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To Paul Halmos
In Memoriam



Preface

It seems to have been decided that undergraduate mathematics today rests
on two foundations: calculus and linear algebra. These may not be the
best foundations for, say, number theory or combinatorics, but they serve
quite well for undergraduate analysis and several varieties of undergradu-
ate algebra and geometry. The really perfect sequel to calculus and linear
algebra, however, would be a blend of the two—a subject in which calcu-
lus throws light on linear algebra and vice versa. Look no further! This
perfect blend of calculus and linear algebra is Lie theory (named to honor
the Norwegian mathematician Sophus Lie—pronounced “Lee ). So why
is Lie theory not a standard undergraduate topic?

The problem is that, until recently, Lie theory was a subject for mature
mathematicians or else a tool for chemists and physicists. There was no
Lie theory for novice mathematicians. Only in the last few years have there
been serious attempts to write Lie theory books for undergraduates. These
books broke through to the undergraduate level by making some sensible
compromises with generality; they stick to matrix groups and mainly to the
classical ones, such as rotation groups of n-dimensional space.

In this book | stick to similar subject matter. The classical groups
are introduced via a study of rotations in two, three, and four dimensions,
which is also an appropriate place to bring in complex numbers and quater-
nions. From there it is only a short step to studying rotations in real,
complex, and quaternion spaces of any dimension. In so doing, one has
introduced the classical simple Lie groups, in their most geometric form,
using only basic linear algebra. Then calculus intervenes to find the tan-
gent spaces of the classical groups—their Lie algebras—and to move back
and forth between the group and its algebra via the log and exponential
functions. Again, the basics suffice: single-variable differentiation and the
Taylor series for € and log(1 + x).

vii



Viii Preface

Where my book diverges from the others is at the next level, the mirac-
ulous level where one discovers that the (curved) structure of a Lie group is
almost completely captured by the structure of its (flat) Lie algebra. At this
level, the other books retain many traces of the sophisticated approach to
Lie theory. For example, they rely on deep ideas from outside Lie theory,
such as the inverse function theorem, existence theorems for ODEs, and
representation theory. Even inside Lie theory, they depend on the Killing
form and the whole root system machine to prove simplicity of the classical
Lie algebras, and they use everything under the sun to prove the Campbell-
Baker—Hausdorff theorem that lifts structure from the Lie algebra to the Lie
group. But actually, proving simplicity of the classical Lie algebras can be
done by basic matrix arithmetic, and there is an amazing elementary proof
of Campbell-Baker—Hausdorff due to Eichler [1968].

The existence of these little-known elementary proofs convinced me
that a naive approach to Lie theory is possible and desirable. The aim of
this book is to carry it out—developing the central concepts and results of
Lie theory by the simplest possible methods, mainly from single-variable
calculus and linear algebra. Familiarity with elementary group theory is
also desirable, but I provide a crash course on the basics of group theory in
Sections 2.1 and 2.2.

The naive approach to Lie theory is due to von Neumann [1929], and it
is now possible to streamline it by using standard results of undergraduate
mathematics, particularly the results of linear algebra. Of course, there is a
downside to naiveté. It is probably not powerful enough to prove some of
the results for which Lie theory is famous, such as the classification of the
simple Lie algebras and the discovery of the five exceptional algebras.! To
compensate for this lack of technical power, the end-of-chapter discussions
introduce important results beyond those proved in the book, as part of an
informal sketch of Lie theory and its history. It is also true that the naive
methods do not afford the same insights as more sophisticated methods.
But they offer another insight that is often undervalued—some important
theorems are not as difficult as they look! | think that all mathematics
students appreciate this kind of insight.

In any case, my approach is not entirely naive. A certain amount of
topology is essential, even in basic Lie theory, and in Chapter 8 | take

1| say so from painful experience, having entered Lie theory with the aim of under-
standing the exceptional groups. My opinion now is that the Lie theory that precedes the
classification is a book in itself.



Preface iX

the opportunity to develop all the appropriate concepts from scratch. This
includes everything from open and closed sets to simple connectedness, so
the book contains in effect a minicourse on topology, with the rich class
of multidimensional examples that Lie theory provides. Readers already
familiar with topology can probably skip this chapter, or simply skim it to
see how Lie theory influences the subject. (Also, if time does not permit
covering the whole book, then the end of Chapter 7 is a good place to stop.)

I am indebted to Wendy Baratta, Simon Goberstein, Brian Hall, Ro-
han Hewson, Chris Hough, Nathan Jolly, David Kramer, Jonathan Lough,
Michael Sun, Marc Ryser, Abe Shenitzer, Paul Stanford, Fan Wu and the
anonymous referees for many corrections and comments. As usual, my
wife, Elaine, served as first proofreader; my son Robert also served as the
model for Figure 8.7. Thanks go to Monash University for the opportunity
to teach courses from which this book has grown, and to the University of
San Francisco for support while writing it.

Finally, a word about my title. Readers of a certain age will remember
the book Naive Set Theory by Paul Halmos—a lean and lively volume
covering the parts of set theory that all mathematicians ought to know.
Paul Halmos (1916-2006) was my mentor in mathematical writing, and |
dedicate this book to his memory. While not attempting to emulate his style
(which is inimitable), | hope that Naive Lie Theory can serve as a similar
introduction to Lie groups and Lie algebras. Lie theory today has become
the subject that all mathematicians ought to know something about, so |
believe the time has come for a naive, but mathematical, approach.

John Stillwell
University of San Francisco, December 2007
Monash University, February 2008
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1

Geometry of complex
numbers and quaternions

PREVIEW

When the plane is viewed as the plane C of complex numbers, rotation
about O through angle 6 is the same as multiplication by the number

d? = cos@ +isine.
The set of all such numbers is the unit circle or 1-dimensional sphere
St={z:|174=1}.

Thus St is not only a geometric object, but also an algebraic structure;
in this case a group, under the operation of complex number multiplication.
Moreover, the multiplication operation €% - €% = g(®1+02) and the inverse
operation (€9)~1 = &9 depend smoothly on the parameter 6. This
makes S an example of what we call a Lie group.

However, in some respects S* is too special to be a good illustration of
Lie theory. The group St is 1-dimensional and commutative, because mul-
tiplication of complex numbers is commutative. This property of complex
numbers makes the Lie theory of St trivial in many ways.

To obtain a more interesting Lie group, we define the four-dimensional
algebra of quaternions and the three-dimensional sphere S® of unit quater-
nions. Under quaternion multiplication, S® is a noncommutative Lie group
known as SU(2), closely related to the group of space rotations.

J. Stillwell, Naive Lie Theory, DOI: 10.1007/978-0-387-78214-0 1, 1
(© Springer Science+Business Media, LLC 2008



2 1 The geometry of complex numbers and quaternions

1.1 Rotationsof the plane
A rotation of the plane R? about the origin O through angle 6 is a linear

transformation Ry that sends the basis vectors (1,0) and (0,1) to (cos @,
sin®) and (—sin6,cos 0), respectively (Figure 1.1).

(0,1)

cos 0 (cosH,sin0)

(—sin6,cos 0)

) | (1,0)
Figure 1.1: Rotation of the plane through angle 6.

It follows by linearity that Rg sends the general vector

(x,y) =x(1,0) +y(0,1) to (xcos6 —ysinb, xsinO +ycosH),
and that Ry is represented by the matrix

(cos 0 —sin 9>
sin@ cos@ )’

We also call this matrix Rg. Then applying the rotation to (x,y) is the same
as multiplying the column vector (3) on the left by matrix Ry, because

R, (X) = cos® —sin@) (x\  [Xcos@ —ysind
9\y) ~ \sine coso ) \y)  \xsin6+ycoso )"
Since we apply matrices from the left, applying R, then Ry is the same
as applying the product matrix RgR,. (Admittedly, this matrix happens

to equal R,Rg because both equal Rg,,. But when we come to space
rotations the order of the matrices will be important.)



1.1 Rotations of the plane 3

Thus we can represent the geometric operation of combining succes-
sive rotations by the algebraic operation of multiplying matrices. The main
aim of this book is to generalize this idea, that is, to study groups of linear
transformations by representing them as matrix groups. For the moment
one can view a matrix group as a set of matrices that includes, along with
any two members A and B, the matrices AB, A1l and B~1. Later (in Sec-
tion 7.2) we impose an extra condition that ensures “smoothness” of matrix
groups, but the precise meaning of smoothness need not be considered yet.
For those who cannot wait to see a definition, we give one in the subsection
below—Dbut be warned that its meaning will not become completely clear
until Chapters 7 and 8.

The matrices Ry, for all angles 6, form a group called the special or-
thogonal group SO(2). The reason for calling rotations “orthogonal trans-
formations” will emerge in Chapter 3, where we generalize the idea of
rotation to the n-dimensional space R" and define a group SO(n) for each
dimension n. In this chapter we are concerned mainly with the groups
SO(2) and SO(3), which are typical in some ways, but also exceptional
in having an alternative description in terms of higher-dimensional “num-
bers.”

Each rotation Ry of R? can be represented by the complex number

Zg =C0S0+isind
because if we multiply an arbitrary point (x,y) = X+ iy by zy we get
Zo(X+1y) = (cosO +isinO)(x+iy)

=XC0S 6 —ysin 6 +i(xsin 6 +ycos o)

= (Xcos 6 —ysinB, xsin6 +ycosh),
which is the result of rotating (x,y) through angle 6. Moreover, the ordi-
nary product zyz, represents the result of combining Rg and R,.

Rotations of R3 and R* can be represented, in a slightly more compli-

cated way, by four-dimensional “numbers” called quaternions. We intro-
duce quaternions in Section 1.3 via certain 2 x 2 complex matrices, and to

pave the way for them we first investigate the relation between complex
numbers and 2 x 2 real matrices in Section 1.2.

What isaLiegroup?

The most general definition of a Lie group G is a group that is also a smooth
manifold. That is, the group “product” and “inverse” operations are smooth
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functions on the manifold G. For readers not familiar with groups we give
a crash course in Section 2.1, but we are not going to define smooth mani-
folds in this book, because we are not going to study general Lie groups.

Instead we are going to study matrix Lie groups, which include most
of the interesting Lie groups but are much easier to handle. A matrix
Lie group is a set of nx n matrices (for some fixed n) that is closed un-
der products, inverses, and nonsingular limits. The third closure condition
means that if A;,Ay,As, ... is a convergent sequence of matrices in G, and
A= lim_... A¢ has an inverse, then Ais in G. We say more about the limit
concept for matrices in Section 4.5, but for n x n real matrices it is just the
limit concept in R™,

We can view all matrix Lie groups as groups of real matrices, but it is
natural to allow the matrix entries to be complex numbers or quaternions
as well. Real entries suffice in principle because complex numbers and
quaternions can themselves be represented by real matrices (see Sections
1.2 and 1.3).

It is perhaps surprising that closure under nonsingular limits is equiv-
alent to smoothness for matrix groups. Since we avoid the general con-
cept of smoothness, we cannot fully explain why closed matrix groups are
“smooth” in the technical sense. However, in Chapter 7 we will construct
a tangent space T1(G) for any matrix Lie group G from tangent vectors
to smooth paths in G. We find the tangent vectors using only elementary
single-variable calculus, and it can also be shown that the space T1(G) has
the same dimension as G. Thus G is “smooth” in the sense that it has a
tangent space, of the appropriate dimension, at each point.

Exercises

Since rotation through angle 6 + ¢ is the result of rotating through 6, then rotating
through ¢, we can derive formulas for sin(6 + ¢) and cos(6 + ¢) in terms of sin 6,
sing, cos 6, and cos ¢.

1.1.1 Explain, by interpreting zy.,, in two different ways, why
cos(0+ @) +isin(0+ @) = (cosO +isinO)(cose +ising).
Deduce that

sin(6 + @) = sin 6 cos ¢ + cos Osin @,
cos(6 + @) = cos 6 cos ¢ —sin 6 sin .

1.1.2 Deduce formulas for sin26 and cos26 from the formulas in Exercise 1.1.1.
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1.1.3 Also deduce, from Exercise 1.1.1, that

tan@ +tang

@n(6+¢) = 1-—-tan@tane’

1.1.4 Using Exercise 1.1.3, or otherwise, write down the formula for tan(6 — ¢),
and deduce that lines through O at angles 6 and ¢ are perpendicular if and
only iftan6 = —1/tan¢.

1.1.5 Write down the complex number z_g and the inverse of the matrix for rota-
tion through 6, and verify that they correspond.

1.2 Matrix representation of complex numbers

A good way to see why the matrices Ry = (29 - Si"%) behave the same

as the complex numbers zg = cosO +isin@ is to write Rg as the linear

combination
10 . 0 -1
R@ZCOSG(O 1>+sm9(1 0>

of the basis matrices

10
(o 1)

It is easily checked that

|
Y
= O
|
OH
~_—

=1 1li=il=i, i =-1

so the matrices 1 and i behave exactly the same as the complex numbers 1
andi.
In fact, the matrices

(Z _ab> =al+hi, where abeR,
behave exactly the same as the complex numbers a+ bi under addition
and multiplication, so we can represent all complex numbers by 2 x 2 real
matrices, not just the complex numbers zy that represent rotations. This
representation offers a “linear algebra explanation” of certain properties of
complex numbers, for example:

e The squared absolute value, |a-+ bi|? = a +b? of the complex num-
ber a+ bi is the determinant of the corresponding matrix (& ~P).
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e Therefore, the multiplicative property of absolute value, |z12;| =
|z1||1z2|, follows from the multiplicative property of determinants,

det(A]_Az) = det(A]_) det(Az).

(Take A; as the matrix representing z;, and A, as the matrix repre-
senting z.)

o Theinversez 1 = a%jr%iz of z=a+ bi £ 0 corresponds to the inverse

matrix .
a —by "~ 1 a b
b a a2+ \-b a)’
The two-squar e identity

If we set zz = a; +ib; and z, = a, + iby, then the multiplicative property
of (squared) absolute value states that

(af +b?) (83 +b3) = (awap — bybp)? + (agby + aghy )?,

as can be checked by working out the product z;z, and its squared abso-
lute value. This identity is particularly interesting in the case of integers
ay, b1, a, by, because it says that

(a sum of two squares) x (a sum of two squares) = (a sum of two squares).

This fact was noticed nearly 2000 years ago by Diophantus, who men-
tioned an instance of it in Book 11, Problem 19, of his Arithmetica. How-
ever, Diophantus said nothing about sums of three squares—with good rea-
son, because there is no such three-square identity. For example

(124+124+12)(02+12+22) =3x 5 =15,

and 15 is not a sum of three integer squares.

This is an early warning sign that there are no three-dimensional num-
bers. In fact, there are no n-dimensional numbers for any n > 2; however,
there is a “near miss” for n = 4. One can define “addition” and “multipli-
cation” for quadruples g = (a,b,c,d) of real numbers so as to satisfy all
the basic laws of arithmetic except g1 = goan (the commutative law of
multiplication). This system of arithmetic for quadruples is the quaternion
algebra that we introduce in the next section.
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Exercises

1.2.1 Derive the two-square identity from the multiplicative property of det.

1.2.2 Write 5 and 13 as sums of two squares, and hence express 65 as a sum of
two squares using the two-square identity.

1.2.3 Using the two-square identity, express 372 and 37 as sums of two nonzero
squares.

The absolute value |z| = /a2 + b? represents the distance of z from O, and
more generally, |u— v| represents the distance between u and v. When combined
with the distributive law,

u(v—w) = uv—uw,

a geometric property of multiplication comes to light.

1.2.4 Deduce, from the distributive law and multiplicative absolute value, that
|uv — uw| = |ul|v—w].

Explain why this says that multiplication of the whole plane of complex
numbers by u multiplies all distances by |ul.

1.2.5 Deduce from Exercise 1.2.4 that multiplication of the whole plane of com-
plex numbers by cos 6 + isin 6 leaves all distances unchanged.

A map that leaves all distances unchanged is called an isometry (from the
Greek for “same measure”), so multiplication by cos 6 +isin @ is an isometry of
the plane. (In Section 1.1 we defined the corresponding rotation map Rg as a linear
map that moves 1 and i in a certain way; it is not obvious from this definition that
a rotation is an isometry.)

1.3 Quaternions

By associating the ordered pair (a, b) with the complex number a+ib or the
matrix (g —ab) we can speak of the “sum,” “product,” and “absolute value”
of ordered pairs. In the same way, we can speak of the “sum,” “product,”
and “absolute value” of ordered quadruples by associating each ordered

quadruple (a,b,c,d) of real numbers with the matrix

_ (a+id —b—ic *

q_(b—ic a—id)' )

We call any matrix of the form (*) a quaternion. (This is not the only
way to associate a matrix with a quadruple. | have chosen these complex
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matrices because they extend the real matrices used in the previous sec-
tion to represent complex numbers. Thus complex numbers are the special
quaternions withc=d =0.)

It is clear that the sum of any two matrices of the form (*) is another
matrix of the same form, and it can be checked (Exercise 1.3.2) that the
product of two matrices of the form (*) is of the form (*). Thus we can
define the sum and product of quaternions to be just the matrix sum and
product. Also, if the squared absolute value |g| of a quaternion q is de-
fined to be the determinant of g, then we have

N a-+id —b-—ic 2 2 2
detq—det<b_iC a—id)_a+b + 24 d?.

So |qg|? is the squared distance of the point (a,b,c,d) from O in R%.
The quaternion sum operation has the same basic properties as addition
for numbers, namely

Q1+ = Q2 +01, (commutative law)

0o + (02 + G) = (G + G2) + s, (associative law)
g+ (—q) =0 where O is the zero matrix, (inverse law)
q+0=aq. (identity law)

The quaternion product operation does not have all the properties of
multiplication of humbers—in general, the commutative property qiqp =
g2q; fails—but well-known properties of the matrix product imply the fol-
lowing properties of the quaternion product:

01 (02Gs) = (Ch02)0s, (associative law)
qq =1 forgq#0, (inverse law)
ql=aq, (identity law)

01(02 + G3) = G102 + Q3. (left distributive law)

Here 0 and 1 denote the 2 x 2 zero and identity matrices, which are also
quaternions. The right distributive law (02 +03)01 = o1 + gsqs Of course
holds too, and is distinct from the left distributive law because of the non-
commutative product.

The noncommutative nature of the quaternion product is exposed more
clearly when we write

<a+ di —b-—ci

b—d  a—di > =al+bi+¢ +dk,
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where

N A (e A )

Thus 1 behaves like the number 1, i = —1 as before, and also j2 = k? =
—1. The noncommutativity is concentrated in the products of i, j, k, which
are summarized in Figure 1.2. The product of any two distinct elements is

S

Figure 1.2: Products of the imaginary quaternion units.

the third element in the circle, with a + sign if an arrow points from the
first element to the second, and a — sign otherwise. For example, ij = Kk,
butji = —k, so ij #]ji.

The failure of the commutative law is actually a good thing, because it
enables quaternions to represent other things that do not commute, such as
rotations in three and four dimensions.

As with complex numbers, there is a linear algebra explanation of some
less obvious properties of quaternion multiplication.

e The absolute value has the multiplicative property (g1 02| = |01 ||02],
by the multiplicative property of det: det(qiqp) = det(au) det(qp).

e Each nonzero quaternion ¢ has an inverse g, namely the matrix
inverse of g.

e From the matrix (*) for g we get an explicit formula for g~ t. If
g=al+bi+cj+dk # 0 then

) 1

= 2 bp s 2y g (@b —ci —dk).

q

e The quaternion al — bi — ¢j — dk is called the quaternion conjugate
qof q= al+bi+ ¢ +dk, and we have qq = a2 +b? + %+ d? = |q?.
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e The quaternion conjugate is not the result of taking the complex con-
jugate of each entry in the matrix g. In fact, q is the result of taking
the complex conjugate of each entry in the transposed matrix q'.
Then it follows from (gu0p)" = gl gl that (cuap) = gz a1

The algebra of quaternions was discovered by Hamilton in 1843, and
it is denoted by H in his honor. He started with just i and j (hoping to
find an algebra of triples analogous to the complex algebra of pairs), but
later introduced k = ij to escape from apparently intractable problems with
triples (he did not know, at first, that there is no three-square identity). The
matrix representation was discovered in 1858, by Cayley.

The 3-sphere of unit quaternions

The quaternions al-+ bi + ¢j + dk of absolute value 1, or unit quaternions,
satisfy the equation

a2+’ +c2+d*=1.
Hence they form the analogue of the sphere, called the 3-sphere S, in the
space R* of all 4-tuples (a,b,c,d). It follows from the multiplicative prop-
erty and the formula for inverses above that the product of unit quaternions
is again a unit quaternion, and hence S® is a group under quaternion mul-
tiplication. Like the 1-sphere S* of unit complex numbers, the 3-sphere
of unit quaternions encapsulates a group of rotations, though not quite so
directly. In the next two sections we show how unit quaternions may be
used to represent rotations of ordinary space R®.

Exercises

When Hamilton discovered H he described quaternion multiplication very con-
cisely by the relations
i2=j2=k?=ijk=—1.

1.3.1 Verify that Hamilton’s relations hold for the matrices 1, i, j, and k. Also
show (assuming associativity and inverses) that these relations imply all
the products of i, j, and k shown in Figure 1.2.

1.3.2 Verify that the product of quaternions is indeed a quaternion. (Hint: It helps
to write each quaternion in the form

(o)

where oo = X — iy is the complex conjugate of o = x+iy.)
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1.3.3 Check that g is the result of taking the complex conjugate of each entry in
q", and hence show that o g = g gy for any quaternions g; and .

1.3.4 Also check that gq = |q?.

Cayley’s matrix representation makes it easy (in principle) to derive an amaz-
ing algebraic identity.

1.3.5 Show that the multiplicative property of determinants gives the complex
two-square identity (discovered by Gauss around 1820)

(loa* +[Be*) (|02 + |Bol?) = [enop — Bufof* + |oa o + Bro .

1.3.6 Show that the multiplicative property of determinants gives the real four-
square identity

aay — biby — c10p — dhdy)?

(@ +bi+ci+df)(@d+b+cg+dd) = ( )
(b + brag + cdp — diC7)?
( )
( )

Jr
+ (a1¢p — bidy + c1ap +diby 2
+ (aydy +byic, — c1by +dia 2

This identity was discovered by Euler in 1748, nearly 100 years before the dis-
covery of quaternions! Like Diophantus, he was interested in the case of integer
squares, in which case the identity says that

(a sum of four squares) x (a sum of four squares) = (a sum of four squares).

This was the first step toward proving the theorem that every positive integer is
the sum of four integer squares. The proof was completed by Lagrange in 1770.

1.3.7 Express 97 and 99 as sums of four squares.

1.3.8 Using Exercise 1.3.6, or otherwise, express 97 x 99 as a sum of four squares.

1.4 Consequences of multiplicative absolute value

The multiplicative absolute value, for both complex numbers and quater-
nions, first appeared in number theory as a property of sums of squares. It
was noticed only later that it has geometric implications, relating multipli-
cation to rigid motions of R?, R3, and R*. Suppose first that u is a complex
number of absolute value 1. Without any computation with cos 6 and sin 9,
we can see that multiplication of C = R? by u is a rotation of the plane as
follows.
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Let v and w be any two complex numbers, and consider their images,
uv and uw under multiplication by u. Then we have

distance from uv to uw = |uv — uw|
= |u(v—w)| by the distributive law
= |u|lv—w| by multiplicative absolute value
=|v—w| because |u =1
= distance from v to w.

In other words, multiplication by u with |u| = 1 is a rigid motion, also
known as an isometry, of the plane. Moreover, this isometry leaves O
fixed, because ux 0 = 0. And if u# 1, no other point v is fixed, because
uv = v implies u = 1. The only motion of the plane with these properties
is rotation about O.

Exactly the same argument applies to quaternion multiplication, at least
as far as preservation of distance is concerned: if we multiply the space
R* of quaternions by a quaternion of absolute value 1, then the result is
an isometry of R* that leaves the origin fixed. It is in fact reasonable to
interpret this isometry of R* as a “rotation,” but first we want to show that
quaternion multiplication also gives a way to study rotations of R3. To see
how, we look at a natural three-dimensional subspace of the quaternions.

Pureimaginary quaternions
The pure imaginary quaternions are those of the form
p=bi+c +dk.

They form a three-dimensional space that we will denote by Ri + Rj + Rk,
or sometimes R® for short. The space Ri+ Rj + Rk is the orthogonal
complement to the line R1 of quaternions of the form al, which we will
call real quaternions. From now on we write the real quaternion al simply
as a, and denote the line of real quaternions simply by R.

It is clear that the sum of any two members of Ri + Rj + RK is itself
a member of Ri 4+ Rj + Rk, but this is not generally true of products. In
fact, if u= i + Upj + usk and v = vii + V»j + vzk then the multiplication
diagram for i, j, and k (Figure 1.2) gives

UV = — (UgV1 + UpV2 + UgV3)
+ (U2V3 — U3V2)i — (U1V3 — U3V1)j + (U]_Vz — UzV]_)k.
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This relates the quaternion product uv to two other products on R® that are
well known in linear algebra: the inner (or “scalar” or “dot™) product,

u-v=upVvys + UpVy + U3Vs,
and the vector (or “cross”) product
i ] k
UXV=|u U Ug|=(Upva—UgVo)i— (Upv3 —U3zVvy)j + (U1Vo — Upvy K.
Vi Vo2 V3
In terms of the scalar and vector products, the quaternion product is

uw=—u-v+uxyVv.

Since u-v is a real number, this formula shows that uv is in Ri + Rj + Rk
only if u-v=0, that is, only if uisorthogonal to v.

The formula uv = —u- v+ u x v also shows that uv is real if and only
if uxv=0, that is, if u and v have the same (or opposite) direction. In
particular, if u € Ri + Rj + Rk and |u] = 1 then

W=—uu=—uf=-1

Thus every unit vector in Ri + Rj + Rk is a “square root of —1.” (This, by
the way, is another sign that H does not satisfy all the usual laws of algebra.
If it did, the equation u? = —1 would have at most two solutions.)

Exercises

The cross product is an operation on Ri 4+ Rj -+ Rk because u x vis in Ri +Rj + Rk
for any u,v € Ri + Rj 4+ Rk. However, it is neither a commutative nor associative
operation, as Exercises 1.4.1 and 1.4.3 show.

1.4.1 Prove the antisymmetric property ux v= —vx u.
1.4.2 Prove that ux (vx w) = v(u-w) —w(u-Vv) for pure imaginary u, v, w.
1.4.3 Deduce from Exercise 1.4.2 that x is not associative.

1.4.4 Also deduce the Jacobi identity for the cross product:

UX (VXW)4+Wx (UxXV)+Vx(Wxu)=0.

The antisymmetric and Jacobi properties show that the cross product is not com-
pletely lawless. These properties define what we later call a Lie algebra.
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1.5 Quaternion representation of space rotations

A quaternion t of absolute value 1, like a complex number of absolute value
1, has a “real part” cos 6 and an “imaginary part” of absolute value sin 6,
orthogonal to the real part and hence in Ri + Rj + Rk. This means that

t =cos O +usino,

where u is a unit vector in Ri + Rj + Rk, and hence u? = —1 by the remark
at the end of the previous section.

Such a unit quaternion t induces a rotation of Ri + Rj + Rk, though
not simply by multiplication, since the product of t and a member q of
Ri + Rj + Rk may not belong to Ri + Rj + Rk. Instead, we send each
q € Ri+Rj + Rk tot~qt, which turns out to be a member of Ri + Rj + Rk.

To see why, first note that

t~1 =t/|t|> = cos® —usin®,

by the formulas for g~* and q in Section 1.3.

Since t~1 exists, multiplication of H on either side by t or t~1 is an
invertible map and hence a bijection of H onto itself. It follows that the
map q+— t 1qt, called conjugation by, is a bijection of H. Conjugation by
t also maps the real line R onto itself, because t—rt = r for a real number
r; hence it also maps the orthogonal complement Ri + Rj + Rk onto itself.
This is because conjugation by t is an isometry, since multiplication on
either side by a unit quaternion is an isometry.

It looks as though we are onto something with conjugation by t =
cos 0 + usin 8, and indeed we have the following theorem.

Rotation by conjugation. If t = cos8 + usin 6, where u € Ri + Rj + Rk
is a unit vector, then conjugation by t rotates Ri + Rj + Rk through angle
26 about axis u.

Proof. First, observe that the line Ru of real multiples of u is fixed by the
conjugation map, because

t~ut = (cos @ — usin@)u(cos 6 + usin6)
= (ucos B — u?sin6)(cos 6 4 usin H)
= (ucos @ +sin@)(cos 6 +usin®) because U = —1
= u(cos? 6 +sin® B) +sin @ cos B + U sin § cos 6
—=u also because u? = —1.
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It follows, since conjugation by t is an isometry of Ri + Rj 4+ Rk, that
its restriction to the plane through O in Ri + Rj + Rk orthogonal to the line
Ruis also an isometry. And if the restriction to this plane is a rotation, then
conjugation by t is a rotation of the whole space Ri + Rj + Rk.

To see whether this is indeed the case, choose a unit vector v orthogonal
touin Ri+Rj+ Rk, sou-v=0. Then let w= u x v, which equals uv
because u-v =0, so {u,v,w} is an orthonormal basis of Ri + Rj 4+ Rk with
uv =W, VWW = U, WU =V, Uv = —vu and so on. It remains to show that

t~lvt = vcos26 —wsin26, t~twt = vsin26 +wcos26,

because this means that conjugation by t rotates the basis vectors vand w,
and hence the whole plane orthogonal to the line Ru, through angle 26.
This is confirmed by the following computation:

t~1vt = (cos @ — usin 8)v(cos 6 + usin H)
= (vcos 6 — uvsin0)(cos 6 4 usin )
= vcos? O — uvsin 6 cos O + vusin 6 cos & — uvusin? 6
=vcos? 0 — 2uvsin @ cos @ + u?vsin? @ because vu = —uv
= v(cos? @ —sin? @) —2wsinHcos O  because > = —1, v =w
=VC0S260 —wsin26.

A similar computation (try it) shows that t~*wt = vsin26 +wcos 26, as
required. O

This theorem shows that every rotation of R3, given by an axis u and
angle of rotation ¢, is the result of conjugation by the unit quaternion

t—cosO‘JrusinOC
T2 2’

The same rotation is induced by —t, since (—t)~1s(—t) =t~ s, But £t
are the only unit quaternions that induce this rotation, because each unit
quaternion is uniquely expressible in the form t = cos § +usin &, and the
rotation is uniquely determined by the two (axis, angle) pairs (u, ) and
(—u,—o). The quaternions t and —t are said to be antipodal, because they
represent diametrically opposite points on the 3-sphere of unit quaternions.

Thus the theorem says that rotations of R® correspond to antipodal
pairs of unit quaternions. We also have the following important corollary.
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Rotations form a group. The product of rotations is a rotation, and the
inverse of a rotation is a rotation.

Proof. The inverse of the rotation about axis u through angle o is obviously
a rotation, namely, the rotation about axis u through angle —o.

It is not obvious what the product of two rotations is, but we can show
as follows that it has an axis and angle of rotation, and hence is a rotation.
Suppose we are given a rotation rq with axis u; and angle o, and a rotation
r, with axis u, and angle o». Then

(041

I o .o
r1 is induced by conjugation by t; = cos ) —+ ugsin !

2

and

ro is induced by conjugation by t, = cos 02‘2 —+ W sin O;,

hence the result r1r, of doing ry, then r, is induced by
Q- tz_l(tl_lqtl)tz = (tltz)_lq(tltz),

which is conjugation by tit, =t. The quaternion t is also a unit quaternion,
o)
o .o
t =cos _ +usin

2 2
for some unit imaginary quaternion u and angle ¢. Thus the product rota-
tion is the rotation about axis u through angle o. O

The proof shows that the axis and angle of the product rotation rir, can
in principle be found from those of r; and r, by quaternion multiplication.
They may also be described geometrically, by the alternative proof of the
group property given in the exercises below.

Exercises

The following exercises introduce a small fragment of the geometry of isometries:
that any rotation of the plane or space is a product of two reflections. We begin
with the simplest case: representing rotation of the plane about O through angle
6 as the product of reflections in two lines through O.

If .Z is any line in the plane, then reflection in . is the transformation of the
plane that sends each point Sto the point S such that SS' is orthogonal to . and
& is equidistant from Sand S.
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Figure 1.3: Reflection of Sand its angle.

1.5.1 If £ passes through P, and if Slies on one side of . at angle o (Figure 1.3),
show that S' lies on the other side of . at angle o, and that |PS| = |PS]|.

1.5.2 Deduce, from Exercise 1.5.1 or otherwise, that the rotation about P through
angle 0 is the result of reflections in any two lines through P that meet at
angle 6/2.

1.5.3 Deduce, from Exercise 1.5.2 or otherwise, that if ., .#, and .4 are lines
situated as shown in Figure 1.4, then the result of rotation about P through
angle 6, followed by rotation about Q through angle ¢, is rotation about R
through angle x (with rotations in the senses indicated by the arrows).

Q

Figure 1.4: Three lines and three rotations.

154 If & and .4 are parallel, so R does not exist, what isometry is the result of
the rotations about P and Q?

Now we extend these ideas to R3. A rotation about a line through O (called
the axis of rotation) is the product of reflections in planes through O that meet
along the axis. To make the reflections easier to visualize, we do not draw the
planes, but only their intersections with the unit sphere (see Figure 1.5).

These intersections are curves called great circles, and reflection in a great
circleis the restriction to the sphere of reflection in a plane through O.
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Figure 1.5: Reflections in great circles on the sphere.

1.5.5 Adapt the argument of Exercise 1.5.3 to great circles ., .#, and .4 shown
in Figure 1.5. What is the conclusion?

1.5.6 Explain why there is no exceptional case analogous to Exercise 1.5.4. De-
duce that the product of any two rotations of R? about O is another rotation
about O, and explain how to find the axis of the product rotation.

The idea of representing isometries as products of reflections is also useful in
higher dimensions. We use this idea again in Section 2.4, where we show that any
isometry of R" that fixes O is the product of at most n reflections in hyperplanes
through O.

1.6 Discussion

The geometric properties of complex numbers were discovered long before
the complex numbers themselves. Diophantus (already mentioned in Sec-
tion 1.2) was aware of the two-square identity, and indeed he associated a
sum of two squares, a2+ b?, with the right-angled triangle with perpendicu-
lar sides aand b. Thus, Diophantus was vaguely aware of two-dimensional
objects (right-angled triangles) with a multiplicative property (of their hy-
potenuses). Around 1590, Viéte noticed that the Diophantus “product”
of triangles with sides (a,b) and (c,d)—namely, the triangle with sides
(ac— bd, bc+ ad)—also has an additive property, of angles (Figure 1.6).
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Figure 1.6: The Diophantus “product” of triangles.

The algebra of complex numbers emerged from the study of polyno-
mial equations in the sixteenth century, particularly the solution of cu-
bic equations by the Italian mathematicians del Ferro, Tartaglia, Cardano,
and Bombelli. Complex numbers were not required for the solution of
quadratic equations, because in the sixteenth century one could say that
x? +1 = 0, for example, has no solution. The formal solution x = v/—1
was just a signal that no solution really exists. Cubic equations force the
issue because the equation X3 = px -+ q has solution

2/ q2_p3eq_\/q2_p3
X_\/2+\/(2> (3) +\/2 (2) (3)

(the “Cardano formula”). Thus, according to the Cardano formula the so-
lution of x3 = 15x+4 is

x= /21 /2253 4 /2 /22 53 = Y24 11i 4 Y2 11i.

But the symbol i = /—1 cannot be signaling NO SOLUTION here, because
there is an obvious solution x = 4. How can /2 + 11i + /2 — 11i be the
solution when 4 is?

In 1572, Bombelli resolved this conflict, and launched the algebra of
complex numbers, by observing that

2+iP¥=2+11, (2-iP=2-11i,
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and therefore
V2+11i+vV2—11i = (2+i)+ (2—i) = 4,

assuming that i obeys the same rules as ordinary, real, numbers. His calcu-
lation was, in effect, an experimental test of the proposition that complex
numbers form a field—a proposition that could not have been formulated,
let alone proved, at the time. The first rigorous treatment of complex num-
bers was that of Hamilton, who in 1835 gave definitions of complex num-
bers, addition, and multiplication that make a proof of the field properties
crystal clear.

Hamilton defined complex numbers as ordered pairs z= (a,b) of real
numbers, and he defined their sum and product by

(ag,b1) + (a2,b2) = (a1 + &g, by + ),
(ag,b1)(ag,bp) = (yap — b1y, a1 + by ay).

Of course, these definitions are motivated by the interpretation of (a,b) as
a-+ib, where i = —1, but the important point is that the field properties
follow from these definitions and the properties of real numbers. The prop-
erties of addition are directly “inherited” from properties of real number
addition. For example, for complex numbers z; = (a1, b;) and z = (a,b)
we have

H+=+27

because
a+a=a+a and by +by =by,+ by forreal numbers a;,ay, by, b,.

Indeed, the properties of addition are not special properties of pairs, they
also hold for the vector sum of triples, quadruples, and so on. The field
properties of multiplication, on the other hand, depend on the curious defi-
nition of product of pairs, which has no obvious generalization to a product
of n-tuples for n > 2.

This raises the question; is it possible to define a “product” operation on
R" that, together with the vector sum operation, makes R" a field? Hamil-
ton hoped to find such a product for each n. Indeed, he hoped to find a
product with not only the field properties but also the multiplicative abso-
lute value

] = [ul].
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where the absolute value of u= (X, %a,...,X,) is |u| = \/x§+x§+ X2,
As we have seen, for n = 2 this property is equivalent to the Diophantus
identity for sums of two squares, so a multiplicative absolute value in gen-
eral implies an identity for sums of n squares.

Hamilton attacked the problem from the opposite direction, as it were.
He tried to define the product operation, first for triples, before worrying
about the absolute value. But after searching fruitlessly for 13 years, he
had to admit defeat. He still had not noticed that there is no three square
identity, but he suspected that multiplying triples of the form a+ bi +cj
requires a new object k=1ij. Also, he began to realize that there is no hope
for the commutative law of multiplication. Desperate to salvage something
from his 13 years of work, he made the leap to the fourth dimension. He
took k =ij to be a vector perpendicular to 1, i, and j, and sacrificed the
commutative law by allowing ij = —ji, jk = —kj, and ki = —ik. On Octo-
ber 16, 1843 he had his famous epiphany that i, j, and k must satisfy

i2=j2=kK=ijk=—1.

As we have seen in Section 1.3, these relations imply all the field prop-
erties, except commutative multiplication. Such a system is often called
a skew field (though this term unfortunately suggests a specialization of
the field concept, rather than what it really is—a generalization). Hamil-
ton’s relations also imply that absolute value is multiplicative—a fact he
had to check, though the equivalent four-square identity was well known
to number theorists.

In 1878, Frobenius proved that the quaternion algebra H is the only
skew field R" that is not a field, so Hamilton had found the only “algebra
of n-tuples” it was possible to find under the conditions he had imposed.

The multiplicative absolute value, as stressed in Section 1.4, implies
that multiplication by a quaternion of absolute value 1 is an isometry of
R*. Hamilton seems to have overlooked this important geometric fact, and
the quaternion representation of space rotations (Section 1.5) was first pub-
lished by Cayley in 1845. Cayley also noticed that the corresponding for-
mulas for transforming the coordinates of R® had been given by Rodrigues
in 1840. Cayley’s discovery showed that the noncommutative quaternion
product is a good thing, because space rotations are certainly noncommu-
tative; hence they can be faithfully represented only by a noncommutative
algebra. This finding has been enthusiastically endorsed by the computer
graphics profession today, which uses quaternions as a standard tool for
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rendering 3-dimensional motion.

The quaternion algebra H plays two roles in Lie theory. On the one
hand, H gives the most understandable treatment of rotations in R and R,
and hence of the rotation groups of these two spaces. The rotation groups
of R® and R* are Lie groups, and they illustrate many general features of
Lie theory in a way that is easy to visualize and compute. On the other
hand, H also provides coordinates for an infinite series of spaces H", with
properties closely analogous to those of the spaces R" and C". In particular,
we can generalize the concept of “rotation group” from R" to both C" and
H" (see Chapter 3). It turns out that almost all Lie groups and Lie algebras
can be associated with the spaces R", C", or H", and these are the spaces
we are concerned with in this book.

However, we cannot fail to mention what falls outside our scope: the
8-dimensional algebra O of octonions. Octonions were discovered by a
friend of Hamilton, John Graves, in December 1843. Graves noticed that
the algebra of quaternions could be derived from Euler’s four-square iden-
tity, and he realized that an eight-square identity would similarly yield a
“product” of octuples with multiplicative absolute value. An eight-square
identity had in fact been published by the Danish mathematician Degen in
1818, but Graves did not know this. Instead, Graves discovered the eight-
square identity himself, and with it the algebra of octonions. The octonion
sum, as usual, is the vector sum, and the octonion product is not only non-
commutative but also nonassociative. That is, it is not generally the case
that u(vw) = (uv)w.

The nonassociative octonion product causes trouble both algebraically
and geometrically. On the algebraic side, one cannot represent octonions
by matrices, because the matrix product is associative. On the geometric
side, an octonion projective space (of more than two dimensions) is im-
possible, because of a theorem of Hilbert from 1899. Hilbert’s theorem
essentially states that the coordinates of a projective space satisfy the asso-
ciative law of multiplication (see Hilbert [1971]). One therefore has only
O itself, and the octonion projective plane, OP?, to work with. Because of
this, there are few important Lie groups associated with the octonions. But
these are a very select few! They are called the exceptional Lie groups, and
they are among the most interesting objects in mathematics. Unfortunately,
they are beyond the scope of this book, so we can mention them only in
passing.
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Groups

PREVIEW

This chapter begins by reviewing some basic group theory—subgroups,
quotients, homomorphisms, and isomorphisms—in order to have a basis
for discussing Lie groups in general and simple Lie groups in particular.

We revisit the group S° of unit quaternions, this time viewing its rela-
tion to the group SO(3) as a 2-to-1 homomorphism. It follows that S? is
not a simple group. On the other hand, SO(3) is simple, as we show by a
direct geometric proof.

This discovery motivates much of Lie theory. There are infinitely many
simple Lie groups, and most of them are generalizations of rotation groups
in some sense. However, deep ideas are involved in identifying the simple
groups and in showing that we have enumerated them all.

To show why it is not easy to identify all the simple Lie groups we
make a special study of SO(4), the rotation group of R*. Like SO(3),
SO(4) can be described with the help of quaternions. But a rotation of
R* generally depends on two quaternions, and this gives SO(4) a special
structure, related to the direct product of S* with itself. In particular, it
follows that SO(4) is not simple.

J. Stillwell, Naive Lie Theory, DOI: 10.1007/978-0-387-78214-0 2, 23
(© Springer Science+Business Media, LLC 2008
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2.1 Crash courseon groups

For readers who would like a reminder of the basic properties of groups,
here is a crash course, oriented toward the kind of groups studied in this
book. Even those who have not seen groups before will be familiar with the
computational tricks—such as canceling by multiplying by the inverse—
since they are the same as those used in matrix computations.

First, a group G is a set with “product” and “inverse” operations, and
an identity element 1, with the following three basic properties:

91(0203) = (9192)0s forall g1,02,03 € G,
gl=1g=g¢g forallge G,
g9 ‘=g lg=1 forallge G.

It should be mentioned that 1 is the unique element g’ such that gg' = g
for all g € G, because multiplying the equation gg’ = g on the left by g*
gives g = 1. Similarly, for each g € G, g~ is the unique element g” such
that gg’ = 1.

The above notation for “product,” “inverse,” and “identity” is called
multiplicative notation. It is used (sometimes with I, e, or 1 in place of 1)
for groups of numbers, quaternions, matrices, and all other groups whose
operation is called “product.” There are a few groups whose operation is
called “sum,” such as R" under vector addition. For these we use additive
notation: g; + g for the “sum” of g1, g, € G, —g for the inverse of g € G,
and 0 (or 0) for the identity of G. Additive notation is used only when G is
abelian, that is, when g1 +9> =g +0; forall g;, g, € G.

Since groups are generally not abelian, we have to speak of multiplying
h by g “on the left” or “on the right,” because gh and hg are generally
different. If we multiply all members g’ of a group G on the left by a
particular g € G, we get back all the members of G, because forany g’ € G
there is a ¢’ € G such that gg’ = g’ (namely ¢ = g~1g").

Subgroups and cosets

To study a group G we look at the groups H contained in it, the subgroups
of G. For each subgroup H of G we have a decomposition of G into disjoint
pieces called the (left or right) cosets of H in G. The left cosets (which we
stick with, for the sake of consistency) are the sets of the form

gH={gh:heH}.
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Thus H itself is the coset for g= 1, and in general a coset gH is “H trans-
lated by g,” though one cannot usually take the word “translation” literally.
One example for which this is literally true is G the plane R? of points
(x,y) under vector addition, and H the subgroup of points (0,y). In this
case we use additive notation and write the coset of (x,y) as

(xy)+H={(xy) :ye R}, where Xxis constant.

Then H is the y-axis and the coset (x,y) + H is H translated by the vector
(X,y) (see Figure 2.1). This example also illustrates how a group G decom-

H (1,0)+H (2,0)+H

0 (1,0) (2,0)

Figure 2.1: Subgroup H of R? and cosets.

poses into digoint cosets (decomposing the plane into parallel lines), and
that different g € G can give the same coset gH. For example, (1,0) +H
and (1,1) + H are both the vertical line x = 1.

Each coset gH is in 1-to-1 correspondence with H because we get back
each h € H from gh € gH by multiplying on the left by g~!. Different
cosets are disjoint because if g € g1H and g € gyH then

g=ag1h; =ghy for some hy,hy € H,
and therefore g; = gohphy*. But then

giH = ghohy tH = go (hohy 'H) = gpH
because hphy* € H and therefore hyh; *H = H by the remark at the end of
the last subsection (that multiplying a group by one of its members gives

back the group). Thus if two cosets have an element in common, they are
identical.



26 2 Groups

This algebraic argument has surprising geometric consequences; for
example, a filling of S® by disjoint circles known as the Hopf fibration.
Figure 2.2 shows some of the circles, projected stereographically into R3.
The circles fill nested torus surfaces, one of which is shown in gray.

Figure 2.2: Some circles in the Hopf fibration.

Proposition: S® can be decomposed into disjoint congruent circles,

Proof. As we saw in Section 1.3, the quaternions a+ bi + ¢j + dk of unit
length satisfy
a4+ b* 2 +d?=1,

and hence they form a 3-sphere S. The unit quaternions also form a group
G, because the product and inverse of unit quaternions are also unit quater-
nions, by the multiplicative property of absolute value.

One subgroup H of G consists of the unit quaternions of the form
cos @ +isin 6, and these form a unit circle in the plane spanned by 1 and
i. It follows that any coset gH is also a unit circle, because multiplica-
tion by a quaternion g of unit length is an isometry, as we saw in Section
1.4. Since the cosets gH fill the whole group and are disjoint, we have a
decomposition of the 3-sphere into unit circles. O
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Exercises

An important nonabelian group (in fact, it is the simplest example of a nonabelian
Lie group) is the group of functions of the form

fap(X) =ax+b, wherea,beRanda>0.

The group operation is function composition.

211 If fap(X) = fayb,(fay b, (X)), Work out a,b in terms of ag,by,ap,bp, and
check that they are the same as the a, b determined by

(6 7)=(57)E %)

2.1.2 Also show that the inverse function f_}(x) exists, and that it corresponds to

the inverse matrix
a b\’
0 1 ’

This correspondence between functions and matrices is a matrix representation of
the group of functions f,,. We have already seen examples of matrix representa-
tions of groups—such as the rotation groups in two and three dimensions—and,
in fact, most of the important Lie groups can be represented by matrices.

The unit complex numbers, cos 6 +isin 6, form a group SO(2) that we began
to study in Section 1.1. We now investigate its subgroups.

2.1.3 Other than the trivial group {1}, what is the smallest subgroup of SO(2)?

2.1.4 Show that there is exactly one n-element subgroup of SO(2), for each natu-
ral number n, and list its members.

2.1.5 Show that the union Rof all the finite subgroups of SO(2) is also a subgroup
(the group of “rational rotations”).

2.1.6 If zis a complex number not in the group R described in Exercise 2.1.5,
show that the numbers ...,z 2,z 71,1,z 7, ... are all distinct, and that they
form a subgroup of SO(2).

2.2 Crash course on homomor phisms

Normal subgroups

Since hg # gh in general, it can also be that gH # Hg, where

Hg={hg:heH}
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is the right coset of H. If gH = Hg for all g € G, we say that H is a normal
subgroup of G. An equivalent statement is that H equals

g 'Hg={g 'hg:heH} foreachge G.

(Because of this, it would be more sensible to call H “self-conjugate,” but
unfortunately the overused word “normal” has stuck.)

The good thing about a normal subgroup H is that its cosets themselves
form a group when “multiplied” by the rule that “the coset of gi, times the
coset of g, equals the coset of g0,

OiH-H = g102H.

This rule makes sense for a normal subgroup H because if gyH = g;H and
d,H = goH then ¢} g5H = g1g2H as follows:

d105H = gjHg, since goH = Hd, by normality,
=giHd, since giH = gy H by assumption,
=gigH since g,H = Hd, by normality,
=gigH since g,H = goH by assumption.

The group of cosets is called the quotient group of G by H, and is
written G/H. (When G and H are finite, the size of G/H is indeed the size
of G divided by the size of H.) We reiterate that the quotient group G/H
exists only when H is a normal subgroup. Another, more efficient, way to
describe this situation is in terms of homomorphisms: structure-preserving
maps from one group to another.

Homomor phisms and isomor phisms

When H is a normal subgroup of G, the map ¢ : G — G/H defined by
o(g)=gH forallgeG
preserves products in the sense that

?(0102) = ¢(91) - ¢(9%2)-

This follows immediately from the definition of product of cosets, because

©(01%) = 012H = g1H - goH = ¢(91) - ¢(92).
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In general, a map ¢ : G — G’ of one group into another is called a ho-
momor phism (from the Greek for “similar form”) if it preserves products.
A group homomorphism indeed preserves group structure, because it not
only preserves products, but also the identity and inverses. Here is why:

e Since g=1gfor any g € G, we have

0(9) =¢(1g) = o(1)p(g) because ¢ preserves products.
Multiplying both sides on the right by ¢(g)~* then gives 1 = ¢(1).

e Since 1 =gg ! for any g € G, we have

1=9(1)=9(gg ") =0(@e(@ ™)
because ¢ preserves products.

This says that ¢(g~!) = @(g)~?%, because the inverse of ¢(g) is
unique.

Thus the image ¢(G) is of “similar” form to G, but we say that G’ is
isomorphic (of the “same form™) to G only when the map ¢ is 1-to-1 and
onto (in which case we call ¢ an isomorphism). In general, ¢(G) is only a
shadow of G, because many elements of G may map to the same element
of G'. The case furthest from isomorphism is that in which ¢ sends all
elements of G to 1.

Any homomorphism ¢ of G onto G’ can be viewed as the special type
¢ : G — G/H. The appropriate normal subgroup H of G is the so-called
kernel of ¢:

H=kero={geG:o(g) =1}

Then G’ is isomorphic to the group G/ker ¢ of cosets of ker ¢ because:
1. ker ¢ is a group, because

hi,hp e ker o = o(h)) = @(hy) =1
= o(h)p(hy) =1
= o(hhhy) =1
= hihy; € ker ¢
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and
hekero=¢(h) =1

= (p(h)‘1 =1
= (™) =1
= h™! c ker ¢.

. ker ¢ is a normal subgroup of G, because, for any g € G,

heker o= p(ghg ™) = 9(@)e(Ne(g ") = e(9)lp(g) " =1
= ghg ! € ker .
Hence g(ker ¢)g* = ker ¢, that is, ker ¢ is normal.

. Each ¢ = ¢(g) € G’ corresponds to the coset g(ker ¢).

In fact, g(ker @) = (p—l(g’) because
ke l(d) <= ok) =g (definition of ¢ 1)
¢(k) = ¢(9)
o(
®(9

/

9) to(k) =1

k=1
@glkekerq)
< ke gker ).

. Products of elements of g,d, € G’ correspond to products of the

corresponding cosets:
01 =0(01), % =0(%) = ¢ (g) =g (ker 9), ¢ (g5) =0z (ker o)
by step 3. But also
g =¢(%) % = ¢(%) = 919 = ¢(91) (%) = ¢(% )
= ¢ 1(0195) = qia(ker @),

also by step 3. Thus the product g;g, corresponds to gigz(ker @),
which is the product of the cosets corresponding to g; and g, respec-
tively.

To sum up: a group homomorphism ¢ of G onto G’ gives a 1-to-1 corre-
spondence between G’ and G/ (ker ¢) that preserves products, that is, G/
isisomorphic to G/ (ker ¢).

This result is called the fundamental homomorphism theorem for

groups.
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The det homomorphism

An important homomorphism for real and complex matrix groups G is the
determinant map
det: G — C~*,

where C* denotes the multiplicative group of nonzero complex numbers.
The determinant map is a homomorphism because det is multiplicative—
det(AB) = det(A) det(B)—a fact well known from linear algebra.

The kernel of det, consisting of the matrices with determinant 1, is
therefore a normal subgroup of G. Many important Lie groups arise in
precisely this way, as we will see in Chapter 3.

Simple groups

A many-to-1 homomorphism of a group G maps it onto a group G’ that
is “simpler” than G (or, at any rate, not more complicated than G). For
this reason, groups that admit no such homomorphism, other than the ho-
momorphism sending all elements to 1, are called simple. Equivalently, a
nontrivial group is simple if it contains no normal subgroups other than
itself and thetrivial group.

One of the main goals of group theory in general, and Lie group theory
in particular, is to find all the simple groups. We find the first interesting
example in the next section.

Exercises

2.2.1 Check that z— Z is a homomorphism of S1. What is its kernel? What are
the cosets of the kernel?

2.2.2 Show directly (that is, without appealing to Exercise 2.2.1) that pairs {4z, },
where z, = cos o +isin a, form a group G when pairs are multiplied by the
rule

{220} {£28} = {£(zu23)}-
Show also that the function ¢ : S* — G that sends both z,,, —z, € S! to the
pair {£2z,} is a 2-to-1 homomorphism.
2.2.3 Show that z— Z is a well-defined map from G onto S', where G is the
group described in Exercise 2.2.2, and that this map is an isomorphism.

The space that consists of the pairs {+z,} of opposite (or “antipodal™) points
on the circle is called the real projective line RP!. Thus the above exercises
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show that the real projective line has a natural group structure, under which it is
isomorphic to the circle group S*.

In the next section we will consider the real projective space RP%, consisting
of the antipodal point pairs {#q} on the 3-sphere S°. These pairs likewise have
a natural product operation, which makes RP® a group—in fact, it is the group
SO(3) of rotations of R3. We will show that RP® is not the same group as S°,
because SO(3) is simple and S® is not.

We can see right now that S® is not simple, by finding a nontrivial normal
subgroup.

2.2.4 Show that {41} is a normal subgroup of S°.

However, it turns out that {+1} is the only nontrivial normal subgroup of S*.
In particular, the subgroup S* that we found in Section 2.1 is not normal.

2.2.5 Show that St is not a normal subgroup of S2.

2.3 Thegroups SU(2) and SO(3)

The group SO(2) of rotations of R? about O can be viewed as a geometric
object, namely the unit circle in the plane, as we observed in Section 1.1.

The unit circle, S, is the first in the series of unit n-spheres S", the nth
of which consists of the points at distance 1 from the origin in R™*. Thus
S? is the ordinary sphere, consisting of the points at distance 1 from the
origin in R3. Unfortunately (for those who would like an example of an
easily visualized but nontrivial Lie group) there is no rule for multiplying
points that makes S? a Lie group. In fact, the only other Lie group among
the n-spheres is S°. As we saw in Section 1.3, it becomes a group when
its points are viewed as unit quaternions, under the operation of quaternion
multiplication.

The group S of unit quaternions can also be viewed as the group of
2 x 2 complex matrices of the form

_ (a+di —b-—ci B
Q_<b—ci a—di)’ where det(Q) =1,

because these are precisely the quaternions of absolute value 1. Such matri-
ces are called unitary, and the group S2 is also known as the special unitary
group SU(2). Unitary matrices are the complex counterpart of orthogonal
matrices, and we study the analogy between the two in Chapters 3 and 4.
The group SU(2) is closely related to the group SO(3) of rotations
of R3. As we saw in Section 1.5, rotations of R3 correspond 1-to-1 to
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the pairs +t of antipodal unit quaternions, the rotation being induced on
Ri + Rj + Rk by the conjugation map q+— t qt. Also, the group operation
of SO(3) corresponds to quaternion multiplication, because if one rotation
is induced by conjugation by t;, and another by conjugation by t,, then
conjugation by t;t, induces the product rotation (first rotation followed by
the second). Of course, we multiply pairs £t of quaternions by the rule

(£ty) (%) = ity

We therefore identify SO(3) with the group RP® of unit quaternion
pairs £t under this product operation. The map ¢ : SU(2) — SO(3) defined
by ¢(t) = {£t} isa 2-to-1 homomorphism, because the two elements t and
—t of SU(2) go to the single pair =t in SO(3). Thus SO(3) looks “simpler”
than SU(2) because SO(3) has only one element where SU(2) has two.
Indeed, SO(3) is “simpler” because SU(2) is not simple—it has the normal
subgroup {£+1}—and SO(3) is. We now prove this famous property of
SO(3) by showing that SO(3) has no nontrivial normal subgroup.

Simplicity of SO(3). The only nontrivial subgroup of SO(3) closed under
conjugation is SO(3) itsalf.

Proof. Suppose that H is a nontrivial subgroup of SO(3), so H includes a
nontrivial rotation, say the rotation h about axis | through angle c.

Now suppose that H is normal, so H also includes all elements g—‘hg
for g € SO(3). If g moves axis | to axis m, then g~*hg is the rotation about
axis m through angle o. (In detail, g~! moves mto |, h rotates through
angle o about I, then g moves | back to m.) Thus the normal subgroup H
includes the rotations through angle o about all possible axes.

Now a rotation through o about P, followed by rotation through o
about Q, equals rotation through angle 6 about R, where Rand 6 are as
shown in Figure 2.3. As in Exercise 1.5.6, we obtain the rotation about
P by successive reflections in the great circles PR and PQ, and then the
rotation about Q by successive reflections in the great circles PQ and QR.
In this sequence of four reflections, the reflections in PQ cancel out, leaving
the reflections in PR and QR that define the rotation about R.

As P varies continuously over some interval of the great circle through
P and Q, 6 varies continuously over some interval. (R may also vary, but
this does not matter.) It follows that 6 takes some value of the form

mrn .
N where mis odd,
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Figure 2.3: Angle of the product rotation.

because such numbers are dense in R. The n-fold product of this rotation
also belongs to H, and it is a rotation about R through mz, where mis odd.
The latter rotation is simply rotation through 7z, so H includes rotations
through & about any point on the sphere (by conjugation with a suitable g
again).

Finally, taking the product of rotations with o//2 = 7/2 in Figure 2.3,
it is clear that we can get a rotation about R through any angle 6 between
0 and 2z. Hence H includes all the rotations in SO(3). O

Exercises

Like SO(2), SO(3) contains some finite subgroups. It contains all the finite sub-
groups of SO(2) in an obvious way (as rotations of R® about a fixed axis), but
also three more interesting subgroups called the polyhedral groups. Each poly-
hedral group is so called because it consists of the rotations that map a regular
polyhedron into itself.

Here we consider the group of 12 rotations that map a regular tetrahedron
into itself. We consider the tetrahedron whose vertices are alternate vertices of the
unit cube in Ri + Rj + Rk, where the cube has center at O and edges parallel to
thei, j, and k axes (Figure 2.4).

First, let us see why there are indeed 12 rotations that map the tetrahedron
into itself. To do this, observe that the position of the tetrahedron is completely
determined when we know

e Which of the four faces is in the position of the front face in Figure 2.4.



2.3 The groups SU(2) and SO(3) 35

e Which of the three edges of that face is at the bottom of the front face in
Figure 2.4.

Figure 2.4: The tetrahedron and the cube.

2.3.1 Explain why this observation implies 12 possible positions of the tetrahe-
dron, and also explain why all these positions can be obtained by rotations.

2.3.2 Similarly, explain why there are 24 rotations that map the cube into itself
(so the rotation group of the tetrahedron is different from the rotation group
of the cube).

The 12 rotations of the tetrahedron are in fact easy to enumerate with the help
of Figure 2.5. As is clear from the figure, the tetrahedron is mapped into itself by
two types of rotation:

e A 1/2 turn about each line through the centers of opposite edges.

e A 1/3 turn about each line through a vertex and the opposite face center.

2.3.3 Show that there are 11 distinct rotations among these two types. What
rotation accounts for the 12th position of the tetrahedron?

Now we make use of the quaternion representation of rotations from Section
1.5. Remember that a rotation about axis u through angle 6 corresponds to the
quaternion pair +q, where

—cose+usine
q=005, 2

2.3.4 Show that the identity, and the three 1/2 turns, correspond to the four quater-
nion pairs +1, £i, +j, £k.
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\‘) 1/2 turn

1/3 turn

T

Figure 2.5: The tetrahedron and axes of rotation.

2.3.5 Show that the 1/3 turns correspond to the eight antipodal pairs among the
16 quaternions

+ L + ! + J + K

2727272
The 24 quaternions obtained in Exercises 2.3.4 and 2.3.5 form an exceptionally
symmetric configuration in R*. They are the vertices of a regular figure called the

24-cell, copies of which form a “tiling” of R*.

2.4 |sometriesof R" and reflections

In this section we take up an idea that appeared briefly in the exercises
for Section 1.5: the representation of isometries as products of reflections.
There we showed that certain isometries of R? and R? are products of
reflections. Here we represent isometries of R" as products of reflections,
and in the next section we use this result to describe the rotations of R*.

We actually prove that any isometry of R" that fixes O is the product
of reflections in hyperplanes through O, and then specialize to orientation-
preserving isometries. A hyperplane H through Oisan (n—1)-dimensional
subspace of R", and reflection in H is the linear map of R" that fixes the
elements in H and reverses the vectors orthogonal to H.
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Reflection representation of isometries. Any isometry of R" that fixes O
isthe product of at most n reflections in hyperplanes through O.

Proof. We argue by induction on n. For n = 1 the result is the obvious one
that the only isometries of R fixing O are the identity and the map x+— —x,
which is reflection in O.

Now suppose that the result is true for n =k — 1 and that f is an isom-
etry of RK fixing O. If f is not the identity, suppose that v € RK is such
that f(v) =w # v. Then the reflection ry in the hyperplane orthogonal to
u = v—w maps the subspace Ru of real multiples of u onto itself and the
map ryf (“f followed by r,”) is the identity on the subspace Ru of R,

The restriction of ryf to the Rk1 orthogonal to Ru is, by induction,
the product of < k— 1 reflections. It follows that f = r,g, where g is the
product of < k— 1 reflections.

Therefore, f is the product of < k reflections, and the result is true for
all n by induction. O

It follows in particular that any orientation-preserving isometry of R3
is the product of 0 or 2 reflections (because the product of an odd number
of reflections reverses orientation). Thus any such isometry is a rotation
about an axis passing through O.

This theorem is sometimes known as the Cartan-Dieudonné theorem,
after a more general theorem proved by Cartan [1938], and generalized
further by Dieudonné. Cartan’s theorem concerns “reflections” in spaces
with real or complex coordinates, and Dieudonné’s extends it to spaces
with coordinates from finite fields.

Exercises

Assuming that reflections are linear, the representation of isometries as products
of reflections shows that all isometries fixing the origin are linear maps. In fact,
there is nice direct proof that all such isometries (including reflections) are linear,
pointed out to me by Marc Ryser. We suppose that f is an isometry that fixes O,
and that u and v are any points in R",

2.4.1 Prove that f preserves straight lines and midpoints of line segments.

2.4.2 Using the fact that u+ v is the midpoint of the line joining 2u and 2v, and
Exercise 2.4.1, show that f(u—+v) = f(u)+ f(v).

2.4.3 Also prove that f(ru) = r f(u) for any real numberr.

It is also true that reflections have determinant —1, hence the determinant detects
the “reversal of orientation” effected by a reflection.
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2.4.4 Show that reflection in the hyperplane orthogonal to a coordinate axis has
determinant —1, and generalize this result to any reflection.

2.5 Rotationsof R* and pairs of quaternions

A linear map is called orientation-preserving if its determinant is positive,
and orientation-reversing otherwise. Reflections are linear and orientation-
reversing, so a product of reflections is orientation-preserving if and only
if it contains an even number of terms. We define a rotation of R" about O
to be an orientation-preserving isometry that fixes O.

Thus it follows from the Cartan—Dieudonné theorem that any rotation
of R% iis the product of 0, 2, or 4 reflections. The exact number is not impor-
tant here—what we really want is a way to represent reflections by quater-
nions, as a stepping-stone to the representation of rotations by quaternions.
Not surprisingly, each reflection is specified by the quaternion orthogonal
to the hyperplane of reflection. More surprisingly, a rotation is specified
by just two quaternions, regardless of the number of reflections needed to
compose it. Our proof follows Conway and Smith [2003], p. 41.

Quaternion representation of reflections. Reflection of H = R* in the
hyperplane through O orthogonal to the unit quaternion u is the map that
sends each g € H to —uqu.

Proof. First observe that the map g+ —uqu is an isometry. This is because

e (> —qreverses the real part of qand keeps the imaginary part fixed,
hence it is reflection in the hyperplane spanned by i, j, and K.

e Multiplication on the left by the unit quaternion u is an isometry
by the argument in Section 1.4, and there is a similar argument for
multiplication on the right.

Next notice that the map q+— —uqu sends

vuto —u(vu)u= —uuwvu because (vu) =uv,

= —wu because uu= |ul®> =1.

In particular, the map sends u to —u, so vectors parallel to u are reversed.
And it sends iu to iu, because i = —i, and similarly ju to ju and ku to ku.
Thus the vectors iu, ju, and ku, which span the hyperplane orthogonal to
u, are fixed. Hence the map q+— —uqu is reflection in this hyperplane. [
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Quaternion representation of rotations. Any rotation of H = R* about
O isamap of the form g +— vgw, where v and w are unit quaternions.

Proof. It follows from the quaternion representation of reflections that the
result of successive reflections in the hyperplanes orthogonal to the unit
quaternions up, U, ..., Uxn is the map

g — Uzpn---UglaUp qUiUpU3 - - - Ugp,

because an even number of sign changes and conjugations makes no
change. The pre- and postmultipliers are in general two different unit
quaternions, Upn---UzUpUy = V and UpUpUs - - - Upy = W, Say, SO the general
rotation of R* is a map of the form

g+— vgw, where vand ware unit quaternions.

Conversely, any map of this form is a rotation, because multiplication
of H = R* on either side by a unit quaternion is an orientation-preserving
isometry. We already know that multiplication by a unit quaternion is an
isometry, by Section 1.4. And it preserves orientation by the following
argument.

Multiplication of H = R* by a unit quaternion

B a+|d —b—ic 2 2 2
V= (b—ic a—id)’ where &+ b +c+d>=1,

is a linear transformation of R* with matrix

a —d-b c
| d a —-c-b
Ry = b ¢ a d |’

-c b —d a

where the 2 x 2 submatrices represent the complex-number entries in v. It
can be checked that det(R,) = 1. So multiplication by v, on either side,
preserves orientation. O

Exercises

The following exercises study the rotation gq+— iq of H = R, first expressing it as a
product of “plane rotations”—of the planes spanned by 1, i and j, k respectively—
then breaking it down to a product of four reflections.
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2.5.1 Checkthatqr—iqsendsltoi,ito—1andjtok, k to —j. How many points
of R* are fixed by this map?

2.5.2 Show that the rotation that sends 1 to i, i to —1 and leaves j, k fixed is
the product of reflections in the hyperplanes orthogonal to u; =i and u, =

(i—-1)/v2.

2.5.3 Show that the rotation that sends j to k, k to —j and leaves 1, i fixed is the
product of reflections in the hyperplanes orthogonal to us = k and u; =

(k—j)/va.

It follows, by the formula g+— —uqu for reflection, that the product of rota-
tions in Exercises 2.5.2 and 2.5.3 is the product

g — UgUzUzU7 ¢ UzUzU3Ug
of reflections in the hyperplanes orthogonal to uz, Uy, U3, U4 respectively.

2.5.4 Check that uguszuou; =i and ujusuzugs = 1, so the product of the four re-
flections is indeed g+ iq.

2.6 Direct products of groups

Before we analyze rotations of R* from the viewpoint of group theory, it is
desirable to review the concept of direct product or Cartesian product of
groups.

Definition. If Aand B are groups then their direct product A x B is the set
of ordered pairs (a,b), where ac Aand b € B, under the “product of pairs”
operation defined by

(ar,by)(az,bp) = (a1a@z,b1by).

It is easy to check that this product operation is associative, that the
identity element of A x B is the pair (1a,1g), Where 14 is the identity of
A and 1g is the identity of B, and that (a,b) has inverse (a—t,b=1). Thus
A x Bis indeed a group.

Many important groups are nontrivial direct products; that is, they have
the form A x B where neither A nor B is the trivial group {1}. For example:

e The group R?, under vector addition, is the direct product R x R.
More generally, R" is the n-fold direct product R x R x --- x RR.
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e If Aand B are groups of n x n matrices, then the matrices of the form

a o0
(O b) , where acA and beB,
make up a group isomorphic to A x B under matrix multiplication,
where 0 is the n x n zero matrix. This is because of the so-called
block multiplication of matrices, according to which

aa O a 0 (a1 0
0 b/\0O b/ \ 0 bbb/’
o It follows, from the previous item, that R" is isomorphic to a 2n x 2n
matrix group, because R is isomorphic to the group of matrices

1 X
(0 1) where x e R.

e The group St x St is a group called the (two-dimensional) torus T?.
More generally, the n-fold direct product of S* factors is called the
n-dimensional torus T".

We call S x St a torus because its elements (8,¢), where 6,¢ € S,
can be viewed as the points on the torus surface (Figure 2.6).

Figure 2.6: The torus St x St.

Since the groups R and S* are abelian, the same is true of all their
direct products R™ x T". It can be shown that the latter groups include all
the connected abelian matrix Lie groups.
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Exercises

If we let xq,%,X3,Xs be the coordinates along mutually orthogonal axes in R?,
then it is possible to “rotate” the x; and X, axes while keeping the x3 and x4 axes
fixed.

2.6.1 Write a 4 x 4 matrix for the transformation that rotates the (x;,xz)-plane
through angle 6 while keeping the x3- and x4-axes fixed.

2.6.2 Write a 4 x 4 matrix for the transformation that rotates the (X3, xs)-plane
through angle ¢ while keeping the x;- and x,-axes fixed.

2.6.3 Observe that the rotations in Exercise 2.6.1 form an S?, as do the rotations
in Exercise 2.6.2, and deduce that SO(4) contains a subgroup isomorphic
to T?.

The groups of the form R™ x T" may be called “generalized cylinders,” based
on the simplest example R x St.

2.6.4 Why is it appropriate to call the group R x S* a cylinder?

The notation S" is unfortunately not compatible with the direct product nota-
tion (at least not the way the notation R" is).

2.6.5 Explain why S® = SU(2) is not the same group as S* x S x S*.

2.7 Themap from SU(2) xSU(2) to SO(4)

In Section 2.5 we showed that the rotations of R* are precisely the maps
q — vow, where v and w run through all the unit quaternions. Since v1
is a unit quaternion if and only if vis, it is equally valid to represent each
rotation of R* by a map of the form q— v_1qw, where v and w are unit
quaternions. The latter representation is more convenient for what comes
next.

The pairs of unit quaternions (v,w) form a group under the operation
defined by

(v, W1 ) - (V2,W2) = (V1V2, W1W»),

where the products v; v, and w;ws, on the right side are ordinary quaternion
products. Since the v come from the group SU(2) of unit quaternions, and
the w likewise, the group of pairs (v,w) is the direct product SU(2) x SU(2)
of SU(2) with itself.

The map that sends each pair (v,w) € SU(2) x SU(2) to the rotation
g~ v_igw in SO(4) is a homomorphism ¢ : SU(2) x SU(2) — SO(4).
This is because
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the product of the map q+— vl‘lqwl corresponding to (v, W)

with the map g+ v, *qw; corresponding to (v2,w)

is the map g+ v5 vy Jgqwyws,

which is the map q— (v1v2) ~*q(wiw») corresponding to the product
(VaVa, WiWy) of (vi,wy) and (V2,Ws).

This homomorphism is onto SO(4), because each rotation of R* can
be expressed in the form q+— v-1qw, but one might expect it to be very
many-to-one, since many pairs (v,w) of unit quaternions conceivably give
the same rotation. Surprisingly, this is not so. The representation of ro-
tations by pairs is “unique up to sign” in the following sense: if (v,w)
gives a certain rotation, the only other pair that gives the same rotation is
(=V, —w).

To prove this, it suffices to prove that the kernel of the homomorphism
¢ : SU(2) x SU(2) — SO(4) has two elements.

Size of the kernel. The homomorphism ¢ : SU(2) x SU(2) — SO(4) is
2-to-1, because its kernel has two elements.

Proof. Suppose that (v,w) is in the kernel, so g+ v—tqw is the identity
rotation. In particular, this rotation fixes 1, so

viw=1; hence v=w.

Thus the map is in fact g — v—qv, which we know (from Section 1.5) fixes
the real axis and rotates the space of pure imaginary quaternions. Only if
v =1 or v= —1 does the map fix everything; hence the kernel of ¢ has
only two elements, (1,1) and (—1,—1).

The left cosets of the kernel are therefore the 2-element sets

(v, w)(£1,£1) = (£v, £w),

and each coset corresponds to a distinct rotation of R*, by the fundamental
homomorphism theorem of Section 2.2. O

This theorem shows that SO(4) is “almost” the same as SU(2) x SU(2),
and the latter is far from being a simple group. For example, the subgroup
of pairs (v,1) is a nontrivial normal subgroup, but clearly not the whole of
SU(2) x SU(2). This gives us a way to show that SO(4) is not simple.
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SO(4) isnot simple. Thereisa nontrivial normal subgroup of SO(4), not
equal to SO(4).

Proof. The subgroup of pairs (v,1) € SU(2) x SU(2) is normal; in fact, it
is the kernel of the map (v,w) — (1,w), which is clearly a homomorphism.

The corresponding subgroup of SO(4) consists of maps of the form
q— vgl, which likewise form a normal subgroup of SO(4). But this
subgroup is not the whole of SO(4). For example, it does not include the
map q+— qw for any w = +1, by the “unique up to sign” representation of
rotations by pairs (v, w). O

Exercises

An interesting subgroup Aut(H) of SO(4) consists of the continuous automor-
phisms of H = R*. These are the continuous bijections p : H — H that preserve
the quaternion sum and product, that is,

p(p+a)=p(p)+p(@), p(pa)=p(p)p(q) foranyp,qecH.

It is easy to check that, for each unit quaternion u, the p that sends q+— u~tqu
is an automorphism (first exercise), so it follows from Section 1.5 that Aut(IH)
includes the SO(3) of rotations of the 3-dimensional subspace Ri 4+ Rj + Rk of
pure imaginary quaternions. The purpose of this set of exercises is to show that
all continuous automorphisms of H are of this form, so Aut(H) = SO(3).

2.7.1 Check that q+— u~tqu is an automorphism of H for any unit quaternion u.
Now suppose that p is any automorphism of H.
2.7.2 Use the preservation of sums by an automorphism p to deduce in turn that
e p preserves 0, thatis, p(0) =0,
e p preserves differences, thatis, p(p—qd) = p(p) — p(Q).
2.7.3 Use preservation of products to deduce that
e p preserves 1, thatis, p(1) =1,
e p preserves quotients, that is, p(p/q) = p(p)/p(q) for q # 0.

2.7.4 Deduce from Exercises 2.7.2 and 2.7.3 that p(m/n) = m/n for any integers
mand n # 0. This implies p(r) =r for any real r, and hence that p is a
linear map of R*. Why?

Thus we now know that a continuous automorphism p is a linear bijection
of R* that preserves the real axis, and hence p maps Ri + Rj + Rk onto itself. It
remains to show that the restriction of p to Ri + Rj + Rk is a rotation, that is, an
orientation-preserving isometry, because we know from Section 1.5 that rotations
of Ri + Rj + Rk are of the form q— uqu.
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2.7.5 Prove in turn that

e p preserves conjugates, that is, p(q) = p(q),
e p preserves distance,
e p preserves inner product in Ri + Rj + RK,

e p(pxq) =p(p) xp(q) in Ri+Rj + Rk, and hence p preserves
orientation.

The appearance of SO(3) as the automorphism group of the quaternion al-
gebra H suggests that the automorphism group of the octonion algebra © might
also be of interest. It turns out to be a 14-dimensional group called G,—the first
of the exceptional Lie groups mentioned (along with @) in Section 1.6. This link
between O and the exceptional groups was pointed out by Cartan [1908].

2.8 Discussion

The concept of simple group emerged around 1830 from Galois’s theory
of equations. Galois showed that each polynomial equation has a finite
group of “symmetries” (permutations of its roots that leave its coefficients
invariant), and that the equation is solvable only if its group decomposes
in a certain way. In particular, the general quintic equation is not solvable
because its group contains the nonabelian simple group As—the group of
even permutations of five objects. The same applies to the general equation
of any degree greater than 5, because Ay, the group of even permutations
of n objects, is simple for any n > 5.

With this discovery, Galois effectively closed the classical theory of
equations, but he opened the (much larger) theory of groups. Specifi-
cally, by exhibiting the nontrivial infinite family A, for n > 5, he raised
the problem of finding and classifying all finite simple groups. This prob-
lem is much deeper than anyone could have imagined in the time of Galois,
because it depends on solving the corresponding problem for continuous
groups, or Lie groups as we now call them.

Around 1870, Sophus Lie was inspired by Galois theory to develop an
analogous theory of differential equations and their “symmetries,” which
generally form continuous groups. As with polynomial equations, simple
groups raise an obstacle to solvability. However, at that time it was not
clear what the generalization of the group concept from finite to continuous
should be. Lie understood continuous groups to be groups generated by
“infinitesimal” elements, so he thought that the rotation group of R® should
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include “infinitesimal rotations.” Today, we separate out the “infinitesimal
rotations” of R in a structure called so(3), the Lie algebra of SO(3). The
concept of simplicity also makes sense for so(3), and is somewhat easier
to establish. Indeed, the infinitesimal elements of any continuous group G
form a structure g now called the Lie algebra of G, which captures most
of the structure of G but is easier to handle. We discuss “infinitesimal
elements,” and their modern counterparts, further in Section 4.3.

It was a stroke of luck (or genius) that Lie decided to look at infinitesi-
mal elements, because it enabled him to prove simplicity for whole infinite
families of Lie algebras in one fell swoop. (As we will see later, most of
the corresponding continuous groups are not quite simple, and one has to
tease out certain small subgroups and quotient by them.) Around 1885 Lie
proved results so general that they cover all but a finite number of simple
Lie algebras—namely, those of the exceptional groups mentioned at the
end of Chapter 1 (see Hawkins [2000], pp. 92-98).

In the avalanche of Lie’s results, the special case of so(3) and SO(3)
seems to have gone unnoticed. It gradually came to light as twentieth-
century books on Lie theory started to work out special cases of geometric
interest by way of illustration. In the 1920s, quantum physics also directed
attention to SO(3), since rotations in three dimensions are physically sig-
nificant. Still, it is remarkable that a purely geometric argument for the
simplicity of SO(3) took so long to emerge. Perhaps its belated appear-
ance is due to its topological content, namely, the step that depends purely
on continuity. The argument hinges on the fact that 6 is a continuous func-
tion of distance along the great circle PQ, and that such a function takes
every value between its extreme values: the so-called intermediate value
theorem.

The theory of continuity (topology) came after the theory of continuous
groups—not surprisingly, since one does not bother to develop a theory
of continuity before seeing that it has some content—and applications of
topology to group theory were rare before the 1920s. In this book we will
present further isolated examples of continuity arguments in Sections 3.2,
3.8, and 7.5 before taking up topology systematically in Chapter 8.

Another book with a strongly geometric treatment of SO(3) is Berger
[1987]. Volume I of Berger, p. 169, has a simplicity proof for SO(3) similar
to the one given here, and it is extended to a simplicity result about SO(n),
for n>5, on p. 170: SO(2m+ 1) is simple and the only nontrivial normal
subgroup of SO(2m) is {£1}. We arrive at the same result by a different
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route in Section 7.5. (Our route is longer, but it also takes in the complex
and quaternion analogues of SO(n).) Berger treats SO(4) with the help
of quaternions on p. 190 of his Volume Il, much as we have done here.
The quaternion representation of rotations of R* was another of Cayley’s
discoveries, made in 1855.

Lie observed the anomalous structure of SO(4) at the infinitesimal
level. He mentions it, in scarcely recognizable form, on p. 683 of Volume
111 of his 1893 book Theorie der Transformationsgruppen. The anomaly of
SO(4) is hidden in some modern treatments of Lie theory, where the con-
cept of simplicity is superseded by the more general concept of semisim-
plicity. All simple groups are semisimple, and SO(4) is semisimple, so an
anomaly is removed by relaxing the concept of “simple” to “semisimple.”
However, the concept of semisimplicity makes little sense before one has
absorbed the concept of simplicity, and our goal in this book is to under-
stand the simple groups, notwithstanding the anomaly of SO(4).
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Generalized rotation groups

PREVIEW

In this chapter we generalize the plane and space rotation groups SO(2)
and SO(3) to the special orthogonal group SO(n) of orientation-preserving
isometries of R" that fix O. To deal uniformly with the concept of “rota-
tion” in all dimensions we make use of the standard inner product on R"
and consider the linear transformations that preserve it.

Such transformations have determinant +1 or —1 according as they
preserve orientation or not, so SO(n) consists of those with determinant 1.
Those with determinant +1 make up the full orthogonal group, O(n).

These ideas generalize further, to the space C" with inner product de-
fined by

(Ug,Uz,...,Un) - (V1,V2,...,Vn) = UpVi + UV + - - - + UnVp. *)

The group of linear transformations of C" preserving (*) is called the uni-
tary group U(n), and the subgroup of transformations with determinant 1
is the special unitary group SU(n).

There is one more generalization of the concept of isometry—to the
space H" of ordered n-tuples of quaternions. H" has an inner product de-
fined like (*) (but with quaternion conjugates), and the group of linear
transformations preserving it is called the symplectic group Sp(n).

In the rest of the chapter we work out some easily accessible properties
of the generalized rotation groups: their maximal tori, centers, and their
path-connectedness. These properties later turn out to be crucial for the
problem of identifying simple Lie groups.

48 J. Stillwell, Naive Lie Theory, DOI: 10.1007/978-0-387-78214-0 3,
(© Springer Science+Business Media, LLC 2008
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3.1 Rotationsasorthogonal transformations

It follows from the Cartan—Dieudonné theorem of Section 2.4 that a rota-
tion about O in R? or R? is a linear transformation that preserves length
and orientation. We therefore adopt this description as the definition of a
rotation in R". However, when the transformation is given by a matrix,
it is not easy to see directly whether it preserves length or orientation. A
more practical criterion emerges from consideration of the standard inner
product in R", whose geometric properties we now summarize.

If u=(up,uz,...,up) and v = (Vq,Va,...,V,) are two vectors in R",
their inner product u - v is defined by

It follows immediately that
U-u=ug+G -+ 4 g =uf?

so the length |u| of u (that is, the distance of u from the origin 0) is defin-
able in terms of the inner product. It also follows (as one learns in linear
algebra courses) that u-v = 0 if and only if u and v are orthogonal, and
more generally that

u-v=ul|v|cos®,

where 6 is the angle between the lines from O to u and O to v. Thus angle
is also definable in terms of inner product. Conversely, inner product is
definable in terms of length and angle. Moreover, an angle 6 is determined
by cos 6 and sin 8, which are the ratios of lengths in a certain triangle, so
inner product is in fact definable in terms of length alone.

This means that a transformation T preserves length if and only if T
preserves the inner product, that is,

T(u)-T(v)=u-v forall uveR"

The inner product is a more convenient concept than length when one is
working with linear transformations, because linear transformations are
represented by matrices and the inner product occurs naturally within ma-
trix multiplication: if Aand B are matrices for which AB exists then

(i, j)-element of AB = (row i of A) - (column j of B).
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This observation is the key to the following concise and practical criterion
for recognizing rotations, involving the matrix A and its transpose AT. To
state it we introduce the notation 1 for the identity matrix, of any size,
extending the notation used in Chapter 1 for the 2 x 2 identity matrix.

Rotation criterion. Annx n real matrix A represents a rotation of R" if
and only if
AAT =1 and det(A)=1.

Proof. First we show that the condition AAT = 1 is equivalent to preserva-
tion of the inner product by A.

AAT =1 & (row i of A)-(col j of AT) = §;

where 6j = 1ifi= jand 6;j =0ifi # |

& (row i of A) - (row j of A) = §;;

< rows of A form an orthonormal basis

< columns of A form an orthonormal basis
because AAT = 1 means AT = A1, s01=ATA=AT(AT)T,
and hence AT has the same property as A

< A-images of the standard basis form an orthonormal basis

< A preserves the inner product

1 0
0

because Ag - Aej = dij = § - €}, where e, = () e, B = () are the
: 0
0 1

standard basis vectors of R".

Second, the condition det(A) = 1 says that A preserves orientation, as
mentioned at the beginning of Section 2.5. Standard properties of determi-
nants give

det(AAT) = det(A)det(AT) and det(AT) = det(A),
so we already have
1 = det(1) = det(AAT) = det(A) det(AT) = det(A)2.

And the two solutions det(A) = 1 and det(A) = —1 occur according as A
preserves orientation or not. O

A rotation matrix is called a special orthogonal matrix, presumably
because its rows (or columns) form an orthonormal basis. The matrices
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that preserve length, but not necessarily orientation, are called orthogonal.
(However, orthogonal matrices are not the only matrices that preserve or-
thogonality. Orthogonality is also preserved by the dilation matrices k1 for
any nonzero constant k.)

Exercises

3.1.1 Give an example of a matrix in O(2) that is not in SO(2).

3.1.2 Give an example of a matrix in O(3) that is not in SO(3), and interpret it
geometrically.

3.1.3 Work out the matrix for the reflection of R® in the plane through O orthog-
onal to the unit vector (a,b,c).

3.2 Theorthogonal and special orthogonal groups

It follows from the definition of special orthogonal matrices that:

e If Ay and A; are orthogonal, then AjA] = 1and A;A] = 1. It follows
that the product A A satisfies
(ALA) (A A)T = AJALAJA]  because (AjA2)T = AJAT,
= AtA]  because AJA] =1,
=1 because AJA] = 1.

e If A; and A; are special orthogonal, then det(A;) = det(Az) =1, so
det(A]_Az) = det(A]_) det(Az) =1.

e If Ais orthogonal, then AAT = 1, hence A~* = AT. It follows that
(AHT = (AT)T = A, so A~ is also orthogonal. And A~ is special
orthogonal if A is because

det(A~1) = det(A) 1 = 1.

Thus products and inverses of n x nspecial orthogonal matrices are special
orthogonal, and hence they form a group. This group (the “rotation” group
of R") is called the special orthogonal group SO(n).

If we drop the requirement that orientation be preserved, then we get
a larger group of transformations of R" called the orthogonal group O(n).
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An example of a transformation that is in O(n), but not in SO(n), is re-
flection in the hyperplane orthogonal to the x;-axis, (Xi,%2,X3,...,Xn) —
(—X1,X%2,X3,--.,%), Which has the matrix

-1 0 0
0 1 0
0 0 1

obviously of determinant —1. We notice that the determinant of a matrix
A € 0O(n) is +1 because (as mentioned in the previous section)

AAT = 1= 1 =det(AAT) = det(A) det(AT) = det(A)2.

Path-connectedness

The most striking difference between SO(n) and O(n) is a topological one:
SO(n) is path-connected and O(n) isnot. That is, if we view nx n matrices
as points of R™ in the natural way—Dby interpreting the n> matrix entries
a1,a12,...,81n,81,...,8n,...,8n1,.-.,ann as the coordinates of a point—
then any two points in SO(n) may be connected by a continuous path in
SO(n), but the same is not true of O(n). Indeed, there is no continuous
path in O(n) from

1 -1
to
1 1
(where the entries left blank are all zero) because the value of the determi-
nant cannot jump from 1 to —1 along a continuous path.

The path-connectedness of SO(n) is not quite obvious, but it is inter-
esting because it reconciles the everyday concept of “rotation” with the
mathematical concept. In mathematics, a rotation of R" is given by speci-
fying just one configuration, usually the final position of the basis vectors,
in terms of their initial position. This position is expressed by a matrix
A. In everyday speech, a “rotation” is a movement through a continuous

sequence of positions, so it corresponds to a path in SO(n) connecting the
initial matrix 1 to the final matrix A.
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Thus a final position A of R" can be realized by a “rotation” in the
everyday sense of the word only if SO(n) is path-connected.

Path-connectedness of SO(n). For any n, SO(n) is path-connected.

Proof. For n =2 we have the circle SO(2), which is obviously path-
connected (Figure 3.1). Now suppose that SO(n— 1) is path-connected
and that A € SO(n). It suffices to find a path in SO(n) from 1to A, because
if there are paths from 1 to A and B then there is a path from Ato B.

SRR ... C0sSO-+isind

Figure 3.1: Path-connectedness of SO(2).

This amounts to finding a continuous motion taking the basis vectors
e, 6,...,6, to their final positions Aei,Aey, ..., A, (the columns of A).

The vectors e; and Ae; (if distinct) define a plane &2, so, by the path-
connectedness of SO(2), we can move e; continuously to the position Ae
by a rotation Rof 2. It then suffices to continuously move Rey, ..., Re, to
Ae, ..., Ae,, respectively, keeping Ae; fixed. Notice that

e Rey, ... Re, are all orthogonal to Re; = Aey, because e,...,e, are
all orthogonal to e; and R preserves angles.

o Ae,...,Ae, are all orthogonal to Ae;, because e, ..., e, are all or-
thogonal to e; and A preserves angles.

Thus the required motion can take place in the R"~! of vectors orthogonal
to Aey, where it exists by the assumption that SO(n— 1) is path-connected.

Performing the two motions in succession—taking e; to Ae; and then
Rey,...,Re, to Aey, ..., Aen—qgives a path from 1 to Ain SO(n). O

The idea of path-connectedness will be explored further in Sections 3.8
and 8.6. In the meantime, the idea of continuous path is used informally in
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the exercises below to show that path-connectedness has interesting alge-
braic implications.

Exercises

The following exercises study the identity component in a matrix group G, that is,
the set of matrices A € G for which there is a continuous path from 1 to A that lies
inside G.

3.2.1 Bearing in mind that matrix multiplication is a continuous operation, show
that if there are continuous paths in G from 1to A € G and to B € G then
there is a continuous path in G from Ato AB.

3.2.2 Similarly, show that if there is a continuous path in G from 1 to A, then
there is also a continuous path from A~ to 1.

3.2.3 Deduce from Exercises 3.2.1 and 3.2.2 that the identity component of G is
a subgroup of G.

3.3 Theunitary groups

The unitary groups U(n) and SU(n) are the analogues of the orthogonal
groups O(n) and SO(n) for the complex vector space C", which consists
of the ordered n-tuples (z, 2, ...,z,) of complex numbers. The sum oper-
ation on C" is the usual vector addition:

(Ug,Uz,...,Un) + (V1,V2,...,Vn) = (U +V1,Up + V2, ... ,Up+ Vp).

And the multiple of (z,2,...,2z,) € C" by a scalar ¢ € C is naturally
(cz1,¢2,...,Cz,). The twist comes with the inner product, because we
would like the inner product of a vector v with itself to be a real number—
the squared distance |v|? from the zero matrix O to v. We ensure this by
the definition

(Ug,Uz,...,Un) - (V1,V2,...,Vn) = UgVi + UpVo + - - - + UnVp. *)
With this definition of u-v we have

_ 12 2 2 1012
VoV =VIVE +VoVo + -+ VWV = |Vi |“ + V2| + -+ - + V| = = |V|7,

and |v|? is indeed the squared distance of v = (v1,Va,...,V,) from O in the
space R?" that equals C" when we interpret each copy of C as R?.
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The kind of inner product defined by (*) is called Hermitian (after the
nineteenth-century French mathematician Charles Hermite). Just as one
meets ordinary inner products of rows when forming the product

AAT,  for a real matrix A,

S0 too one meets the Hermitian inner product (*) of rows when forming the
product

AAT, for a complex matrix A.

Here A denotes the result of replacing each entry a;; of A by its complex
conjugate &;j.

With this adjustment the arguments of Section 3.1 go through, and one
obtains the following theorem.

Criterion for preserving theinner product on C". Alinear transforma-
tion of C" preserves theinner product (*) if and only if its matrix A satisfies
AAT =1, where 1 isthe identity matrix. O

As in Section 3.1, one finds that the rows (or columns) of A form an
orthonormal basis of C". The rows v; are “normal” in the sense that |vi| =
1, and “orthogonal” in the sense that v; - vj = 0 when i # j, where the dot
denotes the inner product (*).

It is clear that if linear transformations preserve the inner product (*)
then their product and inverses also preserve (*), so the set of all transfor-
mations preserving (*) is a group. This group is called the unitary group
U(n). The determinant of an A in U(n) has absolute value 1 because

AA" = 1= 1=det(AA") = det(A) det(A") = det(A)det(A) = |det(A)[%,

and it is easy to see that det(A) can be any number with absolute value 1.
The subgroup of U(n) whose members have determinant 1 is called the
special unitary group SU(n).
We have already met one SU(n), because the group of unit quaternions

B

is none other than SU(2). The rows (a,—f) and (B, c) are easily seen
to form an orthonormal basis of C?. Conversely, (o, —f) is an arbitrary
unit vector in C?, and (B, o) is the unique unit vector orthogonal to it that
makes the determinant equal to 1.

<a _aﬁ>’ where o, f € Cand |a)? +|B? =1,
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Path-connectedness of SU(n)

We can prove that SU(n) is path-connected, along similar lines to the proof
for SO(n) in the previous section. The proof is again by induction on n,
but the case n = 2 now demands a little more thought. It is helpful to use
the complex exponential function €%, which we take to equal cosx -+ isinx
by definition for now. (In Chapter 4 we study exponentiation in depth.)

Given (g jf) in SU(2), first note that (e, ) is a unit vector in C?,
s0 o = ucos6 and B = vsin 6 for some u,v in C with |u] = |[v| = 1. This
means that u = €¢ and v= €V for some ¢,y € R.

It follows that
aft) =€e%cosot, P(t)=€vsinot, for 0<t<1,

gives a continuous path (gg; ;ls(t(;)) from 1 to (g *aﬁ> in SU(2). Thus

SU(2) is path-connected.

Exercises

Actually, SU(2) is not the only special unitary group we have already met, though
the other one is less interesting.

3.3.1 What is SU(1)?

The following exercises verify that a linear transformation of C", with matrix

A, preserves the Hermitian inner product (*) if and only if AAT = 1. They can be
proved by imitating the corresponding steps of the proof in Section 3.1.

3.3.2 Show that vectors form an orthonormal basis of C" if and only if their
conjugates form an orthonormal basis, where the conjugate of a vector
(ug,Up,...,Un) is the vector (up, Uz, ...,Un).

3.3.3 Show that AA" = 1 if and only if the row vectors of A form an orthonormal
basis of C".

3.3.4 Deduce from Exercises 3.3.2 and 3.3.3 that the column vectors of A form
an orthonormal basis.

3.3.5 Show that if A preserves the inner product (*) then the columns of A form
an orthonormal basis.

3.3.6 Show, conversely, that if the columns of A form an orthonormal basis, then
A preserves the inner product (*).
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3.4 Thesymplectic groups

On the space H" of ordered n-tuples of quaternions there is a natural inner
product,

(P1,P2;---,Pn) - (Q1,Q2;---,0n) = P1OL+ P2G2 + -+ Pl (%)

This of course is formally the same as the inner product (*) on C", ex-
cept that the p; and gj now denote arbitrary quaternions. The space H"
is not a vector space over H, because the quaternions do not act correctly
as “scalars”: multiplying a vector on the left by a quaternion is in general
different from multiplying it on the right, because of the noncommutative
nature of the quaternion product.

Nevertheless, quaternion matrices make sense (thanks to the associa-
tivity of the quaternion product, we still get an associative matrix product),
and we can use them to define linear transformations of H". Then, by spe-
cializing to the transformations that preserve the inner product (**), we get
an analogue of the orthogonal group for H" called the symplectic group
Sp(n). As with the unitary groups, preserving the inner product implies
preserving length in the corresponding real space, in this case in the space
R*" corresponding to H",

For example, Sp(1) consists of the 1 x 1 quaternion matrices, multipli-
cation by which preserves length in H = R*. In other words, the members
of Sp(1) are simply the unit quaternions. Because we defined quaternions
in Section 1.3 as the 2 x 2 complex matrices

a+id —b—ic
b—ic a—id )’
it follows that

Sp(1) = { (?:I.g ;b__i(;c> 2P+ d = 1} = SU(2).

Thus we have already met the first symplectic group.

The quaternion matrices A in Sp(n), like the complex matrices in
SU(n), are characterized by the condition AAT = 1, where the bar now
denotes the quaternion conjugate. The proof is the same as for SU(n).
Because of this formal similarity, there is a proof that Sp(n) is path-
connected, similar to that for SU(n) given in the previous section.
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However, we avoid imposing the condition det(A) = 1, because there
are difficulties in the very definition of determinant for quaternion matrices.
We sidestep this problem by interpreting all n x n quaternion matrices as
2n x 2n complex matrices.

The complex form of Sp(n)

In Section 1.3 we defined quaternions as the complex 2 x 2 matrices

_ (a+id —b—ic\ (o -B
4= (b—ic a—id ) - ([3 o > foro.feC.
Thus the entries of a quaternion matrix are themselves 2 x 2 matrices qg.
Thanks to a nice feature of the matrix product—that it admits block multi-
plication—we can omit the parentheses of each matrix g. Then it is natural

to define the complex form, C(A), of a quaternion matrix A to be the result
of replacing each quaternion entry g in A by the 2 x 2 block

o —B
B o

Notice also that the transposed complex conjugate of this block corre-
sponds to the quaternion conjugate of g:

_(a—id b+ic\ [a B
9=\ b+ric at+id) -8 o)
Therefore, if Ais a quaternion matrix such that AAT = 1, it follows by
block multiplication (and writing 1 for any identity matrix) that

C(AC(A) =C(AAT) =C(1) = 1.

Thus C(A) is a unitary matrix.
Conversely, if A is a quaternion matrix for which C(A) is unitary, then

AA" = 1. This follows by viewing the product AAT of guaternion matrices

as the product C(A)C(A)T of complex matrices. Therefore, thegroup Sp(n)
consists of those n x n quaternion matrices A for which C(A) is unitary.

It follows, if we define the complex form of Sp(n) to be the group of
matrices C(A) for A € Sp(n), that the complex form of Sp(n) consists of the
unitary matrices of the form C(A), where A isan n x n quaternion matrix.
In particular, the complex form of Sp(n) is a subgroup of U(2n).
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Many books on Lie theory avoid the use of quaternions, and define
Sp(n) as the group of unitary matrices of the form C(A). This gets around
the inconvenience that H" is not quite a vector space over H (mentioned
above) but it breaks the simple thread joining the orthogonal, unitary, and
symplectic groups: they are the “generalized rotation” groups of the spaces
with coordinates from R, C, and H, respectively.

Exercises

It is easy to test whether a matrix consists of blocks of the form
a —B
B o

Nevertheless, it is sometimes convenient to describe the property of “being of the
form C(A)” more algebraically. One way to do this is with the help of the special

matrix
0 1
1= (_1 O).

o *aﬁ ) show that JBJ~! = B,

B

3.4.2 Conversely, show that if JBJ"! =B and B = (Z ?) then we have c = f

341 IfB= <

and d = —e, so B has the form ¢ - .
B«

Now suppose that By is any 2n x 2n complex matrix, and let

J 0OO0..0

0Jo0..0 ) _
In=1| . . . |, whereOisthe 2 x 2 zero matrix.

00..01J

3.4.3 Use block multiplication, and the results of Exercises 3.4.1 and 3.4.2, to
show that Bpn has the form C(A) if and only if JnBandy, = Ban.

The equation satisfied by J and By, enables us to derive information about det(Byy)
(thus getting around the problem with the determinant of a quaternion matrix).

3.4.4 By taking det of both sides of the equation in Exercise 3.4.3, show that
det(Bypp) is real.

3.4.5 Assuming now that By is in the complex form of Sp(n), and hence is uni-
tary, show that det(Bg,) = +1.
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One can prove Sp(n) is path-connected by an argument like that used for
SU(n) in the previous section. First prove path-connectedness of Sp(2) as for
SU(2), using a result from Section 4.2 that each unit quaternion is the exponential
of a pure imaginary quaternion.

3.4.6 Deduce from the path-connectedness of Sp(n) that det(Bg,) = 1.

This is why there is no “special symplectic group”—the matrices in the symplectic
group already have determinant 1, under a sensible interpretation of determinant.

3.5 Maximal tori and centers

The main key to understanding the structure of a Lie group G is its maximal
torus, a (not generally unique) maximal subgroup isomorphic to

TK=8'xS' x---xS* (k-fold Cartesian product)

contained in G. The group TX is called a torus because it generalizes the
ordinary torus T? = St x St. An obvious example is the group SO(2) = St,
which is its own maximal torus. For the other groups SO(n), not to mention
SU(n) and Sp(n), maximal tori are not so obvious, though we will find
them by elementary means in the next section. To illustrate the kind of
argument involved we first look at the case of SO(3).

Maximal torus of SO(3)

If we view SO(3) as the rotation group of R3, and let e, &, and e; be the
standard basis vectors, then the matrices

cos® —sin® 0
Ry,=|[sin6 cos6 0
0 0 1

form an obvious T* = S* in SO(3). The matrices R}, are simply rotations
of the (e1, &)-plane through angle 6, which leave the e;-axis fixed.

If T is any torus in G that contains this T* then, since any torus is
abelian, any A € T commutes with all Ry, € T*. We will show that if

AR, =R,A forall R,eT! *)
then A e T, so T = T? and hence T? is maximal. It suffices to show that

Aler), A(e) € (er,&)-plane,
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because in that case A is an isometry of the (e, e;)-plane that fixes O. The
only such isometries are rotations and reflections, and the only ones that
commute with all rotations are rotations themselves.

So, suppose that

A(e)) = aye1 + aey + ages.

By the hypothesis (*), A commutes with all R}, and in particular with

-1 0 0
R.=[0 -10
0 0 1

Now we have

AR (e1) = A(—€1) = —ay & — @& — agey,

R.A(e) =R (e + ae, +a3€3) = —ay € — &€ + a3€3,
so it follows from AR, = R Athat ag = 0 and hence

Aer) € (e1,e)-plane.

A similar argument shows that

Aez) € (€1, €2)-plane,
which completes the proof that T* is maximal in SO(3). O

An important substructure of G revealed by the maximal torus is the
center of G, a subgroup defined by

Z(G)={AcG:AB=BAforall Be G}.

(The letter Z stands for “Zentrum,” the German word for “center.”) It is
easy to check that Z(G) is closed under products and inverses, and hence
Z(G) isagroup. We can illustrate how the maximal torus reveals the center
with the example of SO(3) again.

Center of SO(3)

An element A € Z(SO(3)) commutes with all elements of SO(3), and in
particular with all elements of the maximal torus T*. The argument above
then shows that A fixes the basis vector e3. Interchanging basis vectors, we
likewise find that A fixes e; and e,. Hence A is the identity rotation 1.
Thus Z(SO(3)) = {1}. O
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Exercises

The 2-to-1 map from SU(2) to SO(3) ensures that the maximal torus and center
of SU(2) are similar to those of SO(3).

3.5.1 Give an example of a Tt in SU(2).

3.5.2 Explain why a T? in SU(2) yields a T? in SO(3), so T* is maximal in
SU(2). (Hint: Map each element g of the T? in SU(2) to the pair +g in
S0O(3), and look at the images of the S* factors of T2.)

3.5.3 Explain why Z(SU(2)) = {£1}.
The center of SO(3) can also be found by a direct geometric argument.

3.5.4 Suppose that A is a rotation of R3, about the e;-axis, say, that is not the
identity and not a half-turn. Explain (preferably with pictures) why A does
not commute with the half-turn about the e3-axis.

3.5.5 If A is a half-turn of R® about the ej-axis, find a rotation that does not
commute with A.

In Section 3.7 we will show that Z(SO(2m+ 1)) = {1} for all m. However,
the situation is different for SO(2m).

3.5.6 Give an example of a nonidentity element of Z(SO(2m)) for each m> 2.

3.6 Maximal tori in SO(n), U(n), SU(n), Sp(n)

The one-dimensional torus T! = S* appears as a matrix group in several
different guises:

e as agroup of 2 x 2 real matrices

Ro — (cos@ —sine)’

sin@ cosO

e as a group of complex numbers (or 1 x 1 complex matrices)

Zy =C0SO +isin0,

e as a group of quaternions (or 1 x 1 quaternion matrices)

gy =C0sO+isinb.

Each of these incarnations of T? gives rise to a different incarnation of T:
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e as a group of 2k x 2k real matrices

Ro..6,,...00 =

cos6; —sino;

sin@;  cos 6,
cosf, —sinod,
sin@,  cos6,

cos6, —sin6By
sin@¢  cos Bk
where all the blank entries are zero,
e as a group of k x k unitary matrices
o
de:
Z61,6;,...6 = . :
&

where all the blank entries are zero and € = cos6 +isin @,
e as a group of k x k symplectic matrices

g
gt
Q91~,92~,---79k - . )
gk

where all the blank entries are zero and € = cos6 +isin6. (This
generalization of the exponential function is justified in the next
chapter. In the meantime, € may be taken as an abbreviation for
cos0 +isino.)

We can also represent T by larger matrices obtained by “padding” the
above matrices with an extra row and column, both consisting of zeros
except for a 1 at the bottom right-hand corner (as we did to produce the
matrices Ry in SO(3) in the previous section). Using this idea, we find the
following tori in the groups SO(2m), SO(2m+1), U(n), SU(n), and Sp(n).
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SO(2m+ 1) we have the T™ consisting of the “padded” matrices

R’el,ez,...,ek =

cosH; —sino;

sinf; cos6;
cosf, —sin6,
sin@,  cos6,

cos6, —sin6y
sinB¢  cos Bk

1

have the T"! consisting of the Zg, 0,.....6, With 61 +- 6,4 ---+ 6, =0. The
latter matrices form a T"! because

go1 g (61—6n)
_ dibn
gbn-1 =€ al(6n-1—60) ’
th 1

and the matrices on the right clearly form a T"1. Finally, in Sp(n) we

We now show that these “obvious” tori are maximal. As with SO(3),
used as an illustration in the previous section, the proof in each case con-
siders a matrix A € G that commutes with each member of the given torus
T, and shows that A € T.

Maximal tori in generalized rotation groups. The tori listed above are
maximal in the corresponding groups.

Proof. Case (1): T™in SO(2m), for m> 2.
If we let er, e, ..., em denote the standard basis vectors for R?™, then

rotations, each of which fixes the basis vectors orthogonal to the plane:

rotation of the (er, e)-plane through angle 6y,
rotation of the (es,e4)-plane through angle 6,

rotation of the (exm-1,€m)-plane through angle 6.
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going to show that

Aer),A(e) € (er,&)-plane,
A(&3),A(es) € (€3,€4)-plane,

Alem-1),A(e&m) € (em-1,em)-plane,

from which it follows that A is a product of rotations of these planes, and
hence is a member of T™. (The possibility that A reflects some plane & is
ruled out by the fact that A commutes with all members of T™, including
those that rotate only the plane 2. Then it follows as in the case of SO(3)
that A rotates &.)

To show that A maps the basis vectors into the planes claimed, it suf-
fices to show that A(e;) € (er,&)-plane, since the other cases are similar.
So, suppose that

6n = Roy.6,....6,A Torall Ro g, 0,€T,

and in particular that
ARz o0...0(€1) =Rzo,.. oA(er).

Then if A(ey) = age; + &€ + - - - + aymem. We have
ARzo o(e1) =A(—e1) = —aye — aye — a3€3 - - - — AmEom,

but
Rro,. 0A(€1) = —au€ — @€ +ag€3 + - + EmEom,

whence ag = a4 = --- = ap;y = 0, as required.

The argument is similar for any other . Hence A € T™, as claimed.

Case (2): T™in SO(2m+1).

In this case we generalize the argument for SO(3) from the previous
section, using maps such as R, in place of Ry.

Case (3): T"in U(n).

Let e,e,...,&, be the standard basis vectors of C", and suppose that
with

-1
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Then if A(ey) = aye; + - - - + anen, we have

AZo. o(€1) =A(—€) = —ae; — - — anen
Zro..0A€1) = Zro,. o(@€1 ++ +anen) = —@er + - +anen,

whence it follows thata, = --- = a, =0.

Thus A(e;) = cie for some ¢; € C, and a similar argument shows that
A(ex) = cxe for each k. Also, A(ey),...A(e,) are an orthonormal basis,
since A € U(n). Hence each |cx| = 1, so ¢ = €% and therefore A€ T".

Case (4): T"1 in SU(n).

For n > 2 we can argue as for U(n), except that we need to commute
Awith both Z; 70,0 and Zz o z,... o to conclude that A(e;) = cie;. This is
because Z 0 ... o is not in SU(n), since it has determinant —1.

For n = 2 we can argue as follows.

Suppose A= (28) commutes with each Zg _o € T™. In particular, A

commutes with
i 0
ZTL’/Z,—I{/Z = <O —|> )

(3 = (% %)

It follows that b = ¢ = 0 and hence A € T?.

Case (5): T"in Sp(n).
Here we can argue exactly as in Case (3). O

which implies that

Exercises
3.6.2 Use Exercise 3.6.1 to give another proof that T" is a maximal torus of U(n).

3.6.3 Show that the maximal tori found above are in fact maximal abelian sub-
groups of SO(n), U(n), SU(n), Sp(n).

We did not look for a maximal torus in O(n) because the subgroup SO(n) is of
more interest to us, but in any case it easy to find a maximal torus in O(n).

3.6.4 Explain why a maximal torus of O(n) is also a maximal torus of SO(n).
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3.7 Centersof SO(n), U(n), SU(n), Sp(n)

The arguments in the previous section show that an element A in G =
SO(n),U(n),SU(n),Sp(n) that commutes with all elements of a maximal
torus T in Gis in fact in T. It follows that if Acommutes with all elements
of G then A € T. Thus we can assume that elements A of the center Z(G)
of G have the special form known for members of T. This enables us to
identify Z(G) fairly easily when G = SO(n),U(n),SU(n),Sp(n).

Centersof generalized rotation groups. The centers of these groups are:
(1) Z(SO(2m)) = {+1}.
(2) Z(SO(2m+1)) = {1}.

() Z(U(n)) ={wl:|w| =1}

(4) Z(SU(n)) ={wl: 0" =1}.

(5) Z(Sp(n)) = {+1}.

Proof. Case (1): A€ Z(SO(2m)) for m> 2.

In this case A= Ry, ¢,,....9, fOr some angles 61,6,...,6,, and A com-
mutes with all members of SO(2m). Now Ry, 6,6, is built from a se-
quence of 2 x 2 blocks (placed along the diagonal) of the form

Ry — (cose —sine)‘

sin@ cos@

We notice that Ry does not commute with the matrix

- 2)

unless sin® = 0 and hence cos @ = +£1. Therefore, if we build a matrix
with I, only if each sin 6, = 0 and cos 6 = £1.

Thus a matrix Ain Z(SO(2m)) has diagonal entries +1 and zeros else-
where. Moreover, if both +1 and —1 occur we can find a matrix in SO(2m)
that does not commute with A; namely, a matrix with Rg on the diagonal at
the position of an adjacent +1 and —1 in A, and otherwise only 1’s on the
diagonal. So, in fact, A=1or A= —1. Both 1 and —1 belong to SO(2m),
and they obviously commute with everything, so Z(SO(2m)) = {+-1}.
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Case (2): A€ Z(SO(2m+1)).

The argument is very similar to that for Case (1), except for the last
step. The (2m+1) x (2m+ 1) matrix —1 does not belong to SO(2m—+1),
because its determinant equals —1. Hence Z(SO(2m+1)) = {1}.

Case (3): Ac Z(U(n)).

In this case A= Zg, g,.... o, fOr some 6, 6, ..., 6, and Acommutes with
all elements of U(n). If n= 1 then U(n) is isomorphic to the abelian group
St ={€?:6 c R}, so U(1) is its own center. If n> 2 we take advantage
of the fact that

g 0 ) 0 1
(O eigz) does not commute with (1 O)

unless €% = €. It follows, by building a matrix with (93) somewhere
on the diagonal and otherwise only 1s on the diagonal, that A = Zg, 6, . g,
must have €% = g% = ... = d,

In other words, elements of Z(U(n)) have the form €91. Conversely,
all matrices of this form are in U(n), and they commute with all other
matrices. Hence

Z(U(n) ={€?1: 0 eR} ={wl:|o|=1}.

Case (4): Ae Z(SU(n)).
The argument for U(n) shows that A must have the form w1, where
|o| = 1. But in SU(n) we must also have

1=det(A) = 0"
This means that o is one of the n “roots of unity”
e2i7r/n e4i7r/n e2(n—1)7r/n 1.

All such matrices w1 clearly belong to SU(n) and commute with every-
thing, hence Z(SU(n)) = {w1: " = 1}.

Case (5): A€ Z(Sp(n)).

In this case A = Qg 6,,....6, fOr some 01,6,,...,6, and A commutes
with all elements of Sp(n). The argument used for U(n) applies, up to the
point of showing that all matrices in Z(Sp(n)) have the form g1, where
|g| = 1. But now we must bear in mind that quaternions q do not generally
commute. Indeed, only the real quaternions commute with all the others,
and the only real quaternions g with |gf =1 areq=1and g= —1. Thus

Z(Sp(n)) = {+1}. O
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Exercises

It happens that the quotient of each of the groups SO(n), U(n), SU(n), Sp(n) by
its center is a group with trivial center (see Exercise 3.8.1). However, it is not
generally true that the quotient of a group by its center has trivial center.

3.7.1 Find the center Z(G) of G= {1,—1,i,—i,j,—j,k,—k} and hence show that
G/Z(G) has nontrivial center.

3.7.2 Prove that U(n)/Z(U(n)) = SU(n)/Z(SU(n)).
3.7.3 1sSU(2)/Z(SU(2)) = SO(3)?

3.7.4 Using the relationship between U(n), Z(U(n)), and SU(n), or otherwise,
show that U(n) is path-connected.

3.8 Connectedness and discreteness

Finding the centers of SO(n), U(n), SU(n), and Sp(n) is an important step
towards understanding which of these groups are simple. The center of
any group G is a normal subgroup of G, hence G cannot be simple unless
Z(G) = {1}. This rules out all of the groups above except the SO(2m+1).
Deciding whether there are any other normal subgroups of SO(2m+1)
hinges on the distinction between discrete and nondiscrete subgroups.

A subgroup H of a matrix Lie group G is called discrete if there is a
positive lower bound to the distance between any two members of H, the
distance between matrices (&) and (bj;) being defined as

Z!au bij |2

(We say more about the distance between matrices in the next chapter.) In
particular, any finite subgroup of G is discrete, so the centers of SO(n),
SU(n), and Sp(n) are discrete. On the other hand, the center of U(n) is
clearly not discrete, because it includes elements arbitrarily close to the
identity matrix.

In finding the centers of SO(n), SU(n), and Sp(n) we have in fact found
all their discrete normal subgroups, because of the following remarkable
theorem, due to Schreier [1925].

Centrality of discrete normal subgroups. If Gisa path-connected matrix
Lie group with a discrete normal subgroup H, then H is contained in the
center Z(G) of G.
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Proof. Since H is normal, BAB~* € H for each A< H and B € G. Thus
B — BAB defines a continuous map from G into the discrete set H. Since
G is path connected, and a continuous map sends paths to paths, the image
of the map must be a single point of H. This point is necessarily A because
1—1A11=A

In other words, each A € H has the property that BA= ABfor all B € G.
Thatis, A€ Z(G). O

The groups SO(n), SU(n), and Sp(n) are path-connected, as we have
seen in Sections 3.2, 3.3, and 3.4, so all their discrete normal subgroups
are in their centers, determined in Section 3.7. In particular, SO(2m+-1)
has no nontrivial discrete normal subgroup, because its center is {1}.

It follows that the only normal subgroups we may have missed in
SO(n), SU(n), and Sp(n) are those that are not discrete. In Section 7.5
we will establish that such subgroups do not exist, so all normal sub-
groups of SO(n), SU(n), and Sp(n) are in their centers. In particular,
the groups SO(2m+ 1) are all simple, and it follows from Exercise 3.8.1
below that the rest are simple “modulo their centers.” That is, for G =
SO(2m),SU(n), Sp(n), the group G/Z(G) is simple.

Exercises

3.8.1 If Z(G) is the only nontrivial normal subgroup of G, show that G/Z(G) is
simple.

The result of Exercises 3.2.1, 3.2.2, 3.2.3 can be improved, with the help of
some ideas used above, to show that the identity component is a normal subgroup
of G.

3.8.2 Show that, if H is a subgroup of G and AHA~! C H for each A € G, then H
is a normal subgroup of G.

3.8.3 If G is a matrix group with identity component H, show that AHA™1 C H
for each matrix A € G.

The proof of Schreier’s theorem assumes only that there is no path in H be-
tween two distinct members, that is, H is totally disconnected. Thus we have
actually proved: if G is a path-connected group with a totally disconnected nor-
mal subgroup H, then H is contained in Z(G). We can give examples of totally
disconnected subgroups that are not discrete.

3.8.4 Show that the subgroup H = {cos2zr +isin2zr : r rational} of the circle
SO(2) is totally disconnected but dense, that is, each arc of the circle con-
tains an element of H.
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This example is also a normal subgroup. However, normal, dense, totally
disconnected subgroups are rare.

3.8.5 Explain why there is no normal, dense, totally disconnected subgroup of
SO(n) forn > 2.

3.9 Discussion

The idea of treating orthogonal, unitary, and symplectic groups uniformly
as generalized isometry groups of the spaces R", C", and H" seems to
be due to Chevalley [1946]. Before the appearance of Chevalley’s book,
the symplectic group Sp(n) was generally viewed as the group of unitary
transformations of C2" that preserve the symplectic form

(cnog — BuBy) + -+ (oo — BaB),

where (0q,B1,. .., 0n, Bn) is the typical element of C2". This element cor-
responds to the element (qg, ..., qn) of H", where

Ok = :
Bc o
The invariance of the quaternion inner product

Chdy + - -+ + OnGl

is therefore equivalent to the invariance of the matrix product

<OC1 _ﬁ1> (O‘i _Bi> N (an _ﬁn) <ar/1 _Br/1>
B o /J\B o Bn o )\Bh )’
which turns out to be equivalent to the invariance of the symplectic form.

The word “symplectic” itself was introduced by Hermann Weyl in his book
The Classical Groups, Weyl [1939], p. 165:

The name “complex group” formerly advocated by me in al-
lusion to line complexes, as these are defined by the vanishing
of antisymmetric bilinear forms, has become more and more
embarrassing through collision with the word “complex” in
the connotation of complex number. | therefore propose to re-
place it with the corresponding Greek adjective “symplectic.”



72 3 Generalized rotation groups

Maximal tori were also introduced by Weyl, in his paper Weyl [1925].
In this book we use them only to find the centers of the orthogonal, unitary,
and symplectic groups, since the centers turn out to be crucial in the inves-
tigation of simplicity. However, maximal tori themselves are important for
many investigations in the structure of Lie groups.

The existence of a nontrivial center in SO(2m), SU(n), and Sp(n)
shows that these groups are not simple, since the center is obviously a
normal subgroup. Nevertheless, these groups are almost simple, because
the center is in each case their largest normal subgroup. We have shown in
Section 3.8 that the center is the largest normal subgroup that is discrete,
in the sense that there is a minimum, nonzero, distance between any two
of its elements. It therefore remains to show that there are no nondiscrete
normal subgroups, which we do in Section 7.5.

It turns out that the quotient groups of SO(2m), SU(n), and Sp(n) by
their centers are simple and, from the Lie theory viewpoint, taking these
quotients makes very little difference. The center is essentially “invisible,”
because its tangent space is zero. We explain “invisibility” in Chapter 5,
after looking at the tangent spaces of some particular groups in Chapter 4.

It should be mentioned, however, that the quotient of a matrix group
by a normal subgroup is not necessarily a matrix group. Thus in taking
quotients we may leave the world of matrix groups. The first example was
discovered by Birkhoff [1936]. It is the quotient (called the Heisenberg
group) of the group of upper triangular matrices of the form

y
, Wwhere Xxy,zeR,

o O -

X
1 z
0 1

by the subgroup of matrices of the form

10
01 , Wwhere neZ.
00

= O S

The Heisenberg group is a Lie group, but not isomorphic to a matrix group.

One of the reasons for looking at tangent spaces is that we do not have
to leave the world of matrices. A theorem of Ado from 1936 shows that
the tangent space of any Lie group G—the Lie algebra g—can be faithfully
represented by a space of matrices. And if G is almost simple then g is truly
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simple, in a sense that will be explained in Chapter 6. Thus the study of
simplicity is, well, ssimplified by passing from Lie groups to Lie algebras.

The importance of topology in Lie theory—and particularly paths and
connectedness—was first realized by Schreier in 1925. Schreier published
his results in the journal of the Hamburg mathematical seminar—a well-
known journal for algebra and topology at the time—but they were not
noticed by Lie theorists until after Schreier’s untimely death in 1929 at the
age of 28. In 1929, Elie Cartan became aware of Schreier’s results and
picked up the torch of topology in Lie theory.

In the 1930s, Cartan proved several remarkable results on the topol-
ogy of Lie groups. One of them has the consequence that S* and S® are
the only spheres that admit a continuous group structure. Thus the Lie
groups SO(2) and SU(2), which we already know to be spheres, are the
only spheres that actually occur among Lie groups. Cartan’s proof uses
quite sophisticated topology, but his result is related to the theorem of
Frobenius mentioned in Section 1.6, that the only skew fields R" are R,
R2=C, and R* = H. In particular, there is a continuous and associa-
tive “multiplication”—necessary for continuous group structure—only in
R, R?, and R*. For more on the interplay between topology and algebra in
R", see the book Ebbinghaus et al. [1990].
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The exponential map

PREVIEW

The group St = SO(2) studied in Chapter 1 can be viewed as the image of
the line Ri = {i6 : 6 € R} under the exponential function, because

exp(i0) = €% = cos6 +isin6.

This line is (in a sense we explain below) the tangent to the circle at its
identity element 1. And, in fact, any Lie group has a linear space (of the
same dimension as the group) as its tangent space at the identity.

The group S® = SU(2) is also the image, under a generalized exp func-
tion, of a linear space. This linear space—the tangent space of SU(2) at
the identity—is three-dimensional and has an interesting algebraic struc-
ture. Its points can be added (as vectors) and also multiplied in a way that
reflects the nontrivial conjugation operation gi,0> — 01020, Lin su(2).
The algebra su(2) on the tangent space is called the Lie algebra of the Lie
group SU(2), and it is none other than R® with the vector product.

As we know from Chapter 1, complex numbers and quaternions can
both be viewed as matrices. The exponential function exp generalizes to
arbitrary square matrices, and we will see later that it maps the tangent
space of any matrix Lie group G into G. In many cases exp is onto G, and in
all cases the algebraic structure of G has a parallel structure on the tangent
space, called the Lie algebra of G. In particular, the conjugation operation
on G, which reflects the departure of G from commutativity, corresponds
to an operation on the tangent space called the Lie bracket.

We illustrate the exp function on matrices with the simplest nontrivial
example, the affine group of the line.

74 J. Stillwell, Naive Lie Theory, DOI: 10.1007/978-0-387-78214-0 4,
(© Springer Science+Business Media, LLC 2008
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4.1 Theexponential map onto SO(2)
The relationship between the exponential function and the circle,
d? = cos @ +isino,

was discovered by Euler in his book Introduction to the Analysis of the
Infinite of 1748. One way to see why this relationship holds is to look at
the Taylor series for €, cosx, and sinx, and to suppose that the exponential
series is also meaningful for complex numbers.

X X X X X

X
Sl T Ta T Te T
cosx:l—x2+x4—---
2 a
: X x>
TR (R TR

The series for € is absolutely convergent, so we may substitute i6 for xand
rearrange terms. This gives a definition of €9 and justifies the following
calculation:

o . 0 62 i6° 0% i6°
T TR T T i

(0" 0 (0 6 ~ cos6ising
_ _2!+4!_... +i 1!_3!+5!_.-- =C0sH +isiné.

Thus the exponential function maps the imaginary axis Ri of points i6 onto
the circle S* of points cos 6 +isin 8 in the plane of complex numbers.

The operations of addition and negation on Ri carry over to multipli-
cation and inversion on St, since

doido — (60 gng (ée)*1 _ o

There is not much more to say about S, because multiplication of
complex numbers is a well-known operation and the circle is a well-known
curve. However, we draw attention to one trifling fact, because it proves to
have a more interesting analogue in the case of S® that we study in the next
section. Theline of pointsi® mapped onto S* by the exponential function
can be viewed asthe tangent to S at the identity element 1 (Figure 4.1). Of
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course, the points on the tangent are of the form 1+i6, but we ignore their
constant real part 1. The essential coordinate of a point on the tangent is its
imaginary part i6, giving its height 6 above the x-axis. Note also that the
point i6 at height 6 is mapped to the point cos 6 +isin 6 at arc length 6.
Thus the exponential map preserves the length of sufficiently small arcs.

y

i| &

Figure 4.1: St and its tangent at the identity.

Euler’s discovery that the exponential function can be extended to the
complex numbers, and that it can thereby map a straight line onto a curve,
was just the beginning. In the next section we will see that a further exten-
sion of the exponential function can map the flat three-dimensional space
R3 onto a curved one, S, and in the next chapter we will see that such
exponential mappings exist in arbitrarily high dimensions.

Exercises

The fundamental property of the exponential function is the addition formula,
which tells us that exp maps sums to products, that is,

B = eeP.

However, we are about to generalize the exponential function to objects that do
not enjoy all the algebraic properties of real or complex numbers, so it is important
to investigate whether the equation €*"8 = e*e® still holds. The answer is that it
does, provided AB = BA.
We assume that
X X2

=1+ TR where 1 is the identity object.
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4.1.1 Assuming that AB = BA, show that

(A4+B)M= A" (T) AT 1B (g‘) A™2R2 L <mm 1) AB™ 1B

where (") denotes the number of ways of choosing | things from a set of
mthings.

4.1.2 Show that (T) = Mm-1(m-2)-(m=T+L) _ L
4.1.3 Deduce from Exercises 4.1.1 and 4.1.2 that the coefficient of A™'B! in

A+B (A+B)? (A+B)®
+B __
AMB=14 ot T F
is 1/1'(m—1)! when AB = BA.

4.1.4 Show that the coefficient of A™'B! in

1A Az A3 1. B B> B®
LTI TR TR A TR TR T

isalso 1/1'(m—1)!, and hence that é**B = e*e® when AB = BA.

4.2 Theexponential map onto SU(2)

If u= bi+ ¢ +dk is a unit vector in Ri +Rj + Rk, then u?> = —1 by the
argument at the end of Section 1.4. This leads to the following elegant
extension of the exponential map from pure imaginary numbers to pure
imaginary quaternions.

Exponentiation theorem for H. When we write an arbitrary element of
Ri + Rj + Rk in the form 6u, where u is a unit vector, we have

eV = cos @ + usin @

and the exponential function maps Ri + Rj + Rk onto % = SU(2).

Proof. For any pure imaginary quaternion v we define €’ by the usual

infinite series
=1+ + v +
I LA
This series is absolutely convergent in H for the same reason as in C: for

sufficiently large n, |v|"/nl < 27" Thus €’ is meaningful for any pure

!_|_....
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imaginary quaternion v. If v= 0u, where u is a pure imaginary and |u| =1,
then u? = —1 by the remark above, and we get

6u 6% 6% 6* 0°u 6"

voa T et e T

(00 o 0 0°
S AT Rl G TR TR TR

=Cc0s0 +usino.

=1+

Also, a point a+ bi +¢j +dk € S can be written in the form
bi+¢j + dk
V2 4 c2 4 d?
where u is a unit pure imaginary quaternion. Since a®+b?>+c?+d? =1
for a quaternion a+ bi + ¢j +dk € S®, there is a real 6 such that

VR r 24 d2=a+uy/b 42,

a=coso, VB2 £ 21+ d2 =sine.

Thus any point in S is of the form cos 6 + usin @, and so the exponential
map is from Ri + Rj + Rk onto S°. O

Up to this point, we have a beautiful analogy with the exponential map
in C. The three-dimensional space Ri + Rj + Rk is the tangent space of the
3-sphere S® = SU(2) at the identity element 1, as we will see in the next
section.

But the algebraic situation on S is more interesting (if you like, more
complex) than on S'. For a pair of elements u,v € S® we generally have
uv # wu, and hence uvu~! # v. Thus the element uvu—?, the conjugate of v
by u~!, detects failure to commute. Remarkably, the conjugation operation
on S = SU(2) is reflected in a noncommutative operation on the tangent
space Ri + Rj + Rk that we uncover in the next section.

Exercises

4.2.1 Show that the exponential function maps any line through O in Ri +Rj + Rk
onto a circle of radius 1 in S,

Since we can have uv # vu for quaternions u and v, it can be expected, from the
previous exercise set, that we can have 'e" # eV,
4.2.2 Explainwhy i =€"/2andj = &7/2,

4.2.3 Deduce from Exercise 4.2.2 that at least one of €7/2d7/2 7/2d7/2 js not
equal to &7/2+i7/2,
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4.3 Thetangent space of SU(2)

The space Ri + Rj + Rk mapped onto SU(2) by the exponential function
is the tangent space at 1 of SU(2), just as the line Ri is the tangent line
at 1 of the circle SO(2). But SU(2), unlike SO(2), cannot be viewed from
“outside” by humans, so we need a method for finding tangent vectors from
“inside” SU(2). This method will later be used for the higher-dimensional
groups SO(n), SU(n), and so on.

The idea is to view a tangent vector at 1 as the “velocity vector” of
a smoothly moving point as it passes through 1. To be precise, consider
a differentiable function of t, whose values q(t) are unit quaternions, and
suppose that q(0) = 1. Then the “velocity” ¢ (0) att = 0 is a tangent vector
to SU(2), and all the tangent vectors to SU(2) at 1 are obtained in this way.

The assumption that g(t) is a unit quaternion for each t in the domain
of g means that

qt)act) =1, *)
because qq = |q|? for each quaternion g, as we saw in Section 1.3. By
differentiating (*), using the product rule, we find that

g (t)q(t) +q(t)q/(t) =0.

(The usual proof of the product rule applies, even though quaternions do
not necessarily commute—it is a good exercise to check why this is so.)
Then setting t = 0, and bearing in mind that g(0) = 1, we obtain

q(0)+(0) = 0.
So, every tangent vector ¢ (0) to SU(2) satisfies
q(0)+d(0) =0,

which means that g (0) is a pure imaginary quaternion p. Conversely, if
p is any pure imaginary quaternion, then pt € Ri + Rj 4+ Rk for any real
number t, and we know from the previous section that ™ € SU(2). Thus
q(t) = €™ is a path in SU(2). This path passes through 1 when t = 0, and
it is smooth because it has the derivative

q(t) = pe”.

(To see why, differentiate the infinite series for e™.) Finally, ¢ (0) = p,
because € = 1. Thus every pure imaginary quaternion is a tangent vector
to SU(2) at 1, and so the tangent space of SU(2) at 1isRi+ Rj + Rk.
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This construction of the tangent space to SU(2) at 1 provides a model
that we will follow for the so-called classical Lie groups in Chapter 5. Inall
cases it is easy to find the general form of a tangent vector by differentiating
the defining equation of the group, but one needs the exponential function
(for matrices) to confirm that each matrix X of the form in question is in
fact a tangent vector (namely, the tangent to the smooth path €X).

ThelLiebracket

The great idea of Sophus Lie was to look at elements “infinitesimally close
to the identity” in a Lie group, and to use them to infer behavior of ordi-
nary elements. The modern version of Lie’s idea is to infer properties of
the Lie group from properties of its tangent space. A commutative group
operation, as on SO(2), is completely captured by the sum operation on the
tangent space, because €Y = €‘¢¥. The real secret of the tangent space is
an extra structure called the Lie bracket operation, which reflects the non-
commutative content of the group operation. (For a commutative group,
such as SO(2), the Lie bracket on the tangent space is always zero.)

In the case of SU(2) we can already see that the sum operation on
Ri + Rj + Rk is commutative, so it cannot adequately reflect the product
operation on SU(2). Nor can the product on SU(2) be captured by the
quaternion product on Ri + Rj + Rk, because the quaternion product is not
always defined on Ri + Rj + RKk. For example, i belongs to Ri + Rj + Rk
but the product i> does not. What we find is that the noncommutative
content of the product on SU(2) is captured by the Lie bracket of pure
imaginary quaternions U, V defined by

U,V] =UV —VU.

This comes about as follows. Suppose that u(s) and v(t) are two smooth
paths through 1 in SU(2), with u(0) = v(0) = 1. For each fixed s we con-
sider the path

Ws(t) = u(s)v(t)u(s) L.

This path also passes through 1, and its tangent there is
Wg(0) = u(s)V (0)u(s) * = u(s)vu(s) 4,

where V = V/(0) is the tangent vector to v(t) at 1. Now w(0) is a tangent
vector at 1 for each s, so (letting svary)

X(s) = u(s)Vu(s)*
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isa smooth path in Ri + Rj + Rk. The tangent X' (0) to this path at s=0 is
also an element of Ri + Rj + RK, because X'(0) is the limit of differences
between elements of Ri + Rj + Rk, and Ri 4+ Rj + RK is closed under dif-
ferences and limits. By the product rule for differentiation, and because
u(0) = 1, the tangent vector X' (0) is

d

ds u(s)Vu(s) ™t = u'(0)Vu(0)* +u(0)V (~u'(0))

s=0

— UV -VU,

where U = u'(0) is the tangent vector to u(s) at 1.

It follows that if U,V € Ri + Rj + Rk then [U,V] € Ri+ Rj +RKk. Itis
possible to give a direct algebraic proof of this fact (see exercises). But the
proof above shows the connection between the conjugate of v(t) by u(s)~*
and the Lie bracket of their tangent vectors, and it generalizes to a proof
that U,V € T1(G) implies [U,V] € T;(G) for any matrix Lie group G. In
fact, we revisit this proof in Section 5.4.

Exercises
The definition of derivative for any function c(t) of a real variable t is
. C(t+At)—c(t)
c(t) = lim :
®) At—0 At

4.3.1 By imitating the usual proof of the product rule, show that if ¢(t) = a(t)b(t)
then
c(t)=4a(t)b(t) +a(t)b'(t).
(Do not assume that the product operation is commutative.)
4.3.2 Show also that if c(t) = a(t)~!, and a(0) = 1, then ¢/(0) = —&'(0), again
without assuming that the product is commutative.

4.3.3 Show, however, that if c(t) = a(t)? then ¢(t) is not equal to 2a(t)a(t) for a
certain quaternion-valued function a(t).

To investigate the Lie bracket operation on Ri + Rj + Rk, it helps to know what
it has in common with more familiar product operations, namely bilinearity: for
any real numbers a; and ay,

[aUr+apUz, V] =a1[U1,V]+a2[Uz,V], [U,aiVi+aVo] =a1[U,Vi]+a]U,Va].
4.3.4 Deduce the bilinearity property from the definition of [U,V].

4.3.5 Using bilinearity, or otherwise, show that U,V € Ri + Rj + Rk implies
[U,V] € Ri+ Rj + RKk.



82 4 The exponential map

4.4 Theliealgebrasu(2) of SU(2)

The tangent space Ri + Rj + Rk of SU(2) is a real vector space, or a vector
space over R. That is, it is closed under the vector sum operation, and also
under multiplication by real numbers. The additional structure provided by
the Lie bracket operation makes it what we call su(2), the Lie algebra of
SU(2).2 In general, a Liealgebra is a vector space with a bilinear operation

[, ] satisfying

X, Y]+ Y, X] =0,
X, [V, Z)] + IY, [Z.X]] + [Z, [X,Y]] = 0.

These algebraic properties look like poor relations of the commutative and
associative laws, and no doubt they seem rather alien at first. Nevertheless,
they are easily seen to be satisfied by the Lie bracket [U,V] =UV —VU on
Ri + Rj + Rk and, more generally, on any vector space of matrices closed
under the operation U,V — UV —VU (see exercises). In the next chapter
we will see that the tangent space of any so-called classical group is a Lie
algebra for much the same reason that su(2) is.

What makes su(2) particularly interesting is that it is probably the only
nontrivial Lie algebra that anyone meets before studying Lie theory. Its
Lie bracket is not as alien as it looks, being essentially the cross product
operation on R that one meets in vector algebra.

To see why, consider the Lie brackets of the basis vectors i, j, and k of
Ri 4+ Rj + Rk, which are

i,j] =i —ji=k+k =2k,
i,k] =jk —kj =i+i=2i,
k,i]=ki—ik=j+]=2].
Then, if we introduce the new basis vectors
i"=i/2, j'=j/2, k'=k/2,

we get
[i/,j/]:k/, [j/;k/] :i/7 [k/,i/] :j/-

2]t is traditional to denote the Lie algebra of a Lie group by the corresponding lower case
Fraktur (also called German or Gothic) letter. Thus the Lie algebra of G will be denoted by
g, the Lie algebra of SU(n) by su(n), and so on.
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The latter equations are precisely the same as those defining the cross prod-
uct on the usual basis vectors.

This probably makes it clear that the cross product on R3 is “the same”
as the Lie bracket on Ri+ Rj + Rk, but we can spell out precisely why
by setting up a 1-to-1 correspondence between Ri +Rj + Rk and R? that
preserves the vector sum and scalar multiples (the vector space operations),
while sending the Lie bracket to the cross product.

The map ¢ : bi+cj +dk — (2b,2c,2d) is a 1-to-1 correspondence that
preserves the vector space operations, and it also sends i’, j’, k’ and their
Lie brackets to i, j, k and their cross products, respectively. It follows that
¢ sends all Lie brackets to the corresponding cross products, because the
Lie bracket of arbitrary vectors, like the cross product of arbitrary vectors,
is determined by its values on the basis vectors (by bilinearity).

Exercises

The second property of the Lie bracket is known as the Jacobi identity, and all
beginners in Lie theory are asked to check that it follows from the definition
[X,Y] = XY - YX.

4.4.1 Prove the Jacobi identity by using the definition [X,Y] = XY —YX to ex-
pand [X,[Y,Z]] + [Y,[Z,X]] +[Z,[X,Y]]. Assume only that the product is
associative and that the usual laws for plus and minus apply.

4.4.2 Using known properties of the cross product, or otherwise, show that the
Lie bracket operation on su(2) is not associative.

In the words of Kaplansky [1963], p. 123,

...the commutative and associative laws, so sadly lacking in the Lie
algebra itself, are acquired under the mantle of f.

By f he means a certain inner product, called the Killing form. A special case of
it is the ordinary inner product on R3, for which we certainly have commutativity:
u-v=v-u. “Associativity under the mantle of the inner product” means

(UxV)-w=u-(VxWw).
4.4.3 Show that if

U=uii+Uyj +uzk, Vv=wvii+Woj+v3k, w=wqi+wWyj+wsk,

then
up U U
u-(VXw)=| vi Vo V3
Wp W W3

4.4.4 Deduce from Exercise 4.4.3 that (ux V) -w=u- (VX W).
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4.5 Theexponential of a square matrix

We define the matrix absolute value of A= (&;;) to be
A= [ a2
1)

For an n x n real matrix A the absolute value |A| is the distance from the
origin O'in R™ of the point

(8.11,8.12,...,aln,agl,agg,...,agn,...,anl,...,ann).

If A has complex entries, and if we interpret each copy of C as R? (as in
Section 3.3), then |A| is the distance from O of the corresponding point in
R2M Similarly, if A has quaternion entries, then |A| is the distance from O

of the corresponding point in R4,

In all cases, |A— B| is the distance between the matrices A and B, and
we say that a sequence Ai, Ay, As, ... of nx n matrices has limit A if, for
each € > 0, there is an integer M such that

m>M = |[An—Al<e.

The key property of the matrix absolute value is the following inequal-
ity, a consequence of the triangle inequality (which holds in the plane and
hence in any R¥) and the Cauchy-Schwarz inequality.

Submultiplicative property. For any two real n x n matrices A and B,
|AB| < |Al|BJ.

Proof. If A= (aj) and B = (bjj), then it follows from the definition of
matrix product that

|(i, j)-entry of AB| = |aj1lo1j + a2z + - - - + @jnbnj|
< |ajrbyj| + |@2b2j| 4 - - - + |@inbn;]|
by the triangle inequality
= [aia[[byj[ + [&2][b2j ] + -~ 4 [ain||bnj
by the multiplicative property of absolute value

<\l 4+ [@nf2y [y 4+ [y
by the Cauchy-Schwarz inequality.
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Now, summing the squares of both sides, we get

|AB|2 = Zy )-entry of AB|?

< Z(!aa1!2+-~-+ lainl?) (Jbgj|* 4+ + [bnj )
i7j

:Z(’ai1’2+"‘+|am )2(’b11’2‘|‘ +|bn1|)
| j

= |A%|BJ?, as required O

It follows from the submultiplicative property that |A™ < |A|™. Along
with the triangle inequality |A+ B| < |A| + |B|, the submultiplicative prop-
erty enables us to test convergence of matrix infinite series by comparing
them with series of real numbers. In particular, we have:

Convergence of the exponential series. If Aisany nx nreal matrix, then

A A2 A . . .
1+1 +2 +3 +---, wherel=nx nidentity matrix,

. . 2
isconvergent in R™ .

Proof. It suffices to prove that this series is absolutely convergent, that is,
to prove the convergence of

! | A7 1A
TP T
This is a series of positive real numbers, whose terms (except for the first)
are less than or equal to the corresponding terms of

LA IAR AR
1! 2! 3!
by the submultiplicative property. The latter series is the series for the real
exponential function €”'; hence the original series is convergent. O

Thus it is meaningful to make the following definition, valid for real,
complex, or quaternion matrices.



86 4 The exponential map

Definition. The exponential of any nx n matrix A is given by the series

A A2 A3
e“:1+1!+2! ETRARE

The matrix exponential function is a generalization of the complex and
quaternion exponential functions. We already know that each complex
number z= a+ bi can be represented by the 2 x 2 real matrix

a —
St
and it is easy to check that € is represented by €. We defined the quater-
nion g = a-+ bi + c¢j + dk to be the 2 x 2 complex matrix

Q- a+di —b+ci
" \b+4+c a—di )’

so the exponential of a quaternion matrix may be represented by the expo-
nential of a complex matrix.

From now on we will often denote the exponential function simply by
exp, regardless of the type of objects being exponentiated.

Exercises
The version of the Cauchy—Schwarz inequality used to prove the submultiplicative
property is the real inner product inequality |u-v| < |u||v|, where

u= (lai1|,azl,---,lan|) and v=(|bji|,[bjzl,...,|bjnl)-

It is probably a good idea for me to review this form of Cauchy-Schwarz, since
some readers may not have seen it.
The proof depends on the fact that w-w = |w|? > 0 for any real vector w.

4.5.1 Show that 0 < (U+xv) - (u+xv) = [u]2 +2(u-v)x+ X?|v|? = q(x), for any
real vectors u, v and real number x.

4.5.2 Use the positivity of the quadratic function q(x) found in Exercise 4.5.1 to
deduce that
(2u-v)? —4|ul?|v* <0,

that is, |u-v| < |u||v].
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Matrix exponentiation gives another proof that € = cos 6 +isin 6, since we
can interpret i0 as a 2 x 2 real matrix A.

4.5.3 Show, directly from the definition of matrix exponentiation, that
0 -6 cos® —sin6
A= (9 O> - eA(siné) cos@)'

The exponential of an arbitrary matrix is hard to compute in general, but easy
when the matrix is diagonal, or diagonalizable.

4.5.4 Suppose that D is a diagonal matrix with diagonal entries 13,45, ..., Ax. By
computing the powers D" show that €P is a diagonal matrix with diagonal

entries M, e’2, ... ek,
4.55 If Ais a matrix of the form BCB1, show that &* = Be“B 1.

4.5.6 By term-by-term differentiation, or otherwise, show that § & = Aé” for
any square matrix A.

4.6 Theaffinegroup of theline
Transformations of R of the form
fap(X) =ax+b, where abeR and a>0,

are called affine transformations. They form a group because the product of
any two such transformations is another of the same form, and the inverse
of any such transformation of another of the same form. We call this group
Aff(1), and we can view it as a matrix group. The function f, corresponds
to the matrix

Fab = <g tl)) , applied on the left to ()1(> ,

20

Thus Aff(1) can be viewed as a group of 2 x 2 real matrices, and hence
it is a geometric object in R*. On the other hand, Aff(1) is intrinsically
two-dimensional, because its elements form a half-plane. To see why,
consider first the two-dimensional subspace of R* consisting of the points
(a,b,0,0). This is a plane, and hence so is the set of points (a,b,0,1)

because
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obtained by translating it by distance 1 in the direction of the fourth coor-
dinate. Finally, we get half of this plane by restricting the first coordinate
toa>0.

Aff(1) is closed under nonsingular limits; hence it is a two-dimensional
matrix Lie group, like the real vector space R? under vector addition, and
the torus S x S*. Unlike these two matrix Lie groups, however, Aff(1) is
not abelian. For example,

f271 f172 (X) = 1(2X+ 1) +2=2X+3,

whereas
f172 f271 (X) = 2(1X+ 2) +1=2X+5.

Aff(1) isin fact the only connected, nonabelian two-dimensional Lie group.
This makes it interesting, yet still amenable to computation. As we will
see, it is easy to compute its tangent vectors, and to exponentiate them,
from first principles. But first note that there are two ways in which Aff(1)
differs from the Lie groups studied in previous chapters.

e As ageometric object, Aff(1) is an unbounded subset of R* (because
b can be arbitrary and a is an arbitrary positive number). We say that
it is a noncompact Lie group, whereas SO(2), SO(3), and SU(2)
are compact. In Chapter 8 we give a more precise discussion of
compactness.

e Asagroup, it admits an eo-to-1 homomorphism onto another infinite
group. The homomorphism ¢ in question is

fa b . (2 0
? o1 0 1)
This sends the infinitely many matrices Fyp, as b varies, to the matrix
Fao, and it is easily checked that

(P(Fal,bl Faz,bz) = (P(Fal,bl)(P(Faz,bz)'

It follows, in particular, that Aff(1) is not a simple group. Also, the nor-
mal subgroup of matrices in the kernel of ¢ is itself a matrix Lie group.
The kernel consists of all the matrices that ¢ sends to the identity matrix,
namely, the group of matrices of the form

1 Db
(0 1) for beR.
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Geometrically, this subgroup is a line, and the group operation corresponds
to addition on the line, because

03 7)=( "%

TheLiealgebra of Aff(1)

Since Aff(1) is half of a plane in the space R* of 2 x 2 matrices, it is
geometrically clear that its tangent space at the identity element is a plane.
However, to find explicit matrices for the elements of the tangent space
we look at the vectors from the identity element (§?) of Aff(1) to nearby
points of Aff(1).

These are the vectors

1+o B 10y (o By (1O 01
( 0 1>_<0 1>_<0 o>_°‘(o o)”’(o 0>
for small values of oz and . Normally, one needs to find the limiting

directions of these vectors (the “tangent vectors™) as o, — 0, but in this
case all such directions lie in the plane spanned by the vectors

10 01
<o) *=(oo)
The Lie bracket [u,v] = uv—wu on this two-dimensional space is deter-
mined by the Lie bracket of the basis vectors:

[3,K] =K.

The exponential function maps the tangent space 1-to-1 onto Aff(1), as
one sees from some easy calculations with a general matrix (‘(’)‘ g) in the
tangent space. First, induction shows that

a B\" _(o" Bont
0 o/ \o 0 ’
or, in terms of J and K,

(ad+ BK)"= o"J+ Bo" K.
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Then substituting these powers in the exponential series (and writing 1 for
the identity matrix) gives

e(xJ+ﬁK
1 1 , 1 i
=1+ (@3 BK)+ )y (@d+BK P+t (@d+BK) -

1 1 1
:1+1|(aJ+[3K)+2'(a2J+[3aK)+---+n'(a”J+[3a”‘1K)+---
a o on 1 « o1
=1+<1!+2!+~-~+n!+-~-)J+[3<1!+2!+~--+ o +---)K
_ (" P(er-1)
0 1

or L p if a=0.
o 5)

The former matrix equals (%), where a > 0, for a unique choice of «
and f. First choose o so that a = e“; then choose f3 so that

b:g(e“—l) or b=p if o=0.

Exercises

Exponentiation of matrices does not have all the properties of ordinary exponen-
tiation, because matrices do not generally commute. However, exponentiation
works normally on matrices that do commute, such as powers of a fixed matrix.
Here is an example in Aff(1).

4.6.1 Work out (3 5’)2 and (& 5’)3, and then prove by induction that

a b\" [an b¥}!
—_ a—
(0 1) o <O 1 ) ’

4.6.2 Use the formula in Exercise 4.6.1 to work out the nth power of the matrix
e +BK and compare it with the matrix €"+"8K obtained by exponenti-
ating na:J + nK.

4.6.3 Show that the matrices (e(‘)n bg'l;f), forn=1,2,3,..., lie on a line in R*.
Also show that the line passes through the point (3 9).
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4.7 Discussion

The first to extend the exponential function to noncommuting objects was
Hamilton, who applied it to quaternions almost as soon as he discovered
them in 1843. In the paper Hamilton [1967], a writeup of an address to the
Royal Irish Academy on November 13, 1843, he defines the exponential
function for a quaternion g on p. 207,

¢ q

q
a_1
C=l T,

and observes immediately that
e =t when qq =qq.

On p. 225 he evaluates the exponential of a pure imaginary quaternion,
stating essentially the result of Section 4.2, that

e’ =cosO +usin® when |ul=1.

The exponential map was extended to Lie groups in general by Lie
in 1888. From his point of view, exponentiation sends “infinitesimal” el-
ements of a continuous group to “finite” elements (see Hawkins [2000],
p. 82). A few mathematicians in the late nineteenth century briefly noted
that exponentiation makes sense for matrices, but the theory of matrix ex-
ponentiation did not flourish until Wedderburn [1925] proved the submulti-
plicative property of the matrix absolute value that guarantees convergence
of the exponential series for matrices. The trailblazing investigation of von
Neumann [1929] takes Wedderburn’s result as its starting point.

The matrix exponential function has many properties in common with
the ordinary exponential, such as

) X\"
e = lim <1+ > .
N—oo n

We do not need this property in this book, but it nicely illustrates the idea
of Lie (and, before him, Jordan [1869]), that the “finite” elements of a
continuous group may be “generated” by its “infinitesimal” elements. If X
is a tangent vector at 1 to a group G and n is “infinitely large,” then 1+ ﬁ
is an “infinitesimal” element of G. By iterating this element n times we
obtain the “finite” element & of G.
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It was discovered by Lie’s colleague Engel in 1890 that, in the group
SL(2,C) of 2 x 2 complex matrices with determinant 1, not every element
is an exponential. In particular, the matrix (> %) is not the exponen-
tial of any matrix tangent to SL(2,C) at 1; hence it is not “generated by
an infinitesimal element” of SL(2,C). (We indicate a proof in the exer-
cises to Section 5.6.) The result was considered paradoxical at the time
(see Hawkins [2000], p. 86), and its mystery was dispelled only when the
global properties of Lie groups became better understood. In the 1920s it
was realized that the topology of a Lie group is the key to its global behav-
ior. For example, the paradoxical behavior of SL(2,C) can be attributed
to its noncompactness, because it can be shown that every element of a
connected, compact Lie group is the exponential of a tangent vector. We
do not prove this theorem about exponentiation in this book, but we will
discuss compactness and connectedness further in Chapter 8.

For a noncompact, but connected, group G the next best thing to sur-
jectivity of exp is the following: every g € G is the product €< . .. &« of
exponentials of finitely many tangent vectors Xy, Xs,. .., Xk. This result is
due to von Neumann [1929], and we give a proof in Section 8.6.

For readers acquainted with differential geometry, it should be men-
tioned that the exponential function can be generalized even beyond matrix
groups, to Riemannian manifolds. In this setting, the exponential function
maps the tangent space Tp(M) at point P on a Riemannian manifold M
into M by mapping lines through O in Tp(M) isometrically onto geodesics
of M through P. The Riemannian manifolds S* = {z€ C: |7 = 1} and
S® = {g€ H:|g| = 1}, and their tangent spaces R and R3, nicely illustrate
the geodesic aspect of exponentiation. The exponential map sends straight
lines through O in the tangent space isometrically to geodesic circles in
the manifolds (to Stitself in C, and to the unit circles cos 6 + usin 6 in H,
which are geodesic because they are the largest possible circles in S®).
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Thetangent space

PREVIEW

The miracle of Lie theory is that a curved object, a Lie group G, can be
almost completely captured by a flat one, the tangent space T1(G) of G at
the identity. The tangent space of G at the identity consists of the tangent
vectors to smooth paths in G where they pass through 1. A path A(t) in G
is called smooth if its derivative A'(t) exists, and if A(0) = 1 we call A'(0)
the tangent or velocity vector of A(t) at 1. T1(G) consists of the velocity
vectors of all smooth paths through 1.

It is quite easy to determine the form of the matrix A’(0) for a smooth
path A(t) through 1 in any of the classical groups, that is, the generalized
rotation groups of Chapter 3 and the general and special linear groups,
GL(n,C) and SL(n,C), we will meet in Section 5.6. For example, any
tangent vector of SO(n) at 1 is an n x n real skew-symmetric matrix—a
matrix X such that X + X = 0. The problem is to find smooth paths in the
first place. It is here that the exponential function comes to our rescue.

As we saw in Section 4.5, € is defined for any n x n matrix X by the
infinite series used to define € for any real or complex number x. This ma-
trix exponential function provides a smooth path with prescribed tangent
vector at 1, namely the path A(t) = €%, for which A’'(0) = X. In particular,
it turns out that if X is skew-symmetric then €% € SO(n) for any real t, so
the potential tangent vectors to SO(n) are the actual tangent vectors.

In this way we find that T(SO(n)) = {X € My(R) : X +XT =0}, where
Mn(RR) is the space of nx n real matrices. The exponential function simi-
larly enables us to find the tangent spaces of all the classical groups: O(n),
SO(n), U(n), SU(n), Sp(n), GL(n,C), and SL(n,C).

J. Stillwell, Naive Lie Theory, DOI: 10.1007/978-0-387-78214-0 5, 93
(© Springer Science+Business Media, LLC 2008
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5.1 Tangent vectorsof O(n), U(n), Sp(n)

In a space Sof matrices, a path is a continuous function t — A(t) € S where
t belongs to some interval of real numbers, so the entries a;;(t) of A(t) are
continuous functions of the real variable t. The path is called smooth, or
differentiable, if the functions &;;(t) are differentiable.

For example, the function

cost —sint
t—B(t)= (sint cost >

is a smooth path in SO(2), while the function

t—C(t) = <
is a path in SO(2) that is not smooth at t = 0.
The derivative A'(t) of a smooth A(t) is defined in the usual way as

A _
i ACH80 A
At—0 At

cos|t| —sinlt|
sinft| cos|t|

and one sees immediately that A'(t) is simply the matrix with entries aj; (),
where &;j(t) are the entries of A(t). Tangent vectors at 1 of a group G of
matrices are matrices X of the form

X = A(0),

where A(t) is a smooth path in G with A(0) = 1 (that is, a path “passing

through 1 at time 0”). Tangent vectors can thus be viewed as “velocity

vectors” of points moving smoothly through the point 1, as in Section 4.3.
For example, in SO(2),

cosft —sinot
Alt) = (sin 6t  cos6t >
is a smooth path through 1 because A(0) = 1. And since

1y [ —0sin6t  —6cos ot
A(t)_<ecoset —esin9t>’

the corresponding tangent vector is
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In fact, all tangent vectors are of this form, so they form the 1-dimensional
vector space of real multiples of the matrix i = ((1’ *01). This confirms what
we already know geometrically: SO(2) is a circle and its tangent space at
the identity is a line.

We now find the form of tangent vectors for all the groups O(n), U(n),

Sp(n) by differentiating the defining equation AAT = 1 of their members
A. (In the case of O(n), Aiis real, so A= A. In the cases of U(n) and Sp(n),
Ais the complex and quaternion conjugate, respectively.)

Tangent vectors of O(n), U(n), Sp(n). The tangent vectors X at 1 are
matrices of the following forms (where O denotes the zero matrix):

(a) For O(n), nx nreal matrices X such that X + X = 0.
(b) For U(n), nx ncomplex matrices X such that X +x'=o.

¢) For Sp(n), n x n quaternion matrices X such that X+XT =0.
(c) p q

Proof. (a) The matrices A € O(n) satisfy AAT = 1. Let A= A(t) be a
smooth path originating at 1, and take d/dt of the equation

ADAML)T =1.

The product rule holds as for ordinary functions, as does §1 = 0 because

1is a constant. Also, & (AT) = (@ A)" by considering matrix entries. So
we have
AADT+ADA ()T =0.

Since A(0) = 1= A(0)T, for t = 0 this equation becomes
ANO)+A0) =0.

Thus any tangent vector X = A'(0) satisfies X +XT = 0.

(b) The matrices A € U(n) satisfy AAT = 1. Again let A= A(t) be a
smooth path with A(0) = 1 and now take d/dt of the equation AAT =1, By
considering matrix entries we see that g’tA(t) = A'(t). Then an argument
like that in (a) shows that any tangent vector X satisfies X + X" =0,

(c) For the matrices A € Sp(n) we similarly find that the tangent vectors
X satisfy X + X' = 0. 0
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The matrices X satisfying X +XT = 0 are called skew-symmetric, be-
cause the reflection of each entry in the diagonal is its negative. That is,
Xji = —X;j. In particular, all the diagonal elements of a skew-symmetric
matrix are 0. Matrices X satisfying X + X" = Oare called skew-Hermitian.
Their entries satisfy xjj = —x;; and their diagonal elements are pure imag-
inary.

It turns out that all skew-symmetric n x n real matrices are tangent,
not only to O(n), but also to SO(n) at 1. To prove this we use the matrix
exponential function from Section 4.5, showing that €¢ € SO(n) for any
skew-symmetric X, in which case X is tangent to the smooth path €% in
SO(n).

Exercises

To appreciate why smooth paths are better than mere paths, consider the following
example.

5.1.1 Interpret the paths B(t) and C(t) above as paths on the unit circle, say for
—n/2<t<m/2.

5.1.2 If B(t) or C(t) is interpreted as the position of a point at time t, how does
the motion described by B(t) differ from the motion described by C(t)?

5.2 Thetangent space of SO(n)

In this section we return to the addition formula of the exponential function
B = when AB=BA,

which was previously set as a series of exercises in Section 4.1. This for-
mula can be proved by observing the nature of the calculation involved,
without actually doing any calculation. The argument goes as follows.

According to the definition of the exponential function, we want to
prove that

A+B A+B)"
<1+ - +...+( - ) +>
1! n!

A A" B B"
=1+ 4+ ---+ +--. 1+ +---+ 4+ .
1! n! 1! n!

This could be done by expanding both sides and showing that the coeffi-
cient of A'B™ is the same on both sides. But if AB = BA the calculation
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involved is the same as the calculation for real numbers A and B, in which
case we know that e*B = e*e® by elementary calculus. Therefore, the
formula is correct for any commuting variables A and B.

Now, the beauty of the matrices X and X appearing in the condition
X +XT = 0is that they commute! This is because, under this condition,

XXT = X(=X) = (=X)X = XTX.
Thus it follows from the above property of the exponential function that
KX =X =P =1,

But also, €' = (eX)T because (XT)™ = (X™T and hence all terms in the
exponential series get transposed. Therefore

1= =e(e)T.

In other words, if X +XT = 0 then € isan orthogonal matrix.
Moreover, € has determinant 1, as can be seen by considering the path
of matrices tX for 0 <t < 1. Fort =0, we have tX = 0, so

éX=¢e’=1, which has determinant 1.

And, as t varies from 0 to 1, €* varies continuously from 1 to €. This
implies that the continuous function det(¢X) remains constant, because
det = +1 for orthogonal matrices, and a continuous function cannot take
two (and only two) values. Thus we necessarily have det(e*) = 1, and
therefore if X isan nx nreal matrix with X + XT = 0 then & € SO(n).

This allows us to complete our search for all the tangent vectors to
SO(n) at 1.

Tangent space of SO(n). The tangent space of SO(n) consists of precisely
the n x nreal vectors X such that X +XT = 0.

Proof. In the previous section we showed that all tangent vectors X to
SO(n) at 1 satisfy X +XT = 0. Conversely, we have just seen that, for any
vector X with X + XT = 0, the matrix X is in SO(n).

Now notice that X is the tangent vector at 1 for the path A(t) = é* in
SO(n). This holds because

d

X _ ydX
dtet =X,
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as in ordinary calculus. (This can be checked by differentiating the series
for €X.) It follows that A(t) has the tangent vector A'(0) = X at 1, and
therefore each X such that X + XT = 0 occurs as a tangent vector to SO(n)
at 1, as required. O

As mentioned in the previous section, a matrix X such that X + XT=0
is called skew-symmetric. Important examples are the 3 x 3 skew-
symmetric matrices, which have the form

0 —x -y
X=|x 0 -z
y z 0

Notice that sums and scalar multiples of these skew-symmetric matrices
are again skew-symmetric, so the 3 x 3 skew-symmetric matrices form a
vector space. This space has dimension 3, as we would expect, since it is
the tangent space to the 3-dimensional space SO(3). Less obviously, the
skew-symmetric matrices are closed under the Lie bracket operation

[X1,Xo] = X1 X2 — XoXy.

Later we will see that the tangent space of any Lie group G is a vector space
closed under the Lie bracket, and that the Lie bracket reflects the conjugate
glgzgl‘1 of gp by gl‘1 € G. This is why the tangent space is so important
in the investigation of Lie groups: it “linearizes” them without obliterating
much of their structure.

Exercises

According to the theorem above, the tangent space of SO(3) consists of 3 x 3 real
matrices X such that X = —XT. The following exercises study this space and the
Lie bracket operation on it.

5.2.1 Explain why each element of the tangent space of SO(3) has the form

0 —x -
X=[x 0 —z|=x+yJ+zK,

y z O

where

0 -1 0 00 -1 00 0
I={1 o o], J={0 0 0], K=[0 0 -1].
0 0 0 10 0 01 0
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5.2.2 Deduce from Exercise 5.2.1 that the tangent space of SO(3) is a real vector
space of dimension 3.

5.2.3 Check that [I,J] =K, [J,K] =1, and [K,I] = J. (This shows, among other
things, that the 3 x 3 real skew-symmetric matrices are closed under the
Lie bracket operation.)

5.2.4 Deduce from Exercises 5.2.2 and 5.2.3 that the tangent space of SO(3) un-
der the Lie bracket is isomorphic to R under the cross product operation.

5.2.5 Prove directly that the n x n skew-symmetric matrices are closed under the
Lie bracket, using X = —X and YT = Y.

The argument above shows that exponentiation sends each skew-symmetric
X to an orthogonal €%, but it is not clear that each orthogonal matrix is obtainable
in this way. Here is an argument for the case n = 3.

0 -6 0
5.2.6 Find the exponential of the matrix B = ((—) 0 O) .
0 0 O

5.2.7 Show that AEBAT = e*BAT for any orthogonal matrix A.

5.2.8 Deduce from Exercises 5.2.6 and 5.2.7 that each matrix in SO(3) equals €*
for some skew-symmetric X.

5.3 Thetangent space of U(n), SU(n), Sp(n)

We know from Sections 3.3 and 3.4 that U(n) and Sp(n), respectively, are

the groups of n x n complex and quaternion matrices A satisfying AAT =1,
This equation enables us to find their tangent spaces by essentially the same
steps we used to find the tangent space of SO(n) in the last two sections.
The outcome is also the same, except that, instead of skew-symmetric ma-
trices, we get skew-Hermitian matrices. As we saw in Section 5.1, these
matrices X satisfy X + x'=o0.

Tangent space of U(n) and Sp(n). The tangent space of U(n) consists of
all the n x n complex matrices satisfying X + X' =0. The tangent space
of Sp(n) consists of all nx n quaternion matrices X satisfying X +X" = (0}
where X denotes the quaternion conjugate of X.

Proof. From Section 5.1 we know that the tangent vectors at 1 to a space
of matrices satisfying AAT = 1 are matrices X satisfying X + X" =0,
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Conversely, suppose that X is any n x n complex (respectively, quater-
nion) matrix such that X + X" = 0. It follows that

T

X ==X

and therefore
XX = X(=X) = (=X)X = X"X.

This implies, by the addition formula for the exponential function for com-
muting matrices, that

1= = X — e

It is also clear from the definition of €X that &< = (eX)T. Soif X isany
n x n complex (respectively, quaternion) matrix satisfying X + X" = 0then
eX isin U(n) (respectively, Sp(n)). It follows in turn that any such X is a
tangent vector at 1. Namely, X = A’(0) for the smooth path A(t) = €*. O

In Section 5.1 we found the form of tangent vectors to O(n) at 1, but
in Section 5.2 we were able to show that all vectors of this form are in
fact tangent to SO(n), so we actually had the tangent space to SO(n) at 1.
An identical step from U(n) to SU(n) is not possible, because the tangent
space of U(n) at 1 is really a larger space than the tangent space to SU(n).
Vectors X in the tangent space of SU(n) satisfy the additional condition that
Tr(X), the trace of X, is zero. (Recall the definition from linear algebra:
the trace of a square matrix is the sum of its diagonal entries.)

To prove that Tr(X) = 0 for any tangent vector X to SU(n), we use the
following lemma about the determinant and the trace.

Determinant of exp. For any square complex matrix A,
det(e?) = "™,

Proof. We appeal to the theorem from linear algebra that for any complex
matrix A there is an invertible complex® matrix B and an upper triangular
complex matrix T such that A= BTB™L.

The nice thing about putting A in this form is that

(BTB H)M=BTB !BTB!...BTB 1 =BT™B !
3The matrix B may be complex even when A is real. We then have an example of a

phenomenon once pointed out by Jacques Hadamard: the shortest path between two real
objects—in this case, det(e®) and e""")—may pass through the complex domain.
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and hence
Am Tm
ef=> " =Bl  |B'=BeB"
o m! o m!
It therefore suffices to prove det(e") = e™(™) for upper triangular T, be-
cause this implies
det(e*) = det(Be"B 1) = det(e”) = e"(T) = gT"(BTB™) — Tr(A),
Here we are appealing to another theorem from linear algebra, which states
that Tr(BC) = Tr(CB) and hence Tr(BCB~1) = Tr(C) (exercise).
To obtain the value of det(e") for upper triangular T, suppose that

t1p % * e ox

0 typ * -+ %
T=]10 0 tzg - =« ’

O O O tnn

where the entries marked * are arbitrary. From this one can see that
e T2 is upper triangular, with ith diagonal entry equal to t?,

e T™is upper triangular, with ith diagonal entry equal to t/",

e elis upper triangular, with ith diagonal entry equal to €,
and hence
det(eT) —dugz...dm = duttetttm _ glM(T)
as required. O

Tangent space of SU(n). The tangent space of SU(n) consists of all nx n
complex matrices X such that X + X" =0and Tr(X) =0.

Proof. Elements of SU(n) are, by definition, matrices A € U(n) with

det(A) = 1. We know that the A € U(n) are of the form X with X + X" =0.
The extra condition det(A) = 1 is therefore equivalent to

1 = det(A) = det(eX) = "™
by the theorem just proved. It follows that, given any A € U(n),
AeSU(n) < det(A)=1 < e =1 < Tr(X)=0.

Thus the tangent space of SU(n) consists of the n x n complex matrices X
such that X + X' = 0 and Tr(X) =0. O
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Exercises

Another proof of the crucial result det(e*) = e uses less linear algebra but
more calculus. It goes as follows (if you need help with the details, see Tapp
[2005], p. 72 and p. 88).

Suppose B(t) is a smooth path of n x n complex matrices with B(0) = 1, let
bij(t) denote the entry in row i and column j of B(t), and let Bjj(t) denote the
result of omitting row i and column j.

5.3.1 Show that

n

det(B(t)) = 3 (—1) " byj(t) det(Byj(t)),
j=1

and hence

n
d KECOIEYE )i+t [b' 0) det(B,; (0)) + by (0)
dt|,_ dt |,

e 1)
=0

5.3.2 Deduce from Exercise 5.3.1, and the assumption B(0) = 1, that

det(B(1)) = by (0) + o | det(Bu(t)).

dt t=0

t=0
5.3.3 Deduce from Exercise 5.3.2, and induction, that

d

gt | Get(B(t) = b1y (0) +b(0) + -+ + by (0) = Tr(B(0)).

t=0

We now apply Exercise 5.3.3 to the smooth path B(t) = €4, for which B'(0) = A,
and the smooth real function

f(t) = det(é”), forwhich f(0)=1.
By the definition of derivative,
ey i L (trh)Ay A
f(t)_m?)h[det(e ) — det(e?)] .
5.3.4 Using the property det(MN) = det(M) det(N) and Exercise 5.3.3, show that

f/(t) = det(é”?) (;jt det(é”) = f(1)Tr(A).

t=0

5.3.5 Solve the equation for f(t) in Exercise 5.3.4 by setting f(t) = g(t)& T
and showing that g'(t) = 0, hence g(t) = 1. (Why?)
Conclude that det(e*) = e,
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The tangent space of SU(2) should be the same as the space Ri + Rj + Rk
shown in Section 4.2 to be mapped onto SU(2) by the exponential function. This
is true, but it requires some checking.

5.3.6 Show that the skew-Hermitian matrices in the tangent space of SU(2) can
be written in the form bi + c¢j + dk, where b,c,d € R and i, j, and k are
matrices with the same multiplication table as the quaternions i, j, and k.

5.3.7 Also find the tangent space of Sp(1) (which should be the same).

Finally, it should be checked that Tr(XY) = Tr(YX), as required in the proof
that det(e®) = e, This can be seen almost immediately by meditating on the
sum

X11Y11 + X12Y21 + + - - + X1nYn1
+X21Y12 + X22Y22 + - - - + XonYn2

+Xn1Y1n + Xn2Y2n + - - - + XnnYnn.

5.3.8 Interpret this sum as both Tr(XY) and Tr(YX).

5.4 Algebraic properties of the tangent space

If G is any matrix group, we can define its tangent space at the identity,
T1(G), to be the set of matrices of the form X = A’(0), where A(t) is a
smooth path in G with A(0) = 1.

Vector space properties. T1(G) is a vector space over R; that is, for any
X,Y € T1(G) wehave X +Y € T1(G) and rX € T1(G) for any real r.

Proof. Suppose X = A'(0) and Y = B(0) for smooth paths A(t),B(t) € G
with A(0) =B(0) =1, so X,Y € T1(G). It follows that C(t) = A(t)B(t) is
also a smooth path in G with C(0) = 1, and hence C'(0) is also a member
of Tl(G).

We now compute C'(0) by the product rule and find

d

C'(0) =
dt o

A(t)B(t) = A'(0)B(0) + A(0)B'(0)
=X+Y because A(0) =B(0) =1.

Thus X,Y € T1(G) implies X +Y € T1(G).
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To see why rX € T1(G) for any real r, consider the smooth path D(t) =
A(rt). We have D(0) = A(0) = 1, so D’'(0) € T1(G), and

D’(0) =rA'(0) =rX.

Hence X € T1(G) implies rX € T1(G), as claimed. O

We see from this proof that the vector sum is to some extent an image
of the product operation on G. But it is not a very faithful image, because
the vector sum is commutative and the product on G generally is not.

We find a product operation on T;(G) that more faithfully reflects the
product on G by studying the behavior of smooth paths A(s) and B(t) near
1 when sand t vary independently.

Lie bracket property. T1(G) is closed under the Lie bracket, that is, if
X,Y € T1(G) then [X,Y] € T1(G), where [X,Y] = XY —YX.

Proof. Suppose A(0) =B(0) =1, A'(0) = X,B/'(0) =Y, so X,Y € Ty(G).
Now consider the path

Cs(t) = A(S)B(t)A(s) ? for some fixed value of s.
Then C4(t) is smooth and C4(0) = 1, so C{(0) € T;(G). But also,
CL(0) = A(s)B'(0)A(s) 1 = A(S)YA(s) *

is a smooth function of s, because A(s) is. So we have a whole smooth path
A(s)YA(s)~! in T(G), and hence its tangent (velocity vector) at s= 0 is
also in Ty (G). (This is because the tangent is the limit of certain elements
of T1(G), and T1(G) is closed under limits.)

This tangent is found by differentiating D(s) = A(s)YA(s) ™~ with re-
spect to sat s= 0 and using A(0) = 1:

D’(0) = A'(0)YA(0) * +A(0)Y(—A'(0))
= XY -YX = [X,Y],

since A'(0) = X and A(0) = 1. Thus X,Y € T1(G) implies [X,Y] € T1(G),
as claimed. O

The tangent space of G, together with its vector space structure and
Lie bracket operation, is called the Lie algebra of G, and from now on we
denote it by g (the corresponding lower case Fraktur letter).



5.4 Algebraic properties of the tangent space 105

Definition. A matrix Liealgebra is a vector space of matrices that is closed
under the Lie bracket [X,Y] = XY —YX.

All the Lie algebras we have seen so far have been matrix Lie algebras,
and in fact there is a theorem (Ado’s theorem) saying that every Lie algebra
is isomorphic to a matrix Lie algebra. Thus it is not wrong to say simply
“Lie algebra” rather than “matrix Lie algebra,” and we will usually do so.

Perhaps the most important idea in Lie theory is to study Lie groups
by looking at their Lie algebras. This idea succeeds because vector spaces
are generally easier to work with than curved objects—which Lie groups
usually are—and the Lie bracket captures most of the group structure.

However, it should be emphasized at the outset that g does not always
capture G entirely, because different Lie groups can have the same Lie
algebra. We have already seen one class of examples. For all n, O(n) is
different from SO(n), but they have the same tangent space at 1 and hence
the same Lie algebra. There is a simple geometric reason for this: SO(n)
is the subgroup of O(n) whose members are connected by paths to 1. The
tangent space to O(n) at 1 is therefore the tangent space to SO(n) at 1.

Exercises

If, instead of considering the path Cs(t) = A(s)B(t)A(s)~! in G we consider the
path
Ds(t) = A(s)B(t)A(s) B(t)~! for some fixed value of s,

then we can relate the Lie bracket [X,Y] of X,Y € T;(G) to the so-called commu-
tator A(s)B(t)A(s)"1B(t) ! of smooth paths A(s) and B(t) through 1 in G.

5.4.1 Find D4(t), and hence show that D(0) = A(S)YA(s) 1 —Y.

5.4.2 Dg(0) € T1(G) (why?) and hence, as svaries, we have a smooth path E(s) =
D4(0) in T1(G) (why?).

5.4.3 Show that the velocity E’(0) equals XY —YX, and explain why E’(0) is in
Ti(G).
The tangent space at 1 is the most natural one to consider, but in fact all
elements of G have the “same” tangent space.

5.4.4 Show that the smooth paths through any g € G are of the form gA(t), where
A(t) is a smooth path through 1.

5.4.5 Deduce from Exercise 5.4.4 that the space of tangents to G at g is isomor-
phic to the space of tangents to G at 1.
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5.5 Dimension of Liealgebras

Since the tangent space of a Lie group is a vector space over R, it has a
well-defined dimension over R. We can easily compute the dimension of
so(n),u(n),su(n), and sp(n) by counting the number of independent real
parameters in the corresponding matrices.

Dimension of so(n),u(n),su(n), and sp(n). Asvector spaces over R,
(@) so(n) hasdimensonn(n—1)/2.
(b) u(n) hasdimension n?.
(c) su(n) hasdimension n® —1.

(d) sp(n) hasdimension n(2n+1).

Proof. (a) We know from Section 5.2 that so(n) consists of all nx n real

skew-symmetric matrices X. Thus the diagonal entries are zero, and the

entries below the diagonal are the negatives of those above. It follows that

the dimension of so(n) is the number of entries above the diagonal, namely
n(n—1)

142+ +(-1)=", "

(b) We know from Section 5.3 that u(n) consists of all n x n complex
skew-Hermitian matrices X. Thus X has n(n—1)/2 complex entries above
the diagonal and n pure imaginary entries on the diagonal, so the number
of independent real parameters in X is

n(n—1)+n=n’.

(c) We know from Section 5.3 that su(n) consists of all nx n complex
skew-Hermitian matrices with Tr(X) = 0. Without the Tr(X) = 0 condi-
tion, there are n? real parameters, as we have just seen in (b). The condition
Tr(X) = 0 says that the nth diagonal entry is the negative of the sum of the
remaining diagonal entries, so the number of independent real parameters
isn? — 1.

(d) We know from Section 5.3 that sp(n) consists of all nx n quater-
nion skew-Hermitian matrices X. Thus X has n(n—1)/2 quaternion entries
above the diagonal and n pure imaginary quaternion entries on the diago-
nal, so the number of independent real parameters is

2n(n—1)+3n=n(2n—2+3) =n(2n+1). O
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It seems geometrically natural that a matrix group G should have the
same dimension as its tangent space T1(G) at the identity, but to put this
result on a firm basis we need to construct a bijection between a neigh-
borhood of 1 in G and a neighborhood of 0 in T1(G), continuous in both
directions—a homeomorphism. This can be achieved by a deeper study of
the exponential function, which we carry out in Chapter 7 (for other pur-
poses). But then one faces the even more difficult problem of proving the
invariance of dimension under homeomorphisms. Fortunately, Lie theory
has another way out, which is simply to define the dimension of a Lie group
to be the dimension of its Lie algebra.

Exercises

The extra dimension that U(n) has over SU(n) is reflected in the fact that the quo-
tient group U(n)/SU(n) exists and is isomorphic to the circle group St. Among
other things, this shows that U(n) is not a simple group. Here is how to show that
the quotient exists.

5.5.1 Consider the determinant map det : U(n) — C. Why is this a homomor-
phism? What is its kernel?

5.5.2 Deduce from Exercise 5.5.1 that SU(n) is a normal subgroup of U(n).

Since the dimension of U(n) is 1 greater than the dimension of SU(n), we
expect the dimension of U(n)/SU(n) to be 1. The elements of U(n)/SU(n) cor-
respond to the values of det(A), for matrices A € U(n), by the homomorphism
theorem of Section 2.2. So these values should form a 1-dimensional group—
isomorphic to either R or S*. Indeed, they are points on the unit circle in C, as the
following exercises show.

5.5.3 If Ais an nx ncomplex matrix such that AA" = 1, show that |det(A)| = 1.

5.5.4 Give an example of a diagonal unitary matrix A, with det(A) = €°.

5.6 Complexification

The Lie algebras we have constructed so far have been vector spaces over
IR, even though their elements may be matrices with complex or quaternion
entries. Each element is an initial velocity vector A’(0) of a smooth path
A(t), which is a function of the real variable t. It follows that, along with
each velocity vector A’'(0), we have its real multiples rA’(0) for eachr € R,
because they are the initial velocity vectors of the paths A(rt). Thus the
elements A’(0) of the Lie algebra admit multiplication by all real numbers
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but not necessarily by all complex numbers. One can easily give examples
(Exercise 5.6.1) in which a complex matrix Ais in a certain Lie algebra but
iAis not.

However, it is certainly possible for a Lie algebra to be a vector space
over C. Indeed, any real matrix Lie algebra g over R has a complexification

g+ig={A+iB:ABecg}

that is a vector space over C. It is clear that g +ig is closed under sums,
because g is, and it is closed under multiples by complex numbers because

(a+ib)(A+iB) = aA— bB+i(bA+ aB)

and aA — bB,bA+ aB € g for any real numbers a and b.
Also, g +ig is closed under the Lie bracket because

(A1 +iB1,Ap +iBy] = [A1,Ag] — By, By] +i ([B1, Az] + [A1, By))

by bilinearity, and [A1,Az], [B1, B2], [B1,Az], [A1,B2] € g by the closure of g
under the Lie bracket. Thus g+ig is a Lie algebra.

Complexifying the Lie algebras u(n) and su(n), which are not vector
spaces over C, gives Lie algebras that happen to be tangent spaces—of the
general linear group GL(n,C) and the special linear group SL(n,C).

GL(n,C) and itsLiealgebra gl(n,C)

The group GL(n,C) consists of all nx n invertible complex matrices A. It
is clear that the initial velocity A’(0) of any smooth path A(t) in GL(n,C) is
itself an n x n complex matrix. Thus the tangent space gl(n,C) of GL(n,C)
is contained in the space Mp(C) of all n x n complex matrices.

In fact, gl(n,C) = Mp(C). We first observe that exp maps My(C) into
GL(n,C) because, for any X € Mp(C) we have

e €% is an nx ncomplex matrix.
e € is invertible, because it has e X as its inverse.

It follows, since tX € Mp(C) for any X € M, (C) and any real t, that € is
a smooth path in GL(n,C). Then X is the tangent vector to this path at 1,
and hence the tangent space gl(n,C) equals M,(C), as claimed.
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Now we show why g[(n,C) is the complexification of u(n):
gl(n,C) = Mp(C) = u(n) +iu(n).

It is clear that any member of u(n) 4 iu(n) is in Mp(C). So it remains to
show that any X € Mp(C) can be written in the form

X=X +iX; where Xi,X; €u(n), (*)

that is, where X; and X; are skew-Hermitian. There is a surprisingly simple

way to do this:
-

X X'
2 2i
T T
We leave it as an exercise to check that X; = *2% and X, = * 3 satisfy

2i
Xy + XlT =0=X+ XZT, which completes the proof.

As a matter of fact, for each X € gl(N, C) the equation (*) has a unique
solution with X;, X € u(n). One solves (*) by first taking the conjugate
transpose of both sides, then forming

X+ X =X+ X +i(%—Xo')
=i(X— XZT) because X; + XlT =0
= 2iX, because X; + XzT =0.
X=X =X~ X' +i(%+X")
=X;— XlT because X, + X2T =0
= 2X; because X; + XlT =0.

T T .
Thus X; = XX and X, = X5 are in fact the only values X;,X; € u(n)
that satisfy (*).
SL(n,C) and itsLie algebra sl(n,C)

The group SL(n,C) is the subgroup of GL(n,C) consisting of the nx n
complex matrices A with det(A) = 1. The tangent vectors of SL(n,C) are
among the tangent vectors X of GL(n,C), but they satisfy the additional
condition Tr(X) = 0. This is because & € GL(n,C) and

det(e¥) =€) =1 < Tr(X) =0.
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Conversely, if X has trace zero, then so has tX for any real t, so a
matrix X with trace zero gives a smooth path €% in SL(n,C). This path
has tangent X at 1, so

sI(n,C) = {X € Mn(C) : Tr(X) = 0}.

We now show that the latter set of matrices is the complexification of
su(n), su(n) +isu(n). Since any X € su(n) has trace zero, any member of
su(n) +isu(n) also has trace zero. Conversely, any X € M,(C) with trace
zero can be written as

X =X1+iXz, where X, X; € su(n).
We use the same trick as for u(n) +iu(n); namely, write

T T
_ X-X +iX+X .

X .
2 21

T T
As before, X; = XX and X, = *3X are skew-Hermitian. But also, X

and X, have trace zero, because X has.

Thus, s[(N,C) = {X € My(C) : Tr(X) = 0} = su(n) + isu(n), as
claimed.

Also, by an argument like that used above for gl(n,C), each X €sl(n,C)
corresponds to a unique ordered pair X;, X, of elements of su(n) such that

X = X1 +iX,.
This equation therefore gives a 1-to-1 correspondence between the ele-

ments X of s{(n,C) and the ordered pairs (X1, Xz) such that X;, X, € su(n).

Exercises

5.6.1 Show that u(n) and su(n) are not vector spaces over C.

T T
5.6.2 Check that X; = ¢ and X, = %%, are skew-Hermitian, and that X; and
X, have trace zero when X has.

5.6.3 Show that the groups GL(n,C) and SL(n,C) are unbounded (noncompact)
when the matrix with (j,k)-entry (aji +ibji) is identified with the point

2 2
(all,bllaalzablb---aaln,blna---aann,bnn) eR .

and distance between matrices is the usual distance between points in R27,
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The following exercises show that the matrix A= (> 1) in SL(2,C) is not
equal to € for any X € sl(2,C), the 2 x 2 matrices with trace zero. Thus exp does
not map the tangent space onto the group in this case. The idea is to calculate €
explicitly with the help of the Cayley—Hamilton theorem, which for 2 x 2 matrices
X says that

X2 — (Tr(X))X +det(X)1 = 0.

Therefore, when Tr(X) = 0 we have X2 = — det(X)1.
5.6.4 When X2 = —det(X)1, show that

B sin(y/det(X))
e* = cos(y/det(X))1+ det(X) X

5.6.5 Using Exercise 5.6.4, and the fact that Tr(X) = 0, show that if

-1 1
(0 )
then cos(+/det(X)) = —1, in which case sin(,/det(X)) = 0, and there is a
contradiction.

5.6.6 It follows not only that exp does not map sl(2,C) onto SL(2,C) but also
that exp does not map gl(2,C) onto GL(2,C). Why?

This is not our first example of a Lie algebra that is not mapped onto its
group by exp. We have already seen that exp cannot map o(n) onto O(n) because
o(n) is path-connected and O(n) is not. What makes the s((n,C) and gl(n,C)
examples so interesting is that SL(n,C) and GL(n,C) are path-connected. We
gave some results on path-connectedness in Sections 3.2 and 3.8, and will give
more in Section 8.6, including a proof that GL(n,C) is path-connected.

5.6.7 Find maximal tori, and hence the centers, of GL(n,C) and SL(n,C).

5.6.8 Assuming path-connectedness, also find their discrete normal subgroups.

5.7 Quaternion Liealgebras

Analogous to GL(n,C), there is the group GL(n,H) of all invertible nx n
quaternion matrices. Its tangent vectors lie in the space Mp(H) of all
n x n quaternion matrices, and indeed each X € M,(H) is a tangent vec-
tor, because the quaternion matrix €* has the inverse e % and hence lies
in GL(n,H). So, for each X € Mn(H) we have the smooth path &X in
GL(n,H) with tangent X.

Thus the Lie algebra gl(n,H) of GL(n,H) is precisely M (H).



112 5 The tangent space

However, there is no “si(n,H)” of quaternion matrices of trace zero.
This set of matrices is closed under sums and scalar multiples but, because
of the noncommutative quaternion product, not under the Lie bracket. For
example, we have the following matrices of trace zero in My (H):

<) v 9

But their Lie bracket is

k 0 -k 0 k 0
=5 - (60 %) =206 w)
which does not have trace zero.

The quaternion Lie algebra that interests us most is sp(n), the tangent
space of Sp(n). As we found in Section 5.3,

sp(n) = {X € My(H) : X+ X' =0},

where X denotes the result of replacing each entry of X by its quaternion
conjugate.

There is no neat relationship between sp(n) and gl(n,H) analogous
to the relationship between su(n) and si(n,C). This can be seen by con-
sidering dimensions: gl(n,H) has dimension 4n? over R, whereas sp(n)
has dimension 2n? 4 n, as we saw in Section 5.5. Therefore, we cannot
decompose gl(n,H) into two subspaces that look like sp(n), because the
dimensions do not add up.

As a result, we need to analyze sp(n) from scratch, and it turns out to
be “simpler” than gl(n,H), in a sense we will explain in Section 6.6.

Exercises
5.7.1 Give three examples of subspaces of gl(n,H) closed under the Lie bracket.
5.7.2 What are the dimensions of your examples?

5.7.3 If your examples do not include one of real dimension 1, give such an ex-
ample.

5.7.4 Also, if you have not already done so, give an example g of dimension n
that is commutative. That is, [X,Y] = 0forall X,Y € g.
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5.8 Discussion

The classical groups were given their name by Hermann Weyl in his 1939
book The Classical Groups. Weyl did not give a precise enumeration of the
groups he considered “classical,” but it seems plausible from the content of
his book that he meant the general and special linear groups, the orthogonal
groups, and the unitary and symplectic groups. Weyl briefly mentioned
that the concept of orthogonal group can be extended to include the group
O(p,q) of transformations of RP™9 preserving the (not positive definite)
inner product defined by

/ / /
(U1, Up, ..., Up, Uy, Up, ., Ug) - (V1,V2,. ., Vp, Vi, Vg, o, V)
= WVy 4 UpVo + -+ UpVp — UpVj — UpVy — -+ — Ug V.

An important special case is the Lorentz group O(1,3), which defines
the geometry of Minkowski space—the “spacetime” of special relativity.
There are also “p, g generalizations” of the unitary and symplectic groups,
and today these groups are often considered “classical.” However, in this
book we apply the term “classical groups” only to the general and special
linear groups, and O(n), SO(n), U(n), SU(n), and Sp(n).

Weyl also introduced the term “Lie algebra” (in lectures at Princeton in
1934-35, at the suggestion of Nathan Jacobson) for the collection of what
Lie had called the “infinitesimal elements of a continuous group.”

The Lie algebras of the classical groups were implicitly known by Lie.
However, the description of Lie algebras by matrices was taken up only
belatedly, alongside the late-dawning realization that linear algebra is a
fundamental part of mathematics. As we have seen, the serious study of
matrix Lie groups began with von Neumann [1929], and the first examples
of nonmatrix Lie groups were not given until 1936. At about the same
time, 1. D. Ado showed that linear algebra really is an adequate basis for
the theory of Lie algebras, in the sense that any Lie algebra can be viewed
as a vector space of matrices.

As late as 1946, Chevalley thought it worthwhile to point out why it is
convenient to view elements of matrix groups as exponentials of elements
in their Lie algebras:

The property of a matrix being orthogonal or unitary is defined
by a system of nonlinear relationships between its coefficients;
the exponential mapping gives a parametric representation of



114 5 The tangent space

the set of unitary (or orthogonal) matrices by matrices whose
coefficients satisfy linear relations.

Chevalley [1946] is the first book, as far as | know, to explicitly describe
the Lie algebras of orthogonal, unitary, and symplectic groups as the spaces
of skew-symmetric and skew-Hermitian matrices.

The idea of viewing the Lie algebra as the tangent space of the group
goes back a little further, though it did not spring into existence fully
grown. In von Neumann [1929], elements of the Lie algebra of a ma-
trix groups G are taken to be limits of sequences of matrices in G, and von
Neumann’s limits can indeed be viewed as tangents, though this fact is not
immediately obvious (see Section 7.3). The idea of defining tangent vec-
tors to G via smooth paths in G seems to originate with Pontrjagin [1939],
p. 183. The full-blooded definition of Lie groups as smooth manifolds and
Lie algebras as their tangent spaces appears in Chevalley [1946].

In this book | do not wish to operate at the level of generality that
requires a definition of smooth manifolds. However, a few remarks are
in order, since the concept of smooth manifold includes some objects that
do not look “smooth” at first sight. For example, a single point is smooth
and so is any finite set of points. This has the consequence that {1,—1}
is a smooth subgroup of SU(2), and also of SO(n) for any even n. The
reason is that a smooth group should have a tangent space at every point,
but nobody said the tangent space has to be big!

“Smoothness” of a k-dimensional group G should imply that G has a
tangent space isomorphic to R* at 1 (and hence at any point), but this in-
cludes the possibility that the tangent space is R® = {0}. We must therefore
accept groups as “smooth” if they have zero tangent space at 1, which is
the case for {1}, {1, —1}, and any other finite group. In fact, finite groups
are included in the definition of “matrix Lie group” stated in Section 1.1,
since they are closed under nonsingular limits.

Nevertheless, the presence of nontrivial groups with zero tangent space,
such as {1,—1}, complicates the search for simple groups. If a group G is
simple, then its tangent space g is a sSimple Lie algebra, in a sense that will
be defined in the next chapter. Simple Lie algebras are generally easier to
recognize than simple Lie groups, so we find the simple Lie algebras g first
and then see what they tell us about the group G. A good idea—except that
g cannot “see” the finite subgroups of G, because they have zero tangent
space. Simplicity of g therefore does not rule out the possibility of finite
normal subgroups of G, because they are “invisible” to g. This is why we
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took the trouble to find the centers of various groups in Chapter 3. It turns
out, as we will show in Chapter 7, that g can “see” all the normal subgroups
of G except those that lie in the center, so in finding the centers we have
already found all the normal subgroups.

The pioneers of Lie theory, such as Lie himself, were not troubled by
the subtle difference between simplicity of a Lie group and simplicity of its
Lie algebra. They viewed Lie groups only locally and took members of the
Lie algebra to be members of the Lie group anyway (the “infinitesimal” el-
ements). For the pioneers, the problem wasto find the simple Lie algebras.
Lie himself found almost all of them, as Lie algebras of classical groups.
But finding the remaining simple Lie algebras—the so-called exceptional
Lie algebras—was a monumentally difficult problem. Its solution by Wil-
helm Killing around 1890, with corrections by Elie Cartan in 1894, is now
viewed as one of the greatest achievements in the history of mathematics.

Since the 1920s and 1930s, when Lie groups came to be viewed as
global objects and Lie algebras as their tangent spaces at 1, the question of
what to say about simple Lie groups has generally been ignored or fudged.
Some authors avoid saying anything by defining a simple Lie group to be
one whose Lie algebra is simple, often without pointing out that this con-
flicts with the standard definition of simple group. Others (such as Bour-
baki [1972]) define a Lie group to be almost simple if its Lie algebra is
simple, which is another way to avoid saying anything about the genuinely
simple Lie groups.

The first paper to study the global properties of Lie groups was Schreier
[1925]. This paper was overlooked for several years, but it turned out to
be extremely prescient. Schreier accurately identified both the general role
of topology in Lie theory, and the special role of the center of a Lie group.
Thus there is a long-standing precedent for studying Lie group structure as
a topological refinement of Lie algebra structure, and we will take up some
of Schreier’s ideas in Chapters 8 and 9.



6

Structureof Liealgebras

PREVIEW

In this chapter we return to our original motive for studying Lie algebras:
to understand the structure of Lie groups. We saw in Chapter 2 how normal
subgroups help to reveal the structure of the groups SO(3) and SO(4). To
go further, we need to know exactly how the normal subgroups of a Lie
group G are reflected in the structure of its Lie algebra g.

The focus of attention shifts from groups to algebras with the following
discovery. The tangent map from a Lie group G to its Lie algebra g sends
normal subgroups of G to substructures of g called ideals. Thus the ideals
of g “detect” normal subgroups of G in the sense that a nontrivial ideal of
g implies a nontrivial normal subgroup of G.

Lie algebras with no nontrivial ideals, like groups with no nontrivial
normal subgroups, are called simple. It is not quite true that simplicity of
g implies simplicity of G, but it turns out to be easier to recognize simple
Lie algebras, so we consider that problem first.

We prove simplicity for the “generalized rotation” Lie algebras so(n)
for n > 4, su(n), sp(n), and also for the Lie algebra of the special linear
group of C". The proofs occupy quite a few pages, but they are all vari-
ations on the same elementary argument. It may help to skip the details
(which are only matrix computations) at first reading.

116 J. Stillwell, Naive Lie Theory, DOI: 10.1007/978-0-387-78214-0 6,
(© Springer Science+Business Media, LLC 2008
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6.1 Normal subgroupsand ideals

In Chapter 5 we found the tangent spaces of the classical Lie groups: the
classical Lie algebras. In this chapter we use the tangent spaces to find
candidates for simplicity among the classical Lie groups G. We do so by
finding substructures of the tangent space g that are tangent spaces of the
normal subgroups of G. These are the ideals* defined as follows.

Definition. Anideal b of a Lie algebra g is a subspace of g closed under
Lie brackets with arbitrary members of g. That is, if Y € h and X € g then
X,Y] €bh.

Then the relationship between normal subgroups and ideals is given by
the following theorem.

Tangent space of a normal subgroup. If H is a normal subgroup of a
matrix Lie group G, then Ty(H) isanideal of the Lie algebra T, (G).

Proof. T1(H) is a vector space, like any tangent space, and it is a subspace
of T1(G) because any tangent to H at 1 is a tangent to G at 1. Thus it
remains to show that T;(H) is closed under Lie brackets with members of
T1(G). To do this we use the property of a normal subgroup that B € H and
A< Gimplies ABA c H.

It follows that A(s)B(t)A(s)~* is a smooth path in H for any smooth
paths A(s) in G and B(t) in H. As usual, we suppose A(0) = 1= B(0), so
A(0)=XeTi(G)and B'(0) =Y € Ty(H). If we let

Cs(t) = A(S)B(t)A(s) ™,
then it follows as in Section 5.4 that
D(s) = C4(0) = A(s)YA(s)

4This terminology comes from algebraic number theory, via ring theory. In the 1840s,
Kummer introduced some objects he called “ideal numbers” and “ideal primes” in order to
restore unique prime factorization in certain systems of algebraic numbers where ordinary
prime factorization is not unique. Kummer’s “ideal numbers” did not have a clear meaning
at first, but in 1871 Dedekind gave them a concrete interpretation as certain setsof numbers
closed under sums, and closed under products with all numbers in the system. In the 1920s,
Emmy Noether carried the concept of ideal to general ring theory. Roughly speaking, a
ring is a set of objects with sum and product operations. The sum operation satisfies the
usual properties of sum (commutative, associative, etc.) but the product is required only
to “distribute” over sum: a(b+c) = ab+ac. A Lie algebra is a ring in this general sense
(with the Lie bracket as the “product” operation), so Lie algebra ideals are included in the
general concept of ideal.
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is a smooth path in Ty (H). It likewise follows that
D'(0) = XY —YX € Ty (H),

and hence Ty(H) is an ideal, as claimed. O

Remark. In Section 7.5 we will sharpen this theorem by showing that
T1(H) # {0} provided H is not discrete, that is, provided there are points
in H not equal to 1 but arbitrarily close to it. Therefore, if g has no ideals
other than itself and {0}, then the only nontrivial normal subgroups of G
are discrete. We saw in Section 3.8 that any discrete normal subgroup of
a path-connected group G is contained in Z(G), the center of G. For the
generalized rotation groups G (which we found to be path-connected in
Chapter 3, and which are the main candidates for simplicity), we already
found Z(G) in Section 3.7. In each case Z(G) is finite, and hence discrete.

This remark shows that the Lie algebra g = T1(G) can “see” normal
subgroups of G that are not too small. T;(G) retains an image of a normal
subgroup H as an ideal T1(H ), which is “visible” (T1(H) # {0}) provided
H is not discrete. Thus, if we leave aside the issue of discrete normal
subgroups for the moment, the problem of finding simple matrix Lie groups
essentially reduces to finding the Lie algebras with no nontrivial ideals.

In analogy with the definition of simple group (Section 2.2), we define
a simple Lie algebra to be one with no ideals other than itself and {0}.
By the remarks above, we can make a big step toward finding simple Lie
groups by finding the simple Lie algebras among those for the classical
groups. We do this in the sections below, before returning to Lie groups to
resolve the remaining difficulties with discrete subgroups and centers.

Simplicity of so(3)

We know from Section 2.3 that SO(3) is a simple group, so we do not
really need to investigate whether so(3) is a simple Lie algebra. However,
it is easy to prove the simplicity of so(3) directly, and the proof is a model
for proofs we give for more complicated Lie algebras later in this chapter.

First, notice that the tangent space so(3) of SO(3) at 1 is the same as
the tangent space su(2) of SU(2) at 1. This is because elements of SO(3)
can be viewed as antipodal pairs +q of quaternions q in SU(2). Tangents
to SU(2) are determined by the g near 1, in which case —q is not near 1,
so the tangents to SO(3) are the same as the tangents to SU(2).
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Thus the Lie algebra so(3) equals su(2), which we know from Section
4.4 is the cross-product algebra on R3. (Another proof that so(3) is the
cross-product algebra on R? is in Exercises 5.2.1-5.2.3.)

Simplicity of the cross-product algebra. The cross-product algebra is
simple.

Proof. It suffices to show that any nonzero ideal equals R3 = Ri +Rj + Rk,
where i, j, and k are the usual basis vectors for R3.

Suppose that J is an ideal, with a nonzero member u = xi +Vj + z.
Suppose, for example, that x # 0. By the definition of ideal, J is closed
under cross products with all elements of R3. In particular,

uxj=xk—ze7,

and hence
(xk—2)xi=x €7.

Then x~1(xj) =j € J also, since J is a subspace. It follows, by taking cross
products with k and i, that i,k € J as well.

Thus J is a subspace of R that includes the basis vectors i, j, and K,
so J =R3. There is a similar argument if y £ 0 or z# 0, and hence the
cross-product algebra on R? is simple. O

The algebraic argument above—nullifying all but one component of
a nonzero element to show that a nonzero ideal J includes all the basis
vectors—is the model for several simplicity proofs later in this chapter. The
later proofs look more complicated, because they involve Lie bracketing
of a nonzero matrix to nullify all but one basis element (which may be a
matrix with more than one nonzero entry). But they similarly show that a
nonzero ideal includes all basis elements, and hence is the whole algebra,
so the general idea is the same.

Exercises

Another way in which T;(G) may misrepresent G is when Ty (H) = T;(G) but H
is not all of G.

6.1.1 Show that T1(O(n)) = T1(SO(n)) for each n, and that SO(n) is a normal
subgroup of O(n).

6.1.2 What are the cosets of SO(n) in O(n)?
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An example of a matrix Lie group with a nontrivial normal subgroup is U(n).
We determined the appropriate tangent spaces in Section 5.3.

6.1.3 Show that SU(n) is a normal subgroup of U(n) by describing it as the kernel
of a homomorphism.

6.1.4 Show that T1(SU(n)) is an ideal of T1(U(n)) by checking that it has the
required closure properties.

6.2 ldealsand homomorphisms

If we restrict attention to matrix Lie groups (as we generally do in this
book) then we cannot assume that every normal subgroup H of a Lie group
G is the kernel of a matrix group homomorphism G — G/H. The problem
is that the quotient G/H of matrix groups is not necessarily a matrix group.
This is why we derived the relationship between normal subgroups and
ideals without reference to homomorphisms.

Nevertheless, some important normal subgroups are kernels of matrix
Lie group homomorphisms. One such homomorphism is the determinant
map G — C*, where C* denotes the group of nonzero complex numbers
(or 1 x 1 nonzero complex matrices) under multiplication. Also, any ideal
is the kernel of a Lie algebra homomorphism—defined to be a map of
Lie algebras that preserves sums, scalar multiples, and the Lie bracket—
because in fact any Lie algebra is isomorphic to a matrix Lie algebra.

An important Lie algebra homomorphism is the trace map,

Tr(A) = sum of diagonal elements of A,

for real or complex matrices A. We verify that Tr is a Lie algebra homo-
morphism in the next section.

The general theorem about kernels is the following.

Kernel of a Lie algebra homomorphism. If ¢ : g — ¢’ isa Lie algebra
homomor phism, and

h={Xecg:o(X)=0}

isitskernel, then h isan ideal of g.
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Proof. Since ¢ preserves sums and scalar multiples, § is a subspace:

X1, X2 €= ¢(X1) =0,0(Xz) =0
= (X1 +Xz) =0 because ¢ preserves sums
= X1+ X2 €h,
Xeh=¢(X)=0
=cp(X)=0
= @(cX) =0 because ¢ preserves scalar multiples
=cXebh.

Also, § is closed under Lie brackets with members of g because

Xeh=9(X)=0
= @([X,Y]) = [o(X),0(Y)] = [0,9(Y)] =0
forany Y € g because ¢ preserves Lie brackets
= [X,Y]eh foranyY €g.

Thus b is an ideal, as claimed. O

It follows from this theorem that a Lie algebra is not simple if it admits
a nontrivial homomorphism. This points to the existence of non-simple Lie
algebras, which we should look at first, if only to know what to avoid when
we search for simple Lie algebras.

Exercises

There is a sense in which any homomorphism of a Lie group G “induces” a homo-
morphism of the Lie algebra T1(G). We study this relationship in some depth in
Chapter 9. Here we explore the special case of the det homomorphism, assuming
also that G is a group for which exp maps T;(G) onto G.

6.2.1 If we map each X € T1(G) to Tr(X), where does the corresponding member
e of G go?

6.2.2 1f we map each € € Gto det(e*), where does the corresponding X € T;(G)
go?

6.2.3 In particular, why is there a well-defined image of X when eX = X'?
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6.3 Classical non-simpleLiealgebras

We know from Section 2.7 that SO(4) is not a simple group, so we expect
that so(4) is not a simple Lie algebra. We also know, from Section 5.6,
about the groups GL(n,C) and their subgroups SL(n,C). The subgroup
SL(n,C) is normal in GL(n,C) because it is the kernel of the homomor-
phism
det: GL(n,C) — C*.

It follows that GL(n,C) is not a simple group for any n, so we expect that
gl(n,C) is not a simple Lie algebra for any n. We now prove that these Lie
algebras are not simple by finding suitable ideals.

Anideal in gi(n,C)

We know from Section 5.6 that gl(n,C) = Mu(C) (the space of all nxn
complex matrices), and sl(n,C) is the subspace of all matrices in Mp(C)
with trace zero. This subspace is an ideal, because it is the kernel of a Lie
algebra homomorphism.

Consider the trace map

Tr: My(C) — C.

The kernel of this map is certainly s{(n,C), but we have to check that this
map is a Lie algebra homomorphism. It is a vector space homomorphism
because

Tr(X4+Y)=Tr(X)+Tr(Y) and Tr(zX)=2Tr(X) foranyzeC,
as is clear from the definition of trace.

Also, if we view C as the Lie algebra with trivial Lie bracket [u,v] =
uv—wvu = 0, then Tr preserves the Lie bracket. This is due to the (slightly
less obvious) property that Tr(XY) = Tr(YX), which can be checked by
computing both sides (see Exercise 5.3.8). Assuming this property of Tr,
we have

Tr([X,Y]) = Tr(XY —YX)
= Tr(XY) = Tr(YX)
=0
= [Tr(X), Tr(Y)].
Thus Tr is a Lie bracket homomorphism and its kernel, si(n,C), is neces-
sarily an ideal of M,(C) = gl(n,C).
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Anideal in so(4)

In Sections 2.5 and 2.7 we saw that every rotation of H = R* is a map of
the form q+— v—1qw, where u,v € Sp(1) (the group of unit quaternions,
also known as SU(2)). In Section 2.7 we showed that the map

@ :Sp(1l) x Sp(1l) — SO(4)

that sends (v, w) to the rotation q+— v—tqw s a 2-to-1 homomorphism onto
SO(4). This is a Lie group homomorphism, so by Section 6.1 we expect it
to induce a Lie algebra homomorphism onto so(4),

@ sp(1) x sp(l) — s0(4),

because sp(1) x sp(1) is surely the Lie algebra of Sp(1) x Sp(1). Indeed,
any smooth path in Sp(1) x Sp(1) has the form u(t) = (v(t),w(t)), so

U'(0) = (V(0),w(0)) € sp(1) x sp(1).

And as (v(t),w(t)) runs through all pairs of smooth paths in Sp(1) x Sp(1),
(V(0),w(0)) runs through all pairs of velocity vectors in sp(1) x sp(1).

Moreover, the homomorphism ¢ is 1-to-1. Of the two pairs (v(t),w(t))
and (—v(t), —w(t)) that map to the same rotation q — v(t) "tqw(t), exactly
one goes through the identity 1 when t = 0 (the other goes through —1).
Therefore, the two pairs between them yield only one velocity vector in
sp(1) x sp(1), either (V(0),w (0)) or (—V(0),—w/(0)). Thus ¢ is in fact
an isomorphism of sp(1) x sp(1) onto so(4). (For a matrix description of
this isomorphism, see Exercise 6.5.4.)

Butsp(1) x sp(1) has a homomorphism with nontrivial kernel, namely,

(V(0),w(0)) — (0,w(0)), with kernel sp(1)x {0}.

The subspace sp(1) x {0} is therefore a nontrivial ideal of so(4). Since
sp(1) is isomorphic to so(3), and so(3) x {0} is isomorphic to so(3), this
ideal can be viewed as an so(3) inside so(4).

Exercises

A more concrete proof that s[(n,C) is an ideal of gl(n,C) can be given by checking
that the matrices in sl(n,C) are closed under Lie bracketlng with any member of
gl(n,C). In fact, the Lie bracket of any two elements of gl(n,C) lies in sl(n,C),
as the following exercises show.
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We let
X11 X12 ... Xin
Xo1 X2 ... Xon
X = )
Xn1 X2 ... Xmn

be any element of gl(n,C), and consider its Lie bracket with &j, the matrix with
lasits (i, j)-entry and zeros elsewhere.

6.3.1 Describe Xe;j and &;X. Hence show that the trace of [X, &j] is ;i —x;i =0.
6.3.2 Deduce from Exercise 6.3.1 that Tr([X,Y]) = 0 for any X,Y € gl(n,C).
6.3.3 Deduce from Exercise 6.3.2 that s{(n,C) is an ideal of gl(n,C).

Another example of a non-simple Lie algebra is u(n), the algebra of nx n
skew-hermitian matrices.

6.3.4 Find a 1-dimensional ideal J in u(n), and show that J is the tangent space
of Z(U(n)).

6.3.5 Also show that the Z(U(n)) is the image, under the exponential map, of the
ideal J in Exercise 6.3.4.

6.4 Simplicity of si(n,C) and su(n)

We saw in Section 5.6 that s[(n,C) consists of all n x n complex matrices
with trace zero. This set of matrices is a vector space over C, and it has
a natural basis consisting of the matrices &; for i # j and &; — ey, for
i=1,2,...,n—1, where g; is the matrix with 1 as its (i, j)-entry and zeros
elsewhere. These matrices span sl(n,C). In fact, for any X € s((n,C),

n—1
X = (xj) =D %8+ X, Xi(ai —emn)
i#] i=1
because Xnn = —X11 — %22 — - - - —Xn—1,n—1 for the trace of X to be zero. Also,
X'is the zero matrix only if all the coefficients are zero, so the matrices
fori# jand g — ey fori=1,2,...,n— 1 are linearly independent.

These basis elements are convenient for Lie algebra calculations be-
cause the Lie bracket of any X with an g; has few nonzero entries. This
enables us to take any nonzero member of an ideal J and manipulate it
to find a nonzero multiple of each basis element in J, thus showing that
s[(n,C) contains no nontrivial ideals.
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Simplicity of sl(n,C). For each n, sl(n,C) isa simple Lie algebra.

Proof. If X = (xj) is any nx n matrix, then Xe; has all columns zero

except the jth, which is occupied by the ith column of X, and —g;X has

all rows zero except the ith, which is occupied by —(row j) of X.
Therefore, since [X,&j] = X&; — X, we have

X1
Xi—1,i
column j of [X,&j] = | Xi —Xjj |,
Xir1i
Xni
and
row i of [X,aj]:(—le cee X Xi = X = Xjjer - —Xjn),

and all other entries of [X,&;] are zero. In the (i, j)-position, where the
shifted row and column cross, we get the element X;; — X;;.

We now use such bracketing to show that an ideal J with a nonzero
member X includes all the basis elements of s((n,C), so 3 = s((n,C).

Case (i): X has nonzero entry X;j; for some i # |.

Multiply [X,&;] by &; on the right. This destroys all columns except
the ith, whose only nonzero element is —x;; in the (i,i)-position, moving it
to the (i, j)-position (because column i is moved to column j position).

Now multiply [X, ;] by —&; on the left. This destroys all rows except
the jth, whose only nonzero element is x;; at the (j, j)-position, moving it
to the (i, j)-position and changing its sign (because row j is moved to row
i position, with a sign change).

Itfollows that [X,&;]ej —&;[X,aj] =[[X,&]],aj] contains the nonzero
element —2x;; at the (i, j)-position, and zeros elsewhere.

Thus the ideal J containing X also contains &;. By further bracket-
ing we can show that all the basis elements of s((n,C) are in J. For
a start, if &; € J then €;; € J, because the calculation above shows that
[[&,€ji], €i] = —2eji. The other basis elements can be obtained by using

the result ifi £k
[ajaejk]_{ al_e]] |f|:k;



126 6 Structure of Lie algebras

which can be checked by matrix multiplication (Exercise 6.4.1).
For example, suppose we have e, and we want to get e43. This is
achieved by the following pair of bracketings, from right and left:

€12, €3] = €13,
(€41, €13] = €43.

All eq with k # | are obtained similarly. Once we have all of these, we
obtain the remaining basis elements of s((n,C) by

[€n, &ni] = &i — €nn.

Case (ii). All the nonzero entries of X are among Xi1,X22, - - - , Xnn-

Not all these elements are equal (otherwise, Tr(X) # 0), so we can
choose i and j such that x;; — Xjj # 0. Now, for this X, the calculation of
[X,&j] gives

(X, &) = (Xi —Xjj)&;-

Thus J includes a nonzero multiple of &j, and hence g; itself. We can
now repeat the rest of the argument in case (i) to conclude again that J =
sl(n,C), so sl(n,C) is simple. O

An easy corollary of this result is the following:
Simplicity of su(n). For each n, su(n) isa simple Lie algebra.

Proof. We use the result from Section 5.6, that
sl(n,C) = su(n) +isu(n) = {A+iB: A Becsu(n)}.
It follows that if J is a nontrivial ideal of su(n) then
J+iJ={C+iD:C,De7J}
is a nontrivial ideal of s((n,C). One only has to check that

1. 3+iTJisnotall of si(n,C), which is true because of the 1-to-1 corre-
spondence X = X; 41X between elements X of s((n,C) and ordered
pairs (X1, Xz) such that X;, X, € su(n).

If 3417 includes each X € s[(n,C) then J includes each X; € su(n),
contrary to the assumption that J is not all of su(n).
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2. 3417 is a vector subspace (over C) of sl(n,C). Closure under sums
is obvious. And the scalar multiple (a+ib)(C +iD) of any C+iD
inJ+iJisalso in J+i7 for any a+ib € C because

(a+1ib)(C+iD) = (aC—bD)+i(bC+aD)
and aC — bD,bC + aD € 7 by the vector space properties of J.

3. J+17 is closed under the Lie bracket with any A+iB € sl(n,C).
This is because, if C+iD € J+i7J, then

[C+iD,A+iB]|=[C,A]—[D,B|+i([D,A]+[C,B]) € T+iJ
by the closure properties of J.

Thus a nontrivial ideal J of su(n) gives a nontrivial ideal of s{(n,C). There-

fore J does not exist. O
Exercises
6.4.1 Verify that
4 ek ifi £k,
@58 = { e —ej ifi=k

6.4.2 More generally, verify that [6j, 6q] = djk&i — §i€;.

In Section 6.6 we will be using multiples of the basis vectors enm by the quaternion
units i, j, and k. Here is a taste of the kind of result we require.

6.4.4 Show that an ideal of quaternion matrices that includes iemm also includes
j€mm and kemm.

6.5 Smplicity of so(n) for n> 4

The Lie algebra so(n) of real n x n skew-symmetric matrices has a basis
consisting of the n(n— 1) matrices
Eij=ej—ei for i<j.

Indeed, since E;j has 1 in the (i, j)-position and —1 in the (j,i)-position,
any skew symmetric matrix is uniquely expressible in the form

XZZXijEij.

i<j
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Our strategy for proving that so(n) is simple is like that used in Section 6.4
to prove that s((n,C) is simple. It involves two stages:

e First we suppose that X is a nonzero member of some ideal J and
take Lie brackets of X with suitable basis vectors until we obtain a
nonzero multiple of some basis vector in 7.

e Then, by further Lie bracketing, we show that all basis vectors are
in factin J, so J = so(n).

The first stage, as with si(n,C), selectively nullifies rows and columns until
only a nonzero multiple of a basis vector remains. It is a little trickier to
do this for so(n), because multiplying by E;; leaves intact two columns
(or rows, if one multiplies on the left), rather than one. To nullify all but
two, symmetrically positioned, entries we need n > 4, which is no surprise
because so(4) is not simple.

In the first stage we need to keep track of matrix entries as columns
and rows change position, so we introduce a notation that provides number
labels to the left of rows and above columns. For example, we write

to indicate that E;j has 1 in the (i, j)-position, —1 in the (j,i)-position, and
zeros elsewhere.

Now suppose X is the nx n matrix with (i, j)-entry x;j. Multiplying X
on the right by E;; and on the left by —E;j;, we find that

i j
—Xij Xii

—Xnj Xni
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and

CEX = | T Tz X

Thus, right multiplication by E;; preserves only column i, which goes to
position j, and column j, which goes to position i with its sign changed.
Left multiplication by —E;j preserves row i, which goes to position j, and
row j, which goes to position i with its sign changed.

The Lie bracket of X with E;; is the sum of XE;j and —E;;X, namely

(XEij] =
i j
—X1j Xii
—X2j X2i
i _le _ij _in_xij —ij—i—in —Xjn
Bl % X2 o X=X o XX o Xin
—Xnj Xni

Note that the (i, j)- and (j,i)-entries are zero when X € so(n) because Xij =
Xjj = 0 in a skew-symmetric matrix. Likewise, the (i,i)- and (j, j)-entries
are zero for a skew-symmetric X, so for X € so(n) we have the simpler
formula (*) below. In short, the rule for bracketing a skew-symmetric X
with Ejj is:

e Exchange rows i and j, giving the new row i a minus sign.
e Exchange columns i and j, giving the new column i a minus sign.

e Put 0 where the new rows and columns meet and O everywhere else.
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X, Eij] =
I j
—X1j Xii
—X2j Xoi
i —Xj1 —Xj2 - 0 R —Xjn (*)
j Xi1 Xio 0 R Xin
—Xnj Xni

We now make a series of applications of formula (*) for [X,E;j] to
reduce a given nonzero X € so(n) to a nonzero multiple of a basis vector.
The result is the following theorem.

Simplicity of so(n). For each n > 4, so(n) isa simple Lie algebra.

Proof. Suppose that J is a nonzero ideal of so(n), and that X is a nonzero
n > nmatrix in J. We will show that J contains all the basis vectors E;jj, so
J=so(n).

In the first stage of the proof, we Lie bracket X with a series of four
basis elements to produce a matrix (necessarily skew-symmetric) with just
two nonzero entries. The first bracketing produces the matrix X; = [X, Ejj]
shown in (*) above, which has zeros everywhere except in columns i and |
and rows i and j.

For the second bracketing we choose a k # i, j and form X, = [X¢, Ejk],
which has row and column | of X; moved to the k position, row and column
k of X; moved to the j position with their signs changed, and zeros where
these rows and columns meet. Row and column Kk in X; = [X,E;jj| have
at most two nonzero entries (where they meet row and column i and j),
so row and column j in X; = [X1,E k] each have at most one, since the
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(j, ])-entry —Xik — X is necessarily zero. The result is that
i j k

X1j
X2i

(X1, Ejx] =

kKl x1 Xo - o --. 0O --- 0 - Xn

Xni
Now choose | # i, j,k and bracket X, = [X1,E k] with Ej;. The only

nonzero elements in row and column | of X; are x;; at position (I,k) in row
| and x; at position (k, 1) in column k. Therefore, X3 = [Xz,E; ] is given by

i ko

(X2, Ejl]

j Xj

| Xjk

To complete this stage we choose m#1, j, k.| and bracket X3 = [X2, Ej]
with Ejm. Since row and column mare zero, the result X4 = [X3, Ejm] is the
matrix with Xi; in the (j, m)-position and X in the (m, j)-position; that is,

(X3, Eim] = X Ejm-
=)

Now we work backward. If X is a nonzero member of the ideal J, let x;
be a nonzero entry of X. Provided n > 4, we can choose i # j,k, then
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| #i,j,kand m#i, j,k,1, and construct the nonzero element xx;Ejm of J
by a sequence of Lie brackets as above. Finally, we multiply by 1/xy; and
obtain Ejm € J.

The second stage obtains all other basis elements of so(n) by forming
Lie brackets of Ejm with other basis elements. This proceeds exactly as
for sl(n,C), because the E;j satisfy relations like those satisfied by the &,
namely

[Eij,Ejk] = Eik if i 75 k,

[Eij,Eki]IEjk if j;ﬁk
Thus, when n > 4, any nonzero ideal of so(n) is equal to so(n), as
required. O

The first stage of the proof above may seem a little complicated, but
| doubt that it can be substantially simplified. If it were much simpler it
would be wrong! We need to use five different values i, j,k, 1, m because
s0(4) is not simple, so the result is false for a 4 x 4 matrix X.

Exercises
6.5.1 Prove that
[Eij,Ejx] =Ei If i#k
[Eij,Ex]=Ej if j#k
6.5.2 Also show that [Eij,Ex] = 0 ifi, j, k| are all different.

6.5.3 Use Exercises 6.5.1 and 6.5.2 to give another proof that [X3, Ejm| = X Ejm.
(Hint: Write X3 as a linear combination of E; and Ej.)

6.5.4 Prove that each 4 x 4 skew-symmetric matrix is uniquely decomposable as

0 -a -b —c 0 —x -y -z

a 0 -c b n x 0 z -y
b ¢ 0 -a y -z 0 X
c b a 0 z y —x 0
6.5.5 Setting | = —E1» — E34, J = —E13+ Ey4, and K = —E14 — Ep3, show that

[1,3] = 2K, [3,K] =21, and [K, 1] = 2J.

6.5.6 Deduce from Exercises 6.5.4 and 6.5.5 that so(4) is isomorphic to the direct
product so(3) x so(3) (also known as the direct sumand commonly written
50(3) @ s0(3)).
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6.6 Simplicity of sp(n)

If X € sp(n) we have X + X" = 0, where X is the result of replacing each
entry in the matrix X by its quaternion conjugate. Thus, if X = (x;j) and

Xij = &+ biji +Gijj +dijk,
then
Xij = &j —biji —Gijj —dijk
and hence
Xji = —&j + biji + Cijj +dijk,

where g;j,bij,cij,dij € R. (And, of course, the quaternion units i, j, and
k are completely unrelated to the integers i, j used to number rows and
columns.) In particular, each diagonal entry x;; of X is pure imaginary.

This gives the following obvious basis vectors for sp(n) as a vector
space over R. The matrices &; and E;j; are as in Sections 6.4 and 6.5.

e Fori=1,2,...,n, the matrices igj, jgi, and ke;.
e For each pair (i, j) with i < j, the matrices E;;.

e Foreach pair (i, j) with i < j, the matrices iE;j, jE;j, and kE;j, where
Ei; is the matrix with 1 in the (i, j)-position, 1 in the (j,i)-position,
and zeros elsewhere.

To prove that sp(n) is simple we suppose that J is an ideal of sp(n) with
a nonzero element X = (x;;). Then, as before, we reduce X to an arbitrary
basis element by a series of Lie bracketings and vector space operations.
Once we have found all the basis elements in J, we know that J = sp(n).
We have a more motley collection of basis elements than ever before, but
the job of finding them is made easier by the presence of the very simple
basis elements ig;j, j&i, and ke;.

In particular, J includes

[

Xqil

[X,iai]:i —iXjp - Xiii;ixii ceo —Xin |, )

Xnil
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and hence also, ifi # |,

[[X,iai],iejj] = i —iXiji

j —inii

where all entries are zero except those explicitly shown.
This gets the essential matrix calculations out of the way, and we are
ready to prove our theorem.

Simplicity of sp(n). For all n, sp(n) isa simple Lie algebra.

Proof. When n= 1, we have sp(1) = su(2), which we proved to be simple
in Section 6.4. Thus we can assume n > 2, which allows us to use the
computations above.

Suppose that J is an ideal of sp(n), with a nonzero element X = (x;;).

Case (i). All nonzero entries x;j of X are on the diagonal.
In this case (*) gives the element of J

[X,ii] = (il —ixii)e&i,
and we can similarly obtain the further elements

(X.jei] = (Xi] —j%i)ei,
(X, kei] = (xik —kxii)&i-

Now if x;i = bjji 4 ijj + diik we find

Xiil —ixi = —2¢iik + 2djj ,
Xii] — jXi = 2bjjk — 2djji,
Xik — kxij = —20j;ij + 2c;ji.

So, by the closure of J under Lie brackets and real multiples, we have
(—cik +dij)e&i, (bik —dii)ei, (—bij +cii)ei in 7.
Lie bracketing these three elements with k1, i1, j1 respectively gives us

diigi, bijei, cike; in J.
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Thus if X;; is a nonzero entry in X we have at least one of the basis vectors
igi, j&i, kej in J. Lie bracketing the basis vector in J with the other two
then gives us all three of ig;, j&;i, ke in J. (Here, the facts that jk = —kj =i
and so on work in our favor.)

Until now, we have found ig;, j&;i, ke; in J only for one value of i. To
complete our collection of diagonal basis vectors we first note that

[Eij,iei] =iEij, [Eij,jei] =iEij, [Eij,kei] =KEjj, (**)
as special cases of the formula (*). Thus we have
iEij, jEij, kEij, in J
for some i and arbitrary j # i. Then we notice that
[Eij,iEij] = 2k (ei + &)
So k(e + €;j) and ke; are both in J, and hence their difference ke;; is in
J, for any j. We then find ie;j; in J by Lie bracketing je;j; with kej;, and
jejj in J by Lie bracketing igj; with ke;;.
Now that we have the diagonal basis vectors ig;, je;, ka. in J for all

i, we can reapply the formulas (**) to get the basis vectors iE;j, i 1=t j, and
kEIJ foralliand jwithi < j. Finally, we get all the E;j in J by the formula

[iEij,iai] = Eij,

which also follows from (*). Thus all the basis vectors of sp(n) are in J,
and hence J = sp(n).

Case (ii). X has a nonzero entry of the form x;; = & + bjji + Gjj +dijK,
for somei < j.

Our preliminary calculations show that the element [[X,ig;],igj;] of J
has zeros everywhere except for —ix;ji in the (i, j)-position, and its nega-
tive conjugate —ix;ii in the (j,i)-position. Explicitly, the (i, j)-entry is

—ixiji = &+ biji —cijj —dijk,

so we have

[[Xiei],iej] = aijEij + (byji — & — dhjk)Eij € 3.
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If &j is the only nonzero coefficient in [[X,ie;l,iejj] we have Eij € J.
Then, writing Ejj = & — €ji, Ej; = &; + g;i, we find from the formula
[&],€ji] = &; — ejj of Section 6.4 the following elements of J:

[Eij,iEij] = 2i(ai —eyj),
[Eij, ] Eij] = 2j (& — &),
[Eij, KEij] = 2k (& — €j).

The first two of these elements give us
[i(ai —ejj).i(ei —ejj)] = 2k(ei+ejj) €T

(Another big “thank you” to noncommutative quaternion multiplication!)
Adding the last two elements found, we find ke; € J, so 3 = sp(n) for the
same reasons as in Case (i).

Finally, if one of the coefficients byj, cjj, or d;; is nonzero, we simplify
aijEij + (biji — cijj — dijk)E;j by Lie bracketing with i1, j1, and k1. Since

[Eij,il] =0, [iEj,i]=0, [iEj,j1] = 2kE;,
and so on, we can nullify all terms in a;;E;; + (hyji tCijj +dijk)Eij except

one with a nonzero coefficient. This gives us, say, iEjj € J. Then we apply
the formula

iEij.iei] = Eij,
which follows from (*), and we again have E;j; € J, so we can reduce to
Case (i) as above. O
Exercises

It was claimed in Section 5.7 that sp(n) is “simpler” than the Lie algebra g((n,H)
of all n x n quaternion matrices. What was meant is that g{(n,H) is not a simple
Lie algebra—it contains two nontrivial ideals:

M={X:X=rlforsomer R} ofdimensionl,
T ={X:re(Tr(X)) =0} of dimension4n®—1,
where re denotes the real part of the quaternion.
6.6.1 Prove that 2% is an ideal of gl(n,H).
6.6.2 Prove that, for any two quaternions p and g, re(pq) = re(gp).
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6.6.3 Using Exercise 6.6.2 or otherwise, check that ¥ is an ideal of the real Lie
algebra gl(n,H).

6.6.4 Show that each X € gl(n,H) has a unique decomposition of the form X =
R+T,whereRe Rand T € %.

It turns out that 9% and ¥ are the only nontrivial ideals of gl(n,H). This can be
shown by taking the 4n? basis vectors &, iejj, j&j, ke for gi(n,H), and consid-
ering a nonzero ideal J.

6.6.5 If J has a member X with a nonzero entry x;j, where i # j, show that J
equals T or gl(n,H).

6.6.6 Show in general that J equals either 2R, T, or gl(n,H).

6.7 Discussion

As mentioned in Section 5.8, the classical simple Lie algebras were known
to Lie in the 1880s, the exceptional simple algebras were discovered by
Killing soon thereafter, and by 1894 Cartan had completely settled the
question by an exhaustive proof that they are the only exceptions. The
number of exceptional algebras, in complex form, is just five. All this be-
fore it was realized that Lie algebras are quite elementary objects! (namely,
vector spaces of matrices closed under the Lie bracket operation). It has
been truly said that the Killing—Cartan classification of simple Lie alge-
bras is one of the great mathematical discoveries of all time. But it is not
necessary to use the sophisticated theory of “root systems,” developed by
Killing and Cartan, merely to prove that the classical algebras so(n), su(n),
and sp(n) are simple. As we have shown in this chapter, elementary matrix
calculations suffice.

The matrix proof that sl(n,C) is simple is sketched in Carter et al.
[1995], p. 10, and the simplicity of su(n) follows from it, but | have
nowhere seen the corresponding elementary proofs for so(n) and sp(n).
It is true that the calculations become a little laborious, but it is not a good
idea to hide all matrix calculations. Many results were first discovered
because somebody did such a calculation.

The simplicity proofs in Sections 6.4 to 6.6 are trivial in the sense that
they can be discovered by anybody with enough patience. Given that sp(n),
say, is simple, we know that the ideal generated by any nonzero element
X is the whole of sp(n). Therefore, if we apply enough Lie bracket and
vector space operations to X, we will eventually obtain all the basis vectors
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of sp(n). In other words, brute force search gives a proof that any nonzero
ideal of sp(n) equals sp(n) itself.

The Lie algebra so(4) is close to being simple, because it is the direct
product so(3) x so(3) of simple Lie algebras. Direct products of simple
Lie algebras are called semisimple. Sophisticated Lie theory tends to focus
on the broader class of semisimple Lie algebras, where so(4) is no longer
an anomaly. With this approach, one can also avoid the embarrassment of
using the term “complex simple Lie algebras” for algebras such as sl(n,C),
replacing it by the slightly less embarrassing “complex semisimple Lie al-
gebras.” (Of course, the real mistake was to call the imaginary numbers
“complex” in the first place.)
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Thematrix logarithm

PREVIEW

To harness the full power of the matrix exponential we need its inverse
function, the matrix logarithm function, log. Like the classical log, the
matrix log is defined by a power series that converges only in a certain
neighborhood of the identity. This makes results involving the logarithm
more “local” than those involving the exponential alone, but in this chapter
we are interested only in local information.

The central result is that log and exp give a 1-to-1 correspondence,
continuous in both directions, between a neighborhood of 1 in any matrix
Lie group G and a neighborhood of O in its Lie algebra g = T1(G). Thus
the log function produces tangents. The proof relates the classical limit
process defining tangents to the infinite series defining the logarithm. The
need for limits motivates the definition of a matrix Lie group as a matrix
group that is suitably closed under limits.

The correspondence shows that elements of G sufficiently close to 1
are all of the form €%, where X € g. When two such elements, € and e",
have a product of the form € it is natural to ask how Z is related to X and
Y. The answer to this question is the Campbel|-Baker—Hausdor ff theorem,
which says that Z equals an infinite sum of elements of the Lie algebra g,
namely X +Y plus elements built from X and Y by Lie brackets.

We give a very elementary, but little-known, proof of the Campbell-
Baker—Hausdorff theorem, due to Eichler. The proof depends entirely on
manipulation of polynomials in noncommuting variables.

J. Stillwell, Naive Lie Theory, DOI: 10.1007/978-0-387-78214-0 7, 139
(© Springer Science+Business Media, LLC 2008
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7.1 Logarithm and exponential

Motivated by the classical infinite series
T
2 3 4
we define the logarithm of a square matrix 1+ Awith |A] < 1 by

log(1+x) =x— +---, valid for real x with |x| < 1,

AN A

log(1+A)=A— >t 37,
This series is absolutely convergent (by comparison with the geometric se-
ries) for |A| < 1, and hence log(1+A) is a well-defined continuous function
in this neighborhood of 1.

The fundamental property of the matrix logarithm is the same as that
of the ordinary logarithm: it is the inverse of the exponential function.
The proof involves a trick we used in Section 5.2 to prove that e*e® =
e "B when AB = BA. Namely, we predict the result of a computation with
infinite series from knowledge of the result in the real variable case.

o

I nver se property of matrix logarithm. For any matrix € within distance
1 of the identity,
log(&*) = X.

Proof. Since € = 1+ % + % + % +--- and |&X — 1] < 1 we can write

log(e*) = log (1+ (i(l +>2(|2+>)

(X X L(X X, 2+1 X X2 :
S\ 21 2\11 2! 3\1 2!
by the definition of the matrix logarithm. Also, the series is absolutely

convergent, so we can rearrange terms so as to collect all powers of X™
together, for each m. This gives

B 1 1\ (1 1 1\,3,
Iog(ex)—X+<2! 2>x +(3! 2+3)X+ .

It is hard to describe the terms that make up the coefficient of X™, for
arbitrary m> 1, but we know that their sumiszero! Why? Because exactly
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the same terms occur in the expansion of log(e¥), when | — 1| < 1, and
their sum is zero because log(e*)