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Preface to the Second Edition!

The first edition of our book has long since been out of print, and many people
who regard this book as the source of their first mathematical inspiration,
and others whose only contact with the book was in a library (the book has
disappeared from many), have been pushing for a long time for a new edition.
We happily comply with all these urgings. We would especially like to thank
MIKLOS SIMONOVITS, who not only encouraged our work unwaveringly, but
also gave precious help.

The goals of the book as expressed in the preface to the first edition
are unchanged. Some sections, however, have undergone significant changes.
A new Chapter 2 was written about congruences. The several important
theorems appearing in this new chapter originally appeared in the first edition
stated in terms of divisibility. However, we felt it useful to introduce the
notion of congruence. We have included a more thorough discussion of the
subject, including second-degree congruences. Here as well we have chosen
an interesting, albeit lesser known, path to follow.

In the nearly 40 long years that have passed since the first edition, many
important changes have occurred in all of mathematics, as well as in num-
ber theory in particular, and to a certain degree the authors’ interests have
changed as well. These changes have resulted in two important changes in
the book. We have omitted a proof of a number-theoretic theorem about
polynomials, as well as the accompanying section on polynomial arithmetic.
Furthermore, the section concerning the number of elements in a series no
three of whose elements forms an arithmetic progression has been significantly
shortened; since the first edition, SZEMEREDI has established a very deep re-
sult for these series. On the other hand, we have included a few new results
on so-called Sidon sets, sets of numbers that do not contain the difference of
any two elements. (See Section 6.21 and subsequent sections.)

We remarked in the preface to the first edition that one charm of the
integers is that easily stated problems, which often sound simple, are often
very difficult and sometimes even hopeless given the state of our current
knowledge. For instance, in a 1912 lecture at an international mathematical
congress, EDMUND LANDAU mentioned four old conjectures that appeared
hopeless at that time:

! This is an abridged translation of the original Hungarian text.



vi Preface to the Second Edition

Every even number greater than two is the sum of two primes.

Between any consecutive squares there is a prime number.

There are infinitely many twin primes (these are primes that are consecu-
tive odd integers).

There are infinitely many primes of the form n? + 1.

Today, his statement could be reiterated. During the more than 80 years
that have passed, much intensive research has been conducted on all of these
conjectures, and we now know that every large enough odd number is the
sum of three primes, and every even number can be written as the sum of a
prime and a number that is divisible by at most two different primes; there
are infinitely many consecutive odd integers for which one is a prime and the
other has at most two prime divisors; for infinitely many n, there is a prime
between n? and n2+n!"!; for infinitely many n, n%+1 has at most two distinct
prime divisors. Unfortunately, the methods used to achieve these rather deep
results cannot be generalized to prove the more general conjectures, and given
the state of mathematics today, the resolution of these conjectures can still
be called hopeless.

As we mentioned, we restricted ourselves to results that can be estab-
lished by using only elementary tools. This does not mean, however, that
their proofs are simple. Juxtaposed with rather simple ideas, some rather
deep proofs occur, especially from-Chapter 5 onward. Among these, the most
difficult is Theorem 11 in Chapter 5 (Sections 20-22.), Theorems 4 and 5
in Chapter 8 (Sections 11*~13* and 16*-18*, respectively). We have marked
these sections with stars; for less experienced readers, we recommend skim-
ming these sections during the first reading.

We express our deepest gratitude to IMRE Z. RuzsA for reading through
the entire manuscript and to IMRE BARANY for reading through Chapter 4;
they greatly helped our work. It would be very difficult to list all those people
whose comments and suggestions from the first edition have helped improve
this edition. Here we collectively express our appreciation to one and all. For
selfless help with the revisions of the book, we express our deepest thanks to
ANTAL BALOG, ROBERT FREUD, KALMAN GYORY, JANOS PINTZ, ANDRAS
SARKOZY, and VERA T. SOs and additionally to all those people who sup-
ported us with their comments and advice.

Budapest, August 1995 Paul Erdés, Jdnos Surényi



Preface to the First Edition?

The numbers we know best are the integers, but these are perhaps the most
elusive as well. Number theory, the branch of mathematics that studies their
properties, is a repository of interesting and quite varied problems, sometimes
impossibly difficult. We have gathered together a collection of problems from
various topics in this field of mathematics that we find beautiful, intrigu-
ing, and from a certain point of view instructive. We hope that others take
pleasure in them as well.

In addition to reveling in the beauty of the problems themselves, we have
tried to give glimpses into the deeper related mathematics. We endeavored
to show the living mathematics, giving examples of problems that can be
solved using elementary tools, and which often have related problems whose
solutions require very difficult lemmas and deep ideas; in fact, among these
related problems we often come across ones whose solutions seem hopeless in
light of the present state of knowledge.

In our book we present only problems whose solutions can be obtained
using elementary methods. We do not assume any prior knowledge of number
theory.

We tried to use only a few results from other areas of mathematics, which
we were obliged to use without proof because their proofs fall outside the
scope of this book, and by trying to include their proofs, the book would
have grown too big. Among these, we list the most important ones. The
reader can find their proofs in any elementary textbook, but the discussions
within this book can be followed without any difficulty if the reader accepts
the results without proof.

For many of the proofs we try to provide motivation as to why we approach
problems in the given manner, and we try to present the important lines of
thought needed to arrive at the solution. In these instances, we have borrowed
wisdom from GYORGY POLYA’s books, and we would like to thank professors
ROzsA PETER and LAszLS KALMAR. (It is another question as to how well
we have succeeded.)

We have included exercises after the different problem topics. In some
instances these are easy problems whose solutions build upon or are based
on the established results. The other instances the problems give results that

2 This is an abridged translation of the original Hungarian text.



viii Preface to the First Edition

extend the themes discussed and are of varying degrees of difficulty. The most
difficult of these we have indicated by a star. We give hints to their solutions
in the appendix of this book. When the problems are due to other authors,
we have indicated their sources, in so much as it was possible to determine.

We have divided the chapters into sections. In the interest of readability,
however, we have not given these names. The reader will find the detailed
content in the table of contents, with the sections grouped by subject. The
sections, theorems, formulas, and footnotes are numbered in increasing order,
starting anew in each chapter. We refer to these using only the number when
they are in the same chapter, and using the number prefixed by the chapter
number when they are in other chapters.

The chapters of the book build little upon each other, except for the
fundamental notions given in the first chapter, and can essentially be read
independently of each other after the first chapter, with only the material of
the third and fourth chapters [with the new numbering] being related.

PAL TURAN strongly supported our work, starting from the selection of
subject matter, and furthermore we received many interesting comments from
him and R6zsA PETER upon reading our entire manuscript. With gratitude,
we thank them both.

Budapest, July 1959 Paul Erdés, Janos Suranyi



Preface to the English Translation

The death of Professor PAUL ERDOS on September 20, 1996, in Warsaw,
was a great loss to the world mathematical community. I can attest to the
fact that until the very end he kept a watchful eye on this translation and
proposed several new results that arose since the writing of the second Hun-
garian edition. The evening before he left for Warsaw we were together in my
apartment discussing the translation.

For the translation of the manuscript we express our deepest gratitude to
the translator, BARRY GUIDULI, who not only translated the text but also
provided many interesting comments and suggestions. Best thanks are also
due to ROMY VARGA, who assisted him greatly in the translation.

We also thank ZOLTAN KIRALY for indispensable technical help. To the
Alfréd Rényi Mathematical Research Institute of the Hungarian Academy of
Science, as well as to the Computer Science and Mathematics Departments
of E6tvos Lorand University, we are indebted for their continuous support.
Without their gracious help and support, this project would not have been
realized.

Budapest, April 2000 Janos Surdnyi
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Facts Used Without Proof in the Book

1. By n! we mean the product of the first n positive integers, and we read
it n factorial. This is also the number of distinct orderings (permutations)
of a set of n elements. We also use 0!, whose value we define to be 1.

2. The nth power of a two-element sum has the polynomial representation

no__ n\ n N\ n-1 N\ ipn—i N\in
(a+b) —<0>a +<1>a b+ +(i)ab + +(n)b ,

where the coefficients are

("):1, (’;)zn(n—l)'“(n"i“)_ "¢ o1<i<n,

0 il T il(n —4)!

which are integers. The symbol is read “n choose ¢,” and these are called
binomial coefficients. We can choose i-element subsets from an n-element
set in (7) ways (where we are not concerned with the order of the i
elements). This shows that these must be integers, which is not clear
from the formulas given above.

3. More generally, the nth power of the sum a; +az + - - - + ax is the sum
of all terms of the form

n! iy 4 i
il!iz! — ik!allazz - akk,

where 1), 12, . .., ik range over all ordered k-tuples of nonnegative integers
whose sum is n.

4. The infinite series 1 + z + 2% + - - converges for all complex numbers z
for which |2| < 1, and the sum is 1/(1 — 2).

5. By log we mean the natural logarithm, whose base is the number e. The
following inequality holds:

log(l+z) <z,
for all z > —1, or in the exponential form, for every real number z,
e >1+z.

Sometimes we may write exp(z) in place of e*.



xviii  Facts Used Without Proof in the Book

6. The following two inequalities hold for the sum of the reciprocals of the

first n positive integers:

1 1
1+logn21+-2-+~-+7—l>log(n+1).

7. The function log z grows more slowly than z to any positive power, which

10.

wi

3

means that for any positive § and any positive h, there exists a number
K (dependent on § and h) such that

holds for all z > K.

. The greatest integer not larger than a real number z is called the integer
part® of z and is written [z]. This is the unique integer for which the
following relation holds:

[z] <z < [z] + 1.

The difference z — [z] is called the fractional part of z and is written {z}.
(In general, this is not a rational number, i.e., it cannot be expressed as
the ratio of two integers.)

a polynomial with complex or rational coeflicients cannot be written as
the product of two polynomials of smaller degree with the same type
of coefficients, then the roots are simple. (Such polynomials are called
irreducible.)

These formulas will be used from time to time in the text, occasionally
thout reference. If we refer to the ith point, we will write, “Fact 3.”

This is also called the floor of z, and the smallest integer not less than z is called

the upper integral part of z, or the ceiling of z. These are written |z and [z],
respectively.



1. Divisibility, the Fundamental Theorem of
Number Theory

1. Counting and the numbers that thus came forth are among the earliest
achievements of mankind’s awakening intellect. As numbers came to being,
their intriguing properties were revealed, and symbolic meanings were as-
signed to them. Besides portending fortune or doom, numbers afforded a
mathematical expression to many other aspects of existence. For instance,
the ancient Greeks considered the divisors of a number that are less than the
number itself to be its parts; indeed, they so named them. And those numbers
that rise up from their parts, like Phoenix, the bird that according to legend
rises up from its own ashes, were viewed as the embodiment of perfection.
Six is such a perfect number, since it is the sum of its parts 1, 2, and 3; 28
and 496 are also perfect. EUCLID (third century B.C.) already knew that a
number of the form 2"~!(2™ — 1) is perfect if the second factor is prime.!
It was LEONHARD EULER (1707-1783), more than two thousand years later,
who first showed that any even perfect number must be of this form. To this
day it is still unknown whether or not there exist odd perfect numbers.

PYTHAGORAS (sixth century B.C.) is said to have remarked that two of
his students were true friends, like 220 and 284. These numbers were called
amicable, since each is the sum of the parts of the other.

These were the only amicable numbers known until the modern renais-
sance of mathematics. At that time, mathematicians of the seventeenth and
eighteenth centuries found them in abundance. They even found pairs of odd
numbers, such as

12285 =3%.5.7-13 and 14595=3-.5-7-139.

Curiously, however, the smallest pair after the one known from antiquity,
1184 and 1210, was found only in 1766 by a 16-year-old Italian student by
the name of N1ccoLO PAGANINL? Despite the multitude of amicable pairs
of numbers that have been discovered, we know little about them in general.

! EucLID did not have this notation to use. He described it in the following way:
if the sum of a geometric sequence starting with 1 and having a ratio of 2 is
prime, then multiplying this sum by the last element of the sequence yields a
perfect number. (Euclid: Elements. SIR THOMAS L. HEATH, New York, Dover
Publications, 1956.)

2 Not to be confused with the famous violin virtuoso of the same name who lived
much later.
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Among other things it is not known whether an even number can be paired
with an odd number.

One could add many more examples, but perhaps these few suffice to
hint that, familiar as the whole numbers may be, they hold many secrets.
Searching for their secrets promises to be an interesting task, and often not
an easy one.

2. The sum and product of two integers is an integer, as is their difference;
the quotient of two integers is, however, seldom an integer, and it is not
immediately clear for which pairs of integers this property holds. We can,
however, perform division with remainder so that the quotients are always
integers, as long as the divisor is not zero. We define this in the following
way:

Theorem 1 (Remainder Theorem) For all numbers a andb, b # 0, there
is an integer ¢ and a number d such that

a=bc+d and 0<d<|b,
and only one such c and d exist.

We say that a divided by b has guotient ¢ with remainder d. The validity
of the theorem is self-evident if we look at the number line. We mark all
multiples of b on the number line, getting a series of equidistant points (see
Figure 1). If a happens to lie on one of these numbers, say bc, then this is our c,
and we let d = 0. If a falls between two multiples, we take the c corresponding
to the multiple of b just before a and then d is the distance from bc to a.
These choices satisfy the conditions of the theorem; if we were to take some
other ¢ and d satisfying a = bc + d, then this d would be either negative or
greater than |b|. With this observation we have verified the uniqueness of c
and d.

d d
|6l bl ——~ [b]l b

I ! <+ 4 4 1
T T T T T T

bc a bc'

FIGURE 1.

+

In the case where a is closer to the multiple of b to its right, it makes
more sense to choose c¢ corresponding to this larger multiple. This leads us
to the following theorem:

Theorem 1’ For all numbers a and b, where b # 0, there is an integer ¢’
and a number d’ such that
|o] ||

=bd +d d -2 < 121
a=bc + an 2<d_2,
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and only one such ¢ and d' ezist.

We leave the proof to the reader. If we define the remainder upon division
from Theorem 1, then we mean the smallest possible nonnegative remainder.
If we define it by Theorem 1’, then we mean the remainder with smallest
possible absolute value.

The reader should note that in the above theorems we require only that
the quotients be integers; the other numbers that occur are arbitrary. In this
general form we may use the theorem for the measurement of angles, for
instance by radians. Given any such angle o, we may characterize it by an
angle § between 0 and 27 or an angle 8’ between —m and 7 (depending on
which is more convenient for us to use), where

a =2nc+ 4, 0<é<2m,

and
a=2nrc +§, —r<d <,

where ¢ and ¢’ are integers by Theorems 1 and 1’, respectively.

Exercises:
1. Prove Theorem 1'.

In the following problems we consider positive integers written in base 10
notation unless otherwise specified.

2. Find rules for divisibility for numbers where the divisor is 2, 4, 8, 5,
or 25.

3. Prove that a number and the sum of its digits have the same remainder
upon division by 9. (In particular, this says that a number is divisi-
ble by 9 if and only if the sum of its digits is divisible by 9.) What
divisibility rule follows from this for division by 37

4. Given an integer, consider the difference between the sum of its digits
in odd positions (counting from the right) and those in even positions.
Show that this difference has the same remainder as the number itself
when divided by 11. What divisibility rule does this give us?

5. Partition the digits of a number into groups of two and three, re-
spectively, starting from the right. Treat these as two- and three-digit
numbers, respectively, and proceed similarly as in Exercises 3 and 4.
What divisibility rules arise?

6. (a) Remove the last digit from a number and subtract twice this digit
from the new (shorter) number. Show that the original number
is divisible by 7 if and only if this difference is divisible by 7. (By
repeating this procedure, one obtains a rather useful divisibility
rule.)
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(b) What if we add two times the digit to the new number instead
of subtracting it?

(c) Give similar rules for divisibility by 13 and 17. (Use the fact that
3-13=39%and 3-17=51.)

(a) Prove that if n is an integer larger than one, then every natural
number can be written in base n. This means that every natural
number can be written as:

chnk'j, 0<c;<n-1, j=0,1,...,k,
0<i<k

for some k, and disregarding leading zeros, this presentation is
unique.

(b) More generally, if ny,ng,...,n;,... is a list of integers greater
than 1, then every positive integer can be written in the following
varying base representation:

c0+ th Hn_p OSCiSni+1—1, i=0)17"'7k7
1<i<k  1<5<1%

for some k. Disregarding leading zeros, this too is unique. (If n; =
n for all j, then this is just part (a). What sort of representation
arises by setting n; = j + 17)

Give divisibility rules for the following base systems: 6, 12, 5.

(a) If nisan integer greater than 1, expand the following polynomial:

F(z) = (1+Z+'--+:1:""1) (l+z"+...+z(ﬂ—l)n)”_

...(1+x"k+...+z("“l)ﬂk)’

and use the result to prove the claim in Exercise 7 Part (a).
(b) Give a similar proof for Exercise 7 Part (b).

Given an integer n > 2, prove that any integer can be represented in
the following form:

3 4, —g<djsg, i=0,1,... k.
0<53<k

There is a plate of cherries on a table. In our absence, someone serves
the cherries in the following way: For every 5 cherries taken from the
plate, one is put on a second plate and the other four are put in a
serving bowl. This continues until there are fewer than five left on the
original plate. From the second plate the procedure continues, using a
third plate until there are fewer than five cherries left on the second
plate. This continues until there are fewer than five cherries on the
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last plate. The bowl is then put away. We are presented with only
the plates and asked to determine how many cherries there were at
the beginning. How do we do this? How many cherries were there
originally if on 4 plates we now have 2, 4, 0, and 3 cherries, in this
order? How would we do it if instead of groups of five, the cherries
were served in groups of two or groups of ten (one cherry placed on
the new plate, the remaining placed in the bowl)?

12. We can multiply two numbers together in the following
way. Write the two numbers down next to each other.

Divide the first in half, rounding down to an integer, 73 217
. . 36 434
and write the result below it. Double the second num- 18 068
ber, writing this result below it. We continue this halv-
. . . . . 9 1736
ing/doubling until we are left with 1 in the first column. 4 347
Cross out all those numbers in the second column that 9 604
are opposite an even number and add the remaining 1 13888
numbers in this column together to get the product. —58d

Prove that this works. The adjacent example illustrates
how to multiply 73 by 217 using this method.

3. Measuring intervals of equal length on a number line provides a quite
simple sequence of points. It is rather more difficult to see what happens if
we measure off arcs of equal length on a circle, but here we can also discover
some simple properties. To start with, we will consider only sequences of arcs
where the length is such that we eventually meet up with an earlier point.
Later, in Chapter 3, we will return to the case where the sequence does not
meet up with itself.

Consider a circle with perimeter c, and a point F, on it. From Py, measure
off arcs of equal length in one direction. Call this direction positive and label
the points P), P,, etc. (see Figure 2). We are assuming that the sequence
eventually runs into itself. Let P; be the first point that coincides with another
point P; of the sequence. Then j must be 0, for if this were not true, then
P;_, would have already fallen on P;_;.

Continuing to measure off intervals, we land on points P, P,, ..., P;-1,
and with Py, we land again on Py. We see that all points falling on P, have
an index that is a multiple of ¢, and before we mark off such a point, we have
landed on every point exactly the same number of times.

We use these observations to prove the following theorem.

Theorem 2 (Four Number Theorem) If a and c are positive numbers
and b and d are positive integers such that

ab = cd, 1)

then there erists a positive number r and positive integers s, t, and u such
that the following equelities hold:
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B

}% Rl

FIGURE 2.

a=r1s, b=tu, c=rt, d=su.
If, in addition, a and c are integers, then r may be taken to be an integer.

If a =c, then b = d and we may choose r =a,s =t =1, and u = b.
If a and c are not equal, we assume that a < c¢ {otherwise, we may change
the roles of a and c). We may interpret (1) in the following, geometric, way:
Consider a circle of circumference ¢, and a point P on it. We mark off arcs
of length a, labeling the points in sequence P), P, through P,. Equation (1)
says that P, coincides with Py and that we have gone around the circle a total
of d times. If the tth point is the first that coincides with a previous one, then
by the earlier observations, this point is Py. The entire sequence returns to
Py u times, and lands on each of the ¢ distinct points Py, Py, ..., P,—; exactly
u times, so

b= tu.

If we start at any point, say P;, and mark off arcs of length a, we land
on P, after b — j steps, and continuing, we have Py, Ps, ..., P;_1, P;, getting
the entire sequence back. We can look at this in another way: We rotate
the circle, putting Py in P;’s position, and starting at P; we get the original
sequence. This holds true for all points P;, and the perimeter of the circle is
therefore divided up into arcs of equal length by the ¢ different points. Call
this length r, and we have

c=rt.
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Let s be the number of points on the arc between P and P, in the positive
direction, counting P; but not Py. These points divide the arc into s equal
parts of length r, and we have

a=rs.

Marking off the original sequence, we go around the circle d times. Every
time we go around, we hit a point on the arc from P, to P, (again, not
including Pp), hitting each a total of u times. This gives

d = su.

Thus we have shown the existence of the numbers 7, s, ¢, and . To verify
the last claim, we observe that if the perimeter ¢ and the arc length a are
both integers, then every point is an integral number of arc lengths from P,
and in particular, r is an integer.

Exercises:

13. Prove that the four number theorem remains true even if we remove
the assumption that the numbers are positive.

14. Prove the four number theorem using induction on |b| instead of ge-
ometry.

4. The questions raised in the introduction were related to the divisibility of
integers. The four number theorem will play an important role in establishing
fundamental relations for division.

It will be advantageous to define the concept of divisibility slightly dif-
ferently from that of the ancient Greeks; in particular, we will consider the
number itself to be one of its divisors. In accordance with this, we say that
an integer a s a divisor of an integer b if there exists an integer c satisfying
the equation

b=ac.

In this case, we also say that b is a multiple of a and that b is divisible by a.
If a is a divisor of b, we express this symbolically® as a | b; otherwise, we
write a { b.

In the remainder of the book we will concern ourselves principally with
integers, and unless we specify otherwise, all numbers should be considered
as integers.

The properties of divisibility listed here follow easily from the definition.
We will often use them without reference, and for that reason it is useful to
see them once presented all together. The proofs are left to the reader. The
letters used in the following relations represent arbitrary integers.

3 Unfortunately, a symmetric symbol is used for an asymmetric relation; since this
symbol is so widely accepted, we make no attempt to introduce another.
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(a) 1|aand —1]a;
(b) a| ca, and in particular, a | a,a | —a, and —a | a (= —(—a));
(c) Ifa|b, then a | be.

Among the divisors of a, we call 1, —1, a, and —a its trivial divisors, and
the other positive divisors, those smaller than a, we call its proper divisors.
The numbers 1 and —1 are distinguished by their role in property (a) as being
divisors of very integer. It is customary to call them units.

Often we will deal with a set of numbers that do not have a common
divisor other than the units. We will call these numbers relatively prime.*

It is obvious from the definition that if we include a new number in a set
of relatively prime numbers, then the resulting numbers are still relatively
prime. It is, however, conceivable that if we have more than two numbers
that are relatively prime, some of them may have a common divisor other
than a unit. For example, the numbers 20, 36, and 45 are relatively prime,
yet any two share a common divisor greater than one. Occasionally, we will
be interested in numbers that are pairwise relatively prime.

The number 0 is also special in terms of divisibility.

(d) al0;
(e) 0 is only a divisor of zero.®
(f) fa|bandbjc, thena|c.

Exercise:

15. Show that if two numbers are relatively prime, then any divisor of the
first and any divisor of the second are also relatively prime.

5. The relationship in property (b) is reflezivity of division; that in prop-
erty (f) is transitivity. Division, in general, is not a symmetric property. We
can make this statement more precise in the following way:

(8) Ifa|bandb]|a, then |a] = |b].

The result is not significantly weaker than if the two numbers were equal,
since a number and its opposite have the same multiples and the same divi-
sors. In symbolic notation, this is

(h) Ifa | b, then —a | b and a | —b.

4 We will not introduce a symbol for being relatively prime, since this can easily
be expressed by use of the largest common divisor, soon to be introduced. We
emphasize here, however, that this definition is independent of a greatest common
divisor, which in some cases does not even exist.

® This property seemingly contradicts the fact that it is not possible to divide by 0.
For division we require that the quotient be properly defined, but for divisibility
the existence of at least one c such that (in the above case} 0 = c0 is enough.
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From the point of view of divisibility, a number and its opposite do not
differ significantly. In keeping with custom, we call them associates® of each
other. We may also say that the theorems relating (only) to divisibility actu-
ally apply to the classes of associated numbers. This means that it is enough
to consider divisibility questions by taking one representative from each class,
for example the nonnegative one, and this is often what will be done.

We should still examine the connection of divisibility ‘with both addi-
tion and subtraction. (And with these properties, the last remark becomes
obsolete.)

(i) fa|banda|c,thena|b+c.
This is obviously true for sums with arbitrarily many terms. Even the
following more general property is true:
(j) If b; are integers such that a | b;, and c; are arbitrary integers (i =
1,2,...,k), then a | Zf___l b;c;.
Often we will use the following argument (which follows from the previous
property).
(k) With the assumptions made above, d is divisible by a if and only if the
sum 3% bic; + d is divisible by a.
An additional important connection relates to the size of divisors.
(1) Ifa|bandb=#0, then |a| < [b].
From this it follows that
(m) Every number except 0 has finitely many divisors.
We finish with a property that we will use often.

(n) If a | b, then ca | cb, and if ¢ # 0, then the first relation follows from
the second.

Exercises:

16. Prove the divisibility properties listed above.

17. Prove that if we divide the numbers a,,as,...,ax by their greatest
common divisor, then the resulting numbers are relatively prime.

18. Prove that if k and { are positive integers and a* and b are relatively
prime, then a and b are relatively prime too. (We note that the converse
of this statement is also true, but its proof is considerably harder. See
Exercise 25.)

® The idea of units and associates may seem forced. Later we will extend the defi-
nition of divisibility, for example divisibility of polynomials with real or rational
coefficients. In these cases, we can have more than one, even infinitely many,
units. (In these examples the units are nonzero constants, and polynomials have
infinitely many associates.) These concepts will be useful in these cases.
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6. We saw that +1 (the units) and 0 play special roles in terms of divisibility:
+1 have just two trivial divisors, and 0 has three; all other numbers have four
trivial divisors. The units do not have other divisors besides the trivial ones,
but this property is not unique to the units. It is also shared with many other
numbers, for example,

2,3,5,7,11, 73,137,139, 3359, 3361, 7963, 10037, 10039,

and of course many more. We call such numbers prime numbers. Those num-
bers that can be written as the product of two numbers of smaller absolute
value are called composite numbers.

Theorem 3 Ewvery number larger than one has a prime divisor.

Property (m) states that there are only finitely many divisors, and prop-
erty (b) guarantees that every divisor’s absolute value is also a divisor. We
take the smallest divisor among those larger than 1. This is a prime number,
for if we could decompose it into the product of two smaller positive num-
bers, neither of which is 1, then we would have a number larger than one and
smaller than our smallest divisor, which is a divisor of this smallest divisor.
By property (f) it is also a divisor of our original number, contradicting the
fact that the chosen divisor was the smallest.

After the list of primes above we said that there were many more. More
exactly, we claim there are infinitely many.

Theorem 4 There are infinitely many prime numbers.

We prove the theorem indirectly. Assume that there are only finitely many
primes, and that we have written them all down, p;,ps,...,pr. We next
consider a number that is divisible by all primes, and then alter it a little.
For example, we consider the number:

p1p2 - Pk + 1.

Every listed prime gives a remainder of 1 upon division. By Theorem 3, this
number has a prime divisor; but this cannot be one of those listed above,
contradicting that we listed all the primes, so there cannot be finitely many
primes.

Exercises:

19. (a) Prove that every number can be written as [%k, where [ and k

are integers and k is not divisible by a square larger than one.”

(b) Use the previous observation to find a new proof of Theorem 4.

20*. Prove that in the list of the integers, there are arbitrarily many consec-

utive composite numbers. (In other words, between two neighboring
primes, there occur arbitrarily large gaps.)

7 Numbers of this type are called square-free.
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7. The primes are the building blocks of the integers in the sense that we
can decompose any composite number into a product of primes. It will be
convenient to consider a number as the one-factor product consisting of itself.
We can now reformulate our statement in the following way:

Theorem 5 Every number different from 0 and not a unit can be decomposed
into the product of finitely many primes.

Clearly, 2 and —2 are their own decompositions. We continue through
the integers, going by size of absolute value. If we arrive at a prime number,
this is its own decomposition. If we arrive at a composite number, we split it
up into the product of two numbers of smaller absolute value. Since each of
these is smaller, we have already determined their decompositions, and the
product of these is a decomposition of the new number.

Exercises:

21. (a) Prove that if f and g are polynomials with rational coefficients
and g is not the zero polynomial, then there exist polynomials g
and r with rational coefficients satisfying the following equation:

f=gg9+m,

where the degree of r is smaller than the degree of g, or r is the
zero polynomial. Additionally, prove that there are only one such
g and 7.

(b) Isthe above statement true for polynomials with real coefficients?
How about integer coeflicients?

We say that a polynomial f with rational coefficients is divisible by a
polynomial g if there is a polynomial h with rational coefficients such that
f = gh. In a similar way we may formulate the notion of divisibility of
polynomials with real coefficients and also those with integer coefficients.

22. Go back through Sections 4-6 and rephrase every property of divisibil-
ity of integers in terms of polynomials with rational, real, and integer
coefficients, respectively. Determine which are true and which are false.

23. (Continuation) In the three cases, determine whether the four number
theorem is true or not.

8. The real importance of primes comes from the fact that a prime decom-
position is unique (under a certain interpretation of uniqueness, as we will
see later on). Before proceeding with this, we will prove two other important
properties of divisibility.

In Exercises 2 through 6 we found divisibility rules for every number from
2 to 9, with the only exception of 6, but this is not necessary, since a number
is divisible by 6 if it is divisible by both 2 and 3. On the other hand, it is not
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true that if a number is divisible by both 6 and 3, then it is divisible by 18;
6 itself is an example of this fact.

It is a common mistake to believe property (c) in the opposite direction
(this property says that if a | b, then a | bc), i.e., that if a number divides a
product of numbers, then it divides one of the factors. For example 9-10 = 90
is divisible by 6, whereas neither 9 nor 10 is. The factors of 6, 2 and 3, are
split between 9 and 10. However, we can correct this conclusion if we require
that one of our factors and the divisor do not have a common divisor—with
the exception of units—meaning that they are relatively prime. In this way
we arrive at the following theorem:

Theorem 6 If a number divides the product of two numbers and is relatively
prime to one of the factors, then it must divide the other factor.

The theorem easily follows from the four number theorem. Assume that
c| ab and c and a are relatively prime. By the definition of divisibility, there
is a number d such that

ab=cd.

So by the four number theorem, there are numbers r, s,¢, and u such that
a=rs, b = tu, c=rt.

So r is a common divisor of a and ¢, which are relatively prime, so r must be
1 or —1, thus 72 = 1. Using this and the third equality, we see that

=r?t = rc,

so from the second equality, we get that b = rcu; hence c divides b, proving
the theorem.

This theorem already appeared in EUCLID’s Elements, and we will call it
Euclid’s lemma.

Exercises:

24. Prove that if a number divides a product of numbers and is relatively
prime to all of them except one, then it must divide that one.

25. (a) Prove that if a number is relatively prime to several numbers,
then it is relatively prime to their product as well.
(b) Prove that if two numbers are relatively prime to each other,
then arbitrary positive powers of each are still relatively prime
to each other.

9. There are certain numbers that have the property that if they divide a
product of numbers, then they must divide one of the factors. The units have
this property, as does 0, and 2 and 3 as well. We will say that numbers of
this type that are different from 0 and the units have the prime property.
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It is immediately clear that composite numbers do not have the prime
property, as we can write a composite number as a product of numbers having
smaller absolute value, and by property (1), the original number cannot divide
any of these. As the name suggests, we have the following:

Theorem 7 The prime numbers are precisely those with the prime property.

We have seen above that only the prime numbers can have the prime-
property. The other direction of the claim follows from Theorem 6 (or from
the four number theorem, from which this was deduced). If a prime p divides
a product ab, then either p divides a, satisfying the claim of the theorem; or
if not, then by property (h), its opposite is also not a divisor of a. The only
other divisors of p are 1 and —1, and these are the only divisors common to
p and a. This means that p and a are relatively prime, and by Theorem 6, p
must divide b.

We defined the primes as not being decomposable into factors of smaller
absolute value. Theorem 7 gives another important characterization of primes.

10. We have already alluded to the uniqueness of prime decomposition. We
formulate it in the following:

Theorem 8 (Fundamental Theorem of Arithmetic) The prime factor-
ization of a nonzero number that is not a unit is unique up to the order and
signs of the factors.

In particular, we can rephrase this so that if we have two prime factor-
izations for a given number, then the factors of them can be paired so that
corresponding factors have the same absolute value.

The theorem can be easily deduced from the following theorem, which is
a generalization of the four number theorem:

Theorem 2’ If a1, az,...,a;; b1,ba,. .., bk are integers such that
aiay---a; =biby - bx,

then there exist integers ty, (1 <u < j,1 < v < k) such that

k J
ay=Jtw (1<u<i) bo=][tw (Q<v<k).
v=1 u=1

We will first show how the fundamental theorem follows from this theo-
rem, and in the next section we will return to the proof of this theorem.

We assume that the two factorizations in the statement of the theorem are
prime factorizations. Then the factors a, are all primes (indecomposable),
and considering the equations a, = Hﬁ:x tuv, We see that one of the t,,
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(u=1,...,5) is either a, or —a,, and the others are 1. So among all t,,,
exactly j have absolute value larger than 1; the rest have absolute value 1.

The same holds if we consider the b,’s. In the product b, = H'L_._l tuv,
one of the terms is b, or —b,,, and all the others have absolute value 1. Hence
there are precisely k terms t,, with absolute value greater than 1. It follows
that j = k, and the terms t,, having absolute value greater than one give a
correspondence between the a, and the b, given by

|aw| = [tus| = by].

This concludes the proof that Theorem 8 follows from Theorem 2'.

11. The proof of the Theorem 2’ follows from a two-step induction, the first
on j and the second on k. The case j = k = 2 is the four number theorem,
which we have already proved.

We will first do induction on j. Assume that the theorem is true for k = 2
and j = m, for some m. We wish to prove the case j = m + 1. We have the
equation

aiaz : ' Amam+1 = blbg.

We consider a,am+1 to be one factor, and by the inductive assumption, there

exist integers t,, (u = 1,...,m; v = 1,2) such that
ay = th ity (u=1,...,m-1), (2)
Amam+41 = t:nlt:nm (3)
m
bo= [t (=12 (4)
u=1

For (3), the four number theorem guarantees the existence of t,, (u = m,
m+ 1; v =1, 2) such that

Gy = tyrtu2 (u=m, m+1),
tw = tmutm+1v v=1,2).
By defining t,, = t,, foru=1,...,m —1; v = 1,2, we see that the theorem

is satisfied in the case k = 2, j = m+1 by t,, and hence for all j when k = 2.

We can now finish the proof by induction on k, keeping j fixed, showing
that the theorem holds for all j and k larger than 1. We leave the details of
this step to the reader.

12. The history of the fundamental theorem is rather interesting. EUCLID
did not mention it in the Elements, although Theorem 6 (Euclid’s lemma)
and Theorem 7 appear in the book. The fundamental theorem follows from
either of these, as we shall soon see, and similarly, these both follow from the
fundamental theorem. Hence we are dealing with equivalent statements.
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Great progress was made in number theory from the mid seventeenth cen-
tury, but the fundamental theorem was not mentioned, even though conse-
quences of it were used regularly. In EULER’s work, the four number theorem
and Theorem 2’ are used, both without proof. Most likely he came upon these
by way of prime decomposition. LEGENDRE published a book on number the-
ory in 1798, but still the fundamental theorem does not appear. Finally, in
Gauss’s famous work Disquisitiones Arithmeticae (Studies in Arithmetic),
published in 1801, the fundamental theorem is stated and proved. He essen-
tially proves Theorem 7 by induction, and the fundamental theorem follows
from that.

We should not be surprised that the fundamental theorem does not ap-
pear in EUCLID’S Elements. We mentioned in footnote 1 of Section 1.1 that
the Greeks did not have a general algebraic notation to use, and without such
a notation, the formulation of the theorem is hopeless. Perhaps the extraor-
dinary respect for EUCLID, and the fact that he did not state the theorem,
led mathematicians to take the theorem for granted.

Exercises:

26. Work out the remaining parts of the proof of Theorem 2'.

27. Call the even numbers E-integers. Clearly, sums, differences, and prod-
ucts of these are also E-integers, and of course the usual properties of
these operations also hold.

(a) Define divisibility among E-integers, and determine which of the
properties of divisibility hold in this set.

(b) What are the units (if there are any)? What are the indecom-
posable elements?

(c) Isit true that any nonzero E-integer is either indecomposable or
can be factored into a product of indecomposable elements?

(d) Is the corresponding version of the fundamental theorem true for
E-integers?

28. (a) Does the remainder theorem hold for E-integers?

(b) We say that an E-integer has the prime property if whenever
it divides a product, it follows that it either divides one of the
factors or differs from one of the factors in sign. Which of the
E-integers have the prime property?

(c) Does the appropriate version of the Euclid’s lemma hold for E-
integers? (With the exception of 0, none of the E-integers are
divisors of themselves. Here we include the number itself and its
additive inverse among the divisors, as we did in part (b).)

Support negative answers to the above questions with counterexamples.

For the understanding of notions related to divisibility and of the funda-
mental theorem, we need only the operation of multiplication. D. HILBERT
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(1862-1943) raised the question of whether or not it is possible to prove the
fundamental theorem from the definition and from the properties of multi-
plication. He showed that it is not possible, giving a counterexample. The
following exercises illustrate this example.

29. Call the positive integers of the form 3k + 1 the H-integers (after
HILBERT). Multiplication restricted to the H-integers clearly remains
commutative and associative.

(a) Show that the product of H-integers is an H-integer.

(b) Define divisibility among H-integers, and examine the proper-
ties in Sections 1.5-1.8, determining which have meaning, and of
those, which hold true when restricted to H-integers.

30. (a) Define the following concepts for the H-integers: unit, indecom-
posable, and the prime property. Determine which H-integers
have those properties.

(b) Is it possible to write every H-integer as the product of H-
indecomposables?

(c) Is the corresponding version of the fundamental theorem valid
for the H-integers?

31. Define what it means to be relatively prime for the H-integers and
decide whether or not Euclid’s lemma holds for this set.

32. Repeat all of the above exercises for the set of integers of the form
3k + 1, positive and negative.

33. Solve Exercises 29-31 for integers of the form 8k + 1, where k is an
arbitrary integer.

13. In the prime factorization of a number different from 0, we may gather
the primes of equal absolute value together and write them as a power. We
may choose to write all the bases of the powers as the positive prime, and
may need to include a factor of —1 to account for signs of the original factors.
In this way, we can write the number as

— Q2 (o3
n = epyipy? - poT.

Here e is either 1 or —1, depending on whether n is positive or negative,
the p; are different positive prime numbers, and the «; are positive integral
exponents.

In the above decomposition it will sometimes be useful to include primes
to the power of 0.8 This prime power decomposition will be called a canonical
decomposition. Two canonical decompositions can differ in the order of the

8 We could also say that every integer different from 0 associates a nonnegative
exponent to every prime. Only finitely many of the exponents can be positive,
and according to the fundamental theorem, this association is unique. In the
special case of 1 and —1, every prime gets exponent 0.
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factors and in the inclusion of factors with exponent 0, but according to the
fundamental theorem, they can differ in nothing more.

14. Before we continue, we should examine a few concepts more closely: the
divisors of a number, its multiples, the common divisors of more than one
number, and their common multiples.

When dealing with questions of divisibility, we have already seen that
one need consider only positive divisors, and we will thus restrict ourselves
to positive divisors. Furthermore, all numbers will be considered nonnegative
integers, unless otherwise specified.

We know that 0 has every number as a divisor, and that 1 has only one
divisor (it has two if we consider all integers and include —1). If n is larger

than 1, let
-
n=]]#f (5)
=1

be a canonical decomposition and let a be a divisor. This means that there
is a number b such that
n = ab.

If we replace the numbers a and b by their canonical decompositions and
collect powers with the same base, if there are any, then by the fundamen-
tal theorem, we must get the decomposition in (5). This means that in the
decompositions of a .and b, only those primes can appear that appear in the
decomposition of n and their exponents cannot exceed those in the decom-
position of n, and therefore the n in (5) can have only the following numbers
as its divisors:

a=[]p¥, where 0<ji<hk (1<i<r). ©6)

i=1

If we multiply this by the positive integer

-
b= H ol i—Ji ,
=1
we get n, so numbers of type (6) are indeed divisors of n.

The multiples of n are those numbers that have n as a divisor, so from the
last results, it follows that in their canonical decomposition, multiples of n
must have all the primes p; to at least the exponent k; (1 < i < r). Thus the
multiples are all numbers ¢ that have canonical decomposition

u
t=]]p*, where u>r, and ki<s for 0<i<r (7)
i=1

Using the decomposition from (5), we can get a formula for the number
of divisors of a number. We will denote this by 7(n).® Each of the j;’s in (6)

® The notation d(n) is also used in the literature.
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can take on k; + 1 values, and they can be chosen independently from each

other, giving:
-

r(n) = [J (ki +1). (8)
i=1
Theorem 9 The number n given in its canonical decomposition (5) has divi-
sors given by (6), multiples given by (7), and the number of its divisors given
by (8).

Exercises:

34. Which numbers have an odd number of divisors?
35. Which numbers less than 1000 have the most divisors?

15. We need to clarify the role of 0 when considering common divisors and
common multiples of numbers. We can disregard any zeros when considering
common divisors, as long as not all of the numbers are zero. This is because
every number is a divisor of 0. If all of the numbers are 0, then every number
is a common divisor.

Even in the case of common multiples, we can restrict ourselves to nonzero
numbers. Namely, if 0 occurs among the numbers, then the only common
multiple is 0, because the only multiple of 0 is 0 itself, and 0 is a multiple of
every number.

When considering common divisors and multiples, it will be advantageous
to consider all occurring primes in the canonical decomposition of each of the
numbers. If the prime does not divide one of the numbers, we write it with

exponent 0. If p;,p2,...,pr are the primes occurring in the decompositions
of the numbers n;,n,,...,ns, we can write the canonical decompositions as
T
ni=Hpﬁ"‘, i=1,2,...,s. (9)
h=1

And by Theorem 9, the common divisors are the numbers
r .
a= H ik,
h=1

where j, is not larger than any of the exponents kyp, kap, . . ., ksp. Defining
mp to be the smallest of these exponents, we can rephrase the requirement
on j as follows:

0 < jn < my, h=12,...,r

The numbers that we get in this way are all divisors, by Theorem 9, of

D= l—rI PRt
h=1
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This leads us to a surprising result: The common divisors of our num-
bers are exactly the divisors of D. Of course, D is a divisor of our numbers,
and hence the largest common divisor by property (1). Such a number whose
divisors are exactly the common divisors of ny,ns,...,ns we will call a dis-
tinguished common divisor. It is not at all obvious from the definition that
a distinguished common divisor exists.!® If both a distinguished common
divisor and a greatest common divisor exist, we see that they are the same.

If all the numbers are 0, then there is no greatest common divisor. How-
ever, a distinguished common divisor still exists, namely 0, since this is a
common divisor and the only number that is divisible by all the common
divisors (it is the only number divisible by the common divisor 0).

Common divisors always exist, for instance 1, and if not all the numbers
are 0, then there are only finitely many. In this case, there is obviously a
largest, and therefore a distinguished common divisor. Soon we will prove
that the greatest common divisor has the property of being the distinguished
common divisor, without using the fundamental theorem. We suggest that
the reader try to find such a proof before continuing. It will be clear that this
will not succeed without an important new idea. However, this fact follows
naturally from the fundamental theorem, as we have already seen.

16. Let us determine now the common multiples of the numbers in (9). Ac-
cording to Theorem 9, the p, (h =1,2,...,7) in the canonical decomposition
must be present to a power at least as large as the largest among the expo-
nents ki, kan, .. ., ksn. We will call this largest exponent M}, and hence any
common multiple b looks like

u
b=HPih’ where u>7r and gn > M, if 1<h<r
h=1

By Theorem 9, all these common multiples are multiples of the number

t= ﬁphM“.
h=1

Naturally, ¢ is also a common multiple, and therefore the smallest one. Such
a number that is a multiple of the given numbers and a divisor of all of their
common multiples is called a distinguished common multiple. The smallest
common multiple is obviously well-defined and unique, hence so is the distin-
guished common multiple. In contrast with the distinguished common divisor,
it is easy to see that the smallest common multiple is the distinguished com-
mon multiple as well (see Exercise 36). It is also interesting that from this
fact the fundamental theorem can be deduced.!!
We summarize our results in the following theorem:

1% A distinguished common divisor may not exist for generalized notions of divisi-
bility, as is seen in the settings of Exercises 27-33. See Exercise 38.
! Cf. K. HARTIG and J. SURANYI: Periodica Math. Hung. 6 (1975) pp. 235—240.
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Theorem 10 The distinguished common divisor of the numbers
T
niznpﬁ“‘, 1=1,2,...,s,
h=1
18
-
D= Hp',:"', where mp = min(kyn, kan, ..., ksn), 1< h <
h=1
the distinguished common multiple is
T
t= Hp,’f’h, where M), = max(kyn, kon, ... ksn), 1< h<r
h=1

If some of the n; are 0, then we ignore them in the case of the distinguished
common divisor, unless all of the n; are 0, in which case the distinguished
common divisor is also 0. If at least one of the n; is 0, then the distinguished
common multiple is 0.

Both the distinguished common divisor and the distinguished common
multiple are uniquely defined.

The distinguished common divisor is equal to the greatest common divisor
if the latter erists (this is the case when not all of the n;’s are 0), and the
distinguished common multiple is equal to the least common multiple.

When considering distinguished common multiples and divisors where the
n;’s can be arbitrary integers, we use the absolute values of the numbers.

From this point on, when we say greatest common divisor (or g.c.d.) and
least common multiple (or l.c.m.), we will actually mean the distinguished
ones, unless otherwise stated. We will use the notation

(n1,m2,...,n,) and [ni,n2,...,n.]

for g.c.d. and l.c.m., respectively.
Using the notation for the g.c.d., we can easily express that n;,na,...,n,
are relatively prime:
(nlanZ) N ,n‘r) =1,

since this means that they do not have any common divisors other than 1. We
will often use this notation, but do not forget that being relatively prime is a
simpler notion than g.c.d., and we may define it without using the notion of
g.c.d. (for example in cases when the g.c.d. does not exist, which is possible,
as we will see in the following exercises).

Exercises:

36. Prove without using the fundamental theorem that
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(a) the l.c.m. has the distinguished property,
(b*) the g.c.d. has the distinguished property.

37. Define g.c.d., l.c.m., distinguished common divisor, and distinguished
common multiple in the set of polynomials with real, rational, and
integer coefficients, and determine in which cases they exist. (See Ex-
ercises 22 and 23).

38. (Continuation) Solve the above exercise for the number systems intro-
duced in Exercises 25-31.

17. We can easily decide whether numbers are relatively prime just by look-
ing at their prime decompositions. If there is a common divisor greater than 1,
then by Theorem 3, it has a prime divisor, and that is also a divisor of all
the numbers; hence either it or its opposite occurs in all decompositions.

Conversely, if a prime or its opposite appears in the decomposition of
every number, then this prime is obviously a common divisor. Therefore, the
numbers are not relatively prime. It follows that given numbers are relatively
prime if and only if there is no prime such that an associate of it appears in
every decomposition.

We may also conclude that given numbers are pairwise relatively prime if
and only if associates of every prime that occurs among them appear in only
one decomposition.

18. In addition to the integers, a larger set of numbers plays an important
role in number theory as well: the rational numbers. These are numbers that
can be written as the quotient of two integers. (Integers are rational numbers,
for example rational numbers with denominator 1.) Those numbers that are
not rational are called irrational.

By looking at the canonical decomposition of a number, we can immedi-
ately determine whether or not it is a kth power, for any integer k greater
than 1. Since if ¢ = n*, where n has a canonical decomposition

(e 3 Q (o3
epyipy® - prT,

eis 1 or —1, and the p; are distinct positive primes, then

ka,

k, ko, kasz
o 2Dy

c=¢e"p;"'p
- This is exactly the canonical decomposition of c. Therefore, according to the
above, every other canonical decomposition can differ at most by primes to
the Oth power from this one. If k is even, then e* = 1; if it is odd, then e* = e.
So if ¢ is an integer other than 0, and hence has a canonical decomposition,
then in this decomposition the exponent of every prime is divisible by k, and
c is positive if k is even. The observations remain valid if we include primes
with exponent 0 in the decomposition.
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Conversely, it is clear that if the above conditions are satisfied for a given
number, then it is either the kth power of an integer or the opposite of the
kth power of an integer; in other words, this number is an associate of a kth
power.

Based on these observations, the next theorem follows easily.

Theorem 11 If a positive integer is not a kth power, then its kth root is
irrational.

We prove the theorem indirectly. If a positive integer n is not a kth power,
then in its canonical decomposition there is a prime raised to a power not
divisible by k. If {/n were rational, we could write it as u/v, where u and v
are integers. Then the equality

would hold.

If we replace every factor by its canonical decomposition, then in the
decompositions of u*¥ and v¥, every prime would appear to a power divisible
by k. If on the left-hand side of the above equality we take a prime whose
exponent is not divisible by & in the decomposition of n, then after combining
factors of the same base its exponent will still not be divisible by k, while on
the right-hand side the exponent of every prime is divisible by k. This is not
possible by the fundamental theorem, and this proves the claim.

19. The fundamental theorem guarantees the existence of canonical decom-
positions, and this has already led us to interesting applications. The theo-
rem, however, does not help in finding these decompositions, which becomes
almost hopeless as the numbers get bigger, even with the use of (today’s)
supercomputers. An efficient method for finding the decomposition would be
of great practical use, but at the same time would be a great danger, as we
shall see in the next chapter, where we will talk about cryptography.

An interesting application is that we can give a canonical decomposition
for n!, the product of 1,2,...,n (see Fact 1) for every positive integer n.
We find the desired decomposition by finding the canonical decomposition of
each factor separately, and then summing up the exponents of a given prime
for all the factors divisible by it. Define k(n, p) to be the exponent of a prime
p in this decomposition. Every factor with pt in its canonical decomposition
adds t to this exponent, and the number of these is the number of factors
divisible by p* minus the number of factors divisible by p**!.

In general, up to any arbitrary positive number z, every gth number is
divisible by g. The number of these is the largest integer not greater than
n/q, ie., [n/g]. Therefore, the number we were looking for in the previous
paragraph is [n/p?] — [n/pt*!], which is added t times to k(n,p). We have to
add these for every ¢ for which pt is not greater than n. In the above sum,
[n/pt] occurs in the term corresponding to ¢t with t as its coefficient, and in
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that of t — 1 with —(¢ — 1) as its coefficient. After combining like terms, it
will appear with coefficient 1. Summarizing these observations, we get the
following theorem:

Theorem 12 The canonical decomposition of n! is

n! = H p*(™P) where  k{n,p) = Z [1%] .

p<n t=1

The product is over all primes not larger than n, and r = v(n,p) is such that
pr<n<pth (10)

We may write a larger upper bound here instead of this and may also include
primes larger than n in the product; in the first case, their contribution to
the sum is 0, and in the second, case they extend the product with factors of
exponent 0.

As an example of this procedure, we determine the canonical decomposi-
tion of 12! = 479001 600:

k(12,2) = [12/2] + [12/4] + [12/8] = 6 + 3+ 1 = 10;

k(12,3) = [12/3] + [12/9) =4+ 1=5;  k(12,5) = [12/5] = 2;
k(12,7) =[12/7)=1;  k(12,11) = [12/11] = 1.

Hence the decomposition we are looking for is 12! = 210.35.52.7.11. (Check
the result!)

20. It is possible to express binomial coefficients using factorials (see Fact
2). These are the numbers
(n) _ n!
i) din-=35)Y

when n is a positive integer, and 0 < j < n. Using canonical decompositions
and without referring to any algebraic or combinatorial meanings, we can
show that these numbers are always integers.

Replacing factorials by their canonical decompositions, we still have no
primes greater than n. Let the exponent of such a prime p be h = h(n, j, p);
we have

np) = kmp) - K6~ k- im = 3 ([2] - [2] - [ ).

o I
—\lp pt pt

Inequality (10) gives an upper bound for the above summation.
We will show that every summand above is either 0 or 1; in this way h
is a nonnegative integer, and the binomial coefficient is therefore a positive
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integer. With the notation u = j/p' and v = (n — j)/p* each summand has
the form
fu+ o] - [ ~ ol.

The first term is at least u+v — 1, and the others are not greater than u and
v, respectively. Therefore, the expression is greater than —1. On the other
hand, the first is not larger than u + v, and the others are at least u — 1
and v — 1, respectively, so the expression is smaller than 2. Therefore, h is an
integer between —1 and 2, i.e., 0 or 1.

With this we not only prove our claim, but we also get the surprising result
that the exponent is at most r, since it is the sum of 7 terms not greater than 1,
where 7 is defined by inequality (10). This gives us the following theorem:

Theorem 13 The canonical decomposition of the binomial coefficient (;‘) s

G-I =2 (]-F-5)

p<n

where 1 = r(n,p) satisfies p" < n < p"t1.

Therefore, the powers of primes in the above expression are not greater than n.

Exercises:

39. Verify the following properties for the integral part function:
(a) If nis an integer, then [a + n] = [a] + n.

(b)
k k
[Z al] > .}:[ai]‘

i=1
(c) If nis a positive integer, then
n—1 .
Z [a+ l] = [na).
; n
j=0

40. Show that if n is a positive integer, then

2-1]
n| lnl’
41. Let a be a real number not smaller than 1, and n a nonnegative integer
not greater than a; show that

[a] > a.

n+1

42*. With the help of the integral part function, express the following func-
tions:
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(a) the function whose value is 1 for integers and 0 for all other
numbers.

(b) the smallest integer that is not smaller than the real number a
(this function is called the upper integral part of a and is written
[a]. See Fact 8).

(c) the function that gives the distance from a real number a to the
closest integer.

43*. Prove that (%) is divisible by n + 1.
44*. Prove that the following number is an integer:
(2m)!(2n)!
mln!(m + n)!’

21. Using the results we have obtained, we will examine a problem dating
back to ancient times, namely determining the Pythagorean triples. Accord-
ing to the Pythagorean theorem, if the legs of a right triangle have lengths z
and y, and the hypotenuse has length z, then

2?4+ 9% =22 (11)

Conversely, if this relation holds for three positive distances, then there is a

right triangle with sides having these lengths, where z is the length of the
hypotenuse.

Numbers satisfying (11) are called Pythagorean triples. Let us examine

these more closely. Observe that  and y cannot both be odd. Namely, it is

easy to see that the number preceding the square of an odd integer is divisible
by 4; if n is odd, we have

nP—1=m-1)(n+1),

and both of the factors are even, hence the product is divisible by 4.

From this observation, if both z and y were odd, their sum would be 2
greater than a number divisible by 4, but an even square is the square of an
even number, and hence divisible by 4.

22. Before continuing with this investigation, we note that the above obser-
vation can be strengthened,

Theorem 14 The number preceding the square of an odd integer is divisible
by 8.

Using the same notation, since n — 1 and n + 1 are both even, we can
rewrite the above equation as

() ()

The factors in parentheses are consecutive integers; hence one of them is even
and thus n? — 1 is divisible by 8.
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23. Returning to (11), we have shown that at least one of z or y is even.
The roles of z and y are symmetric, so we may assume that z is even. Then
from (11) it follows that

z\? (z-y\ (z+y
(2)‘(2)(2)' (12)
Denoting the g.c.d. of /2 and (2 —y)/2 by r, for appropriate integers a and b
we have

z (z-y) rb.

- b
2
Here a and b are relatively prime, since if there were a common divisor ¢
greater than 1, then rc would be a common divisor of z/2 and (z — y)/2
greater than r, contradicting the fact that r is their g.c.d.
Rewriting (12) in terms of the new parameters and simplifying, we get

2_,[(2+y
ra -—b( 3 )

Here a2 and b are also relatively prime, so by Euclid’s lemma b is a divisor
of r, and hence there is an integer s such that r = sb. We may further simplify,
getting

z = 2sab, z —y = 2sb?, z+y = 2sa’.

From this we have the following expressions for y and z:

y=s(®-0b%), z=s(a®+b?).

24. Since a and b are relatively prime, at least one of them is odd. If the
other is even, then we will show that for s = 1 we get a relatively prime
triple (in fact, the triple is pairwise relatively prime). If z had a common
divisor greater than 1 with either y or z, it would have a common prime
divisor. Such a divisor would divide either a or b, but could divide y or z only
if it divided the square of the other parameter as well. Since this divisor is a
prime, it would divide the base of the square as well, dividing both a and b,
contradicting that a and b are relatively prime.

If y and z had a common divisor greater than 1, then again they would
have a common prime divisor, and since they are both odd numbers, this
cannot be 2. On the other hand, this would be a common divisor of both
their sum and difference, and therefore would divide 2a? and 2b? as well.
Since it does not divide 2, it would be a common divisor of a? and b2. This
would be possible only if it were a common divisor of a and b, but this is not
possible.

We call a Pythagorean triple that is relatively prime a primitive triple.

If both a and b are odd, then there are integers a’ and b’ such that
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a+b=2ad, a—b=2b.

It follows that a = a’ + b, and this can be odd only if one of a’ or ¥’ is even
and the other odd. Using the new parameters, it follows that

a? - b? =4a'V, a?+b2=2 (a'2 + b’2) , ab=a'? - b2

Replacing the old parameters by o’ and ¥, formally the only change is
that instead of s we have 2s and the roles of z and y are interchanged. The
multipliers of 2s are again relatively prime, and we have reduced this case to
the first one.

For every a and b, the triple given by the formulas satisfy (11), since

(2sab)? + (s (a® — b%))” = (s (a® + t%))?

is an identity.
We summarize the above results in the following theorem:

Theorem 15 All Pythagorean triples are of the form
z = 2sab, y=s(a®-b?), z=s(a®+b?),

where s, a, and b are positive integers, a and b are relatively prime, one of
them is even, and a > b.
The primitive triples are those for which s = 1.

We leave the proof of the last statement to the reader (see Exercise 45).
The condition a > b is necessary for y to be positive, and can be omitted
if we consider instead the absolute value of y.

Exercises:

45. Prove that in (11), if the numbers are relatively prime, then they are
pairwise relatively prime and z is odd.

46. Prove that the cube of a number not divisible by 3 has a remainder of
1 or —1 upon division by 9.

47. Decide whether we obtain every Pythagorean triple if in Theorem 15
we omit the parameter s as well as the requirement that a and b be
relatively prime.

48. Prove that the product of the elements of any Pythagorean triple is
divisible by 60.

49. Prove that in a primitive Pythagorean triple, the number correspond-
ing to the hypotenuse cannot be divisible by 7.
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25. We can consider the results of Theorem 15 so as to describe those squares
that can be written as the sum of two nonzero squares. Later we will discuss
the problem of the conditions under which a positive integer can be written
as the sum of (at most) two squares (see Theorem 7.2). At this time we prove
only the following negative result:

Theorem 16 If a and b are integers, then the sum
a® + b2
cannot have a positive divisor of the form 4k — 1 relatively prime to a and b.

It follows from this theorem that primes of the form 4k — 1 cannot be written
as the sum of two squares (see Exercise 50). Later we will give a simpler proof
of this theorem, but it is interesting to see that we can prove this based on
the tools we already have.

We prove the theorem indirectly. The proof will be based on the following:
for a given divisor of the form 4k — 1, we choose a and b as small as possible in
such a way that the quotient upon division is a positive integer smaller than
the divisor. This quotient will also have a divisor of the condition satisfying
the theorem (of the form 4k—1). In this way, from our assumed divisor, we get
infinitely many smaller and smaller positive divisors, but this is impossible.
This type of proof is an indirect analogue of induction. PIERRE DE FERMAT
(1601-1665) introduced this method of proof, and favored its use. He called
it descente infinie, or infinite descent. The proof is easier to understand if we
start with the smallest possible divisor and then find a smaller one.

Assume that there exists a positive number of the form 4k — 1 that has a
multiple that is the sum of two squares, where the bases of the squares are
both relatively prime to the number. Let ¢ be the smallest such number and
call the multiple a? + b2, where

(c;ar) =(c,bh) = 1. (13)

The numbers a; and b, are at a distance of at most ¢/2 from the closest
multiple of the odd number c. Therefore, there exist integers q,r, as, ba such
that c

ay =cg+az, lag|< X
and by (13), both a2 and by are nonzero. Using this fact, we get

by=cr+by |bo] < % (14)

a? +b? = c(cq® + cr? + 2gaz + 2rby) + (af + b3) .

The left-hand side and the first term of the right-hand side are divisible by
c. Therefore, so is the second term on the right. Here a; and b, are both
relatively prime to c, since all of the common divisors of a; and c also divide
a; by (14), but a, is relatively prime to c, and hence so is a;. A similar
argument works for b, as well.
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Let d be the g.c.d. of az and b2. Then we have
ay = daz, by = dbs, (a3,b3) =1.

It follows from the assumption on c that (c,d) = 1 and ¢ | d? (a + b%) . By
the last equation and Euclid’s lemma, the last factor is divisible by c. It is
obvious that

las| < laal,  |ba| < [b2],

and from (14) it follows that

2, 12 2, 32 ¢ 2
03+bssa2+b2_§'z+'z<c.

Summarizing our results, there is a positive integer ¢’ for which
e =a2+bi<c? e, d<c

If we can show that ¢’ also has a divisor of the form 4k — 1, then we get the
desired contradiction. With this in mind, let us examine the quotient upon
division by 4 of the sum of squares. The square of an even number is divisible
by 4, and by Theorem 14, the square of an odd number has remainder 1 even
upon division by 8.

Since a3 and bs are relatively prime, at least one of them is odd, and
a§ + b§ is of the form 4m + 1 or 8m + 2, depending on whether only one is
odd or both are odd. In this case the equality

cc’ = a2 + b}

can hold only if ¢/ (as well as c) is also of the form 4k — 1, or if it is twice
such a number.

Additionally, ¢’ is also relatively prime to the two squares, for if it had
a common divisor with one of them, this would necessarily divide the other,
but a3 and b3, as well as their squares, are relatively prime to each other.

We conclude from this that either ¢’ or ¢’/2 is a positive integer less than ¢
of the form 4k — 1 that divides the sum of two squares where the bases of
the squares are relatively prime to ¢’ or c’/2, respectively. This contradicts

the fact that ¢ was the smallest such number, and therefore such a number
cannot exist, as is claimed by the theorem.

Exercises:
50. Prove that primes of the form 4k — 1 cannot be written as the sum of
two squares.
51. Prove that there are infinitely many primes of the form 4k + 1.

52*. Prove that numbers of the form 3a? + b2, where a and b are integers,
cannot have any positive divisors of the form 6k —1 that are relatively
prime to a and b.

53. Prove that there are infinitely many primes of the form 6k + 1.
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26. In the sections above we used the canonical decomposition of numbers to
show the existence of distinguished common divisors and common multiples
as well as to determine them. These results are important, even though in
practice, determining these decompositions for large numbers can be almost
impossible, as we mentioned earlier.

The distinguished common divisor has, in addition, two important prop-
erties that are not easily seen from the results above. The first is that the
distinguished common divisor can be expressed as the sum of integer multi-
ples of the numbers, and the second is that if ca; and a; (i = 1,2,...,r) are
integers, then :

(cay,cag,...,car) =|c|(a1,az,...,a.).

We will give a new proof of the existence of the distinguished common
divisor from which the above properties follow easily. We do not use the
fundamental theorem, and in fact these properties provide a new proof of
this theorem. Correspondingly, we will use only the properties of divisibility
from Sections 4-5 and the definitions of the required notions including that
of the distinguished common divisor. Another advantage of the new proof is
that it leads to a useful method for finding the distinguished common divisor.
We will prove the following theorem:

Theorem 17 If the integers a;,az, ..., a, have a distinguished common di-
visor, then it is unique, and can be written as

Zaiui, (15)
=1

where uy, Uz, ..., U, are integers.
If ¢ is such that ca),cay,. .., car are integers, then the distinguished com-
mon divisor of these is |c| times the distinguished common divisor of the a;’s.

If there exists a distinguished common divisor, then its uniqueness is im-
mediate from the definition, for if D and D’ are both distinguished common
divisors, then because the latter is a common divisor and the former a dis-
tinguished common divisor, it follows that D’ | D. Similarly, we have D | D'.
By our definition, the distinguished common divisor is not negative, and
therefore D = D'.

To prove the remaining claims of the theorem, we start from the obser-

vation that for any integers z;, z2, ..., Z,, the sum
T
E aiT; (16)
i=1
is divisible by every common divisor of the numbers a;,as,...,a,. Denote

the set of all such numbers arising from (16) by Z. It is clear that this set
contains all the a;’s, all integer multiples of any element of Z, and the sum
of arbitrary elements of Z.
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It is further obvious that if all the a;’s are 0, then I consists of only the
number 0; this is the distinguished common divisor, and it satisfies the claims
of the theorem.

If at least one of the given numbers is nonzero, then I has a positive
element, because if a number is in the set, so is its opposite. Any nonempty
set of positive integers has a least element. Let the least positive element of 7
be

- .
m= Z a;yi. 17
i=1

We claim that this will satisfy the conditions of the theorem. First, we show
that every element n of Z is divisible by m. Dividing n by m with remainder,
we get

n=mqg+s, where 0<s<m.

Here mgq is in Z, since it is a multiple of m; hence so is s = n—mq. Because m
is the smallest positive element of Z, the remainder s must be 0, which means
that m divides n.

Therefore, m divides the a;’s, since each a; is in Z. Since m is a member
of Z, it is of the form (17), and is therefore divisible by all common divisors
of the a;’s.

It remains only to prove the last statement. A distinguished common
divisor of the numbers ca; (¢ = 1,2,...,7), by what we just proved, is the
smallest positive element of the set of numbers of the form

r
Z Ca;T;.
i=1

This set consists of the elements that are c times an element of Z, and its
smallest positive element is |c| times the smallest positive element of Z. This
completes the proof of the theorem.

27. It is not clear right away that the proof gives us a method for finding
the distinguished common divisor, since there are infinitely many members
of the set, and we cannot decide at a glance which is the smallest.

We can interpret it, however, as a method by which if we make a “blunder”
in choosing, we replace our choice by a smaller number. We do not have to
consider infinitely many numbers, for it is enough to start with the a;’s, since
the distinguished common divisor cannot have absolute value larger than that
of any of the a;’s. We can start by taking the smallest among the a;’s. We
then divide the other numbers by this one; if not all of the remainders are 0,
we replace our number by the smallest of the remainders, continuing this
until we are done.

We explain how this method works in the simplest case of two numbers.
This will also suffice for the case of more than two numbers. This already
appears in EUCLID’s Elements, and for this reason, it is called the Euclidean
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algorithm. We leave the formulation of the algorithm in the case of more than
two numbers to the reader.

Let a and b be integers. If one is zero, then the other is the distinguished
common divisor. If neither is zero, then we divide a by b, with remainder.
If the remainder is not zero, we divide b by the remainder, then the old
remainder by the new one, and so on. This procedure must terminate, since
the remainders are nonnegative decreasing integers, and such a series cannot
be infinite. In this way we get the following formulation:!?

a=bq +r, 0<r; <lbl,
b= r1q2 + 12, 0<ry<m,
Tj—1 = Tjq; + Tj+1, 0<rjpy1 <y, 3=23,...,n-1,

Tn—1 = TnQn+1.

It is easy to see that the last nonzero remainder r, is the distinguished
common divisor of a and b. We will prove a little more, namely that every
remainder is divisible by all common divisors of a and b. Furthermore, rp, is
not only a divisor of a and b, but also of all the remainders.

If d | a and d | b, then by property (k) and the first equality, we get that
d | r;. Using this result and that d | b, from the second equality it follows that
d | 2. Proceeding in a similar fashion, ifd|rj_; and d|r;, 2<j<n-1,
then the (j + 1)st equality shows that d | ;4. The last case here is the
desired conclusion, d | 7.

To prove the inverse, we proceed from the bottom up. The last equation
says that r, | rp—y. If for n — 1 > j > 2, we have that r,, | rj41 and 7, | 75,
then again using property (k), it follows that 7, | rj—;. Finally, the second
and first equalities give the desired r,, | b and r,, | a. With this we see that a
and b have a distinguished common divisor, namely

(a,b) = rn.

Exercises:

54. (a) Prove the following equality:

(Tl],. EEFX(TTRLTHS PR 7nt) = ((nly“ . ans)vns+l$' "’nt)'

(b) Describe how to use the Euclidean algorithm repeatedly to find
the distinguished common divisor of more than two numbers.

55. Describe an algorithm to find the distinguished common divisor of
more than two numbers all at once, as sketched above.

12 The first two equations do not differ significantly from the subsequent ones, since
if we define r_; = a and ro = b, then the first two equations correspond to j =0
and j = 1, respectively.
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56. Using the Euclidean algorithm, determine how to find a u and v that
satisfy
(a,b) = au + bv. (18)

We note here that there are infinitely many pairs that satisfy (18), for
if it is satisfied by a pair u, v, then for every integer w, the equation
is also satisfied by u + wb and v — wa.
57. Which of the following expressions are identities? Support your an-
Swers.
(a) [la1,a2,--->ar),8r41,---,8r4s] = [@1,02, ..., Grys),
(b) ((a’b)’(a’ C)) = (a’1 b, C)a
(c) [[a,, b]’ [aa C]] = [a'v b, C]7
(d) (a,b)(c,d) = (ac,ad, bc, bd),
(e) [la,b],[c,d]] = [ac,ad, be, bd],
(f) (a,b)]a,b] = ab,
(g) (ab,ac,bc)la,b,c| = abe,
(h) [ab,ac,b(a,b,c) = abe,
(i) ((a’ b)’ (a7 C)a (b, c))[a" b, C] = abc,
@) lodad=e| s 5]
(k) [a" b] [a" C] [ba C] = [[a’ b], [a" C], [b7 C]][a" b, C]’
1) [[a,b],]a,d], [b;c]}(a,b,c) = abe,
(m) ([a,b],[a,d], [b,c])]a,b, c] = abe,
(n) [(a1,...,ar,c),(b1,...,bs,0)] = ([(a1,---,ar),(b1,...,bs)],cC),
(o) (la1,---,ar,c,[b1,...,bs,c]) = [(la1,-..,ar], [b1. ..., bs)), )

28. Now we easily see, for example using (18), that indecomposable numbers
have the prime property, and based on this we have the fundamental theorem.

Suppose that an indecomposable number ¢ divides the product ab. Then
either b is divisible by ¢, or b and ¢ do not share a common divisor other than
a unit, since ¢ is indecomposable. In the latter case we have (b,c) = 1, and
hence by Theorem 17 there exist numbers u and v for which bu 4 cv = 1.13
Multiplying by a we get

abu + acv = a.

Both terms on the left are divisible by c¢ (the first term by assumption), so
by property (i), the sum a is also divisible by c¢. Thus one of the factors of
the product is divisible by c; i.e., ¢ has the prime property.

We can naturally extend the result to more factors: If an indecomposable
number is a divisor of a product, then it is a divisor of one of the factors. We
leave the proof to the reader.

'3 The Euclidean algorithm even provides a method for determining v and v. See
Exercise 56.
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Exercise:
58. Prove the claim made above.

We can prove the fundamental theorem indirectly, based on what we
just did. Assume that there exists a number that can be decomposed into
decomposable factors in two significantly different ways (not counting order
and units):

plpz...pr =q1q2...qs.

We can simplify the above equation if we divide by associates that appear
on each side (we can incorporate any —1 we may get into the first factor).
Suppose that this has already been done. The fact that the two decompo-
sitions are significantly different means that after this simplification we still
have indecomposable factors on both sides.

This is not possible, because p;, for example, would be a divisor of the
product on the right, which means that it would have to divide one of its
factors, g;. But the latter is indecomposable, meaning that it does not have
any other divisors besides its associates and the units. This means that p;
and g; are associates, but in this case we would have already canceled them
out.

We have arrived at a contradiction. Therefore, there is no number that
has two significantly different decompositions into indecomposables.

In the above we proved only what was needed in the proof of the funda-
mental theorem, but in the same way we can prove Euclid’s lemma (Theo-
rem 6) as well.

Exercises:

59. Prove that indecomposable numbers have the prime property, using
the following relation:

(cay,cay, ..., cas) = || (a1,az, .- -,as),

for ca; integers, i =1,2,...,s.

60. Prove Theorem 6 using the properties of the g.c.d.

29. We now turn to a natural application. We assume everything we have
done so far, using the statements of Theorem 17 often. Problems in which we
look for integer solutions are called Diophantine.'* For instance, Pythagorean
* triples are solutions to the Diophantine equation (11). Diophantine equations
are usually hard, and rarely do we get such nice solutions as in this case. We
can expect that first-order Diophantine problems do not belong to this group.

14 Named after DIOPHANTUS OF ALEXANDRIA, the Greek mathematician from the
third century who studied first- and second-degree equations of this type.
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We will deal only with equations of this type that have two unknowns. Given
integers a, b, and c, find integers = and y satisfying

az+by=c (19)

Is it possible that this does not have a solution? Naturally, the answer is
yes. Consider the equation 12z 4 18y = 25. For all integers z and y, the left-
hand side is always even, and hence it is impossible to get 25. (We cannot
even get 26, since the left-hand side is divisible by 6.) In general, for all
integers = and y, the left-hand side is divisible by all common divisors of a
and b, including (a, b). Therefore (19) can have integer solutions only if

(a,b) | c. (20)
If this holds, meaning that there is an integer d for which
c=(a,b)d,
then multiplying (18) by d we have
¢ = (a,b)d = aud + bvd,

yielding z = ud and y = vd as solutions of (19). The problem, therefore, has
solutions if and only if (20) holds.

30. The Euclidean algorithm is actually very useful in practice for finding
(a,b) and an appropriate u and v. We know that there are infinitely many such
pairs of numbers u and v. We now determine all solutions to (19). Assume
that zo,yo and z’,y’ satisfy the equations

azo+byo=c and ar’' +by =c
Subtracting the second equation from the first, we get
a(zo +z') + b(yo —y') = 0.

We divide this by (a,b), rearranging terms to get

a ’ b ’
m(ﬂﬂo ~7)= (_a,_b_)(y - Y0)-

The first factors of the two sides are relatively prime, because by the last
claim in Theorem 17,

a b 1 )
((a,b)’ (a,b)) - (a,b)(a’ b) =1.

On the other hand, a/(a, b) is a divisor of the product on the right-hand side,
and hence by Euclid’s lemma, it is also a divisor of the second factor, so there
exists an integer w for which
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! = or = g+ 2
y yO_(a’b)) y —yO (a’b)‘

Substituting this and solving for =/, we have

wb
~ (e,d)’

It is easy to see by substitution that for every number w (including noninte-
gers), the resulting pair z’, y' is a solution to (19). We summarize our results
in the following theorem:

' =1z

Theorem 18 The equation
az+by=c

has a solution if and only if (a,b) | c. If this is satisfied and zo, yo is a solution
to the equation, then all solutions are given by the formula

, wb wa

— v - _wa
T =T (a,b), y y0+ (a,b)’

where w 1s any integer.
We can find a solution with the help of the Euclidean algorithm.

Exercises:

61. Give necessary and sufficient conditions for the existence of integer
solutions to the following equation:

121 + a2Z3 + - + anZTy = b,

where the a;’s and b are given integers.

62. (Continuation) Give an algorithm (if possible more than one) to find
a solution to the above equation when a solution exists.

63. In how many ways can we pay one dollar using nickels, dimes, and
quarters?

64. (a) Prove that for every integer a and b, the following system of
equations has an integer solution:
T+y+22+2t=a,
2z -2y+2—-t=0b
(b) Determine all solutions to the above system of equations.

65*. (a) For which positive integers a and b is the following true: There
exists a number N such that for any integer n greater than N,
there are positive integer solutions to the equation

az + by = n.
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(b) What is the value of the smallest such N?

(c) Determine the number of positive integers n for which the equa-
tion has no positive integer solutions.

With respect to this last problem, we note that for more than two un-
knowns there is no known expression for the smallest limit. Such a result
would be very useful in terms of applications, and serious research is taking
place in this area.
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1. The exercises in Section 1.2 were concerned with divisibility properties. In
many cases rules were studied for a given divisor that gave a new number sig-
nificantly smaller than the dividend, both having the same remainder upon
division by the divisor (e.g., for divisibility by 2, 3, 4, 5, 8, 9, 10, and 11). In
general, this relation that two numbers have the same remainder upon divi-
sion by a given divisor proves to be such a useful tool in number theory that
Gauss introduced a special notation to represent it that quickly became part
of almost every mathematician’s working vocabulary. Taking the names from
Latin, we call two such numbers congruent, and their divisor the modulus.

We say that a is congruent to b modulo m (or just mod m) if a and b
have the same remainder when divided by m (for example in the sense of
Theorem 1.1), or, by an equivalent statement, if a — b is divisible by m. We
write this @ = b (mod m). Two numbers that are not congruent are called
incongruent. We write this as a Z b (mod m).

We can now express divisibility with the help of congruence:

a=0 (mod m)

that means the same as m | a.

We usually require the modulus to be an integer greater than 1, but
the definition works for all integers. Negative numbers can be ignored, since
congruence to modulus m and congruence to modulus —m are the same by
property (h).

Congruence modulo 0 is the same as equality, since a = b (mod 0) means
that a = b, by property (e), and it is unnecessary to introduce a more com-
plicated notation for this.

Congruence modulo 1 is also not very useful, since in that case all integers
are congruent.!

2. The fact that congruence has properties similar to equality makes it very
useful. It is clear (so clear that we leave the proof of the following properties to
the reader) that congruence is a reflexive, symmetric, and transitive relation;
i.e., for all integers a, b, c, and m, the following properties hold:

! For the real numbers, this does have meaning. It says that the fractional parts
of the two numbers are equal, and this notation is often used.
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(a) a=a (mod m),

(b) if a=b (mod m), then b=a (mod m),

(c) if a=b (mod m) and b=c (mod m), then a=c (mod m).
Regarding basic operations, if a = b (mod m), then

(d) a+c=b+c (mod m),

(e) a—c=b-—c (mod m),

(f) ac=bc (mod m).

In the case of multiplication, we still have congruence if we additionally
multiply the modulus:

(g) If a=b (mod m) then ac=bc (mod mc).

For simplification, there is already an important difference. Property (g)
can be reversed:?

(h) If ac=bc (mod mc) and c# 0, then a =b (mod m).

A blind reversal of property (f) can easily lead to an untrue statement.
For example,

51-11 =561 = 1071 = 51-21 (mod 15),
but 11 and 21 are not congruent modulo 15. In general,
ac = be (mod m)

means that m | (a — b)c, and it does not follow that m | (a —b), since m could
split into factors dividing a — b and c, respectively, as in the above example.
We can exclude this case using Euclid’s lemma (Theorem 1.6), and then we
can simplify:
(i) If ac=bc (mod m) and (¢c,m)=1, then a="b (mod m).
Furthermore, adding, subtracting, and multiplying congruent numbers

(with respect to the same modulus) maintains congruence. In other words, if
a=b (mod m) and ¢ =d (mod m), then

(G) a+c=b+d (mod m),
(k) a—c=b-d (mod m),
(1) ac=bd (mod m).

These properties are not difficult to see on their own, but they also follow
easily from properties (d), (e), and (f), respectively. For example, it follows
by property (d) that a+c=b+c (mod m) and c+b=d+b (mod m), and
then by transitivity we have property (j).

2 The case c = 0 is trivial; we could have excluded it in properties (d)-(g).
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We can extend these properties in the case of more than two congruences
as well; by repeatedly using property (1) with the same congruence, we get
the following:

(m)If a=b (mod m) and n is a positive integer, then a™ = b" (mod m).
This last property also follows from the following well-known identity,
valid for all integers n > 1:
a" - b =(a—b)(a ! +a" b+ -+ b"7Y).

Repeatedly using the above properties, we also have the following:

(n) If f(z) is a polynomial with integer coefficients, and a = b (mod m),
then

f(a) = f(b) (mod m).

Sometimes it is useful to reduce a congruence to a simpler one, for example
decreasing the modulus by a divisor, as exhibited by the following:

(0) If a=b (mod mm’) and m' # 0, then a =b (mod m).

3. We can prove the divisibility rules for 9 and 11 using congruences. We see
that

10=1 (mod 9), 10 = -1 (mod 11),
so by property (m),
10" =1 (mod 9), 10" = (-1)" (mod 11).

Applying these congruences and property (f) repeatedly, we get for integers
aly...,0n,

n n n n
> 010°=3 0 (mod 9), D al0'=) (-1)'a; (mod 11).
=0 =0 =0 1=0

These formulas furnish exactly the divisibility rules from the previous chap-
ter.

In principle, we could deduce divisibility rules for every divisor in this way,
but in practice, this would generally be too complicated. Let us see what this
leads to in the case of 7:

10= 3 (mod 7), 102 =2 (mod 7), 103 = -1 (mod 7),
10*= -3 (mod 7), 10°=-2 (mod7), 10°%=1 (mod 7).

From the last congruence and property (m), we get
10% =1 (mod 7),

and using the other congruences and property (1) we have
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10%+ =3 (mod 7), 10%*2=2 (mod 7), 10%+%= -1 (mod 7),
1085+4 = —3 (mod 7), 10%*% = -2 (mod 7).

Using this, we get the following relation:

n n n n
Z 10a; = Z ask +3 Z Ggk+1 + 2 Z A6k+2
k=0 k=0 k=0

i=0
n n n
- z Gpk+3 — 3 Z Agk+a — 2 z ask+s (mod 7).
k=0 k=0 k=0

Here we take all a; for i > n to be 0.

We do not even try to formulate the divisibility rule we just found, since
it would be too difficult to remember, and the rule from Exercise 1.6 (a),
Chapter 1, is much more useful. (It is true that the new numbers arising
from that rule are not congruent to the original number modulo 7, unless the
number is divisible by 7, but this is enough to decide whether the number is
divisible by 7 or not.)

4. Let us put the integers into classes according to an integer m greater
than 1, placing integers that are congruent to each other modulo m into
one class. Based on properties (a)—(c), it is easy to see that if we choose an
arbitrary element from a class, then the class consists of all elements that
are congruent to it, and no two distinct classes have a common element. We
call these classes the residue classes modulo m, and we denote them by (a)m,
where a is an element of this class. A residue class is therefore an arithmetic
progression with difference m, infinite in both directions.

According to properties (j)—(m), addition, subtraction, multiplication,
and exponentiation to the nth power are valid operations between these
classes, in the sense that if we perform the operation on any representatives
of two classes, the resulting element is always in the same class.

This is, however, not valid for all operations, for instance greatest com-
mon divisor and least common multiple. These are operations between the
numbers themselves, but are not operations between the classes; for instance,

4=39 (mod 35), 6 =111 (mod 35),

but
(4,6)=2 and (39,111) =3

are not congruent modulo 35, and neither are
[4,6] =12, and [39,111] = 1443.

We note, however, that we can define a unary operation based on the
greatest common divisor, which is the greatest common divisor of the residue
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class with the modulus. Indeed, if a = b (mod m) and (b,m) = d, then by
property (0), a=b=0 (mod d), i.e., d | a. Since (b,m) | m, we have that

(b,m) | (a,m),
and from property (b), it also follows that

(a,m) | (b,m).
From the two relations, we conclude that

(a,m) = (b,m),

as claimed.

In particular, those classes that are relatively prime to the modulus (i.e.,
every element of the class is relatively prime to the modulus) will play an
important role.

5. In the previous section we used property (o). We can rephrase this as
follows: If two integers are in the same residue class modulo mm/, then they
are in the same residue class modulo m. The converse, however, is not true;
if m’ > 1, the elements from the modulo m residue classes must be spread
out among the modulo mm' residue classes if only because of the greater
number of classes. Let us examine how (a),, is distributed over the modulo
mm' residue classes. The residue class (a),, consists of numbers of the form
a+ mu, where u runs over all integers. Let us divide u with remainder by m/':

u=m/v+r, where v isanintegerand 0<r <m'-1.

The residue class (a)m, therefore, is the set of numbers of the form a+mm'v+
mr, where r is one of 0,1,...,m' — 1, and v is any integer. In this way we
have the following congruence property:

(p) A residue class modulo m splits into m' residue classes modulo mm':
(a)m splits into the residue classes (@ + m7)mm/, where r =0,1,...,m' — 1.

6. We have seen that a residue class is uniquely defined by one of its ele-
ments. We can therefore choose a representative from each class and perform
operations on the classes using these elements; for the result, we take the
element representing the class of the result.

We call a set that contains exactly one element from every residue class
modulo m a complete residue system modulo m.

The two remainder theorems (Theorems 1.1 and 1.1') give two special
complete residue systems; the first gives the smallest nonnegative remainders
and the second the remainders with smallest absolute value. We will often use
these two residue systems, but we are not obliged to choose the representa-
tives in such a nice way; for instance, 77,100, —21,2, —59, 666 is a complete
residue system modulo 6.
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A complete residue system modulo m has two important properties: It
has m elements, and the elements are pairwise incongruent modulo m. These
two properties actually characterize a complete residue system.

Theorem 1 If a set of numbers has m elements that are pairwise incongru-
ent modulo m, then the set is a complete residue system modulo m.

In fact, because the elements are pairwise incongruent, no two can be in
the same residue class, and since there are m of them, every residue class
must contain one of them.

With the help of this modest-looking theorem, we can get a new residue
system from a given one, which leads to an important relation. In particular,
we have the following theorem.

Theorem 2 If a and m are relatively prime integers, b is an arbitrary inte-
ger, and T1,Ta,...,Tm i a complete residue system modulo m, then

ary +b,ara +b,...,arm +b
is a complete residue system modulo m.

The system has m elements, so by Theorem 1 it is enough to show that
the new numbers are pairwise incongruent. If

ari+b=ar; +b (mod m),

then by property (e) we can subtract b from both sides. Using the fact that
(a,m) =1 and property (i), we can simplify, eliminating a, to get

T, = Tj (mod m)

Because r; and r; are elements of a complete residue system, this is possible
only if ¢ = j. Therefore, two elements can be congruent only if they are
identical; hence the elements are pairwise incongruent.

Exercises:

1. Prove properties (a)-(0).

2. What are the possible last digits of fourth powers in the base-10 num-
ber system?

3. What is the last digit of 788 in the base-10 system? What are the last
two digits? What are the last two digits of 78907

4. Prove that a residue class is made up of those numbers that are con-
gruent to an arbitrary representative and that different classes do not
have a common element.

5. (a) Can the set of numbers {—17,—-13,9,8} be extended to a com-

plete residue system modulo 21? How about {—20, —10,2,20}7
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(b) Let m be an integer greater than 1. Give necessary and sufficient
conditions for a set {r1,...,7rx} to be extendable to a complete
residue system modulo m. (Prove your answer.)

6. Let a and b be relatively prime integers. Further, let r,...,7, be a
complete residue system modulo a, and s;,..., s, a complete residue
system modulo b. Do the numbers as; +br; (i=1,...,b;j=1,...,a)
form a complete residue system modulo ab? How about the numbers
asi+r; (i=1,...,b0j=1,...,a)?

7. We mention some problems related to residue classes before turning to
applications of Theorem 2.

The formation of residue classes modulo m provides a distribution of all
integers into classes with no common element. If we consider residue classes all
corresponding to different moduli, we do not find classes satisfying both prop-
erties above. We can, however, find disjoint classes, and also classes whose
union is all integers. In the first case, we call the system of congruences dis-
joint, and in the second case covering.

Let us examine first the case of disjoint systems of congruences. Denote by
k(z) the maximum number of moduli of a disjoint system, where the largest
modulus is not greater than z.

For an integer d greater than 1, the classes (0)g,(1)24,...,(d — 1)gz do
not have a common element, since dividing by d already gives a different
remainder for each class. For a given z, choosing d to be the greatest integer
less than /z, we get that k(z) >d > /z — 1.

P. ERDOS and S. K. STEIN gave a function ¢ for which

x

k(z) > ()

and @ grows more slowly than z to any positive power. They conjectured that
k(z)/z tends to 0 as x goes to infinity, a conjecture that was later proved by
ERDOS and SZEMEREDI.* Further results and problems are included in their
article.

8. We know even less about covering systems of congruences. The set of con-
gruence classes (0)2, (0)3, (1)4, (5)6, (7)12 is an example of a covering system.
We can verify this using property (p), since the above classes split into the
following residue classes modulo 12:

(0)12, (2)12, (4)12, (6)12, (8)12, (10)12,
(0)12, (3)12, (6)12, (912,

® For the origins of these types of questions, see P. ERDOs: Summa Brasiliensis
Math. IT (1950), pp. 113-123.
* P. ErDSs, E. SZEMEREDE: Acta Arithmetica 15 (1968), pp. 85-90.
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(112, (8)12, (912,
(6)12, (11)12,
(7)l2a

and among these, every residue class is represented.

There are more such systems for which the smallest modulus is 2. The
following system, which has smallest modulus 3, was proposed by H. DAv-
ENPORT and P. ERDOs:

(0)3, (0)4, (0)s, (1)s, (6)s, (3)10, (5)12, (11)15, (7)20,

(10)24, (2)30, (34)40, (59)60, (98)120- -

Covering systems are known for which the smallest modulus is 4, 6
(D. SwrFT), 8 (J.L. SELFRIDGE), 9 (R.F.C. CHURCHHOUSE), and 20
(S.L.G. CHoI). We do not know whether for an arbitrary mg there ex-
ists such a covering system with smallest modulus mg. To date, we do not
even know the answer for all mg less than 20, nor do we know whether there
exists a covering system for which every modulus is odd.’

It is easy to see for a covering system that the sum of the reciprocals of the
moduli is at least 1 (see Exercises 9 and 10). The fact that the sum is strictly
greater than 1 was proved by MIRSKY and NEWMANN (and independently
by DAVENPORT and RADO) with the help of calculus. We present this proof
below. Later, a proof was found that does not use limits; we present this
proof in Section 10. We cannot expect to improve upon this result, as shown
by the example

(2 Y)gs 1<t<u, (23002, (275501, (0)32e.

This is a covering system; the sum of the reciprocals of the moduli is 1 +
(3 -2“72), which, for u large enough, can be made arbitrarily close to 1.
DAVENPORT conjectured that if the smallest modulus is larger than 2, then
it is possible to give a lower bound greater than one, but this is still an open
problem.

Exercises:

7. Find a covering system that includes the residue classes (1), and (2)3.
8. Find a covering system that does not include 6 among the moduli.

9. Prove that the sum of the reciprocals of the moduli in a covering
system is at least 1.

10. Prove that if two residue classes in a covering system have a common
element, then they have a common arithmetic progression, and hence
the sum of the reciprocals of the moduli is greater than 1.

5 See the article by P. ERDOs referred to in footnote 3, and also S.L. G. CHo:
Mathematics of Computation 25 (1971) pp. 885-895.
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9*. At the beginning of Section 2.7 we stated that we cannot find disjoint
residue classes with distinct moduli whose union is all the integers. This will
be a consequence of the following theorem.

Theorem 3 In a covering system of congruences, the sum of the reciprocals
of the moduli is larger than 1.

The proof of this theorem uses Exercises 9 and 10, whose proofs were left
to the reader. We will also use complex numbers, the formula for sums of infi-
nite geometric progressions (see Fact 4), and EULER’s ingenious idea to draw
conclusions for sequences from the properties of their generating functions.
For a sequence (finite or infinite) of integers c;,cy,..., the corresponding
function z°* + z°2 4 - - is called the generating function of the series® (cf.
Section 1.2, Exercise 9).

By Exercise 9 the sum of the reciprocals is at least 1. According to Exer-
cise 10, equality is possible only if every number belongs to only one residue
class. It remains only to prove that in the case of distinct moduli this sum
must still be larger than 1. We prove this indirectly.

Assume that (a;)m;,j = 1,2,...,k, is a covering congruence system,
my < mg < --- < mg, and every integer belongs to only one residue class. We
choose the a;’s such that 0 < a; < m; —1 ( =1,2,...,k). Then the union
of the arithmetic progressions a;,a; + mj,a; + 2m;,...,a; + €m;,... gives
every nonnegative integer exactly once, so their union can be considered as
the arithmetic progression having ap = 0 and mp = 1.

For j =0,1,...,k, we define the generating functions

Fj(z) = 2% 4 2%%™ 4 Zait2mi

These are convergent geometric series for every |z| < 1.
By assumption, it is true that

F1(2) + Fy(2) + - - - + Fx(2) = Fy(2).

Using the formula for the sum of an infinite geometric series, we have

k

2% 1
Zl—z’”:':l——z' (1)

5=1

After eliminating the denominators we have

k k k
*
(1 —-z)Zz“J' H 1=2zm)= H(l —2MY,
=1 n=1 i=1
5 In addition to the series 1,z,z%,..., we can take another function sequence
f1, f2, ... and create generating functions of the form c; fi +c2f2+- -, as EULER

himself did. Generating functions have proven to be invaluable tools in different
branches of mathematics.
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where the * in the product sign means that we omit n = j.

The relation is true for every z with absolute value less than 1; hence for
infinitely many values the two polynomials are equal. From this it follows
that equality holds for all z.

We will show that equality does not hold for

zp = €*™/™k = cos(2m/my) + isin(27/my)

(where 1 is the imaginary unit). The last factor on the right-hand side is 0 for
z = 2p; hence the whole product is 0. With the exception of the last summand
on the left-hand side, every summand is 0 too, since the last factor is 0. The
value of the last summand, however, is

k-1
(1 _ e21ri/mk) e21raki/mk H (1 _ e21rm,‘i/mk) .

n=1

All of the factors are nonzero, hence so is their product. This contradicts the
equality, and therefore finishes the proof of the theorem.

The solution to Exercise 10 yields the further result that if two residue
classes, say those of numbers u and v, have a common element, then the
sum of the reciprocals of the moduli is at least 1+ 1/[m,,, m,]. Thus we have
shown that the sum of the reciprocals of the moduli for the above covering
system is at least )

14 ——.
M 1M

The conjecture mentioned in Section 8 proposes that for m; > 2, the sum
can be bounded away from 1 by a constant depending only on m,.

10. A. LIFSIC gave an elementary solution to a contest problem’ that turned
out to be equivalent to Theorem 3.

Based again on Exercises 9 and 10, it is sufficient to prove that it is not
possible to cover the integers by finitely many distinct residue classes, or
equivalently by finitely many arithmetic progressions having distinct differ-
ences in such a way that no two of them share a common element.

We prove the statement indirectly. Assume that there is such a covering
and let d be the least common multiple of the differences. Wind the number
line around a circle of circumference d. On this circle, the integers represent
the vertices of a regular d-sided polygon. The sum of all d vectors from the
origin to the d vertices is 0. The arithmetic progressions form the vertices
of disjoint regular polygons that together cover all vertices of the d-sided
polygon. Let d; be the smallest number of sides in one of these polygons.

7 LIFSIC’s proof appears as the solution to Problem 143, p. 43 and pp. 159-
161 in N. B. VasiL’Ev, A. A. EGOROV: Zadachi vsesoyuznikh matematicheskikh
Olimpiad (Problems of the All-Soviet-Union Mathematical Olympiads), NAUKA,
Moscow, 1988 (1N RUSSIAN).
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Rotate each vector around the origin by multiplying its angle by d;. The
resulting points cover a d/d;-sided regular polygon a number of times, and
the sum of the resulting vectors is still 0, since d/d; # 1 (there is more than
one arithmetic progression). The covering polygons that do not have d; sides
go through a polygon with more than one vertex. Thus the sum of the vectors
from the origin to their vertices is 0. On the other hand, all the vertices of
the d;-sided polygon rotate into one point on the circle; hence the sum of
these vectors must be a vector different from 0. This is a contradiction, and
hence the assumption of the existence of such a covering must be false, and
with this we have proved Theorem 3.

11. In connection with congruences, we also have congruences with unknowns
that we would like to solve, similarly to algebraic equations. The easiest
among these are of course those of degree 1:

az =b (mod m). (2)

If z¢ is a solution of the congruence, then every element of the residue class
(zo)m is a solution, so we are interested in how many residue classes satisfy
the relation. It is clearly enough to check all the elements of a complete
residue system.

Congruences of this type do not always have solutions. For example, in
the congruence

21z = 8 (mod 39),

the left-hand side is always in a residue class where the numbers are divisible
by 3. This is because 39 is also divisible by 3, and in a residue class, every
element has the same greatest common divisor with the modulus. Thus the
residue class (21z)39 does not contain 8 for any z.

Exercises:

11. Which of the congruences below have solutions? For those that have
solutions, find a solution.
(a) 51z =29 (mod 52),
(b) 42z =58 (mod 87),
(c) 77z =91 (mod 238),
(d) 42z =57 (mod 171).
12. Solve the following congruences:
(a) 3%z =89 (mod 100),
(b) 113z =47 (mod 100).
13. Prove that there is a number z that is a solution to the congruence

(9k? + 3k +1) z = 111 (mod 6k + 1)

for all positive integers k.
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12. In the special case where (a,m) = 1 it easily follows from Theorem 2
that (2) always has a solution and that the solution is one residue class. This
can be seen in the following way: We start with a complete residue system
T1,72,...,Tm and form a new system ar,,ars,...,ary. By Theorem 2, this
is also a complete residue system, and therefore has exactly one element that
is congruent to b modulo m.

We will reduce the general case to this special one.

If (2) is satisfied for some z and (a,m) = d, then by property (o) the
congruence az = b (mod d) is satisfied. But d | a and hence the left-hand side
is congruent to 0 modulo d. The congruence, therefore, can have a solution
only if d | b.

Now if this condition is satisfied, then the congruence always has a solu-
tion. Dividing a, b, and m by d, we get

a=dd, b=bd, m=m'd, and (a’,m')=1, since d= (a,m).
Rewriting (2), we have
a'dr = b'd (mod m'd).
This congruence can be reduced to the following, using property (h):
a'z=b (mod m').

This last congruence is the special case we discussed above, and its solu-
tion is one residue class modulo m’. From property (p) there are d = (a,m)
solutions of (2) (counting the number of residue classes modulo m). We sum-
marize our observations in the following theorem.

Theorem 4 For integers a,b,m, the congruence
az =b (mod m)

has solutions if and only if
(a,m) | b.

If this holds, then there are (a,m) residue classes modulo m that satisfy
the congruence.

This theorem naturally includes the special case discussed at the begin-
ning of this section.

13. In the previous section we gave conditions for the existence of solutions.
The problem still remains of how to find these solutions. The above section
yields only the trivial hint that if we try all elements of a complete residue
system, we will eventually find the solutions. In the examples we saw that
with a little cunning we were able to find the solutions more easily, but
unfortunately, this does not hint at a better method for the general case.
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There are, however, more efficient methods for finding solutions. We can
find such a method by rephrasing the problem as a linear Diophantine equa-
tion of two unknowns, and in Chapter 1 we found a method for solving these
using the Euclidean algorithm.

If the congruence in (2) is solvable, then there exists a y such that

az — b =my, ie., az — my = b,

and conversely, any solution to the latter equation yields an z that is a
solution of the congruence. In this setting we can rephrase the statement of
Theorem 1.18 to congruences of degree 1. This gives us the following theorem:

Theorem 5 The congruence az = b (mod m) has a solution if and only if
the Diophantine equation
ar—my=>

has a solution, and this has a solution if and only if
(a,m) | b.

If this holds, then the solution of the congruence is a residue class modulo
m/(a, m); the solution can be found using the Euclidean algorithm with a
and m.

In Section 25 we will see a completely different method for solving the
special case (a,m) = 1 of the congruence (2).

14. Certain problems arise in connection with linear congruences that are
somewhat different from those concerning equations. We often find such ques-
tions in problems sections of magazines where the object is to determine a
number having specified remainders upon division by certain divisors, which
means congruences of the form z = b; (mod m;). We will see that if a so-
lution to this type of problem exists, then it is a residue class modulo an
appropriate modulus. With further restrictions, for example on the size of
the solution, it can be made unique.

In what follows we will consider the more general system of congruences

a;z =b; (mod m;), i=1,2,... k. 3)

We call these simultaneous systems of congruences. We will consider in detail
only the special case where moduli are pairwise relatively prime.

It is natural to assume that each of the congruences is solvable, and ad-
ditionally that

(ai,m;) =1, i=1,2,...,k, (4)

since we have seen that first-degree congruences can be reduced to this special
case.
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However, fulfillment of the conditions (4) does not guarantee the existence
of a solution of the system (3), as seen in the following example:

z =3 (mod 28), z =12 (mod 74).

The first congruence can be satisfied only by odd numbers, and the second
only by even numbers; hence the system has no solution.

If, however, such a system has a solution, then it is easy to see what all
the solutions look like.

Theorem 6 If the system (3) has a solution and the conditions (4) are sat-
isfied, then all the solutions form a residue class modulo the least common
multiple of the moduli from (3).

We will first show that if z; and z, are solutions, then they must be in
the same residue class. Second, we will show that if one element of a residue
class is a solution, then so are all elements of this class.

Assume that z; and z; are solutions of the system (3), meaning that they
satisfy the following congruences:

a;z) =b; (mod m;) and a;z2 =b; (modm;), i=1,2,...,k.
For each 7 we consider the difference of the two congruences:
a;(z1 —z2) =0 (mod m;), 1=12,...,k.
We can divide the ith congruence by a;, using the conditions (4) and prop-
erty (h), yielding
zy—z2 =0 (mod m;), ie, m;|z—x2, i=12,... k.

Since z; — z, is divisible by the moduli my,ma, ..., my, it is also divisible by
their distinguished common multiple, that is,

[ml)m2) (R 1mk] | T — T2,
or written in congruence form,
z1 = 22 (mod [my,my,...,my]). (5)

We now assume that z; is a solution of (3) and additionally that (5) holds.
We therefore have that

a;T1 Ebi (mod m,-), ’i=1,2,...,k.

Since the m;’s are divisors of the distinguished common multiple, then by
property (o) and (5), we have the following congruences:

Ty =22 (mod m;), i=1,2,...,k,
from which it follows that
a;T) = a;z2 (mod m;), i=1,2,...,k.

The left-hand side is congruent to b; modulo m;, and therefore z; is also a
solution of the congruences (3).
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15. In what follows we will restrict ourselves to the special case mentioned
above where the moduli are pairwise relatively prime. We will see that in this
case the simultaneous congruence system always has a solution. We will give
two methods to find it.

One of the methods goes through the individual congruences one by one,
solving each based on the previous solution, ending with a solution for the
entire system. The solution of the first congruence is a residue class (c;)m,,
i.e., the numbers of the form

z =c +myz,

where y; is an arbitrary integer.
Substituting this into the second congruence and rearranging, we have

azmyy = by — ajc; (mod my).
This congruence has a solution, since by hypothesis, a; and m; are both

relatively prime to mg, and therefore so is their product. The solution of this
is a residue class (c2)m,, so we have

Y2 = C2 + mays,
where y3 is an arbitrary integer. Substituting back for z, we get
T = c; +myce + mimays.
Continuing in this manner, we get a solution of the form
Z =c¢; +mica + mymacg + - +Mmymy - - - MEg_1Ck + MMz - - - MkYr+1, (6)

where yi41 is an arbitrary integer. We find solutions at each step (namely a
residue class (¢;)m,) that are solutions to all previous congruences as well.

We need to show that this method will work at every step, in other words,
that there is a solution at each step. If 2 < i < k and we have already
determined c;,cg,...,c;—1, then by our method, the ith congruence will be
rewritten

ai(ci + mica + - + mima -+ mi_aci—y + mima---mi1y;) = by (mod m;).

Multiplying out, moving all but the last term to the right-hand side, and
denoting the resulting value by d;, we have

a;mymg - -m;1y; = d; (mod m;).

This has a solution, since all of the factors on the left are relatively prime
to m;, hence so is their product. This proves our claim.
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16. The method we just discussed depends on the order of the congruences;
as a matter of fact, we can change this order to our advantage.

Notice that the next-to-last term of (6) plays a role only in the kth con-
gruence. In all of the others it is congruent to 0. In fact, for every modulus we
can find a term that is congruent to 0 with respect to every other modulus.
In this way we can break up the unknown into subunknowns, each of which
can be independently determined by one of the congruences.

To make things shorter, let M be the product of the moduli, and denote
the quotient M/m; by M;. Write the unknown z as

k
I = Zszj' (7)
=1

Substituting this into the ith congruence, we see that all terms on the left
are congruent to 0 with the exception of the term j = i, since m; is a factor
of M; for every j # i. We get the following congruences:

a;M;z; = b; (mod m;) 1=1,2,...,k.

The coeflicient of z; is relatively prime to the modulus, since a; was assumed
to be relatively prime to m;, and M; is the product of all moduli different
from m;, and these were also assumed to be relatively prime to m;. These
congruences therefore have solutions, and we have a new method for finding
solutions of a system of simultaneous congruences in the special case consid-
ered. This is called the Chinese remainder theorem.

The Chinese remainder theorem gives a way to write a formula for the
solution using additional quantities that are independent of the b;’s. Let a
and M be solutions of the following congruences, respectively:

a,-a; =1 (mod mi), M,M,: =1 (mod mi), 1i=1,2,..., k. (8)
These have solutions by the fact that a;, M; are relatively prime to m;. We
then have a general solution of the form
k
T= ZagM,-'M,-b,- (mod M). (9)
i=1
We summarize these results in the following theorem:

Theorem 7 If the moduli in the simultaneous congruence system
a;z =b; (mod m;), i=1,2,...k,
are pairwise relatively prime and

(aiami)=15 i=1a2:~~-7ka
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then the system has a solution. This solution is a residue class modulo the
product of the moduli. The solution can be determined in the form of congru-
ence (6),(7), or (9), where additional quantities are defined by the congru-
ences (8).

17. In the previous section we stressed the advantages of the Chinese re-
mainder theorem over the other method discussed. We note, however, that
the Chinese remainder theorem does not help in the general case, while the
other method does, by substituting the least common multiple of the moduli
for their product.

If we do not have a restriction on the moduli of the congruence system (3),
but instead we assume that the system has a solution, then the following
method leads to a solution. Let

To=1 Ti=m, Ti=[mi,me,...,mi], 1=23,....;k—1.  (10)

Then we can find a solution of the form

k—1
=) T (11)

i=0

If at any step we get a congruence that does not have a solution, then the
system (3) does not have a solution.

It is easy to see that a solution exists if and only if the following congru-
ences are satisfied:

aib; = a;b; (mod (m;, my)), ,j=1,2,...,k. (12)

(See Exercises 17 and 18.)

Exercises:
14. Show that any number satisfying congruence (9) is a solution of the
simultaneous system of congruences (3).
15. Find a simple method to solve the following congruence system:

2r =5 (mod 27), 18z =81 (mod 69), 8z =12 (mod 29).

16. Twice a four-digit number has a remainder 1 upon division by 7, three
times the number has a remainder 2 upon division by 8, and four
times the number has a remainder 3 upon division by 9. What can
this number be?

17. Prove that if system (3) has a solution, then the conditions (12) are
satisfied.
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18. Assume that congruence system (3) satisfies conditions (4) and (12).
Let us introduce the notation

j—=1
zjzz’-piuiv j=1127"'ak1
=0

where the T; are defined in (10). Prove that

(a) it is possible to choose z; so that it satisfies the first congruence;
ie., @123 =b; (mod my);

(b) if z;_; satisfies the first i—1 congruences with integers ug, uy, . - -,
u;—g, then substituting z; for z in the ith congruence, there is a
solution for u;_; (and therefore we have shown that the congru-
ence system is solvable).

18. In this section and the next we mention two applications. The first is a
faster algorithm for finding the result of a computation by using computers
capable of running processes in parallel. Suppose we have a computer that
can run k processes in parallel. We choose k primes p;,p2, ..., px such that
their product is larger than the expected solution. We divide the starting
values by the p;’s, and we proceed with the computations in parallel using
the remainders of the corresponding p; moduli. Finally, we use the partial
results to find a number having the desired residues for each of the given
moduli, i.e., solving the simultaneous congruence system to get a solution
for the congruence. The last step is very time costly, but we still have an
improvement on the computing time.

19. We have already seen that arbitrarily large gaps can occur between neigh-
boring primes (see Exercise 1.20*). As a second application we will show that
there are reclusive primes, primes that are far from all other primes. More
precisely, we will prove the following:

Theorem 8 For any given number N, there exists a prime number that is
at least N greater than the previous prime number and at least N smaller
than the following one.

For the proof of this theorem, we will use without proof the deep theo-
rem of P. G. LEJEUNE DIRICHLET concerning prime numbers in arithmetic
progressions.®

Dirichlet’s Theorem. If a and m are integers, relatively prime to each
other, then there are infinitely many positive integers k such that a + km
is prime.

8 For a proof of Dirichlet’s theorem we refer the reader to H. RADEMACHER: Lec-
tures on Elementary Number Theory, Blaisdell Publ. Co., New York 1964. Cf.
Chapter 14, pp. 121-136.
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We note that the hypothesis of the theorem is necessary for there to be
infinitely many primes in the sequence (why?).

We will base the proof on the idea that we choose 2N primes, p1,pa, - .., P2n,
and we look for a prime p such that for i = 1,2,..., N,p — i is divisible by
p;; and p + ¢ is divisible by pn ;. For p; we will choose the ith prime.

We first try to find such a number p, ignoring the requirement that it
should be prime. The number is a solution of the following simultaneous
congruence system:

z=j (modp;), z=-j (mod pnyj), F=1,2,...,N.

Since the moduli are pairwise relatively prime, we know that the system has
a solution, namely a residue class

z=zo (mod p1p2---pan).

So the solutions are the numbers of the form

Zo + kp1p2 - - - P2N,

where k is any integer. This is an arithmetic progression, and by Dirichlet’s
theorem it contains infinitely many primes as long as (zo,p1p2---pan) = 1.
This condition is immediate, because if the greatest common divisor were
greater than one, it would have to be divisible by one of the p;’s. This would
mean on the one hand that zg is divisible by p;, and on the other hand, one
of the two congruences for p; above holds, depending on whether : < N or
i > N. In both cases the congruence implies that p;|j, which is impossible,
since p; > j.

Hence there are infinitely many primes of the form z¢ + kpyp2- - - pan,
where k is a positive integer. For primes p of this form, p + 7 is composite,
since it is divisible by p; and greater than it. Similarly, p — ¢ is also composite
because it is divisible by py4i, and from p; = 2 it follows that

p—i==xo+kpipa---pan — 1> 2pan — 1> pan + 2N —i > p;.
This finishes the proof.

Exercises:

19. Give a proof of Theorem 8 analogous to EUCLID’s proof of the existence
of infinitely many primes, showing that there is a prime p for a suitable
prime g, such that p + ¢ is divisible by ¢ + 7 and p — i is divisible by
g—i,fori=1,2,...,9—-2.

20. Prove that for an arbitrary positive integer N:

(a) There exist N consecutive integers, each divisible by a square
greater than 1.

(b) There exist N consecutive integers, none of which is a power of
an integer (where the exponent is greater than one).
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20. We have seen that every element of a residue class has the same g.c.d.
with the modulus, and we mentioned that those classes that are relatively
prime to the modulus (i.e., those made up of numbers relatively prime to
the modulus) play an important role. For example, precisely these classes
have reciprocals. Indeed, if (a, m) = 1, then there is a number a’ for which
(a)m(a)m = (V)m, i-e.,

aa’ =1 (mod m),

which we have already seen in the discussion of the Chinese remainder theo-
rem. For other residue classes, this statement is not true.

A set of representatives, one from each class relatively prime to the mod-
ulus, is called a reduced residue system. It is customary to denote by ¢(m)
the number of residue classes relatively prime to m. This is called Fuler’s
-function after its introducer. Its definition, of course, does not require con-
gruences. In a complete residue system, one representative appears from each
class, and ¢(m) is the number of those representatives relatively prime to the
modulus. By choosing a special residue system, namely the smallest nonnega-
tive representative from each class, we arrive at the following definition: ¢(m)
is the number of integers from 0 to m — 1 that are relatively prime to m. For
example, (1) = ¢(2) = 1, p(3) = p(4) = 2,¢(5) = 4,p(6) = 2, p(7) = 6. In
general, if p is a prime, then among the numbers 0,1,...,p—1, only the first
is not relatively prime to p; hence

p(p)=p—1

21. Euler’s op-function has an interesting and surprisingly easily provable
property, namely that for a given n, if we sum the values of the ¢p-function
for all divisors of n, we get precisely n. We will denote the summation over
all divisors d of the number n by 3, and formulate the property in the
following theorem:

Theorem 9 For Fuler’s ¢-function,
> o(d) =n.
d|n

Having this relation we can even forget the original definition, and it is still
possible to calculate the value of the function for every integer. This relation
gives, namely, for n =1,

p(1) = o(d) =1;

dan

if n > 1, we can rewrite the above as
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pln) =n -3 0(d),

din

where the star in the summation means that the sum excludes d = n. From
this it follows that

p(2)=2-9(1)=1, ©@B)=3-p(1)=2, ¢(4)=4-¢(2)-¢(1)=2,

and we can similarly calculate the value of the function for every integer if we
know its value for the smaller integers. Such a way of describing a function
is called a recursive definition.

For the proof of the theorem, reduce the following fractions to their sim-

plest form:

1 2 n—-1 n
Ty Ty seny Ty T
n

n n n
It is clear that after simplifying, all denominators are divisors of n and the
numerators are relatively prime to their denominators; all fractions of this
type not greater than 1 appear, and only these. For a divisor d of n, there are
exactly ¢(d) such fractions with denominator d, thus proving the theorem.
We will later give a more effective method for calculating the function, as
well as a useful application of the theorem.
As an application whose result we will need shortly, let us determine ¢ (pq)
for distinct primes p and ¢. By the recursion, we have

o(pq) =pg—p(p) —p(q) —1=pg—(p—1)-(g—1)-1=(p-1)(g—1).

22. For the proof of an important property of the ¢-function, we start with
the following analogue of Theorem 1:

Theorem 10 If p(m) integers are relatively prime to m and are pairwise
incongruent modulo m, then they form a reduced residue system modulo m.

It is clear that reduced residue systems have these properties. Assume that
we have a system satisfying the hypotheses of the theorem. Since the elements
are relatively prime to m, they are elements of residue classes relatively prime
to m. Because they are pairwise incongruent modulo m, they come from
distinct residue classes. Finally, there are ¢(m) of them, so there must be
one representative from each residue class relatively prime to m. Thus this is
a reduced residue system, as stated.

Exercise:

21. (a) Find the value of ¢(p™) where p is a prime number and m is any
positive integer.
(b) Prove that for positive integers a,b, if (a,b) = 1, then ¢(ab) =
©(a)p(b).
(¢) Give a formula for calculating the value of the ¢-function.
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23. We now come to the important property mentioned above. Let m be an
integer greater than 1, a an integer relatively prime to m, and r1,72,. .., Ty(m)
a reduced residue system modulo m. Then according to Theorem 10,

ary,arg,..., aT,(m)

is a reduced residue system as well, because it has ¢(m) elements that are
relatively prime to m (since each is a product of two integers relatively prime
to m) and these elements are pairwise incongruent modulo m. In fact, if we
assume that

ar; = arj (mod m),

then by property (i) and the fact that (a,m) = 1, we can simplify to get
r; =r; (mod m),

and in a reduced residue system this is possible only if i = j.
For each element in the new reduced residue system there is exactly one
element congruent to it from the original system:

ar =1j, (modm), i=1,2,...,0(m).

Here j1,j2,. .., Jp(m) are the numbers 1,2, ..., p(m), generally in some other
order.

In the above congruences, multiply all the left sides together and all the
right sides together. In this way, we get

‘P(m) ce =0 JN P = -
a TIT2  To(m) = T Tiz " Tipmy = 172 Ty(m) (mod m).

The product of the r’s appearing on both sides is made up of factors rela-
tively prime to m, and hence the product itself is relatively prime to m. By
property (i) we may divide by this product to get the following result:

Theorem 11 (Euler-Fermat Theorem) If m is an integer greater than
1 and a is an integer relatively prime to m, then

a®*™ =1 (mod m).

24. In the case where the modulus is a prime p, we have ¢(p) = p— 1, and
(a,p) = 1 means that p { a. Hence we get the following result:

Theorem 11’ (Fermat’s Theorem) If p is a prime and p{ a, then
a® ' =1 (mod p).

This is due to FERMAT, but unfortunately we do not have his proof. The
first proofs we have of this theorem and its generalization, the Euler-Fermat
theorem, are due to EULER. The proof given here is essentially due to him
as well.

In the prime modulus case, we can drop the condition that p { a by
rephrasing Fermat’s theorem in the following equivalent form:
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Theorem 11" If p is a prime, then for every integer a,
a? =a (mod p). (13)

If p | a, then both sides of the congruence are congruent to 0; otherwise,
Theorem 11’ holds, and multiplying both sides by a we get (13).

We still have to prove that Theorem 11’ follows from this theorem. Assume
that (13) holds and p{ a. Then (a,p) = 1, and by property (i} we can divide
both sides of the congruence by a to get Fermat’s theorem.

25. The Euler-Fermat theorem provides a new method to solve the congru-
ence ar = b (mod m) in the case where (a,m) = 1. According to Theorem 4,
the congruence is solvable, and the solution is one residue class modulo m.
We can solve the congruence by multiplying both sides by a®(™~1, The new
coefficient of z is congruent to 1, and we get

z =a*™~1b (mod m).

The solution of the congruence is therefore the residue class

(a“’("‘)'lb)m . (14)

26. Though it is customary to call this last theorem Fermat’s little theo-
rem, we will see that it plays an important role, so we give another proof of
Theorem 11" based on an idea completely different from that above.

It is enough to prove the theorem for odd primes, since it is obviously true
for p = 2. Let c be a positive integer and number the vertices of a regular
p-gon in all possible ways using the numbers 1,2, ..., c. In this way we get
c? labeled polygons.

Take an arbitrary labeled polygon Cp and rotate it repeatedly by 360/p
degrees about its center. In this way we get a sequence of polygons Cy, C),
Cs,... . Obviously, Cy = Cp, and the sequence is periodic. Let C; be the first
polygon that is the same as an earlier C;. Then j = 0, for otherwise C;_;
would be the same as C;_;. From the ith on, the first ¢ pairwise different
polygons recur periodically . Those polygons Cy for which k is a multiple of ¢
are the same as Cp. The polygon C, is among these, from which we see that
i|p.

Since p is prime, either ¢ = 1 or ¢ = p. If i = 1, then this means that all
vertices of the polygon have the same label. The number of these polygons
is c. We can put the remaining polygons into classes, in such a way that
two polygons are put in the same class if one can be rotated into the other.
All classes will have size p. In this way, we see that for any positive integer
c,p|cP ~c, and hence ¢ = ¢ (mod p).

Finally, if a is any integer, then there is a positive integer c for which
a=c (mod p), and by property (m) we have
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a? = =c=a (mod p).
This concludes the new proof of Theorem 11” for any integer a.

27. Since the 1970s, number theory has played an important role in cryp-
tography. The basis of cryptography is encoding messages. For instance, the
sender S (Susan) wants to send message m to the addressee A (Adam). First
she encodes the message m by using function f, getting M = f(m), the
encoded message. For example, she can replace every letter by a previously
agreed-upon letter (replace a by c, b by g, etc.); or all letters could be shifted
by three characters in the alphabet; or every character could be replaced by
a two-digit number; or any of a number of other clever methods.

Then S sends M to A. If A knows the inverse of f, f~!, then he can
determine the original message,

m = f7H(M) = f7(f(m)). (15)

In order for them to correspond securely, both must know f and f~! and
they must keep these secret.

In the above examples it was easy to determine M from m and vice-versa.
We could also have used f~! for encoding the message, and then f is used
to decode it:

f(f7Hm) = £ (f(m)) = m. (16)

Those people who intercept encoded messages between S and A try to
determine f and f~! and hence the original messages. To make it more
difficult for an outsider to break the code, it is advisable for S and A to
change the encoding and decoding methods from time to time, of course both
changing at the same time. But this further complicates communication.

If it were possible to find an encoding scheme for which it is impossible
to find f~!, even knowing f, then S could publish her own fs, whose inverse
fs ! only she knows. Then anyone can send her a message that only she can
decode.

Is such a scheme possible? The first impression is that the answer is no,
but with the help of the Euler-Fermat theorem, and the help of the processing
power of computers on the one hand and their inherent limitations on the
other, it is possible.

28. We already mentioned that messages can be converted to numbers, and
from here we will deal only with encoding of numbers. Choose a number N
that is the product of two distinct primes p and ¢. Break the number we want
to send into parts smaller than N (for instance, if N = 4757(= 67 - 71) and
we want to send the number m = 1234567890, a possible break-up is 1234,
567, 890). Let one of the parts be h, so that

0<h<N. an
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We further choose two numbers r and s such that rs = 1 (mod ¢(N)), so
that for some integer k,7s = 1 + kyp(IN). We have seen in Section 21 that
@(N) = (p — 1)(g — 1). Then the encoding and decoding are done in the
following way:
o Let H = f(h) be the smallest nonnegative remainder of A", modulo N.
o Let f~!(H) be the smallest nonnegative remainder of H*, modulo N.
We will show that these f and f~! are indeed inverses of each other, i.e.,
satisfy (16). Now

FHH) = f7(f(R) = R = RIHRON) = pp¥N) (mod N).
If (h, N) = 1, then according to the Euler~Fermat theorem
REe(N) = (p#(N))k =1 (mod N); hence h™ =h (mod N),

and by (17), the right-hand side is the smallest nonnegative remainder of the
left-hand side, modulo N, thus satisfying (16).

If (h, N) = p, then we may write h = p*h’ where pgt h’, ie., (R',N) = 1.
By Fermat’s theorem and property (m),

RI"'=1 (mod q); hence AFP~DU=D =1 (mod gq).

Multiplying both sides by p*~'h’ and then both sides and the modulus by
p, we have then multiplied both sides by h and the modulus by p. Using the
facts that pg = N and (p — 1)(¢ — 1) = ¢(N), we see that

h™ = hh**WN) = b (mod N).

It is obvious that the congruence h™ = h {mod N) is valid even in the
case where N | h (notice, however, that this was excluded by our scheme).

29. With this we have found an encoding scheme, and by the commutative
property of multiplication, (16) is also satisfied. The question only remains
as to why we can publish f, which means making N and r known? Here the
computer comes into play. First we need two prime numbers, very large for
two reasons. The first so that we do not need to break the message up into
too many parts. The second, more important, we will soon see.

Today, there are algorithms that when implemented on a powerful enough
computer can decide in a short amount of time with an incredibly small
possibility of error whether or not a 100-digit number, or even larger, is
prime.

We can cleverly choose large numbers that look suspiciously like primes.
We then test whether they are prime, and in this way we can find large enough
primes p and q. We calculate N and (NN) from these. Then we choose an
7, checking its relative primeness with (V) using the Euclidean algorithm,
and finally determine s by solving the congruence rs =1 (mod ¢(N)), again
using the Euclidean algorithm.
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We can now publish N and r, keeping p,q, and s secret. We need not
worry about publishing these, since in order for someone to find our code,
they “only” need to factor N. To do this, they “only” need to check whether
N is divisible by any of the primes up to v/N. It is just a small part of the
problem that we do not know which are prime, because we can check all odd
numbers up to this bound, excluding those numbers that are divisible by 3
and 5, since these are easily identifiable. The set of integers to be checked
can be further reduced by some clever tricks, but this is only a minimal gain
over checking all numbers; it helps when we are checking numbers up to a
million or a billion, but when there are hundreds of digits in the number,
this gain is insignificant, and the process of dividing every number can take
millions of years even on today’s fastest supercomputers. The rate of increase
in processing power in computers and the physical limits for computing speed
are such that we cannot hope to decrease this computing time significantly. It
also seems very unlikely that any major mathematical advances will be made
for simplifying this factorization. So at least at the present time, everyone
can publish his or her own N and r without worrying, just keeping p, g, and
s under lock and key.

30. There is the danger in making the code (N and r) known that a person
can send phony messages as well as forge messages in someone else’s name,
in this way endangering the addressee and/or the sender. However, (16) can
serve as additional protection against this type of attack. Susan, after encod-
ing the message m using Adam’s public key, can encode the message fa(m)
using her private key, obtaining the message f5'(fa(m)), which she sends to
Adam. This message could only have been produced by Susan and can only
be decoded by Adam. Adam decodes this by first applying fs and then f;l,
getting

F (fs(f5H (Fa(m)))) = m.

In this way, it is possible to sign contracts, transfer money, and share
information without traveling across continents.

These discoveries have opened new chapters in cryptography, and.there
are already large amounts of literature written in this area. Unfortunately,
these techniques are offered not only in the financial and diplomatic worlds,
but for organized crime as well, creating serious problems.

31. We now return to the Euler-Fermat theorem. According to this theorem,
for an arbitrary modulus m and every number relatively prime to the mod-
ulus, there exists a power of this number that is congruent to 1 modulo m,
for instance the p(m)th power. The smallest such exponent could be smaller
than ¢(m). For example, 1 raised to the first power is already congruent to 1
for every modulus, and the second power of m — 1 is also congruent to 1,
modulo m.
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We call the smallest exponent of a number ¢ for which c raised to this
exponent is congruent to 1 modulo m the order of ¢ modulo m. Only those
numbers that are relatively prime to the modulus can have an order, and by
the Euler-Fermat theorem, they do also have one.

32. The numbers, or more precisely the residue classes, that have order k
modulo m satisfy the congruence z¥ — 1 =0 (mod m), and hence we should
become more familiar with polynomials in congruences. Only after this little
detour will we return to orders of elements.

By property (n), the number of solutions here is understood as the num-
ber of residue classes. From algebra, we know that the number of roots of an
algebraic equation, i.e., an equation of the form f(z) = 0, where f is a poly-
nomial, cannot be larger than the degree of the polynomial. The congruence

22 —1=0 (mod 24),

however, has solutions 1, 5, 7, 11, 13, 17, 19, 23, which are all representatives
of distinct residue classes.

‘We also note that the coefficients of a polynomial are only representatives
of their residue class. In this way, we see that the polynomial 35z5 — 21z% +
2322414z — 7 is a fifth-degree polynomial modulo most primes, but modulo 5
it is of degree 4, and modulo 7 the polynomial reduces to the term 23z2, which
is also equivalent to 2z2, hence of degree 2. For this reason, we consider two
polynomials the same if their corresponding coefficients are congruent.

The proof of the previously mentioned algebraic theorem uses the fact
that a factor corresponding to a root can be factored out. This also holds for
polynomials in congruences.

Theorem 12 If the coefficients of a polynomial f(z) are not all congruent
to 0 modulo m and f(a) = 0 (mod m), then there erists a polynomial g(z)
such that

f(z) = (z - a)g(z) (mod m)
for all z and the degree of g is one less than the degree of f.

Let f(z) be a polynomial of degree n modulo m and suppose that f(a) = 0
(mod m). Consider the polynomial F(z) = f(z + a), whose constant term is
co- We can write this

F(z) = co + zG(z),
where G(z) is of degree n — 1 (it is not hard to see that the coefficient of the
term of highest degree is the same as for f). Therefore,
F(0) = co = f(a) =0 (mod m).
Returning to f, we have
f()=F(z—a)=cy+ (z — a)G(zx — a) = (z — a)G(z — a) (mod m).

Hence letting g(x) = G(z — a), we have found such a polynomial g satisfying
the claim.
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33. The proof of the previously mentioned theorem regarding the number of
roots of a polynomial also uses the fact that a product is 0 only if one of
its factors is 0. Among congruences, this is in general not true. Returning
to the example above, the polynomial z2 — 1 has z — 7 as one of its factors,
modulo 24, and may be factored

z2 - 1= (z—T7)(z — 17) (mod 24).
Substituting 11 in the right-hand side we get the congruence
4-(-6)=0 (mod 24),

where neither of the factors of the product is 0 (they are not divisible by 24).

This statement regarding the vanishing of a product is, however, valid for
prime moduli. This is just the prime property, and in this way we get the
following:

Theorem 13 For a prime modulus, a nonzero polynomial cannot have more
(residue classes as) roots than the degree of the polynomial.

We prove this theorem using induction on the degree of the polynomial.
For degree one polynomials the theorem is true by Theorem 4.
Let p be a prime, k an integer greater than 1, and assume that the theorem
is true for polynomials of degree k — 1. If f(z) is a polynomial of degree k
and
f(z)=0 (mod p) (18)

has no solution for an integer z, or the elements of only one residue class
satisfy the congruence, then the theorem is true for f as well. If the con-
gruence holds for a and b (from different residue classes) modulo p, then by
Theorem 12 there is a polynomial g of degree k — 1 for which

f(z) = (z — a)9(z) (mod p).
Substituting in b, we have
(b-a)g(b) =0 (mod p).

The first factor here is not congruent to 0, i.e., not divisible by the prime p,
and therefore by the prime property, the second factor is divisible by p,
meaning that it is congruent to 0 modulo p. Therefore, every solution of (18)
not congruent to a modulo p is a solution of

g(z) =0 (mod p).

The polynomial g is of degree k — 1, and by induction it has at most k — 1
roots, so f can have at most k roots. This concludes the proof of the theorem.
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34. As an application of the above theorem, we prove the following theorem,
due to WILSON:

Theorem 14 (Wilson’s Theorem) If p is a prime number, then
(p-1!'+1=0 (mod p).

This characterizes prime numbers, since no composite number will ever satisfy
the above congruence (see Exercise 26).

Using Theorem 13 we can find a simple proof for the theorem. (Later,
when we discuss second-degree congruences, we will see a different proof of
this theorem, and in Chapter 4 we will give a geometric proof.)

For p = 2, the statement is clearly true, and we may assume p to be an
odd prime. The degree of the polynomial

(2-1)(@=2)- (2= (p~1) — (&~ = 1) = ap-2a?"2 +ap_s2"*+-- - +aq,

if it exists (if it is not the zero polynomial), is at most p — 2, since the
term of degree p — 1 cancels out. However, this polynomial has p — 1 distinct
roots, since the first term (z — 1)(z —2)--- (z — (p — 1)) is 0 for all numbers
1,2,...,p — 1, and the second term (zP~!—1) is congruent to 0 modulo
p for these numbers by Fermat’s theorem (Theorem 11’). Therefore, their
difference is congruent to 0 modulo p. This is possible only if the polynomial
on the right-hand side is the zero polynomial, in which case the remaining
residue class (0),, is also a root. Substituting this into the congruence, we get

a =P p-1)-(-1)=(p-1)!+1=0 (mod p),

proving the claim of the theorem.

We could have also concluded the proof in the following way: The conclu-
sion that the polynomial is the zero polynomial means that every coefficient
must be congruent to 0 modulo p,

Gp-2=08p-3=---=a; =ap =0 (mod p).
Thus the proof furnishes a series of congruences; the last one is Wilson’s
theorem, having indeed the most applications.
35. From Wilson’s theorem we can deduce the following theorem, which we
will make use of later in the book.

Theorem 15 For all primes p of the form 4k + 1, there exists an integer c
for which
c¢2+1=0 (mod p).

Using the remark that

p'—jE_j (mOdp)) ‘=—_"a__'__ 1'”12a11
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Wilson’s theorem can be rewritten as follows:

(~1)% ((”—;—1)!>2 +1=0 (mod p).

If p is of the form 4k + 1, then —1 is raised to an even power and thus
c= ((p— 1)/2)! satisfies the claim of the theorem.

Exercises:

22. For a composite number m, determine what (m — 1)! + 1 is congruent
to modulo m.

23. Prove that numbers of the form c? + 1 are not divisible by any primes
of the form 4k + 3. (Cf. Theorem 1.16.)

24*. Using the notation of the previous section, prove that if p > 5, then
a, is also divisible by p? (Wolstenholme’s theorem).

25*. Prove that if p is an odd prime greater than 3, k is an integer 2 < k <
p—2,and r1,72,...,7p-) forms a reduced residue system modulo p,
then
(a) there exists an integer 7 for which 7 # 0,7% # 1 (mod p)

(b) r¥+rk+---+rk_ =0 (mod p).

26. For which integers m and k,k > 1, is the set 0,1,2%,...,(m - 1)k a

complete residue system modulo m?

36. At the beginning of Section 32 we mentioned that we need to investigate
the number of roots of a polynomial of the form z* — 1, modulo m. With this
in mind, we have the following result.

Theorem 16 If p is an odd prime and k | p — 1, then the congruence
zF —1=0 (mod p)

has k roots.

It is well known that if k | (p — 1), then the polynomial zP~! — 1 factors
into
2?7~ 1= (z* - 1) g(z),

where g(z) is some polynomial of degree p— 1 — k. By Fermat’s theorem, the
left-hand side has p — 1 roots modulo p. Since we are dealing with a prime
modulus, the right-hand side can be congruent to 0 modulo p only if one of
its factors is congruent to 0. The first factor has at most k roots and the
second at most p — 1 — k roots. If one of these factors had fewer than this
many, then their product would have fewer than p — 1 roots. Therefore, both
factors have their maximum number of roots, proving the theorem.
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Exercises:

27. Prove that if (k,p — 1) = d, then the congruence
¥ —1=0 (mod p)

has d roots.

28. Prove that
(a) if the congruence
=¥ = ¢ (mod p) (19)

is solvable, then the congruence
c“‘-;-ll =1 (mod p) (20)

holds, and (19) has (k,p — 1) residue classes as solutions.
(b) If (20) is satisfied, then (19) has a solution.

37. We now return to the topic of the order of elements. In the following
table we list the minimal exponent for all numbers relatively prime to the
given moduli:

modulus: 6 9 15
number: 15 1 24578 1 2 4 7 8111314
exponent: 1 2 1 6 363 2 142442432

The value of Euler’s ¢-function for these numbers is 2, 6, and 8, respec-
tively. We used boldface for those exponents that equal the corresponding
value of the ¢-function. In the case of 15, there is no such exponent.

We also see in the above examples that the exponents are divisors of the
corresponding values of . This is not by accident, and in fact even more is
true.

Theorem 17 If a number ¢ has order n modulo m, then the numbers
1,c,c?,...,c" ! are pairwise incongruent modulo m. If

c*=c' (mod m), then u=v (modn).

In the special case where v =0, i.e., c* =1 (mod m), then n | u.

According to the theorem, it then follows from the Euler-Fermat theorem
that n | ¢(m).

The second claim of the theorem follows from the first, so it is enough
to prove that. Without loss of generality, we may assume that « > v. Then
c*™¥ =1 (mod m). Dividing u — v by n with remainder we get

u—v=ng+s,
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where q is an integer and 0 < s < n. Based on this we have
V= (") = =1 (mod m).

Among the positive integral powers of c the nth is the first that is congruent
to 1 modulo m. Therefore, s = 0, and hence n | u — v.

38. Those elements g whose order is p(m), if such elements exist, play an
important role. The first ¢(m) powers of these, g, g2, ..., g*(™), by Theorems
9 and 12, form a reduced residue system modulo m. These numbers that
have order p(m) are called primitive roots of congruence modulo m, or just
primitive roots. If for a given modulus m there exists a primitive root g, then
for every c that is relatively prime to m, we call the smallest nonnegative
exponent k for which
c=g* (mod p)

the indez (with respect to g) of ¢ modulo m.

We will show that for every prime p, there exists a primitive root modulo p.
Further, we will determine all n such that there are elements of order n and
how many such elements there are.

Theorem 18 The number of elements of order n modulo a prime p is v(n)
if n | p—1; otherwise, it is 0. Based on this, there are p(p—1) primitive roots
modulo p.

For an arbitrary m > 0, it follows by Theorem 17 that only divisors of
¢(m) can possibly occur as orders of elements. Thus the second claim is true.

We prove the first claim by induction on n. Let go(n) denote the number
of residue classes of order n. If n = 1, the only element whose order is 1, is 1
itself, i.e., (1) = 1 = (1), so the theorem is true for n = 1.

Let us now assume that m > 1,m | p — 1, and that the theorem is true
for all d < m. The elements of order m (if any) are roots of the congruence

z™ —1=0 (mod p).

On the one hand, this congruence has m roots by Theorem 16, and on the
other hand, the other roots of this congruence (if any) are, by Theorem 17,
those elements whose order d is a proper divisors of m. Using the induction
hypothesis and Theorem 9 (as well as the notation introduced there), we see
that the number of elements of order m is

m—3""0ld) =m- 3" o(d) = p(m).

dim dim

Hence the theorem is also true for m, and we have proved the first statement
of the theorem.
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Exercises:

29. Without using the Euler-Fermat theorem, show that every number
relatively prime to m has an order modulo m.

30. Given the indices of numbers a and b, what are the indices of a* (for
h a positive integer), ab, and the index of a number c for which ac = b
(mod m)?

31. Show that
(a) if the positive integer m has at least two distinct odd prime divi-

sors, and c is relatively prime to m, then ¢#™)/2 =1 (mod m);
(b) if kK > 3 and cis odd, then

=1 (mod 2*);

(c) if the canonical decomposition of m is m = []_, p{* and

Bm) =[p(P1"), ¢ (82°) - - 0 (7],

then for every c relatively prime to m,
&A™ =1 (mod m).

The claims of the exercises show that there is no primitive root if the
modulus is divisible by two odd primes, nor if the modulus is divisible by
both 4 and a prime larger than 4. Thus there can be a primitive root only
if the modulus is 2, 4, an odd prime power, or twice an odd prime power.
It can be proved that for these moduli there indeed exist primitive roots.
Theorem 18 gives them in the case of an odd prime modulus, and the cases
of 2 and 4 are trivial.

39. We have already seen many interesting applications of Euler’s ¢-function,
and later we will see more, so it is useful to investigate it even further. The-
orem 9, for which we have already seen an important application, gives a
method for calculating the value of the y-function, but this method is rather
uncomfortable to use. The results of Exercise 21 lead to an explicit formula
based on a property that is called multiplicativity. A function f defined on
the positive integers is called multiplicative if for all pairs of relatively prime
‘integers a and b, it satisfies f(ab) = f(a)f(b). If this is satisfied for all a and
b, then the function is called totally or completely multiplicative. We will show
in another way that Euler’s p-function is multiplicative.

Theorem 19 Euler’s p-function is multiplicative.

We need to show that if a and b are relatively prime, then

p(ab) = p(a)p(b)- (21)
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This is clearly true if either a or b is 1. If both are greater than 1, we
need to investigate the numbers n between 0 and ab — 1 that are relatively
prime to ab, in some way relating these to a and b. Consider the Diophantine
equation

az + by =n. (22)

Since a and b are relatively prime, Theorem 1.18 guarantees that this equation
has a solution for every n. For = and y satisfying (22), we have the following
congruences:

az=n (modb) and by=n (mod a). (23)

By Theorem 4 these congruences have one residue class each as a solution.
In this way, for every n we get a unique pair of residue classes modulo a and
modulo b, respectively.

Conversely, consider now a pair of residue classes modulo b and mod-
ulo a, respectively. Choose an element z from the first and an element y
from the second. Substituting into (23) and solving for n as the unknown in
the simultaneous system of congruences, we see by Theorem 7 that there is
a unique residue class modulo ab that is a solution, and this has a unique
representative between 0 and ab — 1.

The important observation is that if n is relatively prime to ab, then z is
relatively prime to b and y to a, and the converse is true as well. If a and y,
or z and b, have a common divisor larger than 1, then this divisor would also
divide n and ab, but we assumed that these are relatively prime. Conversely,
if n and ab are not relatively prime, then they have a common prime divisor,
and by the prime property this must divide either a or b. We may assume
that it divides a. This divisor divides the left-hand side of (22) as well as
the first summand. Therefore, it divides the product by. It does not divide
b, because a and b are relatively prime. By Euclid’s lemma it must divide y;
hence a and y are not relatively prime. We have seen, therefore, that in the
above construction n is relatively prime to ab if and only if z is relatively
prime to b, and y to a.

Summarizing our results, we have paired up numbers between 0 and ab—1
that are relatively prime to ab with ordered pairs of numbers, the first between
0 and b — 1, relatively prime to b, and the second between 0 and a — 1 and
relatively prime to a, thus proving (21) and hence the theorem.

By repeatedly using Theorem 19 for pairwise relatively prime positive
integers n;,ng,...,nk, we have that

p(mang - nk) = p(n1)p(na) - - o(nk).

These conditions are satisfied for the prime power factors of the canonical
decomposition of a number. If n = p}*py? - - - pp* is the canonical decomposi-
tion of a number n, then we get the following equation:

uy, uz

w(n) =@ @) p” - P*)} = 0 (P1) 0 (P2?) - - - (%) .
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For this formula to be useful, we have to calculate the y-function for prime
powers. We have seen that if p is a prime, then ¢(p) = p—1. If u is an integer
greater than 1, then all the numbers 0,1, 2,...,p* —1 that are not divisible by
p are relatively prime to p*. The numbers divisible by p are 0,p, 2p, ..., p*—p.
There are p*~! of these, so ‘

1
e@*)=p*-pt=pp-1)=p" (1 - ;) :
This formula includes the case u = 1 as well.
Putting these together, we get the following formula:

p(n) = py*pyr Tt p T oy — 1) (p2 = 1)+ (pr — 1)

(-2 (-2)-(-2)

40. The general questions concerning congruences of higher degree can be
reduced essentially to investigating congruences for prime moduli. If a con-
gruence is satisfied for a composite modulus m, then it is satisfied modulo all
the prime divisors of m.

Under certain conditions there are also methods for obtaining solutions to
a congruence modulo powers of a prime given the solution of the congruence
modulo the prime.

Finally, if we know solutions to the congruences modulo all the prime
power divisors of m, then from the solution to this simultaneous congruence
system we can get a solution to the congruence modulo m.

We have solved the congruences of degree 1 in all generality (Theorem 4).
The solution of second-degree congruences is already a much more difficult
problem, and historically, their complete solution required a long time and
the effort of a number of distinguished mathematicians. During the eighteenth
century several mathematicians observed, based on extensive calculations, es-
sentially equivalent relationships to the so-called reciprocity theorem, which
we will formulate and prove below. It was GAUSS who observed it indepen-
dently and first succeeded in proving it as well.

In the following, we consider only congruences of degree 2, and among
these, only those with prime modulus.

The general second degree congruence can be reduced to the simpler con-
gruence

z? = ¢ (mod p), (24)

essentially the problem of extracting a square root modulo p. It is immediately
clear that the condition for the existence of the square root for real numbers,
that the number should be nonnegative, is useless here, for the simple reason
that every residue class has positive representatives and negative ones as well.
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The case c = =1 (= p— 1 (mod p)), for example modulo 5 and 29 has
solutions (£2)s and (£12)g, respectively, and Theorem 15 guarantees a solu-
tion modulo every prime of the form 4k+1. On the other hand, the statement
of Exercise 23 shows that there are never solutions modulo a prime of the
form 4k+3. The question of the existence of a solution to congruence (24) was
one of the central problems during the early development of number theory.

The trivial cases of c =0,z =0 (mod p) we exclude in the remainder of
this section, as well as the trivial case where p = 2.

If congruence (23) has a solution, then we say that c is a quadratic residue
modulo p. If there is no solution, then it is called a quadratic nonresidue.
Whether or not a number c (its residue class) is a quadratic residue is called
c’s quadratic character.

If we choose for = the residues of least absolute value, we get that the
congruence has a solution if ¢ is congruent to one of

(£1)%, (£2)%,..., (2(p - 1)/2)%,

and otherwise there is no solution. It is easy to see that these numbers are
pairwise incongruent modulo p. We leave the proof of this to the reader. This
observation shows that exactly half of the residue classes relatively prime to p
are quadratic residues, and the other half are not. With the help of this simple
observation it is not difficult to show that multiplication of quadratic char-
acters is similar to multiplication of +1. We formulate this in the following
theorem:

Theorem 20 The product of two numbers is a quadratic residue if both of
the factors are quadratic residues or if both are nonresidues; the product is a
quadratic nonresidue if one of the factors is a quadratic residue and the other
a nonresidue.

To make notation simpler, we will denote (p — 1)/2 by p;. We need to
show three things. The first is obvious. If a and b are quadratic residues, i.e.,
there are numbers z and y such that

z2=a (modp), ¢?*=b (mod p),

then
(zy)? = ab (mod p),

and ab is also a quadratic residue.
Now let ko be an arbitrary quadratic residue (kg # 0 (mod p)) and let

kl,kg,...,km,nl,ng,..‘,nm (25)

be a reduced residue system, where the k’s are quadratic residues, the n’s
nonresidues. Multiplying the system by ko we get a new reduced residue
system, since kg is relatively prime to p. In this system
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kokl, kokz, ey kokm , konl, kong, ey kOnp,

we know that the first p; elements are quadratic residues. The remaining
elements are therefore nonresidues. Thus we have proved that if a number is
a quadratic residue, then multiplying it by any nonresidue yields a nonresidue.
This proves the third claim of the theorem.

To prove the second claim, let ng be an arbitrary quadratic nonresidue,
and multiply the residue system (25) by ng. We get the system

nokl,nokg, ey 'nokm yMQN1, NEN2, ..., NNy,

where the first p; elements are nonresidues, as we have just shown. It thus fol-
lows that the second p; elements are all quadratic residues, showing that the
product of two quadratic nonresidues is a quadratic residue. This completes
the proof of the theorem.

41. Theorem 20 suggests the introduction of a function, written (<) and
called the Legendre symbol. Its value is 1 if ¢ is a quadratic residue modulo
p, —1if ¢ is a quadratic nonresidue, and 0 if ¢ is divisible by p.® The statement
from Theorem 21 can be written, using the Legendre symbol, in the form

2)-()E)

This relation clearly also holds if either a, b, or both are divisible by p. From
2
the definition, it also follows that if c is not divisible by p, then (%) =1.

42. EULER found a formula for the quadratic character of a number, which
we express here with the help of the Legendre symbol:

Theorem 21 (Euler’s Lemma) If p is an odd prime, then for every c,

(g) = cP~1/2 (mod p).

The case ¢ = 0 (mod p) can be disregarded. In all other cases, the theorem
says that c is either a quadratic residue or a nonresidue depending on whether
the (p — 1)/2 power of c is congruent to 1 or —1, respectively, modulo p.

We remark that Fermat’s theorem follows immediately from Euler’s
lemma by squaring both sides.

We present a proof of this theorem without using either Wilson’s theorem
or Fermat’s theorem, and in this way we also give a new proof of each of
these theorems. Let ¢ be an arbitrary number not divisible by p. Denote by
T;,t=1,2,...,p— 1, the smallest positive number such that

ir; = ¢ (mod p). (26)

® The function and its representation are in no way related to the fraction c/p.
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From Theorem 4 it follows that the solutions to these congruences are distinct
residue classes. We also see that if z; = j, which means that ij = ¢ (mod p),
then z; = 1. _

If c is a quadratic nonresidue, so that there is no y satisfying

y* = ¢ (mod p), (27)

then every congruence in (26) appears twice, with the order of the factors on
the left interchanged. If we take only one of each of these and multiply them
together, we get (p — 1)! on the left-hand side. In this way, if c is a quadratic
nonresidue, then

(p—1)!'=cP1/2 (mod p).

If y is a solution to (27), then p — y is also a solution, and there are no
others. Choose y between 0 and p. Then p — y is also between 0 and p. If
we disregard these two cases, then every remaining pair in (26) occurs twice.
The two values of i omitted are y and p — y, which satisfy

y(p ~—y) = —c (mod p).

From each congruence appearing twice, we take one and multiply them to-
gether, and then multiply their product by this last congruence, getting again
(p —1)! on the left, so if c is a quadratic residue, then

(p—1)! = —c?H/2 (mod p).

The question now remains as to what the left-hand side is congruent to.
We know that 1 is a quadratic residue for all p, and substituting in for ¢ we
get

(p—-1)!'=-1 (mod p),

which is Wilson’s theorem. Substituting this in for the left-hand side of the
previous two congruences, we complete the proof of Euler’s lemma.

43. With Euler’s lemma we now have a method for determining whether or
not a number is a quadratic residue for a prime modulus. Since we need only
the residue modulo p of the powers, this method is useful if the numbers
concerned are not too large but still not very easy to compute. Let us deter-
mine whether or not 30 is a quadratic residue modulo 103. By Euler’s lemma,
we need to compute 30! modulo 103. All of the following congruences are
modulo 103:

302 = 900 = -27, 30%2 = 576 = —42,

304 = (—27)2="729=8, 30% = 3016+32 = _24(—42) = 1008 = —22,
308 = 64 = —39, 3050 = —27(—22) = 594 = —24,
3016 = 1521 = —24, 305! = —720 = 1.
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The congruence z2 = 30 (mod 103), therefore, has a solution. None of
the results we have so far help us in searching for the solutions (in our case
(37)103 and (66)103), and such a simple method as the Euclidean algorithm
in the case of first-degree congruences cannot be given.

It is interesting that if we know a number n that is a quadratic nonresidue
modulo p, then there is a fairly good algorithm to find the solutions. The
smallest such n is not very likely larger than a power of logp and can thus
be computed in a realistic amount of time by a computer.2? It has only been
proved, however, that for every positive number h and sufficiently large p
there exists such an n that is no larger than p!/(4ve)+h and if this is the
best possible upper bound, it does not follow that there is a good method to
find the solution using a computer. If we know a primitive root, then we can
make an index table, and with this it is an easy task to solve the congruence.
The best known upper bound for the least primitive root!! is p'/4+*. This
bound cannot be significantly improved, and this method, therefore, is also
not very useful for finding a solution.

44. In one case Euler’s lemma easily provides a general result. This is the
case of ¢ = —1. If the exponent is even, i.e., p is of the form 4k + 1, then the
power is 1; if the exponent is odd, i.e., p is of the form 4k + 3, then the power
is —1. This gives us the general result that —1 is a quadratic residue for all
primes of the form 4k + 1 and a quadratic nonresidue for primes of the form
4k + 3.

We remark that Theorem 15 and Exercise 23 provide this result in a
different way. From Euler’s lemma we cannot hope to get such nice general
results for other values of ¢. As the numbers get larger, it becomes increasingly
difficult to calculate the Legendre symbol from this lemma.

Recalling the first proof of the Euler-Fermat theorem, we can try to sim-
plify the task of determining whether or not a number c, not divisible by p,
is a quadratic residue. Consider the residues with smallest absolute value of
the following numbers:

¢ 2¢c,...,((p—1)/2)c. (27)

Then only the numbers 1,2,...,(p — 1)/2, appear, of course possibly with
negative signs. This leads to the following congruences:

iczeb; (modp) (1=1,2,...,(p—-1)/2), (28)

where e; is either 1or —1and 1 < b; < (p—1)/2.

We will show that no two of the b’s are equal. It is obvious that no two
can be the same and have the same sign, since we are multiplying half of a
reduced residue system by a number relatively prime to p. We need to show,
therefore, that there are no indices 7 and j for which

1% Remark of I. Z. RuzsA, personal communication.
"' D. BURGESS: Mathematika 4 (1957), pp. 106-112.
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e;b; +e;b; = 0.
This means that
ic+jc=0 (mod p), and hence p]| (i+ j)c.

This is impossible, since we assumed c¢ not to be divisible by p, and ¢ and j
are such that 1 <4+ j < (p —1). It then follows that

biba- b1y = ((p—1)/2)\

After the corresponding sides of the congruences (28) have been multiplied
together, the product above occurs on both sides. Let m be the number of
congruences in (28) with a negative sign. Then we have

((p - 1)/2)cPD/2 = (=1)™((p -~ 1)/2)! (mod p).

None of the factors are divisible by p, and we can simplify. With the help of
Euler’s lemma, we can write our results as

(;) = (-1)™ (mod p).

Since the difference between the two sides can be 2, 0, or —2, and the modulus
is at least 3, the two sides must be equal. This important result is known as
Gauss’s lemma:

Theorem 22 (Gauss’s Lemma) Let p be an odd prime and c an integer
not divisible by p. Consider the number of residues of smallest absolute value
of the numbers c,2c,...,((p — 1)/2)c that are negative. Then c is a residue
or nonresidue according to whether this number is even or odd, respectively.

45. With the help of this theorem, for any number we can determine for which
primes it is a quadratic residue and for which primes it is a nonresidue.

In the case of 2, for example, we need to determine how many of the
numbers 2,4, ...,p — 1, have a negative number as their residue of smallest
absolute value modulo p. In other words, we only need to count the number
of even integers between p/2 and p, or expressed in yet a different way, the
number of integers in the interval (p/4,p/2).

It is useful to write p in the form 8k + r, where r is 1, 3, 5, or 7. We
then need to determine whether the number of integers in the interval (2k +
r/4,4k + r/2) is even or odd. The endpoints are not integers, and we may
omit the subinterval (2k +1/4, 4k +r/4) of length 2k, since there are 2k, i.e.,
an even number, of integers in this interval, and it suffices to investigate the
interval (4k + r/4,4k + 1/2).

We also note that there is the same number of integers in the interval
(r/4,7/2), the previous interval translated by 4k. For each of the four possible
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values of 7, the number of integers in this interval is 0, 1, 1, and 2, respectively.
Thus 2 is a quadratic residue in the first and the last cases, and a nonresidue
in the two middle cases. We may formulate this as follows: the number 2 is a
quadratic residue for primes of the form 8k £1, and a nonresidue for primes
of the form 8k + 3. Notice that this depends only on the residue class of p
modulo 8.

46. As a second example let us determine for which primes p the number 5 is
a quadratic residue. To do this, we need to determine which of the numbers
5, 10,...,5(p — 1)/2, have a negative number as their residue of smallest
absolute value modulo p. All of these numbers are smaller than 5p/2, and we
need to count the number of integers divisible by 5 in the intervals

(p/2,p) and (3p/2,2p).

This is the same as counting the number of integers in the intervals

(p/10,p/5) and (3p/10,2p/5).

The case p = 5, of course, is omitted, and therefore the endpoints are not
integers.

It is helpful to write p in the form 20k + r. Since p is prime, r can now
take on the values 1, 3, 7, 9, 11, 13, 17, or 19. For these numbers we need to
determine whether the number of integers in each of the intervals

(2k +7/10,4k + r/5) and (6k+ 3r/10,8k + 2r/5)
is odd or even. The subintervals
(2k +r/10,4k +r/10) and (6k + 3r/10,8k + 3r/10)

may be omitted, since there is an even number of integers in these, and it is
enough to consider the remaining parts

(4k +r/10,4k +r/5) and (8k + 3r/10,8k + 2r/5),
or by a translation, even the intervals
(r/10,7/5) and (3r/10,2r/5).

The numbers of integers in the intervals for the above choices of r are 0,
1,1, 2,2, 3,3, and 4, respectively. The parity of these numbers depends only
on the value of r and is independent of k. We can formulate our results in
the following statement: The number 5 is a quadratic residue for primes p
that upon division by 20 have a remainder of +1 or +9; for those primes with
remainder +3 or +7, it is a nonresidue. More simply, we formulate this as
follows: The number 5 is a quadratic residue for primes of the form 10k + 1
and a nonresidue for primes of the form 10k + 3.
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47. As a third example, we examine when —3 is a quadratic residue, i.e.,
we determine for which primes p there is an even number of numbers among
—3,-6,...,—3(p — 1)/2 whose remainder of smallest absolute value upon
division by p is negative. The prime p = 3 is, of course, excluded. We need to
count the number of multiplies of 3 between —3p/2 and —p and also between
—p/2 and 0, where 0 does not count.

Reflecting the numbers through 0, we have the intervals (0,p/2) and
(p,3p/2), which contain the same number of multiples of 3. The number
of these is [p/6] + [p/2] — [p/3]. Write p in the form 12k + r, where 7 can be
1, 5, 7, or 11, for p a prime. The values of the sum for the four cases are

2k + 6k — 4k = 4k; 2k +6k+2—-4k—-1=4k+1;
2k+14+6k+3—-4k—-2=4k+2; 2k+14+6k+5—4k—-3=4k+3.

We conclude that —3 is a quadratic residue for primes of the form 12k + 1
and 12k + 7, or more simply for primes of the form 6k + 1; for all others, i.e.,
primes of the form 6k — 1, it is a nonresidue. We will use this result in the
following sections, and hence we have highlighted it here.

Lemma The number —3 is a quadratic residue for primes of the form 6k +1
and a nonresidue for primes of the form 6p — 1.

48. It is clear that for any ¢ we may decide in a similar way for which prime
moduli the number c is a quadratic residue. Investigating different values of
¢, we saw that whether or not it is a quadratic residue modulo a prime p
depends only on the residue of p modulo 4c. This is not by chance. We will
restrict ourselves to the case where c is positive (although the case for c
negative is very similar).

We need to determine how many multiples of ¢ fall in the intervals
((2t — 1)p/2,tp), where t is a positive integer not larger than c/2 (the largest
occurring multiple is ¢(p — 1)/2 < ¢p/2).

The endpoints cannot be multiples of ¢, since we consider only those
primes that are not divisors of c, and the starting points are not even integers
because t < c.

The question is then how many integers lie in the intervals

(2t—1)p tp
2 'c)’
It is suitable to write p in the form 4ck + r, where k is an integer and
1 <7 < 4c, and we are interested in how many integers lie in the intervals

(2(2t -1k + M,uk + 3’2) .
2c c

We again disregard the intervals
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2t -1 2t -1
(2(2t e+ EEUT gy u) ,
2c ¢
since they each contain an even number of integers. The remaining intervals

(4tk L t—’")
2c c

contain as many integers as the intervals

(5,

and this depends only on r, not on k, and this is what we wanted to show.

49. The multiplicative property of the Legendre symbol gives us a way to
write every Legendre symbol as a product of terms of the form (g), where
q is a positive odd prime and p is a positive prime or —1. We have already
settled the cases (2) and (3}), so it remains only to determine ((2)) for
arbitrary odd pnmes p and q. The search for such a general method was a
long one, as we have mentioned.

EULER determined the quadratic residues for many different prime mod-
uli, and he noticed two things: first, that the quadratic character of a positive
number ¢ modulo a prime p depends only on the residue of p modulo 4c; sec-
ond, that primes with residues 7 and 4c — r (equivalently —r) give the same
result in determining the quadratic character of c, since we saw in the cases
of 2 and 5. (In the second observation, it is essential for ¢ to be positive, as
we saw in the case of c = —3 that this statement is false.)

The proof of the first of these facts followed from Gauss’s lemma. EULER,
of course, did not have this at his disposal, and without it he did not succeed
in proving his conjectures. We will show how the second observation also
follows from Gauss’s lemma.

In defining the quadratic character, LEGENDRE was the first person to
state the so-called reciprocity theorem, equivalent statements of which had
been conjectured by others. If p and q are distinct (positive) primes, then the
Legendre symbols (E) and (%) have the same value, except in the case that
both p and q are of %he form 4k + 3, in which case one symbol is 1 and the
other —1.

GAUSS independently conjectured the theorem and at the age of 19 gave
a rather complicated proof using induction. Throughout his life he often
returned to this theorem and gave a total of seven proofs, all using different
methods. We will see that the reciprocity theorem follows from EULER’s two
observations, and we will now prove the second one.

50. In the proof of the first of EULER’s observations we already saw that to
determine whether a number c is a quadratic residue modulo a prime of the
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form 4ck + r depends only on whether the number of integers in intervals of
type ((2t — 1)r/2¢c,tr/c) is even or odd. For primes of the form 4ck — r, we
need to investigate the corresponding intervals for v’ = 4¢ —r.

If the two quadratic characters agree, then that means that the sum of
the integers in the first and second cases is even. We will show that this is
true even for the pair of intervals of the two systems corresponding to the
same value of ¢t. Writing ' in place of r, we get the intervals

(4t—2-(£:1—)r,4t—z>.
2c ¢

Reflecting the interval through the point 2t and taking the mirror image, we
get the interval
t —_
(1’2+(2t l)r),
c 2c

which contains the same number of integers as before because this reflection
sends integers to integers.

This interval together with the original is an interval of length 2, and the
endpoints are not integers; hence the interval contains 2 integers, and we have
proved EULER’s second observation:

Theorem 23 For a positive number c, whether or not it is a quadratic
residue modulo a prime depends only on the residue of the prime modulo 4c;
furthermore, those primes with residues r and 4c — v agree, or more simply,
those with residues r and —r agree.

51. We can now prove the reciprocity theorem using Theorem 23 and the
known properties of the Legendre symbol. Let p and ¢ be two odd primes.
Let us first investigate the case where one of the primes is of the form 4k + 1
and the other 4k + 3. We may write p + ¢ = 4c, where c is a positive integer,
and we have

(2)-(5)-3)-G)6)-0)
q q g q/ \q a)’
because the Legendre symbol is periodic with respect to the lower number,
is multiplicative, and has value 1 when the upper number is a square.
In the same way we can show that (1) = (£). By hypothesis, the residues

of p and ¢ modulo 4c are opposites, and by tfle second part of Theorem 23
we may conclude that

(2)-(5)-G)-0)
q q P p)’

If p and ¢ have the same remainder modulo 4, then call the larger of the
two p and write p — ¢ = 4c for a positive integer c. We may then write
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(5)-(5)-()-G) G-
6)-(5%)-(5)-G)E) ) -G)6)

By the second part of Theorem 24 we conclude that (£) = (£) and that

(g) = (—‘;}) (2). If p and q have residue 1 modulo 4, then we conclude that

(8) = (g). Otherwise, if they have residue 3, we conclude that (g) = —(%).
V\(}e can express our results in the following formula:

Theorem 24 (Reciprocity Theorem) Ifp and g are distinct odd primes,

then
(2) (2) = (~1)FF-D3e-n),
q p

The exponent here is odd only if both primes are of the form 4k + 3. In
this case one of the Legendre symbols is 1 and the other is —1. In all other
cases the two Legendre symbols are either both 1 or both —1.

The previous results for the cases of —1 and 2 are useful in applications,
and we recall them here:

Supplementary Theorem For p a positive odd prime,

(%1) = (-1)-D/2, (;) = (=1)*-1)/8,

For the case of 2, this formula expresses our results. The exponent is
1p-1)(p+1)
2 2 2
and the numbers in parentheses are consecutive even integers; hence only one
is divisible by 4. The exponent is therefore even if this factor is also divisible
by 8, i.e., when p is of the form 8k + 1, as we stated the result earlier.
As an application of our results, let us decide whether or not the congru-

ence
z? = 611 (mod 1009)

has solutions; in other words, let us determine (345) (here 1009 = 16-63 + 1
is a prime and 611 = 13 - 47):

(%) N (1339) (13(7)9) N (1(1)gg> (1229) - (%3?) (%>
-(7) (%) @) (&) - F)en(-(3))
~OB-OCE)-OE-
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The congruence is therefore solvable (the solutions of it are (653)1009 and
(356)1009)-

Exercises:

32.

33.

34.

35.

36.

37.

38.

Which of the following congruences are solvable and which are not:
2?2 =533 (mod 1607),  z2 =1238 (mod 2011),

z% = 3772 (mod 5183), 1222 = 23 (mod 113).

(5183 = 71 - 73, the other moduli are prime.)

Prove that the quadratic character of a negative number ¢ modulo a
prime p depends only on the residue of p modulo 4c, as we proved it
does for positive numbers c.

Determine the quartic (fourth power) residues for the moduli 11, 13,
17, and 19. Prove that modulo primes of the form 4k + 3, quadratic
residues are also quartic residues; modulo primes of the form 4k + 1,
only half of the quadratic residues are quartic residues.

Prove that if a is an integer and u and v are positive integers, then
(a* -1, — 1) = |a*¥) — 1].
Prove that if p is a prime and (k,p — 1) = d, then the congruence
k—

z" =1 (mod p)

has d solutions.

Let p be a prime and ¢ a number not divisible by p.
(a) Prove that if the congruence

z¥ = ¢ (mod p) (29)
is solvable, then
cP=D/(kp=1) = 1 (mod p), (30)

and (k,p — 1) residue classes satisfy congruence (29).
(b) Prove that if the condition (30) is satisfied, then the congru-
ence (29) has a solution.

Prove that for all primes p of the form 4k — 1,
(252)1= 0™ Gmod ),

where m is the number of quadratic residues between p/2 and p.



3. Rational and Irrational Numbers.
Approximation of Numbers by Rational
Numbers (Diophantine Approximation)

1. As we have already mentioned, the numbers we know the best are the
integers. These occur very infrequently among the real numbers. Quotients
of these, the rational numbers, occur much more often, but as we will see, in a
certain sense, they make up only an insignificant part of the real numbers. It
is rather surprising, however, that it can be quite difficult to decide whether
or not a given number is rational.

We know how to do computations with rational numbers, especially with
integers, or with (finite) decimals. It is not surprising that we should try to
approximate real numbers by rational numbers, and if possible, by those with
small denominators. The investigations concerning such questions are called
Diophantine approzimation.

In this chapter we start by determining whether certain numbers, or cer-
tain types of numbers, are rational. Among these, we are also going to dis-
tinguish two types. We will then investigate how real numbers may be ap-
proximated by rational numbers with good accuracy, where the accuracy is
measured in terms of the size of the denominator.

2. The different number systems give very practical ways of representing
numbers. (See Exercises 7, 9, 10, in Chapter 1.) In Fibonacci’s book, which
appeared in 1201, he introduced Arabic numerals and their usefulness in
performing operations. Following Fibonacci, many excellent mathematicians
endeavored to popularize their use, but in many instances the use of Roman
numerals was enforced. In fact, the acceptance or Arabic numerals into com-
mon usage in society was very slow. In earlier times, numbers were represented .
by letters; for a long time, a large part of Europe used Roman numerals, and
for certain purposes they are still used today.

Arabic numerals had appeared by the beginning of the thirteenth century
and with them the decimal number system. It was, however, only in the
fifteenth and sixteenth centuries that these started to come into common
use, and it took centuries still for them to become fully accepted.

Earlier, we mentioned finite decimals. It is quite easy to see (Exercise 1)
that finite decimals arise from fractions whose denominator, when the fraction
is written in reduced form, is not divisible by any primes other than 2 and 5.
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We can obtain the decimal notation of a rational number by dividing the
numerator by the denominator, using long division. Once we have used the
digits of the numerator, we put a decimal point to the right of the quotient,
and then adding a zero to the right of the remainder we continue the division.
The above-mentioned claim states that this process will never result in a
remainder of 0 if the divisor is divisible by a prime other than 2 and 5.

If the decimal is not finite, then the remainder at each step is always
positive and smaller than the divisor. There are only finitely many numbers
of this type (one fewer than the divisor), and therefore sooner or later (at the
latest after writing as many zeros as the size of the divisor), a remainder must
occur that has already occurred. Previously, we also added a 0 to this and
continued the division; thus we see that the same digit occurs in the quotient
as earlier, as well as the same remainder. So it is clear that the quotients and
remainders repeat periodically.

Rational numbers, therefore, have a decimal notation that is either finite
or has a string of digits that infinitely repeats itself; the latter ones are called
repeating decimals.

3. What do we mean, however, by an infinite decimal? We can think of
it as adding infinitely many terms and never reaching the end. The idea
of a summation really loses meaning in the general case of infinitely many
summands, and we know that we cannot even associate a real number to
every infinite sum. Many of these infinite sums, which we will call by the
name infinite series, can be summed, and for these we say that the series
converges. Infinite decimals are series that converge, and if the decimal is
repeating, then we can easily determine the sum (see Fact 4). We need to be
careful in dealing with convergent series, since not all the properties of normal
addition hold.! Those relations that we need we will use without proof, as
we did already in the first chapter.

The finite decimals are just a certain class of fractions (those whose de-
nominator is a power of 10). Is it possible to find a fraction for every periodic
decimal so that the infinite decimal arises from the fraction?

To start with, we will not consider those infinite decimals that from some
point on are all 9’s. It is easy to see that these do not arise from long division
(see Exercise 2). For the sake of simplicity, we will work only with what are
called pure periodic decimals, those whose periodic interval starts right after
the decimal point. Essentially the same method will work for those numbers
that have a nonrepeating part preceding the periodic part.

We will investigate the following pure periodic decimal:

’u=0,10,2...an.blbg...bkblbg...bkbl...,

1 See, for example, W. W. SAWYER: What Is Calculus About?, S.M.S.G.; Math.
Assoc. of America, 1961.
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where the a; and b; are digits, the dot after a, is the decimal point, and the
overline is there to indicate that we should consider the sequence of digits
and not their product. We let a be the number before the decimal (whose
digits are the a;), and let b be the k-digit number (sequence) that repeats.
By grouping the digits after the decimal point in groups of k, we may write u

as b b
u=otqortom T

Multiplying by 10* changes only the integer part:

b b
10Fu = 10*a + b+ — +

ToF * o T

We can subtract u from this number, and since the decimal parts are the
same, they cancel each other out, and the difference is

(10* —1)u= (10* - 1) a +b.

So we have (10" ) ; b
10 —1)a +
ST e T

With this we see that u is a rational number.

4. We can, however, reach our goal without worrying about infinite series by
showing that the decimal notation of the fraction ((10¥ — 1) @ + b) / (10 — 1)
is the infinite decimal we started with.

It is obvious that dividing (10 — 1) a by (10* — 1) we get a = a3 .- Gn,
and that when we subtract off the term corresponding to a,, we are left with
b = byby...by as the remainder. This is smaller than the divisor, since we
specifically excluded the case of infinitely repeating 9's.? Let us now append
a 0 to the remainder:

Bibz .. b0 = 10¥b; + by ... 050 = (10F — 1) by + by . .. biby.

Thus the quotient is b; and the remainder is the last term. This remainder
can be obtained from the the previous one by removing the first digit and
writing it at the end. If we continue this for a total of k times, then k times
we remove the first digit and write it at the end; after this we will return to
the original remainder. The quotient is always the first digit of the remainder;
hence its digits are bs, b3, . . ., bk, and the same decimal arises that we started
with. We formulate our results here:

Theorem 1 Every rational number can be written as either a finite decimal
or an infinite periodic decimal with infinitely many digits different from 9.

2 If this were the case, the last digit of the quotient would be a, + 1 (carrying
the 1, if necessary), and in this case u would be an integer.
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Conversely, every finite decimal and every infinite periodic decimal with in-
finitely many digits different from 9 is the decimal representation of a rational
number.

We also include the integers here as finite decimals, where they are un-
derstood to have a decimal part of length 0.

Exercises:

1. Prove that those fractions whose denominators are not divisible by
any primes other than 2 and 5 have a finite decimal notation.

2. Prove that an infinite decimal whose digits are all 9’s after a certain
point cannot occur from long division of a fraction.

3. Prove that Theorem 1 holds for all periodic decimals.

5. It is easy to write aperiodic decimals; for instance
0.10100100010000.. .,

where between each pair of consecutive 1’s we write one more 0 than between
the previous pair (in other words, we write down the consecutive powers of 10
after the decimal point). We may also write down the number whose decimal
consists of all positive integers written in order:

0.123456789101112... .

In both of these numbers there will occur arbitrarily many consecutive zeros,
but after these, nonzero digits will also occur. If these decimals were recurring,
then they would have periodic intervals that would fall in an interval of all
zeros, hence the digits would all be zero from some point on, but this is not
the case. Therefore, the two numbers are irrational.

6. The next theorem will give a method for creating infinitely many irrational
numbers of the type above. We denote by (a) the sequence of the base-10
digits of the positive number a. (We assume the first to be different from 0.)

Theorem 2 If the infinite sequence of distinct positive integers
ay,az,...
leads to a rational number whose decimal notation is
0.{a1)(az) ..., (1)

then there is a number K such that for every positive n,

n

Z%SK.

i=1
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The first example above shows that the condition is necessary, but not
sufficient, for such a number to be rational. We could conclude from the
theorem that the second example above is irrational, since it is well known
that the sequence of the sums

Hn=1+1+l+---+l, n=12...,
2 3 n
grows beyond all bounds (Fact 6).

Turning to the proof of the theorem, the condition in the theorem says
that the decimal (1) starts somewhere to be periodic. Let r be an index r for
which all of (a,) falls in the periodic part, and let the length of a period (the
number of digits) be s. Then for ¢ > r, the place of the first digit of a; and
the number of digits in a; are determined; if the number of digits is t, then

a; Z 10t—11

and the number of t-digit numbers among the a’s occurring in the periodic
part is at most s. Thus if n > r and the largest a; occurring up to a, has u
digits, then

n

1 r—1 1 n 1 r—1 1 u s
) Z ] S = Z ) Z t—1
o & i b o i 10

r—1 r—1
1 1-1/10 1 10 — 1/10%!
== Z_+s—/_ = ._+s—/0__
ai 1-1/10 = a; 9
r—1
1 10s
< ;;“}"—9—

The last sum can be chosen for K, since it does not depend on n, only on
the number (1).

We will see (Theorem 5.3) that the sum of the reciprocals of the prime
numbers diverges, thus as an application of this theorem we have the result
that the number

0.2357111317...,

of the form (1) where a; is the ith prime number, is irrational ®

Exercise:

4. Let b= (b,bs,...,bs) be a sequence of numbers such that 0 < b; < 9.
We say that a number a does not contain b if in base-10 notation, the
elements of b do not occur in their given order as consecutive digits
of a.

3 For the theorem and its proof, see N. HEGYVARI: The American Mathematical
Monthly 100 (1993), pp. 779-780, and L. E. TAYLOR: ibid. 101 (1994), p. 174.
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(a) Prove that if aj,as,... is a sequence of distinct numbers for
which none of the elements contain b, then the sum

is smaller than some constant not depending on n.
(b) Prove Theorem 2 using the statement in (a) (Hegyvéri).

7. We used the fundamental theorem of arithmetic to prove that ¥/c is irra-
tional if ¢ is an integer but not the kth power of an integer (Theorem 1.11).
We will give proofs for some special cases of this result without referring to
the fundamental theorem. Most of these proofs will be geometric.

The existence of irrational numbers was essentially known to the ancient
Greeks, even though they did not call them by this name. They showed their
existence geometrically by showing that certain distances were not commen-
surable with each other. Two intervals are called commensurable if they can
both be measured off without remainder by repeatedly using one interval,
called a common scale; otherwise, they are called incommensurable. Two dis-
tances are therefore commensurable if the ratio of their lengths is rational,
and they are incommensurable if this ratio is irrational.

It is, of course, not possible to determine whether two intervals are com-
mensurable just by looking at them, but some type of logical argument can
be persuasive. One of the classic results of incommensurability shows that
the side and diagonal of a square are incommensurable, which amounts to
showing that v/2 is irrational. We present this result here in a little more
generality.

Theorem 3 For every positive integer m, the number v/m?2 + 1 is irrational.

We prove this by showing that if ABC is a right triangle with leg AC
having length m times that of leg AB, then AB and the hypotenuse BC are
incommensurable.

Let us assume that there is a common scale of the two intervals. Draw
the circle with center C and radius AC; let D be the point of intersection
of the circle and the side BC (see Figure 1). We have now measured off the
length AC = CD = m AB onto the segment BC, and the common scale can
be measured off evenly into this too. The common scale can therefore also be
measured off into BD without remainder. The remaining part BD is smaller
than AB, because

BC = BD +CD,
BC < AB+ AC = AB + CD.

Draw the tangent to the circle at D, and let E be the point of intersection
with the segment AB. Then
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A E B
FIGURE 1.

AE = DE

since they are both tangents, and also the new right triangle DBE is similar
to the original, since B is their common vertex; we see that

DE =mBD.

In this way, we have already measured off the length BD m times onto AB.
We can measure the length ED = m BD onto BE by drawing a circle with
center £ and passing through D. The remainder will now be smaller than
BD. 1t is clear that this process will continue indefinitely.

With this observation we have a contradiction, since we assumed that
there is an interval that can be measured off evenly into the two lengths,
and we showed that it can be measured off evenly into smaller and smaller
lengths, still without remainder. We thus produced an infinite sequence of
positive integers that is strictly decreasing, which is impossible. The assumed
common scale therefore cannot exist, and we have completed the proof of the
theorem.

In the case m = 1, this is the classical proof that v/2 is irrational.

8. The incommensurability of the two intervals could have been seen right
from the first pair of similar triangles. We need only to realize that if two
intervals are both multiples of a common scale then among all common scales,
there is a largest one. If a common scale of two intervals is measured off r
times into the first interval, then a larger common scale could be measured
off only r — 1 times, r — 2 times, ..., twice, or once, without remainder.
Thus the common scale is just an rth of the interval. We need only check the
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interval itself, half of it, a third of it, ..., an (r — 1)st of it, and an rth of
it, to determine which is the first that is a common scale. By our hypothesis,
the last is a common scale, and we have thus shown the existence of a largest
common scale.

Supposing now that AB and BC are commensurable, consider the largest
common scale. This would also be a common scale of AB and CD, and
furthermore of CD and DE. Enlarge the triangle DBE together with this
common scale, so the triangle is the size of ABC. In this way we have a new
common scale for AB and BC that is larger than the previous common scale,
which was largest possible. This is a contradiction.

Exercises:

5. Give a geometric proof of the fact that for all positive integers m
greater than 1, the number v/m?2 — 1 is irrational.

6. Prove that the side of a regular decagon (10-sided polygon) is incom-
mensurable with the radius of its circumcircle (in other words two
unequal sides of an isosceles triangle whose central angle is 36° are
incommensurable).

9. The fact that /2 is irrational can also be proved in an indirect way with
an easy calculation. Let us assume that it is rational, i.e., it can be written
as ¢/k, where k and ¢ are integers. Then k and £ would satisfy the equation

2k% = £2.

We may further assume that ¢/k cannot be simplified. The left-hand side
of the equation is even, and it follows that ¢ must also be even, for the
square of an odd number is odd. We can write £ = 2m for some integer m.
Substituting this into the equation and simplifying, we have k? = 2m?. By
the same argument as before, we see that k must be even, but then k and ¢
are both divisible by 2, contradicting the fact that they are relatively prime.
Thus /2 cannot be rational.

10. Both types of proofs can be generalized. We will prove the following
theorem first in a geometric way.

Theorem 4 If ¢ is a positive integer and not the square of an integer, then
V¢ is irrational.

We will use the following known theorem: The area of a square whose
side length is that of the altitude of a right triangle is the same as the area of
the rectangle whose side lengths are those of the two parts of the hypotenuse
determined by the altitude* (Figure 2).

4 J. SURANYI: “Schon die alten Griechen haben es gewufit” in Grofe Augenblicke
aus der Geschichte der Mathematik (ROBERT FREUD, ed.) Akadémia Kiadd
(1990), pp. 9-50; especially pp. 23-26 (in German).
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We can then visualize /¢ in the following way. Measure intervals AD = ¢
and DB =1 on a line (D between A and B); construct a half circle whose
diameter is AB and the perpendicular to line AB through the point D. Call
the point of intersection of this line with the circle C (Figure 3). Then triangle
ABC is a right triangle with right angle C, and we have

CD?=AD-DB=c¢, ie, CD=./c.

The claim of the theorem is then that the two legs of the triangle BCD are
incommensurable.

Measure off intervals of length 1 (the length of BD) onto CD starting
from D. Then

FIGURE 3.
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DE,=FE\E;=---=Ex1Ex =1, and 0< ExC <1=BD,

because c is not the square of an integer. (In the figure, k = 2.) Construct
lines perpendicular to CD through the points E;, intersecting AC in points
F;, respectively. From F construct a line perpendicular to AD, intersecting
it in point G;, and lines from the F; perpendicular to E;_; F;_; intersecting
it in point G; (i = 2,3,...,k). Then the triangles F} AG; and F, | F;G;4;
(1=1,2,...,k — 1) are congruent to triangle BCD, and triangle CFyE} is
similar to BC'D and smaller, since CFE}, is shorter than BD.

We now assume that the theorem is false, i.e., that BD and CD have a
common scale. Consider the largest common scale. This can be measured into
AD and DE) without remainder, since these are integer multiples of DB,
and by our assumption, it can also be measured into ExC. It could also be
measured into Ej F), without remainder, since this is what remains from AD
after measuring it into the parallel intervals AG,, F1Gs, F5G3, ..., Fx_1Gk
of length CD.

Enlarge the triangle CFyE) with its largest common scale to the size
of triangle BCD. With this we get a larger common scale for the two legs
than the one we started with (which we assumed to be the largest). This is
a contradiction. The two lengths are therefore incommensurable.

11. The geometric proof hints at an alternative arithmetic proof for the the-
orem. Following the construction above and writing down the ratios of the
legs of the similar triangles, we get

FxEx _AD—kDC c—kyCc DC
E.C  DC—-kDB c-k' DB

=,/
These ratios are equal, so we have

Jo= c— k\/c—:.
Vve—k
This relationship holds for all ¢ and k (independently of the previous geo-
metric arguments), as long as the denominator is not zero.

Let us write \/c as u/v, where u and v are positive real numbers. Simpli-
fying the fraction on the right side, we get

cv — ku

(2)

u—kv’

Let us now assume that ,/c is rational and u/v is written with the smallest
possible positive integers. Choose the integer k so that the denominator in
(2) is positive and smaller than v:

0<u-kv<w, andtherefore 03%—k=\/5—k<1.



3.12. The irrationality of tan(m/m); a formula for tan ma 95

Since we assumed that /c is not an integer, we must choose [\/c] for k
(see Fact 8). For such a choice of k we get a new fraction for \/c with a
smaller denominator. This is a contradiction, and we have a new proof of the
theorem.®

12. The proof of the following theorem runs along very different lines.
Theorem 5 If m is an integer larger than 4, then tan(w/m) is irrational.

The following proof was given by P. TURAN (1910-1976) as a student.
We will use the fact that tan ma can be represented as the quotient of two
polynomials in tan @ with integral coefficients. We write ¢ instead of tan a for
simplicity. Then

()t = (38 + (3)e° =
e (e

tanma =

(of course, only finitely many of the coefficients in both the numerator and
denominator are nonzero). The identity can be proved using induction.® In
our proof we will use the above relationship only for odd m, and all we need
from it is that for odd m we can write

+t™ + Pro(t)
1+ Qm(t)

where Pp,(t) and Qm,(t) are both polynomials in t with integer coefficients
and degrees less than m (possibly the 0 polynomial), and the constant term
of Qum(t) is 0.7 This we will prove by induction.

In the case m = 1, we have tana = t, and P;(t) = @;(t) = 0. Let us
assume that the claim is true for some odd value k of m. Then

tanke +tan2a _ (Et* + Pu(t)) /(1 + Qu(t)) + 2t/ (1 - 2)
1—tankatan2a  1—2t(£tk+ Pe(t)) /(1 —t2) (1 + Qi (2))’

tan ma =

tan(k+2)a =

Multiplying out the denominators and simplifying, we can rewrite the fraction
as

5 Here the geometric proof led us to an arithmetic proof, which is, however, inde-
pendent of the geometry. This is all the more the case because the arithmetic
proof, due to R. DEDEKIND, arose much earlier. See Stetigkeit und irrationale
Zahlen, Friedrich Vieweg & Sohn, Braunschweig (1872), pp. 12-13 (in German).
The geometric proof is due to GY. HaJ6s (1912-1972) and was communicated
verbally to the authors.

5 This identity can also be proved by applying DE MOIVRE’s theorem, which states
that cosma + isinma = (cos o + i¢sina)™, expanding this using the binomial
theorem, and then solving for sin ma/ cos ma in terms of sina/ cosa.

" It is important for the proof of Theorem 5 that the coefficient of the highest-
degree term in the numerator be 1. This is not true for m even, and that is
why we treat the case of odd m separately.
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Ftht2 £tk + (1 - t2) Pe(t) + 2¢(1 + Q& (t))
14 Qk(t) — t (t(1 + Qi () + 2 (£t* + Pi(t)))
We see by the inductive hypothesis that the parts of denominator and the
numerator after the first term are of degree less than k+2; in the denominator
the constant term is 1, since the constant term of Q(t) is 0 and the last term
is divisible by t. With this we have proved the claim.

With the help of this we prove Theorem 5 for odd m. For a = n/m, we
have that tanma = tanm = 0, so t = tanw/m is a root of the polynomial in
the numerator of the expression above for tan ma. Write this polynomial in
the form

Pp(t) = Pm—1t™ ! 4+ Pmat™ % + - + pit + po,

where the coefficients are integers and the degree is at most m — 1, as we just
showed.

Assume that the theorem is false and tan 7 /m = u/v is a rational number.
Further, assume that the fraction cannot be simplified further; hence u and v
are relatively prime integers. Of course, v # 0. Then

+t™ + Pp(t) ==+ (%)m + Pm—1 (%)m—l + Pm-2 (%)m_2 +---+po =0.

Multiplying both sides by v™ and factoring out a v from all terms containing
it, we have

+u™ +v (pm-—lum—l + pm_gum_zv + - +povm——l) -0

The number in parentheses is an integer, so we see that v is a divisor of the
first term. Since we assumed u and v to be relatively prime, this is possible
only if v = 1, meaning that t = tanm/m is an integer.® This immediately
leads to a contradiction for m > 5, since we know from the geometry that
0 < tanm/m < 1. This proves Theorem 5 for odd m. (We can include the
case m = 3, since tan7/3 = /3, and this we have already shown to be
irrational.)®

13. We now consider the case where m is even. Let m = 2*n, where n is odd
and k is at least 1; actually, if n = 1, then we assume k to be at least 3 to
satisfy the condition that m > 4.

If tan(m/m) were rational, then tan(n/(m/2)) = tan(2w/m) would be
rational because tan 2a = 2tan o/(1 — tan? ). If n > 1, then repeating this
k times, we see that tan(w/n) would be rational, which we just proved is not
true.

8 In the last two paragraphs we have essentially shown that in an algebraic equation
with integer coefficients, if the term of highest degree has coefficient 1, then
among all rational numbers, only integers can be roots.

9 Alternatively, we can show using geometry that 1 < tan(m/3) < 2. Using the
above argument, we can show that if tan(xr/3) is rational, then it must be an
integer, and this is impossible.
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If n = 1, then repeating the argument k — 3 times, it would follow that
tan(m/8) is rational, but

tan(n/8) = V2 - 1

is irrational. This completes the proof for even m.

We have already seen that tan(w/3) is irrational. On the other hand,
for m = 1 and m = 4,tan7 = 0 and tan(n/4) = 1 are rational, and for
m = 2,tan(n/2) has no meaning.

14*. In Fact 5 we referred to natural logarithms and their base e. This num-
ber can be defined as the sum of the series
14+ + o ! Pt A
1! 3! n! ’

To the first few decimal places, its value is 2.7182818. In what follows, we
accept without proof that this series converges, and that the arithmetic op-
erations with it used in the course of the proof are allowed; we also accept
the formula for the sum of geometric series given in Fact 4. Using these, we
will prove the following result.

Theorem 6 The number e is irrational.

If e were rational, then its denominator would divide n! for any n at least
as large as the denominator. Let us choose such an n. Then n!e would be an
integer. Multiply the above series termwise by n!. Multiplying the first n + 1
terms, we get an integer A,; the rest of the terms can then be simplified
by n!. Subtracting A, we get

1 1 1

nle—An=—=+ mi)m+2)  mrDm+2)n+3)

By replacing each factor of every divisor by n + 1, we increase the sum. In
this way we get an infinite geometric series with ratio 1/(n + 1) whose sum
is

1/(n+1) 1

1—1/(n+1) n’
Hence we have 1
O<nle—A, < - < 1.

This, however, is not true for any integer, and we conclude that n!e cannot
be an integer. This proves Theorem 6.

15. More than this can be said about e. There is no algebraic equation (poly-
nomial) with integer coefficients, of however large degree, that has e as a root.
The fact that e is irrational means only that e is not the root of an equation
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of the form az —b = 0, where a and b are integers, a # 0. The irrational num-
bers of the form &m are roots of the algebraic equation x* — m = 0, where
k and m are integers, as was discussed in Theorem 1.11. Those numbers that
are roots of algebraic equations with integer coefficients are called algebraic
numbers; those that do not fall into this category are called transcendental
numbers. The number e is transcendental, but the proof of this fact far ex-
ceeds the scope of this book. LIOUVILLE was the first to prove that there are
transcendental numbers. The proof of this will be Exercises 12 and 13.1°

Transcendental numbers do exist, and the proof mentioned in footnote 10
suggests that most numbers are transcendental. On the other hand, deciding
whether a given number is transcendental is a hard problem; in fact, deciding
whether it is rational can already be very difficult.

In addition to e, the ratio of the circumference of a circle to its diame-
ter, 7, has also been shown to be transcendental. This solved the more than
2000-year-old question of squaring the circle: It is not possible to construct,
in the Euclidean sense, using a straightedge and compass, a square whose
circumference, nor one whose area, equals that of a given circle.

It is still unknown whether the number e + 7 is rational. A rather inter-
esting question arises in connection with the infinite series

1 1
3k+ ”+F+”'.

It can be shown that this series converges for any real number k greater
than 1. For all even integers k, the sum can be given in closed form, and
in fact this was done by EULER. The sum of the reciprocals of squares, for
instance, is

1
Ge=1+;

1 1 _n?
EtotmEtS 6"

It easily follows from this tha.t (2 is transcendental, and similarly this can be
deduced for (y; for every positive integer j. On the other hand, it was only in
1979 that R. APERY proved that (3 is irrational, a result that aroused world-
wide attention;!! others have since proved the same result using different
techniques. The problem is still open for higher odd values of k.

It is also unknown whether the so-called Euler-Mascheroni constant is
rational. This number appears in the investigation of several ma.thema.tica.l
questxons It can be defined in the following way: The sum H, = 1+ 3 1+
2 4+ 1 is greater than log(n + 1) (see Fact 6), but not by much. The
dxfference H — log(n + 1) is bounded for every n (for instance, it is smaller

1
G=l+m+g

10 For a totally different (set-theoretic) proof of this fact, see G.H. HaRDY,
E.M. WRIGHT: An Introduction to the Theory of Numbers, Oxford (1960), Sec-
tion 11.6.

1 See A. VAN DER POORTEN: Math. Intelligencer 1, 1979, pp. 195-203; F. BEUK-
ERS: Bull. London Math. Soc. 11, No. 3 (1979), pp. 268-272; E. REYSSAT:
Seminaire Delaunay-Pisot-Poitou 20éme Année, 1978/79, Théorie des Nombres,
Fasc. 1 No. 6.



3.15. Transcendental numbers, results, problems 99

than 1), and as n gets larger, the differences converge to a certain number.
This number is the above-mentioned constant.

Exercises:

7.

9*.

10*

.

11~

12+,

Prove that if g > 2 is an integer, then the two series
o o
1 1
S S
n=0 n=0

both converge to irrational numbers.
Prove that numbers of the form
- + E + - +

where 0 <a; <i—1(i=2,3,...), are rational if and only if starting
from some i on all the a;’s are either equal to 0 (in which case the sum
is finite) or all are equal to 7 — 1.

Using the fact that

prove that e is not the root of any second-degree polynomial with
integer coefficients.

Let the infinite sequences aj,as,... and by, bs,... be such that each
of their elements is either a 2 or a 3. Define
1 1 1
Ay = —+—+ b ————
ay aiaz a1a2-:-Qan
1 1 1
B, = —

bibe bbb

Prove that if a; and b; are different for some %, then for all n > i, the
quantity |A, — By| is greater than a constant independent of n. (In
other words, a number can be represented in at most one way by an

infinite series
1 1 1
— 4+ —+
ai aijaz a)aga3

- ®3)

(Continuation) Prove that a number of the form (3) is rational if and
only if the sequence of the a;’s is periodic from some point on.

Prove that if « is the root of an nth-degree polynomial with integer co-
efficients that cannot be written as the product of integer polynomials
of smaller degree,'? then there exists a number k such that, with the

12 Polynomials of this type are called irreducible.
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exception of at most finitely many fractions u /v, the following relation
holds:
S
a— = )
v "

where u and v are integers (Liouville).

13. (Continuation) Prove that the following infinite series converges to a
transcendental number:

1 1 1
§1T+2_2i+”'+§-{?+'”

(Liouville).

16. So far we have dealt with irrational and transcendental numbers. Still,
we know the rational numbers much better.

In the previous section we mentioned that we do not know, for instance,
whether the Euler—-Mascheroni constant or the numbers {2x+1 for k& > 2 are
rational. Whichever the case may be, calculations with these numbers are not
easy based on their (rather complicated) definition. In the introduction we
mentioned that in cases like this it would be convenient to approximate real
numbers by rational numbers with small denominators.

It is known that the decimal representation of the Euler-Mascheroni con-
stant is 0.5772156649. .. . If we approximate this to only two decimal places
by 0.58 = 58,/100 = 29/50, then the deviation of this fraction from the con-
stant is less than 0.003. However, the rational number 11/19 = 0.57894.. .,
written with much smaller integers, differs by less than 0.002 from the con-
stant. If we consider fractions with denominators slightly larger than 100, we
see that 71/123 = 0.57723577... already differs by less then 0.000021 from
the constant.

In general, if one is required to approximate a real number a by a frac-
tion with a given denominator v (for example, with denominators 100 or
1000000}, then we consider the two multiples of 1/v that surround «, and
choose the one that is close to a. This cannot be at a distance greater than
half of the interval of length 1/v away from «, so this procedure yields a
fraction u/v for which

We cannot improve this for an arbitrary v, since o may fall right in the middle
of the interval 1/v, or arbitrarily close to the middle.

The above examples show that among the fractions whose denominators
are not greater than v, we can find ones that are much closer to & than 1/(2v).
Examining the product of this difference with v, we would like to know how
small we can make the number

u
v}a—-l:lva—ul
v
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if we consider all integers u and v, with v positive and not greater than a
given value gq.
We can already give a bound much smaller than % to this question.

Theorem 7 For any real number a and any positive integer q, it is possible
to find integers u and v such that v # 0 and

1
]’ua—u|$q—_ﬁ and 1<v<gq.

Applying this theorem to the approximation by the fraction u/v gives

u 1 1 1
\a— -‘ ==jra—-ul < —= < =.

vl v v(g+1)  v?
In this light it is not so surprising that in the above example we could find
such close approximations.

The only restriction on u in Theorem 7 is that « must be an integer. That
is, the theorem states something about the distances between the numbers
a,2q,...,qa and the integers closest to them; it is not important which
integer this is. It is easier to understand these quantities if we consider them
as arcs measured on the perimeter of a circle of circumference 1 starting from
a point Py, measure the arcs o, 2a, ..., ga onto the perimeter, not worrying
if we wind around the circle more than once. This amounts to disregarding
the integer part of a number.

Call the positive direction that in which we measured these arcs onto
the perimeter of the circle and let the negative direction be its opposite (see
Figure 4, where g = 12).

Denote the points on the perimeter in the order they were measured by
P\, Py, ..., P,. Together with Py, we have divided the perimeter into ¢ + 1
arcs, and the length of the shortest such arc is not greater than 1/(¢g + 1).

Let P, P; be a shortest arc. This is the length of the arc, independent of the
direction discussed above. (We do not exclude the case that the points P;
and P coincide, in which case « is a rational number that can be written
as a fraction with denominator not exceeding q.) We now assume that « is
irrational and r > s, say. We can then formulate our observation

— — — 1
FPo= Rob, - Fobil < .

where Py P, and Py P; are the lengths of the arcs between Py and P, (respec-
tively P;), measured in the positive direction. These values are the fractional
parts of ra and sa, respectively, which we can write as the number minus its
integer part. In other words

lra — [ra] — sa + [sa]| = |[(r — s)a — ([ra] — [sa])] < -q—i—l
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B R
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v

e

E B,

FIGURE 4.

Here 0 < s <r < g, ie, 0 <r—s <gq, and defining u = [ra] — [sa] and
v = r — s we have integers u and v satisfying the claim of Theorem 7.13

If o is rational, then with a large enough g, we get « itself as the approx-
imating fraction, and there is no better approximation than this. This way,
the series of approximating values in the theorem is finite. Theorem 7 would
not be worth much if this situation were true for irrational a as well. Luckily,
it is not hard to see that this is not the case.

Theorem 8 Let a be an irrational number. There exist infinitely many frac-
214

tions up /v, (n=1,2,3,...) that approrimate o to within 1/v2.

Applying Theorem 7 here with g¢; = 1 we get the first such fraction u; /v,
(v =1 and wu; is the closest integer to o). We now choose an integer g2 so
that the corresponding fraction u;/ve guaranteed by Theorem 7 is closer to a
than u; /v; was. For this it suffices to choose g2 so that 1/(g2+1) < |[via—1u;|
is satisfied.

Proceeding further in this fashion, if we already have found wu;/v;, then
we choose the next integer ¢;+1 satisfying 1/(gi4+1 + 1) < |v;a — u;|. This is
always possible, since « is irrational, and this way none of v;& — u; can be 0.
The next fraction u;41/vi+1 corresponding to g;+1 in Theorem 7 satisfies

13 The proof also shows that equality holds if and only if the P;’s divide the perime-
ter of the circle into equal arcs of length 1/(¢g+1), that is, if « is a rational number
whose denominator in its simplest form is ¢ + 1.

14 For a rational, the expanded forms of the fraction a (e.g., for 1 we have 1,2, 2,
etc.) provide these infinite approximating values.
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1
UVip1Q@ — Uig | < ———— < |via —
] i+1 1+1| Qi+1+1 l ! 1‘7
and hence this new fraction is different from any of the previous ones. As
mentioned earlier in the discussion of Theorem 7, for these fractions u, /v,
the following inequality holds:

un|< 1 1

a- 2| < ——x < =
e PR ) .

17. We have shown that for every irrational number there are infinitely many
fractions close to it in the sense above. This leads to further questions. How
do we find such a fraction? Is it possible to give a better approximation for
every irrational number in the sense of Theorem 77

There are different ways to answer these questions. The technique used
in the proof of Theorem 8 gives one possible method. We saw that in the
case where we return to Py (when « is rational), then the points are equally
spaced around the circle (the vertices of a regular polygon).

Even before the sequence possibly returns to Pp—in the case where a
is irrational it never returns—the points are distributed fairly regularly. We
saw in the proof of Theorem 7 that the distances between neighboring points
first appear on an arc with the first point P;. We can see that the distance
between two neighboring points (measured in term of arc length) is equal to
the distance from P, to the closest point on one of its two sides, or to the
distance between the two points that are closest to Py, each on a different
side; hence it can take on only 3 possible values.

If for a given n we know the indices of the points neighboring Py, then
the order of the indices for all points can be determined. Based on these
observations, we can answer the questions raised above. This method was
worked out mainly by V. T. Sés, and she also gave important applications
of it.}5 (See the exercises below.)

We will handle these questions in the next chapter based on a different
geometric interpretation.

Exercises:

14. Using the same notation from the proof of Theorem 7, prove that if in
measuring off n-times an arc of length a on a circle with unit circum-
ference, the sequence does not land on Py again, and P, and P, are
the closest neighbors of P, on each side, then if we continue measuring
off arcs, P,,s is the first point that will fall between P, and P;.

'® See, for example, V. T. S6s: Acta Math. Hung. VIII (1957), pp. 462-472, and
IX (1958), pp. 229-241, and Annales Univ. Sci. E6tvés L. Sect. Math. 1 (1958),
pp. 127-134.
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15. (Continuation) Using the notation of the previous exercise, let P, be
the closest neighbor of P, in the direction giving the shorter arc from
Py to Ps. Show that only the following cases arise:

(a) Ifu>r,thenv=u-—r,

(b) fu<n-—s,thenv=u+s,

(¢) fn—s<u<r,thenv=u-—r+s.

We note that all u between 1 and n fall into exactly one case. The
statement of the problem 1mphes the three—dlstance theorem we men-
tioned, since we see that P P, is equal to P P, in case (a), it is equal
to POPs in case (b), and it is equal to PrPs in case (c).

There are always values of u that satisfy case (a) and that satisfy case
(b), but if n = r + s — 1, then there is no u that satisfies case (c). In
this case, there are only two different distances that appear between
neighboring points.

18. The solution of Exercise 12 furnishes LIOUVILLE’s theorem, which states
that if o is the root of an irreducible polynomial of degree n with integer
coefficients, then there exists a number k such that with the exception of at
most finitely many fractions u/v, the following relation holds:

u
e
v

A. THUE improved this statement in 1909, showing that for any k, no matter
how large, the conclusion still holds. From this it follows that if f is an
irreducible polynomial of degree at least 3 with integer coefficients and c a
nonzero integer, then the equation

F(z,y) =y"f(z/y) =c

can have only finitely many integer solutions. Equations of this type are

called Thue equations. THUE proved more than this. He showed that for any
positive (small) ¢, the inequality

U 1

IQ - ;l ’U"'/ 24¢€

has only finitely many solutions.

19. K. F. ROTH proved in 1955 that if ¢ is an irrational algebraic number,
then for arbitrary positive €, the inequality

U 1

la - ;l > p2te
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can have at most finitely many fractions as solutions.!® For this result he
received a Fields Medal!” at the 1958 International Congress of Mathemati-
cians in Edinburgh.

With the new methods of this deep result, new research directions were
undertaken. Still many problems remain unsolved. Is it possible to replace v¢
in the denominator by some other function of v (for example logv) that goes
to infinity more slowly than the exponential? ROTH’s techniques apparently
cannot be applied in this direction, whereas this would be interesting because
of its applications.

Further questions remain, such as whether there exists an algebraic num-
ber o such that for all positive e there are integers u and v satisfying the
inequality

u €
‘a - 5' <@
Nothing is yet known in this direction.

There is a corollary of ROTH’s results, similar to that for THUE’s which we
mentioned, concerning the number of integer solutions of algebraic equations
in two variables. Namely, if f(z) is an irreducible polynomial of degree n with
integer coeflicients, F(z,y) = y™f(z/y), and G(z,y) is a polynomial of degree
at most m — 3 with integer coefficients, then the equation F(z,y) = G(z,y)
can have at most finitely many integer solutions (z,y).

These results are quite significant, since in the theory of Diophantine
equations there had been very few general results before these, and most of
the equations required new and original ideas.

20. Many important generalizations of THUE’s and ROTH’s theorems were
given later. We will mention two important ones. C. L. SIEGEL (1926) showed
that if m > 2 is an integer, and f(z) is a polynomial of degree at least 3,
with integer coefficients, and having all distinct roots, then the so-called
superelliptic equation

y" = f(z)

has only finitely many solutions with integers = and y.

In order to state the second consequence, let py,. .., ps be distinct primes.
Denote by S the set of rational numbers that in reduced form have a denom-
inator that is not divisible by primes other than p;,...,ps. We call such
rational numbers S-integers, and those for which the numerator is also not
divisible by primes different from those given are called S-units. We then call
an equation of the form

16 See Mathematica, 2 (1955), pp. 1-20, and p. 168. The reader will find references
in the article to the earlier results.

'7 Fields Medals are given to outstanding mathematicians for work they do by the
age of 40. They are awarded every four years at the International Congress of
Mathematicians, usually to two to four mathematicians; they are considered one
of the most prestigious awards in mathematics.
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au+bv=c

an S-unit equation whenever a, b, and c are integers different from 0, and we
are interested in S-unit solutions. (We may assume that a,b, c are positive,

relatively prime, and not divisible by any of the primes pi,...,ps.) More
precisely, we are looking for integers z;,...,Zs,¥1,-..,Ys that are solutions
to

ap:fl ...p::" +bpgl ...pgﬂ = C.

In 1933, K. MAHLER showed that even this has only finitely many solutions.!8

The theorems mentioned above have few applications, since their proofs
are not constructive; they do not give a method to find a bound above which
there is no solution. In the 1960s, A. BAKER worked out a method by which it
is possible to give bounds on the solutions of many Diophantine equations.!?
His work was recognized in 1970 at the International Congress of Mathemati-
cians in Nice, France, where was awarded a Fields Medal. We will mention
some of the many results that appeared in the wake of BAKER’s work.

21. BAKER applied his methods to many problems, among them Thue equa-
tions and superelliptic equations. The latter were significantly generalized by
B. BRINDZA. The best known bounds for the Thue equations were given by
BUGEAUD and GYORY.% Their result states that every solution z,y satisfies

max(z,y) < BH" " (log )Y,

where
B=max(jb,3), c=(n+2)8r+D),

and H (> 3) is an upper bound for the absolute values of the coefficients
of f.

Using BAKER’s method, again BUGEAUD and GYORY obtained the best
known bounds, that

max(|z1],. .., ||, [v1ls - Jus]) < (3(s + 1))+ P(log P)**+! log H,

where P is the largest of the primes p1,...,ps, and H = max(a,c, b, 3).

The bounds given above for n,H,s, and P can most likely be greatly
improved, but this appears to be a very difficult problem. In principle, these
bounds enable us to find all solutions, and also to prove that certain equations

18 See for example L. J. MORDELL: Diophantine Equations, Academic Press, 1969.
This work also gives a broad survey of the variety of methods used to solve
different equations.

19 For the method and its applications, see A. BAKER: Transcendental Number
Theory, 3rd edition, Cambridge, 1990, and T. N. SHOREY, R. TIIDEMAN: Ezpo-
nential Diophantine Equations, Cambridge, 1986.

20 Y. BUGEAUD, K. GYORY: Acta Arithmetica T4 (1996), pp. 67-80 and pp. 273-
292.
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do not have any integer solutions, but in practice, these algorithms take too
much time to execute, even on the fastest computers. For certain equations it
has been possible to further reduce the bounds to a point where all solutions
could be found by a computer. In the past 15 years, many people, includ-
ing A. PETHO, B. DE WEGER, B. TZANAKIS, M. MIGNOTTE, I. GAAL,
M. POHST, have obtained results of this type.

The experience to date suggests that in the theory of Diophantine equa-
tions it is very rare that an equation has “large” solutions, or “many” solu-
tions. This was supported by a result of E. BOMBIERI and W. M. SCHMIDT
(1987), which states that the number of relatively prime solutions z,y to a
Thue equation is at most cnt*!, where c is a positive absolute constant, and t
is the number of distinct prime divisors of b. It is interesting to note that this
bound does not depend on the coefficients of f.

In 1984, J. H. EVERTSE showed that the number of solutions of an S-unit
equation is at most 3-¢25*! which is also independent of the coefficients a, b,
and c. P. ERDOs, C.L. STEWART, and R. TIIDEMAN showed that this is
not far from the best possible bound, for if welet a =b=c=1, p;,...,ps
be the first s primes, and s be large enough, then the S-unit equation has
more than

o(s/logs)*/?
solutions. EVERTSE, GYORY, STEWART, and TIJDEMAN also showed that
with only finitely many exceptions, there are at least two solutions to the
above equation for triples a,b,c relatively prime to each other and also to
P1,---,Ds, and hence the bound cannot in general be improved.

22. In the 1970s W. M. SCHMIDT extended ROTH’s theorem to the simulta-
neous approximation of many algebraic numbers, even to linear forms with
algebraic coefficients. He was able to use his methods for numerous equations
in arbitrarily many unknowns and S-unit equations with arbitrarily many
elements to show that there are only finitely many solutions, and in fact to
obtain an upper bound on the number of solutions, and he was also able
to give the structure of the entire solution set.?! Unfortunately, SCHMIDT’s
methods do not give a bound on the size of the solutions.

The problem of determining the best upper bound for Diophantine ap-
proximation is the subject of the next chapter.

A For a good survey of recent investigations and results, see A. BAKER
(ed.): New Advances in Transcendence Theory, Cambridge, 1988, chapter 10;
W. M. SCHMIDT: Diophantine Approzimations and Diophantine Equations, 1991;
and K. GYORY: Publ. Math. Debrecen 42 (1993), pp. 65-101.






4. Geometric Methods in Number Theory

1. In the proofs of the previous chapters we often used geometrical considera-
tions. We will present one more such proof. Wilson’s theorem (Theorem 2.14)
was easily proved in two different ways using congruences. We will now give
a proof of it that does not use congruences.

The claim of the theorem, without reference to congruences, is that if p
is a prime, then (p — 1)! + 1 is divisible by p. For p = 2 this is clearly true,
so we will consider only odd primes p. By Fact 1 we know that (p — 1)! is
the number of permutations (reorderings) of the numbers 1, 2, ...,p— 1. We
will represent every permutation as a directed closed polygon inscribed in a
circle. Let Ag, Ay, ..., Ap—1 be the vertices of a regular inscribed p-gon. To a
permutation jyja ... jp—1, we will associate the closed figure whose directed
edges are from Ag to A;,, from Aj, to Aj,,..., from 4;, _, to A, _,, and then
from Aj; _, back to Ag. (Figure 1 corresponds to p = 7 and the permutation

Jp—
265143.)
A, A, A, A,
As A2 As A2
Ag A, Ag A,
Ao AO
FIGURE 1.

If Ty is such a closed figure, then by rotating Tp repeatedly by 360/p
degrees, we get a sequence

To, 11, .-, Tny- -
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of closed figures. (The first rotation of the figure produces the permutation
625413; see Figure 1.) It is clear that T, = T, and from then on the figures
repeat themselves periodically; it is possible, however, that a closed figure
occurs earlier. Let T be the first that is the same as a previous T;. Then
1 = 0, for if it were larger, Ti_; would have already been the same as T;_;.

The distinct closed figures Ty, T3, . .., Tk—1 repeat periodically, and those
for which the index is a multiple of k are the same as Ty. Thus p is divisible
by k, and hence k is either 1 or p. With these rotations we have partitioned
all the closed figures into sets of size 1 and sets of size p.

Those closed figures that are already mapped onto themselves with the
first rotation can be obtained by drawing a segment from Ag to some A,
and rotating. In this way we always get a closed figure with p vertices. If the
figure were to become closed after fewer than p steps, then this closed figure
and its isolated copies would contain the p copies of AgAk. Thus the number
of sides of one closed figure would divide p, and since 1 side is not possible,
our claim holds true. The number of polygons that are the same with each
rotation is therefore the number of ways of drawing the first edge from Ag,
which is p — 1. The remaining

p-D=(p-1)=p@E-+1-p

closed figures are divided into groups of size p. This means that p divides
(p — 1)! + 1, proving the theorem.

2. Further questions arise from this theorem. If the prime is 2, 3, or 5, then
(p—1)!'+1is 2, 3, or 25, respectively. Can (p — 1)! + 1 be a power of p for
other primes? In Chapter 7 we will show that this does not happen for other
primes. It is possible, however, that (p—1)!+1 is divisible by p?, for example
132 | 12! + 1. It is still unknown whether there are infinitely many primes for
which this holds.!

The geometric proof of Fermat’s theorem and the proof above are similar
not only in the sense that they both use closed figures inscribed in the circle.?
In the exercises that follow we formulate the common thread of this argument
and give examples of further applications.

Exercises:

1. Let S be an n-element set and T a one-to-one mapping of S onto itself.
We write the repetition of T m times as T™.

! This property is shared by 563 and by no other primes up to 200 000. (Personal
communication from I. Z. RUzSA.)

2 In the first case we illustrated variations with repetitions and their cyclical per-
mutations; in the second, we place a 0 in front of the permutations of the numbers
1,2,...,p—1; we reformulate the rotation as follows: To every element of a per-
mutation we add 1, replacing p by 0; we then cyclically permute the numbers
to put O at the beginning. With these reformulations, however, the proof would
lose its suggestiveness.
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(a) Prove that if c is an arbitrary element of S, then the sequence
¢, Tc,T?%c,...,T™c,...

is periodic, and if ¢ is the shortest period and T"c = c, then ¢ | n.
(b) Show that the two proofs mentioned above can be seen as appli-
cations of this theorem.

2*. Prove using the claim in the previous exercise that if p is a prime
and 1 < a < p— 1, then (£) (the number of a-element subsets of a
p-element set; see Fact 2) is divisible by p.

3". Prove using the theorem in Exercise 1 that if the positive integers
a,b,c, and d satisfy ab = cd, then there exist positive integers r, s, ¢,
and u satisfying

a=rs, b=tu, c=rt, d=su.

(This is the four number theorem, Theorem 1.2.)

4*. Use the theorem in Exercise 1 to prove the following version of Fer-
mat’s theorem: If p is a prime and 1 <a < p-1, thenp|aP™! -1
(Theorem 2.11%).

We note that in proving the above exercises it was necessary to use only the
fact that prime numbers are indecomposable, and in this way every result can
be used to show that prime numbers have the prime property (Theorem 1.7).3
This and the more general Euclid’s lemma appeared in the first chapter as
consequences of the four number theorem.

3. Until now, the geometric proofs we have presented were related to the
circle, and at the end of the previous chapter we mentioned that these types
of applications can be much further developed. Another branch of geome-
try that has many applications to number theory, especially to Diophantine
approximation, is that of geometric lattices. This was first investigated by
H. MINKOWSKI, and it is called the geometry of numbers.* In what follows
we will be concerned with lattices.

Theorem 3.7 from the previous chapter admits, e.g., the following geo-
metric interpretation. We associate to every pair of integers (u,v) a point in
the plane whose coordinates are

T =vo— U, y=v. (1)

3 See K. HARTIG, J. SURANYL: Periodica Math. Hung. 6 (1975), pp. 235-240.

* In addition to his articles, he wrote two books that thoroughly deal with this
subject: Geometrie der Zahlen (Leipzig, 1897) and Diophantische Approxima-
tionen (Leipzig, 1907). A modern treatment is given in J. W.S. CAsseLs: An
Introduction to the Geometry of Numbers (Springer, 1959), and further in the
encyclopedic work P. GRUBER, C.G. LEKKERKERKER: Geometry of numbers
(North Holland, 1987).
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If @ = 0, then we get all points in the plane with integer coordinates. If
a # 0, then let us consider those points for which v = 0 and u is an arbitrary
integer. These are all the points on the z-axis with integer coordinates, hence
a sequence of points on a line at equally spaced intervals of length 1. For
u = 0 we get the points that arise by repeatedly measuring off the vector
(a, 1). These are the points on the line e through the origin with slope 1/a
occurring at equally spaced intervals. For another fixed u and an arbitrary
integer v, the points in (1) arise from the points of e by translation by the
vector (—u,0). If now v is fixed and u is arbitrary, these points arise by
translating the points on the z-axis by the vector (va, v).

Points of the form (1) are therefore the intersection of two families of
parallel lines. In each family, the parallel lines occur at equally spaced in-
tervals (this distance can be different in the two families). The two families
together divide the plane into congruent parallelograms all having the same
orientation. Two such parallelograms can intersect in either a side or a vertex

[T TTT

FIGURE 2.

The structure created by the lines is called a parallelogram lattice, the
points of intersection are called lattice points, and all these points together
are called a point lattice. The fact that one of the families (and in the case
a = 0, both families) consisted of lines parallel to a coordinate axis is only the
consequence of the special problem. This will not be assumed in the sequel.

The parallelogram lattice uniquely determines the point lattice, but as we
see in Figure 3, the converse is not true.

4. From our observations above, a parallelogram lattice is determined by
two intersecting lines in the plane and two distances. We then consider the
family of lines that are parallel to the first line and at a distance an integral
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FIGURE 3.

multiple of the first distance; furthermore, we will consider as well the family
of lines that are parallel to the second line and at a distance an integral
multiple of the second distance. We call these lines the lattice threads. The
intersection points of the lines determine the lattice points of the lattice.
The parallelograms determined by neighboring pairs of lines are called base
parallelograms.

B
C
A R
T\/r
)
FIGURE 4.

Put a coordinate system on the plane in such a way that the origin O is
a lattice point. Let OABC be a base parallelogram, and let p and g be the
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vectors determined by the sides OA and OC, respectively (Figure 4). From O
we can arrive at an arbitrary lattice point R by first traversing along line OA
until we reach the line parallel to OC containing R, and then we continue
along this line to R. The first shift is an integral multiple of p (possibly
negative), the second an integral multiple of g. In this way we can write the
vector r = OR as a sum of multiples of p and q in the following way:

r=u-p+v-q. (2)

In this way, u and v are uniquely determined, for if we obtain somehow a
representation r = u’p + v'q, then we have

(u—u)p=(v-1'gq,

and this is possible only if u = u’ and v = v/, since p and q are not parallel.

It is clear that for all integers v and v, moving by the vector (2) brings
the origin onto a lattice point.

Let the coordinates of p, g, and 7 be (k,1), (m,n), and (z,y), respectively.
From (2) we have

' z = uk + vm, y=ul+vn. (2"

Here d = |kn — Im| is the area of a base parallelogram, as the values (0, 0),
(1,0), and (0,1) of (u,v) furnish the coordinates of the points O, A, and
C, and the area of the triangle determined by these three vertices of a base
parallelogram is half of d. This is obviously nonzero.

Theorem 1 The lattice points of a parallelogram lattice are those points
given by (2) for two nonparallel vectors p and q and two integers u and
v, and they can also be expressed by (2') for real numbers k,l,m, and n. Here
d = |kn — lm| is the area of a base parallelogram.

These lattices have many interesting properties. Two basic ones are men-
tioned here:

Basic Properties. 1. If we translate a lattice so that one lattice point is
moved onto another, then the entire lattice is moved onto itself.

II. There is a positive number such that the distance between (distinct)
lattice points is never smaller than this number.

To verify property I, we need to see that every lattice point moves onto
a lattice point, and every lattice point is the image of a lattice point. This is
obvious once we realize that there is a line from each family of lattice threads
that goes through the image of the translated point, and that these lines are
parallel to the lines through the original point. The lines in these families
are parallel and evenly spaced, and thus we see that the families are mapped
onto themselves; hence the parallelogram lattice and the point lattice are also
mapped onto themselves.
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Property I1 is also easy to verify. For an arbitrary lattice point, we consider
the four base parallelograms of which it is a vertex. These together determine
a parallelogram twice the size of a base parallelogram with the chosen point
in the middle and no other point inside. The smaller of the two heights of a
base parallelogram is therefore a distance with the required property.

We can infer further properties of lattices using these basic properties,
some of which are quite surprising.

5. The lines that pass through at least two lattice points we will call lattice
lines. The lattice threads are examples of lattice lines. We similarly define
lattice vectors, lattice intervals, and lattice polygons to be those whose vertices
are lattice points. We can rephrase the first property as follows: Translation
by a lattice vector maps the lattice onto itself.

If we consider two points of a lattice line e, then by the second property,
there can be only finitely many lattice points on e between these two points.
We can assume that A and B are neighboring lattice points on this line
(Figure 5). Translating the lattice by AB maps e onto itself, and B onto a
lattice point B'. Between B and B’ there is no lattice point, since such a point
would be the image of a lattice point between A and B, but we assumed that
there is no such point. Similarly, B’ is mapped onto a neighboring lattice point
B", etc. Translation in the opposite direction moves A onto a neighboring
lattice point A’, A’ onto a neighboring lattice point A", etc.

T

FIGURE 5.

Consider a lattice point C not on e. By the two properties, translation
by vector AC maps e onto a line parallel to it, which has lattice points at
distance AB. Call D the image of B. The parallelogram ABDC contains only
finitely many lattice points. There are therefore only finitely many lattice lines
between AB and CD parallel to e, since every such line has an interval of
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length AB falling in the parallelogram, and every such interval contains at
least one lattice point.

If C'D’' is one of the neighboring lines parallel to e, then translation by
the vector AC maps C'D’ into one of its neighboring lines, this line into one
of its neighboring lines, and so on. In the opposite direction, e is mapped
into its other neighboring lattice thread, which is at the same distance as e
is from C’D’, and so on.

D D
B
B=C
C
A A
(a) (b) (©)
FIGURE 6.

We can formulate our observations as follows: If A, B, and C are lattice
points and AB = C-—Lj, then D is also a lattice point, and ABDC is either a
parallelogram or the four points are on a line (Figure 6). In both cases, the
midpoints of AD and BC coincide, and D is the mirror image of A through
this midpoint. In the special case where B and C are the same lattice point,
then D is the mirror image of A with respect to that lattice point (Figure 6c).
We summarize our results here:

Theorem 2 (a) In a point lattice, a line either contains at most one lattice
point or infinitely many evenly spaced lattice points.

(b) If through every lattice point we draw a line parallel to a given lattice
line, then each line is a lattice line with infinitely many lattice points and the
distance between any two neighboring lattice points is the same.
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(¢) The mirror image of a lattice point either through another lattice point
or through the midpoint of a lattice interval is also a lattice point.

6. The points with integer coordinates can be viewed as the lattice points of a
square lattice. Using Theorem 2, we can answer the following question: Which
regular polygons can occur as lattice polygons (in an appropriate lattice)?

FIGURE 7.

In a regular lattice polygon we reflect each vertex about the midpoint of
the line segment adjoining its two neighboring vertices (Figure 7). By Part (c)
of the theorem these are all lattice points again. In the case of a triangle, the
new points determine a new equilateral triangle whose sides’ midpoints are
the vertices of the original triangle. In a square, each vertex is reflected into
the opposite vertex; for a hexagon, all vertices are reflected into the center.

For polygons with a different number of sides, the reflected points would
be the vertices of a smaller polygon with the same number of sides. This is not
possible, since repeating this reflection process would lead to infinitely many
lattice polygons, and hence infinitely many lattice points all in the interior of
the first polygon. There would be arbitrarily small distances occurring among
these points, contradicting property II.

7. Lattice squares can occur, as we have seen, simply by building a lattice
out of squares. If we build a lattice out of rhombi with acute angle 60°,
then we see that it contains lattice equilateral triangles and lattice regular
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hexagons, too (Figure 8). Regular lattice hexagons and lattice equilateral
triangles occur together, for if we have a regular hexagon, taking every other
vertex we have the vertices of an equilateral triangle. If ABC is a lattice
equilateral triangle, then the six lattice points B,C, the mirror images of
B through the midpoint of AC and through A, and the mirror images of
C through A and the midpoint of AB are the vertices of a regular hexagon
(Figure 8).

Cy B/ /
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\
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\

' /
/B ’C 7

FIGURE 8.

We will show that if a lattice contains a lattice square, then it cannot
contain a lattice equilateral triangle (nor a lattice regular hexagon). Choose
for a coordinate system two adjacent sides of a lattice square, and let the
unit length be the length of a side of the square. In this way the axes are
lattice lines. The lattice lines parallel to the z-axis cut the y-axis into intervals
of equal length, and distances between neighboring cut points are therefore
rational. Every lattice point is on one of these lines, and therefore the y-
coordinate is rational. For the same reason, the z-coordinate is also rational.

We conclude that the slope of any lattice line is also rational, and by the
formula . tan 8

ana — tan
tan(a — §) = 1—tanatanf

we see that the tangent of the angle of intersection of two lattice lines is also
rational. The angle 60° that occurs between sides of an equilateral triangle
cannot occur, since tan60° = /3 is irrational. We summarize our results
here:

Theorem 3 In a parallelogram lattice, the only regular polygons that can
occur as lattice polygons are triangles, squares, and hexagons. '
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If there is a lattice square, then there is no lattice equilateral triangle nor
a lattice regular hezagon. If there is either a lattice equilateral triangle or a
lattice reqular hezagon, then the other also occurs.

This theorem is due to T. GALLAI and P. TURAN, who proved it as
students. The proof presented for the first part is due to F. KARTESzZ1.5

8. We mentioned that a point lattice can be obtained from a parallelogram
lattice in different ways. It is not difficult to determine all such parallelogram
lattices.

We first note that a parallelogram lattice is determined by a single base
parallelogram. More precisely, for any parallelogram there corresponds a
(unique) parallelogram lattice for which the parallelogram is a base paral-
lelogram. The pairs of opposite sides define neighboring lines in each of the
two families, and the remaining lines in the families are parallel to these,
at intervals whose distance is the distance between the corresponding pair
of parallel sides. We say that the parallelogram generates the parallelogram
lattice.

If a lattice figure does not contain lattice points other than its vertices, we
call it empty. With these definitions we can now state the following theorem.

Theorem 4 A point lattice is the point set of those parallelogram lattices
that are generated by empty parallelograms.

It is clear that if not every vertex of a parallelogram is a lattice point, or
if there is a lattice point in the interior of the parallelogram or in the interior
of one of its edges, then the point lattice it generates is not the same as the
original one.

The important part of the theorem is that every empty parallelogram
generates the point lattice. This is easily seen with the help of Theorem 2,
Part (b). Let P be the given parallelogram lattice, Q its point lattice, and let
ABCD be an empty parallelogram (Figure 9). Let R be the parallelogram
lattice generated by ABCD, and call the point lattice it determines S. We
need to show that Q and S are identical.

The lattice points on the lattice line AB of lattice P form a sequence of
points at equal distances AB. According to the definition of R, its lattice
threads parallel to AD cut the line just in these points.

These lattice threads of R are lattice lines occurring at a distance the
same as that between AD and BC, and thus coincide with the lattice lines in
P parallel to AD. On these lines, which can be viewed as either lattice lines
of P or as the lattice threads of R, the lattice points occur at equal distances
AD. In this way, Q and S coincide, finishing the proof.

® See Mat. és Fiz. Lapok 50. (1943), pp. 182-183, problem 12 (in Hungarian).
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FIGURE 9.

9. Based on Theorem 4, it seems very likely that in a parallelogram lattice,
all empty lattice parallelograms have the same area. It is an equivalent state-
ment that all empty lattice triangles have the same area. The more general
statement that we present as the next theorem is due to G. PIcK.%

Theorem 5 If the area of the base parallelograms in a parallelogram lattice
is d, and a lattice polygon contains h lattice points in its interior and b lattice
points on its boundary, then its area T is

h
T—-(b"{'é""l) d.

This shows that the area of the polygon is determined only by the number
of lattice points, and not by its shape. Every empty lattice quadrilateral, for
example, has area d (b = 0 and h = 4); and every empty lattice triangle has
area d/2.

The theorem is clearly true for those parallelograms P whose sides lie
on lattice threads: Translate the lattice so that the lattice points move to
the midpoints of the base parallelograms (Figure 10, the dashed lines) and
consider the lattice parallelograms arising from the translated lattice. Every
lattice point in the interior of P is the center of a parallelogram of area d
from the translated lattice. The lattice points of P on the boundary that are
not vertices are surrounded by parallelograms of area d/2; the small paral-
lelograms that arise around the vertices of P together have area d. Putting
this together, we get

bd+@+d=(b+'—;—1) d

8 G. Pick: Lotos Prag. (2) 19 (1900), pp. 311-319.
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FIGURE 10.

as the area, verifying the theorem in this case.

Denote the expression on right side of the equality in the theorem by K.
The following provides the key to finishing the proof for all polygons:

Lemma Let R be a lattice polygon; assume that R is divided into two parts R,
and Ry by lattice line segments going through its interior. Then the following
equations hold with the parameters of the polygons given with the appropriate
indices:

T=T+T3, K=K, + K,.
(See Figure 11.)

Only the second of these needs to be proved. Let s be the number of
lattice points on the dashed line. Then

b="by +by+s—2,
because the two endpoints of the dashed line are also points of the boundary
of R. If we count the points on the boundary of the two smaller polygons,
we get twice the points on the boundary of R, except the endpoints of the
dashed line, which were already taken into account. Hence

hi+hy=2s+h—-2; ie, h=hy+hy—25+2.

We substitute this into the left-hand side of the equation, to get
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FIGURE 11.

K=(51+b2+s_2+’£ﬁﬂ_2_1> d

2
h h
= (b1+b2+71+—22—2) d= K, + K.
With this we have proved the lemma.

We can rephrase the lemma as follows: If the theorem is true for two
subpolygons of a polygon, then it is true for the polygon itself. This is of
course true for more than two parts as well. We can also rephrase the lemma
as follows: If the theorem is true for a polygon and a subpolygon of it, then
it is also true for the other subpolygon.

10. We will now prove the theorem for triangles. We first verify it for triangles
that have lattice threads as two sides. If AB and AC are lattice intervals of
lattice threads through the lattice point A, and D is the mirror image of
A through the midpoint of BC (Figure 12), then we have a parallelogram
ABDC for which the theorem is true. By Theorem 2, Part (c), the triangles
CAB and BDC have the same area and contain the same number of lattice
points. Thus T} = T» and K; = K>, and

T=T1+T2=2T1=K1+K2=2K1, T, = K,

showing that the theorem is true for the triangle ABC as well.

From this it already follows that the theorem is true for all lattice trian-
gles. Given an arbitrary lattice triangle, we draw the lattice threads through
the three vertices; we have two sets of three parallel lines (Figure 13). It is
possible that some of these lines coincide. Among these lines, four determine
a parallelogram enclosing the triangle. The lines are lattice threads, so the
intersections are lattice points; hence the parallelogram is a lattice parallel-
ogram.
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Among the three vertices of the triangle, either all three are on the bound-
ary of the parallelogram, or one side is a diagonal of the parallelogram, the
two vertices are vertices of the parallelogram, and the third point is in the
interior of the parallelogram. In the latter case, the lattice threads through
this third vertex cut out a lattice parallelogram smaller than the original one.

We can then get the triangle by starting with the large parallelogram,
removing the aforementioned parallelogram, if it is present, removing those
triangles that have lattice threads as two of the sides (there can be three,
two, or possibly just one of these). The theorem holds for the original paral-
lelogram and all the parts we have removed from it. In this way, the theorem
holds at each step for the remaining polygon; hence it is true for triangle
ABC too.

We mention here that this shows that the area of all empty lattice triangles
is the same, d/2, and that all empty lattice parallelograms have the same area
d, since they can be split by a diagonal into two empty lattice triangles.

11. We now finish the proof for all lattice polygons’ by induction on the
number of vertices. We use the fact that every polygon with at least 4 sides

7 We consider only simple polygons, i.e., those for which two sides do not intersect
each other and vertices are contained on only two sides.
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FIGURE 12.
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A

FIGURE 13.

has a diagonal contained in its interior.2 We will prove this last statement at
the end.

We already know that Theorem 5 is true for all triangles. Assume that
it is true for all polygons with fewer than n sides (n > 3). Let us examine
such an n-gon. Let KL be a diagonal contained in the interior. Since it is a
diagonal, both parts of the boundary between K and L contain additional
points, and hence each of the two parts has fewer than n vertices. Thus the
diagonal divides the figure into two polygons each with fewer than n vertices.
By the assumption, the theorem is true for these two polygons, and by the
lemma, it is then true for the original one too.

With this we have proved the theorem for all lattice polygons.

12. We now return to the proof of the existence of an interior diagonal. In
a convex polygon, every diagonal is an interior diagonal. If the polygon is
not convex, we consider its convex hull; this is also a polygon, whose vertices
are all vertices of the original polygon having interior angle less than 180°.
Let B be such a vertex on sides AB and BC of the convex hull. If there are
no more vertices in the closed triangle ABC, with the exception of possible
points on the intervals AB and BC, then the diagonal BC is in the interior
of the polygon.

If this is not the case, then the triangle contains vertices of the polygon.
Let D be the vertex or one of the vertices the furthest from AC contained
by the triangle. (This can be on the line AC as well. See Figure 14.) Then
the interval BD does not contain any vertices and is a diagonal satisfying
the required condition.

8 This theorem is of course true for all polygons, and has nothing to do with
lattices.
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Numerous proofs have been given for Pick’s theorem (Theorem 5). This
proof of the theorem is due to Gy. PéLya.®

FIGURE 14.

Exercises:

5.

6.

Prove that if a lattice parallelogram contains an odd number of lattice
points, then its center is a lattice point.

Prove that if a lattice triangle has no lattice points on its boundary in
addition to its vertices, and one point in its interior, then this interior
point is its center of gravity.

Prove that if a lattice parallelogram contains at most three lattice
points in addition to its vertices, then those are on one of the diagonals.

Prove that if a point lattice (in the plane) contains a lattice square,
then for every lattice line we can find a lattice line perpendicular to
it.

Does the same conclusion hold if we assume only that the lattice con-
tains a lattice rectangle?

Prove that in every convex quadrilateral there is a vertex V such that
if we complete the two sides from V to a parallelogram, then this
parallelogram is contained in the quadrilateral.

We note that more generally, it is also true that in any convex n-gon,
there are at least n — 3 vertices for which each of the parallelograms

® G.L. ALEXANDERSON, J. PEDERSEN: The Oregon Math. Teacher, 1985. The
presented format of the proof was given by ARPAD SoMOGYI1, who found it
independently of POLYA.
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10.

11*.

12.

14*.

15.

16*.
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obtained by completing the adjacent sides of the vertex is contained
in the polygon.t?

Prove that the only possible convex empty lattice polygons are trian-
gles and parallelograms.

Prove that in every parallelogram lattice there is an empty lattice
triangle that has no angles greater than 90°, and all such triangles are
congruent.

In the lattice of points with integer coordinates, consider a lattice
rectangle with sides parallel to the coordinate axes, subdivided into
empty lattice triangles. Prove that no matter how we subdivide the
rectangle, we can always find in it a parallelogram together with one
of its diagonals.

(a) Prove that in the subdivision of the previous exercise there always
occurs half a square (two sides plus the diagonal).

(b*) Prove that the number of half-squares is at least twice the length
of the shortest side.

In the lattice of points with integer coordinates, let PQRS be a lattice
quadrilateral and E the intersection point of its diagonals. Prove that
if the sum of the angles at P and @ is less than 180°, then the triangle
PQE contains lattice points either in its interior or on its boundary
other than P and Q (L. Lovész).

Prove Theorem 3 using Theorem 3.5 (Gallai-Turén).

How close together do trees need to grow in a regularly planted circular
forest so as to obstruct the view from the center? We rephrase this in
the following problem:

Let s be a positive integer. In a lattice of unit squares we draw a
circle of radius r around every lattice point contained in a circle of
radius s centered at the origin. If r is relatively small, then there are
rays from the origin that do not intersect any of the circles (we can see
out through the forest). If r is large enough, then every ray from the
origin has a common point with some circle. Prove that the critical
value for r distinguishing the two cases is 7 = 1/(s? + 1) (Gy. Pélya).

As we did for lattices in the plane, we can define lattices in (3-dimensional)
space. Start with a point and passing through it three planes that intersect
in three different lines. From these three planes we consider three families
of planes; within each family the planes are parallel to the original one and
equally spaced. The intersecting planes determine congruent parallelepipeds

10 This problem appeared on the Miklés Schweizer Memorial Competition in 1964.
This is a national mathematics competition in Hungary for high school students.
See Matematikai Lapok 16 (1965), pp. 92-113, Problem 4 (in Hungarian) and
Contests in Higher Mathematics, G. J. SZEKELY (ed.), Springer, 1996, pp. 5 and
247-249.
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with the same orientation. We call this a parallelepiped lattice. The vertices
are the lattice points, and all the lattice points together are called the point
lattice.

17. Rephrase Theorems 1-4 and Exercises 5-7 in terms of 3-dimensional
lattices and determine which of them hold and which do not.

18. Do all empty lattice tetrahedra have equal volume?

19*. Prove that in a 3-dimensional lattice, all empty, convex, quadrangle-
based pyramids have equal volume. Is convexity important here?

13. Returning to lattices in the plane, if we consider two parallel neighboring
lattice lines, then a line parallel to these and falling between them cannot
contain lattice points; in fact, there is a positive number such that no lattice
point is closer than this distance to the line. If a line is not parallel to a lattice
line, it is still possible that it contains a lattice point, but it may also contain
none. We prove, however, the following fact:

Theorem 6 If a straight line is not parallel to a lattice line, then on each
side of the line there are lattice points arbitrarily close to the line.

Let e be a line that is not parallel to a lattice line. Let A and B be lattice
points, one on each side of e, and draw the lines a and b parallel to e through
A and B, respectively (Figure 15). These lines do not contain more lattice
points. Let d be the distance between a and b. The interval of a lattice line
between a and b, parallel to the lattice lines through A and B, has the same
length as the interval AB, and its endpoints on a and b are not lattice points;
hence there is a lattice point C on this interval between a and b. Call this
point C and let ¢ be the line through it parallel to e.

The line ¢ divides the strip between a and b into two smaller strips, one
of which has width less than d/2. (It is not possible that it is equally distant
from the two lines. Why?) We may assume that cc is closer to a. The two
points on the lattice line through A and C that are closest to e, one on each
side, or if a lattice point falls on e, then the two neighboring points, are lattice
points at a distance at most d/2 from e.

Repeating this process with the two new points in place of A and B gives
newer and newer points. The newer points are at distances at most d/4, d/8,
etc. from e. With this we have proved the statement of the theorem.

14. We sharpen the previous result a little:

Theorem 6’ The claim of Theorem 6 holds for rays not parallel to lattice
lines. Further, for arbitrary positive h, there are infinitely many lattice points
on both sides of the ray at a distance less than h from the ray.

The previous proof can be applied with a minor adjustment. We restrict
ourselves to the half-plane containing the ray, bounded by the line through
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FIGURE 15.

the endpoint of the ray and perpendicular to it (Figure 16). In this half-plane
we choose two lattice points A and B, one on each side of the ray. We then
consider a lattice line parallel to AB on the side of AB not containing the
endpoint of the ray, and we choose C on this. (In this figure, we have assumed
C is closer to b then to a.) With this modification, we can find points on both
sides of the ray arbitrarily close to it. This proves the theorem.

15. With the help of the previous theorem, we will prove the following state-
ment, which in itself is not at all self-evident:

Theorem 7 Ifb is a positive integer that is not a power of 10, then for any
finite sequence of digits, there is a power of b whose leading digits are the
same as the given sequence.

Let n be the number of digits and A the number with the given sequence
of digits. The fact that b* starts with the given sequence of digits means that

there is a number m, m > n, satisfying the two inequalities

A-10™ < bk < (A+1)10™.
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FI1GURE 16.

The base-10 logarithm is a monotone increasing function, so we can obtain
equivalent statements using logarithms. The statements we get in this way
can be rearranged as

The two outer expressions are first-degree functions of k. For positive k,
these are represented by rays in the coordinate plane, both having slope
log,4 b, with endpoints (0, — log,(A+1)) and (0, — log,4 A) (Figure 17). Since
m is a nonnegative integer, we are looking for an integer lattice point (k, £)
that is in the strip between the two lines in the first quadrant. Lattice points
below the upper line and at a distance from it less than the distance between
the two lines will suffice.

To show that such points exist, it is enough to show that the two bordering
lines of the strip are not parallel to lattice lines.

In the lattice of points with integer coordinates, all lattice lines have
rational slope. It is therefore enough to show that log,q b is irrational. Assume
that it is rational, meaning that log,ob = u/v, or that b* = 10* = 2%5%,
where u and v are integers. By the fundamental theorem, b cannot have any
divisors other than 2 and 5, so we may write b = 275°. Substituting this into
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* (Lm)

-log,, A

-log,, (A+1)

FIGURE 17.

the previous equation, and using the fundamental theorem, we get
rv=1u=sv, and therefore r=s, b=2"5"=10".

This was excluded at the beginning; hence we have proved the theorem.

Exercises:

20. Prove that if o is an irrational number, then the numbers {na} =
(na—[na]) (n=1,2,...) are dense in the interval (0, 1). By dense we
mean that for every positive § > 0 and 0 < 8 < 1, there is an n such
that

{na} - 8| < 6.

21. Provethat if b is an integer larger than 1, then the number obtained by
writing the powers of b in order after the decimal point is an irrational
number. (For example, in the case of b = 6, we get the number

0.6362161296777646656. .. .)

16. We arrived at parallelogram lattices by interpreting geometrically ques-
tions concerning Diophantine approximation. We saw (using a different geo-
metric interpretation in Theorems 3.7 and 3.8) that for a real number a and
a positive integer ¢, there are integers u and v such that ‘
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1
v|<gq, and |va—ul<——.
vl <gq | | P
Here we interpret the left-hand sides of these as absolute values of the ordinate
and abscissa of a point. Then the inequalities

o< = i<
z g+1’ yi<a

(with arbitrary u and v) are satisfied for the coordinates of the points of a
rectangle with sides parallel to the axes and centered about the origin. We
can hope to solve some other questions in Diophantine approximation by
giving theorems on the existence of lattice points in regions under certain

conditions. The fundamental result in this direction is the following:

Theorem 8 (Minkowski’s Theorem) (a) In a point lattice in which empty
parallelograms have area d, every convez, centrally symmetric region of area
greater than 4d, centered at a lattice point, contains a lattice point in its
interior in addition to its center.

(b) If the area of the region is ezactly 4d, then in addition to its center,
there is either a lattice point on its boundary or in its interior.

MINKOWSKI'’s result is more general, valid for arbitrary dimension.

17. The following simple proof follows from a fundamental idea that was
often forgotten and rediscovered.}! Let L be a lattice in the plane with empty
lattice parallelograms having area d. Let T be a centrally symmetric convex
region of area greater than 4d in the plane centered at a lattice point O.

Starting from an empty lattice parallelogram OABC, take every other
lattice thread parallel to the lines through OA and OC. In this way we cover
the plane by parallelograms having area 4d. Let K LM N be an arbitrary par-
allelogram from these, and translate into K LM N those other parallelograms
that intersect T', along with the part of T' that they contain (Figure 18). In
this way the regions we have translated have together more than 4d area and
are all in a parallelogram of area 4d; hence there is a point P covered by at
least two translated regions.

Fix the points of two regions covering P and retranslate them back to
their original position in such a way that at every step of the translation we
move the regions by a distance equal to one side of the parallelogram in a
direction parallel to that side. Call P, and P, the two points whose images
are P. Putting together the two (re)translations, we get a path from P to
P, that is made up of intervals parallel to OA or OC and twice their length.

' G. BIRKHOFF (1914), referred to in H.F. BLICHFELDT: Transactions Amer.
Math. Soc. 15 (1914), pp. 227-235. W. SCHERRER: Math. Annalen 89 (1923),
pp. 255-259, and Dissertation, Universitat Ziirich, 1923. Gy. HAids: Acta Sci.
Math. Szeged, 6 (1934), pp. 224-225.
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FIGURE 18.

Let P3 be the mirror image of Py with respect to O. This is also a point
of T, since T is centrally symmetric. Shrink the path from P; in half. The
image of P; by this shrinking is O, and let @ be the image of P,. This is
also a point of T', because by convexity T contains the interval P, P3. This is
a lattice point, since there is a path from O to @ that has intervals parallel
to and equal in length to OA and OC, respectively. Finally, @ is different
from O, since they are the images of the distinct points P; and P, under the
shrinking. With this we have proved Minkowski’s theorem in the case where
the area of T is greater than 4d.

18. This procedure can also be used without any changes when the area of
the parallelogram is exactly 4d, if the parallelogram K LM N still has a point
that is covered by more than one translated region.

However, if this is not the case, then the relocated pieces (including their
boundaries) fill the parallelogram. This contains 9 lattice points. Of those, O
gets mapped to the four vertices when we shift the parallelograms meeting
at O onto KLM N, so O cannot have any other image.
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The remaining 5 lattice points are also in some of the translated regions,
or on their boundaries. Then the piece that was moved there includes a lattice
point different from O, which is inside the parallelogram or is on its boundary,
and hence the second claim of Minkowski’s theorem is true.

19. We do indeed need the assumptions of the theorem. The area of 4d cannot
be decreased: For instance, in the lattice of points with integer coordinates
the square with vertices (£1, +1) contains only lattice points on its boundary
apart from the origin, and if we shrink the region (keeping the origin fixed)
by however small an amount, the only lattice point belonging to the square
will be the origin, although its area can be arbitrarily close to 4d.

We cannot give up convexity: The figure that is the union of the square
having vertices (+3,+3) and the two rectangles with area T whose points

have coordinates z and y satisfying

<lzj< 3

_Zv IyISTv zy>0

NG

(Figure 19), is symmetric about the origin, its area (depending on T') can be
as large as we want, and the only lattice point contained by the region is the
origin.

FIGURE 19.
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Central symmetry cannot be ignored either: the area of the triangle with
vertices (—1,~—1),(~1,2), and (2,-1) is %, but if we shrink its size by a very
small amount, it will not contain any lattice points other than the origin
(its center of gravity), yet its area is still larger than 4d. The rectangle with
points bounded by the inequalities

i)

RN
S

can have an arbitrarily large area (depending on T'), and again, it does not
contain a lattice point.

20. The center of gravity of a region that is central symmetric is at its center.
From this, the following question arises: “What can be said about convex
regions whose center of gravity is a lattice point?” E. ERHART showed that
if in a lattice the area of an empty parallelogram is d, then all convex regions
with center of gravity a lattice point and area at least 9d/4 contain at least
one additional lattice point.!? The above example with the triangle shows
that we cannot improve the 9d/4 limit. We do not have a corresponding
sharp theorem in higher dimensions.

21. As an application of the above we prove the following theorems.

Theorem 9 In a planar lattice for which the origin is a lattice point and the
area of the base parallelograms is d, if ki and ko are positive numbers whose
product is not less than d, then there exists a lattice point different from the
origin whose coordinates satisfy

lz| < k1, lyl < ke ®)

Theorem 10 With the conditions of the previous theorem, for any arbitrary
positive number ¢, there exists a lattice point other than the origin for which

clz] + -ly| < V2d (@)

Theorem 11 Using the notation of Theorem 9, there exists a lattice point
differing from the origin for which the following inegquality holds:

4d
?+y? < gl (5)

All three statements are direct consequences of Minkowski’s theorem. The
conditions of (3) are satisfied for a parallelogram that is symmetric about the
origin and whose sides are parallel to the axes, with lengths 2k;, 2ko; i.e., its
area is at least 4d.

12 B. ERHART: Comptes Rendus Acad. Sci. Paris 240 (1955), pp. 483-485.
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The condition in (4) holds for a rhombus with vertices (:t\/ﬂ/c, 0) and
(0, :tcx/2_d). The area of this is also 4d.

Finally, (5) describes the circle centered at the origin with radius 2¢/d/,
whose area is again 4d. Hence by Minkowski’s theorem, all of them contain
(inside the region or on its boundary) a lattice point other than the origin.

22. Using Theorems 9 and 10, we can draw conclusions on the approximation
of real numbers by rational numbers. At the beginning of this chapter we saw
that if a is a real number, then we should examine the lattice with points
having coordinates satisfying

T = —u+va, y="u, (6)

where u and v are integers. For this lattice, d = 1. For Theorem 9, then,
k; = 1/ky is an appropriate choice. This is really Theorem 3.7 with a slight
alteration.

Theorem 10 gives a better approximation. If we were simply to ignore
the second summand of the left-hand side of (4), then we would conclude
only that for any large positive ¢ we can find integers u and v satisfying
la — u/v| < V2d/cv. (We may assume that v is positive, since in addition to
(u,v), the pair (—u,—v) also satisfies the hypotheses of Part (b).)

We get a much better result if we apply the inequality between the geo-
metric and arithmetic means of the left-hand side. This gives, at the moment
for an arbitrary lattice,

2
|Zy| < <C|zl+;/c‘ lyl> < g

Applying this to the lattice (6) and dividing by v? we get that for appropriate
integers v and v,

a— — Sgﬁ, (7

which is a better approximation than the previous one.

Apparently, the factor ¢ does not play a role here, but this will change
when we prove a theorem similar to Theorem 3.8. If we suppose that o is
irrational, then it helps to prove that there are infinitely many fractions for
which (7) holds.

First we prove the following for an arbitrary lattice:

Theorem 12 In a planar lattice for which the area of empty parallelograms
is d, there are infinitely many lattice points whose coordinates satisfy

lzy| < g
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Notice that this inequality holds for points between the two branches of
a hyperbola, which is not a convex region, but the rhombus corresponding to
Theorem 10 is part of this region.

We also note that the inequality we wrote above is strict. That is because
we used the inequality for algebraic and geometric means, and between these
two means equality holds only if the two numbers are equal. In our case, this
means

1
clz] = ~lyl.

This, however, describes the midpoints of the sides of the rhombus. Therefore,
these have to lie on the hyperbolas (the boundary of the region), and the rest
of the sides of the rhombus must lie between the hyperbolas. This means that
the sides of the rhombus are tangent to the hyperbolas.

So even if there are lattice points on the hyperbolas, we can choose the
rhombus, i.e., the value of ¢, such that its sides do not touch the hyperbolas
in lattice points.

23. Returning to the proof of the theorem, if one of the axes has a lattice
point other than the origin, then it has infinitely many of them, and for
these the inequality of the theorem holds. If, for instance, the only lattice
point on the y-axis is the origin itself, then we already know that there exists
an (zo,yo) lattice point inside the region bounded by the hyperbolas. Then
we apply Theorem 10 with ¢, greater than v/2d/|zq| (and for which the
sides of the rhombus are not tangent to the hyperbolas at lattice points; see
Figure 20). This yields a lattice point (z,y:1) for which

v2d vad
alz| < vV2d, ie., | < — < ——— = .
1lz1| < v |z & < Vad/lmg |0

Thus it is different from the previous lattice point.

Since there are not lattice points on the y-axis, ; # 0, and this way the
procedure can be repeated as many times as we want. This proves the claim
of the theorem.

Applying Theorem 12 specifically to lattices of type (6), we obtain the
following theorem.

Theorem 12’ For every irrational number o there are infinitely many frac-
tions u;/v; for which
1

=3
2v;

Ui
a.— —
v;

<

We will soon see that the approximation can be further improved upon.

24. One of the fundamental properties of lattices, which we discussed in the
introduction of this section, is that the distances between lattice points cannot
be arbitrarily small. Theorem 11 gives an upper bound for that smallest
distance. It can be used to prove the following number-theoretic theorem:
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FIGURE 20.

Theorem 13 The prime 2 and positive primes of the form 4k + 1 can be
written as the sum of the squares of two positive integers. Numbers of the
form 4k + 3 cannot be written in such a way.

The last claim is obvious. Squares of even numbers are divisible by 4, and
squares of odd numbers have remainder 1 upon division by 4 (in fact, they
have remainder 1 upon division by 8 by Theorem 1.14). Hence, the sum of
two squares can have remainder 0, 1, or 2, but not 3, upon division by 4.

By Theorem 2.15, for primes p of the form 4k + 1, there exists an integer a
for which a? + 1 is divisible by p (for p = 2 taking a = 1 suffices). For such
an a, let us examine the lattice described by

z = pu+ av, y=uv,

where u and v are integers. For this lattice, d = p, and the sum of the squares
of coordinates of lattice points is divisible by p, since

2% +y? = p (pu® + 2auwv) + (a® + 1) 02,

which is divisible by p by the choice of a.
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By Theorem 11, there is a lattice point whose coordinates satisfy

4p

2 +94% < = < 2p.
s

Since this lattice point is not the origin, the sum x2 + y? is positive, and we
have already shown that it is divisible by p. This is possible only if z2+y? = p.
Since z and y are integers, this finishes the proof of the theorem.!3

Exercises:
In the exercises of Section 12 we defined the parallelepiped lattice. The
following exercises use those definitions.

22.

23.

24,

25.

26*.

Prove that in a parallelepiped lattice in which the volume of an empty
parallelepiped is d and the origin is a lattice point, if the volume of
a convex region, symmetric with respect to the origin, is greater than
8d, then that region has a lattice point in its interior other than the
origin. If the volume is exactly 8d, then there is a lattice point either
inside the region or on its boundary.

(Continuation) Let

=aqut+bv+caw, y=au+buv+cow, 2=azu+bzv+cw,

a) b1 C
d=|det | az by c2 > 0.
as b3 C3

State and prove the three-dimensional generalizations of Theorems 9,
10, and 11.

Draw a sphere around one lattice point of a three-dimensional lattice
such that the sphere goes through the lattice points nearest to it.
Prove that the lattice can be modified (if it does not already share this
property) so that the volume of the empty parallelepipeds decreases
and 6 coplanar lattice points are moved onto the surface of the sphere.

(Continuation) Using the notation of Exercise 23, prove that there is
a triple of integers (u, v, w) other than (0,0,0) for which

z? + y? + 2% < V242,
and this bound cannot be improved.

We would like to approximate the real numbers « and 8 by two frac-
tions with the same denominator, u/w and v/w. What can be said
about the sum of the squares of the differences between the real num-
bers and their approximations when it is given that 0 < w < g (gisa
given positive number)?

13 This proof was supplied by P. TURAN, who adapted an idea of HERMITE, who
proved a related theorem about the sum of four squares (as we will see in Theo-
rem 7.4’); See H. DAVENPORT: Math. Gazette 31 (1947), pp. 206-210.
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27*. For what values of c are there integer solutions u,v, w {w # 0) to the
inequality

|w((aw — u)? + (Bw —v)?)| < ¢

for arbitrary real numbers a and 8? Compare the answer to that of
the previous exercise.

We note that for Exercise 26, MAHLER!* determined the smallest bound
for which the claim is still valid; for Exercise 27, the smallest ¢ was determined
by DAVENPORT and MAHLER.®

25. Theorems 9 through 12 (and Minkowski’s theorem as well) can be
rephrased by fixing the region: Given a convex, centrally symmetric region
of area 4d, then every lattice with a lattice point at the center of the region
whose empty parallelograms have area less than d has another lattice point
inside the given region.

We mentioned when we derived Theorem 12’ from Theorem 12 that the
estimation we obtained can be improved. For given k; and k; in Theorem 9
equality holds only for the lattice generated by the rectangle with vertices
(0,0), (k1,0),(0, k), and (ki, k2). The area of the rectangle is obviously d =
kiko. If we enlarge this lattice by however small a factor, the lattice will not
have a lattice point inside nor on the perimeter of the polygon other than
the origin. Hence the inequality cannot be sharpened.

Fi1GURE 21.

Similarly, no improvements can be made in Theorem 10, since the lattice
generated by the rhombus

" K. MAHLER: Quarterly Journal of Math., Ozford Ser. 17 (1946), pp. 16-18.
' H. DAVENPORT, K. MAHLER: Duke Math. Journ. 13 (1946), pp. 105-111.
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(0,0), (%/2,1:( d/z)c), (\/ﬁc,o)

has lattice points only on the perimeter of the big rhombus, other than the
origin, and the area of the small thombus is d (Figure 21).

26. The inequality in Theorem 11 holds for a disk of radius r = 2,/d/n. In
this case there exists a lattice whose lattice points (other than the origin)
occur only on the perimeter of the disk, forming the vertices of a regular
hexagon. Such a lattice can be generated by a rhombus with sides 7 and an
angle of 60°. The area of such a rhombus is

_ V3 23

4 =
d 7 ~7rd>d.

It is expected, but not at all obvious, that all lattices generated by parallel-
ograms of area smaller than d' have lattice points inside the above disk. We
will indeed prove that this is the case.

Theorem 14 Ewvery lattice in which the area of empty lattice parallelograms
is not greater than r2v/3/2 has in addition to the origin a lattice point be-
longing to the disk

zz-k-y2 < r2,

Theorem 11, in contrast, provides only the value r27/4 in place of r2\/3/2.
In comparison, v/3/2 is approximately 0.866025, while 7/4 is approximately
0.785398.

This problem can also be viewed as an algebraic question. The lattice
points can be written as

z = au+ bv, y = a'u+b'v,
where a,b,a’, and b’ are given real numbers,
d=|ab' - d'b|;

u and v can be arbitrary integers. The question now is, how small can the
sum of the squares of two homogeneous, linear binary expressions be for pairs
of integers (z,y) other than (0,0)?

This question has also been examined for the sum of squares of linear
forms with more than two variables. The exact limits are known up to the
sum of squares of eight forms with eight variables. Proofs have been given
for the cases 9 and 10, but these are incomplete.6

16 See T.W. CHAUNDY: Quarterly Journal of Mathematics, Ozford Ser. 17 (67)
(1946), pp. 166-192. The statement of Theorem 13 there is due to GAUSsS.
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27. To simplify the arguments in the proof of the above theorem, we call
a lattice admissible for a region T, or T-admissible, when it does not have
lattice points (other than the origin) inside the region T'.

Denote the disk 22 +4? < 72 by K and let the area of the empty parallel-
ograms in a K-admissible lattice be d. We will transform the lattice step by
step so that more and more lattice points will be on the perimeter of K, the
area of the empty parallelograms should decrease, or at least not get larger,
and the lattice will stay K-admissible.

According to Minkowski’s theorem, this lattice already has a point inside
the disk of radius v/2d, and by property II, there cannot be infinitely many
of these points inside the disk. With an appropriate contraction of the lattice
centered at the origin we can move an opposing pair of lattice points P and
P’ onto the perimeter of K, if there were none.

This transformation takes lattice points on lattice lines into points of
equal distance between them (according to the proportion of contraction);
it also transforms parallel lines into parallel lines, and points of intersection
into points of intersection. Hence, in the new transformed lattice, the area
of empty parallelograms is decreased by the square of the proportion of con-
traction.

In the following let us choose for the z-axis the line PP’, without changing
the origin. This way the inequality describing K does not change.

We modify the lattice (unless it originally has this property) such that
the line PP’ does not change, but the first lattice line parallel to and above
PP’ is shifted so that the lattice points intercepting the y-axis are moved
to be at equal distances from this axis (Figure 22). This is achieved by a
transformation of the form z’ = z + cy,y’ = y for a suitable real value c (this
is called a shear transformation). The images of the lattice points will be

=(a+ca)u+ (b+cb)v, Y =au+dv,

for integers u and v. These also form a lattice. The area of the new empty
lattice parallelograms is

d =|(a+ca)b —a'(b+ct)| = |abl —a'b| =

i.e., it has not changed.

Geometrically, the transformation leaves the z-axis unchanged; lines par-
allel to it get transformed into themselves; and lines through the origin are
rotated around it. In this way, the side on the z-axis of a parallelogram that
generated the lattice and its vertical height remain unchanged. Hence its area
remains unchanged. The lattice is still admissible after the transformation,
since one of the two lattice points mentioned above moved further away from
the origin, hence still outside the disk if it was originally outside it. The other,
by the established symmetry, is also outside the disk.

After this, we take this pair of lattice points (which are now symmet-
ric with respect to the y-axis) and with a compression transformation (the
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o 4

FIGURE 22.

direction of the compression perpendicular to the z-axis) move them onto
the perimeter of the disk, if they were not already there. This compression
decreases the area of the empty parallelograms.

The K-inscribed hexagon that arises in this way is regular, since on the
lattice lines parallel to PP’, consecutive lattice points are at a distance r from
each other. Hence, for every K-admissible lattice we have created another
admissible lattice in which the area of the empty parallelograms is not greater
than in the original, and six of its lattice points form a regular hexagon on the
perimeter of K. The lattice can be generated by a rhombus of area 72v/3/2,
and we have proved Theorem 14.

28. In Theorems 12 and 12/, the factor 3 on the right-hand side of the in-

equalities can be replaced by 1/v/5. This yields the following theorem.

Theorem 15 A lattice in which the area of the empty parallelograms is d
has infinitely many lattice points whose coordinates satisfy the inequality

d .
lzy| < 7 (8)

This theorem is due to KORKINE and ZOLOTAREFF.!” Rephrasing the
problem again in terms of linear forms, DAVENPORT determined the minimum
value of the product of the values of three linear forms in three variables, taken

17 A. KORKINE, G. ZOLOTAREFF: Math. Annalen 6 (1873), pp. 366-389.
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at integer places.!® For linear forms with more than 3 unknowns the exact
value of the constant is not yet known.

In the proof of this theorem we can ignore again those lattices that have
lattice points on the y-axis (in addition to the origin), since there would then
be infinitely many of them, and for these zy = 0 holds, and hence (8) would
be trivially satisfied for infinitely many points.

The line of thought in the previous proof is not applicable here. The
reason is that there we started with an admissible lattice that already had
lattice points, but not infinitely many in a region containing K, and with an
appropriate contraction we were able to move the nearest lattice point onto
the perimeter of K.

Here we are examining lattices admissible for the region between the pair
of hyperbolas described by (8). This region is not bounded, so it is possible
that there are lattice points arbitrarily close to the hyperbolas without actu-
ally being on the boundary of the region. It is therefore not possible to use
a contraction to bring them onto the boundary. We need to find some other
method. For this purpose, we will examine the structure of lattices a bit more
closly.

29. Take a lattice point P in the first quadrant and call its orthogonal pro-
jection onto the z-axis Q. The triangle OPQ (where O is the origin) contains
at most finitely many lattice points, and hence we can choose a lattice point
P, for which the corresponding triangle O Py@Qo does not contain any other
lattice points apart from O and Py. Consider the lattice line parallel to and
above the line OP,. Let P; and P, be the lattice points on this line intercept-
ing the y-axis from the left and right sides, respectively. Let z; and y; denote
the absolute values of the coordinates of the points P;, and M; the product
TiYi (1, = 0, 1, 2)
Since OPy P, P, is a parallelogram,

z2=z0—21 and Y2 =yo+u.
Based on this, the following relation holds for the M;’s:
My = My — M1 + oY1 — T1Yo,
or rearranging terms,
—Mo + My + Mz = Zoy1 — Z1Yo- (9)

We can eliminate the coordinates, using the facts that the parallelogram
is empty, and its area is d. In the following we will slightly change the shape

18 1. DAVENPORT: Proc. London Math. Soc. 44 (1938), pp. 412-431, and Journal
London Math. Soc. 16 (1941), pp. 98-101. For further results and problems see
the books of J. W. S. CASSELS, and of P. M. GRUBER and C. G. LEKKERKERKER
mentioned in footnote 4.
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P, (xg-xy,¥0+y1)

Ri---------- B (x4,Y0)

B (-x,y,)

o, o Q,

FIGURE 23.

of the parallelogram (Figure 23). First we erect perpendiculars form each of
the P;’s to the z-axis, and from Py and P; to the y-axis. Then, using the
notation of the figure, we see that the area of the hexagon Qo PyRSPiQ; is
also d,

d = zoy1 + T1%0- (10)

This is because of the congruences APgRP, 22 AOP,Q; and ASP,P, =
AQoPoyO. Hence subtracting the squares of the sides of (9) from the squares
of (10), we get

d® — (—My + My + M3)* = dzoyr 1o = 4Mo M,
or rearranging the terms, we have
d? = My (2My + M, + 2M2) + (M2 — My)?. (11)

Denoting the smallest of the M;’s by M, we conclude that

d
d®> > 5M?, e, M<—,
B Vs
which means that (8) holds for the coordinates of at least one of Py, P,
and P,. That is, there is at least one lattice point for which the claim of
Theorem 15 is true.
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Since we assumed that the origin is the only lattice point on the y-axis, by
Theorem 6 there exists another lattice point within any arbitrary distance
to this axis. We repeat the above procedure starting from a lattice point
found closer than the previous one and in this way we get a new lattice point
for which (8) holds. The procedure can be repeated over and over again,
giving infinitely many lattice points satisfying (8), and hence the claim of
Theorem 15.

30. Note that it is not possible to improve the bound, since if M; = M, =
M3 = M, then by (11) it follows that

d=MV5 o M=

Sl

From (9) and (10) we get

Toyr —T1Yo =M = —, Zoy1 + T1y0 = d.

Sl

It then follows that

v&+1 4 o _V5-1 d

2 \/5 1Y0 2 \/37
or by multiplying both sides by zo and yo, respectively, and using the fact
that zoyo = Mo = M = d/+/5, we have

Toyr =

VE+1 and z; ==z V5-1

2 LT

Moreover, OP, and OP; are the sides of an empty lattice parallelogram, and
for the coordinates of an arbitrary lattice point, we get with appropriate
integers u and v,

T =10 (u— \/gz_lv) and y=1yo <u+\/52+1v). (12)

Y1 =1Yo

For these lattices,

1 5—1
d = zoyo <§L+ V5 )=-’Coyo\/f_>

2 2
from the one side, and from the other side the absolute value of the product
zy = zoyo (u? + uv — v?)

is at least zoyo = d/V/5, since u? + uv — u? is a nonzero integer when u and
v are integers, not both 0.
So Theorem 15 is true with the following supplement.
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Supplement. In Theorem 15, equality holds only for those lattices described
by (12). For other lattices, if at least one of the azes contains no lattice points
(other than the origin), then the stronger relation

0<|av:yl<-i

V5

holds for coordinates of infinitely many lattice points.

31. We know that in lattices corresponding to Diophantine approximation
the points on the z-axis with integer coordinates are lattice points. Lattices
represented by (12) are not of this type, and hence Theorem 15 cannot im-
mediately give the exact answer to this case. However, we will prove the
following theorem:

Theorem 16 For every irrational number «, there are infinitely many inte-
gers u and v satisfying
U 1
a—-—| < —=.
l v l \/§v2
If we replace /5 with a larger value, then there ezist irrational numbers a

for which the corresponding inequality is satisfied by at most finitely many
fractions.

The first claim of Theorem 16 is a special case of the addition to Theo-
rem 15 applied to the lattice described by the relations z = u —av and y = v
(for u and v integers).

We can get to the proof of the second claim of Theorem 16 by analyzing
the proof of Theorem 15. The infinitely many lattice points that we found
in that proof come arbitrarily close to the y-axis, hence the absolute values
of the abscissae get arbitrarily close to 0, while the absolute values of the
ordinates grow without bound. Writing the coordinates of the lattice point
in the form

z = au + bv, y=a'u+bv,

we may assume that ab’ — a’b > 0, so that its value is d.
Let us rewrite the ordinate in the following way:

' b —a'b ' d
y=9—(au+bv)+a—av=1:c+—-v.
a a a a

Here the first term, together with z, becomes arbitrarily small. Hence, on the
one hand, the area of the empty parallelograms in any lattice of the form

/

b
T’ = x=u+-(;v, y =dv=ay—a'z,

S Nl

is still d, while on the other hand,
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!’

a
11 2
TY—T = —I
Y Yy

is also arbitrarily small given that z is small enough.
Applying our results to lattices of the form (12), we get that

. V51

r =u-— 2

v, Yy =dv (= :coyoxfgv) .

Since z*,y* are not of the form (12), |z*y*| < d/v/5 holds for infinitely many
integer pairs u,v, and in this way
< —=. (13)

w51,
2 V5

On the other hand, since in lattices of the form (12), the inequality

1

oyl > &

V5

holds for lattice points other than the origin, it follows that |z*y*| and with
it the left-hand side of (13) get arbitrarily close to the right-hand side of (13)
for small enough |z|. Hence, we see that we cannot write a smaller value in
place of 1/v/5 on the right-hand side of (13). This proves Theorem 16. We
also showed that a = (v/5—1) /2 is an example for which the bound in
Theorem 16 cannot be improved.!®

We have shown that in a lattice of the form (12), |zy| cannot be less
than d/v/5 for any lattice point other than the origin. Therefore, applying

!9 Generalizing this procedure to an arbitrary lattice we get the following: Let m.
denote the lower bound of the product |zy|, for those lattice points for which |z|
is smaller than some bound, and m, the lower bound of the product for those
lattice points for which |y| is bounded. Then, assuming that a, respectively b, is
not 0, m, is a lower bound for the lattice

z:u-{-é‘l), yzdv
a

when |z| is bounded, while m, is a lower bound for the lattice

’

T = du, y=%7u+v

when |y| is bounded (d is still the area of an empty parallelogram).

This means that with fixed d, m. depends only on the linear form z, and m,
depends only on the linear form y. This is also true in the case where there are
infinitely many lattice points on one of the axes, since assuming that this is the
case for the z-axis, then the ratio of the coefficients of the linear form y are
rational. Then m, = 0, and this is again determined only by the linear form y.
(This is also the case when b’ = 0, which was assumed above not to happen,
similarly when a = 0, in which case m; = 0.)
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the proof of Theorem 16 to the z-axis instead of the y- axis, we still get a
minimum of d/v/5. Reviewing the proof, it follows that (v/5 + 1) /2 is also
an example for which the bound in Theorem 16 cannot be improved.

The theorem is due to HURWITZ. The approximation of two or more real
numbers a1, @2, . . .,y by fractions with a common denominator u; /v, uz/v,
...,Un/v has been investigated too. It can be proved that there exists a
positive constant ¢, < 1 and infinitely many fractions for which

Iai— %’-' < Wil/n- (i=1,2...,n).
However, an arbitrarily small ¢, cannot be given such that the corresponding
approximation is good for every ai,as, ...,a,. By Theorem 16, the lowest
bound for ¢; is 1/ V5, but the lowest bound for any ¢, for n > 1 is still
unknown.

32. With a slight change in the proof of Theorem 16, we get another inter-
esting result. We modify slightly the notation. Rename the lattice point P, of
Figure 23 to @ and denote by P, the lattice point on the lattice line PoQ in
the first quadrant closest to the y-axis, and let its coordinates be zo and ys.
It is possible that P, coincides with Q. We have Py P, = k;OP; (where bold
indicates vectors rather than lines) for some positive integer k; (Figure 24).
Then

T2 = Zo — k121, Y2 = yo + kry1,
M, = zay; = Mo — ki My + k1 (zoy1 — Z130),
and (9) is replaced by
—Mo + kI My + M = ky(zoy1 — T130).-
Equation (10) is still valid, and hence
kid = ki (zoy1 + Z1Y0)-
Taking the difference of the squares of corresponding sides we have the equal-
ity
k2d? = kM, (2Mo + k2M; + 2My) + (My — M)

Denoting the smallest of My, M;, and M2 by M|, we omit the second term
on the right-hand side and simplify by k? so we get

d? > (K +4)M)®  ie, M< 4
: \/k? +4
Since k; > 1, we essentially get Theorem 16 once more, but also something
more.
We may continue this procedure such that we choose P to be the lattice
point closest to the y-axis in the second quadrant on the lattice line going
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P,

o

FIGURE 24.

through Py, parallel to OP,. Next pick P to be the lattice point closest to the
y-axis in the first quadrant on the lattice line going through P,, parallel to
OP;, and so on. The intervals P; P3, P, P4, and the following ones get divided
into kg, k3, ... parts by the lattice points on them, where each k; is a positive
integer (i = 2,3,...). Denote the absolute value of the product of coordinates
of P; by M;, and the smallest of M;_;, M;, and M;;; by M.

Repeating the above procedure for the sequence of triangles

P\P,P;, P, P3Py, ...

we get that
d

VEE+4

Since all the k;’s are at least 1 and at least every third M/ belongs to a
different lattice point, we have another proof of both claims of Theorem 16.
In addition, we have also developed a procedure for finding infinitely many
appropriate lattice points.

The true gain, however, is that if one of the k;’s is not 1 for some lattice,
then for the corresponding M, we have

M. < (i=1,2...).
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d
7
If infinitely many k;’s are greater than 1, then the above relation is also
true for infinitely many lattice points. Since in a lattice of type (12) this is not
satisfied for any of the lattice points (other than the origin), we see that for
this lattice, k; = 1 for all . However, since we have seen that only for those
lattices we cannot remove the equality in Theorem 16, for the other lattices

we have found lattice points satisfying the strict inequality. Summarizing, we
have the following theorem.

M; <

Theorem 16’ In lattices not of type (12), there exist lattice points whose
coordinates satisfy
d
< —
lzyl < 7

It was A. A. MARKOV who discovered the phenomenon that not consid-
ering lattices for which equality holds in Theorem 16, a sharper inequality
holds for the rest of the lattices; i.e., there is no lattice for which the lower
bound of the absolute value of the product of coordinates of its lattice points
would be a number between d/v/5 and d/V/8.

We can determine again the lattices for which Theorem 16’ cannot be
improved, and for the others yet again a larger number can be written in the
denominator. These decreasing minima and the corresponding lattices form
an infinite sequence, where the minima tend to d/3.2°

33. In the previous sections the origin was always a lattice point. These lat-
tices are called homogeneous. Some problems lead, however, to planar lattices
without this restriction. In this case we call the lattice inhomogeneous.

Usually, for inhomogeneous lattices it is supposed that the axes do not
contain any lattice points. This restriction can be omitted, and homogeneous
lattices can be considered as special cases of inhomogeneous ones.

In some cases, however, as in the next theorem, it is necessary to make
an assignment of each axis to one of the quadrants, so that every point in the
plane belongs to only one quadrant. For instance, let the positive part of the
z-axis belong to the fourth quadrant (z > 0,y < 0), the positive part of the
y-axis to the second quadrant (z < 0,y > 0), and the negative parts of both
axes along with the origin to the third quadrant (z < 0,y < 0). The third
quadrant is then closed, while the first (z > 0,y > 0) is open. With such a
convention, quadrants are convex and do not have common elements.

If the coordinates of a lattice point are real numbers k and [, then the
coordinates of an arbitrary lattice point can be written as

20 See A.A. MARKOFF: Math. Annalen 15 (1879), pp. 381-406. For a different
proof, further references, and problems, see the book of J. W. S. CASSELS referred
to in footnote 4, pp. 18-44.
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Tz =au+bv+k, y=adu+bv+l,

where u and v are integers, and d = |ab’' — a’b| > 0 is the area of the empty
lattice parallelograms (k and ¢ are fixed).

An empty parallelogram whose vertices belong to distinct quadrants is
called a divided cell. Note that a divided cell always contains the origin. In
the homogeneous lattice, according to our conventions, every divided cell’s
vertex belonging to the third quadrant is the origin.

In numerous problems regarding inhomogeneous lattices, the following
theorem, due to DELONE (sometimes written DELAUNAY), proves to be a
useful tool.

Theorem 17 All inhomogeneous lattices contain a divided cell.

For the proof, let us pick two lattice points A and B in the first and
second quadrants. Then drop perpendiculars from these to the z-axis. The
trapezoid we get this way contains at most finitely many lattice points above
the z-axis. From these we can pick two such that the new trapezoid does not
contain additional lattice points from either the first or the second quadrant.
Without loss of generality, we may assume that A and B are already such
lattice points. Then A and B are neighbors on the lattice line through them
(Figure 25).

>\

A

_— e e e o = - = —

FIGURE 25.

Extend the perpendiculars from these points beyond the z-axis. The strip
between the two extended perpendiculars contains segments of lattice lines
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parallel to AB of length AB; hence it has lattice points (in the interior or
on the endpoints of the segments). On the first such line, let C and D be
neighboring lattice points intercepting the y-axis.

One of C and D is within the strip and below the z-axis. If the other one
is also below the z-axis, then ABCD is a divided cell. If, for instance, D is
above the z-axis, then it is not inside the strip; i.e., it lies further from the
y-axis than A. Hence the lattice line AD intersects the z-axis on its positive
side. Denote the two neighboring lattice points on this line intercepting the
z-axis by A’ and D'. Then A’, B,C, and D’ all lie in different quadrants.

The parallelogram ABCD is empty, since the lattice lines AB and CD
are neighboring, and hence AD and BC are also neighboring. So the lattice
parallelogram A’ BC D' is also empty, therefore a divided cell, by our previous
observation.

If it is not D but C above the z-axis, then proceeding as above using BC
instead of AD, we find a divided cell similarly as before. This proves Delone’s
theorem.

34. The history of the previous theorem is rather interesting as well. B. N. DE-
LONE himself gave a discussion of the problem, with many interesting de-
tails.?! D.B. SAWYER cites the theorem as something obvious, unaware
of DELONE’s work. Thereafter, many proofs appeared about the existence
of divided cells, still without reference to DELONE’s work. Finally, BARNES
and SWINNERTON-DYER found the article and developed some applications.
Later, BIRCH published an example of a lattice in three dimensions in which
there exists no divided cell, again not knowing that this counterexample, too,
appears in DELONE’s article.?2

It would be of interest to determine all parallelepiped lattices that do not
contain a divided cell.

35. Starting from a divided cell, we can get a good overview of all divided cells
of the lattice in the following way. If the sides of the cell intersecting the z-axis
are not parallel to the y-axis, then take the lattice points on the lattice lines
through them intercepting the y-axis. These are neighboring lattice points
on neighboring lattice lines belonging to different quadrants, i.e., vertices of
a divided cell. This procedure can be repeated infinitely unless we get a cell
for which two of its sides are parallel to the y-axis.

The procedure can be repeated in a similar fashion in the opposite direc-
tion as well, if the sides intersecting the y-axis are not parallel to the z-axis.

21 B.N. DELONE: lzvesztyija Akad. Nauk SSSR. Ser. Mat. 11 (1947), pp. 505-538
(in Russian). In German, see Sowjetwissenschaft 2 (1948), pp. 178-210. Cf. also
J. SURANYI: Acta Sci. Math. Szeged 22 (1961), pp. 85-90.

22 D.B. SAWYER: Journal London Math. Soc. 23 (1948), pp. 250-251;
E.S. BarNEs, H.P.F. SWINNERTON-DYER: Acta Mathematica 87 (1952),
pp. 259-323; ibid. 88 (1952), pp. 279-316; and ibid. 92 (1954), pp. 199-234.
B. J. BIRCH: Proc. Cambridge Phil. Soc. 53 (1956), p. 536.
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In the special case where there exists an empty lattice parallelogram with
sides parallel to both axes, then only one divided cell exists.

This way we have obtained a sequence of divided cells that is infinite in
the directions of both axes, or infinite in the direction of only one axis, or
finite in both directions. DELONE also showed that this sequence contains all
divided cells (see Exercise 28).

36. MINKOWSKI determined the minimum of the product |zy| for lattice
points of inhomogeneous lattices.

Theorem 18 Any inhomogeneous lattice in which the area of the empty lat-
tice parallelograms is d has a lattice point with coordinates (x,y) for which

d
< -,
lzy| < 1

It is reasonable to look for such a lattice point among the vertices of a
divided cell ABCD. Let E be the center of the cell. The diagonals of the
parallelogram divide it into four triangles of equal area. At least one of these
includes the origin. Assume that this is the triangle EAB (Figure 26). Then
the area of triangle OAB is not greater than d/4.

B(-x;,y,)

C(-%3,-y;)
D('x47 _y4)

FIGURE 26.
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Drawing perpendiculars from A and B onto the half-axis crossing the
triangle produces with point O two right triangles. Triangle EAB contains
at least one of these right triangles, and the other one extends beyond EAB,
unless, of course, AB is perpendicular to that axis, in which case the two
right triangles cover OAB. In the latter case, the area of one of the triangles
is not greater than d/8, and for the corresponding lattice point the inequality
in Theorem 18 is satisfied. Equality holds only when O and E coincide and
the axis is the perpendicular bisector of AB.

If AB is not perpendicular to the axis that intersects it, but the part of
the triangle OAB containing the right triangle—say the part corresponding
to vertex A—does not have larger area than the other part, then the area
of this right triangle is less than d/8, and vertex A satisfies the claim of
Theorem 18.

However, if the part containing the right triangle has greater area than
the other part, then it also contains the midpoint of the line segment AB. We
see that the mirror image of the part of the right triangle extending beyond
the cell with respect to the midpoint of AB is in the triangle OAB. Thus we
see that the area of both right triangles does not fill OAB. Hence the area of
one of them is at most d/8. For the corresponding lattice point, the claim of
the theorem holds.

Following the proof more closely, we can see that equality holds only
when O is the center of the cell, and one of the axes perpendicularly bisects
one of its sides. It is obvious that in this case, the other axis is also a per-
pendicular bisector of the other side, and hence the divided cell is a rectangle
with sides parallel to the axes whose midpoint is the origin. Thus in addition
to Theorem 18, we have shown that one cannot write a smaller value in place
of d/4; specifically, we have shown when equality holds.

37. In the following we present SAWYER’s elegant proof of Theorem 18 re-
ferred to in Section 34. If a lattice point were to fall on one of the axes, then
the product of the coordinates of such a lattice point would be 0, and the
claim of Theorem 18 is true.

If this is not the case, then denote the coordinates of the vertices of the
divided cell as in Figure 26. Furthermore, let m; = z;y; (1 = 1,2,3,4).
We calculate the area of the parallelogram as the sum of the areas of the
triangles OAB,OBC,OCD, and ODA. In turn, the areas of these triangles
can be expressed using analytic geometry. We have the following:

1
d= -2—(:c1y2 + Toyr + Toyz + T3y2 + T3ys + Tays + Ty + T1Ya)
1
=z (ml—y3 +m2 +m2y +m3y +m32‘-‘- +m4y +m4y +m1y4)
2 1 Y2 Y2 Y3 Y3 Ya Ya Y1

Replacing all the m;’s by the smallest of them, denoted by m, makes the
sum smaller, or at least not greater. Also, using the inequality s + 1/s > 2,
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valid for all positive numbers s, we get that d > 4m. This means that the
claim of Theorem 18 holds true for at least one of the vertices of the divided

cell.

Following the proof more closely, one can also determine when equality
holds. We leave this to the reader (Exercise 31).

Exercises:

28.

29.

30.

31.

Prove that the procedure of getting new divided cells from a given one
gives rise to all the divided cells.

Prove that the second claim of Theorem 16 is true for (\/5 +1)/2as
well.

Determine those lattices for which the estimate of Theorem 16’ cannot
be improved.

Following SAWYER’s proof, determine the cases where the equality
cannot be dropped in Theorem 18.






5. Properties of Prime Numbers

1. We have seen two proofs in Chapter 2 showing the uniqueness of prime
decompositions of integers (Theorem 1.8). The consequences of that theorem
there and also in following chapters make it clear why Theorem 1.8 is called
the fundamental theorem. The prime numbers mentioned in that theorem are
distributed among the integers in a very peculiar way. One can get a feel for
this by looking at the sequence of primes less than 150. We list these primes,
writing the differences between consecutive primes below them, and writing
those differences that are larger than all the previous differences in boldface.

2 3 5 7 11 13 17 19 23 29 31 37 41 43
1 2 2 4 2 4 2 4 6 2 6 4 2 4
47 53 59 61 67 71 73 79 83 89 97 101

6 6 2 6 4 2 6 4 6 8 4 2
103 107 109 113 127 131 137 139 149
4 2 4 14 4 6 2 10

It is not surprising that since the earliest times both professional and am-
ateur mathematicians have shown great interest in properties of prime num-
bers. We have seen EUCLID’s proof (among others) that there are infinitely
many prime numbers (Theorem 1.4 and Exercise 1.19), that the difference
between two consecutive primes can be arbitrarily large (Exercise 1.20), and
that there are so-called reclusive primes, primes that are arbitrarily far from
all other primes (Theorem 2.8 and Exercise 2.18).

Outsiders pose such questions as, “Has the secret of prime numbers been
discovered?” But it is not clear what type of answer they hope for. If they
are hoping for a formula that generates prime numbers, then the answer is
yes. MILLS? proved that there exists a number ¢, for which [c3"] is a prime
number for every positive integer n, SIERPINSKI? presented a formula which
gives the nth prime number for every n.

! W. H. MiLLs: Bulletin Amer. Math. Soc. 53 (1947), p. 604.
? W. SIERPINSKI: Comptes Rendus Acad. Sci., Paris 235 (1952), pp. 1078-1079.
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These are very interesting results, but they are not useful in practice.
MILLS’s formula uses the prime numbers to determine the constant ¢; more-
over, it applies the deep theorem that between the cubes of two consecutive in-
tegers (beyond a certain point) there is always a prime number. SIERPINSKI’s
formula is similar. The results we proved earlier, which are less precise, and
the above-mentioned theorem tell us more about the primes than these two
formulas. In the remainder of this chapter we will be dealing with similar
types of theorems, many of which can be proved by elementary methods.

2. Unless we specify otherwise, we will denote by p, the nth prime number,
ordered by size (p; = 2,p2 = 3,p3 = 5, etc.), and by d,, the difference between
consecutive primes: d,, = pn+1—Pn. We have seen that the second sequence is
not bounded; in fact, there are arbitrarily large consecutive terms. The value
1 occurs only once, since all even numbers greater than 2 are composite.
The difference 2 occurs often between consecutive primes. These primes are
consecutive odd numbers and are called twin primes. Looking at any list of
prime numbers, one sees that twin primes occur often, even among larger
prime numbers. KRAITCHIK determined the prime numbers occurring among
the 10000 numbers preceding and following one billion, and even here twin
primes occur. It is, however, unknown whether there are infinitely many twin
primes.

It is easy to show (see Exercise 1) that for infinitely many n, dp4y > dp.
On the other hand, it is not at all easy to prove that for infinitely many
n, dn+1 < dn.3

It is expected that the inequalities dn4+1 > dn and dn41 < dn, both occur
roughly half of the time up to any bound. It is also possible that equality
dn+1 = dp occurs infinitely often. It has been proved only that there exist
positive numbers h and c such that for all n less than a sufficiently large
bound N, the inequality dn41 > (1 + h)d, holds for cN values of n.4

It is still unknown whether either of the inequalities dp+2 > dny1 > dn
or dny2 < dpt1 < dn occurs infinitely often. (If both were to occur only
finitely many times, this would mean that after a certain point, the sequence
dp+1 — d,, would alternate in sign, but this most certainly does not happen.)

More recently, Maier proved that the difference d,,4 — d,, takes on values
less than 0.2484 log d,, infinitely often.®

It is unknown what lower bounds can be given for d,. We have men-
tioned that it is unknown whether the difference 2 occurs infinitely often
(twin primes) among the d,’s; it is also unknown whether arbitrarily small
numbers occur among the quotients d,/logn. All that has been proved in

3 P. ErDSs and P. TURAN: Bulletin Amer. Math. Soc. 54 (1948), pp. 371-378.
They were the first to consider questions relating to d. and the first to present
results.

4 P. ErDOs: Publicationes Math. Debrecen 1 (1949-1950), pp. 33-37.

® H.C. MAIER: Michigan Math. Journ. 35 (1988), pp. 323-344.
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this direction is that there is a constant ¢ such that the quotient is less than
1 — c for infinitely many n.%

We have seen that there are reclusive primes, which means that two con-
secutive d,’s can both be larger than any given bound. An even stronger
result is known: The quotient

min(dy,,dnq1)
logn

takes on arbitrarily large values.” Results for the minimum of more than
two consecutive terms were not found until more than 30 years later. MAIER
showed that for an arbitrary k, there exists a constant c for which there are
infinitely many n's such that the quotient

min(dn41,dnt2, - - - » dnik)(log log log n)?
log nlog log nloglogloglogn

is greater than c; moreover, k can increase as n increases.?

It is an old conjecture that for n large enough, d, is smaller than n to an
arbitrarily small positive power; in fact, it is probably smaller than a constant
times (logn)2. In this direction, the known “record” is by R. C. BAKER and
HARMAN,® who proved the bound n%-535.

In the other direction we know only that there is a constant c for which
infinitely many n’s satisfy the inequality'®

log n log log nlog log log log n

d, >c 3 .
(log log log n)

The conjectures concerning upper bounds on the d,’s would imply that for
any positive &, there is a prime number between n'*% and (n + 1)1*9 if n is
large enough. The bound mentioned above gives the best result of this type,
which shows that between any two large enough consecutive cubes there is a
prime.!! The equivalent statement for squares looks quite difficult.

Exercises:

6 R. A. RANKIN: Journ. London Math. Soc. 22 (1947), pp. 226-230.

7 P. Erdés: Bull. Amer. Math. Soc. 54 (1948), pp. 885-889.

8 H. MAIER: Advances in Math. 39 (1981) pp. 257-269.

® R.C. BAKER, G. HARMAN: The difference between consecutive primes, Proc.
London Math. Soc. (3) 72, 1996, pp. 261-280.

10 P. ERDOs: Quarterly Journ. of Math., Ozford Ser. 6 (1935), pp. 124-128. To date
the largest communicated value of ¢ is C - €7, where v is the Euler-Mascheroni
constant and C = 1.31. H. MAIER and C. POMERANCE: Transactions of the
Amer. Math. Soc., 322 (1990), pp. 201-237. J. PINTZ showed that C can be
improved to a constant larger than 2. Verbal communication.

I R.A. RANKIN: Journ. of the London Math. Soc. 13 (1938), pp. 242-247. The
result of footnote 8 is somewhat stronger than this.
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1. Prove that for infinitely many n,d,+; > d,.

2*. Prove that there are infinitely many twin primes if and only if there are
infinitely many integers that cannot be written in any of the following
forms:

6uv+u+v, 6uv+u-—v, buv—-u+tv, 6uv—u-—uv,

for positive integers u and v (S. Golomb).

3. We start our further investigations with simple questions. In EUCLID’s
proof that there are infinitely many primes, we added 1 to the product of
the given primes to give a number divisible by new primes. Repeating this
procedure, we can produce arbitrarily many primes. In other ways, we can
also produce sequences of pairwise relatively prime numbers greater than 1,
and then choosing a prime divisor of each, we again produce infinitely many
primes. The following theorem, also based on EUCLID’s ideas, produces such
a sequence.

Theorem 1 If b and ¢ are arbitrary natural numbers that are relatively
prime, then the elements of the sequence defined by the recursion

ag=>b, @any1=0apa---a,+c (n=0,1,...)
are pairwise relatively prime.

We prove the theorem indirectly. Suppose that the sequence contains el-
ements that are not relatively prime. Let a; be the first element that is not
relatively prime to some other element a; of the sequence. These two elements
have a prime common divisor, which we will denote by p. One of the terms
of the product on the right-hand side of

aj =apa;---aj—1+¢

is a; itself, and hence the product is divisible by p as well. On the other
hand, p divides a;, and therefore it must divide c, too.
Thus the left-hand side of

a; =aga) - a;—) +C

and the second term of the right-hand side are both divisible by p, therefore
the product on the right-hand side is as well. But according to the prime
property, this is possible only if a, is also divisible by p, for some k less
than i. Hence, a; would have a common divisor (greater than one) with
another element of the sequence, but this contradicts our assumption that a;
is the first such element. Therefore, Theorem 1 must hold true.
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4. For b = 3 and ¢ = 2, we can see by induction that we get the sequence
e, =2 +1  (n=0,1,...),

hence this sequence is made up of pairwise relatively prime integers. This can
also be seen directly. These numbers have at least one prime divisor each,
showing that p,, is not larger than a,_,.

From these results we can also establish a lower bound on the number of
primes not larger than z. We will call this quantity w(z). It is easy to see
that this result implies that «(z) is not smaller than log log z times a positive
constant. We can immediately give a better bound for this, and later we will
prove a significantly larger lower bound.

We can also produce other such sequences whose elements are pairwise
relatively prime, but no such sequence is known that would give a significantly
better lower bound. It would be interesting to decide whether there is some
mathematical reason for this. Denser sequences of relatively prime numbers
of course exist, for instance the sequence of prime numbers itself. In fact, this
is the densest such sequence. Namely, if the sequence a, < az < - -- is made
up of pairwise relatively prime elements larger than 1, then each element
must contain a new prime, and a, must be at least as large as the nth prime.

Exercises:

3. (a) Prove that if b = 3 and ¢ = 2 for the sequence in Theorem 1,
thena, =22" +1(n=0,1,...).
(b) Prove without using Theorem 1 that the elements of the sequence
above are pairwise relatively prime.

4. Prove that if ¢ and d are relatively prime positive integers, then the
elements of the sequences generated by the following recursions are
pairwise relatively prime:

(@) ao=c, a1=d, ans1 =[] 1con-14n92k-1 + [loconcn O2k;
(b) ap=¢, ay=c+d, apy1=an(an—-d)+d (n=12,...).

5. In the proof that there are infinitely many primes given in Exercise 1.19 (b),
the basic idea is that every number can be written as a product of a square
and a square-free number (a number not divisible by a square larger than 1).
Estimating the numbers of the two types of factors and assuming that there
are only finitely many prime numbers, we can see that we cannot produce
enough numbers in this way up to a large enough bound.

If we omit the indirect hypothesis, this idea can be used to give a lower
bound on w(z), the number of primes not greater than . We can prove the
following result:

Theorem 2 There erists a positive constant ¢ for which the inequality

m(z) > clogz
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holds for all z > 2.

Applying the above idea, let M (z) be the number of squares up to z. We

have
M(z) = [Vz] < Vz.

Let N(z) be the number of square-free integers up to z. The canonical
decompositions of these are products of primes not larger than z, each prime
to the Oth or 1st power. The number of these primes is 7(z), so these give
2™(2) square-free numbers.!? Therefore,

N(z) < 2@,

From these we get the following inequality concerning the number of in-
tegers not larger than z:

[z] < M(z)N(z) < Vz2"@,

from which for z > 2, it follows that

27 > [¢]/VE > (.~ 1)/VE > 5V3,

and hence

1
n(z) > 3 logz —log2 > clogz,
giving a c slightly less than %, satisfying the claim of the theorem.

6. We can measure how dense a sequence of natural numbers is among the
natural numbers by considering the reciprocals of the terms of the original
sequence and determining whether the sum of the first n terms of this is
always less than some bound, or whether these initial sums grow beyond all
bounds. In the first case, the reciprocals of the terms decrease rapidly hence
the terms grow quickly. In the second case the reciprocals decrease slowly,
hence the sequence does not increase too quickly.

Both of the two cases occur. Considering all the natural numbers, we have

the series
T4otbp gl
2 3 n’
known as the harmonic series, which diverges by Fact 6. We may conversely

consider the sequence of squares, which gives rise to the series

2 Most of these are greater than z. From the 8 primes not greater than 20, for
example, one can form 256 square-free numbers, but of these only 13 are not
greater than 20.
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1 1 1 1 1 1
1+§5+§§+"'+;§<1+'.—+— -

This property holds, of course, for any subsequence of squares, such as the
sequence of squares of primes; taking any number of elements of this sequence,
we see that the sum of its reciprocals is less than 2. (In Exercise 5* below,
we will need a better bound for the sum of reciprocals of squares of primes.)

7. EULER showed that the sequence of prime numbers is a dense sequence
in the sense defined above. We will present two proofs of this theorem. The
first is a short indirect proof due to ERDOs.13

Theorem 3 The sum of the reciprocals of the prime numbers diverges.

Suppose the contrary. Then we can choose a bound K such that the sum
of the reciprocals of primes larger than K is less than % Let r be the number
of primes less than or equal to K.

Now let N be an arbitrarily large integer greater than K. We shall reach
the absurd conclusion that N must, in fact, be bounded.

We divide the set of integers less than N into two groups. The first group,
containing, say, N, integers, will consist of the integers less than N that are
divisible by a prime greater than K. Then for each prime between K and N
there are at most [V/p] such multiples, and so we obtain the estimate

N 1 1
N < —|<N. - < =N,
< 2 [l 20
p<N
where the last inequality follows from our assumption that ), <p<N % is less
than 3.

The second group contains the remaining, say, N2 integers less than N
that are not divisible by a prime greater than K. We write each such integer
as the product of a square-free term and a square, following the ideas in
Section 5. There are at most [\/7\/'_] possible values for the square part of

the product. The square-free part has a canonical decomposition consisting
of the first r primes, each raised to either the zeroth or the first power; hence

there are at most 27 of these.!* Therefore, N, < [\/JV ] .27,

13 P. ErDSs: Oberdruk uit Math. B. 7 (1938), pp. 1-2. One can find another proof
here as well; see Exercise 5 of this reference.
!* In making this estimate we do not pay attention to whether or not the first term

has a prime factor greater than K, and whether or not the second term is greater
than N.
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Combining the estimates for N; and N2, we get the following inequality:

N1+N2=N<%N+ [VN]2 <IN+ VR,

1
-2
and N < }N + VN2 immediately yields

1
5\/_]\7 <2,

This leads to an immediate contradiction, since the right-hand side is a fixed
value for a given K, while N can be arbitrarily large. Thus Theorem 3 is
true.

Exercises:

5*. (a) Show that the sum of the reciprocals of the squares of primes is
bounded by a value less than 3.
(b*) Modify the proof of Theorem 3 such that we estimate the num-
ber of integers that are not divisible by primes greater than K
separately when they are divisible by a square greater than one,
and separately those that are square-free.

6. Prove that the sequence of natural numbers all of whose prime divisors
are greater than some natural number K is made up of finitely many
residue classes modulo the product of primes less than K.

7. We are given a sequence of distinct natural numbers, and we know
that for an appropriate positive number c, there exist arbitrarily large
numbers z such that the number of terms not greater than z is at
least cz. Prove that the sum of the reciprocals of enough elements can
be arbitrarily large.

8. The first proof of Theorem 3 is due to EULER, who also gave a lower bound
for the sum in the theorem. He noticed that this sum is closely related to the
logarithm of the following product:

k

Sk=H 11,

i=1 Pi

where py is the largest prime not greater than z. Applying the inequality in
Fact 5 in two different ways to the logarithm of the reciprocals of the terms
in the denominator of the above quotient (first applying it to an arbitrary
number p greater than 1), we have that

1 1 1\ ! 1 1
-=>1lo 1—-):—10 (1—-) =-1lo <1+ )2— )
p g( P € P & p—1 p—1
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Multiplying this by —1 and subtracting 1/p, we get that
o1 1
0<lo 1—-) - =< 0.
=8 ( p p~plp-1)
Now replace p by p1,p2,.-.,Dk, and sum up the terms. The sum of the
logarithms is log Sk, and hence it follows that

k [=]

1 & 1 !
0S10gsk-zasiz=;pi(pi_1) SZn(n—l)

=1 n=2

Based on this, the investigation of the sum can indeed be substituted by
the investigation of Sk.

9*. We decrease the factors of the product Si so that they can be written
as a geometric series. For an arbitrary real number p different from 1 and a
positive integer 7,

1 1= 11 1
- > — =1ttt
-3 -3 p P P

We replace the p by p; and 7 by r; for all p; and r; satisfying
p:i <z< p';'.'+1_

In this way we get

k 11 1
S>[[(1+=+5++=).
=1 pi  Dj p;

The product on the right-hand side consists of terms whose reciprocals
are products of the form
. p‘;lpgz ,,.ka’
where
0<s; <y (i=1,2,...,k).
Among these, every integer not greater than = occurs, and hence

1 1 1
T = m oo —.
Se>1+5+3++
The right-hand side is a partial sum of the harmonic series, and by Fact 6 it
is larger than log([z] + 1). Summarizing our results, we have
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k
1 1
1+ E - =1+ E — > log Sk > loglog([z] + 1) > loglogz.
p<k i=1 Pi

In this way we have the following result:

Theorem 4 The sum of the reciprocals of all primes not larger than z sat-
isfies the inequality

1
Z - > loglogz — 1.
psz

By similar methods, using for example the canonical decomposition of n!
given in Chapter 1, one can give an upper bound to the given sum, and the
two bounds together give that

1
Z — —loglogz — 1
psz

is bounded by a constant independent of z. Further, using elementary meth-
ods it is possible to produce good bounds for expressions that imply useful
results for the distribution of prime numbers. We will, however, not continue
with these. Instead, we will turn to significantly improved bounds for n(z),
as promised earlier.

10. We have seen several examples of how irregularly and peculiarly primes
follow each other. The previous section showed that even with all these pecu-
liarities we can still determine certain regularity. The number 7(z) of primes
not larger than = was studied already in the eighteenth century, when it was
noted that for large z, the number grows approximately like z/log z. More
precisely, the quotient

m(z)

z/logz

is arbitrarily close to 1 for z large enough.

The first proof of anything in this direction was given by CHEBYSHEV in
the middle of the nineteenth century, who showed that there exist positive
constants ¢; and cp for which

(G4
log z

C2T
logz’

< w(z) <

hence that the previously mentioned quotient falls between positive bounds.
In the following we will prove these inequalities.

The lower bound can be obtained fairly easily based on certain properties
of the binomial coefficient (}), specifically that no prime power larger than n
occurs in its canonical decomposition (Theorem 1.13). Applying this to the
binomial coefficient (*7), we get
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()= I1 # < anye.

p<2n

We next estimate this binomial coefficient from below. We start by can-
celling an n! from the denominator with all the even terms in the numerator,
leaving a factor of 2™. We then replace all odd terms greater than 1 in the
numerator by the even term 1 less than it. This gives

(Zn) _(2n)!  2.3---(2n—-1)2n _on. 3:5---(2n-1)

n) ()2~ 1.-2.-.n-n! n!
Jgn. 2:4r(en-2) 2ol o
1-2..-(n=1)n n  2n°

Considering the two bounds together, we get

(2n)™C™ > 2—22 and therefore  7(2n) + 1 > log2 _Zn_
2n log2n
With this we now have the desired bound for all even integers, and with
a little additional calculation, we can get a similar result for all z:

. 2(%_1) _ T 210g2
(o) 27 (2[3]) > o2 L -1 mtema g (T2 4).

The subtrahend (the quantity that is subtracted) is bounded for £ > 2, and
the following theorem holds:

Theorem 5 For every x large enough, there exists a positive constant ¢ for
which the following inequality holds:'®

CcIT
7('(.’27) > Ez-

11. We will deduce an upper bound of an estimate for the product of all
primes less than a number z, which is interesting in itself.

Theorem 6 For the product of the primes not greater than x, we have
H p < 4%
p<z

It is enough to prove the theorem for integers z, for if it is true for integers,
then for arbitrary z we have

!5 For all the details of the above proof, see E. LANDAU: Vorlesungen tiber Zahlen-
theorie (1927), Volume 1, p. 67.
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[[r=JI psd¥ <e

p<z p<[z]

We can prove the theorem for integers z by induction. The theorem is
obviously true for z = 1 and z = 2. Let k > 3 be an integer. Assume that
the theorem is true for all positive integers less than k, and we will show that
the theorem is true for z = k. This is immediately true if k is even, since the
assumption that k > 3 implies that

[Ie= ] pse e
1

p<z p<z—

Let k be odd, i.e., k = 2n + 1. Then we can split the product into two
parts. We apply the induction hypothesis to estimate the part of the product
made up of primes not greater than n + 1; we will give a separate bound for
the other part.

The primes between n+2 and 2n+1 (including the endpoints) are divisors

of the binomial coefficient (*”F'), since this is an integer, and in the form

2n+1\ _ (n+2)(n+3)---(2n+1)
( n ) - 1-2---n ’
these primes occur in the numerator and are not divisors of the denominator,
since every factor is smaller than the primes. Thus the product of the primes
between n + 2 and 2n + 1 is not larger than this binomial coefficient, and it
is enough to give a bound for this from above.

This can be estimated similarly to the binomial coefficient (2:), only now
we need an upper bound, so we replace each odd number in the numerator
by the next-larger even number. The binomial coefficient

2n+1\ 2-3-4---2n-(2n+1)
( n )— 1-2-3---n)(n+1)!

can be simplified by first dividing the product of the even integers in the
numerator by n!, and then increasing all remaining factors by 1 to get

<2n+1>=2n.3-5-7‘~(2n+1) con 46 -(2n+2)

n 23 (n+ 1) 3 mal)

Using the inductive hypothesis and the above inequality, we have

H p= H p- H p<4n+l'4n=42n+1.

p<2n+1 p<n+l n+2<p<2n+1

With this we have proved the theorem.
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12. The number of primes here is the number of factors. If we wish to bring
this into the inequality, using the fact that each prime is at least 2, we arrive
at an inequality that tells us nothing. We can greatly improve upon this by
replacing all primes greater than some large number y by the smallest of
those. By this step, however, the number of factors is also diminished:

H p > y"r(z)"""(ll)'
y<p<z

We would like to get a bound of the order z/logz for m(z). The subtrahend
in the exponent will be smaller than this if we choose y to be z to some power
4, where § is less than 1. We may then estimate the subtrahend 7 (y) in the
exponent by y, and substituting we get

y'rr(::)—'rr(y) > m&(‘ir(z)—::‘s) .

Multiplying this by the remaining primes, the product will still be smaller
than 4*. From here we can get the desired inequality by omitting the primes
less than y (we estimate their product from below by 1). Using Theorem 6
we get that if § is less than 1, then

4% > H p> m&(vr(z)—:s).
y<p<z

Taking logarithms of the outer parts and solving for m(z), we have

og4 z s (logd logz\ =z
me) < =5~ logz+m —< = logz’

Here the second term in parentheses is bounded for § < 1 by Fact 7, and in
fact, it can be made arbitrarily close to 0 for z large enough. With this we
have the following theorem:

Theorem 7 There erists a positive constant ¢ for which the following in-
equality holds:'®

m(z)

< fogz logz’

The present line of thought is essentially due to ERDGS and KALMAR.!?
If we interpret Theorem 3 to mean that the prime numbers cannot occur
too infrequently among the natural numbers, then Theorem 7 means that the

!® From the proof, we will get that any number greater than log 4 can be used as
c, for instance 1.4, for all z larger than some (determinable) bound. The value
of the constant, however, is secondary, since any value greater than 1 will suffice
for = large enough, but the proof of this fact depends on considerably deeper
investigations.

17 P. ERD®s: Acta Litt. Univ. Sci., Szeged, Sect. Math. 5 (1932), pp. 194-198.



170 5. Properties of Prime Numbers

primes are not too dense either. This is because if we ask the question that
up to a limit z, what fraction of natural numbers are prime, then according
to Theorem 7 the answer is 7w(z)/z, which in turn is less than ¢/ log =, which
is arbitrarily small as = grows sufficiently large.

If the quotient of the number of elements of a sequence of integers not
greater than a given number z divided by z is arbitrarily small for z large
enough, then we frequently say that the sequence has density 0 (or its asymp-
totic density is 0). Therefore, the sequence of primes has density 0. This
weaker statement can, however, be proved using simpler techniques, without
referring to Theorem 7 (see Exercise 10).

13. We note that if in addition to the primes, we include the prime powers
too, then the situation does not change considerably. Let 7*(z) denote the
number of all prime powers up to z. Then the following theorem holds:

Theorem 8 There are positive constants Cy and Cs such that the number
m*(z) of all prime powers not larger than z satisfies the inequalities

Cla:
logz

ng
logz’

T (z) <

for z large enough.

The first inequality follows from Theorem 5:

cx
logz’

™ (z) > n(z) >

so choosing C; = ¢ from Theorem 5 satisfies the first inequality.

For the upper bound, we see that up to z, only the squares of those primes
occur that are not larger than 1/z, and only the cubes of the primes up to
¥z, etc. Thus

™ (z) =7(z) + 7 (Vz) + 7 (Jz) + -

On the right-hand side there are only finitely many terms. The last term
appearing is the kth root, where k satisfies

Vz>2> "z

From the first inequality, we have

—
o
8

o}
~ log

k

[V

Because 7 (z) is nondecreasing in z, using the c from Theorem 7, it follows
that
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m™(z) < n(z)+ (k- r(vVz) < E% + %

cr 2c VT oocx 2¢ Cox
log
< logz + log 2 Ogrlog:v log z + log2\/5 < logz’

for an appropriate constant Cy. With this we have proved Theorem 8.

Exercises:

8*. Beyond what bounds on z do the following inequalities hold?
(a) m(z) <z/2,
(b) (z) < (- 1)/2,
(c) m(z)<z/3.

9. Let 0 <a; <ap <:-- be asequence of natural numbers, and denote
by A(z) the number of elements not greater than z. Prove that if for
every k there exists a ¢ such that

A(z) > (logz)*

holds whenever z > ¢, then there are infinitely many distinct primes
among the prime divisors of the elements of the sequence.

10. Let the elements of the sequence of natural numbers a,,as,..., be
pairwise relatively prime. Let A(z) be the number of elements less
than z. Find a bound for A(z) using the fact that aj,a., ..., ax, do
not divide any other elements of the sequence. Prove that the sequence
has density 0.

11*. Prove that there exists a prime between any n and 2".
12. Prove that

22n < 2n) < 22
2\/n n V2n+1

14. The proofs of Theorems 6 and 7 were founded on estimates of the bino-
mial coefficients (*7) and (*"}?), respectively. More carefully estimating the
binomial coefficient, we are able to prove the following theorem:

Theorem 9 For every positive integer n, there is a prime number p satisfy-
ing
n<p<2n. (1)

BERTRAND was the first to observe this fact, and he even used it, but it
was CHEBYSHEV who first proved it somewhat later, in 1850.18

18 J. BERTRAND needed only the existence of a prime between n and 2n — 2 when
n > 4. P. L. CHEBYSHEV proved the existence of such a prime in an even smaller
interval.
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The product of primes between n+ 1 and 2n, if there are any, divides the
binomial coefficient

2n (n+1)(n+2) 2n
moegmen

since all these primes divide the numerator, but none divides the denomina-
tor. We will show that this product of primes has at least one element. We
have already seen in Section 10 that the binomial coefficient is larger than
22" /2n.

To get a lower bound for the product of the primes above, we need to get
an upper bound on the product of powers of primes not greater than n. If we
estimate each from above by 2n, nothing useful comes of it. It is necessary to
estimate the product of those primes that appear to at most the first power
by the result of Theorem 6. These are those primes from Theorem 1.12 that
occur to the power 1, i.e., p? > 2n and p > +/n. Thus the binomial coefficient
can be decomposed into the following three products:

H PP T, = H PP Ty = H D.

p<Vv2n V2n<p<n n+1<p<2n

We want to estimate T3 from below; to do this we need to estimate both
Ty and T3 from above.

In T3, every exponent is either 0 or 1. If every exponent is 1, then disre-
garding the smaller primes that are missing in the product, the bound of 4*
from Theorem 6 cannot be significantly improved, and it is almost as large
as the lower bound for the binomial coefficient. The important observation is
that at the end of the product, the exponents of the primes larger than %n
are 0.

If 2n < p < n, then p appears in the denominator of (2), but 2p does
not. In the numerator, 2p appears, whereas 3p > 2n does not. If n > 2, then
p > 2 and p # p?, so after simplifying, p cancels.

Estimating the factors of T; above by 2n, we get

22n

(277,) _ T1T2T3 < (2n)7r(\/51;)42n/3T3’
2n — \n

and this gives a lower bound for T3:

92n/3

Ts> (2n)m(Vam)+1

We can further decrease this by increasing = (\/2n). The prime numbers,
with the exception of 2, are all odd. Among the odds, 1 is not a prime number,
and if v2n > 15, then up to v/2n, neither is 9 nor 15. Thus for such n, we
have
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V2n + 1 V2n-1 _2n
w(\/2—n)+15(—2——2>+1=T<-2—.

Using additionally that if v/2n > 15 then n > 113, we obtain

22n/3 22n/3 ( 2\/%. )‘/2_"/3
T3 > = =

The right-hand side is larger than 1 if the fraction in parentheses is larger
than 1, at least for large enough n. Denoting v/2n by z, we need to show that
2% > 28 for z above some bound. It is enough to prove that

2™ > (m+1)3 (3)
for integers m, for if this is true, then for arbitrary positive real numbers z,
22 > 218 > ([z] + 1) > 22

The inequality in (3) is true for m = 11 (2} = 2048,123 = 1728). For
larger values of m, the reader can easily prove the inequality by induction.

The fraction under investigation, then, is greater than 1 whenever v/2n >
11, which is true for every n at least 61. The earlier inequality was valid for all
n larger than 113, so to complete the theorem, we need to check the numbers
up to 113. It is enough to give a list of primes in increasing order such that
each prime is less than twice the previous prime, for example, the primes

2,3,5,7,13,23,43,83,127.

For n = 1, the inequalities (2) of the theorem are satisfied by 2 (this is why
we include the upper bound). For larger values of 7,

p<n<yp,
where p and p’ are consecutive elements of the list of primes, we see that
p' <2p < 2n,
and that p’ satisfies (1). This completes the proof of Theorem 9.

15. Theorem 9 can also be phrased (and it has also been proven in this
form) that the binomial coefficient (2:) has a prime divisor greater than n.
The theorem in this form can be essentially improved to get the following
theorem due to SYLVESTER and SCHUR.

Theorem 9’ Ifn > 2k, then the binomial coefficient (:) has a prime divisor
greater than k.
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However, even the simplest, shortest proof to this theorem (due to ERDOs)
is too long for us to discuss here.!?

Exercises:

13. Prove the inequality in (3).

14*. Assuming?® that there is always a prime between n and 2n — 7 for
n > 10, prove that, with the exception of 1, 4, and 6, every natural
number can be written as the sum of distinct primes.

15*. Give another proof of the fact that if m and n are positive integers,
then ) ) )

n n+1l - n+m

is not an integer.

16*. Prove that for every polynomial with integer coefficients of degree at
least one, there are infinitely many integers for which the value is
composite.

16. Let us now review the proofs of this chapter. In Section 5, decomposing

integers into a square and a square-free part, we arrived at the inequality z <

VvZ2™(®)_ In the indirect proof in Section 7 we arrived at a similar inequality.
In Section 9 we saw that

II <l—l)~1>2—1-.
p<z p 'nS:z:n

In Section 10, using the inequality

2n+1
II »<
n
n+2<p<2n+1

we were able to derive the inequality
H p < 4%
p<z

In Section 12 we used the inequality

() < mrom.

Finally, in Section 14, by more closely investigating the prime decompo-
sition of the binomial coefficient (*"), we arrived at the inequality

' P. ErD&s: Journ. London Math. Soc. 9 (1934), pp. 282-288.
20 The reader can prove this by applyin% thg proof of Theorem 9 with slight mod-

ifications to the binomial coefficient (%"7°).
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VIR V2n/3
I »> . :
n+1<p<2n (m)

Each of these inequalities involves an expression independent of the prime
numbers, namely,

w5k () e () (55

n<zr

b}

) \/ﬂ/S

and an expression depending on the primes, and from these we were able to
learn more about the primes. Every expressicn of this type promises insights
into the properties of the primes.

Up to now we have succeeded in showing that the order of magnitude
of m(x) is z/logx, in other words, that m(z)/(x/logz) is between positive
bounds. Experience suggests that more is true: 7(z) is “essentially” z/logz
for large values of x, which says that the ratio above is not just between
positive bounds, but that it is arbitrarily close to 1 for = large enough. We
say that the asymptotic value?' of w(z) is x/log z.

This is known as the prime number theorem and is much more difficult to
prove than what we have proved so far. B. RIEMANN (1826-1866) outlined
a proof in an ingenious work using tools from complex analysis.?? His work
contained many statements without proof. It was first in 1896 that his ideas
were further developed into a complete proof of the theorem. This was done
independently by HADAMARD?? and DE LA VALLEE-PoUsSIN.2* We will not
try to outline the proof here, but we will, however, mention some of the
identities upon which the proof builds.

In the elements of analysis it is shown that the infinite series

1 1
I+ g+t
converges for all real numbers s greater than 1. In fact, this is also true for all
complex numbers s with real part greater than 1. Let {(s) denote its value
(depending on s).

Following in a way similar to that of Sections 8 and 9, it can be seen that

in this domain the following relation holds:

«-T(-3) "

14

2! The so-called integral logarithm Li(z) = f;(l / log t)dt describes the behavior of
w(x) with an even smaller deviation. Its asymptotic value is also z/ log .

22 B. RIEMANN: Monatsberichte d. Berliner Acad. d. Wiss. (1859), pp. 671-680.

23 J. HADAMARD: Bulletin Soc. Math. Prance 24 (1896), pp. 199-220.

24 CH. DE LA VALLEE-POUSSIN: Annales Soc. Sci. Bruzelles 20 (1896), pp. 183-256
and pp. 281-297.
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Again we have a relation between a function having nothing to do with
the primes and a function depending on the primes. This time the relation is
equality.

The definition of {(s) can be extended to all complex numbers s, with
the exception of 1. The investigation of this function and the above identity
leads to a proof of the prime number theorem.

In the middle of the twentieth century the theorem was finally proved
without the use of analysis.? ,

Comparing the prime number theorem and Chebyshev-type theorems, one
can see that it follows from Theorem 9 that

Pn+41 <2

Pn

and from the prime number theorem it follows that this ratio is asymptot-
ically 1. It is not likely that this last statement could be proved with basic
ideas like those that we have used here.

In Section 2.19 we stated DIRICHLET’s famous theorem: “If a and b are
relatively prime integers, a positive, then there are infinitely many primes in
the arithmetic progression ak +b (k=1,2,...).”

We have also shown some interesting applications of this theorem. Ob-
viously, it is enough to examine those arithmetic progressions in which the
value of b is between 1 and a. Among these, ¢(a) integers are relatively prime
to a. It has been shown that the primes are distributed evenly within these
o(a) arithmetic progressions, in the sense that if we denote by = (a, b, z) the
number of primes not greater than z in ak + b, then the asymptotic value®®
of w(a,b,z) is £/y(a)logz, as long as (a,b) = 1 holds.

Previously, it has been mentioned that number-theoretic notions can be
extended to other areas besides the integers. In numerous cases it has been
possible to prove analogous theorems. One such theorem can be stated that
remains in the domain of integers. Let f(z) be a polynomial with integer
coefficients that cannot be written as the product of lower-degree polynomials
with rational coefficients. Additionally, let p be a prime. Denote by ¢(p) the
number of integers n between 0 and p — 1 for which f(n) is divisible by p.

Then
> p<z 9(P)

z/logz

is arbitrarily close to 1 for z sufficiently large. (A special case of this is the
prime number theorem, namely, when f(z) = z.)

2 P. ERDOs: Proceedings Nat. Acad. Sci. 35 (1949), pp. 374-384. A. SELBERG:
Annals of Math. 50 (1949), pp. 305-313. For a detailed form of the first paper
see GY. HOFFMANN, L. SURANYL: Matematikai Lapok 23 (1972), pp. 31-51 (in
Hungarian).

26 For more details, see the second part of CH. DE LA VALLEE-POUSSIN’s paper
from footnote 8.
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17. Simple proofs have been found for some special cases of Dirichlet’s the-
orem, mentioned above. For instance, it is obvious that there are infinitely
many primes of the form 2k + 1 (i.e., odd), since with the exception of 2,
every prime is of this form.

With respect to 4, the odd primes can be of the forms 4k + 1 and 4k — 1.
Similarly, with respect to 6, primes other than 2 and 3 fall into two classes,
either of the form 6k + 1 or 6k — 1. We now prove that there are infinitely
many primes in each of these classes.

Theorem 10 There are infinitely many positive integers k such that:

(a) 4k +1 is prime,
(b) 4k — 1 is prime,
(c) 6k + 1 is prime,
(d) 6k — 1 is prime.

All the proofs use the basic Euclidean idea that we used to prove the
existence of infinitely many primes, except that we are now looking for ex-
pressions that have a prime divisor of the required form. This is easier for
the cases (b) and (d).

In general, if a > 2, and a number is of the form an — 1 (in other words,
it is congruent to —1 modulo a), then it has a prime divisor that is not
congruent to 1 modulo a. This is quite clear, since the product of numbers
congruent to 1 modulo a is also congruent to 1 moduloa. f a=4o0ora=6
(the cases in question above), then there are only two relatively prime residue
classes modulo a. Hence, in these cases, if a number relatively prime to a is
not congruent to 1 modulo a, then it is congruent to —1 modulo a.

Therefore, if a = 4 or a = 6, then 3 and 5 are primes of the form ak — 1
(k =1 in both cases). On the other hand, if p;,p2,...,pr are given primes of
the form ak — 1, then there are other primes of this form, too, that are not
in the above list. For instance, the number

n=apipz---pr—1

has a prime divisor of the form ak — 1, and this is different from all the p;’s
(:=1,2,...,7), since dividing n by p; yields the remainder p; — 1.

18. To prove parts (a) and (c), we will use two results from Chapter 2. The
first is an application of Euler’s lemma (Theorem 2.21) seen in Section 42: If
a is an integer, then every odd prime divisor of a2 + 1 is of the form 4k + 1.
The other result is an application of Gauss’s lemma (Theorem 2.22 from
Section 2.44): Prime divisors different from 2 and 3 of numbers of the form
a® + 3 must be of the form 6k + 1. Using these we are able to prove the
remaining parts of Theorem 10:

(a) 5=4-1+1, a prime of the type we are looking for. If p;,p2,...,p, are
primes of the form 4k + 1, then every prime divisor of
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(2p1p2 - pr)? +1

is of the type 4k + 1, different from those above.
(c) 7=6-1+1is a prime of the type we are looking for. If p1,p2,...,pr
are primes of the form 6k + 1, then every prime divisor of

(2pip2---pr)2 +3

is of the type 6k + 1, different from those above, since this new number is not
divisible by either 2 or 3.
With this we have proved all the claims of Theorem 10.

19. It may seem of excessively precise that we have begun our proofs by
first exhibiting a prime of the desired form. One may reduce the proof of the
general theorem to proving the existence of one prime of the desired form.
That is because if it is true for all relatively prime integers a and b, a different
frora 2, that there exists a positive integer k such that ak +b is a prime, then
the theorem could be applied to all of the arithmetic progressions

ak +b,a%k + b,k +b,... (k=1,2,...),

since a® and b are also relatively prime. The primes in these sequences are all
of the form ak + b, and there are arbitrarily large ones among them, too, so
therefore there are infinitely many different primes of the given type as well.

20. Certain other cases of Dirichlet’s theorem have been proven by elemen-
tary methods; in fact, elementary proofs have been found for general classes,
such as showing that there are infinitely many primes of the form ak + 1,
where a is an integer larger than 2. M. BRAUER found a rather simple proof
of the fact that there are infinitely many primes of the form ak+1 and ak—1,
for every positive integer a. Many notions in the proofs of the two cases run
parallel to each other. Below we will prove only the case of ak + 1, and then
only for a a prime power.

Theorem 11 For every positive prime p and every positive integer c, there
are infinitely many primes of the form p°k + 1.

It is enough in this case, too, to show the existence of one prime of the
given form, for if there exists at least one prime of the given type for every
¢, then replacing c by ¢’ = c+m, for m = 1,2,..., in the theorem, we have
primes of the form p°t™k + 1 = p°(p™k) + 1, and among these there are
arbitrarily large ones, and hence there are infinitely many.

21. We are looking for a prime g that satisfies p® | g— 1. Based on this obser-
vation, Fermat’s theorem and the idea of the order of a number (modulo q)
suggests a plan for a proof. Fermat’s theorem states that if a prime g is not
a divisor of an integer u, then u9~! =1 (mod q).
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The order of u is the smallest positive integer r for which
u" =1 (mod q).
According to Theorem 2.17, if
u® =1 (mod gq), then r|s.

Based on this, we need to find a prime ¢q and an integer u not divisible by

g for which

w?" =1 (mod g), (4)
and the power of u is its order modulo g. If these are satisfied, then by
Fermat’s theorem and the property of the order of a number, we have that
P° | ¢ — 1, meaning that g is of the desired form.

If a prime g and an integer u satisfy (4), then the order of u is a divisor
of p°; hence it is either equal to it or it is p raised to a power smaller than
c. In the latter case, the order is a divisor of p°~! as well, and hence the
congruence

v =1 (mod g)
is satisfied. This we would like to rule out.

Thus we have reduced the proof of the theorem to the following task: We
are looking for a prime ¢ different from p almd an integer u such that g is a
divisor of uP° — 1, but not a divisor of u?* — 1.

We claim that for arbitrary u, every prime divisor of

f(w)

different from p (if such a divisor exists) satisfies the desired conditions. This
is true because on the one hand,

v - 1= f(u) (u”c—1 - 1) ,

and thus the prime divisors of f(u) are also prime divisors of 4*° — 1. On the
other hand,

Flu) = uP= VP (=2 T
= (u(P—l)Pc" — 1) + (,u_(p—Z)P"“1 — 1) 4ot (upc"‘ — 1) +p.

The differences in parentheses are all divisible by w1 Therefore, if a
prime g divides both f(u) and u?*~' — 1, then it divides p as well; hence it is
p. Thus a prime different from p cannot divide both f(u) and w T~ 1, as
we claimed.

Finally, f(p) is larger than 1, and dividing by p gives remainder 1. Thus
it has prime divisors, and every one is of the form p°k + 1. With this we have
proved Theorem 11.

We note that in the case p = ¢ = 2 we have f(u) = u? + 1, and thus the
proof of Theorem 10, Part (a).

c

uP —1
Tt o1

c—1
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22. If the distinct prime divisors of a number a are py,p», ..., pr, then a line
of thought similar to that of the previous section leads to the search for a
prime ¢ and an integer u for which it is true that ¢ is a divisor of u® — 1
but not a divisor of any of the u®/?s — 1’s, for any j. As we did in the case
above we can produce a seemingly rational function similar to f made up of
expressions of the form g, = u™—1. It can be seen that this function is indeed
a polynomial of u with the desired properties. To prove these statements, it
is necessary only to use the relation that if m | n, then gm | gn. We will,
however, not go into the details of proving these statements.

We only mention the basic idea of the proof of the statement concerning
primes of the form ak — 1. M. BAUER noticed that—denoting the imaginary
unit by the usual i (2 = —1)—just as for g,(u), it is also true for the
polynomial h,(u) = ((z + i)™ ~ (z — i)™) /27 with integer coefficients that if
m | n, then hAp(u) | hn(u). And it is possible using the hy’s to build an
expression that has a prime divisor of the form ak — 1.

He also needed to use the theorem (also due to him, and very interesting
on its own) that if a polynomial with integer coefficients has a real root,
then there are infinitely many primes that are divisors of the value of the
polynomial at some integral value (other than at places that are congruent to
1 modulo m).2” However, all of these require so many technical details that
they are beyond the scope of this book.

2T The proofs of these two statements in the general case can both be found
in E. LANDAU: Handbuch der Lehre von der Verteilung der Primzahlen, 1909,
B. G. Teubner, pp. 436-446.
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1. Certain sequences of numbers, as well as problems relating to them, appear
throughout mathematics. Determining the general term of an arithmetic or
geometric progression, as well as determining the sum of (finitely) many
consecutive terms of these sequences, are common high school problems. A
residue class for a given modulus also constitutes an arithmetic progression. In
Chapter 2 various problems relating to both disjoint systems of congruences
as well as covering systems of congruences for different moduli were discussed;
many of these are still unsolved.

The sequence of prime numbers is especially interesting from the number-
theoretic point of view. The entire previous chapter was devoted to certain
problems relating to the primes. Among other things, we showed that the se-
quence of primes is infinite, and after introducing the concept of a sequence
of 0 density, we proved that the primes have density 0. In Sections 5.3-
5.4 we used various sequences of integers to prove that there are infinitely
many primes. We also saw various consequences of DIRICHLET’s deep theo-
rem about primes in arithmetic sequences. (We proved the theorem only for
various special cases.)

In this chapter we will further investigate sequences of integers, consider-
ing them from different points of view.

2. In this section we will examine the length of the Euclidean algorithm pre-
viously discussed in Section 1.27, and from our investigation we will come
upon a well-known sequence. This procedure is used for finding the distin-
guished common divisor of two integers a and b, and consists of consecutive
divisions with remainder. In a footnote we mentioned that a and b can be
taken as the —1st and the Oth remainders in the sequence of remainders, r_,
and 7. Suppose that 0 < a < b and that a 4 b. Then this algorithm can be
briefly described as

Tj—1 =T5q; + Tjt+1, 0<rjq1 <75, 7=0,1,...,n-1,

Tn—1 = Tnqn-

Here, the greatest (distinguished) common divisor of a and b is 7,,. Let us
call the length of the algorithm n.
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With the assumptions on the remainders, a and b uniquely determine the
sequence of r’s and ¢'s. The converse of this is also true: If ¢o, g3, ..., ¢, and
T, are known, then reversing our steps, these numbers in turn determine all
the r;’s, and finally b and a. For a given n, let us determine the smallest a
and b for which the length of the Euclidean algorithm is n.

In order to do this, we will show that if for some a’ and V', the length of
the algorithm is n, and if we denote by ¢g,4j,...,g, the quotients and by
T 1,70,71,- -, Ty the remainders, if the inequalities q; >4q;,7=01,...n,
and 7}, > r, hold, then for j =n —1,n—2,...1,0, -1 it also holds that

r; 2 7;, and especially o' >a, b >b. (1)

We prove this by induction on n, starting from n — 1, going in descending
order. For i = n — 1, it follows from r, > r, and ¢, > ¢, using the last
inequality, that

7':;-1 = T;,q; 2 TnQn = Tn—1-

If for some nonnegative integer k, (1) holds for j > k, then since g} > g,
we see that

! ! 1 !
Th1 = Tklk + Tk41 = TkQk + Th+1 = Tk—1-

Therefore, (1) also holds for j = k — 1. With this we have shown that (1)
holds for all j’s.!

We also note that the value of g, is at least 2, since if ¢, = 1, then r,_;
would equal r,, meaning that at the second-to-last division, g,_; + 1 would
be the proper quotient, and the algorithm would finish there.

From the statement proved above, it follows that among the set of all
pairs of integers for which the algorithm has length n, the smallest pair will
be the one for which

=@ =q= " =@_1=Thn=1, gn=2

holds.

Note that if for two distinct values of n, we write the smallest pair of
integers for which the algorithm length is n, then in performing the algorithm
for the larger n, the values of the algorithm for the smaller n appear as
neighboring remainders, and from here the two algorithms coincide. In this
way we have produced an infinite sequence of remainders, whose finite pieces
provide the remainders of the longest such algorithm in question. Hence, it
is appropriate to index the remainders in reverse order:

* * *
T =Tn, Tg =Tn_1, T3 =Tn—2, ...

! 1t is only a formal difference from the usual way of induction that we proceed in
descending order on the indices. It is more unusual that we prove a statement
by induction that holds only for finitely many integers, namely only for as many
as the number of remainders in the algorithm.
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Then for the sequence in question we have that r{ = r, = 1. Furthermore,
since in the last equality ¢, = 2,

Ty =Tno1 = Tngn = 2,
while the remaining equations of the algorithm are
Tita =Tjp1 + 75 U=12...).

If we add the terms 0 and 1 to the beginning of the sequence, the sequence
we get,? defined by the recurrence relation

fo=0, i=1, fira=fin+fi (1=012...) (2),

is called the Fibonacci sequence, while its elements are called the Fibonacci
numbers. The first few elements of this sequence are

0,1,1,2 3,5, 8, 13, 21, 34, 55,

89, 144, 233, 377, 610, 987, 1597, ...

We will call other similar sequences that start from different values but
satisfy the recurrence relation in (2) Fibonacci-type sequences.

LEONARDO FIBONACCI (son of BONACCIO, also called LEONARDO PISANO
(F1BONACCI), lived between circa 1180 and 1250), famous Italian mathermati-
cian, introduced the European world to the above notion in his book titled
Liber Abaci, published in 1202, based on his experiences in Arab lands.

He introduced the Fibonacci numbers in his book using a slightly far-
fetched example concerning the reproduction of rabbits. These numbers
proved very interesting and had many applications, and even today, 800 years
later, they are the center of intense research. Many problems related to Fi-
bonacci numbers are still unsolved today.

In the above, we proved the following theorem:

Theorem 1 The Euclidean algorithm on a and b,a > b, has fewer than
n remainders if b < foi2; and also if a < fny3z. On the other hand, the
Euclidean algorithm on f, 13 and fn2 has ezactly n remainders, the numbers

fn+l)fn)"'1f2'

Among properties of the Fibonacci sequences that we will discuss, many
will also hold for Fibonacci-type sequences.

3. The elements of the sequence listed above grow more and more quickly as
they get larger. Nevertheless, the sequence “encompasses” every integer, in
the sense that every integer has a multiple in the sequence.

2 The recurrence relation also holds for the starting elements. Furthermore, fa =2,
and from here on we have the same sequence as before.
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Theorem 2 For every integer m, there is a Fibonacci number divisible by
m. (In fact, there are infinitely many of these.)

In the language of congruences, we are looking for an element of the
sequence that is congruent to 0, modulo m. This is true for the first element
of the sequence (namely 0 itself), and it is therefore enough to show that the
sequence modulo m is periodic. This property is true of all Fibonacci-type
sequences of integers.

Theorem 3 Let m be an integer greater than 1. Then the residues modulo m
of the elements of every Fibonacci-type sequence of integers is periodic.

We will first show that the sequence is periodic from some point on. Let
$0, 81, - -, be a Fibonacci-type sequence. Then the consecutive pairs s;, 5,41
of elements can have at most m? different values modulo m. Thus among the
elements sg, 1, . .., Sm2, Sm241, the m? + 1 pairs of consecutive terms cannot
all be different, there must be two consecutive pairs (s;, sj+1) and (sk, Sk+1),
j < k, for which

s; = sk (mod m) and sy = Sk41 (mod m).
Thus by the recursion formula we have
Sj+2 = Sj41 + Sj = Sk41 + Sk = Sk4+2 (mod m),
and continuing in this fashion, we have that for every n > j,
Sp = Spt+k—; (mod m). 3)
Thus the sequence of residues is periodic from some point on.
The periodicity must start from the beginning, because by the recursion,
we have for j > 0
8j—1 = 8j41 — Sj = Sk41 — Sk = Sk—1 (mod m),
and we can continue to the beginning of the sequence, thus showing that (3)

holds for all nonnegative integers n. With this we have proved Theorem 3.
For the Fibonacci sequence, it follows that (all congruences modulo m)

fe-; = fo=0, fok-j) = fi-j = fo =0, ...,
frk=-p) =fo=0(r=1,2,...).

With this we have proved Theorem 2.
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4. The proof in the previous section shows that the smallest period of a
Fibonacci number divisible by m is not larger than m? — 1. We will see that
the first Fibonacci number divisible by m is not larger than m2 —4m+ 7 and
m? — 4m + 8 for m even and odd, respectively (see Exercise 8). In practice,
the actual periods seem to be much smaller as m gets larger. It is known
that if m is a prime, then f,,_; or fm41 is divisible by m for m of the form
10k £ 1 or 10k + 3, respectively. Even this is often not the smallest Fibonacci

number divisible by a prime.

3

Exercises:

1.

Find simpler formulas for the following sums:

(a) Sn =f1+f2+”'+fn)

(b) Tn=fi+fat+ -+ fon-1,

(€) Un=fo+ fa+ -+ fon,

(d) Va=fi+fZ+--+f2

Prove that at least four and at most five Fibonacci numbers other

than the single-digit ones have the same number of digits in decimal

notation.

Prove that we get a Fibonacci-type sequence if

(a) we multiply every element of a Fibonacci-type sequence by the
same number;

(b) we add the corresponding elements of two Fibonacci-type se-
quences.

Are there any Fibonacci-type sequences among the

(a) arithmetic sequences?

(b) geometric sequences?

Give an explicit expression (depending only on n) for the elements of

a Fibonacci-type sequence, in particular for the Fibonacci numbers.

Assume that the sequence sg, s1, ... is of Fibonacci type. Express its

elements in the form s, = u,sg + vn$1, where u, and v, are not

dependent on the sequence.

(Continued.) Prove that the elements of the sequence S, = s2 (n =

0,1,...) satisfy the recursive relation

Sn+3 = uSpy2 + ’USn+1 + wS, (n > 0),

where u, v, and w do not depend on either n or the sequence.

Prove that if m > 3, then the smallest index of a nonzero Fibonacci
number divisible by m is at most m? — 4m + 6 if m is odd, and m?2 —
4m + 7 if m is even.

3 For further reading on the Fibonacci numbers, we refer the reader to
N.N. VoroBev: The Fibonacci Numbers, Heath, Boston, 1963. (This is a trans-
lation from the Russian.)
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5. In Chapter 5 we saw many examples of infinite sequences of pairwise
relatively prime elements. In particular, in Sections 3 and 4 we defined some
sequences of this type by recursion; in Exercise 5.10 we saw that sequences
of this type have density 0, in the sense defined in Section 5.12.

There are other definitions of density of sequences that prove to be useful
for certain applications. The previous definition of density 0 is a special case
of asymptotic density. It can be defined in the following way: Let a;,az,...
be a sequence A and denote by A(z) the number of terms of A not greater
than x. We say that the sequence has upper density c if the ratio A(z)/z hasc
as its upper bound. This means that for every h > 0, we have A(z)/z < c+h
for = large enough, and beyond any bound there is always an N for which
A(N)/N > ¢ — h. We similarly define the lower density of a sequence to be d
if it has lower bound d.

If the lower density and the upper density of a sequence coincide, meaning
that the sequence A(z)/z has a limit as z gets large, then we say that this
limit is the asymptotic density of the sequence. It is clear that O density is
the same as asymptotic density 0.

It follows from the definition that if we know only that for any A > 0, the
inequality A(z)/x < c+ h (respectively A(z)/z > c— h) holds for all z large
enough, then the upper density is not greater than c (respectively the lower
density is at least c).

Exercises:

9. Determine the lower and upper densities of the following sequences:
(a) 10, 11, 12, ...,
(b) 1,4,9, ...,
(¢) 2+(n—-1)d n=1,2,...,
(d) 2n+(-1)"n n=12,....
10*. Find a sequence with upper density 1 and lower density 0.

6. In a large part of what follows we deal with finite sequences. We will
see that the infinite analogues of these problems are often significantly more
difficult.

We will try to choose as many numbers as possible from the integers
between 1 and N in such a way that the pairwise differences are not among
the numbers chosen. It is not difficult to see that the odd numbers is such
a set, since the difference between any two is even. Another set satisfying
this condition is the set of all numbers greater than N/2, since the difference
between any two is strictly less than N/2.

In both examples we have chosen N/2 numbers when N is even, and
(N +1)/2 when N is odd. We can write this as [(N + 1)/2]. It is not too
difficult to see that a set of this type cannot be any larger. If n is the largest
element of the set (n < N), then for all integers k less than n, we may choose
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only one of k and n—k, thus giving an upper bound of [(n+1)/2] < [(N+1)/2]
on the number of elements.

7. Let us now try to partition all integers from 1 to N into sets such that
two numbers and their difference do not all appear in the same set.
Corresponding to the first way we chose the integers in the above section,
we can partition the integers now such that we pick all the odd integers
between 1 and N in the first group, twice the odd integers in the second,
four times the odd integers in the third, and so on, until all the numbers are
accounted for. This way we get r groups, where r is the integer for which

I<N<2H, je, r= [ng] ;
log 2
holds.

The second method of choosing the integers in the previous section can
also be extended to the current problem and produces essentially the same
number of sets. However, using a little cleverer methods, one can get fewer sets
satisfying the conditions. The question of the least number of sets required
naturally arises. Similarly, one can ask whether it is possible to partition all
the natural numbers into finitely many sets such that no set contains two
numbers and their difference. For the first question, we know far less than an
exact answer, but we can answer the second question with a definitive “no.”
More precisely, we prove the following theorem.

Theorem 4 If the first N natural numbers can be partitioned into r sets
such that no two numbers and their difference occur in the same set, then the
following relation must hold:

N < rle.

Here e is the base of the natural logarithm, mentioned in Fact 5.

Let us start from a partition of the first N natural numbers into r sets
that satisfies the condition. Let the number of elements of a largest set be n;.
Then

N <np-rm

Let the elements of one of these largest sets be
a1 <az<az<---<ap,,

and call this set the first.
This set cannot contain any of the numbers

az —ay, a3 —ay, ..., Qn, —Aay,

and hence these numbers belong to some of the other r — 1 sets. Let no be
the largest number of the above elements that belong to the same set. Let
these elements be
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by <bya<bz<:- - <bp,,

and call the set they belong to the second. Then by the definition of ny, we
have that
ny — 1 S n2(7‘ el 1),

and we also have
b,; =0k, — a1 ('L = 1,2,...,77,2)
for appropriate indices ki, kg, ..., kn,. Again,
b,; —b1 ('L = 2,3,.. .,’n,g)
cannot belong to the second set, but they also do not belong to the first set
either, since the difference
bi - bj = Qk; — akj

is also the difference of two elements from the first set. Therefore, these
numbers are distributed among the remaining r — 2 sets. If the maximal
number of these in the same set is n3, then

ng — 1 < ng(r —2).

This procedure continues until the (s — 1)st step, when the ns_; — 1
differences generated by the selected ns_; elements are distributed among
the leftover possible 7 — s + 1 sets such that into each set at most 1 = n;
elements fall. Then

Ng_1—1<ng(r—s+1)=r—s+1
holds. Obviously, s < r, and for any two elements of the sequence defined
this way, n;,ns,...,ns = 1, the inequality
n; — 1< ngyi(r —1)
holds, where 7 = 1,2,...,s — 1. Additionally, the inequality also holds for
1 =0 if we interpret ng as N + 1.

Applying this in turn for all i = 0,1,2,...,s—1, and using the expression
for e from Section 3.14*, we arrive at the following inequalities:
N<((m-1D)+1)r<n(r—)r+r<nzg(r=2)(r—1)r+(r-1)r+r<---

<ns_1(r—s+2)(r—s+3)---(r—1)r+(r—s+3)---(r=1)r

+-o+(r=r+r
<(r—-s+1)(r—s+2)---(r=1)r+(r—s+2)---(r—=1r+---

+(r—=1)r+r
<7r!+2:3---(r=Dr+3---(r=1)r+---4+(r—1)r+r
=r!(1+l+—1-+~-+ 1 + ! )<r!e
12! (r=2) " (r—1) !

which is what we wanted to prove.
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8. The theorem and proof given here are due to I. SCHUR. He used them in
the proof of the following theorem:

Theorem 5 For every positive integer m, and for every prime p larger than
a bound depending only on m, there are integers a,b, and c, none divisible by
p, for which

a™ = b+ c™ (mod p). (4)

This means that a finite-modulus version of Fermat’s last theorem fails
to be true, so much so that for every m and every p (large enough), there are
solutions to (4). (See the following section for a discussion of Fermat’s last
theorem.)

The proof of this theorem uses the primitive roots of congruence and the
notion of index (see Section 2.38) as well as Theorem 2.18, which says that
for prime moduli there exist primitive roots.

Let m be a positive integer, p a prime larger than e-m!, and g a primitive
root modulo p. Partition the positive integers less than p into m classes de-
pending on the residue class modulo m of the index. According to Theorem 4,
there is a class having elements u,uz, and uz for which u; — up = us, i.e.,

u] = Uz + u3. (5)
From the definition of the classes, there is a number i such that every ele-
ment of this class is congruent modulo p to g*™**, for some positive integer ¢t.
Thus there are integers ), t2,t3 for which
u; = g™ (mod p), j=1,2,3.
Substituting this in (5) and dividing by g*, we get that
gtlm = gtgm +gt3m (mod p)‘

Thus

ty 12}

a=g", b=g", c=g"

satisfy the congruence (4).

9. Fermat’s last theorem was written by PIERRE DE FERMAT in the margin
of a textbook in the 17th centruy.

Theorem 6 (Fermat’s Last Theorem) The equation
m

xm+ym=z

has no solutions in positive integers x,y, z for any integer m > 2.
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FERMAT did not supply a proof of the statement. Instead, he wrote, “I
have a truly marvelous demonstration of this proposition which this margin is
too narrow to contain.” Since the statement was left unproven, it was only a
conjecture, and remained as such for 350 years until ANDREW WILES proved
it in 1993. It is widely accepted that Fermat did not have a correct proof.
However we may never know for certain.

WILES encountered Fermat’s last theorem as a ten-year-old boy and be-
came fascinated by it. Later, during his studies he became acquainted with
the theory of elliptic curves and the theory of modular forms, as well as a
conjecture concerning their close relation.*

It was clear to Wiles that a proof of this new conjecture would also supply
a proof of Fermat’s last theorem, but the full proof of this conjectured relation
required seven years of hard work. A narrower and narrower gap always
seemed to resist his continuing attempts, and he was once at the point of
losing all hope of success and giving up, when finally he was able to achieve the
last step. In June 1993, he presented a series of three lectures at Cambridge,
England, which culminated in the proof of Fermat’s last theorem.

10. Let us now return to Theorem 4 and consider partitions of the integers up
to N into sets such that no set contains the difference of two of its elements.
Experimentation shows that two groups are enough only for the first four
integers. Three groups are enough for the first 13; one such partition is the
following:

{1,4,10,13}, {2,3,11,12}, {5,6,7,8,9}.

The other partitions into three sets differ only in the placement of 7: It can
be added to either of the first two sets as well.

We saw in Section 7 that the first 2" integers can be partitioned into r
sets. The partition of the first 13 integers into 3 sets can be easily generalized.
It provides a partition of the first (3" — 1)/2 numbers into r sets. As r grows
just a little, this is not even close to the upper bound of rle. We do not know
what the largest number is such that all integers up to this can be partitioned
into s sets, no set containing the difference of two of its elements.

11. We have already referred to sequences of integers containing infinitely
many primes. To show the existence of arbitrarily many primes, we do not
have to investigate too many numbers. We will show that however we choose
distinct positive integers, if we take all pairwise sums of these numbers and
consider their prime divisors, there are arbitrarily many of these, assuming
that we start with enough integers. More precisely, we prove the following
theorem:

* Even a rough survey of these topics would considerably surpass the framework
of this book, and instead we refer the interested reader to S. SINGH: Fermat’s
Enigma, Walker & Co. New York, 1997.
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Theorem 7 However we choose 2% + 1 distinct positive integers, if we take
all pairwise sums, then at least k + 1 primes occur as prime divisors of these
numbers.

The main obstacle to finding many distinct prime divisors of these pair-
wise sums is the possibility that a prime to a high power can divide a sum
even if it does not divide some of the summands. For this reason we try to
find, for a prime p, many pairwise sums that are not divisible by higher pow-
ers of p than that of the summands. It is then expected that the pairwise
sums will have many distinct prime divisors. In order to reach our goal, we
will first prove a lemma.

Let an odd number of positive integers

ny,n2,...,N2e41
be given, and let p be an odd prime. Write the numbers in the form
n, =p*g (1=12,...,20+1),

where the g;’s are not divisible by p. Then the sum of two of them, say n;
and n; assuming a; < o, is

Qj— 0y

ni +n; =p* (g +pM " g;).

If a; # «j, then the sum in parentheses is not divisible by p. If, however,
a; = aj, then we need to take care that g; +¢; is not divisible by p. This would
be guaranteed if either both were smaller than p/2, or if both summands were
greater than p/2 (since p is odd, they cannot equal p/2). In these cases, the
sum of the two has remainder between 0 and p, respectively between p and 2p.
The endpoints are not possible, and the sum therefore is not divisible by p.
The numbers

41,492, --,Q92¢+1,

upon division by p must have either ¢ + 1 remainders smaller than p/2, or
¢ + 1 remainders greater than p/2. With this we have proved the following
lemma: '

Lemma If p is an odd prime, then among any 2¢ + 1 distinct odd integers
there are ¢ + 1 such that the pairwise sums of the numbers are not divisible
by a higher power of p than the summands themselves.

12. This lemma is the key to proving the theorem. Let 2%+ 1 distinct positive
integers be given (where k is at least 1). Among the prime divisors of all
pairwise sums generated by these integers appears the number 2, since we
have at least 3 numbers, and at least two of them are even or at least two of
them odd, and the sum of these is even. Let us denote the odd prime divisors
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of the pairwise sums by p;,ps,...,p;. We will show that : > & by indirect
reasoning.

Assume that ¢ < k. Now apply the above lemma. According to the lemma,
from the 2% + 1 numbers we can choose 2! 4 1 such that if the sum of any
two of them is divisible by p{, then both would be divisible by it. From these
we can choose 2¥=2 41 numbers from them such that in addition to the above
condition, if the sum of any two of them is divisible by pg , then each of the
summands is divisible by it.

Repeatedly applying this procedure we get 2~* + 1 numbers, and by
our assumption this means that at least 3 numbers such that the properties
stated above on p; and p; hold for all p;,p2, ...,p;. Let 3 of the remaining
numbers be a;,a; and a3. Since we assumed that we have listed all the odd
prime divisors for all pairwise sums, we have

ay +az =2"ppy? - pt, a1 +az =2"p"py* - p",
az + a3 = 2"°py" py* - - pi.

Here both a; and a; have to be divisible by p}*p3?---p;*, and hence
neither of them can also be divisible by 2%0. Their sum can be divisible
only by higher powers of 2 than those of the summands if 2 has the same
exponent in both of their canonical representations. The same holds for a,;
and a3. Therefore, the three numbers are of the following form:

a; =2';, i=1,2,3,
where by, b2 and b3 are odd; their pairwise sums have the form
by + by = 27 py py? - - p,

by +bs = 27pY'py* - - p}*

b + b3 = 27p)"py* - - - p}*
(with ry = ug—t, 72 = v9 —t, and 73 = wp —t). For the b’s, it also holds that,
for instance, b; and b, are divisible by py*p3? - - - p}"*; hence none of them is
less than this value. In fact, at least one of them is greater, since b; and by
are distinct.

Thus, 7 needs to be at least 2. Similarly, both 72 and r3 are greater than
or equal to 2. Therefore,

by +be =4z, by +bs=4y, bs+b3=4z,
for some z,y, and z. Dividing the sum of these by 2, we have
by + by + b3 =22+ 2y + 2z2.

This is a contradiction, since on the left-hand side we have the sum of three
odd numbers, which is odd, while on the right we have the sum of three
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even numbers, which is even. Therefore, we cannot have i < k. This proves
Theorem 7.

This theorem was discovered by ERDOS and TURAN back when they were
university students. The limit of 2% + 1 seems as though it could be sig-
nificantly decreased, but the theorem has not yet been proved for a smaller
value.

It is natural to ask the question, given two sequences 1 < a; < a; <
-»+<arpand 1< b <by<--- < by, what can we say about the number of
prime divisors of a; + b;? GYORY, STEWART, and TIJDEMAN proved that if
k > £ > 2, then there is a positive constant ¢; such that the number of these
prime divisors is greater than®

¢ logk.

On the other hand, ERDOs, STEWART, and TIIDEMAN proved that this
constant cannot be replaced by

c2(log k)% loglog k,
for any c; greater than 3.”

The corresponding problem for products has also been investigated. In
this case, the number of prime divisors of a;b; + 1 is being estimated. For
this, GYORY, SARKOZY, and STEWART have shown that (using the above
notation) there is a similar bound of the form

czlogk
for an appropriate positive constant cz.8

13. We have already referred to sequences whose elements are pairwise rela-
tively prime. In Section 5.4 we mentioned that the sequence of prime numbers
is essentially the densest such sequence. Let us now weaken the requirement
and investigate those sequences for which no element is a multiple of any
other. Call such sequences multiple-free, or for short M -sequences. If the ele-
ments are pairwise relatively prime, then the new requirement is met, yet we
can multiply every element of a pairwise relatively prime sequence by a fixed
number m, and the new sequence is still an M-sequence, but its elements are
not pairwise relatively prime anymore, since the greatest common divisor of
every two elements is m.

5 P. ERDYs, P. TURAN: American Math. Monthly 41 (1934), pp. 608-611. There
they have 3-2*~! for our 2% + 1.

5 K. GY8Ry, C. L. STEWART, R. TUDEMAN: Compositio Math. 59 (1986), pp. 81—
89.

7 P. ERDGs, C. L. STEWART, R. TIIDEMAN: Compositio Math. 66 (1988), pp. 1-71.

8 K. GYORyY, A. SARKOZY, C. L. STEWART: Acta Arithmetica 74 (1996), pp. 365-
385.
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Denote by M(N) the maximal number of elements in an M-sequence
whose elements are all less than or equal to N. If N = 2k or N = 2k + 1,
then the numbers k + 1,k + 2,..., N form an M-sequence. In this way, we
choose k numbers up to 2k, and k+1 numbers up to 2k-+1, which is [(N+1)/2]
in both cases. Hence we have demonstrated that

N+1
3 .

wmz[ (6)

We will show that equality holds here.

Theorem 8 Let N be a positive integer. If none of the elements of a sequence
consisting of integers not greater than N is a divisor of some other element,
then the sequence has at most [(N + 1)/2] elements.

14. We give two proofs to the above theorem. First we prove it by induction
on N. It is clear that M (1) = M(2) = 1. Then it is enough to show that

M(N+2)<M(N)+1, (7)
since this will imply that the inequality
M) < |42 ®

holds for all integers N, which in conjunction with (6) yields the desired
equality. Suppose that (8) holds for two consecutive values of N, say R — 1
and R. Then by (7) and (8), we have

M(R+1)< M(R-1)+1< [§]+1= [§+1] - [5;3]

and similarly

M(R+2)<M(R)+1< [1—2—;—1}+1= [—}3—;"—14—1]: [——-]

15. For another proof, we start from an M-sequence of numbers not larger
than N + 2. If at most one of N + 1 and N + 2 belongs to the sequence,
then the other numbers are not larger than N, and their number is at most
M(N). In this case (7) is true.

If N+1and N +2 both appear in the sequence, then at least one is even;
call this 2n. Then neither n nor its divisors can appear in the sequence. This
means that the elements not larger than N, along with the number n, also
form an M-sequence. Thus there are at most M (N) — 1 elements not greater
than N and therefore at most M(N) + 1 in the entire sequence. With this
we have established (7) and proved Theorem 8.
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16. We can rephrase the claim of Theorem 8 as follows: No matter how we
choose [(N +1)/2] positive numbers between 1 and N, there are always two
such that one is a divisor of the other. We will prove this statement using
the earlier idea of writing a number as product of a power of two and an odd
integer. Let the given numbers be

a1,02,...,0m.
Here m > [(N + 1)/2]. Write these numbers as
a; = 2uibi (1 S ) < m),

where u; is a nonnegative integer and b; an odd integer.

The number of odd integers not larger than N is [(N + 1)/2]. Thus there
are two b’s that are equal, say b; = b;(i # j). We may assume that u; > u;,
since a; # a;. Thus

a; = WY 2ujbj =2%T% aj,
and so a; | a;. With this we have proved the claim.

17. The first proof given above is due to P. TURAN and D. LAZAR, who
found it independently of each other; the second proof is due to E. VAzsONY1
and M. WACHSBERGER.®
It can be shown that if an M-sequence of elements not larger than IV has
[(N +1)/2] elements, then every element is at least 2¥, where v is the integer
satisfying
3V < N < 3vHl,

This means that as N grows, the smallest element of the sequence grows
beyond all bounds. Thus there cannot be an infinite M-sequence for which
the elements not larger than N form a maximal M-sequence. (In the case
of sequences with pairwise relatively prime elements, the sequence of primes
is such a sequence; in the case of sequences not containing the difference of
any two elements, the sequence of odd integers is also a sequence with this
property.)

Various problems arise in considering infinite M-sequences. What can be
said of the density of such a sequence, if an infinite M-sequence even exists?
Such sequences do exist; in fact, the sequence of primes is such a sequence. We
know that this sequence has 0 density. Is it possible to give a denser infinite
M-sequence, for example one that has positive upper density? Is there one
whose lower density is also positive?

It is clear that if a;,a2,... is an infinite M-sequence, and we denote by
A(z) the number of elements not larger than z, then

® Compare these with P. TURAN: Kozépisk. Mat. Lapok, new series 8 (1954),
pp. 33-41 (in Hungarian).
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Az) < M(z) = z+1 Sz+1,
2 2
so that
A 1, L
z — 2 2z

Thus for any arbitrarily small positive h, this is smaller than 1 5 +hfor z
‘large enough, showing that the upper density is at most 3. At the beginning
of this section we mentioned that from a large z on, it is never possible that
A(z) = M(z). BEHREND and ERDOs, each using different methods, proved
that this equality is not even close to the truth; they showed that every infinite
M-sequence has lower density 0,10 and that the upper density is strictly less
than 1. In the other direction, BESICOVITCH exhibited an M-sequence for

2
any arbitrarily small positive h that has upper density at least 3 — h.!!

Exercise:

11. Does there exist an M-sequence such that any two elements have a
common divisor greater than 1, yet there is no number greater than 1
that divides all numbers greater then any given bound?

18. The sequences discussed in Section 6 do not contain the difference of
any two elements of the sequence. A similar question, that just recently came
to a comfortable resting point after tedious examinations, is the search for
sequences that do not contain arithmetic progressions of length 3, or more
generally, for a given k, the sequences that do not contain arithmetic progres-
sions of length k. We will denote by rx(n) the maximal number of elements
of sequences whose elements are not greater than n, and that do not contain
arithmetic progressions of length k. This function behaves very whimsically.

Let us try to determine the first few values of r3(n). To make things
shorter, call such a sequence a T-sequence. The following property of T-
sequences makes our examination a bit easier. If

0<a;<azy<---<ar

is a T-sequence of integers not greater than N, and k < a;, then the following
two sequences satisfy the same conditions:

(a) ay—k, aa—k, ..., ar — k,

(b) N+1l-a,, N+1—-a,—y, ..., N+1—a,.

0 F. BEHREND: Journal London Math. Soc. 10 (1935), pp. 42-44. P. ERDOs: ibid.
10 (1935) pp. 126-128. In both references, upper bounds are given to sums of
the elements, from which it follows that the lower density is 0.

' A.S. BESICOVITCH: Math. Annalen 110 (1934), pp. 336-341.
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It is clear that these contain only positive integers not greater than N,
and the two equalities

(ay — k) + (@, — k) = 2(aw — k)

and
(N4+1l-a,)+(N+1—-ay)=2(N+1-ay)

hold if and only if
Ay + Gy = 20y,.

Therefore, if either of the sequences (a) and (b) contains an arithmetic
progression of length 3, then the original sequence would contain one as well,
contradicting our assumption.

By the above property (a), we can assume that the smallest element of
the sequence is 1.

19. Let us now determine the first few values of r3(N). It is obvious that
T3(l) =1, T3(2) = 'l"3(3) =2, T3(4) =3,

since 1, 2, and 3 cannot all belong to a T-sequence, but 1, 2, and 4 form a
T-sequence.
We will show that

73(5) = r3(6) = 73(7) = r3(8) = 4.

On the one hand, the sequence 1, 2, 4, 5 is a T-sequence with elements not
greater than 5, and hence

73(8) > r3(7) > r3(6) > r3(5) > 4.

On the other hand, if we show that from positive integers not greater than 8
it is not possible to form a T-sequence of length 5, then we have proved the
above equality.

Such a sequence of length 5 would either have three elements not greater
than 4, or three elements greater than 4. It is enough to consider the first case,
because if the second case holds, then subtracting these elements from 9, by
property (b) we would get a T-sequence of length 5 with elements not greater
than 8 for which the first case holds.

The only T-sequences of length 3 containing elements not greater than 4
are 1, 2,4 and 1, 3, 4. We cannot add 6 to the first sequence, because then 2,
4, and 6 forms an arithmetic progression. Similarly, we cannot add 7 to any
of these sequences, because then 1, 4, and 7 forms an arithmetic progression.
From 5 and 8 we can choose at most one to add to the previous sequences,
because of the arithmetic progression 2, 5, 8.

To the sequence 1, 3, 4 we cannot add 5, because 3, 4, 5 is an arithmetic
progression, nor 7, because of the 1, 4, 7; and only one of 6 or 8 can be added
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to 1, 3, 4, because of 4, 6, 8. So indeed, it is not possible to pick 5 integers
between 1 and 8 that form a T-sequence, and thus

r3(8) = 4 =r3(7) = r3(6) = r3(5).

Here the question arises, first considered by I. SCHUR, for given k and ¢, if
we partition the positive integers up to a large enough bound into £ sets, is it
true that one set contains k-term arithmetic progressions? VAN DER WAER-
DEN answered this question in the affirmative in 1928, giving an elementary,
though rather deep, proof.!? The following is a simple and interesting appli-
cation of the theorem:

Exercise:
12. Prove that if a;,as,... is an infinite sequence whose elements are
either 1 or —1, then for every positive K, there exist numbers b, ¢, and
d for which

> K.

d
Z Qkb+c

i=k

20. The values of the function r3(n) calculated thus far are all greater than
n/2. For larger n this inequality will turn around, but to show this, it is
necessary to determine the values of r3(n) up to n = 22, which is tiring work.
With further work, it is possible to decrease the ratio from % to 98. ERDOs
and TURAN conjectured more than 60 years ago that the ratio rg(n)/n will
be smaller than any positive h, for all n larger than some constant depending
on h and k. The path we have been exploring does not give any promise of
leading to a proof of this stronger statement even for the case k = 3, since
we have not discovered any pattern at all.

The first major result in this direction was by ROTH, who verified the
conjecture for the case k = 3, and in fact proved the stronger statement that
if n is large enough, then there is a constant c such that r3(n) < cn/loglogn.
His method cannot be applied to larger values of k. SZEMEREDI was the first
to prove the conjecture for k = 4, and then finally in 1974 for all k.13 The
theorem was later proved using an entirely different method (using ergodic
theory) by FURSTENBERG,!* and the proof was later considerably shortened
together with KATZNELSON and ORNSTEIN.!®

Tighter bounds, similar to that achieved for r3, are not known for k > 3
even though it is possible that r(n) divided by n/(logn)! is not bounded

12 B.L. VAN DER WAERDEN: Nieuw Arch. Wisk. 15 (1927), pp. 212-216.
13 B. SZEMEREDL: Acta Arithmetica 27 (1975), pp. 199-245. The earlier literature
is referred to here.

4 H. FURSTENBERG: Journ. Analyse Mat., 31 (1977), pp. 204-256.
!5 H. FURSTENBERG, Y. KATZNELSON, D.S. ORNSTEIN: Proc. Symp. Pure Math.
(39) 1980, pp. 217-242.
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no matter how large ¢ is. If this were true, it would imply, for example, that
there are arbitrarily long arithmetic progressions among the primes. Such an
arithmetic progression of length 21, found in 1990, is the following:

142072321123 + 1413769024680 - k, k=0,1,...,20.

21. Another sequence that has been considerably studied is the so-called
Sidon sequence. These are sequences of nonnegative integers with the prop-
erty that all pairwise sums of elements are distinct. These first arose during
S. SIDON’s investigation of Fourier sequences.!® For short, let us call these
sequences S-sequences.

For instance, the powers of 2 form an S-sequence, but one can give denser
S-sequences than this one. Denote by s(n) the maximum number of elements
of an S-sequence with elements not greater than n, and let

1<a@1<az;<:--<as<n

be an S-sequence with s = s(n) elements. Then all the sums a; + a; are

distinct, not greater than 2n, and their number is (*}") (we do not exclude

the case where ¢ = j). Thus
(s-; 1) < om,

5 < 2v/n.

We get a better bound by observing that a sequence is an S-sequence if
and only if the differences between any two elements are distinct. We leave
the proof of this statement to the reader. In a fashion similar to that above,

we get
s <n
2 b

s<V2n+1.

from which it follows that

which implies that

22. Using even cleverer ideas, we can get rid of the factor /2 in the above
bound. We will prove the following theorem in two different ways.

16 S, Sipon: Math. Annalen 106 (1932), pp. 536-539. For results on S-sequences
see P. ERDOs, A. SARKOZY, and V. T. SOs: Journ. of Number Theory 47 (1994),
pp. 320-347.
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Theorem 9 The mazimal number of elements of an S-sequence with ele-
ments not greater than n satisfies

s(n) <vn+ ¥n+1.

Both proofs are based on estimating a sum related to s in two different
ways. Again, we use the property of an S-sequence that the differences of all
pairs of elements are distinct.

For an appropriate t to be determined later, consider the n + t intervals
of length ¢t — 1 that intersect the interval [0, n]:

[-t+1,0}, [-t+2,1], ..., [n,n+t—1].

Let the number of elements of our S-sequence that fall into each of these
intervals be A;, Aa, ..., Apyt. Each a; falls into t consecutive intervals, so

n+t

E A,‘ =ts.
i=1

Now let us count the number of times the pair (a;,a;) (for i > j) falls
within the above listed intervals. Let the total number of these be D. Then,
on the one hand, it is clear that

n+t n+t

LA 1 1

On the other hand, if the difference of a pair of elements is d, then this
pair falls within ¢ — d intervals. Since all the differences are distinct, then
each d can occur at most once. Therefore,

t—1
D<Y (t-d)= @
d=1

Comparing the above two relations for D, we have

n+t n+t

DAI-N A <it-1).
=1

i=1

We saw that the second sum on the left-hand side equals ts. Now we
apply the inequality for arithmetic and quadratic means to the first sum on
the left-hand side:

n+t "'HA. 2
Soaz> e .
= - n+t n+t
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Writing these into the above inequality, reducing it to zero, and multiply-
ing both sides by (n +t)/t? we get that

sz—s(¥+l)—(%+1)@—l)§0
For the values of s satisfying this second-degree inequality we have

<n+1+\/ +t+n2__n 3
STV 21

Now, if we choose t = [\/‘1 n3] + 1, then the first term on the right-hand

side is less than % ¥/n, while the expression under the square root is less than
the square of /n + §¢/n + 3. This yields the desired inequality.

23. For the second proof of the theorem, again using a parameter t to be
determined later, we estimate the sum

K= Y (ai-a)
1<i—j<t

in two different ways. If 1 < p < t, then a value u can appear among the i — j
values in s — u different ways. Hence the number of terms in the sum above
is

t(t—1
(s—1)+(s—2)+---+(s—t)=ts—(—2-2=tw,
where
w=s t+1
= 5

All the differences are distinct; hence on the one hand their sum is not smaller
than the sum of the first tw integers:

tw(tw + 1) S t?w?
2 2

On the other hand, those differences for which the difference of the indices
is p can be rearranged into so-called telescopic sums,

K>

(as—o - as—-a-—-p) + (as-—a—p. - as—a—2u) 4+ <as-¢ <N

Here we have that
0<o<y,

so we have u such telescopic sums, and naturally, we continue all of them as
long as s — o — ru remains nonnegative. In this way, every term of K belongs
to one of the sums. Since 1 < u < t, this yields

_H(t+1)

24 ...
1+2+ +1 2
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telescopic partial sums, and therefore

nt(t + 1)

K < )

Combining the two inequalities for K and multiplying both sides by 2/t2
we arrive at

Solving for s, we have

and by choosing
t=[vn]+1

we arrive at the bound that we wanted to prove.
The first proof is due to ERDOS and TURAN,!” while the second is due to
LINDSTROM.8

24. Theorem 9 is sharp in the sense that the ratio s(n)/\/n is arbitrarily
close to 1 for n large enough. In other words, the asymptotic value of s(n) is
v/n. To prove this last statement, we will prove the following lower bound on

s(n):

Theorem 10 There ezists an S-sequence with s elements not greater than n
for which
s> /n—ntl/%0

There are several known proofs of this fact. Here, we present the proof
requiring the least background. Every known proof is related to the one we
present, and is based on the following theorem interesting on its own:

Theorem 11 Let p be an odd prime. There exist p— 1 numbers a; for which
the differences a; — a; (i # j) are incongruent modulo p* — p.

Let g be a primitive root, modulo p (see Theorem 2.18), and let the a;’s
be the smallest nonnegative solution, modulo p? — p, to the simultaneous
congruences

z=1 (mod p—1),

z = g¢' (mod p).

We need to show that the congruence a; — a; = a, — a; (mod p? — p), or
written in the equivalent form

17 p. ErDSS, P. TURAN: Journ. London Math. Soc. 16 (1941), pp. 212-215.
'8 B, LINDSTROM: Journ. Comb. Theory 6 (1969), pp. 211-212.
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a; +as = a, +a; (mod p* — p),

is satisfied only by the trivial solutions. In other words, this means that for
any number c there is at most one pair of numbers %,;j that satisfies the
congruence

¢ = a; +a; (mod p? —p).

Based on the definition of the a;’s, this is equivalent to the congruences
c=i+j (modp-—1),

c=g'+¢’ (mod p)

being simultaneously satisfied. The first congruence we may rewrite as
g9° = g'¢’ (mod p).

The relationship between the roots pf a quadratic equation and its coefficients
implies that the residue classes (g*), and (g’), are uniquely defined as the
two roots of the second-degree congruence

2 —cx+g° =0 (mod p).

Since the modulus is prime, the pair of roots is uniquely determined, and
thus the pair 4, j is uniquely defined.

25. The sequence of a;’s constructed is an S-sequence, and for n of the form
p? — p, we see that

s(n)Sp—lS-21—(\/4n+1+1)—1>\/7—t—1.

For arbitrary n, we choose a prime such that p? — p is close to n. This
essentially means that p is close to y/n. Chebyshev’s theorem, which states
that there is a prime between m and 2m, for every m, gives too large of a
gap. We mentioned the conjecture that for every positive § there is a prime
between m and m + m?, but the proof of this looks to be without hope.
Here we will use the deep result that for every m sufficiently large there is a
prime between m — m1/2% and m.'® Thus we can choose a prime p between

v/n — n'1/40 and \/n, and hence

s(n) > s(p? —p) 2 p-12> vVn—nl/9o

Exercises:

13. Prove that there is only one 8-term T-sequence of positive integers not
greater than 14.

19 R. C. BAKER, G. HARMAN: Proc. London Math. Soc. (3) 72 {1996), pp. 261-280.
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14.

15*.

16.

17.

18*.

19.

20".

21*.

22.

23.

6. Sequences of Integers

Denote by t(N) the maximum number of elements not greater than
N in a sequence not containing arithmetic progressions of length 5,
and for which every arithmetic progression of length 3 is part of an
arithmetic progression of length 4. Determine the values of ¢ for N not
greater than 14.

Let 0 < a; < az < --- be an infinite sequence and assume that there
is a K such that for every n,
n
1
Y. =<Kk
i=1 i
Prove that a sequence of numbers not divisible by any of the a;’s has
asymptotic density.
The first two elements of a sequence of integers are 1 and 2, and the
sequence does not contain the sum of any two of its elements. Prove

that this sequence has at most (n + 5)/3 elements not greater than n
(O. Lukécs).

Show that there are infinite sequences of integers 1 < a; < as < ---
such that no element is the divisor of the product of the previous
elements, and for which

m(ax) < k.

Are there sequences for which the inequality is strict except for finitely
many k?

Take the sequence of integers that do not have any prime divisors
other than those from a finite set of previously given primes. Prove
that this sequence does not have any infinite subsequence in which no
element is a divisor of any other (Dickson).

Prove that from any infinite sequence of positive inﬁegers we can either
choose an infinite subsequence in which every element is the divisor
of the following one, or one in which no element is the divisor of any
other.

Let a),az,...,ake+1 be a sequence of distinct real numbers. Prove
that there is either an increasing subsequence of k + 1 elements or a
decreasing subsequence of £ + 1 elements (Erd8s—Szekeres).

Prove that among any k¢ + 1 distinct integers we may either choose
k +1 such that each is divisible by the previous one, or we may choose
¢+ 1 such that none is the divisor of any other.

Prove that it is possible to give n positive integers a;, a2, ...,an, but
not more, not greater than 2n such that no integer between 1 and 2n
is divisible by two different a;’s.

Consider all numbers of the form ag + 3a; + 9az + - - - + 3*ax, where
each a; is either 0 or 1. Prove that there are no three numbers in this
sequence that form an arithmetic progression (Szekeres).



7. Diophantine Problems

1. We have already encountered Diophantine equations in Chapter 1. For
example, we investigated in detail first-degree equations with two unknowns
(Sections 1.29-1.30), and found a presentation for all Pythagorean triples
(Sections 1.21-1.24). In Chapter 4 we studied which positive integers can
be represented as the sum of two squares. We will return to the question in
Section 4. We will now consider a collection of similar questions.

One analogue of right triangles in space is the right parallelepiped. The
lengths of the edges, z;, z2,z3, and the diagonal, y, satisfy the equation

zf+:r§+:r§=y2.

The integer solutions can be called “Pythagorean quadruples.” In what fol-
lows, we will find for any integer n (greater than 1) the integer solutions in
parametric form of the more general equation

2423+ 2l =y (1)

It is clearly enough to determine positive solutions (z; > 0,y > 0) for
which (z1,z2,...,y) = 1. Let us rewrite the equation as

g}ty + o+ 2y = (y — 2a)(y + 2n), (2)
and let d be the greatest common divisor (z1,z2,...,Zn-1,y — Z»). Then for
appropriate integers uj, ug, ..., u, for which (u;,ug,...,u,) =1, we have

z; = du;, 1i=1,2,...,n-1; Y — T = dup.
Making these substitutions and simplifying by d, we may write (2) as
du? +u + - +ul 1) = un(dun + 22,) = un(2y — duy).
After rearranging a little, we have
2unT, = d(u? +ud + .- +uZ_; —ul), (3)

Quny = d(uf +ud + - +ul_; +ul). (4)

Here (z,,d) = 1, since any common divisor is a common divisor of zi,
Tg,...,Tn_1 as well, and we assumed that <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>