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Preface

Algebraic curves are the graphs of polynomial equations in two vari-
ables, such as y® + 5xy? = x% + 2xy. This book introduces the study of al-
gebraic curves by focusing on curves of degree at most 3—lines, conics,
and cubics—over the real numbers. That keeps the results tangible and
the proofs natural. The book is designed for a one-semester class for
undergraduate mathematics majors. The only prerequisite is first-year
calculus.

Algebraic geometry unites algebra, geometry, topology, and analysis,
and it is one of the most exciting areas of modern mathematics. Unfortu-
nately, the subject is not easily accessible, and most introductory courses
require a prohibitive amount of mathematical machinery. We avoid this
problem by basing proofs on high school algebra instead of linear alge-
bra, abstract algebra, or complex analysis. This lets us emphasize the
power of two fundamental ideas, homogeneous coordinates and intersec-
tion multiplicities.

Every line can be transformed into the x-axis, and every conic can
be transformed into the parabola y = x*. We use these two basic facts
to analyze the intersections of lines and conics with curves of all degrees,
and to deduce special cases of Bezout's Theorem and Noether's Theo-
rem. These results give Pascal’'s Theorem and its corollaries about poly-
gons inscribed in conics, Brianchon’s Theorem and its corollaries about
polygons circumscribed about conics, and Pappus’ Theorem about hexa-
gons inscribed in lines. We give a simple proof of Bezout's Theorem for
curves of all degrees by combining the result for lines with induction on
the degrees of the curves in one of the variables. We use Bezout’s Theo-
rem to classify cubics. We introduce elliptic curves by proving that a cu-

vii



viii Preface

bic becomes an abelian group when collinearity determines addition of
points; this fact plays a key role in number theory, and it is the starting
point of the 1995 proof of Fermat's Last Theorem.

The 2nd Edition differs from the 1st in Chapter IV by using power se-
ries to parametrize curves. We apply parametrizations in two ways: to
derive the properties of intersection multiplicities employed in Chapters
I-1IT and to extend the duality of curves and envelopes from conics to
curves of higher degree.

The 2nd Edition also has a simpler proof of duality for conics in The-
orem 7.3. There are new Exercises 5.7, 6.21-6.23, 7.17-7.23, 11.21, and
11.22 on conics, foci, and director circles.

A one-semester course can skip Sections 13 and 16, whose results are
not needed in other sections. The more technical parts of Sections 14
and 15 can be covered lightly.

The exercises provide practice in using the results of the text, and
they outline additional material. They can be homework problems when
the book is used as a class text, and they are optional otherwise.

I am greatly indebted to Harry D’Souza for sharing his expertise, to
Richard Alfaro for generating figures by computer, to Richard Belshoff
for correcting errors, and to Renate McLaughlin, Kenneth Schilling, and
my late brother Michael Bix for reviewing the manuscript. I am also
grateful to the students at the University of Michigan-Flint who tried
out the manuscript in classes.

Robert Bix
Flint, Michigan
November 2005



 Intersections
~ of Curves

CHAPTER

Introduction and History
Introduction

An algebraic curve is the graph of a polynomial equation in two variables
x and y. Because we consider products of powers of both variables, the
graphs can be intricate even for polynomials with low exponents. For
example, Figure 1.1 shows the graph of the equation

7% = cos 20

in polar coordinates. To convert this equation to rectangular coordinates
and obtain a polynomial in two variables, we multiply both sides of the
equation by r? and use the identity cos 20 = cos? 0 — sin? 0. This gives
r* = 1% cos? O — r*sin? 0. (1)
We use the usual substitutions r* = x* + y%, rcos = x, and rsinf = y to
rewrite (1) as
(XZ +y2)2 — XZ _yZ.

Multiplying this polynomial out and collecting its terms on the left gives

M2y 4yt -4yt =o0. (2)
Thus Figure 1.1 is the graph of a polynomial in two variables, and so it is
an algebraic curve.

We add two powerful tools for studying algebraic curves to the famil-
iar techniques of precalculus and calculus. The first is the idea that

1
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Figure 1.1

curves can intersect repeatedly at a point. For example, it is natural to
think that the curve in Figure 1.1 intersects the x-axis twice at the origin
because it passes through the origin twice. We develop algebraic tech-
niques in Section 1 for computing the number of times that two algebraic
curves intersect at the origin.

The second major tool for studying algebraic curves is the system of
homogeneous coordinates, which we introduce in Section 2. This is a
bookkeeping device that lets us study the behavior of algebraic curves
at infinity in the same way as in the Euclidean plane. Erasing the distinc-
tion between points of the Euclidean plane and those at infinity simpli-
fies our work greatly by eliminating special cases.

We combine the ideas of Sections 1 and 2 in Section 3. We use homo-
geneous coordinates to determine the number of times that two alge-
braic curves intersect at any point in the Euclidean plane or at infinity.
We also introduce transformations, which are linear changes of coordi-
nates. We use transformations throughout our work to simplify the equa-
tions of curves.

We focus on the intersections of lines and other curves in Section 4.
If a line [ is not contained in an algebraic curve F, we prove that the
number of times that [ intersects F, counting multiplicities, is at most
the degree of F. This introduces one of the main themes of our work:
the geometric significance of the degree of a curve. We also characterize
tangent lines in terms of intersection multiplicities.

History

Greek mathematicians such as Euclid and Apollonius developed geome-
try to an extraordinary level in the third century B.c. Their algebra,
however, was limited to verbal combinations of lengths, areas, and
volumes. Algebraic symbols, which give algebraic work its power, arose
only in the second half of the 1500s, most notably when Francois
Vieta introduced the use of letters to represent unknowns and general
coefficients.

Geometry and algebra were combined into analytic geometry in the
first half of the 1600s by Pierre de Fermat and René Descartes. By assert-
ing that any equation in two variables could be used to define a curve,
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they expanded the study of curves beyond those that could be con-
structed geometrically or mechanically.

Fermat found tangents and extreme points of graphs by using essen-
tially the methods of present-day calculus. Calculus developed rapidly in
the latter half of the 1600s, and its great power was demonstrated by
Isaac Newton and Gottfried Leibniz. In particular, Newton used implicit
differentiation to find tangents to curves, as we do after Theorem 4.10.

Apart from its role in calculus, analytic geometry developed gradually.
Analytic geometers concentrated at first on giving analytic proofs of
known results about lines and conics. Newton established analytic geom-
etry as an important subject in its own right when he classified cubics, a
task beyond the power of synthetic —that is, nonanalytic—geometry. We
derive one of Newton's classifications of cubics in Chapter III.

While Fermat and Descartes were founding analytic geometry in the
first half of the 1600s, Girard Desargues was developing a new branch of
synthetic geometry called projective geometry. Renaissance artists and
mathematicians had raised questions about drawing in perspective.
These questions led Desargues to consider points at infinity and projec-
tions between planes, concepts we discuss at the start of Section 2. He
used projections between planes to derive a remarkable number of theo-
rems about lines and conics. His contemporary, Blaise Pascal, took up
the projective study of conics, and their work was continued in the late
1600s by Philippe de la Hire.

Projective geometry languished in the 1700s as calculus and its appli-
cations dominated mathematics. Work on algebraic curves focused on
their intersections, although multiple intersections were not analyzed
systematically until the nineteenth century, as we discuss at the start of
Chapter IV. We introduce intersection multiplicities in Section 1 so that
we can automatically handle the special cases of theorems that arise
from multiple intersections.

At the start of the 1800s, Gaspard Monge inspired a revival of syn-
thetic geometry. His student Jean-Victor Poncelet championed synthetic
projective geometry as a branch of mathematics in its own right. Mathe-
maticians argued vigorously about the relative merits of synthetic and
analytic geometry, although each subject actually drew strength from
the other.

Analytic geometry was revolutionized when homogeneous coordi-
nates were used to coordinatize the projective plane. Augustus Mobius
introduced one system of homogeneous coordinates, barycentric coordi-
nates, in 1827. He associated each point P in the projective plane with
the triples of signed weights to be placed at the vertices of a fixed trian-
gle so that P is the center of gravity. In 1830, Julius Pliicker introduced
the system of homogeneous coordinates that is currently used, which we
introduce in Section 2.

Throughout the 1830s, Pliicker used homogeneous coordinates to
study curves. He obtained remarkable results, which we discuss in the
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History for Chapter IV. Together with Riemann’s work, which we dis-
cuss at the start of Chapter III, Pliicker’s results provided much of the in-
spiration for the subsequent development of algebraic geometry.

Mobius and Plicker also considered maps of the projective plane
produced by invertible linear transformations of homogeneous coordi-
nates. These are the transformations we discuss in Section 3. Much of
nineteenth-century algebraic geometry was devoted to studying invari-
ants, the algebraic combinations of coordinates of n-dimensional space
that are preserved by invertible linear transformations. Founded
by George Boole in 1841, invariant theory was developed in the latter
half of the 1800s by such notable mathematicians as Arthur Cayley,
James Sylvester, George Salmon, and Paul Gordan. Methods of abstract
algebra came to dominate invariant theory when they were introduced
by David Hilbert in the late 1800s and Emmy Noether in the early
1900s.

§1. Intersections at the Origin

An important way to study a curve is to analyze its intersections with
other curves. This analysis leads to the idea of two curves intersecting
more than once at a point. We devote this section to studying multiple
intersections at the origin, where the algebra is simplest.

A polynomial f or f(x, y) in two variables is a finite sum of terms of the
form ex'y/, where the coefficient e is a real number and the exponents
i and j are nonnegative integers. We say that a term ex'y/ has degree i + j
and that the degree of a nonzero polynomial is the maximum of the de-
grees of the terms with nonzero coefficients. For example, the six terms
of the polynomial

Yy —2x%y +7xy — 3x* +7x + 5

have respective degrees 3, 4, 2, 2, 1, and 0, and the degree of the poly-
nomial is 4. We work over the real numbers exclusively until we introduce
the complex numbers in Section 10.

We define an algebraic curve formally to be a polynomial f(x, y) in two
variables, and we picture the algebraic curve as the graph of the equa-
tion f(x,y) = 0 in the plane. We abbreviate the term “algebraic curve”
to “curve” because the only curves we consider are algebraic; that is,
they are given by a polynomial equation in two variables. We refer both
to the “curve f(x,y)” and to the “curve f(x,y) = 0,” and we even rewrite
the equation f(x,y) = 0 in algebraically equivalent forms. For example,
we refer to the same curve as y — x%, y — x> = 0, and y = x*. Of course,
we say that the curve f(x, y) contains a point (a, b) and that the point lies
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Figure 1.1

Figure 1.2

on the curve when f(a,b) = 0. When the polynomial f(x,y) is nonzero,
we refer to its degree as the degree of the curve f(x,y) = 0.

One reason we define a curve formally to be a polynomial rather than
its graph is to keep track of repeated factors. We imagine that the points
of the graph that belong to repeated factors are themselves repeated. For
example, we think of the curve

(y =24y —»)°
as two copies of the parabola y = x? and three copies of the line y = x.
This idea helps the geometry reflect the algebra.

We turn now to the idea that curves can intersect more than once at a
point. As we noted in the chapter introduction, it is natural to think that
the curve in Figure 1.1 intersects the x-axis twice at the origin because
the curve seems to pass through the origin twice.

For a different type of example, note that two circles with overlapping
interiors intersect at two points (Figure 1.1). As the circles move apart,
their two points of intersection draw closer together until they coalesce
into a single point P (Figure 1.2). Accordingly, it seems natural to think
that the circles in Figure 1.2 intersect twice at P.

Similarly, any line of positive slope through the origin intersects
the graph of y = x® in three points (Figure 1.3). As the line rotates about
the origin toward the x-axis, the three points of intersection move to-
gether at the origin, and they all coincide at the origin when the line
reaches the x-axis. Accordingly, it is natural to think that the curve
y = x3 intersects the x-axis three times at the origin.

Let O be the origin (0,0). We assign a value Io(f,g) to every pair
of polynomials f and g. We call this value the intersection multiplicity of
f and g at O, and we think of it as the number of times that the curves
f(x,y) =0 and g(x, y) = 0 intersect at the origin.
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Figure 1.3

What properties should the assignment of the values Io(f,g) have?
The proof of Theorem 1.7 will show that we need to allow for the possi-
bility that curves intersect infinitely many times at the origin. We expect
the following result, where the symbol co denotes infinity:

Property 1.1
Io(f, g) is a nonnegative integer or oo. O

The order in which we consider two curves should not affect the num-
ber of times they intersect at the origin. This suggests the next property:

Property 1.2
Io(f,g) = Io(g. f). O

If either of two curves fails to contain the origin, they do not intersect
there, and their intersection multiplicity at the origin should be zero. On
the other hand, if both curves contain the origin, they do intersect there,
and their intersection multiplicity should be at least 1. Thus, we expect
the following property to hold:

Property 1.3
Io(f,g) = 1 if and only if f and g both contain the origin. O

Of course, we consider oo to be greater than every integer, so that
Property 1.3 allows for the possibility that Io(f,g) = o0 when f and g
both contain the origin.

The y- and x-axes seem to intersect as simply as possible at the origin,
and so we expect them to intersect only once there. Since the axes have
equations x = 0 and y = 0, we anticipate the following property:

Property 1.4
IO<X> y> =1 U
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Let f, g, and h be three polynomials in two variables, and let (a, b) be
a point. The equations

fla,b)=0  and  gla,b) =0 (1)
imply the equations
fla,b) =0 and  g(a,b) + f(a,b)h(a,b) = 0. (2)

Conversely, the equations in (2) imply the equations in (1). In short, f
and g intersect at (a, b) if and only if f and g + fh intersect there. Gener-
alizing this to multiple intersections at the origin suggests the following:

Property 1.5
Io(f,8) = Io(f,g+ fh). O

One reason to expect that Property 1.5 holds for multiple as well
as single intersections is the discussion accompanying Figures 1.1-1.3,
which suggests that we can think of a multiple intersection of two curves
as the coalescence of single intersections.

The equations f(a,b) =0 and g(a,b)h(a,b) =0 hold if and only if
either f(a,b) =0 =g(a,b) or f(a,b) =0 = h(a,b). Thus, f and gh inter-
sect at a point if and only if either f and g intersect there or f and h
intersect there. That is, we get the points where f and gh intersect by
combining the intersections of f and g with the intersections of f and
h. As above, we expect this property to extend to multiple intersections
because we think of a multiple intersection as the coalescence of single
intersections. Thus, we expect the following:

Property 1.6
IO(f9gh) :Io<f>g> +Io(fa h) ]

The value of Ip(f, g) does not depend on the order of f and g (by Prop-
erty 1.2). Thus, Property 1.5 states that the intersection multiplicity of
two curves at the origin remains unchanged when we add a multiple of
either curve to the other. Likewise, Property 1.6 shows that we can break
up a product of two polynomials in either position of Ip(_, ).

Property 1.6 reinforces the idea that repeated factors in a polynomial
correspond to repeated parts of the graph. For example, Properties 1.2,
1.4, and 1.6 show that

Io(x*, y) = 2Io(x, y) = 2.

When we think of x> = 0 as two copies of the line x = 0, it makes sense
that x> = 0 intersects the line y = 0 twice at the origin, because each of
the two copies of x = 0 intersects y = 0 once.
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We use the term intersection properties to refer to Properties 1.1-1.6
and further properties introduced in Sections 3, 11, and 12. We must
prove that we can assign values Ip(f, g) for all pairs of curves f and g so
that Properties 1.1-1.6 hold. We postpone this proof until Chapter IV so
that we can proceed with our main task, using intersection properties to
study curves. Of course, the results we obtain depend on our proving the
intersection properties in Chapter IV.

In the rest of this section, we show how Properties 1.1-1.6 can be used
to compute the intersection multiplicity of two curves at the origin. The
discussion accompanying Figures 1.1-1.3 suggests that Ip(f, g) measures
how closely the curves f and g approach each other at the origin. When
f is a factor of g, the graph of g = 0 contains the graph of f = 0. Thus, we
are led to expect the following result:

Theorem 1.7
If f and g are polynomials such that f is a factor of g and the curve f =0
contains the origin O, then Io(f, g) is co.

Proof

Consider first the case where g is the zero polynomial 0. (The theorem
includes this case because the zero polynomial has every polynomial f
as a factor, since 0 = f - 0.) Since Ip(f,0) > 1 (by Property 1.3), it follows
for every positive integer n that

n < nlp(f,0) = Ip(f,0") (by Property 1.6)
- IO(fa O)

Because this holds for every positive integer n, Io(f, 0) must be co.
In general, if g is any polynomial that has f as a factor, we can write
g = fh for a polynomial h. Then we have

IO(f9 g) = IO(f: fh)
=Io(f,fh— fh) (by Property 1.5)
= IO()C’ 0) = 00,
by the previous paragraph. O

The proof of Theorem 1.7 shows why we needed to allow infinite
intersection multiplicities in Property 1.1.

The following result shows that we can disregard factors that do not
contain the origin when we compute intersection multiplicities at the
origin:

Theorem 1.8
If f, g, and h are curves and g does not contain the origin, we have

IO(fa gh> = IO(fa h)
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Proof
Properties 1.6, 1.3, and 1.1 show that

IO(fa gh) = Io(f, g> + IO(f’ h) = Io(fa h)a

since Io(f, g) = 0 because g does not contain the origin. O

To illustrate the use of the intersection properties, we find the num-
ber of times that y — x? and y® + 2xy + A% intersect at the origin. We use
Property 1.5 to eliminate y from the second polynomial by subtracting
a suitable multiple of the first. To find this multiple, we use long divi-
sion with respect to y to divide the first polynomial into the second, as
follows:

¥+ Xy + 2x + x*

y—x2> e + 2xy + 5
P y?
x2y? + 2xy
2yt — iy
(2x + xMy + X8

Qx+xYy — 223 — °

2x3 + 2x6.

Each step of the division eliminates the highest remaining power of y
until only a polynomial in x is left: the three steps of the division elimi-
nate the y°, y?, and y terms. The division shows that

Y4 2xy + % = (y — ) (Y + Xy 4+ 2x + 1) 4 2x° + 240, (3)

Thus, we are left with the remainder 2x® + 2x, which does not contain
Y, when we subtract a multiple of y — x? from y> + 2xy + x5. It follows
that

Io(y — X%, y° + 2xy + 2%) = Ip(y — x%, 2x° + 2x°)
(by (3) and Property 1.5)
= Io(y —#*,x*(2+ 2x%))
=Io(y — x*,x%*) (by Theorem 1.8)
= 3Ip(y — x*,x) (by Property 1.6)
= 3Io(y, x)
(by Properties 1.2 and 1.5, since y — x? differs from y by a multiple of x)
=3 (by Properties 1.2 and 1.4).

Thus, y = x? intersects y* + 2xy + x% = 0 three times at the origin.
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Of course, a polynomial p(x) in one variable x is a finite sum of terms
of the form ex!, where ¢ is a real number and i is a nonnegative integer.
By generalizing the previous paragraph, we can find the number of
times that a curve of the form y = p(x) intersects any curve g(x,y) =0
at the origin. This is easy to do because we do not need long division to
find the remainder when g(x, y) is divided by y — p(x) with respect to y.
The next theorem shows that the remainder is g(x, p(x)), the result of
substituting p(x) for y in g(x,y). For example, we did not have to use
long division above to find the remainder when y® + 2xy + x° is divided
by y — x%. All we needed to do was substitute x? for y in y® 4 2xy + x° to
find that the remainder is (x¥?)3 4+ 2x(x?) 4+ x5 = 2x3 4+ 2x5, as before.

Theorem 1.9
Let p(x) and g(x,y) be polynomials.

(i) If we use long division with respect to y to divide g(x, y) by y — p(x), the
remainder is g(x, p(x)). This means that there is a polynomial h(x, y)
such that

8% y) = (y — p(x))h(x, y) + &(x, p(x)). (4)
(i) In particular, y — p(x) is a factor of g(x, y) if and only if g(x, p(x)) is the

zero polynomial.

Proof

(i) Let h(x, y) be the quotient when we use long division with respect to y
to divide y — p(x) into g(x, y). The remainder is a polynomial r(x) in x be-
cause each step of the division eliminates the highest remaining power
of y. We have

8%, y) = (y — p(x))h(x, y) + r(x). (5)

Substituting p(x) for y in (5) makes y — p(x) zero and shows that

g(x, plx)) = r(x).

Together with (5), this gives (4).
(ii) If g(x, p(x)) is the zero polynomial, (4) shows that y — p(x) is a
factor of g(x, y). Conversely, if y — p(x) is a factor of g(x, y), we can write

g%, y) = (y — p(x)k(x, y)

for a polynomial k(x, y). Substituting p(x) for y shows that g(x, p(x)) is
Z€ero. [l

We obtain a familiar result from Theorem 1.9 if we assume that x does
not appear in p or g. Then p is a real number b, and g is a polynomial
g(y) in y. When we divide g(y) by y — b, the quotient is a polynomial
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h(y) in y, and the remainder is a real number r. This gives the following
special case of Theorem 1.9, which we note for later reference:

Theorem 1.10
Let g(y) be a polynomial in y, and let b be a real number.

(i) The remainder when we divide g(y) by y — b is g(b). This means that
there is a polynomial h(y) such that

8(y) =(y —Db)h(y) +g(b).
(ii) In particular, y — b is a factor of g(y) if and only if g(b) = 0. O

We can now find the intersection multiplicity at the origin of curves of
the form y = p(x) and g(x,y) = 0. By Theorem 1.9, we can eliminate all
powers of y from g(x,y) by subtracting a suitable multiple of y — p(x),
and we are left with g(x, p(x)). We can then use the intersection proper-
ties to find the intersection multiplicity. This gives the following result:

Theorem 1.11

Let y = p(x) and g(x,y) = 0 be curves. Assume that y = p(x) contains the
origin and that y — p(x) is not a factor of g(x,y). Then the number of times
that y = p(x) and g(x,y) = 0 intersect at the origin is the smallest degree of
any nonzero term of g(x, p(x)).

Proof

Since y — p(x) is not a factor of g(x, y), g(x, p(x)) is nonzero (by Theorem
1.9 (ii)). If s is the smallest degree of any nonzero term of g(x, p(x)), we
can factor x° out of every term of g(x, p(x)) and write

g(x, p(x)) = x°q(x)

for a polynomial g(x) whose constant term is nonzero.
Theorem 1.9 (i) shows that

g% y) = (y — p(x))h(x, y) + x°q(x) (6)

for a polynomial h(x,y). Subtracting the product of y — p(x) and h(x, y)
from g(x, y) gives

Io(y — p(%), 8(%, y)) = Io(y — p(x),x°q(x))
(by (6) and Property 1.5)
= Io(y — p(x),x°)

(by Theorem 1.8, since the fact that g(x) has nonzero constant term
implies that the plane curve g(x) = 0 does not contain the origin)

= slo(y — p(x),X) (7)
(by Property 1.6).
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The assumption that y = p(x) contains the origin means that p(0) = 0.
Thus, the polynomial p(x) has no constant term, and so we can factor x
out of p(x) and write

p(x) = xt(x) (8)
for a polynomial t(x). Adding x times t(x) to y — p(x) shows that
Io(y — p(x), x) = Io(y, )
(by (8) and Properties 1.2 and 1.5)
=1

(by Properties 1.2 and 1.4). Together with (7), this shows that y = p(x)
and g(x,y) = 0 intersect s times at the origin. O

After the proof of Theorem 1.8, it took some effort to find the number
of times that y — x? and y® + 2xy + x° intersect at the origin. Theorem
1.11 makes it easy to do so.

ExampLE 1.12
How many times do the curves y = x? and y® + 2xy + x® = 0 intersect at
the origin?

Solution
Substituting x¥* for y in y* + 2xy + x° gives

(x%)3 4 2x(x?) + 2% = 2x% + 245,

Since this is nonzero, y — x? is not a factor of y* + 2xy + x% (by Theorem
1.9(ii)). Moreover, y = x? contains the origin, and so we can apply
Theorem 1.11. The smallest power of x appearing in 2x* + 2x% is x%, and
so the intersection multiplicity is 3, by Theorem 1.11. O

Theorem 1.11 makes it easy to determine the number of times that
two curves intersect at the origin when the equation of one curve ex-
presses y as a polynomial in x. This result enables us to determine
the intersection multiplicities of lines and conics with other curves in
Sections 4 and 5. Note that we can check the condition in Theorem 1.11
that y — p(x) is not a factor of g(x,y) by checking that g(x, p(x)) is
nonzero (by Theorem 1.9(ii)).

Let p(x) be a nonzero polynomial without a constant term. Since
p(0) = 0, the curve y = p(x) contains the origin. Since p(x) is nonzero,
y — p(x) is not a factor of y. Thus, if we take g(x, y) in Theorem 1.11 to
be the polynomial y, we see that the intersection multiplicity of y = p(x)
and the x-axis y = 0 at the origin is the exponent of the smallest power of
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x appearing in p(x). For example, both of the curves
y=x'—5x+7x* and y=7x* (9)

intersect the x-axis twice at the origin. It makes sense that these inter-
section multiplicities are equal because x* and x* approach zero faster
than x? as x goes to zero, and so both curves in (9) approach the x-axis
at the origin in essentially the same way.

The previous paragraph shows that, for any positive integer n, y = x"
intersects the x-axis y = 0 n times at the origin. This reflects the fact that
y = x" approaches the x-axis near the origin with increasing closeness
as n grows. In particular, y = x% intersects the x-axis three times at the
origin, which reflects the discussion accompanying Figure 1.3.

Theorem 1.11 determines the number of times that two curves inter-
sect at the origin when the equation of one curve expresses y as a poly-
nomial in x. On the other hand, we can find the number of times that
any two curves intersect at the origin by applying Properties 1.1-1.6
and Theorems 1.7 and 1.8. The idea is to use Properties 1.5 and 1.6 to
eliminate the highest power of y appearing in the equations of the
curves. Repeating this until y has been eliminated from one of the equa-
tions gives the intersection multiplicity.

We illustrate this technique with an example. Note that the value of
an intersection multiplicity remains unchanged if we add a multiple of
one of the curves to the other (by Properties 1.2 and 1.5), but the inter-
section multiplicity can change if we multiply one of the two curves by a
third (by Properties 1.2 and 1.6).

ExampLE 1.13
How many times do the curves y® + 2x°> = 0 and xy? + y — 3% = 0 inter-
sect at the origin?

Solution

Although we can solve the first equation for y over the real numbers as
y = —2'/3x5/3 this does not express y as a polynomial in x, and so we
cannot apply Theorem 1.11. Instead, we repeatedly eliminate the high-
est power of y in the equations of the curves.

The highest power of y in the two given equations is y°. We can elim-
inate the y® term by multiplying the first equation by x and subtracting y
times the second equation. We use Properties 1.2 and 1.6 to evaluate the
effect of multiplying the first equation by x:

Io(y® + 2x°, xy* + y — 3x°)
= Io(xy® + 2x° xy? +y — 3x%) — In(x, xy* +y — 3x%)
(by Properties 1.2 and 1.6)
= Io(xy® + 2x°% xy? +y — 3x°) — In(x, y)
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(multiplying x by y? — 3x% to get xy? — 3x3, and subtracting this from
xy? 4+ y — 3x%, by Property 1.5)
=Io(xy® +2x°% xy* +y —3x*) — 1

(by Property 1.4). We can eliminate the y* term by subtracting y times
the second polynomial from the first. By Properties 1.2 and 1.5, this gives

Io(xy® + 2x5 — y(xy? +y — 3x%), x> +y — 3x%) — 1
= Io(—y* + 3x%y + 2%, x> + y — 3x%) — 1.

The next step is to eliminate one of the two y? terms. The easiest way
to do this is to add x times the first polynomial to the second. This gives

Io(—y* +3x%y + 2x° xy* +y — 3x° + x(—y* + 3x°y + 2x%)) — 1
(by Property 1.5)
= Io(—y* + 3x%y + 2x°, (3x* + 1)y + 2¢" — 3x%) — 1.

We eliminate the remaining y? term by multiplying the first poly-
nomial by 3x* 4 1 and adding y times the second polynomial. The curve
3x* 41 =0 in the plane does not contain the origin (and is, in fact,
empty). Thus, the value of the intersection multiplicity is unchanged
if we multiply the first polynomial by 3x* +1 (by Property 1.2 and
Theorem 1.8) and obtain

Io(—(3x* + 1)y* + 3x*(3x* + 1)y + 2x°(3x* 4 1),
(Bx* + 1)y +2¢" —3x%) —1
= Io(—(3x* + 1)y* + (9" + 3x%)y + 6x'° 4 25,
(Bx* + 1)y + 2x" — 3x%) — 1.

Adding y times the second polynomial to the first eliminates the y? term,
as desired, giving

Io(11x7y + 6x10 4 2x5, (3x* + 1)y + 2" — 3x%) — 1 (10)

(by Properties 1.2 and 1.5).
Factoring x° out of the first polynomial gives

Io(x°(11xy + 6x* 4+ 2), (3x* + 1)y + 2x" — 3x%) — 1
= Io(x%, (3x* + 1)y +2¢" —3x%) —1

(by Property 1.2 and Theorem 1.8, since the curve 1lxy +6x*4+2 =0
does not contain the origin)

= 6Io(x, (3x* + 1)y + 2¢" — 3x%) — 1

(by Properties 1.2 and 1.6). Using Property 1.5 to drop the terms
3x*y 4+ 2x7 — 3x3, which are multiples of x, leaves 6Iy(x,y) — 1, which
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equals 5 (by Property 1.4). The two given curves intersect five times at
the origin. O]

We can often simplify the work of computing intersection multi-
plicities by noticing that one of the polynomials factors and applying
Property 1.6 or Theorem 1.8. For instance, by factoring x° out of the first
polynomial in (10), we saved ourselves the work of using Property 1.5 to
eliminate the y term. It is also worth noting that it is sometimes easier to
work on eliminating powers of x rather than y.

The technique of eliminating a variable, which we illustrated in Ex-
ample 1.13, lies at the heart of the study of algebraic curves. We use
this technique to prove Bezout's Theorem 11.5, which determines how
many times two curves intersect over the complex numbers.

We have not yet considered intersections of curves at points other
than the origin. We postpone this until Section 3 so that we can use
homogeneous coordinates to treat intersections at infinity at the same
time as intersections in the Euclidean plane. We introduce homogeneous
coordinates in the next section.

Exercises

1.1. How many times do the two given curves intersect at the origin?
(a) y=x%and y' +6x3y+x® =0.

(b) y==x%—2xand y? + 5y = 4x°.

(c) y=x*+xandy?=3x%y+x%

(d) x*+x+y=0andy® = 3x%y+ 2x>.
(e) y*+x*y—x*=0andy?+x+’y+2x=0.
(f) y® =x%and y? = A°.

(g) y'=x%and x?y® —y?>+2¥" =0.
(h) xy?>+y—x*=0and y® = x*.

(i) y® ==x%and xy =y + x%.

(j) y® =% and xy? = 4y + X°.

(k) y® =% and x%y = 2y% + X°.

(1) y> =" and y?> = x>

(m) y? =x%and y® — 4y +x* = 0.

(n) y®=2x*and ¥*y? +y—x*=0.

(o) xy'+y®==x*and y® +x* =xy.

1.2. Consider the curve and the numbers s and t given in each part of this exer-
cise. Show that there are s lines through the origin that intersect the curve
more than t times there and that all other lines through the origin intersect
the curve exactly t times there. Draw the curve and the s exceptional lines,
showing that these are the lines through the origin that best approximate
the curve there. In drawing the curve, it may be helpful to use polar coor-
dinates or curve-sketching techniques from first-year calculus.
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1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

I. Intersections of Curves

(a) y=x%—2x,s=1,t=1.

b) y=x%,s=1,t=

() y¥*=A8s=1,t=2.

(d) y?=x'+4x s=2t=2.
() y?=x'—4x% s=0,t=2.
(f) ¥ +x2y° =y s=1,t=2.
(g) X*y>=x*>—y*, s=2,t=2.
(h) y?=xx—1)?%s=1,t=1.
(i) (P+y?)?=2xy,s=2,t=2.
(i) F+y?)?=x2s=2,t=3.
(k) (2 +y*)?=x*(x+y),s=2,t=3.
N -y =xy,s=2,t=2.
(m) x* —y* =xy, s =2,t=2.

Show that the graph of the equation r = sin(30) in polar coordinates corre-
sponds to a curve f(x,y) = 0 of degree 4. Follow the directions of Exercise
1.2 for this curve, with s = 3 and t = 3.

Let C and D be two different circles through the origin, and assume that the
center of C lies on the x-axis. Prove that C and D intersect either twice or
once at the origin, depending on whether or not the center of D lies on the
x-axis. (This justifies the discussion accompanying Figures 1.1 and 1.2.)

Does Theorem 1.11 remain true without the assumption that y = p(x) con-
tains the origin? Justify your answer.

Let f(x) and g(x) be polynomials in one variable that have no common fac-
tors of positive degree. Prove that f(x)y + g(x) does not factor as a product
of two polynomials of positive degree.

Let f(x,y) and g(x, y) be polynomials in two variables, and let n be a non-
negative integer. Assume that every term in f(x, y) has degree n and every
term in g(x, y) has degree n + 1. If f(x, y) and g(x, y) have no common fac-
tors of positive degree, prove that f(x, y) + g(x, y) does not factor as a prod-
uct of two polynomials of positive degree.

Let f(x) be a polynomial in one variable. Prove that y? + f(x) factors as a
product of two polynomials of positive degree if and only if f(x) = —g(x)?
for a polynomial g(x).

Let f(x) be a polynomial in one variable. Prove that y* + f(x) factors as a
product of two polynomials of positive degree if and only if f(x) = g(x)3
for a polynomial g(x).

. Let f(x, y) be a polynomial in two variables, and let h(x) be a polynomial in

one variable. Prove that f and h have intersection multiplicity co at the
origin if and only if x is a factor of both f and h.
(As in Example 1.13, one step in evaluating

Io(f(% y), 8(x, y)) (11)
for polynomials f(x, y) and g(x, y) is to replace it with

Io(f(%, y), h(x)g(x, y)) — Io(f(x, y), h(x)) (12)
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for a polynomial h(x) in x alone. This replacement is justified by Property
1.6 unless Io(f(x,y), h(x)) = oo, which means that the quantity in (12) has
indeterminate form oo — oo. In that case, this exercise shows that x is a
factor of f(x,y), and so we can use Properties 1.2 and 1.6 to evaluate (11).
In this way, the techniques of Example 1.13 always apply.)

§2. Homogeneous Coordinates

The study of curves is greatly simplified by considering their behavior
at infinity. This eliminates a number of special cases: for example, it
enables us to study all conic sections—ellipses, parabolas, and hyper-
bolas—simultaneously in Chapter II.

We construct the “projective plane” in this section by adding “points
at infinity” to the familiar Euclidean plane. We define a system of homo-
geneous coordinates for the projective plane, which lets us study curves
at infinity in the same way as in the Euclidean plane. We focus on lines
in the projective plane in this section, and we introduce curves of higher
degree in Section 3.

We start with the familiar coordinate system on three-dimensional
Euclidean space. Specifically, we choose a point O in Euclidean space
to represent the origin (Figure 2.1). We select three mutually perpendic-
ular lines through O to be the x-, y-, and z-axes. We associate the points
on each axis with the real numbers in the usual way, so that O is the
point 0 on each axis. We assign coordinates (a, b, ¢) to a point P in Eucli-
dean space if the planes through P perpendicular to the x-, y-, and z-axes
intersect them at the points a, b, and c, respectively. Of course, this gives
the origin O coordinates (0, 0, 0).

Projections suggest a way to study curves at infinity. Let 2 and 2 be
two planes in Euclidean space that do not contain the origin O. The pro-
jection from 2 to 2 through O maps a point X on £ to the point X’ on 2

(a, b, ¢)

Figure 2.1
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Figure 2.3

where the line through O and X intersects 2 (Figure 2.2). Conversely, a
point X’ on 2 is the image of the point X on 2 where the line through O
and X' intersects 2. In this way, the projection matches up points X and
X' on £ and 2 that lie on lines through O.

There are exceptions, however. When 2 and 2 are not parallel, the
plane through O parallel to 2 intersects £ in a line m (Figure 2.3). If
X is any point of m, the line through O and X is parallel to 2, and so X
has no image on 2. We call m the vanishing line on £ because the points
of m seem to vanish under the projection. In fact, as a point Y on £
approaches m, its image Y’ under the projection moves arbitrarily far
away from the origin on 2. This suggests that points on the vanishing
line of Z project to points at infinity on 2.

Likewise, the plane through O parallel to 2 intersects 2 in a line n,
which we call the vanishing line on 2. If X’ is any point of n, the line
through O and X' is parallel to 2, and we imagine that a point at infinity
on Z projects to X'.

In short, a projection between two planes that are not parallel
matches up the points on the planes, except that points on the vanishing
line of each plane seem to correspond to points at infinity on the other
plane. This suggests that each plane has a line of points at infinity and
that we can study these points by projecting them to ordinary points on
another plane.
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(ta, tb, tc)

(a, b, c)

0

Figure 2.4

Accordingly, in order to study curves at infinity, we consider all
points in Euclidean space except the origin. If X and X’ are two of these
points that lie on a line through the origin O, we think of X and X’ as two
representations of the same point under projection through O, as in
Figure 2.2. That is, we think of all the points except O on each line in
space through O as the same point.

Translating this into coordinates, we consider the triples (a,b,c) of
real numbers except O = (0,0, 0). We think of all the triples (ta, th, tc) as
the same point as t varies over all nonzero real numbers; these are the
triples except O on the line through O and (a, b, c) (Figure 2.4).

We make the following formal definition. The projective plane is the
set of points determined by ordered triples of real numbers (a,b,c),
where a, b, ¢ are not all zero, and where the triples (ta, th, tc) represent
the same point as t varies over all nonzero real numbers (Figure 2.4).
We call the ordered triples homogeneous coordinates. The term “homoge-
neous” indicates that all the triples (ta, tb, tc) represent the same point as
t varies over all nonzero real numbers. For example, if we multiply the
coordinates of (1, —2, 3) by 2, —3, and é, we see that the triples

(13_2>3>’ (27 _4’6>a (_3:6a_9)’ (l _'271)3

represent the same point.

It may seem odd to talk about a plane coordinatized by triples of real
numbers, but the homogeneity of the coordinates effectively reduces the
dimension by 1 from 3 to 2. For instance, if we consider points (a, b, c)
with ¢ # 0, dividing the coordinates by ¢ gives (a/c,b/c,1). Rewriting
these points as (d, e, 1) for real numbers d and e shows that we are con-
sidering a two-dimensional set of points, although triples with last coor-
dinate zero require separate consideration.

Geometrically, we relate the projective and Euclidean planes as fol-
lows. Triples of homogeneous coordinates correspond to lines in space
through the origin O, as in Figure 2.4. Each line in space through O that
does not lie in the plane z = 0 will be represented by the point where it
intersects the plane z = 1 (Figure 2.5). We will identify the lines through
O that lie in the plane z = 0 with the points at infinity of the plane z = 1.
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Figure 2.5

This will show that the projective plane consists of the Euclidean plane
z = 1 together with additional points at infinity.

Algebraically, if ¢ # 0, then 1/c is the one value of t such that the
triple (ta,tb,tc) has last coordinate 1. Setting t =1/c gives the point
(a/c,b/c, 1) in the plane z = 1. Conversely, any point (d, ¢, 1) in the plane
z =1 corresponds to a unique point in the projective plane, the point
with homogeneous coordinates (td, te,t) for all nonzero numbers t. In
this way, we have matched up the points in the projective plane whose
last coordinate is nonzero with the points in the plane z = 1.

We think of the plane z =1 as the Euclidean plane by identifying the
points (x,y,1) and (x,y) of the two planes. Together with the last para-
graph, this matches up the points in the projective plane whose last
homogeneous coordinate is nonzero with the points of the Euclidean
plane. A point in the projective plane that has homogeneous coordinates
(a,b,c) for ¢ # 0 is matched up with the point (a/c, b/c) of the Euclidean
plane. Conversely, a point (d, e) of the Euclidean plane is matched up
with the point of the projective plane that has homogeneous coordinates
(d,e, 1) or, more generally, (td, te, t) for any nonzero number ¢.

We must still consider the points (a, b, 0) in the projective plane whose
last homogeneous coordinate is zero. We call these points at infinity.
If a # 0, 1/a is the one value of t such that the triple (ta, tb,0) has first
coordinate 1. Setting t = 1/a gives the triple (1,b/a,0). We can choose
a # 0 and b so that b/a is any real number s.

The only remaining point at infinity corresponds to the triples of
homogeneous coordinates whose first and third coordinates are both
zero. These triples are (0,b,0), where b # 0. Multiplying by 1/b gives
the coordinates of the point in the unique form (0, 1, 0).

In short, every point in the projective plane can be written in exactly
one way as one of the triples

<d967 1>9 (17870), (07 ]"0)7 (1>
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as d, e, and s vary over all real numbers. The points in the projective
plane whose last homogeneous coordinate is nonzero correspond to the
triples (d, e, 1), which correspond in turn to the points (d, e) of the Eucli-
dean plane. The points in the projective plane that have last homoge-
neous coordinate zero are the points at infinity, and they correspond to
the triples (1,s,0) and (0, 1, 0).

We learn more about the points at infinity by relating them to the
lines in the projective plane. A line in the projective plane is the set of
points whose homogenous coordinates (x, y, z) satisfy an equation

px+qy+rz=0, (2)

where p, q, and r are real numbers that are not all zero. We call (2) the
equation of the line.

It does not matter which triple of homogeneous coordinates of a point
we substitute in (2). If a triple (x, y, z) satisfies (2), we can multiply the
equation by a nonzero number ¢ and obtain the equation

ptx +qty +rtz =0, (3)

which shows that the triple (tx, ty, tz) also satisfies (2).

We can also think of (3) as the result of multiplying the coefficients
p, q, v of (2) by a nonzero number t. Thus, the equivalence of (2) and
(3) shows that a line stays unchanged when we multiply the coefficients
in its equation by a nonzero number.

To understand the lines in the projective plane, first consider the lines
given by (2) with g # 0. Dividing this equation by g and solving for y
gives the equivalent equation

(9 ()

As p, g, and r vary over all real numbers with g # 0, we obtain the
equations
Yy=mx+nz (4)

for all real numbers m and n. The corresponding lines in the Euclidean
plane consist of all points (x, y) such that the triple (x, y, 1) satisfies (4).
This gives the lines

y=mx+n (5)

in the Euclidean plane. As m and n vary over all real numbers, (5) gives
all lines in the Euclidean plane that are not vertical. In short, the lines in
the projective plane given by (2) for g # 0 correspond to the lines in the
Euclidean plane that are not vertical.

Consider next the lines given by (2) with g = 0 and p # 0. Dividing the
equation px + rz = 0 by p and solving for x gives the equation

s
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As v and p vary over all real numbers with p # 0, we obtain the
equations
x=hz (6)

for all real numbers h. The corresponding lines in the Euclidean plane
consist of the points (x,y) such that (x,y, 1) satisfies (6). This gives the
lines

x=h (7)

in the Euclidean plane. As h varies over all real numbers, (7) gives all
vertical lines in the Euclidean plane. Thus, the lines in the projective
plane given by (2) with g = 0 and p # 0 correspond to the vertical lines
in the Euclidean plane.

The last two paragraphs show that the lines in the projective plane
given by (2) when p or g is nonzero correspond to the lines of the Eucli-
dean plane. The only other line in the projective plane is given by (2)
with p =0 =g and r # 0 (since the coefficients p, g, r in (2) are not all
zero). Then (2) becomes rz = 0, and dividing this equation by r gives
z=0. We call the line z = 0 in the projective plane the line at infinity.
Of course, the points (a, b, ¢) of the projective plane that lie on the line
z = 0 are exactly those whose last coordinate c is zero. Thus the line at
infinity consists exactly of the points at infinity.

In short, the lines of the projective plane are the lines of the Euclidean
plane plus the line at infinity, which consists of the points at infinity.

We can now relate the points at infinity with the lines of the Eucli-
dean plane. As we saw in the discussion before (1), each point at infinity
can be written in exactly one way as

(1,s,0) or (0,1,0) (8)

for a real number s. The lines y = mx 4+ n and x = h correspond to the
lines y = mx + nz and x = hz (by the discussions relating (4) to (5) and
(6) to (7)). For any real number s, the point at infinity (1,s,0) lies on
the line y = mx 4 nz if and only if m equals s, and it does not lie on any
of the lines x = hz. The point at infinity (0, 1, 0) lies on all the lines x = hz
and on none of the lines y = mx 4 nz. In short, each point at infinity lies
on exactly those lines of the Euclidean plane that form a family of parallel
lines: the point at infinity (1,s,0) lies on the lines y = sx + n of slope s for
all real numbers n, and the point at infinity (0,1, 0) lies on the vertical lines
x = h for all real numbers h. In this way, we match up the points at infinity
with the families of parallel lines in the Euclidean plane.

We now know that the projective plane consists of the points and lines
of the Euclidean plane, additional points at infinity, and one added line
at infinity. The line at infinity contains all the points at infinity and no
points of the Euclidean plane. Each point at infinity lies on exactly those
lines in the Euclidean plane that form a family of parallel lines, and
there is exactly one point at infinity for each family of parallel lines.
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Figure 2.6 suggests the form of the projective plane. The square repre-
sents the Euclidean plane, and the line [ represents the line at infinity.
Dotted lines connect points at infinity with parallel lines in the Eucli-
dean plane that contain them.

Let P be the point at infinity on a line m in the Euclidean plane. We
imagine that we can reach P by proceeding infinitely far along m in
either direction (Figure 2.7(a)). This suggests that the two “ends” of m
in the Euclidean plane are joined at infinity by the point P so that m
forms a closed curve (Figure 2.7(b)).

An important consequence of adding the points at infinity is that we
no longer need to consider special cases created by parallel lines. In the
Euclidean plane, two lines intersect in a point unless they are parallel.
On the other hand, any two lines in the projective plane intersect in a
point: parallel lines in the Euclidean plane intersect at infinity in the
projective plane (Figure 2.6).

Theorem 2.1
Any two lines intersect at a unique point in the projective plane.

Proof

Two parallel lines in the Euclidean plane do not intersect in the Eucli-
dean plane, and they contain the same point P at infinity; thus, P is their
unique point of intersection (Figure 2.8). Two lines in the Euclidean
plane that are not parallel intersect exactly once in the projective plane
because they intersect exactly once in the Euclidean plane and contain
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Figure 2.10

different points at infinity (Figure 2.9). A line m of the Euclidean plane
intersects the line at infinity at the unique point at infinity that lies on m
and all lines parallel to it (Figure 2.10). These three cases include all
possibilities for two lines in the projective plane. O

In analogy with Theorem 2.1, we prove that any two points lie on a
unique line in the projective plane. Unlike Theorem 2.1, this property
already holds in the Euclidean plane, and so we need only show that it
still holds when we add the points and the line at infinity.

Theorem 2.2
Any two points lie on a unique line in the projective plane.
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Figure 2.11

Figure 2.12

Figure 2.13

Proof

Two points A and B in the Euclidean plane lie on a unique line in the
Euclidean plane; this is the unique line of the projective plane through A
and B because the line at infinity contains only points at infinity (Figure
2.11). The unique line through a point A of the Euclidean plane and a
point B at infinity is the line through A in the Euclidean plane that
belongs to the family of parallel lines containing B (Figure 2.12). The
unique line through two points A and B at infinity is the line at infinity
(Figure 2.13), since each line of the Euclidean plane contains only one
point at infinity. These three cases cover all possibilities for two points
in the projective plane. [

By Theorem 2.1, any two lines [ and m intersect at a unique point in
the projective plane, which we write as [ nm. By Theorem 2.2, any two
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points A and B lie on a unique line in the projective plane, which we
write as AB. We call points collinear if they all lie on one line, and we call
lines concurrent if they all lie on one point. This notation makes it easy to
state the following result, which we prove in Section 6 as Theorem 6.5:

Theorem 2.3 (Pappus’ Theorem)

Let e and f be two lines in the projective plane. Let A, B, and C be three points
of e other than en f, and let A', B, and C' be three points of f other than
en f. Then the points Q = AB'nA'B, R=BC'nB'C, and S= CA'nC'A
are collinear (Figure 2.14). O

Note that Pappus’ Theorem is a result about the collinearity of points.
The projective plane is well suited to such results: by Theorem 2.1, any
two lines in the projective plane intersect at a point, without the excep-
tions created in the Euclidean plane by parallel lines. On the other hand,
because distances and angles are undefined at infinity, results about
these concepts do not readily extend from the Euclidean to the projec-
tive plane.

Because the position of the line at infinity is unspecified in Pappus’
Theorem, we can obtain a number of different results about the Eucli-
dean plane from Pappus’ Theorem by taking the line at infinity in vari-
ous positions. The points at infinity vanish, and the lines of the Eucli-
dean plane that intersect at a point at infinity are parallel.

For example, suppose we take the line BC' in Pappus’ Theorem to be
the line at infinity. Because B is now at infinity, A'B is the line g through
A’ parallel to e, and we have Q = AB' n A'B = AB' ng (Figure 2.15). Be-
cause C’ is now at infinity, C'A is the line h through A parallel to f, and
we have S = CA' nC’A = CA’ nh. The conclusion of Pappus’ Theorem is
equivalent to the assertion that the lines BC’, B'C, and QS lie on a com-
mon point R. Because BC’ is now the line at infinity, the conclusion as-
serts that B'C and QS meet at a point R at infinity, which means that the
lines B'C and QS are parallel. The lines ¢ and f are not parallel because
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their intersection e N f does not lie on the line at infinity BC’. Thus, we
obtain the following result from Pappus’ Theorem by taking BC’ to be
the line at infinity:

Theorem 2.4

In the Euclidean plane, let e and f be two lines that are not parallel. Let A
and C be two points of e other than e N f, and let A" and B’ be two points of
f other than e n f. Let Q be the point where AB’ intersects the line g through
A’ parallel to e, and let S be the point where CA' intersects the line h through
A parallel of f. Then the lines QS and B'C are parallel (Figure 2.15). O

We defined a line in the projective plane to be the set of points in
the projective plane whose homogeneous coordinates (x, y, z) satisfy (2),
where the coefficients p, g, r in (2) are real numbers that are not all zero.
We justified this definition algebraically by showing that the lines it gives
correspond to the lines of the Euclidean plane plus the line at infinity.
We can also justify the definition geometrically, as follows.

If we take (x,y,z) to be the usual three-dimensional coordinates in
Euclidean space, as in the discussion accompanying Figure 2.1, (2) is
the general equation of a plane through the origin in Euclidean space.
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Thus, using homogeneous coordinates, we can identify the lines of the
projective plane with the planes through the origin in Euclidean space.
Just as we picture a line through the origin in Euclidean space as a point
by intersecting it with the plane z =1 (Figure 2.5), we picture a plane
through the origin in Euclidean space as a line by intersecting it with
the plane z = 1 (Figure 2.16). The plane z = 0, which does not intersect
the plane z = 1, corresponds to the line at infinity.

Exercises

2.1. Homogeneous coordinates of a point in the projective plane are given in
each part of this exercise. Determine whether the point lies in the Eucli-
dean plane or at infinity. If the point lies in the Euclidean plane, determine
its usual (x, y) coordinates. If the point lies at infinity, determine the slope
of the lines in the Euclidean plane that contain the point.

(a) (4,2,-3). (b) (1,-2,4).
(c) (0,5,2) (d) (3,0,-5).
(e) (—2,5,0). (f) (6,2,0).
(g) (~1,3,-4) (h) (5,0,0).
(i) (0,3,0) (4) (0,0,=2).

2.2. A point of the projective plane is given in each part of this exercise. De-
termine homogeneous coordinates of the point in one of the forms listed
in (1).

a) The point (2,5) in the Euclidean plane.

) The point (0, —3) in the Euclidean plane.

) The point (1, 4) in the Euclidean plane.

The point at infinity on lines of slope 3.

The point at infinity on lines of slope —2.

The point at infinity on vertical lines.

The point at infinity on horizontal lines.

2.3. In each part of this exercise, the equation of a line in the projective plane is
given in the form of (2). Determine whether the equation represents a line
of the Euclidean plane or the line at infinity. In the first case, write the
equation of the line as y = mx + n or x = h in the usual (x, y) coordinates
of the Euclidean plane.

(a) 6x — 2y + 3z =0. (b) 2x+5z=0.

(c) x+3y+4z=0. (d) 7z=0.

(e) 3x+ 2y =0. (f) 4y —2z=0.

(g) x—4z=0. (h) —2x+4y+z=0.

2.4. A line of the projective plane is given in each part of this exercise. Write
the equation of the line in homogeneous coordinates in the form of (2). In
parts (a)-(e) write the point at infinity on the line in one of the forms in

(8).
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2.5.

2.6.

2.7.

2.8.

(a) The line y = 2x — 3 in the Euclidean plane.
(b) The line y = —x/3 in the Euclidean plane.
(c) The line x = 2 in the Euclidean plane.

(d) The line y = 4 in the Euclidean plane.

(e) The line y = x 4 2 in the Euclidean plane.
(f) The line at infinity.

In each part of this exercise, two lines in the projective plane are given in
homogeneous coordinates in the form of (2). The lines intersect at a unique
point P (by Theorem 2.1). Find homogeneous coordinates for P in one of
the forms in (1). If P is a point of the Euclidean plane, find its usual (x, y)
coordinates. If P lies at infinity, find the slope of the lines in the Euclidean
plane that contain P.
(a) x+2y—6z=0and 3x+ 4y — 15z = 0.
b) —2x+4y—z=0and x—2y+3z=0.
c) 3x+y+5z=0andz=0.

) 2x4+3y—6z=0and —x+y+3z=0.
e) 6x —2y+4z=0and 3x —z=0.
f) 3x+y—2z=0and 6x+ 2y + 5z = 0.
g) 4x+3y+ 16z =0and 3x+ 2y + 10z = 0.

A~~~ o~ o~
o

In each part of this exercise, homogeneous coordinates are given for two
points in the projective plane. The points lie on a unique line I (by Theo-
rem 2.2). Find an equation for I in homogeneous coordinates in the form of
(2). Determine whether [ is a line of the Euclidean plane and, if so, write its
equation in (x, y) coordinates in one of the forms y = mx +n or x = h.

(a) (4,—1,3) and (2,5,1). (b) (4,3,2) and (—2,5,1).

(c) (2,5,1) and (6,1, 3). (d) (—4,5,6) and (2,3, —3).
(e) (4,5,0) and (1,-3,0). (f) (0,1,—2) and (—3,2, —4).
(g) (3,5,2) and (4,1,0). (h) (4,6,—2) and (5,0,0).

State the version of Pappus’ Theorem 2.3 that holds in the Euclidean plane
in the following cases. lllustrate each version with a figure in the Euclidean
plane.

(a) C isthe only point at infinity named.

(b) Q is the only point at infinity named.

(c) QR is the line at infinity, and it does not contain e N f.

(d) QR is the line at infinity, and it contains e N f.

(e) f isthe line at infinity.

(f) (en f)S is the line at infinity, and it does not contain Q.

(g) B'Sis the line at infinity, and it does not contain B.

(h) BB’ is the line at infinity, and it does not contain S.

(i) BB’ is the line at infinity, and it contains S.

(j) None of the points named lies at infinity.

The following theorem is proved in Exercise 3.21 (Figure 2.17):

Theorem

In the projective plane, let e and f be two lines on a point P. Let A, B, C be three
points of e other than P, and let A', B', C' be three points of f other than P.
Assume that the lines AA', BB', CC' are concurrent at a point T. Set Q =
AB'nA'Band R = BC' n B'C. Then the points P, Q, R are collinear.
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State the version of this theorem that holds in the Euclidean plane in
the following cases. Draw a figure in the Euclidean plane to illustrate each
version.

a) Q is the only point at infinity named.
b) C’ is the only point at infinity named.
B’ is the only point at infinity named.
P is the only point at infinity named.
T is the only point at infinity named.
f is the line at infinity.
B'C is the line at infinity.
A'C is the line at infinity.
PR is the line at infinity.
PT is the line at infinity.
QT is the line at infinity, and it does not contain C.
CC' is the line at infinity, and it does not contain Q.
) CC'is the line at infinity, and it contains Q.
CQ is the line at infinity, and it does not contain C’.
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The following theorem is proved in Exercise 3.21 (Figure 2.17). It is the
converse of the theorem in Exercise 2.8.

Theorem

In the projective plane, let e and f be two lines on a point P. Let A, B, C be three
points of e other than P, and let A', B', C' be three points of f other than P. Set
Q = AB'nA'B and R = BC' nB'C. Assume that the points P, Q, R are col-
linear. Then the lines AA', BB', CC' are concurrent at a point T.

State the version of this theorem that holds in the Euclidean plane in the
cases in Exercise 2.8. Draw a figure in the Euclidean plane to illustrate each
version.

. The following theorem is proved in Exercise 4.28 (Figure 2.18):

Theorem

In the projective plane, let e and f be two lines on a point P. Let A and A’ be two
points of e other than P, and let B, B', C be three points of f other than P. Set
G=ABNAB, H=AB nA'B, I=ABNAC, and ] = AC~A'B. Then the
lines GH, IJ, and e are concurrent.
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Figure 2.18

State the version of this theorem that holds in the Euclidean plane in
the following cases. Draw a figure in the Euclidean plane to illustrate each
version.

) A’ is the only point at infinity named.
b) B is the only point at infinity named.
c) G is the only point at infinity named.
d) e is the line at infinity.

e) f isthe line at infinity.

f) GH is the line at infinity.

g) HI is the line at infinity.

h) GI is the line at infinity.

A'B is the line at infinity.

AB' is the line at infinity.

(a
(
(
(
(
(
(
(
(i)
(3)

§3. Intersections in Homogeneous
Coordinates

We considered intersections of curves at the origin in Section 1, and we
enlarged the Euclidean plane to the projective plane in Section 2. We
combine these ideas in this section and consider intersections of curves
at all points in the projective plane.

We start by extending algebraic curves from the Euclidean to the
projective plane by homogenizing polynomials. We then consider inter-
section multiplicities at any point in the projective plane. We introduce
transformations, which are linear changes of variables in homogeneous
coordinates. We show that we can transform any four points, no three of
which are collinear, into any other four such points. Because transforma-
tions preserve intersection multiplicities, we can find the number of
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times that two curves intersect at any point in the projective plane by
transforming that point to the origin.

We start by extending algebraic curves from the Euclidean to the
projective plane. Some care is required, because a polynomial equation
g(x,y,z) = 0 in three variables does not generally define a curve in the
projective plane. In fact, g must have the property that

gla,b,c) =0 if and only if glta,tb,tc) =0

for any t # 0 and (a,b,c) # (0,0,0), so that the choice of the homoge-
neous coordinates for a point is irrelevant. For example, the equation
x = 1 does not define a curve in the projective plane because x = 1 does
not imply that tx =1 for t # 1.

Let d be a nonnegative integer. A homogeneous polynomial F(x,y, z) of
degree d in variables x, y, z is an expression

X Y,z Zeuxyzd ! ] (1>

where the sigma represents summation, the coefficients e; are real
numbers that are not all zero, and i and j vary over pairs of nonnegative
integers whose sum is at most d. In short, a homogeneous polynomial of
degree d is a nonzero polynomial such that the exponents of the vari-
ables in every term sum to d. We use capital letters to designate homo-
geneous polynomials.

Multiplying x, y, z in (1) by a nonzero number t gives

Fltx,ty,tz2) = > ey(tx) (ty) (t2) 7.

Because t is raised to the power i+j+ (d —i—j) = d in every term, we
can factor out t% and obtain

Flix,ty,2) = ¢} eype'y/27 = tF(x,y,2).

It follows that F(ta, tb, tc) = 0 if and only if F(a, b, ¢) = 0 for any t # 0 and
any point (a, b, ¢). In other words, if one choice of homogeneous coordi-
nates for a point satisfies the equation F = 0, they all do.

In homogeneous coordinates, an algebraic curve—or, simply, a curve—
is a homogeneous polynomial F(x,y,z). We imagine that the curve
consists of all points in the projective plane that satisfy the equation
F(x,y,z) = 0, where points corresponding to repeated factors of F are
repeated as many times as the factor. We have seen that the choice of
homogeneous coordinates for each point is immaterial. We often refer
to the curve F by the equation F(x,y,z) = 0 or its algebraic equivalents.
We call the degree of F' the degree of the curve.

For any homogeneous polynomial F(x,y,z), set f(x,y) =F(x,y,1).
Setting z =1 in (1) gives

X,Y) = Zel-jxlyj.
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A point (x, y) of the Euclidean plane lies on the graph of f(x,y) = 0 if and
only if the corresponding point (x, y, 1) lies on the graph of F(x, y, z) = 0.
Thus, the curves f = 0 and F = 0 contain the same points of the Eucli-
dean plane, and we call f the restriction of F to the Euclidean plane.

Conversely, if f(x,y) is a nonzero polynomial of degree d in two
variables, we extend the curve f(x,y) =0 from the Euclidean to the
projective plane as follows. The homogenization F(x,y,z) of f is the
homogeneous polynomial obtained by multiplying each term of f by
the power of z needed to produce a term of degree d. That is, if

fly) = ey, (2)
we get
F(x,y,2) = Y _ep'y/z", (3)

so that F' is homogeneous of the same degree d as f. Setting z = 1 in the
right-hand side of (3) gives the right-hand side of (2). This shows that

Flx,y,1) = f(x ), (4)

and so F = 0 and f = 0 contain the same points of the Euclidean plane.
We call the curve F = 0 the extension of the curve f = 0 to the projective
plane. We obtain the graph of F' from the graph of f by adding points at
infinity, namely, the points (x, y, 0) such that F(x, y,0) = 0. Each point at
infinity can be written in exactly one way as (1,s,0) or (0,1, 0) for a real
number s, as in (8) in Section 2.

For example, suppose we consider the hyperbola xy = 1 in the Eucli-
dean plane (Figure 3.1). The polynomial xy — 1 has degree 2, and so we
multiply each term by the power of z needed to raise the degree to 2.
Thus, the homogenization is xy — z2, and the curve xy = 1 in the Eucli-
dean plane extends to the curve xy = z? in the projective plane. The
points (x,y,1) on xy = z? are exactly the points (x,y) on xy = 1, and so
both curves contain the same points of the Euclidean plane.

Which of the points (1,s,0) and (0, 1,0) at infinity lie on xy = z2? Sub-
stituting (1, s, 0) gives s = 0, and substituting (0, 1, 0) gives the true state-
ment 0 = 0. Thus, xy = z? contains exactly two points at infinity, (1,0, 0)

Figure 3.1
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Figure 3.2

and (0,1, 0). As in the discussion after (8) of Section 2, (1, 0, 0) is the point
at infinity on the lines of slope 0—the horizontal lines—of the Euclidean
plane, and (0, 1, 0) is the point at infinity on the vertical lines. We imagine
that the two ends of the hyperbola in Figure 3.1 that approach the y-axis
meet at the point at infinity on vertical lines, and that the two ends that
approach the x-axis meet at the point at infinity on horizontal lines.
Adding these two points at infinity joins the two pieces of the hyperbola
into a simple closed curve, as in Figure 3.2. The fact that Figure 3.2 is
simpler than Figure 3.1 suggests that working in the projective plane
may simplify the study of curves.

Lines in the projective plane, which we defined before (2) of Section
2, are exactly the curves of degree 1. Homogenization gives the same re-
lationship that we introduced in (4)-(7) of Section 2 between lines of the
Euclidean and projective planes. The lines y = mx + n and x = h of the
Euclidean plane extend to the lines y = mx 4+ nz and x = hz of the projec-
tive plane. The line at infinity z = 0 is not the extension of any line of
the Euclidean plane because the polynomial z is not the homogenization
of any polynomial in x and y: the polynomial 1 has degree 0 and is its
own homogenization.

Let f(x, y) be a nonzero polynomial, and let F(x, y, z) be its homogeni-
zation. We often refer to the curve F as “the curve f in the projective
plane” because f is more familiar than F. In effect, we automatically
extend curves to the projective plane by homogenizing them. For exam-
ple, “the curve xy = 1 in the projective plane” is the curve xy = z? in
homogeneous coordinates.

Now that we have defined curves in the projective plane, it is natural
to consider their intersection multiplicities. We assume that the inter-
section multiplicity Ip(F,G) is a quantity associated with every pair of
homogeneous polynomials F(x,y,z) and G(x,y, z) and every point P of
the projective plane. We think of Ip(F, G) as the number of times that
the curves F' and G intersect at P.

The number of times that two curves intersect at the origin should not
change when we restrict the curves from the projective to the Euclidean
plane and replace homogeneous coordinates with the usual (x, y) coordi-
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nates. We formalize this as the following property, which we establish in
Chapter IV along with the other intersection properties:

Property 3.1
Let F(x, y, z) and G(x, y, z) be homogeneous polynomials, and set f(x, y) =
F(x,y,1) and g(x, y) = G(x,y,1). Then we have

IO<F(X> Y, Z)a G<X7 Y, Z)) = IO<f<X7 y):g(xa y))y

where O is the origin. [

In Section 1, we considered intersections only at the origin. We can
now define the intersection multiplicity of two curves in the Euclidean
plane at any point of the plane.

Definition 3.2

Let f(x,y) and g(x,y) be nonzero polynomials, and let F(x,y,z) and
G(x, y, z) be their homogenizations. Let (a, b) be a point of the Euclidean
plane. Then we define the intersection multiplicity I, 1)(f, g) of the curves
f(x,y) =0 and g(x, y) = 0 at the point (a, b) in the Euclidean plane to be
the intersection multiplicity Ii4 1,1)(F, G) of the curves F(x,y,z) = 0 and
G(x,y,z) = 0 at the point (a, b, 1) in the projective plane. O

We think of the quantity I, 1)(f, g) in Definition 3.2 as the number of
times that the curves f = 0 and g = 0 in the Euclidean plane intersect at
the point (a, b). Definition 3.2 and the discussion before Property 1.1 give
two ways to assign intersection multiplicities of nonzero curves at the
origin, but Property 3.1 and (4) show that these two ways agree.

We saw in Section 2 that we can identify the points and lines of the
projective plane with the lines and planes through the origin in Eucli-
dean space. We introduce transformations—linear changes of variables
in homogeneous coordinates—to take advantage of the symmetry of
Euclidean space and transfer it to the projective plane. We use transfor-
mations in two key ways. First, we compute the intersection multiplicity
of two curves at any point in the projective plane by transforming that
point to the origin and using the techniques of Section 1. Second, we
use transformations to simplify the equations of curves.

Definition 3.3
A transformation is a map from the projective plane to itself that takes
any point (x, y, z) to the point (¥, y’, z') determined by the equations

X' = ax+ by + cz,
Yy =dxtey+fz (5)
Z =gx+hy+iz,
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where a-i are real numbers such that the equations in (5) are equivalent
to equations of the form

x =Ax"+ By’ + CZ,
y =Dx' + Ey’ + F7/, (6)
z=Gx'+ Hy + 17,

that express x, y, z in terms of X', y’, z’ for real numbers A-I. O

If x, y, z are not all zero, the equations in (6) imply that the corre-
sponding values of x', y’, z’ are not all zero. Moreover, if we replace
x, Yy, z in (5) with tx, ty, tz for a nonzero number ¢, the corresponding
values of ¥', y/, z' are also multiplied by t. Thus, the equations in (5)
map each point (x,y,z) in the projective plane to a well-defined point
(¥',y',2"), as Definition 3.3 asserts.

We consider several examples of transformations. Translating the
Euclidean plane h units horizontally and k units vertically maps any
point (x,y) to the point (x + h,y+ k). The corresponding map of the
projective plane sends (x, y, z) to (¥',y’, z’), where

¥ =x+ hz,
Y =y+ks, (7)
7 =z

Note that we have made the right-hand sides of these equations homo-
geneous of degree 1 by multiplying the constants h and k by z. These
equations give a transformation of the projective plane because we can
solve them for x, y, z in terms of X', y, z’, as Definition 3.3 requires:

x=x —hz,
! !

y=y —kz,

z=27.

Setting z=1 in (7) shows that the transformation maps (x,y,1) to
(x+h,y+k,1), and so it extends to the projective plane the translation
of the Euclidean plane taking (x, y) to (x + h, y + k). The equations in (7)
map each point (x, y, 0) at infinity to itself, which makes sense because a
translation does not change the slopes of lines.

Another way to exploit the symmetry of the projective plane is to
interchange coordinates. For example, interchanging the first and third
coordinates maps (x, y, z) to (¥, y',z'), where

K=z Y=y =x (8)
These equations have the form of both (5) and (6), and so they give
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a transformation. Likewise, any permutation—that is, any rearrange-
ment—of the coordinates is a transformation. We use these transforma-
tions to eliminate distinctions between points at infinity and points of
the Euclidean plane. For example, the transformation in (8) maps the
points on the line at infinity z = 0 to the points on the y-axis ¥’ = 0.

The third basic type of transformation multiplies coordinates by non-
zero constants. If r, s, t are nonzero numbers, we can solve the equations

X =rx, Yy = sy, 7z =tz (9)

for x, y, z and obtain

Thus, there is a transformation that maps (x, y, z) to (rx, sy, tz).

We show next that we can obtain new transformations from given
ones by reversing them or performing them in sequence. In this way,
we obtain a wide range of transformations from the three basic types
we have introduced.

Because the systems of equations in (5) and (6) are equivalent, if
there is a transformation mapping (x,y,z) to (¥',y’,z’), there is also a
transformation mapping (¥',y’, z’) to (x, y, z). Thus, we can reverse any
transformation.

Suppose that we are given the transformation in (5) mapping (x, y, z)
to (¥, y’,z'). Suppose that we are also given a transformation mapping
(¥, y,2') to (¥, y",2"), where

= +ky' + 12,
Y =mx +ny + o7, (10)
2" =px +qy +717.
Substituting the equations in (5) into these equations gives
X" = jlax + by + cz) + k(dx + ey + fz) + l(gx + hy + iz),
y" = m(ax + by + cz) + nldx + ey + fz) + o(gx + hy + iz),
z" = plax + by + cz) + qldx + ey + fz) + r(gx + hy + iz).
Collecting terms gives
" = (ja+kd +Ig)x + (jb + ke + Th)y + (je + kf + L)z,
Yy’ = (ma +nd + 0g)x + (mb + ne + oh)y + (mc + nf + 0i)z, (11)
z" = (pa+qd+1g)x + (pb + qe + rh)y + (pc + qf +1i)z,

which has the form of (5). Moreover, because the equations in (10) give a
transformation, we can solve them for ¥, y/, z’ in terms of ", y”, z” and
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obtain
X =Jx" +Ky" +Lz",
Yy =Mx"+ Ny" + 07",
zZ =P +Qy" + Rz,

for real numbers J-R. Substituting these expressions into (6) expresses x,
Y, z in terms of x”, y”, z"”. Thus the equations in (11) give a transforma-
tion mapping (x, y,z) to (x”, y",z"). This is the net result of following the
transformation taking (x, y, z) to (¥, y’, z’) with the transformation taking
(X, y',z) to (x",y",2"). In short, we can combine two transformations
into a third one by performing them in sequence.

How much latitude do we have in constructing transformations? We
note that any transformation must preserve lines: points are collinear if
and only if their images under the transformation are collinear. To see
this, let the transformation taking (x,y,z) to (¥',y’,z’) be given by the
equations in (5). A line in the projective plane has equation

px+qy+rz=0, (12)

where p, g, r are constants that are not all zero. Substituting the expres-
sions for x, y, z in (6) into (12) gives

p(Ax" +By' + CZ') +q(Dx' + Ey' + FZ') +v(Gx' + Hy' +1Z') = 0.
Collecting terms gives
(pA +gD +rG)x' + (pB+ qE +1H)y' + (pC + gF +rI)z' =0. (13)

Substituting the expressions for x’, y’, z’ in (5) turns (13) back into (12).
Since the coefficients in (12) are not all zero, the same holds for (13), and
so (13) represents a line. A point (x,y, z) lies on the line in (12) if and
only if its image (¥, y', z’) lies on the line in (13). Because a transforma-
tion is reversible, it follows that points are collinear if and only if their
images are collinear.

We can produce a wide range of transformations by combining the
three kinds of transformations in the discussions accompanying (7)-(9).
In fact, we can transform any four points, no three of which are col-
linear, into any other four points, no three of which are collinear. We
say that a transformation fixes a point if it maps the point to itself. We
call points distinct when no two of them are equal.

Theorem 3.4

In the projective plane, let A, B, C, D be four points, no three of which are
collinear, and let A', B', C', D' be four points, no three of which are col-
linear. Then there is a transformation that maps A, B, C, D to A', B', C', D',
respectively.
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Proof

We start by proving that there is a transformation that maps A, B, C, D to
(1,0,0), (0,1,0), (0,0,1), (1,1,1). At least one coordinate of A is nonzero.
Because we can use a transformation to interchange the coordinates of
A, we can assume that the last coordinate is nonzero. Because the coor-
dinates of A are homogeneous, we can divide them all by the last one, so
that we have A = (r,s, 1) for numbers r and s. Then the transformation

X =x—rz, Yy =y-— sz, z' =z,

maps A to (0,0,1). Following this with the transformation that inter-
changes the first and third coordinates gives a transformation that maps
A to (1,0,0). Let B; be the image of B under this transformation.
Because transformations are reversible, they map distinct points to
distinct points. Accordingly, since B # A, we have B; # (1,0, 0). Thus, ei-
ther the second or third coordinate of B; is nonzero. Interchanging these
coordinates fixes (1,0, 0), and so we can assume that the last coordinate
of B; is nonzero. Dividing through by this coordinate gives B; homoge-
neous coordinates (¢, u, 1) for real numbers t and u. The transformation

¥ =x—tz, Yy =y—uz 7z =z,

maps B; to (0,0,1) and fixes (1,0, 0). Following this with the transforma-
tion that interchanges the last two coordinates gives a transformation
that maps B; to (0,1,0) and fixes (1,0,0). Applying this transforma-
tion after the one at the end of the previous paragraph gives a trans-
formation that maps A to (1,0,0) and B to (0,1,0). Let C; be the image
of C under this transformation.

We are given that C does not lie on line AB. Since transformations
preserve collinearity, C; does not lie on the line through (1,0,0) and
(0,1,0). This is the line z = 0, and so the last coordinate of C; is nonzero.
Dividing the coordinates of C; by this number gives C; homogeneous co-
ordinates (v, w, 1) for numbers v and w. The transformation

¥ =x—vz, Yy =y—wz, 7z =z,

fixes (1,0,0) and (0,1,0) and maps C; to (0,0,1). Applying this trans-
formation after the one at the end of the previous paragraph gives a
transformation that maps A, B, C to (1,0,0), (0,1,0), (0,0,1). Let D; be
the image of D under this transformation.

D does not lie on any of the lines AB, BC, CA. Because transformations
preserve collinearity, D; does not lie on the line z = 0 through (1, 0,0) and
(0,1,0), the line x =0 through (0,1,0) and (0,0,1), or the line y=0
through (1,0,0) and (0,0,1). Thus, every coordinate of D; is nonzero,
and we write D; as (h, k, I) for nonzero numbers h, k, [. The transformation
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maps D; to (1,1,1) and fixes (1,0,0), (0,1,0), and (0,0, 1). (For example,
the transformation maps (1,0,0) to (1/h,0,0), which equals (1,0,0) in
homogeneous coordinates.) Applying this transformation after the one
at the end of the previous paragraph gives a transformation that maps
A, B, C, Dto (1,0,0), (0,1,0), (0,0,1), (1,1,1).

By symmetry, there is also a transformation that maps A’, B', C’, D' to
(1,0,0), (0,1,0), (0,0,1), (1,1,1). Reversing this transformation gives a
transformation that maps (1, 0, 0), (0,1,0), (0,0,1),(1,1,1) to A’, B', C’, D’.
Applying this transformation after the one at the end of the previous
paragraph gives a transformation that maps A, B, C, Dto A, B', C', D'. [J

Let V(x,y, z) be a homogeneous polynomial of degree d. We can write
Vix,y,z) = Z egx'y'z (14)

for constants e; not all zero. Substituting the expressions for x, y, z in (6)
into V gives a polynomial

V(. y,2)
= ey(AX' + By + C2')(Dx' + By + Fz')(Gx' + Hy + 12/}, (15)

Expanding the right-hand side of (15) shows that every term of V' has
the same degree d as V. The reversibility of the transformation and the
fact that V is nonzero implies that V' is also nonzero. Thus, V' is homo-
geneous of the same degree d as V. Because the right-hand sides of (14)
and (15) are related by the substitutions in (6), we see that

V(s t,u) = V'(s',t' ), (16)

for any point (s, t, u) in the projective plane, where (s', ¢, u’) is the image
of (s, t,u) under the transformation in (5). Because the transformation in
(5) is reversible, it matches up the points of the curve V(x,y,z) = 0 and
V(X' y',z") =0 (by (16)), and every curve V' of degree d arises in this
way from a unique curve of degree d. We call V' the image of V under
the transformation. We have shown that transformations map curves of
each degree d among themselves. The case d = 1 shows that transforma-
tions preserve lines, as we saw in the discussion accompanying (12) and
(13).

Note that the transformation taking (x,y, z) to (X', y’, z') given by (5) acts
on curves by substituting the expressions in (6) for x, y, z. For example, con-
sider the transformation

X =x+2z, Yy =y— 3z 7=z (17)

that translates points in the Euclidean plane 2 units horizontally and —3
units vertically. Solving these equations for x, y, z in terms of x/, y/, 2z’
gives

x=x —27, y=y +37, z=72. (18)
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2,-3)

Figure 3.3

To determine the image of the curve
yz = x* (19)

under the transformation in (17), substitute the expressions for x, y, z
from (18) into (19) to produce

(y +32")7 = (¥ —22')% (20)
Multiplying this equation out and collecting terms gives
Yz =x%—ax'z +2°. (21)

Thus, the transformation in (17) maps (19) to (21). Setting z =1 in (19)
and z’ =1 in (20) gives the familiar result that the parabola K with equa-
tion y = x* and vertex (0,0) can be translated 2 units to the right and
3 units down to give the parabola K’ with equation y’ + 3 = (¥’ — 2)?
and vertex (2, —3) (Figure 3.3).

We use transformations to study curves of degree at most 3 by simpli-
fying their equations. We have just noted that transformations preserve
the degree of a curve. We also need to know that transformations pre-
serve intersection multiplicities. We prove this result, which we now
state formally, in Chapter IV along with the other intersection properties.

Property 3.5

Let a transformation of the projective plane map (x,y,z) to (¥,y’,2’).
Let P be any point of the projective plane, and let P’ be its image under
the transformation. Let F(x, y,z) = 0 and G(x, y, z) = 0 be curves, and let
F'(X¥,y',z") =0 and let G'(¥',y’,z") = 0 be their images under the trans-
formation. Then we have

Ip(F(x, y,2), G(x, y, 2)) = Ip(F'(*, Y, 2), G'(x, ., 2')). O

If the transformation in Property 3.5 is given by the equations in (5),
we obtain F’ and G’ by substituting the expressions in (6) for x, y, z in F
and G, as discussed after the proof of Theorem 3.4.
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We can now generalize the intersection properties in Section 1 from
intersections at the origin to intersections at any point. We use Theorem
3.4 and the fact that transformations preserve intersection multiplicities
to transform any point of intersection of two curves to the origin.

Theorem 3.6
In the projective plane, let F(x,y,z) = 0, G(x,y,z) =0, and H(x, y,z) = 0 be
curves, and let P be a point. Then the following results hold:

(i) Ip(F, G) is a nonnegative integer or oo.
(ii) Ip(F,G) = Ip(G, F).
(iii) Ip(F, G) > 1 if and only if F and G both contain P.
(iv) Ip(F,G) = Ip(F,G + FH) if G + FH is homogeneous.
(v) Ip(F,GH) = Ip(F,G) + Ip(F, H).
(vi) Ip(F,G) = oo if F is a factor of G and contains P.
Proof

There is a transformation taking P to the origin, by Theorem 3.4. The
intersection multiplicity of two curves at P equals the intersection multi-
plicity of their images at the origin (by Property 3.5). We can compute
the intersection multiplicities of curves in the projective plane at the
origin by restricting the curves to the Euclidean plane (by Property
3.1). Thus, statements (i)-(vi) follow from Properties 1.1-1.3, 1.5, 1.6,
and Theorem 1.7. O

Parts (v) and (iii) of Theorem 3.6 show that
IP<F> kG) = IP<F> k) + IP(Fa G) = IP(Fa G)

for any real number k # 0. That is, multiplying a curve G by a nonzero
constant k does not change its intersection multiplicities with other
curves. Accordingly we consider kG to be the same curve as G for all real
numbers k # 0. That is, we consider two homogeneous polynomials to be
the same curve exactly when they ave scalar multiples of each other.

It is natural to think of the polynomials kG as the same curve for all
real numbers k # 0 because the equations kG(x, y,z) = 0 and G(x, y, z) =
0 have the same solutions in the projective plane. We identified lines
differing by nonzero constant multiples when we observed that every
line in the projective plane except z = 0 is given by (4) or (6) of Section
2. We also identified each line with its nonzero scalar multiples when we
proved in Theorems 2.1 and 2.2 that two lines intersect at a unique point
and two points lie on a unique line.

We need one more basic result relating intersections and transfor-
mations. Part (ii) of the next theorem states that translations of the
Euclidean plane preserve intersection multiplicities. This holds because
translations extend to transformations of the projective plane, and trans-
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formations preserve intersection multiplicities. Part (iii) states that re-
stricting curves from the projective to the Euclidean plane preserves
intersection multiplicities. This generalizes Property 3.1 by replacing
the origin with any point in the Euclidean plane. It is a companion result
to Definition 3.2, which shows that extending curves from the Euclidean
to the projective plane preserves intersection multiplicities; Theorem
3.7(iii) is slightly more general than Definition 3.2, since there are
curves in the projective plane such as xz = 0 that are not extensions of
curves in the Euclidean plane because they have z as a factor.

Theorem 3.7
Let a and b be real numbers.

(i) Let F(x,y,z) and G(x,y,z) be homogeneous polynomials, and let their
restrictions to the Euclidean plane be

fxy) =F(xy1) and  glxy) =Gxy,1). (22)
Then
Lia,p,1)(F(%,Y, 2), G(%, Y, 2)) (23)
equals
Lo.o)(f(x+a,y+Db),g(x+a,y+D)). (24)

(ii) If f(x,y) and g(x,y) are nonzero polynomials, we have

I(a,b)<f<X> y)>g<xa y)) = I(O,O)<f<x+ a,y + b):g(?‘+a>y+ b)) (25)

(iii) Let F and G be homogeneous polynomials, and define f and g by the
equations in (22). Then we have

lia,p,1)(F, G) = Iiap)(f, 8) (26)
Proof
(i) As in the discussion accompanying (7), the equations
¥ =x—az, y =y— bz, 7 =z, (27)

represent a transformation because they can be solved for x, y, z in
terms of ¥/, y’, z’, as follows:

x=x"+az y=y +bz, z=17. (28)

The transformation in (27) maps (a,b,1) to (0,0,1). Accordingly, Prop-
erty 3.5, which states that transformations preserve intersection multi-
plicities, shows that the quantity in (23) equals

I(O, 0,1)(F<X, + aZla y, + bZ/9Z,>’ G(Xl + aZ/; y, + bZ/aZ/)>; (29)
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2,4

Figure 3.4

where we have substituted the expressions for x, y, z from (28) into (23).
Setting z’ = 1 in the polynomials in (29) gives the polynomials in (24)
(by (22)). Thus, the intersection multiplicities in (29) and (24) are equal
(by Property 3.1). (The primes in (29) are immaterial, since they merely
show that this expression arises from a transformation.) In short, the
quantities in (23) and (24) are equal because they both equal the quan-
tity in (29).

(i) Let F(x,y,z) and G(x,y,z) be the homogenizations of f(x,y) and
g(x,y). Equation (4) shows that the equations in (22) hold. Thus, part (i)
shows that the quantities in (23) and (24) are equal. The quantity in (23)
equals the left-hand side of (25) (by Definition 3.2). Hence, (25) holds.

Part (iii) follows by combining parts (i) and (ii). O

Theorem 3.7(ii) makes it easy to compute the number of times that
two curves intersect at any point in the Euclidean plane: we translate
the point to the origin and then apply the techniques of Section 1. For
example, suppose we want to compute the number of times that y = x2
and y = 2x intersect at (2, 4) (Figure 3.4). Theorem 3.7(ii) shows that

Ina(y—xy—2x) =Ioo(y+4—(x+2)*y+4—2(x+2)
=I,0(y — X2 — 4x,y — 2x).

By Theorems 1.9(ii) and 1.11, this intersection multiplicity is the
smallest degree of any nonzero term produced by substituting 2x for y
in y — x% — 4x and collecting terms, which gives —x? — 2x. This degree
is 1, and so y = x? intersects y = 2x once at (2, 4).

To find the number of times that two curves intersect at a point P at
infinity, transform P to a point of the Euclidean plane by interchanging
coordinates and then apply Theorem 3.7. For example, suppose that
we want to find the number of times that the hyperbola x> —y? =1
intersects its asymptote y = x at infinity (Figure 3.5). Converting to
homogeneous coordinates, we want the intersection multiplicity of
¥ —y?—2z2=0 and y—x=0 at (1,1,0). We interchange x and z to
move the point of intersection into the Euclidean plane. This gives

Loz —y* —x*,y—2) (30)
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Figure 3.5

(by Property 3.5). Taking a = 0 and b =1 in Theorem 3.7(i) shows that
the quantity in (30) equals

Io(1—(y+1)° =X (y+1) - 1) =Io(—y* — 2y — X", y),

where O is the origin. This intersection multiplicity is 2, by Theorems
1.9(ii) and 1.11, since setting y = 0 in —y? — 2y — x* gives —x%. Thus,
the hyperbola intersects its asymptote twice at infinity.

We end this section with a remark for readers familiar with linear
algebra. Transformations of the projective plane correspond to invertible
linear transformations of R3, by Definition 3.3. Because linear transfor-
mations of R® are determined by the images of three linearly indepen-
dent vectors, it may seem surprising that Theorem 3.4 shows that there
are four degrees of freedom in defining transformations of the projective
plane. In fact, the fourth degree of freedom arises from the homogeneity
of coordinates in the projective plane, as the second-to-last paragraph of
the proof of Theorem 3.4 shows.

Exercises

3.1. A curve f(x,y) = 0 in the Euclidean plane is given in each part of this exer-
cise. Determine the extension F(x,y,z) = 0 of the curve to the projective
plane, where F is the homogenization of f. Determine the points at infinity
on the extension, writing each one as in (8) of Section 2, and determine the
slope of the lines in the Euclidean plane on each of these points.

) x4+ 3x%y = 4y* — 5y° —y? + 2y + 6.

y? — 3xy + 5x — 2y = 21.

c) y*=x%+5x

d) y® = 4x’y +8x +12.

e) x3 — 3x%y + 2xy — 4y = 10.

(a

(b

(

(
(

3.2. A curve F(x,y,z) =0 in the projective plane is given in each part of the

exercise. Determine the equation f(x,y) =0 of the curve’s restriction to
the Euclidean plane.
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3.3.

3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

I. Intersections of Curves

(a) z8 =x z—ny +3y

(b) 8x + 2x2 zfxyzqty +3yz? +4z% = 0.

(c) x 2xyz+xyz +3y* + 5yz3 — 22 = 0.

(d) 2xyz? + x3z —yz® + 3x3y = 0.

In each part of Exercise 3.2, determine the points at infinity on the given
curve. Write each point at infinity in one of the forms in (8) of Section 2,
and specify the slope of the lines in the Euclidean plane on each point.

Two curves and a point in the Euclidean plane are given in each part of
this exercise. Use Theorem 3.7(ii) to find the number of times that the
curves intersect at the point.
a) ¥ +y? =4,y +y®>=40,2).
b) ¥ 4+y?> =5 x+2y> =09, (1,-2).
c) xy =2, xy* =4, (1,2).
) X4 2xy =4, x> +y? =4y + 4, (—2,0).
e) ¥ +2xy—2y=1,xX=y*+2y+2,(1,-1).
) ¥ +xy+y=1,x2+4=0,(-1,2).

Each part of this exercise gives two curves in homogeneous coordinates
and a point at infinity in the projective plane. Find the number of times
that the curves intersect at the point as in the discussion accompanying
Figure 3.5.

) xy—Zx + 22, y? +yz—4x (1, 2,0)

) 3y? 4+ xy + 222 =0, z° = xy? + 343, (3, —1,0).

) 3y =x+ 2z, 3y° + xz? = xy?, (3,1,0).

d) xy+y2 =22 x> —y? =222, (1,-1,0).

) xz? + X%y = 4y, ¥*z% + 3xy® = 6y, (2,1,0).

(a
(b
(c
(
(e
Consider the equations

X = 2%, Yy =4x—y, Z=x—-3y+oz (31)
(a) Show that these equations give a transformation by solving them for

X, Y, z in terms of ¥, i/, z’, as in (6).

(b) Determine the image of the line y = 3x — 2z under the transformation
n (31).

(c) Determine the image of the curve x> —y? =z
tion in (31).

2 under the transforma-

Do parts (a)-(c) of Exercise 3.6 for the equations
x' =3y, y =x+ 2z Z=2x—z. (32)

Do parts (a)-(c) of Exercise 3.6 for the equations
¥ =3x+2y—z y =x+3y, z'=x+2y. (33)

Compute the combined effect of performing the following sequences of
transformations:

(a) Following the transformation in (31) with that in (32).
(b) Following the transformation in (32) with that in (31).
(c) Following the transformation in (31) with that in (33).
(d) Following the transformation in (33) with that in (31).
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3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

3.16.

(e) Following the transformation in (32) with that in (33).
(f) Following the transformation in (33) with that in (32).

Let A, B, C be three collinear points, and let A’, B’, C’' be three collinear
points. Use Theorem 3.4 to prove that there is a transformation that maps
A, B,Cto A, B/, C’, respectively. (We use this result in Exercises 3.11, 3.15,
and 7.14.)

(a) Consider any transformation that fixes the origin, the point (1, 0) in the
Euclidean plane, and the point at infinity on horizontal lines. Prove
that there are real numbers a, b, e, h such that a # 0, e # 0, and the
transformation maps

(%,y,2) — (ax + by, ey, hy + az).

Conclude that the transformation fixes every point on the x-axis.

(b) Let A, B, C be three points on a line 1. Use part (a) and Exercise 3.10 to
prove that every transformation that fixes A, B, C also fixes every point
of I. (We use this exercise in Exercises 4.25-4.29, 6.17-6.20, and 16.7-
16.13.)

Let I and m be two lines that do not contain a point T. Prove that there is
a transformation that maps X to TX nm for each point X of I. (Hint: One
possible approach is to use Theorem 3.4 to reduce to the case where [ is
the x-axis, m is the y-axis, and T is the point at infinity on lines of slope —1.)

Consider a transformation that maps a line [ to a line m # . Prove that the
transformation fixes I nm if and only if there is a point T lying on neither
I nor m such that the transformation maps X to TX nm for every point X
of .

(Hint: If the given transformation fixes [ "m, why is there a point T
such that the transformation in Exercise 3.12 agrees with the given trans-
formation on I " m and two other points of [? Why does it follow from Exer-
cise 3.11(b) that the two transformations agree on every point of I?)

Let A, B, C, D be four points, no three of which are collinear, in the projec-
tive plane. Prove that ABNCD, AC nBD, and AD nBC are three non-
collinear points. (This exercise is used in Exercises 4.29, 6.18, and 6.19.
One possible approach to this exercise is to use Theorem 3.4 to reduce to
the case where A-D are particular points and direct computation can be
used.)

Let A, B, C, D be four collinear points. Prove that there is a transformation
that interchanges A with C and B with D. (This exercise is used in Exercise
4.29. It may be helpful in doing this exercise to use Exercise 3.10 to trans-
form A, B, C into three particular collinear points.)

Consider a curve of the form y = f(x), where f(x) is a polynomial in x of
positive degree n. Prove that the curve has exactly one point P at infinity,
that it intersects every vertical line exactly n — 1 times at P, and that it
intersects the line at infinity exactly n times at P.

(The case n = 1 may require separate consideration.)
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3.18.

3.19.

3.20.

I. Intersections of Curves

. Four points, no three of which are collinear, are given in each part of this

exercise. There is a transformation that maps the points (1,0, 0), (0, 1,0),
(0,0,1), (1,1,1) to the four given points, by Theorem 3.4. Find equations
as in (5) that give such a transformation. Recall that the homogeneous co-
ordinates of a point can be multiplied by a nonzero number t without af-
fecting the point.

(a) (0,2,1),(1,2,-1),(0,1,0), (1,3, 2).

b) (1,1,0), (1,2,0), (0,1,1), (0,1, —1).

c) (3,0,5),(0,1,2), (1,0,—1), (3, —1,4).

d) (1,1,1), (1,0,1), (0,1,2), (1,0,0).

5+

(
(
(

5

If a transformation fixes each of the points (1,0, 0), (0, 1,0), (0,0,1), and
(1,1,1), prove that the transformation has the form x' =tx, y' =ty,
z' = tz for a nonzero number t. Conclude that the transformation fixes
every point.

(b) In the projective plane, let A, B, C, D be four points, no three of which
are collinear, and let A’, B', C’, D’ be four points, no three of which are
collinear. Theorem 3.4 states that there is a transformation that maps
A, B, C, D to A, B/, C’, D'. Use part (a) and Theorem 3.4 to prove
that this transformation is unique; that is, if two transformations map
A, B,C,Dto A, B/, C', D', prove that every point has the same image
under both transformations.

(a

Consider the following result:

Theorem

In the projective plane, let N, A, A" be three collinear points, and let 1 be a line
that does not contain A or A'. Then there is a transformation that fixes N and
every point of I, maps A to A', and sends each point X to a point X' collinear
with X and N.

(a) Prove the theorem when N is the origin and I is the line at infinity by
considering the transformations x' =rx, y' =ry, z’ =z for nonzero
numbers 7.

(b) Prove the theorem when I is the line at infinity and N is the point at
infinity on vertical lines by considering the transformations x’' = x,
Yy =y+ kz, z’ = z for nonzero numbers k.

(c) Prove the theorem in general by combining parts (a) and (b) with
Theorem 3.4.

This exercise contains the proof of the following result (Figure 3.6):

Desargues’ Theorem

Let A, C, E, A', C', E' be distinct points such that no two of the lines AC, CE, AE,
A'C', C'E', A'E', AA', CC’, EE' are equal. Set P= ACnA'C', Q = AENA'E/,
and R = CEN C'E'. Then the lines AA', CC', EE' are concurrent if and only if
the points P, Q, R are collinear.

(a) Prove that P # Q. Set [ = PQ and prove that neither A nor A’ lies on L.
Set N = AA' n CC’, and prove that neither A nor A’ equals N.
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Figure 3.6

(b) If AA’, CC’, EE' are concurrent, prove that the transformation in the
theorem in Exercise 3.19 maps C to C’ and E to E’, and deduce that P,
Q, R are collinear.

(c) If P, Q, R are collinear, prove that the transformation in the theorem in
Exercise 3.19 maps C to C’ and E to E’, and conclude that AA’, CC’, EE’
are concurrent.

Use Desargues’ Theorem from Exercise 3.20 to prove the following results:
(a) The theorem in Exercise 2.8.
(b) The theorem in Exercise 2.9.

Let F(x,y,z) be a homogeneous polynomial. Prove that F(x,y,z) is the
homogenization of a polynomial in x and y if and only if F(x, y,z) does
not have z as a factor.

Let F(x,y,z) be a homogeneous polynomial, let f(x,y) = F(x,y,1) be the
restriction of F to the Euclidean plane, and let F;(x, y,z) be the homoge-
nization of f. Prove that F = z°F;, where z° is the highest power of z that
can be factored out of F.

Prove that any factor of a homogeneous polynomial is itself homogeneous.

Combine Exercise 3.18(a) with the proof of Theorem 3.4 to show that every
transformation is a sequence of the following transformations:

a) ¥ =xy =y, z =kzfork #0.

b) ¥ =x+7rz,y =y, z =z for a number r.

o) xX=zy=y72z=x

d ¥=xy =2z1727=y.

The corresponding result in linear algebra is that an invertible 3-by-3 ma-
trix is a product of elementary matrices.)

(
(
(
(
(

Prove that a transformation fixes every point at infinity if and only if
there are numbers s, h, k such that s is nonzero and the transformation
maps (x,y) to (sx+ h,sy + k) for each point (x,y) in the Euclidean plane.
Show that such a transformation exists for any numbers s, h, k such that
s # 0.
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§4. Lines and Tangents

We take the general results of the first three sections and use them now
to analyze the intersections of lines and curves. We prove that a line
intersects a curve of degree n that does not contain it at most n times,
counting multiplicities; this means that the sum of the multiplicities of
the intersections is at most n. This is the first of many results about the
geometric significance of the degree of a curve.

In the second half of this section, we analyze the number of times that
a line and a curve intersect at a point. If P is a point of a curve F, and if
there is a unique line that intersects F more than once at P; we call this
line the tangent to F at P. We show that this is equivalent to using im-
plicit differentiation to find tangents to curves, as in first-year calculus.
We end the section by using tangents to characterize pairs of curves
that intersect more than once at a point.

We start by observing that any two lines in the projective plane should
intersect with multiplicity 1 because their intersection is as simple as
possible. We give a formal proof by transforming the lines to the x- and
y-axes and applying Property 1.4.

Theorem 4.1
Any two lines in the projective plane intersect with multiplicity 1 at their
unique point of intersection.

Proof

Let [ and m be the two given lines. They intersect at a unique point P
(by Theorem 2.1). Let Q be a second point on [, and let R be a second
point on m. There is a transformation that maps P to the origin O, Q to
a second point on the y-axis x = 0, and R to a second point on the x-axis
Yy = 0 (by Theorem 3.4). This transformation maps [ and m to x = 0 and
y =0, and so we have Ip(l, m) = Ip(x,y) = 1 (by Properties 3.5, 3.1, and
1.4). ]

Our goal in the first half of this section is to generalize Theorem 4.1
by determining the number of times, counting multiplicities, that a line
intersects any algebraic curve in the projective plane. Theorem 1.11 de-
termines the number of times that a curve of the form y = f(x) intersects
a curve g(x,y) = 0 at the origin when the second curve does not contain
the first. We now find the number of times that these curves intersect at
any point (a, f(a)) on y = f(x) in the Euclidean plane. We do so by using
Theorem 3.7(ii) to translate (a, f(a)) to the origin and applying Theorem
1.11.
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Theorem 4.2
Let y = f(x) and g(x,y) = 0 be curves, and let a be a real number. If

g, f(x)) = (x — a)°h(x) (1)

for an integer s > 0 and a polynomial h(x) such that h(a) # 0, then s is the
number of times that y = f(x) and g(x, y) = 0 intersect at the point (a, f(a)).

Proof
Theorem 3.7(ii) shows that the intersection multiplicity of the curves
y—f(x) and g(x,y) at (a, f(a)) equals the intersection multiplicity of the
curves

y+fla)—flx+a) and  glx+a,y+ fla) (2)

at the origin. We think of the first polynomial in (2) as y minus the
quantity f(x 4+ a) — f(a). Substituting this quantity for y in the second
polynomial in (2) gives

gx+a flx+a)). (3)

This polynomial is nonzero, because it becomes g(x, f(x)) if we substitute
x —a for x, and (1) and the assumption that h(a) # 0 show that g(x, f(x))
is nonzero. Thus, the first polynomial in (2) is not a factor of the second
(by Theorem 1.9(ii)). Moreover, the first polynomial in (2) takes the value
zero when x = 0 and y = 0. Hence, Theorem 1.11 shows that the number
of times that the curves in (2) intersect at the origin is the smallest
degree of any nonzero term in (3).
Substituting x + a for x in (1) shows that

gx+a, f(x+a)) = xk(x),

where k(x) = h(x+a) is a polynomial such that k(0) = h(a) # 0. It
follows that s is the smallest degree of any nonzero term of (3), since
the fact that k(0) # 0 means that the constant term of k(x) is nonzero.
Together with the first and last sentences of the previous paragraphs,
this shows that y = f(x) and g(x, y) = 0 intersect s times at (a, f(a)). [

To find the points in the Euclidean plane where curves y = f(x) and
g(x, y) = 0 intersect, we naturally substitute f(x) for y in g(x,y) =0 and
take the roots of g(x, f(x)) = 0. This commonsense procedure works for
multiple intersections as well: the number of times that y = f(x) inter-
sects g(x,y) = 0 at a point (a, f(a)) is the number of times that x — a is a
factor of g(x, f(x)). This is the gist of Theorem 4.2, which we restate as
follows. We use the next result to study the intersections of lines and
curves in Theorems 4.4 and 4.5 and conics and curves in Theorems 5.8
and 5.9.
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Theorem 4.3
Let y = f(x) and g(x,y) = 0 be curves in the Euclidean plane. If y — f(x) is
not a factor of g(x, y), we can write

gx, f(x) = (x —ar)™ -+ (x — ay) (%), (4)

where the a; are distinct real numbers, the s; are positive integers, and r(x) is
a polynomial that has no real voots. Then y = f(x) and g(x,y) = 0 intersect
s; times at the point (a;, f(a;)) fori=1,..., v, and these are the only points of
intersection in the Euclidean plane.

Proof
Since y — f(x) is not a factor of g(x, y), the polynomial g(x, f(x)) is non-
zero (by Theorem 1.9(ii)). Factor as many polynomials of degree 1 as
possible out of g(x, f(x)). The number of factors cannot exceed the degree
of g(x, f(x)) because g(x, f(x)) is nonzero. When the process of factoriza-
tion ends, the remaining factor r(x) has no factors of degree 1, and so it
has no real roots (by Theorem 1.10(ii)). Thus, we can factor g(x, f(x)) as
in (4).
Since a; # a; for i # j, (4) shows that

g(x, f(x)) = (x — ai)*h(x),

where h(x) is a polynomial such that h(a;) # 0. Thus, s; is the number of
times that y = f(x) and g(x,y) = 0 intersect at the point (a;, f(a;)) (by
Theorem 4.2). If a is any real number other than ay,...,a,, (4) shows
that g(a, f(a)) # 0, and so the curve g(x, y) = 0 does not contain the point
(a, f(a)) and does not intersect y = f(x) there (by Theorem 3.6(iii) and
Definition 3.2). Likewise, y = f(x) does not intersect g(x,y) = 0 at any
point (a,b) in the Euclidean plane with b # f(a), since these points do
not lie on y = f(x). Ol

In short, if a curve has the special form y = f(x), Theorem 4.3 gives
the multiplicities of all of its intersections in the Euclidean plane with
any curve g(x,y) = 0 that does not contain it. We simply substitute f(x)
for y in g(x, y) and factor the resulting polynomial g(x, f(x)). In order to
apply Theorem 4.3, we must check that y — f(x) is not a factor of g(x, y),
but we can do so simply by checking that g(x, f(x)) is nonzero (by
Theorem 1.9(ii)).

In either the Euclidean or the projective plane, we say that two curves
intersect d times, counting multiplicities, if d is the sum of the intersection
multiplicities of the curves at all points in the plane. Let g(x,y) = 0 be a
curve of degree n, and let y = mx + b be a nonvertical line that does not
lie entirely on the curve. Because the degree of g(x, mx + b) is at most the
degree n of g, Theorem 4.3 shows that the line intersects the curve at
most n times, counting multiplicities, in the Euclidean plane. We extend
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this result to the projective plane in Theorem 4.5. We start with the spe-
cial case where the line is the x-axis y = 0. We single this case out so that
we can return to it in the proofs of Theorems 5.2, 6.4, 9.1, and 11.1.

Theorem 4.4
Let G(x,y,z) be a homogeneous polynomial of degree n that does not have y
as a factor. If we set g(x,y) = G(x, y, 1), we can write

g%, 0) = (x —ay)®™ -+ (x — ay) ¥ r(x), (5)

for distinct real numbers a;, positive integers s;, and a polynomial v(x) that
has no real roots. Then the number of times, counting multiplicities, that the
curve G = 0 intersects the x-axis y = 0 in the projective plane is the degree n
of G minus the degree of r(x).

Proof
Since G is homogeneous of degree n, we can write

n—i—
G(x,y,z g@UXJZ J.

Setting y = 0 leaves the terms without y, which are the terms with j = 0.

This yields
G(x,0,2) Zel g, (6)
Setting z =1 gives
g(x,0) = G(x,0,1) Zelox (7)

Because y is not a factor of G(x, y, z), (6) is nonzero, and so is (7). Let d be
the degree of g(x,0). Then d is also the highest exponent on x in a non-
zero term of (6), which means that d is the highest exponent on x in a
term of G(x, y, z) without y.

Since (7) is nonzero, we can factor g(x,0) as in (5). This factorization
shows that

S1+ -+ 8y (8)

is the degree d of g(x,0) minus the degree of r(x). The sum (8) is
the number of times, counting multiplicities, that y =0 intersects
G(x, y,z) = 0 in the Euclidean plane (by Theorems 3.7(iii) and 4.3).

We claim that the number of times, counting multiplicities, that y = 0
intersects G = 0 at infinity is n — d. We add this to the number of inter-
sections in the Euclidean plane, which is d minus the degree of r(x)
(by the previous paragraph). Then the total number of intersections
in the projective plane is n minus the degree of r(x), as the theorem
asserts.
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To prove the claim, we count the intersections of y =0 and G =0 at
infinity. The only possible point of intersection is (1,0, 0), since this is
the only point at infinity on the line y = 0. To send (1,0, 0) to the origin
(0,0,1), we interchange x and z with a transformation (as in (8) of §3).
This gives

I(l,O,O)(ya G(X7 Y, Z)> = I(O,O,l)(yy G<Za Y, X))
(by Property 3.5). Looking at the right side in the Euclidean plane gives

I(o,o)(% G(la Y, X))

(by Property 3.1). This equals the least degree of a nonzero term of
G(1,0,x), by Theorem 1.11. That degree is the least exponent on z in a
nonzero term of G(x, 0, z). That exponent is n — d, since d is the largest
exponent on x in a nonzero term of (6). We have established the claim
in the previous paragraph. O

We can now prove that any line intersects any curve of degree n that
does not contain it at most n times in the projective plane, counting
multiplicities. We need one preliminary observation. If a transformation
mapping (x,y,z) to (¥',y’,z') takes homogeneous polynomials F(x, y, z)
and G(x,y,z) to F'(¥,y',z') and G'(¥',y’,z’), then F is a factor of G if
and only if F’ is a factor of G'. In fact, using the equations in (6) of
Section 3 to substitute for x,y, z changes an equation

G(x,y,2) = F(x,y, 2)H(x, Y, z)
into an equation
G(¥y,2)=F(y,2\H,y,2),
where H and H' are homogeneous polynomials, and this process can be
reversed because transformations can be reversed.

Theorem 4.5

Let L =0 be a line, and let G = 0 be a curve of degree n. If L is not a factor
of G, then L and G intersect at most n times, counting multiplicities, in the
projective plane.

Proof

There is a transformation that maps two points of L to two points on the
x-axis y = 0 (by Theorem 3.4). This transformation takes the line L and
the curve G to the line y = 0 and a curve G’ of degree n, as discussed
after the proof of Theorem 3.4. G’ does not have y as a factor, by the dis-
cussion before this theorem and the assumption G does not have L as a
factor. Thus, y = 0 intersects G’ = 0 at most n times, counting multiplici-
ties, in the projective plane (by Theorem 4.4). Because transformations
preserve intersection multiplicities (by Property 3.5), L and G intersect
at most n times, counting multiplicities, in the projective plane. O
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In short, a line intersects a curve of degree n which does not contain it
at most n times, even when we count multiple intersections and inter-
sections at infinity. For example, because (2) of the Introduction to
Chapter I has degree 4, every line intersects the curve in Figure 1.1 at
most four times. Figure 4.1 shows the same curve, which appears to
have four intersections with the lines [, m, and n (including one double
intersection with m and two with n), two intersections with p, and none
with g. Similarly, because the curve y = x® in Figure 1.3 has degree 3, it
intersects any line at most three times. Theorem 4.1 shows that we can
omit the words “at most” in Theorem 4.5 when n = 1: one line intersects
another—that is, another curve of degree 1—exactly once, counting
multiplicities.

Of course, we had to assume in Theorem 4.5 that L is not a factor of G.
When L is a factor of G, they intersect infinitely many times at every
point of L (by Theorem 3.6(v1i)).

In order to introduce tangents to curves, we must analyze more care-
fully the number of times that a line and a curve intersect at a point. We
start by looking at the origin.

Let g(x,y) = 0 be a curve that contains the origin. Then g(x, y) has no
constant term, and so we can write

gx,y) = sx+ty + hix, y),

where h(x, y) is a polynomial in which every term has degree at least 2.
We consider the intersection multiplicity of g(x,y) =0 and the line
y = mx at the origin. If g(x, mx) is nonzero, the intersection multiplicity
is the smallest degree of any nonzero term in

g(x, mx) = sx + tmx + h(x, mx)

after collecting powers of x (by Theorems 1.9(ii) and 1.11). If g(x, mx) is
zero, the intersection multiplicity is co (by Theorem 1.7, since Theorem
1.9(ii) shows that y — mx is a factor of g(x,y) in this case). Thus, the
intersection multiplicity is at least 2 if and only if s + tm equals 0, since
every term of h(x, mx) has degree at least 2. If s + tm = 0, then either s
and t are both 0, or else t # 0 and the equations

sx+ty = —tmx +ty = t(y — mx)
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show that sx 4ty =0 is the same line as y = mx. Conversely, s+ tm
equals 0 if s and t are both 0. If sx + ty = 0 is the same line as y = mx,
then t is nonzero and y = (—s/t)x is the same line as y = mx, and so we
have m = —s/t and s+ tm = 0. We have proved the following result for
lines of the form y = max:

Theorem 4.6
In the Euclidean plane, let | be a line through the origin, and let g(x,y) = 0
be a curve through the origin. Write

gx,y) =sx+ty +hx, y),

where h(x, y) is a polynomial in which every term has degree at least 2. Then
[ and g intersect at least twice at the origin if and only if either s and t are
both 0 or else sx + ty = 0 is the line 1.

Proof

We have already proved this for lines of the form y = mx, and so the only
line remaining is x = 0. Because the transformation switching x and y
preserves intersection multiplicities (by Properties 3.1 and 3.5 and the
discussion accompanying (8) of Section 3), and because we have proved
the result when [ is the line y = 0, it also holds when [ is the line x = 0.

O

We can restate this theorem slightly by fixing the curve g, letting the
line I vary, and using Properties 1.1 and 1.3. This gives the following
result:

Theorem 4.7
In the Euclidean plane, let g(x,y) = 0 be a curve through the origin. Write

8x y) = sx +ty + hix, y),
where h(x, y) is a polynomial in which every term has degree at least 2.

(i) If s = 0 = t, then every line through the origin intersects g at least twice
at the origin.

(ii) If's andt are not both zero, then sx + ty = 0 is the unique line that inter-
sects g more than once at the origin. Every other line through the origin
intersects g exactly once there. O

We can generalize Theorem 4.7 from the origin to any point P in
the projective plane because there is a transformation that maps P to
the origin and preserves intersection multiplicities (by Theorem 3.4
and Properties 3.1 and 3.5). Thus, Theorem 4.7 extends to the following
result:
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Figure 4.2

Theorem 4.8
Let P be a point on a curve G(x, y, z) = 0 in the projective plane. Then one of
the following two conditions holds:

(i) Every line through P intersects G at least twice at P.
(ii) There is a unique line that intersects G more than once at P. Every other
line through P intersects G exactly once there. O

Theorem 4.8 leads to the following definition:

Definition 4.9

Let P be a point on the curve G(x, y,z) = 0 in the projective plane. G is
called singular at P if condition (i) of Theorem 4.8 holds, and nonsingular
at P if condition (ii) holds. When condition (ii) holds, the unique line that
intersects G more than once at P is called the tangent or tangent line to G
at P. [

Intuition supports Definition 4.9. As we noted before Theorem 1.7,
the intersection multiplicity of two curves at a point seems to measure
how closely the curves approach each other there. Accordingly, Defini-
tion 4.9 characterizes the tangent [ to a curve G at a point P as the line
that best approximates the curve there. As in Figure 4.2, we can think of
the multiple intersection of I and G at P as the coalescence of distinct
intersections of G and a secant line m through P.

By Definition 4.9, a curve does not have a tangent at a singular point.
This is a point where the curve has a complicated structure, such as the
origin in Figure 1.1 of the Introduction to Chapter I. In fact, Theorem 4.7
and Definition 4.9 show that (2) of the chapter introduction has a singu-
lar point at the origin because it has no terms of degree less than 2.

We have defined singularities and tangents of curves in terms of inter-
section multiplicities. Because transformations preserve intersection
multiplicities (by Property 3.5), they preserve singularities and tangents
of curves. Specifically, suppose that a transformation maps a curve F to a
curve F' and maps a point P on F to a point P’. Then F is nonsingular at
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P if and only if F’ is nonsingular at P’, and, if so, the transformation
maps the tangent to F at P to the tangent to F’ at P’.

Let g(x,y) be a polynomial, and let (a, b) be a point in the Euclidean
plane. We can write g(x, y) as a sum of powers of x — a and y — b as fol-
lows. By substituting x =x' +a and y =y’ + b in g(x,y) and collecting
terms, we can write

g +ay +b) =) ey’
for real numbers ¢;;. Substituting x’ = x —a and y’ = y — b gives
glvy) =Y ejlx—a)(y—b), (9)

which expands g(x,y) in powers of x —a and y — b. Readers familiar
with multivariable calculus may recognize (9) as the Taylor expansion
of g(x, y) about (a, D).

We use (9) to translate Theorem 4.7 from the origin to any point in
the Euclidean plane.

Theorem 4.10
Let (a, b) be a point on the curve g(x,y) = 0 in the Euclidean plane. We can
write

g y) =s(x—a)+Hy—b) + > eilx—a)(y—Db), (10)

where i+ j = 2 for every term in the sum. Then g is nonsingular at (a,b) if
and only if s and t are not both zero. Moreover, in this case, the tangent to g
at (a,b) is the line

s(x—a)+tly—b) =0. (11)

Proof

We have seen that we can write g(x,y) in the form of (9). Because
gla,b) = 0, the constant term ey in (9) is zero, and we can write g(x, y)
as in (10). Substituting x = x' +a and y = y’ + b in (10) gives

s +ay +b) =¥+t +> ey’

where i+ j > 2 for every term in the sum. By Theorem 4.7, s and t are
not both zero if and only if there is a unique line that intersects
g(x¥' +a,y’ +b) = 0 more than once at the origin, and, if so, sx’ +ty' =0
is that line. Substituting ' = x —a and y = iy’ — b and applying Theorem
3.7(ii) shows that s and t are not both zero if and only if there is a unique
line that intersects g(x, y) more than once at (a, b), and, if so, (11) is that
line. O

As in first-year calculus, we can use implicit differentiation with
respect to x or y to find the tangent line to a curve g(x,y) =0 in the
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Euclidean plane at a point (a, b) on the curve. We claim that this gives
the same tangent lines as Definition 4.9.

By Theorem 4.10, we can write g(x,y) as in (10). Setting this expres-
sion equal to zero and differentiating implicitly with respect to x gives

dy . i iy i 1Ay
4904 30 [ = )y =) e - iy - p Y =0, 12)

where i +j > 2 for every term in the sum. When we evaluate this equa-
tion at (x,y) = (a,b), every term in the sum is zero, since the fact that
i+j > 2 implies that every term in the sum has a factor of x —a or
Y — b. Thus, setting x = a and y = b in (12) gives

dy )
s+t =2 =0.
(dx (a,b)

If t # 0, we can rewrite this equation as

dy
dx

(a,D) t

This shows that the tangent at (a, b), according to first-year calculus, is
y—b=—2(x—a)

which is equivalent to (11).
Similarly, if we write g(x,y) as in (10), differentiate the equation
g(x,y) = 0 implicitly with respect to y, and substitute x =a and y = b,

we obtain
S <dx ) +t=0
aY |(a,v) '

If s # 0, we can rewrite this equation as

dx t

@ (a,b) §

According to first-year calculus, the tangent at (a, b) is
t
— = — - — b
x—a=—<(y=b),

which is again equivalent to (11).

The last two paragraphs show that we can use implicit differentiation
with respect to x or y to find the tangent to g(x, y) = 0 at (a, b) if and only
if the numbers s and ¢ in (10) are not both zero. This occurs if and only if
g is nonsingular at (a, b) (by Theorem 4.10). Moreover, when this occurs,
implicit differentiation with respect to x or y gives the same tangent line
as Definition 4.9, by the last two paragraphs.
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Intuition suggests two reasons why two curves on a point P would
have a multiple intersection there. First, one of the curves could be
singular at P; for example, the curve in Figure 1.1 of the Introduction to
Chapter I, which is singular at the origin, seems to intersect the x-axis
twice there. Second, the two curves could approach each other so closely
near P that they are tangent to the same line there, as in Figure 1.2 of
Section 1. We end this section by formalizing these ideas when one of
the curves is nonsingular at P.

Theorem 4.11

Let F(x,y,z) = 0 and G(x, y,z) = 0 be two curves on a point P in the projec-
tive plane, and assume that F is nonsingular at P. Then Ip(F, G) > 2 if and
only if G is either singular at P or tangent to the same line there as F. Equiv-
alently, Ip(F,G) =1 if and only if G is nonsingular at P and tangent to a
different line there than F.

Proof

Because F is nonsingular at P, it has a tangent there. There is a transfor-
mation that maps P to the origin and maps a second point on the tangent
at P to a second point on the y-axis (by Theorem 3.4). We can replace F
and G with their images under the transformation (by Property 3.5), and
so we can assume that P is the origin and that F' is tangent to the y-axis
x =0 at the origin. We can replace F(x,y,z) and G(x,y,z) with their
restrictions f(x,y) = F(x,y,1) and g(x,y) = G(x,y,1) to the Euclidean
plane (by Property 3.1).

Because f(x,y) = 0 is tangent to x = 0 at the origin, we can write

fx,y) = sx+ h(x, y), (13)

where s # 0 and every term of h has degree at least 2 (by Theorem 4.7
and Definition 4.9). Since every term of f that is not divisible by x is
divisible by y?, we can write

flxy) = ap(x, y) + y*q(y) (14)

for polynomials p (in x and y) and g (in y alone). The constant term of
p(x,y) is the nonzero number s in (13), and so we have

p(0,0) # 0. (15)

Because g = 0 contains the origin, g(x, y) has no constant term, and
every term of g not divisible by x is divisible by y. Thus, we can write

glx y) = xu(x, y) + yv(y) (16)

for polynomials u (in x and y) and v (in y alone).
By (14) and (16), we can rewrite Io(f,g) as

Io(xp + yq, xu + yv), (17)
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where O is the origin (0, 0). Since p(0,0) # 0 (by inequality (15)), we can
multiply the second polynomial in (17) by p without changing the inter-
section multiplicity (by Theorem 1.8). This gives

Io(xp + y*q. xpu + ypv).

We can subtract u times the first polynomial from the second (by Prop-
erty 1.5), which gives

Io(xp + y°q, —y*qu + ypv). (18)

Factoring the second polynomial as y(—yqu + pv) shows that the quan-
tity in (18) equals

Io(xp + y*q,y) + Io(xp + y*q, —yqu + pv) (19)

(by Property 1.6).
We can evaluate the first intersection multiplicity in (19) as follows.
Since y?q is a multiple of y, we have

TIo(xp +y*q,y) = Io(xp,y) (by Property 1.5)
=Io(x,y) (by Theorem 1.8 and (15))
=1 (by Property 1.4).

Together with the previous paragraph, this shows that Ip(f,g) > 2 if and
only if the second intersection multiplicity in (19) is at least 1.
We have

Io(xp + y*q, —yqu + pv) > 1

if and only if pv contains the origin (by Property 1.3), since the other
terms xp, y2q, and —yqu contain the origin. By inequality (15), pv con-
tains the origin if and only if v does. This is equivalent to the condition
that v(y) has no constant term. By (16), this happens exactly when g(x, y)
has no y term. This occurs when g is either singular at the origin or
tangent there to x = 0 (by Theorem 4.7 and Definition 4.9). Since f is
tangent to x = 0 at the origin, the theorem holds. O

Exercises

4.1. Consider the curve ¥’y = x +y. Use Theorem 4.3 and the intersection prop-
erties to find the points of the projective plane where this curve intersects
the following lines and to determine the multiplicity of each intersection.
Determine the total number of intersections, counting multiplicities, and
compare the result with Theorem 4.5. Illustrate your answers with a figure
showing the curve, the line, and the points of intersection.
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4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

I. Intersections of Curves

(a) y=— (b) y=x
(c) y:—X/Z (d) y=4%
(e) y: (f) x=2.
(g) x= (h) The line at infinity.

Follow the directions after the first sentence of Exercise 4.1 for the curve
x%y +y = 2x? and the following lines:

(a) y J—O (b) y=1.
(c) y (d) y=3.
(e) y fX/Z f) y==.
(g) y=2x. (h) x=0.

Follow the directions after the first sentence of Exercise 4.1 for the curve
xy = x> — 1 and the following lines:

(a) y=x+2. (b) y==x.
(c) y=2x—2. (d) y=2x—1.
(e) y==x/2. (f) The line at infinity.

A curve g(x, y) and a point (a, b) are given in each part of this exercise. For
what real number k does (a, b) lie on the curve g(x, y) = k? By differentiat-
ing this equation implicitly with respect to x or y, as discussed after the
proof of Theorem 4.10, determine whether the curve is nonsingular at
(a,b) and, if so, find the equation of the tangent at (a, b).

) %3 — 3xy + 23, (3,1).

) x% +ay? +2y° — 2y, (2,-1).

) x% +6x% + 6xy + 4y — 4y, (—2,2).

) Xy +5x% 4+ 43, (0,2).

) x% — 4wy +y® + 4y, (1,0).

) xy? + 5xy + 2x% — 3y, (1,—1).

) %% —3x%y +y°, (1,2).

h) % — 4x% 4+ 4x — y* + 3y% + 2y, (2,1).

Use Theorems 4.1 and 4.8 and Definition 4.9 to deduce that every line in
the projective plane is nonsingular and equals its tangent at all of its points.

Let F =0 be a curve of degree 3, and assume that F has no factors of
degree 1.
(a) Prove that F has at most one singular point.

(Hint: If P is a singular point of F, and if Q is another point of F,
one possible approach is to use Theorem 4.5 and Definition 4.9 to
determine how many times line PQ intersects F at P and Q.)

(b) Prove that no line is tangent to F at more than one point.
(c) Prove that no line tangent to F contains a singular point of F'.

(a) Let F(x,y,z) be a homogeneous polynomial of degree 2. Prove that the
curve F = 0 in the projective plane is singular at a point P and contains
at least one other point if and only if we can write F = LM for lines
L =0 and M = 0 that contain P. (See the Hint to Exercise 4.6(a).)

(b) Find a homogeneous polynomial F(x,y,z) of degree 2 such that the
curve F = 0 is singular at one point and contains no other point.
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4.8.

4.9.

4.10.

4.12.

4.13.

4.14.

4.15.

4.16.

(a) Let F(x,y,z) be a homogeneous polynomial of degree 4 that has no
factors of degree 1. Assume that there is a point P such that every line
through P intersects F' at least three times at P. Prove that P is the only
singular point of F.

(b) Prove that F(x, y, z) = y®z — x* has no factors of degree 1 and intersects
every line through the origin at least three times there.

Let s and t be positive integers.

(a) Let F(x,y,z) be a homogeneous polynomial of degree n that has no
factors of degree 1. Assume that F' contains two points P and Q such
that every line through P intersects F at least s times at P and every
line through Q intersects F' at least t times at Q. Prove that n > s+ t.

(b) Prove that F(x,y,z) = y*z' — x*™ has no factors of degree 1, intersects
every line through the origin at least s times there, and intersects
every line through (0, 1,0) at least ¢ times there.

Let Fy,...,Fr be homogeneous polynomials, and let P be a point in the
projective plane. Prove that the product Fj---Fx is nonsingular at P if
and only if exactly one of the curves F; = 0 contains P and this curve is
nonsingular at P.

. In the projective plane, let L =0 be a line, and let G =0 be a curve of

degree n. Prove that L is tangent to G at more than n/2 points if and only
if G has L but not L? as a factor.

In the projective plane, let F be a curve of degree n, and let L be a line that

is not contained in F.

(a) Prove that L and F cannot intersect exactly n —1 times, counting
multiplicities, in the projective plane.

(b) More generally, prove that L and F intersect n — 2k times, count-
ing multiplicities, in the projective plane, where k is an integer with
0 < k <n/2. Use the fact, which follows from the Intermediate Value
Theorem, that every polynomial f(x) of odd degree in one variable
has a root over the real numbers.

Let m > 0 and n > 0 be integers such that m <n and n —m is even. Let
S1,. .., 8k be positive integers whose sum is m. Find a curve F = 0 of degree
n such that F cannot be factored as a product of two polynomials of lower
degree, and find a line L = 0 and distinct points P, ..., Px such that L and F
intersect exactly s; times at P; for i =1,...,k and have no other inter-
sections.

Let f(x) be a polynomial in x. Prove that the curve y = f(x) has a singular
point at infinity if and only if the degree of f is at least 3.

Let f(x,y) =0 and g(x, y) = 0 be curves tangent to distinct lines I = 0 and
m = 0 at a point (a, b) in the Euclidean plane. Prove that the real numbers
are matched up with the lines through (a,b) other than I by associating
each number r with the tangent to rf + g at (a, b).

Let f(x,y) and g(x, y) be polynomials, and let (a, b) be a point of the Eucli-

dean plane where the curves f and g intersect.

(a) If f is nonsingular at (a, b) and g is singular at (a, b), prove that f + g is
nonsingular at (a,b) and has the same tangent there as f.
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(b) If f and g are both singular at (a, b), prove that f + g is, as well.

(c) If f and g are nonsingular and tangent to the same line [ at (a, b), prove
that there is a unique real number s such that sf + g is singular at (a, b)
and that, for all other real numbers r, rf + g is nonsingular and tangent
to lat (a,b).

. Let f(x,y) be a polynomial of degree n, and let F(x,y,z) be its homoge-

nization. Let [ be a line that intersects f a total of n times, counting multi-
plicities, in the Euclidean plane. Let A4, ..., A, be the points of intersection
of I and f in the Euclidean plane, with each point listed as many times as [
and f intersect there; for example, if [ and f intersect twice at a point, then
the point appears twice in the list Ay, ..., A,. Let P = (v, w) be a point of [ in
the Euclidean plane.

(a) Iflis a nonvertical line y = mx + b, prove that

f(x,mx+Db) =F(1,m,0)(x —r1) - (x — 1),

where 11, ..., 7, are the x-coordinates of A, ..., A,.

(b) If two points of the Euclidean plane lie on a nonvertical line of slope
m in the Euclidean plane, prove that the distance between the points
is (m2 4 1)V/2 times the absolute value of the difference between their
x-coordinates.

(c) If I is a nonvertical line of slope m, use parts (a) and (b) to prove that
the product of the distances from P to Ay,..., A, is

(m*+1)"2| f(v,w)|
|F(1,m,0)]

Let f(x, y) be a polynomial of degree n. In the Euclidean plane, let a and b
be two lines on a point P, and let ¢ and d be lines parallel to a and b, respec-
tively. (See Figure 4.3, which illustrates the case n = 2.) Let Q be the point
of intersection of ¢ and d. Assume that each of the lines a, b, ¢, d intersects
f a total of n times, counting multiplicities, in the Euclidean plane. Let
Ay, ..., A, be the points of the Euclidean plane where a and f intersect,
with each point listed as many times as a and f intersect there. Define
points B;, C;, D; for i=1,...,n in the same way with respect to the lines
b, c, d. Use Exercise 4.17 to prove that the product of the distances from P
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4.19.

4.20.

4.21.

to the A; divided by the product of the distances from P to the B; equals the
product of the distances from Q to the C; divided by the product of the dis-
tances from Q to the D;.

(In other words, we consider the ratio of the products of the distances
from a point P to the points where two lines through P intersect f. Then
the value of this ratio does not depend on the choice of P so long as the
directions of the lines remain fixed and each line intersects f as many
times as possible in the Euclidean plane. This result is due to Newton,
who used it for n = 2 and n = 3 to study conics and cubics.)

Let H, S, T be three points on a line [ in the Euclidean plane. The division
ratio HS/HT is + the result of dividing the distance from H to S by the
distance from H to T, where the minus sign is used when H lies between
S and T (Figure 4.4) and the plus sign is used otherwise (Figures 4.5 and
4.6). If I is not vertical and H, S, T have x-coordinates h, s, t, prove that

HS s—h
HT t—h'

(This exercise is used in Exercises 4.20-4.22, 6.16-6.20, and 6.22.)

Figure 4.6

Define division ratios as in Exercise 4.19. Let f(x,y) =0 be a curve of
degree n. Let S and T be two points in the Euclidean plane that do not lie
on f. Assume that f intersects line ST at n points A, ..., A, in the Eucli-
dean plane, where each point is listed as many times as f intersects line
ST there. Use Exercises 4.17(a) and 4.19 to prove that

A8 AxS _ f(s§)

where (s,s’) and (t,t') are the (x, y) coordinates of S and T.

Define division ratios as in Exercise 4.19. Use Exercise 4.20 to prove the fol-
lowing result:

Theorem
Let f be a curve of degree n. Let S, T, U be three points in the Euclidean plane
that do not lie on f. Assume that f intersects line ST at n points A, ..., Ay, line
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4.23.

4.24.
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TU at n points By ..., By, and line US at n points Cy, ..., C,, where the points
A, Bi, C; all lie in the Euclidean plane and are listed as many times as f inter-
sects ST, TU, or US there. Then we have

S
7]
~
@)

. A, S BT

AT AT BU B,U CS Cus

1

n

s
c
c

(a) Give a simple statement of the theorem in Exercise 4.21 when n =1,
and illustrate it with a figure. (This result, called Menelaus' Theorem,
relates the ratios in which the three sides of a triangle STU are divided
by their intersections with a line f.)

In the Euclidean plane, let E, F, G, W be four points, no three of which
are collinear. Assume that the lines EW and FG intersect at a point E/,
FW and GE intersect at at a point F’, and GW and EF intersect at a
point G'. Draw a figure to illustrate this arrangement of points and
lines. Prove Ceva’s Theorem, which states that

=

FF FG GF_
EG FFE GF

by applying Menelaus’ Theorem from (a) to triangle EE'F and line GW
and to triangle EE'G and line FW and combining the results.

Let g(x,y) be a nonzero polynomial that contains the origin. Let d be the
smallest degree of a nonzero term of g, and let gs(x, y) be the sum of the
terms of degree d in g.
(a) Why can we factor

g%, y) = (mx +qy)* - (prx + qey) ¥ (%, y)

for distinct lines p;x + q;y = 0, where the s; are positive integers and
7(x,y) is a polynomial that has no factors of degree 1?

(b) Let I=0 be a line through the origin. Use Theorems 1.7, 1.9(ii), and
1.11 to prove that In(l,g) > d if I is one of the lines pix + qiy = 0 and
that Ip(1, g) = d otherwise.

(For example, if g(x,y) = 0 is the curve in (2) of the Introduction to
Chapter I, we have d = 2 and

Sy =4y =(—x+y)x+y.

This exercise shows that every line through the origin except y = x and
y = —x intersects g twice at the origin, and that these lines intersect g
at least three times at the origin. Note the Figure 1.1 suggests that y = x
and y = —x are the lines that best approximate g at the origin. Exer-
cises 1.2 and 1.3 provide further illustrations.)

Use Exercise 4.23 and Properties 3.1 and 3.5 to prove the following result:

Theorem

Let G be a curve and let P be a point in the projective plane. Then there is a
nonnegative integer d such that all but a finite number of lines on P intersect G
exactly d times there. All other lines on P intersect G more than d times there,
and there are at most d such lines.
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P
o
R
A D
C B
Figure 4.7

(We call P a d-fold point of G when the conditions of the theorem hold.
Comparing this theorem with Definition 4.9 shows that d = 1 if and only if
G is nonsingular at P.)

Exercises 4.25-4.29, which we use in Exercises 6.17-6.20, 6.22, and 16.7-16.13, are
based on the following terminology. Four points, P, Q, R, S, no three of which are
collinear, determine a harmonic set A, B; C, D, where A = PQ N RS, B= PR N QS,
C=PSnAB, and D = QR n AB (Figure 4.7).

4.25. Let A, B, C be three collinear points. This exercise shows that there is a
unique point D such that A, B; C, D is a harmonic set. We call D the har-
monic conjugate of C with respect to A and B.

(a) Let P and S be two points collinear with C that do not lie on a line AB.
Describe how to construct points Q, R, D such that P, Q, R, S determine
the harmonic set A, B; C, D.

(b) Let P-S, P'-S, D, D’ be points such that P, Q, R, S determine the har-
monic set A, B; C, D and P, Q’, R’, §' determine the harmonic set A, B;
C, D'. Prove as follows that D = D' (Figure 4.8): show that there is a
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4.26.

4.27.

4.28.
4.29.
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transformation that maps P, Q, R, Sto P', Q’, R’, &, deduce from Exer-
cise 3.11(b) that this transformation fixes every point of line AB, and
conclude that D = D'.

Let A, B; C, D be a harmonic set, as defined before Exercise 4.25, and as-
sume that A and B lie in the Euclidean plane. Prove that C lies at infinity
if and only if D is the midpoint of A and B.

(Hint: One possible approach is to use Exercise 4.25 and its analogue
with C and D interchanged and choose P and S so that ABPS is a square.)

Let A, B, C, D be four collinear points in the Euclidean plane. Define divi-

sion ratios as in Exercise 4.19.

(a) Prove that CA/CB # DA /DB by arguing geometrically or by using Exer-
cise 4.19 to argue algebraically.

(b) Prove that A, B; C, D is a harmonic set if and only if

CA/CB = —DA/DB. (20)

(Equation (20) shows that C and D divide A and B internally and externally
in the same ratio. If A, B; C, D is a harmonic set, Exercise 4.25 implies that
it can be determined by points P, Q, R, S in the Euclidean plane. Applying
Menelaus’ Theorem from Exercise 4.22(a) to triangle PAB and line QR, ap-
plying Ceva’s Theorem from Exercise 4.22(b) to the four points P, A, B, S,
and combining the results gives (20). Part (b) follows from this, part (a), Ex-
ercise 4.25, and possibly Exercise 4.26.)

Use Exercise 4.25 to prove the theorem in Exercise 2.10.

Let A, B; C, D be a harmonic set.

(a) Prove that no two of the points A, B, C, D are equal. (One or more of
the Exercises 3.10, 3.14, 4.26, and 4.27 may help.)

(b) Prove that C, D; A, B is a harmonic set. Illustrate this fact with a figure
that shows point P-S that determine a harmonic set A, B; C, D and also
shows points P'-8' that determine the harmonic set C, D; A, B. (See
part (a) and Exercise 3.15.)
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CHAPTER

Introduction and History
Introduction

We developed the basic machinery for studying curves in Chapter I. We
considered curves of degree 1, lines, in Section 4. We study curves of
degree 2, conics and their degenerate forms, in this chapter. We consider
curves of degree 3, cubics, in Chapter III.

We define a conic in Section 5 to be a nondegenerate curve of degree
2. We prove by completing squares that we can transform all conics into
the same curve —for example, the unit circle or the parabola y = x?. This
is the algebraic equivalent of the geometric fact that all conics are
sections of cones and, therefore, projections of circles. For example,
Figure II.1 shows an ellipse K as a section of a cone and, consequently,
as the projection of a circle C through a point O. Figures 11.2 and I1.3
show a parabola and a hyperbola as sections of a cone.

Because we can transform every conic into the parabola y = x?, a
statement holds for all conics if it is true for y = x? and is preserved by
transformations. We use this idea in Section 5 to prove that a conic inter-
sects any curve of degree n that does not contain it at most 2n times,
counting multiplicities. This result holds for y = x? because its intersec-
tions with a curve f(x,y) = 0 of degree n correspond to the roots of the
polynomial f(x, x?), which has degree at most 2n (although intersections
at infinity must be considered as well).

We use a similar approach in Section 6 to prove that we can ‘“peel off a
conic” from the intersection of two curves of the same degree. Specifi-

69
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5

Figure II.1

Figure II.2

Figure I1.3

cally, if two curves G and H of degree n intersect a conic at the same 2n
points, then the remaining points of intersection of G and H are the
points where each curve intersects a curve of degree n — 2. This imme-
diately gives Pascal’s Theorem, which states that the three pairs of oppo-
site sides of a hexagon inscribed in a conic intersect in collinear points.
By considering multiple intersections, we obtain variations of Pascal’s
Theorem where sides of the hexagon are replaced by tangents to the
conic. We also show that we can “peel off a line,” and we use this result
to prove Pappus’ Theorem about a hexagon inscribed in two lines and, in
Section 9, to derive the associative law of addition on a nonsingular, irre-
ducible cubic.

We use homogeneous coordinates in Section 7 to show that we can
dualize results about the projective plane by interchanging points and
lines. Because this process interchanges the points of a conic with the
tangents of a conic, Pascal’s Theorem dualizes to Brianchon’s Theorem,
which states that the three pairs of opposite vertices of a hexagon cir-
cumscribed about a conic determine concurrent lines. We end Section 7
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by using transformations between lines to construct the envelope of tan-
gents of a conic.

History

Greek mathematicians such as Menaechmus, Aristaeus the Elder, and
Euclid founded the study of conics in the fourth century B.c. Apollonius
brought the subject to a high point in the third century s.c. By consider-
ing a conic as a section of a circular cone, he characterized the points of
the conic by their distances from two lines. He deduced a wealth of geo-
metric properties from this characterization, which is equivalent to the
present-day equation of a conic. Apollonius, however, worked entirely
in geometric terms, without algebraic notation.

Apollonius proved that a family of parallel chords of a conic have mid-
points that lie on a line. Such a line is called a “diameter” of the conic,
and Apollonius developed a number of connections between diameters
and tangents. He also derived many properties of the foci of ellipses
and hyperbolas. Apollonius founded the study of the “polar” of a point,
which is a line determined by the point, with respect to a conic. Some of
his results on polars are included in Exercise 16.7.

Euclid and Apollonius worked in Alexandria, the Egyptian city
founded by Alexander the Great to be the capital of his empire and the
intellectual center of many civilizations. Alexandria’s distinguished tradi-
tion of geometry was revived in the third century a.n. by Pappus. We
prove his theorem on hexagons inscribed in two lines as our Theorem
6.5. He also gave a geometric characterization of harmonic sets of points,
which had been defined until then in terms of relative distances between
points, as in Exercise 4.27(b). The description of harmonic sets that we
gave before Exercise 4.25 is essentially that of Pappus.

In the first half of the 1600s, Girard Desargues reshaped the study of
conics by introducing points at infinity and projections between planes.
As in the discussion accompanying Figures II.1-11.3, the fact that all
conics are sections of cones means that they are all projections of circles.
Accordingly, if a property of circles is preserved by projections, then it
holds for all conics. Desargues used this idea to redo and unify Apollo-
nius’ work on conics. He noted that diameters of conics are the polars
of points at infinity, and he thereby derived many of Apollonius’ results
on diameters from properties of polars (as in Exercise 16.8). Desargues’
Involution Theorem, our Exercise 6.17, characterizes the pairs of points
where the conics through four given points intersect a given line. In
1639, Blaise Pascal proved his famous theorem about hexagons inscribed
in conics, our Theorem 6.2, by using Desargues’ technique of projecting
between planes to extend results from circles to conics.

At roughly the same time, Fermat began to use analytic geometry to
study conics. He showed that equations of certain standard forms repre-
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sent conics, and he claimed that any second-degree equation can be re-
duced to one of these forms. In 1655, John Wallis proved conclusively
that conics are exactly the nondegenerate curves of degree 2. By replac-
ing geometric reasoning with algebra, he wrote the first treatment of
conics that derived their properties directly from their equations.

In the first half of the 1800s, renewed interest in synthetic geometry
centered around projective geometry and conics. Charles Brianchon de-
duced his theorem on hexagons circumscribed about conics, our Theo-
rem 7.6, by taking polars of the points in Pascal’'s Theorem on inscribed
hexagons. He resolved longstanding problems about determining conics
specified by five pieces of information, such as five points on the conic
or four points and a tangent. Such problems date back at least to Pappus,
and they fascinated Newton, who found complicated solutions based on
analytic Euclidean geometry. Brianchon used synthetic projective geom-
etry to obtain beautifully simple answers by applying Pascal’s Theorem
and its special cases, the results that follow from these by taking polars,
and Desargues’ Involution Theorem. Some of the simpler cases he ana-
lyzed are discussed after the proof of Theorem 6.2 and in Exercises 6.4-
6.6 and 7.4-7.6.

Brianchon’s use of polars is a special case of the duality principle,
which states that we can interchange the roles of points and lines in the
projective plane. Building on Brianchon’s work, Jean-Victor Poncelet
and Jacob Steiner developed duality as a general principle of projective
geometry. Steiner and Michel Chasles gave geometric constructions of
conics and, dually, their envelopes of tangents. Our Theorem 7.8 trans-
lates results of Steiner and Chasles into analytic form, using transforma-
tions between lines to construct envelopes of conics.

Julius Plicker clarified the logical basis of the duality principle when
he justified the principle analytically in 1830. Following his approach,
we show in Section 7 that we can simultaneously interchange the point
(p,g,7) and the line px + qy + rz = 0 for all triples p, g, r of real numbers
that are not all zero. We prove that this operation interchanges points of
conics and tangents of conics.

Pliucker’s role in the development of algebraic geometry was pro-
found. Another of his key contributions was abridged notation, the tech-
nique of using a single letter to designate a polynomial instead of writing
out every term. This technique is vital in studying curves because it
makes algebraic combinations of polynomials easy to write. In partic-
ular, the families of curves rF + G are important, where F and G are
given curves of the same degree and r varies over all numbers. We use
such families in Theorems 5.10, 6.1, 6.4, and 13.4 and Exercises 5.8,
5.11-5.15, 13.14, 14.8, 14.9, 14.15, and 16.28. Gabriel Lamé introduced
abridged notation and the families vF + G in 1818, a decade before
Pliicker, and Etienne Bobillier extended Lamé’s work at the same time
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as Pliicker. Nevertheless, it was Plicker who demonstrated the true
power of abridged notation.

§5. Conics and Intersections

Conics are nondegenerate curves of degree 2 in the projective plane. We
begin our study of conics in this section by proving that all conics can
be transformed into one another. We discuss how to deduce theorems
in the Euclidean plane about ellipses, parabolas, and hyperbolas from
results about conics. Because any conic can be transformed into the
parabola y = x?, we can use Theorem 4.3 to deduce that a conic inter-
sects any curve of degree n that does not contain it at most 2n times,
counting multiplicities. It follows that any five points in the projective
plane, no three of which are collinear, lie on a unique conic.

Our first goal is to classify the curves of degree 2 in the projective
plane. These are the curves

ax* + bxy + cy* + dxz + eyz + fz* = 0, (1)

where the coefficients a-f are not all zero. Setting z =1 in (1) gives the
curves

ax* +bxy+cy* +dx+ey+ f =0, (2)

where a-f are not all zero. These are the curves of degree at most 2
in the Euclidean plane. They include two lines, one line doubled (with
equation (px +qy +r)?> =0 for p # 0 or g # 0), one line, one point, and
the empty set. We call these curves degenerate. Many precalculus and
calculus books use rotations and translations to show that ellipses, parab-
olas, and hyperbolas are exactly the nondegenerate curves in the Eucli-
dean plane given by (2). We prove the projective analogue of this result:
any curve of degree 2 in the projective plane whose restriction to the
Euclidean plane is nondegenerate can be transformed into x? + y? = z2,
the extension of the unit circle ¥* + y* = 1 to the projective plane. Trans-
formations eliminate the distinctions among circles, ellipses, parabolas,
and hyperbolas by interchanging points at infinity with points of the
Euclidean plane and altering distances and angles in the Euclidean plane.
For any real numbers s and t, the equations

/

X =x, Yy =sx+y+tz, 7z =z (3)

give a transformation because they are equivalent to the equations

x=x' y=—sx+y —tz, z=27. (4)
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Likewise, the equations

X =x+sy+tz, y =y, Z =z (5)
give a transformation. We can also use transformations to interchange
x, y, and z and to multiply them by nonzero numbers (by the discussions
accompanying (8) and (9) of Section 3).

Theorem 5.1
Any curve of degree 2 in the projective plane can be transformed into one of
the following curves:

a) x> =0, a doubled line;
b) ¥+ y? =0, a point;
c) x> —y? =0, two lines;
) X2+ y? + 2% = 0, the empty set; and
e) x2 4+ y? — 22 = 0, the unit circle.

Proof
A curve of degree 2 has equation

ax* + bxy + cy* + dxz + eyz + fz* = 0, (6)

where the coefficients a-f are not all zero. If the coefficients of x?, y?,
and z2 are all zero, the equation has the form

bxy + dxz + eyz = 0. (7)

Because the coefficients are not all zero, we can assume that b # 0
(by using a transformation to interchange the variables, if necessary).
Taking s = —1 and t =0 in (3) and (4) gives a transformation that re-
places y with ¥’ + y’ and takes (7) to

bx(x+y) +dxz +e(x +y)z =0,

where the coefficient of ¥? is now nonzero.

Thus, we can assume that the coefficients of x?, y?, and z? in (6)
are not all zero. By interchanging the variables with a transformation, if
necessary, we can assume that the coefficient a of ¥? is nonzero. We can
divide (6) by a without changing the curve, as discussed after the proof of
Theorem 3.6. By adjusting the values of b-f, we can assume that a = 1.
We can eliminate the xy and xz terms by completing the square in x and
rewriting (6) as

b da\ ., )
xtoytoz) oy +eyz+ fz°=0
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for revised values of ¢, e, and f. We transform this equation into
eyt teyz+ 22 =0 (8)

by setting ¥’ = x+ (b/2)y + (d/2)z (as in (5)). If ¢, e, and f are all zero,
the curve is x> = 0, and it consists of two copies of the line x = 0, as in
part (a) of the theorem’s statement.

Thus, we can assume that c, ¢, and f are not all zero in (8). If
¢ =0=f, then e is nonzero, and taking s = 0 and t = —1 in (4) replaces
y with y' + z’" and transforms (8) into

x> +e(y+z)z=0,

where the coefficient of z2 is nonzero. Thus, we can assume that ¢ and f
are not both zero in (8). By interchanging y and z with a transformation,
if necessary, we can assume that c is nonzero. We can write ¢ = +s2 for
s = |c¢|*/? > 0. Replacing y with y/s (as in (9) of Section 3) transforms (8)
into

¥ty teyz+ 22 =0 (9)

for a revised value of e.
We can eliminate the yz term from (9) by completing the square in y,
which gives

2
X2i<yi ;z> +fZZ:O
for a revised value of f. Setting y' =y + (¢/2)z (as in (3)) gives

X +yt+fh=0. (10)

If f = 0, we have x* + y* = 0. The curve x* + y? = 0 consists of one point
(0,0,1) as in (b) of the theorem’s statement. The curve

0=x"—-y'=@x—ylx+y)

consists of the two lines y = x and y = —x (as in (c)).

Thus, we can assume that f is nonzero in (10). We can write f = +t2
for t = |f|'/? > 0. Replacing z with z/t (as in the discussion accompany-
ing (9) in Section 3) transforms (10) into

X +yr+z2=0.

The two + signs are independent, which gives four possibilities. The
graph of x* + y? 4+ z> = 0 is the empty set (as in (d)), because (0, 0,0) is
not a point in the projective plane. The curve

ryt—z2=0 (11)
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is the unit circle 2 + y? = 1 in the Euclidean plane. Interchanging y and
z with a transformation takes x*> — y? + z2> = 0 into (11), as well. Inter-
changing x and z transforms x> — y? — z2 = 0 into z% — y> — x> = 0, and
multiplying this equation by —1 (as discussed after the proof of Theorem
3.6) also gives (11). O

We define a conic to be the set of points on a curve of degree 2 in the
projective plane that does not consist of two lines, a doubled line, a
point, or the empty set. It is clear from this definition that transforma-
tions preserve conics.

Theorem 5.1 shows that any conic can be transformed into a circle.
Conversely, any curve that can be transformed into a circle has degree
2 (since transformations preserve degree) and does not consist of two
lines, a line doubled, a point, or the empty set, and so it is a conic.
Thus, conics are exactly the curves in the projective plane that can be trans-
formed into circles.

As we observed after (2), ellipses, parabolas, and hyperbolas are
exactly the nondegenerate restrictions to the Euclidean plane of curves
of degree 2 in the projective plane. If we take two lines, a doubled line,
a point, or the empty set in the projective plane, the restriction to the
Euclidean plane is degenerate (as defined after (2)). On the other hand,
if a curve in the projective plane can be transformed into a circle, its
restriction to the Euclidean plane is nondegenerate (since, like a circle,
such a curve contains infinitely many points, no three of which are col-
linear). Thus, Theorem 5.1 shows that ellipses, parabolas, and hyperbolas
are exactly the restrictions to the Euclidean plane of conics in the projective
plane.

An ellipse can be translated and rotated about the origin so that it has
the equation

XZ yZ
=+

=1 (12)

for positive numbers a and b (Figure 5.1). This extends to the curve

XZ yz )
2 =7

-

Figure 5.1
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Figure 5.2

in the projective plane. If we set z = 0 in this equation, we see that x and
y must also be zero. Since (0, 0,0) does not represent a point in homo-
geneous coordinates, an ellipse has no points at infinity, as its shape
suggests. The ellipse in (12) can obviously be transformed into the unit
circle by substituting ax for x and by for y.

A parabola can be translated and rotated about the origin so that it has
the equation

y=ax’ (13)

for a > 0 (Figure 5.2). This extends to the curve

yz = ax*

in the projective plane. Setting z = 0 in this equation gives x = 0, and so
(0,1, 0) is the unique point at infinity on the extension of the parabola to
the projective plane. Note that the lines of the Euclidean plane that con-
tain this point at infinity are exactly the vertical lines x = ¢ (i.e., x = ¢z)
for all real numbers c, the lines parallel to the axis of symmetry of the
parabola. Figure 5.2 suggests that a parabola has the general shape of
an ellipse when the point at infinity is added.

A hyperbola can be translated and rotated about the origin so that it
has the equation

XZ yZ

for positive numbers a and b (Figure 5.3). This extends to the curve

2 2
X Y 2

9 _,
a’ b?

in the projective plane. Testing (1,s,0) and (0,1,0) in this equation
shows that the hyperbola contains two points at infinity (1, +b/a,0).
These are the points at infinity on the two asymptotes y = +(b/a)x
of the hyperbola, and so the lines of the Euclidean plane that contain
one of these points are the lines parallel to one of the asymptotes. The
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' y")

8 oy

Figure 5.4

two points at infinity join the two branches of the hyperbola into a shape
resembling an ellipse, as in the discussion accompanying Figures 3.1 and
3.2; the point at infinity on each asymptote seems to join the two ends of
the hyperbola that approach the asymptote.

A rotation of the Euclidean plane about the origin extends to a trans-
formation of the projective plane. In fact, if a point (x, y) of the Euclidean
plane has polar coordinates (r,o), we have x =rcosa and y = rsina
(Figure 5.4). If we rotate the plane through angle 0 about the origin,
(x,y) maps to the point (¥',y’) with polar coordinates (r,o+ 6). The
angle-addition formulas of trigonometry show that

x' =rcos(a+ 0) =rcosoucosf — rsinasin
=xcosf — ysin,
Yy =rsin(a+ 60) = rcosasin @ + rsin o cos 0
= xsin 0 + ycos 0.
Thus, the linear change of variables
¥ = (cosO)x — (sin 0)y,
y' = (sin0)x + (cos )y, (15)

z =2

5
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extends the rotation to the projective plane. This change of variables is
a transformation because we can reverse it by replacing 6 with —0 and
interchanging (x,y, z) and (¥, y’, ).

The equations in (15) show that a rotation of the Euclidean plane
about the origin extends to a transformation of the projective plane that
maps the points at infinity among themselves. Similarly, the equations
in (7) of Section 3 show that a translation of the Euclidean plane extends
to a transformation of the projective plane that maps the points at infin-
ity among themselves. Thus, we can summarize the discussion from the
proof of Theorem 5.1 and on as follows. The restriction of a conic to the
Euclidean plane is an ellipse, parabola, or hyperbola, depending on whether
the conic has 0, 1, or 2 points at infinity. All ellipses, parabolas, and hyper-
bolas can be obtained in this way. The lines of the Euclidean plane through
the unique point at infinity on a parabola are exactly the lines parallel to the
axis of symmetry of the parabola. The lines of the Euclidean plane through
either of the two points at infinity on a hyperbola are exactly the lines parallel
to one of the asymptotes. The discussions accompanying Figures I1.1-11.3
and 5.1-5.3 help to explain the fact that all conics can be transformed
into circles.

The general results about the intersections of a line and a curve in
Section 4 specialize to the following theorem about the intersections of
a line and a conic. Let tan A denote the tangent to a curve at a point A.

Theorem 5.2

Let A be any point on a conic K in the projective plane. Then K is nonsingu-
lar at A, and every line through A intersects K exactly twice, counting multi-
plicities. The tangent at A intersects K only at A, and it intersects twice there.
Every other line [ through A intersects K once at A and once at another point
(Figure 5.5).

Proof

Let K have equation G =0, where G(x,y,z) is a homogeneous poly-
nomial of degree 2. G does not have a polynomial of degree 1 as a factor;
otherwise, G would factor as a product of two polynomials of degree 1,
and K would consist of two lines or one line doubled, contradicting the

tan A

Figure 5.5
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definition of a conic. Thus, K intersects any line at most twice, counting
multiplicities (by Theorem 4.5).

K contains infinitely many points other than A (since it can be trans-
formed into the unit circle (by Theorem 5.1)). Let B be a point of K other
than A. Because line AB intersects K at most twice, counting multi-
plicities, it intersects K once at A and once at B. It follows from Theorem
4.8 and Definition 4.9 that K is nonsingular at A and that the tangent at A
intersects K only at A. The tangent at A intersects K exactly twice at A,
since the intersection multiplicity at A is at most two (by the first para-
graph of the proof), and it is at least two (by Definition 4.9).

Let [ be any line through A other than tan A. We claim that [ and K
intersect at a point other than A. To see this, we transform two points
of I to two points on the x-axis y = 0 (by Theorem 3.4), and so we can
assume that [ is the line y = 0. Because the polynomial G giving K does
not have y as a factor (by the first paragraph of the proof), Theorem 4.4
states that the number of times that [ and K intersect, counting multi-
plicities, is 2 minus the degree of a polynomial r(x) that has no roots.
Since [ and K intersect at A, r(x) has degree at most 1. Thus, since r(x)
has no real roots, it must be constant, and so I and K intersect exactly
twice, counting multiplicities. Because I and K intersect exactly once at
A (by Theorem 4.8(ii) and the assumption that [ # tan A), they also inter-
sect at another point. O

We could also have proved Theorem 5.2 by transforming K into the
unit circle (by Theorem 5.1) and observing that the theorem obviously
holds for the unit circle.

Theorem 5.2 shows that any line [ intersects a conic in at most
two points. When [ is the line at infinity, this confirms that every conic
restricts to an ellipse, a parabola, or a hyperbola in the Euclidean
plane. Moreover, a conic intersects the line at infinity in only one point
if and only if it is tangent to the line at infinity (by Theorem 5.2). Thus, a
conic is a parabola if and only if it is tangent to the line at infinity (Figure
5.2).

We have seen that the two points at infinity on the hyperbola in
(14) lie on the asymptotes y = +(b/a)x (Figure 5.3). The asymptotes
do not intersect the hyperbola in the Euclidean plane (since substituting
+(b/a)x for y makes the left side of (14) zero). Thus, each asymptote
intersects the hyperbola at exactly one point of the projective plane, a
point at infinity. It follows from Theorem 5.2 that the asymptotes of a
hyperbola are the tangents at the two points at infinity on the hyperbola.

We use these ideas to obtain results about ellipses, parabolas, and
hyperbolas from theorems about conics by taking the line at infinity in
various positions. For example, consider the following result, which we
will prove in Theorem 7.7:
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Figure 5.7

Theorem 5.3

In the projective plane, let A, C, E be three points on a conic. Set A' =
tanCntanE, C' =tanENtanA, and E' =tan A ntanC. Then the lines
AA', CC', EE' are concurrent at a point P (Figure 5.6). O

Suppose, for example, that we take CE to be the line at infinity. Be-
cause the conic now has two points C and E at infinity, it is a hyperbola,
and the tangents at C and E are the asymptotes ¢ and e, as discussed be-
fore Theorem 5.3. A’ = ¢ N e is the point where the asymptotes intersect
(Figure 5.7). C' =entan A and E' = tan A n ¢ are the points where the
tangent at A intersects the asymptotes. Because C is the point at infinity
on ¢, CC’ is the line through C’ parallel to c. Likewise, since E is the point
at infinity on e, EE’ is the line through E’ parallel to e. Thus, Theorem 5.3
gives the following result when CE is the line at infinity:

Theorem 5.4

In the Euclidean plane, let A be any point on a hyperbola with asymptotes
c and e. Let A' be the point of intersection of the asymptotes, and let C' and
E' be the points where the tangent at A intersects the asymptotes e and c,
respectively. Then the line AA, the line through C' parallel to ¢, and the line
through E' parallel to e lie on a common point P (Figure 5.7). ]
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We will prove after Theorem 7.5 that no three tangents of a conic
are concurrent in the projective plane. In the notation of Theorem 5.4,
this implies that tan A does not contain A’ = ¢ n e (Figure 5.7), since the
asymptotes ¢ and e are tangent to the hyperbola at points at infinity.
Thus, C' = tan A ne and E' = tan A N ¢ are points on ¢ and ¢ other than
A'. Together with the fact that P lies on the line through C’ parallel to ¢
and on the line through E’ parallel to e, this shows that PC'A'E’ is a par-
allelogram. Because the diagonals of a parallelogram bisect each other,
A = PA'nC'E' is the midpoint of C’' and E’. This gives the following
simple restatement of Theorem 5.4:

Theorem 5.5

In the Euclidean plane, any point A on a hyperbola is the midpoint of the
points C' and E' where the tangent at A intersects the asymptotes (Figure
5.8). O

As another example of the transfer of results about conics from the
projective to the Euclidean plane, we take tan E in Theorem 5.3 to be
the line at infinity. Then the conic restricts to a parabola in the Eucli-
dean plane (as discussed before Theorem 5.3). A’ = tanC ntanE is the
point at infinity on tanC, and C’ = tanE ntan A is the point at infinity
on tan A. Thus, AA’ is the line m through A parallel to tan C, and CC’ is
the line n through C parallel to tan A (Figure 5.9). EE’ is now the line
through E’ = tan A n tan C parallel to the axis of symmetry of the parab-
ola (by the discussion accompanying Figure 5.2, since E is the point at
infinity on the parabola). Thus, we obtain the following result from
Theorem 5.3 by taking tan E to be the line at infinity:

Theorem 5.6

In the Euclidean plane, let A and C be two points on a parabola. Let | be
the line through E' = tan A ntan C parallel to the axis of symmetry of the
parabola. Let m be the line through A parallel to tan C, and let n be the
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Figure 5.10

line through C parallel to tan A. Then [, m, and n lie on a common point P
(Figure 5.9). O

As we noted after Theorem 5.4, we will show after Theorem 7.5 that
no three tangents of a conic are concurrent in the projective plane. It
follows that no two tangents of a parabola are parallel in the Euclidean
plane; otherwise, they would intersect at a point on the line at infinity,
which is also tangent to the parabola. This observation ensures that the
point E' =tan A ntan C in Theorem 5.6 exists in the Euclidean plane.
A,C, and E' are three distinct points in Theorem 5.6, since tan A and
tan C intersect the parabolas only at A and C, respectively, by Theorem
5.2.

We can restate Theorem 5.6, like Theorem 5.4, in a particularly
simple way. Since P lies on the line through A parallel to tan C and on
the line through C parallel to tan A, it follows from the previous para-
graph that APCE' is a parallelogram in Theorem 5.6 (Figure 5.9). Be-
cause the diagonals PE’ and AC of the parallelogram bisect each other,
PE’ contains the midpoint M of A and C (Figure 5.10). Then ME' = PE'
is the line [ through E’ parallel to the axis of symmetry of the parabola.
Thus, we can restate Theorem 5.6 as follows:
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E

Figure 5.11

Theorem 5.7

In the Euclidean plane, let A and C be two points on a parabola. Let M be
their midpoint, and let E' be the intersection of the tangents at A and C.
Then the line ME' is parallel to the axis of symmetry of the parabola (Figure
5.11). O

Our next goal is to derive analogues of Theorems 4.4 and 4.5 with
conics in place of lines. We prove that a conic intersects a curve of de-
gree n which does not contain it at most 2n times in the projective plane,
counting multiplicities. We start with the conic y = x?. Substituting x* for
y in a polynomial g(x,y) of degree n gives a polynomial g(x, x*) of degree
at most 2n. Thus, y = x? intersects g(x,y) = 0 at most 2n times, counting
multiplicities, in the Euclidean plane (by Theorem 4.3). Extending this
result to the projective plane gives the following analogue of Theorem
4.4 with the parabola y = x? replacing the line y = 0:

Theorem 5.8
Let G(x,y,z) be a homogeneous polynomial of degree n that does not have
yz — x? as a factor. If we set g(x,y) = G(x,y, 1), we can write

g, x%) = (x —an)™ - (x — ay)*7() (16)

for distinct real numbers a;, positive integers s;, and a polynomial r(x) that
has no real roots. Then the number of times, counting multiplicities, that
yz = x* and G(x,y, z) = 0 intersect in the projective plane is 2n minus the

degree of r(x).

Proof
If we could write

gxy) = (y— x")h(xy)

for a polynomial h(x,y), multiplying terms by appropriate powers of z
would show that

G<X>y: Z) = (yz - X2>H<X,JJ> Z)
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for a homogeneous polynomial H(x,y, z). Thus, since yz — x? is not a
factor of G(x,y, z), y — x* is not a factor of g(x,y). Then g(x, x?) is nonzero
(by Theorem 1.9(ii)), and we can let d be its degree.

Factoring g(x,x2) as in (16) shows that the degree d of g(x, x?) minus
the degree of r(x) equals s; + - - - + s,. This sum is the number of times,
counting multiplicities, that yz = x? intersects G(x, y, z) = 0 in the Eucli-
dean plane (by Theorems 3.7(iii) and 4.3).

We claim that the number of times, counting multiplicities, that
yz = x? intersects G = 0 at infinity is 2n — d. We add this to the number
of intersections in the Euclidean plane, which is d minus the degree of
r(x) (by the previous paragraph). Then the total number of intersections
in the projective plane is 2n minus the degree of r(x), as the theorem
asserts.

To prove the claim, we count the intersections of yz = x?> and G = 0
at infinity. The only possible point of intersection is (0, 1, 0), since this
is the only point at infinity on yz = x2. To send (0,1,0) to the origin
(0,0,1), we interchange y and z with a transformation (as in the discus-
sion of (8) of §3). This gives

1(0,1,0)(142 - Xza G(Xa Y, Z)) = 1(0,0,1)(21/ - Xz’ G<Xa Z, y))
(by Property 3.5). Looking at the right side in the Euclidean plane gives
I(O,O)<y - XZ: G<X5 17 y))

(by Property 3.1). This equals the least degree of a nonzero term of
G(x,1,x%), by Theorem 1.11. (Theorem 1.11 applies because we are
about to see that G(x,1,x?) is nonzero, and so G(x,1,y) does not have
y — x% as a factor.)

Since G is homogeneous of degree n, we can write

Glx,y,z Zeyxyz” = (17)
for real numbers ¢;. It follows that
gxy) = Gy, 1) =Y ey’
and
=) e = ety

Collecting terms shows that the degree d of g(x, x?) is the largest integer
d such that the sum of all the e; with i 4- 2j = d is nonzero.
Substituting 1 for y and x? for z in (17) shows that

X,l,X § :61 i Zn 2i—2j — § :61']')(2”7172].

Since 2n — i — 2j decreases as i+ 2j increases, the smallest degree of a
nonzero term of G(x, 1, x¥?) is 2n — d, where, as in the previous paragraph,



86 II. Conics

d is the largest integer such that the sum of all the ¢; with i +2j=d is
nonzero. By the second-to-last paragraph, yz = ¥* and G(x,y,z) = 0 inter-
sect 2n — d times at infinity, as claimed. O

Theorem 5.1 and the discussion after its proof show that the parabola
yz = x* can be transformed into the unit circle x* 4+ y? = z2. Since every
transformation can be reversed, we can also transform the unit circle
into the parabola. Specifically, substituting

s y:y’—z’ z Yy +z
’ 2 7 2

(18)

in x2 + y* = z% gives ¥'* = y'z’. This change of variables is a transforma-
tion because the equations in (18) can be rewritten as

/

X=X, y/:y+z7 Z,:—y-f-Z.

Any conic can be transformed into yz = x?, since it can be trans-

formed first into the unit circle and then into yz = x¥* (by Theorem 5.1
and the previous paragraph). Transformations preserve intersection
multiplicities and factorizations of polynomials (by Property 3.5 and the
discussion before Theorem 4.5). Thus, Theorem 5.8 implies the follow-
ing analogue of Theorem 4.5:

Theorem 5.9

Let K = 0 be a conic, and let G = 0 be a curve of degree n. If K is not a factor
of G, then K =0 and G = 0 intersect at most 2n times, counting multi-
plicities, in the projective plane. ]

It follows from Theorem 5.9 that five points, no three of which are
collinear, determine a unique conic.

Theorem 5.10
Five points in the projective plane, no three of which are collinear, lic on
exactly one conic.

Proof
Let A-E be five points in the projective plane, no three of which are
collinear. Let T, U, V, W be homogeneous polynomials of degree 1
such that T=0, U =0, V=0, W = 0 are the lines AB, CD, AC, BD, re-
spectively (Figure 5.12). The products TU and VW are homogeneous
polynomials of degree 2 such that the curves TU =0 and VW = 0 are
two pairs of lines that both contain A, B, C, D.

Let E have homogeneous coordinates (f,g,h). Since no three of the
points A-E are collinear, E does not lie on T or U, and so

T(f,g,WU(f,g,h) #0.
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Figure 5.12

Thus, there is a real number r such that

rT(f,8, WU(f, g h) + V(f,g, )W(f,g h) =0,

and so E lies on the curve rTU + VW = 0. A-D lie on this curve as well,
since they lie on both TU = 0 and VW = 0.

A and B are the only two points of T on the curve VW =0 (by
Theorem 2.1, since no three of the points A-D are collinear), but every
point of T lies on —rTU = 0. Thus, the polynomials VW and —rTU are
distinct. Then rTU + VW is nonzero, and so it is a homogeneous poly-
nomial of degree 2.

We have shown that *TU + VW is a curve of degree 2 that contains
A-E. Since no three of the points A-E are collinear, no two lines contain
all five of these points. Accordingly, a curve of degree 2 containing A-E
cannot consist of two lines, a doubled line, a point, or the empty set.
Thus, the curve of degree 2 ¥TU + VW = 0 that contains A-E is a conic,
by Theorem 5.1.

We must prove that A-E cannot lie on more than one conic. In fact,
if K =0 and K’ = 0 are conics that both contain A-E, they intersect at
least five times (by Theorem 3.6(iii)). Then the polynomials K and K’ of
degree 2 are each multiples of the other (by Theorem 5.9). It follows that
K = tK' for a nonzero constant t, and so K = 0 and K’ = 0 are the same
conic (as discussed after Theorem 3.6). Thus, A-E lie on a unique conic.

O

A line and a conic intersect at most twice (by Theorem 5.2), and so no
three points on a conic are collinear. Thus, Theorem 5.10 shows that a
conic is determined by any five of its points. Theorem 5.2 shows the
need for the hypothesis in Theorem 5.10 that no three of the points are
collinear if five points are to lie on a conic.

Exercises

5.1. State the version of Theorem 5.3 that holds in the Euclidean plane when E
is the only point at infinity named. Illustrate the result you state with a
figure in the Euclidean plane. (Note that the conic restricts to a hyperbola
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5.2.

5.3.

II. Conics

in the Euclidean plane because it has at least one point at infinity and is not
tangent to the line at infinity. The second point at infinity on the hyperbola
is unnamed in the theorem.)

The following result is proved in Exercise 6.1:

Theorem

In the projective plane, let A, C, D, E, F be five points on a conic. Then the
points Q =tan A N DE, R = ACNEF, and S = CD n FA are collinear (Figure
5.13).

State the version of this theorem that holds in the Euclidean plane in the
following cases. Illustrate each result you state with a figure.
a) A is the only point at infinity named.
b) F is the only point at infinity named, and the conic is a parabola.
¢) F is the only point at infinity named, and the conic is a hyperbola.
d) AQ is the line at infinity.
e) AC is the line at infinity.
f) AE is the line at infinity.

(
(
(
(
(
(

Figure 5.13

Follow the directions of Exercise 5.2 for the theorem below, which is
proved in Exercise 6.2.

Theorem
In the projective plane, let A, C, E, F be four points on a conic. Then the points
Q =tanANCE,R=ACNEF,andS = tan C n FA are collinear (Figure 5.14).

Figure 5.14
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5.4.

5.5.

5.6.

5.7.

Follow the directions of Exercise 5.2 for the theorem below, which is
proved in Exercise 6.3.

Theorem
In the projective plane, let A, C, E, F be four points on a conic. Then the points
Q =tanA ntanE, R = ACN EF, and S = CE n FA are collinear (Figure 5.15).

Figure 5.15

Use the theorem in Exercise 5.4 to prove the following result, and illustrate
this result with a figure:

Theorem
In the projective plane, let A, B, C, D be four points on a conic. Then the points
U=tanAntanB, V =tanCntan D, and W = AD n BC are collinear.

State the version of the theorem in Exercise 5.5 that holds in the Euclidean
plane in the following cases. Illustrate each result you state with a figure.
(a) A is the only point at infinity named.

(b) AU is the line at infinity.

(c) AB is the line at infinity.

(d) AC is the line at infinity.

(e) AD is the line at infinity.

Each part of this exercise gives two conics. Find their points of intersection
in the projective plane and the intersection multiplicities. Compare the re-
sult with Theorem 5.9. Draw a figure that shows the conics and their points
of intersection in the Euclidean plane.

(a) y=x*>-3,x*—y?’=1.

)

b) y=x>-3/4,x*—y>=1.

(c) y=x2+5x>+y?=1.

(d) y=x%y=x>+2.

(e) y=x*y=—x*+6.

(f) y=2%y=x"+2xy

(g y=+"x=y*

(h) y=»"y=(x-1)>~

(i) y=x2-1,4x2+y>=1.

() y=x*y*—x*=2
x? x?

(k) g Y gty
XZ XZ yl

W g-y=L-g+ =1
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5.8.

5.9.

5.10.

511.

5.12.
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(m) ¥ +y>=1,x>-2x+y>=0.
(n) ¥*+y>=1,x*>—-6x+y?>=-8.
(0) ¥*+y*=1,x+y* =4

Five points A-E, no three of which are collinear, are given in each part of

this exercise. Find the equations T=0, U =0, V =0, W = 0 of the lines

AB, CD, AC, BD, respectively. Then find the real number r such that the

curve ¥TU + VW = 0 contains E. Finally, write the equation ¥TU + VW = 0

in the form of (2). As the proof of Theorem 5.10 shows, this is the equation

of the unique conic through the five points A-E.

(a) A=(0,1), B=(0,-1), C=(1,2), D =(1,-2), E=(—2,0).

(b) A is the point at infinity on lines of slope 2, B=(0,0), C=(1,0),
D=(0,1), E=(1,1).

(c) A=(1,0), B=(—1,0), C=(2,1), D=(-2,1), E is the point at infinity
on vertical lines.

(d) A=1(0,0), B=(2,2), C=(1,-1), D is the point at infinity on vertical
lines, E is the point at infinity on horizontal lines.

() A=(1,0), B=(-1,0),C=(0,1),D=(0,-1), E=(2,2).

(f) A =(3,0), B=1(0,3),C=(=3,0), D=(0,-3), E=(1,1).

(g) A=(0,0), B=(1,0),C=(0,1),D=(-1,-1), E=(1,-1).

In each part of Exercise 5.8, draw the points A-E that lie in the Euclidean
plane, and sketch the conic determined by A-E.

Prove that five points in the projective plane lie on a unique curve of
degree 2 if and only if no four of the points are collinear.

Consider the following result:

Theorem

Let A, B, C, D be four points, no three of which are collinear. Let T =0, U = 0,
V =0, W =0 be the lines AB, CD, AC, BD, respectively. Then the curves of
degree 2 containing A-D are TU = 0 and yTU + VW = 0 for all real numbers
r, and every point except A-D lies on exactly one of these curves.

(a) Deduce the theorem from Theorems 5.1 and 5.10.

(b) Let A=(1,1), B=(1,-1), C=(-1,1), D= (—1,—1). Use the theorem
to write the curves of degree 2 containing A-D in the form of (2).
Which of these curves are not conics? Justify your answers.

(c) Mlustrate the theorem by drawing the gamut of curves in (b) in a single
figure, making it clear that each point in the Euclidean plane lies on
exactly one of these curves.

Consider the following result:

Theorem

Let A-D be four points, no three of which are collinear, in the projective plane.
Let a be a line through A that does not contain any of the points B-D. Then
there is a unique conic that contains A-D and is tangent to a.

Let T=0,U =0, V=0, W =0 be the equations of the lines a, CD, AC,
AD, respectively.
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5.13.

5.15.

5.16.

(a) For any nonzero number r, prove that yTU + VW =0 is a curve of
degree 2 that intersects T = 0 twice at A. Conclude that the curve is a
conic that contains A, C, D and is tangent to a. (See Theorems 5.1 and
5.2.)

(b) Prove that there is a nonzero number r such that the curve ¥TU + VW
contains B.

(c) Deduce the theorem from parts (a) and (b) and Theorems 4.11 and 5.9.

Let A be the point at infinity on vertical lines, let C = (1,0) and D = (—1,0),

and let a be the line at infinity. Let T, U, V, W be as in Exercise 5.12.

(a) Exercise 5.12 implies that the conics that contain A, C, D and are tan-
gent to a are exactly the curves ¥TU + VW = 0 for nonzero numbers r.
Write the equations of these conics in the form of (2).

(b) Draw a figure that shows the gamut of conics in (a) and the lines U, V,
W. Make it clear in the figure that each point in the Euclidean plane
except C and D lies on exactly one of the conics or lines, as Exercise
5.12 implies.

. Consider the following result:

Theorem

Let A, B, C be three noncollinear points in the projective plane. Let a be a line
on A that does not contain B or C, and let ¢ be a line on C that does not contain
A or B. Then there is a unique conic that contains A, B, C and is tangent to a
and c.

Let T=0, U=0, V=0 be the equations of the lines a, ¢, AC, respec-
tively.

(a) For any nonzero number v, prove that ¥TU + V2 = 0 is a curve of de-
gree 2 that intersects T = 0 twice at A and U = 0 twice at C. Conclude
from Theorems 5.1 and 5.2 that ¥TU + V2 = 0 is a conic that is tangent
to a at A and tangent to ¢ at C.

(b) Prove that there is a nonzero number r such that ¥TU + V? = 0 con-
tains B.

(c) Deduce the theorem from parts (a) and (b) and Theorems 4.11 and 5.9.

Let A =(1,0) and C = (—1,0), and let a and ¢ be the vertical lines through

A and C. Let T, U, V be as in Exercise 5.14.

(a) Exercise 5.14 implies that the conics that contain A and C and are
tangent to a and c are exactly the curves rTU + V? = 0 for nonzero
numbers r. Write the equations of these conics in the form of (2).

(b) Draw a figure that shows the gamut of conics in (a) and the lines a, c,
and AC. Make it clear that each point except A and C lies on exactly
one of the conics or lines, as Exercise 5.14 implies.

In the projective plane, let A, B, C be three points on a conic K, and let A’,
B’, C’ be three points on a conic K'. Prove that there is a transformation
that maps K to K’ and A, B, C to A', B, C’, respectively.

(Hint: One possible approach is to set D=tanAntanB and D’ =
tan A’ ntan B’ and deduce that there is a transformation mapping A, B, C, D
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to A, B, C', D'. Why do Theorems 4.11 and 5.9 imply that the transforma-
tion maps K to K'?)

5.17. Prove that no three tangents to a conic are concurrent, by using Exercise
5.16 to reduce to the case of tangents at three particular points of a partic-
ular conic. (The discussion after Theorem 7.5 provides another proof of
this result.)

5.18. By using the quadratic formula to find the number of points at infinity on
the curve in (1), derive conditions on the coefficients a-f that determine
whether (2) gives an ellipse, parabola, or hyperbola.

5.19. Let K be a nondegenerate curve of degree 2 in the Euclidean plane. This
exercise reviews the proof of the assertion after (2) that K is an ellipse,
parabola, or hyperbola. Use the equations in (15) to show that K can be
rotated so that it is given by (2) with b = 0. Deduce by completing squares
that K can be translated and rotated so that it is given by (12), (13), or (14)
for positive numbers a and b.

5.20. Let K be a curve of degree 2 that consists of a single point P, and let F be
any curve nonsingular at P. Prove that Ip(K, F) = 2 by using Theorem 5.1
and (15) to reduce to the case where K is 2 4+ y? = 0 and F is tangent to
the y-axis at the origin and by using the proof of Theorem 4.11 to write
the restriction of F to the Euclidean plane as in (14) of Section 4. (We use
this exercise in Exercises 10.8, 14.12, 14.14, and 14.15.)

§6. Pascal’s Theorem

This section is devoted to Pascal’s Theorem and its variants. Pascal’s
Theorem states that the three pairs of opposite sides of a hexagon in-
scribed in a conic intersect in three collinear points. We vary the theo-
rem in two ways. First, we replace sides of the hexagon with tangents
to the conic. Second, we inscribe the hexagon in two lines instead of a
conic, which gives Pappus’ Theorem 2.3.

The following result is the key to proving Pascal’'s Theorem. If a conic
K intersects each of two curves G and H of degree n in the same 2n
points, counting multiplicities, we prove that there is a curve W of de-
gree n — 2 such that the intersections of G and H are the intersections
of either curve with K together with its intersections with W. As indi-
cated after Theorem 3.6, we say that G = 0 and H = 0 are distinct curves
when G and H are homogeneous polynomials that are not scalar multi-
ples of each other.

Theorem 6.1
Let G =0 and H = 0 be distinct curves of degree n. Assume that there is a
conic K = 0 such that Ip(G,K) = Ip(H, K) for every point P in the projective
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plane and such that K intersects G or H a total of 2n times, counting multi-
plicities. Then there is a curve W = 0 of degree n — 2 such that

IP<G> H) = IP(G: K> + IP<G> W) = IP<H: K) + IP<H: W)
for every point P in the projective plane.

Proof
We can transform K = 0 into the parabola yz = x* (as discussed before
Theorem 5.9), and transformations preserve intersection multiplicities
and degrees of homogeneous polynomials (by Property 3.5 and the dis-
cussion after the proof of Theorem 3.4). Thus, we can assume that K is
yz — x%. Since yz = x* intersects G = 0 and H = 0 2n times, yz — x* is not
a factor of G or H (by Theorem 3.6(iii) or (vi)).

Let g(x,y) = G(x,y,1) and h(x,y) = H(x,y, 1) be the restrictions of G
and H to the Euclidean plane. Theorem 5.8 shows that

g(X,XZ) :T(X—al)sl ---(X—av)sv (1)

for a real number r # 0, because the assumption that K intersects G a
total of 2n times, counting multiplicities, implies that the polynomial
r(x) in Theorem 5.8 has degree 0 and is thus a constant . Each exponent
si is the number of times that K and G intersect at the point (a;,a?), and
these are the only points of the Euclidean plane where K and G intersect,
by Theorem 4.3.

Because H intersects K the same number of times at every point as G
does, Theorem 4.3 implies that

h(x,x*) =tx —a)% - (x — a,)®

for a real number t # 0. As discussed after Theorem 3.6, we can multiply
H, and hence h, by —r/t, which gives

hx,x%) = =r(x —a)" - (x — ay)*.
Adding this equation to (1) shows that
(%, %) + h(x,x*) = 0.

Then y — x? is a factor of g(x,y) + h(x,y) (by Theorem 1.9(ii)), and we
can write

g(xy) + hixy) = (y — X wx,y) (2)

for a polynomial w(x,y).

Because G = 0 and H = 0 are distinct curves, G and H are not scalar
multiples of each other, and so G+ H is nonzero. Thus, since G and
H are homogeneous polynomials of degree n, so is G + H. Multiplying
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every term of each polynomial in (2) by an appropriate power of z shows
that

G<X>y: Z) +H(X>yzz) = (yZ - X2>W<X>yaz> (3>

for a homogenous polynomial W(x, y, z) of degree n — 2. For any point P
of the projective plane, it follows that

Ip(G,H) = Ip(G,G + H) (by Theorem 3.6(iv))
= Ip(G,KW) (by (3))
=Ip(G,K) + Ip(G, W) (by Theorem 3.6(v)).
Interchanging G and H in the last sentence shows that
Ip(H,G) = Ip(H,K) + Ip(H, W),

and the left-hand side equals Ip(G, H) (by Theorem 3.6(ii)). O

A conic intersects a curve of degree n that does not contain it at most
2n times, counting multiplicities, by Theorem 5.9. Thus, the hypotheses
of Theorem 6.1 state that G and H are curves of the same degree n that
intersect the conic K as many times as possible without containing it
and that have the same intersections with K, taking into account multi-
plicities. The conclusion of Theorem 6.1 shows that, if we list the points
where G and H intersect and remove the points where either curve
intersects K, then we are left with the points where either curve inter-
sects a curve W of degree n — 2, provided that we repeat each point of
intersection as many times as its multiplicity. We think of Theorem 6.1
as “peeling off a conic” from the intersection of two curves of the same
degree.

We can now prove the main result of this section, Pascal’s Theorem.

Theorem 6.2 (Pascal’s Theorem)
Let A-F be six points on a conic K in the projective plane. Then the points
Q = ABNDE,R=BCnEF, and S = CD n FA are collinear (Figure 6.1).

Proof
LetL=0,M=0,N=0,T=0,U =0, V=0 be the lines

AB, CD, EF, BC, DE, FA, (4)
respectively. Set
G=LMN and H=TUV. (5)

G and H are homogeneous polynomials of degree 3, since they are each
the product of three homogeneous polynomials of degree 1. The curve
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G = 0 consists of the three lines AB, CD, EF, and the curve H = 0 con-
sists of the three lines BC, DE, FA. We prove the theorem by peeling off
the conic K from the intersection of G and H.

Theorem 5.2 implies that K intersects line AB once at A and once at
B, line CD once at C and once at D, and line EF once at E and once at
F. Thus K intersects G once at each of the six points A-F (by (5) and
Theorem 3.6(v)). Likewise, Theorem 5.2 implies that K intersects line
BC once at B and once at C, line DE once at D and once at E, and line
FA once at F' and once at A. Thus K also intersects H once at each of
the points A-F (by (5) and Theorem 3.6(v)). In short, the hypotheses of
Theorem 6.1 hold with n = 3: G and H are curves of degree 3 that inter-
sect the conic K in the same 6 = 2 - 3 points A-F.

No three of the points A-F on K are collinear (by Theorem 5.2). Thus,
the six lines in (4) are distinct, and any two intersect exactly once, count-
ing multiplicities (by Theorem 4.1). If we intersect each of the three
lines AB, CD, EF forming G with each of the three lines BC, DE, FA
forming H, we obtain the nine points ABNBC =B, ABNDE=Q,
ABAFA=A, CDNBC=C, CDNDE=D, CDNFA =S, EFNBC =R,
EFNDE=E, and EF"FA = F. Thus, G and H intersect at the nine
points A-F, Q,R, S (by (5) and Theorem 3.6(v)).

If we remove the six points A-F where G and H intersect K from the
nine points A-F, Q, R, S where G and H intersect each other, we are left
with the three points Q, R, S. We can apply Theorem 6.1 (by the second
paragraph of the proof), and we deduce that Q, R, S are the points where
G and H intersect a curve of degree 3 — 2 = 1. This curve is a line that
contains Q, R, S (by Theorem 3.6(iii)), as desired. O

Five points A-E, no three of which are collinear, lie on a unique
conic K (by Theorem 5.10). Pascal’'s Theorem implies that we can use a
straightedge and the five given points A-E to construct any number of
points of K. In fact, let [ be any line through A other than tan A, AB,
AC, AD, AE (Figure 6.2). K intersects [ in a point F other than A (by The-
orem 5.2). By Pascal’s Theorem, we can use a straightedge to construct F
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A
F B
E C
D
Figure 6.3

as follows: we construct Q = ABNDE, S=I1nCD, R=QSnBC, and
F = ER nI. These points exist by Theorems 2.1, 2.2, and 5.2.

If A-F are six points such that the lines in (4) are distinct, we think of
hexagon ABCDEF as the figure formed by the six points A-F and the six
lines in (4) (Figure 6.3). We call the points A-F' the vertices of the hexa-
gon, and we call the six lines in (4) the sides of the hexagon. As Figure 6.3
suggests, we call AB and DE, BC and EF, and CD and FA the three pairs
of opposite sides of the hexagon. These are the three pairs of lines that in-
tersect in the points Q, R, S in Pascal’s Theorem 6.2 (Figure 6.1). Accord-
ingly, we can restate Pascal’s Theorem as follows: If a hexagon is inscribed
in a conic, the three pairs of opposite sides intersect in collinear points. The
curves G and H in (5) used to prove Pascal’s Theorem are the two triples
of lines AB, CD, EF and BC, DE, FA formed by taking every other side of
hexagon ABCDEF (Figure 6.3).

Let A-F be six points on a conic. If we arrange the points in different
orders to form hexagons, we obtain different lines through the three
intersections of opposite sides of each hexagon. For instance, hexagon
ABCDEF shows that the points Q, R, S in Figure 6.1 are collinear, and
hexagon ADCFBE shows that the points T'=ADNFB, U = DC N BE,
and V = CF n EA are collinear (Figure 6.4).

If the point B in Pascal’s Theorem moves around the conic K until it
approaches the point A, the lines AB and BC approach tan A and AC.
Thus, the conclusion of Pascal’s Theorem that the points Q = AB N DE,
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Figure 6.4

R =BCANEF, and S = CD n FA are collinear suggests that the points
Q =tan AN DE, R=ACNEF, §=CDnFA (6)

are collinear for any five points A, C, D, E, F on a conic (Figure 6.5).

If the point D moves around the conic to approach C, the lines DE and
CD in (6) approach CE and tan C. Thus, the collinearity of the points in
(6) suggests that the points

Q =tanA n CE, R=ACNEF, S=tanCnNFA (7)

are collinear for any four points A, C, E, F' on a conic (Figure 6.6).

If the point F' moves around the conic to approach E, the lines EF' and
FA in (7) approach tan E and EA. Thus, the collinearity of the points in
(7) suggests that the points

Q =tanA N CE, R=ACntanE, S=tanCNEA (8)

are collinear for any three points A, C, E on a conic (Figure 6.7).
Pascal’s Theorem refers to a hexagon inscribed in a conic. In the three
preceding paragraphs, we have replaced the hexagon with an n-gon
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Figure 6.7

inscribed in a conic and the tangents at 6 — n of its vertices. In (6), we
considered an inscribed pentagon and the tangent at one of its vertices.
In (7), we considered an inscribed quadrilateral and the tangents at two
of its vertices. In (8), we considered an inscribed triangle and the tan-
gents at its three vertices.

As a point Y on a conic K approaches a point X on K, the line XY ap-
proaches tan X. Accordingly, we think of “line XX” as the tangent at X.
We can then think of the points in (6)-(8) as the intersections of opposite
sides of “hexagon ABCDEF” when consecutive vertices are equal. For ex-
ample, if we set B= A, D= C, and F = E, hexagon ABCDEF becomes
“hexagon AACCEE" (Figure 6.8). Opposite sides of this hexagon intersect
in the points

Q=AANCE, R=ACNEE, S=CCNEA (9)

listed in (8).

Intersection multiplicities make it possible to prove these variations
in essentially the same way as Pascal’s Theorem. To illustrate this, we
prove that the points in (8)—or, equivalently, (9)—are collinear. We
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A
E A
E C
C
Figure 6.8

proved Pascal’s Theorem by considering the sides
AB, CD, EF, BC, DE, FA

of hexagon ABCDEF, as listed in (4). Replacing B with A, D with C, and F
with E, we now consider the sides

tanA, tanC, tanE, AC, CE, EA
of “hexagon AACCEE.”

Theorem 6.3

Let A, C, E be three points on a conic K in the projective plane. Then the
points Q =tan A NCE, R=tanEn AC, and S = tanC n EA are collinear
(Figure 6.7).

Proof
LetL=0,M=0,N=0,T=0,U =0, V=0 be the lines

tanA, tanC, tanE, AC, CE, EA, (10)
respectively. Set
G=LMN and H=TUYV. (11)

G and H are homogeneous polynomials of degree 3, since they are each
the product of three homogeneous polynomials of degree 1. The curves
G = 0 and H = 0 consist of alternate sides of “hexagon AACCEE” (Figure
6.8): G consists of the three lines tan A, tan C, tan E, and H consists of the
three lines AC, CE, EA.

Theorem 5.2 implies that the conic K intersects tan A twice at A, tanC
twice at C, and tan E twice at E. Thus, K intersects G twice at each of the
points A, C, E (by (11) and Theorem 3.6(v)). Theorem 5.2 also implies
that K intersects line AC once at A and once at C, line CE once at C
and once at E, and line EA once at E and once at A. Thus, K intersects
H twice at each of the points A, C, E (by (11) and Theorem 3.6(v)). In
short, the hypotheses of Theorem 6.1 hold with n =3: G and H are
curves of degree 3 that intersect the conic K the same 6 = 2 - 3 times—
twice at A, twice at C, and twice at E.
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Theorem 5.2 shows that no three points of K are collinear and that
the tangent at any point X of K intersects K only at X. Thus, the six
lines in (10) are distinct, and any two of them intersect exactly once,
counting multiplicities (by Theorem 4.1). Accordingly, if we intersect
each of the three lines tan A, tan C, tan E forming G with each of the
three lines AC, CE, EA forming H, we obtain the points tanA N AC =
A, tanAnNnCE=Q, tanANnEA=A, tanCnAC=C, tanCn CE = C,
tanCNEA =S, tanENAC=R, tanENCE=E, and tanENEA =E.
Thus, G and H intersect nine times: twice at each of the points A, C, E,
and once at each of the points Q, R, S (by (11) and Theorem 3.6(v)).

If we remove the intersections of G or H with K from the intersections
of G and H, taking into account multiplicities, we are left with the points
Q, R, S. We can apply Theorem 6.1 (by the second paragraph of the
proof), and we deduce that Q, R, S are the points where G or H intersect
a curve of degree 3 — 2 = 1. This curve is a line containing Q, R, S (by
Theorem 3.6(iii)). O

We can also think of Pappus’ Theorem 2.3 as a variation of Pascal’s
Theorem (Figure 6.9). In Pappus’ Theorem, hexagon AB'CA'BC’ is in-
scribed in two lines e and f in the following sense: alternate vertices
A, C, B of the hexagon are points of ¢ other than e N f, and the remaining
alternate vertices B’, A, C’ are points of f other than ¢ N f (Figure 6.10).
The three pairs of opposite sides of hexagon AB'CA'BC’ intersect in three

eNf

Figure 6.10
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points AB'nA'B=Q, BCnBC' =R, and CA' nC'A = S, and the conclu-
sion of Pappus’ Theorem is that these points are collinear. Accordingly,
we can restate Pappus’ Theorem as follows: If a hexagon is inscribed in
two lines, the three pairs of opposite sides intersect in collinear points. In
short, the conic in which a hexagon is inscribed in Pascal’s Theorem is
replaced in Pappus’ Theorem with two lines, a degenerate conic.

The proof of Pascal’s Theorem 6.2 was based on Theorem 6.1, which
lets us “peel off a conic” from the intersection of two curves of the same
degree. The conic is replaced with two lines in Pappus’ Theorem. The
following analogue of Theorem 6.1 lets us “peel off a line”” from the inter-
section of two curves of the same degree:

Theorem 6.4

Let G =0 and H = 0 be distinct curves of degree n. Assume that there is a
line L =0 such that Ip(G, L) = Ip(H, L) for every point P in the projective
plane and such that L intersects G or H a total of n times, counting multi-
plicities. Then there is a curve W of degree n — 1 such that

Ip(G,H) = Ip(G,L) + Ip(G, W) = Ip(H, L) + Ip(H, W)
for every point P in the projective plane.

Proof
There is a transformation that maps two points of the line L = 0 to two
points of the line y = 0 (by Theorem 3.4), and transformations preserve
intersection multiplicities and degrees of homogeneous polynomials
(by Property 3.5 and the discussion after the proof of Theorem 3.4).
Thus, we can assume that L = 0 is the line y = 0. Because y = 0 inter-
sects G =0 and H = 0 2n times, y is not a factor of G or H (by Theorem
3.6(iii) or (vi)).

Let g(x,y) = G(x,y,1) and h(x,y) = H(x,y, 1) be the restrictions of G
and H to the Euclidean plane. Theorem 4.4 shows that

gx,0) =r(x —a))” - (x — ay)™ (12)

for a real number r # 0, because the assumption that y = 0 intersects
G =0 a total of n times, counting multiplicities, implies that the poly-
nomial 7(x) in Theorem 4.4 has degree 0 and is thus a constant . Each
exponent s; is the number of times that y = 0 and G = 0 intersect at the
point (a;, 0), and these are the only points of the Euclidean plane where
y = 0 and G = 0 intersect (by Theorem 4.3).

Because y = 0 intersects G = 0 and H = 0 the same number of times
at every point, Theorem 4.3 implies that

h(x,0) =tx —a)™ -+ (x — a,)™

for a real number t # 0. As discussed after Theorem 3.6, we can multiply
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H, and hence h, by —r/t, which gives
h(x,0) = —r(x —a)® - (x — ap)™.
Adding this equation to (12) shows that
g(x,0) + h(x,0) = 0.

Then y is a factor of g(x,y) + h(x,y) (by Theorem 1.9(ii)), and we can
write

gxy) + hixy) = yw(x,y) (13)

for a polynomial w(x,y).

Because G = 0 and H = 0 are distinct curves, G and H are not scalar
multiples of each other, and so G+ H is nonzero. Thus, since G and
H are homogeneous polynomials of degree n, so is G + H. Multiplying
every term of each polynomial in (13) by an appropriate power of z
shows that

G(x,y,z) + H(x,y,2z) =yW(x,y, 2) (14)

for a homogeneous polynomial W(x, y, z) of degree n — 1. For any point P
in the projective plane, it follows that

Ip(G,H) = Ip(G,G+ H) (by Theorem 3.6(iv))
=Ip(G,yW) (by (14))
=Ip(G,y) + Ip(G,W) (by Theorem 3.6(v)).
Interchanging G and H shows that
Ip(H, G) = Ip(H,y) + Ip(H, W),
and the left-hand side equals Ip(G, H) (by Theorem 3.6(ii)). O

A line intersects a curve of degree n that does not contain it at most n
times, counting multiplicities (by Theorem 4.5). Thus, the hypotheses of
Theorem 6.4 state that G and H are curves that have the same degree n,
intersect the line L as many times as possible without containing it, and
intersect L in the same points, counting multiplicities. The conclusion
of Theorem 6.4 is that, if we list the points where G and H intersect and
remove the points where either curve intersects L, then we are left with
the points where G or H intersects a curve W of degree n — 1, provided
that we take into account the multiplicities of intersections. We think of
Theorem 6.4 as “peeling off a line” from the intersection of two curves of
the same degree.

We use this result in Section 9 to prove the associative law for multi-
plication of points on a cubic. We use it now to prove Pappus’ Theorem
2.3 in a manner analogous to Pascal’s Theorem. If a hexagon is inscribed
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Figure 6.11

in two lines e and f, we peel off ¢ and f from the intersection of the two
cubics formed by the three pairs of opposite sides of the hexagon. It fol-
lows that the three pairs of opposite sides of the hexagon intersect in
three collinear points.

Theorem 6.5 (Pappus’ Theorem)

Let e and f be two lines in the projective plane. Let A, B, C be three points of e
other than e f, and let A', B', C' be three points of f other than e ~ f. Then
the points Q = AB'n"A'B, R=BC' nB'C, and S = CA' nC'A are collinear
(Figure 6.11).

Proof
LetL=0,M=0,N=0,T=0,U =0, V=0 Dbe the lines

AB', CA', BC', B'C, A'B, CA, (15)

respectively. Set
G=LMN and H = TUV. (16)

G and H are homogeneous polynomials of degree 3, since they are each
the product of three homogeneous polynomials of degree 1. The curves
G = 0 and H = 0 consist of alternate sides of hexagon AB'CA’BC’ (Figure
6.10): G consists of the three lines AB’, CA’, BC', and H consists of the
three lines B'C, A'B, C'A.

Since none of the points A’, B', C’ equals e n f, Theorem 4.1 implies
that e intersects line AB’ once at A, line CA’ once at C, and line BC’
once at B. Thus, ¢ intersects G once at each of the points A, B, C (by
(16) and Theorem 3.6(v)). Likewise, ¢ intersects line B'C once at C, A'B
once at B, and C’A once at A, and so e intersects H once at each of the
points A, B, C (by (16) and Theorem 3.6(v)). In short, the hypotheses of
Theorem 6.4 hold with n = 3: G and H are curves of degree 3 that inter-
sect e in the same three points A, B, C.

The six lines in (15) are distinct because each one is determined by
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the points where it intersects ¢ and f (by Theorems 2.1 and 2.2). Thus,
any two of the lines in (15) intersect exactly once, counting multiplicities
(by Theorem 4.1). If we intersect each of the three lines AB’, CA’, BC’
forming G with each of the three lines B'C, A'B, C'A forming H, we
obtain the points AB'nB'C=B', ABBnAB=Q, ABBnC'A=A, CAn
B'C=C, CAnAB=A", CAnC'A=S8, BC'nB'C=R, BC'nA'B=B,
and BC' nC'A = C'. Thus, G and H intersect at the nine points

A,B,C,AB',C',Q,R,S (17)

(by (16) and Theorem 3.6(V)).

If we remove the three points A, B, C where G and H intersect e from
the nine points in (17) where G and H intersect, we are left with the six
points

A, B',C',Q,R,S. (18)

We can apply Theorem 6.4 (by the second paragraph of the proof) and
deduce that there is a curve W of degree 3 — 1 = 2 that intersects both G
and H at the six points in (18).

In particular, W contains the six points in (18) (by Theorem 3.6(iii)).
Since f also contains A’, B/, C', it intersects W at least once at each of
these three points (by Theorem 3.6(iii)). Then f intersects the curve W
of degree 2 at least three times. Thus, if F'= 0 is the equation of f in
homogeneous coordinates, F is a factor of W (by Theorem 4.5). We write
W = FD, where D is a homogeneous polynomial of degree 1, and so
D =0is aline.

The lines AB’ and A'B intersect f at distinct points A’ and B’ (by
Theorem 2.1), and so their intersection Q = AB’ n A'B does not lie on f.
Likewise, neither R nor S lies on f. On the other hand, the six points in
(17) lie on W = FD = 0, and so they each lie on either F =0 or D = 0.
Since Q, R, S do not lie on f, they lie on the line D = 0 and are therefore
collinear. O

Exercises

6.1. Prove the theorem in Exercise 5.2 by adapting the proof of Pascal’s
Theorem 6.2. (This shows that the points in (6) are collinear. These points
are the intersections of the three pairs of opposite sides of “hexagon”
AACDEF.)

6.2. Prove the theorem in Exercise 5.3 by adapting the proof of Pascal’s Theo-
rem 6.2. (This shows that the points in (7) are collinear. These points are
the intersections of the three pairs of opposite sides of “hexagon” AACCEF.)
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6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

Prove the theorem in Exercise 5.4 by adapting the proof of Pascal’s Theo-
rem 6.2. (This shows that the three pairs of opposite sides of “hexagon”
AACEEF intersect in collinear points. This result, like the theorem in
Exercise 5.3, concerns a quadrilateral inscribed in a conic and the tangents
at two of the vertices. The tangents are opposite sides of the “hexagon” in
Exercise 5.4 but not in Exercise 5.3.)

Let A, C, D, E, F be five points on a conic. Describe how to use a straight-
edge to construct the tangent at A by applying the theorem in Exercise 5.2.

Let four points A, C, E, F on a conic and the tangent at A be given.

(a) Use the theorem in Exercise 5.4 to describe how to construct the tan-
gent at E with a straightedge.

(b) Iflis aline through E other than AE, CE, EF, tan E, use the theorem in
Exercise 5.2 to describe how to use a straightedge to construct the point
other than E where [ intersects the conic.

Let three points A, C, E on a conic and the tangents at A and C be given.

(a) Use Theorem 6.3 to describe how to construct the tangent at E with a
straightedge.

(b) Iflis any line through A other than AC, AE, tan A, use the theorem in
Exercise 5.3 to describe how to use a straightedge to construct the point
other than A where [ intersects the conic.

Consider the following converse of Pascal’'s Theorem 6.2:

Theorem

Let A-F be six points, no three of which are collinear, in the projective plane. If
the points Q = ABN DE, R= BCnNEF, and S = CD N FA are collinear, then
the six points A-F liec on a conic (Figure 6.1).

Prove this theorem by using Theorem 6.4, taking L to be the line
through Q, R, S, and taking G and H as in (5).

Consider the following converse of Theorem 6.3:

Theorem

Let A, C, E be three noncollinear points in the projective plane. Let a be a
line through A other than AC and EA, let ¢ be a line through C other than AC
and CE, and let e be a line through E other than EA and CE. If the points
Q=anCE, R=enAC, and S = cn EA are collinear, then there is a conic
that is tangent to a at A, tangent to ¢ at C, and tangent to e at E (Figure 6.7).

Prove this theorem by using Theorem 6.4, taking L to be the line
through Q, R, S.

Use Theorem 6.4 to prove the following converse of the theorem in
Exercise 5.2:

Theorem
Let A, C, D, E, F be five points, no three of which are collinear, in the projective
plane. Let a be a line through A other than AC, AD, AE, AF. If the points
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Q =anDE, R=ACnEF, and S=CDNFA are collinear, then the points

A’

C, D, E, F lie on a conic tangent to a.

6.10. The following theorems arise from Pascal’s Theorem 6.2 by replacing the
lines AB and CD with a second conic K. Prove these theorems by adapting
the proof of Theorem 6.2.

(a) Theorem. Let K and K' be two conics through four points A-D in the

projective plane. Let E and F be two points of K that do not lie on K' and
are such that E does not lie on the tangent to K' at D and F does not lie on
the tangent to K" at A. Then DE intersects K’ at a point Q other than D, FA
intersects K' at a point S other than A, and EF intersects BC at a point R
collinear with Q and S (Figure 6.12).

Figure 6.12

(b) Theorem. Let K and K’ be two conics through four points A-D in the pro-

Jjective plane. Let E be a point of K that does not equal B or C or lie on the
tangents to K’ at A and D. Then the tangent to K’ at A intersects K at a
point F other than A, DE intersects K' at a point Q other than D, and EF
intersects BC at a point R collinear with Q and A (Figure 6.13).

Figure 6.13

Theorem. Let K and K' be two conics through four points A-D in the pro-
jective plane. Assume that the tangents to K' at A and D do not intersect at
a point of K. Then the tangent to K' at D intersects K at a point E other
than D, the tangent to K' at A intersects K at a point F other than A, and
EF intersects BC at a point R collinear with A and D (Figure 6.14).
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6.11.

6.12.

6.13.

Figure 6.14

The following result arises by replacing the lines tanA and tanC in
Theorem 6.3 with a conic K’. Illustrate the result with a figure, and prove
it by adapting the proof of Theorem 6.3.

Theorem

Let A and C be two points in the projective plane, let | be a line on A, and let m
be a line on C. Let K and K' be two conics that are both tangent to 1 at A and
tangent to m at C. Let E be a point on K other than A and C. Then line CE
intersects K’ at a point Q other than C, the tangent to K at E intersects line
AC at a point R, line EA intersects K' at a point S other than A, and the points
Q, R, S are collinear.

The following result arises by replacing the lines AC and CE in Theorem
6.3 with a conic K’. Hlustrate the result with a figure, and prove it by
adapting the proof of Theorem 6.3.

Theorem

Let K and K’ be two conics that both contain three points A, C, E in the projec-
tive plane and are tangent to the same line at C. Assume that the tangents to K
at A and E do not intersect at a point of K'. Let S be the point where the common
tangent to K and K' at C intersects line AE. Then the tangent to K at A inter-
sects K' at a point Q other than A, the tangent to K at E intersects K' at a point
R other than E, and the points Q, R, S are collinear.

(a) Prove the following result:

Theorem

Let A-H be eight points on a conic in the projective plane. Then the points
P=ABNDE, Q=BCAEF, R=CDNFG, S=DEnGH, T =EF N HA,
U=FGnNAB, V=GHnNBC, and W = HA n CD lie either on a conic or on
two lines.

(This theorem arises by replacing the hexagon ABCDEF in Pascal’s
Theorem with the octagon ABCDEFGH in Figure 6.15. We intersect each
side of the octagon with the two sides adjacent to the opposite side; for
example, we intersect AB with the two sides DE and FG adjacent to the
side EF opposite AB.)
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6.14.

6.15.

6.16.

6.17.

II. Conics

Figure 6.15

(b) TMustrate the theorem when P-W lie on a conic.
(c) Illustrate the theorem when P-W lie on two lines.

(Hint: One possible approach is to choose points A-C and E-G on the
conic and then choose D and H on the conic so that S = DE n GH is collin-
ear with Q = BCn EF and U = FG n AB. Since no three points on a conic
are collinear, P-W must lie on two lines.)

(a) Prove the following result, which arises from Pappus’ Theorem in
the same way as the theorem in Exercise 6.13 arises from Pascal’s
Theorem:

Theorem

Let e and f be two lines in the projective plane. Let A, C, E, G be four points
of e other than en f, and let B, D, F, H be four points of f other than e f.
Then the points P=ABNDE, Q=BCNEF, R=CDnNFG, S=DEnGH,
T=EFNnHA, U=FGnAB, V=GHnBC, and W = HA n CD lie either on
a conic or on two lines.

(b) Tlustrate the theorem when P-W lie on a conic.
(c) Mlustrate the theorem when P-W lie on two lines. (See the hint to
Exercise 6.13(c).)

Use Desargues’ Theorem (Exercise 3.20) and Exercise 5.17 to deduce
Theorem 5.3 from Theorem 6.3.

State the version of the theorem in Exercise 4.21 that holds in the following
cases when n = 2 and f is a conic K. Illustrate each version with a figure.
(These results are known as Carnot’s Theorem.)

(a) K is not tangent to any of the lines ST, TU, or US.

(b) K is tangent to line ST but not to TU or US.

(c) K istangent to lines ST and TU but not US.

(d) K is tangent to all of the lines ST, TU, and US.

Define harmonic conjugates as in Exercise 4.25. Let E, F, G, H be four
points, no three of which are collinear, in the projective plane. Let [ be a
line that does not contain any of the points E, F, G, H, EF n GH. Assume
that there is a curve of degree 2 that contains E-H and intersects [ twice at
a point P. Prove that the harmonic conjugate of P with respect to EF n 1l and
GH n1is the unique point other than P at which [ intersects twice a curve
of degree 2 containing E-H.
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6.18.

6.19.

6.20.

6.21.

6.22.

(This is a version of Desargues’ Involution Theorem. One possible ap-
proach is to apply Exercises 4.21 and 4.27 after using Theorem 3.4 to
ensure that no relevant points lie at infinity.)

Let E, F, G, H be four points, no three of which are collinear, in the projec-
tive plane. Let I be a line that does not contain any of these points. Prove
that there are either zero or exactly two points at which [ intersects twice a
curve of degree 2 containing E-H. (See Exercises 3.14, 4.29(a), and 6.17.)

Use Exercise 6.18 and Theorem 5.1 to prove the following result:

Theorem
Let E, F, G, H be four points, no three of which are collinear, in the projective
plane. Let 1 be a line that does not contain any of these points.

(i) If 1 contains none of the points

EF nGH, EGNFH, EHANFG, (19)

then either zero or two conics contain E-H and are tangent to 1.

(ii) If 1 contains exactly one of the points in (19), then there is exactly one conic
that contains E-H and is tangent to 1.

(iii) If 1 contains two of the points in (19), then no conic contains E-H and is
tangent to 1.

(Exercise 3.14 shows that [ cannot contain all three points in (19).)

Tllustrate the theorem in Exercise 6.19 by drawing four figures, one for
each of the two possibilities in (i), one for (ii), and one for (iii).

In the Euclidean plane, let K be a conic, P a point, L a line, and e a positive
number. K has the focus-directrix property with focus P, directrix L, and ec-
centricity e if K contains every point whose distance from P is e times its
distance from L. (Distance from L is measured perpendicular to L.)

(a) Ife>0,e# 1, and d # 0, prove that

(1 —e?)x* 4 y* = d%e*(1 — &%)

has the focus-directrix property with focus (de?, 0), directrix x = d, and
eccentricity e. (The focus has been chosen so that the equation has no x
or y terms.)

(b) Let K be the conic x*/a% + y?/v =1 for a > 0, v # 0, and a? > v. Con-
clude from (a) that K has the focus-directrix property with focus (c, 0),
directrix x = d, and eccentricity e for ¢ = +(a®* —v)'/?, ¢ =|c|/a, and
d=c/e>.

(c) If p # 0, prove that 4py = x? has the focus-directrix property with focus
(0, p), directrix y = —p, and eccentricity 1.

Let K be the conic x?/a®? 4+ y?/v =1 fora > 0, v # 0, and a? > v. K has foci

F=(c,0) and G = (—c, 0) for ¢ = (a® —v)'/?. Let Q = (r,s) be a point on K

with » and s nonzero. Define harmonic conjugates and harmonic sets as in

Exercise 4.25 and the paragraph before it.

(a) Let U be the point where the tangent at Q intersects the x-axis, and let
N be the point where the normal at Q intersects the x-axis. (The nor-
mal is the line through Q perpendicular to the tangent at Q.) Use im-
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plicit differentiation to find the slope of the tangent at Q, and conclude
that U and N have x-coordinates a?/r and c?r/a’. Deduce from Exer-
cises 4.19 and 4.27(b) that U and N are harmonic conjugates with re-
spect to F and G.

(b) Let M be the line through G parallel to the tangent at Q. Let M intersect
QF at a point B and QN at a point D, and set W = DF n GQ. Deduce
from (a) and Exercise 4.25 that B, U, and W are collinear. Conclude
from this and Exercise 4.25 that the ideal point on M has harmonic con-
jugate D with respect to G and B.

(c) Combine (b) with Exercise 4.26 and basic Euclidean geometry to prove
the reflection property of ellipses and hyperbolas: the tangent and normal
at Q bisect the angles formed by the lines QF and QG through Q and
the foci. Illustrate the property with two figures, one where K is an el-
lipse and one where K is a hyperbola. To what extent does the property
still hold when r or s is zero?

6.23. Let K be the parabola 4py = x? for p # 0. Let F be the focus (0, p). Let Q be
a point (r,s) on K with r # 0. Use basic calculus to show that the tangent
at Q intersects the y-axis at a point T with y-coordinate —s. Deduce that F
is equidistant from T and Q. Combine this with basic Euclidean geometry
to prove the reflection property of parabolas: the tangent and normal at Q
bisect the angles formed by the line QF and the vertical line through Q. II-
lustrate the property with a figure. In what sense does the property hold
when v = 0? (The normal at Q is the line through Q perpendicular to the
tangent at Q.)

§7. Envelopes of Conics

The envelope of a conic is the set of tangent lines. We study envelopes in
this section, and our main tool is a map that interchanges the points and
lines of the projective plane. We prove that this map interchanges conics
and their envelopes, and so results about conics imply results about en-
velopes. We end the section by showing how to construct the envelope of
a conic by joining the points of a line with their images under a transfor-
mation.
Our study of envelopes is based on the map

(a,b,c) > ax+by+cz=0 (1)

that sends each point (a,b,c) of the projective plane to the line
ax + by 4+ cz = 0 whose coefficients are the homogeneous coordinates
of the point. The homogeneous coordinates a, b, ¢ of the point are not
all zero, and so ax+ by 4+ cz =0 is, in fact, a line. As t varies over all
nonzero numbers, (ta,tb,tc) varies over all triples of homogeneous
coordinates that represent one point; the corresponding equations
tax + thy + tcz = 0 all represent the same line, and so (1) gives a well-
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defined map of points to lines in the projective plane. There does not
seem to be a generally recognized name for the map in (1); we call it
the basic polarity.

What is the image of a line under the basic polarity? The line has
equation px + qy + vz = 0 for real numbers p, g, r that are not all zero.
A point (a, b, ¢) lies on this line if and only if the equation

pa+qb+rc=0 (2)

holds. The basic polarity maps the point (a,b,c) to the line
ax + by + cz = 0. Note that we can rewrite (2) as

ap +bq+cr=0, (3)

and this equation holds if and only if the line ax 4+ by + cz = 0 contains
the point (p, g, 7). Thus, the basic polarity matches up the points (a, b, c)
of the line px + gy + rz = 0 with the lines ax + by 4+ cz = 0 that contain
the point (p, g, 7). Accordingly, the basic polarity determines a map

px+qy+rz=0—(p,q,7) (4)

of lines to points in the sense that it matches up the points of the line
px + qy + rz = 0 with the lines through the point (p,q,7).

Note that the maps in (1) and (4) are inverses: a point maps to a line
in (1) if and only if the line maps to the point in (4). Thus, the basic
polarity interchanges points and lines in pairs. As we have seen, the
equivalence of (2) and (3) shows that the basic polarity preserves inci-
dence, the property of points lying on lines. In other words, if the basic
polarity interchanges a point P with a line m and interchanges a line [
with a point Q, then P lies on [ if and only if m contains Q.

Given a theorem about points and lines in the projective plane, the
dual is the statement obtained by applying the basic polarity to the points
and lines in the original theorem. As we have seen, this means that
we interchange points and lines while preserving incidence. The dual
of a theorem holds automatically, without further work; once we have
proved that a certain relationship holds among points and lines, apply-
ing the basic polarity gives another true statement.

For example, suppose that we start with Pappus’ Theorem 6.5.

Pappus’ Theorem

Let e and f be two lines in the projective plane. Let A, B, C be three points of e
other than en f, and let A', B', C' be three points of f other than e f. Then
the points Q = AB'nA'B, R = BC' nB'C, and S = CA' n C'A are collinear
(Figure 6.11).

If we apply the basic polarity to the points and lines in Pappus’
Theorem, we interchange points and lines while preserving incidence.
In particular, we interchange the terms “line XY” and “point x ny”: XY



112 II. Conics
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is the unique line through two points X and Y, and x ny is the unique
point on two lines x and y. Thus, dualizing Pappus’ Theorem gives the
following result. It requires no proof beyond the observation that it is
the dual of Pappus’ Theorem, which we have already proved.

Theorem 7.1

Let E and F be two points in the projective plane. Let a, b, ¢ be three lines on
E other than EF, and let a’, b’, ¢’ be three lines on F other than EF. Then the
lines g=(anb)(a nb), r=Dbnc) b nc), and s= (cnad')(c' na) are
concurrent (Figure 7.1). O

The basic polarity interchanges points and lines in pairs, as (1) and (4)
show. Thus, dual theorems occur in pairs; we obtain each theorem in
a pair by interchanging the points and lines of the other. For instance,
dualizing Theorem 7.1 gives Pappus’ Theorem.

We have seen that the basic polarity interchanges the points on a line
with the lines on a point. We claim that it interchanges the points on a
conic with the lines tangent to a conic. We start by considering the tan-

gent lines of a conic easy to study, the parabola y = x2.

Theorem 7.2
The basic polarity interchanges the lines tangent to the parabola yz = x*
with the points on the parabola 4yz = x*.

Proof
The intersection of the parabola yz = x? with the Euclidean plane has
equation y = x?, and it consists of the points (a, a?) for all real numbers
a. Calculus gives the formula dy/dx = 2x, and so the tangent to y = x? at
(a,a?) is the line

y—a*=2a(x—a).
We can rewrite this equation as —2ax + y + a? = 0, which becomes

—2ax+y+a’z=0 (5)
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in homogeneous coordinates (x,y, z). Taking p = —2a, g = 1, and r = a?
shows that the line in (5) has the form

px+qy+rz=0, (6)
where
Aqr = p*. (7)
Conversely, consider any line (6) whose coefficients satisfy (7) with
q # 0. Dividing (6) by g gives

Zzx+y+rz:0.
q q

This has the form of (5) for a = —p/2q, since the coefficient of x is
p/q = —2a and the coefficient of z is

r_4qr _ P (—p\'_
q_wz_mz_(m>_a'
Together with the previous paragraph, this shows that the tangents to
yz = x? at points of the Euclidean plane are exactly the lines in (6) whose
coefficients satisfy (7) with g # 0.

As we saw in the discussions accompanying Figure 5.2 and following
the proof of Theorem 5.2, the parabola yz = x? has one point at infinity,
and it is tangent there to the line at infinity z = 0. On the other hand,
setting ¢ = 0 in (7) gives p = 0, and so (6) becomes the line at infinity
vz = 0 for r # 0. Thus, the tangent to yz = x? at its one point at infinity
is the one line (6) given by (7) with g = 0.

The last sentences of the two previous paragraphs show that the
tangent lines to yz = x* are exactly the lines in (6) as p, g, r vary over
all triples of real numbers that satisfy (7) and are not all zero. These lines
are the images under the basic polarity of the points (p,q,7) on the
parabola 4qr = p?. In short, the basic polarity matches up the points of
the parabola 4yz = x* with the tangents of the parabola yz = x. O

We use transformations to replace the parabola yz = x* in Theorem
7.2 with any conic K. We prove that the tangents of K are the lines
p*x+q*y +7r*z =0 whose coefficients p*, g*, r* satisfy the quadratic
equation of a conic K*.

Theorem 7.3
For any conic K, there is a conic K* such that the basic polarity interchanges
the tangent lines of K with the points of K*.

Proof
There is a transformation that takes yz = x to K (by the discussion be-
fore Theorem 5.9 and the fact that we can reverse transformations). This
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transformation takes the tangents of yz = x? to the tangents of K (since
transformations preserve lines and intersection multiplicities).

Let the transformation be given by (5) and (6) of Section 3. As in (13)
of Section 3, the transformation induces a reversible map of lines

px+qy+rz=0—px+qy+rz=0 (8)
given by the three equations
p* = Ap+ Dq + Gr,
q* = Bp+ Eq + Hr,
r*=Cp+Fq+1Ir.

We can use the same three equations to define a map that sends any
point (p, q,7) to the point (p*, g*, r*) with coordinates given by the equa-
tions. Because the map of lines in (8) is reversible, so is the map of points

(p,a,r) — (p*,q",7").

Thus, this map of points is a transformation, and so it takes the parabola
4qr = p? to a conic K*.

By Theorem 7.2, the tangents to the parabola yz = x* are the lines
px+qy+rz=0 for 4qr = p?. These lines are mapped to the tangents
of K by a transformation taking them to the lines p*x+qg*y+r*z=20
for all points (p*,q*,r*) on a conic K* (by the last three paragraphs).
Thus, the tangents of K are the lines p*x + q*y + r*z = 0 that the basic
polarity interchanges with the points of K*. O

The basic polarity interchanges points and lines in pairs. By the last
theorem, the basic polarity interchanges the tangent lines of any conic
K with the points of a conic K*. Likewise, the basic polarity interchanges
the tangent lines of K* with the points of a conic K**. The next result
shows that K* = K, and so the basic polarity interchanges the tangent
lines of each of the conics K and K* with the points of the other.

Theorem 7.4

Let K be a conic in the projective plane. Then the basic polarity interchanges
the tangent lines of K with the points of a conic K*, and it interchanges the
tangent lines of K* with the points of K. For any point X of K, if the tangent to
K at X is interchanged by the basic polarity with a point X* of K*, then the
tangent to K* at X* is interchanged with the point X.

Proof

The basic polarity interchanges the tangent lines of K with the points of
a conic K* (by Theorem 7.3). Let tan X be the tangent line to K at a point
X of K. The basic polarity interchanges tan X with a point X* of K* (Fig-
ure 7.2). Tan X*, the tangent line to K* at X*, is the unique line that in-
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tan X tan X*
K*

Figure 7.2

tersects K* only at X* (by Theorem 5.2). Because the basic polarity inter-
changes points and lines while preserving incidence, it interchanges
tan X* with the unique point on tan X that lies on no other tangents of
K. Since X is such a point (by Theorem 5.2), the basic polarity inter-
changes tan X* with X. As X varies over the points of K, X* varies over
the points of K*, and the basic polarity interchanges the tangents of each
of the conics K and K* with the points of the other. O

By Theorem 7.4, we can dualize results about conics as follows: the
points and tangents of a conic K become, respectively, the tangents and
points of a conic K*. Specifically, if a point X of K dualizes to the tangent
to K* at a point X*, then the tangent to K at X dualizes to the point X*.

We can now obtain a number of results about the envelope —the set of
tangents —of a conic by dualizing results about the points of a conic. For
example, Theorem 5.10 states that five points in the projective plane,
no three of which are collinear, lie on exactly one conic. Dualizing this
theorem gives the following result:

Theorem 7.5
Five lines in the projective plane, no three of which are concurrent, are tan-
gent to exactly one conic. ]

As we observed after the proof of Theorem 5.10, Theorem 5.2 implies
that no three points on a conic are collinear. Dualizing this result shows
that no three tangents of a conic are concurrent. This shows why we need
to assume in Theorem 7.5 that no three of the given lines are concurrent.

Let A be any point on a conic K. Theorem 5.2 states that any line
through A except tan A intersects K at exactly two points, A and one
other. Dualizing this result shows that every point on tan A except A lies
on exactly two tangents of K, tan A and one other. This strengthens the
result that no three tangents of K are concurrent.

Pascal’'s Theorem 6.2 states that the points Q = ABNDE, R=
BCNEF, and S=CDNFA are collinear for any six points A-F on a
conic. Dualizing Pascal’s Theorem gives the following result, known as
Brianchon’s Theorem:
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Theorem 7.6 (Brianchon’s Theorem)

Let a-f be six tangents of a conic in the projective plane. Then the lines
g=(anb)(dne), r=(bnc)enf), and s=(cnd)(f na) are concurrent
(Figure 7.3). O

Pascal’s Theorem states that the three pairs of opposite sides of a
hexagon ABCDEF inscribed in a conic intersect in three collinear points.
The dual result, Brianchon’s Theorem, refers to a hexagon abcdef whose
sides are tangents of a conic, a hexagon circumscribed about a conic
(Figure 7.3). We call

{anb,dne}, {bncenf}, {cndfna}

the three pairs of opposite vertices of hexagon abcdef. They determine
the lines g, 7, s in Brianchon’s Theorem. Thus, Brianchon’s Theorem
states that the three pairs of opposite vertices of a hexagon circumscribed
about a conic determine concurrent lines.The fact that no three tangents
of a conic are concurrent, as noted before Theorem 7.6, implies that no
two vertices of a circumscribed hexagon are equal.

As a final example, we dualize Theorem 6.3, which states that Q =
tanA N CE, R=tanEnN AC, and S=tanCnEA are collinear for any
three points A, C, E on a conic (Figure 6.7). The three tangents tan A,
tan C, tan E and the three points A, C, E dualize to three points A, C, E
on a conic and to tan A, tan C, tan E, respectively (by the last sentence of
Theorem 7.4). Thus, Theorem 6.3 dualizes to the following result:

Theorem 7.7

Let A, C, E be three points on a conic in the projective plane. Then the three
lines q = A(tanC ntanE), r = E(tan A ntan C), and s = C(tanE Nntan A)
are concurrent (Figure 7.4). O

We can simplify the statement of Theorem 7.7 by setting A’ =
tanCntanE, C' =tanEntanA, and E =tanA ntanC. Theorem 7.7
states that the three lines AA’, CC’, EE' are concurrent for any three
points A, C, E on a conic (Figure 7.4). This proves Theorem 5.3.
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Figure 7.4

We end this section by developing a simple way to construct the
envelope of a conic. We show that we obtain all the tangents of a conic
if we join each point of a line [ to its image under a transformation that
maps [ to another line m and does not fix [ nm.

Theorem 7.3 shows that the tangents of the parabola yz = x? are the
lines

px+qy+rz=0, (9)

where 4qr = p?. The transformation that interchanges x and z acts on the
line in (9) by interchanging p and r. Thus, the tangents of xy = z* are the
lines given by (9) for

4pg = r*. (10)

Setting ¥ = 0 in (10) gives p = 0 or g = 0. Thus, the coordinate axes
y =0 and x = 0 are tangents of xy = z?; in fact, they are the asymptotes
of the hyperbola xy = 1 (Figure 3.1), in agreement with the discussion
before Theorem 5.3. If r is nonzero in (10), then so is p, and we can
divide (9) by p and relabel g and r. Thus, we can assume that p = 1 and
4q = v2. In short, the tangents to xy = z2 are the coordinate axes and the
lines

72
X+Zy+1fz:0, (11)

for all nonzero real numbers 7. Setting z = 1 and either y = 0 or x = 0 in
(11) shows that this line intersects the x-axis at (—r,0) and the y-axis at
(0, —4/7).

On the other hand, consider the equations

¥ =y, Yy =4z, 7z =x. (12)

These equations give a transformation because they can obviously be
solved for x, y, z in terms of ¥, y’, z’. Since this transformation maps
(t,0,1) to (0,4,t), it takes the point (¢,0) on the x-axis to the point
(0,4/t) on the y-axis for all nonzero numbers t. Setting t = —r in the last
two sentences of the previous paragraph shows that we obtain all the
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tangents to the hyperbola xy = 1 except the asymptotes by joining each
point (¢,0) on the x-axis for t # 0 to its image (0, 4/t) on the y-axis under
the transformation in (12). The two remaining points on the x-axis are
the origin and the point at infinity. The transformation in (12) maps the
origin (0,0, 1) to the point (0, 4, 0) at infinity on vertical lines, and these
two points determine the y-axis x = 0. The transformation maps the
point (1,0,0) at infinity on the x-axis y = 0 to the origin (0,0,1), and
these two points determine the x-axis y = 0.

In short, the transformation in (12) maps points on the x-axis to points
on the y-axis, and the lines that join corresponding points form the
envelope—the set of tangents—of the hyperbola xy = z?. The transfor-
mation maps the point (¢,0) on the x-axis to the point (0,4/t) on the y-
axis for any t # 0. Figure 7.5 gives various values of t and 4/t, and Figure
7.6 shows the lines through the corresponding points (¢,0) and (0, 4/t).
As t varies, these lines are the tangents to the hyperbola xy = 1 (sketched
in Figure 3.1) at points of the Euclidean plane.

We can generalize this result by replacing the transformation in (12)
that maps the x-axis to the y-axis with any transformation that maps a
line [ to another line m and does not fix the point I nm. This generaliza-
tion follows from the previous example and Theorem 3.4, which shows
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Figure 7.7

that four points, no three of which are collinear, can be transformed into
any other such points.

Theorem 7.8

Let X — X' be a transformation that maps a line 1 to a line m # 1 and does
not fix lnm. As X varies over all points of 1, the lines XX’ form the envelope
of a conic.

Proof

The given transformation X — X’ matches up the points of [ and m, and
it does not map the point P = [ nm to itself. Thus, there is a point A on [
other than P that the transformation maps to P, and the image of P under
the transformation is a point B on m other than P (Figure 7.7).

Let C be a point of [ other than A and P. The transformation maps C to
a point C" on m other than P and B. Since none of the points A, B, C, C’
equals P, neither A nor C lies on m = BC’, and neither B nor C' lies on
I = AC. Thus, no three of the four points A, B, C, C' are collinear.

The x-axis y = 0 contains the point (1,0, 0) at infinity and the point
(1,0,1) one unit from the origin. The y-axis x = 0 contains the point
(0,1,0) at infinity and the point (0,4,1) four units from the origin.
Neither (1,0,0) nor (1,0,1) lies on the y-axis—the line through (0,1, 0)
and (0,4, 1) —and neither (0, 1,0) nor (0,4, 1) lies on the x-axis—the line
through (1,0,0) and (1,0,1). Thus, no three of the four points (1,0, 0),
(1,0,1), (0,1,0), (0,4,1) are collinear.

By Theorem 3.4 and the last two paragraphs, there is a transfor-
mation X — X* that maps A — (1,0,0), B— (0,1,0), C — (1,0,1), and
C" —(0,4,1). This transformation maps [ = AC to the line through
(1,0,0) and (1,0, 1) —the x-axis—and it maps m = BC' to the line through
(0,1,0) and (0, 4, 1) —the y-axis. Thus, the transformation maps P =l nm
to the intersection of the x- and y-axes—the origin (0,0, 1).

We take the given transformation X — X', precede it with the reverse
of the transformation X — X* just defined, and follow it with the trans-
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formation X — X*. This gives the sequence of transformations
X=X —-X — X" (13)

As X* varies over the x-axis, X varies over I, X' varies over m, and X’*
varies over the y-axis. The sequence of transformations in (13) maps

(1,0,0) = A — P —(0,0,1), (14)
(0,0,1) - P— B —(0,1,0), (15)
(1,0,1) = C — C" — (0,4,1). (16)

The sequence of transformation in (13) is itself a transformation, and
so there are constants a-i such that this transformation maps

(x%,y,z) — (ax + by + cz,dx + ey + fz,gx + hy + iz).

This map takes (1,0,0) to (0,0,1) (by (14)), and so we have a =0 and
d = 0. The map also takes (0,0,1) to (0,1,0) (by (15)), and so we have
¢ =0 and i = 0. Thus, the transformation in (13) maps

(%, y,2) — (by, ey + fz,8x + hy).
This map takes (1,0,1) to (0,4,1) (by (16)), and so we have f = 4g. In
short, the transformation in (13) maps

(X7 Y, Z) - (by: ey + 4gZ, gx —+ Z/Ly)

Setting y = 0 shows that (x, 0, z) maps to (0, 4gz, gx). It follows that g is
nonzero, and so (0, 4gz, gx) represents the same point as (0, 4z, x) for x
and z not both zero. Thus the transformation in (13) maps

(x%,0,2z) — (0,4z,x) (17)

for any point (x, 0, z) on the x-axis. Comparing (17) with (12) shows that
the transformation in (13) maps each point on the x-axis to the same
point on the y-axis as the transformation in (12). The discussion after
(12) shows that we get the envelope of xy = z2 by joining each point on
the x-axis to its image on the y-axis under the transformation in (12).
Thus, the same result holds for the transformation in (13).

We now know that the tangents of xy = z? are the lines X*X'* for all
points X* on the x-axis (since the transformation in (13) maps X* to
X'*). Because the reverse of the transformation X — X* is itself a trans-
formation, it preserves conics and tangents. Thus, the lines XX’ are the
tangents of a conic as X varies over the points of [. O

Exercises

7.1. A theorem is stated in each of the following exercises. Use Theorem 7.4
to state the dual of each theorem in terms of conics and tangents, as in
Theorems 7.5-7.7. lllustrate the results you state by drawing one figure
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7.2.

7.3.

7.4.

7.5.

7.6.

for each of the parts (a)-(p) and the four possibilities in (q) (as in Exercise
6.20).

(a) Exercise 5.2. (b) Exercise 5.3.

(c) Exercise 5.4. (d) Exercise 5.5.

(e) Exercise 5.12. (f) Exercise 5.14.
(g) Exercise 6.7. (h) Exercise 6.8.

(i) Exercise 6.9. (j) Exercise 6.10(a).
(k) Exercise 6.10(b). (1) Exercise 6.10(c).
(m) Exercise 6.11. (n) Exercise 6.12.
(o) Exercise 6.13. (p) Exercise 6.14.
(q) Exercise 6.19.

State the duals of the following theorems, which are proved in Exercise
16.9. Draw figures to illustrate the stated theorems and their duals.

(a) Theorem. Let A, B, C, D, E be five points on a conic. Set F = AB N CD,
G =ADNBC, and H = tan A ntan B. Then tan E contains F if and only if E
lies on line GH.

(b) Theorem. Let A, B, C, D be four points on a conic. Set P =tan A ntan B
and Q = tan C ntan D. Then P lies on CD if and only if Q lies on AB.

Use single-variable calculus and the discussion after the proof of Theorem
4.10 to show that the tangents to xy = 1 in the Euclidean plane are the lines
determined by the pairs of points (t,0) and (0,4/t) for all real numbers
t # 0, as observed after (12). Do not transform xy = 1 into another curve.

Let five tangents a, ¢, d, e, f of a conic K be given.

(a) Use Exercise 7.1(a) to describe how to use a straightedge to construct
the point at which a is tangent to K.

(b) Let P be any point on a that does not lie on ¢, d, e, f, or K. Use Brian-
chon’s Theorem 7.6 to describe how to use a straightedge to construct
the line through P other than a that is tangent to K. (Such a line exists,
by the discussion after Theorem 7.5.)

Let a point A on a conic K, the tangent a at A, and three other tangents ¢, e,

and f be given.

(a) Use Exercise 7.1(b) to describe how to use a straightedge to construct
the point at which c is tangent to K.

(b) Let P be any point on ¢ that does not lie on a, e, f, or K. Use Exercise
7.1(a) to describe how to use a straightedge to construct the line through
P other than a that is tangent to K. (Such a line exists, by the discussion
after Theorem 7.5.)

Suppose that we are given two points A and C on a conic K, the tangents a

and c at A and C, and a third tangent e.

(a) Use Theorem 7.7 to describe how to use a straightedge to construct the
point at which e is tangent to K.

(b) For any point P on a other than A, a n¢, and a N e, use Exercise 7.1(b)
to describe how to use a straightedge to construct the line through P
other than a that is tangent to K. (Such a line exists, by the discussion
after Theorem 7.5.)
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7.7.

7.8.

7.9.

7.10.

7.11.

II. Conics

Let X — X’ be a transformation that maps a line [ to a line m # [ and does
not fix the point I nm. By Theorem 7.8, the lines XX’ form the envelope of
a conic K as X varies over all points of I. Let A be the point that the trans-
formation maps to nm, and let B be the image of [ nm under the trans-
formation. Prove that K is tangent to [ at A and tangent to m at B.

Let p and g be nonzero real numbers.

(a) Prove that there is a transformation that maps the point (¢,0) on the
x-axis to the point (0, pt + q) on the y-axis for all real numbers t and
that maps the point at infinity on the x-axis to the point at infinity on
the y-axis. Conclude that there is a parabola K whose tangents in the
Euclidean plane are the lines joining the points (t,0) and (0, pt + q) for
all real numbers t.

(b) Prove that K is tangent to the x-axis at (—q/p,0) and to the y-axis at
(0,9).

(c) Prove that K is tangent to the line at infinity at the point on lines of
slope —p. (This shows that —p is the slope of the axis of symmetry of
K. One possible approach is to determine what real numbers are the
slopes of tangents of K.)

Nonzero real numbers p and g are given in each part of this exercise.
By Exercise 7.8(a), there is a parabola K whose tangents in the Euclidean
plane are the lines through the points (¢,0) and (0, pt + gq) for all real num-
bers t. Construct a chart analogous to Figure 7.5 that gives a number of cor-
responding values of t and pt + g. Then draw a figure analogous to Figure
7.6 showing the lines through the points (t,0) and (0, pt + q) for the values
in the chart. Sketch K itself on the same figure, and mark the points in
Exercise 7.8(b) where K is tangent to the x- and y-axes.

(a) p=1andq=3. (b) p=—1andg=4.

(¢) p=2andq=—-3. (d) p=—iandqg=-2.

Let p, g, r be real numbers such that p # 0 and r # 0.

(a) Prove that the equations ¥’ =x+py, y =qy+rz, and z' =y give a
transformation by solving these equations for x, y, z in terms of ', i/, z'.

(b) Prove that the transformation in (a) maps the y-axis x = 0 to the line
x = p and does not fix the point at infinity where these lines intersect.

(c) Conclude from parts (a) and (b) and Theorem 7.8 that there is an
ellipse or a hyperbola K whose tangents (including the asymptotes of
a hyperbola) are the lines x =0 and x =p and the lines through
the points (0,t) and (p, (gt +7)/t) in the Euclidean plane for all real
numbers t # 0.

(d) Prove that K is tangent to the y-axis at the origin and tangent to x = p at
the point (p, q).

An expression of the form (gt + r)/t is given in each part of this exercise for
real numbers g and r such that r # 0. Take p = 4, and let K be the ellipse or
hyperbola determined in Exercise 7.10(c). Construct a chart analogous to
Figure 7.5 that gives a number of corresponding values of t and (gt +7)/t.
Then draw a figure analogous to Figure 7.6 showing the lines through the
points (0,t) and (p, (gt + r)/t) for the values in the chart. Sketch K itself on



Exercises 123

7.12.

7.13.

7.15.

the same figure, and mark the points in Exercise 7.10(d) where K is tangent
to the y-axis and x = p.

(a) 6/t (b) —6/t. (c) ZttH.
2t—4 —t+3 t-3
(d) r (e) ra (f) -

Let K be a parabola that is tangent to the x-axis at a point A and tangent to
the y-axis at a point B. Prove that there are nonzero numbers p and g such
that the construction in Exercise 7.8 gives a parabola K’ that is also tangent
to the x-axis at A and tangent to the y-axis at B. Conclude from Theorems
4.11 and 5.9 that K = K’. (This shows that the construction in Exercise 7.8
gives all parabolas tangent to the x- and y-axes. Since every parabola has
two perpendicular tangents, it follows that the construction gives every
parabola in an appropriate coordinate system.)

Let K be an ellipse or a hyperbola that is tangent to the y-axis at the origin
O and tangent to the line x = p for a real number p # 0 at a point B in the
Euclidean plane. Let n be a line in the Euclidean plane that is tangent to K
and not vertical. Prove that there are real numbers g and r such that r # 0,
and the construction in Exercise 7.10 gives an ellipse or hyperbola K’ that is
tangent to x = 0 at the origin, tangent to x = p at B, and tangent to n in the
projective plane. Conclude from Theorems 4.11 and 5.9 that K = K'.

(This shows that the construction in Exercise 7.10 gives every ellipse or
hyperbola tangent to the y-axis at the origin and tangent to another vertical
line. Since every ellipse and hyperbola has two parallel tangents, it follows
that the construction in Exercise 7.10 gives every ellipse or hyperbola in an
appropriate coordinate system.)

. In the projective plane, let A and B be two points on a conic K, and let [ and

m be the tangents at A and B, respectively (Figure 7.7). Set P =1 nm. Letn
be a tangent of K other than [ and m, and set C =l nn and C' = mnn. De-
duce from Exercise 3.10, Theorem 5.2, and the discussion after Theorem
7.5 that there is a transformation that maps A — P, P — B, and C — C'.
Conclude from Theorems 4.11 and 5.9 that this transformation gives rise
to K via the construction in Theorem 7.8.

(This shows that any conic can be constructed as in Theorem 7.8 with
respect to any two of its tangents.)

Let p, q, r be real numbers such that p # 0 and » # 0.
(a) For any nonzero number ¢, prove that the line through the points (0, t)
and (p, (gt + r)/t) has slope m, where

t2 + (mp—q)t —r =0.

(b) Let K be the conic in Exercise 7.10(c). If r > 0, prove that K has two
tangents of every slope and is therefore an ellipse. If < 0, prove that
K does not have tangents of every slope and is therefore a hyperbola.

(c) Show that a tangent in the projective plane of a hyperbola is an
asymptote if and only if there is no other tangent parallel to it in the
Euclidean plane. If r < 0, prove that +|r|'/? are the two values of t
that give asymptotes of the hyperbola constructed in Exercise 7.10.
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7.16.

7.17.

7.18.

II. Conics

Let A, B, C, A', B/, C’ be six points such that no three of these points are
collinear and no three of the six lines a = BC, b= CA, ¢ = AB, a' = B'C/,
b’ =C'A, and ¢’ = A'B’ are concurrent. Noncorresponding sides of trian-
gles ABC and A'B'C’ intersect at the six points

anl', anc, bnc, bnd, cnd, cnb, (18)

and noncorresponding vertices of the triangles determine the six lines
, CB. (19)

Assume that no three of the points in (18) are collinear and that no three of
the lines in (19) are concurrent. Prove that the six points in (18) lie on a
conic if and only if the six lines in (19) are tangent to a conic. Illustrate
this result with a figure.

(Hint: Pascal's Theorem 6.2 and its converse in Exercise 6.7 give a
criterion for the points in (18) to lie on a conic. Duality gives a criterion
for the lines in (19) to be tangents of a conic. These criteria are related by
Desargues’ Theorem, from Exercise 3.20.)

Let A, B, C, A, B, C' be six points, no three of which are collinear. Set

a=BC,b=CA,c=AB,a' =BC',b =CA’, and ¢’ = A'B’. Prove that the

following conditions are equivalent.

(i) The lines a, b, ¢, a’, b', ¢’ are tangent to a conic.

(ii) There is a transformation that takes Btoa’ n¢, Ctoa’ nb, anc to B,
andanb' to C.

(iii) There is a transformation that takes b to A’C, ¢ to A'B, AC’ to b’, and
AB' to .

(iv) The points A, B, C, A’, B, C' lie on a conic.

Tustrate this result with a figure where both (i) and (iv) hold.

(Hint: The equivalence of (i) and (ii) follows from Theorem 7.8 and Ex-
ercises 3.13 and 7.14. Use the theorem in Exercise 3.19 and the reversibility
of transformations to show that (ii) implies (iii). Conclude that (i)-(iv) are
equivalent by applying the basic polarity and using Theorem 7.4 and the
discussion of (8).)

Let K be the conic x2/a? + y%/v =1 for numbers a > 0 and v # 0. Let (s, t)

be a point in the Euclidean plane.

(a) Assume that the line of slope m through (s, t) is tangent to K at a point
of the Euclidean plane with x-coordinate r. Deduce from Theorem 4.3
and Definition 4.9 that the quadratic polynomial with indeterminate x

(@*m® +v)x? + 2a’m(t — sm)x + a®[(t — sm)?

— )
factors as k(x — r)2 for a nonzero number k. Explain why it follows that
4a*m?(t — sm)?* = 4a*(a*m?* 4+ v)[(t — sm)? — V],
and simplify this equation to
(82 —a®>)ym? = 2stm+t> —v = 0. (20)

(b) Letc, d, e be real numbers, and let m be an indeterminate. If the quad-
ratic equation cm? + dm + e = 0 has roots that are negative reciprocals,
prove that e = —c.
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7.19.

7.20.

7.21

7.22.

(c) If (s,t) lies on perpendicular lines that are tangent to K at points of the
Euclidean plane and are not horizontal or vertical, deduce from (a) and
(b) that

s24+t2=a’+v.

Let K be the ellipse x%/a? + y?/b? = 1 for positive numbers a and b. Prove
that there is a circle C such that every rectangle circumscribed about the
ellipse K is inscribed in C. Use Exercise 7.18(c) and also consider a rectan-
gle with horizontal and vertical sides. [llustrate the result with a figure that
shows an ellipse K that is not a circle, the corresponding circle C, and sev-
eral rectangles circumscribed about K.

(C is called the director circle of the ellipse K.)

Let K be the hyperbola x%/a? — y?/b? = 1 for positive numbers a and b. If
a > b, prove that there is a circle C that contains the points of intersection
of all pairs of perpendicular tangents of K. If a < b, prove that no two per-
pendicular lines are tangent to K at points of the Euclidean plane. Illustrate
this result with two figures: one that shows K for a > b, the corresponding
circle C, and several pairs of perpendicular tangents to K, and another fig-
ure that shows K for a < b. (See Exercise 7.18(c). For a > b, the circle C is
called the director circle of the hyperbola K.)

. Let K be the parabola 4py = x? for p # 0.

(a) Consider the line of slope m through a point (s,t) of the Euclidean
plane. If the line is tangent to K at a point of the Euclidean plane, use
the approach of Exercise 7.18(a) to show that

pmz—sm—i-t:O.

(b) The directrix of K is the line y = —p. Use (a) and Exercise 7.18(b) to
deduce that perpendicular tangents of K intersect at points on the di-
rectrix. Ilustrate this result with a figure that shows K, several pairs
of perpendicular tangents, and the directrix.

Let K be the conic ¥?/a? + y?/v =1 for numbers a >0 and v # 0 with

a’ > v. A focus of K is a point (¢, 0) with ¢? = a? — v. (Writing v = +b? for

b > 0 shows that K is an ellipse or a hyperbola with foci determined as usu-

al.)

(a) Let (s,t) be a point on a line of slope —1/m through a focus (c, 0) for a
nonzero number m. Verify that

(m? +1)(s® + 12 —a?) = (t —sm)? — m?a® —v.

(b) Prove that the circle D of radius a centered at the origin contains the
feet of the perpendiculars dropped from a focus of K to all tangents of
K. Use (a) and Equation (20), and consider horizontal and vertical tan-
gents as well.

(c) Mlustrate the result in (b) with two figures, one where K is an ellipse
and not a circle, and one where K is a hyperbola. In each figure, show
K, D, several tangents of K, and the perpendiculars dropped from both
foci of K to the tangents shown.
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7.23.

7.24.

7.25.

7.26.

7.27.

7.28.

II. Conics

For p # 0, the parabola 4py = x? has focus (0, p). Use Exercise 7.21(a) to
prove that the tangent at the vertex (0, 0) contains the feet of the perpendic-
ulars dropped from the focus to all tangents. Illustrate this result with a fig-
ure that shows the parabola, the tangent at the vertex, several other tan-
gents, and the perpendiculars dropped from the focus to the tangents
shown.

Let F =0 be a curve of degree 4 that contains four singular points and at
least one other point. Prove that F has a factor of degree 1 or 2.

(Hint: One possible approach is to show that there is curve of degree 2—
a conic or two lines—through the four singular points and a fifth point of F.
Conclude from Theorems 4.5, 4.11, and 5.9 that F has a factor of degree 1
or 2.)

This exercise shows that we cannot omit the assumption in Exercise 7.24
that F contains at least one point besides the four singular points. Consider
the polynomial of degree 4

gy =* -1+ - 1)~

(a) Prove that the curve g = 0 consists of exactly four points in the projec-
tive plane.

(b) Prove that g is singular at each of the points in (a).

(c) Prove that g has no factors of degree 1 or 2. (See part (a) and Theorem
5.1.)

This exercise shows that we cannot reduce the number of singular points
in Exercise 7.24. Consider the polynomial
H(xy,2) = y*(x* +x+1) —x%

(a) Prove that H is singular at the three points (0,0, 1), (0,1,0), (1,0, 0).
(b) Prove that H contains infinitely many points.
(c) Prove that H has no factors of degree 1 or 2.

Let K be the circle of radius r centered at the origin for » > 0. Associate K
with a conic K* as in Theorem 7.4. Prove that K = K* if and only if r = 1.

Let K be the parabola yz = ax? for a # 0. Associate K with a conic K* as in
Theorem 7.4. Prove that K = K* if and only if a = i%.
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Introduction and History

Introduction

This chapter is devoted to classifying irreducible cubics. These are curves
of degree 3 given by polynomials that do not have factors of degree 1 or 2.
We prove that every irreducible cubic can be transformed into the form

Y =x+fx*+gx+h (1)
for real numbers f, g, h.

The proof has two main steps. First, we prove in Section 8 that an ir-
reducible cubic C can be transformed into (1) if it has a flex (i.e., a gen-
eralized inflection point) or a singular point. Second, we prove in Section
12 that there is a flex on every irreducible cubic that is nonsingular (i.e.,
has no singular points), and so the previous sentence applies to all irre-
ducible cubics.

In Section 9, we interrupt our work on the classification of cubics to
discuss one of their most important properties. We use collinearity of
points to define addition on a nonsingular, irreducible cubic C that has
a flex O. This definition makes C an abelian group, which means that
the sum of two points of C is again a point of C, addition is commutative
and associative, O is an identity element, and every point of C has an
additive inverse. A central problem in number theory is to determine
the set C* of points of C that have rational coordinates, when C is given
by (1) for rational numbers f, g, h. The key to this problem is to observe
that C* is itself a group whose structure can be analyzed.

127
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Sections 10 and 11 lay the groundwork for us to complete the classi-
fication of cubics in Section 12. We introduce the complex numbers in
Section 10 and prove the Fundamental Theorem of Algebra, which states
that every polynomial in one variable factors completely over the com-
plex numbers. We introduce points with complex coordinates in Section
11. The Fundamental Theorem of Algebra ensures that curves have “as
many intersections as possible” over the complex numbers. This yields
Bezout's Theorem, which states that the number of times that two curves
without a common factor intersect in the complex projective plane is the
product of their degrees.

We complete the classification of irreducible cubics in Section 12 by
proving that every nonsingular, irreducible cubic C has a flex. The Hes-
sian H of C is a cubic formed from the second partial derivatives of C.
The points of intersection of C and H are the flexes of C. We use Bezout’s
Theorem from Section 11 to prove that C and H intersect exactly nine
times, counting multiplicities, over the complex numbers. Because nine
is odd, and because the intersections of C and H over the complex num-
bers are interchanged in pairs by conjugating their coordinates, it follows
that C and H intersect at least once over the real numbers. Thus, every
nonsingular, irreducible cubic C has a flex over the real numbers, as
desired.

We end the chapter by asking how many points determine a cubic.
We seek an analogue of Theorem 5.10, which says that a conic is
uniquely determined by five points, no three collinear. Because the
equation of the general cubic

ax® 4+ bx*y + cxy® + dy® + ex® + fxy + gy
+hx+iy+j=0

has ten coefficients but can be multiplied by a nonzero constant, cubics
have nine “degrees of freedom.” This suggests that nine points generally
lie on a unique cubic, and we see in Section 13 when they do.

History

Newton’s classification of cubics in the late 1600s was the first great suc-
cess of analytic geometry apart from its role in calculus. Newton claimed
that the equation of every cubic in the Euclidean plane could be simpli-
fied to one of the forms

xy? +ey =ax® +bx* +cx+d, (2)
xy = ax® + bx* + cx +d, (3)
y> =ax® +bx* +cx +d, (4)
y=ax®+bx*+cx+d, (5)
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by an appropriate choice of the coordinate axes, which were not re-
quired to be perpendicular in Newton’s time. James Stirling published a
proof of Newton’s claim in 1717, possibly in collaboration with Newton.
The key to Stirling’s proof is to consider the family of chords of the cubic
parallel to an asymptote, find the locus of the midpoints of the chords,
and choose coordinate axes to simplify the equation of the locus.

Newton multiplied (2) by x and completed the square of the left-hand
side to obtain the equation

(xy +3e)* = ax* + bx*> + cx* + dx + e’ (6)

By considering the roots of the right-hand sides of (2)-(6), he divided
cubics into 72 species. Stirling identified four more species, and Jean-
Paul de Gua de Malves found another two in 1740, giving a total of 78
species of cubics.

Newton also made the remarkable assertion that all cubics could be
obtained from those in (4) by projecting between planes. This chapter
centers around proving Newton's assertion for irreducible cubics, with
the change that projections are replaced by their algebraic equivalent,
transformations.

The first proofs of Newton's assertion appeared in 1731, due inde-
pendently to Alexis Clairaut and Francois Nicole. Clairaut considered
the graph of the equation

zy* = ax® + bx’z + cxz* + dz° (7)

in three-dimensional-Euclidean space. Equation (7) is homogeneous and
yields (4) when we set z = 1. It follows that (7) describes a cubical cone
having the origin as vertex; that is, the graph consists of the lines joining
the origin to the cubic given by (4) in the plane z = 1. Clairaut showed
that every cubic in (2)-(5) is the intersection of a plane and a cubical
cone given by (7), which proves Newton'’s assertion.

Among the important attributes of cubics are flexes, which are gen-
eralizations of inflection points. Clairaut asserted in 1731 that an irredu-
cible cubic has from one through three inflection points over the real
numbers (Exercises 12.8 and 12.18). For irreducible cubics having three
inflection points, de Gua proved in 1740 that the inflection points are
collinear (Exercises 8.6 and 9.2(c)). Pliicker argued in 1834 that a non-
singular cubic has nine flexes over the complex numbers that lie by
threes on twelve lines (Exercise 12.24). His argument was completed in
1844 by Ludwig Hesse, who characterized flexes with a determinant of
second partial derivatives that is now called a Hessian (Theorem 12.4).

Suppose that the cubic C in (1) has rational coefficients. If we take
the tangent line through a point of C with rational coordinates, or if we
take the secant line through two points of C with rational coordinates,
the line intersects C at another point that has rational coordinates, as
we discuss in Section 9. Applying this tangent-secant construction re-
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peatedly can produce any number of points of C with rational coordi-
nates from just one. This addresses a central problem of number theory,
finding the rational solutions of equations. An ad hoc algebraic version
of the tangent-secant construction was introduced by Diophantus, who
lived in Alexandria during the third century a.p. Fermat systematized
the construction algebraically, and Newton interpreted it geometrically
in terms of tangents and secants.

Complex numbers were introduced in the 1500s to solve cubic equa-
tions in one variable. They were reintroduced in the 1700s to facilitate
integration by partial fractions. Mathematicians gradually developed
proficiency in working with complex numbers, and their confidence in-
creased when Carl Friedrich Gauss gave four proofs of the Fundamental
Theorem of Algebra in the first decade of the 1800s. Jean d’Alembert had
given an incomplete proof of the Fundamental Theorem in 1746. The
main gap in his proof was filled in 1806 when Jean Argand proved a
result generally called “d’Alembert’s Lemma” (Claim 5 of Section 10).
In fact, no truly complete proof of the Fundamental Theorem could be
given until the 1870s, when Georg Cantor and Richard Dedekind devel-
oped the real numbers formally and Karl Weierstrass derived the basic
properties of continuous functions. The proof in Section 10 of the Funda-
mental Theorem is based on the paper of Charles Fefferman cited in the
References, which modernizes and simplifies the work of d’Alembert
and Argand.

The idea of a complex curve—an algebraic curve whose coefficients
and variables are complex numbers—emerged over centuries. Analytic
geometers from Newton onward considered ‘‘imaginary points” on
curves without clearly specfying the nature of these points. In the 1820s,
Jean Poncelet and Michel Chasles argued for using imaginary points sys-
tematically in synthetic projective geometry. In 1830, Pliicker clarified
the nature of imaginary points when the homogeneous coordinates he
introduced made it possible to consider points with complex coordinates.
Nevertheless, complex curves were not generally considered natural
objects of study until Georg Riemann proposed in 1851 a way to consider
them topologically: the “Riemann surface” of a polynomial equation
f(w,z) = 0 consists of sheets that lie over the complex z-plane and cor-
respond to the values of w determined by the equation. In the 1860s,
Alfred Clebsch and Paul Gordan recast Riemann’s ideas from complex
analytic to geometric form, and the modern view of complex curves
was established.

“Elliptic integrals” are, speaking roughly, integrals that involve the
square root of a polynomial of degree 3 or 4. Unlike integrals that in-
volve the square root of a polynomial of degree 2, elliptic integrals cannot
generally be evaluated in closed form. Examples of elliptic integrals arose
from scientific and geometric considerations in the last half of the 1600s
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and the first half of the 1700s. The first examples involved arc lengths of
ellipses and led to the name “elliptic integrals.” In the mid-1700s, Leon-
hard Euler revolutionized the study of elliptic integrals by establishing
the identity

X2

Jxl o)~V gt +J

a a

X3

gl 2 ar = | gty (®)
a

for any polynomial g(t) of degree 3 of 4, where x3 is a rational function of

X1, X2, a, g(x1)Y%, g(x2)'?, gla)/?.

Certain cubics are now called “elliptic curves” because of their con-
nection with elliptic integrals. This connection was discovered by Gauss,
Niels Abel, and Carl Jacobi in the 1820s. Their results were clarified and
extended by Riemann in the 1850s, Weierstrass in 1863, and Henri
Poincaré in 1901. We summarize a small part of this work below.

Let

gty =4t +ct+d

be a polynomial of degree 3 without repeated roots. The Weierstrass
P-function

x = P(u) (9)

parametrizes the nonsingular, irreducible complex cubic

y* =g (10)
in the following sense: Equation (9) and the equation
y=Pl(u) (11)

match up the complex numbers u on and inside a parallelogram in the
complex plane with the points (x,y) of the complex cubic (10), except
that any two complex numbers u in corresponding positions on opposite
sides of the parallelogram map to the same point (x,y). The function
P(u) can be written in the form

1
P(u) = — + au® + agu’ + - -
u
for complex numbers az, ay, - ...
Equations (9)-(11) imply that

B Py =y =g,

and taking reciprocals gives

Y=g
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This implies that
u= et (12)

which means that u is a multivalued indefinite integral of the two-valued
function g(x)~'/? of the complex variable x. In short, we obtain the
Weierstrass P-function in (9) by inverting the elliptic integral in (12)
and considering x as a function of u.

The idea of parametrizing the complex cubic in (10) by inverting the
elliptic integral in (12) arose by drawing analogies with the following
familiar facts: the unit circle

yr=1-x° (13)
is parametrized by setting
x = sin(u) (14)
and
y = sin’(u) = cos(u), (15)

where the relation given by (14) is the inverse of the relation

X
u = arcsin(x) = J (1—1t3)""%ar. (16)
0
Drawing parallels between the cubic g(t) and the quadratic 1 — t? and
between the Weierstrass P-function x = P(u) and the sine function
x = sin(u) creates analogies between (9) and (14), (10) and (13), (11)
and (15), and (12) and (16).

In Section 9, we use secants and tangents to define addition of points
on a nonsingular cubic given by (10). This method of adding points
on the cubic corresponds via the Weierstrass P-function to addition of
complex numbers. Specifically, for any complex numbers u; and u,, the
point of the complex cubic (10) that corresponds via (9) and (11) to the
complex number u; + u, is the sum of the points on the complex cubic
that correspond to u; and u,. This is the geometric form of Euler’s rela-
tion (8). It corresponds to the angle-addition formula for sines via the
analogies in the previous paragraph.

The discussion accompanying (9)-(11) shows that the points of a
nonsingular complex cubic correspond to the points of a parallelogram
whose two pairs of opposite sides are glued together. Gluing together
one pair of opposite sides of a parallelogram gives a cylinder. Gluing
together the opposite ends of the cylinder gives a torus—the surface of
a doughnut. Thus, a nonsingular complex cubic is topologically equiva-
lent to a torus; that is, it can be continuously bent into the surface of a
doughnut.
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A nonsingular curve f(x,y) = 0 over the real numbers can be divided
into pieces that are each parametrized by x or y. For example, the unit
circle x* + y% = 1 can be divided into the upper and lower half-circles

y:(lfxz)l/z and y:f(lfxz)l/z,

which are each parametrized by x. The analogous result holds over
the complex numbers. In this sense, we can think of complex curves as
“one-dimensional over the complex numbers.” On the other hand, the
complex numbers are themselves two-dimensional over the reals. That
explains why a nonsingular complex cubic is topologically equivalent to
a two-dimensional surface, the torus. In this text, we always think of
complex curves as “one-dimensional over the complex numbers.” We
work with complex curves algebraically just like real curves.

Colin Maclaurin raised the following issue in 1720. On the one hand,
requiring a curve to contain a particular point imposes a linear condition
on the coefficients of the curve. A general curve of degree n has

n+2
( ) ) coefficients. Because we can multiply the coefficients by a
nonzero number without changing the curve, a curve of degree »n has

n+2 717(n+2)(n+1)717n(n+3)
2 B 2 T2

“degrees of freedom.” Accordingly, we expect that a curve of degree n
is uniquely determined by n(n + 3)/2 of its points. On the other hand,
Bezout's Theorem shows that two complex curves of degree n without
multiple intersections intersect at n? points. The last two sentences
appear to conflict because

n? >n(n+ 3)/2

for n > 3.

This apparent difficulty was explored by Leonhard Euler in 1748 and
by Gabriel Cramer in 1750, and it is now known as “Cramer’s paradox.”
Euler and Cramer suggested that there may be redundancies among the
conditions that points impose on curves. We examine this idea for cubics
in Section 13. Taking n = 3 in the first part of the previous paragraph
shows that a cubic is uniquely determined by n(n + 3)/2 