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Preface

The topics covered in this text are those usually covered in a full year’s
course in finite mathematics or mathematics for liberal arts students. They
correspond very closely to the topics I have taught at Western New
England College to freshmen business and liberal arts students. They
include set theory, logic, matrices and determinants, functions and graph-
ing, basic differential and integral calculus, probability and statistics, and
trigonometry. Because this is an introductory text, none of these topics is
dealt with in great depth. The idea is to introduce the student to some of
the basic concepts in mathematics along with some of their applications. I
believe that this text is self-contained and can be used successfully by any
college student who has completed at least two years of high school
mathematics including one year of algebra. In addition, no previous
knowledge of any programming language is necessary.

The distinguishing feature of this text is that the student is given the
opportunity to learn the mathematical concepts via A Programming Lan-
guage (APL). APL was developed by Kenneth E. Iverson while he was at
Harvard University and was presented in a book by Dr. Iverson entitled 4
Programming Language' in 1962. He invented APL for educational purpo-
ses. That is, APL was designed to be a consistent, unambiguous, and
powerful notation for communicating mathematical ideas. In 1966, APL
became available on a time-sharing system at IBM. Today, APL is gaining
wide acceptance in such fields as business, insurance, scientific research,
and education. The reason for this is that APL is one of the most concise,
versatile, and powerful computer programming languages yet developed.
Programs requiring several steps in other computer languages become very

'4 Programming Language by Kenneth E. Iverson, New York: John Wiley and Sons, (1962).
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Preface

concise in APL, if a program is needed at all. This is both because many
primitive functions are available directly on the APL keyboard and be-
cause such APL operations as + and X can be applied to arrays of any
size (as well as to scalars). Yet, in spite of power and sophistication of
APL, it is not a difficult language to learn. One can use APL to solve
mathematical problems immediately after only a few minutes of instruc-
tion.

Conventional mathematical notation and APL notation are presented in
parallel throughout the text. Thus, if one desires, it is possible to ignore the
APL and still use this text as a standard survey-of-mathematics text.
Alternatively, one may use the text in conjunction with an APL terminal.
APL notation corresponds closely to standard mathematical notation, and
many mathematical processes are executed very easily in APL. By using
the computer, the student can save a great deal of time doing tedious
calculations and can concentrate more on the principles and concepts of
the mathematics. In addition, the APL programs tend to reinforce these
principles and concepts. It is my experience that by using APL, the student
may learn the mathematical concepts better while finding the learning of
mathematics meaningful and enjoyable. As an important bonus, he will be
learning a powerful programming language which he will then be able to
use in many other courses as well as in the “real world.”

The mathematical concepts and the APL notation are presented in
parallel throughout the text because I believe that the APL can best be
learned as needed in the development of the mathematics rather than as a
separate topic. However, it might also be quite useful to have an APL
reference for those who have not previously been exposed to the APL
language. Therefore, I have included as an appendix an introduction to
APL, including the writing and revising of APL programs. This appendix
can be quickly perused at the start of the course and then referred to as
needed throughout the course.

Finally, I would like to express my appreciation to Dr. Howard A. Peelle
of the University of Massachusetts for his encouragement and his
numerous valuable suggestions on ways to improve upon this text. Also, I
would like to thank the many students at the University of Massachusetts
and at Western New England College who used the preliminary versions of
this test for their preserverance, encouragement, and suggestions.

July, 1977 Edward J. LeCuyer, Jr.
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Set theory

When one thinks of the new math introduced in the public schools about
1960, the first mathematical notion that comes to mind is that of sets.
Using the notion of set, elementary school teachers are supposed to be able
to better explain the basic ideas of arithmetic. Thus, one could conclude
that every adult should know some set theory in order to carry on an
intelligent conversation with elementary school children (about mathemat-
ics). Sets do provide a good foundation for many topics in mathematics.
Therefore, set theory is an ideal topic to begin a survey of mathematics.

1.1 Sets

A set is a collection of objects. The objects in the set are called elements.

Notation

Sets are designated by capital letters. In conventional mathematical nota-
tion, the elements of a set are enclosed in braces. For example,

A={1,3,57)
B={x|x is a student in this class}.

The second form of a set above is known as set builder notation. The
symbol | is read as “such that.”
In APL, the set A above is designated by

A<13567.

To express the fact that an element x “belongs to” a set 4, we write
X E A. The symbol € is read “belongs to.” Thus, 3€E A is true. (3 belongs
to the set A4.) However 4¢& A. (4 does not belong to 4.) Notice that € is a
primitive function on the APL keyboard. It yields a 1 (for true) or a 0 (for

1



1 Set theory

false). Thus, consider the following examples in APL:

A<1357
3€A
1 3 does belong to A4.
4€A
0 4 does not belong to A4.
1234€A 1 and 3 do belong to 4, but 2 and 4
1010 do not belong to 4. Note that you
get a set (of 1I’s and 0’s) when you
ask (set) E(set)?
The empty set

It is possible for a set to have no elements. Such a set is called the empty set
(or null set). In mathematics, the empty set is symbolized by @. For
example, if

A={1,3,57} and B={2,4,6,8},

then the set of elements common to 4 and B is the empty set ¢J.

In APL, one can express the empty set by (0. The symbol ¢ (iota) is
located above the I on the APL keyboard. If N is a nonnegative integer,
then N yields the set of positive integers up to and including N. Thus, 0
yields the set of positive integers up to and including 0. Since there are no
such positive integers, (0 is the empty set. If one enters (0 on the terminal
and then pushes the RETURN key, the computer prints nothing. In other
words, it yields the empty set.

A<0 The name A is given to 0.
A The value of 4 is requested.
The computer responds with nothing.

Subset

Given two sets A and B, A is a subset of B if every element belonging to A
also belongs to B. In mathematics, this is symbolized by A C B. For
example, if

A={1,3,57} and B={2,4,6,8} and C={1,2,3,4,56,7,8},

then 4 C C and BCC.

Let us now consider an APL program for determining whether or not a
set A is a subset of a set B. (For a general discussion of programs, refer to
the appendix.)

Program 1.1 SUBSET

VIS—A SUBSET B The result of this program, IS, will
be either 1 (yes) or 0 (no).
[ /'§<—(/\/A€B) Ges) (o)



1.1 Sets

To understand this program, consider the following examples:

A<1357
B<1234
C<12345678
AEB A€EB yields a vector of 1I’'s and 0’s. It
1100 tests each element of A to see if it
belongs to B. 1 and 3 do, but S and 7
don’t. A/1 10 Oyieldsa0. A/ is
a logical operator. It will yield 1 only
if all of the numbers following it are
I’s.
N/AEB
0
A SUBSET B
0 A is not a subset of B.
AEC
1111 Every element belonging to 4 also
belongs to C.
N/AEC
1 Since A€C is a complete vector of
I’s, then A/AECis 1.
A SUBSET C
1 A 1s a subset of C.
Equal sets

Two sets A and B are said to be equal if both A C B and B C 4. In other
words, 4 and B have exactly the same elements. In conventional mathe-
matical notation, the symbol used to express the fact that a set 4 equals a
set B is A= B. For example, if

A={1,3,57,9}) and B={57,3,1,9},

then A=B, since AC B and B C A.
An APL program for the equality of two sets which uses the above
program SUBSET as a subprogram' follows:

Program 1.2 EQUAL
VIS~ A EQUAL B

[11 IS<(A SUBSET B)/\(B SUBSET A)
v If (A SUBSET B) is 1 (yes), and also
(B SUBSET A) is 1 (yes), then IS is 1.

1A subprogram is a program used within another program.
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Otherwise IS is 0 (no).) (1 A1 yields
1, but 1A0, 0A1 and 0AO all yield

0.
Examples
A<13579
B<57319
C—~12345
A EQUAL B
1 True.
A EQUAL C
0 False.
D<11355799
A EQUAL D Since the sets 4 and D have the same
1 elements, they are equal sets. We do
not list an element more than once in
a set, since by so doing, we do not
create a new set.
EXERCISES
1. Let A={1,3,57,9), B={24,6,8), C={1,2,3,4}, D={6,2,8,4), E=g, and

F={1,2,3,4,5,6,7,8,9}. Determine whether the following are true or false:
(a) 5€4

(b) SEB

(c) ACF

d) Cc4

(¢) ECB

& BcD

(®) B=D

(h) B=C

. Repeat Exercise 1 on an APL terminal, using the programs SUBSET and

EQUAL where appropriate.

. List the elements of the following sets:

(a) The subset of the set F in Exercise 1 consisting of elements divisible by 3.
(b) The set of vowels in the word “mathematics.”

(c) The set of months in a year.

(d) The set of colors in the rainbow.

Let
A<'APL’
B«'MATE’
M <«—'MATHEMATICS’
S«'SETTHEORY’
P<'PAL’



1.2 Operations with sets

Evaluate the following on an APL terminal:

(a) ‘E’'ES

(b) ‘Les Refer to the appendix for a discussion of
representing literals in APL.

(c) BeM

(d N/BEM

(¢) B SUBSET M
(f) ASUBSET B
(g) AeB

(h) A/AEB
(i) AEQUALB
() A EQUAL P

. List all subsets of the set A ={a,b,c,d}. How many subsets are there?
. In general, if a set has n elements, how many subsets does it have?

. If {x,xz,y}={l,2,4}, find x and y.
Let

® N W

A<1357
B—1234
C—2468

Evaluate the following on an APL terminal and see if you can figure out what

they do:

(a) AeB \/ is the logical function “or.” 1\/0,
0\/1, 1\/1 all yield 1, while 0\/0 yields
0. Also, \//A yields 1 if at least one 1
appears in 4, where A4 is a vector of all
0’s and I’s. ~ is the logical operator
“complement.” ~1 yields 0 and ~O0
yields 1. Also, ~A changes the I'sin 4 to
0’s and the 0’s in 4 to I’s.

(b) V/AEB
(c) AeC

(d V/AecC
() ~AEC

® v/1010
(8 V/0000
() V/~A€C

1.2 Operations with sets

There are various operations that can be used to create new sets from old
sets. The first of these is intersection.



1 Set theory

Figure 1.1 A Venn diagram.

Intersection

Let 4 and B be two sets. The intersection of A and B, symbolized by
AN B, is the set of elements common to 4 and B. Using set builder
notation,

ANB={x|xEA and xEB }.

It will be helpful for us to visualize the sets formed by certain set
operations. To do this, we shall use Venn diagrams.? Let the elements of 4
and B be schematically represented by the points inside the circles labeled
A and B in Figure 1.1. Then, the intersection 4 N B is represented by the
points in the shaded region.

Examples

Let A={1,3,5,7}, B={1,2,3,4}, and C={2,4,6,8}. Then, AN B={1,3}
andANC=g.

If A and C are two sets such that AN C=¢J, then A and C are said to
be disjoint or mutually exclusive. If A and C are disjoint, then the Venn
diagram would consist of two nonoverlapping circles.

We now have the following program for intersection. This program
takes a set 4 on the left and a set B on the right and creates a new set,
called COMMON, since the elements in the intersection are those common
to both 4 and B.

Program 1.3 INTERSECT
VCOMMON<« A INTERSECT B

[1] COMMON<—(AEB)/A
v

To understand how this program works, consider the following exam-
ples:

A<1357
B<—~1234
C—24638

2Venn diagrams are named after their inventor, John Venn (1834-1923), and English logician.
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AEB
100

1100/A
3

A INTERSECT B
3

BEA
010

1010/B
3

B INTERSECT A
3

AEC
000

0000/A

A INTERSECT C

Set difference

1.2 Operations with sets

AEB yields a vector of 0’s and I’s.
The 1’s correspond to the elements in
A which are also in B. The O’s corre-
spond to the elements in A which are
not in B.

1 1 0 0/A picks out the elements of
A corresponding to the I’sin1 1 0
0.

To execute the program, type A IN-
TERSECT B. The result is the same
as that of (A€ B)/A.

Can you explain this result?

Can you explain this?

This result is the empty set. Why?

The empty set. A and C are disjoint.

The difference between two sets A and B, conventionally symbolized by
A — B, is the set of elements of 4 which are not in B:

A—B={x|xEAbutx&B}.

The Venn diagram for 4 — B is shown in Figure 1.2

Figure 1.2 A Venn diagram. A-B is the shaded region.
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A C

Figure 1.3 A Venn diagram of two disjoint sets.

Examples
Let A={1,3,5,7}, B={1,2,3,4}, and C={2,4,6,8}. Then, A —B={5,7}
and B—C={1,3} and 4—C={1,3,5,7}=A4. Notice that if ANC=(,
then 4 — C=A. To see why, study the Venn diagram of Figure 1.3. Also,
for any set, 4 — A =. Let us consider a program for set difference.

Program 1.4 DIFFERENCE

VD« A DIFFERENCE B
[1] D«(~AEB)/A
\

To understand how this program works, consider the examples:

A<1357
B—1234

AEB
1100 As before.

~AEB ~(1 1 0 0) changes 0’s to 1’s and
0011 I’s to 0s.

0011/A
57

A DIFFERENCE B
57

The universal set
The universal set, U, in any discussion, consists of all of the elements under
consideration in the discussion. When considering the complement of a set,
it is important to know the universal set.

The complement of a set

The complement of a set A, symbolized by A’, is the set of elements that are
not in 4 but are still in the universal set U. Thus, A'=U—A4.
In Venn diagrams, the universal set is all of the points in the rectangle.



1.2 Operations with sets

Figure 1.4 Venn diagram showing 4'= U—A4.

All other sets in the discussion are subsets of U. They are denoted by
circles inside of U. The Venn diagram for A’ is given in Figure 1.4 by the
shaded region.

Example

Let 4A={1,3,5,7}. To get A’, we need to know the universal set U. If
U={1,2,3,4,5,6,7,8}, then 4'={2,4,6,8}. But, if U={1,3,5,7,9}, then
A'={9}. If A=U, then A'=g. If A=, then A’=U.
The following program for complement is quite obvious.
Program 1.5 COMPLEMENT
VC—COMPLEMENT A The program DIFFERENCE is used
[11 C<«UDIFFERENCE AV as a subprogram.

Example

U<12345678
A<1357

U DIFFERENCE A
2468

COMPLEMENT A
2468

(U DIFFERENCE A) EQUAL (COMPLEMENT A)
1 True.

Union

The union of two sets A and B, symbolized by AU B, is the set of all
elements appearing in 4 or in B or in both.

AUB={x|xEAorxEB}.

(Here, “or” means one or the other or both.) The Venn diagram for AU B
is shown in Figure 1.5.
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Example

If A={1,3,5,7} and B={1,2,3,4}, then AUB=(1,2,3,4,5,7}. [Note:
A—B=({57) and BU(4—-B)=(1,2,3,4,5,7}=AUB]

In the Venn diagram in Figure 1.6., A — B is shaded in using horizontal
lines, while B is shaded in using vertical lines. Notice that AU B=B U (4
— B), and that BN (4 — B)=@, or B and 4 — B are disjoint.

Before considering a program for union, let us consider the use of the
comma in APL. The operation of placing a comma between two sets is
referred to as catenation.

Examples

AB
13571234

AC
13572468

The comma between two sets (catenation) just chains the elements of
the second set onto the end of the first set. If the sets are disjoint, as are A4

10



1.2 Operations with sets

and C, the result is 4 U C. Since B and 4 — B are always disjoint, then B, A
DIFFERENCE B should yield the same result as A U B.
This suggests the following program for union:

Program 1.6 UNION
VEITHER < A UNION B
[1] EITHER<B,A DIFFERENCE B V
Example

A<1357
B«~123 4

B, A DIFFERENCE B
123457

A UNION B
123457

Collectively exhaustive sets

Two sets are said to be collectively exhaustive if their union is the universal
set.

Example

Let 4={1,3,5,7} and B={2,4,6,8} and let the universal set be U=
{1,2,3,4,5,6,7,8}. Then A and B are collectively exhaustive since A U B=
U.

For any set 4, A and its complement A’ are always collectively exhaus-
tive since A U A’=U. They are also mutually exclusive, since ANA'=@.

Symmetric difference of two sets

One other operation on two sets is the symmetric difference. The symmetric
difference of a set A and a set B is the set of elements that are in 4 or in B
but not in 4 N B. The standard mathematical symbol for this operation is
AAB. Notice that AAB=(A—B)U(B—A). A Venn diagram for this
operation is shown in Figure 1.7.

Figure 1.7 Venn diagram of 4AB.
11



1 Set theory

Example

Let A={1,3,5,7} and B={1,2,3,4}. Then, 4 — B={5,7} and B={2,4},
so (A—B)U(B—A)={2,4,5,7}, or AAB={2,4,5,7)}.

It will be left as an exercise for the student to write a program for the
symmetric difference of 4 and B.

EXERCISES

1. Consider the following universal set U and subsets 4, B, C, and D.
U<~1234567890

A<~0369
B—~24638
C—01234
D<~56789

Find the following using the definitions in this section and then check your
answers using the APL terminal and the programs in this section. [ Note:
the exercises are first stated using conventional mathematical symbolism
then using the APL program symbolism.]

. (@) A pair of disjoint sets.
(b) A pair of collectively exhaustive sets.
(¢) AnC (A INTERSECT C)
(d) D-4 (D DIFFERENCE A)
() U-A4 (U DIFFERENCE A)
(f) A (COMPLEMENT A)
(g) AuD (A UNION D)
(h) (AUC)ND (A UNION C) INTERSECT D
(i) AnD)u(CnD) (A INTERSECT D) UNION (C INTERSECT D)
() CN(D—-A4)  (C INTERSECT (D DIFFERENCE A))
&) (ANnBY (COMPLEMENT (A INTERSECT B))
1 A’uB’ (COMPLEMENT A) UNION (COMPLEMENT B)

2. Consider the following universal set U and subsets A, B, and C.
U«'ABCDEFGHIJKLMNOPQRSTUVWXYZ’
A<'AMPLE’
B«'METRIC’

C«'HELP’

Find the following using the definitions in this section. Then check your
answers using the APL terminal and the programs in this section.

(@ ANB (A INTERSECT B)
(®) AuC (A UNION C)

(c) A-B (A DIFFERENCE B)
(d) B’ (COMPLEMENT B)

(&) CN(A—B)  (CINTERSECT A DIFFERENCE B)
12



1.3 A set theory drill and practice program (optional)

3. Consider the following universal set U and subsets A4, S, and F:
U=/{all cards in an ordinary deck of 52 playing cards}
A = {all of the aces}
S = {all of the spades}
F={all of the face cards}

Describe the following sets in words:
(a) AINTERSECT S

(b) A UNION F

(c) COMPLEMENT S

(d) A INTERSECT F

(¢) S DIFFERENCE F

(f) S INTERSECT F

4. Write a program for the symmetric difference of a set 4 and a set B.

1.3 A set theory drill and practice program (optional)

In this section, we present a program SETTHEORY which can be used by a
student to practice the operations of intersection, union and difference.
This is presented to illustrate the use of an APL program in drill and
practice. It is an interactive program in which the student and the com-
puter carry on a dialog,. If it is saved in a workspace, then it can be used by
a student to practice set theory. In any event, it might be worthwhile
studying this program as a prototype of an APL drill and practice
program.

VSETTHEORY
[1) A<5?9
[2] B<«579

[3] A;'INTERSECT’;B;' =7

[4] GUESS: ANSWER<«[]

[5] —(ANSWER EQUAL A INTERSECT B)/NEXT
[6] ‘NO TRY AGAIN

[7] —GUESS

[8] NEXT:A;' UNION';B;' =72’

[9] TRY:RESPONSE«[]
[10] —(RESPONSE EQUAL A UNION B)/LAST
[11] ‘SORRY TRY AGAIN’

[12] —TRY

[13] LAST:A;' DIFFERENCE’;B;' =?'
[14] SAY:REPLY <[]

[15] —(REPLY EQUAL A DIFFERENCE B)/END
13



1 Set theory

[16] ‘WRONG TRY AGAIN’
[17] -SAY
[18] END:'WANT ANOTHER?'
[19] ‘ENTER Y FOR YES, N FOR NO’
[20] —('Y' €[)/1
[21] ‘O.K., GOODBYE’
\Y

In this program, two sets, 4 and B, consisting of 5 random digits from 1
to 9 are selected. The computer then prints out a request for the student to
enter the intersection of these two sets. If the student correctly computes
the intersection, then the computer requests the union of these two sets. If
the student incorrectly answers the intersection question, then the com-
puter prints NO, TRY AGAIN followed by [], and the student can try
again. When he finally answers the intersection question correctly, he is
given the union question. If he misses it, the computer prints SORRY, TRY
AGAIN. When he answers the union question, he is asked for the difference
of 4 and B. If he misses this, the computer prints WRONG, TRY AGAIN.
When he gets the difference correct, the computer asks if he would like
another problem. [Note: If A INTERSECT B or A DIFFERENCE B is empty,
the student should enter :0.]

To run this program, type SETTHEORY. For example:

SETTHEORY ;
5927 8 INTERSECT 1728 4="?

O:
278
59278UNION17284 =?

O:
5927814
5927 8DIFFERENCE 17284 =?

:
59

WANT ANOTHER?

ENTER Y FOR YES, N FOR NO

Y

18374 INTERSECT54189 =7

:
18

NO TRY AGAIN
O:
184
18374 UNIONS 4189 =?
:
1837459
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1.4 Boolean algebra

1837 4 DIFFERENCE 5 4189 =7

:
37

WANT ANOTHER?

ENTER Y FOR YES, N FOR NO

N

O.K., GOODBYE

1.4 Boolean algebra

An algebraic system is a collection of objects, numbers, or sets together
with one or more operations on these objects to create new objects in the
collection, plus some laws concerning these operations. A Boolean algebra,
named for George Boole, one of the originators of set theory, is any
algebraic system similar to the system of subsets of a universal set U with
operations of intersection, union, and complementation and the laws listed
below. In this section, we shall consider the laws of Boolean algebra. These
laws are listed both in conventional mathematical notation and in APL
notation using our programs.

The laws of Boolean algebra
The idempotent laws
ANA=A4 (A INTERSECT A) EQUAL A
AuA=A4 (A UNION A) EQUAL A
The commutative laws
ANB=BNA (A INTERSECT B) EQUAL (B INTERSECT A)
AUuB=BUA (A UNION B) EQUAL (B UNION A)
The associative laws

AN(BNC)=(ANB)NC
(A INTERSECT (B INTERSECT C)) EQUAL ((A INTERSECT B)
INTERSECT C)

AuBUC)=(AuB)UC
(A UNION (B UNION C)) EQUAL ((A UNION B) UNION C)

The distributive laws

AN(BUC)=(ANB)UANC)
(A INTERSECT (B UNION C)) EQUAL ((A INTERSECT B)
UNION (A INTERSECT C))

AU(BNC)=(AUB)N(AUC)
(A UNION (B INTERSECT C)) EQUAL ((A UNION B)
INTERSECT (A UNION C))
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1 Set theory

Operations with the universal set

ANU=A (A INTERSECT U) EQUAL A
AuU=U (A UNION U) EQUAL U

Operations with the empty set

ANG=0 (A INTERSECT 10) EQUAL (.0)
AUg=A (A UNION 10) EQUAL A

Laws of complements

A"=4 (COMPLEMENT (COMPLEMENT A)) EQUAL A
AUA’=U (A UNION COMPLEMENT A) EQUAL U
ANA'=g (A INTERSECT COMPLEMENT A) EQUAL (:0)
U=g (COMPLEMENT U) EQUAL (:0)

@=U (COMPLEMENT 10) EQUAL U

DeMorgan’s laws
(AUB)Y=A'NB’
(COMPLEMENT A UNION B) EQUAL ((COMPLEMENT A)
INTERSECT (COMPLEMENT B))

(ANBY=A"UB’
(COMPLEMENT A INTERSECT B) EQUAL ((COMPLEMENT A)
UNION (COMPLEMENT B))

In mathematics, most laws are discovered by first considering particular
examples. If a mathematician notices that a statement seems to be true for
several particular examples, he then conjectures that perhaps that statement
is always true. Then, he sets out to prove that the statement is always true.
If he can do this, the conjecture becomes a theorem or a law.

The computer is very helpful in showing that statements are true or false
with particular examples. In this respect, the computer is very valuable in
doing mathematical research. Consider the following examples in which we
test some of the laws of Boolean algebra on particular examples using

APL.
Example 1

Let us test the distributive law.

A<1357
B«—~3456
C—1234

B UNION C
123456

A INTERSECT (B UNION C)
135

A INTERSECT B
35

16
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A INTERSECT C
13

(A INTERSECT B) UNION (A INTERSECT C)
135

(A INTERSECT (B UNION C))
EQUAL (A INTERSECT B) UNION (A INTERSECT C)*

The 1 above stands for “true.” Thus, this particular example seems to
support the distributive law.

Example 2
Now, we’ll test the law (A UNION COMPLEMENT A) EQUAL U.

A<13567
U<~12345678

COMPLEMENT A
2468

A UNION COMPLEMENT A
12345678

(A UNION COMPLEMENT A) EQUAL U

Thus, we have verified this law of complements with this particular
example.

Example 3

Finally, we shall test the DeMorgan law (COMPLEMENT A INTERSECT
B) EQUAL ((COMPLEMENT A) UNION (COMPLEMENT B)).

U—~12345678
A<1357
B—1234

A INTERSECT B
13

COMPLEMENT A INTERSECT B
245678

COMPLEMENT A
2468

COMPLEMENT B
567

*Due to space limitations this instruction has been printed on two lines. In reality it must be
entered on one line.
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(COMPLEMENT A) UNION (COMPLEMENT B)
245678

(COMPLEMENT A INTERSECT B)
EQUAL ((COMPLEMENT A) UNION (COMPLEMENT B))*

Thus, this particular example helps us to believe DeMorgan’s law.

Now that we have seen that these laws are valid for the particular
examples above, we seek a method of proving that they are true in general.
In order to do this, we shall use Venn diagrams. Two sets are considered to
be equal if they have the same Venn diagrams. Let’s draw Venn diagrams
for the examples above.

Example 1

Since, as shown in Figure 1.8, the Venn diagrams are the same, then these
sets are equal. Thus, AN(BUC)=(ANB)uANC).

Figure 1.8 Left: Diagram of 4 N(B U C). Right: Diagram of (AN B)u(4NC).

Example 2

AUA’=U. In Figure 1.9, U is the whole rectangle. Obviously, the ele-
ments in A4, represented by the horizontal lines, unioned with the elements
in A’, represented by the vertical lines, fill up the entire rectangle, U.

Figure 1.9 Venn diagram of AU A"

*Due to space limitations this instruction has been printed on two lines. In reality it must be
entered on one line.
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1.4 Boolean algebra

Example 3

(AN B) =A"UB’. Since, as shown in Figure 1.10, the Venn diagrams are
the same, the sets are equal.

Figure 1.10 Left: Diagram of 4’U B’. Right: Diagram of (4 N B)'.

EXERCISES
1. Let

U—~0123456789
A<—~0369
B—~012345

C—~456789

Test the validity of the following laws of Boolean algebra with the above sets on
an APL terminal:
(@ AN(BNC)=(ANB)NC
(A INTERSECT (B INTERSECT C)) EQUAL ((A INTERSECT B) INTERSECT
0)
(b) AUBNC)=(AUB)N(AUC)
(A UNION B INTERSECT C) EQUAL (A UNION B) INTERSECT (A UNION C)
() AnNA'=g
(A INTERSECT COMPLEMENT A) EQUAL (:0)
(d) (AuB)Y=A4A'NnB’
(COMPLEMENT A UNION B) EQUAL (COMPLEMENT A) INTERSECT
(COMPLEMENT B)

. Verify the laws of Boolean algebra in Exercise 1 by drawing Venn diagrams.

. There are many other properties of the operations of set theory not included in
our list of laws of Boolean algebra. Test the validity of the following properties
with the sets in Exercise 1 on an APL terminal. [Note: They may not all be
true.]

(@) ANB'=A—B
(A INTERSECT COMPLEMENT B) EQUAL (A DIFFERENCE B)

(b) (A4-B)u(ANC)=A—(BUC)
((A DIFFERENCE B) UNION (A INTERSECT C)) EQUAL (A DIFFERENCE B
UNION C)
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() AUB=(A—B)U(B—A)U(AN B)
(A UNION B) EQUAL ((A DIFFERENCE B) UNION (B DIFFERENCE A))
UNION (A INTERSECT B)

4. Prove or disprove the properties in Exercise 3 by drawing Venn diagrams.

1.5 The number of elements in a set

Given a set 4, the APL symbol for the number of elements in the set 4 is
pA. The letter p is located above the R on the keyboard.

Examples
U<123456789
A<13579
B—~12345
C«"'APL IS A PROGRAMMING LANGUAGE’
PA
5
pB
5
pA INTERSECT B
3
pA UNION B
7
pA DIFFERENCE B
2
p COMPLEMENT A
4
pC
31 [Note: In literal data, p counts spaces

too.]

In this text, we shall always denote the number of elements in a set 4 by
pA. There is no standard conventional symbol for the number of elements
in a set.

Set theory can often be used to clarify otherwise complicated problems
and to aid in solving them. One useful application of set theory and Venn
diagrams is in counting the number of elements in the intersection, union,
difference, and complement of various sets. The following examples are
illustrations of this.

Example 1

Find the number of cards in an ordinary deck of 52 playing cards which
are either face cards (jacks, queens, or kings) or spades. If we let F be the
set of face cards and S be the set of spades, then we want the number of
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elements in the set FU S, or p(F U S). We cannot just merely add pF and
pS, because then we would be including the jack, queen, and king of
spades twice in our sum, since they are in both F and S. In other words,
they are in FN S. In order to make sure that we count each card exactly
once, we could use the following formula:

p(FUS)=(oF)+(pS)—p(FNS).

Since pF is 12, pS is 13, and p(F N S) is 3, then p(FU S) is 22. The same
result could have been arrived at by using the Venn diagram shown in
Figure 1.11. In fact, the Venn diagram actually helps to clarify the
situation.

The next example illustrates even better the use of a Venn diagram in
finding the number of elements in a set.

Figure 1.11 Venn diagram of the sets F and S.

Example 2

A survey was taken of 1000 citizens in a town to see how many read each
of three magazines X, Y, and Z. It was found that 200 read X, 250 read Y,
and 150 read Z. It was also found that 100 read both X and Y, 50 read
both X and Z, and 50 read both Y and Z. In addition, 25 read all three
magazines. The following questions were asked:

(a) How many of the citizens read at least one of the magazines?
(b) How many read none of them?
(c) How many read only X?

These questions would be quite difficult to answer without the aid of a
Venn diagram. The Venn diagram in Figure 1.12 illustrates and illuminates
the situation quite clearly however. The circles X, Y, and Z divide the
universal set of 1000 citizens into 8 mutually exclusive, collectively exhaus-
tive regions. In each region, we can list the exact number of people
belonging exclusively to that region. Then, a little arithmetic will answer
our questions. It is easiest to list the numbers of elements in each region if
one starts with the intersection of the three sets X, Y, and Z and then
works outward.

(a) The number who read at least one is 25+25+25+75+125+75+75=
425,
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1 Set theory

Figure 1.12 Venn diagram of sets X, Y, and Z.

(b) The number who read none is 1000—425=575.
(c) The number who read only X is 75.

The following example illustrates the use of a table in finding the
number of elements in a set.
Example 3

At a certain college, it is desired to learn the following information:

(a) How many students are either seniors or have grade-point averages
above 3.00?

(b) How many students are either freshmen or have grade-point averages
below 2.00?

The registrar furnishes us with the following information:

Grade-point averages
Academic year Under 2.00 2.00-2.50 2.51-3.00 Over 3.00

Freshmen 75 170 130 25
Sophomores 60 120 100 20
Juniors 40 110 100 25
Seniors 25 100 70 30

Using this table, we can easily answer the above questions.

(a) Adding across the seniors row, we can see that there are 225 seniors.
Adding down the over 3.00 column, there are 100 students over 3.00. From
the intersection of the seniors row and the over 3.00 column, there are 30
people who are both seniors and are over 3.00. Thus, there are 225+ 100 —
30=295 students who are either seniors or have grade-point averages over
3.00.

(b) Adding across the freshmen row, there are 400 freshmen. Adding
down the 2.00 column, there are 200 students under 2.00. From the
intersection of the freshmen row and the under 2.00 column, there are 75
people who are both freshmen and are under 2.00. Thus, there are
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1.5 The number of elements in a set

400+ 200—75=525 students who are either freshmen or have grade-point
averages under 2.00.

EXERCISES

1. Let

U<~0123
A<0369
B—~0123
C<56789

Find the following at an APL terminal:
(@) pA

(b) pB

(¢) p(A INTERSECT B)

(d) p(A UNION B)

(e) p(COMPLEMENT C)

() p(A DIFFERENCE B)

2. Let

U«'ABCDEFGHIJKLMNOPQRSTUVWXYZ’
A<'COMPUTER’
B<'TERMINAL’

Find the following at an APL terminal:
(@) pA

(b) pB

(¢) p(A INTERSECT B)

(d) p(A UNION B)

() p(A DIFFERENCE B)

(f) p(COMPLEMENT A)

3. Find the number of cards in an ordinary deck of 52 playing cards which are
(a) Either red or face cards.
(b) Either kings or aces.
(c) Neither diamonds nor aces.

4. In a certain class of 100 students, 15 got A in math, 10 made the Dean’s list,
and 5 got A in math and made the Dean’s list. How many neither got A in
math nor made the Dean’s list?

5. A secretary phoned the 80 members of a club to call a meeting. The day of the
meeting had to be either Wednesday or Friday. She found that 25 people were
free on Wednesday only, 15 people were free on Friday only, and 20 people
were free on both Wednesday and Friday. How many were free on neither

day?

6. A college student is paid $1 for each person he interviews about his likes and
dislikes for two types of deodorants, A and B. He finds that 30 like A, 25 like
B, and 15 like both, and 10 like neither. How much should he be paid?
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7.

10.
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Set theory

Five hundred women are interviewed about which sports they like. It is found
that 185 like baseball, 135 like football, 110 like hockey, 50 like baseball and
football, 45 like baseball and hockey, 35 like football and hockey, and 20 like
all three sports.

(a) How many like at least one of these sports?

(b) How many like none of these sports?

(c) How many like only baseball?

(d) How many like football and hockey but not baseball?

(¢) How many like baseball or hockey but not football?

. In trying to decide on the main course for a dinner, a chef finds that of 25

people who will be at the dinner, 14 like steak, 12 like lobster, and 11 like
chicken. Also, 5 like steak and lobster, 5 like steak and chicken, 4 like lobster
and chicken, and 2 like all three.

(a) How many like steak only?

(b) How many like lobster only?

(c) How many like chicken only?

(d) If they couldn’t get lobster, how many people would be disappointed?

. A poll is taken to see whether or not some people believe that a college

education is necessary for a youth today. Their responses are tabulated below:

Sex Yes No Not sure
Men 300 240 60
Women 200 160 40

(a) How many men said no?

(b) How many were either men or said no?

(¢) How many were either women or said yes?
(d) How many people were included in the poll?

A poll is taken to relate a person’s political preference to his income bracket
with the following results:

Income bracket Democrat Republican Independent
High 70 90 40
Middle 180 140 80
Low 50 70 80

(a) How many are Democrats?

(b) How many of the high income people are Republicans?
(c) How many are either middle income or Independents?
(d) How many are not Independents?



Logic

Logic is another application of Boolean algebra. The operations and laws
used in logic are analogous to those of set theory in many respects.
Knowledge of logic is often quite helpful in the deductive thinking process
used in making decisions.

2.1 Statements and logical operations

In logic, a statement or a proposition is an assertion that can be either true
or false but not both. This doesn’t mean that everyone must have the same
opinion of the truth value of the statement. Two people might disagree as
to the truth value of the statement. However, for any given person at a
given time, the statement is either true or false but not both. The following
are examples of statements:

1. Learning mathematics using APL is fun.

2. Learning mathematics using APL is fun and easy.
3. Learning mathematics using APL is fun or hard.

4. Learning mathematics using APL is fun if it is easy.

The first example above is an example of a simple statement. A simple
statement is a statement that makes just one assertion. The other state-
ments above are examples of compound statements. A compound statement
is a statement that makes more than one assertion. Compound statements
are made up of two or more simple statements joined by “connectives”
such as and, or, if...then. We shall consider methods for determining
whether compound statements are true or false. This will depend on
whether the simple statements making up the compound statements are
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true or false, as well as on the rules governing the particular connective or
connectives being used in the statement. We now consider the rules
governing certain logical connectives.

Conjunction

Let A and B be two statements. The conjunction of A and B, denoted by
ANB, and read as A “and” B, is defined by the following “truth table”:

A B ANB
T T T
T F F
F T F
F F F

A truth table is a table that defines the truth values of a compound
statement based upon the truth values of the simple statements comprising
it. A is defined so that AAB is true only if 4 and B are both true.

Logical conjunction, A, is a keyboard operation in APL. Recall that in
APL 1 can be interpreted to mean “true” and 0 “false.” Consider the
following uses of A on the APL terminal:

Examples
1M1 1 “and” 1 is true.
1
1A0 1 “and” O is false.
0
01 0 “and” 1 is false.
0
0ONO 0 “and” 0 is false.
0
A<1100 These correspond to the truth values
B—~1010 of A and B in the above truth table.
ANB The corresponding elements of A
1000 and B are compared using the opera-
tion A.

The following examples illustrate the use of the operation A:
Examples

1. “In 1974, Johnny Bench batted over .300 and hit more than 30 home
runs.” Is this compound statement true or false? Let A be the statement
that Bench batted over .300. Let B be the statement that he hit more
than 30 home runs. The above statement can be symbolically repre-
sented as A/AB. Since Bench actually batted .280 with 33 home runs, A4
is false and B is true. Therefore, AAB is false.
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2. “APL is a powerful language, but it is easy to learn.” The word “but”
here has the same meaning as the word “and.” Let 4 be the statement
that APL is a powerful language. Let B be the statement that APL is
easy to learn. The above statement is symbolically represented as A/AB.
Of course, we shall take both of the above statements 4 and B as true.
Therefore, AAB is true. If the reader believes either 4 or B to be false,
then for him, AAB is false. (Such a person is a member of the minority,

we sincerely hope.)

Disjunction

Let A and B be two statements. The disjunction of A and B, denoted by
AV/B and read as A “or” B, is defined by the following truth table:

A B A\/B
T T T
T F T
F T T
F F F

The only time A\/B is false is if both 4 and B are false. The “or” here is
the inclusive “or.” In other words, it means one or the other or both.
Logical disjunction is a keyboard function in APL.

Examples

1\V1

1
1Vv0

1
ov/1

1
oVvo

0
A<=1100
B~1010
AV/B

1110

1 “or” 1 is true.
1 “or” 0 is true.
0 “or” 1 1s true.
0 “or” 0 is false.
The corresponding elements of A

and B are compared using the opera-
tion \/.

The following examples illustrate the use of the operation \/:

Examples

1. “In 1974, Johnny Bench batted over .300 or hit more than 30 home
runs.” As before, let A be the statement that Bench batted over .300.
Let B be the statement that he hit more than 30 home runs. The above

27



2 Logic

statement can be symbolically represented by A\/B. Since A4 is false, but
B is true, then A\/B is true.

2. “The President is a good speaker or he is a dictator.” Let A be the
statement that the President is a good speaker. Let B be the statement
that he is a dictator. Then, the above statement can be represented as
A\/B. Whether or not the above statement is true would depend on the
person’s assessment of the truth values of 4 and B. The only people for
which this statement would be false are those who believe that the
President is not a good speaker and that he is not a dictator.

3. “The candidate will either win the election or he will lose it.” Let 4 be
the statement that the candidate will win the election. Let B be the
statement that he will lose the election. The above statement A\/B is
always true, since at least one of the statements 4 or B must be true.

Negation

Let A be a statement. The logical negation of A, denoted by ~A and read
as “not” A, is defined by the following truth table:

A ~A
T F
F T

Thus, the truth value of ~A is just the opposite of that of A. Logical
negation is also a keyboard operation in APL.

Examples

~1 The opposite of true is false.
0

~0 The opposite of false is true.
1

Ce<10

~C ~ negates each element of C.
01

If A is a statement, then ~A is used to reflect the statement with
meaning opposite to that of 4. Consider the following examples:

Examples

1. “The Edsel was not a successful automobile.” Let A be the statement
that the Edsel was a successful automobile. The above statement can be
symbolized by ~A. Since 4 is false, then ~A is true.

2. “Tomorrow it will neither rain nor be colder.” Let R denote the
statement that tomorrow it will rain. Let C denote the statement that
tomorrow it will be colder. The above statement can be symbolized by
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~(R\V/C). Let us investigate the truth table for this statement.

R<1100
C<1010

R\ C
1110

~(RVC)
0001

Thus, this statement will be true only if R and C are both false. Another
operation in APL that accomplishes the same objective as ~(R\/ C) is the
“nor” operation %/ obtained by overstriking the \/ and the ~. Thus,

RN/ C
0001

3. “Tomorrow it will not rain and be colder.” This can be symbolized by
~(RAC). Let us investigate the truth table for this example.

RAC
1000

~(RNC)
0111

Thus, this statement will be true unless R and C are both true. Another
operation in APL that accomplishes the same objective as ~(RAC) is
the “nand” operation A obtained by overstriking the A and the ~.
Thus,

RAC
0111

4. “Tomorrow it will not rain and it will not be colder.” The logical
symbolism for this statement is (~R)A(~C). The truth table is as
follows:

(~RIN(~C)
0001

Notice that this statement has the same truth table as that of Example 2.
Actually, the statements in Examples 2 and 4 have exactly the same
meaning. They are logically equivalent statements. This topic of logically
equivalent statements will be discussed in detail in Section 2.3.

5. “The Princess is neither a beauty nor a charmer, but she is loaded with
money.” Symbolically, this would be represented as (~(A\/B)AC,
where A is that she has beauty, B is that she is a charmer, and C is that
she is loaded with money. In order to construct a truth table for a
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statement containing three simple statements, it is necessary to include
all possible combinations of truth values for the three statements. This
is illustrated below:

A\/B
11111100

~(AVB)
00000011

(~(AVB)NC
00000010

Thus, this statement is true only if 4 and B are false and C is true.

Exclusive disjunction

Let A and B be two statements. The exclusive disjunction of A and B,
usually denoted by 4\/ B, is defined by the following truth table:

AN/ B

B
T
F
T
F

s le s I BN
= =T

The symbol \/ is also read as “or.” However, it is the exclusive “or.” It is
used when the meaning is A or B, but not both. In other words, when it is
not possible for both 4 and B to be true at the same time. In APL, the
symbol # is used for the exclusive disjunction.

Example

“Sam will either wear his blue suit or his brown suit.” Let 4 denote the
statement that Sam will wear his blue suit. Let B denote the statement that
Sam will wear his brown suit. Since he can’t wear both suits, this statement
is denoted as 4A\/B.

A<1100
B<1010

A#B
0110 Since 11 is false, 1#0 is true, 071
is true, and 070 is false.
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EXERCISES

1. Construct truth tables for the following compound statements:
(a) (~(AVB)AB
(b) (AB)A\B
(c) BA~(AVB)
(d ~BVA
(e) ~ANB
) (~A)NV(~B)
(8) ~(AAB)
(h) ~A=B

2. Check your answers to Exercise 1 at an APL terminal.

3. Construct truth table for the following compound statements:
(@) (AAB)VC
(b) (AVCIN(BVC)
© ~(~AN(~B)NC
(d) (AVB)AC
() (~A)A(~B)ANC
® (AVBVC)A~(AVBVC)
(8 (AABAC)V~(AABAC)
(h) A=(B+=C)

4. Check your answers to Exercise 3 at an APL terminal.

5. Let A be the statement, “We are in a period of inflation.” Let B be, “The

standard of living is rising.” Let C be, “The economy is sound.”

Express each of the following compound statements in symbolic form, and find

their truth tables:

(a) We are in a period of inflation, and the economy is not sound.

(b) We are neither in a period of inflation nor is the economy sound.

(c) We are in a period of inflation or the standard of living is rising.

(d) The economy is sound and the standard of living is rising, and we are not in
a period of inflation.

(e) The economy is sound, but we are in a period of inflation or the standard of
living is rising.

(f) We are not in a period of inflation and the standard of living is not rising,
but the economy is sound.

6. Suppose that for Mrs. L, statement A4 is true, B is true, and C is false. Then,
what truth values should Mrs. L assign to each of the statements in Exercise 57

7. Let A be the statement, “Prices are rising,” Let B be, “There is a great deal of
unemployment.” Let C be, “People are discouraged.”
Express each of the following compound statements in symbolic form, and find
their truth tables:
(a) Prices are rising and people are discouraged.
(b) Prices are not rising or there is not a great deal of unemployment.
(c) Prices are rising or there is a great deal of unemployment, but people are not

discouraged.
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(d) People are discouraged, but prices are not rising and there is not a great deal
of unemployment.

(e) There is a great deal of unemployment. However, prices are neither rising
nor are people discouraged.

(f) Prices are rising, but there is not a great deal of unemployment and people
are not discouraged.

8. Suppose that for Mr. E, A4 is true, B is true, and C is false. Determine the truth
values that Mr. E should assign to each of the statements in Exercise 7.

2.2 Conditional statements

A very important logical connective in mathematics and in logic is the
conditional.

Conditional

Let 4 and B be two statements. The conditional statement “if A then B,”
denoted by A= B, is defined by the following truth table:

A B A=B
T T T
T F F
F T T
F F T

In the statement A=B, A is called the antecedent and B is called the
consequent. Notice that A= B is true in all cases except for the one in
which the antecedent is true and the consequent false.

Ordinarily, one doesn’t try to justify definitions in mathematics. How-
ever, perhaps this truth table doesn’t appear very obvious to the reader.
Therefore, we shall attempt to justify it with the following example:

Example

Suppose someone said, “If the Yankees play on television, then I will
watch the game.” Let A be the statement: “The Yankees play on televi-
sion,” and let B be the statement: “I will watch the game.”

Possibility 1: A true and B true

In this case, the statement is true, since the person did what he said he
would do. He was telling the truth.

Possibility 2: A true and B false.

In this case, we would all agree that the person lied. The Yankees were on
television, but he didn’t watch the game. Thus, the statement 4= B is false
in this case.
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Possibilities 3 and 4: A false and B true or false.

We really couldn’t call this person a liar in either of these cases, since he
didn’t say whether or not he would watch the game if the Yankees were
not on television. Thus, he was telling the truth in these cases, as far as we
know.

The conditional symbol, =, does not appear on the APL keyboard. (A
similar symbol — does appear. However, this symbol is used for branching
in programs and is not used for the conditional.) In APL, the symbol <
can be used to compare the truth values of two statements 4 and B. The
resulting truth values are exactly the same as those in the truth table for
the conditional.

Example

A<1100
B—~1010

A<B Since 1 <1 is true, 1 <0 is false, 0< 1
1011 is true, and 0< 0 is true.

Implications

A statement A is said to imply a statement B if B must be true whenever A
is true. If 4 implies B, then the second row of the truth table for A= B is
not possible, since we can not have 4 true and B false. Thus, if 4 implies
B, the conditional A= B is always true. Such a statement which is always
true is called a logically true statement or a tautology.

In mathematics, implications are very important, since all theorems and
definitions are implications. If 4 implies B, then the conditional A= B can
be read in one of the following ways:

If A then B.

A implies B.

Bif A.

B whenever A.

A is a sufficient condition for B.

Consider the following examples:

1. “If ¢ is a mathematical symbol, then ¢ appears on the APL keyboard.”
This is not an implication, since it is possible for the consequent to be
false while the antecedent is true. For example, ¢ is a mathematical
symbol which does not appear on the APL keyboard.

2. “If N is an integer, then N is a rational number.” This is an implication,
because whenever the antecedent is true, the consequent must be true,
since the set of integers is a subset of the set of rational numbers.

3. “If r is a root of a polynomial, then x—r can be factored out of the
polynomial.” This is not only an implication but a theorem in algebra.
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4. “If x—r can be factored out of a polynomial, then r is a root of the
polynomial.” This is also a theorem in algebra. It is the converse of the
previous theorem. Therefore, it is also an implication.

Biconditional

Let A and B be two statements. The biconditional statement “A if and
only if B,” symbolized by A< B, is defined by the following truth table:

A B A<B
T T T
T F F
F T F
F F T

Thus, A< B is true whenever 4 and B have the same truth values. In fact,
we could use a biconditional statement to describe the biconditional truth
table: “A is true if and only if B is true; and A is false if and only if B is
false.” In APL, the biconditional can be conveyed by the = symbol
between the two statements.

Example
A<=1100
B—~1010
A=B Since 1=1 is true, 1=0 is false, 0=1
1001 is false, and 0=0 is true.
(A< B)A\(B< A) These illustrate that the biconditional
1001 is really the conjunction of two con-

ditionals.
(A=B)=(A< B)A(B< A)
Double implications

If A implies B, and also B implies 4, then we have a double implication. In
mathematics, definitions are double implications, since if 4 is defined by
B, then A is just a shorter way to say B, and A is true if and only if B is
true. Many theorems are also double implications. A theorem is a double
implication if its converse is also a theorem. In the previous examples of
implications, Example 3 is a double implication. In fact, Examples 3 and 4
can be combined into one theorem: r is a root of a polynomial if and only
if x —r can be factored out of the polynomial. This can also be stated as:
A necessary and sufficient condition that r be a root of a polynomial is
that x —r can be factored out of the polynomial. Not every theorem is a
double implication, however. Example 2 is not a double implication. There
are an infinite number of rational numbers which are not integers.

Before leaving this section, let us consider some examples of the truth
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tables of some more complex statements involving the conditional and the
biconditional.

Examples

1. “If the weather is pleasant tomorrow, then Mr. E will play golf or go

fishing.” Let 4 be the statement that the weather is pleasant tomorrow,

B be the statement that Mr. E will play golf, and C be the statement

that he will go fishing. The above compound statement can be sym-
bolized by A=(B\/C).
A<11110000
B—~11001100
C~<10101010

B\/C
11101110

A< (B\/C) Recall that in APL, = is represented
111101111 by <.

Thus, the only way for this statement to be false is for 4 to be true and
B and C to both be false. In other words, it would have to be pleasant
and Mr. E would have to not play golf and not fish.

2. “Mr. E will play golf or go fishing if and only if the weather is
pleasant.” This statement can be symbolized by (B\/C)=4.

(B\VC)=A Recall that in APL, < is represented
11100001 by =.

This statement can be false in many ways. It will be false if the weather
is pleasant and Mr. E fails to play golf or fish. It will also be false if he
plays golf or fishes and the weather is not pleasant.

3. “If the weather is pleasant, then Mr. E will play golf. But, the weather is
pleasant. Therefore, Mr. E will play golf.” This can be symbolized as
(A=>B)N\A)=B.

A<1100
B—~1010

AL<B
1011

(A<B)AA
1000

(A<B)AA)KB
1111

This statement is always true. It is a logically true statement. In fact, it
is a sneak preview of a “valid” argument. This will be considered in
detail in Section 2.4.
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EXERCISES

1.

2.

3.

36

Construct truth tables for the following compound statements:
(@) (4V(~A)=8

(b) A=(B=4A)

(c) A=>~B

(d) (~B)=(~A))=(4=B)

(e) (4VB)=C

(f) (A=B)N\~B)=>~4

Check your answers to Exercise 1 at an APL terminal using < and = for =
and .

Let 4 be the statement, “We are in a period of inflation.” Let B be the

statement, “The standard of living is rising.” Let C be the statement, “The

economy is sound.”

Express each of the following statements in symbolic form, and find their truth

tables.

(a) The economy is sound if and only if the standard of living is rising.

(b) If the economy is sound, then the standard of living is rising and we are not
in a period of inflation.

(c) If we are in a period of inflation, then the standard of living is not rising and
the economy is not sound.

(d) The economy is sound if and only if the standard of living is rising and we
are not in a period of inflation.

. Suppose that for Mrs. L, statement A4 is true, B is true, and C is false. Then,

what truth values should Mrs. L assign to each of the compound statements in
Exercise 3?

. Let A be the statement, “Prices are rising.” Let B be the statement, “There is a

great deal of unemployment.” Let C be the statement, “People are discouraged.”

Express each of the following statements in symbolic form and find their truth

tables.

(a) If prices are rising and there is a great deal of unemployment, then people
are discouraged.

(b) Prices are rising and there is a great deal of unemployment if and only if
people are discouraged.

(c) If prices are rising or there is a great deal of unemployment, then people are
discouraged.

(d) If there is not a great deal of unemployment and prices are not rising, then
people are not discouraged.

. Suppose that for Mr. E, A4 is true, B is true, and C is false. Determine the truth

values that Mr. E should assign to each of the compound statements in Exercise
5.

. Which of the following are implications? Double implications?

(a) If x=2, then x?=4.
(b) If people are discouraged, then prices are rising.
(c) If the standard of living is rising, then the economy is sound.
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(d) If one is from Boston, then he is a Red Sox fan.

(e) If x is an element of both 4 and B, then xEA N B.

(f) If the sides of a quadrilateral are all equal, then it is a square.

(g) If the pairs of opposite sides of a quadrilateral are parallel, then it is a
parallelogram.

(h) If the Yankees win the pennant, they will play in the World Series.

2.3 Logical equivalence

Two statements A and B are said to be logically equivalent, symbolized by
A=B, if and only if they have the same truth tables. If 4 and B are
logically equivalent, then if the truth tables for 4 and B are compared
using the relation =, the result will be all I’s (trues).

Example
((~A)\/ B)) is logically equivalent to (4= B), since

A=1 100
B—1010

~A
0011

(~AVB
1011

A<B Recall that < is used in place of =
1011 in APL.

(~A)NVB)=(A<B)
1111 Since 1=1,0=0, 1=1, and 1=1 are
all true.

In the beginning of this chapter, we stated that, like set theory, symbolic
logic is a Boolean algebra. If this is so, then the logical operations should
satisfy the laws of Boolean algebra. To illustrate this, we shall replace the
set theory operation intersection with the logical operation conjunction,
the set theory operation union with the logical operation disjunction, and
the set theory operation complement with the logical operation negation.
Also, the universal set U will be replaced by a logically true statement U
consisting entirely of 1’s, and the empty set @ will be replaced by a
logically false statement ¢ consisting entirely of 0’s. Then, the laws of
Boolean algebra in logic are as follows.

The laws of Boolean algebra

The idempotent laws
(ANA)=A and (AVA)=A.
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The commutative laws

(AANB)=(BAA) and (AVB)=(B\VA).

The associative laws

(AN(BAC)=((ANB)AC) and (AV/(BVC))=((4VB)VC).

The distributive laws
(ANBVC)=((ANB)V(ANC)).
(AV(BAC))=((AVBIN(AVC)).

Operations with the logically true statement U
(ANU)=A and (AVU)=U.

Operations with the logically false statement
(ANG)=g and (AVQ)=A.

Laws of negation
(~(~4))=A.
(AV~A)=U.
AN~A)=0g.
(~U)=0.
(~2)=U.

DeMorgan’s laws
(~(4VvB))=((~4)\(~B))
(~(4NB))=((~4)V(~B))

Let us verify some of these laws of Boolean algebra in APL.

Example 1
Let us verify the law (A AU)=A.
A<10
Ue1 1 The logically true statement U (all
I’s).
ANU Since A A U has the same truth table
10 as A, then (AN\U)=A.
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Example 2
Let us now verify that (A A~A)=Q.
A<10
~A
01
AN~A
00 Since A A~A has the same truth
table as the logically false statement
(all 0’s), then (A A~A)=.
Example 3

We now verify the associative law (4 A(BAC)=(ANB)AC).

A<11110000
B~11001100
C~10101010

BAC
10001000

ANBNC)
10000000

ANB
11000000

(AANB)NC
10000000 Since (AA(BAC)) and ((AAB)AC)
have the same truth tables, they are
logically equivalent.

Example 4
We now verify the distributive law (A A(B\V/ C)=((A A\B)\V(ANC)).

BvVC
11101110

ANBYVC)
11100000

ANB Note that the second and fifth sets of
11000000 I’s and O’s are the same.

ANC
10100000

(AAB)V(ANC)
11100000
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Example 5
Finally, we verify the DeMorgan law (~(A4\/ B))=((~A)A\(~ B)).
A<1100
B~1010
AV/B
1110
~(AVB) Note the second and fifth lines of 1’s

0001 and O’s are the same.
~A

0011

~B
0101

(~AN(~B)
0001

Of course, there are many other logically equivalent statements not
included in our list of laws of Boolean algebra.

Example 6
(A= B)=((A=B)/\(B=>A4).

A=B
1001

A<B
1011 Note that the first and last lines of
B<A I’s and O’s are the same.

1101

(A< B)A(B<A)
1001

This last example shows that the biconditional is logically equivalent to
the conjunction of the two conditionals.

EXERCISES

1. Check the validity of the following laws of Boolean algebra at an APL terminal:
(@) (ANB)=(BNA)
(b) AV(BVC)=(AVB)VC)
© AV(BAC)=(AVBINMAVC))
d 4avU)=U
© AV~A)=U
) (~(AAB)=((~A)\V(~B))
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2. Determine whether or not the following pairs of statements are logically equiv-
alent at an APL terminal:
(a) (~A)=(~B)) and (B=A4).
(b) (A/N\(A=B)) and (4=B)
(¢©) (A=B)\(B=C)) and (4=C)
(d) (UA~B)V(ANC)=(BAC)) and (4= B)

2.4 Arguments

An argument is an assertion that from a set of one or more statements,
called the premises or the hypotheses, one can deduce another statement,
called the conclusion.

If the statements comprising the hypothesis are denoted by
A,,A,,...,A,, and the conclusion is denoted by C, then the argument can
be expressed as a conditional: (4, A4,/ ... \4,)=>C.

One of the major applications of symbolic logic is in determining
whether arguments are valid or invalid. If an argument is invalid, it is often
called a fallacy. An argument is valid if it is a logically true statement or a
tautology. In other words, it is valid if its truth table consists entirely of 1’s
(trues). Thus, it is the symbolic form of the argument, rather than the
particular facts making up the statements in the hypothesis and conclusion,
that determines whether it is valid or a fallacy. We will consider several
examples now.

Example 1

Consider the following argument: “If you brush with toothpaste X, you
will have fewer cavities. But, you do not brush with toothpaste X. There-
fore, you will not have fewer cavities.” Let A4 be the statement that you
brush your teeth with toothpaste X, and let B be the statement that you
will have fewer cavities. The above argument can then be symbolically
represented as

((A4=B)A\~A)=(~B).
Let us use APL to test this argument for validity.

A<1100
B—~1010

A<B
1011

~A
0011

(A<B)A~A
0011

~B
0101
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(A<B)A~A)=(~B)
1101

Since we don’t get all 1’s in the truth table, this argument is not valid. It
is a fallacy. In fact, fallacies of this form are quite common.

Example 2

“If you brush with toothpaste X, you will have fewer cavities. You do
brush with toothpaste X. Thus, you will have fewer cavities.” Letting A
and B be as in Example 1, this argument can be symbolically represented
as ((A=B)/\A)=B. Let’s test it for validity.

A<1100
B—~1000

A<B
1011

(A<B)NA
1000

(A<B)NA)LB
1111

Since this is a logically true statement (all 1’s in the truth table), then the
argument is valid. [ Note: This does not mean that toothpaste X caused you
to have fewer cavities, nor does it mean that you actually have fewer
cavities. It only means that the above argument was formed in such a way
as to make it valid. Any good advertizing firm would be very careful to
present valid arguments for advertizing its products.]

Example 3

“If V2 is rational, then it can be expressed in the form a/b, where a and
b are integers and bh5=0. However, V2 cannot be expressed in this form.
Therefore, V2 not rational.” Let A be the statement that V2 is rational.
Let B be the statement that V2 can be expressed in the form a/b, where
a and b are integers and b#0. The above argument has the form (4= B)
/A\~B)=>~A. Testing it for validity:

A<1100
B<~1010

A<B
1011

~B
0101

(A< B)A~B
0001
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~A
0011

(A<B)A~B)< ~A
1111

Thus, the argument is valid.

Example 4

“If you do not do the work, you will not pass this course. Thus, if you pass
this course, you did the work.” Let A4 be the statement that you do the
work. Let B be the statement that you will pass this course. The symbolic
representation of this argument is ((~A4)=(~ B))=(B=A4).

A<1100
B—1010

(~A)<(~B)
1101

B<A
1101

(~A) < (~B))<(B<A)
1111

The argument is valid.

Example 5

“If you do the work, you will pass the course. If you pass the course, you
will be very happy. Therefore, if you do the work, you will be very happy.”
Let A and B be as in Example 4, and let C be the statement that you will
be very happy. We now check this argument for validity. It can be
symbolized by (4=>B)A\(B=C))=(4=C).

A<1111000
B<1100110
C<1010101
A<B
11001111
B<C
10111011
(A<B)A(B< C)
10001011
A<C
10101111

(A<KB)A(B<C)<(AKCO)
11111111

o oo
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The argument is valid. Happiness is doing your work...especially at an

APL terminal.

EXERCISES

1.

Test the following symbolic representations of arguments for validity at an
APL terminal:

(@) (A=>~B)=(B=>~A)

(b) (A=B)A\B)=4

(©) (4VB)N~A)=B

(d) (4VB)N\B)=>~A

© (~(ANB)YN\A)=>~B

() (A=B)N(BVC)=(4VC)

In each of the following exercises, form the symbolic representation of the
argument and determine whether it is valid or a fallacy:

2.

10.

11.

12.

If you are mathematically inclined, then you will have no difficulty learning
APL. Therefore, if you have difficulty learning APL, then you are not mathe-
matically inclined.

. The President is a good speaker or he is a diplomat. He is not a good speaker.

Thus, he is a diplomat.

. If it rains tomorrow, I won’t play golf. If I don’t play golf, I will be angry. So, if

it rains tomorrow, I will be angry.

. The standard of living is rising or we are in a period of inflation. The standard

of living is rising. Therefore, we are not in a period of inflation.

. The standard of living is rising if and only if the economy is sound. The

standard of living is rising. So, we can conclude that the economy is sound.

. If prices are rising, then people are discouraged. But, prices are not rising.

Thus, people are not discouraged.

If prices are falling, then there is a great deal of unemployment. If there is a
great deal of unemployment, then people are discouraged. Therefore, if prices
are falling, people are discouraged.

. If you are not careful, then you will be hurt. You didn’t get hurt. So, you must

have been careful.

If we don’t help country X, they will lose their independence. Thus, if we do
help country X, they will not lose their independence.

If you like Merle Haggard, then you like country music. But, you don’t like
Merle Haggard. So, you don’t like country music.

If you don’t believe in yourself, then you won’t be successful. Therefore, if you
are successful, you must believe in yourself.



Vectors and matrices

A matrix is a rectangular array of numbers arranged in rows and columns.
As we shall see, a matrix is a convenient device for organizing data that
would otherwise require several pages. In addition, many mathematical
problems can be expressed much more concisely and solved much more
easily using matrix notation and matrix operations. For example, a system
of 10 linear equations with 10 unknowns can be expressed as a simple
matrix equation A-X = B, and solved by a matrix equation X=4 "'-B. For
reasons such as these, matrix algebra has become a required topic for
students of business administration and many branches of science and
engineering. In this chapter, we will concern ourselves with some of the
basic theory of matrix algebra and explore the use of APL in working with
vectors and matrices. In the next two chapters, we will consider some
applications of matrices. As we shall see, APL is very well suited for
handling arrays such as vectors and matrices.

3.1 Vectors

Definition of a vector
A vector with n components is an ordered array of n real numbers.

Examples
1. An example of a 4-component row vector is

R=(1,2,3,4).
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2. An example of a 4-component column vector is

1

_ 12
C 3|

4

Unless otherwise stated, we shall always use row vectors. As with sets, a
vector is denoted as follows in APL:

R<123 4 The name of the vector is R. R has 4
real components: 1, 2, 3, and 4.

R The command to print out R.
1234

Unlike sets, however, an element in a vector may be repeated. Also,
unlike sets, the order of the components in a vector is significant. A vector
is an ordered array of numbers.

Example

For contrast, consider the following sets:

A<12 34
B2 134
A EQUAL B
1 As sets, A does equal B, since they
have the same elements.
A=B
0011 1=2, 2=1 are false, but 3=3, 4=4

are true.

Equal vectors

Two vectors, A and B, are equal, denoted by A= B, if and only if they have
the same number of components and all corresponding components are
equal.

Examples

A<1234

B—~12345

C—~2134

D 4 Recall that 4 yields the positive in-
tegers from 1 to 4.

A=B
LENGTH ERROR A and B do not have the same
number of components.
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A=C
0011
N/A=C
0 A does not equal C, since all corre-
sponding components are not equal.
A=D
1111
N/A=D
1 A does equal D, since they have the

same number of components and
corresponding components are equal.

Thus, the APL operation to determine whether or not two vectors are
equal is the “and” reduction, denoted as A/ V=W, where V and W are the
vectors being compared.

An application of vectors

Vectors are often used as a convenient way of representing data. For
example, suppose that a company manufactures a product called a
“gadget.” Suppose that a gadget is made up of parts categorized by the
parts numbers 051, 035, 068, and 047, in the following quantities: 3 of part
051, 5 of part 035, 2 of part 068, and 1 of part 047. This information can be
conveniently conveyed using the following parts vector G (for “gadgets”):

051 035 068 047

G=(3,5,2,1)

The position of the component tells the employee the part to which it
corresponds. This company has the convention that the first component is
the number of 051’s, the second component is the number of 035’s, the
third component is the number of 068’s, and the fourth component is the
number of 047’s. If everyone in the company knows of this convention,
then the parts vector for a gadget can be denoted in APL as simply

G352 1.

If this company also produces “widgets,” which use the same parts, and
if the parts vector for a widget is

We4 61 2,

then the number of 051’s in a widget is 4, the number of 035’s is 6, the
number of 068’s is 1, and the number of 047’s is 2.
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Indexing with vectors
In APL, the ith component of a vector G is denoted by GIl].

Examples
G<3521
G[1] The first component of G.
3
G [3] The third component of G.
2
G [5]
INDEX ERROR G has no 5th component.
G [2.5]
INDEX ERROR The index must be a positive integer.
G[1 3] The 1st and 3rd components.
32
G[4312] Rearranging the components in order
1235 of magnitude.

Altering a vector

To replace a component of a vector with a new number, do as follows:

G[2]«4 Replace the second component of G
by 4.
G
3421
G [4]<3 Replace the fourth component of G
by 3.
G
3423
Catenation

The operation of catenation with vectors is the same as with sets. To chain
a component or a vector onto the end of a vector in APL, just use the
comma.

Examples
G<3521
We4 612
G4 Chaining 4 onto the end of G.
35214
G W Chaining W onto the end of G.

35214612
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The size of a vector

As with sets, the p (“rho”) applied to a vector computes the size of the
vector. In other words, it computes the number of components in the
vector.

R<10 3 15 7 986

pR The number of components in R.
5

ppR ppR gives the number of dimensions
1 of R.

Since a row is 1 dimensional, then the number of dimensions of a vector is
1. ppR is often referred to as the rank of R.

3.2 Operations with vectors

We now consider some APL operations with vectors. These operations
provide very good illustrations of the power of APL as applied to arrays.
First we consider ways of operating on a vector with a single number.

Examples

R<~2 1435

R+1 Addition.
32546

R-1 Subtraction.
10324

RX3 Multiplication.
6 3129 15

R+2
10521525 Division.

R+2 Exponentiation.
4116 9 25

Notice that in each example above, the operation is applied to the
number together with each component of R.

Parallel processing

The following examples illustrate operations with two vectors. They use the
notion of “parallel processing” in which the operation is applied to all of
the corresponding components of the two vectors. In order to perform
these operations, of course, the vectors must have the same number of
components.
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Examples
R<21435
V<3 1210
We21 3
R+V
50645 The corresponding components are
added.
R-V
12225 The corresponding components are
subtracted.
RXV
6 1830 The corresponding components are
multiplied.
R+ W
LENGTH ERROR R and W cannot be added, since
they do not have the same number of
components.
Reduction

It is often useful to add up or multiply the components of a vector. This
can be done with the use of the reduction symbol /. The general form is
operation /vector. It reduces the vector to a single number by applying the
operation to the successive components of the vector from right to left.

Examples
V<12 3 4
+/V
10 This is sum reduction. The compo-
nents of V are added.
X /V This is times reduction. The compo-
24 nents of V' are multiplied.
Inner products

A very useful and important operation with vectors is that of inner
product. If V'=(v,,0,,...,0,) and W=(w,w,,...,w,) are two n component
vectors, then the inner product of V and W is the number v,;-w,+ v,'w,
+...+uv,w, Let us look at a program for computing inner products.
Notice that the header of this program is designed so as to create a dyadic
function called INNER. It combines the two vectors ¥ and W, and creates
the explicit value PRODUCT.
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Program 3.1 INNER
VPRODUCT«V INNER W

[1] PRODUCT«—+/VXW The corresponding components of V
\% and W are multiplied and the results
added up yielding the result PROD-
ucCrT.
Example
V1234
We2 "3 4 1
V INNER W
12

This operation of inner product can also be accomplished directly on
the APL keyboard by using V+.X W. In general, if @ and w are operations
in APL, then the expression of the form Va.wW is called an inner product.
The result is that w is applied to the corresponding components of V" and
W, followed by a reduction applied to the result. Let us do the above
example using this notation:

V+. XwW
12

This operation of inner product will be used later in multiplying
matrices.

An application of vectors

Recall the company in the previous section which produces two products,
gadgets and widgets. These products consist of parts called 051, 035, 068,
and 047. The number of each of these parts in each product is given by the
vectors:
G<3521
We—4 312
1. In order to produce a “gidget,” one merely fastens a gadget to a widget.
Find a vector for the number of each part needed to produce one
gidget.
G+W The sum of the vectors G and W
7833 accomplishes this.

2. If one received an order for 5 gadgets and 10 widgets, find a vector for
the number of each part needed to fill the order.

GXG@)+(0XW)
56 55 20 25 Need 55 051’s, 55 035’s, 20 068’s, 25
047’s.
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3. If 051°s cost $.50 each, 035’s cost $1.00 each, 068’s cost $0.75 each, and
047’s cost $1.50 each, use vectors to find the cost of producing a gadget.

C«.50 1.00 .75 1.50 This is the unit cost vector.
C+.XG The inner product of the unit cost
9.50 vector with the parts vector for a
gadget yields the total cost, $9.50, of
a gadget.

4. If gadgets sell for $12.00 each, find the profit per gadget.

12.00—-9.50 Profit is revenue minus cost.
2.50

5. An employee has discovered that a better widget can be produced if one
uses 2 068’s instead of 1, and 3 051’s instead of 4. Write an APL
expression to make these changes in W.

WI[1 3]«<3 2 The first component of W is replaced
by 3 and the third component by 2.
w
3322 The new value of W.

6. Another employee has discovered that both products will be better if
one part 072 is included. Write APL expressions to chain this new part
onto the end of the parts vectors for gadgets and widgets.

GG The use of catenation.

We— W1

G The new G.
35211

w The new W.
43121
EXERCISES

1. Consider the vectors
S«<23 15
T<401 2
U—~"267
V<8 0 1

Evaluate the following (Do them by hand first; then, check your answers at an
APL terminal):

(a) 3XS+T (e) SU @i +/SXT
(b) BXS)+T (f) S+3 §) (+/Ux2)x5
(c) SXT (&) S+U k) S[3 2]

(d) Ux2 (h) T 1 O T3]
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2. Compute the inner products of S and T and of U and V.

3. A candy vendor sells five brands of candy called brand 4, B, C, D, and E
respectively. He records his daily sales of each brand in a vector called S. On a
certain day, S is as follows:

S92 81 35 49 57

(a) Write an APL expression for the number of different brands.

(b) Write an APL expression for the number of packages of brand D in S.

(c) Write an APL expression for the subvector ¥ of S whose brands are vowels.

(d) Write an APL expression for the total number of packages sold on this day.

(e) Write an APL expression for changing the number of brand C from 35 to
38.

4. The candy vendor in Exercise 3 has been selling candy for three days and has
the following three sales vectors for each of these days:

S1<92 81 38 49 57
52120 68 19 25 75
S3«67 50 37 29 63

(a) Find the total sales vector for the three days.

(b) Find the total number of packages of candy sold in the three days.

(c) Suppose the prices of the candies are 0.10 for brand 4, 0.15 for B, 0.20 for
C, 0.10 for D, and 0.15 for E. Express these prices as a price vector.

(d) Write an APL expression for computing the revenue for each of the three
days, and find these revenues.

3.3 Matrices

In Section 3.1., it was noted that when the symbol p is used as a monadic
operator, as in pR, then pR computes the “size” of R. In other words, it
computes the number of components in R. If p is used as a dyadic
operator, then p arranges the elements on the right according to the
structure on the left. Consider the following examples:

5 p3
33333 Five 3’s.
5 p'*’
L I I I Five #’s.
6 p89
89 89 89 89 89 89 Six 89’s.
6 p8 9 10
891089 10 Six numbers from 8 9 10 respectively.
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3 3p5
5 Three rows, 3 columns of 5’s.
5

555
32123456

3]
(6,04

—
N

34 Three rows, 2 columns.

3 3p9
23 Three rows, 3 columns.
56
789

N

Matrix of order mX n

A matrix of order mXn (m by n) is a rectangular array of numbers
arranged in m rows and n columns.
The following is a 2 X3 matrix A:

_[4 2 0
A_[315]

In APL, this matrix would be represented as follows:

A<23p420315

A
420
315
Note the following monadic uses of p with matrices:
PA
23 The order of 4.
(bA)[1]
2 The number of rows in A4.
(pA)[2]
3 The number of columns in 4.
PPA
2 The rank of a matrix is 2, since a
matrix has two dimensions, rows and
columns.

Equal matrices

Two matrices 4 and B are equal, usually denoted by 4 = B, if and only if
they have the same orders and their corresponding elements are equal.
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Examples

A3 30123456789
A

-
N

3
6
9

B«3 3p. 9

SN
o
o o w

111 The relation = compares the corre-

111 sponding elements of 4 and B. If the

111 matrices are equal, the result will be
all I’s (trues).

C—~23p1 23456

=y
N

Cc
3
6

D3 20123456
D

anw =
&N

C=D
LENGTH ERROR C and D do not have the same orders.

Indexing with matrices

We now illustrate the use of indices with matrices:

Examples
A—23p420315
A
420
315
A[2;1] The element in the second row, first
3 column.
A[1;2] The element in the first row, second
2 column.
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Al2;] The second row.
315

Al;2] The second column. Note that it is
21 expressed as a row vector.

Altering a matrix

The following examples illustrate the ways in which to make changes in a
matrix:

A<3 3p 9 Creating a matrix.
A

123

456

789
A[2;3]«0 Change the element in the second
A row, third column to 0.

123

450

789
A[2]]<3 15 Change the second row of 4.
A

1

315

789
A[3]l<2 3 0 Change the third column of A.
A

122

313

780

Catenation with matrices

It might also be useful to be able to chain one or more rows onto a matrix.
Let us illustrate this also:
Examples

A<2301 23456
A

23
456
B«<7 89 A new row to be attached to 4.



3.3 Matrices

A<A,[1]B Augment A4 by this new row, B.
A B is chained onto the first dimension
123 of A, its rows.
456
789
C<102 A new column to be attached to 4.
A<A C Augment 4 by this new column, C.
A A, C is an abbreviated notation
1231 for A,[2]C.
4560
7892

Transposing a matrix

The transpose of an mXn matrix A is a new matrix of order nXm
obtained by making the rows of 4 into columns (in the same order). Of
course, this will also make the columns of 4 into rows. The transpose of 4
is accomplished easily in APL by entering § A. (The symbol § is made by
typing o, located above the letter O on the keyboard, then backspacing
and overstriking the \.) We shall use the symbol &A to denote the
transpose of 4 throughout this text. Other texts commonly use the symbol
A" or Tr(A) for the transpose of A. To illustrate this operation, we shall
transpose the matrix A above:

yA

- N =
(=2« > Jé, P N
N O o~

The last change that we wish to consider making in a matrix at this time
involves the ability to specify certain submatrices of a matrix.

The “take” and “drop” functions

The “take” function 1 is located above the letter Y on the keyboard. The
“drop” function | is located above the U.

B4 4p. 16
B
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
2 21B Take the first two rows and two
12 columns of B.
56
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2 21B Take the first two rows and last two
34 columns of B.
78
2 21B Take the last two rows and columns
11 12 of B.
15 16
2 2|B Drop the first two rows and columns
11 12 of B.
15 16
2 2|B Drop the last two rows and columns
12 of B.
56
EXERCISES
1. Let
2 1 4 3
M=|5 0 2 1
3 71 70

58

Do the following exercises at an APL terminal:

(a) Enter M on the APL terminal.

(b) Find the order of M.

(©) Find the number of columns of M.

(d) Change the element in the second row third column to 8.
(e) Change the third column to 3 "1 5.

(f) Change the second row to 1 0 0 0.

(g) Transpose M.

(h) Augment M by anewrow 0 0 0 1.

(i) Drop the last row and first column of M.

(j) Take the first two rows and last two columns of M.

Let

1 3 2 0
C=|5 "1 0 4

0o 5 "2 3]

Compute the following:

(@) oC ® O]

(®) p(pC) (8 (O)(2]

(© C[2] (h) 2xC[3;]

@ Cl2) @ Cl2]+(HxCl1)

() Cl2:3] 0) Ci3 1]

. A company produces four products called 4, B, C, and D. Each product is

made up of five parts called a, b, ¢, d, and e. The number of each part needed
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for each product is contained in the following matrix P:
b

P=

(CEQY-"I N
WNWNR
—_— i —
NAEULWS
VW A ]
WNDWNR

Express each of the following in APL notation and evaluate:

(a) The row of parts required for a product B.

(b) The column consisting of the numbers of part d in each product.

(c) The number of part ¢ in a product B.

(d) It was decided that 3 d’s are needed in a B. Make this change in B.

(e) It was decided to increase the number of ¢’s in each product by 1. Make the
appropriate change in the matrix P.

(f) A new product E has been added to production, consisting of 4 a’s, 2 b’s, 0
c’s, 5 d’s, and 2 e’s. Include this new product E in an augmented matrix P.

(8) An order is received for 5 product C’s. Write an APL expression to extract
from P the number of each part needed to fill the order.

3.4 Operations with matrices

We now consider some APL operations with matrices. These operations
are very similar to the operations with vectors in Section 3.2. in that the
operations apply to each element of the array, and they further illustrate
the power of APL as applied to arrays. First we consider operating on a
matrix with a number.

Examples
A2 30420315
A
420
315
A+1
531 Add 1 to each element.
426
A-1
311 Subtract 1 from each element.
204
AX2
840 Multiply each element by 2.
6210
A+2
2 1 0 Divide each element by 2.
1505 25
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Ax2
164 0 Raise each element to the power 2.
9125

Parallel processing

The following examples illustrate the addition and subtraction of two
matrices. In order to perform these operations, the matrices must have the
same orders.

Examples
A<3 3p. 9
A
123
456
789
B—~3 323012504 2
B
23 0
12 5
04 2
A+B
3 53 Corresponding elements are added.
3 71
7127
A—-B
171 3 Corresponding elements are sub-
5 3 1 tracted.
7 411
AXB
2 6 0 Corresponding elements are multi-
"4 10 30 plied.
0 32 18

Reduction with matrices

By using the idea of reduction, one can perform an operation down the
columns or across the rows of a matrix. The following examples illustrate
how this is done with addition and multiplication.

Examples
A«<3 3ot 9

N Ao

© 0N
w

© 0wy
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+/[1]1A Adds the rows of A—vertically
12 15 18 (down the columns).

+ /[2]A Adds the columns of A—horizontally
6 15 24 (across the rows).

+ /(+ /[1]A) The sum of 12, 15, and 18. The sum
45 of all elements in 4.

+/(+ /[2]A) The sum of 6, 15, and 24. Also, the
45 sum of all elements in 4.

X /[1]A Multiplies the rows of A.
28 80 162

X /[2]A Multiplies the columns of A.
6 120 504

Matrix multiplication

Definition
The product of a matrix A of order m X k and a matrix B of order kX n is
the matrix P of order m X n such that P[/; J] is the inner product of the Ith
row of A and the Jth column of B. In conventional mathematics, P is
denoted by A4-B.

Example
Let

A=[1 2 3 and B=

4 5 6

2 0

Since A4 is a 2X3 matrix and B is a 3 X2 matrix, then the product P is a
2 X2 matrix. The elements of P are computed as follows:

P[1;1]= A[1;]+.X B[;1]=(1 2 3)+.X(1 0 2)=7
P[1;2]= A[1;]+.X B[;2]=(1 2 3)+.X(2 3 0)=8
P[2;1]= A[2;]+.X B[;1]=(4 5 6)+.X(1 0 2)=16
P[2;2]= A[2;]+.X B[;2]=(4 5 6)+.X(2 3 0)=23

Therefore,

1 2
0 3|

—4.r=| T 8
P=AB [ AN ]

In order for this matrix multiplication to be possible, it is necessary that
the number of columns of the left matrix, 4, be equal to the number of
rows of the right matrix, B. Otherwise, we will not have corresponding
elements in the Ith row of 4 and the Jth column of B necessary to
compute the vector inner product of this row and column.
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3 Vectors and matrices

Let us now consider an APL program which explicitly performs the
multiplications of the two matrices 4 and B, step by step.

Program 3.2 MULTIPLY (Optional)

(11

(2]
(3]
(4]
(3]

(6]
(7]
(8]

(9]
(10]
1]

[12]

62

V PRODUCT < A MULTIPLY B;l;J; ELEMENTS

—((pA)[2]=(B)[1])/ OK

PRODUCT « ‘IMPOSSIBLE '

-0
OK:ELEMENTS <0
<0

NEXTROW: | I+1
J0
NEXTCOL: J<« J+1

MULTIPLY is a dyadic function
which assigns to 4 and B the value
PRODUCT. I, J, and ELEMENTS are
local variables.

Line 1 checks to see if multiplication
is possible. If it is, the program
branches to the line labeled OK.
Otherwise, it prints IMPOSSIBLE,
and branches to 0; thus ending the
program.

Lines 4, 5, and 7 initialize the values
of I, J, and ELEMENTS. Lines 6 and
8 increment the values of I and J.

Line 9 forms the row of ELEMENTS
of PRODUCT. It computes the inner
product of the Ith row of A and Jth
column of B, and chains it onto the
previous ELEMENTS.

ELEMENTS «— ELEMENTS, A[l;]+.X B[;J]
—>(J< (pB)[2])/ NEXTCOLUMN

—(I<(pA)[1])/ NEXTROW

Lines 10 and 11 make sure that all of
the inner products are computed.

PRODUCT<((pA)[1], (pB)[2])p ELEMENTS

v

Line 12 puts ELEMENTS into the
appropriate size matrix called PROD-
UCT.
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Let us consider some examples using this program MULTIPLY:

A<2 3p. 6
A
123
456
B—~23120320
B
120
320
A MULTIPLY B
IMPOSSIBLE Note that the number of columns of
A does not equal the number of rows
of B.
B(-—& B Let B be the transpose of the previ-
B ous B.
13
22
00
A MULTIPLY B
5 7
14 22

It seems only fair to point out that this matrix multiplication can be
accomplished directly on the APL keyboard using the operation of inner
product by merely typing A+.X B.

Examples

A+.XB The example above.
5 7
14 22
B+.XA
13 17 21 Note that (4+.X B)#(B+.XA) or
10 14 18 A-B# B-A. In fact, they are not even
0 0O the same size.

A<3 3ot 9

Ns
o oN

w
© oWy

B<33135267101
B

135
267
101

OO W
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A+.XB
8 15 22
20 42 61
32 69 100

B+.XA Note, again, that A-B# B-A. Thus,
48 57 66 matrix multiplication is not com-
75 90 105 mutative.
8 10 12

A<2 3p. 6
A

123
456
B—2 30564321
B
56 4
321
A+.XB
LENGTH ERROR In this example, matrix multiplica-

tion is not possible, due to the orders
of A and B.

An application of matrix multiplication

Suppose that a company produces three products called 4, B, and C. Each
product is composed of two subassemblies called I and II. The numbers of
each subassembly in each product is given by the following matrix S:

I 1I

I 1
2 1
1 2

Now, each subassembly consists of three parts called a, b, and c. The
numbers of each part in each subassembly is given by the parts matrix P:

A
S=B
C

a b ¢
_ I 3 2 1
P=y [2 3 2]

Find a matrix which gives the number of each part a, b, and ¢ in each
product 4, B, and C. The solution is given by the matrix multiplication:

S+.xXP

~N 0o O
@ N O,
(6, I "N V)

There are S5a’sinan A, 5bsinan 4,3 c¢’sinan 4,8 a’sina B, 7 b’sina
B,4csinaB,7asinaC,8bsina C,and 5c¢’sin a C.
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EXERCISES

1. Consider the matrices

[2 13 =[5 0 1
A—[_l 4 O] andB[O - 3].

Evaluate the following:

(a) 2xA)+B () B.A

(b) B-(3XA) (&) A8

(c) Bs2 () +/[1]A

(d) A+5 () x/[2]A

() B-3 G) +/(+/121A)

2. Check your answers to Exercise 1 at an APL terminal.

3. With pencil and paper, trace through the program MULTIPLY with the matrices

1 2
0 3|

1 2 3
A=[ ] and B=
4 5 6 20

4. Repeat Exercise 3 at an APL terminal using the TRACE command (see
Appendix A.6).

5. Multiply the following matrices using pencil and paper:
(a) A=[2 3] and B=[5 1 ]

4 0 2 1
6 2
® A4=[3 2 4] and B=|0 4|
1 0 5 1 3
(c) B times A in Part (b).
2 1
_[1 2 3 4 | 0 3
(d)A—[S 23 8] and B=| 9 3|
50

6. Check your answers to Exercise 5 at an APL terminal.

7. Let
1 2 _[5 6
A—[3 4] and B [7 8]'
Use the APL terminal for Parts (a)—(d).
(a) Compute (A+B)+.X(A—B) (i.e., (4+ B)-(4— B) in conventional nota-
tion).
(b) Compute (A+.X A)—(B+.XB) (i.e., 42— B? in conventional notation).
(c) Are the answers to Parts (a) and (b) the same?
(d) Do you have an explanation for this?

8. Let
2 1 3 3 72 6 4 2 8
A=[5 0 2| B=|"1 7 0| C=|1 6 0]-
7 1 3 5 49 0 4 2
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At an APL terminal, verify the fact that A+.X(B+ C) equals (A+.XB)+
(A+.XC). This is called the distributive property. (In conventional notation, it
would be written as A-(B+ C)=A-B+A-C.)

9. The following matrix consists of the numbers of subassemblies I, II, and III
needed in the production of products 4, B, and C.
2 1 3
S=|3 1 2
1 2 3
where row 1 is for A, row 2 for B, and row 3 for C. Column 1 is for I, column 2

for II, and column 3 for III. Each subassembly I, II, and III consists of parts a,
b, and c as given in the following matrix:

5 4 3
P=l6 3 2
6 2 1

where row 1 is for I, row 2 for II, and row 3 for III. Column 1 is for a, column
2 for b, and column 3 for c. Find a matrix that will give the number of each
part a, b, and ¢ in each product 4, B, and C.

10. A company produces widgets and gadgets. To produce each widget and gadget
requires time on machines X, Y, and Z as given in the following matrix T

X Y z
_ Widgets 1 2 1
gadgets S5 3 1

These times are measured in hours. In other words, it takes 1 hour on machine

X to produce a widget, 2 hours on machine Y to produce a widget, etc.
Set up an APL expression for the following problems and evaluate:

(a) An order is received for 10 widgets and 15 gadgets. Find a vector for the
amount of time needed on each machine to fill the order.

(b) If the cost per hour on machine X is $5.00, on machine Y is $4.00, and on
machine Z is $6.00, find the total cost of machine time in filling the order.

3.5 Properties of matrices

Now that we know how to add and multiply matrices, we will consider
some properties of matrices using these operations. In this section, we will
restrict our attention to square matrices of the same order. (Therefore, all
of the operations will be defined.) The properties we will consider are
analogous to the properties of the real number system. Rather than present
formal proofs of these properties, we will illustrate them with the following
matrices:

A<33p1 23 45 67 89

|
n
@ N>
|
o oW
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B—330321123213

B

321

123

213
Ce—330210 1435 21
C

2 10

1 43

5721

The reader will also be asked to test out these properties with some
other particular examples, either by hand, or even better, at an APL

terminal. The properties are listed in conventional notation.

1. Addition is commutative.
(A+B)=(B+A4).

Example
A+B

|
O wn

N~o
-
N w s

m
+
>

|
O wH

NNo
-
[XEAIEN

2. Addition is associative.
(A+(B+C))=((4+B)+C).

Example

A+(B+C)
6 1 4
411 0
14 -9 13

(A+B)+C
6 1 4
411 0
14 -9 13
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3. There is an additive identity matrix Z.
(A+Z)=A, where Z is a matrix completely filled with 0’s.
Example
Z<3 3p0

4. For any matrix A4, there is an additive inverse — 4.
(A+-4)=2.
Example
—A
1 273
4°5 6
7 879
A+ —-A

o O o
[eNeNo)

0
0
0
5. In general, multiplication is not commutative.
(A'B)#(B-A), in general.
Example
A+.XB
7 1 4
19 4 7
31 710
B+.XA
2 4 6
14 16 18
19 23 27
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6. Multiplication is associative.
(4-(B-C))=((4B)-C).

Example

A+.X(B+.XC)
33 3 7
69 21 ~19
105 39 31
(A+.XB)+.XC
33 3 7
-69 21 -19
105 39 31

7. Multiplication is distributive over addition.

(A4-(B+C))=(4-B+A4-C)
((B+C)-A)=(B-A+C-A).

Example
A+.X(B+ C)
26 12 1
62 24 2
98 36 5
(A+.X B)+(A+.XC)
26 “12 1
62 24 2
98 “36 5
(B+C)+.XA
0 3 6
18 18 18
39 51 63
(B+.X A)+(C+.X A)
0 3 6
18 18 18
39 51 63

8. There is a multiplicative identity matrix 1.

(A-1)=(1-A)=A, where [ is a matrix with I’s
down the main diagonal
and O’s elsewhere.
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Example
<3 3p1 00010001

9. The question of multiplicative inverses will be taken up in the next
chapter.

EXERCISE
Let
3 1 2 0 2 3 1 2 3
A={7 "1 0 B={"1 6 2 C=l4 5 6]
2 0 5 5 0 4 7 8 9

Verify Properties 1-8 above for these matrices at an APL terminal using the proper
APL notation.
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In this chapter, we shall discuss the use of matrices for representing and
solving systems of linear equations. As we shall see, APL makes the job of
solving certain systems of linear equations almost trivial.

4.1 Linear equations

A linear equation with n unknowns is an equation of the form
ayx,tayx,+ayx;+...+a,x,=B,

where x,,x;,x,,...,x, are the unknowns, and a,,a,,as,...,a,, and B are
constants. g; is called the coefficient of x; for i=1,2,...,n.

Solution of a linear equation

A solution to a linear equation a,-x,+a, x,+...+a,-x,=B is a vector
X=(x},Xx,...,x,) of values of the unknowns for which the equation is a
true statement.

Examples (conventional notation)

l. 3x+4y—-2z=12 (The unknowns are x, y, and z.) The vector
(2,0,73) is a solution, since if x is replaced by 2, y by 0, and z by ~3, the
result will be 12, so that the equation is a true statement for this vector.
The vectors (0,3,0) and (3, 1,.5) are also solutions to this linear equa-
tion.

2. 3x+2y=6 (The unknowns are x and y.) (2,0) and (1,1.5) are two
solutions to this equation.

3. 2x,—x,+3x;—4x,=8  (The unknowns are x,, x,, x5,x,4.) (1,72,0, 1)
and (2,2,2,0) are solutions to this equation.
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Notice that for a linear equation, there can be more than one solution.
In fact, there are an infinite number of solutions if n> 1.
An APL expression for a linear equation

If the coefficients (a,,a,,...,a,) are expressed as a vector 4, the unknowns
(x1,X,,...,x,) as a vector X, then the linear equation

arx,+ayx,+...+a,x,=B
can be expressed as the inner product
(A+.XX)=B.

The following examples illustrate this point:

Examples
1. 3x+4y—-2z=12.

A3 4 2
B«12

Let us use the APL notation to verify that (3,1,0.5) is a solution to this
equation.
X<31 .5
A+.XX
12
(A+.XX)=B
1 True. X is a solution.

2. 3x+2y=6.
Let us use APL to verify that (1,1.5) is a solution.

A3 2
B<6
X115

(A+.XX)=B
1 True. X is a solution.
3. 2x1 _x2+3X3_4X4=8.
Let us show that (2,1,2,0) is not a solution to this equation, using APL.

A<2 13 4
B8
X<2120
A+.XX
9
(A+.XX)=B
0 False. X is not a solution.
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4.2 Two-by-two systems of linear equations

EXERCISES

1. Use APL to determine whether or not the indicated vectors are solutions to the
given linear equations.
(@) 2x—-3y=6, X=(15"1)
(b) 4x+y=7, X=(1,3)
() 3x+2y—z=8, X=(1,2,71)
(d) x;—2x,+3x;3—x4=10, X=(2,1,3,1)

2. Find two solutions to each of the following linear equations, and use APL to
check your solutions.
(@) 5x—3y=6
(b) 2x—6y+8z=24
(€) 3x;—=2x,+5x3—x4=10

3. A linear equation with one unknown is an equation of the form 4-X=B. (In
APL notation, it is (AXX)=B, where X is the unknown and 4 and B are
constants with A4 5=0.) Write an APL program to solve such an equation.

4. Solve the following equations:
(@ 3X=7 (@® 7-X=5 (c) 2:.Y=9 (d)4Z="3

4.2 Two-by-two systems of linear equations

A two-by-two system of linear equations consists of two linear equations
with two unknowns, x, and x,, as follows:

ayx;+ayx,=b

Ay X+ ayx,=Db,.

[Note: The first subscript of a; denotes the equation to which it belongs,
while the second subscript denotes the variable to which it belongs.] A
solution to such a system is a vector X =(x,,x,) for which both equations
are true statements.

Example
Consider the system

3x+2y=6
x—2y=4.

The vector (2.50, ~0.75) is a solution, since both equations are true for this
vector. That is, if x is replaced by 2.50 and y by ~0.75 in both equations,
the resulting statements are true. The vector (2,0) is not a solution, since
only the first equation is true for this vector.
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4 Systems of linear equations

Matrix representation for a system of linear equations

A two-by-two system of linear equations can be represented as a matrix
equation as follows: 4-X = B (in conventional notation) or (A+.X X)=B
(in APL notation), where

a, a
A=| " 12 The matrix of coefficients.
a; axp
X=(xy,x,) The vector of unknowns.
B=(b,,b,) The vector of constants on the right.
Example

Let us use APL to verify that the vector (2.50, 0.75) is a solution to the
system

3x+2y=6
x—2y=4
A2 203 21 "2
A
3 2
1 72
B<6 4
X250 ~0.75
A+.XX
6 4
(A+.XX)=B
11 6=06 is true and 4=4 is true.
NA/(A+.XX)=B
1 Since both are true.

We now consider the question of how does one arrive at the solution to
a two-by-two system of linear equations? We shall use a method known as
Gaussian elimination.

Solving a two-by-two system by the method of Gaussian elimination

We shall make use of the following three operations on the equations in
the system. These operations are permissible because they do not alter the
solutions of the system. In fact, they may help us in finding the solutions.

Operation 1.

A multiple of one equation may be added to or subtracted from the other
equation.
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42 Two-by-two systems of linear equations

Operation 2.
An equation may be multiplied by a nonzero constant.
Operation 3.

Two equations may be interchanged.

In the method of elimination, we use these operations to eliminate a
variable arriving at a single equation in a single unknown. This equation
can then be solved for the other unknown. The following examples
illustrate this method:

Examples

3x+2y=6
x—2y=4
Interchanging these two equations, we get the equivalent (two equations
are “equivalent” if they have the same solutions) system
x—2y=4
3x+2y=6.

Adding the first equation to the second equation yields the equivalent
system

x—2y=4
4x+0y =10.

So, since 4x = 10, then x =2.50. Replacing x by 2.50 in the first equation
yields 2.50—2y =4, so that y ="0.75 after a little algebra.

x—3y= 2
3x+2y="5.
Multiplying the first equation by 3 yields the equivalent system
3x-9% =6
3x+2y="5.

Adding to the second equation the multiple ~1 times the first equation
yields
3Ix-9% =6
Ox+11y="11.

From the resulting second equation, we get 11y ="11 or y = ~1. Replac-
ing y by ~1 in the first equation, we get 3x+9=6, or 3x="3,or x="1.
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4 Systems of linear equations

So, the solution to the system is the vector ("1, 1). Check:
A2 2p1 "33 2

B—2 5
X1 1
A+.XX
2 5 So, it checks.
x+3y=4
2x+6y =6.

Adding the multiple ~2 times the first equation to the second equation
one
x+3y= 4
Ox+0y="2.
The second equation is now the ridiculous statement that 0= "2. Thus,
the system has no solution. A system with no solutions is called an
inconsistent system.

x+3y=4
2x+6y=8.

Adding the multiple ~2 times the first equation to the second equation
yields
x+3y=4
0x+0y=0.

The resulting second equation 0=0 is certainly true. However, it isn’t
very useful in solving the system. The significance of this result is that it
tells us that the system has an infinite number of solutions. Any solution
to the first equation is automatically a solution to the second equation.
A system with an infinite number of solutions is called a redundant
system.

The above examples point out that a two-by-two system of equations
may have one solution, no solutions, or an infinite number of solutions.
The method of Gaussian elimination helps us to decide in which case the
example lies. In the event that we are in the first or third case, it also helps
us to find the solution or solutions.

Some applications of two-by-two systems of linear equations

The following examples illustrate the use of two-by-two systems of linear
equations to solve everyday problems:

Example 1

A company produces two products: widgets and gadgets. To produce each
widget requires 5 minutes on machine I and 3 minutes on machine II. To
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4.2 Two-by-two systems of linear equations

produce each gadget requires 4 minutes on each machine. Find the number
of each product that can be produced in a day if machine I is operated for
6 hours and machine II for 5 hours.

Let x represent the number of widgets that can be produced in a day
and y represent the number of gadgets that can be produced in a day.

For machine I, the total number of minutes spent on widgets is Sx and
a total number of minutes spent on gadgets is 4y. Since machine I is in
operation for 6 hours, or 360 minutes, then the equation for time on
machine I is

S5x +4y = 360.

For machine II, the total number of minutes spent on widgets is 3x and
the total number of minutes spent on gadgets is 4y. Since machine II is in
operation for 5 hours, or 300 minutes, then the equation for time on

machine II is
3x+4y =300.

Adding to the second equation, the multiple ~1 times the first equation
yields the new equation 2x=60. Thus, x=30. Therefore, from the first
equation, 5-30+4y =360, or 4y =210, or y=52.5. Thus, in a day, the
company can produce 30 widgets and 52.5 gadgets.

Example 2

A man deposits a total of $1000 in two banks, called bank A and bank B.
The interest rate in bank A is 4 percent per year, and in bank B is 5
percent per year. His income from these deposits for the year was $42.
How much did he deposit in each bank?

Let x represent the amount deposited in bank A and y represent the
amount deposited in bank B. Then, the interest he received from the two
banks is given by

0.04x+0.05y =42.
The total amount deposited is given by
x +y =1000.
Adding to equation one the multiple ~0.04 times equation two yields
0.10y =2.

Thus, y =$200. Since the total amount deposited is $1000, then x =$800.
So, he deposited $800 in bank 4 and $200 in bank B.

EXERCISES

1. Express the following systems of linear equations as matrix equations (A+.X X)
=B, and check to see if the specified vectors, X, are solutions to the systems (do
them at an APL terminal):

(@ x+2y=5 (c) 4x+3y=2
3x+4y=6 X=("4,45) 8x+6y=3 X=(7025,1)
4x+2y=6 X=(,1 6x+8y=4 X=@2,71)
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4 Systems of linear equations

2. Use the method of Gaussian elimination to solve the following systems of linear
equations (if they have solutions):
(a) 5x— y=4 d) 2x+ y=2

3x+2y=5 6x+3y=4
(b) 2x+4y=3 (e) 3x+2y=5

x+3y=2 4x+3y=2
(©) x+3y=4

2x+6y=8

3. Set up systems of equations for and solve the following problems:

(a) A carpenter builds bookcases and tables. Each bookcase requires 12 square
feet of lumber and takes 2 hours to build. Each table requires 16 square feet
of lumber and takes 1.5 hours to build. How many bookcases and tables can
he build if he has 100 square feet of lumber and 12 hours?

(b) A person wants to buy nuts and bolts. Each nut costs $.04 and each bolt
costs $.06. He has $1.90. He needs 5 less than twice as many nuts as bolts.
How many nuts and bolts should he buy?

(c) A new diet restricts a person to 1300 calories a day, and 100 grams of
protein per day. The dieter is allowed to only eat foods 4 and B on this diet.
Each ounce of food A contains 100 calories and 8 grams of protein. Each
ounce of food B contains 80 calories and 6 grams of protein. How many
ounces of each food should this dieter eat to meet the exact amount of
calories and protein in his diet?

4.3 Elementary row operations

In solving the two-by-two systems of linear equations in the previous
section, we used three operations on the equations, which suggest the
following operations on the rows of a matrix. These are called elementary
row operations. They will be used in the next section to solve larger
systems of linear equations. In future sections, we shall also use these
operations to invert matrices and compute determinants.

Elementary row operations

1. A row can be multiplied by a nonzero real number.
2. A constant multiple of any row can be added to any other row.
3. Any pair of rows can be interchanged.

These operations are easily performed at an APL terminal. Recall that
in APL, the Ith row of a matrix is denoted by M([/;].

To multiply the Ith row of a matrix M by a nonzero constant C, simply
replace M[l;] by CXM]I;]. This is done as follows:

M[l;]< CXMII}].
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4.3 Elementary row operations

Example

M<3 3p:9

M[2;]<—3 X M[2;] Multiply row 2 by 3.

1 2 3 Note that you must request M to be
12 15 18 printed to see the change.

To add to row I a multiple C of row J, replace M[l;] by M[I;]
+ CXM[J;]. This is done as follows: M[/;]<M[I;]+ CXM[J;].

Example
M[2;] < M[2;]+("12) X M[1;] Add to row 2 the multiple ~12 times
M row 1.
1 2 3
09 18 Note that this change is made to the
7 8 9 latest version of M.

To interchange row I and row J, it is necessary to replace row I by row
J and row J by row I. This is done as follows:

M[l J;]<M[J I;].

Example

M[1 3;]<M[3 1;] Interchange rows 1 and 3.
M

7
0 -
1

N © ®

9
“18
3

For each of these elementary row operations, there is a corresponding
column operation. However, we shall have no need for these column
operations in this text.
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4 Systems of linear equations

4.4 Larger systems of linear equations

We will now consider using elementary row operations to solve a system of
m linear equations with » unknowns. Consider the system

a'x;+a, x,+...+a,, x,=b,

ay x tay -x,+...+a,'x,=b,

a,'x,ta,x,+...+a,, x,=b,.

This system can be represented as a matrix equation 4-X = B (or (A+.XX)
=B in APL) where

a4 - 4y, X1 b,

A1 Gp - Gy X2 b,
A=| | : X= B=

Ay Qpy oo Gy, X, b

To verify this, one only needs to do the indicated matrix multiplication. In

fact, such a system can be expressed even more succinctly as a single
matrix

any  4ap a, b
a a eee a4y, b

C=4,B=| ' % 7?1 (CeA,BinAPL).
a, Q. .. a,, b,

One of the basic techniques for solving such a system is the method of
Gaussian elimination which we know from solving the two-by-two systems.
By this method, one attempts to reduce the system to one of the form

xitcepx,teyx;+ ..ty x,=d,
Xyt oy Xyt .. ey x,=d,

X3+ ... tey,x,=dy

Xn

=dn
0=0
0=0.

Then, by solving the equations successively (from the bottom to the top),
one can determine the values of the unknowns.
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44 Larger systems of linear equations

To reduce such a system of linear equations to this form (without
altering the solutions), requires the use of a sequence of operations on the
equations. The permissible operations are

1. Multiply an equation by a nonzero real number.
2. Add to an equation a constant multiple of another equation.
3. Interchange two equations.

These operations can also be performed as the analogous elementary row
operations on the rows of the augmented matrix A,B. The following
examples illustrate the technique:

Example 1
x+2y+3z=1 Conventional notation for a 3-by-3 linear system.
x+3y+5z=2
2x+5y+9z=3
A<3 301 23135259 The matrix of coefficients.
B<~123 The vector of constants.
C<AB The augmented matrix.
c
1231
1352
5§93
C[2;]<C[2;]+ (" 1) X C[1;] Row 2 is replaced by row 2 plus the
(o} multiple ~1 of row 1.
1231
0121
2593
C[3;]«<C[3;]+("2) X C[1;] Row 3 is replaced by row 3 plus the
c multiple ~2 of row 1.
1 31
0121
0131
C[3;]<C[3;]+("1)X C[2;] Row 3 is replaced by row 3 plus the
C multiple ~1 of row 2.
1231
0121
0010

Thus, from row 3, z=0. From row 2, y +2z=1, so that y =1. From row
1, x+2y+3z=1. Substituting z=0 and y =1, we get x="1.
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Check
A+. X110
123 It checks. A-X = B.
Example 2
2x+ y— z=4
x=2y+ z=1
3x— y—2z=3
A<33p21 11213172
B<~4 13
C<A,B
C
1714
2 11
1723
Cl1 2;)«C[2 1}] Interchange rows 1 and 2.
Cl2;]«<C[2;]+("2)X C[1;] Replace row 2 by row 2 plus the
C[3;]<C[3;]+("3)X C[1;] multiple ~2 of row 1. Replace row 3
C by row 3 plus the multiple ~3 of row
2 11 1.
5§32
5750
Cl2 3;]<C[3 2;] Interchange rows 2 and 3.
Cl2;]<(=5)%x C[2;] Multiply the new row 2 by 1/5.
C
2 11
1710
5§ 32
C[1;]<C[1;]+2X%x C[2;] Replace row 1 by row 1 plus twice
row 2,
C[3;]<C[3;]+("5) X C[2;] Replace row 3 by row 3 plus the
multiple -5 of row 2.
C
011
1710
0 22
C[3;]<(+2)xX C[3;] Multiply row 3 by 1/2.
C
011
1710
0 11



4.4 Larger systems of linear equations

C[1;]<C[1;]+ C[3]] Replace row 1 by the sum of rows 1
C[2;]«< C[2;]+ C[3;] and 3. Replace row 2 by the sum of
(] rows 2 and 3.

1002

0101

0011

Thus, from row 1, x=2; from row 2, y=1; from row 3, z=1.

A+.X2 11
413 It checks.

Example 3

x+ y+ z+ w=1
—-x+ z+2w=1
3x+2y - w=1
x+ y+2z+2w=1

A4 4p1 1111012320711 122
Be—1111
C<AB

—_ ) - =
- N =
NO 220
N =N=
B N N )

Cl2;]« C[2;]+C[1;]
C[3;]<C[3;]+("3)x C[1}]
Cl4]<Cl[4]+(1)XC[1}]
C

2 WN =
AA&A
|
O NN =

1
1

-4 -
0

QOO -=

C[3;]<CI[3;]+ C[2;]
C

11
2 3
171
11

(=Nl R
OO = -
OON =
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4 Systems of linear equations

Cl4;]< C[4,]+C[3;]
Cl3 ]« (C1)XC[3;]
C

S =N =
O =4 W=
OQON =

1
1
0
0

QOO -=

Thus, row 4 yields 0=0, indicating that we have a redundant system.
From row 3, z+w=0, or z=—w. From row 2, y+2z+3w=2. Or,
replacing z by —w, y—2w+3w=2; or, y+w=2; so, y=2—w. Finally,
from row 1, x+y+z+w=1. Replacing y by 2—w and z by —w, we get
x+2—w—w+w=1; or, x=w— 1. This system has an infinite number of
solutions, since w can be any real number. The general solution looks like
(w—12—w, —w,w).

Example 4
x+2y+3z=2
4x+5z+62=3
Tx+8y+9z=5
A<3 3p. 9
B2 3 5
C«—A,B
C
1232
4563
7895

Cl2;]<C[2;]+("4)XC[1}]
C[3;]<C[3;]+(7T)xC[1]]
Cc
2 3 2
3 65
6 12 9
Cl2]]<—(1)xC[2]
C

1
0
0

(=N R
mwm
o W
o N

“12 9
C[3;]<C[3;] +2 X% C[2)]

oo w
9]

2
5
1

o o =
O WN



4.5 Row reduced form

Row 3 says that O0=1. This is ridiculous. Thus, this system has no
solutions. It is an inconsistent system.

A system of linear equations has either one solution, no solutions, or an
infinite number of solutions.

EXERCISES
1. Let
3 2 5
A=|1 "4 6|
7 0 9

Perform the following elementary row operations on 4 at an APL terminal.
(a) Interchange rows 1 and 2.

(b) Add to row 2 the multiple ~3 of row 1.

(c) Add to row 3 the multiple ~7 of row 1.

(d) Multiply row 2 by 1+ 14.

2. Using elementary row operations at an APL terminal, reduce the matrix
1 2 3 1 0 71
M=|4 5 6 to 0 1 2|
7 8 9 0 0 O
3. Using elementary row operations at an APL terminal, reduce the matrix
0
7

to 11

S
i
W WN

1
1
1
1

(NI NV S}
MW A
SOoO—
SO —=0O
(= =]

4. Use elementary row operations at an APL terminal to solve the following
systems of linear equations:

(@) 2x+3y=6 (d x+2y+3z+5w=5
Sx— y=4 2x+3y+5z4+9w=4

(b) x+2y+3z=3 3Ix+4y+T7z+ w=0
4x+5y+6z2=4 Tx+6y+5z+4w=3
Tx+8y+9z=5 (&) x+ 2y+ 3z+ 4w=2

() 3x+ y+2z=4 Sx+ 6y+ 7z+ 8w=5
2x+3y+ z=3 I9x+ 10y +11z+12w=3
2x+ y+ z=2 13x+14y + 152+ 16w=0

4.5 Row reduced form

Using elementary row operations, there is a final form in which a matrix
may be altered, called the row reduced form. The reduction of a matrix to
this form has many applications in matrix algebra.
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4 Systems of linear equations

Row reduced form

A matrix M is in row reduced form if

1. The first K rows are nonzero vectors (vectors not containing all zeros),
and the remaining rows are zero vectors.

2. The first nonzero entry in each nonzero row is a I, and it occurs in a
column to the right of the leading 1 in each preceding row

3. The first nonzero entry in each nonzero row is the only nonzero entry in
its column.

The following are examples of matrices in row reduced form:

Examples

This is the 4-by-4 “iden-
tity” matrix. In reducing a
matrix to row reduced
form, one tries to make it
as close to an identity
matrix as possible.

SO O —
SO —O
o —= OO
—_ O OO

2.
1 0 1 2
01 2 3
0 0 0O
0 0 0 O
3.
1 0 0 0 2
01 0 0 1
0 0 01 3
0 0 0 0 O
0 0 0 0 O

In Examples 2 and 3 above, it is not possible to make the matrices into
identity matrices by further applications of elementary row operations.
They are as close to the corresponding identities as possible.

Let us consider some examples of the method of reducing matrices to
row reduced form.

Example 1
M—33p430132 201

N = A
oww
-nvo
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[1 2]<M([2 1]]

—onvER

N &=
o Ww

M(2;]— M[2;]+("4) X M[1:]
M([3;]< M[3;]+2 X M[1;]

M

(= N« B

|
N O W
oo N

M([2;] (1 +9) X M[2]
M

-
w

2
.8888888888
065

M[1;] < M[1;]+("3) X M[2;]

o
Y

M[3;]< M[3;]1+("6) X M[2;]

M
~.6666666666

.8888888888
0 ~.3333333333

M(3;] < ("3)XM[3]
M

~.6666666666
.8888888888

oo =
- O

o =
- O

001

4.5 Row reduced form

Interchange rows 1 and 2.

Replace row 2 by row 2 plus ~4 times
row 1.
Replace row 3 by row 3 plus 2 times
row 1.

Multiply row 2 by ~1/9.

Replace row 1 by row 1 plus ~3 times
row 2.
Replace row 3 by row 3 plus ~6 times
row 2.

Multiply row 3 by ~3.

M[1;] « M[1;]+ .6666666666 X M[3;]

Making the elements in the third col-
umn above the 1 into 0’s.

M[2;] < M[2;]+(.8888888888) X M[3;]

M
0
010
001

-
o

The final form of M is the 3 X3 identity matrix.
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Example 2

M<4 4p. 16
M

woonm-=
-
hrOODN
-
N = NW
-
ON oS

M([2;] < M[2;]+ (" 5) X M[1;] Making the elements in the first col-
M[3;]< M[3;]+ ("9 X M[1;] umn below the 1 into 0’s.
M[4;] < M[4;]+(T13) X M[1}]
M
2 3 4
4 "8 12
"8 "16 24
0 12 "24 ~36

o o=

M[2;] (1 + ~4) X M[2;] Multiply row 2 by ~“1/4 to create a 1
M in the second column.

1 2 3 4

0 1 2 3

0 8 16 24

0 12 24 ~36

M[1;] < M[1;]1+(C2) X M[2;] Using the 1 in the second row and
M[3;]«— M[3;]+8 X M[2;] column to make the rest of the sec-
M[4;] < M[4;]+ 12 X M[2;] ond column into 0’s.

coo-=
co-=o
conNn=Z
cownmn

This is as close as we can make it to the identity matrix. This matrix
cannot be made any simpler by using elementary row operations. This
process of reducing a matrix to row reduced form is quite tedious.
Therefore, we now consider a program which uses the elementary row
operations to reduce a matrix to row reduced form.
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4.5 Row reduced form

Program 4.1 ROWFORM

VR<—~ROWFORM M;K;L;H
[11 Ke&O
[2] RAISE:K—K+1
[8] —>K>(pM)[2])/ ANSWER

[4] LeK
[5] CHECK:—(M[K;K]+0)/BEGIN
[6] LeL+1

[71  —(L>(eM)[1])/RAISE
(8] M[K,L;]<M[L,K]]
[9] —CHECK
[10] BEGIN:H<0
[11] M[K]<(+ M[K;K)X M[K;]
[12] INCREASE: He—H+1
[13] —(H#K)/NEXT
[14] —>(K=@EM)[1DAH=(M)[1]))/ ANSWER
[15] HeH+1
[16] NEXT: M[H;]—M[H;]— M[H;K]X M[K;]
[17] —(H<(oM)[1])/ INCREASE
[18] —(K<(oM)[1])/RAISE
[19] ANSWER: R—M
\Y

Essentially, this program works as follows: Proceeding to line 5, if
M[1;1] is O, row 1 of M is interchanged with row 2 (line 8). Then,
branching back to CHECK (line 5), if M[1;1] is still O, rows 1 and 3 are
interchanged. This continues until row 1 has been interchanged with all
rows of M, (L >(pM)[1]), which means that the entire first column is all 0’s,
in which case the program branches back to RAISE (line 2), where K is
increased to 2 and an analogous process is used on the second column.
However, if we do get an M[1;1]#0, the program branches to BEGIN
where M[1;1] is made into a 1 by multiplying row 1 by 1+ M[1;1] (line 11).
Then, all other elements in column 1 are made into 0’s (line 16). In line 18,
the program branches back to RAISE where K becomes 2.

Now, the same process is repeated in column 2. That is, by interchang-
ing row 2 with those below it, the program attempts to find an M[2;2]+0.
Then M[2;2] is converted to 1 by multiplying row 2 by 1+ M[2;2]. All
other elements in column 2 are next converted to 0’s. Then, we are
branched back to RAISE, where K is made 3 and the same process is
repeated with column 3. In other words, M[3;3] is converted to 1, if
possible, and all other elements in column 3 are converted to 0’s. Then, to
column 4, etc., until K=(pM)[1], when we have all columns in the proper
form. Then, this last form of M is printed out as our answer R in line 19.
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This program does exactly as we would do if we were to convert M to

row reduced form ourselves (by hand). Only, using the computer, it

ac

OO0 =

-
N =N

N = oo =

-
N OYVN

8 o O =

complishes this process much faster.
Let us consider some examples using this program ROWFORM.

Example 1
M<4 4p. 16

ROWFORM M To run the program, type ROW-
FORM M.

1 72

2 3

0o

00

o O -0

Example 2

M<3 3123213321
M

3
3
1

ROWFORM M

o - O
- OO

This is the best possible final form of
a matrix, the identity.

Example 3

M<3 4121225231212
M

1
2
1

NWN

ROWFORM M

00 4
101
01 0
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Example 4
M3 30123248125

- N =

N AN

oW
<

ROW FORM M

o o=
OON
o -+ 0O

EXERCISES

1. Use elementary row operations at an APL terminal to reduce the following
matrices to row reduced form:

P 1 2 3 01 2 3
(@ A=|1 3 5 {1 1 1 5
12 5 9 @D=1y 1 0 7
11 1 01 2
(b) B=|2 3 4 1 2 "1 4
|1 3 5 (€ E=| 2 4 3 5
L 9 -1 4 1 2 6 0
_ 4 5
©@Cc=17 2 6 o0
0 3 1

2. Use the program ROWFORM to check your answers to Exercise 1.

3. With a pencil and paper, trace the program ROWFORM with the matrix D
above.

4. Using the TRACE command, trace the program ROWFORM with the matrix D
above.

4.6 The inverse of a matrix

If a system of linear equations has the same number of equations as
unknowns, and if the matrix of coefficients has as its row reduced form an
identity matrix, then there is a very easy method for solving the system
using the inverse of the matrix of coefficients. In this section, we shall
consider the concept of the inverse of a matrix. In the next section, we
shall apply the idea of matrix inversion to solving a linear system.

Recall, from Section 3.5., that if we are working with square n by n
matrices, then there is a multiplicative identity matrix I. This matrix has the

91



4 Systems of linear equations

property that if 4 is any n by n matrix, then
AI=I4A=A.
1 is the n by n matrix with 1’s down the main diagonal and 0’s elsewhere.
In APL, the n by n identity matrix can be created as follows:
le—(N)o.=(N).

This makes use of the concept of outer product. 1 is compared to each
element of «N using the logical operator, =, yielding the vector 1 0 0 - - -
0 as the first row. Then, 2 is compared to each element of (N using =,
yielding that vector 0 0 1---0 as the second row. Then, 3 is compared to
each element of «N using =, yielding the vector 0 0 1 --- 0 as the third
row, and so on through the nth row.

Example
le—(13) o . =(13)

-~

(=N =R
o =0

0
0
1

The diagram below might be helpful in understanding the outer product
(3)°.=(3):

3
0~
0
1

From now on, we shall refer to / as simply the identity matrix of
appropriate size.

The inverse of a matrix

The inverse of an nXn matrix A4, if it has an inverse, is the n X n matrix
(usually denoted by 4 ) such that

(A-4"Y)=(4 "A)=1.

Examples
1. If
—12 3
=3 3}
then
4 1= 35 15
A
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4.6 The inverse of a matrix

since
(44 =@ ra)=|1 O|=p
0 1
2. If
1 2 3
A=|1 3 5},
2 59
then
) 2 3 1
A=l 1 3 2|
1 -1 1
since
) B 1 00
(A‘A 1)=(A 1-A)= 0 1 0l=I
0 0 1
3. If
_[1 2
=[5 &
then 4 has no inverse. In order to see this, suppose that
S X Y
A _[Z w]
Then,

A nho| X*¥2z2 y+2w _[1 ()]
(447 [3x+6z 3y+6w] [0 1]

Therefore, x+2z=1 and 3x+ 6z =0. However, this is impossible. So, 4
has no inverse.

Matrices that do not have inverses are said to be singular. Those with
inverses are therefore nonsingular. Obviously, any matrix which is not
square is singular, because if the matrix is not square, then 4-4 ! and
A 14 would not be the same size, let alone equal.

We now have three questions:

1. How does one decide whether a matrix is singular or nonsingular?
2. If the matrix is nonsingular, how does one compute its inverse?
3. Of what use is the inverse of a matrix?

In order to attempt to answer these questions, consider the following
matrix equation:

(4-X)=(B) ((A+.XX)=(/+.XB) in APL notation).

Using conventional notation, and multiplying both sides of this equation
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4 Systems of linear equations

by A !, assuming A is nonsingular, one obtains
(47"(4-X))=(4""-(IB)),
or using the associative property,
((47"4)-x)=((4 "“1)B),or (I'’X)=X=(4 "B).

Thus, if 4 ! exists, it can be used to solve matrix equations like the one
above. Consider the system of equations:

ax,+ayx,+...+a,x,=1-b,+0-b,+ ... +0- b,=b,

@y x,+ay x,+ ... +ay, x,=0-b+1-b,+ ... +0- b,=b,

a,'x,+a,yx,+...+a,x,=0x,+0-x,+...+1-x,=b,.

As a matrix equation, this would be 4-X = I-B, where

[ ay Gy o 4, X
a4 ayp Ay X3
A= . X=
Lanl anZ ann Xn
[ b, 1 0 0
b, 0 1 0
B=| | I=| |
b, 0 0 1

If this system has a unique solution and has been solved by the method of
elimination, then we would end up with a system like the following:

1-x,+0:-x,+ ... +0-x,=x,=c¢;;"by+ ¢y b+ ... + ¢}, b,

0-x,+1:x,+...+40-x,=x,=c¢y"by+ by + ... + 5,0 b,

0-x,+0-x,+...+1-x,=x,=c,;' b+ b+ ... + ¢, b,.
Or, as a matrix equation, this would be
(I-X)=X=(CB),
where C=4 "', since X=(A4 ' B). Considering these two systems of linear

equations, this process seems analogous to using elementary row opera-
tions to reduce the augmented matrix, 4, I to the form I, 4 L
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4.6 The inverse of a matrix

An algorithm for matrix inversion
The above discussion yields the following algorithm for inverting a matrix:

1. Form the augmented matrix 4, I.

2. Use elementary row operations on the rows of this augmented matrix to
reduce it to the form 7, 4 L.

3. Drop the matrix 7 from the resulting matrix.

[Note: This process also provides us with a test for the nonsingularity of a
matrix. If the row reduced form of A4 is I, then 4 is nonsingular.
Otherwise, A4 is singular.]

Let us apply the above algorithm to finding the inverses of the matrices
in the previous examples:

Example 1

A2 202 3 47

A
23
47

ROWFORM A
10 Since the row reduced form of 4 is
01 the identity, 7, then 4 has an inverse.

It is nonsingular.

l—(2)°.=(2) The 2 X2 identity matrix.

M<A,I Step 1: forming the augmented

matrix A, /.

ROWFORM M Step 2: reducing the augmented
1035 15 matrix to the form I, 4 '. Let the
01 2 1 program ROWFORM do the work.

INVERSE 2 ~2™M Step 3: taking the inverse from the

resulting matrix. We do this by

INVERSE taking the first two rows and last two
35 “15 columns of M.

2 1
Thus,

L [35 -15
4 _[>2 1].

Let us check this using APL.
A+.XINVERSE

10

01 It checks.
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4 Systems of linear equations

Example 2
A<33p123135259
A
123
135
259
ROWFORM A
100 Since ROWFORM A is I, A is nonsin-
010 gular.
001
le—(3)°.=(13) The 3 X3 identity matrix.
M<A, | The augmented matrix
M
123100
135010
59001
ROWFORM M Reducing M to row reduced form.
100 2 -3 1
010 1 32
00111 1
INVERSE~3 ~31™M Dropping 1.
INVERSE
2 3 1 The inverse of 4.
1 372
1711
A+.X INVERSE Checking our result using the defini-
100 tion of inverse.
010
001 It checks.
Example 3
A2 201 236
A
12
36
ROWFORM A Since ROWFORM A is not I, A is
12 singular. It has no inverse.
00

We now consider a simple APL program for finding the inverse of a
matrix. However, before using this program to find 4 !, first find
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4.6 The inverse of a matrix

ROWFORM A using Program 4.1. If ROWFORM A is not the identity
matrix, I, then 4 has no inverse. If ROWFORM A is the identity matrix,
then 4 has an inverse which can be found using the following program.

Program 4.2 INVERSE
VINV< INVERSE /;\; N; I,
(11 N<(pA]
[2] I<(@N)o.=(N)
[3] @IV(— (N, — N)1ROWFORM (A, I)

If line 3 of this program is read from right to left, one can easily see that

it is merely performing the 3 steps in the above algorithm.

Example 1

A2 202347
A

&N
N W

ROWFORM A
0 Thus, 4 has an inverse.
1

o =

INVERSE A
35 "15 Using the program INVERSE to com-
2 1 pute 4 .

Example 2

A3 301231352569

N = =

AWwWN

0 0w
>

ROWFORM A
Thus, 4 has an inverse.

oo =
o =0
- OO0

INVERSE A
2 3 1
1 372
111
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4 Systems of linear equations

EXERCISES

1. Use elementary row operations to find the inverses of the following matrices (if
they have inverses):

_[3 4 1 4 2
@ 4= 2] @ D=| 7 2 0
o1 s 0 3 5
®) B=|3 1 2 2 1 3 4
|12 3 © E=[3 1 5 2
- 2 1 4 3
123 31 2 5
© C=|4 5 6 L
17 8 9

2. Use the program INVERSE to check your answers to Exercise 1.
3. Trace the program INVERSE using the TRACE command and the matrix B.

4. Prove that the inverse of a matrix is unique. [ Hint: Suppose that there are two
inverses of A, called X and Y, and show that X=Y.]

§. Write an APL program for computing the N X N identity matrix / for any given
N.

4.7 Inverses in APL

It seems only fair to point out that if a matrix A is nonsingular, then its
inverse can be found directly on the APL system by simply typing [=]A.
is often called the “domino function.” It is obtained by typing the
quad, [], backspacing, and typing the + inside of the []. If 4 is
singular, then, on most APL systems, an error message will result when
[#]A is entered.

Example 1

A<22p2347
A
23
47
=A
35 15
2 1

Example 2
A2 201236
A
12
36
A
DOMAIN ERROR A has no inverse.
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Example 3
A3 30123135259

N = =

AWwWN

o 0w
>

A
2 3 1
1 3 2
111
APL solution to a system of linear equations

As pointed out in the previous section, a system of »n linear equations with
n unknowns can be expressed as a matrix equation (4-X)= B. Also, if 4 !
exists, the solution is given by X =(4 "!-B). In APL, this solution is given
by

X—([F]A)+.%XB
or, even more simply, by

X<—B[F]A (the matrix divide operation).
Examples
1.
2x+3y=4
4x+Ty =6
A—2 202 347
B<—4 6
(x1A)+.XB
5 -2 So, x=5,y="2.
B[ A
5 -2
A+.X(5 "2)

46 It checks.
x+2y+3z=1
x+3y+5z=2

2x+5y+9z=3
A<3301 231352509
Be<12 3
(FA)+.XB
110 So, x="1,y=1, z=0.
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4 Systems of linear equations

B[x]A
110
A+.X(C1 1 0)
123 It checks.
3.
x+2y=5
3x+6y=4
A2 2p1 236
B«5 4
(F]A)+.XB
DOMAIN ERROR Since A is singular.

4.8 Applications

Let us now consider a couple of applications of systems of linear equa-
tions.

Example 1

Ajax manufacturing company produces three large products called 4, B,
and C. To produce each product requires time on three machines called I,
I, and III. Each unit of 4 requires 2 hours on I, 3 hours on II, and 1 hour
on III. Each unit of B requires 1 hour on I, 1 hour on II, and 4 hours on
II1. Each unit of C requires 3 hours on I, 1 hour on II, and 2 hours on III.
On a busy day, machine I is available for 13 hours, machine II for 12
hours, and machine III for 10 hours. How many of each product can be
produced on this day?

Let x represent the number of 4’s that can be produced on this day, y
represent the number of B’s, and z represent the number of C’s. Then, the
above paragraph can be summarized in the following system:

2x+3y+ z=13
x+ y+4z=12
3x+ y+2z=10

A<3 302 31114 31 2 The matrix of coefficients.

B«13 12 10 The vector of right-hand values.
B[=]A Solving the system using the matrix
132 divide operation.

Thus, x=1, y=3, z=2. So, the company can produce 1 4, 3 B’s, and 2
C’s on this day.
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Example 2

Last year, a man invested $60,000 in three operations: a hamburger stand,
a miniature golf course, and a vegetable stand. He made a profit of 15
percent on the hamburger stand, 10 percent on the miniature golf course,
and 20 percent on the vegetable stand. His total profit for the year was
$9000. He invested twice as much in the hamburger stand as in the
miniature golf course and the vegetable stand together. How much did he
initially invest in each operation?

Let x be his initial investment in the hamburger stand, y his investment
in the miniature golf course, and z his investment in the vegetable stand.
Then, as a system of linear equations, we have

x+ y+ z=60000 His total investment.
0.15x+0.10y +0.20z =9000 His profit.
x— 2y— 2z=0 Since x=2-(y + z).

A3 3p1 11 .15 10 201 "2 "2
B«60000 9000 0

BE A
40000 10000 10000

Thus, he invested $40,000 in the hamburger stand, $10,000 in the
miniature golf course, and $10,000 in the vegetable stand.

EXERCISES

1. Find the inverses of the matrices in Exercise 1 of Section 4.6, using the APL
operation [=].

2. Test the validity of the following statements at an APL terminal:
(@ (4-B) '=B 4! (EJ(A+.XB)=(([=]1B)+.X([=]A)) in APL)
(b) (4-B)'=4""B'  (E(A+.XB)=(([= A)+.X([F]B)) in APL)
(© (47)'=4 (E(RA)=Ain APL)
Use some matrices of your own choosing for these tests.
3. Use the matrix divide operation to solve the following systems of linear
equations:

(@) x+2y=5 d) 2x+y+3z+4w=8
3x+4y=6 3x+y+5z+2w=2
(b) 2x+ y+3z=5 2x+y+4z+3w="7
3x+ y+2z=4 3x+y+2z+5w=0
x+2y+3z=6 (©) 3x,+2x;— x3+4x,— x5=7
(€) 2x+ y+3z=4 X1 +3x;—2x3+ x4+ x5=1
4x+3y + z=3 S5x1=3x3+ x3+ x4+ 2x5=4
2x+ y~ z=5 2x,+ x;— x3+5x4+ x5=6
X;— X+ 3x3+2x, ="1
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4 Systems of linear equations

4. Set up and solve the following problems:

(@

A small store has $900 to spend on shirts and pants. Each shirt costs $4 and
each pair of pants costs $10. They wish to buy twice as many shirts as pants.
How many of each should they buy?

(b) A warehouse manager has a chance to buy and store and later sell three

©

102

items called I, II, and III. Each I requires 1 square foot of storage space,
each II requires 2 square feet, and each III requires 3 square feet. Each I
costs $20 to buy and stote, each II costs $50, and each III costs $90. Each I
will bring a profit of $10, each II a profit of $30, and each III a profit of $50.
If the warehouse manager has 1000 square feet of space available, $10,000 to
spend, and would like a profit of $5000, how many I’s, II’s and III’s should
he buy?

A carpenter builds bookcases, tables, and chairs. Each bookcase costs $20 to
build, requires 12 square feet of lumber, and takes 5 hours. Each table costs
$30 to build, requires 20 square feet of lumber, and takes 9 hours. Each
chair costs $10 to build, requires 4 square feet of lumber, and takes 2 hours.
How many of each can he build with $9500, 5800 square feet, and 2600
hours?



Determinants

5.1 Definition of a determinant

Associated with every square matrix is a number, called its determinant,
symbolized by det(4) or by |4|. As we will see, determinants give some
useful information about the matrix and can be used to invert matrices and
solve systems of linear equations. In this chapter, we shall consider some
ways in which to evaluate determinants as well as some of the applications
of determinants.

Definition of determinant

The determinant of an nX n matrix A is the sum of all the n! possible
products of the form

(‘1)k~alj]-azj2-a3j3...a,,j"
where no two column indices are the same and where k is the number of
transpositions of the column indices needed to put them in natural order.
[Note: In each of the above products, there is exactly one element from
each row and column. Also, n!=n-(n—1)-(n—2)...3:2-1, and n! is read
as n factorial.]
Let us apply this definition to 2X2 and 3 X3 matrices.

Two-by-two determinants
a,, a
A= 11 12 ,
{ 4 Aaxn

det(4)=(" l)o'all'azz+ ()'ayyay= ay'ay — ayyay.

If

then
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Example
{1 2
A—-[3 4].
Then, det(4)=1:4—2-3="2.

Three-by-three determinants

If
a, 4ap 4apg
A=|ay ap 4ax|,
as; a4z Qas
then
) 2 )
det(4)=("1)"a,ayan+( 1) ayaya;+ (1) a3a;a;
N N _l
+( 1) ayrayan+(C1) ayaya,+(71) ayayay
=a)1° 00331 Q1053031 41325103, — Q)°Ay3° A3,
T ayyay"a33 A13°Ayy' Ay
Example
If
1 2 3
A= 5 61
7 8 9
then

det(4)=1-5-9+2-6-7+3-4-8—1:6-8—2-4-9-3-5-7
=45+84+96—48—-72—-105=225-225=0.

For n> 3, this definition becomes more difficult to apply. Therefore, we
consider some techniques for using elementary row operations to evaluate
determinants. First, however, we shall list some properties of determinants.
These properties will be listed without proofs. However, the reader can
easily verify them for two-by-two and three-by-three determinants using
the formulas developed in the previous discussion.

Property 1.

If A4 is a triangular matrix (i.e., all elements above or all elements below the
main diagonal are zeros), then det(4) is the product of the diagonal
elements.

Property 2.
If A has a complete row (or column) of zeros, then det(4)=0.
Property 3.

If a row (or column) of a matrix A is multiplied by a nonzero constant c,
then det(A4) is multiplied by c.
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Property 4.

If a multiple of one row (or column) is added to another row (or column),
then the value of det(A4) is unchanged.

Property 5.

If two rows (or columns) of 4 are interchanged, then det(4) is multiplied
by 1 (i.e., det(4) changes sign).

Using elementary row operations to evaluate determinants

By using elementary row operations, a matrix 4 can be reduced to a
triangular matrix B. Then, by Property 1, det(B) can be found by just
multiplying the diagonal elements of B. If B should have a row (or
column) of all zeros, then det(B)=0. We must use Properties 3-5 to keep
track of how det(B) is related to det(4). If to arrive at B, a row has been
multiplied by a constant ¢, then det(B) must be multiplied by 1/¢ to
compensate for this. If a multiple of a row has been added to another row,
there has been no change in the determinant. If two rows have been
interchanged then det(B) must be multiplied by ~1 to compensate for this.
With these remarks in mind, let us evaluate some determinants using these
properties.

Example 1

A<3301 34302211
A

13 4
0 2
11

A[2;] < A[2;]+(3) X A[1;]

A
3 4 By Property 4, no change in det(A4).
"9 710
1 1

A[3]<A[3]+("2)XA[1}]

A
3 4
9 710 By Property 4, no change in det(A4).
5 79

A[3)]—(1+ 5) X A[3]]

A
3 4 By Property 3, the value of det(4) is
"9 10 multiplied by ~1/5.
118

(=2 = B NO = N W

o o=
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Al2;] < A[2;]+9 X A[3;]

>

1
0
0

- o w

6.
1.

N »

A2 3;]<A[3 2]
A

1
0
0

o =+ W
N>

1.
6.

By Property 4, no change in det(A).

By Property 5, det(4) is multiplied
by 1.

By Property 1, since the matrix is now triangular, the determinant of the
resulting matrix is the product of its diagonal elements, 6.2. Compensating
for the changes in det(4) noted above, we get

det(4)=("5)-("1)-(6.2)=31.

Example 2
A<3 3p. 9

SN
© 0N
©ow,y

A[2;]< A[2;]+("4) X A[13]
AlB]—A[B]+(T) X A[1]

A
2 3
3 76
6 12

o O =

A[3;]<—A[3;]+("2) X A[2;]

A
2 3
"3 76
00

oo =

By Property 4, no change in det(4).

By Property 4, no change in det(A).

Since the resulting matrix has a complete row of 0’s, then by Property 2,

det(4)=0.

EXERCISES

1. Using the formula developed from the definition of determinant, write a
program to evaluate 2 X2 determinants.

2. Repeat Exercise 1 for 3 X3 determinants.

106



5.2 A program for evaluating determinants

3. Use the programs you wrote in Exercises 1 and 2 to evaluate the following
determinants:

305 2
() det[i 3] (d)det;t (9) d
. 14 2
4 2
(b)det[6 _3] (€) det (7) g (5)}
302 1
© det[g g] ) det; § ?]

4. Use elementary row operations and Properties 1-5 to evaluate the following
determinants:
(a) Exercise 3(a) above
(b) Exercise 3(d) above

1 2 3 4

5 6 71 8

©@detl 5 10 1 12
13 14 15 16
12 1 4

) 4 5

@det) .7 5 5 0
L 5 0 3 71

5. Use your programs in Exercises 1 and 2 and matrices of your choice to test the
validity of the following law of determinants:

det(A4-B)=det(4) xdet(B).

6. Use the law in Exercise 5 and the definition of inverse of a matrix to prove that
det(4 “Y)=1+det(4), provided that 4 is nonsingular. If 4 is singular, then
det(A4)=0.

5.2 A program for evaluating determinants

Rather than do all the work ourselves each time, why not let the computer
perform the elementary row operations and reduce 4 to a triangular
matrix B and compute det(4)? The following program will accomplish
this.

Program 5.1 DET
VD« DETM;K;N; P
[1] Det
[2] START:N<(pM)[1]
[8] —>(N=1)/LAST
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[4] Ke
[5] INCREMENT:K—K+1
[6] Pe1

[7] CORRECT:—(M[1;1]%0)/ EXECUTE

8] —((A/M[;1]=0)=1)/END

9] M<1¢[1]M

[10] P—PX("1)x(N—1)

[11] — CORRECT '
[12] EXECUTE:M[K;]<— M[K;]—((+ M[1;1]) X M[K;1]) X M[1;]
[13] —(K<N)/INCREMENT

[14] D<DXM[1;1]XP

[15] M<«<1 1M

[16] —START

[17] LAST:D<DXM[1;1]

[18] —0

[19] END:D<«0
\

Proceeding to line 7; if M[1;1]#0, the computer branches to the line
labeled EXECUTE. However, if M[1;1]=0, the computer goes to line 8,
which checks to see if the first column consists entirely of zeros. If it does
consist entirely of zeros, the computer branches to the line labeled END,
and the value of D is 0, according to Property 2. If the column does not
consist entirely of zeros, the computer proceeds to line 9. Here, the bottom
row of M is moved to the top. Line 10 makes the proper sign adjustment
for this. (This is equivalent to interchanging the bottom row with each
other row in turn working from bottom to top. Thus, the sign of the
determinant is changed N —1 times in accordance with Property 5.) Line
11 sends the computer back to the line labeled CORRECT to see if now
M[1;1]#0. This continues until M[1;1]50.

When M[1;1]#0, the computer is sent to the line labeled EXECUTE.
Here, each row from K=2 to K= N is replaced by the expression in line
12. This expression essentially makes the first element in each row below
the first row into a zero. Line 13 accomplishes the repetition of this process
on each of these rows below the first. When K= N, the computer goes to
line 14, where the previous value of D is multiplied by the element M[1;1]
and P, the sign adjustment due to interchanging rows.
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In line 15, the first row and first column of M are dropped yielding a
matrix with one less row and column. Then, the computer is sent back to
START and the entire process is repeated on this smaller matrix.

The size of the matrix is thus reduced until it is a 1 X1 matrix. In the
process, the diagonal elements are multiplied and the sign changes
accounted for (lines 10 and 14). The final result is equivalent to evaluating
the determinant of a triangular matrix by multiplying its diagonal ele-
ments.

Since this program is quite long, it would be nice if determinant were a
keyboard operation in APL. Unfortunately, at the present time, it is not.
However, Dr. Iverson has told this author that this addition to the APL
system is under consideration. Perhaps, in the near future, determinant will
be a keyboard operation in APL.

Examples

M<3 321343021 1
M

N AN
- W =

3

0

1

DET M

“8

M4 4p1 2 1424357126030 3 1

1
3
6

-3

-210
M<4 4p. 16
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DET M
1.705302566E 13

This answer is essentially zero, since E~"13 means 10* "13=
0.000000000001, so that 1.705302566E ~13 =0.0000000000001705302566,
which is essentially 0. Actually, if one were to compute the determinant of
this matrix by hand, one would get 0.

EXERCISES
1. Use the program DET to evaluate the following determinants:
(2 3
(a) det 4 7 ]

(3 5 2
(b) detf4a 0 7
13 9 1

12 2 3
5 3 10
© deti3 5 -4
2 5 4 0
1 2 3 4 5

(d) detf 11 12 13 14 15

2. Perform a paper and pencil trace of the program DET using the matrix

1 2 3
4 5 6|
7 8 9

M=

3. Use the TRACE command at an APL terminal to do Exercise 2.

5.3 Cofactors

Another technique for evaluating determinants of nX n matrices involves
reducing the problem to evaluating a linear combination of the determi-
nants of certain (n— 1) X (n—1) submatrices of the matrix. This method is
referred to as the Method of cofactors. We will consider this method as
well as some other uses of cofactors.

Definition of minor

The minor A; of an nX n matrix 4 is the (n—1)X(n—1) matrix obtained
from A4 by deleting the ith row and jth column of 4.
A program for computing the minor 4; follows:
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5.3 Cofactors

Program 5.2 MINOR
VAlJ—A MINOR V;Q
[11 Q< (V[1]#upA)N1]/[1]A

(2] GU <(V[2]#«pA)2))/Q

This program works as follows: (V[1]7«(pA)[1]) yields a vector of I’s
(for true) in every position except the position corresponding to V[1] where
it yields a O (since V[1]# V[1] is false). Then, (V[1]# «pA)[1])/[1]A com-
presses this vector 1 1 ... 1 0 1 ... 1(0is in the position V[1]) on[1]A
(the rows of A4).

The result is that the rows corresponding to the 1’s are kept, and the row
corresponding to the 0 is deleted. The resulting matrix is called Q. Then,
(V[2]# «(pA)[2])/ Q operates similarly on the columns of 4, yielding AlJ.

Examples
A<3 3p. 9
A
123
456
789
V1 1
A MINOR V Delete the first row and first column
of 4.
56
89
V2 2
A MINOR V Delete the second row and second
13 column.
79

Associated with any element a; of a matrix 4 is a number c;;, called the
cofactor of a;.

Definition of cofactor
The cofactor of the element a; of the matrix 4 is the number
c;=("1)""/-det(4,), where A, is the minor.
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5 Determinants

Example
Let

The cofactor of

a12=(‘1)1+2'det[{; g]=6.
The cofactor of

6.

a21=(-1)2+‘~det[§ 3]

The cofactor of

a33=(‘1)3+3'det|i; §]=_3.

The following program computes the cofactor ¢; described above:

Program 5.3 COFACTOR
V ClJ«— A COFACTOR V; SIGN
[1] SIGN<-1*V[1]+ V[2]
[2] Cl«SIGNXDET A MINOR V
v
Example

A<3 3p. 9
A

N A -
o aN
© o w

A COFACTOR 1 2

A COFACTOR 2 1

A COFACTOR 3 3
-3

It will be useful to us to have a program that will form a matrix
obtained from a matrix 4 by replacing each element of A with the
corresponding cofactor. Thus, it forms a matrix of all the cofactors of 4.
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5.3 Cofactors

Program 5.4 COFACTORS
V CO« COFACTORS A;l;J
[11 CO«: 0
=
[3] INCREASE:J«—0
[4] ITERATE:J—J+1
[S] CO«CO,A COFACTOR I,J Each element is replaced by its

cofactor.
[6] —>U<@A)1])/ITERATE
(7] lei+1
[8] —(/<(pA)1])/INCREASE
[91 CO<«(pA)CO Line 9 forms a matrix of order (pA)
\Y% from the vector in line 5.
Example
A<3 3pt 9
A
123
456
789
COFACTORS A
3 6 3
6 12 6
3 6 3

The way in which these cofactors are used to evaluate determinants is
explained in the following theorem.

The method of cofactors

For any nXn matrix 4, det(4) can be computed as the sum of the
products of the elements of any row (or column) of 4 with their cofactors.
In other words, if

apy ap ap A1n
ayy G4yp axp az,

A = . . . )
a, an2 an3 aml

then det(d)=a, ¢+ a,c,+azcs+ ... +a,c, (expansion by the ith

in ~in

row), where ¢;; is the cofactor corresponding to a;.
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We will omit the proof of the method of cofactors. The following
program uses the method of cofactors to evaluate a determinant with the
first row used as the row of expansion.

Program 5.5 DET
VD« DETM
[11 De«M[1;]+.X(COFACTORS M)[1;]
v

[Note: The name of this program is DET , with the letters underlined to
distinguish it from the program DET.]

This program forms the inner product of the elements in the first row of
M with their cofactors, which form the first row of COFACTORS.

Examples

M«3 3pt 9
M

~ Ao
o ;N
© o w

DETM

M2 2p0 4

w =
&N

DETM

M«4 4p. 16
M

POON
= NWw
AON 0D

111
15 1
DETM

As an exercise, the student is asked to try multiplying the elements of
some row by the cofactors of some other row and adding the results in
some matrices. The result should always be zero, because this is equivalent
to evaluating the determinant of a matrix with two rows the same. Why
should this yield a result of 0?
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EXERCISES
1. Let
1 2 3 4
15 0 9 72
M=\3 1 -1 3
8 2 0 0

(a) Find the minor M,; of M and the corresponding cofactor c,;.
(b) Find the minor M,, of M and the corresponding cofactor c4;.
(c) Find the minor M,; of M and the corresponding cofactor c;.
(d) Find the matrix of cofactors (use COFACTORS).

(e) Use DET to evaluate det(M).

(f) Use DET to evaluate det(M).

2. Write a program for evaluating 3 X3 determinants using the method of cofactors
expanding about the third row.

3. Use the method of cofactors to evaluate the determinant of the matrix
3 5 2
M=(4 0 7
3 9 1

(a) Using the program you wrote in Exercise 2.
(b) Expanding about the second row.
(c) Expanding about the second column.

4. Let M be the matrix in Exercise 3.
(a) Multiply the elements of row 1 by the cofactors of the corresponding
elements of row two and add the results.
(b) Compare your result with the determinant of the matrix

3 5 2
3 5 2}
3 9 1

(c) Can you explain why these results should be equal?

5. Trace the program COFACTORS on the matrix

1 2 "1 4
| 2 4 3 5
M_'l 2 6 O0Of

5 0 "3 1

6. Prove the method of cofactors on a general 3 X3 determinant using expansion
about the first row. [Hint: Compare your result with the formula for 3X3
determinants in Section 5.1.]

5.4 Adjoints and inverses

Related to the idea of cofactors of a matrix 4 is another matrix called the
adjoint of 4. This adjoint can be used to compute the inverse of A, as we
shall see.
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S5 Determinants

Definition of adjoint of a matrix

For any nXn matrix A4, the adjoint of A, symbolized by Adj(A4), is the
transpose of the matrix obtained from 4 by replacing each element of A4
by its cofactor.

Thus, the adjoint of A is just the transpose of the matrix of cofactors.
Since we already have a program COFACTORS for obtaining this matrix
of cofactors, it is quite simple to write a program for the adjoint of A.

Program 5.6 ADJOINT

VADJ«— ADJOINT A
[1] ADJ(—& COFACTORS A This program merely transposes
\% COFACTORS.
Example 1
A<3301 23135259
A
123
135
259
COFACTORS A
2 11
3 31
172 1
ADJOINT A
2 3 1
1 3 2
1711 ADJOINT A is the transpose of
COFACTORS A.
Example 2
A<3 3ot 9
A
123
456
789
COFACTORS A
3 6 3
6 12 6
3 6 3
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5.4 Adjoints and inverses

ADJOINT A
3 6 3
6 12 6
3 6 3 Note that in this example, COFAC-

TORS A=ADJOINT A.

Use of the adjoint in inverting a matrix

The following theorem can be found in most linear algebra texts:

Theorem 1

For any nXn matrix, (A-Adj(A))=(Adj(A4)-A)=(det(A4)-I), where I is
the nX n identity matrix.

We will not rigorously prove this theorem here. However, we will verify
it with the following examples:

Example 1

A—330126210321
A

1
2
3

N =N

6
0
1

DET A

w

A+.XADJOINT A

oo W
o wo
w oo

(ADJOINT A)+.XA

(=« RV
o wo
w oo

l—(@3)°.=(:3)

(DET A)X |

oo w
o wo
w oo
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Example 2

A<3 3p. 9
A

N s
® 0N
©0©ow

o

DET A

A+ .XADJOINT A

[eNeNe)
[eNeNe)
[eNeNe)

(ADJOINT A)+.X A

(e NeoNe]
[eNeNe)
o OO

(DET A)x |

[eNeNe)
[eNeNe]
(e NeNe]

An immediate consequence of this theorem, obtained by multiplying

both sides of each equation by (1+DET A), is the following result
concerning the inverse of A:

(1]
(2]
(3]
(4]

Theorem 2
A is nonsingular if and only if DET A#0. Moreover, if DET A#0, then

A '=(1+det(4))-(Adj(A)).

Thus, we have the following simple program for inverting a matrix.

Program 5.7 INVERT
VINV— INVERT A
—((DET A)=0)/END
INV<« (ADJOINT A)+(DET A)
—0

END : ‘A IS SINGULAR’
\
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54 Adjoints and inverses

If DET A is 0, the program goes to END and prints out the message: ‘A
IS SINGULAR'’ in accordance with Theorem 2, above. Otherwise, it com-
putes ADJOINT A and divides it by DET A, also in accordance with
Theorem 2. Then, it branches to 0 to end the program.

Example 1

A—331231352569
A

N — —
AWN
o 0w

INVERT A
2°3 1
1 372
171 1

Example 2

A<3 30t 9
A

1
4
7

oo ;N
O oW

INVERT A
A IS SINGULAR Since DET A is 0.

The above theorem gives an easy way to determine whether or not a
matrix is nonsingular using its determinant.

EXERCISES
1. Let

A=

3 5 2
4 0 7|
3 9 1

Do the following with pencil and paper.

(a) Find DET A.

(b) Find ADJOINT A.

(c) Test the validity of Theorem 1 using A4.
(d) Use Theorem 2 to find the inverse of A4.

2. Redo Exercise 1 at an APL terminal.

3. Redo Exercise 1 with the following matrices at an APL terminal:

21 3 4
_[4 6 _13 15 2

@ 4=[3 9] ®A=15 1 43
31 25
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5 Determinants

4. Given the system of linear equations:
2x+ y+3z=5
3x+2y+2z=4
x+ y+3z=3
(a) Express this system as a matrix equation (A+.X X)=B.

(b) Use the program INVERT to invert the matrix of coefficients, 4.
(c) Use this matrix inverse and matrix multiplication to solve the system.

5. Use Theorem 1 to prove the result (DET ADJOINT A)=(DET A)*(N—1) for any
nonsingular N X N matrix 4.

5.5 Cramer’s rule

In Chapter 4, we showed that given a system of n linear equations with n
unknowns, 4-X = B, the solutions can be found by the matrix multiplica-
tion X=A4""-B (or B[Z] A in APL), provided A ! exists (i.e., provided DET
A is not 0). Another technique for solving such a system involves determi-
nants. It is known as Cramer’s rule.

Cramer’s rule

If det(4)+#0, and if A-X=B is a system of n linear equations with n
unknowns, then the value of the ith unknown, x;, can be found by
evaluating the quotient of determinants

ay ap ... ag-ny b aeny .. ay,
det .
an] anz e a"(,'_ 1) b" a,,(,~+ 1) e a,m
x.=
! det A ’

for i=1,2,...,n. In other words, in the numerator, the ith column of 4 is
replaced by B.

Actually, this method of solving a system of linear equations is more
work than the B[=]A method of the last chapter. However, it does
illustrate an application of determinants. In addition, it has the advantage
that it enables one to solve for each variable separately. Thus, if one only
wants the value of x;, here is a way of getting it without having to compute
the values of the other unknowns.

Example
2x+6y+4z="12
6x+6y+4z= 8
3x+2y+4z= 13
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A—330264664324

WwoN
NoO o
N

>

DET A
~64
B<~"12 8 13

Al<A
Al[;1]<B

DET A1
~320

X< (DET A1) +(DET A)
X

A2 A
A2[;2]<B

DET A2
320

Y (DET A2)+(DET A)
Y

A3<A
A3[;3]<B

DET A3
~128

Z<—(DET A3)+(DET A)
z

5.5 Cramer’s rule

The matrix of coefficients.

Notice that the column correspond-
ing to x, the first variable, has been
replaced by B.

So, x=5

Notice that the column correspond-
ing to y, the second variable, has
been replaced by B.

So, y="5.

Notice that the column correspond-
ing to z, the third variable, has been
replaced by B.

So, z=2.

We now consider a program for Cramer’s rule. This is a program in
which the student and the computer interact. The program asks the student
for some information which it then uses.
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5 Determinants

Program 5.8 CRAMERS (optional)

(]
(2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[10]
1]
2]
(13]
[14]
(18]

VCRAMERS
‘WHAT ISA?’
A<[]
D—DETA
—(D=0)/RATS
‘WHAT ISB?’
B[]

‘WHAT IS I?’

‘I IS THE NUMBER OF THE VARIABLE YOU ARE SEEKING'
l<[]

A[;l]<B
C—DETA
Xl<C+D
‘XIIS="; XI
-0

RATS : ‘ THE SYSTEM IS DEPENDENT’
v

In line 2, the student is asked to enter the matrix of coefficients, 4. If
DET A is 0, line 4 sends the computer to RATS (line 15). Then, the
computer prints out the true statement that ‘ THE SYSTEM IS DEPEN-
DENT’ and the program is ended. If DET A is not 0, however, the student
is asked to enter the vector of constants, B, and the number of the variable
he is seeking, I. In line 10, the ith column of A is replaced by B. In line 12,
Xl is computed in accordance with Cramer’s rule. The value of X/ is then
printed out in line 13. Line 14 ends the program.

Example 1
CRAMERS To run this program, simply type
WHAT IS A? CRAMERS.
J:
A<4 4p. 16 The matrix of coefficients for some

system.

THE SYSTEM IS DEPENDENT Since DET A is 0.
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5.5 Cramer’s rule

Example 2
2x+ y+3z=1
4x+3y =2
2x+ y— z=3
CRAMERS
WHAT IS A?
J:
Ac33021343021 1
WHAT IS B?
3:
B«—1 2 3
WHAT IS I?

1 IS THE NUMBER OF THE VARIABLE YOU ARE SEEKING
:
|1

XI'1S=2.75

CRAMERS
WHAT ISA?
(I E
A—33021343021 1
WHAT IS B?
J:
B—123
WHAT IS |?
1 IS THE NUMBER OF THE VARIABLE YOU ARE SEEKING
J:
|2
Xl IS="3

CRAMERS
WHAT IS A?

A<33021343021 71
WHAT IS B?
-
B«123
WHAT IS I?
1 1S THE NUMBER OF THE VARIABLE YOU ARE SEEKING
:
1«3
XI1S=".5
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EXERCISES

1. Solve the following system using Cramer’s rule but not the program CRAMERS:
2x+ y+3z=5
3x+ y+2z=4
x+2y+3z=6

2. Use the program CRAMERS to do Exercise 1.

3. Solve the following system using Cramer’s rule but not the program CRAMERS:
2x+y+3z+4w=5
3x+y+5z+2w=7
2x+y+4z+3w=1
3x+y+2z+5w=0

4. Use the program CRAMERS to do Exercise 3.

5. Write a program for solving for the ith unknown in a system of linear equations
by Cramer’s rule with a specific result X7 and without the dialog in CRAMERS.
[Note: Since CRAMERS is probably in your present workspace, you’d better use
a name for your program other than CRAMERS.]
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Functions and graphing

One of the most important and useful concepts in mathematics is that of a
function. In this and the next chapter, we will study some of the more
common and useful functions and point out some of their applications.

6.1 Definition of a function
A function, F, is a set of ordered pairs,
F={(x,y)|some relationship between x and y },

with the additional property that for every value of the first coordinate, x,
there is a unique corresponding value of the second coordinate, y.

Domain and range of a function

The variable used for the first coordinate is called the independent variable.
The set of all values of the independent variable is called the domain of the
function. The variable used for the second coordinate is called the depen-
dent variable. The set of all values of the dependent variable is called the
range of the function.

Functional notation

The relationship between the independent variable (x in the function
above) and the dependent variable (y in the function above) is often given
in the form of a formula or a rule that tells the way in which the unique
value of the dependent variable is assigned to each value of the indepen-
dent variable. If the name of the function is F, then this function or rule is
usually symbolized by the functional notation

y=F(x) (read as “y equals F of x”).
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In fact, this formula or rule is often referred to as the function, rather than
the resulting set of ordered pairs.

The symbolism F(a) (read as “F of a”) is used to designate the value in
the range assigned by the function F to the value ¢ in the domain.

Let us consider some examples of functions now:

Example 1

Consider the formula y = F,(x)=x2, where 0< x <5 and x is an integer.
This formula describes the following set of ordered pairs

F,={(0,0),(1,1),(2,4),(3,9),(4,16),(5,25) }.

Technically speaking, according to our definition, this set of ordered pairs
is the function F,. However, it is more common to refer to the formula
y=F,(x)=x? as the function.

The domain of this function is the set D={0,1,2,3,4,5}. The range is
tI;e set R={0,1,4,9,16,25}. Using the functional notation, F,(3)=9, since
3*=9.

Example 2
w=F,(z)=Vz.
Consider the following uses of functional notation with this function F:

(@) F(9)=3, since V9 =3. (Note that the answer is not *3, since then we
would not have a function, since to one value of the independent
variable z there would correspond two values of the dependent vari-
able w. To be a function, there can only be one unique value of the
dependent variable to each value of the independent variable.)

(b) F,(0)=0, since VO =0.

(c) F("1) is not a real number, since V-1 is not a real number. In this
text, we will restrict ourselves to real numbers. Therefore, ~1 is not in
the domain of F,.

In this function, the domain was not specified. If the domain of a function is
not specified, it will be understood to consist of all real values of the
independent variable for which there corresponds a unique real value of the
dependent variable. The domain of F, is the set D={z|z >0 and z is a real
number}. The range of F, is the set R={w|w >0 and w is a real number}.

Example 3

p=F;(9)=1/q. Then, F;(3)=1/3, F;(1/2)=2, F5("2)="1/2, but F5(0) is
not defined, since 1/0 is not defined.

The domain of F;={q|q is real and ¢#0}, since g is the independent
variable. The range of F3={ p|p is real and p #0}, since p is the dependent
variable.
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Example 4

A= C(r)==r?is the function giving the area, 4, of a circle as a function
of its radius, r.

C(2)=m22=47, so that the area of a circlc of radius 2 units is 4
square units.

The domain of C is {r|r>0}. The range of C is {A|4 >0}.

Example 5

s=H(f)="16-t*+320-t is a function which gives the height, s, in feet, of a
projectile fired from ground level with an initial velocity of 320 feet/sec-
ond, where ¢ is the time elapsed in seconds.

H (2)=576 feet; so after 2 seconds, the projectile is at a height of 576
feet.

H (10)=1600 feet; so after 10 seconds, the projectile is at a height of
1600 feet.

H (20)=0; so after 20 seconds, the projectile is back at ground level. It
was in flight for 20 seconds.

Since it takes as long for the projectile to rise as it does for it to fall
(gravity being the only force acting on it), the projectile reaches its highest
point, 1600 feet, in 10 seconds.

The domain for H = {¢|0< ¢ <20 seconds}. The range for H={s/0<s<
1600 feet}.

Functions in APL

Let us now consider programs for each of the functions in the previous
examples.

Example 1
VY<F1 X The name of the program is F1.
[11 YeXs2
v

F13
9 So, F,(3)=9.

F1 23456
49 16 25 36 APL functions can be applied to
vectors.

A3 3p1234
A

12
34
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F1 A
1 4
9 16
Example 2
VWeF2 z
[1] We2Zx5
\%
F2 9
3
F2 0
0
F2 1
DOMAIN ERROR
Example 3
VP<—F3 Q
11 Pe<1+Q
v
F3 3
0.3333333333
F3 1+2
2
F3 0
DOMAIN ERROR
Example 4

V AREA < CIRCLE RADIUS
[1] AREA—(O1)X RADIUS*2
\%

CIRCLE 1
3.141592654

CIRCLE 2
12.56637062

178

APL functions can even be applied
to matrices.

Since Vz =z!/2=7%5,

Since V9 =3. Note, the computer
only gives the positive square root.
Since VO =0.

Since V-1 is not a real number, so
that ~1 is not in the domain of F2.

Since 1 + 3 = 0.3333333333, approx-
imately.

Since 1+0 is not defined, so that 0 is
not in the domain of F3.

The name of the program is CIRCLE.
In APL, 7 is given by O1.

The area of a circle of radius 1 is 7.

This is 4.
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Example 5

VS« HEIGHT T The name of this program is
HEIGHT.

[11 S« (T16XT*2)+(320X T)
v

HEIGHT 2
576

HEIGHT 10
1600

HEIGHT 20

HEIGHT 30
~4800 Of course, this is not realistic, since
the projectile would be 4800 feet be-
low ground level.

In general, a simple program of the following form can be used to
compute the value of the dependent variable, y, assigned by a function FN
to a value of the independent variable, x.

Program 6.1 FN

VY<FN X
11 Y| ) (Insert the formula for Y in terms of
v X here.)

We now consider a program to generate the set of ordered pairs in a
function. We will use the general FN program just described for a particu-
lar function whose pairs we are computing. In order to compute ordered
pairs for a different function, we will have to alter the FN program before
running the program below.

Program 6.2 PAIRS
V ORDERED < X PAIRS Y
[1] ORDERED<X®(2,(pX))oX,YV
To run this program, enter a vector of values X, and type
X PAIRS FN X

We now apply PAIRS to some of the previous examples.
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Example 1
VY<FNX Creating a function in APL.

[11 YeX=2 y=x?
v

X<012345
X PAIRS FN X

b wWN-—=-O
- O » =0

25
Example 2

VFN[1] Request to alter line 1 of FN.

[1] YeX*x5V y=Vx.
X<«0,:9

X PAIRS FN X

414213562
.732050808

A WN-—=-O
N = = 20

5 2.236067977
6 2.449489743
7 2.645751311
8 2.828427125
93

Example 3

It might be interesting to consider the list of heights at the end of each
second in Example 5. This can be done as follows:

VFN[1]
[11 Y« HEIGHT XV Altering FN to fit the height function
defined earlier.
X<0,:20
X PAIRS FN X
00
1 304
2 576

130



6.1 Definition of a function

3 816

4 1024
5 1200
6 1344

7 1456
8 1536
9 1584

10 1600
11 1584
12 1536
13 1456
14 1344
15 1200
16 1024
17 816
18 576
19 304

200

This display of the ordered pairs of this function helps us to see several
important characteristics of the flight of this projectile. For example:

1. The maximum height of the projectile is 1600 feet.
2. The total time in flight of the projectile is 20 seconds.
3. The projectile falls at the same rate at which it rose.

Example 4

As a final example, we might like to examine the behavior of the function
Fy(x)=1/x near x=0.

VFN[1]
[1] Ye1+XV Change FN to fit this new function.
X—(110) X .1

X PAIRS FN X
0.1 10
025
0.3 3.333333333
0.4 25
05 2 So, the closer x is to 0, the larger y is.
0.6 1.666666667
0.7 1.428571429
0.8 1.25
09 1.111111111
1.0 1.0
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Xe—(11=(10)) X ~.1

X PAIRS FN X
1.0 71.0
0.9 “1.111111111
0.8 "1.25
~0.7 ~1.428571429 So, the closer negative values of x are
~0.6 ~1.666666667 to 0, the more negative y is.
0.5 "2.0
0.4 25
~0.3 ~3.333333333
0.2 5.0
~0.1 710.0
EXERCISES
1. For each of the following functions, evaluate F(4), F(0), and F("2).
(@) y=F(x)=x> (d) y=F(x)=—x*>+3x-2

(b) y=F(x)=2x+3 (€ y=F(x)=2/(x+1)
© y=F(x)=Vx

. Write programs for each of the functions in Exercise 1, and use these programs

to check your answers in Exercise 1.

. If the domain of the functions in Exercise 1 is the set

D={74,73,72, ﬁl,(), 19293’4}’

then list the ordered pairs for each of the functions.

4. Use the program PAIRS to do Exercise 3.

5. With the domain stated in Exercise 3, state the ranges for the functions in

Exercise 1.

. If the domain is not stated for the functions in Exercise 1, then what are the

implied domains understood to be?

. The absolute value function is defined as follows:

y=A(x)=|xl=\/7.

The result will always be a nonnegative number with the same magnitude as x.
Write an APL program to evaluate the absolute value of any number x. Note
that in APL, there is a built-in absolute value function, |X. Thus,
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6.2 Graphing

8. Write a program for finding the area of a right triangle. (The formula for the
area of a right triangle is 4 =3-B-H, where B is the length of the base, and H is
the height.)

6.2 Graphing

The real line

The real number system is often described as the set of all numbers which
can be represented by a point on a number line. Consider a horizontal line.
Locate a point on it, called the origin, and associate with this point the
number 0. Establish a unit length with a compass. Now, the points
associated with the positive integers are located to the right of the origin.
For example, the positive integer 3 is located 3 units to the right of the
origin 0. The points associated with the negative integers are located to the
left of the origin. For example, the negative integer ~3 is located 3 units to
the left of the origin. Thus, there is a point on this number line correspond-
ing to each integer (see Figure 6.1).

} } i } e
T T T T T

-+
-
-

-+

T T

4 3 2 1 0 1 2 3 4
Figure 6.1 The integers.

A rational number is a number of the form p/q, where p and ¢q are
integers and ¢#0. To locate the point corresponding to the rational
number p /g, divide each unit length into g parts. Then, measure over p of
the parts of length 1/g¢, to the right if p is positive, left if p is negative. For
example, 7/5 and ~3/5 are shown in Figure 6.2.

<+

I —1
T T

-+
-+
-+

I
T

2 1

——
-+

0

wn|w +
wi +
(38}

Figure 6.2 The rational numbers.

In ancient times, it was thought that the rational numbers completely
filled up the number line. However, the Pythagorean theorem can be used
to locate a number which is not rational, namely V2. To locate V2,
construct the isosceles right triangle with leg of length 1 as in Figure
6.3. By the Pythagorean Theorem, the hypotenuse has length V' 12+ 12
=V2 . Place a compass at 0 and open it the length of the hypotenuse.
Then, swing an arc down to the number line. The point where the arc
intercepts the number line represents V2 .

It is not difficult to prove that V2 is irrational (not rational). However,
we will not prove this here. There are an infinite number of other irrational
numbers, such as V3 and 7. All of these can be approximated on this
number line, which we will refer to as the real line.
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6 Functions and graphing

V2

0 1\/;—2

Figure 6.3 Constructing a real, irrational number.

The Cartesian plane

The French mathematician Rene Descartes established a one-to-one corre-
spondence between ordered pairs of real numbers and points in the plane.
Therefore, it is known as the Cartesian plane.

To construct the Cartesian plane, draw a horizontal real line, called the
x axis. Perpendicular to this real line at the origin, draw a vertical real line,
called the y axis. These two axes divide the plane into 4 regions called
quadrants, as in Figure 6.4. The way in which to plot a point with
coordinates (x,y) is illustrated by the points 4, B, C, D, E, F, and G in the
diagram. The first coordinate of a point is called its x coordinate or its

abscissa. The second coordinate of the point is called its y coordinate or its
ordinate.

¥ axis
Quadrant I1 Quadrant I
4+
AG3,2) 3-———7 B(2,3)
B(2,3)
A(3,2)
F(3,0)
+ X axis
2 3 4
EQ, 3)
Quadrant II1 —4+ Quadrant IV

Figure 6.4 The Cartesian plane.
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6.2 Graphing

Definition of the graph of a function

The graph of a function y = F(x) is the graph of all points corresponding
to ordered pairs (x,y) satisfying the function (i.e., for which the function is
a true statement.)

Example 1
y=F(x)= x?, with domain D= {(74,73,72,71,0,1,2,3,4}. The ordered
pairs corresponding to this function are
F,={("4,16),(73,9),("2,4),("1,1),(0,0),(1,1),(2,4),(3,9),(4, 16)}.

Thus, the graph of this function is as shown in Figure 6.5.

y axis
(T4,16) @ 16 ® (4, 16)
15
14
13
12
11
10
(73,9 e 9 ® (3,9
8
7
6
5
(2,4)e 4 e (2,4)

3
2

(LDelt+ @(l,1)

+———+ +———+ X axis

4732101234

Figure 6.5 Graph of Example 1.

Example 2

y=F,(x)=x? with domain D= {x|"4<x <4 and x is a real number}. In
this case, there are an infinite number of ordered pairs for which the
function is a true statement. It would be an endless task to plot all of these.
Therefore, we will just plot enough of them to get a good idea of the
pattern they trace out. Then, we will join these points by a smooth curve
and hope that our curve will pass through the other points whose coordi-
nates satisfy the function. Of course, this is only a reasonable guess at the
graph of the function. More precise graphing techniques require more
insight into the particular function being graphed, which we have not yet
provided. The graph of Example 2 is shown in Figure 6.6. A graph with
this shape is called a parabola.
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y axis

( 4,16) (4, 16)

(3,9 3,9

(72,4 2,4

L
—+

t +——+—+ X axis
372101234
Figure 6.6 Graph of Example 2.

ST ~

Example 3

w=Fy(z)=Vz, with domain D={z|0<z<9}. In order to graph this
function, we need some ordered pairs satisfying it to graph. We can use the
program PAIRS to generate these pairs.

VFN[1]

[11 Ye<Xx5V Altering FN to fit this function.
X<0,9
X PAIRS FN X

414213562
.732050808

HWN-—=-0O
N = = =20

5 2.236067977
6 2.449499743
7 2.645751311
8 2.828427125
33

Thus, the graph is as shown in Figure 6.7. Note that since the dependent
variable is w, the y axis has become the w axis, and that since the
independent variable is now z, the x axis has become the z axis.
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w axis

9.3

Z axis

Figure 6.7 Graph of Example 3.

Example 4
y=F;(x)=1/x, where the domain is D={x|"1<x<1}.

V FN[1]

[1] Ye1+XV Altering FN to fit this new function.
X—(10)X .1
X PAIRS FN X
0.1 10.0
02 50
0.3 3.333333333
04 25
05 20
0.6 1.666666667
0.7 1.428571429
08 1.25
09 1111111111
1.0 1.0

Xe—(11=(10))X ~.1
X PAIRS FN X

-1.0 “1.0

0.9 “1.111111111

-0.8 “1.25

-0.7 ~1.428571429

0.6 ~1.666666667

-0.5 ~2.0

0.4 25

-0.3 ~3.333333333

0.2 “5.0

-0.1 ~10.0
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y axis

10y

94
8 1
7 4

6

54
44
34
24

-

X axis

44 . . lo

T T

T

T

T T

T

|

0O 00 1AW H WK —

o

—
N+

Figure 6.8 Graph of Example 4.

Thus, the graph is as shown in Figure 6.8. A graph with this shape is
called a hyperbola. (Recall that F;(0) is not defined.)

The previous examples illustrate that APL and the program PAIRS can
be used to quickly and easily generate a list of ordered pairs for a function
y=F(x). It is then an easy job to plot these points and join them, thereby
graphing the function. However, it might also be of interest to the reader
to consider an APL program for graphing the ordered pairs satisfying a
function. The following program does this.

Program 6.3 GRAPH
V GRAPH DOMAIN

[11 PLANE <40 40p'
[2] PLANE[20;]«<‘ —"

[3] PLANE[20;40]« ‘X’

138

This creates a 40-by-40 blank matrix.

Fill in the 20th row of PLANE with
-’s.

Labeling the 20th row with X for the
X axis.



[4] PLANE[;20]« "I’
[5] PLANE[1;20]«< 'Y’

[6] PLANE[20;20]« ‘0’
[71 X< DOMAIN[1]

[8] FCN:Y<FNX

@ XY

[10] PLANE[20— Y;20+ X] <" *’

[11] X<X+1
[12] —(X <pDOMAIN)/FCN

[13] PLANE
\

6.2 Graphing

Fill in the 20th column with I’s.

Labeling the 20th column with Y for
the y axis.

Labeling the origin.

Starting X with the first element of
DOMAIN.

The function being graphed, given by
an external subprogram.

Print out the pairs for the function.

Placing a * at the point correspond-
ing to the pair (x,y).

Incrementing X.
Using up the entire DOMAIN.

Print out the PLANE.

To run this program, simply type GRAPH, after entering the subpro-
gram FN for the function being graphed and the desired DOMAIN.

Example 1

Let us use this program to graph y = F(x)= x? where "4< x <4.

VFN[1]

[1] YeX*2V

Altering FN to fit this function.

GRAPH 4 "3 "2 101234

"4 16
-3
"2
1
0

DO D 2O apo©

HWON =
=y
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6 Functions and graphing

Y
I
I
_ I
(4,16) » I * (4, 16)
I
I
I
I
I
I
(39« 1 *(3,9
I
I
I
. I
(2,4)+ } *(2,4)

I

( 1,1)*1*(1,1)

—————————————— ¥ - e — - —— — =X
(0,0)

ot bt bt bt B e Bt B B et bt Bt et Bt Bt bt bt bt bt

This program may also be used to graph other functions by merely
altering the program FN to fit the new function. In addition, if it is possible
for x or y to be either <20 or >20, then the size of the PLANE will also
have to be altered.

Example 2
y=F(x)=x*+2x—6, with domain D={x| 6< x <4}.
VFN[1]
[11 Ye(X*x2)+(2XX)—6V The new function.
GRAPH "6 5 4372101234
"6 18

5 9
4 2
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6.2 Graphing

3 3
2 76
1 77
0 6
1 73
2 2
3 9
4 18

Y
I
(76,18) * % * (4, 18)

I

I

I

I

I

I

_ I

(75,9) » % *(3,9)

I

I

I

I

I

(74,2) « { *(2,2)
—————————————— 0—-————————————=X
%
(73,73) = 1+(1,73)
I
o I
(2, 6)* x(0,76)

cLn* ]

I

I

I

I

I

I

I

I

I

I

I

Another problem that may occur in using this program is that there may
occur values of x or y that are not integers. In order to determine whether
or not all of the y values are integers, one could print out the ordered pairs
for the function using PAIRS. It would then be easier to just plot the
corresponding points by hand then to modify the program GRAPH. There-
fore, we omit this more complicated case.
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6 Functions and graphing

EXERCISES

1. Plot the following points:
@62 ME) ©@C43) DG (2,3 (0 (3,0

2. Use the program PAIRS to print out a list of ordered pairs for the following
functions with the specified domains. Then, graph these functions:
(@) y=x2-3, where 3<x<3
) y=Vx +1, where 0<x<8
(c) y=3x+1, where 2<x<2
(d) y=x/(x+1), where "5<x<5
() y=3-x2—2x+1, where "4<x<4
(f) y=2*, where 4<x<4

3. Use the program GRAPH to graph the following functions with the specified
domains:
(a) y=x*—x, where 3<x<4
(b) y=2x+3, where 5<x<5
(c) y=x>-3x, where 3<x<3

6.3 Linear functions

A linear function is a function of the form y = m-x + b, where m and b are
constants.

Example 1

y=2x+1. To gain some insight into this linear function, let us examine
some ordered pairs using the program PAIRS.

V FN[1]

1] Y<@XX)+1V Revising FN for this new function.
X—4"372°1012345
X PAIRS FN X

4 7

3 °5

2 -3

11

01

1 3

2 5

3 7

4 9

511

Notice that for each increase of 1 in x, y increases by 2, the coefficient
of x in the linear function. Notice also, that when x =0, y =1, the constant
term in the linear function.
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6.3 Linear functions

Example 2
y="3x+4. Again:
VFN[1]

[11 Y<(3xX)+4V
X PAIRS FN X
"4 16
3 13
2 10
17
0o 4
1 1
2 2
3 °5
4 8
5 11

Notice that for each increase of 1 in x, y decreases by 3 (or increases by
~3), the coefficient of x in the linear function. Notice also, that when x =0,
then y =4, the constant term in the linear function. These examples suggest
that there is something significant about the m and b in the general linear
function y = m-x + b.

Slope
Let y =m-x+ b. Suppose that x increases by 1 to x + 1. The new value of y
at this new value of x will be new y=m-(x+1)+b=m-x+m+b=(mx+
b)+ m. Since m is constant, any increase of 1 in x increases y by this
constant amount m. Thus, the graph of the linear function y=m-x+b is a
straight line. The number m is called the slope of the line (see Figure 6.9).

y
)

d

0

Figure 6.9 Graph of y=m-x+b.
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6 Functions and graphing

y intercept

When x=0, the value of y is m-0+ b=25b. Thus, the straight line whose
equation is y = m-x + b intercepts the y axis (when x =0) at the point where
y=>b. This value, b, is called the y intercept of the line.

Graphing a line

A straight line is uniquely determined by two points. (That is, given two
points, there is exactly one line that can pass through them.) Thus, when
graphing a line, one only needs to plot two points and join them. Any two
points that satisfy the equation of the line will do.

Example 1
y=2-x+1

The two points (0,1) and (1,3) both satisfy this equation. Thus, plotting
these two points and joining them, the graph is shown in Figure 6.10.
Notice that this line rises as x increases.

Figure 6.10 Graph of Example 1.

Example 2
y="3-x+4
Plotting the two points (0,4) and (1,1) and joining them, the graph is as
shown in Figure 6.11. Notice that this line falls as x increases.
Significance of the sign of the slope

Since the slope, m, of a line is the amount of increase in y for each increase
of 1in x, if m is positive, every increase of 1 in x causes the line to rise by
m. Thus, lines with positive slope rise as x increases. If m is negative, then
every increase of 1 in x causes the y value to increase by the negative
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6.3 Linear functions

Figure 6.11 Graph of Example 2.

amount m. Thus, y actually decreases. Therefore, lines with negative slope
fall as x increases.

The slope of a line is a measure of its steepness. The larger m is (in
absolute value), the steeper the line. Parallel lines have the same slope.

Horizontal and vertical lines

On a horizontal line, y never increases. Thus, when x increases by 1, y
remains the same. The slope of a horizontal line is 0. So, the equation of a
horizontal line is of the form y=0-x+b=05.

Example
Graph the equation y =2. This is done in Figure 6.12.
y
2 y=12
1 -+
X
0

Figure 6.12 Graph of y =2.

On a vertical line, x never increases. x always has the same value. Thus,
a vertical line has an equation of the form x=a, for some constant a.

Example

Graph the equation x=2. This is done in Figure 6.13. Since x never
increases, a vertical line is often said to have no slope. (Some texts say that
it has infinite slope.)
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6 Functions and graphing

=

Figure 6.13 Graph of x=2.

Linear equations

In Chapter 4, we studied linear equations of the form a,-x +a,y =c. If one
solves such an equation for y, one gets
a

- 1 c
ayy="ayrx+c, ory=——-x+—,
2y 1 y a a
which is of the form y =m-x+b, where m= —a,/a, and b=c/a,. Thus,

the graph of such a linear equation is a straight line. It, therefore, only
takes two points to graph a linear equation.
Example

Graph 3x+2y=6. If x=0, then y =3, so that (0,3) is a point on the line,
called the y intercept. If y =0, then x =2, so that (2,0) is a point on the line
called the x intercept. Plotting these points and joining them yields the line
shown in Figure 6.14.

y

\

24

Figure 6.14 Graph of 3x+2y =6.

Two-by-two systems of linear equations

In Section 4.2., we pointed out that a two-by-two system of linear equa-
tions has either one solution, no solutions, or an infinite number of
solutions. Since a vector (x,y) must satisfy both equations simultaneously
to be a solution of the system, then the point (x,y) must lie on the graph of
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6.3 Linear functions

y
) NN AN
0 \ * 0 \\\x 0 \ *
(a ®) ©)
Figure 6.15 (a) Lines intersect: one solution, the point of intersection. (b) Parallel

lines: no solutions. (c) Lines coincide, both equations represent the same line: an
infinite number of solutions.

both lines. In other words, it must lie on the intersection of the lines,
provided they intersect. Figure 6.15 explains the three possible conditions.

Examples
1. Find the point of intersection of the following lines, if they intersect
(Figure 6.16):
2x—=3y=5
x+4y =28
The method of Section 4.7 is used to solve the system.

A2 202 "314
B«5 8

BE A
41

Thus, these lines intersect at the point (4, 1).

y

Figure 6.16 The method of Section 4.7 is used to solve the system (Example I).
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5 x
e

Figure 6.17 Graph of Example 2.

2. Find the point of intersection of the lines that follow, if they intersect
(Figure 6.17):

2x—3y=5
4x—6y=71
A<2 202 34 °6
B<5 7
B[=]A
DOMAIN ERROR

This example must be in either case 2 or case 3. To see which case, let
us solve the equations for y to put them in the form y =m-x+b. From the
first equation,

_2. .5
T3N3
From the second equation,
e ~x — Z_
3 6"

Thus, both lines have the same slope, m=2/3. However, they have
different y-intercepts, b. Thus, they are parallel lines and do not intersect.

3. Find the point of intersection of the following lines, if they intersect
(Figure 6.18):

2x—=3y=5
4x—6y=10
A2 202 34 6
B<5 10
B[=]A
DOMAIN ERROR
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P

Figure 6.18 Graph of Example 3.

Solving these equations for y yields
2 5

=—.X— =

3 3

in both cases. Thus, both equations represent the same line. There are an
infinite number of solutions to this system. Any point on the first line is
automatically on the second line. (Notice that the second equation is a
multiple of the first equation.)

Finding the slope of a line passing through two points

Let P(x,,y,) and Q (x,,y,) be two points. There is exactly one line through
these two points. The slope of this line can be computed from the
following equation:
_ Rise _ Changeiny  y,—»
Run Changeinx x,—x;°

To see why this is so, suppose the equation of the line is y = m-x + b. Since
(x,yy) lies on this line, then y,=m-x,+b. Since (x,,y,) lies on this line,
then y,= m-x,+ b. Computing the difference quotient,

Yo _ (mx,+b)—(mx,+b) mx,—mx; m(x,—x)

x2_xl x2—X| xZ_xl x2—x1

Example
Find the slope of the line joining the points (1,3) and (4,9).

Program 6.4 SLOPE

VM<P SLOPE Q A simple program to compute slope
given two points P and Q.
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6 Functions and graphing

11 M<(Q[2]-P[2])+(Q[1]-P[1])
\Y

Example

P13
Q<49

P SLOPE Q

Finding the equation of the line passing through two points

Given two points P(x,,y,) and Q (x,,y,), we can find the slope of the line
through them, m. We know that the equation of the line through them has
the form y = m-x + b. Therefore, we only need to find b. To do this, use the
fact that the coordinates of either of these points must satisfy the equation.
Substitute the coordinates of either of these points into the equation and
solve for b.

Example

Find the equation of the line joining the points (1,3) and (4,9). We found
the slope of this line to be 2 (see above). Therefore, the equation looks like
y=2x+b. Substituting the coordinates (1,3) for x and y respectively, we
get 3=2-1+b. So, b=1. If we had used the coordinates of the point (4,9),
we would get 9=2-4+b. So, b= 1. It doesn’t matter which point is used to
compute b. The equation of the line is y=2x+1.

Applications of linear functions

Anytime the relationship between two quantities is linear, then this rela-
tionship can be expressed by an equation of the form y =m-x + b.

Example 1

Assume that the cost, C, of producing x items is a linear function of x.
Assume also that the initial cost of getting ready to produce the items is
$500. Assume also that the cost per item is $5. Find the formula for cost,
C, in terms of the number of items produced, x.

Since this cost is a linear function of x, the formula must be of the form
C=m-x+b. The slope, m, is the amount of increase in C per increase of 1
in x. This was given to be $5. b is the cost when x=0, which was given to
be $500. Thus, the formula is C=3$5x+$500. For example, the cost of
producing 10 items is C=85-10+ $500=3$550.

Example 2

Suppose the price of renting a wheel barrow from Rent-All Corporation is
$5 plus an hourly rate of $3 per hour. Find a formula for the price, P, of
renting a wheel barrow for x hours.
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6.3 Linear functions

The formula is of the form P=m-x+ b, in which m is the increase in
price per hour, which is $3 per hour; b is the price when x =0, or the fixed
price, which is $5. Therefore, the formula is P=3$3-x+5. So, if a wheel
barrow is needed for 5 hours, the price would be P=§3-5+5=320.

Example 3

The relationship between degrees Centigrade and degrees Fahrenheit is
linear. Find this relationship.

0 degrees Centigrade corresponds to 32 degrees Fahrenheit. 100 degrees
Centigrade corresponds to 212 degrees Fahrenheit. Thus, this problem
entails finding the equation of the line passing through the two points
(0,32) and (100,212). The slope of this line is given by

P<0 32
Q<100 212

P SLOPE Q
1.8

Let C denote degrees Centigrade and F denote degrees Fahrenheit.
Then, the linear relationship has the form
F=18C+b.
Substituting in the coordinates of the point (0,32), we get
32=18-0+b=0b.
Thus, the equation for this relationship is F=1.8-C+32. For example, 20
degrees Centigrade is equivalent to

F=1.8-20+32=36+32=68 degrees Fahrenheit.

EXERCISES
1. Graph the following lines:
(@) y=2x+5 dy="1
®b)y=—x+2 (e) x=3

(©) 2x+3y=12
2. Find the slope of each of the lines in Exercise 1.

3. Find the equations of the lines satisfying the following conditions:
(a) The slope is 5 and the y intercept is ~1.
(b) The slope is ~2 and the y intercept is 3.
(c) The slope is 0 and the y intercept is 5.
(d) The slope is 2 and it passes through the point (3, 1).
(e) The slope is "1 and it passes through the point (0,0).

4. Find the slopes of the lines passing through the following pairs of points:
@) (1,2) and (3,7) (©) (3,0) and (3,4
() ("1,2) and (3,75) (d) 2,1) and (5,1)
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5. Find the equations of the lines in Exercise 4.

6. Find the intersections of the following pairs of linear equations, if they

intersect:

(a) 2x+3y=6 () 4x+ y="3
3x+2y=4 x+3y=0

®) 3x— y=5 d) 2x+ y=2
x+2y=3 4x+2y=3

7. Write a program to solve the linear equation ((AX X)+ B)=C (APL notation)
for X (4, B, and C are constants).

8. The cost of renting a lawn mower from Ace Rental Co. is a linear function of
the number of hours it is rented. The charge is $3 per hour, plus a fixed charge
of $5. Find a formula for the charge for renting a lawn mower for x hours.

9. The number of dandelions in Mr. Jone’s lawn is a linear function of the
number of weeks from now. If right now he has 25 dandelions, and if he gets
10 new dandelions per week, find the function for the number of dandelions x
weeks from now.

10. A machine costs $10,000 new. Each week, its value decreases by $10. Find a
function for its value in x weeks.

11. The cost of producing O items is $100. The cost of producing 10 items is $250.
Assuming that cost is a linear function of the number of items produced, find
the cost function.

12. To rent a car costs $10, plus $.08 per mile. Find a formula for the cost of
renting a car as a function of the number of miles.

6.4 Quadratic functions

A quadratic function is a function of the form y =a-x*+ b-x + ¢, where a,
b, and c are constants and a70.

The graph of a quadratic function is called a parabola. To help us gain
some insight into quadratic functions and parabolas, let us graph the
following two examples using the program GRAPH of Section 6.2.

Example 1
y=x’—4x+4.

VFN[1]
[11 Ye(X*2)+(4XX)+4 V The new function being graphed.
GRAPH 2 10123456

2 16 Command to execute the program
19 GRAPH.
0 4
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6.4 Quadratic functions

11
2 0 The ordered pairs for this function
3 1 with "2< x <6.
4 4
5 9
6 16 The points are joined by hand to
form the parabola. This parabola
opens upward. The lowest point,
called the vertex, is at the point (2,0).
The line x =2 is an axis of symmetry.
That is, for each point to the left of
this line, there is a corresponding
point with the same height to the
right of it.
Y
I
I
* I *
I
I
I
I
I
I
I
I *
I /
I
I
%
N/
—————————————— (I)—\a/————-——————~x
I
I
I
Example 2
y=—x*+2x+3.
VFEN [1]

[11 Ye(—(X*2))+(2+ X)+3 V The new function.

GRAPH "2 "1 01 2 34  This time, we’ll only go to x=4.
275
10
0
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HWN =
O WwWhH

This parabola opens downward. The
highest point, called the vertex, is at
the point (1,4). The line x=1 is the
axis of symmetry. Again, the points
are joined to form the parabola.

et et 1t et 1t et Pt et et bt b bt et bt et =K

PSR S Y o, SR )

Useful characteristics of quadratic functions in graphing parabolas
Let us list some characteristics of quadratic functions which are useful in
graphing the resulting parabolas.

Given a general quadratic function, y = F(x)=a-x>+ b-x+ ¢, a0,

1. If a>0, the parabola opens upward. If a<0, the parabola opens
downward.

2. The x coordinate of the vertex is given by x= —b/2-a. The y coordi-
nate is given by F(—b/2-a).

3. The vertical line x=—b/2-a is the axis of symmetry of the parabola.

4. When x=0, y=c, so that the y intercept is at the point (0,c).
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6.4 Quadratic functions

5. The x intercepts (if there are any) are found by solving the quadratic
equation a-x*+ b-x+c=0.

Let us now check out these characteristics with the above two examples.

Example 1
y=x2—4x+4.

Here, a=1, b="4, and c=4. Since a >0, the parabola opens upward.
Since (—b/2-a)=—("4/2-1)=2, then the x coordinate of the vertex is
x=2. The y coordinate of the vertex is F(2)=22—4-2+4=0. Thus, the
vertex is at the point (2,0). The axis of symmetry is x=—5b/2-a=2. The y
intercept is the point (0,4). The x intercept is found by solving x2—4x +4
=(x—2)*=0. The only solution to this equation is x =2, so that the only x
intercept is at the point (2,0) (see the graph at the beginning of this
section).

Example 2
y=F(x)=—x*+2x+3.

Here, a= "1, b=2, and c¢=3. Since a <0, the parabola opens downward.
Since —b/2-a=—2/"2=1, then the x coordinate of the vertex is x=1.
The y coordinate of the vertex is F(1)="1+2+3=4. Thus, the vertex is
the point (1,4). The axis of symmetry is x=(—b/2-a)=1. The y-intercept
is the point (0,3). The x intercepts are found by solving — x?+2x+3=(x
+1)-(x —3)=0. The only solutions are x="1 and x =3, so the x intercepts
are the points ("1,0) and (3,0) (see the graph at the beginning of this
section).

Quadratic equations and the quadratic formula

To get the x intercepts of the quadratic function y=a-x2+b-x+c, it is
necessary to solve the equation a-x2+ b-x+c=0. Such an equation is
called a quadratic equation. To solve such an equation, one can factor it
into linear factors (d-x + e)-(f-x+g) and set each linear factor equal to 0
and solve for x (provided the function can be easily factored). Or, one can

use the quadratic formula
b Vb —dac
2-a '
We illustrated the factoring method in the two previous examples. In this
text, we will emphasize the use of the quadratic formula.
The expression b*—4-a-c is called the discriminant. There are three
possible cases:

Case 1.

X=

If b2—4-a-c=0, there is one solution to the quadratic equation, namely
x=-b/2-a.
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Case 2.

If b2—4-a-c >0, there are two solutions to the quadratic equation, namely

_ —b*xVb*—4-ac

- 2:a

Case 3.

If 52—4-a-¢ <0, then there are no real solutions, since Vb?>—4-a-c would
be the square root of a negative number, which is not a real number. (It is
imaginary.)

Let us consider some examples of solving quadratic equations by the
use of the quadratic formula.

Example 1
x2—4x+4=0.
Here, a=1, b="4, and ¢ =4. Thus,
_—b*xVb—-4ac _4xV16—16 _ 40 _

r= 2-a 2 7 ~%

Example 2
—x242x+3=0.
Here, a="1, b=2, and ¢=3. Thus,
_—b+Vb—dac _2+VA4+12 _2+VI6 _ "2+4
2-a 2 2 2
So, we get the two solutions x=("2+4)/ 2="1and x=("2-4)/"2=3.

Example 3
2x2—-5x+1=0.
Here, a=2, b="5, and c=1.Thus, x=(5+V25-8)/4=(5xV17)/4. So,
there are two solutions, x=(5+V17 )/4 and x=(5— V17 )/4.

Example 4
x?—9=0.
Here, a=1, b=0, and ¢="9. Thus, x=(0%= V0+36 )/2=+6/2==*3.
Example 5

3x2+x+2=0.
Here, a=3, b=1, and ¢=2. Thus,

_—bx Vb%:—4-a-c __1+V1-24 _“1+V-"23

2-a 6 6
However, V "23 is not a real number. So, the solutions are imaginary.
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6.4 Quadratic functions

We now consider a program for solving quadratic equations by the use
of the quadratic formula.

Program 6.5 QUADRATIC
VX< QUADRATIC COEFS: A; B; C; R; DISCRIMINANT

[1] A< COEFS[1]
[2] B« COEFS|[2)
[8] C« COEFS[3]
[4] DISCRIMINANT —(B*2)—(4X AX C)

[5]  —(DISCRIMINANT >0)/ ROOT

[6] ‘THE SOLUTIONS ARE IMAGINARY’
[7] -0
[8] ROOT: R« DISCRIMINANT + 5

[8] X<((—B)+R, —R)+(2XA)
v

To illustrate the use of this program, we will redo the above examples
using QUADRATIC.

Example 1
x?—4x+4=0.
QUADRATIC 1 4 4 To run the program, type
QUADRATIC, followed by the vector
22 of coefficients.
Example 2
—-x*42x+3=0.
QUADRATIC 1 2 3
"1 3 The solutions are ~1 and 3.
Example 3
2x2—5x+1=0.
QUADRATIC 2 "5 1
2.280776406 0.2192235936 These answers correspond to
5+VI17)/4and (5—-V17)/4
respectively.
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Example 4
x2—9=0.
QUADRATIC 1 0 9 Note that 0 coefficients must be in-
cluded in the vector of coefficients.
33
Example 5

3x2+x+2=0.

QUADRATIC 3 1 2
THE SOLUTIONS ARE IMAGINARY

Since b2—4-a-c is negative.
We conclude this section with a couple of applications of quadratic
functions.

Applications of quadratic functions

Example 1
Suppose the cost of producing x items is given by the function

C=x?+2x +$2000.
Suppose also that these items sell at a price of $102 each, and that every
item that is produced is sold.

(a) Find the number of items, x, that must be produced in order to
maximize profit. Also, find this maximum profit.
Since the price is $102 each, and

Revenue = (Price)- (Number of items sold),

then the revenue (in dollars) from the x items is given by R=102-x.
Now,

Profit=Revenue — Cost= R — C=102-x — (x? + 2x +2000)
= — x2+100x —2000= F (x).

The graph of this function is a parabola that opens downward, since
a<0. Thus, the highest point (the point of maximum profit) will occur
at the vertex. So,

=50 items.

The maximum profit is F(50)=$500.
(b) Find the number of items, x, that must be produced to break even.
A company breaks even when its revenue equals its cost, or when its
profits is 0. Thus, we need to solve the quadratic equation
—x2+100-x —2000=0.

158



6.4 Quadratic functions

QUADRATIC ~1 100 ~2000
27.63932023 72.36067978

Thus, the company breaks even when it produces approximately its
27th and its 72nd items.

Example 2

Suppose that to produce 500 widgets costs $2000. Thereafter, for every
increase of 5 widgets produced, the cost is reduced by $0.02.

(a) Find a formula for cost.
Let x = the number of increases of 5 widgets. Since the first 500 widgets
cost $2000, then these widgets cost $4 each. Thereafter, the cost per
widget decreases by 0.02x, since for each increase of 1 in x (5 widgets),
cost per widget decreases by 0.02. Now,

Cost=(Number of widgets)- (Cost per widget)
=(500+ 5x)- (4—0.02-x)

=2000+20x — 10x —0.1x2
="0.1x%+10x +2000= F(x).
(b) How many widgets yield maximum cost?
Since a=~0.1 is negative, the graph of this function is a parabola that

opens downward. Thus, the highest point (the point of maximum cost)
is the vertex. So,

Thus, maximum cost occurs when there are 50 increases of 5 widgets
beyond the first 500. The total number of widgets is given by 500+ 5x
=500+5-50="750 widgets.

(c) What is this maximum cost?

F(50)="0.1-(50)*+ 10- 50+ 2000 = ~250 + 500 + 2000
=$2250.

We shall explore the concept of maximizing and minimizing functions
in much more detail in a later chapter using differential calculus.

EXERCISES

1. Write a program for computing the x and y coordinates of the vertex of the
parabola corresponding to the quadratic function

y=F(x)=ax*+bx+c.
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. Compute both coordinates of the vertex of the following parabolas correspond-

ing to each of the following quadratic functions:

(@) y=F(x)=x*-2 d) y=F(x)=—x*>+8x—6
b)) y=F(x)=x*>-x-2 (e) y=F(x)=2x*—x-3
(©) y=F(x)=—x*+6x—-9 (f) y=F(x)=3x2+6x+5

. Use the quadratic formula to find the roots of the quadratic functions in

Exercise 2, provided the roots are real. [Note: A root of a quadratic function
y=a-x*+b-x+c is a solution to the corresponding quadratic equation.]

. Redo Exercise 3 using the program QUADRATIC.

. Use the characteristics of the parabolas in Exercise 2 that were mentioned in

this section to graph these parabolas.

. Redo Exercise 5 using the program GRAPH.

7. Suppose that the profit (in dollars) from the sale of x items is given by

10.

160

P=F(x)=— x*+ 500x —40000.

(a) Find how many items must be sold to maximize profit.
(b) Find this maximum profit.
(c) Find how many items must be sold to break even.

. If a manager of an apartment complex charges a monthly rent of $200, he will

completely fill up his 80 apartments. For each increase of $10 in the monthly

rent thereafter, 2 apartments will be empty.

(a) Find a quadratic function which expresses the monthly revenue in terms of
the number of increases of $10 in monthly rent.

(b) How many such $10 increases in rent will lead to maximum revenue?

(c) What is the optimum rent? How many empty apartments result?

. An object projected vertically upward from a height of 6 feet with an initial

velocity of 128 feet per second has height at any time ¢ given by the quadratic
function

h=F()="16-t*+128-1+6,

where ¢ is the number of seconds that have elapsed since it was projected
vertically upward and 4 is the number of feet up after ¢ seconds. Find the
amount of time it takes for the object to reach its maximum height, and find
the maximum height.

Suppose that the cost (in dollars) of producing x items is given by the formula
C=0.01-x%+2x.

Suppose also that these items sell for $22 each and that every item that is
produced is sold.

(a) Find the number of items, x, that must be produced to maximize profit.
(b) Find this maximum profit.

(c) Find the number of items that must be produced to break even.
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6.5 Polynomials

Linear functions and quadratic functions are special cases of a larger class
of functions called polynomials which we now investigate.

Definition
Let n be a positive integer. Then, a polynomial of degree n is a function of
the form

y=F(x)=a,x"+a,_x""'+...+ayx*+a;x+a,
where, ay,a,," - - ,a,_,,a, are constant real numbers, and a, #0.

We have already studied polynomials of degree 1 (linear functions) and
of degree 2 (quadratic functions). If n>2, then, in general, it is more
difficult to completely pin down the characteristics of polynomials of
degree n. To do so requires calculus, as we will see in Chapter 8. However,
with the aid of the computer, we can do a good job in graphing particular
examples.

Domain of polynomials

Unless explicitly restricted, the domain of any polynomial is the entire set
of real numbers. That is, any real number may be substituted into a
polynomial y = F(x) in place of x, resulting in a unique real answer, y.

We can use the program PAIRS to print out a set of ordered pairs for
any polynomial between any two values of x. Using this set of ordered
pairs, we can graph the polynomial. Let us consider a couple of examples
now.

Example 1
y=F(x)=2x*+3x>—12x—10.
This is a polynomial of degree 3. In APL, this would be
VFN[1]
[1] Ye<@XX*3)+@XX*2)+("12XX)—10V
Altering FN for this new function.
X710 "9 877 6 54°3°2°1012345678910

X PAIRS FN X
“10 1590
9 T1117
"8 7746
"7 465
6 262
5 7125
4 42
-3 1
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6 Functions and graphing

"2 10
1 3
0 10
1 17
2 "6
3 35
4 118
5 285
6 458
7 739
8 1110
9 1583
10 2170

Using these pairs, we can graph the function (Figure 6.19). The
arrowheads indicate the direction of the curve as indicated by the pairs.
The roller coaster shape of this curve is typical of the graphs of polynomi-
als of degree 3.

Example 2
y=F(x)=x*-x3-T7x?+ x+6.

This is a polynomial of degree 4.
VFN[1]
[1] Y (X*4)+(—X*3)+( TXX*2)+X+6 V
Altering FN for this new function.
X<"10"9 8 7 6 5743 2°1012345678910

X PAIRS FN X
10 10296
9 6720
"8 5158
~7 2400
6 1260
"5 676
4 210
-3 45
-2 0 Since y =0 at both x="2 and x="1,
1 0 it would be useful to know the value
0 6 of F(~1.5). Thus,
12 _12 FN -1.5
3 0 2.6125
4 90
5 336
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840
1728
3150
5280
8316

O OWoON®

Using these pairs, the graph looks as shown in Figure 6.20. The shape of
this curve is typical of graphs of polynomials of degree 4.

Yy
("2,10)
71,3)
CLad
e ptf———+ x
3,71) 0
2,76)
(0,7 10)
1,717)

Figure 6.19 A third degree polynomial.
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(0, 6)

(T1.5,72.6125)

'

2,7 12)

Figure 6.20 A fourth degree polynomial.

Polynomials are everywhere continuous. That is, there are no gaps in the
graph of a polynomial, and it is possible to graph a polynomial without
ever lifting one’s pencil from the paper.

Roots of polynomials
A root of a polynomial
y=F(x)=a,x"+a,_;'x""'+...+a;x+a,
is a solution to the polynomial equation
a;x"+a,_ ;'x""'+..+ax+a,=0.

In terms of the graph of a polynomial, a root is represented as an x
intercept on the graph, since it is a value of x for which y =0. Note that in
terms of the graph of the polynomial of degree 3 in Example 1, there are 3
x intercepts. Therefore, there are three roots. In terms of the graph of the
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polynomial of degree 4 in Example 2, there are 4 x intercepts. Therefore,
there are 4 roots.

The Fundamental theorem of algebra states that a polynomial of degree n
has n roots (not necessarily all distinct or all real). We have already
investigated techniques for finding the roots of polynomials of degrees 1
and 2. There exist formulas for finding the roots of general polynomials of
degree 3 and 4 also. However, these formulas are beyond the scope of this
text. It has been proved (by the mathematicians Abel and Galois) that for
polynomials of degree >S5, there are no such formulas for finding the
roots. However, there are many techniques for approximating the roots of
any particular polynomial to any desired degree of accuracy. These tech-
niques are made much easier by the use of the computer. We will discuss
one such technique here.

This technique is not very sophisticated, but it is quite easy to use if one
has the computer available to do the computations.

A technique for approximating the real roots of a polynomial

Our technique is based on the fact that if a polynomial changes sign
between a value x=a and a value x=25, then there must exist a root
between these two values. In terms of the graph, a polynomial cannot go
from below the x axis to above it (or vice versa) without passing through
an x intercept. Our main tool in this technique is the program PAIRS. Let
us illustrate the method using the polynomial of Example 1.

Example

y=F(x)=2x>+3x>—12x—10.
VFN [1]
1] Ye@XX+3)+@XX#2)+("12XX)—10 V

Let us reprint the set of ordered pairs for this function.

X<—((:10)—11),0,¢10

X PAIRS FN X
10 ~1590
9 “1117
"8 7746
"7 465
6 262
5 125
4 42
-3 1 Sign change here.
"2 10
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-1 3 Sign change here.
0 10
1 -17
2 "6 Sign change here.
3 35
4 118
5 255
6 458
7 739
8 1110
9 1583
10 2170

Since the y value of the polynomial changes sign between x= "3 and
x = "2, then there must be a root between these two values. Similarly, there
must be a root between ~1 and 0, and also between 2 and 3. To see in
more detail where the sign changes between ~3 and ~2, let us use PAIRS to
print out the ordered pairs between ~3 and ~2, incrementing by .1 each
time.

X783, 3+(10)x .1

X PAIRS FN X
3 1
~2.9 1.252 Sign change here.
~2.8 3.216
~2.7 4.904
~2.6 6.328
2575
“2.4 8432
"2.3 9.136
“2.2 9.624
~2.1 9.908
"2 10

Since the sign changes between 3 and 2.9, the root must be between
these two numbers. To get closer to the root, let us use PAIRS to print out
the ordered pairs between ~3 and ~2.9 incrementing by .01 each time.

X«~3, 73+(10)Xx.01

X PAIRS FN X
3 1
"2.99 ~0.761498
~2.98 ~0.525984
~2.97 ~0.293446
~2.96 0.063872 Sign change here.
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~2.95 0.16275
~2.94 0.386432
~2.93 0.607186
~2.92 0.825024
~2.91 1.039958
~2.90 1.252

Since the sign changes between ~2.96 and ~2.95, the root must be
between these two numbers. To get even closer to the root, we could use
PAIRS to print out the ordered pairs between ~2.96 and ~2.95, increment-
ing by 0.001 each time.

X< ~2.96, “2.96+(:10) X .001

X PAIRS FN X
“2.96 ~.063872
~2.959 ~.041077158
~2.958 ~.018311824 Sign change here.

~2.957 .004424014
~2.956 .027130368
~2.955 .04980725
~2.954 .072454672
~2.953 .095072646
"2.952 .117661184
~2.951 .140220298
295 16275

Since the sign changes between “2.958 and "2.957, the root must be
between these two numbers. We could get even closer by incrementing by
0.0001 in PAIRS. However, this is close enough to illustrate the technique.
Since the y value at ~2.957 is closer to O than the y value at ~2.958, then to
three decimal places, ~2.957 is the best approximation to the desired root.

Recall that there are also roots between ~1 and 0, and between 2 and 3.
These could be approximated in the same way we approximated the root
between ~3 and ~2.

Example 2
y=F(x)=x*-x>~7x*+ x+6.

VEN[1]
[1] Y (Xx4)+(—X*3)+(TXX*2)+X+6 V
X<—((10)—11),0,:10

X PAIRS FN X
~10 10296
9 6720
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"8
7
"6
“5
4
-3
"2
1

CQCWoONOOTOAdWN-=O0O

—

51568
2400
1260
676
210
45

0

0

6

0
12
0

90
336
840
1728
3150
5280
8316

The roots for this function are 2, ~1,
1, and 3, since for these values, the y
coordinates are all 0. No approxima-
tion is necessary. Lucky!!!

The above technique for approximating the real roots of a polynomial
might seem quite tedious to the reader. However, with the aid of the
computer, it can be accomplished very rapidly.

A program for approximating roots

Suppose that, due to a sign change in the y coordinates of a polynomial,
we know that our polynomial has a root between a value x=4 and a value
x=B. Then, the following program can be used to approximate this root
correct to three decimal places.

Program 6.6 ROOT

(1]
(2]

(3]
(4]
(5]

168

VR<~A ROOT B ; X
XA
OLDY—FN X

X< X+.001
NEWY—FN X
—((OLDYX NEWY)>0)/2

Compute the previous y, called
OLDY.

Increment X by 0.001
Compute the new y, called NEWY.

If (OLDYXNEWY)>0 then OLDY
and NEWY have the same sign, so we
branch back to 2.
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[6] —((OLDY)<(|NEWY))/END

If the absolute value of OLDY is less
than the absolute value of NEWY,
branch to END.

[7] Re<X Otherwise, R is X, which corresponds
to NEWY.
[8] -0 End the program with R being the X
corresponding to NEWY.
[91 END: R<—X-— .001 R is the value of X corresponding to
v OLDY.

This program keeps computing OLDY and NEWY until they have
opposite signs (there has been a sign change). It then prints out the value
of X corresponding to the smaller value of y in absolute value.

Before executing this program, you need a subprogram FN for the
function whose root is being approximated. You also need to examine
PAIRS for the function to see where the sign changes occur.

Example
VEN[1]
[1] Y<@XX*x3)+@XX*2)+("12xX)—10 V
This is our previous Example 1.

We know that the roots are between ~3 and ~2, between ~1 and 0, and
between 2 and 3. We can use ROOT to approximate these roots.

~3 ROOT ~2
~2.957 Thus, the roots are approximately
“1 ROOTO0 ~2.957, ~0.762, and 2.219, correct to
~0.762 three decimal places.
2 ROOT 3
2.219
EXERCISES

1. Use the program PAIRS to generate a table of ordered pairs for the following
functions, with “10< x < 10:
(@) y=F(x)=x>+2x-5 d) y=F(x)=x*-x>+x-2
(b) y=F(x)=2x>+3x2—4x-10 (€) y=F(x)=x’-2x*+3x-5
(c) y=F(x)=x*-5x*+6

2. Using the table you generated in Exercise 1, graph the functions in Exercise 1.
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3. Each of the functions in Exercise 1 has a root between 1 and 2. Use the
technique explained in this section to approximate these roots correct to three
decimal places.

4. Use the program ROOT to do Exercise 3.

S. Use the technique of this section to approximate the three roots of the poly-
nomial y = F(x)=x3>—4x?+2x+2.

6. Use the program ROOT to do Exercise 5.

7. If the polynomial y = F(x)= x>+ A-x*+ B-x + C passes through the three points
(0,0), (1,2), and (2,6), find 4, B, and C.

8. The volume of a sphere of radius x is given by the function V'=%-7-x3. Write a
program for finding the volume of a sphere.

6.6 Rational functions

Polynomials are special cases of rational functions, which we now briefly
consider.
Rational functions
A rational function is a function of the form
P(x)
2(x)’
where P(x) and Q(x) are polynomials. Included as rational functions are

the polynomials, since they can be thought of as quotients of polynomials
where Q (x)=1, a polynomial of degree 0.

y=F(x)=

Domains of rational functions

Since polynomials are defined everywhere and since division by zero is not
defined, the domain of a rational function consists of all real numbers
except for the values of x for which Q (x) is zero (i.e., except for the roots

of Q(x)).
Roots of rational functions

The only way in which a quotient can be zero is for the numerator to be
zero. Thus, the roots of a rational function are the same as the roots of the
numerator P (x).

Let us now consider the graphs of some rational functions. As before,
we will use the program PAIRS to generate a set of ordered pairs.

Example 1

£

— X

y=F(x)=

[\

=
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This function has a root at x=4, since x=4 is the only root of the
numerator. The domain of this function consists of all real numbers except
for x=2. At x=2, the denominator is zero, and division by zero is not
defined. Let us now use PAIRS to give us some points to use in graphing
this function.

(1]

-5
4
-3
2
1

b w

VFN[1]

Y (d—X)+(X—-2) V
X<((:5)—6),0,:5

X PAIRS FN X
~1.2857142857
~1.3333333333
1.4
1.5
~1.6666666667
-2
-3
9.999999999 E999

1
0
~.3333333333

The value at which we have division
by 0. 9.9999999999E999 is essen-
tially infinity.

The root.

Before graphing this function, let us examine some pairs in the vicinity

of x=2 (the value which is not in the domain of F(x).)

1

X1, 1+@10)X .2

X PAIRS FN X
-3

12 35

1.4 ~4.333333333
16 6

1.8 ~11

2

9.99999999E£999

22 9

24 4

2.6 2.333333333
28 1.5

3

It is shown in Figure 6.21.

1

Using these tables, we can graph

4—
y=F(x)=1=5

>
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Figure 6.21 Graph of Example 1.

Vertical asymptotes

Notice that the closer x gets to 2, the closer the curve gets to the line x =2.
This curve cannot ever touch the line x =2, since x =2 is not in the domain
of the function. A line with the property that the curve approaches it
continuously without ever touching it is called an asymptote of the func-
tion. The asymptotes of rational functions are the values of x which yield
division by 0 (i.e., the roots of the denominator Q (x)).

Example 2

4

y= F (X ) - x—1
In this example, the numerator, and therefore the rational function has no
roots. This function is not defined at x=1, since at x =1, we would have
division by 0. Thus, x=1 is a vertical asymptote for this function. To
graph this function, we need some pairs to plot.

VFN [1]

11 Yed4+-(X-1)V Our new function.
X<—((:5)—6),0,:5
X PAIRS FN X

-5 ~.666666667

4 °.8
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6.6 Rational functions

-3 1
-2 ~1.333333333
172

04

1 9.99999999E£999 The vertical asymptote.

4
2
1.333333333
1

(S0~ VO I\ V)

Let us also examine this function in the vicinity of the asymptote, x=1.

X<0,10)X.2
X PAIRS FN X
0 4
0.2 5
0.4 ~6.66666667
06 10
0.8 20
1 9.99999999 E999 The asymptote.
1.2 20
1.4 10
16 6.666666667
18 §
2 4

Thus, the graph is as shown in Figure 6.22.

Example 3
x2
x*-1
By the previous discussions, x =1 and x = "1 are vertical asymptotes, since

for these values, the denominator is 0. The root is x =0, since for this
value, the numerator is 0.

VEN[1]
(] Ye(X*2)+(X*x2)—1) V

X<« ((t5)—6),0,:5
X PAIRS FN X
~5 1.041666667
~4 1.066666667

y=F(x)=

-3 1.125

“2 1.333333333

~1 9.99999999E999 Since x="1 is an asymptote.
00 This is our root.
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Figure 6.22 Graph of Example 2.

1 9.99999999E999 Since x =1 is an asymptote.
2 1.3333333333

3 1.125

4 1.06666666667

5 1.041666667

We also want to examine this function in the vicinity of its asymptotes.

Xe—"2,72+(10) % .2, (110)X.2
X PAIRS FN X

~2 1.333333333

~1.8 1.4464285715

~1.6 1.6410230769

~1.4 2.0416666667

~1.2 3.2727272727

~1 9.9999999E999 x= "1 is an asymptote.

~0.8 ~1.7777777778

~0.6 ~.5625

~0.4 ~.1904785714

~0.2 ~.0416666667
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6.6 Rational functions

00 The root.
0.2 ~.0416666667
0.4 °.04785714

0.6 ~.5625
0.8 ~1.7777777778
1 9.99999999E£999 x =1 is an asymptote.

1.2 3.2727272727
1.4 2.0416666667
1.6 1.6410230769
1.8 1.4464285715
2 1.333333333

Based on these tables of pairs, the graph is as shown in Figure 6.23.
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Figure 6.23 Graph of Example 3.

Applications

1. One important use of rational functions is in cost-benefit curves as the
following:
Let y be the cost, in thousands of dollars, of removing x percent of a
certain pollutant from the air in a certain chemical factory. Suppose
y=15-x/(100— x). Then, the cost of removing 50 percent of this
pollutant is
15-50

¥ =Tog =5 =$15.000.
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The cost of removing 90 percent of the pollutant is
__15-90

7~ 100-90

The company would have to consider if it is really worth the expense of

removing 90 percent of the pollutant or if some lower percent is
permissible.

=$135,000.

2. Suppose that a widget manufacturer is able to make x number one
quality widgets and y number two quality widgets per day, where the
relationship between x and y is given by the rational function

_60—12x
Y 6—x
(a) If the manufacturer only produces number one quality widgets on a
given day, then y=0, so that 60— 12x=0, or x=5. Thus, he can
produce a maximum of 5 number one quality widgets in a day.
(b) If he only produces number two quality widgets, then x=0, so
»=60/6=10 number two quality widgets.
EXERCISES
1. Find the roots and vertical asymptotes of the following rational functions:
=_10 =
(a)y—g_z (d)y—x2+]
_5—x 2
(b)y_x—l (e) y= x2+1
(C) _ x2__ 1 X=X
YT
2. Use the program PAIRS to print out a table of ordered pairs for the functions in

b

Exercise 1, where “5< x<5.

. Use the program PAIRS to print out a table of ordered pairs in the immediate

vicinity of the asymptotes to the functions in Exercise 1.

Use the information gathered above to graph the functions in Exercise 1.

. Let y be the cost, in hundreds of dollars, of removing x percent of the impurities

from the drinking water in a community. The function relating x and y is the
rational function y =25-x /(100 — x).

(a) Find the cost of removing 10 percent of the impurities.

(b) Find the cost of removing 50 percent of the impurities.

(c) Find the cost of removing 90 percent of the impurities.

. Suppose it costs $10 each to manufacture and distribute a gadget. If the

manufacturer sells the gadgets for x dollars each, then the number he can sell is
given by
=105 (100-
n=-"10 +5-(100— x).
How many can he sell at a price of $20? $30?
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Exponential and logarithmic functions

All of the functions we have considered so far have been algebraic
functions. An algebraic function is a function involving only the operations
of addition, subtraction, multiplication, division, powers, and extraction of
roots of expressions of the form a-x", where a and n are real constants.
Any function that is not algebraic is called a transcendental function. In this
chapter, we will consider two important classes of transcendental func-
tions, the exponential and logarithmic functions, as well as some applica-
tions of each.

7.1 Exponential functions

Definition
An exponential function is a function of the form y = F(x)=a-b**, where
a, b, and k are nonzero constants. We shall also require that b, called the
base of the exponential function, be positive so that the function will be
defined for all real powers. (For example, if b="1, then »*°= Vb would
not be defined.)

The domain of an exponential function is the set of all real numbers,

unless otherwise explicitly restricted. The following examples illustrate the
general characteristics of an exponential function.

Example 1

Graph y = F(x)=2".
We need a set of ordered pairs. Therefore, we will use the program
PAIRS.
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7 Exponential and logarithmic functions

VFN[1] Changing the function in FN to y =
1] Ye2+XV 2*)
X ((:5)—6),0,5
X PAIRS FN X
"5 .03125
“4 .0625
"3 .125
2 .25

Figure 7.1 Graph of Example 1.

Example 2
Graph y = F(x)=27".
V FN[1]

[1] Ye2x—XV
X<—((¢5)—6),0,:5
X PAIRS FN X
5 32
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1

2 .25

3 .125

4 .0625
5 .03125

7.1 Exponential functions

Thus, the graph is as shown in Figure 7.2.

y

[\ 9]
-
-
+

—
w
H
w

Figure 7.2 Graph of Example 2.

Since the domain of an exponential function includes all real numbers,
we can use any real number for x. Consider the following examples:

Examples

2*x.5
1.414213562

2% .4
1.319507911

2*x~3
0.125

2x01
8.824977827

205 or 212 or V2 .

20.4.

23or1/2%0r 1/8.

27, since in APL, 7 is O1.
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7 Exponential and logarithmic functions

2x2% 5 22 or 2V2,
2.665144143
8+1+3 8% or V8 .
2
"4 5 ("4)° or V-4, which is not a real
DOMAIN ERROR number. This is why we have made
our bases positive. We want to be
able to include the entire real num-
ber system in the domain.
0+0
1 This example might cause some
mathematicians to cringe. Let us call
this an APL curiousity. In APL, p°=
1 for all real b.
2x3 4 5 This is 2%,24,2°.
8 16 32
34 5+2 This is 32,42, 5%
9 16 25
345+321 This is 33,4%,5".
27 16 5
4+4 This is 4',4%, 4% 4*.
4 16 64 256
(14)+4 This is 14,2434 4%,
1 16 81 256

Negative and fractional exponents

A few words should be said about negative and fractional exponents for
those who have not encountered them before. The following definitions
explain these exponents:

We have used these definitions in the previous examples. However, a
couple more examples follow:

Examples
4x-2 42=1/4=1/16.
0.0625
9#+1+2 9/2=V9 .
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7.1 Exponential functions

27%1+3 27'/3=V727 .

3
3

27+2+3 PA=V2P =(V2T =3
9

2+ 1 2-l=1/2'=1/2.
0.5

2x .5 20.5___21/2=\/§ .

1.414213562

The base e

Perhaps the most important exponential function in practical applications
is the exponential function with base e. It is expressed as y = F(x)=e”,
where e is an irrational number approximately equal to 2.718281828. We
will consider some of these applications in the next section. This exponen-
tial function is so important that it is often referred to as the exponential
function.

The exponential function in APL

The importance of the exponential function with base e is further empha-
sized by the fact that it is a keyboard monadic function in APL. e* in
standard notation corresponds to * X in APL.

The following examples illustrate the monadic use of * in APL.

Examples

*1 el=e.
2.718281828

*2 e,
7.389056099

*3 e
20.08553692

+1 23 e' el e’
2.718281828 7.389056099 20.08553692

* 1 e .
0.3678794412

* 2 e 2.
0.1353352832

+.5 e =e'2=Ve .

1.648721271
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7 Exponential and logarithmic functions

Graph of the exponential function
VFN[1]

[1] Ye=*xXV y=e*in APL.
X<((:5)—6),0,:5
X PAIRS FN X

~5 .006737946999

~4 .01831563889

~3 .04978706837

~2 .1353352832

~1 .3678694412

1

2.718281828

7.389056099

20.08553692

54.59815003

148.4131591

AdWN-—=0O

Thus, the graph of the exponential function is as shown in Figure 7.3.

<+

(=
—
[
w 4
»H 4
W

Figure 7.3 Graph of the exponential function.

EXERCISES

1. Use the program PAIRS to print out a table of ordered pairs for the following
exponential functions with ~5 < x <5, and use this table to graph the functions:
(a) y=4"

(b) y=37%
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7.2 Applications of exponential functions

() y=e’"

d) y=2r

(e) y=7* (Recall that in APL, 7 is O1.)
(f) y=2"  (Recall that in APL, |x| is | X.)

2. Evaluate the following with pencil and paper:
(a) 252 © 1/2)73
(b) 16>* - (vV2)
(© 572 () 81'/*
@d) €° (h) 12543

3. Check your answers to Exercise 2 at an APL terminal.

4. If the graph of an exponential function passes through the two points (0,5) and
(1,20), find the function (i.e., find a and b, where y =a-b*).

5. Investigate the values of (1+(1/N))", for N getting larger and larger. Some
texts define e to be the limiting value of this expression as N approaches infinity.

7.2 Applications of exponential functions

In this section, we will consider some applications of exponential func-
tions.

Application 1: Exponential growth

A quantity is growing exponentially if the amount of the quantity, y,
present after x time intervals is given by a formula of the form y=a-b*,
where a is the amount present when x =0, and b is the rate of growth per
time interval.

For example, suppose that the number of Japanese beetles on a golf
course doubles each week during the summer. Suppose that on July 1,
there are 100 Japanese beetles on the golf course. How many will there be
on July 29?

A<100 When x=0, there are 100 beetles
present.

B2 The rate of growth per week is 2.

X4 There are 4 weeks between July 1
and July 29.

Y—~AXBx*xX y=a-b* in conventional notation.

Y Print out y.

1600

So, there will be 1600 Japanese beetles in just 4 weeks.
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7 Exponential and logarithmic functions

Application 2: Compound interest

If an amount P, called the principal, is deposited in a savings bank at a
yearly interest rate I for x years, and if the interest is compounded N times

per
by

@)

year, then the total amount accumulated at the end of x years is given

_ L N-x
A=P (1+N) .

Suppose that $100 is deposited in a savings bank which has a yearly
interest rate of 6 percent compounded quarterly, and is left there for 5
years. Find the amount accrued at the end of 5 years.

Since the interest rate of 6 percent is compounded quarterly, then each
quarter, an interest rate of (6/4) percent is given on the previous
balance. Thus, the balances at the end of each quarter for the first year
would be:

100+ 100-0.015=100-(1+0.015)"
after 1 interest period,

100+ (1+0.015)' +100-(1+0.015)!-0.015=100- (1 +0.015)?
after 2 interest periods,

100 (1+0.015)?+100-(1+0.015)%0.015=100-(1+0.015)°
after 3 interest periods,

100-(1+0.015)* + 100+ (1 +0.015)*0.015=100- (1 +0.015)*
after 4 interest periods,
or one year.

Continuing this process for 5 years, the total amount accumulated
would be 4 =100-(1+0.015)%, as given by the formula. Thus, applying
the formula to this problem yields the following result:

P«100

| .06
N4 Quarterly means 4 times per year.
X5

A PxX(1+1+N)yx NXX
A

134.6855007
Thus, the amount accrued is $134.68.
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7.2 Applications of exponential functions

(b) How much should be deposited in the above bank if one would like to
have a total of $2000 at the end of 5 years? We now have the value of
A, $2000 and would like to have the value of P. In a problem such as
this, P is called the present value. Solving the above formula for P, we
get the formula for present value

P= % .
(1+(1/N))™
A<2000
P—A+(+I+N)xNxXX Note that the values of I, N, and X
have been specified previously.
P
1484.940836

Thus, $1484.94 should be deposited now if we want to have $2000 in
the account at the end of 5 years.

It can be shown that as N, the number of times interest is compounded per
year, gets larger and larger, the value of the quantity (1+(Z/N))™* will get
closer and closer to the quantity e’~. This is very useful in doing problems
where the interest is compounded continuously, where N increases without
bound. The verification of this statement will be left as an exercise.

Application 3: Interest compounded continuously

If interest is compounded continuously, then the total amount in the account
after x years if a principal P is deposited and the yearly interest rate is / is
given by the formula

A=Pe'~.
Suppose $100 is deposited in a bank which has an interest rate of 6

percent compounded continuously. How much is this investment worth at
the end of 10 years?

P<100
| .06
X<10

A—PX(*I1XX)
A
182.21188

Thus, the original $100 has become $182.21 in 10 years.
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7 Exponential and logarithmic functions

Application 4: Continuous growth

If a quantity grows continuously at a rate of K percent per time period,
and if P is the amount of the quantity present after O time periods, then the
total amount present after x time periods is given by the formula

A= P-ek*,
Suppose that the population of a country increases continuously at a

yearly rate of 5 percent. Suppose that right now there are 1,000,000 people
in the country. How many people will there be in 10 years? In 20 years?

P <1000000
K«.05
X<10

A—PX(+KXX)
A
1648721.271

Thus, there will be 1,648,721 people in 10 years.
X<20

A—PX(*KXX)
A
2718281.828

Thus, there will be 2,718,281 people in 20 years.

Application 5: Continuous decay

If a quantity decays continuously at a rate of K percent per time period,
and if P is the amount of the quantity present after 0 time periods (i.e., in
the beginning), then the amount present after x time periods is given by
the exponential function

A=Pe K~
This situation occurs in problems involving radioactive decay. For exam-
ple, suppose that a radioactive substance decays at a rate of 5 percent per
year. If a lump of this substance is 500 grams now, what will it be in 25
years?

P<500
K« .05
X<25

A—PX(*x —KXX)
A
143.2523984
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7.2 Applications of exponential functions

Thus, there will be approximately 143.25 grams of this substance left

from the original 500 grams in 25 years.

Further applications of exponential functions will be given in the

exercises. However, the above examples should help to convince the reader
of the importance of this class of functions.

EXERCISES

1.

10

.

11

12

13.

Write a program for the amount accumulated in x years if a principal P is
deposited in a savings account at a bank which has an interest rate of 5 percent
compounded semiannually.

. Use your program in Exercise 1 to find the amount in the account if $400 is

deposited in this bank for 15 years.

Repeat Exercises 1 and 2 if the bank compounds interest quarterly.

. Repeat Exercises 1 and 2 if the bank compounds interest monthly.
. Repeat Exercises 1 and 2 if the bank compounds interest continuously.

. Find the amount of money that should be deposited in the bank of Exercise 1

if one would like to have $1000 in the account in 10 years.

If the population of a certain weed in a lawn triples every year, and if there are
50 such weeds in 1975, find the number of these weeds in the lawn in 1984,
provided they are allowed to multiply.

. If the size of a rash in a patient is cut in half every hour due to a wonder

remedy, and if the rash covers 60 square inches of the patient’s body at 1
o’clock, how much of the body will be covered by the rash at 5 o’clock,
provided he applies the remedy as prescribed by his doctor?

. Write a program for the continuous growth or decay function 4 = P-eX™*,

If interest is compounded continuously at a rate of 5.25 percent per year,

(a) Find the amount that will be in the account if $500 is deposited and left for
8 years.

(b) Find the amount that should be deposited to yield a balance of $750 in 8
years.

Suppose that the number of bacteria in a culture increases continuously at a
rate of 10 percent per hour. Suppose that at 10:00 aM there are 100 such
bacteria present in the culture. Find the number of bacteria that will be present
in the culture at 3 PM.

A radioactive substance disintegrates continuously at a rate of 8 percent per
year. If there are 80 grams of this substance today, how much will there be 20

years from now?
An exponential function of the form y = P+ P-e~ X~ is often referred to as a
learning curve, where P is the original production of the subject whose progress

is being watched, K is a constant called the learning constant, x is the elapsed
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7 Exponential and logarithmic functions

time, and y is production of the subject at the end of x units of time. Suppose
that a new employee on a production line can produce 200 pieces per day.
Suppose that K=0.1. How many pieces should this employee produce after 10
days on the job?

14. Learning curves can also assume the form y =P— P-e~X*. Suppose the new
employee scraps 25 pieces the first day. Using this learning curve, how many
pieces will he scrap on the 10th day?

15. Describe the differences between the learning curves (if any) in Exercises 13
and 14.

16. In the text, it was stated that if N is large, the value of the quantity
(1+(I/N))™* and the value of the quantity e’* will be approximately the
same. Letting /=0.06, x=5, and N=100, verify this statement at an APL
terminal.

7.3 Logarithmic functions

Closely related to the concept of exponential function is the concept of
logarithmic function. In fact, the logarithmic function with base b is the
inverse function of the exponential function with base b. Two functions
which mean the same thing except that the roles of the independent and
dependent variables are reversed and are called inverse functions.

Definition of logarithmic function

If 5>0, but b1, and if x>0, then y=F(x)=log,x (read as “y is the
logarithm to the base b of x”’) means the same as x=»5". (log,x is not
defined, since then we would have x=1"=1, and the only value x could
have would be 1. Thus, we don’t allow a base of 1.)

Examples to Illustrate the Definition
log,,1000=3, since 10° =1000.
log,32=5, since 2°=32.
log,,.01="2, since 10 >=.0l.
For any base b, log, 1 =0, since b°=1.

For any base b, log,b=1, since b'=b.

Logarithms in APL
The APL notation for log, x is B®X. [ Note: ® is an overstrike of * and O.]

Examples

10®1000
3 log,, 1000.
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7.3 Logarithmic functions

2®32
5 log, 32.
10®.01 log,,.01.
2
5®1 logs 1.
0
5®5 logs 5.
1
10® 2 log,, “2 is not defined, since x is not
DOMAIN ERROR >0. There is no way to raise 10 to a
power and get a negative.
10®0 log,o0 is not defined, since there is
DOMAIN ERROR no way to raise 10 to a power and get
0.
10®.01 .1 10 100 1000 log,(0.01,l0g,,0.1,10g,, 10,
271123 log,, 100,10g,,1000.

Natural logarithms

In many practical applications of logarithms, the base is the number e.
Logarithms with base e are called natural logarithms. Log,x is usually
denoted as Inx.
By our definition of logarithm with base e, y =Inx means the same as
x=e’.
Examples
Ine=1, sincee'=e.
In1=0, sincee’=1.

Natural logarithms in APL

The APL notation for Inx is ® X. That is, if no base is indicated to the left
of the logarithm symbol, ® , the base is understood by the computer to be
e.

Examples
® *1 Ine=1.
1
® *2 Ine?=2.
2
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® 1 In1=0.
0

® 2 In2.
0.6931471806

® 10 In 10.
2.302585093

® 2 In ~2 is not defined.
DOMAIN ERROR

®0 InO is not defined.
DOMAIN ERROR

1210 In1,In2,In10

0 .6931471806 2.302585093

To get a feeling for logarithms as functions, we now graph a couple of
logarithmic functions.

Example 1

Graph y=log,x. We can use the program PAIRS to generate a set of
ordered pairs for this function.

VFN[1]

(11 Y<2eXV
X110
X PAIRS FN X
10
2 1
3 1.584962501
4 2
5 2.321928095
6 2.584962501
7 2.807354922
8 3
9 3.16992501
10 3.321928095
Let us also examine this function for values of x getting closer and
closer to 0.

X(11—110)%.1
X PAIRS FN X
10
0.9 ~.1520030934
0.8 ~.3219280949
0.7 ~.5145731728
0.6 ~.7369655942
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7.3 Logarithmic functions

0.5 1

0.4 ~1.321928095
0.3 71.736965594
0.2 ~2.321928095
0.1 ~3.321928095

Using these two tables of ordered pairs, the graph of y =log, x looks as
shown in Figure 7.4.

Figure 7.4 Graph of Example 1.

Example 2
Graph y=Inx.
VFN[1]
[11 Yeeo XV The APL natural log function.

X—10

X PAIRS FN X
0
.6931471806
1.098612289
1.386294361
1.609437912
1.791759469
1.945910149
2.079441542
2.197224577

0 2.302585093

2 OO NOODWN=

Examining this function close to zero, we get:

Xe—(11—110)X 1
X PAIRS FN X
10
0.9 ~.1053605157
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0.8 ~.2231435513
0.7 ~.3566749439
0.6 ~.5108256238
0.5 ~.6931471806
0.4 9162907319
0.3 ~1.203972804
0.2 ~1.609437912
0.1 ~2.302585093

Thus, based on these tables of ordered pairs, the graph of y =Inx is as

shown in Figure 7.5.

These graphs are typical of the graphs of logarithmic functions.

Figure 7.5 Graph of Example 2.

EXERCISES

1.

Use the program PAIRS to generate tables of ordered pairs for the following
functions where 1< x < 10, and where 0.1 < x < 1. Then use these pairs to graph
these functions:

(@) y=logsx  (b) y=logox  (¢) y=Inx?

2. Use the definition of y =log, x to evaluate the following logarithms:
(a) logs25 (c) logg2 (e) logs0.04
(b) logs81 (d) log,4 ® IneV2

3. Repeat Exercise 2 at an APL terminal.

4. Evaluate the following logarithms at an APL terminal:

(a) log;02.35 (b) log;235 (c) log,;(23500
[Do you see any relationship among these logs?]

. Evaluate the following logs at an APL terminal:

(a) logs4  (b) logs6  (c) logs24
[Do you see any relationship between the answer to (c) and those of (a) and (b)?]

. Evaluate the following natural logs at an APL terminal:

(a) In4 (b) Inl15 (c) In60 (d) Inl6
(e) How are (c) and (d) related to (a) and (b)?
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7.4 Properties and applications of logarithms

7.4 Properties and applications of logarithms

Much of the usefulness of logarithms can be attributed to the following
three properties.

Properties of logarithms
If M and N are positive real numbers, then

1. log,(M-N)=log, M +log, N
2. log,(M/N)=log, M —log, N
3. log,(M*)=k-log, M

To illustrate the way in which these rules are derived, we shall prove
Rule 2. The proofs of the other two rules are done similarly and are left as
exercises.

Proof of Property 2:
Let x=log, M and y =log, N. Then, by the definition of log to the base b,
M=b* and N=b". We are interested in M/N. Thus,
M_b"_ sy
N b b=,

since exponents are subtracted when you divide. Using the definition of
logarithm to the base b on this expression, we get

M
x—y=logb(w).
However,
x—y=Ilog, M —log,N.

Therefore,

logb( _}]‘Vi) =log, M —log, N.

Application 1: Computations with logs

A decade or more ago, before the invention of the inexpensive pocket
calculator or the readily accessible computer, one of the main applications
of logarithms was to simplify arithmetical computations. Since our number
system is based on base 10, logarithms to base 10, called common logs,
were used.!

1John Napier (1550-1617) actually invented logarithms for this purpose. He also invented an
early form of the slide rule, which is based upon logarithms.
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Example 1: Multiplication

Property 1 can be used to convert a multiplication problem to an addition
problem. Consider the problem of multiplying 32.4 by 41.8.

Let M =324 and N=41.8. We want to compute M-N. By Property 1,
log,o(M-N)=log,, M +log,,N. Let us use APL to find and add these logs.
Actually logs to any base can be used. However, for historical reasons, we
will use logs to base 10.

M<32.4
N «<41.8

106M log,o M.
1.51054501

10®N log,oN.
1.621176282

(100M)+(108N) log,o M +log,, N.
3.131721292

Thus, we have now computed log,,(M-N). However, we really want
M-N. Thus, we want the number whose log to the base 10 is 3.131721292.
In other words, we want 10*13172122 (This is often referred to as the antilog
of 3.131721292.) Using APL, we get the following:

10%3.131721292
1354.32
Thus, M-N =1354.32. Let us check this using APL:
MXN
1354.32 It checks!

This process was particularly useful when one wanted to multiply
several numbers. It is much easier to add several logarithms and then
compute the antilog than to multiply the numbers. However, if one has a
calculator or a computer terminal handy, it is even easier to just multiply
the numbers directly. Therefore, today, we would probably not use the
above process to multiply numbers. We are presenting this process because
it has historical interest and because it illustrates an application of the
properties of logarithms. For these same reasons, let us also illustrate the
way in which to use the rules of logs to simplify division, exponentiation,
and extraction of roots.

Example 2: Division (optional)

Property 2 can be used to convert a division problem to a subtraction
problem. Consider the problem of dividing M by N. By Property 2,

M
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7.4 Properties and applications of logarithms

Using APL,
M

32.4
N

41.8 Just to recall the values of M and N.
(10®&M)—(10®&N) log;o M —log,yN.

~.1106312716

This is the value of log,((M/N). To get M/ N, we need the number
with this log. Thus,

10%.1106312716 10-0-1106312716 = A1 / N since
log,(M/N)="0.1106312716.
7751196172 Thus, M/N=0.7751196172.
M+N
7751196172 It checks.

Example 3: Exponentiation (optional)

Property 3 can be used to convert a problem in raising a number to a
power to a problem in multiplication. Consider the problem of computing
M°4, By Property 3, log,o(M°%)=0.4-log,,M. Using APL,

4% (10&M) 0.4-log,o M.
.6042180041
This is the value of log,o(M%%). To get M°4, we need the antilog.
10+0.6042180041
4.019925496 Thus, M %4=4.019925496.
M=x .4
4.019925496 It checks.

Example 4: Root extraction (optional)

Since M '/¥=</M , then the problem of extracting a root can be handled
in the same way as the problem of exponentiation. Let us use logs and

APL to compute VM . We use the fact that VM =M /3,

M
324 Recalling the value of M.
(1+3)X(108M) 3+logio M =logio(M'73).
.5035150034
10+ 0.5035150034 Getting the antilog.
3.187975708 Thus, VM =3.187975708.
M=*1+3
3.187975708 It checks.
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7 Exponential and logarithmic functions

Application 2: Solving exponential equations

One very important application of logarithms is in solving exponential
equations. An exponential equation is an equation of the form a* = b, where
a and b are constant known values. To solve it means to find the value of
x. To do this, we could use logarithms to any base. We will use natural
logarithms. The procedure is as follows:

a*=b.
Take the natural log of both sides. Thus,
Ina*=Inb.
Using Property 3,
x-lna=Inb, or x= M
Ina

Example
Solve 3*=7 for x. By the above discussion, x=In7/In3. In APL,
X (®7)+(®3)

X
1.771243749 So, x=1.771243749.
3xX
7 Thus, 3*=7, and it checks.

Application 3: Radioactive half-life

Suppose that the amount of a radioactive substance present after x years is
given by the exponential function
A=500-¢ %~
The half-life of this substance is the amount of time, 7, required for
exactly half of this substance to disintegrate. The procedure for finding T
is as follows:
A= 500_e’0.05~x
At time x =0, 4 =500. To find the half-life, we need to find the value of x,
which we are calling 7, for which 4 =250 (half of the initial amount). In
other words, we need to solve the equation
250=500-¢ 057
for T. Thus,
250 _ -oost
500 ’
Taking the natural log of both sides yields
In0.5=In(e %% 7)=-0.05-T-Ine  (By property 3)

=-0.05-T (Since Ine=1).

or .S=e 0057
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Thus,
_In0.5
T="005"

Using APL, we get

T (®.5)+ .05

T
13.86294361 Thus, the half-life of the substance is

almost 14 years.

500X (* .05 T)

250 500-¢ %9T=250, so it checks.

Application 4. Continuous compound interest revisited

In Section 7.2., we pointed out that if interest is compounded continuously
for x years at a yearly interest rate /, then the amount, 4, in the account
after x years if a principal P is deposited is given by the exponential
function
A=P-e"~
At a 6 percent interest rate compounded continuously, how long does it
take for a deposit to double its initial value?
Thus, we have

2.-P=Pe!*=pP.e00%x  or 2=g000x
Applying In to both sides yields

In2=1ne®%*=0.06x-Ine=0.06-x.
Thus, x=(In2)/0.06. Solving this problem in APL, we get

X (®2)+.06
X
11.55245301 Thus, the deposit doubles its value in
about 11.55 years.
*.06X X 2% x =2 5o it checks.
2
EXERCISES

1. Prove Properties 1 and 3 of logarithms.
2. Solve the exponential equation 5*=9 for x.

3. Write an APL program to solve an exponential equation 4* = B for x.
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7 Exponential and logarithmic functions

10.

198

. Evaluate In5 and In8 on an APL terminal. Use the properties of logarithms

and the values you got for In5 and In8 to evaluate the following logarithms:
(a) In40 (b) In1.6 (c) In25 (d) In200 (e) InV5

. Use common logs and the properties of logarithms to compute the following

(M =586, N=2.79, P=341):
(@ M:N-P (b) P/M () N° (d) VP

. If the amount of a radioactive substance present after x years is given by

A=80-¢ %% find the half-life of the substance.

. If a bank compounds interest continuously at a rate of 5 percent, how long

does it take for the deposit to double in value?

. In Exercise 7, how long does it take for the deposit to triple in value?

. If the revenue from the sales of x items is given by the formula y=1000-

In(x +1) dollars, find the revenue from the sale of 25 of these items.

Prove the following statement about logarithms:
log,(b*)=x.



Differential calculus

Calculus—an essential tool of any mathematician, engineer, or scientist—
is one of the most important branches of modern mathematics. In recent
years, calculus has also become an important tool in such areas as business
administration, economics, psychology, and sociology. In all of these areas,
we are interested in instantaneous rates of change, and calculus is the tool
for finding such rates of change. In an introductory text such as this, we
cannot attempt to present a thorough coverage of calculus. In fact, in most
colleges, calculus is offered in a 3- to 5-course sequence. It is our intention
to introduce the student only to some of the more important concepts and
applications of calculus. It is hoped that this will give the student some
appreciation of this vital area of mathematics. Perhaps it might even
inspire some students enough to take part or all of the calculus sequence.

There are two branches to calculus: differential and integral calculus.
Using differential calculus, we can answer such questions as “How fast is
an object moving at any instant?” and “How many items should be
produced in order to maximize profit or minimize cost?” Using integral
calculus, we can answer such questions as “Given the acceleration of a
moving object at any time ¢, what is its velocity at time ¢?” and “What is
the area under the normal probability curve between two specified val-
ues?” As we shall see, these two branches of calculus are very closely
related to each other via the “Fundamental theorem of calculus.” First, we
will treat differential calculus.

8.1 The limit of a function

We begin our study of calculus by considering the idea of limit.
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8 Differential calculus

Definition of the limit of a function
Let F(x) be a function and let ¢ and L be real numbers. The symbolism

lim F(x)=L (read “the limit as x approaches ¢ of F(x) is L")

means that as x gets closer and closer to ¢, F(x) gets closer and closer to
L. Or, in other words, we can make F(x) as close to L as we desire by
making x close enough to c. If no such real number L exists, we say that
the limit does not exist.! [Note: In this definition, we are considering the
values of F(x) for x “close to” c. We are not considering the value of F(x)
at ¢, although in some instances, the value of the limit L will be F(c).
There are other instances where F(c) does not exist, but the limit L does
exist. In fact, the derivative is one of these instances.]

F(x)

(@ (b)

Figure 8.1 (a) The left-hand limit: As x gets close to ¢ from the left, F(x) gets
close to L. (b) The right-hand limit: As x gets close to ¢ from the right, F(x) gets
close to L.

One way of evaluating lim,_F(x) is to examine the values of F(x) for
values of x getting closer and closer to c. We will examine F(x) as x gets
close to ¢ from the left (the left-hand limit; Figure 8.1a), and as x gets
close to ¢ from the right (the right-hand limit; Figure 8.1b). These limits
should be the same. Otherwise, we will say that the limit does not exist. In
order to find these left-hand and right-hand limits, we can use the program
FN as in the following examples.

'Our definition of limit is not the one given in most calculus texts. The words “close” and
“closer” are usually made more precise using the so called “8,¢” definition. However, the
more intuitive definition will suffice for our purposes.
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Example 1
Find lim,_,(3x?).
VFN [1]
[1] Y<3X X2V Altering FN to fit this function.

FN 1.9 1.99 1.999 1.9999 Four values as x gets closer and
closer to 2 from the left.

10.83 11.8803 11.98803 11.99880003

FN 2.1 2.01 2.001 2.0001 Four values as x gets closer and
closer to 2 from the right.

13.23 12.1203 12.012003 12.00120003

From these results, it can be seen that as x gets closer and closer to 2,
from the left as well as from the right, 3x? gets closer and closer to 12.
Thus

lirn2 (3xH)=12.

Example 2
Find

x—3
VEN[1]
[1] Y (@XX)+1)+(X*2) V  The new FN.

FN 2.9 2,99 2.999 2.9999 The left-hand limit.
.8085612366 .7807518932 .7780741852 .7778074085

FN 3.1 3.01 3.001 3.0001 The right-hand limit.
749219563 .7748258849 .7774815926 7777481493

From these results, we get
. (2x+1) _ _1
)1(1_)1% ( = )—0.778 5

Notice that in the two examples above, lim _, F(x)= F(c). Functions
with this property are said to be continuous at x=c. Not all functions are
continuous at x =c. The following example illustrates this.

Example 3
Find

. (xz—l)
lim .
x—1 x—1
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8 Differential calculus

In this function, F(1)=0/0, which is not defined. Thus, lim,  F(x)#
F(c). However, we can still evaluate this limit as follows:

VFN[1]
1] Ye((X*2)—1)+(X-1)V

FN .9 .99 .999 .9999 .99999 The left-hand limit.
1.9 1.99 1.999 1.9999 1.99999

FN 1.1 1.01 1.001 1.0001 1.00001

The right-hand limit.
2.1 2.01 2.001 2.0001 2.00001

Thus,

2_
lim(x 1)=2.
x—1 X

This example can also be solved by using a little algebra. Since

x*—1 _ (x=1)(x+1) _

x—1 x—1 x+1,
then
lin} (x+1)=2.
Example 4
Find
. 5
)lfl_lg ( x—1 )
VFN[1]
[1] Y<5+(X-1)V
FN .9 .99 .999 .9999 The left-hand limit.

~50. ~500. ~5000. ~50000.

FN 1.1 1.01 1.001 1.0001 The right-hand limit.
50. 500. 5000. 50000.

From these results, it seems that as x gets closer and closer to 1 from the
left, F(x) gets more and more negative, and as x gets closer and closer to 1
from the right, F(x) gets larger and larger, with no apparent upper value.
Thus, the limit in this example does not exist.

202



8.1 The limit of a function

Example 5
Find
: ((2+h)2—4)
lim | ——— .
h—0 h

(Note that the letter used in this limit problem is of no significance, since
the answer is a number.

VFN[1]
1] Ye((@+X)*2)—4)= XV
FN -1 ~.01 ~.001 ~.0001 ~.00001

The left-hand limit.
3.9 3.99 3.999 3.9999 3.999990003

FN .1 .01 .001 .0001 .00001

The right-hand limit.
4.1 4.01 4.001 4.0001 4.000009994

Thus, it appears that the limit is 4. This can also be done algebraically
as follows:

. (Q+h’-4  4trah+hi—4_ . h(+h)
lim ————— = lim ————— = lim ————
h—0 h h—0 h h0 h

= lim (4+ h)=4.
HeEh

Example 6
Find lim,__o(1+ x)"/~.
VFN [1]
11 Y<(Q+X)+x(1+X)V
FN -1 ~.01 ~.001 ~.0001 -.00001

The left-hand limit.
2.867971991 2.731999026 2.719642216 2.718417755 2.718295421

FN .1 .01 .001 .0001 .00001 The right-hand limit.
259374246 2.704813829 2.716923932 2.718145927 2.718268236

From these results, it appears that lim,_(1+x)'/* is about 2.718.
Actually, the value of this limit is usually taken to be the definition of the
number e.
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A limit program

In all of these examples, if one were to average the left-hand limit, given
approximately by F(c— 0.0001), and the right-hand limit, given approxi-
mately by F(c+0.0001), he would have a good estimate of lim,_  F(x),

X—C

provided this limit exists. The limit does not exist if the left-hand and
right-hand limits differ substantially, as in Example 4.

Program 8.1 LIMIT
VESTIMATE « LIMIT C; LEFT ; RIGHT
[1] LEFT<FN C-.0001 The approximate left-hand limit.
[2] RIGHT <« FN C+ .0001 The approximate right-hand limit.
[3] ESTIMATE « (LEFT+ RIGHT)+2
The average of LEFT and RIGHT.

[4] —>((|LEFT—RIGHT)<.01)/0 If LEFT and RIGHT are at least as
close as 0.01, then the limit will be
assumed to exist. Thus, the program
is ended with the ESTIMATE of the
limit as on line 3. Otherwise, the pro-

gram prints out the message on line
S.

[6] ESTIMATE <« ' THE LIMIT DOES NOT EXIST’

The values 0.0001 and 0.01 used in
this program are arbitrary. The
reader should feel free to experiment

with other values.
v

Let us redo the previous examples using this program LIMIT.
Example 1
Find lim,_,(3x?).
VFEN [1]
[11 Y<3xX+2V

LIMIT 2 This answer, 12, is the average of
12 11.9988 and 12.0012, the approxima-
tions of the left and right-hand limits
given in the previous solution to Ex-
ample 1.
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Example 2
Find
lin ( 2x+1 )
im
x—3 x2
VFN [1]
11 Y<(@XX)+1)=(X*x2) V
LIMIT 3 Notice that this estimate
J777777789 0.77777777789 is closer to the real
answer of 7/9 than either of the
estimates of the left- and right-hand
limits.
Example 3
Find
2_
lim ( x" -1 )
x—>1\ x—1
VFN [1]
1] Ye<((X*2)—1)+(X-1)V
LIMIT 1
2 The exact value of the limit.
Example 4
Find
. 5
;lclﬂ ( x—1 )
VFN [1]
[1] Ye<5+(X=1)V
LIMIT 1 Since the left-hand estimate, ~50000,
THE LIMIT DOES NOT EXIST and the right-hand estimate, 50000,
differ by more than 0.01.
Example 5
Find
, ( (2+h)*-4 )
lim | ———|.
h—0 h
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VFN [1]

1] Y<({(R+X)*2)—4)+XV
LIMIT O

4

Example 6

Find lim, (1 + X)"/*.
VFN[1]

11 Y<(+X)+(1+=X)V
LIMIT O

2.718281841 The approximate value of e.

EXERCISES

1. Use the program FN and the computer to find the left- and right-hand limits to
the following functions.

. . 2
@ me © lL“‘](x—z—T)
: x— . +1
® lim(33) ® tin(527)
(%29 1+x)*~1
© im(%=3) @® lim (—( 2 )

. [ x2=2x-3 o
(d) )I(I_,HE(T) (h) 11_13)(8 )

2. Use the program LIMIT to find the limits in Exercise 1, if these limits exist.

8.2 Slope of a curve and the definition of derivative at a point

In Section 6.3., we considered the concept of the slope of a line. Recall that
the slope of a line joining two points P(x,,y;) and Q(x,,y,) is found by
computing the difference quotient m=(y,—y,)/(x,— x,). This slope is a
measure of the steepness of the line. That is, the larger m is in absolute
value, the steeper the line. If m >0, the line is a rising line. If m <O, the line
is a falling line. If m =0, the line is horizontal. Finally, recall that the slope
of a line is a constant. That is, the result is the same no matter which two
points are used to compute the slope.

In this section, we would like to consider the idea of the slope of the
curve given by any function y=F(x) at a point P(x,y) on it. Unlike
straight lines, the slope of a curve will be different at each point on the
curve.
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(—=2,-5) 4,-5)

Figure 8.2 Graph of y = — x>+2x+3.

Example

Consider the quadratic function y = F (x)= — x?+2x +3 (Example 2, Sec-
tion 6.4.) Let us try to define and compute the slope of this curve (shown
in Figure 8.2) at the point P(1,4).

Consider the line joining the point Q(0,3) to the point P (1,4). This is
called a secant line of the curve. The slope of this line is m=(4—3)/(1—0)
=1

Now, consider a point Q closer to P on the curve, say @ (0.5,3.75). The
slope of the secant line joining this point Q to P is m=(4—3.75)/(1-0.5)
=.5.

Considering a point Q(0.9,3.99) even closer to P, the slope of this
secant line is m=(4—3.99)/(1-0.9)=0.1.

In the table below, we have listed points Q which are approaching
P (1,4) from both the left and right, together with the slopes of the secant
lines QP (see Figure 8.3).

x y m

0 3 1

0.5 3.75 0.5
0.9 3.99 0.1
0.99 3.999 0.01
1.01 3.999 ~0.01
1.1 3.99 70.1
1.5 3.75 “0.5
2 3 1
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09,3.99) P4 (11 399

(0.5, 3.75) (1.5,3.75)

0,3) 2,3)

Figure 8.3 Possible secant lines PQ.

Notice that as Q gets closer and closer to P from the left, the slopes of
the secant lines QP get closer and closer to 0. Also, as Q gets closer and
closer to P from the right, the slopes of the secant lines QP get closer and
closer to 0. Thus, it would seem reasonable to say that 0 is the slope of the
curve at P(1,4). Also, from the diagram, we can see that as Q approaches
P along the curve, from the left or the right, the secant lines QP rotate into
a limiting line L, called the tangent line to the curve at P.

Using this example as a model, we can make the following definition:

Definition of the slope of a curve at a point on it (the derivative)
The slope of a curve y = F(x) at a point P(x,y) on it is defined to be
. F(x+h)—F(x)
lim .
h—0 h

This limit, if it exists, is called the derivative of the function y = F(x) at the
point P(x,y), and is symbolized by F’(x).

Note 1:

The derivative will exist for all examples in this text.
Note 2:
Other symbols for the derivative include y’,dy /dx, D, F (x).

Geometric explanation of the derivative
The slope of the secant line QP is
Changeiny F(x+h)—F(x)
Mor = Changein x h '
As illustrated in Figure 8.4, the slope of the curve y = F(x) at the point P is

the limiting value of the slopes of the secant lines QP as Q approaches P
along the curve. As Q approaches P along the curve, h approaches 0 and
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L
Q(x + h, F(x + h))
L h >0

Q(@x + h, F(x + h))

h<0 y=F(x)

Figure 8.4 Possible secant lines QP as Q approaches P.

vice versa. Thus, the slope of the curve y=F(x) at the point P(x,y) is
given by the limit of the difference quotient
F(x+h)—F(x)
h—0 h
which is the derivative F'(x) at P. Also, as Q approaches P along the

curve, these secant lines rotate into the limiting line L, called the tangent
line to the curve y = F(x) at the point P (x,y).

ki

Examples

1. Find the slope of the curve y = F(x)= — x>+ 2x+3 at the point P(2,3).
We need to compute

)  FQ+h)-F(Q2)
e
Algebraically, this is done as follows:

—Q+hP+2Q2+h)+3—(—22+2-243)

F2)= lim h
 —(4+4h+h*)+4+2h+3+4-4-3
= lim
h—0 h
o —2h—k2_ . k(=2-Rm) .
- i =2 = i = = (20 =2

So, the slope of this curve at the point P(2,3) is "2.
2. Find the slope of the curve y=F(x)=—x>+2x+3 at the point (0,3).
We need

FO+h)-FO) _ . —h*+2h+3-3

F/(0)= lim h e h
. h(—h+2)
_;lll_r,%—_h__;l.%(_h”)_z'

The desired slope is 2.
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We will find it useful to have a program for computing derivatives at a
point which yields a specific result D. The following program computes the
difference quotient (F(x + h)— F(x))/h for h=0.0000000001. This gives a
fairly good estimate of F’(x) in most cases.

Program 8.2 DERIVATIVE
VD« DERIVATIVE X; H

[1]  H<.0000000001 This value for H is arbitrary. The
[2] D« ((FN X+ H)—(FN X))+ H reader is urged to experiment with
\Y other values for H. If H is too small,

the computer will always give 1, since
(0+0)=1 in APL.

In the next section, we will consider some rules for computing deriva-
tives. Let us apply the program DERIVATIVE to some examples.
Example 1

Given the function y=F(x)=—x?+2x+3, find the derivatives F’(0),
F(1), and F'(2).

VFN[1]
[1] Ye(—X*2)+(2X X)+3V  We need a subprogram for our func-
tion.
DERIVATIVE 0
1.999999999 The real answer is 2.
DERIVATIVE 1
0
DERIVATIVE 2
~2.0000000001 The real answer is ~2.
Example 2

Find the equation of the line tangent to the curve y = F(x)= — x*+2x+3
at the point (0, 3).

The equation of a line is of the form y =m-x + b. The slope of this line is
F’(0)=2. So, the line looks like y =2x+ b. However, when x=0, y=3, so
that b=3. Therefore, the equation of the tangent line is y =2x + 3.

Example 3
Given the function y = F(x)=3x+2, find the derivatives F'("1), F'(0),
F'(1), and F’(0).

VFN[1]

[1] Y<@XxXX)+2V Altering FN for the new function.
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DERIVATIVE -1 0.1 3 In APL, we can do all of these
3333 derivatives at once.

Notice that the result is always 3. This is reasonable, since this function
is a linear function with slope m =3, and the derivative at any point gives
the slope of the curve of the function at that point.

EXERCISES

1. Consider the function y = F(x)= x?>—4x +4 and the point P(1,1).
(a) Find the slopes of the secant lines joining the points Q with the following x
coordinates to the point P:
x=0; x=0.5; x=0.9; x=0.99; x=0.999.
(b) Repeat Part (a) with the following x coordinates:
x=2; x=15; x=1.1; x=1.01; x=1.001.
(c) Based on the results you get in Parts (a) and (b), what is a good estimate of
the slope of this curve at the point P?
(d) Use the program DERIVATIVE to find the slope of this curve at P.

2. Find the slopes of the following curves at the indicated points:
(a) y=F(x)=—x?+6x—9 at the point (2, " 1). (Use the computer.)
(b) y=F(x)=3x*+6x+35 at the point ("1,2).
(c) y=F(x)=5x+1 at the point (1,6).
(d) y=F(x)=2x>+3x2—12x—10 at the point (2, ~6).

3. Find the equations of the lines tangent to the curves in Exercise 2 at the points

indicated.

4. Using the definition of derivative and the necessary algebra, find the indicated
derivatives of the following functions:
(a) y=F(x)=2x+5; find F'(1).
(b) y=F(x)=2x*—x—3; find F'(2).
(¢) y=F(x)=x>+2x-5; find F'(0).

5. Use the program DERIVATIVE to check your answers to Exercise 4.

8.3 Differentiating polynomials

The derivative function

If x is a variable, then the derivative of a function y=F(x) is a new
function symbolized and defined as follows:

F(x+h)—F
R e

The process of computing this derivative function is known as differentia-
tion. The function y = F(x) is said to be dlfferentzable at any value of x for
which this derivative exists.
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8 Differential calculus

In the previous section, we saw that for any particular point P(x,y) on
the graph of y = F(x), the derivative F’(x) can be used to find the slope of
the curve at the point P. We will consider some more applications of
derivatives in the next section. However, first we will consider some rules
which will enable us to find the derivative functions for polynomials.

Rule 1

If y = F(x)=k, where k is a constant, then F'(x)=0 (i.e., the derivative of
any constant is 0).

This rule should be obvious, since the graph of y =k is a horizontal line
and the slope of a horizontal line is 0. Using the definition of derivative,
this rule can be proven as follows: '

F(x+h)—F(x _
Fix) = fim LOFW=FO) k=K oo,
h—0 h h—0 h h—0

Examples

1. If y=F(x)=>5, then F’(x)=0.
2. If y= F(x)=, then F'(x)=0.

Rule 2

If y= F(x)=x", where n is any constant real number, then F'(x)=n-x""".
A general proof of this rule is beyond the scope of this text. However,
we shall verify this rule for the following particular case to help convince
the reader of the validity of this rule:
Lety=F(x)=x>.

F(x+h)—F(x) i (x+h)’—x°

Fix)=jim —— o
-1 xX34+3x2h+3x-h?+h>—x*
= lim
h—0 h
o h(3x2+3xh+h?)
= lim = lim (3x2+3x-h+h?)
h—0 h h—0

=3x2+3x-0+02=3x2
Thus, this rule works in this particular case.

Examples

. If y=F(x)=x, then F’(x)=5x4.

If y=F(x)=x=x', then F'(x)=1-x"=1.

If y=F(x)=x", then F'(x)=mx""".
 Ify=F(x)=Vx =x'2 then F'(x)=3-x"'2=1/2Vx.
I y=F(x)=1/x*=x 3, then F'(x)="3-x *="3/x*

N
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8.3 Differentiating polynomials

Rule 3

If y=F(x)= k-G (x), where k is constant and G (x) is differentiable, then
F'(x)=k-G'(x).

This is derived as follows:
F(x+h)—F(x)

h

. kG(x+h)—kG(x)
= lim

h—>0 h

. G(x+h)—-G(x)
=k- lim
h—0 h

=k-G'(x).

F'(x)= Iltlil})

Examples
1. If y= F(x)=3x, then F'(x)=3-1=3.
2. If y=F(x)=2x3, then F'(x)=2-3x?=6x2.
3. If y=F(x)=4Vx =4x'/? then F'(x)=4-1-x""?=2/Vx .

Rule 4

If y=F(x)= G(x)+ H(x), where G(x) and H (x) are differentiable, then
F'(x)=G'(x)+ H'(x). Also, if F(x)=G(x)— H(x), then F'(x)=G'(x)—
H'(x).

This is proven as follows:
F(x+h)— F(x)
h

 (G(x+h)+H(x+h)—(G(x)+H(x))
P h

. | G(x+h)—G(x) H(x+h)—H(x) , )
—}1'1_1)1(1) ? + A =G'(x)+ H'(x).
Using these four rules, we can now differentiate any polynomial.

F'(x)= }'112)

Example 1

Let y= F(x)=2x>+3x?—12x—10. Find the slope of the tangent line to
the graph of this function at the point P (2, ~6).
The derivative function is
F'(x)=6x*+6x—12—0

=6x2+6x—12.
We need to evaluate the derivative of this function at the point P. Thus, we
get F'(2)=6-22+6-2—12=24.
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8 Differential calculus

Let us use the program DERIVATIVE as a check.

VFN [1]
[1]  Ye@XX*x3)+@XX*2)+("12XX)—10 V
DERIVATIVE 2
23.9999999999 This is almost 24.
Example 2

Find the equation of the line tangent to the curve y = F(x)= — x*+2x+3
at the point P (2,3).

The derivative of this function is the function y’'= F'(x)="2x+2. At
the point P, F'(2)="2:2+2="2. Thus, the slope of this tangent line is ~2.
The equation of a line has the form y=m-x+b. Since m="2, we have
y="2x+b. Since (2,3) is a point on this tangent line, we have 3="2-2+
b, or b=17. Thus, the equation of this tangent line is y ="2x+7.

Example 3
Find the slope of the curve y=F(x)=4Vx at the point (4,8).
F'(x)=4-1-x"12=2/Vx . Thus, the desired slope is F'(4)=2/V4 =1.
We can use the program DERIVATIVE to check this answer as follows:

VFN [1]
[1] Y<4xXx5V Altering FN to fit y=4Vx =4x!/2,
DERIVATIVE 4
1 It checks.
Example 4

Find the points at which the tangent lines to the curve of y = F(x)= — x?
+2x+3 are horizontal.

Since the slope of a horizontal line is 0, we need to find the point or
points at which F’(x)=0. Since F'(x)="2x+2, then F'(x)=0 when x=1.
Substituting this back into the original function, we get y = F(I)=4. Thus,
the desired point is (1,4).

A program for differentiating polynomials

The following program yields the vector of coefficients of the derivative of
a polynomial. Since the four rules for differentiating polynomials are so
basic and easy to use, this program is optional. It does illustrate a way to
get the computer to perform these rules.

Program 8.3 DIFF (optional)
V COEFFS « DIFF POLYNOMIAL ; N; EXPONENTS
214



8.3 Differentiating polynomials

[1] N<«p POLYNOMIAL N is the number of coefficients in the
polynomial.
[2] EXPONENTS <~ N-—:N The vector of exponents in the poly-
nomial.
[3] COEFFS<« 1| POLYNOMIAL X EXPONENTS
v These are the coefficients of the de-

rivative of the polynomial.

Examples
1. Use the program DIFF to differentiate the polynomial

F(x)=3x"+2x*+3x3+5x+10x+1.

DIFF 3235101 The coefficients of the polynomial.
1589 10 10 The coefficients of the derivative.

Remember that the exponents are all reduced by 1 in the derivative of a
polynomial in accordance with Rule 2. Thus, the derivative of this
polynomial is F'(x)=15x*+8x>+9x%+ 10x + 10.

2. If F(x)=x%+x*+8x?—3x+2, use DIFF to find F'(x).

DIFF1 0108 32 Notice that the zero coefficients must
be included in POLYNOMIAL.
604016 3

Thus, F/(x)=6x°+0x*+4x3+0x>+16x—3=6x>+4x>+16x—3.

A program for finding the derivative of
a polynomial at a particular value

The following program yields the derivative of a polynomial at a particular
value of x.

Program 8.4 POLY (optional)
VVALUE < X POLY POLYNOMIAL ; N; EXPS; COEFFS

[1] N<(o POLYNOMIAL)-1 The degree of POLYNOMIAL is 1 less
than the number of coefficients.

[2] EXPS«N-N The exponents of the derivative.
[3] COEFFS < DIFF POLYNOMIAL

The coefficients of the derivative
given by the program DIFF.
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8 Differential calculus

[4] VALUE < + /COEFFS X X*EXPS

v This is equivalent to plugging the
value of x into the derivative poly-
nomial.

Examples

1. If F(x)=3x>+2x*+3x>+5x2+10x + 1, find the value of the derivative
when x=1 (i.e., find F'(1)).

1 POLY3235101
52

Thus, F'(1)=52.
2. Use POLY to find F’(2) for the function of Example 1.

2 POLY 3235101
370

Thus, F'(2)=370.
3. If F(x)=x%+x*+8x>—3x+2, use POLY to find F'(1).

1POLY1 0108 32
23

Thus, F'(1)=23.

EXERCISES

1. Use the four rules of this section to find the derivative functions for the
following functions:
@) y=F(x)=3x+5
b) y=F(x)=3x3—x?+4x+1
(©) y=F(x)=x*+2x3—4x*+5x+3
(d) y=F(x)=6Vx —(2/x%
(e) y=F(x)=2x%2-3x 245
2. Use the program DIFF to check your answers to Exercise 1, Parts (a)—(c).
3. Use the four rules of this section to find the derivatives of the following
functions at the points indicated:
(@) y=4x+3, (e, de+3)
() y=—x*+5x—1, (2,5)
(© y=x*-2x2+x+1, (1,1)
d y=3x*-x, (1,2

4
=—, 4,1
(e y Vx CRY)

4. Use the program POLY to check your answers to Exercise 3, Parts (a)—(d).
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8.4 Applications of derivatives

5. Find the equations of the tangent lines to the following curves at the points
indicated:
(@) y=F(x)=3x?>—4x+1, (1,0)
(b) y=F(x)=4/x* (2,1

6. Find the points at which the slope of the following curve is 0:
y=F(x)=2x>-3x2—12x+9.

8.4 Applications of derivatives
Let us now consider a few applications of derivatives.

Application 1: Slopes of curves

As we have already seen, the derivative of a function y = F(x) can be used
to find the slope of the curve of the function at any point on the curve.

Application 2: Increasing, decreasing

Figure 8.5 Curve of a function that both increases and decreases.

A function y = F(x) is increasing at a point P if as x increases, y also
increases as we proceed past P along the curve. (For example, the above
curve in Figure 8.5 is increasing at the points 4 and E.) At a point where
the curve is increasing, the tangent line has positive slope, so that the
derivative F’(x) is positive at such a point.

A function is decreasing at a point Q if as x increases, y decreases as we
proceed past Q along the curve. (For example, the curve in Figure 8.5 is
decreasing at the points C and H.) At a point where the curve is
decreasing, the tangent line has negative slope, so that the derivative F’'(x)
is negative at such a point.

Notice also that (at least in the case of polynomials) at the points where
a curve changes from increasing to decreasing (or vice versa), the deriva-
tive will be zero (the tangent lines will be horizontal). At such a point, the
derivative (the slope) changes from + to — or from — to + (see points B,
D, and G above).

Example 1

Suppose that the profit (in dollars) from the manufacture and sale of x
items is given by the function P= F(x)= — x*+ 100x — 2000.

(a) Is profit increasing or decreasing when x =40?
dP

2;=F(x)='2x+100.
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8 Differential calculus

So, F’(40)=20, which is positive. Thus, profit is increasing when
x =40.

(b) Is profit increasing or decreasing when x =60? F'(60)= "20, which is
negative. Thus, profit is decreasing.

(c) At what value of x does profit change from increasing to decreasing?
We need to solve the equation F'(x)="2x+100=0. Thus, x =50. This
is the value of x for which we have maximum profit.

Example 2

Find the set of all values of x for which the following function is increasing
and the set of all values of x for which it is decreasing.

y=F(x)=2x>-3x*—12x+10
y'=F(x)=6x*—6x—12.

Since the derivative F'(x)=0 at the points where the curve changes from
increasing to decreasing (or vice versa), we first solve the equation F'(x)=
6x>—6x—12=0. Let us use the program QUADRATIC (Chapter 6) to solve
this equation for x.

QUADRATIC 6 "6 ~12
21
Thus, the derivative changes sign when x =2 and when x="1. We need
only to examine the sign of F’(x) on either side of these values of x. To do
this, we will use a sign chart for the derivative F’(x) (see Figure 8.6).
+ - +

' it
T 1

1 2
Figure 8.6 Sign chart for F'(x).

The derivative is positive to the left of x="1, since F’("2)=24 and the
derivative doesn’t ever change sign to the left of x="1.2 The derivative is
negative between x="1 and x=2, since F’(0)="12 and the derivative
doesn’t ever change sign between x="1 and x=2. The derivative is
positive to the right of x=2, since F'(3)=24, and the derivative never
changes sign to the right of x=2. Using this sign chart, we see that the
function is increasing in the set {x|x <1 or x >2}. It is decreasing in the
set {x| 1<x<2]}.

Application 3: Velocity

Suppose that the position of a moving object at time ¢ is given by the
function s= F(¢). The average rate of change of position, s, per unit of
time, ¢, as ¢t goes from some time ¢ to a later time 7+ 4 is given by the

2In order for the derivative to change sign, it would have to become 0. We have found that
the only times the derivative becomes 0 is at x="1 and x=2.
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8.4 Applications of derivatives

following difference quotient:

Change in position  F(t+h)— F(7)
Vave= — = .
ave Change in time h

This is called the average velocity, V.., of the object between times ¢ and
t+ h. The instantaneous rate of change of position, s, per unit of time ¢, at
some time ¢ is given by

Ve fim FUAR—FQ@)

h—0 h ;1.12(1) v

ave = F/(t)'
This is called the instantaneous velocity at time ¢ (or simply the velocity at

time ¢.)

Example 1

Suppose that the distance of an object from a starting point after ¢ seconds
is given by s= F(t)=3¢>+2t feet.

(a) Find the initial velocity of the object.
The initial velocity is the velocity at time ¢=0. F'(f)=6¢+2, so
F’(0)=2 feet per second.
(b) Find the velocity at the end of 1 second.
F’(1)=8 feet/second.
(c) Find the velocity at the end of the 5th second.
F’(5)=32 feet/second.
(d) Find the average velocity from the first to the Sth second.

_F(5)—F(1) g5-5
we 5-1 4

=20 feet/second.

Example 2

Suppose that s= F(f)="16¢>+320¢ is the function which gives the height
s, in feet, of a projectile fired vertically upward from ground level with an
initial velocity of 320 feet/second, where ¢ is the time elapsed in seconds.
(This was Example 5 of Section 6.1.)

(a) Find the velocity at the end of the Sth second.
F'(f)="321+320. So, F'(5)=160 feet/second.

(b) Find the velocity at the end of the 15th second.
F’(15)="160 feet/second. This velocity is negative since s is decreas-
ing. The projectile is falling back to earth.

(c) Find the velocity at the end of the 10th second.
F’(10)=0 feet/second. This is the time at which the projectile reaches
its highest point.
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8 Differential Calculus

Application 4: Acceleration

The average rate of change of velocity, V, per unit of time between times ¢
and ¢+ h is called the average acceleration of the object from time ¢ to time
t+ h. This is given by the following difference quotient:

_ Change in velocity _ V(t+h)— V(1) _F(t+h)-F(1)

ave

A

’

Change in time h h

since F'(r) gives the velocity at time ¢. The instantaneous acceleration at
time ¢ is the instantaneous rate of change in velocity at time ¢ and is given
by

F'(t+h)—F'(¢
A=limA,,.= lim —(—zﬁ = V(1)= ‘fi—’t’ = F"(1).

We will refer to the instantaneous acceleration at time ¢ as simply the
acceleration at time . Acceleration is the derivative of velocity, which is the
derivative of position. Thus, acceleration is the derivative of the derivative
of position. Such a derivative of a derivative is known as the second
derivative of the original function. Thus, acceleration is the second deriva-
tive of the position function.

Example 1

Find the acceleration at any time ¢ for the particle of Example 1 above.
Since s= F(f)=31*+2¢t and V= F'({)=6¢+2, then A= F"(t)=6 feet /sec-
ond/second (usually denoted as feet/second?). Thus, every second the
velocity increases by 6 feet/second.

Example 2

Find the acceleration for the projectile of Example 2 above.
s=F(t)="16r2+320t and V=F'(t)="32 t+320, so A=F"()="32

feet/second®. This is called the acceleration due to gravity. Since A is

negative, the velocity is decreasing by 32 feet/second each second.

Application 5: Instantaneous rates of change in general

The previous two applications are illustrations of the use of the derivative
for finding instantaneous rates of change of a function with respect to
time.

Let y= F(x) be any function. The average rate of change of y per unit
change in x as x goes from x to x+ A is given by the difference quotient

Changeiny F(x+h)—F(x)
Changeinx h )
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The instantaneous rate of change of y per unit change in x when x has a
given value x is given by

dy .
Z =F(x)=1
(x) Py

F(x+h)—F(x)
dx )

h

Example 1

The volume of a sphere is given by the function V' =%zx>, where x is the
radius. If a spherical balloon is being inflated with air, how fast is the

volume increasing per unit increase in radius when the radius is 6 inches?
v _ 4 2 2
— = —m3x*=4ax".
dx 3

So, when x =6, dV /dx = 144w cubic inches/inch.

Example 2

A water reservoir is being drained in such a way that the amount of water
(in gallons) in the reservoir after ¢ hours is given by the function

W = F(£)="500¢2— 50,000¢ + 1,250,000.

(a) How fast is the water running out initially?

%V = F'(1) = 10007 — 50,000,
Initially, £=0, so that F’(0)= ~50,000 gallons/hour.
(b) How fast is it running out when ¢= 10 hours?

F’(10)="40,000 gallons per hour.

(c) How much water is in the reservoir when it is running out at the rate of
20,000 gallons per hour?

F'(£) =1000¢ — 50,000 = 20,000,

so that t=30 hours. The amount of water in the reservoir when =30
hours is W= F(30)=200,000 gallons.

Application 6: Economic analysis

Suppose that the total cost of producing x items is given by C= F(x).
Then, the instantaneous rate of change in cost per item produced at the
level of production x is given by the derivative dC/dx= F'(x). ‘This is
called the marginal cost function.

Similarly, if the revenue from the sale of x items is given by R= G (x),
then the instantaneous rate of change in revenue per item sold is given by
the derivative dR /dx = G'(x). This is called the marginal revenue function.
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8 Differential Calculus

Example

Suppose that the cost (in dollars) of producing x items is given by the
function

C=F(x)=x*+2x+2000.

(See Example 1 of applications of quadratic functions in Section 6.4.)
Suppose also that the items sell at a price of $102 each, and that every item
that is produced is sold.

(a) Find the marginal cost when the 20th item is produced.

dcC
dx
So, F’(20)=22, or cost is changing at a rate of $22 per item when the
20th item is produced.
(b) Find the marginal revenue function.

Since the price is $102 per item, the revenue is R=G(x)=102x.
Therefore, the marginal revenue is given by dR/dx=G'(x)=102.
Thus, revenue is changing at a rate of $102 per item sold. This is
obvious, since this is the price.

(¢) Find the number of items that must be produced and sold, x, in order
for the marginal revenue to equal the marginal cost.

=F'(x)=2x+2.

MR.=M.C.
102=2x+2
x =50 items.

Recall that this was the number of items that must be produced and
sold in order to maximize profit. It is a fundamental law of economics
that profit is maximized when marginal revenue equals marginal cost.

EXERCISES

It is optional to use any of the programs DERIVATIVE, DIFF, or POLY to
help in doing any of the following exercises.

1. Find all values of x for which the following function is increasing and all values
of x for which it is decreasing:

y=F(x)=x*—4x+3.

2. Repeat Exercise 1 with the function y = F(x)=x>—6x2+9x +6.

3. Suppose that for a given company the profit from the sale and distribution of x
items is given by the function

P=F(x)=10x—0.02x2—0.0001x>.

(a) Is the profit increasing or decreasing when x =100?
(b) Is the profit increasing or decreasing when x =200?
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10.

11.

12.

8.5 More rules of differentiation (optional)

(c) At what values of x does profit change from increasing to decreasing or
vice versa?

. The area of a circle is given by the formula A = #x2, where x is the radius. Find

the rate of change in area per unit change in radius when x =5 inches.

. Find the equation of the tangent line to the curve y = F(x)=8Vx at the point

(4, 16).

. Suppose that the position of an object is given by the function

s=F()=42+12t+9 feet.

(a) Find the average velocity of the object during the first 5 seconds.
(b) Find the initial velocity.

(c) Find the instantaneous velocity at the end of the 5th second.

(d) Find the acceleration at any time ¢.

. For a freely falling body dropped from a height of 1000 feet, the height at the

end of ¢ seconds is given by
H=F(t)=1000—16¢ feet.

(a) Find the velocity of the object at the end of 5 seconds.
(b) Find the velocity of the object at the end of 10 seconds.
(c) Find the acceleration at any time ¢.

. The relation between sales and advertising cost, x, for a product is given by the

function §=400x2—50x. How fast is sales changing per dollar of advertising
cost when x =$5000?

. The cost (in dollars) of making x items is given by C=10+20-Vx .

(a) What is the marginal cost when x = 100?
(b) How fast is cost changing per item produced when x =25?
(c) What is x when the marginal cost is $1 per unit produced?

The cost of producing x items is given by C=F(x)=4x—0.0005x? and the
revenue from the sale of x of these items is given by R= G (x)= x*>—8x. Find x
when marginal cost equals marginal revenue.

A fire is spreading along a river bank in such a way the S=2¢—0.5? gives the
distance in miles from a starting point after ¢ hours. When does it stop
spreading?

According to Newton’s law of universal gravitation, the force exerted by the
earth on a space object is given by F= —k/x?2, where x is the distance of the
object from the center of the earth in miles. If k =1000, find the rate of change
in F per unit change in x when x = 10,000 miles.

8.5 More rules of differentiation (optional)

In this section, we present some more rules of differentiation which will
enable us to differentiate more complicated functions, including all of the
functions we have studied so far in this text. Since these rules may be
beyond the interest of many readers who want only a brief introduction to
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calculus and its applications, this section is optional. Although these rules
may be proved using the definition of derivative, it is beyond the intent of
this text to prove these rules, and we will omit the proofs. We will merely
state the rules and present examples of their use.

Rule 5: Chain rule
If y = F(u), where u= G (x), then
Y _b du
dx du dx
[Note: We could think of y as a function of x, since y = F(G (x)).]

= F'(1)-G'(x).

Example

Lety=Vx?+1 ; find dy/dx.
Let u= x2+1. Then, y =u'/2. By the chain rule,

2=£.ﬂ=l.u—l/2-2x= 2x = 2x
dx du dx 2 Vu Vsl

If we apply this chain rule to a power function, we get the following
rule.

Rule 6: Power rule
If y =G (x)", then
[b/ _ n—1 ’
il G(x)"-G'(x).
Example
y=3x2+6x)°. Thus,

% =5-(3x2+6x)* (6x+6).

Rule 7: Product rule
If y = F(x)-G(x), then

D F(x6/(x) + G (x) F ().

Examples

1. Let y=x%x>=x5. Of course, dv/dx=5x*. We shall apply the product
rule to this example to convince the reader that the derivative of a
product is not the product of the derivatives. Let F(x)=x? and G (x)=
x3. Then, by the product rule,

% =(x2)-(3x?)+(x%)-(2x)=3x*+2x*=5x4
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If one merely multiplied the derivatives of the functions F(x) and G (x),
he would get (2x)-(3x%)=6x>, which would not be correct.
2. Let y=(x2+3x+2)-(x*+3). By the product rule,

Zy—x =(x24+3x+2)-3xY) +(x3+3)- 2x+3)=5x*+12x>+6x2+6x+9.

3. Let y=xVx?+1 . Using the product rule and the power rule, we get

Y _ 15 -1 /2 __ X \/<2
E—x E(x +1) 2x+Vx +1 —ﬁ*— x“+1.

Rule 8: Quotient rule
If y= F(x)/ G (x), then
& G (x)-F'(x)— F(x)-G'(x)
G

Examples
To convince the reader that the derivative of a quotient is not the quotient
of derivatives, consider the following simple example:

1. Let y=x°/x*= x> Obviously, dy/dx=3x> Using the quotient rule, we
get

& _(DEN-GCD) s g
dx (x2)2 x4 ’
2. Let y=3x/(x*+2). By the quotient rule,
& (x*+2)-3—(3x)-(2x) _ 6-3x2

dx (x?+2) (x*+2)*

Rule 9: Exponential functions
If y =a", where u is a function of x, then
&y u du)
2 —(Inay-(a*) (dx .
Example 1: The exponential function
Since Ine=1, then if y =", where u is a function of x, then

2 =(e "). ( .d_’i )
dx dx )
Further examples

1. Let y =2~ Then,
&

- = (n2)- (2¥)- (2x) =(0.6931471806)- (2°)- (2x).
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8 Differential Calculus

2. Lety=e*’, then dy /dx=(e*)-(2x).
3. Let y = x?-e*. Using the product rule,

dy 2 X X
. =(x)- () +(e*) (2).

Rule 10: Logarithmic functions

If y =log, u, where u is a function of x, then
L2 =(_1_)(l) (5111)
dx Inb) \u/) \dx/)

Example 1: Natural logs

Since Ine=1, then if y =Inu, where u is a function of x, then

@ =(l).(d_u)
dx \u)\dx)
Natural logs are used more often than any other logs in calculus
because of their simpler derivatives.

Further examples
1. Let y =log,ox> Then,

EXERCISES

1. Find the derivative functions for the following:
@ y=211 ® y=10x

Y 4x y ex )

(®) y=(Bx*+5)-2x*+7) (g) y =logg(x’+5x+1)
(¢) y=(x*+2x)-In(3x) (h) y=In(x?+5x+1)
(d) y=10°"+5 () y=(*+5x+1)*
(e) y=eX'+ () y=(nx)’

2. Find the derivatives of the following functions at x =2:
(a) y=(Qx>—6x2+1)-(x*+2x) (©) y=02x>-6x2+1)°
(b) y= 2x3—6x2+1 (d) y=e*' 2

x24+2x (e) y=In(x*-2x)
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8.6 Theory of maxima, minima

3. Use the program DERIVATIVE to check your answers to Exercise 2.

4. Find the equation of the line tangent to the curve y =Inx at (1,0).

5. If the sales of a new product is given by the function S =20e%%12* where x is the

number of days the product has been on the market, find the rate of increase in
sales per day on the market on the 10th day.

8.6 Theory of maxima, minima

Derivatives are useful in finding the maximum or minimum value of a
function.

Definitions
A function y=F(x) has a relative maximum at a point P(a,F(a)) if
F(a) > F(x) for all points (x, F(x)) on the graph near P. In other words, a
relative maximum occurs at a highest point in the immediate vicinity. In
Figure 8.7, the function has a relative maxima at the points 4, C, and E.

A function y = F(x) has an absolute maximum at a point P (a, F(a)) if
F(a)> F(x) for all x in the domain of F. The absolute maximum occurs at
the point C in Figure 8.7.

A function y=F(x) has a relative minimum at a point P (a,F(a)) if
F(a)< F(x) for all points (x, F(x)) on the graph near P. In other words, a
relative minimum occurs at a lowest point in the immediate vicinity. In
Figure 8.7, the function has relative minima at the points B and D.

A function has an absolute minimum at a point P(a,F(a)) if F(a)<
F(x) for all x in the domain of F. The absolute minimum occurs at the
point D in Figure 8.7.

B

D
Figure 8.7 A function with both relative and absolute maxima and minima.

Critical values

The derivative is quite helpful in locating the relative extrema (relative
maxima and minima) for a function y = F(x) with domain an open interval
{x|la< x< b}. Notice from Figure 8.7 that at the relative maxima and
minima, the curve changes from increasing to decreasing or from decreas-
ing to increasing and that the tangent lines are horizontal at these relative
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8 Differential Calculus

extrema. Recall that the derivative of a function at a point P gives the
slope of the tangent line at P and that the slope of a horizontal line is 0.
Thus, it appears that the relative maxima and minima occur at points
where the derivative F’(x) is 0. Such points are called critical points and
the values of x for which F'(x) is O are called critical values.> When
looking for relative extrema, therefore, one first locates the critical values.

The first derivative test for relative extrema

Let y=F(x) and let x=c be a critical value for F (i.e., a value for which
F'(c)=0). Then,

1. If the derivative F’(x) changes sign from + to — as we pass by (moving
from left to right) the point (c, F(c)), then the function changes from
increasing to decreasing at this point. Therefore, the function has a
relative maximum at this point.

2. If the derivative F’(x) changes sign from — to + as we pass by (moving
from left to right) the point (c, F(c)), then the function changes from
decreasing to increasing at this point. Therefore, the function has a
relative minimum at this point.

3. If the derivative does not change sign as we pass by the point (c, F(c)),
then we have neither a relative maximum nor a relative minimum at this
point.

Example 1
This last case can be illustrated by the following example:
y=F(x)=x
F'(x)=3x*=0 when x=0. Thus, the critical point is (0,0). However,
F’'(x)=3x? never changes sign. Thus, this function has neither a relative

maximum nor minimum at (0,0), or at any other point for that matter. The
graph of this function (Figure 8.8) bears this out.

Example 2

Find any relative maxima or relative minima for the function y = F(x)= x?
—4x+4. (The graph of this function appeared as Example 1 in Section
6.4.)

First, we need to locate any critical values. F'(x)=2x—4=0 when
x=2. Thus, x=2 is the only critical value. We now have to examine the
sign change of F’(x) as we pass by the value x =2. Therefore, we make a
sign chart for the derivative, examining the sign of the derivative to the left
and right of x =2 (see Figure 8.9). The derivative is negative for all x to the
left of 2 and positive for all x to the right of 2. Thus, the function has a

31t is also possible to have a relative maximum or minimum at a point where F’(x) does not
exist. However, we shall omit such cases.
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8.6 Theory of maxima, minima

-8

Figure 8.8 Graph of y = F(x)=x".

relative minimum at x=2. The value of this function at this relative
minimum is F(2)=22—4-2+4=0. Recall that the vertex of the parabola
for this function occured at this minimum point (2, 0).

+
T

2
Figure 8.9 Sign chart for F'(x) about x=2.

Example 3

Find any relative extrema for the function y = F(x)= — x*+2x+3. (See
Example 2 of Section 6.4 and Figure 8.10a.)

Locating any critical values, we note that F'(x)="2x+2=0 when x=1.
Examining the sign chart for F'(x) about this critical value x=1 (Figure
8.10b), we discover that there is a relative maximum at x=1, y=F(1)=4.
This was the vertex of the parabola for this function also.

Example 4
Prove that the vertex of the parabola given by the quadratic function
y=F(x)=a-x*+b-x+c occurs at the point where x=—5b/2-a.

Since the vertex is a relative maximum or minimum, it must occur at a
critical value of y = F(x). However, F'(x)=2a-x+b=0 when x=—b/2-a.
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8 Differential Calculus

)

(@)

Figure 8.10 (a) Graph of F(x)=y= — x*+2x+3. (b) Sign chart for F’(x) around
x=1.

Example 5

Find any relative extrema for the function y = F(x)=2x3+3x>—12x - 10.
(See Example 1 of Section 6.5. and Figure 8.11a.)
Locating the critical values, we note that

F'(x)=6x?+6x—12=6(x+2)(x—1)=0

when x= "2 and x=1. The sign chart is shown in Figure 8.11b. Since these
are the only values at which the derivative changes sign, we can use any
value we wish to determine the signs of F’(x) to the left and right of these
values. Thus, a relative maximum occurs at the point (72, F("2))=("2,10)
and a relative minimum occurs at (1, F(1))=(1, "17).

Endpoint extrema

If a function is only defined on a closed interval {x|a <x<b}, then it is
possible that the maximum or minimum value might occur at one of the
endpoints of this interval, a or b. A function defined on such a closed
interval must have an absolute maximum and an absolute minimum value.
If either of these occurs in the interior of the interval, then it would occur
at a critical value and would be found as in the previous examples.
However, it is important to check for possible endpoint extrema also.
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8.6 Theory of maxima, minima

(2,10) 104
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Figure 8.11 (a) Graph of y = F(x)=2x3+3x%—12x—10. (b) Sign chart for F'(x)
=0 near x="2 and x=1.

Example 6

Find the absolute maximum and absolute minimum values of the function
y=F(x)=—x*+2x+3 in the restricted domain {x|0< x <4} (see Figure
8.12a).

As before, in Example 3, we get the critical value: F'(x)="2x+2=0, so
that x=1 and y=F(1)=4. The sign chart for F’(x) about this critical
value x=1 and in this restricted domain is as shown in Figure 8.12b. Thus,
the function is always increasing on the interval {x|0< x <1} and always
decreasing on the interval {x|l<x<4}. Thus, the absolute maximum
point is at (1,4). Since the function must have an absolute minimum value,
it must occur at one of the endpoints, 0 or 4, of the domain. At x=0,
F(0)=3. At x=4, F(4)="5. Therefore, the absolute minimum point for
this function in the restricted domain is the point (4, ~5). The graph of this
function follows:
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(1,4)

- (b)

5+ (4,_5)

(@
Figure 8.12 (a) Graph of y = F(x)="x2+2x+3, {x|0< x <4). (b) Sign chart of
F’(x) around x=1.

Example 7

Find the absolute maximum and absolute minimum values of the function
y=F(x)=2x>+3x?—12x—10 in the restricted domain {x|0< x <5}.

F'(x)=6x*+6x—12=0 yields solutions x="2 and x=1. Since only
x=1is in the restricted domain of F(x), we are only interested in it. The
sign chart for F’(x) in this domain is as shown in Figure 8.13. This
function is always decreasing on the interval {x|0<x<1} and always
increasing on the interval { x|1 < x <5}. Thus, the absolute minimum point
is (1, F(1))=(1,717). The absolute maximum must occur at one of the
endpoints, 0 or 5, of the domain. At x=0, F(0)="10. At x=5, F(5)=255.
Thus, the absolute maximum occurs when x =5 and y = F (5)=255.

- +
0 1 5
Figure 8.13 Sign chart for F/(x)=6x2+6x—12, 5> x >0.

In the next section, we shall consider some applied maxima, minima
problems.

EXERCISES

1. Find any relative maxima, minima for the following functions:
(@) y=F(x)=—x*+8x—6 (d) y=F(x)=2x*+3x2-4x-10
(b) y=F(x)=2x*—5x-3 (e) y=F(x)=x"-2x*+3x-5

(©) y=F(x)=x*—6x*+9x+6
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8.7 Applied maxima, minima

2. Find the absolute maximum and minimum values for the functions in Exercise 1
in the restricted domain {x|1< x <5}.

8.7 Applied maxima, minima
We now consider some applied maxima, minima problems.

Example 1

Suppose that the cost (in dollars) of producing x items is given by the
function

C = x?+2x +2000.
Suppose also that these items sell for $102 each and that every item that is
produced is sold. Find the number of items, x, that must be produced and
sold in order to maximize profit, and find this maximum profit.
Since revenue is the product of the price and the number of items sold,
then revenue is given by R=102x. Now, Profit=Revenue—Cost. There-
fore, profit is given by

P=R— C=102x — (x?+2x +2000) = — x*+ 100x —2000.

Thus, dP/dx="2x+100=0 when x =50. So, the critical value is x=50
(see Figure 8.14). Thus, the maximum profit occurs when x=>50. This
maximum profit is F (50)=$500.
+ L=
50
Figure 8.14 Sign chart for F'(x) about x=50.

Alternate approach to profit maximization

To find the maximum profit above, we solved the equation dP/dx=0.
Since P=R— C, then

dP _dR _dC

dx dx dx’
So, when dP/dx=0, then dR/dx=dC/dx, or marginal revenue equals
marginal cost. This rule, that profit is maximized when marginal revenue

equals marginal cost is a fundamental rule in economics.

Example 2

A manager of an apple orchard consisting of 50 apple trees is trying to
decide when to pick his apple crop. If he picks it now, his average apple
tree will yield 80 pounds of apples which he can sell for $.50 per pound.
However, for each week he waits to pick the apples, the average yield per
tree will increase by 10 pounds per tree, while the price will decrease by
$.03 per pound. How many weeks should he wait to pick his apples if he
would like to maximize his revenue?
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8 Differential Calculus

Let x =the number of weeks he should wait to pick the apples.
Revenue = R =(number of pounds picked)- (price per pound)
=50-(80+10x)-(50—3x)
=20,000+ 13,000x — 1500x2.

So,
4R _ 13.000—3000x=0
dx
when
L1300 1
3000 3

Thus, to maximize his revenue, he should wait about 4 weeks and 2 days to
harvest his apples (see Figure 8.15).

+ . -
1
43
Figure 8.15 Sign chart for dR/dx about x =41.

Example 3

A man has 100 feet of fencing which he wishes to use to fence in a
rectangular yard for his dog. He will put the dog’s yard against an existing
fence, and therefore, only needs to fence in three sides. Find the dimen-
sions of the yard of maximum area and find this maximum area.

In a problem such as this, a sketch (such as in Figure 8.16) is very
helpful. Since he has 100 feet of fencing to do the job, then x +2y =100.
We wish to maximize the area of the rectangle. Thus, we need a formula
for this area. Accordingly, the area= A4 = x-y. However, this area formula
has two variables and doesn’t use the fact that he has only 100 feet of
fencing. However, from the equation x +2y =100, we get x=100—2y. If
we replace x in the area formula by this expression, we get

A=xy=(100—2y)-y =100y —2y>.

Existing fence

X

Figure 8.16 Illustration of Example 3.
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+ —
+

25
Figure 8.17 Sign chart for d4 /dy about y =25.

Now, dA/dy =100—4y =0 when y =25 feet. Thus, the maximum area
occurs when y =25 feet (see Figure 8.17). At this value of y, x=100—2y =
50 feet. So, A = x-y =50-25=1250 square feet is the maximum area for the
dog’s yard.

Example 4

A rectangular shaped in-ground swimming pool with a square bottom is to
hold 4000 cubic feet of water. Find the dimensions of the swimming pool
of minimum surface area satisfying these restrictions.

Again, a sketch, as in Figure 8.18, will be helpful in visualizing the
problem. Since the bottom of the pool is square, it is x feet on each side.
The depth of the pool is labeled by y. The volume of the pool is given to be
4000 cubic feet. The volume of a rectangular box is given by length - width-
depth. Thus, we have the following equation for the volume of the pool:

V=x-xy=x%y=4000.

No cover

Figure 8.18 Illustration for Example 4.

We wish to minimize the surface area (perhaps to build the pool of least
cost). Therefore, we need a formula for the surface area of the pool. This is
given by

A = Area of bottom + Area of 4 sides = x2+4xy.

Here again, we have two variables in our area formula and we have not
used the fact that the volume of the pool must be 4000 cubic feet. Solving
the volume formula for y, we get y =4000/x% Replacing y in the area
formula by this value yields the following area formula:

4000

2

A=x2+4x-(
x

)=x2+@=x2+16,000x".

So,

44 ) —16,000x-2=2x — 16000
dx x2

Thus, 2x3=16,000 or x =20 feet.

=0.
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20
Figure 8.19 Sign chart for d4 /dx about x =20 feet.

Thus, we have minimum surface area when x =20 feet (see Figure 8.19)

and y =4000/2=4000/400= 10 feet. The surface area is

A = x>+ 4xy =400+ 800= 1200 square feet.

EXERCISES

1.

The cost (in dollars) of producing x items is given by C=50x+100. The
revenue from these x items is given by R=100x —0.01x2 Find the number of
items that must be produced in order to maximize profit and find this
maximum profit.

. If a farmer harvests his potatoes right now, he will get 200 bushels at a price of

$2 per bushel. If he waits, he will get an increase of 25 bushels per week, while
the price will drop by $.10 per bushel. How many weeks should he wait to
harvest his potato crop in order to maximize his profit?

. The area of a rectangular field is to be 1350 square feet. The field is to be

fenced on all 4 sides with another fence running down the middle. Find the
dimensions which require the least amount of fence.

. A rectangular field is to be enclosed by a fence. One side of the fence is to be

along a road and requires a stronger fence than the other three sides. The fence
along the road costs $5 per foot. The fence along the other three sides costs $3
per foot. Find the dimensions of the field of maximum area that can be
enclosed with $2500.

. A rectangular box with a square base is to be made to hold 64 cubic inches.

Find the dimensions of the box of minimum surface area.

. A rectangular box with no top and square base is to be constructed to store

apples. Material for the bottom costs $2 per square foot, while material for the
sides costs $1 per square foot. Find the dimensions for the box of maximum
volume that can be so constructed for $100.

. A rectangular box is to be made from a piece of cardboard 12 inches long and

8 inches wide by cutting out a square from each corner and turning up the
sides. Find the volume of the box of maximum volume that can be so made.

. A manager of an apartment complex charges a monthly rent of $200 and

completely fills up his 80 apartments. However, for each increase of $10 in rent
thereafter, 2 apartments become empty. Find the rent which will yield maxi-
mum revenue. How many empty apartments will there be? What is the
maximum revenue?

. A beer company wishes to have a beer can that will hold 30 cubic inches of

beer. A beer can is, of course, a right circular cylinder. Find the dimensions of
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the beer can of minimum surface area. [Note: The volume of a right circular
cylinder is given by V=ar?h and the surface area by A4 =2x-r-h+27r?
where r is the radius of the base and 4 is the height.]

10. Suppose that the number of bacteria present in a certain culture in ¢ days is
given by the exponential function
B=F(t)=60t-e %%
Find the number of days in which the number of bacteria will be greatest.

8.8 Curve sketching using derivatives

Recall that the derivative F’(x) of a function y = F(x) at a point P(x,y)
gives the slope of the tangent line at that point. If F'(x)>0 at P, then the
curve is increasing at P. If F'(x)<0 at P, then the curve is decreasing at P.
We now want to consider what information about the graph of the
function is given by the second derivative.

Second derivatives

Let y = F(x). The first derivative is a new function, symbolized by y’=
dy /dx=F'(x). The first derivative can be differentiated yielding a new
function called the second derivative of y=F(x) and symbolized by y” =
d%y /dx*=F"(x).

Example 1
y=F(x)=x>+3x*>—5x+2
y'=F(x)=3x*+6x—-5 The first derivative
y'=F"(x)=6x+6 The second derivative.
Example 2
y=G(x)=Vx =x'/?
&y _ 1x V2= L The first derivative.
dx 2Vx
d ~1..,.-3)2 -1 ot
—==Tgx = The second derivative.
dx* 4V x?

Geometric interpretation of the second derivative at a point

A curve is concave downward (opens downward) at a point P if the curve
lies below the tangent line at P. It is concave upward (opens upward) if it
lies above its tangent line at P.

From Figure 8.20, one can see that if a curve is concave downward at a
point P, then the slope of the tangent line decreases as we pass by P from
left to right along the curve (see points A, B, and C in the sketch). Since
the slope of the tangent line is given by the first derivative F’(x), then
F’(x) is a decreasing function as we pass by the point P from left to right
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8 Differential calculus

Figure 8.20 Curve with concave downward and concave upward sections.

along the curve. Thus, the derivative of F’(x) is negative at P. In other
words, F”(x) is negative at P. Thus, at any point P (x,y) where the curve is
concave downward, F”(x)<O0.

By a similar argument, at any point P (x,y) where the curve is concave
upward (points D, E, and H in the sketch), F”(x)>0.

A point at which the curve changes its concavity from concave down-
ward to concave upward or vice versa is called an inflection point, I, of the
curve. At an inflection point, F”(x) changes sign.

Using the first and second derivatives of a function y = F(x), we can
sketch the curve for this function.

Example 1
y=F(x)=2x*-3x>—12x+10
y'=F(x)=6x>—6x—12
y'=F"(x)=12x—6.

(a) Find any relative maxima and relative minima.
We need to solve the quadratic equation F'(x)=6x*—6x—12=0in
order to get the critical values. To do this, we can use the program
QUADRATIC from Chapter 6.

QUADRATIC 6 6 ~12
21
So, CLLF("1))=("1,17) is a relative maximum point and (2, F(2))=
(2,710) is a relative minimum point (see Figure 8.21).
(b) Where is the function increasing and where is it decreasing?
Since F’(x) is positive in the set {x|x < 1}U{x|x>2}, then the
function is increasing for all x in this set. Since F’(x) is negative for all
x in the set {x|71< x <2}, then the function is decreasing for all x in
this set.
(c¢) Find any inflection points for this function.
To find inflection points, we need to find where the second deriva-
tive F”(x) changes sigln, if ever. Thus, we need to solve F”(x)=12x—6
1

=0, which yields x = 3. To see if F”(x) actually changes sign at x= 2

we make a sign chart for F”(x) about x=3 (Figure 8.22). Thus, the
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8.8 Curve sketching using derivatives

sign of F”(x) changes from — to + at x=3,
(3, F(3))=(3,43) is an inflection point.

(d) Find all values of x for which the curve is concave upward and
concave downward.

Since F”(x)<0 for x <3, the curve is concave downward in the set
{x|x<31}. Since F”(x)>0 for x> 3, the curve is concave upward in
the set {x|x>3).

(e) Using the information gathered in Parts (a)—(d), sketch the graph of
the function y = F(x)=2x>—3x?—12x+10.
This is done in Figure 8.23.

and the point

+ - +
-1 2
Figure 8.21 Sign chart for F’(x) about x="1 and x=2.
. | +
1
2
Figure 8.22 Sign chart for F”(x) around x=1.
y
=1,17)
10
(—2_ s 4_)
1
+— +— x
2 1 2
(2, 10

Figure 8.23 Graph of y= F(x)=2x>-3x2—12x+10.

239



8 Differential Calculus

Example 2
Repeat the above procedure for the function y = F(x)=x2—4x+2.
y'=F'(x)=2x—4 and y"=F"(x)=2.

(a) Maxima, minima: F’(x)=2x —4=0 when x=2. So, (2, F(2))=(2,72) is
a relative minimum (see Figure 8.24).
- +

I
T

2
Figure 8.24 Sign chart for F'(x)=2x—4 around x=2.

(b) Increasing, decreasing: From the sign chart for F’(x) about x=2 in
Figure 8.24, the curve is decreasing in the set { x|x <2}, and increasing
in the set {x|x>2}.

(), (d) Inflection points and concavity: Since F”(x)=2>0 for all x, the
curve has no inflection points and is always concave upward (see
Figure 8.25).

))

(0,2) 4,2)

{ } il }
T T T T X

1 (1,-1) G.—1)

(2,-2)

Figure 8.25 Graph of y=F(x)=x*—4x+2.
Example 3
y=F(x)=Inx By definition, x >0.
Y=F(x)=1>0 forall x>0.

y'=F"(x)= _—i <0 forall x.
X

Thus, this curve has no relative maxima or minima, since F’(x) is never
0. Since F'(x)>0 for all x>0, then the function is always rising
(increasing). Also, the curve has no inflection points, since F”(x) is
never 0. Since F”(x)<O0 for all x>0, then the curve is always concave
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.

(1,0

o

Figure 8.26 Graph of y= F(x)=Inx. Note it is always increasing and concave
downward.

downward. Since In1=0, then the curve must pass through the point
(1,0). Thus, the shape of the curve must be as shown in Figure 8.26.

EXERCISES

In the following problems, find the relative maxima, relative minima, and
the inflection points. Also, find the sets of values for x for which the
functions are increasing, decreasing, concave upward, and concave down-
ward. Finally, use the information you have gathered from the two
derivatives to sketch the graphs of the functions.

1. y=F(x)="3x?+6x+1

2. y=F(x)=x3>-3x*+4

3. y=F(x)=2x>-3x*—=72x+10
4. y=F(x)=4x3+2x*—3x+5
S.y=F(x)=x-Inx

6. y=F(x)=e /2
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Integral calculus

As in our study of differential calculus, we shall consider only a few major
ideas of integral calculus. We hope to give the student an appreciation for
the concepts of antiderivative and integral as well as a few applications of
the concepts. In addition, we shall consider the “Fundamental theorem of
calculus,” which deals with the relationship between differential and in-
tegral calculus.

9.1 Antidifferentiation
We begin by considering the inverse process to that of differentiation,
called antidifferentiation.

Definition of antiderivative (or indefinite integral)

An antiderivative of a function F(x) is a function G (x) having the property
that G'(x)= F(x).

(Another name for antiderivative is an indefinite integral. We prefer the
name antiderivative because it describes the operation better.)

The symbol for an antiderivative of F(x) with respect to x is

fF(x)dx

read as “antiderivative of F(x) with respect to x.”
According to our definition, f F(x)dx=G(x) provided that G'(x)=
F(x).
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9.1 Antidifferentiation

Example
fo“dx = x>, since% (x%)=5x"
However, this answer is not unique, since f 5x*dx=x°+3 is also a true
statement, since
d s 4
——(x+3)=5x"
dx( 3)=5x
Also,
f Sxtde=x5+7
is true since
d, s 4
—(x’>+7)=5x"
e )=5x
In fact, the statement
[ S5x*dx=x+c¢

is true for any constant real number ¢, since the derivative of any constant
is 0, so that

%(x5 +c)=5x"

Therefore, we write f F(x)dx=G(x)+c, where ¢ is any arbitrary

constant real number, called the constant of antidifferentiation, provided
that G'(x)= F(x).

We shall defer any rules or formulas for antidifferentiation until the
next section in order that the reader be given the opportunity to really
work with the definition of antiderivative. Right now, we would prefer that
he make an educated guess at an antiderivative and then check his answer
by differentiating it.

Further examples

f(3x2+4x+5)dx=x3+2x2+5x+c,

since

%(x3+2x2+5x+c)=3x2+4x+5.
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9 Integral calculus

2.
f(-32t+ 160)dr =~ 1612+ 160t + ¢,
since
%(’16t2+160t+c)=’32t+160.
3.
f(6\/; —%)dx=f(6x1/2—4x‘3)dx=4x3/2+2x 2+,
X
since
—‘—1—(4x3/2+2x’2+c)=6x'/2—4x =6V — 2.
dx x3
4,
fgdx=2-lnx+c,
x
provided x >0, since
d _2
E(Z Inx+c¢)= <
5.

fez"dx= se¥ +c,
since

dix(%ezx + c) =2,

Some applications of antidifferentiation

Since antidifferentiation is just the inverse process to differentiation, the
applications of antidifferentiation are just the inverse to the applications of
differentiation.

Example 1

Find the equation y = F(x) for the curve passing through the point (1,3) if
the slope of this curve at any point on it is given by m=2x+1.

Since the slope of a curve at any point (x,y) is found by computing the
derivative of the equation for the curve, the equation for the curve is found
by computing the antiderivative of the slope function. Thus,

y=f(2x+1)dx=x2+x+c.

244



9.1 Antidifferentiation

Since the point (1,3) lies on the curve, (1,3) must satisfy the equation for
the curve. Thus, 3=12+1+c, or c=1. Thus the equation of the curve is

y=x*+x+1.

Example 2

Suppose that the marginal cost of producing the xth item is given by
M.C.=10/Vx and that the fixed cost is $10. Find the total cost function
C=F(x).

Since the derivative of the total cost function is the marginal cost
function, the antiderivative of the marginal cost function is the total cost
function. Thus,

10 _
C=f—dx= 10x~"2dx=20x"2+ k=20Vx +k,
Vx f
since
4 0x12 4 k)=10x"12= 10
dx Vx

Also, since the fixed cost is $10, then when x=0, C=10, so that k=10.
Therefore, the total cost function (in dollars) is

C=20Vx +10.

Example 3
If the velocity of a falling object at any time ¢ seconds after it first started
falling is given by v="32¢+ 160, and if the initial height is 1500 feet, then
find the formula for the height at any time ¢.

Since the derivative of the height formula yields the velocity formula,
then the antiderivative of the velocity formula will yield the height for-
mula. Thus,

s=f(‘32t+16O)dt=‘16t2+160t+c.

Also, since the initial height is 1500 feet, then when =0, s=1500. Putting
these values into the formula for s yields ¢ = 1500. Thus, the height formula
is

s="16¢2+160¢ + 1500.

Example 4

The instantaneous rate of change in a quantity P per unit change in a
quantity g is given by dP/dg=10e?+5. If P=20 when ¢=0, find the
function relating P to q.
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9 Integral calculus

Since the derivative of the function P= F(q) yields the instantaneous
rate of change function dP/dg, then the antiderivative of the instanta-
neous rate of change function will yield the original function. Thus,

P=f(10e"+5)dq=10e"+5q+c,
since
i q = q
dq(lOe +5g+c)=10e?+5.

Also, since when P=20, ¢=0, then 20=10e’+5-0+c¢, so that c=10.
Thus, the formula for P in terms of ¢ is

P=10e7+5q+10.

EXERCISES

1. Use the definition of antiderivative to find the following antiderivatives:
6
6x2—8x +2)d. —_—
(a)f(x x+2)dx (d)f\/;dx
3, .2 4

(b) f(x +x2+ x+1)dx © f;dx

©) f(x3/2—2x “3dx ) fe‘s"dx
2. Find the function whose derivative is 4x3+6x, if it passes through the point

(1,5).

3. If the marginal cost of producing x items is given by M.C.=4x —200, and if the
fixed cost is $100, then find the total cost function.

4. An object is moving in a straight line in such a way the its velocity at any time ¢
is given by v=6¢2—24¢+12. Find its distance from the starting point at any
time 7.

5. An object dropped from a height of 500 feet has for its velocity at any time ¢ the
function v="20-32¢. Find a formula for its height at any time ¢.

6. The slope of the tangent line to a curve at any point P(x,y) is given by m=3e3*,
This curve passes through the origin. Find the equation for the curve.

7. The instantaneous rate of change of the area of a certain geometric figure is
given by dA /dx =2mx. Find the formula for 4. What kind of a geometric figure
is this?

9.2 Some formulas for antidifferentiation

Now that the reader has some feeling for the concept of the antiderivative,
we present some formulas for antiderivatives. All of these formulas can be
proved by differentiating the answers according to the definition of antide-
rivative.'

These rules don’t cover all cases. This is just a sample of a table of integral formulas. In
general, antidifferentiation is a more difficult process than differentiation.
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9.2 Some formulas for antidifferentiation

Rule 1

f kdx=kx+c, where k is a constant real number.

Rule 2
n __1_ n+1 : -
fx dx—n+1x +¢, provided n#"1.
Rule 3
-1 1 .
fx dx=f—dx=lnx+c, provided x >0.
x
Rule 4

fk-F(x) dx=k- fF(x) dx, where k is a constant.

Rule 5
f(F(x)+ G(x))dx=fF(x)dx+fG(x)dx
and
f(F(x)—-G(x))dx=fF(x)dx—fG(x)dx.
Rule 6

f e**dx= %e"" +¢, where k is a constant real number.

Examples

f(x4+6x2+9)dx=fx4dx+6fx2dx+f9dx
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9 Integral calculus

2.
6 _ 172 )
f9\/; += dx—f(9x +6x %) dx
x
=9fx‘/2dx+6fx'2dx
—9.1 3 | S
—9'7)( +6'Tlx +c
2
—6x2-8 4 ¢
x
3.

f(e'z"—%)dx=fe'2"dx—f%dx

ize‘z"—lnx+c=5e'2"—lnx+c.

Antidifferentiation by the method of substitution

If one has a great need to antidifferentiate frequently, then he can
purchase a book of antiderivative (integral) formulas. In order to use such
a table, one would have to know the method of substitution. We would like
to illustrate this method. Therefore, we present four more antidifferentia-
tion formulas. In the following rules, assume that u is a differentiable
function of x.

Rule 7
n — 1 n+1 5 -
fu du P +c¢, provided ns"1.
Rule 8
f 1 1 .
u du=f—du=1nu+c, provided u >0.
u
Rule 9
fe“du=e“+c.
Rule 10

flnudu=u-1nu~u+c.
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9.2 Some formulas for antidifferentiation

Examples

f(3x+ 1)°dx.

Let u=3x+1. Then, du/dx =3, so that du=3-dx, or dx =3 du. Making
these substitutions yields the integral

5 —_ ___
3f du= g ¥ bt c= (3x+1) +c.

2.
fx\/m dx.
Let u=x?+1. Then, du/dx=2x, so that xdx=jdu. Making these
substitutions yields the integral
%f\/ﬂ du= %fu‘/zdu= % %u3/2+c= %u3/2+c= %(x2+ 1)’ +c.
3.

f2x2x+1 ax.

Let u=2x?+1. Then, du/dx=4x, so that xdx=;du. Making these
substitutions yields the integral

du 1
f 4f du= —lnu+c——ln(2x +1)+ec.

fx~e_x2/2dx.

Let u="*/2, Then, du/dx = — x, or xdx = — du. Making these substitu-
tions yields the integral

—fe“du=—e"+c=—e“"2/2+c.

fln(Sx)dx.

Let u=>5x. Then, du/dx=5, or dx=+du. Making these substitutions
yields

1 =L (winu—
gflnudu— 5(u Inu—u)+c
= —;—(Sx- In(5x)—5x)+c¢
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9 Integral calculus

A program for antidifferentiating polynomials (optional)

In general, it is difficult to write programs for finding antiderivatives of
functions. However, it is possible to write programs to find antiderivatives
of specific cases of functions. As an illustration of this, we present the
following program for finding antiderivatives of polynomials.

Program 9.1 ANTIDIFF
V POLY « C ANTIDIFF COEFS; N; EXPS

[1] N<p COEFS N is the number of coefficients.

[2) EXPS<1+N-N The exponents for the antiderivative.

[8] POLY(COEFS+ EXPS),C POLY is the vector of coefficients
\% of the antiderivative. C is the con-

stant of antidifferentiation.

Example 1

Find f (4x3+6x%*—2x +5)dx, where the constant of antidifferentiation is
3.

3 ANTIDIFF 4 6 2 5§
12153

Thus, the antiderivative polynomial is x*+2x3— x2+5x +3.

Example 2
Find f (x*+6x2+9)dx, where ¢ is 5.

5 ANTIDIFF 1 0 6 0 9 Note we must account for 0
202095 coefficients in COEFS also.
Thus, we get the antiderivative

02x3+0x*+2x3+0x2+9x +5=02x>+2x3+9x +5.

More applications of antidifferentiation

1. Suppose that the marginal revenue from the sale of x items is given by
M.R.=1/(x+1). Find the revenue function.
Since marginal revenue is the derivative of revenue, then revenue is
the antiderivative of marginal revenue. Thus,

R=fﬁdx.
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9.2 Some formulas for antidifferentiation

Let u=x+1. Then, du/dx=1, or du=dx. Thus,
= l = ]
R—fudu Inu+c=In(x+1)+c.

Since, if you sell no items, you receive no revenue, then 0=Inl+c=0+
¢, or c=0. Thus,

R=In(x+1).

. Suppose that the slope of the tangent line to some unknown curve at
any point P(x,y) is given by m=23x%x>+3)’. Suppose also that the
curve passes through the point (1,6). Find the equation of the curve.

y=f3x2(x3+3)3dx.
Let u=x>+3. Then, du/dx=3x?% or du=3x*dx. Therefore,
= (wWdu=1u =1y
y fu du i +¢, or y 4(x +3) +c.

However, since (1,6) lies on the curve, then 6=1(1+3)*+c=64+c.
Thus, c="58 and the equation of the curve is

y=7(+3)*=58.

. A projectile is fired vertically upward from a height of 5 feet with a

muzzle velocity of 960 feet/second.

(a) Find the function for the velocity at the end of the rth second. Due
to gravity, the acceleration is 4 =32 feet/second. Since accelera-
tion is the derivative of velocity, then velocity is the antiderivative
of acceleration. Therefore,

v=f’32dt=’32t+c.

The muzzle velocity is the velocity at r=0. So, ¢=960. Thus,
v="32¢+960.
(b) Find the function for the height after  seconds. Since velocity is the
derivative of height, then height is the antiderivative of velocity.
Thus,

s=f(“32t+960)dt=‘16t2+960t+ k.

Since the initial height is 5 feet, then k=5. Thus,
s="1612+960¢ +5.
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9 Integral calculus

EXERCISES

1. Use the rules of antidifferentiation to find the following:
(a) f (8x% = 6x +2)dx ) f 14x(2x2+ 1)°dx

(b) [+ x>+ x © fe'“"--)l;dx
© [ (4e2"—%)dx () [in2xdx
) f(\—é——%)dx () [ ey
(@ [3Vax+Tax () [BXax

2. An object is moving in a straight line in such a way that its acceleration after ¢
seconds is given by 4 =21—4.
(a) Find the velocity after ¢ seconds if the initial velocity is 5 feet/second.
(b) Find the position function if the initial position is s =0.

3. The slope of the tangent line to an unknown curve is given by m=1/(2x + 1)
and the curve passes through the origin. Find the equation of the curve.

4. The marginal cost of the xth item is given by M.C.=10¢%%*, and the initial cost
is $100. Find the total cost function.

9.3 Area under a curve

We now consider a geometry problem, the solution of which will lead us to
the definition and geometric interpretation of the definite integral. First,
however, we need to discuss the use of the summation symbol X.

The summation symbol, 2

The symbol ¥ is frequently used in mathematics when working with a sum
of a great many numbers. Its use is described as follows:

i F(iy=F(a)+ F(a+1)+ F(a+2)+ F(a+3)+...+ F(b),

where a and b are integers.

Examples

10
S i=14+243+4+5+6+7+8+9+10=55.

i=1

S (242i)=(0+2.0)+ (1242- 1)+ (22+2-2) +(3>+2:3) + (4*+2-4)
i=0

{

=0+3+8+15+24=50.
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9.3 Area under a curve

100
> i2=12422+32+ ...+ 100%

i=1

S F(x)= F(x,)+ F(x))+ F(x;)+ ... + F(X,).

i=1

Area under a curve

Let y = F(x) be a function which is always >0 for all x in the interval
a< x < b, so that its graph lies entirely above the x axis in that interval.
We want to find the area under the curve of y = F(x), above the x axis,
and between the vertical lines x =a and x = b (see Figure 9.1).

y=F(x)

X axis
a b

Figure 9.1 Area under a curve.

Let us consider the following scheme for approximating an area such as
this:

First divide the interval a<x<b into n subintervals each of width
Ax=(b—a)/n. Call the points of subdivision xo=a,x,=a+Ax,x,=a+2:
Ax,...,x;=a+i-Ax,...,x,=a+n-Ax=b. At each of these points of subdi-
vision, erect a perpendicular to the x axis and extend it upward until it
meets the curve y = F(x). In this way, we have sliced the area under the
curve into n slices of area (see Figure 9.2). We now need a way of
estimating the area of each slice. The area of the typical ith slice can be
approximated by the area of the rectangle of width Ax and height F(x,).
The sum S=237_,F(x;)-Ax, of areas of these rectangles is an approxima-
tion to the area under the curve.

Figure 9.2 The area as a sum of rectangles.
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9 Integral calculus

Figure 9.3 Increasing n makes the approximation better.

In order to make this approximation more accurate, take n larger,
thereby making more rectangles of smaller width. As n gets larger and
larger, S=37_,F(x;)-Ax gets closer and closer to the actual area under the
curve (see Figure 9.3). The actual area is symbolized by

lim > F(x) Ax.
n—oo i=1

Example

2

Approximate the area under the curve y=F(x)=x* over the interval

1< x <2 (see Figure 9.4)
Let n=5. Then,

ax=b=2_2"1_¢,
n 5

Also, x;=a+Ax=1+4+02=12,x,=1+42:02=14,x;=14+3-02=1.6,x,=

Figure 9.4 Approximation of the area under the curve y = F(x)= x2.
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9.3 Area under a curve

1+4-02=1.8,xs=>b=2. The area is approximated by the sum
5
S= Y F(x;)-Ax
i=1
=F(x,)-Ax+ F(x,)-Ax+ F(x3)-Ax+ F(x,)-Ax+ F(xs) Ax
=F(1.2)-02+ F(1.4)-0.2+ F(1.6)-0.2+ F(1.8)-0.2+ F(2)-0.2
=(1.44+1.96+2.56+3.24+4.00)-0.2=(13.20)-0.2=2.64.

The actual area (found by a more sophisticated technique to be dis-
cussed in Section 9.5) is 7/3=2.33333. If one were to repeat the above
process with n =100, one would get approximately 2.358. If one did it with
n=1000, one would get approximately 2.336. Of course, if n=1000, the
process would be far too tedious to do by hand. Therefore, we shall use the
following program AREA to accomplish the process described above with
n=1000.

Program 9.2 AREA
V SUM < A AREA B; N; WIDTH; HEIGHTS
Find the area from A4 to B.

[11 N<1000 Use 1000 rectangles. The reader may
want to experiment with other values
of N.

[2) WIDTH«(B—A)+N The width of each rectangle.

[3] HEIGHTS <« FN(A+ WIDTHXN)

A vector of heights of rectangles
using right-hand endpoints of each

subinterval.
[4] SUM« + /WIDTHX HEIGHTS The sum of the areas of the rectan-
gles.
v
Examples

1. Find the area under the curve y = F(x)=x? over the interval 1 < x <2.

V FN[1]
[1] YeXx2V We need to alter FN to fit our func-
tion.
1 AREA 2
2.3358335
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9 Integral calculus

Figure 9.5 The shaded area is approximately 0.694 square units.

2. Find the approximate area under the curve y=F(x)=1/x in the
interval 1< x <2 (see Figure 9.5).

V FN[1]

[11 Ye1+XV Change FN to the new function.
1 AREA 2

.6938972431

3. Approximate the area under the curve y=F(x)=¢ * from x=0 to
x=1 (see Figure 9.6).

V FN[1]

[11  Yex(—Xx2)V APL fory=e~*.
0 AREA 1

7475080112

Figure 9.6 The shaded area is about 0.7475 square units.

4. Approximate the area under y = F(x)=V 1+ x? in the interval from 1
to 5 (see Figure 9.7).

V FN[1]
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9.4 The definite integral

Figure 9.7 The shaded area is about 12.769 square units.

Ye(1+X*2)+.5V
1 AREA 5

12.76900121

EXERCISES

1.

5.

Use pencil and paper to do the following:

(a) Approximate the area under the curve y=F(x)=x>+2x in the interval
0< x <2. (Use n=4 rectangles.)

(b) Estimate the area under the curve y=F(x)=3x?+2x+1 in the interval
1 < x<2. (Use n=5 rectangles.)

(c) Estimate the area under y=F(x)= — x*+2x+3 over the interval "1 < x <
3. (Use n=4 rectangles.)

. Use the program AREA, which uses 1000 rectangles, to get better approxima-

tions to the areas in Exercise 1.

. (a) Sketch the graph of the function y = F(x)=x2—2x—3 over the interval

“I<x<3.
(b) Evaluate 1 AREA 3 for this function.
(c) Compare your answer in Part (b) with the answer to Exercise 2, Part (c).
(d) Can you explain the sign of this answer?

. (a) Sketch the curve of y = F(x)=4x> in the interval "2 < x <2.

(b) Evaluate 2 AREA 2 for this function.
(c) Can you explain the reason for this answer?

Write a program to evaluate 3%,

9.4 The definite integral

Definition of the definite integral

The definite integral of a function F(x) from a to b, symbolized by
b
f F(x)dx, is defined as follows:

b n
f F(x)dx= ”li’rglo > F(x) Ax,
a i=1
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where the interval a < x < b is divided into »n subintervals each of width
Ax=(b—a)/n and x,=a+i-Ax fori=1,2,...,n.

This is precisely the same quantity that we used in the previous section
to compute the area under a curve y = F(x) over the interval a< x <b.
Thus, if y=F(x) is positive for all x in the interval a<x<b, then

b
f F(x)dx yields the area under the curve of y = F(x), above the x axis,

between the vertical lines x=a and x = b. Also, since there was nothing in
the program AREA that depended on F(x) being positive in the interval
a< x<b, then we can use the program AREA to compute definite in-
tegrals. The following program does just this. We will then use this
program INTEGRAL to approximate definite integrals.

Program 9.3 INTEGRAL

V I<A INTEGRAL B Note that we merely change the
name of the program AREA to IN-
[11 I<AAREABV TEGRAL.

Examples
2
1. Approximate f x2dx.
1

V FN[1]
[1] YeX*2V

1 INTEGRAL 2
2.3358335

2
2. Estimate [ (1/x)dx.
1

V FN[1]
[1] Ye1+XV

1 INTEGRAL 2
.6938972431

1 2
3. Approximate f e “dx.
0
V FN[1]
[1] Yex(—X+2)V
0 INTEGRAL 1
.74750800112
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9.4 The definite integral

In each of the above examples, we have computed the areas under the
curves. This is because each of the curves lies completely on or above the x
axis over the prescribed intervals. One might wonder what the geometric
significance is of the definite integral if the function does not have its
graph lying entirely on or above the x axis over the designated interval.

More on the geometric interpretation of the definite integral

To illustrate the complete picture of the geometric interpretation of the
definite integral, let us consider the function of Example 2 in Section 6.5:
y=F(x)=x*—x>—7x%+ x +6 (see Figure 9.8).

V FN[1]
[1] Y (X*4)+(—X+3)+(TXX+2)+X+6V
Altering FN to fit this function.

“1 INTEGRAL 1
7.7333326667
Since the function is positive for all x in the interval ~1 < x <1, then as
previously stated, f F(x)dx yields the area under the curve of y = F(x),

above the x axis, between x="1 and x=1. This area is approximately
7.73.

11+
12+

Figure 9.8 Note that the graph of this function is sometimes above and sometimes
below the x axis.
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-1 3
Let us now use INTEGRAL to approximate f F(x)dx and f F(x)dx.
) 1

Notice that in the intervals 2<x< "1 and 1< x<3, the function is
negative for all x. Its graph lies entirely below the x axis in these intervals.

~2 INTEGRAL 1
~1.883331417

1 INTEGRAL 3
~16.266664933

It thus appears that if the function is always negative in an interval
a< x<b, so that its graph lies below the x axis in this interval, then

b
f F(x)dx yields a negative answer. This answer represents the negative of

a .
the area between the curve of y = F(x), the x axis, and the lines x=a and
x=b. 3
Let us now consider the integral f F(x)dx. Notice that in the interval
-2

~2< x <3, the function is sometimes positive and sometimes negative, so
that its graph is sometimes above the x axis and sometimes below it.

"2 INTEGRAL 3
~10.41655208

If a function is sometimes negative and sometimes positive in an

b
interval a < x <b, then f F(x)dx yields the net area above the x axis

between the lines x =a and x=b. If the result is a negative number, as in
this example, this indicates that there is more area under the x axis than
above it. As a demonstration of the validity of these statements, let us add
the integrals above.

("2 INTEGRAL ~1)+ ("1 INTEGRAL 1)+ (1 INTEGRAL 3)
~10.41655208

To get the total area between a curve and the x axis between x =a and
x=b, we need to find the x intercepts and add the absolute values of the
integrals between these x intercepts. Thus, the total area between the graph
of the above function y = F(x), the x axis, and the lines x="2 and x=3 is
approximated by the following:

(I"2 INTEGRAL ~1)+(|~1 INTEGRAL 1)+(|1 INTEGRAL 3)
25.88331341

Areas between two curves

If a curve y=G(x) is above a curve y=F(x) for all x in the interval
a< x < b (see Figure 9.9), then the total area between these curves and the
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9.4 The definite integral

Figure 9.9 Area between two curves.

lines x =a and x =b is found by evaluating

fb G(x) dx—fb F(x) dx=fb(G(x)——F(x))dx.
4 Upper 2 Lower a
curve curve
This formula will work whether both ‘curves are above the x axis, both