m(t),h(t)},type=numeric, output=listprocedure);

> Vs:=subs(sol,V(t));
> plot(Vs,0..0.02,tickmarks=[4,7]);

MarLaB
% first create 12 m-files

0/ o
O/ o
O/ ]
%
O/ ©°
O/ o
O/ ]
O/ ]
0/ o
0/ o
O/ o
O/ ]
O/ ]
O/ ©°
0/ o
O/ ]
O/ ]
O/ ]
O/ o
0/ o
°/ ]
O/ ]
0/ o

function y=alphan(v); % (1) alphan.m
vrest=-69;
y=0.01*(10-(v-vrest))/(exp(0.1*(10-(v-vrest)))-1);
function y=betan(v); % (2) betan.m
vrest=-69; y=0.125"exp(-(v-vrest)/80);
function y=alpham(v); % (3) alpham.m
vrest=-69;
y=0.1*(25-(v-vrest))/(exp(0.1*(25-(v-vrest)))-1);
function y=betam(v); % (4) betam.m
vrest=-69; y=4*exp(-(v-vrest)/18);

function y=alphah(v); % (5) alphah.m
vrest=-69; y=0.07*exp(-0.05*(v-vrest));
function y=betah(v); % (6) betah.m
vrest=-69; y=1/(exp(0.1*(30-(v-vrest)))+1);
function y=pulse(t); % (7) pulse.m

if t<.001

y=0;

elseif t<.002

y=-20;

else

y=0;

end

function y=rhsV(t,V,n,m,h); % (8) rhsV.m

% Ena=55; Ek=-82; El= -59; gkbar=24.34; gnabar=70.7;
% g1=0.3; cm=0.001;
% y=-(gnabar*m"3*h*(V-Ena)+gkbar*n"4*(V-Ek)+gl*(V-El)+pulse(t))/cm;

O/ ]
0/ ©°
0/ o
O/ ]
O/ ]
O/ ]
O/ ©°

function y=rhsn(t,V,n,m,h); % (9) rhsn.m
y=1000*(alphan(V)*(1-n) - betan(V)*n);
function y=rhsm(t,V,n,m,h); % (10) rhsm.m
y=1000*(alpham(V)*(1-m) - betam(V)*m);
function y=rhsh(t,V,n,m,h); % (11) rhsh.m
y=1000*(alphah(V)*(1-h) - betah(V)*h);
function Yprime=hhRHS(t,Y);% (12) hhRHS.m

% Yprime=[rhsV(t,Y(1),Y(2),Y(3),Y(4)):rhsn(t,Y(1),Y(2),Y(3),Y(4)):rhsm(t,Y(1),Y(2), Y(3),Y(4));...

O/O

rhsh(t,Y(1),Y(2),Y(3),Y(4))];

> vrest=-69;

> [t,sol]=0de45(hhRHS’, [0 .02], [vrest; 0.315; 0.042; 0.608));
> Vs=sol(:,1);

> plot(t,Vs)

The Hodgkin—Huxley propagation equations predict impulse speed.

221

In vivo, an axon is not clamped. Consequently, instead of the entire axon undergoing
an action potential at the same time, an action potential is localized and propagates
along the axon in time. Thus voltage is a function of position, x, along the axon as
well as a function of time. Consider a small section of axon lying between x and
x + Ax. The basic equation states that the current in at x minus the current out
at x + Ax and minus the membrane current must equal the charge buildup on that
section of membrane, that is, must equal the capacitance current. Hence

dv
i(x) —i(x 4+ Ax) — (iNa + ik +i¢)2maAx = sznanW'
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Fig. 7.5.7. A simulated action potential.

In this we have taken the radius of the axon to be a and multiplied the per-square-
centimeter quantities by the surface area of the section of axon in question. Divide
by Ax, let Ax — 0, and divide by 27 a to get

ﬁg—; — (iNa + ik + i) = Cmii_‘t/' (7.5.19)
Next, suppose there is no membrane current. Then the voltage drop over the
length of the axon is related to the current i along the axon by Ohm’slaw, V =iR. In
this R is the total resistance of the axoplasm (not membrane resistance). But in fact,
each section of axon of length Ax contributes to the overall resistance in proportion to
its length, namely, %, where L is the total length of the axon. Thus if position along
the axon is denoted by x, then resistance as a function of x increases linearly from
0 to R. In the meantime, voltage as a function of x falls from V to 0. In particular,
Ohm’s law as applied to the section dx becomes
av .dR
—_—=—i—, (7.5.20)
dx dx

where the negative sign indicates that V is decreasing while R is increasing.

In this ‘fi—f is the resistance per unit length, which we take to depend only on the
cross-sectional area of the axon. And this dependence is in inverse proportion; that
is, if the area is halved, then the resistance is doubled. Hence, letting R denote the
resistance per unit length per unit area, then

- (7.5.21)

dR R
dx  mwa?’

where a is the radius of the axon. Substituting (7.5.21) into (7.5.20) and solving for
i gives
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2
j= _Tadv. (1.5.22)
R dx
In this, the negative sign can be interpreted to mean that current moves down the
voltage gradient.
Differentiate (7.5.22) with respect to x and substitute (7.5.19) to get
a d*v. dv
R (iNa + ik +i¢) = sz. (7.5.23)

This equation, along with the equations for n, m, and h corresponding to the
membrane ion currents, (7.5.7), (7.5.12), and (7.5.13), constitute the Hodgkin—Huxley
propagation equations. Hodgkin and Huxley numerically obtain from these equations
the value 18.8 meters/second for the propagation velocity c of an action potential. It
is known to be 21 meters/second, and so the agreement is quite good.

We will not solve this partial differential equation system here, but instead we
will show that the propagation velocity is proportional to the square root of the radius
a and inversely proportional to the axon resistance R. Hodgkin and Huxley note that
if the action potential propagates along the axon unchanged in shape, then its shape
as a function of x for fixed ¢ is equivalent to its shape as a function of ¢ for fixed x.
This is formalized by the wave equation [11]

9’V 19%V

ax2 T 2 a2
In this c is the propagation velocity. Substituting the second derivative with respect
to x from (7.5.24) into (7.5.23) gives

a d*v. dv
WW — (lNa +lK+l[) = me (7525)
In this equation, the only dependence on a occurs in the first term. Since the other
terms do not depend on a, the first term must be independent of a as well. This can

happen only if the coefficient is constant with respect to a,

(7.5.24)

ﬁ = constant.
c

[a
¢ = (constant), [ —.
( R

Thus the propagation velocity is proportional to the square root of the axon radius
and inversely proportional to the square root of axon resistance. The large size of the
squid’s axon equips it for fast responses, an important factor in eluding enemies.

But then it follows that

7.6 Fitzhugh—Nagumo Two-Variable Action Potential System

The Fitzhugh—Nagumo two-variable model behaves qualitatively like the Hodgkin—
Huxley space-clamped system. But being simpler by two variables, action potentials
and other properties of the Hodgkin—Huxley system may be visualized as phase-
plane plots.
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The Fitzhugh—Nagumo phase-plane analysis demonstrates all-or-nothing response.

Fitzhugh [12] and Nagumo [13] proposed and analyzed the following system of two
differential equations, which behaves qualitatively like the Hodgkin—Huxley space-
clamped system:

av 1,
v —-Viow,
5; 3 (7.6.1)
ar =c(V 4+a—bw).

In this V plays the role of membrane potential, but w is a general “refractory” variable
not representing any specific Hodgkin—Huxley variable. The parameters a, b, and ¢
are the constants

a=0.7, b=0.38, ¢ =0.08.

The virtue of this system is in elucidating the regions of physiological behavior of
membrane response.

The phase plane is the coordinate plane of the two dependent variables V and w.
Acurve V = V(t) and w = w(t) in the phase plane corresponding to a solution of
the differential equation system for given initial values Vo = V(0), wyo = w(0) is
called a trajectory.

Two special curves in the phase plane are the isoclines. These are the curves for

which either ‘il—‘t/ or ‘Z—’f is zero. The w isocline

V4+a—-bw=0
is a straight line with slope 1.25 and intercept 0.875. To the left of it, ‘2—';) < 0, and to
the right, ‘fi—l;’ > (. The V isocline

1 o3 [
V—-—=V' —w=0, or w=V|1—-=-V"]),
3 3

is a cubic with roots 0 and :I:\/g. Above it % < 0, and below it % > 0. The
isoclines divide the phase plane into four regions, or quadrants. In the first, above
the cubic and to the right of the line, ‘2—‘: < 0and il—’;’ > 0. Hence a trajectory in this
quadrant will tend toward decreasing V and increasing w, upward and leftward. In
quadrant 2, above the cubic and to the left of the line, trajectories tend downward and
leftward. In quadrant 3, below the cubic and to the left of the line, trajectories tend
downward and rightward. In quadrant 4, below the cubic and to the right of the line,
the derivatives are ”fi—‘t/ > 0 and (fz_lf > 0, so trajectories tend upward and rightward.
The isoclines and quadrants are shown in Figure 7.6.1.

The isoclines intersectat V, = —1.1994 and w, = —0.6243. Atthis point ‘2—‘; =0
and ‘fi—lf = 0, and so a trajectory at that point does not move at all; it is a stationary
point (see Section 2.4). For this particular system of differential equations, it can be
shown that trajectories starting anywhere eventually lead to this stationary point. As
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Fig. 7.6.1. Isoclines and “quadrants.”
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Fig. 7.6.2. Fitzhugh—Nagumo trajectory.

a result, it is known as a globally attracting stable stationary. It plays the role of the
resting state in our description of an axon.

Consider the progress of a trajectory that is begun at the point (Vp, wg) located
to the right of the ascending portion of the cubic isocline. Since this is in quadrant 4,
the trajectory will tend rightward until it crosses the descending section of the same
isocline. From there the trajectory will tend upward and leftward until it crosses the w
isocline. Proceeding from there leftward and downward, it next crosses the V isocline
again. Finally, it proceeds downward and rightward, ending up at the equilibrium
point. See Figure 7.6.2.

Fix attention on the behavior of V along this trajectory. It first increases in value
until it reaches the descending branch of the cubic isocline. This will be its maximum
value. Crossing thisisocline, V then decreases, eventually below the stationary point.
Completing the trajectory, V increases slowly until it is stationary. But this describes
the behavior of the membrane potential, V, during an action potential.

Next, suppose a trajectory is begun immediately to the right of the stationary
point. Then a very different thing happens. Assume that the starting point (Vp, wo) is
taken so that wo = w, and Vo = V, + AV. This starting point lies on the horizontal
line through the stationary point as shown in Figure 7.6.1, which, in turn, intersects
the cubic isocline at —0.786 and 1.98 besides —1.994. Therefore, depending on the
size of AV, the starting point falls in either quadrant 1 or 4.

If it is in quadrant 1, then the response trajectory returns more or less directly to
stationary. This is analogous to a subthreshold stimulation in an axon.
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But if AV is so large that Vy = —0.64, say, well inside quadrant 4, then the
response trajectory corresponds to an action potential.

Thus this Fitzhugh—Nagumo model gives an “all-or-none’ response to a stimulus,
just as an axon does. The separating point along the line w = —0.624 lies between
Vo = —0.65 and Vy = —0.64. More generally, there is an entire separating “all-or-
none’ curve, corresponding to different values of w, called a separatrix. It follows
the ascending branch of the cubic isocline closely.

Refractory and enhanced regions.

Other features of axon behavior are demonstrated with this model as well. During an
“action potential,”” consider what happens if a stimulus occurs while the trajectory lies
above the cubic isocline. Nothing! That is, such a stimulus causes the trajectory to
jump horizontally to the right, but then it resumes its leftward horizontal movement.
In particular, there is basically no change in the “refractory” variable w.

Now suppose a stimulus occurs while the action potential trajectory is descending
in the third quadrant headed back to the stationary point. If the stimulus is large enough
to cross the separatrix, then a new action potential can be initiated. Consequently,
this region corresponds to the relative refractory region of an axon’s behavior.

Finally, suppose a subthreshold stimulation occurs from the stationary point.
There is no action potential, but a second subthreshold stimulation might be suf-
ficient to cross the all-or-none separatrix and initiate an action potential. Therefore
the region between the stationary point and the separatrix corresponds to the enhanced
state of an axon.

Exercises/Experiments

The purpose of these experiments is to see the effect of varying some of the parameters
in the Hodgkin—Huxley action potential model (use the code on pp. 220-221) and to
gauge the sensitivity of these parameters.

In preparing a report on the following experiment, one should discuss the ob-
servations of the experiments. Also describe how an action potential changed with
respect to the modification of each parameter and to what degree. In the sensitivity
experiments, gauge the effect on the action potential of a 5% and a 10% change from
the nominal value, both up and down, of the parameter. Please submit supporting
graphs.

1. Run the code as is and note the maximum value of the response. Gradually lower
pulse strength (the 20 in the pulse line) in several steps. At what strength is there
no action potential?

2. Experiment with increasing the value of membrane capacitance Cp,. Note the
sensitivity of the response with respect to this parameter. What, physiologically,
might cause the membrane capacitance to change in a living system?

3. Experiment with the leakage conductance g¢. This is principally the conductance
of chloride ions. How sensitive is the response to this parameter?
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Experiment with the sodium conductance gn,. This is the base level of conduc-
tance of sodium ions. How sensitive is the response to this parameter?

Questions for Thought and Discussion

1.

2.

Discuss the roles of voltage-gated channels and diffusion processes in the trans-
mission of information across neuronal synapses.

Starting with the number 2, number the following events in the order in which
they occur. (“Site A” is an arbitrary midaxonal location.)

neuronal membrane is depolarized at site A by external stimulus 1
acetylcholine esterase breaks down neurotransmitter
K™ channels open at site A
postsynaptic chemical-gated channels open
Nat/K pump restores resting potential at site A
interior of neuron at site A is at positive potential with respect to
exterior

In what ways is the transmission of information by an action potential different
from the transmission of electrical information by a copper wire?
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The Biochemistry of Cells

Introduction

The purpose of this chapter is to present the structure of some of the molecules
that make up a cell and to show how they are constructed under the supervision of
hereditary elements of the cell. This will lead the way to a mathematical description
of biological catalysis at the end of this chapter and is a necessary prelude to the
discussion of the human immunodeficiency virus in Chapter 10. As a result, this
chapter contains a lot of biological information.

We will see that biological molecules can be created outside of a cellular en-
vironment, but only very inefficiently. Inside a cell, however, the information for
biomolecules is encoded in the genetic material called nucleic acid. Thus we will
establish a direct relationship between the chemicals that constitute a cell and the
cell’s hereditary information.

The topical material of this chapter is organized along the lines of small to large.
We begin by presenting a description of the atoms found in cells and then show how
they are assembled into small organic molecules. Some of these small molecules
can then be polymerized into large biochemical molecules, the biggest of which have
molecular weights on the order of billions. These assembly processes are mediated
by certain macromolecules which are themselves molecular polymers and whose own
assembly has been mediated by similar molecular polymers. Thus we develop a key
process in biology—self-replication.

8.1 Atoms and Bonds in Biochemistry

Most of the atoms found in a cell are of common varieties: hydrogen, carbon, nitrogen
and oxygen. They are, in fact, major components of air and dirt. What is it then that
makes them so fundamental to life? To answer this question we must examine the
ways that these atoms form bonds to one another—because it is through molecular
organization that we will characterize living systems.

A living system is a highly organized array of atoms, attached to one another by
chemical bonds. The bonds may be strong, requiring considerable energy for their

R.W. Shonkwiler and J. Herod, Mathematical Biology: An Introduction with Maple 229
and Matlab, Undergraduate Texts in Mathematics, DOI: 10.1007/978-0-387-70984-0 8,
© Springer Science + Business Media, LLC 2009
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rearrangement. This leads to structures that are somewhat permanent and which can
be changed only under special biochemical conditions. These bonds are said to be
covalent, and they result from a process of “electron sharing.” Carbon, nitrogen, and
oxygen atoms can form a practically unlimited array, held together by covalent bonds.

Alternatively, some chemical bonds are weak, the heat energy available at room
temperature being sufficient to break them. Because of their weakness, the structures
they form are highly variable, leading to material movement and regional uniformity
(among other things). The most important weak bond is called a hydrogen bond:
it is the electrical attraction between a hydrogen nucleus on one molecule and an
asymmetrically oriented electron on nitrogen or oxygen atoms of the same molecule
or another one.

Organization is the key to living systems.

In Section 3.3, we pointed out that the individual processes found in living systems
are also found in nonbiological situations. We emphasized that the “signature” of
life was the organization, or integration, of those processes into a unified system. We
now extend that concept to physical organization at the atomic and molecular levels.

Calcium, phosphorus, potassium, sulfur, sodium, and chlorine account for about
3.9% of the atoms in our bodies.! Just four other elements make up the other 96%;
they are hydrogen, carbon, nitrogen, and oxygen. These four elements most abundant
in our bodies are also found in the air and earth around us—as H>O, CO», Ny, O3,
and Hy. Thus if we want to explain why something has the special quality we call
“life,” it does not seem very fruitful to look for exotic ingredients; they aren’t there.
Where else might the explanation be?

An important clue can be found in experiments in which living systems are frozen
to within a few degrees of 0°K, so that molecular motion is virtually halted. Upon
reheating, these living systems resume life processes. The only properties conserved
in such an experiment are static structural ones. We can conclude that a critical
property of life lies in the special ways that the constituent atoms of living systems
are organized into larger structures. We should therefore suspect that the atoms most
commonly found in our bodies have special bonding properties, such that they can
combine with one another in many ways. This is indeed the case: carbon, nitrogen,
oxygen, and hydrogen are capable of a virtually infinite number of different molecular
arrangements. In fact, it has been estimated that the number of ways that the atoms
C, H, O, N, P, and S can be combined to make low-molecular-weight compounds
(MW < 500) is in the billions [1]!

Of the large number of possible arrangements of C, N, O, and H, the forces of
evolution have selected a small subset, perhaps a thousand or so, on which to base life.
Members of this basic group have then been combined into a vast array of biomacro-
molecules. For example, the number of atoms in a typical biomacromolecule might
range from a few dozen up to millions, but those with more than a few hundred atoms
are always polymers of simpler subunits.

1 About 15 more elements are present in trace amounts.
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Living systems are assemblages of common atoms, each part of the system having
a very specific organization at all size levels. In other words, all living things can
be thought of as regions of great orderliness, or organization. Death is marked by
the disruption of this organization—either suddenly, as in the case of an accident, or
slowly, as in the case of degenerative disease. In any case, death is followed by de-
compositional processes that convert the body to gases, which are very disorganized.

Physicists use entropy as a measure of disorder; there is an important empirical
rule, the second law of thermodynamics, which states that entropy in the universe
increases in the course of every process. Living systems obey this rule, as they do all
other natural chemical and physical principles. As an organism grows, it assembles
atoms into an orderly, low-entropy arrangement; at the same time, the entropy of the
organism’s surroundings increases by even more, to make the net entropic change in
the universe positive. This net increase is to be found in such effects as the motion
of air molecules induced by the organism’s body heat, in the gases it exhales, and in
the natural waste products it creates.

Nature is full of good examples of the critical role played by organization in living
systems. Consider that a bullfighter’s sword can kill a 600-pound bull and that 0.01
micrograms of the neurotoxin tetrodotoxin from a puffer fish can kill a mouse. The
catastrophic effects of the sword and the toxin seem out of proportion to their masses.
In light of the discussion above, however, we now understand that their effects are not
based on mass at all, but instead on the disruption of critically-organized structures,
e.g., the nervous system [2].

Covalent bonds are strong interactions involving electron sharing.

A very strong attraction between two atoms results from a phenomenon called “elec-
tron sharing’’; it is responsible for binding atoms into biochemical molecules. One
electron from each of two atoms becomes somewhat localized on a line between the
two nuclei. The two nuclei are electrostatically attracted to the electrons and therefore
remain close to one another.

Figure 8.1.1 shows simple planetary models of two hydrogen atoms. (Later we
will generalize our discussion to other atoms.) The radius of this orbit is about
0.05 nm, and so the nuclei are about 0.1 nm apart. At some time each of the electrons
will find itself at a point immediately between the two nuclei. When this happens,
each of the two nuclei will exert the same electrical attraction on the electron, meaning
that the electron can no longer be associated with a particular nucleus. There being
no reason to “choose’ either the right or the left nucleus, the electron will spend more
time directly in between the two than in any other location.”> The two electrons in
the center then act like a kind of glue, attracting the nuclei to themselves and thus

2 The idea that an electron is more likely to be found in one region of space than in another is
built into the quantum-mechanical formulation, which is outside the scope of this book. In
the quantum-mechanical formulation, there are no orbits and the electron is represented as
a probability cloud. The denser the cloud, the greater the probability of finding the electron
there.
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0.1 nm

|

Fig. 8.1.1. A model of the hydrogen molecule. Planetary orbits are shown, but the electrons
are equally attracted to both nuclei and therefore spend most of their time in the region directly
between the two nuclei. This interaction is called a covalent bond.

toward each other. A stable molecule is thereby formed; the attraction between its
constituent atoms is called a covalent bond.

A covalent bond always contains two electrons because of an unusual electronic
property: An electron spins on its own axis. For quantum-mechanical reasons, an
electron always pairs up with another electron having the opposite spin direction,
leading to “spin pairing” in covalent bonds and in certain other situations. An atom
or molecule with an odd number of electrons is called a radical; it is unstable, quickly
pairing up with another radical via a covalent bond. For example, atomic hydrogen
has a very transitory existence, quickly forming the diatomic hydrogen molecule Hy,
in which the electrons’ spins are paired. Thus electrons in stable chemicals appear in
pairs. For a further discussion of this topic, see Yeargers [3].

Covalent bonds are very stable. In order to break one, i.e., to dissociate a
biomolecule, it would require at least four electron volts of energy. For comparison,
that much energy is contained by quanta in the ultraviolet region of the electromag-
netic spectrum and exceeds that of the visible region of the solar spectrum. In passing,
this helps us to understand why sunlight is carcinogenic—its ultraviolet component
alters the chemistry of chemical components of our skin. If not for the fact that most
of the sun’s ultraviolet radiation is filtered out by the earth’s atmosphere, life on earth
would have to be chemically quite different from what it is.

Each kind of atom forms a fixed number of covalent bonds to its atomic neighbors;
this number is called the valence. Table 8.1.1 gives the atomic numbers and valences
of hydrogen, carbon, nitrogen, and oxygen.

Table 8.1.1.

Atom |Symbol|Atomic number|Valence
Hydrogen| H 1 1
Carbon C 6 4
Nitrogen N 7 3
Oxygen (0] 8 2
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Figure 8.1.2 shows the structures and names of several common organic molecules.
The bond angles are shown; they may fluctuate by several degrees depending on the
exact composition of the molecule. In each case the length of the bond is about
0.1 nm, again depending on the constituent atoms. Note also that double bonds are
possible, but only if they are consistent with the valences given above.

You can see from Figure 8.1.2 that there are only two basic bonding schemes: If
the molecule has only single bonds, the bond angles are 109°, and if there is a double
bond the bond angles are 120°. Note that the former leads to a three-dimensional
shape and the latter to a planar shape. This should become evident if you compare
the structures of ethane and ethene.

Hydrogen bonds are weak interactions.

Figure 8.1.3 shows some more molecular models, containing oxygen and nitrogen.
These molecules are electrically neutral: Unless ionized, they will not migrate toward
either pole of abattery. Unlike hydrocarbons, however, their charges are not uniformly
distributed. In fact, nitrogen and oxygen atoms in molecules have pairs of electrons
(called lone pairs) that are arranged in a highly asymmetrical way about the nucleus.
Figure 8.1.3 shows the asymmetrically oriented electrons of nitrogen and oxygen.
There are three important points to be noted about these pictures: First, the reason
that lone pair electrons are “paired” is that they have opposite spin directions from
one another, as was described earlier. Second, the angles with which the lone pairs
project outward are consistent with the 109° or 120° bond angles described earlier.
Third, it must be emphasized that these molecules are electrically neutral—their
charges are not uniformly distributed in space, but they total up to exactly zero
for each complete molecule. The presence of lone pairs has important structural
consequences to molecules that contain nitrogen or oxygen. Consider the water
molecule shown in Figure 8.1.3. Two lone pairs extend toward the right and bottom
of the picture, meaning that the right and lower ends of the molecule are negative.
The entire molecule is neutral, and therefore the left and upper ends must be positive.
We associate the negative charge with the lone pairs and the positive charge with the
nuclei of the hydrogen atoms at the other end. Such a molecule is said to be dipolar.

Dipolar molecules can electrically attract one another, the negative end of one
attracting the positive end of the other. In fact, a dipolar molecule might enter into
several such interactions, called hydrogen bonds (H-bonds). Figure 8.1.4 shows
the H-bonds in which a water molecule might participate. Note carefully that the
ensemble of five water molecules is not planar.

Hydrogen bonds are not very strong, at least compared to covalent bonds. They
can be broken by energies on the order of 0.1 eV, an energy that is thermally available
at room temperature. There are two mitigating factors, however, that make H-bonds
very important in spite of the ease with which they can be broken. The first is their
sheer numbers. Nitrogen and oxygen are very common atoms in living systems, as
mentioned earlier, and they can enter into H-bonding with neighboring, complemen-
tary H-bonding groups. While each H-bond is weak, there are so many of them that
they can give considerable stability to systems in which they occur.
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Methane

Ethene

Propane

Fig. 8.1.2. Three-dimensional models of several small hydrocarbons (containing only hydrogen
and carbon atoms). Bond angles are shown.
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Water

Ammonia

Acetic acid

Fig. 8.1.3. Three-dimensional models of molecules containing oxygen and nitrogen. The stubs
originating on the oxygen and the nitrogen atoms, but not connected to any other atom, represent
lone pairs, or asymmetrically oriented electrons.
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Fig. 8.1.4. Three-dimensional model of one possible transient arrangement of water molecules
in the liquid phase. The central molecule is hydrogen-bonded to four other molecules, each
of which is in turn hydrogen-bonded to four. The hydrogen bonds are represented by dotted
lines between the lone pairs and hydrogen protons. This configuration will break up quickly
at room temperature, and the molecules will re-form into other, similar configurations.

The second factor complements the first: The weakness of H-bonds means that
the structures they stabilize can be altered easily. For example, every water molecule
can be held by H-bonds to four other water molecules (see Figure 8.1.4). At 20-30°
Celsius there is just enough heat energy available to break these bonds. Thus H-bonds
between water molecules are constantly being made and broken, causing water to be
a liquid at room temperature. This allows biological chemistry to be water-based at
the temperatures prevailing on earth. As a second example, we shall see later that the
genetic chemical DNA is partly held together by H-bonds that have marginal stability
at body temperature, a considerable chemical convenience for genetic replication,
which requires partial disassembly of the DNA.

Hydrogen-bonding plays a critical role in a number of biological phenomena.
Solubility is an example: A molecule that is capable of forming hydrogen bonds tends
to be water soluble. We can understand this by substituting any other dipolar molecule
(containing one or more lone pairs) for the central water molecule of Figure 8.1.4. On
the other hand, a molecule lacking lone pair electrons is not water soluble. Look at
the propane molecule in Figure 8.1.2 and note that such hydrocarbons lack the ability
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to dissolve in water because they lack the necessary asymmetrical charges needed
for H-bonding. We shall return to the topic of H-bonding when nucleic acids and
heat storage are discussed later in this chapter. These topics, as well as other kinds
of chemical bonding interactions, are discussed by Yeargers [3].

8.2 Biopolymers

At the beginning of this chapter, it was pointed out that the attribute we call “life” is
due to the organization, not the rarity, of constituent atoms. Figures 8.1.2 and 8.1.3
showed that sequences of carbon, oxygen, and nitrogen atoms, with their many bends
and branches, can potentially combine to form elaborate three-dimensional macro-
molecules. What happens is that atoms combine to form molecular monomers having
molecular weights on the order of a few hundred. In turn, these monomers are chained
into linear or branched macromolecular polymers having molecular weights of up to
a billion. The ability to create, organize, and maintain these giant molecules is what
distinguishes living things from nonliving things.

Polysaccharides are polymers of sugars.

A typical sugar is glucose, shown in Figure 8.2.1(a). The chemical characteristics that
make glucose a sugar are the straight chain of carbons, the multiple —OH groups, and
the double-bonded oxygen. Most of the other sugars we eat are converted to glucose,
and the energy is then extracted via the conversion of glucose to carbon dioxide.
This process is called respiration; it will be described below. A more common
configuration for a sugar is exemplified by the ring configuration of glucose, shown
in Figure 8.2.1(b).

The polymerization of two glucose molecules is a condensation reaction, shown
in Figure 8.2.2. Its reverse is hydrolysis. We can extend the notion of sugar polymer-
ization into long linear or branched chains, as shown by the arrows in Figure 8.2.2.
The actual function of a polysaccharide, also called a carbohydrate, will depend on
the sequence of component sugars, their orientations with respect to each other, and
whether the chains are branched.

Polysaccharides serve numerous biological roles. For example, plants store ex-
cess glucose as starch, a polysaccharide found in seeds such as rice and wheat (flour is
mostly starch). The structural matter of plants is mainly cellulose; it comprises most
of what we call wood. When an animal accumulates too much glucose, it is poly-
merized into glycogen for storage in the muscles and liver. When we need glucose
for energy, glycogen is hydrolyzed back to monomers. These and other functions of
sugars will be discussed later in this and subsequent chapters.

Lipids are polymers of fatty acids and glycerol.

Fatty acids, exemplified in Figure 8.2.3, are distinguished from each other by their
lengths and the positions of their double bonds. Note the organic acid group (-COOH)
atone end. Fatty acids with double bonds are said to be unsaturated; polyunsaturated
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Fig. 8.2.1. (a) A model of the linear form of the glucose molecule. (b) A model of the ring
form of the glucose molecule. The right-hand version, which omits many of the identifying
symbols, is the more common representation.

fatty acids are common in plants, whereas saturated fatty acids, lacking double bonds,
are common in animals. Glycerol and three fatty acids combine to form a lipid, or
fat, or triglyceride, as pictured in Figure 8.2.4. The reverse reaction is again called
hydrolysis.

Lipids are efficient at storing the energy of excess food that we eat; a gram of lipid
yields about four times the calories of other foods, e.g., carbohydrates and proteins.
Lipids are fundamental components of cell membranes: A common lipid of cell
membranes is a phospholipid, pictured in Figure 8.2.5. You should now be able to
put Figure 8.2.5 into the context of Figure 6.1.1. Note how the hydrocarbon regions of
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Fig. 8.2.2. (a) A model of a disaccharide, consisting of two glucose molecules. (b) A model
showing the three possible directions that the polysaccharide of (a) could be extended. A large
polysaccharide, with many such branches, would be very complex.

the phospholipid are in the interior of the membrane and how the hydrophilic oxygen
groups (having lone pair electrons) are on the membrane’s exterior, where they can
hydrogen-bond to the surrounding water.

Nucleic acids are polymers of nucleotides.

Nucleic acids contain the information necessary for the control of a cell’s chemistry.
This information is encoded into the sequence of monomeric units of the nucleic
acid, called nucleotides, and is expressed as chemical control through a series of
processes called the central dogma of genetics—to be described below. When a
cell reproduces asexually, its nucleic acids are simply duplicated and the resultant
molecules are partitioned equally among the subsequent daughter cells, thus ensuring
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Fig. 8.2.4. A model of a fat, or triglyceride. It consists of a glycerol and three fatty acids.
Compare Figure 8.2.3.

that the daughter cells will have the same chemical processes as the original cell.
In sexual reproduction, nucleic acids from two parents are combined in fertilization,
resulting in an offspring whose chemistry is related by sometimes complex rules to
that of its parents.

There are two kinds of nucleic acids: Their names are deoxyribonucleic acid
(DNA) and ribonucleic acid (RNA). The monomer of a nucleic acid is a nucleotide,
which is composed of three parts: a sugar, one or more phosphate groups, and a
nitrogenous base. Figure 8.2.6 shows the components of a typical nucleotide.

DNAis adoublehelix. Figure 8.2.7 shows amodel of the macromolecule, partially
untwisted to reveal its underlying structure. Note that it is formed from two covalently
linked linear polymers, which are wrapped around each other. The two single strands
are H-bonded to one another, as shown by dotted lines in the figure. Figure 8.2.8
shows the details of the H-bonding between DNA nucleotides.



8.2 Biopolymers 241

Hydrocarbon end Hydrophilic end

H3C— (CHy) 4+

h
1
—Q0
T
[

H;C— (CH,);—C =C—(CH,);+C—0—C—H
3 VTHTH 2)7 i
o] 0
ii I CH;!
} H,C—O—P — O — CH,— CH,—N*-CHj;!
I | CH!
N O |

Fig. 8.2.5. A phospholipid, or phosphoglyceride, found in cell membranes. Note that it has a
hydrophilic end that is attracted to water and a hydrocarbon (hydrophobic) end that is repelled
by water. The hydrophilic end faces the aqueous outside world or the aqueous interior of the
cell. The hydrophobic end of all such molecules is in the interior of the membrane, where there
is no water. This picture should be compared to the schematic lipids shown in Figure 6.1.1:
The circles on the phospholipids of Figure 6.1.1 correspond to the right-hand box of this figure,
and the two straight lines of Figure 6.1.1 correspond to the two hydrocarbon chains in the
left-hand box of this figure.

The DNA molecule is very long compared to its width. The double helix is
2.0x 10~ mwide, but about 10~ m long in a bacterium and up to 1 m long in a human.
There are ten base pairs every 3.6 x 10~/ m of length of double helix. Thus a 1-meter-
long DNA molecule has about 3 x 108 base pairs. If any of the four nucleotides can
appear at any position, there could exist 43> 10° possible DNA molecules of length 1 m.
Obviously, an incredible amount of information can be encoded into such a complex
molecule. Note that DNA uses only a four-letter “alphabet” but can compensate for
the small character set by writing very long “words.”

There are some important structural details and functional consequences to be
noted about Figures 8.2.7 and 8.2.8:

1. Each of the two single-stranded polymers of a DNA molecule is a chain of co-
valently linked nucleotides. All four possible nucleotides are shown, but there
are no restrictions on their order in natural systems; any nucleotide may appear
at any position on a given single strand. It is now possible experimentally to
determine the sequences of long DNA chains; see Section 14.1.

2. Once a particular nucleotide is specified at a particular position on one strand,
the nucleotide opposite it on the other strand is completely determined. Note
that A and T are opposite one another, as are C and G; no other base pairs are
allowed in DNA. (From now on, we shall indicate the names of the nucleotides
by their initials, i.e., A, T, C, and G.) There are very important physical and
biological reasons for this complementary property. The physical reason can be
seen by a close examination of the H-bonds between an A and a T or between a C
and a G in Figure 8.2.8. Recall that an H-bond is formed between a lone pair of
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Fig. 8.2.6. A typical nucleotide, consisting of a nitrogenous base (adenine), a sugar (ribose),
and a phosphate group. Other nucleotides can have other nitrogenous bases, a different sugar,
and more phosphates.

electrons and a hydrogen nucleus, and note that two such bonds form between A
and 7T and that three form between C and G. There are no other ways to form two
or more strong H-bonds between any of these nucleotides; thus the ways shown
in Figure 8.2.7 are the only possibilities. For example, A cannot effectively H-
bond to C or G. We should note that the property of complementary H-bonding
requires that the two single strands have different nucleotide sequences, but that
the sequence of one strand be utterly determined by the other.

3. The helical configuration is a spontaneous consequence of H-bonding the two
single strands together. Helicity disappears if the H-bonds are disrupted. Recall
from the discussion of the structure of water in Section 8.1 that H-bonds have
marginal stability at room temperature. We should therefore expect that the two
strands of helical DNA can be separated, i.e., the helix can be denatured, without
expending much energy. In fact, DNA becomes denatured at around 45-55°C,
only about 8 to 18 degrees above body temperature. Once thermal denaturation
has occurred, however, the two strands can often spontaneously reassociate into
their native double helical configuration if the temperature is then slowly reduced.
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Fig. 8.2.7. A DNA molecule, showing the arrangement of the nucleotide components into two
covalent polymers, each of which is hydrogen-bonded to the other. Note that A (adenine)
and T (thymine) are hydrogen-bonded to each other, and C (cytosine) and G (guanine) are
hydrogen-bonded to each other. The hydrogen bonds are indicated by the dashes. (Redrawn
from C. Starr and R. Taggart, Biology: The Unity and Diversity of Life, 6th ed., Wadsworth,
Belmont, CA, 1992. Used with permission.)
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Fig. 8.2.8. A detailed picture of the complementary hydrogen bonds between A and 7' (left

pair), and between C and G (right pair). Compare this figure to the hydrogen-bonded groups
in Figure 8.2.7. See the text for details.

This should be expected in light of complementary H-bonding between the two
strands.

There is another important structural feature related to double helicity: Look
at Figure 8.2.7 and note that each nucleotide is fitted into the polynucleotide in
such a way that it points in the same direction along the polymer. It is therefore
possible to associate directionality with any polynucleotide. In order for the
two strands of any nucleic acid to form a double helix, they must have opposite
directionalities, i.e., they must be antiparallel to each other.3

4. Complementary hydrogen-bonding provides a natural way to replicate DNA ac-
curately. This is the biological reason for complementary H-bonding and is
illustrated in Figure 8.2.9. The two strands of DNA are separated, and each then
acts as a template for a new, complementary strand. In other words, the sequence
information in each old strand is used to determine which nucleotides should
be inserted into the new, complementary strand. This mechanism allows DNA
to code for its own accurate replication, which is a necessary requirement for a
genetic chemical.

Occurring just prior to cell division, the process of DNA self-replication yields two
double-stranded DNA molecules that are exact copies of the original. Then, during

3 For example, look at the location of the methyl group (-CH,-) between the phosphate group
and the ribose group. Note how it is in a different position on the two strands.
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Fig. 8.2.9. A model of a replicating DNA molecule. The two strands of the parent double
helix separate, and each one acts as a template for a new strand. Complementary hydrogen-
bonding ensures that the two resulting double helices are exact copies of the original molecule.
(Redrawn from J. Levine and K. Miller, Biology, 1st ed., D. C. Heath, Lexington, MA, 1991.)

cell division, each of the daughter cells gets one of the copies. The two daughter cells
thus each end up with the same genetic material that the original cell had and should
therefore also have the same life properties.

There are three classes of RNA molecules: The first is called messenger RNA, or
mRNA. Each piece of mRNA averages about a thousand bases in length, but is quite
variable. It is single stranded and nonhelical. The second kind of RNA is transfer
RNA, or tRNA. There are several dozen distinguishable members of this class; they
contain in the range of 75 to 95 bases, some of which are not the familiar A, T, C,
and G. tRNA is single stranded but is double helical. This unexpected shape is due to
the folding over of the tRNA molecule, as shown in Figure 8.2.10. The third kind of
RNA is ribosomal RNA, or rRNA. This molecule accounts for most of a cell’s RNA.
It appears in several forms in cellular organelles associated with protein synthesis,
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Fig. 8.2.10. A model of a transfer RNA molecule. A single-stranded tRNA molecule folds
back on itself and becomes double helical in the regions shown by the dotted hydrogen bonds.
(The actual helicity is not shown in the figure.) Note that there are several nonhelical (non-
hydrogen-bonded) turns, at the bottom, right, and left sides. The anticodon is in the nonhelical
region at the bottom; see the text.

and it has molecular weights ranging from around a hundred up to several thousand.
The functions of the various RNAs will be discussed shortly.

Proteins are polymers of amino acids.

The monomer of a protein is an amino acid, a synonym for which is residue. A protein
polymer is often called a polypeptide. While many amino acids can exist, only twenty
are found in proteins. They share the general structure shown in Figure 8.2.11. The
group labeled R can take on twenty different forms, thus accounting for all members
of the group.4 The right end (-COOH) is the carboxyl and the bottom (-NH>) is the
amino end.

Figure 8.2.12 shows how two amino acids are polymerized into a dipeptide (two
residues). Note that the attachment takes place by combining the amino end of one
residue with the carboxyl end of the other. The covalent bond created in this process
is called a peptide bond , as shown in Figure 8.2.12.

An interesting feature of a dipeptide is that, like an individual amino acid, it has
both a carboxyl end and an amino end. As a result, it is possible to add other residues

4 We will ignore the fact that one of the amino acids is a slight exception.
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Fig. 8.2.11. A model of an amino acid, which is the monomer of a protein. The label R stands

for any one of twenty different groups. (The text mentions a slight exception.) Thus twenty
different amino acids may be found in proteins.
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Fig. 8.2.12. A pair of amino acids bonded covalently into a dipeptide. The labels Ry and R;
can be any of the twenty groups mentioned in the caption of Figure 8.2.11. Thus there are 400
different dipeptides.

to the two ends of the dipeptide and thereby to extend the polymerization process as
far as we like. Itis quite common to find natural polypeptides of hundreds of residues
and molecular weights over a hundred thousand. Figure 8.2.13 is an idealized picture
of a polypeptide “backbone’’; the individual amino acids are represented as boxes.
Note that the polymer has a three-dimensional structure that includes helical regions
and sheetlike regions, and that the whole three-dimensional shape is maintained by
H-bonds and disulfide (-S-S-) bonds. The disulfide bonds are covalent, and the two
amino acids that contribute the sulfur atoms are generally far from one another as
measured along the polymer. They are brought into juxtaposition by the flexibility of
the polymer and held there by the formation of the disulfide bond itself.

Our model of a protein is that of a long polymer of amino acids, connected
by peptide bonds and folded into some kind of three-dimensional structure. At any
location any of twenty different amino acids may appear. Thus there are 20'% possible
polypeptides of 100 amino acids in length. Nowhere near this number have actual
biological functions, but the incomprehensibly large number of possible amino acid
sequences allows living systems to use proteins in diverse ways. Some of these ways
will be described next.

Some proteins are catalysts.

There exists a very important class of proteins, called enzymes, whose function it
is to to speed up the rate of biochemical reactions in cells (see [2] and [4]). In
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Fig. 8.2.13. A model of a single protein, or polypeptide, molecule. Each box corresponds to an
amino acid. The resultant chain is held in a roughly ovate shape by sulfur-to-sulfur covalent
bonds and by many hydrogen bonds, a few of which are indicated by dashed lines.

Increasing A B
time
100 0  <«—— Initial state concentrations
75 25
50 50
10 90 <«——— Final (equilibrium) state concentrations

Fig. 8.2.14. The progress of the reaction A <> B. The numbers give the amounts of the
compounds A and B at various times. At the outset, there is no B, but as time passes, the
amount of B increases until A and B reach equilibrium at aratioof B: A =9: 1.

order to understand this function we must understand what is meant by “reaction
rate”: Suppose there is a chemical reaction described by A <— B, as shown in
Figure 8.2.14. Let us suppose that initially there is lots of A and no B. As time
passes, some A is converted to B, and also some B back to A. Eventually, the
relative amounts of A and B reach steady values, i.e., do not change with time. This
final state is called an equilibrium state. The speed with which A is converted to B is
the rate of the reaction. The observed rate evidently changes with time, starting out
fast and reaching a net of zero at equilibrium, and therefore it is usually measured at
the outset of the experiment, when there is lots of A and no B.

There are several very important biological consequences of enzymatic catalysis.
First, the essential effect of a catalyst is to speed up the rate of a reaction. A bio-
chemical catalyst, i.e., an enzyme, can speed up the rate of a biochemical reaction by
as much as 10'3 times. This enormous potential increase has some very important
consequences to cellular chemistry: First, catalyzed biochemical reactions are fast
enough to sustain life, but uncatalyzed reactions are not. Second, if a reaction will not
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proceed at all in the absence of a catalyst, then no catalyst can ever make it proceed.
After all, speeding up a rate of zero by 10'3 still gives a rate of zero. Third, catalysts
have no effect whatsoever on the relative concentrations of reactants and products at
equilibrium, but they do affect the time the system takes to reach that equilibrium.
Thus enzymes do not affect the underlying chemistry or net energetic requirements
of the system in which they participate. Fourth, enzymes are very specific as to the
reactions that they catalyze, their activity usually being limited to a single kind of re-
action. This observation can be combined with the first one above (enzymatic increase
in reaction rate) to yield an important conclusion: Whether a particular biochemical
reaction goes at a high enough rate to sustain life depends entirely on the presence of
specific enzyme molecules that can catalyze that particular reaction. Thus enzymes
act like valves, facilitating only the reactions appropriate to a particular cell. No other
reactions proceed fast enough to be significant and so they can be ignored.

The valvelike function of enzymes explains why a human and a dog can eat the
same kind of food, drink the same kind of water, and breathe the same air, yet not look
alike. The dog has certain enzymes that are different from those of the human (and,
of course, some that are the same). Thus many biochemical reactions in a dog’s cells
proceed in a different direction from those in a human—in spite of there being the same
initial reactants in both animals. Figure 8.2.15 shows how different metabolic paths
can originate from the same starting point because of different enzyme complements.

(initial reactant)

Ecr
F

Fig. 8.2.15. A diagram showing how enzymes can direct sequences of reactions. A is the initial
reactant, and the pair of enzymes E 4 p and Egp would catalyze the conversion of A to D.
Alternatively, the enzymes E 4¢ and Ecr would catalyze the conversion of A to F. It is the
enzymes, not the initial reactant, that determine what the end product will be. Of course, this
does not mean that there will always exist an enzyme that can catalyze a particular reaction;
rather, there will almost always exist an enzyme that can catalyze the particular reactions
needed by a given cell.
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The same reasoning explains why two people have different hair color, or numerous
other differences.

The nature of the specificity of an enzyme for a single chemical reaction can be
understood in terms of a “lock and key” mechanism: Suppose that we are again
dealing with the reaction A <— B, catalyzed by the enzyme E4p. The catalytic
event takes place on the surface of the enzyme at a specific location, called the active
site, as shown in Figure 8.2.16. The compound A, or substrate, has a shape and
electrical charge distribution that are complementary to the active site. This ensures
that only the reaction A «<— B will be catalyzed. Note that this reaction is reversible,
and that the enzyme catalyzes in both directions.

Substrate
Enzyme

Fig. 8.2.16. A model of the “lock and key” mechanism for enzyme—substrate specificity. The
enzyme and the substrate are matched to each other by having complementary shapes and
electrical charge distributions.

Now we are in a position to understand why the three-dimensional structure of
an enzyme is so important. Refer back to Figure 8.2.13 and recall that H-bonds
and disulfide bonds hold together amino acids that are far from one another in the
primary amino acid sequence. Therefore, the active site may be composed of several
amino acids that are separated along the polymeric chain by a hundred or more
intervening amino acids, but which are held close together by virtue of the folded
three-dimensional polypeptide structure. This means that anything that disturbs,
or denatures, the folded structure may disrupt the active site and therefore destroy
enzymatic activity. All that is necessary is to break the hydrogen and disulfide bonds
that maintain the three-dimensional structure. We can now see why cells are sensitive
to heat: Heating to about 50°C inactivates their enzymes, quickly reducing the rates
of their reactions to almost zero. Later in this chapter, we will return to the topic of
enzymatic function.

Noncatalytic proteins.

The immense diversity of possible protein structures allows these macromolecules
to be used for many biological purposes. Many of these have nothing to do with
catalysis. We will divide these noncatalytic proteins into two somewhat arbitrary, but
customary, categories and discuss them next.
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Category 1: Fibrous proteins. These are called “fibrous” because they consist of
large numbers of polypeptides arranged in parallel to yield long, stringlike arrays.
Collagen, for example, is a fibrous protein found in skin and other organs. It consists
of shorter protein molecules, each staggered one quarter length from the next one and
thus linked into very long strings. Collagen acts as a binder, the long fibers helping
to hold our bodies together.

Other examples of fibrous proteins are found in muscle tissue. Each muscle cell
contains large numbers of fibrous proteins that are capable of sliding past one another
and exerting force in the process. Our muscles can then move our skeletons and,
therefore, our bodies. What we call “meat” is just muscle cut from an animal, and of
course, it contains a lot of protein.

Another example of a fibrous protein is keratin, which appears in several forms in
hair and nails, among other places. Some keratins form ropes of multiple strands, held
together by disulfide bonds. Other keratins form sheetlike structures. One important
form of keratin is silk, a threadlike exudation used in the wrapping of the cocoon of
the silkworm Bombyx mori.

Category 2: Globular proteins. These proteins tend to be spherical or ovate and are
often found dispersed, e.g., dissolved in solution. If aggregated, they do not form
fibers. Enzymes are globular proteins, but we have already discussed them, and we
will therefore restrict our discussion here to noncatalytic globular proteins.

As an example, the polypeptides hormones are typical noncatalytic globular pro-
teins. They were introduced in Chapter 7. Hormones are biochemical communicators:
They are manufactured in endocrine glands in one part of the body and are moved
by the bloodstream to another part of the body, where they exert their effects on
target tissues. At their target tissues hormones change the production and activity of
enzymes and alter membrane permeability.

Insulin, a globular protein hormone, is produced by an organ called the pancreas
and is released into the blood, to be carried throughout the body. The function of
insulin is to regulate the metabolism of glucose in the body’s cells. Lack of insulin
has powerful metabolic consequences: The disorder diabetes mellitus is associated
with the loss of insulin-producing cells of the pancreas, increases in the glucose levels
of blood and urine, malaise, and even blindness.

Another class of noncatalytic globular proteins, introduced in Chapter 6, deter-
mines the selectivity of material transport by membranes. These proteins recognize
and regulate the intercellular movements of specific compounds such as amino acids
and various sugars and ions such as Nat and Cl1=. Called transport proteins, or
permeases, they penetrate through membranes and have a sort of active site on one
end to facilitate recognition of the material to be transported. They are, however,
not catalysts in that the transported matter does not undergo a permanent chemical
change as a result of its interaction with the transport protein.

Globular proteins are used to transport material in the body. One example,
hemoglobin, which is discussed in Chapter 9, contains four polypeptide chains and
four heme groups, the latter being organic groups with an iron atom. Hemoglobin is
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found in red blood cells, or erythrocytes. The principal use of hemoglobin is to carry
oxygen from the lungs to the sites of oxygen-utilizing metabolism in the body.

Globular proteins are key molecules in our immune systems. A group of blood
cells, called lymphocytes, are able to distinguish between “self” and “nonself”” and
therefore to recognize foreign material, such as pathogens, in our bodies. These
foreign substances are often proteins but may be polysaccharides and nucleic acids; in
any case, if they stimulate immune responses they are called antigens (Ag). Antigens
stimulate lymphocytes to produce a class of globular proteins, called antibodies (Ab)
or immunoglobulins, that can preferentially bind to Ag, leading to the inactivation of
the Ag. The immune response will be discussed in some detail in Chapter 10.

Of particular importance to us in that chapter will be the globular proteins found
in a covering, or capsid, of viruses. Viruses have very elementary structures, the
simplest being a protein coat surrounding a core of genetic material. Viruses are so
small that the amount of genetic material they can contain is very limited. Thus as
an information-conserving mechanism, they use multiple copies of the same one or
two polypeptides to build their protein coverings. Thus a typical virus may have an
outer coat consisting of hundreds of copies of the same globular protein.

8.3 Molecular Information Transfer

This section is a discussion of molecular genetics. The ability of DNA to guide its
own self-replication was described in an earlier section. In this section, we will see
how genetic information of DNA, coded into its polymeric base sequence, can be
converted into base-sequence information of RNA. The base-sequence information
of RNA can then be converted into amino acid—sequence information of proteins.
The amino acid sequence of a protein determines its three-dimensional shape and
therefore its function, i.e., participation in Oy transport in erythrocytes, selection of
material to cross a membrane, or catalysis of a specific biochemical reaction. The
net process is contained in the following statement: DNA is the hereditary chemical
because it provides an informational bridge between generations via self-replication,
and it ultimately determines cellular chemistry. These processes are schematically
condensed into the central dogma of genetics:

DNA —> RNA —> protein

It is very important to recognize that the arrows of the central dogma show the
direction of information flow, not the direction of chemical reactions. Thus DNA
passes its information on to RNA—the DNA is not chemically changed into RNA.?

5 We will modify this “dogma’ somewhat in Chapter 10.
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Information flow from DNA to RNA is called transcription.

Recall that enzymes determine which reactions in a cell effectively take place. For
organisms other than certain viruses, DNA is the source of the information that deter-
mines which enzymes will be produced. In any case, there is an intermediary between
DNA and proteins—it is RNA. This is expressed in the central dogma presented above
(see [5] and [6]).

RNA production is shown schematically in Figure 8.3.1. The sequence of the sin-
gle covalent strand of RNA nucleotides is determined by complementary H-bonding
with one strand of a DNA molecule; in other words, the single, or coding, strand of
DNA acts as a template for RNA production. Note the similarity between the use of a
single-stranded DNA template for DNA production and the use of a single-stranded
DNA template for RNA production. The differences are that RNA uses a different
sugar and substitutes uracil in place of thymine.

The process of RNA production from DNA, called transcription, requires that
the DNA molecule become denatured over a short portion of its length, as shown
in Figure 8.3.1. This is a simple matter energetically because all that is required is
to break a small number of H-bonds. The O-shaped denatured region moves along
the DNA molecule, the double helix opening up at the leading edge of the “O”” and
closing at its trailing edge. RNA molecules, as mentioned earlier, are usually less
than a thousand or so nucleotides long. Thus RNA replication normally begins at
many sites in the interior of the DNA molecule, whose length may be on the order of
millions of nucleotides.

Information flow from RNA to enzymes is called translation.

The process of protein production from RNA code brings together, one by one, all
three kinds of RNA: ribosomal, messenger, and transfer. The three varieties are
transcribed from the DNA of the cell and exported to sites away from the DNA.
Here subcellular structures called ribosomes are constructed, in part using the rRNA.
Ribosomes are the sites of protein synthesis, but the actual role of the rRNA is not
well understood.

Several dozen different kinds of transfer RNA are transcribed from DNA. They
all have a structure similar to that shown in Figures 8.2.10 and 8.3.2, which shows
that tRNA is single stranded, but is helical by virtue of the folding of the polymer
on itself. This requires that some regions on the strand have base sequences that
are complementary to others, but in reverse linear order. (Recall from Figure 8.2.7
that a nucleic acid double helix requires that the two strands be antiparallel.) The
various kinds of tRNA differ in their constituent bases and overall base sequences;
the most important difference for us, however, is the base sequence in a region called
the anticodon, at the bottom of the figure. The anticodon is actually a loop containing
three bases that, because of the looping, are not H-bonded to any other bases in the
tRNA molecule.

Let us consider the anticodon more closely. It contains three nucleotides that are
not hydrogen-bonded to any other nucleotides. The number of such trinucleotides,
generated at random, is 4> = 64, so we might expect that there could be 64 different
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Fig. 8.3.1. A model showing the polymerization of RNA, using a DNA template. The DNA
opens up to become temporarily single stranded over a short section of its length, and one of
the two DNA strands then codes for the RNA. Complementary hydrogen-bonding between
the DNA nucleotides and the RNA nucleotides ensures the correct RNA nucleotide sequence.
(Redrawn from J. Levine and K. Miller, Biology, 1st ed., D. C. Heath, Lexington, MA, 1991.
Used with permission.)

kinds of tRNA, if we considered only the anticodons. Actually, fewer than that
seem to exist in nature, for reasons to be discussed shortly. The anticodon bases are
not H-bonded to any other bases in the tRNA molecule but are arranged in such a
three-dimensional configuration that they can H-bond to three bases on another RNA
molecule.

All tRNA molecules have a short “pigtail”” at one end that extends beyond the
opposite end of the polymer. This pigtail always ends with the sequence CCA. An



8.3 Molecular Information Transfer 255

Amino
acid

1
A
|

L
T

Fig. 8.3.2. A model of a tRNA molecule, with an amino acid attached to one end. An enzyme
ensures that the tRNA molecule becomes covalently attached to its correct amino acid. The
anticodon region is at the bottom. Compare this figure with Figure 8.2.10.

amino acid can be covalently attached to the terminal adenine, giving a tRNA amino
acid molecule, as shown in Figure 8.3.2. A given type of tRNA, identified by its
anticodon, can be attached to one, and only one, specific type of amino acid. No
other pairings are possible. When we see such specificity in biochemistry, we should
always suspect that enzymes are involved. In fact, there are enzymes whose catalytic
function is to link up an amino acid with its correct tRNA. A tRNA molecule that is
attached to its correct amino acid is said to be “charged.”

Messenger RNA consists of strings of about 1000 or so nucleotides, but that is only
an average figure—much mRNA is considerably longer or shorter. The reason for
this variability is that each piece of mRNA is the transcription product of one or a few
genes on DNA. Thus the actual length of a particular piece of mRNA corresponds
to an integral number of DNA genes, and of course, that leads to a great deal of
variability in length. After being exported from the DNA, the mRNA travels to a
ribosome, to which it becomes reversibly attached.

The next part of this discussion is keyed to Figure 8.3.3:

(a) One end of a piece of mRNA is attached to a ribosome, the area of association
covering at least six mRNA nucleotides.
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Fig. 8.3.3. The polymerization of a polypeptide, using DNA information and RNA interme-
diaries. (a) A ribosome attaches to the end of an mRNA molecule. (b) A molecule of tRNA,
with its correct amino acid attached, hydrogen-bonds to the mRNA. The hydrogen-bonding is
between the first three nucleotides of the mRNA (a codon) and the three tRNA nucleotides in a
turn of tRNA (an anticodon). Each tRNA has several such turns, as depicted in Figures 8.2.10
and 8.3.2, but only one is the anticodon. (c) A second tRNA then hydrogen-bonds to the mRNA,
thus lining up two amino acids. (d) The two amino acids are joined by a covalent bond, a pro-
cess that releases the first tRNA. (e) The ribosome moves down the mRNA molecule by three
nucleotides and a third tRNA then becomes attached to the mRNA. The process continues until
an intact protein is formed. Note how the amino acid sequence is ultimately dictated by the
nucleotide sequence of the DNA.
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(b) A tRNA molecule, with its correct amino acid attached, forms complementary
H-bonds between its anticodon and the first three nucleotides of the mRNA. The
latter trinucleotide is called a codon. Note that codon—anticodon recognition
mates up not only the correct anticodon with its correct codon, but in the process
also matches up the correct amino acid with its codon.

(c) Next, a second charged tRNA hydrogen-bonds to the second mRNA codon.

(d) A peptide linkage forms between the two amino acids, detaching the first amino
acid from its tRNA in the process.

Let us review what has happened so far: A sequence of DNA nucleotides compris-
ing a small integral number of genes has been transcribed into a polymer of mRNA
nucleotides. The sequence of the first six of these nucleotides has subsequently been
translated into the sequence of two amino acids. There is a direct informational con-
nection mapping the sequence of the original six DNA nucleotides into the sequence
of the two amino acids. The correctness of this mapping is controlled by two physical
factors: First, complementarity between DNA and mRNA and between mRNA and
tRNA, and second, specific enzymatic attachment of tRNA to amino acids.

Now returning to Figure 8.3.3, the ribosome moves three nucleotides down the
mRNA and a third charged tRNA attaches to the mRNA at the third codon:

(e) Athird amino acid is then added to the growing polypeptide chain. The translation
process continues and eventually a complete polypeptide chain is formed. The
nucleotide sequence of the DNA has been converted into the primary structure
of the polypeptide. Note how the conversion of nucleotide sequence to amino
acid sequence was a transfer of information, not a chemical change of DNA to
protein.

Figure 8.3.3 is really a pictorial representation of the central dogma. The overall
process yields proteins, including enzymes of course. These enzymes determine what
chemical reactions in the cell will proceed at a rate consistent with life. Two very
important observations come out of this discussion: First, the chemistry of a cell
is ultimately determined by the sequence of DNA nucleotides, and second, because
of this, the replication and partitioning of DNA during cell division ensures that
daughter cells will have the same chemistry as the parent cell. We can extend the latter
conclusion: The union of a sperm and an egg in sexual reproduction combines genetic
material from two parents into a novel combination of DNAs in a new organism, thus
ensuring that the offspring has both chemical similarities to, and chemical differences
from, each of the parents.

A gene is enough nucleic acid to code for a polypeptide.

The word “gene” is often loosely used to mean “a site of genetic information.” A more
exact definition from molecular biology is that a gene is a sequence of nucleotides that
codes for a complete polypeptide. This definition, however, requires the elaboration
of several points:

1. If a functioning protein’s structure contains two separately created polypeptides,
then by definition, two genes are involved.
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2. As will be discussed below, some viruses eliminate DNA from their replicative
cycle altogether. Their RNA is self-replicating. In those cases, their genes are
made of RNA.

3. The nucleotide sequence for any one complete gene normally lies entirely on one
strand of DNA, called the coding strand. Note that coding segments for a gene,
called exons, are not generally contiguous. Noncoding stretches between coding
segments are introns; see Section 14.6. Furthermore, not all genes need lie on
the same one strand; transcription may jump from one strand to another between
gene locations. There may even be overlapping genes on the same strand.

The concept of coding.

The aptly named genetic code can be presented in a chart showing the correspondence
between RNA trinucleotides (codons) and the amino acids they specify, the codon
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translation table; see Table 8.3.1.

6 Recall that polynucleotides have directionality; thus the two ends of a codon or anticodon

Table 8.3.1. Codon translation table.

T C A G
TTT Phe(F) |TCT Ser(S) |TAT Tyr(Y) |TGT Cys(C)
TTC Phe(F) |[TCC Ser(S) |TAC Tyr(Y) |TGC Cys(C)
TTA Leu(L) |TCA 7 TAA stop TGA stop
TG TCG 7 |TAG stop TGG Trp(W)
CTT Leu(L) |CCT Pro(P)|CAT His(H) |CGT Arg(R)
crc cce v |CAC cGec
CTA CCA 7 |CAA GIn(Q)|CGA ”
CTG ~ ccG v |CAG 7 cGG 7
ATT lle(I) |ACT Thr(T)|AAT Asn(N)|AGT Ser(S)
ATC ACC 7 |AAC 7 AGC
ATA 7 ACA 7 AAA Lys(K) |[AGA Arg(R)
ATG Met(M)|ACG > |AAG ” AGG 7
GTT Val(V) |GCT Ala(A)|GAT Asp(D)|GGT Gly(G)
GTC ” Gcc  |GAC 7 GGC 7
GTA 7 GCA ” |GAA Glu(E)|GGA ~
GTG 7”7 GCG 7 |GAG ” GGG

Several interesting features emerge from considering such a table. There are 64
codons potentially available to specify 20 amino acids. It turns out, however, that
there are only about half that many distinctive tRNA molecules, indicating that some
tRNAS can bind to more than one codon. This redundancy is explained by the wobble
hypothesis: Examination of tRNA structure shows that the nucleotide at one end of
the anticodon has only a loose fit to the corresponding codon nucleotide—it wobbles.
Thus H-bonding specificity is relaxed at this position and some tRNAs can bind to
more than one codon.®

are distinct. Only the one drawn at the right-hand end wobbles.
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Not all possible codons specify an amino acid. Three of them are termination
codons, or stop codons. They do not specify any amino acid; rather, they signal
the ribosome to cease translation and to release the completed polypeptide. This is
especially useful if one piece of mRNA codes for two adjacent genes: termination
codons signal the translation machinery to release the first polypeptide before starting
on the translation of the second one. Without the termination codons, the ribosome
would continue to add the amino acids of the second polypeptide to the end of the
first one, negating the biological functions of both.

The nature of mutations.

Mutations are changes in the nucleotide sequence of DNA. A base change in a codon
would probably result in a new amino acid being coded at that point. For example,
sickle-cell anemia results from a single incorrect amino acid being inserted into the
protein fraction of hemoglobin. Suppose a nucleotide pair were deleted: Virtually
every amino acid encoded thereafter (downstream) would be incorrect. Evidently,
the severity of a deletion error, or an insertion error, for that matter, depends on how
close to the start of transcription it occurs.

8.4 Enzymes and Their Function

Two important concepts that have been presented in this chapter are the central
dogma of genetics and the role of enzymes in facilitating specific chemical reactions
in a cell. DNA, via RNA, codes for a specific set of cellular enzymes (among other
proteins). Those enzymes can catalyze a specific set of chemical reactions and thereby
determine the biological nature of the cell.

In this section, we will take a closer look at the way that enzymes work. Our ap-
proachwill be a thermodynamic one, following the path of solar energy into biological
systems, where it is used to create orderly arrangements of atoms and molecules in a
cell. We will show how enzymes select from among the many possible configurations
of these atoms and molecules to arrive at those that are peculiar to that type of cell.

The sun is the ultimate source of energy used by most biological systems.

The sun is the ultimate source of energy available to drive biological processes. (We
ignore the tiny amounts of energy available from geothermal sources.) Its contribu-
tions are twofold: First, solar energy can be captured by green plants and incorporated
into chemical bonds, from which it can be then obtained by animals that eat the plants
and each other. Second, solar energy heats the biosphere and thus drives biochemi-
cal reactions, virtually all of whose rates are temperature-dependent. Both of these
considerations will be important in the discussion to follow.

Entropy is a measure of disorder.

A highly disordered configuration is said to have high entropy. The most disordered
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of two configurations is the one that can be formed in the most ways. To show how
this definition conforms to our everyday experience, consider the possible outcomes
of tossing three coins: HHH, HHT, HTH, THH, HTT, THT, TTH, TTT. There is only
one way to get all heads, but there are six ways to get a mixture of heads and tails.
Thus a mixture of heads and tails is the more disordered configuration. The condition
of mixed heads and tails has high entropy (is a disorderly outcome), and the condition
of all heads has low entropy (is an orderly outcome). Note that all eight specific
configurations have the same probability ( %), but that six of them contain at least one
head and one tail.

Given that there generally are more disordered outcomes than there are ordered
outcomes, we would expect that disorder would be more likely than order. This, of
course, is exactly what we see in the case of the coins: Throw three coins and a
mixture of heads and tails is the most common result, whereas all heads is a relatively
uncommon result.

The universe is proceeding spontaneously from lower to higher entropy.

An empirical rule, the second law of thermodynamics, states that the entropy of the
universe increases in every process. For instance, if a drop of ink is placed in a beaker
of water, it will spontaneously spread throughout the water. There are few ways to
put all the ink into one spot in the water and many ways to distribute it throughout
the water, so we see that the entropy of the water/ink mixture increases. As other
examples, consider what happens when the valve on a tank of compressed gas is
opened or when a neatly arranged deck of cards is thrown up into the air. In each
case, entropy increases.

The second law does not preclude a decrease in entropy in some local region. What
itdoes require is that if entropy decreases in one place it must increase somewhere else
by a greater absolute amount. There is no reason why the ink, once dispersed, cannot
be reconcentrated. The point is that reconcentration will require some filtration or
adsorption procedure that uses energy and generates heat. That heat will cause air
molecules to move, and rapidly moving air molecules have more entropy (are more
disordered) than slowly moving molecules. Likewise, the air can be pumped back
into the tank and the cards can be picked up and resorted, both of which processes
require work, which generates heat and therefore entropy.

Living systems are local regions of low entropy; their structures are highly or-
ganized, and even small perturbations in that organization can mean the difference
between being alive and not being alive. From the earlier discussion, we can see that
nothing in the second law forbids the low entropy of living systems, as long as the
entropy of the universe increases appropriately during their formation.

Entropy increases in a process until equilibrium is reached.

Recall the examples of the previous section: The ink disperses in the water until it is
uniformly distributed; the gas escapes the tank until the pressure is the same inside
and outside of the tank; the cards flutter helter-skelter until they come to rest on a
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surface. In each case, the process of entropy-increase continues to some endpoint
and then stops. That endpoint is called an equilibrium state.

Any equilibrium can be disrupted; more water can be added to the ink, the room
containing the gas can be expanded, and the table bearing the cards can drop away.
In each case, the system will then find a new equilibrium. Thus we can regard equi-
libria as temporary stopping places along the way to the maximal universal entropy
predicted by the second law.

Free energy is energy available to do useful work.

Every organism needs energy for growing, moving, reproducing, and all the other
activities we associate with being alive. Each of these activities requires organized
structures. To maintain this organization, or low entropy, requires that the living
system expend energy, much as energy was required to reconcentrate the ink or to
re-sort the cards in the earlier examples.

Free energy is energy that can do useful work. In living systems, “useless’ work
is that which causes a volume change or which increases entropy. Whatever energy
is left over is “free” energy. Living systems do not change their volume much, so
entropy is the only significant thief of free energy in a cell. Therefore, free energy in a
cell decreases when entropy increases. To a good approximation, we can assume that a
living system begins with a certain amount of potential energy obtained from sunlight
or food; some energy will then be lost to entropy production, and the remainder is
free energy.’

To a physical chemist, the convenient thing about free energy is that it is a property
of the system alone, thus excluding the surroundings. In contrast, the second law
requires that one keep track of the entropy of the entire universe. As a result, it is
usually easier to work with free energy than with entropy. We can summarize the
relationship between the two quantities as they pertain to living systems by saying
that entropy of the universe always increases during processes and that a system in
equilibrium has maximized its entropy, whereas the free energy of a system decreases
during processes and, at equilibrium, the system’s free energy is minimized.

Free energy flows, with losses, through biological systems.

Thermonuclear reactions in the sun liberate energy, which is transmitted to the earth
as radiation, which is absorbed by green plants. Some of the sun’s radiation then
heats the plant and its surroundings, and the rest is incorporated into glucose by
photosynthesis. In photosynthesis, some of the free energy of the sun is used to create
covalent bonds among parts of six carbon dioxide molecules, forming glucose, the
six-carbon sugar, as shown in the following (unbalanced) reaction:®

71t you have studied physical chemistry, you will recognize this quantity specifically as
Gibbs’s free energy [4].

8 The reason that water appears on both sides of the reaction equation is that the two water
molecules are not the same: One is destroyed and the other is created in the reaction. The
reaction shown is a summary of the many reactions that constitute photosynthesis.
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light energy
CO; + H)O ——— glucose + H,O + O,

The plant, or an animal that eats the plant, then uses some of the free energy of the
glucose to add a phosphate group to adenosine diphosphate (ADP) in the process
called respiration:

glucose + H>,O + O, CO, + HO

ATP ADP + phosphate

The resultant adenosine triphosphate now has some of the energy that originated
in the sun. The ATP can then move around the cell by diffusion or convection and
drive various life processes (moving, growing, repair, driving Na/K pumps, etc.):

ATP > ADP + phosphate

S

energy to drive
life processes

To recapitulate: Sunlight drives photosynthesis, in which carbon dioxide is com-
bined to make glucose. The latter thus contains some of the energy that originated
in the sun. In respiration, the plant or animal that eats the plant then converts some
of the free energy in the glucose into free energy of ATP. Finally, at a site where it is
needed, the ATP gives up its free energy to drive a biological process, e.g., contraction
of a muscle.

Atevery step along the way from sun to, e.g., muscle movement, entropy is created
and free energy is therefore lost. By the time an animal moves its muscle, only a
small fraction of the original free energy the green plant got from the sun remains. If
a subsequent carnivore should eat the herbivore, still more free energy would be lost.
After the carnivore dies, decomposing organisms get the last of whatever free energy
is available to living systems.

The heat generated in biochemical reactions can help to drive other reactions.

The earlier discussion pointed out that free energy, ultimately derived from the sun, is
used to drive the processes we associate with being alive. As these processes occur,
entropy is generated. Although the resultant heat energy will eventually be lost to the
surroundings, it can be stored for a short while in the water of the cell and thus be
used to maintain or increase the rates of cellular chemical reactions.

In order to understand how heat energy can promote chemical reactions, we need
to digress a bit. If a process were able to occur spontaneously (increasing entropy;
decreasing free energy), why would it not have already occurred? Water should
spontaneously flow from a lake to the valley below, as shown in Figure 8.4.1(a).
This has not happened because there is a dam in the way, but a siphon would take
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Valley

Siphon

(b)

Fig. 8.4.1. (a) A lake holds back water above a valley; thus the water has a certain amount of
potential energy with respect to the valley. (b) The water can get past the dam via a siphon,
but the energy of the water with respect to the valley is not changed by the trip through the
siphon. In other words, the energy yielded by the water in falling to the valley is independent
of the path it takes. (We are assuming that friction is negligible.)

care of that without any net outlay of energy (Figure 8.4.1(b)). The latter point is
critical: The water going up the siphon requires the same amount of energy that it
gets back in going down the siphon.® From that point on, the water can fall to the
valley, developing exactly as much kinetic energy as it would have if the dam had not
existed in the first place.

9 We are ignoring friction here.
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The example of the dam is a macroscopic analogue to biochemical processes. For
example, in respiration a cell takes up glucose, a high-free-energy compound, and
converts it to COy, a low-free-energy compound. This process, on thermodynamic
grounds, should therefore be spontaneous. In fact, we can demonstrate a spontaneous
change of glucose to CO; by putting some glucose into an open dish, from which
it will disappear over a period of days to weeks, via conversion to CO; and H,O.
The reason the process in the dish takes so long is that there is an intermediate state
(in reality, several) between glucose and CO; and H,O, as shown in the free energy
diagram in Figure 8.4.2. The intermediate state is called a transition state, and it
is the analogue of the dam in Figure 8.4.1. Before the sugar can change to the gas,
releasing its free energy, the transition state must be overcome, i.e., a certain amount
of activation energy is needed to move the system into the transition state.!?

Transition
state
Initial
state
(glucose)

Final
state
(CO, + H)O)

>

Direction of reaction

Fig. 8.4.2. A free energy diagram of the following conversion: glucose == CO; +H»O. There
is a transition state between the initial and final states. Even though the conversion of glucose
to CO, and H» O is energetically downhill, it will not be a spontaneous conversion because of
the transition state.

This energy is returned on the other side of the transition state, after which the
chemical system behaves as if the transition state were not there. The examples of
the dam and the glucose suggest a general conclusion: The net change in free energy
between two states is independent of any intermediate states.

Transition states are the rule, not the exception, and the biochemical reactions of
living systems are typical in that those that release free energy must first be activated.

10 Figure 8.4.2 is, of course, only a model. The actual conversion of glucose to carbon dioxide
in an open dish would involve numerous intermediate compounds, some of which would
be real transition states and some of which would be more-or-less stable compounds. For
instructive purposes, we represent the system as having a single transition state.
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There are two sources of activation energy available to cells, however: First, most
cells exist at 0-40°C, and second, heat energy is generated by the normal inefficiency
of cellular processes.'! This heat energy is stored in H-bond vibrations in the water
of the cell, at least until it is finally lost to the external environment. While this heat
energy is in the cell it is available to push systems into their transition states, thus
promoting chemical reactions. After serving its activation function, the heat energy
is returned unchanged.

The preceding discussion explains how heat serves a vital cellular function in pro-
viding activation energy to drive cellular biochemical reactions. This, however, does
not close the subject, because activation energy is tied in with another observation:
The glucose in a dish changes to CO, and H>O over a period of months, and the same
change can occur in a cell in seconds or less. Yet the temperatures in the dish and
in the cell are the same, say 37°C. The difference is that the reactions in the cell are
catalyzed by enzymes.

Path of uncatalyzed reaction

Path of catalyzed
reaction

Direction of reaction

Fig. 8.4.3. The effect of enzymatic catalysis on the height of a transition state. The enzyme
lowers the energy of the transition state, but as in Figure 8.4.1, the overall change in energy
is independent of the path. Lowering the transition state does, however, permit the reaction to
proceed spontaneously in the presence of a little thermal energy.

In brief, the catalytic function of an enzyme is to reduce the energy of the transition
state and thereby to lessen the amount of heat energy needed by the system to meet
the activation energy requirement. In this manner, the enzyme speeds up the rate at
which the reaction proceeds from the initial state (100% reactant) toward the final,
equilibrium state (almost 100% product). Figure 8.4.3 is a free-energy diagram for a
biochemical system in its catalyzed and uncatalyzed conditions. The enzyme catalyst
lowers the activation energy and makes it much easier for the initial state to be
converted into the transition state and thus into the final state. The dependence of
reaction rate on activation energy is exponential; thus a small change in activation

1 Direct sunlight is also used by many “cold-blooded’” animals to heat up their bodies.
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energy can make a very big difference in reaction rate. For comparison, enzymatic
catalysis potentially can speed up the rates of reactions by as much as 10'3 times.

How much energy is actually available? At 30°C the average amount of heat en-
ergy available is about 0.025 eV per molecule, but the energy is unevenly distributed,
and some substrate molecules will have more and some will have less. Those that
have more will often have enough to get to the transition states made accessible by
enzymatic catalysis.

8.5 Rates of Chemical Reactions

Stoichiometric rules are not sufficient to determine the equilibrium position of a re-
versible chemical reaction; but adding reaction rate principles makes the calculation
possible. Primarily, rate equations were designed to foretell the speed of specific
reactions, and in this capacity, they predict an exponential decaying speed, as reac-
tants are consumed, characterized by the reaction’s rate constant. But in fact, the
equilibrium position of a reversible reaction is reached when the rate of formation
equals the rate of dissociation. Therefore, equilibrium positions, as well as reaction
rates, are determined by a combination of the forward and reverse rate constants.

Irreversible (unidirectional) reactions are limited by the first reactant to be exhausted.
Consider the irreversible bimolecular reaction
A4+ B — X+Y, (8.5.1)

in which one molecule each of reactants A and B chemically combine to make one
molecule each of products X and Y. It follows that the rate of disappearance of
reactants equals the rate of appearance of products. The conservation of mass principle
takes the form

dX dy dA dB

dt dt  dt  dt’
If My denotes the initial number of molecules of species M, by integrating each
member of this chain of equalities from time zero to time ¢, we get

Xt)—Xo=Y(t)—Yy=—A({t)+ Ao = —B(t) + Bo. (8.5.2)

Equation (8.5.2) gives the amount of each species in terms of the others, so if
any one of them is known, then they all are. But in order to know the amount of any
one of them, we must know how fast the reaction occurs. This is answered by the
law of mass action (due to Lotka): The rate at which two or more chemical species
simultaneously combine is proportional to the product of their concentrations. Letting
[M] denote the concentration of species M, the mass action principle states that the
rate at which product is formed is equal to

k[A][B], (8.5.3)
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where the constant of proportionality k is characteristic of the reaction.

So far, our considerations have been completely general, but now we must make
some assumptions about where the reaction is occurring. We suppose this to occur
in a closed reaction vessel, such as a beaker with a fixed amount of water. In this
case, concentration of a given species is the number of its molecules divided by the
(fixed) volume of the medium.!? There is the possibility that one or more of the
products, X or Y, is insoluble and precipitates out of solution. This is one of the
main reasons that a bimolecular reaction may be irreversible. In what follows, we
use the notation m (¢) to denote the concentration of species M. In case some species,
say X, precipitates out of solution, we can still interpret x(¢) to mean the number
of its molecules divided by the volume of the medium, but it will no longer be able
to participate in the reaction. In this way, we can calculate the amount of X that
is produced. While a product may precipitate out without disturbing the (forward)
reaction, the reactants must remain dissolved.

Combining the mass action principle with (8.5.2), we get

d

d—;‘ = kab = k(ap + xo — x)(bo + x0 — x) (8.5.4)
with initial value x (0) = x¢. The stationary points of (8.5.4) are given by setting the
right-hand side to zero and solving to get (see Section 2.4)

X =uayp+xy9 or x=by-+ xp. (8.5.5)

The first of these says that the amount of X will be its original amount plus an amount
equal to the original amount of A. In other words, A will be exhausted. The second
equation says the reaction stops when B is exhausted.

Suppose, just for argument, that ag < bo; then also ap + xo < bo + xo. While
x(t) < ag + xo, the right-hand side of (8.5.4) is positive; therefore, the derivative is
positive and so x increases. This continues until x asymptotically reaches ag + xo,
whereupon the reaction stops. The progression of the reaction as a function of time
is found by solving (8.5.4), which is variables separable:

dx

= kdt.
(ap + xo — x)(bo + x0 — x)

Note the similarity of this equation to the Lotka—Volterra system of Section 4.4. The
left-hand side can be written as the sum of simpler fractions:

1 1 1 1 1
(ao +x0 — x)(bo + x0 —x)  bo—agao+xo—x bo—aobo+xo—x

Thus (8.5.4) may be rewritten as

1 1
— dx = (by — ag)kd:.
[a0+xo—x b0+xo—xi| x = (bo —do)

12 By contrast, for an open reaction vessel, such as the heart or a chemostat, the concentrations
are determined by that of the inflowing reactants.
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Integrating gives the solution

—In(ag + x0 — x) + In(bg + x¢o — x) = (bg — ap)kt + ¢,

<b0—|—x0—x
In| ——

) = (bo — ap)kt + q,
apg+xo—x

where ¢ is the constant of integration. Now this may be solved for in terms of x,

L _ (@0 +x0) Qe — (by + x0)

Qelbo—akt _ | (8.5.6)

where Q = ¢4 is a constant. This equation is graphed in Figure 8.5.1. The procedure
described above can be performed by the computer using code such as the following:

MaPLE
> k:=1; a0:=2; b0:=3; x0:=1/2;
> dsolve({diff(x(t),t)=k*(a0+x0-x(t))*(b0+x0-x(t)),x(0)=x0},{x()});
> simplify(2);
> x:=unapply(rhs(%),t);
> plot([t,x(t),t=0..4],t=-1..3,tickmarks=[3,3],labels=[‘t",'x(t)]);

MarLaB

% make up an m-file, chemRate.m, with

% function xprime=chemRate(t,x);

% k=1; a0=2; b0=3; x0=0.5; xprime = k*(a0+x0-x)*(b0+x0-x);
> x0=0.5; [t,x]=0de23('chemRate’,[0 4],x0);
> plot(t,x)

The result is

1 —15+ 14e™?!
x(t)=—-——.

2 —3+42et

3..

2..

x(1)
1..
-1 00 1 ; 2 3

Fig. 8.5.1. A typical solution to (8.5.4).
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Example. Suppose 2 moles of silver nitrate (AgNO3) are mixed with 3 moles of
hydrochloric acid (HCI). A white precipitate, silver chloride, is formed and the
reaction tends to completion:

AgNO3 + HCl — AgCl | +HNO3.

From above, asymptotically, the reaction stops when the 2 moles of silver nitrate have
reacted, leaving 2 moles of silver chloride precipitate and 1 mole of hydrochloric acid
unreacted.

Kinetics for reversible reactions work the same way.
Now assume that reaction (8.5.1) is reversible,
A+B=X+Y, (8.5.7)

with the reverse reaction also being bimolecular. This time there is a backward rate
constant, k_1, as well as a forward one, k;. From the mass action principle applied
to the reverse reaction, we have

rate of conversion of X + Y = k_[X][Y].

Under normal circumstances, the forward and backward reactions take place inde-
pendently of each other, and consequently the net rate of change of any species, say
X, is just the sum of the effects of each reaction separately. It follows that the net
rate of change in X is given by

dx
e = (conversion rate of A + B) — (conversion rate of X+Y)

= k([Al[B] — k—([X][Y]
= ky(ap +xo — x)(bo + x0 — x) — k_1x(yo — X0 + X),

(8.5.8)

where (8.5.2) has been used in the last line. Circumstances under which the forward
and backward reactions are not independent include precipitation of one of the species,
as we have seen above. Another occurs when one of the reactions is highly exothermic.
In that case, conditions of the reaction radically change, such as the temperature.

The analysis of (8.5.8) goes very much like that of (8.5.4). The stationary points
are given as the solutions of the ‘é—f = 0 equation

0 =ki(ag +xo — x)(bo + x0 — x) — k_1x(yo — x0 + x)

= (k1 — k_1)x* — (k1 (ao + bo + 2x0) + k_1(yo — x0))x + ki (ao + x0) (bo + x0).
(8.5.9)

As one can see, if k; # k_j, this is a quadratic equation and therefore has two
roots, say x = « and x = B, which may be found using the quadratic formula,
%(—b + +/b? — 4ac). The right-hand side of (8.5.8) thus factors into the linear
factors
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d
==~k — @)~ ), (8.5.10)

Again, just as above, this variable-separable differential equation is easily solved, but
the nature of the solution depends on whether the roots are real or complex, equal
or distinct. To decide about that, we must examine the discriminant of the quadratic
formula, b* — 4ac. By direct substitution of the coefficients from (8.5.9) into the
discriminant and simplifying, we get

b —4ac = ki (ag—bo)> 42k k_1 (ag+bo+2x0) (yo — x0) +k  (yo—X0). (8.5.11)

The first and last terms are squares and so are positive (or zero). We see thatif yg > xo,
then the discriminant is always positive or zero and the two roots are real. Since X
was an arbitrary choice, we can always arrange that yp > x¢, and so we assume that
this is so.

Unless the initial concentrations are equal, agp = bo and yy = xo, the roots will
be distinct. We assume without loss of generality that

Then in a similar way to the derivation of (8.5.6), the solution of (8.5.10) is

In (x _ﬂ) =B —a)ky — k-1t +q,

X —«
where ¢ is the constant of integration. This may be solved in terms of x,

_ﬂ_Qerl

= , 8.5.13
1 — Qe ( )

X

where Q is a constant and
r=(B—a)(k; —k_1).

If the discriminant is zero, then 8 = «, and in that case the solution is

= (k1 —k_Dt +q,

X -«
or

1
(ki —k_Dt+q’

X=a-—
where ¢ is again the constant of integration.

Exercises/Experiments
1. Suppose that A + B — C, that the initial concentrations of A, B, and C are %,
%, and 0, respectively, and that the rate constant is k.
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(a) Show that this leads to the differential equation in z(¢#) = [C(¢)] given by

"=k ! ! 0)=0
7= <§_Z)<§_Z>’ z(0) = 0.

(b) Solve this equation.
(c) Show that the corresponding equation for x(t) = [A(¢)] is

1 1
x' = kx (8 —x), x(0) = 3

(d) Solve this equation. Show by adding the solutions x and z that the sum is
constant.

(e) At what time is 90% of the steady-state concentration of C achieved?

(f) Suppose that £ is increased 10%. Now rework question (e).

2. Suppose that A + B <> C + D is areversible reaction, that the initial concentra-
tions of A and B are % and 15—0, respectively, and that the initial concentrations
of C and D are 0. Take ky = 10 and k_| = %

(a) Show that this leads to the differential equation

, 5y2
vy =1000.4 — y)(0.5—y) — - y(0) =0.

(b) What is the equilibrium level of [C]. Draw two graphs: one where k_; = %
and one where k_| = %.

8.6 Enzyme Kinetics

Enzymes serve to catalyze reactions in living systems, enabling complex chemical
transformations to occur at moderate temperatures, many times faster than their
uncatalyzed counterparts. Proteins, serving as the catalysts, are first used and then
regenerated in a multistep process. Overall, the simplest enzyme-catalyzed reactions
transform the enzyme'’s specific substrate into product, possibly with the release of
a by-product. Referred to as enzyme saturation, these reactions are typically rate
limited by the amount of enzyme itself. The degree to which saturation occurs relative
to substrate concentration is quantified by the Michaelis—Menten constant of the
enzyme—substrate pair.

Enzyme-catalyzed reactions are normally rate limited by enzyme saturation.

The importance of enzyme-catalyzed reactions along with a general description of
the biochemical principles of enzyme catalysis was given in Section 8.4. Here we
will consider an enzyme, E, that acts on a single substrate, S, and converts it to an
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alternative form that is regarded as the product P. The enzyme performs this function
by temporarily forming an enzyme—substrate complex, C, which then decomposes
into product plus enzyme:

S+E=C

(8.6.1)
C— P+E.

The regenerated enzyme is then available to repeat the process.!? Here we will work
through the mathematics of enzyme kinetics. The general principles of chemical
kinetics discussed in the previous section apply to enzyme kinetics as well. However,
due to the typically small amount of enzyme compared to substrate, the conversion rate
of substrate to product is limited when the enzyme becomes saturated with substrate
as enzyme—substrate complex.

As in the previous section, we let m denote the concentration of species M. The
forward and reverse rate constants for the first reaction will be denoted by k; and
k_1, respectively, while the rate constant for the second will be taken as k. The rate
equations corresponding to the reactions (8.6.1) are'*

dc

— =kies —k_1c — kjc,
P 1es 1c —kae
ds

— = —kjes + k_jc,

ﬁ (8.6.2)
— = —kjes + k_ic + kpc,
dt

dp

— = koc.

dt 2

Note that complex C is both formed and decomposed by the first reaction and de-
composed by the second. Similarly, enzyme E is decomposed and formed by the first
reaction and formed by the second. The first three equations are independent of the
formation of product P, and so for the present, we can ignore the last equation. As
before, we denote by subscript O the initial concentrations of the various reactants. In
particular, eq is the initial, and therefore total, amount of enzyme, since it is neither
created nor destroyed in the process.
By adding the first and third equations of system (8.6.2), we get

dc n de 0
dt —dt
Integrating this and using the initial condition that cop = 0, we get

e=ep—ec. (8.6.3)

13 Compare this scheme to Figure 8.4.3; S + E constitutes the initial state, C is the transition
state, and P + E is the final state.

14 The units of ki are different from those of k_; and kj, since the former is a bimolecular
constant, while the latter are unimolecular.
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We may use this to eliminate e from system (8.6.2) and get the following reduced
system:

d

d—c = kis(eo — ¢) — (k_1 + ka)e,

d; (8.6.4)
o = —kis(eg —c) + k_c.

In Figure 8.6.1, we show some solutions of this system of differential equations.

0.8
0.6
0.4
s(t)
0.2
c(t)
0 (
0 20 40 + 60 80 100

Fig. 8.6.1. Solutions to (8.6.2).

For the purpose of drawing the figure, we take the constants to be the following:
MapLE

> k1:=1/10; km1:=1/10; k2:=1/10; €0:=4/10; (km1+k2)/k1;
The equations are nonlinear and cannot be solved in closed form. Consequently, we
use numerical methods to draw these graphs. It should be observed that the level of
S, graphed as s(t), drops continuously toward zero. Also, the intermediate substrate
C, graphed as c(?), starts at zero, rises to a positive level, and gradually settles back
to zero. In the exercises, we establish that this behavior is to be expected.

0.8

0.6
moles
0.4 e(r)

p()

0.2
s(t)

0

0 20 40 60 80 100

Fig. 8.6.2. Solutions to (8.6.1).

Alsoin the exercises we provide techniques to draw what may be a more interesting
graph: Figure 8.6.2. In particular, we draw graphs of s(¢), p(¢), and e(¢). The first
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two of these are, in fact, the most interesting, since they demonstrate how much of
S is left and how much of P has been formed. The addition of a graph for e(¢)
illustrates that during the intermediate phase, some of the enzyme is tied up in the
enzyme—substrate complex, but as the reaction approaches equilibrium, the value of
e(t) returns to its original value.

MaPLE
> with(plots): with(DEtools): # recall the parameters assigned on the previous page
> enz:=diff(c(t),t)=k1*s(t)*(e0-c(t))-(km1+k2)*c(t),diff(s(t),t)=-k1*s(t)*(e0-c(t))+km1*c(t);
> sol:=dsolve({enz,c(0)=0,s(0)=8/10},{c(t),s(t)}, type=numeric, output=listprocedure);
> csol:=subs(sol,c(t)); ssol:=subs(sol,s(t));
> J:=plot(csol,0..100): K:=plot(ssol,0..100):
> display({J,K});

MarLaB

% make up an m-file, enzymeRate.m, with

% function Yprime=enzymeRate(t,Y);

% k1=0.1; km1=0.1; k2=0.1; €e0=0.4;

% Yprime=[k1*Y(2)*(e0-Y(1))-(km1+k2)*Y(1);-k1*Y(2)*(e0-Y(1))+km1*Y(1)];
> [t,Y]=0de23(’enzymeRate’,[0 100],[0; 0.8]); plot(t,Y)

From Figure (8.6.1), notice that the concentration of complex rises to a relatively
invariant (“effective”) level, which we denote by cggr. This is found by setting % =0

in system (8.6.4) and solving for c,
0=kis(eo —¢) — (k—1 + k2)c,

or

k_y+ky
—C.

s(eg —c) = I

The combination kj; of rate constants

kit ko

I (8.6.5)

ky

is known as the Michaelis—Menten constant; it has units moles per liter. Solving for

¢ above, we get
seo

c= ,
ky + s
which is seen to depend on the amount of substrate S. But if s is much larger than

ks, then the denominator of (8.6.6) is approximately just s, and we find the invariant
level of complex to be

(8.6.6)

Thus most of the enzyme is tied up in enzyme—substrate complex.

By the velocity v of the reaction, we mean the rate, fl—’t’, at which product is formed.
From system (8.6.2), this is equal to koc. When the concentration of substrate is large,
we may use cgfr as the concentration of complex and derive the maximum reaction
velocity,

Umax = kaeg. (8.6.8)
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MaPLE
> feni=s—>vmax*s/(kM+s); vmax:=10: kM:=15:
> crv:=plot([x,fcn(x),x=0..150],x=-20..160,y=-2..12,tickmarks=[0,0]):
> asy:=plot(10,0..150,tickmarks=[0,0]):
> midline:=plot(5,0..15.3,tickmarks=[0,0]):
> vertline:=plot([15.3,y,y=0..5],tickmarks=[0,0]):
> a:=0: A:=0: b:=13: B:=13*vmax/kM:
> slope:=x—>A*(x-b)/(a-b)+B*(x-a)/(b-a):
> slopeline:=plot(slope,a..b):
> with(plots):
> display({crv,asy,midline,vertline,slopeline});

MarLaB
>vmax=10; kM=15;
>s=0:.1:150;
> v=vmax.*s./(kM+s);
> plot(s,v)
> hold on
> asy=vmax*ones(size(s));
> plot(s,asy)
> x=[0 13]; y=[0 13*vmax/kM];
> plot(x,y)
> x=[0 15.3]; y=[vmax/2 vmax/2];
> plot(x,y)
>x=[15.3 15.3];
y=[0 vmax/2];
> plot(x,y)

Vimax

— Vmax
slope = 5]

%Vmax

kM

Fig. 8.6.3. Michaelis—Menten plot.

Likewise, from (8.6.6) and (8.6.8), the initial reaction velocity, vo, is given by

_ dp S€0  UmaxS
T dt =0 2kM+S_kM+s.

Vo (8.6.9)
This is the Michaelis—Menten equation, the rate equation for a one-substrate, enzyme-
catalyzed reaction. Its graph is shown in Figure 8.6.3.

The value of ks for an enzyme can be experimentally found from a plot of initial
velocity vs. initial substrate concentration at fixed enzyme concentrations. This graph
has the form of a rectangular hyperbola because at low substrate concentrations, vy is



276 8 The Biochemistry of Cells

nearly proportional to substrate concentration [S]. On the other hand, at high substrate
concentrations the reaction rate approaches vmax asymptotically because at these
concentrations, the reaction is essentially independent of substrate concentration. By
experimentally measuring the initial reaction rate for various substrate concentrations,
we can make a sketch of the graph. Working from the graph, the substrate level that
gives %vmax initial velocity is the value of ks, seen as follows: From (8.6.9) with

UO = vniﬂx b
1 Umax$
T ,
) max kM Ts
and solving for kjs gives
kM =S.

Thus we interpret kp; as the substrate concentration at which the reaction rate is
half-maximal. By inverting the Michaelis—Menten equation (8.6.9), we get

" ky 11
S mrs D (8.6.10)

vo Umax$ Umax § Umax

This is the Lineweaver—Burk equation, and it shows that a least squares fit may be
made to this double reciprocal plot of vio VS. % This has the advantage of allowing an
accurate determination of v . Recall this example in Section 2.3 leading to (2.3.1).
The intercept b of the plot will be ﬁ and the slope m will be % From these, both
Umax and ks can be determined.

Another transform of the Michaelis—Menten equation that allows the use of least
squares is obtained from (8.6.10) by multiplying both sides by vovmax; this yields

V
v = —kMTO T U (8.6.11)

A plot of vy against % is called the Eadie—Hofstee plot; it allows the determination
of kys as its slope and vy as its intercept.

Exercises/Experiments

1. Our intuition for the long-range forecast for (8.6.1) is that some of the reactants
that move from S to C move on to P. But the assumption is that the second
reaction is only one-way, so that the products will never move back toward S.!3
This suggests that S will be depleted. We conjecture that soo = 0 and coc = 0.
We confirm this with the notions of stability that we studied in Section 2.5.

(a) Find all the stationary solutions by observing that setting % = 0 and % =0
leads to the equations

kis(eg —c¢) — (k—1 + ky)c =0,

15 In the context of a free-energy diagram (Figures 8.4.2 and 8.4.3), the one-way nature of the
process C — P is due to a lack of sufficient free energy in the environment to cause the
reaction P — C.
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—kis(eg —¢) +k_1c =0.

While it is clear that s = 0 and ¢ = 0 is a solution, establish that this is the

only solution for the equations as follows:

MaPLE
> restart;
> solve(k1*s*(e0-c)-(km1+k2)*c=0,c);
> subs(c=%, -k1*s*(e0-c)+km1*c); normal(%);
> numer(%)/denom(%%)=0;

MarLaB
% MarLaB cannot symbolically solve the system but we can proceed this way: add the two
% equations and notice that the first terms cancel and the second terms nearly cancel, leaving
% -k2*c = 0. This shows that c=0. With c=0 in either equation it is easy to see that s=0 too. Now
% we find the Jacobian numerically.
% Make an m-file, enzyme96.m, with
% ki1=1; k2=2; km1=1.5; e0=5;
% csPrime=[k1*s.*(e0-c)-(km1+k2)*c; -k1*s.*(e0-c)+km1*c];
O/O
% The Jacobian = the matrix whose first column is the derivative of the component functions
% with respect to ¢ and the second column is with respect to s. Take derivatives at c=s=0.
> J1=(enzyme96(0+eps,0)-enzyme96(0,0))/eps; J2=(enzyme96(0,0+eps)-enzyme96(0,0))/eps;
> J=[J1 J2]; % Jacobian at (0,0)
> eig(J) % both values negative real, so (0,0) stable

Substitute this into the second equation and set the resulting equation equal
to zero. Argue that s must be zero and ¢ must be zero.

Establish that s = ¢ = 0 is an attracting stationary point, by finding the
linearization about this one and only stationary point. (Recall Section 4.4.)

MaprLE
> with(LinearAlgebra): with(VectorCalculus):
> Jacobian([k1*s*(e0-c)-(km1+k2)*c,-k1*s*(e0-c)+km1*c],[c,s]);
> subs({c=0,s=0},%);
> Eigenvalues();
> expand((km1+k2+k1*e0)"2-4*k2*k1*e0);

Verify that the eigenvalues of the linearization are

1
- ((k_1 + ko +kieo) £/ (k1 + ko + kieg) 2 — 4k2k1e0)

and that both these are negative. Argue that this implies that {0, 0} is an
attracting stationary point for {c(¢), s(¢)}.

Draw the graph of Figure (8.6.3). Here is the syntax that does the job:

MaPLE
> restart;
> k1:=1/10: k2:=1/10: km1:=1/10: s0:=8/10: e0:=4/10:
> sol:=dsolve({diff(s(t),t)=-k1*e(t)*s(t)+km1*c(t),diff(c(t),t)=k1*e(t)*s(t)-(km1+k2)*c(t),

diff(p(t),t)=k2*c(t),diff(e(t),t)=-k1*e(t)*s(t)+(km1+k2)*c(t),
s(0)=s0, c(0)=0, p(0)=0, e(0)=e0},{s(t),c(t),p(t),e(t)},numeric,output=listprocedure);

> es:=subs(sol,e(t)); ps:=subs(sol,p(t)); ss:=subs(sol,s(t));
> plot({es,ps,ss},0..100,color=[red,green,black]);

MaTLAB
% For problem 2 and 3
% Make an m-file, exer962.m, with

%
%
%

function Yprime=exer962(t,Y); % Y(1)=c, Y(2)=s, Y(3)=e, Y(4)=p
k1=0.1; k2=0.1; km1=0.1; % problem 2
k1=1; k2=0.1; km1=0.025; % problem 3

% Yprime=[k1*Y(3).*Y(2)-(km1+k2)*Y (1);-k1*Y(3).*Y (2) +km1*Y(1);

%

-K1*Y(3).Y (2)+(km1+k2)*Y (1); k2*Y(1)];
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> s0=0.8; €0=0.4; [t,Y]=0de23('exer962’,[0 100],[0;s0; e0; 0]);
> plot(t,Y)

. Draw the graph of the solution c(¢) in system (8.6.2) with constants chosen so that

ky =~ 1 and S = 10. The point to observe is that c(¢) = ¢q for large values of 7.

MAPLE

> restart;

> k1:=1: k2:=1/10: km1:=1/40: s0:=10: