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Preface

In introducing his essays on the study and understanding of nature and evo-
lution, biologist Stephen J. Gould writes:

[Wle acquire a surprising source of rich and apparently limitless
novelty from the primary documents of great thinkers throughout our
history. But why should any nuggets, or even flakes, be left for intel-
lectual miners in such terrain? Hasn’t the Origin of Species been read
untold millions of times? Hasn’t every paragraph been subjected to
overt scholarly scrutiny and exegesis?

Let me share a secret rooted in general human foibles. ... Very few
people, including authors willing to commit to paper, ever really read
primary sources—certainly not in necessary depth and completion,
and often not at all. ...

I can attest that all major documents of science remain chock-
full of distinctive and illuminating novelty, if only people will study
them—in full and in the original editions. Why would anyone not
yearn to read these works; not hunger for the opportunity? [99, p. 6f]

It is in the spirit of Gould’s insights on an approach to science based on pri-
mary texts that we offer the present book of annotated mathematical sources,
from which our undergraduate students have been learning for more than
a decade. Although teaching and learning with primary historical sources
require a commitment of study, the investment yields the rewards of a deeper
understanding of the subject, an appreciation of its details, and a glimpse into
the direction research has taken.

Our students read sequences of primary sources. These provide authentic
motivation for seminal problems, and trace the creation of new concepts and
techniques for their solution through the centuries. The broader mathematical
and social context provided by primary historical sources allows technical
elements to appear in their proper place, understood and appreciated as by
the creators themselves. Students will even find themselves asking many of the
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same questions the pioneers did and answering these for themselves within the
historical path of human discovery, thereby engendering a sense of adventure
and immediacy, along with deeper motivation and a real grasp of the scope
of each subject.

Primary sources also inject students directly into the process of mathe-
matical research. They become active participants at the cutting edge of their
own knowledge, experiencing actual research through grappling with the writ-
ings of great thinkers of the past. This creative immersion into the challenges
of the past helps students better understand the problems of today. Finally,
students gain a more profound technical comprehension, since complexity is
introduced gradually and naturally.

Here, we present four independent chapters, each a story anchored around
a sequence of selected primary sources showcasing a masterpiece of mathe-
matical achievement. Our stories in brief are these:

1. The dynamic interplay between the discrete and continuous in mathemat-
ics stretches from Zeno’s paradoxes and Pythagorean geometric number
theory to the present, aiming to quantify exactly how separated, distinct,
and finite objects blend with connected, homogeneous, and infinite spaces.
Today, the bridge between the continuous and discrete is more important
than ever, with digital technology increasingly emulating continuous phe-
nomena.

2. A similarly ancient history underlies the development of algorithms for
finding numerical solutions of equations. This evolution has gone hand in
hand with multiple expansions of our notion of number itself, and today,
questions of algorithmic robustness and rates of convergence are vital for
modern science, exemplified in the appearance of fractal phenomena.

3. In contrast, our contemporary understanding of curvature began more
recently, relying on the emerging calculus of the seventeenth century. Im-
petus for comprehending curvature has ranged from attempts to develop
accurate maps and clocks for navigating the world to our present efforts
to understand the geometric nature and dimensionality, large and small,
of the physical universe we live in.

4. Finally, number theory has been driven over several centuries by the mys-
terious yet crucial nature of prime numbers. Their behavior and patterns
remain ever enticing and mysterious, yet they obey a few beautiful fun-
damental laws. Recently, prime numbers have emerged into a broader
limelight, their elusive properties increasingly important to the security
of modern electronic communication.

Our goal is to tell these stories by guiding readers through the words of the
masters themselves.

The present work is similar in format to our earlier book Mathemati-
cal Ezxpeditions [150], which chronicled the development of five mathematical
topics at the beginning undergraduate level. However, the current endeavor
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encompasses different topics and at a higher level, and is for advanced un-
dergraduates who know at least a year of calculus and have some maturity
with mathematics at the upper-division level. The book has emerged from a
course at New Mexico State University taken by juniors and seniors majoring
in mathematics, secondary education, engineering, and the sciences. While
our focus is on the mathematics itself through the words of the masters, the
richly historical nature of the presentation has encouraged professors at some
colleges to use these materials for teaching the history of mathematics as well.

The book is quite flexible. The chapters are entirely independent of each
other, except for minor biographical cross-referencing, so they can be read in
any combination and order, or used individually to supplement another course.
Moreover, the introduction to each chapter is an extensive free-standing
summary of the relevant mathematics and its history. Within the chap-
ter introduction, the reader is referred to the subsequent sections of anno-
tated original sources. The individual sections can be read independently as
well, preferably in conjunction with the introduction. In our own one-semester
course, we usually focus on just one or two chapters; there is plenty of material
in the book for at least two semesters. In the classroom, we often work through
the introduction together with students, jumping to the later sections as the
sources are mentioned, asking students to read and write their own reactions
and questions in advance of classroom exegesis of the primary source. The
annotation after each source is there to help with sticky points, but is used
sparingly in class. We have included many exercises throughout based on the
original sources, and we provide extensive references for further reading, as
well as some internet resources [144].

During the past fifteen years, discussion and use of history in teaching
mathematics have expanded significantly, including the approach we take
based on primary sources [30, 52, 71, 122, 132, 145, 146, 147, 160, 187, 215,
233]. And there are now increasingly many resource materials available to
support the use of history [40, 53, 144, 150, 234]. Our own approach is to have
students read primary sources directly, keeping the original notation as much
as possible, translating only the words into English. We strongly encourage
the reader to go beyond this book to explore the rich and rewarding world of
primary sources. There are substantial collections of original sources available
in English, which we have endeavored to compile in a Web bibliography for us-
ing history in teaching mathematics [144]. Collected works of mathematicians
are also a great resource [196].

This book has been ten years in the making, and we are grateful for the help
of many people and institutions. Directors Tom Hoeksema and Bill Eamon
of our university’s Honors College provided extensive support and encourage-
ment for the course from which this book grew. Our department heads Carol
Walker and Doug Kurtz believed enough in this approach to help us make it
a permanent part of our university curriculum. A grant from the Division of
Undergraduate Education at the National Science Foundation (NSF) provided
extensive resources, including assistance and apprentice teaching by graduate
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student Karen Schlauch. Our outside NSF advisory consultants, John
McCleary and Victor Katz, generously provided expert and extremely helpful
advice, including diligent reading and editorial suggestions on several drafts.
We also owe great thanks to the help of our libraries, particularly interlibrary
loan.

Others have also provided invaluable special assistance and encourage-
ment. Our colleague Mai Gehrke has taught the course with drafts of two
chapters, and we are most grateful for her helpful suggestions. Harold (Ed)
Edwards read and gave extremely valuable suggestions for our “bridge” chap-
ter, as did Manfred Kolster and Jens Funke for the chapter on primes. We
received assistance with French translation from Mai Gehrke, and with Latin
from Danny Otero, Joe Ball, Jens Funke, and Marty Flashman, to whom we
are very grateful. Keith Dennis always tells us how to find things, from sources
to portraits, and we appreciate Andrea Bréard’s help with Chinese sources.
The special and generous technical assistance with file recovery offered by Ron
Logan in a time of crisis went way beyond the call of duty. We also offer great
thanks to Sterling Trantham for superb photography.

John Fauvel’s tremendous enthusiasm, encouragement, and generous de-
tailed suggestions over the years will never be forgotten. We are sad he is no
longer alive to continue to hold us to the highest standards; we must aspire
to them on our own and can only hope that the final form of this book would
meet with his approval.

The greatest credit for this book must go to our students. Without them,
it would surely never have been written. We have used many versions of the
manuscript with students at New Mexico State University, as well as at Van-
derbilt University, and Hélene Barcelo has taught with some of our materials
at Arizona State University. Our students’ enthusiasm and accomplishments
have convinced us that teaching with primary sources is invaluable to them,
and their feedback greatly improved the book.

We are ever grateful to Ina Lindemann, from Springer, who showed great
interest in our project, supported us with just the right mixture of patience
and prodding, and whose enthusiasm provided much encouragement. And we
thank David Kramer for very thoughtful copyediting, and Mark Spencer for
his interest and shepherding us through final production of the book.

The first author appreciates that his wife, Patricia, provided a peace-
ful and productive setting in which to write, and for relaxation, planned
lively backpacking trips to England and the canyons of southern Utah. The
second author thanks his wife, Maria Elena, for her unwavering love and
support while this work was done, even though it led to many canceled
weekend motorcycle rides together. The third author would like to thank
the NSF for its generous support from both the Division of Undergraduate
Education and the Division of Mathematical Sciences, permitting a fruitful
excursion into differential geometry that united the author’s research and
teaching. The fourth author thanks his wife, Pat Penfield, for her enduring
love, encouragement, and support for this endeavor; for her excellent ideas and
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incisive critiques of several chapter drafts; and for showing us Stephen Jay
Gould’s essay quoted above. And he remembers his parents, Daphne and Ted,
for their constant love, support, and inspirational role models for integrating
history with science.

Las Cruces, New Mexico Arthur Knoebel
April 2006 Reinhard Laubenbacher
Jerry Lodder

David Pengelley
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1

The Bridge Between Continuous and Discrete

1.1 Introduction

In the early 1730s, Leonhard Euler (1707-1783) astonished his contemporaries
by solving one of the most burning mathematical puzzles of his era: to find
the exact sum of the infinite series % + % + % + 1—16 + % + -+, whose terms are
the reciprocal squares of the natural numbers. This dramatic success began
his rise to dominance over much of eighteenth-century mathematics. In the
process of solving this then famous problem, Euler invented a formula that
simultaneously completed another great quest: the two-thousand-year search
for closed expressions for sums of numerical powers. We shall see how Fuler’s
success with both these problems created a bridge connecting continuous and
discrete summations.

Sums for geometric series, such as % + % + i + % + .-+ = 2, had been
known since antiquity. But mathematicians of the late seventeenth century
were captivated by the computation of the sum of a series with a completely
different type of pattern to its terms, one that was far from geometric. In the
late 1660s and early 1670s, Isaac Newton (1642-1727) and James Gregory
(1638-1675) each deduced the power series for the arctangent,' arctant =

— % + % — -+, which produces, when evaluated at ¢ = 1, the sum 7 for the
alternating series of reciprocal odd numbers 1 — % + % — % + % — -+ [133, pp.
492-494], [135, pp. 436-439]. And in 1674, Gottfried Wilhelm Leibniz (1646—
1716), one of the creators of the differential and integral calculus, used his
new calculus of infinitesimal differentials and their summation (what we now
call integration) to obtain the same value, 7, for this sum by analyzing the
quadrature, i.e., the area, of a quarter of a unit circle [133, pp. 524-527].

Leibniz and the Bernoulli brothers Jakob (1654-1705) and Johann (1667—
1748), from Basel, were tantalized by this utterly unexpected connection

! This power series had also been discovered in southern India around two hundred
years earlier, where it was likely derived for astronomical purposes, and written
in verse [125], [133, pp. 494-496].
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between the special number 7 from geometry and the sum of such a sim-
ple and seemingly unrelated series as the alternating reciprocal odd numbers.
What could the connection be? They began considering similar series, and it
is not surprising that they came to view the sum of the reciprocal squares,
first mentioned in 1650 by Pietro Mengoli (1626-1686), as a challenge. De-
spite hard work on the problem, success eluded the Bernoullis for decades, and
Jakob wrote, “If someone should succeed in finding what till now withstood
our efforts and communicate it to us, we shall be much obliged to him” [258,
p. 345]. The puzzle was so prominent that it became known as the “Basel
problem.”

Around 1730, Euler, a student of Johann Bernoulli’s, took a completely
fresh approach to the Basel problem by placing it in a broader context. He
decided to explore the general discrete summation > ., f(¢) of the values of
an arbitrary function f(x) at a sequence of natural numbers, where n may be
either finite or infinite. The Basel problem, to find > -, %2, fits into this new
context, since the sum can be written as }_:°; g(i) for the function g(z) = .
Euler’s broader approach also encompassed an age-old question, that of finding
formulas for sums of numerical powers, as we will now explain.

By the sixth century B.C.E., the Pythagoreans already knew how to find
a sum of consecutive natural numbers, which we write as

" nhm+1) n n
14+2+3+--- = LA S Nt A SR
+24+3+-+n ;:12 5 7+ 5

Archimedes of Syracuse (c. 287-212 B.C.E.), the greatest mathematician of
antiquity, also discovered how to calculate a sum of squares. Translated into
contemporary symbolism, his work shows that

nn+1)2n+1) n* n?
6 R

n

P+22+38+. . 4nP=) i*= =
Throughout the next two millennia, the search for general formulas for
Z:-L:l i*, a sum of consecutive kth powers for any fixed natural number k, be-
came a recurring theme of study, primarily because such sums could be used
to find areas and volumes. All these previous efforts also fit within Euler’s gen-
eral context, since they are simply > | fi(i) for the functions fi(z) = z*.
While the function g for the Basel problem is very different from the functions
fr that produce sums of powers, Euler’s bold vision was to create a general
approach to any sum of function values at consecutive natural numbers.

Euler’s aim was to use calculus to relate the discrete summation Y, f(i)
(with n possibly infinity) to a continuous phenomenon, the antiderivative, i.e.,
the integral fon f(z)dz. We know that these two provide first approximations
to each other, since the sum can be interpreted as the total area of rectangles
with tops forming a staircase along the curve y = f (), while the antideriva-
tive, appropriately evaluated between limits, can be interpreted as the area
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Fig. 1.1. Comparing a discrete sum with a continuous area.

under the curve itself (Figure 1.1). It is precisely the delicate difference, in
both numerical value and in concept, between such discrete sums and contin-
uous areas that mathematicians had in fact been exploring for so long when
trying to find formulas for sums of powers.

For such powers the discrete sum is

D Oliy =) i =18 42k 438 4 pnh
i=1

i=1

while the continuous quantity for comparison is

n n X nk-i—l
dx = doe = .
/0 Ji(z)dzx /0 vhde =4

Notice that the latter provides the first term in each of the polynomial sum-
mation formulas displayed above from the Pythagoreans and Archimedes. Un-
derstanding the dynamic between discrete and continuous amounts to quanti-
fying exactly how separated, distinct, and finite objects blend with connected,
homogeneous, and infinite spaces. Scholars as far back as Zeno, in classical
Greece, grappled with this tension. Out of the fog of using discrete sums to
approximate areas emerged the discovery of the differential and integral calcu-
lus in the seventeenth century. We shall see that Euler then turned the tables
around in the eighteenth century by applying calculus to solve problems of
the discrete.

Euler reconciled the difference between a discrete sum and a continuous
integral via a striking formula using a corresponding antiderivative fon f(z)dz
as the first approximation to the summation Y., f(¢), with additional terms
utilizing the iterated derivatives of f to make the necessary adjustments from
continuous to discrete. Today we call this the Euler—Maclaurin summation
formula. Euler applied it to obtain incredibly accurate approximations to the
sum of the reciprocal squares, for solving the Basel problem, and these suc-
cesses likely enabled him to guess that the infinite sum was exactly %2. Armed
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with this guess, it was not long before he found a proof, and announced a so-
lution of the Basel problem to the mathematical world.

Euler’s correspondents were greatly impressed. Johann Bernoulli wrote,
“And so is satisfied the burning desire of my brother [Jakob], who, realizing
that the investigation of the sum was more difficult than anyone would have
thought, openly confessed that all his zeal had been mocked. If only my brother
were alive now” [258, p. 345].

Euler also used his summation formula to provide closure to the long
search for closed formulas for sums of powers. By now this thread had wound
its way from classical Greek mathematics through the medieval Indian and
Islamic worlds and into the Renaissance. Finally, during the Enlightenment,
Jakob Bernoulli discovered that the problem revealed a special sequence of
numbers, today called the Bernoulli numbers. These numbers became a key
feature of Euler’s summation formula and of modern mathematics, since, as
we shall soon see, they capture the essence of converting between the con-
tinuous and the discrete. We will trace this thread through original sources
from Archimedes to Euler, ending with Euler’s exposition of how his general
summation formula reveals formulas for sums of powers as well as a way to
tackle the Basel problem. That Euler used his summation formula to resolve
these two seemingly very different problems is a fine illustration of how gen-
eralization and abstraction can lead to the combined solution of seemingly
independent problems.

OI o
0—0O
o—0—0

o—0—0—0
o—0—0—0—0

Fig. 1.2. Square, rectangular, and triangular numbers.

We return now to the very beginning of our story, which revolves around
the relationship between areas and formulas for discrete sums of powers, such
as the closed formulas above for the sums of the first n natural numbers and
the first n squares. For the natural numbers it is not hard both to discover and
to verify the formula oneself, but the Pythagoreans would not have written it
as we do. For them, number was the substance of all things. Numbers were
probably first represented by dots in the sand, or pebbles. From this, patterns
in planar configurations of dots began to be recognized, and these were related
to areas of planar regions, as in Figure 1.2 [18, p. 54f], [113], [133, p. 48ff],
[135, p. 28ff], [258, p. 74ff].
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In the figure, the arrangement and number of dots in each configuration
suggests general closed formulas for various types of sums, illustrated by the
three types 14+3+5+74+9 =52, 24+4+6+8+10=5-6,and 1+2+3+4+5 =
(5-6) /2 = 15. The reader may easily conjecture and prove general summation
formulas with n terms for each of these.

For the third type, the total number of dots in the triangular pattern is
clearly half of that in the rectangular pattern, which can be verified in general
either algebraically, or geometrically from Figure 1.2. Thus we have deduced
the closed Pythagorean formula above for the sum of natural numbers,? and
we also see why the numbers w (i.e., 1, 3, 6, 10, 15, ...) deserve to be
called triangular numbers. Notice that each of the three types of sums of dots
has for its terms an arithmetic progression, i.e., a sequence of numbers with a
fixed difference between each term and its successor. The first and third types
always begin with the number one; the Pythagoreans realized that such sums
produce polygonal numbers, i.e., those with dot patterns modeled on triangles,
squares, pentagons, etc. (Exercises 1.1, 1.2).

The closed formula for a sum of squares, which we pulled from thin air
earlier, is implicit in the work of Archimedes. At first sight it may seem un-
expected that such a discrete sum should even have a closed formula. Once
guessed, though, one can easily verify it by mathematical induction (Exer-
cise 1.3). The formula arises in two of Archimedes’ books [7]. In Conoids and
Spheroids Archimedes develops and uses it as a tool for finding volumes of
paraboloids, ellipsoids, and hyperboloids of revolution. In Spirals he applies
it to obtain a remarkable result on the area enclosed by a spiral, stated thus
in his preface:

If a straight line of which one extremity remains fixed be made to
revolve at a uniform rate in a plane until it returns to the position from
which it started, and if, at the same time as the straight line revolves,
a point move at a uniform rate along the straight line, starting from
the fixed extremity, the point will describe a spiral in the plane. I say
then that the area bounded by the spiral and the straight line which
has returned to the position from which it started is a third part of
the circle described with the fixed point as the centre and with radius
the length traversed by the point along the straight line during the
one revolution.

2 Another way of obtaining this formula occurs in a story about the developing ge-
nius Carl F. Gauss (1777-1855). When Gauss was nine, his mathematics teacher,
J. G. Biittner, gave his class of 100 pupils the task of summing the first 100 in-
tegers. Gauss almost immediately wrote 5050 on his slate and placed it on his
teacher’s desk. Gauss had noticed that adding the numbers first in the correspond-
ing pairs 1 and 100, 2 and 99, 3 and 98, ..., produced the sum 101 exactly 50
times, and then he simply multiplied 101 by 50 in his head. Fortunately, Biittner
recognized Gauss’s genius, and arranged for special tutoring for him. Gauss be-
came the greatest mathematican of the nineteenth century [133, p. 654].
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P’ Q’

K

Fig. 1.3. Archimedes’ area of a spiral.

Figure 1.3 illustrates Archimedes’ claim that the area OPQAO within the
spiral is exactly one-third the area AKP’'Q’A of the “first circle.”

Our original source will focus on Archimedes’ expression for a sum of
squares, and the resulting theorem on the area of the spiral, using the classical
Greek method of exhaustion. Here we will see an early historical link between
the discrete, in the form of the sum of squares formula, and the continuous,
namely the area bounded by a continuous curve.

We will see also that Archimedes does not actually need an exact sum of
squares formula to find the area in his spiral, but rather only the inequalities

3 n 3
n 5 _(n+1)
— < <
3 ;’ 3

which are highly suggestive of a more general pattern related to antidifferen-
tiation of the kth-power functions fi(z) = z* (Exercises 1.4, 1.5).

Our mathematical forebears were extremely interested in formulas for sums
of higher powers > " , i*, since they could use these to compute other areas
and volumes. Let us pause to review from modern calculus how sums of powers
are explicitly involved in the interpretation of the area under the curve y = z*,
for 0 < x < 1, as the definite integral fol x¥* dz. Recall that to calculate this
area from its modern definition as a limit of Riemann sums, we can subdivide
the interval into n equal subintervals, each of width 1/n, and consider the
sum of areas of the rectangles built upwards to the curve from, say, the right
endpoints of these subintervals, obtaining .\ | 1 - (%)k = 2, " as
an approximation to the area under the curve. The exact area is then the
limit of this expression as n approaches infinity, since increasing n refines the
accuracy of the approximation. Thus it is clear why having a closed formula
for Z?zl i* (or perhaps just inequalities analogous to those of Archimedes
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above) is key for carrying this calculation to completion. While this modern
formulation streamlines the verbal and geometric versions of our ancestors,
still the algebraic steps were essentially these.

As we continue to powers higher than k = 2, a formula for >, ¢* jumps
off the page once we compute a few values and compare them with our pre-
vious work. (The reader who wishes to guess the formula before we intro-
duce it may consult Exercise 1.6 now.) It seems likely, from the work of the
neo-Pythagorean Nicomachus of Gerasa in the first century C.E., that the
mathematicians of ancient Greece knew this too; while it is not explicit in
extant work, it is implicit in a fact about sums of odd numbers and cubic
numbers found in Nicomachus’s Introductio Arithmetica [19], [113, p. 68f]
(Exercise 1.7).

The general formula for a sum of cubes first appears explicitly in the
Aryabhatiya, from India [133, p. 212f], a book of stanzas perhaps intended as
a short manual for memorization, which Aryabhata wrote in 499 C.E., when
he was 23 years old. Without any proof or justification, and in the completely
verbal style of ancient algebra, he wrote:

The sixth part of the product of three quantities consisting of the
number of terms, the number of terms plus one, and twice the number
of terms plus one is the sum of the squares. The square of the sum of
the (original) series is the sum of the cubes.

The earliest proof we have of the sum of cubes formula is by the Islamic
mathematician Abu Bakr al-Karaji (c. 1000 C.E.), one of a group who began to
develop algebra, in particular generalizing the arithmetic of numbers, centered
around the House of Wisdom established in Baghdad in the ninth century
[133, p. 251ff]. Al-Karaji’s argument is noteworthy for its use of the method
of “generalizable example” [113, p. 68f], [133, p. 255].

The idea of a generalizable example is to prove the claim for a particular
number, but in a way that clearly shows that it works for any number. This
was a common method of proof for centuries, in part because there was no
notation adequate to handle the general case, and in particular no way of
using indexing as we do today to deal with sums of arbitrarily many terms.
Al-Karaji proves that (1+2+3+---+10)? = 134234+ 3%+ ... +10% in
a way that clearly generalizes: He considered the square ABC'D with side
1+ 2+ ---+ 10 (Figure 1.4), subdivided into gnomons (L-shaped pieces) as
shown, with the largest gnomon having ends BB’ = DD’ = 10. The area
of the largest gnomon is 103 (the reader should carry this “calculation” out
in a way that is convincing of “generalizibility”). By the same generalized
reasoning the area of the next-smaller gnomon is 93, and so on for all the
smaller gnomons, with only a square of side 1 left over.

Now one can think of the area of the large square in two ways. As the sum of
gnomons it has area 1423433 +-..+103. On the other hand, as a square it has
area (1+2+3+- - -+10)2. Today we would be inclined to use an algebraic proof
by mathematical induction here; but it appears unnecessary if one sees how
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Fig. 1.4. Gnomons for the sum of cubes (not to scale).

to break the square up into gnomons, each identifiable numerically as a cube.
This could all be done algebraically, although it would be excruciating, which
is what leads us to use mathematical induction if we are invoking algebra
rather than geometry (Exercise 1.8).

At this point we can be optimistic that for each fixed natural number k
there is a polynomial in n for 1% +2% +3% +...4n*. Based on our examples and
the analogy to integration of ¥, the reader should try to guess the degree of
the polynomial, the leading coefficient, and inequalities that might bound the
polynomial like those of Archimedes. On the other hand, no general pattern is
yet emerging for the details of the formula for various values of k, and worse,
all the formulas we obtained emerged from ad hoc methods, each demanding
separate verification.

The work of the Egyptian mathematician Abu ‘Al al-Hasan ibn al-
Haytham (965-1039) gives us the first steps along a path toward understand-
ing these formulas in general [133, p. 255f]. He needed a sum of fourth powers
in order to find the volume of a general paraboloid of revolution (in contem-
porary terms this involves integrating z#). At that time, Islamic mathemati-
cians were studying, rediscovering, and extending the work of Archimedes and
others on volumes by the method of exhaustion. Ibn al-Haytham’s specific ex-
pression for fourth powers came from his equation (expressed here in modern
symbolism) connecting sums of powers for different exponents:

n

<n+1>zik:iik+l+i (iﬁ) )

i=1 i=1

Although ibn al-Haytham did not state a completely general result, rather only
forn =4 and k = 1,2, 3, his proof, like al-Karaji’s, clearly generalizes for all n
and k from his example, and uses a kind of mathematical induction (Exercise
1.9). In fact we can also prove his equation by interchanging the order of
the double summation (Exercise 1.10). Letting k = 3, one can now obtain a
formula for > | i*, as did ibn al-Haytham, by solving for it in his equation,
first substituting the known formulas for smaller exponents. He did this, again
by generalizable example. This is not quite as easy as we have made it sound,
though, since in the process the double summation will actually give rise to the
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very thing one is solving for again, in addition to its already stated occurrence.
The reader may see how this actually works out in practice in Exercise 1.11.

Having followed in ibn al-Haytham’s footsteps, we should now be reason-
ably convinced that in principle we could calculate a polynomial formula in
terms of n for the sum ;" ; i* for any particular k. But we imagine that this
will quickly become increasingly tedious and complicated with increasing k,
and with no discernible pattern in the final formulas for different values of
k. As our story unfolds, we will gradually uncover intricate patterns in these
formulas reflecting the subtle connections between integration and discrete
summation.

In the seventeenth century, the European creation of the calculus became
a driving force in the development of formulas for sums of powers. In the sec-
ond quarter of the century, a number of brilliant mathematicians had great
success at squaring heretofore intractable regions (i.e., finding their areas), in
particular the regions under the curves we write as y = ¥, which they called
higher parabolas. Their successes, and especially the increasing use of indi-
visible methods, were the immediate precursors to the emergence of calculus
later in the century. For instance, on September 22, 1636, Pierre de Fermat
(1601-1665), of Toulouse, wrote to Gilles Persone de Roberval (1602-1675)
that he could “square infinitely many figures composed of curved lines” [133,
p. 481ff], including the higher parabolas. Roberval replied that he, too, could
square all the higher parabolas using the inequalities

nk+1<zn:ik<(n+l)k+l
k+1 P E+1

The reader is invited to confirm that these inequalities suffice for computing
foa xFdx using our modern definitions (Exercise 1.12), and also, conversely,
that Roberval’s inequalities follow easily if we already know modern calculus
(Exercise 1.13).

In reply to Roberval, Fermat claimed more, that he could solve “what is
perhaps the most beautiful problem of all arithmetic” [19], namely finding
the precise sum of powers in an arithmetic progression, no matter what the
power. Fermat, apparently unaware of the works of al-Haytham, thought that
the problem had been solved only up to k = 3, and stated that he had reached
his results on sums of powers by using the following theorem on the figurate
numbers® derived from “natural progressions”:

The last number multiplied by the next larger number is double the
collateral triangle;

the last number multiplied by the triangle of the next larger is three
times the collateral pyramid;

3 Fermat was likely also unaware of the work of Johann Faulhaber (1580-1635),
who managed to develop explicit polynomials for Y7 , i* for all k up to 17.
Faulhaber’s interest and methods were also related to figurate numbers, but his
work did not yield any general insight into the larger picture for all k [19].



10 1 The Bridge Between Continuous and Discrete

Fig. 1.5. Pyramidal numbers.

the last number multiplied by the pyramid of the next larger is four
times the collateral triangulo-triangle;
and so on indefinitely in this same manner [19].

By a “natural progression” Fermat simply means an arithmetic progression
1,2,...,n, whose “last number” is n. By the “collateral triangle” he means the
triangular number (Figure 1.2) on a side with n dots. The figurate numbers
then generalize this by counting dots in analogous higher-dimensional figures.
For instance, by the “collateral pyramid” Fermat means to count the dots in
a three-dimensional triangular pyramid on a side with n dots (Figure 1.5).

Fermat, typically, did not reveal his methods. But we can fill in the details
of his claims by studying the figurate numbers and discovering their agreement
with the numbers in the “arithmetical triangle”* (Figure 1.6) of his contem-
porary and correspondent Blaise Pascal (1623-1662). This we will explore in
our section on the work of Fermat and Pascal.

Fermat’s results on figurate numbers, and his derivation therefrom of for-
mulas for sums of powers, could indeed be carried on indefinitely, but the
process quickly becomes cumbersome and seemingly lacks insight. Despite
Fermat’s enthusiasm for the problem, it appears at first that his procedure
yields not much more than ibn al-Haytham’s. But what it did introduce was
a major role for the figurate numbers that appear in the arithmetical triangle.
And since the numbers in the arithmetical triangle have yet other important
properties and patterns, namely in their roles as combination numbers and
binomial coefficients, Fermat helped pave the way for future developments.

Blaise Pascal, in his Treatise on the Arithmetical Triangle [100, v. 30],
made a systematic study of the numbers in his triangle, simultaneously encom-
passing their figurate, combinatorial, and binomial roles. Although these num-
bers had emerged in the mathematics of several cultures over many centuries
[133], Pascal was the first to connect binomial coefficients with combinatorial
coefficients in probability.

4 Today called Pascal’s triangle.
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Fig. 1.6. Pascal’s arithmetical triangle.

A major motivation for Pascal’s treatise was a question from the begin-
nings of probability theory, about the equitable division of stakes in an inter-
rupted game of chance. The question had been posed to Pascal around 1652
by Antoine Gombaud, the Chevalier de Méré, who wanted to improve his
chances at gambling: Suppose two players are playing a fair game, to continue
until one player wins a certain number of rounds, but the game is interrupted
before either player reaches the winning number. How should the stakes be
divided equitably, based on the number of rounds each player has won [133,
p. 431, 4511f]? The solution requires the combinatorial properties inherent in
the numbers in the arithmetical triangle, as Pascal demonstrated in his Trea-
tise, since they count the number of ways various occurrences can combine to
produce a given result.

Pascal also wrote another treatise, Potestatum Numericarum Summa
(Sums of Numerical Powers), in which he presents his own approach to finding
sums of powers formulas (he actually produces a prescription for much more
general sums even than Y, i*). We present his clearly written exposition.
There we see that, armed with an ingenious idea based on the coefficients
(7]”) in the expansion of a binomial (i.e., (a4 b)™ = Z;n 0 ( )Jaib™=9), Pascal
describes a procedure for finding sums of powers formulas. HIS final result is
embodied in the equation

n k—1
(k+1)) " = (n+ 1)k -
i=1

=0
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Clearly one can solve here, if still tediously, for an explicit formula for the sum
of kth powers, by using at each stage the already known formulas for lower
exponents.

By this time in our story we will begin to discern some patterns in the
sums of powers formulas for the first few values of k, which we can actually
prove for general k from Pascal’s equation. We can show that

n
2
i=1

k+1
1+%n’“+n’“*1+~-~+n+0,

a (k + 1)st-degree polynomial in n with zero constant term, in which we
know the first two coefficients (the second term actually has a nice geometric
interpretation (Exercise 1.14), which suggests the sign of the third). This leads
us to hope there is a pattern to the remaining coefficients, and to wonder what
they might mean in the larger picture of the relationship between discrete
summation, Y i, i* = 7]2:11 +-- -, and continuous summation, [ t*dt = "f::ll )

Jakob Bernoulli (1654-1705) discovered the general pattern in the polyno-
mial formulas for sums of powers. We find him explaining it in a small section
of his important treatise Ars Conjectandi (Art of Conjecturing) on the theory
of probability. Since the combination numbers, figurate numbers, and bino-
mial coefficients are the same, it is not surprising that Bernoulli’s work on
sums of powers occurs in his treatise on probability theory. He discerns a gen-
eral pattern in the coefficients of the polynomials, writing them in terms of
the combination numbers in the arithmetical triangle and a new sequence of
special numbers, which he believes occur in a predictable way throughout all
the formulas for summing powers.

These new numbers soon came to be called the Bernoulli numbers, and ever
since, they have played an important role in mathematics. They are a sequence
of rational numbers, which we will denote by By = %7 By =0, By = —%7

, having a simple recursive law of formation. Bernoulli saw a pattern in
the formulas in which these numbers seem to appear consistently. Specifically,
he claimed, from calculating and examining the formulas explicitly up to the
tenth powers, that the sums can be expressed as the following polynomials in
n:

nk+l 1 k kE(k—1)(k—-2)
nk k-3
B ——— B
ZZ R A L vy an
+k(k—1)(k—2)(k—3)(k—4)
2-3:4-5-6
+ -+ ending in a term involving n or n?.

Bﬁnk75

A critical observation here is that the Bernoulli numbers that occur are the
same numbers in all the formulas, even as k varies. The pattern claimed here
is clear (including that the odd Bernoulli numbers beginning with Bs are
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all zero, and that the constant term in each polynomial is always zero). Ob-
serve that by setting n = 1 on both sides of this family of equations, we

obtain
k

1 1 1 k+1
1= k+1+2+jz_:2k+1< j >BJ
for each k > 2. The kth equation clearly allows recursive calculation of By
from knowing the previous Bernoulli numbers® (Exercise 1.15).

Our chapter culminates by reading from the work of Leonhard Euler a
few decades later. Euler dominated eighteenth-century mathematics, and pro-
duced seminal ideas in almost all its branches, as well as in physics. He was
also perhaps the most prolific human writer of all time: his collected works
are still in the process of being published, and will span close to one hundred
thick volumes. Fuler was particularly fascinated by the interplay between the
continuous and the discrete in studying series, and the eighteenth century be-
came a garden of discoveries about infinite series and related functions, largely
thanks to Euler’s genius [135, Chapter 20]. Euler’s summation formula for se-
ries will bring together the sums of powers problem and the Basel problem on
the infinite sum of reciprocal squares.

We have already mentioned Euler’s early attraction to the famous Basel
problem, to find the exact sum of the convergent series of reciprocal squares

oo

111111
Ym=1titatete o=

i=1

In a series of papers through the 1730s and beyond, apparently initially mo-
tivated largely by desire to sum this series, Euler discovered, applied, and
refined his summation formula for obtaining approximations to finite and
infinite sums, paradoxically by using divergent series [66, v. 14]. Since his for-
mula was also independently discovered by the Scottish mathematician Colin
Maclaurin (1698-1746), it is today called the Euler-Maclaurin summation
formula.

Around the year 1730, the 23-year-old Euler, along with his frequent corre-
spondents Christian Goldbach (1690-1764) and Daniel Bernoulli (1700-1782)
(son of Johann, Euler’s teacher), tried to find more and more accurate frac-
tional or decimal estimates for the sum of the series of reciprocal squares. They
were likely trying to guess the exact value of the sum, hoping to recognize that
their approximations looked like something familiar, perhaps involving 7, as
had Leibniz’s series. But these estimates were challenging, since the series
converges very slowly. To wit, if we estimate the sum simply by calculating a
partial sum Z?:l %27 we may be sorely disappointed by the accuracy achieved.

5 Explicit formulas for Bernoulli numbers, which do not rely on recursive knowledge
about the previous numbers, are much more complicated [98].
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The error is precisely the tail end of the series, which is bounded via
1 <1 1 <1 1
= —d — —dr = —
" / x<':z: Z,2</ —dv=—,

by the standard method of inscribing and circumscribing rectangles of unit
width along the curve y = 1/22. So if one were to add up 100 terms of the
series by hand, as accurately as needed, the untallied tail end would be known
only to lie between 1/100 and 1/101. Even taking this fully into account, the
accuracy with which one would know the true sum would still only be the
difference of these two numbers, i.e., about one ten-thousandth. Euler wanted
far greater accuracy than this (Exercise 1.16). He first developed some clever
special methods, and then in the early 1730s he hit gold with the discovery of
his summation formula.

When we read Euler, we will see that his summation formula is in essence

S fi)~ c+/n f@)de + f(Q”) +B2f/2(!n) +Bgf”3(!") +B4f”;(!”) e,
=1

where [ f(z)dx means a fixed antiderivative without the usual constant of
integration added on, but with n substituted for x, and C' denotes a constant
that depends on f and the antiderivative chosen, but is independent of n. The
motivation we can provide at this point is twofold. First, when f is specialized
to the power functions fj, Euler’s formula clearly specializes to Bernoulli’s
sum of powers formulas (Exercise 1.17). Second, it is obvious that the first
three terms in the formula correspond to the trapezoid approximation to the
integral (Exercise 1.18). It is reasonable to expect that the difference between
the discrete sum on the left and the area represented by the antiderivative on
the right will involve how the graph of f curves, and hence the derivatives
of f; but the surprising thing is that these derivatives are all evaluated only
at the single value n. We will see Euler derive his formula ingeniously from
Taylor series.

One of Euler’s first uses of his summation formula was to approximate
the sum of the reciprocal squares. In a paper submitted to the St. Petersburg
Academy of Sciences on the 13th of October, 1735, Euler applied it to approx-
imate the sum of reciprocal squares and other series. He calculated the sum
of reciprocal squares correct to twenty decimal places! Only seven and a half
weeks later, Euler presented another paper, solving the famous Basel problem
by demonstrating that the precise sum of the series is 7%/6. “Now, however,
quite unexpectedly, I have found an elegant formula for 1+ i + % + %—f— etc.,
depending upon the quadrature of the circle [i.e., upon 7]” [245, p. 261] (we
paraphrase his proof in a footnote in the first of two sections on Euler’s work).
He even showed how to generalize his approach to find the exact sums of many
other infinite series, such as the sum of the reciprocal fourth powers. While
Euler’s proof solving the Basel problem was soon criticized as lacking rigor,
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he was understandably convinced of the truth of his answer, partly because it
so perfectly matched the highly accurate approximation from his summation
formula. Later he found other, rigorously acceptable, ways of justifying his
claim.

We may never know with certainty whether Euler already suspected, when
he wrote his paper of October 13, that the exact sum was %, or whether his
calculation to twenty places was actually part of guessing the answer. We do
know that Damel Bernoulli wrote to him “The theorem on the sum of the
serleler + 1 +1—6+ :@and1+24+34+44+ —%ISVGI‘y
remarkable You must no doubt have come upon it a posteriori. I should very
much like to see your solution” [10, p. 1075].

In our two sections on Euler’s work we will study the summation formula
in his own words from his book Institutiones Calculi Differentialis (Founda-
tions of Differential Calculus), published in 1755. Here his presentation of the
formula is intertwined with many of his subsequent discoveries.

In reading Euler’s work, we will find that he ignores many questions we
have about the rigor and validity of the mathematical steps he takes and the
conclusions he draws. Not the least of these is that his summation formula
usually diverges, yet still he calculates with great effectiveness using it. In this
respect we should view Euler as a pioneer whose vision, brilliance, intuition,
and experience about questions of convergence and divergence allowed him to
excel where most mortals would stumble.

In our first selections from Euler’s book we will see him derive the sum-
mation formula, analyze the Bernoulli numbers it contains, and relate these
numbers to familiar power series from calculus, proving many of the most
intriguing properties of the Bernoulli numbers. Finally, he applies the sum-
mation formula to give the first actual proof for Bernoulli’s summation of
powers formulas, thus completing the long search.

In our last section we will read how he uses his summation formula to
make his remarkable approximation for the sum of reciprocal squares, before
he proved that the value is 72 /6. Here as elsewhere Euler is always rechecking
and verifying his results in different ways, with confirmation serving as his
stabilizing rudder for confidence in further work.

In the Institutiones Euler also not only makes an exact determination of
the sum of reciprocal squares as m2/6, but actually finds the exact sums of
all the series of reciprocal even powers, namely the series Zfil 12% for every
natural number k. Most unexpectedly, the very same Bernoulli numbers that
help approximate these sums via Euler’s summation formula will occur one
by one in the precise formulas for the sums of each of these series. This seems
a striking coincidence, but actually hints at a link between Euler’s summation
formula and Fourier analysis, a modern branch of mathematics that studies
the representation of arbitrary functions as infinite sums of trigonometric
functions of various frequencies [137, Chapter 14].

Thus wends the thread of the relationship between the continuous and
the discrete through two millennia, from the ancient counting of a number of
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dots in comparison to the area of a triangle through Euler’s approximations
of sums of series in relation to integration. We see the Bernoulli numbers
emerge as key to this dynamic, and arise unexpectedly in other phenomena.
Their importance in many parts of mathematics has grown continually ever
since Euler. Today they permeate deep results in fields ranging from number
theory to differential and algebraic topology [169, Appendix B], in addition to
their ongoing importance in numerical analysis via the summation formula.
We discuss this further at the end of the chapter. The link the Bernoulli
numbers provide between the continuous and the discrete, first unveiled by
Euler, continues to be key to advances in modern mathematics.

Exercise 1.1. In the spirit of the triangular and square numbers of Figure
1.2, generalize to define pentagonal numbers, hexagonal numbers, and general
polygonal numbers for any regular polygon of side n. Deduce formulas showing
that sums of terms in increasing integer arithmetic progressions beginning
with 1 produce the polygonal numbers, and obtain closed formulas for these.

Exercise 1.2. Write out a table of polygonal numbers and discover some
more patterns from this table. Prove your conjectures [258, p. 94].

Exercise 1.3. Verify the sum of squares formula

nn+1)2n+1)

PP+22 43+ +n?= :

using mathematical induction. Perhaps discover or look up some other ways to
obtain the formula that do not require knowing it in advance. Your proof using
mathematical induction requires this advance knowledge, which is always a
drawback of induction: the result needs to be known before proof by induction
is possible.

Exercise 1.4. Verify that %3 < 3E i< @ follows from the sum of
squares formula. State and prove analogous inequalities for sums of zeroth and
first powers. Then make a generalizing conjecture about analogous inequali-
ties for 2?21 i* for any positive integer k. Verify your conjecture in various
situations.

Exercise 1.5. Use polar coordinates to calculate the area inside Archimedes’
spiral with the fundamental theorem of calculus, and compare it with his
theorem.

Exercise 1.6. Guess a formula for sums of cubes: First calculate the first six
sums. Then prove by mathematical induction that your guess is correct.

Exercise 1.7. Nicomachus wrote, “When the successive odd numbers are
set forth indefinitely beginning with 1, observe this: The first one makes the
potential cube; the next two, added together, the second; the next three, the
third; the four next following, the fourth; the succeeding five, the fifth; the
next six, the sixth; and so on” [180, Book 2, Chapter 20]. State and prove his
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general pattern (Hint: average within the blocks), and then use it to obtain
and prove the general formula for the sum of the first n cubes.

Exercise 1.8. Prove (14+2+---4+n)> = (14+2+---+(n—1))> + n® by
mathematical induction, and discuss how the inductive step can be interpreted
with the geometry of Al-Karaji’s figure.

Exercise 1.9. Prove ibn al-Haytham’s equation by mathematical induction.
Perhaps first try his example values of n and k.

Exercise 1.10. Prove ibn al-Haytham’s equation by interchanging the order
in his double summation.

Exercise 1.11. Deduce the formula for a sum of fourth powers from ibn
al-Haytham’s equation, by inductively substituting the known formulas for
smaller values of k.

Exercise 1.12. Calculate foa 2¥dx by considering lower and upper sums of
rectangles based on left and right endpoints of equally spaced partitions of
the interval, and by using Roberval’s inequalities to compute the appropriate
limit.

Exercise 1.13. Prove Roberval’s inequalities by interpreting the sum of pow-
ers as both an upper and lower Riemann sum for an obvious function (you
may use the calculus).

Exercise 1.14. By the time we have read Pascal’s work we will be able to
show (Exercise 1.38) that

Xn:ik B nk+1
; k41
=1

There is a simple geometric interpretation of the second term. Draw a pic-
ture illustrating the difference between the region under the curve y = z* for
0 < 2 < n and the region of circumscribing rectangles with ends at integer

. . n k41 . .
values. Interpreting their areas as [* #*dz = % and Y7 ¢, find an in-
1

terpretation in the picture of how the term §nk above represents part of the
region between these two, and explain what its connection is to the trapezoid
rule from calculus as a numerical approximation for definite integrals. This
should suggest to you the sign of the next term in the formula above. What

should it be and why?

+%nk+nk71+~~+n+0.

Exercise 1.15. Use Bernoulli’s recursive formulas to calculate the first sev-
eral Bernoulli numbers. Use them to check Bernoulli’s claim against the
sums of powers for which you already know formulas. Also conjecture at
least one further property it appears the Bernoulli numbers may have from
what you find, and then calculate a few more numbers to begin testing your
conjecture.
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Exercise 1.16. Put yourself in Euler’s shoes and try making an educated
guess for the exact sum of the reciprocal squares. First calculate a particular
partial sum by hand to a certain accuracy (maybe to the tenth term for
starters), bound the remainder with integrals, as in the text, and try averaging
these to add to the partial sum to make a guess for the infinite sum. Then,
with the sum 7 of Leibniz’s series as inspiration, try dividing 7 by your guess,
to see whether you obtain approximately a whole number, or maybe a fraction
with small numerator and denominator. If this does not work, try using 72
instead. If you are using a machine to help you, discuss how you would plan
your calculations if you had only your brain, a pen or pencil, and paper, like
Euler. Speculate further about what Euler may have considered while doing
all this, and why.

Exercise 1.17. Verify that Euler’s summation formula specializes to the
formulas of Bernoulli for sums of powers. Explain what the constant C'is; pay
special attention to the final terms of Bernoulli’s formulas.

Exercise 1.18. Verify that if we use trapezoids instead of rectangles to ap-
proximate the area represented by f " f(z)dz, we obtain the trapezoid rule:

St F0) - (K19 ~ 7 f(a

1.2 Archimedes Sums Squares to Find the Area Inside
a Spiral

In 216 B.C.E., the Sicilian city of Syracuse allied itself with Carthage during
the second Punic war, and thus was attacked by Rome, portending what would
ultimately happen to the entire Hellenic world. During a long siege, soldiers
of the Roman general Marcellus were terrified by the ingenious war machines
defending the city, invented by the Syracusan Archimedes (c. 287-212 B.C.E.).
These included catapults to hurl great stones, as well as ropes, pulleys, and
hooks to raise and smash Marcellus’s ships, and perhaps even burning mirrors
setting fire to their sails. Finally though, probably through betrayal, Roman
soldiers entered the city in 212 B.C.E., with orders from Marcellus to capture
Archimedes alive. Plutarch relates that “as fate would have it, he was intent on
working out some problem with a diagram and, having fixed his mind and his
eyes alike on his investigation, he never noticed the incursion of the Romans
nor the capture of the city. And when a soldier came up to him suddenly and
bade him follow to Marcellus, he refused to do so until he had worked out his
problem to a demonstration; whereat the soldier was so enraged that he drew
his sword and slew him” [133, p. 97].

Despite the great success of Archimedes’ military inventions, Plutarch says
that “He would not deign to leave behind him any commentary or writing
on such subjects; but, repudiating as sordid and ignoble the whole trade of
engineering, and every sort of art that lends itself to mere use and profit,
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Photo 1.1. Archimedes.

he placed his whole affection and ambition in those purer speculations where
there can be no reference to the vulgar needs of life” [133, p. 100]. Perhaps
the best indication of what Archimedes truly loved most is his request that
his tombstone include a cylinder circumscribing a sphere, accompanied by the
inscription of his remarkable theorem that the sphere is exactly two-thirds of
the circumscribing cylinder in both surface area and volume!

Archimedes was the greatest mathematician of antiquity, and one of the
top handful of all time; his achievements seem astounding even today. The son
of an astronomer, he spent most of his life in Syracuse on the island of Sicily,
in today’s southern Italy, except for a likely period in Alexandria studying
with successors of Euclid. In addition to his mathematical achievements, and
contrasting with the view expressed by Plutarch, his reputation during his life-
time derived from an impressive array of mechanical inventions, from the water
snail (a screw for raising irrigation water) to compound pulleys, and his fearful
war instruments. Referring to his principle of the lever, Archimedes boasted,
“Give me a place to stand on, and I will move the earth.” When King Hieron
of Syracuse heard of this and asked Archimedes to demonstrate his principle,
he demonstrated the efficacy of his pulley systems by single-handedly pulling
a three-masted schooner laden with passengers and freight [133]. One of his
most famous, but possibly apocryphal, exploits was to determine for the king
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whether a goldsmith had fraudulently alloyed a supposed gold crown with
cheaper metal. He is purported to have realized, while in a public bath, the
principle that his floating body displaced exactly its weight in water, and re-
alizing he could use this to solve the problem, rushed home naked through
the streets shouting “Eureka! Eureka!” (I have found it).

The treatises of Archimedes contain a wide array of area, volume, and
center of gravity determinations, including the equivalent of many of the
best-known formulas taught in high school today. Archimedes also laid the
mathematical foundation for the fields of statics and hydrodynamics and their
interplay with geometry, and frequently used intricate balancing arguments.
A fascinating treatise on a different topic is The Sandreckoner, in which he
numbered the grains of sand needed to fill the universe, by developing an ef-
fective system for dealing with large numbers. Even though he calculated in
the end that only 103 grains would be needed, his system could actually cal-

s\ 108
culate with numbers as enormous as ((108) 10 ) . Archimedes even modeled

the universe with a mechanical planetarium incorporating the motions of the
sun, the moon, and the “five stars which are called the wanderers” (i.e., the
known planets) [92].

We will read excerpts from Archimedes’ work on the area inside a certain
spiral, beginning with his preparatory study of a sum of squares. Archimedes
wrote mostly in verbal style, without modern symbols for addition, equality,
exponents, and parentheses. He would have used a sequence of letters like
A, B, T, ..., Q to represent the terms in an arithmetic progression, not the
subscripted A1, Ay As ..., A, we see below, which is very modern notation
substituted in this English translation of Archimedes’ works [7].

OXDXXIXIXIXIXDO

Archimedes, from
On Spirals

Proposition 10

If Ay, As, As,..., A, be n lines forming an ascending arithmetical pro-
gression in which the common difference is equal to the least term Aj, then

M+ 1) A2+ A (A1 + Ao+ As+ -+ A,) =3 (AT + A3+ AJ+--- + A2).

OXDXXIXIXDXXDO

To give a vivid sense for how much the notation has been modernized, con-
sider the statement of the same proposition in a different modern translation,
by E.J. Dijksterhuis:
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If a series of any number of lines be given, which exceed one another
by an equal amount, and the difference be equal to the least, and if
other lines be given equal in number to these and in quantity to the
greatest, the squares on the lines equal to the greatest, plus the square
on the greatest and the rectangle contained by the least and the sum
of all those exceeding one another by an equal amount will be the
triplicate of all the squares on the lines exceeding one another by an
equal amount [48, p. 122] (Exercise 1.19).

The proof Archimedes gave for this appears quite algebraic and unmoti-
vated, but Kathe Kanim has recently found a transparent unifying geometric
view that follows every step of Archimedes’ proof [128], perhaps illustrating
exactly what Archimedes had in mind. Figure 1.7 illustrates this view of the
equality of areas claimed by Archimedes.

Notice that while Archimedes expressed this as an equality of areas, to-
day we tend to interpret it as just a formula about numbers, ignoring the
dimensionality involved. If we think of A; as the unit of linear measurement,
replacing it by the number 1, we obtain the statement

(n 4 1)n? —i—ii = 3Zn:z'2
=1 i=1

about numbers.

As it stands, this expresses the sum of squares in terms of the sum of first
powers. But the reader may substitute the known summation formula first
powers to turn this into our explicit polynomial formula for a sum of squares:

- H(2n+1
12+22+32+~--+n?:Zi?:”(”+ )6("+ ).
=1

What Archimedes really needed for his proof of the area inside a spiral
was a pair of inequalities bounding a sum of squares (Exercise 1.20), which
he states as corollaries of the proposition:

OXDXXIXIXIXIXDO

Corollary. 1. From this it is evident that
n-Al <3(A1+ A5+ +A2).
It follows from the proposition that

n-A2>3(AT+ A3+ +A2_).
Corollary. 2. All these results will hold if we substitute similar figures for
squares on all the lines; for similar figures are in the duplicate ratio of their
sides.
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Fig. 1.7. A sum of squares.
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Fig. 1.8. The area of the spiral.

OXDXXIXIXDXXDO

Now recall the spiral described by Archimedes as quoted in our introduc-
tion.

OXDDDDIDXDO
Proposition 24

The area bounded by the first turn of the spiral and the initial line is equal to
one-third of the “first circle” ... .

Let O be the origin, OA the initial line, A the extremity of the first turn.
Draw the “first circle,” i.e., the circle with O as centre and OA as radius. Then,
if C1 be the area of the first circle, R; that of the first turn of the spiral bounded
by OA, we have to prove that

1
R1 - gCl

For if not, Ry must be either greater or less than %Cl.

|. If possible, suppose Ry < +C1.

We can then circumscribe a figure about Ry made up of similar sectors of
circles (Figure 1.8) such that if F' be the area of this figure,

1
F—-R < gC’l — Ry [Exercise 1.21],

whence F' < %C’l.
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Let OP, OQ, ... be the radii of the circular sectors, beginning from the
smallest. The radius of the largest is of course OA. The radii then form an
ascending arithmetical progression in which the common difference is equal to
the least term OP. If n be the number of the sectors, we have [by Proposition
10, Corollary 1]

n-0A* <3(OP*+0Q* +---+ 0A%);

and since the similar sectors are proportional to the squares on their radii, it
follows that Cy < 3F, or F' > %Cl. But this is impossible, since F' was less than
3C1. Therefore, Ry ¢ $C4.

I1. If possible, suppose Ry > 1C.

We can then inscribe a figure made up of similar sectors of circles such that
if f be its area,

1
R1*f<R1*§C'17

whence f > %Cl.

If there are (n — 1) sectors, their radii, as OP, OQ, ..., form an ascending
arithmetical progression in which the least term is equal to the common difference,
and the greatest term, as OY, is equal to (n — 1) OP. Thus, [Proposition 10,
Corollary 1]

n-0A* >3 (0P +0Q*+---+0Y?),

whence Cy > 3f, or f < £C1, which is impossible, since f > $C1. Therefore
Ry # %Cl.
Since then R; is neither greater nor less than %C’l,

1
Rl = 501

OXDXXIXIXDXIXDO

Note that this artful determination of the area enclosed in the spiral by the
method of exhaustion (Exercises 1.22, 1.23, 1.24) does not rely on Archimedes’
precise description of a sum of squares (Exercise 1.25), but only on the in-
equalities from Corollary 1. The reader should verify that Archimedes’ claim
in Corollary 2 holds, as needed in his proof for the spiral, for similar sectors
of circles (Exercise 1.26).

Exercise 1.19. Compare the translations given by Heath and Dijksterhuis.
Do they say the same thing? What are the advantages and disadvantages of
the verbal versus the modern symbolic approaches?

Exercise 1.20. Explain how the inequalities of Archimedes’ Corollary 1 can
be seen geometrically by studying Figure 1.7. Also show that they are equiv-

3 . 3
alent to % < 31 % < @
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Fig. 1.9. Duplicate ratio.

Exercise 1.21. Prior to Proposition 24, Archimedes proves that one can
circumscribe, about the region enclosed by the spiral, a figure made up of
similar sectors of circles, as in Figure 1.8, so that the circumscribed figure
exceeds the spiral by “less than any assigned area.” Show that this is always
possible. This is the geometric heart of the method of exhaustion.

Exercise 1.22. Select and study another of Archimedes’ proofs by exhaustion
[7]. Rewrite it in your own words, and explain the general plan of how the
method of exhaustion works.

Exercise 1.23. Consider square ABC'D in Figure 1.9. Suppose that side AD
begins to move toward side BC' through segments RQ so that R remains
parallel to AD. Suppose further that a point P, which begins at D, moves
along RQ so that the ratio of the plane rectangle with sides of length PQ and
DC to the square on D(@) remains constant, so that P reaches point B when
RQ coincides with BC. Prove that the quadrature (area) of the region marked
off by curve DPB and sides DC, BC' is one-third of the total quadrature of
square ABCD. Your proof should be in the spirit of Archimedes’ geometric
constructions. Along with the geometry, use the logic of a double reductio ad
absurdum argument to reach the final conclusion.

Exercise 1.24.
1. Why did the ancient Greeks study mathematics to such an extent that their
culture produced several volumes of geometric work?

2. We have seen that Archimedes essentially used Riemann sums to find the
area of the first turn of a spiral. What prevented him from developing integral
calculus as practiced today?

Exercise 1.25. We do not know how Archimedes discovered his sum of
squares formula, but try your hand at it like this: Compare each successive
value of the sum of squares with the corresponding sum of first powers (i.e.,
using the same natural numbers in each case), by looking at their ratios.
Capitalize on the pattern that emerges.

Exercise 1.26. Show that the sequence of sectors in Archimedes’ proof are
“similar,” and demonstrate how this ensures that their areas satisfy the result
he needs in the proof (as claimed in Corollary 2), that their areas obey the
numbered inequalities of Corollary 1.
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1.3 Fermat and Pascal Use Figurate Numbers,
Binomials, and the Arithmetical Triangle to Calculate
Sums of Powers

In the autumn of 1636, Pierre de Fermat (1601-1665) wrote to Marin
Mersenne (1588-1648) in Paris [133, pp. 436, 481f], implying that he had
solved “what is perhaps the most beautiful problem of all arithmetic,” finding
the precise sum of powers in an arithmetic progression, no matter what the
power [19], [73, volume II, pp. 70, 84-85]. Fermat, who did mathematics in
his spare time, was one of the truly great figures in the history of mathemat-
ics, often stating his results without proof in his letters, leaving it to others
to try to work out the details and verify his claims. Some of his assertions
about numbers have driven the development of mathematics for hundreds of
years. More about Fermat’s life can be found in our chapter on the quadratic
reciprocity law between primes.

In his letter to Mersenne, Fermat wrote that he had reached his results on
sums of powers by using the following theorem on “natural progressions”:

OXDXIXIXIXIXIXDO

Pierre de Fermat, from
Letter to Mersenne. September/October, 1636,
and again to Roberval, November 4, 1636

The last number multiplied by the next larger number is double the collateral
triangle;

the last number multiplied by the triangle of the next larger is three times the
collateral pyramid;

the last number multiplied by the pyramid of the next larger is four times the
collateral triangulo-triangle;

and so on indefinitely in this same manner [19], [163, p. 230f], [73, vol. II,
pp. 70, 84-85].

OXDXIXIXIXIXIXDO

Although Fermat characteristically does not say any more, we will be able
to understand what he is claiming here, and see how it produces formulas for
sums of powers. This analysis will also prepare us for reading Pascal’s and
Bernoulli’s works on sums of powers.

First, exactly what does Fermat mean by the collateral triangle, pyramid,
and triangulo-triangle, examples of what we call figurate numbers? We saw
earlier that a triangular number counts the dots in a triangular figure com-
posed of rows starting with one dot and increasing in length by one (Figure
1.2). Thus by a “collateral triangle” Fermat means the triangular number with
a specified number of rows, i.e., a certain length to its side, such as the trian-
gular number 1+ 2 + 3 = 6 with side length three. Likewise, a pyramidal (or
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tetrahedral) number counts the dots in a three-dimensional pyramidal figure
formed by piling shrinking triangles on top of each other as in Figure 1.5. So
the collateral pyramid with side length three is the sum 1+ 3 4+ 6 = 10 of the
first three triangular numbers. Likewise, Fermat’s four-dimensional triangulo-
triangle with side length three is the sum 1+ 4 + 10 = 15 of the first three
pyramidal numbers; and so on.

Fermat’s claims are not merely geometric interpretations of relationships
between certain whole numbers; they are actually discrete analogues of con-
tinuous results we already know about areas and volumes. For instance, his
first claim is a discrete version of the fact that for any line segment, the prod-
uct of the segment with itself creates a rectangle with area twice that of the
triangle with that side and height. Fermat’s use of the “next larger number”
for one of the discrete lengths is exactly what is necessary to ensure a precise
two-to-one ratio of the discrete count of dots in a rectangular figure to the
count of dots in an inscribed triangle at the corners, as we know happens for
the continuous measurements of the analogous areas. This is visible geomet-
rically in the packing of dots in the middle of Figure 1.2. Similarly, when he
says “the last number multiplied by the triangle of the next larger is three
times the collateral pyramid,” he is expressing a delicate discrete version of
the continuous fact that a three-dimensional pyramid on a triangular base has
volume one-third that of the prism created with the same base and height.
The reader may enjoy seeing the discrete relationship geometrically as well,
by packing six discrete triangular pyramidal figures into a box figure, half of
which is the discrete prism. Fermat claims that similar relationships hold in
all dimensions.

Let us formally define the figurate numbers by their recursive piling up
property. Here F), ; will denote the figurate number that is j-dimensional
with n dots along each side. Call n its side length. For instance, F3 5 is the
planar triangular number with 3 dots per side, so by counting up its rows of
dots, F39 =142+ 3 = 6. The piling up property, by which we define larger
figurate numbers from smaller ones, is encoded in the formula Fj,4q ;41 =
Fy j+1+ Fnq1,5. This formalizes the idea that to increase the side length of a
(j +1)-dimensional figurate number from n to n+1, we simply add on another
layer at its base, consisting of a j-dimensional figurate number of side length
n+1 (Figure 1.5). This defining formula is called a recursion relation, since it
defines each of the figurate numbers in terms of those of lower dimension and
side length, provided we start correctly by specifying those numbers with the
smallest dimension and those with the smallest side length. While we could
start from dimension one, it is useful to begin with zero-dimensional figurate
numbers, all of which we will define to have the value one. We thus define

Fn70 =1 (n 2 1),
Fij=1 (4 =0),
Froyi1j+1 = Fogrj + Fo i (n>1,7>0).
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We must check that our starting data determine just what was intended for
Fermat’s figurate numbers. We have required that any figurate number with
side length one will have exactly one dot, no matter what its dimension. And
the recursion relation clearly produces the desired one-dimensional figurate
numbers F, ; = n for all n > 1 from the starting data of zero-dimensional
numbers.

Now Fermat’s claimed formulas to Mersenne assume the form

nFn-‘rl,l = 2Fn,27
nky,12 = 3F, 3,
nFn+1,3 = 4Fn,4;

Taking these temporarily for granted, let us see how sums of powers can
be calculated, as Fermat claimed. As an example, we will derive the formula
for a sum of squares. We know that any pyramidal number is obtained by
piling up triangular numbers, i.e.,

n
F, 3= E Fio.
i=1

We can also obtain closed formulas for the figurate numbers on both sides of
this equality by iteratively using Fermat’s formulas:

n n n+1 n n—+1 n -+ 2
F.3 an+172—(§)( 5 )Fn+2,l—(§)( 5 )( 1 >,
) ) 141
and Fi,QZEFi+1,1: (§>< 1 )

So the two sides of the piling-up equation above expand to produce

n

n(n+1)(n+2) - W41 T~y In.
3.2-1 3 ; 2= 2 2121 +2;Z

=1

n

Now we simply substitute n(n + 1)/2 for "7 4, which we already know
inductively, and solve for Y"1 , i2, clearly yielding a polynomial with leading
term n3/3, as expected. The reader may verify that we get the correct formula,
and may continue this method to sums of higher powers (Exercise 1.27). In
fact, this very method is advanced by Bernoulli in the text we will read in the
next section. While it is clear that the process can be continued indefinitely,
it quickly becomes impractically complicated, and it is also not clear that it
yields any new general insight.

We shall now study the figurate numbers further to see why Fermat’s claim
about them is true, and simultaneously prepare the groundwork for reading
Pascal. The reader may have noticed that the individual figurate numbers
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seem familiar, from looking back to Pascal’s arithmetical triangle displayed in
the introduction (Figure 1.6). The numbers shown there match the figurate
numbers, i.e., F, ; appears in Pascal’s “parallel row” n and “perpendicular
row” j + 1. Indeed, in his treatise on the arithmetical triangle, Pascal defines
the numbers in the triangle by starting the process off with a 1 in the corner,
and defines the rest simply by saying that each number is the sum of the
two numbers directly above and directly to the left of it, which corresponds
precisely to the recursion relation by which we formally defined the figurate
numbers.

Perhaps the reader also already recognizes the numbers in the arithmeti-
cal triangle as binomial coefficients or combination numbers. The numbers
occurring along Pascal’s ruled diagonals in Figure 1.6 appear to be the co-
efficients in the expansion of a binomial; for instance, the coefficients of
(@ + b)* = 1a* + 4a3b + 6a%b? + 4ab® + 1b* occur along the diagonal Pas-
cal labels with 5. Our modern notation for these binomial coefficients is that
(") denotes the coefficient of a™~7b/ in the expansion of (a +b)™. Indeed, if
in the arithmetical triangle we index both the diagonals and their individual
entries beginning with zero, then the entry in diagonal m at column 5 will be
the binomial coefficient ("'). This is easy to prove (Exercise 1.28).

Since we have now identified both the figurate numbers and the binomial
coefficients as the numbers in the triangle generated by the basic recursion
relation, their precise relationship follows just by comparing their indexing;:

Fip, = (ij) for i, § > 0.

We can also calculate a closed formula in terms of factorials for the numbers
in the triangle:

(m)_ m m(m—1)-(m—j+1)

i) Mm—=g)t J!

for 0 < j <m,

where the notation i! (read “i factorial”) is defined to mean
i-(i—1)-(—-2)---3-2-1,

and 0! is defined to be 1 (Exercise 1.29).

This ubiquitous triangle of numbers had already been in use for over 500
years, in places ranging from China to the Islamic world, before Pascal devel-
oped and applied its properties in his Traité du Triangle Arithmétique (Trea-
tise on the Arithmetical Triangle), written by 1654 [133]. A key fact, which
Pascal called the Twelfth Consequence, is that neighboring numbers along a
diagonal in the triangle are always in a simple ratio:

(m—j)(?> =(j+1)<j:r_L1) for j < m,

which is easily obtained from the factorial formula above (Exercise 1.30).
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Translated into figurate numbers, Pascal’s Twelfth Consequence reemerges
as precisely Fermat’s claim in his letter to Mersenne! For instance, letting j = 2

and m = n + 2 yields
n n+2 _3 n+2
2 ) 3 )

or nkF,i19=23F,3,

exactly Fermat’s claim that “the last number multiplied by the triangle of the
next larger is three times the collateral pyramid.” The reader may now easily
confirm Fermat’s general claim (Exercise 1.31), and we are ready to move on
to Pascal’s work on sums of powers.

Blaise Pascal (1623-1662) was born in Clermont-Ferrand, in central France.
Even as a teenager his father introduced him to meetings of Marin Mersenne’s
circle of mathematical discussion in Paris. He quickly became involved in the
development of projective geometry, the first in a sequence of highly creative
mathematical and scientific episodes in his life, punctuated by periods of re-
ligious fervor. Around age twenty-one he spent several years developing a
mechanical addition and subtraction machine, in part to help his father in

Photo 1.2. Blaise Pascal.
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tax computations as a local administrator. It was the first of its kind ever
to be marketed. Then for several years he was at the center of investigations
of the problem of the vacuum, which led to an understanding of barometric
pressure. In fact, the scientific unit of pressure is named the pascal. He is also
known for Pascal’s law on the behavior of fluid pressure.

Around 1654 Pascal conducted his studies on the arithmetical triangle
and its relationship to probabilities, as we described in the introduction. His
correspondence with Fermat in that year marks the beginning of probability
theory. Several years later, Pascal refined his ideas on area problems via the
method of indivisibles already being developed by others, and solved various
problems of areas, volumes, centers of gravity, and lengths of curves.® After
only two years of work on the calculus of indivisibles, Pascal fell gravely ill,
abandoned almost all intellectual work to devote himself to prayer and char-
itable work, and died three years later at age thirty-nine. In addition to his
work in mathematics and physics, Pascal is prominent for his Provincial Let-
ters defending Christianity, which gave rise to his posthumously published
Pensées on religious philosophy [92, 63]. Pascal was an extremely complex
person, and one of the outstanding scientists of the mid-seventeenth century,
but we will never know how much more he might have accomplished with
more sustained efforts and a longer life.

The relation of the arithmetical triangle to counting combinations, and
thus their centrality in probability theory, follows easily from the factorial
formula above for the triangle’s numbers. The reader may verify that (2")
represents the number of different combinations of j elements that can occur
in a set of m elements (Exercise 1.32). For instance, there are (151) = 462
different teams of 5 players possible from a pool of 11 people available to play.

We have seen that the numbers in the arithmetical triangle have three
interchangeable interpretations: as figurate numbers, combination numbers,
and binomial coefficients. Given this multifaceted nature, it is no wonder
that they arose early on, in various manners and parts of the world, and
that they are ubiquitous today. The arithmetical triangle in fact overflows
with fascinating patterns (Exercises 1.33, 1.34). The reader will enjoy reading
Pascal’s actual treatise [100, v. 30].

In about the same year as his Treatise on the Arithmetical Triangle, Pas-
cal produced the text we will now study, Potestatum Numericarum Summa
(Sums of Numerical Powers), which analyzes sums of powers in arithmetic pro-
gressions in terms of the numbers in the arithmetical triangle, interpreted as
binomial coefficients. Pascal also makes the connection between these results
and area problems via the method of indivisibles.

Fermat’s great enthusiasm in 1636 for the problem of calculating sums
of powers was not immediately embraced by others, and Pascal, although a

S Later in the seventeenth century, Leibniz, one of the two inventors of the in-
finitesimal calculus, which supplanted the method of indivisibles, explicitly cred-
ited Pascal’s approach as stimulating his own ideas on the so-called characteristic
triangle of infinitesimals in his fundamental theorem of calculus.
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direct correspondent of Fermat’s, was apparently unaware of Fermat’s work
when he made his own analysis about eighteen years later in Sums of Numer-
ical Powers. Below we will see the transition from a geometric to algebraic
approach almost complete, since Pascal, unlike Archimedes, Al-Karaji, al-
Haytham, and even Fermat, is bent on presenting a generalized arithmetic
solution for the problem, albeit still using mostly verbal descriptions of for-
mulas, instead of modern algebraic notation. We present a translation from
the French (Sommation des puissances numériques), published in his collected
works with the Latin on facing pages [182, v. III, pp. 341-367]. We will find
that Pascal obtains a compact formula directly relating sums of powers for
various exponents, using binomial coefficients as the intermediary.

OXDXXIXIXIXIXDO

Blaise Pascal, from
Sums of Numerical Powers

Remark.

Given, starting with the unit, some consecutive numbers, for example 1,2, 3,4,
one knows, by the methods the Ancients made known to us, how to find the sum
of their squares, and also the sum of their cubes; but these methods, applicable
only to the second and third degrees, do not extend to higher degrees. In this
treatise, | will teach how to calculate not only the sum of squares and of cubes,
but also the sum of the fourth powers and those of higher powers up to infinity:
and that, not only for a sequence of consecutive numbers beginning with the unit,
but for a sequence beginning with any number, such as the sequence 8,9, 10, .. ..
And | will not restrict myself to the natural sequence of numbers: my method
will apply also to a progression having as ratio [difference] 2,3,4, or any other
number,—that is to say to a sequence of numbers different by two units, like
1,3,5,7,...,2,4,6,8, ..., or differing by three units like 1,4,7,10,13,.... And
what is more, whatever the first term in the sequence may be: if the first term
is 1, as in the sequence with ratio three, 1,4,7,10,...: or if it is another term in
the progression, as in the sequence 7,10, 13,16,19; or even if it is alien to the
progression, as in the sequence with ratio three, 5,8,11,14, ... beginning with 5.
It is remarkable that a single general method will suffice to treat all these different
cases. This method is so simple that it will be explained along several lines, and
without the preparation of algebraic notations to which difficult demonstrations
must have recourse. One can judge this after having read the following problem.

Definition.

Consider a binomial A + 3, whose first term is the letter A, and the second a
number: raise this binomial to any power, the fourth for example, which gives

A* +12.4% + 54.A% + 108.4 + 81;
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the numbers 12, 54, 108, which are multiplying the different powers of A, and are
formed by the combination of the figurate numbers with the second term, 3, of
the binomial, will be called the coefficients of A.

Thus, in the cited example, 12 will be the coefficient of the cube A; 54, that
of the square; and 108, that of the first power.

As for the number 81, it will be called the pure number.

Lemma

Suppose any number, like 14, be given, and a binomial 14 + 3, whose first
term is 14 and the second any number 3, in such a manner that the difference
of the numbers 14 and 14 + 3 will equal 3. Let us raise these numbers to a same
power, the fourth for example: the fourth power of 14 is 14%, that of the binomial,
14+ 3, is

14% 4+ 12.143 + 54.14% +108.14 + 81.

In this expression, the powers of the first term, 14, of the binomial are obviously
affected by the same coefficients as the powers of A in the expansion of (A+3)*.
This put down, the difference of the two fourth powers, 14* and

14* +12.143 + 54.14% + 108.14 + 81,

is 12.14% + 54.14% 4 108.14 + 81; this difference comprises: on the one hand, the
powers of 14 whose degree is less than the proposed degree 4, these powers being
affected by the coefficients which the same powers of A have in the expansion
of (A + 3)%; on the other hand, the number 3 (the difference of the proposed
numbers) raised to the fourth power [because the absolute number 81 is the
fourth power of the number 3]. From this we deduce the following Rule:

The difference of like powers of two numbers comprises: the difference
of these numbers raised to the proposed power; plus the sum of all the
powers of lower degree of the smaller of the two numbers, these powers
being respectively multiplied by the coefficients which the same powers
of A have in the expansion of a binomial raised to the proposed power
and having as first term A and as second term the difference of the given
numbers.

Thus, the difference of 14* and 11* will be

12.11% 4 54.11% + 108.11 + 81,
since the difference of the first powers is 3. And so forth.

A single general method for finding the sum of like powers of the terms
of any progression.

Given, beginning with any term, any sequence of terms of an arbitrary
progression, find the sum of like powers of these terms raised to any degree.
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Suppose an arbitrary number 5 is chosen as the first term of a progression
whose ratio [difference], arbitrarily chosen, is for example three; consider, in this
progression, as many of the terms as one wishes, for instance the terms 5,8, 11, 14,
and raise these terms to any power, suppose to the cube. The question is to find
the sum of the cubes 5% + 83 4 113 4 143,

These cubes are 125,512,1331,2744; and their sum is 4712. Here is how
one finds this sum.

Let us consider the binomial A+ 3 having as first term A and as second
term the difference of the progression.

Raise this binomial to the fourth power, the power immediately higher
than the proposed degree three; we obtain the expression

A* +12.4°% + 54.A% + 108.A + 81.

This admitted, we consider the number 17, which, in the proposed progression,
immediately follows the last term considered, 14. We take the fourth power of
17, known as 83521, and subtract from it:

First: the sum 38 of the terms considered, 5 4+ 8 + 11 + 14, multiplied by the
number 108 which is the coefficient of A;

Second: the sum of the squares of the same terms 5,8,11,14, multiplied by
the number 54, which is the coefficient of AZ2.

And so on, in case one still has the powers of A of lesser degree than the
proposed degree three.

With these subtractions made, one subtracts also the fourth power of the first
term proposed, 5.

Finally one subtracts the number 3 (ratio [difference] of the progression) itself
raised to the fourth power and taken as many times as one considers terms in the
progression, here four times.

The remainder of the subtraction will be a multiple of the sum sought; it will
be the product of this sum with the number 12, which is the coefficient of A3,
that is to say the coefficient of the term A raised to the proposed power three.

Thus, in practice, one must form the fourth power of 17, being 83521, then
subtracting from it successively:

First, the sum of the terms proposed, 5 + 8 + 11 + 14, being 38, multiplied
by 108,—that is, the product 4104,

Then the sum of the squares of the same terms, 5% + 82 + 112 + 142, or
25 + 64 + 121 + 196, or again 406, which, multiplied by 54, gives 21924,

Then the number 5 to the fourth power, which is 625;

Finally the number 3 to the fourth power, being 81, multiplied by four, which
gives 324. In summary one must subtract the numbers 4104, 21924, 625, 324,
whose sum is 26977. Taking this sum away from 83521, there remains 56544.

The remainder thus obtained is equal to the sum sought, 4712, multiplied by
12; and, in fact, 4712 multiplied by 12 equals 56544.

The rule is, as one sees, easy to apply. Here now is how one proves it.

The number 17 raised to the fourth power, which one writes 174, is equal to
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174 —14% + 14" —11* + 111 — 8% + 8 — 5 +- 5%

In this expression, only the term 17* appears with the single sign +; the other
terms are in turns added and subtracted.

But the difference of the terms 17 and 14 is 3; likewise the difference of the
terms 14 and 11, and of the terms 11 and 8, and of the terms 8 and 5. Thenceforth,
according to our preliminary lemma: 174 —14% equals 12.1434-54.1424-108.14+81.

Likewise 14* — 11* equals 12.113 + 54.11% + 108.11 + 81.

Likewise 114 — 8% equals 12.8% + 54.82 + 108.8 + 81.

Likewise 8% — 5% equals 12.53 + 54.5% 4+ 108.5 + 81.

The term 5% does not need to be transformed.

One then finds as the value of 17*:

12.14% + 54.14% + 108.14 + 81
+12.11% + 54.11% + 108.11 + 81
+12.8% 4+ 54.8% 4+ 108.8 + 81
+12.5% + 54.52 +108.5 + 81

+ 54,

or, on interchanging the order of the terms:

54 8 + 11 + 14 multiplied by 108,

+ 5% 4+ 8% 4+ 112 + 142 multiplied by 54,
+ 5% + 8% + 113 + 143 multiplied by 12,
+ 81+ 81+ 81 +81

+ 5%,

If therefore one subtracts on both sides the sum:

54 8+ 11 + 14 multiplied by 108,
+ 52 + 8% + 112 + 142 multiplied by 54,
+ 81+ 81+ 81+ 81
+ 5%
There remains 17* diminished by the previously known quantities:
—5—8— 11 — 14 multiplied by 108,
— 5% — 82— 112 — 142 multiplied by 54,
—81—-81-81-81
_ 5t
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which will be found equal to the sum 53 + 8% + 113 + 142 multiplied by 12.
Q.E.D.

One may thus present as follows the statement and the general solution of
the proposed problem.

The sum of powers

Given, beginning with any term, any sequence of terms of an arbitrary
progression, find the sum of like powers of these terms raised to any degree.

We form a binomial having A as its first term, and for its second term the
difference of the given progression; we raise this binomial to the degree imme-
diately higher than the proposed degree, and we consider the coefficients of the
various powers of A in the expansion obtained.

Now we raise to the same degree the term that, in the given progression,
immediately follows the last term considered. Then we subtract from the number
obtained the following quantities:

First: The first term given in the progression,—that is, the smallest of the given
terms,—itself raised to the same power (immediately higher than the proposed
degree).

Second: The difference of the progression, raised to the same power, and taken
as many times as of the terms considered in the progression.

Third: The sums of the given terms, raised to the various degrees less than
the proposed degree, these sums being respectively multiplied by the coefficients
of the same powers of A in the expansion of the binomial formed above.

The remainder of the subtraction thus accomplished is a multiple of the sum
sought: it contains it as many times as unity is contained in the coefficient of the
power of A whose degree is equal to the proposed degree.

NOTE

The reader himself will deduce practical rules that apply in each particu-
lar case. Suppose, for example, that one wishes to find the sum of a certain
number of terms in the natural sequence [i.e., of natural numbers] beginning
with an arbitrary number: here is the rule that one deduces from our general
method:

In a natural progression beginning with any number, the square of the
number immediately above the last term, diminished by the square of the
first term and the number of terms given, is equal to double the sum of
the stated terms.

Suppose given a sequence of any consecutive numbers whose first term is
arbitrary, for example the four numbers 5,6,7,8: | say that 92 — 52 — 4 equals
the double of 5+ 64 7+ 8.

One will easily obtain analogous rules giving the sums of powers of higher
degrees and which apply to all progressions.
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Conclusion.

Any who are a little acquainted with the doctrine of indivisibles will not fail
to see what profit one may make from the preceding results for the determination
of curvilinear areas. These results permit the immediate squaring of all types of
parabolas and an infinity of other curves.

If then we extend to continuous quantities the results found for numbers, by
the method expounded above, we will be able to state the following rules:

Rules relating to the natural progression beginning with unity.

The sum of a certain number of lines is to the square of the largest as
1is to 2.

The sum of the squares of the same lines is to the cube of the largest
as 1is to 3.

The sum of their cubes is to the fourth power of the largest as 1 is to
4.

General rule relating to the natural progression beginning with unity.

The sum of like powers of a certain number of lines is to the immedi-
ately greater power of the largest among them as unity is to the exponent
of this same power.

| will not pause here for the other cases, because this is not the place to study
them. It will be enough for me to have cursorily stated the preceding rules. One
can discover the others without difficulty by relying on the principle that one does
not increase a continuous magnitude when one adds to it, in any number one
wishes, magnitudes of a lower” order of infinitude. Thus points add nothing to
lines, lines to surfaces, surfaces to solids; or—to speak in numbers as is proper
in an arithmetical treatise,—roots do not count in regard to squares, squares in
regard to cubes, and cubes in regard to square-squares. In such a way one must
disregard, as nil, quantities of smaller order.

| have insisted on adding these few remarks, familiar to those who practise
indivisibles, in order to bring out the always wonderful connection that nature,
in love with unity, establishes between objects distant in appearance. It appears
in this example, where we see the calculation of the dimensions of continuous
magnitudes joined with the summation of numerical powers.

OXDXXIXIXIXXDO

Pascal’s approach to sums of powers is rich with detail, and ends with his
view on how this topic displays the connection between the continuous and the
discrete. His idea of using a sum of equations in which one side “telescopes” via
cancellations is masterful, and is a tool widely used in mathematics today. Like

" The French version mistakenly says “higher” here.



38 1 The Bridge Between Continuous and Discrete

al-KarajT for exponent three, and al-Haytham for exponents four and higher,
Pascal presents a rule obtained by generalizable example, but expanded in
scope on two fronts: to arithmetic progressions with arbitrary differences and
to those beginning with any number. The reader is urged to consider whether
his example convinces one of the general rule, and then try applying it to
obtain the sum of fourth powers in his progression 5, 8,11, 14 (Exercise 1.35),
and finally use it to obtain a formula for the sum of the first n fifth pow-
ers (Exercise 1.36). Doing this displays a clear advantage over al-Haytham’s
equation. Pascal’s only requires us to substitute directly our known formulas
for sums with previous exponents, and then solve immediately, without hav-
ing first to expand and rearrange al-Haytham’s double summation and then
apply previous formulas a second time before solving. In this sense we can
say that Pascal’s prescription represents the first explicit recipe for sums of
powers.

Although it requires knowledge of the formulas for all previous exponents,
Pascal’s is an attractive formulation. Let us transcribe his verbal prescription
into modern notation for how to find the sum of the first n kth powers:

(k+1) Zz (n 4+ 1)L 1k gkFL Z<k+1>223.

j=1
We call this Pascal’s equation. The reader may verify that his method gener-
alizes to produce what he claims in his verbal prescription for more general
progressions (Exercise 1.37).
We can use Pascal’s equation to confirm patterns that have slowly been
emerging throughout the chapter, namely that sums-of-powers polynomials
have a particular degree and predictable leading and trailing coefficients:

Zz k:+1 2

We leave it to the reader to confirm these features and even to push one step
further to discover and confirm a simple pattern for the coefficients of n*~!
in the polynomial formulas (Exercise 1.38). We can also use Pascal’s equation
to prove that sums of powers satisfy Roberval’s inequalities discussed in the
introduction (Exercise 1.39).

The patterns in the polynomial coefficients begin to reveal more of the

k=1 ~+n+0fork21.

connection between the continuous and the discrete. The term 7}:—: is the

area [;' #*dx under the curve y = z* between 0 and n. The left side of the
above equation is the area of a right-endpoint approximating sum of rectangles
for this area, and thus the rest constitutes “correcting terms” interpolating
between the area under the curve and the sum of rectangles. The term %nk
amounts to improving the right-endpoint approximation to a trapezoidal ap-
proximation, and the next term also has interpretation as a further correction
(Exercise 1.14). We can speculate that the other coefficients in these polyno-

mials continue to follow an interesting pattern. We pursue this in the next
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episode of our story, emerging at the turn of the eighteenth century in the
work of Jakob Bernoulli (1654-1705).

We end this section by remarking on Pascal’s Conclusion about indivisibles
and the squaring (area) of higher parabolas. Clearly for him the connection
between “dimensions of continuous magnitudes” and “summation of numerical
powers” is striking and subtle, and was probably a prime motivation for his
investigations on sums of powers in an era when many were vying to square
higher parabolas and other curves. His view is that for continuous quantities,
terms of “lower order of infinitude” (i.e., lesser dimension) add nothing, and
one must “disregard [them] as nil,” so that the sums of powers formulas above

become
k+1

- n

S it
; k+1
i=1

which is his statement about summing continuous quantities. Today we rec-
ognize this as analogous to our integration formula

n k+1
n
thdt =
/0 k+1

for the area under a higher parabola. Turning these analogies into a tight
logical connection between discrete summation formulas and continuous area
results was part of the long struggle to define and rigorize calculus, which
began with the classical Greek mathematics exemplified by Archimedes, and
lasted until well into the nineteenth century (Exercises 1.40, 1.41, 1.42).

Exercise 1.27. Finish deducing and checking the sum of squares formula
derived from Fermat’s claims about figurate numbers, and carry the procedure
forward to obtain the formula for a sum of cubes from Fermat’s claims. Discuss
what would be involved in carrying this to higher powers.

Exercise 1.28. Show that the coefficients in the expansion of a binomial
satisfy the starting data and the recursion relation of the arithmetical triangle.
In other words, if for all m > 0 we write (a + b)™ = E;’;O (T) a™ bl show
that these coeflicients satisfy the starting data (73) = (:Z) = 1, and Pascal’s
recursion relation (mjl) = (T) + (") (Hint: write (a+b)""! = (a +b) (a+
b)™.)

Exercise 1.29. Show that
|
(”7) - "™ fr0<j<m.
J jHm — j)!

(Hint: Show that this factorial formula satisfies the starting data and the
recursion relation of the arithmetical triangle.)

Exercise 1.30. Prove Pascal’s Twelfth Consequence from the factorial for-
mula for binomial coefficients.
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Exercise 1.31. State Fermat’s general claim about figurate numbers, and
prove it from Pascal’s Twelfth Consequence.

Exercise 1.32. Prove that the number of distinct five-card hands possible
from a standard deck of fifty-two playing cards is (552). Then prove that (T)
is the number of different combinations of j elements that can occur in a set
of m elements. Hint: First see why

m(m—1)---(m—j+1)

is the number of different ways of selecting a sequence of j elements from
a sequence with m elements (where different orderings of the same elements
count as different sequences).

Exercise 1.33. Prove that the sum of the numbers in each row of the arith-
metical triangle is a power of two. Hint: binomial theorem.

Exercise 1.34. Find a pattern of your own in the arithmetical triangle, and
then prove that it holds.

Exercise 1.35. Apply Pascal’s method to obtain the sum of the fourth powers
in the progression 5, 8, 11, 14, and then check your answer by direct calculation.

Exercise 1.36. Apply Pascal’s method to obtain the polynomial formula for
the sum of the fifth powers in a natural progression beginning with one, i.e.,
i i

Exercise 1.37. Write out Pascal’s general result, in modern notation, and
provide a proof (based on the method of his example) to justify his general pre-
scription for a sum of powers of any arithmetic progression, i.e., with arbitrary
difference and beginning with any number. Include a modern formulation of
his algorithm, and apply it to compute some examples.

Exercise 1.38. In the text and exercises we have obtained explicit polynomial
formulas for sums of powers up to exponent five. From these we conjecture

Zz —i—lnk—i—lnk ! -~+n—|—0.

Use Pascal’s equation to prove these observed patterns for all k. (Hint: math-
ematical induction. You will need a strong form of induction, in which you
assume the truth of all preceding statements, not just the one prior to the one
you are trying to verify. Why is this stronger form of mathematical induction
a valid method of proof?) Then push one step further to conjecture and prove
a pattern for the coefficient of n*~! in the formulas.

Exercise 1.39. Prove the inequality > | i* < (n+1)¥*1/(k + 1) of Rober-
val using Pascal’s equation Can you also use it to prove his second inequality
nF 1/ (k+1) < Y1, i*, which is harder to show?

k+1
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Exercise 1.40. Compare and contrast the work of Archimedes and Pascal
toward finding the area of a bounded curvilinear region in the plane. Cite
specific contributions of each author toward the solution of this problem.
Explain what specific mathematical constructions from the era of Fermat and
Pascal facilitate a discussion of “area under a curve.”

Exercise 1.41. Use

n k+1
g Lok g
Zz TEr1 2" T

as obtained in Exercise 1.38 to prove that

-k
lim Z;L:ll = 1
n—oo pktl k+1’

a result known as Wallis’s theorem (discussed further in the next section).
Utilize Wallis’s theorem and the modern definition of the integral as a limit
of approximating sums to calculate

x $k+1
/ thdt = for any real x > 0.
0 E+1

Discuss how this supports what Pascal is arguing in his Conclusion.

Exercise 1.42. Read about the work of Fermat and Pascal, and discuss
how close each came to the modern idea of integration and the fundamental
theorem of calculus? What prevented them from developing calculus?

1.4 Jakob Bernoulli Finds a Pattern

Jakob (Jacques, James) Bernoulli (1654-1705) was one of two spectacular
mathematical brothers in a large family of mathematicians spanning several
generations. The Bernoulli family had settled in Basel, Switzerland, when
fleeing the persecution of Protestants by Catholics in the Netherlands in the
sixteenth century.

Jakob at first studied mathematics against the will of his father, who
wanted him to become a minister, and then traveled widely to learn from
prominent mathematicians and scientists in France, the Netherlands, and
England. He was appointed professor of mathematics in Basel, and he and
his younger brother Johann (Jean, 1667-1748) were among the first to fully
absorb Gottfried Leibniz’s (1646-1716) newly invented methods of calculus,
and to apply them to solve many fascinating mathematical questions. For in-
stance, in 1697 Jakob used a differential equation to solve the brachistochrone
problem, i.e., to find the curve down which a frictionless bead will slide from
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Nicolaus
(1623-1708)
Jacques 1 Nicolaus [ Jean 1
{1654-1705) (1662-1716) (1667-1748)
I
Nicolaus 11 Nicolaus 111 Daniel [ Jean II
(1687-1759) (1695-1726) (1700-1782) (1710-1790)
|
Jean [11 Daniel 11 Jacques I1
(1746-1807) (1751-1834) (1759-1789)
Christoph
(1782-1863)

Jean Gustave
(1811-1863)

The mathematical Bernoullis: a genealogical chart.

Fig. 1.10. The mathematical Bernoulli family [18, p. 416].

one point to another in the least time.® His method began a new mathematical
field, the calculus of variations, in which one seeks among all curves the one
that maximizes or minimizes some property [133, pp. 547-549]. Bernoulli also
used the calculus to discover numerous wonderful properties of the logarith-
mic spiral, leading him to request that this “spira mirabilis” be engraved on
his tombstone [18, p. 4171], [258, pp. 148-153]. And he worked and published
much on infinite series, including his unsuccessful attempts to find the infinite
sum of reciprocal squares, discussed in the introduction.

Jakob wrote the earliest substantial book on probability theory, Ars Con-
jectandi (The Art of Conjecturing). Its posthumous publication in 1713 con-
tained much original work, including the pattern we have been seeking in the

8 The brachistrochrone problem was posed as a challenge in 1696 by Johann
Bernoulli, and solved independently by Newton, Leibniz, both Johann and Jakob
Bernoulli, and L’Hospital. They were amazed that the solution curve turned out
to be already familiar in another context. Johann wrote, “With justice we admire
Huygens because he first discovered that a heavy particle traverses a cycloid in
the same time, no matter what the starting point may be. But you will be struck
with astonishment when I say that this very same cycloid, the tautochrone of
Huygens, is the brachistochrone we are seeking” [133, pp. 547-549], [135, p. 575],
[211]. See our curvature chapter regarding the cycloid and Huygens’s solution of
the tautochrone problem in his work on creating the perfect pendulum clock.
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Photo 1.3. Jakob Bernoulli.

formulas for sums of powers. It should not surprise us that Jakob connects
probability theory and sums of powers, for we have learned that the figurate
numbers, binomial coefficients, and combination numbers are simply different
interpretations of the numbers in the arithmetical triangle of Pascal.

While Pascal’s equation displayed a compact connection between sums
of powers formulas for various exponents, its recursive nature still prevents
quick and easy calculation of the polynomial formulas representing >, i* for
various values of k. Nor did it reveal any general pattern in all the coefficients
of these polynomials, even though we suspect there is one. Bernoulli addresses
both issues in his short addendum? on sums of powers (Summae Potestatum)
in a chapter of Ars Conjectandi on permutations and combinations [15, v. 3,
pp. 164-167], [16], [232, pp. 85-90]. Here the Bernoulli numbers first appear,

9 We are indebted to Daniel E. Otero for this translation from Latin.
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and our knowledge takes a tremendous leap forward. We will comment in
detail after our source, but we note as an aid beforehand that Bernoulli uses
the integral sign to represent finite summations!

OXDXIXIXIXIXIXDO

Jakob Bernoulli, from
The Art of Conjecturing
Part Two

A THEORY OF PERMUTATIONS AND COMBINATIONS
On combinations of particular numbers of things; which leads to figurate
numbers and their properties

[...] Scholium. We note in passing that many (among others, Faulhaber and
Remmelin from Ulm, Wallis, Mercator in his Logarithmotechnia, Prestet) have
engaged themselves in the study of figurate numbers. But | have found no one
who has given a universal and scientific demonstration of this property. Wallis
put forward his fundamental methods in the Arithm. Infinitorum, where he inves-
tigates inductively!? the ratios of the series of Squares, Cubes, or other powers
of the natural numbers to the series, having as many terms, of the largest of
these powers. From this he moves [...] to the study of Triangular, Pyramidal,
and the remaining figurate numbers. But it would have been more convenient
and appropriate in the nature of things had he instead first prepared a treatise
on the figurate numbers, with universal and accurate demonstrations, and then
later continued the investigation of sums of powers. For after all, the method of
demonstration by induction is not particularly scientific, and besides, each series
requires its own special methods. Those series which should be considered first, by
general estimation, and whose natures are most fundamental and simple, are seen
to be the figurate numbers, which are generated by addition, while the powers
are generated by multiplication. Moreover, the series of figurates, beginning with
their respective zeros, have exact fractional ratios with the series having the same
number of constant terms equal to the largest of these,!! which is not necessarily

10 That is, by inductive, as opposed to deductive, reasoning. Bernoulli is not referring
here to the method of proof called mathematical induction, which is entirely
different.

1 The reader may wish to decipher this claim, and see that it is actually equivalent
to Fermat’s claims in his letter to Mersenne. Hint: Bernoulli means that to obtain
an unchanging fractional ratio 1/r using the sum of any series of r-dimensional
figurate numbers in the numerator, one should prefix the sequence with r zeros
for determining the number of constant terms in the denominator of the ratio.
He then contrasts this with sums of powers, and compares with the infinite case;
can you see what he is getting at?
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so for the powers (at least not in a finite number of terms, regardless how many
zeros, by excess or defect, are prefixed to it). Furthermore, from the knowledge
of the sum of figurates, it is no more difficult to determine the sums of powers,
and so the author has concluded from these first ideas, as | will now do most
briefly.

Let there be given the series of natural numbers from unity: 1,2, 3,4, 5, etc.,
up to n, and suppose that we ask for the sums of these, or of their squares, their
cubes, etc.: In the Table of Combinations'? the indefinite term in the [...]'3 third
column is found to be

n—1-n—-2 nn—-—3n+2

1-2 o 2 ’

and the sum of all the terms (that is, all 22=342) js

n~n—1-n—2_n3—3nn—|—2n.
1-2-3 N 6 '

this gives /@or /lnn—/§n+/1—”3_3n—”+2n
g ; . N _ ' .

1 nd — 3nn + 2n 3
50/2”” 6 +/2” /
3

But /gn = ;/n = (by what was shown above) 1 + §n,

2 4

and [ 1 = n; substituting these above gives

—nn = n=-n"+-nn+—n,

1 n373nn+2n+3nn+3n 14
2 6 4 6 4 12

and by doubling, /nn (the sum of the squares of all n)

Lo, 11
= =N —-nn —-Nn.
37 T2 6

[..]'* And by proceeding to higher powers in turn, we easily build up the
following formulas:

12 That is, the arithmetical triangle.

13 We omit Bernoulli’s derivation of the sum of first powers, moving directly to a
sum of squares.

14 Bernoulli continues on to a sum of cubes.
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Sums of Powers1®

—
S
I
[ =
S
3
+
[ =
3

2 2
nn*—n3+1nn+—n
3 2 6
n3 = —nt 4 1n3 + -nn
4 2 4
1 1 1
4 4+ 5 L 4 L3 1
/”_5”+2”+3” 30"
5
5 __+ 6, 1t 5, 2 4 1
/" =6t Tt TRt ™
n6:—n7+ n6+1n5*—1n3*+—n
7 2 2 6 42
1 7 7
7 _ 8 7, L 6, | 4 L
/"‘8”+2”+12” 9" ™
2 7 1
8 L. 9 8 , 24 7, bt 5 43,
/n—gn —|—2n —|—3n 15n +9n>|< 30n
1 1 7
9 _ 10, L 9 g8, ! ¢ L4, 9
/”*10 R T RS LT
1 5
/n10—11n11+§n10+ n? % —1n” * +1n° x —n3*+%n

Indeed, a pattern can be seen in the progressions herein [Exercise 1.43], which
can be continued by means of this rule: Suppose that c is the value of any power;
then the sum of all n¢ or

1 1 c
c _ c+1 ~HC _Ac—l
/" L L S S B B
c-c—1-c—2-c—3-c—14
Cc—5
2.3.4.5-6 "
+c-c—1~c—2-c—3~c—4-c—5-c—6
2:3-4-5-6-7-8

where the value of the power n continues to decrease by two until it reaches n or
nn. The uppercase letters A, B, C, D, etc., in order, denote the coefficients of

the final term of /nn, /n4, /nﬁ7 /ng, etc., namely
1 1

A=l po Lt ool op_ 1
6 30 42 30

c~c—1-c—2Bnc_3

Dn7... & so on,

15 There is an error in the original published Latin table of sums of powers formulas.

The last coefficient in the formula for f n® should be —%, not —%; we have

corrected this here.
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These coefficients are such that, when arranged with the other coefficients of the
same order, they add up to unity: so, for D, which we said signified — ==, we have

11 2 7 2 1

Syt D)— — =1.
gttty oD 5

By means of these formulas, | discovered in under a quarter hour's work that
the tenth (or quadrato-sursolid) powers of the first thousand numbers from unity,
when collected into a sum, yield

30’

91409924241424243424241924242500.

Clearly this renders obsolete the work of Ismael Bulliald, who wrote so as to
thicken the volumes of his Arithmeticae Infinitorum with demonstrations involving
immense labor, unexcelled by anyone else, of the sums of up to the first six powers
(which is only a part of what we have superseded in a single page).

OXIXXIXIXIXIXDO

Interestingly, while Bernoulli indicates his familiarity with the work of
Johann Faulhaber (mentioned in our introduction), John Wallis (1616-1703),
and Nicolaus Mercator (1620-1687) on sums of powers, he mentions neither
Fermat nor Pascal. Wallis had studied sums of powers in his Arithmetica In-
finitorum of 1655, with the same motivation as Fermat and Pascal, to find the
areas under higher parabolas. Bernoulli contrasts Wallis’s work with his own,
including comparing sums of figurate numbers with sums of powers. While
finite sums of powers do not behave as nicely as sums of figurate numbers,
Bernoulli’s subsequent formulas shed light on the nature of the difference be-
tween them by providing a precise expression for Y . | i* as a polynomial
in n.

Notice Bernoulli’s summation notation as he proceeds to analyze sums of
powers. The expression after the integral indicates both the general term and
the ending index, i.e., he writes [n” for 31" | i" (Exercise 1.45). He also uses
an asterisk to indicate “missing” terms, i.e., monomials with zero coefficient.

Bernoulli first shows how to derive sum formulas for the first few expo-
nents, using his knowledge of the arithmetical triangle, by exactly the same
method we presented when considering Fermat’s claim to have solved the
problem. He presents the results of calculation in a table of polynomials for
sums up to the tenth powers. And now suddenly he claims:

Indeed, a pattern can be seen in the progressions herein which can be
continued by means of this rule:

Perhaps readers will delight in discovering this pattern for themselves (Exer-
cise 1.43) before studying Bernoulli’s description of it.
The reader should check that in modern notation, Bernoulli is claiming

k
1 kE+1 .
Zik - Z % Z < + )Bjnkﬂj for k > 1,
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where we have represented the special sequence of numbers that Bernoulli calls
A,B,C,D,...by By, forl > 1, and By, +1 = 0. These are the numbers antic-
ipated since the beginning of the chapter.'® We shall soon see Leonhard Euler
(1707-1783) accomplish amazing feats with these numbers. It was he who
would christen them Bernoulli numbers. We will see Euler prove Bernoulli’s
claimed patterns in the next section.

Bernoulli also claims that he can compute his special sequence of numbers
A, B,C,D,... . First he notes that they

in order, denote the coefficients of the final term of /nn, /n4, /nﬁ,

[

Indeed, we notice that the coefficient of n in the general formula he gives is
always the first occurrence of a new Bernoulli number in the process. And he
says:

These coefficients are such that, when arranged with the other coeffi-
cients of the same order, they add up to unity.

Here he is simply evaluating both sides of his general formula at n = 1. Since
the left side is then 1, the kth formula simplifies to

k
1 1 1 (k+1
l=——+= — B;.

k—|—1+2+_2k:+1< j ) !

J

Since the last term in the sum is the newest Bernoulli number By, one can
solve for it in terms of the previous ones. Thus the Bernoulli numbers are
recursively defined by these formulas. He gives as an example the computation
of D = Bg = —3—10 from the formula for £ = 8 and the previous numbers. While
this still leaves a step-by-step aspect to the determination of sums of powers
formulas, the process is now greatly simplified. Moreover, we see a general
pattern in the relationship between the coefficients for different values of k,
since the Bernoulli numbers are the same in the formulas for all k.

How might we attempt to verify the general validity of the pattern
Bernoulli guessed? Since Pascal gave us an equation relating the sums of kth
powers to those of lower powers, we should be able to proceed by strong math-
ematical induction on k, by simply substituting all the formulas of Bernoulli’s
into Pascal’s equation to verify the inductive claim at each stage. All but
one of Bernoulli’s formulas substituted in Pascal’s equation are assumed true
inductively, and the kth is thus shown true by verifying the equality itself
(Exercise 1.46).

16 The evidence suggests that around the same time, Takakazu Seki (16427-1708)
in Japan also discovered the same numbers [210, 257].
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Before we explore the world opened by Euler using Bernoulli numbers, we
encourage the reader to look for another pattern in these numbers, one not
even mentioned by Bernoulli (Exercise 1.47).

Exercise 1.43. Guess, as did Bernoulli, the complete pattern of coefficients
for sums of powers formulas just from the examples in Bernoulli’s table.
Clearly the pattern is to be sought down each column of Bernoulli’s table.
The key is to multiply each column of numbers by a common denominator,
and then compare with the arithmetical triangle (computing the sequence of
successive differences in a column, and the successive differences in that se-
quence, etc., may also help). Can you also express the general rule for calcu-
lating the special numbers A, B, C, D, ..., which Bernoulli introduces? Hint:
What happens when n = 17

Exercise 1.44. See whether you can duplicate Bernoulli’s claim that he cal-
culated (by hand, of course) the sum of the tenth powers of the first thousand
numbers in less than a quarter of an hour.

Exercise 1.45. Why do we use the notation Z?zl i’ today, instead of

Bernoulli’s [n”, for sums? What are the advantages and disadvantages of
the two notations?

Exercise 1.46. Prove Bernoulli’s claimed formulas by strong mathemati-
cal induction, in the manner suggested in the text, using Pascal’s equa-
tion, Bernoulli’s claims, and the Bernoulli numbers as defined recursively. At
some point in your calculations you may need to prove and use the identity
(‘;) (l;) = (‘;) (‘Z:f) Hint: When substituting Bernoulli’s claims into Pascal’s
equation, verify equality by calculating and comparing the coefficients for an

arbitrary power of n on each side of the equation.

Exercise 1.47. What do you conjecture about the signs of the Bernoulli
numbers? Compute several more Bernoulli numbers to see whether your con-
jecture has promise. This conjecture will be addressed by the work of Euler
in the next section.

1.5 Euler’s Summation Formula and the Solution
for Sums of Powers

Euler calculated without any apparent effort, just as men breathe, as
eagles sustain themselves in the air. Arago [258, p. 354].

Leonhard Euler (1707-1783) towered over eighteenth-century mathemat-
ics and was one of the greatest mathematicians of all time. His overall life
and work are discussed in our chapter on prime numbers and the quadratic
reciprocity law.

Euler spent the first part of his mathematical career at the newly organized
St. Petersburg Academy of Sciences, where he arrived from his hometown
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of Basel in May of 1727. The famous Basel problem, to find the exact sum
pya %2 of the reciprocal squares, was very much in the air among mathemati-
cians, and it was not long before Euler found better and better approximations
to the true sum. Since the series converges rather slowly, calculating individ-
ual partial sums is not very fruitful, and finding good approximations to the
actual sum required ingenuity. As early as 1731 Euler found an application
of calculus showing that the sum was 1.644934 ..., considerably better than
any previous results. By 1732 he was developing his summation formula, and
applying it to find closed expressions for certain finite summations, such as
a sum of squares Y ., i?, but not yet to approximate sums of infinite series
like 307, .

Then in a paper!'” presented to the St. Petersburg Academy on October
13, 1735 [66, v. 16, part 2, p. XX], [66, v. 14, pp. 108-123], Euler shows how
to use just a few terms of his diverging summation formula to find incredibly
accurate approximations for sums of infinite series. For the sum of reciprocal
squares he obtains Zfil %2 ~ 1.644 934066 848 22643647, which is indeed
accurate in all twenty places!'® We are left in awe that just a few terms of a
diverging formula can so closely approximate this sum. Paradoxically, Euler’s
summation formula, even though it usually diverges, provides breathtaking
acceleration of approximations for partial and infinite sums of many slowly
converging or diverging series.

Evidence from his earlier papers suggests that he had not yet guessed
the exact sum from his approximations, but that by the time he presented
his twenty-place approximation he felt sure that the true sum was 72/6, and
was probably searching for a way to prove it. This was a completely different
challenge from finding close approximations, yet less than eight weeks later he
presented his first proof solving the Basel problem, in the paper De summis
serierum reciprocarum!® [66, v. 16, part 2, p. XXII], [66, v. 14, pp. 73-86].

17 Inventio Summae Cuiusque Seriei Ex Dato Termino Generali.

18 The twenty-place accuracy he gave can be achieved with his summation formula,
although he did not show all the detailed calculations to support it beyond the
fourteenth place.

19 Euler reasoned like this. First write sinz = « <1 — ”;—? + 15—4,1 — ), and treat the

power series as an infinite polynomial with leading term 1. Factor into linear fac-
tors, each of the form (1 — 2), corresponding to the roots r = £, +2m, £3m, ...
of ===, Thus
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In his October 13 paper, Euler also demonstrates how to derive Bernoulli’s
conjectured formulas for sums of powers from his summation formula, al-
though he appears at that time to have been unaware of Bernoulli’s prior
empirical discovery of the patterns in the sums of powers formulas. Thus Eu-
ler simultaneously uses his summation formula to lead him both to the sum
of the most sought-after infinite series of the day, and to prove the general
sums of powers formulas.

Euler’s papers on his summation formula, related infinite series, and the
Bernoulli numbers are discussed individually in a 1935 essay by Georg Faber
in Euler’s collected works [66, v. 16, part 2, pp. VII-XXXIX]. Euler’s work is
also discussed from diverse points of view in many modern books [54], [97, pp.
119-136], [104, 11.10], [106, Chapter XIII], [116, p. 197f], [137, Chapter XIV],
[245, p. 184, 257-285], [258, p. 338f].

We will read about the summation formula from Euler’s book on the differ-
ential calculus, Institutiones Calculi Differentialis (Foundations of Differen-
tial Calculus), published in 1755 [66, v. 10], [67], during the second part of his
career, at the Berlin Academy of Sciences. Institutiones presents his mature
view of the summation formula, its applications and relation to Bernoulli’s
numbers, and also the unexpected additional connection he discovered be-
tween the Bernoulli numbers and the exact sums of the infinite series of re-
ciprocal even powers.

Euler was a wizard with infinite series. Much of his book is actually devoted
to the relationship between differential calculus and infinite series, in contrast
to the emphasis in today’s calculus books. In the second part of the book,
Euler presents his way of finding sums of series, first finite and then infinite,
via his summation formula. There is a published English translation of the
first part [68], but not the second part, of the Institutiones. We have translated
[69], [136, Enestrom 212] much more of his work on the summation formula
from part two than we present here, and we encourage the reader to explore
there many additional aspects that we briefly mention in what follows. In our
first section on Euler’s work, we will see Euler derive his summation formula,
analyze the nature of its Bernoulli numbers in connection with trigonometric
functions, and prove Bernoulli’s sums of powers formulas.

When Euler presented this amazing factorization, it was criticized for lacking
rigor. Some said there might be another unknown factor in the product, one
with no real zeros. This criticism was justified, but Euler’s expansion is correct,
and later he found acceptable means to justify it. Now imagine multiplying out
the infinite product, and isolating contributions to the coefficient of 2, which
together are —7%2 o %2 Matching this with the coefficient —3—1! in the power
series on the other side, Euler deduces

1 1 1 w2

1
1—2+2—2+3—2+"'+i—2+"'—g.
In his paper, Euler uses this matching idea to find the sums of quite a variety of
infinite series (Exercises 1.48, 1.49).



1.5 Euler’s Summation Formula and the Solution for Sums of Powers 53
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Euler’s derivation of the summation formula rests on two ideas. First, use
Taylor series from calculus, and adeptness with summations, to relate the sum
of the values of a function at finitely many successive integers to similar sums
involving the derivatives of the function. It may seem that this just makes
things more complicated, but his second idea will remedy this.

Leonhard Euler, from
Foundations of Differential Calculus

Part Two, Chapter 5
On Finding Sums of Series from the General Term

103. Suppose y is the general term of a series, belonging to the index x, and
thus y is any function of x. Further, suppose Sy is the summative term of this
series, expressing the aggregate of all terms from the first or another fixed term up
to y, inclusive. The sums of the series are calculated from the first term, so that
if © =1, y is the first term, and likewise Sy yields this first term; alternatively,
if x =0, the summative term Sy vanishes, because no terms are being summed.
With these stipulations, the summative term Sy is a function of x that vanishes
if one sets © = 0.29 . ..

105. Consider a series whose general term, belonging to the index z, is y, and
whose preceding term, with index x — 1, is v; because v arises from y, when z is
replaced by z — 1, one has?!

dy  ddy d3y d*y ddy

—y— == - - te.
VY 0 T o T 6ded T 24dat | 120dz5 T OC

If y is the general term of the series

1 2 3 4 -+ x-1 =
a+bt+ct+d+---+ v +y

20 Today we might think that so far Euler only has in mind that y and Sy are
sequences indexed by natural numbers x, except that he does refer to y as any
function of x. In a moment we will see that for him the word function definitely
means much more than just a sequence. The reader should reflect on what Euler
has in mind.

Euler expresses the value v of his function at z — 1 in terms of its value y at
x and the values of all its derivatives, also implicitly evaluated at x. This uses
Taylor series for the function, with increment —1, so he is tacitly assuming that
this all makes sense, i.e., that his function equals its Taylor series. Note also that
the symbols x and y are being used, respectively, to indicate the final value of an
integer index and the final value of the function evaluated there, and also more
generally as a variable and function of that variable. Today we would find this
much too confusing to dare write this way.

21
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and if the term belonging to the index 0 is A, then v, as a function of z, is the
general term of the series

1 2 3 4 5 -+ z
A+a+b+c+d+--- +v,

so if Sv denotes the sum of this series, then Sv = Sy —y + A. If one sets x = 0,
then Sy =0 and y = A, so Sv vanishes.

106. Because
dy  ddy d3y

Cdr | 2dx?  6dad

V=Y + etc,,

one has, from the preceding,

dy ddy d3y dy
- N — — etc.
Sv =Sy de + SQda:Q S6dx3 + 524d:c4 ete
and, because Sv =Sy —y+ A,
CA—sW gy gy gy
Y - Tdx 2dz? 6dx3 24dz* B
or equivalently
sy agpgdly gy g Ay
dr 7 2dx? 6dx3 24dz* '

. . 3 4
Thus if one knows the sums of the series whose general terms are 444 4y dy
dx?’ dx3’ dx*’

etc., one can obtain the summative term of the series whose general term is %.

The constant A must then be such that the summative term Sj—z disappears
when x = 0, and this condition makes it easier to determine than saying that it
is the term belonging to the index 0 in the series whose general term is y.

OXDXXIXDXDXXDO

To summarize, Euler’s final equation here relates the sum of the values of
the derivative of y at the integers from 1 to x to the sums of all the (infinitely
many) higher derivatives of y at these same numbers, and also involves the
value of y itself at x. In addition, there is an unknown constant A. This
may seem rather overwhelming, but Euler immediately illustrates practical
application for this equation in §§107-108 by selecting the power function
y = 2" /(n+1). This has the advantage that the sums are all just multiples
of sums of powers, and they vanish after some point in the equation. He is
left with a finite expression for Sz™ (i.e., for Y 7, i™), with many similarities
to Pascal’s equation earlier for a sum of powers in terms of sums of lower
powers (Exercises 1.50, 1.51). He applies this inductively from n = 0 upwards
to calculate the closed formulas for sums of powers of the natural numbers
explicitly up through the sum of fourth powers (Exercise 1.52).
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Of course, this was a very special choice of function, in which the summa-
tions on the right were considered “easier”, and there was only a finite number
of them. In general, the sums on the right will be no easier to determine than
the one on the left, and there will be infinitely many of them. But FEuler has
something up his sleeve.

His second idea, brilliant in scope, is to eliminate all the summations on
the right side of this equation, successively substituting for them by using
the very equation itself on each of them, applied one at a time to higher
and higher derivatives, and keeping track of the terms thus created. This will
produce a formula on the right whose terms involve only the function and its
derivatives at the value z. No summations from 1 to z remain on the right,
leaving only the single summation from 1 to x on the left side. This process
yields a formula, a function of z, for this summation. The result will be a first
version of the Fuler—-Maclaurin summation formula.

Euler’s idea is somewhat similar in spirit to what we have already practiced
in inductive calculations with the equations of Pascal and Bernoulli. Applied
to a power function, it could conceivably even yield Bernoulli’s polynomial
formula for a sum of powers!

Euler begins with a little shift in perspective in his basic equation above,
to view the left side as the sum of values of the primary function of interest,
rather than of its derivative.

ODDDDDDDO
109. Since from the above one has

1 1,d° 1 d* 1 d°
Sd_y:y[_A]+_ @__Sd_y+_5d_y_—5ﬂ+etc.,

dx 2 dr?2 6 dx® 24 dx* 120 d2b
if one sets g—i = 2, then Z;LZ = g—;, % = %, etc. And because dy = zdx, y will

be a quantity whose differential is zdz, and this one writes as y = [ zdz. Now
the determination of the quantity y from z according to this formula assumes the
integral calculus; but we can nevertheless make use of this expression fzdm, if
for z we use no function other than that whose differential is zdxz from above.
Thus substituting these values yields
1 dz 1 _ddz 1 dz
Sz :/

e+ 58S T T as

— etc,,
adding to it a constant value such that when = = 0, the sum Sz also vanishes.
ODIXDAXDAXDO
Next Euler prepares the substitutions he plans to make.
OXDIXDAXDAXDO
110. But if in the expressions above one substitutes the letter z in place of y,
or if one differentiates the preceding equation, which yields the same, one obtains
1 ddz 1 _d°z 1 d*z
—S——-—=5—+—-5—~
2 dx?2 6 dxd 24 dat

d
Sézz%— — etc;
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but using dfﬁ in place of y one obtains

%_%—FES&—ES@—FLS@—(&C
de?2  dr 27 dx3 6 daxt 247 dab '

Similarly, replacing y successively by the values %, .5 etc., produces
£o_dle 1odte 1o _Sﬁ_tc
dz  dax? 27 dat 6 24 dab )
d*z  d? 1 .dd 1 d’z

i c S S — etc.,
dzt ~ dz® 27 da 6 24 da”

and so forth indefinitely.

OAAIIDIXIXIXDO

Now Euler is ready to make all the substitutions. To find the resulting
formula, he first notes that his substitutions must produce a certain form,
with only some unknown coefficients to be determined. Then he sets up and
solves a linear system for these coefficients.

OXDXDXIXDXIXXDO

111. Now when these values for Sdz dez de3 are successively substituted
in the expression

1 dz 1 ddz 1 _ d3z

. . 3
one obtains an expression for Sz, composed of the terms fzdx, z, %, %, 375
etc., whose coefficients are easily obtained as follows. One sets

Bdz  ~ddz b6dPz  ed*z

SZ:/de+aZ+d—+ dx? + dx3 + dx?

+ etc.,

and substitutes for these terms the values they have from the previous series,
yielding??

[ zdx=5z— %Sg—z + 15% — —Sgré + 120‘SW — etc.
az=  +aSl _ggdlzy agdz  agdz e
Bdz pSdde  Sgdz 4 Bgdz e,

e ySLz — 18Tz 4 etc.
%‘fﬁ = 1 S— — etc.
etc.

22 These lines are obtained by rearranging the equations in §§109-110, and multi-
plying them by «, 3,7, ....
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Since these values, added together, must produce Sz, the coefficients «, 3, v, 6
etc. are defined by the sequence of equations

1 a 1 6 a 1
OL*E—O, ﬂ*g‘i’é—o, ’Y*g‘i’g*ﬂ—o,
v, B8 « 1 5 v B a 1
S§— L4 4 - - S T A g
56 24 120 0, ¢ 576 24120 720 0,
e 6 v 8 o 1
=576 2t 120 70 o0 0

Euler believes that the pattern determining these coefficients is clear to
us. It is typical of his work to arrange the results of calculations, and to write
out enough of them, to make a general pattern clear and convincing. Today
we would tend to write general formulas using arbitrary indices attached to
unknowns to describe Euler’s pattern. The pattern by which the coefficients
above are inductively determined is reminiscent of the way Bernoulli described
an inductive pattern determining the Bernoulli numbers. We shall see that the
similarity is more than coincidental.

OXDXXIXIXIXIXDO

112. So from these equations the successive values of all the letters «, 3, 7,
0 etc. are defined; they are

1 a 1 1 08 « 1
=y ey T TSy e T
7 B« 11 0y B @ 1
=96 T 10 0 T3 62 120 a0 e

and if one continues in this fashion one finds that alternating terms vanish. The
third, fifth, seventh letters, and so on, in fact all odd terms except the first, are
zero, so that this series appears to contradict the law of continuity by which the
terms proceed. A rigorous proof is especially needed that all odd terms except the
first vanish.

OXDXXIXIXIXIXDO

Before Euler shows how to apply his summation formula to derive his re-
sults for various choices of the function z and of the initial and final indices
in a summation, he will study closely the coefficients «, 3,4, ... in the for-
mula itself, and discover their properties and intimate connections with other
mathematics.

Euler states confidently that every odd term in this sequence of numbers
vanishes, except for the first. He sets out to prove this and other features of
these numbers. Euler uses what is today called a generating function, namely
he creates a formal power series whose coefficients are chosen to be the se-
quence of numbers in question. He proceeds to show that the nature of the
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sequence of numbers determines certain properties that this “function” must
obey. This is a powerful technique much used in modern mathematics. Entire
books exist on the theory and applications of generating functions [138, 246].
The question of convergence of the power series for a generating function is
not always important, since it is only the combinatorial properties of its coef-
ficients that are relevant, i.e., it is being manipulated formally algebraically,
as a polynomial of infinite degree.

OXXXIDXIXDXIXDO
113. Because the letters are determined from the preceding by a constant law,
they form a recurrent series. In order to develop this, consider the series

1+ ou+ pu? + yud + 6u* + eu® + Cub + etc.,

and set its value = V, so it is clear?? that this recurrent series arises from the
development of the fraction
1

7 _1 1,2 _ 1.3 1 1_ :
1 su+ gu 51 U° + U etc.

Vv

And when this fraction is resolved in a different way in an infinite series according
to the powers of u, then necessarily the same series

V =1+ au+ pu® +yu® + du* + eu® + etc.

will always result. In this fashion a different rule for determining the letters «, 3,
v, 6 etc. results.

OXDXXXIXDXIXDO

Now begins the fun. Euler can recognize the denominator above in terms
of a transcendental function he knows well, allowing him to bring to bear the
beautiful and powerful relationships between familiar transcendental func-
tions, their power series, and calculus.

OXDXIXIXIXIXIXDO

114. Because one has

1 1 . 1 1
I . P 4 5 te.,
e u+2u 6u +—24u —120u + etc

where e denotes the number whose hyperbolic logarithm?* is one, then

1—eu 11 1 1
LT a4t 4 St ete
u U GW T T gt et

2 To see that what Euler says is clear, multiply both sides by the denominator and
formally carry out the multiplication of the two infinite polynomials.

24 Think about why Euler calls this the “hyperbolic” logarithm, by considering the
area under the hyperbola y = 1/z.
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and thus
U

1 —eu’

V =

Now one removes from this series the second term au = %u so that

1
V—§u:1+ﬁu2+'yu3+5u4+5u5—|—gu6+etc.,

whence )
1 su(l4+e ™
v L, _pullt+e™)
2 1—e

Multiplying numerator and denominator by ez yields25

1 u(e%“Jre*%“)
Vogu= 7
2 2(65“—6*5“)

. o 1., — Lo . .
and converting the quantities e2™ and e~ 2" into series gives

V—lu: 14+ 39 + 5455 T saosto0s T ¢
2 2(é+21i126 m+6tc)
or 2 4 6 8
V*EU* 1+ 355+ 568 + 53 12+24u 16+etc

2 1+46+46810+46 14+46 18""‘?EC

115. Since no odd powers occur in this fraction, likewise none can occur in its
expansion; because V — %u equals the series

1+ pu? +yu? + dut + eu® + Cub + etc.,

the coefficients of the odd powers 7, €, 1, ¢ etc. all vanish. And so it is clear why
the even-ordered terms after the second all equal zero in the series 1+ au+ fu?+
~u? + du+ etc., for otherwise the law of continuity would be violated. Thus

1
V=1+ §u—|—ﬂu2 + 6ut + Cub + 0u® + su'® + etc.,

25 Here arise early occurrences of hyperbolic trigonometric functions, which provide
a very helpful way to view and work with functions like this. They were first
studied comprehensively in 1768 by Johann Lambert [133, p. 570], [135, p. 404],
after initial discovery by Euler and others. The hyperbolic cosine is coshz =
2, 2%%/ (2k)!, by analogy with the Taylor series for cosz. Note that coshz =
(e* +e7*) /2. Similarly, sinhz = >°7°  2**"'/ (2k +1)! = (e” —e™*) /2. Now
note that Euler’s V — (1/2) u = (u/2) cosh (u/2) / sinh (u/2) = (u/2) coth (u/2),
and keep this in mind for the next two footnotes. Much of what Euler does here
could be phrased in terms of properties of hyperbolic trigonometric functions.
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and if the letters 3, 6, (, 0, » have been determined by the development of the
above fraction, one obtains the summative term Sz of the series, whose general
term = z corresponds to the index x, expressed as

1 Bdz 32 (P2 0dz
Sz:/zdx+2z+d—+ s + 75 + e + etc.

OXDXIXIXIXIXIXDO

Having shown that only the odd derivatives appear in the summation
formula, Euler now claims that the remaining constants 3, 6, (, 0, ... alternate
in sign. In order to show this, and then to relate these coefficients to the
Bernoulli numbers, Euler introduces two closely related sequences. First he
sets

A=p3; B=-6; C=( D=-0; etc.,

with the expectation that this new sequence is entirely positive When he
makes these substitutions in the ﬁnal expression for V — §u obtainable from
§115, and simultaneously replaces u? with —u? both there and in the quotient
of power series?® for V — %u that culminates §114, he can equate the two
resulting expressions for V' — %u Continuing in his words:

OXDXXIXIXDXIXDO

118. ... [I]n order to determine the letters A, B, C, D etc., we consider the
series
1— Au? — Bu* — Cu® — Du® — Eu'® — etc.,

which arises from the development of the fraction

'U.2 'U.4 U US
1 - ﬂ + 3468 2.1z + 32716 _ ©tC
’U.4 U6 ’U.S b
1-45 6 + 26810 ~ 7614 T 1618  €tC

or consider the series?’

1
Z — Au— Bu® — Cu® — Du” — Eu® —etc. =s,
U

which arises from the development of the fraction

4 6
u_ v _u
1 -5+ 5468 — 3a. 12 + etc.

wd o wb
u— 45+ 1es0 T6.1d T etc.’

S =

26 That is, replace u by u in the hyperbolic trigonometric expression and its ex-
pression as a quotient of power series, yielding a new quotient of power series for
(tu/2) coth (iu/2), to follow next.

27 Since we know that this division by w produces (i/2)coth (iu/2), see if you
can reduce this to something more familiar using the definitions of cosh and
sinh in terms of the exponential function, combined with Euler’s identity ¢? =
cos 0 + isinf. In doing so you will anticipate Euler’s next step, which he does by
examining the quotient of power series directly.
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But since
1 1 u? " ut ub L et
Tu=1— — — etc.,
oSy 2.4"2.4.6-8 2-4..-12
. u ud L ud u’ 4 ete
sin —u = — — _ .
2 2 2-4-6 2-4-6-8-10 2-4---14
we have
cos%u 1
§=——5— = — cot =u.
251n§u 2 2

Thus if one converts the cotangent of the arc %u into a series, according to the

powers of w, the values of the letters A, B, C, D, E, etc. are revealed.
ODDDDDAIXDO

In §119 Euler confirms that all these numbers are positive, using a power
series approach to the nonlinear differential equation that the cotangent func-
tion satisfies by dint of its derivative formula. The differential equation also
produces a set of quadratic recursive formulas for these numbers quite differ-
ent in nature from those he obtained earlier for «, 3,7, ... . The new formulas
suggest that the fractions obtained for A, B, C, D, FE, ... have fast-growing
denominators, and he writes:

OXDXXIDXIXIXXDO

120. But because the denominators of these fractions become very large, and
substantially impede calculation, we want instead of the letters A, B, C, D, etc.

to introduce new ones:2®
a g Y
A= B = C=
1-2-3° 1-2-3-4-5’ 1-2-3 7’
1)
D = ° etc.

T a o9 a’ EZ—?
1.2.3.-.9 1-2.3---11

Euler’s choice to alter the denominators of A, B,C, D, E, ... by the selected
factorials is a delicate one, since the effects propagate down the list under the
recursive quadratic formulas of §119, which he adapts to make calculations of
his new «, 3,7, 98, ¢, ... . However, he asserts that calculating with these new
formulas is eminently manageable (in fact, he gives the result for seven more
steps than we display below). Moreover, he is about to explain that these are
almost Bernoulli’s numbers!

28 Caution: These new symbols ¢, 3, ... are completely different from the «, 3,

. used earlier. Today we would expect a mathematical writer to avoid confusion

by not using the same symbol to mean two different things in such close proximity.
Euler wasn’t easily confused.
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OXDXIXIXIXIXIXDO

121. ... If one finds the values of the letters «, 3, «y, 6, etc. according to
this rule, which entails little difficulty in calculation, then one can express the
summative term of any series, whose general term = z corresponding to the
index x, in the following fashion:

1 adz Bd3z ~vdPz
SZ*/““*E” 1-2-3ds  1.2.3-4-5d2® | 1-2.--7da"
6d"z edz Cd'lz

+ etc.

T1.2.0d (1.2 11d2® 1.2 13dzl

As far as the letters «, 3, 7, 8, etc. are concerned, one obtains the following
values:

a—% or 1:2c= 1

=1 1-2-36=1

7:% 1-2-3-4v= 4

b= 1-2-3---56= 36

= 1-2-3---6e= 600
C*% 1-2.3...7¢= 24-691
=3 1-2-3---8p= 20160 - 35
=37 1.2.3...96= 12096 - 3617

OXDXXIXIXIXIXDO

Clearly Euler is interested in discovering yet further features of the co-
efficients. In fact, he is working to determine which multiples of them will
be whole numbers. After calculating by hand the first fifteen new fractions
a, 3,7, ..., he illustrates on the right side of the table that if he multiplies
them by a simple pattern of factorials, the results are always whole numbers.
In other words, each denominator is a divisor of the corresponding factorial.
He does not actually say anything about this, but we can imagine that he
might know it to be a general pattern. It is not hard to prove.

In the next section Euler claims to relate these numbers to the special
numbers in Bernoulli’s formulas for finite sums of powers. Recall that we saw
in our Bernoulli source that each new Bernoulli number arises first as the
coefficient of the first power of the variable in a sum of even powers.

OXDXIXIXIXIXIXDO

122. These numbers have great use throughout the entire theory of series.
First, one can obtain from them the final terms in the sums of even powers, for
which we noted above (in §63 of part one) that one cannot obtain them, as one
can the other terms, from the sums of earlier powers. For the even powers, the
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last terms of the sums are products of x and certain numbers, namely for the 2nd,
4th, 6th, 8th, etc., &, 5, 45, 35 etc. with alternating signs. But these numbers
arise from the values of the letters «, (3, 7, 0, etc., which we found earlier, when
one divides them by the odd numbers 3, 5, 7, 9, etc. These numbers are called

the Bernoulli numbers after their discoverer Jakob Bernoulli, and they are

o 1 L 43867 _
37 6 =2 19 — 798 =7
B8 _ 1 _ P 174611 _ __ 283-617
5 30 =B 21 — 330 =R = 330
y_ o1 _ A 854513 — ¢ — 11.131.593
7 42 23 138 - — 2323
s 1 _ m 236364091  __
9~ 30 ° 25 2730 =m
ﬁ _ % —¢ % _ 8552103 —M = 13~6%7931
691 23749461029
%:2730_3 25_9: 870 =9
n _ 7 _ T __ 8615841276005 __
5~ 6 =6 31 — 14322 =P
6 _ 3617 _
7 =%0 =9 etc.
ODDXDADXDXDDO

When we compare Euler’s numerical values with Bernoulli’s formulas for
sums of powers, we see that indeed the numbers 2, 98, €, ..., which Euler de-
fines by respectively dividing his a, 3,7,... by 3,5,7,..., do appear to agree
(modulo alternating signs) with the numbers appearing in Bernoulli’s for-
mulas. In other words, recalling the notation we introduced for Bernoulli’s
numbers in the previous section, A = Bs, B = —By, € = Bg, ... . But is
this really a valid general pattern? Euler derives quadratic recursive formulas
for A,B, ¢, ... in §§119-123, but these are nothing like the linear recursive
formulas that Bernoulli gave for his numbers. Neither has Euler yet related
2,98, ¢, ... to formulas for sums of powers. So we are not yet convinced that
Euler’s numbers fully agree with Bernoulli’s. Fortunately, Euler will confirm
their equality in §§130-132 below, as part of his first major application of the
summation formula, to sums of numerical powers® (Exercise 1.53).

29 We saw earlier, in §121, Euler’s interest in the integrality properties of his new
numbers, in particular the nature of their denominators. These properties are
fascinating and useful. For instance, in 1840 it was proven by Clausen and von
Staudt that, when reduced to lowest terms, the denominator of Ba, is precisely
the product of all primes p for which p — 1 divides 2n. The observation implicit in
Euler’s table in §121 is a weaker version of this (Exercise 1.54). The numerators of
Bernoulli numbers are more elusive, but just as important. In 1850 Ernst Kummer
(1810-1893) proved Fermat’s last theorem (that a” 4+ y” = 2”7 has no solutions
in natural numbers for p > 2) for all prime exponents p that do not divide the
numerator of any Ba, /2n for 2n < p—1. In the latter half of the twentieth century,
both numerators and denominators of Bernoulli numbers have provided answers
to important questions in the study of global shapes in high-dimensional surfaces,
in the fields of differential and algebraic topology [169, Appendix B]. The reader
is invited to prove a number-theoretic integrality property of Bernoulli numbers
in Exercise 1.55.
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But first Euler uses 2,8, €, ... to solve a problem dear to his heart, de-

termining the precise sums of all the infinite series
1 1 1 1
1+22—n+3m+4ﬁ+5m+etc.,

of reciprocal even powers. He does this in §§124-125 by relating these series
to the cotangent function, and thus to 2, B, €, ..., since we have already seen
him relate A, B,C, ..., and thus 2,8, ¢, ..., to the cotangent. His impressive
result is that

=1 —1)"*! By, 2201
Z%:( ) 22' 72" for all n > 1.
i (2n)!

Then in §129 Euler uses this wonderful relationship to establish asymptot-
ically how the Bernoulli numbers change in size as one moves outward in the
sequence, which will be important in applying the summation formula later.
He simply observes that when n is large, the series sums are increasingly close
to one. So from the formula above, the ratio of consecutive Bernoulli numbers
is asymptotically approximately?>°

Bonya  (2n+2)(2n+1) n?

B, 42 T2

And he comments that the Bernoulli numbers thus “form a highly diverging
sequence, which grows more strongly than any geometric sequence of growing
terms,” i.e., faster than r™ for any fixed r (Exercise 1.56). This completes
Euler’s analysis of the properties of the Bernoulli numbers themselves, and he
is now ready to turn his summation formula toward applications.

Euler begins by clearly displaying for the first time the actual prominence
and values of the Bernoulli numbers in the formula.

OXIXXIXIXIXIXDO

130. Thus if one has found the numbers «, 3, v, 6 etc., or A, B, €, D
etc., then given a series whose general term z is a function of its index x, the
summative term Sz can be expressed as follows:

SZ:/de+lz+l.d—Z_i.L
2°"6 1-2dx 30 1-2-3-4da3
1 d5z 1 d z
T2 123645 30 1-2-3--8da7
5 a2z 691 dtlz
T66 1-2.3--10d2° 2730 1-2-3- 12dz1
7 a3z 3617 dtz
t6 123 1442 510 1-2-3..-16dz1

- etc.

30 By asymptotically approximate equality a =~ b we mean here that the ratio a/b
approaches 1 as n approaches infinity.
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Thus if one knows the integral [ zdx, or the quantity whose differential is = zdz,
one finds the summative term by means of continuing differentiation. One must
not neglect that a constant value must always be added to this expression, of a
nature that the sum will = 0 when x becomes 0.

131. If now z is an integral rational function®' of x, so that the derivatives
eventually vanish, then the summative term is represented by a finite expression.
We illustrate this by some examples.

First example.
Find the summative term of the following series.

1 2 3 4 5 x
14+9+254+49+81+--- + (22 —1)°

Since here z = (22 — 1)? = 4zz — 4z + 1, one has
4
/zdx = gccg —22% + 1z,
because from this, differentiation produces 4xxdx — 4xdx + dr = zdx. Further

differentiation yields

dz ddz A3z
S o8e -4, 28 L2200, et
dz v T dx? T da3 &

So the summative term sought equals

4., 1 2 1
—x° — 22 +x + 2zxx — 2x + - + —x — — &£ Const,,

3 2 3 3
in which the constant must remove the terms  — %, so
4 1
S (22 —1)° = za® — gng(m_nmﬂ).

So if one sets x = 4, the sum of the first four terms is given by
4
149425449 = 5-7-9284.

OXDXIXIXIXIXIXDO

The reader may carry out a similar example in Exercise 1.57.

We arrive at Euler’s first application of the summation formula, in which he
proves Bernoulli’s sums of powers formulas, simultaneously convincing us that
the numbers occurring in his summation formula, A, 9B, € D, etc., really are
the same as those that arose via a different recursion relationship in Bernoulli’s
sums of powers formulas. He will show us that Bernoulli’s sums of powers
formulas are simply special instances of the summation formula itself.

31 By this Euler means a polynomial.
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OXDXIXIXIXIXIXDO

132. From this general expression for the summative term, the sum for powers
of natural numbers, that we communicated in the first part (§§29 and 61), but
which we could not prove at that time, follows very easily. Let us set z = 2™, so
that [ zdx = %x"“, and differentiating,

+1
dz 4 ddz neo A3z ne3
7z =" ,de—n(n Nz ’dx3_n(n 1) (n—2)z"7,
dSZ n—>5
ﬁzn(n—l)(n—Q)(n—?))(n—@x ,
7
%:n(n—l)---(n—G)x”_7,etc.
x

From this we deduce the following summative term corresponding to the general
term z™:

n 1 n+1 1 n 1 n n—1 1 n(n—l)(n—2) n—3
R S LA S LA ' R o v
+i.n(n—1)(%—2)(n—3)(n—4)xn_5
42 2.3.4-5-6
1 n(n—1)-eeene (n—=6) , -
30 2.3..-8
+i n(n—1)eeeens (n—28) . o
66 2.3..-10
691 n(n—1) - (n—10) ,,_13
2730 2.3...12
7 n(n—1)-ene- (n—12) , 13
*6 2.3..-14
3617 n(n—1)--------- (n—14) yn—15
510 2.3..-16

etc.

This expression differs from the former [i.e., that in §§29 and 61] only in that
here we have introduced the Bernoulli numbers 2, B, €, ® etc., whereas above
we used the numbers «, 3, «, § etc.; the agreement is clear. Thus here we have
been able to give the summative terms for all powers up to the thirtieth, inclusive;
if we wanted to perform this investigation via other means, lengthy and tedious
calculations would be necessary.

OXDXXIXIXIXIXDO

Of course for any fixed n, the derivatives beyond the nth will all van-
ish, so this sum is finite. Moreover, as Euler discussed above in §§131 and
132, the formula must be adjusted by a constant to yield 0 when x = 0. In
other words, the constant term coming from the nth derivative on the right
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side must be removed. Thus Euler has proved precisely Bernoulli’s claimed
polynomial formula for the sum Y, , i". Are Euler’s numerical coefficients
%, %, —3—10, etc., necessarily all the same as the numbers Bernoulli claimed in his
recursive formulas? Yes, because by setting z = 1 here, just as Bernoulli did,
we see that Euler’s coefficients are governed by the same recursive formulas
as Bernoulli’s.3?

Thus Euler’s summation formula has completed the solution of the ancient
problem of finding formulas for sums of powers, reducing it to understanding
the Bernoulli numbers. But, as we shall see in the last section of our chapter,
Fuler also had in mind many other applications for his summation formula,
in particular for finding sums of infinite series, like the reciprocal squares of
the Basel problem.

Exercise 1.48. In his paper De summis serierum reciprocarum of the early
1730s [66, v. 14, pp. 73-86], Euler uses infinite product expansions to find
sums of many series by ingenious methods. We have seen how he matches the
coefficients of 22 on both sides of the equation

1_$_2+{L‘_4_ _sinx

3! 5! Tz
z? x? x? x?

_ (1_§> (“m)"‘(l‘m)“'(l‘ﬁ)“

to obtain Zfil P2 = %2. Let us go further, as did Euler, to match the co-
efficients of x*. Multiplying out the right side and matching with the left
produces & = 2 D isis1 # This allowed him to find the sum of Y, ; &
by doing some “infinite algebra” to relate these two sums via the binomial

theorem:

2

1 11 ?
dom| =lgtatotat Tt
i>1

1 1
_Zi_zl+2zizjz
i>1 §>i>1

Use this equation to find the exact value of ) .., %4
This coefficient matching was the beginning of an inductive process aiming
for sums of higher and higher reciprocal even powers.

Exercise 1.49. Modify Euler’s approach by using the cosine function instead
of the sine, and factoring it according to its roots. Carry out an analysis similar

32 Formally one can actually reverse one’s entire view, to derive Euler’s general
summation formula from Bernoulli’s formulas for sums of powers, by expanding
the function z of z in its Taylor series and applying Bernoulli’s formulas to the
sums of the various powers of x in the expansion.
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to what was done above for the sine, and find the precise sums of the following

series:
o0 o0

(@ > @n+1)72 () Y @n+1)7"

n=0 n=0
Exercise 1.50. The similarity between the last equation Euler derives in our
excerpt from §106 and what we called Pascal’s equation near the end of the
previous section is more than one might expect. Apply Euler’s equation to
y = 21, write the terms using binomial coefficients, and compare it with
Pascal’s equation. Notice that adding the two together causes half the sums
of powers on the right to cancel, and thus leads to an equation in which half
the powers do not appear, enabling quicker calculations. For instance, use the
resulting equation to find the formula for a sum of cubes without ever knowing
a sum of squares.

Exercise 1.51. Prove that the polynomial formula for > , i¥ always has
n(n+1)(2n+1) as a factor for k even and at least 2, and always has
n?(n+ 1)2 as a factor for k odd and at least 3. Hint: Prove each by induction
on k using the equation derived in Exercise 1.50. Analyze the roots of the
function consisting of the combined terms in the equation that are not sums
of powers greater than one. Show that it has the desired linear factors. Use
calculus to confirm repeated roots.

Exercise 1.52. Following Euler, use his equation derived in §106 to obtain
the formula for a sum of fourth powers from the known formulas for lower
powers. Pay attention to the constant A.

Exercise 1.53. Combine the excerpts from sections 114 to 122 to obtain
what is called the generating function for the Bernoulli numbers:

x T >~ B
=1-— ELpL
er —1 2+nz::2n!x

(Hint: Beware of Greek letters bearing two different meanings.) Then calculate
the Bernoulli numbers By, B3, B4 by expanding the left side in a power series,
and comparing with the right. (Hint: Expand e* and perform long division
algebraically.)

Exercise 1.54. Show that the observation implicit in Euler’s table in §121
about the denominators of Bernoulli numbers is a consequence of the the-
orem of Clausen and von Staudt that, when reduced to lowest terms, the
denominator of By, is the product of all primes p for which p — 1 divides 2n.

Exercise 1.55. Prove that for each n, 227(22" —1) By, /2n is an integer. Hint:
From Euler’s two expressions for s in §118, and the relationship to Bernoulli
numbers he gives in succeeding sections, derive a power series expression for
cot z where the coefficients are in terms of Bernoulli numbers. Now derive
the trigonometric identity tanz = cotz — 2cot 2z, and use it to obtain a
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power series for tan z. Finally, consider the successive derivatives of tan z at
0. (More generally, in this result 22 can be replaced by k%" for any integer k
[169, Appendix B].)

Exercise 1.56. Use Euler’s determination of the sums of reciprocal even
powers to obtain the estimate

(—1)"*! (2n)!

Bon & 92n—1,.2n

for the Bernoulli numbers, and explore the accuracy of this estimate against
some actual Bernoulli numbers.

Exercise 1.57. Euler’s second example in §131 is to find a closed formula for
a sum of odd cubes

1427+ 1254343 4 -+ + (22 — 1)

Carry out the details, and check your answer against the first four terms added
by hand, as he did.
Then work out how Pascal’s technique would compute this latter sum.

1.6 Euler Solves the Basel Problem

In the next chapter of the book Institutiones Calculi Differentialis, Fuler
embarks on new territory, applying the summation formula to obtain extraor-
dinarily accurate approximations for sums of a variety of infinite series and
their finite partial sums, as well as for other values of interest, such as 7. We
present here his inspiring approximation for the Basel problem on the sum of
reciprocal squares, and mention some of his other applications that the reader
may explore. Finally we discuss the profound influence on the development
of modern mathematics from Euler’s study of sums of reciprocal powers and
Bernoulli numbers.

Leonhard Euler, from
Foundations of Differential Calculus

Part Two, Chapter 6
On the summing of progressions via infinite series

140. The general expression that we found in the previous chapter for the
summative term of a series, whose general term corresponding to the index x is
z, namely

1
SZ_/zdx+§Z+1-2dx_1~2-3-4dx3

Adz Bd3z n ¢ddz
1-2---6dz5

— etc.,
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actually serves to determine the sums of series whose general terms are integral
rational functions of the index x, because in these cases one eventually arrives
at vanishing differentials. On the other hand, if z is not such a function of ,
then the differentials continue without end, and there results an infinite series
that expresses the sum of the given series up to and including the term whose
index = x. The sum of the series, continuing without end, is thus given by taking
x = 00, and one finds in this way another infinite series equal to the original.

141. If one sets z = 0, the expression represented by the series must vanish,
as we already noted; and if this does not occur, one must add to or take away
from the sum a constant amount, so that this requirement is satisfied. If this is
the case, then when z = 1 one obtains the first term of the series, when z = 2
the sum of the first and second, when & = 3 the sum of the first three terms of
the series, etc. Because in these cases the sum of the first, first two, first three,
etc. terms is known, this is also the value of the infinite series expressing the sum;
and thus one is placed in a position to sum innumerably many series.

142. Since when a constant value is added to the sum, so that it vanishes when
x = 0, the true sum is then found when z is any other number, then it is clear that
the true sum must likewise be given whenever a constant value is added that pro-
duces the true sum in any particular case. Thus suppose it is not obvious, when one
sets £ = 0, what value the sum assumes and thus what constant must be used; one
can substitute other values for x, and through addition of a constant value obtain
a complete expression for the sum. Much will become clear from the following.

OXDXIXIXIXIXIXDO

The first application Euler makes of his summation formula to an infinite
series, in §§142a-144, is to the diverging harmonic series Y .o, % This leads
to the constant bearing his name, today denoted by =, arguably the most
important special constant in all of mathematics after m and e. The Euler
constant is the limiting difference between » 7, % and Inx as x approaches
infinity. Euler extracts from the summation formula (which also diverges) an
approximation of v accurate to 15 places, and then easily obtains the sum
of the first thousand terms of the diverging harmonic series to 13 places. In
fact it is clear from what he writes that one could use his approach to find
the constant v to whatever accuracy desired, and then apply the summation
formula to find the value of arbitrarily large finite harmonic sums to that same
accuracy.>3

Let us now see how Euler applies the summation formula to that old puzzle,
the Basel problem.

OXDDDDIXXDO

148. After considering the harmonic series we wish to turn to examining the

series of reciprocals of the squares, letting
1 1 1

1
e P
5 +4+9+16+ +xx

33 Approximations of this nature are relevant even today, since we still do not know
whether Euler’s constant + is rational or irrational!
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Since the general term of this series is z = ﬁ then f zdx = —%, the differentials
of z are

dz 1 ddz 1 d3z 1 etc

2dx 23’ 2-3dz?2 2% 2-3-4dx3 2P "’

and the sum is

s—C—l—f—i—%—F%—E—f—g—E—l—etc
n x 2xx 3 x5 27 29 gl v
where the added constant C' is determined from one case in which the sum is
known. We therefore wish to set z = 1. Since then s = 1, one has

1
C:1+1f§+%7%+¢79+67etc.,

but this series alone does not give the value of C, since it diverges strongly.
OADDIDDIXIXDO

On the face of it, these formulas seem absurd. The expression Euler obtains
for the “constant” is clearly a divergent series, because of the growth of the
Bernoulli numbers, which we saw Euler analyze earlier. In fact, the summation
formula above diverges for every value of x because of the supergeometric
swiftness of growth that he established (Exercise 1.58). Euler, however, is not
fazed by this seemingly dismal situation. He has a plan for obtaining from
such divergent series highly accurate approximations for both very large finite
sums and infinite sums.

Euler’s idea is to add up the terms in the summation formula only “until
they begin to diverge” [245, p. 261], but not beyond. For those unfamiliar with
the theory of divergent series, this may seem preposterous, but in fact it has
sound theoretical underpinnings, discovered later. Euler’s entire approach was
ultimately fully vindicated [104, 106, 116, 135, 137]. Euler himself was prob-
ably sure of his work, despite its apparently shaky foundations in divergent
series, because he was continually checking and rechecking his results by a
variety of theoretical and computational methods, boosting his confidence in
their correctness from many different angles. This is a hallmark of an excellent
mathematician. When doing mathematics one should continually be checking
one’s results against the store of existing knowledge. Let us see Euler do this
for the sum of reciprocal squares.

First he notes that for this particular function, he already knows the value
of C' by other means.

OCDDDDDDDO
Above [§125] we demonstrated that the sum of the series to infinity is = 7,
and therefore setting © = oo, and s = %F, we have C' = 7, because then all

6
other terms vanish. Thus it follows that

1
L+l +2%-B+C-D¢etc :%.
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OXDXIXIXIXIXIXDO

We need not fret about exactly what Euler means when he claims that the
sum of an obviously diverging series has a specific value. He assigns values to
divergent series based on the expressions from which he creates them, as in this
example. This too was a forerunner of things to come, as later mathematicians
developed various meaningful ways of assigning values to divergent series [106,
137].

Next Euler pretends he doesn’t already know the sum of the infinite se-
ries of reciprocal squares, and approximates it using his summation formula,
thereby performing a cross-check on both methods.

OXIXXIXIXXIXDO

149. If the sum of this series were not known, then one would need to determine
the value of the constant C' from another case, in which the sum were actually
found. To this aim we set = = 10 and actually add up ten terms, obtaining®*

s =1,549767731166540690.
Further, add 1 =0,1
subtr. - =0,005
1,644767731166540690
add % = 0,000166666666666666
1,644934397833207356
subtr. 7_%5 = 0,000000333333333333

1,644934064499874023

add £ =0,000000002380952381
1,644934066880826404

subtr. 2 =0,000000000033333333
1,644934066847493071

add € = 0,000000000000757575
1,644934066848250646

subtr. - = 0,000000000000025311
1,644934066848225335

add ®_ = 0,000000000000001166

subtr. - = 71
1,644934066848226430 = C.

8

This number is likewise the value of the expression %, as one can find by calcu-
lation from the known value of 7. From this it is clear that, although the series

A, B, €, etc., diverges, it nevertheless produces a true sum.

34 Note that Euler uses commas (as still done in Europe today) rather than points,
for separating the integral and fractional parts of a decimal.



74 1 The Bridge Between Continuous and Discrete

OXDXIXIXIXIXIXDO

Recall that this series diverges due to the rapid growth of Bernoulli num-
bers. But note that the terms he actually calculates appear to decrease rapidly,
giving the initial appearance, albeit illusory, that the series converges. A closer
examination of the terms shows that their decrease is slowing in a geometric
sense, which hints at the fact that the series actually diverges. Recall that
Euler intends to sum terms only “until they begin to diverge.” How does he
decide when this occurs? Notice that the series alternates in sign, and thus
the partial sums bounce back and forth, apparently at first narrowing in,
then broadening out as the terms themselves eventually increase due to rapid
growth of the Bernoulli numbers. Euler knows to stop before the smallest
bounce, with the expectation that the true sum he seeks always lies between
any partial sum and the next one, and is thus bracketed most accurately if he
stops just before the smallest term included. It is striking that the summation
formula behaves exactly this way for many functions, including all the ones
FEuler is interested in. In fact, these are examples of what we today call asymp-
totic series, which are divergent, but diverge more and more slowly for larger
and larger values of x and can be used for valid approximations [106, 116, 137],
[135, Chapter 47]. Today asymptotic series are important in much of pure and
applied mathematics, in particular the application of differential equations to
applied problems.

Nineteenth-century mathematicians wrestled with the validity, theory, and
usefulness of divergent series. Two (divergent) views reflected this struggle:

The divergent series are the invention of the devil, and it is a shame
to base on them any demonstration whatsoever. By using them, one
may draw any conclusion he pleases and that is why these series have
produced so many fallacies and so many paradoxes. ... I have be-
come prodigiously attentive to all this, for with the exception of the
geometrical series, there does not exist in all of mathematics a sin-
gle infinite series the sum of which has been determined rigorously.
In other words, the things which are most important in mathemat-
ics are also those which have the least foundation. ... That most of
these things are correct in spite of that is extraordinarily surprising.
I am trying to find a reason for this; it is an exceedingly interesting
question. Niels Abel (1802-1829) 1826 [135, p. 973f].

The series is divergent; therefore we may be able to do something with
it. Oliver Heaviside (1850-1925) [135, p. 1096].

The terms in Euler’s calculation above actually continue to decrease for
several further steps after those he shows, which allows quite a number of
additional places of accuracy in determining C' if one wishes. Notice that the
choice of x = 10 heavily influences how much accuracy can be obtained for C.
A smaller choice for z would cause the summation formula to begin to diverge
much sooner, and with a larger final bounce, yielding less known accuracy,
while a larger x would ensure much slower divergence and great bounding
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accuracy for the answer, at the expense of having to compute a longer partial
sum to get the calculation off the ground. In Euler’s 1735 paper, in which he
approximates the sum of reciprocal squares to 20 places, he also uses x = 10.
It is profitable to explore how one can approximate the sum to any desired
degree of accuracy by appropriate choices for = and for the number of terms
used from the summation formula (Exercise 1.59).

The trade-offs involved in these choices are typical when one is using the
summation formula, both for determining C and for applying the formula
to find partial sums as well. When Euler applied the summation formula to
analyze C' = +y for the harmonic series, he also used it to calculate the partial
sum of the first million terms to 13 places. The reader may easily do even
better for partial sums of reciprocal squares (Exercise 1.60). Delightfully, for
calculating partial sums, the larger x is, the better and quicker the result from
the summation formula.

As we have discussed above, Euler was able to determine the exact sums of
all the infinite series of reciprocal even powers of the natural numbers in terms
of the Bernoulli numbers and 7. He also would have loved to find similar for-
mulas for the reciprocal odd powers, and in §§150-153 he explores these using
his summation formula. He produces highly accurate decimal approximations
for the sums of reciprocal odd powers all the way through the fifteenth, hoping
to see a pattern analogous to that for even powers, namely simple fractions
times the relevant power of 7. The first such converging series is the sum of
reciprocal cubes > 7, %3 Euler computes it accurately to seventeen decimal
places. He is disappointed, however, to find that it does not appear to be an
obvious rational multiple of 73, nor does he have better luck with the other
odd powers (Exercise 1.61).

The reader may wish to explore still other applications Euler makes of his
summation formula. In §§154-156 Euler uses the inverse tangent and cotan-
gent functions to approximate 7 to seventeen decimal places with his summa-
tion formula, and remarks that it is amazing that one can approximate 7 so
accurately with such an easy calculation. This is an enticing topic for further
investigation (Exercise 1.62).

Finally, in §§157-162 Euler uses the summation formula to approximate
both sums of logarithms and then (by exponentiating) large factorials in the
forms known as Stirling’s approzimation and Stirling’s series. These in turn
lead to approximations for large binomial coefficients. For instance, if one
tosses 100 coins, the probability that exactly equal numbers of coins will land
heads and tails is the ratio (15000) /219 but computing this number accurately
is clearly a challenge. Euler explicitly computes this probability to be 1 in
12.56451 ..., which could be useful for a bet with friends, or in Las Vegas
today.

We have now looked in some detail at how Euler derived his summation
formula, studied the Bernoulli numbers, proved Bernoulli’s sums of powers
formulas, and applied the summation formula to approximate sums of series
of reciprocal powers. We end by describing the impact today generated by
Euler’s study of sums of reciprocal powers and Bernoulli numbers.
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Euler succeeded in finding the precise sums of all infinite series of reciprocal
even powers in terms of 7w and Bernoulli numbers. He tried, but failed, to find
the sum of the reciprocal cubes and other odd powers. Even today we know
little about these sums of odd powers, although not for lack of trying. All
these series are instances of the single formula

oo
1
((z) = e
i=1
Euler recognized that this function, ¢ (“zeta”) of z, is extremely important,
not just for natural number values for z, like those we have been considering,
but for arbitrary real values of z, which he realized could actually make sense.

The zeta function is in fact key to many of the secrets of numbers, in
particular the distribution of prime numbers. The fundamental connection to
primes noticed by Euler is embodied in his product formula

)= ] a=p)7",

p prime

where the infinite product it taken over all prime numbers. Euler’s product
formula is not hard to demonstrate, at least formally (Exercise 1.63). The
distribution of prime numbers is a most elusive subject. Euler himself wrote:

Mathematicians have tried in vain to this day to discover some order
in the sequence of prime numbers, and we have reason to believe that
it is a mystery into which the human mind will never penetrate. To
convince ourselves, we have only to cast a glance at tables of primes,
which some have taken the trouble to compute beyond a hundred
thousand, and we should perceive at once that there reigns neither
order nor rule [258, p. 301].

Euler studied both {(z) and related series for values of z ranging over both
positive and negative integers, and even for certain fractional values of z. He
compared the values of these series with each other for various combinations of
z. Even when such series diverge, as do the series above for  (z) when z < 1,
Euler sought to give them meaning, by interpreting them as limiting values of
convergent power series. Euler came up with an amazing claim, which provided
a systematic comparison between different values of the zeta function.

Before stating Fuler’s claim, we must mention that he had already found
a way to generalize the factorial function n! to a function which we shall call
II(n). This new function is valid for all real numbers n except the negative
integers, and satisfies the same property II (n) = nIl (n — 1) as the factorial
for all real numbers n (except the nonpositive integers).3® Euler then discov-
ered such spectacular interpolation results as IT(—1/2) = /7 [56, pp. 7-8],

3% Today we often use a slightly reparametrized version of this function, called the
gamma function, defined by I'(n + 1) = II(n), even though the function II(n)
seems more natural.
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[104, pp. 259f, 360], [135, pp. 422-424]. Making use of this generalization IT
of the factorial, Euler’s claim about { essentially has the form

C(1—2)=n"7"2"""IT(2 — 1) cos (%) ¢(2).

Today this is called the functional equation of the zeta function, and it can
be written in many slightly different forms [10], [56, pp. 12-15]. The equation
relates certain values of zeta to certain other values, as did the functional
equation IT (n) = nII (n — 1) for the generalized factorial. Specifically, notice
that comparing the value at 1— z to that at z involves reflection around z = %
(Exercise 1.64). Indeed some of the alternative forms of the functional equation
emphasize this by expressing precisely an invariance under this symmetry [56,
pp. 12-15]. Since from our Euler selections we know the values Euler calculated
for ¢ (2n) in terms of Bernoulli numbers (see after section 122), the functional
equation now provides us the values of ¢ at corresponding reflected negative
integers (Exercise 1.65).

Euler essentially verified the functional equation for all integer values of z,
and also for z = % and %, by computing both sides independently. His compu-
tations for integers z used all the techniques and tricks he could muster from
calculus to interpret certain diverging series as meaningful limits of converging
power series representations of functions. For z = % he used his previous de-
termination that IT (—1/2) = /7, and for z = 2 he even boldly approximated
the relevant diverging series via the Euler—-Maclaurin summation formula! All
these results provide support, but not proof, for his claimed functional equa-
tion. A lovely description of Euler’s work on the zeta function and how he was
led to his claim is given in [10], and further engaging exposition about the
function can be found in [106, pp. 23-26], [245, pp. 272-276], and of course in
Euler’s own writings. The early history of the development of the zeta function
is described in general in [204].

For a hundred years Euler’s functional equation for the zeta function was
forgotten. Then in an 1859 memoir, Bernhard Riemann (1826-1866) provided
the first proof of the functional equation. Today we call ¢ the Riemann zeta
function, due to his pathbreaking advances. Riemann first showed that the
function ¢(z), which as defined by Euler for real z via Y .-, 1/i* converges
only for z > 1, actually has a unique meaningful extension to all the complex
numbers except z = 1. Of course Riemann’s extension must in general be
expressed in other ways than Euler’s [56, pp. 9-11]. This is done by a modern
method known as analytic continuation, and the function is expressed by inte-
gration using the complex numbers (see Exercise 1.66). The extended complex
function ( is of a type that we today call complex analytic, which means that
is is amenable to all the tools of calculus, and also that it is expressible locally
by power series. (This is the case, too, for IT(n) wherever it is defined.) We
warmly recommend [56] as a historically oriented introduction to Riemann’s
work and the fascinating world it leads to.
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Fig. 1.11. Contours of the Riemann zeta function.

Although the discrete pattern of primes is still elusive today, as Euler pre-
dicted 250 years ago, some of their mystery has been unveiled by the complex-
analytic study of the zeta function. In particular, Riemann showed that the
location of its zeros provides information about the distribution of primes. He
proved that, in the complex plane, all the zeros of the zeta function, except
for certain obvious ones, called the trivial zeros, on the negative real axis (Ex-
ercise 1.67), lie in the vertical strip of numbers with real part between zero
and one, inclusive. He then used this fact to estimate the number of primes
in any interval of numbers.

Figures 1.11, 1.12, 1.13 [124] display information about zeta. As a complex-
valued function of a complex variable, zeta is hard to display in a single
picture. The displayed contour graphs sketch on the domain plane the level
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Fig. 1.13. Relief of the modulus of the Riemann zeta function. The lines of steepest
gradient denoted by 0, on the right-hand side of the figure, come from a zero; those
denoted by co come from an infinity.

curves of the absolute value s (modulus) and of the argument o (polar angle) of
zeta. The argument level curves are labeled in right-angle units measured from
the positive real axis. The relief graph is of the modulus of zeta. These contain
a wealth of features, beginning with the trivial zeros along the negative real
axis, the pole at 1 where ( is undefined, and further zeros appearing along the
vertical line with real part equal to one-half, called the critical line. The reader
is invited to study these and also many wonderful graphical and interactive
Internet pages about the Riemann zeta function (Exercise 1.68).

By the mid-nineteenth century, Riemann and others were focusing on a
conjecture, first formulated by Carl Gauss (1777-1855) and Adrien-Marie Leg-
endre (1752-1833) around the turn of the century. One form of this conjecture

stated that if one lets 7(z) denote the number of primes not exceeding z, then
w(x) m(x)
z/ l;ILwc Tz
ing x is approximately 1/Inx [56, 226, 258].
Near the end of the century, in 1896, Jacques Hadamard (1865-1963) and
Charles-Jean de la Vallée Poussin (1866-1962) each succeeded in proving

this conjecture, now known as the prime number theorem, one of the most

of prime numbers not exceed-

limg o0 = 1. That is, the proportion
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fundamental properties we know about primes. In fact, if we could obtain
even more precise information about the location of the zeros of the zeta
function, we would know much more about prime numbers. Riemann made
his own conjecture, that in the plane of complex numbers all the nonreal zeros
of zeta actually lie on the critical line. This conjecture, known today as the
Riemann hypothesis, is perhaps the most famous unsolved problem in all of
mathematics, and has driven the development of much of the modern branch
of mathematics known as analytic number theory [6, 56, 226, 258]. Thus Eu-
ler’s seminal work on sums of reciprocal powers, the Bernoulli numbers, and
the zeta function formed the nucleus leading to some of the most vital research
going on in mathematics today.

Exercise 1.58. Prove that the supergeometric rate of growth of the Bernoulli
numbers, obtained by Euler in §129, forces his infinite series in §148 for a sum
of reciprocal squares to diverge for all x.

Exercise 1.59. Using x = 10 in his summation formula, Euler gave the sum
of reciprocal squares to 20 places. Do this by taking enough terms in the
summation formula, and check your results against the exact sum, which we
know is m2/6. Then explore how to increase the accuracy in two different
ways, either by using more terms of the summation formula, providing it does
not start to diverge, or by increasing x, the number of terms of the sum of
reciprocal squares calculated on the left side. How do these two approaches
interact? Explain why this method can provide any arbitrary accuracy desired.

Exercise 1.60. Use the summation formula to find the sum of the first mil-
lion terms in the sum of reciprocal squares to 17 decimal places. Hint: With
C already determined to this accuracy, set x = 1,000,000 and add up the
summation formula, as long as it does not begin to diverge. Compare this
with how long it would take to find this sum by instead actually adding up
the individual one million terms. Finally, can you think of how to adapt the
summation formula to obtain any desired degree of accuracy for any partial
sum?

Exercise 1.61. Follow in Euler’s footsteps by using his summation formula
to approximate Zfil %3 to seventeen decimal places. Euler obtained 1.202
056 903 159 594 28. Study whether it appears to be a simple rational multiple
of 73, as Euler had hoped it might be.

Exercise 1.62. Analyze Euler’s approximation of 7 in §§154-156 [66, v. 10],
[67], and extend it to compute a few more decimal places. Discuss its efficiency.

Exercise 1.63. Derive the Euler product formula
)= I a-p>
p prime

at least formally, by expanding each factor in the product as a geometric
. . 1N~ i
series, recalling that = = .~ 2"
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Exercise 1.64. Since the two evaluations ¢ (1 — z) and ¢ (z) in the functional
equation for the zeta function must agree at the point of reflection z = %, check
1

that all the remaining factors in the equation cancel out when z = 3.

Exercise 1.65. Use the functional equation to determine the values of the
zeta function at the negative odd integers.

Exercise 1.66. For the reader who has studied complex analysis: First read
the description in [56, pp. 9-10] of the contour integral expressing the zeta
function, valid on the entire complex plane, with a simple pole at z = 1. Then
read and write a justification for every step of the explicit calculation there
of the values of the zeta function at the nonpositive integers in terms of the
Bernoulli numbers [56, pp. 11-12].

Exercise 1.67. Use the functional equation to determine the values of the
zeta function at the negative even integers. Why can’t you use the equation
in the other direction to find the values of zeta at the positive odd integers?
Can you use the functional equation to find the value of zeta at zero?

Exercise 1.68. Copy Figures 1.11, 1.12, 1.13 and color them to see some of
their remarkable features. For each z in the complex plane, ¢ (z), itself another
point in the complex plane, has an angle, or argument, whose level curves are
labeled with ¢ in Figures 1.11, 1.12. Interpret this angle as a color on the color
wheel, and color the points z on the domain with the color corresponding to
¢ (z). What do you notice is different between the zeros and the pole of (?
Describe some other mathematical features you notice from your colorings.
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Solving Equations Numerically:
Finding Our Roots

2.1 Introduction

The formula
(zn)
[ (@)
is one of the most widely used algorithms in computers today, from the guid-
ance systems for rockets to the calculation of orbits of heavenly bodies. From
an initial guess xg, one proceeds recursively to find x1, xs,z3,... . This algo-
rithm is often called Newton’s method, but in this book we call it Simpson’s
fluzional method, since it first appears in a textbook of Thomas Simpson in
1740 using fluxions [214].

By applying the algorithm to the polynomial f (z) = 23 — 1, whose well-
known roots make the root-finding transparent, we obtain the following values
when it is started at zg = 2.

Tptl = Ty — (2.1)

Tn

[ (@)

fan) /1 (2n)

$n+1

n
0
1
2
3
4

2
1.41666 6667
1.11053 4410
1.01063 6768
1.00011 1557

7.0

1.843171296
0.36960 7290
0.03322 5093
0.00033 4709

12.0
6.02083 3333
3.69986 0026
3.06416 0032
3.00066 9381

0.58333 3333
0.30613 2257
0.09989 7641
0.01052 5211
0.00011 1544

1.41666 6667
1.11053 4410
1.01063 6768
1.00011 1557
1.00000 0012

The last column appears to be converging to 1, a root of f, with the number
of significant digits doubling at each step. In general, these iterates should
approach a root r of any reasonable function f, that is, lim, .., x, = r with
Fr)=o.

An intuitive explanation of this algorithm is illustrated in Figure 2.1, where
we have graphed the function f, together with several iterations. The hy-
potenuse of each triangle has a slope: [/ (z,) = f(x,)/(xn — Tpy1), from
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Fig. 2.1. Simpson’s method (not to scale).

which equation the earlier formula (2.1) is immediately derived by solving for
Tn+1-

How fast is this algorithm? Remarkably fast! This is part of its strong
appeal. The technical term is quadratic convergence; this means that once the
algorithm is underway, the number of new significant digits generally doubles
at each iteration, as already observed in the example.

But how good is Simpson’s method? Does it always converge to a root?
And is it the root we want if there is more than one? Despite the method’s
apparent success in practice, one can easily construct all sorts of nasty coun-
terexamples (Exercise 2.1). In our example of f (r) = x® — 1, the derivative
f'(z) is 0 at = 0; so the tangent line will never meet the X-axis, and thus,
with o = 0, the iteration scheme (2.1) stops abruptly (Figure 2.2). Worse
yet, there are infinitely many such deadbeats, i.e., values of xg that fail ever
to reach a root. For instance, to the left of 0 where xo = —1/+/2, the tangent
line in Figure 2.1 meets the X-axis at x; = 0, taking us back to the previous
dead end! Now it is easy to keep moving leftward, finding more and more
deadbeats. We simply work backwards by setting x,1 to a previous undesir-
able and solving for x,, in (2.1). But what about the two well-known complex
roots of 3 — 1, and points in the complex plane that converge toward them,
or fail to?

The swirling haunting pattern of “Fractal with Basins” on the color insert!
displays the fate of initial points in the complex plane, and comes from a
detailed examination of how Simpson’s formula (2.1) bounces points around

before aiming them at a root, if it ever does. The function i