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Preface

This book is intended to complement my Elements of Algebra, and it
is similarly motivated by the problem of solving polynomial equations.
However, it is independent of the algebra book, and probably easier. In
Elements of Algebra we sought solution by radicals, and this led to the
concepts of fields and groups and their fusion in the celebrated theory of
Galois. In the present book we seek integer solutions, and this leads to the
concepts of rings and ideals which merge in the equally celebrated theory
of ideals due to Kummer and Dedekind.

Solving equations in integers is the central problem of number theory,
s0 this book is truly a number theory book, with most of the results found
in standard number theory courses. However, numbers are best understood
through their algebraic structure, and the necessary algebraic concepts—
rings and ideals—have no better motivation than number theory.

The first nontrivial examples of rings appear in the number theory
of Euler and Gauss. The concept of ideal—today as routine in ring the-
ory as the concept of normal subgroup is in group theory—also emerged
from number theory, and in quite heroic fashion. Faced with failure of
unique prime factorization in the arithmetic of certain generalized “inte-
gers”, Kummer created in the 1840s a new kind of number to overcome
the difficulty. He called them “ideal numbers™ because he did not know
exactly what they were, though he knew how they behaved. Dedekind in
1871 found that these “ideal numbers™ could be realized as sets of actual
numbers, and he called these sets ideals.

Dedekind found that ideals could be defined quite simply; so much so
that a student meeting the concept today might wonder what all the fuss
is about. It is only in their role as “ideal numbers”, where they realize
Kummer’s impossible dream, that ideals can be appreciated as a genuinely
brilliant idea.
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Thus solution in integers—Ilike solution by radicals—is a superb set-
ting in which to show algebra at its best. It is the right place to introduce
rings and ideals and the right place first to apply them. It even gives an
opportunity to introduce some exotic rings, such as the quaternions, which
we use to prove Lagrange’s theorem that every natural number is the sum
of four squares.

The book is based on two short courses (about 20 lectures each) given
at Monash University in recent years; one on elementary number theory
and one on ring theory with applications to algebraic number theory. Thus
the amount of material is suitable for a one-semester course, with some
variation possible through omission of the optional starred sections. A
slower-paced course could stop at the end of Chapter 9, at which point
most of the standard results have been covered, from Euclid’s theorem that
there are infinitely many primes to quadratic reciprocity.

It should be stressed, however, that this is not meant to be a standard
number theory course. I have tried to avoid the ad hoc proofs that once
gave number theory a bad name, in favor of unifying ideas that work in
many situations. These include algebraic structures but also ideas from
elementary number theory, such as the Euclidean algorithm and unique
prime factorization. In particular, I use the Euclidean algorithm as a bridge
to Conway’s visual theory of quadratic forms, which offers a new approach
to the Pell equation.

There are exercises at the end of almost every section, so that each
new idea or proof receives immediate reinforcement. Some of them focus
on specific ideas, while others recapitulate the general line of argument (in
easy steps) to prove a similar result. The purpose of each exercise should be
clear from the accompanying commentary, so instructors and independent
readers alike will be able to find an enjoyable path through the book.

My thanks go to the Monash students who took the courses on which
the book is based. Their reactions have helped improve the presentation in
many ways. I am particularly grateful to Ley Wilson, who showed that it
s possible to master the book by independent study.

Special thanks go to my wife Elaine, who proofread the first version
of the book, and to John Miller and Abe Shenitzer, who carefully read the
d version and saved me from many mathematical and stylistic errors.

revi:

JOHN STILLWELL
South Melbourne, July 2002
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1

Natural numbers and integers

PREVIEW

Counting is p the origin of math I thought, and itis
certainly the origin of difficult mathematical problems. As the great
Hungarian problem-solver Paul ErdSs liked to point out, if you can
think of an open problem that is more than 200 years old, then it is
probably a problem in number theory.

In recent decades, difficulties in number theory have actually be-

come a virtue. Public key encryption, whose security depends on

the difficulty of factoring large numbers, has become one of the
ipplications of matk ics in daily life.

At any rate, problems are the life blood of number theory, and the
subject advances by building theories to make them understandable.
In the present chapter we introduce some (not so difficult) problems
that have played an important role in the development of number
theory because they lead to basic methods and concepts.

e Counting leads to induction, the key to all facts about num-
bers, from banalities such as a +b = b +a to the astonishing
result of Euclid that there are infinitely many primes.

e Division (with remainder) is the key computational tool in Eu-
clid’s proof and elsewhere in the study of primes.

e Binary notation, which also results from division with remain-
der, leads in turn to a method of “fast exponentiation™ used in
public key encryption.

o The Pythagorean equation x> +y? = z* from geometry is equally
important in number theory because it has integer solutions.
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In this chapter we are content to show these ideas at work in few
interesting but seemingly random situations. Later chapters will de-
velop the ideas in more depth, showing how they unify and explain
a great many astonishing properties of numbers.

1.1 Natural numbers

Number theory starts with the natural numbers
1,2,3,4,5,6,7,8,9,...,

generated from 1 by successively adding 1. We denote the set of natural
numbers by N. On N we have the operations -+ and x, which are simple in
themselves but lead to more sophisticated concepts.

For example, we say that a divides n if n — ab for some natural numbers
a and b. A natural number p is called prime if the only natural numbers
dividing p are 1 and p itself.

Divisibility and primes are behind many of the interesting questions in
mathematics, and also behind the recent applications of number theory (in
cryptography, internet security, electronic money transfers etc.).

The sequence of prime numbers begins with

2,3,5,7,11,13,17,19,23,29,31,37,...
and continues in a seemingly random manner. There is so little pattern in
the sequence that one cannot even see clearly whether it continues forever.
However, Euclid (around 300 BCE) proved that there are infinitely many
primes, essentially as follows.
Infinitude of primes. Given any primes p,,p,,ps,
find another prime p.

w We can always

Proof. Form the number

N=ppypsy---pt 1.

Then none of the given primes py, p,, ps, ..., p; divides N because they all
leave remainder 1. On the other hand, some prime p divides N. If N itself
is prime we can take p = N, otherwise N = ab for some smaller numbers a
prime we take it to be p, otherwise split
a and b into smaller factors, and so on. Eventually we must reach a prime
p dividing N because natural numbers cannot decrease forever.

and b. Likewise, if either a or b
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Exercises

Not only is the sequence of primes without apparent pattern, there is not even

a known simple formula that produces only primes. There are, however, some

interesting “near misses™.

1.1.1 Check that the quadratic function n*+n+41 is prime for all small values
of n (say, for n up to 30).

1.1.2 Show nevertheless that #% -+ n-+41 is not prime for certain values of n.

1.1.3 Which is the smallest such value?

1.2 Induction

The method just used to find the prime divisors of N is sometimes called
descent, and it is an instance of a general method called induction.

The “descent” style of induction argument relies on the fact that any
process producing smaller and smaller natural numbers must eventually
halt. The process of repeatedly adding 1 reaches any natural number n in a
finite number of steps, hence there are only finitely many steps downward
from n. There is also an “ascent” style of induction that imitates the con-
struction of the natural numbers themselves—starting at some number and
repeatedly adding 1.

An “ascent” induction proof is carried out in two steps: the base step
(getting started) and the induction step (going from n to n+ 1). Here is an
example: proving that any number of the form k* + 2k is divisible by 3.

Base step. The claim is true for k — 1 because 17 2 x 1 = 3, which is
certainly divisible by 3.

Induction step. Suppose that the claim is true for k = n, that is, 3
divides n’ +2n. We want to deduce that it is true for k = n -+ 1, that is, that
3 divides (n+1)% +2(n +1). Well,

(n+1)3+2(n+1)

307+ 3n 4+ 1420+ 2

420430 3043

424 3(n* 1)
And the right-hand side is the sum of n® + 2n, which we are supposing
to be divisible by 3, and 3(n? + n -+ 1), which is obviously divisible by 3.
Therefore (n+1)% +2(n+ 1) is divisible by 3, as requi o
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Induction is fundamental not only for proofs of theorems about N but
also for defining the basic functions on N. Only one function needs to be
assumed, namely the successor function s(n) = n -+ 1; then + and x can be
defined by induction. In this book we are not trying to build everything up
from bedrock, so we shall assume + and x and their basic properties, but
it is worth mentioning their inductive definitions, since they are so simple.

For any natural number m we define m + 1 by

m+1=s(m).
Then, given the definition of m + n for all m, we define m + s(n) by
m+s(n) = s(m-+n).

It then follows, by induction on n, that m + n is defined for all natural num-
bers m and n. The definition of m x n is similarly based on the successor
function and the + function just defined:

mx1=m

mxs(n) =mxn+m.

From these inductive definitions one can give inductive proofs of the basic
properties of + and X, for example m +n = n+mand I(m+n) = Im+In.
Such proofs were first given by Grassmann (1861) (in a book intended
for high school students!) but they went unnoticed. They were rediscov-
ered, together with an analysis of the successor function itself, by Dedekind
(1888). For more on this see Stillwell (1998), Chapter 1.

Exercises

An interesting process of descent may be seen in the algorithm for the so-called
Egyptian fractions inlmdnu.d by Fibonacci (1202). The goal of the algorithm is
to represent any fraction £ with 0 < b < a as sum of distinct terms 1, called unit
[fractions. (The ancient Lbypu‘m represented fractions in this way. )"

i Igmlhm ina nlll\hk, S lo repmredlv wbmunlxr largest pos-

72
501 s
L3 subtracting the largest unit fraction, 1 3 less thai 5
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It turns out that the fractions produced by the always have
a descending sequence of numerators (11, 5, 1 in the example), hence they neces-
sarily terminate with 1.

1.2.1 Use Fibonacci’s algorithm to find an Egyptian representation of %.

1.2.2 If a, b, g are natural numbers with ﬁ < % < é show that

/
bo L Y e o<k <
a gq+1 alg+1)

Hence explain why Fibonacci’s algorithm always works.

1.3 Integers

For several reasons, it is convenient to extend the set N of natural numbers
to the group Z of integers by throwing in the identity element 0 and an
inverse —n for each natural number n. One reason for doing this is to
ensure that the difference m — n of any two integers is meaningful. Thus
Z is a set on which all three operations +, —, and x are defined. (The
notation Z comes from the German “Zahlen”, meaning “numbers”.)

Z is an abelian group under the operation -+, because it has the three
group properties:
Associativity: a+ (b+c¢)=(at+b)+tc
Identity: a+0=a
Inverse: a-+(—a) =0

and also the abelian property:  a-+b=b+ta.

Z is much older than the concept of abelian group. The latter concept
could only be conceived after other examples came to light, particularly
finite abelian groups. We shall meet some of them in Chapter 3.

Z is a ring under the operations + and X: it is an abelian group under

|- and the x is linked with + by

Di

ributivity: a(b -+ c) = ab + ac.

The ring concept also emerged much later than Z. It grew out of 18th and
19th century attempts to generalize the concept of integer. We see one of
these in Section 1.8, and take up the general ring concept in Chapter 10.
The ring properties show that Z has more structure than N, though it
must be admitted that this does not make everything simpler. The presence
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of the negative integers —1,—2,—3,... in Z slightly complicates the con-
cept of prime number. Since any integer n is divisible by 1, —1, n and —n,
we have to define a prime in Z to be an integer p divisible only by +1 (the
so-called units of Z) and £p.

In general, however, it is simpler to work with integers than natural
numbers. Here is a problem that illustrates the difference.

Problem. Describe the numbers 4m + 7n
1. where m and n are natural numbers,
2. where m and n are integers.

In the first case the numbers are 11, 15, 18, 19, 22, 23, 25, 26, 27 and all
numbers > 29. The numbers < 29 can be verified (laboriously, I admit) by
trial. To see why all numbers > 29 are of the form 4m + 7m, we first verify
this for 29, 30, 31, 32; namely

29=2x443x7
30 =4x4+2x7
31 =6x4+1x7
32=1x4+4x7.

Then we can get the next four natural numbers by adding one more 4 to
cach of these, then the next four by adding two more 4s, and so on (this is
really an induction proof).

In the second case, all integers are obtainable. This is simply because
1=4x2—7, and therefore n — 4 x 2n—7 x n, for any integer n.

This type of problem is easier to understand with the help of the ged—
greatest common divisor—which we study in the next chapter. But first we
need to look more closely at division, particularly division with remainder,
which is the subject of the next section.

Exercises

A concrete problem similar to describing 4m + 7n is the McN*ggets problem:
given that MeNggets can be bought in quanities of 6, 9 or 20, which numbers
of McN*ggets can be bought? This is the problem of describing the numbers
6i -9 -+ 20k for natural numbers or zero i, j and k.

It turns out the possible numbers include all numbers > 44, and an irregular
set of numbers < 43.
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1.3.1 Explain why the number 43 is not obtainable.
1.3.2 Show how each of the numbers 44, 45, 46, 47, 48, 49 is obtainable.
1.3.3 Deduce from Exercise 1.3.2 that any number > 43 is obtainable.

But if the negative quantities —6, —9 and —20 are allowed (say, by selling
McN#ggets back), then any integer number of McN*ggets can be obtained.

1.3.4 Show in fact that 1 = 9m + 20n for some integers m and n.

1.3.5 Deduce from Exercise 1.3.4 that every integer is expressible in the form
9m+20n, for some integers m and n.

1.3.6 Is every integer expressible in the form 6m -+ 9n? What do the resulis in
s 134 and 1.3.5 have to do with common divisors?

1.4 Division with remainder

As mentioned in Section 1.1, a natural number b is said to divide nif n = bc
for some natural number ¢. We also say that b is a divisor of n, and that n
is a multiple of b. The same definitions apply wherever there is a concept
of multiplication, such as in Z.

In Nor Z it may very well happen that b does not divide a, for example,
4 does not divide 23. In this case we are interested in the quotient g and
remainder r when we do division of a by b. The quotient comes from the
greatest multiple gb of b that is < a, and the remainder is a — gb. For
example

23 =5x4+3,

50 when we divide 23 by 4 we get quotient 5 and remainder 3.

The remainder r = a — gb may be found by repeatedly subtracting b
from a. This gives natural numbers a,a — b,a—2b, ..., which decrease and
therefore include a least member r = a — gb > 0 by descent. Then r < b,
otherwise we could subtract b again. The remainder r < b is also evident in
Figure 1.1, which shows a lying between successive multiples of b, hence
necessarily at distance < b from the nearest such multiple, gb.

0 b 2b gb a (q+1)b
L) aee *—oO L]
b r

Figure 1.1: Division with remainder
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Important. The main purpose of division with remainder is to find the
remainder, which tells us whether b divides a or not.

It does not help (and it may be confusing) to form the fraction a/b, be-
cause this brings us no closer to knowing whether b divides a. For example,
the fraction

43560029
T

does not tell us whether 77777 divides 43560039 or not. To find out, we
need to know whether the remainder is 0 or not. We could do the full
division with remainder:

43560029 — 560 x 77777 + 4909

which tells us the exact remainder, 4909, or else evaluate the fraction nu-
merically
43560029

= 560.0631...,
7777 560.0631

which is enough to tell us that the remainder is # 0. (And we can read off
the quotient g — 560 as the part before the decimal point, and hence find
the remainder, as 43560029 — 560 x 77777 = 4909.)

Exercises

1.4.1 Using a calculator or computer, use the method above to find the remainder
when 12345678 is divided by 3333.

1.4.2 Calculate the multiples of 3333 on either side of 12345678.

1.5 Binary notation

Division with remainder is the natural way to find the binary numeral of
any natural number n. The digits of the numeral are found by dividing n
by 2, writing the remainder, and repeating the process with the quotient
until the quotient 0 is obtained. Then the sequence of remainders, written
in reverse order, is the binary numeral for n.
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Example. Binary numeral for 2001.

2001 = 1000 x 2+ 1
1000 = 500 x 2 +0

500 =250%x2+0
250 =125 x2+0
125 =62x2+1
62=31x2+0
31=15x2+1
15=7%x2+1
7=3x2+1
3=1x2+1
1=0x2+1.

Hence the binary numeral for 2001 is 11111010001.

A general binary numeral @, ...a,a,, where each a;is 0 or 1, stands
for the number

k k
n=a2" t+a_,2 Loy a2+ ag,

because repeated division of this number by 2 yields the successive remain-
ders ag,ay,...,a;_,a;. Thus one can reconstruct n from its binary digits
by multiplying them by the appropriate powers of 2 and adding.

However, it is more efficient to view a;q; _,...a,a, as a code for
structing n from the number 0 by a seq| of doublings ( ions
by 2) and additions of 1, namely the reverse of the sequence of operations
by which the binary numeral was computed from n. Moving from left to
right, one doubles and adds «; (if nonzero) for each digit a;.

Figure 1.2 shows a way to set out the computation, recovering 2001
from its binary numeral 11111010001.

on-

The number of operations

The number of doublings in this process is one less than the number of
digits in the binary numeral for n, hence less than log, n, since the largest
number with  digits is 2¢ — 1 (whose binary numeral consists of k ones),
and its log to base 2 is therefore < k = log,(2¢).
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1 1 1 1 1 0 1 0O 0 o0 1

+1 = 7
X2 = 14
+1 = 5

x2 = 30

+1 = 31

x2 = 62

+0 = 62

x2 = 124

+1 = 125

X2 = 250

+0 = 250

x2 = 500

+0 = 500

X2 = 1000

+0 = 1000

x2 = 2000

+1 = 2001

Figure 1.2: Recovering a number from its binary numeral

Likewise, there are < log, n additions. So the total number of opera-
tions, either doubling or adding 1, needed to produce n is < 2log, n.

This observation gives a highly efficient way to compute powers, based
on repeated squaring. To form m", we begin with m = m', and repeatedly
double the exponent (by squaring) or add 1 to it (by multiplying by m).
Since we can reach exponent 1 by doubling or adding 1 less than 2log, n
times, we can form m" by squaring or multiplying by m less than 2log, n
times. That is, it takes less than 21og, n multiplications to form m".

Thus the number of operations is roughly proportional to the length of
n (the number of its binary or decimal digits). Few problems in number
theory can be solved in so few steps, and the fast solution of this particular
problem is crucial in modern cryptography and electronic security systems
(see Chapter 4).
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Exercises

Binary notation is more often used by computers than humans, since we have
10 fingers and hence find it convenient to use base 10 rather than base 2. How-
ever, some famous numbers are most simply written in binary. Examples are the
Mersenne primes, which are prime numbers of the form 27 — 1 where p is prime.

1.5.1 Show that the binary numeral for 22 — 1 is 111---1 (p digits), and that
the first four Mersenne primes have binary numerals 11, 111, 11111, and
IRNERIEN

1.5.2 However, not every prime p gives a prime 27 — 1: factorize 2'' — 1.

1.5.3 Show also that 2" — 1 is never a prime when n is not prime. (Hint: suppose
that n = pg, let x = 27, and show that x — 1 divides x7 —1.)

Mersenne primes are named after Marin Mersenne (1588-1648) who first
drew attention to the problem of finding them. They occur (though not under
that name) in a famous theorem of Euclid on perfect numbers. A number is called
perfect if it equals the sum of its proper divisors (divisors less than itself). For
example, 6 is perfect, because its proper divisors are 1,2 and 3, and 6 = 1424 3.
Euclid’s theorem is: if 27 — 1 is prime then 2P~1(2P — 1) is perfect.

We discuss this theorem further in Chapter 2 when we have developed some
theory of divisibility. In the meantime we observe that Euclid’s perfect numbers
also have binary numerals of a simple form.

1.5.4 Show that the first four perfect numbers arising from Mersenne primes have
binary numerals 110, 11100, 111110000, and 1111111000000.

1.5.5 What is the binary numeral for 27~1(27 — 1)?

1.6 Diophantine equations

Solving equations is the traditional goal of algebra, and particular parts
of algebra have been developed to analyze particular methods of solution.
Solution by radicals is one branch of the tradition, typified by the ancient

formula
—b+/b* —4dac
2a

for the solution of the general quadratic equation ax*+ bx ¢ = 0, and by
more complicated formulas (involving cube roots as well as square roots)
for the solution of cubic and quartic equations. This method of solution is
analyzed by means of the field and group concepts, which lead to Galois
theory. Its main results may be found in the companion book to this one,
Stillwell (1994).
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The other important branch of the tradition is finding integer solutions,
the main theme of the present book. It leads to the ring concept and ideal
theory. Equations whose integer solutions are sought are called Diophan-
tine, even though it is not really the equations that are “Diophantine”, but
the solutions. Nevertheless, certain equations stand out as “Diophantine™
because their integer solutions are of exceptional interest.

2

o The Pythagorean equation x* +y? whose natural number solu-
tions (x,y,z) are known as Pythagorean triples.

o The Pell equation x*> — ny* = 1 for any nonsquare natural number 7.
o The Bachet equation y* = x* + n for any natural number 7.
e The Fermat equation x" 4 y" = z" for any integer n > 2.

The Pythagorean equation is the oldest known mathematical problem,
being the subject of a Babylonian clay tablet from around 1800 BCE known
as Plimpton 322 (from its museum catalogue number). The tablet contains
the two columns of natural numbers, y any hown in Figure 1.3.

y z
119 169
3367 | 4825
4601 | 6649
12709 | 18541
65 97
319 481
2291 | 3541
799 | 1249
481 769
4961 | 8161
45 75
1679 | 2929
161 289
1771 | 3229
56 106

Figure 1.3: Plimpton 322



1.6 Diophantine equations 13

The left part of the table is missing, but it is surely a column of values
of x, because each value of z2 —y? is an integer square x?, and so the table
is essentially a list of Pythagorean triples.

This means that Pythagorean triples were known long before Pythago-
ras (who lived around 500 BCE), and the Babylonians apparently had so-
phisticated means of producing them. Notice that Plimpton 322 does not
contain any well known Pythagorean triples, such as (3,4,5), (5,12,13) or
(8,15,17). It does, however, contain triples derived from these, mostly in
nontrivial ways.

Around 300 BCE, Euclid showed that all natural number solutions of
x%+y? = 2% can be produced by the formulas

x= (W —v)w, y=2uvw,
by letting u, v and w run through all the natural numbers. (Also the same
formulas with x and y interchanged.)

It is easily checked that these formulas give

but it is not so easily seen that every solution is of Euclid’s form. Another
approach, using rational numbers, was found by Diophantus around 200
CE. Diophantus specialized in solving equations in rationals, so his solu-
tions are not properly “Diophantine™ in our sense, but in this case rational
and integer solutions are essentially equivalent.

Exercises
1.6.1 Check (preferably with the help of computer) that z2 — y? is a perfect square
for each pair (y,z) in Plimpton 322.

1.6.2 Check also that x is a “round” number in the Babylonian sense, that is gen-
erally divisible by 60, or at least by a divisor of 60. (The Babylonian system
of numerals had base 60.)

1.6.

W

Verify that if
x= W=, y=2uw, 2=+ V)w

then x? +)?

1.6.4 Find values of u and v (with w = 1) that yield the Pythagorean triples (3,4,5),
(5,12,13), (7,24,25) and (8,15,17) when substituted in Euclid’s formulas.
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1.7 The Diophantus chord method

An integer solution (x,y,z) = (a,b,c) of x> +y*

ORIORT

s0 X =a/c,Y = b/c is a rational solution of the equation

XPpyr=1,

implies

in other words, a rational point on the unit circle. (Admittedly, any multi-
ple of the triple, (ma,mb,mc), corresponds to the same point, but we can
easily insert multiples once we have found a, b and ¢ from X and Y.)

Diophantus found rational points on X*+Y?2 = 1 by an algebraic method,
which has the geometric interpretation shown in Figure 1.4.

Y

Figure 1.4: The chord method for rational points

If we draw the chord connecting an arbitrary rational point R to the
point @ = (—1,0) we get a line with rational slope, because the coordinates
of R and Q are rational. If the slope is 7, the equation of this line is

Y =t(X+1).

Conversely, any line of this form, with rational slope 7, meets the circle at a
rational point R. This can be seen by computing the coordinates of R. We
do this by substituting ¥ = ¢(X + 1) in X* + ¥? = 1, obtaining

X2 pAX 417 =1,
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which is the following quadratic equation for X:
X2(1+£2) 422X 112 —1=0.
The quadratic formula gives the solutions

1-12
=l
1+12

The solution X = —1 corresponds to the point Q, so the X coordinate at R
is ﬁ, and hence the Y coordinate is

1-1% 2t
Y t(l |tl+]> 1422

To sum up: an arbitrary rational point on the unit circle X? + Y% = 1 has

coordinates

<I - 2 for arbitrary rational ¢
—_ T irar 101 .
1+2 142)"

Now we can recover Euclid’s formulas.
An arbitrary rational ¢ can be written t — v/u where u,v € Z, and the
rational point R then becomes

rEg) (5

X .
(T %) for some x,y,z € Z
'z

Thus if this is

we must have

nx
Se
|
<

for some u,v € Z.
Euclid’s formulas for x, y and z also give these formulas for x/z and
¥/z, so the results of Euclid and Diophantus are essentially the same.
There ttle difference between rational and integer solutions of the
equation x? | y* = z? because it is homogeneous in x, y and z, hence any
rational solution can be multiplied through to give an integer solution. The
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situation is quite different with inhomogeneous equations, such as
x* —2, where the integer solutions may be much harder to find.

Diophantus’ method for rational solutions can be generalized to cubic
equations, where it has enjoyed great success. See for example, Silverman
and Tate (1992). However, it does not yield integer solutions except in the
rare cases where the equation is homogeneous, and hence it diverges from
the path we follow in this book. Indeed, it is often the case—for example
with Bachet equations—that a cubic equation has infinitely many rational
solutions and only finitely many integer solutions. Since we wish to study
integer solutions, we now take our leave of the chord construction, and turn
in the next section to an algebraic approach to Pythagorean triples: the use
of “generalized integers”.

Exercises

Diophantus himself extended his method to equations of the form
> L
y* = cubic in x,

where all coefficients are rational. Here the link between the geometry and the
algebra is that a straight line through two rational points meets the curve in a
third rational point. When there is only one “obvious™ rational point on the curve,
then one can use the tangent through this point instead of a chord, because the
tangent meets the curve twice when viewed algebraically.

The equation y? = x* — 2 is a good one to illustrate the tangent method, as well
as the formidable calculations it can lead to. (Note that this is a Bachet equation;
here we have interchanged x and y to conform with the usual notation for cubic
curves.)

1.7.1 Show that the tangent to y> = x* — 2 at the “obvious™ rational point (3,5) is
273 _ 31

y 1o

1.7.2 By substituting y = 2% — 3L in the equation of the curve, show that the

tangent meets the curve where 100x* —729x% 4 1674x — 1161 = 0.

1.7.3 By dividing 100x* — 7292 4 1674x — 1161 twice by x — 3, or otherwise,
show that the tangent meets the curve twice at x = 3 and once at x = §23.

1.7.4 Hence find a rational point on y> = x* —2 other than (3,%5).

There are in fact infinitely many rational points on the curve y> = x* —2
(though this was not known until 1930; see Mordell (1969), Chapter 26), but we
show later that its only integer points are (3, £5).
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1.8 Gaussian integers

The Pythagorean equation appears in a new light if we use complex num-
bers to factorize the sum of two squares:

X7yt = (x—yi)(x+yi) wherei=+v/—1.

Given that x and y are integers, the factors x — yi, x - yi may be regarded as
“complex integers”. We denote the set of such “integers” by

Z[i) = {a+bi:a,b €2}

and call them the Gaussian integers, after Gauss, who was the first to real-
ize that Z[i] has many properties in common with Z.

For a start, it is clear that the sum, difference and product of numbers
in Z[i] are also in Z[i], hence we can freely use +, —, and x and calculate
by the same rules as in Z. This already gives nice results about sums of
squares and Pythagorean triples.

Two square identity. A sum of two squares times a sum of two squares is
a sum of two squares, namely

(a} +b}) (a3 + b3) (a,a, —blbl)2 +(a,b, +b]nz)2.

Proof. We factorize the sums of two squares as above, then recombine the
two factors with negative signs, and the two factors with positive signs:

(a3 +0}) (a3 +b3) = (a, — byi)(a, + byi)ay —byi)(ay -+ byi)
(a, = byi)(ay — byi)(a, +b,i)(a, + byi)
layay —byby — (ayby + byay)i| x
layay —b,by + (a,b, + bya,)i|
(ayay —b,b,)* +(a,by + byay). [u}
Corollary. If the triples (a,,b,,c,) and (a,,b,,c,) are Pythagorean, then
so is the triple (a,a, — b\by,a,b, +bay,¢,c,).

Proof. If (a,,b,,c,) and (a,,b,,c,) are Pythagorean triples, then

2,2 2 2,2 2
ay+by=cy and a3+b; =3
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It follows that

(¢,6,)* = cie3 = (a +b7)(a3 +b3)

= (a,a, —b,b,)* + (ayb, + byay)* by the identity above,

and this says that (a,a, —b,b,,a,b, +b,a,,c,c,) is a Pythagorean triple.
a

Of course, the two square identity can be proved without using v/—1,
by multiplying out both sides and comparing the results. And presumably
it was first discovered this way, because it was known long before the in-
troduction of complex numbers. Though first given explicitly by al-Khazin
around 950 CE, it seems to have been known to Diophantus, and perhaps
even to the Babylonians, because many of the triples implicit in Plimpton
322 can be obtained from smaller triples by the Corollary (see exercises).

However, the two square identity is more natural in the world C of
complex numbers because it expresses one of their fundamental properties:
namely, the multiplicative property of their norm. If z = a - bi we define

norm(z) = |a -+ bil* = a* + b,
and it follows from the two square identity that

norm(z, Jnorm(z,) = norm(z

)

because z; = a, +byiand z, = a, + b,i imply

212y = ayay — by by + (a,b, + byay)i.

In algebra and complex analysis it is more common to state the multiplica-
tive property (*) in terms of the absolute value |z| = v/a? -+ b?, namely

lzy 11z,

(*) and (**) are obviously equivalent, but the norm is the more useful con-
cept in Z[i] because it is an ordinary integer, and this allows certain prop-
erties of Z[i] to be derived from properties of Z.

So much for the elementary properties of Gaussian integers. Z[i| also
has deeper properties in common with Z, involving divisors and primes.
These properties will be proved for Z in the next chapter, and for Z[i] in
Chapter 6.
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However, we can travel a little further in the right direction by follow-
ing the dream that Z[i] holds the secrets of the Pythagorean equation

2=yt = (x—yi) (x +yi).

If the integers x and y have no common prime divisor, then it seems likely
that x — yi and x +yi also have no common prime divisor, whatever “prime”
means in Z[i. If so, then it would seem that the factors x — yi, x + yi of the
square 22 are themselves squares in Z[i]. In particular,

x—yi = (u—vi)* for some u,v € Z.

But in that case

x—yi= (-
and, equating real and imaginary parts,

2
v, y=2uv, andhence

Thus we have arrived again at Euclid’s formula for Pythagorean triples!
(Or more precisely, the formula for primitive Pythagorean triples, from
which all others are obtained as constant multiples. The primitive triples
are those for which x, y, and z have no common prime divisor, and they
result from u and v with no common prime divisor.)

The idea that factors of a square with no common prime divisor are
themselves squares is essentially correct in Z[i], but to see why we must
first understand why it is correct in N. This will be explained in the next
chapter.

Exercises

The rule in the Corollary for generating new Pythagorean triples from old gives
some interesting results.

1.8.1 Find the Pythagorean triples generated from
(4,3,5) and itself,
® (12,5,13) and itself,
® (158,17) and itself.
1.8.2 Do these results account for any of the entries in Plimpton 3227

1.8.3 Try to generate other entries in Plimpton 322 from smaller triples.
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It is clear that we can generate infinitely many Pythagorean triples (x,y,z) but not

clear (even from Euclid’s formulas) whether there are any significant constraints

on their members x, y, and z. For example, can we have x and y odd and z even?

This question can be answered by considering remainders on division by 4.

1.8.4 Show that the square of an odd integer 2n+- 1 leaves remainder 1 on division
by 4.

1.8.5 What is the remainder when an even square is divided by 4?

1.8.6 Deduce from Exercises 1.8.4 and 1.8.5 that the sum of odd squares is never
asquare.

1.9 Discussion

The discovery of Pythagorean triples, in which the sum x* + y* of two
squares is itself a square, leads to a more general question: what values
are taken by x% 1 y* as x and y run through Z? The exercises above imply
that x? +yl can not take a value of the form 4n + 3 (why?), and the main
problem in describing its possible values is to find the primes of the form
2yt

Such questions were first studied by Fermat around 1640, sparked by
his reading of Diophantus. He was able to answer them, and also the cor-
responding questions for x? +2y* and 3% +3y%. In the 18th century this
led to study of the general quadratic form ax* + bxy | cy* by Euler, La-
grange, Legendre and Gauss. The endpoint of these investigations was the
Disquisitiones Arithmeticae of Gauss (1801), a book of such depth and
complexity that the best number theorists of the 19th century—Dirichlet,
Kummer, Kronecker, and Dedekind—found that they had to rewrite it so
that ordinary mortals could understand Gauss's results.

The reason that the Disquisitiones is so complex is that abstract alge-
bra did not exist when Gauss wrote it. Without new algebraic concepts the
deep structural properties of quadratic forms discovered by Gauss cannot
be clearly expressed: they can barely be glimpsed by readers lacking the
technical power of Gauss. It was precisely to comprehend Gauss’s ideas
and convey them to others that Kummer, Kronecker, and Dedekind intro-
duced the concepts of rings, ideals, and abelian groups.

An intermediate step in the evolution of ring theory was the creation
a theory in which algebraic numbers such
as v/2 and i are used to illuminate the properties of natural numbers and
integers. Around 1770, Euler and Lagrange had already used algebraic

of algebraic number theo;
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numbers to study certain Diophantine equations. For example, Euler suc-
cessfully found all the integer solutions of y* = x? 1 2 by factorizing the
right-hand side into (x++/=2)(x — v/=2). He assumed that numbers of
the form a + by/—2 “behave like” integers when a and b themselves are
integers (see Section 7.1). The same assumption enables one to determine
all primes of the form x* | 2y*.

Such reasoning was rejected by Gauss in the Disquisitiones, since it
was not sufficiently clear what it meant for algebraic numbers to “behave
like” integers. In 1801 Gauss may already have known systems of algebraic
numbers that did not behave like the integers. He therefore worked directly
with quadratic forms and their integer coefficients, subduing them with
his awesome skill in traditional algebra. However, Gauss (1832) took the
first step towards an abstract theory of algebraic integers by proving that
the Gaussian integers Zi| do indeed “behave like” the ordinary integers
Z, specifically with respect to prime factorization. Among other things,
this gives an elegant way to treat the quadratic form x> - y2, as we see in
Chapter 6.

The great achievement of Kummer and Dedekind was to tame the sys-
tems of algebraic numbers that do not behave like Z, by adjoining new
“numbers” to them. Kummer's mystery ideal numbers, and Dedekind’s
demystification of them in 1871, are among the most dramatic discover-
ies of mathematics. Ideal numbers also emerge naturally from the theory
of quadratic forms, in particular from the form x> + 5y, so we follow the
thread of quadratic forms throughout this book. Quadratic forms not only
give the correct historical context for most of the concepts normally cov-
ered in ring theory but also provide the simplest and clearest examples.
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The Euclidean algorithm

PREVIEW

2.1

Prime numbers may be regarded as the “building blocks™ of the nat-
ural numbers because any natural number is a product of primes.
(This explains, by the way, why 1 is nor regarded as a prime—
nothing is built from products of 1 except 1 itself). But even if
primes are the building blocks, it is not easy to grasp them directly.
There is no simple way to test whether a given natural number is
prime, nor to find the smallest prime divisor of a given number.
Instead of studying the divisors of single numbers it is better to study
the common divisors of pairs a, b. The ancient Euclidean algorithm
is a remarkably efficient way to find the greatest common divisor
(ged) of given natural numbers @ and b and it throws unexpected
light on prime numbers and prime factorization.

It does so by representing ged(a, b) as a linear combination ma-+ nb,
where m and n are integers. This also leads to a clear understanding
of the problem of solving linear equations in integers.

The ged by subtraction

If natural numbers @ and b have a common divisor d, then

for some natural numbers @’ and &'. From this it follows that d divides a —b

a=dd and b=10bd

because

a—b=dd—bd=(d-b)d.

22
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In other words, a common divisor of a and b is also a divisor of a—b.
Euclid used this fact to find the greatest common divisor, ged(a,b), by
“repeatedly subtracting the smaller number from the larger”. More pre-
cisely, his algorithm goes as follows.
Suppose that @ > b and let

a,=a, by =b
Then for each pair (a;,b;) we form the pair (a;,,,b;, ), where
a,

i1 = max(by,a;—b,), b, =min(b,,a;—b,).

Since this process produces smaller and smaller natural numbers, it must
halt (by “descent™). We eventually get

a, = by,
in which case we conclude that ged(a,b) = a; = by.
The reason this algorithm works is that
ged(ay,by) = ged(ay,by) = -+ = ged(ay, by),
since any common divisor of the pair (a,,b,) is also a divisor of the pairs
(ay,b,), (a3,b3), ..., (a,b;) produced by the successive subtractions.
Example. a = 34,5 =19

The algorithm gives the following pairs:

(ay,b)) = (34,19)

(ay,b,) = (19,34 —19) = (19,15)
(as,by) = (15,19 —15) = (15,4)
(a,,b,) = (15—4,4) = (11,4)
(as,bs) = (11 —4,4) = (7,4)
(ag,bg) = (4,7 —4) = (4,3)
(117,177) (3,4-3)=(3,1)
(ag,bg) = (3—1,1) = (2,1)
(ag,by) = (2—1,1) = (1,1)

and therefore ged(34,19) = ged(1,1) = 1.



24 2 The Euclidean algorithm

Integer pairs a, b such that ged(a, b) = 1 are said to be relatively prime.
Thus the Euclidean algorithm gives a simple means of deciding whether
integers are relatively prime. In the next section we see that the algorithm
(in a slightly modified form) is also highly efficient: it gives ged(a,b) in
a number of steps comparable with the total number of digits in @ and b.
It is harder to recognize whether a single integer n is prime: the obvious
methods require a number of steps comparable with the size of n, which is
exponentially larger—around 2% if k is the number of binary digits of n.

Exercises

Starting with a pair of natural numbers and running the subtractive algorithm
backwards—that is, repeatedly adding the two numbers most recently produced—
gives what is called a Lucas sequence. The most famous of them is the Fibonacci
sequence 1,1,2,3,5,8, 13, ..., obtained by starting with the pair (1,1).

2.1.1 Explain why the ged of any two successive Fibonacci numbers is 1.

2.1.2 Consider the Lucas sequence that begins with 1, 3, 4, 7, 11, 18, 29, ....
‘What is the ged of any two successive terms?
The exponential difficulty of testing whether an integer » is prime can be seen
in the case of the well-known method of trial division by integers < /7.

2.1.3 If n has a divisor / 1,n, explain why there must be such a divisor < \/n.
2.1.4 If n has k digits in its binary numeral, show that there are at most 2¢/2
numbers < /7. Can there be exactly 2+/2?

The fundamental fact about common divisors, that if d divides a and b then d
divides a == b, throws light on primitive Pythagorean triples.

2.1.5 If x = 2uv and y = u® —1?, show that (x,y,2) is a primitive Pythagorean
triple if and only of ged(u, ) — 1.

2.2 The ged by division with remainder

Euclid’s form of the ged algorithm is usually speeded up by doing division
with remainder instead of repeated subtraction. Given a pair (a;,b;) with
a; > by, the next pair is produced by the rule

a,

i1 = by by = remainder when g, is divided by b;

This is more efficient when ; is many times as large as b;, in which case
many subtractions are replaced by one div
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However, the algorithm is essentially the same—division of natural
numbers is just repeated subtraction—so it is still true that
ged(ay,by) = ged(ay,by) = -+
The only difference is that halting now occurs when b, divides a;, in which
case we conclude that ged(a, b) = ged(ay, by) = by,
Example. @ — 34, b — 19 again.
The algorithm with division gives the following pai
(ay,b;) = (34,19)
(ay,b,) = (19,34 —19) = (19,15)
(a3by) = (15,19 15) = (15,4)
) = (
)=

(ay,b. 4,15-3x4) = (4,3)
(as, by 3,4-3)=(3,1)
Hence ged(34,19) = 1 because 1 divides 3.

In this form of the algorithm it is easy to see that the number of divi-
sions is comparable with the total number of digits in @ and b. In fact, if
a and b are written in binary, then each division reduces the total number
of digits by at least one. If a has more digits than b this is clear: the new
pair is b together with a remainder on division by b that has no more digits
than b. If @ and b have the same number of digits then, since both @ and b
necessarily begin with the digit 1, the remainder is simply @ — b, and it has
fewer digits than b.

The division form of the Euclidean algorithm is not only more efficient;
it also has wider applicability. For example, in Z[i] we can divide 17 by
4 -+ i (exactly) and get the quotient 4 — i, but it is meaningless to subtract
4 i from 17 “4 —i times”. Thus division in Z[i] is not generally the result
of repeated subtraction. Any Buclidean algorithm in Z[i] (and we see one
in Section 6.4) necessarily uses division with remainder.

Exercises

The division form of the Euclidean algorithm on (a,b), where a > b, occurs when
one finds what is called the continued fraction for a/b. The idea is that if a
bg+r, where 0 < r < b, then

a_batr 1o,y L
A R Ry
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and the process may then be repeated for the fraction b/r since b > r by construc-
tion. However, the pair (b, r) is smaller than the initial pair (a,b), so this process
terminates. The result is called the continued fraction for a/b.

2.2.1 Starting with

Bl
[ TR T T =

show that the continued fraction for 34/19 is

1
1+ T
[
=T
2.2.2 Show similarly that
ﬁ 1+4 !
30 2+§r
3+3
2.2.3 Show in general that
@
b gyt —r
a3

where g,,9,,45,... are the successive quotients occurring when the divi-
sion form of the Euclidean algorithm is applied to (a,b).

In the 18th century, Euler saw that the Euclidean algorithm could be implemented
by continued fractions, and this became the favored way to describe it for a cen-
tury or more. For example, Gauss ignores Euclid and refers exclusively to the
“continued fraction” algorithm in his Disquisiti The Euclid Igorithm as
we know it made a comeback with Dirichlet’s Vorlesungen iiber Zahlentheorie
(lectures on number theory) of 1863.

2.3 Linear representation of the ged

Probably the most important consequence of the Euclidean algorithm is
that

ged(a,b) =ma-+nb  for some integers m and n.
In fact it is true that all the numbers a; and b; produced by the Euclidean

algorithm are of the form ma -+ nb for integers m and n, and the b; of course
include ged(a,b) = by.
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We prove this statement about ¢; and b; by the “ascent” form of induc-
tion. For a start, we certainly have

ap=1xa+0xb, b =0xa+1xb,

so the statement is true for i = 1. And if @; and b; are both of the form
ma +nb the same is true for their difference, hence for a; .y and b; 1 Thus
all numbers produced from the pair (a,b) by the Euclidean algorithm are
of the form ma + nb, as required. a

This proof also suggests a way to find the m and n for a given a and b:
run the Euclidean algorithm to find ged(a, b) and keep track of the coeffi-
cients m and n for each number a; and b, that the algorithm produces.

A practical way to do this is shown in the following example, in which
the numerical calculation of ged on 34, 19 is run in parallel with a symbolic
calculation on letters a, b. Each time we subtract some multiple of the
second number from the first we do exactly the same operation on letters.
Hence the final combination of letters equals the ged.

Example. gcd(34,19) = ged(a,b) in the form ma + nb. For efficiency,
we use division with remainder, subtracting the appropriate multiple of the
second number from the first to get the remainder at each step.

34,19) = (a,b)

9,15) = (b,a—b)

15,4) = (a—b,b—(a—b)) = (a—b,—a +2b)
3) = (—a+2b,a—b—3(—a+2b)) = (—a+2b,4a—1b)
1) = (4a—7b,—a+2b—(4a—b)) = (4a —Tb,—5a 1 9b).

b ey

(3
(1
(
(4,
[€3

From the last line we read off the ged,
1= —5a+9.
This checks, because
—5x3449%19 = —170+171 = 1.
The Euclidean algorithm is extremely important in practice and theory.
It is useful in practice because it is unusually fast—it gives the ged of k-

digit numbers in around k steps—much faster than any known algorithm
for finding divisors of one k-digit number.
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And the ged is not only simpler in practice but also in theory. The basic
theory of divisors and primes is based on the theory of the ged, as we see
in Section 2.4.

‘We often call on the Euclidean algorithm to find ged(a,b) and to find
integers m and n such that ged(a,b) = ma + nb. So make sure you get
plenty of practice in using it right now!

Exercises

2.3.1 Find ged(63,13) by the Euclidean algorithm, and hence find m and n such
that 63m+13n = 1.

2.3.2 Find m and n such that 55m + 34n = 1

2.4 Primes and factorization

In Section 1.1 we used a descent argument to show that certain natural
numbers have prime factors. A slight generalization of the argument shows:

Existence of prime factorization. Each natural number n can be written
as a product of primes,
n=P\P2P3 Py

Proof. If n itself is a prime there is nothing to do. If not, n = ab for some
smaller natural numbers @ and b. If a or b is not prime we split it into
smaller factors, and so on. Since natural numbers cannot decrease forever,
we eventually get a factorization

n=PyPaP3 Py

in which no p; is a product of smaller numbers. That is, each p; is prime.0

So much for the existence of prime factorization, which is important
enough because it implies the existence of infinitely many primes, as in
Section 1.1. Even more important is the uniqueness of prime factoriza-
tion—no matter how we split n into smaller factors we always arrive at the
same primes in the end.
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Prime divisor property. If a prime p divides the product of natural num-
bers a and b, then p divides a or p divides b.
Proof. Suppose p does not divide a, so we need to show that p divides b.

Now if p does not divide a we have ged(a, p) = 1, since the only divi-
sors of p are 1 and p. Therefore, by the result in Section 2.3,

1=ma+np for some integers m and n.
Multiplying both sides of this equation by b we get
b = mab + npb.

Now look at the right-hand side: p divides ab by assumption, and p ob-
viously divides pb. Thus p divides both terms on the right, and hence it
divides their sum. That is, p divides b, as required. [m]
Unique prime factorization. The prime factorization of each natural
number is unique (up to the order of factors).

Proof. Suppose on the contrary that some natural number has two differ-
ent prime factorizations. Cancelling any primes common to both factoriza-
tions, we get equal products of primes,

P\PaP3 Py — 4192493 4p
where no prime p; equals any prime ¢;. This leads to a contradiction as
follows.
Since p, is a factor of the left-hand side, p, also divides the right-hand
side. But then, by repeatedly using the prime divisor property, we get

py divides ¢,4,95--q;

I

p, divides g, or p, divides g,9;---q,

I

py divides g, or p, divides g, or p, divides g3---¢q;

= p,divides ¢, or p, divides g, ... or p, divides g,
= P g, or p, qy ... Or py an

which contradicts the assumption that no p; equals any q;. Thus no natural
number has two different prime factorizations. o

Although the prime divis
BCE), unique prime factoriz
in 1801.

or property was proved by Euclid (around 300
ion was mentioned for the first time by Gauss
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Exercises

Gauss proved unique prime factorization by a novel proof of the prime divisor
property that goes as follows.

2.4.1 First show that a prime p cannot divide a product a, b, for natural numbers
ay,b; < p. Namely, suppose that p divides a,b,, and show that p also
divides a,b,, where

b, — remainder when p is divided by b,

which gives an infinite descent.

2.4.2 Now use Exercise 2.4.1 to deduce the prime divisor property by showing
that if p divides ab, and p divides neither a nor b, then p divides an a;b;
where ay, by < p.

2.5 Consequences of unique prime factorization
If ¢ [,m,[,m, _--p;("k, where py, p,,...,p; are primes and m,m,,..., my
are llal‘llld] numbers, then

2 2 2
2 p‘”"p 2m, 'I’;”"~

Thus in the prime factorization of a square natural number each prime
occurs to an even power. And conversely, if

V2

7m 2m, 2m,
d = P p2

then d Thus in fact a natural number is a square if and only if each
prime in the prime factorization of d occurs to an even power:

Now suppose that d is a square, and that d — ab, where a and b have no
common prime divisor (or, as we said in Section 2.1, a and b are relatively
prime). Then we have a prime factorization of the form

2
d=ab [""'p NETS [f”‘
Since @ and b have no common prime divisor, each term pl”" must be part
of the prime factorization of one of @ and b and mmpkluly absent from
the other. In other words, in the prime factorizations of @ and b each prime
occurs to an even power, and hence a and b are both squares by the remark
in the previous paragraph.

To sum up, we have the following propos




2.5 Consequences of unique prime factorization 31

Relatively prime factors of a square. If a and b are relatively prime
natural numbers whose product is a square, then a and b are squares. O

Using the fact that

= pmpyp,
there are similar proofs that a natural number is a cube if and only each
prime in its prime factorization occurs to a power that is a multiple of 3,
and that if @ and b are relatively prime natural numbers whose product is
a cube, then a and b are cubes.

Another important consequence of the prime factorization of a square
is the existence of irrational square roots.

Irrational square roots. If N is a nonsquare natural number, then /N is
irrational.

Proof. Suppose that N is a natural number and that /N is rational, that is,
\/IV =a/b for some natural numbers a and b.
We then have to show that N is a square. Squaring both sides, we get

202 2wy oy 2m,
N=a* /b p"p A

2

for some primes p,, p,, ..., p;. Each prime occurs to an even power, namely,
twice its power in a minus twice its power in b. But then N is a square,
as required, by the argument above (which also applies when some m; are
negative). [m]

Prime factorization, ged, and lem

Unique prime factorization implies that each prime divisor of a natural
number n actually appears in the prime factorization of n. And any common
prime divisor of @ and b will appear in both their prime factorizations.
Hence the greatest common divisor of a and b is the product of the common
primes in their prime factorizations.

Examples.

666 = 2 x 32 x 37
1000 = 23 x 5%,



32 2 The Euclidean algorithm

hence ged(666,1000) =

4444 = 2% x 11 x 101
9090 =2 % 3% x 5 x 101,

hence ged(4444,9090) =2 x 101 = 202.

This method is quite effective for numbers that are small enough to fac-
torize into primes. However, it is completely outclassed by the Euclidean
algorithm for larger numbers. Also, it should be borne in mind that the fac-
torization method is justified by unique prime factorization, which depends
on the theory of the Euclidean algorithm.

Prime factorizations also give the least common multiple (Icm) of two
natural numbers. Any common multiple of @ and b must be a multiple of
each prime power in a and b, hence the least common multiple of a and
b is the product of the maximum prime powers occurring in their prime
factorizations.

Examples. Using the factorizations of 666, 1000 and 4444, 9090 given
above, we find

1em(666,1000) = 2° x 3% x 5% x 37 = 333000,

and
lem(4444,9090) = 22 x 3% x 5 x 11 x 101 = 199980.

Exercises

As mentioned in Section 1.3, the concept of prime number is more complicate
Z than in N, because the unit —1 can be part of a factorization. This complicates
the situation with squares and cubes in Z, but only slightly.

2.5.1 If a and b are relatively prime integers whose product is a square, show by
means of an example that a and b are not necessarily squares. If they are
not squares, what are they?

2.5.2 On the other hand, if a and b are relatively prime integers whose product is
a cube, then a and b are cubes. Why?

The Euclidea i shows i iately that ged(2000,2001) = 1. Still
it is interesting to actually see that 2000 and 2001 have no common prime divisor.

253 Find the prime factorizations of 2000 and 2001, thereby confirming that
£¢d(2000,2001) = 1.
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It is also useful to have formulas for ged(a,b) and lem(a, b) in terms of the
prime factorizations of a and b.

2.5.4 Suppose that py,p,,..., p; are all the primes that divide a or b, and that

a=pipyee
b= pipeplt.

Deduce that

ged(a,b) = pmm(m‘ ,nl)pmm(m:.nz) . _])rlln(”rk,nk)

max(my,my) ax(myny) | max (o
max(m, n,) P (myy) . max(omgny)

lem(a,b) = p| A
2.5.5 Deduce from Exercise 2.5.4 that ged(a, b)lem(a, b) = ab.
Now that we know uniqueness of prime factorization, we can revisit Euclid’s
theorem about perfect numbers, mentioned in the exercises to Section 1.5.
2.5.6 If 27 —1 = g is prime, show that the proper lelSOl‘S of 27~ 1g (those less
than it) are 1,2,2%,...27 " and ¢,2¢.2%,...,2" 2q.

2.5.7 Show that 1+2+422 .- 272 = 27~! — |, and deduce that the sum of
the proper divisors of 27~!g is 27~!q. (That is, 27~ !q is perfect.)

2.6 Linear Diophantine equations

The simplest nontrivial Diophantine equations are linear equations in two
variables,
ax+by —c¢, where a,b,c€Z.

Such an equation may have infinitely many solutions or none. For example,
the equation
6x+ 15y =0

has the infinitely many solutions x = 15¢, y = —6¢ as ¢ runs through the
integers. On the other hand, the equation

6x+ 15y = 1

has no integer solutions. This is so because 3 divides 6x + 15y when x and
y are integers (since 3 divides both 6 and 15) but 3 does not divide 1. This
example shows that common divisors are involved in linear Diophantine
equations, and exposes the key to their solution: the linear representation
of the ged found in Section 2.3.
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Criterion for solvability of linear Diophantine equations. When a, b, ¢
are integers, the equation ax + by = c has an integer solution if and only if
ged(a, b) divides c.

Proof. Since ged(a,b) divides a and b, it divides ax + by for any integers x
and y. Therefore, if ax + by = ¢, then ged(a,b) divides c.

Conversely, we know from Section 2.3 that ged(a,b) = am + bn for
some integers m and n. Hence if ged(a, b) divides ¢ we have

¢ = ged(a,b)d = (am+bn)d — amd +bnd ~ for some d € Z.

But then x = md, y = nd is a solution of ax + by = c. m]

This proof also shows how to find a solution ax + by = ¢ if one ex-
ists. Namely, express ged(a,b) in the form am + bn, using the symbolic
Euclidean algorithm to find m and n, then multiply m and n by the integer
d such that ¢ = ged(a,b)d.

If there is one solution x = x, and y = y;, then there are infinitely many,
because we can add to the pair (x,,y,) any of the infinitely many solutions
of ax+by = 0.

General solution of ax+ by = c. The solution of ax+ by = ¢ in Z is
X =xy+bt/ged(a,b), y =y, —at/ged(a,b), where x = x,, y =y, is any
particular solution and t runs through 7.

Proof. Since x = br/ged(a,b), y = —at/ged(a,b) is clearly an integer
solution of ax + by = 0, adding it to any solution x = x,, y = y, of ax by
c gives another solution of ax+ by = c.

Conversely, if x, y is any solution of ax+ by = ¢, then X' = x —x,,
Y = y—y, satisfies ax’ -+ by’ = 0. But any integer solution of ax’ + by’ =0
is a solution of the equation

ax' = by

whose coefficients are the relatively prime integers @’ = a/ ged(a,b) and
b = b/ged(a,b).

Since @ and b’ have no common prime divisor, it follows from the
unique prime factorization of both sides of the equation @'x’ = —b'y that
b’ divides x'. That is

X = bt forsome integerz, and hence Y = —d't.
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Substituting the values of x',y’,a’, b’ back in the equations above yields

x=xo+bt/ged(a,b), y

yo—at/ged(a,b),

as claimed. =]

Exercises

The criterion for solvability can also be derived directly, by proving the following
result without appeal to the Euclidean algorithm.

2.6.1 Show that {am-bn:m,n € Z} consists of all integer multiples of ged(a, b).

However, the Euclidean algorithm is invaluable for actually finding solutions
(0 linear Diophantine cquations.

2.6.2 Find an integer solution of 34x+ 19y = 1.
2.6.3 Also find an integer solution of 34x - 19y = 7.

2.6.4 Is there an integer solution of 34x+ 17y = 1?

2.7 *The vector Euclidean algorithm

In Section 2.3 we used an extension of the Euclidean algorithm to compute
the ged of integers a and b in the form

ged(a,b) = ma+nb  for some m,n € Z.

The extension runs the ordinary algorithm (“subtracting the smaller num-
ber from the larger”) and uses it to guide a symbolic imitation that performs
the same operations on linear combinations of the letters a and b.

‘We now wish to analyze the symbolic part of the algorithm more closely
where a and b are relatively prime. To do so we repla ch
combination m,a + n;b by the ordered pair, or vector, (m;,n;). To

and b < 0 and keep the positive number in the first place and the negative
in the second.
Then each step of the ordinary Euclidean algorithm is actually an ad-

dition: the number with the larger absolute value being replaced by
with the other number. The corresponding steps in the symbolic algorithm
are vector additic 50 we call the Iting process the vector Euclidean
algorithm.
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Example. Figure 2.1 shows the steps of the vector Euclidean algorithm on
(12,—5), with number pairs in the first column, symbolic pairs in the sec-
ond column, and vector pairs in the third. The actual additions are shown
only in the symbolic column.

Numbers Symbolic pairs Vector pairs
(12,-5) (a,b) (1.0). 0.1)
(7,-5) (a+b,b) ((1,1),(0,1))
(2,-5) ((a+b)+b,b) = (a+2b,b) ((1,2),(0,1))
(2,-3) (a+2b,b+ (a+2b)) = (a+t2b,a+3b) ((1,2),(1.3))
(2,-1) (a+2b,a+3b+(a+2b)) = (a+2b2a+5b) | ((12),(2.5)
(1,-1) | (a+2b+(2a+5b),2a+5b) = (3a+7b,2a + 5b) | ((3,7), (2,5))

Figure 2.1: Outputs of Euclidean algorithms

From the bottom line we read off (as in Section 2.3) that
1=3a+7h=3x12-7x5

0 (m,n) = (3,7) is a natural number vector such that 12m —5n = 1.

It is also interesting to run the algorithm one step further (adding the
number 1 to the number —1 in the first column to get 0), because 12 and 5
then reappear in the vector column.

[(00) [ Ga 1 76,2 1 5b 1 (3a 1 76)) — (3a t 7b,5a 1 126) | (3.1): (5.12) |

Figure 2.2: Result of the extra step

This is not surprising because 0 = 5 x 12 — 12 x 5, though conceivably
we could have obtained a larger multiple of the vector (5,12). What is
interesting is how easily we arrive at the vector (5, 12): namely, we started
with the vectors i = (1,0) and j = (0,1), and took a series of steps in which
avector pair (Vy,V,) was replaced by either (v, +v,,v,) or (v;, v, +V,).

‘We now generalize this example to show:

Relative primality in the vector Euclidean algorithm. In running the
vector Euclidean algorithm:

1. Every vector produced from (1,0) and (0,1) is a relatively prime
pair of natural numbers. (We call such a vector primitive.)

2. Every relatively prime pair (a,b) of natural numbers can be pro-
duced (by starting the ordinary Euclidean algorithm on b and —a).
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Proof. 1. It is clear that any vector produced is a pair of natural num-
bers, because the first new pair is (1,1) and further vector additions cannot
decrease the members of the pair.

To see why each pair produced is relatively prime we prove a stronger
property: if ((my,n,),(m,,n,)) is the vector pair at any step, then

myny —nym, = 1.
This is true at the first step, when (my,n;) = (1,0) and (m,,n,) = (0,1).
And ifitis true for the vector pair ((m,,n,), (m,,n,)) then it is also true for
the next pair ((m, +my,n, +n,),(my,ny)) or ((my,ny), (my+my,n, +n,)).
This is so because
(my Fmy)ny = (ny +ny)my = myny —nymy =1

and

1.

It follows that each vector (m,,n,) produced is a relatively prime pair,
because any common divisor of m; and n, also divides mn, —n;m, = 1.
Similarly for each vector (m,,n,).

2. If a and b are relatively prime natural numbers then the vector Eu-
clidean algorithm, guided by the ordinary Euclidean algorithm on b and
—a, produces a vector (m,n) such that mb —na = 0, and m and n are rela-
tively prime by part 1.

Since prime factorization is unique, mb = na for relatively prime a, b
and relatively prime m, n implies m — a and n — b. Hence any relatively
prime pair (a,b) can be produced by the vector Euclidean algorithm. O

my(ny +ny) —n (m, +my) =mn, —nm,

Exercises

The proof of relative primality in the vector Euclidean algorithm applies whether

or not the guiding numbers b and —a are relatively prime.

27.1 1f b and —a are not relatively prime, which vector (m, n) such that mb — na
is produced by the vector Euclidean algorithm?

As we saw in Section 2.6, the symbolic Euclidean algorithm is used when
solving linear Diophantine equations. The above analysis of the vector algorithm
directly shows its connection with certain equations. Suppose that we run the or-
dinary Euclidean algorithm on the numbers b and —a until 1 and — 1 are produced,
and suppose that the corresponding vector pair my,ny), (my,n,)).

2.7.2 Show that (x,y) = (m,n,) is the least positive solution of bx —ay = 1 and
that (x,y) = (my,n,) is the least positive solution of bx —ay = —1.
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2.8 *The map of relatively prime pairs

The results of the previous section are presented graphically by Figure 2.3,
which we call the map of relatively prime pairs or primitive vectors. It is
a partition of the plane by an infinite tree into regions labelled by ordered
integer pairs (a,b). The top two regions are labelled (1,0) and (0,1), and
the other labels are generated by vector addition: if regions labelled v,
and v, share an edge, then the region below the bottom end of the edge is
labelled v, +v,.

Figure 2.3: Regions labelled by relatively prime pairs

From the portion of the map shown in Figure 2.3, it appears that all
labels are distinct and each of them 7 (1,0) and (0, 1) is a relatively prime
pair of natural numbers. This can be proved by relating the map to the
vector Euclidean algorithm: the map is in fact a panoramic view of all
outcomes of the algorithm, in the sense that each sequence of vector pairs
produced by a run of the algorithm occurs as the sequence of pairs of labels
flanking the edges (to left and right) in a finite path down the tree. This is
50 because both are governed by the vector addition rule.

Thus, the sequence ((1,0),(0,1)),((1,1),(0,1)),...,((3,7)
the example of Section 2.7 is the sequence of left/right label pa
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path shown in Figure 2.4.

Figure 2.4: The branch leading to (5,12)

Conversely, any path down the tree, starting with the edge between
(1,0) and (0, 1) and ending at the top of region (a,b), is flanked by left/right
pairs of labels that are precisely the pairs produced by the vector Euclidean
algorithm with input numbers b and —a. This is so because the paths in a
tree are unique, hence the path to the top vertex of region (a, ) must be the
one corresponding to the vector Euclidean algorithm running on b and —a.

This correspondence between paths and runs of the vector Euclidean
algorithm allows us to deduce the basic properties of the map from proper-
ties of the algorithm proved in the previous section.

1. Each region of the map, except those labelled (1,0) and (0,1), is
labelled by a relatively prime pair of natural numbers. This follows from
Property 1 of the vector Euclidean algorithm.

2. Each relatively prime pair (a,b) of natural numbers occurs as a
label. This follows from Property 2 of the vector Euclidean algorithm.

3. Each label occurs only once. This is so because we reach the label
(a,b) by running the ordinary Euclidean algorithm on b and —a, and the
run determines a unique path in the tree.

Exercises

iscovered and rediscovered several
without ever becoming known well enough to
acquire an official name. Perhaps its best known role is in representing rational
numbers, since there s a one-to-one correspondence between positive rational
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numbers and reduced fractions a/b, which correspond in turn to relatively prime
pairs (a,b) of natural numbers. This idea is known under the name of Farey
fractions, and accounts of it may be found in Conway (1997), Rademacher (1983),
and Hardy and Wright (1979).

The connection between reduced fractions and regions goes deeper than the
obvious correspondence a/b < (a.b); it also preserves order. That is, the order-
ing of fractions from large to small corresponds to the ordering of regions from
left to right.

2.8.1 Use the property mn, —n;m, = 1 from Section 2.7 to show that if region
(my,n,) and (m,,n,) meet along an edge, with region (m,,n,) on the left,
then m, /ny > m,/n,.

2.8.2 Deduce that, if region (my,n,) is anywhere to the left of (m,,n,), then
my/ny > my/n,.

283 Use Exercise 2.8.2 to give another proof that each label (a,b) occurs only
once.

The tree structure of the Farey fractions is known as the Stern-Brocot tree. It
is obtainable from our map by moving each label other than (1,0) and (0,1) to
the vertex above it in Figure 2.3. More on the Stern-Brocot tree may be found in
Graham et al. (1994).

We have taken our form of the map from Conway (1997), who uses it to give
a very simple and graphic way of studying quadratic forms. For this purpose, the
map has an advantage over the tree because it admits a natural extension to a map
with regions labelled by all pairs of relatively prime integers. We take up this idea
in Chapter 5.

2.9 Discussion

The results of this chapter are our answer to the question posed in Chapter
1 in connection with Z and Z[i|: what does it mean to “behave like™ the
integers? Roughly speaking, the operations + and x should make sense
and have the ring properties, there should be primes, and there should be
unique prime factorization (or equivalently, the prime divisor property).
The importance of unique prime factorization was first recognized by
Gauss (1801) although, as mentioned in Section 2.4, the equivalent prime
divisor property was known to Euclid. Another remarkable equivalent of
unique prime factorization was discovered by Euler (1748a). It is his prod-
uct formula for what is now called the zeta function {(s), defined by the
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following two expressions:

i -1 (
T primes p

It is not obvious that these expressions are equal, and indeed their equality
is equivalent to unique prime factorization! If we expand each factor on
the right in a geometric series

*)

HMX

—25 —35

1
— 1 cen
st PP
then the product of all the factors will be the sum of 1 together with every
possible term of the form

—mys.

‘])

where py, p,, ..., p, are distinct primes and my,m,, .. .,m, are natural num-
bers. The terms p"'u p"" .. p’“t include each natural number n exactly once,
just in case unique prime 1aclolualmn holds, in which case we get the for-
mula (¥).

‘What makes the product formula (*) even more amazing is that it also
implies the infinitude of primes, thus unifying the two most important theo-
rems about primes. Euler’s proof of infinitude uses the special value s = 1.
If there are only finitely many primes, then the |ight lund side of (*) is
finite for s = 1, whereas the left-hand side is ]+ +3 + + -+, which is
well known to be infinite. Thus we have a L(\l]llddl(,ll(\l], 50 there must be
infinitely many primes.

The Euclidean algorithm was historically decisive for unique prime
factorization, establishing this property for Z, Z|i] and several other rings
we meet later. Even before unique prime factorization was noticed, the
algorithm was used by ancient Indian and Chinese mathematicians to solve
linear Diophantine equations. Such equations arise in “calendar problems”,
where one has, say, a year of 3()5% days and a lunar cycle of 2‘)% days and
one wants to know such things as the next time that there will be a new
moon on the first day of the year.

The modern history of the Euclidean algorithm begins with the discov-
ery of Gauss (1832) that it also applies to Z[i]. Dirichlet made the algorithm
the basis of his Vorlesungen of 1863, using it to derive the basic results
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about Z in much the same way as we have here. The Vorlesungen went
through four editions, evolving after Dirichlet’s death through the editorial
work of Dedekind, who began to enlarge it with Supplements from 1871
onwards. In the successive versions of Supplements X and XI Dedekind
gradually freed number theory from dependence on the Euclidean algo-
rithm by developing ideal theory, a development we take up in the last few
chapters of this book.
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Congruence arithmetic

PREVIEW

Many ions in arithmetic reduce to ions about

that can be answered in a systematic manner. For each integer n > 1
there is an arithmetic “mod »” that mirrors ordinary arithmetic but is
finite, since it involves only the n remainders 0,1,2,...,n—1 occur-
ring on division by n. Arithmetic mod n, or congruence arithmetic,
is the subject of this chapter.

‘We motivate congruence arithmetic with some arithmetic folklore:
the test for divisibility by 9 by “casting out nines”. This is explained
by the arithmetic of +, —, and x mod 9, and it leads naturally to
f-, — and x mod n, and to the problem of division mod n. It turns
out that division (by nonzero numbers) is possible mod n when 7 is
prime, but not generally.

Division by a nonzero number a, mod n reduces to the problem of
finding an inverse of a, mod n, that is, finding a b such that ab leaves
remainder 1 on division by . This turns out to be a simple spinoff
of the procedure used in Chapter 2 to find integers m and 1 such that
ma-t nb = ged(a, b), using the Euclidean algorithm.

Related to the subtleties of division are the classical theorems of
Fermat, Euler, and Wilson, which are important throughout num-
ber theory and its applications. The most famous application, the
RSA cryptosystem, is discussed in the next chapter, but the present
chapter paves the way for it.

We also pave the way for studying quadratic forms ax® + bxy + cy*
by using congruence arithmetic to show that certain values are im-
possible for the forms % + %, x* +2)%, and x> + 3.

43
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3.1 Congruence mod n

Casting out nines

An old rule to test whether a natural number is divisible by 9 is to see
whether the sum of its digits is divisible by 9. For example, 774 is divisible
by 9 because

T+7+4=18,

which is divisible by 9.

This rule, called casting out nines, not only decides divisibility but in
fact gives the remainder on division by 9. For example, if we add the digits
of 476 we get

4+7+6=17,

which leaves remainder 8 on division by 9. This is also the remainder when
476 is divided by 9.
Now of course 476 does not stand for 4 7 + 6 but for

410 4+7x1046.

Yet somehow, as far as remainders are concerned, 4 + 7 + 6 behaves like
4x10%4+7%x10+6.
To explain how this happens, we introduce the concept of congruence.

Definition. Integers a and b are said to be congruent mod n, written
a=b (modn),

if they leave the same remainder on division by n. Equivalently, a is con-
gruent to b, mod n, if n divides a — b.

‘We also say that @ and b belong to the same congruence class, mod n.

Congruence mod 2 is the most familiar type of congruence in daily life,
where we have words for numbers congruent to 0 (the even numbers), the
numbers congruent to 1 (the odd numbers), and for numbers in the same
congruence class (they have the same parity).

Congruence mod 2 is easy to recognize in decimal notation, as is con-
gruence mod 5 and 10. We can tell immediately, for example, that 1244788
is even, 1244785 is divisible by 5, and 1244780 is divisible by 10. This is
because numbers are congruent mod 2, 5, or 10 if their last digits are con-
gruent mod 2, 5, or 10 respectively.
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Likewise, we can tell whether numbers are congruent mod 4 by looking
at their last two digits, and similar results apply to congruence mod other
products of 2 and 5.

Congruence mod 9, the concept relevant to casting out nines, is not so
easy to understand. For this we need congruence arithmetic.

Exercises

The rules given above for recognizing congruence mod 2, 5, and 10 are easy to
explain and generalize.

3.1.1 Explain why the remainder of any natural number on division by 2 is the
same as the remainder of its last digit,

3.1.2 Why does the same apply to division by 5 and 10, but not to division by 4?

3.1.3 Show that the remainder of 1 on division by 4 is the same as the remainder
of the number given by the last two digits of n.

3.1.4 How many digits determine the remainder on division by 8; by 167

3.2 Congruence classes and their arithmetic

The integers that leave remainder @ on division by n form what is called
the congruence class of a,

{nk+a:keZ},

which we denote by the natural notation nZ -+ a (or just nZ when a = 0).
For example

27 = {even numbers},
2Z+ 1 = {odd numbers}.

a set of equally spaced points along the number
3Z, 3Z+ 1 and 3Z + 2 look like the white,
pectively in Figure 3.1.
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Figure 3.1: The congruence classes mod 3
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Such pictures suggest that if we add any point in nZ + a to any point in
nZ-+b we get a point in nZ + (a-+b). We can also see this algebraically:
any point in nZ + a is of the form nk +a and any point in nZ + b is of the
form nl + b, so their sum n(k +1) + (a+b) is in nZ+ (a+b).

Therefore, it is meaningful to define the sum of congruence classes by

(nZ+a) + (nZ+b) =nZ+ (a-+b),

since we land in the class of a + b whichever elements we add from the
class of @ and the class of b. Similarly, it is meaningful to define the differ-
ence of congruence classes by

(nZ+a) — (nZ+b) =nZ+ (a—b).
Finally we have a product of congruence classes defined by
(nZ+ a)(nZ+b) = nZ+ ab,

although it is not so obvious that any element of nZ  a times any element
of nZ+ b will be an element of nZ + ab. To see why, take any member
nk +a from nZ + a and any member nl + b from nZ + b. Their product is
(nk -+ a)(nl + b) = n?kl -+ nkb -+ nla + ab
n(nkl +kb+la) + ab,
which is indeed a member of nZ + ab.

Another way to handle addition of congruence classes is by “addition
of congruences”. If we have the congruences

a; =a, (modn) 1)

and

by =b, (modn) ?2)
then (1) says @, and a, are in the same congruence class, call it nZZ +a, and
(2) says b, and b, are in the same congruence class, call it nZ -+ b. Then it
follows that the sums a, + b, and a, + b, belong to the same congruence
class nZ+ (a+b), hence

a,+by=a,+b, (modn) 3)

Congruence (3) is the result of “adding” congruences (1) and (2).
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Similarly, we can show by subtraction and multiplication of congru-

ence classes that (1) and (2) imply
a;—by=a,—b, (modn) “@)

(“subtraction of congruences™) and
ayb, =a,b, (modn) (5)

(“multiplication of congruences”).

Remark. The system of congruence classes mod 7, under the operations
of + and x, is denoted by Z/nZ. This agrees with the quotient notation for
groups (see Elements of Algebra, Section 7.8), since nZ is a subgroup of
Z and the congruence classes nZ + a are the cosets of nZ in Z. However,
in this book, Z/nZ has the additional structure given by the x operation.

Casting out nines again

Using arithmetic mod 9 we can now explain the method of casting out
nines introduced in Section 3.1.
First note that

(mod 9),
and therefore
10°=12=1 (mod9),
10°=1"=1 (mod9),

and so on, by multiplication of congruences.
For any integer ; it follows, by multiplication of congruences, that

a;10' (mod 9),

and finally, by addition of congruences, that
nkl()k tetal0tay=aq +---+a; +a, (mod9). (*)

Butif ay,ay,...,q; are between 0 and 9 (that is, they are all decimal
"), then @ 10F + -+ + @10 + aq is the number whose decimal nu-
{IA i '{Illl().

Thus (*) says that, on division by 9, @, - --a,a, leaves the same remain-
der as the sum a; + -+ +a, +ay, as required for casting out nines.
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Exercises
There is an identical rule (which could be called “casting out threes™) for testing
divisibility by 3, and a very similar rule for testing divisibility by 11.
3.2.1 Show that the above argument applies to show that
aklO" tag_y 105 e +a;10+ay=a,+a;_ +---+a;+a, (mod3),
and hence that a number is divisible by 3 if and only if the sum of its digits
is divisible by 3.
3.2.2 Use 10=—1 (mod 11) to find what 10%, 10°,

3.2.3 Deduce from Exercise 3.2.2, using multiplication and addition of congru-
ences, that a;a; | ---a,a, is divisible by 11 if and only if the “alternating

..are congruent to, mod 11.

sum” of its digits, (—1)¥a, |-+ a, —a, +ag, is divisible by 11.

3.3 Inverses mod p

In Z, the equation ab = 1 has only two solutions: a,b =1 and a,b = —1.
Another way to put this is that 1 and —1 are the only integers with multi-
plicative inverses.

The situation is more interesting mod p, for prime p. In this case, if
a# 0 (mod p) then there is a number b such that

ab=1 (mod p).
We say that each a # 0 (mod p) has a multiplicative inverse, mod p.
Example. p =5
1 has inverse 1, 2 has inverse 3, 3 has inverse 2, 4 has inverse 4.
The condition a # 0 (mod p) means that p does not divide a. Since p
is prime, it follows that ged(a, p) = 1. By Section 2.3, this implies that
ma+np =1
for some m,n € Z. In other words,
ma=1 (mod p),
so m is the required inverse of @, mod p. u]
Thus we can find the inverse m of a from the calculation (based on the
Euclidean algorithm) that finds the m and n such that ged(a,b) = ma + nb.

It follows that the computation of an inverse mod p is fast—it takes about
n steps for an n digit
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Groups

The existence of inverses for all the nonzero congruence classes mod p
implies that these congruence classes form a group, a concept briefly men-
tioned in Section 1.3 that we now review.

A group is a set G together with an operation on it, the group oper-
ation, with the associative, identity, and inverse properties. If the group
operation is written as multiplication, then the identity element is written
1, the inverse of g € G is written g~ !, and the three properties are:

81(2283) = (218283 (Associativity)
gl=1g=¢ (Identity property)
(Inverse property)

Now we can formally confirm that the nonzero congruence classes mod
p form a group under multiplication. We call this group (Z/pZ)*.

Group properties of (Z/pZ)*. For a prime p, the nonzero congruence
classes mod p form a group under multiplication.

Proof. First note that multiplication of congruence classes “inherits™ asso-
ciativity from the associativity of multiplication in Z as follows:

class of a x (class of b x class of ¢)
= class of a(bc) by definition

class of (ab)c  since a(bc) = (ab)c by associativity in Z
= (class of a x class of b) x class of ¢ by definition.

It follows that the product of nonzero congruence classes, mod p, is
again a nonzero class. If ab =0 (mod p) and we multiply both sides by
the inverse ¢ of b we get (ab)c =0 x ¢ =0 (mod p) by multiplication of
congruences. Hence the right-hand side 0 is congruent to the left-hand side

(ab)e =a(bc) (mod p) by

a(l) (mod p) since cis inverse to b

associativity

=a (mod p).

Thus the product is zero only when a factor is zero, hence the set of nonzero
congruence classes is closed under multiplication, mod p.
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‘We also have an identity element, namely the class of 1, and every
element has an inverse by assumption. Thus (Z/pZ)* has all the defining
properties of a group. o

(Z/pZ)* has the additional property that characterizes abelian groups:

818 = &8 (Commutativity)

Most of the groups in this book are abelian, but the first theorem that we
use—Lagrange's theorem—is easily proved in full generality. The proof is
based on the concepts of subgroup and cosets.

A subset H of G that forms a group under the group operation in G is
called a subgroup of G, and the (left) cosets of H in G are the sets of the
form

gH ={gh:heH},
for all g € G. Different g, g, € G do not necessarily produce different
cosets g H, g,H. For example, hyH = H for any h, € H, because each
hoh € H when h € H, and conversely each i) € H is of the form hyh for
some i € H, namely h = hy'h,.

In fact, the proof we are about to give shows that the number of cosets
gH for a subgroup H of a finite group G is precisely |G|/|H|, where |G| and
|H| denote the “size” (that is, number of elements) of G and H respectively.

Lagrange’s theorem. If H is a subgroup of a finite group G, then |H|

divides |G|.

Proof. First observe that each coset gH has the same size as H; the map-

ping from H to gH that sends & to gh can be reversed by multiplying on

the left by g !, Thus all cosets have the same number of elements.
Second, we observe that any two cosets with a common element are

identical. If g € g,H and g € g,H then

8 =g h forsomeh € H, g=g,h, forsomeh,€H,

and therefore g,h; = g,h,. Multiplying this on the right by /; !, we find
that ¢, = g,h,h; !, and therefore
& \H = g,h,hy 'H = g, (hyhy ' H).
But ik ! € H and so, by the example preceding the proof, hyhy 'H = H.
Hence g,H = g,H as claimed.
These two observations together show that the |G| elements of G fall
int cosets gH of equal size |H|. Hence |H| divides |G|. o
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Exercises

In the next section we use Lagrange’s theorem to prove a famous theorem about
congruence mod p. For readers not yet comfortable with group theory, the fol-
lowing exercises pave the way for a more direct proof using a minimum of infor-
mation about inverses. Their content is a special case of the example preceding
the proof of Lagrange’s theorem—that multiplying a group by one of its elements
reproduces the same set of elements.

Suppose that a # 0 (mod p), that is, a is not a multiple of p. Thus a has an
inverse, mod p. Use it!

3.3.1 Show that ia =0 (mod p) = i =0 (mod p).
3.3.2 Show that ia = ja (mod p) = i = j (mod p).

3.3.3 Deduce from Exercises 3.3.1 and 3.3.2 that a,2a,3a,
tinct and # 0 (mod p), hence

. (p—1)a are dis-

{a,2a,3a,...,(p— Da} = {1,2,3,...,p—1} (mod p).

3.3.4 Verify the result of Exercise 3.3.3 in the case p =7, a = 2.

3.4 Fermat’s little theorem
If we form powers a,a®,a®,a*,... of any nonzero element a, mod p, then
eventually there will be a repeated value, say

mn

d =a" (mod p).
Multiplying both sides by the inverse of @, mod p, then gives
d"=1 (mod p).

Thus in fact the series of powers always includes 1. For example, if we
take p = 5 and @ = 2 and compute 2,22,23 2*... mod 5 we find that 2*
16 = 1 (mod 5). The sequence of powers repeats the same finite sequence
a,a*,a®,a*,....a" 1,1 forever and is therefore called cyclic.

From the group-theoretic point of view, the argument just given shows
that the powers of a nonzero element, mod p, form a subgroup of the group
(Z/pZ)*. (Associativity and the identity element are obvious and the in-
verse of a* is a"*.) Lagrange’s theorem can then be applied, and it says
how the size of the subgroup, and hence the least exponent n for which

" —

a" =1 (mod p), is related to p.
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Fermat’s little theorem. If p is prime and a # 0 (mod p), then
@ '=1 (mod p).

Proof. (Z/pZ)* has p—1 members, the classes of 1,2,3,..., p—1,s0the
size of any subgroup of (Z/pZ)* divides p — 1 by Lagrange’s theorem.
In particular, if @ # 0 (mod p) and n > 1 is the least exponent for which
a" =1 (mod p), then the powers of the class of a form a subgroup with n
members, and hence n divides p — 1.
But if
n_

d (mod p)

and n divides p — 1 (say, p — 1 = mn) then

@ '=d"=(@")"=1"=1 (modp) o

Application: a formula for the inverse mod p

It follows from Fermat’s little theorem that, for any a # 0 (mod p),

2
a’*-a

1 (mod p),

hence a”~? is the inverse of @, mod p. This is not only an explicit formula
for the inverse mod p, it also implies an efficient method to compute it,
competitive with the Euclidean algorithm method of the previous section.

We know from Section 1.5 that a”~? can be computed in about log p
multiplications, and here the numbers to be multiplied are < p, since we are
working mod p. Compare this with finding the inverse of a by the method
of Section 3.3: using the Euclidean algorithm to express 1 = ged(a, p)
in the form ma -+ np, which gives m as the inverse of @, mod p. This
involves about log p divisions with remainder (plus some other, less time-
consuming, arithmetic), again on numbers < p. Since division takes about
the same time as multiplication, the two methods are of similar speed.

Primitive roots

The minimum positive integer n such that ¢" = 1 (mod p) is called the
order of a in (Z/pZ)*. The proof tells us that the order of any nonzero a,
mod p, divisor of p — 1. There is always an a of order exactly p — 1,
called a primitive root for p. Its existence was conjectured by Euler and
first proved by Gauss (1801). Primitive roots do not play an important
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role in this book, though sometimes they throw light on results provable by
other means. Thus their properties and proof of existence are not essential
reading, but they are in the starred sections at the end of this chapter.

Exercises

We now complete the proof of Fermat’s little theorem begun in the previous exer-
cise set.

3.4.1 Deduce from Exercise 3.3.3 that
P ' X 1x2x3x - x (p—1)=1x2x3x--x(p—1) (mod p).

3.4.2 Exercise 3.4.1 implies that a?~! = 1 (mod p). Why?

Now for a few simple exercises on primitive roots.
3.4.3 Show that 2 is a primitive root for 5 but not for 7.
3.4.4 Find a primitive root for 7.

3.4.5 Given the existence of primitive root for p show that every divisor of p —1
oceurs as the order of some element of (Z/pZ)*.

3.5 Congruence theorems of Wilson and Lagrange

Another useful application of inverses mod p is the following theorem,
which actually evaluates the product (p—1)! = 1x2x3x - x (p—1)
used in some proofs of Fermat’s little theorem. It will be useful to know
the value of (p —1)! mod p in Section 9.8, when we come to the law of
quadratic reciprocity. The theorem is credited to Wilson (and it may in fact
have been discovered by Ibn al-Haytham in the 10th century), but the first
known proof is due to Lagrange.

Wilson’s theorem. If p is prime then (p —1)! = —1 (mod p).

Proof. In this congruence the factors 1,2,3,...,p — 1 all have inverses
mod p. hence each is cancelled by its own inverse except the factors that

sxare 1 and p—1=—1(mod p), and no oth
because if x* = 1 (mod p) we have

(x=1)(x+1)=0 (mod p).
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In other words, p divides (x —1)(x+1). But then p divides x—1 or p
divides x+ 1 by the prime divisor property, hence

x=1(mod p) or x 1 (mod p), as claimed.
Thus the product (p —1)!is = —1 (mod p), as required. u]

The fact that the congruence x2—1=0 (mod p) has at most two solu-
tions has an important generalization due to Lagrange.

Lagrange’s polynomial congruence theorem. If P(x) is a polynomial of

degree n with integer coefficients, and p is prime, then the congruence
P(x)=0 (mod p)

has at most n incongruent solutions, mod p.

Proof. If there is no solution, we are done. Otherwise, suppose P(r) =0
(mod p), where

P(x) = an" +a
This implies
P(x)=P(x)—P(r) (mod p)
(X =) +a, (X" Loy ')+~~~+al(,\‘—/‘) (mod p)
=(x—r)Q(x) (mod p) *)

where Q(x) is the polynomial of degree n — 1 that remains when x — r has
been extracted from each of x — 1, X'~ ' — =1, x—rusing the identity

X e o) (T R A 2 A,

"71.{"' tetaxtay, and ayaq .,ay,a0 € L.

n—11++

It follows from (*) and the prime divisor property that the congruence
P(x) =0 (mod p) implies

x—r=0 (modp) or O(x

)=0 (mod p).

Since Q(x) has degree n — 1, we can assume inductively that the congru-

ence Q(x) =0 (mod p) has at most n— 1 incongruent solutions. Then
P(x)=(x—r)Q(x) =0 (mod p)

has at most n incongruent solutions (namely x = r and the solutions of

Q(x) =0 (mod p)), as required. o

Two important uses of this theorem are to prove the existence of prim-
itive roots for p (Section 3.9), and to prove Euler’s criterion for squares
mod p (Section 9.3).
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Exercises

Wilson’s theorem actually gives a criterion for a natural number n to be prime.
3.5.1 If nis not prime, show that n divides (n— 1)!, that is, (n — 1)! = 0 (mod n).
3.5.2 Deduce from Exercise 3.5.1 that n is prime < (n —1)! = —1 (mod n).
3.5.3 Check that this criterion works when n = 7.

Unfortunately, the criterion has no practical value when n is large (say, 100
digits) because in this case we have no feasible way to compute (n — 1)! mod n.

3.6 Inverses mod k

It is not always true that an a # 0 (mod k) has an inverse mod .
For example, 2 # 0 (mod 4) but

2x2=4=0 (mod4).
Thus 2 has no inverse, for if it did we could multiply both sides of
2x2=0 (mod4)

by the inverse of 2 and get the false result 2 = 0 (mod 4).

Criterion for existence of an inverse, mod k. An integer a has an inverse
mod k if and only if ged(a, k) = 1.

Proof. If ged(a,k) = 1 then, by Section 2.3,
ged(a,k) = 1= ma-+nk for some m,n € Z.

This says that
ma=1 (mod k),

50 m is an inverse of a, mod k.
Conversely, if m is an inverse of @, mod k, then

ma=1 (mod k).

Hence
ma-+nk =1 forsome m,n € Z.

implies ged(a,k) = 1, because any common divisor of a and k also
ides ma + nk, which equals 1. o
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If @, and a, have inverses m; and m, mod k, then a,a, has inverse
mym,. It follows that the elements with inverses mod k form a set closed
under multiplication and hence a group, which is called (Z/kZ)*. (The
group properties may be checked as they were for (Z/pZ)* in Section
33)

Example. (Z/8Z)*

1 has inverse 1, 3 has inverse 3, 5 has inverse 5= —3, 7 has inverse 7= —1,
and it can be checked that these are the only invertible elements. Thus
(Z/8Z)* is an abelian group with four elements. It is not cyclic, because
each of its elements has order < 2.

The size of (Z/kZ)*, that is, the number of elements « among

1,2,3,...,k—1
such that ged(a,k) = 1, is denoted by (k) and is called the Euler phi
Junction. For example, ¢(8) = 4 because the four elements 1, 3, 5, 7 are

the only natural numbers a < 8 for which ged(a,8) — 1.

Certain properties of ¢ are known, for example

o o(p') = p~!(p—1) for p prime,

o @(mn) = @(m)(n) if ged(m,n) = 1.

These make it easy to compute @(k) if the prime factorization of & is
known, but otherwise it is difficult.

If we apply Lagrange’s theorem to an element a of (Z/kZ)*, exactly
as we did to an element @ of (Z/pZ)* in Section 3.4, then we obtain the
following.

Euler’s theorem. If a is invertible mod k then
a®® =1 (mod k).

Proof. We use the same argument as for Fermat’s little theorem, except
that now we use the fact that the size of the group (Z/kZ)* is (k). O

Like Fermat’s little theorem does for k = p, Euler’s theorem gives a
formula for the inverse of a, mod , namely a®*)~!. The formula for gen-
eral k is not quite so explicit because it involves the ¢ function. This blocks
the computation of the inverse by exponentiation mod k because there is no
nt way known to compute @ (k). In fact, the difficulty of computing
(k) is important for the security of the famous RSA cryptosystem studied
in the next chapter.
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Exercises

The formula ¢(p’) = p'~!(p—1) (and its special case when i = 1) may be shown
as follows.

3.6.1 Explain why ¢(p) = p— 1 when p is prime.

3.6.2 Show that there are p'~! multiples of p among the numbers 1,2,3,..., p
3.6.3 Deduce that ¢(p') = pi~'(p—1) when p is prime.

The formula @(mn) = @(m)@(n) when ged(m,n) = 1 is proved in Section
9.7. For the time being we consider just a simple case.

3.6.4 Verify that 9(15) = @(3)(5).

3.7 Quadratic Diophantine equations

The behavior of quadratic Diophantine equations is much more complex
than that of the linear Diophantine equations discussed in the last chapter.
However, congruences are a good tool for showing that certain equations
do not have solutions of a certain form.

Example 1. x> + y> = p has no solution for p of the form 4n + 3.

This statement is equivalent to x* +y? # 3 (mod 4), which we can prove
by trying the finitely many values of x and y (mod 4). These are x,y = 0,
1,2, —1, for which we have x%,y> =0, 1.

1t follows that x? +y' =0, 1,2 (mod 4), and so x* +y' # 3 (mod 4) as
claimed.

Example 2. x* | 2y*> = p has no solution for p of the form 8n | 5,81 7.

This statement is equivalent to x> - 2y* # 5,7 (mod 8), which we can
prove by trying the finitely many values of x and y (mod 8). These are
x,y=0,1,2,3,4, -3, =2, —1, for which we have x* yz—() 1,4.

It follows that x> +2y* = 0, 1, 2, 3, 4, 6 (mod 8), so x* + 2y # 5, 7
(mod 8), as claimed.

Example 3. x> - 3y> = p has no solution for p of the form 3n -+ 2.

This statement is equivalent to 2 3yl # 2 (mod 3), which we can
prove by trying the finitely many values of x and y (mod 3). These are
x,y =0, 1, —1, for which we have x*,y> = 0, 1.

It follows that x*  3y*> = x* = 0, 1 (mod 3), so x* | 3y* # 2 (mod 3),
as claimed. o
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These three results were first claimed by Fermat, though he credited
them to his secret weapon, the “method of descent”, apparently overlook-
ing the easy congruence proofs. Descent is much heavier artillery (we use
it in Section 7.7 to prove that x> +y* # 2> for natural numbers x, y and z)
and Fermat used it appropriately to prove more difficult complements of
the results just mentioned. For example, while x*  y* never takes a prime
value of the form 4n -4 3 (by the argument above), it takes every prime value
of the form 4n + 1.

Fermat became interested in primes of the form x% + y?, x* + 2y* and
x% +3y? (which is why we denoted the right-hand side of the equations
above by p) after reading a remark of Diophantus (Arithmetica, Book III,
Problem 19):

65 is naturally divided into two squares in two ways, namely into
7% +4? and 8 + 12, which is due to the fact that 65 is the product of
13 and 5, each of which is the sum of two squares.

Evidently Diophantus was aware of the formula
(a3 +b}) (a3 1 b3) = (ulaliblbl)z | ([’1"1:':”1[’1)17

which shows that the product of sums of two squares is itself the sum of
two squares (in two different ways, corresponding to the choice of sign on
the right-hand side).

Fermat saw what this implies: knowing which natural numbers are
sums of two squares depends on knowing which primes are sums of two
squares. The easy congruence argument in Example 1 shows that primes
of the form 4n + 3 are not sums of two squares; the hard part is to show
that all primes of the form 4n + 1 are sums of two squares. The theo-
rem became something of a showcase for new methods in number theory,
with Lagrange, Gauss and others using it to show off their innovations. In
Chapter 6 we give a proof using the Gaussian integers, due to Dedekind.

It is also true that the primes of the form x* 4 2)* are precisely those
of the forms 87+ 1 and 8n + 3 not ruled out by the congruence arguments
above (of course, numbers of the form 8n + 2, 81+ 4, or 8n + 6 are not
primes because they are divisible by 2). And likewise, the primes of the
form x% 4 3y? are those of the form 3n + 1. We prove these results later by
combining results from Chapter 7 and Chapter 9.
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Exercises

It is entertaining to test Fermat’s two square theorem on the first few primes of the

form 4n+ 1 and to investigate his corresponding theorems on primes of the form

8n+1,8n+3, and 3n+ 1.

3.7.1 Write down the first 10 primes of the form 4n+ 1 and check that each of
them is a sum of two squares. (The firstis 5 =22+ 12.)

3.7.2 Is any of these the sum of squares in two different ways?

3.7.3 Write down the first 10 primes of the form 8n+ 1 or 81+ 3 and check that
each of them is of the form x* +2y. (And see whether any of them is of
this form in two different ways.)

3.7.4 Write down the first 10 primes of the form 31+ 1 and check that each of

them is of the form x +3y”. (And see whether any of them is of this form
in two different ways.)

3.8 “Primitive roots

An interesting and puzzling phenomenon in elementary arithmetic is the
period in the decimal expansion of 1/n. For example, we know that

1/3=03333-
1/7 = 0.142857 142857 .-
1/13 = 0.076923076923 - -

‘We say that the decimal of 1/3 has period length 1 because the 1-digit pat-
tern 3 repeats; 1/7 has period length 6 because the 6-digit pattern 142857
repeats; and 1/13 likewise has period length 6 because the 6-digit pattern
076923 repeats. It is clear from the ordinary school division process that
a repetition must eventually occur, so periodicity in the decimal expansion
of 1/n is not surprising. But why is the maximum period length n— 1, and
under what circumstances does this occur?

The main part of the answer is that period length n— 1 occurs when
10 has order n— 1 in the group (Z/nZ)*, that is, when 10"~! is the lcast
positive power of 10 that is = 1 (mod n). We express this condition by
saying that 10 is a primitive root for n. A closer study of (Z/nZ)*, using
Euler’s theorem, then shows why n — 1 is the maximum possible period
length.

Example. 1/7 = 0.142857 142857 ---
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If we multiply this equation by 10, 10, 10°, ... then we obtain

10/7 = 1.42857 142857 ---
10%/7 = 14.2857 142857 ---

10°/7 = 142857.142857 --- — 142857 + 1/7

Thus 109, like 10° = 1, leaves remainder 1 on division by 7, and it is the
first among the positive powers of 10 with this property (because 10°/7 has
a different decimal part for i = 1,2,3,4,5). This is precisely what it means
for 10 to be a primitive root for 7.

A generalization of this argument gives the following.

Criterion for maximal period length. The decimal expansion of 1/n is
periodic of length n— 1 precisely when 10 is a primitive root for n. Also,
n—1 is the maximum possible period length, occurring only when n is
prime.
Proof. Suppose that 1/n has a periodic decimal expansion with period
lengthn—1,

1/n=0.a,a,---q,

1@y Ay g

If we multiply this equation by 10, 102, 10%, .. . then we get
10/n = ay.ayay---a, jaay---a, ;---
lOZ/n Ay Ay, Ay e

-1
10" /n=ayay---a, j.ajay---a, - =ayay---a, ;+1/n.

n

Thus 10"~ is the first among the powers 10, 10%, 10°, ... that leaves re-
mainder 1 on division by n (because 107/ has different decimal part when
i<n—1). Thatis, 10 has order n — 1 and hence is a primitive root for n.

Conversely, if 10 has order n — 1 in (Z/nZ)* then n is prime. This
follows from the proof of Euler’s theorem, which shows that the order of
any element of (Z/nZ)* is at most @(n). It is clear from the definition
of the phi function that ¢(n) < n — 1, and that equality holds only if n is
prime.

It remains to show that the decimal of 1/n is periodic of length n — 1
when 10 has order 7 — 1. This follows by considering 1/n, 10/n, 10*/n,.. .,
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10"~ /n again. The assumption that 10 has order n — 1 implies that 10"~
leaves remainder 1 on division by n, so we have

10" /n=ayay---a, +1/n, )

where a,a, - --a,_ is the decimal numeral consisting of the first n— 1 digits
of 1/n. Dividing both sides by 10"~!, it follows that
1/n=0.a,a,---a, aa,

FEEEN ()

n

though it is not clear what appears after the first 2(n — 1) digits on the
right. Repeatedly substituting (**) back in (¥) and dividing by 10"~! we
find that the sequence a,a, ---a, , keeps repeating in the decimal of 1/n.
This sequence defines the period length n — 1 of 1/n, because if there were
a period of shorter length k we could conclude as above that 10 has order
k < n—1, contrary to assumption. o

In the exercises below you are asked to find a prime p > 7 for which
10 is a primitive root for p, and hence 1/p has period length p — 1. In
1801 Gauss conjectured that the maximum period length p — 1 occurs for
infinitely many primes p but it is still not known whether this is true. In
fact, it is not known whether any specific number, say 2 or 3, is a primitive
root for infinitely many primes p. However, it is known that each prime p
has a primitive root. We give a proof of this theorem in the next section.

Exercises

The decimal expansion of 1/n need not be periodic when n is not prime, for ex-
ample 1/6 = 0.1666666.... The latter decimal expansion is called ultimately pe-
riodic because it is periodic beyond a certain digit (in this case, beyond the first
digit).

3.8.1 Compute the decimal expansions of 1/12 and 1/14 by hand and verify that
they are ultimately periodic.
3.8.2 Explain in general why 1/n has an ultimately periodic decimal expansion.
The relationship between decimal expansions and powers of 10 allows us to
use properties of the decimal expansion of 1/n to predict properties of powers of
10, mod n, and vice versa,

3.8.3 Show, without using the decimal for 1/13, that 10 has order 6 in (Z/13Z)*.

3.8.4 Which is the first prime p > 7 for which 10 is a primitive root for p? Verify
that, in this case, the decimal for 1/p has period length p — 1.
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3.9 “Existence of primitive roots

The existence of a primitive root for each prime p is a subtle theorem,
because we do not know any uniform way to specify a primitive root as a
function of p. The least primitive root, for example, seems to vary with
p in a highly irregular way. All known proofs of the theorem get around
this difficulty by showing only the existence of a primitive root without
attempting to find it.

The proofs use Lagrange’s polynomial congruence theorem from Sec-
tion 3.5, that the number of solutions of an nth degree congruence is < n.
The theorem is used to show that, when n < p — 1, the congruences x" = 1
(mod p), have too few solutions to include all the p — 1 incongruent num-
bers 1, 2,3, ..., p—1. Thus at least one of these numbers satisfies only
1 =1 (mod p), and hence is a primitive root.

Together with this theorem, we use the proof of Fermat’s little theorem
from Section 3.4, which shows that each a # 0 (mod p) satisfies a con-
gruence X" = 1 (mod p), where n divides p — 1. This yields the following
proposition on the number of solutions of x" = 1 (mod p).

g =

Solutions of X" = 1 (mod p). The congruence X" = 1 (mod p) has at most
@(n) solutions that are not solutions of a congruence x" =1 (mod p) of
lower degree.

Proof. If a satisfies X" = 1 (mod p) but no congruence x” = 1 (mod p) of
lower degree, then a is of order n. Then 1,a,a%,...,a" " are distinct solu-
tions of " = 1 (mod p) and hence, by Lagrange’s polynomial congruence
theorem, they are the only solutions of X" = 1 (mod p).

Moreover, a power a' such that ged(i,n) > 1 satisfies the lower-degree
congruence X/ ged(in) (mod p). Thus the number of solutions of X" = 1
(mod p) that do not satisfy lower-degree congruences x” = 1 (mod p) is at
most the number of i that are relatively prime to n, that is, ¢(n). o

Finally, to prove the existence of primitive roots, we use this propo-
sition to show that there are not enough elements of orders n < p—1 to
account for the p — 1 elements 1,2,..., p — 1. To shorten notation we use
alb for “a divides b”.

Existence of primitive roots. Less than p—1 of the elements 1,2, .
have orders n < p — 1, hence one of them is a primitive root.

p—1

Proof. By the previous proposition, the total number of elements with
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orders n < p— 1 is no more than

> on)

alpt
-
‘We can prove that this number is less than p — 1 by proving that
2 o) =p-—1.
nlp-1
In fact, it is true for any natural number N that

S o(n) =

N

To see why, consider the N fractions ﬁ,%, ,% Each of these has a

reduced form ”—/, where ged(n/,n) = 1, obtained by dividing the top and

bollom by lln.u ged. For each divisor n of N there are @(n) reduced forms
%, and distinct fractions 3 and % have distinct reduced forms. Therefore

N =Y ¢(n)
N

as required. o

Exercise

Here is another way to prove the existence of primitive roots, again assuming
Lagrange’s polynomial congruence theorem.

3.9.1 Suppose that the nonzero elements mod p have maximum order n < p— 1.
Show that this implies x" = 1 (mod p) for all the p — 1 nonzero values of x,

mod p, contrary to Lagrange’s polynomial congruence theorem.

3.10 Discussion

The congruence concept was introduced by Gauss (1801), who was the
first to recognize its value in simplifying arguments involving division with
remainders, such as Fermat’s little theorem and Wilson’s theorem. For
example, instead of having to say “p divides a”~! with remainder 17, one
can write @”~! =1 (mod p), which looks and behaves like an equation.
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Indeed, the concept of congruence class, introduced by Dedekind (1857),
allows the congruence
a=b (modn)
to be replaced by an actual equation
nZ+a—=nZ+b,

between objects, nZ+a = {nk+a:k € Z} and nZ+b = {nk+b:k € Z},
that obey the rules of arithmetic. This was an important step toward modern
algebraic thinking, though ahead of its time, because few mathematicians
accepted the use of sets as mathematical objects until the 20th century.

Fermat’s little theorem grew out of the special case 27 =1 (mod p),
discovered by Fermat in an investigation of perfect numbers and primes
of the form 27 — 1. He actually stated the theorem in the equivalent form
27 =2 (mod p), and proved it using properties of the binomial coefficients.
Fermat used neither the modern binomial theorem

(a+b)!=al+ (I;)a" b (g)a" 2p? ~<<I,f1)ub" L bP,

nor the formula
P\ _pp—1)--(p—kil)
<k) k! !
but a similar proof is easily obtained from them. One simply notes that
e For k # 1, p the integer (’A' ) has the prime factor p in its numerator
but not in its denominator. Hence p divides (f)

e Therefore, by the binomial theorem,

P P P Py, (P P T
s () (D) ()7
=2 (mod p)

since p divides each of (7), (3),..., (p”l).
The equivalent form, a” = a (mod p), of Fermat’s little theorem may then
be obtained by induction on a, since
3 =(2+1)"
=27417 (mod p) since (§),(5).. ...(P”l) =0 (mod p)
=241 (mod p) since2”? =2 (mod p)
3 (mod p), and soon.
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Around 1750 Euler gave a proof of Fermat’s little theorem that fore-
shadows the proof of Lagrange’s theorem (20 years before Lagrange’s own
proof, which itself was not expressed in terms of groups; the group concept
was introduced around 1830 by Galois).

Given a # 0 (mod p), let {1,a,a?,...,a" '} be the set of distinct pow-
ers of a (which we recognize as a group A). Euler then shows that the
distinet sets {b,ba,ba?,...,ba"~'} for the various b Z 0 (mod p) (which
we recognize as the cosets of A) form a partition of the set {1,2,...,p—1}.
Hence the order n of @, which is the size of each coset, divides p — 1. Eu-
ler used a similar argument to prove his generalization of Fermat's little
theorem. More on the early history of Fermat’s little theorem and Euler’s
theorem may be found in Weil (1984).

Primes of the form x? + ny? are an important thread in the history of
number theory, and we return to them several times in this book. The case
n = 1 originates with Diophantus (if not earlier, in the study of Pythagorean
triples) and his remark on products of sums of squares that we discussed
in Section 3.7. By 1640 Fermat had completely mastered this case by re-
ducing it to the question of which primes are of the form x>+ y?, showing
that they are precisely the primes of the form 4n 1 (together with the
obvious exceptional prime 2). We do not know how he proved it, except
that he used descent, which was also the method of the first known proof,
by Euler (1755). By 1654 Fermat had similarly dealt with primes of the
form x% - 2y* and x% + 3y*. As we saw in Section 3.7, it is casy to show
that certain congruence classes are not of the required form. More power-
ful methods are required to show that other congruence classes are of the
required form. We pick up this story again in Chapter 6.

The partial success of congruence arguments with the forms x? - y?,
X% +2y%, and x% + 3y is not simply good luck. It can be explained by
a sweeping general principle discovered by Hasse (1923) and called the
Hasse-Minkowski principle. The principle implies that the impossibility of
certain values for quadratic forms ax? + bxy + cy? can always be verified
by congruence arguments.
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The RSA cryptosystem

PREVIEW

The commonest application of number theory, and perhaps the most
ubiquitous application of any kind of advanced mathematics, is the
RSA cryptosystem. In this chapter we describe the system and how
it works, based on a few key ideas from previous chapters.

The only theoretical ideas required are those of inverses mod 7, the
Euler ¢ function, and the related Euler theorem a®™) = 1 (mod n).
Allied with this are two fundamental algorithms: the algorithm for
computing binary numerals, and the Euclidean algorithm (in the ver-
sion that gives the inverse of a, mod b).

Thanks to the binary numeral algorithm, exponentiation mod n is
feasible for large exponents. A “message” (viewed as an integer m)
is encrypted as m® mod n for certain publicly known e and n; and
decrypted by raising the result to a power d, inverse to ¢ mod ¢(n).
This makes decryption easy only for someone who knows ¢ ().

4.1 Trapdoor functions

The science of cryptography seeks methods for encoding or encrypting
messages, and corresponding methods for decoding or decrypting. Typi-
cally, encryption uses a certain key number (which may have many digits)
and the same number is used for decryption. Without the key, it is not pos-
sible to read encrypted messages, so the security of the system depends on
the difficulty of finding the key. Two well-known methods of encryption
(at opposite ends of the security spectrum) are the following.

66
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Example 1. The Caesar cipher.

This method of encryption (thought to have been used by Julius Caesar)
simply adds the same integer key number (mod 26) to each letter in the
message (viewed as a number between 1 and 26, assuming the Roman
alphabet is used).

For example, if the key number is 3 then the message

Go to Zagreb tomorrow
is encrypted as
Jr wr Cdjuhe wrpruurz

and the latter is decrypted by subtracting 3 (mod 26) from each letter.

The Caesar cipher has low security because there are only 26 possible
keys. It does not take an opponent very long to find the correct one—
simply by trying the keys 1, 2, 3, ... until one of them produces an intelli-
gible message.

Example 2. The one-time pad.

In this method the key is a long, random sequence x,x,x5 . .. of numbers
x;, each between 1 and 26. The digit x; is added (mod 26) to the ith letter of
the message to produce the encrypted message, and the receiver similarly
subtracts x; (mod 26) to recover the message. Once a segment x, X, X3 .. .x,
of the key has been used for a message it is “torn off the pad”, that is, the
next portion x,, X, 5 ..

The one-time pad is completely secure (short of actually capturing a
copy of the key) because all sequences x;x,x; ... are equally likely, and
hence so are all messages. There is no point even trying to guess the key.
However, the key needs to be extremely long, since each segment of it is
used only once, and thi:

. is used for the next message.

inconvenient in practice.

The dream of cryptography has always been of implementation
(as in the Caesar cipher) combined with security (as in the one-time pad),
or at least a compromise between the two: it should be feasible to encrypt
the message, but not feasible (without a reasonably short key) to decrypt it.
Throughout history, this dream has failed time and time again, but it was
revived in the 1970s in the mathematically more precise form of trapdoor
functions.

A trapdoor function is an operation that is easy to do but hard to undo,
like falling through a trapdoor or scrambling eggs. But unlike these
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life examples, a trapdoor function is supposed to be easy to undo with
the help of a “key”. Such functions seem to exist in mathematics, and
the theory of polynomial time computability has been developed to discuss
them. Here we illustrate these concepts with the example most important
for cryptography.

If we take two large prime numbers, say

p, = 4575163

and
P, — 4093567,

then we can easily find their product
PP, = 18728736276421

(even using the school method of multiplication, which takes around n*
steps for a pair of n-digit numbers).

Yet if we give someone the number 18728736276421 and ask them to
find the factors, it will probably take around a million steps. This is because
no known method for finding a divisor of a 2z-digit number is substantially
quicker than trying to divide it by all 10" numbers of < n digits.

Thus the function f(p;, p,) = p, p, of numbers p,, p, can be computed
in “quadratic time™ but the inverse process of factorization seems to require
“exponential time”. (These concepts can be made completely precise by
formalizing the concept of computation, but an informal understanding of
computing will suffice for our purposes.)

The seemingly hard-to-reverse property of multiplication is the basis
of the most commonly used cryptographic method today, the RSA system.
The system is named after the initials of the three mathematicians who first
published the system in 1978: Rivest, Shamir, and Adleman. It consists of

e anencryption function E(m) of messages m that involves the product
(py—1)(py— 1), where p; and p, are two large primes,

e adecryption function D(m) that involves the two primes p, and p,
separately.
The encryption function is easily computed from the message and the

(p, —1)(p, — 1) but the decryption function is not: it seems to
factorization of the key to extract the s py and p,. Because of
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the apparent difficulty of factorization the key k can be made public, mak-
ing E(m) easy for everybody to compute, while D(m) is easy to compute
only for those who know p, and p,.

Thus E(m) is apparently a trapdoor function. We have to say “appar-
ently”, because no one has yet proved the underlying claim that factoriza-
tion is hard. In view of the enormous number of communications that use
RSA—military, commercial and private—this is an extremely important
question. Regardless of what its answer turns out to be, the influence of
RSA on number theory alone is enough to justify a short chapter on the
subject.

4.2 Ingredients of RSA

A user of RSA owns a couple of large prime numbers, p, and p,. If p, and
P, are of, say, 100 digits, then the product p, p, can be computed in around
1007 steps by the ordinary school method of multiplication. The product
PP, then has a unique factorization into two smaller factors, namely p,
and p,, but no known method of finding them is substantially better than
dividing the 200-digit number p,p, by most of the approximately 10'®
numbers less than its square root.

Thus the user can safely reveal the product n = p, p, without revealing
its factors p; and p,.

The theoretical ingredients of the RSA cryptosystem are inverses mod
k and Euler’s theorem, which we already have. The only other result we
need is

o(pipy) = (py=1)(p,— 1) for p, p, prime. )
To prove (*) we ask how many natural numbers a < p, p, there are with
ged(a, pyp,) = 1. The only a for which this is not the case are the p, — 1
multiples of p,; and the p, — I multiples of p,. These (p, -+ p,) —2 numbers
are distinct because p| p, is the smallest natural number that is a multiple
of both p, and p,. Hence

O(pipy) = PPy —=1=(py +py) +2
PPy=py =Pyt
(py=Dpy=1)- o
Knowing the primes p, and p,, the user of RSA can easily compute
n=pypyand (n) = (p; = 1)(p,—1)-
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The user also chooses an encryption exponent e, which can be any
number with

ged(e, @(n)) =1,

for example, a prime < ¢(n). The numbers e and n are made public, so
anyone may use them to send encrypted messages to the user.

The value of ¢(n), known only to the user, enables computation of the
decryption exponent d, which is the inverse of e, mod @(n). As we know,
the inverse is easily computed from e and @ (n) by the Euclidean algorithm.

The mathematical core of the RSA system is the following proposition,
proved in Section 4.4. If d is the inverse of e, mod @(k), then (m®)! =m
(mod n). Here m is the message, encryption raises m to the power e, mod n,
and decryption recovers m by raising the encrypted message to the power
d, mod n.

Encryption and decryption are feasible because exponentiation mod n
is easy to compute. We explain why in the next section. The key to the
success of RSA is the presumed difficulty of factorization, which makes
@(n) and d hard to compute for anyone who does not know the two primes
py and p,.

Exercises

To become familiar with the RSA system, take the (unrealistically small) primes
py = Tand p, = 11

4.2.1 Explain why e = 5 is not a valid encryption exponent.
4.2.2 Show that e = 13 is a valid encryption exponent and compute the corre-
sponding decryption exponent d using the Euclidean algorithm.
4.2.3 Show that e = 61 is also a valid encryption exponent, but unsatisfactory
because m®! = m (mod 77) for all m # 0 (mod 77).
Such accidents, where raising to the power e does not change the message,
are rare with the large primes p; and p, used in practice. Still, it shows that there
are some subtleties in the proper choice of encryption exponent.

4.3 Exponentiation mod n

The obvious method to compute m* is to form m x m x --- x m (k factors),
which involves k — 1 multiplications. Since RSA uses exponents k with
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around 100 digits, the number of multiplications in this method of expo-
nentiation will be around 10'%, a hopelessly large number. Thus the first
step towards efficient exponentiation is to drastically reduce the number of
multiplications; hopefully to a number around the size of logk, which is
proportional to the number of digits in <. We saw how to do this in Section
1.5, using the binary numeral for .

Example. Construction of m°!.

‘We compute in turn

m=1xm

2 2
m*=m
m® = (m*)* xm
m'" = (m°)* xm
w2 = (m')?
m*S = () xm
mt = (m¥)? xm

The total number of multiplications is the number of squarings (one less
than the number of binary digits in k) plus the number of multiplications
by m (no more than the number of binary digits in k). Hence the total
number of multiplications to compute m* is no more than twice the number
of binary digits in k, and the number of binary digits is at most log, k+ 1.

It is still not a good idea to compute m* for a 100-digit number k, even
though it takes only about 200 multiplications, because the numbers being
multiplied will become astronomical in length.

What makes RSA feasible is that we do not need m* but only its remain-
der on division by n. Because of this we can compute with remainde
throughout, using the arithmetic of congruences. In particular, we need
never multiply numbers larger than n, and this is what makes exponentia-
tion mod n feasible. Even by the school method of multiplication (which is
not the most efficient known), multiplication of two n-digit numbers takes
around n? steps, hence for n around 100 the work required for a couple of
hundred multiplications is easily handled by a computer.
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Exercises

4.3.1 Check that the above example allows m°! to be computed using 10 multi-
plications (not counting 1 x m).

4.3.2 Compute the binary numeral for 89, and hence show that m* can be com-
puted using 9 multiplications.

4.4 RSA encryption and decryption

If the user’s primes are p; and p,, a message is written (using some simple
slation of letters into Is) as a natural number m less than the
publicly known product n = p, p,. If the actual message is larger than this,
it is broken into sufficiently small chunks that are encrypted one by one.
As foreshadowed in Section 4.2, the encrypted message sent to the user
is the remainder of m® when divided by n, which we abbreviate as

m® mod n

This is a natural notation for remainders and it will not lead to confusion
because

r=m‘modn = r=m’ (modn).

The numbers e and n are made public after having been computed by the
user from the primes p, and p,: n= p,p, and e isrelatively prime to n. Itis
feasible to compute m® mod n, even though e and n may have hundreds of
digits, by the repeated squaring method explained in the previous section.
The user receives the encrypted message m® mod n and raises it to the
power d, mod n, where d is the inverse of e, mod n. The result is the
original message m, because d is an inverse of e, mod ¢(n), and therefore

ed =1+ ke(n) for some k.
Hence
med — plrke(n)
m- (m®")k
=m(1)* (modn)
since m?™ = 1 (mod n), by Euler’s theorem,

=m (mod n).
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As with encryption, it is computationally feasible to raise a number
to the power d, mod n, provided d is known. The decryption exponent
d can be feasibly computed by the user, who knows the factors p;, p, of
n. These enable the computation of ¢(n) = (p; —1)(p, — 1), and then the
computation of d as the inverse of e, mod ¢(n), by the Euclidean algorithm.

This computation of the inverse is feasible because the Euclidean al-
gorithm is similar in speed to exponentiation mod 7 on numbers of similar
size, as remarked in Section 3.4, and @(n) is indeed just a little smaller
than n when n = p,p,.

Exercises

Continuing the toy example of RSA with p; =7, p, = 11 and encryption exponent
e=13:

4.4.1 Show that the message m is encrypted as ((m? -m)?)>-mmod 77.
4.4.2 When m = 7 verify that the encrypted message is 35.

It is not guaranteed, however, that every message is disguised by the encryption
s obviously not the case for m = 1 and it can also happen for other

4.4.3 When m — 12 verify that the encrypted message is also 12,

4.4.4 Using the decryption exponent from Exercise 4.2.2, verify that decryption
of 12 recovers the message 12.

4.4.5 Explain the results of Exercises 4.4.2 and 4.4.3 by showing that 12 =
(mod 77).

4.5 Digital signatures

Another use of RSA is to transmit a digital signature—a proof that the user
is who he or she claims to be. For this purpose the user can demonstrate
possession of knowledge that no one else could have, such as the personal
decryption exponent d that goes with the public numbers e and n.

This can be demonstrated, without revealing d, by taking some well
known message m and sending m? mod n. This is a scrambled message
that only the possessor of d can create. But all the world knows e and n,
hence they can unscramble m? mod n by raising it to the power e, mod n:

1/)r

(m' m=m (modn), asabove.
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Since only m? mod n can unscramble to the recognizable message m in this
fashion, the world can rest assured that the sender is indeed the possessor
of the secret number d.

4.6 Other computational issues

The security of RSA depends, in the first instance, on having a large supply
of 100-digit primes. If only a handful of such primes were available, an
opponent could break the system by trying all pairs of them as p;, p, until
aproduct p, p, equal to n is found. Fortunately this is not a problem: there
are many large primes and it is computationally easy to find them.

Thus an opponent’s real problem is to compute the decryption exponent
d from the publicly known e and n.

Since d is inverse to e, mod ¢(n), and @(n) = (p, —1)(p, — 1), this
would be feasible if the factors p, and p, of n were known. In fact it
has been shown to be feasible only if the factors of n are known, hence
decryption will remain difficult as long as factorization remains difficult.

However, it is not known whether factorization is truly difficult. No
feasible method of factorization is known but it has not been proved that
no such method exists. A proof that there is no feasible method would
answer the so-called “P # NP question”, for which a prize of $1,000,000
has been offered.

Roughly speaking, problems of type P (for “polynomial time™) can be
solved by short computations, like the problem of multiplication. Problems
of type NP (for “nondeterministic polynomial time”) have solutions that
are verifiable by short computations, but which may take a long time to
find in the first place. As we have seen, factorization is like this. P # NP
says there are problems that are hard to solve but whose solutions are easy
to verify. No such problem has yet been proved to exist though many good
candidates are known (for example, the factorization problem).

4.7 Discussion

In the mid-70s, when mathematicians became aware of problems with so-
lutions that were apparently hard to find but easy to verify, it was proposed
to use such problems in public key cryptosystems—systems where it was
easy to encrypt a message but hard to decrypt without extra, secret, infor-
mation.
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The idea of trapdoor functions, and their application to public key cryp-
tosystems, was first published by Diffie and Hellman (1976). They also
proposed expc iation mod n as a computationally feasible process that
might be hard to reverse. The implementation of this idea in RSA was first
published by Rivest et al. (1978) and it has since become the most com-
monly used public key system. Just recently it was revealed that the same
system was also discovered a few years earlier, by Clifford Cocks in the
UK. Because it was part of his work for British Intelligence, it was kept
secret (though why this was any use after 1978 is hard to understand). For
more on the history of public key cryptosystems see Yan (2000).

The basic premise of RSA, that factorization is hard, was shaken by
a remarkable discovery of Shor (1994). Shor found that factorization can
be done in polynomial time on a quantum computer. The catch is that
quantum computers do not yet exist and perhaps never will. Nevertheless
Shor’s result throws a strange new light on the concept of computation.

In all existing computers the difficulty in factorization (and in many
other NP problems) is that the space of possible answers is exponentially
large relative to the question. For an n-digit number K there are around
10"/ numbers less than v/K, and to factorize K we cannot do much better
than try all of them as potential divisors. Since one has to try many things
one after the other, factorization by all known methods takes exponential
time.

According to quantum theory, however, in the world of the atom many
things actually happen at the same time in the same place. The hypotheti-
cal quantum computer harnesses this possibility to do many computations
simultaneously, and in this way it can factorize numbers in polynomial
time. We say “hypothetical™ advisedly, since it is not known whether a
stable computer can actually be built from atom-sized components.
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The Pell equation

PREVIEW

The so-called Pell equation 1 (wrongly attributed to Pell
by Euler) is one of the oldest equations in mmhemancs and it is

to the study of quadratic Di The
Greeks studied the special casc -2 1 because they realized
that its natural number solutions throw light on the nature of v/2.

—

There imilar connection between the natural number solutions
of x2 —ny? = 1 and \/nn when 7 is any nonsquare natural number.

The irrationality of /% when 7 is nonsquare causes strange behavior
in the solutions of x> —ny? = 1. Nevertheless, the irrationality of
/n reflects light back on the equation: it leads to simple algebraic
structure, and a simple general formula for all integer solutions of
2 —ny? = 1 in terms of the smallest natural number solution.

But there is no simple formula for the smallest natural number solu-
tion and it is not trivial even to prove that it exists. In this chapter we
give two proofs: the first is a relatively direct proof due to Dirichlet,
based on the approximation of /7 by rational numbers. The second
(in the starred sections at the end of the chapter) is based on a more
general theory of quadratic forms due to Conway.

We include Conway’s theory because it is a natural extension of
our study of the Euclidean algorithm (particularly the results in the
starred sections of Chapter 2) and because it gives a very simple

of periodicity ph d with the Pell equa-
tion and /i It also gives a highly visual approach to the subject,
which makes the complex behavior of the Pell equation surprisingly
easy to grasp.

76
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5.1 Side and diagonal numbers

The ancient Greeks met the equation x> —2y? = 1 in their efforts to under-
stand /2, the diagonal of the unit square, which they knew to be irrational.
They found a way to produce arbitrarily large solutions (x,y,), (x,,y,)s ...
of this equation, and hence fractions x;/y; that approximate /2 arbitrarily
closely. The fractions x,/y, tend to /2, because if x? —2y? = 1 then

»

1
Jul = y, — oo,
5=2+5—2 asy; X

Yi i
Thus if y; is the side of a square, x; approximates the diagonal.
The Greeks discovered the solutions (x;,y;) among the “side numbers”
s; and “diagonal numbers” d; defined by
dy =3, s,
dipy = di 255 sy = dits

It follows from these equations that
d} =25t =1, d}, -2}, = —(d? —2s}).

Hence the odd-numbered pairs (d|,s,), (dy,53), (ds,s5), ... satisfy the
equation x> —2y? = 1 while the rest satisfy x> — 2y* = —1.

The first equation is an example of a Pell equation, the general form of
which is x2 — ny? = 1 where n is a nonsquare integer. The second is closely
related to it; in fact we later look at all values of x> — ny? in order (o see
whether they include the value 1.

Irrational square roots

In dealing with equations x* —ny? = 1, where n is a nonsquare integer, we
rely heavily on the ionality of /n proved in Section 2.5.

The upside of irrationality is that we can encode a pair of integers (a,b)
by a single real number a + b+/n; we say that this number has rational part
a and irrational part b. Real and imaginary parts are meaningful because
if /nis irrational, a, b, ,a,,b, € Z, and

ay+b\/n=a,+b,\/n,

then a; = a, and by = b,.
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Suppose, on the contrary, that b, # b,. Then
ay—ay = (b= b))V,

and, since b, —b, 70, we get \/n = 5%2? This contradicts the irrationality
of /n. Hence b, = b,, and therefore a, = a,. o

Exercises

In the sections that follow we use numbers of the form x; +;/4 to encode solution
pairs of x* —ny” = 1. To give a taste of how this works, the following two exercises
use numbers of the form a -+ by/2 to encode (diagonal,side) pairs.

5.1.1 Check that (1 ++v/2)2 =3 +2+/2 and that
X HyV2)(1+V2) = x+2p+ (x +y)V2.
5.1.2 Use induction to show from Exercise 5.1.1 that (1+v/2)"*! = d,, +5,/2.
When 7 is an integer square, the equation x> —ny”> = 1 is not so interesting,
50 we dispose of it right now.
5.1.3 By factorizing the left-hand side of x> —y? = 1, show that it has only two
integer solutions.
5.1.4 Show similarly that x> —ny* = 1 has only two integer solutions when n is a
square positive integer.

5.2 The equation x> —2y? =1

1t is straightforward to find all rational solutions of x*> —ny* = 1 by Dio-
phantus’ method (draw the line of slope ¢ through the rational point (1,0)).
Thus the method of solution is completely independent of 7.

It is a different matter to find even one integer solution of x> —ny* = 1
other than the obvious ones (£1,0). The least positive solution # (+1,0)
depends on n in a mysterious way. However, once this least nontrivial solu-
tion is found, all other integer solutions are generated by a simple formula.
We illustrate the method for the case n = 2.

When x2 —2y? = 1 the smallest integer solution # (£1,0) can be found
by trial to be (3,2). Other solutions can then be found by the following
composition rule: if (x,,y,) and (x,,y,) are solutions o) x> —2y* =1, then
50 i (X3,¥3), where xy and y, are defined by

(x, Iyl\/f)(.x Iyzx/f) X3 0y,\/5.
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To show that this rule gives a new solution we first calculate x; and
¥3- Expanding the left-hand side, and collecting its rational and irrational
parts, we find that

X3 =X F 2y, Y3 =Xy Y.
It can then be checked by multiplication that
(e +2130)° = 20013y +313)° = (6l =23 -2 = 1x1 = 1.
Hence x% - 2y§ = 1, as required. o
Examples. Composing the solution (3,2) with itself, we get a new solution
(x3,y3), where
X +y3V2=(3+2V2 =9+8+12v2 =17+12V2.
Equating rational and irrational parts, x; = 17, y; = 12, which is indeed
another solution. If we then compose (17,12) with (3,2) we get
(17 +12v2)(3 +2V2) = 51 +48 + (36 + 34)V2 = 99+ T0V/2,
hence another solution is (99,70), and so on. By this process we can ob-
tain infinitely many integer solutions, but it is not clear how close we are
to finding all integer solutions. The situation becomes clearer when we
observe that a group structure is present.

Exercises

Another way to arrive at the composition rule is to use the irrational factorization

= (x=yV2)(x+32). *)
We suppose that 1 =x} — 2y} and 1 = x3 —2y3, so that
T=1x1= (4 ~27)(5-27%). %)

5.2.1 Apply the factorization (¥) to each factor on the right-hand side of (¥¥),
then combine the factors in a different way to show that

1= [y + 213, = (1, +y) V2
X [ty + 2905, + (3 +31,)V2)-
5.2.2 Deduce from Exercise 5.2.1 that x3 — 2)3 = 1, where
X3 =X R 2y, and yy =y, E Y.
In Section 5.4 we generalize this method to find a composition rule for solu-
tions of 32 —my? = 1.



80 5 The Pell equation

5.3 The group of solutions

Not only do solutions (x,,y,) and (x,,y,) of x* —2y* = I have a “product”
(XX, +2y,5,%,, +,X,), corresponding to the product of numbers

(1 +3, ﬁ)(*z Jr,‘7:\/5)<

the numbers x + y/z such that x> —ny? = 1 include 1 = 1+ 04/n and the
multiplicative inverse x — yv/2 of the number x + yv/2:

(VD) (x—yV2) =2 =2 =11

since x> —2y* = 1 by the assumption that (x,y) is a solution.

Thus the solutions (x,y) form a group, with the same structure as the
set of numbers x + yy/2, where x, y are integers such that x> —2y> = 1. To
understand this group we first focus on the subgroup of positive numbers
x+yV2 where x2 —2y* = 1.

Structure of positive solutions. The group of positive x + yV2, where
(x,y) is an integer solution of x> —2y* =1, is the infinite cyclic group of
powers of 3+2v/2.

To see why, apply the log function to all the positive numbers x + yv/2
where x, y are integers such that x> —2y* = 1. Since log(ab) = loga | logb,
the resulting numbers log(x  yv/2) then form a group under +.

This group has a least positive element, log(3 +2+/2), because

© 34 2V2 is the least x + yv/2 corresponding to solutions (x,y) with
x,y >0,

o solutions (x, —y) withy > 0 are inverses of solutions (x,y) with x,y >
0. Hence the corresponding x — yv/2 are < 1, and their logs are < 0.

But any such group of numbers consists of the integer multiples of its
least positive element m: if any element k lies between multiples of m,

mn <k <m(n+1),
we also have k — mn in the group, and the size of this element,
0 <k—mn <|m|,

contradicts the minimality of m. o
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Thus all solutions (x,y) of % —2y* = 1 for which x +yv/2 > 0 corre-
spond to powers of 3 +2v/2. Now for any solution (x,y) either x+yv/2 or
—x—yV/2is > 0. Hence the remaining solutions (x, y) are just the negatives
of those obtained from the powers of 3 +2+v/2.

Exercises
Suppose we define integer pairs (4, v,) by the equation
u A vv2 = (3+2V2)F  forall integers k.

Then what we have just proved is that the pairs (u,, ;) are all the integer solutions
(x,y) of x> —2y? = 1 with x positive. It is now quite casy to express u, and v, as
explicit functions of k, though (not surprisingly) these functions involve v/2.
5.3.1 Given that (3+2v2)* = uy +v,v/2, what is (3—2V2)¥?

5.3.2 Deduce from Exercise 5.3.1 that

=3 (1220 (-2, v=s = [B+2va)-G-2va)].

2v2
5.3.3 Deduce from Exercise 5.3.2 that u, = nearest integer to (3 +2v/2)¥/2. And
2

Vi

5.4 The general Pell equation and Z[/n]
If n is a nonsquare integer we define
ZIVn| = {xtyvn

Just as we used the numbers x + yv/2 to study x> —2y* = 1 we use the
numbers x 4 y\/7 to study x> —ny* = 1.

In fact, x* —ny? is what we call the norm of x + yy/n in Z[/n, the
product of x -+ yy/n by its conjugate x —y\/n:

norm(x + yy/) = (x — yy/n) (x + yy/n) = x> —ny*.

Thus finding solutions of the Pell equation is the same as finding elements
of Z[+/n] with norm 1.

The advantage of searching in Z[+/n], rather than among p:
integers, is that we can use algebra on numbers in Z[y/n].

L,y EZ}.

(x,y) of
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are both solutions

Brahmagupta composition rule. If (x,,y, ) and (x,
of the Pell equation x* —ny* = 1, then so is

(x3,3) = (312, + 19,95, 5,9, +3,5,).

This generalizes the “composition” rule used for n = 2 in Section 5.2 and
it may be proved as follows, using factorization in Z[/n].
Since (x,,y,) and (x,,y,) are solutions,

2 2 2 2
xp—nyy =1 =x3—ny3.
Therefore

1= (xf —my}) (3 — ny;)
= (xp =y V) (g 3y vV) X (5 =3, V/m) (5 +3,V/1)
(%, =y, Vi) (x, _V7\/— () +y,vVA) (3, +y,v/m)
= Py Y, — 0y, H 3 0) V] X [xx, Fayy, + (g, +yxg) Vil
= (x5, by yy)? = nlxyy, -y
2 2
5y 0
This “composition” of solutions to form a new solution was discovered

by the Indian mathematician Brahmagupta around 600 CE (but without

using \/n).

We also have an identity solution (1,0) and an inverse (x,—y) of each
solution (x,y), hence the solutions form a group, as we saw previously in
the special case n = 2. As in that case, we can prove that all solutions come
from powers of the smallest positive solution.

Example. Solutions of x> —3y* = 1.
‘We find by trial that the smallest positive solution is (2,1). Composing
(2,1) with itself we get the solutions
(2x24+3x1x1,2x1+4+1x2)=(7,4),
(2x7+3x1x4,2x4+1x7)=(26,15),

and so on. These solutions correspond to the powers of 2 4 v/3.

The calculation used to prove the Brahmagupta composition rule ac-
tually shows a more general property, which holds not only with integer
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coefficients x, y but also with rational coefficients, that is, quotients of in-
tegers. We use the symbol @ (“quotients™) for the rational numbers and
make the natural generalization of Z[y/n] to

Qvn| = {x+yVn:xyeQ}.
This set of numbers is the set of quotients of elements of Z[n| and it is a
number field, that is, closed under +, —, X, and =+ (by nonzero members).

The closure properties are easily checked by calculation (exercises).
We extend the definition of norm to Q[/n] by the same formula

norm(x - yy/n) = x* = ny?.
This formula remains meaningful because each element of Q[ /7] is uniquely
expressible as x| yy/n with x,y € Q, by the argument of Section 5.1.
Multiplicative property of the norm. For any o and B in Q[y/n]

norm( o )norm(f) = norm(of3).

Proof. Let o = x, +y,y/nand B = x, -+ y,/n. Then
norm(er)norm(B) = (xf —ny}) (x3 —ny3)
= (0xy Hnyyy)* = (e, +3x)
by the calculation above
=norm(af). o

Exercises
5.4.1 Show that +, —, and x of numbers in Q[n] are themselves numbers in Q[n].

5.4.2 Show that 1/(x+y/n) for x,y € Q (not both zero) is of the form ¥’ +y'\/n
for X',y € Q. Deduce that Q|n] is closed under <+ by nonzero members.

) satisfies x> —ny? = k,, show

ny? = kyky.

The multiplicative property of the norm can be restated as follows.
5.4.3 1If (x,,y,) satisfies x> —ny? = k; and (x
that (x)x, + 1y, ¥y, XY, +yx,) satisfies

Brahmagupta used this fact to solve x> —ny? = 1 via easier equations x> —ny> = k.
His method is most convenient when there is an obvious solution of x> —ny® = —1.

5.4.4 Find a nontrivial solution of x> — 17y> = —1 by inspection, and use it to find
a nontrivial solution of x* — 17y% = 1.

5.4.5 Similarly find a nontrivial solution of x> —37y* = 1.
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5.5 The pigeonhole argument

The smallest nontrivial solution of x> —ny* = 1 is not always so easy to
find as for n = 2 and n = 3. For example, the smallest nontrivial solution
of x2 —61y* = 1is

(x,y) = (1766319049,226153980)!

This amazing example was discovered by Bhaskara Il in 12th century India
and rediscovered by Fermat.

The smallest nontrivial solution appears so unpredictably that its ex-
istence is not clear in general. However, Lagrange proved in 1768 that if
n is any nonsquare positive integer; the Pell equation x* —ny* = 1 has an
integer solution 7 (+1,0).

An interesting new proof of this was given by Dirichlet around 1840.
He used what is now called the “pigeonhole principle™ if more than k
pigeons go into k boxes then at least one box contains at least two pigeons
(finite version); if infinitely many pigeons go into k boxes, then at least one
box contains infinitely many pigeons (infinite version).

Dirichlet’s argument can be subdivided into the following steps. First,
a theorem on the approximation of irrational numbers:

Dirichlet’s approximation theorem. For any irrational \/n and integer
B > 0 there are integers a, b with 0 < b < B and

1
—b =
la—by/n| < 3

Proof. For any integer B > 0 consider the B — 1 numbers \/n, 2\/n ...,
(B — 1)y/n. For each multiplier k choose the integer A such that

0<A —kyn<l.

Since /n is irrational, the B — 1 numbers A, — k+/n are strictly between 0
and 1 and they are all different for the same reason (by the result of Section
5.1). Thus we have B 1 different numbers

0, A -vn, Ay-2yn, .., Ay —(B-1)yn, 1

in the interval from 0 to 1.
If we then divide this interval into B subintervals of length 1/B, it fol-
lows by the finite pigeonhole principle that at least one subinterval contains
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two of the numbers. The difference between these two numbers, which is
of the form @ — by/n for some integers a and b, is therefore irrational and
such that

1
—b =
la ﬁ|<B

Also, b < B because b is the difference of two positive integers less than B.
o

The next few steps are short and directed towards applications of the
infinite pigeonhole principle.

1. Since Dirichlet’s approximation theorem holds for all B > 0, we can
make 1/B arbitrarily small, thus forcing the choice of new values
of a and b. Thus there are infinitely many integer pairs (a,b) with
|a—by/n| < 1/B. Since 0 < b < B, we have

1
|a—by/n| < >

N}

. It follows from step 1 that
|a-+bv/n| < |a—by/n|+[2by/n| < [3by/n|,
and therefore |
|a* —nb*| < 3 -3by/n =3/n.

Hence there are infinitely many a — by/n € Z|\/n| with norm of s

<3VA.

3. By the infinite pigeonhole principle we obtain in turn

o infinitely many a — by/n with the same norm, N say,

o infinitely many of these with a in the same congruence S,
mod N,

o infinitely many of these with b in the same congruence class,
mod N.

4. From step 3 we get two positive numbers, a, —b,/nand a, —b,/n,
with

o the same norm N,
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* a; =a, (mod N),
e by =b, (mod N).

The final step uses the quotient @ — b+/n of the two numbers just found.
Its norm a® — nb? is clearly 1 by the multiplicative property of norm. It
is not so clear that a and b are integers, but this now follows from the
congruence conditions in step 4.

Nontrivial solution of the Pell ion. Whenn is a q positive
integer; the equation x* —ny* = 1 has an integer solution (a,b) 7 (£1,0).

Proof. Consider the quotient @ — by/n of the two numbers a, — b, /n and
a, —b,/n found in step 4. We have

@ —bvn _ (a,—bn)(a, +b,v/n)
a,—by,\/n a% —nb%
, —nb,b, n a,b, —ba,
N N

a—byn=
Vi,

where N = a3 —nb3 is the common norm of a, — b,+/n and a, — b,\/n.
Since the latter numbers have equal norms, their quotient @ — by/n has norm
1 by the multiplicative property of norm (Section 5.4).

Since a, —b, /n and a, — b,/n are unequal and positive, their quotient
a—by/n# £1. It remains to show that a and b are integers. This amounts
to showing that N divides a,a, —nb,b, and a,b, — b,a,, or that

1@y —nb by =a,by—bja, =0 (mod N).

The first congruence follows from the fact that a? —nb} = N, which
implies

0= af —/11:]7 =a,a,—nbb, =a,a,—nb b, (modN),

replacing @, and b, by their respective congruent values a; = a, (mod N)
and by = b, (mod N) found in step 4.

The second congruence follows from a, = a, (mod N) and b, = b,
(mod N) by multiplying to obtain a,b, = b;a, (mod N), in other wolds
aby —bya, =0 (mod N).
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5.6 *Quadratic forms

Dirichlet’s pigeonhole argument is one of the neatest ways to prove the
existence of nontrivial solutions of the Pell equation and it contains ideas
that can be applied in other situations. Nevertheless, it is not obviously
relevant to other quadratic Diophantine equations, so there is reason give a
second proof: one that draws on a general theory of quadratic forms.

A binary quadratic form Ax* + Bxy + Cy*, where A,B,C € Z, can be
viewed as an integer-valued function of integer pairs, or vectors (x,y).
Many classical questions in number theory are concerned with the values
of quadratic forms. For example, the Pell equation asks whether 1 is a value
of the form x* —ny?, when n is a nonsquare natural number. To approach
such questions we use two elementary properties of quadratic forms that
can be confirmed by simple algebra.

Properties of quadratic forms. If f(x,y) = Ax* | Bxy + Cy* and v = (x,y)
then

L f(kv) = [ (v),
2. (v ) L (v =vy) = 2(v) + /(W)
Proof. 1. 1f v = (x,y) then kv = (kx,ky). Hence
S(kv) = A(kx)? + B(kx) (ky) + C(ky)* = k*(AX* + Bxy +CY?) = K2 f (V).
2.1 v, = (x,,3,) and v, = (x,,¥,) then
S(v) = Ax}+Bxyy, +Cyland  f(v,) = Ax] + Bxyy, +Cy3.
Also

FO ) = Ay )7+ By +5,) (50 +3,) +COy +3,)?
AX{ -+ A+ Bxyy, + Bx,yy, + Oyt +Cy3
| 2Ax, X, + Bxyy, + Bx,y, +2Cy,y,,

J(v = V3) = Al =) + B(x; =) (0 =) +C0Oy = 3,)
Ax? +AX3 + Bx,y, + Bxyy, +Cyt +Cy3
—2Ax,%, = Bxyy, — Bxyy, = 2Cy, .
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Hence
SO V) + [y —v,) = 24x} +2Bx,y; +2Cy} +24x3 +2Bx,y, + 20v3
=2[f(v)) +f(v,)] o

A simple consequence of Property 1 is that f(—v) = f(v), so a quadratic
form makes no distinction between a vector v and its negative. Property 1
also says that f(kv) is a multiple of f(v); in particular f(v) is prime (or
1) only for vectors v = (x,y) that are not integer multiples of other inte-
ger vectors, that is, for (x,y) with relatively prime x and y. We call these
primitive vectors.

In Section 2.8 we found a map of all the primitive vectors with positive
xand y. We also found that the latter vectors are generated from i = (1,0)
and j = (0,1) by the processes (v,,v,) — (v, +V,,v,) and (v,,v,) —
(v, v, +V,). In the next section we see that vectors with x and y of oppo-
site sign are similarly generated from (0, —1) and (1,0). Then Property 2
shows that there is a simple relation between the values of [ at successive
stages in these processes. This leads to a “map” of the values of f.

Equivalent forms

Another view of a quadratic form f, related to the one described above,
surveys all equivalent forms f*(x,y) = f(px + qy,rx + sy), obtained by
replacing the row vector (x y) by

(px-tqy ety = (x .v)( " ) (x M,
where the matrix M and its inverse M~ both have integer entries. When M
satisfies these conditions, the pairs (px -+ gy, 7x -+ sy) run through the set Z*
of all integer pairs when (x,y) does. Indeed, if (x',y’) is any integer pair,
we have
WY)=(xyMe(xy) = ywm'.

Thus equivalent forms have the same set of values. Examples are x> | y?
and x? + 2xy + 2y, the latter obtained from x>+ y* when (x,y) is replaced
by (x+y,5)-

When M and M~! both have integer entries, then detM and detM !

are both integers. Since
1 10
MM ( 0 1)
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it follows by taking the determinant of both sides that
detM -detM ' =1

(due to the multiplicative property: det(M,M,) = detM, -detM,). The only
possible values for detM and detM ! are therefore 1. Thus the condition
for a matrix M to define an equivalence of quadratic forms is that M have
integer entries and that detM = ps —gr = £1. Such a matrix is called
unimodular.

Now an arbitrary quadratic form can be expressed as a matrix product,

sz‘Bxy\CyZ:(XY)(Bljz BZZ)(;C)' o

So it follows from what we have just seen that any equivalent form is ob-
tained by replacing

A B2 A B)2 |
(B/Z c ) by M(B/Z c )M
where M is unimodular. This is so because the new matrix effects the
replacement of (x y) by (x y)M.
Formula (¥) reveals an invariant of the form Ax® 4 Bxy + Cy? under

equivalence, namely the determinant AC — B*/4 of its matrix. Indeed, the
determinant of any equivalent,

y A BN,
duM(B/2 i )M ,

is equal (again by the multiplicative property of determinants) to

dclMdcl( 3?2 B(/? )dcl,,,, i (i,)zdcl< B/jz s{/g)

d“‘( I;}Z B(/'Z )

since detM = detM ' = 1 by hypothesis. Thus all equivalents of the
form Ax* + Bxy + Cy* have the same determinant.
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Exercises

Although equivalent forms have the same determinant, the converse is not always
true. It so happens that the form x* +)? is equivalent to all other forms with
determinant 1, but x> + 5)-2 is not equivalent to all other forms with determinant 5.

5.6.1 Show that 13x? 4 16xy+ 5y has determinant 1, and that it is equivalent to
2

2 +)? via the matrix M = ( 1 2

5.6.

i

Show that 2x2 + 2xy + 3y” has the same determinant as x” + 5%, but that
it is not equivalent to x* + 5%, by showing that x> + 5y* does not take the
value 7.

5.6.3 More generally, show that x” + 5y takes no values = 3 or 7 (mod 20), by
working out the possible values of x> + 5y (mod 20).

5.7 *The map of primitive vectors

In Section 2.8 we described a partition of the plane (a “map”) into regions
labelled by (1,0), (0,1) and all the primitive vectors (a, b) of natural num-
bers. Figure 5.1 (right half) shows this map again, rotated through 90°,
together with a near mirror image of it (left half) in which the second co-
ordinate of each pair has a negative sign.

Figure 5.1: Two partial maps of primitive vectors

Also in the right half of the figure we have the schematic vector sum
rule that generates all the labels from (1,0) and (0, 1), and in the left half
the mirror image rule that obviously applies there.
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‘We put these two maps side by side because we want to join them
together, but we seem prevented from doing so by the incompatible labels,
(0,1) and (0, —1), in the upper central region. The conflict can be resolved
by giving each label a + sign. This yields Figure 5.2, which we call the
(complete) map of primitive vectors, for the obvious reason that it contains
every primitive vector. The =+ labelling fuses the two vector sum rules into
the single vector difference/sum rule shown at the bottom of the Figure.

Figure 5.2: The complete map of primitive vectors

This rule needs some clarification because of the ambiguous signs. In
a =+ pair of vectors, say +(1,2), we are free to choose either (1,2) or
—(1,2) as v,. Likewise for the pair, say ==(2,3), labelling a region below
an edge of region £v,: we can choose either (2,3) or —(2,3) to be v,.
The vector difference/sum rule says that, for some choice of v, and v,, the
region between v, and v, at the left end of their common edge is labelled
+(v, —v,) and the region at the right end is labelled +(v, - v,). In this
example the regions are as in Figure 5.3.

Figure 5.3: Regions above, below, and at the ends of an edge
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Figure 5.3 shows how lines may be deformed to conform with the
schematic diagram for the difference/sum rule—in particular the edge com-
mon to regions #(1,2) and £(2,3) is not really horizontal—within bounds
that preserve the meanings of “above”, “below”, “right end”, and “left end™
for the edge common to the regions +(1,2) and +(2,3). Here the choice

vy =(1,2),v,=(2,3) gives v, +V,=(3,5),v,—v,=—(1,1),

so at the right end £(3,5) = £(v, +v,) and at the left end £(1,1) =
+(v, —v,), as required.

It follows from the vector sum rules in the separate left and right maps
in Figure 5.1 that the vector difference/sum rule holds in the complete map.
This is proved by a finite number of simple checks, similar to the example
above but more general. The details are left to the exercises.

The sign ambiguity £(x,y) has no effect on the value of a quadratic
form because

Ax* 4 Bxy + Cy* = A(=x)* + B(—x)(—) +C(—y)*.

Hence the map of primitive vectors gives an unambiguous map of all values
of the quadratic form f(x,y) = Ax> + Bxy + Cy? for relatively prime x and
¥, obtained by entering each value f(a,b) in the region +(a,b). Moreover,
itis possible to see some pattern in this map, thanks to the parallel between
the vector difference/sum rule and Property 2 of quadratic forms proved
in the previous section. We show this in the next section, assisted by the
invariance of the determinant AC — B?/4 under change of variables. The
complete map also displays such changes, as we are about to see.

The tree of integral bases

In Section 5.6 we defined forms f, f* to be equivalent if f*(x,y) results
from f(x,y) by replacing the vector (x,y) by a vector (px + gy, rx + sy),
which is equivalent to it in the sense that (px-+ gy, rx + sy) runs through Z*
when (x,y) does. Since

(x,y) = x(1,0) +y(0,1) and  (px-+qy,rx+sy) = x(p,r) +¥(q,s),

this amounts to replacing the vectors (1,0) and (0, 1) by the new vectors
(p,r) and (g,s). We call the pair of vectors (1,0) and (0,1) an integral
basis of Z* because a Y integer vector (x,y) is a linear combination of
them with integer coefficients, namely x(1,0) + y(0,1).
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Equivalence says that the replacement M : (x,y) — (px+ qy,rx+sy) is
invertible, so the inverse matrix M ! has integer coefficients and the new
vectors also form an integral basis. Thus the criterion for a pair of vectors
(p,r) and (g,s) to form an integral basis is the criterion derived in Section
5.6 for M and M~! to be integral, namely ps — gr = £1.

Now in Section 2.7 we showed that, if (p,r) and (g,s) are labels on
two regions with a common edge in the map of relatively prime pairs, then

ps—rqg—*£1.

It is easily seen that this property extends to the complete map of Figure
5.2. Thus each edge in the map of primitive vectors represents an integral
basis of Z*, namely the pair of labels on the regions that meet along the
edge. The + signs on the labels give four different bases, but they are
essentially the same. Since the edges of the map form a tree, and each
edge is associated in this way with an integral basis (up to sign), we call
the edge complex of the map of primitive vectors the tree of integral bases.

As the name suggests, the tree represents all integral bases. We do not
need this fact. However, it is easy to prove using the vector difference/sum
rule to implement a kind of Euclidean algorithm (see exercises).

Exercises

To prove that the vector diffe rule holds in the complete map of primitive
vectors we check that it holds in the middle and in “general position” on the right
and left.

5.7.1 Verify that the difference/sum rule holds in the middle of the map (Figure
5.4) by choosing v; = (0,1) and v, = (1,0).

+(0,1)

Figure 5.4: The middle of the complete map

5.7.2 Figure 5.5 shows one “general position” on the right side of the complete
map. By choosing v; = uy and v, = u; - u,, verify that the difference/sum
holds here.
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+(2u; +u,)
+(u; +u,)

Figure 5.5: One “general position” on the right

5.7.3 Work out which other general positions occur on the right and on the left
and verify that the difference/sum rule holds for each of them.

5.7.4 The “vector sum/difference rule” shown in Figure 5.6 is also valid. Why?

+(v; +vy) (v, —v,)

Figure 5.6: The sum/difference rule

To prove that the tree in the complete map represents all integral base:
use the difference/sum and sum/difference rules to tra
{(p,7),(g,5)} back to {(1,0),(0,1)}. Exercis
5.7.6-5.7.8 show why such a path can always
5.7.5 By repeatedly subtracting the “smaller” vector from the “larger”, reduce the

pair {(35,3),(23,2)} to the pair {(1,0),(11,1)}. The latter pair is repre-
sented in the tree (why?), hence so is the former (why?).
5.7.6 Show that if

s we
path from a given b:
5.7.5 is an example, and Exe
¢ found.

)= (prarts), (@) =(qs)
or

W)=, @8)=ptarts)
then ps —qr = £1 < p's' —¢'r¥ = 1.

5.7.7 By repeatedly adding or subtracting one vector from the other, show that
any pair {(p.r), (¢,s)} with pr—gs = %1 reduces to a pair of the form
{(¢',0).(q",s")}. (Hint: ged(r,s) = 1. Why?) Deduce from Exercise 5.7.6
that p’ = £1,¢' = +1.

5.7.8 Deduce that {(/,0), (¢.s')} in Exercise 5.7.7 is represented by an edge in
the tree, and hence so is {(p,r),(g.5)}.
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5.8 *Periodicity in the map of x> — ny?

In the previous section we briefly mentioned how a map of any quadratic
form f may be superimposed on the map of primitive vectors by marking
the region £v with the value f(v) = f(—v). We now investigate maps of
quadratic forms in more depth and, to get an idea of what to expect, we
first present the map of x* — 3y in Figure 5.7. Only the right half is shown,
because the left half is its mirror image. The values are marked as numbers
in circles.

Figure 5.7: The map of x*

In this map there seems to be a single dividing line between positive
and negative values of x* —3y*> . Conway calls this line the river, and
we have drawn it heavily in Figure 5.7. On either side of the river the
values of 2 appear to increase in absolute value as one moves away
from it (which is why one expects there to be only one river). And, rather
unexpectedly, the values along the river seem to be periodic: in successive
regions “above” the river the values are —3,—2, -3, —2,... and below each
pair of successive regions with values —3, —2 there is a single region with
value 1. Figure 5.8 confirms the pattern a bit further.
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Figure 5.8: The river for x* —3y?

If this pattern continues indefinitely, then we can generate the sequence
of positive solutions of the Pell equation x* —3y* = 1, namely (2,1), (7,4).
(26,15),..., by applying the vector addition rule for the map of primitive
vectors to locate the successive regions with value 1 (see exercises).

The example of x* — 3y is a good example of what happens with any
indefinite quadratic form, that is, one that takes both positive and negative
values but not the value zero. With the help of the following proposition
we can show that any indefinite quadratic form has a unique “river”, with
periodic behavior.

Arithmetic progression rule. If L, U, D, R (for “left”, “up”, “down”,
“right”) are the values of a quadratic form f around an edge as shown in
Figure 5.9 then

Figure 5.9: Values in regions around an edge

. L, U+ D, Ris an arithmetic progression.

N

. If (p,r) and (q,s) respectively are the regions above and below the
edge, then the common difference in this progression is the coefficient
of xy in the quadratic form f(px-+ qy,rx -+ sy).
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Proof. The difference/sum rule in the map of primitive vectors (Section
5.7) implies that

L=f(vi=vy), U=f(V), D=f(v), R=f(v+V)),

where v, and v, are the regions above and below the middle edge. It then
follows from Property 2 of quadratic forms (Section 5.6) that

LYR=2U+D), or (U+D)—L=R—(U1D),

and this says that L, U ++ D, R is an arithmetic progression.

Recall from Section 5.7 that if the basis i = (1,0), j = (0, 1) of Z? is re-
placed by the basis v, = (p,r), v, = (g,s), then the form f(x,y) is replaced
by the equivalent form f*(x,y) = f(px+ qy,rx +sy) = Ax> + Bxy + Cy*
say. Also, the values of f at vj, v,, v; +v, and v| — v, are the same as
the values f* ati, j, i+jandi—j, namely A, C,A+B+CandA—B+C

respectively.
Thus the common difference, (U + D) — L, of the arithmetic progres-
sionis A+C—(A—B+C) — B, as claimed. [m]

Part 1 of the arithmetic progression rule is enough to show:

Uniqueness of the river. For any form x* —ny?, where n is a nonsquare
natural number, there is a unique edge path in the map of primitive vectors
that separates regions of positive value from regions of negative value.
Proof. Such a form is never zero, because x> —ny* = 0 implies n = x*/y?
is a square; and x? — ny? certainly takes both positive and negative values.
Consider a place on its map where a region of value L < 0 meets two
regions with values U/, D > 0 as in Figure 5.9. (If the region with value
L is actually on the right, it ill true that L, U + D, R is an arithmetic
progression.)

Then Part 1 implies that R — (U + D) = (U + D) — L > U + D, hence
R > max(U,D). Thus moving one edge away from the border between
positive and negative values leads to a region of greater positive value.

More generally, if D > max(U,L) then R > D by a similar application
of Part 1, so it follows that values of regions continually increase as we
move further from the negative region. Similarly, values on the negative
side continually decrease as we move further from the boundary path be-
tween positive and negative regions. Hence there is only one edge path
separating the positive- from negative-valued regions. o
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‘We need Part 2 of the arithmetic progression rule to prove the more
difficult periodicity property, which guarantees the existence of nontrivial
solutions of the Pell equation.

Periodicity of the river. When n is a nonsquare natural number, the pat-
tern of values along the sides of the river for x* —ny? is periodic.

Proof. It will suffice to prove that regions sharing edges with the river are
bounded in absolute value. Indeed, if that is so, the values L, U and D in
Figure 5.9 around some edge in the river will recur; hence so will the value
R (being determined by L, U and D according to the arithmetic progression
rule), whose region also shares an edge with the river, and so on.

As we saw in the proof of Part 2, the values U and D equal C and
A, where Ax? -+ Bxy + Cy? is a quadratic form f* equivalent to f(x,y)
x* —ny?. But we know from Section 5.6 that the determinant AC — B*/4
is the same for all equivalents f* of f. Here C and A, being the values of
regions on opposite sides of the river, have opposite signs. Hence

|AC —B*/4|
Since AC— B2 /4 is constant, it follows that |A| and |C|—the absolute values
of D and U—are bounded as required. o
Exercises

The “Pell quadratic forms” x> — ny* are by no means the only indefinite forms.
Another interesting example is x> +xy — y*, which is related to the golden ratio
—‘Zi and the Fibonacci sequence 1,1,2,3,5.8,13,....

5.8.1 Show that x> + xy and deduce from this

that the form x? 4 xy —

5.82 Construct enough of the river for x + xy —? to show that its period looks

like Figure 5.10.

Figure 5.10: The period of x% 4 xy —
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5.8.3 Show that the positive labels (x;,y;) alternately below and above the river
(in the regions marked alternately 1 and —1) satisfy
Gry) =0 Gy ) +63) = e igr)-

5.8.4 Deduce from Exercise 5.8.3 that the natural number pairs satisfying the
equation x> +xy —y> = 1 are (Fy,,,F,,,) for n=0,1,2,3,..., where
Fi=F=1andF+F_, = F‘,rl (the Fibonacci sequence).

Periodicity in the shape of the river leads naturally to recurrence relations
between the vectors labelling riverside regions. The Fibonacci relation arising
from a2 + xy — y” is the simplest example of such a recurrence relation. Another
is the relation for x> — 3%, whose river was constructed above.

5.8.5 Use two successive periods in the river for )” to show that the non-

negative solutions (x;,y,) of 2> —3y* = 1 satisfy

(

The river also shows why certain equations do nor have solutions.

(9:30) = (1,0), (1) = 40 ye) = (¥ g)-

5.8.6 Explain why the equation x* — 3y2 = —1 has no integer solution.

5.9 Discussion

The Pell equation x*> —ny? = 1 is one of the oldest and most important
quadratic Diophantine equations. Probably its only rival is the Pythagorean
equation x% +y? = z2. The Pell equation also dates back to the time of the
Pythagoreans (around 500 BCE), who studied the special case x* — 2y = 1
in connection with the v/2, as mentioned in Section 5.1.

Another famous Pell equation is due to Archimedes. His “cattle prob-
lem” leads to the Pell equation x> — 4729494y = 1, the least nontrivial so-
lution of which has an x with 206545 digits! This solution was surely not
known to Archimedes, though perhaps he knew that Pell equations could
have remarkably large solutions. For an excellent discussion of the cattle
problem, and the computational issues it raises, see Lenstra (2002).

The Pell equation was rediscovered in India, where mathematicians
were also fascinated by short questions with long answers. Around 600
CE, Brahmagupta discovered the formula for composing solutions we used
in Section 5.4. He used a generalization of it to find the minimal solution
(1151,120) of x> —92y* = 1 (saying that “a person solving this equation
within a year is a mathematician™). In 1150 cE Bhaskara II extended Brah-
magupta’s idea to a method that solves all Pell equations, illustrating it with
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the well chosen example x> — 61y> = 1. He found its minimal solution,
(1766319049,226153980), which is by far the largest minimal solution of
any Pell equation x*> —ny? = 1 with n <61.

In Europe nothing was known of the Indian discoveries, but the Pell
equation resurfaced in the 17th century when Fermat independently dis-
covered how to solve it. He did not reveal his method, but he evidently
knew what he was doing, because he too picked x*> — 61y = 1 as a chal-
lenge to other mathematicians. He also posed the even more formidable
equation x* — 109y* = 1, the minimal solution of which is

(158070671986249, 15140424455100).

His English rivals Wallis and Brouncker rose to the challenge with a method
that solves the Pell equation, not unlike the method of Bhaskara II (see Weil
(1984), p. 94). In the 18th century these methods morphed into the simpler
and more elegant continued fraction algorithm, which can be viewed as the
Euclidean algorithm applied to the pair (\/n,1).

All of these methods are based on the observation of periodicity in cer-
tain computations. It is likely that the ancient Greeks observed periodicity
in the Euclidean algorithm, because simple geometric arguments show its
periodicity on pairs such as (v/2,1) and (v/3, 1) (see, for example, Stillwell
(1998), p. 268, or Artmann (1999), p. 242). However, while many could
use periodicity to solve instances of the Pell equation, the first to prove
that periodicity always occurs was Lagrange (1768). He thereby showed
that the continued fraction method always works. He underlined the im-
portance of this result by showing that solving the Pell equation leads to
the solution of all quadratic Diophantine equations in two variables.

Conway’s visual approach, expounded in Sections 5.6-5.8, is certainly
related to the old approaches to the Pell equation. But it is essentially
simpler in that it replaces a process (the Euclidean algorithm) by a picture
(the map of primitive vectors). 1 have attempted to make this as clear as
possible by deriving the map of primitive vectors and its properties directly
from properties of the Euclidean algorithm, before imprinting the values
of a quadratic form on it. (Conway assumes the simplest properties of the
map, or sketches topological proofs, and proves others with the help of
quadratic s.) For further insights obtainable from Conway’s approach,
see the book Conway (1997) or his related video ax? + hxy + by* available
from the American Mathematical Society.
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The Gaussian integers

PREVIEW

The Gaussian integers Z|i] are the simplest generalization of the or-
dinary integers Z and they behave in much the same way. In par-
ticular, Z[i] enjoys unique prime factorization, and this allows us to
reason about Z|i] the same way we do about Z. We do this because
Z[i] is the natural place to study certain properties of Z. In particu-
lar, it is the best place to examine sums of two squares, because in
Zli] we can factorize a sum of two integer squares into linear factors:
by = (x = yi) (i)

In the present chapter we use this idea to prove a famous theorem
of Fermat: if p > 2 is prime then p = a®> + b?, for some natural
numbers a and b, if and only if p = 4n+ 1 for some natural number
n. The Fermat two square theorem turns out to be related, not only
to unique prime factorization in Z[i], but also to the actual “primes”
of Z[i], the so-called Gaussian primes.

The Gaussian primes are easily shown to include the ordinary primes
that are not sums of two squares, and the factors a — bi and a -+ bi of
cach ordinary prime of the form a® -+ b*. Unique prime factorization
in Z[i] establishes that these are the only Gaussian primes, up to
multiples by £1 and +i.

An easy congruence argument shows that ordinary primes of the
form 47+ 3 are not sums of two squares. The two square theorem
then shows that the primes that are sums of two squares are 2 and
all the remaining odd primes, namely, those of the form 4n + 1.

The proof of the two square theorem involves an important lemma
proved with the help of Wilson’s theorem: each prime p = 4n + 1

101
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divides a number of the form m> + 1. Since m? + 1 factorizes in Z[i].
it follows from unique prime factorization that p does also. The
factorization of p turns out to be of the form (a — bi)(a -+ bi), hence
p = (a—bi)(a+bi)=a®+b, as claimed.

6.1 Z[i] and its norm

In the last chapter we saw that certain questions about Z are clarified by
working with generalized integers, in particular, working in Z[1/n] to solve
x2—ny? = 1in Z. The role of Z[y/n] in this case is to allow the factorization

—yVn)(x -+ y\/n).

Similarly, when studying x> +y?, it helps to use the Gaussian integers

2 2
X —ny” =

Zli)| ={a+bi:a,beZ}

because x +y? = (x — yi) (x + yi).

Sums of two squares, x>+ y?, are the oldest known topic in number
theory. We have already seen results about them found by the Babylonians,
Euclid, and Diophantus. In fact, it could be said that some properties of Z|i|
itself go back this far; at least, as far as Diophantus.

Diophantus apparently knew the two square identity (Section 1.8)
(a} +b}) (3 +b3) (a,a, —[thz)l +(a,b, +h,az)l

because he knew that the product of sums of two squares is itself the sum
of two squares. Today we recognize this formula as equivalent to the mul-
tiplicative property of absolute value,

[zl

where z; = a, +b,iand z, = a, + b,i. And Diophantus’ identity is exactly
the formula

norm(a, + by iynorm(a, + b,i) = norm((a, + b,i)(a, + byi)),  (*)
where “norm” denotes the norm of Z|i,

norm(a -+ bi) = |a-+ bi* = &+ b*.
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Exercises

When discussing factorization there are always trivial factors, called units, that we
prefer to ignore. For example, in N the only unit is 1, in Z the units are 1 and —1,
and in Z[i] the units are the elements of norm 1.

6.1.1 Show that the units of Z[i] are £1, %i.

Likewise, the units of Z[/n] are its elements of norm 1, that is, the numbers
a-+by/nwith @ —nb® = 1.

6.1.2 Describe the units of Z[v/2].

6.1.3 Show that Z[,/n] has infinitely many units for any nonsquare natural num-
ber n.

6.2 Divisibility and primes in Z|i] and Z

The Z[i| norm
norm(a + bi) = |a-t bil*

a* b

is more useful in number theory than the absolute value because the norm
is always an ordinary integer. The multiplicative property of the norm (*)
implies that, if a Gaussian integer ¢ divides a Gaussian integer ¥, that is, if

y=ap forsome f € Z[i],

then
norm(y) = norm(o;)norm(f3 ),

that is, norm( ) divides norm(y).

Because of this, questions about divisibility in Z[i] often reduce to
questions about divisibility in Z. In particular, it is natural to define a
Gaussian prime to be a Gaussian integer that is not the product of Gaus-
sian integers of smaller norm. Then we can answer various questions about
Gaussian primes by looking at norms.

Examples.

1. 4+ iis Gaussian prime.

Because norm(4 + i) = 16+ 1 = 17, which is a prime in Z. Hence
4 iis not the product of Gaussian integers of smaller norm, because
no such norms divide 17.
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2. 2is not a Gaussian prime.
Because 2 = (1 —i)(1+1i) and both 1 — and 1+ i have norm 2,
which is smaller than norm(2) = 4.

w

. 1—i, 1 +i are Gaussian prime factors of 2.
Because norm(1 — i) = norm(1 i) = 2 is a prime in Z, hence 1 —i
and 1+ are not products of Gaussian integers of smaller norm.

Prime factorization in Z[i]. Any Gaussian integer factorizes into Gaus-
sian primes. The proof is similar to the proof in Z.

Proof. Consider any Gaussian integer y. If y itself is a Gaussian prime,
then we are done. If not, then y = o for some a,f € Z|[i| with smaller
norm. If ¢, B are not both Gaussian primes, we factorize into Gaussian
integers of still smaller norm, and so on. This process must terminate since
norms, being natural numbers, cannot decrease forever. Hence we eventu-
ally get a Gaussian prime factorization of y. o

As in Z, it is not immediately clear that the prime factorization is
unique. However, we see in Section 6.4 that unique prime factorization
holds in Z{i] for much the same reasons as in Z.

Exercises

An equivalent way to define Gaussian primes, in line with a common way of
defining ordinary primes, is to say that @ is a Gaussian prime if @ is divisible
only by units and units times @. (It is conventional to use the Greek letter pi to
denote primes in Z[i] and other generalizations of Z, the way p is used to denote
ordinary primes. However, to avoid confusion with 7 = 3.14159 ... I prefer to use
@, the variant form of pi.)

62.1 Explain why this definition is equivalent (o the one above.

6.2.2 Prove that 3 is a Gaussian prime by considering the divisors of norm(3).

Ordinary primes are not always Gaussian primes, as we have already seen in
the case of 2. In fact, 2 is “almost a square™ in Z|i].

6.2.3 Show that a unit times 2 is a square in Z[i.

624 Factorize 17 and 53 in Z[i].
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6.3 Conjugates

The conjugate of z = a+ bi is T = a— bi. The basic properties of conjuga-
tion (not only in Z[i] but for all complex numbers z) are

These can be checked by writing z; = a, +b,i, z, = a, +b,i and working
out both sides of each identity. We use these properties of conjugation to
take the first step towards a classification of Gaussian primes.
Real Gaussian primes. An ordinary prime p € N is a Gaussian prime <
p is not the sum of two squares. (And obviously p <0 is a Gaussian prime
< —p € Nis a Gaussian prime.)
Proof. (<) Suppose that we have an ordinary prime p that is not a Gaus-
sian prime, so it factorizes in Z[i]:
p = (a+bi)y,
where @+ bi and y are Gaussian integers with norm < the norm p? of p
(and hence also of norm > 1). Taking conjugates of both sides we get
p=(a=bi)y,
since p is real and hence p = Pp. Multiplying these two expressions for p
gives
p* = (a—bi)(a+bi)yy
@),
where both @® + b%,|y|> > 1. But the only such factorization of p? is pp,
hence p — a* 4 b*.
(=) Conversely, if an ordinary prime p equals a® + b* with a,b € Z
then p is not a Gaussian prime because it has the Gaussian prime factor-

ization
p = (a—Dbi)(a+ bi)

into factors of norm a* +b* = p < norm(p) = p*. o
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Notice also that the factors a — bi and a -+ bi of p are Gaussian primes
because their norm is the prime number a® +b* = p. Moreover, all Gaus-
sian primes a + bi, where a, b # 0, come in conjugate pairs like this. This is
50 because if one member of the pair factorizes into o then its conjugate
factorizes into Gp.

‘What is not yet clear is whether all Gaussian primes a + bi with a,b
nonzero are factors of ordinary primes p = a® +b?. It is conceivable that
a -+ bi could be a Gaussian prime while a® + b is a product of two or more
ordinary primes. In Section 6.4 we rule this out with the help of unique
prime factorization in Z[i].

At any rate, we can see that further clarification of the nature of Gaus-
sian primes depends on finding another way to describe the ordinary primes
that are sums of two squares. We saw in Section 3.7 (Example 1) that or-
dinary primes that are not sums of two squares are of the form 4n +3. The
complement to this result—that any prime of the form 4n + 1 is a sum of
two squares—is a famous theorem discovered by Fermat. It is proved in
Section 6.5.

Exercises
6.3.1 Verify the basic properties of conjugation mentioned above.

‘The proof of the classification of real Gaussian primes has the following in-
teresting consequences.

6.3.2 Show that each ordinary prime has a distinct Gaussian prime associated
with it.

6.3.3 Deduce that there are infinitely many Gaussian primes.

Since the real positive Gaussian primes are those of the form 4n + 3, another
way to prove that there are infinitely many Gaussian primes is to show that there
are infinitely many ordinary primes of the form 4n+ 3. The proof is along lines
similar to Euclid’s proof in Section 1.1.

6.3.4 Show that the product of numbers of the form 4n -+ 1 is of the same form.
Deduce that any number of the form 4z - 3 has a prime divisor of the form
4n+3.

6.3.5 If py, py,..., p; are primes of the form 4n + 3, show that 2p, p, -+ p, + 1is
also of the form 4n + 3.

6.3.6 Deduce from Exerc
of the form 4n 3

es 6.3.4 and 6.3.5 that there are infinitely many primes
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6.4 Division in Z[i]

Unique prime factorization in Z[i, as in Z, relies on the Euclidean algo-
rithm, which depends in turn on:

Division property of Z[i]. If o, B # 0 are in Z|i| then there is a quotient i
and a remainder p such that

a=uB+p wih |p|<|B|

Proof. This property becomes obvious once one sees that the Gaussian
integer multiples ¢f3 of any Gaussian integer 8 # 0 form a square grid in
the complex plane.

This is because multiplication of 8 by i rotates the vector from 0 to 8
through 90°, hence 0, f, and if3 are three corners of a square. All other
multiples of 8 are sums (or differences) of § and i3, hence they lie at the
corners of a square grid. (Figure 6.1.)

Figure 6.1: Multiples of a Gaussian integer

Any Gaussian integer o lies in one of these squares, and there is a
nearest corner (f3 (not necessarily unique, but no matter). Then

o=up+p, where |p|= distance to nearest corner,
0 |p| is less than the side of a square, namely |B|. o
Thanks to the division property we have
1. A Euclidean algorithm for Z][i]
2. ged(a,B) = pa -+ vf for some u,v € Z[i].
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3. The prime divisor property: if a prime @ divides o3 then @ divides
o or @ divides 8.

el

Unique prime factorization up to order and factors of norm 1, namely
=41 and +i. Elements of norm 1 are called units and unique prime
factorization usually comes with the qualification “up to unit fac-
tors”. This is true even in Z, where the units are =1 and hence
primes may vary up to sign.

As a first application of unique prime factorization in Z[i] we complete
the description of Gaussian primes begun in Section 6.3. There we found
that the real Gaussian primes are ordinary primes that are not sums of two
squares, and their negatives. It is also clear that the pure imaginary Gaus-
sian primes are of the form =ip, where p is a real Gaussian prime. Thus it
remains to describe the Gaussian primes a -+ bi with a, b nonzero.

Imaginary Gaussian primes. The Gaussian primes a+ bi with a, b nonzero

are factors of ordinary primes p of the form a* + b*.

Proof. First, as noted in Section 6.3, if a + bi is a Gaussian prime then so

is a — bi (because if @ — bi = oo is not prime, neither is a + bi = 0f3).
Next, (a — bi)(a+ bi) is a (necessarily unique) Gaussian prime factor-

on of

p=a*+b* = (a—bi)(a+bi).
But p must then be an ordinary prime. Indeed, if
p—rs with 1<rs<p and rseZ,
then the Gaussian prime factors of r and s give a Gaussian prime factoriza-

tion of p different from (a — bi)(a + bi) (either two real factors r and s, or
> four complex factors). o

Exercises

Using unique prime factorization we can prove results on squares and cubes in

Zli), similar to those on squares and cubes in N proved in Section 2.5. The only

difference is that we have to take account of units, as indeed we already do in Z.

6.4.1 Isittrue in Z that relatively prime factors of a square are themselves squares?
If not, how should the statement be modified to make it correct?

6.4.2 Show that relatively prime factors of a cube in Z are themselves cubes.

6.4.3 Formulate a theorem about relatively prime factors of a square in Z[i].

6.4.4 Show that relatively prime factors of a cube in Z[i] are themselves cubes.
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6.5 Fermat’s two square theorem

In Section 3.7 we used congruence mod 4 to show that primes of the form
4n -+ 3 are not sums of two squares. Fermat’s two square theorem says that
the remaining odd primes—those of the form 4n + 1—are all sums of two
squares.

We apply the theory of Z[i] to a prime p = 4n + 1 with the help of an
m € Z such that p divides m* 1 1. Such an m always exists by a result of
Lagrange (1773) that follows from Wilson’s theorem in Section 3.5: for
any prime p

1x2x3x--x(p—1)=—1 (mod p).
Lagrange’s lemma. A prime p = 4n + 1 divides m* + 1 for some m € Z.
Proof. If we apply Wilson’s theorem to the prime p = 4n - 1 we get
—1=1x2x3x:-x4n (mod p)
IXx2x: % 271) x

(

((2n+1) x -+ x(4n—1) x (4n)) (mod p)
(Ix2x-- ><2n)><
(
(
(

(=2n) x -+ x (=2)(=1)) (mod p) since p—k = —k (mod p)
1X2%: X 2n)l(—1)l" (mod p)
1x2x--x2n)> (mod p)

Taking m = (2n)! we get m* = —1 (mod p). That is, p divides m?> 1. O

Fermat’s two square theorem. If p = 4n + 1 is prime, then p = a*+ b*
for some a,b € Z..

Proof. Given p, let m € Z be such that p divides m* 1, as in the lemma.
In Z[i], m? + 1 has the factorization

m* 1= (m—i)(m+i).

And, even lhough p divides m

m

2 1, p does not divide m —i or m+ i because
b £ ; and 7 o - are not Gaussian integers.

By the Gd an prime divisor property of Section 6.4, it follows that
p is not a Gaussian prime. But then p = a* +b?, as proved in Section 6.3.
o
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It also follows that
p = (a—bi)(a+bi)

is a factorization into Gaussian primes, and we now know that any such
factorization is unique. So in fact we have a stronger form of Fermat’s two
square theorem: each prime p = 4n+ 1 is a sum a* + b* of two squares for
a unique pair of natural numbers a, b.

Exercises

Here is another way in which Z[i] throws light on sums of two squares. The

following exercises develop a proof of a theorem of Euler (1747): if ged(a,b) = 1

then any divisor of a®> + b is of the form ¢ + d* where ged(c,d) = 1. The main

steps depend on unique prime factorization in Z[il.

6.5.1 Give an example that shows why the condition ged(a,b) = 1 is necessary.

6.5.2 Show that each integer divisor e > 1 of a + b is a product of Gaussian
prime divisors g+ ir of a® + b, unique up to unit factors.

6.5.3 Show that each of the Gaussian primes g+ ir divides cither a —ib or a + ib.
Deduce that none of them is an ordinary prime p.

6.5.4 Show that, along with each Gaussian prime factor g 1 ir of e, its conjugate

q—irisalso a factor.
6.5.5 Deduce from Exercise 6.5.4 that e is of the form ¢® +d? where ¢+ di divides
a+bi.

6.5.6 Deduce from Exercise

that ged(e,d) = 1.

6.6 Pythagorean triples

Now is a good time to revisit the primitive Pythagorean triples, whose re-
lationship with Z[i|] was suggested in Section 1.8. Since odd squares are
congruent to 1 (mod 4) and even squares are congruent to 0 (mod 4), a sum
of two odd squares is not a square. Hence in a primitive triple (x,y,z) one
of x, y is even and z is odd. The argument in Section 1.8 was that if

>
xT4y =z

2 2

then

(x = yi) (x + yi) = 2,
50 x—yi and x + yi are Gaussian prime factors of an odd square, z2. Then
we wanted to say that:
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1. If x and y are relatively prime (in Z) then so are x — yi and x -+ yi (in
Z[i]).

2. In Z][i], relatively prime factors of a square are squares.

The first statement is correct. If ged(x,y) = 1 in Z then ged(x,y) = 1in
Z[i]. This is so since a common Gaussian prime divisor is accompanied by
its conjugate, and their product is a common divisor >1in Z. A common
divisor of x —yi and x + yi also divides their sum 2x and difference 2iy.
Therefore, since ged(x,y) = 1, any common prime divisors of x — iy and
X+ iy are primes 41 dividing 2. No such divisors are present, since they
imply that (x —iy)(x+iy) = 2% is even.

The second statement is not quite correct, but the following amendment
of itis: relatively prime factors of a square are squares, up to unit factors.
This follows from unique prime factorization in Z|i.

Since x — yi and x -+ yi have no common Gaussian prime factor, while
each prime factor of z2 occurs to an even power, each prime factor of x — yi,
and each prime factor of x -+ yi, must also occur to an even power. A product
of primes, each occurring to an even power, is obviously a square (compare
with the same argument for natural numbers in Section 2.5). Hence each of
x—yiand x+yi is a unit times a square, since their only possible nonprime
factors are units. o

The amended second statement is good enough to give us the conclu-
sion we expect. We have shown that x — yi is a unit times a square, hence
it is one of

(s—ti)?, —(s—1i)%, for some s,¢ € Z.

That is, it is one of

(5% —1%) —2sti, F2sti, 25t (2 —12)i, —2st+ (1 —5)i.
In each case, equating real and imaginary parts gives one of x and y in
the form u* — v* and the other in the form 2uv for some natural numbe
w and v. Thus the result is essentially the same as that obtained by the
loose argument in Section 1.8, but better, because it does not force the
even member of the pair, 2uv, to be first.

Mo
prime divisor of « and v is a common di

over, we necessarily have ged(u,v) = 1 because any common
or of 1> —v? and 2uv, hence
of x and y. Thus the correct outcome of the speculation in Section 1.8 is:
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Primitive Pythagorean triples. If x> 1 for some relatively prime
natural numbers x and y, then one of x and y is of the form u*> —v* and the
other of the form 2uv, for relatively prime natural numbers u and v. o

We also find in each case that z = u® +12, because
(1 =)+ Quv)? =+ 22 vt = (P )

Thus z is a sum of two squares. Since u and v are any relatively prime
numbers, and a prime > +v? necessarily has ged(u,v) = 1, z can be any
prime sum of two squares. Thus we get a geometric characterization of the
primes that are sums of two squares.

Prime hypotenuses. The primes that are sums of two squares are those
that occur as hypotenuses of right-angled triangles with integer sides. O

Exercises

The last result, together with Fermat's two square theorem, shows that the primes
of the form 4n + 1 are precisely those occurring as hypotenuses of integer right-
angled triangles.
6.6.1 Find integer right-angled triangles with hypotenuses 5, 13, 17 (you should
know these), and 29, 37, and 41.
6.6.2 Given a prime p = 4n 1, is the integer right-angled triangle with hy-
potenuse p unique?
The argument above shows that, if (x is a primitive Pythagorean triple,
then x -+ yi is a unit times a square in Z[i]. But once we know that x = u? —V?,
y = 2uv we can say more.

6.6.3 1f (x,y,z) is a primitive Pythagorean triple with x odd, show that x| yi is a
square in Z|i].

6.6.4 Verify directly that 34 4i is a square in Z[i].

It should be clear from your answer to Question 6.6.3 that finding the pa-
rameters « and v for a given primitive Pythagorean triple z), with x odd, is
equivalent to finding the square root(s) of a complex number.

6.6.5 Find the square root of 5+ 12i.

6.6.6 1If you have some software for computing square roots of complex numbers,
verify that each entry (x,y,z) in Plimpton 322 (Section 1.6), except the
triple (60,45,75), yields a y--xi that is a square in Z[i]. (Note: this includes
the last triple (90,56,106), which is clearly not primitive.)

6.6.7 Explain how to compute the square root of a complex number by hand,
using quadratic equations.
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6.7 *Primes of the form 4n+ 1

Lagrange’s lemma, proved in the Section 6.5, is actually half of an impor-
tant result concerning the so-called “quadratic character of —1” that we
study further in Chapter 9. Here we use it to prove that there are infinitely
many primes of the form 4n -+ 1, complementing the corresponding easy
result about primes of the form 4 + 3 proved in Exercises 6.3.4-6.3.6.
Quadratic character of —1. The congruence x> = —1 (mod p), where p
is an odd prime, has a solution precisely when p = 4n+ 1.
Proof. When p =4n + 1, Lagrange’s lemma gives an x with x*> = —1 (mod
p). To show that x> = —1 (mod p) has no solution when p = 4n + 3 we
suppose, on the contrary, that it does.

1

—1 (mod p=4n+3)
then raising both sides to the power 2n -} 1 gives

2\2n+1 — 2n+1
() =(=1)

1 (mod p —4n+3).
Since 2(2n+1) = 4n+2 = p—1, this says that
¥ 1=—1 (mod p),

contrary to Fermat’s little theorem. Hence —1 (mod p) has no solution
when p = 4n+3. o

Thus solutions of x* = —1 (mod p) occur precisely when the odd prime
p is of the form 4n + 1. To put it another way: the odd primes p that divide
values of X* + 1, for x € Z, are precisely the primes p = 4n | 1.
Infinitude of primes 4n -+ 1. There are infinitely many primes of the form
p=4n+t1

Proof. From what we have just proved, it suffices to show that infinitely
many primes divide values of x> + 1 for x € Z. Suppose on the contrary
that only finitely many primes py, p,,..., p; divide values of a4 1.

Now consider the polynomial

(pypy Py +1=80).

Clearly, any prime p that divides a value of g(y), for y € Z, also divides
a value of x% 4 1 (namely, for x PPy Y)- Butnone of py,py,..ypy
divides g(y), because each leaves remainder 1.
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Therefore, no prime divides g(y). for any y € Z, and hence the only
possible values of the integers g(y) are 1. In other words,

(pypypy)* +1==%1 forally€Z.
But this is absurd, because each of the quadratic equations
(Plp:“‘Pky)lJrl =1 and (plpz«upky)l+1 — 1

has at most two solutions y. This contradiction shows that x2 4 1 is divisible
by infinitely many primes, as required. o

It now follows, by Fermat’s two square theorem, that infinitely many
primes are sums a® + b* of two squares. Hence there are infinitely many
Gaussian primes a -+ ib that are neither real nor pure imaginary.

Exercises
“The argument just used to prove that x> + 1 is divisible by infinitely many primes

can be generalized to any nonconstant polynomial f(x) with integer coefficients.
‘We suppose that

J(x) = anX"+ - taxtay, whereag,a,....a, € Zand ay,a, # 0,
has values divisible only by the primes py, p,..., Py and consider the polynomial
f(agpipy--py) = ap8(y),

where g(y) is a polynomial of degree m.

6.7.1 Show that g(y) has integer coefficients, constant term 1, and that any prime
dividing a value of g(y), for y € Z, also divides a value of f(x), for x € Z.

6.7.2 Show, however, that none of p,, p, ..., p; divide g(y) when y € Z.

6.7.3 Deduce from Exer

¢ 6.7.2 that g(y) = %1 forany y € Z.

6.7.4 Show that the equations g(y) = 1 and g(y) = —1 have only finitely many
solutions, which contradicts Exercise 6.7.3. (Where have you assumed that
f(x) is nonconstant?)
This contradiction shows that f(x) is divisible by infinitely many primes. But
now notice: we did nor assume that infinitely many primes exist, hence this is a
self-contained proof of Euclid’s theorem that there are infinitely many primes.

6.7.5 Ts this argument essentially different from Eucli
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6.8 Discussion

The two square theorem was stated without proof by Fermat in 1640,
though he claimed to have a proof by descent: assuming there is a prime
that is of the form 4n -+ 1 but not a sum of two squares he could show that
there is a smaller prime with the same property. The first known proof of
the theorem was in fact by descent, and published by Euler (1755). It cost
him several years of effort.

Today it is possible to give quite simple proofs with the help of the re-
sult we called Lagrange’s lemma in Section 6.5. Lagrange himself proved
this lemma by means of Fermat’s little theorem and his own theorem on
the number of solutions of congruences mod p (Section 3.5).

Lagrange (1773) used his lemma together with his theory of equiva-
lence of quadratic forms (Section 5.6) to give a new proof of the two square
theorem. The part of the proof involving quadratic forms was simplified by
Gauss (1801), long before his creation of the Gaussian integers. It seems
that Gauss had the main results about Z[i], including unique prime fac-
torization, around 1815, but they were first published in 1832. The proof
used in this chapter, combining unique prime factorization in Z[i] with La-
grange’s lemma, is due to Dedekind (1894).

Yet another popular proof uses the geometry of numbers, developed in
the 1890s by Minkowski. It may be found in Scharlau and Opolka (1985)
together with a historical introduction to Minkowski’s results.

Parallel to all the popular proofs of the two square theorem there are
analogous proofs of the four square theorem of Lagrange (1770): every
natural number is the sum of (at most) four natural number squares. Most
use the following wunlcrpdrl of Lagrange’s lemma: any prime p divides
a number of the form /2 m? 4 1. The counterpart turns out to be easier.
‘What is harder is the four square identity discovered by Euler (1748b). It is
analogous to the two square identity of Section 6.1 but is much more com-
plicated (see Section 8.3). It can be mechanically checked by multiplying
out both sides, but what does it mean?

The Gaussian integer proof is favored in this book because Z[i] is a
natural structure and the two square identity is a natural part of it—the
multiplicative property of the norm—rather than an accidental identity of
formal expressions. In Chapter 8 we give a similar “structural™ proof of
the four square theorem that uses the quaternion integers. These are a
able four-dimensional structure from which the four square identity
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emerges naturally as the multiplicative property of the quaternion norm.
Again, the key to the proof is unique prime factorization (or rather the
prime divisor property, which happens to be somewhat easier than unique
prime factorization in the quaternion case).

Fermat’s two square theorem was generalized in another direction by
Fermat himself. In 1654 Fermat announced similar theorems on primes of
the forms x? -+ 2y? and x? + 3y*:

p=x*12 & p=8ntlorp=8n+3,
p=xX+3y e p=3ntl

Our proof of the two square theorem in Section 6.5 can be adapted to Fer-
mat’s x% + 2y* and x> + 3y? theorems with the help of unique prime fac-
torization theorems for numbers of the forms a + byv/—2 and a + by/—3
respectively. Such theorems will be proved in the next chapter.

The other thing we need to adapt is Lagrange’s lemma: if p = 4n +1
then p divides a number of the form m? + 1 for some m € Z. In Section
6.7 we described this lemma (together with its converse) as the guadratic
character of —1 because it says that —1 is congruent to a square mod p
precisely when p —4n + 1.

To prove Fermat’s theorems on primes of the form x2 +2y? and x> + 3y*
we similarly need the quadratic characters of —2 and —3. They are:

—2 =square (mod p) < p =8n+ 1or8n+3,
—3 =square (mod p) & p =3n+ 1.

Instead of finding quadratic characters one by one, in Chapter 9 we prove
the sweeping law of quadratic reciprocity, which allows us to tell when
any integer is congruent to a square mod p. Quadratic reciprocity was
first observed by Euler and proved by him in special cases, such as those
involved in Fermat’s theorems. The first general proof is due to Gauss
(1801), and quadratic reciprocity has since been proved in many different
ways. In fact, it has been proved more often than any other theorem except
its distant ancestor, the Pythagorean theorem.
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Quadratic integers

PREVIEW

Just as Gaussian integers enable the factorization of x2 +y?, other
quadratic expressions in ordinary integer variables are factorized
with the help of quadratic integers. Examples in this chapter are

P42 (VD + VD),
2=y = (A+—IIT\/—_3}_> (\+_—.

In the first example, the factors belong to

ZIV=2] ={a+by=2:a,beZ}.
Like the Gaussian integers a + bi, the numbers a + by/—2 enjoy
unique prime factorization. We use this property to find all (ordi-
nary) integer solutions of the equation y* = x° +2.
The numbers =2/ and === in the second example appear
at first to be “fractional”, and one might prefer to reserve the term
“integer” for numbers in

ZIV3) = {a+by/3:a,beZ}.
However, unique prime factorization fails in Z[\/=3|, and it is pre-
cisely by adjoining the number —5/=3 that it is regained.

This leads to adiscussion (partly in the exercises) of the general con-
cept of quadrati
with two remarkable applications of \/=3: parametric formulas for

integer and its applicatior 'he chapter concludes

the (infinitely many) rational solutions of x* + y3 = z3 + w?, and
proof that there are no nonzero integer solutions of x* + y*

117
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7.1 The equation y> = x2 +2

Diophantus was usually interested in rational solutions of equations, and
the equation y* = x? + 2 has infinitely many of these (see Exercises 1.7.1—
1.7.4). But in his Arithmetica, Book VI, Problem 17, Diophantus men-
tioned that y* = x? +2 has the solution x = 5, y = 3. He evidently thought
that this natural number solution was interesting. In 1657 Fermat added
the claim that there is no other natural number solution of y* = x* 2.

Fermat’s claim was proved by Euler (1770), assuming unique prime
Jfactorization in

Z|V=2] ={a+bV=2:a,b € Z}.

Euler gave no the proof of the latter fact (which is similar to the proof for
Z[i| given in Section 6.4), but leaving unique factorization aside for the
moment, his argument goes as follows.

Supposing that y* = x? 4 2 for some x,y € Z, we have a factorization

in Z[v=2|:
V= (= VD)t VD). *

Now we assume unique prime factorization in Z[v/—2| and also that
ged(x—v=2,x+vV=-2)=1

(another fact that we leave aside for the moment). By considering the prime
factorizations of both sides of (*), it then follows that the factors x —/—2
and x | v/—2 are cubes in Z[v/-2].
The latter statement means that
x—=v=2=(a+bv=2)> forsomea,bcZ
@+ 3a*by/=2 — 6ab? —2v/=2b*
=@ —6ab® + (3a*b —2b%)/ 2.

Equating real and imaginary parts gives

x = a —6ab’
1= 26> —3a*b = b(2b* —3d?).
The latter equation says that the natural number b divides 1, hence b = +1.

Then the other divisor 2% —3a? of 1 must equal —1, hence a = +b = £1.
This gives x = %5 and hence y = 3. o
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Exercises

3

There is a similar treatment (using Zi]) of the equation y* = x? + 1, which shows

that its only integer solution is x =0,y = 1.
7.1.1 Supposing that the factors x £ on the right-hand side of
Ve b= (k=) +i)
are cubes (a=£bi)? in Z[i], deduce that 1 = b(3a> —b?).
7.1.2 Deduce from Question 1 that a = 0, hence x = 0, hence y = 1.

A more challenging equation, which can also be mastered with the help of
Zli], is y* = 2% + 4. Fermat claimed that the only natural number solutions are
x=2,y=2andx =11, y=>5. Euler (1770) solved this equation using Z[i| but
again without proving unique prime factorization. The argument goes along the
above lines when x is odd, in which case it happens to be correct to assume that
the factors x —2i and x + 2i are both cubes.

7.1.3 Assuming that x = 2i are cubes (a=bi)* in Z[i], show that 2 = b(3a> — b?)
and deduce that the positive odd x = 11.

7.2 The division property in Z[\/—2]

Unique prime factorization follows the same way as in Z and Z[i]: from
the prime divisor property that follows from a Euclidean algorithm, made
possible by a division property.
Division property for Z[\/=2|. For any o, B # 0 in Z|\/=2| there are j1,
p in Z[/=2| with
a=uB+p and |p|<I|B|.

Proof. To see why the division property holds in Z[v/=2| we look at the
multiples tf3 of any nonzero f§ € Z[/=2|. These lie at the corners of
a grid of rectangles, the first of which has corners at 0, 8, f+v/—2 and
B(1++/=2), shown in Figure 7.1.

Any o € Z[\/=2] is in one of these rectangles and, as the picture shows,
the distance [p| of & from the nearest multiple i of B satisfies

| 2 ﬂ : ﬂ ’ agoras’ g
p|* < > | NG by Pythagoras’ theorem

IBIP+2BP _ 3IBI
4

4



120 7 Quadratic integers

B+V=2)

ﬁ

Figure 7.1: The division property in Z[v/—2]

BV

Hence |p| < |B

required. [m]

“The units in Z[/=2], as in Z, are just =1. We prove this using the norm
a?+42b% of a+by/=2. Units are elements of norm 1, and a® +2b% — 1 only
ifb=0anda~— 1.

Now suppose we have a factorization of a cube into relatively prime
factors s and ¢ in Z[v/=2):

Vo =t

Since s and ¢ have no prime factor in common, the cubed prime factors of
y? must separate into cubes inside s and cubes inside ¢. There could also
be unit factors in s and ¢, but these can only be 1 or —1, both of which are
cubes. Hence the relatively prime factors of a cube are themselves cubes.

This fills another gap in Euler’s solution of y* = x> + 2. The only gap
that now remains is to show that ged(x — v/=2,x + v/=2) = 1.

Exercises

The equation y* = 2 + 1 that we took up in the last exercise set calls for a similar
study of units in Z[i]. Recall from Section 6.4 that the units of Z[i] are 1, i.

7.2.1 Check that each of the units in Z|i] is a cube.

722 Deduce from Exercise 7.2.1 and unique prime factorization that relatively
prime factors of a cube in Z[i] are themselves cubes.
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The same properties of units and cubes apply to the equation y* = x> 4 4
when we factorize its right-hand side into (x — 2i)(x -+ 2i), but when x is even, say
x = 2X, we have another problem.

7.2.3 Show that in this case y is even, y = 2¥ say, and hence Y =x+4is equiv-
alent t0 2¥% = X2 + 1= (X —i)(X +1i).

7.2.4 Show that X is odd in any integer solution of 2¥® = X2+ 1, and that in this
case | —i divides X —i.

It follows, by taking conjugates, that 1 - i divides X + i for any odd X. In fact,
since i(1 —i) = 1+, the number 1 — i is a common divisor of X —i and X +i in
Z[i]. In the next exercise set we see whether 1 —i is their ged.

7.3 The ged in Z[v/-2]
Again we use the Z[v/=2| norm
norm(a + bv/=2) = |a + bv/=2|* = a* + 2b%,

which is multiplicative by the multiplicative property of absolute value.
Thus it is true, as in Z[i], that if o divides y then norm(e) divides
norm(y). Therefore, if § is a common divisor of ¢ and 3, then norm(8) is
a common divisor of norm(ot) and norm(f3).
‘We can now return to the equation

Ve 2= (0= vV=2) (Y —-2)
and compute ged(x — v/ =2,x +v/=2).

Relative primality of the factors. If x,y € Z are such that y* = x> +2,

then ged(x —yv/=2,x +yv/=2) = L.

Proof. If y* = x* + 2, then x must be odd. Indeed, for even x we have

X12=2 (mod4),
whereas
y'=0,1or3 (mod4).

This can be seen by trying y = 0,1,2,3 (mod 4). It follows that the norm
x4 20f x£ /=2 is odd.
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Now the ged of x — /=2 and x + /=2 also divides their difference,
2+/—2, which has norm 8. The ged of 8 and the odd number X2 42is 1.
Therefore

ged(x—V=2,x+V=2) = 1. [u]

‘We have now filled the gaps in Euler s proof lhal x= =3 istheonly
natural number solution of y* = x?+2: the cube y* faclnuzes into the rel-
atively prime numbers x — /2 and x + v/—2, which are cubes by unique
prime factorization in Z[/=2] and the fact that the units in Z[v/=2] are
also cubes. We can therefore write x — /=2 = (a+bv/—2)* and complete
the proof as already indicated in Section 7.1.

Exercises.

We can similarly use Z[i] to complete the proof, begun in the previous exercise
sets, that x = 0, y = 1 is the only integer solution of y* = x2 4 1.

7.3.1 Use congruence mod 4 to show that x is even in any integer solution of
y* =+ 1. From now on assume that (x,) is such a solution.

7.3.2 Explain why ged(x —i,x+ i) = ged(x+i,2) and use Question 7.3.1 to show
that norm(x + i) is odd.

733 Deduce from Question 7.3.2 that ged(x — i,x ) = 1.
7.34 Deduce, from the previous exercises and unique prime factorization in Z[i,

that the factors on the right-hand side of y* = (x—i)(x+ i) are cubes in
Z[i).

Likewise, we can find ged(X —i,X + i) when X is odd, and hence complete
the solution of y* = 2% ++ 4 when x = 2X.

7.3.5 Show that 2 does not divide X —i or X + i, and deduce from Exercise 7.2.4
that ged(X — i, X +i) = 1 —i.

7.3.6 Use unique prime factorization in Z|i] to deduce from 23 = (X —i)(X +i)
that
X—i=(1—i)(a—bi)* forsomea,beZ.
7.3.7 Deduce from Exercise 7.3.6 that
1 =a* b+ 3ab(a—b) = (a—b)(a® +4ab + b*)

and conclude that X = 1, hence x = 2.
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74 Z[V=3] and Z[{,]

A natural step after investigating Z|i] and Z[v/=2| would be to study
Z|V-3] ={a+bv-3:a,beZ}.

But here is a surprise: unique prime factorization fails in Z[/=3).
Consider the following factorizations of 4:

4=2x2=(1-vV=3)(1+V=3).
In Z[v/=3] the norm is
norm(a -+ bv/=3) = |a + bv=3|* = a® + 3b*

and, as usual, if o divides y then norm(er) divides norm(y).
But now norm(2) = 4, which is not divisible by any smaller integer of
the form a® -+ 3b% except 1, hence 2 is a prime of Z[v/=2|. And

norm(l —v/=3) =143 =4,

s0 1 —+/=3 is also prime, as is 1+ v/—3. Thus 4 has two distinct prime
factorizations in Z[v/=3|. [u]

This defect can be repaired by enlarging Z[v/—3| to
Z|G| = {a+bE;a,b e L},

where
¢ -l V=3

3 2
is one of the imaginary cube muls of 1. (This is why we use the subscript
3. In general, ¢, denot isin ==, the nth root of 1.) The elements
of Z[{,] lie at the co of a lllmg of the plane by equilateral triangles,
and are called the Eisenstein integers.

By geometric arguments like those used for Z[i| and Z[v/=2|, we can
see that Z[&3] has the division property, hence a Euclidean algorithm and
unique prime factorization. Figure 7.2 compares the point sets Z[y/—3|
and Z[{;] in lha, p|dl‘| shnwing why the division property fails for the first

In the rectangles of Z[v/=3], cach center point (such as the one at the
top of the triangle shown) is at distance 1 from the two nearest corners,
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V3
L] L] L] L] L] L] L] L] L] L]
&

L] L] L]

L] L] A L] L] L] A L]
0 1 0 1

L] L] L[] L[]

L] L] L] L] L] L] L] L] L] L]

Figure 7.2: Z[/=3] (left) and Z|{;] (right)

hence its distance from the nearest corner is not less than the smallest side
length of the rectangle. Z[C;] fills these “holes™ in Z[v/—3|, producing the
tiling of the plane by equilateral triangles.

Division property for Z[(;|. For any o, 7 0 in Z|L5] there are u, p in
Z|&s| with

a=upt+p and |p|<|Bl.

Proof. In the equilateral tiling, each point of the plane lies in some triangle
and its distance from the nearest vertex is less than the side length of the
triangle. In fact, its distance from any vertex of the surrounding triangle is
less than the side length. This is so because a circle centered on a vertex
and with a side as radius encloses the whole triangle.

This geometric property is the essence of the division property because,
as usual, the set 48 of multiples of any nonzero 8 € Z[{;] is the same shape
Z| ). Tts points are at the vertices of a tiling by equilateral triangles of
side length |B|. Hence the distance |p| = ot — uf| from any o € Z[{,] to
the nearest i f3 is less than the side length |B]. o

There are six units in Z[¢,]: £1, £&; and 7, and they lie at vertices
of a hexagon on the unit circle with center at O (see Figure 7.2 again). Like
the units in Z and Z[i], they all divide 1. The two distinct factorizations of
4 in Z[/=3| are the “same” in Z([{3], up to unit factors, thanks to the extra
units in the latter (exe:
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Quadratic integers

It is satisfying to be able to repair the failure of unique prime factorization
inZ[ \/ 3] by extending it to Z[{;]. But is it reasonable to consider §; —
=173 an “integer™? The general definition, which allows us to say yes,
is lhe following.

Definition. A number o € C is an algebraic integer if it satisfies a monic
polynomial equation with integer coefficients, that is

om!

m
o ta, 0" 4 a0tag =0 where  ay,a,.

1 € L

A quadratic integer is an algebraic integer satisfying a monic quadratic
equation with integer coefficients.

We study the general concept of algebraic integer in Chapter 10, where
it is shown that the sum, difference and product of algebraic integers are
again algebraic integers. 3 is an algebraic integer because it satisfies
x' —1=0. In fact, & is a quadratic ml«.gur because it satisfies the equation
x?+x+ 1 = 0 obtained by factorizing x* — 1. All elements of Z[{,], being
obtained from the algebraic integers 1 and {; by sum and difference, are
algebraic integers. It can be shown directly that they are quadratic (exer-
cise).

Closure under +, —, and X is certainly a natural requirement for inte-
gers, but perhaps the definition of algebraic integer goes too far and admits
numbers that should not be considered integers. One reason that it does
not is the following: every rational algebraic integer is an ordinary inte-
ger. This is crucial when results about ordinary integers are being derived
as special cases of results about algebraic integers.

Rational algebraic integers. If a rational number r satisfies a monic poly-
nomial equation with integer coefficients, then r is an ordinary integer.

Proof. Suppose that r = s/t, where 5,1 € Z and ged(s, ) = 1, and suppose
that r satisfies the equation

n

X ol

Fa,, X stapxtag =0, where aya,...q, | €Z.

Substituting /7 for x and taking all terms but X" to the right-hand side we
get
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Multiplying both sides by 1™ gives

o m—1 m

r 1y

= —a,, S se—apst™ —agt

— (=, " st —ag ™ M) *)

Since ged(s,7) = 1, any prime factor of 7 divides the right-hand side but not
the left. Hence 1 = 1 by unique prime factorization in Z, and therefore
is an ordinary integer. o

Remark. It follows from this result that the roots of a monic polynomial
equation with integer coefficients are either integers or irrationals. This
generalizes what was proved in Section 5.1—that \/n is irrational when
n is a nonsquare natural number—because /7 is a root of the equation
¥—n=0.

Exercises

The two factorizations of 4 found in Z[y/=3], 2x 2 and (1 —/=3)(1 +/=3).
differ only by unit factors in Z[{,].

7.4.1 Find units u and 7 in Z[{;] such that 2u x 27 = (1 —/=3)(1+/=3).

7.42 Check that the units ;. 83 of Z[{,] satisfy monic polynomial equations
with integer coefficients.

7.5 *Rational solutions of x* + y3 =724w?

Like the Pythagorean equation x* 4 y* = z2, the equation x° +y* = 2> +w?
has infinitely many integer solutions, some of them of great renown. Here
is one, associated with the great Indian number theorist Ramanujan.

It was Littlewood who said that every positive integer was one of
Ramanujan’s personal friends. I remember going to see him once
when he was lying ill at Putney. I had ridden in taxi-cab number
1729, and remarked that the number seemed to me rather a dull one,
and that I hoped it was not an unfavorable omen. “No,” he replied,
“itis a very interesting number; it is the smallest number expressible
as the sum of two cubes in two different ways.”

Hardy (1937).

The “two different ways™ referred to by Ramanujan are

1729 = 9* 410° = 13 4123,
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thus they correspond to an integer solution of x* +y* = 23 +w?. According
to Brouncker (1657), the same solution was found by Frenicle, along with

9153 =23 116%,
15° +33% =2° 343,
163 +33% = 9% 4343,
19° 4243 = 10° 4 27°.

Another startling solution of this equationisx =3,y =4,z = =5, w = 6;
in other words 3 +43 4 5 = 6. This result, which seems to “generalize™
32 4% = 52, really belongs to the equation x* +y* = 23 w3, but the latter
resembles the Pythagorean equation in one respect—there is a parametric
formula for all its rational solutions.

The formula is due to Euler (1756). His method can be simplified using
complex numbers, namely the norm in Q[v/=3] = {a+bv/ =3 :a,b € Q}.

Parametric solution of x> | y3

3 4w, The rational solutions are

x=[(p+39)(p* +3¢%) 11,
y=[(=p+39)(P* +34) + 1],
2= [=p+3q+ (P + 3,
w = [pt3q—(p* 1+ 3%,

where p, g and r run through all rational numbers.

Proof. If we make the substitutions x =X +Y, y =X —Y, z=Z+ W,

w = Z —W, then the equation x* | y* = z* + w? becomes

X(X? 4 3Y2) = 2(2* + 3W?),

and X,Y,Z,W are rational if and only if x,y,z,w are.

Thus the problem is equivalent to finding the rational solutions of the
equation X (X2 - 3Y?) = Z(Z* 4+ 3W?). Also, we can specialize to Z = 1
(if we later multiply the solution by an arbitrary rational), so it suffices to
find the rational solutions of

1-+43W?

¥
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Now a® +3b* = |a -+ by/=3[*. Hence
x 11 +WV=32
|X +YV=3?
CLwy=3P
Cx+rv=3
=|p+aV=3P =P 434,
for some p, g that are rational if X, Y, W are.
‘We can define p and g as the real and imaginary parts of
1+Wyv-=3
PtagV-3=——rr—.
X+YvV-=3
Multiplying both sides by X -+ Y+v/—3 gives
PX —3qY + (X + pY)V-3=1+WV=3,

and therefore, equating real and imaginary parts,

since the norm is multiplicative

pX—=3qY =1, gX +pY =W.

Since these are linear equations in ¥ and W, we can solve for Y and W
rationally in terms of p, g, and X = p* 4+ 34>, This gives a 1-to-1 corre-
spondence between rational pairs (p, g) and rational triples (X,Y, W) such
that X (X2 +3Y2) =1 +3W2.

Substituting these values of X, Y, Z = 1, and W back in x,
we find that the rational solutions of x* +y* = > +w? are all the
multiples of

x=(p+39)(p* +34°) -1,
y=(=p+30)(P* +34) +1,
2= —p+3q+(p* 138,
w=p+3g—(p*+3¢%)>,

as claimed. o

Example

p=1,q=1gives
15° 493 = 18° 4 (—12)3,

which is a multiple (and rearrangement) of the equation 3° 4 4% 4 53 = 6°.
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Exercises
7.5.1 Find asimpler p and g that also give (a multiple of) 3* +4° + 5% = 6°.

It is not clear whether the parametric rational solution of x* +y¥ =2 +w
yields a parametric integer solution. However, Davenport (1960), p. 162, gives an
infinite class of integer solutions discovered by Mahler in 1936.

7.5.2 By setting p = 3¢ and then making a linear change of variable from g to t,
derive the infinite family of integer solutions

x 9t3—l, y=1, z 94, w3t -9,

7.5.3 Find values of 7 that give 17 + 6+ 8% = 93 and 9* 4+ 10° = 13 12,

7.6 *The prime /3 in Z[{;]

Perhaps the most important Diophantine equation that can be analyzed with
the help of Z[{;] is the Fermat equation

Xy =z (*)

By doing so we settle the n = 3 case of Fermat’s last theorem: x" +y" # 2"
for natural numbers x, y, zand n > 2.

Supposing, for the sake of contradiction, that (*) holds for some natural
numbers x, y, z, we factorize the left-hand side:

By = @) —xy+y?) inZ
= )G E L) inZ(g).

tively prime, one might then hope that x +y, x + {3y, x+ ¢y
vely prime. If so, we could use unique prime factorization in
Z[&5) to conclude that x+y, x + {3y, x-+ &3y are units times cubes and plan
ca umlmdlcuon by this route.

umption that x* 4 y* = z* forces a factor
into the equation. By suitable naming of terms, /=3 divides z and each
of x+y, x+ &y, and x sz. This ruins the original plan but suggests a
new one: divide both sides of the equation (*) by (v/=3)* and build a new
equation of the same form but “with fewer factors of /=3". By slightly
generalizing the Fermat equation, the new plan can be made to work. It
leads to a contradiction by infinite descent because an integer equation in
Z[&5] cannot be divided by the integer /=3 indefinitely.
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To see how \/—3 insinuates itself into the Fermat equation (¥), we first
develop a few of its basic properties. These involve congruence mod v/—3.
where, as usual,

oc=1 (modv)
means that v divides ¢ — 7. In particular, ¢ =0 (mod /—3) means that

V=3 divides ©.
Figure 7.3 shows the congruence classes mod v/=3 in Z[;]. There are
three of them: the classes of 0 (black). 1 (white), and —1 (grey).

V=3

Figure 7.3: The congruence classes mod v/ —3

This can be checked by calculation. It suffices to look at the possible
remainders on division by v/—3, which have absolute value < V3. We can
now prove the following properties:

Cubes mod 9. For any ¢ € Z[L,], if 6 # 0 (mod /=3) then ¢° = +1
(mod 9).

Proof. Since 6 #0, 6 = =1 (mod v/=3). Choose T — +06 with T = 1
(mod v/=3), 50 T = 1+ /=3 for some u € Z|;]. Then
Co1=(1+uv=3> -1
=3uV=3 4 3(UV=3) o (uV=3)
3V (V=3 - 10)
=3v=3(u —u" (mod v/=3)
=-3vV3u(u—1)(u+1) (mod v=3).

Now i, u—1and p -+ l are in different congruence classes, h\.ncc one
of them i ble by v/=3. Thus 7° — 1 is divisible by —3y/=3v/— ‘)4

1V
That is, 7° = 1 (mod 9), dl‘ld therefore 6> = +1 (mod 9).
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It follows from this property that if o, B,y € Z[{;] and
PPty =0 (%)
—an equivalent of x> +y* = 23 since —z* = (—z)*—then /=3 divides at
least one of o, 3, 7. If not, then taking congruence mod 9 gives
+1+1+1=0 (mod9).

It easily checked that this is impossible for all eight combinations of signs.
By suitable renaming of o, B, . if necessary, we can assume that y is
divisible by v/=3, say y = 8(v/=3)". Then the three cubes equation (**)

becomes
o B & (VB =0, ()
and a second important property of congruence mod y/—3 comes into play.

Congruence of factors in a sum of two cubes. For any o, B € Z({;), the
Jactors o+ B, a+ &, a+ &3P of o + B3 are congruent mod /=3.

Proof. Since &3 %E

ot G a+¥lj a+[3+_3+—‘/’_3[3
:a|ﬁ\l+\/_ﬁ\/_
=a+f (mud\/:)
Similarly,
ot B =at FB ot (mod v=3) o

‘We now apply this property to the factorized form of equation (*#%):
(-t B) (ot &3P (o + GB) + 83 (V=3)" =0.
“The number v/—3 is prime in Z([{;| because its norm 3 is prime in Z. Since
/=3 divides §%(v/=3)¥, it also divides at least one of the factors o + 8,
ot C1/3 o+ {3B. But then it divides all of them, since they are congruent
mod v/=3. Altogether we get: if numbers o, B,y € Z|{y] satisfy
a1y =0,

then (with suitable renaming of numbers if necessary) /=3 divides y and
all the factors o+ B, o+ &, o+ G in o + B3
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Exercises

In other approaches to the equation o + B2 + 7* = 0 that T know—Nagell (1951),
p. 241, Grosswald (1966), p. 169, Redmond (1996), p. 697, and the outline in
Baker (1984), p. 86—the number A = 1 —{; is used in place of /=3. This is
probably because the equation o + " + " = 0 can be similarly treated using A =
1 — ¢, for certain other values of n, such as n = 5. However, it seems to me that
/=3 is easier to use in the special case n = 3, though one can see with hindsight
that A = 1 — {; does essentially the same job. The reason is the following.

7.6.1 Show that A equals a unit times /=3

7.6.2 Deduce from Exercise 7.6.1 that ¢ = 7 (mod A) < ¢ = 7 (mod /—3) and
that 6 = 7 (mod %) < 6 = 7 (mod 9).

7.7 “*Fermat’s last theorem for n =3

We now justify the hunch that the equation o* + 8% + 7 = 0 is impossible
for o, B,y € Z|{;] because it seemingly admits unlimited division by v/=3.
We suppose that ¥ is the term divisible by /=3, so y = (v/=3)"8 for some
& not divisible by \/=3. Then the equation can be written

o’ + B3 (V=3)1E -0

for some natural number n that we suppose to be as small as possible. In
fact we must have n > 2. Thi 50 because @, f3, and y are relatively
prime, hence o and B, like 8, are not divisible by v/—3. But then each is =
+1 (mod v/=3) by the enumeration of congruence classes in the previous
section. Hence if n = 1 and we reduce the equation mod 9, the property of
cubes mod 9 gives

+1+1+(vV=3)>=0 (mod9)

which is clearly impossible for any combination of signs.
We can therefore assume that n > 2. To enable repeated division by
v/—3 we assume that a slightly more general equation holds:

o+ B3+ e(vV=3)"8 =0, (*)

where o, 8,8 € Z[{;| are relatively prime and € is a unit of Z[;]. The unit
€ is there bec: as we shall see, division introduces units that cannot be
completely eliminated.
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Impossibility of o + 8%+ (v/=3)¥8> = 0. When o, B, € Z[¢y] are
relatively prime and not divisible by /=3, n > 2, and € is a unit,

o B3 re(v/=3)"8 £0.

Proof. Suppose on the contrary that there are relatively prime o, f, 8,
not divisible by v/=3, such that equation (*) holds. It follows from unique
prime factorization in Z[{,] that the prime /=3 divides ¢+ B3, and hence
/=3 divides at least one of its factors o + B, o + &3 B, o0+ £ .

But all of these factors are congruent mod v/—3, as we found in the last
section, so in fact v/—3 divides them all, and therefore

oatB atfp a+§3[i
V3 VS VS

These three elements have no common prime divisor in Z([{;]. For exam-

€ ZIG)-

. . at - e
ple, acommon divisor of %E% and 7£‘-— also divides their difference,

3—Fﬁ |+¢—
2/=3 "

0¢+B

1-¢

= unit x .

and & g‘ﬂ divides 8. One finds that it

also divides o by similarly consldt.rmg a g‘ - a_\g But there is no
af C‘ﬂ

Hence a common divisor of

. Similar
atip
e

common prime divisor of o and f3, lu.nm none of —E and
a+B ot g,ﬂ
N

algebra shows the same for the other pairs from and
Thus we can apply unique prime factori ization tn the following rear-

rangement of equation (*),

aiB ot GB at BB e

to conclude that each factor on the left is a unit times a cube, say

o% &8, at B &7, at B

73 ey,

with ¢, B,. 7, relatively prime because %‘-E %2‘-[1 %E‘—— are. It follows
that the prime power (v/=3)% 3 resides in exactly one of o, B}, ¥}. By
renaming, if necessary, we can assume that it is in 3 = (v/=3) 38}
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Now notice the delightful fact that

70‘+B 0‘+§3ﬂ T a+€;ﬁ
\/— 3 \/—
In terms 01 oy, f;. ,. this fact is

Geol +ei +Le (V=38
which, when divided by the unit gfsl. takes the form

o 1,7+ e(V=3)T 38 = 0. (%)

Here g,, & are units and o, f;. 8, are relatively prime and not divisible
by v/—3. Equation (**) is of almost the same form as (*), except for the
presence of the unit ;. Fortunately we can show that &, — =1 as follows.

Since n > 2, (v/=3)3 is divisible by 3v/=3 whereas of , B} = +1
mod 9 (by the property of cubes mod 9) and hence also mod 3v/—3. Thus
reducing (**) mod 3y/—3 gives

+1+g =0 (mod3y-3).
The only units satisfying this congruence are &, — 1, as required.

Equation (**) is therefore of the simpler form

0 £ B+ £5(vV=3)" 367~ 0 )
with o, B,,8, relatively prime and not divisible by v/=3. Since —f3}
(—/3, )3. (***) is indeed of the same form as (*), except that the exponent
of /=3 is less.

This contradicts the assumption that the exponent of /=3 in (*¥) is as
small as possible, hence (*) does not hold. o
#0.
Proof. Suppose on the contrary that x° +y* = 2* for integers x,y,z # 0.
Dividing by any common divisor in Z[;] we obtain an equation

PPy =0 with @, B,y € Z[G) relatively prime.
By suitably renaming the numbers, if necessary, we can assume that the
multiple of /=3 is y = (v/=3)"8, where § is not divisible by v/=3. We
then have an equation

=0 because 1+ +&F 0.

Corollary. The equation x* +y* = 23 is impossible for integers x

ﬁ”{ \/_ '\115'\ 0,
where o, 3,8 € Z\{d are relatively prime and not divisible by v/—
is a spc(.ml case of the equation just proved to be impossible, lluulou.
4y’ is impossible for integers x,y,z 7 0. o
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Exercises

The impossibility of o + B+ = 0 for nonzero &, B,y € Z[{;] is probably the
most difficult result in this book, so the reader may find the ideas in the proof a
little slippery. The following exercises aim to provide a better grip by using the
ideas again in a similar problem. They prove a theorem of Legendre that

o’ +B?+3y =0 is impossible for nonzero ., B,y € Z[&)-

As above, the algebra introduces unknown units, so we need to show impossibility
of the more general equation

o 1B e(vV=3)MP =0 ()

where v/=3 does not divide y and ¢ is unit of Z[{,]. The usual preliminary step of
dividing by any common factors allows us to assume that e, f§, y have no common
prime divisor and are not divisible by /=3. We also assume that the exponent of
in (*) is as small as possible.

7.7.1 Explain why o + B3+ 37 = 0 is a specialization of (¥).
7.7.2 Reducing (*) mod 9 and using the property of cubes, show that n > 1 in (¥).

7.7.3 Now use the congruence of factors of ¢ + B2, their relative primality, and
unique prime factorization in Z[{,], to conclude from (*) that two of

atp atlp atGp
W e D= €zlg)

are units times cubes and the third is a unit times a cube times (y/=3)!.

7.7.4 Deduce, from Exercise 7.7.3 and the “delightful fact” that there is a valid
equation of the form

&0 +&,B] + &y (V3 I =0,
or equivalently

o e B+ e (V=3I =0, ()
. By, 1, are not divisible by v/=3.

7.7.5 By reducing (**) mod 3, show that g, = 1 (where is n > 1 used?). Deduce
that (%) is equivalent to an equation of the form (*), but with a smaller

power of v/=3.

7.7.6 Conclude that equation (*) does not hold for any nonzero a, B,y € Z[&;).

where €, & are units of Z[{;] a
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7.8 Discussion

In recent chapters we have seen many ways in which algebraic numbers
illuminate the ordinary integers, and Diophantine equations in particular.
At the simplest level, the multiplicative norm enables us to do such things
as:

o Generate solutions of the Pell equation x*> —ny* = 1 from the powers
of x; +y,y/n, where (x,,y,) is the smallest natural number solution.

o Find all rational solutions of x> +y* = 2> +w?.

At a more sophisticated level, certain rings of algebraic integers can be
shown to have unique prime factorization, among them Z[i|, Z[/=2| and
Z|&5]. This enables us to analyze algebraic factorizations such as

X y? = (x—yi) (x +yi)
oy = () ek Gy &)
and find solutions of certain equations in which they appear. For example:

The primitive solutions of the Pythagorean equation x* +y* = z* can
be found by factorizing x* +y* in Z[i].

Fermat’s theorem that each prime p = 4n+ 1 is a sum of two squares
can be proved by showing that p divides m* + 1, and factorizing
m?+1in Z[i].

The integer solutions of the Bachet equation y* = x? 4 2 can be found

by factorizing x* +2 in Z[v/=2|.

Nonexistence of of natural number solutions of x* 4 y* = z* can be
proved by factorizing x> +y* in Z[{,].

But so far we have proved that unique prime factorization holds only
in Z, Z[i]. Z[v/=2], and Z[{;), and we have scen that it does not hold in
Z[|/=3]. Therefore, there is no guarantee that we can push on with this
approach to Z[y/=35], Z[v/=6, ... or to Z[{,] for higher values of n.

In Chapter 11 we show that unique prime factorization fails again in
Z[+/=5), and this time it cannot be repaired by filling obvious “holes™ in
Z[v=5), as we did in Z[v/=3]. The situation calls for some “ideal num-
bers™ from mathematical outer space—it is not clear that they exist in C
where the usual algebraic numbers come from.
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This dire situation was first recognized by Kummer in the 1840s, and it
came to light when Lamé (1847) published a faulty proof of Fermat’s last
theorem that x" + y" # 2" for natural numbers x, y, z and n > 2. Lamé used
the factorization

Xy = (e L) (e )

where ¢, coszn—” +isin Z"—” as we did in Section 7.7 with n = 3. How-

ever, he assumed that Z[{,] has unique prime factorization, and Kummer
showed that this is false for n > 23. Kummer was no doubt aware that it
also fails in rings of quadratic integers such as Z[v/=5], but he was more in-
terested in Z[{,], called the cyclotomic (“circle-cutting™) integers because
1,60, 82,..., &1 cut the unit circle into n equal parts.

He introduced “ideal numbers™ to restore unique prime factorization in
Z|&,). and it enabled him to prove Fermat's last theorem for many values
of n, though not all. More importantly, the “ideal” concept outgrew the
cyclotomic integers and spread into algebra and algebraic geometry as well
as number theory. The simpler examples like Z[y/—3| and Z[v/—5| were
pointed out by Dedekind in the 1870s, in the course of giving a down-to-
earth explanation of “ideal numbers”. We follow Dedekind’s approach in
Chapter 11, and an English translation of Dedekind’s own exposition may
be found in Dedekind (1877).

It should be mentioned that Fermat’s last theorem for n =4 and n =7
may be proved using only ordinary integers. A proof for n = 4 was given
by Fermat himself—one proof in number theory that he actually wrote
down—and variations of it appear in many books. Two variations may be
found in Stillwell (1998), pp. 131-134. An clementary proof for n =7
was discovered by V. A. Lebesgue (1840), and it was further simplified by
Genocchi (1876), following the remarkable strategy of forming the sum
of seventh powers of the roots of a cubic equation. This little-known
proof may be found in Nagell (1951), pp. 248-251, and Ribenboim (1999),
pp. 57-62.
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The four square theorem

PREVIEW

In this chapter we prove that every natural number is the sum of
four integer squares, following a proof of Hurwitz. This proof has
been chosen because it resembles the proof of Fermat’s two square
theorem already given in Chapter 6, and because it introduces the
quaternions, a mathematical structure with many beautiful algebraic
and geometric features.

atdi bici )

‘We define the quaternions to be the matrices . .
=btci a—di

where a,b,c,d € R, after verifying that the matrices ( jb Z )

behave like the complex numbers. In this representation, the norm
is just the determinant, and its multiplicative property follows from
the multiplicative property of determinants. On complex-number
matrices, the determinant gives again the two square identity, and
on quaternions it gives a four square identity.

“Quaternion integers” should be the quaternions with a,b,¢,d € Z.
However, these lack the division property. To bring it in we augment
them with “half integer points™ to form the so-called Hurwitz inte-
gers. We can then establish a Euclidean algorithm and a prime di-
visor property. (The quaternion product is noncommutative, which
is a slight obstacle, but we get around it by taking care always to
multiply and divide on the same side.)

The proof of the four square theorem then follows the proof of the
two square theorem very closely.

138
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Using conjugates, any ordinary prime that is not a Hurwitz
prime is shown to be a sum of four squares.

If an ordinary prime p divides a Hurwitz integer product af3,
then p divides o or p divides 8.

e Any ordinary odd prime p divides a natural number of the
form 1+ 1%+ m? (analogous to Lagrange’s lemma in Section
6.5 but easier to prove).

The number 1+ /% +m? factorizes in the Hurwitz integers.
Hence p is not a Hurwitz prime and therefore p is a sum of
four squares.

Since every natural number  is a product of odd primes and
the prime 2 (which equals 02 + 02 + 12 4 12), the four square
identity shows that n s a sum of four squares.

8.1 Real matrices and C

In this chapter we introduce 4 hyp plex numbers™” called

quaternions. A quaternion is easily defined as a 2 x 2 matrix of complex

numbers, but to see why we might expect matrices to behave like numbers,

we first show how to model the complex numbers by 2 x 2 real matrices.
For each a + bi € C, with real a and b, consider the matrix

M(ubbi):(iz z)

It is easy to check (exercise) that

M(a, +byi) +M(ay +byi) = M(a, +ay+ (by +b,)i)
=M((a, +b,i)+ (a, + byi)),

M(a, +b,i)M(a, -+ byi) = M(a,a, — b, b, +(a,b, +b,a,)i)
M((a, +byi)(ay+ byi)).

Thus matrix sum and product correspond to complex sum and product, and

therefore the matrices
( ¢ ”) for abeR
—b a

behave exactly like the complex numbers a + bi.
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Another way to see this is to write

a b\ (10 0 1) X
(28)o(0)en( 2 2)-arm

The identity matrix

behaves like v/—1. Indeed

< -1 0
i -1
0 -1
Not only does this matrix representation of C have natural counterparts

of 1 and i, it also has a natural interpretation of the norm on C as the
determinant. This is so because

- 2 g2 a b
norm(a -+ bi) = a* + b 7du< b ">

The multiplicative property of the norm follows from the multiplicative
property of the determinant:

det a, by det a, b, ~det a; b a, b, )
—b, a —b, a, —b, a —b, a,
)
And since the matrix product on the right-hand side equals
aya, —bby, a,b,+ba,
—ayb,—bya, aya,—bb, )’
equation (*) gives a new way to derive the Diophantus two square identity.

a

Replacing each det ( _ in (*) by @® +b* we get

(a} +b}) (a3 +b3) (a,a, —l)lb:)l +(a,by + Izlaz)z.
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A geometric property of multiplication

Here is a good place to point out a property of multiplication that we have
previously observed in special cases in Chapters 6 and 7: multiplication of
all members of C by some fixed nonzero z, € C is a similarity or shape-
preserving map, that is, it multiplies all distances by a constant (namely,
zo)-

This is because the distance between complex numbers z; and z, equals
|z, —z;|. When multiplied by z,, z, and z, are sent to zyz; and zyz,, the
distance between which is

0%~ 07| = |7

2= 2)] = lzglley = 2

by the multiplicative property of the norm.

We observed cases of this in Chapter 6, where multiplying Z[i| by some
B # 0 gave a grid of the same square shape, and in Chapter 7 where mul-
tiplying Z[y/=2] by B # 0 gave a grid of the same rectangular shape. In
Section 8.4 we use the multiplicative property of the quaternion norm to
show similarly that any nonzero multiple of the quaternion “integers” is a
grid of the same shape in R*. (Here we use the word “grid” rather loosely,
since the quaternion integers are not simply a grid of 4-dimensional cubes).

Exercises
8.1.1 Check that

M(ay+byi) +May +byi) = M((ay +byi) + (a, + byi)),
M(ay +byi)M(ay + byi) = M((ay +byi)(ay +byi)).

Although multiplication by z, leaves the shape of any figure in the plane C
unaltered, the figure may be rotated.
8.1.2 How is the amount of rotation related to z,?
8.2 Complex matrices and H
For each pair o, f € C we consider the matrix
a B
,B o ’

which we call a quaternion.
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The set of quaternions is called H. after Hamilton, who discovered
them in 1843 (the matrix definition, however, is due to Cayley (1858)).

It is easy to check that the sum and difference of quaternions are again
quaternions. So, too, is the product because

(G a)e) (5a)

oy =040, —By By, By =y, + By
This can be verified by matrix multiplication and complex conjugation.
The norm of a quaternion g is defined to be its determinant, hence if

where

q ( _% g ) then norm(g) is
a B S 2 2
det = — | oo = |o|” “.
(5 L) owipp-latiip
The multiplicative property of determinants now gives a “complex two
square identity” similar to the Diophantus two square identity:
(e >+ 1By + |Bof?) = ey 0 = By Bl + 04 By + BT
This identity was discovered by Gauss around 1820, but he left it un-
published.

Remark on associativity

It is easy to find quaternions g, and g, such that g,q, # g,q, (exercise).
In fact, they include the quaternion units discussed in the next section.
However, quaternion multiplication is at least associative,

91(293) = (9,92) 93,

since matrix multiplication is associative. This property can be checked
laboriously by computing the matrices on both sides, but it is preferable to
recall that each matrix represents a function, namely the linear map

()-()(32)

1ol

and that matrix
Function comp
and (f, /) f5 are th

represents composition of fi S.
n is alway: ative, simply because f;(/,/3)
me function, since both send X to f,(f,(/3(X))).
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Exercises
8.2.1 Verify that the product of two quaternions is the matrix claimed.
8.2.2 Find quaternions g, and g, such that ¢,q, # 4,4,

The matrix representation of quaternions also shows that a nonzero quaternion
has a multiplicative inverse, namely its matrix inverse.

8.2.3 Compute the inverse of a nonzero quaternion g — ( 7% g ) and verify

that ¢~ is also a quaternion.

The complex two square identity is one way to derive the four square identity,
written down in the next section.

8.2.4 By writing
oy =ay+dyi, Py=bytei, 0y =a,tdyi, B,=bytcyi,

express (ai + bt + c} +d}) (a3 + b3+ ¢3 1 d3) as a sum of four squares.

8.3 The quaternion units
If we write o = a +di and f = b + ci, where a,b,c,d € R, then each

quaternion can be viewed as a linear combination of four special matrices
1,1, j. k called quaternion units.
q!

oa B atdi btci
B @) \ -btci a—di
10 01 0 i i 0
7u<0 l)lb(—l O)II('. 0>§1i<0 i

al +bi+ cj+dk.

j. k are quaternions of norm 1 that satisfy the following
casily verified relations:
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Thus the product of quaternions is generally noncommutative:
09 7 %49,
Apart from this, however, the quaternions have the same basic properties as

numbers. They form an abelian group under addition, the nonzero quater-
nions form a group under multiplication, and we also have

q1(ay+a3) = 4192+ 4,93,
(a2t 43)a; = 429, + 439,

(left and right distributive laws).

The four square identity

If g = al +bi+ cj + dk then norm(g) is

atdi bici 2L 2, 2,2
dcl( bt a—di) a +b”+c"+d.

Since det(q,)det(g,) = det(g,q,). we can also write the “complex two
square identity” as a real four square identity, which turns out to be
(@ +b} et di) @+ b3+ rd3) = (a,a,—bby—cic,—dyd,)?
+(a,by +byay+cyd, —d,rz)l
+(ayc, —bydy +c\a, +dyby)?
t(aydy +byc, —c by +dyay)*.
Remarkably, the four square identity was discovered by Euler in 1748,
nearly 100 years before the discovery of quaternions. Euler hoped to use it
to prove that every natural number is the sum of four squares, by proving
also that every prime is the sum of four squares. This was first proved
by Lagrange in 1770. We can now give a simpler proof with the help of
quaternions. This will be done in the next few sections.

Exercises

As mentioned in the previous section, Hamilton did not introduce quaternions as
particular 2 x 2 matrices. He defined them directly as abstract objects of the form
al+ bi-+ cj+ dk, with multiplication defined by the following rules:

> o

PP =K —ijk= -1
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8.3.1 Deduce from these relations that ij = k. Where does your computation
assume associativity?

One can similarly find the product of any two units, and then the product of any
two quaternions.

8.3.2 Explain the role of the distributive laws in computing products.
The eight units and their negatives form an interesting finite group.

8.3.3 Show that Q — {1, i, j, £k} is closed under products and invers
hence forms a (nonabelian) group under the quaternion product.

8.3.4 Show that the products of any two of i j, k, or their negatives, make up all
of Q.

8.3.5 Deduce from Exercise 8.3.4 that any proper subgroup of Q (that is, any

subgroup that is not all of Q) is abelian,

Qs in fact the smallest nonabelian group whose proper subgroups are all abelian.

84 ZJijK

From now on we write the quaternion 1 simply as 1 and omit it altogether
as a term in a product. Thus the typical quaternion will be written

q—a+bi+cj+dk, where a,b,c,dcR.

‘Which of these objects should be regarded as “integers™?
One’s first thought is that

Zli,j k| = {a+bi+cjtdk:ab,c,deZ}
should be the “quaternion integers”, analogous to the Gaussian integers

Z[i]. Sum, difference and product of members of Z[i, j, k| are again mem-
bers of Z[i,j,k|, and

norm(a + bi -+ cj -+ dk) a* bt d?
is an ordinary integer, which we can use to find “primes” in Z[i, j, K|.
Example. 2 +i -+ K is a prime of Z[i, j,k|.

snorm(2+i+j+k) =22 412412+ 12 =7, which is
aprime in Z. Hence 2 +i+ j-+ k is not the product of members of Z[i, j, k|
with smaller norm.
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However, there is trouble when we attempt division with remainder:
the set of “integer multiples™ of a fixed quaternion has the wrong shape.
Even though multiples are not as they are in Z[i]—since the
quaternions

H={a+bi+cj+dk:ab,c,d R}

form a 4-dimensional space R*—we can nevertheless talk about distance
and angles in R* and reason geometrically.

Multiples in Z[i,j, k|

We interpret 1, i, j, k as the unit points on four perpendicular axes in R*.
Then the quaternion norm a® b + ¢* +d? is just the square of the distance
|a+ bi+ cj+ dk| of a+bi+ cj+ dk from O.

More generally, norm(g, — g,) is the square of the distance |g, — g,|
between the quaternions g, and g,.

Now, since the norm is multiplicative, we have

lag) —aa,| = la(a, — a2)| = lalla, — 4ol

so multiplying all of H = R* by a quaternion q multiplies all distances by
the constant |q|. (Since g -0 = 0, multiplication by g also leaves the origin
fixed, so when |g| = 1 this operation can be regarded as a “rotation” of R*
about 0.)

It follows, if g 7 0, that multiplication by ¢ leaves all angles unchanged.
In particular, the multiples f, i, Bj. and Bk of 1 . k by a quaternion
B # 0 are cach at distance |B| from O and in perpendicular directions, like
1Lij. k

Any multiple of 8 by an element of Z[i, j, k| is just a sum of elements
+B. +Bi, +fj and +fk. Hence the multiples of B lie at corners of a
“grid” like the points of Z[i,j,k| itself—a grid of what we call 4-cubes.
The only difference is that the grid of multiples of f3 is magnified by |B|
and possibly rotated.

Exercises

The rotations of R* obtained by multiplying cach point by a quaternion ¢ 7 1 with
gl = 1 are unlike rotations of B? in that they have no “axis™ of fixed points.

8.4.1 Show that multiplication by a quaternion g # 1 fixes only the origin.
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The detection of quaternion primes by their norms, which are sums of squares,
allows us to prove already that there are infinitely many of them.

8.4.2 Without assuming that every natural number is a sum of four squares, show
that there are infinitely many quaternion primes.

8.5 The Hurwitz integers

on with remainder

Just as in Z[i], so too in Z[i,j, k| we look at the grid of multiples of f to
find the remainder when o is divided by f. It is o — uf3, where uf is the
nearest corner of the grid.

Unfortunately, we do not always have | — uf| < |B|. There is one
exceptional position: if a lies at the center of one of the 4-cubes, then
|oc— 1P| = |B]. This is because the center-to-corner distance in any 4-cube
equals the length of a side. For example, the center

ik
2.2 2 2

of the unit 4-cube with edges on the axes has distance from O

N2 /1N /1N /1)
O @@

Thus the division property fails for Z[i,j,k|. In this respect, Z[i, j, K| is
like Z[v/—3] rather than Z[i]. Indeed, we fix the problem exactly as we did
for Z[v/=3], by adding the exceptional points as extra integers.

Liitjik

Since each midpoint is obtained by adding + to some member of

Z[i,j, k|, we want the set of quaternions of the form

% Fatbitcitdk for abedeZ
together with those in Z[i, j, k|,
a+bitcj+dk for ab,cd€eZ.

A single formula that embr

both these sets of points

A

Thititk
% [Bi1CjiDk for ABCDEZ.
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We get the midpoints for A odd and the points of Z[i, j, k| for A even. Thus
the quaternions we have constructed to ensure the division property are the
set Z[H—'?*—k‘i‘j,k] of all the integer combinations of

14itjtk

3 k.

The quaternions in Z[%‘i’—k,' Jj,K| are called the Hurwitz integers,
after Hurwitz, who introduced them in 1896. We are going to follow his
idea of using them to prove that every natural number is the sum of four
integer squares. (This approach may also be found in Hardy and Wright
(1979) and in Samuel (1970).)

But first, why should these things be regarded as “integers™?

. The sum and difference of Hurwitz integers are clearly Hurwitz in-
tegers.

a4

It can be checked (with more difficulty) that the product of Hurwitz
integers is a Hurwitz integer.

bed

It can also be checked that the norm of a Hurwitz integer is an ordi-
nary integer.

Example. H—'?*—k '—_”—l‘ +3

This Hurwitz integer has norm

13.

=%

Since 13 is an ordinary prime, 7—';-'—" is not the product of Hurwitz inte-
gers of smaller norm, hence it is a Hurwitz prime.

Exercises

8.5.1 Write each of 1,i,j, k in the form

ALK b Gpk for ABCDEZ,

and thus show that Z[X5E i j K] includes Z[i,j,k]. Also show that the
norm of each Hurwitz integer is an ordinary integer.
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The units of Z[Hperrk ij, ] are the eight units £1, i, +j, +k of Z[i,j. k],
together with the 16 midpoints +5 +1 i+l i +3 X nearest to the origin. Like the units
of Z[i] or Z[£,]. they form a group, since the sel of them is closed under products
and inverses. However, the group of units of the Hurwitz integers is much more
interesting, because it is larger and also nonabelian.

8.5.2 Show that the 24 units listed above include the product of any two of them.

8.5.3 Deduce from the product calculations in Exercise 8.5.2 that the 24 units
include the inverse of any one of them.

8.6 Conjugates
For any quaternion g = a + bi + ¢j + dk we call
g=a—bi—cj—dk

the conjugate of g. This conjugate has almost the same basic properties as
the complex conjugate:

(The reversal of the product in the last one is due to noncommutative
quaternion multiplication.)

As in C, the properties of conjugation in H can be checked by working
out both sides. We use them (much as we did in Section 6.3) to prove
a conditional four square theorem: if p is an ordinary prime but not a
Hurwitz prime then

p=d b1t d* where 2a,2b,2¢,2d € 7.
Suppose p has a nontrivial Hurwitz integer factorization
p = (a+bit+cjtdk)y.
Then, taking conjugates of both sides, we get

p=7F(a—bi—cj—dk), sincep=p.
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Multiplying the two expressions for p gives
P = (a+bi+cj+dk)yy(a—bi—cj—dk)
= (a-+bi+cj+dk)(a—bi—cj—dKk)yy since y7is real
=@+ d) P,
where both a®  b* -+ ¢® +d?, |y]> > 1. But the only positive integer factor-
ization of p? is pp, hence p = a* + b* + > +d>.
Finally, since a,b,c,d are the coefficients of a Hurwitz integer, they
could be half integers, but at any rate 2a,2b,2¢,2d € Z. o

Varying the factors of p

By finding a new factorization of p, we now show that any ordinary prime
that is not a Hurwitz prime is the sum of four integer squares.
A Hurwitz integer o with half-integer coordinates can always be writ-
ten in the form
a=w+t+d+bitdjtdk,
where @, b, ¢, d" are even integers, by a suitable choice of signs in the

Hurwitz integer
+l+itj+k
T

The norm of @ is 1, so that o® — 1.

Now suppose we have p = a® + b? + ¢ + d* for an ordinary prime p,
as in the last subsection, and that a, b, ¢, d are half integers. We first write

p = (a+tbi+tcj+dk)(a—bi—cj—dk)
(0+d +bi+dj+dk)x(@+d —bi-cj—dk)

where a',b',c/,d’ are even and @ is as above, so ®@ = 1. Next we insert
1 = @ between the (conjugate) factors just found, and in this way obtain
new conjugate factors of p,
'j—d'k).
In the first factor, @ plus the even integer terms times @ gives 1 plus integer
terms, hence it is

A+Bi+Cj+Dk forsome A,B,C,DE€Z.

p=(0+d+Vitdj+dR)oxo@+d—bi

The second factor is its conjugate, hence

p=A*+B*+ (>4 D* with A,B,C,D,cZ. o
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Exercises

The proof above shows that any sum of integer squares has a nontrivial quaternion
integer factorization.

8.6.1 Find quaternion integer factorizations of the Gaussian primes 3, 7, and 11.

8.

.2 Why are these Gaussian primes?

The properties of conjugates enumerated above can be proved using matrices
or using the multiplication rules for i, j, and k.

863 Ifg— ( f;—’ g > what is 77

8.6.4 Use the matrix just found for 7 to compute 7, g;. Hence show ; 7 = 7,75

8.7 A prime divisor property

It was shown in Section 8.5 that Z\ui‘l"—k,i,j,k\ has the division prop-
erty, so this enables us to find the ged of any two Hurwitz integers by the
Euclidean algorithm.

However, since the quaternion product is generally noncommutative,
we must distinguish between right and left divisors and stick to one type.
We call § a right divisor of ¢ if o = 8 for some .

So if o and B have a common right divisor § then

o=vy5, P=¢€§ forsomevy,e,
and therefore

p o= = y3—ued = (y—pe)d.

Thus if we always divide on the right in the Euclidean algorithm, we
obtain the greatest common right divisor of o and . We call it the right
ged(a, ).

It then follows, by the usual inspection of terms produced by the Eu-
clidean algorithm, that

right ged(or, ) = por + v

for some Hurwitz integers u and v.
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This allows us to prove the following prime divisor property (not the
full analogue of those for Z and Z[i] but strong enough for our purposes):
if p is a real prime and if p divides a Hurwitz integer product o3, then p
divides o or p divides 3.

(It helps for p to be real because reals commute with all quaternions,
hence p is both a right and left divisor of everything it divides.)

As usual, the proof begins by assuming that p does not divide o.. Then

1 =right ged(p, o) = up +vor.

Multiplying both sides on the right by 8 gives

B=upp+vop.
Since p divides upf (obviously) and vor3 (by assumption), p divides the
whole right-hand side. Hence p divides f3. as required. [m]

8.8 Proof of the four square theorem

We saw in Section 8.3 that the key to Lagrange’s four square theorem is
proving that every prime is the sum of four integer squares, since the four
square identity takes care of all products of primes, that is, all other natural
numbers except 1 = 0% 0% 402 + 12,

The even prime 2 = 0% + 0% ++ 12+ 1%, so it remains to prove that any
odd prime p is the sum of four integer squares. We do this with the help of
the following proposition: if p = 2n + 1, then there are |, m € Z such that
p divides 1+ 1> + m>.

This is analogous to Lagrange’s lemma in Section 6.5, but easier. Here
is the proof.

The squares X2, yl of any two of the numbers / = 0,1,2,...,n are in-
congruent mod p because

22
X=y

(mod p) = P—y=0 (mod p)
= (x=y)(x+y)=0 (mod p)
= x=yorxty=0 (modp),

and x+y # 0 (mod p) since 0 < x+y < p. Thus the n -+ 1 numbers /
0,1,2...,n give n+ 1 incongruent values of /2, mod p.

Similarly, the numbers m = 0,1,2...,n give n+ 1 incongruent values
of m?, hence of —m?, and hence of —1 —m?.
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But only 2n - 1 incongruent values exist, mod p = 2n + 1. Therefore,
for some / and m we have

P=-1-m? (mod p).

That is, p divides 1+ 12 +m?. o
Four square theorem. Every natural number is the sum of four squares.

Proof. By the remarks above, it remains to prove the theorem for any odd
prime p, which we have just shown to divide a number 1+ 12 + m?.
To complete the proof we factorize 1+ %+ m? into the product of Hur-
witz integers
(1—1i—mj)(1+li+ mj)
and apply the prime divisor property from last section. If p is a Hurwitz

prime, then p divides 1 — /i —mj or p divides 1+ /i +mj. But neither
conclusion is true, because neither

10 j 1 i j

-—=_n nor — 2 | o

2 p p P
is a Hurwitz integer. Hence our arbitrary odd prime p is not a Hurwitz
prime, and therefore, by Section 8.6,

p=A*+ B +C*+D* with A,B,C,D,EZ,

as required for the four square theorem. =]

Exercises

It follows from the four square theorem that any natural number has a Hurwitz
integer factorization.

8.8.1 Explain why. (Does it matter if some of the squares are zero?)

Thus it is no longer any surprise that some real Gaussian primes are not Hurwitz
—none of them are. However, we can still ask about the proper complex
ssian primes a -+ bi with a,b # 0.

8.8.2 Explain why the quaternions of the form a -+ bi, for a,b € R, can be identi-
fied with the complex numbers a - by/—1.

8.8.3 Show that a proper Gaussian prime a + bi is also a Hurwitz prime.
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So far, we have said nothing about sums of three squares because their story
is not so complete or elegant. For a start, there is no three square identity because
a sum of three squares times a sum of three squares is not always a sum of three
squares.

8.8.4 Find the natural numbers less than 20 that are not sums of three squares,
and hence find one that factorizes into two sums of three squares.

8.8.5 Work out the possible values of x> mod &, and hence show that no natural
number of the form 8n -+ 7 is a sum of three squares.

With a little more work we can prove the more general result that no natural num-
ber of the form 4™ (8 -+ 7) is a sum of three squares.

8.8.6 By considering the values of squares mod 4 show that
P4y +2=0 (mod4)
is possible only when x, y, z are all even.

8.8.7 Deduce from Exercise 8.8.6 that if 4”(8n -+ 7) is a sum of three squares,
then so is 47! (8n+7).

888 Excrcises 8.8.7 and 8.8.5 imply that no natural number 47(8 4+ 7) is a sum
of three squares. Why?

The happy ending to this story is that the numbers 4”(8n | 7) are precisely
those that are not sums of three squares. This was first proved by Legendre, and
a proof may be found in Mordell (1969), pp. 175-178. As Mordell remarks “no
really elementary treatment is known™.

8.9 Discussion

Hurwitz’ application of quaternions to the four square theorem was a his-
torically natural event, very much like Dedekind’s application of Gaussian
integers to the two square theorem. In both cases a sum-of-squares identity
was discovered first, followed considerably later by the discovery of gen-
eralized numbers with a multiplicative norm (the multiplicative property
being just a of the sum-of-squares identity). Finally, appropri-
ate “integers”™ and “primes™ among the generalized numbers are found to
explain the representation of ordinary integers as sums of squares.

The historical parallel between the complex num! C and the quater-
nions Hl is even stronger than this, because both stories have a similar miss-
ing link I have not yet mentioned. The discovery of the sum of squares
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identity led to the creation of the generalized numbers via an algebraic
analysis of rotations.
In the case of complex numbers the story is briefly this.

o Diophantus (around 200 CE) observed the identity
(@ +07)(a3 +b3) = (a0, = byb,)* + (b, +bya,)?

and interpreted it as a rule for taking two right-angled triangles, with
side pairs (ay,b,) and (a,,b,), and generating a third triangle, with
side pair (a,a, —b,b,,a,b, +b,a,), whose hypotenuse is the product
of those in the triangles (a,,b,) and (a,,b,).

Viete (1593) noticed that the angle in the third triangle is the sum of
the angles in the first two. In our notation, this is because the ratio
of sides in the third triangle is

a,b, +ba, .
F—— tan(6, +6,),

where 6, = tan~! sl and 0, = tan~! 22 are the angles in the first two.
! 3

In the 18th century Cotes, de Moivre, and others rediscovered the
angle-addition property by formally multiplying cos 6 + isin @ and
cos¢ + ising to obtain cos(@ + @) + isin(6 + ¢). Multiplication
of complex numbers of norm 1 therefore represents rotation of the
plane about the origin. This, and the more obvious interpretation
of addition as vector addition, led to the identification of complex
numbers with points of the plane by Wessel (1797), Argand (1806),
and (with more authority) by Gauss.

Hamilton (1835) defined complex numbers to be pairs (a,b) of real
numbers with addition and multiplication defined by

(ay,by) + (ay,b,y) = (a, +ay,by +b,)

(ay,by) x (ay,b,) = (@yay —b,by,a,b, + bya,).

Of course, Hamilton in 1835 was operating with 20/20 hi ht about
the complex numbers, so he knew that these definitions of addition and
multiplication would have all the usual algebraic properties, and that the
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function norm((a,b)) = a® + b* would be multiplicative. However, he
hoped that by rewriting the history of complex numbers in this way he
would see how to multiply triples. He hoped in fact to find a multiplication
rule for n-tuples that made their norm multiplicative, where

norm((a,,a,,...,a,)) = A rdi v tal

But a multiplicative norm for n-tuples implies a sum of n squares identity,
so it would have been wise to look for a sum of three squares identity first.

This did not happen. Instead, Hamilton spent 13 years trying in vain
to find a multiplication rule for triples. Virtually all that he learned from
his search was that the ive law of multipli might have to be
abandoned. When he also abandoned triples, and tried quadruples, every-
thing fell into place. On October 16 1843 he wrote down the rules

iZ

=ijk=—1

that define quaternion multiplication and from them derived the four square
identity. Only then did he start to catch up on the news—that Euler knew
the four square identity in 1748, that Legendre knew that there is no three
square identity, and that quaternion multiplication had already been used
by Rodrigues in 1840 to compute the product of rotations in R>.

Of course, these earlier discoveries were mere glimpses of the complete
and beautiful structure discovered by Hamilton. The quaternions are even
more remarkable than he knew, because after his death it was shown that
“multiplying n-tuples™ is possible only for n = 1,2,4, and 8. To be precise,
these are the only n for which R” has a multiplication that distributes over
vector addition, and a multiplicative norm. A related result, due to Hurwitz,
is that an n square identity exists only for n = 1,2,4, and 8.

For n = 1,2,4 the corresponding structures are R, C, H, and for n =8
the corresponding structure is called the octonions. It was discovered by
Hamilton’s friend John Graves, just months after the discovery of quater-
nions, and is based on an eight square |dumly Like the qualunmm the
octonions do not have c ion; their multipli is
not associative either. More on these generalized number systems may be
found in the excellent book Numbers by Ebbinghaus et al. (1991).

Like the quaternions themselves, the Hurwitz integers had an interest-
ing precursor in geometry. In 1852 Schlifli discovered that there are two
exceptional dimensions n for which R" can be “tiled” by regular figures
other than cubes. They are n = 2, where the exceptional tilings are by
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equilateral triangles or by regular hexagons, and n = 4. In R> = C the two
exceptional tilings can both be derived from the Eisenstein integers Z|[{;].
The triangle tiling is obtained by joining each integer point to its nearest
neighbors and the hexagon tiling by taking each integer point as the center
of a region whose sides are midway between neighboring integer points.
In R* the two exceptional tilings are obtained in the same way, from none
other than the Hurwitz integers. For more on these remarkable tilings, see
Coxeter (1948).
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Quadratic reciprocity

PREVIEW

Fermat’s remarkable discovery that odd primes of the guadratic form

2%+ are in fact those of the linear form 4n+ 1 led to the more gen-

eral problem of describing primes of the form 1? +dy? for nonsquare

integers d. Is it true, for each d, that the primes of the form x* + dy”

are those of a finite number of linear forms?

Fermat found such forms for the primes x> 4 2y* and x* + 3y” as

well. In each case a crucial step in determining the linear forms of

the primes x> +dy? is to find the quadratic character of —d, that is,

to find the primes g such that —d is a square, mod g.

The law of quadratic reciprocity answers all such questions. The

law describes when p is a square, mod g, for odd primes p and g;

and its supplements deal with the cases p = —1 and p = 2.

To prove it, we first prove Euler’s criterion, which states that p is
)

a square mod g < p*T =1 (mod g). This yields the supplements

fairly easily, and it also helps in the proof of the law itself.

We also need the Chinese remainder theorem. 1t is of interest in

itself and for what it says about the Euler ¢ function, but our main

purpose is Lo use it to prove quadratic reciprocity for odd primes p

and g.

To discuss quadratic reciprocity tersely we use Legendre’s symbol
(f—,), which equals 1 when P is a square mod ¢, and —1 otherwise.
All values of (5) follow from the values (5) for odd primes p
(from quadratic reciprocity) and the special values (’T') and (%)

(from the supplements).

158
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9.1 Primes x> + )2, x> + 27, and x? + 3y?
The primes x> + y? again

In the proof of Fermat’s two square theorem, that an odd prime p is of the
form x? 1 y? if and only if p is of the form 4n | 1, a key step was showing
that any prime p = 4n + 1 divides a number of the form m? -+ 1. We proved
this in Section 6.5 using Wilson’s theorem to construct a suitable m.

‘We now re-examine this step to see how it might be generalized. The
statement that p divides m?* + 1 is equivalent to

—l=m* (mod p),

in other words —1 is a square, mod p = 4n+ 1. And indeed our proof was
to take the expression for —1 given by Wilson’s theorem and show that it
was in fact a square, mod p = 4n + 1.

This raises the general question of whether ¢ is a square mod p, where
p and g are arbitrary integers. We also state the question as: what is the
quadratic character of g, mod p? Several problems lead to this question,
as we now show.

The form x* -+ 2y*
After describing the primes of the form x*  y?, Fermat tackled primes of
the form x? + 2y%. He claimed that

p=X+2*ep=8ntlorp=8nt3.

A proof can be given along the same lines as our proof of the two square
theorem.

We work in Z[/=2|, and prove first that if p is an ordinary prime that
is not a prime of Z[/=2) then

p=d* +2b* forsome a,b € 7.

The proof is like that for non-Gaussian primes (Section 6.3). If p is not a
prime of Z[y/=2| then it has factors of norm > 1, say

p=(at+bV=2)y.

Multiplying this equation by its conjugate leads to p = a* +2b*.
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The key step now is to prove that any prime p = 8n+ 1 or 8n+ 3 divides
a number of the form m? +2. Once this is done, one uses the factorization

m* 2= (m—/=2)(m+v/=2)

and unique prime factorization in Z[v/=2] to complete the proof as we did
for Z[i] (Section 6.5).
The claim that p divides a number of the form m? 1 2 is equivalent to

—2=m’ (mod p).

Thus we have to prove that —2 is a square, mod p, when p is a prime of
the form 8n -+ 1 or 8n+ 3.

The form x? + 3y*
Next, Fermat described the primes of the form x* + 3y*:
p=x13*ep=3ntl

This can be proved along the same lines as for x* + y* and x + 2y?, this
time using factorizations in Z[l—_"z] The awkward step is to prove that
any prime p = 3n + 1 divides a number of the form m? + 3. Equivalently,

—3=m* (mod p),

so we now have to prove that —3 is a square, mod p = 3n+1.

Exercises

In a letter to Frenicle on 15 June 1641, Fermat asked which natural numbers are
the sums of the two smaller members of a Pythagorean triple. These are the num-
bers of the form 2XY + X2 —Y? (x +Y)? =22, and Frenicle correctly replied
that the primes among the numbers x* —2y? are precisely those of the form 8n 1.
n be proved in the same way as Fermats results about > +y?, x* 4 2)?,

+3y” by using

* conjugation in Z[/2],

o the quadratic character of 2,

* unique prime factorization in Z[v/2).
The quadratic character of 2 will be established in Section 9.4, but the remaining
steps can be done here.
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9.1.1 Suppose p is an ordinary prime but not prime in Z[v/2], so p = (a+bv?2)7,
where a+by/2 and ¥ have norm of absolute value greater than 1. By taking
conjugates of both sides, show that p = a®> —2b%.

9.1.2 Using the fact that x> = 0, 1, 4 (mod 8) show that all odd primes of the form
x2 —2)? are of the form 8n+ 1.

One now uses the quadratic character of 2 (see Section 9.4) to prove that any
prime of the form 8n = 1 divides a natural number of the form m? — 2. Assuming
also a prime divisor property in Z[y/2], the argument continues as follows.

9.1.3 Show that, if p divides m*> —2 = (m — v/2)(m++/2), then p is not a prime
of Z[/2]. (Hence p is of the form x* — 2y” by Exercise 9.1.1.)

The only information now missing, apart from the quadratic character of 2, is
a proof that Z[y/2] has the prime divisor property. This is obtained by showing
that Z[y/2] has the division property, and hence a Euclidean algorithm.

The norm a® — 26 of a+by/2 € Z[V2| is not |a+bv/2[, so the geomet-
ric argument used for Z[i] and Z[y/=2] does not apply, and we opt for a purely
algebraic approach. First we state the division property of Z[y/2] as follows.

If o, B € Z[v2| and B 0, then there are pt,p € Z[/2| with

o=pup+p and |norm(p)| < [norm(B)

9.1.4 Show that the division property is implicd by the existence of a t € Z[/2]
with |m>rm (% - ;z)| < 1. (We are now extending the norm to Q(v/2). Is
this OK?)

9.1.5 1f o, B € Z[v/2] and B £ 0, show by “rationalizing the denominator” that

o A A, 5 -
B nom(B) I womi(B) V2 forsome A A, €Z.

9.1.6 Continuing with the notation of Exercise 9.1.5, if

A . Ay
1 2
m, = nearest integer to

norm(B)’ norm(B)’

and (= my -+ m,y/2, show that ‘norm (% —u)‘ < 1, 50 Z[V/2] has the
division property.

my = nearest integer to

9.2 Statement of quadratic reciprocity

In the mid-18th century Euler realized that knowing the primes of
such as x* + y*, x* 4 2y* and x* -+ 3y* depends on knowing whether p
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square mod g, for certain integers p and ¢. In the case where p and g are
both odd primes he conjectured that the answer is:

When p and q are both of the form 4n+-3, then
pis a square, mod g < g is not a square, mod p.
Otherwise
p is a square, mod g < g is a square, mod p.

Because of the reciprocal relationship between p and g, this statement
is called the law of quadratic reciprocity. (The word “quadratic™ in this
case really means “square”. In the literature one often finds the old term
“quadratic residues mod p” for “squares mod p”.)

Euler was unable to prove the law of quadratic reciprocity. The first
proofs were given by Gauss in 1801. Since then nearly 200 different proofs

have been given, making quadratic reciprocity the second most proved the-
orem in mathematics, after Pythagoras’ theorem.

Notation and examples
In Section 9.8 we give a recent proof of quadratic reciprocity, which simpli-
fies one of Gauss. But first we introduce some notation and give examples
of its use.

For any primes p and g the Legendre symbol or quadratic character
symbol is defined by

P 1 if pis a square mod ¢
q —1 if pis not a square mod ¢

With the help of this symbol, quadratic reciprocity can be stated very con-

cisely as
()=
q)\p

for odd primes p and g.

The Legendre symbol may be extended to (s) for any integer P, and
it is +1 according as P is a square mod g or not. This is possible by the
multiplicative property

6) (252 ()
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where p,p,---p, is the prime factorization of P (possibly including the
prime 2 and the unit —1). To evaluate the possible factors (%‘) and (%)

arising from this prime factorization, we need the so-called supplements to
quadratic reciprocity,

(_Tl>zlﬁq:4n+l, )
(%) loqg=8ntl. (In

These, and the multiplicative property, are proved in the next few sections.
We now use them to prove properties of squares sought in Section 9.1.

Examples

To show that —2 is a square mod p = 8n 4 1 or 8n 3 we calculate

=2\ (! 2 by the multiplicative propert
Sor1) \8nr1)\Bayr) DY multiplicativeproperty

=1x1=1 by supplements (I) and (II).

-2 —1 2 S
(m> (871—\3> (871—\3> by the multiplicative property

=(=1)x(=1) =1 by supplements (I) and (II).

To show that —3 is a square mod p = 3n+1:

=3 ! 3 by the multiplicative propert;
3Tl 3n1) \3ag1) Y mutipleative property

(5 (252).

by supplement (I) and quadratic reciprocity,

with the -+ or — sign according as 3n + 1 is of the form 4n’ + 1 or not,

1x (%) or (=1)x(=1) (%) since 3n+1 =1 (mod 3)

Ixlor(=1)x(=1)=1, sincel

square mod 3.
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Exercises

Note that the quadratic character of 2, given by supplement (II), is precisely what
we need to fill the gap in the last exercise set, proving that the odd primes of the
form 2% —2y? are those of the form 87+ 1. We now use the quadratic character of
3 in a similar way to characterize the primes of the form x> — 3y°.

9.2.1 Suppose p is an ordinary prime but not prime in Z[v/3], so p = (a + by/3)y,
where a-+by/3 and y have norm of absolute value greater than 1. By taking
conjugates of both sides, show that p = a® — 3b%.

9.2.2 Use congruence mod 12 to show that all odd primes of the form * — 3y
are of the form 121+ 1.

9.2.3 Use quadratic reciprocity to show that 3 is a square mod any prime p
12n+ 1, and hence that such a p divides a natural number of the form
2
m’ =3,

9.2.4 Check that the argument of Exercise 9.1.6 also works for Z([/3], so Z[v/3]
has the prime divisor property.

9.2.5 Use Exercises 9.2.3 and 9.2.4, and m> (m—+/3)(m+/3), o prove
that p— 120+ 1 is not a prime of Z[y/3]. Conclude, by Exercise 9.2.1, that
pis of the form 2 — 3.

Thus the form 1% — 3y represents all the odd primes of the form 12+ 1. It
does not represent the even prime 2, as this would contradict the quadratic char-
acter of 2.

9.2.6 Show that an integer solution of x> —3y* = 2 implies that 2 is a square
modulo a prime not allowed by supplement (II).
Likewise, the quadratic character of —1 gives another solution of Exercise 5.8.6.

9.2.7 Show that an integer solution of x* —3y* = —1 implies that —1 is a square
modulo a prime not allowed by supplement (I).

9.3 Euler’s criterion

If g is prime and a # 0 (mod g), then a? =1 (mod g) by Fermat’s little
theorem. Euler used this to derive the following formula:

Euler’s criterion. For an odd prime q, (5) o (mod gq), and hence p

1
is a square mod q < p’z_ =1 (mod q).
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Proof. First suppose that p is a square mod ¢, say p = a® (mod ). Then
2) = 1 by definition and

—1

T =g 1 (mod g) by Fermat’s little theorem.

Conversely, if p is not a square mod g, it suffices to show that

p,;_n #1 (mod g).

This is so because x pﬂz_l satisfies x> = p?~! = 1 (mod ¢) by Fermat’s

little theorem, and x* = 1 has only the two solutions x = +1 by Lagrange’s
polynomial congruence theorem.
-1 .
By the same theorem, p‘z_ =1 (mod g) has at most 5ZL1 solutions, and

2
we know that they include the squares p = 12,22, (%) . These 23!

squares are distinct. Indeed, if x? and y? are any two of them we have

2 (mod g) = ¥* —y*=0 (mod q)
= (x—y)(x+y)=0 (modg)
=S X=).
This is so because 1 < x+y < g and hence x \ y#0 (mod g).
Thus when p # a* (mod g) we have p ,% 1 (mod ¢) and therefore
pT=-1= (%) (mod g). o

Notice that the proof of this criterion does not assume that p is actually
prime. We take this opportunity to define ( ) for any P # 0 (mod g), to
be 1if P is a square mod ¢ and —1 otherwise. Then the Euler criterion
gives an easy proof of the following.

Multiplicative property of (%) For any Py, P, # 0 (mod ¢)

BE)- ()

Proof. By Euler’s criterion

(mod g),

(mod g),
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and therefore

P\ (P s
(—‘) (—Z> = Pf‘-“ P;‘-“ (mod g) by multiplication of congruences
q q

=(PP)*T (mod g)

PP,
= <#> (mod g) by Euler’s criterion again. o
q

The proof of the multiplicative property also does not assume that the
integers P are prime. So we can evaluate (5) for any integer P, provided

we know (§> for factors p of P. We can assume that the factors are among
—1, 2 and the odd primes.

The law of quadratic reciprocity (proved in Section 9.8) gives infor-
mation about (%) for odd primes p, so we also need information about
<’T') and <%1> ‘We obtain this from the supplements to quadratic reci-
procity, proved here and in the next section, which give the values of (’T')

and (%) directly. (We previously gave another determination of (’T') in
Section 6.7.)

The value of (Tl) For an odd prime q

-1 lif g=4n+1
) —1ifg—4n+3.

Proof. Euler’s criterion says that

(;l) = (—1)”2_‘ (mod g).
q

Thus if g = 4n + 1 we have

()

and if g =4n + 3 we have

=1 (mod g),

(_—I) =(-1)*"=-1 (modg). a]
q
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Exercises

If one assumes the existence of a primitive root for a prime g (proved in Section
3.9), then it is possible to give a simpler proof of Euler’s criterion.

9.3.1 If a is a primitive root for g, so that 1,a, a?,...,a%? are the distinct nonzero
elements mod g, show that the squares mod g are 1,a%,a*,...,a773.

9.3.2 Deduce from Exercise 9.3.1 that b is a square, mod g < b'T =1 (mod q).

Another easy consequence of Exercise 9.3.1 is a “half and half” property of
squares mod g.

9.3.3 Show that exactly half of 1,2,3,..., g — 1 are squares mod g.

The “half and half” property can also be proved without assuming the exis-
tence of a primitive root, though not quite so easily. The proof of Euler’s criterion
shows that at least half of 1,2,..., g — 1 are squares. Then it suffices to prove the
following:

9.3.4 Show that 12,22,32,... (g — 1) include at most half of the numbers % 0
(mod q).

9.4 The value of (%)

Euler’s criterion says that (%) (mod g), but 27 is harder to eval-

= .
uate than (—1)’2‘. Fermat seems to have known <%) (see exercises to
Section 9.1), but we do not know how. It turns out that

= (-1 ] (mod q) if g=4n+1
(=1)F (mod ) if g =4n+3.

‘We can prove this by manipulating the product 1 x2 X3 x -+ x (g—1)
(mod g), a little like the manipulation in Section 6.5 that yielded the quadratic
character of —1 in Section 6.7.

‘When g =4n+1 the manipulation takes 2 out of half of the factors, —1
out of one quarter of them, and rewrites the resulting negative factors mod
4n+1 to make them positive. This restores the product we started with,
which can then be cancelled from both sides.
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1x2x---x4n

=(1x3x---x(4n—1)) x (2x4x---x4n) (mod q)
=(1x3xx(dn—1)) x (1x2x - x2n)2%" (mod q)
=(1x3x--x(2n—1))x ((2n+1)(2n+3)---(4n—1))
X (1x2x - x2n)2%" (mod q)
=((=1)(=3) - (=2n+ 1))(=1)"x ((2n+1)(2n+3)---(4n—1))
X (1x2 - x2n)22" (mod q)
=((4n)(4n—2)---(2n+2))(=1)" x ((2n+1)(2n+3)---(4n—1))
X (1x2x--x2n)2%" (mod q)
since —1=4n, -3=4n-2, ... (mod g)
=(2n+ 1)(2n+2)--(dn))(=1)" x (1 x2 x - x 2n)2*" (mod q)
=(=1)2%(1x 2 x--- x 4n) (mod g)

Cancelling 1 x 2 x -+ x 4n from the first and last line, we get
1= (=122 =(-1)F2%  (mod g),
that is,
-1 1
27 = (—I)QT (mod g), wheng=4n+1.
There is a similar proof (exercises) that
Py

2% =(—1)+ (modg), wheng=4n+3.

To decide when 2 is a square mod ¢ we therefore have to look at two
cases:

If g = 4n l.a;—l*n So %’) =(-1)
when n = 2m + 1. That is, 2 is a square mod g when g = 8m -+ 1, not when
q—8m+5.

g =4n+3, L1 ~nil. So (g) (=1)%" is 1 whenn = 2m ¢ 1
and —1 when n = 2m. That is, 2 is a square mod g when g = 8m + 7, not
when g = 8m+3.

al .
< is 1 whenn = 2m and —1

To sum up: 2 is a square mod g < g = 8m=+ 1.
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Exercises

The proof for g = 4n+3 splits the product 1 x 2x -+ x4nx (4n+1) x (4n+2)
in a slightly less regular way—necessarily, because the number of terms is not
divisible by 4. The way to do it can be seen by trying an example first, say g = 11.

9.4.1 By partitioning 10! =1x2x3x4x5x6x7x8x9x 10 as
(Ix3x5)(7x9)(2x4x6x8x10),

removing —1 and 2 from appropriate factors, and then changing negative
factors —k back to positive 11 — k, show that

101=10!(~1)*2° (mod 11),
and hence that () = —1.
9.4.2 By partitioning (4n+2)! = 1 x2x 3 x -+ x4nx (4n+1) x (4n+2) as

(Ix3x5x - x2n+1))((2n+3)x (2n+5) x - x (4n1 1))
X(2X4x 6% x4nx (4n12)),

removing —1 and 2 from appropriate factors, and then changing negative
factors —k back to positive 4n+ 3 —k, show that

(4n+2)1= (dn+2)!1(=1)""122"1 (mod 4n + 3),
) (=1,

9.4.3 Deduce from Exercise 9.4.2 that (%) = (—l)ifl“ when g =4n+3.

and hence that (32

9.5 The story so far

In Section 9.1 we observed that classifying primes of the forms x* + y?,
X%+ 2y%, x* 4 3y* depends on knowing that certain numbers are squares
mod certain pri To prove such results we introduced the Legendre
symbol, defined for any integer P # 0 (mod ¢) and odd primes ¢ by

P 1 if P is a square, mod ¢
q —1if P is not a square, mod g.

Thanks to the Euler criterion,

<f> =p (mod g),
q
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valid for any P # 0 (mod g), we can prove the multiplicative property

©)E)-(2)

and hence find (’—q’) for any P # 0 (mod g) by splitting P into factors

PysPys - that are either —1 or primes, then multiplying (%) , (%)

In Sections 9.3 and 9.4 we used the Euler criterion to prove the supple-
ments to quadratic reciprocity:

(—):1@4:41111 [0
(—) l&g=8nxl. (In
q

Thus it remains to evaluate (s) for odd primes p and g. This is done by
the quadratic reciprocity law, which is proved in Section 9.8:

GRS

Using quadratic reciprocity

Quadratic reciprocity says that

(ﬁ) (ﬂ) ifoneof p,g=4n+1,
q P

<E) _(1) otherwise.

q P

Another point to bear in mind is that if p = p’ (mod g), then

p is a square mod g < p’ is a square mod g.
Thus we can replace p in (s) by its remainder p on division by g. One
then “reciprocates™ (ﬂ/) o+ (;’,L,) by quadratic reciprocity, replaces g by
its remainder ¢’ on division by p', and so on. In effect, one interweaves the
Euclid

I algorithm with apy s of iplicativity to rapidly reduce
the numbers to the point where supplements I and II can be applied.
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Example. Decide whether 37 is a square mod 59.
I (2 by reciprocit
59) y reciprocity
) by remaindering
) —) by multiplicativity

by supplement (IT)

by remaindering

by multiplicativity

(
)
) by reciprocity
)
)

Hence 37 is not a square mod 59.

Exercises

9.5.1 Show that (32) = 1 by using multiplicativity and the Euclidean algorithm.

9.5.2 Verify directly that () = 1 by finding a square =
9.5.3 Show that () = —1.

5 (mod 89).

9.6 The Chinese remainder theorem
An example
The Chinese remainder theorem is about representing numbers by their

remainders. For example, here are the numbers n = 0,1,2,...,14 and their
remainders n mod 3 and n mod 5 on division by 3 and 5 respectively.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
nmod3 (0 1 2 0 1 2 0 1 20 1 2 0 1 2
nmod5 (0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
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It can be checked that each of the 15 numbers n =0,1,2...,14 has a
different pair of remainders, and hence each such n is determined by its pair
of remainders. For example, the only number with the pair of remainders
(2,3)is 8.

It is also easy to see why this is true.

e The first component of each pair, n mod 3, runs through the sequence
012012..., which repeats every three steps.

e The second component, 7 mod S, runs through 0123401234 .., which
repeats every five steps.

o Therefore, no pair is repeated until after lem(3,5) = 15 steps, and
hence the first 15 pairs are different.

Classical Chinese remainder theorem

The original form of the remainder theorem, found in China around 300
CE, goes as follows. If ged(a,b) = 1, then each n = 0,1,2,...,ab—1 has
a distinct pair of remainders on division by a and b.

This can be proved by a generalization of the argument above.

e The first remainder of each pair, n mod a, runs through the sequence
012...(a—1)012...(a—1)...
which repeats every a steps.
e The second remainder, n mod b, runs through the sequence
012...(b—1)012...(b—1)...
which repeats every b steps.

e Therefore, no remainder pair is repeated until after lem(a,b) = ab
steps, and hence the first ab pairs are different. o

The condition ged(a,b) = 1 says that a and b have no common prime fac-
tor, so their common multiples include all their prime factors, and hence
lem(a,b) = ab.
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Exercises

The classical example of a Chinese remainder problem is in the Mathematical
Manual of Sun Zi, late in the 3rd century CE. It is required to find a number that
leaves remainder 2 on division by 3, remainder 3 on division by 5, and remainder
2 on division by 7.

9.6.1 Show that the numbers 1
on division by 3,5, 7 r

210 all leave distinct triples of remainders
pectively.

9.6.2 Find a generalization of this result to triples of remainders on division by a,
b, ¢, with suitable conditions on the moduli a, b, c.

9.6.3 Find the minimal solution of Sun Zi’s problem.

9.6.4 Describe the numbers with remainder 1 on division by 3 and remainder 2 on
division by 5, and hence find the least of them with remainder 3 on division
by 7.

9.7 The full Chinese remainder theorem

The modern form of the theorem not only represents each of the numbers
n=0,1,2,...ab—1 by a pair (n mod a,n mod b), it also recognizes that
these n can be added and multiplied by adding and multiplying the corre-
sponding pairs.

The first components of pairs are, naturally, added or multiplied mod
a; the second components are added or multiplied mod b, so we speak of
pairs being congruent (mod a, mod b).
Example. Adding and multiplying mod 15.

Consider 8 and 9, and their sum and product mod 15. We have

8 represented by (2,3)
9 represented by (0,4).
Adding these pairs mod 3 in the first component and mod 5 in the second,
we get
(2,3)+(0,4) = (2+0,3+4) = (2,7
=(2,2) (mod 3, mod 5).

(2,2) is the pair that represents 2, and indeed 8 -9 = 2 (mod 15).
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Similarly, if we multiply (2,3) and (0,4), mod 3 in the first component
and mod 5 in the second, we get

(2,3) x(0,4) =(2x0,3x4) =(0,12)
=(0,2) (mod 3, mod 5).
(0,2) is the pair that represents 12, and indeed 8 x 9 = 12 (mod 15).

The full Chinese remainder theorem says that the pair (m mod a,m mod b)
corresponds to m, mod ab, and that

(m mod a,m mod b) + (n mod a,n mod b)
= (m+nmoda,m+nmodb) (moda,modb)
and
(m mod a,m mod b) x (n mod a,n mod b)
= (mn mod a,mn mod b) (mod a,mod b)
This follows easily from addition and multiplication of congruences.
mmoda is =m (mod a),
nmoda is =n (mod a),
and therefore, by addition of congruences,
(mmod a)+(nmoda) is =m+n (mod a).
Similarly for addition mod b, and for multiplication mod @ and mod b. O

This version of the theorem shows that the pairs (n mod a,n mod b)
not only correspond 1-to-1 to numbers n (mod ab) (we need ged(a,b) — 1
for this part), but also behave the same under -+ and x (mod a, mod b).

Invertible elements

The modern Chinese remainder theorem gives a very clear picture of the
group (Z/abZ)* of invertible elements under multiplication mod ab.

As we have just seen, when ged(a,b) = 1, n behaves (mod ab) as the
pair (n mod a,n mod b) does (mod a, mod b). In particular, n has an in-
verse, (mod ab), if and only if n mod a has an inverse (mod a) and n mod
b has an inverse (mod b).
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Example. Invertible elements, mod 15.

These are the n for which the remainder pairs (2 mod 3,7 mod 5) have
inverses (mod 3, mod 5). Since 3 and 5 are primes, these are precisely the
pairs in which n mod 3 and n mod 5 are nonzero.

There are two nonzero elements mod 3 (namely 1 and 2) and four
nonzero elements mod 5 (namely 1, 2, 3 and 4), hence there are

2x4=8
pairs (n mod 3,7 mod 4) of nonzero elements, and hence eight invertible
elements n (mod 15). They can be read off the table in Section 9.6 as the

numbers 1, 2, 4,7, 8, 11, 13 ,14—those for which the corresponding pairs
have no zeros.

This example generalizes to a key theorem about the ¢ function.
Multiplicative property of ¢. When ged(a,b) = 1, ¢(ab) — @(a)@(b).
Proof. By the criterion for inverses in Section 3.6, there are ¢(a) invert-
ible elements (mod a) and @(b) invertible elements (mod b). Therefore, if
ged(a,b) = 1 there are ¢(a)@(b) invertible pairs (n mod a,n mod b); that
is, @(a)@(b) invertible elements (mod ab). But the number of invertible
elements (mod ab) is ¢(ab). Hence if ged(a,b) = 1, we have

¢(ab) = p(a)p(b) =

Exercises

Thanks (o the multiplicative property, we can now complete our search for an
explicit formula for ¢ (n), begun in the exercises to Section 3.6.

9.7.1 Using Exercise 3.6.3, show that ¢(n) = n(1 — #) s (1= /!7), where p,, p,,
«., Py, are the distinet prime divisors of n.
9.7.2 Use the formula to show that ¢(60) = 16.

9.8 Proof of quadratic reciprocity
A formula for (1L;> and <%)
We now give a formula that simultancously exhibits (s) and (%) ina

product of pairs (mod p, mod g). This formula is used to prove quadratic
reciprocity below, following the argument of Rousseau (1991).
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‘When p and g are different odd primes we consider the invertible num-
bers mod pg, which are those divisible by neither p nor g. The invert-
ible x in the range 1 <x < 2 q; l. taken mod p, consist of % sequences
1,2,...,p—1 and the “half sequence” 1,2,.,,4%1. minus the -";—] multi-
ples ¢,2q,... "T’lq of g in this range.

The mod p product of these invertible x is therefore

invertible x
H x=(p— l)!ﬂg_l (pT—l) !/qrg_l (pT—l>' (mod p)

=(-n*= (%) (mod p),

since <%‘> ! cancels, (p—1)! = —1 by Wilson’s theorem, and qﬂ (-})

by Euler’s criterion. Similarly, the mod ¢ product of these invertible x is

invertible x
I1 - %'(f) (mod ),
q

and therefore the (mod p, mod g) product of pairs (x,x) is

invertible - -
I )= <(_]) 7 <i> (=1 <£)> (mod p, mod g) (1)
Texsit r ¢

Completion of the proof

Now we evaluate [](x,x) over the invertible x in a different way, expressing
it in powers of —1 alone. Using the Chinese remainder theorem, we view
it as a product of pairs (a,b), with @ and b varying independently over
suitable ranges.

The x in the range 1 < x < ’l”:—' include exactly one number from
each pair {x, —x} (mod pg) with 1 <x < pg — 1. Hence the corresponding
remainder pairs,

(a,b) = (x mod p,x mod g),

include exactly one of each pair {(a,b), (—a,—b)}. We get exactly one of
each (mod p, mod g) by taking theranges | <a<p—land1<h < 73—1



9.8 Proof of quadratic reciprocity 177

This makes the sign uncertain, but at any rate

invertible x

(wx) =% ((p= 11T (= 1/2)")  (mod p.mod o),

@)
since each value of @, 1 < a < p—1, occurs in (g — 1)/2 pairs, and each
value of b, 1 <b < (g—1)/2, occurs in p — 1 pairs. Thanks to Wilson’s
theorem, we can express the powers of factorials in (2) as powers of —1.

Since (p—1)! = —1 (mod p), the first component = (—1)”%l (mod p).
To find ((g—1)/2)! (mod g) we shape —1 = (g— 1)! as in Section 6.5:

I<x< 2L

1=(¢g—1)! (mod gq)
=1x2x--%x((g—1)/2)
x(=(g=1)/2) x---x(=2) x (=1) (mod g)

=((¢= /P (modg).

Therefore -
((g=1)/2)P = (=1)(=1)'T  (mod g).

Raising both sides to the power £5=, we get the second component of (2),

((g=1)/2P ' = (=17 (=D)T*T (mod g).

Thus the expression (2) for [T(x,x) (mod p, mod g), reduces to

((*1)?4*1)15_'(71)&:_”?) (mod p, mod q)

3)

Equating (3) with (1) in the previous subsection we get either

(&)1 m ()-coes
<%> o (%) (-1

In either case,
GIOREEE

or
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Exercises

With the help of quadratic reciprocity we can find, for any fived odd prime p,
the primes ¢ for which p is a square mod g. They fall into a finite number of
arithmetic progressions (as we have already seen they do for p = —1 and p = 2).
Here is what happens for p = 3.

9.8.1 Explain why every odd prime g is of one of the forms 12n+ 1, 12n+5,
12n+7,0r 12n+11.

9.8.2 Use quadrati iprocity with i ing, as in Section 9.5, to show that
3 is a square mod g for precisely the odd primes g of the form 127+ 1 and
12n+

By multiplying the values of (%) found in Exercise 9.8.2 by the correspond-
ing values of (=) we can also obtain the values of (2):

9.8.3 Show that —1 is a square mod g for the odd primes g of the form 122+ 1
and 12n+ 5, and a nonsquare for those of the form 12n+7 and 121+ 11.
Deduce that —3 is a square mod g for the odd primes g of the form 121+ 1
and 12n+7.

Similarly, we can find the values of (g) and (7‘);

9.8.4 Show that the odd primes g for which 5 is a square mod g are precisely
those of the form 20n -+ 1, 201+ 9, 20n + 11, and 20n -+ 19. Test this result
by showing that 5 is a square mod 41, 29, 11, and 19.

9.8.5 Show that the odd primes g for which — square mod g are precisely
those of the form 20n+ 1, 20n+3, 20n +7, and 20n+9. Test this result by
showing that —5 is a square mod 41, 23, 7, and 29.

9.9 Discussion

As we have suggested over the last few chapters, quadratic reciprocity
emerged from the study of primes represented by quadratic forms such
as x? +y%, x2 +2y%, and x? + 3y*. Fermat was the first to raise and answer
such questions, but his methods are not known. As far as we know, Euler
was the first to recognize the role of quadratic reciprocity and to prove it in
special cases.

The first to attempt a general proof was Legendre (1785). However,
his proof depended on the unproved assumption that any arithmetic pro-
sion an + b with ged(a,b) = 1 contains infinitely many primes. This
assumption is easily proved in certain cases (such as the cases 4n + 1 and
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4n -+ 3 mentioned in the exercises to Section 6.3 and in Section 6.7) but the
general theorem is harder to prove than reciprocity itself. The first proof
was given by Dirichlet (1837), and the deep analytic methods he devised to
prove it are still the standard approach to primes in arithmetic progressions.

Gauss found the first proof of quadratic reciprocity on April 18, 1796,
when he was not quite 19. It is a long and ugly proof, and by the time he
p d it in his Disquisitiones Aril icae of (1801) he had found two
more proofs; one using quadratic forms and the other using roots of unity.
Quadratic reciprocity was Gauss’s favorite theorem and altogether he gave
eight proofs of it. Since then, many other mathematicians have published
proofs—some of them variations or simplifications of Gauss, and others
introducing new ideas.

Like Pythagoras’ theorem in geometry, quadratic reciprocity is a core
theorem in number theory, bound to arise no matter how one approaches
quadratic Diophantine equations. This is why the theorem has so many
proofs: all roads lead to it, and each road shows it from a different angle.
A comprehensive history of quadratic reciprocity, including a table and
classification of 196 (!) proofs given up to the year 2000, may be found
in Lemmermeyer (2000). Another book of interest is Pieper (1978), which
discusses 14 different proofs in detail.

The law of quadratic reciprocity generalizes to cubic, biquadratic, and
higher power reciprocity laws. Just as the quadratic character has values
+1 (the square roots of 1), there is a cubic character with values 1, &3,
{2 (the cube roots of 1), and a biguadratic character with values +1, +i
(the fourth roots of 1). These generalizations were not made because math-
ematicians had run out of things to say about quadratic forms—quite the
contrary; quadratic forms themselves demand that cubes and fourth powers
be considered. This was discovered by Euler, who noticed the following
results (later proved by Gauss):

pisaprime x> +27y? < p = 3n+ 1 and 2 is a cube mod p
pis aprime x* + 64y> < p = 4n+ 1 and 2 is a fourth power mod p

The cubic reciprocity law was found by Eisenstein (1844) and it re-
quires investigation of Z[{;], which is why we call Z[{;] the Eisenstein
integers. ((,uhlc u.uprouly was already known to Gauss, but he did not

Gauss (1832), where the basic properties ol'ZM were first puhlishcd.
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An nth power reciprocity law similarly involves the cyclotomic inte-
gers Z|[{,], with all their attendant difficulties such as the failure of unique
prime factorization discovered by Kummer (1844). In the case of nth power
reciprocity (and unlike the case of Fermat’s last theorem), Kummer over-
came these difficulties completely with his theory of ideal numbers, and
published an nth power reciprocity law in 1850. Eisenstein, also using
Kummer’s theory of ideal numbers, published a different version of nth
power reciprocity in the same year. A modern proof of Eisenstein’s reci-
procity law may be found in Ireland and Rosen (1982), pp. 215-218, and
the history of all reciprocity laws up to 1850 may be found in Lemmer-
meyer (2000).



10
Rings

PREVIEW

This chapter unites many of the algebraic structures encountered in
this book—the integers, the integers mod n, and the various exten-
sions of the integer concept by Gauss, Eisenstein and Hurwitz—in
the single abstract concept of ring.

We begin with the general ring concept, specified by certain ax-
ioms for + and x, and observe how these axioms suffice to cap-
ture general concepts of divisibility, primes, and units. The concept
of field—a ring in which all nonzero elements are units—is briefly
discussed, and the main examples Q, R, C, and Z/ pZ are reviewed.

We then specialize to rings of algebraic integers, and particularly
quadratic integers. We define algebraic numbers and algebraic in-
tegers and use Dedekind’s linear algebra approach to show that the
algebraic integers are closed under +, —, and x, and hence form a
ring.

The special case of quadratic integer rings, and the quadratic fields
Q( \/3) that contain them, is examined in more detail. We give a

general explanation of the phenomenon of quadratic integers, such
—14V3
2

as =-5==, that “look fractional”, by determining the integers of all
the fields Q(Vd) for d € Z.

The concept of norm, previously seen in special cases, is given a
uniform definition over all quadratic fields. Finally, we specialize
further to the imaginary quadratic fields—the Q|[v/d| for negative in-
tegers d. These enjoy somewhat simpler properties than the Q(v/d)
for positive d. For example, the integers of an imaginary quadratic
field include only finitely many units (at most six).

181
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10.1 The ring axioms

The integers Z, with their operations of + and X, are the first ring studied
in mathematics, and some basic properties of Z are taken as the defining
properties (axioms) of rings in general. We briefly mentioned them in Sec-
tion 1.3, in connection with abelian groups. An explicit list of the axioms
is as follows. For all integers a, b and ¢ we have:

a+(b+c)=(a+b)+c (associative law)
atb=b+a (commutative law)
at(—a)=0 (additive inverse property)
at0=a (identity property of 0)

There is a similar set of rules describing the behavior of x.

ax(bxc)=(axb)xc (associative law)
axb=bxa (commutative law)
axl=a (identity property of 1)
ax0=0 (property of 0)

and finally, there is a rule for the interaction of + and x:
ax(btc)=axbtaxc (distributive law)

Strictly speaking, these are the defining properties of a commutative
ring. We have also dealt ionally with ive rings, such as
the quaternions H, which satisfy all the above axioms except the commu-
tative law for x. The quaternions, however, are close to number rings in

having a multipli norm, and nc ive ring theory in general
has a rather different flavor.
It is fair to say that most of ring theory deals with objects that behave

like integers, and the example of Z helps us to anticipate which concepts
will be relevant and helpful in dealing with unfamiliar, but “integer-like”
objects. Indeed, we have already used the word “integer” for extensions of
Z such as Z[i] (the Gaussian integers), Z({3] (the Eisenstein integers), and
Z\”—i‘zj‘—k,i,j.k\ (the Hurwitz integers).
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Divisibi

lity and primes

In the examples of generalized “integers” we have seen the importance of
the ordinary integer concepts of divisibility and primes. In any ring, we
say that b divides a if there is a ¢ such that

a = be.

Other ways to say this are that a is divisible by b, that b is a divisor of a, or
that a is a multiple of b. Divisibility is an interesting concept in Z because
an arbitrary integer a is generally not divisible by another integer b. In fact,
it can be hard to decide whether @ has any divisors at all, apart the obvious
ones =1 and fa. An ordinary integer with no divisors except the obvious
ones is called prime. In an arbitrary ring R the concept of prime is the
same, except that the place of £1 is taken by the units of R: the elements
of R that divide 1 (or, equivalently, the invertible elements of R). Thus we
call a € R prime if a is divisible only by units and units times a (the latter
are called associates of a).

Even in Z the primes form no clear pattern, and of course prime num-
bers figure in many of the classic unsolved problems about Z. Thus the
development of ring theory has been heavily influenced by the problem of
understanding primes. The best understood rings, such as Z[i], tend to be
those whose primes behave like the primes in Z. In some rings where this
is not the case—specifically, where unique prime factorization fails—it has
been found worthwhile to create “ideal” primes that behave better than the
actual primes. We take up the story of these “ideal” primes in Chapters 11
and 12.

Exercises

Recall from Chapter 8 that the quaternions H are certain 2 x 2 matrices. In fact,
the (noncommutative) ring concept extends much further in this direction, to rings
of n x n matrices for any fixed natural number n. For the moment we consider
all such matrices with complex number entries, with zero matrix 0 and identity
matrix 1.

10.1.1 Check that the axioms for + hold.

10.1.2 Check that the axioms for x hold, except the commutative law (when
n > 2). You need not use explicit multiplication to prove the ass
law. Why?

10.1.3 Check that the distributive law holds.

ciative
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10.2 Rings and fields

The sets Q (rational numbers), R (real numbers), and C (complex num-
bers) are also rings because they obviously have the properties of +, —,
and x listed in the previous section. This is no surprise because Q, R,
and C were always intended to extend the concept of integer, retaining all
the ring properties and adding more. One thing that Q, R, and C have
and Z does not is a multiplicative inverse a~' for each nonzero element,
with the characteristic property that aa~' = 1. A commutative ring with a
multiplicative inverse for each nonzero element is called a field.

Fields are not really typical rings, and their theory has quite a different
flavor from ring theory. In particular, divisibility is not an interesting notion
in a field because a nonzero element b divides any element a (with quotient
a/b = ab~"). Likewise, the concept of unit is not interesting because all
nonzero elements of the field are units. Nevertheless, fields play an impor-
tant role in ring theory. Many of the rings we used in earlier chapters, such
as Z[i], Z[v/=2], and Z[{,], are embedded in the complex field C. Since C
has all the ring properties (associative laws, commutative laws, and so on)
the same will be true of any subset R C C for which the expressions a -+ b,
—a, a X b mentioned in the ring axioms make sense. That is, aset R C C is
aring provided R is closed under +, —, and x. This means that if a,b € R
thena+b,a—b,axbeR.

The rings just mentioned exemplify the process of “closing” a set under
the operations +, —, and x. In these examples, we take a number a not in
Z and close the set ZU {a} by forming all possible sums, differences and
products involving a and the integers. The result is called the ring Z|a|.

If we then take an element b not in Z[a| and repeat the process of clos
ing under +, —, and X, the resulting ring is called Z[a, b], and so on. Thi
in accordance with the notations we have already used for the rings Z([i, j, k|
and Z\”—i‘lj‘—k,i ,k| of quaternion integers. Any subset of the quaternions
closed under +, —, and x is aring, though generally noncommutative. (In-
deed, it is clear that any subring of H containing nonzero multiples of more
than one of i, j, k is noncommutative.)

When the ring is a subset of C, we can form its closure under divi-
sion by nonzero elements, and obtain a field. If we take an element a not
in such a field F, and again close under +, —, X, and + (by nonzero el-
ements), then the result is called F(a). We occasionally use this round
bracket notation for fields such as Q(v/2), though in fact here we have

Qv2] = Q(V2).
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Finite rings and fields

Finite rings came up implicitly in Section 3.2, where we introduced the
notation Z/nZ for the set of congruence classes mod n under the operations
of 4 and x for congruence classes. We did not comment on it at the time,
but it is easy to see that Z/nZ is a ring. Its ring properties are “inherited”
from its parent ring Z. For example, the - operation on congruence classes
is commutative because

(nZ+a) + (nZ+b) = nZ+ (a+b) by definition of + in Z/nZ
=nZ+ (b+a) bycommutative law for - in Z
(nZ+Db)+ (nZ-+a) by definition of + in Z/nZ

We also showed, in Section 3.3, that every nonzero element of Z/pZ
has a multiplicative inverse when p is prime. Thus the finite ring Z/pZ is
a field.

The units of the ring Z/nZ are particularly interesting, since they form
the group (Z/nZ)*, which can be quite complicated. Itis easy to see (exer-
cises) that the units of any ring form a group. If the ring is noncommutative
then the group of units may be noncommutative, as we saw in the case of
the Hurwitz integers in the exercises to Section 8.5. We have also seen that
infinite groups of units occur, for example in Z| V2]. This was implicit in
Section 5.4.

Exercises
10.2.1 Show that the product of two units in a ring R is also a unit of R.
10.2.2 Show also that the multiplicative inverse of a unit is a unit, and hence that
the units of any ring form a group.
The ring Z/nZ, for n not prime, differs from Z in having zero divisors—
nonzero elements whose product is zero.
10.2.3 Give an example of a zero divisor in Z/4Z.
10.2.4 Explain why Z/nZ has zero divisors for any 7 that is not prime.

Zero divisors prevent us from extending Z/nZ to a field by adjoining “fractions”,
the way we extend Z to Q for example.
10.2.5 1f ais a zero divisor in Z/nZ, show that we cannot consistently adjoin an

element a ! such that aa' = 1in Z/nZ.
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10.3 Algebraic integers

Algebraic numbers

Many concepts of ring theory originated in Dedekind’s theory of algebraic
integers. Dedekind generalized the idea of embedding the ordinary integers
in the field of rational numbers by embedding various rings of algebraic
integers in fields of algebraic numbers.

Definition. A number o € C is algebraic if
a0 +a, la""' totajotay=0 where aya,...,a, €7,
and it is of degree m if it satisfies no such equation of lower degree.
Examples are:

e rational numbers, which are the algebraic numbers of degree 1,

se it satisfies x> —2 = 0 but no equa-
rrational).

o /2, which is of degree 2 bec:
tion of lower degree (since V2

Like the rationals, the set of all algebraic numbers is a field, though this

is not obvious. It is not even clear that the algebraic numbers are closed
under -+, for example,

V2 satisfies x> —2 = 0, and hence is algebraic,

/3 satisfies x° —3 = 0, and hence is algebraic,

but what equation does v/2 + v/3 satisfy?
We do not prove that the algebraic numbers form a field here, but we can
show that v/2 4 /3 satisfies a polynomial equation with integer coeffi-
cients. This follows from what we are about to prove about algebraic inte-
gers, whose definition we recall from Section 7.4.

Definition. A number o € C is an algebraic integer if it satisfies a monic
polynomial equation with integer coefficients, that is

" ta, 0" fayotbay =0 where  agay,...,a, | €Z.

o
Examples are:

e ordinary integers, which are algebraic integers of degree 1,
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¥/2 and ¥/3, because they satisfy the monic equations x> —2 = 0 and
x° —3 =0 respectively,
—1++/73)/2, because it satisfies x* +x+ 1 =0.

On the other hand, the only rational algebraic integers are the ordinary
integers, as we proved in Section 7.4.

The ring of algebraic integers

The algebraic integers lie in the ring C. Hence to prove that they form a
ring it suffices to prove that they are closed under +, —, and x. This was
first proved by Eisenstein, but we follow a more modern proof given by
Dedekind.

Closure properties of algebraic integers. If o and 3 are algebraic inte-
gers then so are 0.+ 3, oo — 3, and of.

Proof. By hypothesis, o and 8 satisfy equations
a"+a, o" b tajatay=0 where ayay,...,qa,_  €Z,
B"+b, (B e +b by =0 where byby,....b, €L
These equations show:

o o= —ay—ajo——a, o

., o1 with integer coefficients.

is a linear combination of 1, ¢,

o ol = —q0—a, o? .—a,_ ;o™ is a linear combination of
1,0,...,0m " wnh mtegel coefficients (since o can be rewritten
in terms of 1, ¢,...,a"™ ).

.

Similarly, every power of o is a linear combination of 1, ¢, ..., o" !
with integer coefficients.

.

Likewise, every power of f is a linear combination of 1, f3,.
with integer coefficients.

o Therefore, every polynomial in & and f3 is a linear combination of
terms o/ with0 <i<m—1land0<j<n—1
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Thus if we denote the mn products o7 by @y, @y, ..., 0n, We can
write any polynomial @ in ¢, 8 with integer coefficients as a linear com-
bination of @,, @, @y, With integer coefficients. In particular, if ® is

any one of a+ 3, o — B, or af we have

© = k@) + - + K@y for some  ky ks, ..k € Z. (*)
From this we obtain mn equations in the mn “unknowns” @, @,, ..., @
by multiplying (*) by @, @,,. .., @, and rewriting each right-hand side as
a linear combination of @, @,,..., @, with integer coefficients k'x”:
OO, = K@, + 1 Ky O
00, = KO+ 4k, O
OO = K" @) + -+ k" O

These are homogeneous equations in @, @,,. .., @, with a nonzero solu-
tion, and hence their determinant must be zero. That is,

/ , /
K-—o k. Ko
A i
KooM-o . K|
kqlum) k(lumj k'(','y'.'n) —®

This determinant is a polynomial in @, with coefficients in Z, and with
coefficient of @™ equal to +1. Hence ® = ot + f,00— B, or af is an
algebraic integer. o

Exercises

The units among the algebraic integers divide 1, by definition, and hence they are
the algebraic integers & such that o' is also an algebraic integer.

10.3.1 Deduce that ¢ is an algebraic integer unit if and only if ¢ satisfies a monic
polynomial equation with integer coefficients and constant term 1.
10.3.2 Verify that such polynomials are satisfied by the units +; and £&3 of

z(g,).
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10.4 Quadratic fields and their integers

The ring of all algebraic integers has some inconvenient properties. For
example, the square root of any algebraic integer o is also an algebraic
integer, and hence o has the factorization @ = \/at\/a. This shows that
there are no “primes” in the ring of algebraic integers. For this reason, one
usually works in a ring of algebraic integers of bounded degree, such as the
rings Z[i] and Z[v/=2| we used previously. We now generalize the latter
examples to the ring of integers of a quadratic field.

Each quadratic field can be written Q(v/d), where d € Z and Q(v/d) is
“the smallest field containing Q and \/(_i or, in other words, the result of
closing the set QU { \/(_l } under the operations -, —, x, and <+ (by nonzero
members). It is closure under +, as well as +, —, and X, that produces a
field, and we use the round bracket notation to distinguish the result from
closure under +, —, and x alone, which produces a ring but not necessarily
a field. (For example, Z[i] is the closure of ZU {i} under ++, —, and x, and
itis not a field.)

The round bracket notation is superfluous in this case, because in fact

Q(Vd) ~ Q[ vd|.
Characterization of Q(v/d). Q(v/d) = Q|Vd| = {a+bVd : a,b € Q}.

Proof. Each number a + bv/d with a,b € Q certainly results from v/d and
the members a, b of Q by + and x. Hence

{a-+bVd:abe Q) CQWVA CQWa).

Conversely, we can show that {a +bv/d : a,b € Q} is closed under +,
—, x,and hence {a-+ bv/d : a,b € Q} 2 Q|/d]. We also show it is closed
under -+, hence {a+bv/d : a,b € Q} D Q(Vd).

The set {a+bv/d : a,b € Q} is obviously closed under + and —. It is
closed under x because

(a, + bz\/(_i)(uz | IJZ\/(_I) ayay +bybyd +(a,b, + uzlzl)\/t_l,
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And it is closed under + (by nonzero members) because

1 - a—bvd
atbvd  (a+bVd)(a—bVd)
a—bVd
@ —bd
b
- I — o
b2d al—bld\/(7

The integers of Q(vV/d) include +v/d (since ++/d satisfy the monic
equation x> —d = 0) and hence they include all members of Z|\/ﬁ] (by clo-
sure of the algebraic integers under -+). But sometimes they include more,
which is why we have to use the awkward phrase “integers of Q(v/d)” in-
stead of Z[+/d]. For example, Q(v/=3) includes (—1+ v/=3)/2, and the
latter is an algebraic integer because it satisfies x> +x+ 1 = 0.

The precise situation is described in the following theorem. Before we
state the theorem and begin its proof we note that the integer d in Q(v/d)
can be assumed squarefree, that is, not divisible by any square > 1. This
is so because if d = n*c for some n, ¢ € Z, then Q(v/d) = Q(n\/c), which
equals Q(,/c) by closure under x and +. The other thing to remember is
that any square is = 0 or 1 (mod 4).

Integers of Q(v/d). When d # 1 (mod 4) the integers of Q(\/d) are the
a+ by/d with a,b € Z. When d = 1 (mod 4) the integers of Q(v/d) are the
a+bVdwitha,b € Zora+1/2,b+1/2€Z.

Proof. If a + bv/d € Q(+/d) is an algebraic integer, and hence a solution
of some equation x> +Ax -+ B = 0 with A, B € Z, then it follows from the
quadratic formula that the other solution is a —b\/(_l. Hence

X fAx+B (.x—((t + h\/t_/)) (x—(a—lz\/i)).
Equating coefficients we get
A=-2a, B=d —db

which shows that 2a and a* — db? are ordinary integers.
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In particular, @ € Z or a+ 1/2 € Z. In the first case (2a even),

acl=d el
=db? €7 sinced®—db? €7
=b?€Z since no integer square n? > 1 divides d,
and therefore b* £ m?*/n? with n® > 1,
=bel.

The case a-+1/2 € Z is when 2a is odd, so (2a)> = 1 (mod 4), and then

@ —db* € Z = (2a)* —d(2b)* = 0 (mod 4)
= d(2b)* = (2a)* = 1 (mod 4)
= d =1 (mod4) and (2b)* = 1 (mod 4)
since (2b)* =3 (mod 4) is impossible
=d=1(mod4)and 2b =1 (mod 2)
=d=1(mod4)andb+1/2 € Z.

Finally, to see that every number a + bv/d with a 1 1/2,b+ 1/2 € Z is an
integer of Q(v/d) when d = 4m + 1, it suffices to check the coefficients of

the equation it satisfies: x* — 2ax + (a — db*) = 0. They are easily shown
to be integers. =]
Exercises

10.4.1 Show that cach element of Q(v/d) is an integer of Q(v/d) divided by an
ordinary integer.

The second solution, &, of the monic quadratic equation with integer coefficients
satisfied by a quadratic integer o lled the conjugate of o This generalizes
the notion of “complex conjugate” in Z|i] and the notion of “conjugate surd” from
high school algebra.

10.4.2 If o is rational, what is o'?

10.4.3 Verify that conjugation is a ring automorphism of the integers of Q[v/d],
that is

e The map o — ¢’ is 1-to-1 and onto.

o (o4 B) =o'+ and (af) = o'p'.
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10.5 Norm and units of quadratic fields
The norm on Q(v/d) is the function defined by
norm(a+by/d) = a® — db*.

It follows that an integer a -+ b\/d of Q(v/d) has (ordinary) integer norm,

because the proof of the last theorem of the previous section showed that
2 5. R N . . X

a” —db” is an ordinary integer in that case. This norm includes the norms

previously defined for d = —1, d = —2, and d = n, and like them it is

multiplicative:

x, €Q(Vd).

norm(x,x,) = norm(x, )norm(x,) ~for any x,

This can be checked by setting x; = a, +b, Vd, X =a +hl\/33nd work-
ing out both sides. One finds the identity

(ayay ([b,bl)l —d(ayb, uzbl)z = (a} — db}) (a3 — db3),

which is Brahmagupta’s identity of Section 5.4 when d > (0 and Diophan-
tus’ identity of Section 1.8 when d — —1. These properties of the norm
imply that, if x, divides x, in the integers of Q(\/ﬁ), then norm(x, ) divides
norm(x,) in the ordinary integers.

As in any ring, the units among the integers of Q( Vd ) are the elements
that divide 1. It follows, by the previous remark, that the units of Q( Vd)
are integers with norm +1. Conversely, integers of norm =1 are units
because if @+ by/d is an integer (with a,b € Z or a+1/2,b+1/2 € Z)
with norm £1 then

+1 = a*—db* ~ (a—bVd)(a+bVd),

which shows that a + b\/(_i divides 1.

When d > 1 there are infinitely many units among the integers of
Q(v/d), corresponding to the infinitely many solutions of the Pell equa-
tion x> —dy?* = 1. For example, the solutions of x> —2y*> = 1 are pairs
(x,y) for which x -+ yv/2 is a unit of Q(v/2). We found these solutions in
Section 5.2, giving the units £(3 +2v/2)" for n € Z.

On the other hand, if ¢ < 0 then there are only finitely many integers
or half integers @, b with @* —db* = 1, and hence only finitely many units.
In particular:
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o the units of Z[i] are 1, +i,
o the units of Z[/—2] are 1,
o the units of Z[&;], where & = (—1+v/=3)/2, are £1, £¢;. £¢3.

By the theorem in the previous section, Z[{;] is the ring of integers of the
field Q(v/=3), and in fact it has the most units of any ring of integers of
Q(vd) with d < 0.

The fields Q(\/tj) with d < 0 are called imaginary quadratic fields and
their basic theory is particularly elegant. One advantage they have over real
quadratic fields is that when d <0, rwrm(aJrhﬁ) a*—db? is simply the
square of the distance of a-+b\/d from 0 in the complex plane. This makes
certain properties geometrically obvious, such as the division property for
Z[i] found in Section 6.4. Another example is the following theorem.
Units of imaginary quadratic fields. The only units among the integers
of imaginary quadratic fields are 1, +i, +:,, and +£&3.

Proof. Since units have norm 1, units of an imaginary quadratic field
Q(V/d) lie at distance 1 from 0 in the complex plane. But we also know
that the integers of Q(Vd) are of the form a + b\/d where a,b € Z or
a+1/2,b+1/2 € Z. If |d| > 5, all such integers except 0, £1 are at dis-
tance > 1 from 0. Thus the only units apart from +1 are those listed above,
occurring in Q(i) and Q(v/=3). o

The imaginary quadratic fields are better understood than the real ones.
For example, Gauss (1801) found that the integers of Q( Vd) have unique
prime factorization for d = —1, =2, =3, =7, =11, =19, —43, —67, —163,
and in 1967 Baker and Stark showed that these are the only imaginary
quadratic fields with unique prime factorization. The real quadratic fields
with unique prime factorization are still not known, nor is it known whether
there are infinitely many of them.

Exercises

An equivalent way to define the norm, which generalizes to arbitrary algebraic
number fields of finite degree, is in terms of conjugates.

10.5.1 Show that norm(c) = oret’.

10.5.2 If ¢ is rational, what is norm(c)?

10.5.3 Hence deduce the multiplicative property of the norm from the multiplica-
tive property of conjugation.
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10.6 Discussion

The rings Z, Q, R, and C were known before the ring concept had a name.
Rings began to proliferate in the mid-19th century when Kummer studied
the cyclotomic rings Z|{,] and Dedekind sought a general theory of alge-
braic integers. Dedekind’s first account of his theory appeared as a supple-
ment to Dirichlet’s Vorlesungen iiber Zahlentheorie (lectures on number
theory) in 1871. At this time all the examples of interest to Dedekind were
rings of algebraic numbers, so a ring (still unnamed) in 1871 could be de-
fined as a subset of C closed under +, —, and x.

The need for a definition by axioms, rather than closure properties, was
gradually felt as other sets with + and x operations came to be studied
intensively. The congruence class rings Z/nZ (defined in essentially the
modern way by Dedekind (1857), with congruence classes as the objects
being added and multiplied) were one class of examples. Another was
the class of matrix rings, which were shown to include the quaternions by
Cayley (1858) and many other structures by Peirce (1881).

Matrix rings, while generally noncommutative, also include many in-
teresting commutative rings. We saw how C can be represented by 2 x 2
real matrices in Section 8.1. It is also possible to represent Z[ct], for any
algebraic integer o of degree n, by n x n integer matrices, and Q(cr) by
n x n rational matrices. Briefly, the idea is this.

If the monic equation satisfied by o is

o' ta, 0"t taata, =0 with a,....a, €Z
N —a,0 — a and hence all powers o, o1 ...
are rational linear combinations of 1,e,¢2,...,a" . This allows Q(a)
1o be viewed as a vector space over Q with basis {1,0,02,...,0" '}
Multiplication by ¢ induces a linear map of this vector space with matrix

then " = —a, "' —

00 -+ 0 =—a
10 - 0 =—q
M, 01 - 0 =—a
00 -~ 1 —a,,
because right multiplication of the row vector (1 o o --- o2 o) by

My, yields its multiple by o

n-1

2.3
(v a’ - —a, o ce—a 0 —ag).
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It follows that matrix polynomials in M, with rational coefficients, be-
have the same as the corresponding polynomials in ¢, that is, the same as
elements of Q(cr).

All of these examples were finally unified under the abstract ring con-
cept, defined axiomatically by Fraenkel (1914) and developed by Emmy
Noether and her students in the 1920s. Noether always said “Es steht schon
bei Dedekind” (“It’s already in Dedekind™), and she urged her students to
read all of Dedekind’s works on algebraic number theory. These included
three different versions of his last supplement to Dirichlet’s Vorlesungen, in
1871, 1879, and 1894, and a separately published work that is now avail-
able in English translation, Dedekind (1877). The latter is probably the
casiest introduction to Dedekind’s work for the modern reader.

Among other things, Dedekind (1877) generalizes the concept of norm
to an arbitrary algebraic number field Q(a). He defines the conjugates
o, o",...of o to be the other solutions of the minimal degree monic equa-
tion satisfied by o and defines norm(ex) as the product cco’a” - --. It can
then be shown that norm(e) is an ordinary integer when o is an integer of
Q(e), and that norm(a) = norm(o)norm(f3). The proofs are not hard
but the latter requires concepts from the companion volume to this one,
Elements of Algebra (field isomorphisms). It can be said that algebraic
number theory is where the concepts from the theory of algebraic equa-
tions (groups and fields) begin to interact with concepts from the theory of
Diophantine equations (rings).




11
Ideals

PREVIEW

This chapter pursues the idea that a number is known by the set of
its multiples, so an “ideal number” is known by a set that behaves
like a set of multiples. Such a set / in a ring R is called an ideal, and
it is defined by closure under sums (a,b € I = a+b € I) and under
multiplication by all elements of the ring (a € I, r e R=ar € 1).
The set (a) = {ar: r € R} of all multiples of any a € R is an ideal,
called the principal ideal generated by a. Any nonprincipal ideal 1
is therefore not the set of multiples of any actual member of R—it
represents an “ideal member” of R.

In Z, every ideal is principal, and the properties of ideals reflect
known properties of integers. In particular:

adivides b < (a) contains (b)

(ged(a,b)) = {am -+ bn :m,n € Z}, the ideal generated by a and b
pis prime < (p) is maximal.

In rings where unique prime factorization fails, such as Z[y/=3],
nonprincipal ideals exist. We find such an ideal as the “ged ideal”
of 2and 1+ /=5, {2m+ (1+/=3)n:m,n € Z}, and confirm that
this ideal is nonprincipal by looking at its shape in the plane.

The ideal {2m-+ (1+/=5)n:m,n € Z} “divides” the principal ideal
(2) because it contains it, and it is “prime” because it is maximal.
But if an ideal 7 “divides™ an ideal J there should be a “product™ IK
of ideals 7 and K equal to J.

We hope that (2) splits into such a product, because this may rectify
the failure of unique prime factorization in Z[/=3] exhibited by

2x3=(1+V=3)(1 -V=3).

196
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Thus the final step is to define the product of ideals. It then turns
out, as hoped, that the two distinct products equal to 6 in Z[y/=5],
2x3and (1+v/=5)(1—+/=5), split into the same product of prime
ideals.

11.1 Ideals and the ged

In Section 7.4 we had our first brush with failure of unique prime factoriza-
tion when we found that 4 has two distinct prime factorizations in Z[y/=3]:

4=2x2=(1+v33)(1-v33).
This problem was fixed by enlarging Z[v/=3| to Z[';‘ZE] where the
factorizations 2 x 2 and (1 + +/=3)(1 —/=3) are actually the same, up
to unit factors. This is because Z[%E] contains the units sz and

I’F whose product is 1, and therefore

2x2 2<“Z—m)2<£) (14 V=3)(1-V=3).

2

However, this is in some sense a lucky pe, and a more serious
problem occurs in Z[v/=5], where 6 has two different factorizations:

6=2x3=(1+vV=5)(1-V=5).

Using the norm a? + 5b% of any a +byv/=5 € Z[v/=3|, it can be checked
that none of these factors are products of elements of smaller norm. Nor
are the units 1 of Z[y/=5] able to account for the difference between the
factorizations. Thus 6 has two distinct prime factorizations in Z[v/=5).
And we cannot get around this problem by a simple enlargement of the
ring, like that of Z[v/=3| to Z\';‘ZE| because Z[y/=35] already contains
all the integers of Q(v/=5).

In such situations, Kummer and Dedekind were able to restore unique
prime factorization by extending the concepts of product and divisibility
to what Kummer called “ideal numbers™ and what Dedekind called ideals.
We find our first “ideal number” by searching for the ged of 2 and 1+ /=5
in Z[v/=35], based on a new approach to the ged in Z.
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The ged in Z revisited

The basic idea of Kummer and Dedekind is that a number is known by the
set of its multiples. We illustrate this idea, and its application to the ged,
by the example of ged(4,6). Figure 11.1 shows the set of multiples of 4,
which we denote by (4), as black dots among the integers:

—4 0 4
o o [ ] o o o [ ] o o o [ ] o o

Figure 11.1: The multiples of 4

Similarly, Figure 11.2 shows the set (6) of multiples of 6:

-6 0 6
L] o [ [ o o L] o o o o o L]

Figure 11.2: The multiples of 6

Finally, Figure 11.3 shows all sums of members of (4) and members of (6).
We denote the set of these sums by (4) -+ (6):

—6 —4 =2 0 2 4 6
L] o L] o L] o L] o L] o L] o L]

Figure 11.3: The sums of multiples of 4 and multiples of 6

It is clear that (4) + (6) = (2) and that 2 = ged(4,6) so the multiples
of ged(4,6) are obtained by adding all multiples of 4 to all multiples of 6.
More generally, we let (k) denote the set {kn : n € Z} of multiples of  for
any k € Z. Then we have: the set (a)+ (b) = {am-+bn : m,n € Z} equals
the set (ged(a,b)) of multiples of ged(a,b).

We prove this theorem in the next section. It gives an abstract alterna-
tive to the Euclidean algorithm for finding the ged, with the advantage of
being applicable to any ring R. This is done by replacing the sets (k) above
by the following more general concept:

Definition. An ideal in aring R is a subset / of R such that
eaclandbel=a+tbel,

eaclandreR=arcl
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In other words, I is closed under addition and closed under multiplication
by elements of R. It follows that / is also closed under subtraction, because
b€ l= —bel(multiplicationby —1 € R)and a—b = a+ (—b).

It is often the case that if 7 and J are ideals, then so is

I+J={i+j:icland jeJ}.

The latter is what we call ged(/,J), and we use it in Section 11.5 to find
the ged of 2 and 1+ /=5 in Z[/=5|. But first we investigate the concept
of ideal in the more familiar ring Z.

Exercises

The theorem that (a) + (b) = (ged(a,b)) in Z can be proved directly, and it is
worth doing 50 in advance of the proof using ideal theory in the next section.

11.1.1 Show that all members of (a) + (b) = {am -+ bn: m,n € Z} are multiples
of ged(a,b).

11.1.2 Show that {am+bn :m,n € Z} is closed under difference, and deduce that
all its members are multiples of the smallest positive member.

11.1.3 Deduce that ¢ = ged(a, b), and hence that (a) + (b) = (ged(a,b)).
11.2 Ideals and divisibility in Z

‘The simplest examples of ideals occur in Z. For instance (2) = {2n:n € Z}
is an ideal, as is (6) = {6n: n € Z}. In fact, for any a € Z, the set

(a)={an:neZ}

is an ideal called the principal ideal generated by a. Di
responds to containment of principal ideals. For example

ility in Z cor-

2 divides 6, (2) contains (6),
and in general

adividesh < (a) contains (b).

Dedekind’s idea was to define “div
saying that

ility” of ideals in a ring R by

I“divides”J 4 I contains J.
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(We put this notion of division in quotes for now, because it remains to be
seen whether it is consistent with the usual notion of divisibility: 7 divides
J & J = IK for some ideal K. The latter notion comes into contention
when we define the product of ideals in Section 11.7.)

Dedekind’s definition includes divisibility of elements s, € R, since in
any ring we can define the principal ideals

(s) ={sr:reR}, (1)=A{tr:reRr}

and show that
sdividess < (s) contains (1).

But “divisibility” of ideals generally extends the concept of divisibility of
elements, because not every ideal is principal.

In particular, we shall see that there are nonprincipal ideals in Z[y/=5|,
and they include “ideal primes™ that restore unique prime factorization.
Before doing so, however, it is helpful to look more closely at Z from the
viewpoint of ideals. This allows us to see how the basic theory of ideals
elegantly includes the traditional theory of divisibility, common divisors,
and primes.

Ideal theory in Z

The basic theory of divisibility in Z consists of three theorems about ideals.
The first is a counterpart of the division property.

Principal ideal property of Z. All ideals in Z are principal.

Proof. Suppose / is an ideal of Z other than (0). Then 7 has a least positive
member, a say. Since / is closed under multiplication by members of Z, 1
includes all members of

(a) ={an:neZ}.
But these are the only members of /, because if b is not a multiple of @ then
b — (greatest multiple of a less than b)
is a positive member of 7 less than a, contrary to assumption. u]

The second theorem yields the ged without the Euclidean algorithm,
generalizing the example of the previous section.
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The ged ideal. The set (a) + (b) = {am -+ bn:m,n € Z} is (ged(a,b)).
Proof. Since ged(a,b) divides a and b, it divides each number am + bn.
Thus {am+bn : m,n € Z} includes only multiples of ged(a,b).

Now {am -+ bn : m,n € Z} is clearly an ideal, hence by the previous
theorem it consists of the multiples of its least positive member c. Since a
and b are numbers of the form am -+ bn, they too are multiples of ¢, hence
¢ is a common divisor of @ and b. But we already know that ¢ is a multiple
of ged(a, b), hence ¢ = ged(a,b). Thus the ideal {am +bn :m,n € Z} of
multiples of ¢ includes exactly the multiples of ged(a,b). o

Finally, we can express the prime divisor property in terms of ideals.
The proof is close to the one originally given for the prime divisor property
(Section 2.4). Since “divides” means “contains” for ideals, the only ideals
containing an ideal (p) for prime p are (p) itself and (1) = Z.

Prime ideal property. If p is prime and the ideal (p) contains (ab), then
(p) contains (a) or (p) contains (b).
Proof. Suppose (a) Z (p), so we have to prove (b) C (p).

Since the ideal {am + pn: m,n € Z} contains both (p) and (a), and
(a) Z (p), {am+ pn:m,n € Z} can only equal (1).

This means 1 = am | pn for some m,n € Z and

1=am+ pn=b=abm+ pbn multiplying both sides by b

= be(p) sinceab € (p) by hypothesis and p € (p)
= (b) C (p) as required o

As we know, the prime divisor property is the essence of unique prime
factorization. However, we cannot disc ctorization of general ideals
yet, because we have not defined the product of ideals. Likewise, we cannot
yet define the general concept of “prime” ideal, though the prime ideal
property for Z suggests how it should be done as soon as we have defined
the product.

Exercises

Just as ged(a, b) results from a simple operation on (a) and (b), so does lem(a, b).
Moreover, the operation makes sense on any ideals, and hence gives a general
definition of lem in any ring.

11.2.1 Show that (lem(a, b)) = (a)N (b).

11.2.2 For any ideals 7 and J in a ring R, prove that /NJ is an ideal.
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11.3 Principal ideal domains

Z is an example of a principal ideal domain, aring R in which every ideal
is of the form (a) = {ar:r € R}.

Other examples are rings with a Euclidean algorithm, such as Z[i],
Z|v/=2], and Z[{5]. As we know, a ring R has a Euclidean algorithm if
R has the division property, which we can formalize as follows.
Definition. R is a Euclidean ring if there is a nonnegative integer-valued
function |r| on R such that |r| = 0 only if = 0, and for any a,b € R with
|b] > 0 there are g, r € R such that a = gb + r with 0 < [r| < |b].

For the rings mentioned above, the function |r| is the absolute value
function. For certain examples where the norm can be negative, such as
Z[v/2], the square root of the absolute value of the norm will serve as |r].
(Exercise 9.1.6 is then a proof that Z[v/2] is a Euclidean ring.)

The theorems about Z in the previous section generalize to the follow-
ing theorems about principal ideal domains. Since the proofs are similar,
we abbreviate them slightly here.

Principal ideal property of Euclidean rings. Any Euclidean ring is a
principal ideal domain.

Proof. If I # (0) is an ideal of R let b € I be of minimal norm > 0. Since /
is an ideal it includes all multiples of b by elements of R.

Conversely, if a € I'is not a multiple of b, then we have a = gb + r with
0 < |r| <|b|,and r = a — gb € I, contrary to the minimality of b.

Thus 7 = (b). o
Prime divisor property for principal ideal domains. If p is a prime in a
principal ideal domain and p divides ab, then p divides a or p divides b.
Proof. Suppose p is a prime that divides ab but not a, so we have to prove
that p divides b.

R a principal ideal ring = ideal {ar + ps:r,s € R} = (1) for somet € R
= (1) 2 (a) and (1) 2 (p)
=t divides @ and p
=1 =1 since pis prime
= 1=ar+ps forsomerséeR
= b = abr+ pbs
= p divides b. o
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These theorems give a uniform explanation why the prime divisor prop-
erty (and hence unique prime factorization) holds in the rings Z, Z[i],
Z[v/=2], and Z[{;]—they are all Euclidean, and hence they are principal
ideal domains.

The principal ideal property of Z[i] has an interesting geometric inter-
pretation. As we observed in Section 6.4, the principal ideal (f) of all
multiples of B # 0 in Z[i] is a lattice of the same shape as Z[i] (and mag-
nified by |B|). Therefore, since all ideals of Z|i] are principal, it follows
that any ideal # (0) in Z[i] has the same shape as Z|i|. The same is true of
Z[v/=2| and Z[{y], as we observed in Sections 7.2 and 7.4. (We say that
two sets in the plane have the “same shape” if one can be mapped onto the
other by a function that multiplies all distances by a constant.)

Conversely, nonprincipal ideals exist only when unique prime factor-
ization fails, and therefore differently shaped ideals exist only when unique
prime factorization fails. We shall see that they actually occur in Z[v/=3]

and Z[/=5].

Exercises

It happens that the only imaginary quadratic fields Q(v/d) whose integers form

Euclidean rings are those with d = —1,-2,—3,—7,~11. The only two we have

not studied already are Q(v/=7) and Q(v/—11), the integer rings of which are
(L7 ) and Ium‘

let @ — LT or

ly, because d = 1 (mod 4) in these cases. We

and consider the points of Z[®| in the plane C.

As usual (see ('hEnplcr 7), the division property is implied by the statement
that any point of the plane is at distance < 1 from the nearest point of Z[w]. We
prove this with the help of Figure 11.4, which shows 0 and its 6 neighbors £1,
+0, &(@ —1). The hexagonal region around 0 is bounded by the perpendicular
bisectors of the lines from 0 to its neighbors, and hence the points inside it are
those that are nearer to () than to any neighbor. Since any point of Z[w] looks like
0, it suffices to prove that the point on the hexagon farthest from 0, namely ai, is
at distance < 1.

11.3.1 The point ai is equidistant from 0 and @ (why?). Deduce that

|ai — |

14d|
N

11.3.2 Deduce from Exercise 11.3.1 that a

11.3.3 Deduce from Exercise 11.3.2 that a < 1 for d = —7,—11, and hence that
Z[A54) has the division property in those cases.



204 11 Ideals

-0 —0+1

Figure 11.4: The region of points nearer to 0 than its neighbors

LT} and (20 have unique pnmL factorization, which e
1 as we solved y?

Thus Z|
can apply to solve the eq\mnons ¥ =224 7andy’
241,02 42, and 32 + 4 in Chapter 7 and its exercises. The case of y* =12 4 11
is particular ly interesting, because one of its solutions is large enough not to be

obvious.

X2+ 11 = (x+/=1T)(x — /=11), use unique prime factorization
L= 10 show that
xV=11=

where a, b are both integers or else both half-integers that are not integers.

2%+ 11 by finding an integer solution of

1134 1fy}
inZ[

(a® —33ab%) + (3a’b — 116%) /=11

11.3.5 Find one integer solution of
the equation b(3a®> — 11b) = 1.

11.3.6 Find another integer solution of y* = x? + 11 by finding a half-integer solu-
tion of b(3a> — 11b%) = 1, and show that it is the only other integer solution
X, y (up to the sign of x).
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11.4 A nonprincipal ideal of Z[\/—3|

‘We might attempt to understand the nonunique prime factorization of 4 in

Z[V=3),
4=2x2=(1+vV=3)(1-v=3),

by looking for an “ideal” common divisor of 2 and 1+ /=3 to split the
factors. Using the idea of Section 11.1, we form the ideal (2) + (1 ++/=3)
by adding all multiples of 2 to all multiples of 1 /=3.

An arbitrary element of (2) + (1 +v/=3) is

2(a+bv-3)+(1+vV-3)(c+dv-3) forsome a,b,c,dcZ
2a—b—2d)+(1+v=3)(2b+c+d)
=2m+(1++v=3)n forsome m,n€Z.
Conversely, 2m + (1 + v/ =3)n € (2) + (1 +v/=3) for any m,n € Z, and

therefore
)+ (1+vV=3)={2m+ (1 +V=3)n:mnecZ}.
Figure 11.5 shows the elements of this ideal, marked in black, on a
picture of Z[v/=3|. It is clear that (2) + (1 + v/=3) consists of equilateral
triangles, and hence it is not of the same shape as Z[v/—3]. (For example,

no point of the ideal has neighbors in perpendicular directions.)

@ O @€ O e O e O o

Figure 11.5: The ideal (2) + (1 +v/=3) in Z[y/=3]
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Thus (2) + (1 ++/=3) is a nonprincipal ideal: it does not consist of
the multiples of any member of Z[y/=3]. However, we can dream that
(2) + (1 ++/=3) consists of multiples of an “ideal number”—something
outside Z[v/—3|—and this dream is easily realized.

The shape of (2) 4 (1 ++/=3) is exactly the same as the shape of
Z[bE] the set of multiples of ‘i\iE (Figure 11.6), so ‘ﬂz/i is the
desired “ideal number”. In Z[‘;\iE] i\lE dividesboth 2 and 1 + v/ =3,

and its norm is 1, hence i\ig is the ged of 2 and 1+ /3.

e o o o o
e o o o

e o o o o
e o .l.

e o o o o

Figure 11.6: The principal ideal ('*‘;j) Z [”‘;’_3]

Thus the “ideal number” whose “multiples” make up the nonprincipal
ideal really exists in this case, but outside the original ring.

Exercises
An interesting variation of this phenomenon occurs in Z[v/=7|, where the ideal

(2)+ (1+ v/=7) is nonprincipal. Itis in fact the same shape as the principal ideal
1+

of multiples of in Z[ Y=}, though this is not immediately obvious.

11.4.1 Show that (2) + (1 +/=7) = {2m+ (1 +V=T)m:m,n € Z}.

1142 Using the approximation v/7 = 2.6, sketch a picture of Z[y/=7] and mark
the members of (2) + (1 ++/=7).

11.4.3 Show that (2) + (1 +/=7) is not the same shape as Z[v/=7|, and hence
is not a principal ideal.

11.4.4 Show that ged(2, 1+ v/=7) = 2T in Z[1/7, and sketch the princi-

1t ﬁ]_

pal ideal ( in a picture of Z[

11.4.5 By computing the side lengths in a triangle of this principal ideal, show
that it has the same shape as (2) + (1 +/=7) in Z[v/=7].

11.4.6 Show that 8 has distinct prime factorizations in Z[y/=7|, but that each of

Lt \/_7]

3

these factorizations splits into the same prime factorization in Z|
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11.5 A nonprincipal ideal of Z[/—5]

Like Z[v/=3], Z[/=5] fails to have the prime divisor property, as is shown
by the two factorizations

2x3=(1+V=5)(1-v/=5).

The numbers 2, 3, 1+ /=35, 1 — /=5 have norms 4, 9, 6, 6 respectively,
whose divisors 2 and 3 are not the norm a? + 5b* of any member a +bhV=5
on[\/—_5]4 Hence none of 2,3, 14++v/=5,1—v/—5isa product of numbers
of smaller norm, and so they are primes of Z| V=3 B

To understand this nonunique prime factorization we first construct the
“ideal” ged of 2 and 1++/=5: the set (2) +(1-++/=5) of sums of multiples
of 2 and multiples of 1 + V/=5. A similar calculation to the one in the
previous section shows that any member

2(a+bv=5) 1+ (14 vV=3)(c +dv=5) € (2) + (1 +V=5)

is actually of the form 2m + (1 +/=5)n for some m,n € Z (exercise).
Conversely, any such number 2n+ (1 ++v/=5)nis in (2) + (1 ++v/=5), so

2)+(1+V=5) = {2m+ (1 +V=S)n:mneZ}.

Figure 11.7 shows this ideal as black dots in a picture of Z[y/=35]. It
is clear from the picture that no black dot has neighbors in perpendicular
directions, so this ideal is not of the same shape as Z[/=5|. In particular,
itis not a principal ideal (), since () is simply Z[y/=5| multiplied by 3,
which multiplies all distances by |B| and hence produces a set of the same
shape, as observed in Section 8.1. Thus (2) + (1 +v/=35) is nonprincipal.

We would like to view the members of (2) + (14 /=3) as multiples of
some “ideal number” outside Z| V=3 |. However, Z| V=3 | already contains
all the integers of Z[y/=5), so it is not clear where this “ideal number” can
be found. Instead, we follow Dedekind (1871) and do without the “ideal
number”, working directly with the ideal.

As we have seen, a principal ideal () behaves the same as the number
B in the sense that

(B) contains (y) < B divides y.

In this sense, the nonprincipal ideal (2) -+ (1+/=5) behaves like a number
dividing both 2 and 1+ v/—5, because

(2) + (1 ++/=5) contains (2), (2)+(1++/=5) contains (1+v/=3).
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V=S

L]
o
L]
o
[ 1=}
o~
L]
o
L]

® O @ O @ O @ O o
Figure 11.7: The nonprincipal ideal (2) + (1 +v/=5) of Z[/=3|

And in fact we have seen that (2) + (1 +v/=35) deserves to be the “greatest
common divisor” of 2 and 1+ \/_5 in Z[v/=5], since the analogous ideal
inZ, (a)+ (b) = {am+bn:m,n € Z}, is (gcd(a,b)), as we saw in Section
11.1.

Not only that. (2) + (1 + v/=5) deserves to be called a prime. We
noted in Section 11.2 that a prime principal ideal (p) is maximal in the
sense that (1) and (p) are the only ideals mnuining it. Likewise, the only
ideals containing (2) + (1+/=5) are (1) and (2 1++/=5) itself. This
is because

(2)+(1+V=5) = {2m+ (1 +vV=5)n:mn € Z}

consists of the numbers of the form even -+ (1 v/=5)n. Hence any mem-
ber of Z[v/=5] not in (2, 1+ +/=5) is of the form odd + (1 ++/=5)n. But
an ideal including all numbers even + (1-+v/=5)n and at least one number
odd + (1+v/=5)n’ obviously includes 1, hence all of Z[v/=5] by closure
under multiplication by members of Z[v/=5|. Thus (2) + (1+v/=5) is a
maximal ideal and we shall see, once we have defined the product of ideals,
that maximal ideals are prime.

Wc also need to dc[inc the product of ideals to confirm that the ideal

(1++/=5) divides (2) in \In. usual sense of ring theory, namely (2)

) (1++/=5)) x I for som I. This will be done in Section 11.7,

dl‘ld we llnd the mystery factor / in Section 11.8.
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Exercises

11.5.1 Check that 2(a+by/=5) + (1 ++/=5)(c +d\/=5), when a,b,c,d € Z, is
of the form 2m + (1+ v/=5)n for some m,n € Z.

Also important in reconciling the two prime factorizations of 6 in Z[/=3| is
the ged ideal of 3 and 1+ /=5, the general member of which is of the form

3(a+bv=5)+(1+v/=5)(c+dy=5), where a,b,c,d<Z.

11.5.2 Check that 3(a+by/'=5) + (1 ++/=5)(c+dv'=5),a,b,c,d € Z, is of the
form 3m + (1 ++/=5)n for some m,n € Z.

11.5.3 Deduce from Exercise 11.5.2 that
+(1+v=3)=B3m+(1+vV=5)n:mneZ}.

11.6 Ideals of imaginary quadratic fields as lattices

Although ideals in rings of quadratic integers are not always principal, we
can nonetheless prove an analogue of the theorem that Z is a principal
ideal domain. Ideals 7 of Z each have one generator, in the sense that each
consists of the integer multiples of some integer a. Z itself is the ideal with
generator 1. The analogous theorem (with a similar proof) for ideals / in
the integers of Q(v/d) says that they have two generators, like the integers
of Q(v/d) themselves.

The description of the integers of Q(\/E ) in Section 10.4 shows that
they comprise either Z[HT‘/F] or Z[Vd]. In either case, they form a sub-
group L of C with two generators: 1 and ‘ﬁzg for Z[‘ﬁ:@] and 1 and Vd
for Z[\/t_i] When d <0 the generators of L can be described geometrically
as two nonzero members nearest to O but not on the same line through 0,
and the group they generate is called a lattice.

In general, a lattice L in C is a set {orm + Bn: m,n € Z} where o and
B are nonzero complex numbers not on the same line through 0. The pair
a, P of generators is called an integral basis for L. The elements of L lic
at the intersections of two families of parallel lines forming a “lattice” in
the ordinary sense of the word (Figure 11.8). An important property of the
lattice of integers in Z( \/t_i) is that any subgroup of it, and hence any ideal,
is also a lattice.

Lattice property of ideals. When d <0, any nonzero ideal in the integers

of Q(V) is a lattice.



210 11 Ideals

777
i

Figure 11.8: A lattice in C.

Proof. Suppose / is a nonzero ideal in the integers of Q(v/d), and let o be
anonzero element of / nearest to 0. Since / is closed under sums and also
under multiplication by —1, I also includes all ordinary integer multiples of
. But this is not all, because / also includes ov/d, which is in a direction
from 0 perpendicular to the direction of o (since d < 0).

Now let 8 € I be as close as possible to 0 but not an ordinary integer
multiple of . I claim that the lattice {am + n:mn€ Z} =1.

If not, let y be a member of 7 not in {azm + Bn :m,n € Z}, and con-
sider the parallelogram of the lattice that includes y (Figure 11.9). Now y

am+ Bn

Figure 11.9: Lattice point oum + Bn nearest to y.

necess

rily lies in one quarter of the parallelogram, in which case its dis-
tance from the nearest corner om -+ f3n is less than el @ by the triangle
inequality, hence less than the length max(|e|, \ﬂ|).of the longest side of
the parallelogram. But then the element y— (oum + fBn) of 1 is at distance
< max(|a|,|B|) from 0, contrary to the choice of & and 3. o
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The proof above does not assume that / is an ideal, only that it is closed
under + and — (and hence is a group). Assuming I = {am+Bn:m,n € Z}
is an ideal leads to the stronger conclusion that I = (a) + (B), the sum of
the principal ideals generated by o and 3.

We always have I = {om + Bn = m,n € Z} C (a) + (B), since each
am € (o) and each Bn € (B). Conversely, {am -+ fin:m,n € Z} certainly
includes ¢ Hence if 7 is an ideal then it includes all members of (o),
by closure under multiplication by ring members. Similarly, 7 includes all
members of (), hence 7 D (a) -+ (B) by closure under sums.

Exercises

It should be stressed that, while an ideal {om+ Bn : m,n € Z} is necessarily the
sum ideal (e) + (B), the converse does not always hold. Certainly, (&) + () 2
{om+Pn:m,n € Z}, as we observed above, but (o) + () may include members
not of the form aum+ fBn for m,n € Z. In this case the pair o, B is not an integral
basis for () + (B).

11.6.1 Show that (5)+ (1++/=35) in Z[y/=3] includes the element v/=35.

11.6.2 Show that /=5 # Sm+ (1 +/=5)n for all m,n € Z.

Thus (5)+ (1 +v/=3) # {5m+ (1 + V=3)n:m,n € Z}, and therefore 5,
1+ /=5 is not an integral basis for (5) -+ (1++/=5). However, we know that
(5)+ (1 ++v/=3) has some integral basis o, B, by the lattice property of ideals
proved above.

11.6.3 Find o, B € Z[y/=5| such that (5) + (1+/=5) = {am | Bn:m,n € Z}.

11.7 Products and prime ideals

Since we want a principal ideal (s) of aring R to behave like the element s
of R, the product (s)(¢) of principal ideal and (¢) should be (st). This
means that the product of any member rs of (s) and any member 7t of (t) is
amember /st of (s)(t), and hence so too is the sum of any such products.
We use this idea to define the product of any two ideals.

Definition. The product AB of ideals A and B in aring R is
AB = A{a\b, +ayb, +---+ab, :a; €Ab; € B}.

It is clear that AB is closed under sums and under products by members
of R, hence it is an ideal. We now define prime ideals as those that have
the “prime divisor property” with respect to products of ideals.
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Definition. An ideal P is prime if, whenever P contains (that is, “divides™)
the product AB of ideals, P contains A or P contains B.

A more concise way to state this definition of prime ideal is:
ABCP=ACPorBCP. 1)
A definition involving membership rather than containment is:
abeP=acPorbeP, 2)

and the two are equivalent by the following theorem.
Equivalent definitions of prime ideal. The following properties of an
ideal P are equivalent:
(DABCP=ACPorBCP,
2)abeP=acPorbeP.
Proof. (1) = (2):
ab € P = (ab) C by closure of P
= (a)(b) C P by definition of (a)(b)
= (a) S Por(b) CP by property (1)
=acPorbeP sinceac (a),be(b).

N ~

(2)=(1):
Suppose AB C P and A Z P, so we want to show that B C P. Since A Z P,
there is an @ € A with a € P. Then

ABCP=abec P foranyb € B, by definition of AB
=acPorbeP forany b€ B,by property (2)
= bec P sincea ¢ P by assumption
= BC P since thisis forany b € B. [m]

As mentioned in Section 11.2, prime principal ideals are “maximal” in
the sense that the only ideal properly containing them is the whole ring.
However, “prime” and “maximal” are not always the same, thus we need a
separate definition of maximal ideals.

Definition. An ideal M in a ring R is maximal if M # R but the only ideals
containing M are R and M itself.
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‘We can now prove a relationship between prime and maximal ideals in

one direction:

Primality of maximal ideals. Every maximal ideal is prime.

Proof. Suppose that M is a maximal ideal, ab € M and a M. Thus (using
the second definition of prime ideal) we want to prove that b € M.
Since M is maximal and a ¢ M, the ideal

Mla] = {ar+ms:rsecRmeM},

which contains both M and a, must be all of R. This means that 1 in
particular is of the form ar + ms. Now we can use a familiar trick:

1 =ar-+ms= b= abr+mbs
=beM, sinceabe MandmeM. o

Examples of prime ideals in Z[v/=5|

e In Section 11.5 we found that the nonprincipal ideal (2) 4 (14 +v/—5)
is maximal, hence it is prime by the above theorem.

Another one is (3) + (1 ++v/=3) = {3m+ (1 +v=3)n:myn € Z},
which is maximal for th. l‘ullowmg reason. Elements not in it are of
the form 3m’ + 14 (1+v/=3)n" or 3m' -+ 2+ (1 + v/=5)n’. Now an
ideal containing (3) + (1+v/=5) and some 3m’ + 1 + (1+v/=35)n’
includes 1, so it is Z[\/_] An ideal containing (3) + (1 +v/=3)
and some 3m’ + 2+ (1 -+ v/=5)n’ includes 2, hence 1l alsu includes
1 =3 -2, so this ideal too is Z[ \/—_5\

e The ideal (3) + (1 —/=5) is maximal, huncc prime, hy a similar
argument. It is called the conjugate of ( l | \/ smw its
members are the conjugates of the rm.mht.rs ol (1 \ V=

Like (2) + (1 +v/=5), (3) + (1 ++/=5) and its conjugate are non-
principal ideals in Z[v/=3 his can be seen by making a picture of
(3)+ (1 +v/=5) and ob; g that no element has neighbors in perpen-
dicular directions, hence if not the same shape as Z| V/=3]. Rather sur-
prisingly, it has the same shape as (2) + (1 +v/=5) (exer ).
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Exercises

In studying the shape of lattices, the key fact to be aware of is that if & and B are
complex numbers in different directions from 0, then the ratio of their distances
from O is |o/B| and the angle between their directions is arg o¢/f. Thus the shape
of the parallelogram determined by 0, ¢, and f is determined by the quotient
a/B.

11.7.1 Sketch a picture of (3)+
the same shape as Z[/=3].

1+4+/=35) accurate enough to show that it is not

11.7.2 Explain why the lattices (3) + (1 ++v/=5) and (3) -+ (1 — /=5) have the
same shape.

11.7.3 By considering the quotients 2/(1+/=5) and (1 —/=5)/3, show that
the lattices (2) + (1+/=5) and (3)+ (1 —v/=5) have the same shape.

It turns out that all nonprincipal ideals of Z[y/=5] have the same shape as
(2) + (1++/=5) (see Section 12.7) . Thus exactly two shapes of ideals occur for
Z[V/=5]. The classical way to say this is that the class number of Z[v/=3] is 2.

11.8 Ideal prime factorization

Now that we have a definition of product for ideals, we can define divisibil-
ity as we do for any commutative product: B divides A means there is a C
such that A = BC. But we previously suggested that “divides™ should mean
“contains” for ideals, so now is our chance to test the merit of containment
as a concept of divisibility.

Our examples are nonprincipal ideals in Z[y/=3), such as the ideal
(2) + (1 +v/=5). To make products easier lo read, we write the ideal with
integral basis o, B as (o, B); for example (2) + (14 v/=3) = (2,1 +V=3).
(This conflicts with the notation for ordered pairs, however no mducd pairs
will turn up to cause confusion.)

The first example is the prime ideal (2,1 4 /=5), which contains the
principal ideal (2). Is there an ideal C such that

(2) = (2,1+V=3)?

Happily, the answer is yes, and in fact we have the following.

Ideal prime factorization of (2). (2) = (2,1++/=5)*
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Proof. It follows from the definition of product of ideals that

4-2x2¢e(2,1+vV=5),
242V=5 =2x(1+V=5) € (2,1 +V=5)%
—442V/=5 = (1+V=5) € (2,1 +V=5)%

And

4,242V=5,—442V/=5 € (2,1 +V=5)?
=2¢€(2,1+V=5)> by closure under + and —
= all multiples of 2 € (2,1 ++/=5)*
by closure under multiplication by members of Z[v/—3]

=(2)C(2,1+V=5)2
Conversely, any element of (2,14 +/=5)?is a sum of products of terms 2m
and (1++/=5)n. Any product involving 2m is a multiple of 2, and so is
any product involving (1++v/=5)? = —4 4 2/=5. Therefore, any element

of (2,14 +v/=5)? is a multiple of 2, hence (2,1 v/=5)? C (2), as required.
a

Likewise, the two prime ideals (3,1++/—5) and (3,1 —v/=5) contain
(3), and they are in fact its ideal prime factors.
Ideal prime factorization of (3). (3) = (3,1 +v/=5)(3,1 —V=5).

Proof. It follows from the definition of product of ideals that

9=3x3¢€(3,1+V=3)(3,1-V=35),
6= (1+vV=3)(1-v=3) € (3,1 +V=5)(3,1 —v/=5).

And

9,6 € (3,1+v=5)(3,1-v=5)
=3¢€(3,1+V=5)(3,1—v=5) by closure under —
= all multiples of 3 € (3,1+v/=5)(3,1 —v/=5)

by closure under multiplication by members of Z[y/=3)

= (3)C (3,11 V=5)(3,1-V=3).
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Conversely, any element of (3,14 v/=5)(3,1—v/=5) is a sum of products
of terms 3m and (1= v/—5)n. Any product involving 3m is a multiple of
3, and so is any product involving (1++v/=5)(1—+/=5) = 6. It follows
that any element of (3,1 +/=5)(3,1 —/=5) is a multiple of 3, hence
(3,1+v=5)(3,1—/=5) C (3) as required. o

These two factorizations imply that the prime factorization 2 x 3 of 6
in Z[/=5| actually splits further, into the ideal prime factorization

6= (2,1+V=5)*3,1+V=5)(3,1-vV=5),

when we replace 2 and 3 by the corresponding principal ideals (2) and
(3). Even more marvellous, the ideal factors recombine to produce the
other prime factorization in Z[v/=5), 6 = (1 +v/=5)(1 —v/=5) (where
(1++/=5) and (1 —+/=5) are taken as prmclpal ideals), because

(14+vV=5)=(2,1+vV=5)(3,1+V=5),
(1=v=5)=(2,1+v=5)(3,1-v=5).
The latter factorizations can be checked along the same lines as the ideal
prime factorizations of (2) and (3) above (exercises).
“Thus the two prime factorizations 2 x 3 and (1 + v/=5)(1 —/=5) of
6 are actually different groupings of factors in the same ideal prime fac-
torization. Admittedly, this does not prove that ideal prime factorization is

unique in Z[v/=5], but it shows how uniqueness might be possible, and the
next chapter will explain why it is in fact true.

Exercises
11.8.1 Show that 1 ++v/=5 € (2,1 +v/=53)(3, 1+ v/=3), so that
FV=3) C (2,14 V=3)(3,14V=3).

11.8.2 Show that 1 + /=35 divides each element of (2,14 v/=5)(3,1+v/=5).

Hence deduce from Exercise 11.8.1 that
(1+vV=5)= (2,1 +V=5)(3,1+V-5).
11.83 Show similarly that (1 —v/=3) = (2,1 —v/=3)(3,1 —v=3).
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11.9 Discussion

The failure of unique prime factorization was a deeply hidden problem,
which remained undetected for nearly two centuries after its side effects
were first noticed. The first such effect is the anomalous behavior of the
quadratic form x? - 5%, noticed by Fermat in 1654. As we know, Fermat
had successfully classified primes of the form x% +y2, x* + 2%, and x* 4 3y*
before this, and we have seen in Chapters 7 and 9 how his classification
can be explained with the help of unique prime factorization in Z[v/—1J,
Z|V/=2), and Z\%‘E| respectively. Fermat presumably did not concep-
tualize the problem this way, otherwise he would have seen trouble in store
for x* + 5y?, due the failure of unique prime factorization in Z[v/=5|.

He did indeed have trouble, but for reasons that are unclear he left only
a conjecture about prime products of the form x> + 5y%: if Py, P, are primes
of the form 20n+3 or 20n -+, then p,p, = x* -+ 5y*.

This is strange, because primes of the form x* + 5y exist (for example
29 =32 5% 22) and an easy application of congruences mod 20 shows
that any prime p = x> | 5y*> must be of the form 20n + 1 or 20n 1 9. Euler
(1744) evidently realized this, and conjectured that the converse is also
true, thus:

p=x*+5y* < p=20n+10r20n+9.

Putting the conjectures of Fermat and Euler together, we have the conjec-
ture that x 4 5y* is the form of

o primes of the form 20n | 1 or 20n 19,

e products of two primes of the form 20n + 3 or 20n + 7.

The first to account for this two-faced behavior of x* | 5y* was La-
grange (1773), who discovered that x% + 5y* has a hidden companion—
the quadratic form 2x* 4 2xy - 3y*—whose prime values are of the form
20n+ 3 or 20n+ 7. Lagrange made this discovery through his theory of
equivalence of quadratic forms that we introduced in Section 5.6. He dis-
covered that equivalent forms have the same determinant, and that:

All forms with determinant I are equivalent to x* +y*.
All forms with determinant 2 are equivalent to x* +2y*.

All forms with determinant 3 are equivalent to x* -+ 3y*.




218 11 Ideals

For determinant 5 there are two inequivalent forms: x* + 5y* and
232 + 2xy + 3%

These discoveries throw new light on the regular behavior of x> -+ y?,
X%+ 2y%, and x% 1 3y?, and also suggest why x% + 5y is irregular. The deter-
minants 1, 2, and 3 each have only one equivalence class of forms, or class
number 1, which is the simplest situation (now recognized as equivalent to
unique prime factorization in the corresponding ring). The determinant 5
has two equivalence classes, or class number 2, and this is more compli-
cated because the two forms interact with each other. Lagrange saw that the
product of two numbers of the form 2x* +2xy + 3y? is of the form x* -+ 5%,
because

(23 + 2x,y, +391)(203 + 23,9, + 3y3) = X2 4 5Y2,
where X = 2x,x, +x,y, +x,, —2y,y, and ¥ = x;y, +x,y, +y,y,. He
also saw that a number of the form x* 4 5y* times a number of the form
2x% + 2xy + 3y is again of the form 2x* +2xy + 3y? because

(03 +593) (203 + 2y, +3y3) = 2X% +2XY 4372,

where X = x x; —y,x, =3y, y, and ¥ = x,y, + 2y, %, +y,y,.

These stellar feats of high school algebra can be emulated in a fairly
mechanical way by using factorizations in Q[v/=5| and combining terms
50 as to produce conjugate factors. For example, since

215y = (x + yW=5) (x —yV/=3),
22 4 2ay 32 =2 [.u%(] + JTs)] [x+§(| - ﬁ)]
we have
(4 551)(2 1 26, 1 3y3)
(6, +3,V=5)(x, *}’1\/—_5)2[3(, F=2(1+4 \/_] [ 17\/_5)}
203, V) [y + 22014 r} NV [y + 201 - V)]
2 [-’ﬁ)fz*yl)fz*."ylyl } W(l t Jj)] X its conjugate

2X2 4 2XY 372,

~I‘<~|

where X = xx) —y1X, =3y, v, ¥ = X9, + 2y, + 3y,
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But does something similar happen for any determinant?

Lagrange’s results on the two inequivalent forms with determinant 5
were early steps in a theory later known as composition of quadratic forms.
The first steps were Diophantus’ identity and Brahmagupta’s generaliza-
tion of it:

(= myD) (3 —ny3) = X* —nr?,
where X = x,x, +ny,y, and ¥ = x;y, +y,x,. The Brahmagupta identity
says that “the form x> — ny?, composed with itself, yields itself”. If we
denote the form x* + 5> by A and the form 2x* | 2xy + 3y* by B, then
Lagrange’s results (combined with Brahmagupta’s) say that the composites
of A and B have the following “multiplication table™:

A=A, AB=BA—=B, B*—=A.

We recognize this as the multiplication table for the two-element group
with identity element A. Today it is called the class group for Q(v/=5)
and it is defined in an entirely different way, using ideals.

The classes A, B of the inequivalent forms x* + 5y%, 2x2 + 2xy + 3y*
correspond to two classes of ideals of Z[v/=3|: the class A* of principal
ideals and the class B* of nonprincipal ideals (in this ring, all nonprincipal
ideals are equivalent in the sense of having the same shape). The products
of ideals computed in the previous section show that these ideal classes A*
and B* have the same multiplication table as the forms A and B.

1 think it will be agreed that it is easier to multiply ideals than to com-
pose forms, but it is not easy to see why they are really the same thing. For
this reason, replacement of forms by ideals was a momentous change of
direction for number theory. Early work in the direction of ideals, s
Euler’s use of quadratic integers, was snuffed nul when Gauss apparently
realized that unique prime factor ound this
obstacle was to develop Lagrange’s theory of quadratic forms for arbitrary
determinant, which he did, in stupefying complexity, in his Disquisitiones
of 1801.

Gauss took a small step toward a rigorous theory of quadratic inte-
gers with his proof, published in 1832, of unique factorization in Z[i].
This effectively made the theory of the form x? + y* obsolete. However,
it was only in the 1840s and 1850s that Dirichlet, Kummer, Kronecker, and
Dedekind began developing general alternatives to composition of forms.
As mentioned earlier, Kummer had the idea of “ideal numbers”, and he
fully in the theory of cyclotomic integers, where there was
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no viable alternative. The easier theory of quadratic integers did not emerge
until later, perhaps because Dirichlet and Dedekind had invested a lot of
time in simplifying the competing theory of composition of forms.

Composition of forms began to fade only in the 1870s, when Dedekind
developed ideal theory for algebraic integers of arbitrary degree. In 1877 he
gave a careful exposition of the Z[y/—5| example to motivate his general
theory of ideals of algebraic integers. His very readable little book, in
English translation as Dedekind (1877), is recommended for its insight into
Dedekind’s struggle to make “ideal numbers™ actual. Also recommended
is the translator’s introduction, which discusses the historical steps from
quadratic forms to algebraic integers in rather more detail than is possible
here.
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Prime ideals

PREVIEW

In this final chapter we regain unique prime factorization in rings
such as Z[y/=5]| by using prime ideals instead of prime numbers.

‘We first note the pure algebraic meaning of ideals in a ring R: ideals
are the subsets 7 for which the notion of “congruence mod I makes
sense. This generalizes the idea of congruence mod » in Z, and
there is a corresponding generalization of the ring Z/nZ, namely
the quotient ring R/1.

Properties of the ideal / (in particular, being prime or maximal)
are reflected in properties of the quotient ring R/ (being an inte-
gral domain or field respectively). For the integers of an imaginary
quadratic field, “prime™ turns out to be equivalent to “maximal”,
which helps to prove the key property of ideals: that “contains™
means “divides”: B2 A = A = BC for some ideal C.

The first step is to introduce the conjugate A of an ideal A, and to
prove that AA is a principal ideal. This is used to boost results about
principal ideals (which are easy because principal ideals behave like
numbers) to results about general ideals.

We use this strategy to prove that “contains” means “divides” and to
obtain unique factorization of ideals into prime ideals.

Returning finally to the specific case of Z[y/=3], we take a brief look
at the concept of ideal classes, in order to show that all nonprinci-
pal ideals of Z[y/=5] have the same shape. We need this result to
conclude our unfinished business with Z[v/=35]—the
of the primes of the form x +

fication

221
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12.1 Ideals and congruence

‘We now know that ideals can serve as “ideal numbers™ in situations where
actual numbers seem to be lacking, for example in Z[v/=5], where 2 and
1+ /=5 should have a ged # 1 but don’t. However, ideals also have a
natural abstract function: an ideal I in a ring R is a subset of R for which
“congruence mod 1" makes sense.

Given an ideal 7, we define congruence mod 7 by

a=b (modl) & a—-bel.
Then the equivalence properties of = follow from closure properties of /:

e a=a(mod])
because a € I = —a € I, since multiples of —1 are in I, which in turn
implies a + (—a) = 0 € I by closure under +.

e a=b(modl)= b=a(modl)
because a —b € I = b —a € I, by closure under multiplying by —1
again.

e a=b(mod/)and b =c (mod /)= a=c(mod]l)
becausea—belandb—cel = (a—b)+(b—c)=a—cel by
closure under +.

It follows that R is partitioned into congruence classes I + a, where
I+a={ita:iel}.
Moreover, it is meaningful to add and multiply classes by the rules
(Ita)+(I+b)y=1+(a+b),
(I+a)(I+b) = 1I+ab.

an be proved in exactly the same way as in Section 3.2 for congru-
nZ+aand nZ+bin Z.

Any element of 7+ a is of the form k -+ a for some k € I, so if we add
it to an arbitrary element / + b of 1+ b, where I € I, we get

(k+1)+(a+b),

which is in / + (a + b) because k -+ = i € I by closure under sums.
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If we multiply the element k+a € I +aby [ +b € I+b we get
ki + kb +la+ ab,
which is in 7 + ab because

k,1 € I = kl,kb,la €1 by closure under products by members of R
=kl +kb+lacI by closure under sums.

(It should be mentioned at this point that we are assuming R to be com-
mutative, as is the case for the number rings we are interested in. For
noncommutative rings one has to distinguish between left and right ide-
als.)

Finally, the set R/I of congruence classes, under the + and x opera-
tions just defined, inherits the ring properties from R. For example, multi-
plication is commutative in R/ because it is in R:

(I+a)(I+b)=1I+ab by definition of x in R/I
I+ba by commutativity in R
= (I +b)(I+a) by definition of x in R/I.

The other properties can be checked similarly, and hence R/I is a ring,
called the quotient ring of R by the ideal 1.

If one pursues the study of R/I following the model of Z/nZ in Chapter
3, then the next question is: for which ideals I is R/I a field? In Z, this
happens when n is prime, but in general rings the answer is not so simple.
‘We take up the question in the next section.

Exercises
12.1.1 Which congruence classes play the roles of 1 and 0 in R/I?
s of R/1I.

1212 Check the other ring propert

It is useful to visualize the congruence classes for some actual ideals 7, say in
Z[V=35].
12.1.3 Pick out the congruence classes of 1 = (2) -+ (1 ++/=5) in Figure 11.7.

12.1.4 Sketch a picture of 7 = (3) + (1 + /=35) in Z[/=5] and show that it has
three congruence classes.
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12.2 Prime and maximal ideals

In Section 11.7 we saw that maximal ideals are prime. However, prime
ideals are not always maximal, and the difference between the two is nicely
captured by properties of the quotient ring R/I of R by the ideal .

Characterization of prime ideals. / is a prime ideal of a ring R < R/I
has no zero divisors. (Zero divisors are nonzero congruence classes I +a,
1+ b whose product I + ab is I, the class of 0.)

Proof. (=) Suppose / is prime, so we have to prove that R/I has no zero
divisors.
I+abistheclassof 0 = ab el
=aclorbel sincelisprime
= I+aorl+b isthe class of 0
= R/I has no zero divisors.
(<) Suppose R/I has no zero divisors, so we have to prove that / is a prime
ideal.
abel=1+ab=1 (theclassof0)
= (I+a)(I+b) =1 by definition of product of congruence cl.
=I+a=1Iorl+b=1 sinceR/Ihas no zero divisors
=aclorbel
=1 is a prime ideal. o

Characterization of maximal ideals. / is a maximal ideal of a ring R <
R/I is a field. (That is, each nonzero member of R/I has a multiplicative
inverse.)
Proof. (=) Suppose / is maximal, so we have to prove that R/1 is a field.
I+ a anonzero congruence class = a ¢ 1

= ideal {ir tas:rse€Ricl} =R

by maximality of 7

=1=irtas forsomerscR,icl

=Itas=1+1

= I +ahasinverse [+

= R/l is a field.
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(<) Suppose each nonzero congruence class I +a has an inverse I + s, so
we have to prove that / is maximal, that is, the only ideal containing / and
anaglisR.
a ¢ 1= I+ aisanonzero congruence class
= I+as=1+1 forsomes € R,
namely, for the inverse class I+ s of I +a

= 1—=irtasforsomereRandiec/

= any ideal containing / and « includes 1 and hence equals R

= I is maximal. o

Remark. A ring with no zero divisors is called an integral domain. Any
field is an integral domain, but an integral domain is not necessarily a field.
For example, Z is an integral domain but not a field. However, an integral
domain always has the following cancellation property in common with
fields:

ab—acanda /0 = b—c.

This is because
ab =ac = ab—ac =0
=alb—c) =0
=b—c=0 sincea# 0 and there are no zero divisors

=b=c.

Exercises

A non-maximal prime ideal is easy to find in Z[y/=35]; for example, the principal
ideal

12.2.1 Find the three nonzero elements of Z[y/=3]/(2) and show that they are
not zero divisors, hence (2) is a prime ideal.

12.2.2 Why is (2) not maximal in Z[/=5]?
12.3 Prime ideals of imaginary quadratic fields

generally a big difference between integral domains and fields,
spondingly big difference between prime and maximal ideals.
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However, there is one important case where integral domains are always
fields, namely, when they are finite.

Lemma. A finite integral domain is a field.
Proof. Let a be a nonzero element of D, and consider a?,a%,a*, ... Since
D is finite, some value ™ in this sequence recurs as a later value a” ", so

"™ =", and hence a" = 1 by cancellation.

But this means a-a"~' = 1, so a has the multiplicative inverse a ' and

hence D is a field. o

In view of this lemma, and the characterizations of prime and maximal
ideals in Section 12.2, a prime ideal in a ring R will be maximal whenever
R/I is finite. This leads to the following theorem.

Maximality of prime ideals in imaginary quadratic fields. A prime ideal
in the integers of an imaginary quadratic field is maximal.

Proof. Let R be the ring of integers of the quadratic field and 7 a prime
ideal. By the results above, it suffices to show that R/ is finite; in other
words, that there are finitely many congruence classes / -} r as r ranges over
R. But this is clear from the lattice property of ideals in Section 11.6. The
congruence classes 7+ r are represented by the r in one parallelogram of
the lattice 7 (Figure 12.1) because an 7/ in any other parallelogram of / is
congruent (mod /) to such an r.

L] o o o L]

L] o o o L]
Figure 12.1: One parallelogram of the lattice /.

Thus there are only finitely many congruence classes 7+ r. o
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Exercises

We have restricted attention to imaginary quadratic fields because their integers
are easy to visualize and most of our motivating examples lead to them. A ring
of real quadratic integers, such as Z[\/E], is not a “lattice” in the literal sense
because it lies densely along the real axis. However, it is obvious that Z[y/2] has
the integral basis 1, v/2 and we can prove that its ideals have integral bases too.

The idea is to map elements a+by/2 of Z[/2] to points a-+ bi/2 of C. Then
we can apply geometric arguments to the image points.

12.3.1 Show that any subset / of Z[v/2] closed under + and — is thereby mapped
to a subset I* of € with preservation of sums and differences. If 7 is an
ideal, show that I* does not lie in a line.

1232 Deduce from Exercise
I'has an integral basis.

12.3.1 and the lattice theorem of Section 11.6 that

same argument obviously applies to the integers of any real quadratic field.
Finally, the parallelogram argument used above can be carried over to these inte-
gers.

12.3.3 Show that the map a + by/2 — a I biy/2 sends cosets of I to cosets of I*,
and deduce that Z[y/2]/1 is finite. (And similarly for the integers of any
real quadratic field.)

12.4 Conjugate ideals

The key to the success of ideal prime factorization in quadratic fields is the
fact, proved below, that every ideal divides a principal ideal. This allows us
to replace questions about ideal factors by easier questions about principal
ideal factors. The trick is to multiply an ideal A by its conjugate A, the set
of conjugates of clements of A. Just as the product of conjugate quadratic
integers is an ordinary integer , the product of conjugate ideals turns out
to be the ideal (k) of multiples of an ordinary integer.

Product of conjugate ideals. If R is the ring of integers of an imaginary
quadratic field and A is an ideal of R, then

AA = (k) for some k € Z.

Proof. We know from Section 11.6 that A = {oim + Bn = m,n € Z} for two
integers o and 8 of R. Hence A = {am + Brn:mne - Z} and, by definition
of product of ideals, AA = {so@ 1 1B + uGiP + voeP : s,t,u,v € Z}.
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Now 0@, BB, and @ + o are self-conjugate, and hence real. We first
find an ordinary integer k that divides them, and then see what follows:
o, BB, 3P + of real integers of R
= 0@, BB, 0B + 0B €Z by the nature of integers of R (Section 10.4)
= ged(a@, BB, AP + of) =kEZ
= k=pod +qBB +r(@p + af) forsomep,qreZ
by the Euclidean algorithm
= keAA
= (k) C AA.
Conversely, to show that (k) DAA, it suffices to show that k divides
the four generators 0@, B, @B, and aff of AA. It divides 0@ and B3

by construction, and it divides o and @B provided (o{B)/k and (GB)/k
belong to R. The latter numbers are the roots of

() )T oo

the coefficients of which we know to be ordinary integers. Hence (o.B)/k
and (0(f)/k are quadratic integers, and hence members of R. m]

Exercises

The proof above assumes the lattice property of ideals, or rather that cach ideal

has an integral basis o, B, and we know from the previous exercise set that this is

also true for rings of integers in real quadratic fields.

12.4.1 Check that the proof above works for real quadratic fields, where the con-
jugation operation now is a + bv/d — a—bv/d.

The product of conjugate ideals helps to establish the existence of the ideal
class group, b it shows the existence of inves e identity class of this
group is the ¢!
times its
inverse to each other.

12.4.2 Bearing in mind that equivalent ideals are the same shape, show that the
ideal (2,1 +/=3) is self-conjugate, hence self-inverse.

12.4.3 We already know that (2,14 v/=5) is self-inverse. Why?
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12.5 Divisibility and containment

‘We are now almost ready to prove that “contains means divides™ for all
ideals in the ring of integers of an imaginary quadratic field. We know that
this is the case for principal ideals, and the only other result we need is the
following cancellation property.
Cancellation of ideals. If A, B, C are nonzero ideals of R and AB D AC,
then B2 C.
Proof. In the special case where A = (o) is principal
ABDAC = ()A D (a)B
= aB D aC because the ideals B and C
are closed under x by multiples of o,
and hence (a)B = aB and (a)C = aC
= B2, multiplying both sides by o'
In the general case,
AB D AC = AAB D AAC, multiplying both sides by A
= (k)B 2 (k)C for some k, by Section 12.4
= B2 C by the special case. =]
This is our first application of the trick from Section 12.4—multiplying
an ideal by its conjugate to reduce to the easier case of a principal ideal.
Cancellation now allows us to extend this trick further: we can multiply an
ideal by its conjugate to reduce to the special (and easy) case of a principal
ideal, then cancel the conjugate to get back to the general case. This is how
we prove that “contains means divides.”
“Contains means divides.” If A and B are ideals of R and B 2 A then B
divides A; that is,

A=BC for some ideal C.

Proof. In the special case where B = () is a principal ideal
BDOA= (B)2A
= B divides ecach member of A
=A=(f){a/B:acA}
=A=BC
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where B is the ideal () and C = {a/B : @ € A} is also an ideal of R. The
o/ in C belong to R since each « is divisible by B, and they are closed
under + and under multiplication by elements of R since this is true of the
ainA.

In the general case

BDA= BB2AB, multiplying both sides by B
= (k) DAB by Section 12.4
= AB — (k)C for some ideal C, by the special case
= AB=BBC since (k) = BB
=A=BC by cancellation of the ideal B. u]

12.6 Factorization of ideals

‘We are now ready to prove existence and uniqueness of prime ideal factor-
ization in the ring R of integers of an imaginary quadratic field. Since e
ideals are maximal in this setting, the usual process of finding smaller and
smaller factors is replaced by a process of finding larger and larger ideals.

Existence. Every nonzero ideal A 7/ R is a product of prime ideals.

Proof. If A is not prime, it is not maximal by Section 11.7, hence there is
an ideal B 2 A with B # R. Since “contains means divides,” it follows that
A = BC for some ideal C.

If B or C'is not prime we factorize it similarly, and so on. This process
terminates in a finite number of steps (giving a prime factorization) because
each nonzero ideal / has only a finite number of congruence classes 7+ r
(Section 12.3) and each extension to a larger ideal absorbs at least one such
class. o

Uniqueness. The factorization of a nonzero ideal into prime ideals is
unique, up to the order of factors.

Proof. As always, uniq follows from existence and a prime divisor
property, in this if a prime ideal P divides a product of ideals AB then
P divides A or P divides B.

By definition (Section 11.7) a prime ideal P has the property that if
P D AB then P D A or P2 B. The prime divisor property now follows
because “contains means divides.” o
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Exercises

According to unique prime ideal factorization, distinct prime number factoriza-
tions should split into the same prime ideal factorization. We saw this happen in
Section 11.8 with the two prime number factorizations of 6 in Z[y/=5]. Another
example in Z[/=3] is

9=3x3=02+v=-5)2-V-3).
12.6.1 Use norms to show that 3, 24 +/=35, and 2 — /=5 are prime numbers of
Z[V=3).

Now we know from Section 11.8 that (3) = (3,1+v/=5)(3,1 —v/=5), so
these prime ideal factors of 3 should also be ideal factors 2 +v/—5 and 2 — v/—5.

12,62 Show that 2— /=5 € (3,1+/=5)%, 50 (2—/=5) C (3,1 +V/=5)%

12.6.3 Show, conversely, that 2 — /=5 divides the elements 9, 3+ 3y/=35, and
—442/=5 generating (3,1 ++/=5)%, 50 3,1+ V=5)> € (2—V=5).

Thus the factor 2 — /=3 of 9 has prime ideal factorization (3,11 v/=3)%,
and it remains to show that the other factor 2+ y/—5 has ideal prime factorization

(3,1—y=5)%
12,64 2— /=5 = (3,1+y/=5)? implies 2+ /=5 = (3,1 —y/=5)>. Why?

12.7 Ideal classes

As an application of unique prime ideal factorization, we determine the
primes of the form x + 5y, thus solving the problem that puzzled Fermat
and Euler. To do this we need to know a little more about the ideals of
Z[y/=5|, namely that they fall into two classes: the principal ideals, all
of which have the shape of Z[y/=35], and the nonprincipal ideals, all of
which have the shape of (2,14 +v/=5) = {2m+ (14 \/_ Yn:m,n€Z}. In
general, the number of ideal shapes in the ring of integers of an imaginary
quadratic field
Ideal classes of Z[/=5|. The class number of Z|\/=5) is 2.

Proof. Let I be a nonprincipal ideal of Z[y/=5] and let o, 8 be an integral
b: of I constructed as in the proof of the lattice property of ideals in
Section 11.6. That is, o is a nonzero element of minimal distance from 0,
and 8 is of minimal distance from 0 among the elements of 7 not on the
line through 0 and o.

called its class number.
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Since 7 is an ideal, it includes the multiples ory/—3 and o(1+ v/=3)
of @, and 0. These four points together form the rectangle shown in Figure
12.2, a typical one in the principal ideal generated by c. (For the sake of
simplicity, the line through 0 and o is shown horizontal in the diagram, but
it is not necessarily the real axis.)

/=3 i o(l+v=3)

taliyT)

Figure 12.2: A rectangle of multiples of o

Since 7 is not the principal ideal (o), there are other members of 7 in-
side the rectangle, and hence in at least one of the quarters shown. Without
loss of generality, we can assume that 8 lies in the bottom left quarter (if
necessary, taking the difference between an element of 7 elsewhere in the
rectangle and the nearest corner, or replacing ¢ by —¢). Finally, since f is
no nearer to 0 than a, by construction of the integral basis in Section 11.6,
it lies in the shaded region of the bottom left quarter.

But then 2f3 lies in the shaded region in the top half of the rectangle,
each point of which is rly at distance < || from either a(1+v/=5) or

—5. This implies that the element o:(1++/=5) — 2B or a/—5 —28
of I has absolute value < |a|, contrary to the choice of o, unless

14v=5
a—l >
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In the first case, 7 has the same shape as the ideal (2,1 + v/=5), and
hence belongs to the same class. The second case is impossible, because

-5 el= —570( €1, multiplying by /=5,

= % €I, adding 3o,

contrary to the choice of o as an element of minimal absolute value. O

Exercises

The argument used above can also be used for Z[y/—6|, but it takes an interesting

turn. The first possibility for B does not produce a nonprincipal ideal, but the

second possibility does, so Z[y/—6] has class number 2.

12.7.1 Show that 7 = (2,1 +v/=6) = {2m+ (1 + v/=6)n :m,n € Z} includes 1
and hence is Z[v/=6], but that J = (2,v/=6) = {2m+v/—6n:m,n € Z} is
a nonprincipal ideal.

12.7.2 Rerun the argument above, explaining why only the second possibility for
B now produces a nonprincipal ideal, so that the class number of Z[/=6] is
2 and that all nonprincipal ideals of Z[v/=6] are of the form (e, ty/=6/2).
Returning to Z[v/=5], we know that the nonprincipal ideal (3,1 y/=5) is in
the same class as (2,14 +/=5), because we checked that it was the same shape in
the exercises to Section 11.7. However, the integral basis 3, 1+ /=5 of this ideal
is not of the form e, a(1 +/=5)/2.
12.7.3 Which integral basis of (3,1 +v/=5) is obtained by the process in the
proof above?

12.8 Primes of the form x? 4 5y2

Now at last we know enough about Z[v/=5] to be able to deal with the
. 2 2 X . N

quadratic form x5y~ and the primes it repra First observe what we

can do with ¢l al tools—congruences and quadratic reciprocity.

e Experience with the forms x? +ny? for n = 1,2,3 (Section 9.1) leads
us to consider the values of x* + 5y* mod 20. The possible values
of x> mod 20 are 1, 4,9, 16, 5, and 0, hence the possible values of
5y* mod 20 are 5 and 0. Prime values of x* + 5y are odd and not
divisible by 5, hence the possible prime values of x* + 5y* mod 20
are 1 and 9. That is, primes of the form x* + 5y* are of the form
20n+1 0r20n +9.
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o To deal with x* + 5y* we likewise expect to need the quadratic char-
acter of —5. When p =20n+ 1 or20n+9,

-5 -1\ (5 P . L
— ) =(— =1 = b drati rocit
( > ) ( » ) (p) x (5) y quadratic reciprocity

=1x1

since 20n+ 1= 1= 12 (mod 5) and 20n + 9 =4 = 22 (mod 5). Hence
—5 is a square mod p when p —=20n+1 or p = 20n+9.

We need prime ideal factorization to prove the converse of the first
observation, namely, that every prime of the form 20n + 1 or 20n + 9 is of
the form x? + 5y%. Apart from the appearance of nonprincipal ideals, the
proof is similar to the one for x* +y? in Chapter 6.

Primes of the form x> + 5y%. The primes of the form x* -+ 5y* are precisely
those of the form 20n -+ 1 or 20n + 9.

Proof. It remains to show that primes of the form 20n + 1 or 20n -+ 9 are of
the form x -+ 5y%.

The second observation above shows that —5 is a square, mod p, for
the primes p = 20n+ 1 and 20n + 9. In other words, for each such p there
is an m € Z such that

p divides m* +5 = (m+v=5)(m—/=5).
However, p does not divide either factor m+ /=5 or m— /=5 in Z[\/=5|,

since 9+ i? & Z[v/=5|. By unique prime ideal factorization in Z[v/=5],

it follows that (p) is not a prime ideal of Z[v/=5|, and hence it has a
nontrivial prime ideal factorization.

The easy case is where one factor is a principal ideal, say (a | by/=3).
Here we can argue as we did in Z[i] back in Section 6.3:

(p) = (a+ I7\/—_5)(‘ for some nontrivial ideal C,
hence, taking conjugates,
(p) = (a—bV/=5)C since p = p.
Multiplying the last two equations gives

(p?) = (@ +35b*)CT = (a* +5b%) (k),
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for some k € Z, evaluating the product CC of the conjugate ideals as in
Section 12.4. But then

p* = (a*+5b*)k is anontrivial factorization in Z,

and therefore p = a® + 5b%.

The harder case is where all prime factors of (p) are nonprincipal ide-
als, and hence of the form (o, (1 ++/—3)/2) for some o € Z[y/—5), by
the previous section. Suppose

(p) = (o, a(1+V=5)/2)C.
Taking conjugates again, we obtain
(p) = (@,@(1-V=5)/2)C,
and multiplying the last two equations:
(P?) = (o, (1 ++/=5)/2)(@,T(1 - V=5)/2)CC.

Now (o, a(1+v/=5)/2) (@, @(1 —v/=5)/2) = (0t/2), since its genera-
tors are o/ and 30/¢Z/2. And CC = (k) as before, so we have

2p* = 0l -k = (a® +5b*)k  for some a, b,k € Z.

It follows that p = a® + 5b or else 2p = a® + 5b?, for some a,b € 7.

The latter possibility is ruled out by congruences mod 20. From the
values of x% and 5y* mod 20 found above, we see that the possible even
values of a® + 5b% mod 20 are 4, 6, 10, 14, 16. None of these match the
values of 2p, namely 40n + 2 or 40n + 18. Hence in all cases the prime
p =20n+1o0r 20n+9 is of the form x* 4 5y°. o

Exercises

We have now classified the primes of the forms x* -+, x> +2y?, x* +3)2, and
x4 5)%. Why did we skip the form x? + 4y>?

12.8.1 Show that the primes of the form x> +4y? are the same as those of the
form x” +y?, with one exception.

Primes of the form x? +6y” can be found in much the same way as those of
the form 2% + 5y, For the hard step (where the prime ideal factors of (p) are all
nonprincipal) we use the determination of nonprincipal ideals of Z[/=6] from the
previous exercise set.
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12.8.2 Use congruences mod 24 to show that any prime of the form x* +6y” is of
the form 24n + 1 or 24n +7.

12.8.3 Use quadratic reciprocity to show that, for any prime p of the form 24n -+ 1
or 24n+7, —6 is a square mod p.

12.8.4 Deduce from Exercise 12.8.3 that (p) is not a prime ideal of Z[/=6| when
p is a prime of the form 24n + 1 or 24n + 7.

12.8.5 When (p) has a prime ideal factor of the form (a + by/=6), show that
21 6p2
p=a®+6b2.

12.8.6 When all prime ideal factors of (p) are nonprincipal, hence of the shape
(o, 00/=6/2) by Exercise 12.7.2, show that p has the form x” + 6y” in this
case also.

12.9 Discussion

The treatment of rings, ideals, and quotient rings at the beginning of this
chapter is probably the mini required for signifi applications to
number theory. Along with some group theory and field theory, as found
in Elements of Algebra, it should give enough algebraic background to
read classical treatments of algebraic number theory, such as Hecke (1981).
There one will find the theorem on unique prime factorization for the ideals
of an arbitrary number field Q(6), where 6 is an algebraic number, and the
finiteness of the class number. These two theorems were first proved by
Dedekind (1871), and his exposition of them in Dedekind (1877) is still
worth reading, though not quite as streamlined as modern accounts. The
finiteness of the class number, in particular, is usually proved today with
the help of Minkowski’s geometry of numbers.

The class number has a long history, beginning with the Lagrange
(1773) idea of reducing binary quadratic forms. In the case of positive de-
terminant, Lagrange gave an algorithm that finds the “simplest™ equivalent
of a given form, and at the same time finds a complete list of inequivalent
forms. Thus the algorithm determines the number of inequivalent forms
with given determinant D, in other words, the class number for D.

Gauss (1801) extended Lagrange’s algorithm to binary quadratic forms
with negative determinant, exploiting the inherent periodicity of such forms
that we observed in Chapter 5. Finding a formula for the number was
much more difficult, and it was a turning point in the history of number
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theory when Dirichlet (1839) succeeded. His method uses L-series, a so-
phisticated generalization of the {-function discovered by Euler (and men-
tioned in Section 2.9). No substantially simpler approach has ever been
found, and indeed L-series seem to be the right tool for the job. Dirichlet
also used them to prove his theorem on primes in arithmetic progressions
(see Section 9.9 for the background to this theorem). Both the class num-
ber formula and the theorem on primes may be found in Dirichlet’s lectures
on number theory, Dirichlet (1863), available in English translation.

Other approaches to the class number involve equally sophisticated
mathematics, such as modular functions. The classical modular function
Jj(z) is a function defined on the upper half plane of C, with the periodicity
indicated by Figure 12.3, the modular tessellation.

Figure 12.3: The modular tessellation

The function j maps the shaded region one-to-one onto C (one half
onto the upper half plane, and the other half onto the lower), and repeats
its values in every other region of the tessellation. The precise way to say
this is that if a,b,c,d € Z and ad — be — +£1, then

This periodicity property allows j to be viewed as a function of lattice
shapes, as we now explain.
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A lattice generated by ®,,®, € C has “shape” given by the complex
number @, /®,, because |®, /@,| = |, |/|w,| is the ratio of side lengths
of a generating parallelogram, while arg @, /w, is the angle between the
sides. However, the same lattice is generated by aw, +bw,, cw, +do, for
any a,b,c,d € Z with ad —bc = 1, and hence its “shape” is represented
as well by the number (aw, +bw,)/(co, +dw,) = (u%L + b)/(r:—;L +d).
The shaded region of the modular tessellation contains exactly one repre-
sentative of each lattice shape, so j gives each shape a different value, but
(by periodicity) j takes the same value at each representative of a lattice
shape.

Because of this, j may have something to say about the class number
of imaginary quadratic fields, which (as we saw in Section 12.7) is the
number of shapes of ideals of the field. Kronecker (1857) discovered that
it does: the class number of Q(v/d) is the degree of j(v/d). For example,
with d = —1 we get the ordinary integer

j(i) = 1728

which is of degree 1, confirming that the Gaussian integers have class num-
ber 1 (that is, all ideals are principal). Likewise

J((1+V/=15)/2) = (~191025 + 85995V/5) /2

which is of degree 2, showing that Q(v/—15) has class number 2. For
proofs of Kronecker’s amazing theorem, see McKean and Moll (1997) or
Cox (1989).

Cox’s book, in fact, is a good sequel to this one, because it describes
the complete classification of primes of the form x* + ny*. This involves
not only more sophisticated algebra (class field theory), but also modular
functions and related topics from analysis. Another book worth mentioning
is Scharlau and Opolka (1985). As its title says, it covers the development
of number theory “from Fermat to Minkowski”, with particular emphasis
on quadratic forms. It is in some ways complementary to this one, since
it says little about ideal theory but is strong on analysis and the geometry
of numbers. The latter topics are essential for anyone who wants to master
number theory beyond the elements covered here.
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