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Preface 

The topics covered in this text are those usually covered in a full year's 
course in finite mathematics or mathematics for liberal arts students. They 
correspond very closely to the topics I have taught at Western New 
England College to freshmen business and liberal arts students. They 
include set theory, logic, matrices and determinants, functions and graph­
ing, basic differential and integral calculus, probability and statistics, and 
trigonometry. Because this is an introductory text, none of these topics is 
dealt with in great depth. The idea is to introduce the student to some of 
the basic concepts in mathematics along with some of their applications. I 
believe that this text is self-contained and can be used successfully by any 
college student who has completed at least two years of high school 
mathematics including one year of algebra. In addition, no previous 
knowledge of any programming language is necessary. 

The distinguishing feature of this text is that the student is given the 
opportunity to learn the mathematical concepts via A Programming Lan­
guage (APL). APL was developed by Kenneth E. Iverson while he was at 
Harvard University and was presented in a book by Dr. Iverson entitled A 
Programming Language i in 1962. He invented APL for educational purpo­
ses. That is, APL was designed to be a consistent, unambiguous, and 
powerful notation for communicating mathematical ideas. In 1966, APL 
became available on a time-sharing system at IBM. Today, APL is gaining 
wide acceptance in such fields as business, insurance, scientific research, 
and education. The reason for this is that APL is one of the most concise, 
versatile, and powerful computer programming languages yet developed. 
Programs requiring several steps in other computer languages become very 

'A Programming Language by Kenneth E. Iverson, New York: John Wiley and Sons, (1962). 
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Preface 

concise in APL, if a program is needed at all. This is both because many 
primitive functions are available directly on the APL keyboard and be­
cause such APL operations as + and X can be applied to arrays of any 
size (as well as to scalars). Yet, in spite of power and sophistication of 
APL, it is not a difficult language to learn. One can use APL to solve 
mathematical problems immediately after only a few minutes of instruc­
tion. 

Conventional mathematical notation and APL notation are presented in 
parallel throughout the text. Thus, if one desires, it is possible to ignore the 
APL and still use this text as a standard survey-of-mathematics text. 
Alternatively, one may use the text in conjunction with an APL terminal. 
APL notation corresponds closely to standard mathematical notation, and 
many mathematical processes are executed very easily in APL. By using 
the computer, the student can save a great deal of time doing tedious 
calculations and can concentrate more on the principles and concepts of 
the mathematics. In addition, the APL programs tend to reinforce these 
principles and concepts. It is my experience that by using APL, the student 
may learn the mathematical concepts better while finding the learning of 
mathematics meaningful and enjoyable. As an important bonus, he will be 
learning a powerful programming language which he will then be able to 
use in many other courses as well as in the "real world." 

The mathematical concepts and the APL notation are presented in 
parallel throughout the text because I believe that the APL can best be 
learned as needed in the development of the mathematics rather than as a 
separate topic. However, it might also be quite useful to have an APL 
reference for those who have not previously been exposed to the APL 
language. Therefore, I have included as an appendix an introduction to 
APL, including the writing and revising of APL programs. This appendix 
can be quickly perused at the start of the course and then referred to as 
needed throughout the course. 

Finally, I would like to express my appreciation to Dr. Howard A. Peelle 
of the University of Massachusetts for his encouragement and his 
numerous valuable suggestions on ways to improve upon this text. Also, I 
would like to thank the many students at the University of Massachusetts 
and at Western New England College who used the preliminary versions of 
this test for their preserverance, encouragement, and suggestions. 

July, 1977 Edward J. LeCuyer, Jr. 
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Set theory 1 

When one thinks of the new math introduced in the public schools about 
1960, the first mathematical notion that comes to mind is that of sets. 
Using the notion of set, elementary school teachers are supposed to be able 
to better explain the basic ideas of arithmetic. Thus, one could conclude 
that every adult should know some set theory in order to carry on an 
intelligent conversation with elementary school children (about mathemat­
ics). Sets do provide a good foundation for many topics in mathematics. 
Therefore, set theory is an ideal topic to begin a survey of mathematics. 

1.1 Sets 

A set is a collection of objects. The objects in the set are called elements. 

Notation 

Sets are designated by capital letters. In conventional mathematical nota­
tion, the elements of a set are enclosed in braces. For example, 

A={1,3,5,7} 

B= {xix is a student in this class}. 

The second form of a set above is known as set builder notation. The 
symbol I is read as "such that." 

In APL, the set A above is designated by 

A~1 357. 

To express the fact that an element x "belongs to" a set A, we write 
x E A. The symbol E is read "belongs to." Thus, 3 E A is true. (3 belongs 
to the set A.) However 4~A. (4 does not belong to A.) Notice that E is a 
primitive function on the APL keyboard. It yields a 1 (for true) or a 0 (for 



I Set theory 

false). Thus, consider the following examples in APL: 

A~1 357 

3EA 
1 

4EA 
o 

1 2 34EA 
1 0 1 0 

The empty set 

3 does belong to A. 

4 does not belong to A. 

I and 3 do belong to A, but 2 and 4 
do not belong to A. Note that you 
get a set (of l's and O's) when you 
ask (set) E(set)? 

It is possible for a set to have no elements. Such a set is called the empty set 
(or null set). In mathematics, the empty set is symbolized by 0. For 
example, if 

A={1,3,5,7} and B={2,4,6,S}, 

then the set of elements common to A and B is the empty set 0. 
In APL, one can express the empty set by ,0. The symbol , (iota) is 

located above the I on the APL keyboard. If N is a nonnegative integer, 
then ,N yields the set of positive integers up to and including N. Thus, ,0 
yields the set of positive integers up to and including O. Since there are no 
such positive integers, ,0 is the empty set. If one enters ,0 o~ the terminal 
and then pushes the RETURN key, the computer prints nothing. In other 
words, it yields the empty set. 

A~,O 

A 

Subset 

The name A is given to ,0. 
The value of A is requested. 
The computer responds with nothing. 

Given two sets A and B, A is a subset of B if every element belonging to A 
also belongs to B. In mathematics, this is symbolized by A C B. For 
example, if 

A = {l,3,5, 7} and B= {2,4,6,S} and C= {1,2,3,4,5,6, 7,S}, 

then Ace and B C C. 
Let us now consider an APL program for determining whether or not a 

set A is a subset of a set B. (For a general discussion of programs, refer to 
the appendix.) 

Program 1.1 SUBSET 

V'S~A SUBSET B 

[1] IS~(I\/ A E B) 
V 

2 

The result of this program, IS, will 
be either 1 (yes) or 0 (no). 



1.1 Sets 

To understand this program, consider the following examples: 

A+--1357 
B+--1234 
C+--1 2 3 4 5 6 7 8 

AEB 
1 1 0 0 

A/AEB 
0 

A SUBSETB 
0 

AEC 
1 1 1 1 

A/AEC 
1 

A SUBSETC 
1 

Equal sets 

A E B yields a vector of I's and O's. It 
tests each element of A to see if it 
belongs to B. I and 3 do, but 5 and 7 
don't. A/1 1 0 0 yields a O. A/ is 
a logical operator. It will yield I only 
if all of the numbers following it are 
l's. 

A is not a subset of B. 

Every element belonging to A also 
belongs to C. 

Since A E C is a complete vector of 
I's, then A/AEC is 1. 

A is a subset of C. 

Two sets A and B are said to be equal if both A c Band B CA. In other 
words, A and B have exactly the same elements. In conventional mathe­
matical notation, the symbol used to express the fact that a set A equals a 
set B is A = B. For example, if 

A={1,3,5,7,9} and B={5,7,3,1,9}, 

then A = B, since A C Band B cA. 
An APL program for the equality of two sets which uses the above 

program SUBSET as a subprogram l follows: 

Program 1.2 EQUAL 

V IS +-- A EQUAL B 

[1] IS+--(A SUBSET B)A(B SUBSET A) 
V If (A SUBSET B) is I (yes), and also 

(B SUBSET A) is I (yes), then IS is 1. 

I A subprogram is a program used within another program. 

3 



1 Set theory 

1 

o 

Examples 

A~1 3 5 7 9 
B~5 731 9 
C~1 2 3 4 5 

A EQUAL B 

A EQUAL C 

D~1 1 3 5 5 7 9 9 

A EQUAL 0 

EXERCISES 

Otherwise IS is 0 (no).) (1/\1 yields 
I, but 1/\0, 0/\1 and 0/\0 all yield 
O. 

True. 

False. 

Since the sets A and D have the same 
elements, they are equal sets. We do 
not list an element more than once in 
a set, since by so doing, we do not 
create a new set. 

1. Let A={l,3,5,7,9}, B={2,4,6,8}, C={1,2,3,4}, D={6,2,8,4}, E=0, and 
F={l,2,3,4,5,6,7,8,9}. Determine whether the following are true or false: 
(a) 5EA 
(b) 5EB 
(c) A c F 
(d) CcA 
(e)EcB 
(f) BcD 
(g) B=D 
(h) B=C 

2. Repeat Exercise 1 on an APL terminal, using the programs SUBSET and 
EQUAL where appropriate. 

3. List the elements of the following sets: 
(a) The subset of the set F in Exercise 1 consisting of elements divisible by 3. 
(b) The set of vowels in the word "mathematics." 
(c) The set of months in a year. 
(d) The set of colors in the rainbow. 

4. Let 

4 
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1.2 Operations with sets 

Evaluate the following on an APL terminal: 
(a) 'E'ES 
(b) 'L'ES Refer to the appendix for a discussion of 

representing literals in APL. 
(c) BEM 
(d) /\/BEM 
(e) B SUBSET M 
(f) A SUBSET B 
(g) AEB 
(h) /\/AEB 
(i) A EQUAL B 
U) A EQUAL P 

S. List all subsets of the set A = {a,h,c,d}. How many subsets are there? 

6. In general, if a set has n elements, how many subsets does it have? 

7. If {x,x2,y}={1,2,4}. find x andy. 

8. Let 

A~1357 

B~1 234 

C~2468 

Evaluate the following on an APL terminal and see if you can figure out what 
they do: 
(a) AEB V is the logical function "or." 1VO, 

OV1, 1 V1 all yield I, while OVO yields 
O. Also, V / A yields I if at least one I 
appears in A, where A is a vector of all 
O's and 1 'so - is the logical operator 
"complement." -1 yields 0 and -0 
yields I. Also, -A changes the l's in A to 
O's and the O's in A to l's. 

(b)V/AEB 
(c) AEC 
(d) V /AEC 
(e) -AEC 
(f) V /1 0 1 0 
(g) V /00 0 0 
(h)V/-AEC 

1.2 Operations with sets 

There are various operations that can be used to create new sets from old 
sets. The first of these is intersection. 

5 



I Set theory 

Figure l.l A Venn diagram. 

Intersection 

Let A and B be two sets. The intersection of A and B, symbolized by 
An B, is the set of elements common to A and B. Using set builder 
notation, 

AnB={xJxEA andxEB}. 

It will be helpful for us to visualize the sets formed by certain set 
operations. To do this, we shall use Venn diagrams.2 Let the elements of A 
and B be schematically represented by the points inside the circles labeled 
A and B in Figure 1.1. Then, the intersection A n B is represented by the 
points in the shaded region. 

Examples 

Let A={l,3,5,7}, B={1,2,3,4}, and C={2,4,6,8}. Then, AnB={l,3} 
and A n C=0. 

If A and C are two sets such that A n C = 0, then A and C are said to 
be disjoint or mutually exclusive. If A and C are disjoint, then the Venn 
diagram would consist of two nonoverlapping circles. 

We now have the following program for intersection. This program 
takes a set A on the left and a set B on the right and creates a new set, 
called COMMON, since the elements in the intersection are those common 
to both A and B. 

Program 1.3 INTERSECT 

~COMMON~A INTERSECT B 

[1] COMMON~(AEB)/ A 
~ 

To understand how this program works, consider the following exam­
ples: 

A~1357 

B~1234 

C~2468 

2Venn diagrams are named after their inventor, John Venn (1834-1923), and English logician. 
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AEB 
1 1 0 0 

1 1 0 0/ A 
1 3 

A INTERSECT B 
1 3 

BEA 
1 0 1 0 

1 0 1 0/ B 
1 3 

B INTERSECT A 
1 3 

AEC 
o 0 0 0 

o 0 0 0/ A 

A INTERSECT C 

Set difference 

1.2 Operations with sets 

A E B yields a vector of O's and l's. 
The l's correspond to the elements in 
A which are also in B. The O's corre­
spond to the elements in A which are 
not in B. 

1 1 0 0/ A picks out the elements of 
A corresponding to the I's in 1 1 0 
o. 
To execute the program, type A IN­
TERSECT B. The result is the same 
as that of (AE B)/ A. 

Can you explain this result? 

Can you explain this? 

This result is the empty set. Why? 

The empty set. A and C are disjoint. 

The difference between two sets A and B, conventionally symbolized by 
A - B, is the set of elements of A which are not in B: 

A-B={xlxEA butx~B}. 

The Venn diagram for A - B is shown in Figure 1.2 

Figure 1.2 A Venn diagram. A-B is the shaded region. 

7 
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00 
Figure 1.3 A Venn diagram of two disjoint sets. 

Examples 

Let A={1,3,5,7}, B={1,2,3,4}, and C={2,4,6,8}. Then, A-B={5,7} 
and B-C={l,3} and A-C={l,3,5,7}=A. Notice that if AnC=0, 
then A - C=A. To see why, study the Venn diagram of Figure 1.3. Also, 
for any set, A - A = 0. Let us consider a program for set difference. 

Program 1.4 DIFFERENCE 

VD~A DIFFERENCE B 
[1] D~(-AE8)/ A 

V 

To understand how this program works, consider the example~: 

A~1357 

B~1 2 3 4 

AEB 
1 1 0 0 

-AEB 
001 1 

0011/A 
5 7 

A DIFFERENCE B 
5 7 

The universal set 

As before. 

-(1 1 0 0) changes O's to I's and 
I's to O's. 

The universal set, U, in any discussion, consists of all of the elements under 
consideration in the discussion. When considering the complement of a set, 
it is important to know the universal set. 

The complement of a set 

The complement of a set A, symbolized by A', is the set of elements that are 
not in A but are still in the universal set U. Thus, A' = U - A. 

In Venn diagrams, the universal set is all of the points in the rectangle. 

8 
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u 

o A' 

Figure 1.4 Venn diagram showing A' = U - A. 

All other sets in the discussion are subsets of U. They are denoted by 
circles inside of U. The Venn diagram for A' is given in Figure 1.4 by the 
shaded region. 

Example 

Let A={1,3,5,7}. To get A', we need to know the universal set U. If 
U={l,2,3,4,5,6,7,8}, then A'={2,4,6,8}. But, if U={l,3,5,7,9}, then 
A'= {9}. If A = U, then A'=0. If A =0, then A'= U. 

The following program for complement is quite obvious. 

Program 1.5 COMPLEMENT 

V C~COMPLEMENT A 
[1] C~ U DIFFERENCE A V 

The program DIFFERENCE is used 
as a subprogram. 

Example 

U~1 2 3 4 5 6 7 8 
A~1 357 

U DIFFERENCE A 
2468 

COMPLEMENT A 
2468 

(U DIFFERENCE A) EQUAL (COMPLEMENT A) 
1 True. 

Union 

The union of two sets A and B, symbolized by AU B, is the set of all 
elements appearing in A or in B or in both. 

A U B = { x I x E A or x E B }. 

(Here, "or" means one or the other or both.) The Venn diagram for A U B 
is shown in Figure 1.5. 

9 
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u 

Figure 1.5 Venn diagram of A U B. 

Example 

If A={l,3,5,7} and B={l,2,3,4}, then AUB={l,2,3,4,5,7}. [Note: 
A - B= {5, 7} and B U(A - B)= {l,2,3,4,5, 7} =A u B.] 

In the Venn diagram in Figure 1.6., A - B is shaded in using horizontal 
lines, while B is shaded in using vertical lines. Notice that AU B = B U (A 
- B), and that B n (A - B) = 0, or B and A - B are disjoint. 

Before considering a program for union, let us consider the use of the 
comma in APL. The operation of placing a comma between two sets is 
referred to as catenation. 

Examples 

A~1357 

B~1234 

C~2468 

A,B 
1 357 1 234 

A,C 
1 3 5 7 2 4 6 8 

The comma between two sets (catenation) just chains the elements of 
the second set onto the end of the first set. If the sets are disjoint, as are A 

Figure 1.6 Venn diagram of Au B. 

lO 



1.2 Operations with sets 

and C, the result is A U C. Since B and A - B are always disjoint, then B. A 
DIFFERENCE B should yield the same result as A U B. 

This suggests the following program for union: 

Program 1.6 UNION 

V EITHER _ A UNION B 

[1] EITHER-B,A DIFFERENCE B V 

Example 

A_1357 
B_1234 

B. A DIFFERENCE B 
1 234 5 7 

A UNION B 
1 234 5 7 

Collectively exhaustive sets 

Two sets are said to be collectively exhaustive if their union is the universal 
set. 

Example 

Let A={l,3,5,7} and B={2,4,6,8} and let the universal set be U= 
{l,2,3,4, 5,6, 7,8}. Then A and B are collectively exhaustive since A U B= 
U. 

For any set A, A and its complement A' are always collectively exhaus­
tive since A U A' = U. They are also mutually exclusive, since A n A' = 0. 

Symmetric difference of two sets 

One other operation on two sets is the symmetric difference. The symmetric 
difference of a set A and a set B is the set of elements that are in A or in B 
but not in A n B. The standard mathematical symbol for this operation is 
AAB. Notice that AAB=(A - B)U(B-A). A Venn diagram for this 
operation is shown in Figure 1.7. 

u 

Figure 1.7 Venn diagram of At-B. 
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Example 

Let A={l,3,5,7} and B={l,2,3,4}. Then, A-B={5,7} and B={2,4}, 
so (A - B)u (B- A)= {2,4,5, 7}, or A~B= {2,4, 5, 7}. 

It will be left as an exercise for the student to write a program for the 
symmetric difference of A and B. 

EXERCISES 

1. Consider the following universal set V and subsets A, B, C, and D. 

U~1 2 3 4 5 6 7 890 

A~0369 

B~2468 

C~O 1 234 

D~56789 

Find the following using the definitions in this section and then check your 
answers using the APL terminal and the programs in this section. [Note: 
the exercises are first stated using conventional mathematical symbolism 
then using the APL program symbolism.] 

. (a) A pair of disjoint sets. 
(b) A pair of collectively exhaustive sets. 
(c) An C (A INTERSECT C) 
(d) D-A (D DIFFERENCE A) 
(e) V-A (U DIFFERENCE A) 
(f) A' (COMPLEMENT A) 
(g) A U D (A UNION D) 
(h) (A U C) n D (A UNION C) INTERSECT D 
(i) (A n D) U (C n D) (A INTERSECT D) UNION (C INTERSECT D) 
(j) C n (D - A) (C INTERSECT (D DIFFERENCE A» 
(k) (A n BY (COMPLEMENT (A INTERSECT B» 
(1) A'u B' (COMPLEMENT A) UNION (COMPLEMENT B) 

2. Consider the following universal set V and subsets A, B, and C. 

U~' ABCDEFGHIJKLMNOPQRSTUVWXYZ' 

A~'AMPLE' 

B~'METRIC' 

C~'HELP' 

Find the following using the definitions in this section. Then check your 
answers using the APL terminal and the programs in this section. 

(a) An B (A INTERSECT B) 
(b) Au C (A UNION C) 
(c) A - B (A DIFFERENCE B) 
(d) B' (COMPLEMENT B) 
(e) C n(A - B) (C INTERSECT A DIFFERENCE B) 

12 



1.3 A set theory drill and practice program (optional) 

3. Consider the following universal set U and subsets A, S, and F: 

U = { all cards in an ordinary deck of 52 playing cards} 

A = { all of the aces} 

S = { all of the spades} 

F= {all of the face cards} 

Describe the following sets in words: 

(a) A INTERSECT S 
(b) A UNION F 
(c) COMPLEMENT S 
(d) A INTERSECT F 
(e) S DIFFERENCE F 
(f) S INTERSECT F 

4. Write a program for the symmetric difference of a set A and a set B. 

1.3 A set theory drill and practice program (optional) 

In this section, we present a program SETTHEORY which can be used by a 
student to practice the operations of intersection, union and difference. 
This is presented to illustrate the use of an APL program in drill and 
practice. It is an interactive program in which the student and the com­
puter carryon a dialog. If it is saved in a workspace, then it can be used by 
a student to practice set theory. In any event, it might be worthwhile 
studying this program as a prototype of an APL drill and practice 
program. 

'V SETTHEORY 
[1) A~5?9 

[2] B~5?9 

[3] A;' INTERSECT'; B;' =?' 
[4] GUESS:ANSWER~D 

[5] ......,,(ANSWER EQUAL A INTERSECT B)/ NEXT 
[6] 'NO TRY AGAIN . 
[7] ......"GUESS 
[8] NEXT: A;' UNION'; B;' =?' 

[9] TRY: RESPONSE~D 
[10] ......,,(RESPONSE EQUAL A UNION B)/LAST 
[11] 'SORRY TRY AGAIN' 

[12] ......" TRY 

[13] LAST:A;' DIFFERENCE';B;' =?' 
[14] SAY:REPLY~D 

[15] ......,,(REPLY EQUAL A DIFFERENCE B)/END 

I3 
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[16] 'WRONG TRY AGAIN' 
[17] ~SAY 
[18] END: 'WANT ANOTHER?' 
[19] 'ENTER Y FOR YES, N FOR NO' 
[20] ~(' Y' E [J)/I 
[21] '0. K. , GOODBYE' 

V 

In this program, two sets, A and B, consisting of 5 random digits from 1 
to 9 are selected. The computer then prints out a request for the student to 
enter the intersection of these two sets. If the student correctly computes 
the intersection, then the computer requests the union of these two sets. If 
the student incorrectly answers the intersection question, then the com­
puter prints NO, TRY AGAIN followed by 0, and the student can try 
again. When he finally answers the intersection question correctly, he is 
given the union question. If he misses it, the computer prints SORRY, TRY 
AGAIN. When he answers the union question, he is asked for the difference 
of A and B. If he misses this, the computer prints WRONG, TRY AGAIN. 
When he gets the difference correct, the computer asks if he would like 
another problem. [Note: If A INTERSECT B or A DIFFERENCE B is empty, 
the student should enter to.] 

To run this program, type SETTHEORY. For example: 

SETTHEORY 
5 9 2 7 8 INTERSECT 1 7 2 8 4 = ? 
0: 

278 
5 9 2 7 8 UNION 1 7 2 8 4 =? 
0: 

592 781 4 
5 9 2 7 8 DIFFERENCE 1 7 2 8 4 =? 
0: 

5 9 
WANT ANOTHER? 
ENTER Y FOR YES, N FOR NO 
Y 
1 8 3 7 4 INTERSECT 5 4 1 8 9 =? 
0: 

1 8 
NO TRY AGAIN 
0: 

1 8 4 
1 8 3 7 4 UNION 5 4 1 8 9 =? 
0: 

183 7 4 5 9 
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1.4 Boolean algebra 

1 8 3 7 4 DIFFERENCE 5 4 1 8 9 =? 
0: 

3 7 
WANT ANOTHER? 
ENTER Y FOR YES, N FOR NO 
N 
O.K., GOODBYE 

1.4 Boolean algebra 

An algebraic system is a collection of objects, numbers, or sets together 
with one or more operations on these objects to create new objects in the 
collection, plus some laws concerning these operations. A Boolean algebra, 
named for George Boole, one of the originators of set theory, is any 
algebraic system similar to the system of subsets of a universal set U with 
operations of intersection, union, and complementation and the laws listed 
below. In this section, we shall consider the laws of Boolean algebra. These 
laws are listed both in conventional mathematical notation and in APL 
notation using our programs. 

The laws of Boolean algebra 

The idempotent laws 

AnA=A 

AUA=A 

(A INTERSECT A) EQUAL A 

(A UNION A) EQUAL A 

The commutative laws 

AnB=BnA 

AUB=BUA 

The associative laws 

(A INTERSECT B) EQUAL (B INTERSECT A) 

(A UNION B) EQUAL (B UNION A) 

A n(B n C)=(A n B)n C 
(A INTERSECT (B INTERSECT C» EQUAL «A INTERSECT B) 
INTERSECT C) 

A U(B U C)=(A U B)U C 
(A UNION (B UNION C» EQUAL «A UNION B) UNION C) 

The distributive laws 

A n(B u C)=(A n B)U(A n C) 
(A INTERSECT (B UNION C» EQUAL «A INTERSECT B) 
UNION (A INTERSECT C» 

A U(B n C)=(A u B)n(A u C) 
(A UNION (B INTERSECT C» EQUAL «A UNION B) 
INTERSECT (A UNION C» 
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Operations with the universal set 

AnU=A 
AUU=U 

(A INTERSECT U) EQUAL A 
(A UNION U) EQUAL U 

Operations with the empty set 

An0=0 
AU0=A 

(A INTERSECT LO) EQUAL (LO) 
(A UNION LO) EQUAL A 

Laws of complements 

A" = A (COMPLEMENT (COMPLEMENT A» EQUAL A 
A U A' = U (A UNION COMPLEMENT A) EQUAL U 
A n A' = 0 (A INTERSECT COMPLEMENT A) EQUAL (LO) 
U' = 0 (COMPLEMENT U) EQUAL (LO) 
0' = U (COMPLEMENT LO) EQUAL U 

DeMorgan's laws 

(A uB)'=A'nB' 
(COMPLEMENT A UNION B) EQUAL «COMPLEMENT A) 
INTERSECT (COMPLEMENT B» 

(AnB)'=A'uB' 
(COMPLEMENT A INTERSECT B) EQUAL «COMPLEMENT A) 
UNION (COMPLEMENT B» 

In mathematics, most laws are discovered by first considering particular 
examples. If a mathematician notices that a statement seems to be true for 
several particular examples, he then conjectures that perhaps that statement 
is always true. Then, he sets out to prove that the statement is always true. 
If he can do this, the conjecture becomes a theorem or a law. 

The computer is very helpful in showing that statements are true or false 
with particular examples. In this respect, the computer is very valuable in 
doing mathematical research. Consider the following examples in which we 
test some of the laws of Boolean algebra on particular examples using 
APL. 

Example 1 

Let us test the distributive law. 

A~1 357 
B~3456 

C~1 234 

B UNIONC 
1 2 3 4 5 6 

A INTERSECT (B UNION C) 
1 3 5 

A INTERSECT B 
3 5 
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A INTERSECT C 
1 3 

(A INTERSECT 8) UNION (A INTERSECT C) 
135 

(A INTERSECT (8 UNION C)) 
EQUAL (A INTERSECT 8) UNION (A INTERSECT C)* 

1 

The I above stands for "true." Thus, this particular example seems to 
support the distributive law. 

Example 2 

Now, we'll test the law (A UNION COMPLEMENT A) EQUAL U. 

A~1 357 
U~1 2 3 4 5 6 7 8 

COMPLEMENT A 
2468 

A UNION COMPLEMENT A 
1 2 3 4 5 6 7 8 

(A UNION COMPLEMENT A) EQUAL U 
1 

Thus, we have verified this law of complements with this particular 
example. 

Example 3 

Finally, w.e shall test the De Morgan law (COMPLEMENT A INTERSECT 
8) EQUAL «COMPLEMENT A) UNION (COMPLEMENT 8)). 

1 3 

U~1 2 3 4 5 6 7 8 
A~1 357 
8~1234 

A INTERSECT 8 

COMPLEMENT A INTERSECT 8 
245678 

COMPLEMENT A 
2 4 6 8 

COMPLEMENT 8 
567 
·Due to space limitations this instruction has been printed on two lines. In reality it must be 
entered on one line. 
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(COMPLEMENT A) UNION (COMPLEMENT B) 
2 4 5 6 7 8 

(COMPLEMENT A INTERSECT B) 
EQUAL « COMPLEMENT A) UN/ON (COMPLEMENT B»* 

1 

Thus, this particular example helps us to believe DeMorgan's law. 

Now that we have seen that these laws are valid for the particular 
examples above, we seek a method of proving that they are true in general. 
In order to do this, we shall use Venn diagrams. Two sets are considered to 
be equal if they have the same Venn diagrams. Let's draw Venn diagrams 
for the examples above. 

Example 1 

Since, as shown in Figure 1.8, the Venn diagrams are the same, then these 
sets are equal. Thus, A n(B u C)=(A n B)U(A n C). 

Figure 1.8 Left: Diagram of A n(B u C). Right: Diagram of (A n B)u(A n C). 

Example 2 

A U A' = U. In Figure 1.9, U is the whole rectangle. Obviously, the ele­
ments in A, represented by the horizontal lines, unioned with the elements 
in A', represented by the vertical lines, fill up the entire rectangle, U. 

Figure 1.9 Venn diagram of A U A'. 

-Due to space limitations this instruction has been printed on two lines. In reality it must be 
entered on one line. 
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Example 3 

(A n B)'=A'U B'. Since, as shown in Figure 1.10, the Venn diagrams are 
the same, the sets are equal. 

u 

Figure 1.10 Left: Diagram of A'u B'. Right: Diagram of (A n B)'. 

EXERCISES 

1. Let 

U~O 1 2 3 4 5 6 7 8 9 

A~0369 

B~O 1 234 5 

C~456789 

u 

Test the validity of the following laws of Boolean algebra with the above sets on 
an APL terminal: 
(a) A n(B n C)=(A n B)n C 

(A INTERSECT (B INTERSECT C» EQUAL «A INTERSECT B) INTERSECT 
C) 

(b) A u(B n C)=(A u B)n(A u C) 
(A UNION B INTERSECT C) EQUAL (A UNION B) INTERSECT (A UNION C) 

(c) A nA'=0 
(A INTERSECT COMPLEMENT A) EQUAL (to) 

(d) (AuB)'=A'nB' 
(COMPLEMENT A UNION B) EQUAL (COMPLEMENT A) INTERSECT 
(COMPLEMENT B) 

2. Verify the laws of Boolean algebra in Exercise I by drawing Venn diagrams. 

3. There are many other properties of the operations of set theory not included in 
our list of laws of Boolean algebra. Test the validity of the following properties 
with the sets in Exercise I on an APL terminal. [Note: They may not all be 
true.] 

(a) AnB'=A-B 
(A INTERSECT COMPLEMENT B) EQUAL (A DIFFERENCE B) 

(b) (A - B)U(A n C)=A -(B u C) 
«A DIFFERENCE B) UNION (A INTERSECT C» EQUAL (A DIFFERENCE B 
UNION C) 
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(c) AUB=(A-B)U(B-A)u(AnB) 
(A UNION B) EQUAL «A DIFFERENCE B) UNION (B DIFFERENCE A» 
UNION (A INTERSECT B) 

4. Prove or disprove the properties in Exercise 3 by drawing Venn diagrams. 

1.5 The number of elements in a set 

Given a set A, the APL symbol for the number of elements in the set A is 
pA. The letter p is located above the R on the keyboard. 

5 

5 

3 

7 

2 

4 

31 

Examples 

U~1 2 3 4 5 6 7 8 9 
A~1 3 5 7 9 
B~1 234 5 
C~'APL IS A PROGRAMMING LANGUAGE' 

pA 

pB 

pA INTERSECT B 

pA UNION B 

pA DIFFERENCE B 

p COMPLEMENT A 

pC 
[Note: In literal data, p counts spaces 
too.] 

In this text, we shall always denote the number of elements in a set A by 
pA. There is no standard conventional symbol for the number of elements 
in a set. 

Set theory can often be used to clarify otherwise complicated problems 
and to aid in solving them. One useful application of set theory and Venn 
diagrams is in counting the number of elements in the intersection, union, 
difference, and complement of various sets. The following examples are 
illustrations of this. 

Example 1 

Find the number of cards in an ordinary deck of 52 playing cards which 
are either face cards Uacks, queens, or kings) or spades. If we let F be the 
set of face cards and S be the set of spades, then we want the number of 
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elements in the set F US, or p(F US). We cannot just merely add pF and 
pS, because then we would be including the jack, queen, and king of 
spades twice in our sum, since they are in both F and S. In other words, 
they are in F n S. In order to make sure that we count each card exactly 
once, we could use the following formula: 

p(FU S)=(pF)+(pS)-p(Fn S). 

Since pF is 12, pS is 13, and p(F n S) is 3, then p(FU S) is 22. The same 
result could have been arrived at by using the Venn diagram shown in 
Figure 1.11. In fact, the Venn diagram actually helps to clarify the 
situation. 

The next example illustrates even better the use of a Venn diagram in 
finding the number of elements in a set. 

Figure 1.11 Venn diagram of the sets F and S. 

Example 2 

A survey was taken of 1000 citizens in a town to see how many read each 
of three magazines X, Y, and Z. It was found that 200 read X, 250 read Y, 
and 150 read Z. It was also found that 100 read both X and Y, 50 read 
both X and Z, and 50 read both Yand Z. In addition, 25 read all three 
magazines. The following questions were asked: 

(a) How many of the citizens read at least one of the magazines? 
(b) How many read none of them? 
(c) How many read only X? 

These ,questions would be quite difficult to answer without the aid of a 
Venn diagram. The Venn diagram in Figure 1.12 illustrates and illuminates 
the situation quite clearly however. The circles X, Y, and Z divide the 
universal set of 1000 citizens into 8 mutually exclusive, collectively exhaus­
tive regions. In each region, we can list the exact number of people 
belonging exclusively to that region. Then, a little arithmetic will answer 
our questions. It is easiest to list the numbers of elements in each region if 
one starts with the intersection of the three sets X, Y, and Z and then 
works outward. 

(a) The number who read at least one is 25 + 25 + 25 + 75 + 125 + 75 + 75 = 
425. 
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Figure 1.12 Venn diagram of sets X, Y, and Z. 

(b) The number who read none is 1000-425=575. 
(c) The number who read only X is 75. 

The following example illustrates the use of a table m finding the 
number of elements in a set. 

Example 3 

At a certain college, it is desired to learn the following information: 

(a) How many students are either seniors or have grade-point averages 
above 3.00? 

(b) How many students are either freshmen or have grade-point averages 
below 2.00? 

The registrar furnishes us with the following information: 

Grade-point averages 

Academic year Under 2.00 2.00-2.50 2.51-3.00 Over 3.00 

Freshmen 75 170 130 25 
Sophomores 60 120 100 20 
Juniors 40 llO 100 25 
Seniors 25 100 70 30 

Using this table, we can easily answer the above questions. 
(a) Adding across the seniors row, we can see that there are 225 seniors. 

Adding down the over 3.00 column, there are 100 students over 3.00. From 
the intersection of the seniors row and the over 3.00 column, there are 30 
people who are both seniors and are over 3.00. Thus, there are 225+ 100-
30 = 295 students who are either seniors or have grade-point averages over 
3.00. 

(b) Adding across the freshmen row, there are 400 freshmen. Adding 
down the 2.00 column, there are 200 students under 2.00. From the 
intersection of the freshmen row and the under 2.00 column, there are 75 
people who are both freshmen and are under 2.00. Thus, there are 
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400+200-75=525 students who are either freshmen or have grade-point 
averages under 2.00. 

EXERCISES 

1. Let 

U~O 1 2 3 4 5 6 7 8 9 
A~0369 

B~O 1 2 3 4 
C~5 6 7 8 9 

Find the following at an APL terminal: 
(a) pA 
(b)pB 
(c) peA INTERSECT B) 
(d) peA UNION B) 
(e) p(COMPLEMENT C) 
(f) peA DIFFERENCE B) 

2. Let 

U~' ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
A~' COMPUTER' 
B~' TERMINAL' 

Find the following at an APL terminal: 
(a) pA 
(b)pB 
(c) peA INTERSECT B) 
(d) peA UNION B) 
(e) peA DIFFERENCE B) 
(f) p(COMPLEMENT A) 

3. Find the number of cards in an ordinary deck of 52 playing cards which are 
(a) Either red or face cards. 
(b) Either kings or aces. 
(c) Neither diamonds nor aces. 

4. In a certain class of 100 students, 15 got A in math, to made the Dean's list, 
and 5 got A in math and made the Dean's list. How many neither got A in 
math nor made the Dean's list? 

5. A secretary phoned the 80 members of a club to call a meeting. The day of the 
meeting had to be either Wednesday or Friday. She found that 25 people were 
free on Wednesday only, 15 people were free on Friday only, and 20 people 
were free on both Wednesday and Friday. How many were free on neither 
day? 

6. A college student is paid $1 for each person he interviews about his likes and 
dislikes for two types of deodorants, A and B. He finds that 30 like A, 25 like 
B, and 15 like both, and to like neither. How much should he be paid? 
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7. Five hundred women are interviewed about which sports they like. It is found 
that 185 like baseball, 135 like football, 110 like hockey, 50 like baseball and 
football, 45 like baseball and hockey, 35 like football and hockey, and 20 like 
all three sports. 
(a) How many like at least one of these sports? 
(b) How many like none of these sports? 
(c) How many like only baseball? 
(d) How many like football and hockey but not baseball? 
(e) How many like baseball or hockey but not football? 

8. In trying to decide on the main course for a dinner, a chef finds that of 25 
people who will be at the dinner, 14 like steak, 12 like lobster, and II like 
chicken. Also, 5 like steak and lobster, 5 like steak and chicken, 4 like lobster 
and chicken, and 2 like all three. 
(a) How many like steak only? 
(b) How many like lobster only? 
(c) How many like chicken only? 
(d) If they couldn't get lobster, how many people would be disappointed? 

9. A poll is taken to see whether or not some people believe that a college 
education is necessary for a youth today. Their responses are tabulated below: 

Sex 

Men 
Women 

(a) How many men said no? 

Yes 

300 
200 

No 

240 
160 

(b) How many were either men or said no? 
(c) How many were either women or said yes? 
(d) How many people were included in the poll? 

Not sure 

60 
40 

10. A poll is taken to relate a person's political preference to his income bracket 
with the following results: 

24 

Income bracket 

High 
Middle 
Low 

Democrat 

70 
180 
50 

(a) How many are Democrats? 

Republican 

90 
140 
70 

(b) How many of the high income people are Republicans? 
(c) How many are either middle income or Independents? 
(d) How many are not Independents? 

Independent 

40 
80 
80 



Logic 

2 

Logic is another application of Boolean algebra. The operations and laws 
used in logic are analogous to those of set theory in many respects. 
Knowledge of logic is often quite helpful in the deductive thinking process 
used in making decisions. 

2.1 Statements and logical operations 

In logic, a statement or a proposition is an assertion that can be either true 
or false but not both. This doesn't mean that everyone must have the same 
opinion of the truth value of the statement. Two people might disagree as 
to the truth value of the statement. However, for any given person at a 
given time, the statement is either true or false but not both. The following 
are examples of statements: 

1. Learning mathematics using APL is fun. 
2. Learning mathematics using APL is fun and easy. 
3. Learning mathematics using APL is fun or hard. 
4. Learning mathematics using APL is fun if it is easy. 

The first example above is an example of a simple statement. A simple 
statement is a statement that makes just one assertion. The other state­
ments above are examples of compound statements. A compound statement 
is a statement that makes more than one assertion. Compound statements 
are made up of two or more simple statements joined by "connectives" 
such as and, or, if .. . then. We shall consider methods for determining 
whether compound statements are true or false. This will depend on 
whether the simple statements making up the compound statements are 
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true or false, as well as on the rules governing the particular connective or 
connectives being used in the statement. We now consider the rules 
governing certain logical connectives. 

Conjunction 
Let A and B be two statements. The conjunction of A and B, denoted by 
A/\B, and read as A "and" B, is defined by the following "truth table": 

A 

T 
T 
F 
F 

B 

T 
F 
T 
F 

A/\B 

T 
F 
F 
F 

A truth table is a table that defines the truth values of a compound 
statement based upon the truth values of the simple statements comprising 
it. /\ is defined so that A/\B is true only if A and B are both true. 

Logical conjunction, /\, is a keyboard operation in APL. Recall that in 
APL 1 can be interpreted to mean "true" and 0 "false." Consider the 
following uses of /\ on the APL terminal: 

Examples 

1/\ 1 
1 

1/\0 
0 

0/\1 
0 

0/\0 
0 

A~1 1 00 
B~1 010 

A/\B 
1 000 

1 "and" I is true. 

I "and" 0 is false. 

o "and" 1 is false. 

o "and" 0 is false. 

These correspond to the truth values 
of A and B in the above truth table. 

The corresponding elements of A 
and B are compared using the opera­
tion /\. 

The following examples illustrate the use of the operation /\: 

Examples 

l. "In 1974, Johnny Bench batted over .300 and hit more than 30 home 
runs." Is this compound statement true or false? Let A be the statement 
that Bench batted over .300. Let B be the statement that he hit more 
than 30 home runs. The above statement can be symbolically repre­
sented as A/\B. Since Bench actually batted .280 with 33 home runs, A 
is false and B is true. Therefore, A/\B is false. 
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2. "APL is a powerful language, but it is easy to learn." The word "but" 
here has the same meaning as the word "~md." Let A be the statement 
that APL is a powerful language. Let B be the statement that APL is 
easy to learn. The above statement is symbolically represented as AAB. 
Of course, we shall take both of the above statements A and B as true. 
Therefore, AAB is true. If the reader believes either A or B to be false, 
then for him, AAB is false. (Such a person is a member of the minority, 
we sincerely hope.) 

Disjunction 
Let A and B be two statements. The disjunction of A and B, denoted by 
AVB and read as A "or" B, is defined by the following truth table: 

A B AVB 

T T T 
T F T 
F T T 
F F F 

The only time AVB is false is if both A and B are false. The "or" here is 
the inclusive "or." In other words, it means one or the other or both. 
Logical disjunction is a keyboard function in APL. 

Examples 

1V1 
1 

1VO 
1 

°V1 
1 

OVO 
0 

A~1 100 
B~1 010 

AVB 
1 1 1 0 

I "or" I is true. 

I "or" 0 is true. 

o "or" I is true. 

o "or" 0 is false. 

The corresponding elements of A 
and B are compared using the opera­
tion V. 

The following examples illustrate the use of the operation V: 

Examples 

1. "In 1974, Johnny Bench batted over .300 or hit more than 30 home 
runs." As before, let A be the statement that Bench batted over .300. 
Let B be the statement that he hit more than 30 home runs. The above 
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statement can be symbolically represented by AVB. Since A is false, but 
B is true, then AV B is true. 

2. "The President is a good speaker or he is a dictator." Let A be the 
statement that the President is a good speaker. Let B be the statement 
that he is a dictator. Then, the above statement can be represented as 
AVB. Whether or not the above statement is true would depend on the 
person's assessment of the truth values of A and B. The only people for 
which this statement would be false are those who believe that the 
President is not a good speaker and that he is not a dictator. 

3. "The candidate will either win the election or he will lose it." Let A be 
the statement that the candidate will win the election. Let B be the 
statement that he will lose the election. The above statement AVB is 
always true, since at least one of the statements A or B must be true. 

Negation 

Let A be a statement. The logical negation of A, denoted by -A and read 
as "not" A, is defined by the following truth table: 

A -A 
T F 
F T 

Thus, the truth value of -A is just the opposite of that of A. Logical 
negation is also a keyboard operation in APL. 

Examples 

-1 The opposite of true is false. 
0 

-0 The opposite of false is true. 
1 

C~1 0 
-C - negates each element of C. 

o 1 

If A is a statement, then -A is used to reflect the statement with 
meaning opposite to that of A. Consider the following examples: 

Examples 

1. "The Edsel was not a successful automobile." Let A be the statement 
that the Edsel was a successful automobile. The above statement can be 
symbolized by -A. Since A is false, then -A is true. 

2. "Tomorrow it will neither rain nor be colder." Let R denote the 
statement that tomorrow it will rain. Let C denote the statement that 
tomorrow it will be colder. The above statement can be symbolized by 
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--(RVC). Let us investigate the truth table for this statement. 

R~1 1 0 0 
C~1 0 1 0 

RVC 
1 1 1 0 

--(RVC) 
000 1 

Thus, this statement will be true only if Rand C are both false. Another 
operation in APL that accomplishes the same objective as --(RVC) is the 
"nor" operation >.::f obtained by overstriking the V and the --. Thus, 

RVC 
o 0 0 1 

3. "Tomorrow it will not rain and be colder." This can be symbolized by 
--(R /\ C). Let us investigate the truth table for this example. 

R/\C 
1 000 

--(R/\C) 
o 1 1 1 

Thus, this statement will be true unless Rand C are both true. Another 
operation in APL that accomplishes the same objective as --(R/\ C) is 
the "nand" operation A obtained by overstriking the /\ and the --. 
Thus, 

RAC 
o 1 1 1 

4. "Tomorrow it will not rain and it will not be colder." The logical 
symbolism for this statement is (--R)/\(--C). The truth table is as 
follows: 

(--R)/\(--C) 

o 0 0 1 

Notice that this statement has the same truth table as that of Example 2. 
Actually, the statements in Examples 2 and 4 have exactly the same 
meaning. They are logically equivalent statements. This topic of logically 
equivalent statements will be discussed in detail in Section 2.3. 

5. "The Princess is neither a beauty nor a charmer, but she is loaded with 
money." Symbolically, this would be represented as (--(AVB»/\C, 
where A is that she has beauty, B is that she is a charmer, and C is that 
she is loaded with money. In order to construct a truth table for a 
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statement containing three simple statements, it is necessary to include 
all possible combinations of truth values for the three statements. This 
is illustrated below: 

A~1 1 1 1 0 000 
B~1 1 0 0 1 1 0 0 
C~1 0 1 0 1 0 1 0 

AVB 
1 1 1 1 1 100 

~(AVB) 

o 0 0 000 1 1 
(~(AVB»!\C 

o 0 0 000 1 0 

Thus, this statement is true only if A and B are false and C is true. 

Exclusive disjunction 

Let A and B be two statements. The exclusive disjunction of A and B, 
usually denoted by A::J.B, is defined by the following truth table: 

A 

T 
T 
F 
F 

B 

T 
F 
T 
F 

F 
T 
T 
F 

The symbol ::J. is also read as "or." However, it is the exclusive "or." It is 
used when the meaning is A or B, but not both. In other words, when it is 
not possible for both A and B to be true at the same time. In APL, the 
symbol =/= is used for the exclusive disjunction. 

Example 

"Sam will either wear his blue suit or his brown suit." Let A denote the 
statement that Sam will wear his blue suit. Let B denote the statement that 
Sam will wear his brown suit. Since he can't wear both suits, this statement 
is denoted as A::J. B. 

A~1 1 0 0 
B~1 0 1 0 

A=/=B 
o 1 1 0 
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Since 1 =/= 1 is false, 1 =/= 0 is true, 0 =/= 1 
is true, and 0=/=0 is false. 



2.1 Statements and logical operations 

EXERCISES 

1. Construct truth tables for the following compound statements: 
(a) (-(AV B»I\B 
(b) (AVB)I\B 
(c) BI\-(AVB) 
(d) -BVA 
(e) -AI\B 
(f) (-A)V(-B) 
(g) -(AI\B) 
(h) -A=I=B 

2. Check your answers to Exercise 1 at an APL terminal. 

3. Construct truth table for the following compound statements: 
(a) (AI\B)VC 
(b) (AVC)I\(BVC) 
(c) -«-A)I\(-B»I\C 
(d) (AVB)I\C 
(e) «-A)A(-B»I\C 
(f) (AVBVC)I\-(AVBVC) 
(g) (AI\BI\C)V-(AI\BI\C) 
(h) A =1= (B=I= C) 

4. Check your answers to Exercise 3 at an APL terminal. 

5. Let A be the statement, "We are in a period of inflation." Let B be, "The 
standard of living is rising." Let C be, "The economy is sound." 
Express each of the following compound statements in symbolic form, and find 
their truth tables: 
(a) We are in a period of inflation, and the economy is not sound. 
(b) We are neither in a period of inflation nor is the economy sound. 
(c) We are in a period of inflation or the standard of living is rising. 
(d) The economy is sound and the standard of living is rising, and we are not in 

a period of inflation. 
(e) The economy is sound, but we are in a period of inflation or the standard of 

living is rising. 
(f) We are not in a period of inflation and the standard of living is not rising, 

but the economy is sound. 

6. Suppose that for Mrs. L, statement A is true, B is true, and C is false. Then, 
what truth values should Mrs. L assign to each of the statements in Exercise 5? 

7. Let A be the statement, "Prices are rising." Let B be, "There is a great deal of 
unemployment." Let C be, "People are discouraged." 
Express each of the following compound statements in symbolic form, and find 
their truth tables: 
(a) Prices are rising and people are discouraged. 
(b) Prices are not rising or there is not a great deal of unemployment. 
(c) Prices are rising or there is a great deal of unemployment, but people are not 

discouraged. 
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(d) People are discouraged, but prices are not rising and there is not a great deal 
of unemployment. 

(e) There is a great deal of unemployment. However, prices are neither rising 
nor are people discouraged. 

(f) Prices are rising, but there is not a great deal of unemployment and people 
are not discouraged. 

8. Suppose that for Mr. E, A is true, B is true, and C is false. Determine the truth 
values that Mr. E should assign to each of the statements in Exercise 7. 

2.2 Conditional statements 

A very important logical connective in mathematics and in logic is the 
conditional. 

Conditional 

Let A and B be two statements. The conditional statement "if A then B," 
denoted by A=>B, is defined by the following truth table: 

A 

T 
T 
F 
F 

B 

T 
F 
T 
F 

T 
F 
T 
T 

In the statement A=>B, A is called the antecedent and B is called the 
consequent. Notice that A=>B is true in all cases except for the one in 
which the antecedent is true and the consequent false. 

Ordinarily, one doesn't try to justify definitions in mathematics. How­
ever, perhaps this truth table doesn't appear very obvious to the reader. 
Therefore, we shall attempt to justify it with the following example: 

Example 

Suppose someone said, "If the Yankees play on television, then I will 
watch the game." Let A be the statement: "The Yankees play on televi­
sion," and let B be the statement: "I will watch the game." 

Possibility 1: A true and B true 

In this case, the statement is true, since the person did what he said he 
would do. He was telling the truth. 

Possibility 2: A true and B false. 

In this case, we would all agree that the person lied. The Yankees were on 
television, but he didn't watch the game. Thus, the statement A=>B is false 
in this case. 
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2.2 Conditional statements 

Possibilities 3 and 4: A false and B true or false. 

We really couldn't call this person a liar in either of these cases, since he 
didn't say whether or not he would watch the game if the Yankees were 
not on television. Thus, he was telling the truth in these cases, as far as we 
know. 

The conditional symbol, ~, does not appear on the APL keyboard. (A 
similar symbol ~ does appear. However, this symbol is used for branching 
in programs and is not used for the conditional.) In APL, the symbol ..; 
can be used to compare the truth values of two statements A and B. The 
resulting truth values are exactly the same as those in the truth table for 
the conditional. 

Example 

A~1 1 0 0 
B~1 0 1 0 

A..;B 
1 0 1 1 

Implications 

Since 1 ..;; 1 is true, 1 ..; 0 is false, 0..; 1 
is true, and 0 ..; 0 is true. 

A statement A is said to imply a statement B if B must be true whenever A 
is true. If A implies B, then the second row of the truth table for A~B is 
not possible, since we can not have A true and B false. Thus, if A implies 
B, the conditional A ~B is always true. Such a statement which is always 
true is called a logically true statement or a tautology. 

In mathematics, implications are very important, since all theorems and 
definitions are implications. If A implies B, then the conditional A~B can 
be read in one of the following ways: 

If A then B. 
A implies B. 
B if A. 
B whenever A. 
A is a sufficient condition for B. 

Consider the following examples: 

1. "If I/; is a mathematical symbol, then I/; appears on the APL keyboard." 
This is not an implication, since it is possible for the consequent to be 
false while the antecedent is true. For example, I/; is a mathematical 
symbol which does not appear on the APL keyboard. 

2. "If N is an integer, then N is a rational number." This is an implication, 
because whenever the antecedent is true, the consequent must be true, 
since the set of integers is a subset of the set of rational numbers. 

3. "If r is a root of a polynomial, then x - r can be factored out of the 
polynomial." This is not only an implication but a theorem in algebra. 
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4. "If x - r can be factored out of a polynomial, then r is a root of the 
polynomial." This is also a theorem in algebra. It is the converse of the 
previous theorem. Therefore, it is also an implication. 

Biconditional 

Let A and B be two statements. The biconditional statement "A if and 
only if B," symbolized by A~B, is defined by the following truth table: 

A B A~B 

T T T 
T F F 
F T F 
F F T 

Thus, A~B is true whenever A and B have the same truth values. In fact, 
we could use a biconditional statement to describe the biconditional truth 
table: "A is true if and only if B is true; and A is false if and only if B is 
false." In APL, the biconditional can be conveyed by the = symbol 
between the two statements. 

Example 

A~1 1 0 0 
8~1 0 1 0 

A=8 
1 0 0 1 

(A';;; 8)/\(8.;;; A) 
1 0 0 1 

(A= 8)=(A';;; 8)/\(8';;; A) 

Double implications 

Since 1 = 1 is true, 1 = 0 is false, 0 = 1 
is false, and 0 = 0 is true. 

These illustrate that the biconditional 
is really the conjunction of two con­
ditionals. 

If A implies B, and also B implies A, then we have a double implication. In 
mathematics, definitions are double implications, since if A is defined by 
B, then A is just a shorter way to say B, and A is true if and only if B is 
true. Many theorems are also double implications. A theorem is a double 
implication if its converse is also a theorem. In the previous examples of 
implications, Example 3 is a double implication. In fact, Examples 3 and 4 
can be combined into one theorem: r is a root of a polynomial if and only 
if x - r can be factored out of the polynomial. This can also be stated as: 
A necessary and sufficient condition that r be a root of a polynomial is 
that x - r can be factored out of the polynomial. Not every theorem is a 
double implication, however. Example 2 is not a double implication. There 
are an infinite number of rational numbers which are not integers. 

Before leaving this section, let us consider some examples of the truth 
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tables of some more complex statements involving the conditional and the 
biconditional. 

Examples 

1. "If the weather is pleasant tomorrow, then Mr. E will play golf or go 
fishing." Let A be the statement that the weather is pleasant tomorrow, 
B be the statement that Mr. E will play golf, and C be the statement 
that he will go fishing. The above compound statement can be sym­
bolized by A~(BVC). 
A~1 1 1 1 0 0 0 0 
B~1 1 0 0 1 1 0 0 
C~1 0 1 0 1 0 1 0 

BVC 
11101110 

A 0;;; (BVC) 
111101111 

Recall that in APL, ~ is represented 
by 0;;;. 

Thus, the only way for this statement to be false is for A to be true and 
Band C to both be false. In other words, it would have to be pleasant 
and Mr. E would have to not play golf and not fish. 

2. "Mr. E will play golf or go fishing if and only if the weather is 
pleasant." This statement can be symbolized by (BVC)~A. 

(BVC)=A 
11100001 

Recall that in APL, ~ is represented 
by =. 

This statement can be false in many ways. It will be false if the weather 
is pleasant and Mr. E fails to play golf or fish. It will also be false if he 
plays golf or fishes and the weather is not pleasant. 

3. "If the weather is pleasant, then Mr. E will play golf. But, the weather is 
pleasant. Therefore, Mr. E will play golf." This can be symbolized as 
«A~B)AA)~B. 

A~1 1 0 0 
B~1 0 1 0 

Ao;;;B 
1 0 1 1 

(A 0;;; B)AA 
1 0 0 0 

«A 0;;; B)AA) 0;;; B 
1 1 1 1 

This statement is always true. It is a logically true statement. In fact, it 
is a sneak preview of a "valid" argument. This will be considered in 
detail in Section 2.4. 
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EXERCISES 

1. Construct truth tables for the following compound statements: 
(a) (AV(-A»~B 
(b) A~(B~A) 
(c) A~-B 
(d) «-B)~(-A»~(A~B) 
(e) (AV B)~C 
(f) «A~B)I\-B)~-A 

2. Check your answers to Exercise I at an APL terminal using .:;; and = for ~ 
and~. 

3. Let A be the statement, "We are in a period of inflation." Let B be the 
statement, "The standard of living is rising." Let C be the statement, "The 
economy is sound." 
Express each of the following statements in symbolic form, and find their truth 
tables. 
(a) The economy is sound if and only if the standard of living is rising. 
(b) If the economy is sound, then the standard of living is rising and we are not 

in a period of inflation. 
(c) If we are in a period of inflation, then the standard of living is not rising and 

the economy is not sound. 
(d) The economy is sound if and only if the standard of living is rising and we 

are not in a period of inflation. 

4. Suppose that for Mrs. L, statement A is true, B is true, and C is false. Then, 
what truth values should Mrs. L assign to each of the compound statements in 
Exercise 3? 

5. Let A be the statement, "Prices are rising." Let B be the statement, "There is a 
great deal of unemployment." Let C be the statement, "People are discouraged." 
Express each of the following statements in symbolic form and find their truth 
tables. 
(a) If prices are rising and there is a great deal of unemployment, then people 

are discouraged. 
(b) Prices are rising and there is a great deal of unemployment if and only if 

people are discouraged. 
(c) If prices are rising or there is a great deal of unemployment, then people are 

discouraged. 
(d) If there is not a great deal of unemployment and prices are not rising, then 

people are not discouraged. 

6. Suppose that for Mr. E, A is true, B is true, and C is false. Determine the truth 
values that Mr. E should assign to each of the compound statements in Exercise 
5. 

7. Which of the following are implications? Double implications? 
(a) If x=2, then x 2 =4. 
(b) If people are discouraged, then prices are rising. 
(c) If the standard of living is rising, then the economy is sound. 
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2.3 Logical equivalence 

(d) If one is from Boston, then he is a Red Sox fan. 
(e) If x is an element of both A and B, then x EA n B. 
(f) If the sides of a quadrilateral are all equal, then it is a square. 
(g) If the pairs of opposite sides of a quadrilateral are parallel, then it is a 

parallelogram. 
(h) If the Yankees win the pennant, they will play in the World Series. 

2.3 Logical equivalence 

Two statements A and B are said to be logically equivalent, symbolized by 
A == B, if and only if they have the same truth tables. If A and Bare 
logically equivalent, then if the truth tables for A and B are compared 
using the relation =, the result will be all l's (trues). 

Example 

«-A)V B)) is logically equivalent to (A==:>B), since 

A~1 1 0 0 
B~1 0 1 0 

-A 
001 1 

(-A)VB 
1 0 1 1 

A..;;B 
1 0 1 1 

«-A)V B)=(A";; B) 
1 1 1 1 

Recall that ..;; is used in place of ~ 
in APL. 

Since 1 =1, 0=0,1 =1, and 1 =1 are 
all true. 

In the beginning of this chapter, we stated that, like set theory, symbolic 
logic is a Boolean algebra. If this is so, then the logical operations should 
satisfy the laws of Boolean algebra. To illustrate this, we shall replace the 
set theory operation intersection with the logical operation coI\iunction, 
the set theory operation union with the logical operation disjunction, and 
the set theory operation complement with the logical operation negation. 
Also, the universal set U will be replaced by a logically true statement U 
consisting entirely of 1 's, and the empty set 0 will be replaced by a 
logically false statement 0 consisting entirely of O's. Then, the laws of 
Boolean algebra in logic are as follows. 

The laws of Boolean algebra 

The idempotent laws 

(A/\A)==A and (AVA)==A. 
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The commutative laws 

(AI\B)=(BI\A) and (AVB)=(BVA). 

The associative laws 

(AI\(BI\C»)= «AI\B)I\C) and (AV(BVC»= «AV B)VC). 

The distributive laws 

(AI\(BVC»)= «AI\B)V(AI\C»). 

(AV(BI\C»)= «AV B)I\(AVC»). 

Operations with the logically true statement U 

(AI\U)=A and (AVU)=U. 

Operations with the logically false statement 0 

(AI\0)=0 and (AV0)=A. 

Laws of negation 

DeMorgan's laws 

(-(-A»=A. 

(AV-A)=U. 

(AI\-A)=0. 

(-U)=0. 

(-0)=U. 

(-(AV B»)= «-A)I\(-B» 

(-(AI\B»= «-A)V(-B») 

Let us verify some of these laws of Boolean algebra in APL. 

Example 1 

Let us verify the law (AI\U)=A. 

1 0 
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A~1 0 
U~1 1 

AI\U 

The logically true statement U (all 
I's). 

Since A 1\ U has the same truth table 
as A, then (AI\U)=A. 



2.3 Logical equivalence 

Example 2 

Let us now verify that (A/\-A)=0. 

A+-1 0 
-A 

o 1 

A/\-A 
00 

Example 3 

Since A/\-A has the same truth 
table as the logically false statement 
(all O's), then (A/\-A)=0. 

We now verify the associative law (A/\(B/\C))=«A/\B)/\C). 

A+-1 1 1 1 0 0 0 0 
B+-1 1 0 0 1 1 0 0 
C+-1 0 1 0 1 0 1 0 

B/\C 
10001 000 

A/\(B/\C) 
10000000 

A/\B 
11000000 

(A/\B)/\C 
1 0 0 000 0 0 

Example 4 

Since (A/\(B/\C» and «A/\B)/\C) 
have the same truth tables, they are 
logically equivalent. 

We now verify the distributive law (A/\(BVC))=«A/\B)V(A/\C)). 

BVC 
11101110 

A/\(BVC) 
1 1 1 0 0 0 0 0 

A/\B 
11000000 

A/\C 
101 000 0 0 

(A/\B)V(A/\ C) 
1 1 1 0 0 0 0 0 

Note that the second and fifth sets of 
l's and O's are the same. 
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Example 5 

Finally, we verify the De Morgan law (-(A V B»:=((-A);\(-B». 

A~1 1 0 0 
B~1 0 1 0 

AVB 
1 1 1 0 

-(AVB) 
o 0 0 1 

-A 

001 1 

-B 
o 1 0 1 

(-A);\(-B) 
o 0 0 1 

Note the second and fifth lines of l's 
and O's are the same. 

Of course, there are many other logically equivalent statements not 
included in our list of laws of Boolean algebra. 

Example 6 

(A~B):=((A~B);\(B~A). 

A=B 
1 0 0 1 

A~B 

1 0 1 1 

B~A 

1 1 0 1 

(A ~ B);\(B~ A) 
1 0 0 1 

Note that the first and last lines of 
l's and O's are the same. 

This last example shows that the biconditional is logically equivalent to 
the conjunction of the two conditionals. 

EXERCISES 

1. Check the validity of the following laws of Boolean algebra at an APL terminal: 
(a) (AAB)=(BAA) 
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(b) (AV(BVC»=«AVB)VC) 
(c) (AV(BAC»=«AVB)A(AVC» 
(d) (AVU)=U 
(e) (AV-A)= U 
(f) (-(AAB»=«-A)V(-B» 



2.4 Arguments 

2. Determine whether or not the following pairs of statements are logically equiv­
alent at an APL terminal: 
(a) «-A)~(-B)) and (B~A). 
(b) (AI\(A~B)) and (A~B) 
(c) «A~B)I\(B~C)) and (A~C) 
(d) «(AI\-B)V(AI\C))~(BI\C)) and (A~B) 

2.4 Arguments 

An argument is an assertion that from a set of one or more statements, 
called the premises or the hypotheses, one can deduce another statement, 
called the conclusion. 

If the statements comprising the hypothesis are denoted by 
A"A2, ••• ,An, and the conclusion is denoted by C, then the argument can 
be expressed as a conditional: (A, AA2 A· .. AAn)~C. 

One of the major applications of symbolic logic is in determining 
whether arguments are valid or invalid. If an argument is invalid, it is often 
called afallacy. An argument is valid if it is a logically true statement or a 
tautology. In other words, it is valid if its truth table consists entirely of l's 
(trues). Thus, it is the symbolic form of the argument, rather thim the 
particular facts making up the statements in the hypothesis and conclusion, 
that determines whether it is valid or a fallacy. We will consider several 
examples now. 

Example 1 

Consider the following argument: "If you brush with toothpaste X, you 
will have fewer cavities. But, you do not brush with toothpaste X. There­
fore, you will not have fewer cavities." Let A be the statement that you 
brush your teeth with toothpaste X, and let B be the statement that you 
will have fewer cavities. The above argument can then be symbolically 
represented as 

((A~B )A-A)~( -B). 

Let us use APL to test this argument for validity. 

A+-1 1 0 0 
B+-1 0 1 0 

A~B 

1 0 1 1 

-A 
001 1 

(A~ B)A-A 
001 1 

-B 
o 1 0 1 
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«A" B)/\-A)~(-B) 
1 1 0 1 

Since we don't get all I's in the truth table, this argument is not valid. It 
is a fallacy. In fact, fallacies of this form are quite common. 

Example 2 

"If you brush with toothpaste X, you will have fewer cavities. You do 
brush with toothpaste X. Thus, you will have fewer cavities." Letting A 
and B be as in Example 1, this argument can be symbolically represented 
as «A~B)/\A)~B. Let's test it for validity. 

A~1 1 0 0 
B~1 000 

A"B 
1 0 1 1 

(A" B)/\A 
100 0 

«A" B)/\A) " B 
1 1 1 1 

Since this is a logically true statement (alII's in the truth table), then the 
argument is valid. [Note: This does not mean that toothpaste X caused you 
to have fewer cavities, nor does it mean that you actually have fewer 
cavities. It only means that the above argument was formed in such a way 
as to make it valid. Any good advertizing firm would be very careful to 
present valid arguments for advertizing its products.] 

Example 3 

"If V2 is rational, then it can be expressed in the form a/ b, where a and 
b are integers and b=l=O. However, V2 cannot be expressed in this form. 
Therefore, V2 not rational." Let A be the statement that V2 is rational. 
Let B be the statement that V2 can be expressed in the form a/ b, where 
a and b are integers and b=l=O. The above argument has the form «A~B) 
/\-B)~-A. Testing it for validity: 

A~1 1 0 0 
B~1 0 1 0 

A"B 
1 0 1 1 

-B 
o 1 0 1 

(A" B)/\-B 
000 1 
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-A 
001 1 

«A"; B)/\ -B) ,.; -A 
1 1 1 1 

Thus, the argument is valid. 

Example 4 

2.4 Arguments 

"If you do not do the work, you will not pass this course. Thus, if you pass 
this course, you did the work." Let A be the statement that you do the 
work. Let B be the statement that you will pass this course. The symbolic 
representation of this argument is «-A)~(-B»~(B~A). 

A~1 1 0 0 
B~1 0 1 0 

(-A)"; (-B) 
1 0 1 

B,.;A 
1 0 1 

«-A) ";(-B» ";(B"; A) 
1 1 1 

The argument is valid. 

Example 5 

"If you do the work, you will pass the course. If you pass the course, you 
will be very happy. Therefore, if you do the work, you will be very happy." 
Let A and B be as in Example 4, and let C be the statement that you will 
be very happy. We now check this argument for validity. It can be 
symbolized by «A~B)/\(B~C»~(A~C). 

A~1 1 1 1 0 0 0 0 
B~ 1 1 0 0 1 1 0 0 
C~1 0 1 0 1 0 1 0 

A,.;B 
001 1 1 1 
B,.;C 

10111011 
(A"; B)/\(B"; C) 

10001011 
A,.;C 

1010111 

«A"; B)/\(B,.; C»,.; (A,.; C) 
11111111 
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The argument is valid. Happiness is doing your work ... especially at an 
APL terminal. 

EXERCISES 

I. Test the following symbolic representations of arguments for validity at an 
APL terminal: 
(a) (A~-B)~(B~-A) 
(b) «A~B)/\B)~A 
(c) «A V B)/\-A)~B 
(d) «A V B)/\B)~-A 
(e) «-(A/\B))/\A)~-B 
(f) «A ~B)/\(B V C))~(A V C) 

In each of the following exercises, form the symbolic representation of the 
argument and determine whether it is valid or a fallacy: 

2. If you are mathematically inclined, then you will have no difficulty learning 
APL. Therefore, if you have difficulty learning APL, then you are not mathe­
matically inclined. 

3. The President is a good speaker or he is a diplomat. He is not a good speaker. 
Thus, he is a diplomat. 

4. If it rains tomorrow, I won't play golf. If I don't play golf, I will be angry. So, if 
it rains tomorrow, I will be angry. 

5. The standard of living is rising or we are in a period of inflation. The standard 
of living is rising. Therefore, we are not in a period of inflation. 

6. The standard of living is rising if and only if the economy is sound. The 
standard of living is rising. So, we can conclude that the economy is sound. 

7. If prices are rising, then people are discouraged. But, prices are not rising. 
Thus, people are not discouraged. 

8. If prices are falling, then there is a great deal of unemployment. If there is a 
great deal of unemployment, then people are discouraged. Therefore, if prices 
are falling, people are discouraged. 

9. If you are not careful, then you will be hurt. You didn't get hurt. So, you must 
have been careful. 

10. If we don't help country X, they will lose their independence. Thus, if we do 
help country X, they will not lose their independence. 

ll. If you like Merle Haggard, then you like country music. But, you don't like 
Merle Haggard. So, you don't like country music. 

12. If you don't believe in yourself, then you won't be successful. Therefore, if you 
are successful, you must believe in yourself. 
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Vectors and matrices 3 

A matrix is a rectangular array of numbers arranged in rows and columns. 
As we shall see, a matrix is a convenient device for organizing data that 
would otherwise require several pages. In addition, many mathematical 
problems can be expressed much more concisely and solved much more 
easily using matrix notation and matrix operations. For example, a system 
of 10 linear equations with 10 unknowns can be expressed as a simple 
matrix equation A·X=B, and solved by a matrix equation X=A -I·B. For 
reasons such as these, matrix algebra has become a required topic for 
students of business administration and many branches of science and 
engineering. In this chapter, we will concern ourselves with some of the 
basic theory of matrix algebra and explore the use of APL in working with 
vectors and matrices. In the next two chapters, we will consider some 
applications of matrices. As we shall see, APL is very well suited for 
handling arrays such as vectors and matrices. 

3.1 Vectors 

Definition of a vector 

A vector with n components is an ordered array of n real numbers. 

Examples 

1. An example of a 4-component row vector is 

R=(l, 2, 3,4). 
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3 Vectors and matrices 

2. An example of a 4-component column vector is 

Unless otherwise stated, we shall always use row vectors. As with sets, a 
vector is denoted as follows in APL: 

R+--1 2 3 4 

R 
1 234 

The name of the vector is R. R has 4 
real components: 1, 2, 3, and 4. 

The command to print out R. 

Unlike sets, however, an element in a vector may be repeated. Also, 
unlike sets, the order of the components in a vector is significant. A vector 
is an ordered array of numbers. 

Example 

For contrast, consider the following sets: 

1 

A+--1 2 3 4 
B+--2 1 3 4 

A EQUAL B 

A=B 
001 1 

Equal vectors 

As sets, A does equal B, since they 
have the same elements. 

1 =2, 2=1 are false, but 3=3, 4=4 
are true. 

Two vectors, A and B, are equal, denoted by A= B, if and only if they have 
the same number of components and all corresponding components are 
equal. 

Examples 

A+--1 2 3 4 
B+--1 2 3 4 5 
C+--2 1 3 4 
D+--t 4 

A=B 
LENGTH ERROR 
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Recall that t4 yields the positive in­
tegers from 1 to 4. 

A and B do not have the same 
number of components. 



o 0 

0 

1 1 

1 

A=C 
1 1 

/\/ A= C 

A=D 
1 1 

/\/A=D 

3.1 Vectors 

A does not equal C, since all corre­
sponding components are not equal. 

A does equal D, since they have the 
same number of components and 
corresponding components are equal. 

Thus, the APL operation to determine whether or not two vectors are 
equal is the "and" reduction, denoted as /\/V= W, where V and Ware the 
vectors being compared. 

An application of vectors 

Vectors are often used as a convenient way of representing data. For 
example, suppose that a company manufactures a product called a 
"gadget." Suppose that a gadget is made up of parts categorized by the 
parts numbers 051, 035, 068, and 047, in the following quantities: 3 of part 
051,5 of part 035,2 of part 068, and I of part 047. This information can be 
conveniently conveyed using the following parts vector G (for "gadgets"): 

051 035 068 047 ----
G=( 3 , 5 , 2 , I ) 

The position of the component tells the employee the part to which it 
corresponds. This company has the convention that the first component is 
the number of 051 's, the second component is the number of 035's, the 
third component is the number of 068's, and the fourth component is the 
number of 047's. If everyone in the company knows of this convention, 
then the parts vector for a gadget can be denoted in APL as simply 

G~3 5 2 1. 

If this company also produces "widgets," which use the same parts, and 
if the parts vector for a widget is 

W~4 6 1 2, 

then the number of 051's in a widget is 4, the number of 035's is 6, the 
number of 068's is I, and the number of 047's is 2. 
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3 Vectors and matrices 

Indexing with vectors 

In APL, the ith component of a vector G is denoted by G[J]. 

3 

2 

Examples 

G~3521 

G [1] 

G [3] 

G [5] 
INDEX ERROR 

G [2.5] 
INDEX ERROR 

G [1 3] 
3 2 

G [4 3 1 2] 
1 235 

Altering a vector 

The first component of G. 

The third component of G. 

G has no 5th component. 

The index must be a positive integer. 

The 1st and 3rd components. 

Rearranging the components in order 
of magnitude. 

To replace a component of a vector with a new number, do as follows: 

G [2]~4 

G 
342 1 

G [4]~3 

G 
3 4 2 3 

Catenation 

Replace the second component of G 
by 4. 

Replace the fourth component of G 
by 3. 

The operation of catenation with vectors is the same as with sets. To chain 
a component or a vector onto the end of a vector in APL, just use the 
comma. 

Examples 

G~3 5 2 1 
W~4 6 1 2 

G,4 
35214 

G, W 
352 1 461 2 
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Chaining 4 onto the end of G. 

Chaining W onto the end of G. 



3.2 Operations with vectors 

The size of a vector 

As with sets, the p ("rho") applied to a vector computes the size of the 
vector. In other words, it computes the number of components in the 
vector. 

5 

1 

R+-10 3 15 7 986 

pR 

ppR 

The number of components in R. 

ppR gives the number of dimensions 
of R. 

Since a row is I dimensional, then the number of dimensions of a vector is 
1. ppR is often referred to as the rank of R. 

3.2 Operations with vectors 

We now consider some APL operations with vectors. These operations 
provide very good illustrations of the power of APL as applied to arrays. 
First we consider ways of operating on a vector with a single number. 

Examples 

R+-2 1 4 3 5 

R+1 
3 2 5 4 6 

R-1 
10324 

Rx3 
6 3 12 9 15 

R+2 
1 0.5 2 1.5 2.5 

Addition. 

Subtraction. 

Multiplication. 

Division. 

Exponentiation. 

Notice that in each example above, the operation is applied to the 
number together with each component of R. 

Parallel processing 

The following examples illustrate operations with two vectors. They use the 
notion of "parallel processing" in which the operation is applied to all of 
the corresponding components of the two vectors. In order to perform 
these operations, of course, the vectors must have the same number of 
components. 
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3 Vectors and matrices 

Examples 

R ~2 1 4 3 5 
V ~3 ~1 2 1 0 
W~2 13 

R+V 
5 0 645 

R-V 
~1 2 2 2 5 

RxV 
6 ~1 8 3 0 

R+W 
LENGTH ERROR 

Reduction 

The corresponding components are 
added. 

The corresponding components are 
subtracted. 

The corresponding components are 
multiplied. 

Rand W cannot be added, since 
they do not have the same number of 
components. 

It is often useful to add up or multiply the components of a vector. This 
can be done with the use of the reduction symbol j. The general form is 
operation/vector. It reduces the vector to a single number by applying the 
operation to the successive components of the vector from right to left. 

10 

24 

Examples 

V~1 2 3 4 

+/V 

X/V 

Inner products 

This is sum reduction. The compo­
nents of V are added. 

This is times reduction. The compo­
nents of V are multiplied. 

A very useful and important operation with vectors is that of inner 
product. If V=(V\,V2, ... ,Vn ) and W=(w\,w2, ... ,wn ) are two n component 
vectors, then the inner product of V and W is the number v(w\ + V2·W2 
+ ... + vn·wn. Let us look at a program for computing inner products. 
Notice that the header of this program is designed so as to create a dyadic 
function called INNER. It combines the two vectors V and W, and creates 
the explicit value PRODUCT. 
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Program 3.1 INNER 

V PRODUCT ~ V INNER W 

[1] PRODUCT~+ /VX W 
V 

12 

Example 

V~1 234 
W~2 -3 4 1 

V INNER W 

3.2 Operations with vectors 

The corresponding components of V 
and W are multiplied and the results 
added up yielding the result PROD­
UCT. 

This operation of inner product can also be accomplished directly on 
the APL keyboard by using V+. X W. In general, if a and w are operations 
in APL, then the expression of the form Va.wW is called an inner product. 
The result is that w is applied to the corresponding components of V and 
W, followed by a reduction applied to the result. Let us do the above 
example using this notation: 

V+.xW 
12 

This operation of inner product will be used later in mUltiplying 
matrices. 

An application of vectors 

Recall the company in the previous section which produces two products, 
gadgets and widgets. These produs::ts consist of parts called 051, 035, 068, 
and 047. The number of each of thes~ parts in each product is given by the 
vectors: 

G~3 521 
W~4 3 1 2 

1. In order to produce a "gidget," one m(frely fastens a gadget to a widget. 
Find a vector for the number of each pat1 needed to produce one 
gidget. 

G+W 
783 3 

The sum of the vectors G and W 
accomplishes this. 

2. If one received an order for 5 gadgets and 10 widgets, find a vector for 
the number of each part needed to fill the order. 

(5 X G) + (1 0 X W) 
55 55 20 25 Need 55 051 's, 55 035's, 20 068's, 25 

047's. 
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3 Vectors and matrices 

3. If 051's cost $.50 each, 035's cost $1.00 each, 068's cost $0.75 each, and 
047's cost $1.50 each, use vectors to find the cost of producing a gadget. 

C~.50 1.00 .75 1.50 This is the unit cost vector. 

C+. X G The inner product of the unit cost 
9.50 vector with the parts vector for a 

gadget yields the total cost, $9.50, of 
a gadget. 

4. If gadgets sell for $12.00 each, find the profit per gadget. 

12.00 - 9.50 Profit is revenue minus cost. 
2.50 

5. An employee has discovered that a better widget can be produced if one 
uses 2068's instead of 1, and 3 051's instead of 4. Write an APL 
expression to make these changes in W. 

W [1 3] ~3 2 The first component of W is replaced 
by 3 and the third component by 2. 

W 
332 2 The new value of W. 

6. Another employee has discovered that both products will be better if 
one part 072 is included. Write APL expressions to chain this new part 
onto the end of the parts vectors for gadgets and widgets. 

G ~ G,1 The use of catenation. 

W~W,1 

G 
352 1 

W 
4 3 1 2 1 

EXERCISES 

1. Consider the vectors 

S_23 -1 5 

T_40 1 -2 

U_ -2 6 7 

v_a 0 1 

The new G. 

The new W. 

Evaluate the following (Do them by hand first; then, check your answers at an 
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APL terminal): 
(a) 3XS+ T 
(b) (3XS)+T 
(c) Sx T 
(d) U*2 

(e) S,U 
(f) S+3 
(g) S+U 
(h) TX-1 

(i) + jSx T 
U) (+ jU*2)*.5 
(k) S [3 2] 
(I) T[3] 



3.3 Matrices 

2. Compute the inner products of S and T and of U and V. 

3. A candy vendor sells five brands of candy called brand A, B, C, D, and E 
respectively. He records his daily sales of each brand in a vector called S. On a 
certain day, S is as follows: 

5+-92 81 35 49 57 

(a) Write an APL expression for the number of different brands. 
(b) Write an APL expression for the number of packages of brand DinS. 
(c) Write an APL expression for the subvector Vof S whose brands are vowels. 
(d) Write an APL expression for the total number of packages sold on this day. 
(e) Write an APL expression for changing the number of brand C from 35 to 

38. 

4. The candy vendor in Exercise 3 has been selling candy for three days and has 
the following three sales vectors for each of these days: 

S1~92 81 38 49 57 

S2~120 68 19 25 75 

S3~67 50 37 29 63 

(a) Find the total sales vector for the three days. 
(b) Find the total number of packages of candy sold in the three days. 
(c) Suppose the prices of the candies are 0.10 for brand A, 0.15 for B, 0.20 for 

C, 0.10 for D, and 0.15 for E. Express these prices as a price vector. 
(d) Write an APL expression for computing the revenue for each of the three 

days, and find these revenues. 

3.3 Matrices 
In Section 3.1., it was noted that when the symbol p is used as a monadic 
operator, as in pR, then pR computes the "size" of R. In other words, it 
computes the number of components in R. If p is used as a dyadic 
operator, then p arranges the elements on the right according to the 
structure on the left. Consider the following examples: 

5 p3 
3 3 333 

5 p'.' 

• • * * * 

6 p89 
89 89 89 89 89 89 

6 p8 9 10 
8 9 10 8 9 10 

Five 3's. 

Five *'s. 

Six 89's. 

Six numbers from 8 9 10 respectively. 
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3 3p5 
555 
555 
555 

1 2 
3 4 
5 6 

3 2p1 2 3 4 5 6 

3 3PL9 
1 2 3 
456 
789 

Matrix of order m X n 

Three rows, 3 columns of 5's. 

Three rows, 2 columns. 

Three rows, 3 columns. 

A matrix of order m X n (m by n) IS a rectangular array of numbers 
arranged in m rows and n columns. 

The following is a 2 X 3 matrix A: 

A=[j 2 
1 ~] 

In APL, this matrix would be represented as follows: 

A~2 3p4 2 0 3 1 5 
A 

420 
315 

Note the following monadic uses of p with matrices: 

pA 
2 3 

(pA)[1] 
2 

(pA) [2] 
3 

ppA 
2 

Equal matrices 

The order of A. 

The number of rows in A. 

The number of columns in A. 

The rank of a matrix is 2, since a 
matrix has two dimensions, rows and 
columns. 

Two matrices A and B are equal, usually denoted by A = B, if and only if 
they have the same orders and their corresponding elements are equal. 
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Examples 

A~3 3p1 2 3 4 5 6 7 8 9 
A 

123 
456 
789 

B~3 3pt 9 

B 
1 2 3 
456 
789 

A=B 

3.3 Matrices 

1 1 1 The relation = compares the corre­
sponding elements of A and B. If the 

1 matrices are equal, the result will be 
all l's (trues). 

C~2 3p1 2 3 4 5 6 
C 

123 
456 

1 2 
3 4 
5 6 

D~3 2p1 2 3 4 5 6 
D 

C=D 
LENGTH ERROR 

Indexing with matrices 

C and D do not have the same orders. 

We now illustrate the use of indices with matrices: 

Examples 

A ~ 2 3p4 2 0 3 1 5 
A 

420 
315 

A[2;1] 
3 

A[1 ;2] 
2 

The element in the second row, first 
column. 

The element in the first row, second 
column. 
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3 Vectors and matrices 

A[2;] 
315 

A[;2] 
2 1 

Altering a matrix 

The second row. 

The second column. Note that it is 
expressed as a row vector. 

The following examples illustrate the ways in which to make changes in a 
matrix: 

A~3 3p ,9 
A 

1 2 3 
456 
789 

A[2;3]~O 

A 
1 2 3 
450 
789 

A[2;]~3 1 5 
A 

1 2 3 
315 
789 

A[;3]~2 3 0 
A 

1 2 2 
313 
780 

Catenation with matrices 

Creating a matrix. 

Change the element in the second 
row, third column to O. 

Change the second row of A. 

Change the third column of A. 

It might also be useful to be able to chain one or more rows onto a matrix. 
Let us illustrate this also: 

Examples 

A~2 3p1 2 3 4 5 6 
A 

123 
456 

B~ 7 8 9 A new row to be attached to A. 
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A~A,[1]B 

A 
123 
456 
789 

C~1 0 2 

A~A, C 
A 

1 2 3 1 
4560 
7892 

Transposing a matrix 

3.3 Matrices 

Augment A by this new row, B. 
B is chained onto the first dimension 
of A, its rows. 

A new column to be attached to A. 

Augment A by this new column, C. 
A, C is an abbreviated notation 

for A,[2]C. 

The transpose of an m X n matrix A is a new matrix of order n x m 
obtained by making the rows of A into columns (in the same order). Of 
course, this will also make the columns of A into rows. The transpose of A 
is accomplished easily in APL by entering ~ A. (The symbol ~ is made by 
typing 0, located above the letter 0 on the keyboard, then backspacing 
and overstriking the \.) We shall use the symbol ~ A to denote the 
transpose of A throughout this text. Other texts commonly use the symbol 
At or Tr(A) for the transpose of A. To illustrate this operation, we shall 
transpose the matrix A above: 

~A 
147 
258 
369 
102 

The last change that we wish to consider making in a matrix at this time 
involves the ability to specify certain submatrices of a matrix. 

The "take" and "drop" functions 

The "take" function j is located above the letter Y on the keyboard. The 
"drop" function ~ is located above the U. 

B~4 4pt 16 
B 

1 2 3 4 
5 6 7 8 
9 10 11 12 

13 14 15 16 

1 2 
5 6 

22jB Take the first two rows and two 
columns of B. 
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3 4 
7 8 

-2 -21B 
11 12 
15 16 

2 2~B 
11 12 
15 16 

1 2 
5 6 

-2 -2~B 

EXERCISES 

1. Let 

M=[~ 

Take the first two rows and last two 
columns of B. 

Take the last two rows and columns 
of B. 

Drop the first two rows and columns 
of B. 

Drop the last two rows and columns 
of B. 

6 i 3
01

] 

-I 7 

Do the following exercises at an APL terminal: 
(a) Enter M on the APL terminal. 
(b) Find the order of M. 
(c) Find the number of columns of M. 
(d) Change the element in the second row third column to 8. 
(e) Change the third column to 3 -I 5. 
(f) Change the second row to I 0 0 O. 
(g) Transpose M. 
(h) Augment M by a new row 0 0 0 I. 
(i) Drop the last row and first column of M. 
U) Take the first two rows and last two columns of M. 

2. Let 

c=[ i 
Compute the following: 
(a) pC (f) (PC)[1] 
(b) P(PC) (g) (PC)[2] 
(c) C[2;] (h) 2 X C[3;] 
(d) C[;2] (i) C[2;] + C 5) X C[1 ;] 
(e) C[2;3] (j) C[;3 1] 

3. A company produces four products called A, B, C, and D. Each product is 
made up of five parts called a, b, c, d, and e. The number of each part needed 
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for each product is contained in the following matrix P: 

A [~ B 3 
P= C 2 

D 3 

b 
1 
1 
1 
1 

~ ~ ~l 523 
4 3 2 
253 

Express each of the following in APL notation and evaluate: 
(a) The row of parts required for a product B. 
(b) The column consisting of the numbers of part d in each product. 
(c) The number of part e in a product B. 
(d) It was decided that 3 d's are needed in a B. Make this change in B. 
(e) It was decided to increase the number of e's in each product by 1. Make the 

appropriate change in the matrix P. 
(f) A new product E has been added to production, consisting of 4 a's, 2 b's, 0 

e's, 5 d's, and 2 e's. Include this new product E in an augmented matrix P. 
(g) An order is received for 5 product C's. Write an APL expression to extract 

from P the number of each part needed to fill the order. 

3.4 Operations with matrices 

We now consider some APL operations with matrices. These operations 
are very similar to the operations with vectors in Section 3.2. in that the 
operations apply to each element of the array, and they further illustrate 
the power of APL as applied to arrays. First we consider operating on a 
matrix with a number. 

Examples 

A_2 3p4 2 0 3 1 5 
A 

420 
315 

A+1 
531 
426 

A-1 
3 1 -1 
204 

Ax2 
840 
6 2 10 

A+2 
210 

1.5 0.5 2.5 

Add 1 to each element. 

Subtract 1 from each element. 

Multiply each element by 2. 

Divide each element by 2. 
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A*2 
16 4 0 
9 1 25 

Parallel processing 

Raise each element to the power 2. 

The following examples illustrate the addition and subtraction of two 
matrices. In order to perform these operations, the matrices must have the 
same orders. 

Examples 

A+-3 3pt 9 
A 

1 2 3 
456 
789 

B+-3 3p2 3 0 -1 2 5 0 4 -2 
B 

230 
-1 2 5 
o 4 -2 

A+B 
3 5 3 Corresponding elements are added. 
3 7 11 
7 12 7 

A-B 
-1 -1 3 
5 3 1 
7 ~ 11 

AXB 
260 

-4 10 30 
o 32 -18 

Reduction with matrices 

Corresponding elements are sub­
tracted. 

Corresponding elements are multi­
plied. 

By using the idea of reduction, one can perform an operation down the 
columns or across the rows of a matrix. The following examples illustrate 
how this is done with addition and multiplication. 

Examples 

A+-3 3pt 9 
A 

123 
456 
789 
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+ /[1] A 
12 15 18 

+ /[2]A 
6 15 24 

+/(+/[1]A) 
45 

+ /( + /[2] A) 
45 

X/[1]A 
28 80 162 

X/[2]A 
6 120 504 

Matrix multiplication 

Definition 

3.4 Operations with matrices 

Adds the rows of A -vertically 
(down the columns). 

Adds the columns of A-horizontally 
(across the rows). 

The sum of 12, 15, and 18. The sum 
of all elements in A. 

The sum of 6, 15, and 24. Also, the 
sum of all elements in A. 

Multiplies the rows of A. 

Multiplies the columns of A. 

The product of a matrix A of order m x k and a matrix B of order k X n is 
the matrix P of order m X n such that P[/; J] is the inner product of the Ith 
row of A and the Jth column of B. In conventional mathematics, P is 
denoted by A· B. 

Example 

Let 

A - [ ! ; : land B- [ g H 
Since A is a 2 X 3 matrix and B is a 3 X 2 matrix, then the product P is a 
2 X 2 matrix. The elements of P are computed as follows: 

P[1;1]=A[1;]+.X8[;1]=(1 2 3)+.X(1 0 2)=7 

P[1;2]=A[1;]+.X8[;2]=(1 2 3)+.X(2 3 0)=8 

P[2;1]=A[2;]+.X8[;1]=(4 5 6)+.X(1 0 2)=16 

P[2;2]=A[2;]+.X8[;2]=(4 5 6)+.X(2 3 0)=23 

Therefore, 

P=A·B= [I~ 2~ l 
In order for this matrix multiplication to be possible, it is necessary that 

the number of columns of the left matrix, A, be equal to the number of 
rows of the right matrix, B. Otherwise, we will not have corresponding 
elements in the Ith row of A and the Jth column of B necessary to 
compute the vector inner product of this row and column. 
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3 Vectors and matrices 

Let us now consider an APL program which explicitly performs the 
multiplications of the two matrices A and B, step by step. 

Program 3.2 MUL T1PL Y (Optional) 

yo PRODUCT~A MULTIPLY B;I;J; ELEMENTS 

[1] ~«pA)[2]=(pB)[1])/OK 

[2] PRODUCT ~ 'IMPOSSIBLE . 

[3] ~O 

[4] OK: ELEMENTS~LO 

[5] I~O 

[6] NEXTROW: I~ 1+ 1 

[7] J~O 

[8] NEXTCOL:J~J+1 

MUL TlPL Y is a dyadic function 
which assigns to A and B the value 
PRODUCT. f, J, and ELEMENTS are 
local variables. 

Line I checks to see if multiplication 
is possible. If it is, the program 
branches to the line labeled OK. 
Otherwise, it prints IMPOSSIBLE, 
and branches to 0; thus ending the 
program. 

Lines 4, 5, and 7 initialize the values 
of f, J, and ELEMENTS. Lines 6 and 
8 increment the values of f and J. 

Line 9 forms the row of ELEMENTS 
of PRODUCT. It computes the inner 
product of the fth row of A and Jth 
column of B, and chains it onto the 
previous ELEMENTS. 

[9] ELEMENTS ~ ELEMENTS, A [I;] + . X B[; J] 

[10] ~(J<(pB)[2])/NEXTCOLUMN 

[11] ~(I«pA)[1])/NEXTROW Lines 10 and 11 make sure that all of 
the inner products are computed. 

[12] PRODUCT~«pA)[1], (pB)[2])p ELEMENTS 
yo 
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Line 12 puts ELEMENTS into the 
appropriate size matrix called PROD­
UCT. 



3.4 Operators with matrices 

Let us consider some examples using this program MUL TIPL Y: 

A~2 3pt 6 
A 

123 
456 

B~2 3p1 2 0 3 2 0 
B 

120 
320 

A MULTIPLY B 
IMPOSSIBLE 

1 3 
2 2 
00 

B~~B 
B 

A MULTIPLY B 
5 7 

14 22 

Note that the number of columns of 
A does not equal the number of rows 
of B. 

Let B be the transpose of the previ­
ous B. 

It seems only fair to point out that this matrix multiplication can be 
accomplished directly on the APL keyboard using the operation of inner 
product by merely typing A + . X B. 

Examples 

A+.XB 
5 7 

14 22 

B+.XA 
13 17 21 
10 14 18 
000 

A~3 3pt 9 
A 

1 2 3 
456 
789 

B~3 3p1 3 5 2 6 7 1 0 1 
B 

1 3 5 
267 
1 0 1 

The example above. 

Note that (A +.XB)+(B+.XA) or 
A·B#B·A. In fact, they are not even 
the same size. 
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A+.xB 
8 15 22 

20 42 61 
32 69 100 

B+.XA 
48 57 66 
75 90 105 

8 10 12 
A __ 2 3pt 6 

A 
1 2 3 
456 

B __ 2 3p5 6 4 3 2 1 
B 

564 
321 

A+.XB 
LENGTH ERROR 

Note, again, that A·B=/=B·A. Thus, 
matrix multiplication is not com­
mutative. 

In this example, matrix multiplica­
tion is not possible, due to the orders 
of A and B. 

An application oj matrix multiplication 

Suppose that a company produces three products called A, B, and C. Each 
product is composed of two subassemblies called I and II. The numbers of 
each subassembly in each product is given by the following matrix S: 

I II 

A [I 
S=B 2 

C I i] 
Now, each subassembly consists of three parts called a, b, and c. The 
numbers of each part in each subassembly is given by the parts matrix P: 

a 

I [32 P=II 

b 
2 
3 

c 

~] 
Find a matrix which gives the number of each part a, b, and c in each 
product A, B, and C. The solution is given by the matrix multiplication: 

S+.xP 
553 
874 
785 

There are 5 a's in an A, 5 b's in an A, 3 c's in an A, 8 a's in a B, 7 b's in a 
B, 4 c's in a B, 7 a's in a C, 8 b's in a C, and 5 c's in a C. 
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3.4 Operations with matrices 

EXERCISES 

1. Consider the matrices 

A = [ _ ~ ! ~] and B = [ g 
Evaluate the following: 
(a) (2XA)+B (f) B,A 
(b) B-(3XA) (g) A,[1]B 
(c) B.2 (h) + /[1]A 
(d) A+5 (i) x /[2]A 
(e) B- 3 (j) + /( + /[2]A) 

2. Check your answers to Exercise I at an APL terminal. 

3. With pencil and paper, trace through the program MUL T1PL Y with the matrices 

A = [! ; ~] and B = [ ~ ~ l 
4. Repeat Exercise 3 at an APL terminal using the TRACE command (see 

Appendix A.6). 

5. Multiply the following matrices using pencil and paper: 

(a) A = [ ~ ~] and B = [ ~ - ~ l 
(b) A = U ~ 1] and B= [? ~ l 
(c) B times A in Part (b). 

(d) A=D 2 3 
6 7 :] ond B~[! n 

6. Check your answers to Exercise 5 at an APL terminal. 

7. Let 

A = D ~] and B = [~ ~ l 
Use the APL terminal for Parts (a)-(d). 
(a) Compute (A + B) + . x (A - B) (i.e., (A + B)· (A - B) in conventional nota-

tion). 
(b) Compute (A+. XA)-(B+. x B) (i.e., A2_ B2 in conventional notation). 
(c) Are the answers to Parts (a) and (b) the same? 
(d) Do you have an explanation for this? 

8. Let 

A=[ ~ 
I 
o 
I ~l B=[-! 
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3 Vectors and matrices 

At an APL terminal, verify the fact that A +. X (B+ C) equals (A +. X B) + 
(A+. X C). This is called the distributive property. (In conventional notation, it 
would be written as A·(B+ C)=A·B+A·C.) 

9. The following matrix consists of the numbers of subassemblies I, II, and III 
needed in the production of products A, B, and C. 

s=[~ ~ ~l 
123 

where row I is for A, row 2 for B, and row 3 for C. Column I is for I, column 2 
for II, and column 3 for III. Each subassembly I, II, and III consists of parts a, 
b, and c as given in the following matrix: 

p=[~ j ~l 
621 

where row I is for I, row 2 for II, and row 3 for III. Column I is for a, column 
2 for b, and column 3 for c. Find a matrix that will give the number of each 
part a, b, and c in each product A, B, and C. 

10. A company produces widgets and gadgets. To produce each widget and gadget 
requires time on machines X, Y, and Z as given in the following matrix T: 

T= widgets 
gadgets [ ~ ~ ~] 

.5 3 I 

These times are measured in hours. In other words, it takes I hour on machine 
X to produce a widget, 2 hours on machine Y to produce a widget, etc. 

Set up an APL expression for the following problems and evaluate: 
(a) An order is received for 10 widgets and 15 gadgets. Find a vector for the 

amount of time needed on each machine to fill the order. 
(b) If the cost per hour on machine X is $5.00, on machine Y is $4.00, and on 

machine Z is $6.00, find the total cost of machine time in filling the order. 

3.5 Properties of matrices 
Now that we know how to add and multiply matrices, we will consider 
some properties of matrices using these operations. In this section, we will 
restrict our attention to square matrices of the same order. (Therefore, all 
of the operations will be defined.) The properties we will consider are 
analogous to the properties of the real number system. Rather than present 
formal proofs of these properties, we will illustrate them with the following 
matrices: 

A~3 3p1 -2 3 -4 5 -6 7 -8 9 
A 

1 -2 3 
-4 5-6 
7 -8 9 
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B ~ 3 3p3 2 1 1 2 3 2 1 3 
B 

3 2 
123 
213 

C~3 3p2 1 0 -1 4 3 5 -2 1 
C 

210 
-1 4 3 
5 -2 1 

3.5 Properties of matrices 

The reader will also be asked to test out these properties with some 
other particular examples, either by hand, or even better, at an APL 
terminal. The properties are listed in conventional notation. 

1. Addition is commutative. 

Example 

A+B 
404 

-3 7-3 
9 -7 12 

B+A 
404 

-3 7-3 
9 -7 12 

2. Addition is associative. 

(A +B)=(B+A). 

(A +(B+ C))=((A + B)+ C). 

Example 

A+(B+ C) 
614 

-4 11 0 
14 -9 13 

(A+ B)+ C 
614 

-4 11 0 
14 -9 13 
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3 Vectors and matrices 

3. There is an additive identity matrix Z. 

(A + Z) = A, where Z is a matrix completely filled with O's. 

Example 

Z+-33pO 
Z 

000 
000 
000 

A+Z 
1 -2 3 

-4 5-6 
7 -8 9 

A 
1 -2 3 

-4 5-6 
7 -8 9 

4. For any matrix A, there is an additive inverse - A. 

{A+ -A)=Z. 

Example 

-A 
-1 2-3 
4 -5 6 

-7 8-9 

A+-A 
000 
000 
000 

5. In general, multiplication is not commutative. 

Example 

A+.XB 
7 1 4 

-19 -4 -7 
31 7 10 

B+.XA 
2 -4 6 

14 -16 18 
19 -23 27 
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3.5 Properties of matrices 

6. Multiplication is associative. 

Example 

A+.X(B+.XC) 
33 3 7 

-69 -21 -19 
105 39 31 

(A+.x B)+.x C 
33 3 7 

-69 -21 -19 
105 39 31 

(A· (B·C»)= «A·B)·C). 

7. Multiplication is distributive over addition. 

Example 

A+.X(B+C) 
26 -12 1 

-62 24 2 
98 -36 -5 

(A·(B+ C»)=(A'B+A'C) 

«B+ C)·A)=(B·A + C·A). 

(A+.X B)+(A+.X C) 
26 -12 1 

-62 24 2 
98 -36 -5 

(B+C)+.XA 
o -3 6 

18 -18 18 
39 -51 63 

(B+.X A)+(C+.XA) 
o -3 6 

18 -18 18 
39 -51 63 

8. There is a multiplicative identity matrix I. 

(A·I)=(I·A)=A, where I is a matrix with l's 
down the main diagonal 
and O's elsewhere. 
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Example 

1~3 3pl 0 0 0 1 0 0 0 1 
I 

1 0 0 
010 
001 

A+.XI 
1 -2 3 

-4 5-6 
7 -8 9 

I+.XA 
1 -2 3 

-4 5-6 
7 -8 9 

A 
1 -2 3 

-4 5-6 
7 -8 9 

9. The question of multiplicative inverses will be taken up in the next 
chapter. 

EXERCISE 

Let 

A=[~ -i ~] [ 0 2 3] 
B= -1 6 2 

5 0 4 
[1 2 3] c= 4 5 6. 
789 

Verify Properties 1-8 above for these matrices at an APL terminal using the proper 
APL notation. 
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Systems of linear equations 4 

In this chapter, we shall discuss the use of matrices for representing and 
solving systems of linear equations. As we shall see, APL makes the job of 
solving certain systems of linear equations almost trivial. 

4.1 Linear equations 

A linear equation with n unknowns is an equation of the form 

where x"x2,x3,,,,,xn are the unknowns, and a"a2,a3, ... ,an, and Bare 
constants. aj is called the coefficient of Xj for i = l, 2, ... , n. 

Solution oj a linear equation 

A solution to a linear equation a,'x, +a2·x2+ ... +an·xn=B is a vector 
X=(X"X2""'Xn) of values of the unknowns for which the equation is a 
true statement. 

Examples (conventional notation) 

1. 3x+4y-2z=l2 (The unknowns are x, y, and z.) The vector 
(2,0, - 3) is a solution, since if x is replaced by 2, y by 0, and z by -3, the 
result will be 12, so that the equation is a true statement for this vector. 
The vectors (0,3,0) and (3, 1,.5) are also solutions to this linear equa­
tion. 

2.3x+2y=6 (The unknowns are x andy.) (2,0) and (1,1.5) are two 
solutions to this equation. 

3. 2X,-X2+3x3-4x4=8 (The unknowns are x"x2,X3'X4.) (1, -2,0,-1) 
and (2,2,2,0) are solutions to this equation. 
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4 Systems of linear equations 

Notice that for a linear equation, there can be more than one solution. 
In fact, there are an infinite number of solutions if n > 1. 

An AP L expression for a linear equation 

If the coefficients (a\,a2, ... ,an) are expressed as a vector A, the unknowns 
(X\,X2' ... 'Xn) as a vector X, then the linear equation 

a\·x\+a2·x2+ ... +an·xn=B 

can be expressed as the inner product 

(A+.XX)=B. 

The following examples illustrate this point: 

Examples 

1. 3x+4y-2z= 12. 

12 

1 

A~3 4 -2 
B~12 

Let us use the APL notation to verify that (3, 1,0.5) is a solution to this 
equation. 

X~3 1 .5 

A+.XX 

(A+.XX)=B 
True. X is a solution. 

2. 3x+2y=6. 
Let us use APL to verify that (1, 1.5) is a solution. 

A~32 

B~6 

X~l 1.5 

(A+.XX)=B 
1 True. X is a solution. 

3. 2X\-X2+3x3-4x4=8. 

9 

o 
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Let us show that (2, 1,2,0) is not a solution to this equation, using APL. 

A~2 -1 3 -4 
B~8 

X~2 1-2 0 

A+.XX 

(A+.XX)=B 
False. X is not a solution. 



4.2 Two-by-two systems of linear equations 

EXERCISES 

1. Use APL to determine whether or not the indicated vectors are solutions to the 
given linear equations. 
(a) 2x-3y=6, X=(1.5,-1) 
(b) 4x+y=7, X=(1,3) 
(c) 3x+2y-z=8, X=(1,2,-1) 
(d) XI-2x2 + 3X3 - X4 = 10, X=(2, 1,3, I) 

2. Find two solutions to each of the following linear equations, and use APL to 
check your solutions. 
(a) 5x-3y=6 
(b) 2x-6y+8z=24 
(c) 3XI-2x2+5x3-X4= 10 

3. A linear equation with one unknown is an equation of the form A· X = B. (In 
APL notation, it is (AXX)=B, where X is the unknown and A and Bare 
constants with A *0.) Write an APL program to solve such an equation. 

4. Solve the following equations: 
(a) 3·X=7 (b) 7·X=5 (c) -2'Y=9 

4.2 Two-by-two systems of linear equations 

A two-by-two system of linear equations consists of two linear equations 
with two unknowns, XI and X 2, as follows: 

all,x l + a\2'x2 = bl 

a2 I"x\ + a22'x2 = b2• 

[Note: The first subscript of aij denotes the equation to which it belongs, 
while the second subscript denotes the variable to which it belongs.] A 
solution to such a system is a vector X = (x \' x 2) for which both equations 
are true statements. 

Example 

Consider the system 

3x+2y=6 

x-2y=4. 

The vector (2.50, -0.75) is a solution, since both equations are true for this 
vector. That is, if X is replaced by 2.50 and y by -0.75 in both equations, 
the resulting statements are true. The vector (2,0) is not a solution, since 
only the first equation is true for this vector. 
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4 Systems of linear equations 

Matrix representation for a system of linear equations 

A two-by-two system of linear equations can be represented as a matrix 
equation as follows: A· X = B (in conventional notation) or (A +. X X) = B 
(in APL notation), where 

A __ [ all a l2 ] The matrix of coefficients. a21 a22 

X=(XI,X2) The vector of unknowns. 

B = (b l , b2 ) The vector of constants on the right. 

Example 

Let us use APL to verify that the vector (2.50, -0.75) is a solution to the 
system 

6 4 

1 1 

1 

A~2 2p3 2 1 -2 
A 

B~64 

X~2.50 -0.75 

A+.XX 

(A+.XX)=B 

A/(A+.XX)=B 

3x+2y=6 

x-2y=4. 

6=6 is true and 4=4 is true. 

Since both are true. 

We now consider the question of how does one arrive at the solution to 
a two-by-two system of linear equations? We shall use a method known as 
Gaussian elimination. 

Solving a two-by-two system by the method of Gaussian elimination 

We shall make use of the following three operations on the equations in 
the system. These operations are permissible because they do not alter the 
solutions of the system. In fact, they may help us in finding the solutions. 

Operation 1. 

A multiple of one equation may be added to or subtracted from the other 
equation. 
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4.2 Two-by-two systems of linear equations 

Operation 2. 

An equation may be multiplied by a nonzero constant. 

Operation 3. 

Two equations may be interchanged. 
In the method of elimination, we use these operations to eliminate a 

variable arriving at a single equation in a single unknown. This equation 
can then be solved for the other unknown. The following examples 
illustrate this method: 

1. 

2. 

Examples 

3x+2y=6 

x-2y=4. 

Interchanging these two equations, we get the equivalent (two equations 
are "equivalent" if they have the same solutions) system 

x-2y=4 

3x+2y=6. 

Adding the first equation to the second equation yields the equivalent 
system 

x-2y=4 

4x+Oy=1O. 

So, since 4x = 10, then x = 2.50. Replacing x by 2.50 in the first equation 
yields 2.50- 2y =4, so that y == -0.75 after a little algebra. 

x-3y= 2 

3x+2y = -5. 

Multiplying the first equation by 3 yields the equivalent system 

3x-9y= 6 

3x+2y=-5. 

Adding to the second equation the multiple -I times the first equation 
yields 

3x-9y= 6 

Ox + lly = -11. 

From the resulting second equation, we get Ily = -11 or y = -1. RepIac­
ingy by -1 in the first equation, we get 3x +9= 6, or 3x = -3, or x =-1. 
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4 Systems of linear equations 

So, the solution to the system is the vector C 1, -1). Check: 

A~2 2p1 -332 
B~2 -5 
X~-1 -1 

A+.XX 
2 -5 So, it checks. 

3. 

4. 

x+3y=4 

2x+6y=6. 

Adding the multiple -2 times the first equation to the second equation 
one 

x+3y= 4 
Ox+Oy=-2. 

The second equation is now the ridiculous statement that 0= -2. Thus, 
the system has no solution. A system with no solutions is called an 
inconsistent system. 

x+3y=4 

2x+6y=8. 

Adding the multiple -2 times the first equation to the second equation 
yields 

x+3y=4 

Ox+Oy=O. 

The resulting second equation 0 = tl is certainly true. However, it isn't 
very useful in solving the system. The significance of this result is that it 
tells us that the system has an infinite number of solutions. Any solution 
to the first equation is automatically a solution to the second equation. 
A system with an infinite number of solutions is called a redundant 
system. 

The above examples point out that a two-by-two system of equations 
may have one solution, no solutions, or an infinite number of solutions. 
The method of Gaussian elimination helps us to decide in which case the 
example lies. In the event that we are in the first or third case, it also helps 
us to find the solution or solutions. 

Some applications of two-by-two systems of linear equations 

The following examples illustrate the use of two-by-two systems of linear 
equations to solve everyday problems: 

Example 1 

A company produces two products: widgets and gadgets. To produce each 
widget requires 5 minutes on machine I and 3 minutes on machine II. To 
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4.2 Two-by-two systems of linear equations 

produce each gadget requires 4 minutes on each machine. Find the number 
of each product that can be produced in a day if machine I is operated for 
6 hours and machine II for 5 hours. 

Let x represent the number of widgets that can be produced in a day 
and y represent the number of gadgets that can be produced in a day. 

For machine I, the total number of minutes spent on widgets is 5x and 
a total number of minutes spent on gadgets is 4y. Since machine I is in 
operation for 6 hours, or 360 minutes, then the equation for time on 
machine I is 

5x+4y=360. 

For machine II, the total number of minutes spent on widgets is 3x and 
the total number of minutes spent on gadgets is 4y. Since machine II is in 
operation for 5 hours, or 300 minutes, then the equation for time on 
machine II is 

3x+4y=300. 

Adding to the second equation, the multiple -1 times the first equation 
yields the new equation 2x = 60. Thus, x = 30. Therefore, from the first 
equation, 5'30+4y=360, or 4y=210, or y=52.5. Thus, in a day, the 
company can produce 30 widgets and 52.5 gadgets. 

Example 2 

A man deposits a total of $1000 in two banks, called bank A and bank B. 
The interest rate in bank A is 4 percent per year, and in bank B is 5 
percent per year. His income from these deposits for the year was $42. 
How much did he deposit in each bank? 

Let x represent the amount deposited in bank A and y represent the 
amount deposited in bank B. Then, the interest he received from the two 
banks is given by 

O.04x + 0.05y = 42. 

The total amount deposited is given by 
x+y=IOOO. 

Adding to equation one the multiple -0.04 times equation two yields 
0.lOy=2. 

Thus, y = $200. Since the total amount deposited is $1000, then x = $800. 
So, he deposited $800 in bank A and $200 in bank B. 

EXERCISES 

1. Express the following systems of linear equations as matrix equations (A +. X X) 
=8, and check to see if the specified vectors, X, are solutions to the systems (do 
them at an APL terminal): 
(a) x+2y=5 

3x+4y=6 
(b) 6x-y=5 

4x+2y=6 

X=C4,4.5) 

X=(l,l) 

(c) 4x+3y=2 
8x+6y=3 

(d) 3x+4y=2 
6x+8y=4 

X=CO.25,1) 

X=(2, -I) 
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4 Systems of linear equations 

2. Use the method of Gaussian elimination to solve the following systems of linear 
equations (if they have solutions): 
(a) 5x- y=4 (d) 2x+ y=2 

3x+2y=5 6x+3y=4 
(b) 2x+4y=3 (e) 3x+2y=5 

x+3y=2 4x+3y=2 
(c) x+3y=4 

2x+6y=8 

3. Set up systems of equations for and solve the following problems: 
(a) A carpenter builds bookcases and tables. Each bookcase requires 12 square 

feet of lumber and takes 2 hours to build. Each table requires 16 square feet 
of lumber and takes 1.5 hours to build. How many bookcases and tables can 
he build if he has 100 square feet of lumber and 12 hours? 

(b) A person wants to buy nuts and bolts. Each nut costs $.04 and each bolt 
costs $.06. He has $1.90. He needs 5 less than twice as many nuts as bolts. 
How many nuts and bolts should he buy? 

(c) A new diet restricts a person to 1300 calories a day, and 100 grams of 
protein per day. The dieter is allowed to only eat foods A and B on this diet. 
Each ounce of food A contains 100 calories and 8 grams of protein. Each 
ounce of food B contains 80 calories and 6 grams of protein. How many 
ounces of each food should this dieter eat to meet the exact amount of 
calories and protein in his diet? 

4.3 Elementary row operations 

In solving the two-by-two systems of linear equations in the previous 
section, we used three operations on the equations, which suggest the 
following operations on the rows of a matrix. These are called elementary 
row operations. They will be used in the next section to solve larger 
systems of linear equations. In future sections, we shall also use these 
operations to invert matrices and compute determinants. 

Elementary row operations 

1. A row can be multiplied by a nonzero real number. 
2. A constant multiple of any row can be added to any other row. 
3. Any pair of rows can be interchanged. 

These operations are easily performed at an APL terminal. Recall that 
in APL, the lth row of a matrix is denoted by M[/;]. 

To multiply the lth row of a matrix M by a nonzero constant C, simply 
replace M[/;] by cx M[1;]. This is done as follows: 

M[1;]~ Cx M[1;]. 
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Example 

M~3 3pt9 
M 

1 2 3 
456 
789 

M[2;) ~ 3 x M[2;) 
M 

123 
12 15 18 
789 

4.3 Elementary row operations 

Multiply row 2 by 3. 

Note that you must request M to be 
printed to see the change. 

To add to row I a multiple C of row J, replace M[/;) by M[1;) 
+ ex M[J;). This is done as follows: M[/;)~M[/;)+ ex M[J;). 

Example 

M[2;) ~ M[2;) + (-12) x M[1 ;) 
M 

1 2 3 
o -9 -18 
789 

Add to row 2 the multiple -12 times 
row 1. 

Note that this change is made to the 
latest version of M. 

To interchange row I and row J, it is necessary to replace row I by row 
J and row J by row I. This is done as follows: 

M[I J;)~M[J I;). 

Example 

M[1 3;) ~ M[3 1;) 
M 

789 
o -9 -18 
1 2 3 

Interchange rows I and 3. 

For each of these elementary row operations, there is a corresponding 
column operation. However, we shall have no need for these column 
operations in this text. 
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4 Systems of linear equations 

4.4 Larger systems of linear equations 

We will now consider using elementary row operations to solve a system of 
m linear equations with n unknowns" Consider the system 

all"x l +a12 "x2+ """ +aln"xn=bl 

a2 I" x I + a22 "x2 + "" " + a2n "Xn = b2 

.. .. 
amI" XI +am2"x2+ """ +amn"xn=bm" 

This system can be represented as a matrix equation A" X = B (or (A + " X X) 
= B in APL) where 

r a" 

a l2 

a," 1 
X'l 

bl 
a 21 a22 a2n X2 b2 

A= " X= B= 

amI am2 amn Xn bm 

To verify this, one only needs to do the indicated matrix multiplication" In 
fact, such a system can be expressed even more succinctly as a single 
matrix 

all a l2 aln bl 
a 21 a22 a2n b2 

(C~A, B in APL)" C=A,B= 

amI am2 amn bm 

One of the basic techniques for solving such a system is the method of 
Gaussian elimination which we know from solving the two-by-two systems" 
By this method, one attempts to reduce the system to one of the form 

XI+CI2"X2+C\3"X3+ """ +cln"xn=dl 

X2+ C23"X3+ """ +c2n"xn=d2 

x3+ """ +c3n"xn=d3 

0=0 

0=0" 

Then, by solving the equations successively (from the bottom to the top), 
one can determine the values of the unknowns" 
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To reduce such a system of linear equations to this form (without 
altering the solutions), requires the use of a sequence of operations on the 
equations. The permissible operations are 

1. Multiply an equation by a nonzero real number. 
2. Add to an equation a constant multiple of another equation. 
3. Interchange two equations. 

These operations can also be performed as the analogous elementary row 
operations on the rows of the augmented matrix A, B. The following 
examples illustrate the technique: 

Example 1 

x+2y+3z=1 
x+3y+5z=2 

2x+5y+9z=3 

Conventional notation for a 3-by-3 linear system. 

A_3 3p1 2 3 1 3 5 2 5 9 The matrix of coefficients. 
B_1 2 3 The vector of constants. 

C_A,B 
C 

1 2 3 1 
1 352 
2 5 9 3 

C[2;]_ C[2;]+C1)X C[1;] 
C 

1 2 3 1 
o 1 2 1 
259 3 

C[3;] _ C[3;] + (-2) x C[1;] 
C 

1 2 3 1 
o 1 2 1 
o 1 3 1 

C[3;] _ C[3;] + (-1) X C[2;] 
C 

1 2 3 1 
o 1 2 1 
001 0 

The augmented matrix. 

Row 2 is replaced by row 2 plus the 
mUltiple -1 of row 1. 

Row 3 is replaced by row 3 plus the 
multiple -2 of row 1. 

Row 3 is replaced by row 3 plus the 
multiple -1 of row 2. 

Thus, from row 3, z = O. From row 2, y + 2z = 1, so that y = 1. From row 
1, x+2y+3z = 1. Substituting z =0 andy= 1, we get x=-1. 
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4 Systems of linear equations 

Check 

A+.x-1 1 0 
123 

Example 2 

It checks. A·X=B. 

2x+ y- z=4 

x-2y+ z= I 

3x- y-2z=3 

A~3 3p2 1 -1 1 -2 1 3 -1 -2 
B~4 1 3 
C~A,B 

C 
2 1 -1 4 
1 -2 1 1 
3 -1 -2 3 

C[1 2;] ~ C[2 1;] 
C[2;]~C[2;]+(-2)X C[1;] 
C[3;] ~ C[3;] + (-3) X C[1 ;] 
C 

1 -2 1 1 
o 5 -3 2 
o -5 -5 0 

C[2 3;] ~ C[3 2;] 
C[2;]~( +5)X C[2;] 
C 

1 -2 1 1 
o 1 -1 0 
o 5 -3 2 

C[1;] ~ C[1;] + 2 x C[2;] 

C[3;] ~ C[3;] + (-5) x C[2;] 

C 
1 0 -1 1 
o 1 -1 0 
o 0 2 2 

C[3;]~( +2)X C[3;] 
C 

1 0 -1 1 
o 1 -1 0 
o 0 1 1 
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Interchange rows 1 and 2. 
Replace row 2 by row 2 plus the 
multiple -2 of row l. Replace row 3 
by row 3 plus the multiple - 3 of row 
l. 

Interchange rows 2 and 3. 
Multiply the new row 2 by 1/5. 

Replace row 1 by row 1 plus twice 
row 2. 
Replace row 3 by row 3 plus the 
multiple - 5 of row 2. 

Multiply row 3 by 1/2. 



C[1 ;] ~ C[1 ;] + C[3;] 
C[2;] ~ C[2;] + C[3;] 
C 

1 002 
o 1 0 1 
001 1 

4.4 Larger systems of linear equations 

Replace row 1 by the sum of rows 1 
and 3. Replace row 2 by the sum of 
rows 2 and 3. 

Thus, from row 1, x=2; from row 2, y = 1; from row 3, z= 1. 

A+.X2 1 1 
413 

Example 3 

It checks. 

x+ y+ z+ w=l 

-x+ z+2w= 1 

3x+2y - w= 1 

x+ y+2z+2w= 1 

A~4 4p1 1 1 1 -1 0 1 2 3 2 0 -1 1 1 2 2 
B~1 1 1 
C~A,B 

C 
1 1 1 1 1 

-1 0 1 2 1 
320 -1 1 
1 1 2 2 1 

C[2;] ~ C[2;] + C[1 ;] 
C[3;] ~ C[3;] + C 3) X C[1 ;] 
C[4;]~ C[4;] +(-1)X C[1;] 
C 

1 1 1 1 1 
0 1 2 3 2 
o -1 -3 -4 -2 
0 0 1 1 0 

C[3;]~C[3;] + C[2;] 
C 

1 1 1 1 1 
o 1 232 
o 0 -1 -1 0 
00110 
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4 Systems of linear equations 

C[4;]~ C[4;]+ C[3;] 
C[3;]~(-1)X C[3;] 
C 

11111 
o 1 232 
00110 
00000 

Thus, row 4 yields 0=0, indicating that we have a redundant system. 
From row 3, z+w=O, or z= -w. From row 2, y+2z+3w=2. Or, 
replacing z by -w, y-2w+3w=2; or, y+w=2; so, y=2-w. Finally, 
from row 1, x + Y + z + w = 1. Replacing y by 2 - wand z by - w, we get 
x+2-w-w+w=l; or, x=w-l. This system has an infinite number of 
solutions, since w can be any real number. The general solution looks like 
(w-I,2-w, -w,w). 

Example 4 

A~3 3pt 9 
B~235 

C~A,B 

C 
123 2 
4 5 6 3 
789 5 

x+2y+3z=2 
4x+5z+6z=3 
7x+8y+9z=5 

C[2;] ~ C[2;] + (-4) x C[1 ;] 
C[3;] ~ C[3;] + (-7) x C[1;] 
C 

1 2 3 2 
o -3 -6-5 
o -6 -12 -9 

C[2;]~(-1)X C[2;] 
C 

1 2 3 2 
o 3 6 5 
o -6 -12 -9 

C[3;] ~ C[3;] + 2 x C[2;] 
C 

123 2 
o 3 6 5 
000 1 
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4.5 Row reduced form 

Row 3 says that 0= 1. This is ridiculous. Thus, this system has no 
solutions. It is an inconsistent system. 

A system of linear equations has either one solution, no solutions, or an 
infinite number of solutions. 

EXERCISES 

1. Let 

A=[! 2 5] -4 6. 
o 9 

Perform the following elementary row operations on A at an APL terminal. 
(a) Interchange rows I and 2. 
(b) Add to row 2 the multiple -3 of row l. 
(c) Add to row 3 the multiple -7 of row l. 
(d) Multiply row 2 by 1+14. 

2. Using elementary row operations at an APL terminal, reduce the matrix 

M=[ ~ 2 3] 5 6 
S 9 

to [ 
I 0 
o I 
o 0 

3. Using elementary row operations at an APL terminal, reduce the matrix 

3 4] 5 2 
4 3 
2 5 

to 

4. Use elementary row operations at an APL terminal to solve the following 
systems of linear equations: 

(a) 2x+3y=6 
5x- y=4 

(b) x+2y+3z=3 
4x+5y+6z=4 
7x+Sy+9z=5 

(c) 3x+ y+2z=4 
2x+3y+ z=3 
2x+ y+ z=2 

(d) x+2y+3z+5w=5 
2x+3y+5z+9w=4 
3x+4y+7z+ w=O 
7x+6y+5z+4w=3 

(e) x+ 2y+ 3z+ 4w=2 
5x+ 6y+ 7z+ Sw=5 
9x+ lOy + llz+ 12w=3 

13x+ 14y+ 15z+ 16w=O 

4.5 Row reduced form 

Using elementary row operations, there is a final form in which a matrix 
may be altered, called the row reduced form. The reduction of a matrix to 
this form has many applications in matrix algebra. 
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4 Systems of linear equations 

Row reduced form 

A matrix M is in row reduced form if 

l. The first K rows are nonzero vectors (vectors not containing all zeros), 
and the remaining rows are zero vectors. 

2. The first nonzero entry in each nonzero row is a I, and it occurs in a 
column to the right of the leading I in each preceding row 

3. The first nonzero entry in each nonzero row is the only nonzero entry in 
its column. 

The following are examples of matrices in row reduced form: 

Examples 

1. 

I 0 0 0 
0 I 0 0 
0 0 I 0 
0 0 0 I 

2. 

3. 

This is the 4-by-4 "iden-
tity" matrix. In reducing a 
matrix to row reduced 
form, one tries to make it 
as close to an 
matrix as possible. 

I 0 -I 2 
0 I 2 3 
0 0 0 0 
0 0 0 0 

I 000 2 
o 100 I 
000 I 3 
o 0 000 
o 0 0 0 0 

identity 

In Examples 2 and 3 above, it is not possible to make the matrices into 
identity matrices by further applications of elementary row operations. 
They are as close to the corresponding identities as possible. 

Let us consider some examples of the method of reducing matrices to 
row reduced form. 

Example 1 

M~3 3p4 3 0 1 3 2 -2 0 1 
M 

430 
132 

-2 0 1 

86 



4.5 Row reduced form 

M[1 2;] ~ M[2 1;] 
M 

1 3 2 
430 

-2 0 1 

Interchange rows 1 and 2. 

M[2;]~M[2;]+(-4)XM[1;] Replace row 2 by row 2 plus -4 times 
row 1. 

M[3;] ~ M[3;] + 2 X M[1 ;] Replace row 3 by row 3 plus 2 times 
row 1. 

M 
1 3 2 
o -9 -8 
065 

M[2;]~(1 +9)XM[2;] Multiply row 2 by -1/9. 
M 

1 3 2 
o 1 .8888888888 
065 

M[1;]~M[1;]+(-3)XM[2;] Replace row 1 by row 1 plus -3 times 
row 2. 

M[3;]~M[3;]+C6)XM[2;] Replace row 3 by row 3 plus -6 times 
row 2. 

M 
1 0 - .6666666666 
o 1 .8888888888 
o 0 - .3333333333 

M[3;]~C3)XM[3;] 

M 
1 0 - .6666666666 
o 1 .8888888888 
001 

Multiply row 3 by -3. 

M[1 ;] ~ M[1 ;] + .6666666666 X M[3;] 

Making the elements in the third col­
umn above the 1 into O's. 

M[2;] ~ M[2;] + (- .8888888888) X M[3;] 
M 

1 0 0 
010 
001 

The final form of M is the 3 X 3 identity matrix. 
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Example 2 

M~4 4pt 16 
M 

1 234 
5 6 7 8 
9 10 11 12 

13 14 15 16 

M[2;]~M[2;]+(-5)X M[1;] 
M[3;] ~ M[3;] + (- 9) x M[1 ;] 
M[4;]~ M[4;]+C13)X M[1;] 
M 

1 234 
o -4 -8 -12 
o -8 -16 -24 
o -12 -24 -36 

M[2;]~(1 + -4)XM[2;] 
M 

1 234 
o 1 2 3 
o -8 -16 -24 
o -12 -24 -36 

M[1 ;] ~ M[1 ;] + C 2) x M[2;] 
M[3;] ~ M[3;] + 8 x M[2;] 
M[4;] ~ M[4;] + 12 x M[2;] 
M 

1 0 -1 -2 
o 1 2 3 
o 0 0 0 
000 0 

Making the elements in the first col­
umn below the I into O's. 

Multiply row 2 by -1/4 to create a 1 
in the second column. 

Using the 1 in the second row and 
column to make the rest of the sec­
ond column into O's. 

This is as close as we can make it to the identity matrix. This matrix 
cannot be made any simpler by using elementary row operations. This 
process of reducing a matrix to row reduced form is quite tedious. 
Therefore, we now consider a program which uses the elementary row 
operations to reduce a matrix to row reduced form. 
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Program 4.1 ROWFORM 

VR+-ROWFORM M;K;L;H 
[1] K+-O 
[2] RAISE:K+-K+1 
[3] --+K>(pM)[2»/ ANSWER 
[4] L+-K 
[5] CHECK:--+(M[K; K]~O)/ BEGIN 
[6] L+-L+1 
[7] --+(L > (PM)[1»/ RAISE 
[8] M[K,L;]+-M[L,K;] 
[9] --+ CHECK 
[10] BEGIN:H+-O 
[11] M[K;]+-(1 +M[K;K»XM[K;] 
[12] INCREASE: H+-H+1 
[13] -+(H=foK)/NEXT 
[14] --+«K=(PM)[1]);\(H=(PM)[1]))/ ANSWER 
[15] H+-H+1 
[16] NEXT: M[H;]+-M[H;]-M[H;K]XM[K;] 
[17] --+(H«pM)[1»/ INCREASE 
[18] --+(K < (PM)[1 »/ RAISE 
[19] ANSWER: R+-M 

V 

4.5 Row reduced form 

Essentially, this program works as follows: Proceeding to line 5, if 
M [1 ; 1] is 0, row 1 of M is interchanged with row 2 (line 8). Then, 
branching back to CHECK (line 5), if M[1; 1] is still 0, rows 1 and 3 are 
interchanged. This continues until row 1 has been interchanged with all 
rows of M, (L>(pM)[1», which means that the entire first column is all O's, 
in which case the program branches back to RAISE (line 2), where K is 
increased to 2 and an analogous process is used on the second column. 
However, if we do get an M[1;1 ):tl=0, the program branches to BEGIN 
where M[1;1] is made into a 1 by multiplying row 1 by 1 + M[1;1] (line 11). 
Then, all other elements in column 1 are made into O's (line 16). In line 18, 
the program branches back to RAISE where K becomes 2. 

Now, the same process is repeated in column 2. That is, by interchang­
ing row 2 with those below it, the program attempts to find an M[2;2] =FO. 
Then M[2;2] is converted to 1 by multiplying row 2 by 1 + M[2;2]. All 
other elements in column 2 are next converted to D's. Then, we are 
branched back to RAISE, where K is made 3 and the same process is 
repeated with column 3. In other words, M[3;3] is converted to 1, if 
possible, and all other elements in column 3 are converted to O's. Then, to 
column 4, etc., until K = (PM)[1], when we have all columns in the proper 
form. Then, this last form of M is printed out as our answer R in line 19. 
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4 Systems of linear equations 

This program does exactly as we would do if we were to convert M to 
row reduced form ourselves (by hand). Only, using the computer, it 
accomplishes this process much faster. 

Let us consider some examples using this program ROWFORM. 

Example 1 

M~4 4pt 16 
M 
234 

5 6 7 8 
9 10 11 12 

13141516 

ROWFORM M 

1 0 -1 -2 
o 1 2 3 
000 0 
000 0 

Example 2 

M~3 3p1 2 3 2 1 3 3 2 1 
M 

1 2 3 
213 
3 2 

ROWFORMM 
1 0 0 
010 
001 

Example 3 

To run the program, type ROW­
FORMM. 

This is the best possible final form of 
a matrix, the identity. 

M~3 4p1 2 -1 2 2 5 -2 3 1 2 1 2 
M 

1 2 -1 2 
2 5 -2 3 
1 2 1 2 

ROWFORMM 
1 0 0 4 
o 1 0 -1 
001 0 
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Example 4 

M~3 3p1 2 3 2 4 8 1 2 5 
M 

1 2 3 
248 
1 2 5 

ROWFORMM 
1 2 0 
o 0 1 
000 

EXERCISES 

4.6 The inverse of a matrix 

1. Use elementary row operations at an APL terminal to reduce the following 
matrices to row reduced form: 

(a) A = [i 2 il (d) D~[~ 
I 2 

!l 3 I I 
5 I 0 

~) B= [~ 
I 

~l 
0 I 

3 
(e) E=[ ~ 2 -I 

!l 3 4 3 

(c) c+! 2 -I 

Jj 
-I -2 6 

4 3 
-2 6 
0 -3 

2. Use the program ROW FORM to check your answers to Exercise 1. 

3. With a pencil and paper, trace the program ROWFORM with the matrix D 
above. 

4. Using the TRACE command, trace the program ROWFORM with the matrix D 
above. 

4.6 The inverse of a matrix 

If a system of linear equations has the same number of equations as 
unknowns, and if the matrix of coefficients has as its row reduced form an 
identity matrix, then there is a very easy method for solving the system 
using the inverse of the matrix of coefficients. In this section, we shall 
consider the concept of the inverse of a matrix. In the next section, we 
shall apply the idea of matrix inversion to solving a linear system. 

Recall, from Section 3.5., that if we are working with square n by n 
matrices, then there is a multiplicative identity matrix I. This matrix has the 
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4 Systems of linear equations 

property that if A is any n by n matrix, then 

A·I=I·A =A. 
I is the n by n matrix with I's down the main diagonal and O's elsewhere. 
In APL, the n by n identity matrix can be created as follows: 

1~{tN) o. =(tN). 

This makes use of the concept of outer product. I is compared to each 
element of tN using the logical operator, =, yielding the vector I 0 0 ... 
o as the first row. Then, 2 is compared to each element of tN using =, 
yielding that vector 0 0 1···0 as the second row. Then, 3 is compared to 
each element of tN using =, yielding the vector 0 0 I ... 0 as the third 
row, and so on through the nth row. 

Example 

1~{t3) o. = (t3) 
I 

1 0 0 
010 
001 

The diagram below might be helpful in understanding the outer product 

(t3) 0 • = (t3): 

2 3 
I I 0 0 
2 0 I 0 
3 0 0 I 

From now on, we shall refer to I as simply the identity matrix of 
appropriate size. 

The inverse of a matrix 

The inverse of an n X n matrix A, if it has an inverse, is the n X n matrix 
(usually denoted by A -I) such that 

(A·A -I)=(A -I·A)=I. 

Examples 

1. If 

A = [~ ~], 
then 

-1.5 ] 
I ' 
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4.6 The inverse of a matrix 

since 

2. If 

then 

since 

3. If 

-H 
o 
1 
o 

then A has no inverse. In order to see this, suppose that 

Then, 

A -1= [; ~ l 

(A.A -1)= [ x+2z 
3x+6z 

Y+2W] [1 
3y+6w = 0 

Therefore, x + 2z = 1 and 3x + 6z = O. However, this is impossible. So, A 
has no inverse. 

Matrices that do not have inverses are said to be singular. Those with 
inverses are therefore nonsingular. Obviously, any matrix which is not 
square is singular, because if the matrix is not square, then A·A -I and 
A -I·A would not be the same size, let alone equal. 

We now have three questions: 

1. How does one decide whether a matrix is singular or nonsingular? 
2. If the matrix is nonsingular, how does one compute its inverse? 
3. Of what use is the inverse of a matrix? 

In order to attempt to answer these questions, consider the following 
matrix equation: 

(A·X)=(I·B) «A+. XX)=(I+. x B) in APL notation). 

Using conventional notation, and multiplying both sides of this equation 
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4 Systems of linear equations 

by A - I, assuming A is nonsingular, one obtains 

(A -I·(A·X))=(A -I·U·B)), 

or using the associative property, 

(A -I.A)·X)=(A -1·n·B), or U·X)=X=(A -I·B). 

Thus, if A -I exists, it can be used to solve matrix equations like the one 
above. Consider the system of equations: 

all·x l + a12·x2 + ... +aln·xn = 1· bl +0· b2+ ... +0· bn = b l 

azt"x i +a22·x2+ ... +a2n·xn =0· bl + 1· b2+ ... +0· bn = b2 

As a matrix equation, this would be A· X = I· B, where 

all a 12 aln XI 

a21 a22 a2n X2 
A= X= 

ani anz ann Xn 

bl 0 0 
b2 0 0 

B= 1= 

o o 

If this system has a unique solution and has been solved by the method of 
elimination, then we would end up with a system like the following: 

I·x l +O·Xz+··· +O·Xn =XI = clI·b l +cl2· b2+ ... + cln·bn 

O·X I + l·x2 + ... +O·xn = X2 = c2l ·b l + C22·b2 + ... + c2n ·bn 

Or, as a matrix equation, this would be 

U·X)=X=(C·B), 

where C = A - t, since X = (A -I. B). Considering these two systems of linear 
equations, this process seems analogous to using elementary row opera­
tions to reduce the augmented matrix, A, I to the form I, A -I. 
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4.6 The inverse of a matrix 

An algorithm for matrix inversion 

The above discussion yields the following algorithm for inverting a matrix: 

1. Form the augmented matrix A, I. 
2. Use elementary row operations on the rows of this augmented matrix to 

reduce it to the form I, A -I. 
3. Drop the matrix I from the resulting matrix. 

[Note: This process also provides us with a test for the nonsingularity of a 
matrix. If the row reduced form of A is I, then A is nonsingular. 
Otherwise, A is singular.] 

Let us apply the above algorithm to finding the inverses of the matrices 
in the previous examples: 

Example 1 

2 3 
4 7 

1 0 
o 1 

A~2 2p2 3 4 7 
A 

ROWFORMA 

1~('2) o. = (t2) 

M~A,I 

ROWFORM M 
1 0 3.5 -1.5 
o 1 -2 1 

INVERSE~2 -21M 

INVERSE 
3.5 -1.5 
-2 1 

Thus, 

Let us check this using APL. 

1 0 
o 1 

A + . X INVERSE 

Since the row reduced form of A is 
the identity, I, then A has an inverse. 
It is nonsingular. 

The 2 X 2 identity matrix. 

Step I: forming the augmented 
matrix A,l. 

Step 2: reducing the augmented 
matrix to the form I, A -1. Let the 
program ROW FORM do the work. 

Step 3: taking the inverse from the 
resulting matrix. We do this by 
taking the first two rows and last two 
columns of M. 

-1.5 ] 
I . 

It checks. 

9S 



4 Systems of linear equations 

Example 2 

A~3 3pl 2 3 
A 

1 2 3 
135 
259 

ROWFORMA 
1 0 0 
010 
o 0 1 

1~(t3) o. = (t3) 

M~A, I 
M 

123 1 0 0 
1 350 1 0 
2 5 9 0 0 1 

ROWFORMM 
1 0 0 2 -3 1 
o 1 0 1 3-2 
o 0 1 -1 -1 1 

I 3 525 9 

INVERSE~3 -3tM 
INVERSE 

2 -3 1 
1 3-2 

-1 -1 1 

A + . x INVERSE 
1 0 0 
010 
001 

Example 3 

1 2 
3 6 

1 2 
o 0 

A~2 2p1 2 3 6 
A 

ROWFORM A 

Since ROWFORM A is I, A is nonsin­
gular. 

The 3 x 3 identity matrix. 

The augmented matrix 

Reducing M to row reduced form. 

Dropping I. 

The inverse of A. 

Checking our result using the defini­
tion of inverse. 

It checks. 

Since ROWFORM A is not I, A is 
singular. It has no inverse. 

We now consider a simple APL program for finding the inverse of a 
matrix. However, before using this program to find A -1, first find 
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4.6 The inverse of a matrix 

ROWFORM A using Program 4.1. If ROWFORM A is not the identity 
matrix, /, then A has no inverse. If ROW FORM A is the identity matrix, 
then A has an inverse which can be found using the following program. 

Program 4.2 INVERSE 

V/NV~/NVERSE A; N; I; 

[1] N~(pA)[1] 

[2] 1~(tN) o. =(tN) 

[3] INV~(N, - N)jROWFORM (A, I) 
V 

If line 3 of this program is read from right to left, one can easily see that 
it is merely performing the 3 steps in the above algorithm. 

Example 1 

2 3 
4 7 

1 0 
o 1 

A~2 2p2 3 4 7 
A 

ROWFORMA 

INVERSE A 
3.5 -1.5 
-2 

Example 2 

A~3 3p1 2 3 1 3 5 2 5 9 
A 

123 
1 3 5 
259 

ROWFORMA 

Thus, A has an inverse. 

Using the program INVERSE to com­
pute A -I. 

1 0 0 Thus, A has an inverse. 
010 
001 

INVERSE A 
2 -3 1 
1 3-2 

-1 -1 1 
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EXERCISES 

I. Use elementary row operations to find the inverses of the following matrices (if 
they have inverses): 

(a) A = [~ i] 

~) B=[~ l ~] 
~] 

[ 
-I 

(d) D= ~ 

(c) c= [~ ~ 
(oj E-[i 

4 2] 2 0 
3 5 

3 4] 5 2 
4 3 
2 5 

2. Use the program INVERSE to check your answers to Exercise l. 

3. Trace the program INVERSE using the TRACE command and the matrix B. 

4. Prove that the inverse of a matrix is unique. [Hint: Suppose that there are two 
inverses of A, called X and Y, and show that X= Y.] 

5. Write an APL program for computing the N X N identity matrix I for any given 
N. 

4.7 Inverses in APL 
It seems only fair to point out that if a matrix A is nonsingular, then its 
inverse can be found directly on the APL system by simply typing BA. 
EJ is often called the "domino function." It is obtained by typing the 
quad, D, backspacing, and typing the + inside of the D. If A is 
singular, then, on most APL systems, an error message will result when 
EJA is entered. 

Example 1 

2 3 
4 7 

A+-2 2p 2 3 4 7 
A 

SA 
3.5 -1.5 
-2 1 

Example 2 

1 2 
3 6 

A+-2 2p1 2 3 6 
A 

SA 
DOMAIN ERROR 
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4.7 Inverses in APL 

Example 3 

A+-3 3p1 2 3 1 3 5 2 5 9 
A 

123 
1 3 5 
259 

BA 
2 -3 1 
1 3-2 

-1 -1 1 

APL solution to a system of linear equations 

As pointed out in the previous section, a system of n linear equations with 
n unknowns can be expressed as a matrix equation (A ·X) = B. Also, if A -I 
exists, the solution is given by X=(A -I·B). In APL, this solution is given 
by 

X+-(BA)+.XB 

or, even more simply, by 

X+-BBA 

Examples 

1. 

5 -2 

4 6 

2. 

A+-2 2p2 3 4 7 
B+-46 

(BA)+.XB 

A+.X(5 -2) 

(the matrix divide operation). 

2x+3y=4 
4x+7y=6 

So, x=5,y=-2. 

It checks. 

x+2y+3z=1 

x+3y+5z=2 

2x+5y+9z=3 

A+-3 3p1 2 3 1 3 5 2 5 9 
B+-1 2 3 

(E1A)+.XB 
-1 1 0 So, x= -l,y= 1, z=O. 
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BElA 
-1 1 0 

A+.X(-1 1 0) 
1 2 3 

3. 

A~2 2p1 2 3 6 
B~54 

(ElA)+.XB 
DOMAIN ERROR 

4.8 Applications 

It checks. 

x+2y=5 

3x+6y=4 

Since A is singular. 

Let us now consider a couple of applications of systems of linear equa­
tions. 

Example 1 

Ajax manufacturing company produces three large products called A, B, 
and C. To produce each product requires time on three machines called I, 
II, and III. Each unit of A requires 2 hours on I, 3 hours on II, and I hour 
on III. Each unit of B requires I hour on I, I hour on II, and 4 hours on 
III. Each unit of C requires 3 hours on I, I hour on II, and 2 hours on III. 
On a busy day, machine I is available for 13 hours, machine II for 12 
hours, and machine III for 10 hours. How many of each product can be 
produced on this day? 

Let x represent the number of A's that can be produced on this day, y 
represent the number of B's, and z represent the number of C's. Then, the 
above paragraph can be summarized in the following system: 

2x+3y+ z=13 

x+ y+4z=12 

3x+ y+2z= 10 

A ~ 3 3p2 3 1 1 1 4 3 1 2 The matrix of coefficients. 

B~13 12 10 

BElA 
1 3 2 

The vector of right-hand values. 

Solving the system using the matrix 
divide operation. 

Thus, x = I, y = 3, Z = 2. So, the company can produce I A, 3 B's, and 2 
C's on this day. 
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4.8 Applications 

Example 2 

Last year, a man invested $60,000 in three operations: a hamburger stand, 
a miniature golf course, and a vegetable stand. He made a profit of 15 
percent on the hamburger stand, 10 percent on the miniature golf course, 
and 20 percent on the vegetable stand. His total profit for the year was 
$9000. He invested twice as much in the hamburger stand as in the 
miniature golf course and the vegetable stand together. How much did he 
initially invest in each operation? 

Let x be his initial investment in the hamburger stand, y his investment 
in the miniature golf course, and z his investment in the vegetable stand. 
Then, as a system of linear equations, we have 

x + y + z = 60000 His total investment. 

0.15 x + O.lOy + 0.20z = 9000 

x- 2y- 2z=0 

A~3 3p1 1 1 .15 .10 .20 1 -2 -2 
B~60000 9000 0 

BElA 
40000 10000 10000 

His profit. 

Since x =2·(y + z). 

Thus, he invested $40,000 in the hamburger stand, $10,000 In the 
miniature golf course, and $10,000 in the vegetable stand. 

EXERCISES 

1. Find the inverses of the matrices in Exercise 1 of Section 4.6, using the APL 
operation B. 

2. Test the validity of the following statements at an APL terminal: 
(a) (A·Bfl =B -I'A -I «B(A+. X B»=«ElB)+.X(ElA» in APL) 
(b) (A·Bfl =A -I·B -I «El(A+.X B»=«ElA)+.X(El B» in APL) 
(c) (A -lfl=A «B(BA»=A in APL) 
Use some matrices of your own choosing for these tests. 

3. Use the matrix divide operation El to solve the following systems of linear 
equations: 
(a) x+2y=5 

3x+4y=6 
(b) 2x+ y+3z=5 

3x+ y+2z=4 
x+2y+3z=6 

(c) 2x+ y+3z=4 
4x+3y + z=3 
2x+ y- z=5 

(d) 2x+y+3z+4w=8 
3x+y+5z+2w=2 
2x+y+4z+3w=7 
3x+y+2z+5w=O 

(e) 3xI +2X2- X3+4x4- xs=7 
XI+ 3x2-2x3+ X4+ xs=1 

5XI-3x2+ X3+ X4+ 2xs=4 
2xI + X2- X3+ 5X4+ xs=6 
XI- X2+3X3+2X4 =-1 
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4 Systems of linear equations 

4. Set up and solve the following problems: 
(a) A small store has $900 to spend on shirts and pants. Each shirt costs $4 and 

each pair of pants costs $10. They wish to buy twice as many shirts as pants. 
How many of each should they buy? 

(b) A warehouse manager has a chance to buy and store and later sell three 
items called I, II, and III. Each I requires 1 square foot of storage space, 
each II requires 2 square feet, and each III requires 3 square feet. Each I 
costs $20 to buy and stote, each II costs $50, and each III costs $90. Each I 
will bring a profit of $10, each II a profit of $30, and each III a profit of $50. 
If the warehouse manager has 1000 square feet of space available, $10,000 to 
spend, and would like a profit of $5000, how many I's, II's and Ill's should 
he buy? 

(c) A carpenter builds bookcases, tables, and chairs. Each bookcase costs $20 to 
build, requires 12 square feet of lumber, and takes 5 hours. Each table costs 
$30 to build, requires 20 square feet of lumber, and takes 9 hours. Each 
chair costs $10 to build, requires 4 square feet of lumber, and takes 2 hours. 
How many of each can he build with $9500, 5800 square feet, and 2600 
hours? 
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Determinants 5 

5.1 Definition of a determinant 

Associated with every square matrix is a number, called its determinant, 
symbolized by det(A) or by IAI. As we will see, determinants give some 
useful information about the matrix and can be used to invert matrices and 
solve systems of linear equations. In this chapter, we shall consider some 
ways in which to evaluate determinants as well as some of the applications 
of determinants. 

Definition of determinant 

The determinant of an n X n matrix A is the sum of all the n! possible 
products of the form 

(-1 )k·alj ,·a2j,·a3h ... anj• 

where no two column indices are the same and where k is the number of 
transpositions of the column indices needed to put them in natural order. 
[Note: In each of the above products, there is exactly one element from 
each row and column. Also, n!=n·(n-l)·(n-2) ... 3·2·l, and n! is read 
as n factorial.] 

Let us apply this definition to 2 X 2 and 3 X 3 matrices. 

Two-by-two determinants 

If 

then 
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5 Determinants 

Example 

Then, det(A)= 1·4-2·3= -2. 

Three-by-three determinants 

If 

then 

det(A) = (-ltall'a22'a33 + (-If'aI2'a23'a31 + (-li'a13'a2t'a32 

+ (-I(all'a23'a32 + (-I(a12'a21'a33 + (-I)I'a13'a22'a31 

= a l t' a22' a33 + a12'a23'a31 + a13'a2t'a32 - a ll 'a23'a32 

Example 

If 

then 

- a12'a21'a33 - al3'a22'a31' 

A-[ ~ 
2 
5 
8 

det(A)= 1·5·9+2·6·7 +3·4·8-1·6·8-2·4·9-3·5· 7 

=45 + 84+96-48 -72 -105 =225 - 225 =0. 

For n > 3, this definition becomes more difficult to apply. Therefore, we 
consider some techniques for using elementary row operations to evaluate 
determinants. First, however, we shall list some properties of determinants. 
These properties will be listed without proofs. However, the reader can 
easily verify them for two-by-two and three-by-three determinants using 
the formulas developed in the previous discussion. 

Property 1. 

If A is a triangular matrix (i.e., all elements above or all elements below the 
main diagonal are zeros), then det(A) is the product of the diagonal 
elements. 

Property 2. 

If A has a complete row (or column) of zeros, then det(A)=O. 

Property 3. 

If a row (or column) of a matrix A is multiplied by a nonzero constant c, 
then det(A) is multiplied by c. 
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5.1 Definition of a determinant 

Property 4. 

If a multiple of one row (or column) is added to another row (or column), 
then the value of det(A) is unchanged. 

Property 5. 

If two rows (or columns) of A are interchanged, then det(A) is multiplied 
by -1 (i.e., det(A) changes sign). 

Using elementary row operations to evaluate determinants 

By using elementary row operations, a matrix A can be reduced to a 
triangular matrix B. Then, by Property 1, det(B) can be found by just 
mUltiplying the diagonal elements of B. If B should have a row (or 
column) of all zeros, then det(B)=O. We must use Properties 3-5 to keep 
track of how det(B) is related to det(A). If to arrive at B, a row has been 
multiplied by a constant c, then det( B) must be multiplied by 1/ c to 
compensate for this. If a multiple of a row has been added to another row, 
there has been no change in the determinant. If two rows have been 
interchanged then det(B) must be mUltiplied by -1 to compensate for this. 
With these remarks in mind, let us evaluate some determinants using these 
properties. 

Example 1 

A+--3 3p1 3 4 3 0 2 2 1 -1 
A 

134 
302 
2 1 -1 

A[2;]+--A[2;] +(-3)X A[1;] 
A 

1 3 4 
o -9 -10 
2 1 -1 

A[3;] +-- A[3;] +(-2) x A[1;] 
A 

134 
o -9 -10 
o -5 -9 

A[3;] +--(1 + -5) XA[3;] 
A 

134 
o -9 -10 
o 1 1.8 

By Property 4, no change in det(A). 

By Property 4, no change in det(A). 

By Property 3, the value of det(A) is 
multiplied by -1/5. 
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5 Determinants 

A[2;]~A[2;]+9XA[3;] 

A 
1 3 4 
006.2 
o 1 1.8 

A[2 3;]~A[3 2;] 
A 

1 3 4 
o 1 1.8 
o 0 6.2 

By Property 4, no change in det(A). 

By Property 5, det(A) is multiplied 
by -1. 

By Property I, since the matrix is now triangular, the determinant of the 
resulting matrix is the product of its diagonal elements, 6.2. Compensating 
for the changes in det(A) noted above, we get 

det(A) == (-5)' (-I)· (6.2) = 31. 

Example 2 

A~3 3pt 9 
A 

1 2 3 
456 
789 

A[2;]~A[2;]+ (-4) x A[1;] 
A[3;]~A[3;] + (-7) x A[1;] 
A 

1 2 3 
o -3 -6 
o -6 -12 

A[3;]~A[3;] +(-2)XA[2;] 
A 

1 2 3 
o -3 -6 
000 

By Property 4, no change in det(A). 

By Property 4, no change in det(A). 

Since the resulting matrix has a complete row of O's, then by Property 2, 
det(A) =0. 

EXERCISES 

1. Using the formula developed from the definition of determinant, write a 
program to evaluate 2 X 2 determinants. 

2. Repeat Exercise I for 3 X 3 determinants. 
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5.2 A program for evaluating determinants 

3. Use the programs you wrote in Exercises 1 and 2 to evaluate the following 
determinan ts: 

(a) det[ ~ ~] (d) det[ ~ 5 n 0 
9 

(b) det[ : -2 ] [ -I 4 

~l -3 (e) det 6 2 
3 

(c) det[ ~ ~] (f) det[ r 2 

f 1 
2 
3 

4. Use elementary row operations and Properties 
determinan ts: 

1-5 to evaluate the following 

(a) Exercise 3(a) above 
(b) Exercise 3(d) above 

123 
567 

(c) det 9 10 II 

13 14 15 

(d) d'Hil 
5. Use your programs in Exercises I and 2 and matrices of your choice to test the 

validity of the following law of determinants: 

det(A·B) =det(A) xdet(B). 

6. Use the law in Exercise 5 and the definition of inverse of a matrix to prove that 
det(A -1)= I +det(A), provided that A is nonsingular. If A is singular, then 
det(A) =0. 

5.2 A program for evaluating determinants 

Rather than do all the work ourselves each time, why not let the computer 
perform the elementary row operations and reduce A to a triangular 
matrix B and compute det(A)? The following program will accomplish 
this. 

Program 5.1 DET 

VD~DETM;K;N;P 

[1) D~1 

[2) START: N~(pM)[1) 

[3) --,,(N= 1)/ LAST 
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5 Determinan ts 

[4] Kf-1 

[5] INCREMENT: Kf-K+1 

[6] Pf-1 

[7] CORRECT:~(M[1;1]*0)/EXECUTE 

[8] ~«!\/M[;1]=0)= 1)/END 

[9] Mf--1~ [1]M 

[10] Pf-PXC1)*(N-1) 

[11] ~ CORRECT 

[12] EXECUTE: M[K;]f- M[K;] -« -+- M[1 ;1])X M[K;1])X M[1;] 

[13] ~(K<N)/INCREMENT 

[14] Df-DXM[1;1]XP 

[15] Mf-1 1~M 

[16] ~START 

[17] LAST:Df-DXM[1;1] 

[18] ~O 

[19] END: Df-O 
yo 

Proceeding to line 7; if M[1;1]*0, the computer branches to the line 
labeled EXECUTE. However, if M[1;1] = 0, the computer goes to line 8, 
which checks to see if the first column consists entirely of zeros. If it does 
consist entirely of zeros, the computer branches to the line labeled END, 
and the value of D is 0, according to Property 2. If the column does not 
consist entirely of zeros, the computer proceeds to line 9. Here, the bottom 
row of M is moved to the top. Line 10 makes the proper sign adjustment 
for this. (This is equivalent to interchanging the bottom row with each 
other row in turn working from bottom to top. Thus, the sign of the 
determinant is changed N -I times in accordance with Property 5.) Line 
II sends the computer back to the line labeled CORRECT to see if now 
M[1;1]*0. This continues until M[1;1]*0. 

When M[1;1 ]*0, the computer is sent to the line labeled EXECUTE. 
Here, each row from K = 2 to K = N is replaced by the expression in line 
12. This expression essentially makes the first element in each row below 
the first row into a zero. Line 13 accomplishes the repetition of this process 
on each of these rows below the first. When K = N, the computer goes to 
line 14, where the previous value of D is multiplied by the element M[1;1] 
and P, the sign adjustment due to interchanging rows. 
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5.2 A program for evaluating determinants 

In line 15, the first row and first column of M are dropped yielding a 
matrix with one less row and column. Then, the computer is sent back to 
START and the entire process is repeated on this smaller matrix. 

The size of the matrix is thus reduced until it is a 1 X 1 matrix. In the 
process, the diagonal elements are multiplied and the sign changes 
accounted for Qines 10 and 14). The final result is equivalent to evaluating 
the determinant of a triangular matrix by mUltiplying its diagonal ele­
ments. 

Since this program is quite long, it would be nice if determinant were a 
keyboard operation in APL. Unfortunately, at the present time, it is not. 
However, Dr. Iverson has told this author that this addition to the APL 
system is under consideration. Perhaps, in the near future, determinant will 
be a keyboard operation in APL. 

Examples 

M~3 3p2 1 3 4 3 0 2 1 -1 
M 

213 
430 
2 1 -1 

DETM 
-8 

M~4 4p1 2 -1 4 2 4 3 5 -1 -2 6 0 3 0 -3 -1 
M 

1 2 -1 4 
2 4 3 5 

-1 -2 6 0 
3 0 -3 -1 

DETM 
-210 

M~4 4pt 16 
M 

1 234 
5 678 
9 10 11 12 

13 14 15 16 

o 
DETM 

M~3 3pt 9 
M 

123 
456 
789 
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5 Determinants 

DETM 
1.705302566E-13 

This answer is essentially zero, since E-13 means 10 * -13 = 
0.000000000001, so that l.705302566E-13 =0.0000000000001705302566, 
which is essentially O. Actually, if one were to compute the determinant of 
this matrix by hand, one would get o. 

EXERCISES 

1. Use the program DET to evaluate the following determinants: 

(a) det[ ~ ~] 

[ 3 ~5 2il (b) det j 

~t[~ 
2 -2 

il (c) 
-3 1 
0 -4 
5 4 

(d) dol[ ,; 
2 3 4 

,g 1 7 8 9 
12 13 14 15 

16 17 18 19 20 
21 22 23 24 25 

2. Perform a paper and pencil trace of the program DET using the matrix 

M=[; ~ !l. 
3. Use the TRACE command at an APL terminal to do Exercise 2. 

5.3 Cofactors 

Another technique for evaluating determinants of n X n matrices involves 
reducing the problem to evaluating a linear combination of the determi­
nants of certain (n - I) X (n -I) submatrices of the matrix. This method is 
referred to as the Method of cofactors. We will consider this method as 
well as some other uses of cofactors. 

Definition of minor 

The minor Aij of an n X n matrix A is the (n - 1) X (n - I) matrix obtained 
from A by deleting the ith row and jth column of A. 

A program for computing the minor Aij follows: 
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5.3 Cofactors 

Program 5.2 MINOR 

V AIJ~ A MINOR V; 0 

[1] O~(V[1]'Ft(PA)[1])/[1]A 

[2] AIJ~(V[2]'Ft(pA)[2D/O 
V 

This program works as follows: (V[1]'Ft(pA)[1]) yields a vector of l's 
(for true) in every position except the position corresponding to V[1] where 
it yields a 0 (since V[1]'F V[1] is false). Then, (V[1]'Ft(PA)[1D/[1]A com­
presses this vector 1 1 ... 1 0 1 . .. 1 (0 is in the position V[l]) on [1]A 
(the rows of A). 

The result is that the rows corresponding to the l's are kept, and the row 
corresponding to the 0 is deleted. The resulting matrix is called Q. Then, 
(V[2]'Ft(pA)[2])/O operates similarly on the columns of A, yielding AIJ. 

Examples 

A~3 3pt 9 
A 

123 
456 
789 

5 6 
89 

1 3 
7 9 

V~1 1 

A MINOR V 

V~2 2 

A MINOR V 

Delete the first row and first column 
of A. 

Delete the second row and second 
column. 

Associated with any element aij of a matrix A is a number cij' called the 
cofactor of aij. 

Definition of cofactor 

The cofactor of the element aij of the matrix A is the number 
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5 Determinants 

Example 

Let 

The cofactor of 

The cofactor of 

The cofactor of 

A~[ ~ 2 
5 
8 

_ (-1)1+2 d t[ 4 a12- . e 7 

- (- 1)2 + 1 d t [ 2 a21 - • e 8 

a33 =(-I)3+3. det [ ! 

H 
6] _ 9 -6. 

3] _ 9 -6. 

~ ] = -3. 
The following program computes the cofactor cij described above: 

Program 5.3 COFACTOR 

\l CIJ+-A COFACTOR V; SIGN 

[1] SIGN+- -1 * V[1]+ V[2] 

[2] CIJ+- SIGN X DET A MINOR V 
\l 

Example 

A+-3 3PL 9 
A 

1 2 3 
456 
789 

A COFACTOR 1 2 
6 

A COFACTOR 2 1 
6 

A COFACTOR 3 3 

It will be useful to us to have a program that will form a matrix 
obtained from a matrix A by replacing each element of A with the 
corresponding cofactor. Thus, it forms a matrix of all the cofactors of A. 
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5.3 Cofactors 

Program 5.4 COFACTORS 

V CO~ COFACTORS A; I; J 

[1] CO~t 0 

[2] 1~1 

[3] INCREASE:J~O 

[4] ITERATE: J~ J+ 1 

[5] CO~CO,A COFACTOR I,J Each element IS replaced by its 

[6] ~(J«pA)[1])/ITERATE 

[7] I~I+ 1 

[8] ~(I«pA)[1])/INCREASE 

[9] CO~(pA)pCO 
V 

Example 

A~3 3pt 9 
A 

1 2 3 
456 
789 

COFACTORSA 
-3 6-3 
6 -12 6 

-3 6-3 

cofactor. 

Line 9 forms a matrix of order (pA) 
from the vector in line 5. 

The way in which these cofactors are used to evaluate determinants is 
explained in the following theorem. 

The method of cofactors 

For any n X n matrix A, det(A) can be computed as the sum of the 
products of the elements of any row (or column) of A with their cofactors. 
In other words, if 

all a12 a l3 a,_ j a21 a22 a23 a2n 
A= . , 

anI an2 an3 ann 

then det(A)=ait"ciJ + ai2·ci2+ ai3· ci3+ ... +ain·Cin (expansion by the ith 
row), where cij is the cofactor corresponding to aij. 
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5 Determinants 

We will omit the proof of the method of cofactors. The following 
program uses the method of cofactors to evaluate a determinant with the 
first row used as the row of expansion. 

Program 5.5 DET 

'V D+--DETM 

[1] D+--M[1;]+.X(COFACTORS M)[1;] 
'V 

[Note: The name of this program is DET, with the letters underlined to 
distinguish it from the program DET.]--

This program forms the inner product of the elements in the first row of 
M with their cofactors, which form the first row of COFACTORS. 

Examples 

M+--3 3pt 9 
M 

1 2 3 
456 
789 

o 

1 2 
3 4 

DETM 

M+--2 2pt 4 
M 

DETM 

M+--4 4pt 16 
M 

1 234 
5 6 7 8 
9 10 11 12 

13 14 15 16 

DETM 
o 

As an exercise, the student is asked to try multiplying the elements of 
some row by the co factors of some other row and adding the results in 
some matrices. The result should always be zero, because this is equivalent 
to evaluating the determinant of a matrix with two rows the same. Why 
should this yield a result of O? 
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5.4 Adjoints and inverses 

EXERCISES 

1. Let 

2 
o 
I 
2 

(a) Find the minor M 23 of M and the corresponding cofactor C23' 

(b) Find the minor M41 of M and the corresponding cofactor C41' 

(c) Find the minor MI3 of M and the corresponding cofactor Cn. 
(d) Find the matrix of cofactors (use COFACTORS). 
(e) Use DET to evaluate det(M). 
(f) Use DET to evaluate det(M). 

2. Write a program for evaluating 3 X 3 determinants using the method of cofactors 
expanding about the third row. 

3. Use the method of cofactors to evaluate the determinant of the matrix 

M=[~ g ~] 
(a) Using the program you wrote in Exercise 2. 
(b) Expanding about the second row. 
(c) Expanding about the second column. 

4. Let M be the matrix in Exercise 3. 
(a) Multiply the elements of row I by the cofactors of the corresponding 

elements of row two and add the results. 
(b) Compare your result with the determinant of the matrix 

[ ~ ~ ~]. 
391 

(c) Can you explain why these results should be equal? 

5. Trace the program COFACTORS on the matrix 

[ 
I 2 -I 

M= 2 4 3 
-I -2 6 
5 0 -3 

6. Prove the method of cofactors on a general 3 X 3 determinant using expansion 
about the first row. [Hint: Compare your result with the formula for 3 x3 
determinants in Section 5.1.] 

5.4 Adjoints and inverses 

Related to the idea of cofactors of a matrix A is another matrix called the 
adjoint of A. This adjoint can be used to compute the inverse of A, as we 
shall see. 
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5 Determinants 

Definition of adjoint of a matrix 

For any n X n matrix A, the adjoint of A, symbolized by Adj(A), is the 
transpose of the matrix obtained from A by replacing each element of A 
by its cofactor. 

Thus, the adjoint of A is just the transpose of the matrix of cofactors. 
Since we already have a program COFACTORS for obtaining this matrix 
of cofactors, it is quite simple to write a program for the adjoint of A. 

Program 5.6 ADJOINT 

V ADJ ~ ADJOINT A 

[1] ADJ~~ COFACTORS A 
V 

Example 1 

A~3 3p1 2 3 1 3 5 2 5 9 
A 

123 
1 3 5 
259 

COFACTORSA 
2 1 -1 

-3 3-1 
1 -2 1 

ADJOINT A 
2 -3 1 
1 3-2 

-1 -1 1 

Example 2 

A~3 3pt 9 
A 

123 
456 
789 

COFACTORSA 
-3 6 -3 
6 -12 6 

-3 6 -3 
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This program merely transposes 
COFACTORS. 

ADJOINT A is the transpose of 
COFACTORS A. 



ADJOINT A 
-3 6-3 
6 -12 6 

-3 6-3 

5.4 Adjoints and inverses 

Note that in this example, COFAC­
TORS A = ADJOINT A. 

Use of the adjoint in inverting a matrix 

The following theorem can be found in most linear algebra texts: 

Theorem 1 

For any nXn matrix, (A·Adj(A»=(Adj(A)·A)=(det(A)·I), where I is 
the n X n identity matrix. 

We will not rigorously prove this theorem here. However, we will verify 
it with the following examples: 

Example 1 

A~3 3p1 2 6 2 1 0 3 2 1 
A 

126 
210 
3 2 

DETA 
3 

A+.XADJOINT A 
300 
030 
003 

(ADJOINT A)+.XA 
300 
030 
003 

1~{t3) o. = (t3) 

{DET A)X I 
300 
030 
003 
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5 Determinants 

Example 2 

A~3 3PL 9 
A 

123 
456 
789 

DETA 
o 

A+.xADJOINT A 
000 
00'0 
000 

(ADJOINT A)+.XA 
000 
000 
000 

(DET A)XI 
000 
000 
000 

An immediate consequence of this theorem, obtained by multiplying 
both sides of each equation by (1 + DET A), is the following result 
concerning the inverse of A: 

Theorem 2 

A is nonsingular if and only if DET kfoO. Moreover, if DET kfoO, then 

A -1 = (1 + det(A))· (Adj(A)). 

Thus, we have the following simple program for inverting a matrix. 

Program 5.7 INVERT 

\! INV ~ INVERT A 

[1] ~«DET A) = O)/END 

[2] INV~(ADJOINT A)+(DET A) 

[3] ~O 

[4] END: 'A IS SINGULAR' 
\! 
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5.4 Adjoints and inverses 

If DET A is 0, the program goes to END and prints out the message: 'A 
IS SINGULAR' in accordance with Theorem 2, above. Otherwise, it com­
putes ADJOINT A and divides it by DET A, also in accordance with 
Theorem 2. Then, it branches to 0 to end the program. 

Example 1 

A~3 3p1 2 3 1 3 5 2 5 9 
A 

123 
135 
259 

INVERT A 
2 -3 1 
1 3-2 

-1 -1 1 

Example 2 

A~3 3pt 9 
A 

123 
456 
789 

INVERT A 
A IS SINGULAR Since DET A is O. 

The above theorem gives an easy way to determine whether or not a 
matrix is nonsingular using its determinant. 

EXERCISES 

1. Let 

A=[~ g Il 
Do the following with pencil and paper. 
(a) Find DET A. 
(b) Find ADJOINT A. 
(c) Test the validity of Theorem I using A. 
(d) Use Theorem 2 to find the inverse of A. 

2. Redo Exercise I at an APL terminal. 

3. Redo Exercise I with the following matrices at an APL terminal: 

(a) A = [; ~] (b) A = 3 I 5 2 [2 I 3 4] 
2 143 
3 I 2 5 
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5 Determinants 

4. Given the system of linear equations: 

2x+ y+3z=5 
3x+2y+2z=4 

X+ y+3z=3 

(a) Express this system as a matrix equation (A+.XX)=B. 
(b) Use the program INVERT to invert the matrix of coefficients, A. 
(c) Use this matrix inverse and matrix multiplication to solve the system. 

S. Use Theorem I to prove the result (DET ADJOINT A) = (DET A)*(N-1) for any 
nonsingular N X N matrix A. 

5.5 Cramer's rule 
In Chapter 4, we showed that given a system of n linear equations with n 
unknowns, A·X = B, the solutions can be found by the matrix. multiplica­
tion X=A-1·B (or BElA in APL), provided A -I exists (i.e., provided DET 
A is not 0). Another technique for solving such a system involves determi­
nants. It is known as Cramer's rule. 

Cramer's rule 

If det(A) ~O, and if A· X = B is a system of n linear equations with n 
unknowns, then the value of the ith unknown, Xi' can be found by 
evaluating the quotient of determinants 

["" 
a l 2 al(i-I) bl al(i+ I) aln 

det : 

ani a n2 a n(i_1) bn an(i+ I) ann 

Xi= 
detA 

for i = 1,2, ... , n. In other words, in the numerator, the ith column of A is 
replaced by B. 

Actually, this method of solving a system of linear equations is more 
work than the BElA method of the last chapter. However, it does 
illustrate an application of determinants. In addition, it has the advantage 
that it enables one to solve for each variable separately. Thus, if one only 
wants the value of Xi' here is a way of getting it without having to compute 
the values of the other unknowns. 

Example 
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2x+6y+4z=-12 

6x+6y+4z= 8 

3x+2y+4z= 13 



A ~ 3 3p2 6 4 6 6 4 3 2 4 
A 

264 
664 
324 

DETA 

B~-12 8 13 

A1~A 

A1 [;1]~B 

DETA1 
-320 

5 

320 

X~(DET A1 )+(DET A) 
X 

A2~A 

A2[;2]~B 

DETA2 

Y~(DET A2)+(DET A) 
Y 

A3~A 

A3[;3]~B 

DETA3 
-128 

2 

Z~(DET A3)+(DET A) 
Z 

5.5 Cramer's rule 

The matrix of coefficients. 

Notice that the column correspond­
ing to x, the first variable, has been 
replaced by B. 

So, x=s 

Notice that the column correspond­
ing to y, the second variable, has 
been replaced by B. 

So,y=-s. 

Notice that the column correspond­
ing to z, the third variable, has been 
replaced by B. 

So, z=2. 

We now consider a program for Cramer's rule. This is a program in 
which the student and the computer interact. The program asks the student 
for some information which it then uses. 
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5 Determinants 

Program 5.8 CRAMERS (optional) 

VCRAMERS 

[1] 'WHATISA?' 

[2] A~D 

[3] D~DET A 

[4] ~(D=O)/RATS 

[5] 'WHAT IS B?' 

[6] B~D 

[7] 'WHAT IS I?' 

[8] 'lIS THE NUMBER OF THE VARIABLE YOU ARE SEEKING' 

[9] I~D 

[10] A[;I)~B 

[11] C~DET A 

[12] X/~C-+-D 

[13] 'XI IS= '; XI 

[14] ~O 

[15] RA TS : 'THE SYSTEM IS DEPENDENT' 
V 

In line 2, the student is asked to enter the matrix of coefficients, A. If 
DET A is 0, line 4 sends the computer to RATS (line 15). Then, the 
computer prints out the true statement that 'THE SYSTEM IS DEPEN­
DENT' and the program is ended. If DET A is not 0, however, the student 
is asked to enter the vector of constants, B, and the number of the variable 
he is seeking, I. In line 10, the ith column of A is replaced by B. In line 12, 
XI is computed in accordance with Cramer's rule. The value of XI is then 
printed out in line 13. Line 14 ends the program. 

Example 1 

CRAMERS 
WHAT IS A? 
0: 

A~4 4pt 16 

THE SYSTEM IS DEPENDENT 
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To run this program, simply type 
CRAMERS. 

The matrix of coefficients for some 
system. 
Since DET A is 0. 



5.5 Cramer's rule 

Example 2 

CRAMERS 
WHAT IS A? 
0: 

2x+ y+3z= 1 

4x+3y =2 

2x+ y- z=3 

A ~ 3 3p2 1 3 4 3 0 2 1 -1 

WHAT IS B? 
0: 

B~1 2 3 
WHAT IS I? 
lIS THE NUMBER OF THE VARIABLE YOU ARE SEEKING 
0: 

1~1 

XIIS=2.75 

CRAMERS 
WHAT IS A? 
0: 

A ~ 3 3p2 1 3 4 3 0 2 1 -1 
WHAT IS B? 
0: 

B~1 2 3 
WHAT IS I? 
I IS THE NUMBER OF THE VARIABLE YOU ARE SEEKING 
0: 

1~2 

XIIS= -3 

CRAMERS 
WHAT IS A? 
0: 

A ~ 3 3p2 1 3 4 3 0 2 1 -1 
WHAT IS B? 
0: 

B~1 2 3 
WHAT IS I? 
lIS THE NUMBER OF THE VARIABLE YOU ARE SEEKING 
0: 

1~3 

XIIS= -.5 
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5 Determinants 

EXERCISES 

I. Solve the following system using Cramer's rule but not the program CRAMERS: 

2x+ y+3z=5 
3x+ y+2z=4 

x+2y+3z=6 

2. Use the program CRAMERS to do Exercise l. 

3. Solve the following system using Cramer's rule but not the program CRAMERS: 

2x+y+3z+4w=5 
3x+y+5z+2w=7 

2x+y+4z+3w= I 
3x+y+2z+5w=O 

4. Use the program CRAMERS to do Exercise 3. 

S. Write a program for solving for the ith unknown in a system of linear equations 
by Cramer's rule with a specific result XI and without the dialog in CRAMERS. 
[Note: Since CRAMERS is probably in your present workspace, you'd better use 
a name for your program other than CRAMERS.j 
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Functions and graphing 6 

One of the most important and useful concepts in mathematics is that of a 
function. In this and the next chapter, we will study some of the more 
common and useful functions and point out some of their applications. 

6.1 Definition of a function 

A junction, F, is a set of ordered pairs, 

F= {(x,y) I some relationship between x andy}, 

with the additional property that for every value of the first coordinate, x, 
there is a unique corresponding value of the second coordinate, y. 

Domain and range of a function 

The variable used for the first coordinate is called the independent variable. 
The set of all values of the independent variable is called the domain of the 
function. The variable used for the second coordinate is called the depen­
dent variable. The set of all values of the dependent variable is called the 
range of the function. 

Functional notation 

The relationship between the independent variable (x in the function 
above) and the dependent variable (y in the function above) is often given 
in the form of a formula or a rule that tells the way in which the unique 
value of the dependent variable is assigned to each value of the indepen­
dent variable. If the name of the function is F, then this function or rule is 
usually symbolized by the junctional notation 

y = F(x) (read as "y equals F of x"). 

125 



6 Functions and graphing 

In fact, this formula or rule is often referred to as the function, rather than 
the resulting set of ordered pairs. 

The symbolism F(a) (read as "F of a") is used to designate the value in 
the range assigned by the function F to the value a in the domain. 

Let us consider some examples of functions now: 

Example 1 

Consider the formula y = F\(x) = x 2, where 0..;; x ..;; 5 and x is an integer. 
This formula describes the following set of ordered pairs 

F\ = {(a, 0), (1,1), (2,4), (3,9), (4,16), (5,25)}. 

Technically speaking, according to our definition, this set of ordered pairs 
is the function F\. However, it is more common to refer to the formula 
y=F\(x)=x2 as the function. 

The domain of this function is the set D = {O, 1,2,3,4, 5}. The range is 
the set R={O, 1,4,9, 16,25}. Using the functional notation, F\(3)=9, since 
32 =9. 

Example 2 

w=F2(z)=Yz . 

Consider the following uses of functional notation with this function F: 

(a) Fz(9)=3, since V9 =3. (Note that the answer is not ±3, since then we 
would not have a function, since to one value of the independent 
variable z there would correspond two values of the dependent vari­
able w. To be a function, there can only be one unique value of the 
dependent variable to each value of the independent variable.) 

(b) Fz(O) = 0, since YO = 0. 
(c) Fz(-l) is not a real number, since v=T is not a real number. In this 

text, we will restrict our.selves to real numbers. Therefore, -1 is not in 
the domain of F2 • 

In this function, the domain was not specified. If the domain of a function is 
not specified, it will be understood to consist of all real values of the 
independent variable for which there corresponds a unique real value of the 
dependent variable. The domain of F2 is the set D = {zlz ;;. ° and z is a real 
number}. The range of F2 is the set R = { wi w ;;. ° and w is a real number}. 

Example 3 

p=Fiq)=l/q. Then, Fi3) = 1/3, F3(1/2)=2, FK2)=-1/2, but FiO) is 
not defined, since 1/0 is not defined. 

The domain of F3={qlq is real and qcFO}, since q is the independent 
variable. The range of F3 = {pip is real and p cFO}, since p is the dependent 
variable. 
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6.1 Definition of a function 

Example 4 

A = C (r) = 77' r2 is the function giving the area, A, of a circle as a function 
of its radius, r. 

C (2) = 77.22 = 477, so that the area of a circle of radius 2 units is 477 
square units. 

The domain of Cis {rlr>O}. The range of C is {AlA >O}. 

Example 5 

s = H «() = -16· (2 + 320· ( is a function which gives the height, s, in feet, of a 
projectile fired from ground level with an initial velocity of 320 feet/sec­
ond, where ( is the time elapsed in seconds. 

H (2) = 576 feet; so after 2 seconds, the projectile is at a height of 576 
feet. 

H (l0) = 1600 feet; so after 10 seconds, the projectile is at a height of 
1600 feet. 

H (20) = 0; so after 20 seconds, the projectile is back at ground level. It 
was in flight for 20 seconds. 

Since it takes as long for the projectile to rise as it does for it to fall 
(gravity being the only force acting on it), the projectile reaches its highest 
point, 1600 feet, in 10 seconds. 

The domain for H = {flO";; (..;; 20 seconds}. The range for H = {sIO";; s";; 
1600 feet}. 

Functions in APL 

Let us now consider programs for each of the functions in the previous 
examples. 

Example 1 

V Y~F1 X 

[1] Y~X*2 
V 

F1 3 
9 

F1 2 3 4 5 6 
4 9 16 25 36 

1 2 
3 4 

A~3 3p1 2 3 4 
A 

The name of the program is F1. 

APL functions can be applied to 
vectors. 
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6 Functions and graphing 

F1 A 
1 4 
9 16 

Example 2 

V' W~F2 Z 

[1] W~Z*.5 

V' 

F29 
3 

F2 0 
o 

F2 -1 
DOMAIN ERROR 

Example 3 

V'P~F3 Q 

[1] P~1+Q 

V' 

F33 
0.3333333333 

F3 1 +2 
2 

F3 0 
DOMAIN ERROR 

Example 4 

V' AREA ~ CIRCLE RADIUS 

[1] AREA~(01)X RADIUS * 2 
V' 

CIRCLE 1 
3.141592654 

CIRCLE 2 
12.56637062 

l?R 

APL functions can even be applied 
to matrices. 

Since V9 = 3. Note, the computer 
only gives the positive square root. 

Since YO =0. 

Since v=T is not a real number, so 
that -I is not in the domain of F2. 

Since 1 + 3 = 0.3333333333, approx­
imately. 

Since 1 + 0 is not defined, so that 0 is 
not in the domain of F3. 

The name of the program is CIRCLE. 

In APL, 'IT is given by 01. 

The area of a circle of radius 1 is 'IT. 

This is 4·'lT. 



Example 5 

V S~HEIGHT T 

[1] S~C16X T*2)+(320X T) 
V 

HEIGHT 2 
576 

HEIGHT 10 
1600 

HEIGHT 20 
o 

HEIGHT 30 
-4800 

6.1 Definition of a function 

The name of this program is 
HEIGHT. 

Of course, this is not realistic, since 
the projectile would be 4800 feet be­
low ground level. 

In general, a simple program of the following form can be used to 
compute the value of the dependent variable, y, assigned by a function FN 
to a value of the independent variable, x. 

Program 6.1 FN 

VY~FNX 

[1] Y~( ) 
V 

(Insert the formula for Y in terms of 
X here.) 

We now consider a program to generate the set of ordered pairs in a 
function. We will use the general FN program just described for a particu­
lar function whose pairs we are computing. In order to compute ordered 
pairs for a different function, we will have to alter the FN program before 
running the program below. 

Program 6.2 PAIRS 

V ORDERED~X PAIRS Y 

[1] ORDERED~~(2,(pX»pX, YV 

To run this program, enter a vector of values X, and type 

X PAIRS FNX 

We now apply PAIRS to some of the previous examples. 
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6 Functions and graphing 

Example 1 

VY~FNX 

[1] Y~X.2 

00 
1 1 
24 
39 
4 16 
525 

V 

X~O 1 234 5 
XPAIRSFNX 

Example 2 

V FN[1] 

[1] Y~X •. 5 V 
X~0.t9 

00 
1 1 

XPAIRSFNX 

2 1 .414213562 
3 1.732050808 
42 
5 2.236067977 
6 2.449489743 
7 2.645751311 
8 2.828427125 
93 

Example 3 

Creating a function in APL. 

y=X2 

Request to alter line I of FN. 

y=Yx. 

It might be interesting to consider the list of heights at the end of each 
second in Example 5. This can be done as follows: 

V FN[1] 

[1] Y ~ HEIGHT XV 

X~0.t20 

XPAIRSFNX 
00 
1304 
2 576 
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Altering FN to fit the height function 
defined earlier. 



3 816 
4 1024 
5 1200 
6 1344 
7 1456 
8 1536 
9 1584 
10 1600 
11 1584 
12 1536 
13 1456 
1'4 1344 
15 1200 
16 1024 
17 816 
18 576 
19 304 
20 0 

6.1 Definition of a function 

This display of the ordered pairs of this function helps us to see several 
important characteristics of the flight of this projectile. For example: 

1. The maximum height of the projectile is 1600 feet. 
2. The total time in flight of the projectile is 20 seconds. 
3. The projectile falls at the same rate at which it rose. 

Example 4 

As a final example, we might like to examine the behavior of the function 
Fix) = 1/ x near x=o. 

V FN[1] 

[1] Y~l+XV 

X~(t10)X.1 

X PAIRS FN X 
0.1 10 
0.2 5 
0.3 3.333333333 
0.4 2.5 
0.5 2 
0.6 1.666666667 
0.7 1.428571429 
0.8 1.25 
0.9 1.111111111 
1.0 1.0 

Change FN to fit this new function. 

So, the closer x is to 0, the larger y is. 
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X~(11-(t10»X -.1 
X PAIRS FNX 

-1.0 -1.0 
-0.9 -1.111111111 
-0.8 -1.25 
-0.7 -1.428571429 
-0.6 -1.666666667 
-0.5 -2.0 
-0.4 -2.5 
-0.3 -3.333333333 
-0.2 -5.0 
-0.1 -10.0 

EXERCISES 

So, the closer negative values of x are 
to 0, the more negative y is. 

1. For each of the following functions, evaluate F(4), F(O), and FC2). 
(a) y=F(X)=X3 (d) y= F(x)=-x2 +3x-2 
(b) y= F(x)=2x+3 (e) y=F(x)=2/(x+ 1) 

(c) y=F(x)=rx 

1. Write programs for each of the functions in Exercise I, and use these programs 
to check your answers in Exercise I. 

3. If the domain of the functions in Exercise I is the set 

D = C4, -3, -2, -1,0, 1,2,3,4}, 

then list the ordered pairs for each of the functions. 

4. Use the program PAIRS to do Exercise 3. 

S. With the domain stated in Exercise 3, state the ranges for the functions in 
Exercise I. 

6. If the domain is not stated for the functions in Exercise I, then what are the 
implied domains understood to be? 

7. The absolute value function is defined as follows: 

5 

5 

o 

y=A(x)=lxl=W. 

The result will always be a nonnegative number with the same magnitude as x. 
Write an APL program to evaluate the absolute value of any number x. Note 
that in APL, there is a built-in absolute value function, IX. Thus, 

15 

10 
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8. Write a program for finding the area of a right triangle. (The formula for the 
area of a right triangle is A =!. B· H, where B is the length of the base, and H is 
the height.) 

6.2 Graphing 

The real line 

The real number system is often described as the set of all numbers which 
can be represented by a point on a number line. Consider a horizontal line. 
Locate a point on it, called the origin, and associate with this point the 
number O. Establish a unit length with a compass. Now, the points 
associated with the positive integers are located to the right of the origin. 
For example, the positive integer 3 is located 3 units to the right of the 
origin O. The points associated with the negative integers are located to the 
left of the origin. For example, the negative integer -3 is located 3 units to 
the left of the origin. Thus, there is a point on this number line correspond­
ing to each integer (see Figure 6.1). 

I I I I 
4 3 2 o 2 3 4 

Figure 6.1 The integers. 

A rational number is a number of the form p / q, where p and q are 
integers and q=l=O. To locate the point corresponding to the rational 
number p / q, divide each unit length into q parts. Then, measure over p of 
the parts of length 1/ q, to the right if p is positive, left if p is negative. For 
example, 7/5 and -3/5 are shown in Figure 6.2. 

I I I I I I I I I I 
-2 3 0 7 2 
5 5 

Figure 6.2 The rational numbers. 

In ancient times, it was thought that the rational numbers completely 
filled up the number line. However, the Pythagorean theorem can be used 
to locate a number which is not rational, namely v'2 . To locate v'2 , 
construct the isosceles right triangle with leg of length I as in Figure 
6.3. By the Pythagorean Theorem, the hypotenuse has length ~ 
= v'2 . Place a compass at 0 and open it the length of the hypotenuse. 
Then, swing an arc down to the number line. The point where the arc 
intercepts the number line represents v'2 . 

It is not difficult to prove that v'2 is irrational (not rational). However, 
we will not prove this here. There are an infinite number of other irrational 
numbers, such as V3 and 'IT. All of these can be approximated on this 
number line, which we will refer to as the real line. 
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6 Functions and graphing 

o 1.J2 2 

Figure 6.3 Constructing a real, irrational number. 

The Cartesian plane 

The French mathematician Rene Descartes established a one-to-one corre­
spondence between ordered pairs of real numbers and points in the plane. 
Therefore, it is known as the Cartesian plane. 

To construct the Cartesian plane, draw a horizontal real line, called the 
x axis. Perpendicular to this real line at the origin, draw a vertical real line, 
called the y axis. These two axes divide the plane into 4 regions called 
quadrants, as in Figure 6.4. The way in which to plot a point with 
coordinates (x,y) is illustrated by the points A, B, C, D, E, F, and G in the 
diagram. The first coordinate of a point is called its x coordinate or its 
abscissa. The second coordinate of the point is called its y coordinate or its 
ordinate. 
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A (3,2) 
B(2,3) 
eC2,1) 
DC3, -2 
£(1,-3) 

F(3,0) 
C(O, -1) 

) 

yaxis 

Quadrant II Quadrant I 

4 

3 B(2,3) 

2 A(3,2) 

eC2,1) 

I 
1 

F(3,0) 
x axis 

-
4 

-
3 

-
2 - 1 0 1 2 3 4 

C(O, 
-

1)4 -
1 

-
2 

DC3, -2) 
-

3 - £(1,-3) 

Quadrant III -
4 Quadrant IV 

Figure 6.4 The Cartesian plane. 



6.2 Graphing 

Definition of the graph of a function 

The graph of a function y = F(x) is the graph of all points corresponding 
to ordered pairs (x,y) satisfying the function (i.e., for which the function is 
a true statement.) 

Example 1 

y=F)(X)=X2, with domain D=C4,-3,-2,-1,0,1,2,3,4}. The ordered 
pairs corresponding to this function are 

F) = {(-4, 16),(-3,9),(-2,4),C-1, 1),(0,0),(1, 1),(2,4),(3,9),(4, 16)}. 

Thus, the graph of this function is as shown in Figure 6.5. 

yaxis 

C4, 16). 16 • (4, 16) 
15 
14 
13 
12 
11 
10 

C3,9) • 9 • (3,9) 
8 
7 
6 
5 

2,4) • 4 • (2,4) 
3 
2 

C1,1)e1 • (1, 1) 
x axis 

- - - -
432 101 234 

Figure 6.5 Graph of Example 1. 

Example 2 

y = F)(x) = x 2, with domain D = {xl-4" x "4 and x is a real number}. In 
this case, there are an infinite number of ordered pairs for which the 
function is a true statement. It would be an endless task to plot all of these. 
Therefore, we will just plot enough of them to get a good idea of the 
pattern they trace out. Then, we will join these points by a smooth curve 
and hope that our curve will pass through the other points whose coordi­
nates satisfy the function. Of course, this is only a reasonable guess at the 
graph of the function. More precise graphing techniques require more 
insight into the particular function being graphed, which we have not yet 
provided. The graph of Example 2 is shown in Figure 6.6. A graph with 
this shape is called a parabola. 
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C4,16) 

C3,9) 

16 
15 
14 

yaxis 

(4, 16) 

(3,9) 

----+-4-+-1l-31li(1£4..--+--+-4---- X axis 
-4-3-2-1 0 1 2 3 4 

Figure 6.6 Graph of Example 2. 

Example 3 

w = F2(z) = Yz, with domain D = {zIO"'; z ...; 9}. In order to graph this 
function, we need some ordered pairs satisfying it to graph. We can use the 
program PAIRS to generate these pairs. 

V FN[1] 

[1] Y~X*.5 V 
X~0,L9 

00 
1 1 

X PAIRS FNX 

2 1.414213562 
3 1.732050808 
4 2 
5 2.236067977 
6 2.449499743 
7 2.645751311 
8 2.828427125 
33 

Altering FN to fit this function. 

Thus, the graph is as shown in Figure 6.7. Note that since the dependent 
variable is w, the y axis has become the w axis, and that since the 
independent variable is now z, the x axis has become the z axis. 
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3 

2 

waxis 

6.2 Graphing 

(9,3) 

--,-~J-+-+--+--+---1I--+-+--+--+-- z axis 
(0,0) 123456789 

Figure 6.7 Graph of Example 3. 

Example 4 

y= F3(X) = 1/ x, where the domain is D= {xl-I';;; x';;; I}. 

V FN[1] 

[1] Y~1 +XV 
X~(,10)X.1 

XPAIRSFNX 
0.1 10.0 

Altering FN to fit this new function. 

0.2 5.0 
0.3 3.333333333 
0.4 2.5 
0.5 2.0 
0.6 1.666666667 
0.7 1.428571429 
0.8 1.25 
0.9 1.111111111 
1.0 1.0 

X~(11-('10»X-.1 

X PAIRS FNX 
-1.0 -1.0 
-0.9 -1.111111111 
-0.8 -1.25 
-0.7 -1.428571429 
-0.6 -1.666666667 
-0.5 -2.0 
-0.4 -2.5 
-0.3 -3.333333333 
-0.2 -5.0 
-0.1 -10.0 
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10 

9 
8 
7 

6 
5 

yaxis 

----+---i----::::+--+---1r-~--x axis 

5 
6 
7 
8 

-9 
10 

Figure 6.8 Graph of Example 4. 

Thus, the graph is as shown in Figure 6.8. A graph with this shape is 
called a hyperbola. (Recall that FlO) is not defined.) 

The previous examples illustrate that APL and the program PAIRS can 
be used to quickly and easily generate a list of ordered pairs for a function 
y = F(x). It is then an easy job to plot these points and join them, thereby 
graphing the function. However, it might also be of interest to the reader 
to consider an APL program for graphing the ordered pairs satisfying a 
function. The following program does this. 

Program 6.3 GRAPH 

V GRAPH DOMAIN 

[1] PLANE+-40 40p' 

[2] PLANE[20;] +-' - ' 

[3] PLANE[20; 40] +- ' X' 
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This creates a 4O-by-40 blank matrix. 

Fill in the 20th row of PLANE with 
-'so 

Labeling the 20th row with X for the 
x axis. 



6.2 Graphing 

[4] PLANE[;20]~'I' Fill in the 20th column with I's. 

[5] PLANE[1 ;20]~' Y' Labeling the 20th column with Y for 
they axis. 

[6] PLANE[20;20] ~ • 0 ' Labeling the origin. 

[7] X~DOMAIN[1] Starting X with the first element of 
DOMAIN. 

[8] FCN:Y~FNX The function being graphed, given by 
an external subprogram. 

[9] X,Y Print out the pairs for the function. 

[10] PLANE[20- Y;20+X]~' *' Placing a * at the point correspond-
ing to the pair (x,y). 

[11] X~X+1 Incrementing X. 

[12] ~(X";; pDOMAIN)/FCN Using up the entire DOMAIN. 

[13] PLANE Print out the PLANE. 
'\' 

To run this program, simply type GRAPH, after entering the subpro­
gram FN for the function being graphed and the desired DOMAIN. 

Example 1 

Let us use this program to graph y = F (x) = x 2, where -4..;; x ..;; 4. 

'\' FN[1] 

Altering FN to fit this function. 

GRAPH - 4 - 3 - 2 -1 0 1 2 3 4 
-4 16 
-3 9 
-2 4 
-1 1 
o 0 
1 1 
2 4 
3 9 
4 16 
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6 Functions and graphing 

y 

I 
I 
I 

C 4, 16) * I * (4, 16) 
I 
I 
I 
I 
I 
I 

C3,9) * I * (3,9) 
I 
I 
I 
I 

C2,4) * I * (2,4) 
I 

_ I 
( 1,1) * I * (1,1) 

--------------*--------------X 
I (0,0) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

This program may also be used to graph other functions by merely 
altering the program FN to fit the new function. In addition, if it is possible 
for x or y to be either < -20 or > 20, then the size of the PLANE will also 
have to be altered. 

Example 2 

y= F(x)=x2 +2x-6, with domain D= {xl-6 Et; x Et;4}. 

V FN[1] 

[1] Y~(X*2)+(2XX)-SV The new function. 

GRAPH - 6 -5 - 4 - 3 - 2 -1 0 1 2 3 4 

-S 18 
-5 9 
-4 2 
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-3 -3 
-2 -6 
-1 -7 

0 -6 
1 -3 

2 2 
3 9 
4 18 

C6, 18) * 

C5,9) * 

C4,2) * 

y 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

6.2 Graphing 

* (4, 18) 

* (3,9) 

* (2,2) 

--------------o--------------x 
I 
I _ 

C3, -3) * I * (1, 3) 
I 
I 

C2, -6) * * (0, -6) 

CI, -7) * ~ 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Another problem that may occur in using this program is that there may 
occur values of x or y that are not integers. In order to determine whether 
or not all of the y values are integers, one could print out the ordered pairs 
for the function using PAIRS. It would then be easier to just plot the 
corresponding points by hand then to modify the program GRAPH. There­
fore, we omit this more complicated case. 
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6 Functions and graphing 

EXERCISES 

1. Plot the following points: 
(a) (5,2) (b) (2,5) (c) C4,3) (d) (3, -4) (e) C2, -3) (f) C3,0) 

2. Use the program PAIRS to print out a list of ordered pairs for the following 
functions with the specified domains. Then, graph these functions: 
(a) y=x2-3, where -3';;x.;;3 
(b) y = vX + I, where 0.;; x.;; 8 
(c) y=3x+l, where -2.;;x.;;2 
(d) y = x / (x + l), where - 5 .;; x .;; 5 
(e) y=3·x2-2x+l, where -4';;x.;;4 
(f) y = 2x , where - 4.;; x .;; 4 

3. Use the program GRAPH to graph the following functions with the specified 
domains: 
(a)y=x2-x, where -3';;x.;;4 
(b) y = 2x + 3, where - 5 .;; x .;; 5 
(c) y=x3-3x, where -3';;x.;;3 

6.3 Linear functions 

A linear junction is a function of the form y = m· x + b, where m and bare 
constants. 

Example 1 

y = 2x + 1. To gain some insight into this linear function, let us examine 
some ordered pairs using the program PAIRS. 

v FN[1] 

[1] Y ~(2 X X) + 1 V Revising FN for this new function. 
X~-4 -3 -2 -1 0 1 234 5 
X PAIRS FNX 

-4 -7 
-3 -5 
-2 -3 
-1 -1 
0 1 
1 3 
2 5 
3 7 
4 9 
5 11 

Notice that for each increase of 1 in x, y increases by 2, the coefficient 
of x in the linear function. Notice also, that when x=O,y= 1, the constant 
term in the linear function. 
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Example 2 

y= -3x+4. Again: 

V FN[1] 

[1] Y~(-3XX)+4 V 

X PAIRS FNX 
-4 16 
-3 13 
-2 10 
-1 7 
o 4 
1 1 
2 -2 
3 -5 
4 -8 
5 -11 

6.3 Linear functions 

Notice that for each increase of 1 in x, y decreases by 3 (or increases by 
-3), the coefficient of x in the linear function. Notice also, that when x=O, 
theny =4, the constant term in the linear function. These examples suggest 
that there is something significant about the m and b in the general linear 
function y = m· x + b. 

Slope 

Let y = m· x + b. Suppose that x increases by 1 to x + I. The new value of y 
at this new value of x will be new y = m·(x + 1)+ b = m·x + m + b =(m·x + 
b)+ m. Since m is constant, any increase of 1 in x increases y by this 
constant amount m. Thus, the graph of the linear function y = m· x + b is a 
straight line. The number m is called the slope of the line (see Figure 6.9). 

y 

----0+-------- x 

Figure 6.9 Graph of y = m· x + b. 
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6 Functions and graphing 

y intercept 

When x=O, the value of y is m·O+b=b. Thus, the straight line whose 
equation is y = m· x + b intercepts the y axis (when x = 0) at the point where 
y = b. This value, b, is called the y intercept of the line. 

Graphing a line 

A straight line is uniquely determined by two points. (That is, given two 
points, there is exactly one line that can pass through them.) Thus, when 
graphing a line, one only needs to plot two points and join them. Any two 
points that satisfy the equation of the line will do. 

Example 1 

y=2·x+l 

The two points (0,1) and (1,3) both satisfy this equation. Thus, plotting 
these two points and joining them, the graph is shown in Figure 6.10. 
Notice that this line rises as x increases. 

y 

----------~~--~--------x 

Figure 6.10 Graph of Example 1. 

Example 2 

y=-3·x+4 

Plotting the two points (0,4) and (1,1) and joining them, the graph is as 
shown in Figure 6.11. Notice that this line falls as x increases. 

Significance of the sign of the slope 

Since the slope, m, of a line is the amount of increase in y for each increase 
of 1 in x, if m is positive, every increase of 1 in x causes the line to rise by 
m. Thus, lines with positive slope rise as x increases. If m is negative, then 
every increase of 1 in x causes the y value to increase by the negative 
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6.3 Linear functions 

y 

------------~--~~--------x 

Figure 6.11 Graph of Example 2. 

amount m. Thus, y actually decreases. Therefore, lines with negative slope 
fall as x increases. 

The slope of a line is a measure of its steepness. The larger m is (in 
absolute value), the steeper the line. Parallel lines have the same slope. 

Horizontal and vertical lines 

On a horizontal line, y never increases. Thus, when x increases by 1, y 
remains the same. The slope of a horizontal line is O. So, the equation of a 
horizontal line is of the formy=O·x+b=b. 

Example 

Graph the equationy =2. This is done in Figure 6.12. 
y 

2 y=2 

------------~~------------x o 

Figure 6.12 Graph of y =2. 

On a vertical line, x never increases. x always has the same value. Thus, 
a vertical line has an equation of the form x = a, for some constant a. 

Example 

Graph the equation x = 2. This is done in Figure 6.13. Since x never 
increases, a vertical line is often said to have no slope. (Some texts say that 
it has infinite slope.) 

145 



6 Functions and graphing 

y 

x=2 

-------,+-+--+---- x 
o 2 

Figure 6.13 Graph of x = 2. 

Linear equations 

In Chapter 4, we studied linear equations of the form aJ' x + a2'y = c. If one 
solves such an equation for y, one gets 

which is of the formy=m'x+b, where m= -a l /a2 and b=c/a2' Thus, 
the graph of such a linear equation is a straight line. It, therefore, only 
takes two points to graph a linear equation. 

Example 

Graph 3x + 2y = 6. If x = 0, then y = 3, so that (0,3) is a point on the line, 
called the y intercept. If y = 0, then x = 2, so that (2,0) is a point on the line 
called the x intercept. Plotting these points and joining them yields the line 
shown in Figure 6.14. 

y 

------~--+-~-------x 

Figure 6.14 Graph of 3x+2y=6. 

Two-by-two systems of linear equations 

In Section 4.2., we pointed out that a two-by-two system of linear equa­
tions has either one solution, no solutions, or an infinite number of 
solutions. Since a vector (x,y) must satisfy both equations simultaneously 
to be a solution of the system, then the point (x,y) must lie on the graph of 
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6.3 Linear functions 

y y y 

-------+--~--x 

(a) (b) (c) 

Figure 6.15 (a) Lines intersect: one solution, the point of intersection. (b) Parallel 
lines: no solutions. (c) Lines coincide, 1>oth equations represent the same line: an 
infinite number of solutions. 

both lines. In other words, it must lie on the intersection of the lines, 
provided they intersect. Figure 6.15 explains the three possible conditions. 

Examples 

1. Find the point of intersection of the following lines, if they intersect 
(Figure 6.16): 

2x-3y=5 

x+4y=8 

The method of Section 4.7 is used to solve the system. 

4 1 

A~2 2p2 -3 1 4 
B~58 

BElA 

Thus, these lines intersect at the point (4,1). 

y 

------~~--+7~~--~-+--F3~~---x 

Figure 6.16 The method of Section 4.7 is used to solve the system (Example 1). 
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6 Functions and graphing 

y 

------~+--t~~+---------x 

Figure 6.17 Graph of Example 2. 

2. Find the point of intersection of the lines that follow, if they intersect 
(Figure 6.17): 

A+-2 2p2 -3 4 -6 
B+-57 

BE]A 
DOMAIN ERROR 

2x-3y=5 

4x-6y=7 

This example must be in either case 2 or case 3. To see which case, let 
us solve the equations for y to put them in the form y = m' x + b. From the 
first equation, 

From the second equation, 

2 7 
y="3'x -"6' 

Thus, both lines have the same slope, m=2/3. However, they have 
different y-intercepts, b. Thus, they are parallel lines and do not intersect. 

3. Find the point of intersection of the following lines, if they intersect 
(Figure 6.18): 

A+-2 2p2 -3 4 -6 
B+-5 10 

BE]A 
DOMAIN ERROR 
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y 

-------,,+--+--I~+_---- x 

Figure 6.18 Graph of Example 3. 

Solving these equations for Y yields 

2 5 
Y=-'X--

3 3 
in both cases. Thus, both equations represent the same line. There are an 
infinite number of solutions to this system. Any point on the first line is 
automatically on the second line. (Notice that the second equation is a 
multiple of the first equation.) 

Finding the slope of a line passing through two points 

Let P(XI'YI) and Q(X2'Y2) be two points. There is exactly one line through 
these two points. The slope of this line can be computed from the 
following equation: 

Rise Change iny Y2-Yl 
m=--= =---

Run Change in x X2 - Xl . 

To see why this is so, suppose the equation of the line isy=m·x+b. Since 
(XI'YI) lies on this line, thenYI=m·xl+b. Since (X2'Y2) lies on this line, 
then Y2 = m' X 2 + b. Computing the difference quotient, 

Y2-Yl (m·x2+b)-(m·xl +b) m'x2-m'xl m'(X2- Xl) 
---= =m. 

Example 

Find the slope of the line joining the points (1,3) and (4,9). 

9-3 6 
m= 4-1 ='3=2. 

Program 6.4 SLOPE 

VM~PSLOPEQ A simple program to compute slope 
given two points P and Q. 

149 



6 Functions and graphing 

[1] M~(Q[2] - P[2]) + (Q[1] - P[1]) 

V' 

2 

Example 

P~1 3 
Q~4 9 

PSLOPEQ 

Finding the equation oj the line passing through two points 

Given two points P (x l,y 1) and Q (X2,Yz), we can find the slope of the line 
through them, m. We know that the equation of the line through them has 
the formy=m·x+b. Therefore, we only need to find b. To do this, use the 
fact that the coordinates of either of these points must satisfy the equation. 
Substitute the coordinates of either of these points into the equation and 
solve for b. 

Example 

Find the equation of the line joining the points (1,3) and (4,9). We found 
the slope of this line to be 2 (see above). Therefore, the equation looks like 
y = 2x + b. Substituting the coordinates (1,3) for x and y respectively, we 
get 3 = 2· 1 + b. So, b = 1. If we had used the coordinates of the point (4,9), 
we would get 9 = 2·4 + b. So, b = 1. It doesn't matter which point is used to 
compute b. The equation of the line is y = 2x + 1. 

Applications oj linear Junctions 

Anytime the relationship between two quantities is linear, then this rela­
tionship can be expressed by an equation of the form y = m·x + b. 

Example 1 

Assume that the cost, C, of producing x items is a linear function of x. 
Assume also that the initial cost of getting ready to produce the items is 
$500. Assume also that the cost per item is $5. Find the formula for cost, 
C, in terms of the number of items produced, x. 

Since this cost is a linear function of x, the formula must be of the form 
C = m· x + b. The slope, m, is the amount of increase in C per increase of 1 
in x. This was given to be $5. b is the cost when x = 0, which was given to 
be $500. Thus, the formula is C = $5x + $500. For example, the cost of 
producing 10 items is C = $5 . 10 + $500 = $550. 

Example 2 

Suppose the price of renting a wheel barrow from Rent-All Corporation is 
$5 plus an hourly rate of $3 per hour. Find a formula for the price, P, of 
renting a wheel barrow for x hours. 
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6.3 Linear functions 

The formula is of the form P = m' x + b, in which m is the increase in 
price per hour, which is $3 per hour; b is the price when x=O, or the fixed 
price, which is $5. Therefore, the formula is P=$3·x+5. So, if a wheel 
barrow is needed for 5 hours, the price would be P = $3·5 + 5 = $20. 

Example 3 

The relationship between degrees Centigrade and degrees Fahrenheit is 
linear. Find this relationship. 

o degrees Centigrade corresponds to 32 degrees Fahrenheit. 100 degrees 
Centigrade corresponds to 212 degrees Fahrenheit. Thus, this problem 
entails finding the equation of the line passing through the two points 
(0,32) and (100,212). The slope of this line is given by 

1.8 

P~O 32 
Q~100 212 

PSLOPEQ 

Let C denote degrees Centigrade and F denote degrees Fahrenheit. 
Then, the linear relationship has the form 

F=1.8C+b. 
Substituting in the coordinates of the point (0,32), we get 

32= 1.8·0+b=b. 
Thus, the equation for this relationship is F= 1.8·C+32. For example, 20 
degrees Centigrade is equivalent to 

F= 1.8·20+32=36+32=68 degrees Fahrenheit. 

EXERCISES 

1. Graph the following lines: 
(a) y=2x+5 (d) y=-I 
(b) y= -x+2 (e) x=3 
(c) 2x+3y=12 

2. Find the slope of each of the lines in Exercise 1. 

3. Find the equations of the lines satisfying the following conditions: 
(a) The slope is 5 and the y intercept is -1. 
(b) The slope is -2 and they intercept is 3. 
(c) The slope is 0 and the y intercept is 5. 
(d) The slope is 2 and it passes through the point (3, I). 
(e) The slope is -I and it passes through the point (0,0). 

4. Find the slopes of the lines passing through the following pairs of points: 
(a) (1,2) and (3,7) (c) (3,0) and (3,4) 
(b) C 1,2) and (3, -5) (d) (2, I) and (5, I) 
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6 Functions and graphing 

5. Find the equations of the lines in Exercise 4. 

6. Find the intersections of the following pairs of linear equations, if they 
intersect: 
(a) 2x+3y=6 (c) 4x+ y=-3 

3x+2y=4 x+3y=0 
(b) 3x- y=5 (d) 2x+ y=2 

x+2y=3 4x+2y=3 

7. Write a program to solve the linear equation «A X X) + B) = C (APL notation) 
for X (A, B, and C are constants). 

8. The cost of renting a lawn mower from Ace Rental Co. is a linear function of 
the number of hours it is rented. The charge is $3 per hour, plus a fixed charge 
of $5. Find a formula for the charge for renting a lawn mower for x hours. 

9. The number of dandelions in Mr. Jone's lawn is a linear function of the 
number of weeks from now. If right now he has 25 dandelions, and if he gets 
10 new dandelions per week, find the function for the number of dandelions x 
weeks from now. 

10. A machine costs $10,000 new. Each week, its value decreases by $10. Find a 
function for its value in x weeks. 

11. The cost of producing 0 items is $100. The cost of producing 10 items is $250. 
Assuming that cost is a linear function of the number of items produced, find 
the cost function. 

12. To rent a car costs $10, plus $.08 per mile. Find a formula for the cost of 
renting a car as a function of the number of miles. 

6.4 Quadratic functions 

A quadratic function is a function of the formy=a·x 2 +b·x+c, where a, 
b, and c are constants and a =F o. 

The graph of a quadratic function is called a parabola. To help us gain 
some insight into quadratic functions and parabolas, let us graph the 
following two examples using the program GRAPH of Section 6.2. 

Example 1 

'ilFN [1] 

[1] Y~(X*2)+(-4XX)+4 'il 

GRAPH -2 -1 0 1 

-2 16 
-1 9 
o 4 
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23456 

The new function being graphed. 

Command to execute the program 
GRAPH. 



1 1 
2 0 
3 1 
4 4 
5 9 
6 16 

6.4 Quadratic functions 

The ordered pairs for this function 
with -2';;;x';;;6. 

The points are joined by hand to 
form the parabola. This parabola 
opens upward. The lowest point, 
called the vertex, is at the point (2,0). 
The line x = 2 is an axis of symmetry. 
That is, for each point to the left of 
this line, there is a corresponding 
point with the same height to the 
right of it. 

y 

I 
I 

'! / 
~ I 
h / 
I * * --------------O~------------X 

Example 2 

'ilFN [1] 

I 
I 
I 
I 

[1] y~(-(X*2»+(2+X)+3 'iI The new function. 

GRAPH - 2 -1 0 1 2 3 4 
-2 -5 
-1 0 
o 3 

This time, we'll only go to x = 4. 
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6 Functions and graphing 

1 4 
2 3 
3 0 
4 -5 This parabola opens downward. The 

highest point, called the vertex, is at 
the point (1,4). The line x = 1 is the 
axis of symmetry. Again, the points 
are joined to form the parabola. 

y 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 

------------1'1--
-----------x 

I 
I 
I 
I 
I 
I 
I 

UseJul characteristics oj quadratic Junctions in graphing parabolas 
Let us list some characteristics of quadratic functions which are useful in 
graphing the resulting parabolas. 

Given a general quadratic function,y=F(x)=a·x 2 +b·x+c, a'FO, 

1. If a> 0, the parabola opens upward. If a < 0, the parabola opens 
downward. 

2. The x coordinate of the vertex is given by x = - b /2 ·a. The y coordi­
nate is given by F(-b/2·a). 

3. The vertical line x = - b /2'a is the axis of symmetry of the parabola. 
4. When x=O,y=c, so that they intercept is at the point (O,c). 
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6.4 Quadratic functions 

5. The x intercepts (if there are any) are found by solving the quadratic 
equation a' x 2 + b· x + c = 0. 

Let us now check out these characteristics with the above two examples. 

Example 1 

y=x2-4x+4. 

Here, a = 1, b = -4, and c = 4. Since a> 0, the parabola opens upward. 
Since (-b/2·a)=-C4/2·1)=2, then the x coordinate of the vertex is 
x=2. The y coordinate of the vertex is F(2)=22-4·2+4=0. Thus, the 
vertex is at the point (2,0). The axis of symmetry is x = - b /2'a = 2. The y 
intercept is the point (0,4). The x intercept is found by solving x 2 - 4x + 4 
= (x - 2)2 = 0. The only solution to this equation is x = 2, so that the only x 
intercept is at the point (2,0) (see the graph at the beginning of this 
section). 

Example 2 

y=F(x)= -x2+2x+3. 

Here, a = -1, b = 2, and c = 3. Since a < 0, the parabola opens downward. 
Since - b /2'a = - 2/-2= 1, then the x coordinate of the vertex is x = 1. 
The y coordinate of the vertex is F(l) = -1 + 2 + 3 =4. Thus, the vertex is 
the point (1,4). The axis of symmetry is x=(-b/2·a)=1. They-intercept 
is the point (0,3). The x intercepts are found by solving -x2+2x+3=(x 
+ 1)· (x - 3) = 0. The only solutions are x = -1 and x = 3, so the x intercepts 
are the points Cl,O) and (3,0) (see the graph at the beginning of this 
section). 

Quadratic equations and the quadratic formula 

To get the x intercepts of the quadratic function y = a' x 2 + b· x + c, it is 
necessary to solve the equation a' x 2 + b· x + c = 0. Such an equation is 
called a quadratic equation. To solve such an equation, one can factor it 
into linear factors (d·x+e)·(fx+g) and set each linear factor equal to ° 
and solve for x (provided the function can be easily factored). Or, one can 
use the quadratic formula 

- b± Yb2-4'a'c x = ----'--::-----
2'a 

We illustrated the factoring method in the two previous examples. In this 
text, we will emphasize the use of the quadratic formula. 

The expression b2 - 4'a'c is called the discriminant. There are three 
possible cases: 

Case 1. 

If b2 - 4 'a'c = 0, there is one solution to the quadratic equation, namely 
x= -b/2·a. 
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6 Functions and graphing 

Case 2. 

If b2 - 4 ·a·c > 0, there are two solutions to the quadratic equation, namely 

-b±Yb2-4·a·c x = ------'-:,-----
2·a 

Case 3. 

If b2-4·a·c<0, then there are no real solutions, since Yb2-4·a·c would 
be the square root of a negative number, which is not a real number. (It is 
imaginary.) 

Let us consider some examples of solving quadratic equations by the 
use of the quadratic formula. 

Example 1 
x2-4x+4=0. 

Here, a=l, b=-4, and c=4. Thus, 

Example 2 

-x2+2x+3=0. 
Here, a=-l, b=2, and c=3. Thus, 

- b± Yb2-4·a·c -2± v'4+TI -2± v16 -2±4 
x= 2.a 2 2 =~. 

So, we get the two solutions x=(-2+4)/-2= -1 and x=(2-4)/-2=3. 

Example 3 

2x2-5x+1=O. 
Here, a=2, b= -5, and c= 1. Thus, x=(5± V25-8 )/4=(5± ill)/4. So, 
there are two solutions, x=(5+ ill )/4 and x=(5- ill )/4. 

Example 4 

x2-9=0. 

Here, a= 1, b=O, and c= -9. Thus, x=(O± VO+36 )/2= ±6/2= ±3. 

Example 5 

Here, a=3, b= 1, and c=2. Thus, 

- b± Yb2-4·a·c 
x= 

2·a 

However, v=23 is not a real number. So, the solutions are imaginary. 
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6.4 Quadratic functions 

We now consider a program for solving quadratic equations by the use 
of the quadratic formula. 

Program 6.5 QUADRA TIC 

V' X ~ QUADRA TIC COEFS: A; B; C; R; DISCRIMINANT 

[1] A~COEFS [1] 
[2] B~COEFS [2] 
[3] C~ COEFS [3] 
[4] DISCRIMINANT~(B*2)-(4X AX C) 

[5] ~(DISCRIMINANT» 0)/ ROOT 

[6] , THE SOLUTIONS ARE IMAGINARY' 
[7] ~O 

[8] ROOT: R~DISCRIMINANT*.5 

[9] X~«-B)+R, -R)+(2XA) 
V' 

To illustrate the use of this program, we will redo the above examples 
using QUADRA TIC. 

Example 1 

QUADRA TIC 1 -4 4 

2 2 

Example 2 

QUADRA TIC -1 2 3 
-1 3 

Example 3 

QUADRATIC 2 - 5 1 
2.280776406 0.2192235936 

To run the program, type 
QUADRATIC, followed by the vector 
of coefficients. 

-x2 +2x+3=O. 

The solutions are -1 and 3. 

These answers correspond to 
(5 + VT7 )/4 and (5 - VT7 )/4 
respectively. 
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Example 4 

QUADRATIC 1 0 -9 Note that 0 coefficients must be in­
cluded in the vector of coefficients. 

-3 3 

Example 5 

QUADRA TIC 3 1 2 
THE SOLUTIONS ARE IMAGINARY 

Since b2 - 4· a . c is negative. 

We conclude this section with a couple of applications of quadratic 
functions. 

Applications oj quadratic Junctions 

Example 1 

Suppose the cost of producing x items is given by the function 

C=x2+2x+$2000. 
Suppose also that these items sell at a price of $102 each, and that every 
item that is produced is sold. 

(a) Find the number of items, x, that must be produced in order to 
maximize profit. Also, find this maximum profit. 

Since the price is $102 each, and 

Revenue = (Price)· (Number of items sold), 

then the revenue (in dollars) from the x items is given by R = 102 ·x. 
Now, 

Profit = Revenue- Cost= R - c= 102·x - (x2+2x+ 2(00) 

= -x2+ lOOx-2000=F(x). 

The graph of this function is a parabola that opens downward, since 
a < O. Thus, the highest point (the point of maximum profit) will occur 
at the vertex. So, 

-b -100 . 
x=- = -- =50 Items. 

2'a -2 

The maximum profit is F(50) =$500. 
(b) Find the number of items, x, that must be produced to break even. 
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A company breaks even when its revenue equals its cost, or when its 
profits is O. Thus, we need to solve the quadratic equation 

- x 2 + lOO·x-2000=0. 
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QUADRA TIC -1 100 - 2000 
27.63932023 72.36067978 

Thus, the company breaks even when it produces approximately its 
27th and its 72nd items. 

Example 2 

Suppose that to produce 500 widgets costs $2000. Thereafter, for every 
increase of 5 widgets produced, the cost is reduced by $0.02. 

(a) Find a formula for cost. 
Let x = the number of increases of 5 widgets. Since the first 500 widgets 
cost $2000, then these widgets cost $4 each. Thereafter, the cost per 
widget decreases by 0.02x, since for each increase of 1 in x (5 widgets), 
cost per widget decreases by 0.02. Now, 

Cost = (Number of widgets)· (Cost per widget) 

= (500+5x)· (4-0.02·x) 

=2000+20x-lOx-0.lx2 

= -0.lx2 + lOx +2000= F(x). 

(b) How many widgets yield maximum cost? 
Since a= -0.1 is negative, the graph of this function is a parabola that 
opens downward. Thus, the highest point (the point of maximum cost) 
is the vertex. So, 

-b -10 
x=-=--=50. 

2·a -0.2 

Thus, maximum cost occurs when there are 50 increases of 5 widgets 
beyond the first 500. The total number of widgets is given by 500 + 5x 
= 500 + 5 . 50 = 750 widgets. 

(c) What is this maximum cost? 

F(50) = -0.1· (50)2+ 10·50+2000= -250+500+2000 

=$2250. 

We shall explore the concept of maximizing and minimizing functions 
in much more detail in a later chapter using differential calculus. 

EXERCISES 

1. Write a program for computing the x and y coordinates of the vertex of the 
parabola corresponding to the quadratic function 

y= F(x)=a·x2 + b·x+c. 
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2. Compute both coordinates of the vertex of the following parabolas correspond­
ing to each of the following quadratic functions: 
(a) y=F(X)=X2_2 (d) y=F(x)= -x2+8x-6 
(b)y=F(x)=x2-x-2 (e) y=F(x)=2x2-x-3 
(c) y=F(x)= -x2+6x-9 (f) y=F(x)=3x2+6x+5 

3. Use the quadratic formula to find the roots of the quadratic functions in 
Exercise 2, provided the roots are real. [Nole: A rool of a quadratic function 
y = a' x 2 + b· x + c is a solution to the corresponding quadratic equation.] 

4. Redo Exercise 3 using the program QUADRA TIC. 

S. Use the characteristics of the parabolas in Exercise 2 that were mentioned in 
this section to graph these parabolas. 

6. Redo Exercise 5 using the program GRAPH. 

7. Suppose that the profit (in dollars) from the sale of x items is given by 

p= F(x)= - x 2+500x-40000. 

(a) Find how many items must be sold to maximize profit. 
(b) Find this maximum profit. 
(c) Find how many items must be sold to break even. 

8. If a manager of an apartment complex charges a monthly rent of $200, he will 
completely fill up his 80 apartments. For each increase of $10 in the monthly 
rent thereafter, 2 apartments will be empty. 
(a) Find a quadratic function which expresses the monthly revenue in terms of 

the number of increases of $10 in monthly rent. 
(b) How many such $10 increases in rent will lead to maximum revenue? 
(c) What is the optimum rent? How many empty apartments result? 

9. An object projected vertically upward from a height of 6 feet with an initial 
velocity of 128 feet per second has height at any time 1 given by the quadratic 
function 

h = F(/) = -16'/2 + 128'/+6, 

where 1 is the number of seconds that have elapsed since it was projected 
vertically upward and h is the number of feet up after t seconds. Find the 
amount of time it takes for the object to reach its maximum height, and find 
the maximum height. 

10. Suppose that the cost (in dollars) of producing x items is given by the formula 
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Suppose also that these items sell for $22 each and that every item that is 
produced is sold. 
(a) Find the number of items, x, that must be produced to maximize profit. 
(b) Find this maximum profit. 
(c) Find the number of items that must be produced to break even. 
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6.5 Polynomials 

Linear functions and quadratic functions are special cases of a larger class 
of functions called polynomials which we now investigate. 

Definition 

Let n be a positive integer. Then, a polynomial of degree n is a function of 
the form 

y = F(x)= an·x n + an_I"X n- 1 + ... +a2·x2 + aI"x+ao, 

where, ao,a l,··· ,an_l,an are constant real numbers, and an=FO. 
We have already studied polynomials of degree I (linear functions) and 

of degree 2 (quadratic functions). If n > 2, then, in general, it is more 
difficult to completely pin down the characteristics of polynomials of 
degree n. To do so requires calculus, as we will see in Chapter 8. However, 
with the aid of the computer, we can do a good job in graphing particular 
examples. 

Domain of polynomials 

Unless explicitly restricted, the domain of any polynomial is the entire set 
of real numbers. That is, any real number may be substituted into a 
polynomialy = F(x) in place of x, resulting in a unique real answer,y. 

We can use the program PAIRS to print out a set of ordered pairs for 
any polynomial between any two values of x. Using this set of ordered 
pairs, we can graph the polynomial. Let us consider a couple of examples 
now. 

Example 1 

y= F(x)=2x3 +3x2 -12x-1O. 

This is a polynomial of degree 3. In APL, this would be 

VFN [1] 

[1] Y~(2XX*3)+(3XX*2)+(-12XX)-10 V 

Altering FN for this new function. 

X~-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 345 6 7 8910 
XPAIRSFNX 

-10 -1590 
-9 -1117 
-8 -746 
-7 -465 
-6 -262 
-5 -125 
-4 -42 
-3 -1 
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-2 10 
-1 3 
o -10 
1 -17 
2 -6 
3 35 
4 118 
5 255 
6 458 
7 739 
8 1110 
9 1583 

10 2170 

Using these pairs, we can graph the function (Figure 6.19). The 
arrowheads indicate the direction of the curve as indicated by the pairs. 
The roller coaster shape of this curve is typical of the graphs of polynomi­
als of degree 3. 

Example 2 
y = F (x) = X4 - X 3 - 7 x2 + X + 6. 

This is a polynomial of degree 4. 

VFN [1] 

[1] Y~(X*4)+(-X*3)+(-7XX*2)+X+6 V 

Altering FN for this new function. 

X~-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 456 7 8910 
XPAIRSFNX 

-10 10296 
-9 6720 
-8 5158 
-7 2400 
-6 1260 
-5 676 
-4 210 
-3 45 
-2 0 
-1 0 
o 6 
1 0 
2 -12 
3 0 
4 90 
5 336 
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Sincey =0 at both x= -2 and x= -1, 
it would be useful to know the value 
of Fr 1.5). Thus, 

FN -1.5 
-2.6125 



6 840 
7 1728 
8 3150 
9 5280 

10 8316 

6.5 Polynomials 

Using these pairs, the graph looks as shown in Figure 6.20. The shape of 
this curve is typical of graphs of polynomials of degree 4. 

y 

C1,3) 

---+~4-4-+-~o~-+~~4-+-----x 
C3, -1) 

(2, -6) 

Figure 6.19 A third degree polynomial. 

163 



6 Functions and graphing 

y 

(0,6) 

--~~~~~o1-~+-+-+-----X 

Cl.S, -2.6125) 

Figure 6.20 A fourth degree polynomial. 

Polynomials are everywhere continuous. That is, there are no gaps in the 
graph of a polynomial, and it is possible to graph a polynomial without 
ever lifting one's pencil from the paper. 

Roots of polynomials 

A root of a polynomial 

y=F(x)=an'xn+an_J'xn-J+ ... +a]"x+ao 

is a solution to the polynomial equation 

an' X n + an _ ]" X n - J + ... + a!, X + aD = O. 

In terms of the graph of a polynomial, a root is represented as an x 
intercept on the graph, since it is a value of x for which y = O. Note that in 
terms of the graph of the polynomial of degree 3 in Example 1, there are 3 
x intercepts. Therefore, there are three roots. In terms of the graph of the 
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polynomial of degree 4 in Example 2, there are 4 x intercepts. Therefore, 
there are 4 roots. 

The Fundamental theorem of algebra states that a polynomial of degree n 
has n roots (not necessarily all distinct or all real). We have already 
investigated techniques for finding the roots of polynomials of degrees 1 
and 2. There exist formulas for finding the roots of general polynomials of 
degree 3 and 4 also. However, these formulas are beyond the scope of this 
text. It has been proved (by the mathematicians Abel and Galois) that for 
polynomials of degree ~ 5, there are no such formulas for finding the 
roots. However, there are many techniques for approximating the roots of 
any particular polynomial to any desired degree of accuracy. These tech­
niques are made much easier by the use of the computer. We will discuss 
one such technique here. 

This technique is not very sophisticated, but it is quite easy to use if one 
has the computer available to do the computations. 

A technique for approximating the real roots of a polynomial 

Our technique is based on the fact that if a polynomial changes sign 
between a value x = a and a value x = b, then there must exist a root 
between these two values. In terms of the graph, a polynomial cannot go 
from below the x axis to above it (or vice versa) without passing through 
an x intercept. Our main tool in this technique is the program PAIRS. Let 
us illustrate the method using the polynomial of Example l. 

Example 

V'FN [1] 

[1] Y~(2XX*3)+(3XX*2)+(-12XX)-10 V' 

Let us reprint the set of ordered pairs for this function. 

X~«t1 0) -11), 0, t1 0 
X PAIRS FNX 

-10 -1590 
-9 -1117 
-8 -746 
-7 -465 
-6 -262 
-5 -125 
-4 -42 
-3 -1 
-2 10 

Sign change here. 
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-1 3 
o -10 
1 -17 
2 -6 
3 35 
4 118 
5 255 
6 458 
7 739 
8 1110 
9 1583 

10 2170 

Sign change here. 

Sign change here. 

Since the y value of the polynomial changes sign between x = -3 and 
x = -2, then there must be a root between these two values. Similarly, there 
must be a root between -1 and 0, and also between 2 and 3. To see in 
more detail where the sign changes between -3 and -2, let us use PAIRS to 
print out the ordered pairs between -3 and -2, incrementing by .1 each 
time. 

X~ -3, -3+(t10)X.1 

X PAIRS FNX 
-3 -1 
-2.9 1.252 
-2.8 3.216 
-2.7 4.904 
-2.6 6.328 
-2.5 7.5 
-2.4 8.432 
-2.3 9.136 
-2.2 9.624 
-2.1 9.908 
-2 10 

Sign change here. 

Since the sign changes between -3 and -2.9, the root must be between 
these two numbers. To get closer to the root, let us use PAIRS to print out 
the ordered pairs between -3 and -2.9 incrementing by .01 each time. 

X~ -3, -3+(t10)X .01 

X PAIRS FNX 
-3 -1 
-2.99 -0.761498 
-2.98 -0.525984 
-2.97 -0.293446 
-2.96 0.063872 

166 

Sign change here. 



6.5 Polynomials 

-2.95 0.16275 
-2.94 0.386432 
-2.93 0.607186 
-2.92 0.825024 
-2.91 1.039958 
-2.90 1.252 

Since the sign changes between -2.96 and -2.95, the root must be 
between these two numbers. To get even closer to the root, we could use 
PAIRS to print out the ordered pairs between -2.96 and -2.95, increment­
ing by 0.001 each time. 

x+- -2.96, -2.96+(t10)X .001 

X PAIRS FN X 
-2.96 - .063872 
-2.959 - .041077158 
- 2.958 - .018311824 Sign change here. 
-2.957 .004424014 
-2.956 .027130368 
-2.955 .04980725 
-2.954 .072454672 
-2.953 .095072646 
-2.952 .117661184 
-2.951 .140220298 
-2.95 .16275 

Since the sign changes between -2.958 and -2.957, the root must be 
between these two numbers. We could get even closer by incrementing by 
0.0001 in PAIRS. However, this is close enough to illustrate the technique. 
Since the y value at - 2.957 is closer to 0 than the y value at -2.958, then to 
three decimal places, -2.957 is the best approximation to the desired root. 

Recall that there are also roots between - I and 0, and between 2 and 3. 
These could be approximated in the same way we approximated the root 
between -3 and -2. 

Example 2 

y = F(x)= X4- x 3 -7x2 +x+6. 

VFN [1] 

[1] Y+-(X*4)+(-X*3)+C7XX*2)+X+6 V 

X+-«t1 0)-11), 0, t10 

X PAIRS FN X 
-10 10296 

-9 6720 
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-8 5158 
-7 2400 
-6 1260 
-5 676 
-4 210 
-3 45 
-2 0 
-1 0 
0 6 
1 0 
2 -12 
3 0 
4 90 
5 336 
6 840 
7 1728 
8 3150 
9 5280 

10 8316 

The roots for this function are -2, -1, 
I, and 3, since for these values, the y 
coordinates are all O. No approxima­
tion is necessary. Lucky!!! 

The above technique for approximating the real roots of a polynomial 
might seem quite tedious to the reader. However, with the aid of the 
computer, it can be accomplished very rapidly. 

A program for approximating roots 

Suppose that, due to a sign change in the y coordinates of a polynomial, 
we know that our polynomial has a root between a value x = A and a value 
x = B. Then, the following program can be used to approximate this root 
correct to three decimal places. 

Program 6.6 ROOT 

V'R+-A ROOT B ; X 

[1 ] X+-A 

[2] OLDY+-FN X 

[3] X+-X+.001 

[4] NEWY+-FNX 

[5] ~«OLDYX NEWY) > 0)/2 
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Compute the prevIOus y, called 
OLDY. 

Increment X by 0.001 

Compute the new y, called NEWY. 

If (OLDYXNEWy»O then OLDY 
and NEWY have the same sign, so we 
branch back to 2. 
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[6] ~«I OLDy) < (I NEWY» / END 

If the absolute value of OLDY is less 
than the absolute value of NEWY, 
branch to END. 

[7] R~X Otherwise, R is X, which corresponds 
to NEWY. 

[8] ~O End the program with R being the X 
corresponding to NEWY. 

[9] END: R~X- .001 R is the value of X corresponding to 
yo OLDY. 

This program keeps computing OLDY and NEWY until they have 
opposite signs (there has been a sign change). It then prints out the value 
of X corresponding to the smaller value of y in absolute value. 

Before executing this program, you need a subprogram FN for the 
function whose root is being approximated. You also need to examine 
PAIRS for the function to see where the sign changes occur. 

Example 

yo FN (1] 

[1] Y~(2XX*3)+(3XX*2)+(-12XX)-10 yo 

This is our previous Example 1. 

We know that the roots are between -3 and -2, between -1 and 0, and 
between 2 and 3. We can use ROOT to approximate these roots. 

-3 ROOT-2 
-2.957 

-1 ROOTO 
-0.762 

2 ROOT 3 
2.219 

EXERCISES 

Thus, the roots are approximately 
-2.957, -0.762, and 2.219, correct to 
three decimal places. 

1. Use the program PAIRS to generate a table of ordered pairs for the following 
functions, with -10.;; x.;; 10: 
(a) y=F(X)=X3+2x-5 
(b) y= F(x)=2x3+3x2-4x-1O 
(c) y=F(X)=X4-5x2+6 

(d) y= F(x)=X4_X3+X-2 
(e) y=F(x)=x5 -2x4+3x-5 

2. Using the table you generated in Exercise 1, graph the functions in Exercise 1. 
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3. Each of the functions in Exercise I has a root between I and 2. Use the 
technique explained in this section to approximate these roots correct to three 
decimal places. 

4. Use the program ROOT to do Exercise 3. 

S. Use the technique of this section to approximate the three roots of the poly­
nomial y = F(x)= x 3 -4x2 + 2x + 2. 

6. Use the program ROOT to do Exercise 5. 

7. If the polynomialy = F(x)= x 3 + A ·x2 + B·x+ C passes through the three points 
(0,0), (1,2), and (2,6), find A, B, and C. 

8. The volume of a sphere of radius x is given by the function V= t·'/T·x3• Write a 
program for finding the volume of a sphere. 

6.6 Rational functions 

Polynomials are special cases of rational functions, which we now briefly 
consider. 

Rational functions 

A rational function is a function of the form 

P(x) 
y=F(x)= Q(x)' 

where P(x) and Q(x) are polynomials. Included as rational functions are 
the polynomials, since they can be thought of as quotients of polynomials 
where Q(x)= I, a polynomial of degree O. 

Domains of rational functions 

Since polynomials are defined everywhere and since division by zero is not 
defined, the domain of a rational function consists of all real numbers 
except for the values of x for which Q (x) is zero (i.e., except for the roots 
of Q(x». 

Roots of rational functions 

The only way in which a quotient can be zero is for the numerator to be 
zero. Thus, the roots of a rational function are the same as the roots of the 
numerator P(x). 

Let us now consider the graphs of some rational functions. As before, 
we will use the program PAIRS to generate a set of ordered pairs. 

Example 1 
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This function has a root at x=4, since x=4 is the only root of the 
numerator. The domain of this function consists of all real numbers except 
for x = 2. At x = 2, the denominator is zero, and division by zero is not 
defined. Let us now use PAIRS to give us some points to use in graphing 
this function. 

VFN [1] 

[1] Y~{4-X)+{X-2) V 
X~«t5)-6),O,t5 

XPAIRSFNX 
- 5 -1.2857142857 
-4 -1.3333333333 
-3 -1.4 
-2 -1.5 
-1 -1.6666666667 
o -2 
1 -3 
2 9.999999999E999 

3 1 
4 0 
5 - .3333333333 

The value at which we have division 
by o. 9.9999999999E999 is essen­
tially infinity. 

The root. 

Before graphing this function, let us examine some pairs in the vicinity 
of x=2 (the value which is not in the domain of F(x).) 

X~1, 1 +{t10)X.2 

X PAIRS FNX 
1 -3 
1.2 -3.5 
1.4 -4.333333333 
1.6 -6 
1.8 -11 
2 9. 99999999 E999 
2.2 9 
2.4 4 
2.6 2.333333333 
2.8 1.5 
3 1 

Using these tables, we can graph 

It is shown in Figure 6.21. 

4-x y=F(x)=-. 
x-2 
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4 

3 

2 

y 

--~5~~4--+3--2+--r-O~~--+2--~~-;-----------X 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 6.21 Graph of Example 1. 

Vertical asymptotes 

Notice that the closer x gets to 2, the closer the curve gets to the line x = 2. 
This curve cannot ever touch the line x = 2, since x = 2 is not in the domain 
of the function. A line with the property that the curve approaches it 
continuously without ever touching it is called an asymptote of the func­
tion. The asymptotes of rational functions are the values of x which yield 
division by 0 (i.e., the roots of the denominator Q (x)). 

Example 2 

4 
y=F(x)= x-I 

In this example, the numerator, and therefore the rational function has no 
roots. This function is not defined at x = 1, since at x = 1, we would have 
division by O. Thus, x = 1 is a vertical asymptote for this function. To 
graph this function, we need some pairs to plot. 

'VFN [1] 

[1] Y~4+(X-1) 'V 

X~«t5)-6),O,t5 

X PAIRS FNX 
-5 - .666666667 
-4 -.8 
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-3 -1 
- 2 -1.333333333 
-1 -2 
o -4 
1 9.99999999E999 
24 
3 2 
4 1.333333333 
5 1 

The vertical asymptote. 

Let us also examine this function in the vicinity of the asymptote, x = I. 

X+-0,(t10)X.2 
X PAIRS FN X 

o -4 
0.2 -5 
0.4 -6.66666667 
0.6 -10 
0.8 -20 

9.99999999 E999 
1.2 20 
1.4 10 
16 6.666666667 
1.8 5 
2 4 

The asymptote. 

Thus, the graph is as shown in Figure 6.22. 

Example 3 

x 2 
y=F(x)= --

x 2 -1 

By the previous discussions, x = I and x = -1 are vertical asymptotes, since 
for these values, the denominator is 0. The root is x = 0, since for this 
value, the numerator is 0. 

VFN [1] 

[1] Y +-(X. 2)+ «X. 2)-1) V 

X+- «t5)...,.. 6), 0, t5 
X PAIRS FN X 

-5 1.041666667 
- 4 1.066666667 
-3 1.125 
- 2 1.333333333 
-1 9.99999999E999 
o 0 

Since x = -1 is an asymptote. 
This is our root. 
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y 

Figure 6.22 Graph of Example 2. 

1 9.99999999E999 
2 1.3333333333 
3 1.125 
4 1.06666666667 
5 1.041666667 

Since x = 1 is an asymptote. 

We also want to examine this function in the vicinity of its asymptotes. 

X~ -2, -2+(t10)X.2, (t10)X.2 
X PAIRS FNX 

-2 1.333333333 
-1.8 1.4464285715 
-1.6 1.6410230769 
-1.4 2.0416666667 
-1.2 3.2727272727 
-1 9.9999999E999 x = -1 is an asymptote. 
-0.8 -1.7777777778 
-0.6 - .5625 
-0.4 -.1904785714 
-0.2 -.0416666667 

174 



6.6 Rational functions 

o 0 
0.2 - .0416666667 
0.4 -.04785714 
0.6 -.5625 
0.8 -1.7777777778 
1 9.99999999E999 
1.2 3.2727272727 
1.4 2.0416666667 
1.6 1.6410230769 
1.8 1.4464285715 
2 1.333333333 

The root. 

x = I is an asymptote. 

Based on these tables of pairs, the graph is as shown in Figure 6.23. 

I 
I 
I 

~i 

y 

I 
I 
I 
I 
I 
I 
I 
I 
I 

------------~~~~~~-----------x 
II 2 
I 
I 
I 
I 
I 
I 
I 
I 

Figure 6.23 Graph of Example 3. 

Applications 

1. One important use of rational functions is in cost-benefit curves as the 
following: 
Let y be the cost, iIi thousands of dollars, of removing x percent of a 
certain pollutant from the air in a certain chemical factory. Suppose 
y= 15·x/(100-x). Then, the cost of removing 50 percent of this 
pollutant is 

15·50 
y= 100-50 =$15,000. 
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The cost of removing 90 percent of the pollutant is 

15·90 
y = 100-90 =$135,000. 

The company would have to consider if it is really worth the expense of 
removing 90 percent of the pollutant or if some lower percent is 
permissible. 

2. Suppose that a widget manufacturer is able to make x number one 
quality widgets and y number two quality widgets per day, where the 
relationship between x and y is given by the rational function 

60-12x 
y= 6-x 

(a) If the manufacturer only produces number one quality widgets on a 
given day, then y=O, so that 60-12x=0, or x=5. Thus, he can 
produce a maximum of 5 number one quality widgets in a day. 

(b) If he only produces number two quality widgets, then x = 0, so 
y =60/6= 10 number two quality widgets. 

EXERCISES 

1. Find the roots and vertical asymptotes of the following rational functions: 
10 I 

(a) y= x-2 (d) y= x2+ I 

(b)y=5-x x2+1 
x-I (e)y=--
x 2-I x 2-x 

(c) y=--
x 2 + I 

2. Use the program PAIRS to print out a table of ordered pairs for the functions in 
Exercise I, where - 5.;; x.;; 5. 

3. Use the program PAIRS to print out a table of ordered pairs in the immediate 
vicinity of the asymptotes to the functions in Exercise I. 

4. Use the information gathered above to graph the functions in Exercise l. 

S. Let y be the cost, in hundreds of dollars, of removing x percent of the impurities 
from the drinking water in a community. The function relating x and y is the 
rational function y =25 'x/(IOO- x). 
(a) Find the cost of removing 10 percent of the impurities. 
(b) Find the cost of removing 50 percent of the impurities. 
(c) Find the cost of removing 90 percent of the impurities. 

6. Suppose it costs $10 each to manufacture and distribute a gadget. If the 
manufacturer sells the gadgets for x dollars each, then the number he can sell is 
given by 

100 
n= x-IO +5·(lOO-x). 

How many can he sell at a price of $20? $30? 

176 



Exponential and logarithmic functions 7 

All of the functions we have considered so far have been algebraic 
functions. An algebraic function is a function involving only the operations 
of addition, subtraction, multiplication, division, powers, and extraction of 
roots of expressions of the form a'x n , where a and n are real constants. 
Any function that is not algebraic is called a transcendental function. In this 
chapter, we will consider two important classes of transcendental func­
tions, the exponential and logarithmic functions, as well as some applica­
tions of each. 

7.1 Exponential functions 

Definition 

An exponential function is a function of the form y = F(x)= a·bk.X, where 
a, b, and k are nonzero constants. We shall also require that b, called the 
base of the exponential function, be positive so that the function will be 
defined for all real powers. (For example, if b = -I, then bo.5 = Vb would 
not be defined.) 

The domain of an exponential function is the set of all real numbers, 
unless otherwise explicitly restricted. The following examples illustrate the 
general characteristics of an exponential function. 

Example 1 

Graph y = F(x)=2x. 
We need a set of ordered pairs. Therefore, we will use the program 

PAIRS. 
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7 Exponential and logarithmic functions 

v FN[1] 
[1] Y~2*XV 

X~«t5) -6), 0, t5 
X PAIRS FN X 

-5 .03125 
-4 .0625 
-3 .125 
-2 .25 
-1 .5 
o 1 
1 2 
2 4 
3 8 
4 16 
5 32 

Changing the function in FN to y = 
2X. 

Thus, the graph is as shown in Figure 7.l. 

y 

8 

2 3 4 5 

Figure 7.1 Graph of Example I. 

Example 2 

Graph y = F(x)=2-x . 

V FN[1] 

[1] Y~2* -XV 
X~«t5)-6),0,t5 

X PAIRS FN X 
-5 32 

178 



7.1 Exponential functions 

Thus, the graph is as shown in Figure 7.2. 

y 

:1 
6 

5 

4 

3 

234 5 

Figure 7.2 Graph of Example 2. 

Since the domain of an exponential function includes all real numbers, 
we can use any real number for x. Consider the following examples: 

Examples 

2*.5 
1.414213562 

2*.4 
1.319507911 

2*01 
8.824977827 

2°·5 or 21/2 or V2 . 

2- 3 or 1/23 or 1/8. 

2", since in APL, '1T is 01. 
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7 Exponential and logarithmic functions 

2*2* .5 
2.665144143 

2 

-4* .5 
DOMAIN ERROR 

3 4 5*2 
9 16 25 

3 4 5*3 2 
27 16 5 

4*£4 
4 16 64 256 

(£4)*4 
16 81 256 

81/ 3 or rs . 

C 4)°·5 or v=4 , which is not a real 
number. This is why we have made 
our bases positive. We want to be 
able to include the entire real num­
ber system in the domain. 

This example might cause some 
mathematicians to cringe. Let us call 
this an APL curiousity. In APL, bO= 
1 for all real b. 

This is 23,24,25. 

Negative and fractional exponents 

A few words should be said about negative and fractional exponents for 
those who have not encountered them before. The following definitions 
explain these exponents: 

b -n=...!.. 
b n 

We have used these definitions in the previous examples. However, a 
couple more examples follow: 

Examples 

4*-2 
0.0625 

3 
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7.1 Exponential functions 

3 

9 

0.5 

2*.5 
1.414213562 

The base e 

Perhaps the most important exponential function in practical applications 
is the exponential function with base e. It is expressed asy=F(x)=ex , 

where e is an irrational number approximately equal to 2.718281828. We 
will consider some of these applications in the next section. This exponen­
tial function is so important that it is often referred to as the exponential 
function. 

The exponential function in APL 

The importance of the exponential function with base e is further empha­
sized by the fact that it is a keyboard monadic function in APL. eX in 
standard notation corresponds to * X in APL. 

The following examples illustrate the monadic use of * in APL. 

Examples 

*1 e1=e. 
2.718281828 

*2 e2• 

7.389056099 

*3 e3. 
20.08553692 

*1 2 3 e\e2,e3. 
2.718281828 7.389056099 20.08553692 

*-1 e- 1• 

0.3678794412 

*-2 e-~ 

0.1353352832 

*.5 e°.5=e1/2=Ve. 
1.648721271 
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7 Exponential and logarithmic functions 

Graph of the exponential function 

V FN[1] 

[1] Y~*XV y=e X in APL. 
X ~«L5) - 6), 0, L5 
X PAIRS FNX 

-5 .006737946999 
-4 .01831563889 
-3 .04978706837 
-2 .1353352832 
-1 .3678694412 
o 1 
1 2.718281828 
2 7.389056099 
3 20.08553692 
4 54.59815003 
5 148.4131591 

Thus, the graph of the exponential function is as shown in Figure 7.3. 

y 

--~~~~~~~~~~~~--x 
-5 -4 3 2 -1 0 2 3 4 5 

1 

Figure 7.3 Graph of the exponential function. 

EXERCISES 

1. Use the program PAIRS to print out a table of ordered pairs for the following 
exponential functions with - 5..; x ..; 5, and use this table to graph the functions: 
(a)y=4x 
(b) y=3-x 
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7.2 Applications of exponential functions 

(c)y=e- X 

(d) y=2x' 

(e) y=7Tx 
(f) y=2 lxl 

(Recall that in APL, 7T is 01.) 
(Recall that in APL, Ixl is IX.) 

2. Evaluate the following with pencil and paper: 
(a) 251/ 2 (e) (1/2)-3 
(b) W/4 . (f) (V2)4 
(c) 5-2 (g) 81 1/ 4 

(d) eO (h) 1254/ 3 

3. Check your answers to Exercise 2 at an APL terminal. 

4. If the graph of an exponential function passes through the two points (0,5) and 
(1,20), find the function (i.e., find a and b, wherey=a·b X ). 

5. Investigate the values of (I +(1/ N»N, for N getting larger and larger. Some 
texts define e to be the limiting value of this expression as N approaches infinity. 

7.2 Applications of exponential functions 

In this section, we will consider some applications of exponential func­
tions. 

Application 1: Exponential growth 

A quantity is growing exponentially if the amount of the quantity, y, 
present after x time intervals is given by a formula of the form y = a·bX, 
where a is the amount present when x = 0, and b is the rate of growth per 
time interval. 

For example, suppose that the number of Japanese beetles on a golf 
course doubles each week during the summer. Suppose that on July 1, 
there are 100 Japanese beetles on the golf course. How many will there be 
on July 29? 

1600 

A~100 

B~2 

X~4 

When x=O, there are 100 beetles 
present. 

The rate of growth per week is 2. 

There are 4 weeks between July 
and July 29. 

y = a·b x in conventional notation. 
Print outy. 

So, there will be 1600 Japanese beetles in just 4 weeks. 
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7 Exponential and logarithmic functions 

Application 2: Compound interest 

If an amount P, called the principal, is deposited in a savings bank at a 
yearly interest rate I for x years, and if the interest is compounded N times 
per year, then the total amount accumulated at the end of x years is given 
by 

( I )NOX 
A=Po 1+ N . 

(a) Suppose that $100 is deposited in a savings bank which has a yearly 
interest rate of 6 percent compounded quarterly, and is left there for 5 
years. Find the amount accrued at the end of 5 years. 
Since the interest rate of 6 percent is compounded quarterly, then each 
quarter, an interest rate of (6/4) percent is given on the previous 
balance. Thus, the balances at the end of each quarter for the first year 
would be: 

100 + 100· 0.Ql5 = 100· (I + 0.015)1 
after 1 interest period, 

100· (I + 0.015i + 100· (1 +0.015)1·0.015 = 100·(1 +0.015)2 
after 2 interest periods, 

100·(1 + 0.015i + 100· (1 +0.015)2·0.015 = 100· (1 +0.015)3 
after 3 interest periods, 

100· (l + 0.015)3 + tOO· (1 +0.015i·0.015 = 100· (1 +0.015)4 
after 4 interest periods, 

or one year. 

Continuing this process for 5 years, the total amount accumulated 
would be A = 100·(1 + 0.0 1 5io, as given by the formula. Thus, applying 
the formula to this problem yields the following result: 

P~100 

/~.06 

N~4 

X~5 

A~PX(1 +/+N)*NXX 
A 

Quarterly means 4 times per year. 

134.6855007 

Thus, the amount accrued is $134.68. 
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7.2 Applications of exponential functions 

(b) How much should be deposited in the above bank if one would like to 
have a total of $2000 at the end of 5 years? We now have the value of 
A, $2000 and would like to have the value of P. In a problem such as 
this, P is called the present value. Solving the above formula for P, we 
get the formula for present value 

P= A 
(1 + (//N)t· x 

A~2000 

P~A+(1 +/+N)*NXX Note that the values of I, N, and X 
have been specified previously. 

P 
1484.940836 

Thus, $1484.94 should be deposited now if we want to have $2000 in 
the account at the end of 5 years. 

It can be shown that as N, the number of times interest is compounded per 
year, gets larger and larger, the value of the quantity (1 + (I/ N)t·x will get 
closer and closer to the quantity e/·x • This is very useful in doing problems 
where the interest is compounded continuously, where N increases without 
bound. The verification of this statement will be left as an exercise. 

Application 3: Interest compounded continuously 

If interest is compounded continuously, then the total amount in the account 
after x years if a principal P is deposited and the yearly interest rate is I is 
given by the formula 

Suppose $100 is deposited in a bank which has an interest rate of 6 
percent compounded continuously. How much is this investment worth at 
the end of 10 years? 

P~100 

1~.06 

X~10 

A~PX(*/XX) 

A 
182.21188 

Thus, the original $1 ()() has become $182.21 in 10 years. 
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7 Exponential and logarithmic functions 

Application 4: Continuous growth 

If a quantity grows continuously at a rate of K percent per time period, 
and if P is the amount of the quantity present after 0 time periods, then the 
total amount present after x time periods is given by the formula 

A =P·e K·x • 

Suppose that the population of a country increases continuously at a 
yearly rate of 5 percent. Suppose that right now there are 1,000,000 people 
in the country. How many people will there be in lO years? In 20 years? 

P~1000000 

K~.05 

X~10 

A~PX(*KXX) 

A 
1648721.271 

Thus, there will be 1,648,721 people in lO years. 

X~20 

A~PX(*KXX) 

A 
2718281.828 

Thus, there will be 2,718,281 people in 20 years. 

Application 5: Continuous decay 

If a quantity decays continuously at a rate of K percent per time period, 
and if P is the amount of the quantity present after 0 time periods (i.e., in 
the beginning), then the amount present after x time periods is given by 
the exponential function 

A =P·e- K·x • 

This situation occurs in problems involving radioactive decay. For exam­
ple, suppose that a radioactive substance decays at a rate of 5 percent per 
year. If a lump of this substance is 500 grams now, what will it be in 25 
years? 

P~500 

K~.05 

X~25 

A~PX(* -KXX) 
A 

143.2523984 
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7.2 Applications of exponential functions 

Thus, there will be approximately 143.25 grams of this substance left 
from the original 500 grams in 25 years. 

Further applications of exponential functions will be given in the 
exercises. However, the above examples should help to convince the reader 
of the importance of this class of functions. 

EXERCISES 

I. Write a program for the amount accumulated in x years if a principal P is 
deposited in a savings account at a bank which has an interest rate of 5 percent 
compounded semiannually. 

2. Use your program in Exercise I to find the amount in the account if $400 is 
deposited in this bank for 15 years. 

3. Repeat Exercises 1 and 2 if the bank compounds interest quarterly. 

4. Repeat Exercises 1 and 2 if the bank compounds interest monthly. 

5. Repeat Exercises 1 and 2 if the bank compounds interest continuously. 

6. Find the amount of money that should be deposited in the bank of Exercise 1 
if one would like to have $1000 in the account in 10 years. 

7. If the population of a certain weed in a lawn triples every year, and if there are 
50 such weeds in 1975, find the number of these weeds in the lawn in 1984, 
provided they are allowed to multiply. 

8. If the size of a rash in a patient is cut in half every hour due to a wonder 
remedy, and if the rash covers 60 square inches of the patient's body at 1 
o'clock, how much of the body will be covered by the rash at 5 o'clock, 
provided he applies the remedy as prescribed by his doctor? 

9. Write a program for the continuous growth or decay function A = P·e Kox• 

10. If interest is compounded continuously at a rate of 5.25 percent per year, 
(a) Find the amount that will be in the account if $500 is deposited and left for 

8 years. 
(b) Find the amount that should be deposited to yield a balance of $750 in 8 

years. 

II. Suppose that the number of bacteria in a culture increases continuously at a 
rate of 10 percent per hour. Suppose that at 10:00 AM there are 100 such 
bacteria present in the culture. Find the number of bacteria that will be present 
in the culture at 3 PM. 

12. A radioactive substance disintegrates continuously at a rate of 8 percent per 
year. If there are 80 grams of this substance today, how much will there be 20 
years from now? 

13. An exponential function of the form y = P + P·e - Kox is often referred to as a 
learning curve, where P is the original production of the subject whose progress 
is being watched, K is a constant called the learning constant, x is the elapsed 
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7 Exponential and logarithmic functions 

time, and y is production of the subject at the end of x units of time. Suppose 
that a new employee on a production line can produce 200 pieces per day. 
Suppose that K=O.l. How many pieces should this employee produce after 10 
days on the job? 

14. Learning curves can also assume the form y = P - P·e - K.x. Suppose the new 
employee scraps 25 pieces the first day. Using this learning curve, how many 
pieces will he scrap on the 10th day? 

15. Describe the differences between the learning curves (if any) in Exercises 13 
and 14. 

16. In the text, it was stated that if N is large, the value of the quantity 
(1 + (I/ N))N.x and the value of the quantity e l 'x will be approximately the 
same. Letting 1=0.06, x=5, and N= 100, verify this statement at an APL 
terminal. 

7.3 Logarithmic functions 

Closely related to the concept of exponential function is the concept of 
logarithmic function. In fact, the logarithmic function with base b is the 
inverse function of the exponential function with base b. Two functions 
which mean the same thing except that the roles of the independent and 
dependent variables are reversed and are called inverse functions. 

Definition of logarithmic function 

If b>O, but b7"ol, and if x>O, then y=F(x)=logbx (read as "y is the 
logarithm to the base b of x") means the same as x = bY. (log( x is not 
defined, since then we would have x = }Y = I, and the only value x could 
have would be 1. Thus, we don't allow a base of 1.) 

Examples to Illustrate the Definition 

logto 1000=3, since 103 = 1000. 

log2 32 == 5, since 25 = 32. 

10gto.01 = ~2, since 1O~2= .01. 

For any base b, 10gb I =0, since bO= 1. 

For any base b, 10gb b = I, since b (= b. 

Logarithms in APL 

The APL notation for 10gb x is B®X. [Note: ® is an overstrike of * and 0.] 

Examples 

10®1000 
3 
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2@32 
5 

10@.01 

o 
5@5 

1 

10@-2 
DOMAIN ERROR 

10@0 
DOMAIN ERROR 

10@.01 .1 10 100 1000 
-2 -1 1 2 3 

Natural logarithms 

IOg2 32. 

10glO .01. 

7.3 Logarithmic functions 

10glO -2 is not defined, since x is not 
> O. There is no way to raise 10 to a 
power and get a negative. 

10glOO is not defined, since there is 
no way to raise 10 to a power and get 
o. 
10glO 0.0 I, 10glO 0.1, 10glO 10, 
10glO 100, 10glO 1000. 

In many practical applications of logarithms, the base is the number e. 
Logarithms with base e are called natural logarithms. Logex is usually 
denoted as Inx. 

By our definition of logarithm with base e, y = Inx means the same as 
x=eY • 

Examples 
Ine = I, since e l = e. 
In I =0, since eO= 1. 

Natural logarithms in APL 

The APL notation for Inx is @ X. That is, if no base is indicated to the left 
of the logarithm symbol, @ , the base is understood by the computer to be 
e. 

Examples 

@ *1 Ine= I. 
1 

@ *2 Ine2=2. 
2 
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7 Exponential and logarithmic functions 

* 1 o 
*2 

0.6931471806 

* 10 
2.302585093 

* -2 
DOMAIN ERROR 

* 0 
DOMAIN ERROR 

* 1 2 10 
o .6931471806 2.302585093 

In I =0. 

In2. 

In 10. 

In -2 is not defined. 

In 0 is not defined. 

In 1,ln2,ln 10 

To get a feeling for logarithms as functions, we now graph a couple of 
logarithmic functions. 

Example 1 

Graph y =log2 x. We can use the program PAIRS to generate a set of 
ordered pairs for this function. 

V FN[1] 

[1) Y~2®XV 

X~t10 

X PAIRS FN X 
1 0 
2 1 
3 1.584962501 
4 2 
5 2.321928095 
6 2.584962501 
7 2.807354922 
8 3 
9 3.16992501 
10 3.321928095 

Let us also examine this function for values of x getting closer and 
closer to O. 

1 0 

X~(11-t10)X .1 
X PAIRS FN X 

0.9 -.1520030934 
0.8 - .3219280949 
0.7 - .5145731728 
0.6 - .7369655942 
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7.3 Logarithmic functions 

0.5 ~1 

0.4 ~ 1 .321928095 
0.3 ~ 1.736965594 
0.2 ~2.321928095 
0.1 ~3.321928095 

Using these two tables of ordered pairs, the graph of y = log2 x looks as 
shown in Figure 7.4. 

y 

Figure 7.4 Graph of Example 1. 

Example 2 

Graphy=lnx. 

V FN[1] 

[1] y~® XV 

X~t10 

X PAIRS FN X 
1 0 
2 .6931471806 
3 1.098612289 
4 1 .386294361 
5 1 .609437912 
6 1 .791759469 
7 1.945910149 
8 2.079441542 
9 2.197224577 
10 2.302585093 

The APL natural log function. 

Examining this function close to zero, we get: 

1 0 

X~(11 -(10)X.1 
X PAIRS FN X 

0.9 ~.1053605157 
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7 Exponential and logarithmic functions 

0.8 -.2231435513 
0.7 - .3566749439 
0.6 - .5108256238 
0.5 -.6931471806 
0.4 -.9162907319 
0.3 -1.203972804 
0.2 -1 .609437912 
0.1 -2.302585093 

Thus, based on these tables of ordered pairs, the graph of y = lnx is as 
shown in Figure 7.5. 

These graphs are typical of the graphs of logarithmic functions. 

y 

------~o+-~~-+-+~~+-~~--X 

Figure 7.5 Graph of Example 2. 

EXERCISES 

1. Use the program PAIRS to generate tables of ordered pairs for the following 
functions where 1 ..;; x..;; 10, and where 0.1 ..;; x..;; 1. Then use these pairs to graph 
these functions: 
(a) y=10g3x (b) y=logJOx (c) y=lnx2 

2. Use the definition of y = 10gb X to evaluate the following logarithms: 
(a) 10gs25 (c) 10&12 (e) 10gsO.04 
(b) 10g3 81 (d) 10~4 (f) Ine Y2 

3. Repeat Exercise 2 at an APL terminal. 

4. Evaluate the following logarithms at an APL terminal: 
(a) 10gJ02.35 (b) 10gJ0235 (c) 10gJ0 23500 
[Do you see any relationship among these logs?] 

5. Evaluate the following logs at an APL terminal: 
(a) 10gs4 (b) 10gs6 (c) 10gs24 
[Do you see any relationship between the answer to (c) and those of (a) and (b)?] 

6. Evaluate the following natural logs at an APL terminal: 
(a) In4 (b) in 15 (c) In60 (d) In 16 
(e) How are (c) and (d) related to (a) and (b)? 
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7.4 Properties and applications of logarithms 

7.4 Properties and applications of logarithms 

Much of the usefulness of logarithms can be attributed to the following 
three properties. 

Properties of logarithms 

If M and N are positive real numbers, then 

1. 10gb(M·N)=logbM+logbN 
2.10gb(M/N)=logbM-logbN 
3. 10gb(Mk)=k·logbM 

To illustrate the way in which these rules are derived, we shall prove 
Rule 2. The proofs of the other two rules are done similarly and are left as 
exercises. 

Proof of Property 2: 

Let x = 10gb M and y = 10gb N. Then, by the definition of log to the base b, 
M= b X and N=bY • We are interested in M/ N. Thus, 

M = b X =bx - y 
N bY , 

since exponents are subtracted when you divide. Using the definition of 
logarithm to the base b on this expression, we get 

x-y=logb( ~). 
However, 

x - y = 10gbM -logbN. 

Therefore, 

Application 1: Computations with logs 

A decade or more ago, before the invention of the inexpensive pocket 
calculator or the readily accessible computer, one of the main applications 
of logarithms was to simplify arithmetical computations. Since our number 
system is based on base 10, logarithms to base 10, called common logs, 
were used.) 

IJohn Napier (1550-1617) actually invented logarithms for this purpose. He also invented an 
early form of the slide rule, which is based upon logarithms. 
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Example 1: Multiplication 

Property I can be used to convert a multiplication problem to an addition 
problem. Consider the problem of multiplying 32.4 by 41.8. 

Let M=32.4 and N=41.8. We want to compute M·N. By Property I, 
10glO(M·N)=logIOM+logION. Let us use APL to find and add these logs. 
Actually logs to any base can be used. However, for historical reasons, we 
will use logs to base 10. 

M~32.4 

N~41.8 

10®M 
1.51054501 

10@N 
1.621176282 

(1 0@M)+(10@N) 
3.131721292 

Thus, we have now computed 10glO(M·N). However, we really want 
M· N. Thus, we want the number whose log to the base 10 is 3.131721292. 
In other words, we want 103.131721292. (This is often referred to as the antilog 
of 3.131721292.) Using APL, we get the following: 

10.3.131721292 
1354.32 

Thus, M· N = 1354.32. Let us check this using APL: 

MXN 
1354.32 It checks! 

This process was particularly useful when one wanted to multiply 
several numbers. It is much easier to add several logarithms and then 
compute the antilog than to multiply the numbers. However, if one has a 
calculator or a computer terminal handy, it is even easier to just multiply 
the numbers directly. Therefore, today, we would probably not use the 
above process to multiply numbers. We are presenting this process because 
it has historical interest and because it illustrates an application of the 
properties of logarithms. For these same reasons, let us also illustrate the 
way in which to use the rules of logs to simplify division, exponentiation, 
and extraction of roots. 

Example 2: Division (optional) 

Property 2 can be used to convert a division problem to a subtraction 
problem. Consider the problem of dividing M by N. By Property 2, 

loglO( Z) = loglOM -logION. 
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Using APL, 

M 
32.4 

N 
41.8 

(1 O®M) - (1 O®N) 
- .1106312716 

Just to recall the values of M and N. 

10glOM -logION. 

This is the value of 10glO(M / N). To get M / N, we need the number 
with this log. Thus, 

10* -.1106312716 

. 7751196172 

M+N 
. 7751196172 

10-0.1106312716= M / N, since 
10gb(M / N)= -0.1106312716. 
Thus, M/N=0.775ll96l72 . 

It checks . 

Example 3: Exponentiation (optional) 

Property 3 can be used to convert a problem in raising a number to a 
power to a problem in multiplication. Consider the problem of computing 
MO.4• By Property 3, 10glO(MoA)=0.4·logIO M. Using APL, 

.4 X (1 O®M) O.4·logIO M . 
. 6042180041 

This is the value of IOglO(Mo.4). To get MO.4, we need the antilog. 

10* 0.6042180041 
4.019925496 

M*.4 
4.019925496 

Thus, MOA=4.0l9925496. 

It checks. 

Example 4: Root extraction (optional) 

Since MIlk = frM , then the problem of extracting a root can be handled 
in the same way as the problem of exponentiation. Let us use logs and 

APL to compute frM. We use the fact that frM =MI/3. 

M 
32.4 

(1 + 3) X (1 O®M) 
.5035150034 

10* 0.5035150034 

3.187975708 

M*1 +3 
3.187975708 

Recalling the value of M. 

t.loglOM = 10g10(M 1/3). 

Getting the antilog. 

Thus, frM =3.187975708. 

It checks. 
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7 Exponential and logarithmic functions 

Application 2: Solving exponential equations 

One very important application of logarithms is in solving exponential 
equations. An exponential equation is an equation of the form a x = b, where 
a and b are constant known values. To solve it means to find the value of 
x. To do this, we could use logarithms to any base. We will use natural 
logarithms. The procedure is as follows: 

aX=b. 
Take the natural log of both sides. Thus, 

Inax=lnb. 
Using Property 3, 

Example 

Inb 
x·lna=lnb, or x= Ina. 

Solve 3x =7 for x. By the above discussion, x=ln7/1n3. In APL, 

X~(@7)+(@3) 

X 
1.771243749 So, x= 1.771243749. 

3*X 
7 Thus, 3x = 7, and it checks. 

Application 3: Radioactive half-life 

Suppose that the amount of a radioactive substance present after x years is 
given by the exponential function 

A =500.e -O.05.x. 

The half-life of this substance is the amount of time, T, required for 
exactly half of this substance to disintegrate. The procedure for finding T 
is as follows: 

A = 500.e -O.05·x 

At time x =0, A =500. To find the half-life, we need to find the value of x, 
which we are calling T, for which A = 250 (half of the initial amount). In 
other words, we need to solve the equation 

250=500.e -O.05·T 

for T. Thus, 

;~ = e -O.05.T, or .5 = e -O.05·T. 

Taking the natural log of both sides yields 

InO.5 =In(e -O.05.T) = -0.05· T·lne (By property 3) 

= -0.05· T (Since Ine= I). 
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Thus, 

Using APL, we get 

T~(@.5)+-.05 

T 

T = InO.5 
-0.05· 

13.86294361 Thus, the half-life of the substance is 
almost 14 years. 

250 500·e -O.OS·T =250, so it checks. 

Application 4: Continuous compound interest revisited 

In Section 7.2., we pointed out that if interest is compounded continuously 
for x years at a yearly interest rate I, then the amount, A, in the account 
after x years if a principal P is deposited is given by the exponential 
function 

A =P·e I .x • 

At a 6 percent interest rate compounded continuously, how long does it 
take for a deposit to double its initial value? 

Thus, we have 

2·P=P·e I .x =P·eO.06.x, or 2=eO.06·x • 

Applying In to both sides yields 

In2= Ineo.06.x = 0.06x·Ine =O.06·x. 
Thus, x = (In 2) /0.06. Solving this problem in APL, we get 

X~(®2)+.06 

X 
11.55245301 Thus, the deposit doubles its value in 

about 11.55 years. 

*.06XX eO.06·x = 2, so it checks. 
2 

EXERCISES 

1. Prove Properties I and 3 of logarithms. 

2. Solve the exponential equation 5x =9 for x. 

3. Write an APL program to solve an exponential equation A x = B for x. 
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7 Exponential and logarithmic functions 

4. Evaluate In5 and InS on an APL terminal. Use the properties of logarithms 
and the values you got for In 5 and In S to evaluate the following logarithms: 
(a) In40 (b) In 1.6 (c) In25 (d) In200 (e) InV5 

5. Use common logs and the properties of logarithms to compute the following 
(M=5S.6, N=2.79, P=341): 
(a)M·N·P (b)PjM (C)N5 (d)VP 

6. If the amount of a radioactive substance present after x years is given by 
A = SO'e -O.08'x, find the half-life of the substance. 

7. If a bank compounds interest continuously at a rate of 5 percent, how long 
does it take for the deposit to double in value? 

8. In Exercise 7, how long does it take for the deposit to triple in value? 

9. If the revenue from the sales of x items is given by the formula y = 1000· 
In( x + 1) dollars, find the revenue from the sale of 25 of these items. 

10. Prove the following statement about logarithms: 

10gb(b X ) = x. 
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Differential calculus 8 

Calculus-an essential tool of any mathematician, engineer, or scientist­
is one of the most important branches of modern mathematics. In recent 
years, calculus has also become an important tool in such areas as business 
administration, economics, psychology, and sociology. In all of these areas, 
we are interested in instantaneous rates of change, and calculus is the tool 
for finding such rates of change. In an introductory text such as this, we 
cannot attempt to present a thorough coverage of calculus. In fact, in most 
colleges, calculus is offered in a 3- to 5-course sequence. It is our intention 
to introduce the student only to some of the more important concepts and 
applications of calculus. It is hoped that this will give the student some 
appreciation of this vital area of mathematics. Perhaps it might even 
inspire some students enough to take part or all of the calculus sequence. 

There are two branches to calculus: differential and integral calculus. 
Using differential calculus, we can answer such questions as "How fast is 
an object moving at any instant?" and "How many items should be 
produced in order to maximize profit or minimize cost?" Using integral 
calculus, we can answer such questions as "Given the acceleration of a 
moving object at any time t, what is its velocity at time t?" and "What is 
the area under the normal probability curve between two specified val­
ues?" As we shall see, these two branches of calculus are very closely 
related to each other via the "Fundamental theorem of calculus." First, we 
will treat differential calculus. 

8.1 The limit of a function 

We begin our study of calculus by considering the idea of limit. 
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8 Differential calculus 

Definition of the limit of a function 

Let F(x) be a function and let c and L be real numbers. The symbolism 

lim F{x)=L (read "the limit as x approaches c of F{x) is L") 
x ..... c 

means that as x gets closer and closer to c, F(x) gets closer and closer to 
L. Or, in other words, we can make F(x) as close to L as we desire by 
making x close enough to c. If no such real number L exists, we say that 
the limit does not exist.' [Note: In this definition, we are considering the 
values of F(x) for x "close to" c. We are not considering the value of F(x) 
at c, although in some instances, the value of the limit L will be F(c). 
There are other instances where F(c) does not exist, but the limit L does 
exist. In fact, the derivative is one of these instances.] 

Lr----~"" 
F(x) 

F(x) 
L r-----:lIIr'" 

x c c x 

(8) (b) 

Figure 8.1 (a) The left-hand limit: As x gets close to c from the left, F(x) gets 
close to L. (b) The right-hand limit: As x gets close to c from the right, F(x) gets 
close to L. 

One way of evaluating limx-+cF(x) is to examine the values of F(x) for 
values of x getting closer and closer to c. We will examine F(x) as x gets 
close to c from the left (the left-hand limit; Figure 8.la), and as x gets 
close to c from the right (the right-hand limit; Figure 8.1 b). These limits 
should be the same. Otherwise, we will say that the limit does not exist. In 
order to find these left-hand and right-hand limits, we can use the program 
FN as in the following examples. 

lOur definition of limit is not the one given in most calculus texts. The words "close" and 
"closer" are usua1ly made more precise using the so called "8,e" definition. However, the 
more intuitive definition will suffice for our purposes. 
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8.1 The limit of a function 

Example 1 

Find limx--->z{3x2). 

VFN [1] 

[1] Y~3XX*2 V Altering FN to fit this function. 

FN 1.9 1.99 1.999 1.9999 Four values as x gets closer and 
closer to 2 from the left. 

10.83 11.8803 11.98803 11.99880003 

FN 2.1 2.01 2.001 2.0001 Four values as x gets closer and 
closer to 2 from the right. 

13.23 12.1203 12.012003 12.00120003 

From these results, it can be seen that as x gets closer and closer to 2, 
from the left as well as from the right, 3x2 gets closer and closer to 12. 
Thus 

Example 2 

Find 

VFN [1] 

lim (3x 2 ) = 12. 
x ..... 2 

[1] Y~«2XX)+1)+(X*2) V The new FN. 

FN 2.9 2.99 2.999 2.9999 The left-hand limit. 
.8085612366 .7807518932 .7780741852 .7778074085 

FN 3.1 3.01 3.001 3.0001 The right-hand limit. 
.749219563 .7748258849 .7774815926 .7777481493 

From these results, we get 

lim ( 2x + 1 ) = 0.778 = 2 . 
x ..... 3 x 2 9 

Notice that in the two examples above, limx ..... cF(x)=F(c). Functions 
with this property are said to be continuous at x = c. Not all functions are 
continuous at x = c. The following example illustrates this. 

Example 3 

Find 

. (x2 -1) hm -=-1 . 
x ..... I x 
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8 Differential calculus 

In this function, F(l)=OjO, which is not defined. Thus, limx ..... cF(x)~ 
F(c). However, we can still evaluate this limit as follows: 

TVFN [1] 

[1] Y~«X.2)-1)+(X-1) TV 

FN .9 .99 .999 .9999 .99999 The left-hand limit. 
1.9 1.99 1.999 1.9999 1.99999 

FN 1.1 1.01 1.001 1.0001 1.00001 

The right-hand limit. 
2.1 2.01 2.001 2.0001 2.00001 

Thus, 

( x2-1 ) lim -- =2. 
x ..... I x-I 

This example can also be solved by using a little algebra. Since 

x2 -1 (x-l)(x+l) 
--= =x+l x-I x-I ' 

then 

Example 4 

Find 

TV FN [1] 

[1] Y~5+(X-1) TV 

FN .9 .99 .999 .9999 
-50. - 500. - 5000. - 50000. 

lim (x + 1) =2. 
x ..... I 

lim(~1 ). 
x ..... I x 

The left-hand limit. 

FN 1.1 1.01 1.001 1.0001 
50. 500. 5000. 50000. 

The right-hand limit. 

From these results, it seems that as x gets closer and closer to 1 from the 
left, F(x) gets more and more negative, and as x gets closer and closer to 1 
from the right, F(x) gets larger and larger, with no apparent upper value. 
Thus, the limit in this example does not exist. 
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8.1 The limit of a function 

Example 5 

Find 

. (2+ h)2_4) 
lIm h . 
h_O 

(Note that the letter used in this limit problem is of no significance, since 
the answer is a number. 

Y' FN [1] 

[1] Y~«(2+X)*2)-4)+XY' 

FN -.1 - .01 - .001 - .0001 - .00001 

The left-hand limit. 
3.9 3.99 3.999 3.9999 3.999990003 

FN .1 .01 .001 .0001 .00001 

The right-hand limit. 
4.1 4.01 4.001 4.0001 4.000009994 

Thus, it appears that the limit is 4. This can also be done algebraically 
as follows: 

. (2+h)2_ 4 . 4+4h+h2_4 . h·(4+h) 
lIm h = lim h = lIm h 
h_O h-->O h-->O 

= lim (4+ h) =4. 
h_O 

Example 6 

Find limx-->o(l + X)I/x. 

Y' FN [1] 

[1] Y~(1+X)*(1+X)Y' 

FN -.1 - .01 - .001 - .0001 - .00001 

The left-hand limit. 
2.867971991 2.731999026 2.719642216 2.718417755 2.718295421 

FN .1 .01 .001 .0001 .00001 The right-hand limit. 
2.59374246 2.704813829 2.716923932 2.718145927 2.718268236 

From these results, it appears that limx--->o(l + X)I/x is about 2.718. 
Actually, the value of this limit is usually taken to be the definition of the 
number e. 
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8 Differential calculus 

A limit program 

In all of these examples, if one were to average the left-hand limit, given 
approximately by F(c- 0.00(1), and the right-hand limit, given approxi­
mately by F(c+O.OOOI), he would have a good estimate of limx ..... cF(x), 
provided this limit exists. The limit does not exist if the left-hand and 
right-nand limits differ substantially, as in Example 4. 

Program 8.1 LIMIT 

V ESTIMATE ~ LIMIT C; LEFT; RIGHT 

[1] LEFT~FN C-.0001 

[2] RIGHT~FN C+.0001 

The approximate left-hand limit. 

The approximate right-hand limit. 

[3] ESTIMATE~(LEFT+ RIGHT) +2 

The average of LEFT and RIGHT. 

[4] ~ «I LEFT-RIGHT) < .01) / 0 If LEFT and RIGHT are at least as 
close as 0.01, then the limit will be 
assumed to exist. Thus, the program 
is ended with the ESTIMA TE of the 
limit as on line 3. Otherwise, the pro­
gram prints out the message on line 
5. 

[5] ESTIMA TE ~ • THE LIMIT DOES NOT EXIST' 

V 

The values 0.0001 and 0.01 used in 
this program are arbitrary. The 
reader should feel free to experiment 
with other values. 

Let us redo the previous examples using this program LIMIT. 

Example 1 

Find limx.....2(3x2). 

V FN [1] 

[1] Y~3xX*2 V 

LIMIT 2 
12 
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This answer, 12, is the average of 
11.9988 and 12.0012, the approxima­
tions of the left and right-hand limits 
given in the previous solution to Ex­
ample 1. 



Example 2 

Find 

'V FN [1] 

8.1 The limit of a function 

li~ (2X+ 1 ). 
x--->3 x 2 

[1] Y~«2XX)+1)+(X*2) 'V 

LIMIT 3 Notice that this estimate 
0.77777777789 is closer to the real 
answer of 7/9 than either of the 
estimates of the left- and right-hand 
limits. 

. 7777777789 

Example 3 

Find 

'V FN [1] 

1. (x2 -1 ) 1m --. 
x--->! x-I 

[1] Y~«X*2)-1)+(X-1) 'V 

LIMIT 1 
2 

Example 4 

Find 

'V FN [1] 

[1] Y~5+(X-1) 'V 

LIMIT 1 
THE LIMIT DOES NOT EXIST 

Example 5 

Find 

The exact value of the limit. 

lim (~I)' 
x--->! x 

Since the left-hand estimate, -50000, 
and the right-hand estimate, 50000, 
differ by more than 0.01. 
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8 Differential calculus 

V FN [1] 

[1] Y~«(2+X)*2)-4)+X V 

LIMIT 0 
4 

Example 6 

Find limx-->o(l + X)I/x. 

V FN [1] 

[1] Y~(1+X)*(1+X)V 

LIMIT 0 
2.718281841 The approximate value of e. 

EXERCISES 

t. Use the program FN and the computer to find the left- and right-hand limits to 
the following functions. 
(a) lim (3x + 2) 

x--+I 

. (2x2-3) 
(b)!~ 3x+2 

( x 2 -9) (c) lim -=-3 
x--+3 x 

(d) lim (x2 -2X-3) 
x--+3 x-3 

(e) ~.5 (x=-.) 
(f) lim (x2+ I) 

x--+I x-I 

(g) lim((l+Xi-l) 
x--+o x 

(h) lim (eX) 
x--+o 

2. Use the program LIMIT to find the limits in Exercise I, if these limits exist. 

8.2 Slope of a curve and the definition of derivative at a point 

In Section 6.3., we considered the concept of the slope of a line. Recall that 
the slope of a line joining two points P(xl,YI) and Q(x2,Y2) is found by 
computing the difference quotient m = (Y2 - Y I) / (X2 - x I)' This slope is a 
measure of the steepness of the line. That is, the larger m is in absolute 
value, the steeper the line. If m> 0, the line is a rising line. If m < 0, the line 
is a falling line. If m = 0, the line is horizontal. Finally, recall that the slope 
of a line is a constant. That is, the result is the same no matter which two 
points are used to compute the slope. 

In this section, we would like to consider the idea of the slope of the 
curve given by any function Y = F(x) at a point P(x,y) on it. Unlike 
straight lines, the slope of a curve will be different at each point on the 
curve. 
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8.2 Slope of a curve and the definition of derivative at a point 

y 

------~~~--~~ __ --~---x 

(-2, -5) (4, -5) 

Figure 8.2 Graph of y = - x 2 + 2x + 3. 

Example 

Consider the quadratic function y = F (x) = - x 2 + 2x + 3 (Example 2, Sec­
tion 6.4.) Let us try to define and compute the slope of this curve (shown 
in Figure 8.2) at the point P(I,4). 

Consider the line joining the point Q(0,3) to the point P(I,4). This is 
called a secant line of the curve. The slope of this line is m=(4-3)/(I-0) 
=1. 

Now, consider a point Q closer to P on the curve, say Q(0.5,3.75). The 
slope of the secant line joining this point Q to P is m =(4- 3.75)/(1-0.5) 
=.5. 

Considering a point Q (0.9, 3.99) even closer to P, the slope of this 
secant line is m=(4-3.99)/(I-0.9)=0.1. 

In the table below, we have listed points Q which are approaching 
P(I,4) from both the left and right, together with the slopes of the secant 
lines QP (see Figure 8.3). 

x y m 

0 3 1 
0.5 3.75 0.5 
0.9 3.99 0.1 
0.99 3.999 0.01 
1.01 3.999 -0.01 
1.1 3.99 -0.1 
1.5 3.75 -0.5 
2 3 
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8 Differential calculus 

-------=~~~~-------L 

Figure 8.3 Possible secant lines PQ. 

Notice that as Q gets closer and closer to P from the left, the slopes of 
the secant lines QP get closer and closer to O. Also, as Q gets closer and 
closer to P from the right, the slopes of the secant lines QP get closer and 
closer to O. Thus, it would seem reasonable to say that 0 is the slope of the 
curve at P (1,4). Also, from the diagram, we can see that as Q approaches 
P along the curve, from the left or the right, the secant lines QP rotate into 
a limiting line L, called the tangent line to the curve at P. 

Using this example as a model, we can make the following definition: 

Definition of the slope of a curve at a point on it (the derivative) 

The slope of a curvey=F(x) at a point P(x,y) on it is defined to be 

. F(x+h)-F(x) 
hm h . 
h ..... O 

This limit, if it exists, is called the derivative oj the junction y = F(x) at the 
point P(x,y), and is symbolized by F'(x). 

Note 1: 

The derivative will exist for all examples in this text. 

Note 2: 

Other symbols for the derivative include y',t(yjdx, DxF(x). 

Geometric explanation of the derivative 

The slope of the secant line QP is 

Change in y F (x + h) - F (x) 
m = = ---,.-----

QP Change in x h 

As illustrated in Figure 8.4, the slope of the curve y = F(x) at the point P is 
the limiting value of the slopes of the secant lines QP as Q approaches P 
along the curve. As Q approaches P along the curve, h approaches 0 and 
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8.2 Slope of a curve and the definition of derivative at a point 

L 

/Q(X + h. F(x + h)) 

/~~=*;::-- h > 0 

h<O y = F(x) 

Figure 8.4 Possible secant lines QP as Q approaches P. 

vice versa. Thus, the slope of the curve y = F(x) at the point P(x,y) is 
given by the limit of the difference quotient 

. F(x+h)-F(x) 
hm h ' h ..... O 

which is the derivative F'(x) at P. Also, as Q approaches P along the 
curve, these secant lines rotate into the limiting line L, called the tangent 
line to the curvey=F(x) at the point P(x,y). 

Examples 

1. Find the slope of the curve y = F (x) = - x2 + 2x + 3 at the point P (2, 3). 
We need to compute 

, . F(2+h)-F(2) 
F (2)= hm h . 

h ..... O 

Algebraically, this is done as follows: 

-(2+h)2+ 2(2+h)+3-( -22+2.2+3) 
F'(2) = lim ---------,------

h ..... O h 

. -(4+4h+h2)+4+2h+3+4-4-3 
= hm -------------

h ..... O h 

. -2h-h2 . h·( -2-h) . 
= hm = hm = hm(-2-h)=-2. 

h ..... O h h ..... O h h ..... O 

So, the slope of this curve at the point P(2,3) is -2. 
2. Find the slope of the curvey=F(x)= -x2+2x+3 at the point (0,3). 

We need 

F'(O)= lim F(O+h)-F(O) = lim _h2+2h+3-3 
h ..... O h h ..... O h 

h·( - h+2) 
= lim = lim(-h+2)=2. 

h ..... O h h ..... O 

The desired slope is 2. 

209 



8 Differential calculus 

We will find it useful to have a program for computing derivatives at a 
point which yields a specific result D. The following program computes the 
difference quotient (F(x+h)-F(x))jh for h=O.OOOOOOOOOl. This gives a 
fairly good estimate of £'(x) in most cases. 

Program 8.2 DERIVA T1VE 

'ilD~DERIVATIVE X; H 

[1] H~.0000000001 This value for H is arbitrary. The 
[2] D~«FN X+ H)-(FN X))+ H reader is urged to experiment with 

'il other values for H. If H is too small, 
the computer will always give 1, since 
(0+0)= 1 in APL. 

In the next section, we will consider some rules for computing deriva­
tives. Let us apply the program DERIVATIVE to some examples. 

Example 1 

Given the function y = F(x) = - x 2 + 2x + 3, find the derivatives £'(0), 
£'(1), and £'(2). 

'il FN [1] 

[1] Y ~(- X* 2)+(2 x X)+3 'il We need a subprogram for our func­
tion. 

DERIVATIVE 0 
1 .999999999 

DERIVATIVE 1 
o 

DERIVA TlVE 2 
-2.0000000001 

Example 2 

The real answer is 2. 

The real answer is -2. 

Find the equation of the line tangent to the curve y = F(x) = - x 2 + 2x + 3 
at the point (0,3). 

The equation of a line is of the form y = m· x + b. The slope of this line is 
£'(0)=2. So, the line looks likey=2x+b. However, when x=0,y=3, so 
that b = 3. Therefore, the equation of the tangent line is y = 2x + 3. 

Example 3 

Given the function y=F(x)=3x+2, find the derivatives £'Cl), £'(0), 
£'(1), and £'(0). 

'ilFN[1] 

[1] Y <-- (3 X X) + 2 'il Altering FN for the new function. 
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8.3 Differentiating polynomials 

DERIVATIVE ~1 0 1 3 
3 3 3 3 

In APL, we can do all of these 
derivatives at once. 

Notice that the result is always 3. This is reasonable, since this function 
is a linear function with slope m = 3, and the derivative at any point gives 
the slope of the curve of the function at that point. 

EXERCISES 

1. Consider the functiony=F(x)=x 2-4x+4 and the point P(I, I). 
(a) Find the slopes of the secant lines joining the points Q with the following x 

coordinates to the point P: 

x=O; x =0.5; x=0.9; x=0.99; x =0.999. 
(b) Repeat Part (a) with the following x coordinates: 

x =2; x = 1.5; x= 1.1; x = 1.01; x= 1.001. 
(c) Based on the results you get in Parts (a) and (b), what is a good estimate of 

the slope of this curve at the point P? 
(d) Use the program DERIVATIVE to find the slope of this curve at P. 

2. Find the slopes of the following curves at the indicated points: 
(a) y=F(x)= -x2+6x-9 at the point (2, ~1). (Use the computer.) 
(b) y = F(x)=3x2+6x +5 at the point C 1,2). 
(c) y=F(x)=5x+ I at the point (1,6). 
(d) y = F(x)=2x3 +3x2-12x-1O at the point (2, ~6). 

3. Find the equations of the lines tangent to the curves in Exercise 2 at the points 
indicated. 

4. Using the definition of derivative and the necessary algebra, find the indicated 
derivatives of the following functions: 
(a) y=F(x)=2x+5; find F'(1). 
(b) y = F(x)=2x2- x -3; find F'(2). 
(c) y=F(x)=x3 +2x-5; find F'(O). 

5. Use the program DERIVATIVE to check your answers to Exercise 4. 

8.3 Differentiating polynomials 

The derivative function 

If x is a variable, then the derivative of a function y = F(x) is a new 
function symbolized and defined as follows: 

I I dy . F(x+ h)- F(x) 
y=F(x)=dx=l~ h . 

The process of computing this derivative function is known as differentia­
tion. The functiony=F(x) is said to be differentiable at any value of x for 
which this derivative exists. 
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8 Differential calculus 

In the previous section, we saw that for any particular point P(x,y) on 
the graph of y = F(x), the derivative F'(x) can be used to find the slope of 
the curve at the point P. We will consider some more applications of 
derivatives in the next section. However, first we will consider some rules 
which will enable us to find the derivative functions for polynomials. 

Rule 1 

Ify=F(x)=k, where k is a constant, then F'(x) =0 (i.e., the derivative of 
any constant is 0). 

This rule should be obvious, since the graph of y = k is a horizontal line 
and the slope of a horizontal line is O. Using the definition of derivative, 
this rule can be proven as follows: . 

F(x+h)-F(x) k-k 
F'(x) = lim = lim -- = limO=O. 

h-..O h h-..O h h-..O 

Examples 

1. If y = F(x)=5, then F'(x) =0. 
2. Ify=F(x)=?T, then F'(x) =0. 

Rule 2 

Ify=F(x)=xn, where n is any constant real number, then F'(x)=n·x n- l • 

A general proof of this rule is beyond the scope of this text. However, 
we shall verify this rule for the following particular case to help convince 
the reader of the validity of this rule: 

Lety=F(x)=x3 • 

F(x+ h)- F(x) (x+ h? - x 3 
F'(x) = lim h = lim h 

h-->O h~O 

. x3+3x2·h+3x·h2+h3-x3 
=hm~~--~~----------

h-..O h 

h· (3x 2 + 3x·h + h2 ) 
= lim h = lim (3x 2 + 3x·h + h 2) 

h-..O h-..O 

Thus, this rule works in this particular case. 

Examples 

1. Ify=F(x)=x 5, then F'(x)=5x4• 

2. If y = F(x)= x = Xl, then F'(x) = l·xO= 1. 
3. Ify=F(x)=x"", then F'(x)=?T·X.".-I. 
4. Ify=F(x)=Vx =XI/2, thenF'(x)=~·x-I/2=1/2Vx. 
5. Ify=F(x)=1/x3=x-3, then F'(x)=-3·x- 4 =-3/x4• 
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8.3 Differentiating polynomials 

Rule 3 

If y = F(x) = k·G (x), where k is constant and G (x) is differentiable, then 
F'(x) = k·G'(x). 

This is derived as follows: 

Examples 

F(x+h)-F(x) 
F'(x) = lim h 

h-.O 

. k·G(x+h)-k·G(x) 
= hm ----:----

h-.O h 
. G(x+h)- G(x) 

=k·hm------
h-.O h 

=k·G'(x). 

1. If y=F(x)=3x, then F'(x)=3·1 =3. 
2. If y=F(x)=2x3, then F'(x)=2·3x2 =6x2• 

3. If y = F(x)=4Yx =4XI/2, then F'(x)=4· i·X- I/ 2=2/Yx . 

Rule 4 

If y = F(x) = G (x) + H (x), where G (x) and H (x) are differentiable, then 
F'(x) = G'(x)+ H'(x). Also, if F(x)= G(x)- H(x), then F'(x) = G'(x)­
H'(x). 

This is proven as follows: 
F(x+h)-F(x) 

F'(x) = lim h 
h-.O 

. (G(x+h)+H(x+h»)-(G(x)+H(x») 
=hm------~-------

h-.O h 

. [G(X+h)-G(X) H(X+h)-H(X)] 
= hm h + h = G'(x)+ H'(x). 

h-.O 

Using these four rules, we can now differentiate any polynomial. 

Example 1 

Let y= F(x)=2x3 +3x2 -12x-1O. Find the slope of the tangent line to 
the graph of this function at the point P (2, - 6). 

The derivative function is 

F'(x)=6x2+6x-12-0 

=6x2+6x-12. 
We need to evaluate the derivative of this function at the point P. Thus, we 
get F'(2)=6·22 +6·2-12=24. 
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8 Differential calculus 

Let us use the program DERIVATIVE as a check. 

V FN [1] 

[1] Y~(2 X X*3)+(3 X X*2)+(-12 X X)-10 V 

DERIVATIVE 2 
23.9999999999 This is almost 24. 

Example 2 

Find the equation of the line tangent to the curve y = F (x) = - x2 + 2x + 3 
at the point P (2, 3). 

The derivative of this function is the function y' = F'(x) = -2x + 2. At 
the point P, F'(2)=-2·2+2=-2. Thus, the slope of this tangent line is -2. 
The equation of a line has the form y = m·x + b. Since m = -2, we have 
y = -2x + b. Since (2,3) is a point on this tangent line, we have 3 = -2· 2 + 
b, or b=7. Thus, the equation of this tangent line isy=-2x+7. 

Example 3 

Find the slope of the curvey=F(x)=4Yx at the point (4,8). 
F'(x)=4· i·X- I / 2=2jYx . Thus, the desired slope is F'(4)=2jY4 = 1. 

We can use the program DERIVATIVE to check this answer as follows: 

V FN [1] 

[1] Y~4xX*.5 V 

DERIVATIVE 4 
1 

Example 4 

Altering FN to fity =4Yx =4Xl/2. 

It checks. 

Find the points at which the tangent lines to the curve of y = F(x) = - x2 
+ 2x + 3 are horizontal. 

Since the slope of a horizontal line is 0, we need to find the point or 
points at which F'(x) =0. Since F'(x) = -2x+2, then F'(x)=O when x= 1. 
Substituting this back into the original function, we gety=F(l)=4. Thus, 
the desired point is (1,4). 

A program for differentiating polynomials 

The following program yields the vector of coefficients of the derivative of 
a polynomial. Since the four rules for differentiating polynomials are so 
basic and easy to use, this program is optional. It does illustrate a way to 
get the computer to perform these rules. 

Program 8.3 DIFF (optional) 

V COEFFS ~ DIFF POL YNOMIAL ; N; EXPONENTS 
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[1] N +-p POL YNOMIAL 

[2] EXPONENTS +- N - LN 

8.3 Differentiating polynomials 

N is the number of coefficients in the 
polynomial. 

The vector of exponents in the poly­
nomial. 

[3] COEFFS+- -1! POL YNOMIAL X EXPONENTS 

V These are the coefficients of the de­
rivative of the polynomial. 

Examples 

1. Use the program DIFF to differentiate the polynomial 

F(x)=3x5 +2x4 +3x3 +5x2 + lOx + 1. 

DIFF 3 2 3 5 10 1 
15 8 9 10 10 

The coefficients of the polynomial. 
The coefficients of the derivative. 

Remember that the exponents are all reduced by I in the derivative of a 
polynomial in accordance with Rule 2. Thus, the derivative of this 
polynomial is F'(x) = 15x4 +8x3 +9x2 + lOx + 10. 

2. If F(x)=X6 +x4 +8x2 -3x+2, use DIFFto find F'(x). 

DIFF 1 0 1 0 8 -3 2 Notice that the zero coefficients must 
be included in POL YNOMIAL. 

6 0 4 0 16 -3 

Thus, F'(x)=6x5 +Ox4 +4x3 +0X2 + 16x-3=6x5 +4x3 + 16x-3. 

A program for finding the derivative of 
a polynomial at a particular value 

The following program yields the derivative of a polynomial at a particular 
value of x. 

Program 8.4 POL Y (optional) 

V VALUE +- X POL Y POL YNOMIAL ; N; EXPS; COEFFS 

[1] N+-(p POLYNOMIAL)-1 

[2] EXPS+-N-LN 

The degree of POL YNOMIAL is I less 
than the number of coefficients. 

The exponents of the derivative. 

[3] COEFFS+- DIFF POL YNOMIAL 

The coefficients of the derivative 
given by the program DIFF. 
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8 Differential calculus 

[4] VALUE ~ + / COEFFS X X * EXPS 
V This is equivalent to plugging the 

value of x into the derivative poly­
nomial. 

Examples 

1. If F(x)=3x5 +2x4 +3x3 +5x2 + lOx + 1, find the value of the derivative 
when x= 1 (i.e., find F'(I)). 

1 POL Y 3 2 3 5 1 0 1 
52 

Thus, P(l)=52. 
2. Use POL Y to find F'(2) for the function of Example 1. 

2 POL Y 3 2 3 5 10 1 
370 

Thus, F'(2)=370. 
3. If F(x)=X6 +x4 +8x2 -3x+2, use POLY to find P(l). 

1 POL Y 1 0 1 0 8 - 3 2 
23 

Thus, P(l)=23. 

EXERCISES 

1. Use the four rules of this section to find the derivative functions for the 
following functions: 
(a) y=F(x)=3x+5 
(b) y= F(x)=3x3 - x 2 +4x+ 1 
(c) y=F(x)=x4 +2x3 -4x2 +5x+3 
(d)y=F(x)=6Yx -(2/x4) 

(e) y=F(x)=2x3/ 2 -3x-2 +5 

2. Use the program DIFF to check your answers to Exercise 1, Parts (a)-(c). 

3. Use the four rules of this section to find the derivatives of the following 
functions at the points indicated: 
(a) y=4x+3, (e,4e+3) 
(b) y= -x2 +5x-l, (2,5) 
(c) y = x 3 - 2x2 + x + I, (I, I) 
(d) y=3x4 -x, (1,2) 

4 
(e) y= Yx' (4, I) 

4. Use the program POLY to check your answers to Exercise 3, Parts (a)-(d). 
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8.4 Applications of derivatives 

5. Find the equations of the tangent lines to the following curves at the points 
indicated: 
(a) y=F(x)=3x2-4x+ 1, (1,0) 
(b)y=F(x)=4jx2, (2,1) 

6. Find the points at which the slope of the following curve is 0: 
y =F(x) =2x3 -3x2-12x+9. 

8.4 Applications of derivatives 

Let us now consider a few applications of derivatives. 

Application 1: Slopes oj curves 

As we have already seen, the derivative of a functiony = F(x) can be used 
to find the slope of the curve of the function at any point on the curve. 

Application 2: Increasing, decreasing 

B 

Figure 8.5 Curve of a function that both increases and decreases. 

A function y = F(x) is increasing at a point P if as x increases, y also 
increases as we proceed past P along the curve. (For example, the above 
curve in Figure 8.5 is increasing at the points A and E.) At a point where 
the curve is increasing, the tangent line has positive slope, so that the 
derivative F'(x) is positive at such a point. 

A function is decreasing at a point Q if as x increases, y decreases as we 
proceed past Q along the curve. (For example, the curve in Figure 8.5 is 
decreasing at the points C and H.) At a point where the curve is 
decreasing, the tangent line has negative slope, so that the derivative F'(x) 
is negative at such a point. 

Notice also that (at least in the case of polynomials) at the points where 
a curve changes from increasing to decreasing (or vice versa), the deriva­
tive will be zero (the tangent lines will be horizontal). At such a point, the 
derivative (the slope) changes from + to - or from - to + (see points B, 
D, and G above). 

Example 1 

Suppose that the profit (in dollars) from the manufacture and sale of x 
items is given by the function P = F (x) = - x 2 + lOOx - 2000. 

(a) Is profit increasing or decreasing when x = 40? 
dP 
dx =F'(x)=-2x+lOO. 
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8 Differential calculus 

So, F'(40) = 20, which is positive. Thus, profit is increasing when 
x=40. 

(b) Is profit increasing or decreasing when x = 60? F'(60) = -20, which is 
negative. Thus, profit is decreasing. 

(c) At what value of x does profit change from increasing to decreasing? 
We need to solve the equation F'(x) = -2x+ 100=0. Thus, x=50. This 
is the value of x for which we have maximum profit. 

Example 2 

Find the set of all values of x for which the following function is increasing 
and the set of all values of x for which it is decreasing. 

y = F{x)=2x 3 -3x2 -l2x+ 10 

y'= F'{x)=6x2 -6x-12. 

Since the derivative F'(x)=O at the points where the curve changes from 
increasing to decreasing (or vice versa), we first solve the equation F'(x) = 
6x2 - 6x - 12 = O. Let us use the program QUADRA TIC (Chapter 6) to solve 
this equation for x. 

QUADRATIC 6 -6 -12 

Thus, the derivative changes sign when x = 2 and when x = -1. We need 
only to examine the sign of F'(x) on either side of these values of x. To do 
this, we will use a sign chart for the derivative F'(x) (see Figure 8.6). 

+ + 

2 
Figure 8.6 Sign chart for F'(x). 

The derivative is positive to the left of x=-I, since F'(2)=24 and the 
derivative doesn't ever change sign to the left of x = -1.2 The derivative is 
negative between x = -1 and x = 2, since F'(O) = -12 and the derivative 
doesn't ever change sign between x = -1 and x = 2. The derivative is 
positive to the right of x = 2, since F'(3) = 24, and the derivative never 
changes sign to the right of x = 2. Using this sign chart, we see that the 
function is increasing in the set {x I x < -1 or x> 2}. It is decreasing in the 
set {xl-l <x<2}. 

Application 3: Velocity 

Suppose that the position of a moving object at time t is given by the 
function s = F(t). The average rate of change of position, s, per unit of 
time, t, as t goes from some time t to a later time t + h is given by the 

2In order for the derivative to change sign, it would have to become O. We have found that 
the only times the derivative becomes 0 is at x = - I and x = 2. 
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8.4 Applications of derivatives 

following difference quotient: 

Change in position F(t+ h) - F(t) 
Vave = Change in time h 

This is called the average velocity, Vave, of the object between times t and 
t + h. The instantaneous rate of change of position, s, per unit of time t, at 
some time t is given by 

. F(t+h)-F(t). , 
V= hm h = hm Vave=F (t). 

h~O h~O 

This is called the instantaneous velocity at time t (or simply the velocity at 
time t.) 

Example 1 

Suppose that the distance of an object from a starting point after t seconds 
is given by s=F(t)=3t2 +2t feet. 

(a) Find the initial velocity of the object. 
The initial velocity is the velocity at time t=O. F'(t)=6t+2, so 
£1(0)=2 feet per second. 

(b) Find the velocity at the end of I second. 
£1(1)=8 feet/second. 

(c) Find the velocity at the end of the 5th second. 
£1(5)=32 feet/second. 

(d) Find the average velocity from the first to the 5th second. 

F(5)- F(l) 85-5 
Vave = 5-1 = -4- =20 feet/second. 

Example 2 

Suppose that s = F(t) = -16t2 + 320t is the function which gives the height 
s, in feet, of a projectile fired vertically upward from ground level with an 
initial velocity of 320 feet/second, where t is the time elapsed in seconds. 
(This was Example 5 of Section 6.1.) 

(a) Find the velocity at the end of the 5th second. 
F'(t)=-32t+320. So, £1(5)= 160 feet/second. 

(b) Find the velocity at the end of the 15th second. 
F'(15) = -160 feet/second. This velocity is negative since s is decreas­
ing. The projectile is falling back to earth. 

(c) Find the velocity at the end of the 10th second. 
£1(10)=0 feet/second. This is the time at which the projectile reaches 
its highest point. 
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8 Differential Calculus 

Application 4: Acceleration 

The average rate of change of velocity, V, per unit of time between times t 
and t + h is called the average acceleration of the object from time t to time 
t + h. This is given by the following difference quotient: 

Change in velocity V(t + h) - V(t) F'(t + h) - F'(t) 
A ave = Change in time h h 

since F'(t) gives the velocity at time t. The instantaneous acceleration at 
time t is the instantaneous rate of change in velocity at time t and is given 
by 

. . F'( t + h) - F'( t) , dV " 
A=hmA =hm =V(t)=-=F(t). 

h--->O ave h--->O h dt 

We will refer to the instantaneous acceleration at time t as simply the 
acceleration at time t. Acceleration is the derivative of velocity, which is the 
derivative of position. Thus, acceleration is the derivative of the derivative 
of position. Such a derivative of a derivative is known as the second 
derivative of the original function. Thus, acceleration is the second deriva­
tive of the position function. 

Example 1 

Find the acceleration at any time t for the particle of Example 1 above. 
Since s= F(t)=3t2 + 2t and V= F'(t)=6t+2, then A = F"(t)=6 feet/sec­
ond/second (usually denoted as feet/second2). Thus, every second the 
velocity increases by 6 feet/second. 

Example 2 

Find the acceleration for the projectile of Example 2 above. 
s=F(t)=-16t2 +320t and V=F'(t)=-32 t+320, so A=F"(t)=-32 

feet/second2• This is called the acceleration due to gravity. Since A IS 

negative, the velocity is decreasing by 32 feet/second each second. 

Application 5: Instantaneous rates of change in general 

The previous two applications are illustrations of the use of the derivative 
for finding instantaneous rates of change of a function with respect to 
time. 

Let y = F(x) be any function. The average rate of change of y per unit 
change in x as x goes from x to x + h is given by the difference quotient 

Change iny F(x+h)- F(x) 

Change in x h 
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8.4 Applications of derivatives 

The instantaneous rate of change of y per unit change in x when x has a 
given value x is given by 

dy , . F(x+h)-F(x) 
dx = F (x) = l~ h . 

Example 1 

The volume of a sphere is given by the function V = ~ '1TX 3, where x is the 
radius. If a spherical balloon is being inflated with air, how fast is the 
volume increasing per unit increase in radius when the radius is 6 inches? 

dV 4 
dx = 3'1T·3x2 =4'1Tx2. 

So, when x = 6, dV / dx = 144'1T cubic inches/inch. 

Example 2 

A water reservoir is being drained in such a way that the amount of water 
(in gallons) in the reservoir after t hours is given by the function 

W= F(t) = 500t2 - 50,OOOt + 1,250,000. 

(a) How fast is the water running out initially? 

d::; = pet) = lOOOt - 50,000. 

Initially, t=O, so that P(O) = -50,000 gallons/hour. 
(b) How fast is it running out when t = 10 hours? 

P(IO) = -40,000 gallons per hour. 

(c) How much water is in the reservoir when it is running out at the rate of 
20,000 gallons per hour? 

P( t) = lO00t - 50,000= -20,000, 

so that t = 30 hours. The amount of water in the reservoir when t = 30 
hours is W = F (30) = 200,000 gallons. 

Application 6: Economic analysis 

Suppose that the total cost of producing x items is given by C= F(x). 
Then, the instantaneous rate of change in cost per item produced at the 
level of production x is given by the derivative dC / dx = P(x). This is 
called the marginal cost function. 

Similarly, if the revenue from the sale of x items is given by R = G (x), 
then the instantaneous rate of change in revenue per item sold is given by 
the derivative dR/ dx = G'(x). This is called the marginal revenue function. 
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8 Differential Calculus 

Example 

Suppose that the cost (in dollars) of producing x items is given by the 
function 

C= F(X)=X2+2x+2000. 

(See Example 1 of applications of quadratic functions in Section 6.4.) 
Suppose also that the items sell at a price of $102 each, and that every item 
that is produced is sold. 

(a) Find the marginal cost when the 20th item is produced. 

dC 
dx =F'(x)=2x+2. 

So, F'(20) = 22, or cost is changing at a rate of $22 per item when the 
20th item is produced. 

(b) Find the marginal revenue function. 
Since the price is $102 per item, the revenue is R = G (x) = 102x. 

Therefore, the marginal revenue is given by dR/ dx = G'(x) = 102. 
Thus, revenue is changing at a rate of $102 per item sold. This is 
obvious, since this is the price. 

(c) Find the number of items that must be produced and sold, x, in order 
for the marginal revenue to equal the marginal cost. 

M.R.= M.C. 
102=2x+2 

x=50 items. 
Recall that this was the number of items that must be produced and 
sold in order to maximize profit. It is a fundamental law of economics 
that profit is maximized when marginal revenue equals marginal cost. 

EXERCISES 

It is optional to use any of the programs DERfVA TlVE, DfFF, or POL Y to 
help in doing any of the following exercises. 

1. Find all values of x for which the following function is increasing and all values 
of x for which it is decreasing: 

y=F(x)=x2 -4x+3. 

2. Repeat Exercise 1 with the function y = F(x) = x 3 - 6x2 + 9x + 6. 

3. Suppose that for a given company the profit from the sale and distribution of x 
items is given by the function 

(a) Is the profit increasing or decreasing when x = lOO? 
(b) Is the profit increasing or decreasing when x = 200? 
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8.5 More rules of differentiation (optional) 

(c) At what values of x does profit change from increasing to decreasing or 
vice versa? 

4. The area of a circle is given by the formula A = 7TX2, where x is the radius. Find 
the rate of change in area per unit change in radius when x = 5 inches. 

5. Find the equation of the tangent line to the curvey=F(x)=8Vx at the point 
(4,16). 

6. Suppose that the position of an object is given by the function 

s= F(t) =4t2 + 12t + 9 feet. 

(a) Find the average velocity of the object during the first 5 seconds. 
(b) Find the initial velocity. 
(c) Find the instantaneous velocity at the end of the 5th second. 
(d) Find the acceleration at any time t. 

7. For a freely falling body dropped from a height of 1000 feet, the height at the 
end of t seconds is given by 

H=F(t)= lOOO-16t2 feet. 

(a) Find the velocity of the object at the end of 5 seconds. 
(b) Find the velocity of the object at the end of 10 seconds. 
(c) Find the acceleration at any time t. 

8. The relation between sales and advertising cost, x, for a product is given by the 
function S=400x 2 -50x. How fast is sales changing per dollar of advertising 
cost when x = $5000? 

9. The cost (in dollars) of making x items is given by C= 10+20· Vx . 
(a) What is the marginal cost when x = lOO? 
(b) How fast is cost changing per item produced when x = 25? 
(c) What is x when the marginal cost is $1 per unit produced? 

10. The cost of producing x items is given by C=F(x)=4x-0.0005x2 and the 
revenue from the sale of x of these items is given by R= G(x)=x2 -8x. Find x 
when marginal cost equals marginal revenue. 

ll. A fire is spreading along a river bank in such a way the S=2t-0.5t2 gives the 
distance in miles from a starting point after t hours. When does it stop 
spreading? 

12. According to Newton's law of universal gravitation, the force exerted by the 
earth on a space object is given by F= - k / x 2, where x is the distance of the 
object from the center of the earth in miles. If k = 1000, find the rate of change 
in F per unit change in x when x = 10,000 miles. 

8.5 More rules of differentiation (optional) 

In this section, we present some more rules of differentiation which will 
enable us to differentiate more complicated functions, including all of the 
functions we have studied so far in this text. Since these rules may be 
beyond the interest of many readers who want only a brief introduction to 
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8 Differential Calculus 

calculus and its applications, this section is optional. Although these rules 
may be proved using the definition of derivative, it is beyond the intent of 
this text to prove these rules, and we will omit the proofs. We will merely 
state the rules and present examples of their use. 

Rule 5: Chain rule 

Ify=F(u), where u=G(x), then 

! = du' : =F'{u)·G'{x). 

[Note: We could think of y as a function of x, since y = F(G(x».] 

Example 

Let y = vi x 2 + 1 ; find ttv / dx. 
Let u = x 2 + 1. Then, y = u 1/2. By the chain rule, 

ttv = ttv . du = .!.u- 1/ 2.2x= 2x = 2x 
dx du dx 2 Yu vi x 2 + 1 

If we apply this chain rule to a power function, we get the following 
rule. 

Rule 6: Power rule 

If y = G(xt, then 

Example 

y=(3x2 +6x)s. Thus, 

! =5·{3x2 +6xt{6x+6). 

Rule 7: Product rule 

If y = F(x)·G(x), then 

! = F{x)·G'{x) + G (x)·F'{x). 

Examples 

1. Lety=x2·x3 =xs. Of course, ttv/dx=5x4. We shall apply the product 
rule to this example to convince the reader that the derivative of a 
product is not the product of the derivatives. Let F(X)=X2 and G(x)= 
x 3• Then, by the product rule, 

ttv dx = (x2). (3x2 ) + (x 3). (2x) = 3x4 + 2X4 = 5x4. 
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If one merely multiplied the derivatives of the functions F(x) and G(x), 
he would get (2x)·(3x2)=6x3, which would not be correct. 

2. Let y = (x2 + 3x + 2)· (x3 + 3). By the product rule, 

dy 
dx =(x2+3x+2)·{3x2)+{x3 +3)·{2x+3)=5x4 + 12x3 +6x2+6x+9. 

3. Let y = x Vx2+l . Using the product rule and the power rule, we get 

dy =X.1..{X2+I)-1/2.2x+~ = x 2 +~. 
~ 2 Vx2+l 

Rule 8: Quotient rule 

If y = F(x)/ G(x), then 

dy G{x)·F'{x) - F{x)·G'{x) 

dx = (G{x»)2 

Examples 

To convince the reader that the derivative of a quotient is not the quotient 
of derivatives, consider the following simple example: 

1. Lety= x 5/ x 2= x 3• Obviously, dy / dx=3x2. Using the quotient rule, we 
get 

2. Lety=3x/(x2+2). By the quotient rule, 

dy (x2+2)·3-{3x)-(2x) 
dx = 

Rule 9: Exponential functions 

If y = a", where u is a function of x, then 

! =(lna).{a").(!). 

Example 1: The exponential function 

Since In e = I, then if y = e", where u is a function of x, then 

! =(eU).(~~). 
Further examples 

1. Let y = 2x2. Then, 

! = (ln2)· (2X2). (2x) = (0.6931471806)· {2x} (2x). 
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2. Lety=e x2
, then dyjdx = (e X2)·(2x). 

3. Lety=x2·ex • Using the product rule, 

dy 
dx =(x2)·(e X )+(e X )·(2x). 

Rule 10: Logarithmic functions 

If y = 10gb u, where u is a function of x, then 

: = L~b )- ( ~ ). ( ~~ ). 
Example 1 : Natural logs 

Since Ine= 1, then if y=lnu, where u is a function of x, then 

Natural logs are used more often than any other logs in calculus 
because of their simpler derivatives. 

Further examples 

1. Lety=loglO x 2• Then, 

dy =(_1 ).(J...).(2x)=(_1 ).(1). 
dx In 10 x 2 In 10 x 

2. Let y = In(x2). Then, 

dy =(J...).(2x)=1. 
dx x 2 x 

EXERCISES 

1. Find the derivative functions for the following: 
x 3 + I Inx 

(a) y=~ (f) Y=-;x 

(b) y=(3x2+5)·(2x5+7) (g) y=logIO(x2+5x+ I) 
(c) y=(x2+2x)·ln(3x) (h) y=ln(x2+5x+ 1) 
(d) y= Hy'+5x (i) y=(x2+5x+lt 
(e) y=ex'+5x U) y=Onx)5 

2. Find the derivatives of the following functions at x = 2: 
(a) y=(2x3 -6x2+ 1)'(x2+2x) (c) y=(2x3 -6x2+ 1)5 
b _ 2x3 -6x2 + 1 (d) y=e x2 - 2x 

()y- x2+2x (e) y=ln(x2-2x) 
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3. Use the program DERIVATIVE to check your answers to Exercise 2. 

4. Find the equation of the line tangent to the curvey=lnx at (1,0). 

5. If the sales of a new product is given by the function S = 20eO.OIX2, where x is the 
number of days the product has been on the market, find the rate of increase in 
sales per day on the market on the 10th day. 

8.6 Theory of maxima, minima 

Derivatives are useful in finding the maximum or minimum value of a 
function. 

Definitions 

A function y=F(x) has a relative maximum at a point P(a,F(a» if 
F(a» F(x) for all points (x,F(x» on the graph near P. In other words, a 
relative maximum occurs at a highest point in the immediate vicinity. In 
Figure 8.7, the function has a relative maxima at the points A, C, and E. 

A functiony=F(x) has an absolute maximum at a point P(a,F(a» if 
F(a» F(x) for all x in the domain of F. The absolute maximum occurs at 
the point C in Figure 8.7. 

A function y = F (x) has a relative minimum at a point P (a, F (a» if 
F(a)<, F(x) for all points (x,F(x» on the graph near P. In other words, a 
relative minimum occurs at a lowest point in the immediate vicinity. In 
Figure 8.7, the function has relative minima at the points Band D. 

A function has an absolute minimum at a point P(a,F(a» if F(a) <, 
F(x) for all x in the domain of F. The absolute minimum occurs at the 
point D in Figure 8.7. 

Figure 8.7 A function with both relative and absolute maxima and minima. 

Critical values 

The derivative is quite helpful in locating the relative extrema (relative 
maxima and minima) for a functiony = F(x) with domain an open interval 
{xla<x<b}. Notice from Figure 8.7 that at the relative maxima and 
minima, the curve changes from increasing to decreasing or from decreas­
ing to increasing and that the tangent lines are horizontal at these relative 
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extrema. Recall that the derivative of a function at a point P gives the 
slope of the tangent line at P and that the slope of a horizontal line is O. 
Thus, it appears that the relative maxima and minima occur at points 
where the derivative F'(x) is O. Such points are called critical points and 
the values of x for which F'(x) is 0 are called critical values.3 When 
looking for relative extrema, therefore, one first locates the critical values. 

The first derivative test for relative extrema 

Let y = F(x) and let x = c be a critical value for F (i.e., a value for which 
F'(c)=O). Then, 

1. If the derivative F'(x) changes sign from + to - as we pass by (moving 
from left to right) the point (c,F(c», then the function changes from 
increasing to decreasing at this point. Therefore, the function has a 
relative maximum at this point. 

2. If the derivative F'(x) changes sign from - to + as we pass by (moving 
from left to right) the point (c,F(c», then the function changes from 
decreasing to increasing at this point. Therefore, the function has a 
relative minimum at this point. 

3. If the derivative does not change sign as we pass by the point (c,F(c», 
then we have neither a relative maximum nor a relative minimum at this 
point. 

Example 1 

This last case can be illustrated by the following example: 

y=F(x)=x3 

F'(x)=3x2 =0 when x=O. Thus, the critical point is (0,0). However, 
F'(x)=3x2 never changes sign. Thus, this function has neither a relative 
maximum nor minimum at (0,0), or at any other point for that matter. The 
graph of this function (Figure 8.8) bears this out. 

Example 2 

Find any relative maxima or relative minima for the functiony = F(x) = x 2 

- 4x + 4. (The graph of this function appeared as Example I in Section 
6.4.) 

First, we need to locate any critical values. F'(x)=2x-4=0 when 
x=2. Thus, x=2 is the only critical value. We now have to examine the 
sign change of F'(x) as we pass by the value x=2. Therefore, we make a 
sign chart for the derivative, examining the sign of the derivative to the left 
and right of x = 2 (see Figure 8.9). The derivative is negative for all x to the 
left of 2 and positive for all x to the right of 2. Thus, the function has a 

3It is also possible to have a relative maximum or minimum at a point where F'(x) does not 
exist. However, we shall omit such cases. 
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y 

Figure 8.8 Graph ofy=F(x)=x3. 

relative minimum at x = 2. The value of this function at this relative 
minimum is F(2)=22-4·2+4=0. Recall that the vertex of the parabola 
for this function occured at this minimum point (2,0). 

+ 
2 

Figure 8.9 Sign chart for F'(x) about x=2. 

Example 3 

Find any relative extrema for the function y=F(x)= -x2+2x+3. (See 
Example 2 of Section 6.4 and Figure 8.l0a.) 

Locating any critical values, we note that F'(x) = -2x+2=0 when x = 1. 
Examining the sign chart for F'(x) about this critical value x = I (Figure 
8.lOb), we discover that there is a relative maximum at x= l,y=F(1)=4. 
This was the vertex of the parabola for this function also. 

Example 4 

Prove that the vertex of the parabola given by the quadratic function 
y=F(x)=a·x2 +b·x+c occurs at the point where x=-b/2·a. 

Since the vertex is a relative maximum or minimum, it must occur at a 
critical value of y=F(x). However, F'(x)=2a·x+b=0 when x=-b/2·a. 
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y 

(1,4) 

-2 + 
------~~~4-~--+--+----x 

-1 2 3 
I I 

(b) 

(a) 

Figure 8.10 (a) Graph of F(x) =y = - x 2 + 2x +3. (b) Sign chart for F'(x) around 
x= I. 

Example 5 

Find any relative extrema for the function y = F (x) = 2x3 + 3x2 - 12x - 10. 
(See Example 1 of Section 6.5. and Figure 8.11a.) 

Locating the critical values, we note that 

F'(x)=6x2 +6x-12=6(x+2)(x-l)=0 

when x = -2 and x = 1. The sign chart is shown in Figure 8.11 b. Since these 
are the only values at which the derivative changes sign, we can use any 
value we wish to determine the signs of F'(x) to the left and right of these 
values. Thus, a relative maximum occurs at the point C2,FC2))=(-2, lO) 
and a relative minimum occurs at (l,F(l))=(l, -17). 

Endpoint extrema 

If a function is only defined on a closed interval {xla.;;; x .;;; b}, then it is 
possible that the maximum or minimum value might occur at one of the 
endpoints of this interval, a or b. A function defined on such a closed 
interval must have an absolute maximum and an absolute minimum value. 
If either of these occurs in the interior of the interval, then it would occur 
at a critical value and would be found as in the previous examples. 
However, it is important to check for possible endpoint extrema also. 
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y 

+ + 
----~_+~~;__+_+------x I 

2 

(b) 

(a) 

Figure 8.11 (a) Graph of y=F(x)=2x3 +3x2 -12x-lO. (b) Sign chart for F'(x) 
=0 near x= -2 and x= I. 

Example 6 

Find the absolute maximum and absolute minimum values of the function 
y = F(x)= - x 2 +2x+3 in the restricted domain {xIO";; x ";;4} (see Figure 
8.12a). 

As before, in Example 3, we get the critical value: F'(x) = -2x+2=0, so 
that x= 1 and y=F(l)=4. The sign chart for F'(x) about this critical 
value x = I and in this restricted domain is as shown in Figure 8.l2b. Thus, 
the function is always increasing on the interval {xIO";; x < I} and always 
decreasing on the interval {xii < x";; 4}. Thus, the absolute maximum 
point is at (1,4). Since the function must have an absolute minimum value, 
it must occur at one of the endpoints, 0 or 4, of the domain. At x = 0, 
F(0)=3. At x=4, F(4)=-5. Therefore, the absolute minimum point for 
this function in the restricted domain is the point (4, - 5). The graph of this 
function follows: 
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y 

4 
(1,4) 

3 

2 

+ x 
0 4 

(b) 
2 

3 

4 

5 (4, -5) 

(a) 

Figure 8.12 (a) Graph ofy=F(x)=-x2+2x+3, {xI0.;;;x.;;;4}. (b) Sign chart of 
F'(x) around x = 1. 

Example 7 

Find the absolute maximum and absolute minimum values of the function 
y = F(x)=2x3 +3x2 -12x-1O in the restricted domain {xl0..; x"; 5}. 

F'(x)=6x2 +6x-12=0 yields solutions x= -2 and x= 1. Since only 
x = I is in the restricted domain of F(x), we are only interested in it. The 
sign chart for F'(x) in this domain is as shown in Figure 8.13. This 
function is always decreasing on the interval {xl0..; x < I} and always 
increasing on the interval {xii < x"; 5}. Thus, the absolute minimum point 
is (1,F(1»=(I, -17). The absolute maximum must occur at one of the 
endpoints, 0 or 5, of the domain. At x = 0, F (0) = -10. At x = 5, F (5) = 255. 
Thus, the absolute maximum occurs when x=5 andy = F(5) =255. 

+ 
o 5 

Figure 8.13 Sign chart for F'(x)=6x2+6x-12, 5> x >0. 

In the next section, we shall consider some applied maxima, minima 
problems. 

EXERCISES 

1. Find any relative maxima, minima for the following functions: 
(a) y=F(x)= -x2+8x-6 (d) y= F(x)=2x3 +3x2-4x-1O 
(b) y= F(x)=2x2-5x-3 (e) y=F(x)=x5 -2x4 +3x-5 
(c) y=F(x)=x3 -6x2+9x+6 
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2. Find the absolute maximum and minimum values for the functions in Exercise I 
in the restricted domain {x 11 .;; x .;; 5}. 

8.7 Applied maxima, minima 

We now consider some applied maxima, minima problems. 

Example 1 

Suppose that the cost (in dollars) of producing x items is given by the 
function 

C = x 2 + 2x + 2000. 
Suppose also that these items sell for $102 each and that every item that is 
produced is sold. Find the number of items, x, that must be produced and 
sold in order to maximize profit, and find this maximum profit. 

Since revenue is the product of the price and the number of items sold, 
then revenue is given by R = 102x. Now, Profit=Revenue-Cost. There­
fore, profit is given by 

P= R- C= 102x-(x2 +2x +2000)= - x 2 + lOOx-2000. 

Thus, dP j dx = -2x + 100 = 0 when x = 50. So, the critical value is x = 50 
(see Figure 8.14). Thus, the maximum profit occurs when x=50. This 
maximum profit is F(50) = $500. 

+ 
50 

Figure 8.14 Sign chart for F'(x) about x=50. 

Alternate approach to profit maximization 

To find the maximum profit above, we solved the equation dP j dx = O. 
Since P = R - C, then 

dP dR dC 
dx=dx-dx' 

So, when dPjdx=O, then dRjdx=dCjdx, or marginal revenue equals 
marginal cost. This rule, that profit is maximized when marginal revenue 
equals marginal cost is a fundamental rule in economics. 

Example 2 

A manager of an apple orchard consisting of 50 apple trees is trying to 
decide when to pick his apple crop. If he picks it now, his average apple 
tree will yield 80 pounds of apples which he can sell for $.50 per pound. 
However, for each week he waits to pick the apples, the average yield per 
tree will increase by 10 pounds per tree, while the price will decrease by 
$.03 per pound. How many weeks should he wait to pick his apples if he 
would like to maximize his revenue? 
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Let x = the number of weeks he should wait to pick the apples. 

So, 

when 

Revenue = R = (number of pounds picked)· (price per pound) 

=50·(80+ lOx)·(50-3x) 

=20,000+ 13,OOOx-1500x2. 

dR - = 13 000-3000x=0 
dx ' 

X = 13,000 =41. 
3000 3· 

Thus, to maximize his revenue, he should wait about 4 weeks and 2 days to 
harvest his apples (see Figure 8.15). 

Example 3 

+ 

41 
3 

Figure 8.15 Sign chart for dR/dx about x=4~. 

A man has 100 feet of fencing which he wishes to use to fence in a 
rectangular yard for his dog. He will put the dog's yard against an existing 
fence, and therefore, only needs to fence in three sides. Find the dimen­
sions of the yard of maximum area and find this maximum area. 

In a problem such as this, a sketch (such as in Figure 8.16) is very 
helpful. Since he has 100 feet of fencing to do the job, then x + 2y = 100. 
We wish to maximize the area of the rectangle. Thus, we need a formula 
for this area. Accordingly, the area=A =x·y. However, this area formula 
has two variables and doesn't use the fact that he has only 100 feet of 
fencing. However, from the equation x + 2y = 100, we get x = 100- 2y. If 
we replace x in the area formula by this expression, we get 

A = x·y ={100-2y)·y= lOOy-2y2. 

Existing fence 

y y 

x 

Figure 8.16 Illustration of Example 3. 
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+ 
25 

Figure 8.17 Sign chart for dA / dy about y == 25. 

Now, dA/4Y = l00-4y =0 when y =25 feet. Thus, the maximum area 
occurs wheny =25 feet (see Figure 8.17). At this value of y, x= l00-2y = 
50 feet. So, A = X'y = 50·25 = 1250 square feet is the maximum area for the 
dog's yard. 

Example 4 

A rectangular shaped in-ground swimming pool with a square bottom is to 
hold 4000 cubic feet of water. Find the dimensions of the swimming pool 
of minimum surface area satisfying these restrictions. 

Again, a sketch, as in Figure 8.18, will be helpful in visualizing the 
problem. Since the bottom of the pool is square, it is x feet on each side. 
The depth of the pool is labeled by y. The volume of the pool is given to be 
4000 cubic feet. The volume of a rectangular box is given by length· width· 
depth. Thus, we have the following equation for the volume of the pool: 

V = x' X'y = x 2.y = 4000. 

I No cover 
I 
I 

Y ..... L ___ _ 

",./'x 

x 
Figure 8.18 Illustration for Example 4. 

We wish to minimize the surface area (perhaps to build the pool of least 
cost). Therefore, we need a formula for the surface area of the pool. This is 
given by 

A = Area of bottom + Area of 4 sides = x2 + 4xy. 

Here again, we have two variables in our area formula and we have not 
used the fact that the volume of the pool must be 4000 cubic feet. Solving 
the volume formula for y, we get y =4000/ x2. Replacing y in the area 
formula by this value yields the following area formula: 

A =X2+4X.( ~)=X2+ 16~ =x2 +16,OOOx- l • 

So, 

dA _ 16000 
dx =2x-16,OOOx 2=2x- -'-2- =0. 

. X 

Thus, 2x3 = 16,000 or x=20 feet. 
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+ 
20 

Figure 8.19 Sign chart for dA/dx about x=20 feet. 

Thus, we have minimum surface area when x=20 feet (see Figure 8.19) 
andy =4000/2=4000/400= 10 feet. The surface area is 

A = x 2 + 4xy = 400 + 800 = 1200 square feet. 

EXERCISES 

1. The cost (in dollars) of producing x items is given by C=50x+ 100. The 
revenue from these x items is given by R= lOOx-0.Olx2• Find the number of 
items that must be produced in order to maximize profit and find this 
maximum profit. 

2. If a farmer harvests his potatoes right now, he will get 200 bushels at a price of 
$2 per bushel. If he waits, he will get an increase of 25 bushels per week, while 
the price will drop by $.10 per bushel. How many weeks should he wait to 
harvest his potato crop in order to maximize his profit? 

3. The area of a rectangular field is to be 1350 square feet. The field is to be 
fenced on all 4 sides with another fence running down the middle. Find the 
dimensions which require the least amount of fence. 

4. A rectangular field is to be enclosed by a fence. One side of the fence is to be 
along a road and requires a stronger fence than the other three sides. The fence 
along the road costs $5 per foot. The fence along the other three sides costs $3 
per foot. Find the dimensions of the field of maximum area that can be 
enclosed with $2500. 

5. A rectangular box with a square base is to be made to hold 64 cubic inches. 
Find the dimensions of the box of minimum surface area. 

6. A rectangular box with no top and square base is to be constructed to store 
apples. Material for the bottom costs $2 per square foot, while material for the 
sides costs $1 per square foot. Find the dimensions for the box of maximum 
volume that can be so constructed for $100. 

7. A rectangular box is to be made from a piece of cardboard 12 inches long and 
8 inches wide by cutting out a square from each corner and turning up the 
sides. Find the volume of the box of maximum volume that can be so made. 

8. A manager of an apartment complex charges a monthly rent of $200 and 
completely fills up his 80 apartments. However, for each increase of $10 in rent 
thereafter, 2 apartments become empty. Find the rent which will yield maxi­
mum revenue. How many empty apartments will there be? What is the 
maximum revenue? 

9. A beer company wishes to have a beer can that will hold 30 cubic inches of 
beer. A beer can is, of course, a right circular cylinder. Find the dimensions of 

236 



8.8 Curve sketching using derivatives 

the beer can of minimum surface area. [Note: The volume of a right circular 
cylinder is given by V=7T·r2·h and the surface area by A =27T·r·h+27T·r2, 

where r is the radius of the base and h is the height.] 

10. Suppose that the number of bacteria present in a certain culture in t days is 
given by the exponential function 

B= F(t) = 60t'e -0.31. 

Find the number of days in which the number of bacteria will be greatest. 

8.8 Curve sketching using derivatives 

Recall that the derivative F'(x) of a function y = F(x) at a point P(x,y) 
gives the slope of the tangent line at that point. If F'(x) >0 at P, then the 
curve is increasing at P. If F'(x) < 0 at P, then the curve is decreasing at P. 
We now want to consider what information about the graph of the 
function is given by the second derivative. 

Second derivatives 

Let y=F(x). The first derivative is a new function, symbolized by y'= 
dy / dx = F'(x). The first derivative can be differentiated yielding a new 
function called the second derivative of y = F (x) and symbolized by y" = 
d 2y / dx2= F"(x). 

Example 1 

y= F(x)=x3 +3x2-5x+2 

y'=F'(x)=3x2+6x-5 

y"=F"(x)=6x+6 

Example 2 

y= G(x)=Vx =XI/2 

dy = Lx -1/2= _1_ 
dx 2 2Vx 

dy = _ Lx -3/2= -I 
dx 2 4 4W 

The first derivative 

The second derivative. 

The first derivative. 

The second derivative. 

Geometric interpretation of the second derivative at a point 

A curve is concave downward (opens downward) at a point P if the curve 
lies below the tangent line at P. It is concave upward (opens ¥pward) if it 
lies above its tangent line at P. 

From Figure 8.20, one can see that if a curve is concave downward at a 
point P, then the slope of the tangent line decreases as we pass by P from 
left to right along the curve (see points A, B, and C in the sketch). Since 
the slope of the tangent line is given by the first derivative F'(x), then 
F'(x) is a decreasing function as we pass by the point P from left to right 
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Figure 8.20 Curve with concave downward and concave upward sections. 

along the curve. Thus, the derivative of F'(x) is negative at P. In other 
words, F"(x) is negative at P. Thus, at any point P(x,y) where the curve is 
concave downward, F"(x)<O. 

By a similar argument, at any point P(x,y) where the curve is concave 
upward (points D, E, and H in the sketch), F"(x»O. 

A point at which the curve changes its concavity from concave down­
ward to concave upward or vice versa is called an inflection point, I, of the 
curve. At an inflection point, F"(x) changes sign. 

Using the first and second derivatives of a function y = F(x), we can 
sketch the curve for this function. 

Example 1 

y = F(x) =2x3 -3x2 -12x+ 10 

y'=F'(x)=6x2 -6x-12 

y" = F"(x) = 12x -6. 

(a) Find any relative maxima and relative minima. 
We need to solve the quadratic equation F'(x)=6x2 -6x-12=0 in 

order to get the critical values. To do this, we can use the program 
QUADRATIC from Chapter 6. 

QUADRATIC 6 -6 -12 
2 -1 

So, (-I,FC-I»=(-1,17) is a relative maximum point and (2,F(2»= 
(2, -10) is a relative minimum point (see Figure 8.21). 

(b) Where is the function increasing and where is it decreasing? 
Since F'(x) is positive in the set {xix < -l} u {xix> 2}, then the 

function is increasing for all x in this set. Since F'(x) is negative for all 
x in the set {xl-I < x < 2}, then the function is decreasing for all x in 
this set. 

(c) Find any inflection points for this function. 
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To find inflection points, we need to find where the second deriva­
tive F"(x) changes sign, if ever. Thus, we need to solve F"(x)= 12x-6 
=0, which yields x= 4. To see if F"(x) actually changes sign at x= 4, 
we make a sign chart for F"(x) about x = 4 (Figure 8.22). Thus, the 



8.8 Curve sketching using derivatives 

sign of F"(x) changes from - to + at x= h and the point 
(4,F(4»=(4,4~) is an inflection point. 

(d) Find all values of x for which the curve is concave upward and 
concave downward. 

Since F"(x) < 0 for x < h the curve is concave downward in the set 
{xlx<4}. Since F"(x) >0 for x>4, the curve is concave upward in 
the set {xix> 4}. 

(e) Using the information gathered in Parts (a)-(d), sketch the graph of 
the function y = F(x)=2x 3- 3x2 -12x + 10. 
This is done in Figure 8.23. 

+ + 
2 

Figure 8.21 Sign chart for F'(x) about x= -I and x=2. 

1 
"2 

+ 

Figure 8.22 Sign chart for F"(x) around x =!. 
y 

(-1,17) 

--------+--r-4~~_+--~-----x 

Figure 8.23 Graph of y=F(x)=2x 3-3x2-12x+ 10. 
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Example 2 

Repeat the above procedure for the function y = F (x) = x 2 - 4x + 2. 

/=F'(x)=2x-4 and y"=F"(x)=2. 

(a) Maxima, minima: F'(x)=2x-4=0 when x=2. So, (2,F(2)) = (2, -2) is 
a relative minimum (see Figure 8.24). 

+ 
2 

Figure 8.24 Sign chart for F'(x)=2x-4 around x=2. 

(b) Increasing, decreasing: From the sign chart for F'(x) about x = 2 in 
Figure 8.24, the curve is decreasing in the set {xix < 2}, and increasing 
in the set {xix> 2}. 

(c), (d) Inflection points and concavity: Since F"(x)=2>0 for all x, the 
curve has no inflection points and is always concave upward (see 
Figure 8.25). 

y 

(4,2) 

-----+-+1---r--+~~--x 

(2, -2) 

Figure 8.25 Graph ofy=F(x)=x2-4x+2. 

Example 3 

y = F(x) =lnx By definition, x >0. 

Y'=F'(x)=l>o for all x>O. 
x 

-1 
y"=F"(x)=2"<O forallx. 

x 

Thus, this curve has no relative maxima or minima, since F'(x) is never 
O. Since F'(x) > 0 for all x> 0, then the function is always rising 
(increasing). Also, the curve has no inflection points, since F"(x) is 
never O. Since F"(x) < 0 for all x> 0, then the curve is always concave 

240 



8.8 Curve sketching using derivatives 

y 

----~~~-----------x 

Figure 8.26 Graph of y=F(x)=lnx. Note it is always increasing and concave 
downward. 

downward. Since In I = 0, then the curve must pass through the point 
(1,0). Thus, the shape of the curve must be as shown in Figure 8.26. 

EXERCISES 

In the following problems, find the relative maxima, relative minima, and 
the inflection points. Also, find the sets of values for x for which the 
functions are increasing, decreasing, concave upward, and concave down­
ward. Finally, use the information you have gathered from the two 
derivatives to sketch the graphs of the functions. 

I. y=F(x)=-3x2+6x+1 

2. y=F(x)=x3_3x2+4 

3. y=F(x)=2x3_3x2_72x+ 10 

4. y=F(x)=4x3 +2x2-3x+5 

S. y=F(x)=x·lnx 

6. y=F(x)=e-x2/ 2 
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9 Integral calculus 

As in our study of differential calculus, we shall consider only a few major 
ideas of integral calculus. We hope to give the student an appreciation for 
the concepts of antiderivative and integral as well as a few applications of 
the concepts. In addition, we shall consider the "Fundamental theorem of 
calculus," which deals with the relationship between differential and in­
tegral calculus. 

9.1 Antidifferentiation 

We begin by considering the inverse process to that of differentiation, 
called antidijjerentiation. 

Definition of antiderivative (or indefinite integral) 

An antiderivative oj a junction F(x) is a function G (x) having the property 
that G'(x)= F(x). 

(Another name for antiderivative is an indejinite integral. We prefer the 
name antiderivative because it describes the operation better.) 

The symbol for an antiderivative of F(x) with respect to x is 

f F(x)dx 

read as "antiderivative of F(x) with respect to x." 

According to our definition, f F(x)dx= G(x) provided that G'(x)= 

F(x). 
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9.1 Antidifferentiation 

Example 

!5x4dx=x5, since fx(x 5)=5x4• 

However, this answer is not unique, since ! 5x4 dx = x 5 + 3 is also a true 
statement, since 

Also, 

is true since 

In fact, the statement 

f 5x4 dx=x5 + c 

is true for any constant real number c, since the derivative of any constant 
is 0, so that 

Therefore, we write ! F(x)dx = G (x) + c, where c is any arbitrary 
constant real number, called the constant of antidifferentiation, provided 
that G'(x)= F(x). 

We shall defer any rules or formulas for antidifferentiation until the 
next section in order that the reader be given the opportunity to really 
work with the definition of antiderivative. Right now, we would prefer that 
he make an educated guess at an antiderivative and then check his answer 
by differentiating it. 

Further examples 

1. 

f (3x 2 +4x+5)dx=x3 +2x2 +5x+c, 

since 

d 
dx (x3 +2x2 +5x+ c)=3x2 +4x+5. 
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9 Integral calculus 

2. 

j (-32t + 160)dt = -16t2 + 160t + c, 

since 

3. 

SInce 

4. 

j ~dx=2'lnx+c, 
provided x > 0, since 

d 2 -(2·lnx+c)= -. 
dx x 

5. 

since 

Some applications of antidifferentiation 

Since antidifferentiation is just the inverse process to differentiation, the 
applications of antidifferentiation are just the inverse to the applications of 
differentiation. 

Example 1 

Find the equationy = F(x) for the curve passing through the point (1,3) if 
the slope of this curve at any point on it is given by m = 2x + 1. 

Since the slope of a curve at any point (x,y) is found by computing the 
derivative of the equation for the curve, the equation for the curve is found 
by computing the antiderivative of the slope function. Thus, 

y= j(2x+ l)dx=x2+x+c. 
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9.1 Antidifferentiation 

Since the point (1,3) lies on the curve, (1,3) must satisfy the equation for 
the curve. Thus, 3 = 12 + 1 + c, or c = 1. Thus the equation of the curve is 

Y=X2+X+ 1. 

Example 2 

Suppose that the marginal cost of producing the xth item is given by 
M.e. = lO / Yx and that the fixed cost is $lO. Find the total cost function 
C=F(x). 

Since the derivative of the total cost function is the marginal cost 
function, the antiderivative of the marginal cost function is the total cost 
function. Thus, 

C= f ~ dx= f lOx- I / 2 dx=20x l / 2 +k=20Yx +k, 

since 

Also, since the fixed cost is $lO, then when x=O, C= 10, so that k= 10. 
Therefore, the total cost function (in dollars) is 

C=20Yx +10. 

Example 3 

If the velocity of a falling object at any time t seconds after it first started 
falling is given by v= -32t+ 160, and if the initial height is 1500 feet, then 
find the formula for the height at any time t. 

Since the derivative of the height formula yields the velocity formula, 
then the antiderivative of the velocity formula will yield the height for­
mula. Thus, 

s= f (-32t+ 160)dt= -16t2 + 160t+c. 

Also, since the initial height is 1500 feet, then when t = 0, s = 1500. Putting 
these values into the formula for s yields c= 1500. Thus, the height formula 
is 

Example 4 

The instantaneous rate of change in a quantity P per unit change in a 
quantity q is given by dP/dq=lOe Q+5. If P=20 when q=O, find the 
function relating P to q. 
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9 Integral calculus 

Since the derivative of the function P= F(q) yields the instantaneous 
rate of change function dP / dq, then the antiderivative of the instanta­
neous rate of change function will yield the original function. Thus, 

P= j(lOe Q +5)dq=lOe q +5q+c, 

sInce 
d 

dq (lOe Q + 5q + c) = lOe Q +5. 

Also, since when P = 20, q = 0, then 20 = I Oeo + 5 . ° + c, so that c = 10. 
Thus, the formula for P in terms of q is 

P= lOe Q +5q+ 10. 

EXERCISES 

1. Use the definition of antiderivative to find the following antiderivatives: 

(a) j(6x2 -8x+2)dx (d) j Jx dx 

(b) j(x3 +x2 +x+l)dx (e) j~dx 

(c) j(X3/ 2 -2x -3)dx (f) j e - 5x dx 

2. Find the function whose derivative is 4x3 + 6x, if it passes through the point 
(1,5). 

3. If the marginal cost of producing x items is given by M. C. = 4 x - 200, and if the 
fixed cost is $100, then find the total cost function. 

4. An object is moving in a straight line in such a way the its velocity at any time 1 

is given by v = 6/2 - 241 + 12. Find its distance from the starting point at any 
time I. 

5. An object dropped from a height of 500 feet has for its velocity at any time 1 the 
function v= -20-32/. Find a formula for its height at any time I. 

6. The slope of the tangent line to a curve at any point P(x,y) is given by m=3e3x• 

This curve passes through the origin. Find the equation for the curve. 

7. The instantaneous rate of change of the area of a certain geometric figure is 
given by dA/ dx=27TX. Find the formula for A. What kind of a geometric figure 
is this? 

9.2 Some formulas for antidifferentiation 

Now that the reader has some feeling for the concept of the anti derivative, 
we present some formulas for antiderivatives. All of these formulas can be 
proved by differentiating the answers according to the definition of antide­
rivative. 1 

IThese rules don't cover all cases. This is just a sample of a table of integral formulas. In 
general, antidifferentiation is a more difficult process than differentiation. 
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9.2 Some formulas for antidifferentiation 

Rule 1 

f kdx=kx+c, where k is a constant real number. 

Rule 2 

f xndx= _l_xn+i+c provided n'=F-I. 
n+1 ' 

Rule 3 

f x-idx= f ~dx=lnx+c, providedx>O. 

Rule 4 

f k·F(x)dx=k· f F(x)dx, where k is a constant. 

Rule 5 

f (F(x)+ G(x)dx= f F(x)dx+ f G(x)dx 

and 

1. 

f(F(X)-G(x)dx= fF(x)dx- f G(x)dx. 

Rule 6 

f ekX dx = .!ekx + c where k is a constant real number. 
k ' 

Examples 

f(x 4+6x2+9)dx= fx 4dx+6fx2dx+ f9dx 

= .!xs+6· .!x3+9x+c 
5 3 
I 

= SxS+2x3 +9x+c. 
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9 Integral calculus 

2. 

3. 

f(9Yx + :2 )dX= f (9X I / 2+6x -2)dx 

=9 f XI / 2dx+6 f x-2dx 

= .~e·2x-lnx+c=5e·2x-lnx+c. 

Antidifferentiation by the method of substitution 

If one has a great need to antidifferentiate frequently, then he can 
purchase a book of antiderivative (integral) formulas. In order to use such 
a table, one would have to know the method of substitution. We would like 
to illustrate this method. Therefore, we present four more antidifferentia­
tion formulas. In the following rules, assume that u is a differentiable 
function of x. 

Rule 7 

Rule 8 

f u-1du= f ~du=lnu+c, provided u>O. 

Rule 9 

Rule 10 

flnudu= u·lnu- u+ c. 
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1. 

2. 

3. 

4. 

5. 

9.2 Some formulas for antidifferentiation 

Examples 

J(3X+l)5dx. 

Let u=3x+ 1. Then, du/dx=3, so that du=3·dx, or dx= tdu. Making 
these substitutions yields the integral 

1 f 5 d - 1 6 - 1 (3 1)6 '3 u u- 18 u +c- 18 x+ +c. 

fxVx2+1 dx. 

Let u = x2 + 1. Then, du / dx = 2x, so that x dx = t duo Making these 
substitutions yields the integral 

!JVu du= !JU I / 2du=! lu3/2+ c= !u3/2+c= !(X2+ 1)3/2+c 
2 2 2l 3 3 . 

2 

f x dx. 
2x2+ 1 

Let u=2x2+1. Then, du/dx=4x, so that xdx=~du. Making these 
substitutions yields the integral 

- - = - -du= -Inu+c= -In 2x + I +c. IJdu Ifl I 1 ( 2 ) 

4 u 4 u 4 4 

f x·e- x2/ 2dx. 

Let u= -x2/2. Then, du/ dx= - x, or xdx= - duo Making these substitu­
tions yields the integral 

- J e"du= -e"+c= _e- x2/ 2+c. 

Jln(5x)dx. 

Let u=5x. Then, du/dx=5, or dx=kdu. Making these substitutions 
yields 

I f I - Inudu=-(u-Inu-u)+c 
5 5 

I = S(5x.ln(5x)-5x)+c. 
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9 Integral calculus 

A program for antidifferentiating polynomials (optional) 

In general, it is difficult to write programs for finding antiderivatives of 
functions. However, it is possible to write programs to find anti derivatives 
of specific cases of functions. As an illustration of this, we present the 
following program for finding antiderivatives of polynomials. 

Program 9.1 ANTIDIFF 

V POL Y ~ C ANTIDIFF COEFS; N; EXPS 

[1] N~p COEFS N is the number of coefficients. 

[2] EXPS~1 + N-tN The exponents for the antiderivative. 

[3] POL Y ~ (COEFS + EXPS), C POL Y is the vector of coefficients 
V of the antiderivative. C is the con­

stant of antidifferentiation. 

Example 1 

Find J (4x 3 + 6x2 - 2x + 5) dx, where the constant of antidifferentiation is 

3. 

3 ANTIDIFF 4 6 -2 5 
1 2 -1 5 3 

Thus, the antiderivative polynomial is X4 + 2x3 - x2 + 5x + 3. 

Example 2 

Find J (x4+6x2+9)dx, where c is 5. 

5 ANTIDIFF 1 0 6 0 9 
202 095 

Thus, we get the anti derivative 

Note we must account for 0 
coefficients in COEFS also. 

O.2X5 + OX4+ 2x3 +Ox2+ 9x + 5 =0.2x5 + 2x3 + 9x + 5. 

More applications of antidifferentiation 

I. Suppose that the marginal revenue from the sale of x items is given by 
M.R.= I/(x+ I). Find the revenue function. 

Since marginal revenue is the derivative of revenue, then revenue is 
the antiderivative of marginal revenue. Thus, 
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9.2 Some formulas for antidifferentiation 

Let u=x+ 1. Then, du/dx= 1, or du=dx. Thus, 

R= f ~du=lnu+c=ln(x+l)+c. 
Since, if you sell no items, you receive no revenue, then 0 = In 1 + c = 0 + 
c, or c =0. Thus, 

R=ln(x+ 1). 

2. Suppose that the slope of the tangent line to some unknown curve at 
any point P(x,y) is given by m=3x2(x3+3)3. Suppose also that the 
curve passes through the point (1,6). Find the equation of the curve. 

y= f 3x2 (x 3+3?dx. 

Let u=x3+3. Then, du/dx=3x2, or du=3x 2 dx. Therefore, 

However, since (1,6) lies on the curve, then 6=i(1+3t+c=64+c. 
Thus, c = -58 and the equation of the curve is 

3. A projectile is fired vertically upward from a height of 5 feet with a 
muzzle velocity of 960 feet/second. 
(a) Find the function for the velocity at the end of the tth second. Due 

to gravity, the acceleration is A = -32 feet/second. Since accelera­
tion is the derivative of velocity, then velocity is the antiderivative 
of acceleration. Therefore, 

The muzzle velocity is the velocity at t = O. So, c = 960. Thus, 
v=-32t+960. 

(b) Find the function for the height after t seconds. Since velocity is the 
derivative of height, then height is the antiderivative of velocity. 

Thus, 

Since the initial height is 5 feet, then k = 5. Thus, 

s=-16t2 +960t+5. 
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9 Integral calculus 

EXERCISES 

1. Use the rules of antidifferentiation to find the following: 

(a) f(8x 3 -6x+2)dx (f) f 14x(2x2+ 1)6dx 

(b) f(x 5+x3 +1)dx (g) felnx'~dx 

(c) f(4e2X-~)dx (h) fln2xdx 

(d) f( Jx - ~2 )dX (i) f 2x~ 1 dx 

(e) f3Y4x+l dx (j) f l:x dx 

2. An object is moving in a straight line in such a way that its acceleration after t 
seconds is given by A = 2t - 4. 
(a) Find the velocity after t seconds if the initial velocity is 5 feet/second. 
(b) Find the position function if the initial position is s=O. 

3. The slope of the tangent line to an unknown curve is given by m= 1/(2x+ Ii 
and the curve passes through the origin. Find the equation of the curve. 

4. The marginal cost of the xth item is given by M.e. = lOeo.5X, and the initial cost 
is $100. Find the total cost function. 

9.3 Area under a curve 

We now consider a geometry problem, the solution of which will lead us to 
the definition and geometric interpretation of the definite integral. First, 
however, we need to discuss the use of the summation symbol ~. 

The summation symbol, ~ 

The symbol ~ is frequently used in mathematics when working with a sum 
of a great many numbers. Its use is described as follows: 

b 

L F(i)=F(a}+F(a+l}+F(a+2)+F(a+3)+ ... +F(b), 
;=a 

where a and b are integers. 

Examples 

l. 

2. 
4 

10 

L i= 1 +2+3+4+5+6+7+8+9+ 10=55. 
;=1 

L (i2+ 2i) = «()2 + 2.0) + (12+ 2·1) + (22+ 2· 2) + (32+ 2·3) + (42+ 2·4) 
;=0 

=0+3 +8+ 15 +24=50. 
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9.3 Area under a curve 

3. 
100 

L i 2= 12+22+32+ . .. + IW. 
i =1 

4. 
n 

L F(x;) = F(x l ) + F(X2) + F(x3) + . . . + F(Xn) · 
i=1 

A rea under a curve 

Let y = F(x) be a function which is always > 0 for all x in the interval 
a ~ x ~ b, so that its graph lies entirely above the x axis in that interval. 
We want to find the area under the curve of y = F(x), above the x axis, 
and between the vertical lines x = a and x = b (see Figure 9.1). 

~Y= F(;<) . 
----'----------------..I.----XaxIS 

a b 

Figure 9.1 Area under a curve. 

Let us consider the following scheme for approximating an area such as 
this: 

First divide the interval a ~ x ~ b into n subintervals each of width 
!lx=(b - a)/ n. Call the points of subdivision Xo= a, xl = a+!lx,x2= a + 2· 
!lx, . .. , Xi = a + i·!lx, . .. ,xn = a + n·!lx = b. At each of these points of subdi­
vision, erect a perpendicular to the x axis and extend it upward until it 
meets the curve y = F(x). In this way, we have sliced the area under the 
curve into n slices of area (see Figure 9.2). We now need a way of 
estimating the area of each slice. The area of the typical ith slice can be 
approximated by the area of the rectangle of width !lx and height F(xJ 
The sum S=L7=IF(xi)·!lx, of areas of these rectangles is an approxima­
tion to the area under the curve. 

y = F(x) 

___ --1...---'----'----1._---rL........JL....-_____ ----:L........,L-.-JL....---;-__ x ax is 
a = xOxlx2X3 Xi 

Xj_ 1 

Figure 9.2 The area as a sum of rectangles. 
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9 Integral calculus 

nde irable area 
10 t by taking 
rectangles of 
half the previous 
width , cau ed 
by doubling 11. 

Desired area 
gained by taking 
rectangles of 
hal f the previous 
width , caused 
by doubling fl. 

Figure 9.3 Increasing n makes the approximation better. 

In order to make this approximation more accurate, take n larger, 
thereby making more rectangles of smaller width. As n gets larger and 
larger, S="i.7_IF(X;)·t:..x gets closer and closer to the actual area under the 
curve (see Figure 9.3). The actual area is symbolized by 

n 

lim L F(x;}-t:..x. 
n--+oo ,. = 1 

Example 

Approximate the area under the curve y=F(x)=x2 over the interval 
1 ..;; x ..;; 2 (see Figure 9.4) 

Let n=5. Then, 

b-a 2-1 
t:..x= -n- = -5- =0.2. 

Also, Xl = a +t:..x = 1 +0.2= 1.2,X2 = 1 + 2·0.2= 1.4,x3 = 1 +3 ·0.2= 1.6,x4 = 

4 

3 

2 

o I. 2 1.4 1.6 1.8 2 

Figure 9.4 Approximation of the area under the curvey=F(x)=x2• 
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9.3 Area under a curve 

1 + 4·0.2 = 1.8, Xs = b = 2. The area is approximated by the sum 
5 

S= L F(x}ax 
i= \ 

= F(x\)· ax + F(X2)· ax+ F(X3)· ax + F(X4)· ax + F(xs)·ax 

= F(1.2)·0.2+ F(1.4}0.2+ F(1.6)·0.2+ F(1.8)·0.2+ F(2)·0.2 

= (1.44 + 1.96 + 2.56 + 3.24 + 4.(0). 0.2 = (13.20)· 0.2 = 2.64. 

The actual area (found by a more sophisticated technique to be dis­
cussed in Section 9.5) is 713 = 2.33333. If one were to repeat the above 
process with n = 100, one would get approximately 2.358. If one did it with 
n = 1000, one would get approximately 2.336. Of course, if n = 1000, the 
process would be far too tedious to do by hand. Therefore, we shall use the 
following program AREA to accomplish the process described above with 
n= 1000. 

Program 9.2 AREA 

'il SUM~A AREA B; N; WIDTH; HEIGHTS 

Find the area from A to B. 

[1] N~ 1000 Use 1000 rectangles. The reader may 
want to experiment with other values 
of N. 

[2] 

[3] 

[4] 

WIDTH~(B-A)+N The width of each rectangle. 

HEIGHTS~FN(A+ WIDTHXtN) 

A vector of heights of rectangles 
using right-hand endpoints of each 
subinterval. 

SUM~ + 1 WIDTH X HEIGHTS The sum of the areas of the rectan­
gles. 

Examples 

1. Find the area under the curve y = F(x)= x 2 over the interval 1, x, 2. 

'il FN [1] 

1 AREA 2 
2.3358335 

We need to alter FN to fit our func­
tion. 
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9 Integral calculus 

2 

Figure 9.5 The shaded area is approximately 0.694 square units. 

2. Find the approximate area under the curve y = F (x) = 1/ x in the 
interval I ~ x ~ 2 (see Figure 9.5). 

V FN [1] 

[1] Y~1 +X V 

1 AREA 2 
.6938972431 

Change FN to the new function. 

3. Approximate the area under the curve y=F(x)=e- x' from x=O to 
x = I (see Figure 9.6). 

V FN [1] 

[1] Y~* (- X*2)V 

o AREA 1 
.7475080112 

APL for y = e- x'. 

2 

Figure 9.6 The shaded area is about 0.7475 square units. 

4. Approximate the area under y = F(x)= ~ in the interval from I 
to 5 (see Figure 9.7). 

V FN [1] 
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9.4 The definite integral 

6 
S 
4 
3 
2 

o 2 3 4 

Figure 9.7 The shaded area is about 12.769 square units. 

[1) Y~(1 +X*2)* .5 'V 

1 AREA 5 
12.76900121 

EXERCISES 

1. Use pencil and paper to do the following: 
(a) Approximate the area under the curve y=F(X)=X3+2x in the interval 

0..;; x ..;; 2. (Use n = 4 rectangles.) 
(b) Estimate the area under the curve y=F(x)=3x2 +2x+1 in the interval 

I ..;; x..;; 2. (Use n = 5 rectangles.) 
(c) Estimate the area under y = F(x)= - x 2 + 2x + 3 over the interval -I..;; x ..;; 

3. (Use n=4 rectangles.) 

2. Use the program AREA, which uses 1000 rectangles, to get better approxima­
tions to the areas in Exercise I. 

3. (a) Sketch the graph of the function y=F(x)=x2 -2x-3 over the interval 
- I..;; x..;; 3. 

(b) Evaluate - 1 AREA 3 for this function. 
(c) Compare your answer in Part (b) with the answer to Exercise 2, Part (c). 
(d) Can you explain the sign of this answer? 

4. (a) Sketch the curve of y = F(x)=4x3 in the interval - 2..;; x..;; 2. 
(b) Evaluate -2 AREA 2 for this function. 
(c) Can you explain the reason for this answer? 

5. Write a program to evaluate ~J~Ij2. 

9.4 The definite integral 

Definition of the definite integral 

The definite integral of a function F(x) from a to b, symbolized by 

fb F(x)dx, is defined as follows: 
a b n 

( F(x)dx= lim ~ F(x}6.x, 
Ja n-+oo i= 1 
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9 Integral calculus 

where the interval a";; x ..;; b is divided into n subintervals each of width 
t:.x =(b- a)/ nand x;= a + i·t:.x for i= 1,2, . .. ,n. 

This is precisely the same quantity that we used in the previous section 
to compute the area under a curve y = F(x) over the interval a";; x";; b. 
Thus, if y=F(x) is positive for all x in the interval a";;x";;b, then 

fb F(x)dx yields the area under the curve of y = F(x), above the x axis, 
a 

between the vertical lines x = a and x = b. Also, since there was nothing in 
the program AREA that depended on F(x) being positive in the interval 
a ..;; x..;; b, then we can use the program AREA to compute definite in­
tegrals. The following program does just this. We will then use this 
program INTEGRAL to approximate definite integrals. 

Program 9.3 INTEGRAL 

V I ~ A INTEGRAL B 

[1] I~A AREA B V 

Examples 

1. Approximate ~2 x 2dx. 

V FN [1] 

[1] Y~X*2 V 

1 INTEGRAL 2 
2.3358335 

2. Estimate ~2(1/ x)dx. 

V FN [1] 

[1] Y~1 +X V 

1 INTEGRAL 2 
.6938972431 

(I 2 

3. Approximate 10 e- X dx. 

V FN [1] 

[1] Y ~ * ( - X * 2) V 

o INTEGRAL 1 
.74750800112 
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9.4 The definite integral 

In each of the above examples, we have computed the areas under the 
curves. This is because each of the curves lies completely on or above the x 
axis over the prescribed intervals. One might wonder what the geometric 
significance is of the definite integral if the function does not have its 
graph lying entirely on or above the x axis over the designated interval. 

More on the geometric interpretation of the definite integral 

To illustrate the complete picture of the geometric interpretation of the 
definite integral, let us consider the function of Example 2 in Section 6.5: 
y = F(x)= X4- x 3 -7x2 + x+6 (see Figure 9.8). 

V FN [1] 

[1] Y~(X*4)+(- X*3)+(-7 x X*2)+ X+6 V 

-1 INTEGRAL 1 
7.7333326667 

Altering FN to fit this function. 

Since the function is positive for all x in the interval -1 ~ x ~ 1, then as 

previously stated, r1 F(x)dx yields the area under the curve of y = F(x), 

above the x axis, between x = -1 and x = 1. This area is approximately 
7.73. 

4 3 

5 
6 
7 
8 
9 

10 
11 
12 

Figure 9.8 Note that the graph of this function is sometimes above and sometimes 
below the x axis. 
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9 Integral calculus 

-I 3 
Let us now use INTEGRAL to approximate f F(x)dx and J. F(x)dx. 

-2 1 
Notice that in the intervals -2"';; x"';; -I and I...;; x"';; 3, the function is 
negative for all x. Its graph lies entirely below the x axis in these intervals. 

-2 INTEGRAL -1 
-1.883331417 

1 INTEGRAL 3 
-16.266664933 

It thus appears that if the function is always negative in an interval 
a"';; x"';; b, so that its graph lies below the x axis in this interval, then 

fb F(x)dx yields a negative answer. This answer represents the negative of 
a 

the area between the curve of y = F (x), the x axis, and the lines x = a and 
x=b. 3 

Let us now consider the integral 12 F(x)dx. Notice that in the interval 

-2...;; x"';; 3, the function is sometimes positive and sometimes negative, so 
that its graph is sometimes above the x axis and sometimes below it. 

- 2 INTEGRAL 3 
-10.41655208 

If a function is sometimes negative and sometimes posItlve in an 

interval a"';; x"';; b, then fb F(x)dx yields the net area above the x axis 
a 

between the lines x = a and x = b. If the result is a negative number, as in 
this example, this indicates that there is more area under the x axis than 
above it. As a demonstration of the validity of these statements, let us add 
the integrals above. 

(-2 INTEGRAL -1)+r1 INTEGRAL 1)+(1 INTEGRAL 3) 
-10.41655208 

To get the total area between a curve and the x axis between x = a and 
x = b, we need to find the x intercepts and add the absolute values of the 
integrals between these x intercepts. Thus, the total area between the graph 
of the above function y = F (x), the x axis, and the lines x = - 2 and x = 3 is 
approximated by the following: 

(1-2 INTEGRAL -1)+(1-1 INTEGRAL 1)+(11 INTEGRAL 3) 
25.88331341 

Areas between two curves 

If a curve y = G (x) is above a curve y = F(x) for all x in the interval 
a"';; x"';; b (see Figure 9.9), then the total area between these curves and the 
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9.4 The definite integral 

y = Gx 

y = F(x) 

a b 

Figure 9.9 Area between two curves. 

lines x = a and x = b is found by evaluating 

fb G(x) dx- fb F(x) dx= fb(G(X)-F(x))dx. 
a Upper a Lower a 

curve curve 

This formula will work whether both 'curves are above the x axis, both 
below it, or one above and the other below. The reader can easily convince 
himself of this by drawing some sketches and using the above geometric 
interpretations of the definite integral in each case. This will be left as a 
good exercise for the reader. 

Example 1 

Find the area between the curvesy=G(x)=VX andy=F(x)=x2. We 
can use a graph (Figure 9.10) to see which curve is the upper curve and 
which is the lower curve, and to help us in finding the values of a and b. 

Thus, this area is found by computing 

fo1vx dx- fo 1x2dX= fol(VX -x2)dx. 

We can use the program INTEGRAL to estimate this area. 

VFN[1] 

y 

y = F(x = x 2 

2 y = G(x) = x 

--~~-+---+------------x o 2 

Figure 9.10 Note that these curves meet when x = 0 and x = I, since Yx = x 2 

only for these values of x. Also, Yx ;;. x 2 for all x in the interval 0 .;;; x .;;; l. 
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9 Integral calculus 

[1] Y~(X*.5)-(X*2) 'il 

o INTEGRAL 1 
.33333266344 

Thus, the area between these curves is approximately 0.333. 

Example 2 

Find the area between the curves y = F(x) = 2X2 and y = G (x) = X4 - 2x2. 
Once again, a sketch (Figure 9.11) helps determine which curve is the 
upper curve and what are the values of a and b. 

These curves meet when x = -2, x = 0, and x = 2, since 2X2 = X4 - 2X2 
when 4x2 = X4 or when x has these values. Also, the graph of y = 2X2 is 
always above the graph of y = X4 - 2X2 for all x in the interval - 2..; x ..; 2. 
Thus, the area is given by 

This can be approximated using the program INTEGRAL as follows: 

'ilFN[1] 

[1] Y~(4XX*2)-(X*4) 'il 

-2 INTEGRAL 2 
8.533290667 

Thus, the area between these curves is about 8.53 square units. 

y 

Figure 9.11 Area between two curves. 
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9.S The fundamental theorem of calculus 

ExERCISES 

I. Use the program INTEGRAL to approximate the following: 

(a) J: 2(3x2+2x+ l)dx (c) 1\1t +x2 dx 

(b) f 1 (x3 - 3x2)dx (d) (4(lnx)dx 
-I )1 

2. (a) Sketch the graph of the following function showing the x intercepts: y = 
F(x)= x 3 -4x. 

(b) Find the net area between this graph, the x axis, and the first and third x 
intercepts. 

(c) Find the total area between this graph, the x axis, and the first and third x 
intercepts. 

3. (a) Sketch the graph of the following function showing the x intercepts: y = 
F(x)=x 3 -9x2+23x-IS. 

(b) Find the net area between this graph, the x axis, and the first and third 
intercepts. 

(c) Find the total area between this graph, the x axis, and the first and third 
intercepts. 

4. Find the total area between the following pairs of curves: 
(a) y = x 3 and y = x (in the first quadrant) 
(b) y=2-x2 and y=x2 
(c) y=X2 and y=2x+8 

S. Draw some sketches and use the geometric interpretations of the definite 
integral to explain why 

ibG(x)dx- ibF(x)dx, 

where G (x) is always above F(x), in the interval a.;;;; x.;;;; b, will always yield the 
area between the curvesy=G(x) andy=F(x), and the lines x=a and x=b, 
regardless of whether both or none or one of the curves of G(x) an F(x) are 
above the x axis. 

9.5 The fundamental theorem of calculus 
We now consider a theorem of such importance that it is referred to as the 
fundamental theorem of calculus. 

Lety = F(x) be defined and continuous in the interval a';;;;; x.;;;;; b, and let 
G(x) be any antiderivative of F(x). Then, 

fb F(x)dx= G(b)- G(a). 
a 

This theorem establishes a relationship between the concept of antidif­
ferentiation (the inverse process of differentiation) and definite integration 
(which has to do with infinitely large sums of areas of rectangles). 
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9 Integral calculus 

Although it has been our policy throughout this text to avoid rigorous 
mathematical proofs, we do feel that some justification of this theorem 
would be desirable, since it is not intuitively obvious. Therefore, we shall 
prove this theorem in the special case where F(x) ~ 0 for all x in the 
interval a, x, h. 

Let x be in the interval a, x ,h. Define the function A (x) to be the 
area under the curve y = F(x) above the x axis between x = a and x = x 
(see Figure 9.12). Let h~O be such that a'x+h'b. Then, A(x+h)­
A (x) gives the area under the curve between x = x and x = x + h. 

L}fr---'I---Y=F(X) 
a x x+h b 

Figure 9.12 A functiony=F(x) in the interval a.;;;; x.;;;; x+h.;;;; b. 

Let m be the minimum height of the curve between x = x and x = x + h, 
and let M be the maximum height between x = x and x = x + h. Then, 

A(x+h)-A(x) 
m·h'A(x+h)-A(x)'M·h, or m, h 'M. 

Now, as h~O, m~F(x) and M~F(x). Or, 

limm= limM=F(x). 
h--->O h--->O 

However, since (A(x+h)-A(x»/h is between m and M, then 

. A(x+h)-A(x) 
hm h =F(x). 
h--->O 

Thus, A'(x)= F(x) and A (x) is an antiderivative of F(x). 
By the definition of A (x), A (b) is the area under the curve between 

x = a and x = b. Also, A (a) = 0, since this is the area under the curve from 

a to a. Recall that fb F(x)dx also gives the area under the curve from 
a 

X = a to x = b. Therefore, 

Jb F(x)dx=A (b) - A (a). 
a 

Now let G (x) be any other antiderivative of F(x). Then, since any two 
antiderivatives of a function differ only by a constant, A (x) = G (x) + c, for 
some constant c. Therefore, 

fb F(x)dx=A (b)- A (a)=( G(b) + c) -( G (a) +c) = G (b)- G (a). 
a 

This completes the proof of this special case of the Fundamental theorem 
of calculus. 
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9.5 The fundamental theorem of calculus 

This theorem enables us to easily get exact answers to definite integrals, 
provided we can easily find an antiderivative of the function being in­
tegrated. For many functions, however, it is not easy to find an antideriva­
tive. There even exist functions for which there is no antiderivative! For 
functions such as these, we can always use the program INTEGRAL to get a 
good approximation to the definite integral. 

Example 1 

Evaluate ~2 x2dx. 

Since t x 3 is an anti derivative of x 2, then by the Fundamental theorem, 

2 

~\2dX= txt =( t· 23)-( t· 13)= 1- t = t· 
Using the program INTEGRAL, we got 2.3358, which is a good approxima­
tion to this integral. 

Example 2 

Evaluate f 2 l dx. 
I x 

Since Inx is an antiderivative of 1/ x, then 

2 1 12 f -dx=lnx =(1n2)-(1nl)=(ln2)-0=ln2. 
I x I 

The program INTEGRAL yielded 0.693897. 

®2 
0.6931471806 In2 in APL. 

Thus, the program INTEGRAL yields a good approximation to this 
integral. 

Example 3 

Evaluate ~5~ dx. 

We would have a very difficult task in trying to find an antiderivative 
for the function ~ , although it does have an antiderivative. There­
fore, we will have to settle for the approximation we can get using the 
program INTEGRAL. 

V FN [1] 

[1] Y+-(1 +X*2)*.5 V 

1 INTEGRAL 5 
12.76900121 
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9 Integral calculus 

Example 4 

Find fo 1e- X2 dx. 

The function F(x)= e-r has no elementary antiderivative. Thus, we 
have no choice but to settle for an approximation for this integral. 

V FN [1] 

[1] Y +- • ( - X. 2) V 

o INTEGRAL 1 
.7475880112 

Example 5 

Find the area under the curve y=F(x)=3x2+4x+ 1, above the x axis, 
between the vertical lines x = 2 and x = 4. 

Since this curve lies entirely above the x axis between x = 2 and x = 4, 

then ~4(3x2+4x+ l)dx yields the desired area. By the Fundamental 

theorem, 
(4 4 

)2 (3X2+4x+ l)dx=(x3+2x2+x)12 

= (43 + 2.42+4) - (23 +2.22+ 2) = 82. 

Example 6 

Find the net area between the curvey=F(x)=x4_x3 -7x2+x+6, the x 
axis, and x= -2 and x=3. i: (x4- x3-7x2+x +6)dx=(tx5 - tx4- tx3 + tx2+6x)I~2 

= (243 _!!. _ 189 + 2 + 18)-(.E - ~ +~ +2-12) 
5432 543 

= -10-& = -10.4166666667. 

Since this answer is negative, then more of the curve must be below the x 
axis than above it. 

Example 7 

Find the area between the curves y = VX and y = x 2• This was Example 1 
of the area between curves in the last section. This area can be found by 
evaluating the definite integral 

I 

(\VX -x2)dx= (\x 0.5_ x2)dx=(_I_ x I.5_ '!'x3) I 
)0 )0 1.5 3 0 

=( j - t )-(0-0)= t· 
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9.6 More applications of integration 

EXERCISES 

1. Use the Fundamental theorem of calculus to compute the following: 

(a) (3(4x3 -6x2)dx (d) (4(_2_ -~)dX 
J2 JI \IX x 

(b) ~\x5+x3+I)dX (e) fo\/2x+1 dx 

(c) (Iexdx (f) (1_I_dx 
Jo Jo 2x+ I 

2. Find the area under the curve y = 9 - x 2, above the x axis, between x = 0 and 
x=3. 

3. Find the area between the curves y = 8 - x 2 and y = x 2• 

4. (a) Find the net area between the x axis and the curve y = x 3 - x, between 
x = - I and x = I. 

(b) Find the total area. 

5. Use the definition of definite integral, and the Fundamental theorem to show 
that 

9.6 More applications of integration 

Example 1 

Suppose that the velocity at the end of t seconds of an object moving in a 
straight line is given by 

dS 
V= dt =5+ 1Ot- t2 feet/second. 

Find the total distance, D, traveled by the object during the first 5 seconds. 
Since velocity, V, is the derivative of position, S, then position, S, is the 

antiderivative of velocity, V. Thus, the position function is given by 

for some constant c. The distance traveled is therefore, 

( 125) D=F(5)- F(O)= 25+ 125- T +c -c= 108~ feet. 

This can also be found using the definite integral 

D= fo5(5+1Ot-t2)dt=(5t+5t2-it3)1: =108~ feet. 
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9 Integral calculus 

The distance traveled during the 5th second is given by 

£5(5+ IOt- t2 )dt= (5t+5t2 - tt3 )1: = 29t feet. 

Example 2 

The marginal cost of the xth item is given by M.C.=dc/dx=IO/v'X. 
Find the tolal cost as x goes from 25 to 100 items. 

LlC= i lOO ~ dx= i 10010x -1/2dX=20Xl/21100 
25 v'X 25 25 

=20Y100 -20VE =200-100=$100. 

Example 3 

A company is trying to decide whether or not to purchase a new computer. 
The salesman tells them that if they purchase the new computer, they will 
save on the cost of their operation at the rate of 

~~ = 20000t + 20000 (in dollars per year), 

where t is the number of years they will have the computer and S is the 
total savings after 1 years. How much will they save during the first 5 years 
as a result of purchasing the computer? 

This can be computed by the following definite integral: 

15 5 
o (20,0001 + 20,000)dt = 10,000(2 + 20,OOOtlo = $350,000. 

If the computer costs $480,000, how long does it take before the 
computer saves the company enough money to pay for itself? 

Let x denote the length of time needed for the computer to save the 
company the $480,000 it cost. Then, 

10\20,0001 + 20,000) dt = 10,000(2 + 2o,000(1~ 

= IO,OOOx2 + 20,OOOx = 480,000. 
Or, 

x 2 + 2x -48=(x + 8)·(x -6)=0. 

Thus, x = 6 years. 
The previous three examples all illustrate that if we are given a function 

for the rate of change of a quantity y per unit change in a quantity x, then 
we can use the definite integral to find the total change in y between two 
values of x. 
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9.6 More applications of integration 

Most calculus texts emphasize the use of the definite integral in solving 
geometrical problems. We have already considered the use of the definite 
integral in solving problems dealing with area. We would now like to 
consider the use of the definite integral in solving problems dealing with 
volume. 

Volumes of solids of revolution 

a b x axis 

A solid of revolution is a solid formed by revolving a plane region about a 
line. Suppose the region bounded by the curve y = F (x), the x axis, and the 
lines x = a and x = b is revolved about the x axis, forming a solid of 
revolution (Figure 9.13a). We would like to find the volume of this solid. 

As we did when we found areas, we begin by dividing the interval 
a <; x <; b into n subintervals of length Ax = (b - a) / n, and label the points 
of subdivision X I 'X2' •.. ,Xi" " ,xn • At each of these points of subdivision, we 

__ -_~ (Xi . F(Xi» 

y = F(x) 

Xi Xi + I b 
x axis 

(a) 

(Xi , F Xi» 

- e Xi mi' 

(b) 

Figure 9.13 (a) A solid of revolution. (b) One crosswise slice of the solid. 

269 



9 Integral calculus 

pass a plane perpendicular to the x axis, thereby slicing our solid into slices 
of width ~x. 

Consider the typical ith such slice of the solid (Figure 9.13b). This slice 
resembles a right circular cylinder, provided ~x is small. The volume of a 
right circular cylinder is found by the formula V = 7T·r2·h, where r is the 
radius of the base and h is the height. If we let r=F(x;) and h=~x, then a 
pretty good approximation to the volume of this ith slice of the solid of 
revolution can be obtained by using the formula V;=7T'(F(x;)i-~x; espe­
cially if ~x is small. 

Adding these approximations of the volumes of the slices, one gets the 
following approximation to the total volume of the solid of revolution: 

n n 

~ V;= ~ 7T·(F(x;)f~x. 
;=1 ;=1 

This approximation can be made better by making n larger, thereby 
making ~x smaller. The actual volume can be obtained by computing 
limn-+oo~7= \7T' (F(x;)f ~x. However, from our definition of definite in-

tegral, this limit can be obtained by computing Jb 7T·(F(x)idx. 
a 

Example 

Find the volume of the solid of revolution obtained by revolving the region 
between the curve of y = F (x) = 3 Yx , the x axis, x = 1 and x = 4 about the 
x axis (see Figure 9.14). 
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Figure 9.14 Another solid of revolution. 



9.6 More applications of integration 

Using the formula developed above, we get 

V=j4'11'(3vX )2dx = '11' j49xdx = '11' ~X214 ='11' ~(16-1) 
1 1 2 1 2 

135'11 b' . = -2- cu IC umts. 

In a manner similar to this, we could develop definite integral formulas 
for computing lengths of curves, surface areas of solids of revolution, 
centers of mass, and many other geometrical quantities. However, we will 
leave this task to the standard calculus course. We wished only to illustrate 
the technique for developing such formulas. 

EXERCISES 

1. The velocity of a projectile (in feet per second) is given by V=dSjdl=640-
32/. Find the total distance covered by the projectile during the first lO seconds. 

2. The marginal cost of the xth item is given (in dollars per item) by M.e. = de / dx 
= V x + 10 . Find the total change in cost as x goes from 6 to 15. 

3. The rate of change of sales of a new product is given by dS j dx = 100 ·eO.01x, 

where x is the number of days the product has been on the market. Find the 
total sales during the first 100 days. 

4. The rate of increase of bacteria in a certain culture is given by F(x)=200·eO.02X, 
where x is in minutes. Find the total number of bacteria in the culture when x is 
one hour. 

5. A company is trying to decide whether or not to buy a new machine which costs 
$5000. If they purchase the machine, they will save on production costs at a rate 
given (in dollars per month) by dSjdl= 100/+ 150. In how many months will 
the machine have paid for itself? 

6. Write a program for approximating the volumes of solids of revolution obtained 
by revolving a region bounded by a curve y = F (x), the x axis, and x = a and 
x = b about the x axis. (You may use the program INTEGRAL as a subprogram.) 

7. Find the volume of the solid of revolution obtained by revolving the region 
bounded by the curve y = V4X , the x axis, and x = I and x = 4 about the x axis. 

8. Find the volume of the solid of revolution obtained by revolving the region 
bounded by the curve y = V 1- x 2 , the x axis, and x = -I and x = I about the x 
axis. 

9. Find the volume of the solid of revolution obtained by revolving the region 
bounded by the curve y = F (x) = 4 - x 2 and the x axis about the x axis. 

10. The length of a curve y = F(x) from a point (a,F(a» to a point (b,F(b» is 

given by the formula £\/1 + (F'(X»2 dx. Use this formula to find the length 

of the curvey=F(x)=Qx3/ 2 from (0,0) to (4,8). 
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10 Probability 

Originally, probability theory was developed to describe games of chance. 
However, in recent years, the theory of probability has become extremely 
useful in solving practical problems involving the chances of succeeding at 
various endeavors. Often businessmen or engineers must decide which of 
several different alternatives has the greatest probability of success. Proba­
bility may be used in any situation in which one is not certain of the 
outcome. In this chapter, we shall study some of the more important 
aspects of elementary probability theory. 

10.1 Axioms of probability 

In this text, an experiment is any situation in which we are not certain of 
the outcome. 

Sample spaces and events 

A sample space for an experiment is the set of all possible single outcomes 
of one performance of the experiment. We shall use the letter S to denote 
the sample space for our experiment. 

An event, E, for the experiment, is any subset of the sample space S. 
We say that an event has occured if any outcome in the event occurs. 

Examples 

1. Consider the experiment of rolling a die. Let I be used to denote the 
occurrence of one dot facing upward on the die, 2 to denote the 
occurrence of two dots facing upward, and so on. Then, the sample 
space for this experiment can be represented by S={l,2,3,4,5,6} (or 
S~ 1 2 3 4 5 6, in APL). 
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10.1 Axioms of probability 

The event that an even number occurs is given by E={2,4,6} (or 
E~2 4 6, in APL). The event that an odd number occurs is 0= 
{l,3,S}. The event that a number greater than 6 occurs is given by 0, 
since this event is impossible. 

2. Consider the event of rolling a die and flipping a coin. The sample 
space for this experiment is the set 

S= {(I,H),(i, T),(2,H),(2, T),(3,H),(3, T), 

(4,H),(4, T), (S,H),(S, T), (6,H),(6, T)}, 

where H represents heads and T tails. 
The event that a S occurs is the subset of S 

F= {(S,H),(S, T)}. 

The event that a head occurs is the subset 

H = {(I,H), (2,H), (3,H),(4,H), (S,H),(6,H)}. 

3. A dart is thrown at a circular target of radius 12 inches in such a way 
that the target is never missed. The sample space for this experiment is 
the set S = { xlO < x < 12}, where x is the distance of the dart from the 
center of the target. 

If the bullseye has a radius of 3 inches, then the event that the 
bullseye is hit is the set B = {xiO < x < 3}. 

Some important special events 

Since S is a subset of S, then S is an event. It is usually referred to as the 
certain event because, by the definition of sample space, we are certain to 
get an outcome which is in S. 

Also, since the empty set 0 is a subset of S, then 0 is an event. Since it 
is impossible to get any elements in 0, 0 is called the impossible event. 

Let A and B be events in S. The event An B is the event A "and" B, 
and it occurs when an outcome that is in both A and B occurs. 

The event A U B is the event A "or" B, and it occurs when an element in 
A or in B or in both occurs. 

The event A' is the event "not" A (the complement of A) and it occurs 
when an outcome not in A, but in the sample space, occurs. 

Example 

Consider Example 2 above in which the sample space was 

S= {(i,H),(I, T), (2,H),(2, T), (3,H),(3, T), 

(4,H), (4, T),(S,H),(S, T),(6,H),(6, T)}. 
Let 

F={(S,H),(S,T)} and 

H = {(I,H),(2,H),(3,H), (4,H),(S,H), (6,H)} 
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10 Probability 

as above. Then, the event that a 5 and a head occur is given by F n H = 
{(5, H)}. The event that a 5 or a head occurs is F U H = 
{(5, T),{l,H),(2,H),(3,H),(4,H),(5,H),(6,H)}. The event that a head 
does not occur is If'={(1,T),(2,T),(3,T),(4,T),(5,T),(6,T)}. This event, 
H' is equal to the event I. that a tail occurs. The event that a negative 
number occurs is 0, since this is an impossible event. 

Definition of a probability function on a sample space 

Let S be the sample space for an experiment. A probability function on S 
is a function P defined on the set of all events in S having the following 
properties: 

1. If E is an event, then 0.;;; P (E) .;;; 1. (P (E) is read as "the probability of 
E.") 

2. P (S) = 1. (Since S is the certain event, we assign to S the largest 
probability.) 

3. P (0) = O. (Since 0 is the impossible event, we assign to 0 the smallest 
probability.) 

4. If E\, E 2, ••• , En are pairwise disjoint events, (i.e., E; n E1 = 0, for i =1= j), 
then 

(Although it is not explicitly stated in our definition, we would also hope 
that P (E) would be a measure of the likelihood of occurrence of E.) 

Example 1 

In the experiment of rolling a fair die, the sample space is S = 
{l,2,3,4,5,6}. If the die is fair, then each of the elements in the sample 
space would be equally likely. Thus, P(l)=P(2)=P(3)=P(4)=P(5)= 
P (6). Let us call this common value p. Since P(S) = 1, and S= {l} U {2} U 
{3} u { 4} U {5} U {6}, then by Axiom 4 in the preceding definition, 

P(S)= P(1) + P(2)+ P(3)+ P(4)+ P(5)+ P(6)=6p = 1. 

Therefore, p = 1/6. 
Let E be the event that an even number is rolled. Then, E= {2,4,6}, 

and by Axiom 4, 

1 1 1 3 1 
P(E)=P(2)+P(4)+P(6)=- +- + - =- =-6 6 6 6 2· 

Let F={5,6} be the event that a number greater than 4 is rolled. Then, 
P(F)= P(5)+ P(6)=2/6= 1/3. 

This example suggests the following probability rule for sample spaces 
containing equally likely outcomes. 
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10.1 Axioms of probability 

Probability rule 1 

If a sample space contains N equally likely outcomes, and if & is one of 
these outcomes, then P (&) = 1/ N. Also, if an event E in S contains M of 
these outcomes, then 

P (E) = M = The number of outcomes "favorable" to E 
N The total number of outcomes in S . 

[Note: In APL, this would be PE~(pE)+(pS)l. 

Example 2 

In the experiment of rolling a die and flipping a coin, the sample space 
consisted of 12 equally likely outcomes, provided the experiment was done 
fairly. Therefore, P«(1,H»= 1/12 and P«(1, T»= 1/12, etc. In the event 
of rolling a five, P(F)=2/12, since F has two elements. In the event H of 
flipping a head, P (H) = 6/12, since H has 6 elements. 

Example 3 

Consider the experiment of rolling a pair of dice. Assume the experiment is 
done fairly. Suppose that we are interested in the total rolled on the two 
dice. Then, the sample space would be the set S = 
{2,3,4,5,6,7,8,9,IO,II,I2}. There are 11 elements in this sample space. 
However, as anyone who has ever played dice knows, they are not all 
equally likely. It is much harder to roll a total of 2 than it is to roll a total 
of 7. Therefore, p(2heP(7)~(I/ll). The above Rule 1 only applies to 
sample spaces with equally likely outcomes. In order to compute the 
probabilities of the elements of this sample space, we shall consider an 
alternative sample space in which the outcomes are equally likely. Suppose 
we could distinguish between the two dice. Let S be the following set of 
ordered pairs, where the first coordinate is the number rolled on the first 
die and the second coordinate is the number rolled on the second die. 

(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), 

(2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), 

S = (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), 

(5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6, I), (6,2), 

(6,3), (6,4), (6,5), (6,6) 

The outcomes in this alternative sample space are equally likely. Therefore, 
we could use Rule 1 to find that the probability of each of these outcomes 
is 1/36. Let T2 be the event that a total of 2 is rolled. Then, T2={(1, I)}. 
Thus, P(T2) = P(2)= 1/36. Let T7 = {(1,6), (2, 5), (3,4), (4, 3),(5, 2),(6, I)} be 
the event that a total of 7 is rolled. Then, by Rule 1, P (T7) = P (7) = 6/36 = 
1/6. In a similar manner, the probability of each of the elements of the 
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sample space S can be computed. These are listed below for future 
reference. 

r; 2 3 4 5 6 7 8 9 10 11 12 

P(T;) 1 ~ 3 4 5 6 5 4 3 ~ 1 
36 36 36 36 36 36 36 36 36 36 36 

Example 4 

Suppose S= {a,b,c,d,e} is a sample space. Suppose also that P(a)= 1/12, 
P(b)=2/12, P(c)= 1/12, and P(d)=3/12. 

(a) Find pee). 
Since, by Axiom 2, 

P(S)= I = P(a)+ P(b) + P(c) + P(d)+ P(e) 
(Axiom 4) 

7 5 = 12 + P(e), then P(e)= 12· 

(b) Let G be the event G = { a, c, e}. Find P (G). Since these outcomes in G 
are not equally likely, we cannot use Rule 1. However, since G = {a} U 
{ c } U { e }, then by Axiom 4, 

I I 5 7 
P(G)=P(a)+ P(c)+ P(e)+ 12 + 12 + 12 = 12· 

This example suggests the following rule for finding probabilities of 
events in sample spaces in which all of the outcomes are not equally likely. 

Probability rule 2 

Let E be an event from sample space S. Then, 

P(E)= ~ P(o;}. 
OjEE 

In other words, add the probabilities of all elements in E. 

Example 5 

Three teams, team A, team B, and team C are entered in a tournament. 
Team A is twice as likely to win as team B. Team B is twice as likely to 
win as team C. Find the probability of each team winning the tournament. 

Let A represent the event that team A wins, B represent that team B 
wins, and C represent that team C wins. We want to find peA), PCB), 
P(C). 

Call P(C)=x. Then, P(B)=2·P(C)=2x and P(A)=2·P(B)=4x. 
Then, 

P(S)= P(A)+ P(B)+ P( C)=4x+2x+x=7x= I. 

Thus, P(A)=4/7, P(B)=2/7, and P(C)= 1/7. 
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EXERCISES 

I. A whole number is chosen at random between I and 12, inclusive. 
(a) Find the probability of choosing an odd number. 
(b) Find the probability of choosing a number greater than 9. 
(c) Find the probability of choosing a number between 5 and 8, exclusive. 
(d) Find the probability of choosing a number between 5 and 8, inclusive. 

2. An experiment has sample space S= {X\,X2,X3,X4,XS,X6}. Suppose P(x\)= 
P(xs), P(X2)= 1/16, P(x3)=3/16, P(x4)=2/16, and P(x6)=4/16. 
(a) Find P(x\) and P(xs). 
(b) Let E={X\,X3,XS}; find P(E). 

3. Consider the experiment of drawing a card at random from a standard deck of 
52 playing cards. Find the probability 
(a) Of drawing an ace. 
(b) Of drawing a spade. 
(c) Of drawing an ace of spades. 
(d) Of drawing an ace or a spade. 
(e) Of drawing a spade or a club. 

4. Three candidates are running for an office. Candidates A and B are considered 
equally likely to win. Candidate C is only half as likely to win as A or B. Find 
the probability of each candidate winning the electron. 

S. Let S={l,2,3,4,5}. Let P(x)=k/x, where k is a constant and x=I,2,3,4,5 
respectively. Evaluate k. 

6. Suppose that 3 coins (a nickel, dime, and quarter) are tossed. 
(a) Write a solution space for this experiment containing equally likely out-

comes. 
(b) Find the probability that all three coins are heads. 
(c) Find the probability that at least one coin is a tail. 
(d) Find the probability that exactly one coin is a tail. 

10.2 More rules of probability 

Probability rule 3 
For any event A, P(A)= 1- P(A ') or P(A ')= 1- P(A). 

The reason for this rule is as follows: A n A' = 0 and A U A ,= S, so by 
Axiom 4, P(S)=P(A)+P(A')= 1 (see Figure 10.1). 

S 

Figure 10.1 P(S)=P(A)+P(A'). 
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Examples 

1. If the probability of rain, P(R), is .8, then the probability of no rain, 
P(R'), is 1-0.8=0.2. 

2. Three men are trying to decide which of them should buy the coffees. In 
order to decide this, they decide to each toss a coin, and the odd man, if 
there is an odd man, will buy. Find the probability that there will be an 
odd man. 

Since there are two ways in which the first man can toss his coin, H 
or T, and for each of these ways, there are two ways in which the 
second man can toss his coin, and for each of these, there are two ways 
in which the third man can toss his coin, then there are 8 ways in which 
the three coins can be tossed. There are only two ways in which there 
would not be an odd man, (H,H,H) or (T, T, T). If we let 0 denote the 
event of an odd man, then 

P ( 0) = I - P ( 0') = 1 - i = ~ - % . 
This example illustrates that in some instances it is easier to compute 

P(A') and use the formula P(A)= 1- P(A') then to compute P(A) 
directly. 

Probability rule 4 

Let A and B be two events. Then, P(A U B)= P(A)+ P(B)- P(A n B). 
[Note: If A n B=0, then P(A n B)=O, and this rule becomes P(A U B)= 
P(A)+ P(B), in accordance with Axiom 4.] 

The Venn diagram in Figure 10.2 will help in explaining this rule. If 
An B=fo0, then the elements in An B would be counted twice, as part of 
A and as part of B, if one were to use Axiom 4. Therefore, we subtract 
P(A n B) in order to subtract one of these counts. 

s 

Figure 10.2 Venn diagram for Rule 4. 

Examples 

1. In the experiment of drawing a card at random from a standard deck of 
52 playing cards, find the probability of drawing an ace or a heart. 

Let A denote the drawing of an ace, and H denote the drawing of a 
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heart. We are seeking P(A U H). By Rule 4, 

4 13 1 16 
P(AUH)=P(A)+P(H)-P(AnH)= 52 + 52 - 52 = 52· 

If we did not subtract P (A n H), then we would be counting the ace of 
hearts twice, as an ace and as a heart. 

2. If the probability of rain is P(R)=0.3, the probability of cooler is 
P(C)=0.6, and the probability of rain and cooler is P(R nC)=0.2, 
then the probability of rain or cooler is P(RUC)=P(R)+P(C)­
P(R n C)=0.3+0.6-0.2=0.7. 

3. A man is about to undergo an operation to cure two ailments. The 
doctors have told him that the probability that he will be completely 
recovered from the first ailment as a result of the operation is 0.5 and 
the probability that he will be completely cured of the second ailment is 
0.6. Upon pressure from the poor man, the doctors also told him that 
the probability that he will be completely cured of at least one of the 
ailments is 0.8. He is now concerned with his probability of recovering 
from both ailments. Find this probability. 

Let RI be the event that he recovers from the first ailment, and R2 be 
the event that he recovers from the second ailment. Then, we are given 
P(RI)=0.5, P(R2)=0.6, and P(RI U R2)=0.8. We are seeking P(Rln 
R0. From Probability rule 4, 

P(RI U R2)=P(RI )+ P(R2)- P(RI n R2), 

or 

0.8=0.5+0.6- P(Rln R2), 

so that P(RI n R2)=0.3. 

Conditional probabilities 

Let A and B be two events that depend on each other in some way. The 
event (AlB), read "A given B" or "A if B," is the event that A occurs 
given that B occurs. The probability of the event (A IB) is given by the 
following rule: 

Probability rule 5 

For two events A and B, 

peA n B) 
P(AIB)= PCB) . 

This probability of (AlB) is called the conditional probability of A given B. 
The rationale behind this rule is as follows: Since we are given that B 

has occurred, we are no longer interested in the whole sample space S, but 
rather, we are only interested in those outcomes appearing in B (see Figure 
10.3). Of these, the outcomes that appear in A would then appear in A n B. 
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s 

Figure 10.3 Venn diagram for Rule 5. 

Thus, using the fact that a probability is a ratio of outcomes favorable to 
total number of outcomes possible, we arrive at the above rule. 

An immediate consequence of this rule is the following rule for comput­
ing the joint probability that A and B both occur. 

Probability rule 6 

P(A n B)=P(B)·P(AIB). 

Examples 

I. Find the probability of drawing an ace from a well shuffled deck of 
cards, given that the card was a spade. 

Let A denote ace and S denote spade. We are seeking P (A IS). 
. peA n S) (1/52) I 

Accordmg to Rule 5, P(AIS)= peS) = (13/52) =13' 
This probability can also be computed as follows: Since we know 

that the card drawn was a spade, we are no longer interested in any 
card that is not a spade. Thus, we are only interested in the 13 spades of 
which I is an ace. Therefore, P(AIS)= 1/13. 

2. A basket contains IO light bulbs of which 7 are good and 3 are 
defective. Two bulbs are chosen at random one at a time without 
replacing the first bulb before choosing the second bulb. Find the 
probability that the second bulb is good given that the first bulb is 
good. 

Let G\ denote the event that the first bulb is good and G2 denote the 
event that the second bulb is good. We want to find P(G2IG\). This can 
be found as follows: Since we have drawn I bulb and it was good, there 
are now 9 bulbs left of which 6 are good. Therefore, P(G2IG\)=6/9= 
2/3. 

3. Suppose that the weatherman reports that the probability of rain, peR), 
is 0.5, the probability of cooler, P (e), is 0.6, and the probability of rain 
if it is cooler, p(Rle), is 0.7. Find the probability that it will rain and 
be cooler, peR n e). 

By Probability rule 6, peR n e)= p(e)·p(Rle)=(0.6)·(0.7)=0.42. 
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Independent events 

Two events A and B are said to be independent if the occurrence or 
nonoccurrence of one of them has no effect on whether or not the other 
will occur. A more mathematical definition for this phenomenon is as 
follows: 

Definition of independent events 

A and B are independent if and only if P(AIB)=P(A) and P(BIA)= 
P(B). 

A consequence of this definition and Probability rule 6 is the following 
alternative definition of independence: 

Probability rule 7 

Two events A and B are independent if and only if P(A n B)= P(A)· 
P(B). 

In fact, this rule can be extended to more than two events. Therefore, n 
events E), E2, ... ,En are independent if and only if P (E) n E2 n ... n En) = 
P(E)· P (E2)· .... P (En)' 

Examples 

I. A coin is flipped and a die is rolled. Find the probability of a head on 
the coin and a 5 on the die. Let H denote head on the coin and F 
denote 5 on the die. Obviously, these events are independent, since the 
occurrence or nonoccurrence of one of them has no effect on the 
occurrence or nonoccurrence of the other. Therefore, 

p(HnF)=p(H)'P(F)=i'i= l~' 
Find the probability of head on the coin or 5 on the die. By 

Probability rule 4, 

P(HUF)=P(H)+P(F)-p(HnF)=i+i- A = 172' 

2. Four missiles are fired independently at a ship. Find the probability 
that the ship gets hit. (Assume that the probability that each missile hits 
the ship is 1/2.) 

A typical outcome of this experiment is (H,B,M,M), where B 
denotes a hit and M a miss. Thus, there are 16 possible outcomes. The 
ship will be hit if at least one missile hits the ship. In this problem, it 
might be easier to compute the probability of the complementary event 
that the ship does not get hit. There is only one outcome for this event, 
(M,M,M,M).Thus, the probability that the ship does not get hit is 
1/16. Or, using the fact that the missiles are fired independently, 

I I I I I 
P(M,M,M,M)= 2' 2' 2' 2 = 16' 
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Now, applying Probability rule 3, the probability that the ship does get 
hit is 1 minus the probability that it does not get hit. Therefore, the 
probability that the ship gets hit is 1-(1/16)= 15/16. 

EXERCISES 

I. A card is drawn at random from a standard deck of 52 playing cards. Find the 
probability that 
(a) It is a king or a queen. 
(b) It is a red card or a king. 

(c) ,It is a king, given that it is red. 
(d) It is neither red nor a king. 

2. Consider the experiment of rolling a pair of dice, one white and one yellow. 
Find the probability of rolling 
(a) A 1 on the white die or a total of 7. 
(b) A total of 7 if it is known that a 1 was rolled on the white die. 
(c) A total of 7 or II. 
(d) A total which is not 7. 

3. The probability of a new baby being a boy is taken to be .5. If a couple plans 
on having three babies, find the probability that they will have 
(a) Two girls and then a boy. (c) At least one boy. 
(b) All girls. (d) All of the same sex. 

4. A box contains 8 batteries of which 5 are good and 3 bad. Two batteries are 
chosen at random without replacing the first before choosing the second. Find 
the probability that 
(a) Both are good. 
(b) At least one is good. 
(c) The first is bad and the second good. 
(d) The second is good if the first was bad. 

S. Repeat Exercise 4 if the first battery is replaced before the second is chosen. 

6. Television station WXXX took a survey to determine the percentage of people, 
according to sex, who watch their evening news telecast. The results of this 
survey are given in the following table: 

Men 
Women 

Watch WXXX news Do not watch WXXX news 

120 
90 

180 
110 

If one of these 500 people surveyed were chosen at random, then find 
(a) The probability that the person chosen watches the WXXX news telecast. 
(b) The probability that the person chosen is a woman or watches WXXX 

news. 
(c) The probability that if the person chosen is a man, then he watches WXXX 

news. 
(d) The probability that if the person chosen watches WXXX news, then this 

person is a woman. 

7. John estimates the probability that he will get lUi A in math to be 0.5. He 
estimates the probability that he will make the Dean's list to be 0.4. He 
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estimates the probability that he will do both to be 0.3. Find the probability 
that 
(a) He will make the Dean's list if he gets an A in math. 
(b) He will get an A in math or make the Dean's list. 
(c) He will neither make the Dean's list nor get an A in math. 
(d) Are the events "get an A in math" and "make the Dean's list" dependent 

or independent? 

8. The probability that a man will live to be age 65 is 0.6. The probability that his 
wife will live to be age 65 is 0.7. Assume that their life spans are independent. 
Find the probability that 
(a) Both will live to age 65. 
(b) At least one of them will live to age 65. 
(c) The wife will live to age 65, but the husband will not. 
(d) The husband will live to age 65 if his wife does. 

9. The probability that a baseball player will get a hit in any given time at bat is 
0.300. If in a particular game, he will bat 4 times, find the probability that 
(a) He will go hitless. (c) He will get 4 hits. 
(b) He will get at least one hit. (d) He will get exactly one hit. 

10. A New York baseball fan follows the fortunes of the Yankees and the Mets. 
Before the season, it is estimated that the probability that the Yankees will win 
the pennant is 0.3, and the probability that the Mets will win the pennant is 0.2. 
Of course, the events that the Yankees win the pennant and the Mets win the 
pennant are independent. Find the probabilities that 
(a) Both the Yankees and the Mets will win their respective pennants. 
(b) At least one of them wins its pennant. 
(c) Neither of them wins its pennant. 
(d) The Yankees will win their pennant if the Mets win their pennant. 

10.3 Permutations and combinations 

In this section, we shall consider some counting techniques that are quite 
useful in counting the number of elements in certain sample spaces and 
events. The basis for these counting techniques is the following rule which 
we shall call the Counting principle. 

The Counting principle 

If one procedure can be performed in m ways, alld if for each of these 
ways a second procedure can be performed in n ways, then the two 
procedures can be performed consecutively in m·n ways. 

This principle can also be extended to more than two procedures. 

Examples 

l. In how many ways can one roll a die and flip a coin? 
One can roll a die in 6 ways, and for each of these, he can flip a coin 

in two ways. Therefore, he can do both in 6·2 = 12 ways. 
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2. A luncheon menu consists of 5 kinds of sandwiches, 3 kinds of salad, 5 
kinds of drinks, and 4 kinds of desserts. In how many ways can one 
select a lunch consisting of a sandwich, a salad, a drink and dessert? 

There are 5 ways to select a sandwich, and for each of these there are 
3 ways to select a salad, and for each of these 15 ways of selecting a 
sandwich and salad, there are 5 ways to select the drink, and for each of 
the 75 ways of selecting sandwich, salad, and drink, there are 4 ways of 
selecting dessert. Therefore, there are 5·3·5·4 = 300 ways of selecting a 
lunch. 

3. In how many ways can 6 people arrange themselves in a line? 
There are 6 ways of deciding who will be first in line, and for each of 

these, there are 5 ways of deciding who will be second, and for each of 
these, there are 4 ways of deciding who will be third, etc. Thus, there are 
6·5·4·3·2· 1 = 720 ways of arranging 6 people in a line. 

This last example illustrates a mathematical principle called "factorial." 

Definition of n factorial 

For any positive integer n, n factorial is defined to be the product 
n·(n-l)·(n-2)· ... ·2·1. 0 factorial is defined to be 1. 

We will denote n factorial by !n in this text. [Note: In most texts, n 
factorial is denoted by n! However, in APL, a monadic operator always 
appears on the left of the argument. It is for this reason that we prefer ! n 
to n!] 

Factorial is a keyboard operation in APL. The form is ! N. (! is an 
overstrike symbol obtained by typing the quote symbol , then backspacing 
and typing a period . resulting in !) 

!6 
720 

X/t6 
720 

!O 
1 

!6 8 0 
720 40320 1 

This is the definition of 6 factorial 
expressed in APL. 

o factorial is defined to be 1. 

Factorial with a vector argument. 

As illustrated in the above Example 3, the number of distinct arrange­
ments of n objects is given in ! n. 
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Example 4 

In how many ways can a coach position 5 players on a basketball team? 

!5 
120 

Permutations 

A permutation of a set of objects is an arrangement of part or all of the set 
of objects. 

Example 

In a club consisting of 7 members, in how many ways can an executive 
board be formed consisting of a president, a vice-president, a treasurer, 
and a secretary? 

There are 7 ways of selecting the president, and for each of these ways, 
there are 6 ways of selecting the vice-president, and for each of these ways, 
there are 5 ways of selecting the treasurer, and for each of these ways, 
there are 4 ways of selecting the secretary. Thus, by the Counting principle, 
there are 7·6·5·4 = 840 ways of forming the executive board. In this 
problem, we are interested in the number of ways of arranging (the 
number of permuations of) 7 people, 4 at a time. 

The number of permutations of N objects K at a time is given by the 
formula 

!N 
!(N-K) . 

Thus, in the above example, the number of permutations of the 7 members 
into 4 member executive boards can be given by 

!7 = 7·6·5·4·3·2·1 =840. 
!(7-4) 3·2·1 

We now present a program for the number of permutations of N objects 
K at a time. 

Program 10.1 PERMUTA T/ONS 

V Y.- K PERMUTA nONS N 

[1] y.-(!N)+(IN-K) V 

Example 

This is just the above formula ex­
pressed in APL. 

In how many ways can 5 out of 8 people be seated in 5 available chairs? 

5 PERMUTA nONS 8 
6720 
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Combinations 

Here, we shall be more interested in the number of ways (regardless of 
order) of choosing K objects from N objects than in the number of 
permutations (where order is important) of N objects K at a time. In other 
words, we will be interested in the number of combinations of N objects K 
at a time. The difference between a permutation and a combination is that 
in a permutation the arrangement of the objects is very important, while in 
a combination one can rearrange the objects and still have the same 
combination. Thus, abc and bac are different permutations of the letters a, 
b, and c; but, they are the same combination of the letters. There are 
actually 6 permutations of these three letters, namely abc, acb, bac, bca, 
cab, cba, all of which are the same combination. If we were interested in 
the number of combinations of letters 3 at a time, we would have to divide 
the number of permutations of letters 3 at a time by (!3)=6. Similarly, the 
number of combinations of N objects K at a time equals the number of 
permutations of N objects K at a time divided by ! K. Thus, a program for 
the number of combinations of N objects K at a time would be as follows: 

Program 10.2 COMBINA TlONS 

"il C ~ K COMBINA T/ONS N This program is just A.P.L. notation 
for the formula 
c= !N 

!(N-K)·!K 

[1] C~(!N)+(!N- K)X(!K) "il 

Examples 

2 COMBINA T/ONS 5 
10 

3 COMBINA T/ONS 8 
56 

1 COMBINA T/ONS 5 
5 

o COMBINA T/ONS 5 
1 

Actually, the number of combinations can be found directly in APL by 
the dyadic use of the operation!. The form is K! N. From now on, we will 
use this notation for the number of combinations of N objects K at a time. 
(The more common conventional notations for this are ~C, C(n,k), and 

(~ ).) 
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Examples 

2!5 
10 

3!8 
56 

1 !5 
5 

0!5 
1 

231 0!5 8 5 5 Vector arguments. 
10 56 5 1 

Some applications of combinations 

1. Find the number of 5-person committees that can be formed in a club 
consisting of 9 members. 

Unlike an executive board, the particular arrangement of people on a 
committee is not important. Therefore, we are interested in the number 
of combinations of 9 members 5 at a time, rather than the number of 
permutations of 9 members 5 at a time. 

5!9 
126 There are 126 such committees. 

2. If a club consists of 12 members, 7 of which are women and 5 of which 
are men, then find the number of possible committees consisting of 3 
women and 2 men. 

(3!7) x (2!5) 
350 

By the Counting principle, the num­
ber of ways of forming the com­
mittee is the product of the number 
of ways of choosing the women and 
the number of ways of choosing the 
men. 

3. How many samples of 5 can be chosen from a lot of 10 items? 
In a sample, the particular arrangement of objects is not important. 

5!10 
252 There are 252 such samples. 

4. How many possible 5-card hands can be dealt from a deck of 52 cards? 

5!52 
2598960 WOW! 
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5. In how many ways can 5 rolls of a die result in three 6's? 

10 

This is the number of combinations of 5 things (rolls) taken 3 (6's) at 
a time. 

3!5 The possibilities are 666NN, 66NN6, 
6NN66, 66N6N, 6N6N6, 6N66N, 
NN666, N6N66, N66N6, N666N, 
where N denotes a non-6. 

This last example illustrates that if any trial of an experiment can result in 
two possible outcomes (6 or non 6), then in N trials of the experiment, 
there are K! N ways in which to arrange K of one outcome and N - K of 
the other. 

EXERCISES 

1. Find the total number of possible 5-digit telephone numbers beginning with 54 
or with 45. 

2. Find the number of permutations that can be made from the letters of the 
word "computer." 

3. In how many ways can one choose a card from a deck of 52 playing cards, roll 
a die, and flip a coin? 

4. In how many ways can one answer a 100question true-false exam? 

5. In how many ways can one answer a 5-question multiple-choice exam if there 
are 3 choices for each question? 

6. A little league baseball coach has 15 players on his team. 
(a) How many possible 9-person lineups can he present? 
(b) How many possible 9-person combinations can he field (regardless of 

position or place in the batting order)? 

7. A small company has 15 employees, of which lO are laborers and 5 are white 
collar workers. How many possible 6-person committees can be formed consist­
ing of 4 laborers and 2 white collar workers? 

8. A little league team plays lO games. In how many ways can the team win 6 and 
lose 4? 

9. In how many ways can 6 people sit in a row if a certain two people refuse to sit 
next to each other? 

10. A box contains lO light bulbs of which 7 are good and 3 are bad. 
(a) How many possible samples of 5 light bulbs are there? 
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(b) How many of these samples of 5 contain exactly 4 good bulbs? 
(c) How many of these samples of 5 contain at least 4 good bulbs? 
(d) How many of these samples of 5 contain at most I bad bulb? 
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II. In how many ways can one draw from a deck of cards a 5-card hand 
containing 
(a) All spades? (c) Three spades and 2 hearts? 
(b) Four aces? (d) Two pairs? 

12. The following program uses a very powerful process in APL, called recursion. 
A program is said to be recursive if it refers to itself within itself. That is, the 
program is repeatedly used as a subprogram within itself. 

VY~FACN 

[1] Y~1 

[2] --+(N=O)/O 
[3] Y~NX FAC N-1 

V 

This program computes N factorial. 

To understand how this program works, TRACE it finding FAC 5. 

lOA The hypergeometric distribution 

When there are only two alternative outcomes in any endeavor, we shall 
call them success and failure. The success will be the alternative in which 
we are primarily interested. In this and the next two sections, we will 
consider three basic probability distributions which deal with the number 
of successes in a sample, or on repeated trials of an experiment, or in an 
area or time interval. If we let X denote the number of these successes, 
then a probability distribution for X consists of the values for X together 
with their associated probabilities. 

The first probability distribution we shall consider is known as the 
hypergeometric distribution. The hypergeometric distribution is the proba­
bility distribution used in the following situation: 

A random sample of M objects is taken from a population of N objects 
of whch K are classified as successes and the remaining N - K as failures. 
Let X denote the number of successes chosen in the sample of M objects. 
X is often referred to as a hypergeometric random variable. The probabil­
ity that X equals some value x is given by 

(x!K)·«(M -x)!(N -K» 
P(X=x)= (M!N) , for x=O, 1, ... ,M. 

The reason for this formula is as follows: There is a total of (M!N) 
ways of getting a random sample of M objects from a population of N 
objects. There are (x!K) ways of getting x successes from the K successes 
in the population. There are ((M - x)!(N - K» ways of getting the remain­
ing M - x failures from the remaining N - K failures in the population. By 
the Counting principle, there are, therefore, (x!K)·((M - x)!(N - K» ways 
of getting x successes and M - x failures in the sample. Now, using 
Probability rule 1 of Section 10.1., since all of the (M!N) random samples 
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are equally likely, we divide the number of ways of getting x successes and 
M - x failures by the total number of random samples which comprise our 
sample space. Thus, we arrive at the above formula. 

Example 

In a club consisting of 3 men and 5 women, a committee of 4 is to be 
selected. Let X denote the number of men on the committee. 

(a) Find the probability distribution for X. The possible values for X are 0, 
1,2, and 3. Using the above probability formula for X, the associated 
probabilities for X are as follows: 

(0!3)·{4!5) 
P{X=O)= (4!8) , 

since if one chooses 4 people from 8 people, and if 0 men are chosen, 
then 4 women must have been chosen. Let us use APL to compute this 
probability. 

(0!3) X (4!5) + (4!8) 
.07142857143 

Similarly, 

(1 !3) X (3!5) + (4!8) 

.4285714286 

(2!3) X (2!5) + (4!8) 

.4285714286 

(3!3) X (1 !5) + (4!8) 

.07142857143 

(1!3)·{3!5) 
P(X= 1)= (4!8) 

(2!3)· (2!5) 
P(X=2)= (4!8) 

(3!3)'{1!5) 
P(X=3)= (4!8) 

Figure 10.4 shows this probability distribution. 

p 

o 2 3 4 

Figure 10.4 Graphical probability distribution. 
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10.4 The hypergeometric distribution 

(b) Find the probability of at least one man being on the committee. 

P(X ~ 1)= P(X= 1)+ P(X=2)+ P(X=3) =0.9285714286, 

since at least one man means one or more men, and the maximum 
possible number of men is 3. Another method for solving this problem 
is: 

P(X ~ 1)= 1- P(X=O)= 1-0.0714285714=0.9285714286, 

since the complement of at least one man is no men. 

Let us now consider a program for computing hypergeometric probabil­
ities. 

Program 10.3 HYPERGEOMETRIC 

V H~ XK HYPERGEOMETRIC MN; X; K; M; N 

[1] X ~ XK [1] X is the number of successes in the 
sample. 

[2] K~XK [2] 

[3] M~MN [1] 

K is the number of successes in the 
population. 

M is the size of the sample. 

[4] 

[5] 

N ~ MN [2] N is the size of the population. 

H~(X!K)X«M-X)!(N - K»+(M!N) 
V 

The formula for hypergeometric 
probabilities in APL. 

In this program, XK is a vector consisting of the value of X, the number 
of successes in the sample, followed by K, the number of successes in the 
population. MN is the vector consisting of the value of M, the size of the 
sample, followed by N, the size of the population. 

Examples 

1. Let us use this program to compute the probabilities for the number of 
men on the committee in the previous example. 

o 3 HYPERGEOMETRIC 4 8 
. 07142857143 

1 3 HYPERGEOMETRIC 4 8 
. 4285714286 

2 3 HYPERGEOMETRIC 4 8 
. 4285714286 

3 3 HYPERGEOMETRIC 4 8 
.07142857143 

P(X=O) . 

P(X= 1) . 

P(X=2) . 

P(X=3). 
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2. A basket contains 10 lightbulbs of which 8 are good and 2 are defective. 
Three lightbulbs are chosen at random from the sample. 
(a) Find the probability of getting exactly one good bulb in the sample. 

In this problem, a success is a good bulb. Therefore, let X denote 
the number of good bulbs in the sample. We want P(X = 1). 

1 8 HYPERGEOMETRIC 3 10 
.0666666667 

(b) Find the probability of getting at least two good bulbs in the 
sample. 

At least two good bulbs is the same as getting two or more good 
bulbs. Therefore, we are seeking P (X ;> 2). However, P (X ;> 2) = 
P(X=2)+P(X=3) in this problem. 

(2 8 HYPERGEOMETRIC 3 10) + (3 8 HYPERGEOMETRIC 3 10) 
.9333333333 

3. A company produces batteries which it ships in boxes of 12. Before 
shipping any box of batteries, an inspector checks each box to make 
sure that the batteries work. Instead of checking every battery in the 
box, he uses the following scheme to decide whether or not to accept the 
box for shipment. He selects 3 batteries at random from each box and 
tests them. If all 3 tested are good, the box is accepted for shipment. 
Otherwise, it is rejected. 
(a) If a box of batteries really contains 4 defective batteries, what is the 

probability that the inspector erroneously accepts the box for ship­
ment? 

In order for him to accept the box for shipment, the three 
batteries which the inspector selected and tested must have all been 
good. Therefore, we want P(X=3), where X is the number of good 
batteries in the sample of 3 selected. 

3 8 HYPERGEOMETRIC 3 12 
.2545454545 

(b) If the box has I defective battery in it, what is the probability that it 
is rejected? 

.25 

In order for the box to be rejected, it is necessary that this one 
defective battery be included in the random sample of 3 batteries 
from the box. Thus, we want P(Y= I), where Y denotes the number 
of defective batteries in the sample. 

1 1 HYPERGEOMETRIC 3 12 

(c) If the box contains two defective batteries, what is the probability 
that it is rejected? 
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This box will be rejected if Y = 1 or if Y = 2. Thus, we want 
P(Y= 1)+ P(Y=2). 

(1 2 HYPERGEOMETRIC 3 12) + (2 2 HYPERGEOMETRIC 3 12) 
.4545454545 

4. A 5-card poker hand is drawn from a deck of 52 cards. 
(a) Find the probability of getting all four aces. 

A success here is getting an ace, of which there are 4, all of which 
are drawn. A failure is getting a non-ace, of which there are 48, of 
which 1 is drawn. Let X denote the number of aces drawn. We want 
P(X=4). 

4 4 HYPERGEOMETRIC 5 52 
. 0000184689 Not very likely . 

(b) Find the probability of drawing all spades. Let Y denote the 
number of spades drawn. We want P(Y=5). 

5 13 HYPERGEOMETRIC 5 52 
.0004951980792 

(c) Find the probability of getting all in one suit. 
Since there are 4 suits in all, all of which are equally likely, we 

need only to multiply the probability of getting all spades by 4. 

4 X (5 13 HYPERGEOMETRIC 5 52) 
.001980792317 

EXERCISES 

1. A box of one dozen donuts contains 6 plain and 6 jelly donuts. If one chooses 4 
donuts at random, what is the probability that he chooses 
(a) Two of each? (c) At least one jelly donut? 
(b) All plain donuts? (d) At most one jelly donut? 

2. A Congressional committee is composed of 6 Republicans and 4 Democrats. A 
3-person subcommittee is to be formed at random. What is the probability that 
this subcommittee is composed of 
(a) All Democrats? (c) More Republicans than Democrats? 
(b) All Republicans? (d) At least one member of each political party? 

3. A 7-card rummy hand is drawn at random from a deck of 52 cards. Find the 
probability of drawing 
(a) Four aces. (c) All hearts. 
(b) Four of one denomination. (d) All of one suit. 

4. A bag contains 20 jelly beans of which 9 are red, 6 are black, and 5 are white. 
Six jelly beans are chosen at random. Find the probability of choosing the 
following: [Note: This is an extension of the hypergeometric distribution to 
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three categories for which the reader will have to develop his own probability 
formula.] 
(a) All red. 
(b) Three red, 2 black, and I white. 

10.5 The binomial distribution 

(c) Two of each color. 
(d) All white. 

The binomial distribution is used when one is interested in the number of 
successes, X, that occur in N independent trials of an experiment, where 
on each trial, the probability of success, P, and the probability of failure, 
1- P, remain the same. X is called a binomial random variable. The 
probability function for X is as follows: 

P(X=x)=(x!N)·px .(1- pt- x , for x=O, 1,2, ... ,N. 

To understand the reasoning behind this formula, consider the follow­
ing example: 

Example 

Let X denote the number of 3's rolled in 5 rolls of a fair die. Let "3" 
denote a 3 rolled on any particular roll of the die, and let N denote a non-3 
on any particular roll. As in Example 5 of applications of combinations in 
Section 10.3., there are (2!5)= 10 ways in which to arrange 23's and 3 N's: 

(3, 3,N, N, N), (3, N, 3, N, N), (3,N, N, 3,N), (3, N, N, N, 3), (N, N, N, 3, 3), 

(N,N,3,N,3),(N,N,3,3,N),(N,3,N,3,N),(N,3,3,N,N),(N,3,N,N,3). 

Since each roll of the die is independent of the other rolls, then each of the 
above arrangements has the same probability, namely, 

P(3,3,N,N,N) = P(3)·P(3)·P(N)·P(N)·P(N) 

= i· i· %. %. % =(it(%t 
Thus, P(X=2)=(2!5)·(i)2·a)3, as in the formula above. 

Since the computations in the binomial distribution can be quite tedi­
ous, we would like to have a program for computing binomial probabili­
ties. 

Program 10.4 BINOMIAL 

V DISTRIBUT/ON~ P BINOMIAL N; X 

[1] X~O, LN 

[2] DISTRIBUTION~(X! N)X(P*X)X(1 - P)*(N-X) 
V 
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10.5 The binomial distribution 

This program generates the entire binomial distribution, where P is the 
probability of success on any trial and N is the number of trials. 

Example 

. 25 BINOMIAL 4 P=0.25, N=4 . 
.3164 .421875 .2109375 .046875 .00390625 

The result is the entire distribution of binomial probabilities for P = 
0.25, N = 4. To compute any particular probabilities from this distribution, 
just select the appropriate term from this distribution. For example: 

(.25 BINOMIAL 4)[1] 
. 3125 

(.25 BINOMIAL 4)[2] 
.421875 

(.25 BINOMIAL 4)[3] 
.2109375 

(.25 BINOMIAL 4)[4] 
. 046875 

(.25 BINOMIAL 4)[5] 
.00390625 

This is P(X=O) . 

This is P(X = I). 

This is P(X=2). 

This is P(X=3) . 

This is P(X=4). 

Notice that P(X = k) is always the k + I term in the distribution, since the 
first term corresponds to P (X = 0). 

Example 1 

(a) Find the probability of two 3's in 5 rolls of a die. 

(.1666666667 BINOMIAL 5)[3] 
.1647510293 

(b) Find the probability of at least one 3 in 5 rolls of a die. 
We need P(X ;>1). One way of computing this would be to compute 
P(X = I) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5). However, a 
simpler way to find P(X ;> I) is to find the probability of the comple­
mentary event, P(X<I)=P(X=O), and use Probability rule 3. Thus, 

P(X;>I)=I-P(X=O). 

1 - (.1666666667 BINOMIAL 5)[1] 
.5981224288 

Example 2 

Based on past records, it is found that the probability that a patient will 
recover from a certain difficult operation performed by a leading specialist 
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in the field is 0.75. If this specialist will perform this operation on 6 
patients this week, what is the probability that 

(a) All 6 will recover? 
Since this doctor is a specialist, he will not let the success or failure of 
previous operations affect his chances of succeeding in the next opera­
tion. Therefore, we can assume that the operations are independent, 
each with probability of success 0.75. Let X denote the number of the 6 
operations which are successful. We want P(X=6). 

(.75 BINOMIAL 6)[7] 
.1779785156 

We should not expect that all 6 operations will be successful! 
(b) At most one fails to recover? 

Let Y denote the number who fail to recover. On any given operation, 
the probability of a failure to recover is 1-0.75=0.25. We want 
P(Y <;, I). This is obtained by adding P(Y=O) to P(Y= I). 

(.25 BINOMIAL 6)[1] + (.25 BINOMIAL 6)[2] 
.5339355469 

Thus, there is a slightly better than even chance that at most one 
patient fails to recover. 

The next example illustrates the use of the binomial distribution in 
sampling with replacement. If one uses sampling without replacement, of 
course, then one uses the hypergeometric distribution. 

Example 3 

A card is drawn at random from a deck of 52 well shuffled cards, then 
replaced. The deck is then reshuffled, another card drawn and then 
replaced. This process is continued until 5 cards have been drawn. 

(a) Find the probability of getting all hearts. 
Since each card is replaced and the deck reshuffled before the next 
card is drawn, the trials of this experiment are independent. The 
probability of a heart on each draw is the same, namely 13/52=0.25. 

(.25 BINOMIAL 5)[6] 
.0009765625 

(b) Find the probability of getting two hearts. 

(.25 BINOMIAL 5)[3] 
.2636718570 

(c) Find the probability of getting at least one heart. This is the comple­
ment of getting 0 hearts. 

1 - (.25 BINOMIAL 5)[1] 
.7626953125 
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Example 4 

This last example illustrates the use of the binomial distribution as an 
estimate of the hypergeometric distribution when the population is large 
and the sample small. 

Of 1000 delegates at a convention, 500 are Republicans and 500 
Democrats. Five delegates are chosen at random to form a committee. 
Find the probability that there is a majority of Republicans on the 
committee. 

Since this is sampling without replacement, we should use the hypergeo­
metric distribution. However, the size of the resulting combinations would 
be extremely large: (5!1000) is too large to be easily computed even by the 
computer. Also, each time a delegate is chosen, the probability that he will 
be a Republican is pretty close to 0.5. For example, suppose the first two 
delegates chosen are Republicans. The probability that the third will be a 
Republican is 498/998, which is approximately 0.5. If the first two are 
Democrats, the probability that the third will be Republican is 502/998, 
which is still approximately 0.5. Therefore, to simplify the problem, we 
shall assume that the probability of a Republican being chosen for each 
successive seat on the committee is 0.5. Let X denote the number of 
Republicans on the committee. There is a majority of Republicans on the 
committee if X > 3. Thus, we want P(X > 3). Using BINOMIAL, we can get 
a good estimate of this probability. 

{.5 BINOMIAL 5)[4]+(.5 BINOMIAL 5)[5]+(.5 BINOMIAL 5)[6] 
.5 

Thus, there is an even chance that there will be a majority of Repub­
licans on the committee. The same is true for Democrats. 

EXERCISES 

1. A baseball player is a consistent .300 hitter. (That is, each official time up, the 
probability he gets a hit is 0.3.) If he bats 4 times in a game, find the probability 
that he 
(a) Gets 2 hits. 
(b) Gets no hits. 

(c) Gets at least I hit. 
(d) Goes "4 for 4." 

2. Suppose that the probability that a tulip bulb will germinate is 0.8. If one plants 
10 tulip bulbs, find the probability that 
(a) All will germinate. 
(b) At least 8 will germinate. 
(c) At most I will not germinate. 

3. When a baby is born, the probability that it will be a boy is 0.5. If a family has 6 
children, find the probability 
(a) They are all boys. 
(b) They are 3 boys and 3 girls. 
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(c) They have at least I boy. 
(d) If the first 5 are girls, then the next will be a boy. 

4. Ten men have a weekly raffle. They each put their name on a ticket and deposit 
the ticket in a hat. Each week, a ticket is drawn to determine the winner. The 
winning name is then put back in the hat for the next week's drawing. 
(a) Find the probability that in 5 weeks, Mr. X will win twice. 
(b) Find the probability that in 5 weeks, Mr. X will not win at all. 
(c) Find the probability that Mr. X will win twice in a row. 

5. It is estimated that 3000 of the 10000 residents of a town favor fluoridation of 
their drinking water. If 12 residents are selected at random, find the probability 
that 
(a) Fewer than 4 of them favor fluoridation. 
(b) A majority of them favor fluoridation. 

10.6 The Poisson distribution 

The final probability distribution which we shall consider in this chapter is 
known as the Poisson distribution. The Poisson distribution is used when 
one is interested in the number of successes, X, occurring in a time interval 
or a region. X is called a Poisson random variable. Using techniques too 
advanced for this text, it can be shown that the probability distribution for 
X is 

(e-U)·(u X ) 

P(X=x)= (!x) , wherex=O,I,2, ... 

and where u is the average number of successes during this given time 
interval or region. 

Example 

Suppose the average number of telephone calls coming into a switch board 
per minute is 3. 

(a) Find the probability that during a given minute, no telephone calls 
come into the switchboard. 
The value of u is 3 calls per minute. Let X denote the number of calls 
coming into the switchboard during this particular minute. We want 
P(X=O). 

*~3 

.0497870837 
This is e -3 in APL. 
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(b) Find the probability of at least one call during a given minute. 
At least 1 call is the complement of no calls. Therefore, P(X ~ 1)= 1-
P(X=O). Thus, we get P(X ~ 1)= 1- e-3 =0.95021. 

(c) Find the probability of no calls during a 5-minute interval. 
Since the average number of calls for a I-minute interval is 3, then the 
average number of calls for a 5-minute interval is 5·3 = 15. Therefore, 
in this problem u = 15. Now, let Y be the actual number of calls during 
this 5-minute interval. We want P(Y=O). 

In APL, we get 

*-15 
3.059023205 E-7 

(e-15). (150) 
P(Y=O)= =e-15• 

(!O) 

Or, 0.000000305902. 

Before considering more examples, let us consider a program for com­
puting Poisson probabilities. 

Program 10.5 POISSON 

V P~X POISSON U 

[1] P~(* - U)X(U*X)+(!X) 
V 

Example 1 

Let us use the program POISSON to do the previous example. 

(a) Find P(X=O) where u=3. 

o POISSON 3 
.04978706837 

(b) Find P(X ~ 1) where u=3. 

1 - 0 POISSON 3 
.9502129316 

(c) Find P(Y=O) where u= 15. 

o POISSON 15 
3.0590232057 E-7 

Example 2 

The average number of bacteria per square inch of a culture is 5. 

(a) Find the probability that 4 square inches of the culture contains 10 of 
these bacteria. 
u = 4·5 is the average number of these bacteria in 4 square inches. Let 
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X be the actual number of bacteria in the 4-square-inch culture. We 
are seeking P(X= 10). 

10 POISSON 20 
.005816306518 

(b) Find the probability that there are at least 10 bacteria in this culture. 
Here, we want P (X ;;;. 10). Since there is no upper bound on X in the 
Poisson distribution, we can do this problem more easily by finding 
1 - P (X ..:; 9). In order to do this, we need to compute 

I-(P(X=O)+ P(X= 1)+ P(X=2)+ P(X=3)+P(X=4) 

+ P(X=5)+ P(X=6)+ P(X=7)+ P(X=8)+ P(X=9». 

This would be quite tedious to compute. 

Problems of this type are actually more common than problems involving 
the probability of a single value of X when dealing with the Poisson 
distribution. Therefore, it would be quite useful to have a program for 
finding P (X":; C), for some value of C. Such a probability is called a 
cumulative probability, since it accumulates the previous probabilities: 

P(X":; C)=P(X=O)+P(X= 1)+P(X=2)+ .. · +P(X= C). 

The following program computes this cumulative probability for the 
Poisson distribution. 

Program 10.6 CUMPOISSON 

V SUM~C CUMPOISSON U;X 
[1] X~O,tC X is the vector 0 1 2 ... c. 
[2] SUM~+ / X POISSON U This sums up 0 POISSON U, 1 

V POISSON U, ... , C POISSON U. 

We can now complete Example 2 above. 

1 - 9 CUMPOISSON 20 
.9950045877 

Example 3 

On the average there are 2 typographical errors per page in a manuscript. 
In 8 pages, find the probability of 

(a) Not more than 10 errors. 
u = 16 is the average number of errors in 8 pages. Let X denote the 
actual number of errors in 8 pages. We are seeking P(X":; 10). 

1 0 C/jMPOISSON 16 
.07739601577 
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(b) More than 20 errors. 
This is P(X>20)=I-P(X~20). 

1 - 20 CUMPOISSON 16 
.1318319657 

(c) Find the probability of from 11 to 20 errors, inclusive. 
This is P(ll ~X~20)=P(X~20)-P(X~ 10). 

(20 CUMPOISSON 16) - (1 0 CUMPOISSON 16) 
.7907720185 

Finally, we should point out that the Poisson distribution may be used 
to approximate the binomial distribution, if N is large. I Recall that N is the 
number of trials in the binomial distribution, and P is the probability of 
success on anyone trial. The value of u used in the Poisson approximation 
of the binomial is u = N· P, the expected or most likely number of successes 
in the N trials. 

Example 4 

Let X denote the number of 6's in 300 rolls of a fair die. 

(a) Find P(X ~ 25). 
Since N = 300 and P = 1/6, then u = N· P = 50 is the expected num­

ber of 6's in 300 rolls of the die. Now, (25!3OO) and !3oo are beyond 
the capacity of the computer. Witness: 

25!300 
DOMAIN ERROR 

!300 
DOMAIN ERROR 

Thus, although the binomial distribution should really be used, we will 
have to use the Poisson approximation. 

25 CUMPOISSON 50 
7.160717367 E-5 

(b) Find the probability of more than 75 sixes. 

1 - 75 CUMPOISSON 50 
0.0003719691515 

Since P(X > 75)= 1- P(X ~ 75). 

lit can be shown (although it is beyond the scope of this text to formally do so) that as 
N--+oo, then 
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EXERCISES 

1. The average number of days per winter in which school is cancelled due to snow 
in a certain north eastern city of the United States is 4. For any given winter, 
find 
(a) The probability of no cancellations. 
(b) The probability of 2 cancellations. 
(c) The probability of at least 2 cancellations. 
(d) The probability of at most 5 cancellations. 

2. The old Baxters live on a certain obscure country road. One of their favorite 
pastimes is to sit on their front porch and wave at cars. Cars pass by the old 
Baxters' home at the rate of 5 per hour. If they sit on their porch for two hours, 
find the probability that 
(a) They see no cars. 
(b) They see at least 3 cars. 

(c) They see no more than 4 cars. 
(d) They see exactly I car. 

3. Repeat Problem 2 if the old Baxters sit outside for only half an hour. 

4. The average number of defects in 100 feet of cord put out by a certain new 
company is 6. Find the probability 
(a) Of no defects in 50 feet of cord. 
(b) Of no more than 10 defects in 200 feet of cord. 
(c) Of at least 8 defects in 150 feet of cord. 

5. The probability that a person who lives to be 75 will die during his 75th year is 
estimated to be 0.01. Of 1000 people chosen at random entering their 75th year, 
find the probability that 
(a) Fewer than 5 will die during their 75th year. 
(b) More than 20 will die during their 75th year. 

6. A card is drawn at random from a well shuffled deck of cards, then replaced, 
and the cards reshuffled, another drawn, and so on until 100 cards have been 
drawn. Find the approximate probability that 
(a) At least 20 are hearts. 
(b) At most 10 are hearts. 
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Statistics 11 

Statistics deals with arriving at conclusions about some unknown char­
acteristics of a large population based on a random sample of observations 
from the population. For example, we might want to know the average 
weight of a man of age 50. Or we might want to know the probability that 
a man of age 50 is overweight. In this chapter, we will deal with the 
statistical tools for answering questions such as these. 

11.1 Random samples and frequency distributions 

The population for a statistical investigation is the sample space for all 
observations under investigation. A random sample of size N from the 
population is a collection of N observations taken from the population in 
random manner so that any collection of N observations from the popula­
tion is just as likely to be chosen as any other. 

One way of choosing a random sample is to assign a number to each 
element of the population and then to choose a random sample of these 
numbers using a table of random numbers. In APL, we have a built-in 
random number generator. To randomly choose N numbers from tM, 
without repetition, type N? M. 

Examples 

4?9 
7 3 2 8 

Choose 4 numbers from the vector 
t9. 

Suppose that a club contains 50 members of which we wish to choose 5 
at random to form a committee. We could then assign a number from 1 to 
50 to each member of the club. To randomly pick 5 of these numbers, we 
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could use 

5?50 
42 30 13 45 8 

The people holding these numbers would now form the committee. 
We could even use this? function, hypothetically, to randomly choose 

N cards from a deck of cards. The following program, presented just for 
fun, accomplishes this. 

Program 11.1 DEAL (optional) 

V DEAL N 
[1] CARDS~N?52 

[2] SUITS~' SHDC' 

Choose N numbers from t52 without 
replacement. 

[3] DENOMINA TlONS~' A 23456789 TJQK' 
[4] ~ (2, N)pDENOMINATIONS[1 + 131 CARDS], SUITS[1 + 41 CARDS] 

V 

This program uses the residue operation 1 to assign a SUIT and DE­
NOMINA TlON to each number chosen at random from t52. 

Example 

DEAL 5 
TH 
JH 
2D 
9S 
9C 

Ten of hearts. 
Jack of hearts. 
Two of diamonds. 
Nine of spades. 
Nine of clubs. 

In many samples, it may be permissible to have repeated values. For 
example, suppose that a random sample of 10 fish is taken from a lake and 
their weights recorded to the nearest ounce. It is reasonable to expect some 
repetition in these weights. A typical such sample might be 

10, 15, 16,9, 10,6,9, 7, 12, 15. 
The monadic use of the random generator? allows repetition. 

Examples 

? 10 
7 

? 10 10 10 10 10 
5 7 1 3 10 

?(8p10) 
6 5 8 2 863 1 
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11.1 Random samples and frequency distributions 

Organizing a sample 

Now that we have considered some ways of generating a random sample, 
we tum to organizing the elements in the sample in such a way as to make 
the data in the sample more meaningful and easier to handle. 

Suppose for example, that the following data represent the weights of a 
random sample of 25 fish caught in a certain pond: 

SAMPLE ~ 13 9 12 8 9 6 15 12 7 8 5 14 8 6 9 12 9 13 7 

SAMPLE~SAMPLE, 14 10 7 18 12 6 

This illustrates the use of catenation 
on large samples. 

These weights are not organized, and, therefore, it is not very easy to 
draw any conclusions from this sample. The first thing we might like to do 
is to sort the elements in the sample in order of magnitude from smallest to 
largest. To do this, we can make use of the APL "grade-up function," .¢. . 
(This is an overstrike of 6. and I.) 

Examples 

Let 

V~6 8 4 9 3 

.¢.v 
53124 

V[.¢.V] 
3 4 689 

V[w V] 
9 8 643 

.¢.V yields a permutation vector of 
indices which would rearrange the 
elements of V in order of magnitude 
from smallest to largest. 

This actually accomplishes this re­
arranging of elements. 

W is the "grade-down function." It 
causes the rearranging of elements 
from largest to smallest. 

It might be useful to have a program to accomplish this sorting of the 
elements of a sample into ascending order. 

Program 11.2 SORT 

V ASCENDING~SORT SAMPLE 

[1] ASCENDING~SAMPLE[.¢. SAMPLE] V 

SORT SAMPLE 
5 6 6 6 7 7 7 8 8 8 9 9 9 9 10 12 12 12 12 13 13 14 14 15 18 
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Sorting the sample of 25 fish weights above. 
From this more organized form of the sample, we can tell at a glance 

such things as that 5 ounces is the smallest weight in the sample, 18 is the 
largest, and 9 and 12 occur the most often. We could even set up a 
frequency distribution. Afrequency distribution is merely a list of the values 
in the sample together with their frequency of occurrence. In our example, 
a frequency distribution would be as follows: 

Weights Frequencies 

5 1 
6 3 
7 3 
8 3 
9 4 
10 1 
11 0 
12 4 
13 2 
14 2 
15 1 
16 0 
17 0 
18 1 

A pictorial representation of a frequency distribution can be obtained 
by drawing a bar graph. To draw a bar graph, such as in Figure 11.1, 
merely draw a bar whose height represents the frequency of each weight 
(or score) above that weight (or score). 

Let us now consider a program which sets up a frequency distribution 
for a sample and also plots a bar graph. First, we need a subprogram, 
GRAPH, which will be used in plotting the bar graph. 

4 

o 1 2 3 4 
Weights 

Figure Il.l Bar graph of a frequency distribution. 
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ll.l Random samples and frequency distributions 

Program 11.3 GRAPH 

V G ~ GRAPH INTEGER 
[1] G~/NTEGER p '*' V Print INTEGER * 'so 

GRAPH 5 
* * * * * 

GRAPH 10 

* * * * * * * * * * 

Program 11.4 DISTRIBUTE 

V DISTRIBUTE SAMPLE; SCORE; P; FREQUENCY 
[1] SAMPLE ~ SORT SAMPLE Put the sample in order of magni­

tude. 

[2] SCORE~SAMPLE [1] Initially, SCORE is the smallest 
value in SAMPLE. 

[3] PICK: P~SCORE= SAMPLE P is a vector of O's and l's. 

[4] FREQUENCY~+ /P FREQUENCY is the total number 
of 1 's in P. That is, the number of 
times SCORE is in SAMPLE. 

[5] SCORE;' WITH A FREQUENCY'; FREQUENCY 

[6] GRAPH FREQUENCY 

[7] SCORE ~ SCORE + 1 Increase SCORE by 1. 

[8] ~(SCORE" SAMPLE[pSAMPLE])/ PICK 

V If this new SCORE is " the 
largest element in SAMPLE, 
branch to PICK. Otherwise, end 
the program. 

Let us apply this program to our sample of fish weights. 

SAMPLE Recalling this SAMPLE. 
13 9 12 8 9 6 15 12 7 8 5 14 8 6 9 12 9 13 7 14 10 7 18 12 6 

DISTRIBUTE SAMPLE 
5 WITH A FREQUENCY 1 

* 
6 WITH A FREQUENCY 3 

* * * 
7 WITH A FREQUENCY 3 

* * * 
8 WITH A FREQUENCY 3 

* * * 
9 WITH A FREQUENCY 4 

* * * * 
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10 WITH A FREQUENCY 1 

* 
11 WITH A FREQUENCY 0 
12 WITH A FREQUENCY 4 

* * * * 
13 WITH A FREQUENCY 2 

* * 
14 WITH A FREQUENCY 2 

* * 
15 WITH A FREQUENCY 1 

* 
16 WITH A FREQUENCY 0 
17 WITH A FREQUENCY 0 
18 WITH A FREQUENCY 1 

* 
In order to get the full benefit from the bar graph, one would have to 

turn the paper 90 degrees. If there is a large range of scores in a large 
sample, then perhaps one would be more interested in the frequencies of 
scores occurring in various intervals than he would in the frequencies of 
each individual score. 

Another example 

Suppose the following scores were obtained on a test: 

SA~PLE~81 90 84 98 85 67 48 60 70 68 85 72 72 92 73 74 
SA~PLE ~ SA~PLE, 92 73 82 90 78 85 54 87 58 64 50 70 94 
SA~PLE ~ SA~PLE, 76 

In order to get a better idea of the distribution of scores in this sample, we 
could sort them using the program SORT. 

SORT SA~PLE 
48 50 54 58 60 64 67 68 70 70 72 72 73 73 74 76 78 81 82 84 
85 85 85 87 90 90 92 92 94 98 

The teacher would probably be more interested in the frequencies of 
scores in the 40's, 50's, 60's, 70's, 80's, and 90's than in the frequencies of 
each individual score. Therefore, we need a program for setting up a 
frequency distribution with intervals. The intervals in such a distribution 
should include every score and shoulc. not overlap. Consider the following 
program for constructing such a distribution. 

Program 11.5 DISTRIBUTION 

V' FREQUENCIES~ INTERVALS DISTRIBUTION SA~PLE 
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11.1 Random samples and frequency distributions 

[1] FREQUENCIES+-+ /(C1~/NTERVALS)o.";; SAMPLE)/\ 
«1 ~/NTERVALS) o. > SAMPLE) 

v 
In order to explain this extremely powerful I-line program, we shall 

consider a simple example. 

Example 1 

Suppose our sample consists of the following six scores: 

SAMPLE +- 55 56 63 65 68 72 

and suppose we wish to know the frequencies of scores in the 50's, 60's, 
and 70's. Then, INTERVALS will be 

INTERVALS+-50 60 70 80 These intervals are 50-59, 60-69, 
70-80. 

-1~/NTERVALS Drop the last component of INTER-
50 60 70 VALS. 

(-1~/NTERVALS)o.";; SAMPLE 
1 1 1 1 1 1 Each component in tum of (-1ttN-
o 0 1 1 1 1 TERVALS) is compared to each com-
O 0 0 0 0 1 ponent of SAMPLE, using ..;;. Refer 

to the appendix for a more detailed 
explanation of outer product. 

1 ~ INTERVALS Drop the first component of INTER-
60 70 80 VALS. 

(1 ~ INTERVALS) 0 • > SAMPLE 
1 1 0 0 0 0 The outer product with >. 
1 1 1 1 1 0 
111111 

«-1~/NTERVALS)o.";; SAMPLE)/\«1~/NTERVALS)o. > SAMPLE) 
110000 
o 0 1 1 1 0 Recall that 1/\1 yields 1, while 1/\0, 
o 0 0 0 0 1 0/\1, 0/\0 all yield O. 

+ /«-1ttNTERVALS) 0 • ..;; SAMPLE)/\ 
«1 ~ INTERVALS) 0 • > SAMPLE) I 

231 Recall that for matrices, + / A adds 
the columns of A horizontally. 

Thus, for this example, 

50 60 70 80 DISTRIBUTION 55 56 63 65 68 72 
2 3 1 

lSpace limitations have forced us to show this instruction on two lines. In practice, it must be 
typed on one line. 

309 



11 Statistics 

There are 2 in the 50's, 3 in the 60's, and 1 in the 70's. 
Let us also consider a program for plotting a bar graph of the distribu­

tion. 

Program 11.6 BAR 

'il INTERVALS BAR SAMPLE; FREQUENCIES; I 
[1] FREQUENCIES~/NTERVALS DISTRIBUTION SAMPLE 
[2] I~O 

[3] INCREASE: 1~1+1 
[4] GRAPH FREQUENCIES[/] 
[5] ~(1 <pFREQUENCIES)/ INCREASE 

'il 

This program merely uses the program GRAPH on each component of 
FREQUENCIES. 

Example 2 

Let us return to the teacher with the test scores: 

SAMPLE~81 90 84 98 85 67 48 60 70 68 85 72 72 92 73 74 
SAMPLE ~ SAMPLE, 92 73 82 90 78 85 54 87 58 64 50 70 
SAMPLE ~ SAMPLE, 94 76 

INTERVALS~40 50 60 70 80 90 100 

INTERVALS DISTRIBUTION SAMPLE 
1 349 7 6 

Thus, there is 1 score in the 40's, 3 in the 50's, 4 in the 60's, 9 in the 70's, 
7 in the 80's, and 6 in the 90's. 

INTERVALS BAR SAMPLE 

* 
* * * 
* * * * 
********* 
******* 
****** 

EXERCISES 

A bar graph for the distribution of 
test scores. 

1. Use? to generate the following random samples: 
(a) Five distinct numbers from 1 to 12. 
(b) Five numbers from 1 to 12 with repetition allowed. 
(c) Five numbers between 6 and 15. 
(d) Five numbers between -5 and 5. 

2. Devise a scheme for choosing 100 people at random in a city of 10000 people. 
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3. Professor X is on a committee which is making up questions for a national 
mathematics exam. To test the questions, he decides to give the exam to one of 
his classes at his own college. Is this a random sample? Discuss. 

4. The following are test scores for 28 students in a class: 

SCORES~92 94 80 83 56 72 85 90 86 96 65 87 63 65 82 74 88 

SCORES~SCORES, 83 83 60 93 86 60 57 51 94 76 66 

(a) Use the program SORT to put these scores in order. 
(b) If 90's are A's, 80's are B's, 70's are C's, 60's are D's, and below 60 F's, use 

the program DISTRIBUTION to find how many of each grade are assigned. 

5. Write a program REARRANGE for rearranging a vector of numbers in order of 
magnitude from the largest to smallest. 

6. The ages of students in a certain college classroom as of their previous birthdays 
are as follows: 

AGES~19 19 24 20 19 18 18 23 21 21 30 23 18 18 20 18 20 

AGES~AGES, 18 20 20 20 19 19 17 20 23 19 20 19 19 19 20 

Use the program DISTRIBUTE to determine the number of students of each age 
in the classroom. 

7. The following represent college board scores for a certain class of high school 
seniors: 

520 375 350 475 
6lO 430 530 510 
455 540 500 495 
380 555 490 480 
720 610 590 520 
580 650 600 540 
645 720 500 650 
425 790 5lO 750 

Use the program DISTRIBUTION to put these college board scores into a 
frequency distribution with intervals 350-399, 400-449, 450-499, 
500-549, ... ,750-800. 

8. Use the program BAR to plot a bar graph of the distribution of college board 
scores in Exercise 7. 

11.2 Measures of central tendency 

A statistic is a number computed from a sample. When presented with a 
set of data (a sample), it is often desirable to have a single number, a 
statistic, which describes the "typical" or "average" value in the sample. 
This kind of statistic is often referred to as "a measure of central tend­
ency." The most common measures of central tendency are the mean, the 
median, and the mode. In this section, we will consider these three 
measures of central tendency and the relative merits of each. 
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The mean 

The most commonly used measure of central tendency is the mean or 
average of the elements in the sample. If the elements !!l the sample are 
X 1'X2' .•. ,Xn' then the sample mean, usually denoted by X, is given by 

Example 

A test is given to 10 students with the resulting scores: 

70,64,81,83,52,91,70,66,75,80. 

The mean score is 

X- = 70+64+81 +83+52+91 +70+66+75+80 = 732 =732 
10 10 .. 

If the sample is large, then it becomes quite tedious computing the mean 
by hand. Therefore, we present the following simple program for comput­
ing the mean. 

Program 11.7 MEAN 

V K ~ MEAN SAMPLE 
[1] K~(+ jSAMPLE)+(p SAMPLE) V 

This is merely the sum of the elements in the sample divided by the 
number of elements in the sample, which is precisely the definition of the 
mean. 

Examples 

1. Compute the mean test score above using MEAN. 

MEAN 70 64 81 83 52 91 70 66 75 80 
73.2 

2. Compute the average weight of the fish caught III the pond in the 
example from the last section. 

9.96 

SAMPLE~13 6 5 12 10 9 15 14 9 7 12 12 8 13 18 8 7 6 7 
SAMPLE~SAMPLE, 12 9 8 9 14 6 
MEAN SAMPLE 

Thus, the average fish weights just under 10 pounds. 
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11.2 Measures of central tendency 

The median 

Another measure of central tendency is the median, which we shall denote 
by Md. It is often referred to as the "most central" or "middlemost" value 
in the sample. Suppose the values in the sample are arranged in order of 
magnitude, from smallest to largest. If there is an odd number of values in 
the sample, then Md is the value in the center of this rearranged sample, 
below which and above which lie half of the values. If there is an even 
number of values in the sample, then Md is the average of the two central 
values in this rearranged sample. 

Examples 

1. Find the median weight for the 25 fish weights above. 
First, we need the program SORT to sort the elements of SAMPLE in 

order of magnitude. 

SORT SAMPLE 
5 6 6 6 7 7 7 8 8 8 9 9 9 9 10 12 12 12 12 13 13 14 14 15 18 

9 

Since there is an odd number of weights in this sample, namely 25 of 
them, then Md is the central, or 13th value. Thus, the median is 

(SORT SAMPLE) [13] 
The median is 9. 

. 2. Find the median test score in the other Example 2 of this section. 

SCORES ~ 70 64 81 83 52 91 70 66 75 80 
SORT SCORES 

52 64 66 70 70 75 80 81 83 91 

Since there is an even number of scores in this sample, then the median 
is the average of the two most central scores. Thus, 

Although the mean is the more commonly used measure of central 
tendency, the median sometimes gives a better indication of the "typical" 
value in the sample than the mean. This is especially true when there are 
extremely large or small values in the sample when compared to the other 
values in the sample. These extreme values exert an inordinate influence 
on the mean, while they do not effect the median. 

Example 

Suppose we have the following 7 test scores: 

22,82,87,90,91,97,98. 
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The median of these scores is 90 while the mean is only 81. In this 
example, the median, 90, is a better indication of the typical score than the 
mean of 81. The mean has been "dragged down" by the extremely poor 
score of 22, while the median has not been affected by it. 

The mode 

The other measure of central tendency which we would like to consider is 
the mode. The mode is the value in the sample which occurs with the 
greatest frequency. r.'e mode is easy to find and sometimes gives a very 
good indication of the typical value in the sample. 

Examples 

Suppose the scores of 15 students on a IO-point quiz were: 

0, 0, 2, 5, 7, 7, 7, 7, 7, 7, 8, 8, 9, 10, 10. 
The mode is 7. In this example, this is a pretty good indication of the 
typical score on the quiz. 

Suppose the scores were 

0,0,0,2,5,6, 7, 7, 7, 8, 8, 9, 10, 10, 10. 

Here, there are three modes: 0, 7, and 10. This illustrates an important 
disadvantage of the mode as a measure of central tendency; namely that in 
some cases there may be more than one mode. 

Suppose the scores were 

0,0,0,2,5,6, 7, 7, 7, 8, 8,9, 10, 10, 10, 10. 
Here, the mode is 10, since it occurs with the greatest frequency. However, 
10 is not a very good indication of the typical score on this quiz. 

As stated before, the mean is the most commonly used measure of 
central tendency. It is easily computed and takes into consideration the 
entire distribution. If the sample is large, then the mean will not be overly 
influenced by a few extreme values. Also, the mean is a reliable measure of 
central tendency. That is, if repeated large samples are taken, the values of 
the means computed from these samples will not vary very much. 

11.3 Measures of dispersion 

It is possible for two samples to have the same mean and yet be quite 
different. For example, consider the following sets of scores for a test given 
to 10 students: 

Sample I: 52,64,66, 70, 70, 73, 80, 81, 83,91 
Sample II: 25,45,50, 73, 80, 85, 87, 90, 95, 100 
Sample III: 73, 73, 73, 73, 73, 73, 73, 73, 73, 73. 

These three samples all have the same mean, 73. However, they differ 
greatly in the amount of dispersion of scores. 
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One measure of dispersion is called the range. The range is just the 
largest value minus the smallest value in the sample. In sample I above, the 
range is 91-52=39. In sample II, it is 100-25=75. In sample III, it is 
73 - 73 = O. The range is very easy to compute and does give an indication 
of the spread of values. However, it only depends on the two most extreme 
values and indicates nothing about the dispersion of values between these 
two extremes. 

The two most commonly used measures of dispersion are the variance 
and the standard deviation. The variance, usually denoted by S2, of a 
sample x\,X2, ... ,xn is defined to be 

n 

where X is the mean of the sample. The v~riance measures the spread of 
values in the sample away from the mean X. It is the mean of the squares 
of the differences between the sample values and the mean. The more 
spread out the sample values are from the mean X, the larger the value of 
S2. The following program can be used to compute the variance of a 
sample. 

Program 11.8 VARIANCE 

V SPREAD~ VARIANCE SAMPLE 
[1] SPREAD~MEAN($AMPLE-MEAN SAMPLE)*2 V 

(Another formula for variance can be used to simplify the computation 
when they are done by hand or on calculators. It is 

This formula is easily derived from the definition of variance.) 
Before considering some examples, we would also like to consider the 

standard deviation. The standard deviation of a sample is just the square 
root of the variance. Thus, it is now quite easy to write a program for 
standard deviation. 

Program 11.9 STDEV 

V S~ STDEV SAMPLE 
[1] S~(VARIANCE SAMPLE) *.5 V 

As with the variance, the larger the value of the standard deviation, the 
more spread out are the values of the sample away from the sample mean. 
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Examples 

Let us find the variances and standard deviations in the samples of test 
scores at the beginning of this section. 

112.6 

SAMPLE1 ~52 64 66 70 70 (3 80 81 83 91 

VARIANCE SAMPLE1 

STDEV SAMPLE1 
10.6113 

550.8 

SAMPLE2 ~ 25 45 50 73 80 85 87 90 95 100 
VARIANCE SAMPLE2 

STDEV SAMPLE2 
23.4691 

o 

o 

SAMPLE3 ~ 73 73 73 73 73 73 73 73 73 73 
VARIANCE SAMPLE3 

STDEV SAMPLE3 

Thus, sample 2 has. the greatest spread of values away from its mean of 
73. 

Let us also find the variance and standard deviation for the 25 fish 
weights of the fish in the example of Section 11.1. 

SAMPLE ~ 13 6 5 12 10 9 15 14 9 7 12 12 8 13 18 8 7 6 7 

SAMPLE~SAMPLE, 12 9 8 9 14 6 

VARIANCE SAMPLE 
10.8384 

STDEV SAMPLE 
3.29218 

The values of the variance and standard deviation of a sample do not 
really mean too much unless there is another sample with which the given 
sample is being compared. They are used in a relative sense, rather than in 
an exclusive sense. 

EXERCISES 

1. Write a program for finding the median of a sample. 

2. Write a program for finding the mode of a sample. 

3. Write a program for finding the range of a sample. 

316 



11.3 Measures of dispersion 

4. Find the mean, median, mode, range, variance, and standard deviation for the 
28 test scores in Exercise 4 of Section ILL 

5. Repeat Exercise 4 on the 30 ages of Exercise 6 of Section ILL 

6. Repeat Exercise 4 on the 32 college board scores of Exercise 7 of Section 11.1. 

7. The grade-point averages of 20 students selected at random are 

2.34 3.25 
2.80 3.46 
3.42 3.44 
2.74 2.56 

4.00 1.96 2.68 
2.26 2.88 1.60 
2.60 2.85 1.84 
3.04 2.30 2.00 

Find the mean grade-point average and the standard deviation of the grade­
point averages. 

8. Find the mean, median, and mode for the following samples. Which one would 
give the best measure of central tendency in each case? Why? 
(a) SAMPLE1 ~12 15 9 14 10 20 15 14 75 
(b) SAMPLE2~2 3 3 5 5 5 6 7 7 8 
(c) SAMPLE3~7 4 6 7 4 4 8 7 

9. Suppose that it is desired to know the average weight of a college freshman at a 
large university. Describe a way of getting a good estimate of this average 
weight. 

10. A machine produces parts of mean length 5 inches. In terms of the standard 
deviation of the parts produced by the machine, discuss why it is important to 
keep the machine well oiled and maintained. 

11. Write a program for computing variance by the alternative formula presented 
in Section 1l.3. 

12. A professor uses the following scheme for assigning letter grades to tests: 
Scores that are more than two standard deviations above the mean are called 
A's, between I and 2 standard deviations above the mean are called B's, within 
I standard deviation of the mean on either side are called C's, between I and 2 
standard deviations below the mean are called D's, and more than 2 standard 
deviations below the mean are called F's. Find the number of each letter 
grades on a test with the scores: 

SCORES~85 55 82 94 66 78 92 57 67 60 63 72 60 69 37 90 

SCORES~SCORES, 88 56 60 70 68 51 859866 92 75 61 39 70 

Would you consider his grading fair? 

13. The floor function, L, when used monadically, yields the largest integer ..; the 
right argument N. Thus, 

L3.14 
3 

L5.98 
5 

L7 
7 
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Consider the following program ROUND, which rounds a number off to 4 
decimal places: 

V Q <,- ROUND N 

[1] Q<,-(10.-4)XLO.5+(NX10.4) V 

(a) Explain this program by rewriting it in three steps. 
(b) Evaluate the following: 

ROUND 2.354725804 

ROUND 3.141592654 

ROUND 2.718281828 

ROUND -7.389056099 

[Note: This program will be used in the next section.] 

14. Generalize the program in Exercise 13 to one that will round off a number N to 
P places. 

11.4 The normal distribution 

Perhaps most of the readers are, at least vaguely, familiar with the famous 
"bell-shaped" curve which is characteristic of the normal distribution. In 
this section, we shall examine some of the characteristics of a normal 
distribution. In the next section, we will consider an important application 
of the normal distribution in statistics. 

The hypergeometric, binomial, and Poisson distributions studied in the 
previous chapter are all examples of discrete distributions. In these distrib­
utions, the values of X, the number of successes, were always integers. In a 
discrete distribution, X can only assume a finite, or at most countably 
infinite number of values. "Countably infinite" means that although there 
are an infinite number of values, they can be counted, as in the case of the 
set of nonnegative integers. A distribution which is not discrete is said to 
be continuous. In a continuous distribution, X can assume an uncountably 
infinite number of values. For example, the distribution of weights of fish 
in a river is a continuous distribution, since a fish could weigh 5 pounds, 
5.1 pounds, 5.11 pounds, or 5.111 pounds, and so on. Unless one rounds 
off, it is possible that the weight of a fish could be any positive real 
number less than some maximum weight. 

Since in a continuous distribution, there are an uncountably infinite 
number of values of X, the probability of X equaling any particular value 
is usually taken to be O. This doesn't mean that it is impossible for X to 
attain this value. It merely means that one would not be wise to wager that 
X would attain this particular value out of the uncountably infinite 
number of values it can attain. With a continuous distribution, one is more 
interested in the probability that X lies in some interval of values, as 
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P(a<.X<.b) or P(X<.a) or P(X>b), than in the probability that it 
attains a particular value. 

Associated with any continuous distribution is a function F(x), called 
the probability density function for X. The graph of such a probability 
density function is a continuous curve which always lies above the x axis. 
The total area between this curve and the x axis is defined to be I. To 
compute probabilities such as P(a <. X <. b), one finds the area between the 
curve of F(x), the x axis, and x= a and x= b. Since P(x = a)= P(x = b)= 
0, then P(a <. X <. b)= P(a <X < b). 

Perhaps the most important example of a continuous distribution is the 
normal distribution. The probability density function for the normal distrib­
ution looks like 

I 1( x- U)2 
F(x)= ·e- Z -(1- where -oo<x<oo. 

Vf7i .(1 

u is called the mean for X, and is the mean or average value in the 
distribution of values for X. (1 is called the standard deviation of X, and is 
a measure of the spread of values of X away from the mean, u. The larger 
(1 is, the more spread out are the values of X away from u. A graph of the 
density function with mean u and standard deviation (1 appears in Figure 
11.2. 

As one can see, the graph of the density function for a normal 
distribution is symmetrical about the vertical line x = u, and the maximum 
value of F(x) occurs at x = u. The points on the graph corresponding to 
u - (1 and u + (1 are the points of inflection for the curve. There are as many 
normal distributions as there are values of u and (1. 

u-a u u+a 

Figure Il.2 Density function. 

To simplify the work when using normal distributions, the normal 
distribution with mean ° and standard deviation I, called the standard 
normal distribution, is usually used. The letter Z is usually used for the 
standard normal random variable. By making the substitution Z=(X­
u)j (1, it is possible to change any probability problem in a normal 
distribution with mean u and standard deviation (1 to a standard normal 
distribution probability problem problem (Figure 11.3). For example, to 
find P (a <. X <. b) for a normal distribution with mean u and standard 
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..!!...=..!!.. 0 b - u 
o 0 

(a (b) 

Figure 11.3 (a) Nonnal distribution with mean u, standard deviation o. (b) The 
standard nonnal distribution. 

deviation 0, one needs to find the area under the curve of 

I .!.{~)2 F{x)= 'e- 2 a 

v'27i '0 
between x = a and x = b. In other words, one needs to evaluate the definite 
integral 

Ib I . e - H X ~U)2. dx. 
a v'27i'0 

If we make the substitution z =(x- u)/o, then dz/ dx= I/o, or dx= o·dz. 
Also, when x=a, then z=(a-u)/o, and when x=b, then z=(b-u)/o. 
Thus, the above integral becomes 

l (b-u) / a I _ '!' ·z2 d --·e 2 • Z 

(a-u) / o Vb ' 
which is P«a-u)/o<, Z<,(b-u)/o). 

This function . 
I .!. 2 F{z)=--'e - 2 Z 

Vb 
has no antiderivative, so that the Fundamental theorem of calculus cannot 
be used to evaluate this integral. However, we can use the program 
INTEGRAL of Chapter 9 to approximate this integral. First, however, we 
need a subprogram for computing the values of the standard normal 
density function, since the program INTEGRAL calls for a subprogram FN. 

V FN [1] 
[1] Y~(*(-X*2)+2)+«02)*.5) V 

Examples 

l. Find P(O <, Z <, I). 

Altering FN to fit the standard nor­
mal density function. 

In order to do this, we need to find the area under the standard 

normal curve F(z) from z =0 to z= l. Or, we need to evaluate f~F(Z)' 
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11.4 The normal distribution 

dz. We can use the program INTEGRAL to evaluate an approximation 
to this integral as follows: 

o INTEGRAL 1 
.3416651824 

2. Find pel..;;; Z ..;;; 0). 

- 1 INTEGRAL 0 
.3416651824 

Thus, about 34 percent of the area 
under the normal curve lies within 
one standard deviation to the right of 
the mean. 

Notice that P (0";;; Z ..;;; 1) = pel..;;; Z ..;;; 0). This is reasonable to ex­
pect due to the symmetry of the standard normal curve about its mean 
of 0 (see Figure 11.4). 

Figure 11.4 The area under the standard normal curve. Note that the area from 0 
to 1 is the same as the area from - 1 to o. 

In fact, using this symmetry, we need only deal with probabilities of the 
form P (0";;; Z";;; c) for c > 0 to evaluate any probability for the standard 
normal distribution. Thus, we present the following simple program for 
computing P (0 ..;;; z";;; c). 

Program 11.10 NORMAL 

V P~NORMAL C 
[1] P~O INTEGRAL C 
[2] P ~ ROUND P 

V 

Example 1 

This rounds the probability off to 4 
decimal places using the subprogram 
ROUND from Exercise 13 of the pre­
vious set of exercises. 

Suppose that the weights of fish in a pond are normally distributed with a 
mean of 5 pounds and a standard deviation of 1 pound. If a fish is caught 
at random from this pond and its weight is X find the following probabili­
ties: 

(a) Find P(4";;; X..;;; 6). 

321 



II Statistics 

Since u = 5 and 0= I, then if we standardize this distribution using 
Z=(X-u)/o, this problem becomes one of finding 

Due to the symmetry of the standard normal distribution, since P ( - I ..;; 
Z";;O)=P(O";;Z";;I), then P(- I";;Z";;I)=2xP(0";;Z";;I). Thus, we 
get 

2x NORMAL 1 
.6834 So, about 68 percent of the fish 

caught weigh between 4 and 6 
pounds. 

(b) Find P(X";; 5). 
Standardizing this, we get 

Since the total area under the standard normal curve is I, and the 
distribution is symmetrical about z =0, then the area to the left of the 
mean 0 is 0.5000 (see Figure 11.5). Thus, P(X"; 5)=0.5 or 50 percent 
of the fish caught weigh ..; 5 pounds. 

Figure 11.5 Probability of 5;;. X is represented by the shaded area below the 
curve; P=0.5000. 

(c) Find P(X"; 7). 
Standardizing this yields 

p( X~5..; 7~5)=P(Z";2)=P(Z";0)+P(0";Z";2) 
=0.5000+ P(O"; Z"; 2). 

Thus, we get (see Figure 11.6) 

.5000 + NORMAL 2 
.9777 Almost 98 percent of the fish weigh 

..; 7 pounds. 
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o 2 

Figure 11.6 Probability of 7 > X is shaded area below curve; P=O.9777. 

(d) Find P(X > 7). 
Standardizing this, we get 

p( X~5 > 7~5)=p(Z>2)=I-P(Z<2), 

using Probability rule 3 of Chapter 10. Thus, we get 

1-.9777 
.0223 

Another way of doing this problem is to use the fact that the total 
probability to the right of z=O is 0.5000. Thus, P(Z >2)=0.5000-
P(O< Z < 2) . 

. 5000 - NORMAL 2 
.0223 So, about 2 percent of the fish weigh 

more than 7 pounds. 

(e) FindP(X<3). 
Thus, we want 

P(X<3)=P( X~5 <3~5)=P(Z<-2). 

However, since the standard normal curve is symmetrical about z =0, 
then P (Z < -2) = P (Z > 2) = 0.0223, by Part (d). Thus about 2 percent 
of the fish weigh less than 3 pounds (see Figure 11 .7). 

~ 
202 

Figure 11.7 Probability of 3 > X is shaded area below curve; P=O.0223. 

(f) Find P(4 < X < 7). 

p( 4~5 < X ~5 < 7~5)= P( - I < Z <2)=P(-1 < Z <O)+P(O< Z <2) 

=P(O< Z< I)+P(O< Z<2). 
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o 2 

Figure 11.8 Probability of 7;;. X ;;. 4 is shaded area below curve; P = 0.8194. 

(NORMAL 1)+ (NORMAL 2) 
8194 

Almost 82 percent weigh between 4 and 7 pounds (see Figure 11.8). 

Example 2 

The scores on a standardized exam are normally distributed with the 
average score being 500 with standard deviation 100. If a student is 
selected at random and given this exam, find the probability that his score 
will be 

(a) Greater than 700. 
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Let X be this student's score. We want P (X > 7(0). Since u = 500 
and (J = 100, then standardizing this problem yields 

o 2 
Figure 11.9 P(X > 7(0)=0.0223. 

o I 

Figure 11.1 0 P (X < 4(0) = 0.1 583. 

2 0 2 
Figure 11.11 P (X < 3(0) + P (X > 7(0) = 0.0446. 



11.4 The normal distribution 

P ( X ~~oo > 7001~(0) = P(Z > 2) =0.5000- P(O" z" 2) . 

. 5000- NORMAL 2 
.0223 

Thus, P=0.0223 (see Figure 11.9). 
(b) Less than 400. 

.1583 

We want 

P (X < 4(0) = P ( X - 500 < 400 - 500 ) = P (Z < - I) = P (Z > I) 
100 100 

=0.5000- P(O" z" I) . 
. 5000 - NORMAL 1 

Thus, P=0.1583 (see Figure 1l.l0). 
(c) Under 300 or over 700. 

We want 

P(X <3(0)+ P(X >7(0) 

= P ( X - 500 < 300 - 500 ) + P ( X - 500 > 700 - 500 ) 
100 100 100 100 

= P(Z < -2)+ P(Z >2)=2·P(Z >2) 

=2·0.0223=0.0446 (by Part (a). 

Thus, P=0.0446 (see Figure I l.l I). 

EXERCISES 

1. A soda machine gives an average drink of 12 ounces with a standard deviation 
of 0.5 ounces. If a cup holds 13 ounces, find the probability that a cup 
overflows, assuming the distribution of drinks dispersed by the machine is 
normal. 

2. A machine produces pipes which are normally distributed with an average 
length of 8 inches and a standard deviation of 0.25 inches. Find the probability 
that a pipe chosen at random will be between 7.75 and 8.25 inches long. 

3. The I.Q.'s of applicants to Picky U. are normally distributed with a mean I.Q. of 
120 and a standard deviation of IS. To be accepted at Picky u., an applicant 
must have an I.Q. of at least 100. Find the probability that an applicant will be 
rejected on the basis of his I.Q. 

4. The amount of time required to play 18 holes of golf on a weekday at Divot 
c.c. is normally distributed with a mean of 4 hours and a standard deviation of 
20 minutes. Find the probability that a golfer will require between 4I and 5 
hours to playa round of golf. 
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5. The set of grades on a mathematics exam given to 500 students are approxi­
mately normally distributed with an average grade of 74 and a standard 
deviation of 10. 
(a) If the lowest passing grade is 60, find the probability that a student passes 

the exam. 
(b) How many of the 500 passed the exam? 

6. If the scores on a test are truly normally distributed, and if to get an A, one's 
score should be 2 or more standard deviations above the mean, to get a B, 
between I and 2 standard deviations above the mean, to get a C, within I 
standard deviation of the mean, to get a 0, between I and 2 standard deviations 
below the mean, and to get an F, more than 2 standard deviations below the 
mean; find the percentages of A's, B's, C's, D's, and F's on the exam. 

7. The tips received by a waitress are normally distributed with an average tip of 
$1.25 and a standard deviation of $0.30. Find the probability of a tip less than 
$0.50. 

8. If the average height of a student is normally distributed with a mean of 5 feet 8 
inches and standard deviation of 2 inches, and if 100 students are in a room, 
find the approximate number of students one would expect to be more than 6 
feet tall. 

11.5 The sampling distribution of the mean 

A sampling distribution for a statistic is the hypothetical distribution of 
values that one would get for that statistic if he took repeated samples 
from the same population and computed that statistic for each sample. In 
this se~ion, we will consider the sampling distribution for the sample 
mean, X. 

One of the important theorems in theoretical statistics is the so-called 
Central limit theorem which deals with the sampling distribution of the 
sample mean. Roughly speaking, the Central limit theorem says the follow­
ing: 

Central limit theorem 

If a population is normal with mean u and s~ndard deviation u, then the 
sampling distribution for the sample mean X computed from a random 
sample of N objects from this population is also a normal distribution with 
mean ux=u and standard deviation ux=u/YN. 

Even if the population is not normal, the distribution of X is still 
approximately normal with the mean and standard deviation indicated 
above, as long as the size of the sample is large. The larger the sample, the 
better the approximation. This indicates the power of the normal distribu­
tion. 

Since the mean for the ~mpling distribution of X, uX' is the same as the 
popUlation mean, u, then X is a good estimate of the population mean if u 
is unknown. Also, since the standard deviation of X,ux, is (J/YN ,where (J 
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is the population standard deviation, and since as N gets larger, o/VN 
gets smaller, then the larger the sample, the better X is as an estimate of u. 

Example 1 

College board scores are normally distributed with a mean of 500 and a 
standard deviation of 100. If a random sample of 25 students ar~selected 
and given the college board examination, and the sample mean X for this 
sample computed, 

(a) Find P(X >550). 
Since u = 500 and 0 = 100, then for X, Ux = u = 500, and 

0x= l00/V25 =20. Also, since the population of college board scores 
is normally distributed, then we can assume that X has the normal 
distribution with mean 500 and standard deviation 20. 

Thus, standardizing the distribution of X, we get 

P(X >550)=P( X -500 > 550-500 )=P(Z >2 5) 
20 20 . 

=0.500-P(0";; Z";;2.5). 

Thus, we get 

.5000 - NORMAL 2.5 
.0062 

So, it is very unlikely that the sample mean X will be greater than 
550. 

(b) Find P(X <480). 
Standardizing this, we get 

p(X <480)=P( X -500 < 480-5(0) =P(Z < - I)=P(Z > I) 
20 20 

=0.5000-P(0";; Z..;; I). 

So, we get 

.5000 - NORMAL 1 
.1583 

(c) Find P(480";; X..;; 520). 
Thus, 

P(480";; X..;; 520)=P( 480-500 ..;; X -500 ..;; 520-5(0) =P(-I";; Z..;; 1) 
20 20 20 

=2XP(0";; Z..;; I). 

2XNORMAL 1 
.6834 
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Example 2 

It is not known what kind of a distribution the lifetime of a lightbulb 
possesses. However, extensive testing has indicated that the mean lifetime 
is lOOO hours with a standard deviation of 120 hours. If a random sample 
of 100 lightbu!ps is taken and X computed, find the probability that the 
sample mean X will exceed 980 hours. 

Since N = 100, which is large (usually any N greater than 30 is consid-
ered to be large), then the distribution of X will be approximately normal 
with mean ux-= u= 1000 and standard deviation ox-= o/v'N = 120/Vl00 
= 12. Thus, 

p(X >980)= p( X -1000 > 980-1000) = P(Z > -1667) 
12 12 . 

= 0.5000 + P (0"; Z ..; 1.667). 

Thus, we get (see Figure 11.12) . 

. 5000 + NORMAL 1.6667 
.9515 About 95 percent of the lightbulbs 

will live for more than 980 hours. 

Figure 11.12 P(X>980hours)=O.9515. 

EXERCISES 

1. The strength of a certain kind of wooden beam is normally distributed with 
mean 1200 psi (pounds per square inch) and standard deviation 50 psi. If 25 of 
these beams are selected at random and their strengths tested and the sample 
mean X computed, find the following probabilities: 
(a) P(X> 1210) (b) P(X < 1200) (c) P(I990.;;; X.;;; 1205) 

2. The type of distribution of weights of male college freshmen is not known. 
However, it is known that the approximate mean weight is 160 pounds with 
standard deviation 20 pounds. If a random sample of 225 of these college 
freshmen is selected and the average weight X computed, then find 
(a) P(X> 165) (b) P(X < 156) 

3. Suppose that the waiting time for a bus at a certain bus stop is normally 
distributed with mean 12 minutes and standard deviation 3 minutes. In 25 days, 
find the probability that the average waiting time will be at least 10 minutes. 
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4. The average weight of a box of Crunchy cereal is 12 ounces with a standard 
deviation 0.5 ounces. If 100 boxes are selected at random and X computed, 
where X is the average weight of the 100 boxes selected, then find 
(a) P(X> 11.9) (b) P(l1.9.;;; X.;;; 12.1) 

5. The average distance that Mr. Jones hits a golf ball with a driver is 230 yards 
with a standard deviation 25 yards. In two rounds of golf, Mr. Jones uses his 
driver 30 times. Find the probability that during these two rounds, his average 
drive will be at least 225 yards. 
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12 The trigonometric functions 

Originally, trigonometry was developed to solve problems involving trian­
gles. As such, it is a very important tool for surveyors, machinists, en­
gineers, astronomers, and navigators. As we shall see, the trigonometric 
functions are readily available in APL. Therefore, we shall study some of 
the basic properties of the trigonometric functions and explore their use in 
solving triangles. This chapter is not intended as a complete study of the 
trigonometric functions. Many of the topics usually studied in a course in 
trigonometry will be omitted. 

12.1 Angles 

An angle is formed when a ray (half a line) is rotated in a plane with its 
endpoint (called its vertex) fixed. We shall use Greek letters such as () 
(theta) or a (alpha) or f3 (beta) to denote angles. If the rotation is 
counterclockwise, the angle is positive. If the rotation is clockwise, the 
angle is negative (see Figure 12.1). There are two common units of 
measurement of an angle, the degree and the radian. 

Degree measurement oj an angle 

During one complete revolution in a counterclockwise direction, a ray 
sweeps out all angles from 0 degrees to 360 degrees. Therefore, one quarter 
of a complete revolution corresponds to 90 degrees. Other angles are 
indicated in Figure 12.2. (It is customary to denote N degrees by N°.) 

Radian measurement oj an angle 

Place the vertex of an angle () at the center of a circle of radius R. The ray 
being rotated to form this angle sweeps out an arc AB on the circum­
ference of the circle. Let the length of this arc be denoted by S. Then, the 
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v v 

Positive and negative angles. 

radian measure of this angle () is defined to be the quotient S / R radians 
(Figure 12.3). Therefore, an angle of 1 radian is an angle for which S= R. 
Note (1) that if () is a negative angle, the number of radians in is - S / R 
and (2) that a radian has no units, since it is a length divided by a length. 

Relationship between degree measurement 
and radian measurement of an angle 

In one complete revolution of 360 degrees, the radian measure of the angle 
will be S / R, where S is the circumference of the circle, 2'1TR. Therefore, in 
a complete revolution of 360 degrees, there are 2'1TR/ R=2'1T radians. Thus, 

L v 

90° 

v 
(a) (b) (c) 

360° 

G • 

(d) 

(e) 

(f) 

180° 

C\ v .. .. 
C7 v 

-180° 

(g) (h) 

Figure 12.2 Angles of (a) 90°, (b) 30°, (c) 120°, (d) 360°, (e) -30°, (f) -120°, (g) 
180° and (h) -180°. 
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'---':----1 A 

Figure 12.3 Radian measurement of an angle 

we get 

360 degrees = 2'IT radians 

180 degrees = 'IT radians 

1 degree = 1 ;0 radians 

1 d" 180 d ra Ian = - egrees. 
'IT 

So, to change from degrees to radians, multiply the number of degrees by 
'IT /180 radians. To change from radians to degrees, multiply the number of 
radians by 180/ 'IT degrees. 

Examples 

1. Change 5.,,/3 radians to degrees. 

5'IT 180 T' --;- = 300 degrees. 

2. Change 75 degrees to radians. 

75 'IT 5 'IT d" . 180 = 12 ra lans. 

Angles in APL 

The basic unit of angular measurement in APL, as in most computer 
languages, is the radian. In APL, 0 X corresponds to 'IT' X in standard 
mathematical notation. 

Examples 

01 
3.141592654 

02 
6.283185308 

0.5 
1.570296327 

'IT radians. 

2'IT radians. 

'IT /2 radians. 

It might be useful to have a program for changing from degrees to 
radians. 
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Program 12.1 DEGREES 

'i/ RADIANS~ DEGREES ANGLE 
[1] RADIANS ~ ANGLE X 0(1 + 180) 'i/ 

Radians = Angle (in degrees) times 
('IT /ISO). 

Examples 

DEGREES 180 
3.141592654 

DEGREES 45 
. 785148164 

DEGREES 1 
. 01745329252 

ISO degrees = 'IT radians. 

45 degrees = 'IT / 4 radians . 

I degree = 'IT / ISO radians . 

Also, it might be useful to have a program for changing from radians to 
degrees. 

Program 12.2 RADIANS 

'i/ DEGREES~ RADIANS ANGLE 
[1] DEGREES~(180-;-01)XANGLE 'i/ 

Degrees=(ISO/'IT) times Angle (in 
radians) 

Examples 

RADIANS 01 
180 

RADIANS 0(1 -;- 6) 
30 

RADIANS 1 
57.29577951 

'IT radians = ISO degrees. 

'IT / 6 radians = 30 degrees. 

I radian = ISO / 'IT degrees. 

The standard position of an angle 

An angle is said to be in standard position with reference to the coordinate 
axes if its vertex is at the origin and its initial side is along the positive x 
axis. 

Consider the following examples of angles in standard position: 

1. As in Figure 12.4, an angle whose terminal side is in the first quadrant 
when it is placed in standard position is said to be an angle in the first 
quadrant. 
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y 

----------~~~-------x o 

Figure 12.4 '17 /3 radians = 60 degrees in standard position. 

2. Figure 12.5 shows an angle whose terminal side is in the second 
quadrant when it is placed in standard position; this is said to be an 
angle in the second quadrant. 

y 

----------~--~--------x o 

Figure 12.5 5'17 /6 radians = 150 degrees in standard position. 

3. Figure 12.6 shows an angle whose terminal side is in the third quadrant 
when it is placed in standard position; this is said to be an angle in the 
third quadrant. 

y 

----------~--~--------x 

Figure 12.6 -2'17/3 radians = -120 degrees in standard position. 
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4. Figure 12.7 shows an angle whose terminal side is in the fourth quadrant 
when it is placed in standard position; this is said to be an angle in the 
fourth quadrant. 

y 

--------+-~~--------x 

Figure 12.7 5." /3 radians = 300 degrees in standard position. 

EXERCISES 

1. Sketch the following angles in standard position. 
(a) .,,/6 radians = 30 degrees. 
(b) 7.,,/6 radians=210 degrees. 
(c) -." / 3 radians = - 60 degrees. 
(d) - 11 .,,/6 radians = - 330 degrees. 
(e) 5.,,/2 radians =450 degrees. 

2. Change the following from degrees to radians: 
(a) 45 degrees (c) -9 degrees (e) -20 degrees 
(b) 18 degrees (d) 240 degrees 
Check your answers at an APL terminal using the program DEGREES. 

3. Change the following from radians to degrees: 
(a) 3.,,/5 radians (c) 2 radians (e) -1.5 radians 
(b) - 4." /3 radians (d) .,,/12 radians 
Check your answers at an APL terminal using the program RADIANS. 

4. Prove that the length S of an arc of a circle of radius R swept out by an angle of 
(J radians is given by S = R·(J. 

5. Write a program for finding the length S of an arc of a circle of radius R 
subtended by an angle of (J radians. 

12.2 The trigonometric functions 

Let () be an angle in standard position and let P(x,y) be a point on its 
terminal side. Let r=yx2+y2 be the distance from the origin to P. Then, 
the 6 trigonometric functions of () are defined as follows (see Figure 12.8): 

sine 8) = !.... (sin is an abbreviation for "sine") 
r 

cos( 8) = .! (cos is an abbreviation for "cosine") 
r 

335 



12 The trigonometric functions 

P(x,y) 

First quadrant Second quadrant 

P(X,y) P(X,y) 

Third quadrant Fourth quadrant 

Figure 12.8 x, y, r, and 8 in all 4 quadrants. 

y 
tan( (J) = - (tan is an abbreviation for "tangent") 

x 

cot( (J) = ~ (cot is an abbreviation for "cotangent") 
y 

sec( (J) = .!... (sec is an abbreviation for "secant") 
x 

csc( (J) = ..!... (csc is an abbreviation for "cosecant"). 
y 

P(X,y) 

Thus, the 6 trigonometric functions of (J are just all of the possible ratios of 
the variables x, y, and r. 

Examples 

P(3,4) 

Figure 12.9 One possible angle. 
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1. Find the 6 trigonometric functions for the angle 0 in Figure 12.9. 

x = 3, Y = 4 sine 0) = ~ cos( 0) = ~ 
,~ 4 3 

r= V 32 +42 =5 tan(O)="3 cot(O)="4' 

sec( 0 ) = ~ csc( 0 ) = % 

(J 

Figure 12.10 Another possible angle. 

2. Find the 6 trigonometric functions for the angle 0 in Figure 12.10. 

x=-4, y=-3, r=5. 

-3 
sin(O)= 5" 

-4 4 
cot(O)= - =­-3 3 

-4 
cos(O)= 5" 

-5 
sec(O) = -

4 

Some basic trigonometric identities 

-3 3 
tan(O)= - =­-4 4 

An identity is a statement which is true for any values of the variables in 
the domains of the functions involved. The trigonometric functions can be 
related by a huge number of identities. We shall concern ourselves with 
only a few of the most basic identities in this text. The following identities 
are derived immediately from the definitions of the trigonometric func­
tions. 

The reciprocal identities 

sine 0 ) = csc~ 0) 
I 

and csc( 0 ) = sine 0) 

tan(O)= cot~O) and cot(O)= tan1(O) 

1 I 
cos(O)= sec(O) and sec(O)= cos(O)' 
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These are easily derived as follows: 

_1_ = _1_ = ~ =sin(O). 
csc(O) r Iy r 

The others are derived similarly and are left as exercises. 

The quotient identities 

sin( 0) 
tan(O)=-­

cos(O) 

cos(O) 
and cot(O)= sin(O) . 

These are derived as follows: 

sin(O) y I r y 
--=-=-=tan(O). 
cos(O) xlr x 

The identity for cot is derived similarly. 

The Pythagorean identities 

sin2( 0) + cos2( 0) = 1 

tan2(0)+ 1 =sec2(0) 

1 + cot2( 0) = csc2( 0). 

These are derived as follows: 

sin2( 0) + cos2( 0) = ( Y )2 + (~)2 = x 2 + y2 = r2 = 1. r r r2 r2 

Dividing both sides of this identity by cos2(0), one obtains 

sin2( 0) cos2( 0 ) 1 
--- + = --=---
cos2( 0) cos2( 0) cos2( 0 ) 

Using identities above, 

tan2( 0) + 1 = sec2( 0). 

The other Pythagorean identity is derived similarly, and is left as an 
exercise. 

Example 

Suppose we know that sin( 0) = 2 I 5 and that 0 is in the first quadrant. Find 
the other five trigonometric functions of O. 

sin2( 0) +cos2( 0) = ( ~ r +cos2(0) = 1, 

so that 

cos2( 0) = 1 - ( ~ ) = ;~, or cos( 0) = ± vr . 
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But, since 0 is in the first quadrant, 
cos(O)= V2T /5. Now, 

x, y, and r are all positive. So, 

sine 0) 2/5 2 
tan(O) = cos(O) = V2T /5 = V2T 

cos(O) Y21" 
cot( 0) = --= --

sine 0) 2 

sec( 0) = _1_ = 1 = _~_ 
cos( 0) V2T /5 V2T 

115 
csc(O)= sin(O) = 2/5 = 2". 

Signs oj the trigonometric Junctions in the various quadrants 

If we know the signs of sin( 0) and cos(O), then we can use the quotient 
and reciprocal identities to determine the signs of the other four trigono­
metric functions. Let us, therefore, consider the signs of sin(O) and cos(O) 
in the four quadrants. (See Figure 12.8 to help identify the quadrants.) 

Quadrant I. 

Since r is a distance, the distance from the origin to P, then r is always 
positive. In quadrant I, x, y, and r are all positive; so, sin(O) = y / rand 
cos( 0) = x / r are positive. 

Quadrant II. 

In quadrant II, x is negative, while y and r are positive. Thus, sin(O) is 
positive and cos(O) is negative. 

Quadrant III. 

In quadrant III, x andy are negative, while r is positive. Thus, sin(O) = y / r 
and cos( 0) = x / r are both negative. 

Quadrant IV. 

In quadrant IV, x is positive,y is negative, and r is positive. Thus, sin(O) is 
negative and cos(O) is positive. 

Example 

Suppose we know that sin(O)= -3/5 and that 0 is in the third quadrant. 
Find the other 5 trigonometric functions of O. 

( -3 )2 sin2( 0) + cos2( 0) = 5" + cos2( 0) = 1, 

so that 

9 16 4 
cos2(O ) = 1 - 25 = 25 or cos( 0 ) = ± "5 . 

However, since 0 is in the third quadrant, we know that cos(O) is negative. 
Thus, cos(O) = -4/5. Now, using the quotient and reciprocal identities, we 
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get 

sin(O) 3 
tan(O)= cos(O) ="4 

I -5 
sec( 0) = --= -

cos(O) 4 

cos(O) 4 
cot(O) = --=-

sin(O) 3 

I -5 
csc(O)=--=-. 

sin(O) 3 

Evaluation of some trigonometric functions of some special angles 

We now consider some techniques for evaluating some trigonometric 
functions of some special angles for which it is quite easy to compute the 
trigonometric functions. 

Example 1 

Evaluate sin (30°). 

x=.J3 
y=1 
r= 2 

p(.,f3,I) 

Figure 12.11 Example l. 

As shown in Figure 12.Il, first drop a perpendicular from the point P 
on the terminal side of the 3D-degree angle to the x axis, forming a right 
triangle with angles of 30, 60, and 90 degrees. Now, by an important 
theorem in geometry, in a 30, 60, 9O-degree triangle, the length of the 
hypoteneuse is twice the length of the side opposite the 30-degree angle. 
Let the length of the side opposite the 30-degree angle be 1. Then, the 
length of the hypotheneuse is 2. Using the Pythagorean theorem, the length 
of the side opposite the 60-degree angle must be v'3 . Thus, in the diagram 
above, x = v'3 ,y = I, r = 2. Therefore, we get 

Example 2 

Evaluate tan(45°). 

sin(300) = ~ = t . 

Form a right triangle as in the previous example. Since this triangle has 
two 45-degree angles, it is an isosceles triangle. Let the lengths of the two 
equal sides be 1. By the Pythagorean theorem, the length of the 
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P(x, y) 

Figure 12.12 Example 2. 

hypoteneuse will be V2 . So, x = 1, Y = 1, and r= V2 . Thus (see Figure 
12.12), 

Example 3 

Evaluate sin(900). 

tan(45°)= ~ = + = 1. 

The point (0, 1) is On the terminal side of the 90-degree angle (see Figure 
12.13). The distance from the origin to this point is 1. Thus, x=O, y = 1, 
r= I, and 

Example 4 

Evaluate cos(1200). 

x=O 
y = 1 P(O, I) 
r= 1 

90° 

o 

Figure 12.13 Example 3. 

As before, drop a perpendicular from the point P on the terminal side 
of the l2O-degree angle to the x axis. Since there are 180 degrees in a 
straight angle, then the angle between the terminal side of the 120-degree 
angle and the x axis is 60 degrees. Since there are i 80 degrees in a triangle, 
the other angle in the triangle formed must be 30 degrees. Using the 
theorem about a 30, 60, 9O-degree triangle, the length of the hypoteneuse 
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must be twice the length of the side opposite the 30-degree angle. Let the 
length of the side opposite the 30-degree angle be 1. Then, the length of the 
hypoteneuse is 2, and by the Pythagorean theorem the length of the side 
opposite the 60-degree angle is V3 . However, since our angle is in the 
second quadrant, x must be negative. Thus, x=-l, y=V3, r=2, (see 
Figure 12.14) and 

Example 5 

Evaluate sec(2100). 

P(x. y) 

Figure 12.14 Example 4. 

As before, form a right triangle, resulting in a 30, 60, 90-degree triangle. 
Since the 21O-degree angle is in the third quadrant, then x andy must both 
be negative. Thus, as in Figure 12.15, x = -V3 ,y = -1, r = 2, and 

Example 6 

Evaluate cos(l800). 

sec(2100) = !.- = _2_ = ~. 
x -V3 V3 

P(x. y) x=-.Jj 
y=-i 
7=2 

Figure 12.15 Example 5. 

A point on the terminal side of the 180-degree angle is pel, 0). The 
distance from this point to the origin is 1. Thus, x = -1, y = 0, and r = 1 (see 
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Figure 12.16). So, 

P(-I,O) 
x=-l 
y=O 
r= 1 

Figure 12.16 Example 6. 

cos(lSOO) = ~ =-1. 
r 

In the next section, we shall consider using APL to evaluate trigonomet­
ric functions of angles. 

EXERCISES 

1. Prove the reciprocal and Pythagorean identities not proved in the text. 

2. Find the 6 trigonometric functions for the angle whose terminal side passes 
through the point PC 12,5). 

3. Find the 6 trigonometric functions for the angle whose terminal side passes 
through the point P (8, - 6). 

4. Suppose that oos(O) = -4/5 and that 0 is in the second quadrant. Find the 
other 5 trigonometric functions of O. 

5. Suppose that tan(O) =4/3 and that 0 is in the third quadrant. Find the other 5 
trigonometric functions of O. 

6. Evaluate the 6 trigonometric functions of 60 degrees. 

7. Evaluate the 6 trigonometric functions of 0 degrees. 

8. Evaluate the 6 trigonometric functions of 45 degrees. 

9. Evaluate the 6 trigonometric functions of 150 degrees. 

10. Evaluate the 6 trigonometric functions of 225 degrees. 

11. Write a program SINE for evaluating the sine of an angle whose terminal side 
passes through the point (x,y). 

12. Write a program COSINE for evaluating the cosine of an angle whose terminal 
side passes through the point (x,y). 

13. Using the programs SINE and COSINE, write a program TANGENT for 
evaluating the tangent of an angle whose terminal side passes through the point 
(x,y). 
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12 The trigonometric functions 

14. Repeat Exercise 13 for COTANGENT, SECANT, and COSECANT. 

15. Use the programs you wrote in the previous exercises to do Exercises 2 and 3. 

12.3 The trigonometric functions in APL 

Recall that when the large circle 0 is used monadically in APL, the result 
is ." times the number on the right. Thus, 

01 
3.141592654 

When used dyadically, the results are as follows: I 

1 o ANGLE yields sin{ANGLE), where ANGLE is in radians. 

20ANGLE yields cos (ANGLE) 

.5 

Examples 

10(01 +6) 

20(01 +6) 
.8660254038 

sin(." / 6) = sin(300). 

cos(." / 6) = cos(300). 

Let us use the large circle and the quotient and reciprocal identities to 
write programs for the six trigonometric functions of an angle O. 

Program 12.3 SIN 

V T +- SIN THETA 
[1] T+-10THETA V 

Program 12.4 COS 

VT+-COS THETA 

[1] T+-20THETA V 

Prvgram 12.5 TAN 

VT+- TAN THETA 

Since 10THETA yields sin(THETA). 

Since 20THETA yields cos(THETA). 

[1] T+-(SIN THETA) + (COS THETA) V 

Since tan(O)=sin(O)/cos(O). 

IOther results of the dyadic use of the large circle include: OOX yields (1- X.2).S, 30X 
yields tan X, 40 X yields (1 + X. 2).5 and (for those who know of the "hyperbolic 
functions") SOX yields sinh X, 60X yields cosh X, and 70X yields tanh X. Functions 
involving 0 are called "circular functions." 
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Program 12.6 COT 

VT~COT THETA 
[1] T~(COS THETA) + (SIN THETA) V 

Program 12.7 SEC 

VT~SEC THETA 
[1] T~1 + (COS THETA) V 

Program 12.8 CSC 

VT~CSC THETA 
[1] T~1 + (SIN THETA) V 

Examples 

Since cot(O) = cos(O)/sin(O). 

Since sec(O)= l/cos(O). 

Since csc(O) = l/sin(O). 

When using these programs, the angle THETA must be in radians. 

SIN 1 
0.8414709848 

COSO 1 +3 
. 5 

TAN 2 
- 2.185039863 

Sine of 1 radian. 

Cosine of 7T /3 . 

Tangent of 2 radians. 

If the angle is in degrees, we can use the program DEGREES to change 
it to radians. Then, evaluate the trig function of the angle. This can be 
done in one step as in the following examples: 

SIN DEGREES 30 sin(300). 
.5 

COS DEGREES 120 cos(l200). 
-.5 

TAN DEGREES 72 tan(72 0). 
3.077683537 

SEC DEGREES -60 sec( -60°). 
2 

COT DEGREES 200 cot(2000). 
2.747477419 

CSC DEGREES -120 csc(-1200). 
-1.154700538 

TAN DEGREES 90 tan(9QO). 
8.002733596 E13 
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12 The trigonometric functions 

Actually, tan(900) doesn't exist, since tan(900) is the quotient of sin(900) 
and cos(900), and cos(900) = 0, so that tan(900) involves division by O. The 
large answer above is a computer estimate of tan(900). It is essentially 
infinity. 

EXERCISES 

1. Use the programs in this section to evaluate: 
(a) sin(1.5 radians) (d) sec(5'IT /3 radians) 
(b) tan('IT radians) (e) cot('IT/12 radians) 
(c) cosC2 radians) (f) csc(O radians) 

2. Use the programs in this section and the program DEGREES to evaluate the 
following: 
(a) tan(75°) 
(b) sin(l05°) 
(c) cosC600) 

(d) sec(70.8°) 
(e) cscC1500) 
(f) cot( 112.5 0) 

3. There are 60 minutes (60') in one degree. An angle is often given in degrees and 
minutes, as 30° 15'. In order to use the program DEGREES, it is necessary to 
change this angle to 30.25° by converting the minutes to a fraction of a degree 
and expressing it as a decimal. Compute the following using the appropriate 
programs: 
(a) tan(30° 15') 
(b) sin(75°6') 

(c) sec(l12° 12') 
(d) cosC25°10') 

4. If (J=25 degrees, test the validity of the following trigonometric identities: 
(a) sin(2(J) = 2· sin«(J)· cos«(J) 
(b) cos(2(J) = cos2«(J) - sin2( (J) 
(c) tan(2(J) = 2· tan«(J)/(1 - tan2«(J» 

5. If a = 25 degrees and f3 = 35 degrees, test the validity of the following identities: 
(a) sin(a + f3)= sin(a)· cos( f3)+ cos(a)' sin( f3) 
(b) cos(a + f3) = cos(a)' cos( f3)- sin(a)· sin( f3) 
(c) tan(a + f3) = (tan(a) + tan(f3»/(I- tan(a)' tan( f3» 

12.4 Graphs of the trigonometric functions 

A functiony = F(x) is periodic if there exists a positive constant p such that 
F(x + p) = F(x), for all x in the domain of F. The smallest such constant p 
is called the period of F. 

Now, by the two identities in Exercise 5 of the previous exercise set, 

sin(x + 2'7T) = sin(x),cos(2'7T) + cos(x)· sin(2'7T) 

= sin(x)·l + cos(x)·O= sin(x) 

cos( x + 2'7T) = cos( x)· cos(2'7T) - sine x)· sin(2'7T) 

= cos(x)·l- sin(x )·O=cos(x). 

Thus, sin(x) and cos(x) are periodic. Their period is 2'7T. 
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Since sec(x) and csc(x) are reciprocals of cos(x) and sin(x), then these 
two functions are also periodic with period 217. Thus, the graphs of these 
four functions repeat themselves every interval of length 217. 

Also, 
sin(x + 17) 

tan( x + 17) = ( ) 
cos X+17 

sin( x)· cos( 17) + cos( x)· sin( 17) 

cos( x)· cos( 17) - sin( x)· sin( 17) 

sin(x)- -1 +cos(x)·O sin(x) 
= . = -- =tan(x). 

cos(x)· -J-sm(x)·O cos(x) 

Thus, tan(x) is periodic with period 17, and its graph repeats itself every 
interval of length 17. Since cot(x) is just the reciprocal of tan(x), then cot(x) 
is also periodic with period 17. 

Because sin(x) is periodic with period 217, we have only to graph it over 
the interval 0.;;; x .;;; 217 and then recopy the graph over all other intervals of 
length 217. Consider the following program TRIGPAIRS which prints out a 
table of ordered pairs to be used in graphing y = sin(x). 

Program 12.9 TRIGPAIRS 

'V A TRIGPAIRS B; X; Y; Z 
[1] X~A 

[2] Y~SIN X 
[3] Z ~ RADIANS X 
[4] Z;' '; X;' '; Y 
[5] X~X+01 + 12 (Add 17/12= 15 degrees each time.) 
[6] ~(X';;; B)/2 

'V 

Graph of y = sinx 

Let us use TRIGPAIRS to generate a table of pairs (x,y) to be used in 
graphing y = sin(x). 

o TRIGPAIRS 02 Pairs from x=O to X=217. 

000 
15 .2617993878 
30 .5235997756 
45 .7853981634 
60 1 .047197551 
75 1.308996939 
90 1.50796327 
105 1.832595715 
120 2.094395102 

1 

.2588190451 

.5 

.7071067812 

.8660254038 

.9659258263 

.9659258263 

.8660254038 

When graphing a trig function, the 
angle must be in radians. We have 
included in this program a column 
for the angles in degrees also (the 
first column). 
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135 2.35619449 
150 2.617993878 
165 2.879793266 
180 3.141592654 
195 3.403392041 
210 3.665191429 
225 3.926990817 
240 4.188790205 
255 4.450589593 
270 4.71238898 
285 4.974188368 
300 5.235987756 
315 5.497787144 
330 5.759586532 
345 6.021385919 
360 6.283185307 

x (in x (in 
degrees) radians) 

.7071067812 

.5 

.2588190451 
5.341316986 E-14 
- .2588190451 
- .5 
-.7071067812 
- .8660254038 
- .965928263 
-1 
- .9659258263 
- .8660254038 
- .7071067812 
- .5 
- .2588190451 
-2.489348869 E-13 

y values 

Using this table, we can plot the points (x,y) obtaining (in Figure 12.17) 
the graph of y=sin(x). From the graph and the table, we can see that the 
range of y = sin( x) is - 1 ~ x ~ I. The domain is all the real angles. 

Figure 12.17 Graph of y = sin( x). 

Graph of y = tan( x) 

If we alter line 2 of TRIGPAIRS, we can use it to generate a table of pairs 
for y = tan(x). 

V TRIGPAIRS [2] 
[2] Y~TANXV 

o TRIGPAIRS 02 
000 
15 .2617993878 .2679491924 
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30 .5235987756 .5773502692 
45 .7853981634 1 
60 1.047197551 1.732050808 
75 1.308996939 3.732050808 
90 1.570796327 5.101739508 E13 

105 1.832595715 -3.732050808 Actually tan(900) and tan(2700) 
120 2.094395102 -1.732050808 do not exist, since tan(900) = 
135 2.35619449 -1 sin(900)/cos(900)= 1/0. 
150 2.617993878 - .5773502692 
165 2.879793266 - .2679491924 
180 3.141592654 -5.341316986E-14 
195 3.403392041 0.2679491924 
210 3.665191429 0.5773502692 
225 3.926990817 1 
240 4.188790205 1.732050808 
255 4.450589593 3.732050808 
270 4.71238898 7.700734292E12 
285 4.974188368 -3.732050808 
300 5.235987756 -1.732050808 
315 5.497787144 -1 
330 5.759586532 - .5773502692 
345 6.021385919 - .2679491924 
360 6.283185307 -2.489348869 E -13 

Using these pairs, the graph of y=tan(x) is as shown in Figure 12.18. 
From this graph and table, we can see that the range of y = tan(x) is all 
real numbers. 

Figure 12.18 Graph ofy=tan(x). 

349 



12 The trigonometric functions 

Graph of y = sec( x) 

Again, we can alter TRIGPAIRS to fit this new function. 

V' TRIGPAIRS [2] 
[2] Y~SEC X V' 

0 0 
15 
30 
45 
60 
75 
90 
105 
120 
135 
150 
165 
180 
195 
210 
225 
240 
255 
270 
285 

350 

o TRIGPAIRS 02 
1 

.2617993878 

.5235987756 

.7853981634 
1.047197551 
1.308996939 
1.570796327 
1.832595715 
2.094395102 
2.35619449 
2.617993878 
2.879793266 
3.141592654 
3.403392041 
3.665191429 
3.926990817 
4.18870205 
4.450589593 
4.71238898 
4.974188368 

rr 
"2 

1.03527618 
1 .154700538 
1.414213562 
2 
3.863703305 
5.101739508 E13 
-3.863703305 
-2 

-1.414213562 
-1.154700538 
-1.03527618 
-1 
-1.03527618 
-1 .154700538 
-1.414213562 

-2 
-3.863703305 
-7. 700734292 E 12 
3.863703305 

o 
1 

Actually, sec(900) doesn't exist, 
since sec(900) = 1/ cos(900) = 
1/0. 

2rr 5rr 
2 

Figure 12.19 Graph of y = sec(x). 



300 5.235987756 2 
315 5.497787144 1.414213562 
330 5.759586532 1.154700538 
345 6.021385919 1.03527618 
360 6.283185307 1 

12.5 The inverse trigonometric functions 

Thus, the graph of y = sec(x) looks as shown in Figure 12.19. From the 
graph and table, we see that the range of y = sec( x) includes all y <; -lor 
y:>1. 

EXERCISES 

Use the program TRIGPAIRS to generate a table for the other three trigonometric 
functions. Then, graph them and determine their ranges. 

12.5 The inverse trigonometric functions 

Two functions which mean the same except that the roles of the indepen­
dent and dependent variables are reversed are called inverse functions. In 
Chapter 7, we saw that the logarithmic function with base b is the inverse 
function for the exponential function with base b. The trigonometric 
functions also have inverses. 

The inverse sine function 

y=arcsin(x) (read as "y is the angle whose sine is x") means the same as 
x=sin(y). (Some texts denote this function by y=sin- 1(x).) However, 
there are many y's corresponding to each x. For example, if x= 1/2, then 
we could have y = 'IT /6 or y = 5 'IT /6 or y = -7 'IT /6 or many other values. In 
order to be a function, there must be a unique value for y corresponding to 
each value of x in the domain. Thus, as it now stands,y =arcsin(x) is not a 
function. However, if the values of arcsin(x) are restricted to the range 
( - 'IT /2) <; y <; ('IT /2), then there will be a unique value of y corresponding 
to each x in the domain -1 <; x <; 1. Thus, the complete definition of the 
inverse sine function is 

y = arc sin( x) means the same as x = sin(y), 

where -; 'IT <; arcsinx <; I or -90 degrees <; arc sin x <; 90 degrees. 

[Note: The values of y in this restricted range are often referred to as the 
principal values of the arc sin function.] 

Example 

Evaluate arcsin(-1/2). 
y=arcsin(-1/2) means the same as -1/2=sin(y). There are many y's 

with this sine. However, the only one in the restricted range is y = -30 
degrees or y = - 'IT /6. 
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The inverse sine function is also available in APL. Arcsin(x) is given by 
-10 X in APL. For example, to find arc sin(-l /2), we use 

-10- .5 
- 0.52355987756 The answer is given in radians. 

RADIANS C 1 0- .5) Changing the answer to degrees. 

It will be convenient for us in the next two sections to have a program 
for the inverse sine function which gives the answer in degrees. 

Program 12.10 ARCSIN 

yo Y +- ARCSIN X 

[1] Y+- -10X 

[2] Y +- RADIANS Y 
yo 

60 

Examples 

ARCSIN -.5 

ARCSIN (3 * 5) + 2 

The inverse cosine function 

The APL arc sine function. 

Changing from radians to degrees. 

-30 degrees. 

arcsin(Y3 /2) 
60 degrees. 

y =arccos(x) means the same as x=cos(y), where 0..; y"; 'IT, or 0 degrees 
..; y ..; 180 degrees. Notice that the principal values for the inverse cosine 
function are different from those for the inverse sine function. The reason 
for this is that cosine is positive throughout the interval (- 'IT /2) ..; y ..; 
('IT /2). Thus, in this interval, there would not be a unique value of y for 
every x. For example, if x = 1/2, then there are two y's in this interval such 
that cos(y) = 1/2, namely y = - 'IT /3 and y = 'IT /3. However, in the interval 
0..; y..; 'IT, there does exist a unique y for each x in the domain. 

We will find it valuable to have a program for the inverse cosine 
function which gives the answer in degrees. 

Program 12.11 ARCCOS 

yo Y +- ARCCOS X 
[1] Y+--20X 
[2] Y +- RADIANS Y 

yo 

Examples 

ARCCOS -.5 
120 
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ARCCOS (3 •. 5) + 2 
30 

The inverse tangent function 

12.5 The inverse trigonometric functions 

arc cos(Y3 /2). 
30 degrees. 

y = arc tan( x) means the same as x = tan(y), where ( - 'TT /2) <y < ('TT /2), or 
-90 degrees <y < 90 degrees. Notice that -90 degrees and 90 degrees are 
not included in the range above. This is because tan(y) is not defined for 
these values, since tan(y)=sin(y)/cos(y) and cos(y) is 0 for -90 degrees 
and 90 degrees. 

Program 12.12 ARCTAN 

V Y+-ARCTAN X 
[1] Y+--30X 
[2] Y +- RADIANS Y 

V 

60 

Examples 

ARCTAN -1 

ARCTAN 3 •. 5 

-45 degrees. 

arctanY3. 
60 degrees. 

We will have no need for the inverse trig functions for the other three 
trig functions in solving triangles. Therefore, we will omit them. However, 
if one needs to find the value of one of these inverse trig functions, he can 
easily convert it to a problem involving one of the above inverse trig 
functions. For example, consider: 

1. Find arc sec(2). 

60 

If y = arc sec(2), then sec(y) = 2. Since sec(y) = 1/ cos(y), then cos(y) 
= 1/2. Thus, we can find arccos(l/2). 

ARCCOS .5 

Therefore, arcsec(2) is 60 degrees or 'TT /3 radians. 
2. Find arccsc(2). 

30 

If y = arc csc(2), then csc(y) = 2. Since csc(y) = 1/ sin(y), then sin(y) 
= 1/2. Thus, we can find arc sin(l /2). 

ARCSIN .5 

Therefore, arccsc(2) is 30 degrees or 'TT /6 radians? 

2The other dyadic uses of the large circle, 0, with negative left arguments are: - 40X yields 
C1 + X.2) •. 5, -50X yields arcsinh(X), -60X yields arccosh(X), and -70X yields 
arctanh(X), for those who know about the hyperbolic functions. 
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12 The trigonometric functions 

EXERCISES 

1. Evaluate the following: 
(a) arcsin(Y2 /2) 
(b) arc cos(O) 
(c) arccos(- Y2 /2) 
(d) arctan(V3 /3) 

2. Evaluate the following: 
(a) cos(arccos(I» 
(b) sin(arcsin(-1/2» 
(c) cot(arccos(V3 /2» 
(d) tan(arccosC3/5» 

(e) arcsin(O.6293) 
(f) arccos(O.8290) 
(g) arc tanC 1.2) 
(h) arc csc(Y2 ) 

(e) sec( arc tan{l » 
(f) arcsin(sin(5"1T /6» 
(g) arcsin(cos(2"1T /3» 
(h) arccos(tan(45°» 

3. Use the fact that cos(y) = l/sec(y) to write a program for finding ARCSEC X 

12.6 Solving right triangles 

To solve a triangle means to find the values of any unknown angles and 
the lengths of any unknown sides. In a triangle with vertices A, B, and C, 
we shall denote the angles at A, B, and C respectively by the Greek letters 
a, {3, and y. The sides opposite these vertices will be denoted by the letters 
a, b, and c respectively. In a right triangle, we shall put the right angle at 
the vertex C. We can always put a right triangle ABC so that either a or {3 
is in standard position, as in Figure 12.20. Therefore, we can express the 
trig functions of a and {3 in terms of the side adjacent to them, the side 
opposite from them, and the hypoteneuse (the side opposite the right angle 
y). This is done as follows: In the triangle in Figure 12.20b, 

. () a Opposite side 
sin a = - = -::-::----

C Hypotenuse 
c Hypotenuse 

csc( a) = -;; = Opposite side 

() b Adjacent side 
cos a = - = -=:=-----

C Hypotenuse 
c Hypotenuse 

sec( a) = b = Adjacent side 

() a Opposite side 
tan a = - = ..,...:.,.:.------,:-:-

b Adjacent side 
cot( a) = !!. = Adjac~nt s~de . 

a OpposIte side 

In the triangle in Figure 12.20c, 

sin( ) = !!. = Opposite side 
{3 c Hypotenuse 

c Hypotenuse 
csc( {3) = b = Opposite side 

cos( ) = !!.. = Adjacent side 
{3 c Hypotenuse 

c Hypotenuse 
sec( {3 ) = -;; = Adjacent side 

( {3 ) b Opposite side 
tan = - = ------,-

a Adjacent side 
a Adjacent side 

cot( {3) = b = Opposite side· 

In either case, the relationships between the trig functions, the sides 
adjacent to and opposite from the angle, and the hypotenuse remain the 
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12.6 Solving right triangles 

y y 

B A 

~
A 

B a 
{3 b 

a 'Y 
C 

(a) (b) (c) 

Figure 12.20 Three ways of orienting a right triangle. 

same. Using these expressions for the trigonometric functions, we can now 
solve right triangles. 

Example 1 

A flagpole stands on ground level. At a point 130 feet from the base of the 
flagpole, it is found that the angle of elevation of the imaginary line from 
the ground to the top of the flagpole is 35 degrees (Figure 12.21). Find the 
height of the flagpole. 

tan(35°)= Opposite side = ~ or h= 130.tan(350 ). 

Adjacent side 130 ' 

Using our programs, we get 

130x TAN DEGREES 35 
91.02697997 The height of the flagpole is about 91 

feet. 

130 feet 
Figure 12.21 Flagpole of Example I 

Example 2 

A ladder 24 feet long is placed against a vertical wall. The foot of the 
ladder is 8 feet from the base of the wall (see Figure 12.22). 

(a) Find the angle between the foot of the ladder and the ground. 

cos{a) = Adjacent side = ~ = 1. 
Hypotenuse 24 3' soa=arccos{I/3). 

ARCCOS 1 +3 
70.52877937 The angle is about 70.5 degrees. 
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12 The trigonometric functions 

h 

8 feet 

Figure 12.22 Ladder of Example 2. 

(b) Find the height of the ladder up the wall. 

. () Opposite side h 
sm a = = - or h=24·sin{a). 

Hypotenuse 24 ' 

24 X SIN DEGREES 70.52877937 
22.627417 The ladder is 22.6 feet up the wall. 

Example 3 

A roof rises 5 inches for each foot measured horizontally. 

(a) Find the angle the roof makes with the horizontal. 

In the small triangle at the comer of the roof above (see Figure 12.23), 

Opposite side 5 ( 5 ) 
tan{a) = Ad· ·d = -12' thus, a = arctan -12 . 

~acent SI e 

ARCTAN 5+12 
22.61986495 The angle is about 22.6 degrees. 

~ 
12" 

Figure 12.23 Roof of Example 3. 

(b) Find the angle at the top of the roof. 
Since there are 180 degrees in a triangle, then {3= 180-2a. 

180 - 2 X ARCTAN 5 + 12 
134.76027010 

The angle at the top is almost 135 degrees. 
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12.6 Solving right triangles 

Example 4 

To find the distance across a lake, two trees marked P and Q are located 
on opposite banks of the lake near the shore. At P, a line is laid off at a 
right angle to the line PQ and continued a distance of 500 feet to a point S 
along the bank containing the tree marked P. Thus, we have a right 
triangle PSQ. The angle at S is measured and found to be 42 degrees. Find 
the distance across the lake (Figure 12.24). 

( 0) Opposite side PQ 
tan 42 = = - or PQ=500Xtan(42°). 

Adjacent side 500 ' 

500x TAN DEGREES 42 
450.2020221 

Thus, the distance across the lake is about 450 feet. 

S 500 ft 

Figure 12.24 Lake of Example 4. 

EXERCISES 

1. In the triangle below, if a = 10, and c = 12, find b and the angles. 

B 

~. 
Abe 

2. In the triangle above, if a = 45, and the angle f3 = 36 degrees, find the values of b, 
c, and the angle a. 

3. A roof rises 3 inches for each foot measured horizontally. Find the angle the roof 
makes with the horizontal. 

4. A kite is held tightly by a string 1200 feet long. The string makes an angle of 52 
degrees with the ground. How high up is the kite? 

S. From a point 40 feet high on a building, a line is stretched to the top of a pole 
60 feet high. The horizontal distance from the point on the building to the pole 
is 75 feet. Find the angle this line makes with the horizontal. 
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12 The trigonometric functions 

6. A tree casts a shadow 75 feet long. The angle between the ground and the 
imaginary line connecting the tip of the shadow and the top of the tree is 41 
degrees. Find the height of the tree. 

7. The top of a pole on one side of a stream is 25 feet above the eye of an observer. 
The angle of elevation from the observer's eye to the top of the pole is 6 degrees. 
How wide is the stream? 

8. In an isosceles triangle, the two equal sides are each 35 feet long, and the equal 
angles at the base are both 54 degrees. Find the length of the base, the length of 
the altitude, and the area of the triangle. 

12.7 Solving oblique triangles 

An oblique triangle is a triangle with no right angle. Given three parts of an 
oblique triangle, at least one of which is a side, we can determine the 
remaining angles and sides. To do this, we will use either the Law of sines 
or the Law of cosines or both. 

The Law of sines 

Let ABC be any triangle, such as in Figure 12.25. Then the Law of sines 
says 

c 
I 
I 

hI 
I 

a b c 
-sin-{ a-) = sine P) = sine y) . 

h ~ =Q~_Q ___ --:_~ 
D A c B 

Figure 12.25 An oblique triangle. 

The Law of sines can be derived as follows: Drop a perpendicular from the 
vertex C to the side AB, intersecting it at the point D. Then, in the triangle 
BDC, sin( P) = h / a, or h = a' sin( p). 

In triangle ADC, 

So, h = b· sin(a). 
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12.7 Solving oblique triangles 

Setting these two values of h equal, we get 

h=a.sin(f3)=b.sin(a) or _a_ = b 
, sin( a) sin( f3) 

Similarly, by dropping perpendiculars to the other sides of the triangle, it 
can be shown that 

a c --=--
sin( a) sin( 'I) 

and b c 
sin( f3) = sin( 'I) . 

Example 1 

In the triangle in Figure 12.26, a = 43, a = 54 degrees, and f3 = 66 degrees. 
Solve for 'I, b, and c. 

Since there are 180 degrees in a triangle, 

'1= 180-(54+66) =60 degrees. 

c 

A ...... ------"'O"'-....... B 
c 

Figure 12.26 Triangle of Example 1. 

By the Law of sines, 

a b -- = --"----
sin( a) sin( f3 ) 

or 43 b 

43 x (SIN DEGREES 66) + (SIN DEGREES 54) 
48.55578431 

So, b = 48.56, approximately. 
Also, by the Law of sines, 

a c 43 c --=-- or 
sin( a) sin( 'I) 

43 x (SIN DEGREES 60) + (SIN DEGREES 54) 
58 

So, c=58. 
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12 The trigonometric functions 

The Law oj cosines 

Let ABC be any triangle, as in Figure 12.25. Then, the Law of cosines says 

a2 = b2 + c2 - 2 ·b·c·cos( a) 

b2 = a2 + c2 - 2 ·a·c· cos( (3) 

c2 = a2 + b2 - 2 ·a·b· cos( 'Y). 

The Law of cosines is derived as follows: Drop a perpendicular from 
the vertex C to the side AB intersecting it at the point D, as in Figure 
12.25. Then, in the triangle ADC, cos(7T-a)=DA/b. Also, 

cos( 7T- a) =cos( 7T). cos(a) + sine 7T)·sin( a) = -I·cos( a) +0· sine a) 

DA 
= -cos(a)= b' so that DA = -b·cos(a). 

Now, in triangle BDC, DB=DA+AB=c-b·cos(a). Also, in triangle 
ADC, sin(7T-a)=h/b. But, 

sine 7T - a) = sine 7T). cos( a) - cos( 7T). sine a) =O·cos(a) - -1· sine a) = sina, 

so that h=b·sin(a). 
Now, using the pythagorean theorem in the triangle BDC, we get 

a2= h2+ DB2= (b·sin(a))2 + (c- b·cos(a)f 

= b2. sin2( a) + c2- 2 ·b·c·cos(a) + b2. cos2( a) 

= b2. (sin2( a) +cos2( a)) + c2 - 2·b·c· cos(a) 

= b2+ c2 -2·b·c·cos(a). 

The other relationships in the Law of cosines are derived similarly. 
[Note: If the triangle is a right triangle, with a the right angle, cos(a)=O 
and the Pythagorean theorem is the result of the Law of cosines.] 

Example 2 

In Figure 12.27, let a =6, b =3, and c =4. Find the angles a, {3, and 'Y. 
By the Law of cosines, a2 = b2+ c2 -2·b·c·cos(a), or 36=9+ 16-24· 

cos(a), or cosa = -11/24. Thus, a is 

ARCCOS -11 +24 
117.2796127 a = 117.3 degrees approximately. 

B 

~ 
Abe 

Figure 12.27 Triangle of Example 2. 
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12.7 Solving oblique triangles 

Also, by the Law of cosines, c2 =a2 +b2 -2·a·b·cos(y), or 16=36+9-
36·cos(y), or cos(y) = 29/36. Thus, y is 

ARCCOS 29 + 36 
36.33605751 y =36.3 degrees, approximately. 

Finally, since there are 180 degrees in a triangle, the remaining angle is 
f3 = 180 - (117.3 + 36.3) = 26.4 degrees. 

Example 3 

To find the distance across a lake from a point A on one shore to a point B 
on the other shore, a line A C is laid out along the shore containing the 
point A. The distance from A to C is 80 feet. The angle 0: is measured and 
found to be 70 degrees. The angle y is found to be 45 degrees. Find the 
distance from A to B. 

First, f3 = 180- (0: + y) = 180- (70+45) = 65 degrees. From Figure 12.28, 
we need to find c. By the Law of sines, 

__ b_ = _c_ or 80 
sin( f3 ) sin( y) sin( 65 0 ) 

80 X (SIN DEGREES 45) + (SIN DEGREES 65) 
62.4164807 

The distance from A to B is about 62.4 feet. 

C __ --.....;....---,A 

B 
Figure 12.28 Illustration for Example 3. 

Example 4 

A playground slide is 20 feet long. A ladder 18 feet long reaches from 
behind the slide to the top. The angle between the ladder and slide is 105 
degrees. Find the distance from the foot of the slide to the foot of the 
ladder. 

c 

~ 
A c B 

Figure 12.29 Illustration for Example 4. 
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12 The trigonometric functions 

By the Law of cosines, 

So, in APL, c is 

c2 = a2 + b2 -2·a·b·cos(y) 

= 324+4()()-720·cos(105°) 

= 724-720· cos(105 0). 

(724 - 720 X COS DEGREES 105) * .5 
30.17200213 

Thus, the distance from the foot of the slide to the foot of the ladder is 
about 30 feet. 

EXERCISES 

I. If a= 10, a=45 degrees, {3=30 degrees, find b, c, and y. 

2. If a=70, b=80, a=50 degrees, find {3, y, and c. 

3. If a=8, b= 10, c=6, find a, {3, and y. 

4. If a=3, b=2, y=60 degrees, find c, a, and {3. 

5. If b=5, c=9, a=62 degrees, find a, {3, and y. 

6. A playground slide is 20 feet long and makes an angle of 55 degrees with the 
horizontal. A ladder 18 feet long meets the slide at its top. Find the angle the 
ladder makes with the horizontal. 

7. Two straight roads intersect at a point P and make an angle of 35 degrees with 
each other. On one road, a house is 1250 yards from the point P. On the other 
road, a house is 1680 yards from the point P. Find the distance between the 
houses. 

8. The area of any triangle is given by A = tb·h, where b is the length of the base 
and h is the height. Prove that the area is also given by A = tb·c·sin(a). 

A~~--~------~~C 

9. Write a program for the area formula in Exercise 8. 

10. Find the area of the triangle with sides of lengths a= 15, b= 12, and c=23. 
(Use your program you wrote for Exercise 9.) 
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Appendix 

A.O Using APL on a computer terminal 

APL is an interactive computer language in which the user communicates 
with the computer via an electronic typewriter (called a terminal), a 
telephone, and an acoustic coupler (a device which holds the telephone 
handset and is the link between the terminal, the telephone, and the 
computer). The exact procedure for establishing communication with the 
computer varies from installation to installation. The reader should check 
with the computer center for the procedure appropriate for his particular 
institution. The keyboard for a standard APL terminal is shown in Figure 
A.I. 

To begin with, it is necessary to establish a telephone connection from 
the terminal to the computer. First, tum on the coupler and the terminal. 
Also press the key marked COMM (for communicate) on the terminal. 
(COMM is not shown in the picture of the APL keyboard above.) Then, 
dial the telephone number for the computer. When you hear a high­
pitched sound, this means that the computer has been reached. Place the 
telephone handset in the acoustic coupler with the cord to the back of the 
coupler. Usually, at most computer installations, the computer will now 
respond with an opening message such as the one described beiow. (At 
some installations, the user must make some initial response by typing a 
character or sequence of characters followed by pressing the RETURN 
key.) 

75/08/11. 10.15.05. The time and date. 

USER NUMBER: 

The user then types in his user number. Then, he presses the RETURN key. 
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A.I Introduction to APL 

For example, 

USER NUMBER: AOOOOOO 

The computer will then ask for a password. If the user has a password, he 
now enters it. If not, he merely presses the RETURN key. The computer 
then prints out a message such as 

TERMINAL 22, COR 
RECOVER/ SYSTEM: 

The user must now tell the computer the computer language he wishes to 
use. Thus, typically, he would enter APL: 

RECOVER/SYSTEM:APL 

Then, he presses RETURN again, and the computer responds with a 
message such as 

CLEARWS 

The message CLEARWS indicates that the user has begun with a clear 
active workspace. He can now begin to type APL expressions. However, if 
there is a workspace which has been previously SA VED, 1 and which the 
user wishes to have replace the CLEARWS as his active workspace, he then 
types 

) LOAD MYWORK Assuming the name of the workspace 
is MYWORK. 

The computer will then respond with a message such as 

SAVED 75/1/08 02.20.03. Indicating when this workspace was 
last saved. 

The user can now begin entering APL expressions and use any of the 
variables or programs previously stored in the workspace MYWORK. 

The rest of this appendix is intended to aid the beginning student in 
using APL. 

A.I Introduction to APL 
We now discuss some of the fundamental features of the APL language. 
To begin with, there are two types of data. in APL: literal data and 
numerical data. 

ITo save some work in a workspace called MYWORK, merely enter 

) SAVE MYWORK 

at the conclusion of the work being saved. Programs and variables may be saved in this way. 
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Literal data 

Literal data are enclosed in quotes. For example: 

, WELCOME TO APL' 

WELCOME TO APL 

Numerical data 

If this is typed by the programmer, 
followed by pressing the RETURN 
key, the computer will respond 

The APL terminal can be used to do computations. For example: 

5 + 3 To add 5 to 3, enter 5 + 3 and press 
8 RETURN. The computer responds 

with the answer 8. 

Other computations are done similarly. For example: 

3-5 

Observe that the symbol for subtraction is distinguished from the 
negative symbol in APL. The subtraction symbol is located above the + 
sign on the keyboard, while the negative symbol is a raised minus sign 
located above the 2. 

Assignment 

The symbol ~ is used to assign a name to a value. Consider the following 
examples: 

5 

7 

-2 

-2 

A~5 

A 

B~7 

B 

A-B 

B~A-B 

B 

The name A is assigned to 5. 
A request for the value of A. 
The computer responds with 5. 

The value of A - B is requested. 

B is now assigned the value of A-B. 
The request for B. 
Notice that the computer responds 
with the latest value of B. 

The computer retains only the latest value of any name. 
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Assignment oj literal data 

C+-' WELCOME' 

D+-'TO' 
E+-'APL' 

C,D,E 
WELCOMETOAPL 

A.I Introduction to APL 

Literal data are assigned names by 
enclosing the characters in quotes. 

The comma is used in APL to chain 
data end to end. Notice that the 
computer didn't space the words as 
one would probably like. 

In order to get the correct spaces between the words, there are two 
possibilities: 

C+-' WELCOME ' 

D+-'TO ' 
E+-' APL' 

C,D,E 

WELCOME TO APL 

OR 
C+-' WELCOME' 
D+-' TO' 
E+-'APL' 

Gil ',D,' ',E 

WELCOME TO APL 

Leave a space between the last letter 
and the end quotes. 

Spaced correctly. 

Tell the computer to leave spaces by 
typing a space between the quotes. 

Mixing literal data and numerical data 

Literal and numerical data may be displayed on the same line, provided 
that they are separated by semicolons. For example: 

X+-3 
Y+-5 
L +-' IS LESS THAN' 

X;L;Y 
3 IS LESS THAN 5 

Order oj operations 

X and Yare numerical data. 

L is literal data. 

Numerical and literal data are 
displayed on the same line. 

In conventional mathematics, we are accustomed to a hierarchy of numeri­
cal operations. Therefore, if we are presented with the expression 3 X 2 + 5, 
we would probably multiply 3 by 2 and then add 5, obtaining II. We are 
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used to a rule that multiplication is done before addition. However, if we 
were to enter this expression on an APL terminal, we would obtain the 
result 21. This is because in APL there is no hierarchy of operations. APL 
has too many operations to make this desirable. The rule in APL is to 
perform the rightmost operation first and then proceed from right to left. 
Thus, the addition 2+5 is done first, followed by the product 3X7. This 
"right to left rule" holds regardless of the operations. The only rule that 
takes precedence over this right to left rule is that operations within 
parentheses are done first as they are encountered in going from right to 
left. Thus, (3 x 2) + 5 would yield II. 

The expression 5X3+3X4 yields 75 in APL, since in APL it is 
equivalent to (5 X(3 +(3 X 4))). In order to get the answer of 27, we would 
have to insert parentheses as follows: (5 x 3) + (3 x 4). This right to left rule 
can cause the beginning student problems if he is not careful. He should be 
sure that the expression he is entering is really the expression he wants 
evaluated. When in doubt, he should insert parentheses. Consider the 
following examples: 

3+4X2 
11 

32 

10 

-17 

o 
t4+1 

1 234 5 

(t4) + 1 
234 5 

Monadic and dyadic functions 

* is the exponentiation operation in 
APL. 2 * 5 is 2 raised to the 5th 
power. 

Note: tN yields the vector of positive 
integers up to and including N. 

APL often uses the same symbol in two ways; one monadic and the other 
dyadic. A monadic function has only one argument. In APL, the argument 
always appears on the right of the function. For example: 

.25 

5 
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A dyadic function has two arguments; one on each side of the function. 
For example: 

2+4 
.5 

317 
1 

The division function. 

The residue function. It returns the 
remainder when 7 is divided by 3. 

The "quad" and the "quote quad" 

The "quad" D is used to request input from the person using the 
computer. This is illustrated below: 

A~D 

D: 

5 
A 

5 

A+D 

D: 

2 
7 

The user is allowed to enter any data 
he desires for A. The D: is printed 
by the computer to prompt the user 
to enter input. 

He has decided to enter 5. 
A request for the value of A. 

The user is asked to add the number 
of his choice to A. 

He chooses to add 2. 
The result is 7. 

As seen in the text, the "quad" is very useful in writing programs in 
which the user is to interact with the computer. It is also possible to allow 
a student to enter literal data of his choice by using the "quote quad" D. 
To make this D, type the D, backspace one space and overstrike the '. 
The following example illustrates the use of the "quote quad": 

HELP 

A 
HELP 

B~D 

ME 

A,' ·.B 

HELP ME 

A request for literal data to be 
namedA. 

A has been assigned the word HELP. 

A request for literal data to be 
named B. B has been assigned the 
word ME. 

The computer is requested to print 
out A space B. 
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Reduction 

If a is a function and V is a vector, then the notation al V is called 
reduction. It reduces V to a single number by applying the operation a to 
the successive elements of V (from right to left). For example: 

10 

24 

V~1 234 

+IV 

xiV 

Compression 

This is sum reduction. The elements 
of V are added. 

This is times reduction. The elements 
of V are multiplied. 

If A is a vector consisting entirely of O's and 1 's and if V is another vector, 
then the notation AI V is called compression. The result of AI V is that the 
elements of V corresponding to the l's in A are kept, while the elements in 
V corresponding to the O's in A are deleted. In general, A and V must have 
the same number of elements. For example: 

o 1 0 1 1 0/3 4 7 8 2 9 
482 

1 0 1 1 OJ' APPLE' 
APL 

Outer product 

If A and B are vectors and a a dyadic function, an expression of the form 
A ° .aB is called an outer product. The result is an array or matrix obtained 
by performing the function a on every pair of elements of A and B. The 
small circle, called null, is located above the J on the keyboard. Consider 
the following examples: 

A~1 2 3 
B~4 5 6 

Ao.+B 
567 
678 
789 

Ao.xB 
456 
8 10 12 

12 15 18 
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Each element of A is added to each 
element of B. 
1 is added to 4, 5, and 6. 
2 is added to 4, 5, and 6. 
3 is added to 4, 5, and 6. 

Each element of A is multiplied by 
each element of B. 
1 is multiplied by 4, 5, and 6. 
2 is multiplied by 4, 5, and 6. 
3 is multiplied by 4, 5, and 6. 



Ao.=A 
1 0 0 
010 
o 0 1 

If two numbers are =, a 
mean "true" and 0 "false." 

Inner product 

A.2 Program definition 

Each element of A is compared to 
each element of A. 
1 is compared to 1, 2, and 3. 
2 is compared to 1,2, and 3. 
3 is compared to 1,2, and 3. 

is printed. 1 means can be interpreted to 

If A and B are arrays of the same length, and if a and ware dyadic 
functions, then the expression of the form Aa,wB is called an inner 
product. The result is that a is applied to A and B element by element, 
followed by w reduction applied to the result. For example: 

A_1 2 3 
B_4 5 6 

A+.xB 
32 

+/AXB 
32 

AX.+B 
315 

X/A+B 
315 

A.2 Program definition 

The corresponding elements of A 
and B are multiplied and then the 
results added. 

Another way to accomplish the same 
result using reduction. 

The corresponding elements of A 
and Bare aqded and then the results 
multiplied. 

Anot4er way to accomplish the same 
result using reduction. 

Programs begin with a del, V, followed by the name of the program. The 
computer then prints the line number [1]. The programmer then enters 
the proper expression on this line. He then presses the RETURN key, and 
the computer responds with line number [2]. This process continues until 
the program is completed. To end the program, the programmer enters 
another V, on the last line of the program. The program is now ready for 
execution. 

Consider the following program for computing simple interest at 5 
percent per year. 

V INTEREST 

[1] R_.05 
[2] I_PxRxT 

'flle name of the program is INTER­
~ST. 
The int~rest rate is 5 percent. 
Interest is principal, P, times rate, R, 
times time, T. 
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[3] 

[4] V 

The computer is instructed to print 
out I. 
The end of the program. 

To execute the program, enter the values of P and T, and then enter the 
name of the program, INTEREST. For example: 

10 

P_100 
T_2 

INTEREST 
The value of I is 10. 

Instead of entering the values of P and T separately before running the 
program, it is possible to include them in the program header. (We will 
consider the techniques for revising a program in Section A.4.) 

V P INTEREST T 
[1] R_.05 
[2] I _PxRX T 
[3] I 
[4] V 

The program is now executed as follows: 

100 INTEREST 2 
10 

Even better would be to include the result of the program, I, in the 
header of the program also. This is done as follows: 

V 1_ P INTEREST T 
[1] R_.05 
[2] I_PxRxT 
[3] V 

100 INTEREST 2 
10 

[Note: If the result I is included in the header of the program, it should not 
be requested in the body of the program also. Otherwise, the computer will 
print out the answer, 10, twice. Thus, the former line 3 which instructed the 
computer to print out the value of I has been eliminated.] 

When the header of the program has an explicit result, as this program 
has the result I, then the program itself has this result. The importance of 
this is that the program can now be thought of as a function just as any of 
the keyboard operations are functions. The program INTEREST uses the 
values of P and T to produce the value I. As a function, this program can 
now be used in other programs as a subprogram. To illustrate this point, we 
shall use the program INTEREST as a subprogram in the following pro­
gram AMOUNT which computes the amount of the loan at 5 percent 
interest. 
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V A~PAMOUNTT 
[1] R~.05 

[2] A ~ P+ P INTEREST T 

[3] V 

100 AMOUNT 2 
110 

A.2 Program definition 

The amount owed is principal plus 
interest. 

One other point worth considering is that variables included in the 
header of the program are "local" variables. That is, they are local to the 
program and do not retain their values outside of the program. Variables 
in a program that are not included in the header of the program become 
"global" variables and retain their values outside of the program. They 
might, therefore, affect later calculations unwantedly. In the final version 
of the program INTEREST, I, P, and T are local variables, while R is 
global, since it is not included in the header. Consider the following 
example: 

10 

42 

200 

3 

.05 

R~.07 

P~200 

T~3 

I ~42 
100 INTEREST 2 

P 

T 

R 

Let these represent some values of R, 
P, T, and I stored previously, which 
the programmer would not like to 
have changed. 

Note that the previous values of I, P, 
and T have not been altered by ex­
ecuting the program INTEREST. 
However, the value of R has been 
changed from 0.07 to 0.05. This is 
because I, P, and T are local vari­
ables in the program INTEREST, 
whereas R is a global variable. 

If you now proceeded to do other calculations under the assumption that 
R is still 0.07, you would have problems. 

To make R a local variable, include it in the header of the program as 
follows: 

V I ~ P INTEREST T; R 
[1] R~.05 

[2] I ~PXRXT 
[3] V 

Variables are made local to a program by appending them to the program 
header and separating them from the rest of the header and from each 
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other by semicolons. Consider the effect of including R in the header as a 
local variable now: 

10 

.07 

R~.07 

P~200 

T~3 

I ~42 

100 INTEREST 2 

R Note that R retains its value of 0.07 
that it had prior to running the pro­
gram INTEREST. 

In general, if possible, it is a good idea to include all variables used 
exclusively in a program as "local" variables. 

As another example, consider the following program which computes 
the amount S accumulated when a principal P is deposited in a savings 
bank at a yearly interest rate of 5 percent for N years. Such a bank uses 
compound interest. So the name chosen for the program is COMPOUND. 

V S~ P COMPOUND N; R 
[1] R~.05 

[2] S~PX(1 +R)*N 
[3] V 

100 COMPOUND 4 
121.550625 

If $100 is deposited in a savings bank at 5 percent interest compounded 
yearly, then in 4 years, it yields $121.55. 

A.3 Branching 

Branching is an instruction to change the regular sequence of steps in a 
program. In APL, there are two types of branching: unconditional branch­
ing and conditional branching. In general, branching statements are indi­
cated by a right arrow ~. An unconditional branching statement has the 
form 

~ (a designated line). 

This means: "branch to this designated line." 
A conditional branching statement has the form 

~ (a given condition)/a designated line. 

If the given condition is true, the computer branches to the designated line. 
Otherwise, it just proceeds to the next line of the program. 
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Consider the following program FUNCTION which prints out the 
ordered pairs (X, Y) for the function Y = X2 starting at some specified 
value of X. 

V FUNCTION X 
[1] Y~X*2 
[2] X, Y 

[3] X~X+1 
[4] ~1 

[5] V 

Y is assigned the value X * 2. 
The computer is told to print out the 
pair X, Y. 
X is increased by 1. 
The computer is told to branch to 
line 1 with this new value of X. 

In order to run this program, the student chooses an initial value of X, say 
- 5, and enters the following: 

FUNCTION -5 
-5 25 
-4 16 
-3 9 
-2 4 
-1 1 
o 0 
1 1 
2 4 
3 9 
4 16 
5 25 
6 36 

The trouble is that there is no built-in way to stop this program. It will 
go on incrementing X and printing out pairs indefinitely unless the 
programmer does something to stop it. In order to stop an endless program 
such as this one, press the ATTN key. The computer will then stop the 
program and is ready for new work. 

Let us now consider a better way to write this program with a built in 
stopping condition. 

V FUNCTION X; I 

[1] I~O 

[2] COUNTER: 1~/+1 
[3] Y~X*2 
[4] X, Y 
[5] X~X+1 

[6] ~(I<11)/COUNTER 
[7] V 

Note that the local variable I is in 
the header. The initial value of I is O. 

I is incremented by 1. Note that this 
line has a line label COUNTER. 
(Line labels are discussed below.) 

If I is less than 11, the computer is 
sent back to COUNTER on line 2. 
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In the previous program, as soon as I is not less than 11, the computer 
proceeds to line 7, where the program is terminated. 

FUNCTION -5 
-5 25 
-4 16 
-3 9 
-2 4 
-1 1 
o 0 
1 1 
2 4 
3 9 
4 16 
5 25 

Line labels 

In the above program FUNCTION, a line label COUNTER was used. A line 
label is a name given to a particular statement in a program. It is always 
followed by a colon. In programs involving branching, it is a good idea to 
use line labels for reference-especially if one expects to alter the program. 
This is because very few programmers can write every program in final 
form on their first try. Thus, if originally they wanted to branch to the 
statement on line 5, in a revised form of the program the original line 5 
might now be changed to line 7. This would require the programmer to 
rewrite the branching statement. However, if the statement on line 5 had a 
line label, there would be no need to rewrite the branching statement. In 
addition, line labels can make the finished program easier to interpret by 
users of the program. Line labels are local variables. That is, they do not 
retain their values outside of the program. However, they do not need to 
be included in the header of the program. 

Another example 

We now consider a program for computing the absolute value of a 
number. The absolute value of a number is the positive value of the 
number. Thus, if X is positive, then the absolute value of X is X. However, 
if X is negative, then the absolute value of X is - X. Note that the negative 
of a variable X is denoted by - X rather than -5 which is used to represent 
a negative constant. The absolute value of 0 is O. 

V AV~ABSOLUTE X 

[1] ~(X<O)/NEGATIVE) 
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The name of the program is AB­
SOLUTE. 
If X is less than 0, branch to NEGA­
TIVE. Otherwise, proceed to the next 
line. 



[2] 

[3] 
[4] 
[5] 

5 

5 

0 

POSITIVE: AV~X 

~O 

NEGATIVE: AV~ - X 
V 

Examples 

ABSOLUTE -5 

ABSOLUTES 

ABSOLUTE 0 

A.3 Branching 

Line label POSITIVE, for if X is not 
less than o. 
Branch to 0 (explained below). 
Line label NEGA TlVE, for if 
X is less than o. 

If the branching statement ~O is used in a program, this is equivalent to 
telling the computer to exit from the program. In branching commands, 
the header is not included as a line in the program. Thus, there is no line 0 
for the computer to branch to. So, it exits from the program. 

We conclude this brief discussion of branching with one final example. 
This program, SUM, computes the SUM of the first K positive integers. 

V S~SUM K;N 
[1] S~O 

[2] N~1 

[3] ADDON: S~S+N 

[4] N~N+1 

[5] ~(N<; K)/ ADDON 

[6] V 

SUM 100 
5050 

The initial value of S is O. 
N is a counter whose initial value is 
1. 
ADDON is a line in which the next 
value of N is added to the previous 
value of S. 
Increase N by l. 
If N is <; K, branch to ADDON and 
add this new value of N to S. 
Otherwise, the program is ended. 

The sum of the first 100 positive 
integers is 5050. 

Notice that in this program, the incrementing is done after the computa­
tion rather than before the computation as was done in the program 
FUNCTION. The reader should study the differences between these two 
programs. 

It is worth mentioning that in APL there is usually less need for 
branching than in many other programming languages. This is because of 
the large number of keyboard functions available in APL and the array 
handling capabilities in APL. A much easier form of SUM using a couple 
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of these functions follows: 

V S<,-SUM K 
[1] S<,-+ ILK 

[2] V 

SUM 100 
5050 

LK yields the vector of posItIve in­
tegers up to and including K. + ILK 
adds the numbers in LK. 

It is also worth mentioning that there really is no need for a program to 
add the first K positive integers. It can be accomplished directly as follows: 

+ IL 100 
5050 

A.4 Program revision and editing procedures 

Once a program has a name, no other program or variable in that 
workspace can be given the same name. Therefore, a program cannot be 
revised by simply rewriting it. The computer would interpret this as trying 
to give another program the same name as the original program. For 
example, in a previous section, the program INTEREST was changed. 
Originally, it was as follows: 

V INTEREST 
[1] R<,-.05 
[2] 1<,- Px RX T 
[3] I 
[4] V 

Later, it was changed to the following: 

V 1<,- P INTEREST T; R 
[1] R<,-.05 
[2] I <,-PXRX T 
[3] V 

This cannot be accomplished by merely starting from the beginning and 
entering this new version of INTEREST. If one attempted this, upon typing 

V I<,-P INTEREST T; R 

instead of getting the line number [I], he would get the error message 

DEFN ERROR Meaning an error in defining a pro­
gram. 

The original program INTEREST could be erased by typing 

) ERASE INTEREST 
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and then the new program INTEREST could be entered. However, if only 
minor revisions are to be made in the program, this would be needlessly 
time consuming. This is especially true if the program is quite long. In this 
section, we consider some techniques for program revision. We shall 
consider revising one line, revising the header, revising several lines, 
deleting a line, adding lines, and correcting typographical errors. 

Revising one line of a program 

If we wish to revise line 5 of a program named PROGRAM, we would type 

V PROGRAM [5] 
[5] (Revise line 5 here) 
[6] V 

Cause the computer to print out the 
line number 5. Then simply enter the 
corrected version of line 5. Upon 
pressing RETURN, the computer will 
print out the line number 6. Since we 
do not wish to revise line 6, we sim­
ply enter V. This tells the computer 
that we are finished with our revi­
sions, for now. 

Revising the header of the program 

To revise the header of the program PROGRAM, type 

V PROGRAM [0] 
[0] (Enter new header) 
[1] V 

For the sake of program revision, the 
header is referred to as line O. 

Revising consecutive lines of a program 

To revise lines 5, 6, and 7 of PROGRAM, type 

V PROGRAM [5] 
[5] (Revise line 5) 
[6] (Revise line 6) 
[7] (Revise line 7) 
[8] V 

The computer automatically prints 
out the next line number as an invita­
tion for further revision. 
Since we do not wish to revise line 8, 
we type V. 

Revising nonconsecutive lines of a program 

To revise lines 3, 6, and 8 of PROGRAM, type 

V PROGRAM [3] 
[3] (Revise line 3) 
[4] [6] (Revise line 6) 
[7] [8] (Revise line 8) 
[9] V 

A line number may be overridden in 
favor of a new line number by simply 
entering this new line number, 
followed by the revision. 

379 



Appendix 

Deleting a line from a program 

There are different methods for deleting a line from a program. The more 
common method for deleting line 5 from PROGRAM is to type 

V PROGRAM [5] In other words, cause the computer 
[5] (Press the RETURN key now) to print out the line number. Then, 
[6] V simply press RETURN. 

At some other computer installations, to delete line 5 from PROGRAM, 
type 

V PROGRAM [.15] V 

Adding lines to a program 

If a program PROGRAM has 10 lines, and we wish to add two more lines 
at the end, we type 

V PROGRAM [11] 
[11] (Enter the new line) 
[12] (Enter the new line) 
[13] V 

Inserting new lines in a program 

When we are finished adding new 
lines, we enter V. 

To insert 3 new lines between lines 5 and 6 of PROGRAM, type 

V PROGRAM [5.1] 
[5.1] (Enter the new line) 
[5.2] (Enter the next line) 
[5.3] (Enter the next line) 
[5.4] V 

Correcting typographical errors 

Use decimals to denote the first new 
line to be inserted. The computer will 
print out the next decimal as an in­
vitation to insert another new line. 
When all new lines have been in-
serted, type V. 

To correct a typographical error, press the A TTN key. This will cause the 
computer to rotate the typewriter to the next line. Then, the programmer 
backspaces to the leftmost point where the error was made and retypes the 
line from that point on. Of course, this is assuming that the RETURN key 
has not been pressed before the typographical error has been detected. If 
the RETURN key has been pressed, then override the next line number by 
typing the previous line number and retype the previous line correcting the 
error. 

For example, suppose that line 3 of a program should read Y ~ X. 2, 
and we accidentally typed Y ~ X + 2, but we have not pressed the RETURN 
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key. Then, we correct the error as follows: 

[3] Y~X+2 

*2 
Press A TTN key and backspace to 
the point of error (2 spaces), and 
then retype the line from the point of 
the error. 

If we had already pressed the RETURN key, then we would correct the 
error as follows: 

[3] Y~X+2 

[4] [3] Y~X*2 

Displaying a program 

To display a program PROGRAM, type 

V' PROGRAM [D] V' 

The computer will then print out the latest version of PROGRAM. This 
procedure may be used to display any program in the active workspace. 

Let us now revise the program INTEREST to the form indicated at the 
beginning of this section. 

V'INTEREST 
[1 ] R~.05 

[2] '~PXRxT 
[3] I 
[4] V' 

V' INTEREST [0] 
[0] I~P INTEREST T;R 
[1 ] [3] 
[3] 
[4] V' 

V' INTEREST [D] V' 

V' '~P INTEREST T;R 
[1 ] R~.05 

[2] '~PXRxT 
V' 

The old version of INTEREST to be 
revised. 

Request to revise the header. 
The new header. 

To delete line 3, cause the computer 
to recognize line 3 by overriding line 
1. Then enter a blank line 3 by 
pressing RETURN. 

Request to display the revised ver­
sion of INTEREST. 

Notice that the final V' is not given a 
line number by the computer. There 
are just two lines in the program IN-
TEREST. 
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In the branching section (Section A.3) we had two versions of a 
program FUNCTION. Let us see how to revise the original form of 
FUNCTION to the form with the built in stopping condition. 

[1] 
[2] 
[3] 
[4] 

[0] 
[1] 

[0.2] 
[0.3] 
[5] 

yo FUNCTION X 
Y~X*2 
X,Y 
X~X+1 

~1 
yo 

yo FUNCTION [0] 

FUNCTION X; I 
[0.1] I~O 

COUNTER: 1~/+1 
[4] ~(/< 11)/ COUNTER 

yo 

The original form of FUNCTION. 

We have to alter the header to 
include I. 

We want to insert these two lines 
before line 1. 

Alter line 4 to include the stopping 
condition. 

So, the revised form of FUNCTION is as follows: 

yo FUNCTION [0] yo 

yo FUNCTION X; I 
[1] I~O 

[2] COUNTER: 1~/+1 
[3] Y~X*2 
[4] X, Y 
[5] X~X+1 

[6] ~ (/< 11)/COUNTER 
yo 

A.5 The trace command 

Request to display the revised form 
of FUNCTION. 

The trace command causes the computer to print out a line-by-line 
account of its computations in a program. This is often very helpful in 
determining where errors occur in a program and in trying to understand 
how a program works. The form of the trace command depends on the 
APL system being used. Two of the more common forms of the trace 
command are given here. 

If a program called PROGRAM has 10 lines, the trace command would 
be 

T Ll PROGRAM ~ t1 a 
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To remove the trace, type 

T A PROGRAM ~ to 

To illustrate the trace command, let us trace the program FUNCTION of 
the last section. To cut down on the amount of printout, we will revise line 
6 of FUNCTION so that it will print out 5 pairs instead of II pairs. 

V FUNCTION [6] 
[6] ~(I<5)/COUNTER V 

Thus, the program FUNCTION now is as follows: 

V FUNCTION [D] V 

V FUNCTION X; I 
[1] '~O 
[2] COUNTER: '~/+1 
[3] Y~X*2 

[4] X, Y 
[5] X~X+1 

[6] ~(I<5)/COUNTER 

T A FUNCTION~t6 

FUNCTION 0 

FUNCTlON[1] 0 
FUNCTlON[2] 1 
FUNCTION[3] 0 
o 0 
FUNCTlON[5] 1 
FUNCTlON[6] 2 
FUNCTlON[2] 2 
FUNCTlON[3] 1 
1 1 
FUNCTlON[5] 2 
FUNCTION[6] 2 
FUNCTlON[2] 3 
FUNCTlON[3] 4 
2 4 
FUNCTION[5] 3 
FUNCTlON[6] 2 
FUNCTlON[2] 4 
FUNCTION[3] 9 
3 9 
FUNCTlON[5] 4 
FUNCTION[6] 2 
FUNCTION[2] 5 

Trace the 6 lines of FUNCTION. 

Run the program FUNCTION with 
initial value O. 

The computer prints out a line by 
line record of its computations. 
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FUNCTION[3] 16 
4 16 
FUNCT/ON[5] 5 
FUNCT/ON[6] 

o 0 
1 1 
2 4 
3 9 
4 16 
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T A FUNCT/ON~LO 

FUNCT/ONO 

Remove the trace. 

The program is run with the trace 
removed. 



Solutions to exercises 

Chapter 1 

Section 1.1 
1. (a) True; (b) False; (c) True; (d) False; (e) True; (f) True; (g) True; 

(h) False. 

2. (a) I; (b) 0; (c) I; (d) 0; (e) I; (f) I; (g) I; (h) O. 

3. (a) 3 6 9; (b) a e i; (c) January-December; (d) Violet, indigo, blue, green, 
yellow, orange, red. 

4. (a) I; (b) 0; (c) I I I I; (d) I; (e) I; (f) 0; (g) I 00; (h) 0; (i) 0 U) l. 

5. There are 16 subsets. 

6. 2n 

7. x=2, y=l. 

8. (a) 1 I 0 0; (b) 1; (c) 0 0 0 0; (d) 0; (e) I 1 I 1; (f) 1; (g) 0; (h) l. 

Section 1.2 
1. (a) C,D; (b) C,D; (c) 0 3; (d) 5 7 8; (e) I 2 4 5 7 8; (f) I 2 4 5 7 8; (g) 

o 3 5 6 7 8 9; (h) 6 9; (i) 6 9; U) 0; (k) I 2 3 4 5 7 8 9 0; (I) Same as 
k. 

2. (a) ME; (b) AMPLE; (c) APL; (d) A8DFGHJKLNOPQSUVWXYZ; (e) LP. 

3. (a) Ace of spades; (b) All aces or face cards; (c) All clubs, hearts, diamonds; 
(d) 0; (e) All spades which are not face cards; (f) Jack, queen, king of 
spades. 

4. V S~A SYMMETRIC 8 
[1] S~(A DIFFERENCE 8) UNION (8 DIFFERENCE A) V 
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Section 1.4 
1. (a) True; (b) True; (c) True; (d) True. 

3. (a) True; (b) False; (c) True. 

Section 1.5 

1. (a) 4; (b) 5; (c) 2; (d) 7; (e) 5; (f) 2. 

2. (a) 8; (b) 8; (c) 4; (d) 12; (e) 4; (f) 18. 

3. (a) 32; (b) 8; (c) 36. 

4.80 

5.20 

6. $50 

7. (a) 320; (b) 180; (c) llO; (d) 15; (e) 185. 

8. (a) 6; (b) 5; (c) 4; (d) 5. 

9. (a) 240; (b) 760; (c) 700; (d) 1000. 

10. (a) 300; (b) 90; (c) 520; (d) 600. 

Chapter 2 

Section 2.1 
1. A~1 1 0 0 
B~1 0 1 0 
(a) (-(A V B»I\B (b) (AVB)I\B (c) BI\-(AVB) 

000 0 000 0 0000 

(d) -BVA (e) -AI\B (f) (-A)V(-B) 
o 0 0 1 o 1 1 1 0 1 1 1 

(g) -(AI\B) (h) -A""B 
o 1 1 1 1 0 0 1 

3. A ~ 1 1 1 1 0 0 0 0 
B~1 1 0 0 1 1 0 0 
C~1 0 1 0 1 0 1 0 

(a) (AI\B)VC (b) (AVC)I\(BVC) 
11101010 11101010 

(c) -«-A)I\(-B»I\C (d) (AVB)I\C 
11111101 10101000 

(e) «-A)A(-B»I\C (f) (AVBVC)I\-(AVBVC) 
10101 000 0 0 0 0 0 000 

(g) (AI\BI\C)V-(AI\BI\C) (h) A;t=(B*C) 
111 1 1 111 100 1 0 1 1 0 

5. (a) AI\-C (b) -(AVC) (c) AVB 
o 1 0 1 000 0 0 000 0 1 0 1 111 1 1 100 

(d) CI\BI\-A (e) CI\(AVB) (f) «-A)I\(-B»I\C 
00001000 1010100000000010 
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6. (a) T; (b) F; (c) T; (d) F; (e) F; (f) F. 

7. (a) AI\C (b) (-A)V(-B) (c) (AVB)!\-C 
10100000 00111111 01010100 

(d) CI\«-A)I\(-B» (e) BI\(-(AVC» 
000 0 0 0 1 0 0 0 0 0 0 0 1 0 

(f) AI\«-B)!\(-C» 
000 1 000 0 

8. (a) F; (b) F; (c) T; (d) F; (e) F; (f) F. 

Section 2.2 
1. A~1 1 0 0 
B~1 0 1 0 
(a) (AV(-A»"; B (b) A ";(B"; A) (c) A=(-B) 

1010 1111 0110 

(d) «-B)"; (-A»..; (A"; B) (e) (AVB)= C 
1111 10101001 

(f) «A"; B)I\-B)..;-A 
1 1 1 1 

3. A~ 1 1 1 1 0 0 0 0 
B~1 1 0 0 1 1 0 0 
C~1 0 1 0 1 0 1 0 
(a) C= B 

10011001 
(b) 

(c) A";«-B)I\(-C» 
00011111 

4. (a) F; (b) T; (c) F; (d) T. 

S. (a) (A!\B)"; C 
10111111 

(c) (AVB)";C 
10101011 

6. (a) F; (b) F; (c) F; (d) T. 

o 1 
C";(B!\-A) 
011101 

(d) C=(BI\-A) 
01011001 

(b) (AI\B)= C 
10010101 

(d) «-B)I\(-A»..;-C 
11111101 

7. (a), (e), (g), (h) are implications and (e), (g), (h) are double implications. 

Section 2.3 
1. All are equivalent. 

2. (a) Equivalent; (b) Not equivalent; (c) Not equivalent; (d) Equivalent. 

Section 2.4 
1. (a) Valid; (b) Not valid; (c) Valid; (d) Not valid; (e) Valid; (f) Valid. 

2. (A"; B)"; «-B)"; (-A», valid. 

3. «AVB)I\-A)"; B, valid. 

4. «A"; B)I\(B"; C» ..; (A"; C), valid. 

S. «AV B)I\A)"; -B, fallacy. 
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Solutions to exercises 

6. «A= 8);\A)";; 8, valid. 

7. «A,.;; 8);\-A),.;; -8, fallacy. 

8. «A,.;; 8);\(8,.;; C»,.;; (A,.;; C), valid. 

9. «A,.;; 8);\-8)";; -A, valid. 

10. «-A)";; 8).;; (A,.;; -8), fallacy. 

11. «A,.;; 8);\-A)";; -8, fallacy. 

12. «-A)";; (-8».;; (8,.;; A), valid. 

Chapter 3 

Section 3.2 
1. (a) 18 9 0 9; (b) 10 9 -2 13; (c) 8 0 -1 -10; (d) -4 36 49; 

(e) 2 3 -1 5 -2 6 7; (f) 5 6 2 8; (g) LENGTH ERROR; (h) -40 -1 2; 
(i) -3; (j) 9.433981132; (k) -1 3; (1) 1. 

2. (a) -3; (b) -9. 

3. (a) p5; (b) 5[4]; (c) 5[1 5]; (d) + /5; (e) 5[3]~38. 

4. (a) 51+52+53 (b) +/51+52+53 
279 199 94 103 195 870 

(c) P~.10 .15 .20 .10 .15 

(d) 51+.XP, 52+.XP, 53+.XP. 
42.4 39.75 33.95 

Section 3.3 
1. (a) M~3 4p2 1 4 3 5 0 2 1 3 -1 7 0; (b) p M; (c) (pM)[2]; 

34 4 

(d) M[2;3]~8; (e) M[;3]~3 -1 5; (f) M[2;)~1 0 0 0; 

(g) ~M ; (h) M,[1) 0 0 0 1; (i) -1 1tM; (j) 2 -2jM. 
2 1 3 
1 0 -1 
3 0 5 
300 

2. (a) 3 4; (b) 2; (c) 5 -1 0 4; (d) 3 -1 5; (e) 0; (f) 3; (g) 4; (h) 0 10 -4 6; 
(i) 0 -16 -10 4; (j) 2 1 

o 5 
-2 O. 

3. (a) P[2;); (b) P[A]; (c) P[2;3]; (d) P[2;4]~3; (e) P[;5]~P[;5)+1; 
(f)P~P.[1) 4 2 0 5 2; (g) 5XP[3;]. 

Section 3.4 

1. (a) [ _~ 2 ~] (b) [ 
-1 -3 -~ ] (c) [2g 

0 ~] 6 3 -14 4 

(d) [~ 6 8] (e) [ 2 
-3 -~] (f) [ 

5 0 1 2 
9 5 -3 -5 0 -2 3 -1 
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Solutions to exercises 

w [-1 j r 1 (h) [1 5 3) (;) [6 0) 0) 9, 

3. [l~ 2~] 

5. (a) D~ _!] (b) [~~ ~~] (c) [2: 
[ - 56 - 56 ] [ - 60 -68 ] 

7. (a) -88 -88 (b) -76 -84 

8. Both sides of the equation yield [4; i~ 
64 37 

9. S+.xP 
34 17 11 
33 19 13 
35 16 10 

12 34] [19 19 ] 
~ ~~ (d) 43 51' 

61] 92 . 
131 

10. (a) 0~10 15 (b) 0~5 4 6 
O+.xT 

17.5 65 25 

Chapter 4 

Section 4.1 

(0 + . X T) + . X C 
497.5 

1. In each case, see if (A +. X X)= B yields a 1 (for true). (a), (b), (c) are true and 
(d) is false. 

2. (a) (0, -2), (1.2,0); (b) (12,0,0), (4,0,2); (c) (1,1,2,1), (0,0,2,0) are examples 
of solutions. These are not unique. 

3. VX~A SOLVE B 
[1] X~B+A V 

4. (a) 2.333333333; (b) 0.7142857142; (c) -4.5; (d) -0.75. 

Section 4.2 

1. (a) True; (b) True; (c) False; (d) True. 

2. (a) x= l,y= I; (b) x=.5,y=.5; (c) Redundant system; (d) Inconsistent sys­
tem; (e) x=1l,y=-14. 

3. (a) 3 bookcases, 4 tables (b) 25 nuts, 15 bolts (c) 5 oz A, 10 oz B 
l2x + 16y = 100 4x +6y = 190 lOOx + 80y = 1300 
2x+1.5y=12 x-2y=-5 8x+ 6y=100. 

Section 4.4 

1. (a) A[1 2;]~A[2 1 ;]; (b) A[2;]~A[2;]+(-3)X A[1 ;]; (c) A[3;]~A[3;]+(-7) X 
A[1;]; (d) A[2;]~(1 +14)XA[2;]. 
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Solutions to exercises 

4. (a) x = 1.058823529, Y = 1.294117647; (b) Redundant system: x = z-
2.33333333, y=2.6666667-2z; (c) x=-0.5, y=0.5, z=2.5; (d) x=-4.7375, 

y = 7.9625, z = - 2.5625, W = 0.3 ; (e) Inconsistent system, no solutions. 

Section 4.5 

1. (a) [g 0 

~l (b) [ ~ 
0 -i 1 (oj [~ 

0 0 0 

1 I 
I 0 0 
0 1 0 0 0 0 0 1 

(d) [~ 
0 0 i 1 (0) [~ 2 0 

3.4 1 1 0 0 0 7 . 
0 I 0 1 -0.6 
0 0 

Section 4.6 

1. (a) [ -O.~ -2 ] 
[ -0.16666667 0.5 -0.16666667] 

1.5 
(b) -1.16666667 0.5 0.83333333 

0.83333333 -0.5 -0.16666667 
(c) DOMAIN ERROR, no inverse 

[
-0.09259259259 0.1296296296 0.03703703704] 

(d) 0.3240740741 0.0462962963 -0.1296296296 (e) No inverse. 
-0.1944444444 -0.027777778 0.2777777778 

4. Suppose A has two inverses X and Y. Then, Y=!·X=(X·A)·Y=X·(A·y)= 
K!=X. 

5. V I ~ IDENTITY N 
[1] 1~(tN)o.=(tN) V 

Section 4.7 
1. See the answers to Exercise 1 of Section 4.6. 

2. (a) True; (b) False; (c) True. 

3. (a) x = -4, y =4.5; (b) x =0.1666666667, y = 1.166666667, z = 1.166666667; (c) 
x = 5.625, y = -6.5, Z = -0.25; (d) DOMAIN ERROR, redundant system; (e) 
Xl = 0.916666667, X2 = -I, X3 = -1.58333333, X4 =0.916666667, X5 =-1. 

4. (a) 4x+lOy=900 
x - 2y = 0 x = 100, y = 50. 

(b) x+ 2y+ 3z= 1000 
20x + 50y + 90z = 10000 
IOx+30y +50z =5000 

(c) 20x + 30y + IOz =9500 
12x + 20y + 4z = 5800 
5x+ 9y+ 2z=26oo 
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x=15oo,y=5oo, z=-5oo. 
Thus, it is physically impossible to meet these 
conditions. 

x= 100, y =200, z= 150. 



Solutions to exercises 

Chapter 5 

Section 5.1 
1. V D<c-D2 A 

[1] D<c-(A[1 ;1] x A[2;2])-(A[1 ;2] x A[2;1]) 
V 

2. V D<c-D3 A 
[1] D<c-(A[1 ;1] x A[2;2] x A[3;3])-(A[1 ;1] x A[2;3] x A [3;2]) 
[2] D<c-D+(A[1 ;2] x A[2;3]X A[3;1])-(A[1 ;2] x A[2;1]X A [3;3]) 
[3] D<c- D+(A[1 ;3] x A[2;1]X A[3;2])-(A[1 ;3] x A[2;2]X A[3;1]) 
[4] V 

3. (a) 2; (b) 0; (c) 12; (d) -32; (e) -108; (f) -12. 

4. (a) 2; (b) -32; (c) 0; (d) -350. 

Section 5.2 
1. (a) 2; (b) -32; (c) 0; (d) -350. 

2. o. 

Section 5.3 

1. (a) [i ! i] and -34 [ 2 3 4] 
(b) 0 9 -2 and-8 

1 -1 3 

(c) [ ~ o -2] 1 3 and -26 
2 0 

[ 
50 -200 -26 8] 

-26 104 -34 -20 
(d) -84 -336 12 -156 

-8 -166 20 70 
(e) -396 (f) -396. 

2. V D<c- COF3 M 
[1] D<c-M[3;]+.X(COFACTORS M)[3;] V 

3. -32. 

4. (a) 0; (b) O. 

Section 5.4 

1. (a) -32 [ 
-63 13 35] 

(b) 17 -3 -13 
36 -12 -20 

[ 
1.96875 -0.40625 -1.09375] 

(d) -0.53125 0.09375 0.40625. 
-1.125 0.375 0.625 

A+.XADJOINT A 
(c) -32 0 0 

o -32 0 
o 0 -32 
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Solutions to exercises 

3. (a) DET A 
-6 

ADJOINT A 
9 -6 

-7 4 
A+. X ADJOINT A 

-6 0 
o -6 

INVERT A 
-1.5 1 
1.166666667 -0.6666666667 

4. (a) [~ ~ ~ lA, B[ 5 4 3] 

(c) x=2,y=-2, z=1. 

(b) DET A 
o 

ADJOINT A 
o 0 0 0 

-21 -7 21 7 
3 1 -3 -1 
3 1 -3 -1 

A+. X ADJOINT A 
-1.136868377 E-13 0 0 0 
0.000000000 EO 0 0 0 
0.000000000 EO 0 0 0 

-1 .136868377 E -13 0 0 0 
INVERT A 

A IS SINGULAR 

[ 
I 0 

(b) -1.75 0.75 
0.25 -0.25 

-1 1 1.25 
0.25 

s. DET(AXADJ(A»=DET(DET(A)X/)=DET(A)*N, since the determinant of 
a diagonal matrix is the product of the diagonal elements. So, DET(A)X 
DET(ADJ(A»=DET(A)*N, or, DET(ADJ(A»)=(DET(A»*N-1. 

Section 5.5 
1. x =0.16666666667, y = 1.1666666667, z = 1.1666666667. 

3. THE SYSTEM IS DEPENDENT. 

S. V X/~A CRAMERS B 
[1] 'WHAT IS I?' 
[2] I~D 
[3] D~DET A 
[4] A[;1]~B 

[5] C~DET A 
[6] X/~C+D 

V 

Chapter 6 

Section 6.1 

1. (a) 64, 0, -8; (b) II, 3, -I; (c) 1.5874, 0, -1.25992; (d) -6, -2, -12; (e) .4, 2, -2. 

3. (a) -4 -64 (b) -4 -5 (c) -4 -1.5874 (d) -4 -30 (e) -4 -0.666667 
-3 -27 -3 -3 -3 -1.44225 -3 -20 -3 -I 
-2 -8 -2 -1 -2 -1.25992 -2 -12 -2 -2 
-I -I -1 I -I -I -I -6 -I DOMAIN ERROR 
o 0 0 3 0 0 0 -2 0 2 
I I 15 I I 10 II 
2 8 2 7 2 1.25992 2 0 2 0.666667 
3 27 3 9 3 1.44225 3 -2 3 0.5 
4 64 4 11 4 15874 4 -6 4 0.4. 
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Solutions to exercises 

5. The ranges are given by the second columns in the solutions to Exercise 3. 

6. (a)-(d) All real numbers; (e) All real numbers except for -I. 

7. VA~ABSX 

[1] A~(X*2)*.5 V 

8. VA~BAREAH 

[1] A~.5XBXHV 

Section 6.2 

1. y 2. (a) -3 6 y 

e(2,5) -2 I 
C4,3) -I -2 

e 

(3,0) 
(5,2)e o -3 

0 
x I -2 

2 I x 
C2, -3)e 

e(3, -4) 3 6 

(b) 0 I y (c) -2 -5 y 

I 2 -I -2 
2 2.41 0 I 
3 2.73 I 4 
4 3 2 7 

0 
x x 

5 3.24 
6 3.45 
7 3.64 
8 3.83 

(d) -5 1.25 y 

-4 1.33 

~ -3 1.5 
-2 2 
-I DOMAIN ERROR 1 ,... 
00 0 

x 

1 0.5 
2 0.667 
3 0.75 
40.8 
5 0.833 

(e) -4 57 y (f) - 4 0.0625 y 

-3 34 -3 0.125 
-2 17 -2 0.25 
-1 6 -1 0.5 
o 1 o I 
1 2 -x I 2 
2 9 2 4 x 

3 22 3 8 
4 41 4 16 
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Solutions to exercises 

3. (a) -3 12 
-2 6 
-I 2 

y (b) -5 -7 
-4 -5 
-3 -3 
-2 -I 
-I I 

y 

00 
I 0 
2 2 
3 6 
4 12 

o 3 
I 5 
2 7 
3 9 
4 11 
5 13 

-~-+-!--x 
--~~--x 

(c) -3 -18 
-2 -2 
-I 2 

y 

o 0 
I -2 
2 2 
3 18 

--+-~-+--x 

Section 6.3 

1. (a) y (b) 

-..,<---,+---x 

(d) y (e) 

__ °=-t-__ x 

y 

y 

--O"..j.-+-++--x 

(c) 

2. (a) 2; (b) -I; (c) -2/3; (d) 0; (e) infinity or no slope. 

y 

3. (a) y=5x-l; (b) y=-2x+3; (c) y=5; (d) y=2x-5; (e) y= -x. 

4. (a) 5/2; (b) -7/4; (c) No slope; (d) O. 

5. (a) y=(5/2)x-(l/2); (b) y=(-7/4)x+(1/4); (c) x=3; (d) y= 1. 

6. (a) (0,2); (b) (13/7,4/7); (c) (-9/11,3/11); (d) No solution. 

7. VX_SOLVECOEFS 
[1] X_(COEFS[3]- COEFS[2]) + COEFS[1] V 
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Solutions to exercises 

8. C=3x+5. 

9. D= lOx +25. 

10. V = -lOx + 10,000. 

11. C= 15x+ 100. 

12. C = 0.08x + 10. 

Section 6.4 
1. VV~VERTEX COEFS;X; Y 

[1] X~- COEFS[2] +2 x COEFS[1] 
[2] Y~COEFS[3]-(COEFS[2].2)+(4X COEFS[1]) 
[3] V~X. YV 

2. (a) (0, -2); (b) G, -2i); (c) (3,0); (d) (4,10); (e) G, -3-D; (f) (-1,2). 

3. (a) ± V2 = ± 1.4.4; (b) -1,2; (c) 3,3; (d) 4± v'1O =0.84 and 7.16; 
(e) -I,~; (f) No real roots. 

5. (a) (b) 

(c) (d) 

(e) (f) 

7. (a) 250; (b) $22,500; (c) 100, 400. 
8. (a) R=-20x2 +400x+16000; (b) 10; (c) $300,20. 
9. (a) 4 seconds; (b) 262 feet. 

10. (a) 1000; (b) $10,000; (c) 0, 2000. 
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Solutions to exercises 

Section 6.5 
1. (a) ··10 -1025 (b) -10 -1670 (c) -10 9506 (d) -10 10988 (e) -10 -120035 

-9 -752 -9 -1189 -9 6162 -9 7279 -9 -72203 
-8 -533 -8 -810 -8 3782 -8 4598 -8 -40989 
-7 -362 -7 -521 -7 2162 -7 2735 -7 -21635 
-6 -233 -6 -310 -6 1122 -6 1504 -6 -10391 
-5 -140 -5 -165 -5 506 -5 743 -5 -4395 
-4 -77 -4 -74 -4 182 -4 314 -4 -1553 
-3 -38 -3 -25 -3 42 -3 103 -3 -419 
-2 -17 -2 -6 -2 2 -2 20 -2 -75 
-I -8 -I -5 -I 2 -I -1 -I -11 
0 -5 0 -10 0 6 0 -2 0 -5 
I -2 I -9 I 2 I -I I -3 
2 7 2 10 2 2 2 8 2 I 
3 28 3 59 3 42 3 55 3 85 
4 67 4 150 4 182 4 194 4 519 
5 130 5 295 5 506 5 503 5 1885 
6 223 6 506 6 1122 6 1084 6 5197 
7 352 7 795 7 2162 7 2063 7 12021 
8 523 8 1174 8 3782 8 3590 8 24595 
9 742 9 1655 9 6162 9 5839 9 45949 

10 1015 10 2250 10 9506 10 9008 10 80025. 

2. (a) (b) (c) 

(d) (e) 
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3. (a) 1.328; (b) 1.625; (c) 1.414; (d) 1.309; (e) 1.942. 

5. -0.481, 1.311,3.170. 

7. A = -2, B=3, C=O. 
8. VV~VOLUME X 

[1] V~(4+3)X(01)X(X*3) V 

Section 6.6 

1. (a) No roots, x = 2 is an asymptote; 
(b) 5 is a root, x = 1 is an asymptote; 
(c) -1 and 1 are roots, no asymptotes; 
(d) No roots or asymptotes; 
(e) No roots, x=O and x= 1 are asymptotes. 

2. (a) -5 -1.42857 (b) -5 -1.666667 (c) -5 0.923077 
-4 -1.66667 -4 -1.8 -4 0.882353 
-3 -2 -3 -2 -3 0.8 
-2 -2.5 -2 -2.333333 -2 0.6 
- 1 - 3.33333 - 1 -3 -1 0 
0-5 0-5 0-1 
1 -10 1 9.99E999 1 0 
2 9.99E999 2 3 2 0.6 
3 10 3 1 3 0.8 
4 5 4 0.3333333 4 0.822353 
5 3.333333 5 0 5 0.923077 

( e) - 5 0.866667 
-4 0.85 
-2 
-1 1 
o 9.99E999 
I 9.99E999 
2 2.5 
3 1.666667 
4 1.41667 
5 1.3. 

3. (a) l.l -11.111111 
1.2 -12.5 
1.3 - 14.2857 
1.4 -16.66667 
1.5 -20 
1.6 -25 
1.7 -33.33333 
1.8 - 50 
1.9 -100 
2 9.99E999 
2.1 100 
2.2 50 
2.3 33.33333 
2.4 25 

2.5 20 
2.6 16.666667 
2.7 14.2857 
2.8 12.5 
2.9 11.11111 

(b) 0.1 -5.44444 
0.2 -6 
0.3 -6.71429 
0.4 -7.666667 
0.5 -9 
0.6 -11 
0.7 -14.33333 

0.8 -21 
0.9 -41 
1 9.99E999 
1.1 39 
1.2 19 
1.3 12.3333 
1.4 9 
1.5 7 
1.6 5.66667 
1.7 4.71429 
1.8 4 
1.9 3.44444 

Solutions to exercises 

(d) -5 0.03846 
-4 0.05882 
-3 0.833333 
-2 0.2 
-1 0.5 
o 1 
1 0.5 
20.2 
3 0.1 
4 0.05882 
5 0.03846 

(e) -0.9 
-0.8 
-0.7 
-0.6 
-0.5 
-0.4 
-0.3 
-0.2 
-0.1 
o 

0.1 
0.2 
0.3 

1.05848 
1.13889 
1.2521 
1.41667 
1.66667 
2.07143 
2.79487 
4.33333 
9.18182 
9.99 E 999 

-11.2222 
-6.5 
-5.19048 

conI. 
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Solutions to exercises 

3. (e) cont. 
0.4 
0.5 
0.6 
0.7 

4. (a) 

(d) 

-4.83333 
-5 
-5.66667 
-7.09524 

y 

y 

=-0:+----:;::= x 

0.8 -10.25 
0.9 - 20.1111 
1.0 9.99E999 
l.l 20.0909 

(b) Y 

(e) 

5. (a) $277; (b) $2500; (c) $22,500. 

6. (a) 410; (b) 355. 

Chapter 7 

Section 7.1 
1. (a) -5 0.0009765625 

-4 0.00390625 
-3 0.015625 

398 

-2 0.625 
-I 0.25 
o I 
I 4 
2 16 
3 64 
4 256 
5 1024 

1.2 10.16667 
1.3 6.89744 
1.4 5.28571 
1.5 4.33333 

(c) 

1.6 3.70833 
1.7 3.26891 
1.8 2.94444 
1.9 2.69591. 



(b) ~5 243 
~4 81 
~3 27 
~2 9 
~I 3 
o I 
I 0.333333333 
2 O.lllllllll 
3 0.037037037 
4 0.012345679 
5 0.004115226 

(c) ~5 148.4131591 
~4 54.59815003 
~ 3 20.08553692 
~2 7.389056099 
~I 2.718281828 
o I 
I 0.3678794412 
2 0.1353352832 
3 0.04978706837 
4 0.01831563889 
5 0.00673794669 

(d) ~5 33554432 
~4 65536 
~3 512 
~2 16 
~ I 2 
o I 
I 2 
2 16 
3 512 
4 65536 
5 33554432 

(e) ~ 5 0.00326776364 
~4 0.01026598225 
~3 0.03225153443 
~2 0.1013211836 
~ I 0.3183098862 
o I 
I 3.141592654 
2 9.869604401 
3 31.00627668 
4 97.40909103 
5 306.0196848 

Solutions to exercises 

o 
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Solutions to exercises 

(f) -5 32 
-4 16 
-3 8 
-2 4 
-1 2 
o 1 
1 2 
2 4 
3 8 
4 16 
5 32 

o 

2. (a) 5; (b) 8; (c) 0.04; (d) 1; (e) 8; (f) 4; (g) 3; (h) 625. 

4. a=5, b=4. 

Section 7.2 
1. V A ~ P INTEREST X 

[1] A~PX(1 +.05+2)*2XX V 

2. $839.03 

3. $842.87. 

4. $845.48. 

5. $846.80. 

6. $610.27. 

7. 984150 weeds. 

8. 3.75 square inches. 

9. V A~P GROWTH KX 
[1] A~PX*K[1]XK[2]V 

10. (a) $760.98; (b) $492.79. 

11. 164.87 bacteria. 

12. 16.15 grams. 

13. 273.57 pieces. 

14. 15.8 pieces. 

16. (1 + 1+ N) * N X X yields 1.349737374; *1 X X yields 1.349858808. 

Section 7.3 
1. (a) I 0 

400 

2 0.6309297536 
3 1 
4 1.26 I 859507 
5 1.464973521 
6 1.630929754 
7 1.771243749 
8 1.892789261 
9 2 

IO 2.095903274 

O. I -2.095903274 
0.2 -1.464973521 
0.3 -1.095903274 
0.4 -0.834043767 
0.5 -0.630929754 
0.6 -0.464973521 
0.7 -0.324659525 
0.8 -0.203114014 
0.9 -0.095903274 
1 0 



Solutions to exercises 

(b) 1 0 
2 0.3010299957 
3 0.4771212547 
4 0.6020599913 
5 0.6989700043 
6 0.7781512504 
7 0.84509804 
8 0.903089987 
9 0.9542425094 

101 

(c) 1 0 
2 1.386294361 
3 2.197224577 
4 2.772588722 
5 3.218875825 
6 3.583518938 
7 3.891820298 
8 4.158883083 
9 4.394449155 

10 4.605170186 

0.1 -1 
0.2 -0.6989700043 
0.3 -0.5228787453 
0.4 -0.3979400087 
0.5 -0.3010299957 
0.6 -0.2218487496 
0.7 -0.15490196 
0.8 -0.096910013 
0.9 -0.0457574906 
1 0 

0.1 -4.605170186 
0.2 -3.218875825 
0.3 -2.407945609 
0.4 -1.832581464 
0.5 -1.386294361 
0.6 -1.021651248 
0.7 -0.713349887 
0.8 -0.446287103 
0.9 -0.210721031 
1 0 

2. (a) 2; (b) 4; (c) 1/3; (d) 1; (e) -2; (f) v'2. 
4. (a) 0.3710678623; (b) 2.371067862; (c) 4.371067862; (they all have the same 

decimal part). 

5. (a) 0.8613531161; (b) 1.113282753; (c) 1.974635869; (c=a+b). 

6. (a) 1.386294361; (b) 2.708050201; (c) 4.094344562; (d) 2.772588722; (c=a 
+b,d=2a). 

Section 7.4 
2. x=(ln9)/(ln5)= 1.365212389. 

3. V X~A SOLVE B 
[1] X~(*B)+(*A)V 

4. (a) In4O=In5+1n8=3.688879454; 
(b) In 1.6=ln8-In5=0.4700036392; 
(c) In25=2·In5=3.218875825; 
(d) In 200 = In8 + 2 ·In5 = 5.298317367 
(e) InYS =(ln5)/2=0.8047189562. 

5. (a) 55751.454; (b) 5.819112628; (c) 169.0522737; (d) 18.46618529. 

6. 8.66 years. 

7. 13.86 years. 

8. 21.97 years. 

9. $3258.10. 

10. logb (b X )=x·logb b=x·l =x. 
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Solutions to exercises 

Chapter 8 
Section 8.1 

1. (a) 5; (b) -0.2; (c) 6; (d) 4; (e) Infinity; (f) Infinity; (g) 2; (h) I. 

Section 8.2 
1. (a) -4, -2.5, -2.1, -2.01, -2.001; (b) -I, -1.5, -1.9, -1.99, -1.999; (c) -2; 

(d) -2. 

2. (a) 2; (b) 0; (c) 5; (d) 24. 

3. (a) y=2x-5; (b) y=2; (c) y=5x+ I; (d) y=24x-54. 

4. (a) 2; (b) 7; (c) 2. 

Section 8.4 
1. Decreasing if x < 2, increasing if x > 2. 

2. Increasing if x < I or x> 3, decreasing if I < x < 3. 

3. (a) Increasing; (b) Decreasing; (c) 127.7. 

4. lOw = 31.4159 square inches per inch. 

5. y=2x+8. 

6. (a) 32 feet/second; (b) 12 feet/second; (c) 52 feet/second; (d) 8 feet/se­
cond2• 

7. (a) -160 feet/second; (b) -320 feet/second (however, it will have already hit 
the ground); (c) -32 feet/second2• 

8. $3,999,950, which is ridiculous. 

9. (a) $I/item; (b) $2/item; (c) 100. 

10. x=6 (5.997 to be more precise). 

11. After 2 hours. 

12. 0.000000002 pounds/mile. 

Section 8.3 
1. (a) F'(x)=3; (b) F'(x)=9x2 -2x+4; (c) F'(x)=4x4+6x2 -8x+5; 

(d) F'(x) = (3/Yx )+(8/x5); (e) F'(x)=3x 1/ 2 +6x-3• 

3. (a) 4; (b) I; (c) 0; (d) II; (e) -1/4. 

5. (a) y=2x-2; (b) y= -x+3. 

6. (-1,16),(2, -II). 

Section 8.5 

1. (a) to>/dx=(8x3 -4)/I6x2; (b) dx/dx=42x6 +50x4+42x; 
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(c) to> / dx =(x+ 2) +(2x + 2)·ln(3x); (d) to> / dx=(lOx3 + 5X )·(3x2+ 5)·(ln 10); 

(e) to>/dx=(e x3 +5x )·(3x2+5); (f) to>/dx=«I/x)-Inx)/eX); 

(g) to> / dx=(1/On 1O»·(2x+5)/(x2+5x+ I); (h) to> / dx=(2x+5)/(x2 +5x 
+ I); (i) to>/dx=(8x+20)(x2+5x+ 1)3; (j) to>/dx=50nx)4/x . 



Solutions to exercises 

2. (a) -42; (b) 21/32=0.65625; (c) 0; (d) 2; (e)DOMAIN ERROR. 

4. y=x-1. 

5. 4e = 10.873. 

Section 8.6 
1. (a) Maximum (4,10); (b) Minimum (1.25, -6.125); (c) Maximum (1,10), 

minimum (3,6); (d) Maximum (-1.46, -3.99), minimum (.457, -11.10); (e) 
Maximum (1, -3), minimum (1.36, -3.11). 

2. (a) Minimum (1,1), maximum (4,10); (b) Minimum (1.25, -6.125), maximum 
(5,22); (c) Minimum (3,6), maximum (5,26); (d) Minimum (1, -9), maximum 
(5,295); (e) Minimum (1.36, -3.11), maximum (5,1885). 

Section 8.7 

1. x = 2500, P = $62,400. 

2. 6 weeks. 

3. 45 by 45 by 30 by 30 by 30. 

4. 156.25 feet by 208.333 feet. 

5. 4 by 4 by 4. 

6. 4.08 by 4.08 by 4.08. 

7. Cut out squares 1.569 on a side. The volume is about 67.6 cubic inches. 

8. $300,20 empty apartments, $18,000. 

9. r = 1.68 inches, h = 3.37 inches. 

10. t = 3} days. 

Section 8.8 
1. (1,4) maximum 

No minimum 
No inflection point 
Increasing if x < 1 
Decreasing if x > 1 
Always concave downward. 

2. (0,4) maximum 
(2,0) minimum 
(1,2) inflection point 
Increasing if x < 0 or x > 2 
Decreasing if 0 < x < 2 
Concave upward if x> 1 
Concave downward if x < 1. 

y 

--~""""-+-x 

y 

--+-::1-+"1"---- x 
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Solutions to exercises 

3. (-3,145) maximum; 
(4, -198) minimum; 

y 

(0.5, -26.5) inflection point 
Increasing if x < -3 or x > 4 
Decreasing if - 3 < x < 4 
Concave upward if x < 0.5 
Concave downward if x> 0.5. 

-+-++-+-+-+++++-X 

4. (0.694,6.71) maximum 
(0.36,4.37) minimum 
(-0.167,4.51) inflection point 
Increasing if x < -0.694 or x >0.36 
Decreasing if -0.694 < x < 0.36 
Concave upward if x> -0.167 
Concave downward if x < -0.167. 

S. (1/ e, -1/ e) =(0.368, -0.368) minimum 
No maximum or inflection point 
Increasing if x > 1/ e 
Decreasing if 0 < x < 1/ e 
Concave upward for all x> O. 

6. (0, I) maximum 
No minimum 
(± I, .601) inflection points 
Increasing if x < 0 
Decreasing if x > 0 
Concave upward if x < -lor x> I 
Concave downward if -I < x < l. 

Chapter 9 
Section 9.1 

--+o...!-+--X 

y 

-"""""o+-+--X 

y 

1. (a) 2x3-4x2+2x+c; (b) lx4+tx3+~x2+x+c; (c) ~X5/2+X-2+C; 

(d) 12Yx +c; (e) 4lnx+c; (f) -te-5x +c. 

2. y=x4+3x2+l. 

3. C=2x2_200x+ 100. 

4. S=2t3-12t2 + 12t. 

S. h= -20t-16t2+500. 

6. y=e3x _l. 

7. A = 'fTX2, circle. 
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Solutions to exercises 

Section 9.2 
1. (a) 2x4-3x2+2x+c; (b) ix6+~X4+X+c; (c) 2e2x -4·lnx+c; 

(d) 4Vx +(3/x)+c; (e) t(4x+I)3/2+c; (f) t(2x2 +lf+c; (g) x+c; 
(h) 2x·lnx-2x+c; (i) ~ln(2x+ I)+c; U> !Qnx)2+ c. 

2. (a) v=t2 -4t+5; (b) s=tt3 -2t2 +5t. 

3. y=( -1/(4x+2»+~. 

4. C=2esx +98. 

Section 9.3 
1. (a) 11.25; (b) 12.12; (c) 10. 

2. (a) 8; (b) ll; (c) 10.666667. 

3. (a) Y 

1 1 3 

(b) -10.666667; (c) 3c is the negative of 2c; (d) The curve in 3 lies entirely 
below the x axis. Area below the x axis is negative. 

4. (a) Y 

--+-~H---X 

(b) 0; (c) The curve is below the x axis and above the x axis in equal 
amounts. Therefore, the negative and positive areas cancel out. 

S. VS~SUMI 

[1] S~+ /(t/)*2 V 

SUM 100 
338350 

Section 9.4 
1. (a) ll; (b) -2; (c) 4.6; (d) 2.545 

2. (a) Y (b) 0; (c) 8. 

--#-+*-I-I--X 

405 



Solutions to exercises 

3. (a) y (b) 0; (c) 8. 

-+-1-++++- x 

4. (a) 0.5; (b) 2.666667; (c) 36. 

Section 9.5 

1. (a) 27; (b) 143i; (c) e-l; (d) 1.75; (e) 8t; (f) pn3. 

2. 18. 

3.2q. 

4. (a) 0; (b) i. 
5. See Exercise 1, Part (c). 

Section 9.6 
1. 4800 feet. 

2·40t· 
3. IO,OOO(e-l)=$17,182.82. 

4. 10,202. 

5. 9 months. 

6. First, write an FN program: 

V Y~FNX 
[1] Y~(o1)X( ) * 2 V (Insert F(x) within the parentheses.) 

Then, you can use the program INTEGRAL as 

A INTEGRAL B. 

7. 30'17=94.248. 

8. 4'17/3=4.189. 

9. 512'17/15= 107.23. 

10. (8/27)(IOVW -1)=9.073. 

Chapter 10 

Section 10.1 

1. (a) 1/2; (b) 1/4; (c) 1/6; (d) 1/3. 

2. (a) 3/16,3/16; (b) 9/16. 

3. (a) 1/13; (b) 1/4; (c) 1/52; (d) 4/13; (e) 1/2. 

4. P(A)=2/5,P(B)=2/5,P(C)= 1/5. 

5. k= 120/274. 
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6. (a) {(H,H,H), (H,H,T), (H,T,H), (H,T,T), (T,H,H), (T,T,H), (T,H,T), 
(T, T, T)}; (b) 1/8; (c) 7/8; (d) 3/8. 

Section 10.2 

1. (a) 2/13; (b) 7/13; (c) 1/13; (d) 6/13. 

2. (a) 11/36; (b) 1/6; (c) 2/9; (d) 5/6. 

3. (a) 1/8; (b) 1/8; (c) 7/8; (d) 1/4. 

4. (a) 5/14; (b) 25/28; (c) 15/56; (d) 5/7. 

5. (a) 25/64; (b) 55/64; (c) 15/64; (d) 5/8. 

6. (a) 21/50; (b) 32/50; (c) 12/30; (d) 9/21. 

7. (a) 3/5; (b) 0.6; (c) 0.4; (d) Dependent. 

8. (a) 0.42; (b) 0.88; (c) 0.28; (d) 0.6. 

9. (a) 0.2401; (b) 0.7599; (c) 0.0081; (d) 0.4116. 

10. (a) 0.06; (b) 0.44; (c) 0.56; (d) 0.3. 

Section 10.3 
1. 2000. 

2. 40,320. 

3.624. 

4. 1024. 

5.243. 

6. (a) 1,816,214,400; (b) 5005. 

7. 2100. 

8. 210. 

9.480. 

10. (a) 252; (b) 105; (c) 126; (d) 126. 

n. (a) 1287; (b) 48; (c) 22,308; (d) 123,552. 

Section 10.4 

1. (a) (~)(~) =0.4545' (b) (~)(~) =0.0303' (c) 1- (~)(~) =0.9697' 

e~) , e~) , e~) , 

(d) (~)(~) + (n(~) =0.2727. 

e;) e~) 

2. (a) (~)(~) =0.0333' (b) (~)(ci) =0.1667' 

e~) , e~) , 
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Solutions to exercises 

(~)(~)+(~)( ~) 
(c) =0.6667· 

(~)( ~)+( n(~) 
(d) =0.8. 

e~) , e~) 

3. (a) 
(:)(~) en 
e~) =0.00013; (b) 13· Part (a) = 0.00168; (c) e~) =0.000013; 

(d) 4· Part (c) =0.00005. 

(:) 
4. (a) e~) =0.00217; (b) 

(~)(~)( n =0.1625. (c) 

e~) , 
(~)(n(D =0.1393. 

e~) , 
(d) O. 

Section 10.5 

I. (a) (~)(0.3)2(0.7i=0.2646; (b) (~)(0.3)0(0.7)4=0.2401; 

(c) 1-Part (b)=0.7599; (d) (: )(0.3)4(0.7)°=0.0081. 

2. (a) U g )(0.8)10(0.2)0 = 0.1074; (b) e ~ )(0.8)8(0.2i + e g )(0.8l(0.2) 1 + 

( :g )(0.8)10(0.2)0 = 0.6778; (c) (:g )(0.8)10(0.2)0 + ( I g )(0.8)9(0.2)1 = 0.3758. 

3. (a) (~)(0.5)6(0.5)0=0.015625; (b) (~)(0.5)3(0.5)3=0.3125; 
(c) 1-Part(a) =0.984375; (d) 0.5. 

4. (a) (D(0.1)2(0.9i=0.0729; (b) (g)(O.l)0(0.W=0.59049; (c) 4·(0.1)2=0.04. 

5. (a) (I~ )(0.3)0(0.7)12+ ( I~ )(0.3)1(0.7)11 + ( I~ )(0.3)2(0.7)10+ ( I; )(0.3)3(0.7)9 

=0.4925; 

(b) (I~ )(0.3f(0.7)5 + ( In(0.3)8(0.7)4+ ( I~ )(0.3)9(0.7)3 + ( :~ )(0.3)10(0.7)2+ 

( :~ )(0.3)11(0.7)1 + ( g )(0.3)12(0.7)0=0.0386. 

Section 10.6 
(e -4)(4°) (e -4)(42) 

I. (a) !O! =0.0183; (b) !2 =0.1465; 

_(e-4)(40) (e-4)(41»)_ . 
(c) 1 !O + !I -0.9084, 

(d) 

(e -4)(4°) (e -4)(41) (e -4)(42) (e -4)(43) (e -4)(44) (e -4)(45) 
!O + ! 1 + !2 + !3 + !4 + !5 = 

0.7851. 
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(e -1°)(100) 
2. (a) !O =0.000045; 

_ ( (e -10)(10°) (e -10)(101) (e -IO)(HY) ) _ . 
(b) I !O + !I + !2 -0.9972, 

(e -10)(100) (e -10)(101) (e -1O)(I()2) (e -IO)(HP) (e -10)(10") 
(c) !O + ! I + !2 + !3 + !4 = 

0.0292; 
(e -10)(101) 

(d) ! I = 0.000454. 

3. Done as in Problem 2, except that u = 2.5 instead of 10. 

(a) 0.0821; (b) 0.4562; (c) 0.8912; (d) 0.2052. 
(e- 3 )(3°) (e- 12)(120) (e- 12)(l21) (e- 12)(l21O) 

4. (a) !O =0.0498; (b) !O + !I + ... + !IO 

=0.3472; 
_( (e- 9)(9°) (e- 9 )(91) (e- 9)(97))_ 

(c) I !O + !I + ... + !7 -0.6761. 

(e-IO)(loo) (e-IO)(IO I ) (e- IO)(Hf) 
5. (a) !O + !I + ... + !4 =0.0293; 

_ ( (e -10)(100) (e -10)(101) (e -1O)(I()20) )_ 
(b) I !O + !I + ... + !20 -0.0016. 

( 
(e -25)(25°) (r 25)(251) (e -25)(2519) ) _ . 

6. (a) 1- !O + ! I + ... + !I9 -0.8664, 

(e -25)(25°) (e -25)(251) (e -25)(25 10) 
(b) !O + !I + ... + !IO =0.0006. 

Chapter 11 
Section 11.1 

1. (a) 5 ? 12; (b) ? (5p12); (c) (5 ? 10)+5; (d) (5 ? 11)-6. 
3. No. 
4. (b) 3 F's, 6 D's, 3 C's, 10 B's, 6 A's. 
5. V DESCENDING ~ REARRANGE SAMPLE 

[1] DESCENDING ~ SAMPLE[ t SAMPLE] V 

6. I 17, 5 18's, 9 19's, 8 20's, 2 21's, 3 23's, I 24, I 30. 

7. 3 in 350-399, 2 in 400-449, 5 in 450-499, 9 in 500-549, .3 in 550-599, 4 in 
600-649, 2 in 650-699, 2 in 700-749, 2 in 750-800. 

8. * * * 
* * 
* * * * * ••••••••• 
*** 
* * * • 
* • 
• • 
•• 
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Solution~ to exercises 

Section 11.2 
1. V MD~MEDIAN SAMPLE 

[1] -«2Ip SAMPLE) = 0)/ EVEN 
[2] ODD: MD~(SORT SAMPLE)[(1 +p SAMPLE)+2] 
[3] _0 
[4] EVEN: MD~«SORT SAMPLE)[(P SAMPLE) +2+ (SORT SAMPLE) 

[(1 + p SAMPLE) + 2]) + 2 
V 

2. V M~ MODE SAMPLE 
[1] FREQUENCIES~+ /(SAMPLE o. = SAMPLE) 
[2] MOST ~I/ FREQUENCIES 
[3] M~SAMPLE [(FREQUENCIES= MOST)/'p FREQUENCIES] V 

3. V R ~ RANGE SAMPLE 
[1] R~(lSORT SAMPLE)-(LSORT SAMPLE) V 

4. Mean, 77.39; median, 82.5; mode, 83; range, 45; variance, 175.3; standard 
deviation, 13.24. 

5. Mean, 20.1; median, 19.5; mode, 19; range, 13; variance, 6.09; standard de­
viation, 2.47. 

6. Mean, 546.7; median, 525; modes, 500, 510, 520, 540, 610, 650, 720; range, 
440; variance, 11332; standard deviation, 106.45. 

7. Mean 2.706, standard deviation 0.606789142 

8. (a) Mean, 20.44; median, 14; mode, 14, 15; the median 
(b) Mean,5.1; median,5; mode, 5; the mean 
(c) Mean, 5.875; median, 6.5; modes, 4, 7; the mean. 

9. Select a random sample of students and find their mean weight. 

10. Keep the machine oiled to reduce the variance. 

n. V V~ VAR SAMPLE 
[1] V~«+ /SAMPLE*2)+p SAMPLE)-(MEAN SAMPLE) *2 V 

12. 2 F's, 2 D's, 18 C's, 8 B's, 0 A's. 

13. 2.3547,3.1416,2.7183, -7.3891. 

14. V Q~P ROUND N 
[1] Q~(10* - P)xLO.5+NX10*P V 

Section 11.3 
1. 0.0231. 

2. 0.6826. 

3. 0.0914. 

4. 0.0651. 

5. (a) 0.9191; (b) 459. 

6. 2.31 percent A's, 13.58 percent B's, 68.26 percent C's, 13.58 percent D's, 2.31 
percent F's. 

7. 0.0067. 

8. About 2 students. 
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Solutions to exercises 

Section 11.4 

1. (a) 0.1583; (b) 0.5; (c) 0.5332. 

2. (a) 0.0001; (b) 0.0013. 

3. 0.9997. 

4. (a) 0.9769; (b) 0.9538. 

S.0.8633. 

Chapter 12 

Section 12.1 
1. (a) 

(d) 

(b) 

(e) 

(c) 

2. (a) '17/4=0.7854; (b) '17/10=0.3142; (c) -'17/20=-0.1571; (d) 4'17/3= 
4.1888; (e) -'17/9= -0.3491. 

3. (a) 108; (b) -240; (c) 114.59; (d) 15; (e) -85.94. 

S. V S~R LENGTH T 
[1] S~RxTV 

Section 12.2 
2. sin(9)=5/13; cos(9)=-12/13; tan(9)=-5/12; cot(9)=-12/5; 

sec(9) = -13/12; cos(9)= 13/5. 

3. sin(9)=-3/5; cos(9)=4/5; tan(9)=-3/4; cot(9)=-4/3; sec(9)=5/4; 
csc(9)=-5/3. 

4. sin(9)=3/5; tan(9) = -3/4; cot(9) = -4/3; sec(9)= -5/4; csc(9) = 5/3. 

S. sin(9)=-4/5; cos(9)=-3/5; cot(9)=3/4; sec(9)=-5/3; csc(9)=-5/4. 

6. sin(600)= Y3 /2=0.8660; cos(600) = 1/2=0.5; tan(600) = Y3 = 1.7321; 
cot(600)= 1/Y3 =0.5774; sec(600)=2; csc(600)=2/Y3 = 1.1547. 

7. sin(OO)=O; cos(OO) = 1; tan(OO)=O; cot(OO) = undefined; sec(OO)= 1; 
csc(OO) = undefined. 
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8. sin(45 0) = 1/V2 =0.7071; cos(45 0) = 1/V2 =0.7071; tan(45 0) = I; 
cot(45°)=I; sec(45°)=V2 =1.4142; csc(45°)=V2 =1.4142. 

9. sin 150° = 1/2=0.5; cos(1500) = - V3 /2= -0.8660; tan(1500)= -1/V3 = 
-0.5774; cot(l500)=-V3 =-1.7321; sec(l500)=-2/V3 =-1.1547; 
csc(l500) =2. 

10. sin(225°)=-I/V2 =-0.7011; cos(225°)=-I/V2 =-0.7071; tan(225°)=I; 
cot(225°) = I; sec(225°)=-V2 =-1.4142; csc(225°)=-V2 =-1.4142. 

11. V S~X SINE Y 
[1] S~ Y+«X*2)+(Y*2»*5 V 

12. V C~X COSINE Y 
[1] C~X+«X*2)+(Y*2»*.5 V 

13. V T~X TANGENT Y 
[I] T~(X SINE Y)+(XCOSINE Y) V 

14. V C~X COTANGENT Y 
[1] C~(X COSINE Y )+(X SINE Y) V 

V S~X SECANT Y 
[1] S~1 +(X COSINE Y) V 

V C~X COSECANT Y 
[1] C~1 +(X SINE Y) V 

Section 12.3 
1. (a) 0.9975; (b) 0; (c) -0.4161; (d) 2; (e) 3.732; (f) Undefined. 

2. (a) 3.732; (b) 0.9659; (c) 0.5; (d) 3.0407; (e) -2; (f) -0.4142. 

3. (a) 0.5832; (b) 0.9664; (c) -2.6466; (d) 0.9051. 

Section 12.4 

Degrees Radians cosX cot X cscX 

0 O. I. 9.9E99 9.9E99 
15 0.2618 0.9659 3.7321 3.8637 
30 0.5236 0.8660 1.1321 2. 
45 0.7854 0.7071 I. 1.4142 
60 1.0472 0.5 0.5774 1.1547 
75 1.3090 0.2588 0.2679 1.0353 
90 1.5708 O. O. I. 

105 1.8326 -0.2588 -0.2679 1.0353 
120 2.0944 -0.5 -0.5774 1.1547 
135 2.3562 -0.7071 -I. 1.4142 
150 2.6180 -0.8660 -1.7321 2. 
165 2.8798 -0.9659 -3.7321 3.8637 
180 3.1416 -I. -9.9E99 9.9E99 
195 3.4034 -0.9659 3.7321 -3.8637 
210 3.6652 -0.8660 1.7321 -2. 
225 3.9270 -0.7071 I. -1.4142 

412 



240 
255 
270 
285 
300 
315 
330 
345 
360 

Solutions to exercises 

4.1888 -0.5 0.5774 -1.l547 
4.4506 -0.2588 0.2679 -1.0353 
4.7124 o. o. -I. 
4.9742 0.2588 -0.2679 -1.0353 
5.2360 0.5 -0.5774 -1.1547 
5.4978 0.7071 -I. -1.4142 
5.7596 0.8660 -1.7321 -2. 
6.0214 0.9659 -3.7321 -3.8637 
6.2832 I. -9.9E99 -9.9E99 

Ranges 

-I..;cosx"; I 
-00"; cotx"; 00 

cscx;;.1 or cscx..;-I 

y=cos(x) 

I 
y=cot(x) 

211 311-11 

T 
11'" 7r 3n 211'" 
2: 2 

n 
413 



Solutions to exercises 

Section 12.5 
1. (a) 45°; (b) 90°; (c) 135°; (d) 30°; (e) 39°; (f) 34°; (g) -50.2°; (h) 45°. 

2. (a) I; (b) -0.5; (c) v'3 ; (d) -4/3; (e) Vi; (f) 30°; (g) -30°; (h) O. 

3. V Y<c-ARCSEC X 
[1] Y<c--2o(1+X) V 

Section 12.6 

1. b= V44 =6.63, a =56.44°, /3=33.56°. 

2. b=32.69, c=55.62, a=54°. 

3. 14'<W. 

4. 945.6 feet. 

5. 14.93°. 

6. 65.2 feet. 

7. 1=237.86 feet. 

8. b = 41.14 feet, h = 28.32 feet, A = 582.5 square feet. 

Section 12.7 
1. b=7.07, c=13.66, y=105°. 

2. /3=61.1°, y=68.9°, c=85.25. 

3. a=53.13°, /3=90°, y=36.87°. 

4. c=V7 =2.65, a=79.lo, /3=40.9°. 

5. a=7.98, /3=33.6°, y=84.4°. 

6. 65.53°. 

7. 971.83 yards. 

9. V A <c- SIDES AREA ANGLE 
[1] A <c-.5 X SIDES [1] X SIDES [2] X SIN DEGREES ANGLE V 

10. 80.62 square units. 
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A 

ADJOINT 116 
ANTIDIFF 250 
ARCCOS 352 
AREA 255 
ARCSIN 352 
ARCTAN 353 

B 

BAR 3\0 
BINOMIAL 294 

C 

COFACTOR 112 
COFACTORS 1 \3 
COMBINA TlONS 286 
COMPLEMENT 9 
COS 344 
COT 345 
CRAMERS 122 
CSC 345 
CUMPOISSON 300 

D 

DEAL 304 
DEGREES 333 
DERIVATIVE 2\0 
DET 107 
DET 114 

Program Index 

DIFF 214 
DIFFERENCE 8 
DISTRIBUTE 307 
DISTRIBUTION 308 

E 

EQUAL 3 

F 

FN 129 

G 

GRAPH 
Program 6.3, Plotting a Function 138 
Program 11.3, Bar Graph of a Distribution 

307 

H 

HYPERGEOMETRIC 

I 

INNER 51 
INTEGRAL 258 
INTERSECT 6 
INVERSE 97 
INVERT 118 
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Program index 

L 

LIMIT 204 

M 

MEAN 312 
MINOR 111 
MULTIPLY 62 

N 
NORMAL 321 

P 

PAIRS 129 
PERMUTATIONS 285 
POISSON 299 
POLY 215 

Q 
QUADRA TIC 157 

416 

R 

RADIANS 333 
ROOT 168 
ROWFORM 89 

s 
SEC 345 
SETTHEORY 13 
SIN 344 
SLOPE 149 
SORT 305 
STDEV 315 
SUBSET 2 

T 

TAN 344 
TRIGPAIRS 347 

u 
UNION 11 

v 
VARIANCE 315 



A 

Absolute value 132 
Acceleration 220 
Adding lines to a program 380 
Adjoint 116 
Algebraic function 177 
Algebraic system 15 
Algorithm for matrix inversion 95 
Altering a matrix 56 
Altering a vector 48 
Angie 330 
Antiderivative 242 
Antidifferentiation formulas 247,248 
Area under a curve 252ff 
Argument 41 
Assignment +- 366 
Asymptote 172 
ATTN key 375 

B 

Bar graph 306 
Biconditional 34 
Binomial random variable 294 
Boolean algebra laws 15,37 
Branching --+ 374ff 

C 

Cartesian plane 134 
Catenation 10, 48, 56 
Central limit theorem 326 

Subject index 

Certain event 273 
Chain rule 224 
Circular function 0 344, 352, 353 
Cofactor III 
Collectively exhaustive sets II 
Combinations 286 
Complement of a set 8, 273 
Compound interest 184, 185, 197 
Compression 370 
Computations with logarithms 193 
Concavity 237 
Conditional probability 279 
Conditional statement 32 
Conjunction /\ 3, 26 
Continuous distribution 318 
Continuous growth 186 
Correcting typographical errors 380 
Cost-benefit equation 175 
Counting principle 283 
Cramer's rule 120 
Critical value 227 
Cumulative probability 300 

D 

Definite integral 257,258 
Degree measurement of an angie 330 
Deleting a line from a program 380 
DeMorgan's laws 16, 38 
Dependent variable 125 
Derivative 208, 209, 211 
Determinant 103 
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Index 

Discrete distribution 318 
Disjoint sets 6 
Disjunction V 5, 27 
Displaying a program 381 
Domain of a function 125, 126 
Domino function r:g 98 
Drop J, 57 
Dyadic function 369 

E 
e 181,203 
Editing procedures 378ff 
Elementary row operations 78 
Empty set 2 
Endpoint extrema 230 
Epsilon ( I 
Equally likely rule 275 
Equal matrices 54 
Equal sets 3 
Equal vectors 46 
Equation of a line 150 
Event 272 
Exclusive disjunction 30 
Experiment 272 
Exponential 180 

APL. 181 
Exponential equation 196 
Exponential function 177 
Exponential growth 183 

F 

Factorial! 103, 284 
Fallacy 41 
First derivative test 228 
Floor function L 317 
Fractional exponents 180 
Frequency distribution 306 
Function 125 
Functional notation 125 
Fundamental theorem of algebra 165 
Fundamental theorem of calculus 263 

G 

Gaussian elimination 74, 80 
Global variable 373 
Grade up function 4> 305 
Graph 135 

418 

H 

Horizontal line 145 
Hyperbola 172 
HyPergeometric random variable 289 

I 

Identity matrix 69, 91 
Implication 33 
Impossible event 273 
Inconsistent system 76 
Increasing, decreasing functions 217 
Indefinite integral 242 
Independent eyents 281 
Independent variable 125 
Indexing 

with matrices 55 
with vectors 48 

Inflection point 238 
Innerproduct 50,63,371 
Inserting lines in a program 380 
Instantaneous rates of change 220 
Intersection n 6, 273 
Inverse functions 188 
Inverse of a matrix 92 
Inverse trigonometric functions 35 Iff 
Iota, 2 
Iverson, K. E. 109 

L 

Law of cosines 360 
Law of sines 358 
Length of a curve 271 
Limit of a function 200 
Linear equation 71, 146 
Linear function 142 
Line label 376 
Literal data in APL 366 
Local variable 374 
Logarithmic function 188 

APL@ 188 
properties 193 

Logically equivalent statements 37 
Logically true statement 37 
Logical statement 25 

M 

Marginal cost 221 
Matrix 45, 54 
Mean 312 



Median 313 
Method of cofactors 113 
Method of substitution 248 
Minor 110 
Mode 314 
Monadic function 368 
Multiplication of matrices 61 
Mutually exclusive sets 6 

N 

Naturallogarithm 188 
Negation - 5, 28 
Negative exponents 180 
Nonsingular matrix 93, 118 
Normal distribution 319 
Numerical data in APL 366 

o 
Oblique triangle 358 
Order of a matrix 54 
Order of operations in APL 367 
Outer product 0 309, 370 

p 

Parabola 152 
Parallel processing 49, 60 
Period of a function 346 
Permutations 285 
Poisson random variable 298 
Polynomial 161 
Power rule for differentiation 224 
Probability density function 319 
Probability distribution 289 
Probability function 274 
Product rule for differentiation 244 
Profit maximization 233 
Program definition in APL V 374 
Program revision 378ff 
Properties of matrices 66f 

Q 
Quad D 369 
Quadratic equation 155 
Quadratic formula 155 
Quadratic function 152 
Quote quad D 369 
Quotient rule for differentiation 225 

R 
Radian measurement of an angle 330 
Radioactive half life 196 
Random number generator? 303 
Random sample 303 
Range 

of a distribution 315 
of a function 125 

Rank 49 
Rational function 170 
Rational number 42 
Real line 133 
Real number 133 
Recursion 289 
Reduction 47,50,60,370 
Redundant system 76 
Relat;ve maxima and minima 227 
Rho p 20,49,53 
Right triangle 354 
Root 164, 170 
Row reduced form 85 

S 
Sample space 272 

Index 

Sampling distribution for the mean 326 
Second derivative 220, 237 
Set I 
Set builder notation 
Set difference 7 
Slope 

of a curve 208 
of a line 143, 149 

Standard deviation 315 
Standard normal distribution 319 
Standard position of an angle 333 
Statistic 311 
Subprogram 3, 372 
Subset C 2 
Summation symbol ~ 252 
Symmetric difference II 
System of linear equations 73, 79, 146 

APL solution 99 
matrix representation 74 

T 
Take i 57 
Tangent line 209 
TRACE command 382ff 
Transcendental functions 177 
Transpose ~ 57 
Trigonometric functions 335, 336 
Trigonometric identities 337, 338 
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Index 

u 
Union U 9, 273 
Universal set 8 

v 
Valid argument 35,41 
Variance 315 
Vector 45 
Velocity 218 
Venn diagram 6, 21 
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Vertex 154 
Vertical line 145 
Volumes of solids of revolution 269 

w 
VVorkspaces 365 

y 

y intercept 144 
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