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Preface

... that departed from the traditional dry-as-dust mathematics textbook.
(M. Kline, from the Preface to the paperback edition of Kline 1972)

Also for this reason, I have taken the trouble to make a great number of
drawings. (Brieskorn & Knorrer, Plane algebraic curves, p. ii)

... I should like to bring up again for emphasis ... points, in which my
exposition differs especially from the customary presentation in the text-
books:

1. Illustration of abstract considerations by means of figures.

2. Emphasis upon its relation to neighboring fields, such as calculus of dif-
ferences and interpolation . . .

3. Emphasis upon historical growth.

It seems to me extremely important that precisely the prospective teacher
should take account of all of these. (F.Klein 1908, Engl. ed. p. 236)

Traditionally, a rigorous first course in Analysis progresses (more or less) in the
following order:

sets limits,
ma’ ines = continuous = derivatives = integration.
pping functions

On the other hand, the historical development of these subjects occurred in reverse
order:
Archimedes
< Kepler 1615
Fermat 1638

Cantor 1875 Cauchy 1821 Newton 1665
Dedekind Weierstrass Leibniz 1675

In this book, with the four chapters

Chapter I.  Introduction to Analysis of the Infinite
Chapter II.  Differential and Integral Calculus
Chapter III.  Foundations of Classical Analysis
Chapter IV.  Calculus in Several Variables,

we attempt to restore the historical order, and begin in Chapter I with Cardano,
Descartes, Newton, and Euler’s famous Introductio. Chapter II then presents 17th
and 18th century integral and differential calculus “on period instruments” (as a
musician would say). The creation of mathematical rigor in the 19th century by
Cauchy, Weierstrass, and Peano for one and several variables is the subject of
Chapters III and IV.

This book is the outgrowth of a long period of teaching by the two authors.
In 1968, the second author lectured on analysis for the first time, at the University
of Innsbruck, where the first author was a first-year student. Since then, we have
given these lectures at several universities, in German or in French, influenced by
many books and many fashions. The present text was finally written up in French
for our students in Geneva, revised and corrected each year, then translated into
English, revised again, and corrected with the invaluable help of our colleague
John Steinig. He has corrected so many errors that we can hardly imagine what
we would have done without him.



vi Preface

Numbering: each chapter is divided into sections. Formulas, theorems, fig-
ures, and exercises are numbered consecutively in each section, and we also in-
dicate the section number, but not the chapter number. Thus, for example, the
7th equation to be labeled in Section I1.6 is numbered “(6.7)”. References to this
formula in other chapters are given as “(1.6.7)”.

References to the bibliography: whenever we write, say, “Euler (1737)” or
“(Euler 1737)”, we refer to a text of Euler’s published in 1737, detailed references
to which are in the bibliography at the end of the book. We occasionally give more
precise indications, as for instance “(Euler 1737, p.25)”. This is intended to help
the reader who wishes to look up the original sources and to appreciate the often
elegant and enthusiastic texts of the pioneers. When there is no corresponding
entry in the bibliography, we either omit the parentheses or write, for example,
“(in 1580)”.

Quotations: we have included many quotations from the literature. Those ap-
pearing in the text are usually translated into English; the non-English originals
can be consulted in the Appendix. They are intended to give the flavor of math-
ematics as an international science with a long history, sometimes to amuse, and
also to compensate those readers without easy access to a library with old books.
When the source of a quotation is not included in the bibliography, its title is indi-
cated directly, as for example the book by Brieskorn and Knorrer from which we
have quoted above.

Acknowledgments: the text was processed in plain TgX on our Sun work-
stations at the University of Geneva using macros from Springer-Verlag New
York. We are grateful for the help of J.M. Naef, “Mr. Sun” of the “Services In-
formatiques” of our university. The figures are either copies from old books (pho-
tographed by J.M. Meylan from the Geneva University Library and by A. Perru-
choud) or have been computed with our Fortran codes and included as Postscript
files. The final printing was done on the 1200dpi laser printer of the Psychology
Department in Geneva. We also thank the staff of the mathematics department
library and many colleagues, in particular R. Bulirsch, P. Deuflhard, Ch. Lubich,
R. Mirz, A. Ostermann, J.-Cl. Pont, and J.M. Sanz-Serna for valuable comments
and hints. Last but surely not least we want to thank Dr. Ina Lindemann and her
équipe from Springer-Verlag New York for all her help, competent remarks, and
the agreeable collaboration.

March 1995 E. Hairer and G. Wanner.

Preface to the 2nd, 3rd, and 4th Corrected Printings. These new printings al-
lowed us to correct several misprints and to improve the text in many places. In
particular, we give a more geometric exposition of Tartaglia’s solution of the cubic
equation, improve the treatment of envelopes, and give a more complete proof of
the transformation formula of multiple integrals. We are grateful to many students
and colleagues who have helped us to discover errors and possible improvements,
in particular R.B. Burckel, H. Fischer, J.-L. Gaudin, and H.-M. Maire. We would
like to address special thanks to Y. Kanie, the translator of the Japanese edition.

March 1997, April 2000, Sept 2007 E. Hairer and G. Wanner.



Contents

Chapter I Introduction to Analysis of the Infinite

L1

1.2

L3

14

LS

L6

Cartesian Coordinates and Polynomial Functions . ....................... 2
Algebra .. ... 2
“Algebra Nova” ... ... 6
Descartes’s GEOMELTY . .......o.uuiiiiii i 8
Polynomial Functions ............. ... i 10
EXCICISES . . v vttt e 14
Exponentials and the Binomial Theorem ................................ 17
Binomial Theorem ........ ... .. 18
Exponential Funcion .......... ... 25
EXEICISES - o oottt ettt e 28
Logarithms and Areas . ......... ... ... i 29
Computation of Logarithms .......... .. ... ... ... ... .. i 30
Computation of AT€as ......... ...ttt 33
Area of the Hyperbola and Natural Logarithms ............................ 34
EXEICISES .« o oottt et e 39
Trigonometric Functions . .......... ... ... ... ... . L 40
Basic Relations and Consequences ...............oouiuuiieinnunneeannnnn. 43
Series EXpansions .. .............o i 46
Inverse Trigonometric Functions ........... ... ... i i, 49
Computation of P ......... . 52
EXEICISES . .ottt et 55
Complex Numbers and Functions............... ... .. ... ... ... ... 57
Euler’s Formula and Its Consequences ..................ccooiviiiiiinno.... 58
A New View on Trigonometric Functions ................ ... ... 61
Euler’s Product for the Sine Function ............. .. ... .. ... o ... 62
EXEICISES . .ottt t e e et 66
Continued Fractions. .......... ... ... .. . 68
OFIgINS . ettt 68
CONVEIZENLS . ..ottt 71
Irrationality . ... o 76
EXCICISES . o vttt e 78

Chapter II Differential and Integral Calculus

1.1

I1.2

IL.3

114

The Derivative . ... 81
The DErivative . .. ...ovuit it e 81
Differentiation Rules ........... ... ... i 84
Parametric Representation and Implicit Equations .......................... 88
B XOICISES .« vttt e 89
Higher Derivatives and Taylor Series.................................... 91
The Second Derivative . ...... ...ttt 91
De Conversione Functionum in Series .............ccoiiiiiiiinennna.. 94
EXCICISES . v vttt e 97
Envelopesand Curvature .. ............ ... . ... ... ... ... .. 98
Envelope of a Family of Straight Lines ............. ... ... ... ........... 98
The Causticof aCircle . ...t 99
Envelope of Ballistic CUrves ..................oiiiiiiiiiiiiinnannaann. 101
CUIVALUIE . . oottt ettt et e e e e e e e e e e et e e e e e e e 101
EXCICISES . . vttt e 105
Integral Calculus........ ... ... .. . ... . . . 107

PrimitiVeS . ..ot 107



viii

I1.5

I1.6

IL.7

IL.8

IL.9

IL.10

Contents
ADPPLCALIONS . ...ttt 109
Integration Techniques . .............oeiiiiiiiii .. 112
Taylor’s Formula with Remainder ................. ... ... ... ... ... ... 116
EXEICISES - o oottt ettt e 117
Functions with Elementary Integral..................................... 118
Integration of Rational Functions .............. ... ... .. . i i 118
Useful SubStitutions . ... 123
EXEICISES . o oo vttt et e e 125
Approximate Computation of Integrals. ....................... ... . ... 126
Series EXpansions .............. . i 126
Numerical Methods . .......... o i 128
Asymptotic EXpansions ............... . 131
EXEICISES . .ottt 132
Ordinary Differential Equations .. ................ ... ... ... .......... 134
Some Types of Integrable Equations ............... ... ... ... ... ...... 139
Second Order Differential Equations ................ ... ... ... ... ..... 140
EXEICISES . .ottt 143
Linear Differential Equations . ................ ... ... ... ... . ... 144
Homogeneous Equation with Constant Coefficients ......................... 145
Inhomogeneous Linear Equations ................ ... ... ... ... ... .. 148
Cauchy’s Equation ............ ... . i 152
EXEICISES - . oottt et e e 152
Numerical Solution of Differential Equations . ......................... .. 154
Euler’'s Method . ... i 154
Taylor Series Method .......... ... ... ... 156
Second Order Equations ............... ... i 158
EXEICISES . .ottt et 159
The Euler-Maclaurin Summation Formula . ............................. 160
Euler’s Derivation of the Formula ............ ... ... ... o i, 160
De Usu Legitimo Formulae Summatoriae Maclaurinianae ................... 163
Stirling’s Formula .......... ... .. 165
The Harmonic Series and Euler’s Constant ...............c.oouueiennna... 167
EXEICISES . . oottt ettt e 169

Chapter III Foundations of Classical Analysis

1111

I11.2

113

Infinite Sequences and Real Numbers ................................... 172
Convergence of a SEqUENCE ... ....... ..ottt 172
Construction of Real Numbers ............. ..o i, 177
Monotone Sequences and Least Upper Bound ............................. 182
Accumulation Points .......... .. .. 184
EXCICISES . . vttt e 185
Infinite Series . ... ... .. 188
Criteria for CONVergence ................oouuiiniiiiiiiaiiaaaaan... 189
Absolute CONVEIZENCE ... ......o.uiiii it 192
Double SEIIes . ... 195
The Cauchy Product of Two Series ............... ... i . 197
Exchange of Infinite Series and Limits .................................... 199
EXEICISES .« oottt ettt e 200
Real Functions and Continuity .............. ... ... ... ............... 202
Continuous FUNCtions ..............ooiiiiiiiiii e, 204
The Intermediate Value Theorem ........... .. ... ... . i i, 206
The Maximum Theorem . ............o.uoiiiiii e 206
Monotone and Inverse Functions .............. .. ... o i 208
Limitof a Function ........ ... . . i 209

BXOICISES . oottt 210



1114

IIL.S

111.6

1.7

I11.8

I11.9

Contents ix

Uniform Convergence and Uniform Continuity .......................... 213
The Limit of a Sequence of Functions ............. ... ... ... ... ...... 213
Weierstrass’s Criterion for Uniform Convergence .......................... 216
Uniform Continuity .. ........ ... ..o 217
EXCICISES . . vttt e 220
The Riemann Integral ............ ... ... .. ... . .. ... ... ... 221
Definitions and Criteria of Integrability ................ ... ... . ... .... 221
Integrable FUNCtiONS ... .........oiiii e 226
Inequalities and the Mean Value Theorem ................................. 228
Integration of Infinite Series .......... ... ... ... ... o il 230
EXEICISES - o oottt ettt e e 232
Differentiable Functions . .......... ... ... . ... ... ... .. L 235
The Fundamental Theorem of Differential Calculus ........................ 239
The Rules of de L'Hospital . .......ooiiii i 242
Derivatives of Infinite Series . ......... ...t 245
EXCICISES . . v vttt e 246
Power Series and Taylor Series ............... ... ... ... ... . ... 248
Determination of the Radius of Convergence .............................. 249
CoNtiNUILY . ...ttt 250
Differentiation and Integration ............. ... ... ... .. .. o i 251
Taylor Series ... ... 252
EXCICISES . . vttt e 255
Improper Integrals......... ... ... ... 257
Bounded Functions on Infinite Intervals ................ .. ... .. ... .. 257
Unbounded Functions on a Finite Interval .................. .. ... ... ... 260
Euler’s Gamma Function ......... ... ... .o 261
EXEICISES - oottt et e 262
Two Theorems on Continuous Functions .. .............................. 263
Continuous, but Nowhere Differentiable Functions ......................... 263
Weierstrass’s Approximation Theorem ................. ... ... ... ... ... 265
EXEICISES oottt ettt e 269

Chapter IV Calculus in Several Variables

Ivi1

Iv.2

Iv.3

Iv4

Topology of n-Dimensional Space....................................... 273
Distances and NOITIS .. ... .vvtntntt et e e 273
Convergence of Vector SEqUENCES .. ...........uiuueiuueenneeainennnaann.. 275
Neighborhoods, Open and Closed Sets ............... ... ... oooii.a.. 278
Compact SELS ... ... 283
EXCICISES . . v vttt e 285
Continuous Functions .......... ... . ... . . i 287
Continuous Functions and Compactness ..............c..ooeeieiiinneeen .. 289
Uniform Continuity and Uniform Convergence ............................ 290
Linear Mappings .. ...t 293
Hausdorff’s Characterization of Continuous Functions ...................... 294
Integrals with Parameters ................ ... . ... . i 297
EXCICISES . . vt ettt e 298
Differentiable Functions of Several Variables ......................... ... 300
Differentiability ........... ... ... 302
Counter-Examples ....... ... i 304
A Geometrical Interpretation of the Gradient .............................. 305
The Mean Value Theorem .......... ... 308
The Implicit Function Theorem ............... ... ... ... ... . ... ...... 309
Differentiation of Integrals with Respect to Parameters ...................... 311
EXEICISES - o oottt ettt e 313
Higher Derivatives and Taylor Series.................................... 316

Taylor Series for Two Variables ........... ... ... . ... ... ... ... . ... 319



X Contents

Taylor Series for n Variables ............. ... ... ... i 320
Maximum and Minimum Problems ............. .. .. ... il 323
Conditional Minimum (Lagrange Multiplier) .............................. 325
EXEICISES .« o oottt ettt e 328

IV.S MultipleIntegrals . ......... ... 330
Double Integrals overaRectangle .............. .. ... . il 330

Null Sets and Discontinuous Functions ............... ... ..o oo, 334
Arbitrary Bounded Domains ........... ... ... o i 336

The Transformation Formula for Double Integrals .......................... 338
Integrals with Unbounded Domain ............... ... ... ... ... ... ..., 345
EXEICISES - oottt et e 347
Appendix: Original Quotations .............. ... ... . ... ... ... .. 351
References . .......... ... 358
Symbol Index . . ... 369



I

Introduction to Analysis of the Infinite

. our students of mathematics would profit much more from a study
of Euler’s Introductio in Analysin Infinitorum, rather than of the available
modern textbooks.

(André Weil 1979, quoted by J.D. Blanton 1988, p. xii)

... since the teacher was judicious enough to allow his unusual pupil (Ja-
cobi) to occupy himself with Euler’s Introductio, while the other pupils
made great efforts ... . (Dirichlet
1852, speech in commemoration of Jacobi, in Jacobi’s Werke, vol.1, p. 4)

This chapter explains the origin of elementary functions and the impact of Des-
cartes’s “Géométrie” on their calculation. The interpolation polynomial leads to
Newton’s binomial theorem and to the infinite series for exponential, logarith-
mic, and trigonometric functions. The chapter ends with a discussion of complex
numbers, infinite products, and continued fractions. The presentation follows the
historical development of this subject, with the mathematical rigor of the period.
The justification of dubious conclusions will be an additional motivation for the
rigorous treatment of convergence in Chapter III.

Large parts of this chapter — as well as its title — were inspired by Euler’s
Introductio in Analysin Infinitorum (1748).



2 I Introduction to Analysis of the Infinite

I.1 Cartesian Coordinates and Polynomial Functions

As long as Algebra and Geometry were separated, their progress was slow
and their use limited; but once these sciences were united, they lent each
other mutual support and advanced rapidly together towards perfection. We
owe to Descartes the application of Algebra to Geometry; this has become
the key to the greatest discoveries in all fields of mathematics.
(Lagrange 1795, Oeuvres, vol.7, p.271)
Greek civilization produced the first great flowering of mathematical talent. Start-
ing with Euclid’s era (~ 300 B.C.), Alexandria became the world center of sci-
ence. The city was devastated three times (in 47 B.C. by the Romans, in 392 by
the Christians, and finally in 640 by the Moslems), and this led to the decline of
this civilization. Following the improvement of Arabic writing (necessary for the
Koran), Arab writers eagerly translated the surviving fragments of Greek works
(Euclid, Aristotle, Plato, Archimedes, Apollonius, Ptolemy), as well as Indian
arithmeticians, and started new research in mathematics. Finally, during the Cru-
sades (1100-1300), the Europeans discovered this civilization; Gerard of Cremona
(1114-1187), Robert of Chester (XIIth century), Leonardo da Pisa (“Fibonacci”,
around 1200) and Regiomontanus (1436—1476) were the main translators and the
first scientists of Western Europe.
At that time, mathematics were clearly separated: on one side algebra, on the
other geometry.

Algebra

Diophantus can be considered the inventor of Algebra; . ..
(Lagrange 1795, Oeuvres, vol.7, p.219)
Algebra is a heritage from Greek and Oriental antiquity. The famous book Al-jabr
w’al mugdbala by Mohammed ben Musa Al-Khowarizmi! (A.D.830) starts by
dealing with the solution of quadratic equations. The oldest known manuscript
dates from 1342 and begins as follows:?

' The words “algebra” and “algorithm” originate from Al-jabr and Al-KhowArizmi, respec-

tively.

2 This picture as well as Figs. 1.1 and 1.2 are reproduced with permission of the Bodleian
Library, University of Oxford, Ms. Huntington 214, folios 1R, 4R and 4V. English trans-
lation: F. Rosen (1831).
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Al-Khowarizmi’s Examples. Consider the quadratic equation
(1.1 z? + 10z = 39.

Such an equation hides the unknown solution x which is called by the arabs dshidr
(root), a word that originally stood for the side of a square of a given surface (“A
root is any quantity which is to be multiplied by itself”, F. Rosen 1831, p. 6).

5x
25 S5x

Modern Drawing

FIGURE 1.1. Solution of 22 + 10z = 39

Solution. Al-Khowarizmi sketches a square of side z to represent 2 and two

rectangles of sides 5 and «x for the term 10x (see Fig. 1.1). Equation (1.1) shows
that the shaded region of Fig. 1.1 is 39; consequently, the area of the whole square
i1s39+25=64=8-8,thus5 +x=8and z = 3.

2 B 4
5
.
x 2‘1 x?
10
I
Manuscript of 1342 Modern Drawing

FIGURE 1.2. Solution of % + 21 = 10z

With a second example (from Al-Khowarizm1),
(1.2) 22 +21 =10z

(or, if you prefer the Latin of Robert of Chester’s translation: “Substancia vero et
21 dragmata 10 rebus equiparantur’), we demonstrate that different signs require
different figures. To obtain its solution we sketch a square for 2 and we attach
a rectangle of width = and of unknown length for the 21 (Fig. 1.2). Because of
(1.2), the total figure has length 10. It is split in the middle and the small rectangle
(A) contained between z2 and the bisecting line is placed on top (B). This gives a
figure of height 5. The gray area is 21 and the complete square (gray and black) is
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5 -5 = 25. Consequently, the small black square must be 25 —21 =4 = 2-2 and
we obtain z = 3. Using a similar drawing (you can have a try), Al-Khowarizm1i
also finds the second solution z = 7.

Mohammed ben Musa Al-Khowarizmi describes his solution as follows
(Rosen 1831, p. 11):

... for instance, “a square and twenty-one in numbers are equal to ten roots of the same
square.” That is to say, what must be the amount of a square, which, when twenty-one
dirhems are added to it, becomes equal to the equivalent of ten roots of that square? Solu-
tion: Halve the number of the roots; the moiety is five. Multiply this by itself; the product
is twenty-five. Subtract from this the twenty-one which are connected with the square; the
remainder is four. Extract its root; it is two. Subtract this from the moiety of the roots,
which is five; the remainder is three. This is the root of the square which you required, and
the square is nine. Or you may add the root to the moiety of the roots; the sum is seven;
this is the root of the square which you sought for, and the square itself is forty-nine.

As an application, Al-Khowarizmi solves the following puzzle: “I have di-
vided 10 into two parts, and multiplying one of these by the other, the result was
217. Putting for one of the two parts 2 and the other 10 — x, and multiplying them,

we obtain
(1.3) z- (10 —x) =21

which is equivalent to (1.2). Hence, the solution is given by the two roots of
Eq.(1.2),1.e., 3 and 7 or vice versa.

The Solution for Equations of Degree 3.

Tartalea presented his solution in bad italian verse . . .
(Lagrange 1795, Oeuvres, vol.7, p.22)

... I have discovered the general rule, but for the moment I want to keep it
secret for several reasons.
(Tartaglia 1530, see M. Cantor 1891, vol. I, p.485)

For example, let us try to solve
(1.4) z2 + 6z = 20,

or, in “bad” italian verse, “Quando che’l cubo con le cose appresso, Se agguaglia
a qualche numero discreto ...” (see M.Cantor 1891, vol.II, p.488). Nicolo
Tartaglia (1499-1557) and Scipione dal Ferro (1465-1526) found independently
the method for solving the problem, but they kept it secret in order to win com-
petitions. Under pressure, and lured by false promises, Tartaglia divulged it to
Gerolamo Cardano (1501-1576), veiled in verses and without derivation (“sup-
pressa demonstratione”). Cardano reconstructed the derivation with great diffi-
culty (“quod difficillimum fuit”) and published it in his “Ars Magna” 1545 (see
also di Pasquale 1957, and Struik 1969, p. 63-67).

Derivation. We represent 23 by a cube with edges of length 2 (what else?, gray in
Fig. 1.3a); the term 6z is attached in the form of 3 square prisms of volume z?v
and three of volume zv? (white in Fig. 1.3a). We obtain a body of volume 20 (by
(1.4)) which is the difference of a cube u? and a cube v (see Fig. 1.3a), i.e.,

ud =0 = 20,
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Vv

FIGURE 1.3a. Cubic equation (1.4) FIGURE 1.3b. Justification of (1.6)
jzltimatio. R s&6pofis | .
rnghmauo Exemplum.cubus & 6 pofis |+ prérebeiilis 26
fones,xquantur 2o, ducito 2,tertiam pars : re
im#é,ad cubum, fit §.duc1o dimidium nu 8 — 10

meriin {e, fit 100,iunge 100 & 8,fit108,acc 158
peradicem qug et Rz 108,8 eam gemmina

bis, alteri addes 10, dimidium numeri,ab : :: Sﬂ. nl: : ::
dtrominues tantundem , habebis Bino< R Vicu.R 108. p:to

mmgr 108 p:10,& ApotomenRz 108§ m:

: ) ¢ m:Rv:cu.Reicg m:t
1ohorum accipe re* cub® & minue illam | °

FIGURE 1.3c. Extract from Cardano, Ars Magna 1545, ed. Basilea 15703

where
(1.5) u=2zx+w.

Arranging the six new prisms as in Fig. 1.3b, we see that their volume is equal to
6z (what is required) if

(1.6) 3uvx = 6z or uv = 2.

We now know the sum (= 20) and the product (= —8) of u3 and —v* and can
thus reconstruct these two numbers, as in Al-Khowarizmi’s puzzle (1.3), as

u® =10+ V108, —v3 =10 — V108.

Taking then cube roots and using * = u — v we obtain (see the facsimile in
Fig. 1.3¢)

1.7 T = §/¢108+ 10 — i/\/loaa— 10.

3 Reproduced with permission of Bibl. Publ. Univ. Gengve.

5



6 I Introduction to Analysis of the Infinite

Some years later a method of solving equations of degree 4 was found (Lu-
dovico Ferrari, see Struik 1969, p. 691, and Exercises 1.1 and 1.2); the equation of
degree 5 remained a mystery for centuries, until Abel’s proof about the impossi-
bility of solutions by radicals in 1826.

“Algebra Nova”

The Numerical Logistic is the one displayed and treated by numbers; the
Specific is displayed by kinds or forms of things: as by the letters of the
Alphabet. (Viete 1600, Algebra nova, French edition 1630)

ALGEBRA is a general Method of Computation by certain Signs and Sym-
bols which have been contrived for this Purpose, and found convenient.
(Maclaurin 1748, A Treatise of Algebra, p. 1)

The ancient texts dealt only with particular examples and their authors carried
out “arithmetical” calculations using only numbers. Francois Viete (= Franciscus
Vieta 1540-1603, 1591 In artem analyticam isagoge, 1600 Algebra nova) had the
fundamental idea of writing letters A, B,C, X, ... for the known and unknown
quantities of a problem (often geometric) and to use these letters for algebraic
calculations (see the facsimile in Fig. 1.4a). Since no problem of the Greek era
appeared to resist the method

put letters calculations
Geometrical ! Algebraic ! Solution
Problem Problem

Viete wrote in capital letters “NVLLVM NON PROBLEMA SOLVERE” (i.e.,
“GIVING SOLVTION TO ANY PROBLEM?”). The perfection of this idea led to
Descartes’s “Geometry”.

Exemple.

Qu'il faille adjoufter A+ D,aucc B+ 2 D,la
fomme {era A + B + 3 D, obfcruant ce qui a cfté
dic.

B +2a1D.
A+ D.

A+B +3D.

FIGURE 1.4a. Facsimile of the French edition (1630) of Viete (1600)*

4 Reproduced with permission of Bibl. Publ. Univ. Genéve.
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SIA quad. +B:in A,zquetur Zplano. A —+ B efto E. Igitur E quad.
xquabieur Z plano =+ B quad.

Confedtarium.
Ttaque, #” zptam ~qud — B fit A, de qua primum quzrebatur.

Iraque fi A cabus— B plano 3 in A, zquerur Z (olido 2.

1/C' zfolidi "'yz[hjjdo-fuhd;: B plano-planc-plano -T ‘/C.Zﬁl[ld}'—v-‘, 1ul1du-Lol1di ae—p PlillD-leOvplAu—;- E& i
de qua quricur,

FIGURE 1.4b. Extracts of Vigte (1591a)° (Opera p. 129 and 150); Solution of A*+2BA =
Z and A* —3BA =27

/

Example. (Trisection of an angle). The famous clas-
sical problem “Datum angulum in tres partes equales
secare” becomes, with the help of

3 B

2q —sin® a

(1.8) sin(3a) = 3sin v cos
(see (4.14) below) and of some simple calculations, the X
algebraic equation

(1.9) —4X*+3X =B
(see Viete 1593, Opera, p.290). Its solution is obtained from (1.14) below.

Formula for the Equation of Degree 2. In Viete’s notation, the complicated text
by Al-Khowarizmi (see p.4) becomes the “formula”

(1.10) P 4ar+b=0 = x,20=—a/2+/a2/4—b.
Formula for the Equation of Degree 3.

+a/3=x
y+a/3

A1) P ra+by+c=0 22 +pr+q=0.

We set x = u + v (this corresponds to (1.5) with “—v” replaced by “v”), so that
Eq.(1.11) becomes

(1.12) u + v + (Buv + p)(u+v) +q=0.
Putting uv = —p/3 (this corresponds to (1.6)), we obtain
(1.13) w402 = —q, udv® = —p3/27.

By Al-Khowarizmi ’s puzzle (1.3) and formulas (1.10), we get (see the facsimile
in Fig. 1.4b),

(1.14)  z= %/fq/Q + @A+ p3)27 + i/fq/Z — V@2 /A+p3)21.

5 Reproduced with permission of Bibl. Publ. Univ. Gen&ve. Here, the unknown variable is
A. Only with Descartes came into use the choice of x, y, z for unknowns.
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Descartes’s Geometry

Here I beg you to observe in passing that the scruples that prevented ancient

writers from using arithmetical terms in geometry, and which can only be a

consequence of their inability to perceive clearly the relation between these

two subjects, introduced much obscurity and confusion into their explana-

tions. (Descartes 1637)
Geometry, the gigantic heritage of Greek antiquity, was brought to Europe thanks
to the Arabic translations.

For example, Euclid’s Elements (around 300 B.C.) consist of 13 “Books”
containing “Definitions”, “Postulates”, in all 465 ‘“Propositions”, that are rigor-
ously proved. The Conics by Apollonius (200 B.C.) are of equal importance.

Nevertheless, different unsolved problems eluded the efforts of these scien-
tists: trisection of the angle, quadrature of the circle, and the problem mentioned
by Pappus (in the year 350), which inspired Descartes’s research.

Problem by Pappus. (“The question, then, the solution of which was begun by
Euclid and carried farther by Apollonius, but was completed by no one, is this”):
Let three straight lines a, b, ¢ and three angles «, 3,7 be given. For a point C,
arbitrarily chosen, let B, D, F be points on a, b, ¢ such that CB, CD, CF form with
a, b, c the angles a, 3, , respectively (see Figs. 1.5a and 1.5b). We wish to find
the locus of points C for which

(1.15) CB - CD = (CF)2.

Descartes solved this problem using Viete’s “new” and prestigious algebra; the
point C is determined by the distances AB and BC. These two “unknown values”
are denoted by the letters “z” and “y” (“Que le segment de la ligne AB, qui est
entre les points A & B, soit nommé x. & que BC soit nommé 3.)

For the moment, consider only rwo of these straight lines (Fig. 1.5¢) (“& pour
me demesler de la cdfusion de toutes ces lignes . ..”). We draw the parallel to EF
passing through C. All angles being given, we see that there are constants K; and
K5 such that

u = K; - CF, v=Ksy-y.
As AE=z+u+v = K3, we get

(1.16) CF =d+ lx + ky, d, £, k constants.
Similarly,
(1.17) CD = mz + ny, m, 1 constants.

(“And thus you see that, . . . the length of any such line . . . can always be expressed
by three terms, one of which consists of the unknown quantity y multiplied or
divided by some known quantity; another consisting of the unknown quantity x
multiplied or divided by some other known quantity; and the third consisting of a
known quantity. An exception must be made in the case where the given lines are
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FIGURE 1.5b. Problem by Pappus FIGURE 1.5c. Equation of a straight line

parallel ...” Descartes 1637, p. 312, transl. D.E. Smith and M.L. Latham 1925).
Thus the condition (1.15) becomes

y - (mx +ny) = (d+lx + ky)?,
which is an equation of the form
(1.18) A2® 4+ Bxy + Cy* + Da+ Ey + F = 0.

For each arbitrary y, (1.18) becomes a quadratic equation that is solved by alge-
bra (see (1.10)). Coordinate transformations show that (1.18) always represents a
conic.

® Fig. 1.5a is reproduced with permission of Bibl. Publ. Univ. Gengve.
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Polynomial Functions

Algebra not only helps geometry, but geometry also helps algebra, because the
cartesian coordinates show algebra in a new light. In fact, if instead of (1.1) and
(1.4) we consider

(1.19) y = z? 4+ 10z — 39, y = 2> + 62 — 20

and if we attribute arbitrary values to x, then for each x we can compute a value
for y and can study the curves obtained in this way (Fig. 1.6). The roots of (1.1) or
(1.4) appear as the points of intersection of these curves with the z-axis (horizontal
axis). For example, we discover that the solution of (1.4) is simply z = 2 (a bit
nicer than Eq. (1.7)).

100

9]
o
T

[en)

|
—_
=
S
T

FIGURE 1.6. Polynomials z* + 10z — 39 and > + 6z — 20
(1.1) Definition. A polynomial is an expression of the form
Yy = ax" + an_12" 1+ ... +ao,

where ag, a1, ...,a, are arbitrary constants. If a, # 0, the polynomial is of
degree n.

Interpolation Problem. Given n + 1 points z;, y; (see Fig. 1.7), we look for a
polynomial of degree n passing through all these points. We are mainly interested
in the situation where the z; are equidistant, and in particular where

IOZO, Ilzl, I2:2, I3:3,

The solution of this problem, which was very useful in the computation of loga-
rithms and maritime navigation, emerged in the early 17th century from the work
of Briggs and Sir Thomas Harriot (see Goldstine 1977, p.23f). Newton (1676)
attacked the problem in the spirit of Viete’s “algebra nova” (see Fig. 1.8): write
letters for the unknown coefficients of our polynomial, e.g.,

(1.20) y= A+ Bz + Cz? + Dz,
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2
H? 1 2 3 4\ /5
FIGURE 1.7. Interpolation polynomial

Abfcifx Ordinax

A+p A+bpopr 4 dp3 4 ept=a

A+g¢ Atbgteg’+dptegt=4g

A+r A-fbrtoart+drideat=,

A+s Adbs e L diifat =4

A+t AL bt ctr L dts 4 ats =4

Divifor, Diff. Ord. Quoti per divifionem prodeuntes. =

P—9) a—8 btoxp+ g dxppprt 99t exp+pig+pgt + gt =
g—r) g=—y |btcexgtrtdxggtogrtrrtexgtgrgrFri=,
r—15) p—& |bpexrdsddrm sy ssdexrifFrs e 4 o=
se=t) d—u |bboxsHtAdX s st B exXsd A st st # =
p—r) {—w ot deptgtrtexpppgtagtprtgrdr=a
g—) 2—¢ |ctdegtrtaitexgtatrHgtrstis=gy
r—t) §—u ctdxrtsttdexrrtr A sutritfat =y
=) r—p |d4expFrgtrds =5
g—1t) p=—ry |dtexgtrt+stt=a
p—t) f—=x le=o.

FIGURE 1.8. Problem of interpolation by Newton (1676, Methodus Differentialis)’

11

The values yg, y1, Y2, y3 having been given, we transform the “problem” into “al-

gebraic equations”

Abscissa Ordinatae

z=0 A = Yo
z=1 A+B+C+D =1y
=2 A+2B+4C+8D =y,
z=3 A+3B+9C+27D =y3

7 Reproduced with permission of Bibl. Publ. Univ. Gengve.
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Here, we notice that the value A disappears if we subtract the equations, the 1st
from the 2nd, the 2nd from the 3rd, the 3rd from the 4th:

B+C+D =y —yo=:Ayo
(1.21) B+3C+7D =y, —y1 =: Ayy
B+5C+19D:y3—y2 :ZAyQ.

B disappears if we subtract once again:

2C + 6D = Ay; — Ay =: A?
(1.22) Y1 Yo 2y0
2C + 12D = Ayy — Ayy =: A%y,
and then so does C':
(1.23) 6D = A%y, — A?yy =: A3y,

This gives us D. Then the first equation of (1.22) yields C, the first of (1.21) the
value B. We arrive at the solution

A? A3
(124)  y=yo+ Ayo-z+ 2y0 S(2® —x) + 6y0 (2® — 32 + 2x),
which can also be written as
x z(xr—1) , z(x—1)(xr—2) 4
1.24/ = A A A”yg.
( ) Yy yo+1 Yo + 1.9 Yo + 1.9.3 Yo

We will see in the next paragraph, using Pascal’s triangle, that this is a particular
case of a general formula for polynomials of any degree.

(1.2) Theorem. The polynomial of degree n taking the values

yo (forx =0), y1 (forx=1),..., yn (forx =n)
is given by the formula

zz—1)...(x —n+1)

)A2y0+...+ 1.9. n

X T\Tr
y:yo+1Ayo+ (

A"yq.
1.2 Yo

(1.3) Remark. Since Newton (see Fig. 1.9), it is usual to arrange the differences in
the scheme

Yo where
Ayo 9

Y1 A%y 3 Ay = Yiy1 — Y
Ay Nyo 2

(1.25) 2 A%y 3 A%yo A%y = Ay — Ay

Ay Ay 3 2 2

Y3 Ay Ay A%y = Ay — A%,

3

y4 etc.
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A B
AR — A2B2 __ A2B2 — A3BY __
Et fac AA2 - b’ A2A3 - bZ, c b Az 2
Ry — A4BY4 AgBy —AsBe d bz
e 13% = b3, "5 b4, - ¢ d,aba »
— ASBS __ A6T6-A7B7 J s
aste— i = bs, e = b6 gl G e
9 h fz d7 b4
-;L'f'_i?_:.“—si = by. 92 o3 ¢4 As
"y b2ob by—h S da b5
. b2 __ k23 —b c4 o5 Ab
Deinde AA3 Y A2Ag 2, A3As €3, &c. & b5
c—C2 __ c2—c3 __ 3-c4 i
Tunc m = d’ A2hs = J2, ﬁ" -_— d;., &cc. b BrfAz
d-d dy —d3 __ dy—dy b7
— = = €2 =¢e C.
Et AAS 3 A2A6 3 A3A7 33& ABLM
Sic pergendum eft ad uitimam differentiam. o

FIGURE 1.9. Newton’s scheme of differences (Newton 1676, Methodus Differentialis)®

Example. For the values of our problem (Fig. 1.7), we obtain

Other Examples. a) We consider the polynomial y
know the solution. The scheme of differences yields

4
1 1 4
— = 4 . — . — 1
2 5 64 " . y tTe x(x )3+
- 613 x 473 x
3 —12 43 = =4 — 3522
5 —6 21 g x 924
) 0 2 120

= 23 for which we already

r=0: 0 y20+1_x+6.x(x2—1)
r=1: 1 6 6 ( 1) 2)
= x(x — xr —
r=2: 8 12 +6- 6
19
r=3: 27

b) Here, the values for = n are the sums 1° 4+ 23 +

r=20: 0
1
r=1: 13 7
23
rx=2: 13423 19
33
r=3: 13423433 37
43
r=4: 13423433443 61

8 Reproduced with permission of Bibl. Publ. Univ. Gengve.

=z 4322 — 3z + 2% — 32% + 22 = 25.

3
A
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and we obtain the formula

z(x —1) z(z —1)(x —2) z(z —1)(x — 2)(z - 3)
= 7 12 6
R 6 * 24
2 2P
“ata Ty
Similarly, we obtain
Leogpn=" 4"
2 2
3 2
1249224 4+n2=" + @ 4+
2P hnt =+
4 3 2
(126 B2d4 4nf=" +"7 +" 4o
) F2 gt = b
5 4 3
P2t gnt=" " " 0 ]
2t = 0
6 5 ot n2
P+254 . 4nS=" +" 0—
+2° + +n 6 + 9 + 12 + 12
Jacob Bernoulli (1705) found the general formula
nitt nl g 9 —1)(g—2)
194294 +nl= A1 Bni~3
+27+...+n q+1+2+2n + 9.3.4 n* o+
a(g—1(q=2)(¢=3)(q—4) - 45
+ 9.3.4-5.6 Cn®°+ ...,
where
1 1 1 1 ) 691
1.27) A= B=- C= D=- FE = F=-
( ) 6’ 30° 42’ 30° 66’ 2730’

are the so-called Bernoulli numbers. For an elegant explanation see Sect.II.10
below.

Exercises

1.1 The following problem, in Viete’s notation,

r+y+z2=20
TIY=yY:2
rzy =8

was proposed the 15th of December 1536 by Zuanne de Tonini da Coi (Colla)
to Tartaglia, who could not solve it (see Notari 1924). Eliminate the variables
z and z and understand why. Cardano later handed the problem over to Fer-
rari who found the solution (see next Exercise). It is not astonishing that later
Ferrari and Tartaglia exchanged ugly letters with heated disputes on mathe-
matical questions.
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1.3

1.4

1.5
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Reconstruct Ferrari’s solution of the biquadratic equation
(1.28) zt + az® = bz + c.

Hint. a) Add a? /4 on both sides to obtain

2
(x2+;)2:b:r+c+cl.

b) Take y as a parameter and add 3 + ay + 222y on both sides to obtain

2

a a
($2+2+y)2=2w2y+bx+y2+ay+c+ E

c) The expression to the right, when written as Az? + Bz + C, is of the form
(ax + ()2 if B2 = 4AC. This leads to a third order equation for y.
d) Having found a y satisfying this with Cardano’s formula (1.14), you obtain

(m2+;+y)=i(a:ﬁ+ﬁ)

with two roots each.
Remark. Every polynomial z* + az® + b2% + cz + d = 0 can be reduced to
the form (1.28) by the transformation z = z + a/4.

(Euler 1749, Opera Omnia, vol. V1, p.78-147). Solve the equation of de-
gree 4
2+ B> +Cx+D=0

by comparing the coefficients in
'+ Ba? + Cx + D = (2% + ux + o) (2 — uz + f)

and finding an equation of degree 3 for u>. Solve this equation and compute
the solutions of two quadratic equations.

(L. Euler 1770, Vollst. Anleitung zur Algebra, St. Petersburg, Opera Omnia,
vol. I). Consider an equation of degree 4 with symmetric coefficients, e.g.,

(1.29) 2t + 523+ 82 + 52 +1=0.

Decompose the polynomial as (2 + rz + 1)(2% + sz + 1) and find the four
solutions of (1.29).

Remark. Another possibility for the solution of (1.29) is to divide the equa-
tion by 22 and to use the new variable u = z 4+ 27!,

Problem proposed by Armenia/Australia for the 35th international mathemat-
ical olympiad (held in Hong Kong, July 12-19, 1994). ABC is an isosceles
triangle with AB = AC. Suppose that (i) M is the midpoint of BC' and O is
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the point on the line AM such that OB is perpendicular to AB; (ii) @ is an
arbitrary point on the segment BC' different from B and C'; and (iii) £ lies on
the line AB and F' lies on the line AC such that F, @), and F are distinct and
collinear. Prove, with Viéte’s method, that OQ) is perpendicular to F'F if and only

if QF = QF.

LA !
i Aen Curtesins

R. Descartes 1596—1650° I. Newton 1642-1727°

Summa Poreflatum.

fr 0 gnn+in,

Jin 0 393 +3nn+ cn.

Mm 0 i1t +in + gnn,

fot 0 75 +Ent + 743 keibu,

00 I8 3405+ St k.

/6 0 107 208 4 Tnd ke d w3 o - glm.

ﬁ’7 30 %" +i‘”7 -+ 73né *—57;;104 X =+ izn8.

fm® 0 i +3n° + i"" k—i5ns k428 k—iin,

fn9 058 °+3n d 20° ke Tnb S Int k—ihnne

[51°00 o0 4-Enio4 6;”9 X— 147 k4 185 dk—%n *+?—%”.

Quin imd qui legem progreflionis inibi attentius infpexerit , eundem
ctiam continuare poterit abfg; his ratiociniorum ambagibus : Sumta
enim ¢ pro potefatis cujuslibet exponente, fit fumma omnium ¢ feu

ﬁ;c 20 E_-;_-'["‘ -1 + ;'"c_*_ :-.A"c—l+‘.:7l.‘—’ Bnc-—g+

3 - 4
CoC=l.Cm2.¢=3.C~—4 Cnc—; g CoC=f.¢c=—2.Com3 . C—4g.,cm5.C—6
2.3.4.5.6 ! 2 .3.4.5.6.7.8

Dnc-72,... &

Jac. Bernoulli, Ars conj. 1705°

® These figures are reproduced with permission of Bibl. Publ. Univ. Gengve.
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1.2 Exponentials and the Binomial Theorem

Here it will be proper to observe that 1 make use ofz™ !, 272 273, o,

&c.for !, L, L, L, & ofx2, 23,205,258 x5, &c. for\/x Va3, Vs,
Yz, Va2, & and of z~ >, 75, 2~ 4 &c. for \/lx \/2, 4 , &c. And
this by rule of Analogy, as may be apprehended from such Geometrlcal

_3
Progressions as these; z° 1:2 x2, 1:2 z, :c2 20, (or 1) 2~ 2 sl a2,

7%, &c. (Newton 1671, Fluxzones Engl. pub 1736, p. 3)
For a given number a, we write

3 4

2.1 a-a=ad? a-a-a=a a-a-a-a=a",

This notation emerged slowly, mainly through the work of Bombelli in 1572, Si-
mon Stevin in 1585, Descartes, and Newton (see quotation). If we multiply, e.g.,

a*>-a*=(a-a)-(a-a-a)=a-a-a-a-a=ad,

we see the rule
2.2) a” - a™ = a"tm,

In the geometric progression (2.1), every term is equal to its predessessor multi-
plied by a. We can also continue this sequence fo the left by dividing the terms by
a. This leads to

1 1

a2 = L al= 0 =1 1 2
a-a a

where we have used the notation

2.3) a ™=

am’

In this way, formula (2.2) remains valid also for negative exponents. Next, mul-
tiplying 1 repeatedly by v/a (where a has to be a positive number), we obtain a
geometric progression

1, va, Va-va=a, Va-va-va=vVad, Vat=d? ...,
which suggests the notation
2.4) o™ = Yam,

Now formula (2.2) remains valid for rational exponents. We take only the positive
roots, so that a®/2 lies between a2 and a®. The last step (for mankind) is irrational
exponents, which are, as Euler says, “more difficult to understand”. But “Sic aVv7
erit valor determinatus intra limites a2 et a® comprehensus”, tells us that aV7 is
a value between a? and a3, between a2%/19 and a27/10, between q264/100 and
a265/100 petween 2645/1000 41 ¢2646/1000 and s on.
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Binomial Theorem

Although this proposition has an infinite number of cases, I shall give quite
a short proof of it, by assuming 2 lemmas.
The 1st, which is self-evident, is that this proportion occurs in the second
base; for it is quite obvious that p isto o as 1 isto 1.
The 2nd is that if this proportion occurs in some base, it will necessarily be
true in the next base.

(Pascal 1654, one of the first proofs by induction)

We wish to expand the expression (a + b)™. Multiplying each result in turn by
(a + b) we obtain, successively,

(a+0)°=1
(a+b)l=a+b
(2.5) (a+0)* = a® + 2ab + b?
(a+b)* =a® + 3a®b + 3ab* + b*
(a+0)* = a* + 4ab + 6a2b* + 4ab® + b*,

and so on. There appears an interesting triangle of “binomial coefficients” (Omar
Alkhaijama in 1080, Tshu shi Kih in 1303, M. Stifel 1544, Cardano 1545, Pascal
1654, see Fig.2.1)

1
1 1
1 2 1
1 3 3 1
(2.6) 1 4 6 4 1
1 ) 10 10 ) 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

in which each number is the sum of its two “superiors”. We want to find a general
law for these coefficients. It is not difficult to see that the first diagonal in this
triangle is composed of “1” and the second (1,2,3,...) of “n”. For the third

diagonal (1,3,6,10,...) we guess "(;’;1) ”, followed by * "("_1_12).(;_2) ”, and
so on. This suggests the following theorem.

(2.1) Theorem (Pascal 1654). Forn = 0,1,2, ... we have
n o ,_ nn—1) nn—1)Mn-2) ,_
" = " nlb n2b2 n3b3
(b D) =a™ @bk AT gy A
This sum is finite and stops after n + 1 terms.

Proof. We compute the ratio of each number in (2.6) with its left-hand neighbor
(Pascal 1654, p.7, “Consequence douziesme”).



1.2 Exponentials and the Binomial Theorem 19
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FIGURE 2.1. Original publication of Pascal’s triangle, Pascal (1654)"

2 1
3 1o 2y
e bog 2, 3y
2.7 R S S S
6 o5 2 4 3 g 4 5 5
1 2 1
7 6 2 5 3 4 3 o 0
1 2 3 4 5 6 7

Here, it is not difficult to guess a general law. We prove this law “by induction on
the row-number” (see quotation). Suppose that

(2.8) A B ¢ D=A+B, E=B+C
' D E N T

is a part of Pascal’s triangle with the “induction hypothesis”

B k c k-1

A -1 B ¢
Then,

E _B+C 1+§ 14k Gkl g
D A+B  4+1 Sr41 o R

2.9

! Fig.2.1 is reproduced with permission of Bibl. Publ. Univ. Genéve.
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which means that the same structure is also found in the next line.

The fact that the ratios in the nth row of (2.7) are given by n/1, (n — 1)/2,
(n —2)/3,... implies that the coefficients of (2.6) are a product of such ratios;
e.g., the “20” in the 7th line is the product

20_20 15 6 (2;7) 4 5 6 6-5-4
156 1 321 3.2-1
and we see that Theorem 2.1 is true in general. a

These coefficients

nn—1)...n—j+1) nn-1)...n—j+1)(n—4j)...1

1-2-...-j 12120 (n—3
2.10) j j (n—J)
_onl B (n)
tn=gt  \Jj
are called binomial coefficientsand n! =1-2 - ... - nis the factorial of n.

Application to the Interpolation Polynomial. Expand the expressions in the dif-
ference scheme (1.25):

Yo
Y1 — Yo
Y1 Y2 — 2y1 + Yo
Y2 — Y1 Y3 —3y2 + 3y1 — Yo -
Y2 Ys — 2y2 + 41
Ys — Y2
Y3

The appearance of Pascal’s triangle is not a coincidence, because each term is the
difference of the two terms to its left.

Furthermore, each term of the scheme (1.25) is the sum of the term above it
with the term to its right. Consequently, the scheme can also be written as

Yo
Ayo
Yo + Ayo Ay
Ay + A%y Adyq .
Yo + 24y0 + A%yo APyo + Ay,

Ayo + 242y + Ay,
Yo + 3Ayo + 3A%y, + A3y,

Pascal’s triangle appears again. Formula (2.10) thus yields

n(n —
2!

n(n —1)(n — 2)

31 A3y0+...,

n 1
yn:y0+1Ay0+ )A290+

and this proves Theorem 1.2.
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Negative Exponents. We begin with

1

-1
(a+8)"" = a+b

If we assume that |b| < |a|, a first approximation to this ratio is 1/a. We try to
improve this value by an unknown quantity 9,

1 1

=+ = 1:1+b+a§+b6.
at+b a a

Since |b| < |al|, we neglect the term b§ and obtain § = —b/a®. Repeating this
process again and again (or, more precisely, proceeding by induction), we arrive
at

1 b b2 b?
2.11 =" — —
@11 (a+b) a a? + a®  a* T
which is the same as Theorem 2.1 for n = —1. This time, however, the series is
infinite.

If we multiply (2.11) by a and put = b/a, we obtain

1
(2.12) 1+x:1_x+$2_$3+$4_$5+“' |z < 1,

the famous geometrical series (Viete 1593).

Square Roots. Next, we consider (a+b)/? = \/a + b. We again suppose b small,

so that Va + b ~ \/a, and search for a § such that
Va+b=+a+3s
is a better approximation. Then,
a+b= (\/a+§)2 =a+ 2vad + 6%

As § is small, we neglect 4% and have § = b/(2+/a). Consequently,

b
(2.13) Vatbsvat, b < a.

Example. Computation of v/2. We start from an approximate value v = 1.4 and
seta =v%, b=2—a=2— 02 Then, (2.13) gives as a new approximation

+2—v2 1(2+ )
v = v
2v 2\v ’

a formula that can be applied repeatedly and yields
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1.4

1.414285

1.4142135642

1.4142135623730950499

1.4142135623730950488016887242096980790
1.41421356237309504880168872420969807856967187537694807317667973799 .

The same calculation performed in base 60 starting with 1, 25 gives 1,24, 51,10
(commas separate digits in base 60), a value found on a Babylonian table dating
from 1900 B.C. (see Fig. 2.2, see also van der Waerden 1954, Chap. II, Plate 8b).
This indicates that formula (2.13) has been in use since Babylonian and Greek
antiquity.

47, 25,35

FIGURE?2.2. Babylonian cuneiform tablet YBC 7289 from 1900 B.C. representing a
square of side 30, with diagonal given as 42, 25, 35 and ratio 1,24, 51, 10>

Next Step (Alkalsadi around 1450, Briggs 1624). To improve (2.13), consider

Va+b=+a+ +,

b
2\/a
compute the square

b2 b
a+b:a+b+4a+2\/a(5+ + 6%,

Va

neglect the last two terms, and obtain

b2

b
(2.14) ¢a+b~\/a+2\/a—8\/a3.

Example. For \/2, we obtain this time as new approximation
2—v? 4—4?+0t 3w 3 1

vt g g3 T8 oy o

2 Reproduced with permission of Yale Babylonian Collection.
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the repeated use of which, starting with v = 1.4, gives rapid convergence:

1.4

1.4142128

1.41421356237309504870
1.41421356237309504880168872420969807856967187537694807317643 .

Equations (2.13) and (2.14) become noticeably neater if we divide them by
Va and if b/a is replaced by x:

X Iz

rTr)2 =~ — .
2’ 2 8
In order to obtain a more precise approximation, we can continue the above cal-
culations. The result will be a series of the type

(qux)é ~1+

Q+z)d=1+" +ba®+ex®+da*+...,

2
whose coefficients b, ¢, d, . . . we want to determine. Inserting this series into the
relation (1 + #)2 (1 + )2 = 1 + 2 and comparing equal powers of z yields

b= —-1/8¢=1/16,d = —5/128,... . Consequently, we have the better ap-
proximation (Newton 1665)

1 1 1 1 5
2.15 1 =1 — 22 3 44
215 (I @)2 =1 o= g0 4 (77— g™ F
We note that
111 5(5-1) 1 1-1:3  5(-1(5-2)
8 2.4 2 7 16 2-4-6 1-2-3 '
5 1-1:3.5 (3 -DG-2(3-3)
128 2-4-6-8 1-2-3-4 ’
which leads to the conjecture that Theorem 2.1 is also true for n = 1/2. The

sequence 1 + /2, 1+ x/2 — 22 /8, ... sketched in Fig. 2.3, illustrates the con-
vergence of (2.15) toward /1 + x for —1 < x < 1.

Arbitrary Rational Exponents.

All this was in the two plague years of 1665 and 1666, for in those days

I was in the prime of my age for invention, and minded mathematics

and philosophy more than at any other time since.

(Newton, quoted from Kline 1972, p.357)

One of Newton’s ideas of these “anni mirabiles”, inspired by the work of Wallis
(see the remark following Eq. (5.27)), was to try to interpolate the polynomials
(1+2)% (1+2)!, (1+2)2,...in order to obtain a series for (1 + z)® where a is
some rational number. This means that we must interpolate the coefficients given
in Theorem 2.1 (see Fig.2.4). Since the latter are polynomials in n, it is clear
that the result is given by the same expression with n replaced by a. We therefore
arrive at the general theorem.
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Vit

(2.2) Theorem (Generalized binomial theorem of Newton). For any rational a we
have for |x| < 1

a ala—1) 5 ala—1)(a—2) 4
1 ¢e=1
(1+2) tirh oy 193

s
.

E

£l

e v’r' ;

g

i

FIGURE 2.4. Interpolation of Pascal’s triangle, Newton’s autograph (1665)°

Even Newton found that his interpolation argument was dangerous. Euler,
in his Introductio (1748, §71), stated the general theorem (“ex hoc theoremate
universali”’) without any further proof or comment. Only Abel, a century later, felt
the need for a rigorous proof (see Sect. II1.7 below).

® Fig.2.4 is reproduced with permission of Cambridge University Press.
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Remark. This is precisely the formula that was engraved on Newton’s gravestone
in 1727 at Westminster Abbey. Don’t make useless efforts . . . for the past hundred
years the formula has been illegible.

Exponential Function

... ubi e denotat numerum, cuius logarithmus hyperbolicus est 1.

(first definition of e; Euler 1736b, Mechanica, p. 60)
Origins. 1. F. Debeaune (1601-1652) was the first reader of Descartes’ “Géomé-
trie” of 1637. A year later, he posed Descartes the following geometrical problem:
find a curve y(x) such that for each point P the distances between V and T, the
points where the vertical and the tangent line cut the z-axis, are always equal to
a given constant a (see Fig.2.5a). Despite the efforts of Descartes and Fermat,
this problem remained unsolved for nearly 50 years. Leibniz (1684, “. .. tentavit,
sed non solvit”) then proposed the following solution (see Fig.2.5b): Let =,y be
a given point. Then, increase = by a small increment b, so that y increases (due
to the similarity of two triangles) by yb/a. Repeating, we obtain a sequence of

values
b b\ 2 b\ 3
Y, (1+ )y (1+ )y <1+ )y
a a a

for the abscissae z, x + b, x + 2b, x + 3b, . . . .

= P T bbbbbb

FIGURE2.5a. Debeaune’s problem FIGURE2.5b. Leibniz’s solution

2. Questions like “If the population in a certain region increases annually by
one thirtieth and at one time there were 100,000 inhabitants, what would be the
population after 100 years?” (Euler 1748, Introductio §110) or “A certain man
borrowed 400.000 florins at the usurious rate of five percent annual interest . ..”
(Introductio §111) lead to the computation of expressions such as

1 \ 100 N N
(2.16) (1 + 30) , (1 + 0.05) , or in general (1 + w) ,

where w is small and N is large.
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Euler’s Number. Suppose first that w = ]{] We compute (2.16) with the help of
Theorem 2.1,
IN\¥ N NN-1) 1  N®N-I)N-2 1

<1+N) =yt o et s

11— ) . 11— )= %)
1-2 1-2-3

Here, Euler states without wincing that “if /N is a number larger than any
assignable number, then N 1 is equal to 1”. This shows that as N tends to in-

finity, (1 + )" tends to the so-called Euler number

=1+1+

1 1 1
. =1+1
(2.17) e + +1_2+1_2_3+1_2.3.4+

We emphasize that this argument is dangerous, because it is applied infinitely
often. For example, by a similar “proof” we would obtain

1 1 1 1 1 1 1 1
1= — = = .= 0.
g T o= atata=ytyt T y=0+t0+0+ 0

We shall return to this question in Sect. II1.2. Table 2.1 compares the convergence
of the series with that of (1+ 4 )".

TABLE2.1. Computation of e

N 1+ Y L+ L+ .+ 4

2.000 2.0
2 2.250 2.5
3 2.370 2.66
4 2.441 2.708
5 2.488 2.7166
6 2.522 2.71805
7 2.546 2.718253
8 2.566 2.7182787
9 2.581 2.71828152
10 2.59%4 2.718281801
11 2.604 2.7182818261
12 2.613 2.71828182828
13 2.621 2.718281828446
14 2.627 2.7182818284582
15 2.633 2.71828182845899
16 2.638 2.7182818284590422
17 2.642 2.71828182845904507
18 2.646 2.718281828459045226
19 2.650 2.7182818284590452349
20 2.653 2.718281828459045235339
21 2.656 2.7182818284590452353593
22 2.659 2.718281828459045235360247
23 2.661 2.7182818284590452353602857
24 2.664 2.718281828459045235360287404
25 2.666 2.7182818284590452353602874687
26 2.668 2.71828182845904523536028747125
27 2.670 2.718281828459045235360287471349
28 2.671 2.71828182845904523536028747135254
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6
il :
a-
2 JN=1
2 /
R 8 \ \
-3 =2 1 12
2+ =2
3
FIGURE2.6a. (1+ )" FIGURE2.6b. 1 + 2+ %, + % +...

Powers of e. We next set w = z/N in (2.16), where z is a fixed, say rational
number. That is to say that we simultaneously let /V tend to infinity and w to zero
in such a manner that their product remains equal to the constant x. Exactly the
same manipulation as above now leads to the result

2 .’L'3 .’L'4

(2.18) (1+x)N_>1+x+x n + T
N 1-2 1-2-3 1-2-3-4
On the other hand, we set M = N/x, N = M for those values of N such that
M is an integer. This gives, for IV and M tending to infinity,
2.19) (1+N) :(1+M) :((1+M) ) e
On combining (2.18) and (2.19), we have the following theorem.

(2.3) Theorem (Euler 1748, Introductio §123, 125). For N tending to infinity,

22 23 ot

z\N x
(1+N) et =l b b e O

The convergence of these expressions to e* (also denoted by exp z) is illus-
trated in Figs. 2.6a and 2.6b. The dotted line represents the exact function e”.
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Exercises

2.1 Verity the following formula (Euler 1755, Opera vol. X, p.280) by using
50=2-52="72+1:
7 1 1-3 1-3-5
2= 1 . )
V2= {1+ 100 * 100200 T 100- 200300 T

“quae ad computum in fractionibus decimalibus instituendum est optissima”.
Add numerically five terms of this series.
Hint. Work with the series for (1 — )~ /2.

2.2 Show that the number, written in base 60 as 1, 25, is a good approximation
to v/2. Show that one iteration of the “babylonian square root algorithm”
deduced from formula (2.13) leads to 1, 24,51, 10, . . ., the value of Fig.2.2.

2.3 By multiplying the series
(14 2)Y3 =1+ az +ba® +ca® + ...

with itself twice, determine the coefficients a, b, ¢, ... to find

2 2.5
1 13 _ 1,7 _ 2
(1+2) T3 736" T3.6.9

By using 2 - 43 — 53 = 3, obtain the formula

x?’——i—....

5. b 1 2
2="[(1 -
v 4( T T 12 (125)2
N 2.5 - 2.5.8 N
1-2-3-(125)3  1.2-3-4-(125)% ' )

Remark. The determination of {/2 was one of the great problems of Greek
mathematics (double the volume of the cube).

2.4 (Bernoulli’s inequality; Jac. Bernoulli 1689, see 1744, Opera, p. 380; Barrow
1670, see 1860, Works, Lectio VII, §XIII, p. 224). By induction on n, prove

that

(I+a)">1+na for a>-1, n=0,1,2,...
1

l—-na<(1l—a)"< for 0<a<l1l, n=23,....
14+ na

2.5 In order to study the convergence of (1 + i)n to e, consider the sequences
1\ 1 n+1
an=(1+ ) and b= (14 ).
n n
Show that

ap<ar<az<...<e<...<bzg<by<b

and that b,, — a,, < 4/n.
Hint. Use the second inequality of Exercise 2.4 with a = 1/n?.
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.3 Logarithms and Areas

Tabularum autem logarithmicarum amplissimus est usus . . .
(Euler 1748, Introductio, §110)

Students usually find the concept of logarithms very difficult to understand.
(B.L. van der Waerden 1957, p. 1)

M. Stifel (1544) highlights the two series (see facsimile in Fig. 3.1)

-3 -2 -1 01 2 3 4 5 6 7 8
1 1 1
s 4 > 1 2 4 8 16 32 64 128 256

ARITHMETICAE LIBER 111, 237|
T & didlione. ut plene oftendi 1ib. 1, capite de geomet.progref,
Vide ergo,

0, Ta 24 3¢ 4. 5. 6 7. 8.

e 2+ 4o 8, 16, 32. 64, 128, 256,
Sicutex additione(in fuperiore ordine) s ad s funt 8.fic(in ine
feriore ordine)ex multiplicatione 8 in 32 fiunc 256, Eft autem
3 exponenis ipfius octonatij , & 5 eft exponens numeri 32 . & 8
eftexponensnumeri256, Itemficutin ordine foperiori, ex
fubtnn@ione 3 de 7.remanent 4.(¢a ininferiori ordine ex diui-
fione 28 per 8,flunt 16,

Sed oftendenda eft ifta fpeculatio per exemplum, .
-3 |=2]-1] of 1] 2| 3} 4| 5] ¢|
| 2] 3| %) o] 2] 4] 8[16]32]64]

FIGURE 3.1. Extracts from Stifel’s book (p. 237 and 250)"

We see that passing from the lower to the upper line transforms products into sums.
For example, instead of multiplying 8 by 32 “in inferiore ordine”, we take the cor-
responding “logarithms” 3 and 5 “in superiore ordine”, compute their sum which
is 8, return from there “in inferiore ordine”, and find the product 8 - 32 = 256.
A more detailed table of this type would be of great use since additions are eas-
ier than multiplications. Such “logarithmic” tables (Adyos is Greek for “word,
relation”, a.ptfp6s means “number”, logarithms are therefore useful relations be-
tween numbers) were first computed by John Napier (1614, 1619), Henry Briggs
(1624), and Jost Biirgi (1620).

(3.1) Definition. A function ¢(x), defined for positive values of x, is called a
logarithmic function if for all x,y > 0

(3.1 Uz -y) = U(x) + L(y).

! Reproduced with permission of Bibl. Publ. Univ. Genéve.
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If we set first y = z /2 and then x = y = 1 in (3.1), we obtain

(3.2) Uz/2) = 0(z) — U(a),

(3.3) (1) = 0.
Applying (3.1) twice tox - y - z = (z - y) - z gives
(3.4) la-y-z)=L(x)+Ly) + (2),

and similarly for products with four or more terms. Next, applying (3.4) to /= -
Y- Yo = x, we obtain £(Y/x) = ;/(z), or in general
m m

(3.5) Laxn)="" lx), where z7n = Vam.

n

Bases. Let a fixed logarithmic function £(z) be given and suppose that there exists
a number a for which ¢(a) = 1. Then, (3.5) becomes

m m
(3.6) lan)=
n
i.e., the logarithmic function is the inverse function for the exponential function

a®. We call this the logarithm to the base a and write
3.7 y=log, if x=a’.

Logarithms to the base 10 (Briggs’ logarithms) are the most suitable for nu-
merical computations, since a shift of the decimal point just adds an integer to
the logarithm. The best base for theoretical work, as we soon shall see, is Euler’s
number e (natural or Naperian or hyperbolic logarithms). These logarithms are
usually denoted by In x or log x.

Euler’s “Golden Rule”. If the logarithms for one base are known, the logarithms
for all other bases are obtained by a simple division. To see this, take the logarithm
to the base b of z = a¥ and use (3.7) and (3.5). This yields

1
(38) logb r=y- logb a = y= loga o= Ogb X '
log, a

Computation of Logarithms

By computing the square root of the base a, then the square root of the square
root, and so on, and by multiplying all these values, we obtain, with the help of
(3.6) and (3.1), the logarithms of many numbers. This is illustrated for a = 10 in
Fig.3.2.
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1.00 s
Numbers Logarithms o *
10.0000 1. 75 o
7.4989 0.875 ' ’,.r
5.6234 0.75
42170 0.625 50
3.1623 0.5
2.3714 0.375
1.7783 0.25 25
1.3335 0.125
1.0000 0.
001 1101/4 1‘01/2‘ ‘103}4 ‘ ‘ ‘ 10

FIGURE 3.2. Successive roots of 10 and their products

There remains a problem: we would prefer to know the logarithms of such num-
bers as 2, 3, 4, ... and not of 4.2170 or 2.3714.

Briggs’ Method. Compute the root of 10, then the root of the root, and continue
doing so 54 times (see facsimile in Fig. 3.3). This gives, with ¢ = 1/2%4,

(3.9a) 10° = 1.00000 00000 00000 12781 91493 2003235 = 1 + a.
Then, compute in the same way the successive roots of 2:

(3.9b) 2¢ = 1.00000 00000 00000 03847 739796558310 = 1 + b.
The value x = log; 2 we are searching for satisfies 2 = 10*. Hence,

(3.9b) ge (3.9a) . (TheorﬁeJm 2.2) )

1+ = (10%)* (1+a) + az

and we obtain

b 3847739796558310
. = ~ = ~ U. 1 12.
(3.10) logyy(2) == o = 12781914932003235 0.3010299956638812

This gives us one value. The amount of work necessary for the whole table is
hardly imaginable.

Interpolation. Interpolation was an important tool for speeding up the compu-
tation of logarithms in ancient times. Say, for example, that four values of log;,
have been computed. We compute the difference scheme

log(44) = 1.6434526765
0.0097598373
log(45) = 1.6532125138 —0.0002145194
0.0095453179 0.0000092277.
log(46) = 1.6627578317 —0.0002052917
0.0093400262
log(47) = 1.6720978579
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D

Nwmeri continne Medyy inser Denarsi ¢ Puitaté.
1o

51623,77660,16817,93119,98893,54

17782,79410,03892,28011,07364,13

13335,21432,16332,40256,65389,3c8

11547,81934 68945,81796,61918,213

10746,07828,32131,74972,13817,6538

E

Logarithmi ratiownales,
1,000
550
0,25
0,25
0,062%
0,03115

10366,32918,43769,79972:90627,3121
10181,51721,71818,18414,73723,8144
10090,35044,84144:74377,59005:1391
10045507 364,25 446,35 156,64670,611 3
10022,51748.29291,29154,65611,7367
10011,24941,39937,93758,81395,51805
1000;,62312,602120,85366,18495,91839
10002,81116,78778,01323,99249,643 35
10001,40548,51694,72581,62767.3171¢
10060,70271,78941,14355,38811,70845
10800,35135,27746,18566,08581,37077
10000,17567,48442,26738,33846,78274
10000,08783,70363,46111,46574,07431
10000.04391,84217,31672,36281,88083
10000,02195,91867,55542.02317,07719__

0,01562,5

o,c0781,25

0,00390,625

0,06194,3125
0,00097,45625
0,00048,82812,5
0,00014,41406,2§
©,00012,20703, 125
0,00006,10351,563¢
0,00003,05175,78125
0,00001,52587,89052,¢
°)°°°°°1762931945; l,ls
'0,00000,38146,9;-;651525
©,00000,19073,48632,812¢
2,00000,09536,74316,4061¢

10000,01997,95873,50£04,09754,72940

10000,00548,97921 68211,14526,60250,4
10000,00274,48957,07382,95091,25449,9
10000;,00137,24477,79510,83283,60572,5
10200,00068,63238,56210,25737,18748,2

©,00000,04768,37158,20313,5
©,00000,02384,18579,10156,24
0,00000,01192,09289,55078,125
0:00000,00596,04644,775 39,0625
[2,00000,00298,02321,38760,53 125

10000,00034,31419,22218,83912,75020,8
10000,00017,15559,59637,84719,93879,1
0000,00008,57779,7945 1,0305 1,17588,8
0000,00004,18889,8963 3,54198,42901,3
0000,00002, 14444,94793,77762:4 397054 _
0000,00001,07222,47391,54050,76 926,8
0000,00000,5 361 1,23693,13317,14831,4
0000,05000,26 805,61846,70731,51508,7
0000,00000, 340:,8;9:3,;6383,99177,7
£006,00000,0 6 701,45461,60 946,555 19,6

1 — ——y.

9,00000,00249,01161,19384,76562,5
,90000,00074,50580,59693,38281,2¢
0,09000,00037,35210,29846,19140,625
,00000,00018,62 645,1492 3,09570,312¢
0190000,00009,3132 hﬂiﬂﬂ;ﬂs 5515625
:,ggg.?g,m4,6536|;;87%u,;78;93,5788 11,5
°s ywesas, 12830, 666,12 6,
5,00000,00001,1 6415.5'53?%}3%#4:: .
0,00000,00000,58207,66091 ,74674,07216, 5625

0000,00000,03 359,709230,79 91 1,91730,0
0000,00000,016 75,35115,39815,61857,6
0009,00000,00837,67557,69872,72426,9
0000,00000,00418,83773,84927,59087,9
0000,60000,00205,41889,42461,60262,5

9400000,00000,29103,83045,673 37,03 613,281 28
0,00000,00000,145 51,915 £4,83668;5 1806,64062,5
8,00000,00000,072 75,9576 1,4Y834,2§903,3 203 1,2 §
0,00000,00000,03637,97880,70917,12951,66015,615
2,00000,00000,01818,98940,3 5458,56475,83007,812¢
9,00000,00000,00909,49479,17739,28237,91503,9061 ¢

0000,00000,00104,70944,712 30,253 11,0
0000,00600,00052,3§472,3 ;5:4,989;0,4
0000,00000,0 0026,17736,17807,46048,9
0c00,00000,00013,03868,0890%,72167,3
0000,00000,00006,5 44 34,0445 1,85869,75

0,00000,00000,00454,7471 5,08‘864,641 18,9575 1,95312
0,00000,00000,00227,37367,54432,3 3059.47375’97555
0,00000,00000,00113,68683,77216,16029,7 393 7,98828
n,coooo,ooooo,ooo,-s,s-q.;41,88693,‘;30.4’35963’99 414

2000,00000,0000 3,372 17,022 15,92881,317
2000,00000,00001,63608,5IT1 :,964.17,13;
2080,00000,00000,81804,255§6,48210,29¢
7000,00000,00000,40902,12778,24 104,311
%000,00000,00000,2045 1,063 89,1305 1,046

9,00000,00000,0002 8,42 170,94304,04007,43434,49707
0,00000,00000,00014,21085,47142,0200 3:71742,24853
[0s00000,00000,000 07,10§42,73 576,01001,85871, 12416
9,00000,00000,00003,55271,36788,00500,9293 5,621 3
©,00000,00000,00001,776 35,68394,00350,46467,73i06
anoooo’mxomtssg"7a84197:°° 125,2313 !,890,' 3

7000,00000,00000,10225,53194,56025,921 L

»000,00069,00000,05 112,76§97,23012,047M
1000,00000,00000,01556,38298,64006,470 N
}000,00000,00009,01273,19149,32003,335 P|

9,00000,00000,00000,444 08, 92098,50062,61616,945 26
0,00000,00000,00000:2 2204,46049,2503 1,30808,47263

,00000,00000,00000,11103,23024,625 15,65 404,3363 1
0,00000,00000,00000,05 §§ 1,115 12,3 1257, 83703, 1181 3

FIGURE 3.3. Briggs’ computation of successive roots of 10, Briggs (1624)*

% Fig.3.3 is reproduced with permission of Bibl. Publ. Univ. Genéve.
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This gives the interpolation polynomial (Theorem 1.1, shifted)

p(z) =1.6434526765 + (z — 44) (0.0097598373

(3.11) x — 45 T — 46
(—0.0002145194+ s 0.0000092277)),

for which some selected values with errors are given in Table 3.1. The results are
quite good despite the ease of computations. By adding additional points, one can
increase the precision whenever this is desired.

TABLE3.1. Errors of interpolation polynomial

T p(x) log,o(x) err
4425 1.645913252 1.645913275 2.34-107°
4450 1.648359987 1.648360011 2.42-1078
44775 1.650793026 1.650793040 1.35-107%

4525 1.655618594 1.655618584 —1.05-107°
4550 1.658011411 1.658011397 —1.43.107°
4575 1.660391109 1.660391098 —1.04-107°

46.25 1.665111724 1.665111737 1.32-107®
46.50 1.667452930 1.667452953 2.34-107*°
4675 1.669781593 1.669781615 2.24-107*

Before going on with the calculus of logarithms, we make a little excursion into
geometry.

Computation of Areas

The determination of areas and volumes exercised the curiosity of mathematicians
since Greek antiquity. Two of the greatest achievements of Archimedes (283-212
B.C.) were the computation of the area of the parabola and of the circle. The early
17th century then saw the computation of areas under the curve y = x® with either
integer or arbitrary values of a (Bonaventura Cavalieri, Roberval, Fermat).

Problem. Given a, find the area below the curve y = z® between the bounds
r=0andz = B.
Solution (Fermat 1636). We choose # < 1 but close to 1 and consider the rect-
angles formed by the geometric progression B, 6B, 0B, 6B, ... (Fig.3.4b), of
height B¢, 02 B*, §?*B%, 3B, ... . Then, the area can be approximated by the
geometrical series

1st Rect. + 2nd Rect. + 3rd Rect. + ...
= B(1—-60)B* + B(6 — 6*)6°B* + B(#* — 6*)0**B* + . ..

(3.12) 1-6
=BT (1-0) (146t 46>+ ) = B*! .
- ~ - 1 - Qa-i-
geometrical series
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d 0B
eZa Ba
0’B
6B

FIGURE 3.4a. Fermat 1601-1665° FIGURE 3.4b. Fermat’s calculation of the
area below 2

if a4+ 1 > 0 or, equivalently,a > —1 (see Eq.(2.12)). Let § = 1 — ¢ with € small.
Then, 1 — 60 =¢,0°"1 =1 — (a+ 1)e + ... by Theorem 2.2. Consequently,
1-4 € 1
~ = fi 0.
1—6¢tL  (a+1) a+1 o e

The sum of the rectangles (3.12) approximates (for a > —1) the area S from
above. If we replace the heights of the rectangles by §¢B?, §?*B¢, ... we get an
approximation of S from below. In this situation, the value (3.12) is just multiplied
by 6%, which, for § — 1, tends to 1. Therefore, both approximations tend to the
same value and we get the following result.

(3.2) Theorem (Fermat 1636). The area below the curve y = x® and bounded by
x = 0and x = B is given by

Ba+1

= ) > —1. O
a+1 if a

Area of the Hyperbola and Natural Logarithms

In the month of September 1668, Mercator published his Logarithmotech-
nia, which contains an example of this method (i.e., of infinite series) in a
single case, namely the quadrature of the hyperbola.
(Letter of Collins, July 26, 1672)
Fermat’s method does not apply to a hyperbola y = 1/x. In fact, the geometric
sequence of abscissae B, 0B, 62B, #3B,... becomes, for the areas, the sum
(1—-6)(1+1+1+...), whose partial sums form an arithmetic progression.
This motivates the following discovery (made by Gregory of St. Vincent in 1647
and Alfons Anton de Sarasa in 1649; see Kline 1972, p. 354): the area below the
hyperbola y = 1/x is a logarithm (see Fig. 3.5).

3 Fermat’s portrait is reproduced with permission of Bibl. Math. Univ. Gengve.
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=1/x same areas

i

1 2 3 4 5 6
FIGURE3.5. The area of the hyperbola as a logarithm

We observe (by contracting the x-coordinates and stretching the y-coordi-
nates) that, e.g., Area (3 — 6) = Area (1 — 2). Therefore,

Area (1 — 3) + Area (1 — 2) = Area (1 — 6).
This means that the function In(a) = Area (1 — a) satisfies the identity
In(a) + In(b) =1In(a - b)

and is therefore a logarithm (the “natural” logarithm).

a
1 L
+x
+x LN AL
5 —d*4 In(1 + a)
areas L —a2
-3
_x [
0 | | | | | | | | | J

0 a
FIGURE 3.6. Term-by-term integration of the geometrical series

Mercator’s Series. After a shift of the origin by 1 we have that In(1+a) is the area
below 1/(1 + x) between 0 and a. We substitute 1/(1 + z) = 1 —z+a?—a3+. ..
(formula (2.12)) and insert for the areas below 1,z, 22, ... between 0 and a the
expressions of Theorem 3.2:

CL2 CL3 CL4
a

) 2 ) 3 ) 4 )
(see Fig. 3.6). In this way, we find, after replacing a by = (N. Mercator 1668),

2 3 4 5

x
1 In(1 = — — s
(3.13) n(l+z)==z 9 + 3 4 + 5 +

The convergence of this series for various values of x is shown in Fig. 3.7. With
the value x = 1 this series becomes
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1 1 1
. In2=1- — — -
(3.13a) n 2+3 4+ + )

a beautiful formula of limited practical use (see Table 3.1). For still larger values
of z the series does not converge at all.

3
1= N =Y/ . In(1+ x)
N =2
| N |
-1 1
4
1+
N =1
2 .3 4 ~ N
FIGURE3.7. Convergence of x — % + % — % +... £ % toln(l +x)

Gregory’s Series. Replace x in (3.13) by —x:

z2 23 ozt o

2 3 4 5
and then subtract this equation from (3.13). This gives (Gregory 1668)

(3.14) In(1—2)=-2z-—

3.15 m it 2( Lttt et )
G.15) 12 377579

Examples. Putting 2 = 1/2in (3.14) and = = 1/3 in (3.15) we obtain the follow-
ing two series for In 2:
1 1 1

1
3.14 In2 =
( a) n 2-1—2.224—3.234—4.24-1-

11 1 1
(3.15a) 1n2:2(3+3.33+5'35+7'37+...>.
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TABLE 3.2. Convergence of the series for In2

(3.13a)  (3.14a) (3.15a)
1.000  0.500 0.667

0.500  0.625 0.6914

0.833  0.667 0.69300

0.583  0.6823 0.693135

0.783  0.6885 0.6931460

0.617  0.6911 0.69314707

0.760  0.69226  0.693147170

0.635  0.69275  0.6931471795
0.746  0.69297  0.693147180559
0.646  0.693065 0.6931471805498
0.737  0.693109 0.6931471805589
0.653  0.693130 0.69314718055984

———
N—OWVWEAAUNAWN— 3

The performance of these three series (3.13a), (3.14a), (3.15a) for In 2 are com-
pared in Table 3.2. It is obvious which one is best.

Computation of In p for Primes > 3. Because of (3.1), it is sufficient to compute
the logarithms of the prime numbers. The logarithms of composite integers and
rational numbers are then obtained by addition and subtraction. The idea is to
divide p by a number close to it for which the logarithm is already known. Then,
we can apply series (3.15) with a small value of x and obtain rapid convergence.
For example, for p = 3 we write

3 3 1+ 1
— .9 — —
392 9Ty, T T,
so that
1 1
(3.16) 1n3:ln2+ln2:ln1+?+ln2.

5

Another possibility is 3 = (3/4) - 4, which leads to

1 1
(3.17) 1n3:21n2—1n1+j

7

Still better is the use of the geometric mean of the above expressions:

1. 1+ 2

3\/9~\/8 = ln3:31n2+ m T

8 2 21— |
2 1 1 !
(3.18) 5—\/ 5~\/24 = ln5:31n2+ In3+ _In +419
24 2 2 21—}
49 1 1 1+,
7—\/48-\/48 = W7=2W2+4 W3+ W 7,
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and so on. The larger p is, the better the series (3.15) converges. The first values
obtained in this way are

In(1) = 0.000000000000000000000000000000
In(2) = 0.693147180559945309417232121458
In(3) = 1.098612288668109691395245236923
In(4) = 1.386294361119890618834464242916
In(5) = 1.609437912434100374600759333226
In(6) = 1.7917594692280550008124 77358381
In(7) = 1.945910149055313305105352743443
In(8) = 2.079441541679835928251696364375
1 (9) = 2.197224577336219382790490473845
n(10) = 2.302585092994045684017991454684 .

The improvement of this calculation (compared to that of Briggs), achieved in
only a few decades (from 1620 to 1670), is obviously spectacular. It demonstrates
once again the enormous progress made in mathematics after the appearance of
Descartes’ Geometry.

Connection with Euler’s Number. The connection between the natural logarithm
and e is established in the following theorem.
(3.3) Theorem. The natural logarithm In x is the logarithm to base e.

Proof. We apply the natural logarithm to the formula of Theorem 2.3. This gives,
using (3.5) and (3.13),

x .’L'2

ln(l—l—m)N N1(1+x> N ( + )
N Ty N 2N? s
so that Ine* = z. O

We thus obtain a geometric interpretation of e: it is the number for which the
area under the hyperbola y = 1/ between 1 and e is equal to 1 (see Fig. 3.8).

L R
1 2 e=2.71828 ...

(<=}
T

FIGURE 3.8. Geometric meaning of e
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A4
4

FIGURE 3.9a. The functions y = 2 FIGURE 3.9b. The functions y = a”

Arbitrary Powers. Logarithms allow us to compute (and define) abritrary powers
as follows (Joh. Bernoulli 1697, Principia Calculi Exponentialium, Opera, vol.1,
p.179): we use a = ™ and get

a =

(3.19) b (elna)b _ oblna

Graphs of these functions, considered either as a function of a or as a function of
b, are sketched in Figs. 3.9a and 3.9b.

Exercises

3.1 (Newton 1671, Method of Fluxions, Euler 1748, Introductio, §123). Show
that 2 = (4/3) - (3/2) yields

1+ 141 1+
ln2=ln( ?) +ln( I), ln3:ln( ?) +1n2,

1-— 1-— 1-—

5 7 5

which allows the simultaneous calculation of In2 and In 3 by two rapidly
convergent series (3.15).

3.2 (Newton 1669, “Inventio Basis ex Area data”). Suppose that the area z under
the hyperbola is given by the formula

1.4, 1.5
4T+ 5T

.. 1,2 ,1.3
Z=x 2T +3x

Find a series for x = e* — 1 of the form

x:z+a222+a323+a4z4+...

and (re)discover the series for the exponential function.
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1.4 Trigonometric Functions

Sybil: It goes back to the dawn of civilization.
(J.Cleese & C.Booth 1979, Fawlty Towers, The Psychiatrists)

Measuring Angles. One of the oldest interests in geometry is the measurement
of angles, mainly for astronomical purposes. The Babylonians divided the circle
into 360°, probably because this was the approximate number of days in the year.
Half the circle would then be 180°, the right angle 90°, and the equilateral triangle
has angles of 60° (see Fig. 4.1a). Ptolemy4, in his Almagest, A.D. 150, refined the
measurements by including the next digits in the number system in base 60, then in
vogue, partes minutae primae (first small subdivisions) and partes minutae secon-
dae (second small subdivisions). These became our “minutes” and “seconds”. But
360° is not the only possibility. Many other units can be used; e.g., in some tech-
nical applications we have grades, where the right angle has 100 grades. However,
as for logarithms, there is a natural measure, based on the arc length of a circle
of radius 1, the radian (see Fig.4.1b). Here, the arc length of half of the circle is,
with the precision computed by Th. F. de Lagny in 1719 and reproduced by Euler
(with an error in the 113th decimal place, which is corrected here),

3.14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
821480865132823066470938446 . . . .

For this somewhat unwieldy expression W.Jones (1706, p.243) introduced the
abbreviation 7 (“periphery”). Then the angle of 54° drawn in Fig. 4.1 measures
547 /180 = 0.9425 radians.

100 90 80
11 7
0! % 60

12
130 r 50
140 [ 40
150 i 0
160 i 0
170 r 10
Lo .
180 =0 t 1
-1 0 [ 0 10
FIGURE4.1a. Babylonian degrees FIGURE 4.1b. Angle measured by arc length

Definition of Trigonometric Functions. How can one measure an angle with a
rigid ruler? Well, we can only measure the chord (see Fig. 4.2), and then, with the
help of tables, try to find the angle, or vice versa. Such tables have their origin
in Greek antiquity (Hipparchus 150 B.C. (lost) and Ptolemy A.D. 150). The sine
function, which is connected to the chord function by sina = (1/2)chord (2a),
has its origin in Indian (Brahmagupta around 630) and medieval European science

Y= ToMepaios, Ptolemeus, Ptolemius, Ptolemée, Tolomeo, I[TTomemeiy, . . . .
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(Regiomontanus 1464). This function, originally named sinus rectus (i.e., vertical
sine), is much better adapted to the computation of triangles than the chord func-
tion.

_——*

| tan o

| chord o

| 1

aKed

0 1 0 1
FIGURE4.2. The Chord Function of FIGURE4.3. Definition of sin, cos, tan,
Ptolemy and cot

(4.1) Definition. Consider a right-angled triangle disposed in a circle of radius
1 as shown in Fig. 4.3. Then, the length of the leg opposite angle o is denoted by
sin «, that of the adjacent leg by cos a. Their quotients, which are the lengths of
the vertical and horizontal tangents to the circle, are

tana = and cota =

These definitions apply immediately to an arbitrary right-angled triangle with
hypotenuse ¢ and other sides a, b (with a opposite angle a):

4.1) a = c-sina, b=c-cosa, a=>b-tana.

While in geometry angles are traditionally denoted by lowercase Greek let-
ters, as soon as we pass to radians and to the consideration of functions of a real
variable (see the plots in Fig. 4.4), we prefer lowercase Latin letters (e.g., x) for
the argument. Many formulas can be deduced from these figures, such as

sin0 =0, cos0=1, sinn/2=1, cosw/2=0, sinm =0, cosm = —1,
(4.2a) sin(—x) = —sinx, cos(—x) = cosx
(4.2b) sin(z + 7) = —sinz, cos(x +m) = —cosx
(4.2¢c) sin(z + 7/2) = cos x, cos(z +7/2) = —sinzx
(4.2d) sin?z + cos®z = 1.

The functions sin x and cos x are periodic with period 27, tan x is periodic with
period .
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iy /
RN AR

FIGURE4.4. The trigonometric functions sin x, cos x, and tan

Fig. 4.5 reproduces a drawing of the sine curve on page 17 of A.Diirer’s
Underweysung der Messung (1525). Diirer calls this curve “eynn schraufen lini”
and claims it is useful for stonemasons who construct circular staircases.
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FIGURE4.5. A sine curve in Diirer (1525)

Curious geometrical patterns arise when sin n is plotted for integer values of
n only (Fig. 4.6, see Strang 1991, Richert 1992).

FIGURE4.6. Values of sin 1, sin 2, sin 3, . . . with n in logarithmic scale

2 Reproduced with permission of Dr. Alfons Uhl Verlag, Nérdlingen.



1.4 Trigonometric Functions 43

Basic Relations and Consequences

These equations have a venerable age. Already Ptolemy deduces . . .
(L. Vietoris, J. reine ang. Math. vol. 186 (1949), p. 1)

Let o and (3 be two angles with arcs = and y, respectively.
(4.2) Theorem (Ptolemy A.D. 150, Regiomontanus 1464).

(4.3) sin(z + y) = sinz cosy + coszsiny

“.4) cos(z +y) = cosx cosy — sinxsiny.

Proof. These relations can be seen directly for 0 < z,y < 7/2 by inspecting the
three right-angled triangles in Fig. 4.7. All other configurations can be reduced to
this interval with the use of formulas (4.2b) and (4.2¢). a

I~ sinBcos a

0 "\ cos B cos o 1
FIGURE4.7. Proof of formulas (4.3) and (4.4)

By dividing the two equations of Theorem 4.2, we obtain

sin x cos y + cos z sin tanx + tan
4.5)  tan(z+y) = sl v
COSZT COSY — SINT SNy 1 —tanztany

Further Formulas. Replacing y by —y in (4.3) and (4.4) yields

4.3) sin(z — y) = sinx cosy — coszsiny

(4.4" cos(z — y) = cosxcosy + sinzsiny.
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If we add relations (4.3) and (4.3’) we obtain sin(z + y) + sin(z —y) = 2 -
sin z cos y. Introducing new variables for z 4+ y and = — y, namely

or equivalently
T—y=v y=(u—v)/2,

we obtain the first of the following three formulas:

4.6) sinu+sinv:2~sin<u42—v> -cos(u;U>
“@.7 cosu+cosv:2~cos(u—;v) -cos(u;v)
4.8) cosvfcosu:Q'sinCL;rU) ~sin(ugv).

The others are obtained similarly.

Putting x = y in (4.3) and (4.4) gives

(4.9) sin(2z) = 2sinxz cosx

(4.10) cos(2x) = cos? x — sin®z = 1 — 2sin’z = 2cos’ x — 1.

If we replace = by 2/2 in (4.10) we obtain

“4.11) sin(g;) :i\/l—gosx’ COS(

Some Values for sin and cos. The proportions of
the equilateral triangle and of the regular square
give sin and cos for the angles of 30°, 60°, and of
45°. For the regular pentagon see the figure (Hip-
pasus 450 B.C.): the triangles ACE and AEF be-
ing similar, we have 1 + 1/2 = x, which im-
plies that z = (1 + /5)/2, i.e., the point F
divides the diagonal CA in the golden section
(see Euclid, 13th Element, §8); thus we find that
sin 18° = 1/(2x). A list of the values obtained is
given in Table 4.1. For a complete list of sin « for
a = 3°6°9° 12°... see Lambert (1770c).

De Moivre’s Formulas. By replacing y by nx in (4.3) and (4.4) we get the recur-
rence relations

(4.12) sin(n + 1) = sin z cos nz + cos x sin nx,

(4.13) cos(n + 1)x = cosx cosnz — sinx sinnz.

Starting from (4.9) and (4.10) and applying (4.12) and (4.13) repeatedly, we find



1.4 Trigonometric Functions

TABLEA4.1. Particular values for sin, cos, and tan

a radians sin o cos o tan o
0° 0 0 1 0
15°  7/12 V2(V3-1) V2(V3+1) 23
° V5—1 1. /545 (3v5-5)/5+4/5
18 m/10 4 2 \/ 2 10v2
o 1 V3 V3
30 /6 ! / /
o - 5—/5(v5—1
36 /5 %\/5 /o V51 v 2\/<2 )
o V2 V2
45 /4 / / 1
o V3 1
60 /3 A ; V3
75°  hr/12 VA(V3+1)  YA(V3-1) 2+/3
90° /2 1 0 %0
cos(3x) = cos® x — 3sin® z cosx
sin(3z) = 3sin cos? —sin®z
cos(4x) = cos’ x — 6sin® zcos® x +sin 2
sin(4x) = 4sinx cos® x — 4sin® zcosz
cos(5x) = cos® x — 10sin® z cos® x + 5sin® 2 cos
sin(5z) = 5sina cos — 10sin® z cos® x + sin®

45

Here we discover the appearance of Pascal’s triangle; the computation is precisely
the same as in Sect.1.2 (Theorem 2.1). Thus, we are able to state the following

general formulas (found by de Moivre 1730, see Euler 1748, Introductio §133):

-1
cosny = cos" x — n(111 5 ) sin x cos" 2z
+ n(n—1)(n—2)(n—3) sind 2 cos™ 4 —
1-2-3-4
(4.14) ( 1) %)
sinnz =nsinzcos” 'z — mn 1.9 T; sin® z cos™ 3z
+ n(n=1)(n —2)(n =3)(n - 4) sin® zcos" P x — ...

1-2.3-4-5
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Series Expansions

Sit arcus z infinite parvus; erit Sinz = zetcosz = 1;...
(Euler 1748, Introductio, §134)
While all the above formulas (4.5) through (4.14) have been derived only with the
use of (4.3) and (4.4) together with (4.2a), we now need a new basic hypothesis:
when x tends to zero, the “sinus rectus” merges with the arc. Since we are mea-
suring the angle in radians, it follows that the closer x is to zero, the better sin x is
approximated by x. We write this as

(4.15)

sinx ~ x forxz — 0.

We now apply the same idea as in the proof of Egs.(2.18) and (2.19): in de
Moivre’s formulas (4.14), we set z = y/N, n = N, where y is a fixed value,
while N tends to infinity and z tends to zero. Then, because of (4.15), we replace
sinx by z and cosz by 1. Also, since N — oo, all terms (1 — k/N) become
1. This then leads to the formulas, in which we again write = for the variable y
(Newton 1669, Leibniz 1691, Jac. Bernoulli 1702),

x? x? x0 a8
(4.16) cosx:1—2!+4!—6!+8!—...
. x3 x® x’ x
sinx = x — + - + — ...

! ! ! !
4.17) b8 T 9l

Newton’s derivation of these series is indicated in Exercise 4.1; the above proof is
due to Jac. Bernoulli as well as Euler’s Introductio, §134.

Remark. Some care is necessary when replacing cos(y/N) by 1 for large values
of N, because this expression is raised to the Nth power. For example, 1 + y/N
tends to 1 for N — oo, but (1 + y/N)¥ does not (see Theorem 2.3). Rescue
comes from the fact that cos(y/N) tends to 1 faster than 1 + y/N. Indeed, we

h
- N 2 N/2 1y?
cos” (y/N) = (1—Sin (y/N)) ~1-— o N

by (4.2d), Theorem 2.2, and (4.15).

—1

The convergence of the series (4.16) and (4.17) is illustrated in Fig. 4.8. We
apparently have convergence for all z (see Sect. II1.7). It can be observed (the com-
putations were intentionally done in single precision) that problems of numerical
precision due to rounding errors arise beyond x = 15.

The Series for tan x. We put

sinx 3 5 7
Yy =tanx = =a1x +azx” +asx” +arx’ 4+ ... .
cosx
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FIGURE4.8. Series sinz = 2 — ©.
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[l‘
+5 .andcosx=1— 2' 4!

To find ay, as, as, . . . we multiply this formula by cos = and use the known series
(4.16) and (4.17)

x> ad 3 5 2 ot
T — 6 + 120 — ... = (aliragx + asx Jr...)(lf 9 + 94 7>

Comparing the coefficients of z, 23, and 2° we get
which yield

a =1, a3:71+1:1, a5:171+1:2

6 2 3 120 24 6 15

If we continue, we find the series
(4.18)

tenz — x4 23 N 22° N 1727 N 62 29 N 1382zt N 21844 213
B 3715 315 2835 ' 155925 | 6081075

No general rule is visible. However, there is one, based on the Bernoulli numbers
(1.29) (see Exercise 10.2 of Sect. I1.10).

Ancient Computations of Tables. From the values of Table 4.1, which are known
since antiquity, we can find with the help of (4.3") and (4.4") the values of sin 3°,
cos 3°, or, as then usual, chord 6°. The half-angle formulas (4.11) then allow the
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computation of chord 3°, chord 1 é o, chord Zo, but not chord 1°. Ptolemy observed
that chord Zo is approximately half of chord 1 ; °. Therefore one might guess that

chord1° = 3 - chord 1, °, which gives, in base 60 (see Aaboe 1964, p. 121),
(4.19)

chord1° = 0;1,2,50 (correct value 0;1,2,49,51,48,0,25,27,22,...).

Then, the values of sin and cos for all the angles 2°, 3°, 4°, etc. are obtained with
the help of (4.14). Around 1464, Regiomontanus computed a table (“SEQVITVR
NVNC EIVSDEM IOANNIS Regiomontani tabula sinuum, per singula minuta
extensa . ..”) giving the sine of all angles at intervals of 1 minute, with five deci-

mals. See in Fig. 4.9 a table of tan x written in his hand (usually with four correct
decimals).
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FIGURE 4.9. Autographic table of tan o by Regiomontanus (see Kaunzner 1980)°
A very precise computation of sin 1° was made by Al-Kashi (Samarkand in
1429) by solving numerically the equation (see Eq. (1.9))
(4.20) —423 4+ 3z = sin 3°

with the help of an iterative method and giving the solution in base 60 (“We ex-
tracted it by inspired strength from the Eternal Presence . ..”, see A. Aaboe 1954)

sin1° =0;1,2,49,43,11,14,44,16,19,16.. .. .
Here is the true value in base 60 calculated by a modern computer,

sin1° = 0;1,2,49, 43, 11, 14, 44, 16, 26, 18, 28, 49, 20, 26, 50,41, . . . .

3 Reproduced with permission of Niirnberger Stadtbibliothek, Cent V, 63, f. 30T
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Once again, we see the enormous progress of the series method (4.17), which
gives sin 1° = sin(7/180) = sin(0.0174532925 . . .) with only three terms as

sin 1° ~ 0.0174532925199 — 0.0000008860962 + 0.000000000013496
~ 0.0174524064373 .

Inverse Trigonometric Functions

Trigonometric functions define sinz, cosz, tanx, for a given arc z. Inverse
trigonometric functions define the arc x as a function of sin «, cos z, or tan x.

(4.3) Definition. Consider a right-angled triangle with hypotenuse 1. If x de-
notes the length of the leg opposite the angle, arcsinx is the length of the
arc (see Fig.4.10a). The values arccosx and arctanx are defined analogously
(Figs.4.10b and 4.10c).

arcsin x arccos x 1
X arctan x

1 0o 1 0 1

FIGURE4.10. Definition of arcsin x, arccos x, and arctan x

Because of the periodicity of the trigonometric functions, the inverse trigono-
metric functions are multivalued. The so-called principal branches satisfy the fol-
lowing inequalities:

y =arcsinx <& 1z =siny for —1<z<1, —7/2<y<m7/2,
Y = arccosr <& T = CosYy for —1<z<1,0<y<m,
y =arctanr <& 1z =tany for —co <z < o0, —w/2 <y < 7/2.

Series for arctan x.

If one really exposes something, it is better to give no proof, or such a proof
which doesn’t let them discover our tricks (Es ist aber guth, dass wann man
etwas wiirklich exhibiret, ma entweder keine demonstration gebe, oder eine
solche, dadurch sie uns nicht hinter die schliche kommen.)

(Letter of Leibniz ; quoted from Euler’s Opera Omnia, vol. 27, p. xxvii)

The series for arctan x was discovered by Gregory in 1671. In 1674, Leibniz re-
discovered it and published the formula in 1682 in the Acta Eruditorum, enthusing
about the kindness of the Lord but without disclosing the path that led him to the
result (see citation). We therefore search inspiration in Newton’s treatment of the
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series for arcsin x in the manuscript De Analysi, written 1669, but published only
40 years later (see formula (4.25) below). One can either compute the arc length
or the area of the corresponding circular sector. The relation between the two is
known since Archimedes (“Proposition 17 of On the measurement of the circle),
and is also displayed by Kepler in Fig. 4.12.

B X A Ax

_— \/ 1
y
B Au

a) b)

FIGURE4.11. The derivation of the series for y = arctan x

e

FIGURE4.12. The area of the circle seen by Kepler 1615*

Let z, a given value, be the tangent of an angle whose arc y = arctan x we want
to determine (see Fig.4.11a). Because of Pythagoras’ Theorem, we have

4.21) OA =/1+ 22
By Thales’ Theorem, applied to the two larger similar triangles shaded in grey, we
have
1 A
e and also Ay = o
V14 22 V1+ a2

By orthogonal angles, the small grey triangle is also similar to the two other ones,
and we have consequently

(4.22) OB

Au  (422) Az

4.23 Ay = = .
( ) Y V14 22 1+ 22

4 Reproduced with permission of Bibl. Publ. Univ. Genéve.
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This means, that the infinitesimal arc length Ay is equal to the shaded area in
Fig.4.11b. The wanted arc y is therefore equal to the total area between 0 and x

below
1 (2&2)

14 22 1—a? 4ot —aS 428 —2194 ...,
i.e., by Theorem 3.2 (Fermat),
3 5 7 9 11
(4.24) y:arctanx:xfx +I ! +I ! 4.,

which is valid for |z| < 1.

Series for arcsin x.
A friend that hath a very excellent genius to those things, brought me the
other day some papers, wherein he hath sett downe methods of calculating the
dimensions of magnitudes like that of M" Mercator concerning the hyperbola,
but very generall. . . His name is M" Newton; a fellow of our College, & very
young . .. but of an extraordinary genius & proficiency in these things.
(Letter of Barrow to Collins 1669, quoted from Westfall 1980, p. 202)
After the publication of Mercator’s book towards the end of 1668, in which the
series for In(1 + x) was published, Newton hastened to show his manuscript De
Analysi (Newton 1669) to some of his friends, but did not allow its publication.
It was finally inserted as the first chapter of Analysis per quantitatum (Newton
1711) published by W. Jones. Newton had not only found Mercator’s series much
earlier, but was the first to discover the series

. 123 1325 1.-3-527
(4.25) arcsmx—x—i—23—}—2.454—2'4.67—1—...

and also the series for sin z and cos x (see Exercise 4.1). Newton’s proof for (4.25)
was as follows.

Proof. We suppose x given and want to compute the arc y for which z = siny
(see Fig.4.13). If x increases by Az, then y increases by Ay, which is

Az

4.26 Ay ~
(4.26) YR g

because the two shaded triangles in Fig.4.13 are similar. This quantity is the
area of a rectangle of width Az and height 1/v/1 — 22. Therefore, similar as in
Fig. 4.11c, the total arc length y is equal to the area below the function 1//1 — 2.2
between 0 and z. Expanding this function by the Binomial Theorem 2.2 gives with
a=-1/2

1 1 1-3 4, 1-3-5 4

=1+ z°+

427
427 V1= 22 2 2.4% To.4.6"

and we obtain formula (4.25), once again, by replacing the functions 1, 2, 2%, . ..

by their areas (Theorem 3.2) =, z3/3, 2°/5, . . . . O
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=

FIGURE4.13. Proof of (4.25) for y = arcsin z; illustration from Newton (1669)°

T  AKB C E

Computation of Pi

... you will not deny that you have discovered a very remarkable property
of the circle, which will forever be famous among geometers.
(Letter of Huygens to Leibniz, November 7, 1674)

Theref. the Diameter is to the Periphery, as 1,000,&c. to 3.141592653.589
7932384.6264338327.9502884197.1693993751.0582097494.4592307816
.4062862089.9862803482.5342117067.9+, True to above a hundred Places;
as Computed by the Accurate and Ready Pen of the Truly Ingenious Mr.
John Machin: Purely as an Instance of the Vast advantage Arithmetical
Calculations receive from the Modern Analysis, in a Subject that has bin
of so Engaging a Nature, as to have employ’d the Minds of the most Em-
inent Mathematicians, in all Ages, to the Consideration of it. ... But the
Method of Series (as improv’d by Mr. Newton, and Mr. Halley) performs
this with great Facility, when compared with the Intricate and Prolix Ways
of Archimedes, Vieta, Van Ceulen, Metius, Snellius, Lansbergius, &c.
(W. Jones 1706)
Archimedes (283-212 B.C.) obtained, by calculating the perimeters of the regular
polygons of n = 6,12,24,48,96 sides and by repeated use of formulas (4.11),

the estimate

10 1
4.28) 371<7r<37.

All attempts made in the Middle Ages to improve on this value were fruitless. Fi-
nally, by applying Archimedes’ method, Adrien van Roomen (in 1580) succeeded
in obtaining 20 decimals after years of calculation. Ludolph van Ceulen (=K6ln)
(in 1596, 1616) computed 35 decimals, which for a long time decorated Ludolph’s
tombstone in St. Peter’s Cathedral in Leiden (Holland). In order to reach this pre-
cision, Ludolph had to continue the calculations up to n = 6 - 260,

Leibniz’s Series. From Table 4.1 we know that tan(7/4) = 1 and consequently
arctan(1l) = m/4. Putting = 1 in (4.24), we find the famous series of Leibniz
(1682)

™
42 =1- - - —
(4.29) A stg ot + +

> The right-hand picture of Fig. 4.13 is printed with permission of Bibl. Univ. Genéve.
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Although we agree with Leibniz about the undeniable beauty of his formula (“The
Lord loves odd numbers”, see Fig. 4.14), we also see that it is totally inefficient for
practical computations, since for 50 decimals we would have to add 10°° terms
with “labor fere in aeternum” (Euler 1737).

Numero DELLS

1

1mparc gaudel

FIGURE 4.14. Leibniz’s illustration for series (4.29)°

Much more efficient is the use of tan(r/6) = 1//3 (see Table 4.1), which
leads to the formula

(4.30) = 2\/3(1 L ! ! ! )

“3.375.32 7.3 9.3
with which, by adding 210 terms “exhibitus incredibili labore”, Th. F. de Lagny
computed in 1719 the value displayed at the beginning of this section. The series

(4.25) for arcsin x can also be used; for example, because of sin(7/6) = 1/2, we
have

@31 7r_1+1 1 +1-3 1 +1-3-5 1 n
' 6 2 23-28 2.45.25 2.4.67-27 77

Composite Formulas. We insert © = tan x and v = tany into (4.5) and obtain

u+v
(4.32) arctanu + arctanv = arctan( )
1—wv
if | arctanu + arctanv| < /2. If we set w = 1/2 and v = 1/3, we see that the
fraction to the right of (4.32) is equal to 1. This gives Euler’s formula (1737),

1 1
4.33) Z = arctan 5 + arctan 3’

for which the series (4.24) already converges much better.
Especially attractive is the approach of John Machin, published (without de-
tails) in W. Jones (1706, p.243). Putting u = v = 1/5, we get

2/5

1_ 1/25> = arctan

1
2 - arctan . = arct ( .
arctan 5 arctan 12

6 Reproduced with permission of Bibl. Publ. Univ. Gengve.
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For u = v = 5/12 one obtains

5 2-5/12
2-arctan __ = arctan( ) = arctan .
12 1—25/144 119
Finally, we put u = 120/119 and search for a v such that
1— 1
u v =1, hence v= v _ .
1—wuv 1+u 239
All these formulas together give
(4.34) ™ _ 4 arctan | £
. =4 .arctan _ — arctan
4 5 239’

an expression for which the series (4.24) is particularly attractive for calculations
in base 10 (see Table 4.2). “The Accurate and Ready Pen” of Machin found 100
decimals in this way.

TABLE4.2. Computation of 7 by Machin’s formula
0. 200000000000000000000000000

1

3 —0. 2666666666666666666666667
5 0. 64000000000000000000000
7
9

—0. 1828571428571428571429

0. 56888888888888888889

11 —0. 1861818181818181818

13 0. 63015384615384615

15 —0. 2184533333333333

17 0. 77101176470588

19 —0. 2759410526316

21 0. 99864380952

23 —0. 3647220870
25 0. 134217728 1 0.004184100418410041841004184
27 —0. 4971027 3 -0 24416591787083803627
29 0. 185128 5 0. 256472314424647
31 —0. 6927 7 —O0. 3207130658
33 0. 260 9 0 43669
35 —0. 10 11 —O0. 1
= 0. 197395559849880758370049763 = 0. 004184076002074723864538214

The search for other formulas of this type becomes a problem of number the-
ory. Gauss, as a by-product of 20 pages of factorization tables, found (see Werke,
vol. 2, p.477-502)

1 1 1

Z = 12 arctan 18 + 8 arctan 5 T 5arctan 939’

T o 19arctan . +20arctan . + Tarctan - +24arctan -
= arcta. arcta. arcta. arcta. .

4 et a9 retan g retatl 939 FA 968

Today, several million digits of 7 have been calculated. See Shanks & Wrench Jr.
(1962) for a list of the first 100 000 decimals (the 100 000th digit is a 6). More
details about old and recent history can be found in Miel (1983).
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Exercises

4.1 (Newton 1669, “Inventio Basis ex data Longitudine Curva”). Having found
the series z = z + ;o + 2 a® + 5,27 + ... for the arcsin (see (4.25)),
discover the series for z = sin z in the form z = z+a32° +a52° +a72"+. ..
(similar to Exercise 3.2) and that of w = cos z by expanding w = /1 — 2
(see Fig.4.15).

Si ex dato arcu »D Sinus AB defideratur ; zqua- «
tionis z=x- 3x3 4+ L5 + 5 7, &c. fupra in- [
ventz, (pofito nempe AB=1x, D =z,& Ae=1,) — =D

I\

radix extralta erit x =z — 23 4+ 1725 — 27 | \

+ 2 &
ﬁt prztere; fi Cofinum Ap ex ifto arcu dato cu-
pis, fac Ag(=ViTz) = 1—iz* 4 2zt — 7zs
1

2 4
1
—— 8 e —— N |
+ 4::320zs 36288002”’ &e. ‘-‘““““\
FIGURE4.15. Extract from Newton (1669), p. 17

4.2 Understand Ptolemy’s original proof of the addition theorems (4.3) and (4.4)
for the chord function (see Fig.4.16).

‘Propofitio  il)s .

T Dtis chodis incqualinm arcunm in femicirento:
NG ' arcus quo maior minosé fuperat chordanota fiet,
O\ B¢ Yot in mucirculo.a.b.d.fap:a dtametril.a.d.note fint chor
N ‘de.aba.g.Dico notam fieri chordam.b.g.nam per conclas
h vium paime buivs note ctiam fisnt chordeb.d.c.g.d. € Simt

Tedwmas S i quadrilatero.a.b.g.d.viamctria.g.c.b.d.note.funt 7 late
a.2.b.7.g.d.oppolita notaigif per premifam quod fitex.a.d.in.b.g.notd
ict.Sed.a.d.cft nota:quia drameter circuti.ideo.b.g.nota fice : dquerchaf.
Per bicplurimog arcwii chordae coanofeca. Repiceend cho:dd arcus quo
. d d4nta parecirciiferentic fertd fupat.fucbo:dd arcus.z.graduii: ficoc alijo.

FIGURE4.16. Ptolemy’s proof of formula for chord (a + (3); from Almagest, transl. by
Regiomontanus, printed 1496’

Hint. Use (and/or prove) “Ptolemy’s
Lemma”, which states that the sides and
diagonals of a quadrilateral inscribed in
a circle satisfy ac + bd = 6192. For
the proof of the lemma, draw a line DE
such that angle EDA equals angle CDB.
So we have similar triangles

EDA~CDB = b/6; =u/d
DCE=DBA = a/é =v/c
whence bd + ac = (u + v)d1 = 9102.

7 Figs.4.15 and 4.16 are reproduced with permission of Bibl. Publ. Univ. Genéve.
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4.3 The hyperbolic functions (Foncenex 1759, Lambert 1770b). For a given x
let P be the point on the hyperbola u? — v? = 1 such that the shaded area of
Fig.4.17 (left) is equal to 2:/2. Then, the coordinates of this point are denoted
by (cosh z, sinh z).

a) Prove that

(4.35) coshz = © +26 , sinhz=° —_°

Hint. The areas of the triangles ACB and PCQ are equal. Hence, the areas of
ACPA and ABQPA are also equal and are equal to (Ina)/2, if the distance
between C and Q is denoted by a/+/2 (Fig. 4.17, right).

b) Verify the relations

436) sinh(x 4+ y) = sinh « cosh y 4+ coshx sinh y
' cosh(xz 4+ y) = cosh z coshy + sinh z sinh y.

¢) The inverse functions of (4.35) — the area functions — are defined by

y =arsinhx < x =sinhy for —o0o <z <00, —00 <y < 0,

y =arcoshz <& x =coshy forl <z <oo0, 0<y < oo.

Provethat arsinhz = In(z++/x2+1), arcoshz = In(z++v22 —1).

v P | =1/(26)
I sinh x
x/2 | A
0 1 U
1 cosh x 2 P
Lk C B Q °

FIGURE4.17. Definition of hyperbolic functions

4.4 Verify (and use) Newton’s advice (Newton 1671, Probl. IX, §XLIX) for the
computation of 7: by computing the area a under the circle y = !/ 21 -
x)'/2 between z = 0 and = = 1/4 by binomial series expansion, show that

T =24a + 3V3/4

_24<21 1 21 1-1 21 1-1-3 21 ) 3v/3
B 323 2 525 2.4 727 2.4.6 929 7 4
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[.5 Complex Numbers and Functions

Neither the true nor the false roots are always real; sometimes they are
imaginary; that is, while we can always imagine as many roots for each
equation as I have assigned, yet there is not always a definite quantity cor-
responding to each root we have imagined. (Descartes 1637)
Cardano (1545, in his Ars Magna) was the first to encounter complex numbers by
asking the following question: divide a given line ab, say, of length 10 “in duas
partes”, so that the rectangle with these two parts as sides has area 40. Everybody
can see (see Fig.5.1) that the area of such a rectangle is at most 25, so the prob-
lem has no real solution. But algebra gives us a solution, since the corresponding
equation (see Eq. (1.3)) 22 — 10z + 40 = 0 leads to (“ideo imaginaberis \/—15")

5++/—15 and 5—+/—15.

Although these formulas are perfectly useless and sophistic (“‘qué uere est sophis-
tica”), they must contain an amount of truth, since their product

(5+v/—15)(5 — v/—15) = 25 — (—15) = 40

is actually what we want (see Fig. 5.1).

P B < b

§ piRemsty

s § MR mi1§

d 2§ m:m:i§ Gd.eft 40

FIGURE 5.1. Excerpts from Cardano’s Ars Magna'

During the following centuries, such “impossible” or “imaginary”’ (Descartes,
see quotation) solutions of algebraic equations came up again and again, gave rise
to many disputes, but proved to be more and more useful. Full maturity in their
handling was achieved in the work of Euler, who also introduced later in his life
the symbol i for /—1. The above values are now written as 54iv/15 and complex
numbers are of the general form

c=a+1b,

where a = Re (c¢) is called the real part, and b = Im (c¢) the imaginary part of
c. The interpretation of a complex number a + b as the point (a, b) in the two-
dimensional complex plane is due to Gauss’ thesis (1799) (see Fig.5.2) and to
Argand in 1806 (see Kline 1972, p. 630).

! Reproduced with permission of Bibl. Publ. Univ. Genéve.
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2l c =3+2i

-
yed
FIGURE5.2a. Complex plane and cubic FIGURES5.2b. Complex plane in Gauss
roots ( 1799)2

Complex Operations. For computation with complex numbers we keep in mind
the relation 2 = —1 and apply the usual rules for rational or real numbers. There-
fore, the sum (or the difference) of two complex numbers

c=a-+1b, w=u+ v

is the complex number obtained by adding (or subtracting) the real and imaginary
parts. The product becomes (compare with Fig.5.1)
(5.1) c-w = au—bv+i(av + bu).
To compute the quotient w/c we observe that the product of ¢ with its complex
conjugate
(5.2) c=a—1b
is real and nonnegative, namely ¢ - ¢ = a? + b%. Multiplying numerator and de-
nominator of w/c by ¢ the quotient w/c becomes for ¢ # 0

w_ w-c aut+tbv . av—bu

5.3 — - )
(5:3) c c-c a? + b2 ZcLQ—i-bQ

Euler’s Formula and Its Consequences

... how imaginary exponentials are expressed in terms of the sine and co-
sine of real arcs. (Euler 1748, Introductio, §138)

This formula, discovered by Euler in 1740 by studying differential equations of
the form y” + y = 0 (see Sect.IL.8), is the key to understanding operations with
complex numbers.

2 Reproduced with permission of Georg Olms Verlag.
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We define e*® by the series of Theorem 2.3 (with z replaced by ix), use the

relations i2 = —1, % = —i,i* = 1,4 = i, ..., and separate real and imaginary
parts:
: () (i) (i)t (ix)®
T
e =1+1ix+ o1 + 3] + A1 + 5| + ...

1'2 3 4 .’E5
L =gy =l by Ty =
2 4

3 5

_( _2!+4!_""-'-)"'2(95—3!4-5!—+...)—cosx—|—zsmx.
~ -~ rd - ~ 2
cos T sinz

The result is the famous formula (Euler 1743, Opera Omnia, vol. 14, p. 142)

5.4) e = cosx + isinz.

As a first application, we insert the particular values = 7/2 and 2 = 7, which
give
e/ = and e =—1

)

elegant formulas combining the famous mathematical constants 7, e, and ¢ in won-
derfully simple expressions.

Polar Coordinates. Equation (5.4) shows that the point e!¥ has real part cos ¢
and imaginary part sin ¢, i.e., it is the point on the unit circle at which the radius
forms an angle ¢ with the real axis (see Figs.5.2a and 4.3). Consequently, each
complex number can be written as

(5.5) c=a+ib=r-€",
where
b
(5.6) r:\/a2+b2:\/c-c and @zarctan( )
a

We call r = || the absolute value of ¢ and ¢ = arg(c) its argument. Let

c=r-e¥ and w=s-e
be two complex numbers in polar coordinate representation. It follows from (4.2a)
that ¢ = r - e~% and from Theorem 4.2 that

e . e = (cosp +ising) - (cosd + isin6)

(5.7 = (cos @ cos ) — sin @sin f) + i(cos @ sin f + sin @ cos ) = ¥+,
Therefore, we obtain for the product and quotient
w

(5.8) c-w=rs- @0 _ 5 pile—0)
C T
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Here the polar coordinate form is especially illuminating: multiplication multiplies
the radii and adds the angles, division divides the radii and subtracts the angles.

Roots. We wish to know, say, </c. Once again, polar coordinates perform the
miracle, since roots of products are the products of the roots. However, we must
be careful, because €2 = 1 and e*™ = 1 have cube roots ¢27/3 and e%7/3,
which are different from 1. Thus, there are three cube roots of ¢,

(5.9) {)’/c — {3/7« . ew/S, \?77" . ei(w3+2ﬂ/3)7 {3/7« . eile/3+47/3)

These, for ¢ = 3 + 2i, are displayed in Fig. 5.2a. The next candidate, ¢5™ = 1,
just reproduces the first of the roots and gives nothing new. The roots thus obtained
form a regular star; of Mercedes-type for n = 3, of Handel’s Fire-Musick-type for
n > 3. Fig.5.3 represents the map z + w = 2 for varying values of z and its
inverse function w +— z = w!/3 = w. The animal that thereby undergoes
painful deformations is known as “Arnold’s cat”. The inverse map produces three
cats out of one.
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FIGURE5.3. The function w = 2° and its inverse z = w'/>

Exponential Function and Logarithm. The exponential function can be ex-
tended to complex arguments as follows:

(5.10) e¢=e"- e = e%cosb 4 isinb) for c=a+1b.
This definition retains the fundamental property e¢t% = e¢-e%, which is obtained
from Eq. (5.7).

The nature of the logarithms of negative numbers gave rise to long and heated

disputes between Leibniz and Joh. Bernoulli. Euler (1751) gave a marvelous sur-
vey of these discussions, which were kept as secret as possible since such disputes
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would have damaged the prestige of pure mathematics as an exact and rigorous
science. The true nature of logarithms of negative and complex numbers was then
revealed by Euler (“Denouement des difficultés precedentes’) with the help, once
again, of Eq. (5.4). Many of the contradictions of the earlier disputes were resolved
by the fact that the logarithm of a complex number does not represent one number,
but an infinity of values. We write ¢ in polar coordinate form

c=r @M p—0 +1,42 ...,

which is a product. In order to retain properties (3.1) and (3.7) for the logarithm
with complex arguments, we define

(5.11) In(c) = In(r) + i(¢ + 2km), k=0,£1,4£2,....

Fig.5.4 represents the map w = e* and its inverse. Since the imaginary
part of the logarithm is simply ¢ = arg(c) it is clear that, after each rotation
© —  + 27, the logarithms repeat again and again.

FIGURE 5.4. The function w = e* and its inverse z = Inw

A New View on Trigonometric Functions

The shortest path between two truths in the real domain passes
through the complex domain.
(Jacques Hadamard; quoted from Kline (1972), p. 626)
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1T

Replacing z in (5.4) by —z we have e~
subtracting these formulas we obtain

= cosx — ¢ sinx; by then adding and

(5.12) sinx = —.e
21
(5.13) cosT = e te
2
1 i __ ,—iT
(5.14) tanx = € €

7: ezx + eflCE

Thus, in the complex domain, trigonometric functions are closely related to the
exponential function. Many formulas of Sect. .4 become connected with those
for e*; e.g., de Moivre’s formulas (4.14) simply state that e*® = (e‘®)™. This is
not a new proof, however, as we based it on Eq. (5.4), which was deduced from the
series of (4.16) and (4.17), which were in turn proved using de Moivre’s formulas.

Inverse Trigonometric Functions. If we insert in (5.12), (5.13), or (5.14) a vari-
able u for e and v for either sin z, cos z, or tan z, we obtain algebraic relations
that can be solved for u. As a result, the inverse trigonometric functions are ex-
pressed with the help of the complex logarithm as follows:

(5.15) arcsinx = —iln(ix + \/1 — x2)
(5.16) arccosz = —iIn(z 4 iv/1 — 22)
5.17) arctanz = ! ln(z_ + :E)

2 1—x

Since the logarithmic function is many-valued, attention must be drawn to the cor-
rect branch (i.e., value of k in (5.11)) of the function to be used. The last formula
explains the striking similarity between the series of Eq. (4.24) for y = arctanx
and Gregory’s series (3.15) for In((1 + z)/(1 — z)). Also, Machin’s formula of
Eq. (4.34) becomes equivalent to the factorization of the complex numbers

1 i+1 5.+ 1\4 239+ 1\—1
(5.18) B (51'*1) '(2392'*1)

i i—1

Euler’s Product for the Sine Function

... and I already see a way for finding the sum of this row i + i + ; + 116 etc.

(Joh. Bernoulli, May 22, 1691, letter to his brother)
One of the great mathematical challenges of the early 18th century was to find an
expression for the sum of reciprocal squares

1 1 1 1

(5.19) Lt gy T gt oty T omn =7

Joh. Bernoulli eagerly sought for this expression for many decades. Euler (1740)
then found the following elegant solution: we know from algebra that, e.g.,
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(5.20) 1 — Az + Ba® — C2® = (1 — ax)(1 — Bz)(1 — yx),

where 1/a, 1/3, 1/~ are the roots of the polynomial 1 — Az + Bx? — Ca3.
Furthermore, the first of the so-called “Viete’s identities” is

(5.21) A=a+0+7.
Now, we apply the same principle fearlessly to the infinite series

sinx T x
. =1- -
(5.22) . 6 +120

with its infinite number of roots =7, £27, +3m, ... and Eq. (5.20) becomes

(=D D0 20 )0 205 -

(=20 ) ()

Comparing this relation with (5.22), the analog to (5.21) (with z replaced by x2)
becomes
1 1 1 1 1 1

+ o ot gt + +...=

5.23 .
( ) w2 47?2 9n2 1672 2572 6

and the sum (5.19) is 72 /6. However audacious this argument and however beau-
tiful its result, its mathematical rigor was poor even by 18th century standards.
Therefore, Euler later looked for a better proof (1748, Introductio, §156). We start
with the factorization of 2" — 1.

Roots of Unity. The polynomial 2™ — 1 pos- dinfT
sesses the roots z = V1 = e2km/n | =
0,41,+2,.... Since 2™ = 1, only n consec-
utive values of & give rise to distinct roots. For e
example, for n = 7 these solutions are

6in/7

1, 62171'/77 e—2z7r/77

i —4i i —6i —6ir/
64171'/77 e 4171'/77 6617r/77 e 617r/7. e

A factorization similar to (5.20) is also valid
for polynomials with complex roots. Indeed, if
we divide the polynomial p(z) by (z — ¢) we
obtain

—4in/7

p(2) = (z = ¢)q(2) +d

with d = p(c). If ¢ is a root of p(z) we have obtained the factorization p(z) =
(z — ¢)q(z). Applying the same procedure to ¢(z), and repeatedly to the resulting
polynomials, a factorization of p(z) into linear factors (z — ¢) is obtained. For our
polynomial z7 — 1 we thus get
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27 1= (Z— 1) . (Z_€2i7r/7) . (Z_€72i7r/7)

. (Z _ €4i7r/7) . (Z _ 6741'71'/7) . (Z _ 661'71'/7) . (Z _ 6761'71'/7)’
or, in general,

(5.1) Theorem (Euler 1748, Introductio, Chap.IX). For n odd we have

(n—1)/2 _ _
M= (Z o 1) H (Z o 82zk7r/n)(z . 872zk7r/n)
k=1
(n—1)/2
2k
=(z—-1) H (2% — 2z cos i +1).
n
k=1

(5.24)

Proof. The first identity is the factorization derived above. The second one is ob-
tained with the help of Eq. (5.13). a

By replacing z — z/a in (5.24) and multiplying by a™ we obtain a slightly
more general result:

(n—1)/2
(5.25) Z"—a" =(z—a) H (2% — 2azcos
k=1

We now insert z = (1 + z/N), a = (1 — 2/N) into (5.25) and put » = N. This
gives

(1+3) - (-3)

(N-1)/2

2k
i +a?).

222 x? 2km
:N' kl;[l <2+N22<1N2)COSN>
(N—=1)/2 9
2x 2km T 2km
:N' kl;[l 2<<1cosN>+N2<1+cosN))

(N-1)/2

2?2 1+ cos(2kn/N)
cx- 1 . .
O -2 kl;[l ( * N2 1- cos(2k:7r/N)>

Since the coefficient of z in the polynomial (1 + z/N)Y — (1 — x/N)¥ equals
2 (see Theorem 2.1), we have C'y = 2 for all V. For large N the left-hand side
of the above formula becomes e” — e~* (Theorem 2.3) and, using the fact that
cosy ~ 1 — y?/2 for small y, the kth factor in the right-hand side tends to

(14 e

Therefore, we obtain
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et — e x2 x2 IQ
5.26 —2(1+7%,)(1 I§ )
(5.26) 2 G 2 + 472 + 92

Since there are infinitely many factors, care has to be taken with this limit (for a
justification see Exercise I11.2.5).

Replacing x by ix, we find the desired function sin x to the left. Thus we
have obtained the following famous formula in a more credible way.

(5.2) Theorem (Euler 1748, §158). The function sin x can be factorized as

2 2 2

O 2
w11 ) =+ D)0~ 20 )
=1

The convergence of this product is illustrated in Fig. 5.5. We observe that the
convergence is better for smaller values of |z|.

FIGURES.S. Convergence of the product of Theorem 5.2

Wallis’ Product. We put z = 7/2 in the formula of Theorem 5.2. This gives

Singzlzg (1*411) (17116) (17316)
=50 ) (- D) (=) ()

T2 9 2 4 4 6 6
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and we obtain the famous product of Wallis (1655),

(5.27) =

S
=N
wW DN
W =~
(G2 QTSN

Remark. The original proof by Wallis starts from the fact that /2 is the area be-
low (1 — 22)'/2 (between —1 and +1), followed by a complicated procedure of
interpolation based on the known areas for (1 —x2)°, (1—22)!, (1—22)2,. ... Pre-
cisely this idea inspired Newton in his discovery of the general binomial theorem
as discussed in Sect. 1.2.

Exercises

5.1 (Euler 1748, §185.) Set = 7/6 in the formula of Theorem 5.2 and obtain,
with the help of sin(7/6) = 1/2, another product for 7/2:

T 3 6-6 12-12 18-18 24-24

2 =" . . .
(5:28) 2 2 5.7 11-13 17-19 23-25 ’

then insert x = /4, multiply the obtained product by Wallis” product, and
obtain the following interesting formula:

2-2 6:-6 10-10 14-14 18-18
V2 =

2 = . : . .
(5:29) 1-3 5.7 9-11 13-15 17-19

5.2 (Euler, Introductio §166, 168). Generalize (5.19) and (5.21) in the following
way: let
1+ Az + A2+ A3 4+ ... = (1 +a12)(1 + azz)(1+azz) - ...
(here z stands for 22 in Theorem 5.2), and define the sums of the powers

Si=a1+as+as+...
Sy=aj+as+ai+...

3 3 3
Ss=aj+as+az+...,
and so on. Then, present a “demonstratio gemina theorematis Neutoniani”

S1=4;

Sy = A151 — 24,

S3 = A1S52 — A5 + 343

Sy = A153 — A5y + A3S1 — 44,

(5.30)

and deduce from these formulas and from Theorem 5.2 the following sums:



53

54

5.5

5.6
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1+1+1+1+”.:7r2:22ﬂ'2'1

92 T g2 T 42 6 2.2 6
1+1+1+1+...:W4:247T4.1

(5.31) 94 T g4 44 90 2-4! 30
gy bt 2l

26 T 36 T 46 945 26! 42
gy bt 2%

98 T g8 T 48 9450 _ 2-8! 30

Remark. Actually, Euler wrote these expressions a little differently, and
the connection with the “Bernoulli numbers” (see Sect.I1.10 below) be-
came clear to him only a couple of years later (1755, Institutiones Cal-
culi Differentialis, Caput V, §124,125,151, “ingrediuntur in expressiones
summarum. ..”).

(Euler 1748, §169). Show, either by a proof similar to the preceding one
(starting from the roots of 2™ + 1 = 0), or by using cos x = sin 2z /(2 sin x),
that

oo = T1(1- e ") = (20 42) (- ) -

Obtain by using this product such expressions as

1+1+1+1+ _
32 52 72 T8
(5.32)
1+1+1+1+ _
34 54 74T 967

Show that (5.32) can also be obtained directly from (5.31).

(Euler 1748, §189-198). Take the logarithm of the formula of Theorem 5.2
(which transforms the product into a sum) and derive ingenious ways of com-
puting
In(sin(z))
by using the expansions (5.31).
Using Cardano’s formula (1.14) compute all roots of
(5.33) 2 —b5r+2=0.
In spite of the fact that all three roots are real, one has to compute the cube

roots of a complex number.

Simplify the computation of the roots of (5.33) by the following idea (Victe
1591a): set © = pcosa and replace cos « by x/p in the identity cos 3o =
4 cos® o — 3 cos a in order to get

3 2 3
3 _ oK xfu cos3a = 0.

4 4
Compare this equation with (5.33) to obtain yu, «, and z.

T
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1.6 Continued Fractions

The theory of continued fractions is one of the most useful theories in Arith-
metic . . . since it is absent from most works on Arithmetic and Algebra, it
may not be well known among geometers. I would be satisfied if I were
able to contribute to make it slightly more familiar.

(Lagrange 1793, Oeuvres, vol. 7, p. 6-7)

We say therefore; that the Circle is to the Square of the Diameter, as 1 to

1 x g X ;i X jg X 2(1) x &, infinitely. Or as 1 to
1
1+
2+ ?
2+ 25
49
2+
2+ 81
2 + &, infinitely.
How these Approximations were obtained ... would be too long here to

insert; but may by those be seen, who please to consult that Treatise.
(J. Wallis 1685, A Treatise of Algebra, p.318)
After having seen the use of infinite sums and infinite products in analysis, we
now discuss a third possibility of an “infinitorum” process, infinite quotients, i.e.,
continued fractions.

Origins

The Euclidean Algorithm. This algorithm for the computation of the greatest
common divisor of two integers has been known for more than 2000 years (Euclid,
~ 300 B.C., Elements, Book VII, Propositions 1 and 2). Let two positive integers
be given, for example 105 and 24. We divide the larger by the smaller and obtain
the quotient 4 with remainder 9, i.e.,

105/24 = 4 +9/24.
We now continue the process with the divisor and the remainder:
24/9=246/9, 9/6=1+3/6, 6/3=2.

The algorithm must stop, since the remainders form a strictly decreasing sequence
of positive integers. The last nonzero remainder (here 3) is the greatest common
divisor we were looking for, and by combining successive steps we get
105 1
6.1 =4
(6.1) 04 + )
2+

1+1
2

Irrational Numbers. If this form of the Euclidean algorithm (repeatedly subtract
the integer part and inverse) is applied to an irrational number, it cannot terminate,
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since a finite expression as in (6.1) must be rational. For example, with o = /2
we obtain

1 1

=1
24142 ... +

1.4142...=1+0.4142 =1 .
* * 2404142 ..

The reappearance of the digits of v/2 in the last quotient is no surprise, since /2
satisfies precisely « = 1+ 1/(1 4 &) (multiply by 1 4 « to see this). Continuing,
we obtain the following formula of Bombelli from 1572:

NS |
(6.2) 2+
2+ !
2+...
The simplest of all sequences is obtained from the “golden mean”, which gives
1+V/5 1 1
=161803 =1+ =...=1+
2 1.61803 1
(6.3) 1+
1
* 1+.
Further examples are as follows:
\/3 =1+ ! 1 e=2+ ! 1
1+ 1+
1 1
2+ 2+
1+... 1
1+
6.4) 1+ 1
1
4+
1
1+
1+ !
6+
e—1 _ 1 =34+ 1
e+1 1 1
2+ 7+
(65) 64! 15+
1 1
10 + 144 1+ |
o 292 +
1+

The quotients 1, 1,2, 1,2,1,2,1, ... which appear for V3 are periodic, those
for e and for (e — 1)/(e+ 1) also exhibit a regular behaviour. We shall explain this
below for (e — 1)/(e + 1), which is tanh(1/2) (c.f. Eq.(6.31) below). However,
the regularity for e is trickier (see Hurwitz, Werke 2, p. 130). No regularity at all
appears for the quotients of 7, even if we compute thousands of them (Lambert
(1770a) computed 27, Lochs (1963) computed 968).

Lord Brouncker’s Fraction for 7 /4. One year after the discovery of Wallis’
product for 7, Lord Brouncker succeeded in transforming it into an interesting
continued fraction (see the quotation above and Eq. (6.23) below). This result in-
spired Wallis to include a theory on continued fractions on the last two pages of
his Arithmetica Infinitorum (1655, see Opera, vol. 1, p.474-475).
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Lambert’s Continued Fraction for tan x.
But the incentive for seeking these formulas came from Eulers Analysis
infinitorum, where the expression . . . appears in the form of an example.
(Lambert 1770a)
As we have seen in Sect. .4, the function tanz = sinx/ cosz does not have a
particularly simple expansion into an infinite series. We start from
; sinx  x—23/6+2°/120—... =
anx = = = )
cosr 1—a%2/2+ax%/24— ... 1—22/2+2%/24— ...
1—22/64x%/120— ...

For x — 0, the denominator tends to 1. We therefore subtract 1 and obtain

tanx = o 7
22/3 —2*/30+... z?
C1—22/6+a4/120 — ... Tl a%/64 ...
1/3 —22/30+ ...
Here, for x — 0, the last denominator tends to 3. Subtracting 3 we then obtain
tanx = 22
1-— - 22

Continuing like this, we find that the subsequent denominators are 5, then 7, and
so on. For an 18th century man (Lambert 1768) there is then no doubt that the
following formula is true in general:

x 1
tanx = 9 =
x 1 1
1-— 9 —
T x 3 1
3 — 9 —
5 x 5 1
_ 2 . 77
(6.6) 7—97'” T

A couple of decades later, Legendre (1794) gave a complete proof (see Exercise
6.6).

An expression of the type

6.7) @+ " :

b2
q1 +
b3

g2 +
q3 + ...
is called a continued fraction. The fractions p1/q1, p2/q2, P3/qs, - - - are called the
partial quotients of the continued fraction. If all p;, = 1, the continued fraction is
called regular.
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Convergents

If the continued fraction (6.7) is truncated at its kth quotient, we obtain a rational
number

6.8) g+ :

b2
q +
Pk

@+...+
dk

which is called the kth convergent of the continued fraction. We want to write
these rational numbers as quotients of two integers. The first cases are easy:

+
(6.9a) Qo + P1 _ qoq1 T D1 7
q1 q1
(6.9b) qo + b1 _ 909192 + qop2 + p1q2
D2 q192 + P2
QG+
q2

Let A denote the numerator, and By, the denominator, when the expression (6.8)
is evaluated in this manner. From (6.9) we have

Ao = qo, By =1,

A1 = qoq1 + p1, By =q,

A2 = qoq1G2 + qop2 + p1g2, B2 = qiq2 + pa.

We now look at these formulas, as Euler says, “with a bit of attention” (tamen
attendenti statim patebit), and discover the following beautiful structure:

(6.10) Az = g2 A1 + p2Ao, By = q2B1 + p2Bo.

For the computation of A3 and B3, whose quotient must be

P1
q0 + » ’
2
QG+

g2 +p3/qs

we could, by comparing with (6.9b), take the formulas for As and By and replace
everywhere ¢, by the quantity g2 + p3/gs. But the expressions obtained in this
manner would in general not be integers. We therefore multiply both numbers by
g3, which does not alter their quotient, and have from (6.10),

Az = ((fh +p3/q3)Ar +P2A0) " g3, B3 = ((Q2 +p3/q3)B1 +szo> - q3.
These two expressions become, after simplification,
Az = qz Ay + p3Ay, B3 = q3 B2 + p3B1.

This structure now repeats again and again and we have
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(6.1) Theorem (Wallis 1655, Euler 1737b). The numerators and denominators of
the convergents (6.8) are determined recursively by

Ap = qpAr—1 + prAli—2
(6.11) By, = qpBr—1 + prBr—2

with

A1 =1 Ag = qo Al = qiqo +p1

(6.12)
B_1:O B():l Blqu.

(6.2) Examples. Equations (6.11) and (6.12) applied to the above examples lead
to sequences of rational numbers,

1+v5 1 2 3 5 8 13 21 34 55 89 144

> 1172737587137 217 347557 89

Vao L 37 17 41 99 239 577 1303 3363
17275127297 70" 169° 408 ° 985 ’ 2378

Vil 205719 26 71 97 265 362 989 1351
1717374 117 157 41° 567 1537 209 571 780 °
2 3 8 11 19 8 106 193 1264 1457 2721

CF 173 40 77320 397 71 465 536 7 10017
322 333 355 103993 104348

TR 71067 1137 33102 7 33215 7

which (see Fig. 6.1) rapidly approach the original irrational numbers.

11 12 13
PA
e L5
2
7\
Y\
n——1/3
—0
2<
PX¢ O-—e
IO
V2

FIGURE6.1. Errors for convergents Ay /By, (logarithmic scale)
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The approximations for v/2 and \/3 were known in antiquity (Archimedes
used 265/153 < /3 < 1351/780 without further comment). The two conver-
gents 22/7 (Archimedes) and 355/113 (Tsu Chung-chih around 480 in China,
Adrianus Metius 1571-1635 in Europe) for 7 are of a better than average qual-
ity. Explanation: the first denominator g to be neglected is large (15, respec-
tively, 292). Two other very precise approximations for 7, which are the 11th and
26th convergents respectively, have been calculated 1766 in Japan by Y. Arima
as 5419351/1725033 and 428224593349304/136308121570117 (see Hayashi
1902). On the other hand, for the golden mean (all ¢ = 1) we have slow con-
vergence. Here, (6.11) becomes the recursion formula for the Fibonacci numbers
(Leonardo da Pisa 1170-1250, also called Fibonacci).

Some convergents of the continued fraction (6.6) for tan z,

(6.13)
x 3x 152 — 23 105z — 1023 9452 — 10523 + 2°
17 3—22" 15—6a2  105—4522 + 2%’ 945 — 42022 + 1524 """

are displayed in Fig. 6.2 and nicely approach the function tan x, even beyond the
singularities x = 7/2, 37/2,....

=2 | k=3t k=4 | | k=5

FIGURE 6.2. Convergents of the continued fraction for tan

Infinite Series from Continued Fractions. The difference of two successive con-
vergents satisfies

A Ay Apy1Bp — AyB
(6.14) R N Pre+1
Best Bi BiB+1 BiBiy1

The last identity is seen as follows: using (6.11) we have

Ag41Br — A Br+1 = (qr+14k + Prt1Ak—1)Br — Ak (q@e+1Br + pr+1Br—1)
= —prp1(AxBr—1 — A1 Br) = . ..
=po-... prep1(—1)F(A1By — Ao B)

and (A1 By — AgB1) = p1 because of (6.12). Writing the convergent Ay /By, as
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B,  Bi_

Bp_1  Bi_o

21; (Ak Ak—l) (Ak—l Ak—2>+m (Al Ao) A

B Bi  Bo * By’
we see from (6.14) that

Ay P1 pip2 | P1p2p3 k—1 DP1D2" ... Dk
6.15 = — .. —1 .
(6.15) B, qo + + (1) Bi_ 1B

B  BiBy ' ByBs

and we have
(6.3) Theorem. The convergents of (6.7) are the truncated sums of the series

b1 pip2 | PiP2P3  P1P2P3P4

B  BiBy ' ByBs BB,

(6.16) qo +

For regular continued fractions (all p, = 1) we have

1 1 1 1

6.16/ + - + -
(6.16) ©F B T BB, " ByBs BsB

+ ...

Since 1/(Byj_1 By) is the smallest possible distance between two different rational
numbers with denominators By_; and By, the interval between Ag_1/By—1 and
Ay / By, cannot contain a rational number whose denominator is not larger than
By.

Continued Fractions from Infinite Series. Let

1 1 1 1 1
(6.17) -+ - + —4...

C1 Co C3 Cy Cs
be a given series with integer c;; we want to find integers p;, ¢; such that the series
(6.17) coincides term by term with (6.16) (with gy = 0).
Solution. We put p; = 1 and q; = B; = ¢;. Then, we divide two successive terms
of (6.16) (so that the products of p; simplify), which gives
(6.18) ck—1Br = ciprBr—2.

This resembles, apart from the factors c;—1 and cy, the Eq. (6.11). We therefore
subtract from (6.18) Eq. (6.11), once multiplied by c_1, once by ¢, and obtain

Ck-1qkBr—1 = (ck — ck—1)pkBr—2
(ck—1 — ck) By, = —crqiBr-1.
In the first formula we replace k£ by k£ + 1 and then divide the two expressions.

This eliminates the Bj’s and gives

(6.19) ki1 _ (Chpr — Ck)Pk+1.

Ck — Ck—1 Ckdk



1.6 Continued Fractions 75

The p;, q; are, of course, not uniquely defined. Since we want them to be integers,
a natural choice that satisfies (6.19) is

(6.20) Phi1 = Co, Qk+1 = Ck+1 — Ck

for £ > 1. Thus, we have the following formula of Euler (1748, §369):
(6.21)

1 1 1 1 1
— + — +...= 9
C1 (6] C3 Cy cq
c1+ 9
Cy
2 —C1+ 9
+ 3
C3 — C2
C4fcg+...

When applied to two well-known series (see Sects. 1.3 and 1.4), this formula gives

1 1 1 1
n2=1-— - =
n 2 374" 1
1+
1+4
(6.22) 9
1+
1+16
1+...
T +171+ 1
4" 35 7 B 1
1+
6.23) 2L
2+49
2+

The second continued fraction is the one found by Lord Brouncker, obtained here

from Leibniz’s series.
Similarily, we prove (Euler 1748, §370)

(6.24)
1 1 1 1
1 ciea cieecs a1 ’
Cl+
C2
co— 1+
14+
Ca —
3 cg—14+...
whence, for example,
1 1 1 1
e e S
1+
1+2
(6.25) 3
2+
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Irrationality

I have good reason to doubt that the present article will be read, or even
understood, by those who should profit most by it, namely those who spend
time and efforts in trying to square the circle. There will always be enough
such persons . .. who understand very little of geometry . ..
(Lambert 1770a)
One of the great unsolved problems of classical analysis was the quadrature of
the circle (i.e., the construction of 7) by ruler and compass. Lambert was one of
the first to believe that this construction, which challenged mathematicians for
2000 years, was impossible. A first hint toward this result would be the fact that
w is irrational. We are therefore interested in a theorem that states that an infinite
continued fraction represents an irrational number.

First difficulty. It can happen that a continued fraction represents no number at all.
To see this, we start from the series

2 3 4 5 6 7
6.26 — — —
(6.:26) 1 2+3 4+5 6jL

Since its terms approach %1, it clearly does not converge. To obtain a correspond-
ing continued fraction, we put ¢, = k/(k+ 1) (see (6.17)) and obtain from (6.19),

after simplification,
Pr+1

Qk+1 " Gk
With pr1 = k*(k + 2) and g, = 1 we have integer coefficients and see that the
convergents of the continued fraction

2

= k*(k +2).

(6.27) o
+1+32
135
1+
1+...

do not tend to a real number.

Second difficulty. There are infinite continued fractions that represent a rational
number. For example, we have 2 = 1+ 2/2 and obtain, by inserting 2 repeatedly,

(6.28) 2=1+" ,
1+

2
1
+1+...

which is rational.

(6.4) Theorem. If the p; and q; are integers and if from a certain index j > jo
onward

(6.29) 0<p; <gqy,

then the continued fraction (6.7) tends to a number « that is irrational.
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Proof. Without loss of generality we may assume that 0 < p; < g; is satisfied for
all j. Otherwise, we consider the continued fraction starting with p;, /¢;,. Conver-
gence of this continued fraction and its irrationality are equivalent to convergence
and irrationality of the original one.

The assumption that 0 < p; < ¢; guarantees that the convergents of the
continued fraction tend to a real number. This is a consequence of the “Leibniz
criterion” and will be discussed in Sect. I11.2.

Following an idea of Legendre (1794, Eléments de Géométrie, Note IV), we
now write the continued fraction (6.7) without gg as

_ h with ﬂ:m
@+ B P3
q2 +
Q3—|—

(6.30) e

Since g1 > p1 and 8 > 0 we have @ < 1. Suppose now that « = B/A is rational
with 0 < B < A. A simple reformulation of (6.30) yields
g me Ap1 — B
a B ’
so that (3 is expressed as a rational number with denominator smaller than that
of . If we repeat the same reasoning with 3 = pa/(g2 + ) and so on, we find
smaller and smaller denominators that are all integers. This is not possible an
infinite number of times. ad

Negative p;. The conclusion of Theorem 6.4 is also valid, if (6.29) is replaced by

This is seen by repeated application of the identity (valid for p; < 0)

P 1
= (gj-1— 1)+
g+p ~ Y

1+

qj—1 +
! |p; |

aj — pjl + 8
which, under the assumption (6.29’), transforms the continued fraction into an-
other one satisfying (6.29).
(6.5) Theorem (Lambert 1768, 1770a, Legendre 1794). For each rational x (v #

0) the value tan x is irrational.

Proof. Suppose that x = m//n is rational and insert this into (6.6):

m  m/n m
63D) R m?/n? m?
- m? /n? " m?
3 — m? Jn? 3n — 2
5 — on —

7T—... ™m— ...
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On the right we have a continued fraction with integer coefficients. Since the fac-
tors 1,3,5,7,9,...approach infinity, condition (6.29’) is, for all m and n, satisfied
beyond a certain index ¢g. O

The same result is true for the arctan function; indeed, for y rational, x =
arctan y must be irrational, otherwise y = tanx would be irrational by Theo-
rem 6.5. In particular, 7 = 4 arctan 1 must be irrational.

The proof of the analogous result for the hyperbolic tangent tanhx =
(e — e ®)/(e® + e %) = (e?® — 1)/(e®® + 1) is even easier, since all mi-
nus signs in (6.31) become plus signs. Inverting the last formula, we have e =
(I+tanh(x/2))/(1 —tanh(x/2)), and still obtain the irrationality of e® and In
for rational « # 0 and = # 1, respectively.

Exercises

6.1 Show that with the use of matrix notation, the numerators and denominators
Ay, and By, of the convergents (6.8) can be expressed in the following form:

(Ak Ak—l):(QO 1) (fh 1><Q2 1) (%—1 1) (% 1)
By, Br—1 1 0)\p1 0/ \p2 0/ "\ pr—1 O/ \px 0/°

6.2 Compute numerically the regular continued fractions for the numbers
V2, V3, VB, V6, VT, V2, V3, V4, Vs, V6, VT

and discover a significant difference between the square and the cube roots.
6.3 Show that

1 1
and
a+1 a+1
a+1 b+1
1 1
a+ a+ {
’ b+
a+...

are solutions of a second-degree equation. Compute their values.
6.4 The length of an astronomical year is (Euler 1748, §382)

365 days 5 hours 48'55" .

Compute the development of 5 hours 48’55 (measured in days) into a reg-
ular continued fraction and compute the corresponding convergents. Don’t
forget to give your valuable advice to Pope Gregory XIII for the reform of
his calendar.

6.5 Give a detailed proof of Eq. (6.24).
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6.6 Prove formula (6.6).
Hint (Legendre 1794). Define

()=1+ " + o + @ +

7 1oz 1:2-2(241) " 1:2:3 2(2+1)(2+2)

and show that (z) — p(z +1) = z(zi 1 ©(z + 2) . Next, define
a-o(z+1) a

(6.33) P(z) = such that  (z) =

z-p(2) 2+i(z+1)
Iterating (6.33) leads to a continued fraction. Finally, put a = z%/4 so that
©(1/2) = coshx and z¢p(3/2) = sinh z, and replace = by ix. We note that
these formulas are related to continued fractions for hypergeometric func-
tions (Gauss, Heine, see Perron 1913, p.313,353).

&

L.Euler 1707-1783 C.F. Gauss 1777-1855
With kind permissions of Swiss National Bank and German Federal Bank

J. Wallis 1616-1703 J.H. Lambert 1728-1777
With permissions of Georg Olms Verlag Hildesheim and Univ. Bibl. Basel
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Differential and Integral Calculus

LECTIONES
ANALYSIS I

CAPUT I
| INSTITUTIONES CALC
-l DIFFERENTIALIS ET INTE

The extent of this calculus is immense: it applies to curves both mechanical
and geometrical; radical signs cause it no difficulty, and even are often con-
venient; it extends to as many variables as one wishes; the comparison of
infinitely small quantities of all sorts is easy. And it gives rise to an infinity
of surprising discoveries concerning curved or straight tangents, questions
De maximis & minimis, inflexion points and cusps of curves, envelopes,
caustics from reflexion or refraction, &c. as we shall see in this work.

(Marquis de L’Hospital 1696, Introduction to Analyse des infiniment petits)

This chapter introduces the differential and integral calculus, the greatest inven-
tions of all time in mathematics. We explain the ideas of Leibniz, the Bernoullis,
and Euler. A rigorous treatment in the spirit of the 19th century will be the subject
of Sections III.5 and III.6.

As we see in the above illustration, this calculus sheds light on the obscure
machinery of scientific research.
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I1.1 The Derivative

And I dare say that this is not only the most useful and most general prob-
lem in geometry that I know, but even that I ever desired to know.
(Descartes 1637, p. 342, Engl. transl. p. 95)

Isaac Newton was not a pleasant man. His relations with other academics
were notorious, with most of his later life spent embroiled in heated dis-
putes ... A serious dispute arose with the German philosopher Gottfried
Leibniz. Both Leibniz and Newton had independently developed a branch
of mathematics called calculus, which underlies most of modern physics
. Following the death of Leibniz, Newton is reported to have declared
that he had taken great satisfaction in ‘breaking Leibniz’s heart’.
(Hawking 1988, A brief history of time, Bantam Editors, New York)

What contempt for the non-English! We have found these methods, without
any help from the English.
(Joh. Bernoulli 1735, Opera, vol. 1V, p. 170)

What you report about Bernard Niewentijt is just small beer. Who could
refrain from laughing at his ridiculous hair-splitting about our calculus, as
if he were blind to its advantages.

(Letter of Joh. Bernoulli, quoted from Parmentier 1989, p. 316).

We shall call the function fx a primitive function of the functions f'z, f"'x

&c. which derive from it, and we shall call these latter the derived functions

of the first one. (Lagrange 1797)
Problem. Let y = f(x) be a given curve. At each point 2 we wish to know the
slope of the curve, the rangent or the normal to the curve.

Motivations.

— Calculation of the angles under which two curves intersect (Descartes);

— construction of telescopes (Galilei), of clocks (Huygens 1673);

— search for the maxima, minima of a function (Fermat 1638);

— velocity and acceleration of a movement (Galilei 1638, Newton 1686); and
— astronomy, verification of the Law of Gravitation (Kepler, Newton).

The Derivative

The Linear Function y = ax + b. In ad-
dition to the fixed value x, we consider the
perturbed value « + Az. The correspond-
ing y-valuesare y = ax+band y+ Ay =
a(x + Az) + b, hence Ay = aAz. The
slope of the line, defined by ﬁz, is equal
to a. Fig. 1.1 shows functions y = ax + 1
for different values of a.

N NN

a =12 a =0 a =-1/2 a =-1
FIGURE 1.1. Slopes in dependence of a
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The Parabola y = x2. If = increases by Az, then y increases to y + Ay =
(z + Az)? = 2? 4+ 20Az + (Ax)? so that (see Fig. 1.2a)

(1.1) Ay = 2zAx + (Ax).

Therefore, the slope of the line connecting (x, y) with (z + Az, y + Ay) is equal
to 2x + Ax. If Az tends to zero, this slope will approach that of the tangent to the
parabola.

B a
X
2 /4
FIGURE 1.2a. Tangent to parabola FIGURE 1.2b. Tangent to parabola (Draw-

ing of Joh. Bernoulli 1691/92)"

Leibniz (1684) imagines that Az and Ay become “infinitely small” (“tangentem
invenire, esse rectam ducere, quae duo curvae puncta distantiam infinite parvam
habentia, jungat, . ..”) and denotes them by dz and dy. Then we neglect the term
(dm)Q, which is “infinitely smaller” than 2xdx, and obtain, instead of (1.1),

(1.1 dy—2cde  or W o

dx

Newton (1671, pub. 1736, p. 20) considers his variables v, x, y, z “as gradually and
indefinitely increasing, . .. And the velocities by which every Fluent is increased
by its general motion, (which I may call Fluxions, ...) I shall represent by the
same Letters pointed thus v, &, y, 2”. Their values are obtained by “rejecting the

Terms . . . as being equal to nothing”. Newton categorically refused the publication

th

(“Pray let none of my mathematical papers be printed w-" out my special licence”).

Jac. and Joh. Bernoulli re-invent the differential calculus a third time, based on
Leibniz’s obscure publication from 1684 (“une énigme plutét qu’une explica-
tion”). Joh. Bernoulli (1691/92) then gave private lessons on the new calculus to
the very noble Marquis de L’Hospital. For him, infinitely small quantities are just
quantities that can be added to finite quantities without altering their values and

Reproduced with permission of Univ. Bibl. Basel.
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curves are polygons with infinitely short sides. Furthermore, this greatest of all
teachers (besides his numerous sons and nephews and de L’Hospital, he also in-
troduced Euler to mathematics) held the opinion that too many explanations on
the infinitely small would rather trouble the understanding of those who are not
“accoutumés a de longues explications”.

B. Nieventijt gives in 1694 a first criticism of the infinitely small (see the letter of
Joh. Bernoulli quoted above), followed by a “Responsio” of Leibniz (in the July
1695 issue of the journal Acta Eruditorum).

Marquis de L’Hospital (1696) writes the famous book Analyse des infiniment pe-
tits (see Fig. 1.3), which leads to the definitive breakthrough of the new calculus,
even in France, where science was governed for many decades by the “Cartesians”
(abbé Catelan, Papin, Rolle, . . .).

FIGURE 1.3. Drawing from de L’ Hospital (1696), Analyse des infiniment petits®

Bishop Berkeley published the polemic article The Analyst in 1734 against the
infinitely small (see the quotation in Sect. I.2 and Struik 1969, p.333).

Maclaurin (1742, Treatise of Fluxions, vol.1I, p.420): ... investigate the ratio
which is the limit ...”

Euler (1755, Institutiones Calculi Differentialis) starts with two long chapters De
differentiis finitis and De usu differentiarum in doctrina serierum, followed by
six pages in latin on the infinite, before daring to write “denotet dz quantitatem
infinite parvam” (dx = 0 and adx = 0), but requires that “ratio geometrica

e di”” = { erit finita”. He favors Leibniz’s notation against Newton’s by saying
that “. .. incommode hoc modo y repraesantur, cum nostro signandi modo d'%y

facillime comprehendatur”.

D’Alembert (1754, Encyclopédie) introduces a clear notion of the limit (“This
limit is the value which the ratio z/n approaches more and more ... Nothing is
clearer than this idea; . ..”).

Lagrange (1797) rejects the infinitely small straightaway and tries to base anal-
ysis on power series (“One knows the difficulties created by the assumption of
infinitely small quantities, upon which Leibniz constructs his Calculus.”) He in-
troduces the name derivative and uses for dy/dx the notation (see quotation)

2 Reproduced with permission of Bibl. Publ. Univ. Gengve.
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(1.2) y or f(x).

Cauchy (1823) condemns the Taylor series (counterexample y = e~/ rz,

Sect. IT1.7 below) and reestablishes the infinitely small as a limit.

N9

Bolzano (1817) and Weierstrass (1861) bring the notion of limit to perfection with
€ and J (see Chap. III).

F. Klein (1908) defends the educational value of the infinitely small (“The force of
conviction inherent in such naive guiding reflections is, of course, different for dif-
ferent individuals. Many — and I include myself here — find them very satisfying.
Others, again, who are gifted only on the purely logical side, find them thoroughly
meaningless . . . In this connection, I should like to commend the Leibniz notation

)

Differentiation Rules

His positis calculi regulae erunt tales:
(Leibniz 1684)

Sums and Constant Factors. Let y(x) = a - u(z) + b - v(x), where a and b
are constant factors. Setting y + Ay = y(x + Az), u + Au = u(z + Azx),
v+ Av = v(x + Az), we have

Ay=a-Au+b- Av

and we get the differentiation rule

d d d
13 y=au+bv = Y_a. u+b~ Y or y =au' +bv'.
dx dz dz

Products. For the product of two functions y(z) = u(x) - v(x) we have

y+ Ay = u(zx + Azx) - v(x + Ax)
= (u+ Au) - (v + Av) = wv + u Av 4+ v Au + Au Awv,

which leads to dy = udv + vdu “because du dv is an infinitely small quantity
when compared to the other terms u dv & v du” (de L’Hospital 1696, p.4) or

dy dv du , , ,
(1.4) Yy=u-v = =u +v or Yy =uv+uv.
dx dx dx

Examples. We write 23 as a product y = x3 = 2 - x and the above formula yields

y' = 2% -1+ x-2x = 322. Similarly, for the product y = z* = 2 - 2 we get
y' = 3.1+ x- 322 = 423, By induction, we see in this way that for any positive

integer n
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Quotients. For the quotient y(z) = u(x)/v(z) of two functions we have

u+ Au

Ay = .
y+ay v+ Av

Subtracting y on each side and using the geometric series for (14 Av/v)~! yields
forv #£0

_utAu u vAu—udv  vAu—ulv Av  (Av)?
Ay_v—l—Av_v_ v2+vlAv v2 .<1_ * i)

Therefore, we have for v # 0

du dv / /
U d vo—u u'v — uv

(1_6) y = :> y = dx 9 dx or y/ = .
v dx v

Example. The function y = =™ = 1/z™ is the quotient of u = 1 and v = z™. By
applying (1.6) we get

1 dy —na" ! 1 1
Y= = de — 20 :7nx"+1:7n'zn
This is Eq. (1.5) for negative n.
Ay Ax .
Tslope=1/2 1 s - slope =2
Ax Ay
1 o

FIGURE 1.4. An inverse function

Inverse Functions. Let y = f(x) be a given function and x = g(y) its inverse.
Since the graphs are reflected in the 45° axis (Fig. 1.4), we have

dy 1
Ay 1 = dx
— dx
(L.7) . Az and dx dy for dy 7é 0.

Ay
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Example. y = x'/? is the inverse function of = y2. Therefore,

d 1 1 1 1
— g1/? = Y- == = g 1/2
v dx ‘;z 2y 2/ 2 *

and Eq. (1.5) appears to be true for rational n.

Exponential Function. For the exponential function y = e” (Sect.1.2) we have
Y+ Ay = 2TAT = T . AT and Ay =e%(e2" —1).

Using the series e2* = 1 + Ax + (Ax)?/2! + ... (Theorem 1.2.3) we therefore

obtain

(1.8) y=e" = y = e,

The exponential function is its own derivative.

Logarithms. There are several ways to compute the derivative of y = In z.
a) It is the inverse function of z = e¥. By (1.7),

dy 1 11

(1.9) y=Inz = d:z::dx/dy:ey_x'

b) We can also compute Ay from y + Ay = In(x + Az) and obtain

A A
Ay =In(z + Az) — In(z) :lner v :1n(1—|— I)

X X
A A 1/Ax\2
With the series for ln(l + w) o 9 ( gc) + ... (see (1.3.13)) we again
X X X
obtain (1.9).
Trigonometric Functions. Consider first y = sin z. Using Eq. (1.4.3) we get

y+ Ay = sin(z + Az) = sinz cos Az + cosz sin Azx.

With the series expansions for sin Az and cos Az (see (1.4.16) and (1.4.17)) we
obtain

Ay = sinx<f (A;;)Z + .. ) + Cosx(Ax — (Agx')?’ + .. )
and consequently
(1.10) Yy =sinz = y = cosz.
Similarly,
(1.11) Y = CoST = y = —sinw.

For y = tanx = sinz/ cos x we use (1.6) and obtain
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d 2 in? 1
(1.12) Y _ oS TAsIOT L e = .
dx cos? x cos? x

Inverse Trigonometric Functions. As a consequence of (1.7) and the above for-
mulas for the derivatives of the trigonometric functions, we have

dy 1 1 1
1.13 = t = = = =
(1.13) y = arctany dr dr/dy 1+tan?y 1+ 22’
dy 1 1 1
(1.14) = arcsinz = = = = ,
y dr  cosy \/1—sin2y V1— a2
dy 1 1 -1

(1.15 = arccosr = = . = - = .
) Y de  —siny /1 —cos?y V1-—a?

Composite Functions. Consider a function y = h(z) = f(g(x)) and let z =
g(z). For the incremented values we have z + Az = g(z + Az) and y + Ay =
h(z + Az) = f(z + Az). From the trivial identity

Ay Ay Az
Arx Az Ax
it follows that

dy dy dz

(1.16) =g g O M@= (g() ().

In order to differentiate a composite function, one has to multiply the derivatives
of the functions f and g.

Z
y Az y

1A 1 1Ay

FIGURE 1.5. A composite function

Example. The function y = sin(2x) is composed as y = sinz and z = 2z (see
Fig. 1.5). By (1.16) its derivative is ' = cos z - 2 = 2 cos(2x).

Relying on these rules, the computation of the derivative of any function
composed of elementary functions (Descartes’ great dream, see quotation at the
beginning of this section) has become a banality. For instance,
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=z-1 dy dy d
(z=z-lna) dy _dy dz _

y:amzem-lna i _ 0 de 76m-lna.1na:1na'am,
a a-lnx (Z =ar hlI) dy dy dz a @ a—1
frd frd = — . — . —
y== € de dz dx o @

Thus, we have Eq. (1.5) for any real number n.

Parametric Representation and Implicit Equations

We take as an example a curve of venerable age: the conchoid of Nicomedes (200
B.C.). For two given constants a and b the conchoid is defined as follows: on any
ray through the origin G the distance of a point A on the conchoid and the point F
on a horizontal line of height a is of constant length b (see Fig. 1.6).

M

FIGURE 1.6. The conchoid of Nicomedes

The similarity of triangles FAB and FGL gives the relation
y—a b
a Ve 4y =
which leads to
(1.17) (y —a)?(2? + y?) = b*y>.

If we wanted to express y as a function of = from this equation, we would have to
solve a polynomial equation of degree 4 for each x. We should try instead to work
with the implicit equation (1.17) itself.

Another possibility is to denote the angle LGF by ¢ and obtain

r = atany + bsin
(1.18) 4 v
y=a+bcosp.

When ¢ varies from —m /2 to /2, the expressions (1.18) then form a parametric
representation of our curve. Such parametric representations are not unique. For
example, we may also use the distance GF as parameter ¢ (see Fig. 1.6). Then we
obtain
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z = (b/t+1)\/t2 — a2

1.19
(19 y=(b/t+1)a.

This represents the right half of the curve when ¢ varies from a to oc.
We now consider the problem of computing the tangent to the conchoid at a
given point A (this is “Aufgabe 7” of Joh. Bernoulli 1691/92).

Differentiation of the Parametric Equation. We consider y in the second equa-
tion of (1.18) or (1.19) as a function of the parameter, and we interpret the param-
eter as the inverse function of = of the first equation. Then we have by (1.16) and
(1.7,

dy dy dyp dy ;dx dy dy ;dx

1.20 _ - _ ,
(1.20) de  dp de  del dp % dx dt/ at

Thank you, Leibniz, once again, for your notation. Differentiating the equations
(1.19) and dividing the derivatives we obtain for the conchoid

dy  —abVt? — a2
(121) y_ —abvi? —a
dz t3 + a?b

This formula allows a nice interpretation (Joh. Bernoulli 1691/92): denote by M

the point such that triangles LGF and GMA are similar. Then, the tangent in A is
parallel to the line connecting M and F (see Fig 1.6).

Implicit Differentiation. This method, already used by Leibniz (1684), consists
of using the above rules to differentiate directly an implicit equation defining the
function y(x) (in our example the equation (1.17)). This gives

2(y —a)dy (2* +y°) + (y — a)* (2w dz + 2y dy) = 2%y dy
and after division by 2dz,

dy —z(y — a)?
(122 dr = (y— a)(a® +y2) + (y — a)2y — by’

This implicit differentiation will be discussed more rigorously in Sect. IV.3.

Exercises

1.1 Extend the differentiation rule (1.4) to three factors
Yy=u-v-w = y’:u"v~w+u'v"w+u~v'w’.
1.2 Compute the derivative dy/dx of
B 5 sin(?)x + b2 + 62””) . tan(l_ﬁﬁ;) + %/“(fz;l;‘f

Y= 2_p2
T 3a2z3 _xe=b . 3z
arccos V3t + arctan(1/z) +e 2 arcsin \/1_352
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1.3

1.4

1.5

1.6

II. Differential and Integral Calculus

(An example of Euler 1755, §192). Show that if

(=2 (=2
y=e° then y =e° e -ev.

Compute the derivative of the cis-
soid of Diocles (about 180 B.C.).
This curve, used by Diocles for
solving the Delian problem of du-
plicating the cube, is created by G
the circle MCE as the set of points
of intersection of the lines DM
and BF, where the arcs BC and
CD are equal. Show that the tan-
gent at A is parallel to the line EH,
where H is such that EF and GH
are parallel.

oy H

Compute the derivative of the circle defined by 22 + y? = r2 by implicit
differentiation as well as by solving for y followed by explicit differentiation.

(Leibniz 1684). Compute the derivative of the function y(x) defined by

x  (a+bx)- (c—zx)
y (ex + frx)?

Yy

+ ax +yy + =0
Vo9 +yy Vhh + 0z + mzx

where a, b, ¢, e, f, g, h, £, and m are constants. This equation does not rep-

resent any ancient famous Babylonian or Egyptian curve and has no other

particular interest either. It was just chosen by Leibniz as a horribly compli-

cated expression in order to demonstrate the power of his calculus.
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But the velocities of the velocities, the second, third, fourth, and fifth ve-
locities, &c., exceed, if I mistake not, all human understanding. The further
the mind analyseth and pursueth these fugitive ideas the more it is lost and
bewildered; . ..

(Bishop Berkeley 1734, The Analyst, see Struik 1969, Source Book, p.335)

. our modern analysts are not content to consider only the differences
of finite quantities: they also consider the differences of those differences,
and the differences of the differences of the first differences. And so on
ad infinitum. That is, they consider quantities infinitely less than the least
discernible quantity; and others infinitely less than those infinitely small
ones; and still others infinitely less than the preceding infinitesimals, and
so without end or limit ... Now to conceive a quantity infinitely small . ..
is, I confess, above my capacity. But to conceive a part of such infinitely
small quantity that shall be still infinitely less than it, and consequently
though multiplied infinitely shall never equal the minutest finite quantity,
is, I suspect, an infinite difficulty to any man whatsoever; . . .

(Bishop Berkeley 1734, The Analyst)

The Second Derivative

We have seen in Sect. II.1 that for a given function y = f(z) the derivative f'(z)
is the slope of the tangent to the curve y = f(z). Therefore, if f'(z) > 0 for
a < z < b, the function is increasing on that interval; if f'(z) < 0fora < x <b,
it is decreasing. Points at which f’(x) = 0 are called stationary points.

y// >0
¥, 7 Y1
Yo 0
y" <0
Xo X Xo X
FIGURE2.1a. Geometrical meaning of the FIGURE2.1b. A drawing of Joh. Bernoulli
second derivative (1691/92)"

Newton (1665) and Joh. Bernoulli (1691/92) were the first to study the ge-
ometric meaning of the second derivative of f. We differentiate y' = f'(z) to
obtain y” = f"(x). If f"(z) > 0fora < x < b, then f'(z) will be increasing,
i.e., for two points xg < x1 we will have f'(z¢) < f’(x1). This means that the
curve is steeper at z1 than at xo and therefore is crooked upward (see Fig.2.1a,
left). We then say that the function f(x) is convex downward.

Similarly, if f”(z) < 0 for a < x < b, the function f(x) is convex upward
(see Fig. 2.1a, right). Points with f” () = 0, where the second derivative changes
sign, are called inflection points. Fig. 2.1b reproduces a drawing of Joh. Bernoulli
explaining these facts.

Reproduced with permission of Univ. Bibl. Basel.
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Problems ‘“de maximis & minimis”.

I just wish him to know that our questions de maximis et minimis and de
tangentibus linearum curvarum were perfect eight or ten years ago and that
several persons who have seen them in the last five or six years can bear
witness to this.

(Letter from Fermat to Descartes, June 1638; Oeuvres, tome 2, p. 154-162)

When a Quantity is the greatest or the least that it can be, at that moment
it neither flows backward or forward. For if it flows forward, or increases,
that proves it was less, and will presently be greater than itis. . . . Wherefore
find its Fluxion, by Prob. 1 and suppose it to be nothing.
(Newton 1671, engl. pub. 1736, p. 44)
The problem of finding maximal or minimal values was one of the very first moti-
vations for the differential calculus (Fermat 1638) and was cultivated by Lagrange
throughout his life (see Lagrange 1759).

At a maximal or minimal value of a function f(x), this function can neither
increase nor decrease. Hence we must have f/(z() = 0 (stationary point). It will
be a (local) maximum if the sign of f’(x) changes from + to — (this is the case
if f"(x¢) < 0) and a (local) minimum if it changes from — to + (this happens if
f"(xo) > 0). We summarize this as

@1 f'(z0) =0 and f"’(x9) >0 = x¢is alocal minimum,
) (o) =0 and f"(x9) <0 = = isalocal maximum.

s

These facts “sequentibus exemplis illustrabimus”:

Example 1. We choose
y =2 — 2% — 3z,
(2.2) y' =3z — 2z — 3,
Yy’ =6x —2.

The function can be seen to increase where 5
y > 0,ie., forz < (1 — \/10)/3 and for
x> (14 +/10)/3. It is convex downward for
2 > 1/3 and convex upward for z < 1/3. The
point z = 1/3 is an inflection point. The point
r = (1 —+/10)/3 is a local (but not global)
maximum, the point z = (1 + /10)/3 is a
local minimum.

Example 2. We consider the function (see Euler 1755, Pars Posterior, §265)

T

- , 1—2? " —6z + 223
1422 N

which, together with its first and second derivative, is plotted in Fig. 2.2. The func-
tion y(x) possesses a (global) minimum for z = —1, a (global) maximum for
x = 1, and inflection points at x = 0 and = = ++/3. Tt is convex downward on
the intervals —v/3 < = < 0 and v/3 < 2 < oo and convex upward elsewhere.
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/ - \
/o \  Max Infl

FIGURE2.2. Maxima, minima, inflection points of Euler’s example

Fermat’s Principle.

A
V1
a !
X I —x
b
V)
B
FIGURE2.3. Drawing by Joh. Bernoulli FIGURE2.4. Fermat’s principle

1691/922

Fermat wishes to explain the law of Snellius for the refraction of light between
two media in which the velocities are v; and vg, respectively. Let two points A, B
(see Fig.2.4) be given. Find angles o and « such that light travels from A to B
in minimal time or with minimal resistance. This means, find = such that

Va2 422 N V02 + (¢ — x)?
o V1 V2

2.4) T = min !

Fermat himself found the problem too difficult for an analytical treatment (“I ad-
mit that this problem is not one of the easiest”). The computations were then
proudly performed by Leibniz (1684) “in tribus lineis”. The derivative of 7" as a
function of x is

2 Reproduced with permission of Univ. Bibl. Basel.
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, 1 2x —2(¢ —x) 1

= < .

v12vVa2 4+ 22 2,/b2 + (£ — )2 v2
Observing that sinay = /v/a2 + 22 and sinas = (£ — 2)/1/b2 + (£ — )2, we
see that this derivative vanishes whenever
2.5) sin o _ sin ag

' (% V2
(law of Snellius). The computation of 7",

, 1 a? 1 b2

= >0
v1 (a? + x2)3/2 * vy (B2 + (0 —x)?)3/2 = 7

shows that our result is really a minimum.

De Conversione Functionum in Series

Taylor’s Approach.
We have here, in fact, a passage to the limit of unexampled audacity.
(F.Klein 1908, Engl. ed., p.233)
We consider (Taylor 1715) for a function f(x) the points xg, ©1 = xg+ Az, x2 =
2o + 2Ax, . .. and the function values yo = f(x0), y1 = f(x1), y2 = f(x2),. ...

flz
p(x)
A Az =0.1
Zo X1 i) o X1 To o T2

FIGURE2.5. Creation of the Taylor polynomial

Then we compute the interpolation polynomial passing through these points (see
Fig.2.5 and Theorem I.1.2; for the latter we define x = zo + tAz, t = *,*°)

r—m9 Ayo (v —x0)(z — 21) A%y
1 Az 1-2 Ax2’

or with more such terms for higher degrees. If we let Ax — 0, 1 — xg, x93 — Zo
(or, as we said: if we take Az infinitely small), the quotient Ayg/Ax in the second
term tends to f’(xg). Further, the product (z — xo)(x — x1), which appears in the
third term, will tend to (x — g)2. It was then postulated by Taylor that the second
differences (divided by Ax?) will tend to the second derivative (see Exercises 2.5
and II1.6.4); in general,

(2.6) p(z) =yo +

AFyy dry

2.7
27 Azt dgk 0

= ) (29).
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If we consider in the interpolation polynomial (2.6) more and more terms, and, at
the same time, take the limit as Az — 0, we obtain the famous formula
(2.8)

_ . / (x —x0)? (z —x0)®
f(x) = f(xo) + (x —z0) f (20) + (o) + " (xo)+. .. .

2! 3!
All the series of the first chapter are special cases of this “series universalissima”.
For example, the function f(x) = In(1 4 x) has the derivatives

fO)=0, f0)=1, fH0)=(-1)""k-1)

and we obtain

2 1'3 1'4

x

In(l1+z)=x 5 g 4:I:....
Remarks. Formula (2.8) was believed to be generally true for more than a century.
Cauchy then found an example of a function for which the series (2.8) converges,
but not to f(z) (see Sect.I11.7). There are also examples of functions for which
the series (2.8) does not converge at all for x # z( (see Exercise II1.7.6). A more
satisfactory proof of (2.8) (due to Joh. Bernoulli) uses integral calculus and will
be given in Sect. I1.4.

Maclaurin’s Approach (Maclaurin 1742, p.223-224, art. 255). For the function
y = f(z) and a given point zy we look for a series (or polynomial)

(2.9) p(z) = po + (. — 20)qo + (x — 20)%ro + (x — 20)3s0 + . . .,
for which
(2.10) pD(xo) = fD(xe) i=0,1,2,...,

i.e., both functions have the same derivatives up to a certain order at z = xg. Set-
ting © = x in (2.9) yields po = p(x0) = f(xo) by (2.10). We then differentiate
(2.9), again set x = x¢, and obtain gy = p’(x¢) = f’(xo). Further differentiations
give 2lrg = f"(x0), 3lso = f"'(x¢), and so on. Therefore, the series (2.9) is
identical to that of (2.8).

Partial sums of the series (2.8) are called Taylor polynomials.

\
Example. For the function given in (2.2) we 2\7
choose the point 2o = 1 and have f(z() = —3, . )
f/(on) = -2, f//(xO) = 4, and f’”(fﬂo) = 6. \ \ AL \ \ //\
Thus, the Taylor polynomials of degree 1, 2, -2 /-1 U W 2) 13
and 3 become P\ /

;
pi(x)=-3-2x—-1)=—-2z—-1, 2" )/
pola) =pi(@) + da—1)2 =222 —6a+1, |f =P N\ /P

N
Pa(x) = pa(e) + S — 1)* = 2* — a2 — 3a. I
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Newton’s Method for Roots of Equations. The Taylor polynomials are an ex-
tremely useful tool for the approximate computation of roots. We consider the
example treated by Newton (1671),

(2.11) 22 -2 —5=0.

Trying out a few values of the function f(z) = 2® — 2z — 5, we find f(0) = —5,
f(@1) = =6, f(2) = —1, f(3) = 16. Hence, there is a root close to 2o = 2. The
idea is now to replace the curve f(x) by its tangent line at the point ¢, which is
p1(x) = —1 4 10(z — 2). The root of p;(z) = 0, which is = 2.1, is then an
improved approximation to the root of (2.11). We now choose o = 2.1 and repeat
the calculation. This gives p1(z) = 0.061 4+ 11.23(2 — 2.1) and = = 2.0945681
as new approximation of the root of (2.11). A further step yields x = 2.0945515,
where all digits shown are correct (see in Fig.2.6 a facsimile of the calculation
done by Newton).

=+ 2,10c0c000
P—gzy—5 =0 —0,00544853
+ 2,09455147 =y
atp=y] +r|H8+imptér+p
24— 2p

et | sib
Summa_[—1I + 1op + 6p* +p}

= 3|+ 0,001 + 0,039+ c,3¢* + ¢!

olt+g=p ——:6; 4 oo6 + L2 60
+10p [+1, 10

Summa_ |+ 0,061 + 13,239 + 6,3¢* + ¢3
—0,0054+ ¥ =¢| + 6,3¢° |+ 0,000183708 — c,06804r-} 6,37
411,239 0060642 + 11,23

-+0,061 |+ 0,061

Summa |4 0,0005417084-11,16196r4 6,37

[—o,00c04854+ s =7

neglefto, & prodit 6,37 4 11,161967 + 0,000541708 = o fere, five
(rejecto 6,3r7) = :4?%",’29 = — 0,00004853 fere, gum feribo in

tiva parte Quotientis. Denique negativam partem Quotiends ab
Affirmativa fubducens habeo 2,09455147 Quotientem qualitam.

FIGURE 2.6. Newton’s calculation for z° — 2z — 5 = 0°

Use of the second degree polynomial (E.Halley 1694). We choose for the above
example the point zg = 2.1 and use two terms of the Taylor polynomial. This
gives

0.061 + 11.23(z — 2.1) + 6.3(x — 2.1)* = 0,

a quadratic equation in z = z — 2.1, which has two roots. We choose the one that
is smaller in absolute value (i.e., for which z is closer to 2.1) and obtain

—11.234+v/11.232 — 4-0.061 - 6.3
z=x—21= 12.6 ,

3 Reproduced with permission of Bibl. Publ. Univ. Gengve.
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hence, z = 2.0945515. Again, all digits shown are correct, obtained this time with
only one iteration.

Exercises

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

(Euler 1755, §261). Study the functions
y =t — 8% + 2227 — 242 + 12, y=a®— bt + 5z + 1.

Find maxima, minima, convex downward regions, inflection points.
(Euler 1755, §272). The sequence of numbers

V1=1, ¥2=14142, ¥/3=1.4422, V4 =1.4142, V5=1.3797,...

suggests that the functiony = ¥z = x'/* possesses a maximum value close
to x = 3. Where exactly? In which relation is this value with the minimum
value of y = z®?

(Joh. Bernoulli 1691/92). Find x such that
the rectangle formed by the abscissa and
the ordinate for a point on the circle y =
vz — x2 has maximal area. Verify the max-
imality by computing the second derivative.

by 1

(Euler 1755, §272). Find x such that x sin x possesses a (local) maximum
(you will find an equation that is best solved by Newton’s or Halley’s method;
Euler gives the result z = 116°14/21”720"35""47"""; the correct value of the
last digits is 32'""/38"""").

Compute for the function y = 2 the second difference
A%y = (z+241)% — 2(x + Az)3 + 23,
Show that this difference, divided by Az2, tends, for Az — 0, to 6z, the
second derivative.
Let f(x) = sin(2z?). Compute f'(z), f"(x), f”(z), f"""(z), ... to obtain
the series of Taylor
/ 1 ‘/L.2 " xs " :E4
F@) = FO) + £+ 10)] +70) 5 +£70)] +..
Is there a much better way of obtaining this result?

Show that Newton’s method, applied to x? — 2 = 0, is identical to (1.2.13),
the Babylonian computation of v/2. However, formula (1.2.14) is different
from Halley’s method. Why?

(Leibniz 1710). For a function y(z) = u(x) - v(x) show, by extending (1.4),
that

1 1 /.. 1 " " ",/ /.1 "
Yy =u'v+2uv 4+ uv”, Yy =u"v+3uv + 3uv" +uv”.

Find a general rule for 3(™).



98 II. Differential and Integral Calculus

I1.3 Envelopes and Curvature

My Brother, Professor at Basle, has taken this opportunity to investigate
several curves that Nature sets before our eyes every day . ..

(Joh. Bernoulli 1692)
I am quite convinced that there is hardly a geometer in the world who can
be compared to you. (de L’Hospital 1695, letter to Joh. Bernoulli)

Envelope of a Family of Straight Lines

Inspired by a drawing of A. Diirer (1525, p. 38, see
Fig. 3.1, right), we consider a point (a,0) moving
on the z-axis and the point (0, 13 — a) moving on
the y-axis in opposite direction. If we connect these
points by a straight line 13-a

~13 13
G y="" "@-a)=183+z—a— " RN
a

a

we obtain an infinity of lines which are displayed in Fig. 3.1, and which create an
interesting curve, called the envelope, which is tangent to each of these lines. The
problem is to compute this curve. This kind of problems was extensively discussed
between Leibniz (see Leibniz 1694a), Joh. Bernoulli and de L’ Hospital.

y :
151 38
N L
10
5
a=6
a=>5 X
a=4
%) 5 10 15
- = ‘\‘\x';.‘w__
a=3 e ETerrs e "

FIGURE 3.1. Family of straight lines forming a parabola and a sketch by Diirer (1525)"

Idea. We fix the variable x to an arbitrary value, say, x = 4, for which the family
(3.1) becomes y = 17 — a — 52/a. We then observe that this value first increases
for increasing a (see Fig.3.1; for a = 3,4,5,6 we have y = —3.33,0,1.6,2.33
respectively). During this time the point (4, y) approaches the envelope. The en-
velope is finally reached precisely when this function attains its maximum value,

' Reproduced with permission of Verlag Dr. Alfons Uhl, Nérdlingen.
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whence where the derivative ¢/ = —1 4 52/a? = 0, i.e., for a = v/52. This value
isy =17 — 2v/52 = 2.58.

The same idea works for any value of x: we have to compute the derivative
of (3.1) with respect to a by considering x as a constant (‘“differentiare secundum
a”). This is called the partial derivative with respect to a. At points of the envelope
this derivative must vanish. Today we denote this as (see Sect. IV.3 below, see also
Jacobi 1827, Oeuvres, vol. 3, p. 65)

dy

(3.2) P 0.

For Eq.(3.1) this becomes dy/da = —1 + 13x/a? and condition (3.2) gives
a = v/13x. We obtain the envelope by inserting this into (3.1),

(3.3) y=x—2V13z+13

or

(3.4) (y —x —13)? = 52z.

This is the equation of a conic, which, in our case, turns out to be a parabola.

The Caustic of a Circle

Problem. Let 2% + y? = 1 be a circle (Fig. 3.2) and suppose that parallel vertical
rays are reflected by this circle. This yields a new family of straight lines which
apparently produce an interesting envelope. Find the equation of this envelope.

Al I |

_‘i 0

—

V407

\VAANIY
VAN
A SEANY

N
N
1‘ 4
M

il “|‘|‘|‘i\‘§§‘
1 \ X
Baiidss

pay

FIGURE 3.2. The caustic of the circle (Joh. Bernoulli 1692)

Joh. Bernoulli (1692) gives a solution “per vulgarem Geometriam Carte-
sianam”; on the other hand, in his “Lectiones” (Joh. Bernoulli 1691/92b, Lectio



100 II. Differential and Integral Calculus

y
L X
0 1 1

N2

1
2 cosa
o
S 200— /2

—] -

FIGURE 3.3. The reflected ray

XXVII, “Caustica circularis radiorum parallelorum”, Opera, vol.3, p.467), he
uses the “modern” differential calculus.

Solution. For representing the family of reflected rays, we choose as parameter the
angle o between the ray and the radius vector (see Fig. 3.3). After some elemen-
tary geometry and from the fact that the reflected ray has slope tan(2a — 7/2) =
— cos 2a/ sin 2a, we find the equation

3.5) y=— —x =

2cos o sin 2« 2cosax 2

1 cos 2« 1 x ( sin o Ccos oz)
cosa  sina/’

As required by (3.2), the condition for the caustic is expressed by

oy sin x
3.6 = - =0
(3.6) Oa 2cos?a  2cos? asin? o
which gives
(3.7 x = sin® a.

In order to obtain the equation of the caustic, we insert this into (3.5) and obtain
1 ( 1 sin® o
2

This is, together with (3.7), a parametric representation of the caustic. If we want
y expressed by x, we insert sin @ = x'/3 and obtain

(3.8) y:f\/l,x2/3<;+xz/3)'

1
Y= —sinzacosa) :—cosa<2—|—sin2 )

Ccos @ COos «x
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Envelope of Ballistic Curves

Problem. A cannon shoots bullets with initial velocity vg = 1 at all elevations.
We wish to find the envelope of all ballistic parabolas (Fig. 3.4). This question, al-
ready considered by E. Torricelli (De motu projectorum 1644), was among the first
problems which fascinated the young Joh. Bernoulli (see Briefwechsel, p. 111).

S
N

)

— -‘-'!l"-;._\\.\\x\

RN

FIGURE 3.4a. Envelope of shooting para-
bolas 1721, in “Peterhof™, St. Petersburg

Solution. Let a be the slope of the cannon. Then the movement of the bullet (under
a gravitational acceleration of g = 1) is given by

0) t ) at t2
x = , = - .
V14 a? Y Vi4a2 2
Eliminating the parameter t = 2v/1 + a2, we get
2 1 2
(3.9) y:ax—x(;a).

Differentiation of (3.9) with respect to a gives dy/da = x —ax? and the condition
(3.2) leads to a = 1/x. Inserting this into (3.9), we obtain

y=(1-2%)/2,

so that the envelope is a parabola with the cannon at its focus.

Curvature

There are few Problems concerning Curves more elegant than this, or that
give a greater Insight into their nature.
(Newton 1671, Engl. pub. 1736, p. 59)
Problem. For a given curve y = f(x) and a given point (a, f(a)) on this curve,
we want to find the equation of a circle that approximates as well as possible
the function f(z) in the neighborhood of a. This circle is then called the circle
of curvature and its center is the center of curvature. The inverse of its radius is
called the curvature of the curve at the point (a, f(a)).
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Idea (Newton 1671). Let

(3.10) Y= f(a’) - f’(a)

be the normal to the curve y = f(x) at the point 2 = a. If we increase a (“imagine
the point D to move in the curve an infinitely little distance”), we find a second
normal that intersects the first one at the center of curvature (Fig. 3.5).

The situation is identical to that of the envelopes (see Fig.3.1b). Thus, we
compute

@) 1
F@2 C T ey

and conditon (3.2) yields for the center of curvature
(3.12)
(1+ (f(a)?) f'(a) _ zo—a _ (1+(f'(a))?)
f"(a) ) Yo— fla) = — #/(a) - f"(a) :
(

For the radius r = /(29 — a)2 + (yo — f(a))? and for the curvature x, we thus
get

(3.11) — f'(a) +

To—a = —

@l
(1+ (f(a))?)*”

(3.13) and k=

(1+(f'(a))?)*”
17" (a)]

(Xo0)

an

'h

FIGURE 3.5. Curvature, sketches by Newton 1671, (Meth. Fluxionum; French transl. 1740)2

Example. For the parabola y = 22 we get 7 = (1 + 4a?)/?/2, and the center of
curvature is given by

1+ 4a2)2 1+4a) 1
(14) w0 —a— " +2a)a:—4a3, vo=a? + ¢ +2“):2+3a2.

2 Reproduced with permission of Editions Albert Blanchard, Paris.
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These formulas form a parametric representation of the geometric locus (zg, yo)
of the centers of curvature. It is called the evolute. In the situation of Eq. (3.14),
the parameter (here a) can be eliminated and we obtain (see Fig. 3.6b)

2/3
1 i)
= 3 .
Yo 2+ <4)

Fig. 3.6aillustrates the fact that the evolute is the envelope of the family of normals
to the given curve.

FIGURE 3.6a. Evolute = envelope of the FIGURE3.6b. Parabola y = z* and its
normals evolute

Curvature of a Curve in Parametric Representation. Consider a curve given by
(2(t),y(t)) and suppose that close to the point (z(a), y(a)) it can be represented
asy = f(x). Then, we have by (1.20)

oy dy _dy/dt _y(t)
fl) = dr  dx/dt  2'(t)’

and for the second derivative

wy_ dordyy _d oy )y jde 2 (H)y" () — 2" )y (t)
Fiw) = d:c(d:c) - dt(x’(t)) dt o/ (t)3 '

Inserted into Egs. (3.12) and (3.13), we get

o nla) — y/(a)(x/(a)2+y/(a)2)
1 "= @) - e )
o @ @R+ y (@)
(3.16) Yo —y(a) = gc’(a)y”(a) _ x”(a)y’(a)’
@@y
G-17) ~ @(a)y"(a) — 2" (a)y/(a)]
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FIGURE3.7. Cycloid and its evolute

mais aussy dans les
8 P la roulette premiere

] donc la roulette A4
le diametre AE =:
c ¢ grandeur de AD, ¢

FIGURE3.8. A cycloid drawn by Joh. Bernoulli (1955, p. 254, letter of Jan. 12, 1695 to de
L’Hospital)®

Example. The cycloid (trajectory of the valve of the wheel of a bike) is given by
the parametric representation

(3.18) r =1—sint, y =1—cost.

Computing its derivatives, we obtain from Eqgs. (3.15) through (3.17) that the evo-
lute of the cycloid is given by

3.19) To = a +sina, Yo = —1 4+ cosa.
This is a cycloid again, in a different position.

Involutes. We now start from a given evolute ABB (see Fig. 3.6b) and construct a
new curve CC defined by the property that the arc length ABC is constant (imagine
a string unwinding from the evolute). These new curves are called involutes. If one
point of the involute coincides with the original function f(z), both curves will
have the same curvature. It then follows (to be proved rigorously by the ideas of
Sect. I11.6) that both curves are identical. Hence, not only the evolute, but also the
involute of the cycloid (with the correct choice of the arc length) is again a cycloid
(Newton 1671, Prob. V, Nr. 34). Huygens (1673) used this property to construct the
best pendulum-clocks of his century, based on the fact that a pendulum following
a cycloid is isochronous (see Fig. 7.8 of Sect. I1.7).

3 Reproduced with permission of Birkhaeuser Verlag, Basel.
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Exercises

3.1 A bar of length 1 glides along a vertical wall (see Fig. 3.9a). Find a formula
for the created envelope.

3.2 Find a formula for the envelope (see Fig. 3.9b) created by the family

a)

Sz
S

e
7

i =

77
- 7%
7

AN
SN
N

4
5
H

==}

evolute

FIGURE3.9. Evolutes and envelopes

3.3 (Cauchy 1824). Find the envelope created by the family of parabolas
y = b(x + b)?

with parameter b (see Fig. 3.9¢).

3.4 Compute for the function y = In « the radius of curvature at the point a and
determine a for which this radius is minimal (see Fig. 3.9d). It can be seen
that the evolute has a stationary point (a cusp) at this minimal position.

3.5 Compute the evolute of the ellipse (see Fig. 3.9¢)

N 1 xr =acost 0<t<2
= or .
a? = b2 y = bsint -

Determine the maximal and minimal curvature.

b2 a?
Result. I:(a* )cos3t, y:(bf b)sin3t.
a
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3.6 Compute the radius of curvature of the catenary y = (e” + e~ *)/2. Show
that this radius for a given point M on the curve is equal to the length of the
normal MN (see Fig. 3.9f).

3.7 One observes in Fig. 3.7 that a spoke of a rolling wheel creates an envelope
that resembles a half-sized mini cycloid. This becomes more visible when
the entire diameter is drawn (Fig. 3.10). Compute the envelope of this family

of straight lines

cost
=1 —t)- .
4 +($ ) sint

—eo

SRR

q,‘,/
R
LS

5
Dess

FIGURE 3.10. Small cycloid as envelope

Guillaume-Francois-Antoine de L’Hospital (1661—1704)5
Johann Bernoulli (1667—1748)4 Marquis de Sainte-Mesme et du Montellier
Compte d’ Autremonts, Seigneur d’Ouques et autres lieux

4 Reproduced with permission of Georg Olms Verlag, Hildesheim.
5 Reproduced with permission of Birkhaeuser Verlag, Basel.
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I1.4 Integral Calculus

... notam j pro summis, ut adhibetur nota d pro differentiis . . .
(Letter of Leibniz to Joh. Bernoulli, March 8/18, 1696)

...quod autem . . . vocabulum integralis etiamnum usurpaverim . ..
(Letter of Joh. Bernoulli to Leibniz, April 7, 1696)

And whereas M" Leibnits prefixes the letter f to the Ordinate of a curve
to denote the Summ of the Ordinates or area of the Curve, I did some years
before represent the same thing by inscribing the Ordinate in a square . . ..
My symbols therefore . . . are the oldest in the kind.
(Newton, letter to Keill, April 20, 1714)
The integral calculus is, in fact, much older than the differential calculus, because
the computation of areas, surfaces, and volumes occupied the greatest mathemati-
cians since antiquity: Archimedes, Kepler, Cavalieri, Viviani, Fermat (see The-
orem 1.3.2), Gregory St. Vincent, Guldin, Gregory, Barrow. The decisive break-
through came when Newton, Leibniz, and Joh. Bernoulli discovered indepen-
dently that integration is the inverse operation of differentiation, thus reducing
all efforts of the above researchers to a couple of differentiation rules. The inte-
gral sign is due to Leibniz (1686), the term “integral” is due to Joh. Bernoulli and
was published by his brother Jac. Bernoulli (1690).

Primitives

For a given function y = f(x) we want to compute the area between the x-axis
and the graph of this function. We fix a point a and denote by z = F(x) the area
under f(x) between a and x (Fig.4.1a). The crucial fact is then that

4.1) the function f(z) is the derivative of F(x).
We then call F'(x) a primitive of f(x).

a T aTixs. .. Tp=D>
FIGURE 4.1a. Newton’s idea FIG. 4.1b. Leibniz’s idea FIG. 4.1c. Sketch by Newton'

Reproduced with permission of Editions Albert Blanchard, Paris.
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Justification. Newton imagines that the segment BD moves over the area under
consideration (“And conceive these Areas . . . to be generated by the lines BE and
BD, as they move along . . .”, Figs. 4.1a, 4.1c); consequently, if = increases by Az,
the area increases by Az = F(x + Ax) — F(«) which, neglecting higher order
terms of Az, is f(x)Ax (the dark rectangle of Fig.4.1a). In the limit Az — 0,
we thus have

dz
4.2) dz = f(x) - dx and = f(x).

dz

Leibniz imagines the area as being a sum (later: “integral”) of small rectan-

gles (Fig.4.1b):

(4.3) 2n = f(z1) Azy + f(22) Amo + ... + f(2) Az

This implies that
Zn — 2n—1 = f(xn) Azp,
and we again get (4.2) when Az; — 0. Consequently, the derivative is the in-
verse operation of the integral, much as the difference is the inverse operation to
addition.
After long attempts, Leibniz symbolizes the sum in (4.3) (for the limit
Ax; — 0) by (see Fig.4.2)

44) / (@) da.

Nowadays, this area between the bounds a and b is denoted by (Fourier 1822)

b
4.5) / f(z)dz,

whereas (4.4), the “indefinite integral”, stands for an arbitrary primitive F'(z) of

().

Sed exiis quz in
methodo tangentium expofui, patet efle d, 4 xx=xdx; ergo contra ¥
nx=fxdx (ut enim poteftates & radicesin vulgaribus calculis, fic nos
bis famma & differentiz feu{& d, reciprocz funt.)

FIGURE 4.2. First publication of the integral sign, an old-style “s” (Leibniz 1686)

Primitives are not unique; to each primitive F'(x) one can add an arbitrary
constant C' and F'(z) + C is again a primitive of the same function. For C' =
—F(a) we obtain the primitive F'(z) — F(a), which vanishes for x = a (as does
also the area z). Therefore, the area between a and b is

2 Reproduced with permission of Bibl. Publ. Univ. Gengve.
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(4.6) /a f(z)dz = F(b) — F(a)

(see the “Fundamental Theorem of Differential Calculus” in Sect. II1.6).

By reversing differentiation formulas we obtain formulas for primitives. For
example, the function f(z) = 2" has f/(z) = (n + 1)z™ as derivative. There-
fore 271 /(n + 1) is a primitive of 2". This and other formulas of Sect.IL.1 are
collected in Table 4.1.

TABLEA4.1. A short table of primitives

N wn—i—l 1
/x dw:n+1+c (n#-1) /xdlenx—i—C

/e””dx:e””—i—C

/sinxdx:—cosx—i—c /cosmdx:sinx—i—c
1 1 .
dr = arctanz + C dr = arcsinz + C
1+ 22 V1 — 22

Large tables of primitives can be many hundreds of pages long. We mention
the tables of Grobner & Hofreiter (1949) and Gradshteyn & Ryzhik (1980). In
recent years this knowledge has been incorporated into many symbolic computer
systems.

Applications

Area of Parabolas. The area under the nth degree parabola y = z™ between a
and b becomes by (4.6) and Table 4.1

b n+1 p prtl _ gntl
(4.7) / dr =" - @
o n+1la n+1

)

where we have used the notation F(z)|® = F(b) — F(a). For a = 0 this formula
is Fermat’s Theorem 1.3.2.

Area of a Disc. To compute the area of a quarter of a disc we consider the function
f(z) =1 —a2for0 <z < 1. A primitive of f(z) is

1
4.8) F(z) = 926\/1 -2+ 5 arcsin .

This can be checked by differentiating (4.8). Later we shall see how such formulas
are actually found. Applying (4.6), we thus get

1
area of unit disc :4/ \/1fx2dx:4(F(1)*F(O)) =,
0

since sin(w/2) = 1.
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There is another elegant way of computing the area of a disc. Nothing forces
us to assume that f(z) dz are slices of small vertical rectangles. Let us cut the disc
(of radius a) into infinitely thin triangles (Kepler 1615, see as well Leibniz’s idea,
Fig.1.4.11). The area of such a triangle is

a? - do

2 L% dg-a
where d is the infinitely small increment of

the angle. The whole area is (sum of all these
triangles)

2T 2 2 27 2
a“dy a a 2m
S = / = / dp=_ ¢ =ad’n.
0 2 2 Jo 2 "lo 0 a

ds =

Volume of the Sphere. Consider a sphere of radius a (see Fig. 4.3) and let us cut
it into thin slices (discs of thickness dz: and of radius 7 = v/a2 — 22 ). The volume
of such aslice is dV = r?mdx = (a® — 2?)m dx and for the total volume of the

sphere we get

V= (a2—x2)7rd:v:7r($a2—x )

(az _ x2)1/2

RTINS

\ \ N\
AN e

FIGURE4.3. Volume of a sphere

Work in a Force Field. Suppose that a force f(s) acts in the direction of a straight
line parameterized by s. The work in moving a body from s to s + As is equal to

f(s)As (force x length). Therefore, the total work is f; f(s)ds.
Example. The gravitational force of the earth on a mass of 1kg is f(s) =

9.81- R?/s? [N], if s is the distance to the center. Hence, the energy in moving
1 kg from the surface to infinity is given by
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00 R2 R2 o)
E :/ 981 5 ds=-981" | =981R= 62.10° [.J].

Arc Length.
The fluxion of the Length is determin’d by putting it equal to the square-
root of the sum of the squares of the fluxion of the Absciss and of the
Ordinate. (Newton 1736, Fluxions, p. 130)
We wish to compute the length L of a given curve y(x), a < x < b. If we increase
x by Ax (see Fig.4.4), the ordinate is increased by Ay = y'(x) Az (we neglect
higher order terms). Therefore, the length of a small part of the curve is given by
As, where

As® = Ar® + Ay? = (1+y/(2)?) Az?

(theorem of Pythagoras). For the limit Az — 0 we obtain

b
(4.9) ds = /14y (2)? - da and L= / V1+y/(2)? de.

1 -
dy ds dy
dx
dx
. \
00 1

FIGURE 4.4. Arc length of 3y = z*

Example. For the parabola y = 22 we have y' = 2z and the length of the arc
between x = 0 and z = 1 is given by (see (4.27) below)

1
1 1
L:/ \/1+4x2d:17: 2x\/1+4x2+41n<2x+\/4x2+1>’
0

= f +iln(2+\/5).

1
0

Center of Mass. Consider, for example, two masses m, mso placed at the points
with abscissas 21, z2. The moment applied at the origin is mixz; + meoxs. The
center of mass x is the point where both masses, concentrated, would produce the
same moment, i.e.,

(4.10) (m1 +mg) - & = mix1 + maZa.
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If the density of a body varies continuously in such a manner that a slice of thick-
ness dx has the mass m(z) dz, we have, by analogy with (4.10),

B f; xm(z)dx

/ "m(z)de

a

b b
4.11) / m(w)dw-x:/ xm(x)dx and

Example. For a triangle formed by the straight line y = cx, 0 < z < a, we have

Jo cx*dz a®/3  2a
4.12 _ _Jo _a’/3 _2a
(4.12) m(z) =cx, x [fexds ~a2/2” 3

Remark. For a random variable X with “density function” f(z) (which satisfies
75 f(x)dx = 1), the value z = [~z f(x) dx is the average of X.

Integration Techniques

We shall now explain some general techniques for finding a primitive. A sys-
tematic approach for some important classes of functions will be presented in
Sect. IL.5.

A first observation is that integration is a linear operation, i.e.,

(4.13) /(clfl(x) + cafa(z)) dz = 1 / fi(x)dz + co / fo() dz.

This follows at once from the fact that differentiation is linear (see (1.3)).
Substitution of a New Variable. Suppose that
F(z) is a primitive of f(z),

i.e., F'(z) = f(z), and consider the substitution z = g(z), which transforms the
variable z into z. It then follows from (1.16) that

F(g(x)) is a primitive of f(g(z))g ().
Consequently, we have

/ " Flo(a))g' () o = / " 1)

4.14) (a)

because, by (4.6), both terms are equal to F (g(b)) — F(g(a)). The expression to
the left is obtained by substituting z = ¢g(z) in f(z) and dz = ¢'(x)dz.

Geometric Interpretation. We want to compute

1.5
4
/ o dx
0 1 +f172

and use the substitution z = z2. Since dz = 2z dz, we obtain from Eq.(4.14)
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-\ 24
™S

=41 +3 | Ty u =2/(1+2)

< 1

1
same arcas

dx| 15 & =2 2.25
11 X [
1 2 1 2

FIGUREA4.5. Substitution of a variable in an integral

15 o 225 o 2.95
/ '2xdx:/ dz=2-In(1+ z)
o 1+a? o 14z 0

1.5
—=2.In(1+ x2)’0 = 21n(3.25).

Fig. 4.5 illustrates the transformation z = 2 and the functions 4z /(1 + z?) and
2/(1+2). Points x and z+ Ax are mapped to z = x? and 2+ Az = 2% + 2z Az +
Az2. Therefore, the shaded rectangles have, for Ax — 0, the same areas, and both
integrals in (4.14) give the same value.

Examples. All the art consists in finding a “good” substitution. This will be
demonstrated in a series of examples.

For functions of the form f(ax + b) the substitution z = ax + b is often
useful. For example, with z = 5x + 2, dz = 5dx, we have

d 1 1
4.15) /e5ﬂ”+2 dx = /ez 52 = e = 5 ebrt2,

Sometimes the presence of the factor ¢’(z) for the substitution z = g(z)
can easily be recognized. For example, in the integral below the factor x suggests

using z = —22, dz = —2x dx and we obtain
1 1 1
4.16) /xe_mzd:r: 2/ezdz:f2e‘z:f2e_m2.

From Table 4.1 we obtain the integrals of 1/(1 + 22) or 1/v/1 — 22. If we
want to find a primitive for, say, 1/(7 + x2) or 1/1/7 — 22 we use the substitution
22 =722 orx = /T2, dr = \/7dz. This yields

dx V7dz 1 1 x
4.17 = = t = t .
( ) / 74 a2 / 70 + 22) T arctan z T arctan T
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Quadratic expressions x2 + 2bx + c are often simplified by restoring a com-
plete square as (z + b)? + (c — b?) followed by the substitution z = z + b. In
this way the following integral is reduced, by the substitution z = x + 1/2, to the
integral in (4.17):

(4.18)

/ dz / dz 2 ¢ 2z 2 + (296 + 1)
= = arctan = arctan .
2+ +1 224+3/4 /3 V3 V3 V3
As a last example, we consider the function (z + 2)/(x? + = + 1). Here we
write (Euler 1768 § 62) the numerator as  + 2 = (z + 1/2) + 3/2 so that the first
part z + 1/2 is a scalar multiple of the derivative of the denominator. This part of

the integral is then computed with the substitution 2 = 22 + x + 1. The second
part is a multiple of (4.18), and we obtain

2 1
(4.19) / v de=_In(z> +z+1)+V3 arctan(

2:17+1)
24+x+1 2 '

V3

Integration by Parts. A second integration technique is based on the differen-
tiation rule for products (1.4). Integrating the formula (uv) = u'v + uv’ gives
u(z)v(z) = [ (v (2)v(x) + u(z)v'(x)) dz, or equivalently

(4.20) / v (2)v(z) de = u(z)v(z) — / w(z) (z) da.

In this formula, one integral is replaced by another. However, if the factors u’ and
v are properly chosen, the second integral can be easier to evaluate than the first
one.

Examples. Let us try to compute | z sin x dz. It would be no use choosing v’ () =
x (u(r) = 22 /2) and v(z) = sin x because then the second integral would be even
more difficult to evaluate. Therefore, we choose u'(x) = sinz (u(z) = — cosx)
and v(z) = x. Equation (4.20) then gives

4.21) /xsinxdw = —xcosx + / 1-coszxdr = —xcosz + sinz.

Sometimes it is necessary to repeat the integration by parts. In the following
example, we first put v(z) = 22, v/(z) = €%, and for the second integration by
parts we put v(z) = z, v/ (z) = e”:

(4.22) /xQeIdw:xQeI—2/x6xdx:ex(:1c2—2:E+2).

Functions such as Inx or arctanz have simple derivatives. They will be
frequently used in the role of v(z):

(4.23) /lnxdx:/1-lnxdm:xlnx—/xd$:x(ln:v—l),
x



1.4 Integral Calculus 115

T
/arctanx dr = rarctanx — / dzr

2
(4.24) l1+a

1
= rarctanx — 9 In(1 + 2?).

Here, the last integral is evaluated with the substitution z = 1 + 22, dz = 2z dx.

Consider next the integral f \/ 1 + 422 dz, which we encountered in the
computation of the parabola’s arc length. Integration by parts with u'(z) = 1,
v(x) = V1 + 422 yields

422
4.25 1+422de =2 1—1—4952—/ dx
( ) /\/ \/ V1 + 422

Here, the second integral does not look much better than the first one. However,
the numerator can be written as 4v%> = (1 + 422) — 1. The integral can then
be split into two parts, one of which is — [ V1 + 422 dx (the integral we are
looking for) and can be transferred to the left side; the other resembles the last
integral of Table 4.1: the derivative of arsinh z is 1/v/1 + 22 and we have, with
the substitution z = 2z (see Exercise 1.4.3),

(4.26) / " Cf4x2 - ;arsinh (22) = ;111(23: /422 + 1).

This gives, for (4.25),

(4.27) /\/1+4:172dx: ;x\/1+4x2+iln<2x+\/4x2+l>.
Recurrence Relations. Suppose we want to compute

(4.28) I, = / sin” z dz.

We put ' () = sinx, v(z) = sin™ ' 2 and apply integration by parts. This yields

/sin"xdx = —coszsin" 'z + (n—1) /cos2 rsin 2z dx.

We insert cos?z = 1 — sin®z and the right integral can be split into the two
integrals I,,_o and I,,. Putting I,, on the left side, we obtain (1 +n — 1)I,, =

—coszsin™ 'z + (n— 1)1, o, 0r

1
(4.29) I,=—" coszsin" 'z+ I,_o.
n n
This recurrence relation can be used to reduce the computation of I,, to that of
I = [sinzdx = — cosz (if n is 0dd), or to that of Iy = [ dz = x (if n is even).
As a further example, consider the integral

dzr
(4.30) Jp = / (14 22)n°
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In the absence of a better idea, let us apply integration by parts with u'(x) = 1
andv(z) = 1/(1 + %)™

1 T 22
J,=[1. de = d.
/ (1+a2)n ™ (1+x2)n+”/(1+x2)n+1 g

Using the same trick as in (4.25), we write in the last integral 222 = 2(1+ 22) — 2
and obtain "
In = 2nd, — 2ndy41.
(142 T T
We are unlucky because the index n, instead of becoming smaller, became larger.
But this is of no importance: we reverse the formula and get

1 x 2n—1

4.31 Jn+1 =
“431) 7 on (14 22)n + 2n

In.

This relation reduces the computation of (4.30) to that of J; = arctanz.

Taylor’s Formula with Remainder

Joh. Bernoulli (1694b, “Effectiones omnium quadraturam ...”) computed inte-
grals by repeated integration by parts and obtained “generalissimam” series simi-
lar to those found later by Taylor. Cauchy (1821) then discovered that this method,
cleverly modified, leads precisely to Taylor’s series of a function f with the error
term expressed by an integral.

The idea is to write (see (4.6))

f@)=f@)+ [ 1o
and to apply integration by parts with v/(¢) = 1 and v(¢) = f'(¢). The crucial fact
is that we put u(t) = —(a — t) (x is a constant) instead of u(t) = ¢t. We thus get

x

f(@) = fla) = (x =) f'(t)

+ [ a

— f(a) + (z— a)f'(a) + / (z— 1) (1) dt.

a

a

In the next step, we put u(t) = —(z — )2 /2! and v(t) = f(t) to obtain

(x —a)?

T (o 2
f@) = 1@+ @-af@+ Y e [0 o

Continuing this procedure, we arrive at the desired result:

k T Y
432 Z f() (a) + /a (z k!t) FOHD () at.

=0
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Example. For f(x) = e, f()(z) = %, and a = 0 Eq. (4.32) becomes

x
2! k!

You might now be astonished at seeing the error of the series expressed by an in-
tegral, after having had all these difficulties in evaluating such integrals. If the in-
tegral in (4.33) is computed by the above skillful methods, one obtains, of course,
simply e* — Zf:o x'/i!, which will be of no help at all. The idea is to replace
the integrand in (4.33) by something simpler. For example, if we suppose that
0 <z <1,then0 <t < 1 too, and the function e’ lies between the bounds 1
and 3. It therefore appears convincing (this will later be Theorem I11.5.14) that the
corresponding area will also lie between

T (o k k+1 Tk k+1
/ (z—1) Adt= " and / (=) -3dt = 3¢ .
0 k! (k+1)! 0 k! (k+1)!

This allows the conclusion that, say, for £ = 10 the error is smaller than 1077,

2 k T 7tk
(4.33) F=lqat .+ +/ (IM) et dt.
0 !

Exercises

4.1 Leta curve be given in parametric representation x(¢), y(t). Show that its arc
length fora <t < bis

b
L:/ V! (62 + o/ ()2 dt.

Compute the arc length of the cycloid (3.18) for 0 < ¢ < 27.
4.2 Compute the integrals

xdx dx
a , b , c x?sin z dz,
)/\/97172 )/\/97172 )/
d
d) I,n:/ . f , € /xBe’””2 dx, f) /arccosxdx,
sin” x

T dx
az d h o' A d 1 .
g) /e cos fxdx, h) /e sin fz dz, 1) /x2—6x+13

Hints. For (d) reverse Eq. (4.29), for (e) write 3 = z - 22, for (g) and (h)
do either integration by parts or decompose f et dx into its real and
imaginary parts.
4.3 Show by repeated integration by parts that for integer values m and n
(4.34) /b (b= (z—ay  _ (G—aym
o ml n! (m+n+1)

in particular



118 II. Differential and Integral Calculus

I1.5 Functions with Elementary Integral

The above quantity
ppads
qqss — ppaa

reduces immediately, without any change, to two logarithmical fractions,
by separating it thus:
ppads ) pds B i pds
qqss —ppaa  qs —pa  qs+pa
(Annex to a letter of Joh. Bernoulli 1699, see Briefwechsel, vol. 1, p.212)

Problem 3: If X denotes an arbitrary rational function of x, describe a
method by which the expression X dx can be integrated.
(Euler 1768, Opera Omnia, vol. X1, p. 28)

In the preceding section, we learned some techniques of integration. Here, we will
use these techniques systematically in order to establish the fact that the integrals
of several classes of functions are elementary. Elementary functions are functions
composed of polynomials, rational, exponential, logarithmic, trigonometric, and
inverse trigonometric functions.

Integration of Rational Functions

Let R(x) = P(z)/Q(x) be arational function (P (z) and Q(z) polynomials). We
shall present a constructive proof of the fact that [ R(z)dx is elementary. The
computation of a primitive will be carried out in three steps:

—reduction to the case deg P < deg ) (deg P denotes the degree of P(z));
— factorization of Q(«) and decomposition of R(z) into partial fractions; and
— integration of the partial fractions.

Reduction to the Case deg P < deg Q. A first simplification of the function
R(z) can be achieved if deg P > deg Q. In this situation, we divide P by @) and
obtain

P(x)
Q(x)
where S(z) and ﬁ(x) are polynomials (quotient and remainder) with deg P <
deg (). As an example, consider

P(x)  2a%—32% — 92 + 232 4 2 — 442+ 39

Q(z) x4 at =5z — 2?2 +8x—4 '

()

P
: =S
(5.1) @)+ o)’

(5.2)

We first remove the term 225 by subtracting 2xQ () from P(z), then we add
5Q(z) to P(z) and arrive at
P(x) 6z — 202% + 4z + 19

=2x—5+ .
Q(x) x® +axt —bad — a2+ 8 —4
The polynomial S(x) is readily integrated so that only the second term in (5.1)
requires further investigation.

(5.3)
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Decomposition into Partial Fractions. We assume that a factorization of Q(z)
into linear terms is known:

k

G4 Qa)=@—-—a)™(@—a)™ ... (z—ap)™ = H(x —a;)™.

=1

Here, a1, . . ., ay, are the (possibly complex) distinct roots of @ () and the m,; are
their corresponding multiplicities. The following lemma shows how our rational
function can be written as a linear combination of simple fractions, so-called par-
tial fractions. This idea goes back to the correspondence between Joh. Bernoulli
and Leibniz (around 1700), and was systematically exploited by Joh. Bernoulli
(1702), Leibniz (1702), Euler (1768, Caput I, Problema 3), and Hermite (1873).

(5.1) Lemma. Let Q(x) be given by (5.4) and let P(x) be a polynomial satisfying
deg P < deg Q. Then there exist constants C;; such that

k my
(5.5) Plz) _ 3 Cis

Proof. We eliminate one factor of ()(x) after another as follows: we write Q(z) =
(x—a)™q(x), where v is aroot of Q(z) and ¢(a) # 0. We will show the existence
of a constant C' and of a polynomial p(x) of degree < deg @ — 1 such that

Py  C p(z)
60 (- a)mg(e) ~ (@ —a)ym T (& - a)ym-lg(z)’

or equivalently (multiply by the common denominator),
(5.7) P(x) = C-q(x) +p() - (z — a).
By putting = «, this formula motivates the choice

(5.8) C = P(a)/q(@).

The polynomial p(z) is obtained from a division of P(z) — C' - ¢(x) by the factor
(z — «). The same procedure is then recursively applied to the right expression of
(5.6) and we obtain the desired decomposition (5.5). a

Example. The polynomial Q(x) of (5.2) has the factorization
(5.9) Qz)=a"+2* —52° —2? + 82 — 4= (z - 1)3(z +2)%
Applying (5.7) and (5.8) with « = —2 and m = 2, we obtain, for (5.6),

6x4720x2+4x+197 -1 +6x3711x27:ﬂ+9
(x—1)3x+2)?2  (z+2)? (r —1)3(x + 2)

A second application with « = —2 and m = 1 gives
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6zt — 202 +42+19 -1 3 322 —8x+6

(5.10) (CE _ 1)3(:E + 2)2 B (CE + 2)2 + 42 * (.’L’ - 1)3

In the last expression, we replace * = (x — 1) + 1 so that 322 — 82 + 6 =
3(x —1)% = 2(z — 1) + 1, and (5.10) becomes, finally,

(5.11)
6% — 2022 + 4z + 19 - 1 " -2 " 3 " -1 " 3
(x—13x+2)?2  (z-13 (z-12 2-1 (z+2)2 z+2

Second Possibility. By Lemma 5.1, we know that

(5.12)

62t — 2022 + 4 19 A A A B B
x z* +4dx + _ o Lo, A2y o, P
(x —1)3(x 4+ 2)2 (=13 (z-12 z—-1 (z+2)2 z+2

The coefficients A; and B; can be computed as follows: we multiply Eq. (5.12) by
(x —1)3 so that

62t — 2022 + 4z + 19

(w+2)? =40+ Ai(e— 1) + Aol — 1)° + (2 ~ 1) (@),

with some function g(z) well defined in a neighborhood of = = 1. Hence, the A;
are the first coefficients of the Taylor series of P(x)/(z + 2)? (see Sect. I1.2) and
satisfy

A — 1 d <6x4 — 2022 + 4z + 19)

Tl dr (x +2)2 z=1
ie., Ag =1, A; = —2, Ay = 3. In a similar way, we get
1d <6x4 —202% 4 4z + 19>

fgldat (x —1)3 w=—2"

i.e., BO = 71, Bl =3.

Integration of Partial Fractions. The individual terms in the decomposition (5.5)
can easily be integrated by using the formulas of Sect. 1.4 (see Table 4.1):
-1

c1m [T = -na—apr T
(z—a) In(z — a) ifj=1.

Combining Egs. (5.3), (5.9), and (5.11), we thus obtain, for our example,

P(z) 9 1 2 1
dx = x*—5x— In(x—1 1 2)+C.
/Q@ T =x"—bx 2(w_1)2+x_1+3 n(z )+$+2+3 n(z+2)+C

If all roots of Q(z) are real (i.e., the c; of (5.4) are real) then the C;; in
(5.5) are real and we have expressed the integral as a linear combination of real
functions. But nothing prevents us from applying the above reduction process also
in the case where Q(x) has complex roots.



IL.5 Functions with Elementary Integral 121

Example with Complex Roots. Suppose we want to compute [(1 + z)~1dz.
Since the roots of z* +1 = O are a; = (1 4+14)/v2, aa = (1 —i)/V2, a3 =
(=1+414)/v2, ay = (=1 —i)/+/2, the decomposition of Lemma 5.1 leads to

o A N B
L+at 2 (1+0)/V2 - (1—i)/V2 03 &
C D
G149 Ty (1—i)/V2 Ty (14i)/v2 -1 0 1
o, o,
By (5.8), we get

1 7 1 7 \/2(_1_2_>
(a1 —a2)(on —as)(on —aa)  iV/2-v2- (V2+iv2) 8 ’

and similarly B = (—1 +14)v/2/8,C = (1 —i)v/2/8, D = (1 +i)+/2/8. Hence,

A=

/ ) f—zw‘l =Aln(z - (1+ l)/\/2) +Bln(z — (1 - Z)/\/2)

+Cln(z + (1 —i)/V2) + DIn(z + (1 +1)/V2).
Using (I.5.11) and the relation

(5.15)

w/2  ifu>0

arctanu + arctan(1l/u) = { “x/2 ifu<0

which follows from (I1.4.5) or from (1.4.32), we have

/ de =ln(x —a—1if) = L In((z —a)® + 3%) +i arctan 5

z— (a+1if) 2
and the right-hand side of expression (5.15) can be written as

(5.16)
/ dx V2 22+ V2 +1 V2

= In + (arctan 2V 2+1)+arctan(xv/2—1 )
A1 08 Va2 oril 4 ( ) ( )

Avoiding Complex Arithmetic. Whenever complex arithmetic is not desired, we
can proceed as follows: suppose that the polynomial Q(x) has [ distinct complex
conjugate pairs of roots a; +4/31, . .., oy +45; and k distinct real roots vy, . . . , Vk-
Then, we have the real factorization

l k

(5.17) Q@) = [ (@ =) +87)™ [ (@ = 7)™,

i=1 i=1

where m; and n; denote the multiplicities of the roots. A real version of Lemma 5.1
is then as follows:
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(5.2) Lemma. Let Q(x) be given by (5.17) and let P(x) be a polynomial with real
coefficients satisfying deg P < deg (). Then, there exist real constants A;;, B,
and C;; such that

I m;

(5.18) i ZZ AU —I—BU;E ZZ

2 J—
11]1 +ﬂ 11]1 ’Yl

Proof. The real roots can be treated as in the proof of Lemma 5.1. For the treatment
of the complex roots we write Q(z) = ((z — a)? + 52) " q(x), where a + i3 is
a root of Q(x) and ¢(a = i3) # 0. Then, there exist real constants A, B and a
polynomial p(z) of degree < deg ) — 2 such that

P(x) B A+ Bz p(x)

(@-?+8) @)  (@-?+8)"  (@-a?+8)" g)
To see this, we consider the equivalent equation
P(z) = (A + Bx) - q(x) +p(z) - (= — a)? + 52).

By putting © = « & i(3, this formula yields A and B, and the polynomial p(z) is
obtained from a division of P(z) — (A+ Bz) - q(z) by the factor ((z — a)? + 3?).
As in the proof of Lemma 5.1, the formula (5.18) is then obtained by induction on
the degree of Q(z). O

For the integration of the general term of (5.18) we write it as
A+ Bz _ B(x — «) n A+ Ba
(@=ap+8)  (w-a2+5)  (@-a?+0)
The first term of this sum can immediately be integrated with the help of the
substitution z = (z — a)? + 32, dz2 = 2(z — «)dx. For the second term we use

the substitution z = (x — «)//3 and obtain the integral (4.30) of Sect. I.4. Hence,
for j = 1 we have

/( A+ Br dx = B In((z — a)*+ 8%) + A+ Ba arctan(x_a>,

T — )+ (3? 2 3 p

and forj > 1
/ A+ Bx dr — —-B _ +A+_Ba (1’7@)
(w=aP+) " 2 -D(@-ap+p) " TN

where Ji(z) = arctan z and
z 25 —1
_ J;(2).
2j(2 41y T 9 G
Example. For the function of Eq. (5.14), Lemma 5.2 gives the decomposition
1 1 A+ Bz C+ Dx

T4+t (@24 vV2e+ D)(@2—vV2r+1) a2 +v2r+1 22— v2r+1

(519) Jj+1(z) =
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Multiplication of this relation by (22 ++/2z+1) and insertion of & = (—144)/v/2
yields
1 144 (—1+4)
= =A+B
2F 20 4 * V2
and A = 1/2, B = /2/4 is obtained by comparing real and imaginary parts of
this relation. The constants C' = 1/2 and D = —+/2/4 are obtained analogously.
Using the above formulas we get (5.16) again.
Remark. Decomposition into partial fractions renewed the interest of the mathe-
maticians of the 18th century for the roots of polynomials and for algebra.

Useful Substitutions

We now exploit the above result and present several substitutions that lead to fur-
ther classes of functions whose indefinite integrals are elementary functions. In
the rest of this section, ® denotes a rational function with one, two, or three argu-
ments.

Integrals of the Form [ R( Vaz + b, z)dx. An obvious substitution is
(520) T\VG,I’ —+ b= u, xr = , doe = n . 'LLn_l . du,
a a

with which we get

/R((L/ax—i—b,x) dx = Z/R(u, u"a—b

where }~2(u) is a rational function. This last integral can be computed with the
techniques explained above.

)u"_ldu: /E(u) du,

Integrals of the Form f R(e)‘m)da:. The obvious substitution u = e*® gives
du = Ae*dz and dr = du/(\u), and the resulting integral is that of a rational
function.

Example.
/ dz / dz / du
. = =2 =
2 +sinhz 24 (e —e=7)/2 u?+4u—1
_2/ du 1 nu+2—\/5_ 1 ne$+2—¢5
(u+2)2-5 V5 w+2+vV5 V5 e 2445

Here we have used the formula of Exercise 5.1 below.

Integrals of the Form [R(sinx,cosx,tanx)dz. We know from antiquity
(Pythagoras 570-501 B.C., see also R.C. Buck 1980, Sherlock Holmes in Babylon,
Am. Math. Monthly vol. 87,Nr. 5, p. 335-345) that the triples (3,4, 5), (5,12,13),
(7,24,25), ..., satisfy a®>+b? = ¢? and are of the form (u, (u®>—1)/2, (u*>+1)/2).
This suggests the substitution (Euler 1768, Caput V, §261)
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. 2u 1—u? 2u
5.21) sinz = 142’ cosT = 14 w2’ tanx = 12
One verifies that sin z = u(1 + cos ), so that
the point (cos z, sin z) lies at the intersection \
of the line 7 = u(1 + £) with the unit circle
(see the figure). Consequently, we have u = PN
tan(z/2), x = 2 arctan u, and w 1+u

x/2
dx = 2 du. 1—u?
1+ u2 \ 14+u? /

All this inserted into [ R(sin z, cos z, tan z)dx

provides an integral of a rational function.

/ dx 7/ 2du 7/ du
24sinz (1+u2)(2+1fjﬂ) ) W@+ u+1

The last integral is known from Eq. (4.18), thus,
/ dx 2 . <2<+1>> 2 . <2<t x+1)>
= arctan U = arctan an .
2+sinz /3 V3 2 V3 V3 2 2

Integrals of the Form fR(\/a:c2 +2bx + c, :n)d:v. The idea (Euler 1768, § 88)
is to define a new variable z by the relation ax? + 2bz + ¢ = a(r — z)2. This
yields the substitution

Example.

a2 — ¢ a(az® 4+ 2bz + ¢)
Tr = ’ T = =
2(b+ az) 2(b+ az)?
2492
(5.22) Vaz? +2bx + ¢ = £+/a (z—2)=+Va- aZQ(;)LwL ;ZJ)FC7

z:xj:\/ax2+2bx+c/\/a,

and we again get an integral of a rational function. For a < 0 this leads to complex
arithmetic, which can be avoided by the transformation of Exercise 5.3.

Sometimes it is more convenient to transform the expression Vazr? + 2bx + ¢
by a suitable linear substitution z = ax + ( into one of the forms

\/22+1, \/2271, \/1722.
Then, the substitutions
(5.23) z = sinhu, z = cosh u, z =sinu

can be applied to eliminate the square root in the integral.
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Example. Consider again the integral (4.27). Putting « = sinh u, we get

1  cosh2u u  sinh 2u
24 1de = sh? wdu = du =
/\/er x /COb U au /(2+ 9 )u 2+ A

vz + 1
5 .

_ ; n sinhu;oshu _ ; 1n(:1:+ \/x2 n 1) n

For the inverse function of x = sinh u see Exercise 1.4.3.

Exercises

5.1 (Joh.Bernoulli, see quotation at the beginning of this section). Prove that

/ dx _ 1 lnx_a—i—C.

22 —a?2 2a z4a

b
5.2 Show that / R( 7\l/ax + ,x) dx is an elementary function.
ex+ f

5.3 (Euler 1768, Caput II, §88). Suppose that az? + 2bz + c has distinct real
roots a, 3. Show that the substitution z? = a(z — 3)/(x — «) transforms the

integral
/R(\/aac2 + 2bx + ¢, x) dx

(R is a rational function of two arguments) into [ ]A?;(z) dz, where R is ratio-
nal.

5.4 Mr. C.L. Ever simplifies Eq. (5.16) with the help of (1.4.32) to
/ dx \/21 2+ V2r+1 V2 zV/2

= t
Al 3 n:z:Q—\/2x+1  aretan. o

and obtains, e.g.,

/“ 2 dr V2
o i+l 8
a negative value for the integral of a positive function. Where did he make a
mistake and what is the correct value?

/ dx
Va2 +1
twice; once with the substitution (5.22) and once with the substitution (5.23).

This leads to the formula arsinh 2 = In(z + v/22 + 1) (see Exercise 1.4.3).
5.6 Prove that

2
In5+ \{1 arctan(—2) = —0.1069250677,

5.5 Compute

/ R(sin® 2, cos? , tan x) dx

can be integrated with the substitution

2
.2 u 2
sin“z = gy COSTT = 99 tanx = u.
14w 14w
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I1.6 Approximate Computation of Integrals

... because after all these attempts, analysts have finally concluded that one
must abandon all hope of expressing elliptical arcs with the use of algebraic
formulas, logarithms and circular arcs.

(Lambert 1772, Rectification elliptischer Bégen . . ., Opera vol. 1, p.312)

Although the problem of numerical quadrature is about two hundred years
old and has been considered by many geometers: Newton, Cotes, Gauss,
Jacobi, Hermite, Tchébychef, Christoffel, Heine, Radeau [sic], A. Markov,
T. Stitjes [sic], C.Possé, C. Andréev, N. Sonin and others, it can neverthe-
less not be considered sufficiently exhausted. (Steklov 1918)
e” dx

One easily convinces oneself by our method that the integral j 2,

which has greatly occupied geometers, is impossible in finite form . . .
(Liouville 1835, p. 113)
In spite of the extraordinary results of the previous sections, many integrals re-
sisted the ingenuity of the Bernoullis, of Euler, of Lagrange, and of many others.
Amongst these integrals, we note

/ 2 / erdr / dx
e ¥ dx, ) )
T Inx

/ du , /\/1 — k2 cos? xduw, / du .
V4z? — gox — g3 V(1 —22)(1 — k2a2?)

The last three are so-called “elliptic integrals”. Legendre, Abel, Jacobi, and Weier-
strass devote a great deal of their work to the study of these integrals. The above
integrals cannot be expressed in finite terms of elementary functions (Liouville
1835, see quotation), and we are confronted with new functions that have to be
computed with new methods.

We consider three approaches: (1) series expansions; (2) approximation by
polynomials (numerical integration); and (3) asymptotic expansions.

Series Expansions

The idea is to develop the function into a series (either in terms of powers of x, or
in terms of other expressions) and to integrate term by term. A justification of this
procedure will be given in Sect. II1.5 below.
Historical Examples. The computations of Mercator (see Eq. (1.3.13))

2 3

1
ln(l—i—x):/1+xdw:/(1—x+x2—...)da@:x—362 —|—g; — ...

are the oldest example. The computation of the length of an arc of the circle y =
V1 — 2 (see Eq. (4.9) and Theorem 1.2.2)

x T t2 -
afcsinx:/ \/1+y’(t)2dt=/ \/1+ g dtz/ 11—~ at
0 0 — 0

—/m(1+1t2+1'3t4+ )dt—x+1x3+1'3x5+
) 2 2.4 VA 23 245 7

is precisely Newton’s approach to Eq. (1.4.25).
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Perimeter of the Ellipse. We wish to compute the perimeter of the ellipse with
semiaxes 1 and b:

2
x2+z2 =1 or r =cost, y =bsint.
Since dr = —sint dt and dy = bcost dt, the perimeter is

27 w/2
P:/ \/dx2+dy2:4/ Vsin? t + b2 cos? t dt
(6.1) 0 0

w/2
:4/ \/17(17b2)cos2tdt.
0 AV
o
This is an “elliptic integral” (whence the name), which is not elementary. We
compute it as follows: suppose that 1 > b > 0, thus 0 < a < 1. The idea is to use
Newton’s series for v/1 —  (Theorem 1.2.2),

r 1.1 1-1-3
6.2 l—z=1-"— 2 3.
6.2) Vi-e 2 2.4% T 92.4.6" ’
which gives
(6.3) P:4/ (1—3008215—2 j @l cos't— ) dt.
; .

With the techniques of Sect. I1.4 (see Eq. (4.28)), we find that

/2 .3.5..... _
/ cos?idi— T 1-3-5-...-(2n 1)’
o 2 2.4.6-...-(2n)

and (6.3) becomes (cf. Euler 1750, Opera, vol. XX, p.49)

11 91-1 1-3 31-1-3 1-3-5 >

64 P:%(lfo‘z 9 Y 92.472.4 % 92.4.6 2.4.6

The convergence of this formula is illustrated in Fig. 6.1. For « = 0 (i.e., b = 1)
we have a circle, and P = 27. For o = 1 (i.e., b = 0) the series converges very
slowly to the correct value, 4.

Fresnel’s Integrals. The Fresnel Integrals (Fresnel 1818),

(6.5) x(t):/o cos(u?) du, y(t)z/o sin(u?) du,

have interesting properties (Exercise 6.4) and produce, in the (z, y) plane, a beau-
tiful spiral (Fig. 6.2). They are not elementary. However, the functions sin(u?) and
cos(u?) have a simple infinite series (the series of sin z and cos z where z = u?;
see (1.4.16) and (1.4.17)), of which we evaluate the integral term by term, as fol-
lows:
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~—2T

@)}
T

W
I

t 1
x:/cosu2du
0

4 b
.0 5 1.0
FIGUREG.1. Convergence of the series FIGURE 6.2. Fresnel’s Integrals

(6.4) (perimeter of the ellipse)

t t 6 10 3 7 11
i ()2 _ 2 U u _ t t
/obm(u)du_/o L

t , t ut /5 49 /13
/0Cos(u)du:/(J(1—2!+...)du:t—5.2!+9'4!—13.6!—1—....

The convergence of these series is illustrated in Fig. 6.3. The results are excellent
for small values of ¢. For increasing values of |¢|, more and more terms need to be
taken into account.

l li
t t
9 9 . 2 11
cosu“du sin u“du
1-J0 170

CRAGAIIG L ARG

FIGURE 6.3. Fresnel’s Integrals by power series; the numbers 5,9, 13 and 7, 11, 15 indicate
the last power of ¢ taken into account

| \2\\

5 13

Numerical Methods

Suppose we want to compute the integral f; f(z)dx, where the integration inter-
val is given. The idea is the following: we fix N, subdivide the interval [a, b] into
N subintervals of length h = (b — a)/N,

ro=a, x1=a+h, ... x;i=a+1th, ... zTy=0b,

and replace the function f(z) locally by polynomials that can easily be integrated.
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Trapezoidal Rule. On the interval [x;, z;11], the function f(x) is replaced by
a straight line passing through (x;, f(z;)) and (z;41, f(2;+1)). The integral be-
tween z; and x;y; is then approximated by the trapezoidal area h - ( flz) +
f(xi41))/2 and we obtain

(6.6) =

>
7N
~
[\
N~—
+
&H
8
_
+
\
=
Lo}

+. A+ flan-1) +

f(;N)).

Example. The upper pictures of Fig. 6.4 show the functions cos 22 and sin x? to-
gether with the trapezoidal approximations (step size h = 0.5, N = 10). The
points of the lower pictures represent approximations to Fresnel’s Integrals ob-
tained with h = 1/2 and h = 1/8; the corresponding values are connected by
straight lines.

LN W N ) NN
AL LT Al

FIGURE 6.4. Fresnel’s Integrals by the Trapezoidal Rule

Simpson’s Method (named after Simpson 1743). The idea is to choose three suc-
cessive values of f(x;) (y; = f(x;)) and to compute the parabola of interpolation
through these points (see Theorem I.1.2 and Eq. (2.6)):

A Tr— X Tr—x A2
p(x) = yo + (x — z0) },’LUO _|_( 0)2( 1) hzyo'

With the substitution x = g + th, the area between the x-axis and this parabola
becomes

0

. : 1),
p(x)de =2h-yo+h [ tdt-Ayo+h dt - A%y

= Z(yo+4y1 +y2>.
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We find Simpson’s Rule (N even)
(6.8)

b
[ H@ydo 3 (7o) +4700) + 26 (02)+ 4f(an) 420 @0) -+ Fon)).

Newton-Cotes Methods. Taking higher degree interpolation polynomials, we
find, in the same way,

x

) f(z)dx ~ 3h

o (F@0) +3(@1) +37(w2) + f(a2)

Zo
Za

Fle)dr s 20 (T7(0) + 327 (1) + 127 e2) + 827 ) + 77 (),

e

and so on. The first one, due to Newton (1671), is called the 3/8-rule. In 1711,
Cotes computed these formulas for all degrees up to 10 (see Goldstine 1977,
p.77).

Numerical Examples. We compute approximations of | 110 d; = In(10) with the
above methods for N = 12,24, 48, . ... The results are presented in Table 6.1. We
observe a genuine improvement only in every second column (for an explanation,
see Exercise 6.5).

TABLE 6.1. Computation of flm d;” with different quadrature formulas

N Trapezoid Simpson Newton Cotes

12 234 2.307 2.31 2.305

24 231 2.303 2.303 2.3027

48 2.305 2.3026 2.3026 2.30259

9 2.303 2.302587 2.30259 2.3025852
192 2.3027 2.3025852 2.3025854 2.302585095
384 23026 2.3025851 2.3025851 2.3025850930
768  2.3025 2.302585093 2.302585094 2.3025850929947

1536 2.302587  2.3025850930 2.3025850930 2.30258509299405
3072 2.3025858 2.302585092996  2.302585092999  2.3025850929940458
6144  2.3025852 2.3025850929941 2.3025850929943 2.302585092994045686

An interesting phenomenon can be observed when applying the trapezoidal
rule to the elliptic integral P = f02 "V1—acos?tdt (here with b = 0.2, a =
0.96, see Table 6.2). It converges much better than expected. The reason is that the
function f(t) is periodic and the “superconvergence” is explained by the Euler-
Maclaurin formula of Sect. I1.10.
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TABLE 6.2. Computation of an elliptic integral with the trapezoidal rule

N Trapezoid

12 4.1

24 4.201

48 4.2020080

96 4.20200890792

192 4.20200890793780018891

384 4.2020089079378001889398329176947477824

Asymptotic Expansions

This method was used by Laplace (1812) for fox et dt (see Oeuvres, tome VII,
p- 104 and Exercise 6.7) and by Cauchy in 1842 for Fresnel’s integrals (see Kline
1972, p. 1100). Whereas series expansions and numerical methods are useful for
small and moderate values of x, the method of asymptotic expansions is especially
adapted for large x.

We illustrate this technique on the example of Fresnel’s integrals. For the
limiting case x — oo the exact value of the integral is known to be (Exercise
IV.5.14)

o0 o0 1
(6.9) / cost?dt = / sin t?dt = \/W.
0 0 2\ 2

The idea is now to split the integral according to [ = [° — [~ ie.,

xT 1 o0
(6.10) / cost?dt = \/W - / cost? dt.
0 2 2 x

To the integral on the right, we artificially add the factors 2¢ and 1/(2t) and apply
integration by parts with u(t) = 1/t, v(t) = sint2. This yields

& 1 [*1 11 1 [*1
— cost?dt = — Ot cost? dt = sinz? — sin ¢2 dt.
. 2/, t 2 2/, t?

We find an integral that appears by no means easier than the first one. However,
for z large, the integral on the right, which contains the additional factor 1/t2,
is much smaller than the original one. Therefore, (22)~! sin 22 will be a good
approximation for — f;o cost? dt. If the precision is not yet good enough, we
repeat the same procedure (here with u(t) = 1/t3 and v(t) = — cost?),

1 /1 . 4 1 1 g 13 (1 9
(6.11) 72/1 t2smt dt:f2_2x3cosz +2.2/m t4cost dt.
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Continuing like this, we find from (6.10) that

z 1 11 1 1 1-3 1
/ cost?dt = \/ﬂ- + sin 2 cosx? — sin 2
0

2V 2 "2z 2.2 43 2.2.2 g5
1-3.5 1 1-3.5-7 1
6.12 2 inz2— ... .
(6.12) t9.9.9.9 47 T T 9 9. 9. 9,0 507

An analogous formula is valid for

z 1 11 1 1 1-3 1
/ sint?dt = \/W — cos z2 sinz? + cos x>
0

2V 2 22 2.2 43 2.2.2 g5
1-3.5 1 1-3.5-7 1
6.13 inz? — sz? — ... .
6.13) 1 9.9.9.9,7 3T T 9 9.9.9. 9,40 57

The extraordinary precision of these approximations for large x is illustrated in
Fig. 6.5. The numbers 1, 3, 5 indicate the last power of 1/x taken into account.

V4

FIGURE 6.5. Asymptotic expansions (6.12) and (6.13) with 1, 2, 3, 10, 20, and 30 terms

(6.1) Remark. The error of the truncated series (6.12) can easily be estimated. For
example, if we truncate after the term (2:6)’1 sin 22, the above derivation shows
that the error is given by the value of the integral in (6.11) (taken over x < ¢t < 00).
Using | cost?| < 1 this yields the estimate (22%)~!, which, for x > 2, is less than
0.0625.

(6.2) Remark. The infinite series (6.12) and (6.13) do not converge for a fixed z.
The reason is that the general term contains the factor 1 -3-5-7-9 ... in the
numerator, which dominates all other factors. Such series were called asymprotic
expansions by Poincaré.

Exercises

6.1 (Joh.Bernoulli 1697). Derive the “series mirabili”

1
1 1 1 1

Tdr=1- - &c.

/Ox T 22+33 44+55 c



6.2

6.3

6.4

6.5
6.6

6.7

6.8
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Hint. Use the series for the exponential function in 2% = 0@

J 2™(Inz)™ dz by integration by parts.

and compute

The integral f x?dx/+/1 — x4 was encountered by Jac. Bernoulli in his com-
putation of the elastic line and by Leibniz in his study of the Isochrona Para-
centrica. Verify the formula (Leibniz 1694b)

x?dx _ 1x3+ 1 7 1-3 11

1
Vieat 3T e Tiiaaaa2” Tiss.

Asin (6.7), derive the formulas of Newton and Cotes by integrating the inter-
polation polynomials of degree 3 and 4 on the intervals [z, 23] and [xq, 24],
respectively.

For the curve defined by (6.5) (see Fig. 6.2) prove that

a) the length of the arc between the origin and (x(t), y(t)) is equal to ¢; and
b) the radius of curvature at the point (x(t), y(¢)) is equal to 1/(2t).

Prove that Simpson’s method is exact for all polynomials of degree 3.

1
1
/ n(ler)d:r
0o 1+a?

with the help of Simpson’s method. Study the decrease of the error with
increasing V.
Result. The correct value is (7/8) In2 = 0.2721982613 .

Using [~ et dt = \/r/2 (see (IV.5.41) below), derive an asymptotic ex-
pansion for the error function ®(x) = \/Qﬁ Iy e~ dt that is valid for large
values of x (Laplace 1812, Livre premier, No. 44).

e_$2(1_ 1 13 1:3:5 )
Vr\z  2-x3 0 22.25  23.,7 A

Compute numerically the integral

1 22 2
/ cosz? dr = Y \/ +V ~ 1.674813394 .
-~ 4-I(3/4)

Choose two numbers A ~ 1/10 and B ~ 10 and compute the integral
a) on the interval (0, A] by a series;

b) on the interval [4, B] by Simpson’s method; and

¢) on the interval [B, o) by an asymptotic expansion.

Compute

Result. &(x) =1-—
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I1.7 Ordinary Differential Equations

Ergo & horum integralia aequantur. (Jac. Bernoulli 1690)

In Sects.II.4 and IL.5, we treated the problem of finding a primitive of a given
function f(z), i.e., we were looking for a function y(z) satisfying y'(z) = f(z).
Here, we consider the more difficult problem where the function f may also de-
pend on the unknown function y(x). An ordinary differential equation is a relation
of the form

(7.1) Y = f(z,y).

We are searching for a function y(z) such that y'(xz) = f(x,y(x)) forall z in a

certain interval. Let us begin with some historical examples (for more details, see
Wanner 1988).

The Isochrone of Leibniz. Galilei discovered that a body, falling from the origin
along the y-axis, increases its velocity according to v = /—2gy, where g is the
acceleration due to gravity. During his dispute with the Cartesians about mechan-
ics, Leibniz (in the Sept. 1687 issue of the journal Nouvelles de la République des
lettres) poses the following problem: find a curve y(x) (see Fig.7.1) such that,
when the body is sliding along this curve, its vertical velocity dy /dt is everywhere
equal to a given constant —b.

\
-1

\/ 2gy =1
11— p
b2,
So
/
AT

/ dy

/
/

FIGURE7.1. Leibniz’s isochrone

One month later, “Vir Celeberrimus Christianus Hugenius” (Huygens) gives
the solution, “sed suppressa demonstratione & explicatione”. The “demonstratio”,
then published in Leibniz (1689), is unsatisfactory, since the solution is guessed
and then shown to possess the desired property. A general method for finding the
solution with the help of the “modern” differential calculus was then published
by Jac. Bernoulli (1690). This started the era of spectacular discoveries made by
Jac. and Joh. Bernoulli, later by Euler and Daniel Bernoulli, and made Basel for
several decades the world center of mathematical research.

Let us write Galilei’s formula as
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(7.2) <d5)2 _ da? +dy*

it g2 = —2qy (s = arc length),
divide by (dy/dt)?> = +b? (which is the required condition), and obtain

dx ) 2 —2qy dy -1
+1= or = ,

a differential equation as in (7.1). In order to understand Bernoulli’s idea, we write
(7.3) as

P
(7.4) de = —¢—1 — b’;y dy,

(7.3)

which expresses the fact (see Fig. 7.1) that the two striped rectangles always have
the same area. So Jacob writes “Ergo & horum Integralia aequantur” (this is the
first appearence in mathematics of the word “integral”’), meaning that the areas S1
and So also have to be equal. After integrating, we find the solution

b? 291y 3/2
xr = (—1 - ) ,
39 b2
and the “Solutio sit linea paraboloeides quadrato cubica . ..” (Leibniz).

The Tractrix.
The distinguished Parisian physician Claude Perrault, equally famous for
his work in mechanics and in architecture, well known for his edition of
Vitruvius, and in his lifetime an important member of the Royal French
Academy of Science, proposed this problem to me and to many others be-
fore me, readily admitting that he had not been able to solve it . ..
(Leibniz 1693)
While Leibniz was in Paris (1672-1676) taking mathe-
matical lessons from Huygens, the famous anatomist and
architect Claude Perrault formulated the following prob-
lem: for which curve is the tangent at each point P of (2
constant length a between P and the x-axis (Fig. 7.2)? To N
illustrate this question, he took out of his fob a “horolo- %
gio portabili suae thecae argenteae” and pulls it across —_—
the table. He mentioned that no mathematician from
Paris or Toulouse (Fermat) was able to find the formula.
Leibniz published his solution in 1693 (see Leibniz 1693), asserting that he
had known it for quite some time, as

dy Yy
dSC \/a2 — y2 ’
one finds (“ergo & horum . ..”) the solution by quadrature (Figs. 7.2 or 7.3). Leib-

niz asserts that it was “a well-known fact” that this area is expressible with the log-
arithm, which, using the substitution \/a2? — y2 = v, a®> —y? = v?, —y dy = v dv,

2 _ 92
i.e., — \/a y dy = dZE,
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R 3 1.4
solution
. 5
/:r\\\\\\\\\\\.\..\-'}'L\_V\\.\\\\\\\\ ...................... ~ -
5 | AR P
‘ | N H
-2 —1 Y X dxl ) :5 r/ L
+ ELL +B
3 A ?"' 1
R IR A g
FIGURE7.2. The tractrix FIGURE7.3. Sketch by Leibniz (1693)’

a a2 a2 o Sa2 — g2
(7.5) x:/ Ve —y dy:—\/annyaloga Vet —y
y Y Y

turns out to be true (see also Exercise 7.1). We mention that Leibniz’s interest in
this theory also went the other way around: use Perrault’s watch as a mechani-
cal integration machine for the computation of integral (7.5) (and hence of loga-
rithms) and design other mechanical devices for similar integrals.

The Catenary.

But to better judge the quality of your algorithm I wait impatiently to see
the results you have obtained concerning the shape of the hanging rope or
chain, which Mr. Bernouilly proposed that you investigate, for which I am
very grateful to him, because this curve possesses remarkable properties. I
considered it long ago in my youth, when I was only 15 years old, and I
proved to Father Mersenne that it was not a parabola . . .

(Letter of Huygens to Leibniz, Oct. 9, 1690)

The efforts of my brother were without success, I myself was more fortu-
nate, since I found the way . . . It is true that this required meditation which
robbed me of sleep for an entire night . . .
(Joh. Bernoulli, see Briefwechsel, vol. 1, p. 98)
Galilei (1638) asserted that a chain hanging from two nails forms “ad unguem”
a parabola. Some 20 years later, a 16 year old Dutch boy (Christiaan Huygens)
discovered that this result must be wrong. Finally, the solution of the problem of
the shape of a hanging flexible line (“Linea Catenaria vel Funicularis”) by Leib-
niz (1691b) and Joh. Bernoulli (1691) was an enormous success for the “new”
calculus. Here are Johann’s ideas (Opera vol. II1, p. 491-493).
We let B be the lowest point and A an arbitrary point on the curve (Fig. 7.4).
We then draw the tangents AE and BE and imagine the mass of the chain of length
s between A and B concentrated in the point E hanging on two threads without
mass (“duorum filiorum nullius gravitatis”). Since the mass in E is proportional to
s, the parallelogram of forces in E shows that the slope in A is proportional to the
arc length, i.e.,

Reproduced with permission of Bibl. Publ. Univ. Geneve.
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FIGURE7.4. The catenary FIGURE7.5. Catenary (Leibniz 1691)*

(7.6) cy =s.

From here, Johann’s computations are very complicated, using second differen-
tials (see Opera vol. 111, p. 426). They become easy, however, if we replace, in the
spirit of Riccati (see (7.21) below), the derivative 3’ by a new variable p and have
after differentiation

(1.7) c-dp=ds=+/1+p?dz,
a differential equation between the variables p and x. Integration gives

xr — o

d
c/ - /d:r, ie., arsinh(p) = ,
J 1+ p2 ¢

(7.8) p:sinh(l'*:”“) and y:KJrc.cosh(I*x“).

C C

The Brachistochrone.

Given two points A and B in a vertical plane, determine the path AM B
along which a moving particle M, starting at A and descending solely un-
der the influence of its weight, reaches B in the shortest time.

(Joh. Bernoulli 1696)

This problem seems to be one of most curious and beautiful that has ever
been proposed, and I would very much like to apply my efforts to it, but
for this it would be necessary that you reduce it to pure mathematics, since
physics bothers me . . .

(de L’Hospital, letter to Joh. Bernoulli, June 15, 1696)

% Reproduced with permission of Bibl. Publ. Univ. Gengve.
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Galilei proves in 1638 that a body sliding from A to C (Fig. 7.7) takes less time on
the detour ADC than on the shortest path (due to its larger initial velocity). He con-
tinues and proves that ADEC, ADEFC, ADEFGC are always quicker and finally
concludes that the circle is the quickest of all paths. Hearing that his brother Jacob
makes the same mistake, Johann (1696) seizes this as the occasion for organizing
a public contest to find the brachistochrone line (Boax¥s = short, xpdévos =
time). The solutions handed in on time, including Jacob’s, were unfortunately all
correct; nevertheless, Johann’s is the most elegant one: he makes an analogy to
“Fermat’s Priciple” (see Eq. (2.5)):

B A

A X
\\ D

\

\

N P
- E
ds¥
F
y c ©
FIGURE7.6. The brachistochrone FIGURE7.7. The wrong brachistochrone

as seen by Galilei

He thinks of many layers where the “speed of light” is given by v = /2gy
(see (7.2) and Fig. 7.6). The quickest path is the one satisfying everywhere the law
of refraction (Fermat’s principle),

v

sin «

Hence, we have, because of sin o« = dx/ds,

dy? _ _ Y
(7.9) ’¢1+Fh2-Vng—I( or dx_.¢cy-dy

Still in accordance with “ergo & horum integralia @quantur”, the substitution
(7.10) y:aﬁﬁu:;f;mﬂu

leads to the formula

(7.11) x—xozcu—gsin2u

“ex qua concludo Curvam Brachystochronam esse Cycloidem vulgarem”.
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Some Types of Integrable Equations

We now discuss some of the simplest types of differential equations, which can be
solved by the computation of integrals.

Equation with Separable Variables.

(7.12) Y = f(x)g(y).

All of the preceding examples, namely, (7.3), (7.5), (7.7), and (7.9), are of this
type. They are solved by writing y' = dy/dx, by “separation of variables” and
integration (“ergo & ...”), i.e.,

@ _ z)dz @ _ z)dz
(7.13) o) = f(z)d and /g(y) /f( )dz + C.

If G(y) and F(z) are primitives of 1/g(y) and f(z), respectively, the solution is
expressed by G(y) = F(x) + C.

Linear Homogeneous Equation.

(7.14) y = f(x)y.

This is a special case of (7.12). Its solution is given by

(7.15) 1ny:/f(:17)dm+c, or y:C~exp(/f(x)d:1:).

Linear Inhomogeneous Equation.

(7.16) y = fz)y + g(x).

Joh. Bernoulli proposes to write the solution as a product of two functions y(z) =
u(z) - v(z) (like Tartaglia’s idea, Eq. (I.1.5)). We then obtain

d d

dz cv+ d; cu = fx) u-v+gx).
We can now equalize the two terms separately and find

d
(7.17a) v f(z)-u to obtain u,

dx

d
(7.17b) v 9(x) to obtain v.

de  u(x)

Equation (7.17a) is a homogeneous linear equation for u and its solution is given
by (7.15). The function v(x) is then obtained by integration of (7.17b). Conse-
quently, the solution of (7.16) is

(7.18) y(z) = C - u(x) + u(x) /OI 9(t) dt, u(z) = exp(/ox f@) dt).

u(t)
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This relation expresses the fact that the solution of (7.16) is a sum of the general
solution of the homogeneous equation with a particular solution of the inhomoge-
neous equation.

Bernoulli’s Differential Equation.

In truth, there is nothing more ingenious than the solution that you give for
your brother’s equation; and this solution is so simple that one is surprised
at how difficult the problem appeared to be: this is indeed what one calls an
elegant solution. (P. Varignon, letter to Joh. Bernoulli “6 Aoust 1697”)

In 1695, Jac. Bernoulli struggles for months on the solution of
(7.19) y'=fx)y+gla)y"

This is a good occasion for Jacob to organize an official contest. Unfortunately,
Johann has straightaway two elegant ideas (see Joh. Bernoulli 1697b). The first
idea is treated in Exercise 7.2. The second one is the same as explained above,
namely to write the solution as y(x) = wu(z) - v(z). For the differential equation

(7.19) this again yields (7.17a) for v and
d
(7.20) d; = g(z)u"(x)0",

a differential equation that can be solved by separation of variables. This leads to
the solution

o) =uta)(C+ =) [ gonrtoar)

where u(z) is as in (7.18).

Second-Order Differential Equations

To free the above formula from the second differences, ..., we denote the
subnormal BF by p. (Riccati 1712)

A second-order differential equation is of the form
y' = fzy,y).

The analytic solution of such an equation is very seldom possible. There are a few
exceptions.

Equations Independent of y. It is natural to put p = 3/, so that the differential
equation y” = f(x,y’) becomes the first-order equation p’ = f(z,p). We remark
that the differential equation (7.7) of the catenary is actually of this type.

Equations Independent of x.

(7.21) v = fyy).

The idea (Riccati 1712) is to consider y as an independent variable and to search
for a function p(y) such that y' = p(y). The chain rule gives
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and Eq. (7.21) becomes the first-order equation

(7.22) p-p=f(yp).

When the function p(y) has been found from (7.22), it remains to integrate y' =
p(y), which is an equation of type (7.12).

Example. The movement of a pendulum
(see the sketch by Leonardo da Vinci) is fgﬁ'gv;:i-::;;';wi.. Lo bap e
described by the equation " 5 z

/ 7
(7.23) y" +siny =0 g
(y denotes the deviation from equilibrium). '\‘:ﬂ ...... T NaW 1

Since Eq. (7.23) does not depend on ¢ (we :
write ¢ instead of xz, because this variable Pih-fe ssvdines o 1w ;
. . . i { P WL ie o J7M dake,
denotes the time in this example), we can Ly "“’;:"""““‘” phin - L0 Mo kgt
B . M LW o BAET L b daks, V- plasla s
use the above transformation to obtain i

(©Bibl. Nacional, Codex Madrid I 147r

2
p-dp=—siny-dy and p2:cosy+C’.

If we denote the amplitude of the oscillations by A (for which p = ¢ = 0) we
have C' = — cos A and get

dy

24 ==
(7.24) P= y

V/2cosy — 2cos A,
which is a differential equation for y. Separation of the variables finally yields the
solution expressed in implicit form with an elliptic integral

y dn
7.25 =1
(7.25) /0 V/2cosn — 2cos A

(the integration constant is determined by the assumption that y = 0 for ¢t = 0).
If T is the period of the oscillations, the maximal deviation A is attained for
t = T'/4. Hence, the period satisfies

" A
126 T 4/ dy | _ 2/ dy .
o V2cosy — 2cos 0 \/SmQ(A/2)—Sin2(y/2)

We see that it depends on the amplitude A and is close to 27 if A is small (Exer-
cise 7.5).
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FIGURE 7.8. The isochronous pendulum of Huygens

The Isochronous Pendulum. The problem consists in modifying the standard
pendulum in such a way that the period becomes independent of the amplitude.
The idea of Huygens (1673, Horologium Oscillatorium) was to modify the cir-
cle of the standard pendulum in such a way that the accelerating force becomes
proportional to the arc length s. The movement of the pendulum would then be
described by

(7.27) s+ Ks=0,

which has oscillations independent of the amplitude.

Solution. We see from the two similar triangles in Fig. 7.8 (right) that the acceler-
ating force is f = —dy/ds, so that our requirement f = — K s becomes

(7.28) dy =K - sds.

If s = 0 for y = 0 (i.e., the origin is placed in the lowest point) we obtain by
integration

K 2
(7.29) y=, -8 o s= Kl{
Thus, for our curve the height is proportional to the square of the arc length
(Joh. Bernoulli 1691/92b, p. 489-490). Inserting s from (7.29) into (7.28) gives

d
Y — VoK /da? + dy?
VY

or, by taking squares,

(7.30) (C —1) dy? = dz?  and \/C_ydy:d:v

Y Y
with ¢ = 1/(2K). Apart from a shift in y, this is precisely equation (7.9)
for the brachystochrone, and we see that the isochrone pendulum is a cycloid
as Joh. Bernoulli (1697c¢) said: “animo revolvens inexpectatam illam identitatem
Tautochronae Hugeniae nostrae que Brachystochronae” (see Fig. 7.8).
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Exercises

7.1

7.2

7.3

7.4

7.5

7.6

1.7

Compute the integral (7.5) for the tractrix with the substitution y = a cost,
insert sin® ¢ = 1 — cos® t, and apply the substitution (5.21).

(Joh. Bernoulli 1697b). Solve the differential equation “de mon Frére”
(7.31) y'=g(@)-y+ fla)-y"
by using the transformation y = v”. Determine the constant 3 such that

(7.31) becomes a linear differential equation for v.

The logistic law of population growth is given by the differential equation
(Verhulst 1845)
/
y =byla—y),
where a, b are constants. Choose a = 5, b = 2 and find the solution satisfying
y(0) = 0.1.
Show that a differential equation of the form

r=o(?)

can be solved by the substitution v(x) = y(x)/z. Apply this method to
, 9z +2y
24y

The solution of the pendulum equation
y" 4+ w?siny = 0,

corresponding to initial values y(0) = A, 3/(0) = 0, has the period

9 4 ~-1/2

T = / (Sin2(A/2) - sinz(y/2)) dy

w Jo
(see Eq.(7.26)). Set k = sin(A/2), apply the substitution sin(y/2) = k -
sin o, and compute the first terms of the expansion of 7" in powers of k.

2 2(1\2, .4(1-3)2 _ 2 A? | 11A* | 173A°
Result. 7 (1+k2(3) 4k ()4, ) = 2 (14 5+ L+ 172004 ).
Solve the differential equation

y/: 4+y2
442"

The motion of a body in the earth’s gravitational field is described by the

differential equation
y" = _9R2
Y
where ¢ = 9.81 m/sec?, R = 6.36 - 10° m, and y is the distance of the
body to the center of earth. Determine the constants in the solution such that
y(0) = R and 3/(0) = v. Then, find the smallest velocity v for which the

body will not return to earth (escape velocity).
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I1.8 Linear Differential Equations

... itis today quite impossible to swallow a single line of d’ Alembert, while
most writings of Euler can still be read with delight.
(Jacobi, see Spiess 1929, p. 139)
Let ap(x), a1(x), . .., an—1(x) be given functions. We call
(8.1 Y™ 4+ an_ 1 (@)y™ Y+ a(2)y +ao(z)y =0
a homogeneous linear differential equation of order n and

(8.2) Y™ +ap1(2)y" Y + L+ ar(@)y +ao(z)y = f(2)

an inhomogeneous linear differential equation. For the left-hand side of these
equations we introduce the abbreviation

(8.3) Ly) =y +an1(x)y" N +.. 4 ao(x)y,

so that (8.1) and (8.2) become

(8.4) Ly)=0 —and  L(y)=f,

respectively. We call £ a differential operator. It operates on functions y(x), and

the result £(y) is again a function, given by (8.3). The main property of this oper-
ator is that it is linear, i.e.,

(85) E(Clyl =+ ngg) = Clﬁ(yl) =+ CQE(yQ).

An obvious consequence of this linearity is the following result.

(8.1) Lemma. Given n solutions y1(z), y2(z), ..., yn(x) for the homogeneous
equation (8.1), then for arbitrary constants ci, . . . , ¢y, the function

(8.6) c1yi(x) + c2y2(x) + ..+ cnyn(@)

is also a solution of the same equation. a

Remark. The solutions of the equations of order 1 involve one constant (see
Sect. I1.7) and the equations of order 2 have two arbitrary constants (see, for ex-
ample, Eq.(7.23)). Arguing by analogy, we can assume (Euler) that the equa-
tions of order n have n constants and that (8.6) is the general solution of
8.1), if y1(x), ..., yn(x) are linearly independent functions. Here, the functions
y1(2), ..., yn(x) are called linearly independent if the linear combination (8.6)
vanishes identically only in the case when all ¢; are zero. For example, 1, z, 22, 23
are linearly independent functions.
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(8.2) Lemma.

General solution of the homogeneous equation (8.1)
Jr
one particular solution of the inhomogeneous equation (8.2)

general solution of the inhomogeneous equation (8.2).

Proof. Let y be a particular solution of (8.2), i.e., L(§) = f. For an arbitrary
solution y of (8.1) (i.e., L(y) = 0) we then have L(y + §) = f by (8.5), so that
y + ¥ is a solution of (8.2).

On the other hand, if ¥ is another solution of (8.2) (i.e., L(y) = f) then,
again by (8.5), we have L(§ — y) =0and y =y + (¥ — ¥) is the sum of § and a
solution of the homogeneous equation (8.1). a

Conclusion. In order to solve the differential equations (8.1) and (8.2), one has to
— find n different solutions (linearly independent) of (8.1), and
— find one solution of (8.2).

Homogeneous Equation with Constant Coefficients

The complete solution of Eq. (8.1) is very seldom possible. However, there are a
few exceptions. The most important one is when the coefficients a;(z) are inde-
pendent of z, i.e.,

(8.7) ™ 4 an 1y + 4 ay + agy = 0.

Another exception is when a;(z) = a;2°~" (“Cauchy’s Equation”). This case will
be considered at the end of this section.

The essential idea for solving (8.7) (Euler communicated it on Sept. 15, 1739
in a letter to Joh. Bernoulli and published it in 1743) is to search for solutions of
the form

(8.8) y(w) =™,
where A is a constant to be determined. Computing the derivatives
Y (z) = Xe?, y'(z) = A2, Ly (z) = Amer?,
and inserting them into Eq. (8.7), yields
(8.9) (A" + ap A" L Faih +ag)e® =0.

Hence, the function (8.8) is a solution of (8.7) if and only if A is a root of the
so-called characteristic equation

(8.10) x(\) =0, X)) = A" an N )+ a.
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Distinct Roots. If Eq. (8.10) has n distinct roots, say A1, ... , Ay, then eMT .,
e’ are n linearly independent solutions of (8.7) (see Exercise 8.1). The general
solution is thus given by

(8.11) y(x) = 1M 4 e 4 4 cpen .

Multiple Roots. Consider first the simple differential equation
(8.12) y™ =0,

where the characteristic equation A\ = 0 has a root zero of multiplicity n. Obvi-
ously, the general solution of (8.12)is ¢; +eoxtczx®+. . 4c,x™la polynomial
of degree n — 1.

Next, we study the equation

(8.13) y" — 3ay” + 3a%y’ —ay =0,

where the characteristic equation (A — @) = 0 has the root a of multiplicity 3.
We introduce a new unknown function u(x) by the relation (Euler 1743b)

(8.14) y(x) = e - u(x).

Then, differentiating this relation three times and inserting the results into (8.13),
we obtain for u Eq. (8.12) with n = 3. Therefore, the general solution of (8.13) is
given by

(8.15) y(z) = e - (01 + cox + 03x2).

Differential Operators. The above calculations become particularly elegant if we
introduce, for a given constant a, the differential operator D, by

(8.16) Dy=vy —a-y.
The composition of two such operators D, and D), gives
(8.17) DyDoy = (v —ay) — by’ —ay) =y" — (a + b)Yy + aby = D, Dyy.

We observe that D, and D, commute and that D, Dy D, ...y = 0 is the differ-
ential equation (8.7) whose coefficients are those of the characteristic polynomial
(A—a)(A=b)(A—c¢)....Therefore, Eq.(8.13) is the same as

(8.13") D3y = 0.
Applying D,, to (8.14), we obtain

/ /
Doy =ae® -u+e* -u —ae®™ - -u=e""-u,
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D2y = e . 4", and finally D3y = e . u(3). This verifies that (8.15) is the
general solution of (8.13).

(8.3) Theorem (Euler 1743b). Suppose that the characteristic polynomial (8.10)
has the factorization

X()\) = ()\ — )\1)m1 ()\ — )\2)m2 et ()\ — /\k)mk
(with distinct \;), then the general solution of (8.7) is given by
(8.18) y(@) = pr()eM? + pa(@)e® + ..+ pr(x)e,

where the p;(x) are arbitrary polynomials of degree m; — 1 (this solution involves
precisely Zle m; = n constants).

Proof. We illustrate the proof for the case of two multiple roots x(\) = (A —
a)3(\ — b)*. Because of the permutability of D, and D, we can write the differ-
ential equation either as

(8.19) DiD3y =0 oras  D3Diy=0.

The solution y = e** - (01 +cor+ 03x2) of Dgy = (0 is seen to be reduced to zero
by the left-hand version of (8.19); the solution y = €** - (¢4 + c5 + cox® + c7a?)
of Dgy = 0 is annuled by the right-hand version. Both are therefore solutions and
have together seven free constants (see Exercise 8.2 for the linear independence
of the functions involved). a

Avoiding Complex Arithmetic. The result of Theorem 8.3 is valid also for com-
plex A;. If, however, the coefficients a; of Eq.(8.7) are real, we are mainly in-
terested in real-valued solutions. The fact that complex roots of real polynomials
always appear in conjugate pairs allows us to simplify (8.18). Let A\; = a + i3
and Ay = o — i3 be two such roots. The corresponding part of the solution (8.18)
is then a polynomial multiplied by

(8.20) e** (cleiﬁgE + CQe_iB””).

Using Euler’s formula (I.5.4), this expression becomes

(8.21) e**(dy cos Bz + dy sin Bz ),

where d; = ¢1 + ¢o and do = i(¢1 — o) are new constants. This expression can

be further simplified by the use of dy + id; = Ce™® = C cos ¢ + iC'sinp. We
then get with Eq. (I1.4.3) (see Fig.8.1)

Ce™* (sin @ cos Bx + cos psin ﬁx) = Ce** sin (ﬂx + <p).
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/N

a<0 oa>0

FIGURE 8.1. Stable and unstable oscillations

Example. Equation (7.23) of the pendulum can, for small oscillations, be simpli-
fied by replacing sin y by y, and becomes

(8.22) y" +w?y =0, w? =g/t,

where g = 9.81m/sec? and / is the length of the rod. The characteristic equation
A2 + w? = 0 has the roots +iw. Hence, the general solution of (8.22) is

y(t) = Csin(wt + @),

which has period
T =271/w=2m\/l/g.

Inhomogeneous Linear Equations

The problem consists in finding one particular solution of L(y) = f, i.e.,
(8.23) y™ a1y 4 ay +agy = f(x).

As an immediate consequence of the linearity of (8.5), we have the following
result.

(8.4) Lemma (Superposition Principle). Let y1(x) and yz(xz) be solutions of
L(y1) = f1 and L(y2) = fo, then c1y1(x) + caya(x) is a solution of L(y) =
c1f1 + cafo. O

In situations where the inhomogeneity f(x) in (8.23) can be split into a sum
of simple terms, the individual terms can be treated separately.

The Quick Method (Euler 1750b). This approach is possible if f(z) is a linear
combination of 27, e*®, e** sin(wz), . . .; more precisely, if f(z) itself is a solu-
tion of some homogeneous linear equation with constant coefficients. The idea is
to look for a solution with the same structure.

Example. Consider a case where f is a polynomial of degree 2, e.g.,
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(8.24) y" 4+ 5y + 2 +y =22+

We will search for a solution of the form

(8.25) y(x) = a + bx + cx®.

Computing the derivatives of (8.25) and inserting them into (8.24) yields
cx® + (b+4c)x + (a + 2b+ 10¢) = 22% + .

Comparison of the coefficients gives ¢ = 2, b = —7 and a = —6, so that a
particular solution of (8.24) is

y(x) = 22% — Tz — 6.
Example. Suppose now that f(x) is a sine function
(8.26) y" —y +y = sin2z.

It is not sufficient to take y(x) = a - sin 2z, because y’ also produces cos 2.
Therefore, we put

(8.27) y(x) =a-sin2z + b - cos 2z,
compute the derivatives, and insert them into (8.26). This gives the condition
(a + 2b — 4a) sin 2z + (b — 2a — 4b) cos 2z = sin 2z.
We obtain the linear system —3a + 2b = 1, —2a — 3b = 0 with the solution

a = —3/13,b = 2/13. Consequently, the particular solution is

3 2
(8.28) ylx) = — 13 sin 2z + 13 08 2x.

Another possibility for solving (8.26) is to consider the equation
(8.29) y// _ y/ +y= €2ix

and to search for a solution of the form y(z) = Ae?®*. Inserting its derivatives
yields —4A — 2iA+ A = 1 and A = (—3+ 2i)/13. Hence, the solution of (8.29)
is
_ -3+ 2t Q2

13

Since (8.26) is just the imaginary part of (8.29), we get a solution of (8.26) by
taking the imaginary part of (8.30).

(8.30) y(z)

Justification of This Approach. By assumption, f(x) satisfies £1(f) = 0, where
Ly = DDV ... is some differential operator with constant coefficients. Apply-
ing this operator to Eq.(8.23), i.e. L(y) = f, we get (£1£)(y) = 0, and the
solution of (8.23) is seen to satisfy the linear homogeneous differential equation
(£1L)(y) = 0. The general solution of this equation is known by Theorem 8.3.
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FIGURE 8.2. Solution for 4" + y = sinwz, y(0)=0, y'(0) =1, w =1.09, 1.03,1.015, 1.

Case of Resonance. Consider, for example, the equation
(8.31) Yy’ +y =sinx.

Here, we cannot take y(x) = asinz + bcosz, because this function is itself a
solution of the homogeneous equation. Inspired by the discussion on double roots
(see also Fig. 8.2), we try

(8.32) y(x) = axsinz + bz cosx.
The usual procedure (inserting the derivatives of (8.32) into (8.31)) yields
2a cosx — 2bsinx = sinz,

so that a = 0 and b = —1/2. A particular solution of (8.31) is thus

1
(8.33) y(x) = — g Tcos .

It explodes for x — oo (see Fig. 8.2).

Method of Variation of Constants (Lagrange 1775, 1788). This is a general
method that allows us to find a particular solution of (8.2) in the case where the
general solution of the homogeneous equation (8.1) is known. In order to simplify
the notation, we explain this method for the case n = 2.

Consider the problem

(8.34) y" +a(x)y’ +b(x)y = f(x)

and assume that y;(x) and yo(x) are two known independent solutions of the
homogeneous equation ¢y +a(x)y’ +b(z)y = 0. The idea is to look for a solution
of the form

(8.35) y(r) = c1(z)y1(x) + ca()y2 ()

(hence the name “variation of constants’). The derivative of (8.35) is
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(8.36) Y =y + chyz + cayl + oy
In order to avoid complications with higher order derivatives, we require that
(8.37) i1+ chya =0

so that the derivative of (8.35) becomes y' = ¢1y] + cay’. The second derivative
then becomes

(8.38) Y = yr + couh + eyl + cayly

If all these formulas are inserted into (8.34), the terms containing c¢; and cg disap-
pear, because we have assumed that y; () and y» () are solutions of the homoge-
neous equation. All that remains is

(8.39) Ay + cayy = f ().

This, together with (8.37), constitutes the linear system

40 n) @), (40)) ( )

(©40 \(mm o))\ )~ )
W(x) c/(:c) F(x)

The matrix W (z) is called the Wronskian. Computing ¢’ (x) from (8.40) and inte-

grating yields .
:/ W) F(t) dt,
0

and a solution of (8.34) is given by

ci(x v _
40 y(o) = (@) @) (20)) = [ o) )W 0F () a.
0
Example. Consider the equation with constant coefficients

(8.42) Yy + 2ay’ + by = f(x),
where a® < b. The homogeneous equation possesses the solutions y;(z) =
elati®)z o () = e(@=)% where o« = —a and 3 = /b — a2. The Wronskian
and its inverse are
eiﬁr e*iﬁm
W(z) =e*® , .
( ) ((a—l—iﬁ)eww (Oz—iﬁ)e_zﬁI)

e—a;v (—Oé + Z‘/@)e—iﬁw e—i5$
2i8 \ (a+iB)er  —efr )’
Consequently, we find from (8.41) that

1 T eiﬁ(m—t) _ e—iﬁ(;ﬂ—t)
— a(z—t)
v = / (e 3 )ity ae

W (z) =

(8.43) i
- ; / (ea@—f) sin 5(:1:4)) F(t) dt.
0

This formula is valid for any function f(t).
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Cauchy’s Equation

An equation of the form

al 7 ap

xn—ly :L.ny =0

An—1 (p—
(8.44) y™W Ty
is usually called “Cauchy’s equation”. Its analytic solution was discussed in full

detail by Euler (1769, “Sectio Secunda, Caput V”). Instead of e one looks for
solutions of the form

(8.45) ylx) =a".
Example. Consider the problem
1 1
(8.46) y' 4+ Ty - Ly =0.
x x
Inserting (8.45) yields

(7‘(7‘ 1) +r— 1)gcr_2 =0.

The roots of this equation are » = 1 and r = —1. Hence, the general solution of
(8.46) is
(8.47) y(@) = 1z + Z“

Another possibility for solving (8.44) is the use of the transformation

(8.48) r=cé', y(z) = 2(t).
Since
dz dy dx
(8.49) 2= o di s xy, 2= =ay + 2%y,

Eq. (8.46) becomes an equation with constant coefficients z”/ — z = 0, to which
we can apply the above theory (Theorem 8.3). This gives z(t) = ciet + cpe™?,
which, after back substitution, becomes (8.47) again.

Exercises

8.1 If Aq,..., A, are distinct complex numbers, then
(8.50) c1€MT 4 €™ 4+ cpe™® =0
forallzifandonlyifc; =co=...=¢, =0.
Hint. Differentiating Eq. (8.50) at x = 0 shows that >, c;A¥ = 0 for
k = 0,1,.... Consider then the expression Y ., ¢;p(\;), where p(z) is a

polynomial that vanishes for A¢, ..., Aj_1, Aj41,..., A, butnot for A;.



8.2

8.3

8.4

8.5

8.6

8.7
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For distinct values A1, ..., A, we have

n

Z(Ci +d;x + eiIQ)eAix =0

i=1

for all z if and only if all coefficients c;, d;, e; vanish.

Hint. Prove that for an arbitray polynomial we have

S (ep(N) 4 dip' (i) + ep” (X)) = 0.

A second access to the case of multiple characteristic values (d’ Alembert
1748). Suppose that A is a double root of (8.10). Split this root into two neigh-
boring roots A and \ + € (with ¢ infinitely small). In this case, e**, e(A )%,
and also the linear combination

e()\+5)z _ Az

y(z) = . ‘

are solutions of the problem. Show that the latter becomes, for ¢ — 0, the

solution ze?®.

Look for a particular solution of " + 0.2y’ + y = sin(wz) and study its
amplitude as function of w. What phenomenon can be observed?

Compute a particular solution of y” — 2y’ + y = e* cos x
a) by putting y = Ae®sinx 4+ Be” cos z;

b) by the method of variation of constants; and

¢) by solving y” — 2y 4+ y = 1+,

Solve the following homogeneous and inhomogeneous Cauchy equations:
?y" —xy' — 3y =0,
x2y// _ xy/ —3y = .%'4,
22y — 3z + 4y = 0.
The last equation will lead to a problem of double roots. Meet the situation

with determination (Laurel & Hardy 1933, The Sons of the Desert).

Let y1(x) and y2(z) be two solutions of y” + a(z)y’ + b(z)y = 0. Then,
show that the Wronskian (8.40) satisfies

det(W(w)) = det (W(:Eo)) . exp(— /m a(t) dt).

zo

Hint. Find a differential equation for z(z) = det (W (z)).
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I1.9 Numerical Solution of Differential Equations

I have always observed that graduate mathematicians and physicists are
very well acquainted with theoretical results, but have no knowledge of the
simplest approximate methods.

(L. Collatz, Num. Beh. Diffgl., Springer 1951, Engl. transl. 1960)

It is often impossible to solve a differential equation

(CHY) y' = f(z,y)

by analytic methods (e.g., ¥’ = 2 + y?). If it is possible, it may happen that the
integrals that appear are not elementary (e.g., y” + siny = 0, see (7.23)). Even
in the case where all integrals are elementary, the formulas obtained might not be
useful. For example, the solution of ' = y* + 1 is given by (see Eq. (5.16))

2 2 2 1 2
v In? V2t + v (arctan(y\/2 + 1) + arctan(yv/2 — 1)) =z+C,
8 y2—V2y+1 4
which is a rather unpractical formula, especially if we want y as a function of .
Therefore, it is interesting to search for numerical methods that treat (9.1) directly.

Euler’s Method

PROBLEM 85: Given an arbitrary differential equation, find for its integral
a close approximation. (Euler 1768, §650)

Equation (9.1) prescribes for each point (x, y) a value f(x,y) that is the slope of
the solution. One can thus imagine a field of directions (Joh. Bernoulli 1694). The
curves that always follow these directions are the solutions of (9.1). See Fig. 9.1
for the “Exemplo res patebit” (called Riccati’s equation)

9.2) y =2%+y°,

which does not possess an elementary solution (Liouville 1841, “J’ai donc pensé
qu’il pouvait étre bon de soumettre la question a une analyse exacte . ..”). Obvi-
ously, the solutions are not unique. Therefore, we prescribe an initial value

9.3) y(xo) = o.

Euler’s Idea (Euler 1768, Sectio Secunda, Caput VII). We choose & > 0 and we
replace the solution for ¢y < x < x + h by its tangent line

U(x) = yo + (¥ — o) - f(¥0,Y0)-

For the point 1 = ¢ + h this gives y1 = yo + hf(x0,yo). At this point we
compute again the new direction and repeat the above procedure in order to obtain
the “valores successivi”

94) Tpt1l = Ty + h, Yn+1l = Yn + hf(wnvyn)
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FIGURE 9.1. Prescribed slopes for ¢’ = z* + 3> with four solutions

This is Euler’s method. The function that is obtained by connecting all these tan-
gents is called Euler’s polygon. If we let h — 0, these polygons approach the
solution more and more closely (see Fig. 9.2).

Numerical Experiment. We consider the differential equation (9.2), choose the ini-
tial values zg = —1.5, yo = —1.4, and the step sizes h = 1/4, 1/8, 1/16, 1/32.
The resulting Euler polygons are plotted in Fig. 9.2. The numerical approximation
and the errors at x = 0 are shown in Table 9.1. We observe that the error decreases
by a factor of 2 whenever the step size is halved (“quot” denotes the quotient be-
tween the errors for two successive step sizes). An explanation of this fact can
be found in any textbook on numerical analysis (e.g., Hairer, Ngrsett, & Wanner
1993, Sect.I1.3, p. 159).

TABLEO9.1. Euler’s method TABLE 9.2. Method (9.5)

1/h y(0) error quot 1/h 2(0) error quot

4 0.7246051 -0.6762019 2 -0.7330279 0.7814312
8 0.2968225 -0.2484192 2.722 4 -0.1063739 0.1547771 5.049
16 0.1577289 -0.1093256 2.272 8 0.0153874 0.0330159 4.688
32 0.0999576 -0.0515543 2.121 16  0.0409854 0.0074179 4.451
64 0.0734660 -0.0250628 2.057 32 0.0466509 0.0017523 4.233
128 0.0607632 -0.0123599 2.028 64 0.0479776 0.0004257 4.116
256 0.0545412 -0.0061380 2.014 128  0.0482984 0.0001049 4.058

512 0.0514618 -0.0030586 2.007 256 0.0483772 0.0000260 4.029
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FIGURE 9.2. Polygons for ¢’ = 22 + 1% FIGURE 9.3. Parabolas of order 2

Taylor Series Method

PROBLEM 86: Improve significantly the above method of approximate

integration of differential equations, so that the result be closer to the truth.

(Euler 1768, §656)

We note that (9.4) represents the first two terms of Taylor’s series. In order to
improve the precision, let us use three terms so that

2

h
9.5) Ynt1 = Yn +hy, + o

2

We have y,, = f(2n,Yyn), and for the computation of y/ we simply differentiate
the differential equations with respect to x. This gives, for i’ = 2% + y2,

9.6) y" =2z 4 2yy’ = 22 + 2%y + 21>,

The numerical results obtained by (9.5) with h = 1/2,1/4,1/8, and 1/16 are
shown in Fig.9.3. We have replaced the polygons of Euler’s method by “poly-
parabolas” composed of the truncated Taylor series. The errors at z = 0 are
presented in Table 9.2. For small h the results are much better than for Euler’s
method; halving the step size divides the error by 4.

Remark. It is of course possible to take additional terms of the Taylor series into
account, e.g.,

3
"

_ / h2 " h
9.7 Ynt1 =Yn + Iy + o Ut gy Yn -

The higher derivatives are obtained by iterated differentiation of the differential
equation. For Riccati’s equation we obtain from (9.6)
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y" =2+ 20y +2yy" =2+ day + 2% + 8x2y2 + 6y4
y//// — 4y 4 12x3 4 20Iy2 + 16x4y + 4O$2y3 + 24y5’ etc.

Second-Order Equations
Consider, for example, the pendulum equation (7.23)
9.8) y” = —siny.

We introduce a new variable for ¢ so that (9.8) becomes
(9.8")

This system can be interpreted as a vector field, which prescribes at each point
(y,v) a velocity of the point (y(z),v(x)) moving with z (Fig.9.4). The solu-
tions (y(z),v(x)) constantly respect the prescribed velocity. They are sketched in
Fig.9.5. The ovals represent the oscillations; the sinusoids are the rotations of a
pendulum that turns over.

Euler’s Method. The idea (Cauchy 1824) is to apply Euler’s method (9.4) to both
functions y(z) and v(z). If y(z¢) = yo and v(zg) = v are given initial values
and h > 0 is a chosen step size, the analog of (9.4) applied to (9.8') is

09 zpy1=zn+h, Yntl = Yn + - U, Upy1 =V — N~ Sin(yn)-

Fig. 9.6 shows Euler’s polygons for the initial values y(0) = 1.2, v(0) = 0, and
for h = 0.15. We observe that our tremendous method predicts that the pendulum,
in contrast to physical reality, accelerates and finally turns over.

Taylor Series Method. Differentiating (9.8”) with respect to x, we obtain

(9.10) y' =1 = —siny, v’ = —cosy-y = —cosy - v,

which allow us to use an additional term of the Taylor series. The analog of
Eqg. (9.5) becomes

2 2
Yntl = Yn + Y, + _ Yh =yn + hv, — _ siny,
©.11) 2 2
2 h2

Upy1 = U + ), + 5 vl = v, — hsin(y,) — o COSYnUn.

The results (see Fig. 9.6 to the right) are much better even for & twice as large.
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Exercises

9.1

9.2

9.3

Apply the method of Euler with & = 1/N to the equation

v =Xy, y(0)=1
in order to obtain an approximation of (1) = e*. The result is a well-known
formula of Chap. L.
(Inverse Error Function). Define a function y(z) by the relation

2 Yy
xr = / e_t2 dt.
V7 Jo

Differentiate this formula and show that y(z) satisfies the differential equa-
tion
y = \/27Tey2, y(0) = 0.

Compute the first four terms of the Taylor series for y(x) (developed at the
point z = 0).

(Van der Pol’s Equation). Compute 3(*) and
v® for i = 1,2, 3 for the solutions of the
differential equation

v,

y/
U/ 8(1—y2)’l} - Y,

and compute numerically the solution us-
ing the third-order Taylor series method
for e = 0.3, the initial values y(0) =
2.00092238555422, v(0) = 0, and for 0 <
r < 6.31844320345412. The correct so-
lution is periodic for this interval and the
given initial values.
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I1.10 The Euler-Maclaurin Summation Formula

The King calls me “my Professor”, and I am the happiest man in the world!
(Euler is proud to serve Frederick II in Berlin)

I have here a geometer who is a big cyclops . .. who has only one eye left,
and a new curve, which he is presently computing, could render him totally
blind. (Frederick II; see Spiess 1929, p. 165-166.)

This formula was developed independently by Euler (1736) and Maclaurin (1742)
as a powerful tool for the computation of sums such as the harmonic sum 1 +
é + ;) + ...+ 711’ the sum of logarithms In2 + In3 +1In4 + ... + Inn = Inn!,
the sum of powers 1% + 2% 4+ 3% 4 .. + n*, or the sum of reciprocal powers
1+ i + g¢ + ...+ L, with the help of differential calculus.

Problem. For a given function f(x), find a formula for

(10.1) S=FfM)+F@Q+ @) +...+f(n)=>_ f@)
(“investigatio summae serierum ex termino generali”).

Euler’s Derivation of the Formula

The first idea (see Euler 1755, pars posterior, § 105, Maclaurin 1742, Book II,
Chap. IV, p. 663f) is to consider also the sum with shifted arguments

(10.2) s=fO0O)+f(H)+f2)+...+ f(n—1).
We compute the difference S— s using Taylor’s series (Eq. (2.8) withz—z¢ = —1)

Fay | fG@ 6

f(i*l)*f(i)zi 1 21 3!

+...

ORNTOES SILORIND S ORI SEIORIND S IO RS
Ti=1 Ti=1 ti=1

=1

In order to turn this formula for > /(i) into a formula for »_, f(z), we replace f
by its primitive (again denoted by f):

(10.3)
n . n 1 n . 1 n . 1 n o
;f(z)Z/O f(w)dx+2!;f(z)—3!;f (z)+4!;f @) —....

The second idea is to remove the sums > f/, > ", 3" ', on the right by using
the same formula, with f successively replaced by f’, f”, f" etc. This will lead
to a formula of the type
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/ f(@)dz — a(f(n) — £(0)) + B(F'(n) - 1'(0))
A (f"(n) — F7(0)) + 6(f"(n) — F7(0)) —

For the computation of the coefficients «, 3,7, ... we successively replace f in
(10.4) by f/, f”, ... to obtain

(10.4)

i:

S f@) = [y f@)de —a(f(n) — f(0)) +B(f'(n) — f'(0)) —
—5 2 f'(4) =~ (f(n) = £(0)) +5(f'(n) = £'(0)) —
5 2 f7(0) =445 (f'(n) = f(0)) —
The sum of all this, by (10.3), has to be fo x) dzx. Therefore, we obtain
(10.5) a+21! —0, ﬁ+;+§! —0, 7+§!+;+L —0,... .
from which we can compute a@ = —;, 8 = 12, v=0,0 = 720,... and we
have

S £ / F)de+ ) (Fm)—£0) + L (7 )~ £ (0)

(10.6) = 12
g P =) (7O )= 1O 0) +

(10.1) Example. This formula, applied to a sum of nearly a million terms,

1 1 1 1 1
= In(10%) — In(1 1076 —
1112 a3t 1000000 = 0T~ In(10) 4, 107 = o
1 1 1
— 1074 107%+... ~114 4
00~ 190 107 45y 1070+ 63758469,

gives an excellent approximation of the exact result by a couple of terms only. The
formula is, however, of no use for the computation of the first terms 1+ % +...+ 110

Bernoulli Numbers. It is customary to replace the coefficients a, (3, v, ... by
B;/i! (Bp=1,a = By /1!, 8 = By/2!,...), so that (10.5) becomes

k—1
(105 2B1+By=0, 3By+3Bi+By=0, ..., Z(kj’)Bizo.
2
=0

The Bernoulli numbers, as far as Euler calculated them, are
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1 1 1 1 1
By=1, B;=-— By = By =— Bg = Bg = —
0 5 1 27 2 67 4 307 6 427 8 307
5 691 7 3617 43867
10 667 12 27307 14 67 16 510 1) 18 798 )
B = 174611 854513 Bor o 7236364091
277 330 27138 - 2730
8553103 B — 723749461029 8615841276005
26 — 6 ) 28 — 870 ) 30 — 14322 9
and Bs = Bs = ... = 0. In this notation, Eq. (10.6) becomes
oS0 = [ S de et (7n) ~ 7(0))
(10.6") =1 B
2k (2k—1) _ @E=1)(
+ kz oy P00 = D 0)).

Example. For f(x) = x4 the series of Eq. (10.6') is finite and gives the well-known
formula of Jac. Bernoulli (I.1.28), (1.1.29).

Generating Function. In order to get more insight into the Bernoulli numbers,
we apply one of Euler’s great ideas: consider the function V' (u) whose Taylor
coefficients are the numbers under consideration, i.e., define

V(u) =1+ au + fu? +yu® + ou + ...
o Bl BZ 2 B3 3 B4 4
=1+ 1!u+ 2!u + 3!u + 4!u

Now the formulas (10.5) alias (10.5”) say simply that

(10.7)
+...

v  u?r U’
ww-@+m+3f+4+“):L
that is,
U
10.8 Viu) = .
( ) () ev —1

Thus, the infinitely many algebraic equations become one analytic formula. The
fact that

w/2 —u/2
U U U u e +e
10.9 \%4 = .

(109) (u)+2 e“—1+2 2 ew/2 —e—u/2

is an even function shows that Bs = B; = By = ... = 0.
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De Usu Legitimo Formulae Summatoriae Maclaurinianae

We now insert f(z) = cos(2wz), for which f(i) = 1 for all ¢, into Eq. (10.6").
This gives 1 +1 4 ... + 1 to the left, and 0 + 0 + 0 + . .. to the right, because
cos(2mx) together with all its derivatives is periodic with period 1. We see that the
formula as it stands is wrong! Another problem is that for most functions f the
infinite series in (10.6") usually does not converge.

It is therefore necessary to truncate the formula after a finite number of terms
and to obtain an expression for the remainder. This was done in beautiful Latin
(see above) by Jacobi (1834) by rearranging Euler’s proof using the error term
(4.32) of Bernoulli-Cauchy throughout. It was later discovered (Wirtinger 1902)
that the proof can be done simply by repeated integration by parts in a similar
manner to the proof of Eq. (4.32). The main ingredient of the proof is the so-called
Bernoulli polynomials.

Bernoulli Polynomials. The polynomials

Bl(x):BOI+B1 :xfé
BQ(I):B()I2+2B1I+B2 = 7x+é

Bs(x) = Box® + 3B12° + 3Bax + Bs —ad 3224 1y
By(x) = Box* +4B12® + 6Bya® + 4Bsz + By = a* —22% + 22 —

or, in general,

k
k )
10.10 B = B;zF 7,
(10.10) k(@) ;(l) x
satisfy

(10.11)  Bi(x) =kBi_1(z),  Bu(0)=Bx(1) =Bx  (k>2).

Indeed, the first formula of (10.11) is a property of the binomial coefficients (see
Theorem 1.2.1); the second formula follows from the definition and from (10.5").

(10.2) Theorem. We have

S s = [ s+ 5 () - £0))

=1
k .
+ Z (_1])']3] (f(_j_l) (n) _ f(j—l) (0)) =+ R]“
j=2 ’
where
(10.12) Ry = ( 1]3! /O Byi(z) £ (z) da.

Here, By () is equal to By(z) for 0 < x < 1 and extended periodically with
period 1 (see Fig. 10.1).
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FIGURE 10.1. Bernoulli polynomials

Proof. We start by proving the statement for n = 1. Using B/ (x) = 1 and inte-
grating by parts we have

1

| et = [ B i = B, - [ s e

0 0
The first term is 5(f(1) 4+ f(0)). In the second term we insert from (10.11)

Bi(z) = ; Bj(x) and integrate once again. This gives

[ s@ar= (504 10) - 2 (1w - ro) + ), [ B @

or, continuing like this,
(10.13)

L 50) = [ s 0B (50 000) 4
j=2

with

(_1)1@71 1
(10.14) Rp=" /OBk(x)f(k)(x)d:c.

We next apply Eq. (10.14) to the shifted functions f(x + ¢ — 1), observe that
1 i
/ Be(x)f®(x+i—1)de = / Bi(z)f®) () d,
0 i—1

and obtain the statement of Theorem 10.2 by summing these formulas from 7 = 1
to i = n. a
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Estimating the Remainder. The estimates (for 0 < x < 1)

1 1 ¢ 1
B < B < B B <
which are easy to check, and the fact that | [;* g(z) dz| < [ |g(«)| dz, show that

~ 1 [ ~ 1 /M
1015) (Rl <, [ 1F@lde [Ral< ) [ 170 d
0 0

These are the desired rigorous estimates of the remainder of Euler-Maclaurin’s
summation formula. Further maximal and minimal values of the Bernoulli poly-
nomials have been computed by Lehmer (1940); see Exercise 10.3.

(10.3) Remark. If we apply the formula of Theorem 10.2 to the function f(¢) =
hg(a + th) with h = (b — a)/n and if we pass the term (f(n) — f(0))/2 to the
left side, we obtain (with x; = a + ih)

n—1 b

) + 03 g(o) + ) o(an) = [ g(o)do
-
(10.16) Z B; (990 (0) — 99V (a))

j=2
hE+1 no_
T /Bk(t)g(k)(a—i—th)dt,
. 0

where we recognize on the left the trapezoidal rule. Equation (10.16) shows that
the dominating term of the error is (h?/12)(¢'(b) — ¢'(a)). However, if g is peri-
odic, then all terms in the Buler-Maclaurin series disappear and the error is equal
to Ry, for an arbitrary k; this explains the surprisingly good results of Table 6.2
(Sect.11.6).

Stirling’s Formula

We put f(2) = Inz in the Euler-Maclaurin formula. Since
Zf(z) =In2+mIn3+nd+Ins5+...+Inn=In(n!),

we will obtain an approximate expression for the factorialsn! =1-2-...-n.

(10.4) Theorem (Stirling 1730). We have
V2rn n™ ( 1 1 1 1
671

10.17) n! = — —
(10.17) n PUion 7 36003 T 126005 16807

+f~39),
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where | Ro| < 0.0006605/n83. This gives, for n — oo, the approximation

N \/27m n"

en

(10.18) n!

Remark. This famous formula is especially useful in combinatorial analysis, statis-
tics, and probability theory. Equation (10.17) is truncated after the 4th term simply
because one additional term would not fit into the same line.

The numerical values of (10.18) and (10.17) (with one, two and three terms)
for n = 10 and n = 100 are compared to n! in Table 10.1.

TABLE 10.1. Factorial function and approximations by Stirling’s formula

n=10: Stirling0 = 0.359869561874103592162317593283 - 107
Stirling 1 = 0.362881005142693352994116531675 - 107

Stirling 2 = 0.362879997141301292538591223941 - 107

Stirling 3 = 0.3628800000R1301281279077612862- 107

n! = 0.362880000000000000000000000000 - 107

n =100: Stirling0 = 0.932484762526934324776475612718 - 10*°®
Stirling 1 = 0.933262157031762340989619195146 - 10'°®

Stirling 2 = 0.933262154439367463946383356624 - 10'°8

Stirling 3 = 0.933262154439441532371338864918 - 10'°8

n! = 0.933262154439441526816992388563 - 10158

Proof. We have seen above (Example 10.1) that the Euler-Maclaurin formula is
inefficient if the higher derivatives of f(x) become large on the considered inter-
val. We therefore apply the formula with f(z) = ln « for the sum fromi = n + 1
to 7 = m. Since

d7

-1 (G —1)!
/lnxdos =zlnz —z, i (Inz) = (-1)77*

xi

we obtain from Theorem 10.2 that

G 1
Z f@=Inm!—Inn!l=mlnm—m— (nlnn —n) + 5 (Inm —1Inn)
1=n+1
1 /1 1 1 1 1 ~
(10.19) + 12 (m a n) 360 (m3 a n3) + Bs,
where |R5| < 0.00123/n* for all m > n. This estimate is obtained from (10.12)
and (10.15) and the fact that |Bs(z)| < 0.02446 for 0 < z < 1. In (10.19),

the terms Inn!, nlnn, n, and (1/2)Inn diverge individually for n — oco. We
therefore take them together and set
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1
(10.20) Yo =Inn!+n— <n+2>lnn,

and (10.19) becomes

1 /1 1 1 1 1 ~
10.21 "= T ( - )— - ~ Rs.
(10.21) Y Ym + 12\n m 360 <n3 m3> Rs

For n and m sufficiently large ~,, and ~,, become arbitrarily close. Therefore, it
appears that the values 7, converge, for m — oo, to a value that we denote by y
(the precise proof will be given in Theorem III.1.8 of Cauchy). We then take the
limit m — oo in Eq. (10.21) and obtain

1

1 ~
- R
120~ 360n3 T

1
Inn!+n— (nJr 2)1nn:'y+
where |R5| < 0.00123/n*. Taking the exponential function of this expression we
get

n

Vnon : 1 1 ~
1022) n! = D, th  D,=e - ( - R).
(10.22) = en W ¢ P\ 19n " 36008 T
This proves (10.18) and also (10.17), as soon as we have seen that the limit of D,,
(i.e., D = €7) is actually equal to v/27. To this end, we compute, from (10.22),

D, D, nl-nl-(2n)* e 2"V/2n 2

4-6-8-...-2n /2
Do, n2n.e2n.n . (2n)! 1-3-5- .

6 - .
7-...-(2n—1) /n’

which tends to D too. This formula reminds us of Wallis’s product of Eq. (1.5.27).
Indeed, its square,

(Dn.Dn>27 2:2:4-4-6-6 --- (2n)(2n) 2(2n + 1)
Ds,, - 1-3-3-5-5-7T--- (2n—1)(2n+1) n ’
~ ~ o 0N~ 7

—7/2 —4

tends to 27, so that D = +/27. The stated estimate for }~29 follows from (10.12)
and | By (z)| < 0.04756. O

The Harmonic Series and Euler’s Constant

We try to compute
IR P
2 3 4 7 n
by putting f(x) = 1/ in Theorem 10.2. Since f)(z) = (—=1)75lz77~1, we get,
instead of (10.19),
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FIGURE 10 2 Euler S autograph (1etter to Joh Bernoulh 1740 see Fellmann 1983 p 96)
1 /m 1 dr + 1( 1 1) 1 ( 1 1 )
= xT — R J—
; 2 2
(10.23) i=ni1 1 n T 2\m n 12\m n

+1(1_1)_ 1(1_1)4_1(1_1)_‘_?2
120\m*  nt/)  252\mS  nb/) T 240\m8 8 9
where, because of |By(z)| < 0.04756, we have |Ro| < 0.00529/n°. The diverg-
ing terms to collect will now be, instead of (10.20),

m

1
Yn = Z ;T Inn,
i=1
which is investigated precisely as above and seen to converge. This time, the con-
stant obtained,

1 1 1
(10.24) 1+ 9 + 3 + ...+ N Inn — v =0.57721566490153286 . . . ,

is a new constant in mathematics and is called “Euler’s constant” (see Fig. 10.2
for an autograph of Euler containing his constant and its use for the computation
of the sum of Example 10.1). Letting, as before, m — oo in (10.23), we obtain

| 1 1 1 1 1
10.25 — 41 _ _
(10.25) ; G T on2 T 200t T 25906 T 2408

+ Ry,
where |§9| < 0.00529/n°. To find the constant y, we put, for example, n = 10
(as did Euler) in Eq. (10.25) and obtain the value of (10.24). This constant was
computed with great precision by D. Knuth (1962). It is still not known whether it
is rational or irrational.

! Reproduced with permission of Birkhaeuser Verlag, Basel.
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Exercises

10.1 The spiral of Theodorus is composed of rectangular triangles of sides 1, v/n,
and v/n + 1. It performs a complete rotation after 17 triangles (this seems to
be the reason why Theodorus did not consider roots beyond /17). No longer
prevented by such scruples, we now want to know how many rotations a
billion such triangles perform. This requires the calculation of (see Fig. 10.3)

1 1000000000
1+ arctan
2 i;s Vi

with an error smaller than 1. This exercise is not only a further occasion to
admire the power of the Euler-Maclaurin formula, but also leaves us with an
interesting integral to evaluate.

D

FIGURE 10.3. The spiral of Theodorus of Cyrene, 470-390 B.C.

10.2 (Formula for the Taylor series of tanx). If we let cotx = 1/tanz and
cothz = 1/tanhz, Eq.(10.9) can be seen to represent the Taylor series of
(z/2) coth(x/2). This allows us to obtain the series expansion of z - coth z,
and, by letting x — ¢z, that of x - cot z. Finally, use the formula

2-cot2xr =cotx —tanx

and obtain the coefficients of the expansion of tanz. Compare it with
Eq.(1.4.18).

10.3 Verify numerically the estimates (Lehmer 1940)

|Bs(z)| < 0.04812, | Bs ()| < 0.02446, | Bz ()| < 0.02607,
|By(z)| < 0.04756,  |Bii(z)| <0.13250,  |Bis(z)| < 0.52357

for0 <z <1.
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Foundations of Classical Analysis

... I am not sure that I shall still do geometry ten years from now. I also
think that the mine is already almost too deep, and must sooner or later be
abandoned. Today, Physics and Chemistry offer more brilliant discoveries
and which are easier to exploit . . .
(Lagrange, Sept. 21, 1781, Letter to d’ Alembert, Oeuvres, vol. 13, p. 368)
Euler’s death in 1783 was followed by a period of stagnation in mathematics. He
had indeed solved everything: an unsurpassed treatment of infinite and differential
calculus (Euler 1748, 1755), solvable integrals solved, solvable differential equa-
tions solved (Euler 1768, 1769), the secrets of liquids (Euler 1755b), of mechan-
ics (Euler 1736b, Lagrange 1788), of variational calculus (Euler 1744), of algebra
(Euler 1770), unveiled. It seemed that no other task remained than to study about
30,000 pages of Euler’s work.

The “Théorie des fonctions analytiques” by Lagrange (1797), “freed from
all considerations of infinitely small quantities, vanishing quantities, limits and
fluxions”, the thesis of Gauss (1799) on the “Fundamental Theorem of Algebra”
and the study of the convergence of the hypergeometric series (Gauss 1812) mark
the beginning of a new era.

Bolzano points out that Gauss’s first proof is lacking in rigor; he then gives
in 1817 a “purely analytic proof of the theorem, that between two values which
produce opposite signs, there exists at least one root of the equation” (Theorem
II1.3.5 below). In 1821, Cauchy establishes new requirements of rigor in his fa-
mous “Cours d’Analyse”. The questions are the following:

— What is a derivative really? Answer: a limit.
— What is an integral really? Answer: a limit.
— What is an infinite series a1 + as + a3 + . .. really? Answer: a limit.
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This leads to
— What is a limit? Answer: a number.

And, finally, the last question:
— What is a number?

Weierstrass and his collaborators (Heine, Cantor), as well as Méray, answer
that question around 1870-1872. They also fill many gaps in Cauchy’s proofs
by clarifying the notions of uniform convergence (see picture below), uniform
continuity, the term by term integration of infinite series, and the term by term
differentiation of infinite series.

Sections IIL.5, II1.6, and II1.7, on, respectively, the integral calculus, the dif-
ferential calculus, and infinite power series, will be the heart of this chapter. The
preparatory Sections III.1 through II1.4 will enable us to build our theories on a
solid foundation. Section III.8 completes the integral calculus and Section II1.9
presents two results of Weierstrass on continuous functions that were both spec-
tacular discoveries of the epoch.

(4 X ,—-;-7—3_:___; — \
V1 ..= Vs AN (“.5. _@
Kl "
N\ ‘S EDITIO § | /
\? 7\ AQUINTA NI/
SAY P N : V.
“7 ke 4‘,

B g

Weierstrass explains uniform convergence to Cauchy
who meditates over Abel’s counterexample
(Drawing by K. Wanner)
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III.1 Infinite Sequences and Real Numbers

If, for every positive integer n, we have given a number s,,, then we speak of an
(infinite) sequence and we write

(1.1) {sn} = {51, 2, 83, 54, S5, . . - }.

The number s, is called the nth term or the general term of the sequence.
A first example is

(1.2) {1,2,3,4,5,6,...},

which is an arithmetic progression. This means that the difference of two succes-
sive terms is constant. The sequence

(1.3) {®.d" ¢ ¢ q" ...}

is a geometric progression (the quotient of two successive terms is constant).

Convergence of a Sequence

One says that a quantity is the /imit of another quantity, if the second ap-
proaches the first closer than any given quantity, however small . . .
(D’ Alembert 1765, Encyclopédie, tome neuvieme, a Neufchastel.)

When a variable quantity converges towards a fixed limit, it is often useful
to indicate this limit by a specific notation, which we shall do by setting the
abbreviation
lim
in front of the variable in question . . .
(Cauchy 1821, Cours d’Analyse)

If the terms s,, of a sequence (1.1) approach arbitrarily closely a number s for n

large enough, we call this number the limit of (1.1). This concept is very important

and calls for more precision:

— “arbitrarily closely” means “closer than any positive number €”, i.e., |s, — s| <
e. Here, | - | is the absolute value and forces s,, to be close to s in the positive
and the negative direction.

— “for n large enough” means that there must be an N such that the above esti-
mate is true forall n > N.

With the symbols V (“for all”) and 3 (“there exists”), we can thus express the

above situation in the following compact form.

(1.1) Definition (D’ Alembert 1765, Cauchy 1821). We say that a sequence (1.1)
converges if there exists a number s such that

(1.4) Ve>0 IN>1 Vn>N |s,—s|<e.

We then write
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FIGURE 1.1. Convergence of the sequence (1.6)

(1.5) s= lim s, or Sp — S.

n—oo

If (1.4) is not true for any s, the sequence (1.1) is said to diverge.

(1.2) Examples. Consider the sequence
1 2 3 45 n
{ s o s s s } , where Sp = .
273456 n+1

This sequence converges to 1, because

n 1
1‘* <e

n+1 | n+1

s =1/ = |

for1/(n+ 1) < €, hence for n > 1/e — 1. Therefore, for a given € > 0, we can
take for N an integer that is larger than 1/¢ — 1 and condition (1.4) is verified.

As the next example, we choose the sequence

=1 —1—i—1 1-1—1 L
s1 =1, S2 = 9’ 83 = 92 3’
(1.6) 11 1 " 1
=1+ _ — - (=1)/2) ~
S4 +2 3 47 ) ;

(here [i/2] denotes the largest integer k not exceeding i/2; i.e., [/2] = kif i =
2k or i = 2k + 1). This sequence is somewhat less trivial and is illustrated in
Fig. 1.1. It seems to converge to a number close to 1.13 (which we guess, after
our experience of Chap.I, to be 7/4 + In2/2). We observe that for a given &
(here ¢ = 0.058), there is a last s,, (here s14) violating |s, — s| < e. Hence,
for N = 17, (1.4) is satisfied. The fact that several earlier terms (s3, S5, . ..

satisfy this estimate does not contradict (1.4).
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(1.3) Theorem. If a sequence {s,} converges, then it is bounded, i.e.,

(1.7) AB Vn>1 |s,|<B.

Proof. We put ¢ = 1. By the definition of convergence, we know the existence of
an integer N such that |s,, — s| < 1 for all n > N. Using the triangle inequality
(see Exercise 1.1), we obtain |s,, | = |s,—s+s| < [s,—s|+|s| < 1+|s|forn > N
and the statement is proved with B = max {|s1], |s2],...,|sn—1|,|s| +1}. O

For the boundedness of a sequence it is not necessary that it converge. For
example, the sequence

(1.8) {sn}={1,0,1,0,1,0,1,0,...}

is bounded (with B = 1) but does not converge.
The sequence (1.2) is neither bounded nor does it converge. The general
arithmetic progression

(1.9) {sn} ={d, 2d, 3d, 4d, 5d, ...}
is also unbounded (for d # 0). For d > 0 this sequence satisfies
(1.10) YVM>0 IN>1 Vn>N s, > M.

To see this, take an integer N satisfying N > M/d. If (1.10) is verified, we say
that the sequence {s,,} fends to infinity and we write

lim s, = 00 or Sp — 0.
n—oo
In a similar way, one can define lim, ., s, = —oo. We next investigate the

convergence of sequence (1.3).

(1.4) Lemma. For the geometric progression (1.3), we have

0 for |gl <1,
lim ¢"=4q1 forqg=1,
e oo for ¢ > 1

The sequence (1.3) diverges for g < —1.

Proof. Let us start with the case ¢ > 1. We write ¢ = 1+ r (with r > 0) and apply
Theorem 1.2.1 to obtain
-1
"=04+r)"=1+nr+ n(n2 )7’2+... > 1+nr

Therefore, the terms ¢™ tend to infinity (for a given M choose N > M/r in
(1.10)). The statement is trivial for ¢ = 1.

For |g| < 1 we consider the sequence s,, = (1/|q|)™, which tends to infinity
by the above considerations. For a given ¢ > 0 we put M = 1/¢ and apply (1.10)
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to the sequence {s, }. This proves the existence of an integer N such that for all
n > N we have s,, > M or equivalently |¢"| < e. This proves that ¢" — 0. For
q = —1 the sequence oscillates between —1 and 1 and for ¢ < —1 it is unbounded
and oscillating. O

The following theorem simplifies the computation of limits.
(1.5) Theorem. Consider two convergent sequences s, — s and v, — v. Then,

the sum, the product, and the quotient of the two sequences, taken term by term,
converge as well, and we have

(1.11) lim (s, +v,) =s+v

(1.12) lim (s, -vp) =8 v

(1.13) lim (S") =% i un#0 and v #£0.
n—oo \ vy, v

Proof. We begin with the proof of (1.11). We estimate

[(sn +vn) — (s+ V)| =|sn — s+ v — 0| <|sp— 8|+ |vn —v| <2=¢
N N o

<e <e

by the triangle inequality. For the proof to be logical this sequence of formulas
has to be read from back to front: given ¢’ > 0 arbitrarily small, we choose € > 0
such that 2¢ = £’. By hypothesis, the two sequences {s,, } and {v,, } converge to s
and v. This means that there exist N7 and N, such that |s,, — s| < e forn > Ny
and |v, — v| < e for n > Ns. If we choose N = max(N7, N2), we see that (1.4)
is satisfied for the sequence {s,, + vy, }. Once we are accustomed to this argument,
repeating these explanations will not be necessary.

For the proof of (1.12) we have to estimate s, v, —sv. Let us add and subtract
“mixed products” —sv,, + sv,, such that

[$nvn — sU| = |8pUn — SV, + SV, — S|
< |vn| |80 — 8|+ 18] |vn —v| < (B+|s])e =¢".

Here, we have used Theorem 1.3 for the sequence {vy, }.

It is sufficient to prove (1.13) for the special case where s,, = 1 for all n, and
hence s = 1. The general result will then follow from (1.12) because s, /vy, is the
product of (1/v,,) and s,,. We first observe that the values of |v,,| cannot become
arbitrarily small. Indeed, if we put e = |v|/2 in the definition of convergence, we
obtain |v, — v| < |v|/2 (and hence also |v,| > |v|/2) for sufficiently large n.
With this estimate, we now obtain

1 1’ T 2|vy, — | 2,

va vl foal ol T 2 T 2
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(1.6) Theorem. Assume that a sequence {s, } converges to s and that s,, < B for
all sufficiently large n. Then, the limit also satisfies s < B.

Proof. We shall show that s > B leads to a contradiction. For this we put ¢ =
s — B > 0 and use (1.4). This implies that for sufficiently large n we have

$—8p <|sp—s|<e=s—-B,
so that s, > B, which is in contradiction to our assumption. O

Remark. The analogous result for strict inequalities (s,, < B for all n implies
s < B) is wrong. This is seen by the counterexample s, = n/(n + 1) < 1 with
limy, o0 S = 1.

Cauchy Sequences. Let us now tackle an important problem. The definition of
convergence (1.4) forces us to estimate |s,, — s|; the limit s has to be known. But
what can we do if the limit s is unknown, or, as in Example (1.6), is not known to
arbitrary precision? It is then impossible to estimate with rigor |s — s,| < € for
any € > 0. To bypass this obstacle, Cauchy had the idea of replacing |s,, — s| < €
in (1.4) by |8y, — Sntk| < € for all the successors snyy, of sp,.

(1.7) Definition. A sequence {s,} is a Cauchy sequence if

(1.14) Ve>0 IN>1 VYn>N Vk>1 |[sn— snsn| <e.

FIGURE 1.2. Sequence (1.6) as a Cauchy sequence

Example. Fig. 1.2 illustrates condition (1.14) for the sequence (1.6). We see that,
e.g., fore = 0.11 condition (1.14) is satisfied for n > 17. Similarly, it is also seen
that (1.14) is true for any € > 0, because 1/(n + 2) + 1/(n + 3) tends to zero.

(1.8) Theorem (Cauchy 1821). A sequence {sy} of real numbers is convergent
(with a real number as limit) if and only if it is a Cauchy sequence.
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It is an immediate consequence of |s,, — Spik| < [$n — 8| + |5 — Sntk| <
2¢ that convergent sequences must be Cauchy sequences. A rigorous proof of
the converse implication, beyond Cauchy’s intuition, is only possible after having
understood the concept of irrational and real numbers. In contrast to the results
obtained until now (Theorems 1.3, 1.5, and 1.6), Theorem 1.8 is not true in the
setting of rational numbers. Consider, for example, the sequence

(1.15) {1, 14, 141, 1414, 14142, 1.41421,...}.

It is indeed a Cauchy sequence (we have |s,, — 5,1 x| < 107"*1), but its limit /2
is not rational.

Construction of Real Numbers

The more I meditate on the principles of the theory of functions — and I

do this unremittingly — the stronger becomes my conviction that the foun-

dations upon which these must be built are the truths of Algebra . . .
(Weierstrass 1875, Werke, vol. 2, p.235)

Please forget everything you have learned in school; for you haven’t learned
it. ... My daughters have been studying (chemistry) for several semesters
already, think they have learned differential and integral calculus in school,
and even today don’t know why x - y = y - x is true.

(Landau 1930, Engl. transl. 1945)

/3 is thus only a symbol for a number which has yet to be found, but is not
its definition. This definition is, however, satisfactorily given by my method
as, say

(1.7,1.73,1.732, ... )

(G. Cantor 1889)

... the definition of irrational numbers, on which geometric representa-
tions have often had a confusing influence. ... I take in my definition a
purely formal point of view, calling some given symbols numbers, so that
the existence of these numbers is beyond doubt. (Heine 1872)

At that point, my sense of dissatisfaction was so strong that I firmly re-
solved to start thinking until I should find a purely arithmetic and abso-
lutely rigorous foundation of the principles of infinitesimal analysis. . .. I
achieved this goal on November 24th, 1858, ... but I could not really de-
cide upon a proper publication, because, firstly, the subject is not easy to
present, and, secondly, the material is not very fruitful.

(Dedekind 1872)

Demeaning Analysis to a mere game with symbols . . .

(Du Bois-Reymond, Allgemeine Funktionentheorie, Tiibingen 1882)
For many decades nobody knew how irrational numbers should be put into a rig-
orous mathematical setting, how to grasp correctly what should be the “ultimate
term” of a Cauchy sequence such as (1.15). This “Gordian knot” was finally re-
solved independently by Cantor (1872), Heine (1872), Méray (1872) (and simi-
larly by Dedekind 1872) by the following audacious idea: the whole Cauchy se-
quence is declared “to be” the real number in question (see quotations). This
means that we associate to a Cauchy sequence of rational numbers s,, (henceforth
called a rational Cauchy sequence) a real number.
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This seems to resolve Theorem 1.8 in an elegant manner. But there remains
much to do: we shall have to identify different rational Cauchy sequences that
represent the same real number, define algebraic and order relations for these new
objects, and finally we shall find the proof of Theorem 1.8 more complicated than
we might have thought, because the terms s,, in (1.14) may now themselves be
real numbers, i.e., rational Cauchy sequences. All these details have been worked
out in full detail by Landau (1930) in a famous book, where he admits himself that
many parts are “‘eine langweilige Miihe”.

Equivalence Relation. Suppose that

V2 is associated to {1.4;1.41;1.414;...}
V/3 is associated to {1.7;1.73;1.732;...},

then v/2 - v/3 should be associated to the sequence of the products
{2.38;2.4393 ;2.449048, . . .}.

On the other hand, v/6 is also associated to {2.4 ;2.44 ;2.449 ;.. .}. So we have
to identify the two sequences.

Two rational Cauchy sequences {s,} and {v,} are called equivalent, if
limy,—00(8n — vn) =0, ie., if

(1.16) Ve>0 AN>1 Vn>N |s, —va| <e.

We then write {s,,} ~ {v,}. It is not difficult to check that (1.16) defines an
equivalence relation on the set of all rational Cauchy sequences. This means that
we have

{sn} ~ {sn} (reflexive)
{sn} ~{vn} = {ovn}~{sn} (symmetric)
{sn} ~{vn}, {vn} ~{wn} = {su} ~{wn} (transitive).

Therefore, it is possible to partition the set of rational Cauchy sequences into
equivalence classes,

{sn} = {{vn} ‘ {vn} is a rational Cauchy sequence and {v,, } ~ {sn}}
Elements of equivalence classes are called representatives.

(1.9) Definition. Real numbers are equivalence classes of rational Cauchy se-
quences, i.e.,

R = {{sn} ‘ {sn} is a rational Cauchy sequence }

The set Q of rational numbers can be interpreted as a subset of R in the
following way: if 7 is an element of QQ (abbreviated: » € Q), then the constant
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sequence {r, r,r, ...} is a rational Cauchy sequence. Hence, we identify the ratio-
nal number 7 with the real number {r,r,...}.

Addition and Multiplication. In order to be able to work with R, we have to
define the usual operations. Let s = {s,,} and v = {v,,} be two real numbers. We
then define their sum (difference), product (quotient) by

(1.17) s+v:={sn+uvnt s v:={8n - Up}.

We have to take some care with this definition. First of all, we have to ensure that
the sequences {s,, + vy, } and {s,, - v,, } are rational Cauchy sequences (this follows
from | (s, + vn) — (Sntk + Untk)| < 180 — Sntk| + |vn — Vnyk| for the sum
and is obtained as in the proof of Theorem 1.5 for the product). Then, we have
to prove that (1.17) is well-defined. If we choose different representatives of the
equivalence classes s and v, say {s] } and {v/,}, then the result s + v has to be
the same. For this we have to prove that s,, — s,, — 0 and v,, — v}, — 0 imply
($n +vn) — (sh, +v},) — 0and (s, - v,) — (s}, - v],) — 0. But this is obtained
exactly as in the proof of Theorem 1.5.

In a next step, we have to verify the known rules of computation with
real numbers (commutativity, associativity, distributivity). Here begins Landau’s
“langweilige Miihe”. We omit these details and refer the reader either to Landau’s
marvelous book or to any introductory algebra text.

Order. Let s = {s,,} and v = {v,,} be two real numbers. We then define

s<v &= F >0 IM>1 Ym>M s, <vm,—¢,

(1.18)
s<v <<= s<vVoOr s=v

(here the number &’ has to be rational in order to avoid an ambiguous definition).
The rather complicated definition of s < v means that for sufficiently large m
the elements s, and v,, have to be well separated. It also implies that the re-
lation is well defined. Obviously, it is not sufficient to require s, < v, (the
sequences {1,1/2,1/3,1/4,...} and {0, 0,0, . ..} both represent the real number
0 and serve as a counterexample).

The relation s < v of (1.18) defines an order relation. This means that

s <s (reflexive)

s<v,v<w = s<w (transitive)

s<v,v<s = s=wv (antisymmetric).
We just indicate the proof of antisymmetry. Suppose that s < vandv < s, but s #
v. Then, there exist positive rational numbers €/ and &} such that s,,, < vy, — €}

for m > M; and v, < s, — ¢4 for m > M. Hence, for m > max(M;, M),
we have g}y, < s, — v, < —&', which is a contradiction.

(1.10) Lemma. The order < of (1.18) is total, i.e., for any two real numbers s and
v with s # v we have either s < v orv < s.
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Remark. s # v is the negation of s = v, which is expressed by Eq.(1.16). In
order to formulate the negation of a statement like (1.16), we recall a little bit of
logic. Let S(x) be a statement depending on z € A (A is some set) and —S(z) its
negation. Then, we have 2

VeeA S(x) is the negation of dz e A -S(x),
dze A S(x) is the negation of Vee A -S(z).

In order to obtain the negation of a long statement we have to reverse all quantifiers
(V < 3) and replace the final statement by its negation. Hence, s # v is obtained
from (1.16) as

(1.19) de>0 VN>1 dn>N s, —v,| > e

Proof of Lemma 1.10. Let s = {s,,} and v = {v,,} be two distinct real numbers,
such that (1.19) holds. We then put ¢’ = ¢/3. Since {s,,} and {v,,} are Cauchy
sequences, there exists Ni such that |s, — s,4x| < & forn > Ny and k > 1 and
there exists Na such that |v, — vp4+k| < & forn > N3 and k > 1. We then put
N = max(Ny, N2) and deduce from (1.19) the existence of an integer n > N
such that |s,, — v,,| > €. There are two possibilities,

(1.20) Sp — Up > € or VUp — Sp > €.
> >
N T A (oA
>¢ >¢

FIGURE 1.3. Illustration of the two cases in (1.20)

For k£ > 1 the numbers $,,4x and v, 1 stay in the disks of radius &’ = £/3 (see
Fig. 1.3). Therefore, (1.18) is satisfied with M = N and we have s > v in the first
case, whereas v > s in the second case. O

Absolute Value. Once we have shown that the order is total (Lemma 1.10), it is
possible to define the absolute value of a number s as being s (for s > 0) and —s
(for s < 0). An easy consequence of this definition is that

(1.21) [s| = {|sn|} for s={sn}.

The triangle inequality |s + v| < |s| + |v| and all its consequences are valid for
real numbers.

Remark. In the Definitions and Theorems 1.1 through 1.7, we have not been very
precise about the concept of “number”. To be logically correct, they should have

2 The statement “all (V) polar bears are white” is wrong if there exists (3) at least one
colored (nonwhite) polar bear; and vice versa.
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been stated only for rational numbers. After having now introduced with much
pain the concept of real numbers, we can extend these definitions to real numbers
and check that the statements of the theorems remain valid also in the more general
context.

Proof of Theorem 1.8.

... until now these propositions were considered axioms.
(Méray 1869, see Dugac 1978, p. 82)

Let {s;} be a Cauchy sequence of real numbers, such that each s; itself is an
equivalence class of rational Cauchy sequences, i.e., s; = {sm}n>1. The idea is
to choose for each i a number becoming smaller and smaller (for example 1/27)
and to apply the definition of a rational Cauchy sequence in order to obtain

1

2

We then put v; := s; n, and consider the rational sequence {v;} (see Fig. 1.4).

dN;, >1 VYn>N; Vk>1 |Sm—81‘7n+k|<

<1/2
s;0 | I\.\\\\ R LN
Vi T
S, \ \ T
Sz | | |
Sy: | | |

FIGURE 1.4. Convergence of a Cauchy sequence

a) We first prove that |v; — s;| < 1/i. By (1.21), the real number |v; — ;| is

represented by the rational Cauchy sequence {|v; — Sim |} m>1. Since, form > N,
1 1 1
[vi — Sim| = |31N — Sim| < % = i 9

it follows from (1.18) with &’ = 1/24 that |v; — s;| < 1/4.

b) We next prove that {v;} is a rational Cauchy sequence. Observing that
|v; — viyr| does not change its value if it is considered as a rational or a real
number, we have

[vi = Vigk| = [vi = 8i + 8i = Sitk + Sithk — Vit]

1 1
(1.22) < |vi = sil + 55 — Sigr| + |Sivr — vigr| < . +e+ < 2
i i+ k
for sufficiently large ¢ and for & > 1. The equivalence class of {v,, }, denoted by
s := {wvp}, will be our candidate for the limit of {s;}. It follows from (1.22) that
|v; — 8| < 3e (for large enough %) so that v; — s.
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¢) We finally prove that s; — s. From parts (a) and (b) of this proof and from
the triangle inequality, we have

1
[s;i —s| < |si —wvil + |vi —s] < . +3e < 4e
i

for sufficiently large ¢. Hence, s; — s, and Theorem 1.8 is proved. a

Monotone Sequences and Least Upper Bound

Our next aim is to prove rigorously the fact that a majorized monotonically in-
creasing sequence converges to a real limit. This result has been used repeatedly
in Chap.II, especially in Sect. II1.10.

(1.11) Definition. Let X be a subset of R. A real number £ is called the least
upper bound (or supremum) of X if

i) Vee X x<¢ and

i) Ve>0 JzeX x>f—c.
We then write £ = sup X.

Condition (i) expressses the fact that & is an upper bound of X, whereas
condition (ii) means that £ — € is no longer an upper bound, so that £ is really the
smallest of all upper bounds. Our next result investigates the existence of such a
supremum: “This Theorem is ...” as Bolzano wrote in 1817, ... of the greatest
importance” (see Stolz 1881, p.257). It is based on Theorem 1.8 and is not valid
in Q (the set X = {x € Q|2 < 2} does not have a supremum in Q).

5, Sy 83 8, B

—e —9o—04¢ —
X ‘
O = Bo
Y oy - By
o, - B,
0 1 By
FIGURE 1.5. Existence of the least upper o, M By,
bound for a monotone sequence o B
5 " Ps

(1.12) Theorem. Let X be a subset of R that is nonempty and majorized (i.e.,
dB Vxz € X x < B). Then, there exists a real number £ such that £ = sup X.

Proof. On Bolzano’s tracks (but also on Euclid’s, Elements, Book X), we do the
proof by bisection. We shall construct nested intervals [c,, 8,] with lengths de-
creasing geometrically to zero, such that o, is not an upper bound of X but 3, is
one.
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Since X is nonempty, we can find a number ¢ that is not an upper bound
(choose an element z of X and take oy to the left of x). Our second assumption
(X is majorized) implies the existence of an upper bound. We choose one and call
it Bp. The idea is then to consider the midpoint v = (ag + 5p)/2 (see Fig. 1.5).
There are two possibilities: either v is an upper bound of X (in this case, we
set a; := g and (1 := ~y) or it is not (then, we put oy := ~ and 31 := [p).
Repeating this procedure, we find a sequence of intervals [a,,, 3,] with lengths
ﬁn — Qp = (60 - aO)/2n~

By construction we see that all successors of a,, and 3,, lie inside the interval
[aen, Br]. Consequently, we have the estimates

Bo — g

|an_an+k| Sﬁn_an: P |/6n_ﬁn+k| Sﬁn_an:
271

Bo — g
o

This shows that {a, } and {3, } are Cauchy sequences. By Theorem 1.8, they are
convergent, and, since 3, — a, = (8o — ap)/2™ — 0, they have the same limit
& (Theorem 1.5). It now follows from Theorem 1.6 that £ is an upper bound of X
(z < B, implies = < &). Furthermore, for a given € > 0, there is an «, satisfying
an, > & — €. Since v, is not an upper bound of X, £ — € cannot be one either. 0O

(1.13) Theorem. Consider a sequence {s,} that is monotonically increasing
(sn < Sp41) and majorized (s, < B for all n). Then, it converges to a real
limit.

Proof. By hypothesis, the set X = {sq, $2, 83, ...} is nonempty and majorized
(see Fig. 1.5). Therefore, £ = sup X exists by Theorem 1.12. By the definition of
sup X, the value £ — ¢ is, for a given € > 0, not an upper bound of X. Conse-
quently, there exists an NV such that sy > & — <. Since X is majorized by &, we
have

§—e<sy <syt1 <syt2 <sny3 <L <6

sothat{ — e < s, < £ (and thus |s, — &| < ¢) for all n > N. This proves the
convergence of {s,,} to €. O

(1.14) Corollary. Consider two sequences {s,} and {v,}. Suppose that {s,} is
monotonically increasing (s, < Sp41) and that s,, < vy, for all (sufficiently large)
n. Then, we have

{vn} converges = {sn} converges,

{sn} diverges = {vn} diverges.

Proof. If {v,, } converges, then it is bounded by Theorem 1.3. Hence, {s,,} is also
bounded and its convergence follows from Theorem 1.13. The second line is the
logical reversion of the first one. O

Remark. In an analogous way, we define the lower bound of a set, we define mi-
norized and monotonically decreasing sequences, and we use the notation
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(1.23) €=infX

for the greatest lower bound or infimum of X (i.e., x > £ for all z € X and
Ve >0 dx € X withz < £ + ¢). There are theorems analogous to Theorems
1.12 and 1.13.

Accumulation Points

I find it really surprising that Mr. Weierstrass and Mr. Kronecker can attract
so many students — between 15 and 20 — to lectures that are so difficult
and at such a high level.

(letter of Mittag-Leffler 1875, see Dugac 1978, p. 68)

The sequence

1 2 1 3 1 4 1 5 1 6
37 37 47 47 57 57 67 6’ 7 7
(1.24) - - - - - -0

- - - - - =1

does not converge, but if every other term is removed, it converges either to 0 or
to 1. A sequence with missing terms is a “subsequence”. More precisely,

(1.15) Definition. A sequence {s),} is called subsequence of {s,} if there exists
an increasing mapping 0 : N — N with s}, = S,(n) (increasing means that
o(n) < o(m)ifn < m)

(1.16) Definition. A point s is called an accumulation point of a sequence {s,},
if there exists a subsequence converging to s.

Examples. The points 0 and 1 are accumulation points of the sequence (1.24). An
interesting example is the sequence

1121231234123 4512345¢61 }
27373747474757575757676767676777777777777787"' 3
which admits all numbers between 0 and 1 (0 and 1 included) as accumulation

points. To see that, for example, In 2 is an accumulation point of (1.25), consider
the sequence

(1.25) {

{ 6 69 693 6931 69314 693147 }
1071007 1000 10000” 100000° 1000000 """ J*
It is certainly included somewhere in (1.25) and converges to In 2.
The unbounded sequences {1,2,3,4,5,...},{-1,-2,—-3,—4,-5,...} and
{1,-1,2,-2,3,-3,4,—4, ...}, don’t have accumulation points.

(1.17) Theorem of Bolzano-Weierstrass (Weierstrass’s lecture of 1874).
A bounded sequence {s,} has at least one accumulation point.

Proof. Weierstrass’s original proof used bisection, as in the proof of Theorem 1.12.
Having this theorem at our disposal, we consider the set
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X !

E-1n E+1n

E=sup X

FIGURE 1.6. Proof of the theorem of Bolzano-Weierstrass

(1.26) X = {x | sp, > x for infinitely many n},

and simply put & = sup X, which will turn out to be an accumulation point (see
Fig. 1.6). This number exists because X is nonempty and majorized (the sequence
{sn} is bounded). By definition of the supremum, only a finite number of s,, can
satisfy s, > & + ¢ and there is an infinity of terms s,, that are larger than £ — € (¢
is an arbitrary positive number). Hence, an infinity of terms s,, lie in the interval
[€E—¢e,&+e]

We now choose arbitrarily an element of the sequence that lies in [ —1, £+ 1]
and we denote it by s; = s,(1). Then, we choose an element in [{ — 1/2,£ +
1/2] whose index is larger than o (1) (this is surely possible since there must be
infinitely many) and we denote it by s, = s,(2). At the nth step, we choose for
8, = S4(n) an element of the sequence that lies in [§ — 1/n, £ 4 1/n] and whose
index is larger than o(n — 1). The subsequence obtained in this way converges to
&, because |s,, — & < 1/n. O

Remark. This proof did not exhibit an arbitrary accumulation point but precisely
the largest accumulation point. We call it the “limit superior” of the sequence and
we denote it by

(1.27) ¢ =limsup s, = sup{z € R | s,, > « for infinitely many n}

(see also Exercise 1.12). The smallest accumulation point is denoted by
(1.28) ¢ =liminfs, = inf{z € R | s,, < x for infinitely many n}.

Example. Forthesequence{ %,g, é,i, }l,g, ég 1, }Wehave

limsup,, ., sn =1, hmlnfn_)OO sn = 0,sup{s,} = 3/2, 1nf{sn} =-1/2.

Exercises

1.1 (Triangle inequality). Show, by discussing all possible combinations of signs,
that for any two real numbers u and v we have

(1.29) [u o] < Jul + [v].
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1.4

1.5

1.6

1.7
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Then, show that for any three real numbers u, v, and w we have
(1.29") lu —w| < |u—v|+ |v—w|.

Show that the sequence {s,, } with
~2n-—1

Snp =
n+3
converges to s = 2. For a given ¢ > 0, say for ¢ = 10~°, find a number N
such that |s,, — s| < e forn > N.

Show that the sequences

Lottty !
Sp =
1.5 3.7 5.9 7-11 (2n —1)(2n + 3)
1 1 1 1
Sn - - ot

T 1.2.372.3.473.4.5 "

are Cauchy sequences and find their limits.
Hint. Decompose the rational functions into partial fractions.

n(n+1)(n+ 2)

Construct sequences s,, and v,, with lim s, = oo and lim v, = 0 to

n—oo n—oo

illustrate each of the following possibilities.
a) lim (s, - v,) = 003
n—0oo
b) lim (s, - v,) = ¢, where ¢ is an arbitrary constant; and
n—0oo
¢) Sy, - Uy, is bounded but not convergent.

Consider the three sequences

sp = v/n 4+ 1000—+/n, vn:\/n—l—\/n—\/n, un:\/ Vn.

n+ "o
1000

Show that s,, > v, > u, for n < 10% and compute lim s,, lim v,,
n—oo

n—oo

lim w,, if they exist. Arrange these limits in increasing order.

n—oo

Show with the help of the estimates of Exercise 1.2.5 that

1\"n
Uy = (1 + )
n
is a Cauchy sequence. Find, for ¢ = 1075, an integer N such that |v,, —
Untk| < eforn > Nandk > 1.

For two rational Cauchy sequences {a,, } and {b,}, we denote by {a,, - b, }
the sequence formed by the products term by term. Show

a) the sequence {a,, - b, } is again a Cauchy sequence; and

b) if {a,} ~ {sn} and {b,} ~ {v,} as defined in (1.16), then {a,, - b, } ~
{$n - vn }. This shows that the product of two real numbers defined in (1.17)
is independent of the choice of the representatives.
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1.8 Show the following: if s is the only accumulation point of a bounded se-
quence {sy, }, then the sequence is convergent and lim,, o s, = s. Show by
a counterexample that this property is not true for unbounded sequences.

1.9 (Cauchy 1821, p.59; also called “Cesaro summation”). Let lim,, . a,, = a

and n
1
by, = .
t
k=1
Show that lim,, .- b,, = a.

1.10 Let « be an irrational number (for example, v = v/2). Consider the sequence

{5} defined by
$pn, = (na) mod 1,

ie., s, € (0,1) is na with the integer part removed. Compute s1, Sa, S3,
S4, ... and sketch these values. Show that every point in [0, 1] is an accumu-
lation point of this sequence.
Hint. Fore > 0 and n > 1/¢ at least two points among s1, S2, . . ., S,41 (call
them sy and sy4¢) are closer than . Then, the points sk, Sk4¢, Sk+2¢, - - -
form a grid with mesh size < .
Remark. At the beginning of the computer era, this procedure was the stan-
dard method for creating pseudo random numbers.

1.11 Let {s,} and {v,, } be two bounded sequences. Show that

limsup (s, + vy,) < limsup s, + limsup v,
n—oo n—oo n—oo

liminf (s, + v,) > liminf s, + liminf v,,.
n—oo n—oo n—oo

Show with the help of examples that the inequality can be strict.
1.12 Prove that for a sequence {s,, } we have

limsup s, = lim v,, where Uy = sup{sn, Sn+1, Sn+2; - - }
n—0oo

n—oo

1.13 Compute all accumulation points of the sequence

k
1
{sn}= {Pu» P21, P22, P31, P32, P33, P41, P427---}» Pke = Z 2
i=¢

Show that (see Eq. (1.5.23)) limsup s,, = 72/6 and that lim inf s,, = 0 (see
Fig. 1.7).

- ‘ ‘ | L -
'—TEZ/6_1 ‘ ‘ ‘HH\ m2/6

FIGURE 1.7. Sequence with a countable number of accumulation points
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II1.2 Infinite Series

I shall devote all my efforts to bring light into the immense obscurity that
today reigns in Analysis. It so lacks any plan or system, that one is really
astonished that so many people devote themselves to it — and, still worse,
it is absolutely devoid of any rigour.

(Abel 1826, Oeuvres, vol.2, p.263)

Cauchy is mad, and there is no way of being on good terms with him,
although at present he is the only man who knows how mathematics should
be treated. What he does is excellent, but very confused . . .

(Abel 1826, Oeuvres, vol. 2, p.259)

Since Newton and Leibniz, infinite series
2.1) ag+ay +as+az+...

have been the universal tool for all calculations (see Chap. I). We will make precise
here what (2.1) really represents. The idea is to consider the sequence {s;,,} of
partial sums

n
(2.2) S0 = ag, 51 =ap + ay, cee Sp = E ai,
i=0

and to apply the definitions and results of the preceding section. A classical refer-
ence for infinite series is the book of Knopp (1922).

(2.1) Definition. We say that the infinite series (2.1) converges, if the sequence
{sn} of (2.2) converges. We write

oo
o T s, or a; = lim s,
PR o
e S
q ) L]; Ld ..... 1 ............................
T T 1
1 q s o -

FIGUREZ2.1. “Geometric” view of the geometric series

(2.2) Example. Consider the geometric series whose nth partial sum is given by
sp=1+¢q+q¢*+ ...+ q" (see Fig. 2.1). Multiplying this expression by 1 — ¢,
most terms cancel, and we get (for ¢ # 1)

1 _ qn+1

sp=14+q+¢@+...+¢" =
1—gq
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From Lemma 1.4, together with Theorem 1.5, we thus have

1
if |¢| <1,

PRI S S N
aT¢ 9Ty q ©Tt ) diverges — oo if ¢ >1,
diverges if ¢ < -—1.

Criteria for Convergence

Usually it is not possible to find a simple expression for s,, and it is difficult to
compute explicitly the limit of {s,}. In this case, it is natural to apply Cauchy’s
criterion of Theorem 1.8 to the sequence of partial sums. Since s,4, — S, =
Ap+1 + Qpg2 + ... + apyk, WE get

(2.3) Lemma. The infinite series (2.1) converges to a real number if and only if

Ve>0 3N>0 Vn>N Vk>1 |appi+antot...+ank| <e. O

Putting £ = 1 in this criterion, we see that

2.3) lim a; =0

11— 00

is a necessary condition for the convergence of (2.1). However, (2.3) is not suffi-
cient for the convergence of (2.1). This can be seen with the counterexample

1+1+1+1+1+1+1+1+1+1+1+

2 2 3 3 3 44445 >

In what follows, we shall discuss some sufficient conditions for the convergence
of (2.1).
Leibniz’s Criterion. Consider an infinite series where the terms have alternating
signs

(2.4) a0*a1+a2*CL3+CL4*...ZZ(*1)7;CL1‘.
i>0

(2.4) Theorem (Leibniz 1682). Suppose that the terms a; of the alternating series
(2.4) satisfy for all i

a; >0, ai+1 < aj, lim a; = 0;
1— 00

then, the series (2.4) converges to a real value s and we have the estimate
(2.5) Is — sn| < ant1,

i.e., the error of the nth partial sum is not larger than the first neglected term.
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FIGURE2.2. Proof of Leibniz’s criterion

Proof. Denote by s,, the nth partial sum of (2.4). It then follows from the mono-
tonicity assumption that sox11 = Sokp—1 + ok — G2k4+1 > Sokr—1 and that
Sok4+2 = Sok — Qok+1 + G242 < Sok. From the positivity of agiy1, we have
Sak+1 < Sar so that, by combining these inequalities,

81 <83 <85 <87 <...<86 <81 <82<8p
(see Fig. 2.2). Consequently, s,, 4+ lies for all k£ between s,, and s,,41, and we have
(26) |3n+k: - Snl < |Sn+1 - 3n| = Gn+1-

This implies the convergence of {s,,} by Theorem 1.8, since a,,41 tends to 0 for
n — o0. Finally, the estimate (2.5) is obtained by considering the limit £ — oo in
(2.6) (use Theorem 1.6). O

Examples. The convergence of (see (1.4.29) and (1.3.13a))

1 1 1 1 1 1
1-— — .. d 1-— —
375 77 o 27374
is thus established. However, we have not yet rigorously proved that the first sum
represents 7 /4 and the second one In 2 (see Example 7.11 below).
If a continued fraction (I1.6.7) is converted into an infinite series, we obtain
(see Eq. (1.6.16))

b1 pip2 | PiP2P3  P1P2P3P4

©F B T BB, ByB;  BsB,

Assuming that the integers p; and ¢; are positive, this is an alternating series (from
the second term onward). Furthermore, we have By = qxBrp_1 + pxBr—2 >
prBr—2, implying that the terms of the series are monotonically decreasing. Under
the additional assumption that 0 < p; < ¢; for all ¢ > 1 (see Theorem 1.6.4), we
have

BiBi_1 = qiBi_1 + prBr—1Bk_2 > 2pxBy—1Bj_»

and consequently also By By_1 > 2k_1pkpk_1 -...-p1. This proves that the terms

of the series tend to zero and, by Theorem 2.4, that the series under consideration
converges.
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Majorizing or Minorizing a Series. For infinite series with non-negative terms
the following criterion is extremely useful.

(2.5) Theorem. Suppose that 0 < a; < b; for all (sufficiently large) i. Then

Y oicobi converges — > oo a; converges,
g a; diverges = o2 bi diverges.
Proof. Putting s,, = Y. ;a; and v, = Y ., b;, this result is an immediate
consequence of Corollary 1.14. a

As a first application, we give an easy proof of the divergence of the harmonic
series y .-, 1 (N. Oresme, around 1350; see Struik 1969, p. 320). We minorize
this series as follows:

Yobi=14, +5+, tstgtots ottt tip

Yai=14+ 4+ + Fatgtgtastistot T tant. .
N~ ~ 7 ~ -
1/2 1/2 1/2

Since ) a; diverges, it follows from 0 < a; < b; that the harmonic series > b;
diverges too.

As a further example, we consider the series (1.2.18) for e” (e.g., for x = 10),

102 10%  10* 10°

2.7 1+10+ 2!+3!+4!+5! 4+

We omit the first 10 terms (this does not influence the convergence), and compare
the resulting series with the geometric series (Example 2.2 with ¢ = 10/11 < 1)

1010#71011+1012+ ::1010<1 10‘+710.10 +10~10.10+ )
10! 11! 120 7T 10! 11 ' 11-12  11-12-13
<1WOO+J0+1@4FN3+ )
= 10! 11 112 113 )

The convergence of the geometric series implies the convergence of (2.7). Simi-
larly, one can prove that the series (I.2.18) converges for all z. This comparison
with the geometric series will be used on several occasions (see Criteria 2.10 and
2.11, Lemma 7.1, and Theorems 7.5 and 7.7).

(2.6) Lemma. The series

2.8) T T S SR S

converges for all o > 1. It diverges for o < 1.

Proof. The divergence of the series for o = 1 (harmonic series) has been estab-
lished above. For a < 1 the individual terms become still larger, so that the series
diverges by Theorem 2.5.
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We shall next prove the convergence of (2.8) for « = (k+1)/k, where k > 1
is an integer. The idea is to consider the series

1 1 1 1 . 1
1-— + — + - = —1)
R T VR AR DO

which converges by Leibniz’s criterion. The sum of two successive terms can be
minorized as follows:

11 7(“/2i7{“/2i71> 1
Voi-1 Yo Yei-1. e TN ko
where Cy, = 1/(k-2(F+1)/¥) is a constant independent of 4. The last inequality in
(2.9) is obtained from the identity a* — b* = (a — b)(a*~1 4 a*=2b + a*~3b% +
VY witha = ¥/2iand b = {/2i — 1 as follows:

V2= VL= e gy (20 )60 Z . (i) 6-0 7

Thus, by Theorem 2.5, the series (2.8) converges for o = (k + 1) /k.
Finally, for an arbitrary o > 1 there exists an integer k with o > (k + 1) /k.
Theorem 2.5 applied once more then shows convergence for all a > 1. O

2.9

Absolute Convergence

Example. The series

1 1 1 1 1
2.1 1-— — —
(2.10) 2+3 4+5 6Jr

is convergent by Leibniz’s criterion (actually to In 2). If we rearrange the series as
follows:

1,1,1+1,1,1+1,1,1+1,1,14__.
U S A I (R A E A U
1/2 1/6 1/10 1/14

we obtain
171+171+1—...:1(1—1+171+1—...>
2 4 6 8 10 2 2 3 4 5 ’

which is now half as much as originally. This shows that the value of an infinite
sum can depend on the order of summation.

(2.7) Definition. A series > ;°  a} is a rearrangement of Y ;< a;, if every term
of Zzo a; appears in Zzo al; exactly once and conversely (this means that
there exists a bijective mapping o : No — Ng such that aj = a,;); here
No=1{0,1,2,3,4,...}).
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Explanation. An elegant explanation for the above phenomenon was given by
Riemann (1854, Werke, p. 235, . . . ein Umstand, welcher von den Mathematikern
des vorigen Jahrhunderts iibersehen wurde . . .”). In fact, Riemann observed much
more: for any given real number A it is possible to rearrange the terms of (2.10)
in such a way that the resulting series converges to A. The reason is that the sum
of the positive terms of (2.10) and the sum of the negative terms,

1 11 1 1 d 11 1 1 1
+3+5+7+9—|—... an 9 4 6 8 10

are both divergent (or equivalently: the series (2.10) with each term replaced by
its absolute value diverges).

The idea is to take first the positive terms 1 +1/3 + . .. until the sum exceeds
A (this certainly happens because the series with positive terms diverges). Then,
we take the negative terms until we are below A (this certainly happens because
—1/2—1/4—...diverges). Then, we go on adding positive terms until A is again
exceeded, and so on. In this way, we obtain a rearranged series that converges to
A (cf. examples in Fig. 2.3).

13ff

12 \/\/VWWWWW\*‘VW“\“V

11

10 -

o Lplplpl_tpng

Ry = | L | L |
20 40 60

| \///\(/Wwwwww T

13

12 1 1 1 1 1 1

1.1 1.5:1+3+5*2+7+9+11+...

1.0 L | L | L |
20 40 60

FIGURE 2.3. Rearrangements of the series (2.10)

(2.8) Definition. The series (2.1) is absolutely convergent if
|ao| + |a1| + [az| + [as| + . ..
converges.

(2.9) Theorem (Dirichlet 1837b). If the series ZZO a; is absolutely convergent,
then all its rearrangements converge to the same limit.

Proof. By Cauchy’s criterion, absolute convergence means that

Ve>0 IN>0 Vn>N Vk>1 |ant1| + |ant2] + .-+ |antk]| <e.
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For a given € > 0 and the corresponding N > 0 we choose an integer M in
such a way that all terms ag, a1, . ..,ay appear in the Mth partial sum s, =
Zf\io a); of the rearrangement. Therefore, in the difference s,,, — s/,,, all the terms
aop, a1, ..., ay disappear (for m > M) and we have

Sm — Sml < lans1] + lane| + ..+ lanr] <e,

where k is a sufficiently large integer. This shows that s,, — s,,, — 0 and that the
rearrangement converges to the same limit as the original series. O

We next present two criteria for the absolute convergence of an infinite se-
ries.

(2.10) The Ratio Test (Cauchy 1821). If the terms a,, of the series (2.1) satisfy

@2.11) lmsup 1“1 <1,

n—oo |an|

then the series is absolutely convergent. If liminf,, oo |ant1|/|an| > 1, then it
diverges.

Proof. Choose a number g that satisfies lim sup,,_, .. |an+1|/|an| < ¢ < 1. Then,
only a finite number of quotients |a,,+1|/|a,| are larger than g and we have

IN>0 Va>N C|L"+|1| <q
an

This, in turn, implies |an 11| < qlan/|, |[an+2| < ¢?lan|, |an+s] < ¢3an], ete.
Since the geometric series converges (we have 0 < ¢ < 1), the series >, |a|
also converges.

If liminf, o0 |a@n+1|/|an| > 1, then the sequence {|a,|} is monotonically
increasing for n > N and the necessary condition (2.3) is not satisfied. ad

Examples. The general term of the series for e* is a,, = 2™ /n!. Here, we have
|an+1l/lan| = |z|/(n + 1) — 0 so that the series (1.2.18) converges absolutely
for all real . Similarly, the series for sin = and cos x converge absolutely for all x.

For the series (2.8) this criterion cannot be applied because |an41|/|an| =
(n/(n+1))% — L.

(2.11) The Root Test (Cauchy 1821). If

(2.12) limsup V/]an| <1,

n—oo

then the series (2.1) is absolutely convergent. If limsup,, _, 7\l/|an| > 1, then it
diverges.

Proof. As in the proof of the ratio test, we choose a number ¢ < 1 that is strictly
larger than lim sup,,_, .. %/|a,|. Hence,
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AN>0 Vn>N 7\’/|an|§q.

This implies |a,,| < ¢™ forn > N, and a comparison with the geometric series
yields the absolute convergence of 3"°° a;. If limsup,, ., %/|a,| > 1, then the
condition (2.3) is not satisfied and the series cannot converge. O

Double Series

Consider a two-dimensional array of real numbers

app + Go1 + a2 + aGo3 +... = So
- - - - -
ap + a1 + a2 + a3z +... = 8§
+ + + + +
a0 + a1 + ax + a3 +... = S2
(2.13) + + + + +
asxp + a3 + aszx + azx3 +... = S3
- - - - -
Vo + U1 + V2 + U3 + . = ‘?7‘?

and suppose we want to sum up all of them. There are many natural ways of doing
this. One can either add up the elements of the ith row, denote the result by s;,
and then compute Z;’io s;; or one can add up the elements of the jth column,
denote the result by v;, and then compute Z;io v;. It is also possible to write all
elements in a linear arrangement. For example, we can start with agg, then add the
elements a;; for which 7 + j = 1, then those with ¢ 4 j = 2, and so on. This gives

(214) apo + (a10 + CLOl) + (CLQO + ail + CLOQ) + (a30 + .. ) + e
Here, we denote the pairs (0,0), (1,0), (0,1), (2,0),... by ¢(0), (1), o(2),
o(3),...,sothat cisamap o : Ny — Ny x Ny, where Ng x Ng = {(4,7)]i €

Np,j € Ny} is the so-called Cartesian product of Ny with Ny. So, we define in
general,

(2.12) Definition. A series Z}iio by, is called a linear arrangement of the double
series (2.13) if there exists a bijective mapping o : Ng — Ng x Ny such that
bk = ag(k).

The question now is: do the different possibilities of summation lead to the
same value? Do we have

(.15 80+81+"':§:(iaij>:i(iaij>=vo+v1+...,
i=0 j=0 j=0 i=0

and do linear arrangements converge to the same value?
The counterexample of Fig.2.4a shows that this is not true without some
additional assumptions.
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1-1+0+0+...= 0
+ + o+ 4+ +
O0+1—-1+0+...= 0
+ + + 4+ +
0+0+1—-1+...= 0
+ + + 4+ +
0+0+0+1—...= 0
+ + + 4+ +
1+0+0+0+...=1%0
FIGURE 2.4a. Counterexample FIGURE 2.4b. Double series

(2.13) Theorem (Cauchy 1821, “Note VII”). Suppose for the double series (2.13)
that

m o m
(2.16) IB>0 Ym=>0 Y Y lay| <B.
i=0 j=0

Then, all the series in (2.15) are convergent and the identities of (2.15) are satis-
fied. Furthermore, every linear arrangement of the double series converges to the
same value.

Proof. Let by+b1 +ba+. . . be alinear arrangement of the double series (2.13). The
sequence {) ., |b;|} is monotonically increasing and bounded (by assumption
(2.16)) so that E;’io |b;|, and hence also Z;’io b;, converge. Analogously, we can
establish the convergence of s; = >-7  a;; and v; = 32 % a;.

Inspired by the proof of Theorem 2.9, we apply Cauchy’s criterion to the
series > > |b;| and have

Ve>0 dAN>0 Vn>N Vk>1 |bn+1|+|bn+2|++|bn+k|<5

For a given € > 0 and the corresponding N > 0 we choose an integer M in
such a way that all elements by, b1, ...,bx are present in the box 0 < i < M,
0 < j < M (see Fig.2.4b). With this choice, by, b1, ...,byx appear in the sum
Zi:o b; (for I > N)as well as in >\ Z?:o a;j (form > M and n > M).
Hence, we have for! > N, m > M,n > M,

m n l
(2.17) SN ai =D b bl + -+ byl <

i=0 j=0 i=0

with a sufficiently large k. We set s = >_°° ' b; and take the limits | — oo and
n — oo in (2.17). Then, we exchange the finite summations 3> 377 «
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> i—0 2ivq and take the limits [ — oo and m — oo. This yields, by Theorem

1.6,
m n
Zsi—s <e and Zvj—s <e.
i=0 =0
Hence > ;% s; and 372, v; both converge to the same limit s. O

The Cauchy Product of Two Series

If we want to compute the product of two infinite series » .-, a; and Z;’;O b;,
we have to add all elements of the two-dimensional array

aobo aobl (Lobg a0b3

albo a1b1 a1b2 a1b3
(2 1 8) a2b0 CLle a2b2 a2b3

a3b0 a3b1 a3b2 a3b3

If we arrange the elements as indicated in Eq.(2.14), we obtain the so-called
Cauchy product of the two series.

(2.14) Definition. The Cauchy product of the series ;2 a; and 3772 b is de-
fined by

oo

Z( Qp—j - bj) = agbo + (aob1 + a1bo) + (apbz + a1br + azbo) + ... .
=0

n=0

The question is whether the Cauchy product is a convergent series and
whether it really represents the product of the two series > ;>0 @i and > >0 bj.

(2.15) Counterexample (Cauchy 1821). The series

1 1 1 1
\/2-1-\/3—\/44-\/5—...
converges by Leibniz’s criterion. We consider the Cauchy product of this series
with itself. Since

n
E An—j * bj
J=0

(the inequality is a consequence of (n+1—x)(z+1) < (14+n/2)% for0 < z < n),
the necessary condition (2.3) for the convergence of the Cauchy product is not
satisfied (see Fig.2.5). This example illustrates the fact that the Cauchy product
of two convergent series need not converge.

1-—

- 1 2n + 2
=2 i1
jzo\/nJrlf]w/jJrl n+2
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iy

ik

1t
FIGURE2.5. Divergence of the Cauchy product of Counterexample 2.15

(2.16) Theorem (Cauchy 1821). If the two series > ;- , a; and Z;’;O b; are ab-
solutely convergent, then its Cauchy product converges and we have

w0 (Se) (58) -5 (S )

n=0

Proof. By hypothesis, we have >7° |a;| < By and 3277 [bj| < Ba. Therefore,
we have for the two-dimensional array (2.18) that for all m > 0

D laillb;| < Bi B,

i=0 j=0
and Theorem 2.13 can be applied. The sum of the ith row gives s; = a; - Z;io b;
and 33770 s; = (30729 ai)(3720 bj). By Theorem 2.13, the Cauchy product,
which is a linear arrangement of (2.18), also converges to this value. O

Examples. For |g| < 1 consider the two series

1 1
l4g+¢F+3+... = and l—g+¢F - +... = .
1—gq 1+g¢
Their Cauchy product is
1
I+¢@+¢*+¢+...= .
l—gq
which, indeed, is the product of (1 — ¢)~! and (1 + ¢)~ 1.
The Cauchy product of the absolutely convergent series
2 .3 2 3

e””zl—l—x—i—x'—i— +... and eyzl—i—y—i—y "

or T3 ot Tgr T

gives the series for e 1Y (use the binomial identity of Theorem 1.2.1).
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Remark. The statement of Theorem 2.16 remains true if only one of the two se-
ries is absolutely convergent and the second is convergent (F. Mertens 1875, see
Exercise 2.3).

Under the assumption that the series >, a;, Y ; b;j and also their Cauchy
product (Definition 2.14) converge, the identity (2.19) holds (Abel 1826, see Ex-
ercise 7.9).

Exchange of Infinite Series and Limits

At several places in Chap.I, we were confronted with the problem of exchang-
ing an infinite series with a limit (for example, for the derivation of the series
for e¢* in Sect.1.2 and of those for sinx and cosx in Sect.1.4). We considered
series d,, = Z;‘;O sn; depending on an integer parameter n, and used the fact
that lim,, . d,, = Z?io lim;, .o 5n;. Already in Sect. 1.2 (after Eq. (1.2.17)), it
was observed that this is not always true and that some caution is necessary. The
following theorem states sufficient conditions for the validity of such an exchange.

(2.17) Theorem. Suppose that the elements of the sequence {sy;, s15, S25, ...} all
have the same sign and that |Sn11;| > |sn;| for all n and j. If there exists a
bound B such that 375_ |sn;| < B for alln > 0, then

(2.20) lim Y sp;=»  lim s,
j=0 j=0

Proof. The idea is to reformulate the hypotheses in such a way that Theorem 2.13
is directly applicable. At the beginning of this section, we saw that every series
can be converted to an infinite sequence by considering the partial sums (2.2).
Conversely, if the partial sums sg, 51, S2, ... are given, we can uniquely define
elements a; such that Z?:O a; = Sp. We just have to set ag = sg and a; =
S; — Si—1 for ¢ > 1.

Applying this idea to the sequence {soj;, 515, S25, - - .}, we define

n
apj ‘= S0j, Qij ‘= Sij — Si—1,5, so that E Ajj = Snj-
=0

Replacing s,,; by this expression, (2.20) becomes

oo n

(2.21) lim Y a; = lim ) ag.
n—oo =0 izo =0 n—oo =0

Exchanging the summations in the expression on the left side of (2.21) (this is
permitted by Theorem 1.5), we see that (2.21) is equivalent to (2.15). Therefore,
we only have to verify condition (2.16). The assumptions on {sg;, $1;, - - . } imply
that the elements ag;, a1, . . - all have the same sign. Hence, we have
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n

n n n
D lagl=lsal  and DN jayl = lsus| < B.
i=0 i=0 j=0 =0

By Theorem 2.13, this implies (2.21) and thus also (2.20). O

(2.18) Example. We will give here a rigorous proof of Theorem 1.2.3. From the
binomial theorem, we have

2 1 3 1 2
y\" vP1-1 -1 -32)
222 (1 ) 1 n . Do
( ) +Tl Tyt 1-2 + 1-2.3 +
which is a series depending on the parameter n. We set
NS /ol € ) BN € Rl )
T s S 1.2 0™ 1-2.3

For a fixed y the elements of the sequence {soj, S1js-- .} all have the same sign,
and {|so;l, |s1;], - - .} is monotonically increasing. Furthermore, we have

S =~ |yl
NI o
i=0 =0 7

because, by the ratio test, >5°° ly|?/4! is a convergent series. Hence, Theo-
rem 2.17 yields

vyt

hm(1+y> —1y+ oYY
n 2! !

n—oo

Exercises

2.1 Compute the Cauchy product of the two series

f(:c)::v—3!+5!—... and  g(y)=1- IR

and find the series for f(z)g(y) + g(z) f(y). Justify the computations. Does
the result seem familiar?

2.2 Show that the Cauchy product of the two divergent series
(2+2+22+23+24+...)(—1+1+1+1+1+1+...)

converges absolutely.
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n

23 (M.ertens ;875).. Suppose that the aohs | ach, | aghs | aghs | aghs | agbe | aghe
series ) .~ a; is convergent and
that 77 b; is absolutely conver- aby | aiby | ayb, | abs| aib, ] abs
gent. Prove'that the Cauchy prod- aby | asb, | asb, | abs | ars
uct of Definition 2.14 is convergent
and that (2.19) holds. n| @by | azhy | asb, | asb,
. n
Hint. Put Cn = > j=0 an_?-bj and azby | agh, | azb,
apply the triangle inequality (but
only to the first sums) in the iden- dsby |ash,
tity aghy
2n—j 2n—j

ZCz (> i)(Z i) = Zb D ait

2.4 Determine the constants aq, as, as, aq, . . .
two series

=0 Jj=

7=0 1=n—+1

Z b; Zaz.

Jj=n+1

=0

so that the Cauchy product of the

(1—a1+a2—a3+...)(1—a1+a2—a3+...> - (1—1+1—1+...>

becomes the divergent series 1 —1+1—....

as —asz+...

Show that the series 1 — a1 +

converges (Fig. 2.6). Can it converge absolutely?

Hint. The use of the generating function for the numbers 1, —aq, az, —as, . ..

reduces this exercise to a known formula of Chap. I and to Wallis’s product.

1

50
FIGURE2.6. Divergence of the Cauchy product of Exercise 2.4

2.5 Justify Eq. (I1.5.26) by taking the logarithm and applying the ideas of Exam-

ple 2.18.



202 III. Foundations of Classical Analysis

I11.3 Real Functions and Continuity

We call here Function of a variable magnitude, a quantity that is composed
in any possible manner of this variable magnitude & of constants.
(Joh. Bernoulli 1718, Opera, vol. 2, p.241)

Consequently, if f(7 + c) denotes an arbitrary function . ..
(Euler 1734, Opera, vol. XXII, p. 59)
If now to any x there corresponds a unique, finite y, ... then y is called a
function of x for this interval.. .. This definition does not require a com-
mon rule for the different parts of the curve; one can imagine the curve as
being composed of the most heterogeneous components or as being drawn
without following any law. (Dirichlet 1837)
Real functions y = f(x) of a real variable = were, since Descartes, the universal
tool for the study of geometric curves and, since Galilei and Newton, for mechan-
ical and astronomical calculations. The word “functio” was proposed by Leibniz
and Joh. Bernoulli, the symbol y = f(x) was introduced by Euler (1734) (see quo-
tations). In the Leibniz-Bernoulli-Euler era, real functions were mainly thought of
as being composed of elementary functions (“expressio analytica quomodocunque
....Sica+3z, az —42%, az +bva? — 22, ¢* etc. sunt functiones ipsius z”, Euler
1748), perhaps with different formulas for different domains (“curvas discontin-
uas seu mixtas et irregulares appellamus”). The 19th century, mainly under the in-
fluence of Fourier’s heat equation and Dirichlet’s study of Fourier series, brought
a wider notion: “any sketched curve” or “any values y defined in dependence of
the values z” (see the quotation above).

(3.1) Definition (Dirichlet 1837). A function f : A — B consists of two sets, the
domain A and the range B, and of a rule that assigns to each x € A a unique
element y € B. This correspondence is denoted by

y=f@) o ae f(a)

We say that y is the image of x and that x is an inverse image of y.

Throughout this section, the range will be R (or an interval) and the domain
will be an interval or a union of intervals of the form

(a,0)={z eR|a<z<b} or [a,b)={xeR|a<z<b} or
(a,b]={zeR|la<z<b} or [ag,00)={zeR|a<z<o0} or ....
The interval (a, b) is called open, while [a, b] is closed.

As in the following examples, we usually use braces for functions that are
defined by different expressions on different parts of A.

Examples. 1. The function f : [0,1] — R,
T 0<z<1/2 5
1—=x 1/2<z <1,

is plotted on the right. We observe that some
y € R have no inverse image, and that some
have more than one. 0 5 1.0

Gn  fl=)=
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2. Our second function can be defined either
by a single expression, as a limit, or with
braces by separating three cases:

f(z) = lim arctan(nzx) 5
3.2) /2 x>0
=<0 z=0
/2 x<0.

3. The following function, which is difficult
to plot, is due to Dirichlet (see Werke, vol.2,
p-132, 1829, “On aurait un exemple d’une
fonction ...”):

63 s -{

0  x irrational

1 xrational.

4. This function is of a similar nature to Dirich-
let’s, but the peaks become lower for increas-
ing denominators of x:

0 x irrational
1/q

5. When z tends to zero, 1/x tends to oo,
therefore

(3.5) f(w)z{zm(l/x) o

will produce an infinity of oscillations in the
neighborhood of the origin (Cauchy 1821).

G4 fl2)= {

x = p/q simpl. fraction.

6. Here the oscillations close to the origin are
less violent, due to the factor x, but there are
still infinitely many (Weierstrass 1874):

z-sin(l/z)  z#0

(3.6) f(z) = {
0 x=0.

7. Our last example was proposed, accord-
ing to Weierstrass (1872), by Riemann (see
Sect. II1.9 below) and is defined via an infinite
convergent sum:

sin(n?z)

M8

G7  fl@)=

n2

n=1

n=1,2,4,8,16,..

(=}
—_

[=}
—
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Continuous Functions

... f(x) will be called a continuous function, if ... the numerical values
of the difference

f@+o)— f(x)
decrease indefinitely with those of . . .
(Cauchy 1821, Cours d’Analyse, p.43)

Here we call a quantity y a continuous function of z, if after choosing a

quantity € the existence of & can be proved, such that for any value between

xo— 0 ...xo+0 the corresponding value of y lies between yo —€ . .. yo +¢.

(Weierstrass 1874)

Cauchy (1821) introduced the concept of continuous functions by requiring that

indefinite small changes of = should produce indefinite small changes of y (see

quotation). Bolzano (1817) and Weierstrass (1874) were more precise (second

quotation): the difference f(x) — f(x¢) must be arbitrarily small, if the difference
x — x¢ 1S sufficiently small.

(3.2) Definition. Let A be a subset of R and o € A. The function f : A — R is
continuous at xq if for every € > 0 there exists a & > 0 such that for all x € A
satisfying |z — zo| < § we have | f(z) — f(x0)| < &, or in symbols:

Ve>0 30>0 Ve el : |x—xo| <o |f(z) — f(zo)| <e.
The function f(x) is called continuous, if it is continuous at all xo € A.

See Fig. 3.1a for a continuous function and Figs. 3.1b-3.1f for functions with
discontinuities.

a) b) c)
fx 0)..3 ...... > :
R f Ao
8 H
X0 Xp %o
d) e) f)

(e 3

Xo Xo

FIGURE 3.1. Continuous and discontinuous functions
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Discussion of Examples (3.1) to (3.7). The function (3.1) is continuous every-
where, even at xy = 1/2; the function (3.2) is discontinuous at 0; (3.3) is dis-
continuous everywhere; (3.4) is continuous for irrational g and discontinuous for
rational x (Exercise 3.1); (3.5) is discontinuous at xy = 0; (3.6) is continuous
everywhere, even at x = 0; (3.7), which appears to exhibit violent variations, is
nevertheless everywhere continuous (as we shall see later in Theorem 4.2).

(3.3) Theorem. A function f : A — R is continuous at vy € A if and only if for
every sequence {xy }n>1 with x, € A we have

(3.8) 1i_)m f(zn) = f(zo) if lim z, = xo.

n—oo

Proof. For a given € > 0, choose § > 0 as in Definition 3.2. Since z,, — x¢, there
exists N such that |x,, — 20| < § for n > N. By continuity at x(, we then have
|f(zn) — f(zo)] < e forn > N and (3.8) holds.

Suppose now that (3.8) holds, but that f(x) is discontinuous at x¢. The nega-
tion of continuity at xg is

Je>0 V>0 Jz €A : |z —xo| <9 |f(z) — f(zo)| > €.

The idea is to take 6 = 1/n and to attach an index n to = (which depends on §).
This gives us a sequence {x,} with elements in A such that |z, — x| < 1/n
(hence x,, — x) and at the same time |f(z,,) — f(zo)| > . This contradicts
(3.8). O

(3.4) Theorem. Let f : A — Rand g : A — R be continuous at xq € A and let
X be a real number. Then, the functions

are also continuous at x.

Proof. We take a sequence {x,} with elements in A and converging to xg. The
continuity of f and g implies that f(x,) — f(zo) and g(z,) — g(xo) forn —
00. Theorem 1.5 then shows that

f(@n) + g(xn) = f(20) + g(20),

so that f + g is seen to be continuous at xy (Theorem 3.3).
The continuity of the other functions can be deduced in the same way. g

Example. Tt is obvious that the constant function f(x) = a is continuous. The
function f(x) = x is continuous too (choose § = ¢ in Definition 3.2). As a
consequence of Theorem 3.4, all polynomials P(z) = ag + a1 + ... + apz™
are continuous, and rational functions R(z) = P(x)/Q(x) are continuous at all
points xg, where Q (o) # 0.
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The Intermediate Value Theorem

This theorem has been known for a long time . . .
(Lagrange 1807, Oeuvres vol. 8, p. 19, see also p. 133)
This theorem appears geometrically evident and was used by Euler and Gauss
without scruples (see quotation). Only Bolzano found that a “rein analytischer
Beweis” was necessary to establish more rigor in Analysis and Algebra.

(3.5) Theorem (Bolzano 1817). Let f : [a,b] — R be a continuous function. If
f(a) < cand f(b) > ¢, then there exists £ € (a,b) such that f(§) = c.

Proof. We shall prove the statement for ¢ = 0. The general result then follows
from this special case by considering f(x) — ¢ instead of f(x).

The set X = {z € [a,b] ; f(z) < 0} is nonempty (¢ € X) and it is
majorized by b. Hence, the supremum £ = sup X exists by Theorem 1.12. We
shall show that f(£) = 0 (Fig. 3.2).

Assume that f(§) = K > 0. We put e = K/2 > 0 and deduce from the
continuity of f(z) at £ the existence of some ¢ > 0 such that

|f(z) — K| < K/2 for |z—¢<0é.

This implies that f(z) > K/2 > 0 for{ — § < = < ¢, which contradicts the fact
that ¢ is the supremum of X .
We exclude the case f(£) = K < 0 in a similar way. O

X fib)

FIGURE 3.2. Proof of Bolzano’s Theorem

The Maximum Theorem

With his theorem, which states that a continuous function of a real variable
actually attains its least upper and greatest lower bounds, i.e., necessarily
possesses a maximum and a minimum, Weierstrass created a tool which
today is indispensable to all mathematicians for more refined analytical or
arithmetical investigations.

(Hilbert 1897, Gesammelte Abh. , vol. 3, p.333)

The following theorem is called “Hauptlehrsatz” (“Principal Theorem’) in Weier-
strass’ lectures of 1861 and was published by Cantor (1870).
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(3.6) Theorem. If f : [a,b] — R is a continuous function, then it is bounded
on [a,b] and admits a maximum and a minimum, i.e., there exist u € [a,b] and
U € [a,b] such that

(3.9) flw) < flx) < f(U) Sforall x € [a,b)].

Discussion of the Assumptions. The function f : (0,1] — R defined by f(z) =
1/2 is not bounded on A = (0, 1]. Therefore, the assumption that the domain A
be closed is important.

The function f : [0,00) — R, given by f(z) = 22, shows that the bounded-
ness of the domain of f(x) is important.

The function f : [0,1] — R defined by f(1/2) = 0 and

flx) = (x—1/2)72 for = #1/2

is discontinuous at x = 1/2 and unbounded. Hence, it is important to assume that
the function be continuous everywhere.

Our last example exhibits a function f : [0.1] —
R which is bounded, but does not admit a maximum:

o) — =3z +sin(l/z) ifz#0
f@) {0 ifxr=0.

The supremum of the set { f(z) | = € [0, 1]} is equal
to 1, but there isno U € [0, 1] with f(U) = 1.

Proof of Theorem 3.6. We first prove that f(z) is bounded on [a, b]. We suppose
the contrary:

(3.10) Vn>1 Jz, € a,b] |f (zn)| > n.

The sequence z1, 2,3, ... admits a convergent subsequence by the Bolzano-
Weierstrass Theorem (Theorem 1.17). In order to avoid writing this subsequence
with new symbols, we denote it again by x1, x2, x3, . . . and we simply say: “after
extracting a subsequence, we suppose that” lim, . ,, = . Since f is contin-
uous at &, it follows from Theorem 3.3 that lim,, . f(z,) = f(§). This contra-
dicts (3.10) and proves the boundedness of f(x).

In order to prove the existence of U € [a, b] such that (3.9) holds, we consider
thesetY = {y; y = f(z), a <z < b}. This set is nonempty and bounded (as we
have just seen). Therefore, the supremum M = sup Y exists. By Definition 1.11
of the supremum, the value M — ¢ (for an arbitrary £ > 0) is no longer an upper
bound of Y. Taking e = 1/n, we thus find a sequence of elements z,, € [a,b]
satisfying

(3.11) M—1/n< f(z,) <M.
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Applying the Bolzano-Weierstrass Theorem, after extracting a subsequence, we
suppose that {x,,} converges and we denote the limit by U = lim,,_, o x,,. Be-
cause of the continuity of f(z) at U, it follows from (3.11) that f(U) = M.

The existence of a minimum is proved similarly. O

Monotone and Inverse Functions

(3.7) Definition. Let A and B be subsets of R. The function f : A — B is

e injective if flxr) # f(xe)  for a1 # a2,

e surjective if VyeB JzecA f(z)=y,

e increasing if f(z1) < fae) for x1 <aq,

e decreasing if f(z1) > f(a2) for x1 <aq,

e nondecreasing if f(z1) < f(z2) for x1 <axo,
e nonincreasing if f(x1) = f(z2) for x1 <axo,
e monotone if it is nonincreasing or nondecreasing, and

o strictly monotone if it is increasing or decreasing.

Strictly monotone functions are injective. It is interesting that for real contin-
uous functions, defined on an interval, the converse statement is true, too.

(3.8) Lemma. If f : [a,b] — R is continuous and injective, then f is strictly
monotone.

Proof. For any three points v < v < w we have ) §

(3.12) f(v) isbetween f(u) and f(w).

flu) o
Indeed, suppose f(v) is outside this interval and, say, :

closerto f(u). Then thereis a{ between v and w with 4
fw) = f(&) (Theorem 3.5). This is in contradiction : :
to the injectivity of f. Therefore, fora < ¢ < d < b . .

the only possibilities are u v & w
fla) < fle) < f(d) < f(b) or  f(a)> f(c) > f(d) > f(b);
all other configurations of the inequalities contradict (3.12). a

Surjectivity of a function f : A — B implies that every y € B has at
least one inverse image. Injectivity then implies uniqueness of this inverse image.
Therefore, a bijective function has an inverse function f —1. B — A, defined by

(3.13) fFTllyy=2 = [fl@)=y

(3.9) Theorem. Let f : [a,b] — [c,d] be continuous and bijective. Then, the
inverse function f~! : [c, d] — [a,b] is also continuous.
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Proof. Let {y,, } with y,, € [c,d] be a sequence satisfying lim,, .o yn = yo. By
Theorem 3.3, we have to show that lim,, o f~*(yn) = f~1(yo). We therefore
consider the sequence {x,,} = {f~1(yn)}. Let {z], } be a convergent subsequence
(which exists by the theorem of Bolzano-Weierstrass), and denote its limit by .
The continuity of f(x) at zo implies that

f(xo) = nh_)H;O f(xy) = nh_{{.lo Yy, = Yo,

and consequently 7o = f~!(yo). Therefore, each convergent subsequence of
{zn} = {f'(yn)} converges to f~'(yo). This point is the only accumulation
point of the sequence {f~*(y,)} and we have f~1(y,) — f~!(yo) (see also Ex-

ercise 1.8). O
Example. Each of the real functions 2, 3, . .. is strictly monotone on [0, 00) and
has there an inverse function: /z, {”/x, ... . By Theorem 3.9, these functions are
continuous.

Limit of a Function

The concept of the limit of a function was probably first defined with suffi-
cient rigour by Weierstrass.
(Pringsheim 1899, Enzyclopddie der Math. Wiss., Band 11.1, p. 13)
Assume that f(z) is not continuous at o or not even defined there; in such a
situation it is interesting to know whether there exists, at least, the limit of f(x)
for x approaching zy. Obviously, z( has to be close to the domain of f. We say
that ¢ is an accumulation point of a set A if

(3.14) Vd>0 dJzeAd 0<|z—axo| <.

For a bounded interval, the accumulation points consist of the interval and of the
two endpoints.

(3.10) Definition. Consider a function f : A — R and let xo be an accumulation
point of A. We say that the limit of f(x) at xq exists and is equal o yy, i.e.,
(3.15) Jim f(z) = yo

if

(3.16) Ve>0 36>0 VeeAd:0<|x—xo|<d |f(z) —yo|l <e.

This definition can be modified to cover the situations xy = Fo0 and/or yg =
+o0 (see, for example, Eq. (1.10)). The assumption that xy is an accumulation
point implies that the set of « € A satisfying 0 < |z — x| < § is never empty.

With Definition 3.10, the continuity of f(x) at z can be expressed as follows
(see Definition 3.2):
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(3.17) lim f(x) exists and lim f(z) = f(=zo).

T—x0 T—To
Examples. The function of Fig.3.1b has a limit lim,_,,, f(z) that is different
from f(xo). For the function (3.4), the limit lim,_,,, f(z) exists for all z (see

Exercise 3.1; remember that the point g is explicitly excluded in Definition 3.10)
and lim, ., f(z) = 0.

A still weaker property is the existence of one-sided limits.

(3.11) Definition. We say that the left-sided (respectively right-sided) limit of f(x)
at xq exists if (3.16) holds under the restriction x < x (respectively ro < x).
These limits are denoted by

(3.18) lim f(z) =y respectively lim f(x) = yo.

T—To— T—xo+

The functions of Figs. 3.1b, 3.1c, and 3.1d possess left- and right-sided limits
(often = f(x0)); these limits do nor exist for the functions of Figs. 3.1e and 3.1f.
The following theorem is an analog to Cauchy’s criterion in Theorem 1.8.

(3.12) Theorem (Dedekind 1872). The limit lim,_, ., f(x) exists if and only if
(3.19)

Ve>0 36>0 Va,7€ A : 0<l|o—zo| <0

0<|Z—mo| <9

[f(z) = f(@)] <e.

Proof. The “only if” part follows from

|f (@) = f@)] < |F (@) = yol + lyo — f(@)] < 2e.

For the “if”” part we choose a sequence {x;} with z; € A which converges to x.
Because of (3.19) the sequence {y; } with y; = f(z;) is a Cauchy sequence and,
by Theorem 1.8, converges to, say, yo. For an x satisfying 0 < |z — xo| < ¢ we
now have, again from (3.19),

|f(2) = yol < |f(x) = f@a)| + |f(2:) — yol < 2,

for ¢ sufficiently large. a

Analoguous results hold for the situation where zy = £oo or for one-sided
limits.

Exercises

3.1 Show that the function (3.4) is continuous at all irrational xy and, of course,
discontinuous at rational zg.
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Hint. If you have difficulties, set xp = V2—1lande =1 /10 and determine
for which values of  you have f(z) > e. This gives you a ¢ for which the
statement in Definition 3.2 is satisfied.

(Pringsheim 1899, p.7). Show that Dirichlet’s function (3.3) can be written
as
flz) = nh_)ngo W}E)noo | cos(n!mc)}m.
Compute the limits
. 2243z +2 A+ —Vi—2z
lim , lim .
z—-1 a2 -1 z—0 2z

Remember that (v/a — v/b)(v/a 4+ vb) = a — b.

Show: if f : [a,b] — [c, d] is continuous at zg, and g : [¢,d] — [u,v] is
continuous at yo = f(xz¢), then the composite function (go f)(x) = g(f(z))
is continuous at x.

Here is a list of functions f : A — R,

1) f(z)==-sin(l/z) — 2z A =10,0.2]

2) f(z)=z/(z*+1) A= [—4,+4]

3) the same A = (—o00,+00)

4)  f(z)=(1/Vsinz) -1 A=(0,7)

5) the same A=10,7]

6) f(x)=+/z-sin(2?) A=10,7]

7) the same A=[0,00)

8) f(x)=arctan((z — 0.5)/(2* — 0.1z — 0.7)) A =[-1.5,1.5]

9) f(x) =sin(z?) A=1[-5,5]
10) the same A= (—00,00)
1) f(@) = Ve A=[-1,1]
12) the same A= (—00,00)
13)  f(z) = cosz + 0.1sin(40z) A=1[-1.6,1.6]
14) f(z) =z —[2] A=10,3]
15)  f(x) =V -sin(1/z) — 2¢/x A =10,0.1]
16) f(z) =3—1/x(1—x) A=(0,1)
17)  f(z) =sin(5/x) —x A =10,0.4]

where [x] denotes the largest integer not exceeding x. Whenever the above
definitions for f(z) do not make sense (for example when a certain denomi-
nator is zero), set f(z) = 0. Decide which of these functions are graphed in
Fig.3.3.
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FIGURE 3.3. Plot of 12 functions for Exercise 3.5

3.6 Which of the functions of Exercise 3.5 are continuous on A? What are the

points of discontinuity?

3.7 Which of the functions of Exercise 3.5 possess a maximum value on A; which

possess a minimum value on A?
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II1.4 Uniform Convergence and Uniform Continuity

The following theorem can be found in the work of Mr. Cauchy: “If the
various terms of the series uo + u1 + uz + . . . are continuous functions, . ..
then the sum s of the series is also a continuous function of x.” But it seems
to me that this theorem admits exceptions. For example the series

sinz — ) sin2z + | sin3x. ..
is discontinuous at each value (2m + 1)w of z, . . .

(Abel 1826, Oeuvres, vol. 1, p.224-225)
The Cauchy-Bolzano era (first half of 19th century) left analysis with two im-
portant gaps: first the concept of uniform convergence, which clarifies the limit of
continuous functions and the integral of limits; second the concept of uniform con-
tinuity, which ensures the integrability of continuous functions. Both gaps were
filled by Weierstrass and his school (second half of 19th century).

The Limit of a Sequence of Functions

We consider a sequence of functions f1, fo, f3,...: A — R. For a chosen x € A
the values f1(x), fa(x), f3(z), ... are a sequence of numbers. If the limit
4.1) nhﬁngo fulz) = f(2)

exists for all z € A, we say that { f,,(z)} converges pointwise on A to f(x).

Cauchy announced in his Cours (1821, p. 131; Oeuvres 11.3, p. 120) that if
(4.1) converges for all  in A and if all f,,(z) are continuous, then f(x) is also
continuous. Here are four counterexamples to this assertion; the first one is due to
Abel (1826, see the quotation above).

Examples.
a) (Abel 1826, see the upper left picture of Fig. 4.1)

sin2z  sin3x  sindz 4 sin nx

9 + 3 4 .. 0
Fig. 4.1 shows f1(x), fa(x), f3(2) and f190(z). Apparently, { f,,(x)} converges to
the line y = x/2 for —m < x < 7 (this can be proved using the theory of Fourier
series), but f,,(7) = 0 and for 7 < & < 37 the limitis y = x/2 — 7. Thus, the
limit function is discontinuous.
b) (upper right picture of Fig. 4.1)

(4.2a) fn(z) =sinz —

0 1
@2b)  fol@)=2" on A=1[0,1],  lim fu(z) _{ v
n—00 1 xr=1.
¢) (lower left picture of Fig. 4.1)
-1 lz] <1
@20  fu@) =" "1 lm fo(z) =< 0 -1
' " S oan 41 n—oo’ " a =

+1 x> 1.
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sin2x  sin3z

FIGURE4.1. Sequences of continuous functions with a discontinuous limit

d) (lower right picture of Fig.4.1)
@.2d) fo(z)=(1—2%)" on A=[-1,1], lim fu(z)= {(1) v 7&8
n—oo xr =0.

Another example, which we have already encountered, is f,(x) = arctan(nx)
(see (3.2)).

FIGURE 4.2. Sequence of uniformly convergent functions

Explanation (Seidel 1848). We look at the upper right picture of Fig.4.1. The
closer z is chosen to the point x = 1, the slower is the convergence and the
larger we must take n in order to obtain the prescribed precision €. This allows
the discontinuity to be created. We must therefore require that, for a given ¢ > 0,
the difference f,, (z) — f(«) be smaller than ¢ for all z € A, if, of course, n > N
(see Fig.4.2).
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(4.1) Definition (Weierstrass 1841). The sequence f, : A — R converges uni-
formlyon Ato f : A—R if

4.3) Ve>0 IN>1 Vn>N VaeA |fn(z) — f(2)| <e.

In this definition, it is important that N depends only on € and not on = € A.
This is why “Vx € A” stands after “I N > 17 in (4.3).

As in Sect. III.1 (Definition 1.7), we can replace f(z) in (4.3) by all succes-
sors of f,,(x). We then get Cauchy’s criterion for uniform convergence:

(44) Ye>0 AN>1VYn>N Vk>1 Ve €A |folx)—fosn(z) <e

(4.2) Theorem (Weierstrass’s lectures of 1861). If f,, : A — R are continuous
Sunctions and if f,(x) converges uniformly on A to f(x), then f : A — R is
continuous.

X, X

FIGURE4.3. Continuity of f(z)

Proof. The idea is to decompose f(z) — f(zo) “in drei Theile £1 £2 €3” and then to
use an estimate for f,,(z) — f,(zo), and the estimate (4.3) twice (see Fig. 4.3). For
a given € > 0 we choose N such that (4.3) is satisfied. Since the function fy(x)
is continuous, there exists a § > 0 such that |fy(x) — fn(z0)| < & whenever
|z — 0| < 0. With the triangle inequality, we thus get for |z — x¢| < §

()= Fl@o)| < [F@)—fw (@) + | (2)— fiv(wo) |+ | (o) = (w0)] < 3e,
<e <e <e
which is arbitrarily small. O

Question. Is there a sequence of continuous functions f,(z) that converges to a
continuous function f(x) such that the convergence f,,(x) — f(x) is not uni-
form? As we have seen above, uniform convergence is a necessary hypothesis
for Theorem 4.2, but it might not be necessary for a particular example. For the
history of this problem, which occupied many mathematicians between 1850 and
1880 with numerous attempts and a wrong “proof™, see G. Cantor (1880).
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First Example (similar to Cantor’s):

- 2nx
14 n222°

4.5) fn()

It can easily be seen that lim,, o f,(z) = 0 for any fixed  # 0. The functions
fn(x) possess a maximum of heighty = 1 atz = 1/n (see the left-hand picture of
Fig.4.4), so the convergence is not uniform. The point is, however, that for z = 0
all functions f,(z) are 0. So we have convergence here also, and the limiting
function is continuous.

The second example is of a similar nature and still easier to understand (right-hand
picture of Fig. 4.4):

nw 0<z<1/n
(4.6) folz) =< 2—na 1/n<xz<2/n
0 2/n < a.

For a third example see Exercise 4.1.

[n=50 n=3 n=2 n=1 n=50 n=3 n=2 n=1

0, 1 2 0 1 2

FIGURE 4.4. Nonuniform convergence to a continuous limit

Weierstrass’s Criterion for Uniform Convergence

We now consider the important case where the functions are partial sums
@.7) snlw) = fil@)
with real functions f; : A — R. We call the series
@8) S )
i=0

uniformly convergent on A, if the sequence { s, (x)} of (4.7) converges uniformly
on A.
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(4.3) Theorem (Weierstrass’s Criterion). Let
4.9) |fn(z)| <en,  forall ze€A

and let Y ¢, be a convergent series of numbers; then the series (4.8) con-
verges uniformly on A.

Proof. It is clear from (4.9) that ¢, > 0. We further have

Isntk(2) = sn(@)] = | foin(@) + ... 4 fosa(z)]
< | farr@)] + oo+ [ fasr (@) S cnpr + -+ o1 <e

The last estimate holds for n > N and all £ > 1, because, by hypothesis, the
series Y ¢, converges. The assertion now follows from Cauchy’s Criterion (4.4).
O

Examples. a) Since |sin(mz)| < 1 and Y 1/n? is convergent, the series (3.7)
converges uniformly on R and represents a continuous function. On the other
hand, Abel’s example (4.2a) needs the divergence of the series 1 +1/2 +1/3 +
1/4+41/5+ ... in order that the limit function be discontinuous.

b) The series for the exponential function,

z?2 a3

(4.10) e =ltat, oyt

converges for all z € R, but does not converge uniformly on R (see Fig.1.2.6b).
In order to apply our theorem nevertheless, we choose a fixed u and consider
A = [—u,u]. Since we know that >~>° ju"/n! converges and since |z /n!| <
u™ /n!for |z| < u, we conclude from Theorem 4.3 that the series (4.10) converges
uniformly on each closed interval [—u, u]. Since u was arbitrary, we obtain that
e® is continuous for all x € R.

Uniform Continuity

It has apparently not yet been observed, that ... continuity at any single
point . .. is not the continuity ... which can be called uniform continuity,
because it extends uniformly to all points and in all directions.

(Heine 1870, p.361)

The general ideas of the proof of several theorems in §3 according to the
principles of Mr. Weierstrass are known to me by oral communications
from himself, from Mr. Schwarz and Mr. Cantor, so that . . .

(Heine 1872, p. 182)

Definition 3.2 for the continuity of a function f : A — R ensures for each zyp € A
and each £ > 0 the existence of a ¢ > 0 such that the variation |f(z) — f(x0)]
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a) 3 b)

€ C)
3 €|
SZ
d 5 & & & 5 5

min

FIGURE4.5. Nonuniformly continuous functions (a) and (b), uniformly continuous (c)

is bounded by ¢ if | — x| is bounded by §. The problem is that this 6 is not
necessarily the same for all zy € A.

Examples. Fig. 4.5 shows the graphs of y = 1/x for A = (0,1] and of y = 22
for A = [0, 00). In both cases, it can be observed that the J, which is necessary
to ensure that |f(x) — f(xo)| < e for a given &, tends to zero, in the first case
for xy — 0, in the second case for xy — co. On the contrary (Fig. 4.5c¢), for the
function y = /x on A = [0, 1], in spite of the infinite slope of the curve at the
origin, there is a smallest §,;, = 2, which is positive. This d;,, though usually
unnecessarily small, can be used throughout the whole interval A = [0, 1]. We
call this property uniform continuity, a notion that emerged slowly in lectures of
Dirichlet in 1854 and of Weierstrass in 1861. The first publication is due to Heine
(1870, p. 353).

(4.4) Definition. A function f : A — R is uniformly continuous on A if
Ve>0 36>0 Vape A Ve e A |z—xo|<d |f(x)— flzo)| <e.

Remark. The uniform continuity of a given function can often be shown using
Lagrange’s Mean Value Theorem (see Theorem I11.6.11 below),

(4.11) f(x) = f(xo) = f'(€)(z — z0).
If A is an interval and f differentiable in A with

(4.12) M = sup |[f'(£)] < oo,

£cA
then, for a given €, we satisfy the condition of Definition 4.4 by simply putting
d = e/M (see also Exercise 4.3 below). However, differentiability is by no means
necessary, and we have the following astonishing theorem.



II1.4 Uniform Convergence and Uniform Continuity 219

(4.5) Theorem (Heine 1872). Let A be a closed interval [a, b] and let the function
f: A — R be continuous on A; then f is uniformly continuous on A.

First Proof (after Heine 1872, p. 188). We assume the negation of the condition in
Definition 4.4 and choose 6 = 1/n forn = 1,2,.... This yields

(4.132) Je>0 V1/n>0 Jxg, € A Fa, €A : |z —x0n| < 1/n
(4.13b) such that |f(zn) — f(zon)| > €.

After extracting a convergent subsequence from {z,, } (which we again denote by
{z,}; see Theorem 1.17), we have lim,,_, o &, = x, and since |z, — zo,| < 1/n
we also have lim,, ., o, = x. Since f is continuous, we have (see Theorem 3.3)

in contradiction with (4.13b). O

Second Proof (Liiroth 1873). Let an £ > 0 be chosen. For each z € [a,b] let
d(z) > 0 be the length of the largest open interval I of center = such that | f(y) —
f(2)| < e fory, z € I. More precisely,

@.14)  (x) =sup{0 >0 |Vy,z € [t = 6/2,2+6/2] [f(y) - f(2)] <&}

(where, of course, the values z, y, and z have to lie in A). By continuity of f(x)
at x, the set {§ > 0] ...} in (4.14) is nonempty, so that 6(z) > 0 for all z € A.
If §(x) = oo for some z € A, the estimate |f(y) — f(z)| < ¢ holds without any
restriction and any ¢ > 0 will satisfy the condition in Definition 4.4.

y z

@ >
TN~

e :
x x+m 2n
FIGURE4.6. Liiroth’s proof of Theorem 4.3

If §(z) < oo forall x € A, we move x to x + 7). The new interval I’ cannot be
longer than 6 () 4 2|n|, otherwise I would be entirely in I” and could be extended.
Neither can it be smaller than 6 (x) — 2|n|. Thus, this §(x) is a continuous function.
Weierstrass’s Maximum Theorem (Theorem 3.6), applied here in its “minimum”
version, ensures that there is a value xo such that 6(xg) < 0(z) for all z € A.
This value §(xg) is positive by definition and can be used to satisfy the condition
in Definition 4.4. a

Remark. If you are unsatisfied with both proofs above, you can read a third one,
published by Darboux (1875, p. 73-74), which is based on repeated subdivision of
intervals.
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Exercises

4.1

4.2

43

4.4

Show that the functions
folz) = (n+ Dz"(1 —z), x e A=10,1]

converge to zero for all z € A, but possess a maximum at z = n/(n + 1)
of asymptotic height 1/e. Therefore, we do not have uniform convergence
despite the fact that the limiting function is continuous.

(Pringsheim 1899, p. 34). Show that the series
2

05, Tl L)

a) converges absolutely for all x € R and
b) does not converge uniformly on [—1, 1].
¢) Compute f(x). Is it continuous?

The function f : [0, 1] — R defined by

f(w):{\/x-(sini —|—2) %f0<x§1,
0 ifx=0

is continuous on [0, 1], and should therefore be uniformly continuous. Find
explicitly for a given € > 0, say € = 0.01,a 6 > 0 for which we have

Vay,m0 €10,1] & |z1 — 32| <6 |f(z1) = f(22)| <e.

Hint. Use the Mean Value Theorem away from the origin and a direct esti-
mate for values close to 0.

Which of the functions of Fig. 3.3 (see Exercise 3.5) are uniformly continu-
ouson A ?
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II1.5 The Riemann Integral

Our first question is therefore: what meaning should we give to jab fx)dx?
(Riemann 1854, Werke, p.239)

By one of those insights of which only the greatest minds are capable,
the famous geometer [Riemann] generalises the concept of the definite
integral, . .. (Darboux 1875)

The discussion of the integral in Sects. II.5 and II.6 was based on the formula

b
(5.1) [ @)de=Fb) - Fla).

where F'(z) is a primitive of f(z). We have implicitly assumed that such a primi-
tive always exists and is unique (up to an additive constant). Here, we will give a

precise definition of f: f(x) dz independent of differential calculus. This allows

us to interpret fab f(z) dz for a larger class of functions, including discontinuous
functions or functions for which a primitive is not known. A rigorous proof of
(5.1) for continuous f will then be given in Sect. II1.6 below.

Cauchy (1823) described, as rigorously as was then possible, the integral of
a continuous function as the limit of a sum. Riemann (1854), merely as a side-
remark in his habilitation thesis on trigonometric series, defined the integral for
more general functions. In this section, we shall describe Riemann’s theory and
its extensions by Du Bois-Reymond and Darboux. Still more general theories, not
treated here, are due to Lebesgue (in 1902) and Kurzweil in 1957.

General Assumptions. Throughout this section, we shall consider functions f :
[a,b] — R, where [a,b] = {z|a < x < b} is a bounded interval and f(z) is a
bounded function, i.e.,

(5.2) dM >0 Vz€la,b |f(x) <M.

Otherwise, the definition of Darboux sums (below) would not be possible. Situa-
tions that violate one of these assumptions will be discussed in Sect. IIL.8.

Definitions and Criteria of Integrability

We want to define the integral as the area between the function and the horizontal
axis. The idea is to divide the interval [a, b] into small subintervals and to approxi-
mate the area by a sum of small rectangles. A division into subintervals is denoted
by

(53) D:{IO,Il,IQ,...,xn}

(where a = 9 < 21 < ... < z, = b) and the length of a subinterval is
0; = x; — x;—1. We then define the lower and upper Darboux sums (see Fig.5.1)
by
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(5.4) s(D)=Y_fidi,  S(D)=)_ Fd,
i=1 i=1
where
(5.5) fi= inf  f(x), Fi= sup f().
Ti—1STIwi Ti—1<z<T4

Obviously, we have s(D) < S(D) and any reasonable definition of the integral

fab f(z) dx must give a value between s(D) and S(D).
A division D’ of [a, ] is called a refinement of D, if it contains the points of
D,ie.,if D' > D.

Zo 0; ZrLo O; ZrTo 0; Zn
s(D) S(D) S(D) - s(D)
FIGURES5.1. Darboux sums

AN

s(D) s(D") S(D") S(D)
FIGURE 5.2. Refinement of a division

(5.1) Lemma. If D’ is a refinement of D, then
s(D) < s(D") < S(D') < S(D).
Proof. Adding a single point to the division D increases the lower Darboux sum

(or does not change it) and decreases the upper sum (or does not change it,
Fig.5.2). Repeated addition of points yields the statement. a
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(5.2) Lemma. Let Dy and D+ be two arbitrary divisions, then

S(Dl) S S(Dg)

Proof. We take D’ = D; U Ds, the division containing all points of the two
divisions (points appearing twice are counted only once). Since D’ is a refinement
of D; and of D5, the statement follows from Lemma 5.1. O

Lemma 5.2 implies that, for a given function f : [a, b] — R, the set of lower
Darboux sums is majorized by every upper Darboux sum (and vice versa):

s(D) S(D)

(5.6) T < = (T
?

Therefore (Theorem 1.12), it makes sense to consider the supremum of the lower
sums and the infimum of the upper sums. Following Darboux (1875), we introduce
the notation

b
(5.7 / fz)dx = iI[l)f S(D) the upper integral,

b
(5.8) / f(z)dx =sups(D) the lower integral.
a D

(5.3) Definition. A function f : [a,b] — R, satisfying (5.2), is called integrable (in
the sense of Riemann), if the lower and upper integrals (5.7) and (5.8) are equal.
In that case, we remove the bars in (5.7) and (5.8) and we obtain the “Riemann
integral”.

(5.4) Theorem. A function f : [a,b] — R is integrable if and only if
(5.9) Ve>0 3D S(D)—s(D)<e.

Proof. By definition, the function f(x) is integrable if and only if the two sets
in (5.6) are arbitrarily close. This means that, for a given ¢ > 0, there exist two
divisions D and Ds such that S(D3) — s(D;) < e. Taking D = D; U D5 and
applying Lemma 5.1 yields the statement. a

(5.5) Example. Consider the function f(x) = z on an interval [a, b]. For the
equidistant division D,, = {z; = a+ih|i =0,1,...,n, h = (b —a)/n}, we
obtain from (I.1.28) that

n b2 a2 (b_ a)2
NI PRSI B G
i=1

- b a? b—a)?
S(Dn)zzxi'(zi*xifl):2*2+( 2n) ;
i=1
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so that S(D,,) — s(D,,) = (b — a)?/n. For sufficiently large n this expression
is smaller than any € > 0. Therefore, the function is integrable and the integral
equals b?/2 — a2 /2.

(5.6) Example. Dirichlet’s function f : [0, 1] — R, defined by (see (3.3))

Fla) = { 1 z rational

0 x irrational,

is not integrable in the sense of Riemann, because in every subinterval there are
rational and irrational numbers so that f; = 0 and F; = 1 for all <. Consequently,
s(D) =0, S(D) = 1 for all divisions.

(5.7) Example. The function f : [0,1] — R (see (3.4))

0 x irrational or x = 0
flz) = _ .
1/q x = p/q reduced fraction

is discontinuous at all positive rational =. However, for a fixed € > 0, only a finite
number (say k) of a-values are such that f(x) > . We now choose a division D
with max; 0; < e/k, such that the z-values for which f(z) > ¢ lie in the interior
of the subintervals. Because of f(z) < 1, this implies

S(D) <e+k-maxd; < 2e.

Since s(D) = 0, we see that our function is integrable and that fol f(z)dx = 0.

The Theorem of Du Bois-Reymond and Darboux.

I feel, however, that the manner in which the criterion of integrability was
formulated leaves something to be desired.
(Du Bois-Reymond 1875, p.259)

(5.8) Theorem (Du Bois-Reymond 1875, Darboux 1875). A function f(x), satis-
fying (5.2), is integrable if and only if

Ve>0 30>0 VDeDs S(D)—s(D)<e.

Here, Dy denotes the set of all divisions satisfying max; §; < 0.

Proof. The “if” part is a simple consequence of Theorem 5.4. The difficulty of the
“only if”” part resides in the fact that the division D, about which we know nothing
but max; §; < d, can be quite different from the D of Theorem 5.4.

Lete > 0 be ﬁxgd and let D be a division satisfying (5.9), i.e., the shaded
area A = S(D) — s(D) in Fig. 5.3a is smaller than €. The important point is that
D= {Zo,Z1,...,2Zx} consists of a finite number of points. Now take an arbitrary
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b)

o T1 o ... 11

d)

DUD To 1 Ta ... T11
FIGURE 5.3. Du Bois-Reymond and Darboux’s proof

division D € D;s (see Fig.5.3b) and set A = S(D) — s(D). We have to prove that
A becomes arbitrarily small if § — 0.

Consider the union D’ = D U D of the two divisions and set A" = S(D’) —
s(D') (see Fig.5.3c). The Darboux sums for D’ and D are equal everywhere,
except on intervals that contain points of D (Fig.5.3d). Since we have at most
n — 1 such intervals, since their length is < ¢, and since —M < f(z) < M, we
have

(5.10) A< A +2(7 - 1)5M.

Together with A’ < A<e (observe that D’ is a refinement of ﬁ), this estimate
yields A < 2¢ provided that § < ¢/(2(n — 1)M). O
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Riemann Sums. Consider a division (5.3) and let &1, &9, . . ., &, be such that xy <
& <axy <& < a9 <& < ....Then, we call

n

(5.11) o= f(&)-d

=1

a Riemann sum. Because of (5.5), we have f; < f(&) < Fj, sothat s(D) < o <
S(D). Theorem 5.8 thus implies that

n b
(5.12) > f&) -6 — / fle)yde if  maxd; —0,

=1

provided that f : [a.b] — R is an integrable function.
Riemann sums are very convenient for proving properties of the integral. For
example, the limit max; §; — 0 of the trivial identity

n

> (erfi(&) + cafo(&)) - 65 = Zfl(&') 0+ e Zf2(§z‘) “ 6

=1

leads to (I1.4.13), if the functions involved are integrable.

Integrable Functions

Let us investigate which classes of functions are integrable.

(5.9) Theorem. Let f and g be two integrable functions on [a,b] and let X be a
real number. Then the functions

are again integrable.

Proof. We shall use throughout the proof the fact that F; — f; represents the least
upper bound for the variations of f(z) on [z;_1, ], i.e.,
(5.13) sup  |f(z) = fy)=F - fi.
z,Y€[xi—1,2]

Indeed, suppose that € > 0 is a given number. By the definition of F; and f;, there
exist £, € [z;—1,x;] such that f(§) > F; — e, f(n) < fi + € and therefore
f(&) — f(n) > F; — f; — 2¢. Consequently, F; — f; is not only an upper bound
for |f(x) — f(y)|, but also the least upper bound.

a) Let h(xz) = f(z) + g(z), and denote by F;, G;, H;, respectively, fi, gi,
h;, the supremum, respectively, infimum of f, g, h, on [z;_1, z;] (see (5.5)). We
then have for x,y € [x;—1,x;], using the triangle inequality and (5.13),

|h(z) — h(y)| < [f(x) = fy)l + [9(z) — g(y)]
(5.14) < (Fi = fi) + (Gi — g4)-
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Thus, Eq. (5.13), applied to the function h, shows that (H; — h;) < (F; — f;) +
(G; — gi), and the differences of the upper and lower Darboux sums satisfy

(5.15) Z(Hi —hi)d; < Z(Fi — fi)0i + Z(Gi — 9i)di.

For a given € > 0 we choose a division D (Theorem 5.4) such that each term in
the sum on the right side of (5.15) is smaller than ¢ (in fact, we have two different
divisions for f and g, but by taking their union we may suppose that they are the
same). Consequently, > .(H; — h;)0; < 2¢ and the function h(z) = f(x) + g(x)
is integrable by Theorem 5.4.

b) The proofs of the remaining assertions are very similar. For example, for
h(z) = X f(x) we use

[h(2) = h(y)l = [Al- |f(x) = f(y)]

instead of (5.14), conclude that (H; —h;) < |A|-(F; — f;), and deduce integrability
as above.
For the product h(x) = f(z) - g(x) we use

|h(x) = h(y)| < [f(@)] - |g(z) — g+ [g)| - | f(z) — f(y)]
<M -g(x) — g+ N - |f(x) = f(y)

(both functions f(z) and g(z) are bounded by assumption (5.2)).

Finally, for the last assertion it suffices to prove that 1/g(x) is integrable
(because f(x)/g(x) = f(x)-(1/g(x)). We set h(z) = 1/g(x) and replace (5.14)
by

O

Since the constant function and f(x) = x are integrable (Example 5.5), the
above theorem implies that polynomials and rational functions (away from sin-
gularities) are integrable. The following theorem was asserted by Cauchy (1823),
but was proved rigorously only some 50 years later with the notion of uniform
continuity.

(5.10) Theorem. [f f : [a,b] — R is continuous, then it is integrable.

Proof. The essential point is that f is uniformly continuous (Theorem 4.5). This
means that for a given € > 0 there exists a § > 0 such that

lr—yl<d = [fl@)- [l <e

We take a division D satisfying max; §; < 6. For z,y € [x;_1, z;] we thus have
|f(z) — f(y)] < € and, by (5.13), F; — f; < . This implies that S(D) — s(D) =
S (B = fi)d; <edi 8 = e(b— a) and the integrability of f(z) follows
from Theorem 5.4. a
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(5.11) Theorem. If f : [a,b] — R is nondecreasing (or nonincreasing), then it is
integrable.

Proof. The smallest value of a nondecreasing function is at the left end point and
the largest at the right end point of the interval [x;_1, z;]. Hence, f; = f(z;—1),
F; = f(x;) sothat ;11 = F; fori = 1,...,n — 1. The idea is now to consider
equidistant divisions where the length of all subintervals is equal to 5. We then
have

S (Fi—£:)8 = Fid— 10+ Pad— fodt Fsd— fad+... = (f(wn)— f(0)) 6 <&,

if 0 is sufficiently small. This proves the integrability of f(x). O

(5.12) Remark. If we change an integrable function at a finite number of points,
the function remains integrable and the value of the integral does not change. This
is seen by an argument similar to that of Example 5.7 above.

(5.13) Remark. Let a < b < c and assume that f : [a, c] — R is a function whose
restrictions to [a, b] and to [b, ¢| are integrable. Then f is integrable on [a, ¢] and
we have

(5.16) /acf(:c)d:c:/abf(:v)dx—i—/bcf(:c)d:c.

This holds because adding the Darboux sums for the restrictions to [a, b] and [b, c|
yields a Darboux sum for [a, c].
For a > b or a = b we define

b a a
(5.17) / f(z)dx = —/b f(z)dx and / f(z)dz =0,

so that Eq. (5.16) is true for any triple (a, b, c).

Inequalities and the Mean Value Theorem

The following inequalities are often useful for estimating integrals. We have al-
ready used them in Sect. II.10 to obtain the estimates (I1.10.15).

(5.14) Theorem. If f(z) and g(x) are integrable on [a,b] (with a < b) and if
f(x) < g(x) forall x € [a,b], then

/abf(:w dz < /(fg(x) dx.

Proof. The Riemann sums satisfy >\, f(&)d; < D1, g(&:)d;, because §; > 0.
For max; §; — 0 we obtain the above inequality (see (5.12) and Theorem 1.6).
O
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(5.15) Corollary. For integrable functions we have

:v)d:z:‘ < /ab|f(:v)|dx.

Proof. We apply Theorem 5.14 to —|f(x)| < f(z) < |f(x)]. O

By applying Corollary 5.15 to a product of two integrable functions f(x) -

g(x) and using |f(z) - g(z)| < M -|g()], = SUPyefa |/ (2)], we
obtain the following useful estimate:

(5.18) ’/ f(z x)dz| < sup |f(x / lg(x)| dx.

z€(a,b]
The next inequality is similar to (5.18), but treats the two functions f and g sym-

metrically.

(5.16) The Cauchy-Schwarz Inequality (Cauchy 1821 in R™, Bunyakovski 1859
for integrals, Schwarz 1885, §15, for double integrals). For integrable functions

f(x) and g(x) we have
(5.19) ] / " fa)ow) da| < ¢ / o) de \/ / (o) da

Proof. By Theorem 5.9, we know that f - g, f2, and g2 are integrable. Using
Theorem 5.14 and the linearity of the integral, we have

0</b(f( ) —vg(x ))2dw
/f2 d:cf2fy/f x) dr + ~* /abgz(x)d:c.

We put A = f fA(z)dx, B = f f(@)g(z)dz, C = f g*(x) dz, and we see
that A — 2yB + 'yZC > 0 for all real ~. For C’ = 0 this 1mphes that B = 0. For
C # 0 the discriminant of the quadratic equation cannot be positive (see (1.1.12)).
Therefore, we must have B2 < AC, which is (5.19). O

(5.17) The Mean Value Theorem (Cauchy 1821). If f : [a,b] — R is a continu-
ous function, then there exists £ € [a, b] such that

b
(5.20) [ H@)de =1 b~ a)

Proof. Let m and M be the minimum and the maximum of f(x) on [a, b] (see
Theorem 3.6), so that m < f(x) < M for all z € [a, b]. Applying Theorem 5.14
and dividing by (b — a) yields
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b
< bia./ f(z)dz < M.

m <
The value f: f(z)dz/(b—a) lies between m = f(u) and M = f(U). Therefore,

by Bolzano’s Theorem 3.5, we deduce the existence of £ € [a, b] such that this
value equals f(&). This proves Eq. (5.20). O

(5.18) Theorem (Cauchy 1821). Ler f : [a,b] — R be continuous and let
g : la,b] — R be an integrable function that is everywhere positive (or every-
where negative). Then, there exists € [a, b] such that

b b
(5.21) / f(@)g(x) dz = £(€) / o(z) dx.

Proof. Suppose that g(z) > 0 for all = (otherwise replace g by —g). In this situa-
tion, we have

m-g(x) < f(z)g(z) < M - g(x) for x € [a,b],

where m and M are the minimum and maximum of f(z). The rest of the proof is
the same as for the Mean Value Theorem. a

Integration of Infinite Series

Until very recently it was believed, that the integral of a convergent se-
ries ... is equal to the sum of the integrals of the individual terms, and
Mr. Weierstrass was the first to observe . . .
(Heine 1870, Ueber trig. Reihen, J.f. Math., vol. 70, p.353)
On several occasions we found it useful to integrate an infinite series term by
term (e.g., in the derivation of Mercator’s series (1.3.13) and in the examples of
Sect. I1.6). This means that we exchanged integration with a limit of functions. We
will discuss here under what conditions this is permitted.

First Example. Let 71, 72,73, 74, . .. be a sequence containing all rational num-
bers between 0 and 1, for example

11 2 1 2 3 1 2 3 4 1
273737474747 5757575767 "
We then define
1 if @€ {ry,re,rs, ...,
(5.22) fn(x)—{ trra.rs J
0 else.

By Remark 5.12, each function f,, : [0,1] — R is integrable with integral zero.
However, the limit function f(z), which is Dirichlet’s function of Example 5.6, is
not integrable. (The Lebesgue integral will get rid of this difficulty.)
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Second Example. The graphs of the functions

n2x 0<x<1/n
(5.23)  fo(z) =1 2n —n’x 1/n<z<2/n
0 2/n<x<2

are triangles with decreasing bases and increasing
altitudes with the property that

2
/ fn(x)dz =1 forall n.
0

However, the limit function is f(z) = 0 for all
x € [0, 1]. Here, f(z) is integrable, but

lim fn )dx # / lim f,(x

n—oo n—oo

(5.19) Theorem. Consider a sequence f,(x) of integrable functions and suppose
that it converges uniformly on [a,b] to a function f(x). Then f : [a,b] — R is
integrable and

lim fn )dz = / fz

Proof. Uniform convergence means that, for a given € > 0, there exists an integer
N such that for all n > N and for all © € [a,b] we have |f,(z) — f(z)| < e.
Consequently, we have for all =, y € [a, b] that

|f(@) = fW)| < |fn (@) — [N ()] + 2.
Applying (5.13), we see that

(Fi — fi) < (Fni — [ni) + 2e,

where, as in (5.5), we have used the notation Fiv; = sup,, ,<,<,, fn(z) and
fni = infy, <w<q fn(z). The function fy(x) is integrable, so that for a
suitable division of [a,b] the difference of the upper and the lower Darboux
sums, i.e., Y . (Fni — fni)0;, is smaller than € (Theorem 5.4). This implies that
> (Fy = fi)d; < e(1+2(b—a)) and f(x) is seen to be integrable.

Once the integrability of the limit function f(x) is established, Corollary 5.15
implies that forn > N

/ab fn(x)dz — /abf(x) dw’ < /ab |fulz) = f(2)| dz < e(b - a).

This implies the conclusion of the theorem. O
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(5.20) Corollary. Consider a sequence f,(x) of integrable functions and suppose
that the series Y . fn(x) converges uniformly on [a, b]. Then, we have

. -
HZ_,;/ fn(x)dx:/a gfn(x)dx.

° B(x) S

B2x)/4
B(3x)/9

FIGURE 5.4. Riemann’s example of an integrable function

Riemann’s Example.
Since these functions have never been considered yet, it will be useful to
start from a particular example. (Riemann 1854, Werke, p.228)

Riemann (1854), in order to demonstrate the power of his theory of integration,
proposed the following example of a function that is discontinuous in every inter-
val (see Fig.5.4):

524 f2)=Y Bg;x), where B(z) = {g () Ei i Zﬁ
n=1

and (x) denotes the nearest integer to x. This function is discontinuous at z =
1/2,1/4,3/4,1/6, 3/6,5/6, ..., nevertheless, the series (5.24) converges uni-
formly by Theorem 4.3 and the functions f,, () are integrable by Remark 5.13.
Hence, f is integrable.

Exercises

5.1 For the function

e 1111
f(x):{1 ifx=0,0,5,48--
T otherwise



5.2

53

54

5.5

5.6
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and a given € > 0, say € = 0.01, construct explicitly a division for which
S(D) — s(D) < e. This will make clear that f is integrable in the sense of
Riemann.

Consider the function f(x) = 2 on the interval [0, 1]. Compute the lower
and upper Darboux sums for the equidistant division z; = i/n, i =
0,1,...,n. Conclude from the results obtained that f is integrable.

Show that the numerical approximations obtained from the trapezoidal rule
(see Sect. 11.6),

f(ﬁN))

/f o~ n( TS 1 e s s+ e+ T

(b—a)/N and &; = a + ih), as well as for Simpson’s rule (IV even),

/ Py de ~ (&) +AF(E) +26(E) +47(E) + .-+ J(En)),

are Riemann sums for a certain division D. Therefore, convergence of these
methods is ensured for N — oo for all Riemann integrable functions.

(Dini 1878, Chap. 13). Show that

/ ln(l — 2acosx+a2) dr =0 fora? <1,
0

/ ln(l — 2acosx+a2) de =7mlna?® fora? >1,
0

by computing Riemann sums for an equidistant division z; = i7/n, with &;
the left end point x;_1. The Riemann sums will become the logarithm of a
product with which we are familiar (see Sect.1.5).

Let f : [a,b] — R satisfy 1) f is continuous, 1ii) Vz € [a,b] we have
f(z) > 0,and iii) 3o € (a,b) with f(zo) > 0. Then, show that

b
(5.25) / flz)dz > 0.

Show with the help of counterexamples that each of the three hypotheses 1),
ii), and iii) is necessary for proving (5.25).
Compute the integrals

/2 1-3-5. (2n —1
/ sin? ode = T 3-5-...-(2n ),
0 2 2-4-6-...-2n

/2 2:4-6-...-2n
. 2n+1 d _ )
/0 ST s s @2n+ 1)

Then, use 0 < sinz < 1for 0 < z < m/2 and Theorem 5.14 to establish

/2 /2 /2
/ sin?” z dx > / sin?*t! g dx > / sin®"*2? z dx.
0 0 0
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The above values inserted into these inequalities lead to a proof of Wallis’s
product (1.5.27) with a rigorous error estimate.

5.7 Show that
1 1 1 .4 1— 4 1
/ x4(1—x)4d:v§/ #(1-z) d:vg/ 24 (1 — )t da.
2 0 0 1 + I’Q 0

The actual computation of these integrals leads to an amusing result (old
souvenirs from Sect. 1.6).

Hint. To calculate fol x*(1 — x)* dx see Exercise 11.4.3.

5.8 Show that the series

1
=1—a? +at —abf 428~
1+ 22
converges uniformly on A = [—b, b] for each b with 0 < b < 1. Hence, this
series can be integrated term by term on A = [0,b] (or on A = [—b,0]) and

leads to the well-known series for arctan b.

a)

O““““l O““““‘l
FIGURES.S. Exchange of lim and integral

5.9 For the following sequences of functions f,, : [0,1] — R (Fig.5.5),

nxr TL2LL'

(1+7’L2I2)2’ b) fn(‘r) = (1+n2x2)27

compute lim,, o fr(2) (distinguish the cases © = 0 and = # 0). Find the
maximal point of f,,(x) and decide whether convergence is uniform. Finally,
check whether the following equality holds:

a) fn(x) =

1 1
lim fo(z)de = / lim f,(x)dz.
0

n—oo 0 n—oo
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I11.6 Differentiable Functions

... rigor, which I wanted to be absolute in my Cours d’analyse, . . .
(Cauchy 1829, Le¢ons)

The total variation f(x + h) — f(z). .. can in general be decomposed into
two terms . . . (Weierstrass 1861)
The derivative of a function was introduced and discussed in Sect. II.1. Now that
we have the notion of limit at our disposal, it is possible to give a precise definition.

(6.1) Definition (Cauchy 1821). Let I be an interval and let xy € I. The function
f : I — Ris differentiable at x if the limit

T—T0 r — X
exists. The value of this limit is the derivative of f at xy and is denoted by f'(x).
If the function f is differentiable at all points of I and if f' : I — R is
continuous, then f is called continuously differentiable.

Sometimes it is advantageous to write © = xy + h, so that

(6.2) F'(z0) = Jim flao + h}z — (o)

One can also, for a given g, consider the function r : I — R defined by r(z¢) =
0 and

f(x) = f(zo)

Tr — X9

(6.3) r(x) = — (o) for x # xo.
Then, Eq. (6.1) is equivalent to lim,_,,, 7(x) = 0 and we have the following
criterion.

(6.2) Weierstrass’s Formulation (Weierstrass 1861, see the above quotation). A
function f(z) is differentiable at x if and only if there exists a number f’(x)
and a function r(x), continuous at = and satisfying r(x¢) = 0, such that

6.4) f(x) = f(@o) + f'(zo)(z — x0) + r(z)(z — 20). =

Equation (6.4) has the advantage of containing no limit (this is replaced
by the continuity of r(z)) and of exhibiting the equation of tangent line y =
f(zo) + f'(zo)(x — xo) to f(x) at & = xo. Moreover, it will be the basis for the
differentiability theory of functions of several variables.

Still simpler formulas and proofs are obtained, if the two terms in Eq. (6.4)
are collected by setting

(6.5) o(x) = f'(x0) + ().
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(6.3) Carathéodory’s Formulation (Carathéodory 1950, p. 121). A function f(x)
is differentiable at x if and only if there exists a function (), continuous at x,
such that

(6.6) f(@) = f(xo) + p() (2 — o).

The value (z0) is the derivative f’(xq) of f at xg.
We see immediately from (6.6) that if f is differentiable at xg, then it is also
continuous at z. Furthermore, since from (6.5) and (6.3) (or directly from (6.6))

f(x) = f(zo)

(6.7) o(z) = v

for = # xg
is uniquely determined for x # x¢, the derivative f'(x¢) is uniquely determined
if it exists.

Remarks and Examples. 1. Obviously, the functions f(z) = 1 and f(z) = x are
differentiable. The differentiability of f(x) = 2% follows, for example, from (6.6)
with the identity 22 — 3 = (z + z0)(z — z0) (see also Sect. IL.1).

2. We emphasize that differentiability at = is a local property. Changing the
function outside (zo—¢, zo+¢) for some e > 0 changes neither its differentiability
at o nor the derivative f’(xo).

3.If I = [a,b] is a closed interval and zy = a, then (6.1) should be replaced
by the right-sided limit.

4. Consider the function f(z) = |z| (absolute value). At 2o > 0, it is
differentiable with f/(xg) = 1; at zp < 0 it is also differentiable, but with
derivative f’(x0) = —1. This function is not differentiable at 2y = 0, because
f(z)/x = |x|/x does not have a limit for x — 0.

5. The function

0 if x is irrational or integer
flz) = 2 i .
1/¢* if x = p/q (reduced fraction)

is discontinuous at every non-integer rational xg. It
is, nevertheless, differentiable at xg = 0, since the
function p(x) of Eq. (6.6) becomes p(z) = f(x)/.
Since |f(x)| < |z|?, we have lim,_ ¢(z) = 0 and
f/(!Eo) =0.

(6.4) Theorem. If f : (a,b) — R is differentiable at xo € (a,b) and f'(zo) > 0,
then there exists 0 > 0 such that

f(x) > f(xo) forall x satisfying xo < x < 29+,
f(@) < f(xo) forall x satisfying xg — § < x < xg.

If the function possesses a maximum (or minimum) at o, then f'(xq) = 0.

Proof. f'(x0) > 0 means that ¢(z) > 0 (see (6.6)). By continuity, p(z) > Oina
neighborhood of xy. Now the stated inequalities follow from (6.7).
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If the function possesses a maximum at g, then we have f(z) < f(xo) on
both sides of zq. This is only possible if f'(z¢) = 0. O

(6.5) Remark. The statement of Theorem 6.4 does not imply that a function, sat-
isfying f’(x¢) > 0, is monotonically increasing in a neighborhood of xy. As a
counterexample, consider the function f(x) (see Fig. 6.1), given by f(0) = 0 and

f(z) =z + 2*sin(1/2?) for z #0.

It is differentiable everywhere and satisfies f/(0) = 1 (because f(x) = z+r(z)-x
with |r(z)| < |z]). For « # 0 the derivative

fllx)y=1+ 2xsin<x12> - icos(g;)

oscillates strongly near the origin. Hence, even though f(z) is contained between
two parabolas, there are points with negative derivatives arbitrarily close to the
origin. By Theorem 6.4, there exist points £; < &5, arbitrarily close to 0, for
which f(&1) > f(&2).

We shall show later (Corollary 6.12) that, if f/(x) > 0 forall z € (a,b), the
function is monotonically increasing. Thus, this counterexample is only possible
because f is not continuously differentiable.

M /\/\ Za—
B

FIGURE 6.1. Graph of the functiony =z + = 2sin(1 / 2?) and its derivative

Va.

(6.6) Theorem. If f and g are differentiable at x, then so are

f+g, f-9, flg (if g(wo) #0).
The formulas of Sect. 1.1 for their derivatives are correct.

Proof. We shall present two different proofs for the product f - g. For f + g and
f/g the proofs are similar.
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The first proof is based on the identity

r — X r — X0 r — X0

which is obtained by adding and subtracting the term f(xz)g(zo). Using the
continuity of f at zy (Eq.(6.4)), the differentiability of f and g, and Theorem
1.5, we see that for x — =z the expression on the right has the finite limit
f(xo)g' (z0) + g(xo) f'(x0). Hence, the product f - g is differentiable at x.

Our second proof is based on Carathéodory’s formulation 6.3. By hypothesis,
we have

f(x) = f(xo) + ¢(x)(x — x0), @(zo
©® 9(2) = glz0) + b(@)(@ — 7). Bl

We multiply both equations of (6.8), and obtain

)

f/(x()),
) = ¢ (20).

(o)

F(@)g(@) = f(@o)g(ao) + (F(zo)i(w) +g(x0) (@) + v+ (2 —x0) ) (= o).

The function in tall brackets is evidently continuous at z( and its value for x = x¢
is f(20)g'(z0) + g(z0) f' (o). D

(6.7) Theorem (Chain rule for composite functions). If y = f(z) is differentiable
at xo and if z = g(y) is differentiable at yo = f(x0), then the composite function
(9o f)(x) = g(f(x)) is differentiable at xo, and we have

6.9) (9o f)(z0) = 9'(y0) - f'(wo)-
Many of our students will appreciate the pithy elegance of this
proof. (Kuhn 1991)
Proof. We use Eq. (6.6) to write the hypothesis in the form

f@) = f(zo) = o(x)(x —x0),  @(x0) = f'(20),
9(w) —9(wo) =vW)(w —w),  ¥(yo) =g (yo)-

Inserting y — yo = f(x) — f(xo) from the first equation into the second, we obtain

g(f(@) —g(f(z0)) = ¥(f(x)) p(z)(x — z0).

The function 1 (f(z)) () is again continuous at zg, and its value for z = x is

g'(f (o)) - f'(xo). =

(6.8) Theorem (Inverse functions). Let f : I — J be bijective, continuous, and
differentiable at xo € I, and suppose that f'(xg) # 0. Then, the inverse function
f~Y:J — I is differentiable at yo = f(x0), and we have

1

©10 U000 = oy
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Proof. In Carathéodory’s formulation (6.6), we have by hypothesis

f(@) = fwo) = p(@)(x —20),  @(x0) = ['(w0),

we replace = and ¢ by f~(y) and f~!(yo), and f(x) and f(z0) by y and yo,
and get

y—yo =9 W) (@) — f ().

From the proof of Theorem 3.9 it follows that f~*(y) is continuous at 3. Be-
cause by hypothesis ¢ (f~(yo)) # 0, we therefore have ¢(f~'(y)) # Oina
neighborhood of y¢ and we may divide this formula to obtain

-1 1 _ 1 o
) = (w) @(f*l(y))(y Yo)-

This concludes the proof, since the function 1/¢(f~*(y)) is continuous at yo. O

The Fundamental Theorem of Differential Calculus

Formula (I1.4.6) is the central result of all the computations of Sect. I1.4. We shall
give here a rigorous proof of this result. In particular, we shall show that every
continuous function f(z) has a primitive, which is unique up to an additive con-
stant.

(6.9) Theorem (Existence of a primitive). Let f : [a,b] — R be a continuous
function. The function

(6.11) F(z) = /x ft)dt

(which exists by Theorem 5.10) is differentiable on (a,b) and satisfies F'(x) =
f(x). Hence, it is a primitive of f(x).

Proof. By Eq.(5.16), we have
(6.12) F(z) — F(xo) = /m () dt.

Applying the Mean Value Theorem 5.17, we get

F(z) = F(xo) = f(§)(z — 20),

where § = £(x, zo) lies between z and . For © — x( the value &(x, o) neces-
sarily tends to x, so that by continuity of f at 2o, we have lim,_, ., f(£) = f(zo).
This proves (see (6.6)) the differentiability of F'(z), with F'(z¢) = f (o). O
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Uniqueness of Primitives.

This was supplied by the mean value theorem; and it was Cauchy’s great

service to have recognized its fundamental importance. . . . because of this,

we adjudge Cauchy as the founder of exact infinitesimal calculus.
(F.Klein 1908, Engl. ed. p. 213)

See the beautiful proof of this theorem due to Mr. O. Bonnet, in the Traité
de Calcul différentiel et intégral of Mr. Serret, vol. 1, p. 17.
(Darboux 1875, p.111)
Our next aim is to prove the uniqueness (up to an additive constant) of the primi-
tive. The following concatenation of theorems, which accomplishes this task, has
been one of the cornerstones of the foundations of Analysis since Serret’s book
(1868; Serret attributes these ideas to O. Bonnet; see the quotations).

(6.10) Theorem (Rolle 1690). Let f : [a,b] — R be continuous on |a, b], differ-
entiable on (a,b), and such that f(a) = f(b). Then, there exists a § € (a,b) such
that

(6.13) F1e=o.

Proof. From Theorem 3.6, we know there exist u, U € [a,b] such that f(u) <
f(z) < f(U) forall x € [a, b]. We now distinguish two situations.
If f(u) = f(U), then f(x) is constant and its derivative is zero everywhere.
If f(u) < f(U), then at least one of the two values (say f(U)) is different
from f(a) = f(b). We then have a < U < b, and by Theorem 6.4, f'(U) = 0.
O

(6.11) Theorem (Lagrange 1797). Let f : [a,b] — R be continuous on [a, b] and
differentiable on (a,b). Then, there exists a number & € (a, b) such that

(6.14) fb) = fla) = f ()b~ a).

f(b)

¢ fa) (D) /
/o/

a b o/ @ b

FIGURE 6.2. Proof of Rolle’s and Lagrange’s Theorems

Proof. The idea is to subtract from f(z) the straight line connecting the points

(a, f(a)) and (b, f(b)), of slope (f(b) — f(a))/(b — a), and to apply Rolle’s
Theorem (Fig. 6.2). We define



II1.6 Differentiable Functions 241

615 h@)=f@) - (fla)+ @) IO,
Because of h(a) = h(b) = 0 and
h’(:v) _ f’(x) _ f(bl)) : C]:(a)’
Eq. (6.14) follows from h’(£) = 0 (Theorem 6.10). O

(6.12) Corollary. Let f, g : [a,b] — R be continuous on [a,b] and differentiable

on (a,b). We then have

a) if f'(§) =0forall € € (a,b), then f(x) = C (constant);

by if /€)= g (€) forall € € (a,b), then f(z) = g(x) + C;

c) iff'(&) > 0foral & € (a,b), then f(x) is monotonically increasing, i.e.,
flx1) < f(xe) fora < x1 < x2 < b; and

d) I < M forall§ € (a,b), then |f(x1) — f(w2)| < M|y — o] for
Z1,x2 € [a,b).

Proof. Applying Eq. (6.14) to the interval [a, 2] yields statement (a) with C' =
f(a). Statement (b) follows from (a). The remaining two statements are obtained
from Theorem 6.11 applied to the interval [z, z2]. O

(6.13) The Fundamental Theorem of Differential Calculus. Let f(x) be a con-
tinuous function on [a, b). Then, there exists a primitive F(z) of f(x), unique up
to an additive constant, and we have

(6.16) / f(2)de = F(b) — F(a).

Proof. The existence of F(x) is clear from Theorem 6.9. Uniqueness (up to a
constant) is a consequence of Corollary 6.12b. If F'(x) is an arbitrary primitive of
f(x), then we have F(z) = [ f(t) dt + C. Setting x = a yields C = F(a), and
Eq. (6.16) is obtained on setting z = b. O

Fig. 6.3 shows the impressive genealogical tree of the theorems that are
needed for a rigorous proof of the fundamental theorem. If Leibniz had known
about this diagram, he might not have had the courage to state and use this theo-
rem.

The “Fundamental Theorem of Differential Calculus” allows us to formulate
theorems of Differential Calculus (Sect. II1.6) as theorems of Integral Calculus
(Sect.IIL.5) and vice versa. This fact was exploited in Sect. I1.4 on several oc-
casions. “Integration by Substitution” (Eq.(I1.4.14)) and “Integration by Parts”
(Eq. (I1.4.20)) now have a sound theoretical basis. One has only to require that the
functions involved be continuous, so that the integrals exist.
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Fundamental Theorem of Calculus

N

Thm. 6 11 Thm. 5.10
Lagrange exist f
Thm. 6 10
Rolle
Rem. 2-13 Thm. 6.4 Thm. 5.17 Thm. 4.5
f; = fa +be >0 = .. Mean Val. Unif. Cont.

Thm. 5.14 Thm. 3.5 Thm. 3.6
f f< f g intermed. val. Max, Min

Thm. 1.6 Thm. 1.12 Thm. 1.17 Thm.3.3

lim << 3 sup Bolz. Weier. cont. func.
Thm. 1.5 Thm. 1.8
lim < + Cauchy sequ. conv.

T |

Def. of real numbers, Def. of lim, Logic

FIGURE 6.3. Genealogical tree of the Fundamental Theorem

The Rules of de L’Hospital

.. entirely above the vain glory, which most scientists so avidly seek . . .
(Fontenelle’s opinion concerning
Guillaume-Frangois-Antoine de L’Hospital, Marquis de Sainte-Mesme et
du Montellier, Comte d’Antremonts, Seigneur d’Ouques, 1661-1704)

Besides, I acknowledge that I owe very much to the bright minds of
the Bernoulli brothers, especially to the young one presently Professor in
Groningen. I have made free use of their discoveries . . .

(de L’Hospital 1696)

We start with the following generalization of Lagrange’s Theorem 6.11.

(6.14) Theorem (Cauchy 1821). Ler f : [a,b] — Rand g : [a,b] — R be
continuous on |a, b] and differentiable on (a,b). If ¢’ (x) # 0 for a < x < b, then

g(b) # g(a) and there exists £ € (a,b) such that

(6.17) f(b) = fla) _ f/’(f).
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Proof. We first observe that g(b) # g(a) by Rolle’s theorem, since g'(£) # 0 for
all € € (a,b). We then note that for g(z) = « this result reduces to Theorem 6.11.
Inspired by the proof of this theorem, we replace (6.15) by

f() = f(a)
(6.18) hxf:c<fa+gzga .
(0) = £(2) = (fl@) + (o) = g(@) ) 0
The conditions of Rolle’s Theorem 6.10 are satisfied, and consequently there ex-
ists € € (a, b) with h/(£) = 0. This is equivalent to (6.17). O

Problem. Suppose we want to compute the limit of a quotient f(x)/g(z). If both
functions, f(x) and g(x), tend to 0 or to co when x — b, then we are confronted
with undetermined expressions of the form

0 00
or .
0 00

The following theorems and examples show how such situations can be handled.

(6.15) Theorem (Joh. Bernoulli 1691/92, de L’Hospital 1696). Let f : (a,b) — R
and g : (a,b) — R be differentiable on (a,b) and suppose that g'(x) # 0 for
a<zx<blf

(6.19) lim f(x)=0 and lim g(x)=0

T—b— r—b—
and if hril, fl(x)/g'(x) = X exists, then
flx) _ . (@)

(6.20) lim = lim .
e—b—g(x)  a—b- g'(2)

Proof. The existence of the limit of f'(x)/¢’(x) for + — b— means that for a
given € > 0 there exists a § > 0 such that

/
6.21) f,(f)f/\)<a for  b—&<&<b.
g'(€)
For u,v € (b — 4, b) it then follows from Theorem 6.14 that
o /
62 =100y @y,
g(u) —g(v) g'(€)

In this formula, we let v — b—, use (6.19), and so obtain |f(u)/g(u) — A| < e for
b — 0 < u < b. This proves (6.20). O

(6.16) Remark. With slight modifications of the above proof, one sees that

— the theorem remains true for b = +oo;
— the theorem remains true for A = +o0o or A = —oo; and
— the theorem remains true for the limit x — a+.
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(6.17) Theorem. Under the assumptions of Theorem 6.15, where (6.19) is re-
placed by

(6.23) hr?, f(z) =00 and lir}}i g(z) = oo,
we also have (6.20).
Proof We multiply (6.22) by 7" 790 _y 90 i sives
g(v) g9(v)
fw) = flu) g9(u) g9(u)
(6.24) ’ o) —A(1—g(